gsl-1.16/0000775000252300025230000000000012172254164007233 500000000000000gsl-1.16/configure.ac0000664000252300025230000004223412172253745011452 00000000000000dnl Process this file with autoconf to produce a configure script. AC_INIT([gsl],[1.16]) AC_CONFIG_SRCDIR(gsl_math.h) AM_INIT_AUTOMAKE([gnu]) AC_CONFIG_HEADERS([config.h]) AM_MAINTAINER_MODE dnl Library versioning (C:R:A == current:revision:age) dnl See the libtool manual for an explanation of the numbers dnl dnl gsl-1.0 libgsl 0:0:0 libgslcblas 0:0:0 dnl gsl-1.1 libgsl 1:0:1 libgslcblas 0:0:0 dnl gsl-1.1.1 libgsl 2:0:2 libgslcblas 0:0:0 dnl gsl-1.2 libgsl 3:0:3 libgslcblas 0:0:0 dnl gsl-1.3 libgsl 4:0:4 libgslcblas 0:0:0 dnl gsl-1.4 libgsl 5:0:5 libgslcblas 0:0:0 dnl gsl-1.5 libgsl 6:0:6 libgslcblas 0:0:0 dnl gsl-1.6 libgsl 7:0:7 libgslcblas 0:0:0 dnl gsl-1.7 libgsl 8:0:8 libgslcblas 0:0:0 dnl gsl-1.8 libgsl 9:0:9 libgslcblas 0:0:0 dnl gsl-1.9 libgsl 10:0:10 libgslcblas 0:0:0 dnl gsl-1.10 libgsl 10:0:10 (*) libgslcblas 0:0:0 dnl gsl-1.11 libgsl 12:0:12 libgslcblas 0:0:0 dnl gsl-1.12 libgsl 13:0:13 libgslcblas 0:0:0 dnl gsl-1.13 libgsl 14:0:14 libgslcblas 0:0:0 dnl gsl-1.14 libgsl 15:0:15 libgslcblas 0:0:0 dnl gsl-1.15 libgsl 16:0:16 libgslcblas 0:0:0 dnl gsl-1.16 libgsl 17:0:17 libgslcblas 0:0:0 dnl dnl (*) There was an error on this release. Firstly, the versioning dnl numbers were not updated. Secondly, 2 functions were removed, but dnl the age not reset--this should have been 11:0:0. However these dnl functions were not documented and are regarded as internal, so we dnl will assume 11:0:11. dnl dnl How to update library version number dnl ==================================== dnl dnl C: increment if the interface has additions, changes, removals. dnl dnl R: increment any time the source changes; set to 0 if you dnl incremented CURRENT dnl dnl A: increment if any interfaces have been added; set to 0 if any dnl interfaces have been removed. removal has precedence over adding, dnl so set to 0 if both happened. dnl GSL_CURRENT=17 GSL_REVISION=0 GSL_AGE=17 dnl CBLAS_CURRENT=0 CBLAS_REVISION=0 CBLAS_AGE=0 GSL_LT_VERSION="${GSL_CURRENT}:${GSL_REVISION}:${GSL_AGE}" AC_SUBST(GSL_LT_VERSION) GSL_LT_CBLAS_VERSION="${CBLAS_CURRENT}:${CBLAS_REVISION}:${CBLAS_AGE}" AC_SUBST(GSL_LT_CBLAS_VERSION) case "$VERSION" in *+) ;; *) AC_DEFINE(RELEASED,[],[Defined if this is an official release]) ;; esac dnl Split VERSION into GSL_VERSION_MAJOR and GSL_VERSION_MINOR dnl Follows AX_SPLIT_VERSION macro from AC-Archive dnl Rhys Ulerich AC_PROG_SED GSL_MAJOR_VERSION=`echo "$VERSION" | $SED 's/\([[^.]][[^.]]*\).*/\1/'` GSL_MINOR_VERSION=`echo "$VERSION" | $SED 's/[[^.]][[^.]]*.\([[^.]][[^.]]*\).*/\1/'` AC_SUBST(GSL_MAJOR_VERSION) AC_SUBST(GSL_MINOR_VERSION) dnl things required by automake dnl AC_ARG_PROGRAM AC_PROG_MAKE_SET dnl Check for which system. AC_CANONICAL_HOST dnl Checks for programs. AC_LANG(C) AC_PROG_CC AC_PROG_CPP AC_PROG_INSTALL AC_PROG_LN_S AC_PROG_LIBTOOL dnl Check compiler features AC_TYPE_SIZE_T dnl AC_C_CONST AC_C_VOLATILE AC_C_INLINE AC_C_CHAR_UNSIGNED GSL_CFLAGS="-I$includedir" GSL_LIBS="-L$libdir -lgsl" dnl macro from libtool - can be replaced with LT_LIB_M when we require libtool 2 AC_CHECK_LIBM GSL_LIBM=$LIBM AC_SUBST(GSL_CFLAGS) AC_SUBST(GSL_LIBS) AC_SUBST(GSL_LIBM) if test "$ac_cv_c_inline" != no ; then dnl Check for "extern inline", using a modified version of the test dnl for AC_C_INLINE from acspecific.mt dnl AC_CACHE_CHECK([for GNU-style extern inline], ac_cv_c_extern_inline, [ac_cv_c_extern_inline=no AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[extern $ac_cv_c_inline double foo(double x); extern $ac_cv_c_inline double foo(double x) { return x + 1.0 ; } ; double foo (double x) { return x + 1.0 ; };]], [[ foo(1.0) ]])],[ac_cv_c_extern_inline="yes"],[]) ]) if test "$ac_cv_c_extern_inline" != no ; then AC_DEFINE(HAVE_INLINE,[1],[Define if you have inline]) else AC_CACHE_CHECK([for C99-style inline], ac_cv_c_c99inline, [ac_cv_c_c99inline=no dnl next line is a necessary condition AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[extern inline void* foo() { foo(); return &foo ; };]], [[ return foo() != 0 ]])],[ac_cv_c_c99inline="yes"],[]) dnl but not sufficient, extern must work but inline on its own should not if test "$ac_cv_c_c99inline" != no ; then AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[inline void* foo() { foo(); return &foo ; };]], [[ return foo() != 0 ]])],[],ac_cv_c_c99inline="no") fi ]) if test "$ac_cv_c_c99inline" != no ; then AC_DEFINE(HAVE_INLINE,[1],[Define if you have inline]) AC_DEFINE(HAVE_C99_INLINE,[1],[Define if you have inline with C99 behavior]) fi fi fi dnl Checks for header files. AC_CHECK_HEADERS(ieeefp.h) dnl Checks for typedefs, structures, and compiler characteristics. case "$host_os" in *mingw*) MINGW=true ;; esac AM_CONDITIONAL(MINGW32_HOST, test "$MINGW" = "true") dnl Checks for library functions. dnl AC_FUNC_ALLOCA AC_FUNC_VPRINTF dnl strcasecmp, strerror, xmalloc, xrealloc, probably others should be added. dnl removed strerror from this list, it's hardcoded in the err/ directory dnl Any functions which appear in this list of functions should be provided dnl in the utils/ directory dnl xmalloc is not used, removed (bjg) AC_REPLACE_FUNCS(memcpy memmove strdup strtol strtoul) AC_CACHE_CHECK(for EXIT_SUCCESS and EXIT_FAILURE, ac_cv_decl_exit_success_and_failure, AC_EGREP_CPP(yes, [ #include #ifdef EXIT_SUCCESS yes #endif ], ac_cv_decl_exit_success_and_failure=yes, ac_cv_decl_exit_success_and_failure=no) ) if test "$ac_cv_decl_exit_success_and_failure" = yes ; then AC_DEFINE(HAVE_EXIT_SUCCESS_AND_FAILURE,1,[Defined if you have ansi EXIT_SUCCESS and EXIT_FAILURE in stdlib.h]) fi ; dnl Use alternate libm if specified by user if test "x$LIBS" = "x" ; then AC_CHECK_LIB(m, cos) fi dnl Remember to put a definition in acconfig.h for each of these AC_CHECK_DECLS(feenableexcept,,,[#define _GNU_SOURCE 1 #include ]) AC_CHECK_DECLS(fesettrapenable,,,[#define _GNU_SOURCE 1 #include ]) AC_CHECK_DECLS(hypot,,,[#include ]) AC_CHECK_DECLS(expm1,,,[#include ]) AC_CHECK_DECLS(acosh,,,[#include ]) AC_CHECK_DECLS(asinh,,,[#include ]) AC_CHECK_DECLS(atanh,,,[#include ]) AC_CHECK_DECLS(ldexp,,,[#include ]) AC_CHECK_DECLS(frexp,,,[#include ]) AC_CHECK_DECLS([fprnd_t],[],[],[[#include ]]) AC_CHECK_DECLS(isinf,,,[#include ]) AC_CHECK_DECLS(isfinite,,,[#include ]) AC_CHECK_DECLS(finite,,,[#include #if HAVE_IEEEFP_H #include #endif]) AC_CHECK_DECLS(isnan,,,[#include ]) dnl OpenBSD has a broken implementation of log1p. case "$host" in *-*-*openbsd*) AC_MSG_RESULT([avoiding OpenBSD system log1p - using gsl version]) ;; *) AC_CHECK_DECLS(log1p,,,[#include ]) ;; esac AC_CACHE_CHECK([for long double stdio], ac_cv_func_printf_longdouble, [AC_RUN_IFELSE([AC_LANG_SOURCE([[ #include #include int main (void) { const char * s = "5678.25"; long double x = 1.234 ; fprintf(stderr,"%Lg\n",x) ; sscanf(s, "%Lg", &x); if (x == 5678.25) {exit (0);} else {exit(1); }; }]])],[ac_cv_func_printf_longdouble="yes"],[ac_cv_func_printf_longdouble="no"],[ac_cv_func_printf_longdouble="no"])]) if test "$ac_cv_func_printf_longdouble" != no; then AC_DEFINE(HAVE_PRINTF_LONGDOUBLE,1,[Define this if printf can handle %Lf for long double]) fi AC_CACHE_CHECK([for extended floating point registers],ac_cv_c_extended_fp, [case "$host" in *sparc*-*-*) ac_cv_c_extended_fp=no ;; *powerpc*-*-*) ac_cv_c_extended_fp=no ;; *hppa*-*-*) ac_cv_c_extended_fp=no ;; *alpha*-*-*) ac_cv_c_extended_fp=no ;; *68k*-*-*) ac_cv_c_extended_fp=yes ;; *86-*-*) ac_cv_c_extended_fp=yes ;; x86_64-*-*) ac_cv_c_extended_fp=yes ;; *) ac_cv_c_extended_fp=unknown ;; esac ]) if test $ac_cv_c_extended_fp != "no" ; then AC_DEFINE(HAVE_EXTENDED_PRECISION_REGISTERS,1,[Defined on architectures with excess floating-point precision]) fi AC_CACHE_CHECK([for IEEE arithmetic interface type], ac_cv_c_ieee_interface, [case "$host" in sparc-*-linux*) ac_cv_c_ieee_interface=gnusparc ;; m68k-*-linux*) ac_cv_c_ieee_interface=gnum68k ;; powerpc-*-linux*) ac_cv_c_ieee_interface=gnuppc ;; *86-*-gnu | *86_64-*-gnu | *86-*-linux* | *86_64-*-linux*) ac_cv_c_ieee_interface=gnux86 ;; *-*-sunos4*) ac_cv_c_ieee_interface=sunos4 ;; *-*-solaris*) ac_cv_c_ieee_interface=solaris ;; *-*-hpux11*) ac_cv_c_ieee_interface=hpux11 ;; *-*-hpux*) ac_cv_c_ieee_interface=hpux ;; *-*-osf*) ac_cv_c_ieee_interface=tru64 ;; *-*-aix*) ac_cv_c_ieee_interface=aix ;; *-*-irix*) ac_cv_c_ieee_interface=irix ;; powerpc-*-*darwin*) ac_cv_c_ieee_interface=darwin ;; *86-*-*darwin*) ac_cv_c_ieee_interface=darwin86 ;; *-*-*netbsd*) ac_cv_c_ieee_interface=netbsd ;; *-*-*openbsd*) ac_cv_c_ieee_interface=openbsd ;; *-*-*bsd*) ac_cv_c_ieee_interface=freebsd ;; *-*-os2*) ac_cv_c_ieee_interface=os2emx ;; *) ac_cv_c_ieee_interface=unknown ;; esac ]) if test "$ac_cv_c_ieee_interface" = "gnux86" ; then AC_CACHE_CHECK([for FPU_SETCW], ac_cv_c_fpu_setcw, [ac_cv_c_fpu_setcw=no AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include #ifndef _FPU_SETCW #include #define _FPU_SETCW(cw) __setfpucw(cw) #endif ]], [[ unsigned short mode = 0 ; _FPU_SETCW(mode); ]])],[ac_cv_c_fpu_setcw="yes"],[ac_cv_c_ieee_interface=unknown]) ]) fi if test "$ac_cv_c_ieee_interface" = "gnux86" ; then AC_CACHE_CHECK([for SSE extensions], ac_cv_c_fpu_sse, [ac_cv_c_fpu_sse=no AC_RUN_IFELSE([AC_LANG_PROGRAM([[ #include #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (*&cw_sse)) ]], [[ unsigned int mode = 0x1f80 ; _FPU_SETMXCSR(mode); exit(0); ]])],[ac_cv_c_fpu_sse="yes"],[ac_cv_c_fpu_sse="no"],[ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (*&cw_sse)) ]], [[ unsigned int mode = 0x1f80 ; _FPU_SETMXCSR(mode); exit(0); ]])],[ac_cv_c_fpu_sse="yes"],[ac_cv_c_fpu_sse="no"]) ])]) if test $ac_cv_c_fpu_sse = yes; then AC_DEFINE([HAVE_FPU_X86_SSE], 1, [Define if x86 processor has sse extensions.]) fi fi ac_tr_ieee_interface=HAVE_`echo $ac_cv_c_ieee_interface | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`_IEEE_INTERFACE AC_DEFINE_UNQUOTED($ac_tr_ieee_interface,1,[IEEE Interface Type]) AC_SUBST(HAVE_GNUSPARC_IEEE_INTERFACE) AC_SUBST(HAVE_GNUM68K_IEEE_INTERFACE) AC_SUBST(HAVE_GNUPPC_IEEE_INTERFACE) AC_SUBST(HAVE_GNUX86_IEEE_INTERFACE) AC_SUBST(HAVE_SUNOS4_IEEE_INTERFACE) AC_SUBST(HAVE_SOLARIS_IEEE_INTERFACE) AC_SUBST(HAVE_HPUX11_IEEE_INTERFACE) AC_SUBST(HAVE_HPUX_IEEE_INTERFACE) AC_SUBST(HAVE_TRU64_IEEE_INTERFACE) AC_SUBST(HAVE_IRIX_IEEE_INTERFACE) AC_SUBST(HAVE_AIX_IEEE_INTERFACE) AC_SUBST(HAVE_FREEBSD_IEEE_INTERFACE) AC_SUBST(HAVE_OS2EMX_IEEE_INTERFACE) AC_SUBST(HAVE_NETBSD_IEEE_INTERFACE) AC_SUBST(HAVE_OPENBSD_IEEE_INTERFACE) AC_SUBST(HAVE_DARWIN_IEEE_INTERFACE) AC_SUBST(HAVE_DARWIN86_IEEE_INTERFACE) dnl Check for IEEE control flags save_cflags="$CFLAGS" AC_CACHE_CHECK([for IEEE compiler flags], ac_cv_c_ieee_flags, [ case "$host" in alpha*-*-*) if test X"$GCC" = Xyes ; then ieee_flags='-mieee -mfp-rounding-mode=d' else # This assumes Compaq's C compiler. ieee_flags='-ieee -fprm d' fi ;; esac if test X"$ieee_flags" != X ; then CFLAGS="$ieee_flags $CFLAGS" AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[]], [[int foo;]])],[ac_cv_c_ieee_flags="$ieee_flags"],[ac_cv_c_ieee_flags="none"]) else ac_cv_c_ieee_flags="none" fi]) if test "$ac_cv_c_ieee_flags" != "none" ; then CFLAGS="$ac_cv_c_ieee_flags $save_cflags" else CFLAGS="$save_cflags" fi dnl Check IEEE comparisons, whether "x != x" is true for NaNs dnl AC_CACHE_CHECK([for IEEE comparisons], ac_cv_c_ieee_comparisons, [AC_RUN_IFELSE([AC_LANG_SOURCE([[ #include int main (void) { int status; double inf, nan; inf = exp(1.0e10); nan = inf / inf ; status = (nan == nan); exit (status); }]])],[ac_cv_c_ieee_comparisons="yes"],[ac_cv_c_ieee_comparisons="no"],[ac_cv_c_ieee_comparisons="yes"]) ]) if test "$ac_cv_c_ieee_comparisons" != no ; then AC_DEFINE(HAVE_IEEE_COMPARISONS,1,[Define this if IEEE comparisons work correctly (e.g. NaN != NaN)]) fi dnl Check for IEEE denormalized arithmetic dnl AC_CACHE_CHECK([for IEEE denormalized values], ac_cv_c_ieee_denormals, [AC_RUN_IFELSE([AC_LANG_SOURCE([[ #include int main (void) { int i, status; volatile double z = 1e-308; for (i = 0; i < 5; i++) { z = z / 10.0 ; }; for (i = 0; i < 5; i++) { z = z * 10.0 ; }; status = (z == 0.0); exit (status); }]])],[ac_cv_c_ieee_denormals="yes"],[ac_cv_c_ieee_denormals="no"],[ac_cv_c_ieee_denormals="yes"]) ]) if test "$ac_cv_c_ieee_denormals" != no ; then AC_DEFINE(HAVE_IEEE_DENORMALS,1,[Define this if IEEE denormalized numbers are available]) fi AH_TEMPLATE([HIDE_INLINE_STATIC],[Define if you need to hide the static definitions of inline functions]) AH_BOTTOM([/* Use 0 and 1 for EXIT_SUCCESS and EXIT_FAILURE if we don't have them */ #if !HAVE_EXIT_SUCCESS_AND_FAILURE #define EXIT_SUCCESS 0 #define EXIT_FAILURE 1 #endif]) AH_BOTTOM([/* Define one of these if you have a known IEEE arithmetic interface */ #undef HAVE_GNUSPARC_IEEE_INTERFACE #undef HAVE_GNUM68K_IEEE_INTERFACE #undef HAVE_GNUPPC_IEEE_INTERFACE #undef HAVE_GNUX86_IEEE_INTERFACE #undef HAVE_SUNOS4_IEEE_INTERFACE #undef HAVE_SOLARIS_IEEE_INTERFACE #undef HAVE_HPUX11_IEEE_INTERFACE #undef HAVE_HPUX_IEEE_INTERFACE #undef HAVE_TRU64_IEEE_INTERFACE #undef HAVE_IRIX_IEEE_INTERFACE #undef HAVE_AIX_IEEE_INTERFACE #undef HAVE_FREEBSD_IEEE_INTERFACE #undef HAVE_OS2EMX_IEEE_INTERFACE #undef HAVE_NETBSD_IEEE_INTERFACE #undef HAVE_OPENBSD_IEEE_INTERFACE #undef HAVE_DARWIN_IEEE_INTERFACE #undef HAVE_DARWIN86_IEEE_INTERFACE]) AH_BOTTOM([/* Define a rounding function which moves extended precision values out of registers and rounds them to double-precision. This should be used *sparingly*, in places where it is necessary to keep double-precision rounding for critical expressions while running in extended precision. For example, the following code should ensure exact equality, even when extended precision registers are in use, double q = GSL_COERCE_DBL(3.0/7.0) ; if (q == GSL_COERCE_DBL(3.0/7.0)) { ... } ; It carries a penalty even when the program is running in double precision mode unless you compile a separate version of the library with HAVE_EXTENDED_PRECISION_REGISTERS turned off. */ #if HAVE_EXTENDED_PRECISION_REGISTERS #define GSL_COERCE_DBL(x) (gsl_coerce_double(x)) #else #define GSL_COERCE_DBL(x) (x) #endif]) AH_BOTTOM([/* Substitute gsl functions for missing system functions */ #if !HAVE_DECL_HYPOT #define hypot gsl_hypot #endif #if !HAVE_DECL_LOG1P #define log1p gsl_log1p #endif #if !HAVE_DECL_EXPM1 #define expm1 gsl_expm1 #endif #if !HAVE_DECL_ACOSH #define acosh gsl_acosh #endif #if !HAVE_DECL_ASINH #define asinh gsl_asinh #endif #if !HAVE_DECL_ATANH #define atanh gsl_atanh #endif #if !HAVE_DECL_LDEXP #define ldexp gsl_ldexp #endif #if !HAVE_DECL_FREXP #define frexp gsl_frexp #endif #if !HAVE_DECL_ISINF #define isinf gsl_isinf #endif #if !HAVE_DECL_ISFINITE #define isfinite gsl_finite #endif #if !HAVE_DECL_FINITE #define finite gsl_finite #endif #if !HAVE_DECL_ISNAN #define isnan gsl_isnan #endif]) AH_BOTTOM([#ifdef __GNUC__ #define DISCARD_POINTER(p) do { ; } while(p ? 0 : 0); #else #define DISCARD_POINTER(p) /* ignoring discarded pointer */ #endif]) AH_BOTTOM([#if defined(GSL_RANGE_CHECK_OFF) || !defined(GSL_RANGE_CHECK) #define GSL_RANGE_CHECK 0 /* turn off range checking by default internally */ #endif]) AH_BOTTOM([#define RETURN_IF_NULL(x) if (!x) { return ; } ]) AH_VERBATIM([GSL_DISABLE_DEPRECATED], [/* Disable deprecated functions and enums while building */ #define GSL_DISABLE_DEPRECATED 1]) dnl AC_CONFIG_FILES([gsl_version.h gsl.spec gsl/Makefile test/Makefile err/Makefile sys/Makefile utils/Makefile const/Makefile min/Makefile multimin/Makefile ieee-utils/Makefile fft/Makefile specfunc/Makefile dht/Makefile fit/Makefile multifit/Makefile bspline/Makefile statistics/Makefile sum/Makefile roots/Makefile multiroots/Makefile ntuple/Makefile poly/Makefile qrng/Makefile rng/Makefile randist/Makefile siman/Makefile integration/Makefile interpolation/Makefile doc/Makefile block/Makefile vector/Makefile matrix/Makefile histogram/Makefile monte/Makefile ode-initval/Makefile ode-initval2/Makefile cblas/Makefile blas/Makefile linalg/Makefile eigen/Makefile permutation/Makefile combination/Makefile multiset/Makefile sort/Makefile complex/Makefile diff/Makefile deriv/Makefile cheb/Makefile cdf/Makefile wavelet/Makefile Makefile]) AC_OUTPUT gsl-1.16/specfunc/0000775000252300025230000000000012172254160011035 500000000000000gsl-1.16/specfunc/bessel_olver.h0000664000252300025230000000223612171574312013620 00000000000000/* specfunc/bessel_olver.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef BESSEL_OLVER_H_ #define BESSEL_OLVER_H_ #include int gsl_sf_bessel_Jnu_asymp_Olver_e(double nu, double x, gsl_sf_result * result); int gsl_sf_bessel_Ynu_asymp_Olver_e(double nu, double x, gsl_sf_result * result); double gsl_sf_bessel_Olver_zofmzeta(double minus_zeta); #endif /* !BESSEL_OLVER_H_ */ gsl-1.16/specfunc/test_coulomb.c0000664000252300025230000004243412171574312013632 00000000000000/* specfunc/test_coulomb.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" #define PRINT(n) printf("%22.18g %22.18g %22.18g %22.18g\n", F[n], Fp[n], G[n], Gp[n]) #define WKB_TOL (1.0e+04 * TEST_SQRT_TOL0) int test_coulomb(void) { gsl_sf_result r; int status = 0; int s = 0; char message_buff[2048]; /* const int kmax = 20; */ /* double F[kmax+1], Fp[kmax+1], G[kmax+1], Gp[kmax+1]; */ gsl_sf_result F, Fp, G, Gp; double Fe, Ge; double lam_min; double lam_F; double eta, x; int k_G; TEST_SF(s, gsl_sf_hydrogenicR_1_e, (3.0, 2.0, &r), 0.025759948256148471036, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_1_e, (3.0, 10.0, &r), 9.724727052062819704e-13, TEST_TOL1, GSL_SUCCESS); status += s; TEST_SF(s, gsl_sf_hydrogenicR_e, (4, 1, 3.0, 0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_e, (4, 0, 3.0, 2.0, &r), -0.03623182256981820062, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_e, (4, 1, 3.0, 2.0, &r), -0.028065049083129581005, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_e, (4, 2, 3.0, 2.0, &r), 0.14583027278668431009, TEST_TOL0, GSL_SUCCESS); status += s; TEST_SF(s, gsl_sf_hydrogenicR_e, (100, 0, 3.0, 2.0, &r), -0.00007938950980052281367, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_e, (100, 10, 3.0, 2.0, &r), 7.112823375353605977e-12, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hydrogenicR_e, (100, 90, 3.0, 2.0, &r), 5.845231751418131548e-245, TEST_TOL2, GSL_SUCCESS); status += s; lam_F = 0.0; k_G = 0; eta = 1.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.6849374120059439677, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, -0.7236423862556063963, TEST_TOL3); s += test_sf_check_result(message_buff, G, -0.8984143590920205487, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -0.5108047585190350106, TEST_TOL3); printf("%s", message_buff); gsl_test(s," gsl_sf_coulomb_wave_FG_e(1.0, 5.0, lam_F=0, lam_G=0)"); status += s; lam_F = 10.0; k_G = 2; eta = 1.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.0006423773354915823698, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 0.0013299570958719702545, TEST_TOL3); s += test_sf_check_result(message_buff, G, 33.27615734455096130, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -45.49180102261540580, TEST_TOL3); printf("%s", message_buff); gsl_test(s," gsl_sf_coulomb_wave_FG_e(1.0, 5.0, lam_F=10, lam_G=8)"); status += s; lam_F = 4.0; k_G = 2; eta = 50.0; x = 120.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.0735194711823798495, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 0.6368149124126783325, TEST_TOL3); /* s += test_sf_check_result(message_buff, G, , TEST_TOL5); s += test_sf_check_result(message_buff, Gp, , TEST_TOL5); */ printf("%s", message_buff); gsl_test(s," gsl_sf_coulomb_wave_FG_e(50.0, 120.0, lam_F=4, lam_G=2)"); status += s; lam_F = 0.0; k_G = 0; eta = -1000.0; x = 1.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 9.68222518991341e-02, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 5.12063396274631e+00, TEST_TOL3); s += test_sf_check_result(message_buff, G, 1.13936784379472e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -4.30243486522438e+00, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-1000.0, 1.0, lam_F=0, lam_G=0)"); status += s; lam_min = 0.0; eta = -50.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 1.52236975714236e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 2.03091041166137e+00, TEST_TOL3); s += test_sf_check_result(message_buff, G, 4.41680690236251e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -6.76485374766869e-01, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-50.0, 5.0, lam_F=0, lam_G=0)"); status += s; lam_min = 0.0; eta = -50.0; x = 1000.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, -0.2267212182760888523, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, -0.9961306810018401525, TEST_TOL3); s += test_sf_check_result(message_buff, G, -0.9497684438900352186, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, 0.2377656295411961399, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-50.0, 1000.0, lam_F=0, lam_G=0)"); status += s; lam_F = 10.0; k_G = 0; eta = -50.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, -3.681143602184922e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 1.338467510317215e+00, TEST_TOL3); s += test_sf_check_result(message_buff, G, 3.315883246109351e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, 1.510888628136180e+00, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-50.0, 5.0, lam_F=10, lam_G=10)"); status += s; lam_F = 0.0; k_G = 0; eta = -4.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 4.078627230056172e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 1.098212336357310e+00, TEST_TOL3); s += test_sf_check_result(message_buff, G, 6.743270353832442e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -6.361104272804447e-01, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-4.0, 5.0, lam_F=0, lam_G=0"); status += s; lam_F = 3.0; k_G = 0; eta = -4.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, -2.568630935581323e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 1.143229422014827e+00, TEST_TOL3); s += test_sf_check_result(message_buff, G, 7.879899223927996e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, 3.859905878106713e-01, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(-4.0, 5.0, lam_F=3, lam_G=3"); status += s; lam_F = 0.0; k_G = 0; eta = 1.0; x = 2.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 6.61781613832681e-01, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 4.81557455709949e-01, TEST_TOL3); s += test_sf_check_result(message_buff, G, 1.27577878476828e+00, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -5.82728813097184e-01, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.0, 2.0, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; k_G = 0; eta = 1.0; x = 0.5; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.08315404535022023302, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 0.22693874616222787568, TEST_TOL3); s += test_sf_check_result(message_buff, G, 3.1060069279548875140, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -3.549156038719924236, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.0, 0.5, lam_F=0, lam_G=0)"); status += s; lam_F = 0.5; k_G = 0; eta = 1.0; x = 0.5; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.04049078073829290935, TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 0.14194939168094778795, TEST_TOL3); s += test_sf_check_result(message_buff, G, 4.720553853049677897, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -8.148033852319180005, TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.0, 0.5, lam_F=0.5, lam_G=0.5)"); status += s; lam_F = 0.1; k_G = 0; eta = 1.0; x = 0.5; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.07365466672379703418, TEST_TOL5); s += test_sf_check_result(message_buff, Fp, 0.21147121807178518647, TEST_TOL5); s += test_sf_check_result(message_buff, G, 3.306705446241024890, TEST_TOL5); s += test_sf_check_result(message_buff, Gp, -4.082931670935696644, TEST_TOL5); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.0, 0.5, lam_F=0.1, lam_G=0.1)"); status += s; lam_F = 0.0; k_G = 0; eta = 8.0; x = 1.05; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 9.882706082810274357e-09, TEST_TOL5); s += test_sf_check_result(message_buff, Fp, 4.005167028235547770e-08, TEST_TOL5); s += test_sf_check_result(message_buff, G, 1.333127992006686320e+07, TEST_SQRT_TOL0); s += test_sf_check_result(message_buff, Gp, -4.715914530842402330e+07, TEST_SQRT_TOL0); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(8.0, 1.05, lam_F=0, lam_G=0)"); status += s; lam_F = 0.1; k_G = 0; eta = 8.0; x = 1.05; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 9.611416736061987761e-09, TEST_TOL5); s += test_sf_check_result(message_buff, Fp, 3.909628126126824140e-08, TEST_TOL5); s += test_sf_check_result(message_buff, G, 1.365928464219262581e+07, 4.0*TEST_SQRT_TOL0); s += test_sf_check_result(message_buff, Gp, -4.848117385783386850e+07, 4.0*TEST_SQRT_TOL0); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(8.0, 1.05, lam_F=0.1, lam_G=0.1)"); status += s; lam_F = 0.0; k_G = 0; eta = 50.0; x = 0.1; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 2.807788027954216071e-67, TEST_TOL5); s += test_sf_check_result(message_buff, Fp, 9.677600748751576606e-66, TEST_TOL5); s += test_sf_check_result(message_buff, G, 5.579810686998358766e+64, TEST_SQRT_TOL0); s += test_sf_check_result(message_buff, Gp, -1.638329512756321424e+66, TEST_SQRT_TOL0); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(50.0, 0.1, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; k_G = 0; eta = 10.0; x = 5.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 1.7207454091787930614e-06, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, Fp, 3.0975994706405458046e-06, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, G, 167637.56609459967623, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, Gp, -279370.76655361803075, 10.0*WKB_TOL); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(10.0, 5.0, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; k_G = 0; eta = 25.0; x = 10.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 1.5451274501076114315e-16, 5.0*WKB_TOL); s += test_sf_check_result(message_buff, Fp, 3.1390869393378630928e-16, 5.0*WKB_TOL); s += test_sf_check_result(message_buff, G, 1.6177129008336318136e+15, 5.0*WKB_TOL); s += test_sf_check_result(message_buff, Gp, -3.1854062013149740860e+15, 5.0*WKB_TOL); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(25.0, 10.0, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; k_G = 0; eta = 1.0; x = 9.2; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, -0.25632012319757955655, TEST_TOL5); s += test_sf_check_result(message_buff, Fp, 0.91518792286724220370, TEST_TOL5); s += test_sf_check_result(message_buff, G, 1.03120585918973466110, TEST_SQRT_TOL0); s += test_sf_check_result(message_buff, Gp, 0.21946326717491250193, TEST_SQRT_TOL0); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.0, 9.2, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; eta = 10.0; x = 10.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 0.0016262711250135878249, WKB_TOL); s += test_sf_check_result(message_buff, Fp, 0.0017060476320792806014, WKB_TOL); s += test_sf_check_result(message_buff, G, 307.87321661090837987, WKB_TOL); s += test_sf_check_result(message_buff, Gp, -291.92772380826822871, WKB_TOL); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(10.0, 10.0, lam_F=0, lam_G=0)"); status += s; lam_F = 0.0; eta = 100.0; x = 1.0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 8.999367996930662705e-126, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, Fp, 1.292746745757069321e-124, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, G, 3.936654148133683610e+123, 10.0*WKB_TOL); s += test_sf_check_result(message_buff, Gp, -5.456942268061526371e+124, 10.0*WKB_TOL); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(100.0, 1.0, lam_F=0, lam_G=0)"); status += s; /* compute F_1(eta=0,x=3.25), F'_1 and G_1(eta=0,x=3.25), G'_1 */ lam_F = 1.0; eta = 0.0; x = 3.25; k_G = 0; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, sin(x)/x - cos(x), TEST_TOL3); s += test_sf_check_result(message_buff, Fp, -sin(x)/(x*x) + cos(x)/x +sin(x), TEST_TOL3); s += test_sf_check_result(message_buff, G, cos(x)/x + sin(x), TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -cos(x)/(x*x) - sin(x)/x + cos(x), TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(3.25, 0.0, lam_F=1, lam_G=1)"); status += s; /* compute F_1(eta=0,x=3.25), F'_1 and G_0(eta=0,x=3.25), G'_0 */ lam_F = 1.0; eta = 0.0; x = 3.25; k_G = 1; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, sin(x)/x - cos(x), TEST_TOL3); s += test_sf_check_result(message_buff, Fp, -sin(x)/(x*x) + cos(x)/x +sin(x), TEST_TOL3); s += test_sf_check_result(message_buff, G, cos(x), TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -sin(x), TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(3.25, 0.0, lam_F=1, lam_G=0)"); status += s; #ifdef FIXME /* compute F_37(eta=0,x), F'_37 and G_36(eta=0,x), G'_36 for x=1.2693881947287221e-07 */ /* For eta=0 expanding A&S 4.3.1 gives FplusIG(L,r)={I*exp(-I*r)*sum(k=0,L,((L+k)!/(k!*(L-k)!))*(I^(L-k))*(2*r)^(-k)) or alternatively F+iG can be expressed in terms of bessel functions FplusIG(L,r)=sqrt(Pi*x/2)*besselh1(L+1/2,x)) */ lam_F = 37.0; eta = 0.0; x = 1.2693881947287221e-07; k_G = 1; gsl_sf_coulomb_wave_FG_e(eta, x, lam_F, k_G, &F, &Fp, &G, &Gp, &Fe, &Ge); s = 0; message_buff[0] = 0; s += test_sf_check_result(message_buff, F, 6.5890724278623412974127e-318 , TEST_TOL3); s += test_sf_check_result(message_buff, Fp, 1.97248369961623986509839591990e-309, TEST_TOL3); s += test_sf_check_result(message_buff, G, 4.46663541714903607940730e299, TEST_TOL3); s += test_sf_check_result(message_buff, Gp, -1.26674311046140805594543e308 , TEST_TOL3); printf("%s", message_buff); gsl_test(s, " gsl_sf_coulomb_wave_FG_e(1.2693881947287221e-07, 0.0, lam_F=37, lam_G=36)"); status += s; #endif return status; } gsl-1.16/specfunc/test_gamma.c0000664000252300025230000006774312171574312013266 00000000000000/* specfunc/test_gamma.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" int test_gamma(void) { gsl_sf_result r; gsl_sf_result r1, r2; double sgn; int s = 0; TEST_SF(s, gsl_sf_lngamma_e, (-0.1, &r), 2.368961332728788655 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (-1.0/256.0, &r), 5.547444766967471595 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (1.0e-08, &r), 18.420680738180208905 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (0.1, &r), 2.252712651734205 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (1.0 + 1.0/256.0, &r), -0.0022422226599611501448 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (2.0 + 1.0/256.0, &r), 0.0016564177556961728692 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (100.0, &r), 359.1342053695753 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (-1.0-1.0/65536.0, &r), 11.090348438090047844 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (-1.0-1.0/268435456.0, &r), 19.408121054103474300 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (-100.5, &r), -364.9009683094273518 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lngamma_e, (-100-1.0/65536.0, &r), -352.6490910117097874 , TEST_TOL0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (0.7, &r, &sgn), 0.26086724653166651439, TEST_TOL1, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (0.1, &r, &sgn), 2.2527126517342059599, TEST_TOL0, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-0.1, &r, &sgn), 2.368961332728788655, TEST_TOL0, -1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-1.0-1.0/65536.0, &r, &sgn), 11.090348438090047844, TEST_TOL0, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-2.0-1.0/256.0, &r, &sgn), 4.848447725860607213, TEST_TOL0, -1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-2.0-1.0/65536.0, &r, &sgn), 10.397193628164674967, TEST_TOL0, -1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-3.0-1.0/8.0, &r, &sgn), 0.15431112768404182427, TEST_TOL2, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lngamma_sgn_e, (-100.5, &r, &sgn), -364.9009683094273518, TEST_TOL0, -1.0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (1.0 + 1.0/4096.0, &r), 0.9998591371459403421 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (1.0 + 1.0/32.0, &r), 0.9829010992836269148 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (2.0 + 1.0/256.0, &r), 1.0016577903733583299 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (9.0, &r), 40320.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (10.0, &r), 362880.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (100.0, &r), 9.332621544394415268e+155 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (170.0, &r), 4.269068009004705275e+304 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (171.0, &r), 7.257415615307998967e+306 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (-10.5, &r), -2.640121820547716316e-07 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_e, (-11.25, &r), 6.027393816261931672e-08 , TEST_TOL0, GSL_SUCCESS); /* exp()... not my fault */ TEST_SF(s, gsl_sf_gamma_e, (-1.0+1.0/65536.0, &r), -65536.42280587818970 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (1.0e-08, &r), 3989.423555759890865 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (1.0e-05, &r), 126.17168469882690233 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (0.001, &r), 12.708492464364073506 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (1.5, &r), 1.0563442442685598666 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (3.0, &r), 1.0280645179187893045 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (9.0, &r), 1.0092984264218189715 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (11.0, &r), 1.0076024283104962850 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (100.0, &r), 1.0008336778720121418 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (1.0e+05, &r), 1.0000008333336805529 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammastar_e, (1.0e+20, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (2.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (3.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (4.0, &r), 1.0/6.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (10.0, &r), 1.0/362880.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (100.0, &r), 1.0715102881254669232e-156, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-1.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-2.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-3.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-4.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-10.5, &r), -1.0/2.640121820547716316e-07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-11.25, &r), 1.0/6.027393816261931672e-08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gammainv_e, (-1.0+1.0/65536.0, &r), -1.0/65536.42280587818970 , TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_lngamma_complex_e, (5.0, 2.0, &r1, &r2), 2.7487017561338026749, TEST_TOL0, 3.0738434100497007915, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_lngamma_complex_e, (100.0, 100.0, &r1, &r2), 315.07804459949331323, TEST_TOL1, 2.0821801804113110099, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_lngamma_complex_e, (100.0, -1000.0, &r1, &r2), -882.3920483010362817000, TEST_TOL1, -2.1169293725678813270, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_lngamma_complex_e, (-100.0, -1.0, &r1, &r2), -365.0362469529239516000, TEST_TOL1, -3.0393820262864361140, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (10, 1.0/1048576.0, &r), 1.7148961854776073928e-67 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (10, 1.0/1024.0, &r), 2.1738891788497900281e-37 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (10, 1.0, &r), 2.7557319223985890653e-07 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (10, 5.0, &r), 2.6911444554673721340 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (10, 500.0, &r), 2.6911444554673721340e+20 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (100, 100.0, &r), 1.0715102881254669232e+42 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (1000, 200.0, &r), 2.6628790558154746898e-267 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_taylorcoeff_e, (1000, 500.0, &r), 2.3193170139740855074e+131 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fact_e, (0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fact_e, (1, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fact_e, (7, &r), 5040.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fact_e, (33, &r), 8.683317618811886496e+36 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_doublefact_e, (0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_doublefact_e, (1, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_doublefact_e, (7, &r), 105.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_doublefact_e, (33, &r), 6.332659870762850625e+18 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnfact_e, (0, &r), 0.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnfact_e, (1, &r), 0.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnfact_e, (7, &r), 8.525161361065414300 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnfact_e, (33, &r), 85.05446701758151741 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (0, &r), 0.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (7, &r), 4.653960350157523371 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (33, &r), 43.292252022541719660 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (34, &r), 45.288575519655959140 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (1034, &r), 3075.6383796271197707 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lndoublefact_e, (1035, &r), 3078.8839081731809169 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnchoose_e, (7,3, &r), 3.555348061489413680 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnchoose_e, (5,2, &r), 2.302585092994045684 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (7,3, &r), 35.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (7,4, &r), 35.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (5,2, &r), 10.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (5,3, &r), 10.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (500,495, &r), 255244687600.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (500,5, &r), 255244687600.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (500,200, &r), 5.054949849935532221e+144 , TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_choose_e, (500,300, &r), 5.054949849935532221e+144 , TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnpoch_e, (5, 0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnpoch_e, (5, 1.0/65536.0, &r), 0.000022981557571259389129, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnpoch_e, (5, 1.0/256.0, &r), 0.005884960217985189004, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnpoch_e, (7,3, &r), 6.222576268071368616, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnpoch_e, (5,2, &r), 3.401197381662155375, TEST_TOL0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lnpoch_sgn_e, (5.0, 0.0, &r, &sgn), 0.0, TEST_TOL1, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lnpoch_sgn_e, (-4.5, 0.25, &r, &sgn), 0.7430116475119920117, TEST_TOL1, 1.0, GSL_SUCCESS); TEST_SF_SGN(s, gsl_sf_lnpoch_sgn_e, (-4.5, 1.25, &r, &sgn), 2.1899306304483174731, TEST_TOL1, -1.0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (5, 0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (7,3, &r), 504.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (5,2, &r), 30.0 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (5,1.0/256.0, &r), 1.0059023106151364982 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (5,0, &r), 1.506117668431800472, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (7,3, &r), 503.0/3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (5,2, &r), 29.0/2.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (5,0.01, &r), 1.5186393661368275330, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (-5.5,0.01, &r), 1.8584945633829063516, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (-5.5,-1.0/8.0, &r), 1.0883319303552135488, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (-5.5,-1.0/256.0, &r), 1.7678268037726177453, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_pochrel_e, (-5.5,-11.0, &r), 0.09090909090939652475, TEST_TOL0, GSL_SUCCESS); /* Add tests for special cases with negative arguments */ TEST_SF(s, gsl_sf_poch_e, (-9.0, -4.0, &r), 1.0/17160.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, -3.0, &r), -1.0/1320.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, -3.5, &r), 0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, 4.0, &r), 3024.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, 3.0, &r), -504.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, 3.5, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-9.0, 0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-8.0, -4.0, &r), 1.0/11880.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-8.0, -3.0, &r), -1.0/990.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-8.0, +4.0, &r), 1680.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-8.0, +3.0, &r), -336.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-3.0, +4.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); /* FIXME: we should be able to get an exact answer for poch(-a,a) if gsl_sf_lngamma functions were fixed to handle integer arguments exactly as a special case */ TEST_SF(s, gsl_sf_poch_e, (-3.0, +3.0, &r), -6.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-4.0, +4.0, &r), 24.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_poch_e, (-3.0, +100.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1e-100, 0.001, &r), 1.0, TEST_TOL0, GSL_SUCCESS) ; TEST_SF(s, gsl_sf_gamma_inc_P_e, (0.001, 0.001, &r), 0.9936876467088602902, TEST_TOL0, GSL_SUCCESS) ; TEST_SF(s, gsl_sf_gamma_inc_P_e, (0.001, 1.0, &r), 0.9997803916424144436, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (0.001, 10.0, &r), 0.9999999958306921828, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1.0, 0.001, &r), 0.0009995001666250083319, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1.0, 1.01, &r), 0.6357810204284766802, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1.0, 10.0, &r), 0.9999546000702375151, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (10.0, 10.01, &r), 0.5433207586693410570, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (10.0, 20.0, &r), 0.9950045876916924128, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1000.0, 1000.1, &r), 0.5054666401440661753, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1000.0, 2000.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); /* Test for failure of the Gautschi recurrence (now fixed) for x = a - 2 */ TEST_SF(s, gsl_sf_gamma_inc_P_e, (34.0, 32.0, &r), 0.3849626436463866776322932129, TEST_TOL2, GSL_SUCCESS); /* and the next test is gamma_inc_P(37,35-20*eps) */ TEST_SF(s, gsl_sf_gamma_inc_P_e, (37.0, 3.499999999999999289e+01, &r), 0.3898035054195570860969333039, TEST_TOL2, GSL_SUCCESS); /* Regression test Martin Jansche BUG#12 */ TEST_SF(s, gsl_sf_gamma_inc_P_e, (10, 1e-16, &r), 2.755731922398588814734648067e-167, TEST_TOL2, GSL_SUCCESS); /* Regression test for gsl_cdf_chisq_Pinv, (0.05, 1263131.0) */ TEST_SF(s, gsl_sf_gamma_inc_P_e, (1263131.0, 1261282.3637, &r), 0.04994777516935182963821362168, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (1263131.0, 1263131.0, &r), 0.500118321758657770672882362502514254, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (0.0, 0.001, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (0.001, 0.001, &r), 0.006312353291139709793, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (0.001, 1.0, &r), 0.00021960835758555639171, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (0.001, 2.0, &r), 0.00004897691783098147880, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (0.001, 5.0, &r), 1.1509813397308608541e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0, 0.001, &r), 0.9990004998333749917, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0, 1.01, &r), 0.3642189795715233198, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0, 10.0, &r), 0.00004539992976248485154, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (10.0, 10.01, &r), 0.4566792413306589430, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (10.0, 100.0, &r), 1.1253473960842733885e-31, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1000.0, 1000.1, &r), 0.4945333598559338247, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1000.0, 2000.0, &r), 6.847349459614753180e-136, TEST_TOL2, GSL_SUCCESS); /* designed to trap the a-x=1 problem */ TEST_SF(s, gsl_sf_gamma_inc_Q_e, (100, 99.0, &r), 0.5266956696005394, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (200, 199.0, &r), 0.5188414119121281, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (100, 99.0, &r), 0.4733043303994607, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_P_e, (200, 199.0, &r), 0.4811585880878718, TEST_TOL2, GSL_SUCCESS); /* Test for x86 cancellation problems */ TEST_SF(s, gsl_sf_gamma_inc_P_e, (5670, 4574, &r), 3.063972328743934e-55, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (5670, 4574, &r), 1.0000000000000000, TEST_TOL2, GSL_SUCCESS); /* test suggested by Michel Lespinasse [gsl-discuss Sat, 13 Nov 2004] */ TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0e+06-1.0, 1.0e+06-2.0, &r), 0.50026596175224547004, TEST_TOL3, GSL_SUCCESS); /* tests in asymptotic regime related to Lespinasse test */ TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0e+06+2.0, 1.0e+06+1.0, &r), 0.50026596135330304336, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0e+06, 1.0e+06-2.0, &r), 0.50066490399940144811, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_Q_e, (1.0e+07, 1.0e+07-2.0, &r), 0.50021026104978614908, TEST_TOL2, GSL_SUCCESS); /* non-normalized "Q" function */ TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0/1048576.0, 1.0/1048576.0, &r), 13.285819596290624271, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.001, 1.0/1048576.0, &r), 13.381275128625328858, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0, 1.0/1048576.0, &r), 1.0485617142715768655e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.00001,0.001, &r), 6.3317681434563592142, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.0001,0.001, &r), 6.3338276439767189385, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.001, 0.001, &r), 6.3544709102510843793, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.5, 0.001, &r), 59.763880515942196981, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0, 0.001, &r), 992.66896046923884234, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-3.5, 0.001, &r), 9.0224404490639003706e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-10.5, 0.001, &r), 3.0083661558184815656e+30, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.001, 0.1, &r), 1.8249109609418620068, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.5, 0.1, &r), 3.4017693366916154163, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-10.0, 0.1, &r), 8.9490757483586989181e+08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-10.5, 0.1, &r), 2.6967403834226421766e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.001, 1.0, &r), 0.21928612679072766340, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.5, 1.0, &r), 0.17814771178156069019, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0, 1.0, &r), 0.14849550677592204792, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-2.5, 1.0, &r), 0.096556648631275160264, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0, 10.0, &r), 3.8302404656316087616e-07, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.001, 10.0, &r), 4.1470562324807320961e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-0.5, 10.0, &r), 1.2609042613241570681e-06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-1.0, 10.0, &r), 3.8302404656316087616e-07, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-10.5, 10.0, &r), 6.8404927328441566785e-17, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-100.0, 10.0, &r), 4.1238327669858313997e-107, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (-200.0, 10.0, &r), 2.1614091830529343423e-207, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.0, 0.001, &r), 6.3315393641361493320, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.001, 0.001, &r), 6.3087159394864007261, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 1.0, 0.001, &r), 0.99900049983337499167, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 10.0, 0.001, &r), 362880.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.0, 1.0, &r), 0.21938393439552027368, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.001, 1.0, &r), 0.21948181320730279613, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 1.0, 1.0, &r), 0.36787944117144232160, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 10.0, 1.0, &r), 362879.95956592242045, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (100.0, 1.0, &r), 9.3326215443944152682e+155, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.0, 100.0, &r), 3.6835977616820321802e-46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 0.001, 100.0, &r), 3.7006367674063550631e-46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 1.0, 100.0, &r), 3.7200759760208359630e-44, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, ( 10.0, 100.0, &r), 4.0836606309106112723e-26, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_gamma_inc_e, (100.0, 100.0, &r), 4.5421981208626694294e+155, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0e-8, 1.0e-8, &r), 19.113827924512310617 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0e-8, 0.01, &r), 18.420681743788563403 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0e-8, 1.0, &r), 18.420680743952365472 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0e-8, 10.0, &r), 18.420680715662683009 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0e-8, 1000.0, &r), 18.420680669107656949 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (0.1, 0.1, &r), 2.9813614810376273949 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (0.1, 1.0, &r), 2.3025850929940456840 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (0.1, 100.0, &r), 1.7926462324527931217 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (0.1, 1000, &r), 1.5619821298353164928 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0, 1.00025, &r), -0.0002499687552073570, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0, 1.01, &r), -0.009950330853168082848 , TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (1.0, 1000.0, &r), -6.907755278982137052 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (100.0, 100.0, &r), -139.66525908670663927 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (100.0, 1000.0, &r), -336.4348576477366051 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnbeta_e, (100.0, 1.0e+8, &r), -1482.9339185256447309 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (1.0, 1.0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (1.0, 1.001, &r), 0.9990009990009990010 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (1.0, 5.0, &r), 0.2 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (1.0, 100.0, &r), 0.01 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (10.0, 100.0, &r), 2.3455339739604649879e-15 , TEST_TOL2, GSL_SUCCESS); /* Test negative arguments */ TEST_SF(s, gsl_sf_beta_e, (2.5, -0.1, &r), -11.43621278354402041480, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (2.5, -1.1, &r), 14.555179906328753255202, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-0.25, -0.1, &r), -13.238937960945229110, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-1.25, -0.1, &r), -14.298052997820847439, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-100.1, -99.1, &r), -1.005181917797644630375787297e60, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-100.1, 99.3, &r), 0.0004474258199579694011200969001, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (100.1, -99.3, &r), 1.328660939628876472028853747, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-100.1, 1.2, &r), 0.00365530364287960795444856281, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (100.1, -1.2, &r), 1203.895236907821059270698160, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-100.1, -1.2, &r), -3236.073671884748847700283841, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-100.001, 0.0099, &r), -853.946649365611147996495177, TEST_TOL4, GSL_SUCCESS); /* Other test cases */ TEST_SF(s, gsl_sf_beta_e, (1e-32, 1.5, &r), 1e32, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (1e-6, 0.5, &r), 1000001.386293677092419390336, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_e, (-1.5, 0.5, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (1.0, 1.0, 0.0, &r), 0.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (1.0, 1.0, 1.0, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (0.1, 0.1, 1.0, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 1.0, 0.5, &r), 0.5, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 0.1, 1.0, 0.5, &r), 0.9330329915368074160, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (10.0, 1.0, 0.5, &r), 0.0009765625000000000000, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (50.0, 1.0, 0.5, &r), 8.881784197001252323e-16, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 0.1, 0.5, &r), 0.06696700846319258402, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 10.0, 0.5, &r), 0.99902343750000000000, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 50.0, 0.5, &r), 0.99999999999999911180, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 1.0, 0.1, &r), 0.10, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 2.0, 0.1, &r), 0.19, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 1.0, 2.0, 0.9, &r), 0.99, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (50.0, 60.0, 0.5, &r), 0.8309072939016694143, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (90.0, 90.0, 0.5, &r), 0.5, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, ( 500.0, 500.0, 0.6, &r), 0.9999999999157549630, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (5000.0, 5000.0, 0.4, &r), 4.518543727260666383e-91, TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (5000.0, 5000.0, 0.6, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (5000.0, 2000.0, 0.6, &r), 8.445388773903332659e-89, TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.1, 1.0, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.2, 1.0, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.2, -0.1, 1.0, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.2, 0.5, &r), 0.675252001958389971991335, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.2, -0.1, 0.5, &r), 0.324747998041610028008665, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.1, 0.0, &r), 0.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.2, 0.0, &r), 0.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.2, -0.1, 0.0, &r), 0.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.1, -0.2, 0.3, &r), 0.7469186777964287252, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_beta_inc_e, (-0.2, -0.1, 0.3, &r), 0.3995299653262016818, TEST_TOL2, GSL_SUCCESS); /* Bug report from Thomas Tanner */ TEST_SF(s, gsl_sf_beta_inc_e, (0.5, 101.5, 0.999457, &r), 1.0, TEST_TOL2, GSL_SUCCESS); return s; } gsl-1.16/specfunc/gsl_sf_erf.h0000664000252300025230000000436712171574312013254 00000000000000/* specfunc/gsl_sf_erf.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_ERF_H__ #define __GSL_SF_ERF_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Complementary Error Function * erfc(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,x,Infinity}] * * exceptions: none */ int gsl_sf_erfc_e(double x, gsl_sf_result * result); double gsl_sf_erfc(double x); /* Log Complementary Error Function * * exceptions: none */ int gsl_sf_log_erfc_e(double x, gsl_sf_result * result); double gsl_sf_log_erfc(double x); /* Error Function * erf(x) := 2/Sqrt[Pi] Integrate[Exp[-t^2], {t,0,x}] * * exceptions: none */ int gsl_sf_erf_e(double x, gsl_sf_result * result); double gsl_sf_erf(double x); /* Probability functions: * Z(x) : Abramowitz+Stegun 26.2.1 * Q(x) : Abramowitz+Stegun 26.2.3 * * exceptions: none */ int gsl_sf_erf_Z_e(double x, gsl_sf_result * result); int gsl_sf_erf_Q_e(double x, gsl_sf_result * result); double gsl_sf_erf_Z(double x); double gsl_sf_erf_Q(double x); /* Hazard function, also known as the inverse Mill's ratio. * * H(x) := Z(x)/Q(x) * = Sqrt[2/Pi] Exp[-x^2 / 2] / Erfc[x/Sqrt[2]] * * exceptions: GSL_EUNDRFLW */ int gsl_sf_hazard_e(double x, gsl_sf_result * result); double gsl_sf_hazard(double x); __END_DECLS #endif /* __GSL_SF_ERF_H__ */ gsl-1.16/specfunc/hyperg.h0000664000252300025230000000433612171574312012435 00000000000000/* specfunc/hyperg.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Miscellaneous implementations of use * for evaluation of hypergeometric functions. */ #ifndef _HYPERG_H_ #define _HYPERG_H_ #include /* Direct implementation of 1F1 series. */ int gsl_sf_hyperg_1F1_series_e(const double a, const double b, const double x, gsl_sf_result * result); /* Implementation of the 1F1 related to the * incomplete gamma function: 1F1(1,b,x), b >= 1. */ int gsl_sf_hyperg_1F1_1_e(double b, double x, gsl_sf_result * result); /* 1F1(1,b,x) for integer b >= 1 */ int gsl_sf_hyperg_1F1_1_int_e(int b, double x, gsl_sf_result * result); /* Implementation of large b asymptotic. * [Bateman v. I, 6.13.3 (18)] * [Luke, The Special Functions and Their Approximations v. I, p. 129, 4.8 (4)] * * a^2 << b, |x|/|b| < 1 - delta */ int gsl_sf_hyperg_1F1_large_b_e(const double a, const double b, const double x, gsl_sf_result * result); /* Implementation of large b asymptotic. * * Assumes a > 0 is small, x > 0, and |x|<|b|. */ int gsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x, gsl_sf_result * result, double * ln_multiplier ); /* Implementation of 2F0 asymptotic series. */ int gsl_sf_hyperg_2F0_series_e(const double a, const double b, const double x, int n_trunc, gsl_sf_result * result); #endif /* !_HYPERG_H_ */ gsl-1.16/specfunc/check.h0000664000252300025230000000017612171574312012212 00000000000000/* check for underflow */ #define CHECK_UNDERFLOW(r) if (fabs((r)->val) < GSL_DBL_MIN) GSL_ERROR("underflow", GSL_EUNDRFLW); gsl-1.16/specfunc/bessel_temme.c0000664000252300025230000001425112171574312013573 00000000000000/* specfunc/bessel_temme.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Calculate series for Y_nu and K_nu for small x and nu. * This is applicable for x < 2 and |nu|<=1/2. * These functions assume x > 0. */ #include #include #include #include #include "bessel_temme.h" #include "chebyshev.h" #include "cheb_eval.c" /* nu = (x+1)/4, -1val = -sum0; Ynu->err = (2.0 + 0.5*k) * GSL_DBL_EPSILON * fabs(Ynu->val); Ynup1->val = -sum1 * 2.0/x; Ynup1->err = (2.0 + 0.5*k) * GSL_DBL_EPSILON * fabs(Ynup1->val); stat_iter = ( k >= max_iter ? GSL_EMAXITER : GSL_SUCCESS ); return GSL_ERROR_SELECT_2(stat_iter, stat_g); } int gsl_sf_bessel_K_scaled_temme(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu) { const int max_iter = 15000; const double half_x = 0.5 * x; const double ln_half_x = log(half_x); const double half_x_nu = exp(nu*ln_half_x); const double pi_nu = M_PI * nu; const double sigma = -nu * ln_half_x; const double sinrat = (fabs(pi_nu) < GSL_DBL_EPSILON ? 1.0 : pi_nu/sin(pi_nu)); const double sinhrat = (fabs(sigma) < GSL_DBL_EPSILON ? 1.0 : sinh(sigma)/sigma); const double ex = exp(x); double sum0, sum1; double fk, pk, qk, hk, ck; int k = 0; int stat_iter; double g_1pnu, g_1mnu, g1, g2; int stat_g = gsl_sf_temme_gamma(nu, &g_1pnu, &g_1mnu, &g1, &g2); fk = sinrat * (cosh(sigma)*g1 - sinhrat*ln_half_x*g2); pk = 0.5/half_x_nu * g_1pnu; qk = 0.5*half_x_nu * g_1mnu; hk = pk; ck = 1.0; sum0 = fk; sum1 = hk; while(k < max_iter) { double del0; double del1; k++; fk = (k*fk + pk + qk)/(k*k-nu*nu); ck *= half_x*half_x/k; pk /= (k - nu); qk /= (k + nu); hk = -k*fk + pk; del0 = ck * fk; del1 = ck * hk; sum0 += del0; sum1 += del1; if(fabs(del0) < 0.5*fabs(sum0)*GSL_DBL_EPSILON) break; } *K_nu = sum0 * ex; *K_nup1 = sum1 * 2.0/x * ex; *Kp_nu = - *K_nup1 + nu/x * *K_nu; stat_iter = ( k == max_iter ? GSL_EMAXITER : GSL_SUCCESS ); return GSL_ERROR_SELECT_2(stat_iter, stat_g); } gsl-1.16/specfunc/gsl_sf_laguerre.h0000664000252300025230000000372012171574312014276 00000000000000/* specfunc/gsl_sf_laguerre.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_LAGUERRE_H__ #define __GSL_SF_LAGUERRE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x) */ /* Evaluate generalized Laguerre polynomials * using explicit representations. * * exceptions: none */ int gsl_sf_laguerre_1_e(const double a, const double x, gsl_sf_result * result); int gsl_sf_laguerre_2_e(const double a, const double x, gsl_sf_result * result); int gsl_sf_laguerre_3_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_laguerre_1(double a, double x); double gsl_sf_laguerre_2(double a, double x); double gsl_sf_laguerre_3(double a, double x); /* Evaluate generalized Laguerre polynomials. * * a > -1.0 * n >= 0 * exceptions: GSL_EDOM */ int gsl_sf_laguerre_n_e(const int n, const double a, const double x, gsl_sf_result * result); double gsl_sf_laguerre_n(int n, double a, double x); __END_DECLS #endif /* __GSL_SF_LAGUERRE_H__ */ gsl-1.16/specfunc/mathieu_coeff.c0000664000252300025230000002045712171574312013732 00000000000000/* specfunc/mathieu_coeff.c * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include /***************************************************************************** * backward_recurse * * Purpose: ****************************************************************************/ static void backward_recurse_c(double aa, double qq, double xx, double *ff, double *gx, int even_odd, int ni) { int ii, nn; double g1; g1 = *gx; ff[ni] = xx; if (even_odd == 0) { for (ii=0; ii GSL_SF_MATHIEU_COEFF) return GSL_FAILURE; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { for (ii=0; ii GSL_SF_MATHIEU_COEFF) return GSL_FAILURE; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { for (ii=0; ii #include #include #include #define DYDX_p(p,u,x) (-(p)/(x) + (((nu)*(nu))/((x)*(x))-1.0)*(u)) #define DYDX_u(p,u,x) (p) static int rk_step(double nu, double x, double dx, double * Jp, double * J) { double p_0 = *Jp; double u_0 = *J; double p_1 = dx * DYDX_p(p_0, u_0, x); double u_1 = dx * DYDX_u(p_0, u_0, x); double p_2 = dx * DYDX_p(p_0 + 0.5*p_1, u_0 + 0.5*u_1, x + 0.5*dx); double u_2 = dx * DYDX_u(p_0 + 0.5*p_1, u_0 + 0.5*u_1, x + 0.5*dx); double p_3 = dx * DYDX_p(p_0 + 0.5*p_2, u_0 + 0.5*u_2, x + 0.5*dx); double u_3 = dx * DYDX_u(p_0 + 0.5*p_2, u_0 + 0.5*u_2, x + 0.5*dx); double p_4 = dx * DYDX_p(p_0 + p_3, u_0 + u_3, x + dx); double u_4 = dx * DYDX_u(p_0 + p_3, u_0 + u_3, x + dx); *Jp = p_0 + p_1/6.0 + p_2/3.0 + p_3/3.0 + p_4/6.0; *J = u_0 + u_1/6.0 + u_2/3.0 + u_3/3.0 + u_4/6.0; return GSL_SUCCESS; } int gsl_sf_bessel_sequence_Jnu_e(double nu, gsl_mode_t mode, size_t size, double * v) { /* CHECK_POINTER(v) */ if(nu < 0.0) { GSL_ERROR ("domain error", GSL_EDOM); } else if(size == 0) { GSL_ERROR ("error", GSL_EINVAL); } else { const gsl_prec_t goal = GSL_MODE_PREC(mode); const double dx_array[] = { 0.001, 0.03, 0.1 }; /* double, single, approx */ const double dx_nominal = dx_array[goal]; const int cnu = (int) ceil(nu); const double nu13 = pow(nu,1.0/3.0); const double smalls[] = { 0.01, 0.02, 0.4, 0.7, 1.3, 2.0, 2.5, 3.2, 3.5, 4.5, 6.0 }; const double x_small = ( nu >= 10.0 ? nu - nu13 : smalls[cnu] ); gsl_sf_result J0, J1; double Jp, J; double x; size_t i = 0; /* Calculate the first point. */ x = v[0]; gsl_sf_bessel_Jnu_e(nu, x, &J0); v[0] = J0.val; ++i; /* Step over the idiot case where the * first point was actually zero. */ if(x == 0.0) { if(v[1] <= x) { /* Strict ordering failure. */ GSL_ERROR ("error", GSL_EFAILED); } x = v[1]; gsl_sf_bessel_Jnu_e(nu, x, &J0); v[1] = J0.val; ++i; } /* Calculate directly as long as the argument * is small. This is necessary because the * integration is not very good there. */ while(v[i] < x_small && i < size) { if(v[i] <= x) { /* Strict ordering failure. */ GSL_ERROR ("error", GSL_EFAILED); } x = v[i]; gsl_sf_bessel_Jnu_e(nu, x, &J0); v[i] = J0.val; ++i; } /* At this point we are ready to integrate. * The value of x is the last calculated * point, which has the value J0; v[i] is * the next point we need to calculate. We * calculate nu+1 at x as well to get * the derivative, then we go forward. */ gsl_sf_bessel_Jnu_e(nu+1.0, x, &J1); J = J0.val; Jp = -J1.val + nu/x * J0.val; while(i < size) { const double dv = v[i] - x; const int Nd = (int) ceil(dv/dx_nominal); const double dx = dv / Nd; double xj; int j; if(v[i] <= x) { /* Strict ordering failure. */ GSL_ERROR ("error", GSL_EFAILED); } /* Integrate over interval up to next sample point. */ for(j=0, xj=x; j #include #include #include #include "error.h" #include "bessel.h" /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_In_scaled_e(int n, const double x, gsl_sf_result * result) { const double ax = fabs(x); n = abs(n); /* I(-n, z) = I(n, z) */ /* CHECK_POINTER(result) */ if(n == 0) { return gsl_sf_bessel_I0_scaled_e(x, result); } else if(n == 1) { return gsl_sf_bessel_I1_scaled_e(x, result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x*x < 10.0*(n+1.0)/M_E) { gsl_sf_result t; double ex = exp(-ax); int stat_In = gsl_sf_bessel_IJ_taylor_e((double)n, ax, 1, 50, GSL_DBL_EPSILON, &t); result->val = t.val * ex; result->err = t.err * ex; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val; return stat_In; } else if(n < 150 && ax < 1e7) { gsl_sf_result I0_scaled; int stat_I0 = gsl_sf_bessel_I0_scaled_e(ax, &I0_scaled); double rat; int stat_CF1 = gsl_sf_bessel_I_CF1_ser((double)n, ax, &rat); double Ikp1 = rat * GSL_SQRT_DBL_MIN; double Ik = GSL_SQRT_DBL_MIN; double Ikm1; int k; for(k=n; k >= 1; k--) { Ikm1 = Ikp1 + 2.0*k/ax * Ik; Ikp1 = Ik; Ik = Ikm1; } result->val = I0_scaled.val * (GSL_SQRT_DBL_MIN / Ik); result->err = I0_scaled.err * (GSL_SQRT_DBL_MIN / Ik); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val; return GSL_ERROR_SELECT_2(stat_I0, stat_CF1); } else if( GSL_MIN( 0.29/(n*n), 0.5/(n*n + x*x) ) < 0.5*GSL_ROOT3_DBL_EPSILON) { int stat_as = gsl_sf_bessel_Inu_scaled_asymp_unif_e((double)n, ax, result); if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val; return stat_as; } else { const int nhi = 2 + (int) (1.2 / GSL_ROOT6_DBL_EPSILON); gsl_sf_result r_Ikp1; gsl_sf_result r_Ik; int stat_a1 = gsl_sf_bessel_Inu_scaled_asymp_unif_e(nhi+1.0, ax, &r_Ikp1); int stat_a2 = gsl_sf_bessel_Inu_scaled_asymp_unif_e((double)nhi, ax, &r_Ik); double Ikp1 = r_Ikp1.val; double Ik = r_Ik.val; double Ikm1; int k; for(k=nhi; k > n; k--) { Ikm1 = Ikp1 + 2.0*k/ax * Ik; Ikp1 = Ik; Ik = Ikm1; } result->val = Ik; result->err = Ik * (r_Ikp1.err/r_Ikp1.val + r_Ik.err/r_Ik.val); if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val; return GSL_ERROR_SELECT_2(stat_a1, stat_a2); } } int gsl_sf_bessel_In_scaled_array(const int nmin, const int nmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(nmax < nmin || nmin < 0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(x == 0.0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; if(nmin == 0) result_array[0] = 1.0; return GSL_SUCCESS; } else if(nmax == 0) { gsl_sf_result I0_scaled; int stat = gsl_sf_bessel_I0_scaled_e(x, &I0_scaled); result_array[0] = I0_scaled.val; return stat; } else { const double ax = fabs(x); const double two_over_x = 2.0/ax; /* starting values */ gsl_sf_result r_Inp1; gsl_sf_result r_In; int stat_0 = gsl_sf_bessel_In_scaled_e(nmax+1, ax, &r_Inp1); int stat_1 = gsl_sf_bessel_In_scaled_e(nmax, ax, &r_In); double Inp1 = r_Inp1.val; double In = r_In.val; double Inm1; int n; for(n=nmax; n>=nmin; n--) { result_array[n-nmin] = In; Inm1 = Inp1 + n * two_over_x * In; Inp1 = In; In = Inm1; } /* deal with signs */ if(x < 0.0) { for(n=nmin; n<=nmax; n++) { if(GSL_IS_ODD(n)) result_array[n-nmin] = -result_array[n-nmin]; } } return GSL_ERROR_SELECT_2(stat_0, stat_1); } } int gsl_sf_bessel_In_e(const int n_in, const double x, gsl_sf_result * result) { const double ax = fabs(x); const int n = abs(n_in); /* I(-n, z) = I(n, z) */ gsl_sf_result In_scaled; const int stat_In_scaled = gsl_sf_bessel_In_scaled_e(n, ax, &In_scaled); /* In_scaled is always less than 1, * so this overflow check is conservative. */ if(ax > GSL_LOG_DBL_MAX - 1.0) { OVERFLOW_ERROR(result); } else { const double ex = exp(ax); result->val = ex * In_scaled.val; result->err = ex * In_scaled.err; result->err += ax * GSL_DBL_EPSILON * fabs(result->val); if(x < 0.0 && GSL_IS_ODD(n)) result->val = -result->val; return stat_In_scaled; } } int gsl_sf_bessel_In_array(const int nmin, const int nmax, const double x, double * result_array) { double ax = fabs(x); /* CHECK_POINTER(result_array) */ if(ax > GSL_LOG_DBL_MAX - 1.0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; /* FIXME: should be Inf */ GSL_ERROR ("overflow", GSL_EOVRFLW); } else { int j; double eax = exp(ax); int status = gsl_sf_bessel_In_scaled_array(nmin, nmax, x, result_array); for(j=0; j<=nmax-nmin; j++) result_array[j] *= eax; return status; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_In_scaled(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_In_scaled_e(n, x, &result)); } double gsl_sf_bessel_In(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_In_e(n, x, &result)); } gsl-1.16/specfunc/poch.c0000664000252300025230000003400012171574312012052 00000000000000/* specfunc/poch.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" static const double bern[21] = { 0.0 /* no element 0 */, +0.833333333333333333333333333333333e-01, -0.138888888888888888888888888888888e-02, +0.330687830687830687830687830687830e-04, -0.826719576719576719576719576719576e-06, +0.208767569878680989792100903212014e-07, -0.528419013868749318484768220217955e-09, +0.133825365306846788328269809751291e-10, -0.338968029632258286683019539124944e-12, +0.858606205627784456413590545042562e-14, -0.217486869855806187304151642386591e-15, +0.550900282836022951520265260890225e-17, -0.139544646858125233407076862640635e-18, +0.353470703962946747169322997780379e-20, -0.895351742703754685040261131811274e-22, +0.226795245233768306031095073886816e-23, -0.574472439520264523834847971943400e-24, +0.145517247561486490186626486727132e-26, -0.368599494066531017818178247990866e-28, +0.933673425709504467203255515278562e-30, -0.236502241570062993455963519636983e-31 }; /* ((a)_x - 1)/x in the "small x" region where * cancellation must be controlled. * * Based on SLATEC DPOCH1(). */ /* C When ABS(X) is so small that substantial cancellation will occur if C the straightforward formula is used, we use an expansion due C to Fields and discussed by Y. L. Luke, The Special Functions and Their C Approximations, Vol. 1, Academic Press, 1969, page 34. C C The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as C (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) . C In order to maintain significance in POCH1, we write for positive a C (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q) C = 1.0 + Q*EXPREL(Q) . C Likewise the polynomial is written C POLY = 1.0 + X*POLY1(A,X) . C Thus, C POCH1(A,X) = (POCH(A,X) - 1) / X C = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X) C */ static int pochrel_smallx(const double a, const double x, gsl_sf_result * result) { /* SQTBIG = 1.0D0/SQRT(24.0D0*D1MACH(1)) ALNEPS = LOG(D1MACH(3)) */ const double SQTBIG = 1.0/(2.0*M_SQRT2*M_SQRT3*GSL_SQRT_DBL_MIN); const double ALNEPS = GSL_LOG_DBL_EPSILON - M_LN2; if(x == 0.0) { return gsl_sf_psi_e(a, result); } else { const double bp = ( (a < -0.5) ? 1.0-a-x : a ); const int incr = ( (bp < 10.0) ? 11.0-bp : 0 ); const double b = bp + incr; double dpoch1; gsl_sf_result dexprl; int stat_dexprl; int i; double var = b + 0.5*(x-1.0); double alnvar = log(var); double q = x*alnvar; double poly1 = 0.0; if(var < SQTBIG) { const int nterms = (int)(-0.5*ALNEPS/alnvar + 1.0); const double var2 = (1.0/var)/var; const double rho = 0.5 * (x + 1.0); double term = var2; double gbern[24]; int k, j; gbern[1] = 1.0; gbern[2] = -rho/12.0; poly1 = gbern[2] * term; if(nterms > 20) { /* NTERMS IS TOO BIG, MAYBE D1MACH(3) IS BAD */ /* nterms = 20; */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_ESANITY); } for(k=2; k<=nterms; k++) { double gbk = 0.0; for(j=1; j<=k; j++) { gbk += bern[k-j+1]*gbern[j]; } gbern[k+1] = -rho*gbk/k; term *= (2*k-2-x)*(2*k-1-x)*var2; poly1 += gbern[k+1]*term; } } stat_dexprl = gsl_sf_expm1_e(q, &dexprl); if(stat_dexprl != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_dexprl; } dexprl.val = dexprl.val/q; poly1 *= (x - 1.0); dpoch1 = dexprl.val * (alnvar + q * poly1) + poly1; for(i=incr-1; i >= 0; i--) { /* C WE HAVE DPOCH1(B,X), BUT BP IS SMALL, SO WE USE BACKWARDS RECURSION C TO OBTAIN DPOCH1(BP,X). */ double binv = 1.0/(bp+i); dpoch1 = (dpoch1 - binv) / (1.0 + x*binv); } if(bp == a) { result->val = dpoch1; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val); return GSL_SUCCESS; } else { /* C WE HAVE DPOCH1(BP,X), BUT A IS LT -0.5. WE THEREFORE USE A C REFLECTION FORMULA TO OBTAIN DPOCH1(A,X). */ double sinpxx = sin(M_PI*x)/x; double sinpx2 = sin(0.5*M_PI*x); double t1 = sinpxx/tan(M_PI*b); double t2 = 2.0*sinpx2*(sinpx2/x); double trig = t1 - t2; result->val = dpoch1 * (1.0 + x*trig) + trig; result->err = (fabs(dpoch1*x) + 1.0) * GSL_DBL_EPSILON * (fabs(t1) + fabs(t2)); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(incr) + 1.0) * fabs(result->val); return GSL_SUCCESS; } } } /* Assumes a>0 and a+x>0. */ static int lnpoch_pos(const double a, const double x, gsl_sf_result * result) { double absx = fabs(x); if(absx > 0.1*a || absx*log(GSL_MAX_DBL(a,2.0)) > 0.1) { if(a < GSL_SF_GAMMA_XMAX && a+x < GSL_SF_GAMMA_XMAX) { /* If we can do it by calculating the gamma functions * directly, then that will be more accurate than * doing the subtraction of the logs. */ gsl_sf_result g1; gsl_sf_result g2; gsl_sf_gammainv_e(a, &g1); gsl_sf_gammainv_e(a+x, &g2); result->val = -log(g2.val/g1.val); result->err = g1.err/fabs(g1.val) + g2.err/fabs(g2.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* Otherwise we must do the subtraction. */ gsl_sf_result lg1; gsl_sf_result lg2; int stat_1 = gsl_sf_lngamma_e(a, &lg1); int stat_2 = gsl_sf_lngamma_e(a+x, &lg2); result->val = lg2.val - lg1.val; result->err = lg2.err + lg1.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_1, stat_2); } } else if(absx < 0.1*a && a > 15.0) { /* Be careful about the implied subtraction. * Note that both a+x and and a must be * large here since a is not small * and x is not relatively large. * So we calculate using Stirling for Log[Gamma(z)]. * * Log[Gamma(a+x)/Gamma(a)] = x(Log[a]-1) + (x+a-1/2)Log[1+x/a] * + (1/(1+eps) - 1) / (12 a) * - (1/(1+eps)^3 - 1) / (360 a^3) * + (1/(1+eps)^5 - 1) / (1260 a^5) * - (1/(1+eps)^7 - 1) / (1680 a^7) * + ... */ const double eps = x/a; const double den = 1.0 + eps; const double d3 = den*den*den; const double d5 = d3*den*den; const double d7 = d5*den*den; const double c1 = -eps/den; const double c3 = -eps*(3.0+eps*(3.0+eps))/d3; const double c5 = -eps*(5.0+eps*(10.0+eps*(10.0+eps*(5.0+eps))))/d5; const double c7 = -eps*(7.0+eps*(21.0+eps*(35.0+eps*(35.0+eps*(21.0+eps*(7.0+eps))))))/d7; const double p8 = gsl_sf_pow_int(1.0+eps,8); const double c8 = 1.0/p8 - 1.0; /* these need not */ const double c9 = 1.0/(p8*(1.0+eps)) - 1.0; /* be very accurate */ const double a4 = a*a*a*a; const double a6 = a4*a*a; const double ser_1 = c1 + c3/(30.0*a*a) + c5/(105.0*a4) + c7/(140.0*a6); const double ser_2 = c8/(99.0*a6*a*a) - 691.0/360360.0 * c9/(a6*a4); const double ser = (ser_1 + ser_2)/ (12.0*a); double term1 = x * log(a/M_E); double term2; gsl_sf_result ln_1peps; gsl_sf_log_1plusx_e(eps, &ln_1peps); /* log(1 + x/a) */ term2 = (x + a - 0.5) * ln_1peps.val; result->val = term1 + term2 + ser; result->err = GSL_DBL_EPSILON*fabs(term1); result->err += fabs((x + a - 0.5)*ln_1peps.err); result->err += fabs(ln_1peps.val) * GSL_DBL_EPSILON * (fabs(x) + fabs(a) + 0.5); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result poch_rel; int stat_p = pochrel_smallx(a, x, &poch_rel); double eps = x*poch_rel.val; int stat_e = gsl_sf_log_1plusx_e(eps, result); result->err = 2.0 * fabs(x * poch_rel.err / (1.0 + eps)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_e, stat_p); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(a <= 0.0 || a+x <= 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { return lnpoch_pos(a, x, result); } } int gsl_sf_lnpoch_sgn_e(const double a, const double x, gsl_sf_result * result, double * sgn) { if(x == 0.0) { *sgn = 1.0; result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(a > 0.0 && a+x > 0.0) { *sgn = 1.0; return lnpoch_pos(a, x, result); } else if (a <= 0 && a == floor(a)) { /* Special cases for infinite denominator Gamma(a) */ if (a + x < 0 && x == floor(x)) { /* Handle the case where both a and a+x are negative integers. */ gsl_sf_result result_pos; /* Use the reflection formula AMS6.1.17 poch(-a,-x) = (-1)^x (a/(a+x)) 1/poch(a,x) */ int stat = lnpoch_pos (-a, -x, &result_pos); double f = log (a / (a + x)); double s = (fmod(x, 2) == 0) ? 1 : -1; result->val = f - result_pos.val; result->err = result_pos.err + 2.0 * GSL_DBL_EPSILON * f; *sgn = s; return stat; } else if (a + x == 0) { /* Handle a+x = 0 i.e. Gamma(0)/Gamma(a) */ /* poch (-a,a) == (-1)^a Gamma(a+1) */ int stat = gsl_sf_lngamma_sgn_e (-a + 1, result, sgn); double s = (fmod(-a, 2) == 0) ? 1 : -1; *sgn *= s; return stat; } else { /* Handle finite numerator, Gamma(a+x) for a+x != 0 or neg int */ result->val = GSL_NEGINF; result->err = 0.0; *sgn = 1; return GSL_SUCCESS; } } else if(a < 0.0 && a+x < 0.0) { /* Reduce to positive case using reflection. */ double sin_1 = sin(M_PI * (1.0 - a)); double sin_2 = sin(M_PI * (1.0 - a - x)); if(sin_1 == 0.0 || sin_2 == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result); } else { gsl_sf_result lnp_pos; int stat_pp = lnpoch_pos(1.0-a, -x, &lnp_pos); double lnterm = log(fabs(sin_1/sin_2)); result->val = lnterm - lnp_pos.val; result->err = lnp_pos.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(1.0-a) + fabs(1.0-a-x)) * fabs(lnterm); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = GSL_SIGN(sin_1*sin_2); return stat_pp; } } else { /* Evaluate gamma ratio directly. */ gsl_sf_result lg_apn; gsl_sf_result lg_a; double s_apn, s_a; int stat_apn = gsl_sf_lngamma_sgn_e(a+x, &lg_apn, &s_apn); int stat_a = gsl_sf_lngamma_sgn_e(a, &lg_a, &s_a); if(stat_apn == GSL_SUCCESS && stat_a == GSL_SUCCESS) { result->val = lg_apn.val - lg_a.val; result->err = lg_apn.err + lg_a.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = s_a * s_apn; return GSL_SUCCESS; } else if(stat_apn == GSL_EDOM || stat_a == GSL_EDOM){ *sgn = 0.0; DOMAIN_ERROR(result); } else { result->val = 0.0; result->err = 0.0; *sgn = 0.0; return GSL_FAILURE; } } } int gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result lnpoch; double sgn; int stat_lnpoch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn); if (lnpoch.val == GSL_NEGINF) { result->val = 0; result->err = 0; return stat_lnpoch; } else { int stat_exp = gsl_sf_exp_err_e(lnpoch.val, lnpoch.err, result); result->val *= sgn; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_exp, stat_lnpoch); } } } int gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result) { const double absx = fabs(x); const double absa = fabs(a); /* CHECK_POINTER(result) */ if(absx > 0.1*absa || absx*log(GSL_MAX(absa,2.0)) > 0.1) { gsl_sf_result lnpoch; double sgn; int stat_poch = gsl_sf_lnpoch_sgn_e(a, x, &lnpoch, &sgn); if(lnpoch.val > GSL_LOG_DBL_MAX) { OVERFLOW_ERROR(result); } else { const double el = exp(lnpoch.val); result->val = (sgn*el - 1.0)/x; result->err = fabs(result->val) * (lnpoch.err + 2.0 * GSL_DBL_EPSILON); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sgn*el) + 1.0) / fabs(x); return stat_poch; } } else { return pochrel_smallx(a, x, result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_lnpoch(const double a, const double x) { EVAL_RESULT(gsl_sf_lnpoch_e(a, x, &result)); } double gsl_sf_poch(const double a, const double x) { EVAL_RESULT(gsl_sf_poch_e(a, x, &result)); } double gsl_sf_pochrel(const double a, const double x) { EVAL_RESULT(gsl_sf_pochrel_e(a, x, &result)); } gsl-1.16/specfunc/cheb_eval.c0000664000252300025230000000122012171574312013027 00000000000000 static inline int cheb_eval_e(const cheb_series * cs, const double x, gsl_sf_result * result) { int j; double d = 0.0; double dd = 0.0; double y = (2.0*x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; double e = 0.0; for(j = cs->order; j>=1; j--) { double temp = d; d = y2*d - dd + cs->c[j]; e += fabs(y2*temp) + fabs(dd) + fabs(cs->c[j]); dd = temp; } { double temp = d; d = y*d - dd + 0.5 * cs->c[0]; e += fabs(y*temp) + fabs(dd) + 0.5 * fabs(cs->c[0]); } result->val = d; result->err = GSL_DBL_EPSILON * e + fabs(cs->c[cs->order]); return GSL_SUCCESS; } gsl-1.16/specfunc/elljac.c0000664000252300025230000000656012171574312012365 00000000000000/* specfunc/elljac.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include /* GJ: See [Thompson, Atlas for Computing Mathematical Functions] */ /* BJG 2005-07: New algorithm based on Algorithm 5 from Numerische Mathematik 7, 78-90 (1965) "Numerical Calculation of Elliptic Integrals and Elliptic Functions" R. Bulirsch. Minor tweak is to avoid division by zero when sin(x u_l) = 0 by computing reflected values sn(K-u) cn(K-u) dn(K-u) and using transformation from Abramowitz & Stegun table 16.8 column "K-u"*/ int gsl_sf_elljac_e(double u, double m, double * sn, double * cn, double * dn) { if(fabs(m) > 1.0) { *sn = 0.0; *cn = 0.0; *dn = 0.0; GSL_ERROR ("|m| > 1.0", GSL_EDOM); } else if(fabs(m) < 2.0*GSL_DBL_EPSILON) { *sn = sin(u); *cn = cos(u); *dn = 1.0; return GSL_SUCCESS; } else if(fabs(m - 1.0) < 2.0*GSL_DBL_EPSILON) { *sn = tanh(u); *cn = 1.0/cosh(u); *dn = *cn; return GSL_SUCCESS; } else { int status = GSL_SUCCESS; const int N = 16; double mu[16]; double nu[16]; double c[16]; double d[16]; double sin_umu, cos_umu, t, r; int n = 0; mu[0] = 1.0; nu[0] = sqrt(1.0 - m); while( fabs(mu[n] - nu[n]) > 4.0 * GSL_DBL_EPSILON * fabs(mu[n]+nu[n])) { mu[n+1] = 0.5 * (mu[n] + nu[n]); nu[n+1] = sqrt(mu[n] * nu[n]); ++n; if(n >= N - 1) { status = GSL_EMAXITER; break; } } sin_umu = sin(u * mu[n]); cos_umu = cos(u * mu[n]); /* Since sin(u*mu(n)) can be zero we switch to computing sn(K-u), cn(K-u), dn(K-u) when |sin| < |cos| */ if (fabs(sin_umu) < fabs(cos_umu)) { t = sin_umu / cos_umu; c[n] = mu[n] * t; d[n] = 1.0; while(n > 0) { n--; c[n] = d[n+1] * c[n+1]; r = (c[n+1] * c[n+1]) / mu[n+1]; d[n] = (r + nu[n]) / (r + mu[n]); } *dn = sqrt(1.0-m) / d[n]; *cn = (*dn) * GSL_SIGN(cos_umu) / gsl_hypot(1.0, c[n]); *sn = (*cn) * c[n] /sqrt(1.0-m); } else { t = cos_umu / sin_umu; c[n] = mu[n] * t; d[n] = 1.0; while(n > 0) { --n; c[n] = d[n+1] * c[n+1]; r = (c[n+1] * c[n+1]) / mu[n+1]; d[n] = (r + nu[n]) / (r + mu[n]); } *dn = d[n]; *sn = GSL_SIGN(sin_umu) / gsl_hypot(1.0, c[n]); *cn = c[n] * (*sn); } return status; } } gsl-1.16/specfunc/bessel_I1.c0000664000252300025230000001523412171574312012737 00000000000000/* specfunc/bessel_I1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" #define ROOT_EIGHT (2.0*M_SQRT2) /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besi1(), besi1e() */ /* chebyshev expansions series for bi1 on the interval 0. to 9.00000d+00 with weighted error 2.40e-17 log weighted error 16.62 significant figures required 16.23 decimal places required 17.14 series for ai1 on the interval 1.25000d-01 to 3.33333d-01 with weighted error 6.98e-17 log weighted error 16.16 significant figures required 14.53 decimal places required 16.82 series for ai12 on the interval 0. to 1.25000d-01 with weighted error 3.55e-17 log weighted error 16.45 significant figures required 14.69 decimal places required 17.12 */ static double bi1_data[11] = { -0.001971713261099859, 0.407348876675464810, 0.034838994299959456, 0.001545394556300123, 0.000041888521098377, 0.000000764902676483, 0.000000010042493924, 0.000000000099322077, 0.000000000000766380, 0.000000000000004741, 0.000000000000000024 }; static cheb_series bi1_cs = { bi1_data, 10, -1, 1, 10 }; static double ai1_data[21] = { -0.02846744181881479, -0.01922953231443221, -0.00061151858579437, -0.00002069971253350, 0.00000858561914581, 0.00000104949824671, -0.00000029183389184, -0.00000001559378146, 0.00000001318012367, -0.00000000144842341, -0.00000000029085122, 0.00000000012663889, -0.00000000001664947, -0.00000000000166665, 0.00000000000124260, -0.00000000000027315, 0.00000000000002023, 0.00000000000000730, -0.00000000000000333, 0.00000000000000071, -0.00000000000000006 }; static cheb_series ai1_cs = { ai1_data, 20, -1, 1, 11 }; static double ai12_data[22] = { 0.02857623501828014, -0.00976109749136147, -0.00011058893876263, -0.00000388256480887, -0.00000025122362377, -0.00000002631468847, -0.00000000383538039, -0.00000000055897433, -0.00000000001897495, 0.00000000003252602, 0.00000000001412580, 0.00000000000203564, -0.00000000000071985, -0.00000000000040836, -0.00000000000002101, 0.00000000000004273, 0.00000000000001041, -0.00000000000000382, -0.00000000000000186, 0.00000000000000033, 0.00000000000000028, -0.00000000000000003 }; static cheb_series ai12_cs = { ai12_data, 21, -1, 1, 9 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_I1_scaled_e(const double x, gsl_sf_result * result) { const double xmin = 2.0 * GSL_DBL_MIN; const double x_small = ROOT_EIGHT * GSL_SQRT_DBL_EPSILON; const double y = fabs(x); /* CHECK_POINTER(result) */ if(y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(y < xmin) { UNDERFLOW_ERROR(result); } else if(y < x_small) { result->val = 0.5*x; result->err = 0.0; return GSL_SUCCESS; } else if(y <= 3.0) { const double ey = exp(-y); gsl_sf_result c; cheb_eval_e(&bi1_cs, y*y/4.5-1.0, &c); result->val = x * ey * (0.875 + c.val); result->err = ey * c.err + y * GSL_DBL_EPSILON * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y <= 8.0) { const double sy = sqrt(y); gsl_sf_result c; double b; double s; cheb_eval_e(&ai1_cs, (48.0/y-11.0)/5.0, &c); b = (0.375 + c.val) / sy; s = (x > 0.0 ? 1.0 : -1.0); result->val = s * b; result->err = c.err / sy; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sy = sqrt(y); gsl_sf_result c; double b; double s; cheb_eval_e(&ai12_cs, 16.0/y-1.0, &c); b = (0.375 + c.val) / sy; s = (x > 0.0 ? 1.0 : -1.0); result->val = s * b; result->err = c.err / sy; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_I1_e(const double x, gsl_sf_result * result) { const double xmin = 2.0 * GSL_DBL_MIN; const double x_small = ROOT_EIGHT * GSL_SQRT_DBL_EPSILON; const double y = fabs(x); /* CHECK_POINTER(result) */ if(y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(y < xmin) { UNDERFLOW_ERROR(result); } else if(y < x_small) { result->val = 0.5*x; result->err = 0.0; return GSL_SUCCESS; } else if(y <= 3.0) { gsl_sf_result c; cheb_eval_e(&bi1_cs, y*y/4.5-1.0, &c); result->val = x * (0.875 + c.val); result->err = y * c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y < GSL_LOG_DBL_MAX) { const double ey = exp(y); gsl_sf_result I1_scaled; gsl_sf_bessel_I1_scaled_e(x, &I1_scaled); result->val = ey * I1_scaled.val; result->err = ey * I1_scaled.err + y * GSL_DBL_EPSILON * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_I1_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_I1_scaled_e(x, &result)); } double gsl_sf_bessel_I1(const double x) { EVAL_RESULT(gsl_sf_bessel_I1_e(x, &result)); } gsl-1.16/specfunc/TODO0000664000252300025230000003315712171574312011461 00000000000000# -*- org -*- #+CATEGORY: specfunc * Complex hypergeometric function 1F1 * Could probably return immediately for exact zeros in 3j,6j,9j functions. Easiest to implement for 3j. Note from Serge Winitzki : The package "matpack" (www.matpack.de) includes many special functions, also the 3j symbols. They refer to some quite complicated numerical methods using recursion relations to get the right answers for large momenta, and to 1975-1976 papers by Schulten and Gordon for the description of the algorithms. The papers can be downloaded for free at http://www.ks.uiuc.edu/Publications/Papers/ http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU76B http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75A http://www.ks.uiuc.edu/Publications/Papers/abstract.cgi?tbcode=SCHU75 * add Fresnel Integrals to specfunc. See TOMS 723 + 2 subsequent errata. * make mode variables consistent in specfunc -- some seem to be unnecessary from performance point of view since the speed difference is negligible. * From: "Alexander Babansky" To: "Brian Gough" Subject: Re: gsl-1.2 Date: Sun, 3 Nov 2002 14:15:15 -0500 Hi Brian, May I suggest you to add another function to gsl-1.2 ? It's a modified Ei(x) function: Em(x)=exp(-x)*Ei(x); As u might know, Ei(x) raises as e^x on the negative interval. Therefore, Ei(100) is very very large. But Ei(100)*exp(-100) = 0.010; Unfortunately, if u try x=800 u'll get overflow in Ei(800). but Ei(800)*exp(-800) should be around 0.0001; Modified function Em(x) is used in cos, sin integrals such as: int_0^\infinity dx sin(bx)/(x^2+z^2)=(1/2z)*(Em(bz)-Em(-bz)); int_0^\infinity dx x cos(bx)/(x^2+z^2)=(1/2)*(Em(bz)+Em(-bz)); One of possible ways to add it to the library is: Em(x) = - PV int_0^\infinity e^(-t)/(t+x) dt Sincerely, Alex DONE: Wed Nov 6 13:06:42 MST 2002 [GJ] ---------------------------------------------------------------------- The following should be finished before a 1.0 level release. * Implement the conicalP_sph_reg() functions. DONE: Fri Nov 6 23:33:53 MST 1998 [GJ] * Irregular (Q) Legendre functions, at least the integer order ones. More general cases can probably wait. DONE: Sat Nov 7 15:47:35 MST 1998 [GJ] * Make hyperg_1F1() work right. This is the last remaining source of test failures. The problem is with an unstable recursion in certain cases. Look for the recursion with the variable named "start_pair"; this is stupid hack to keep track of when the recursion result is going the wrong way for awhile by remembering the minimum value. An error estimate is amde from that. But it is just a hack. Somethign must be done abou that case. * Clean-up Coulomb wave functions. This does not mean completing a fully controlled low-energy evaluation, which is a larger project. DONE: Sun May 16 13:49:47 MDT 1999 [GJ] * Clean-up the Fermi-Dirac code. The full Fermi-Dirac functions can probably wait until a later release, but we should have at least the common j = integer and j = 1/2-integer cases for the 1.0 release. These are not too hard. DONE: Sat Nov 7 19:46:27 MST 1998 [GJ] * Go over the tests and make sure nothing is left out. * Sanitize all the error-checking, error-estimation, algorithm tuning, etc. * Fill out our scorecard, working from Lozier's "Software Needs in Special Functions" paper. * Final Seal of Approval This section has itself gone through several revisions (sigh), proving that the notion of done-ness is ill-defined. So it is worth stating the criteria for done-ness explicitly: o interfaces stabilized o error-estimation in place o all deprecated constructs removed o passes tests - airy.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - airy_der.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - airy_zero.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - atanint.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_I0.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_I1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_In.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Inu.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_J0.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_J1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Jn.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Jnu.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_K0.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_K1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Kn.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Knu.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Y0.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Y1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Yn.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_Ynu.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_amp_phase.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_i.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_j.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_k.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_olver.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_sequence.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_temme.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_y.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - bessel_zero.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - beta.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - chebyshev.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - clausen.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - coulomb.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - coulomb_bound.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - coupling.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - dawson.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - debye.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - dilog.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - elementary.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - ellint.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - elljac.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - erfc.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - exp.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - expint.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - expint3.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - fermi_dirac.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - gamma.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - gamma_inc.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - gegenbauer.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - hyperg.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - hyperg_0F1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - hyperg_1F1.c - hyperg_2F0.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - hyperg_2F1.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - hyperg_U.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - laguerre.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - legendre_H3d.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - legendre_Qn.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - legendre_con.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - legendre_poly.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - log.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - poch.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - poly.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - pow_int.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - psi.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - result.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - shint.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - sinint.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - synchrotron.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - transport.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - trig.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: - zeta.c INTERFACES: ERRORESTIM: DEPRECATED: PASSTESTS: ---------------------------------------------------------------------- The following are important but probably will not see completion before a 1.0 level release. * Incomplete Fermi-Dirac functions. Other Fermi-Dirac functions, including the generic 1/2-integer case, which was not done. * Implement the low-energy regime for the Coulomb wave functions. This is fairly well understood in the recent literature but will require some detailed work. Specifically this means creating a drop-in replacement for coulomb_jwkb() which is controlled and extensible. * General Legendre functions (at least on the cut). This subsumes the toroidal functions, so we need not consider those separately. SLATEC code exists (originally due to Olver+Smith). * Characterize the algorithms. A significant fraction of the code is home-grown and it should be reviewed by other parties. ---------------------------------------------------------------------- The following are extra features which need not be implemented for a version 1.0 release. * Spheroidal wave functions. * Mathieu functions. * Weierstrass elliptic functions. ---------------------------------------------------------------------- Improve accuracy of ERF NNTP-Posting-Date: Thu, 11 Sep 2003 07:41:42 -0500 From: "George Marsaglia" Newsgroups: comp.lang.c References: Subject: Re: When (32-bit) double precision isn't precise enough Date: Thu, 11 Sep 2003 08:41:40 -0400 X-Priority: 3 X-MSMail-Priority: Normal X-Newsreader: Microsoft Outlook Express 6.00.2800.1158 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2800.1165 Message-ID: Lines: 265 NNTP-Posting-Host: 68.35.247.101 X-Trace: sv3-4YY+jkhhdeQvGKAREa99vDBFHJoKVqVBdUTSuRxA71OwlgxX0uUFnKYs54FlnUs0Xb6BRngKigkd75d!tKin8l8rAQKylaP+4vzTI3AO33bivOw1lKDZUUtXe4lUMW1qn+goUp/Pfksstg== X-Complaints-To: abuse@comcast.net X-DMCA-Complaints-To: dmca@comcast.net X-Abuse-and-DMCA-Info: Please be sure to forward a copy of ALL headers X-Abuse-and-DMCA-Info: Otherwise we will be unable to process your complaint properly X-Postfilter: 1.1 Why most of those who deal with the normal integral in probability theory are still stuck with the historical baggage of the error function is a puzzle to me, as is the poor quality of the results one gets from standard library implementations of erf(). (One of the most common is based on ALGORITHM AS66, APPL. STATIST.(1973) Vol.22, .424 by HILL, which gives only 6-8 digit accuracy). Here is a listing of my method: /* Marsaglia Complementary Normal Distribution Function cPhi(x) = integral from x to infinity of exp(-.5*t^2)/sqrt(2*pi), x<15 15-digit accuracy for x<15, returns 0 for x>15. #include */ double cPhi(double x){ long double v[]={0.,.65567954241879847154L, .42136922928805447322L,.30459029871010329573L, .23665238291356067062L,.19280810471531576488L, .16237766089686746182L,.14010418345305024160L, .12313196325793229628L,.10978728257830829123L, .99028596471731921395e-1L,.90175675501064682280e-1L, .82766286501369177252e-1L,.76475761016248502993e-1L, .71069580538852107091e-1L,.66374235823250173591e-1L}; long double h,a,b,z,t,sum,pwr; int i,j; if(x>15.) return (0.); if(x<-15.) return (1.); j=fabs(x)+1.; z=j; h=fabs(x)-z; a=v[j]; b=z*a-1.; pwr=1.; sum=a+h*b; for(i=2;i<60;i+=2){ a=(a+z*b)/i; b=(b+z*a)/(i+1); pwr=pwr*h*h; t=sum; sum=sum+pwr*(a+h*b); if(sum==t) break; } sum=sum*exp(-.5*x*x-.91893853320467274178L); if(x<0.) sum=1.-sum; return ((double) sum); } */ end of listing */ The method is based on defining phi(x)=exp(-x^2)/sqrt(2pi) and R(x)=cPhi(x)/phi(x). The function R(x) is well-behaved and terms of its Taylor series are readily obtained by a two-term recursion. With an accurate representation of R(x) at ,say, x=0,1,2,...,15, a simple evaluation of the Taylor series at intermediate points provides up to 15 digits of accuracy. An article describing the method will be in the new version of my Diehard CDROM. A new version of the Diehard tests of randomness (but not yet the new DVDROM) is at http://www.csis.hku.hk/~diehard/ George Marsagliagsl-1.16/specfunc/mathieu_angfunc.c0000664000252300025230000001770412171574312014272 00000000000000/* specfunc/mathieu_angfunc.c * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include #include #include int gsl_sf_mathieu_ce(int order, double qq, double zz, gsl_sf_result *result) { int even_odd, ii, status; double coeff[GSL_SF_MATHIEU_COEFF], norm, fn, factor; gsl_sf_result aa; norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { norm = 1.0; if (order == 0) norm = sqrt(2.0); fn = cos(order*zz)/norm; result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order. */ if (order < 0) order *= -1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_a(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { fn = 0.0; norm = coeff[0]*coeff[0]; for (ii=0; iival = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_se(int order, double qq, double zz, gsl_sf_result *result) { int even_odd, ii, status; double coeff[GSL_SF_MATHIEU_COEFF], norm, fn, factor; gsl_sf_result aa; norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial cases where order = 0 and/or q = 0. */ if (order == 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } if (qq == 0.0) { norm = 1.0; fn = sin(order*zz); result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order. */ if (order < 0) order *= -1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_b(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { fn = 0.0; for (ii=0; iival = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_ce_array(int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]) { int even_odd, order, ii, jj, status; double coeff[GSL_SF_MATHIEU_COEFF], *aa = work->aa, norm; /* Initialize the result array to zeroes. */ for (ii=0; iisize < (unsigned int)nmax) { GSL_ERROR("Work space not large enough", GSL_EINVAL); } if (nmin < 0 || nmax < nmin) { GSL_ERROR("domain error", GSL_EDOM); } /* Compute all of the eigenvalues up to nmax. */ gsl_sf_mathieu_a_array(0, nmax, qq, work, aa); for (ii=0, order=nmin; order<=nmax; ii++, order++) { norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial case where q = 0. */ if (qq == 0.0) { norm = 1.0; if (order == 0) norm = sqrt(2.0); result_array[ii] = cos(order*zz)/norm; continue; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa[order], coeff); if (status != GSL_SUCCESS) return status; if (even_odd == 0) { norm = coeff[0]*coeff[0]; for (jj=0; jjbb, norm; /* Initialize the result array to zeroes. */ for (ii=0; iisize < (unsigned int)nmax) { GSL_ERROR("Work space not large enough", GSL_EINVAL); } if (nmin < 0 || nmax < nmin) { GSL_ERROR("domain error", GSL_EDOM); } /* Compute all of the eigenvalues up to nmax. */ gsl_sf_mathieu_b_array(0, nmax, qq, work, bb); for (ii=0, order=nmin; order<=nmax; ii++, order++) { norm = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial cases where order = 0 and/or q = 0. */ if (order == 0) { norm = 1.0; result_array[ii] = 0.0; continue; } if (qq == 0.0) { norm = 1.0; result_array[ii] = sin(order*zz); continue; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, bb[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (jj=0; jj #include #include #include #include #include "error.h" #include "bessel.h" /* i_{l+1}/i_l */ static int bessel_il_CF1(const int l, const double x, const double threshold, double * ratio) { const int kmax = 2000; double tk = 1.0; double sum = 1.0; double rhok = 0.0; int k; for(k=1; k<=kmax; k++) { double ak = (x/(2.0*l+1.0+2.0*k)) * (x/(2.0*l+3.0+2.0*k)); rhok = -ak*(1.0 + rhok)/(1.0 + ak*(1.0 + rhok)); tk *= rhok; sum += tk; if(fabs(tk/sum) < threshold) break; } *ratio = x/(2.0*l+3.0) * sum; if(k == kmax) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_i0_scaled_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 0.2) { const double eax = exp(-ax); const double y = ax*ax; const double c1 = 1.0/6.0; const double c2 = 1.0/120.0; const double c3 = 1.0/5040.0; const double c4 = 1.0/362880.0; const double c5 = 1.0/39916800.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))); result->val = eax * sum; result->err = 2.0 * GSL_DBL_EPSILON * result->val; } else if(ax < -0.5*GSL_LOG_DBL_EPSILON) { result->val = (1.0 - exp(-2.0*ax))/(2.0*ax); result->err = 2.0 * GSL_DBL_EPSILON * result->val; } else { result->val = 1.0/(2.0*ax); result->err = 2.0 * GSL_DBL_EPSILON * result->val; } return GSL_SUCCESS; } int gsl_sf_bessel_i1_scaled_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 3.0*GSL_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(ax < 0.25) { const double eax = exp(-ax); const double y = x*x; const double c1 = 1.0/10.0; const double c2 = 1.0/280.0; const double c3 = 1.0/15120.0; const double c4 = 1.0/1330560.0; const double c5 = 1.0/172972800.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))); result->val = eax * x/3.0 * sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double ex = exp(-2.0*ax); result->val = 0.5 * (ax*(1.0+ex) - (1.0-ex)) / (ax*ax); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(x < 0.0) result->val = -result->val; return GSL_SUCCESS; } } int gsl_sf_bessel_i2_scaled_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 4.0*GSL_SQRT_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(ax < 0.25) { const double y = x*x; const double c1 = 1.0/14.0; const double c2 = 1.0/504.0; const double c3 = 1.0/33264.0; const double c4 = 1.0/3459456.0; const double c5 = 1.0/518918400.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))); const double pre = exp(-ax) * x*x/15.0; result->val = pre * sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double ex = exp(-2.0*ax); double x2 = x*x; result->val = 0.5 * ((3.0+x2)*(1.0-ex) - 3.0*ax*(1.0+ex))/(ax*ax*ax); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_il_scaled_e(const int l, double x, gsl_sf_result * result) { double sgn = 1.0; double ax = fabs(x); if(x < 0.0) { /* i_l(-x) = (-1)^l i_l(x) */ sgn = ( GSL_IS_ODD(l) ? -1.0 : 1.0 ); x = -x; } if(l < 0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = ( l == 0 ? 1.0 : 0.0 ); result->err = 0.0; return GSL_SUCCESS; } else if(l == 0) { gsl_sf_result il; int stat_il = gsl_sf_bessel_i0_scaled_e(x, &il); result->val = sgn * il.val; result->err = il.err; return stat_il; } else if(l == 1) { gsl_sf_result il; int stat_il = gsl_sf_bessel_i1_scaled_e(x, &il); result->val = sgn * il.val; result->err = il.err; return stat_il; } else if(l == 2) { gsl_sf_result il; int stat_il = gsl_sf_bessel_i2_scaled_e(x, &il); result->val = sgn * il.val; result->err = il.err; return stat_il; } else if(x*x < 10.0*(l+1.5)/M_E) { gsl_sf_result b; int stat = gsl_sf_bessel_IJ_taylor_e(l+0.5, x, 1, 50, GSL_DBL_EPSILON, &b); double pre = exp(-ax) * sqrt((0.5*M_PI)/x); result->val = sgn * pre * b.val; result->err = pre * b.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } else if(l < 150) { gsl_sf_result i0_scaled; int stat_i0 = gsl_sf_bessel_i0_scaled_e(ax, &i0_scaled); double rat; int stat_CF1 = bessel_il_CF1(l, ax, GSL_DBL_EPSILON, &rat); double iellp1 = rat * GSL_SQRT_DBL_MIN; double iell = GSL_SQRT_DBL_MIN; double iellm1; int ell; for(ell = l; ell >= 1; ell--) { iellm1 = iellp1 + (2*ell + 1)/x * iell; iellp1 = iell; iell = iellm1; } result->val = sgn * i0_scaled.val * (GSL_SQRT_DBL_MIN / iell); result->err = i0_scaled.err * (GSL_SQRT_DBL_MIN / iell); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_i0, stat_CF1); } else if(GSL_MIN(0.29/(l*l+1.0), 0.5/(l*l+1.0+x*x)) < 0.5*GSL_ROOT3_DBL_EPSILON) { int status = gsl_sf_bessel_Inu_scaled_asymp_unif_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= sgn * pre; result->err *= pre; return status; } else { /* recurse down from safe values */ double rt_term = sqrt((0.5*M_PI)/x); const int LMAX = 2 + (int) (1.2 / GSL_ROOT6_DBL_EPSILON); gsl_sf_result r_iellp1; gsl_sf_result r_iell; int stat_a1 = gsl_sf_bessel_Inu_scaled_asymp_unif_e(LMAX + 1 + 0.5, x, &r_iellp1); int stat_a2 = gsl_sf_bessel_Inu_scaled_asymp_unif_e(LMAX + 0.5, x, &r_iell); double iellp1 = r_iellp1.val; double iell = r_iell.val; double iellm1 = 0.0; int ell; iellp1 *= rt_term; iell *= rt_term; for(ell = LMAX; ell >= l+1; ell--) { iellm1 = iellp1 + (2*ell + 1)/x * iell; iellp1 = iell; iell = iellm1; } result->val = sgn * iellm1; result->err = fabs(result->val)*(GSL_DBL_EPSILON + fabs(r_iellp1.err/r_iellp1.val) + fabs(r_iell.err/r_iell.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_a1, stat_a2); } } int gsl_sf_bessel_il_scaled_array(const int lmax, const double x, double * result_array) { if(x == 0.0) { int ell; result_array[0] = 1.0; for (ell = lmax; ell >= 1; ell--) { result_array[ell] = 0.0; }; return GSL_SUCCESS; } else { int ell; gsl_sf_result r_iellp1; gsl_sf_result r_iell; int stat_0 = gsl_sf_bessel_il_scaled_e(lmax+1, x, &r_iellp1); int stat_1 = gsl_sf_bessel_il_scaled_e(lmax, x, &r_iell); double iellp1 = r_iellp1.val; double iell = r_iell.val; double iellm1; result_array[lmax] = iell; for(ell = lmax; ell >= 1; ell--) { iellm1 = iellp1 + (2*ell + 1)/x * iell; iellp1 = iell; iell = iellm1; result_array[ell-1] = iellm1; } return GSL_ERROR_SELECT_2(stat_0, stat_1); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_i0_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_i0_scaled_e(x, &result)); } double gsl_sf_bessel_i1_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_i1_scaled_e(x, &result)); } double gsl_sf_bessel_i2_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_i2_scaled_e(x, &result)); } double gsl_sf_bessel_il_scaled(const int l, const double x) { EVAL_RESULT(gsl_sf_bessel_il_scaled_e(l, x, &result)); } gsl-1.16/specfunc/ellint.c0000664000252300025230000004671312171574312012426 00000000000000/* specfunc/ellint.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ inline static double locMAX3(double x, double y, double z) { double xy = GSL_MAX(x, y); return GSL_MAX(xy, z); } inline static double locMAX4(double x, double y, double z, double w) { double xy = GSL_MAX(x, y); double xyz = GSL_MAX(xy, z); return GSL_MAX(xyz, w); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ /* based on Carlson's algorithms: [B. C. Carlson Numer. Math. 33, 1 (1979)] see also: [B.C. Carlson, Special Functions of Applied Mathematics (1977)] */ /* According to Carlson's algorithm, the errtol parameter typically effects the relative error in the following way: relative error < 16 errtol^6 / (1 - 2 errtol) errtol precision ------ ---------- 0.001 1.0e-17 0.003 2.0e-14 0.01 2.0e-11 0.03 2.0e-8 0.1 2.0e-5 */ int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result) { const double lolim = 5.0 * GSL_DBL_MIN; const double uplim = 0.2 * GSL_DBL_MAX; const gsl_prec_t goal = GSL_MODE_PREC(mode); const double errtol = ( goal == GSL_PREC_DOUBLE ? 0.001 : 0.03 ); const double prec = gsl_prec_eps[goal]; const int nmax = 10000; if(x < 0.0 || y < 0.0 || x + y < lolim) { DOMAIN_ERROR(result); } else if(GSL_MAX(x, y) < uplim) { const double c1 = 1.0 / 7.0; const double c2 = 9.0 / 22.0; double xn = x; double yn = y; double mu, sn, lamda, s; int n = 0; while(1) { mu = (xn + yn + yn) / 3.0; sn = (yn + mu) / mu - 2.0; if (fabs(sn) < errtol) break; lamda = 2.0 * sqrt(xn) * sqrt(yn) + yn; xn = (xn + lamda) * 0.25; yn = (yn + lamda) * 0.25; n++; if(n==nmax) { MAXITER_ERROR (result); } } s = sn * sn * (0.3 + sn * (c1 + sn * (0.375 + sn * c2))); result->val = (1.0 + s) / sqrt(mu); result->err = prec * fabs(result->val); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result) { const gsl_prec_t goal = GSL_MODE_PREC(mode); const double errtol = ( goal == GSL_PREC_DOUBLE ? 0.001 : 0.03 ); const double prec = gsl_prec_eps[goal]; const double lolim = 2.0/pow(GSL_DBL_MAX, 2.0/3.0); const double uplim = pow(0.1*errtol/GSL_DBL_MIN, 2.0/3.0); const int nmax = 10000; if(GSL_MIN(x,y) < 0.0 || GSL_MIN(x+y,z) < lolim) { DOMAIN_ERROR(result); } else if(locMAX3(x,y,z) < uplim) { const double c1 = 3.0 / 14.0; const double c2 = 1.0 / 6.0; const double c3 = 9.0 / 22.0; const double c4 = 3.0 / 26.0; double xn = x; double yn = y; double zn = z; double sigma = 0.0; double power4 = 1.0; double ea, eb, ec, ed, ef, s1, s2; double mu, xndev, yndev, zndev; int n = 0; while(1) { double xnroot, ynroot, znroot, lamda; double epslon; mu = (xn + yn + 3.0 * zn) * 0.2; xndev = (mu - xn) / mu; yndev = (mu - yn) / mu; zndev = (mu - zn) / mu; epslon = locMAX3(fabs(xndev), fabs(yndev), fabs(zndev)); if (epslon < errtol) break; xnroot = sqrt(xn); ynroot = sqrt(yn); znroot = sqrt(zn); lamda = xnroot * (ynroot + znroot) + ynroot * znroot; sigma += power4 / (znroot * (zn + lamda)); power4 *= 0.25; xn = (xn + lamda) * 0.25; yn = (yn + lamda) * 0.25; zn = (zn + lamda) * 0.25; n++; if(n==nmax) { MAXITER_ERROR (result); } } ea = xndev * yndev; eb = zndev * zndev; ec = ea - eb; ed = ea - 6.0 * eb; ef = ed + ec + ec; s1 = ed * (- c1 + 0.25 * c3 * ed - 1.5 * c4 * zndev * ef); s2 = zndev * (c2 * ef + zndev * (- c3 * ec + zndev * c4 * ea)); result->val = 3.0 * sigma + power4 * (1.0 + s1 + s2) / (mu * sqrt(mu)); result->err = prec * fabs(result->val); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result) { const double lolim = 5.0 * GSL_DBL_MIN; const double uplim = 0.2 * GSL_DBL_MAX; const gsl_prec_t goal = GSL_MODE_PREC(mode); const double errtol = ( goal == GSL_PREC_DOUBLE ? 0.001 : 0.03 ); const double prec = gsl_prec_eps[goal]; const int nmax = 10000; if(x < 0.0 || y < 0.0 || z < 0.0) { DOMAIN_ERROR(result); } else if(x+y < lolim || x+z < lolim || y+z < lolim) { DOMAIN_ERROR(result); } else if(locMAX3(x,y,z) < uplim) { const double c1 = 1.0 / 24.0; const double c2 = 3.0 / 44.0; const double c3 = 1.0 / 14.0; double xn = x; double yn = y; double zn = z; double mu, xndev, yndev, zndev, e2, e3, s; int n = 0; while(1) { double epslon, lamda; double xnroot, ynroot, znroot; mu = (xn + yn + zn) / 3.0; xndev = 2.0 - (mu + xn) / mu; yndev = 2.0 - (mu + yn) / mu; zndev = 2.0 - (mu + zn) / mu; epslon = locMAX3(fabs(xndev), fabs(yndev), fabs(zndev)); if (epslon < errtol) break; xnroot = sqrt(xn); ynroot = sqrt(yn); znroot = sqrt(zn); lamda = xnroot * (ynroot + znroot) + ynroot * znroot; xn = (xn + lamda) * 0.25; yn = (yn + lamda) * 0.25; zn = (zn + lamda) * 0.25; n++; if(n==nmax) { MAXITER_ERROR (result); } } e2 = xndev * yndev - zndev * zndev; e3 = xndev * yndev * zndev; s = 1.0 + (c1 * e2 - 0.1 - c2 * e3) * e2 + c3 * e3; result->val = s / sqrt(mu); result->err = prec * fabs(result->val); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result) { const gsl_prec_t goal = GSL_MODE_PREC(mode); const double errtol = ( goal == GSL_PREC_DOUBLE ? 0.001 : 0.03 ); const double prec = gsl_prec_eps[goal]; const double lolim = pow(5.0 * GSL_DBL_MIN, 1.0/3.0); const double uplim = 0.3 * pow(0.2 * GSL_DBL_MAX, 1.0/3.0); const int nmax = 10000; if(x < 0.0 || y < 0.0 || z < 0.0) { DOMAIN_ERROR(result); } else if(x + y < lolim || x + z < lolim || y + z < lolim || p < lolim) { DOMAIN_ERROR(result); } else if(locMAX4(x,y,z,p) < uplim) { const double c1 = 3.0 / 14.0; const double c2 = 1.0 / 3.0; const double c3 = 3.0 / 22.0; const double c4 = 3.0 / 26.0; double xn = x; double yn = y; double zn = z; double pn = p; double sigma = 0.0; double power4 = 1.0; double mu, xndev, yndev, zndev, pndev; double ea, eb, ec, e2, e3, s1, s2, s3; int n = 0; while(1) { double xnroot, ynroot, znroot; double lamda, alfa, beta; double epslon; gsl_sf_result rcresult; int rcstatus; mu = (xn + yn + zn + pn + pn) * 0.2; xndev = (mu - xn) / mu; yndev = (mu - yn) / mu; zndev = (mu - zn) / mu; pndev = (mu - pn) / mu; epslon = locMAX4(fabs(xndev), fabs(yndev), fabs(zndev), fabs(pndev)); if(epslon < errtol) break; xnroot = sqrt(xn); ynroot = sqrt(yn); znroot = sqrt(zn); lamda = xnroot * (ynroot + znroot) + ynroot * znroot; alfa = pn * (xnroot + ynroot + znroot) + xnroot * ynroot * znroot; alfa = alfa * alfa; beta = pn * (pn + lamda) * (pn + lamda); rcstatus = gsl_sf_ellint_RC_e(alfa, beta, mode, &rcresult); if(rcstatus != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return rcstatus; } sigma += power4 * rcresult.val; power4 *= 0.25; xn = (xn + lamda) * 0.25; yn = (yn + lamda) * 0.25; zn = (zn + lamda) * 0.25; pn = (pn + lamda) * 0.25; n++; if(n==nmax) { MAXITER_ERROR (result); } } ea = xndev * (yndev + zndev) + yndev * zndev; eb = xndev * yndev * zndev; ec = pndev * pndev; e2 = ea - 3.0 * ec; e3 = eb + 2.0 * pndev * (ea - ec); s1 = 1.0 + e2 * (- c1 + 0.75 * c3 * e2 - 1.5 * c4 * e3); s2 = eb * (0.5 * c2 + pndev * (- c3 - c3 + pndev * c4)); s3 = pndev * ea * (c2 - pndev * c3) - c2 * pndev * ec; result->val = 3.0 * sigma + power4 * (s1 + s2 + s3) / (mu * sqrt(mu)); result->err = prec * fabs(result->val); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.1)] */ int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result) { /* Angular reduction to -pi/2 < phi < pi/2 (we should really use an exact reduction but this will have to do for now) BJG */ double nc = floor(phi/M_PI + 0.5); double phi_red = phi - nc * M_PI; phi = phi_red; { double sin_phi = sin(phi); double sin2_phi = sin_phi*sin_phi; double x = 1.0 - sin2_phi; double y = 1.0 - k*k*sin2_phi; gsl_sf_result rf; int status = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf); result->val = sin_phi * rf.val; result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(sin_phi*rf.err); if (nc == 0) { return status; } else { gsl_sf_result rk; /* add extra terms from periodicity */ const int rkstatus = gsl_sf_ellint_Kcomp_e(k, mode, &rk); result->val += 2*nc*rk.val; result->err += 2*fabs(nc)*rk.err; return GSL_ERROR_SELECT_2(status, rkstatus); } } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.2)] */ int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result) { /* Angular reduction to -pi/2 < phi < pi/2 (we should really use an exact reduction but this will have to do for now) BJG */ double nc = floor(phi/M_PI + 0.5); double phi_red = phi - nc * M_PI; phi = phi_red; { const double sin_phi = sin(phi); const double sin2_phi = sin_phi * sin_phi; const double x = 1.0 - sin2_phi; const double y = 1.0 - k*k*sin2_phi; if(x < GSL_DBL_EPSILON) { gsl_sf_result re; const int status = gsl_sf_ellint_Ecomp_e(k, mode, &re); /* could use A&S 17.4.14 to improve the value below */ result->val = 2*nc*re.val + GSL_SIGN(sin_phi) * re.val; result->err = 2*fabs(nc)*re.err + re.err; return status; } else { gsl_sf_result rf, rd; const double sin3_phi = sin2_phi * sin_phi; const int rfstatus = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf); const int rdstatus = gsl_sf_ellint_RD_e(x, y, 1.0, mode, &rd); result->val = sin_phi * rf.val - k*k/3.0 * sin3_phi * rd.val; result->err = GSL_DBL_EPSILON * fabs(sin_phi * rf.val); result->err += fabs(sin_phi*rf.err); result->err += k*k/3.0 * GSL_DBL_EPSILON * fabs(sin3_phi * rd.val); result->err += k*k/3.0 * fabs(sin3_phi*rd.err); if (nc == 0) { return GSL_ERROR_SELECT_2(rfstatus, rdstatus); } else { gsl_sf_result re; /* add extra terms from periodicity */ const int restatus = gsl_sf_ellint_Ecomp_e(k, mode, &re); result->val += 2*nc*re.val; result->err += 2*fabs(nc)*re.err; return GSL_ERROR_SELECT_3(rfstatus, rdstatus, restatus); } } } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.3)] */ int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result) { /* Angular reduction to -pi/2 < phi < pi/2 (we should really use an exact reduction but this will have to do for now) BJG */ double nc = floor(phi/M_PI + 0.5); double phi_red = phi - nc * M_PI; phi = phi_red; /* FIXME: need to handle the case of small x, as for E,F */ { const double sin_phi = sin(phi); const double sin2_phi = sin_phi * sin_phi; const double sin3_phi = sin2_phi * sin_phi; const double x = 1.0 - sin2_phi; const double y = 1.0 - k*k*sin2_phi; gsl_sf_result rf; gsl_sf_result rj; const int rfstatus = gsl_sf_ellint_RF_e(x, y, 1.0, mode, &rf); const int rjstatus = gsl_sf_ellint_RJ_e(x, y, 1.0, 1.0 + n*sin2_phi, mode, &rj); result->val = sin_phi * rf.val - n/3.0*sin3_phi * rj.val; result->err = GSL_DBL_EPSILON * fabs(sin_phi * rf.val); result->err += fabs(sin_phi * rf.err); result->err += n/3.0 * GSL_DBL_EPSILON * fabs(sin3_phi*rj.val); result->err += n/3.0 * fabs(sin3_phi*rj.err); if (nc == 0) { return GSL_ERROR_SELECT_2(rfstatus, rjstatus); } else { gsl_sf_result rp; /* add extra terms from periodicity */ const int rpstatus = gsl_sf_ellint_Pcomp_e(k, n, mode, &rp); result->val += 2*nc*rp.val; result->err += 2*fabs(nc)*rp.err; return GSL_ERROR_SELECT_3(rfstatus, rjstatus, rpstatus); } } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.4)] */ int gsl_sf_ellint_D_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result) { /* Angular reduction to -pi/2 < phi < pi/2 (we should really use an exact reduction but this will have to do for now) BJG */ double nc = floor(phi/M_PI + 0.5); double phi_red = phi - nc * M_PI; phi = phi_red; /* FIXME: need to handle the case of small x, as for E,F */ { const double sin_phi = sin(phi); const double sin2_phi = sin_phi * sin_phi; const double sin3_phi = sin2_phi * sin_phi; const double x = 1.0 - sin2_phi; const double y = 1.0 - k*k*sin2_phi; gsl_sf_result rd; const int status = gsl_sf_ellint_RD_e(x, y, 1.0, mode, &rd); result->val = sin3_phi/3.0 * rd.val; result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(sin3_phi/3.0 * rd.err); if (nc == 0) { return status; } else { gsl_sf_result rd; /* add extra terms from periodicity */ const int rdstatus = gsl_sf_ellint_Dcomp_e(k, mode, &rd); result->val += 2*nc*rd.val; result->err += 2*fabs(nc)*rd.err; return GSL_ERROR_SELECT_2(status, rdstatus); } } } int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result) { if(k*k >= 1.0) { DOMAIN_ERROR(result); } else { const double y = 1.0 - k*k; /* FIXME: still need to handle k~=~1 */ gsl_sf_result rd; const int status = gsl_sf_ellint_RD_e(0.0, y, 1.0, mode, &rd); result->val = (1.0/3.0) * rd.val; result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(1.0/3.0 * rd.err); return status; } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.5)] */ int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result) { if(k*k >= 1.0) { DOMAIN_ERROR(result); } else if(k*k >= 1.0 - GSL_SQRT_DBL_EPSILON) { /* [Abramowitz+Stegun, 17.3.34] */ const double y = 1.0 - k*k; const double a[] = { 1.38629436112, 0.09666344259, 0.03590092383 }; const double b[] = { 0.5, 0.12498593597, 0.06880248576 }; const double ta = a[0] + y*(a[1] + y*a[2]); const double tb = -log(y) * (b[0] + y*(b[1] + y*b[2])); result->val = ta + tb; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(result->val) + fabs(k/y)); return GSL_SUCCESS; } else { /* This was previously computed as, return gsl_sf_ellint_RF_e(0.0, 1.0 - k*k, 1.0, mode, result); but this underestimated the total error for small k, since the argument y=1-k^2 is not exact (there is an absolute error of GSL_DBL_EPSILON near y=0 due to cancellation in the subtraction). Taking the singular behavior of -log(y) above gives an error of 0.5*epsilon/y near y=0. (BJG) */ double y = 1.0 - k*k; int status = gsl_sf_ellint_RF_e(0.0, y, 1.0, mode, result); result->err += 0.5 * GSL_DBL_EPSILON / y; return status ; } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.6)] */ int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result) { if(k*k >= 1.0) { DOMAIN_ERROR(result); } else if(k*k >= 1.0 - GSL_SQRT_DBL_EPSILON) { /* [Abramowitz+Stegun, 17.3.36] */ const double y = 1.0 - k*k; const double a[] = { 0.44325141463, 0.06260601220, 0.04757383546 }; const double b[] = { 0.24998368310, 0.09200180037, 0.04069697526 }; const double ta = 1.0 + y*(a[0] + y*(a[1] + a[2]*y)); const double tb = -y*log(y) * (b[0] + y*(b[1] + b[2]*y)); result->val = ta + tb; result->err = 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { gsl_sf_result rf; gsl_sf_result rd; const double y = 1.0 - k*k; const int rfstatus = gsl_sf_ellint_RF_e(0.0, y, 1.0, mode, &rf); const int rdstatus = gsl_sf_ellint_RD_e(0.0, y, 1.0, mode, &rd); result->val = rf.val - k*k/3.0 * rd.val; result->err = rf.err + k*k/3.0 * rd.err; return GSL_ERROR_SELECT_2(rfstatus, rdstatus); } } /* [Carlson, Numer. Math. 33 (1979) 1, (4.3) phi=pi/2] */ int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result) { if(k*k >= 1.0) { DOMAIN_ERROR(result); } /* FIXME: need to handle k ~=~ 1 cancellations */ else { gsl_sf_result rf; gsl_sf_result rj; const double y = 1.0 - k*k; const int rfstatus = gsl_sf_ellint_RF_e(0.0, y, 1.0, mode, &rf); const int rjstatus = gsl_sf_ellint_RJ_e(0.0, y, 1.0, 1.0 + n, mode, &rj); result->val = rf.val - (n/3.0) * rj.val; result->err = rf.err + fabs(n/3.0) * rj.err; return GSL_ERROR_SELECT_2(rfstatus, rjstatus); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_Kcomp_e(k, mode, &result)); } double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_Ecomp_e(k, mode, &result)); } double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_Pcomp_e(k, n, mode, &result)); } double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_Dcomp_e(k, mode, &result)); } double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_F_e(phi, k, mode, &result)); } double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_E_e(phi, k, mode, &result)); } double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_P_e(phi, k, n, mode, &result)); } double gsl_sf_ellint_D(double phi, double k, double n, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_D_e(phi, k, n, mode, &result)); } double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_RC_e(x, y, mode, &result)); } double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_RD_e(x, y, z, mode, &result)); } double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_RF_e(x, y, z, mode, &result)); } double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_ellint_RJ_e(x, y, z, p, mode, &result)); } gsl-1.16/specfunc/test_mathieu.c0000664000252300025230000002340212171574312013620 00000000000000/* specfunc/test_mathieu.c * * Copyright (C) 2003 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include "test_sf.h" #define NVAL 100 static double c[NVAL]; int test_mathieu(void) { gsl_sf_result r; gsl_sf_mathieu_workspace *work; int s = 0; int sa; TEST_SF(s, gsl_sf_mathieu_ce, (0, 0.0, 0.0, &r), 0.7071067811865475, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 0.0, M_PI_2, &r), 0.7071067811865475, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 5.0, 0.0, &r), 0.04480018165188902, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 5.0, M_PI_2, &r), 1.334848674698019, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 10.0, 0.0, &r), 0.007626517570935782, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 10.0, M_PI_2, &r), 1.468660470712856, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 15.0, 0.0, &r), 0.001932508315204592, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 15.0, M_PI_2, &r), 1.550108146686649, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 20.0, 0.0, &r), 0.0006037438292242197, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 20.0, M_PI_2, &r), 1.609890857395926, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 25.0, 0.0, &r), 0.0002158630184146612, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (0, 25.0, M_PI_2, &r), 1.657510298323475, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 0.0, 0.0, &r), 1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 5.0, 0.0, &r), 0.2565428793223637, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 10.0, 0.0, &r), 0.05359874774717657, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 15.0, 0.0, &r), 0.01504006645382623, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 20.0, 0.0, &r), 0.005051813764712904, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (1, 25.0, 0.0, &r), 0.001911051506657645, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 0.0, M_PI_2, &r), 1.0000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 5.0, M_PI_2, &r), 1.337433887022345, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 10.0, M_PI_2, &r), 1.468755664102938, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 15.0, M_PI_2, &r), 1.550115074357552, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 20.0, M_PI_2, &r), 1.609891592603772, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (1, 25.0, M_PI_2, &r), 1.657510398374516, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 0.0, 0.0, &r), 1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 0.0, M_PI_2, &r), -1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 5.0, 0.0, &r), 0.7352943084006845, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 5.0, M_PI_2, &r), -0.7244881519676682, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 10.0, 0.0, &r), 0.2458883492913189, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 10.0, M_PI_2, &r), -0.9267592641263211, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 15.0, 0.0, &r), 0.07879282784639313, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 15.0, M_PI_2, &r), -1.019966226030262, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 20.0, 0.0, &r), 0.02864894314707431, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 20.0, M_PI_2, &r), -1.075293228779687, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 25.0, 0.0, &r), 0.0115128663308875, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (2, 25.0, M_PI_2, &r), -1.116278953295253, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 0.0, 0.0, &r), 1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 5.0, 0.0, &r), 1.12480725063848, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 10.0, 0.0, &r), 1.258019941308287, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 15.0, 0.0, &r), 1.193432230413072, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 20.0, 0.0, &r), 0.9365755314226215, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (5, 25.0, 0.0, &r), 0.6106943100506986, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 0.0, M_PI_2, &r), 1.0000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 5.0, M_PI_2, &r), 0.9060779302023551, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 10.0, M_PI_2, &r), 0.8460384335355106, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 15.0, M_PI_2, &r), 0.837949340012484, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 20.0, M_PI_2, &r), 0.8635431218533667, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (5, 25.0, M_PI_2, &r), 0.8992683245108413, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 0.0, 0.0, &r), 1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 0.0, M_PI_2, &r), -1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 5.0, 0.0, &r), 1.025995027089438, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 5.0, M_PI_2, &r), -0.975347487235964, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 10.0, 0.0, &r), 1.053815992100935, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 10.0, M_PI_2, &r), -0.9516453181789554, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 15.0, 0.0, &r), 1.084106311839221, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 15.0, M_PI_2, &r), -0.9285480638845388, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 20.0, 0.0, &r), 1.117788631259397, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 20.0, M_PI_2, &r), -0.9057107845940974, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 25.0, 0.0, &r), 1.156239918632239, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (10, 25.0, M_PI_2, &r), -0.8826919105636903, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 0.0, 0.0, &r), 1.00000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 5.0, 0.0, &r), 1.011293732529566, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 10.0, 0.0, &r), 1.022878282438181, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 15.0, 0.0, &r), 1.034793652236873, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 20.0, 0.0, &r), 1.047084344162887, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_ce, (15, 25.0, 0.0, &r), 1.059800441813937, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 0.0, M_PI_2, &r), -1.0000000, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 5.0, M_PI_2, &r), -0.9889607027406357, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 10.0, M_PI_2, &r), -0.9781423471832157, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 15.0, M_PI_2, &r), -0.9675137031854538, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 20.0, M_PI_2, &r), -0.9570452540612817, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_mathieu_se, (15, 25.0, M_PI_2, &r), -0.9467086958780897, TEST_SNGL, GSL_SUCCESS); work = gsl_sf_mathieu_alloc(NVAL, 20.0); sa = 0; gsl_sf_mathieu_ce_array(0, 5, 0.0, M_PI_2, work, c); sa += (test_sf_frac_diff(c[0], 0.7071067811865475) > TEST_SNGL); sa += (test_sf_frac_diff(c[2], -1.0) > TEST_SNGL); sa += (test_sf_frac_diff(c[4], 1.0) > TEST_SNGL); gsl_test(sa, "gsl_sf_mathieu_ce_array"); s += sa; sa = 0; gsl_sf_mathieu_ce_array(0, 15, 20.0, 0.0, work, c); sa += (test_sf_frac_diff(c[0], 0.0006037438292242197) > TEST_SNGL); sa += (test_sf_frac_diff(c[1], 0.005051813764712904) > TEST_SNGL); sa += (test_sf_frac_diff(c[2], 0.02864894314707431) > TEST_SNGL); sa += (test_sf_frac_diff(c[5], 0.9365755314226215) > TEST_SNGL); sa += (test_sf_frac_diff(c[10], 1.117788631259397) > TEST_SNGL); sa += (test_sf_frac_diff(c[15], 1.047084344162887) > TEST_SNGL); gsl_test(sa, "gsl_sf_mathieu_ce_array"); s += sa; sa = 0; gsl_sf_mathieu_se_array(1, 15, 20.0, M_PI_2, work, c); sa += (test_sf_frac_diff(c[0], 1.609891592603772) > TEST_SNGL); sa += (test_sf_frac_diff(c[4], 0.8635431218533667) > TEST_SNGL); sa += (test_sf_frac_diff(c[14], -0.9570452540612817) > TEST_SNGL); gsl_test(sa, "gsl_sf_mathieu_se_array"); s += sa; gsl_sf_mathieu_free(work); return s; } gsl-1.16/specfunc/zeta.c0000664000252300025230000010076012171574312012073 00000000000000/* specfunc/zeta.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" #define LogTwoPi_ 1.8378770664093454835606594728111235279723 /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* chebyshev fit for (s(t)-1)Zeta[s(t)] * s(t)= (t+1)/2 * -1 <= t <= 1 */ static double zeta_xlt1_data[14] = { 1.48018677156931561235192914649, 0.25012062539889426471999938167, 0.00991137502135360774243761467, -0.00012084759656676410329833091, -4.7585866367662556504652535281e-06, 2.2229946694466391855561441361e-07, -2.2237496498030257121309056582e-09, -1.0173226513229028319420799028e-10, 4.3756643450424558284466248449e-12, -6.2229632593100551465504090814e-14, -6.6116201003272207115277520305e-16, 4.9477279533373912324518463830e-17, -1.0429819093456189719660003522e-18, 6.9925216166580021051464412040e-21, }; static cheb_series zeta_xlt1_cs = { zeta_xlt1_data, 13, -1, 1, 8 }; /* chebyshev fit for (s(t)-1)Zeta[s(t)] * s(t)= (19t+21)/2 * -1 <= t <= 1 */ static double zeta_xgt1_data[30] = { 19.3918515726724119415911269006, 9.1525329692510756181581271500, 0.2427897658867379985365270155, -0.1339000688262027338316641329, 0.0577827064065028595578410202, -0.0187625983754002298566409700, 0.0039403014258320354840823803, -0.0000581508273158127963598882, -0.0003756148907214820704594549, 0.0001892530548109214349092999, -0.0000549032199695513496115090, 8.7086484008939038610413331863e-6, 6.4609477924811889068410083425e-7, -9.6749773915059089205835337136e-7, 3.6585400766767257736982342461e-7, -8.4592516427275164351876072573e-8, 9.9956786144497936572288988883e-9, 1.4260036420951118112457144842e-9, -1.1761968823382879195380320948e-9, 3.7114575899785204664648987295e-10, -7.4756855194210961661210215325e-11, 7.8536934209183700456512982968e-12, 9.9827182259685539619810406271e-13, -7.5276687030192221587850302453e-13, 2.1955026393964279988917878654e-13, -4.1934859852834647427576319246e-14, 4.6341149635933550715779074274e-15, 2.3742488509048340106830309402e-16, -2.7276516388124786119323824391e-16, 7.8473570134636044722154797225e-17 }; static cheb_series zeta_xgt1_cs = { zeta_xgt1_data, 29, -1, 1, 17 }; /* chebyshev fit for Ln[Zeta[s(t)] - 1 - 2^(-s(t))] * s(t)= 10 + 5t * -1 <= t <= 1; 5 <= s <= 15 */ static double zetam1_inter_data[24] = { -21.7509435653088483422022339374, -5.63036877698121782876372020472, 0.0528041358684229425504861579635, -0.0156381809179670789342700883562, 0.00408218474372355881195080781927, -0.0010264867349474874045036628282, 0.000260469880409886900143834962387, -0.0000676175847209968878098566819447, 0.0000179284472587833525426660171124, -4.83238651318556188834107605116e-6, 1.31913788964999288471371329447e-6, -3.63760500656329972578222188542e-7, 1.01146847513194744989748396574e-7, -2.83215225141806501619105289509e-8, 7.97733710252021423361012829496e-9, -2.25850168553956886676250696891e-9, 6.42269392950164306086395744145e-10, -1.83363861846127284505060843614e-10, 5.25309763895283179960368072104e-11, -1.50958687042589821074710575446e-11, 4.34997545516049244697776942981e-12, -1.25597782748190416118082322061e-12, 3.61280740072222650030134104162e-13, -9.66437239205745207188920348801e-14 }; static cheb_series zetam1_inter_cs = { zetam1_inter_data, 22, -1, 1, 12 }; /* assumes s >= 0 and s != 1.0 */ inline static int riemann_zeta_sgt0(double s, gsl_sf_result * result) { if(s < 1.0) { gsl_sf_result c; cheb_eval_e(&zeta_xlt1_cs, 2.0*s - 1.0, &c); result->val = c.val / (s - 1.0); result->err = c.err / fabs(s-1.0) + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(s <= 20.0) { double x = (2.0*s - 21.0)/19.0; gsl_sf_result c; cheb_eval_e(&zeta_xgt1_cs, x, &c); result->val = c.val / (s - 1.0); result->err = c.err / (s - 1.0) + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double f2 = 1.0 - pow(2.0,-s); double f3 = 1.0 - pow(3.0,-s); double f5 = 1.0 - pow(5.0,-s); double f7 = 1.0 - pow(7.0,-s); result->val = 1.0/(f2*f3*f5*f7); result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } inline static int riemann_zeta1ms_slt0(double s, gsl_sf_result * result) { if(s > -19.0) { double x = (-19 - 2.0*s)/19.0; gsl_sf_result c; cheb_eval_e(&zeta_xgt1_cs, x, &c); result->val = c.val / (-s); result->err = c.err / (-s) + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double f2 = 1.0 - pow(2.0,-(1.0-s)); double f3 = 1.0 - pow(3.0,-(1.0-s)); double f5 = 1.0 - pow(5.0,-(1.0-s)); double f7 = 1.0 - pow(7.0,-(1.0-s)); result->val = 1.0/(f2*f3*f5*f7); result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /* works for 5 < s < 15*/ static int riemann_zeta_minus_1_intermediate_s(double s, gsl_sf_result * result) { double t = (s - 10.0)/5.0; gsl_sf_result c; cheb_eval_e(&zetam1_inter_cs, t, &c); result->val = exp(c.val) + pow(2.0, -s); result->err = (c.err + 2.0*GSL_DBL_EPSILON)*result->val; return GSL_SUCCESS; } /* assumes s is large and positive * write: zeta(s) - 1 = zeta(s) * (1 - 1/zeta(s)) * and expand a few terms of the product formula to evaluate 1 - 1/zeta(s) * * works well for s > 15 */ static int riemann_zeta_minus1_large_s(double s, gsl_sf_result * result) { double a = pow( 2.0,-s); double b = pow( 3.0,-s); double c = pow( 5.0,-s); double d = pow( 7.0,-s); double e = pow(11.0,-s); double f = pow(13.0,-s); double t1 = a + b + c + d + e + f; double t2 = a*(b+c+d+e+f) + b*(c+d+e+f) + c*(d+e+f) + d*(e+f) + e*f; /* double t3 = a*(b*(c+d+e+f) + c*(d+e+f) + d*(e+f) + e*f) + b*(c*(d+e+f) + d*(e+f) + e*f) + c*(d*(e+f) + e*f) + d*e*f; double t4 = a*(b*(c*(d + e + f) + d*(e + f) + e*f) + c*(d*(e+f) + e*f) + d*e*f) + b*(c*(d*(e+f) + e*f) + d*e*f) + c*d*e*f; double t5 = b*c*d*e*f + a*c*d*e*f+ a*b*d*e*f+ a*b*c*e*f+ a*b*c*d*f+ a*b*c*d*e; double t6 = a*b*c*d*e*f; */ double numt = t1 - t2 /* + t3 - t4 + t5 - t6 */; double zeta = 1.0/((1.0-a)*(1.0-b)*(1.0-c)*(1.0-d)*(1.0-e)*(1.0-f)); result->val = numt*zeta; result->err = (15.0/s + 1.0) * 6.0*GSL_DBL_EPSILON*result->val; return GSL_SUCCESS; } #if 0 /* zeta(n) */ #define ZETA_POS_TABLE_NMAX 100 static double zeta_pos_int_table_OLD[ZETA_POS_TABLE_NMAX+1] = { -0.50000000000000000000000000000, /* zeta(0) */ 0.0 /* FIXME: DirectedInfinity() */, /* zeta(1) */ 1.64493406684822643647241516665, /* ... */ 1.20205690315959428539973816151, 1.08232323371113819151600369654, 1.03692775514336992633136548646, 1.01734306198444913971451792979, 1.00834927738192282683979754985, 1.00407735619794433937868523851, 1.00200839282608221441785276923, 1.00099457512781808533714595890, 1.00049418860411946455870228253, 1.00024608655330804829863799805, 1.00012271334757848914675183653, 1.00006124813505870482925854511, 1.00003058823630702049355172851, 1.00001528225940865187173257149, 1.00000763719763789976227360029, 1.00000381729326499983985646164, 1.00000190821271655393892565696, 1.00000095396203387279611315204, 1.00000047693298678780646311672, 1.00000023845050272773299000365, 1.00000011921992596531107306779, 1.00000005960818905125947961244, 1.00000002980350351465228018606, 1.00000001490155482836504123466, 1.00000000745071178983542949198, 1.00000000372533402478845705482, 1.00000000186265972351304900640, 1.00000000093132743241966818287, 1.00000000046566290650337840730, 1.00000000023283118336765054920, 1.00000000011641550172700519776, 1.00000000005820772087902700889, 1.00000000002910385044497099687, 1.00000000001455192189104198424, 1.00000000000727595983505748101, 1.00000000000363797954737865119, 1.00000000000181898965030706595, 1.00000000000090949478402638893, 1.00000000000045474737830421540, 1.00000000000022737368458246525, 1.00000000000011368684076802278, 1.00000000000005684341987627586, 1.00000000000002842170976889302, 1.00000000000001421085482803161, 1.00000000000000710542739521085, 1.00000000000000355271369133711, 1.00000000000000177635684357912, 1.00000000000000088817842109308, 1.00000000000000044408921031438, 1.00000000000000022204460507980, 1.00000000000000011102230251411, 1.00000000000000005551115124845, 1.00000000000000002775557562136, 1.00000000000000001387778780973, 1.00000000000000000693889390454, 1.00000000000000000346944695217, 1.00000000000000000173472347605, 1.00000000000000000086736173801, 1.00000000000000000043368086900, 1.00000000000000000021684043450, 1.00000000000000000010842021725, 1.00000000000000000005421010862, 1.00000000000000000002710505431, 1.00000000000000000001355252716, 1.00000000000000000000677626358, 1.00000000000000000000338813179, 1.00000000000000000000169406589, 1.00000000000000000000084703295, 1.00000000000000000000042351647, 1.00000000000000000000021175824, 1.00000000000000000000010587912, 1.00000000000000000000005293956, 1.00000000000000000000002646978, 1.00000000000000000000001323489, 1.00000000000000000000000661744, 1.00000000000000000000000330872, 1.00000000000000000000000165436, 1.00000000000000000000000082718, 1.00000000000000000000000041359, 1.00000000000000000000000020680, 1.00000000000000000000000010340, 1.00000000000000000000000005170, 1.00000000000000000000000002585, 1.00000000000000000000000001292, 1.00000000000000000000000000646, 1.00000000000000000000000000323, 1.00000000000000000000000000162, 1.00000000000000000000000000081, 1.00000000000000000000000000040, 1.00000000000000000000000000020, 1.00000000000000000000000000010, 1.00000000000000000000000000005, 1.00000000000000000000000000003, 1.00000000000000000000000000001, 1.00000000000000000000000000001, 1.00000000000000000000000000000, 1.00000000000000000000000000000, 1.00000000000000000000000000000 }; #endif /* 0 */ /* zeta(n) - 1 */ #define ZETA_POS_TABLE_NMAX 100 static double zetam1_pos_int_table[ZETA_POS_TABLE_NMAX+1] = { -1.5, /* zeta(0) */ 0.0, /* FIXME: Infinity */ /* zeta(1) - 1 */ 0.644934066848226436472415166646, /* zeta(2) - 1 */ 0.202056903159594285399738161511, 0.082323233711138191516003696541, 0.036927755143369926331365486457, 0.017343061984449139714517929790, 0.008349277381922826839797549849, 0.004077356197944339378685238508, 0.002008392826082214417852769232, 0.000994575127818085337145958900, 0.000494188604119464558702282526, 0.000246086553308048298637998047, 0.000122713347578489146751836526, 0.000061248135058704829258545105, 0.000030588236307020493551728510, 0.000015282259408651871732571487, 7.6371976378997622736002935630e-6, 3.8172932649998398564616446219e-6, 1.9082127165539389256569577951e-6, 9.5396203387279611315203868344e-7, 4.7693298678780646311671960437e-7, 2.3845050272773299000364818675e-7, 1.1921992596531107306778871888e-7, 5.9608189051259479612440207935e-8, 2.9803503514652280186063705069e-8, 1.4901554828365041234658506630e-8, 7.4507117898354294919810041706e-9, 3.7253340247884570548192040184e-9, 1.8626597235130490064039099454e-9, 9.3132743241966818287176473502e-10, 4.6566290650337840729892332512e-10, 2.3283118336765054920014559759e-10, 1.1641550172700519775929738354e-10, 5.8207720879027008892436859891e-11, 2.9103850444970996869294252278e-11, 1.4551921891041984235929632245e-11, 7.2759598350574810145208690123e-12, 3.6379795473786511902372363558e-12, 1.8189896503070659475848321007e-12, 9.0949478402638892825331183869e-13, 4.5474737830421540267991120294e-13, 2.2737368458246525152268215779e-13, 1.1368684076802278493491048380e-13, 5.6843419876275856092771829675e-14, 2.8421709768893018554550737049e-14, 1.4210854828031606769834307141e-14, 7.1054273952108527128773544799e-15, 3.5527136913371136732984695340e-15, 1.7763568435791203274733490144e-15, 8.8817842109308159030960913863e-16, 4.4408921031438133641977709402e-16, 2.2204460507980419839993200942e-16, 1.1102230251410661337205445699e-16, 5.5511151248454812437237365905e-17, 2.7755575621361241725816324538e-17, 1.3877787809725232762839094906e-17, 6.9388939045441536974460853262e-18, 3.4694469521659226247442714961e-18, 1.7347234760475765720489729699e-18, 8.6736173801199337283420550673e-19, 4.3368086900206504874970235659e-19, 2.1684043449972197850139101683e-19, 1.0842021724942414063012711165e-19, 5.4210108624566454109187004043e-20, 2.7105054312234688319546213119e-20, 1.3552527156101164581485233996e-20, 6.7762635780451890979952987415e-21, 3.3881317890207968180857031004e-21, 1.6940658945097991654064927471e-21, 8.4703294725469983482469926091e-22, 4.2351647362728333478622704833e-22, 2.1175823681361947318442094398e-22, 1.0587911840680233852265001539e-22, 5.2939559203398703238139123029e-23, 2.6469779601698529611341166842e-23, 1.3234889800848990803094510250e-23, 6.6174449004244040673552453323e-24, 3.3087224502121715889469563843e-24, 1.6543612251060756462299236771e-24, 8.2718061255303444036711056167e-25, 4.1359030627651609260093824555e-25, 2.0679515313825767043959679193e-25, 1.0339757656912870993284095591e-25, 5.1698788284564313204101332166e-26, 2.5849394142282142681277617708e-26, 1.2924697071141066700381126118e-26, 6.4623485355705318034380021611e-27, 3.2311742677852653861348141180e-27, 1.6155871338926325212060114057e-27, 8.0779356694631620331587381863e-28, 4.0389678347315808256222628129e-28, 2.0194839173657903491587626465e-28, 1.0097419586828951533619250700e-28, 5.0487097934144756960847711725e-29, 2.5243548967072378244674341938e-29, 1.2621774483536189043753999660e-29, 6.3108872417680944956826093943e-30, 3.1554436208840472391098412184e-30, 1.5777218104420236166444327830e-30, 7.8886090522101180735205378276e-31 }; #define ZETA_NEG_TABLE_NMAX 99 #define ZETA_NEG_TABLE_SIZE 50 static double zeta_neg_int_table[ZETA_NEG_TABLE_SIZE] = { -0.083333333333333333333333333333, /* zeta(-1) */ 0.008333333333333333333333333333, /* zeta(-3) */ -0.003968253968253968253968253968, /* ... */ 0.004166666666666666666666666667, -0.007575757575757575757575757576, 0.021092796092796092796092796093, -0.083333333333333333333333333333, 0.44325980392156862745098039216, -3.05395433027011974380395433027, 26.4562121212121212121212121212, -281.460144927536231884057971014, 3607.5105463980463980463980464, -54827.583333333333333333333333, 974936.82385057471264367816092, -2.0052695796688078946143462272e+07, 4.7238486772162990196078431373e+08, -1.2635724795916666666666666667e+10, 3.8087931125245368811553022079e+11, -1.2850850499305083333333333333e+13, 4.8241448354850170371581670362e+14, -2.0040310656516252738108421663e+16, 9.1677436031953307756992753623e+17, -4.5979888343656503490437943262e+19, 2.5180471921451095697089023320e+21, -1.5001733492153928733711440151e+23, 9.6899578874635940656497942895e+24, -6.7645882379292820990945242302e+26, 5.0890659468662289689766332916e+28, -4.1147288792557978697665486068e+30, 3.5666582095375556109684574609e+32, -3.3066089876577576725680214670e+34, 3.2715634236478716264211227016e+36, -3.4473782558278053878256455080e+38, 3.8614279832705258893092720200e+40, -4.5892974432454332168863989006e+42, 5.7775386342770431824884825688e+44, -7.6919858759507135167410075972e+46, 1.0813635449971654696354033351e+49, -1.6029364522008965406067102346e+51, 2.5019479041560462843656661499e+53, -4.1067052335810212479752045004e+55, 7.0798774408494580617452972433e+57, -1.2804546887939508790190849756e+60, 2.4267340392333524078020892067e+62, -4.8143218874045769355129570066e+64, 9.9875574175727530680652777408e+66, -2.1645634868435185631335136160e+69, 4.8962327039620553206849224516e+71, /* ... */ -1.1549023923963519663954271692e+74, /* zeta(-97) */ 2.8382249570693706959264156336e+76 /* zeta(-99) */ }; /* coefficients for Maclaurin summation in hzeta() * B_{2j}/(2j)! */ static double hzeta_c[15] = { 1.00000000000000000000000000000, 0.083333333333333333333333333333, -0.00138888888888888888888888888889, 0.000033068783068783068783068783069, -8.2671957671957671957671957672e-07, 2.0876756987868098979210090321e-08, -5.2841901386874931848476822022e-10, 1.3382536530684678832826980975e-11, -3.3896802963225828668301953912e-13, 8.5860620562778445641359054504e-15, -2.1748686985580618730415164239e-16, 5.5090028283602295152026526089e-18, -1.3954464685812523340707686264e-19, 3.5347070396294674716932299778e-21, -8.9535174270375468504026113181e-23 }; #define ETA_POS_TABLE_NMAX 100 static double eta_pos_int_table[ETA_POS_TABLE_NMAX+1] = { 0.50000000000000000000000000000, /* eta(0) */ M_LN2, /* eta(1) */ 0.82246703342411321823620758332, /* ... */ 0.90154267736969571404980362113, 0.94703282949724591757650323447, 0.97211977044690930593565514355, 0.98555109129743510409843924448, 0.99259381992283028267042571313, 0.99623300185264789922728926008, 0.99809429754160533076778303185, 0.99903950759827156563922184570, 0.99951714349806075414409417483, 0.99975768514385819085317967871, 0.99987854276326511549217499282, 0.99993917034597971817095419226, 0.99996955121309923808263293263, 0.99998476421490610644168277496, 0.99999237829204101197693787224, 0.99999618786961011347968922641, 0.99999809350817167510685649297, 0.99999904661158152211505084256, 0.99999952325821554281631666433, 0.99999976161323082254789720494, 0.99999988080131843950322382485, 0.99999994039889239462836140314, 0.99999997019885696283441513311, 0.99999998509923199656878766181, 0.99999999254955048496351585274, 0.99999999627475340010872752767, 0.99999999813736941811218674656, 0.99999999906868228145397862728, 0.99999999953434033145421751469, 0.99999999976716989595149082282, 0.99999999988358485804603047265, 0.99999999994179239904531592388, 0.99999999997089618952980952258, 0.99999999998544809143388476396, 0.99999999999272404460658475006, 0.99999999999636202193316875550, 0.99999999999818101084320873555, 0.99999999999909050538047887809, 0.99999999999954525267653087357, 0.99999999999977262633369589773, 0.99999999999988631316532476488, 0.99999999999994315658215465336, 0.99999999999997157829090808339, 0.99999999999998578914539762720, 0.99999999999999289457268000875, 0.99999999999999644728633373609, 0.99999999999999822364316477861, 0.99999999999999911182158169283, 0.99999999999999955591079061426, 0.99999999999999977795539522974, 0.99999999999999988897769758908, 0.99999999999999994448884878594, 0.99999999999999997224442439010, 0.99999999999999998612221219410, 0.99999999999999999306110609673, 0.99999999999999999653055304826, 0.99999999999999999826527652409, 0.99999999999999999913263826204, 0.99999999999999999956631913101, 0.99999999999999999978315956551, 0.99999999999999999989157978275, 0.99999999999999999994578989138, 0.99999999999999999997289494569, 0.99999999999999999998644747284, 0.99999999999999999999322373642, 0.99999999999999999999661186821, 0.99999999999999999999830593411, 0.99999999999999999999915296705, 0.99999999999999999999957648353, 0.99999999999999999999978824176, 0.99999999999999999999989412088, 0.99999999999999999999994706044, 0.99999999999999999999997353022, 0.99999999999999999999998676511, 0.99999999999999999999999338256, 0.99999999999999999999999669128, 0.99999999999999999999999834564, 0.99999999999999999999999917282, 0.99999999999999999999999958641, 0.99999999999999999999999979320, 0.99999999999999999999999989660, 0.99999999999999999999999994830, 0.99999999999999999999999997415, 0.99999999999999999999999998708, 0.99999999999999999999999999354, 0.99999999999999999999999999677, 0.99999999999999999999999999838, 0.99999999999999999999999999919, 0.99999999999999999999999999960, 0.99999999999999999999999999980, 0.99999999999999999999999999990, 0.99999999999999999999999999995, 0.99999999999999999999999999997, 0.99999999999999999999999999999, 0.99999999999999999999999999999, 1.00000000000000000000000000000, 1.00000000000000000000000000000, 1.00000000000000000000000000000, }; #define ETA_NEG_TABLE_NMAX 99 #define ETA_NEG_TABLE_SIZE 50 static double eta_neg_int_table[ETA_NEG_TABLE_SIZE] = { 0.25000000000000000000000000000, /* eta(-1) */ -0.12500000000000000000000000000, /* eta(-3) */ 0.25000000000000000000000000000, /* ... */ -1.06250000000000000000000000000, 7.75000000000000000000000000000, -86.3750000000000000000000000000, 1365.25000000000000000000000000, -29049.0312500000000000000000000, 800572.750000000000000000000000, -2.7741322625000000000000000000e+7, 1.1805291302500000000000000000e+9, -6.0523980051687500000000000000e+10, 3.6794167785377500000000000000e+12, -2.6170760990658387500000000000e+14, 2.1531418140800295250000000000e+16, -2.0288775575173015930156250000e+18, 2.1708009902623770590275000000e+20, -2.6173826968455814932120125000e+22, 3.5324148876863877826668602500e+24, -5.3042033406864906641493838981e+26, 8.8138218364311576767253114668e+28, -1.6128065107490778547354654864e+31, 3.2355470001722734208527794569e+33, -7.0876727476537493198506645215e+35, 1.6890450341293965779175629389e+38, -4.3639690731216831157655651358e+40, 1.2185998827061261322605065672e+43, -3.6670584803153006180101262324e+45, 1.1859898526302099104271449748e+48, -4.1120769493584015047981746438e+50, 1.5249042436787620309090168687e+53, -6.0349693196941307074572991901e+55, 2.5437161764210695823197691519e+58, -1.1396923802632287851130360170e+61, 5.4180861064753979196802726455e+63, -2.7283654799994373847287197104e+66, 1.4529750514918543238511171663e+69, -8.1705519371067450079777183386e+71, 4.8445781606678367790247757259e+74, -3.0246694206649519336179448018e+77, 1.9858807961690493054169047970e+80, -1.3694474620720086994386818232e+83, 9.9070382984295807826303785989e+85, -7.5103780796592645925968460677e+88, 5.9598418264260880840077992227e+91, -4.9455988887500020399263196307e+94, 4.2873596927020241277675775935e+97, -3.8791952037716162900707994047e+100, 3.6600317773156342245401829308e+103, -3.5978775704117283875784869570e+106 /* eta(-99) */ }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hzeta_e(const double s, const double q, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s <= 1.0 || q <= 0.0) { DOMAIN_ERROR(result); } else { const double max_bits = 54.0; const double ln_term0 = -s * log(q); if(ln_term0 < GSL_LOG_DBL_MIN + 1.0) { UNDERFLOW_ERROR(result); } else if(ln_term0 > GSL_LOG_DBL_MAX - 1.0) { OVERFLOW_ERROR (result); } else if((s > max_bits && q < 1.0) || (s > 0.5*max_bits && q < 0.25)) { result->val = pow(q, -s); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(s > 0.5*max_bits && q < 1.0) { const double p1 = pow(q, -s); const double p2 = pow(q/(1.0+q), s); const double p3 = pow(q/(2.0+q), s); result->val = p1 * (1.0 + p2 + p3); result->err = GSL_DBL_EPSILON * (0.5*s + 2.0) * fabs(result->val); return GSL_SUCCESS; } else { /* Euler-Maclaurin summation formula * [Moshier, p. 400, with several typo corrections] */ const int jmax = 12; const int kmax = 10; int j, k; const double pmax = pow(kmax + q, -s); double scp = s; double pcp = pmax / (kmax + q); double ans = pmax*((kmax+q)/(s-1.0) + 0.5); for(k=0; kval = ans; result->err = 2.0 * (jmax + 1.0) * GSL_DBL_EPSILON * fabs(ans); return GSL_SUCCESS; } } } int gsl_sf_zeta_e(const double s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s == 1.0) { DOMAIN_ERROR(result); } else if(s >= 0.0) { return riemann_zeta_sgt0(s, result); } else { /* reflection formula, [Abramowitz+Stegun, 23.2.5] */ gsl_sf_result zeta_one_minus_s; const int stat_zoms = riemann_zeta1ms_slt0(s, &zeta_one_minus_s); const double sin_term = (fmod(s,2.0) == 0.0) ? 0.0 : sin(0.5*M_PI*fmod(s,4.0))/M_PI; if(sin_term == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(s > -170) { /* We have to be careful about losing digits * in calculating pow(2 Pi, s). The gamma * function is fine because we were careful * with that implementation. * We keep an array of (2 Pi)^(10 n). */ const double twopi_pow[18] = { 1.0, 9.589560061550901348e+007, 9.195966217409212684e+015, 8.818527036583869903e+023, 8.456579467173150313e+031, 8.109487671573504384e+039, 7.776641909496069036e+047, 7.457457466828644277e+055, 7.151373628461452286e+063, 6.857852693272229709e+071, 6.576379029540265771e+079, 6.306458169130020789e+087, 6.047615938853066678e+095, 5.799397627482402614e+103, 5.561367186955830005e+111, 5.333106466365131227e+119, 5.114214477385391780e+127, 4.904306689854036836e+135 }; const int n = floor((-s)/10.0); const double fs = s + 10.0*n; const double p = pow(2.0*M_PI, fs) / twopi_pow[n]; gsl_sf_result g; const int stat_g = gsl_sf_gamma_e(1.0-s, &g); result->val = p * g.val * sin_term * zeta_one_minus_s.val; result->err = fabs(p * g.val * sin_term) * zeta_one_minus_s.err; result->err += fabs(p * sin_term * zeta_one_minus_s.val) * g.err; result->err += GSL_DBL_EPSILON * (fabs(s)+2.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_g, stat_zoms); } else { /* The actual zeta function may or may not * overflow here. But we have no easy way * to calculate it when the prefactor(s) * overflow. Trying to use log's and exp * is no good because we loose a couple * digits to the exp error amplification. * When we gather a little more patience, * we can implement something here. Until * then just give up. */ OVERFLOW_ERROR(result); } } } int gsl_sf_zeta_int_e(const int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n < 0) { if(!GSL_IS_ODD(n)) { result->val = 0.0; /* exactly zero at even negative integers */ result->err = 0.0; return GSL_SUCCESS; } else if(n > -ZETA_NEG_TABLE_NMAX) { result->val = zeta_neg_int_table[-(n+1)/2]; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return gsl_sf_zeta_e((double)n, result); } } else if(n == 1){ DOMAIN_ERROR(result); } else if(n <= ZETA_POS_TABLE_NMAX){ result->val = 1.0 + zetam1_pos_int_table[n]; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 1.0; result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } } int gsl_sf_zetam1_e(const double s, gsl_sf_result * result) { if(s <= 5.0) { int stat = gsl_sf_zeta_e(s, result); result->val = result->val - 1.0; return stat; } else if(s < 15.0) { return riemann_zeta_minus_1_intermediate_s(s, result); } else { return riemann_zeta_minus1_large_s(s, result); } } int gsl_sf_zetam1_int_e(const int n, gsl_sf_result * result) { if(n < 0) { if(!GSL_IS_ODD(n)) { result->val = -1.0; /* at even negative integers zetam1 == -1 since zeta is exactly zero */ result->err = 0.0; return GSL_SUCCESS; } else if(n > -ZETA_NEG_TABLE_NMAX) { result->val = zeta_neg_int_table[-(n+1)/2] - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* could use gsl_sf_zetam1_e here but subtracting 1 makes no difference for such large values, so go straight to the result */ return gsl_sf_zeta_e((double)n, result); } } else if(n == 1){ DOMAIN_ERROR(result); } else if(n <= ZETA_POS_TABLE_NMAX){ result->val = zetam1_pos_int_table[n]; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return gsl_sf_zetam1_e(n, result); } } int gsl_sf_eta_int_e(int n, gsl_sf_result * result) { if(n > ETA_POS_TABLE_NMAX) { result->val = 1.0; result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(n >= 0) { result->val = eta_pos_int_table[n]; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* n < 0 */ if(!GSL_IS_ODD(n)) { /* exactly zero at even negative integers */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(n > -ETA_NEG_TABLE_NMAX) { result->val = eta_neg_int_table[-(n+1)/2]; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result z; gsl_sf_result p; int stat_z = gsl_sf_zeta_int_e(n, &z); int stat_p = gsl_sf_exp_e((1.0-n)*M_LN2, &p); int stat_m = gsl_sf_multiply_e(-p.val, z.val, result); result->err = fabs(p.err * (M_LN2*(1.0-n)) * z.val) + z.err * fabs(p.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_m, stat_p, stat_z); } } } int gsl_sf_eta_e(const double s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s > 100.0) { result->val = 1.0; result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(fabs(s-1.0) < 10.0*GSL_ROOT5_DBL_EPSILON) { double del = s-1.0; double c0 = M_LN2; double c1 = M_LN2 * (M_EULER - 0.5*M_LN2); double c2 = -0.0326862962794492996; double c3 = 0.0015689917054155150; double c4 = 0.00074987242112047532; result->val = c0 + del * (c1 + del * (c2 + del * (c3 + del * c4))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result z; gsl_sf_result p; int stat_z = gsl_sf_zeta_e(s, &z); int stat_p = gsl_sf_exp_e((1.0-s)*M_LN2, &p); int stat_m = gsl_sf_multiply_e(1.0-p.val, z.val, result); result->err = fabs(p.err * (M_LN2*(1.0-s)) * z.val) + z.err * fabs(p.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_m, stat_p, stat_z); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_zeta(const double s) { EVAL_RESULT(gsl_sf_zeta_e(s, &result)); } double gsl_sf_hzeta(const double s, const double a) { EVAL_RESULT(gsl_sf_hzeta_e(s, a, &result)); } double gsl_sf_zeta_int(const int s) { EVAL_RESULT(gsl_sf_zeta_int_e(s, &result)); } double gsl_sf_zetam1(const double s) { EVAL_RESULT(gsl_sf_zetam1_e(s, &result)); } double gsl_sf_zetam1_int(const int s) { EVAL_RESULT(gsl_sf_zetam1_int_e(s, &result)); } double gsl_sf_eta_int(const int s) { EVAL_RESULT(gsl_sf_eta_int_e(s, &result)); } double gsl_sf_eta(const double s) { EVAL_RESULT(gsl_sf_eta_e(s, &result)); } gsl-1.16/specfunc/gsl_sf_transport.h0000664000252300025230000000367212171574312014532 00000000000000/* specfunc/gsl_sf_transport.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_TRANSPORT_H__ #define __GSL_SF_TRANSPORT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Transport function: * J(n,x) := Integral[ t^n e^t /(e^t - 1)^2, {t,0,x}] */ /* J(2,x) * * exceptions: GSL_EDOM */ int gsl_sf_transport_2_e(const double x, gsl_sf_result * result); double gsl_sf_transport_2(const double x); /* J(3,x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_transport_3_e(const double x, gsl_sf_result * result); double gsl_sf_transport_3(const double x); /* J(4,x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_transport_4_e(const double x, gsl_sf_result * result); double gsl_sf_transport_4(const double x); /* J(5,x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_transport_5_e(const double x, gsl_sf_result * result); double gsl_sf_transport_5(const double x); __END_DECLS #endif /* __GSL_SF_TRANSPORT_H__ */ gsl-1.16/specfunc/bessel_Kn.c0000664000252300025230000001467612171574312013047 00000000000000/* specfunc/bessel_Kn.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* [Abramowitz+Stegun, 9.6.11] * assumes n >= 1 */ static int bessel_Kn_scaled_small_x(const int n, const double x, gsl_sf_result * result) { int k; double y = 0.25 * x * x; double ln_x_2 = log(0.5*x); double ex = exp(x); gsl_sf_result ln_nm1_fact; double k_term; double term1, sum1, ln_pre1; double term2, sum2, pre2; gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact); ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val; if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW); sum1 = 1.0; k_term = 1.0; for(k=1; k<=n-1; k++) { k_term *= -y/(k * (n-k)); sum1 += k_term; } term1 = 0.5 * exp(ln_pre1) * sum1; pre2 = 0.5 * exp(n*ln_x_2); if(pre2 > 0.0) { const int KMAX = 20; gsl_sf_result psi_n; gsl_sf_result npk_fact; double yk = 1.0; double k_fact = 1.0; double psi_kp1 = -M_EULER; double psi_npkp1; gsl_sf_psi_int_e(n, &psi_n); gsl_sf_fact_e((unsigned int)n, &npk_fact); psi_npkp1 = psi_n.val + 1.0/n; sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val; for(k=1; kval = ex * (term1 + term2); result->err = ex * GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result) { n = abs(n); /* K(-n, z) = K(n, z) */ /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(n == 0) { return gsl_sf_bessel_K0_scaled_e(x, result); } else if(n == 1) { return gsl_sf_bessel_K1_scaled_e(x, result); } else if(x <= 5.0) { return bessel_Kn_scaled_small_x(n, x, result); } else if(GSL_ROOT3_DBL_EPSILON * x > 0.25 * (n*n + 1)) { return gsl_sf_bessel_Knu_scaled_asympx_e((double)n, x, result); } else if(GSL_MIN(0.29/(n*n), 0.5/(n*n + x*x)) < GSL_ROOT3_DBL_EPSILON) { return gsl_sf_bessel_Knu_scaled_asymp_unif_e((double)n, x, result); } else { /* Upward recurrence. [Gradshteyn + Ryzhik, 8.471.1] */ double two_over_x = 2.0/x; gsl_sf_result r_b_jm1; gsl_sf_result r_b_j; int stat_0 = gsl_sf_bessel_K0_scaled_e(x, &r_b_jm1); int stat_1 = gsl_sf_bessel_K1_scaled_e(x, &r_b_j); double b_jm1 = r_b_jm1.val; double b_j = r_b_j.val; double b_jp1; int j; for(j=1; jval = b_j; result->err = n * (fabs(b_j) * (fabs(r_b_jm1.err/r_b_jm1.val) + fabs(r_b_j.err/r_b_j.val))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_0, stat_1); } } int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result) { const int status = gsl_sf_bessel_Kn_scaled_e(n, x, result); const double ex = exp(-x); result->val *= ex; result->err *= ex; result->err += x * GSL_DBL_EPSILON * fabs(result->val); return status; } int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(nmin < 0 || nmax < nmin || x <= 0.0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(nmax == 0) { gsl_sf_result b; int stat = gsl_sf_bessel_K0_scaled_e(x, &b); result_array[0] = b.val; return stat; } else { double two_over_x = 2.0/x; gsl_sf_result r_Knm1; gsl_sf_result r_Kn; int stat_0 = gsl_sf_bessel_Kn_scaled_e(nmin, x, &r_Knm1); int stat_1 = gsl_sf_bessel_Kn_scaled_e(nmin+1, x, &r_Kn); int stat = GSL_ERROR_SELECT_2(stat_0, stat_1); double Knp1; double Kn = r_Kn.val; double Knm1 = r_Knm1.val; int n; for(n=nmin+1; n<=nmax+1; n++) { if(Knm1 < GSL_DBL_MAX) { result_array[n-1-nmin] = Knm1; Knp1 = Knm1 + n * two_over_x * Kn; Knm1 = Kn; Kn = Knp1; } else { /* Overflow. Set the rest of the elements to * zero and bug out. * FIXME: Note: this relies on the convention * that the test x < DBL_MIN fails for x not * a number. This may be only an IEEE convention, * so the portability is unclear. */ int j; for(j=n; j<=nmax+1; j++) result_array[j-1-nmin] = 0.0; GSL_ERROR ("overflow", GSL_EOVRFLW); } } return stat; } } int gsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array) { int status = gsl_sf_bessel_Kn_scaled_array(nmin, nmax, x, result_array); double ex = exp(-x); int i; for(i=0; i<=nmax-nmin; i++) result_array[i] *= ex; return status; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Kn_scaled(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Kn_scaled_e(n, x, &result)); } double gsl_sf_bessel_Kn(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Kn_e(n, x, &result)); } gsl-1.16/specfunc/mathieu_workspace.c0000664000252300025230000001336112171574312014642 00000000000000/* specfunc/mathieu_workspace.c * * Copyright (C) 2003 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include #include gsl_sf_mathieu_workspace *gsl_sf_mathieu_alloc(const size_t nn, const double qq) { gsl_sf_mathieu_workspace *workspace; unsigned int even_order = nn/2 + 1, odd_order = (nn + 1)/2, extra_values; /* Compute the maximum number of extra terms required for 10^-18 root accuracy for a given value of q (contributed by Brian Gladman). */ extra_values = (int)(2.1*pow(fabs(qq), 0.37)) + 9; extra_values += 20; /* additional fudge */ if (nn + 1 == 0) { GSL_ERROR_NULL("matrix dimension must be positive integer", GSL_EINVAL); } workspace = (gsl_sf_mathieu_workspace *)malloc(sizeof(gsl_sf_mathieu_workspace)); if (workspace == NULL) { GSL_ERROR_NULL("failed to allocate space for workspace", GSL_ENOMEM); } /* Extend matrices to ensure accuracy. */ even_order += extra_values; odd_order += extra_values; workspace->size = nn; workspace->even_order = even_order; workspace->odd_order = odd_order; workspace->extra_values = extra_values; /* Allocate space for the characteristic values. */ workspace->aa = (double *)malloc((nn+1)*sizeof(double)); if (workspace->aa == NULL) { free(workspace); GSL_ERROR_NULL("Error allocating memory for characteristic a values", GSL_ENOMEM); } workspace->bb = (double *)malloc((nn+1)*sizeof(double)); if (workspace->bb == NULL) { free(workspace->aa); free(workspace); GSL_ERROR_NULL("Error allocating memory for characteristic b values", GSL_ENOMEM); } /* Since even_order is always >= odd_order, dimension the arrays for even_order. */ workspace->dd = (double *)malloc(even_order*sizeof(double)); if (workspace->dd == NULL) { free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for diagonal", GSL_ENOMEM); } workspace->ee = (double *)malloc(even_order*sizeof(double)); if (workspace->ee == NULL) { free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for diagonal", GSL_ENOMEM); } workspace->tt = (double *)malloc(3*even_order*sizeof(double)); if (workspace->tt == NULL) { free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for diagonal", GSL_ENOMEM); } workspace->e2 = (double *)malloc(even_order*sizeof(double)); if (workspace->e2 == NULL) { free(workspace->tt); free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for diagonal", GSL_ENOMEM); } workspace->zz = (double *)malloc(even_order*even_order*sizeof(double)); if (workspace->zz == NULL) { free(workspace->e2); free(workspace->tt); free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for diagonal", GSL_ENOMEM); } workspace->eval = gsl_vector_alloc(even_order); if (workspace->eval == NULL) { free(workspace->zz); free(workspace->e2); free(workspace->tt); free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for eval", GSL_ENOMEM); } workspace->evec = gsl_matrix_alloc(even_order, even_order); if (workspace->evec == NULL) { gsl_vector_free (workspace->eval); free(workspace->zz); free(workspace->e2); free(workspace->tt); free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for evec", GSL_ENOMEM); } workspace->wmat = gsl_eigen_symmv_alloc(even_order); if (workspace->wmat == NULL) { gsl_matrix_free (workspace->evec); gsl_vector_free (workspace->eval); free(workspace->zz); free(workspace->e2); free(workspace->tt); free(workspace->ee); free(workspace->dd); free(workspace->aa); free(workspace->bb); free(workspace); GSL_ERROR_NULL("failed to allocate space for wmat", GSL_ENOMEM); } return workspace; } void gsl_sf_mathieu_free(gsl_sf_mathieu_workspace *workspace) { RETURN_IF_NULL (workspace); gsl_vector_free(workspace->eval); gsl_matrix_free(workspace->evec); gsl_eigen_symmv_free(workspace->wmat); free(workspace->aa); free(workspace->bb); free(workspace->dd); free(workspace->ee); free(workspace->tt); free(workspace->e2); free(workspace->zz); free(workspace); } gsl-1.16/specfunc/test_legendre.c0000664000252300025230000010530612171574312013755 00000000000000/* specfunc/test_legendre.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" int test_legendre(void) { gsl_sf_result r; double L[256], DL[256]; int s = 0; int sa; TEST_SF(s, gsl_sf_legendre_P1_e, (-0.5, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P1_e, ( 0.5, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P2_e, (0.0, &r), -0.5 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P2_e, (0.5, &r), -0.125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P2_e, (1.0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P2_e, (100.0, &r), 14999.5 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P3_e, ( -0.5, &r), 0.4375, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P3_e, ( 0.5, &r), -0.4375, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P3_e, ( 1.0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_P3_e, (100.0, &r), 2.49985e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1, -0.5, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1, 1.0e-8, &r), 1.0e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1, 0.5, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (10, -0.5, &r), -0.1882286071777345, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (10, 1.0e-8, &r), -0.24609374999999864648, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (10, 0.5, &r), -0.18822860717773437500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (10, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (99, -0.5, &r), 0.08300778172138770477, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (99, 1.0e-8, &r), -7.958923738716563193e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (99, 0.5, &r), -0.08300778172138770477, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (99, 0.999, &r), -0.3317727359254778874, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (99, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1000, -0.5, &r), -0.019168251091650277878, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1000, 1.0e-8, &r), 0.0252250181770982897470252620, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1000, 0.5, &r), -0.019168251091650277878, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (1000, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (4000, -0.5, &r), -0.009585404456573080972, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (4000, 0.5, &r), -0.009585404456573080972, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Pl_e, (4000, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); sa = 0; gsl_sf_legendre_Pl_array(100, 0.5, L); TEST_SF_VAL(sa, L[0], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, L[10], +0.0, -0.18822860717773437500, TEST_TOL1); TEST_SF_VAL(sa, L[100], +0.0, -0.06051802596186118687, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_array(100, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_Pl_deriv_array(100, 0.5, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, -2.3171234130859375000, TEST_TOL1); TEST_SF_VAL(sa, DL[100], +0.0, -7.0331691653942815112, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_deriv_array(100, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_Pl_deriv_array(10, 1.0, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, 55.0, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_deriv_array(10, 1.0)"); s += sa; gsl_sf_legendre_Pl_deriv_array(10, 1.0 - 1.0e-11, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, 54.999999985150000001, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_deriv_array(10, 1.0 - 1.0e-11)"); s += sa; gsl_sf_legendre_Pl_deriv_array(10, -1.0, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, -55.0, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_deriv_array(10, -1.0)"); s += sa; gsl_sf_legendre_Pl_deriv_array(10, -1.0 + 1.0e-11, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, -54.999999985150000001, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Pl_deriv_array(10, -1.0 + 1.0e-11)"); s += sa; TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 0, -0.5, &r), -0.18822860717773437500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 0, 1.0e-08, &r), -0.24609374999999864648, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 0, 0.5, &r), -0.18822860717773437500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 1, -0.5, &r), -2.0066877394361256516, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 1, 1.0e-08, &r), -2.7070312499999951725e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 1, 0.5, &r), 2.0066877394361256516, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 5, -0.5, &r), -30086.169706116174977, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 5, 1.0e-08, &r), -0.0025337812499999964949, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 5, 0.5, &r), 30086.169706116174977, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (10, 5, 0.999, &r), -0.5036411489013270406, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (100, 5, -0.5, &r), -6.617107444248382171e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (100, 5, 1.0e-08, &r), 817.8987598063712851, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (100, 5, 0.5, &r), 6.617107444248382171e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Plm_e, (100, 5, 0.999, &r), -1.9831610803806212189e+09, TEST_TOL2, GSL_SUCCESS); sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 2, -1.0 + 1.0/1125899906842624.0, L, DL); TEST_SF_VAL(sa, L[0], +0.0, 5.3290705182007490275e-15, TEST_TOL1); TEST_SF_VAL(sa, L[1], +0.0, -2.6645352591003721471e-14, TEST_TOL1); TEST_SF_VAL(sa, L[98], +0.0, 2.2646284847349109694e-08, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 2, -1.0 + 2^(-50)"); s += sa; sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 2, 1.0 - 1.0/1125899906842624.0, L, DL); TEST_SF_VAL(sa, L[0], +0.0, 5.3290705182007490275e-15, TEST_TOL1); TEST_SF_VAL(sa, L[1], +0.0, 2.6645352591003721471e-14, TEST_TOL1); TEST_SF_VAL(sa, L[10], +0.0, 5.3343995887188313290e-12, TEST_TOL1); TEST_SF_VAL(sa, L[98], +0.0, 2.2646284847349109694e-08, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 2, 1.0 - 2^(-50)"); s += sa; sa = 0; gsl_sf_legendre_Plm_array(100, 5, 0.5, L); TEST_SF_VAL(sa, L[0], +0.0, -460.3466286991656682, TEST_TOL1); TEST_SF_VAL(sa, L[10], +0.0, 38852.51334152290535, TEST_TOL1 ); TEST_SF_VAL(sa, L[95], +0.0, 6.617107444248382171e+08, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_Plm_array(100, 5, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_Plm_array(100, 5, 0.999, L); TEST_SF_VAL(sa, L[0], +0.0, -0.00016883550990916552255, TEST_TOL2); TEST_SF_VAL(sa, L[10], +0.0, -30.651334850159821525, TEST_TOL2 ); TEST_SF_VAL(sa, L[95], +0.0, -1.9831610803806212189e+09, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_Plm_array(100, 5, 0.999)"); s += sa; sa = 0; gsl_sf_legendre_Plm_array(100, 5, -0.999, L); TEST_SF_VAL(sa, L[0], +0.0, -0.00016883550990916552255, TEST_TOL2); TEST_SF_VAL(sa, L[10], +0.0, -30.651334850159821525, TEST_TOL2 ); TEST_SF_VAL(sa, L[95], +0.0, 1.9831610803806212189e+09, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_Plm_array(100, 5, -0.999)"); s += sa; sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 2, 0.999, L, DL); TEST_SF_VAL(sa, L[0], +0.0, 0.00599700000000000000, TEST_TOL1); TEST_SF_VAL(sa, L[1], +0.0, 0.02995501500000000000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[0], +0.0, -5.9940000000000000000, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, -29.910045000000000000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[2], +0.0, -89.490629790000000000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[10], +0.0, -5703.9461633355291972, TEST_TOL1 ); TEST_SF_VAL(sa, DL[95], +0.0, 6.4518473603456858414E+06, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 2, 0.999)"); s += sa; sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 2, 1.0 - 1.0e-15, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, -5.9999999999999940000, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, -29.999999999999910000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[2], +0.0, -89.999999999999490000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[10], +0.0, -6005.9999999996936940, TEST_TOL1 ); TEST_SF_VAL(sa, DL[95], +0.0, -2.2586255999928454270e+07, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 2, 1.0 - 1.0e-15)"); s += sa; sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 2, -1.0 + 1.0e-15, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 5.9999999999999940000, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, -29.999999999999910000, TEST_TOL1 ); TEST_SF_VAL(sa, DL[95], +0.0, -2.2586255999928454270e+07, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 2, -1.0 + 1.0e-15)"); s += sa; sa = 0; gsl_sf_legendre_Plm_deriv_array(100, 5, 0.999, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.42187762481054616565, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 4.6341560284340909936, TEST_TOL1 ); TEST_SF_VAL(sa, DL[2], +0.0, 27.759505566959219127, TEST_TOL1 ); TEST_SF_VAL(sa, DL[10], +0.0, 76051.795860179545484, TEST_TOL1 ); TEST_SF_VAL(sa, DL[95], +0.0, 3.0344503083851936814e+12, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_Plm_deriv_array(100, 5, 0.999)"); s += sa; TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 0, -0.5, &r), -0.24332702369300133776, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 0, 0.5, &r), -0.24332702369300133776, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 0, 0.999, &r), 1.2225754122797385990, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 5, -0.5, &r), -0.3725739049803293972, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 5, 1.0e-08, &r), -3.1377233589376792243e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 5, 0.5, &r), 0.3725739049803293972, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 5, 0.999, &r), -6.236870674727370094e-06, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 10, -0.5, &r), 0.12876871185785724117, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 10, 0.5, &r), 0.12876871185785724117, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (10, 10, 0.999, &r), 1.7320802307583118647e-14, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (200, 1, -0.5, &r), 0.3302975570099492931, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (200, 1, 0.5, &r), -0.3302975570099492931, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (200, 1, 0.999, &r), -1.4069792055546256912, TEST_TOL2, GSL_SUCCESS); /* Test case from alberto@physik.fu-berlin.de */ TEST_SF(s, gsl_sf_legendre_sphPlm_e, (3, 1, 0.0, &r), 0.323180184114150653007, TEST_TOL2, GSL_SUCCESS); /* Other test cases */ TEST_SF(s, gsl_sf_legendre_sphPlm_e, (200, 1, -0.5, &r), 0.3302975570099492931418227583, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_sphPlm_e, (140,135,1,&r), 0.0, TEST_TOL2, GSL_SUCCESS); #ifdef EXTENDED TEST_SF(s, gsl_sf_legendre_sphPlm_e, (140,135,0.99998689456491752,&r), -6.54265253269093276310395668335e-305, TEST_TOL6, GSL_SUCCESS); #endif sa = 0; gsl_sf_legendre_sphPlm_array(100, 5, 0.5, L); TEST_SF_VAL(sa, L[0], +0.0, -0.22609703187800460722, TEST_TOL1); TEST_SF_VAL(sa, L[10], +0.0, 0.07452710323813558940, TEST_TOL1); TEST_SF_VAL(sa, L[95], +0.0, 0.25865355990880161717, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_sphPlm_array(100, 5, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_array(100, 2, 1.0 - 1.0/1125899906842624.0, L); TEST_SF_VAL(sa, L[0], +0.0, 6.8616082064776657177e-16, TEST_TOL2); TEST_SF_VAL(sa, L[10], +0.0, 4.8543150313086787324e-14, TEST_TOL2); TEST_SF_VAL(sa, L[95], +0.0, 8.3138984963650838973e-12, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_sphPlm_array(100, 2, 1.0 - 2^(-50))"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_array(100, 2, -1.0 + 1.0/1125899906842624.0, L); TEST_SF_VAL(sa, L[0], +0.0, 6.8616082064776657177e-16, TEST_TOL2); TEST_SF_VAL(sa, L[95], +0.0, -8.3138984963650838973e-12, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_sphPlm_array(100, 2, -1.0 + 2^(-50))"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 0, 0.5, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.0, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, -2.9953934850252897591, TEST_TOL1); TEST_SF_VAL(sa, DL[95], +0.0, -36.411811015111761007, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 0, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 1, 0.5, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.19947114020071633897, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, -0.44603102903819277863, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, 1.3658895325030216565, TEST_TOL1); TEST_SF_VAL(sa, DL[99], +0.0, -27.925571865639037118, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 1, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 1, 1.0 - 1.0/1125899906842624.0, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 8.1973898803378530946e+06, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 1.8329921010504257405e+07, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, 1.8439572562895384115e+08, TEST_TOL1); TEST_SF_VAL(sa, DL[99], +0.0, 4.7682463136232210552e+09, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 1, 1.0 - 2^(-50))"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 2, 0.5, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, -0.38627420202318958034, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 0.25549636910832059085, TEST_TOL1); TEST_SF_VAL(sa, DL[2], +0.0, 1.5053547230039006279, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, 0.73576559668648243477, TEST_TOL1); TEST_SF_VAL(sa, DL[98], +0.0, 28.444589950264378407, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 2, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 5, 0.5, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 0.75365677292668202407, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 0.54346962777757450534, TEST_TOL1); TEST_SF_VAL(sa, DL[2], +0.0, -0.98309969029001383773, TEST_TOL1); TEST_SF_VAL(sa, DL[3], +0.0, -2.7728270988954534293, TEST_TOL1); TEST_SF_VAL(sa, DL[10], +0.0, -5.7407133315443482193, TEST_TOL1); TEST_SF_VAL(sa, DL[95], +0.0, -25.893934624747394561, TEST_TOL1); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 5, 0.5)"); s += sa; sa = 0; gsl_sf_legendre_sphPlm_deriv_array(100, 5, 1.0 - 1.0/1125899906842624.0, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, 1.7374288379067753301e-22, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 6.2643887625426827113e-22, TEST_TOL1); TEST_SF_VAL(sa, DL[2], +0.0, 1.6482697200734667281e-21, TEST_TOL1); TEST_SF_VAL(sa, DL[95], +0.0, 3.9890549466071349506e-15, TEST_TOL2); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 5, 1.0 - 2^(-50))"); s += sa; gsl_sf_legendre_sphPlm_deriv_array(100, 5, -1.0 + 1.0/1125899906842624.0, L, DL); TEST_SF_VAL(sa, DL[0], +0.0, -1.7374288379067753301e-22, TEST_TOL1); TEST_SF_VAL(sa, DL[1], +0.0, 6.2643887625426827113e-22, TEST_TOL1); TEST_SF_VAL(sa, DL[2], +0.0, -1.6482697200734667281e-21, TEST_TOL1); TEST_SF_VAL(sa, DL[95], +0.0, 3.9890549466071349506e-15, TEST_TOL3); gsl_test(sa, "gsl_sf_legendre_sphPlm_deriv_array(100, 5, -1.0 + 2^(-50))"); s += sa; TEST_SF(s, gsl_sf_conicalP_half_e, (0.0, -0.5, &r), 0.8573827581049917129, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (0.0, 0.5, &r), 0.8573827581049917129, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (0.0, 2.0, &r), 0.6062611623284649811, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (0.0, 100.0, &r), 0.07979045091636735635, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (10.0, -0.5, &r), 5.345484922591867188e+08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (10.0, 0.5, &r), 15137.910380385258370, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (10.0, 2.0, &r), 0.4992680691891618544, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (10.0, 100.0, &r), -0.07272008163718195685, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, -1.0e-3, &r), 1.3347639529084185010e+136, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 1.0e-8, &r), 1.0928098010940058507e+136, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 0.5, &r), 3.895546021611205442e+90, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 10.0, &r), -0.04308567180833581268, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 100.0, &r), -0.04694669186576399194, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 1000.0, &r), 0.023698140704121273277, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (200.0, 1.0e+8, &r), -0.00006790983312124277891, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (1.0e+8, 1.1, &r), 1.1599311133054742944, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_half_e, (1.0e+8, 100.0, &r), 0.07971967557381557875, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (0.0, -0.5, &r), 1.7956982494514644808, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (0.0, 0.5, &r), 0.8978491247257322404, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (0.0, 2.0, &r), 0.7984204253272901551, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (0.0, 100.0, &r), 0.4227531369388072584, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (10.0, -0.5, &r), 5.345484922591867181e+07, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (10.0, 0.5, &r), 1513.7910356104985334, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (10.0, 2.0, &r), 0.03439243987215615642, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (10.0, 100.0, &r), 0.003283756665952609624, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, -0.5, &r), 1.7699538115312304280e+179, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 1.0e-8, &r), 5.464049005470029253e+133, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 0.5, &r), 1.9477730108056027211e+88, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 10.0, &r), 0.0012462575917716355362, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 100.0, &r), -0.0003225881344802625149, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 1000.0, &r), -0.00004330652890886567623, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (200.0, 1.0e+8, &r), 2.0943091278037078483e-07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (1.0e+8, 1.1, &r), 2.092320445620989618e-09, 16.0*TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_mhalf_e, (1.0e+8, 100.0, &r), -3.359967833599016923e-11, 256.0*TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (0.0, -0.5, &r), 1.3728805006183501647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (0.0, 0.5, &r), 1.0731820071493643751, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (0.0, 2.0, &r), 0.9012862993604472987, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (0.0, 100.0, &r), 0.30091748588199264556, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (10.0, -0.5, &r), 1.6795592815421804669e+08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (10.0, 0.5, &r), 4826.034132009618240, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (10.0, 2.0, &r), 0.18798468917758716146, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (10.0, 100.0, &r), -0.008622130749987962529, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (200.0, -0.5, &r), 2.502194818646823e+180, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (1000.0, 100.0, &r), 0.0017908817653497715844, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (1000.0, 1000.0, &r), -0.0006566893804926284301, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_0_e, (1000.0, 1.0e+8, &r), 2.3167213561756390068e-06, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (0.0, -0.5, &r), 0.4939371126656998499, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (0.0, 0.5, &r), 0.14933621085538265636, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (0.0, 2.0, &r), -0.13666874968871549533, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (0.0, 100.0, &r), -0.10544528203156629098, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (10.0, -0.5, &r), 1.7253802958788312520e+09, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (10.0, 0.5, &r), 46781.02294059967988, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (10.0, 2.0, &r), 0.26613342643657444400, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (10.0, 100.0, &r), -0.23281959695501029796, TEST_TOL2, GSL_SUCCESS); /* FIXME: Mathematica gets some brain-damaged numbers for * these x < 0 points. I have checked what I am doing in detail, * and it must be right because you can do it by summing * manifestly positive definite quantities. */ TEST_SF(s, gsl_sf_conicalP_1_e, (200.0, -0.999, &r), 2.71635193199341135e+270, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (200.0, -0.9, &r), 4.2952493176812905e+234, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (200.0, -0.5, &r), 5.01159205956053439e+182, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (200.0, 0.999, &r), 195733.0396081538, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (200.0, 10.0, &r), -2.9272610662414349553, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (1000.0, 100.0, &r), -1.7783258105862399857, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (1000.0, 1000.0, &r), 0.4535161075156427179, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_1_e, (1000.0, 1.0e+8, &r), 0.0009983414549874888478, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (2, 1.0, -0.5, &r), 1.6406279287008789526, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (10, 1.0, -0.5, &r), 0.000029315266725049129448, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (20, 1.0, -0.5, &r), 7.335769429462034431e-15, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (30, 1.0, -0.5, &r), 1.3235612394267378871e-26, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (10, 1.0, 0.5, &r), 2.7016087199857873954e-10, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (20, 1.0, 0.5, &r), 1.1782569701435933399e-24, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (30, 1.0, 0.5, &r), 3.636240588303797919e-41, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (10, 1.0, 2.0, &r), 2.4934929626284934483e-10, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (20, 1.0, 2.0, &r), 1.1284762488012616191e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_sph_reg_e, (30, 100.0, 100.0, &r), -1.6757772087159526048e-64, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (2, 1.0, -0.5, &r), 2.2048510472375258708, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (10, 1.0, -0.5, &r), 0.00007335034531618655690, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (20, 1.0, -0.5, &r), 2.5419860619212164696e-14, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (30, 1.0, -0.5, &r), 5.579714972260536827e-26, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (10, 1.0, 0.5, &r), 1.1674078819646475282e-09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (20, 1.0, 0.5, &r), 7.066408031229072207e-24, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (30, 1.0, 0.5, &r), 2.6541973286862588488e-40, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (10, 1.0, 2.0, &r), 1.0736109751890863051e-09, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (20, 1.0, 2.0, &r), 6.760965304863386741e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_conicalP_cyl_reg_e, (30, 100.0, 100.0, &r), -4.268753482520651007e-63, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0e-06, 1.0e-06, &r), 0.9999999999998333333 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0, 0.0, &r), 1.0 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0, 1.0, &r), 0.7160229153604338713 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0, 100.0, &r), -3.767437313149604566e-44 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0, 500.0, &r), -6.665351935878582205e-218, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (100.0, 1.0, &r), -0.004308757035378200029 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (100.0, 10.0, &r), 7.508054627912986427e-07 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1000.0, 1.0, &r), 0.0007036067909088818319 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0e+08, 1.0, &r), 7.927485371429105968e-09 , TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_0_e, (1.0e+08, 100.0, &r), -3.627118904186918957e-52 , 32.0*TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0e-06, 1.0e-06, &r), 3.333333333334222222e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0, 1.0e-10, &r), 4.714045207910316829e-11, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0, 1.0, &r), 0.3397013994799344639, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0, 100.0, &r), -7.200624449531811272e-44, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0, 500.0, &r), 4.192260336821728677e-218, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (100.0, 0.01, &r), 0.30117664944267412324 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (100.0, 1.0, &r), -0.007393833425336299309 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (100.0, 10.0, &r), -5.031062029821254982e-07 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1000.0, 0.001, &r), 0.30116875865090396421 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1000.0, 1.0, &r), -0.0004776144516074971885 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0e+08, 1.0e-08, &r), 0.30116867893975679722 , TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0e+08, 1.0, &r), 3.0921097047369081582e-09, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_1_e, (1.0e+08, 100.0, &r), -6.496142701296286936e-52 , 32.0*TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0e-06, 1.0e-06, &r), 1.1544011544013627977e-32, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 1.0e-10, &r), 2.0224912016958766992e-52, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 1.0, &r), 0.011498635037491577728, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 5.0, &r), 0.0020696945662545205776, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 7.0, &r), -0.0017555303787488993676, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 10.0, &r), 0.00008999979724504887101, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 100.0, &r), -4.185397793298567945e-44, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0, 500.0, &r), 1.4235113901091961263e-217, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 100.0, 0.001, &r), 9.642762597222417946e-10, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 100.0, 0.002, &r), 3.0821201254308036109e-08, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 100.0, 0.01, &r), 0.00009281069019005840532, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 100.0, 1.0, &r), -0.008043100696178624653, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 100.0, 10.0, &r), -3.927678432813974207e-07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1000.0, 0.001, &r), 0.00009256365284253254503, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1000.0, 0.01, &r), -0.05553733815473079983, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0e+08, 1.0e-08, &r), 0.00009256115861125841299, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_H3d_e, (5, 1.0e+08, 100.0, &r), -6.496143209092860765e-52 , 128.0*TEST_SQRT_TOL0, GSL_SUCCESS); #if FIXME sa = 0; gsl_sf_legendre_H3d_array(100, 1.0, 3.0, L); TEST_SF_VAL(sa, L[0], +0.0, gsl_sf_legendre_H3d(0, 1.0, 3.0), 1.0e-12); TEST_SF_VAL(sa, L[1], +0.0, gsl_sf_legendre_H3d(1, 1.0, 3.0), 1.0e-12); TEST_SF_VAL(sa, L[10], +0.0, gsl_sf_legendre_H3d(10, 1.0, 3.0), 1.0e-12); TEST_SF_VAL(sa, L[100], +0.0, gsl_sf_legendre_H3d(100, 1.0, 3.0), 1.0e-12); gsl_test(sa, " gsl_sf_legendre_H3d_array(100, 1.0, 3.0)"); s += sa; #endif /* x = -1 + 2^-16 */ TEST_SF(s, gsl_sf_legendre_Q0_e, (-0.9999847412109375, &r), -5.8917472200477175158028143531855, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, (-0.5, &r), -0.5493061443340548457, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, (-1e-10, &r), -1.000000000000000000e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, (1e-10, &r), 1.000000000000000000e-10, TEST_TOL0, GSL_SUCCESS); /* x = 1 - 2^-16 */ TEST_SF(s, gsl_sf_legendre_Q0_e, (0.9999847412109375, &r), 5.8917472200477175158028143531855, TEST_TOL4, GSL_SUCCESS); /* x = 1 + 2^-16 */ TEST_SF(s, gsl_sf_legendre_Q0_e, ( 1.0000152587890625, &r), 5.8917548494422489138325509750429, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 1.5, &r), 0.8047189562170501873, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 9.99, &r), 0.1004364599660005447, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 10.0, &r), 0.1003353477310755806, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 10.01, &r), 0.1002344395571710243, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 100, &r), 0.010000333353334762015, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q0_e, ( 1e10, &r), 1.000000000000000000e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (-0.9999847412109375, &r), 4.8916573191196772369, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (-0.5, &r), -0.7253469278329725772, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (-0.01, &r), -0.9998999966664666524, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (-1e-10, &r), -0.999999999999999999, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (0.0, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (1e-10, &r), -0.999999999999999999, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (0.0001, &r), -0.9999999899999999667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (0.01, &r), -0.9998999966664666524, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (0.5, &r), -0.7253469278329725772, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (0.9999847412109375, &r), 4.8916573191196772369, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, (1.0000152587890625, &r), 4.8918447504867045145, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 1.5, &r), 0.20707843432557528095, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 9.99, &r), 3.360235060345441639e-3, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 10.0, &r), 3.353477310755806357e-3, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 10.01, &r), 3.346739967281953346e-3, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 100.0, &r), 3.333533347620158821e-5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Q1_e, ( 1e10, &r), 3.333333333333333333e-21, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (10, -0.5, &r), -0.29165813966586752393, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (10, 0.5, &r), 0.29165813966586752393, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (10, 1.5, &r), 0.000014714232718207477406, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (100, -0.5, &r), -0.09492507395207282096, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (100, 0.5, &r), 0.09492507395207282096, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (100, 1.5, &r), 1.1628163435044121988e-43, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (1000, -0.5, &r), -0.030105074974005303500, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (1000, 0.5, &r), 0.030105074974005303500, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_legendre_Ql_e, (1000, 1.1, &r), 1.0757258447825356443e-194, TEST_TOL3, GSL_SUCCESS); return s; } gsl-1.16/specfunc/gsl_sf_ellint.h0000664000252300025230000001012312171574312013752 00000000000000/* specfunc/gsl_sf_ellint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_ELLINT_H__ #define __GSL_SF_ELLINT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Legendre form of complete elliptic integrals * * K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] * E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] * * exceptions: GSL_EDOM */ int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode); int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode); int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode); int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode); /* Legendre form of incomplete elliptic integrals * * F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] * E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] * P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] * D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0) * * F: [Carlson, Numerische Mathematik 33 (1979) 1, (4.1)] * E: [Carlson, ", (4.2)] * P: [Carlson, ", (4.3)] * D: [Carlson, ", (4.4)] * * exceptions: GSL_EDOM */ int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode); int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode); int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode); int gsl_sf_ellint_D_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_D(double phi, double k, double n, gsl_mode_t mode); /* Carlson's symmetric basis of functions * * RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}] * RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}] * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}] * RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}] * * exceptions: GSL_EDOM */ int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode); int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode); int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode); int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode); __END_DECLS #endif /* __GSL_SF_ELLINT_H__ */ gsl-1.16/specfunc/hyperg_0F1.c0000664000252300025230000001200112171574312013022 00000000000000/* specfunc/hyperg_0F1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" #define locEPS (1000.0*GSL_DBL_EPSILON) /* Evaluate bessel_I(nu, x), allowing nu < 0. * This is fine here because we do not not allow * nu to be a negative integer. * x > 0. */ static int hyperg_0F1_bessel_I(const double nu, const double x, gsl_sf_result * result) { if(x > GSL_LOG_DBL_MAX) { OVERFLOW_ERROR(result); } if(nu < 0.0) { const double anu = -nu; const double s = 2.0/M_PI * sin(anu*M_PI); const double ex = exp(x); gsl_sf_result I; gsl_sf_result K; int stat_I = gsl_sf_bessel_Inu_scaled_e(anu, x, &I); int stat_K = gsl_sf_bessel_Knu_scaled_e(anu, x, &K); result->val = ex * I.val + s * (K.val / ex); result->err = ex * I.err + fabs(s * K.err/ex); result->err += fabs(s * (K.val/ex)) * GSL_DBL_EPSILON * anu * M_PI; return GSL_ERROR_SELECT_2(stat_K, stat_I); } else { const double ex = exp(x); gsl_sf_result I; int stat_I = gsl_sf_bessel_Inu_scaled_e(nu, x, &I); result->val = ex * I.val; result->err = ex * I.err + GSL_DBL_EPSILON * fabs(result->val); return stat_I; } } /* Evaluate bessel_J(nu, x), allowing nu < 0. * This is fine here because we do not not allow * nu to be a negative integer. * x > 0. */ static int hyperg_0F1_bessel_J(const double nu, const double x, gsl_sf_result * result) { if(nu < 0.0) { const double anu = -nu; const double s = sin(anu*M_PI); const double c = cos(anu*M_PI); gsl_sf_result J; gsl_sf_result Y; int stat_J = gsl_sf_bessel_Jnu_e(anu, x, &J); int stat_Y = gsl_sf_bessel_Ynu_e(anu, x, &Y); result->val = c * J.val - s * Y.val; result->err = fabs(c * J.err) + fabs(s * Y.err); result->err += fabs(anu * M_PI) * GSL_DBL_EPSILON * fabs(J.val + Y.val); return GSL_ERROR_SELECT_2(stat_Y, stat_J); } else { return gsl_sf_bessel_Jnu_e(nu, x, result); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result) { const double rintc = floor(c + 0.5); const int c_neg_integer = (c < 0.0 && fabs(c - rintc) < locEPS); /* CHECK_POINTER(result) */ if(c == 0.0 || c_neg_integer) { DOMAIN_ERROR(result); } else if(x < 0.0) { gsl_sf_result Jcm1; gsl_sf_result lg_c; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn); int stat_J = hyperg_0F1_bessel_J(c-1.0, 2.0*sqrt(-x), &Jcm1); if(stat_g != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_g; } else if(Jcm1.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_J; } else { const double tl = log(-x)*0.5*(1.0-c); double ln_pre_val = lg_c.val + tl; double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl); return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn*Jcm1.val, Jcm1.err, result); } } else if(x == 0.0) { result->val = 1.0; result->err = 1.0; return GSL_SUCCESS; } else { gsl_sf_result Icm1; gsl_sf_result lg_c; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lg_c, &sgn); int stat_I = hyperg_0F1_bessel_I(c-1.0, 2.0*sqrt(x), &Icm1); if(stat_g != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_g; } else if(Icm1.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_I; } else { const double tl = log(x)*0.5*(1.0-c); const double ln_pre_val = lg_c.val + tl; const double ln_pre_err = lg_c.err + 2.0 * GSL_DBL_EPSILON * fabs(tl); return gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn*Icm1.val, Icm1.err, result); } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hyperg_0F1(const double c, const double x) { EVAL_RESULT(gsl_sf_hyperg_0F1_e(c, x, &result)); } gsl-1.16/specfunc/gamma_inc.c0000664000252300025230000005043612171574312013047 00000000000000/* specfunc/gamma_inc.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" /* The dominant part, * D(a,x) := x^a e^(-x) / Gamma(a+1) */ static int gamma_inc_D(const double a, const double x, gsl_sf_result * result) { if(a < 10.0) { double lnr; gsl_sf_result lg; gsl_sf_lngamma_e(a+1.0, &lg); lnr = a * log(x) - x - lg.val; result->val = exp(lnr); result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lnr) + 1.0) * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result gstar; gsl_sf_result ln_term; double term1; if (x < 0.5*a) { double u = x/a; double ln_u = log(u); ln_term.val = ln_u - u + 1.0; ln_term.err = (fabs(ln_u) + fabs(u) + 1.0) * GSL_DBL_EPSILON; } else { double mu = (x-a)/a; gsl_sf_log_1plusx_mx_e(mu, &ln_term); /* log(1+mu) - mu */ /* Propagate cancellation error from x-a, since the absolute error of mu=x-a is DBL_EPSILON */ ln_term.err += GSL_DBL_EPSILON * fabs(mu); }; gsl_sf_gammastar_e(a, &gstar); term1 = exp(a*ln_term.val)/sqrt(2.0*M_PI*a); result->val = term1/gstar.val; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(a*ln_term.val) + 1.0) * fabs(result->val); /* Include propagated error from log term */ result->err += fabs(a) * ln_term.err * fabs(result->val); result->err += gstar.err/fabs(gstar.val) * fabs(result->val); return GSL_SUCCESS; } } /* P series representation. */ static int gamma_inc_P_series(const double a, const double x, gsl_sf_result * result) { const int nmax = 10000; gsl_sf_result D; int stat_D = gamma_inc_D(a, x, &D); /* Approximating the terms of the series using Stirling's approximation gives t_n = (x/a)^n * exp(-n(n+1)/(2a)), so the convergence condition is n^2 / (2a) + (1-(x/a) + (1/2a)) n >> -log(GSL_DBL_EPS) if we want t_n < O(1e-16) t_0. The condition below detects cases where the minimum value of n is > 5000 */ if (x > 0.995 * a && a > 1e5) { /* Difficult case: try continued fraction */ gsl_sf_result cf_res; int status = gsl_sf_exprel_n_CF_e(a, x, &cf_res); result->val = D.val * cf_res.val; result->err = fabs(D.val * cf_res.err) + fabs(D.err * cf_res.val); return status; } /* Series would require excessive number of terms */ if (x > (a + nmax)) { GSL_ERROR ("gamma_inc_P_series x>>a exceeds range", GSL_EMAXITER); } /* Normal case: sum the series */ { double sum = 1.0; double term = 1.0; double remainder; int n; /* Handle lower part of the series where t_n is increasing, |x| > a+n */ int nlow = (x > a) ? (x - a): 0; for(n=1; n < nlow; n++) { term *= x/(a+n); sum += term; } /* Handle upper part of the series where t_n is decreasing, |x| < a+n */ for (/* n = previous n */ ; nval = D.val * sum; result->err = D.err * fabs(sum) + fabs(D.val * remainder); result->err += (1.0 + n) * GSL_DBL_EPSILON * fabs(result->val); if(n == nmax && fabs(remainder/sum) > GSL_SQRT_DBL_EPSILON) GSL_ERROR ("gamma_inc_P_series failed to converge", GSL_EMAXITER); else return stat_D; } } /* Q large x asymptotic */ static int gamma_inc_Q_large_x(const double a, const double x, gsl_sf_result * result) { const int nmax = 5000; gsl_sf_result D; const int stat_D = gamma_inc_D(a, x, &D); double sum = 1.0; double term = 1.0; double last = 1.0; int n; for(n=1; n 1.0) break; if(fabs(term/sum) < GSL_DBL_EPSILON) break; sum += term; last = term; } result->val = D.val * (a/x) * sum; result->err = D.err * fabs((a/x) * sum); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(n == nmax) GSL_ERROR ("error in large x asymptotic", GSL_EMAXITER); else return stat_D; } /* Uniform asymptotic for x near a, a and x large. * See [Temme, p. 285] */ static int gamma_inc_Q_asymp_unif(const double a, const double x, gsl_sf_result * result) { const double rta = sqrt(a); const double eps = (x-a)/a; gsl_sf_result ln_term; const int stat_ln = gsl_sf_log_1plusx_mx_e(eps, &ln_term); /* log(1+eps) - eps */ const double eta = GSL_SIGN(eps) * sqrt(-2.0*ln_term.val); gsl_sf_result erfc; double R; double c0, c1; /* This used to say erfc(eta*M_SQRT2*rta), which is wrong. * The sqrt(2) is in the denominator. Oops. * Fixed: [GJ] Mon Nov 15 13:25:32 MST 2004 */ gsl_sf_erfc_e(eta*rta/M_SQRT2, &erfc); if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { c0 = -1.0/3.0 + eps*(1.0/12.0 - eps*(23.0/540.0 - eps*(353.0/12960.0 - eps*589.0/30240.0))); c1 = -1.0/540.0 - eps/288.0; } else { const double rt_term = sqrt(-2.0 * ln_term.val/(eps*eps)); const double lam = x/a; c0 = (1.0 - 1.0/rt_term)/eps; c1 = -(eta*eta*eta * (lam*lam + 10.0*lam + 1.0) - 12.0 * eps*eps*eps) / (12.0 * eta*eta*eta*eps*eps*eps); } R = exp(-0.5*a*eta*eta)/(M_SQRT2*M_SQRTPI*rta) * (c0 + c1/a); result->val = 0.5 * erfc.val + R; result->err = GSL_DBL_EPSILON * fabs(R * 0.5 * a*eta*eta) + 0.5 * erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ln; } /* Continued fraction which occurs in evaluation * of Q(a,x) or Gamma(a,x). * * 1 (1-a)/x 1/x (2-a)/x 2/x (3-a)/x * F(a,x) = ---- ------- ----- -------- ----- -------- ... * 1 + 1 + 1 + 1 + 1 + 1 + * * Hans E. Plesser, 2002-01-22 (hans dot plesser at itf dot nlh dot no). * * Split out from gamma_inc_Q_CF() by GJ [Tue Apr 1 13:16:41 MST 2003]. * See gamma_inc_Q_CF() below. * */ static int gamma_inc_F_CF(const double a, const double x, gsl_sf_result * result) { const int nmax = 5000; const double small = gsl_pow_3 (GSL_DBL_EPSILON); double hn = 1.0; /* convergent */ double Cn = 1.0 / small; double Dn = 1.0; int n; /* n == 1 has a_1, b_1, b_0 independent of a,x, so that has been done by hand */ for ( n = 2 ; n < nmax ; n++ ) { double an; double delta; if(GSL_IS_ODD(n)) an = 0.5*(n-1)/x; else an = (0.5*n-a)/x; Dn = 1.0 + an * Dn; if ( fabs(Dn) < small ) Dn = small; Cn = 1.0 + an/Cn; if ( fabs(Cn) < small ) Cn = small; Dn = 1.0 / Dn; delta = Cn * Dn; hn *= delta; if(fabs(delta-1.0) < GSL_DBL_EPSILON) break; } result->val = hn; result->err = 2.0*GSL_DBL_EPSILON * fabs(hn); result->err += GSL_DBL_EPSILON * (2.0 + 0.5*n) * fabs(result->val); if(n == nmax) GSL_ERROR ("error in CF for F(a,x)", GSL_EMAXITER); else return GSL_SUCCESS; } /* Continued fraction for Q. * * Q(a,x) = D(a,x) a/x F(a,x) * * Hans E. Plesser, 2002-01-22 (hans dot plesser at itf dot nlh dot no): * * Since the Gautschi equivalent series method for CF evaluation may lead * to singularities, I have replaced it with the modified Lentz algorithm * given in * * I J Thompson and A R Barnett * Coulomb and Bessel Functions of Complex Arguments and Order * J Computational Physics 64:490-509 (1986) * * In consequence, gamma_inc_Q_CF_protected() is now obsolete and has been * removed. * * Identification of terms between the above equation for F(a, x) and * the first equation in the appendix of Thompson&Barnett is as follows: * * b_0 = 0, b_n = 1 for all n > 0 * * a_1 = 1 * a_n = (n/2-a)/x for n even * a_n = (n-1)/(2x) for n odd * */ static int gamma_inc_Q_CF(const double a, const double x, gsl_sf_result * result) { gsl_sf_result D; gsl_sf_result F; const int stat_D = gamma_inc_D(a, x, &D); const int stat_F = gamma_inc_F_CF(a, x, &F); result->val = D.val * (a/x) * F.val; result->err = D.err * fabs((a/x) * F.val) + fabs(D.val * a/x * F.err); return GSL_ERROR_SELECT_2(stat_F, stat_D); } /* Useful for small a and x. Handles the subtraction analytically. */ static int gamma_inc_Q_series(const double a, const double x, gsl_sf_result * result) { double term1; /* 1 - x^a/Gamma(a+1) */ double sum; /* 1 + (a+1)/(a+2)(-x)/2! + (a+1)/(a+3)(-x)^2/3! + ... */ int stat_sum; double term2; /* a temporary variable used at the end */ { /* Evaluate series for 1 - x^a/Gamma(a+1), small a */ const double pg21 = -2.404113806319188570799476; /* PolyGamma[2,1] */ const double lnx = log(x); const double el = M_EULER+lnx; const double c1 = -el; const double c2 = M_PI*M_PI/12.0 - 0.5*el*el; const double c3 = el*(M_PI*M_PI/12.0 - el*el/6.0) + pg21/6.0; const double c4 = -0.04166666666666666667 * (-1.758243446661483480 + lnx) * (-0.764428657272716373 + lnx) * ( 0.723980571623507657 + lnx) * ( 4.107554191916823640 + lnx); const double c5 = -0.0083333333333333333 * (-2.06563396085715900 + lnx) * (-1.28459889470864700 + lnx) * (-0.27583535756454143 + lnx) * ( 1.33677371336239618 + lnx) * ( 5.17537282427561550 + lnx); const double c6 = -0.0013888888888888889 * (-2.30814336454783200 + lnx) * (-1.65846557706987300 + lnx) * (-0.88768082560020400 + lnx) * ( 0.17043847751371778 + lnx) * ( 1.92135970115863890 + lnx) * ( 6.22578557795474900 + lnx); const double c7 = -0.00019841269841269841 * (-2.5078657901291800 + lnx) * (-1.9478900888958200 + lnx) * (-1.3194837322612730 + lnx) * (-0.5281322700249279 + lnx) * ( 0.5913834939078759 + lnx) * ( 2.4876819633378140 + lnx) * ( 7.2648160783762400 + lnx); const double c8 = -0.00002480158730158730 * (-2.677341544966400 + lnx) * (-2.182810448271700 + lnx) * (-1.649350342277400 + lnx) * (-1.014099048290790 + lnx) * (-0.191366955370652 + lnx) * ( 0.995403817918724 + lnx) * ( 3.041323283529310 + lnx) * ( 8.295966556941250 + lnx); const double c9 = -2.75573192239859e-6 * (-2.8243487670469080 + lnx) * (-2.3798494322701120 + lnx) * (-1.9143674728689960 + lnx) * (-1.3814529102920370 + lnx) * (-0.7294312810261694 + lnx) * ( 0.1299079285269565 + lnx) * ( 1.3873333251885240 + lnx) * ( 3.5857258865210760 + lnx) * ( 9.3214237073814600 + lnx); const double c10 = -2.75573192239859e-7 * (-2.9540329644556910 + lnx) * (-2.5491366926991850 + lnx) * (-2.1348279229279880 + lnx) * (-1.6741881076349450 + lnx) * (-1.1325949616098420 + lnx) * (-0.4590034650618494 + lnx) * ( 0.4399352987435699 + lnx) * ( 1.7702236517651670 + lnx) * ( 4.1231539047474080 + lnx) * ( 10.342627908148680 + lnx); term1 = a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*(c9+a*c10))))))))); } { /* Evaluate the sum. */ const int nmax = 5000; double t = 1.0; int n; sum = 1.0; for(n=1; nval = term1 + term2; result->err = GSL_DBL_EPSILON * (fabs(term1) + 2.0*fabs(term2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_sum; } /* series for small a and x, but not defined for a == 0 */ static int gamma_inc_series(double a, double x, gsl_sf_result * result) { gsl_sf_result Q; gsl_sf_result G; const int stat_Q = gamma_inc_Q_series(a, x, &Q); const int stat_G = gsl_sf_gamma_e(a, &G); result->val = Q.val * G.val; result->err = fabs(Q.val * G.err) + fabs(Q.err * G.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Q, stat_G); } static int gamma_inc_a_gt_0(double a, double x, gsl_sf_result * result) { /* x > 0 and a > 0; use result for Q */ gsl_sf_result Q; gsl_sf_result G; const int stat_Q = gsl_sf_gamma_inc_Q_e(a, x, &Q); const int stat_G = gsl_sf_gamma_e(a, &G); result->val = G.val * Q.val; result->err = fabs(G.val * Q.err) + fabs(G.err * Q.val); result->err += 2.0*GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_G, stat_Q); } static int gamma_inc_CF(double a, double x, gsl_sf_result * result) { gsl_sf_result F; gsl_sf_result pre; const double am1lgx = (a-1.0)*log(x); const int stat_F = gamma_inc_F_CF(a, x, &F); const int stat_E = gsl_sf_exp_err_e(am1lgx - x, GSL_DBL_EPSILON*fabs(am1lgx), &pre); result->val = F.val * pre.val; result->err = fabs(F.err * pre.val) + fabs(F.val * pre.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_F, stat_E); } /* evaluate Gamma(0,x), x > 0 */ #define GAMMA_INC_A_0(x, result) gsl_sf_expint_E1_e(x, result) /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_gamma_inc_Q_e(const double a, const double x, gsl_sf_result * result) { if(a < 0.0 || x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x <= 0.5*a) { /* If the series is quick, do that. It is * robust and simple. */ gsl_sf_result P; int stat_P = gamma_inc_P_series(a, x, &P); result->val = 1.0 - P.val; result->err = P.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_P; } else if(a >= 1.0e+06 && (x-a)*(x-a) < a) { /* Then try the difficult asymptotic regime. * This is the only way to do this region. */ return gamma_inc_Q_asymp_unif(a, x, result); } else if(a < 0.2 && x < 5.0) { /* Cancellations at small a must be handled * analytically; x should not be too big * either since the series terms grow * with x and log(x). */ return gamma_inc_Q_series(a, x, result); } else if(a <= x) { if(x <= 1.0e+06) { /* Continued fraction is excellent for x >~ a. * We do not let x be too large when x > a since * it is somewhat pointless to try this there; * the function is rapidly decreasing for * x large and x > a, and it will just * underflow in that region anyway. We * catch that case in the standard * large-x method. */ return gamma_inc_Q_CF(a, x, result); } else { return gamma_inc_Q_large_x(a, x, result); } } else { if(x > a - sqrt(a)) { /* Continued fraction again. The convergence * is a little slower here, but that is fine. * We have to trade that off against the slow * convergence of the series, which is the * only other option. */ return gamma_inc_Q_CF(a, x, result); } else { gsl_sf_result P; int stat_P = gamma_inc_P_series(a, x, &P); result->val = 1.0 - P.val; result->err = P.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_P; } } } int gsl_sf_gamma_inc_P_e(const double a, const double x, gsl_sf_result * result) { if(a <= 0.0 || x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 20.0 || x < 0.5*a) { /* Do the easy series cases. Robust and quick. */ return gamma_inc_P_series(a, x, result); } else if(a > 1.0e+06 && (x-a)*(x-a) < a) { /* Crossover region. Note that Q and P are * roughly the same order of magnitude here, * so the subtraction is stable. */ gsl_sf_result Q; int stat_Q = gamma_inc_Q_asymp_unif(a, x, &Q); result->val = 1.0 - Q.val; result->err = Q.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_Q; } else if(a <= x) { /* Q <~ P in this area, so the * subtractions are stable. */ gsl_sf_result Q; int stat_Q; if(a > 0.2*x) { stat_Q = gamma_inc_Q_CF(a, x, &Q); } else { stat_Q = gamma_inc_Q_large_x(a, x, &Q); } result->val = 1.0 - Q.val; result->err = Q.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_Q; } else { if((x-a)*(x-a) < a) { /* This condition is meant to insure * that Q is not very close to 1, * so the subtraction is stable. */ gsl_sf_result Q; int stat_Q = gamma_inc_Q_CF(a, x, &Q); result->val = 1.0 - Q.val; result->err = Q.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_Q; } else { return gamma_inc_P_series(a, x, result); } } } int gsl_sf_gamma_inc_e(const double a, const double x, gsl_sf_result * result) { if(x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { return gsl_sf_gamma_e(a, result); } else if(a == 0.0) { return GAMMA_INC_A_0(x, result); } else if(a > 0.0) { return gamma_inc_a_gt_0(a, x, result); } else if(x > 0.25) { /* continued fraction seems to fail for x too small; otherwise it is ok, independent of the value of |x/a|, because of the non-oscillation in the expansion, i.e. the CF is un-conditionally convergent for a < 0 and x > 0 */ return gamma_inc_CF(a, x, result); } else if(fabs(a) < 0.5) { return gamma_inc_series(a, x, result); } else { /* a = fa + da; da >= 0 */ const double fa = floor(a); const double da = a - fa; gsl_sf_result g_da; const int stat_g_da = ( da > 0.0 ? gamma_inc_a_gt_0(da, x, &g_da) : GAMMA_INC_A_0(x, &g_da)); double alpha = da; double gax = g_da.val; /* Gamma(alpha-1,x) = 1/(alpha-1) (Gamma(a,x) - x^(alpha-1) e^-x) */ do { const double shift = exp(-x + (alpha-1.0)*log(x)); gax = (gax - shift) / (alpha - 1.0); alpha -= 1.0; } while(alpha > a); result->val = gax; result->err = 2.0*(1.0 + fabs(a))*GSL_DBL_EPSILON*fabs(gax); return stat_g_da; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_gamma_inc_P(const double a, const double x) { EVAL_RESULT(gsl_sf_gamma_inc_P_e(a, x, &result)); } double gsl_sf_gamma_inc_Q(const double a, const double x) { EVAL_RESULT(gsl_sf_gamma_inc_Q_e(a, x, &result)); } double gsl_sf_gamma_inc(const double a, const double x) { EVAL_RESULT(gsl_sf_gamma_inc_e(a, x, &result)); } gsl-1.16/specfunc/gegenbauer.c0000664000252300025230000001160012171574312013226 00000000000000/* specfunc/gegenbauer.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" /* See: [Thompson, Atlas for Computing Mathematical Functions] */ int gsl_sf_gegenpoly_1_e(double lambda, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(lambda == 0.0) { result->val = 2.0*x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 2.0*lambda*x; result->err = 4.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_2_e(double lambda, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(lambda == 0.0) { const double txx = 2.0*x*x; result->val = -1.0 + txx; result->err = 2.0 * GSL_DBL_EPSILON * fabs(txx); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = lambda*(-1.0 + 2.0*(1.0+lambda)*x*x); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda)); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_3_e(double lambda, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(lambda == 0.0) { result->val = x*(-2.0 + 4.0/3.0*x*x); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(x)); return GSL_SUCCESS; } else { double c = 4.0 + lambda*(6.0 + 2.0*lambda); result->val = 2.0*lambda * x * ( -1.0 - lambda + c*x*x/3.0 ); result->err = GSL_DBL_EPSILON * (2.0 * fabs(result->val) + fabs(lambda * x)); return GSL_SUCCESS; } } int gsl_sf_gegenpoly_n_e(int n, double lambda, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(lambda <= -0.5 || n < 0) { DOMAIN_ERROR(result); } else if(n == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(n == 1) { return gsl_sf_gegenpoly_1_e(lambda, x, result); } else if(n == 2) { return gsl_sf_gegenpoly_2_e(lambda, x, result); } else if(n == 3) { return gsl_sf_gegenpoly_3_e(lambda, x, result); } else { if(lambda == 0.0 && (x >= -1.0 || x <= 1.0)) { /* 2 T_n(x)/n */ const double z = n * acos(x); result->val = 2.0 * cos(z) / n; result->err = 2.0 * GSL_DBL_EPSILON * fabs(z * result->val); return GSL_SUCCESS; } else { int k; gsl_sf_result g2; gsl_sf_result g3; int stat_g2 = gsl_sf_gegenpoly_2_e(lambda, x, &g2); int stat_g3 = gsl_sf_gegenpoly_3_e(lambda, x, &g3); int stat_g = GSL_ERROR_SELECT_2(stat_g2, stat_g3); double gkm2 = g2.val; double gkm1 = g3.val; double gk = 0.0; for(k=4; k<=n; k++) { gk = (2.0*(k+lambda-1.0)*x*gkm1 - (k+2.0*lambda-2.0)*gkm2) / k; gkm2 = gkm1; gkm1 = gk; } result->val = gk; result->err = 2.0 * GSL_DBL_EPSILON * 0.5 * n * fabs(gk); return stat_g; } } } int gsl_sf_gegenpoly_array(int nmax, double lambda, double x, double * result_array) { int k; /* CHECK_POINTER(result_array) */ if(lambda <= -0.5 || nmax < 0) { GSL_ERROR("domain error", GSL_EDOM); } /* n == 0 */ result_array[0] = 1.0; if(nmax == 0) return GSL_SUCCESS; /* n == 1 */ if(lambda == 0.0) result_array[1] = 2.0*x; else result_array[1] = 2.0*lambda*x; /* n <= nmax */ for(k=2; k<=nmax; k++) { double term1 = 2.0*(k+lambda-1.0) * x * result_array[k-1]; double term2 = (k+2.0*lambda-2.0) * result_array[k-2]; result_array[k] = (term1 - term2) / k; } return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_gegenpoly_1(double lambda, double x) { EVAL_RESULT(gsl_sf_gegenpoly_1_e(lambda, x, &result)); } double gsl_sf_gegenpoly_2(double lambda, double x) { EVAL_RESULT(gsl_sf_gegenpoly_2_e(lambda, x, &result)); } double gsl_sf_gegenpoly_3(double lambda, double x) { EVAL_RESULT(gsl_sf_gegenpoly_3_e(lambda, x, &result)); } double gsl_sf_gegenpoly_n(int n, double lambda, double x) { EVAL_RESULT(gsl_sf_gegenpoly_n_e(n, lambda, x, &result)); } gsl-1.16/specfunc/bessel_Ynu.c0000664000252300025230000000650512171574312013242 00000000000000/* specfunc/bessel_Ynu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_olver.h" #include "bessel_temme.h" /* Perform forward recurrence for Y_nu(x) and Y'_nu(x) * * Y_{nu+1} = nu/x Y_nu - Y'_nu * Y'_{nu+1} = -(nu+1)/x Y_{nu+1} + Y_nu */ #if 0 static int bessel_Y_recur(const double nu_min, const double x, const int kmax, const double Y_start, const double Yp_start, double * Y_end, double * Yp_end) { double x_inv = 1.0/x; double nu = nu_min; double Y_nu = Y_start; double Yp_nu = Yp_start; int k; for(k=1; k<=kmax; k++) { double nuox = nu*x_inv; double Y_nu_save = Y_nu; Y_nu = -Yp_nu + nuox * Y_nu; Yp_nu = Y_nu_save - (nuox+x_inv) * Y_nu; nu += 1.0; } *Y_end = Y_nu; *Yp_end = Yp_nu; return GSL_SUCCESS; } #endif /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Ynu_e(double nu, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else if(nu > 50.0) { return gsl_sf_bessel_Ynu_asymp_Olver_e(nu, x, result); } else { /* -1/2 <= mu <= 1/2 */ int N = (int)(nu + 0.5); double mu = nu - N; gsl_sf_result Y_mu, Y_mup1; int stat_mu; double Ynm1; double Yn; double Ynp1; int n; if(x < 2.0) { /* Determine Ymu, Ymup1 directly. This is really * an optimization since this case could as well * be handled by a call to gsl_sf_bessel_JY_mu_restricted(), * as below. */ stat_mu = gsl_sf_bessel_Y_temme(mu, x, &Y_mu, &Y_mup1); } else { /* Determine Ymu, Ymup1 and Jmu, Jmup1. */ gsl_sf_result J_mu, J_mup1; stat_mu = gsl_sf_bessel_JY_mu_restricted(mu, x, &J_mu, &J_mup1, &Y_mu, &Y_mup1); } /* Forward recursion to get Ynu, Ynup1. */ Ynm1 = Y_mu.val; Yn = Y_mup1.val; for(n=1; n<=N; n++) { Ynp1 = 2.0*(mu+n)/x * Yn - Ynm1; Ynm1 = Yn; Yn = Ynp1; } result->val = Ynm1; /* Y_nu */ result->err = (N + 1.0) * fabs(Ynm1) * (fabs(Y_mu.err/Y_mu.val) + fabs(Y_mup1.err/Y_mup1.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Ynm1); return stat_mu; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Ynu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Ynu_e(nu, x, &result)); } gsl-1.16/specfunc/gsl_sf_log.h0000664000252300025230000000401612171574312013250 00000000000000/* specfunc/gsl_sf_log.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_LOG_H__ #define __GSL_SF_LOG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Provide a logarithm function with GSL semantics. * * exceptions: GSL_EDOM */ int gsl_sf_log_e(const double x, gsl_sf_result * result); double gsl_sf_log(const double x); /* Log(|x|) * * exceptions: GSL_EDOM */ int gsl_sf_log_abs_e(const double x, gsl_sf_result * result); double gsl_sf_log_abs(const double x); /* Complex Logarithm * exp(lnr + I theta) = zr + I zi * Returns argument in [-pi,pi]. * * exceptions: GSL_EDOM */ int gsl_sf_complex_log_e(const double zr, const double zi, gsl_sf_result * lnr, gsl_sf_result * theta); /* Log(1 + x) * * exceptions: GSL_EDOM */ int gsl_sf_log_1plusx_e(const double x, gsl_sf_result * result); double gsl_sf_log_1plusx(const double x); /* Log(1 + x) - x * * exceptions: GSL_EDOM */ int gsl_sf_log_1plusx_mx_e(const double x, gsl_sf_result * result); double gsl_sf_log_1plusx_mx(const double x); __END_DECLS #endif /* __GSL_SF_LOG_H__ */ gsl-1.16/specfunc/bessel_Jnu.c0000664000252300025230000001213212171574312013214 00000000000000/* specfunc/bessel_Jnu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_olver.h" #include "bessel_temme.h" /* Evaluate at large enough nu to apply asymptotic * results and apply backward recurrence. */ #if 0 static int bessel_J_recur_asymp(const double nu, const double x, gsl_sf_result * Jnu, gsl_sf_result * Jnup1) { const double nu_cut = 25.0; int n; int steps = ceil(nu_cut - nu) + 1; gsl_sf_result r_Jnp1; gsl_sf_result r_Jn; int stat_O1 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps + 1.0, x, &r_Jnp1); int stat_O2 = gsl_sf_bessel_Jnu_asymp_Olver_e(nu + steps, x, &r_Jn); double r_fe = fabs(r_Jnp1.err/r_Jnp1.val) + fabs(r_Jn.err/r_Jn.val); double Jnp1 = r_Jnp1.val; double Jn = r_Jn.val; double Jnm1; double Jnp1_save; for(n=steps; n>0; n--) { Jnm1 = 2.0*(nu+n)/x * Jn - Jnp1; Jnp1 = Jn; Jnp1_save = Jn; Jn = Jnm1; } Jnu->val = Jn; Jnu->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jn); Jnup1->val = Jnp1_save; Jnup1->err = (r_fe + GSL_DBL_EPSILON * (steps + 1.0)) * fabs(Jnp1_save); return GSL_ERROR_SELECT_2(stat_O1, stat_O2); } #endif /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Jnu_e(const double nu, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { if(nu == 0.0) { result->val = 1.0; result->err = 0.0; } else { result->val = 0.0; result->err = 0.0; } return GSL_SUCCESS; } else if(x*x < 10.0*(nu+1.0)) { return gsl_sf_bessel_IJ_taylor_e(nu, x, -1, 100, GSL_DBL_EPSILON, result); } else if(nu > 50.0) { return gsl_sf_bessel_Jnu_asymp_Olver_e(nu, x, result); } else if(x > 1000.0) { /* We need this to avoid feeding large x to CF1; note that * due to the above check, we know that n <= 50. See similar * block in bessel_Jn.c. */ return gsl_sf_bessel_Jnu_asympx_e(nu, x, result); } else { /* -1/2 <= mu <= 1/2 */ int N = (int)(nu + 0.5); double mu = nu - N; /* Determine the J ratio at nu. */ double Jnup1_Jnu; double sgn_Jnu; const int stat_CF1 = gsl_sf_bessel_J_CF1(nu, x, &Jnup1_Jnu, &sgn_Jnu); if(x < 2.0) { /* Determine Y_mu, Y_mup1 directly and recurse forward to nu. * Then use the CF1 information to solve for J_nu and J_nup1. */ gsl_sf_result Y_mu, Y_mup1; const int stat_mu = gsl_sf_bessel_Y_temme(mu, x, &Y_mu, &Y_mup1); double Ynm1 = Y_mu.val; double Yn = Y_mup1.val; double Ynp1 = 0.0; int n; for(n=1; nval = 2.0/(M_PI*x) / (Jnup1_Jnu*Yn - Ynp1); result->err = GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_mu, stat_CF1); } else { /* Recurse backward from nu to mu, determining the J ratio * at mu. Use this together with a Steed method CF2 to * determine the actual J_mu, and thus obtain the normalization. */ double Jmu; double Jmup1_Jmu; double sgn_Jmu; double Jmuprime_Jmu; double P, Q; const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q); double gamma; double Jnp1 = sgn_Jnu * GSL_SQRT_DBL_MIN * Jnup1_Jnu; double Jn = sgn_Jnu * GSL_SQRT_DBL_MIN; double Jnm1; int n; for(n=N; n>0; n--) { Jnm1 = 2.0*(mu+n)/x * Jn - Jnp1; Jnp1 = Jn; Jn = Jnm1; } Jmup1_Jmu = Jnp1/Jn; sgn_Jmu = GSL_SIGN(Jn); Jmuprime_Jmu = mu/x - Jmup1_Jmu; gamma = (P - Jmuprime_Jmu)/Q; Jmu = sgn_Jmu * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jmuprime_Jmu))); result->val = Jmu * (sgn_Jnu * GSL_SQRT_DBL_MIN) / Jn; result->err = 2.0 * GSL_DBL_EPSILON * (N + 2.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_CF2, stat_CF1); } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Jnu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Jnu_e(nu, x, &result)); } gsl-1.16/specfunc/airy.c0000664000252300025230000005577212171574312012110 00000000000000/* specfunc/airy.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "check.h" #include "chebyshev.h" #include "cheb_eval_mode.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* chebyshev expansions for Airy modulus and phase based on SLATEC r9aimp() Series for AM21 on the interval -1.25000D-01 to 0. with weighted error 2.89E-17 log weighted error 16.54 significant figures required 14.15 decimal places required 17.34 Series for ATH1 on the interval -1.25000D-01 to 0. with weighted error 2.53E-17 log weighted error 16.60 significant figures required 15.15 decimal places required 17.38 Series for AM22 on the interval -1.00000D+00 to -1.25000D-01 with weighted error 2.99E-17 log weighted error 16.52 significant figures required 14.57 decimal places required 17.28 Series for ATH2 on the interval -1.00000D+00 to -1.25000D-01 with weighted error 2.57E-17 log weighted error 16.59 significant figures required 15.07 decimal places required 17.34 */ static double am21_data[37] = { 0.0065809191761485, 0.0023675984685722, 0.0001324741670371, 0.0000157600904043, 0.0000027529702663, 0.0000006102679017, 0.0000001595088468, 0.0000000471033947, 0.0000000152933871, 0.0000000053590722, 0.0000000020000910, 0.0000000007872292, 0.0000000003243103, 0.0000000001390106, 0.0000000000617011, 0.0000000000282491, 0.0000000000132979, 0.0000000000064188, 0.0000000000031697, 0.0000000000015981, 0.0000000000008213, 0.0000000000004296, 0.0000000000002284, 0.0000000000001232, 0.0000000000000675, 0.0000000000000374, 0.0000000000000210, 0.0000000000000119, 0.0000000000000068, 0.0000000000000039, 0.0000000000000023, 0.0000000000000013, 0.0000000000000008, 0.0000000000000005, 0.0000000000000003, 0.0000000000000001, 0.0000000000000001 }; static cheb_series am21_cs = { am21_data, 36, -1, 1, 20 }; static double ath1_data[36] = { -0.07125837815669365, -0.00590471979831451, -0.00012114544069499, -0.00000988608542270, -0.00000138084097352, -0.00000026142640172, -0.00000006050432589, -0.00000001618436223, -0.00000000483464911, -0.00000000157655272, -0.00000000055231518, -0.00000000020545441, -0.00000000008043412, -0.00000000003291252, -0.00000000001399875, -0.00000000000616151, -0.00000000000279614, -0.00000000000130428, -0.00000000000062373, -0.00000000000030512, -0.00000000000015239, -0.00000000000007758, -0.00000000000004020, -0.00000000000002117, -0.00000000000001132, -0.00000000000000614, -0.00000000000000337, -0.00000000000000188, -0.00000000000000105, -0.00000000000000060, -0.00000000000000034, -0.00000000000000020, -0.00000000000000011, -0.00000000000000007, -0.00000000000000004, -0.00000000000000002 }; static cheb_series ath1_cs = { ath1_data, 35, -1, 1, 15 }; static double am22_data[33] = { -0.01562844480625341, 0.00778336445239681, 0.00086705777047718, 0.00015696627315611, 0.00003563962571432, 0.00000924598335425, 0.00000262110161850, 0.00000079188221651, 0.00000025104152792, 0.00000008265223206, 0.00000002805711662, 0.00000000976821090, 0.00000000347407923, 0.00000000125828132, 0.00000000046298826, 0.00000000017272825, 0.00000000006523192, 0.00000000002490471, 0.00000000000960156, 0.00000000000373448, 0.00000000000146417, 0.00000000000057826, 0.00000000000022991, 0.00000000000009197, 0.00000000000003700, 0.00000000000001496, 0.00000000000000608, 0.00000000000000248, 0.00000000000000101, 0.00000000000000041, 0.00000000000000017, 0.00000000000000007, 0.00000000000000002 }; static cheb_series am22_cs = { am22_data, 32, -1, 1, 15 }; static double ath2_data[32] = { 0.00440527345871877, -0.03042919452318455, -0.00138565328377179, -0.00018044439089549, -0.00003380847108327, -0.00000767818353522, -0.00000196783944371, -0.00000054837271158, -0.00000016254615505, -0.00000005053049981, -0.00000001631580701, -0.00000000543420411, -0.00000000185739855, -0.00000000064895120, -0.00000000023105948, -0.00000000008363282, -0.00000000003071196, -0.00000000001142367, -0.00000000000429811, -0.00000000000163389, -0.00000000000062693, -0.00000000000024260, -0.00000000000009461, -0.00000000000003716, -0.00000000000001469, -0.00000000000000584, -0.00000000000000233, -0.00000000000000093, -0.00000000000000037, -0.00000000000000015, -0.00000000000000006, -0.00000000000000002 }; static cheb_series ath2_cs = { ath2_data, 31, -1, 1, 16 }; /* Airy modulus and phase for x < -1 */ static int airy_mod_phase(const double x, gsl_mode_t mode, gsl_sf_result * mod, gsl_sf_result * phase) { gsl_sf_result result_m; gsl_sf_result result_p; double m, p; double sqx; if(x < -2.0) { double z = 16.0/(x*x*x) + 1.0; cheb_eval_mode_e(&am21_cs, z, mode, &result_m); cheb_eval_mode_e(&ath1_cs, z, mode, &result_p); } else if(x <= -1.0) { double z = (16.0/(x*x*x) + 9.0)/7.0; cheb_eval_mode_e(&am22_cs, z, mode, &result_m); cheb_eval_mode_e(&ath2_cs, z, mode, &result_p); } else { mod->val = 0.0; mod->err = 0.0; phase->val = 0.0; phase->err = 0.0; GSL_ERROR ("x is greater than 1.0", GSL_EDOM); } m = 0.3125 + result_m.val; p = -0.625 + result_p.val; sqx = sqrt(-x); mod->val = sqrt(m/sqx); mod->err = fabs(mod->val) * (GSL_DBL_EPSILON + fabs(result_m.err/result_m.val)); phase->val = M_PI_4 - x*sqx * p; phase->err = fabs(phase->val) * (GSL_DBL_EPSILON + fabs(result_p.err/result_p.val)); return GSL_SUCCESS; } /* Chebyshev series for Ai(x) with x in [-1,1] based on SLATEC ai(x) series for aif on the interval -1.00000d+00 to 1.00000d+00 with weighted error 1.09e-19 log weighted error 18.96 significant figures required 17.76 decimal places required 19.44 series for aig on the interval -1.00000d+00 to 1.00000d+00 with weighted error 1.51e-17 log weighted error 16.82 significant figures required 15.19 decimal places required 17.27 */ static double ai_data_f[9] = { -0.03797135849666999750, 0.05919188853726363857, 0.00098629280577279975, 0.00000684884381907656, 0.00000002594202596219, 0.00000000006176612774, 0.00000000000010092454, 0.00000000000000012014, 0.00000000000000000010 }; static cheb_series aif_cs = { ai_data_f, 8, -1, 1, 8 }; static double ai_data_g[8] = { 0.01815236558116127, 0.02157256316601076, 0.00025678356987483, 0.00000142652141197, 0.00000000457211492, 0.00000000000952517, 0.00000000000001392, 0.00000000000000001 }; static cheb_series aig_cs = { ai_data_g, 7, -1, 1, 7 }; /* Chebvyshev series for Bi(x) with x in [-1,1] based on SLATEC bi(x) series for bif on the interval -1.00000d+00 to 1.00000d+00 with weighted error 1.88e-19 log weighted error 18.72 significant figures required 17.74 decimal places required 19.20 series for big on the interval -1.00000d+00 to 1.00000d+00 with weighted error 2.61e-17 log weighted error 16.58 significant figures required 15.17 decimal places required 17.03 */ static double data_bif[9] = { -0.01673021647198664948, 0.10252335834249445610, 0.00170830925073815165, 0.00001186254546774468, 0.00000004493290701779, 0.00000000010698207143, 0.00000000000017480643, 0.00000000000000020810, 0.00000000000000000018 }; static cheb_series bif_cs = { data_bif, 8, -1, 1, 8 }; static double data_big[8] = { 0.02246622324857452, 0.03736477545301955, 0.00044476218957212, 0.00000247080756363, 0.00000000791913533, 0.00000000001649807, 0.00000000000002411, 0.00000000000000002 }; static cheb_series big_cs = { data_big, 7, -1, 1, 7 }; /* Chebyshev series for Bi(x) with x in [1,8] based on SLATEC bi(x) */ static double data_bif2[10] = { 0.0998457269381604100, 0.4786249778630055380, 0.0251552119604330118, 0.0005820693885232645, 0.0000074997659644377, 0.0000000613460287034, 0.0000000003462753885, 0.0000000000014288910, 0.0000000000000044962, 0.0000000000000000111 }; static cheb_series bif2_cs = { data_bif2, 9, -1, 1, 9 }; static double data_big2[10] = { 0.033305662145514340, 0.161309215123197068, 0.0063190073096134286, 0.0001187904568162517, 0.0000013045345886200, 0.0000000093741259955, 0.0000000000474580188, 0.0000000000001783107, 0.0000000000000005167, 0.0000000000000000011 }; static cheb_series big2_cs = { data_big2, 9, -1, 1, 9 }; /* chebyshev for Ai(x) asymptotic factor based on SLATEC aie() Series for AIP on the interval 0. to 1.00000D+00 with weighted error 5.10E-17 log weighted error 16.29 significant figures required 14.41 decimal places required 17.06 [GJ] Sun Apr 19 18:14:31 EDT 1998 There was something wrong with these coefficients. I was getting errors after 3 or 4 digits. So I recomputed this table. Now I get double precision agreement with Mathematica. But it does not seem possible that the small differences here would account for the original discrepancy. There must have been something wrong with my original usage... */ static double data_aip[36] = { -0.0187519297793867540198, -0.0091443848250055004725, 0.0009010457337825074652, -0.0001394184127221491507, 0.0000273815815785209370, -0.0000062750421119959424, 0.0000016064844184831521, -0.0000004476392158510354, 0.0000001334635874651668, -0.0000000420735334263215, 0.0000000139021990246364, -0.0000000047831848068048, 0.0000000017047897907465, -0.0000000006268389576018, 0.0000000002369824276612, -0.0000000000918641139267, 0.0000000000364278543037, -0.0000000000147475551725, 0.0000000000060851006556, -0.0000000000025552772234, 0.0000000000010906187250, -0.0000000000004725870319, 0.0000000000002076969064, -0.0000000000000924976214, 0.0000000000000417096723, -0.0000000000000190299093, 0.0000000000000087790676, -0.0000000000000040927557, 0.0000000000000019271068, -0.0000000000000009160199, 0.0000000000000004393567, -0.0000000000000002125503, 0.0000000000000001036735, -0.0000000000000000509642, 0.0000000000000000252377, -0.0000000000000000125793 /* -.0187519297793868 -.0091443848250055, .0009010457337825, -.0001394184127221, .0000273815815785, -.0000062750421119, .0000016064844184, -.0000004476392158, .0000001334635874, -.0000000420735334, .0000000139021990, -.0000000047831848, .0000000017047897, -.0000000006268389, .0000000002369824, -.0000000000918641, .0000000000364278, -.0000000000147475, .0000000000060851, -.0000000000025552, .0000000000010906, -.0000000000004725, .0000000000002076, -.0000000000000924, .0000000000000417, -.0000000000000190, .0000000000000087, -.0000000000000040, .0000000000000019, -.0000000000000009, .0000000000000004, -.0000000000000002, .0000000000000001, -.0000000000000000 */ }; static cheb_series aip_cs = { data_aip, 35, -1, 1, 17 }; /* chebyshev for Bi(x) asymptotic factor based on SLATEC bie() Series for BIP on the interval 1.25000D-01 to 3.53553D-01 with weighted error 1.91E-17 log weighted error 16.72 significant figures required 15.35 decimal places required 17.41 Series for BIP2 on the interval 0. to 1.25000D-01 with weighted error 1.05E-18 log weighted error 17.98 significant figures required 16.74 decimal places required 18.71 */ static double data_bip[24] = { -0.08322047477943447, 0.01146118927371174, 0.00042896440718911, -0.00014906639379950, -0.00001307659726787, 0.00000632759839610, -0.00000042226696982, -0.00000019147186298, 0.00000006453106284, -0.00000000784485467, -0.00000000096077216, 0.00000000070004713, -0.00000000017731789, 0.00000000002272089, 0.00000000000165404, -0.00000000000185171, 0.00000000000059576, -0.00000000000012194, 0.00000000000001334, 0.00000000000000172, -0.00000000000000145, 0.00000000000000049, -0.00000000000000011, 0.00000000000000001 }; static cheb_series bip_cs = { data_bip, 23, -1, 1, 14 }; static double data_bip2[29] = { -0.113596737585988679, 0.0041381473947881595, 0.0001353470622119332, 0.0000104273166530153, 0.0000013474954767849, 0.0000001696537405438, -0.0000000100965008656, -0.0000000167291194937, -0.0000000045815364485, 0.0000000003736681366, 0.0000000005766930320, 0.0000000000621812650, -0.0000000000632941202, -0.0000000000149150479, 0.0000000000078896213, 0.0000000000024960513, -0.0000000000012130075, -0.0000000000003740493, 0.0000000000002237727, 0.0000000000000474902, -0.0000000000000452616, -0.0000000000000030172, 0.0000000000000091058, -0.0000000000000009814, -0.0000000000000016429, 0.0000000000000005533, 0.0000000000000002175, -0.0000000000000001737, -0.0000000000000000010 }; static cheb_series bip2_cs = { data_bip2, 28, -1, 1, 10 }; /* assumes x >= 1.0 */ inline static int airy_aie(const double x, gsl_mode_t mode, gsl_sf_result * result) { double sqx = sqrt(x); double z = 2.0/(x*sqx) - 1.0; double y = sqrt(sqx); gsl_sf_result result_c; cheb_eval_mode_e(&aip_cs, z, mode, &result_c); result->val = (0.28125 + result_c.val)/y; result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* assumes x >= 2.0 */ static int airy_bie(const double x, gsl_mode_t mode, gsl_sf_result * result) { const double ATR = 8.7506905708484345; const double BTR = -2.0938363213560543; if(x < 4.0) { double sqx = sqrt(x); double z = ATR/(x*sqx) + BTR; double y = sqrt(sqx); gsl_sf_result result_c; cheb_eval_mode_e(&bip_cs, z, mode, &result_c); result->val = (0.625 + result_c.val)/y; result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val); } else { double sqx = sqrt(x); double z = 16.0/(x*sqx) - 1.0; double y = sqrt(sqx); gsl_sf_result result_c; cheb_eval_mode_e(&bip2_cs, z, mode, &result_c); result->val = (0.625 + result_c.val)/y; result->err = result_c.err/y + GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_airy_Ai_e(const double x, const gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result mod; gsl_sf_result theta; gsl_sf_result cos_result; int stat_mp = airy_mod_phase(x, mode, &mod, &theta); int stat_cos = gsl_sf_cos_err_e(theta.val, theta.err, &cos_result); result->val = mod.val * cos_result.val; result->err = fabs(mod.val * cos_result.err) + fabs(cos_result.val * mod.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_mp, stat_cos); } else if(x <= 1.0) { const double z = x*x*x; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&aif_cs, z, mode, &result_c0); cheb_eval_mode_e(&aig_cs, z, mode, &result_c1); result->val = 0.375 + (result_c0.val - x*(0.25 + result_c1.val)); result->err = result_c0.err + fabs(x*result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double x32 = x * sqrt(x); double s = exp(-2.0*x32/3.0); gsl_sf_result result_aie; int stat_aie = airy_aie(x, mode, &result_aie); result->val = result_aie.val * s; result->err = result_aie.err * s + result->val * x32 * GSL_DBL_EPSILON; result->err += GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return stat_aie; } } int gsl_sf_airy_Ai_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result mod; gsl_sf_result theta; gsl_sf_result cos_result; int stat_mp = airy_mod_phase(x, mode, &mod, &theta); int stat_cos = gsl_sf_cos_err_e(theta.val, theta.err, &cos_result); result->val = mod.val * cos_result.val; result->err = fabs(mod.val * cos_result.err) + fabs(cos_result.val * mod.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_mp, stat_cos); } else if(x <= 1.0) { const double z = x*x*x; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&aif_cs, z, mode, &result_c0); cheb_eval_mode_e(&aig_cs, z, mode, &result_c1); result->val = 0.375 + (result_c0.val - x*(0.25 + result_c1.val)); result->err = result_c0.err + fabs(x*result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); if(x > 0.0) { const double scale = exp(2.0/3.0 * sqrt(z)); result->val *= scale; result->err *= scale; } return GSL_SUCCESS; } else { return airy_aie(x, mode, result); } } int gsl_sf_airy_Bi_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result mod; gsl_sf_result theta; gsl_sf_result sin_result; int stat_mp = airy_mod_phase(x, mode, &mod, &theta); int stat_sin = gsl_sf_sin_err_e(theta.val, theta.err, &sin_result); result->val = mod.val * sin_result.val; result->err = fabs(mod.val * sin_result.err) + fabs(sin_result.val * mod.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_mp, stat_sin); } else if(x < 1.0) { const double z = x*x*x; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&bif_cs, z, mode, &result_c0); cheb_eval_mode_e(&big_cs, z, mode, &result_c1); result->val = 0.625 + result_c0.val + x*(0.4375 + result_c1.val); result->err = result_c0.err + fabs(x * result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x <= 2.0) { const double z = (2.0*x*x*x - 9.0)/7.0; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&bif2_cs, z, mode, &result_c0); cheb_eval_mode_e(&big2_cs, z, mode, &result_c1); result->val = 1.125 + result_c0.val + x*(0.625 + result_c1.val); result->err = result_c0.err + fabs(x * result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double y = 2.0*x*sqrt(x)/3.0; const double s = exp(y); if(y > GSL_LOG_DBL_MAX - 1.0) { OVERFLOW_ERROR(result); } else { gsl_sf_result result_bie; int stat_bie = airy_bie(x, mode, &result_bie); result->val = result_bie.val * s; result->err = result_bie.err * s + fabs(1.5*y * (GSL_DBL_EPSILON * result->val)); result->err += GSL_DBL_EPSILON * fabs(result->val); return stat_bie; } } } int gsl_sf_airy_Bi_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result mod; gsl_sf_result theta; gsl_sf_result sin_result; int stat_mp = airy_mod_phase(x, mode, &mod, &theta); int stat_sin = gsl_sf_sin_err_e(theta.val, theta.err, &sin_result); result->val = mod.val * sin_result.val; result->err = fabs(mod.val * sin_result.err) + fabs(sin_result.val * mod.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_mp, stat_sin); } else if(x < 1.0) { const double z = x*x*x; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&bif_cs, z, mode, &result_c0); cheb_eval_mode_e(&big_cs, z, mode, &result_c1); result->val = 0.625 + result_c0.val + x*(0.4375 + result_c1.val); result->err = result_c0.err + fabs(x * result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); if(x > 0.0) { const double scale = exp(-2.0/3.0 * sqrt(z)); result->val *= scale; result->err *= scale; } return GSL_SUCCESS; } else if(x <= 2.0) { const double x3 = x*x*x; const double z = (2.0*x3 - 9.0)/7.0; const double s = exp(-2.0/3.0 * sqrt(x3)); gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&bif2_cs, z, mode, &result_c0); cheb_eval_mode_e(&big2_cs, z, mode, &result_c1); result->val = s * (1.125 + result_c0.val + x*(0.625 + result_c1.val)); result->err = s * (result_c0.err + fabs(x * result_c1.err)); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return airy_bie(x, mode, result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_airy_Ai(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Ai_e(x, mode, &result)); } double gsl_sf_airy_Ai_scaled(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Ai_scaled_e(x, mode, &result)); } double gsl_sf_airy_Bi(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Bi_e(x, mode, &result)); } double gsl_sf_airy_Bi_scaled(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Bi_scaled_e(x, mode, &result)); } gsl-1.16/specfunc/coulomb_bound.c0000664000252300025230000000725312171574312013762 00000000000000/* specfunc/coulomb_bound.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" #include "check.h" /* normalization for hydrogenic wave functions */ static int R_norm(const int n, const int l, const double Z, gsl_sf_result * result) { double A = 2.0*Z/n; double pre = sqrt(A*A*A /(2.0*n)); gsl_sf_result ln_a, ln_b; gsl_sf_result ex; int stat_a = gsl_sf_lnfact_e(n+l, &ln_a); int stat_b = gsl_sf_lnfact_e(n-l-1, &ln_b); double diff_val = 0.5*(ln_b.val - ln_a.val); double diff_err = 0.5*(ln_b.err + ln_a.err) + GSL_DBL_EPSILON * fabs(diff_val); int stat_e = gsl_sf_exp_err_e(diff_val, diff_err, &ex); result->val = pre * ex.val; result->err = pre * ex.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_a, stat_b); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hydrogenicR_1_e(const double Z, const double r, gsl_sf_result * result) { if(Z > 0.0 && r >= 0.0) { double A = 2.0*Z; double norm = A*sqrt(Z); double ea = exp(-Z*r); result->val = norm*ea; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) * fabs(Z*r); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } int gsl_sf_hydrogenicR_e(const int n, const int l, const double Z, const double r, gsl_sf_result * result) { if(n < 1 || l > n-1 || Z <= 0.0 || r < 0.0) { DOMAIN_ERROR(result); } else { double A = 2.0*Z/n; gsl_sf_result norm; int stat_norm = R_norm(n, l, Z, &norm); double rho = A*r; double ea = exp(-0.5*rho); double pp = gsl_sf_pow_int(rho, l); gsl_sf_result lag; int stat_lag = gsl_sf_laguerre_n_e(n-l-1, 2*l+1, rho, &lag); double W_val = norm.val * ea * pp; double W_err = norm.err * ea * pp; W_err += norm.val * ((0.5*rho + 1.0) * GSL_DBL_EPSILON) * ea * pp; W_err += norm.val * ea * ((l+1.0) * GSL_DBL_EPSILON) * pp; result->val = W_val * lag.val; result->err = W_val * lag.err + W_err * fabs(lag.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if ((l == 0 || (r > 0 && l > 0)) && lag.val != 0.0 && stat_lag == GSL_SUCCESS && stat_norm == GSL_SUCCESS) { CHECK_UNDERFLOW(result); }; return GSL_ERROR_SELECT_2(stat_lag, stat_norm); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hydrogenicR_1(const double Z, const double r) { EVAL_RESULT(gsl_sf_hydrogenicR_1_e(Z, r, &result)); } double gsl_sf_hydrogenicR(const int n, const int l, const double Z, const double r) { EVAL_RESULT(gsl_sf_hydrogenicR_e(n, l, Z, r, &result)); } gsl-1.16/specfunc/psi.c0000664000252300025230000006036412171574312011730 00000000000000/* specfunc/psi.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2005, 2006 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* Chebyshev fit for f(y) = Re(Psi(1+Iy)) + M_EULER - y^2/(1+y^2) - y^2/(2(4+y^2)) * 1 < y < 10 * ==> * y(x) = (9x + 11)/2, -1 < x < 1 * x(y) = (2y - 11)/9 * * g(x) := f(y(x)) */ static double r1py_data[] = { 1.59888328244976954803168395603, 0.67905625353213463845115658455, -0.068485802980122530009506482524, -0.005788184183095866792008831182, 0.008511258167108615980419855648, -0.004042656134699693434334556409, 0.001352328406159402601778462956, -0.000311646563930660566674525382, 0.000018507563785249135437219139, 0.000028348705427529850296492146, -0.000019487536014574535567541960, 8.0709788710834469408621587335e-06, -2.2983564321340518037060346561e-06, 3.0506629599604749843855962658e-07, 1.3042238632418364610774284846e-07, -1.2308657181048950589464690208e-07, 5.7710855710682427240667414345e-08, -1.8275559342450963966092636354e-08, 3.1020471300626589420759518930e-09, 6.8989327480593812470039430640e-10, -8.7182290258923059852334818997e-10, 4.4069147710243611798213548777e-10, -1.4727311099198535963467200277e-10, 2.7589682523262644748825844248e-11, 4.1871826756975856411554363568e-12, -6.5673460487260087541400767340e-12, 3.4487900886723214020103638000e-12, -1.1807251417448690607973794078e-12, 2.3798314343969589258709315574e-13, 2.1663630410818831824259465821e-15 }; static cheb_series r1py_cs = { r1py_data, 29, -1,1, 18 }; /* Chebyshev fits from SLATEC code for psi(x) Series for PSI on the interval 0. to 1.00000D+00 with weighted error 2.03E-17 log weighted error 16.69 significant figures required 16.39 decimal places required 17.37 Series for APSI on the interval 0. to 2.50000D-01 with weighted error 5.54E-17 log weighted error 16.26 significant figures required 14.42 decimal places required 16.86 */ static double psics_data[23] = { -.038057080835217922, .491415393029387130, -.056815747821244730, .008357821225914313, -.001333232857994342, .000220313287069308, -.000037040238178456, .000006283793654854, -.000001071263908506, .000000183128394654, -.000000031353509361, .000000005372808776, -.000000000921168141, .000000000157981265, -.000000000027098646, .000000000004648722, -.000000000000797527, .000000000000136827, -.000000000000023475, .000000000000004027, -.000000000000000691, .000000000000000118, -.000000000000000020 }; static cheb_series psi_cs = { psics_data, 22, -1, 1, 17 }; static double apsics_data[16] = { -.0204749044678185, -.0101801271534859, .0000559718725387, -.0000012917176570, .0000000572858606, -.0000000038213539, .0000000003397434, -.0000000000374838, .0000000000048990, -.0000000000007344, .0000000000001233, -.0000000000000228, .0000000000000045, -.0000000000000009, .0000000000000002, -.0000000000000000 }; static cheb_series apsi_cs = { apsics_data, 15, -1, 1, 9 }; #define PSI_TABLE_NMAX 100 static double psi_table[PSI_TABLE_NMAX+1] = { 0.0, /* Infinity */ /* psi(0) */ -M_EULER, /* psi(1) */ 0.42278433509846713939348790992, /* ... */ 0.92278433509846713939348790992, 1.25611766843180047272682124325, 1.50611766843180047272682124325, 1.70611766843180047272682124325, 1.87278433509846713939348790992, 2.01564147795560999653634505277, 2.14064147795560999653634505277, 2.25175258906672110764745616389, 2.35175258906672110764745616389, 2.44266167997581201673836525479, 2.52599501330914535007169858813, 2.60291809023222227314862166505, 2.67434666166079370172005023648, 2.74101332832746036838671690315, 2.80351332832746036838671690315, 2.86233685773922507426906984432, 2.91789241329478062982462539988, 2.97052399224214905087725697883, 3.02052399224214905087725697883, 3.06814303986119666992487602645, 3.11359758531574212447033057190, 3.15707584618530734186163491973, 3.1987425128519740085283015864, 3.2387425128519740085283015864, 3.2772040513135124700667631249, 3.3142410883505495071038001619, 3.3499553740648352213895144476, 3.3844381326855248765619282407, 3.4177714660188582098952615740, 3.4500295305349872421533260902, 3.4812795305349872421533260902, 3.5115825608380175451836291205, 3.5409943255438998981248055911, 3.5695657541153284695533770196, 3.5973435318931062473311547974, 3.6243705589201332743581818244, 3.6506863483938174848844976139, 3.6763273740348431259101386396, 3.7013273740348431259101386396, 3.7257176179372821503003825420, 3.7495271417468059598241920658, 3.7727829557002943319172153216, 3.7955102284275670591899425943, 3.8177324506497892814121648166, 3.8394715810845718901078169905, 3.8607481768292527411716467777, 3.8815815101625860745049801110, 3.9019896734278921969539597029, 3.9219896734278921969539597029, 3.9415975165651470989147440166, 3.9608282857959163296839747858, 3.9796962103242182164764276160, 3.9982147288427367349949461345, 4.0163965470245549168131279527, 4.0342536898816977739559850956, 4.0517975495308205809735289552, 4.0690389288411654085597358518, 4.0859880813835382899156680552, 4.1026547480502049565823347218, 4.1190481906731557762544658694, 4.1351772229312202923834981274, 4.1510502388042361653993711433, 4.1666752388042361653993711433, 4.1820598541888515500147557587, 4.1972113693403667015299072739, 4.2121367424746950597388624977, 4.2268426248276362362094507330, 4.2413353784508246420065521823, 4.2556210927365389277208378966, 4.2697055997787924488475984600, 4.2835944886676813377364873489, 4.2972931188046676391063503626, 4.3108066323181811526198638761, 4.3241399656515144859531972094, 4.3372978603883565912163551041, 4.3502848733753695782293421171, 4.3631053861958823987421626300, 4.3757636140439836645649474401, 4.3882636140439836645649474401, 4.4006092930563293435772931191, 4.4128044150075488557724150703, 4.4248526077786331931218126607, 4.4367573696833950978837174226, 4.4485220755657480390601880108, 4.4601499825424922251066996387, 4.4716442354160554434975042364, 4.4830078717796918071338678728, 4.4942438268358715824147667492, 4.5053549379469826935258778603, 4.5163439489359936825368668713, 4.5272135141533849868846929582, 4.5379662023254279976373811303, 4.5486045001977684231692960239, 4.5591308159872421073798223397, 4.5695474826539087740464890064, 4.5798567610044242379640147796, 4.5900608426370772991885045755, 4.6001618527380874001986055856 }; #define PSI_1_TABLE_NMAX 100 static double psi_1_table[PSI_1_TABLE_NMAX+1] = { 0.0, /* Infinity */ /* psi(1,0) */ M_PI*M_PI/6.0, /* psi(1,1) */ 0.644934066848226436472415, /* ... */ 0.394934066848226436472415, 0.2838229557371153253613041, 0.2213229557371153253613041, 0.1813229557371153253613041, 0.1535451779593375475835263, 0.1331370146940314251345467, 0.1175120146940314251345467, 0.1051663356816857461222010, 0.0951663356816857461222010, 0.0869018728717683907503002, 0.0799574284273239463058557, 0.0740402686640103368384001, 0.0689382278476838062261552, 0.0644937834032393617817108, 0.0605875334032393617817108, 0.0571273257907826143768665, 0.0540409060376961946237801, 0.0512708229352031198315363, 0.0487708229352031198315363, 0.0465032492390579951149830, 0.0444371335365786562720078, 0.0425467743683366902984728, 0.0408106632572255791873617, 0.0392106632572255791873617, 0.0377313733163971768204978, 0.0363596312039143235969038, 0.0350841209998326909438426, 0.0338950603577399442137594, 0.0327839492466288331026483, 0.0317433665203020901265817, 0.03076680402030209012658168, 0.02984853037475571730748159, 0.02898347847164153045627052, 0.02816715194102928555831133, 0.02739554700275768062003973, 0.02666508681283803124093089, 0.02597256603721476254286995, 0.02531510384129102815759710, 0.02469010384129102815759710, 0.02409521984367056414807896, 0.02352832641963428296894063, 0.02298749353699501850166102, 0.02247096461137518379091722, 0.02197713745088135663042339, 0.02150454765882086513703965, 0.02105185413233829383780923, 0.02061782635456051606003145, 0.02020133322669712580597065, 0.01980133322669712580597065, 0.01941686571420193164987683, 0.01904704322899483105816086, 0.01869104465298913508094477, 0.01834810912486842177504628, 0.01801753061247172756017024, 0.01769865306145131939690494, 0.01739086605006319997554452, 0.01709360088954001329302371, 0.01680632711763538818529605, 0.01652854933985761040751827, 0.01625980437882562975715546, 0.01599965869724394401313881, 0.01574770606433893015574400, 0.01550356543933893015574400, 0.01526687904880638577704578, 0.01503731063741979257227076, 0.01481454387422086185273411, 0.01459828089844231513993134, 0.01438824099085987447620523, 0.01418415935820681325171544, 0.01398578601958352422176106, 0.01379288478501562298719316, 0.01360523231738567365335942, 0.01342261726990576130858221, 0.01324483949212798353080444, 0.01307170929822216635628920, 0.01290304679189732236910755, 0.01273868124291638877278934, 0.01257845051066194236996928, 0.01242220051066194236996928, 0.01226978472038606978956995, 0.01212106372098095378719041, 0.01197590477193174490346273, 0.01183418141592267460867815, 0.01169577311142440471248438, 0.01156056489076458859566448, 0.01142844704164317229232189, 0.01129931481023821361463594, 0.01117306812421372175754719, 0.01104961133409026496742374, 0.01092885297157366069257770, 0.01081070552355853781923177, 0.01069508522063334415522437, 0.01058191183901270133041676, 0.01047110851491297833872701, 0.01036260157046853389428257, 0.01025632035036012704977199, /* ... */ 0.01015219706839427948625679, /* psi(1,99) */ 0.01005016666333357139524567 /* psi(1,100) */ }; /* digamma for x both positive and negative; we do both * cases here because of the way we use even/odd parts * of the function */ static int psi_x(const double x, gsl_sf_result * result) { const double y = fabs(x); if(x == 0.0 || x == -1.0 || x == -2.0) { DOMAIN_ERROR(result); } else if(y >= 2.0) { const double t = 8.0/(y*y)-1.0; gsl_sf_result result_c; cheb_eval_e(&apsi_cs, t, &result_c); if(x < 0.0) { const double s = sin(M_PI*x); const double c = cos(M_PI*x); if(fabs(s) < 2.0*GSL_SQRT_DBL_MIN) { DOMAIN_ERROR(result); } else { result->val = log(y) - 0.5/x + result_c.val - M_PI * c/s; result->err = M_PI*fabs(x)*GSL_DBL_EPSILON/(s*s); result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } else { result->val = log(y) - 0.5/x + result_c.val; result->err = result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } else { /* -2 < x < 2 */ gsl_sf_result result_c; if(x < -1.0) { /* x = -2 + v */ const double v = x + 2.0; const double t1 = 1.0/x; const double t2 = 1.0/(x+1.0); const double t3 = 1.0/v; cheb_eval_e(&psi_cs, 2.0*v-1.0, &result_c); result->val = -(t1 + t2 + t3) + result_c.val; result->err = GSL_DBL_EPSILON * (fabs(t1) + fabs(x/(t2*t2)) + fabs(x/(t3*t3))); result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 0.0) { /* x = -1 + v */ const double v = x + 1.0; const double t1 = 1.0/x; const double t2 = 1.0/v; cheb_eval_e(&psi_cs, 2.0*v-1.0, &result_c); result->val = -(t1 + t2) + result_c.val; result->err = GSL_DBL_EPSILON * (fabs(t1) + fabs(x/(t2*t2))); result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0) { /* x = v */ const double t1 = 1.0/x; cheb_eval_e(&psi_cs, 2.0*x-1.0, &result_c); result->val = -t1 + result_c.val; result->err = GSL_DBL_EPSILON * t1; result->err += result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* x = 1 + v */ const double v = x - 1.0; return cheb_eval_e(&psi_cs, 2.0*v-1.0, result); } } } /* psi(z) for large |z| in the right half-plane; [Abramowitz + Stegun, 6.3.18] */ static gsl_complex psi_complex_asymp(gsl_complex z) { /* coefficients in the asymptotic expansion for large z; * let w = z^(-2) and write the expression in the form * * ln(z) - 1/(2z) - 1/12 w (1 + c1 w + c2 w + c3 w + ... ) */ static const double c1 = -0.1; static const double c2 = 1.0/21.0; static const double c3 = -0.05; gsl_complex zi = gsl_complex_inverse(z); gsl_complex w = gsl_complex_mul(zi, zi); gsl_complex cs; /* Horner method evaluation of term in parentheses */ gsl_complex sum; sum = gsl_complex_mul_real(w, c3/c2); sum = gsl_complex_add_real(sum, 1.0); sum = gsl_complex_mul_real(sum, c2/c1); sum = gsl_complex_mul(sum, w); sum = gsl_complex_add_real(sum, 1.0); sum = gsl_complex_mul_real(sum, c1); sum = gsl_complex_mul(sum, w); sum = gsl_complex_add_real(sum, 1.0); /* correction added to log(z) */ cs = gsl_complex_mul(sum, w); cs = gsl_complex_mul_real(cs, -1.0/12.0); cs = gsl_complex_add(cs, gsl_complex_mul_real(zi, -0.5)); return gsl_complex_add(gsl_complex_log(z), cs); } /* psi(z) for complex z in the right half-plane */ static int psi_complex_rhp( gsl_complex z, gsl_sf_result * result_re, gsl_sf_result * result_im ) { int n_recurse = 0; int i; gsl_complex a; if(GSL_REAL(z) == 0.0 && GSL_IMAG(z) == 0.0) { result_re->val = 0.0; result_im->val = 0.0; result_re->err = 0.0; result_im->err = 0.0; return GSL_EDOM; } /* compute the number of recurrences to apply */ if(GSL_REAL(z) < 20.0 && fabs(GSL_IMAG(z)) < 20.0) { const double sp = sqrt(20.0 + GSL_IMAG(z)); const double sn = sqrt(20.0 - GSL_IMAG(z)); const double rhs = sp*sn - GSL_REAL(z); if(rhs > 0.0) n_recurse = ceil(rhs); } /* compute asymptotic at the large value z + n_recurse */ a = psi_complex_asymp(gsl_complex_add_real(z, n_recurse)); result_re->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(a)); result_im->err = 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(a)); /* descend recursively, if necessary */ for(i = n_recurse; i >= 1; --i) { gsl_complex zn = gsl_complex_add_real(z, i - 1.0); gsl_complex zn_inverse = gsl_complex_inverse(zn); a = gsl_complex_sub(a, zn_inverse); /* accumulate the error, to catch cancellations */ result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_REAL(zn_inverse)); result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(GSL_IMAG(zn_inverse)); } result_re->val = GSL_REAL(a); result_im->val = GSL_IMAG(a); result_re->err += 2.0 * GSL_DBL_EPSILON * fabs(result_re->val); result_im->err += 2.0 * GSL_DBL_EPSILON * fabs(result_im->val); return GSL_SUCCESS; } /* generic polygamma; assumes n >= 0 and x > 0 */ static int psi_n_xg0(const int n, const double x, gsl_sf_result * result) { if(n == 0) { return gsl_sf_psi_e(x, result); } else { /* Abramowitz + Stegun 6.4.10 */ gsl_sf_result ln_nf; gsl_sf_result hzeta; int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta); int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf); int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err, hzeta.val, hzeta.err, result); if(GSL_IS_EVEN(n)) result->val = -result->val; return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_psi_int_e(const int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n <= 0) { DOMAIN_ERROR(result); } else if(n <= PSI_TABLE_NMAX) { result->val = psi_table[n]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* Abramowitz+Stegun 6.3.18 */ const double c2 = -1.0/12.0; const double c3 = 1.0/120.0; const double c4 = -1.0/252.0; const double c5 = 1.0/240.0; const double ni2 = (1.0/n)*(1.0/n); const double ser = ni2 * (c2 + ni2 * (c3 + ni2 * (c4 + ni2*c5))); result->val = log(n) - 0.5/n + ser; result->err = GSL_DBL_EPSILON * (fabs(log(n)) + fabs(0.5/n) + fabs(ser)); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_psi_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ return psi_x(x, result); } int gsl_sf_psi_1piy_e(const double y, gsl_sf_result * result) { const double ay = fabs(y); /* CHECK_POINTER(result) */ if(ay > 1000.0) { /* [Abramowitz+Stegun, 6.3.19] */ const double yi2 = 1.0/(ay*ay); const double lny = log(ay); const double sum = yi2 * (1.0/12.0 + 1.0/120.0 * yi2 + 1.0/252.0 * yi2*yi2); result->val = lny + sum; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum)); return GSL_SUCCESS; } else if(ay > 10.0) { /* [Abramowitz+Stegun, 6.3.19] */ const double yi2 = 1.0/(ay*ay); const double lny = log(ay); const double sum = yi2 * (1.0/12.0 + yi2 * (1.0/120.0 + yi2 * (1.0/252.0 + yi2 * (1.0/240.0 + yi2 * (1.0/132.0 + 691.0/32760.0 * yi2))))); result->val = lny + sum; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lny) + fabs(sum)); return GSL_SUCCESS; } else if(ay > 1.0){ const double y2 = ay*ay; const double x = (2.0*ay - 11.0)/9.0; const double v = y2*(1.0/(1.0+y2) + 0.5/(4.0+y2)); gsl_sf_result result_c; cheb_eval_e(&r1py_cs, x, &result_c); result->val = result_c.val - M_EULER + v; result->err = result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(v) + M_EULER + fabs(result_c.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= 5.0; /* FIXME: losing a digit somewhere... maybe at x=... ? */ return GSL_SUCCESS; } else { /* [Abramowitz+Stegun, 6.3.17] * * -M_EULER + y^2 Sum[1/n 1/(n^2 + y^2), {n,1,M}] * + Sum[1/n^3, {n,M+1,Infinity}] * - y^2 Sum[1/n^5, {n,M+1,Infinity}] * + y^4 Sum[1/n^7, {n,M+1,Infinity}] * - y^6 Sum[1/n^9, {n,M+1,Infinity}] * + O(y^8) * * We take M=50 for at least 15 digit precision. */ const int M = 50; const double y2 = y*y; const double c0 = 0.00019603999466879846570; const double c2 = 3.8426659205114376860e-08; const double c4 = 1.0041592839497643554e-11; const double c6 = 2.9516743763500191289e-15; const double p = c0 + y2 *(-c2 + y2*(c4 - y2*c6)); double sum = 0.0; double v; int n; for(n=1; n<=M; n++) { sum += 1.0/(n * (n*n + y*y)); } v = y2 * (sum + p); result->val = -M_EULER + v; result->err = GSL_DBL_EPSILON * (M_EULER + fabs(v)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_psi_1_int_e(const int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n <= 0) { DOMAIN_ERROR(result); } else if(n <= PSI_1_TABLE_NMAX) { result->val = psi_1_table[n]; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { /* Abramowitz+Stegun 6.4.12 * double-precision for n > 100 */ const double c0 = -1.0/30.0; const double c1 = 1.0/42.0; const double c2 = -1.0/30.0; const double ni2 = (1.0/n)*(1.0/n); const double ser = ni2*ni2 * (c0 + ni2*(c1 + c2*ni2)); result->val = (1.0 + 0.5/n + 1.0/(6.0*n*n) + ser) / n; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } } int gsl_sf_psi_1_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.0 || x == -1.0 || x == -2.0) { DOMAIN_ERROR(result); } else if(x > 0.0) { return psi_n_xg0(1, x, result); } else if(x > -5.0) { /* Abramowitz + Stegun 6.4.6 */ int M = -floor(x); double fx = x + M; double sum = 0.0; int m; if(fx == 0.0) DOMAIN_ERROR(result); for(m = 0; m < M; ++m) sum += 1.0/((x+m)*(x+m)); { int stat_psi = psi_n_xg0(1, fx, result); result->val += sum; result->err += M * GSL_DBL_EPSILON * sum; return stat_psi; } } else { /* Abramowitz + Stegun 6.4.7 */ const double sin_px = sin(M_PI * x); const double d = M_PI*M_PI/(sin_px*sin_px); gsl_sf_result r; int stat_psi = psi_n_xg0(1, 1.0-x, &r); result->val = d - r.val; result->err = r.err + 2.0*GSL_DBL_EPSILON*d; return stat_psi; } } int gsl_sf_psi_n_e(const int n, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n == 0) { return gsl_sf_psi_e(x, result); } else if(n == 1) { return gsl_sf_psi_1_e(x, result); } else if(n < 0 || x <= 0.0) { DOMAIN_ERROR(result); } else { gsl_sf_result ln_nf; gsl_sf_result hzeta; int stat_hz = gsl_sf_hzeta_e(n+1.0, x, &hzeta); int stat_nf = gsl_sf_lnfact_e((unsigned int) n, &ln_nf); int stat_e = gsl_sf_exp_mult_err_e(ln_nf.val, ln_nf.err, hzeta.val, hzeta.err, result); if(GSL_IS_EVEN(n)) result->val = -result->val; return GSL_ERROR_SELECT_3(stat_e, stat_nf, stat_hz); } } int gsl_sf_complex_psi_e( const double x, const double y, gsl_sf_result * result_re, gsl_sf_result * result_im ) { if(x >= 0.0) { gsl_complex z = gsl_complex_rect(x, y); return psi_complex_rhp(z, result_re, result_im); } else { /* reflection formula [Abramowitz+Stegun, 6.3.7] */ gsl_complex z = gsl_complex_rect(x, y); gsl_complex omz = gsl_complex_rect(1.0 - x, -y); gsl_complex zpi = gsl_complex_mul_real(z, M_PI); gsl_complex cotzpi = gsl_complex_cot(zpi); int ret_val = psi_complex_rhp(omz, result_re, result_im); if(GSL_IS_REAL(GSL_REAL(cotzpi)) && GSL_IS_REAL(GSL_IMAG(cotzpi))) { result_re->val -= M_PI * GSL_REAL(cotzpi); result_im->val -= M_PI * GSL_IMAG(cotzpi); return ret_val; } else { GSL_ERROR("singularity", GSL_EDOM); } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_psi_int(const int n) { EVAL_RESULT(gsl_sf_psi_int_e(n, &result)); } double gsl_sf_psi(const double x) { EVAL_RESULT(gsl_sf_psi_e(x, &result)); } double gsl_sf_psi_1piy(const double x) { EVAL_RESULT(gsl_sf_psi_1piy_e(x, &result)); } double gsl_sf_psi_1_int(const int n) { EVAL_RESULT(gsl_sf_psi_1_int_e(n, &result)); } double gsl_sf_psi_1(const double x) { EVAL_RESULT(gsl_sf_psi_1_e(x, &result)); } double gsl_sf_psi_n(const int n, const double x) { EVAL_RESULT(gsl_sf_psi_n_e(n, x, &result)); } gsl-1.16/specfunc/bessel_Y1.c0000664000252300025230000001012112171574312012745 00000000000000/* specfunc/bessel_Y1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_amp_phase.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besy1, 1977 version, w. fullerton */ /* chebyshev expansions series for by1 on the interval 0. to 1.60000d+01 with weighted error 1.87e-18 log weighted error 17.73 significant figures required 17.83 decimal places required 18.30 */ static double by1_data[14] = { 0.03208047100611908629, 1.262707897433500450, 0.00649996189992317500, -0.08936164528860504117, 0.01325088122175709545, -0.00089790591196483523, 0.00003647361487958306, -0.00000100137438166600, 0.00000001994539657390, -0.00000000030230656018, 0.00000000000360987815, -0.00000000000003487488, 0.00000000000000027838, -0.00000000000000000186 }; static cheb_series by1_cs = { by1_data, 13, -1, 1, 10 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Y1_e(const double x, gsl_sf_result * result) { const double two_over_pi = 2.0/M_PI; const double xmin = 1.571*GSL_DBL_MIN; /*exp ( amax1(alog(r1mach(1)), -alog(r1mach(2)))+.01) */ const double x_small = 2.0 * GSL_SQRT_DBL_EPSILON; const double xmax = 1.0/GSL_DBL_EPSILON; /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < xmin) { OVERFLOW_ERROR(result); } else if(x < x_small) { const double lnterm = log(0.5*x); gsl_sf_result J1; gsl_sf_result c; int status = gsl_sf_bessel_J1_e(x, &J1); cheb_eval_e(&by1_cs, -1.0, &c); result->val = two_over_pi * lnterm * J1.val + (0.5 + c.val)/x; result->err = fabs(lnterm) * (fabs(GSL_DBL_EPSILON * J1.val) + J1.err) + c.err/x; return status; } else if(x < 4.0) { const double lnterm = log(0.5*x); int status; gsl_sf_result J1; gsl_sf_result c; cheb_eval_e(&by1_cs, 0.125*x*x-1.0, &c); status = gsl_sf_bessel_J1_e(x, &J1); result->val = two_over_pi * lnterm * J1.val + (0.5 + c.val)/x; result->err = fabs(lnterm) * (fabs(GSL_DBL_EPSILON * J1.val) + J1.err) + c.err/x; return status; } else if(x < xmax) { const double z = 32.0/(x*x) - 1.0; gsl_sf_result ca; gsl_sf_result ct; gsl_sf_result cp; const int stat_ca = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm1_cs, z, &ca); const int stat_ct = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth1_cs, z, &ct); const int stat_cp = gsl_sf_bessel_cos_pi4_e(x, ct.val/x, &cp); const double sqrtx = sqrt(x); const double ampl = (0.75 + ca.val) / sqrtx; result->val = -ampl * cp.val; result->err = fabs(cp.val) * ca.err/sqrtx + fabs(ampl) * cp.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_ca, stat_ct, stat_cp); } else { UNDERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Y1(const double x) { EVAL_RESULT(gsl_sf_bessel_Y1_e(x, &result)); } gsl-1.16/specfunc/gsl_sf_result.h0000664000252300025230000000305112171574312014003 00000000000000/* specfunc/gsl_sf_result.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_RESULT_H__ #define __GSL_SF_RESULT_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_sf_result_struct { double val; double err; }; typedef struct gsl_sf_result_struct gsl_sf_result; #define GSL_SF_RESULT_SET(r,v,e) do { (r)->val=(v); (r)->err=(e); } while(0) struct gsl_sf_result_e10_struct { double val; double err; int e10; }; typedef struct gsl_sf_result_e10_struct gsl_sf_result_e10; int gsl_sf_result_smash_e(const gsl_sf_result_e10 * re, gsl_sf_result * r); __END_DECLS #endif /* __GSL_SF_RESULT_H__ */ gsl-1.16/specfunc/gsl_sf_debye.h0000664000252300025230000000437712171574312013571 00000000000000/* specfunc/gsl_sf_debye.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* augmented by D_5(x) and D_6(x) by Richard J. Mathar, 2005-11-08 */ #ifndef __GSL_SF_DEBYE_H__ #define __GSL_SF_DEBYE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* D_n(x) := n/x^n Integrate[t^n/(e^t - 1), {t,0,x}] */ /* D_1(x) * * exceptions: GSL_EDOM */ int gsl_sf_debye_1_e(const double x, gsl_sf_result * result); double gsl_sf_debye_1(const double x); /* D_2(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_debye_2_e(const double x, gsl_sf_result * result); double gsl_sf_debye_2(const double x); /* D_3(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_debye_3_e(const double x, gsl_sf_result * result); double gsl_sf_debye_3(const double x); /* D_4(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_debye_4_e(const double x, gsl_sf_result * result); double gsl_sf_debye_4(const double x); /* D_5(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_debye_5_e(const double x, gsl_sf_result * result); double gsl_sf_debye_5(const double x); /* D_6(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_debye_6_e(const double x, gsl_sf_result * result); double gsl_sf_debye_6(const double x); __END_DECLS #endif /* __GSL_SF_DEBYE_H__ */ gsl-1.16/specfunc/transport.c0000664000252300025230000003104212171574312013160 00000000000000/* specfunc/transport.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" static double transport2_data[18] = { 1.671760446434538503, -0.147735359946794490, 0.148213819946936338e-01, -0.14195330326305613e-02, 0.1306541324415708e-03, -0.117155795867579e-04, 0.10333498445756e-05, -0.901911304223e-07, 0.78177169833e-08, -0.6744565684e-09, 0.579946394e-10, -0.49747619e-11, 0.425961e-12, -0.36422e-13, 0.3111e-14, -0.265e-15, 0.23e-16, -0.19e-17 }; static cheb_series transport2_cs = { transport2_data, 17, -1, 1, 9 }; static double transport3_data[18] = { 0.762012543243872007, -0.105674387705058533, 0.119778084819657810e-01, -0.12144015203698307e-02, 0.1155099769392855e-03, -0.105815992124423e-04, 0.9474663385302e-06, -0.836221212858e-07, 0.73109099278e-08, -0.6350594779e-09, 0.549118282e-10, -0.47321395e-11, 0.4067695e-12, -0.348971e-13, 0.29892e-14, -0.256e-15, 0.219e-16, -0.19e-17 }; static cheb_series transport3_cs = { transport3_data, 17, -1, 1, 9 }; static double transport4_data[18] = { 0.4807570994615110579, -0.8175378810321083956e-01, 0.1002700665975162973e-01, -0.10599339359820151e-02, 0.1034506245030405e-03, -0.96442705485899e-05, 0.8745544408515e-06, -0.779321207981e-07, 0.68649886141e-08, -0.5999571076e-09, 0.521366241e-10, -0.45118382e-11, 0.3892159e-12, -0.334936e-13, 0.28767e-14, -0.2467e-15, 0.211e-16, -0.18e-17 }; static cheb_series transport4_cs = { transport4_data, 17, -1, 1, 9 }; static double transport5_data[18] = { 0.347777777133910789, -0.66456988976050428e-01, 0.8611072656883309e-02, -0.9396682223755538e-03, 0.936324806081513e-04, -0.88571319340833e-05, 0.811914989145e-06, -0.72957654233e-07, 0.646971455e-08, -0.568490283e-09, 0.49625598e-10, -0.4310940e-11, 0.373100e-12, -0.32198e-13, 0.2772e-14, -0.238e-15, 0.21e-16, -0.18e-17 }; static cheb_series transport5_cs = { transport5_data, 17, -1, 1, 9 }; static double transport_sumexp(const int numexp, const int order, const double t, double x) { double rk = (double)numexp; double sumexp = 0.0; int k; for(k=1; k<=numexp; k++) { double sum2 = 1.0; double xk = 1.0/(rk*x); double xk1 = 1.0; int j; for(j=1; j<=order; j++) { sum2 = sum2*xk1*xk + 1.0; xk1 += 1.0; } sumexp *= t; sumexp += sum2; rk -= 1.0; } return sumexp; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_transport_2_e(const double x, gsl_sf_result * result) { const double val_infinity = 3.289868133696452873; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 3.0*GSL_SQRT_DBL_EPSILON) { result->val = x; result->err = GSL_DBL_EPSILON*fabs(x) + x*x/2.0; return GSL_SUCCESS; } else if(x <= 4.0) { double t = (x*x/8.0 - 0.5) - 0.5; gsl_sf_result result_c; cheb_eval_e(&transport2_cs, t, &result_c); result->val = x * result_c.val; result->err = x * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -GSL_LOG_DBL_EPSILON) { const int numexp = (int)((-GSL_LOG_DBL_EPSILON)/x) + 1; const double sumexp = transport_sumexp(numexp, 2, exp(-x), x); const double t = 2.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + fabs(t) * et); } return GSL_SUCCESS; } else if(x < 2.0/GSL_DBL_EPSILON) { const int numexp = 1; const double sumexp = transport_sumexp(numexp, 2, 1.0, x); const double t = 2.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else { const double t = 2.0 * log(x) - x; if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } } int gsl_sf_transport_3_e(const double x, gsl_sf_result * result) { const double val_infinity = 7.212341418957565712; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 3.0*GSL_SQRT_DBL_EPSILON) { result->val = 0.5*x*x; result->err = 2.0 * GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else if(x <= 4.0) { const double x2 = x*x; const double t = (x2/8.0 - 0.5) - 0.5; gsl_sf_result result_c; cheb_eval_e(&transport3_cs, t, &result_c); result->val = x2 * result_c.val; result->err = x2 * result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -GSL_LOG_DBL_EPSILON) { const int numexp = (int)((-GSL_LOG_DBL_EPSILON)/x) + 1; const double sumexp = transport_sumexp(numexp, 3, exp(-x), x); const double t = 3.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + fabs(t) * et); } return GSL_SUCCESS; } else if(x < 3.0/GSL_DBL_EPSILON) { const int numexp = 1; const double sumexp = transport_sumexp(numexp, 3, 1.0, x); const double t = 3.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else { const double t = 3.0 * log(x) - x; if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } } int gsl_sf_transport_4_e(const double x, gsl_sf_result * result) { const double val_infinity = 25.97575760906731660; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 3.0*GSL_SQRT_DBL_EPSILON) { result->val = x*x*x/3.0; result->err = 3.0 * GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else if(x <= 4.0) { const double x2 = x*x; const double t = (x2/8.0 - 0.5) - 0.5; gsl_sf_result result_c; cheb_eval_e(&transport4_cs, t, &result_c); result->val = x2*x * result_c.val; result->err = x2*x * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -GSL_LOG_DBL_EPSILON) { const int numexp = (int)((-GSL_LOG_DBL_EPSILON)/x) + 1; const double sumexp = transport_sumexp(numexp, 4, exp(-x), x); const double t = 4.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else if(x < 3.0/GSL_DBL_EPSILON) { const int numexp = 1; const double sumexp = transport_sumexp(numexp, 4, 1.0, x); const double t = 4.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else { const double t = 4.0 * log(x) - x; if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } } int gsl_sf_transport_5_e(const double x, gsl_sf_result * result) { const double val_infinity = 124.4313306172043912; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 3.0*GSL_SQRT_DBL_EPSILON) { result->val = x*x*x*x/4.0; result->err = 4.0 * GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else if(x <= 4.0) { const double x2 = x*x; const double t = (x2/8.0 - 0.5) - 0.5; gsl_sf_result result_c; cheb_eval_e(&transport5_cs, t, &result_c); result->val = x2*x2 * result_c.val; result->err = x2*x2 * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -GSL_LOG_DBL_EPSILON) { const int numexp = (int)((-GSL_LOG_DBL_EPSILON)/x) + 1; const double sumexp = transport_sumexp(numexp, 5, exp(-x), x); const double t = 5.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else if(x < 3.0/GSL_DBL_EPSILON) { const int numexp = 1; const double sumexp = transport_sumexp(numexp, 5, 1.0, x); const double t = 5.0 * log(x) - x + log(sumexp); if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } else { const double t = 5.0 * log(x) - x; if(t < GSL_LOG_DBL_EPSILON) { result->val = val_infinity; result->err = 2.0 * GSL_DBL_EPSILON * val_infinity; } else { const double et = exp(t); result->val = val_infinity - et; result->err = 2.0 * GSL_DBL_EPSILON * (val_infinity + (fabs(t)+1.0) * et); } return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_transport_2(const double x) { EVAL_RESULT(gsl_sf_transport_2_e(x, &result)); } double gsl_sf_transport_3(const double x) { EVAL_RESULT(gsl_sf_transport_3_e(x, &result)); } double gsl_sf_transport_4(const double x) { EVAL_RESULT(gsl_sf_transport_4_e(x, &result)); } double gsl_sf_transport_5(const double x) { EVAL_RESULT(gsl_sf_transport_5_e(x, &result)); } gsl-1.16/specfunc/beta.c0000664000252300025230000001151212171574312012037 00000000000000/* specfunc/beta.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" static double isnegint (const double x) { return (x < 0) && (x == floor(x)); } int gsl_sf_lnbeta_e(const double x, const double y, gsl_sf_result * result) { double sgn; int status = gsl_sf_lnbeta_sgn_e(x,y,result,&sgn); if (sgn == -1) { DOMAIN_ERROR(result); } return status; } int gsl_sf_lnbeta_sgn_e(const double x, const double y, gsl_sf_result * result, double * sgn) { /* CHECK_POINTER(result) */ if(x == 0.0 || y == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result); } else if (isnegint(x) || isnegint(y)) { *sgn = 0.0; DOMAIN_ERROR(result); /* not defined for negative integers */ } /* See if we can handle the postive case with min/max < 0.2 */ if (x > 0 && y > 0) { const double max = GSL_MAX(x,y); const double min = GSL_MIN(x,y); const double rat = min/max; if(rat < 0.2) { /* min << max, so be careful * with the subtraction */ double lnpre_val; double lnpre_err; double lnpow_val; double lnpow_err; double t1, t2, t3; gsl_sf_result lnopr; gsl_sf_result gsx, gsy, gsxy; gsl_sf_gammastar_e(x, &gsx); gsl_sf_gammastar_e(y, &gsy); gsl_sf_gammastar_e(x+y, &gsxy); gsl_sf_log_1plusx_e(rat, &lnopr); lnpre_val = log(gsx.val*gsy.val/gsxy.val * M_SQRT2*M_SQRTPI); lnpre_err = gsx.err/gsx.val + gsy.err/gsy.val + gsxy.err/gsxy.val; t1 = min*log(rat); t2 = 0.5*log(min); t3 = (x+y-0.5)*lnopr.val; lnpow_val = t1 - t2 - t3; lnpow_err = GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3)); lnpow_err += fabs(x+y-0.5) * lnopr.err; result->val = lnpre_val + lnpow_val; result->err = lnpre_err + lnpow_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *sgn = 1.0; return GSL_SUCCESS; } } /* General case - Fallback */ { gsl_sf_result lgx, lgy, lgxy; double sgx, sgy, sgxy, xy = x+y; int stat_gx = gsl_sf_lngamma_sgn_e(x, &lgx, &sgx); int stat_gy = gsl_sf_lngamma_sgn_e(y, &lgy, &sgy); int stat_gxy = gsl_sf_lngamma_sgn_e(xy, &lgxy, &sgxy); *sgn = sgx * sgy * sgxy; result->val = lgx.val + lgy.val - lgxy.val; result->err = lgx.err + lgy.err + lgxy.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(lgx.val) + fabs(lgy.val) + fabs(lgxy.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_gx, stat_gy, stat_gxy); } } int gsl_sf_beta_e(const double x, const double y, gsl_sf_result * result) { if((x > 0 && y > 0) && x < 50.0 && y < 50.0) { /* Handle the easy case */ gsl_sf_result gx, gy, gxy; gsl_sf_gamma_e(x, &gx); gsl_sf_gamma_e(y, &gy); gsl_sf_gamma_e(x+y, &gxy); result->val = (gx.val*gy.val)/gxy.val; result->err = gx.err * fabs(gy.val/gxy.val); result->err += gy.err * fabs(gx.val/gxy.val); result->err += fabs((gx.val*gy.val)/(gxy.val*gxy.val)) * gxy.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if (isnegint(x) || isnegint(y)) { DOMAIN_ERROR(result); } else if (isnegint(x+y)) { /* infinity in the denominator */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result lb; double sgn; int stat_lb = gsl_sf_lnbeta_sgn_e(x, y, &lb, &sgn); if(stat_lb == GSL_SUCCESS) { int status = gsl_sf_exp_err_e(lb.val, lb.err, result); result->val *= sgn; return status; } else { result->val = 0.0; result->err = 0.0; return stat_lb; } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_lnbeta(const double x, const double y) { EVAL_RESULT(gsl_sf_lnbeta_e(x, y, &result)); } double gsl_sf_beta(const double x, const double y) { EVAL_RESULT(gsl_sf_beta_e(x, y, &result)); } gsl-1.16/specfunc/gamma.c0000664000252300025230000016652512171574312012225 00000000000000/* specfunc/gamma.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" #define LogRootTwoPi_ 0.9189385332046727418 /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ static struct {int n; double f; long i; } fact_table[GSL_SF_FACT_NMAX + 1] = { { 0, 1.0, 1L }, { 1, 1.0, 1L }, { 2, 2.0, 2L }, { 3, 6.0, 6L }, { 4, 24.0, 24L }, { 5, 120.0, 120L }, { 6, 720.0, 720L }, { 7, 5040.0, 5040L }, { 8, 40320.0, 40320L }, { 9, 362880.0, 362880L }, { 10, 3628800.0, 3628800L }, { 11, 39916800.0, 39916800L }, { 12, 479001600.0, 479001600L }, { 13, 6227020800.0, 0 }, { 14, 87178291200.0, 0 }, { 15, 1307674368000.0, 0 }, { 16, 20922789888000.0, 0 }, { 17, 355687428096000.0, 0 }, { 18, 6402373705728000.0, 0 }, { 19, 121645100408832000.0, 0 }, { 20, 2432902008176640000.0, 0 }, { 21, 51090942171709440000.0, 0 }, { 22, 1124000727777607680000.0, 0 }, { 23, 25852016738884976640000.0, 0 }, { 24, 620448401733239439360000.0, 0 }, { 25, 15511210043330985984000000.0, 0 }, { 26, 403291461126605635584000000.0, 0 }, { 27, 10888869450418352160768000000.0, 0 }, { 28, 304888344611713860501504000000.0, 0 }, { 29, 8841761993739701954543616000000.0, 0 }, { 30, 265252859812191058636308480000000.0, 0 }, { 31, 8222838654177922817725562880000000.0, 0 }, { 32, 263130836933693530167218012160000000.0, 0 }, { 33, 8683317618811886495518194401280000000.0, 0 }, { 34, 2.95232799039604140847618609644e38, 0 }, { 35, 1.03331479663861449296666513375e40, 0 }, { 36, 3.71993326789901217467999448151e41, 0 }, { 37, 1.37637530912263450463159795816e43, 0 }, { 38, 5.23022617466601111760007224100e44, 0 }, { 39, 2.03978820811974433586402817399e46, 0 }, { 40, 8.15915283247897734345611269600e47, 0 }, { 41, 3.34525266131638071081700620534e49, 0 }, { 42, 1.40500611775287989854314260624e51, 0 }, { 43, 6.04152630633738356373551320685e52, 0 }, { 44, 2.65827157478844876804362581101e54, 0 }, { 45, 1.19622220865480194561963161496e56, 0 }, { 46, 5.50262215981208894985030542880e57, 0 }, { 47, 2.58623241511168180642964355154e59, 0 }, { 48, 1.24139155925360726708622890474e61, 0 }, { 49, 6.08281864034267560872252163321e62, 0 }, { 50, 3.04140932017133780436126081661e64, 0 }, { 51, 1.55111875328738228022424301647e66, 0 }, { 52, 8.06581751709438785716606368564e67, 0 }, { 53, 4.27488328406002556429801375339e69, 0 }, { 54, 2.30843697339241380472092742683e71, 0 }, { 55, 1.26964033536582759259651008476e73, 0 }, { 56, 7.10998587804863451854045647464e74, 0 }, { 57, 4.05269195048772167556806019054e76, 0 }, { 58, 2.35056133128287857182947491052e78, 0 }, { 59, 1.38683118545689835737939019720e80, 0 }, { 60, 8.32098711274139014427634118320e81, 0 }, { 61, 5.07580213877224798800856812177e83, 0 }, { 62, 3.14699732603879375256531223550e85, 0 }, { 63, 1.982608315404440064116146708360e87, 0 }, { 64, 1.268869321858841641034333893350e89, 0 }, { 65, 8.247650592082470666723170306800e90, 0 }, { 66, 5.443449390774430640037292402480e92, 0 }, { 67, 3.647111091818868528824985909660e94, 0 }, { 68, 2.480035542436830599600990418570e96, 0 }, { 69, 1.711224524281413113724683388810e98, 0 }, { 70, 1.197857166996989179607278372170e100, 0 }, { 71, 8.504785885678623175211676442400e101, 0 }, { 72, 6.123445837688608686152407038530e103, 0 }, { 73, 4.470115461512684340891257138130e105, 0 }, { 74, 3.307885441519386412259530282210e107, 0 }, { 75, 2.480914081139539809194647711660e109, 0 }, { 76, 1.885494701666050254987932260860e111, 0 }, { 77, 1.451830920282858696340707840860e113, 0 }, { 78, 1.132428117820629783145752115870e115, 0 }, { 79, 8.946182130782975286851441715400e116, 0 }, { 80, 7.156945704626380229481153372320e118, 0 }, { 81, 5.797126020747367985879734231580e120, 0 }, { 82, 4.753643337012841748421382069890e122, 0 }, { 83, 3.945523969720658651189747118010e124, 0 }, { 84, 3.314240134565353266999387579130e126, 0 }, { 85, 2.817104114380550276949479442260e128, 0 }, { 86, 2.422709538367273238176552320340e130, 0 }, { 87, 2.107757298379527717213600518700e132, 0 }, { 88, 1.854826422573984391147968456460e134, 0 }, { 89, 1.650795516090846108121691926250e136, 0 }, { 90, 1.485715964481761497309522733620e138, 0 }, { 91, 1.352001527678402962551665687590e140, 0 }, { 92, 1.243841405464130725547532432590e142, 0 }, { 93, 1.156772507081641574759205162310e144, 0 }, { 94, 1.087366156656743080273652852570e146, 0 }, { 95, 1.032997848823905926259970209940e148, 0 }, { 96, 9.916779348709496892095714015400e149, 0 }, { 97, 9.619275968248211985332842594960e151, 0 }, { 98, 9.426890448883247745626185743100e153, 0 }, { 99, 9.332621544394415268169923885600e155, 0 }, { 100, 9.33262154439441526816992388563e157, 0 }, { 101, 9.42594775983835942085162312450e159, 0 }, { 102, 9.61446671503512660926865558700e161, 0 }, { 103, 9.90290071648618040754671525458e163, 0 }, { 104, 1.02990167451456276238485838648e166, 0 }, { 105, 1.08139675824029090050410130580e168, 0 }, { 106, 1.146280563734708354534347384148e170, 0 }, { 107, 1.226520203196137939351751701040e172, 0 }, { 108, 1.324641819451828974499891837120e174, 0 }, { 109, 1.443859583202493582204882102460e176, 0 }, { 110, 1.588245541522742940425370312710e178, 0 }, { 111, 1.762952551090244663872161047110e180, 0 }, { 112, 1.974506857221074023536820372760e182, 0 }, { 113, 2.231192748659813646596607021220e184, 0 }, { 114, 2.543559733472187557120132004190e186, 0 }, { 115, 2.925093693493015690688151804820e188, 0 }, { 116, 3.393108684451898201198256093590e190, 0 }, { 117, 3.96993716080872089540195962950e192, 0 }, { 118, 4.68452584975429065657431236281e194, 0 }, { 119, 5.57458576120760588132343171174e196, 0 }, { 120, 6.68950291344912705758811805409e198, 0 }, { 121, 8.09429852527344373968162284545e200, 0 }, { 122, 9.87504420083360136241157987140e202, 0 }, { 123, 1.21463043670253296757662432419e205, 0 }, { 124, 1.50614174151114087979501416199e207, 0 }, { 125, 1.88267717688892609974376770249e209, 0 }, { 126, 2.37217324288004688567714730514e211, 0 }, { 127, 3.01266001845765954480997707753e213, 0 }, { 128, 3.85620482362580421735677065923e215, 0 }, { 129, 4.97450422247728744039023415041e217, 0 }, { 130, 6.46685548922047367250730439554e219, 0 }, { 131, 8.47158069087882051098456875820e221, 0 }, { 132, 1.11824865119600430744996307608e224, 0 }, { 133, 1.48727070609068572890845089118e226, 0 }, { 134, 1.99294274616151887673732419418e228, 0 }, { 135, 2.69047270731805048359538766215e230, 0 }, { 136, 3.65904288195254865768972722052e232, 0 }, { 137, 5.01288874827499166103492629211e234, 0 }, { 138, 6.91778647261948849222819828311e236, 0 }, { 139, 9.61572319694108900419719561353e238, 0 }, { 140, 1.34620124757175246058760738589e241, 0 }, { 141, 1.89814375907617096942852641411e243, 0 }, { 142, 2.69536413788816277658850750804e245, 0 }, { 143, 3.85437071718007277052156573649e247, 0 }, { 144, 5.55029383273930478955105466055e249, 0 }, { 145, 8.04792605747199194484902925780e251, 0 }, { 146, 1.17499720439091082394795827164e254, 0 }, { 147, 1.72724589045463891120349865931e256, 0 }, { 148, 2.55632391787286558858117801578e258, 0 }, { 149, 3.80892263763056972698595524351e260, 0 }, { 150, 5.71338395644585459047893286526e262, 0 }, { 151, 8.62720977423324043162318862650e264, 0 }, { 152, 1.31133588568345254560672467123e267, 0 }, { 153, 2.00634390509568239477828874699e269, 0 }, { 154, 3.08976961384735088795856467036e271, 0 }, { 155, 4.78914290146339387633577523906e273, 0 }, { 156, 7.47106292628289444708380937294e275, 0 }, { 157, 1.17295687942641442819215807155e278, 0 }, { 158, 1.85327186949373479654360975305e280, 0 }, { 159, 2.94670227249503832650433950735e282, 0 }, { 160, 4.71472363599206132240694321176e284, 0 }, { 161, 7.59070505394721872907517857094e286, 0 }, { 162, 1.22969421873944943411017892849e289, 0 }, { 163, 2.00440157654530257759959165344e291, 0 }, { 164, 3.28721858553429622726333031164e293, 0 }, { 165, 5.42391066613158877498449501421e295, 0 }, { 166, 9.00369170577843736647426172359e297, 0 }, { 167, 1.50361651486499904020120170784e300, 0 }, { 168, 2.52607574497319838753801886917e302, 0 }, { 169, 4.26906800900470527493925188890e304, 0 }, { 170, 7.25741561530799896739672821113e306, 0 }, /* { 171, 1.24101807021766782342484052410e309, 0 }, { 172, 2.13455108077438865629072570146e311, 0 }, { 173, 3.69277336973969237538295546352e313, 0 }, { 174, 6.42542566334706473316634250653e315, 0 }, { 175, 1.12444949108573632830410993864e318, 0 }, { 176, 1.97903110431089593781523349201e320, 0 }, { 177, 3.50288505463028580993296328086e322, 0 }, { 178, 6.23513539724190874168067463993e324, 0 }, { 179, 1.11608923610630166476084076055e327, 0 }, { 180, 2.00896062499134299656951336898e329, 0 }, { 181, 3.63621873123433082379081919786e331, 0 }, { 182, 6.61791809084648209929929094011e333, 0 }, { 183, 1.21107901062490622417177024204e336, 0 }, { 184, 2.22838537954982745247605724535e338, 0 }, { 185, 4.12251295216718078708070590390e340, 0 }, { 186, 7.66787409103095626397011298130e342, 0 }, { 187, 1.43389245502278882136241112750e345, 0 }, { 188, 2.69571781544284298416133291969e347, 0 }, { 189, 5.09490667118697324006491921822e349, 0 }, { 190, 9.68032267525524915612334651460e351, 0 }, { 191, 1.84894163097375258881955918429e354, 0 }, { 192, 3.54996793146960497053355363384e356, 0 }, { 193, 6.85143810773633759312975851330e358, 0 }, { 194, 1.32917899290084949306717315158e361, 0 }, { 195, 2.59189903615665651148098764559e363, 0 }, { 196, 5.08012211086704676250273578535e365, 0 }, { 197, 1.00078405584080821221303894971e368, 0 }, { 198, 1.98155243056480026018181712043e370, 0 }, { 199, 3.94328933682395251776181606966e372, 0 }, { 200, 7.88657867364790503552363213932e374, 0 } */ }; static struct {int n; double f; long i; } doub_fact_table[GSL_SF_DOUBLEFACT_NMAX + 1] = { { 0, 1.000000000000000000000000000, 1L }, { 1, 1.000000000000000000000000000, 1L }, { 2, 2.000000000000000000000000000, 2L }, { 3, 3.000000000000000000000000000, 3L }, { 4, 8.000000000000000000000000000, 8L }, { 5, 15.00000000000000000000000000, 15L }, { 6, 48.00000000000000000000000000, 48L }, { 7, 105.0000000000000000000000000, 105L }, { 8, 384.0000000000000000000000000, 384L }, { 9, 945.0000000000000000000000000, 945L }, { 10, 3840.000000000000000000000000, 3840L }, { 11, 10395.00000000000000000000000, 10395L }, { 12, 46080.00000000000000000000000, 46080L }, { 13, 135135.0000000000000000000000, 135135L }, { 14, 645120.00000000000000000000000, 645120L }, { 15, 2.02702500000000000000000000000e6, 2027025L }, { 16, 1.03219200000000000000000000000e7, 10321920L }, { 17, 3.4459425000000000000000000000e7, 34459425L }, { 18, 1.85794560000000000000000000000e8, 185794560L }, { 19, 6.5472907500000000000000000000e8, 0 }, { 20, 3.7158912000000000000000000000e9, 0 }, { 21, 1.37493105750000000000000000000e10, 0 }, { 22, 8.1749606400000000000000000000e10, 0 }, { 23, 3.1623414322500000000000000000e11, 0 }, { 24, 1.96199055360000000000000000000e12, 0 }, { 25, 7.9058535806250000000000000000e12, 0 }, { 26, 5.1011754393600000000000000000e13, 0 }, { 27, 2.13458046676875000000000000000e14, 0 }, { 28, 1.42832912302080000000000000000e15, 0 }, { 29, 6.1902833536293750000000000000e15, 0 }, { 30, 4.2849873690624000000000000000e16, 0 }, { 31, 1.91898783962510625000000000000e17, 0 }, { 32, 1.37119595809996800000000000000e18, 0 }, { 33, 6.3326598707628506250000000000e18, 0 }, { 34, 4.6620662575398912000000000000e19, 0 }, { 35, 2.21643095476699771875000000000e20, 0 }, { 36, 1.67834385271436083200000000000e21, 0 }, { 37, 8.2007945326378915593750000000e21, 0 }, { 38, 6.3777066403145711616000000000e22, 0 }, { 39, 3.1983098677287777081562500000e23, 0 }, { 40, 2.55108265612582846464000000000e24, 0 }, { 41, 1.31130704576879886034406250000e25, 0 }, { 42, 1.07145471557284795514880000000e26, 0 }, { 43, 5.6386202968058350994794687500e26, 0 }, { 44, 4.7144007485205310026547200000e27, 0 }, { 45, 2.53737913356262579476576093750e28, 0 }, { 46, 2.16862434431944426122117120000e29, 0 }, { 47, 1.19256819277443412353990764062e30, 0 }, { 48, 1.04093968527333324538616217600e31, 0 }, { 49, 5.8435841445947272053455474391e31, 0 }, { 50, 5.2046984263666662269308108800e32, 0 }, { 51, 2.98022791374331087472622919392e33, 0 }, { 52, 2.70644318171066643800402165760e34, 0 }, { 53, 1.57952079428395476360490147278e35, 0 }, { 54, 1.46147931812375987652217169510e36, 0 }, { 55, 8.6873643685617511998269581003e36, 0 }, { 56, 8.1842841814930553085241614926e37, 0 }, { 57, 4.9517976900801981839013661172e38, 0 }, { 58, 4.7468848252659720789440136657e39, 0 }, { 59, 2.92156063714731692850180600912e40, 0 }, { 60, 2.84813089515958324736640819942e41, 0 }, { 61, 1.78215198865986332638610166557e42, 0 }, { 62, 1.76584115499894161336717308364e43, 0 }, { 63, 1.12275575285571389562324404931e44, 0 }, { 64, 1.13013833919932263255499077353e45, 0 }, { 65, 7.2979123935621403215510863205e45, 0 }, { 66, 7.4589130387155293748629391053e46, 0 }, { 67, 4.8896013036866340154392278347e47, 0 }, { 68, 5.0720608663265599749067985916e48, 0 }, { 69, 3.3738248995437774706530672060e49, 0 }, { 70, 3.5504426064285919824347590141e50, 0 }, { 71, 2.39541567867608200416367771623e51, 0 }, { 72, 2.55631867662858622735302649017e52, 0 }, { 73, 1.74865344543353986303948473285e53, 0 }, { 74, 1.89167582070515380824123960272e54, 0 }, { 75, 1.31149008407515489727961354964e55, 0 }, { 76, 1.43767362373591689426334209807e56, 0 }, { 77, 1.00984736473786927090530243322e57, 0 }, { 78, 1.12138542651401517752540683649e58, 0 }, { 79, 7.9777941814291672401518892225e58, 0 }, { 80, 8.9710834121121214202032546920e59, 0 }, { 81, 6.4620132869576254645230302702e60, 0 }, { 82, 7.3562883979319395645666688474e61, 0 }, { 83, 5.3634710281748291355541151243e62, 0 }, { 84, 6.1792822542628292342360018318e63, 0 }, { 85, 4.5589503739486047652209978556e64, 0 }, { 86, 5.3141827386660331414429615754e65, 0 }, { 87, 3.9662868253352861457422681344e66, 0 }, { 88, 4.6764808100261091644698061863e67, 0 }, { 89, 3.5299952745484046697106186396e68, 0 }, { 90, 4.2088327290234982480228255677e69, 0 }, { 91, 3.2122956998390482494366629620e70, 0 }, { 92, 3.8721261107016183881809995223e71, 0 }, { 93, 2.98743500085031487197609655470e72, 0 }, { 94, 3.6397985440595212848901395509e73, 0 }, { 95, 2.83806325080779912837729172696e74, 0 }, { 96, 3.4942066022971404334945339689e75, 0 }, { 97, 2.75292135328356515452597297515e76, 0 }, { 98, 3.4243224702511976248246432895e77, 0 }, { 99, 2.72539213975072950298071324540e78, 0 }, { 100, 3.4243224702511976248246432895e79, 0 }, { 101, 2.75264606114823679801052037785e80, 0 }, { 102, 3.4928089196562215773211361553e81, 0 }, { 103, 2.83522544298268390195083598919e82, 0 }, { 104, 3.6325212764424704404139816015e83, 0 }, { 105, 2.97698671513181809704837778865e84, 0 }, { 106, 3.8504725530290186668388204976e85, 0 }, { 107, 3.1853757851910453638417642339e86, 0 }, { 108, 4.1585103572713401601859261374e87, 0 }, { 109, 3.4720596058582394465875230149e88, 0 }, { 110, 4.5743613929984741762045187512e89, 0 }, { 111, 3.8539861625026457857121505465e90, 0 }, { 112, 5.1232847601582910773490610013e91, 0 }, { 113, 4.3550043636279897378547301176e92, 0 }, { 114, 5.8405446265804518281779295415e93, 0 }, { 115, 5.0082550181721881985329396352e94, 0 }, { 116, 6.7750317668333241206863982681e95, 0 }, { 117, 5.8596583712614601922835393732e96, 0 }, { 118, 7.9945374848633224624099499564e97, 0 }, { 119, 6.9729934618011376288174118541e98, 0 }, { 120, 9.5934449818359869548919399477e99, 0 }, { 121, 8.4373220887793765308690683435e100, 0 }, { 122, 1.17040028778399040849681667362e102, 0 }, { 123, 1.03779061691986331329689540625e103, 0 }, { 124, 1.45129635685214810653605267528e104, 0 }, { 125, 1.29723827114982914162111925781e105, 0 }, { 126, 1.82863340963370661423542637086e106, 0 }, { 127, 1.64749260436028300985882145742e107, 0 }, { 128, 2.34065076433114446622134575470e108, 0 }, { 129, 2.12526545962476508271787968008e109, 0 }, { 130, 3.04284599363048780608774948111e110, 0 }, { 131, 2.78409775210844225836042238090e111, 0 }, { 132, 4.0165567115922439040358293151e112, 0 }, { 133, 3.7028500103042282036193617666e113, 0 }, { 134, 5.3821859935336068314080112822e114, 0 }, { 135, 4.9988475139107080748861383849e115, 0 }, { 136, 7.3197729512057052907148953438e116, 0 }, { 137, 6.8484210940576700625940095873e117, 0 }, { 138, 1.01012866726638733011865555744e119, 0 }, { 139, 9.5193053207401613870056733264e119, 0 }, { 140, 1.41418013417294226216611778042e121, 0 }, { 141, 1.34222205022436275556779993902e122, 0 }, { 142, 2.00813579052557801227588724819e123, 0 }, { 143, 1.91937753182083874046195391280e124, 0 }, { 144, 2.89171553835683233767727763739e125, 0 }, { 145, 2.78309742114021617366983317355e126, 0 }, { 146, 4.2219046860009752130088253506e127, 0 }, { 147, 4.0911532090761177752946547651e128, 0 }, { 148, 6.2484189352814433152530615189e129, 0 }, { 149, 6.0958182815234154851890356000e130, 0 }, { 150, 9.3726284029221649728795922783e131, 0 }, { 151, 9.2046856051003573826354437561e132, 0 }, { 152, 1.42463951724416907587769802630e134, 0 }, { 153, 1.40831689758035467954322289468e135, 0 }, { 154, 2.19394485655602037685165496051e136, 0 }, { 155, 2.18289119124954975329199548675e137, 0 }, { 156, 3.4225539762273917878885817384e138, 0 }, { 157, 3.4271391702617931126684329142e139, 0 }, { 158, 5.4076352824392790248639591467e140, 0 }, { 159, 5.4491512807162510491428083336e141, 0 }, { 160, 8.6522164519028464397823346347e142, 0 }, { 161, 8.7731335619531641891199214170e143, 0 }, { 162, 1.40165906520826112324473821082e145, 0 }, { 163, 1.43002077059836576282654719098e146, 0 }, { 164, 2.29872086694154824212137066574e147, 0 }, { 165, 2.35953427148730350866380286512e148, 0 }, { 166, 3.8158766391229700819214753051e149, 0 }, { 167, 3.9404222333837968594685507847e150, 0 }, { 168, 6.4106727537265897376280785126e151, 0 }, { 169, 6.6593135744186166925018508262e152, 0 }, { 170, 1.08981436813352025539677334714e154, 0 }, { 171, 1.13874262122558345441781649128e155, 0 }, { 172, 1.87448071318965483928245015709e156, 0 }, { 173, 1.97002473472025937614282252992e157, 0 }, { 174, 3.2615964409499994203514632733e158, 0 }, { 175, 3.4475432857604539082499394274e159, 0 }, { 176, 5.7404097360719989798185753611e160, 0 }, { 177, 6.1021516157960034176023927864e161, 0 }, { 178, 1.02179293302081581840770641427e163, 0 }, { 179, 1.09228513922748461175082830877e164, 0 }, { 180, 1.83922727943746847313387154568e165, 0 }, { 181, 1.97703610200174714726899923887e166, 0 }, { 182, 3.3473936485761926211036462131e167, 0 }, { 183, 3.6179760666631972795022686071e168, 0 }, { 184, 6.1592043133801944228307090322e169, 0 }, { 185, 6.6932557233269149670791969232e170, 0 }, { 186, 1.14561200228871616264651187999e172, 0 }, { 187, 1.25163882026213309884380982464e173, 0 }, { 188, 2.15375056430278638577544233437e174, 0 }, { 189, 2.36559737029543155681480056857e175, 0 }, { 190, 4.0921260721752941329733404353e176, 0 }, { 191, 4.5182909772642742735162690860e177, 0 }, { 192, 7.8568820585765647353088136358e178, 0 }, { 193, 8.7203015861200493478863993359e179, 0 }, { 194, 1.52423511936385355864990984535e181, 0 }, { 195, 1.70045880929340962283784787050e182, 0 }, { 196, 2.98750083395315297495382329688e183, 0 }, { 197, 3.3499038543080169569905603049e184, 0 }, { 198, 5.9152516512272428904085701278e185, 0 }, { 199, 6.6663086700729537444112150067e186, 0 }, { 200, 1.18305033024544857808171402556e188, 0 }, { 201, 1.33992804268466370262665421635e189, 0 }, { 202, 2.38976166709580612772506233164e190, 0 }, { 203, 2.72005392664986731633210805920e191, 0 }, { 204, 4.8751138008754445005591271565e192, 0 }, { 205, 5.5761105496322279984808215214e193, 0 }, { 206, 1.00427344298034156711518019425e195, 0 }, { 207, 1.15425488377387119568553005492e196, 0 }, { 208, 2.08888876139911045959957480403e197, 0 }, { 209, 2.41239270708739079898275781478e198, 0 }, { 210, 4.3866663989381319651591070885e199, 0 }, { 211, 5.0901486119543945858536189892e200, 0 }, { 212, 9.2997327657488397661373070276e201, 0 }, { 213, 1.08420165434628604678682084470e203, 0 }, { 214, 1.99014281187025170995338370390e204, 0 }, { 215, 2.33103355684451500059166481610e205, 0 }, { 216, 4.2987084736397436934993088004e206, 0 }, { 217, 5.0583428183525975512839126509e207, 0 }, { 218, 9.3711844725346412518284931849e208, 0 }, { 219, 1.10777707721921886373117687056e210, 0 }, { 220, 2.06166058395762107540226850068e211, 0 }, { 221, 2.44818734065447368884590088393e212, 0 }, { 222, 4.5768864963859187873930360715e213, 0 }, { 223, 5.4594577696594763261263589712e214, 0 }, { 224, 1.02522257519044580837604008002e216, 0 }, { 225, 1.22837799817338217337843076851e217, 0 }, { 226, 2.31700301993040752692985058084e218, 0 }, { 227, 2.78841805585357753356903784452e219, 0 }, { 228, 5.2827668854413291614000593243e220, 0 }, { 229, 6.3854773479046925518730966640e221, 0 }, { 230, 1.21503638365150570712201364459e223, 0 }, { 231, 1.47504526736598397948268532937e224, 0 }, { 232, 2.81888441007149324052307165546e225, 0 }, { 233, 3.4368554729627426721946568174e226, 0 }, { 234, 6.5961895195672941828239876738e227, 0 }, { 235, 8.0766103614624452796574435210e228, 0 }, { 236, 1.55670072661788142714646109101e230, 0 }, { 237, 1.91415665566659953127881411447e231, 0 }, { 238, 3.7049477293505577966085773966e232, 0 }, { 239, 4.5748344070431728797563657336e233, 0 }, { 240, 8.8918745504413387118605857518e234, 0 }, { 241, 1.10253509209740466402128414180e236, 0 }, { 242, 2.15183364120680396827026175195e237, 0 }, { 243, 2.67916027379669333357172046456e238, 0 }, { 244, 5.2504740845446016825794386748e239, 0 }, { 245, 6.5639426708018986672507151382e240, 0 }, { 246, 1.29161662479797201391454191399e242, 0 }, { 247, 1.62129383968806897081092663913e243, 0 }, { 248, 3.2032092294989705945080639467e244, 0 }, { 249, 4.0370216608232917373192073314e245, 0 }, { 250, 8.0080230737474264862701598667e246, 0 }, { 251, 1.01329243686664622606712104019e248, 0 }, { 252, 2.01802181458435147454008028642e249, 0 }, { 253, 2.56362986527261495194981623168e250, 0 }, { 254, 5.1257754090442527453318039275e251, 0 }, { 255, 6.5372561564451681274720313908e252, 0 }, { 256, 1.31219850471532870280494180544e254, 0 }, { 257, 1.68007483220640820876031206743e255, 0 }, { 258, 3.3854721421655480532367498580e256, 0 }, { 259, 4.3513938154145972606892082546e257, 0 }, { 260, 8.8022275696304249384155496309e258, 0 }, { 261, 1.13571378582320988503988335446e260, 0 }, { 262, 2.30618362324317133386487400329e261, 0 }, { 263, 2.98692725671504199765489322224e262, 0 }, { 264, 6.0883247653619723214032673687e263, 0 }, { 265, 7.9153572302948612937854670389e264, 0 }, { 266, 1.61949438758628463749326912007e266, 0 }, { 267, 2.11340038048872796544071969939e267, 0 }, { 268, 4.3402449587312428284819612418e268, 0 }, { 269, 5.6850470235146782270355359914e269, 0 }, { 270, 1.17186613885743556369012953528e271, 0 }, { 271, 1.54064774337247779952663025366e272, 0 }, { 272, 3.1874758976922247332371523360e273, 0 }, { 273, 4.2059683394068643927077005925e274, 0 }, { 274, 8.7336839596766957690697974006e275, 0 }, { 275, 1.15664129333688770799461766294e277, 0 }, { 276, 2.41049677287076803226326408256e278, 0 }, { 277, 3.2038963825431789511450909263e279, 0 }, { 278, 6.7011810285807351296918741495e280, 0 }, { 279, 8.9388709072954692736948036845e281, 0 }, { 280, 1.87633068800260583631372476186e283, 0 }, { 281, 2.51182272495002686590823983534e284, 0 }, { 282, 5.2912525401673484584047038284e285, 0 }, { 283, 7.1084583116085760305203187340e286, 0 }, { 284, 1.50271572140752696218693588728e288, 0 }, { 285, 2.02591061880844416869829083919e289, 0 }, { 286, 4.2977669632255271118546366376e290, 0 }, { 287, 5.8143634759802347641640947085e291, 0 }, { 288, 1.23775688540895180821413535163e293, 0 }, { 289, 1.68035104455828784684342337075e294, 0 }, { 290, 3.5894949676859602438209925197e295, 0 }, { 291, 4.8898215396646176343143620089e296, 0 }, { 292, 1.04813253056430039119572981576e298, 0 }, { 293, 1.43271771112173296685410806860e299, 0 }, { 294, 3.08150963985904315011544565835e300, 0 }, { 295, 4.2265172478091122522196188024e301, 0 }, { 296, 9.1212685339827677243417191487e302, 0 }, { 297, 1.25527562259930633890922678431e304, 0 }, /* { 298, 2.71813802312686478185383230631e305, 0 }, { 299, 3.7532741115719259533385880851e306, 0 }, { 300, 8.1544140693805943455614969189e307, } */ }; /* Chebyshev coefficients for Gamma*(3/4(t+1)+1/2), -1val = (zr+0.5)*log1_r.val - zi*log1_i.val - (zr+7.5) + LogRootTwoPi_ + logAg_r.val; yi->val = zi*log1_r.val + (zr+0.5)*log1_i.val - zi + logAg_i.val; yr->err = 4.0 * GSL_DBL_EPSILON * fabs(yr->val); yi->err = 4.0 * GSL_DBL_EPSILON * fabs(yi->val); yi_tmp_val = yi->val; yi_tmp_err = yi->err; gsl_sf_angle_restrict_symm_err_e(yi_tmp_val, yi); yi->err += yi_tmp_err; return GSL_SUCCESS; } /* Lanczos method for real x > 0; * gamma=7, truncated at 1/(z+8) * [J. SIAM Numer. Anal, Ser. B, 1 (1964) 86] */ static int lngamma_lanczos(double x, gsl_sf_result * result) { int k; double Ag; double term1, term2; x -= 1.0; /* Lanczos writes z! instead of Gamma(z) */ Ag = lanczos_7_c[0]; for(k=1; k<=8; k++) { Ag += lanczos_7_c[k]/(x+k); } /* (x+0.5)*log(x+7.5) - (x+7.5) + LogRootTwoPi_ + log(Ag(x)) */ term1 = (x+0.5)*log((x+7.5)/M_E); term2 = LogRootTwoPi_ + log(Ag); result->val = term1 + (term2 - 7.0); result->err = 2.0 * GSL_DBL_EPSILON * (fabs(term1) + fabs(term2) + 7.0); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* x = eps near zero * gives double-precision for |eps| < 0.02 */ static int lngamma_sgn_0(double eps, gsl_sf_result * lng, double * sgn) { /* calculate series for g(eps) = Gamma(eps) eps - 1/(1+eps) - eps/2 */ const double c1 = -0.07721566490153286061; const double c2 = -0.01094400467202744461; const double c3 = 0.09252092391911371098; const double c4 = -0.01827191316559981266; const double c5 = 0.01800493109685479790; const double c6 = -0.00685088537872380685; const double c7 = 0.00399823955756846603; const double c8 = -0.00189430621687107802; const double c9 = 0.00097473237804513221; const double c10 = -0.00048434392722255893; const double g6 = c6+eps*(c7+eps*(c8 + eps*(c9 + eps*c10))); const double g = eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*g6))))); /* calculate Gamma(eps) eps, a positive quantity */ const double gee = g + 1.0/(1.0+eps) + 0.5*eps; lng->val = log(gee/fabs(eps)); lng->err = 4.0 * GSL_DBL_EPSILON * fabs(lng->val); *sgn = GSL_SIGN(eps); return GSL_SUCCESS; } /* x near a negative integer * Calculates sign as well as log(|gamma(x)|). * x = -N + eps * assumes N >= 1 */ static int lngamma_sgn_sing(int N, double eps, gsl_sf_result * lng, double * sgn) { if(eps == 0.0) { lng->val = 0.0; lng->err = 0.0; *sgn = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(N == 1) { /* calculate series for * g = eps gamma(-1+eps) + 1 + eps/2 (1+3eps)/(1-eps^2) * double-precision for |eps| < 0.02 */ const double c0 = 0.07721566490153286061; const double c1 = 0.08815966957356030521; const double c2 = -0.00436125434555340577; const double c3 = 0.01391065882004640689; const double c4 = -0.00409427227680839100; const double c5 = 0.00275661310191541584; const double c6 = -0.00124162645565305019; const double c7 = 0.00065267976121802783; const double c8 = -0.00032205261682710437; const double c9 = 0.00016229131039545456; const double g5 = c5 + eps*(c6 + eps*(c7 + eps*(c8 + eps*c9))); const double g = eps*(c0 + eps*(c1 + eps*(c2 + eps*(c3 + eps*(c4 + eps*g5))))); /* calculate eps gamma(-1+eps), a negative quantity */ const double gam_e = g - 1.0 - 0.5*eps*(1.0+3.0*eps)/(1.0 - eps*eps); lng->val = log(fabs(gam_e)/fabs(eps)); lng->err = 2.0 * GSL_DBL_EPSILON * fabs(lng->val); *sgn = ( eps > 0.0 ? -1.0 : 1.0 ); return GSL_SUCCESS; } else { double g; /* series for sin(Pi(N+1-eps))/(Pi eps) modulo the sign * double-precision for |eps| < 0.02 */ const double cs1 = -1.6449340668482264365; const double cs2 = 0.8117424252833536436; const double cs3 = -0.1907518241220842137; const double cs4 = 0.0261478478176548005; const double cs5 = -0.0023460810354558236; const double e2 = eps*eps; const double sin_ser = 1.0 + e2*(cs1+e2*(cs2+e2*(cs3+e2*(cs4+e2*cs5)))); /* calculate series for ln(gamma(1+N-eps)) * double-precision for |eps| < 0.02 */ double aeps = fabs(eps); double c1, c2, c3, c4, c5, c6, c7; double lng_ser; gsl_sf_result c0; gsl_sf_result psi_0; gsl_sf_result psi_1; gsl_sf_result psi_2; gsl_sf_result psi_3; gsl_sf_result psi_4; gsl_sf_result psi_5; gsl_sf_result psi_6; psi_2.val = 0.0; psi_3.val = 0.0; psi_4.val = 0.0; psi_5.val = 0.0; psi_6.val = 0.0; gsl_sf_lnfact_e(N, &c0); gsl_sf_psi_int_e(N+1, &psi_0); gsl_sf_psi_1_int_e(N+1, &psi_1); if(aeps > 0.00001) gsl_sf_psi_n_e(2, N+1.0, &psi_2); if(aeps > 0.0002) gsl_sf_psi_n_e(3, N+1.0, &psi_3); if(aeps > 0.001) gsl_sf_psi_n_e(4, N+1.0, &psi_4); if(aeps > 0.005) gsl_sf_psi_n_e(5, N+1.0, &psi_5); if(aeps > 0.01) gsl_sf_psi_n_e(6, N+1.0, &psi_6); c1 = psi_0.val; c2 = psi_1.val/2.0; c3 = psi_2.val/6.0; c4 = psi_3.val/24.0; c5 = psi_4.val/120.0; c6 = psi_5.val/720.0; c7 = psi_6.val/5040.0; lng_ser = c0.val-eps*(c1-eps*(c2-eps*(c3-eps*(c4-eps*(c5-eps*(c6-eps*c7)))))); /* calculate * g = ln(|eps gamma(-N+eps)|) * = -ln(gamma(1+N-eps)) + ln(|eps Pi/sin(Pi(N+1+eps))|) */ g = -lng_ser - log(sin_ser); lng->val = g - log(fabs(eps)); lng->err = c0.err + 2.0 * GSL_DBL_EPSILON * (fabs(g) + fabs(lng->val)); *sgn = ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * ( eps > 0.0 ? 1.0 : -1.0 ); return GSL_SUCCESS; } } /* This gets bad near the negative half axis. However, this * region can be avoided by use of the reflection formula, as usual. * Only the first two terms of the series are kept. */ #if 0 static int lngamma_complex_stirling(const double zr, const double zi, double * lg_r, double * arg) { double re_zinv, im_zinv; double re_zinv2, im_zinv2; double re_zinv3, im_zinv3; double re_zhlnz, im_zhlnz; double r, lnr, theta; gsl_sf_complex_log_e(zr, zi, &lnr, &theta); /* z = r e^{i theta} */ r = exp(lnr); re_zinv = (zr/r)/r; im_zinv = -(zi/r)/r; re_zinv2 = re_zinv*re_zinv - im_zinv*im_zinv; re_zinv2 = 2.0*re_zinv*im_zinv; re_zinv3 = re_zinv2*re_zinv - im_zinv2*im_zinv; re_zinv3 = re_zinv2*im_zinv + im_zinv2*re_zinv; re_zhlnz = (zr - 0.5)*lnr - zi*theta; im_zhlnz = zi*lnr + zr*theta; *lg_r = re_zhlnz - zr + 0.5*(M_LN2+M_LNPI) + re_zinv/12.0 - re_zinv3/360.0; *arg = im_zhlnz - zi + 1.0/12.0*im_zinv - im_zinv3/360.0; return GSL_SUCCESS; } #endif /* 0 */ inline static int lngamma_1_pade(const double eps, gsl_sf_result * result) { /* Use (2,2) Pade for Log[Gamma[1+eps]]/eps * plus a correction series. */ const double n1 = -1.0017419282349508699871138440; const double n2 = 1.7364839209922879823280541733; const double d1 = 1.2433006018858751556055436011; const double d2 = 5.0456274100274010152489597514; const double num = (eps + n1) * (eps + n2); const double den = (eps + d1) * (eps + d2); const double pade = 2.0816265188662692474880210318 * num / den; const double c0 = 0.004785324257581753; const double c1 = -0.01192457083645441; const double c2 = 0.01931961413960498; const double c3 = -0.02594027398725020; const double c4 = 0.03141928755021455; const double eps5 = eps*eps*eps*eps*eps; const double corr = eps5 * (c0 + eps*(c1 + eps*(c2 + eps*(c3 + c4*eps)))); result->val = eps * (pade + corr); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } inline static int lngamma_2_pade(const double eps, gsl_sf_result * result) { /* Use (2,2) Pade for Log[Gamma[2+eps]]/eps * plus a correction series. */ const double n1 = 1.000895834786669227164446568; const double n2 = 4.209376735287755081642901277; const double d1 = 2.618851904903217274682578255; const double d2 = 10.85766559900983515322922936; const double num = (eps + n1) * (eps + n2); const double den = (eps + d1) * (eps + d2); const double pade = 2.85337998765781918463568869 * num/den; const double c0 = 0.0001139406357036744; const double c1 = -0.0001365435269792533; const double c2 = 0.0001067287169183665; const double c3 = -0.0000693271800931282; const double c4 = 0.0000407220927867950; const double eps5 = eps*eps*eps*eps*eps; const double corr = eps5 * (c0 + eps*(c1 + eps*(c2 + eps*(c3 + c4*eps)))); result->val = eps * (pade + corr); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* series for gammastar(x) * double-precision for x > 10.0 */ static int gammastar_ser(const double x, gsl_sf_result * result) { /* Use the Stirling series for the correction to Log(Gamma(x)), * which is better behaved and easier to compute than the * regular Stirling series for Gamma(x). */ const double y = 1.0/(x*x); const double c0 = 1.0/12.0; const double c1 = -1.0/360.0; const double c2 = 1.0/1260.0; const double c3 = -1.0/1680.0; const double c4 = 1.0/1188.0; const double c5 = -691.0/360360.0; const double c6 = 1.0/156.0; const double c7 = -3617.0/122400.0; const double ser = c0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7)))))); result->val = exp(ser/x); result->err = 2.0 * GSL_DBL_EPSILON * result->val * GSL_MAX_DBL(1.0, ser/x); return GSL_SUCCESS; } /* Chebyshev expansion for log(gamma(x)/gamma(8)) * 5 < x < 10 * -1 < t < 1 */ static double gamma_5_10_data[24] = { -1.5285594096661578881275075214, 4.8259152300595906319768555035, 0.2277712320977614992970601978, -0.0138867665685617873604917300, 0.0012704876495201082588139723, -0.0001393841240254993658962470, 0.0000169709242992322702260663, -2.2108528820210580075775889168e-06, 3.0196602854202309805163918716e-07, -4.2705675000079118380587357358e-08, 6.2026423818051402794663551945e-09, -9.1993973208880910416311405656e-10, 1.3875551258028145778301211638e-10, -2.1218861491906788718519522978e-11, 3.2821736040381439555133562600e-12, -5.1260001009953791220611135264e-13, 8.0713532554874636696982146610e-14, -1.2798522376569209083811628061e-14, 2.0417711600852502310258808643e-15, -3.2745239502992355776882614137e-16, 5.2759418422036579482120897453e-17, -8.5354147151695233960425725513e-18, 1.3858639703888078291599886143e-18, -2.2574398807738626571560124396e-19 }; static const cheb_series gamma_5_10_cs = { gamma_5_10_data, 23, -1, 1, 11 }; /* gamma(x) for x >= 1/2 * assumes x >= 1/2 */ static int gamma_xgthalf(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.5) { result->val = 1.77245385090551602729817; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if (x <= (GSL_SF_FACT_NMAX + 1.0) && x == floor(x)) { int n = (int) floor (x); result->val = fact_table[n - 1].f; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(fabs(x - 1.0) < 0.01) { /* Use series for Gamma[1+eps] - 1/(1+eps). */ const double eps = x - 1.0; const double c1 = 0.4227843350984671394; const double c2 = -0.01094400467202744461; const double c3 = 0.09252092391911371098; const double c4 = -0.018271913165599812664; const double c5 = 0.018004931096854797895; const double c6 = -0.006850885378723806846; const double c7 = 0.003998239557568466030; result->val = 1.0/x + eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*c7)))))); result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(fabs(x - 2.0) < 0.01) { /* Use series for Gamma[1 + eps]. */ const double eps = x - 2.0; const double c1 = 0.4227843350984671394; const double c2 = 0.4118403304264396948; const double c3 = 0.08157691924708626638; const double c4 = 0.07424901075351389832; const double c5 = -0.00026698206874501476832; const double c6 = 0.011154045718130991049; const double c7 = -0.002852645821155340816; const double c8 = 0.0021039333406973880085; result->val = 1.0 + eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*(c7+eps*c8))))))); result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 5.0) { /* Exponentiating the logarithm is fine, as * long as the exponential is not so large * that it greatly amplifies the error. */ gsl_sf_result lg; lngamma_lanczos(x, &lg); result->val = exp(lg.val); result->err = result->val * (lg.err + 2.0 * GSL_DBL_EPSILON); return GSL_SUCCESS; } else if(x < 10.0) { /* This is a sticky area. The logarithm * is too large and the gammastar series * is not good. */ const double gamma_8 = 5040.0; const double t = (2.0*x - 15.0)/5.0; gsl_sf_result c; cheb_eval_e(&gamma_5_10_cs, t, &c); result->val = exp(c.val) * gamma_8; result->err = result->val * c.err; result->err += 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < GSL_SF_GAMMA_XMAX) { /* We do not want to exponentiate the logarithm * if x is large because of the inevitable * inflation of the error. So we carefully * use pow() and exp() with exact quantities. */ double p = pow(x, 0.5*x); double e = exp(-x); double q = (p * e) * p; double pre = M_SQRT2 * M_SQRTPI * q/sqrt(x); gsl_sf_result gstar; int stat_gs = gammastar_ser(x, &gstar); result->val = pre * gstar.val; result->err = (x + 2.5) * GSL_DBL_EPSILON * result->val; return stat_gs; } else { OVERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_lngamma_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(fabs(x - 1.0) < 0.01) { /* Note that we must amplify the errors * from the Pade evaluations because of * the way we must pass the argument, i.e. * writing (1-x) is a loss of precision * when x is near 1. */ int stat = lngamma_1_pade(x - 1.0, result); result->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 1.0)); return stat; } else if(fabs(x - 2.0) < 0.01) { int stat = lngamma_2_pade(x - 2.0, result); result->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 2.0)); return stat; } else if(x >= 0.5) { return lngamma_lanczos(x, result); } else if(x == 0.0) { DOMAIN_ERROR(result); } else if(fabs(x) < 0.02) { double sgn; return lngamma_sgn_0(x, result, &sgn); } else if(x > -0.5/(GSL_DBL_EPSILON*M_PI)) { /* Try to extract a fractional * part from x. */ double z = 1.0 - x; double s = sin(M_PI*z); double as = fabs(s); if(s == 0.0) { DOMAIN_ERROR(result); } else if(as < M_PI*0.015) { /* x is near a negative integer, -N */ if(x < INT_MIN + 2.0) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EROUND); } else { int N = -(int)(x - 0.5); double eps = x + N; double sgn; return lngamma_sgn_sing(N, eps, result, &sgn); } } else { gsl_sf_result lg_z; lngamma_lanczos(z, &lg_z); result->val = M_LNPI - (log(as) + lg_z.val); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + lg_z.err; return GSL_SUCCESS; } } else { /* |x| was too large to extract any fractional part */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EROUND); } } int gsl_sf_lngamma_sgn_e(double x, gsl_sf_result * result_lg, double * sgn) { if(fabs(x - 1.0) < 0.01) { int stat = lngamma_1_pade(x - 1.0, result_lg); result_lg->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 1.0)); *sgn = 1.0; return stat; } else if(fabs(x - 2.0) < 0.01) { int stat = lngamma_2_pade(x - 2.0, result_lg); result_lg->err *= 1.0/(GSL_DBL_EPSILON + fabs(x - 2.0)); *sgn = 1.0; return stat; } else if(x >= 0.5) { *sgn = 1.0; return lngamma_lanczos(x, result_lg); } else if(x == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result_lg); } else if(fabs(x) < 0.02) { return lngamma_sgn_0(x, result_lg, sgn); } else if(x > -0.5/(GSL_DBL_EPSILON*M_PI)) { /* Try to extract a fractional * part from x. */ double z = 1.0 - x; double s = sin(M_PI*x); double as = fabs(s); if(s == 0.0) { *sgn = 0.0; DOMAIN_ERROR(result_lg); } else if(as < M_PI*0.015) { /* x is near a negative integer, -N */ if(x < INT_MIN + 2.0) { result_lg->val = 0.0; result_lg->err = 0.0; *sgn = 0.0; GSL_ERROR ("error", GSL_EROUND); } else { int N = -(int)(x - 0.5); double eps = x + N; return lngamma_sgn_sing(N, eps, result_lg, sgn); } } else { gsl_sf_result lg_z; lngamma_lanczos(z, &lg_z); *sgn = (s > 0.0 ? 1.0 : -1.0); result_lg->val = M_LNPI - (log(as) + lg_z.val); result_lg->err = 2.0 * GSL_DBL_EPSILON * fabs(result_lg->val) + lg_z.err; return GSL_SUCCESS; } } else { /* |x| was too large to extract any fractional part */ result_lg->val = 0.0; result_lg->err = 0.0; *sgn = 0.0; GSL_ERROR ("x too large to extract fraction part", GSL_EROUND); } } int gsl_sf_gamma_e(const double x, gsl_sf_result * result) { if(x < 0.5) { int rint_x = (int)floor(x+0.5); double f_x = x - rint_x; double sgn_gamma = ( GSL_IS_EVEN(rint_x) ? 1.0 : -1.0 ); double sin_term = sgn_gamma * sin(M_PI * f_x) / M_PI; if(sin_term == 0.0) { DOMAIN_ERROR(result); } else if(x > -169.0) { gsl_sf_result g; gamma_xgthalf(1.0-x, &g); if(fabs(sin_term) * g.val * GSL_DBL_MIN < 1.0) { result->val = 1.0/(sin_term * g.val); result->err = fabs(g.err/g.val) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } else { /* It is hard to control it here. * We can only exponentiate the * logarithm and eat the loss of * precision. */ gsl_sf_result lng; double sgn; int stat_lng = gsl_sf_lngamma_sgn_e(x, &lng, &sgn); int stat_e = gsl_sf_exp_mult_err_e(lng.val, lng.err, sgn, 0.0, result); return GSL_ERROR_SELECT_2(stat_e, stat_lng); } } else { return gamma_xgthalf(x, result); } } int gsl_sf_gammastar_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 0.5) { gsl_sf_result lg; const int stat_lg = gsl_sf_lngamma_e(x, &lg); const double lx = log(x); const double c = 0.5*(M_LN2+M_LNPI); const double lnr_val = lg.val - (x-0.5)*lx + x - c; const double lnr_err = lg.err + 2.0 * GSL_DBL_EPSILON *((x+0.5)*fabs(lx) + c); const int stat_e = gsl_sf_exp_err_e(lnr_val, lnr_err, result); return GSL_ERROR_SELECT_2(stat_lg, stat_e); } else if(x < 2.0) { const double t = 4.0/3.0*(x-0.5) - 1.0; return cheb_eval_e(&gstar_a_cs, t, result); } else if(x < 10.0) { const double t = 0.25*(x-2.0) - 1.0; gsl_sf_result c; cheb_eval_e(&gstar_b_cs, t, &c); result->val = c.val/(x*x) + 1.0 + 1.0/(12.0*x); result->err = c.err/(x*x); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0/GSL_ROOT4_DBL_EPSILON) { return gammastar_ser(x, result); } else if(x < 1.0/GSL_DBL_EPSILON) { /* Use Stirling formula for Gamma(x). */ const double xi = 1.0/x; result->val = 1.0 + xi/12.0*(1.0 + xi/24.0*(1.0 - xi*(139.0/180.0 + 571.0/8640.0*xi))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 1.0; result->err = 1.0/x; return GSL_SUCCESS; } } int gsl_sf_gammainv_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if (x <= 0.0 && x == floor(x)) { /* negative integer */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 0.5) { gsl_sf_result lng; double sgn; int stat_lng = gsl_sf_lngamma_sgn_e(x, &lng, &sgn); if(stat_lng == GSL_EDOM) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(stat_lng != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; return stat_lng; } else { return gsl_sf_exp_mult_err_e(-lng.val, lng.err, sgn, 0.0, result); } } else { gsl_sf_result g; int stat_g = gamma_xgthalf(x, &g); if(stat_g == GSL_EOVRFLW) { UNDERFLOW_ERROR(result); } else { result->val = 1.0/g.val; result->err = fabs(g.err/g.val) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } } int gsl_sf_lngamma_complex_e(double zr, double zi, gsl_sf_result * lnr, gsl_sf_result * arg) { if(zr <= 0.5) { /* Transform to right half plane using reflection; * in fact we do a little better by stopping at 1/2. */ double x = 1.0-zr; double y = -zi; gsl_sf_result a, b; gsl_sf_result lnsin_r, lnsin_i; int stat_l = lngamma_lanczos_complex(x, y, &a, &b); int stat_s = gsl_sf_complex_logsin_e(M_PI*zr, M_PI*zi, &lnsin_r, &lnsin_i); if(stat_s == GSL_SUCCESS) { int stat_r; lnr->val = M_LNPI - lnsin_r.val - a.val; lnr->err = lnsin_r.err + a.err + 2.0 * GSL_DBL_EPSILON * fabs(lnr->val); arg->val = -lnsin_i.val - b.val; arg->err = lnsin_i.err + b.err + 2.0 * GSL_DBL_EPSILON * fabs(arg->val); stat_r = gsl_sf_angle_restrict_symm_e(&(arg->val)); return GSL_ERROR_SELECT_2(stat_r, stat_l); } else { DOMAIN_ERROR_2(lnr,arg); } } else { /* otherwise plain vanilla Lanczos */ return lngamma_lanczos_complex(zr, zi, lnr, arg); } } int gsl_sf_taylorcoeff_e(const int n, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < 0.0 || n < 0) { DOMAIN_ERROR(result); } else if(n == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(n == 1) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { const double log2pi = M_LNPI + M_LN2; const double ln_test = n*(log(x)+1.0) + 1.0 - (n+0.5)*log(n+1.0) + 0.5*log2pi; if(ln_test < GSL_LOG_DBL_MIN+1.0) { UNDERFLOW_ERROR(result); } else if(ln_test > GSL_LOG_DBL_MAX-1.0) { OVERFLOW_ERROR(result); } else { double product = 1.0; int k; for(k=1; k<=n; k++) { product *= (x/k); } result->val = product; result->err = n * GSL_DBL_EPSILON * product; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } } int gsl_sf_fact_e(const unsigned int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n < 18) { result->val = fact_table[n].f; result->err = 0.0; return GSL_SUCCESS; } else if(n <= GSL_SF_FACT_NMAX){ result->val = fact_table[n].f; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_doublefact_e(const unsigned int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n < 26) { result->val = doub_fact_table[n].f; result->err = 0.0; return GSL_SUCCESS; } else if(n <= GSL_SF_DOUBLEFACT_NMAX){ result->val = doub_fact_table[n].f; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_lnfact_e(const unsigned int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n <= GSL_SF_FACT_NMAX){ result->val = log(fact_table[n].f); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_lngamma_e(n+1.0, result); return GSL_SUCCESS; } } int gsl_sf_lndoublefact_e(const unsigned int n, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n <= GSL_SF_DOUBLEFACT_NMAX){ result->val = log(doub_fact_table[n].f); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(GSL_IS_ODD(n)) { gsl_sf_result lg; gsl_sf_lngamma_e(0.5*(n+2.0), &lg); result->val = 0.5*(n+1.0) * M_LN2 - 0.5*M_LNPI + lg.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + lg.err; return GSL_SUCCESS; } else { gsl_sf_result lg; gsl_sf_lngamma_e(0.5*n+1.0, &lg); result->val = 0.5*n*M_LN2 + lg.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + lg.err; return GSL_SUCCESS; } } int gsl_sf_lnchoose_e(unsigned int n, unsigned int m, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(m > n) { DOMAIN_ERROR(result); } else if(m == n || m == 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result nf; gsl_sf_result mf; gsl_sf_result nmmf; if(m*2 > n) m = n-m; gsl_sf_lnfact_e(n, &nf); gsl_sf_lnfact_e(m, &mf); gsl_sf_lnfact_e(n-m, &nmmf); result->val = nf.val - mf.val - nmmf.val; result->err = nf.err + mf.err + nmmf.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_choose_e(unsigned int n, unsigned int m, gsl_sf_result * result) { if(m > n) { DOMAIN_ERROR(result); } else if(m == n || m == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if (n <= GSL_SF_FACT_NMAX) { result->val = (fact_table[n].f / fact_table[m].f) / fact_table[n-m].f; result->err = 6.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { if(m*2 < n) m = n-m; if (n - m < 64) /* compute product for a manageable number of terms */ { double prod = 1.0; unsigned int k; for(k=n; k>=m+1; k--) { double tk = (double)k / (double)(k-m); if(tk > GSL_DBL_MAX/prod) { OVERFLOW_ERROR(result); } prod *= tk; } result->val = prod; result->err = 2.0 * GSL_DBL_EPSILON * prod * fabs(n-m); return GSL_SUCCESS; } else { gsl_sf_result lc; const int stat_lc = gsl_sf_lnchoose_e (n, m, &lc); const int stat_e = gsl_sf_exp_err_e(lc.val, lc.err, result); return GSL_ERROR_SELECT_2(stat_lc, stat_e); } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_fact(const unsigned int n) { EVAL_RESULT(gsl_sf_fact_e(n, &result)); } double gsl_sf_lnfact(const unsigned int n) { EVAL_RESULT(gsl_sf_lnfact_e(n, &result)); } double gsl_sf_doublefact(const unsigned int n) { EVAL_RESULT(gsl_sf_doublefact_e(n, &result)); } double gsl_sf_lndoublefact(const unsigned int n) { EVAL_RESULT(gsl_sf_lndoublefact_e(n, &result)); } double gsl_sf_lngamma(const double x) { EVAL_RESULT(gsl_sf_lngamma_e(x, &result)); } double gsl_sf_gamma(const double x) { EVAL_RESULT(gsl_sf_gamma_e(x, &result)); } double gsl_sf_gammastar(const double x) { EVAL_RESULT(gsl_sf_gammastar_e(x, &result)); } double gsl_sf_gammainv(const double x) { EVAL_RESULT(gsl_sf_gammainv_e(x, &result)); } double gsl_sf_taylorcoeff(const int n, const double x) { EVAL_RESULT(gsl_sf_taylorcoeff_e(n, x, &result)); } double gsl_sf_choose(unsigned int n, unsigned int m) { EVAL_RESULT(gsl_sf_choose_e(n, m, &result)); } double gsl_sf_lnchoose(unsigned int n, unsigned int m) { EVAL_RESULT(gsl_sf_lnchoose_e(n, m, &result)); } gsl-1.16/specfunc/bessel_J0.c0000664000252300025230000000627612171574312012745 00000000000000/* specfunc/bessel_J0.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "bessel.h" #include "bessel_amp_phase.h" #include #include #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besj0, 1977 version, w. fullerton */ /* chebyshev expansions for Bessel functions series for bj0 on the interval 0. to 1.60000d+01 with weighted error 7.47e-18 log weighted error 17.13 significant figures required 16.98 decimal places required 17.68 */ static double bj0_data[13] = { 0.100254161968939137, -0.665223007764405132, 0.248983703498281314, -0.0332527231700357697, 0.0023114179304694015, -0.0000991127741995080, 0.0000028916708643998, -0.0000000612108586630, 0.0000000009838650793, -0.0000000000124235515, 0.0000000000001265433, -0.0000000000000010619, 0.0000000000000000074, }; static cheb_series bj0_cs = { bj0_data, 12, -1, 1, 9 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_J0_e(const double x, gsl_sf_result * result) { double y = fabs(x); /* CHECK_POINTER(result) */ if(y < 2.0*GSL_SQRT_DBL_EPSILON) { result->val = 1.0; result->err = y*y; return GSL_SUCCESS; } else if(y <= 4.0) { return cheb_eval_e(&bj0_cs, 0.125*y*y - 1.0, result); } else { const double z = 32.0/(y*y) - 1.0; gsl_sf_result ca; gsl_sf_result ct; gsl_sf_result cp; const int stat_ca = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm0_cs, z, &ca); const int stat_ct = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth0_cs, z, &ct); const int stat_cp = gsl_sf_bessel_cos_pi4_e(y, ct.val/y, &cp); const double sqrty = sqrt(y); const double ampl = (0.75 + ca.val) / sqrty; result->val = ampl * cp.val; result->err = fabs(cp.val) * ca.err/sqrty + fabs(ampl) * cp.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_ca, stat_ct, stat_cp); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_J0(const double x) { EVAL_RESULT(gsl_sf_bessel_J0_e(x, &result)); } gsl-1.16/specfunc/bessel.h0000664000252300025230000000604412171574312012412 00000000000000/* specfunc/bessel.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef _BESSEL_H_ #define _BESSEL_H_ #include /* Taylor expansion for J_nu(x) or I_nu(x) * sign = -1 ==> Jnu * sign = +1 ==> Inu */ int gsl_sf_bessel_IJ_taylor_e(const double nu, const double x, const int sign, const int kmax, const double threshold, gsl_sf_result * result ); int gsl_sf_bessel_Jnu_asympx_e(const double nu, const double x, gsl_sf_result * result); int gsl_sf_bessel_Ynu_asympx_e(const double nu, const double x, gsl_sf_result * result); int gsl_sf_bessel_Inu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result); int gsl_sf_bessel_Knu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result); int gsl_sf_bessel_Inu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result); int gsl_sf_bessel_Knu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result); /* ratio = J_{nu+1}(x) / J_nu(x) * sgn = sgn(J_nu(x)) */ int gsl_sf_bessel_J_CF1(const double nu, const double x, double * ratio, double * sgn); /* ratio = I_{nu+1}(x) / I_nu(x) */ int gsl_sf_bessel_I_CF1_ser(const double nu, const double x, double * ratio); /* Evaluate the Steed method continued fraction CF2 for * * (J' + i Y')/(J + i Y) := P + i Q */ int gsl_sf_bessel_JY_steed_CF2(const double nu, const double x, double * P, double * Q); int gsl_sf_bessel_JY_mu_restricted(const double mu, const double x, gsl_sf_result * Jmu, gsl_sf_result * Jmup1, gsl_sf_result * Ymu, gsl_sf_result * Ymup1); int gsl_sf_bessel_K_scaled_steed_temme_CF2(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu); /* These are of use in calculating the oscillating * Bessel functions. * cos(y - pi/4 + eps) * sin(y - pi/4 + eps) */ int gsl_sf_bessel_cos_pi4_e(double y, double eps, gsl_sf_result * result); int gsl_sf_bessel_sin_pi4_e(double y, double eps, gsl_sf_result * result); #endif /* !_BESSEL_H_ */ gsl-1.16/specfunc/gsl_sf_coupling.h0000664000252300025230000001010512171574312014303 00000000000000/* specfunc/gsl_sf_coupling.h * * Copyright (C) 1996,1997,1998,1999,2000,2001,2002 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_COUPLING_H__ #define __GSL_SF_COUPLING_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* 3j Symbols: / ja jb jc \ * \ ma mb mc / * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_coupling_3j_e(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc, gsl_sf_result * result ); double gsl_sf_coupling_3j(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc ); /* 6j Symbols: / ja jb jc \ * \ jd je jf / * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_coupling_6j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result ); double gsl_sf_coupling_6j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf ); /* Racah W coefficients: * * W(a b c d; e f) = (-1)^{a+b+c+d} / a b e \ * \ d c f / * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_coupling_RacahW_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result ); double gsl_sf_coupling_RacahW(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf ); /* 9j Symbols: / ja jb jc \ * | jd je jf | * \ jg jh ji / * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_coupling_9j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji, gsl_sf_result * result ); double gsl_sf_coupling_9j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji ); /* INCORRECT version of 6j Symbols: * This function actually calculates * / ja jb je \ * \ jd jc jf / * It represents the original implementation, * which had the above permutation of the * arguments. This was wrong and confusing, * and I had to fix it. Sorry for the trouble. * [GJ] Tue Nov 26 12:53:39 MST 2002 * * exceptions: GSL_EDOM, GSL_EOVRFLW */ #ifndef GSL_DISABLE_DEPRECATED int gsl_sf_coupling_6j_INCORRECT_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result ); double gsl_sf_coupling_6j_INCORRECT(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf ); #endif /* !GSL_DISABLE_DEPRECATED */ __END_DECLS #endif /* __GSL_SF_COUPLING_H__ */ gsl-1.16/specfunc/chebyshev.h0000664000252300025230000000227212171574312013114 00000000000000/* specfunc/chebyshev.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* data for a Chebyshev series over a given interval */ struct cheb_series_struct { double * c; /* coefficients */ int order; /* order of expansion */ double a; /* lower interval point */ double b; /* upper interval point */ int order_sp; /* effective single precision order */ }; typedef struct cheb_series_struct cheb_series; gsl-1.16/specfunc/expint.c0000664000252300025230000003663312171574312012446 00000000000000/* specfunc/expint.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* Chebyshev expansions: based on SLATEC e1.f, W. Fullerton Series for AE11 on the interval -1.00000D-01 to 0. with weighted error 1.76E-17 log weighted error 16.75 significant figures required 15.70 decimal places required 17.55 Series for AE12 on the interval -2.50000D-01 to -1.00000D-01 with weighted error 5.83E-17 log weighted error 16.23 significant figures required 15.76 decimal places required 16.93 Series for E11 on the interval -4.00000D+00 to -1.00000D+00 with weighted error 1.08E-18 log weighted error 17.97 significant figures required 19.02 decimal places required 18.61 Series for E12 on the interval -1.00000D+00 to 1.00000D+00 with weighted error 3.15E-18 log weighted error 17.50 approx significant figures required 15.8 decimal places required 18.10 Series for AE13 on the interval 2.50000D-01 to 1.00000D+00 with weighted error 2.34E-17 log weighted error 16.63 significant figures required 16.14 decimal places required 17.33 Series for AE14 on the interval 0. to 2.50000D-01 with weighted error 5.41E-17 log weighted error 16.27 significant figures required 15.38 decimal places required 16.97 */ static double AE11_data[39] = { 0.121503239716065790, -0.065088778513550150, 0.004897651357459670, -0.000649237843027216, 0.000093840434587471, 0.000000420236380882, -0.000008113374735904, 0.000002804247688663, 0.000000056487164441, -0.000000344809174450, 0.000000058209273578, 0.000000038711426349, -0.000000012453235014, -0.000000005118504888, 0.000000002148771527, 0.000000000868459898, -0.000000000343650105, -0.000000000179796603, 0.000000000047442060, 0.000000000040423282, -0.000000000003543928, -0.000000000008853444, -0.000000000000960151, 0.000000000001692921, 0.000000000000607990, -0.000000000000224338, -0.000000000000200327, -0.000000000000006246, 0.000000000000045571, 0.000000000000016383, -0.000000000000005561, -0.000000000000006074, -0.000000000000000862, 0.000000000000001223, 0.000000000000000716, -0.000000000000000024, -0.000000000000000201, -0.000000000000000082, 0.000000000000000017 }; static cheb_series AE11_cs = { AE11_data, 38, -1, 1, 20 }; static double AE12_data[25] = { 0.582417495134726740, -0.158348850905782750, -0.006764275590323141, 0.005125843950185725, 0.000435232492169391, -0.000143613366305483, -0.000041801320556301, -0.000002713395758640, 0.000001151381913647, 0.000000420650022012, 0.000000066581901391, 0.000000000662143777, -0.000000002844104870, -0.000000000940724197, -0.000000000177476602, -0.000000000015830222, 0.000000000002905732, 0.000000000001769356, 0.000000000000492735, 0.000000000000093709, 0.000000000000010707, -0.000000000000000537, -0.000000000000000716, -0.000000000000000244, -0.000000000000000058 }; static cheb_series AE12_cs = { AE12_data, 24, -1, 1, 15 }; static double E11_data[19] = { -16.11346165557149402600, 7.79407277874268027690, -1.95540581886314195070, 0.37337293866277945612, -0.05692503191092901938, 0.00721107776966009185, -0.00078104901449841593, 0.00007388093356262168, -0.00000620286187580820, 0.00000046816002303176, -0.00000003209288853329, 0.00000000201519974874, -0.00000000011673686816, 0.00000000000627627066, -0.00000000000031481541, 0.00000000000001479904, -0.00000000000000065457, 0.00000000000000002733, -0.00000000000000000108 }; static cheb_series E11_cs = { E11_data, 18, -1, 1, 13 }; static double E12_data[16] = { -0.03739021479220279500, 0.04272398606220957700, -0.13031820798497005440, 0.01441912402469889073, -0.00134617078051068022, 0.00010731029253063780, -0.00000742999951611943, 0.00000045377325690753, -0.00000002476417211390, 0.00000000122076581374, -0.00000000005485141480, 0.00000000000226362142, -0.00000000000008635897, 0.00000000000000306291, -0.00000000000000010148, 0.00000000000000000315 }; static cheb_series E12_cs = { E12_data, 15, -1, 1, 10 }; static double AE13_data[25] = { -0.605773246640603460, -0.112535243483660900, 0.013432266247902779, -0.001926845187381145, 0.000309118337720603, -0.000053564132129618, 0.000009827812880247, -0.000001885368984916, 0.000000374943193568, -0.000000076823455870, 0.000000016143270567, -0.000000003466802211, 0.000000000758754209, -0.000000000168864333, 0.000000000038145706, -0.000000000008733026, 0.000000000002023672, -0.000000000000474132, 0.000000000000112211, -0.000000000000026804, 0.000000000000006457, -0.000000000000001568, 0.000000000000000383, -0.000000000000000094, 0.000000000000000023 }; static cheb_series AE13_cs = { AE13_data, 24, -1, 1, 15 }; static double AE14_data[26] = { -0.18929180007530170, -0.08648117855259871, 0.00722410154374659, -0.00080975594575573, 0.00010999134432661, -0.00001717332998937, 0.00000298562751447, -0.00000056596491457, 0.00000011526808397, -0.00000002495030440, 0.00000000569232420, -0.00000000135995766, 0.00000000033846628, -0.00000000008737853, 0.00000000002331588, -0.00000000000641148, 0.00000000000181224, -0.00000000000052538, 0.00000000000015592, -0.00000000000004729, 0.00000000000001463, -0.00000000000000461, 0.00000000000000148, -0.00000000000000048, 0.00000000000000016, -0.00000000000000005 }; static cheb_series AE14_cs = { AE14_data, 25, -1, 1, 13 }; /* implementation for E1, allowing for scaling by exp(x) */ static int expint_E1_impl(const double x, gsl_sf_result * result, const int scale) { const double xmaxt = -GSL_LOG_DBL_MIN; /* XMAXT = -LOG (R1MACH(1)) */ const double xmax = xmaxt - log(xmaxt); /* XMAX = XMAXT - LOG(XMAXT) */ /* CHECK_POINTER(result) */ if(x < -xmax && !scale) { OVERFLOW_ERROR(result); } else if(x <= -10.0) { const double s = 1.0/x * ( scale ? 1.0 : exp(-x) ); gsl_sf_result result_c; cheb_eval_e(&AE11_cs, 20.0/x+1.0, &result_c); result->val = s * (1.0 + result_c.val); result->err = s * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(x) + 1.0) * fabs(result->val); return GSL_SUCCESS; } else if(x <= -4.0) { const double s = 1.0/x * ( scale ? 1.0 : exp(-x) ); gsl_sf_result result_c; cheb_eval_e(&AE12_cs, (40.0/x+7.0)/3.0, &result_c); result->val = s * (1.0 + result_c.val); result->err = s * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x <= -1.0) { const double ln_term = -log(fabs(x)); const double scale_factor = ( scale ? exp(x) : 1.0 ); gsl_sf_result result_c; cheb_eval_e(&E11_cs, (2.0*x+5.0)/3.0, &result_c); result->val = scale_factor * (ln_term + result_c.val); result->err = scale_factor * (result_c.err + GSL_DBL_EPSILON * fabs(ln_term)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x == 0.0) { DOMAIN_ERROR(result); } else if(x <= 1.0) { const double ln_term = -log(fabs(x)); const double scale_factor = ( scale ? exp(x) : 1.0 ); gsl_sf_result result_c; cheb_eval_e(&E12_cs, x, &result_c); result->val = scale_factor * (ln_term - 0.6875 + x + result_c.val); result->err = scale_factor * (result_c.err + GSL_DBL_EPSILON * fabs(ln_term)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x <= 4.0) { const double s = 1.0/x * ( scale ? 1.0 : exp(-x) ); gsl_sf_result result_c; cheb_eval_e(&AE13_cs, (8.0/x-5.0)/3.0, &result_c); result->val = s * (1.0 + result_c.val); result->err = s * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x <= xmax || scale) { const double s = 1.0/x * ( scale ? 1.0 : exp(-x) ); gsl_sf_result result_c; cheb_eval_e(&AE14_cs, 8.0/x-1.0, &result_c); result->val = s * (1.0 + result_c.val); result->err = s * (GSL_DBL_EPSILON + result_c.err); result->err += 2.0 * (x + 1.0) * GSL_DBL_EPSILON * fabs(result->val); if(result->val == 0.0) UNDERFLOW_ERROR(result); else return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } static int expint_E2_impl(const double x, gsl_sf_result * result, const int scale) { const double xmaxt = -GSL_LOG_DBL_MIN; const double xmax = xmaxt - log(xmaxt); /* CHECK_POINTER(result) */ if(x < -xmax && !scale) { OVERFLOW_ERROR(result); } else if (x == 0.0) { result->val = (scale ? 1.0 : 1.0); result->err = 0.0; return GSL_SUCCESS; } else if(x < 100.0) { const double ex = ( scale ? 1.0 : exp(-x) ); gsl_sf_result result_E1; int stat_E1 = expint_E1_impl(x, &result_E1, scale); result->val = ex - x*result_E1.val; result->err = GSL_DBL_EPSILON*ex + fabs(x) * result_E1.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_E1; } else if(x < xmax || scale) { const double s = ( scale ? 1.0 : exp(-x) ); const double c1 = -2.0; const double c2 = 6.0; const double c3 = -24.0; const double c4 = 120.0; const double c5 = -720.0; const double c6 = 5040.0; const double c7 = -40320.0; const double c8 = 362880.0; const double c9 = -3628800.0; const double c10 = 39916800.0; const double c11 = -479001600.0; const double c12 = 6227020800.0; const double c13 = -87178291200.0; const double y = 1.0/x; const double sum6 = c6+y*(c7+y*(c8+y*(c9+y*(c10+y*(c11+y*(c12+y*c13)))))); const double sum = y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*sum6))))); result->val = s * (1.0 + sum)/x; result->err = 2.0 * (x + 1.0) * GSL_DBL_EPSILON * result->val; if(result->val == 0.0) UNDERFLOW_ERROR(result); else return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } static int expint_En_impl(const int n, const double x, gsl_sf_result * result, const int scale) { if (n < 0) { DOMAIN_ERROR(result); } else if (n == 0) { if (x == 0) { DOMAIN_ERROR(result); } else { result->val = (scale ? 1.0 : exp(-x)) / x; result->err = 2 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } else if (n == 1) { return expint_E1_impl(x, result, scale); } else if (n == 2) { return expint_E2_impl(x, result, scale); } else { if(x < 0) { DOMAIN_ERROR(result); } if (x == 0) { result->val = (scale ? exp(x) : 1 ) * (1/(n-1.0)); result->err = 2 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else { gsl_sf_result result_g; double prefactor = pow(x, n-1); int status = gsl_sf_gamma_inc_e (1-n, x, &result_g); double scale_factor = ( scale ? exp(x) : 1.0 ); result->val = scale_factor * prefactor * result_g.val; result->err = 2 * GSL_DBL_EPSILON * fabs(result->val); result->err += 2 * fabs(scale_factor * prefactor * result_g.err); if (status == GSL_SUCCESS) CHECK_UNDERFLOW(result); return status; } } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_expint_E1_e(const double x, gsl_sf_result * result) { return expint_E1_impl(x, result, 0); } int gsl_sf_expint_E1_scaled_e(const double x, gsl_sf_result * result) { return expint_E1_impl(x, result, 1); } int gsl_sf_expint_E2_e(const double x, gsl_sf_result * result) { return expint_E2_impl(x, result, 0); } int gsl_sf_expint_E2_scaled_e(const double x, gsl_sf_result * result) { return expint_E2_impl(x, result, 1); } int gsl_sf_expint_En_e(const int n, const double x, gsl_sf_result * result) { return expint_En_impl(n, x, result, 0); } int gsl_sf_expint_En_scaled_e(const int n, const double x, gsl_sf_result * result) { return expint_En_impl(n, x, result, 1); } int gsl_sf_expint_Ei_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { int status = gsl_sf_expint_E1_e(-x, result); result->val = -result->val; return status; } } int gsl_sf_expint_Ei_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { int status = gsl_sf_expint_E1_scaled_e(-x, result); result->val = -result->val; return status; } } #if 0 static double recurse_En(int n, double x, double E1) { int i; double En = E1; double ex = exp(-x); for(i=2; i<=n; i++) { En = 1./(i-1) * (ex - x * En); } return En; } #endif /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_expint_E1(const double x) { EVAL_RESULT(gsl_sf_expint_E1_e(x, &result)); } double gsl_sf_expint_E1_scaled(const double x) { EVAL_RESULT(gsl_sf_expint_E1_scaled_e(x, &result)); } double gsl_sf_expint_E2(const double x) { EVAL_RESULT(gsl_sf_expint_E2_e(x, &result)); } double gsl_sf_expint_E2_scaled(const double x) { EVAL_RESULT(gsl_sf_expint_E2_scaled_e(x, &result)); } double gsl_sf_expint_En(const int n, const double x) { EVAL_RESULT(gsl_sf_expint_En_e(n, x, &result)); } double gsl_sf_expint_En_scaled(const int n, const double x) { EVAL_RESULT(gsl_sf_expint_En_scaled_e(n, x, &result)); } double gsl_sf_expint_Ei(const double x) { EVAL_RESULT(gsl_sf_expint_Ei_e(x, &result)); } double gsl_sf_expint_Ei_scaled(const double x) { EVAL_RESULT(gsl_sf_expint_Ei_scaled_e(x, &result)); } gsl-1.16/specfunc/cheb_eval_mode.c0000664000252300025230000000125012171574312014036 00000000000000static inline int cheb_eval_mode_e(const cheb_series * cs, const double x, gsl_mode_t mode, gsl_sf_result * result) { int j; double d = 0.0; double dd = 0.0; double y = (2.*x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; int eval_order; if(GSL_MODE_PREC(mode) == GSL_PREC_DOUBLE) eval_order = cs->order; else eval_order = cs->order_sp; for(j = eval_order; j>=1; j--) { double temp = d; d = y2*d - dd + cs->c[j]; dd = temp; } result->val = y*d - dd + 0.5 * cs->c[0]; result->err = GSL_DBL_EPSILON * fabs(result->val) + fabs(cs->c[eval_order]); return GSL_SUCCESS; } gsl-1.16/specfunc/shint.c0000664000252300025230000000761012171574312012255 00000000000000/* specfunc/shint.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC shi.f, W. Fullerton series for shi on the interval 0.00000e+00 to 1.40625e-01 with weighted error 4.67e-20 log weighted error 19.33 significant figures required 17.07 decimal places required 19.75 */ static double shi_data[7] = { 0.0078372685688900950695, 0.0039227664934234563973, 0.0000041346787887617267, 0.0000000024707480372883, 0.0000000000009379295591, 0.0000000000000002451817, 0.0000000000000000000467 }; static cheb_series shi_cs = { shi_data, 6, -1, 1, 6 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_Shi_e(const double x, gsl_sf_result * result) { const double xsml = GSL_SQRT_DBL_EPSILON; /* sqrt (r1mach(3)) */ const double ax = fabs(x); if(ax < xsml) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(ax <= 0.375) { gsl_sf_result result_c; cheb_eval_e(&shi_cs, 128.0*x*x/9.0-1.0, &result_c); result->val = x * (1.0 + result_c.val); result->err = x * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result result_Ei; gsl_sf_result result_E1; int status_Ei = gsl_sf_expint_Ei_e(x, &result_Ei); int status_E1 = gsl_sf_expint_E1_e(x, &result_E1); result->val = 0.5*(result_Ei.val + result_E1.val); result->err = 0.5*(result_Ei.err + result_E1.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(status_Ei == GSL_EUNDRFLW && status_E1 == GSL_EUNDRFLW) { GSL_ERROR ("underflow", GSL_EUNDRFLW); } else if(status_Ei == GSL_EOVRFLW || status_E1 == GSL_EOVRFLW) { GSL_ERROR ("overflow", GSL_EOVRFLW); } else { return GSL_SUCCESS; } } } int gsl_sf_Chi_e(const double x, gsl_sf_result * result) { gsl_sf_result result_Ei; gsl_sf_result result_E1; int status_Ei = gsl_sf_expint_Ei_e(x, &result_Ei); int status_E1 = gsl_sf_expint_E1_e(x, &result_E1); if(status_Ei == GSL_EDOM || status_E1 == GSL_EDOM) { DOMAIN_ERROR(result); } else if(status_Ei == GSL_EUNDRFLW && status_E1 == GSL_EUNDRFLW) { UNDERFLOW_ERROR(result); } else if(status_Ei == GSL_EOVRFLW || status_E1 == GSL_EOVRFLW) { OVERFLOW_ERROR(result); } else { result->val = 0.5 * (result_Ei.val - result_E1.val); result->err = 0.5 * (result_Ei.err + result_E1.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_Shi(const double x) { EVAL_RESULT(gsl_sf_Shi_e(x, &result)); } double gsl_sf_Chi(const double x) { EVAL_RESULT(gsl_sf_Chi_e(x, &result)); } gsl-1.16/specfunc/gsl_sf_trig.h0000664000252300025230000000756512171574312013450 00000000000000/* specfunc/gsl_sf_trig.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_TRIG_H__ #define __GSL_SF_TRIG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Sin(x) with GSL semantics. This is actually important * because we want to control the error estimate, and trying * to guess the error for the standard library implementation * every time it is used would be a little goofy. */ int gsl_sf_sin_e(double x, gsl_sf_result * result); double gsl_sf_sin(const double x); /* Cos(x) with GSL semantics. */ int gsl_sf_cos_e(double x, gsl_sf_result * result); double gsl_sf_cos(const double x); /* Hypot(x,y) with GSL semantics. */ int gsl_sf_hypot_e(const double x, const double y, gsl_sf_result * result); double gsl_sf_hypot(const double x, const double y); /* Sin(z) for complex z * * exceptions: GSL_EOVRFLW */ int gsl_sf_complex_sin_e(const double zr, const double zi, gsl_sf_result * szr, gsl_sf_result * szi); /* Cos(z) for complex z * * exceptions: GSL_EOVRFLW */ int gsl_sf_complex_cos_e(const double zr, const double zi, gsl_sf_result * czr, gsl_sf_result * czi); /* Log(Sin(z)) for complex z * * exceptions: GSL_EDOM, GSL_ELOSS */ int gsl_sf_complex_logsin_e(const double zr, const double zi, gsl_sf_result * lszr, gsl_sf_result * lszi); /* Sinc(x) = sin(pi x) / (pi x) * * exceptions: none */ int gsl_sf_sinc_e(double x, gsl_sf_result * result); double gsl_sf_sinc(const double x); /* Log(Sinh(x)), x > 0 * * exceptions: GSL_EDOM */ int gsl_sf_lnsinh_e(const double x, gsl_sf_result * result); double gsl_sf_lnsinh(const double x); /* Log(Cosh(x)) * * exceptions: none */ int gsl_sf_lncosh_e(const double x, gsl_sf_result * result); double gsl_sf_lncosh(const double x); /* Convert polar to rectlinear coordinates. * * exceptions: GSL_ELOSS */ int gsl_sf_polar_to_rect(const double r, const double theta, gsl_sf_result * x, gsl_sf_result * y); /* Convert rectilinear to polar coordinates. * return argument in range [-pi, pi] * * exceptions: GSL_EDOM */ int gsl_sf_rect_to_polar(const double x, const double y, gsl_sf_result * r, gsl_sf_result * theta); /* Sin(x) for quantity with an associated error. */ int gsl_sf_sin_err_e(const double x, const double dx, gsl_sf_result * result); /* Cos(x) for quantity with an associated error. */ int gsl_sf_cos_err_e(const double x, const double dx, gsl_sf_result * result); /* Force an angle to lie in the range (-pi,pi]. * * exceptions: GSL_ELOSS */ int gsl_sf_angle_restrict_symm_e(double * theta); double gsl_sf_angle_restrict_symm(const double theta); /* Force an angle to lie in the range [0, 2pi) * * exceptions: GSL_ELOSS */ int gsl_sf_angle_restrict_pos_e(double * theta); double gsl_sf_angle_restrict_pos(const double theta); int gsl_sf_angle_restrict_symm_err_e(const double theta, gsl_sf_result * result); int gsl_sf_angle_restrict_pos_err_e(const double theta, gsl_sf_result * result); __END_DECLS #endif /* __GSL_SF_TRIG_H__ */ gsl-1.16/specfunc/bessel_Yn.c0000664000252300025230000001257412171574312013060 00000000000000/* specfunc/bessel_Yn.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_amp_phase.h" #include "bessel_olver.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* assumes n >= 1 */ static int bessel_Yn_small_x(const int n, const double x, gsl_sf_result * result) { int k; double y = 0.25 * x * x; double ln_x_2 = log(0.5*x); gsl_sf_result ln_nm1_fact; double k_term; double term1, sum1, ln_pre1; double term2, sum2, pre2; gsl_sf_lnfact_e((unsigned int)(n-1), &ln_nm1_fact); ln_pre1 = -n*ln_x_2 + ln_nm1_fact.val; if(ln_pre1 > GSL_LOG_DBL_MAX - 3.0) GSL_ERROR ("error", GSL_EOVRFLW); sum1 = 1.0; k_term = 1.0; for(k=1; k<=n-1; k++) { k_term *= y/(k * (n-k)); sum1 += k_term; } term1 = -exp(ln_pre1) * sum1 / M_PI; pre2 = -exp(n*ln_x_2) / M_PI; if(fabs(pre2) > 0.0) { const int KMAX = 20; gsl_sf_result psi_n; gsl_sf_result npk_fact; double yk = 1.0; double k_fact = 1.0; double psi_kp1 = -M_EULER; double psi_npkp1; gsl_sf_psi_int_e(n, &psi_n); gsl_sf_fact_e((unsigned int)n, &npk_fact); psi_npkp1 = psi_n.val + 1.0/n; sum2 = (psi_kp1 + psi_npkp1 - 2.0*ln_x_2)/npk_fact.val; for(k=1; kval = term1 + term2; result->err = GSL_DBL_EPSILON * (fabs(ln_pre1)*fabs(term1) + fabs(term2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Yn_e(int n, const double x, gsl_sf_result * result) { int sign = 1; if(n < 0) { /* reduce to case n >= 0 */ n = -n; if(GSL_IS_ODD(n)) sign = -1; } /* CHECK_POINTER(result) */ if(n == 0) { int status = gsl_sf_bessel_Y0_e(x, result); result->val *= sign; return status; } else if(n == 1) { int status = gsl_sf_bessel_Y1_e(x, result); result->val *= sign; return status; } else { if(x <= 0.0) { DOMAIN_ERROR(result); } if(x < 5.0) { int status = bessel_Yn_small_x(n, x, result); result->val *= sign; return status; } else if(GSL_ROOT3_DBL_EPSILON * x > (n*n + 1.0)) { int status = gsl_sf_bessel_Ynu_asympx_e((double)n, x, result); result->val *= sign; return status; } else if(n > 50) { int status = gsl_sf_bessel_Ynu_asymp_Olver_e((double)n, x, result); result->val *= sign; return status; } else { double two_over_x = 2.0/x; gsl_sf_result r_by; gsl_sf_result r_bym; int stat_1 = gsl_sf_bessel_Y1_e(x, &r_by); int stat_0 = gsl_sf_bessel_Y0_e(x, &r_bym); double bym = r_bym.val; double by = r_by.val; double byp; int j; for(j=1; jval = sign * by; result->err = fabs(result->val) * (fabs(r_by.err/r_by.val) + fabs(r_bym.err/r_bym.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_1, stat_0); } } } int gsl_sf_bessel_Yn_array(const int nmin, const int nmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(nmin < 0 || nmax < nmin || x <= 0.0) { int j; for(j=0; j<=nmax-nmin; j++) result_array[j] = 0.0; GSL_ERROR ("error", GSL_EDOM); } else { gsl_sf_result r_Ynm1; gsl_sf_result r_Yn; int stat_nm1 = gsl_sf_bessel_Yn_e(nmin, x, &r_Ynm1); int stat_n = gsl_sf_bessel_Yn_e(nmin+1, x, &r_Yn); double Ynp1; double Yn = r_Yn.val; double Ynm1 = r_Ynm1.val; int n; int stat = GSL_ERROR_SELECT_2(stat_nm1, stat_n); if(stat == GSL_SUCCESS) { for(n=nmin+1; n<=nmax+1; n++) { result_array[n-nmin-1] = Ynm1; Ynp1 = -Ynm1 + 2.0*n/x * Yn; Ynm1 = Yn; Yn = Ynp1; } } else { for(n=nmin; n<=nmax; n++) { result_array[n-nmin] = 0.0; } } return stat; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Yn(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Yn_e(n, x, &result)); } gsl-1.16/specfunc/atanint.c0000664000252300025230000000571512171574312012572 00000000000000/* specfunc/atanint.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "chebyshev.h" #include "cheb_eval.c" static double atanint_data[21] = { 1.91040361296235937512, -0.4176351437656746940e-01, 0.275392550786367434e-02, -0.25051809526248881e-03, 0.2666981285121171e-04, -0.311890514107001e-05, 0.38833853132249e-06, -0.5057274584964e-07, 0.681225282949e-08, -0.94212561654e-09, 0.13307878816e-09, -0.1912678075e-10, 0.278912620e-11, -0.41174820e-12, 0.6142987e-13, -0.924929e-14, 0.140387e-14, -0.21460e-15, 0.3301e-16, -0.511e-17, 0.79e-18, }; static cheb_series atanint_cs = { atanint_data, 20, -1, 1, 10 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_atanint_e(const double x, gsl_sf_result * result) { const double ax = fabs(x); const double sgn = GSL_SIGN(x); /* CHECK_POINTER(result) */ if(ax == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 0.5*GSL_SQRT_DBL_EPSILON) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(ax <= 1.0) { const double t = 2.0 * (x*x - 0.5); gsl_sf_result result_c; cheb_eval_e(&atanint_cs, t, &result_c); result->val = x * result_c.val; result->err = x * result_c.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(ax < 1.0/GSL_SQRT_DBL_EPSILON) { const double t = 2.0 * (1.0/(x*x) - 0.5); gsl_sf_result result_c; cheb_eval_e(&atanint_cs, t, &result_c); result->val = sgn * (0.5*M_PI*log(ax) + result_c.val/ax); result->err = result_c.err/ax + fabs(result->val*GSL_DBL_EPSILON); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = sgn * (0.5*M_PI*log(ax) + 1.0 / ax); result->err = 2.0 * fabs(result->val * GSL_DBL_EPSILON); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_atanint(const double x) { EVAL_RESULT(gsl_sf_atanint_e(x, &result)); } gsl-1.16/specfunc/test_bessel.c0000664000252300025230000012155112171574312013445 00000000000000/* specfunc/test_bessel.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" static double J[100]; static double Y[100]; static double I[100]; static double K[100]; int test_bessel(void) { gsl_sf_result r; int i; int s = 0; int sa; TEST_SF(s, gsl_sf_bessel_J0_e, (0.1, &r), 0.99750156206604003230, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J0_e, (2.0, &r), 0.22389077914123566805, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J0_e, (100.0, &r), 0.019985850304223122424, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J0_e, (1.0e+10, &r), 2.1755917502468917269e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J1_e, (0.1, &r), 0.04993752603624199756, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J1_e, (2.0, &r), 0.57672480775687338720, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J1_e, (100.0, &r), -0.07714535201411215803, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_J1_e, (1.0e+10, &r), -7.676508175684157103e-06, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (4, 0.1, &r), 2.6028648545684032338e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (5, 2.0, &r), 0.007039629755871685484, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (10, 20.0, &r), 0.18648255802394508321, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (100, 100.0, &r), 0.09636667329586155967, TEST_TOL0, GSL_SUCCESS); /* exercise the BUG#3 problem */ TEST_SF(s, gsl_sf_bessel_Jn_e, (2, 900.0, &r), -0.019974345269680646400, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (2, 15000.0, &r), -0.0020455820181216382666, TEST_TOL4, GSL_SUCCESS); #ifdef TEST_LARGE TEST_SF(s, gsl_sf_bessel_Jn_e, (0, 1.0e+10, &r), 2.1755917502468917269e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (1, 1.0e+10, &r), -7.676508175684157103e-06, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jn_e, (0, 20000, &r), 0.00556597490495494615709982972, TEST_TOL4, GSL_SUCCESS); #endif /* Testcase demonstrating long calculation time: Time spent in gsl_sf_bessel_J_CF1 for large x<1000 and n<5 grows in proportion to x Jonny Taylor */ TEST_SF(s, gsl_sf_bessel_Jn_e, (45, 900.0, &r), 0.02562434700634278108, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y0_e, (0.1, &r), -1.5342386513503668441, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y0_e, (2, &r), 0.5103756726497451196, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y0_e, (256.0, &r), -0.03381290171792454909 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y0_e, (4294967296.0, &r), 3.657903190017678681e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y1_e, (0.1, &r), -6.45895109470202698800, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y1_e, (2, &r), -0.10703243154093754689, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y1_e, (100.0, &r), -0.020372312002759793305, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Y1_e, (4294967296.0, &r), 0.000011612249378370766284, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (4, 0.1, &r), -305832.29793353160319, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (5, 2, &r), -9.935989128481974981, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (100, 100.0, &r), -0.16692141141757650654, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (100, 4294967296.0, &r), 3.657889671577715808e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (1000, 4294967296.0, &r), 3.656551321485397501e-06, 2.0e-05, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Yn_e, (2, 15000.0, &r), -0.006185217273358617849, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_scaled_e, (1e-10, &r), 0.99999999990000000001, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_scaled_e, (0.1, &r), 0.90710092578230109640, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_scaled_e, (2, &r), 0.30850832255367103953, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_scaled_e, (100.0, &r), 0.03994437929909668265, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_scaled_e, (65536.0, &r), 0.0015583712551952223537, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_scaled_e, (0.1, &r), 0.04529844680880932501, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_scaled_e, (2, &r), 0.21526928924893765916, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_scaled_e, (100.0, &r), 0.03974415302513025267, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_scaled_e, (65536.0, &r), 0.0015583593657207350452, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( -4, 0.1, &r), 2.3575258620054605307e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( 4, 0.1, &r), 2.3575258620054605307e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( 5, 2.0, &r), 0.0013297610941881578142, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( 100, 100.0, &r), 1.7266862628167695785e-22, TEST_TOL0, GSL_SUCCESS); /* BJG: the "exact" values in the following two tests were originally computed from the taylor series for I_nu using "long double" and rescaling. The last few digits were inaccurate due to cumulative roundoff. BJG: 2006/05 I have now replaced these with the term asymptotic expansion from A&S 9.7.1 which should be fully accurate. */ TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( 2, 1e7, &r), 1.261566024466416433e-4, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_scaled_e, ( 2, 1e8, &r), 3.989422729212649531e-5, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_e, (0.1, &r), 1.0025015629340956014, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_e, (2.0, &r), 2.2795853023360672674, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I0_e, (100.0, &r), 1.0737517071310738235e+42, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_e, (0.1, &r), 0.05006252604709269211, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_e, (2.0, &r), 1.59063685463732906340, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_I1_e, (100.0, &r), 1.0683693903381624812e+42, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_e, ( 4, 0.1, &r), 2.6054690212996573677e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_e, ( 5, 2.0, &r), 0.009825679323131702321, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_In_e, ( 100, 100.0, &r), 4.641534941616199114e+21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_scaled_e, (0.1, &r), 2.6823261022628943831, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_scaled_e, (2.0, &r), 0.8415682150707714179, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_scaled_e, (100.0, &r), 0.1251756216591265789, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_scaled_e, (0.1, &r), 10.890182683049696574, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_scaled_e, (2.0, &r), 1.0334768470686885732, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_scaled_e, (100.0, &r), 0.1257999504795785293, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_scaled_e, ( 4, 0.1, &r), 530040.2483725626207, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_scaled_e, ( 5, 2.0, &r), 69.68655087607675118, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_scaled_e, ( 100, 100.0, &r), 2.0475736731166756813e+19, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_e, (0.1, &r), 2.4270690247020166125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_e, (2.0, &r), 0.11389387274953343565, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K0_e, (100.0, &r), 4.656628229175902019e-45, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_e, (0.1, &r), 9.853844780870606135, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_e, (2.0, &r), 0.13986588181652242728, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_K1_e, (100.0, &r), 4.679853735636909287e-45, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_e, ( 4, 0.1, &r), 479600.2497925682849, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_e, ( 5, 2.0, &r), 9.431049100596467443, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Kn_e, ( 100, 100.0, &r), 7.617129630494085416e-25, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, (-10.0, &r), -0.05440211108893698134, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, (0.001, &r), 0.9999998333333416667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, ( 1.0, &r), 0.84147098480789650670, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, ( 10.0, &r), -0.05440211108893698134, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, (100.0, &r), -0.005063656411097587937, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j0_e, (1048576.0, &r), 3.1518281938718287624e-07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, (-10.0, &r), -0.07846694179875154709, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, (0.01, &r), 0.003333300000119047399, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, ( 1.0, &r), 0.30116867893975678925, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, ( 10.0, &r), 0.07846694179875154709, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, (100.0, &r), -0.008673825286987815220, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j1_e, (1048576.0, &r), -9.000855242905546158e-07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, (-10.0, &r), 0.07794219362856244547, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, (0.01, &r), 6.666619047751322551e-06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, ( 1.0, &r), 0.06203505201137386110, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, ( 10.0, &r), 0.07794219362856244547, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, (100.0, &r), 0.004803441652487953480, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_j2_e, (1048576.0, &r), -3.1518539455252413111e-07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (0, 0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (1, 10.0, &r), 0.07846694179875154709000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (5, 1.0, &r), 0.00009256115861125816357, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (10, 10.0, &r), 0.06460515449256426427, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (100, 100.0, &r), 0.010880477011438336539, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (2000, 1048576.0, &r), 7.449384239168568534e-07, TEST_SQRT_TOL0, GSL_SUCCESS); /* related to BUG#3 problem */ TEST_SF(s, gsl_sf_bessel_jl_e, (2, 900.0, &r), -0.0011089115568832940086, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (2, 15000.0, &r), -0.00005955592033075750554, TEST_TOL4, GSL_SUCCESS); /* Bug report by Mario Santos, value computed from AS 10.1.8 */ TEST_SF(s, gsl_sf_bessel_jl_e, (100, 1000.0, &r), -0.00025326311230945818285, TEST_TOL4, GSL_SUCCESS); /* Bug reported by Koichi Takahashi , computed from Pari besseljh(n,x) and AS 10.1.1 */ TEST_SF(s, gsl_sf_bessel_jl_e, (30, 3878.62, &r), -0.00023285567034330878410434732790, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (49, 9912.63, &r), 5.2043354544842669214485107019E-5 , TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (49, 9950.35, &r), 5.0077368819565969286578715503E-5 , TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_jl_e, (52, 9930.51, &r), -7.4838588266727718650124475651E-6 , TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, (0.001, &r), -999.99950000004166670, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, ( 1.0, &r), -0.5403023058681397174, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, ( 10.0, &r), 0.08390715290764524523, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, (100.0, &r), -0.008623188722876839341, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, (65536.0, &r), 0.000011014324202158573930, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y0_e, (4294967296.0, &r), 2.0649445131370357007e-10, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y1_e, ( 0.01, &r), -10000.499987500069444, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y1_e, ( 1.0, &r), -1.3817732906760362241, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y1_e, ( 10.0, &r), 0.06279282637970150586, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y1_e, (100.0, &r), 0.004977424523868819543, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y1_e, (4294967296.0, &r), 1.0756463271573404688e-10, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y2_e, ( 0.01, &r), -3.0000500012499791668e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y2_e, ( 1.0, &r), -3.605017566159968955, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y2_e, ( 10.0, &r), -0.06506930499373479347, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y2_e, (100.0, &r), 0.008772511458592903927, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_y2_e, (4294967296.0, &r), -2.0649445123857054207e-10, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (0, 0.01, &r), -99.995000041666528, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (0, 1.0, &r), -0.54030230586813972, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (1, 10.0, &r), 0.062792826379701506, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (5, 1.0, &r), -999.44034339223641, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (10, 0.01, &r), -6.5473079797378378e+30, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (10, 10.0, &r), -0.172453672088057849, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (100, 1.0, &r), -6.6830794632586775e+186, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (100, 100.0, &r), -0.0229838504915622811, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_yl_e, (2000, 1048576.0, &r), 5.9545201447146155e-07, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i0_scaled_e, (0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i0_scaled_e, (0.1, &r), 0.9063462346100907067, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i0_scaled_e, (2.0, &r), 0.24542109027781645493, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i0_scaled_e, (100.0, &r), 0.005000000000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i1_scaled_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i1_scaled_e, (0.1, &r), 0.030191419289002226846, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i1_scaled_e, (2.0, &r), 0.131868364583275317610, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i1_scaled_e, (100.0, &r), 0.004950000000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i2_scaled_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i2_scaled_e, (0.1, &r), 0.0006036559400239012567, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i2_scaled_e, (2.0, &r), 0.0476185434029034785100, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_i2_scaled_e, (100.0, &r), 0.0048515000000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 0, 0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 1, 0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 4, 0.001, &r), 1.0571434341190365013e-15, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 4, 0.1, &r), 9.579352242057134927e-08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 5, 2.0, &r), 0.0004851564602127540059, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 5, 100.0, &r), 0.004300446777500000000, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_il_scaled_e, ( 100, 100.0, &r), 1.3898161964299132789e-23, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k0_scaled_e, (0.1, &r), 15.707963267948966192, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k0_scaled_e, (2.0, &r), 0.7853981633974483096, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k0_scaled_e, (100.0, &r), 0.015707963267948966192, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k1_scaled_e, (0.1, &r), 172.78759594743862812, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k1_scaled_e, (2.0, &r), 1.1780972450961724644, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k1_scaled_e, (100.0, &r), 0.015865042900628455854, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k2_scaled_e, (0.1, &r), 5199.335841691107810, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k2_scaled_e, (2.0, &r), 2.5525440310417070063, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_k2_scaled_e, (100.0, &r), 0.016183914554967819868, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_kl_scaled_e, ( 4, 1.0/256.0, &r), 1.8205599816961954439e+14, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_kl_scaled_e, ( 4, 1.0/8.0, &r), 6.1173217814406597530e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_kl_scaled_e, ( 5, 2.0, &r), 138.10735829492005119, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_kl_scaled_e, ( 100, 100.0, &r), 3.985930768060258219e+18, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (0.0001, 1.0, &r), 0.7652115411876708497, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (0.0001, 10.0, &r), -0.2459270166445205, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (0.0009765625, 10.0, &r), -0.2458500798634692, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (0.75, 1.0, &r), 0.5586524932048917478, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (0.75, 10.0, &r), -0.04968928974751508135, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, ( 1.0, 0.001, &r), 0.0004999999375000026, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, ( 1.0, 1.0, &r), 0.4400505857449335160, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, ( 1.75, 1.0, &r), 0.168593922545763170103, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (30.0, 1.0, &r), 3.482869794251482902e-42, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (30.0, 100.0, &r), 0.08146012958117222297, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (10.0, 1.0, &r), 2.6306151236874532070e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (10.0, 100.0, &r), -0.05473217693547201474, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (10.2, 100.0, &r), -0.03548919161046526864, TEST_TOL2, GSL_SUCCESS); /* related to BUG#3 problem */ TEST_SF(s, gsl_sf_bessel_Jnu_e, (2.0, 900.0, &r), -0.019974345269680646400, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Jnu_e, (2.0, 15000.0, &r), -0.0020455820181216382666, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (0.0001, 1.0, &r), 0.08813676933044478439, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (0.0001,10.0, &r), 0.05570979797521875261, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, ( 0.75, 1.0, &r), -0.6218694174429746383, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, ( 0.75, 10.0, &r), 0.24757063446760384953, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, ( 1.0, 0.001, &r), -636.6221672311394281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, ( 1.0, 1.0, &r), -0.7812128213002887165, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (30.0, 1.0, &r), -3.0481287832256432162e+39, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (30.0, 100.0, &r), 0.006138839212010033452, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (10.0, 1.0, &r), -1.2161801427868918929e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (10.0, 100.0, &r), 0.05833157423641492875, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Ynu_e, (10.2, 100.0, &r), 0.07169383985546287091, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (0.0001,10.0, &r), 0.12783333709581669672, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, ( 1.0, 0.001, &r), 0.0004995003123542213370, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, ( 1.0, 1.0, &r), 0.20791041534970844887, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (30.0, 1.0, &r), 1.3021094983785914437e-42, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (30.0, 100.0, &r), 0.0004486987756920986146, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (10.0, 1.0, &r), 1.0127529864692066036e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (10.0, 100.0, &r), 0.024176682718258828365, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_scaled_e, (10.2, 100.0, &r), 0.023691628843913810043, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (0.0001,10.0, &r), 2815.7166269770030352, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, ( 1.0, 0.001, &r), 0.0005000000625000026042, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, ( 1.0, 1.0, &r), 0.5651591039924850272, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (30.0, 1.0, &r), 3.539500588106447747e-42, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (30.0, 100.0, &r), 1.2061548704498434006e+40, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (10.0, 1.0, &r), 2.7529480398368736252e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (10.0, 100.0, &r), 6.498975524720147799e+41, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Inu_e, (10.2, 100.0, &r), 6.368587361287030443e+41, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (0.0001,10.0, &r), 0.3916319346235421817, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, ( 1.0, 0.001, &r), 1000.9967345590684524, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, ( 1.0, 1.0, &r), 1.6361534862632582465, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (30.0, 1.0, &r), 1.2792629867539753925e+40, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (30.0, 100.0, &r), 10.673443449954850040, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (10.0, 1.0, &r), 4.912296520990198599e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (10.0, 100.0, &r), 0.20578687173955779807, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (10.0, 1000.0, &r), 0.04165905142800565788, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (10.0, 1.0e+8, &r), 0.00012533147624060789938, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_scaled_e, (10.2, 100.0, &r), 0.20995808355244385075, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (0.0001,0.001, &r), 7.023689431812884141, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (0.0001,10.0, &r), 0.000017780062324654874306, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, ( 1.0, 0.001, &r), 999.9962381560855743, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, ( 1.0, 1.0, &r), 0.6019072301972345747, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (10.0, 0.001, &r), 1.8579455483904008064e+38, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (10.0, 1.0, &r), 1.8071328990102945469e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (10.0, 100.0, &r), 7.655427977388100611e-45, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (10.2, 100.0, &r), 7.810600225948217841e-45, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (30.0, 1.0, &r), 4.706145526783626883e+39, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_Knu_e, (30.0, 100.0, &r), 3.970602055959398739e-43, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (0.0001,1.0e-100, &r), 5.439794449319847, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (0.0001,0.0001, &r), 2.232835507214331, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (0.0001,10.0, &r), -10.93743282256098, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, ( 1.0, 1.0e-100, &r), 230.2585092994045, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, ( 1.0, 1.0e-10, &r), 23.025850929940456840, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, ( 1.0, 0.001, &r), 6.907751517131146, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, ( 1.0, 1.0, &r), -0.5076519482107523309, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (30.0, 1.0e-100, &r), 6999.113586185543475, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (30.0, 1.0, &r), 91.34968784026325464, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (30.0, 100.0, &r), -97.63224126416760932, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (100.0, 1.0e-100, &r), 23453.606706185466825, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (100.0, 1.0, &r), 427.7532510250188083, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (100.0, 100.0, &r), -55.53422771502921431, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (1000.0, 1.0e-100, &r), 236856.183755993135, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (10000.0, 1.0e-100, &r), 2.39161558914890695e+06, TEST_TOL0, GSL_SUCCESS); /* [bug #31528] gsl_sf_bessel_lnKnu overflows for large nu */ TEST_SF(s, gsl_sf_bessel_lnKnu_e, (180.0, 2.2, &r), 735.1994170369583930752590258, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_lnKnu_e, (3500.5, 1500.0, &r), 1731.220077116482710070986699, TEST_TOL1, GSL_SUCCESS); sa = 0; gsl_sf_bessel_Jn_array(3, 38, 1.0, J); sa += ( test_sf_frac_diff(J[0], 0.0195633539826684059190 ) > TEST_TOL1); sa += ( test_sf_frac_diff(J[1], 0.0024766389641099550438 ) > TEST_TOL1); sa += ( test_sf_frac_diff(J[10], 1.9256167644801728904e-14 ) > TEST_TOL1); sa += ( test_sf_frac_diff(J[35], 6.911232970971626272e-57 ) > TEST_TOL1); gsl_test(sa, " gsl_sf_bessel_Jn_array"); s += sa; sa = 0; gsl_sf_bessel_Yn_array(3, 38, 1.0, Y); sa += ( test_sf_frac_diff(Y[0], -5.821517605964728848 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[1], -33.27842302897211870 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[10], -1.2753618701519837595e+12 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[35], -1.2124435663593357154e+54 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_Yn_array"); s += sa; sa = 0; gsl_sf_bessel_In_scaled_array(3, 38, 1.0, I); sa += ( test_sf_frac_diff(I[0], 0.0081553077728142938170 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(I[1], 0.0010069302573377758637 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(I[10], 7.341518665628926244e-15 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(I[35], 2.5753065298357542893e-57 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_In_scaled_array"); s += sa; sa = 0; gsl_sf_bessel_In_array(3, 38, 1.0, Y); sa += ( test_sf_frac_diff(Y[0], 0.0221684249243319024760 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[1], 0.0027371202210468663251 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[10], 1.9956316782072007564e-14 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[35], 7.000408942764452901e-57 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_In_array"); s += sa; sa = 0; gsl_sf_bessel_Kn_array(3, 38, 1.0, K); sa += ( test_sf_frac_diff(K[0], 7.101262824737944506 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[1], 44.23241584706284452 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[10], 1.9215763927929940846e+12 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[35], 1.8789385023806051223e+54 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_Kn_array"); s += sa; sa = 0; gsl_sf_bessel_Kn_scaled_array(3, 38, 1.0, K); sa += ( test_sf_frac_diff(K[0], 19.303233695596904277 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[1], 120.23617222591483717 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[10], 5.223386190525076473e+12 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[35], 5.107484387813251411e+54 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_Kn_scaled_array"); s += sa; sa = 0; gsl_sf_bessel_jl_array(50, 1.0, J); sa += ( test_sf_frac_diff(J[0], 0.84147098480789650670 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(J[1], 0.30116867893975678925 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(J[10], 7.116552640047313024e-11 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(J[50], 3.615274717489787311e-81 ) > TEST_TOL2 ); gsl_test(sa, " gsl_sf_bessel_jl_array"); s += sa; sa = 0; gsl_sf_bessel_jl_steed_array(99, 1.0, J); sa += ( test_sf_frac_diff(J[0], 0.84147098480789650670 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(J[1], 0.30116867893975678925 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(J[10], 7.116552640047313024e-11 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(J[50], 3.615274717489787311e-81 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(J[80], 1.136352423414503264e-144 ) > TEST_TOL1 ); gsl_test(sa, " gsl_sf_bessel_jl_steed_array"); s += sa; sa = 0; gsl_sf_bessel_yl_array(50, 1.0, Y); sa += ( test_sf_frac_diff(Y[0], -0.5403023058681397174 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[1], -1.3817732906760362241 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[10], -6.722150082562084436e+08 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(Y[50], -2.7391922846297571576e+78 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_yl_array"); s += sa; { double Y0[1]; sa = 0; gsl_sf_bessel_yl_array(0, 1.0, Y0); sa += ( test_sf_frac_diff(Y0[0], -0.5403023058681397174 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_yl_array (lmax=0)"); s += sa; } sa = 0; gsl_sf_bessel_il_scaled_array(50, 1.0, I); sa += ( test_sf_frac_diff(I[0], 0.43233235838169365410 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[1], 0.13533528323661269189 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[10], 2.7343719371837065460e-11 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[50], 1.3429606061892023653e-81 ) > TEST_TOL2 ); gsl_test(sa, " gsl_sf_bessel_il_scaled_array"); s += sa; sa = 0; gsl_sf_bessel_il_scaled_array(50, 0.0, I); sa += ( test_sf_frac_diff(I[0], 1.0 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[1], 0.0 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[10], 0.0 ) > TEST_TOL2 ); sa += ( test_sf_frac_diff(I[50], 0.0 ) > TEST_TOL2 ); gsl_test(sa, " gsl_sf_bessel_il_scaled_array (L=0)"); s += sa; sa = 0; gsl_sf_bessel_kl_scaled_array(50, 1.0, K); sa += ( test_sf_frac_diff(K[0], 1.5707963267948966192 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[1], 3.1415926535897932385 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[10], 2.7231075458948147010e+09 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff(K[50], 1.1578440432804522544e+79 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_kl_scaled_array"); s += sa; { double K0[1]; sa = 0; gsl_sf_bessel_kl_scaled_array(0, 1.0, K0); sa += ( test_sf_frac_diff(K[0], 1.5707963267948966192 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_bessel_kl_scaled_array (lmax=0)"); s += sa; } sa = 0; sa += ( gsl_sf_bessel_zero_J0_e(0, &r) != GSL_EINVAL ); sa += ( r.val != 0.0 ); s += sa; TEST_SF(s, gsl_sf_bessel_zero_J0_e, ( 1, &r), 2.404825557695771, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J0_e, ( 2, &r), 5.520078110286304, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J0_e, (20, &r), 62.048469190227081, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J0_e, (25, &r), 77.756025630388058, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J0_e, (100, &r), 313.37426607752784, TEST_TOL1, GSL_SUCCESS); sa = 0; sa += ( gsl_sf_bessel_zero_J1_e(0, &r) != GSL_SUCCESS ); sa += ( r.val != 0.0 ); s += sa; TEST_SF(s, gsl_sf_bessel_zero_J1_e, ( 1, &r), 3.831705970207512, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J1_e, ( 2, &r), 7.015586669815619, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J1_e, (20, &r), 63.61135669848124, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J1_e, (25, &r), 79.32048717547630, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_J1_e, (100, &r), 314.9434728377672, TEST_TOL2, GSL_SUCCESS); sa = 0; sa += ( gsl_sf_bessel_zero_Jnu_e(0.0, 0, &r) != GSL_EINVAL ); sa += ( r.val != 0.0 ); s += sa; TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (0.0, 1, &r), 2.404825557695771, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (0.0, 2, &r), 5.520078110286304, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (0.0, 20, &r), 62.048469190227081, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (0.0, 25, &r), 77.756025630388058, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (0.0, 100, &r), 313.37426607752784, TEST_TOL1, GSL_SUCCESS); sa = 0; sa += ( gsl_sf_bessel_zero_Jnu_e(1.0, 0, &r) != GSL_SUCCESS ); sa += (r.val != 0.0); s += sa; TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 1, &r), 4.4934094579090641, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 1, &r), 8.7714838159599540, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 2, &r), 7.7252518369377072, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 2, &r), 12.338604197466944, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 3, &r), 10.904121659428900, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 3, &r), 15.700174079711671, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 4, &r), 14.066193912831473, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 4, &r), 18.980133875179921, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 5, &r), 17.220755271930768, TEST_TOL1, GSL_SUCCESS); /* Something wrong with the tolerances on these */ TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 5, &r), 22.217799896561268, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 8.0, 5, &r), 26.266814641176644, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (20.0, 5, &r), 41.413065513892636, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 6, &r), 20.371302959287563, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 6, &r), 25.430341154222704, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 8.0, 6, &r), 29.545659670998550, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 7, &r), 23.519452498689007, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 7, &r), 28.626618307291138, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 8.0, 7, &r), 32.795800037341462, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 8, &r), 26.666054258812674, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 8, &r), 31.811716724047763, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (10.0, 8, &r), 38.761807017881651, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 9, &r), 29.811598790892959, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 9, &r), 34.988781294559295, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (10.0, 9, &r), 42.004190236671805, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 1.5, 10, &r), 32.956389039822477, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 10, &r), 38.159868561967132, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 10, &r), 52.017241278881633, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 11, &r), 41.326383254047406, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 11, &r), 55.289204146560061, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 12, &r), 44.4893191232197314, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 12, &r), 58.5458289043850856, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 13, &r), 47.6493998066970948, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 13, &r), 61.7897598959450550, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 14, &r), 50.8071652030063595, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 14, &r), 65.0230502510422545, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 15, &r), 53.9630265583781707, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 15, &r), 68.2473219964207837, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 16, &r), 57.1173027815042647, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 16, &r), 71.4638758850226630, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 17, &r), 60.2702450729428077, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 17, &r), 74.6737687121404241, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 18, &r), 63.4220540458757799, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 18, &r), 77.8778689734863729, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 19, &r), 66.5728918871182703, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 19, &r), 81.0768977206328326, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 20, &r), 69.722891161716742, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (15.0, 20, &r), 84.271459069716442, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 23.0, 11, &r), 65.843393469524653, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 30.0, 11, &r), 74.797306585175426, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 32.0, 15, &r), 90.913637691861741, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 50.0, 15, &r), 113.69747988073942, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 5.0, 22, &r), 76.020793430591605, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 10.0, 22, &r), 83.439189796105756, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, ( 12.0, 22, &r), 86.345496520534055, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (100.0, 22, &r), 199.82150220122519, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_bessel_zero_Jnu_e, (500.0, 22, &r), 649.34132440891735, TEST_TOL2, GSL_SUCCESS); sa = 0; for(i=0; i<100; i++) { J[i] = i/10.0; } gsl_sf_bessel_sequence_Jnu_e(2.0, GSL_MODE_DEFAULT, 100, J); sa += ( test_sf_frac_diff(J[1], 0.0012489586587999188454 ) > TEST_TOL1 ); sa += ( test_sf_frac_diff(J[20], 0.3528340286156377192 ) > TEST_TOL4 ); sa += ( test_sf_frac_diff(J[50], 0.0465651162777522155 ) > TEST_TOL4 ); gsl_test(sa, " gsl_sf_sequence_Jnu_e(2)"); s += sa; sa = 0; for(i=0; i<100; i++) { J[i] = i; } gsl_sf_bessel_sequence_Jnu_e(12.0, GSL_MODE_DEFAULT, 100, J); sa += ( test_sf_frac_diff(J[1], 4.999718179448405289e-13 ) > TEST_TOL1 ); sa += ( test_sf_frac_diff(J[5], 7.627813166084551355e-05 ) > TEST_TOL1 ); sa += ( test_sf_frac_diff(J[7], 2.655620035894568062e-03 ) > TEST_TOL3 ); sa += ( test_sf_frac_diff(J[10], 6.337025497015601509e-02 ) > TEST_TOL3 ); sa += ( test_sf_frac_diff(J[15], 0.23666584405476805591 ) > TEST_TOL3 ); sa += ( test_sf_frac_diff(J[30], 0.14825335109966010021 ) > TEST_TOL3 ); sa += ( test_sf_frac_diff(J[70], 0.04109913716555364262 ) > TEST_TOL4 ); sa += ( test_sf_frac_diff(J[99], -0.0015052760501176728 ) > TEST_TOL5 ); gsl_test(sa, " gsl_sf_sequence_Jnu_e(12)"); s += sa; sa = 0; for(i=0; i<100; i++) { J[i] = i * 20; } gsl_sf_bessel_sequence_Jnu_e(1000.0, GSL_MODE_DEFAULT, 100, J); sa += ( test_sf_frac_diff(J[50], 0.04473067294796404088 ) > TEST_TOL5 ); sa += ( test_sf_frac_diff(J[99], 0.01400619760349853902 ) > TEST_TOL6 ); gsl_test(sa, " gsl_sf_sequence_Jnu_e(1000)"); s += sa; return s; } gsl-1.16/specfunc/airy_der.c0000664000252300025230000006203512171574312012730 00000000000000/* specfunc/airy_der.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval_mode.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC aide.f, bide.f, aid.f, bid.f, r9admp.f */ /* series for aif on the interval -1.00000e+00 to 1.00000e+00 with weighted error 5.22e-18 log weighted error 17.28 significant figures required 16.01 decimal places required 17.73 */ static double aif_data[8] = { 0.10527461226531408809, 0.01183613628152997844, 0.00012328104173225664, 0.00000062261225638140, 0.00000000185298887844, 0.00000000000363328873, 0.00000000000000504622, 0.00000000000000000522 }; static cheb_series aif_cs = { aif_data, 7, -1, 1, 7 }; /* series for aig on the interval -1.00000e+00 to 1.00000e+00 with weighted error 3.14e-19 log weighted error 18.50 significant figures required 17.44 decimal places required 18.98 */ static double aig_data[9] = { 0.021233878150918666852, 0.086315930335214406752, 0.001797594720383231358, 0.000014265499875550693, 0.000000059437995283683, 0.000000000152403366479, 0.000000000000264587660, 0.000000000000000331562, 0.000000000000000000314 }; static cheb_series aig_cs = { aig_data, 8, -1, 1, 8 }; /* series for aip2 on the interval 0.00000e+00 to 1.25000e-01 with weighted error 2.15e-17 log weighted error 16.67 significant figures required 14.27 decimal places required 17.26 */ static double aip2_data[15] = { 0.0065457691989713757, 0.0023833724120774592, -0.0000430700770220586, 0.0000015629125858629, -0.0000000815417186163, 0.0000000054103738057, -0.0000000004284130883, 0.0000000000389497963, -0.0000000000039623161, 0.0000000000004428184, -0.0000000000000536297, 0.0000000000000069650, -0.0000000000000009620, 0.0000000000000001403, -0.0000000000000000215 }; static cheb_series aip2_cs = { aip2_data, 14, -1, 1, 9 }; /* series for aip1 on the interval 1.25000e-01 to 1.00000e+00 with weighted error 2.60e-17 log weighted error 16.58 significant figures required 14.91 decimal places required 17.28 */ static double aip1_data[25] = { 0.0358865097808301538, 0.0114668575627764899, -0.0007592073583861400, 0.0000869517610893841, -0.0000128237294298592, 0.0000022062695681038, -0.0000004222295185921, 0.0000000874686415726, -0.0000000192773588418, 0.0000000044668460054, -0.0000000010790108052, 0.0000000002700029447, -0.0000000000696480108, 0.0000000000184489907, -0.0000000000050027817, 0.0000000000013852243, -0.0000000000003908218, 0.0000000000001121536, -0.0000000000000326862, 0.0000000000000096619, -0.0000000000000028935, 0.0000000000000008770, -0.0000000000000002688, 0.0000000000000000832, -0.0000000000000000260 }; static cheb_series aip1_cs = { aip1_data, 24, -1, 1, 14 }; /* series for bif on the interval -1.00000e+00 to 1.00000e+00 with weighted error 9.05e-18 log weighted error 17.04 significant figures required 15.83 decimal places required 17.49 */ static double bif_data[8] = { 0.1153536790828570243, 0.0205007894049192875, 0.0002135290278902876, 0.0000010783960614677, 0.0000000032094708833, 0.0000000000062930407, 0.0000000000000087403, 0.0000000000000000090 }; static cheb_series bif_cs = { bif_data, 7, -1, 1, 7 }; /* series for big on the interval -1.00000e+00 to 1.00000e+00 with weighted error 5.44e-19 log weighted error 18.26 significant figures required 17.46 decimal places required 18.74 */ static double big_data[9] = { -0.097196440416443537390, 0.149503576843167066571, 0.003113525387121326042, 0.000024708570579821297, 0.000000102949627731379, 0.000000000263970373987, 0.000000000000458279271, 0.000000000000000574283, 0.000000000000000000544 }; static cheb_series big_cs = { big_data, 8, -1, 1, 8 }; /* series for bif2 on the interval 1.00000e+00 to 8.00000e+00 with weighted error 3.82e-19 log weighted error 18.42 significant figures required 17.68 decimal places required 18.92 */ static double bif2_data[10] = { 0.323493987603522033521, 0.086297871535563559139, 0.002994025552655397426, 0.000051430528364661637, 0.000000525840250036811, 0.000000003561751373958, 0.000000000017146864007, 0.000000000000061663520, 0.000000000000000171911, 0.000000000000000000382 }; static cheb_series bif2_cs = { bif2_data, 9, -1, 1, 9 }; /* series for big2 on the interval 1.00000e+00 to 8.00000e+00 with weighted error 3.35e-17 log weighted error 16.48 significant figures required 16.52 decimal places required 16.98 */ static double big2_data[10] = { 1.6062999463621294578, 0.7449088819876088652, 0.0470138738610277380, 0.0012284422062548239, 0.0000173222412256624, 0.0000001521901652368, 0.0000000009113560249, 0.0000000000039547918, 0.0000000000000130017, 0.0000000000000000335 }; static cheb_series big2_cs = { big2_data, 9, -1, 1, 9 }; /* series for bip2 on the interval 0.00000e+00 to 1.25000e-01 with weighted error 2.07e-18 log weighted error 17.69 significant figures required 16.51 decimal places required 18.42 */ static double bip2_data[29] = { -0.13269705443526630495, -0.00568443626045977481, -0.00015643601119611610, -0.00001136737203679562, -0.00000143464350991284, -0.00000018098531185164, 0.00000000926177343611, 0.00000001710005490721, 0.00000000476698163504, -0.00000000035195022023, -0.00000000058890614316, -0.00000000006678499608, 0.00000000006395565102, 0.00000000001554529427, -0.00000000000792397000, -0.00000000000258326243, 0.00000000000121655048, 0.00000000000038707207, -0.00000000000022487045, -0.00000000000004953477, 0.00000000000004563782, 0.00000000000000332998, -0.00000000000000921750, 0.00000000000000094157, 0.00000000000000167154, -0.00000000000000055134, -0.00000000000000022369, 0.00000000000000017487, 0.00000000000000000207 }; static cheb_series bip2_cs = { bip2_data, 28, -1, 1, 14 }; /* series for bip1 on the interval 1.25000e-01 to 3.53553e-01 with weighted error 1.86e-17 log weighted error 16.73 significant figures required 15.67 decimal places required 17.42 */ static double bip1_data[24] = { -0.1729187351079553719, -0.0149358492984694364, -0.0005471104951678566, 0.0001537966292958408, 0.0000154353476192179, -0.0000065434113851906, 0.0000003728082407879, 0.0000002072078388189, -0.0000000658173336470, 0.0000000074926746354, 0.0000000011101336884, -0.0000000007265140553, 0.0000000001782723560, -0.0000000000217346352, -0.0000000000020302035, 0.0000000000019311827, -0.0000000000006044953, 0.0000000000001209450, -0.0000000000000125109, -0.0000000000000019917, 0.0000000000000015154, -0.0000000000000004977, 0.0000000000000001155, -0.0000000000000000186 }; static cheb_series bip1_cs = { bip1_data, 23, -1, 1, 13 }; /* series for an22 on the interval -1.00000e+00 to -1.25000e-01 with weighted error 3.30e-17 log weighted error 16.48 significant figures required 14.95 decimal places required 17.24 */ static double an22_data[33] = { 0.0537418629629794329, -0.0126661435859883193, -0.0011924334106593007, -0.0002032327627275655, -0.0000446468963075164, -0.0000113359036053123, -0.0000031641352378546, -0.0000009446708886149, -0.0000002966562236472, -0.0000000969118892024, -0.0000000326822538653, -0.0000000113144618964, -0.0000000040042691002, -0.0000000014440333684, -0.0000000005292853746, -0.0000000001967763374, -0.0000000000740800096, -0.0000000000282016314, -0.0000000000108440066, -0.0000000000042074801, -0.0000000000016459150, -0.0000000000006486827, -0.0000000000002574095, -0.0000000000001027889, -0.0000000000000412846, -0.0000000000000166711, -0.0000000000000067657, -0.0000000000000027585, -0.0000000000000011296, -0.0000000000000004645, -0.0000000000000001917, -0.0000000000000000794, -0.0000000000000000330 }; static cheb_series an22_cs = { an22_data, 32, -1, 1, 18 }; /* series for an21 on the interval -1.25000e-01 to -1.56250e-02 with weighted error 3.43e-17 log weighted error 16.47 significant figures required 14.48 decimal places required 17.16 */ static double an21_data[24] = { 0.0198313155263169394, -0.0029376249067087533, -0.0001136260695958196, -0.0000100554451087156, -0.0000013048787116563, -0.0000002123881993151, -0.0000000402270833384, -0.0000000084996745953, -0.0000000019514839426, -0.0000000004783865344, -0.0000000001236733992, -0.0000000000334137486, -0.0000000000093702824, -0.0000000000027130128, -0.0000000000008075954, -0.0000000000002463214, -0.0000000000000767656, -0.0000000000000243883, -0.0000000000000078831, -0.0000000000000025882, -0.0000000000000008619, -0.0000000000000002908, -0.0000000000000000993, -0.0000000000000000343 }; static cheb_series an21_cs = { an21_data, 23, -1, 1, 12 }; /* series for an20 on the interval -1.56250e-02 to 0.00000e+00 with weighted error 4.41e-17 log weighted error 16.36 significant figures required 14.16 decimal places required 16.96 */ static double an20_data[16] = { 0.0126732217145738027, -0.0005212847072615621, -0.0000052672111140370, -0.0000001628202185026, -0.0000000090991442687, -0.0000000007438647126, -0.0000000000795494752, -0.0000000000104050944, -0.0000000000015932426, -0.0000000000002770648, -0.0000000000000535343, -0.0000000000000113062, -0.0000000000000025772, -0.0000000000000006278, -0.0000000000000001621, -0.0000000000000000441 }; static cheb_series an20_cs = { an20_data, 15, -1, 1, 8 }; /* series for aph2 on the interval -1.00000e+00 to -1.25000e-01 with weighted error 2.94e-17 log weighted error 16.53 significant figures required 15.58 decimal places required 17.28 */ static double aph2_data[32] = { -0.2057088719781465107, 0.0422196961357771922, 0.0020482560511207275, 0.0002607800735165006, 0.0000474824268004729, 0.0000105102756431612, 0.0000026353534014668, 0.0000007208824863499, 0.0000002103236664473, 0.0000000644975634555, 0.0000000205802377264, 0.0000000067836273921, 0.0000000022974015284, 0.0000000007961306765, 0.0000000002813860610, 0.0000000001011749057, 0.0000000000369306738, 0.0000000000136615066, 0.0000000000051142751, 0.0000000000019351689, 0.0000000000007393607, 0.0000000000002849792, 0.0000000000001107281, 0.0000000000000433412, 0.0000000000000170801, 0.0000000000000067733, 0.0000000000000027017, 0.0000000000000010835, 0.0000000000000004367, 0.0000000000000001769, 0.0000000000000000719, 0.0000000000000000294 }; static cheb_series aph2_cs = { aph2_data, 31, -1, 1, 16 }; /* series for aph1 on the interval -1.25000e-01 to -1.56250e-02 with weighted error 6.38e-17 log weighted error 16.20 significant figures required 14.91 decimal places required 16.87 */ static double aph1_data[22] = { -0.1024172908077571694, 0.0071697275146591248, 0.0001209959363122329, 0.0000073361512841220, 0.0000007535382954272, 0.0000001041478171741, 0.0000000174358728519, 0.0000000033399795033, 0.0000000007073075174, 0.0000000001619187515, 0.0000000000394539982, 0.0000000000101192282, 0.0000000000027092778, 0.0000000000007523806, 0.0000000000002156369, 0.0000000000000635283, 0.0000000000000191757, 0.0000000000000059143, 0.0000000000000018597, 0.0000000000000005950, 0.0000000000000001934, 0.0000000000000000638 }; static cheb_series aph1_cs = { aph1_data, 21, -1, 1, 10 }; /* series for aph0 on the interval -1.56250e-02 to 0.00000e+00 with weighted error 2.29e-17 log weighted error 16.64 significant figures required 15.27 decimal places required 17.23 */ static double aph0_data[15] = { -0.0855849241130933257, 0.0011214378867065261, 0.0000042721029353664, 0.0000000817607381483, 0.0000000033907645000, 0.0000000002253264423, 0.0000000000206284209, 0.0000000000023858763, 0.0000000000003301618, 0.0000000000000527010, 0.0000000000000094555, 0.0000000000000018709, 0.0000000000000004024, 0.0000000000000000930, 0.0000000000000000229 }; static cheb_series aph0_cs = { aph0_data, 14, -1, 1, 7 }; static int airy_deriv_mod_phase(const double x, gsl_mode_t mode, gsl_sf_result * ampl, gsl_sf_result * phi) { const double pi34 = 2.356194490192344928847; gsl_sf_result result_a; gsl_sf_result result_p; double a, p; double sqx; double x32; if(x <= -4.0) { double z = 128.0/(x*x*x) + 1.0; cheb_eval_mode_e(&an20_cs, z, mode, &result_a); cheb_eval_mode_e(&aph0_cs, z, mode, &result_p); } else if(x <= -2.0) { double z = (128.0/(x*x*x) + 9.0) / 7.0; cheb_eval_mode_e(&an21_cs, z, mode, &result_a); cheb_eval_mode_e(&aph1_cs, z, mode, &result_p); } else if(x <= -1.0) { double z = (16.0/(x*x*x) + 9.0) / 7.0; cheb_eval_mode_e(&an22_cs, z, mode, &result_a); cheb_eval_mode_e(&aph2_cs, z, mode, &result_p); } else { ampl->val = 0.0; ampl->err = 0.0; phi->val = 0.0; phi->err = 0.0; GSL_ERROR ("x is greater than 1.0", GSL_EDOM); } a = 0.3125 + result_a.val; p = -0.625 + result_p.val; sqx = sqrt(-x); x32 = x*sqx; ampl->val = sqrt(a * sqx); ampl->err = fabs(ampl->val) * (GSL_DBL_EPSILON + fabs(result_a.err/result_a.val)); phi->val = pi34 - x * sqx * p; phi->err = fabs(phi->val) * (GSL_DBL_EPSILON + fabs(result_p.err/result_p.val)); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_airy_Ai_deriv_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result a; gsl_sf_result p; int status_ap = airy_deriv_mod_phase(x, mode, &a, &p); double c = cos(p.val); result->val = a.val * c; result->err = fabs(result->val * p.err) + fabs(c * a.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return status_ap; } else if(x <= 1.0) { const double x3 = x*x*x; const double x2 = x*x; gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&aif_cs, x3, mode, &result_c0); cheb_eval_mode_e(&aig_cs, x3, mode, &result_c1); result->val = (x2*(0.125 + result_c0.val) - result_c1.val) - 0.25; result->err = fabs(x2*result_c0.val) + result_c1.err; result->err += GSL_DBL_EPSILON * fabs(result->val); if(x > GSL_ROOT3_DBL_EPSILON*GSL_ROOT3_DBL_EPSILON) { /* scale only if x is positive */ double s = exp(2.0*x*sqrt(x)/3.0); result->val *= s; result->err *= s; } return GSL_SUCCESS; } else if(x <= 4.0) { const double sqrtx = sqrt(x); const double z = (16.0/(x*sqrtx) - 9.0)/7.0; const double s = sqrt(sqrtx); gsl_sf_result result_c0; cheb_eval_mode_e(&aip1_cs, z, mode, &result_c0); result->val = -(0.28125 + result_c0.val) * s; result->err = result_c0.err * s; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sqrtx = sqrt(x); const double z = 16.0/(x*sqrtx) - 1.0; const double s = sqrt(sqrtx); gsl_sf_result result_c0; cheb_eval_mode_e(&aip2_cs, z, mode, &result_c0); result->val = -(0.28125 + result_c0.val) * s; result->err = result_c0.err * s; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_airy_Ai_deriv_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result a; gsl_sf_result p; int status_ap = airy_deriv_mod_phase(x, mode, &a, &p); double c = cos(p.val); result->val = a.val * c; result->err = fabs(result->val * p.err) + fabs(c * a.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return status_ap; } else if(x < 1.0) { const double x3 = x*x*x; gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_mode_e(&aif_cs, x3, mode, &result_c1); cheb_eval_mode_e(&aig_cs, x3, mode, &result_c2); result->val = (x*x*(0.125 + result_c1.val) - result_c2.val) - 0.25; result->err = fabs(x*x*result_c1.err) + result_c2.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x*x*x < 9.0/4.0 * GSL_LOG_DBL_MIN*GSL_LOG_DBL_MIN) { gsl_sf_result result_aps; const double arg = -2.0*x*sqrt(x)/3.0; const int stat_a = gsl_sf_airy_Ai_deriv_scaled_e(x, mode, &result_aps); const int stat_e = gsl_sf_exp_mult_err_e(arg, 1.5*fabs(arg*GSL_DBL_EPSILON), result_aps.val, result_aps.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_a); } else { UNDERFLOW_ERROR(result); } } int gsl_sf_airy_Bi_deriv_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { const double atr = 8.7506905708484345; /* 16./(sqrt(8)-1) */ const double btr = -2.0938363213560543; /* -(sqrt(8)+1)/(sqrt(8)-1) */ /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result a; gsl_sf_result p; int status_ap = airy_deriv_mod_phase(x, mode, &a, &p); double s = sin(p.val); result->val = a.val * s; result->err = fabs(result->val * p.err) + fabs(s * a.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return status_ap; } else if(x < 1.0) { const double x3 = x*x*x; const double x2 = x*x; gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_mode_e(&bif_cs, x3, mode, &result_c1); cheb_eval_mode_e(&big_cs, x3, mode, &result_c2); result->val = x2 * (result_c1.val + 0.25) + result_c2.val + 0.5; result->err = x2 * result_c1.err + result_c2.err; result->err += GSL_DBL_EPSILON * fabs(result->val); if(x > GSL_ROOT3_DBL_EPSILON*GSL_ROOT3_DBL_EPSILON) { /* scale only if x is positive */ const double s = exp(-2.0*x*sqrt(x)/3.0); result->val *= s; result->err *= s; } return GSL_SUCCESS; } else if(x < 2.0) { const double z = (2.0*x*x*x - 9.0) / 7.0; const double s = exp(-2.0*x*sqrt(x)/3.0); gsl_sf_result result_c0; gsl_sf_result result_c1; cheb_eval_mode_e(&bif2_cs, z, mode, &result_c0); cheb_eval_mode_e(&big2_cs, z, mode, &result_c1); result->val = s * (x*x * (0.25 + result_c0.val) + 0.5 + result_c1.val); result->err = s * (x*x * result_c0.err + result_c1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 4.0) { const double sqrtx = sqrt(x); const double z = atr/(x*sqrtx) + btr; const double s = sqrt(sqrtx); gsl_sf_result result_c0; cheb_eval_mode_e(&bip1_cs, z, mode, &result_c0); result->val = s * (0.625 + result_c0.val); result->err = s * result_c0.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sqrtx = sqrt(x); const double z = 16.0/(x*sqrtx) - 1.0; const double s = sqrt(sqrtx); gsl_sf_result result_c0; cheb_eval_mode_e(&bip2_cs, z, mode, &result_c0); result->val = s * (0.625 + result_c0.val); result->err = s * result_c0.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_airy_Bi_deriv_e(const double x, gsl_mode_t mode, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < -1.0) { gsl_sf_result a; gsl_sf_result p; int status_ap = airy_deriv_mod_phase(x, mode, &a, &p); double s = sin(p.val); result->val = a.val * s; result->err = fabs(result->val * p.err) + fabs(s * a.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return status_ap; } else if(x < 1.0) { const double x3 = x*x*x; const double x2 = x*x; gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_mode_e(&bif_cs, x3, mode, &result_c1); cheb_eval_mode_e(&big_cs, x3, mode, &result_c2); result->val = x2 * (result_c1.val + 0.25) + result_c2.val + 0.5; result->err = x2 * result_c1.err + result_c2.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 2.0) { const double z = (2.0*x*x*x - 9.0) / 7.0; gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_mode_e(&bif2_cs, z, mode, &result_c1); cheb_eval_mode_e(&big2_cs, z, mode, &result_c2); result->val = x*x * (result_c1.val + 0.25) + result_c2.val + 0.5; result->err = x*x * result_c1.err + result_c2.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_ROOT3_DBL_MAX*GSL_ROOT3_DBL_MAX) { gsl_sf_result result_bps; const double arg = 2.0*(x*sqrt(x)/3.0); int stat_b = gsl_sf_airy_Bi_deriv_scaled_e(x, mode, &result_bps); int stat_e = gsl_sf_exp_mult_err_e(arg, 1.5*fabs(arg*GSL_DBL_EPSILON), result_bps.val, result_bps.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_b); } else { OVERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_airy_Ai_deriv_scaled(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Ai_deriv_scaled_e(x, mode, &result)); } double gsl_sf_airy_Ai_deriv(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Ai_deriv_e(x, mode, &result)); } double gsl_sf_airy_Bi_deriv_scaled(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Bi_deriv_scaled_e(x, mode, &result)); } double gsl_sf_airy_Bi_deriv(const double x, gsl_mode_t mode) { EVAL_RESULT(gsl_sf_airy_Bi_deriv_e(x, mode, &result)); } gsl-1.16/specfunc/Makefile.in0000664000252300025230000012622012172253757013040 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = specfunc DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslspecfunc_la_LIBADD = am_libgslspecfunc_la_OBJECTS = airy.lo airy_der.lo airy_zero.lo \ atanint.lo bessel.lo bessel_I0.lo bessel_I1.lo bessel_In.lo \ bessel_Inu.lo bessel_J0.lo bessel_J1.lo bessel_Jn.lo \ bessel_Jnu.lo bessel_K0.lo bessel_K1.lo bessel_Kn.lo \ bessel_Knu.lo bessel_Y0.lo bessel_Y1.lo bessel_Yn.lo \ bessel_Ynu.lo bessel_amp_phase.lo bessel_i.lo bessel_j.lo \ bessel_k.lo bessel_olver.lo bessel_temme.lo bessel_y.lo \ bessel_zero.lo bessel_sequence.lo beta.lo beta_inc.lo \ clausen.lo coulomb.lo coupling.lo coulomb_bound.lo dawson.lo \ debye.lo dilog.lo elementary.lo ellint.lo elljac.lo erfc.lo \ exp.lo expint.lo expint3.lo fermi_dirac.lo gegenbauer.lo \ gamma.lo gamma_inc.lo hyperg_0F1.lo hyperg_2F0.lo \ hyperg_1F1.lo hyperg_2F1.lo hyperg_U.lo hyperg.lo laguerre.lo \ lambert.lo legendre_H3d.lo legendre_Qn.lo legendre_con.lo \ legendre_poly.lo log.lo mathieu_angfunc.lo mathieu_charv.lo \ mathieu_coeff.lo mathieu_radfunc.lo mathieu_workspace.lo \ poch.lo pow_int.lo psi.lo result.lo shint.lo sinint.lo \ synchrotron.lo transport.lo trig.lo zeta.lo libgslspecfunc_la_OBJECTS = $(am_libgslspecfunc_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test_sf.$(OBJEXT) test_airy.$(OBJEXT) \ test_bessel.$(OBJEXT) test_coulomb.$(OBJEXT) \ test_dilog.$(OBJEXT) test_gamma.$(OBJEXT) \ test_hyperg.$(OBJEXT) test_legendre.$(OBJEXT) \ test_mathieu.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslspecfunc.la ../eigen/libgsleigen.la \ ../linalg/libgsllinalg.la ../sort/libgslsort.la \ ../matrix/libgslmatrix.la ../vector/libgslvector.la \ ../blas/libgslblas.la ../cblas/libgslcblas.la \ ../block/libgslblock.la ../complex/libgslcomplex.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslspecfunc_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslspecfunc_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslspecfunc.la pkginclude_HEADERS = gsl_sf.h gsl_sf_airy.h gsl_sf_bessel.h gsl_sf_clausen.h gsl_sf_coulomb.h gsl_sf_coupling.h gsl_sf_dawson.h gsl_sf_debye.h gsl_sf_dilog.h gsl_sf_elementary.h gsl_sf_ellint.h gsl_sf_elljac.h gsl_sf_erf.h gsl_sf_exp.h gsl_sf_expint.h gsl_sf_fermi_dirac.h gsl_sf_gamma.h gsl_sf_gegenbauer.h gsl_sf_hyperg.h gsl_sf_laguerre.h gsl_sf_lambert.h gsl_sf_legendre.h gsl_sf_log.h gsl_sf_mathieu.h gsl_sf_pow_int.h gsl_sf_psi.h gsl_sf_result.h gsl_sf_synchrotron.h gsl_sf_transport.h gsl_sf_trig.h gsl_sf_zeta.h gsl_specfunc.h noinst_HEADERS = bessel_amp_phase.h bessel_olver.h bessel_temme.h bessel.h hyperg.h legendre.h eval.h chebyshev.h cheb_eval.c cheb_eval_mode.c check.h error.h INCLUDES = -I$(top_srcdir) libgslspecfunc_la_SOURCES = airy.c airy_der.c airy_zero.c atanint.c bessel.c bessel.h bessel_I0.c bessel_I1.c bessel_In.c bessel_Inu.c bessel_J0.c bessel_J1.c bessel_Jn.c bessel_Jnu.c bessel_K0.c bessel_K1.c bessel_Kn.c bessel_Knu.c bessel_Y0.c bessel_Y1.c bessel_Yn.c bessel_Ynu.c bessel_amp_phase.c bessel_amp_phase.h bessel_i.c bessel_j.c bessel_k.c bessel_olver.c bessel_temme.c bessel_y.c bessel_zero.c bessel_sequence.c beta.c beta_inc.c clausen.c coulomb.c coupling.c coulomb_bound.c dawson.c debye.c dilog.c elementary.c ellint.c elljac.c erfc.c exp.c expint.c expint3.c fermi_dirac.c gegenbauer.c gamma.c gamma_inc.c hyperg_0F1.c hyperg_2F0.c hyperg_1F1.c hyperg_2F1.c hyperg_U.c hyperg.c laguerre.c lambert.c legendre_H3d.c legendre_Qn.c legendre_con.c legendre_poly.c log.c mathieu_angfunc.c mathieu_charv.c mathieu_coeff.c mathieu_radfunc.c mathieu_workspace.c poch.c pow_int.c psi.c recurse.h result.c shint.c sinint.c synchrotron.c transport.c trig.c zeta.c TESTS = $(check_PROGRAMS) test_LDADD = libgslspecfunc.la ../eigen/libgsleigen.la ../linalg/libgsllinalg.la ../sort/libgslsort.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test_sf.c test_sf.h test_airy.c test_bessel.c test_coulomb.c test_dilog.c test_gamma.c test_hyperg.c test_legendre.c test_mathieu.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu specfunc/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu specfunc/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslspecfunc.la: $(libgslspecfunc_la_OBJECTS) $(libgslspecfunc_la_DEPENDENCIES) $(EXTRA_libgslspecfunc_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslspecfunc_la_OBJECTS) $(libgslspecfunc_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/airy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/airy_der.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/airy_zero.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/atanint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_I0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_I1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_In.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Inu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_J0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_J1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Jn.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Jnu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_K0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_K1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Kn.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Knu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Y0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Y1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Yn.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_Ynu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_amp_phase.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_i.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_j.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_olver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_sequence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_temme.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_y.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bessel_zero.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/beta.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/beta_inc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/clausen.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/coulomb.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/coulomb_bound.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/coupling.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dawson.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/debye.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dilog.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/elementary.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ellint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/elljac.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/erfc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/expint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/expint3.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fermi_dirac.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gamma.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gamma_inc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gegenbauer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg_0F1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg_1F1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg_2F0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg_2F1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg_U.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/laguerre.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lambert.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/legendre_H3d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/legendre_Qn.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/legendre_con.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/legendre_poly.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/log.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mathieu_angfunc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mathieu_charv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mathieu_coeff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mathieu_radfunc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mathieu_workspace.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/poch.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pow_int.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/psi.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/result.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/shint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sinint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/synchrotron.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_airy.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_bessel.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_coulomb.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_dilog.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_gamma.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hyperg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_legendre.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_mathieu.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_sf.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transport.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/trig.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zeta.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/specfunc/test_sf.c0000664000252300025230000046601212171574312012604 00000000000000/* specfunc/test_sf.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "test_sf.h" double test_sf_frac_diff(double x1, double x2) { if(x1 == 0.0 && x2 == 0.0) { return 0.0; } else if (x1 == 0.0) { return fabs(x2); } else if(x1 <= DBL_MAX && x2 <= DBL_MAX && (x1 + x2 != 0.0)) { return fabs((x1-x2)/(x1+x2)); } else { return 1.0; } } /* Check a result against a given value and tolerance. */ int test_sf_check_result(char * message_buff, gsl_sf_result r, double val, double tol) { int s = 0; double f = 0, d = 0; if (gsl_isnan(r.val) || gsl_isnan(val)) { s = (gsl_isnan(r.val) != gsl_isnan(val)) ? TEST_SF_INCONS : s; } else if (gsl_isinf(r.val) || gsl_isinf(val)) { s = (gsl_isinf(r.val) != gsl_isinf(val)) ? TEST_SF_INCONS : s; } else { f = test_sf_frac_diff(val, r.val); d = fabs(val - r.val); if(d > 2.0 * TEST_SIGMA * r.err) s |= TEST_SF_INCONS; if(r.err < 0.0) s |= TEST_SF_ERRNEG; if(gsl_isinf(r.err)) s |= TEST_SF_ERRBAD; #if TEST_EXCESSIVE_ERROR if(d > 0 && r.err > 1e4 * fabs(val)*tol) s |= TEST_SF_ERRBIG; #endif if(f > TEST_FACTOR * tol) s |= TEST_SF_TOLBAD; } if(s != 0) { char buff[2048]; sprintf(buff, " expected: %20.16e\n", val); strcat(message_buff, buff); sprintf(buff, " obtained: %20.16e +/- %.16e (rel=%g)\n", r.val, r.err, r.err/(fabs(r.val) + r.err)); strcat(message_buff, buff); sprintf(buff, " fracdiff: %20.16e\n", f); strcat(message_buff, buff); sprintf(buff, " tolerance: %20.16e\n", tol); strcat(message_buff, buff); } if(s & TEST_SF_INCONS) { strcat(message_buff, " value/expected not consistent within reported error\n"); } if(s & TEST_SF_ERRNEG) { strcat(message_buff, " reported error negative\n"); } if(s & TEST_SF_ERRBAD) { strcat(message_buff, " reported error is bad\n"); } if(s & TEST_SF_ERRBIG) { strcat(message_buff, " reported error is much too big\n"); } if(s & TEST_SF_TOLBAD) { strcat(message_buff, " value not within tolerance of expected value\n"); } return s; } /* Check a result against a given value and tolerance. */ int test_sf_check_e10(char * message_buff, int e10, int e10_in) { int s = 0; if (e10 != e10_in) { s = TEST_SF_EXPBAD; } if(s != 0) { char buff[2048]; sprintf(buff, " expected exponent: 10^%d\n", e10_in); strcat(message_buff, buff); sprintf(buff, " obtained exponent: 10^%d", e10); strcat(message_buff, buff); } if(s & TEST_SF_EXPBAD) { strcat(message_buff, " exponent is incorrect\n"); } return s; } int test_sf_check_val(char * message_buff, double rval, double val, double tol) { int s = 0; double f = test_sf_frac_diff(val, rval); if(f > TEST_FACTOR * tol) s |= TEST_SF_TOLBAD; if(s != 0) { char buff[2048]; sprintf(buff, " expected: %20.16e\n", val); strcat(message_buff, buff); sprintf(buff, " obtained: %20.16e\n", rval); strcat(message_buff, buff); sprintf(buff, " fracdiff: %20.16e\n", f); strcat(message_buff, buff); } if(s & TEST_SF_TOLBAD) { strcat(message_buff, " value not within tolerance of expected value\n"); } return s; } /* Relax the condition on the agreement and on the usefulness * of the error estimate. */ int test_sf_check_result_relax(char * message_buff, gsl_sf_result r, double val, double tol) { int s = 0; double f = test_sf_frac_diff(val, r.val); if(f > GSL_MAX_DBL(TEST_SNGL, TEST_FACTOR * tol)) s |= TEST_SF_INCONS; if(r.err < 0.0) s |= TEST_SF_ERRNEG; if(gsl_isinf(r.err)) s |= TEST_SF_ERRBAD; if(f > TEST_FACTOR * tol) s |= TEST_SF_TOLBAD; if(s != 0) { char buff[2048]; sprintf(buff, " expected: %20.16e\n", val); strcat(message_buff, buff); sprintf(buff, " obtained: %20.16e +/- %.16e (rel=%g)\n", r.val, r.err, r.err/(fabs(r.val) + r.err)); strcat(message_buff, buff); sprintf(buff, " fracdiff: %20.16e\n", f); strcat(message_buff, buff); } if(s & TEST_SF_INCONS) { strcat(message_buff, " value/expected not consistent MAX(tol,SINGLE_PREC)\n"); } if(s & TEST_SF_ERRNEG) { strcat(message_buff, " reported error negative\n"); } if(s & TEST_SF_ERRBAD) { strcat(message_buff, " reported error is bad\n"); } if(s & TEST_SF_TOLBAD) { strcat(message_buff, " value not within tolerance of expected value\n"); } return s; } /* Check a return value. */ int test_sf_check_return(char * message_buff, int val_return, int expected_return) { if(val_return != expected_return) { char buff[256]; sprintf(buff, " unexpected return code: %d\n", val_return); strcat(message_buff, buff); return TEST_SF_RETBAD; } else { return 0; } } int test_sf (gsl_sf_result r, double val_in, double tol, int status, int expect_return, const char * desc) { char message_buff[4096]; int local_s = 0; message_buff[0] = '\0'; local_s |= test_sf_check_result(message_buff, r, val_in, tol); local_s |= test_sf_check_return(message_buff, status, expect_return); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e %22.18e\n", r.val, r.err); } return local_s; } int test_sf_e10 (gsl_sf_result_e10 re, double val_in, int e10_in, double tol, int status, int expect_return, const char * desc) { char message_buff[4096]; int local_s = 0; gsl_sf_result r; r.val = re.val; r.err = re.err; message_buff[0] = '\0'; local_s |= test_sf_check_result(message_buff, r, val_in, tol); local_s |= test_sf_check_e10(message_buff, re.e10, e10_in); local_s |= test_sf_check_return(message_buff, status, expect_return); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e %22.18e 10^%d\n", re.val, re.err, re.e10); } return local_s; } int test_sf_val (double val, double val_in, double tol, const char * desc) { char message_buff[4096]; int local_s = 0; message_buff[0] = '\0'; local_s |= test_sf_check_val(message_buff, val, val_in, tol); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e\n", val); } return local_s; } int test_sf_rlx (gsl_sf_result r, double val_in, double tol, int status, int expect_return, const char * desc) { char message_buff[4096]; int local_s = 0; message_buff[0] = '\0'; local_s |= test_sf_check_result_relax(message_buff, r, val_in, tol); local_s |= test_sf_check_return(message_buff, status, expect_return); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e %22.18e\n", r.val, r.err); } return local_s; } int test_sf_2 (gsl_sf_result r1, double val1, double tol1, gsl_sf_result r2, double val2, double tol2, int status, int expect_return, const char * desc) { char message_buff[4096]; int local_s = 0; message_buff[0] = '\0'; local_s |= test_sf_check_result(message_buff, r1, val1, tol1); local_s |= test_sf_check_result(message_buff, r2, val2, tol2); local_s |= test_sf_check_return(message_buff, status, expect_return); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e %22.18e\n", r1.val, r1.err); printf(" %22.18e %22.18e\n", r2.val, r2.err); } return local_s; } int test_sf_sgn (gsl_sf_result r, double sgn, double val_in, double tol, double expect_sgn, int status, int expect_return, const char * desc) { char message_buff[4096]; gsl_sf_result local_r; int local_s = 0; message_buff[0] = '\0'; local_r.val = sgn; local_r.err = 0.0; local_s |= test_sf_check_result(message_buff, r, val_in, tol); local_s |= test_sf_check_result(message_buff, local_r, expect_sgn, 0.0); local_s |= test_sf_check_return(message_buff, status, expect_return); gsl_test(local_s, desc); if(local_s != 0) { /* printf(" %s %d\n", __FILE__, __LINE__); */ printf("%s", message_buff); printf(" %22.18e %22.18e\n", r.val, r.err); } return local_s; } int test_clausen(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_clausen_e, (M_PI/20.0, &r), 0.4478882448133546, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_clausen_e, (M_PI/6.0, &r), 0.8643791310538927, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_clausen_e, (M_PI/3.0, &r), 1.0149416064096535, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_clausen_e, ( 2.0*M_PI + M_PI/3.0, &r), 1.0149416064096535, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_clausen_e, (100.0*M_PI + M_PI/3.0, &r), 1.0149416064096535, TEST_TOL0, GSL_SUCCESS); return s; } int test_coupling(void) { gsl_sf_result r; int s = 0; /* Test 3j */ TEST_SF(s, gsl_sf_coupling_3j_e, (0, 1, 1, 0, 1, -1, &r), sqrt(1.0/2.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, 2, 1, -1, 0, &r), sqrt(1.0/6.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (2, 4, 6, 0, 2, -2, &r), sqrt(8.0/105.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (4, 4, 8, 0, 0, 0, &r), sqrt(2.0/35.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (4, 4, 8, 2, -2, 0, &r), 2.0/3.0*sqrt(2.0/35.0), TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (4, 4, 8, 4, -4, 0, &r), 1.0/(3.0*sqrt(70.0)), TEST_TOL2, GSL_SUCCESS); /* Test 3j error checking */ TEST_SF(s, gsl_sf_coupling_3j_e, (-1, 1, 2, 1, -1, 0, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_3j_e, (1, -1, 2, 1, -1, 0, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, -2, 1, -1, 0, &r), GSL_NAN, GSL_NAN, GSL_EDOM); /* Test |m_i|<=j_i */ TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, 2, 2, -1, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, 2, 1, -2, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, 2, 1, -1, 3, &r), 0, 0, GSL_SUCCESS); /* Test triangle condition j1 + j2 >= j, j >= j2 - j1, j>= j1 - j2 */ TEST_SF(s, gsl_sf_coupling_3j_e, (1, 1, 3, 1, -1, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (1, 4, 2, 1, -1, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (4, 1, 2, 1, -1, 0, &r), 0, 0, GSL_SUCCESS); /* Test m1=m2=m3=0 with j1+j2+j3=odd*/ TEST_SF(s, gsl_sf_coupling_3j_e, (2*13, 2*13, 2*13, 0, 0, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (2*2, 2*17, 2*18, 0, 0, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (2*203, 2*203, 2*203, 0, 0, 0, &r), 0, 0, GSL_SUCCESS); /* Test l1=249 l2=248, l3=2, m1=5, m2=-6, m3=1 */ TEST_SF(s, gsl_sf_coupling_3j_e, (2*249.0, 2*248.0, 2*2.0, 2*5.0, 2*(-6.0), 2*1.0, &r), 0.0228787564223517967033998, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_3j_e, (2*248.0, 2*247.0, 2*2.0, 2*5.0, 2*(-6.0), 2*1.0, &r), -0.022926660587726369939271424097, TEST_TOL3, GSL_SUCCESS); /* Test 6j */ TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 2, 2, 2, &r), 1.0/6.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (4, 4, 2, 4, 4, 4, &r), -1.0/10.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (4, 4, 2, 4, 4, 2, &r), 1.0/6.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (4, 4, 2, 2, 2, 2, &r), -0.5/sqrt(5.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (4, 4, 4, 2, 2, 2, &r), sqrt(7.0/3.0)/10.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (6, 6, 6, 4, 4, 4, &r), -sqrt(3.0/5.0)/14.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (6, 6, 6, 4, 4, 2, &r), -sqrt(3.0/5.0)/7.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (1, 0, 1, 0, 1, 0, &r), -sqrt(1.0/2.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (1, 0, 1, 1, 0, 1, &r), -1.0/2.0, TEST_TOL0, GSL_SUCCESS); /* Test 6j error checking */ TEST_SF(s, gsl_sf_coupling_6j_e, (-2, 2, 4, 2, 2, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_6j_e, (2, -2, 4, 2, 2, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, -4, 2, 2, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, -2, 2, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 2, -2, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 2, 2, -2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); /* Test 6j triangle conditions */ TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 2, 2, 7, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 2, 7, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 4, 7, 2, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 2, 7, 2, 2, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (2, 7, 4, 2, 2, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (7, 2, 4, 2, 2, 2, &r), 0, 0, GSL_SUCCESS); /* Test 6j half-integer/integer coupling conditions */ TEST_SF(s, gsl_sf_coupling_6j_e, (0, 2, 2, 44, 43, 43, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (1, 1, 1, 0, 1, 1, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (1, 1, 1, 1, 0, 1, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_6j_e, (1, 1, 1, 1, 1, 0, &r), 0, 0, GSL_SUCCESS); /* Test 9j */ TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 1, 1, 2, &r), -sqrt(1.0/6.0)/10.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (8, 4, 10, 7, 3, 8, 1, 1, 2, &r), sqrt(7.0/3.0)/60.0, TEST_TOL2, GSL_SUCCESS); /* Test 9j error checking */ TEST_SF(s, gsl_sf_coupling_9j_e, (-4, 2, 4, 3, 3, 2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, -2, 4, 3, 3, 2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, -4, 3, 3, 2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, -3, 3, 2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, -3, 2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, -2, 1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, -1, 1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 1, -1, 2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 1, 1, -2, &r), GSL_NAN, GSL_NAN, GSL_EDOM); TEST_SF(s, gsl_sf_coupling_9j_e, (10, 2, 4, 3, 3, 2, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 10, 4, 3, 3, 2, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 10, 3, 3, 2, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 10, 3, 2, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 10, 2, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 10, 1, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 10, 1, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 1, 10, 2, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (4, 2, 4, 3, 3, 2, 1, 1, 10, &r), 0, 0, GSL_SUCCESS); /* Test 9j half-integer/integer coupling conditions */ TEST_SF(s, gsl_sf_coupling_9j_e, (1, 1, 1, 1, 1, 1, 0, 0, 0, &r), 0, 0, GSL_SUCCESS); TEST_SF(s, gsl_sf_coupling_9j_e, (1, 1, 0, 1, 1, 0, 1, 1, 0, &r), 0, 0, GSL_SUCCESS); return s; } int test_dawson(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_dawson_e, (1.0e-15, &r), 1.0e-15, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dawson_e, (0.5, &r), 0.4244363835020222959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dawson_e, (2.0, &r), 0.30134038892379196603, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dawson_e, (1000.0, &r), 0.0005000002500003750009, TEST_TOL0, GSL_SUCCESS); return s; } int test_debye(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_debye_1_e, (0.1, &r), 0.975277750004723276, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_1_e, (1.0, &r), 0.777504634112248239, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_1_e, (10.0, &r), 0.164443465679946027, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_2_e, (0.1, &r), 0.967083287045302664, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_2_e, (1.0, &r), 0.70787847562782924, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_2_e, (10.0, &r), 0.0479714980201218708, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_3_e, (0.1, &r), 0.962999940487211048, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_3_e, (1.0, &r), 0.674415564077814667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_3_e, (10.0, &r), 0.0192957656903454886, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_4_e, (0.1, &r), 0.960555486124335944, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_4_e, (1.0, &r), 0.654874068886737049, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_4_e, (10.0, &r), 0.00967367556027115896, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_5_e, (0.1, &r), 0.95892849428310568745, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_5_e, (1.0, &r), 0.6421002580217790246, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_5_e, (10.0, &r), 0.005701535852992908538, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_6_e, (0.1, &r), 0.95776777382605465878, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_6_e, (1.0, &r), 0.63311142583495107588, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_debye_6_e, (10.0, &r), 3.7938493294615955279e-3, TEST_TOL0, GSL_SUCCESS); return s; } int test_elementary(void) { gsl_sf_result r; double x = 0.2*DBL_MAX; int s = 0; TEST_SF(s, gsl_sf_multiply_e, (-3.0,2.0, &r), -6.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_multiply_e, (x, 1.0/x, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_multiply_e, (x, 0.2, &r), 0.04*DBL_MAX, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_multiply_e, (x, 4.0, &r), 0.8*DBL_MAX, TEST_TOL1, GSL_SUCCESS); s += ( gsl_sf_multiply_e(DBL_MAX, 1.1, &r) != GSL_EOVRFLW); s += ( gsl_sf_multiply_e(DBL_MIN, DBL_MIN, &r) != GSL_EUNDRFLW); s += ( gsl_sf_multiply_e(DBL_MIN, -DBL_MIN, &r) != GSL_EUNDRFLW); return s; } int test_ellint(void) { gsl_sf_result r; gsl_mode_t mode = GSL_MODE_DEFAULT; int s = 0; TEST_SF(s, gsl_sf_ellint_Kcomp_e, ( 0.99, mode, &r), 3.3566005233611923760, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Kcomp_e, ( 0.50, mode, &r), 1.6857503548125960429, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Kcomp_e, (0.010, mode, &r), 1.5708355989121522360, TEST_TOL0, GSL_SUCCESS); /* Bug report from Thies Heidecke */ TEST_SF(s, gsl_sf_ellint_Kcomp_e, ( 0.99999999906867742538, mode, &r), 11.4369284843320018031, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Ecomp_e, (0.99, mode, &r), 1.0284758090288040010, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Ecomp_e, (0.50, mode, &r), 1.4674622093394271555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Ecomp_e, (0.01, mode, &r), 1.5707570561503852873, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Pcomp_e, (0.99, 0.1, mode, &r), 3.13792612351836506315593, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Pcomp_e, (0.50, 0.1, mode, &r), 1.60455249360848890075108, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Pcomp_e, (0.01, 0.1, mode, &r), 1.49773208536003801277453, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Dcomp_e, (0.99, mode, &r), 2.375395076351788975665323192, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Dcomp_e, (0.50, mode, &r), 0.8731525818926755496456335628, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_Dcomp_e, (0.01, mode, &r), 0.7854276176694868932799393751, TEST_TOL0, GSL_SUCCESS); /* Bug report from Will M. Farr bug #31362 */ /* FIXME: we are accepting MAXITER as the return code, but really this should be changed to EINVAL in the routine itself */ TEST_SF(s, gsl_sf_ellint_Kcomp_e, (GSL_NAN, mode, &r), GSL_NAN, GSL_NAN, GSL_EMAXITER); TEST_SF(s, gsl_sf_ellint_Ecomp_e, (GSL_NAN, mode, &r), GSL_NAN, GSL_NAN, GSL_EMAXITER); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/3.0, 0.99, mode, &r), 1.3065333392738766762, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/3.0, 0.50, mode, &r), 1.0895506700518854093, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/3.0, 0.01, mode, &r), 1.0472129063770918952, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/3.0, 0.99, mode, &r), 0.8704819220377943536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/3.0, 0.50, mode, &r), 1.0075555551444720293, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/3.0, 0.01, mode, &r), 1.0471821963889481104, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/3.0, 0.99, 0.5, mode, &r), 1.1288726598764099882, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/3.0, 0.50, 0.5, mode, &r), 0.9570574331323584890, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/3.0, 0.01, 0.5, mode, &r), 0.9228868127118118465, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RF_e, (5.0e-11, 1.0e-10, 1.0, mode, &r), 12.36441982979439, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RF_e, (1.0, 2.0, 3.0, mode, &r), 0.7269459354689082, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RD_e, (5.0e-11, 1.0e-10, 1.0, mode, &r), 34.0932594919337362, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RD_e, (1.0, 2.0, 3.0, mode, &r), 0.2904602810289906, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RC_e, (1.0, 2.0, mode, &r), 0.7853981633974482, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_RJ_e, (2.0, 3.0, 4.0, 5.0, mode, &r), 0.1429757966715675, TEST_TOL0, GSL_SUCCESS); /* E, argument phi > pi/2 */ TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/2.0, 0.99, mode, &r), 1.02847580902880400098389, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/2.0, 0.50, mode, &r), 1.46746220933942715545980, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI/2.0, 0.01, mode, &r), 1.57075705615038528733708, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI/3.0, 0.99, mode, &r), 1.18646969601981364833972, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI/3.0, 0.50, mode, &r), 1.92736886353438228163734, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI/3.0, 0.01, mode, &r), 2.09433191591182246425715, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI, 0.99, mode, &r), 2.05695161805760800196777, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI, 0.50, mode, &r), 2.93492441867885431091959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (M_PI, 0.01, mode, &r), 3.14151411230077057467416, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (4*M_PI/3, 0.99, mode, &r), 2.92743354009540235559582, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (4*M_PI/3, 0.50, mode, &r), 3.94247997382332634020184, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (4*M_PI/3, 0.01, mode, &r), 4.18869630868971868509117, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (3*M_PI/2.0, 0.99, mode, &r), 3.08542742708641200295166, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (3*M_PI/2.0, 0.50, mode, &r), 4.40238662801828146637939, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (3*M_PI/2.0, 0.01, mode, &r), 4.71227116845115586201123, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (5*M_PI/3, 0.99, mode, &r), 3.24342131407742165030750, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (5*M_PI/3, 0.50, mode, &r), 4.86229328221323659255693, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (5*M_PI/3, 0.01, mode, &r), 5.23584602821259303893130, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI, 0.99, mode, &r), 4.11390323611521600393555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI, 0.50, mode, &r), 5.86984883735770862183918, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (2*M_PI, 0.01, mode, &r), 6.28302822460154114934831, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (7*M_PI/3.0, 0.99, mode, &r), 4.98438515815301035756360, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (7*M_PI/3.0, 0.50, mode, &r), 6.87740439250218065112143, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (7*M_PI/3.0, 0.01, mode, &r), 7.33021042099048925976532, TEST_TOL0, GSL_SUCCESS); /* Test some negative arguments, phi < 0 */ TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI/2.0, 0.99, mode, &r), -1.02847580902880400098389, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI/2.0, 0.50, mode, &r), -1.46746220933942715545980, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI/2.0, 0.01, mode, &r), -1.57075705615038528733708, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI/3.0, 0.99, mode, &r), -1.18646969601981364833972, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI/3.0, 0.50, mode, &r), -1.92736886353438228163734, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI/3.0, 0.01, mode, &r), -2.09433191591182246425715, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI, 0.99, mode, &r), -2.05695161805760800196777, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI, 0.50, mode, &r), -2.93492441867885431091959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-M_PI, 0.01, mode, &r), -3.14151411230077057467416, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-4*M_PI/3, 0.99, mode, &r), -2.92743354009540235559582, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-4*M_PI/3, 0.50, mode, &r), -3.94247997382332634020184, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-4*M_PI/3, 0.01, mode, &r), -4.18869630868971868509117, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-3*M_PI/2.0, 0.99, mode, &r), -3.08542742708641200295166, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-3*M_PI/2.0, 0.50, mode, &r), -4.40238662801828146637939, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-3*M_PI/2.0, 0.01, mode, &r), -4.71227116845115586201123, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-5*M_PI/3, 0.99, mode, &r), -3.24342131407742165030750, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-5*M_PI/3, 0.50, mode, &r), -4.86229328221323659255693, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-5*M_PI/3, 0.01, mode, &r), -5.23584602821259303893130, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI, 0.99, mode, &r), -4.11390323611521600393555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI, 0.50, mode, &r), -5.86984883735770862183918, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-2*M_PI, 0.01, mode, &r), -6.28302822460154114934831, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-7*M_PI/3.0, 0.99, mode, &r), -4.98438515815301035756360, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-7*M_PI/3.0, 0.50, mode, &r), -6.87740439250218065112143, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_E_e, (-7*M_PI/3.0, 0.01, mode, &r), -7.33021042099048925976532, TEST_TOL0, GSL_SUCCESS); /* F, argument phi > pi/2 */ TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/2.0, 0.99, mode, &r), 3.35660052336119237603347, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/2.0, 0.50, mode, &r), 1.68575035481259604287120, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI/2.0, 0.01, mode, &r), 1.57083559891215223602641, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI/3.0, 0.99, mode, &r), 5.40666770744850807588478, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI/3.0, 0.50, mode, &r), 2.28195003957330667648585, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI/3.0, 0.01, mode, &r), 2.09445829144721257687207, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI, 0.99, mode, &r), 6.71320104672238475206694, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI, 0.50, mode, &r), 3.37150070962519208574241, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (M_PI, 0.01, mode, &r), 3.14167119782430447205281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (4*M_PI/3, 0.99, mode, &r), 8.01973438599626142824910, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (4*M_PI/3, 0.50, mode, &r), 4.46105137967707749499897, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (4*M_PI/3, 0.01, mode, &r), 4.18888410420139636723356, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (3*M_PI/2.0, 0.99, mode, &r), 10.0698015700835771281004, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (3*M_PI/2.0, 0.50, mode, &r), 5.05725106443778812861361, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (3*M_PI/2.0, 0.01, mode, &r), 4.71250679673645670807922, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (5*M_PI/3, 0.99, mode, &r), 12.1198687541708928279517, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (5*M_PI/3, 0.50, mode, &r), 5.65345074919849876222825, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (5*M_PI/3, 0.01, mode, &r), 5.23612948927151704892488, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI, 0.99, mode, &r), 13.4264020934447695041339, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI, 0.50, mode, &r), 6.74300141925038417148481, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (2*M_PI, 0.01, mode, &r), 6.28334239564860894410562, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (7*M_PI/3.0, 0.99, mode, &r), 14.7329354327186461803160, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (7*M_PI/3.0, 0.50, mode, &r), 7.83255208930226958074138, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (7*M_PI/3.0, 0.01, mode, &r), 7.33055530202570083928637, TEST_TOL0, GSL_SUCCESS); /* F, negative argument phi < 0 */ TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI/2.0, 0.99, mode, &r), -3.35660052336119237603347, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI/2.0, 0.50, mode, &r), -1.68575035481259604287120, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI/2.0, 0.01, mode, &r), -1.57083559891215223602641, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI/3.0, 0.99, mode, &r), -5.40666770744850807588478, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI/3.0, 0.50, mode, &r), -2.28195003957330667648585, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI/3.0, 0.01, mode, &r), -2.09445829144721257687207, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI, 0.99, mode, &r), -6.71320104672238475206694, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI, 0.50, mode, &r), -3.37150070962519208574241, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-M_PI, 0.01, mode, &r), -3.14167119782430447205281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-4*M_PI/3, 0.99, mode, &r), -8.01973438599626142824910, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-4*M_PI/3, 0.50, mode, &r), -4.46105137967707749499897, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-4*M_PI/3, 0.01, mode, &r), -4.18888410420139636723356, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-3*M_PI/2.0, 0.99, mode, &r), -10.0698015700835771281004, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-3*M_PI/2.0, 0.50, mode, &r), -5.05725106443778812861361, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-3*M_PI/2.0, 0.01, mode, &r), -4.71250679673645670807922, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-5*M_PI/3, 0.99, mode, &r), -12.1198687541708928279517, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-5*M_PI/3, 0.50, mode, &r), -5.65345074919849876222825, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-5*M_PI/3, 0.01, mode, &r), -5.23612948927151704892488, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI, 0.99, mode, &r), -13.4264020934447695041339, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI, 0.50, mode, &r), -6.74300141925038417148481, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-2*M_PI, 0.01, mode, &r), -6.28334239564860894410562, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-7*M_PI/3.0, 0.99, mode, &r), -14.7329354327186461803160, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-7*M_PI/3.0, 0.50, mode, &r), -7.83255208930226958074138, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_F_e, (-7*M_PI/3.0, 0.01, mode, &r), -7.33055530202570083928637, TEST_TOL0, GSL_SUCCESS); /* P, argument phi > pi/2 */ TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/2.0, 0.99, -0.1, mode, &r), 3.61678162163246646783050, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/2.0, 0.50, -0.1, mode, &r), 1.78030349465454812629168, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI/2.0, 0.01, -0.1, mode, &r), 1.65580719756898353270922, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI/3.0, 0.99, -0.1, mode, &r), 5.88008918207571119911983, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI/3.0, 0.50, -0.1, mode, &r), 2.43655207300356008717867, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI/3.0, 0.01, -0.1, mode, &r), 2.23211110528200554950903, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI, 0.99, -0.1, mode, &r), 7.23356324326493293566099, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI, 0.50, -0.1, mode, &r), 3.56060698930909625258336, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (M_PI, 0.01, -0.1, mode, &r), 3.31161439513796706541844, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (4*M_PI/3, 0.99, -0.1, mode, &r), 8.58703730445415467220216, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (4*M_PI/3, 0.50, -0.1, mode, &r), 4.68466190561463241798805, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (4*M_PI/3, 0.01, -0.1, mode, &r), 4.39111768499392858132786, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (3*M_PI/2.0, 0.99, -0.1, mode, &r), 10.8503448648973994034915, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (3*M_PI/2.0, 0.50, -0.1, mode, &r), 5.34091048396364437887504, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (3*M_PI/2.0, 0.01, -0.1, mode, &r), 4.96742159270695059812767, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (5*M_PI/3, 0.99, -0.1, mode, &r), 13.1136524253406441347808, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (5*M_PI/3, 0.50, -0.1, mode, &r), 5.99715906231265633976204, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (5*M_PI/3, 0.01, -0.1, mode, &r), 5.54372550041997261492747, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI, 0.99, -0.1, mode, &r), 14.4671264865298658713220, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI, 0.50, -0.1, mode, &r), 7.12121397861819250516672, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (2*M_PI, 0.01, -0.1, mode, &r), 6.62322879027593413083689, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (7*M_PI/3.0, 0.99, -0.1, mode, &r), 15.8206005477190876078631, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (7*M_PI/3.0, 0.50, -0.1, mode, &r), 8.24526889492372867057141, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (7*M_PI/3.0, 0.01, -0.1, mode, &r), 7.70273208013189564674630, TEST_TOL0, GSL_SUCCESS); /* P, negative argument phi < 0 */ TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI/2.0, 0.99, -0.1, mode, &r), -3.61678162163246646783050, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI/2.0, 0.50, -0.1, mode, &r), -1.78030349465454812629168, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI/2.0, 0.01, -0.1, mode, &r), -1.65580719756898353270922, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI/3.0, 0.99, -0.1, mode, &r), -5.88008918207571119911983, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI/3.0, 0.50, -0.1, mode, &r), -2.43655207300356008717867, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI/3.0, 0.01, -0.1, mode, &r), -2.23211110528200554950903, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI, 0.99, -0.1, mode, &r), -7.23356324326493293566099, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI, 0.50, -0.1, mode, &r), -3.56060698930909625258336, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-M_PI, 0.01, -0.1, mode, &r), -3.31161439513796706541844, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-4*M_PI/3, 0.99, -0.1, mode, &r), -8.58703730445415467220216, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-4*M_PI/3, 0.50, -0.1, mode, &r), -4.68466190561463241798805, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-4*M_PI/3, 0.01, -0.1, mode, &r), -4.39111768499392858132786, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-3*M_PI/2.0, 0.99, -0.1, mode, &r), -10.8503448648973994034915, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-3*M_PI/2.0, 0.50, -0.1, mode, &r), -5.34091048396364437887504, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-3*M_PI/2.0, 0.01, -0.1, mode, &r), -4.96742159270695059812767, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-5*M_PI/3, 0.99, -0.1, mode, &r), -13.1136524253406441347808, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-5*M_PI/3, 0.50, -0.1, mode, &r), -5.99715906231265633976204, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-5*M_PI/3, 0.01, -0.1, mode, &r), -5.54372550041997261492747, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI, 0.99, -0.1, mode, &r), -14.4671264865298658713220, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI, 0.50, -0.1, mode, &r), -7.12121397861819250516672, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-2*M_PI, 0.01, -0.1, mode, &r), -6.62322879027593413083689, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-7*M_PI/3.0, 0.99, -0.1, mode, &r), -15.8206005477190876078631, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-7*M_PI/3.0, 0.50, -0.1, mode, &r), -8.24526889492372867057141, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_P_e, (-7*M_PI/3.0, 0.01, -0.1, mode, &r), -7.70273208013189564674630, TEST_TOL0, GSL_SUCCESS); /* D, argument phi > pi/2 */ TEST_SF(s, gsl_sf_ellint_D_e, (M_PI/2.0, 0.99, 0, mode, &r), 2.375395076351788975665323192, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (M_PI/2.0, 0.50, 0, mode, &r), 0.8731525818926755496456335628, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (M_PI/2.0, 0.01, 0, mode, &r), 0.7854276176694868932799393751, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI/3.0, 0.99, 0, mode, &r), 4.305885125424644860264320635, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI/3.0, 0.50, 0, mode, &r), 1.418324704155697579394036402, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI/3.0, 0.01, 0, mode, &r), 1.263755353901126149206022061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (M_PI, 0.99, 0, mode, &r), 4.750790152703577951330646444, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (M_PI, 0.50, 0, mode, &r), 1.746305163785351099291267125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (M_PI, 0.01, 0, mode, &r), 1.570855235338973786559878750, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (4*M_PI/3, 0.99, 0, mode, &r), 5.195695179982511042396972113, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (4*M_PI/3, 0.50, 0, mode, &r), 2.074285623415004619188497818, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (4*M_PI/3, 0.01, 0, mode, &r), 1.877955116776821423913735408, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (3*M_PI/2.0, 0.99, 0, mode, &r), 7.126185229055366926995969476, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (3*M_PI/2.0, 0.50, 0, mode, &r), 2.619457745678026648936900687, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (3*M_PI/2.0, 0.01, 0, mode, &r), 2.356282853008460679839818125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (5*M_PI/3, 0.99, 0, mode, &r), 9.056675278128222811594967044, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (5*M_PI/3, 0.50, 0, mode, &r), 3.164629867941048678685303509, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (5*M_PI/3, 0.01, 0, mode, &r), 2.834610589240099935765900794, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI, 0.99, 0, mode, &r), 9.501580305407155902661292832, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI, 0.50, 0, mode, &r), 3.492610327570702198582534249, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (2*M_PI, 0.01, 0, mode, &r), 3.141710470677947573119757500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (7*M_PI/3.0, 0.99, 0, mode, &r), 9.946485332686088993727618315, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (7*M_PI/3.0, 0.50, 0, mode, &r), 3.820590787200355718479764901, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (7*M_PI/3.0, 0.01, 0, mode, &r), 3.448810352115795210473614120, TEST_TOL0, GSL_SUCCESS); /* P, negative argument phi < 0 */ TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI/2.0, 0.99, 0, mode, &r), -2.375395076351788975665323192, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI/2.0, 0.50, 0, mode, &r), -0.8731525818926755496456335628, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI/2.0, 0.01, 0, mode, &r), -0.7854276176694868932799393751, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI/3.0, 0.99, 0, mode, &r), -4.305885125424644860264320635, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI/3.0, 0.50, 0, mode, &r), -1.418324704155697579394036402, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI/3.0, 0.01, 0, mode, &r), -1.263755353901126149206022061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI, 0.99, 0, mode, &r), -4.750790152703577951330646444, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI, 0.50, 0, mode, &r), -1.746305163785351099291267125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-M_PI, 0.01, 0, mode, &r), -1.570855235338973786559878750, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-4*M_PI/3, 0.99, 0, mode, &r), -5.195695179982511042396972113, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-4*M_PI/3, 0.50, 0, mode, &r), -2.074285623415004619188497818, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-4*M_PI/3, 0.01, 0, mode, &r), -1.877955116776821423913735408, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-3*M_PI/2.0, 0.99, 0, mode, &r), -7.126185229055366926995969476, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-3*M_PI/2.0, 0.50, 0, mode, &r), -2.619457745678026648936900687, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-3*M_PI/2.0, 0.01, 0, mode, &r), -2.356282853008460679839818125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-5*M_PI/3, 0.99, 0, mode, &r), -9.056675278128222811594967044, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-5*M_PI/3, 0.50, 0, mode, &r), -3.164629867941048678685303509, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-5*M_PI/3, 0.01, 0, mode, &r), -2.834610589240099935765900794, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI, 0.99, 0, mode, &r), -9.501580305407155902661292832, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI, 0.50, 0, mode, &r), -3.492610327570702198582534249, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-2*M_PI, 0.01, 0, mode, &r), -3.141710470677947573119757500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-7*M_PI/3.0, 0.99, 0, mode, &r), -9.946485332686088993727618315, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-7*M_PI/3.0, 0.50, 0, mode, &r), -3.820590787200355718479764901, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_ellint_D_e, (-7*M_PI/3.0, 0.01, 0, mode, &r), -3.448810352115795210473614120, TEST_TOL0, GSL_SUCCESS); return s; } int test_erf(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_erfc_e, (-10.0, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (-5.0000002, &r), 1.9999999999984625433, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (-5.0, &r), 1.9999999999984625402, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (-1.0, &r), 1.8427007929497148693, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (-0.5, &r), 1.5204998778130465377, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (1.0, &r), 0.15729920705028513066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (3.0, &r), 0.000022090496998585441373, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (7.0, &r), 4.183825607779414399e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_erfc_e, (10.0, &r), 2.0884875837625447570e-45, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (-1.0, &r), log(1.842700792949714869), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (-0.1, &r), 0.106576400586522485015, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (-1e-10, &r), 1.1283791670318505967e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (0.0, &r), log(1.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (1e-10, &r), -1.128379167159174551e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (0.001, &r), -0.0011290158896213548027, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (0.1, &r), -0.119304973737395598329, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (1.0, &r), log(0.15729920705028513066), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_erfc_e, (10.0, &r), log(2.0884875837625447570e-45), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_e, (-10.0, &r), -1.0000000000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_e, (0.5, &r), 0.5204998778130465377, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_e, (1.0, &r), 0.8427007929497148693, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_e, (10.0, &r), 1.0000000000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_Z_e, (1.0, &r), 0.24197072451914334980, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_erf_Q_e, (10.0, &r), 7.619853024160526066e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (-20.0, &r), 5.5209483621597631896e-88, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (-10.0, &r), 7.6945986267064193463e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (-1.0, &r), 0.28759997093917836123, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, ( 0.0, &r), 0.79788456080286535588, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, ( 1.0, &r), 1.5251352761609812091, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (10.0, &r), 10.098093233962511963, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (20.0, &r), 20.049753068527850542, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (30.0, &r), 30.033259667433677037, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (50.0, &r), 50.019984031905639809, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (80.0, &r), 80.012496096798234468, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (150.0, &r), 150.00666607420571802, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (300.0, &r), 300.00333325926337415, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (900.0, &r), 900.00111110836764382, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (1001.0, &r), 1001.0009989990049990, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hazard_e, (2000.0, &r), 2000.0004999997500003, TEST_TOL0, GSL_SUCCESS); return s; } int test_exp(void) { gsl_sf_result r; gsl_sf_result_e10 re; double x; int sa; int s = 0; TEST_SF(s, gsl_sf_exp_e, (-10.0, &r), exp(-10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_e, ( 10.0, &r), exp( 10.0), TEST_TOL0, GSL_SUCCESS); sa = 0; sa += gsl_sf_exp_e10_e(1.0, &re); sa += ( test_sf_frac_diff(re.val, M_E ) > TEST_TOL0 ); sa += ( re.err > TEST_TOL1 ); sa += ( re.e10 != 0 ); gsl_test(sa, " gsl_sf_exp_e10_e(1.0, &re)"); sa = 0; sa += gsl_sf_exp_e10_e(2000.0, &re); sa += ( test_sf_frac_diff(re.val, 3.88118019428363725 ) > TEST_TOL3 ); sa += ( re.err > TEST_TOL5 ); sa += ( re.e10 != 868 ); gsl_test(sa, " gsl_sf_exp_e10_e(2000.0, &re)"); TEST_SF(s, gsl_sf_exp_err_e, (-10.0, TEST_TOL1, &r), exp(-10.0), TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_err_e, ( 10.0, TEST_TOL1, &r), exp( 10.0), TEST_TOL1, GSL_SUCCESS); sa = 0; sa += gsl_sf_exp_err_e10_e(1.0, TEST_SQRT_TOL0, &re); sa += ( test_sf_frac_diff(re.val, M_E ) > TEST_TOL1 ); sa += ( re.err > 32.0 * TEST_SQRT_TOL0 ); sa += ( re.e10 != 0 ); gsl_test(sa, " gsl_sf_exp_err_e10_e(1.0, TEST_SQRT_TOL0, &re)"); sa = 0; sa += gsl_sf_exp_err_e10_e(2000.0, 1.0e-10, &re); sa += ( test_sf_frac_diff(re.val, 3.88118019428363725 ) > TEST_TOL3 ); sa += ( re.err > 1.0e-07 ); sa += ( re.e10 != 868 ); gsl_test(sa, " gsl_sf_exp_err_e10_e(2000.0, 1.0e-10, &re)"); x = 0.8*GSL_LOG_DBL_MAX; TEST_SF(s, gsl_sf_exp_mult_e, (-10.0, 1.0e-06, &r), 1.0e-06*exp(-10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (-10.0, 2.0, &r), 2.0*exp(-10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (-10.0, -2.0, &r), -2.0*exp(-10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, ( 10.0, 1.0e-06, &r), 1.0e-06*exp( 10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, ( 10.0, -2.0, &r), -2.0*exp( 10.0), TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, 1.00001, &r), 1.00001*exp(x), TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, 1.000001, &r), 1.000001*exp(x), TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, 1.000000001, &r), 1.000000001*exp(x), TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, 100.0, &r), 100.0*exp(x), TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, 1.0e+20, &r), 1.0e+20*exp(x), TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_e, (x, exp(-x)*exp(M_LN2), &r), 2.0, TEST_TOL4, GSL_SUCCESS ); TEST_SF(s, gsl_sf_exp_mult_err_e, (-10.0, TEST_SQRT_TOL0, 2.0, TEST_SQRT_TOL0, &r), 2.0*exp(-10.0), TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exp_mult_err_e, (x, TEST_SQRT_TOL0*x, exp(-x)*exp(M_LN2), TEST_SQRT_TOL0*exp(-x)*exp(M_LN2), &r), 2.0, TEST_SQRT_TOL0, GSL_SUCCESS ); sa = 0; sa += gsl_sf_exp_mult_e10_e(1.0, 1.0, &re); sa += ( test_sf_frac_diff(re.val, M_E ) > TEST_TOL0 ); sa += ( re.err > TEST_TOL2 ); sa += ( re.e10 != 0 ); gsl_test(sa, "gsl_sf_exp_mult_e10_e(1.0, 1.0, &re)"); TEST_SF_E10(s, gsl_sf_exp_mult_e10_e, (1.0, 1.0, &re), M_E, 0, TEST_TOL0, GSL_SUCCESS); sa = 0; sa += gsl_sf_exp_mult_e10_e(1000.0, 1.0e+200, &re); sa += ( test_sf_frac_diff(re.val, 1.970071114017046993888879352) > TEST_TOL3 ); sa += ( re.err > 1.0e-11 ); sa += ( re.e10 != 634 ); gsl_test(sa, "gsl_sf_exp_mult_e10_e(1000.0, 1.0e+200, &re)"); TEST_SF_E10(s, gsl_sf_exp_mult_e10_e, (1000.0, 1.0e+200, &re), 1.970071114017046993888879352, 634, TEST_TOL3, GSL_SUCCESS); sa = 0; sa += gsl_sf_exp_mult_err_e10_e(1.0, TEST_TOL0, 1.0, TEST_TOL0, &re); sa += ( test_sf_frac_diff(re.val, M_E ) > TEST_TOL0 ); sa += ( re.err > TEST_TOL2 ); sa += ( re.e10 != 0 ); gsl_test(sa, "gsl_sf_exp_mult_err_e10_e(1.0, TEST_TOL0, 1.0, TEST_TOL0, &re)"); TEST_SF_E10(s, gsl_sf_exp_mult_err_e10_e, (1.0, TEST_TOL0, 1.0, TEST_TOL0, &re), M_E, 0, TEST_TOL0, GSL_SUCCESS); sa = 0; sa += gsl_sf_exp_mult_err_e10_e(1000.0, 1.0e-12, 1.0e+200, 1.0e+190, &re); sa += ( test_sf_frac_diff(re.val, 1.9700711140165661 ) > TEST_TOL3 ); sa += ( re.err > 1.0e-09 ); sa += ( re.e10 != 634 ); gsl_test(sa, "gsl_sf_exp_mult_err_e10_e(1.0e-12, 1.0e+200, &re)"); TEST_SF_E10(s, gsl_sf_exp_mult_err_e10_e, (1000.0, 1.0e-12, 1.0e+200, 1.0e+190, &re), 1.9700711140165661,634, TEST_TOL3, GSL_SUCCESS); /* Test cases from Szymon Jaroszewicz */ TEST_SF_E10(s, gsl_sf_exp_mult_e10_e, (10000.0, 1.0, &re), 8.806818225662921587261496007, 4342, TEST_TOL5, GSL_SUCCESS); TEST_SF_E10(s, gsl_sf_exp_mult_e10_e, (100.0, 1.0, &re), 2.688117141816135448412625551e43, 0, TEST_TOL2, GSL_SUCCESS); TEST_SF_E10(s, gsl_sf_exp_e10_e, (100.0, &re), 2.688117141816135448412625551e43, 0, TEST_TOL2, GSL_SUCCESS); TEST_SF_E10(s, gsl_sf_exp_e10_e, (1000.0, &re), 1.970071114017046993888879352, 434, TEST_TOL3, GSL_SUCCESS); TEST_SF_E10(s, gsl_sf_exp_e10_e, (-100.0, &re), 3.720075976020835962959695803e-44, 0, TEST_TOL2, GSL_SUCCESS); TEST_SF_E10(s, gsl_sf_exp_e10_e, (-1000.0, &re), 5.075958897549456765291809479, -435, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, (-10.0, &r), exp(-10.0)-1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, (-0.001, &r), -0.00099950016662500845, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, (-1.0e-8, &r), -1.0e-08 + 0.5e-16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, ( 1.0e-8, &r), 1.0e-08 + 0.5e-16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, ( 0.001, &r), 0.0010005001667083417, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expm1_e, ( 10.0, &r), exp(10.0)-1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, (-10.0, &r), 0.0999954600070237515, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, (-0.001, &r), 0.9995001666250084, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, (-1.0e-8, &r), 1.0 - 0.5e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, ( 1.0e-8, &r), 1.0 + 0.5e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, ( 0.001, &r), 1.0005001667083417, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_e, ( 10.0, &r), 2202.5465794806716517, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, (-10.0, &r), 0.18000090799859524970, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, (-0.001, &r), 0.9996667499833361107, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, (-1.0e-8, &r), 0.9999999966666666750, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, ( 1.0e-8, &r), 1.0000000033333333417, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, ( 0.001, &r), 1.0003334166833361115, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_2_e, ( 10.0, &r), 440.3093158961343303, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -1000.0, &r), 0.00299400600000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -100.0, &r), 0.02940600000000000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -10.0, &r), 0.24599972760042142509, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -3.0, &r), 0.5444917625849191238, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -0.001, &r), 0.9997500499916678570, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, -1.0e-8, &r), 0.9999999975000000050, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 1.0e-8, &r), 1.0000000025000000050, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 0.001, &r), 1.0002500500083345240, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 3.0, &r), 2.5745637607083706091, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 3.1, &r), 2.6772417068460206247, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 10.0, &r), 131.79279476884029910, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (3, 100.0, &r), 1.6128702850896812690e+38, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -1000.0, &r), 0.04766231609253975959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -100.0, &r), 0.3348247572345889317, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -10.0, &r), 0.8356287051853286482, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -3.0, &r), 0.9443881609152163615, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -1.0, &r), 0.980762245565660617, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, -1.0e-8, &r), 1.0 -1.0e-8/51.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 1.0e-8, &r), 1.0 +1.0e-8/51.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 1.0, &r), 1.01999216583666790, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 3.0, &r), 1.0624205757460368307, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 48.0, &r), 7.499573876877194416, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 50.1, &r), 9.311803306230992272, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 100.0, &r), 8.175664432485807634e+07, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (50, 500.0, &r), 4.806352370663185330e+146, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -1000.0, &r), 0.3334815803127619256, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -100.0, &r), 0.8335646217536183909, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -10.0, &r), 0.9804297803131823066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -3.0, &r), 0.9940475488850672997, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -1.0, &r), 0.9980079602383488808, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, -1.0e-8, &r), 1.0 -1.0e-8/501.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 1.0e-8, &r), 1.0 +1.0e-8/501.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 1.0, &r), 1.0019999920160634252, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 3.0, &r), 1.0060240236632444934, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 48.0, &r), 1.1059355517981272174, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 100.0, &r), 1.2492221464878287204, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 500.0, &r), 28.363019877927630858, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 1000.0, &r), 2.4037563160335300322e+68, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (500, 1600.0, &r), 7.899293535320607403e+226, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_e, (1263131.0, 1261282.3637, &r), 545.0113107238425900305428360, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_exprel_n_CF_e, (6.315655e+05, 6.302583168053568806e+05, &r), 385.425369029433473098652465720, TEST_TOL4, GSL_SUCCESS); return s; } int test_expint(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_expint_E1_e, (-1.0, &r), -1.8951178163559367555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (1.0e-10, &r), 22.448635265138923980, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (1.0e-05, &r), 10.935719800043695615, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (0.1, &r), 1.82292395841939066610, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (1.0, &r), 0.21938393439552027368, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (10.0, &r), 4.156968929685324277e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (50.0, &r), 3.783264029550459019e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_e, (300.0, &r), 1.710384276804510115e-133, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (-1.0, &r), 0.8231640121031084799, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (1.0/4294967296.0, &r), 0.9999999947372139168, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (1.0/65536.0, &r), 0.9998243233207178845, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (0.1, &r), 0.7225450221940205066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (1.0, &r), 0.14849550677592204792, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (10.0, &r), 3.830240465631608762e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (50.0, &r), 3.711783318868827367e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_e, (300.0, &r), 1.7047391998483433998e-133, TEST_TOL2, GSL_SUCCESS); /* Tests for E_n(x) */ TEST_SF(s, gsl_sf_expint_En_e, (1,-1.0, &r), -1.8951178163559367555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,1.0e-10, &r), 22.448635265138923980, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,1.0e-05, &r), 10.935719800043695615, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,0.1, &r), 1.82292395841939066610, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,1.0, &r), 0.21938393439552027368, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,10.0, &r), 4.156968929685324277e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,50.0, &r), 3.783264029550459019e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (1,300.0, &r), 1.710384276804510115e-133, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,-1.0, &r), 0.8231640121031084799, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,0.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,1.0/4294967296.0, &r), 0.9999999947372139168, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,1.0/65536.0, &r), 0.9998243233207178845, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,0.1, &r), 0.7225450221940205066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,1.0, &r), 0.14849550677592204792, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,10.0, &r), 3.830240465631608762e-06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,50.0, &r), 3.711783318868827367e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (2,300.0, &r), 1.7047391998483433998e-133, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,0.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,1.0/4294967296.0, &r), 0.499999999767169356972, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,1.0/65536.0, &r), 0.4999847426094515610, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,0.1, &r), 0.4162914579082787612543, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,1.0, &r), 0.10969196719776013683858, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,10.0, &r),0.000003548762553084381959981, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,50.0, &r), 3.6429094264752049812e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (3,300.0, &r),1.699131143349179084e-133, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,0.0, &r), 0.111111111111111111, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,1.0/4294967296.0, &r), 0.111111111082007280658, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,1.0/65536.0, &r), 0.11110920377910896018606, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,0.1, &r), 0.099298432000896813567905, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,1.0, &r), 0.036393994031416401634164534, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,10.0, &r), 0.00000232530265702821081778968, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,50.0, &r), 3.223296586749110919572e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_e, (10,300.0, &r), 1.6608815083360041367294736e-133, TEST_TOL2, GSL_SUCCESS); /* Tests for Ei(x) */ TEST_SF(s, gsl_sf_expint_Ei_e, (-1.0, &r), -0.21938393439552027368, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_e, (1.0/4294967296.0, &r), -21.603494112783886397, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_e, (1.0, &r), 1.8951178163559367555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (-10000.0, &r), -0.00010001000200060024012, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (-1000.0, &r), -0.0010010020060241207251, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (-10.0, &r), -0.11314702047341077803, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (-1.0, &r), -0.69717488323506606877, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (1.0e-10, &r), 22.448635267383787506, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (1.0e-05, &r), 10.935829157788483865, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (0.1, &r), 2.0146425447084516791, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (1.0, &r), 0.59634736232319407434, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (10.0, &r), 0.091563333939788081876, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (50.0, &r), 0.019615109930114870365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (300.0, &r), 0.0033222955652707070644, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (1000.0, &r), 0.00099900199402388071500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E1_scaled_e, (10000.0, &r), 0.000099990001999400239880, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (-10000.0, &r), -0.00010002000600240120072, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (-1000.0, &r), -0.0010020060241207250807, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (-10.0, &r), -0.13147020473410778034, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (-1.0, &r), 0.30282511676493393123, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (0.0, &r), 1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (1.0/4294967296.0, &r), 0.99999999497004455927, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (1.0/65536.0, &r), 0.99983957954556245453, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (0.1, &r), 0.79853574552915483209, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (1.0, &r), 0.40365263767680592566, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (10.0, &r), 0.084366660602119181239, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (50.0, &r), 0.019244503494256481735, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (300.0, &r), 0.0033113304187878806691, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (1000.0, &r), 0.00099800597611928500004, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_E2_scaled_e, (10000.0, &r), 0.000099980005997601199281, TEST_TOL0, GSL_SUCCESS); /* Tests for E_n(x) */ TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,-10000.0, &r), -0.00010001000200060024012, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,-1000.0, &r), -0.0010010020060241207251, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,-10.0, &r), -0.11314702047341077803, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,-1.0, &r), -0.69717488323506606877, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,1.0e-10, &r), 22.448635267383787506, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,1.0e-05, &r), 10.935829157788483865, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,0.1, &r), 2.0146425447084516791, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,1.0, &r), 0.59634736232319407434, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,10.0, &r), 0.091563333939788081876, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,50.0, &r), 0.019615109930114870365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,300.0, &r), 0.0033222955652707070644, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,1000.0, &r), 0.00099900199402388071500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (1,10000.0, &r), 0.000099990001999400239880, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,-10000.0, &r), -0.00010002000600240120072, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,-1000.0, &r), -0.0010020060241207250807, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,-10.0, &r), -0.13147020473410778034, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,-1.0, &r), 0.30282511676493393123, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,0.0, &r), 1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,1.0/4294967296.0, &r), 0.99999999497004455927, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,1.0/65536.0, &r), 0.99983957954556245453, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,0.1, &r), 0.79853574552915483209, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,1.0, &r), 0.40365263767680592566, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,10.0, &r), 0.084366660602119181239, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,50.0, &r), 0.019244503494256481735, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,300.0, &r), 0.0033113304187878806691, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,1000.0, &r), 0.00099800597611928500004, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (2,10000.0, &r), 0.000099980005997601199281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,0.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,1.0/4294967296.0, &r), 0.4999999998835846787586, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,1.0/65536.0, &r), 0.4999923718293796877864492, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,0.1, &r), 0.4600732127235422583955, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,1.0, &r), 0.298173681161597037170539, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,10.0, &r), 0.07816669698940409380349, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,50.0, &r), 0.0188874126435879566345, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (3,300.0, &r), 0.00330043718181789963028657675, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,0.0, &r), 0.111111111111111111, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,1.0/4294967296.0, &r), 0.11111111110787735217158, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,1.0/65536.0, &r), 0.1111108991839472074435, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,0.1, &r), 0.1097417392579033988025, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,1.0, &r), 0.09892913264064615521915, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,10.0, &r), 0.0512181994376050593314159875, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,50.0, &r), 0.0167118436335939556034579, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_En_scaled_e, (10,300.0, &r), 0.0032261400811599644878615, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_scaled_e, (-1000.0, &r), -0.00099900199402388071500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_scaled_e, (-1.0, &r), -0.59634736232319407434, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_scaled_e, (1.0/4294967296.0, &r), -21.603494107753930958, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_scaled_e, (1.0, &r), 0.69717488323506606877, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_Ei_scaled_e, (1000.0, &r), 0.0010010020060241207251, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (-1.0, &r), -1.0572508753757285146, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (1.0/4294967296.0, &r), 2.3283064365386962891e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (1.0/65536.0, &r), 0.00001525878906269737298, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (0.1, &r), 0.1000555722250569955, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (1.0, &r), 1.0572508753757285146, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (10.0, &r), 1246.1144901994233444, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (50.0, &r), 5.292818448565845482e+19, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_Shi_e, (300.0, &r), 3.248241254044332895e+127, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (-1.0, &r), 0.8378669409802082409, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (1.0/4294967296.0, &r), -21.603494113016717041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (1.0/65536.0, &r), -10.513139223999384429, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (1.0/8.0, &r), -1.4983170827635760646, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (1.0, &r), 0.8378669409802082409, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (10.0, &r), 1246.1144860424544147, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (50.0, &r), 5.292818448565845482e+19, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_Chi_e, (300.0, &r), 3.248241254044332895e+127, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (1.0e-10, &r), 1.0e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (1.0e-05, &r), 9.9999999999999975e-06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (0.1, &r), 0.09997500714119079665122, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (0.5, &r), 0.48491714311363971332427, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (1.0, &r), 0.80751118213967145285833, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (2.0, &r), 0.89295351429387631138208, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (5.0, &r), 0.89297951156924921121856, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (10.0, &r), 0.89297951156924921121856, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_expint_3_e, (100.0, &r), 0.89297951156924921121856, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (-1.0, &r), -0.9460830703671830149, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (1.0e-10, &r), 1.0e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (1.0e-05, &r), 9.999999999944444444e-06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (0.1, &r), 0.09994446110827695016, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (1.0, &r), 0.9460830703671830149, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (10.0, &r), 1.6583475942188740493, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (50.0, &r), 1.5516170724859358947, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Si_e, (300.0, &r), 1.5708810882137495193, TEST_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_Si_e, (1.0e+20, &r), 1.5707963267948966192, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_Ci_e, (1.0/4294967296.0, &r), -21.603494113016717041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (1.0/65536.0, &r), -10.513139224115799751, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (1.0/8.0, &r), -1.5061295845296396649, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (1.0, &r), 0.3374039229009681347, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (10.0, &r), -0.04545643300445537263, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (50.0, &r), -0.005628386324116305440, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (300.0, &r), -0.003332199918592111780, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (65536.0, &r), 0.000010560248837656279453, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (4294967296.0, &r), -1.0756463261957757485e-10, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_Ci_e, (1099511627776.0, &r), -3.689865584710764214e-13, 1024.0*TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (1.0e-10, &r), 1.0e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (1.0e-05, &r), 9.99999999988888888889e-06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (0.1, &r), 0.09988928686033618404, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (1.0, &r), 0.91596559417721901505, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (2.0, &r), 1.57601540344632342236, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (10.0, &r), 3.71678149306806859029, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (50.0, &r), 6.16499047850274874222, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (300.0, &r), 8.96281388924518959990, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_atanint_e, (1.0e+5, &r), 18.084471031038661920, TEST_TOL0, GSL_SUCCESS); /* Bug report from Wolfgang Ehrhardt */ TEST_SF(s, gsl_sf_atanint_e, (1.0e+9, &r), 32.552029856869591656, TEST_TOL0, GSL_SUCCESS); return s; } int test_fermidirac(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_fermi_dirac_m1_e, (-10.0, &r), 0.00004539786870243439450, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_m1_e, ( -1.0, &r), 0.26894142136999512075, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_m1_e, ( 1.0, &r), 0.7310585786300048793, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_m1_e, ( 10.0, &r), 0.9999546021312975656, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_0_e, (-10.0, &r), 0.00004539889921686464677, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_0_e, ( -1.0, &r), 0.31326168751822283405, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_0_e, ( 1.0, &r), 1.3132616875182228340, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_0_e, ( 10.0, &r), 10.000045398899216865, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, (-10.0, &r), 0.00004539941448447633524, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( -2.0, &r), 0.13101248471442377127, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( -1.0, &r), 0.3386479964034521798, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( -0.4, &r), 0.5825520806897909028, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 0.4, &r), 1.1423819861584355337, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 1.0, &r), 1.8062860704447742567, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 1.5, &r), 2.5581520872227806402, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 2.5, &r), 4.689474797599761667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 10.0, &r), 51.64488866743374196, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 12.0, &r), 73.64492792264531092, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 20.0, &r), 201.64493406478707282, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_1_e, ( 50.0, &r), 1251.6449340668482264, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, (-10.0, &r), 0.00004539967212174776662, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( -2.0, &r), 0.13313272938565030508, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( -1.0, &r), 0.3525648792978077590, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( -0.4, &r), 0.6229402647001272120, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 0.4, &r), 1.2915805581060844533, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 1.0, &r), 2.1641656128127008622, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 1.5, &r), 3.247184513920792475, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 2.5, &r), 6.797764392735056317, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 10.0, &r), 183.11605273482105278, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 12.0, &r), 307.73921494638635166, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 20.0, &r), 1366.2320146723590157, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, ( 50.0, &r), 20915.580036675744655, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_2_e, (200.0, &r), 1.3336623201467029786e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, (-10.0, &r), 0.00004539847236080549532, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( -2.0, &r), 0.12366562180120994266, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( -1.0, &r), 0.29402761761145122022, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( -0.4, &r), 0.4631755336886027800, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 0.4, &r), 0.7654084737661656915, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 1.0, &r), 1.0270571254743506890, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 1.5, &r), 1.2493233478527122008, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 2.5, &r), 1.6663128834358313625, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 10.0, &r), 3.552779239536617160, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 12.0, &r), 3.897268231925439359, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 20.0, &r), 5.041018507535328603, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_mhalf_e, ( 50.0, &r), 7.977530858581869960, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, (-10.0, &r), 0.00004539920105264132755, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( -2.0, &r), 0.12929851332007559106, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( -1.0, &r), 0.3277951592607115477, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( -0.4, &r), 0.5522452153690688947, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 0.4, &r), 1.0386797503389389277, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 1.0, &r), 1.5756407761513002308, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 1.5, &r), 2.1448608775831140360, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 2.5, &r), 3.606975377950373251, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 10.0, &r), 24.084656964637653615, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 12.0, &r), 31.540203287044242593, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 20.0, &r), 67.49151222165892049, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_half_e, ( 50.0, &r), 266.09281252136259343, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, (-10.0, &r), 0.00004539956540456176333, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( -2.0, &r), 0.13224678225177236685, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( -1.0, &r), 0.3466747947990574170, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( -0.4, &r), 0.6056120213305040910, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 0.4, &r), 1.2258236403963668282, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 1.0, &r), 2.0022581487784644573, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 1.5, &r), 2.9277494127932173068, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 2.5, &r), 5.768879312210516582, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 10.0, &r), 101.00510084332600020, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 12.0, &r), 156.51518642795728036, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 20.0, &r), 546.5630100657601959, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_3half_e, ( 50.0, &r), 5332.353566687145552, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, -2.0, &r), 0.1342199155038680215, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 0.0, &r), 0.9470328294972459176, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 0.1, &r), 1.0414170610956165759, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 1.0, &r), 2.3982260822489407070, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 3.0, &r), 12.621635313399690724, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 100.0, &r), 4.174893231066566793e+06, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (3, 500.0, &r), 2.604372285319088354e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, -2.0, &r), 0.13505242246823676478, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 0.0, &r), 0.9855510912974351041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 0.1, &r), 1.0876519750101492782, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 1.0, &r), 2.6222337848692390539, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 3.0, &r), 17.008801618012113022, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 100.0, &r), 1.3957522531334869874e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (5, 500.0, &r), 2.1705672808114817955e+13, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, -2.0, &r), 0.1352641105671255851, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 0.0, &r), 0.9962330018526478992, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 0.1, &r), 1.1005861815180315485, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 1.0, &r), 2.6918878172003129203, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 3.0, &r), 19.033338976999367642, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 10.0, &r), 5654.530932873610014, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 50.0, &r), 1.005005069985066278e+09, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (7, 500.0, &r), 9.691690268341569514e+16, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, -2.0, &r), 0.1353174385330242691, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 0.0, &r), 0.9990395075982715656, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 0.1, &r), 1.1039997234712941212, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 1.0, &r), 2.7113648898129249947, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 3.0, &r), 19.768544008138602223, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 10.0, &r), 10388.990167312912478, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 50.0, &r), 2.85466960802601649e+10, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (9, 500.0, &r), 2.69273849842695876e+20, 2*TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, -2.0, &r), 0.13532635396712288092, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 0.0, &r), 0.9995171434980607541, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 0.1, &r), 1.1045818238852612296, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 1.0, &r), 2.7147765350346120647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 3.0, &r), 19.917151938411675171, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 10.0, &r), 12790.918595516495955, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 50.0, &r), 1.3147703201869657654e+11, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (10, 500.0, &r), 1.2241331244469204398e+22, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, -2.0, &r), 0.1353308162894847149, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 0.0, &r), 0.9997576851438581909, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 0.1, &r), 1.1048751811565850418, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 1.0, &r), 2.7165128749007313436, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 3.0, &r), 19.997483022044603065, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 10.0, &r), 14987.996005901818036, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 50.0, &r), 5.558322924078990628e+11, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (11, 500.0, &r), 5.101293089606198280e+23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, -2.0, &r), 0.13533527450327238373, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 0.0, &r), 0.9999995232582155428, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 0.1, &r), 1.1051703357941368203, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 1.0, &r), 2.7182783069905721654, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 3.0, &r), 20.085345296028242734, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 10.0, &r), 21898.072920149606475, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 50.0, &r), 1.236873256595717618e+16, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_fermi_dirac_int_e, (20, 500.0, &r), 9.358938204369557277e+36, TEST_TOL2, GSL_SUCCESS); return s; } int test_gegen(void) { gsl_sf_result r; double ga[100]; int s = 0; int sa; TEST_SF(s, gsl_sf_gegenpoly_1_e, (-0.2, 1.0, &r), -0.4, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_1_e, ( 0.0, 1.0, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_1_e, ( 1.0, 1.0, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_1_e, ( 1.0, 0.5, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_1_e, ( 5.0, 1.0, &r), 10.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_1_e, ( 100.0, 0.5, &r), 100.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, (-0.2, 0.5, &r), 0.12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, ( 0.0, 1.0, &r), 1.00, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, ( 1.0, 1.0, &r), 3.00, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, ( 1.0, 0.1, &r), -0.96, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, ( 5.0, 1.0, &r), 55.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_2_e, ( 100.0, 0.5, &r), 4950.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, (-0.2, 0.5, &r), 0.112, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, ( 0.0, 1.0, &r), -2.0/3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, ( 1.0, 1.0, &r), 4.000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, ( 1.0, 0.1, &r), -0.392, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, ( 5.0, 1.0, &r), 220.000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_3_e, ( 100.0, 0.5, &r), 161600.000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (1, 1.0, 1.0, &r), 2.000 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (10, 1.0, 1.0, &r), 11.000 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (10, 1.0, 0.1, &r), -0.4542309376 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (10, 5.0, 1.0, &r), 9.23780e+4 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (10, 100.0, 0.5, &r), 1.5729338392690000e+13, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (1000, 100.0, 1.0, &r), 3.3353666135627322e+232, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (100, 2000.0, 1.0, &r), 5.8753432034937579e+202, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (103, 207.0, 2.0, &r), 1.4210272202235983e+145, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_gegenpoly_n_e, (103, -0.4, 0.3, &r), -1.64527498094522e-04, TEST_TOL1, GSL_SUCCESS); sa = 0; gsl_sf_gegenpoly_array(99, 5.0, 1.0, ga); sa += ( test_sf_frac_diff( ga[1], 10.0 ) > TEST_TOL0 ); sa += ( test_sf_frac_diff( ga[10], 9.23780e+4 ) > TEST_TOL0 ); gsl_test(sa, " gsl_sf_gegenpoly_array"); s += sa; return s; } int test_jac(void) { double u, m; double sn, cn, dn; int stat_ej; int s = 0; int sa; u = 0.5; m = 0.5; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.4707504736556572833, TEST_TOL0, "gsl_sf_elljac_e(0.5|0.5) sn"); sa += test_sf_val(cn, 0.8822663948904402865, TEST_TOL0, "gsl_sf_elljac_e(0.5|0.5) cn"); sa += test_sf_val(dn, 0.9429724257773856873, TEST_TOL0, "gsl_sf_elljac_e(0.5|0.5) dn"); gsl_test(s, " gsl_sf_elljac_e(0.5|0.5)"); s += sa; u = 1.0; m = 0.3; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.8187707145344889190, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.3) sn"); sa += test_sf_val(cn, 0.5741206467465548795, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.3) cn"); sa += test_sf_val(dn, 0.8938033089590823040, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.3) dn"); gsl_test(sa, " gsl_sf_elljac_e(1.0|0.3)"); s += sa; u = 1.0; m = 0.6; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.7949388393365780943, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.6) sn"); sa += test_sf_val(cn, 0.6066895760718277578, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.6) cn"); sa += test_sf_val(dn, 0.7879361300438814425, TEST_TOL0, "gsl_sf_elljac_e(1.0|0.6) dn"); gsl_test(sa, " gsl_sf_elljac_e(1.0|0.6)"); s += sa; u = 3.0; m = 0.6; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.7432676860864044186, TEST_TOL0, " gsl_sf_elljac_e(3.0|0.6) sn"); sa += test_sf_val(cn, -0.6689941306317733154, TEST_TOL0, " gsl_sf_elljac_e(3.0|0.6) cn"); sa += test_sf_val(dn, 0.8176379933025723259, TEST_TOL0, " gsl_sf_elljac_e(3.0|0.6) dn"); gsl_test(sa, " gsl_sf_elljac_e(3.0|0.6)"); s += sa; u = 2.0; m = 0.999999; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.96402778575700186570, TEST_TOL1, "gsl_sf_elljac_e(2.0|0.999999) sn"); sa += test_sf_val(cn, 0.26580148285600686381, TEST_TOL1, "gsl_sf_elljac_e(2.0|0.999999) cn"); sa += test_sf_val(dn, 0.26580323105264131136, TEST_TOL1, "gsl_sf_elljac_e(2.0|0.999999) dn"); gsl_test(sa, " gsl_sf_elljac_e(2.0|0.999999)"); s += sa; /* test supplied by Ivan Panchenko */ u = 1.69695970624443; m = 0.270378013104138; sa = 0; stat_ej = gsl_sf_elljac_e(u, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(1.69..|0.27..) sn"); sa += test_sf_val(cn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(1.69..|0.27..) cn"); sa += test_sf_val(dn, 0.8541791304497336, TEST_TOL1, "gsl_sf_elljac_e(1.69..|0.27..) dn"); gsl_test(sa, " gsl_sf_elljac_e(1.69695970624443|0.270378013104138)"); s += sa; /* Check known values from Abramowitz & Stegun, Table 16.5 */ u = 0; m = 0.1; { double mc = 1 - m; /* quarter period K is (pi/2)/agm(1,mc) */ double K = (M_PI_2)/ 0.9741726903999478375938128316; double A = 1.0 / sqrt(1+sqrt(mc)); double B = pow(mc, 0.25) / sqrt(1+sqrt(mc)); double C = pow(mc, 0.25); double C2 = sqrt(mc); double eps = 1e-10; sa = 0; stat_ej = gsl_sf_elljac_e(0.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.0, TEST_TOL0, "gsl_sf_elljac_e(0|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(0|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(0|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(0|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, -eps, TEST_TOL0, "gsl_sf_elljac_e(-1e-10|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(-1e-10|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, eps, TEST_TOL0, "gsl_sf_elljac_e(1e-10|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(1e-10|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(1e-30, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1e-30, TEST_TOL0, "gsl_sf_elljac_e(1e-30|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(1e-30|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL0, "gsl_sf_elljac_e(1e-30|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(1e-30|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K / 2.0 - eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, A - eps*B*C, TEST_TOL2, "gsl_sf_elljac_e(K/2-1e-10|0.1) sn"); sa += test_sf_val(cn, B + eps*A*C, TEST_TOL2, "gsl_sf_elljac_e(K/2-1e-10|0.1) cn"); sa += test_sf_val(dn, C + m*eps*A*B, TEST_TOL2, "gsl_sf_elljac_e(K/2-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K/2-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, A, TEST_TOL2, "gsl_sf_elljac_e(K/2|0.1) sn"); sa += test_sf_val(cn, B, TEST_TOL2, "gsl_sf_elljac_e(K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K / 2.0 + eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, A + eps*B*C, TEST_TOL2, "gsl_sf_elljac_e(K/2+1e-10|0.1) sn"); sa += test_sf_val(cn, B - eps*A*C, TEST_TOL2, "gsl_sf_elljac_e(K/2+1e-10|0.1) cn"); sa += test_sf_val(dn, C - m*eps*A*B, TEST_TOL2, "gsl_sf_elljac_e(K/2+1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K/2+1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K - eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(K-1e-10|0.1) sn"); sa += test_sf_val(cn, eps*C2, 10*TEST_SNGL, "gsl_sf_elljac_e(K-1e-10|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(K-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(K|0.1) sn"); sa += test_sf_val(cn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(K|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(K + eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(K+1e-10|0.1) sn"); sa += test_sf_val(cn, -eps*C2, 10*TEST_SNGL, "gsl_sf_elljac_e(K+1e-10|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(K+1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(K+1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(3.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, A, TEST_TOL2, "gsl_sf_elljac_e(3K/2|0.1) sn"); sa += test_sf_val(cn, -B, TEST_TOL2, "gsl_sf_elljac_e(3K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(3K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(3K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(2.0*K - eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, eps, 10*TEST_SNGL, "gsl_sf_elljac_e(2K-1e-10|0.1) sn"); sa += test_sf_val(cn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(2K-1e-10|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(2K-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(2K-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(2.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(2K|0.1) sn"); sa += test_sf_val(cn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(2K|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(2K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(2K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(2.0*K + eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, -eps, 10*TEST_SNGL, "gsl_sf_elljac_e(2K+1e-10|0.1) sn"); sa += test_sf_val(cn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(2K+1e-10|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(2K+1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(2K+1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(5.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, -A, TEST_TOL2, "gsl_sf_elljac_e(5K/2|0.1) sn"); sa += test_sf_val(cn, -B, TEST_TOL2, "gsl_sf_elljac_e(5K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(5K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(5K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(3.0*K - eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(3K-1e-10|0.1) sn"); sa += test_sf_val(cn, -C2 * eps, 10*TEST_SNGL, "gsl_sf_elljac_e(3K-1e-10|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(3K-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(3K-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(3.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(3K|0.1) sn"); sa += test_sf_val(cn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(3K|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(3K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(3K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(3.0*K + eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(3K+1e-10|0.1) sn"); sa += test_sf_val(cn, +C2 * eps, 10*TEST_SNGL, "gsl_sf_elljac_e(3K+1e-10|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(3K+1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(3K+1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(7.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, -A, TEST_TOL2, "gsl_sf_elljac_e(7K/2|0.1) sn"); sa += test_sf_val(cn, B, TEST_TOL2, "gsl_sf_elljac_e(7K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(7K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(7K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(4.0*K - eps, m, &sn, &cn, &dn); sa += test_sf_val(sn, -eps, 10*TEST_SNGL, "gsl_sf_elljac_e(4K-1e-10|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(4K-1e-10|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(4K-1e-10|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(4K-1e-10|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(4.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(4K|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(4K|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(4K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(4K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(9.0 * K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, A, TEST_TOL2, "gsl_sf_elljac_e(9K/2|0.1) sn"); sa += test_sf_val(cn, B, TEST_TOL2, "gsl_sf_elljac_e(9K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(9K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(9K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, -A, TEST_TOL2, "gsl_sf_elljac_e(-K/2|0.1) sn"); sa += test_sf_val(cn, B, TEST_TOL2, "gsl_sf_elljac_e(-K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(-K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-K, m, &sn, &cn, &dn); sa += test_sf_val(sn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(-K|0.1) sn"); sa += test_sf_val(cn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(-K|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(-K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-3.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, -A, TEST_TOL2, "gsl_sf_elljac_e(-3K/2|0.1) sn"); sa += test_sf_val(cn, -B, TEST_TOL2, "gsl_sf_elljac_e(-3K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(-3K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-3K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-2.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(-2K|0.1) sn"); sa += test_sf_val(cn, -1.0, TEST_TOL1, "gsl_sf_elljac_e(-2K|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(-2K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-2K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-5.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, A, TEST_TOL2, "gsl_sf_elljac_e(-5K/2|0.1) sn"); sa += test_sf_val(cn, -B, TEST_TOL2, "gsl_sf_elljac_e(-5K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(-5K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-5K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-3.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(-3K|0.1) sn"); sa += test_sf_val(cn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(-3K|0.1) cn"); sa += test_sf_val(dn, C2, TEST_TOL2, "gsl_sf_elljac_e(-3K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-3K|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-7.0*K / 2.0, m, &sn, &cn, &dn); sa += test_sf_val(sn, A, TEST_TOL2, "gsl_sf_elljac_e(-7K/2|0.1) sn"); sa += test_sf_val(cn, B, TEST_TOL2, "gsl_sf_elljac_e(-7K/2|0.1) cn"); sa += test_sf_val(dn, C, TEST_TOL2, "gsl_sf_elljac_e(-7K/2|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-7K/2|0.1)"); s += sa; sa = 0; stat_ej = gsl_sf_elljac_e(-4.0*K, m, &sn, &cn, &dn); sa += test_sf_val(sn, 0.0, TEST_TOL1, "gsl_sf_elljac_e(-4K|0.1) sn"); sa += test_sf_val(cn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(-4K|0.1) cn"); sa += test_sf_val(dn, 1.0, TEST_TOL1, "gsl_sf_elljac_e(-4K|0.1) dn"); gsl_test(sa, " gsl_sf_elljac_e(-4K|0.1)"); s += sa; } return s; } int test_laguerre(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_laguerre_1_e, (0.5, -1.0, &r), 2.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_1_e, (0.5, 1.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_1_e, (1.0, 1.0, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, ( 0.5, -1.0, &r), 4.875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, ( 0.5, 1.0, &r), -0.125, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, ( 1.0, 1.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, (-1.0, 1.0, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, (-2.0, 1.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_2_e, (-3.0, 1.0, &r), 2.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (0.5, -1.0, &r), 8.479166666666666667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (0.5, 1.0, &r), -0.6041666666666666667, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (1.0, 1.0, &r), -0.16666666666666666667, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, ( 2.0, 1.0, &r), 2.3333333333333333333, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (-2.0, 1.0, &r), 1.0/3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (-3.0, 1.0, &r), -1.0/6.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_3_e, (-4.0, 1.0, &r), -8.0/3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1, 0.5, 1.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (2, 1.0, 1.0, &r), 0.5, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (3, 2.0, 1.0, &r), 2.3333333333333333333, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (4, 2.0, 0.5, &r), 6.752604166666666667, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (90, 2.0, 0.5, &r), -48.79047157201507897, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (90, 2.0, -100.0, &r), 2.5295879275042410902e+63, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (90, 2.0, 100.0, &r), -2.0929042259546928670e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 2.0, -0.5, &r), 2.2521795545919391405e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 2.0, 0.5, &r), -28.764832945909097418, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1000, 2.0, -0.5, &r), 2.4399915170947549589e+21, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1000, 2.0, 0.5, &r), -306.77440254315317525, TEST_TOL2, GSL_SUCCESS); /**/ TEST_SF(s, gsl_sf_laguerre_n_e, (100000, 2.0, 1.0, &r), 5107.73491348319, TEST_TOL4, GSL_SUCCESS); /* Compute these with the recurrence * L(0,alpha,x)=1; * L(1,alpha,x)=1+alpha-x; * L(n,alpha,x)=((2*n-1+alpha-x)*L(n-1,alpha,x)-(n+alpha-1)*L(n-2,alpha,x))/k */ TEST_SF(s, gsl_sf_laguerre_n_e, (1e5, 2.5, 2.5, &r), -0.41491680394598644969113795e5, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1e5+1, 2.5, 2.5, &r), -0.41629446949552321027514888e5, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1e6+1, 2.5, 2.5, &r), -0.48017961545391273151977118e6, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (5e6+1, 2.5, 2.5, &r), -0.15174037401611122446089494e7, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (8e6+1, 2.5, 2.5, &r), 0.63251509472091810994286362e6, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1e7+1, 2.5, 2.5, &r), 0.15299484685632983178033887e7, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1e8+1, 2.5, 2.5, &r), 0.23645341644922756725290777e8, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1e9+1, 2.5, 2.5, &r), -0.17731002248958790286185878e8, 100*TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (1, -2.0, 1.0, &r), -2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (2, -2.0, 1.0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (3, -2.0, 1.0, &r), 1.0/3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (10, -2.0, 1.0, &r), -0.04654954805996472663, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (10, -5.0, 1.0, &r), -0.0031385030864197530864, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (10, -9.0, 1.0, &r), -2.480158730158730159e-06, TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (10, -11.0, 1.0, &r), 2.7182818011463844797, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (10, -11.0, -1.0, &r), 0.3678794642857142857, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -2.0, 1.0, &r), -0.0027339992019526273866, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -2.0, -1.0, &r), 229923.09193402028290, TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -10.0, 1.0, &r), 3.25966665871244092e-11, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -10.0, -1.0, &r), 0.00016484365618205810025, TEST_TOL6, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -20.0, 1.0, &r), 5.09567630343671251e-21, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -30.0, 1.0, &r), 3.46063150272466192e-34, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.0, 1.0, &r), 1.20981872933162889e-65, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.0, -1.0, &r), 8.60763477742332922e-65, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.5, 1.0, &r), 4.84021010426688393e-31, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.5, -1.0, &r), 8.49861345212160618e-33, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -101.0, 1.0, &r), 2.7182818284590452354, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -101.0, -1.0, &r), 0.3678794411714423216, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -102.0, 1.0, &r), 271.8281828459045235, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -102.0, -1.0, &r), 37.52370299948711680, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -110.0, 1.0, &r), 1.0666955248998831554e+13, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -110.0, -1.0, &r), 1.7028306108058225871e+12, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -200.0, 1.0, &r), 7.47851889721356628e+58, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -200.0, -1.0, &r), 2.73740299754732273e+58, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.0, 10.0, &r), 4.504712811317745591e-21, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, -50.0, -10.0, &r), 1.475165520610679937e-11, TEST_TOL1, GSL_SUCCESS); /* test cases for Ed Smith-Rowland */ TEST_SF(s, gsl_sf_laguerre_n_e, (100, 0.0, 0.5, &r), 0.18682260367692278801, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 0.0, 10.5, &r), 9.1796907354050059874, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 0.0, -10.5, &r), 5.6329215744170606488e24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 0.0, 100.5, &r), -3.9844782875811907525e20, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_laguerre_n_e, (100, 0.0, 150, &r), -1.4463204337261709595e31, TEST_TOL2, GSL_SUCCESS); return s; } int test_lambert(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_lambert_W0_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (1.0, &r), 0.567143290409783872999969, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (2.0, &r), 0.852605502013725491346472, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (20.0, &r), 2.205003278024059970493066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (1000.0, &r), 5.24960285240159622712606, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (1.0e+6, &r), 11.38335808614005262200016, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (1.0e+12, &r), 24.43500440493491313826305, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (1.0e+308, &r), 702.641362034106812081125, TEST_TOL0, GSL_SUCCESS); /* Test case from Katrin Wolff fails under double-precision */ TEST_SF(s, gsl_sf_lambert_W0_e, (1.6849341956993852953416990, &r), 0.775706963944252869680440, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (-1.0/M_E - GSL_DBL_EPSILON, &r), -1.0, TEST_TOL0, GSL_EDOM); TEST_SF(s, gsl_sf_lambert_W0_e, (-1.0/M_E + 1.0/(1024.0*1024.0*1024.0), &r), -0.999928845560308370714970, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (-1.0/M_E + 1.0/(1024.0*1024.0), &r), -0.997724730359774141620354, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (-1.0/M_E + 1.0/512.0, &r), -0.900335676696088773044678, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_W0_e, (-1.0/M_E + 0.25, &r), -0.1349044682661213545487599, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (0.0, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (1.0, &r), 0.567143290409783872999969, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (2.0, &r), 0.852605502013725491346472, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (20.0, &r), 2.205003278024059970493066, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E - GSL_DBL_EPSILON, &r), -1.0, TEST_TOL0, GSL_EDOM); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E + 1.0/(1024.0*1024.0*1024.0), &r), -1.000071157815154608049055, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E + 1.0/(1024.0*1024.0), &r), -1.002278726118593023934693, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E + 1.0/512.0, &r), -1.106761200865743124599130, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E + 1.0/64.0, &r), -1.324240940341812125489772, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_lambert_Wm1_e, (-1.0/M_E + 0.25, &r), -3.345798131120112, TEST_TOL1, GSL_SUCCESS); return s; } int test_log(void) { gsl_sf_result r; gsl_sf_result r1, r2; int s = 0; TEST_SF(s, gsl_sf_log_e, (0.1, &r), -2.3025850929940456840, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_e, (1.1, &r), 0.09531017980432486004, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_e, (1000.0, &r), 6.907755278982137052, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (-0.1, &r), -2.3025850929940456840, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (-1.1, &r), 0.09531017980432486004, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (-1000.0, &r), 6.907755278982137052, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (0.1, &r), -2.3025850929940456840, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (1.1, &r), 0.09531017980432486004, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_abs_e, (1000.0, &r), 6.907755278982137052, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_log_e, (1.0, 1.0, &r1, &r2), 0.3465735902799726547, TEST_TOL0, 0.7853981633974483096, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_log_e, (1.0, -1.0, &r1, &r2), 0.3465735902799726547, TEST_TOL0, -0.7853981633974483096, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_log_e, (1.0, 100.0, &r1, &r2), 4.605220183488258022, TEST_TOL0, 1.560796660108231381, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_log_e, (-1000.0, -1.0, &r1, &r2), 6.907755778981887052, TEST_TOL0, -3.1405926539231263718, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_log_e, (-1.0, 0.0, &r1, &r2), 0.0, TEST_TOL0, 3.1415926535897932385, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (1.0e-10, &r), 9.999999999500000000e-11, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (1.0e-8, &r), 9.999999950000000333e-09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (1.0e-4, &r), 0.00009999500033330833533, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (0.1, &r), 0.09531017980432486004, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (0.49, &r), 0.3987761199573677730, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (-0.49, &r), -0.6733445532637655964, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (1.0, &r), M_LN2, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_e, (-0.99, &r), -4.605170185988091368, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (1.0e-10, &r), -4.999999999666666667e-21, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (1.0e-8, &r), -4.999999966666666917e-17, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (1.0e-4, &r), -4.999666691664666833e-09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (0.1, &r), -0.004689820195675139956, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (0.49, &r), -0.09122388004263222704, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (-0.49, &r), -0.18334455326376559639, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (1.0, &r), M_LN2-1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_log_1plusx_mx_e, (-0.99, &r), -3.615170185988091368, TEST_TOL0, GSL_SUCCESS); return s; } int test_pow_int(void) { gsl_sf_result r; int status = 0; int s = 0; TEST_SF(s, gsl_sf_pow_int_e, (2.0, 3, &r), 8.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-2.0, 3, &r), -8.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (2.0, -3, &r), 1.0/8.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-2.0, -3, &r), -1.0/8.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (10.0, 4, &r), 1.0e+4, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (10.0, -4, &r), 1.0e-4, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-10.0, 4, &r), 1.0e+4, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-10.0, -4, &r), 1.0e-4, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (10.0, 40, &r), 1.0e+40, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (8.0, -40, &r), 7.523163845262640051e-37, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-10.0, 40, &r), 1.0e+40, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-8.0, -40, &r), 7.523163845262640051e-37, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (10.0, 41, &r), 1.0e+41, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (8.0, -41, &r), 9.403954806578300064e-38, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-10.0, 41, &r), -1.0e+41, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_pow_int_e, (-8.0, -41, &r), -9.403954806578300064e-38, TEST_TOL0, GSL_SUCCESS); return status; } int test_psi(void) { gsl_sf_result r; int s = 0; /* Test values taken 1-4 from gp-pari */ TEST_SF(s, gsl_sf_psi_int_e, (1, &r), -0.57721566490153286060, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (2, &r), 0.42278433509846713939, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (3, &r), 0.92278433509846713939, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (4, &r), 1.2561176684318004727, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (5, &r), 1.5061176684318004727, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (100, &r), 4.600161852738087400, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (110, &r), 4.695928024251535633, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_int_e, (5000, &r), 8.517093188082904107, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (5000.0, &r), 8.517093188082904107, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (5.0, &r), 1.5061176684318004727, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (-10.5, &r), 2.3982391295357816134, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (-100.5, &r), 4.615124601338064117, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (-1.0e+5-0.5, &r), 11.512935464924395337, 4.0*TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_e, (-262144.0-0.5, &r), 12.476653064769611581, 4.0*TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (0.8, &r), -0.07088340212750589223, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (1.0, &r), 0.09465032062247697727, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (5.0, &r), 1.6127848446157465854, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (100.0, &r), 4.605178519404762003, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (2000.0, &r), 7.600902480375416216, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (-0.8, &r), -0.07088340212750589223, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (-1.0, &r), 0.09465032062247697727, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (-5.0, &r), 1.6127848446157465854, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (-100.0, &r), 4.605178519404762003, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1piy_e, (-2000.0, &r), 7.600902480375416216, TEST_TOL0, GSL_SUCCESS); /* Additional test values 1-4 computed using gp-pari and Abramowitz & Stegun 6.4.6 */ TEST_SF(s, gsl_sf_psi_1_int_e, (1, &r), 1.6449340668482264364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (2, &r), 0.64493406684822643647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (3, &r), 0.39493406684822643647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (4, &r), 0.28382295573711532536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (1, &r), 1.6449340668482264365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (5, &r), 0.22132295573711532536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (100, &r), 0.010050166663333571395, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (110, &r), 0.009132356622022545705, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_int_e, (500, &r), 0.0020020013333322666697, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (1.0/32.0, &r), 1025.5728544782377089, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (1.0, &r), 1.6449340668482264365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (5.0, &r), 0.22132295573711532536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (100.0, &r), 0.010050166663333571395, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (110.0, &r), 0.009132356622022545705, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (500.0, &r), 0.0020020013333322666697, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-1.0 - 1.0/128.0, &r), 16386.648472598746587, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-1.50, &r), 9.3792466449891237539, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-10.5, &r), 9.7787577398148123845, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-15.5, &r), 9.8071247184113896201, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-50.5, &r), 9.8499971860824842274, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_1_e, (-1000.5, &r), 9.8686054001734414233, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 1, &r), 1.6449340668482264364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 2, &r), 0.64493406684822643647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 3, &r), 0.39493406684822643647, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 4, &r), 0.28382295573711532536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 5, &r), 0.22132295573711532536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 100, &r), 0.010050166663333571395, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 110, &r), 0.009132356622022545705, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, 500, &r), 0.0020020013333322666697, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (3, 5.0, &r), 0.021427828192755075022, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (3, 500.0, &r), 1.6048063999872000683e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (10, 5.0, &r), -0.08675107579196581317, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (10, 50.0, &r), -4.101091112731268288e-12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (0, -1.5, &r), 0.70315664064524318723, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_psi_n_e, (1, -1.5, &r), 9.3792466449891237539, TEST_TOL0, GSL_SUCCESS); return s; } int test_psi_complex(void) { gsl_sf_result r1; gsl_sf_result r2; int s = 0; TEST_SF_2(s, gsl_sf_complex_psi_e, (1.0e+07, 1.0e+06, &r1, &r2), 16.1230707668799525, TEST_TOL0, 0.09966865744165720, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (10.0, 50.0, &r1, &r2), 3.92973987174863660, TEST_TOL0, 1.38302847985210276, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (2.0, 21.0, &r1, &r2), 3.04697388853248195, TEST_TOL0, 1.49947549076817824, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (1.5, 0.0, &r1, &r2), 0.0364899739785765206, TEST_TOL2, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (1.0, 5.0, &r1, &r2), 1.612784844615747, TEST_TOL1, 1.470796326794968, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (-1.5, 5.0, &r1, &r2), 1.68260717336484070, TEST_TOL0, 1.95230236730713338, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_psi_e, (-20.5, -20.5, &r1, &r2), 3.37919358657933066, TEST_TOL0, -2.36829046481731091, TEST_TOL0, GSL_SUCCESS); return s; } int test_synch(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_synchrotron_1_e, (0.01, &r), 0.444972504114210632, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_1_e, (1.0, &r), 0.651422815355364504, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_1_e, (10.0, &r), 0.000192238264300868882, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_1_e, (100.0, &r), 4.69759366592220221e-43, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_2_e, (0.01, &r), 0.23098077342226277732, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_2_e, (1.0, &r), 0.4944750621042082670, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_2_e, (10.0, &r), 0.00018161187569530204281, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_synchrotron_2_e, (256.0, &r), 1.3272635474353774058e-110, TEST_TOL4, GSL_SUCCESS); /* exp()... not my fault */ return s; } int test_transport(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_transport_2_e, (1.0e-10, &r), 9.9999999999999999999e-11, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_2_e, (1.0, &r), 0.97303256135517012845, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_2_e, (3.0, &r), 2.41105004901695346199, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_2_e, (10.0, &r), 3.28432911449795173575, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_2_e, (100.0, &r), 3.28986813369645287294, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_2_e, (1.0e+05, &r), 3.28986813369645287294, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (1.0e-10, &r), 4.999999999999999999997e-21, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (1.0, &r), 0.479841006572417499939, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (3.0, &r), 3.210604662942246772338, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (5.0, &r), 5.614386613842273228585, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (10.0, &r), 7.150322712008592975030, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (30.0, &r), 7.212341416160946511930, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (100.0, &r), 7.212341418957565712398, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_3_e, (1.0e+05, &r), 7.212341418957565712398, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (1.0e-10, &r), 3.33333333333333333333e-31, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (1.0e-07, &r), 3.33333333333333166666e-22, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (1.0e-04, &r), 3.33333333166666666726e-13, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (0.1, &r), 0.000333166726172109903824, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (1.0, &r), 0.31724404523442648241, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (3.0, &r), 5.96482239737147652446, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (5.0, &r), 15.3597843168821829816, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (10.0, &r), 25.2736676770304417334, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (30.0, &r), 25.9757575220840937469, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (100.0, &r), 25.9757576090673165963, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_4_e, (1.0e+05, &r), 25.9757576090673165963, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (1.0e-10, &r), 2.49999999999999999999e-41, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (1.0e-07, &r), 2.49999999999999861111e-29, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (1.0e-04, &r), 2.49999999861111111163e-17, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (0.1, &r), 0.000024986116317791487410, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (1.0, &r), 0.236615879239094789259153, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (3.0, &r), 12.77055769104415951115760, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (5.0, &r), 50.26309221817518778543615, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (10.0, &r), 116.3807454024207107698556, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (30.0, &r), 124.4313279083858954839911, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (100.0, &r), 124.4313306172043911597639, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_transport_5_e, (1.0e+05, &r), 124.43133061720439115976, TEST_TOL0, GSL_SUCCESS); return s; } int test_trig(void) { gsl_sf_result r; gsl_sf_result r1, r2; double theta; int s = 0; int sa; TEST_SF(s, gsl_sf_sin_e, (-10.0, &r), 0.5440211108893698134, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1.0, &r), 0.8414709848078965067, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1000.0, &r), 0.8268795405320025603, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1048576.75, &r), 0.8851545351115651914, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (62831853.75, &r), 0.6273955953485000827, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1073741822.5, &r), -0.8284043541754465988, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1073741824.0, &r), -0.6173264150460421708, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_e, (1073741825.5, &r), 0.7410684679436226926, TEST_SQRT_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_sin_e, (1099511627776.0, &r), -0.4057050115328287198, 32.0*TEST_SQRT_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_cos_e, (-10.0, &r), -0.8390715290764524523, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (1.0, &r), 0.5403023058681397174, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (1000.0, &r), 0.5623790762907029911, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (1048576.75, &r), 0.4652971620066351799, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (62831853.75, &r), 0.7787006914966116436, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (1073741822.5, &r), -0.5601305436977716102, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_cos_e, (1073741824.0, &r), 0.7867071229411881196, TEST_SQRT_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_cos_e, (1099511627776.0, &r), -0.9140040719915570023, 128.0*TEST_SQRT_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_sinc_e, (1.0/1024.0, &r), 0.9999984312693665404, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sinc_e, (1.0/2.0, &r), 2.0/M_PI, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sinc_e, (80.5, &r), 0.0039541600768172754, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sinc_e, (100.5, &r), 0.0031672625490924445, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sinc_e, (1.0e+06 + 0.5, &r), 3.18309727028927157e-07, TEST_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_sin_pi_x_e, (1000.5, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_pi_x_e, (10000.0 + 1.0/65536.0, &r), 0.00004793689960306688455, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_sin_pi_x_e, (1099511627776.0 + 1 + 0.125, &r), -0.3826834323650897717, TEST_TOL0, GSL_SUCCESS); */ TEST_SF_2(s, gsl_sf_complex_sin_e, (1.0, 5.0, &r1, &r2), 62.44551846769653403, TEST_TOL0, 40.09216577799840254, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_cos_e, (1.0, 5.0, &r1, &r2), 40.09580630629882573, TEST_TOL0, -62.43984868079963017, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_logsin_e, (1.0, 100.0, &r1, &r2), 99.3068528194400546900, TEST_TOL0, 0.5707963267948966192, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_logsin_e, (1.0, -100.0, &r1, &r2), 99.3068528194400546900, TEST_TOL1, -0.5707963267948966192, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_logsin_e, (5.0, 5.0, &r1, &r2), 4.3068909128079757420, TEST_TOL0, 2.8540063315538773952, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnsinh_e, (0.1, &r), -2.3009189815304652235, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnsinh_e, (1.0, &r), 0.16143936157119563361, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnsinh_e, (5.0, &r), 4.306807418479684201, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lnsinh_e, (100.0, &r), 99.30685281944005469, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (0.125, &r), 0.007792239318898252791, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (1.0, &r), 0.4337808304830271870, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (5.0, &r), 4.306898218339271555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (100.0, &r), 99.30685281944005469, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (1000.0, &r), 999.30685281944005469, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (-0.125, &r), 0.007792239318898252791, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (-1.0, &r), 0.4337808304830271870, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (-5.0, &r), 4.306898218339271555, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (-100.0, &r), 99.30685281944005469, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_lncosh_e, (-1000.0, &r), 999.30685281944005469, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_polar_to_rect, (10.0, M_PI/6.0, &r1, &r2), (10.0 * sqrt(3) / 2.0), TEST_TOL0, (10.0 * 0.5), TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_polar_to_rect, (10.0, -2.0/3.0*M_PI, &r1, &r2), (10.0 * (-0.5)), TEST_TOL1, (10.0 * (-sqrt(3.0)/2.0)), TEST_TOL1, GSL_SUCCESS); /* In double precision M_PI = \pi - 1.2246467991473531772e-16, i.e. the nearest machine number is slightly below the exact value of \pi. The true value of \pi satisfies M_PI < \pi < nextafter(M_PI,+Inf) where nextafter(M_PI,+Inf) = M_PI + 2*DBL_EPSILON This also means that 2*M_PI is less than \pi by 2.449e-16. The true value of 2\pi satisfies 2*M_PI < 2\pi < nextafter(2*M_PI,+Inf) where nextafter(2*M_PI,+Inf) = 2*M_PI + 4*DBL_EPSILON BJG 25/9/06 */ #define DELTA (1.2246467991473531772e-16) TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (2.0*M_PI), 2*M_PI, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-2.0*M_PI), 2*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (2.0*M_PI+4*GSL_DBL_EPSILON), 4*GSL_DBL_EPSILON-2*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-2.0*M_PI-4*GSL_DBL_EPSILON), 2*M_PI-4*GSL_DBL_EPSILON+2*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (4.0*M_PI+8*GSL_DBL_EPSILON), 8*GSL_DBL_EPSILON-4*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-4.0*M_PI-8*GSL_DBL_EPSILON), 2*M_PI-8*GSL_DBL_EPSILON+4*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (1e9), 0.5773954235013851694, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (1e12), 5.625560548042800009446, TEST_SNGL); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-1e9), 5.7057898836782013075, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-1e12), 0.6576247591367864674792517289, 100*TEST_SNGL); #ifdef EXTENDED TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (1e15), 2.1096981170701125979, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_pos_e, (-1e15), 4.1734871901094738790, TEST_TOL1); #endif TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (2.0*M_PI, &r), 2*M_PI, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (-2.0*M_PI, &r), 2*DELTA, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (1e9, &r), 0.5773954235013851694, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (1e12, &r), 5.625560548042800009446, TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (-1e9, &r), 5.7057898836782013075, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_pos_err_e, (-1e12, &r), 0.6576247591367864674792517289, 100*TEST_SNGL, GSL_SUCCESS); TEST_SF (s, gsl_sf_angle_restrict_pos_err_e, (1e15, &r), GSL_NAN, TEST_TOL1, GSL_ELOSS); TEST_SF (s, gsl_sf_angle_restrict_pos_err_e, (-1e15, &r), GSL_NAN, TEST_TOL1, GSL_ELOSS); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (2.0*M_PI), -2*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-2.0*M_PI), 2*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (M_PI), M_PI, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-M_PI), -M_PI, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (M_PI+2*GSL_DBL_EPSILON), -M_PI+2*(GSL_DBL_EPSILON-DELTA), TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-M_PI-2*GSL_DBL_EPSILON), M_PI-2*(GSL_DBL_EPSILON-DELTA), TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (3*M_PI+6*GSL_DBL_EPSILON), -M_PI+6*GSL_DBL_EPSILON-4*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-3*M_PI-6*GSL_DBL_EPSILON), M_PI-6*GSL_DBL_EPSILON+4*DELTA, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (1e9), 0.5773954235013851694, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (1e12), -0.6576247591367864674792517289, 100*TEST_SNGL); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-1e9), -0.5773954235013851694, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-1e12), 0.6576247591367864674792517289, 100*TEST_SNGL); #ifdef EXTENDED TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (1e15), 2.1096981170701125979, TEST_TOL1); TEST_SF_THETA(s, gsl_sf_angle_restrict_symm_e, (-1e15), -2.1096981170701125979, TEST_TOL1); #endif TEST_SF (s, gsl_sf_angle_restrict_symm_err_e, (2.0*M_PI, &r), -2*DELTA, TEST_TOL1, GSL_SUCCESS); TEST_SF (s, gsl_sf_angle_restrict_symm_err_e, (-2.0*M_PI, &r), 2*DELTA, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_symm_err_e, (1e9, &r), 0.5773954235013851694, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_symm_err_e, (1e12, &r), -0.6576247591367864674792517289, 100*TEST_SNGL, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_symm_err_e, (-1e9, &r), -0.5773954235013851694, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_angle_restrict_symm_err_e, (-1e12, &r), 0.6576247591367864674792517289, 100*TEST_SNGL, GSL_SUCCESS); TEST_SF (s, gsl_sf_angle_restrict_symm_err_e, (1e15, &r), GSL_NAN, TEST_TOL1, GSL_ELOSS); TEST_SF (s, gsl_sf_angle_restrict_symm_err_e, (-1e15, &r), GSL_NAN, TEST_TOL1, GSL_ELOSS); theta = 5.0*M_PI + 5*DELTA + M_PI/2.0; gsl_sf_angle_restrict_pos_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, 3.0/2.0*M_PI ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_pos_e: theta = 11/2 Pi"); s += sa; theta = -5.0*M_PI - 5*DELTA - M_PI/2.0; gsl_sf_angle_restrict_pos_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, M_PI/2.0 ) > 2.0*TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_pos_e: theta = -11/2 Pi"); s += sa; theta = 50000.0 + 1.0/65536.0; gsl_sf_angle_restrict_pos_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, 4.6945260308194656055 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_pos_e: theta = 50000.0 + 1.0/65536.0"); s += sa; theta = 5000000.0 + 1.0/65536.0; gsl_sf_angle_restrict_pos_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, 4.49537973053997376 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_pos_e: theta = 5000000.0 + 1.0/65536.0"); s += sa; /* theta = 140737488355328.0; gsl_sf_angle_restrict_pos_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, 3.20652300406795792638 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_pos_e: theta = 2^47"); s += sa; */ theta = 5.0*M_PI + (5.5*DELTA + M_PI/2.0); gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, -M_PI/2.0 ) > 2.0*TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = 11/2 Pi"); s += sa; theta = -5.0*M_PI - (5.5*DELTA + M_PI/2.0); gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, M_PI/2.0 ) > 2.0*TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = -11/2 Pi"); s += sa; theta = 5.0*M_PI + 5*DELTA - M_PI/2.0; gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, M_PI/2.0 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = -9/2 Pi"); s += sa; theta = 3.0/2.0*M_PI + 3.0/2.0*DELTA; gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, -M_PI/2.0 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = 3/2 Pi"); s += sa; theta = -3.0/2.0*M_PI; gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, M_PI/2.0 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = -3/2 Pi"); s += sa; theta = 50000.0 + 1.0/65536.0; gsl_sf_angle_restrict_symm_e(&theta); sa = 0; sa += ( test_sf_frac_diff( theta, -1.5886592763601208714 ) > TEST_TOL0 ); gsl_test(sa, " gsl_angle_restrict_symm_e: theta = 50000.0 + 1.0/65536.0"); s += sa; return s; } /* I computed the values of zeta for s = -1e-10, 0, 1e-10 using the Jensen formula, zeta(s) = -1/2 + 1/(1-s) + integ(sin(s arctan(t))/((1+t^2)^(s/2)(exp(2pi*t)-1)), t, 0, inf) transforming the integral from a semi-infinite range to the range [0,pi/2] using the substitution t = tan(u). After Taylor expansion in s and numerical evaluation of the integrals this gave, zeta(s) = 1/2 + 1/(1-s) + (0.0810614667944862 +/- 2e-16) s + (-3.17822795429232e-3 +/- 2e-17) s^2 + .... for an expansion about s = 0 [BJG 7/01] */ int test_zeta(void) { gsl_sf_result r; int s = 0; TEST_SF(s, gsl_sf_zeta_int_e, (-61.0, &r), -3.30660898765775767257e+34, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-8, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-6, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-5.0, &r), -0.003968253968253968253968, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-4, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-3, &r), 1.0/120.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-2, &r), 0.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (-1, &r), -1.0/12.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, ( 5.0, &r), 1.0369277551433699263313655, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_int_e, (31.0, &r), 1.0000000004656629065033784, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-61.0, &r), -3.30660898765775767257e+34, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-5.0, &r), -1.003968253968253968253968, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-8, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-6, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-4, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-3, &r), -119.0/120.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-2, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (-1, &r), -13.0/12.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, ( 5.0, &r), 0.0369277551433699263313655, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_int_e, (31.0, &r), 0.0000000004656629065033784, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-151, &r), 8.195215221831378294e+143, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-51, &r), 9.68995788746359406565e+24, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-5, &r), -0.003968253968253968253968, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-8, &r), 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-6, &r), 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-4, &r), 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-3, &r), 1.0/120.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-2, &r), 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-1, &r), -1.0/12.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-0.5, &r), -0.207886224977354566017307, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (-1e-10, &r), -0.49999999990810614668948, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (0.0, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (1e-10, &r), -0.50000000009189385333058, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (0.5, &r), -1.460354508809586812889499, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (1.0-1.0/1024.0, &r), -1023.4228554489429787, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (1.0+1.0/1048576, &r), 1.0485765772157343441e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (5.0, &r), 1.036927755143369926331365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zeta_e, (25.5, &r), 1.000000021074106110269959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-8, &r), -1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-6, &r), -1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-4, &r), -1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-3, &r), -119.0/120.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-2, &r), -1.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-1, &r), -13.0/12.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-0.5, &r), -1.207886224977354566017307, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (-1e-10, &r), -1.49999999990810614668948, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (0.0, &r), -1.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (1e-10, &r), -1.50000000009189385333058, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (0.5, &r), -2.460354508809586812889499, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (2.0, &r), 0.64493406684822643647, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (3.0, &r), 0.20205690315959428540, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (5.0, &r), 0.0369277551433699263314, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (9.5, &r), 0.0014125906121736622712, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (10.5, &r), 0.000700842641736155219500, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (12.5, &r), 0.000173751733643178193390, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (13.5, &r), 0.000086686727462338155188, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (15.5, &r), 0.000021619904246069108133, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (16.5, &r), 0.000010803124900178547671, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_zetam1_e, (25.5, &r), 0.000000021074106110269959, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (2, 1.0, &r), 1.6449340668482264365, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (2, 10.0, &r), 0.1051663356816857461, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (5, 1.0, &r), 1.0369277551433699263, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (5, 10.0, &r), 0.000030413798676470276, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (9, 0.1, &r), 1.0000000004253980e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (30, 0.5, &r), 1.0737418240000053e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (30, 0.9, &r), 2.3589824880264765e+01, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hzeta_e, (75, 0.25, &r), 1.4272476927059599e+45, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, (-91, &r), -4.945598888750002040e+94, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, (-51, &r), -4.363969073121683116e+40, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, (-5, &r), 0.25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, (-1, &r), 0.25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, ( 0, &r), 0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, ( 5, &r), 0.9721197704469093059, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, ( 6, &r), 0.9855510912974351041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, ( 20, &r), 0.9999990466115815221, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_int_e, ( 1000, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (-51.5, &r), -1.2524184036924703656e+41, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (-5, &r), 0.25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (0.5, &r), 0.6048986434216303702, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (0.999, &r), 0.6929872789683383574, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (1.0, &r), 0.6931471805599453094, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, (1.0+1.0e-10, &r), 0.6931471805759321998, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, ( 5, &r), 0.9721197704469093059, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, ( 5.2, &r), 0.9755278712546684682, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, ( 6, &r), 0.9855510912974351041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_eta_e, ( 20, &r), 0.9999990466115815221, TEST_TOL0, GSL_SUCCESS); return s; } int test_results(void) { int s = 0; gsl_sf_result_e10 re; gsl_sf_result r; re.val = -1.0; re.err = 0.5; re.e10 = 0; gsl_sf_result_smash_e(&re, &r); s += ( test_sf_frac_diff(r.val, -1.0) > TEST_TOL0 ); s += ( test_sf_frac_diff(r.err, 0.5) > TEST_TOL0 ); re.val = -1.0; re.err = 0.5; re.e10 = 10; gsl_sf_result_smash_e(&re, &r); s += ( test_sf_frac_diff(r.val, -1.0e+10) > TEST_TOL1 ); s += ( test_sf_frac_diff(r.err, 0.5e+10) > TEST_TOL1 ); re.val = 1.0; re.err = 0.5; re.e10 = 10000; s += ( gsl_sf_result_smash_e(&re, &r) != GSL_EOVRFLW ); re.val = 1.0; re.err = 0.5; re.e10 = -10000; s += ( gsl_sf_result_smash_e(&re, &r) != GSL_EUNDRFLW ); return s; } int main(int argc, char * argv[]) { gsl_ieee_env_setup (); gsl_set_error_handler_off (); gsl_test(test_airy(), "Airy Functions"); gsl_test(test_bessel(), "Bessel Functions"); gsl_test(test_clausen(), "Clausen Integral"); gsl_test(test_coulomb(), "Coulomb Wave Functions"); gsl_test(test_coupling(), "Coupling Coefficients"); gsl_test(test_dawson(), "Dawson Integral"); gsl_test(test_debye(), "Debye Functions"); gsl_test(test_dilog(), "Dilogarithm"); gsl_test(test_elementary(), "Elementary Functions (Misc)"); gsl_test(test_ellint(), "Elliptic Integrals"); gsl_test(test_jac(), "Elliptic Functions (Jacobi)"); gsl_test(test_erf(), "Error Functions"); gsl_test(test_exp(), "Exponential Functions"); gsl_test(test_expint(), "Exponential/Sine/Cosine Integrals"); gsl_test(test_fermidirac(), "Fermi-Dirac Functions"); gsl_test(test_gamma(), "Gamma Functions"); gsl_test(test_gegen(), "Gegenbauer Polynomials"); gsl_test(test_hyperg(), "Hypergeometric Functions"); gsl_test(test_laguerre(), "Laguerre Polynomials"); gsl_test(test_lambert(), "Lambert W Functions"); gsl_test(test_legendre(), "Legendre Functions"); gsl_test(test_log(), "Logarithm"); gsl_test(test_mathieu(), "Mathieu Functions"); gsl_test(test_pow_int(), "Integer Powers"); gsl_test(test_psi(), "Psi Functions"); gsl_test(test_psi_complex(), "Psi Function for complex argument"); gsl_test(test_synch(), "Synchrotron Functions"); gsl_test(test_transport(), "Transport Functions"); gsl_test(test_trig(), "Trigonometric and Related Functions"); gsl_test(test_zeta(), "Zeta Functions"); gsl_test(test_results(), "Result Methods"); exit (gsl_test_summary()); } gsl-1.16/specfunc/recurse.h0000664000252300025230000001724612171574312012613 00000000000000/* specfunc/recurse.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef _RECURSE_H_ #define _RECURSE_H_ #define CONCAT(a,b) a ## _ ## b /* n_max >= n_min + 2 * f[n+1] + a[n] f[n] + b[n] f[n-1] = 0 * * Trivial forward recurrence. */ #define GEN_RECURSE_FORWARD_SIMPLE(func) \ int CONCAT(recurse_forward_simple, func) ( \ const int n_max, const int n_min, \ const double parameters[], \ const double f_n_min, \ const double f_n_min_p1, \ double * f, \ double * f_n_max \ ) \ { \ int n; \ \ if(f == 0) { \ double f2 = f_n_min; \ double f1 = f_n_min_p1; \ double f0; \ for(n=n_min+2; n<=n_max; n++) { \ f0 = -REC_COEFF_A(n-1,parameters) * f1 - REC_COEFF_B(n-1, parameters) * f2; \ f2 = f1; \ f1 = f0; \ } \ *f_n_max = f0; \ } \ else { \ f[n_min] = f_n_min; \ f[n_min + 1] = f_n_min_p1; \ for(n=n_min+2; n<=n_max; n++) { \ f[n] = -REC_COEFF_A(n-1,parameters) * f[n-1] - REC_COEFF_B(n-1, parameters) * f[n-2]; \ } \ *f_n_max = f[n_max]; \ } \ \ return GSL_SUCCESS; \ } \ /* n_start >= n_max >= n_min * f[n+1] + a[n] f[n] + b[n] f[n-1] = 0 * * Generate the minimal solution of the above recursion relation, * with the simplest form of the normalization condition, f[n_min] given. * [Gautschi, SIAM Rev. 9, 24 (1967); (3.9) with s[n]=0] */ #define GEN_RECURSE_BACKWARD_MINIMAL_SIMPLE(func) \ int CONCAT(recurse_backward_minimal_simple, func) ( \ const int n_start, \ const int n_max, const int n_min, \ const double parameters[], \ const double f_n_min, \ double * f, \ double * f_n_max \ ) \ { \ int n; \ double r_n = 0.; \ double r_nm1; \ double ratio; \ \ for(n=n_start; n > n_max; n--) { \ r_nm1 = -REC_COEFF_B(n, parameters) / (REC_COEFF_A(n, parameters) + r_n); \ r_n = r_nm1; \ } \ \ if(f != 0) { \ f[n_max] = 10.*DBL_MIN; \ for(n=n_max; n > n_min; n--) { \ r_nm1 = -REC_COEFF_B(n, parameters) / (REC_COEFF_A(n, parameters) + r_n); \ f[n-1] = f[n] / r_nm1; \ r_n = r_nm1; \ } \ ratio = f_n_min / f[n_min]; \ for(n=n_min; n<=n_max; n++) { \ f[n] *= ratio; \ } \ } \ else { \ double f_nm1; \ double f_n = 10.*DBL_MIN; \ *f_n_max = f_n; \ for(n=n_max; n > n_min; n--) { \ r_nm1 = -REC_COEFF_B(n, parameters) / (REC_COEFF_A(n, parameters) + r_n); \ f_nm1 = f_n / r_nm1; \ r_n = r_nm1; \ } \ ratio = f_n_min / f_nm1; \ *f_n_max *= ratio; \ } \ \ return GSL_SUCCESS; \ } \ #endif /* !_RECURSE_H_ */ gsl-1.16/specfunc/result.c0000664000252300025230000000454112171574312012446 00000000000000/* specfunc/result.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include int gsl_sf_result_smash_e(const gsl_sf_result_e10 * re, gsl_sf_result * r) { if(re->e10 == 0) { /* nothing to smash */ r->val = re->val; r->err = re->err; return GSL_SUCCESS; } else { const double av = fabs(re->val); const double ae = fabs(re->err); if( GSL_SQRT_DBL_MIN < av && av < GSL_SQRT_DBL_MAX && GSL_SQRT_DBL_MIN < ae && ae < GSL_SQRT_DBL_MAX && 0.49*GSL_LOG_DBL_MIN < re->e10 && re->e10 < 0.49*GSL_LOG_DBL_MAX ) { const double scale = exp(re->e10 * M_LN10); r->val = re->val * scale; r->err = re->err * scale; return GSL_SUCCESS; } else { return gsl_sf_exp_mult_err_e(re->e10*M_LN10, 0.0, re->val, re->err, r); } } /* int stat_v; int stat_e; if(re->val == 0.0) { r->val = 0.0; stat_v = GSL_SUCCESS; } else { gsl_sf_result r_val; const double s = GSL_SIGN(re->val); const double x_v = re->e10*M_LN10 + log(fabs(re->val)); stat_v = gsl_sf_exp_e(x_v, &r_val); r->val = s * r_val.val; } if(re->err == 0.0) { r->err = 0.0; stat_e = GSL_SUCCESS; } else if(re->val != 0.0) { r->err = fabs(r->val * re->err/re->val); stat_e = GSL_SUCCESS; } else { gsl_sf_result r_err; const double x_e = re->e10*M_LN10 + log(fabs(re->err)); stat_e = gsl_sf_exp_e(x_e, &r_err); r->err = r_err.val; } return GSL_ERROR_SELECT_2(stat_v, stat_e); */ } gsl-1.16/specfunc/ChangeLog0000664000252300025230000006521712171574312012545 000000000000002011-10-10 Rhys Ulerich * hyperg_U.c (gsl_sf_hyperg_U_int_e,gsl_sf_hyperg_U_e): Always initialize the gsl_sf_result_e10 instances. Thanks to Victor Zverovich for the bug report and patch. 2011-10-10 Brian Gough * coupling.c (gsl_sf_coupling_3j_e): compute 3j factors using logs to allow larger range 2011-09-20 Brian Gough * coupling.c (triangle_selection_fails): extend triangle selection to handle all permutations (gsl_sf_coupling_3j_e): special case for (ja jb jc; 0 0 0) = 0 when ja+jb+jc=odd 2011-08-10 Brian Gough * mathieu_radfunc.c (gsl_sf_mathieu_Mc): set odd functions to zero for order=0, initialise fn to zero before use 2011-07-21 Brian Gough * mathieu_angfunc.c (gsl_sf_mathieu_se_array): handle the case where q=0 2011-07-15 Brian Gough * trig.c (gsl_sf_lncosh_e): handle x symmetrically for middle region 2010-11-11 Brian Gough * ellint.c (gsl_sf_ellint_RC_e, gsl_sf_ellint_RD_e) (gsl_sf_ellint_RF_e, gsl_sf_ellint_RJ_e): introduce a limit of 10000 iterations to avoid infinite loops * bessel_Knu.c (gsl_sf_bessel_Knu_scaled_e10_e): alternative version of Knu_scaled function to allow greater range for gsl_sf_bessel_lnKnu_e. 2010-10-29 Brian Gough * hyperg_U.c (hyperg_U_small_a_bgt0): corrected result->err for case where a==0.0 2010-08-31 Brian Gough * beta_inc.c (gsl_sf_beta_inc_e): ignore underflow error when term is subtracted from 1 2010-08-27 Brian Gough * hyperg_2F1.c (gsl_sf_hyperg_2F1_e): use ap and bp consistently in large c and large b cases, previously mixed a,b and ap,bp. 2010-04-15 Brian Gough * atanint.c (gsl_sf_atanint_e): added missing term 1/ax for large x 2010-02-25 Brian Gough * hyperg_U.c (hyperg_U_negx): handle the case where x<0 2010-01-23 Brian Gough * hyperg_1F1.c (gsl_sf_hyperg_1F1_e): use Kummer transformation for larger range of x when b>a and a<0 2009-07-17 Brian Gough * hyperg_U.c (hyperg_U_series): use a rearrangement of the factor in front of the series to avoid incorrect termination when the the leading term is zero. 2009-07-16 Brian Gough * poch.c (gsl_sf_lnpoch_sgn_e): handle negative and zero values of a, e.g. where gamma(a) and/or gamma(a+x) is infinite (gsl_sf_poch_e): handle the case where lnpoch_sgn returns GSL_NEGINF when the Pochhammer ratio is zero. * test_gamma.c (test_gamma): added tests for poch(a,x) with negative arguments 2009-07-12 Brian Gough * hyperg_U.c (hyperg_U_int_bge1): avoid using the series when 1+a-b is zero or a negative integer. 2009-07-11 Brian Gough * hyperg_U.c (gsl_sf_hyperg_U_int_e10_e, gsl_sf_hyperg_U_e10_e) (hyperg_U_origin, hyperg_U_int_origin): added special case for U(a,b,z=0). 2009-07-09 Brian Gough * mathieu_workspace.c (gsl_sf_mathieu_free): handle NULL argument in free 2009-05-13 Brian Gough * hyperg_2F1.c (gsl_sf_hyperg_2F1_e): fix condition on a and b when c is a negative integer (either a or b must cause cancellation of the series) 2009-01-14 Brian Gough * mathieu_workspace.c (gsl_sf_mathieu_alloc): increase number of terms * mathieu_charv.c (gsl_sf_mathieu_a): increase number of terms (gsl_sf_mathieu_b): increase number of terms 2008-12-04 Brian Gough * gamma_inc.c (gamma_inc_D): propagate cancellation error in (x-a)/x for x close to a 2008-12-03 Brian Gough * exp.c (exprel_n_CF): changed N to double, to allow non-integer usage for gamma_inc, double error factor to allow for two parameters in recurrence. (gsl_sf_exprel_n_CF_e): exported function to allow calls to exprel_n_CF * gamma_inc.c (gamma_inc_P_series): improved convergence condition using estimate of the remainder of the series, added continued fraction as a fallback, increased nmax to 10000 2008-08-26 Brian Gough * ellint.c (gsl_sf_ellint_Kcomp_e): corrected taylor expansion for k close to 1. 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-06-27 Brian Gough * legendre_poly.c (gsl_sf_legendre_array_size): removed inline version of this function in gsl_sf_legendre.h 2008-03-17 Brian Gough * hyperg_2F1.c (gsl_sf_hyperg_2F1_e): replace duplicate error check on stat3 by stat4 2008-03-15 Brian Gough * bessel.c (gsl_sf_bessel_Jnu_asympx_e): use full asymptotic series 2008-03-14 Brian Gough * bessel_j.c (gsl_sf_bessel_jl_e): increase error estimate by factor of 2 2008-02-09 Brian Gough * exp.c (gsl_sf_exp_e10_e): only use exponent e10 when standard exp() is out of range (gsl_sf_exp_mult_e10_e): add full set of error terms 2008-01-10 Brian Gough * hyperg_2F1.c (gsl_sf_hyperg_2F1_e): handle case of x==1 2007-10-25 Brian Gough * bessel.c (gsl_sf_bessel_J_CF1): handle underflow by rescaling in recurrence 2007-09-13 Brian Gough * ellint.c (gsl_sf_ellint_Pcomp_e): remove test for n <1, no restriction needed 2007-09-10 Brian Gough * expint.c (gsl_sf_expint_En_e): added for support En(x) (gsl_sf_expint_En_scaled_e): added for support En(x) scaled * gamma_inc.c (gamma_inc_CF): include finite precision of log term 2007-08-30 Brian Gough * psi.c (psi_complex_rhp): accumulate error, to allow for cancellation effects * beta.c (gsl_sf_lnbeta_sgn_e): added missing factor of 2 for error. 2007-08-27 Brian Gough * beta_inc.c (gsl_sf_beta_inc_e): handle cases where a<=0 or b<=0 2007-04-27 Brian Gough * lambert.c (halley_iteration): increase tolerance to prevent exceeding max iters due to finite precision 2007-04-04 Brian Gough * laguerre.c (gsl_sf_laguerre_n_e): use recursion for a=0 in addition to a>0 2007-02-17 Brian Gough * log.c (gsl_sf_log_e): removed HIDE_INLINE_STATIC * exp.c (gsl_sf_exp_e): removed HIDE_INLINE_STATIC 2007-02-14 Brian Gough * mathieu_charv.c: made solve_cubic static 2007-02-12 Brian Gough * mathieu_charv.c (figi): ensure that e[ii] is set when e2[ii]==0.0 and there is no error condition, as per the original eispack routine 2007-02-09 Brian Gough * ellint.c (gsl_sf_ellint_F_e): do argument reduction for phi>pi/2 (gsl_sf_ellint_E_e): do argument reduction for phi>pi/2 (gsl_sf_ellint_P_e): do argument reduction for phi>pi/2 (gsl_sf_ellint_D_e): do argument reduction for phi>pi/2 (gsl_sf_ellint_Dcomp_e): added complete D integral (gsl_sf_ellint_Pcomp_e): added complete P integral 2007-01-31 Brian Gough * beta.c (gsl_sf_lnbeta_sgn_e): added to support calculations with negative a,b (gsl_sf_lnbeta_e): rewritten in terms of gsl_sf_lnbeta_sgn_e (gsl_sf_beta_e): handle negative a,b * gamma.c (gsl_sf_lngamma_sgn_e): make error calculations an exact copy of gsl_sf_lngamma_e (these functions could be merged to avoid duplication) 2007-01-29 Brian Gough * test_legendre.c (test_legendre): added extra test cases for underflow 2007-01-26 Brian Gough * expint.c (expint_E2_impl): handle x==0.0 as a special case (expint_E2_impl): corrected error term * gsl_sf_log.h: removed inline version of log * gsl_sf_exp.h: removed inline version of exp 2007-01-23 Brian Gough * hyperg_1F1.c (hyperg_1F1_1_series): increase accuracy by factor of 4 in sum, tighter convergence condition, increase error estimate to allow for accumulated roundoff (hyperg_1F1_1): use series when |x| > |b| (gsl_sf_hyperg_1F1_e): only use Kummer when |x| < 100 otherwise exponential takes extreme value * hyperg.c (gsl_sf_hyperg_1F1_series_e): allow 10000 iterations in series to extend valid range (gsl_sf_hyperg_1F1_series_e): increase accuracy by factor of 4 in sum, tighter convergence condition 2007-01-19 Brian Gough * laguerre.c (laguerre_large_n): use the second term in the asymptotic expansion from Slater, p.73. 2007-01-17 Brian Gough * hyperg_1F1.c (hyperg_1F1_largebx): asymptotic expansion for large b and x, with |x|<|b| from Slater 4.3.7 (hyperg_1F1_1): use new asymptotic expansion for |x|<|b| (hyperg_1F1_small_a_bgt0): use new asymptotic expansion for |x|<|b| (hyperg_1F1_renorm_b0): add neglected terms in expansion for AS13.3.7 2007-01-14 Brian Gough * legendre_poly.c (gsl_sf_legendre_sphPlm_e): added explicit computation of error term to allow for case when final term is zero. 2007-01-12 Brian Gough * trig.c (gsl_sf_angle_restrict_symm_err_e): compute edge cases more reliably, return NaN when total loss of precision (gsl_sf_angle_restrict_pos_err_e): as above * legendre_poly.c (gsl_sf_legendre_Pl_e): improve error estimate for large l by including rounding error at each step of recurrence 2006-10-03 Brian Gough * poch.c (gsl_sf_lnpoch_e, gsl_sf_lnpoch_sgn_e): corrected result->val to 0.0 for x==0, previously returned incorrect value 1.0 2006-09-24 Brian Gough * laguerre.c (laguerre_large_n): work with small angles to avoid cancellation error, computer angular reduction exactly for integer eta. 2006-09-22 Brian Gough * zeta.c (gsl_sf_zeta_e): make sin_term exactly zero for negative even integers (gsl_sf_zetam1_int_e): return value is -1 for zetam1_int with negative even integers 2006-03-26 Brian Gough * fermi_dirac.c (fd_neg): initialize s to zero (avoid spurious warning from compiler) 2006-02-23 Brian Gough * coulomb.c (gsl_sf_coulomb_wave_FG_e): fixed sign of F_lam_min, covers case when k_lam_G is nonzero and F_lam_min and F_lam differ in sign. 2006-01-21 Brian Gough * synchrotron.c (gsl_sf_synchrotron_1_e): added first order correction term for the taylor expansion (gsl_sf_synchrotron_2_e): added first order correction term for the taylor expansion 2006-01-20 Brian Gough * bessel_j.c (gsl_sf_bessel_jl_e): limit the use of gsl_sf_bessel_Jnu_asympx_e to the range x>100*l*l to satisfy the requirement x>>l*l in the asymptotic expansion * bessel_In.c (gsl_sf_bessel_In_scaled_e): limit the use of gsl_sf_bessel_I_CF1_ser to the region where the continued converges with the allowed 20000 terms (|x|<1e7) 2005-12-20 Brian Gough * debye.c (gsl_sf_debye_5_e, gsl_sf_debye_6_e): added n=5,6 (R. J. Mathar) 2005-11-15 Brian Gough * dilog.c (dilog_xge0): fix calculation of error estimate 2005-08-04 Brian Gough * coulomb.c (gsl_sf_coulomb_wave_sphF_array): fix warning about variable shadowing for k 2005-07-29 Brian Gough * gamma_inc.c (gsl_sf_gamma_inc_Q_e): use continued fraction close to peak of the integrand x > a - sqrt(a) 2005-07-28 Brian Gough * elljac.c (gsl_sf_elljac_e): use separate iterations to avoid division by zero, new algorithm from Bulirsch avoids inverse trig functions. 2005-07-03 Brian Gough * legendre_poly.c (gsl_sf_legendre_sphPlm_e): compute exponential internally to avoid underflow error when calling gsl_sf_exp_err 2005-07-02 Brian Gough * bessel_i.c (gsl_sf_bessel_il_scaled_array): handle x==0 as a special case * bessel_k.c (gsl_sf_bessel_kl_scaled_array): added lmax==0 as a special case * bessel_y.c (gsl_sf_bessel_yl_array): added lmax==0 as a special case * transport.c (gsl_sf_transport_2_e): improve error estimate for small x 2005-06-26 Brian Gough * test_sf.c (test_jac): added tests over the full period for elljac functions 2005-05-23 Brian Gough * test_bessel.c (test_bessel): added test for steed(99,1,...) * legendre_H3d.c (legendre_H3d_CF1): use hypot (legendre_H3d_CF1_ser): use hypot (gsl_sf_legendre_H3d_e): use hypot (gsl_sf_legendre_H3d_e): use hypot (gsl_sf_legendre_H3d_array): use hypot * dilog.c (dilogc_unitdisk): use hypot * coulomb.c (gsl_sf_coulomb_CL_array): use hypot (coulomb_F_recur): use hypot (coulomb_G_recur): use hypot (coulomb_jwkb): use hypot (gsl_sf_coulomb_wave_F_array): use hypot (gsl_sf_coulomb_wave_FG_array): use hypot (gsl_sf_coulomb_wave_FGp_array): use hypot * bessel_j.c (gsl_sf_bessel_jl_steed_array): use hypot * bessel.c (gsl_sf_bessel_Inu_scaled_asymp_unif_e): use hypot (gsl_sf_bessel_Knu_scaled_asymp_unif_e): use hypot 2005-03-02 Brian Gough * coulomb_bound.c (gsl_sf_hydrogenicR_e): don't check for underflow when function is known to be zero (e.g. r=0 l>0 or at zeroes of the laguerre polynomial). 2004-12-29 Brian Gough * dilog.c (gsl_sf_complex_dilog_e): use const consistently in arguments of declaration and definition (gsl_sf_complex_dilog_xy_e): as above 2004-12-26 Brian Gough * gamma_inc.c (gamma_inc_D): improve error estimate for case of u=x/a to include cancellation errors and only use it when x < 0.5*a since the cancellation errors are significant for x/a ~ 1 2004-12-23 Brian Gough * gsl_sf_coupling.h: fixed declaration to gsl_sf_coupling_6j_INCORRECT instead of gsl_sf_coupling_INCORRECT_6j 2004-11-12 Brian Gough * psi.c (gsl_sf_psi_1): added missing function definition gsl_sf_psi_1 2004-10-11 Brian Gough * expint.c (gsl_sf_expint_Ei_scaled): fixed call to incorrect function gsl_sf_expint_Ei_e 2004-06-03 Brian Gough * psi.c (psi_n_xg0): added missing return type int 2003-11-30 Brian Gough * gsl_sf_log.h: added missing headers for inline functions 2003-08-11 Brian Gough * test_sf.c: added preprocessor definitions TEST_FACTOR and TEST_SIGMA to allow larger tolerances on released versions (to reduce the number of spurious bug reports). 2003-07-24 Brian Gough * gamma.c (gsl_sf_choose_e): declare k as unsigned int instead of int (gsl_sf_gamma_e): avoid shadowed declaration of sgn * bessel_sequence.c (gsl_sf_bessel_sequence_Jnu_e): declare i as size_t instead of int 2003-06-11 Brian Gough * coupling.c (gsl_sf_coupling_6j_INCORRECT_e): fixed typo in test for two_jf < 0 (gsl_sf_coupling_6j_e): moved the implementation from the INCORRECT function into the correct function 2003-06-05 Brian Gough * test_sf.c (test_coupling): added some regression tests for coupling functions 2003-06-02 Brian Gough * gamma_inc.c (gamma_inc_D): handle x10 as a special case 2003-04-18 Brian Gough * gamma.c (gsl_sf_gammainv_e): handle any singularities in gamma(x) up front and return zero directly 2003-04-12 Brian Gough * psi.c: changed value of psi(1,1) in table psi_1_table to be positive ((-)^2 * 1! * zeta(2)), in accordance with Abramowitz & Stegun 6.4.2. 2003-04-08 G. Jungman * erfc.c, gsl_sf_erf.h: added gsl_sf_hazard_e() and gsl_sf_hazard() functions 2003-04-07 G. Jungman * gamma_inc.c, gsl_sf_gamma.h: added gsl_sf_gamma_inc_e() and gsl_sf_gamma_inc(), implmentations of the non-normalized incomplete gamma function 2003-03-09 Brian Gough * gsl_sf_legendre.h: added missing const to formal parameter on gsl_sf_legendre_sphPlm_deriv_array 2003-01-25 Brian Gough * test_gamma.c (test_gamma): added a test for gamma_inc_P(10,1e-16) (BUG#12) Sat Sep 7 15:56:15 2002 Brian Gough * test_sf.h (TEST_FACTOR): include an overall factor in the test tolerances, otherwise there are too many bug reports for minor failures. Sun Sep 1 17:34:27 2002 Brian Gough * test_legendre.c (test_legendre): increased tolerance on test Sat Jul 13 23:11:37 2002 Brian Gough * ellint.c (gsl_sf_ellint_Kcomp_e): improved error estimate to take cancellation of y=1-k^2 into account near k=1 Sun Jul 7 21:39:12 2002 Brian Gough * test_bessel.c (test_bessel): increased tolerance on test of bessel_Jn_array Tue May 28 21:04:29 2002 Brian Gough * psi.c (gsl_sf_psi_1piy_e): changed log(y) to log(ay) since function is even and can be extended to negative y Mon Jan 28 19:02:42 2002 Brian Gough * gamma_inc.c (gamma_inc_Q_CF): express 'small' constant in terms of GSL_DBL_EPSILON (gamma_inc_Q_CF): patch for more reliable series from Hans Plesser Sat Jan 26 17:33:29 2002 Brian Gough * test_gamma.c (test_gamma): increased tolerance on a test * test_hyperg.c (test_hyperg): increased tolerance on a couple of tests Fri Jan 18 15:12:30 2002 Brian Gough * test_airy.c (test_airy): increased tolerance on test Tue Jan 8 14:31:04 2002 Brian Gough * test_legendre.c (test_legendre): increased tolerance by one level on _array tests * hyperg_1F1.c (hyperg_1F1_small_a_bgt0): fix branch for a==1 Fri Dec 7 12:38:40 2001 Brian Gough * laguerre.c (laguerre_n_cp): catch internal error, not global error * error.h (INTERNAL_OVERFLOW_ERROR): added internal error macros which do not call the error handler. Wed Dec 5 19:25:26 2001 Brian Gough * gamma.c (gamma_xgthalf): return gamma(x) exactly when x is an integer * hyperg_1F1.c (hyperg_1F1_ab_posint): fix bug in recurrence initialisation, as done for hyperg_1F1_ab_pos Thu Oct 18 11:37:25 2001 Brian Gough * coulomb.c (gsl_sf_coulomb_CL_array): renamed from gsl_sf_coulomb_CL_list for consistency Sat Oct 13 15:55:56 2001 Brian Gough * cheb_eval.c (cheb_eval_e): keep track of cancellation error to prevent underestimates of total error. Fri Oct 12 16:39:27 2001 Brian Gough * test_hyperg.c (test_hyperg): increased tolerance from TOL0 to TOL1 on one test to allow it to pass under different optimizations Thu Oct 11 14:21:34 2001 Brian Gough * gegenbauer.c (gsl_sf_gegenpoly_n_e): initialize variable gk to zero to avoid warning * bessel_i.c (gsl_sf_bessel_il_scaled_e): initialize variable iellm1 to zero to avoid warning * bessel_Jnu.c (gsl_sf_bessel_Jnu_e): initialize variable Ynp1 to zero to avoid warning * legendre_poly.c (gsl_sf_legendre_sphPlm_e): initialize variables p_ell, y_ell to zero to avoid warning Thu Sep 6 10:38:51 2001 Brian Gough * clausen.c: added missing initialiser to cheb_series struct * pow_int.c (gsl_sf_pow_int_e): handle the case x == 0, n < 0 * legendre_poly.c (gsl_sf_legendre_array_size): added missing static version of this inline function Wed Aug 15 20:18:43 2001 Brian Gough * hyperg_1F1.c (hyperg_1F1_ab_pos): fix bug in recurrence initialisation (hyperg_1F1_ab_neg): if all else fails, try the series. Wed Aug 8 19:55:34 2001 Brian Gough * test_sf.c (test_coupling): used analytic expressions for the exact values to problems with insufficient precision Thu Jul 12 15:25:04 2001 Brian Gough * test_legendre.c (test_legendre): corrected tests to use exact floating point arguments near singularities. * legendre_Qn.c (gsl_sf_legendre_Q0_e): removed unnecessary error terms that I added (gsl_sf_legendre_Q1_e): removed unnecessary error terms that I added Wed Jul 11 16:06:45 2001 Brian Gough * error.h: moved domain, overflow and underflow errors into macros, return Nan for domain error, Inf for overflow. Tue Jul 10 22:00:55 2001 Brian Gough * erfc.c (gsl_sf_log_erfc_e): introduce an additional log(erfc) branch to prevent loss of accuracy for small x * test_sf.c (test_zeta): increased tolerance on zeta function test to take into account differences in rounding 2001-07-10 Brian Gough * legendre_Qn.c (gsl_sf_legendre_Q0_e): use (log1p(x) - log1p(-x)) instead of log((1+x)/(1-x)), for accuracy (gsl_sf_legendre_Q1_e): use (log1p(x) - log1p(-x)) instead of log((1+x)/(1-x)), for accuracy (gsl_sf_legendre_Q0_e): improve error estimate near singular points (gsl_sf_legendre_Q1_e): improve error estimate near singular points (gsl_sf_legendre_Q0_e): fixed incorrect factor of 2 in asymptotic expansion * check.h (CHECK_UNDERFLOW): provide macro for checking results for underflow Fri Jul 6 20:16:19 2001 Brian Gough * zeta.c (riemann_zeta1m_slt0): added a function to compute zeta(1-s) without loss of accuracy for s near zero, as used by the reflection formula. This fixes a bug in the accuracy of results of zeta(-x) for small x, where loss of precision previously occurred by evaluating 1-x. 2001-07-06 Brian Gough * bessel_I0.c (gsl_sf_bessel_I0_scaled_e): added missing scaling factor of exp(-x) for case x<2sqrt(epsilon) Thu Jul 5 16:16:13 2001 Brian Gough * erfc.c (gsl_sf_erfc_e): corrected case of -10 * eval.h (EVAL_DOUBLE): avoid returning the status value as a numerical result 2001-06-28 Brian Gough * elementary.c (gsl_sf_multiply_e): use GSL_COERCE_DBL macro to deal with extended register problem * coupling.c: include stdlib.h for prototype of abs() Wed Jun 27 21:20:22 2001 Brian Gough * test_sf.c (test_fermidirac): increased tolerance on test of gsl_sf_fermi_dirac_int(9,500) by factor of two to allow for MSVC Tue Jun 26 12:10:17 2001 Brian Gough * gsl_sf_gamma.h: added const to prototype, to match function definition Sun May 6 13:01:01 2001 Brian Gough * test_sf.c: initialize message_buff to null string to prevent random segmentation faults * test_sf.h: simplified test macros to reduce stack usage Mon Apr 30 12:38:15 2001 Brian Gough * airy_zero.c bessel_zero.c: zeros are now counted using an unsigned int * poly.c: moved poly_eval function into poly/ directory Wed Apr 25 17:28:48 2001 Brian Gough * trig.c (gsl_sf_polar_to_rect): dropped _e from polar/rect conversion functions Tue Apr 24 17:05:22 2001 Brian Gough * split out chebyshev functions into their own cheb/ directory, leaving behind an internal cheb struct and cheb evaluation function. Mon Apr 23 10:21:06 2001 Brian Gough * changed tests for EFAULT into a commented-out macro, since EFAULT should only apply to invalid non-null pointers, but it might be useful to keep the tests around for debugging in this directory. * unified error handling conventions to _e for error handling functions and no suffix for plain functions, so _impl functions are no longer needed. 1999-08-02 Mark Galassi * fermi_dirac.c: took out the use of some "const int" constants which were being used to size arrays, since this is not portable (thanks to Bernd Petrovitsch for pointing this out). 1999-01-02 Mark Galassi * trig.c (gsl_sf_rect_to_polar_impl): introduced an #ifdef HAVE_HYPOT for systems that do not have the hypot() routine. Sun Feb 14 20:59:50 1999 Brian Gough * Makefile.am (include_HEADERS): added gsl_sf_result.h 1998-12-05 Mark Galassi * Makefile.am: t-erf.c was commented out, which is a problem (pointed out by automake-1.3b). Moved the commented-out t-erf.c line to the end of the long list of files. * legendre_poly.c (gsl_sf_legendre_Pl_impl): * legendre_con.c (gsl_sf_conicalP_xgt1_neg_mu_largetau_impl): added an ugly fix to the invocation of gsl_sf_bessel_Jn_impl() to give it two bogus arguments so that it builds. I hope Jerry fixes it up soon! * gsl_sf_airy.h: added an include of gsl_precision.h so that gsl_prec_t is defined. Tue Nov 17 17:29:31 1998 Brian Gough * added #include to all top-level source files * chebyshev.c (gsl_sf_cheb_eval_n): changed local gslMIN and gslMAX to the standard GSL_MIN and GSL_MAX macros Tue Aug 18 13:36:15 1998 Brian Gough * coulomb.c (C0sq): changed to using gsl_sf_expm1_impl instead of expm1, since the latter is a GNU extension. Mon Aug 3 14:43:16 1998 Brian Gough * bessel_amp_phase.h: undefined consts are now declared extern Mon Jul 13 12:40:27 1998 Brian Gough * gamma.c: changed all the factorial functions to take unsigned int arguments, since negative values are not allowed. (gsl_sf_choose): fixed off by one error in call to factorial. Sun Jul 12 13:21:41 1998 Brian Gough * gsl_sf_legendre.h, gsl_sf_poly.h, gsl_sf_pow_int.h: added HAVE_INLINE around some inline definitions in the header files * gamma.c: implemented the natural versions of gsl_sf_lnchoose and gsl_sf_choose. Wed Apr 15 21:27:48 1998 Brian Gough * added the return code as the second argument of GSL_WARNING, so we can filter on the error number or output a standard message for each one. 1998-02-02 Mark Galassi * Makefile.am (include_HEADERS): added gsl_specfunc.h so it gets into the distribution. (INCLUDES): added -I$(top_srcdir) so that bessel.c can find gsl_math.h gsl-1.16/specfunc/bessel.c0000664000252300025230000006643612171574312012420 00000000000000/* specfunc/bessel.c * * Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Miscellaneous support functions for Bessel function evaluations. */ #include #include #include #include #include #include #include #include #include "error.h" #include "bessel_amp_phase.h" #include "bessel_temme.h" #include "bessel.h" #define CubeRoot2_ 1.25992104989487316476721060728 /* Debye functions [Abramowitz+Stegun, 9.3.9-10] */ inline static double debye_u1(const double * tpow) { return (3.0*tpow[1] - 5.0*tpow[3])/24.0; } inline static double debye_u2(const double * tpow) { return (81.0*tpow[2] - 462.0*tpow[4] + 385.0*tpow[6])/1152.0; } inline static double debye_u3(const double * tpow) { return (30375.0*tpow[3] - 369603.0*tpow[5] + 765765.0*tpow[7] - 425425.0*tpow[9])/414720.0; } inline static double debye_u4(const double * tpow) { return (4465125.0*tpow[4] - 94121676.0*tpow[6] + 349922430.0*tpow[8] - 446185740.0*tpow[10] + 185910725.0*tpow[12])/39813120.0; } inline static double debye_u5(const double * tpow) { return (1519035525.0*tpow[5] - 49286948607.0*tpow[7] + 284499769554.0*tpow[9] - 614135872350.0*tpow[11] + 566098157625.0*tpow[13] - 188699385875.0*tpow[15])/6688604160.0; } #if 0 inline static double debye_u6(const double * tpow) { return (2757049477875.0*tpow[6] - 127577298354750.0*tpow[8] + 1050760774457901.0*tpow[10] - 3369032068261860.0*tpow[12] + 5104696716244125.0*tpow[14] - 3685299006138750.0*tpow[16] + 1023694168371875.0*tpow[18])/4815794995200.0; } #endif /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_IJ_taylor_e(const double nu, const double x, const int sign, const int kmax, const double threshold, gsl_sf_result * result ) { /* CHECK_POINTER(result) */ if(nu < 0.0 || x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { if(nu == 0.0) { result->val = 1.0; result->err = 0.0; } else { result->val = 0.0; result->err = 0.0; } return GSL_SUCCESS; } else { gsl_sf_result prefactor; /* (x/2)^nu / Gamma(nu+1) */ gsl_sf_result sum; int stat_pre; int stat_sum; int stat_mul; if(nu == 0.0) { prefactor.val = 1.0; prefactor.err = 0.0; stat_pre = GSL_SUCCESS; } else if(nu < INT_MAX-1) { /* Separate the integer part and use * y^nu / Gamma(nu+1) = y^N /N! y^f / (N+1)_f, * to control the error. */ const int N = (int)floor(nu + 0.5); const double f = nu - N; gsl_sf_result poch_factor; gsl_sf_result tc_factor; const int stat_poch = gsl_sf_poch_e(N+1.0, f, &poch_factor); const int stat_tc = gsl_sf_taylorcoeff_e(N, 0.5*x, &tc_factor); const double p = pow(0.5*x,f); prefactor.val = tc_factor.val * p / poch_factor.val; prefactor.err = tc_factor.err * p / poch_factor.val; prefactor.err += fabs(prefactor.val) / poch_factor.val * poch_factor.err; prefactor.err += 2.0 * GSL_DBL_EPSILON * fabs(prefactor.val); stat_pre = GSL_ERROR_SELECT_2(stat_tc, stat_poch); } else { gsl_sf_result lg; const int stat_lg = gsl_sf_lngamma_e(nu+1.0, &lg); const double term1 = nu*log(0.5*x); const double term2 = lg.val; const double ln_pre = term1 - term2; const double ln_pre_err = GSL_DBL_EPSILON * (fabs(term1)+fabs(term2)) + lg.err; const int stat_ex = gsl_sf_exp_err_e(ln_pre, ln_pre_err, &prefactor); stat_pre = GSL_ERROR_SELECT_2(stat_ex, stat_lg); } /* Evaluate the sum. * [Abramowitz+Stegun, 9.1.10] * [Abramowitz+Stegun, 9.6.7] */ { const double y = sign * 0.25 * x*x; double sumk = 1.0; double term = 1.0; int k; for(k=1; k<=kmax; k++) { term *= y/((nu+k)*k); sumk += term; if(fabs(term/sumk) < threshold) break; } sum.val = sumk; sum.err = threshold * fabs(sumk); stat_sum = ( k >= kmax ? GSL_EMAXITER : GSL_SUCCESS ); } stat_mul = gsl_sf_multiply_err_e(prefactor.val, prefactor.err, sum.val, sum.err, result); return GSL_ERROR_SELECT_3(stat_mul, stat_pre, stat_sum); } } /* Hankel's Asymptotic Expansion - A&S 9.2.5 * * x >> nu*nu+1 * error ~ O( ((nu*nu+1)/x)^4 ) * * empirical error analysis: * choose GSL_ROOT4_MACH_EPS * x > (nu*nu + 1) * * This is not especially useful. When the argument gets * large enough for this to apply, the cos() and sin() * start loosing digits. However, this seems inevitable * for this particular method. * * Wed Jun 25 14:39:38 MDT 2003 [GJ] * This function was inconsistent since the Q term did not * go to relative order eps^2. That's why the error estimate * originally given was screwy (it didn't make sense that the * "empirical" error was coming out O(eps^3)). * With Q to proper order, the error is O(eps^4). * * Sat Mar 15 05:16:18 GMT 2008 [BG] * Extended to use additional terms in the series to gain * higher accuracy. * */ int gsl_sf_bessel_Jnu_asympx_e(const double nu, const double x, gsl_sf_result * result) { double mu = 4.0*nu*nu; double chi = x - (0.5*nu + 0.25)*M_PI; double P = 0.0; double Q = 0.0; double k = 0, t = 1; int convP, convQ; do { t *= (k == 0) ? 1 : -(mu - (2*k-1)*(2*k-1)) / (k * (8 * x)); convP = fabs(t) < GSL_DBL_EPSILON * fabs(P); P += t; k++; t *= (mu - (2*k-1)*(2*k-1)) / (k * (8 * x)); convQ = fabs(t) < GSL_DBL_EPSILON * fabs(Q); Q += t; /* To preserve the consistency of the series we need to exit when P and Q have the same number of terms */ if (convP && convQ && k > (nu / 2)) break; k++; } while (k < 1000); { double pre = sqrt(2.0/(M_PI*x)); double c = cos(chi); double s = sin(chi); result->val = pre * (c*P - s*Q); result->err = pre * GSL_DBL_EPSILON * (fabs(c*P) + fabs(s*Q) + fabs(t)) * (1 + fabs(x)); /* NB: final term accounts for phase error with large x */ } return GSL_SUCCESS; } /* x >> nu*nu+1 */ int gsl_sf_bessel_Ynu_asympx_e(const double nu, const double x, gsl_sf_result * result) { double ampl; double theta; double alpha = x; double beta = -0.5*nu*M_PI; int stat_a = gsl_sf_bessel_asymp_Mnu_e(nu, x, &l); int stat_t = gsl_sf_bessel_asymp_thetanu_corr_e(nu, x, &theta); double sin_alpha = sin(alpha); double cos_alpha = cos(alpha); double sin_chi = sin(beta + theta); double cos_chi = cos(beta + theta); double sin_term = sin_alpha * cos_chi + sin_chi * cos_alpha; double sin_term_mag = fabs(sin_alpha * cos_chi) + fabs(sin_chi * cos_alpha); result->val = ampl * sin_term; result->err = fabs(ampl) * GSL_DBL_EPSILON * sin_term_mag; result->err += fabs(result->val) * 2.0 * GSL_DBL_EPSILON; if(fabs(alpha) > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * fabs(alpha); } else if(fabs(alpha) > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * fabs(alpha) * GSL_SQRT_DBL_EPSILON; } return GSL_ERROR_SELECT_2(stat_t, stat_a); } /* x >> nu*nu+1 */ int gsl_sf_bessel_Inu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result) { double mu = 4.0*nu*nu; double mum1 = mu-1.0; double mum9 = mu-9.0; double pre = 1.0/sqrt(2.0*M_PI*x); double r = mu/x; result->val = pre * (1.0 - mum1/(8.0*x) + mum1*mum9/(128.0*x*x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r); return GSL_SUCCESS; } /* x >> nu*nu+1 */ int gsl_sf_bessel_Knu_scaled_asympx_e(const double nu, const double x, gsl_sf_result * result) { double mu = 4.0*nu*nu; double mum1 = mu-1.0; double mum9 = mu-9.0; double pre = sqrt(M_PI/(2.0*x)); double r = nu/x; result->val = pre * (1.0 + mum1/(8.0*x) + mum1*mum9/(128.0*x*x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * fabs(0.1*r*r*r); return GSL_SUCCESS; } /* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.7] * * error: * The error has the form u_N(t)/nu^N where 0 <= t <= 1. * It is not hard to show that |u_N(t)| is small for such t. * We have N=6 here, and |u_6(t)| < 0.025, so the error is clearly * bounded by 0.025/nu^6. This gives the asymptotic bound on nu * seen below as nu ~ 100. For general MACH_EPS it will be * nu > 0.5 / MACH_EPS^(1/6) * When t is small, the bound is even better because |u_N(t)| vanishes * as t->0. In fact u_N(t) ~ C t^N as t->0, with C ~= 0.1. * We write * err_N <= min(0.025, C(1/(1+(x/nu)^2))^3) / nu^6 * therefore * min(0.29/nu^2, 0.5/(nu^2+x^2)) < MACH_EPS^{1/3} * and this is the general form. * * empirical error analysis, assuming 14 digit requirement: * choose x > 50.000 nu ==> nu > 3 * choose x > 10.000 nu ==> nu > 15 * choose x > 2.000 nu ==> nu > 50 * choose x > 1.000 nu ==> nu > 75 * choose x > 0.500 nu ==> nu > 80 * choose x > 0.100 nu ==> nu > 83 * * This makes sense. For x << nu, the error will be of the form u_N(1)/nu^N, * since the polynomial term will be evaluated near t=1, so the bound * on nu will become constant for small x. Furthermore, increasing x with * nu fixed will decrease the error. */ int gsl_sf_bessel_Inu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result) { int i; double z = x/nu; double root_term = hypot(1.0,z); double pre = 1.0/sqrt(2.0*M_PI*nu * root_term); double eta = root_term + log(z/(1.0+root_term)); double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(-z + eta) : -0.5*nu/z*(1.0 - 1.0/(12.0*z*z)) ); gsl_sf_result ex_result; int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result); if(stat_ex == GSL_SUCCESS) { double t = 1.0/root_term; double sum; double tpow[16]; tpow[0] = 1.0; for(i=1; i<16; i++) tpow[i] = t * tpow[i-1]; sum = 1.0 + debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) + debye_u3(tpow)/(nu*nu*nu) + debye_u4(tpow)/(nu*nu*nu*nu) + debye_u5(tpow)/(nu*nu*nu*nu*nu); result->val = pre * ex_result.val * sum; result->err = pre * ex_result.val / (nu*nu*nu*nu*nu*nu); result->err += pre * ex_result.err * fabs(sum); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 0.0; result->err = 0.0; return stat_ex; } } /* nu -> Inf; uniform in x > 0 [Abramowitz+Stegun, 9.7.8] * * error: * identical to that above for Inu_scaled */ int gsl_sf_bessel_Knu_scaled_asymp_unif_e(const double nu, const double x, gsl_sf_result * result) { int i; double z = x/nu; double root_term = hypot(1.0,z); double pre = sqrt(M_PI/(2.0*nu*root_term)); double eta = root_term + log(z/(1.0+root_term)); double ex_arg = ( z < 1.0/GSL_ROOT3_DBL_EPSILON ? nu*(z - eta) : 0.5*nu/z*(1.0 + 1.0/(12.0*z*z)) ); gsl_sf_result ex_result; int stat_ex = gsl_sf_exp_e(ex_arg, &ex_result); if(stat_ex == GSL_SUCCESS) { double t = 1.0/root_term; double sum; double tpow[16]; tpow[0] = 1.0; for(i=1; i<16; i++) tpow[i] = t * tpow[i-1]; sum = 1.0 - debye_u1(tpow)/nu + debye_u2(tpow)/(nu*nu) - debye_u3(tpow)/(nu*nu*nu) + debye_u4(tpow)/(nu*nu*nu*nu) - debye_u5(tpow)/(nu*nu*nu*nu*nu); result->val = pre * ex_result.val * sum; result->err = pre * ex_result.err * fabs(sum); result->err += pre * ex_result.val / (nu*nu*nu*nu*nu*nu); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = 0.0; result->err = 0.0; return stat_ex; } } /* Evaluate J_mu(x),J_{mu+1}(x) and Y_mu(x),Y_{mu+1}(x) for |mu| < 1/2 */ int gsl_sf_bessel_JY_mu_restricted(const double mu, const double x, gsl_sf_result * Jmu, gsl_sf_result * Jmup1, gsl_sf_result * Ymu, gsl_sf_result * Ymup1) { /* CHECK_POINTER(Jmu) */ /* CHECK_POINTER(Jmup1) */ /* CHECK_POINTER(Ymu) */ /* CHECK_POINTER(Ymup1) */ if(x < 0.0 || fabs(mu) > 0.5) { Jmu->val = 0.0; Jmu->err = 0.0; Jmup1->val = 0.0; Jmup1->err = 0.0; Ymu->val = 0.0; Ymu->err = 0.0; Ymup1->val = 0.0; Ymup1->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(x == 0.0) { if(mu == 0.0) { Jmu->val = 1.0; Jmu->err = 0.0; } else { Jmu->val = 0.0; Jmu->err = 0.0; } Jmup1->val = 0.0; Jmup1->err = 0.0; Ymu->val = 0.0; Ymu->err = 0.0; Ymup1->val = 0.0; Ymup1->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else { int stat_Y; int stat_J; if(x < 2.0) { /* Use Taylor series for J and the Temme series for Y. * The Taylor series for J requires nu > 0, so we shift * up one and use the recursion relation to get Jmu, in * case mu < 0. */ gsl_sf_result Jmup2; int stat_J1 = gsl_sf_bessel_IJ_taylor_e(mu+1.0, x, -1, 100, GSL_DBL_EPSILON, Jmup1); int stat_J2 = gsl_sf_bessel_IJ_taylor_e(mu+2.0, x, -1, 100, GSL_DBL_EPSILON, &Jmup2); double c = 2.0*(mu+1.0)/x; Jmu->val = c * Jmup1->val - Jmup2.val; Jmu->err = c * Jmup1->err + Jmup2.err; Jmu->err += 2.0 * GSL_DBL_EPSILON * fabs(Jmu->val); stat_J = GSL_ERROR_SELECT_2(stat_J1, stat_J2); stat_Y = gsl_sf_bessel_Y_temme(mu, x, Ymu, Ymup1); return GSL_ERROR_SELECT_2(stat_J, stat_Y); } else if(x < 1000.0) { double P, Q; double J_ratio; double J_sgn; const int stat_CF1 = gsl_sf_bessel_J_CF1(mu, x, &J_ratio, &J_sgn); const int stat_CF2 = gsl_sf_bessel_JY_steed_CF2(mu, x, &P, &Q); double Jprime_J_ratio = mu/x - J_ratio; double gamma = (P - Jprime_J_ratio)/Q; Jmu->val = J_sgn * sqrt(2.0/(M_PI*x) / (Q + gamma*(P-Jprime_J_ratio))); Jmu->err = 4.0 * GSL_DBL_EPSILON * fabs(Jmu->val); Jmup1->val = J_ratio * Jmu->val; Jmup1->err = fabs(J_ratio) * Jmu->err; Ymu->val = gamma * Jmu->val; Ymu->err = fabs(gamma) * Jmu->err; Ymup1->val = Ymu->val * (mu/x - P - Q/gamma); Ymup1->err = Ymu->err * fabs(mu/x - P - Q/gamma) + 4.0*GSL_DBL_EPSILON*fabs(Ymup1->val); return GSL_ERROR_SELECT_2(stat_CF1, stat_CF2); } else { /* Use asymptotics for large argument. */ const int stat_J0 = gsl_sf_bessel_Jnu_asympx_e(mu, x, Jmu); const int stat_J1 = gsl_sf_bessel_Jnu_asympx_e(mu+1.0, x, Jmup1); const int stat_Y0 = gsl_sf_bessel_Ynu_asympx_e(mu, x, Ymu); const int stat_Y1 = gsl_sf_bessel_Ynu_asympx_e(mu+1.0, x, Ymup1); stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1); stat_Y = GSL_ERROR_SELECT_2(stat_Y0, stat_Y1); return GSL_ERROR_SELECT_2(stat_J, stat_Y); } } } int gsl_sf_bessel_J_CF1(const double nu, const double x, double * ratio, double * sgn) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const double RECUR_SMALL = GSL_SQRT_DBL_MIN; const int maxiter = 10000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = x/(2.0*(nu+1.0)); double An = Anm1 + a1*Anm2; double Bn = Bnm1 + a1*Bnm2; double an; double fn = An/Bn; double dn = a1; double s = 1.0; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = -x*x/(4.0*(nu+n-1.0)*(nu+n)); An = Anm1 + an*Anm2; Bn = Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; } else if(fabs(An) < RECUR_SMALL || fabs(Bn) < RECUR_SMALL) { An /= RECUR_SMALL; Bn /= RECUR_SMALL; Anm1 /= RECUR_SMALL; Bnm1 /= RECUR_SMALL; Anm2 /= RECUR_SMALL; Bnm2 /= RECUR_SMALL; } old_fn = fn; fn = An/Bn; del = old_fn/fn; dn = 1.0 / (2.0*(nu+n)/x - dn); if(dn < 0.0) s = -s; if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break; } /* FIXME: we should return an error term here as well, because the error from this recurrence affects the overall error estimate. */ *ratio = fn; *sgn = s; if(n >= maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Evaluate the continued fraction CF1 for J_{nu+1}/J_nu * using Gautschi (Euler) equivalent series. * This exhibits an annoying problem because the * a_k are not positive definite (in fact they are all negative). * There are cases when rho_k blows up. Example: nu=1,x=4. */ #if 0 int gsl_sf_bessel_J_CF1_ser(const double nu, const double x, double * ratio, double * sgn) { const int maxk = 20000; double tk = 1.0; double sum = 1.0; double rhok = 0.0; double dk = 0.0; double s = 1.0; int k; for(k=1; k 2 is a good cutoff. * Also requires |nu| < 1/2. */ int gsl_sf_bessel_K_scaled_steed_temme_CF2(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu) { const int maxiter = 10000; int i = 1; double bi = 2.0*(1.0 + x); double di = 1.0/bi; double delhi = di; double hi = di; double qi = 0.0; double qip1 = 1.0; double ai = -(0.25 - nu*nu); double a1 = ai; double ci = -ai; double Qi = -ai; double s = 1.0 + Qi*delhi; for(i=2; i<=maxiter; i++) { double dels; double tmp; ai -= 2.0*(i-1); ci = -ai*ci/i; tmp = (qi - bi*qip1)/ai; qi = qip1; qip1 = tmp; Qi += ci*qip1; bi += 2.0; di = 1.0/(bi + ai*di); delhi = (bi*di - 1.0) * delhi; hi += delhi; dels = Qi*delhi; s += dels; if(fabs(dels/s) < GSL_DBL_EPSILON) break; } hi *= -a1; *K_nu = sqrt(M_PI/(2.0*x)) / s; *K_nup1 = *K_nu * (nu + x + 0.5 - hi)/x; *Kp_nu = - *K_nup1 + nu/x * *K_nu; if(i == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } int gsl_sf_bessel_cos_pi4_e(double y, double eps, gsl_sf_result * result) { const double sy = sin(y); const double cy = cos(y); const double s = sy + cy; const double d = sy - cy; const double abs_sum = fabs(cy) + fabs(sy); double seps; double ceps; if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { const double e2 = eps*eps; seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0)); ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0); } else { seps = sin(eps); ceps = cos(eps); } result->val = (ceps * s - seps * d)/ M_SQRT2; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2; /* Try to account for error in evaluation of sin(y), cos(y). * This is a little sticky because we don't really know * how the library routines are doing their argument reduction. * However, we will make a reasonable guess. * FIXME ? */ if(y > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * y; } else if(y > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON; } return GSL_SUCCESS; } int gsl_sf_bessel_sin_pi4_e(double y, double eps, gsl_sf_result * result) { const double sy = sin(y); const double cy = cos(y); const double s = sy + cy; const double d = sy - cy; const double abs_sum = fabs(cy) + fabs(sy); double seps; double ceps; if(fabs(eps) < GSL_ROOT5_DBL_EPSILON) { const double e2 = eps*eps; seps = eps * (1.0 - e2/6.0 * (1.0 - e2/20.0)); ceps = 1.0 - e2/2.0 * (1.0 - e2/12.0); } else { seps = sin(eps); ceps = cos(eps); } result->val = (ceps * d + seps * s)/ M_SQRT2; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(ceps) + fabs(seps)) * abs_sum / M_SQRT2; /* Try to account for error in evaluation of sin(y), cos(y). * See above. * FIXME ? */ if(y > 1.0/GSL_DBL_EPSILON) { result->err *= 0.5 * y; } else if(y > 1.0/GSL_SQRT_DBL_EPSILON) { result->err *= 256.0 * y * GSL_SQRT_DBL_EPSILON; } return GSL_SUCCESS; } /************************************************************************ * * Asymptotic approximations 8.11.5, 8.12.5, and 8.42.7 from G.N.Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge University Press, 1944). Higher terms in expansion for x near l given by Airey in Phil. Mag. 31, 520 (1916). This approximation is accurate to near 0.1% at the boundaries between the asymptotic regions; well away from the boundaries the accuracy is better than 10^{-5}. * * ************************************************************************/ #if 0 double besselJ_meissel(double nu, double x) { double beta = pow(nu, 0.325); double result; /* Fitted matching points. */ double llimit = 1.1 * beta; double ulimit = 1.3 * beta; double nu2 = nu * nu; if (nu < 5. && x < 1.) { /* Small argument and order. Use a Taylor expansion. */ int k; double xo2 = 0.5 * x; double gamfactor = pow(nu,nu) * exp(-nu) * sqrt(nu * 2. * M_PI) * (1. + 1./(12.*nu) + 1./(288.*nu*nu)); double prefactor = pow(xo2, nu) / gamfactor; double C[5]; C[0] = 1.; C[1] = -C[0] / (nu+1.); C[2] = -C[1] / (2.*(nu+2.)); C[3] = -C[2] / (3.*(nu+3.)); C[4] = -C[3] / (4.*(nu+4.)); result = 0.; for(k=0; k<5; k++) result += C[k] * pow(xo2, 2.*k); result *= prefactor; } else if(x < nu - llimit) { /* Small x region: x << l. */ double z = x / nu; double z2 = z*z; double rtomz2 = sqrt(1.-z2); double omz2_2 = (1.-z2)*(1.-z2); /* Calculate Meissel exponent. */ double term1 = 1./(24.*nu) * ((2.+3.*z2)/((1.-z2)*rtomz2) -2.); double term2 = - z2*(4. + z2)/(16.*nu2*(1.-z2)*omz2_2); double V_nu = term1 + term2; /* Calculate the harmless prefactor. */ double sterlingsum = 1. + 1./(12.*nu) + 1./(288*nu2); double harmless = 1. / (sqrt(rtomz2*2.*M_PI*nu) * sterlingsum); /* Calculate the logarithm of the nu dependent prefactor. */ double ln_nupre = rtomz2 + log(z) - log(1. + rtomz2); result = harmless * exp(nu*ln_nupre - V_nu); } else if(x < nu + ulimit) { /* Intermediate region 1: x near nu. */ double eps = 1.-nu/x; double eps_x = eps * x; double eps_x_2 = eps_x * eps_x; double xo6 = x/6.; double B[6]; static double gam[6] = {2.67894, 1.35412, 1., 0.89298, 0.902745, 1.}; static double sf[6] = {0.866025, 0.866025, 0., -0.866025, -0.866025, 0.}; /* Some terms are identically zero, because sf[] can be zero. * Some terms do not appear in the result. */ B[0] = 1.; B[1] = eps_x; /* B[2] = 0.5 * eps_x_2 - 1./20.; */ B[3] = eps_x * (eps_x_2/6. - 1./15.); B[4] = eps_x_2 * (eps_x_2 - 1.)/24. + 1./280.; /* B[5] = eps_x * (eps_x_2*(0.5*eps_x_2 - 1.)/60. + 43./8400.); */ result = B[0] * gam[0] * sf[0] / pow(xo6, 1./3.); result += B[1] * gam[1] * sf[1] / pow(xo6, 2./3.); result += B[3] * gam[3] * sf[3] / pow(xo6, 4./3.); result += B[4] * gam[4] * sf[4] / pow(xo6, 5./3.); result /= (3.*M_PI); } else { /* Region of very large argument. Use expansion * for x>>l, and we need not be very exacting. */ double secb = x/nu; double sec2b= secb*secb; double cotb = 1./sqrt(sec2b-1.); /* cotb=cot(beta) */ double beta = acos(nu/x); double trigarg = nu/cotb - nu*beta - 0.25 * M_PI; double cot3b = cotb * cotb * cotb; double cot6b = cot3b * cot3b; double sum1, sum2, expterm, prefactor, trigcos; sum1 = 2.0 + 3.0 * sec2b; trigarg -= sum1 * cot3b / (24.0 * nu); trigcos = cos(trigarg); sum2 = 4.0 + sec2b; expterm = sum2 * sec2b * cot6b / (16.0 * nu2); expterm = exp(-expterm); prefactor = sqrt(2. * cotb / (nu * M_PI)); result = prefactor * expterm * trigcos; } return result; } #endif gsl-1.16/specfunc/airy_zero.c0000664000252300025230000003250512171574312013134 00000000000000/* specfunc/airy_zero.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" static const double zero_Ai[] = { 0, -2.338107410459767039, -4.087949444130970617, -5.520559828095551059, -6.786708090071758999, -7.944133587120853123, -9.022650853340980380, -10.04017434155808593, -11.00852430373326289, -11.93601556323626252, -12.82877675286575720, -13.69148903521071793, -14.52782995177533498, -15.34075513597799686, -16.13268515694577144, -16.90563399742994263, -17.661300105697057509, -18.401132599207115416, -19.126380474246952144, -19.838129891721499701, -20.537332907677566360, -21.224829943642096955, -21.901367595585130707, -22.567612917496502831, -23.224165001121681061, -23.871564455535918567, -24.510301236589677490, -25.140821166148963748, -25.763531400982756459, -26.378805052137232374, -26.986985111606367686, -27.588387809882444812, -28.183305502632644923, -28.772009165237435382, -29.354750558766287963, -29.931764119086555913, -30.503268611418505287, -31.069468585183755604, -31.63055565801265934, -32.18670965295205069, -32.73809960900026913, -33.28488468190140188, -33.82721494950865194, -34.36523213386365906, -34.89907025034531210, -35.42885619274788846, -35.95471026189862926, -36.47674664437480896, -36.99507384699450161, -37.50979509200501613, -38.02100867725525443, -38.52880830509424882, -39.03328338327251391, -39.53451930072301805, -40.03259768075417603, -40.52759661388971821, -41.01959087233248966, -41.50865210780525018, -41.99484903432643004, -42.47824759730839188, -42.95891113021656009, -43.43690049989685412, -43.91227424156370168, -44.38508868433939023, -44.85539806814583243, -45.32325465267043011, -45.78870881905730086, -46.25180916491254629, -46.71260259315651633, -47.17113439520631705, -47.62744832892739292, -48.08158669175325711, -48.53359038933679845, -48.98349900006458366, -49.43135083573678341, -49.87718299868941729, -50.32103143561221860, -50.76293098829428522, -51.20291544151056412, -51.64101756824489758, -52.07726917242964943, -52.51170112936766183, -52.94434342398931824, -53.37522518708567514, -53.80437472964785717, -54.23181957543308298, -54.65758649186871111, -55.08170151939748312, -55.50418999935962251, -55.92507660050055598, -56.34438534418670066, -56.76213962840595327, -57.17836225062417808, -57.59307542956407782, -58.00630082596830627, -58.41805956240450934, -58.82837224216613231, -59.23725896731927534, -59.64473935594259360, -60.05083255860419805, -60.45555727411669871 }; static const size_t size_zero_Ai = sizeof(zero_Ai)/sizeof(double); static const double zero_Bi[] = { 0, -1.173713222709127925, -3.271093302836352716, -4.830737841662015933, -6.169852128310251260, -7.376762079367763714, -8.491948846509388013, -9.538194379346238887, -10.52991350670535792, -11.47695355127877944, -12.38641713858273875, -13.26363952294180555, -14.11275680906865779, -14.93705741215416404, -15.739210351190482771, -16.521419550634379054, -17.285531624581242533, -18.033113287225001572, -18.765508284480081041, -19.483880132989234014, -20.189244785396202420, -20.882495994193175768, -21.564425284712977653, -22.235737881803385167, -22.897065554219793474, -23.548977079642448269, -24.191986850649000086, -24.826562012152892172, -25.453128427085131994, -26.072075698466804494, -26.683761425120990449, -27.288514830076298204, -27.886639871735962459, -28.478417925678661737, -29.064110107777650305, -29.643959295918396591, -30.218191897047274645, -30.787019397921766297, -31.350639731255585371, -31.90923848358456965, -32.46298996683685318, -33.01205817205683814, -33.55659762084006113, -34.09675412765602851, -34.63266548426775468, -35.16446207582101720, -35.69226743681080479, -36.21619875398748222, -36.73636732230120657, -37.25287895916828697, -37.76583438165180116, -38.27532955056003997, -38.78145598496327279, -39.28430105019802461, -39.78394822205711298, -40.28047732954369150, -40.77396477829068148, -41.26448375650675678, -41.75210442510106287, -42.23689409345656643, -42.71891738216253539, -43.19823637387693118, -43.67491075336673948, -44.14899793766617113, -44.62055319719727274, -45.08962976861312825, -45.55627896004907928, -46.02055024940102076, -46.48249137619078661, -46.94214842752602207, -47.39956591861496210, -47.85478686825452176, -48.30785286967246692, -48.75880415707066192, -49.20767966818603897, -49.65451710315861501, -50.09935297997125482, -50.54222268670364757, -50.98316053082286586, -51.42219978571468262, -51.85937273464332870, -52.29471071231240525, -52.72824414418606069, -53.16000258371716397, -53.59001474761792882, -54.01830854929815828, -54.44491113058688729, -54.86984889184461534, -55.29314752056546491, -55.71483201856140365, -56.13492672781406761, -56.55345535507366411, -56.97044099527886475, -57.38590615386647834, -57.79987276803497897, -58.21236222702161974, -58.62339539144885603, -59.03299261179210306, -59.44117374601743460, -59.84795817643466996, -60.25336482580837088 }; static const size_t size_zero_Bi = sizeof(zero_Bi)/sizeof(double); static const double zero_Aip[] = { 0, -1.018792971647471089, -3.248197582179836738, -4.820099211178735639, -6.163307355639486822, -7.372177255047770177, -8.488486734019722133, -9.535449052433547471, -10.52766039695740728, -11.47505663348024529, -12.384788371845747325, -13.262218961665210382, -14.111501970462995282, -14.935937196720517467, -15.738201373692538303, -16.520503825433793542, -17.284695050216437357, -18.032344622504393395, -18.764798437665954740, -19.483221656567231178, -20.188631509463373154, -20.881922755516737701, -21.563887723198974958, -22.235232285348913331, -22.896588738874619001, -23.548526295928801574, -24.191559709526353841, -24.826156425921155001, -25.452742561777649948, -26.071707935173912515, -26.683410328322449767, -27.288179121523985029, -27.886318408768461192, -28.478109683102278108, -29.063814162638199090, -29.643674814632015921, -30.217918124468574603, -30.786755648012502519, -31.350385379083034671, -31.90899295843046320, -32.46275274623847982, -33.01182877663428709, -33.55637560978942190, -34.09653909480913771, -34.63245705463586589, -35.16425990255340758, -35.69207119851046870, -36.21600815233519918, -36.73618207994680321, -37.25269881785414827, -37.76565910053887108, -38.27515890473087933, -38.78128976408036876, -39.28413905729859644, -39.78379027246823278, -40.28032324990371935, -40.77381440566486637, -41.26433693758643383, -41.75196101547722703, -42.23675395695976012, -42.71878039026198233, -43.19810240513270670, -43.67477969292950869, -44.14886967681966886, -44.62042763293925724, -45.08950680327102630, -45.55615850092696446, -46.02043220845493728, -46.48237566972975615, -46.94203497593635633, -47.39945464610575493, -47.85467770262241617, -48.30774574208398774, -48.75869900186057804, -49.20757642267037247, -49.65441570746105074, -50.09925337686182515, -50.54212482144867502, -50.98306435104524282, -51.42210524126365311, -51.85927977747301469, -52.29461929636838876, -52.72815422529939506, -53.15991411950524351, -53.58992769739169611, -54.01822287397517367, -54.44482679260982599, -54.86976585510479430, -55.29306575033103518, -55.71475148140987392, -56.13484739156885235, -56.55337718874437424, -56.97036396900508167, -57.38583023886477265, -57.79979793654895377, -58.21228845227477578, -58.62332264760009139, -59.03292087389367419, -59.44110298997521892, -59.84788837897058171, -60.25329596442479317 }; static const size_t size_zero_Aip = sizeof(zero_Aip)/sizeof(double); static const double zero_Bip[] = { 0, -2.294439682614123247, -4.073155089071828216, -5.512395729663599496, -6.781294445990305390, -7.940178689168578927, -9.019583358794239067, -10.037696334908545802, -11.006462667712289940, -11.934261645014844663, -12.827258309177217640, -13.690155826835049101, -14.526645763485711410, -15.339693082242404109, -16.131724782385900578, -16.904759411889649958, -17.660498743114976102, -18.400394367181703280, -19.125697156412638066, -19.837494718415910503, -20.536740241453273980, -21.224275044889266569, -21.900846445139208281, -22.567122080497200470, -23.223701521208962116, -23.871125771677973595, -24.509885117016242729, -25.140425655367878908, -25.763154776913454319, -26.378445791146615697, -26.986641859775034987, -27.588059359225600573, -28.182990771292975456, -28.771707180886056250, -29.354460444612957224, -29.931485082026055160, -30.502999931936645516, -31.069209608721234058, -31.63030578754333679, -32.18646834257807369, -32.73786635840274752, -33.28465903151424981, -33.82699647630635587, -34.36502044767239631, -34.89886499060196419, -35.42865702564380962, -35.95451687785511190, -36.47655875580547918, -36.99489118631672770, -37.50961740986809593, -38.02083574095788210 }; static const size_t size_zero_Bip = sizeof(zero_Bip)/sizeof(double); /* [Abramowitz+Stegun, 10.4.105] */ static double zero_f(double z) { const double pre = pow(z, 2.0/3.0); const double zi2 = 1.0/(z*z); const double zi4 = zi2 * zi2; const double t1 = 5.0/48.0 * zi2; const double t2 = -5.0/36.0 * zi4; const double t3 = 77125.0/82944.0 * zi4 * zi2; const double t4 = -108056875.0/6967296.0 * zi4 * zi4; return pre * (1.0 + t1 + t2 + t3 + t4); } static double zero_g(double z) { const double pre = pow(z, 2.0/3.0); const double zi2 = 1.0/(z*z); const double zi4 = zi2 * zi2; const double t1 = -7.0/48.0 * zi2; const double t2 = 35.0/288.0 * zi4; const double t3 = -181223.0/207360.0 * zi4 * zi2; const double t4 = 18683371.0/1244160.0 * zi4 * zi4; return pre * (1.0 + t1 + t2 + t3 + t4); } int gsl_sf_airy_zero_Ai_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s < 1) { DOMAIN_ERROR_MSG("s is less than 1", result); } else if(s < size_zero_Ai) { result->val = zero_Ai[s]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double z = 3.0*M_PI/8.0 * (4.0*s - 1.0); const double f = zero_f(z); result->val = -f; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_airy_zero_Bi_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s < 1) { DOMAIN_ERROR_MSG("s is less than 1", result); } else if(s < size_zero_Bi) { result->val = zero_Bi[s]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double z = 3.0*M_PI/8.0 * (4.0*s - 3.0); const double f = zero_f(z); result->val = -f; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_airy_zero_Ai_deriv_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s < 1) { DOMAIN_ERROR_MSG("s is less than 1", result); } else if(s < size_zero_Aip) { result->val = zero_Aip[s]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double z = 3.0*M_PI/8.0 * (4.0*s - 3.0); const double g = zero_g(z); result->val = -g; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_airy_zero_Bi_deriv_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s < 1) { DOMAIN_ERROR_MSG("s is less than 1", result); } else if(s < size_zero_Bip) { result->val = zero_Bip[s]; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double z = 3.0*M_PI/8.0 * (4.0*s - 1.0); const double g = zero_g(z); result->val = -g; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_airy_zero_Ai(unsigned int s) { EVAL_RESULT(gsl_sf_airy_zero_Ai_e(s, &result)); } double gsl_sf_airy_zero_Bi(unsigned int s) { EVAL_RESULT(gsl_sf_airy_zero_Bi_e(s, &result)); } double gsl_sf_airy_zero_Ai_deriv(unsigned int s) { EVAL_RESULT(gsl_sf_airy_zero_Ai_deriv_e(s, &result)); } double gsl_sf_airy_zero_Bi_deriv(unsigned int s) { EVAL_RESULT(gsl_sf_airy_zero_Bi_deriv_e(s, &result)); } gsl-1.16/specfunc/dawson.c0000664000252300025230000002343412171574312012425 00000000000000/* specfunc/dawson.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /* Based on ddaws.f, Fullerton, W., (LANL) */ /* Chebyshev expansions Series for DAW on the interval 0. to 1.00000E+00 with weighted error 8.95E-32 log weighted error 31.05 significant figures required 30.41 decimal places required 31.71 Series for DAW2 on the interval 0. to 1.60000E+01 with weighted error 1.61E-32 log weighted error 31.79 significant figures required 31.40 decimal places required 32.62 Series for DAWA on the interval 0. to 6.25000E-02 with weighted error 1.97E-32 log weighted error 31.71 significant figures required 29.79 decimal places required 32.64 */ static double daw_data[21] = { -0.6351734375145949201065127736293e-02, -0.2294071479677386939899824125866e+00, 0.2213050093908476441683979161786e-01, -0.1549265453892985046743057753375e-02, 0.8497327715684917456777542948066e-04, -0.3828266270972014924994099521309e-05, 0.1462854806250163197757148949539e-06, -0.4851982381825991798846715425114e-08, 0.1421463577759139790347568183304e-09, -0.3728836087920596525335493054088e-11, 0.8854942961778203370194565231369e-13, -0.1920757131350206355421648417493e-14, 0.3834325867246327588241074439253e-16, -0.7089154168175881633584099327999e-18, 0.1220552135889457674416901120000e-19, -0.1966204826605348760299451733333e-21, 0.2975845541376597189113173333333e-23, -0.4247069514800596951039999999999e-25, 0.5734270767391742798506666666666e-27, -0.7345836823178450261333333333333e-29, 0.8951937667516552533333333333333e-31 }; static cheb_series daw_cs = { daw_data, 15, /* 20, */ -1, 1, 9 }; static double daw2_data[45] = { -0.56886544105215527114160533733674e-01, -0.31811346996168131279322878048822e+00, 0.20873845413642236789741580198858e+00, -0.12475409913779131214073498314784e+00, 0.67869305186676777092847516423676e-01, -0.33659144895270939503068230966587e-01, 0.15260781271987971743682460381640e-01, -0.63483709625962148230586094788535e-02, 0.24326740920748520596865966109343e-02, -0.86219541491065032038526983549637e-03, 0.28376573336321625302857636538295e-03, -0.87057549874170423699396581464335e-04, 0.24986849985481658331800044137276e-04, -0.67319286764160294344603050339520e-05, 0.17078578785573543710504524047844e-05, -0.40917551226475381271896592490038e-06, 0.92828292216755773260751785312273e-07, -0.19991403610147617829845096332198e-07, 0.40963490644082195241210487868917e-08, -0.80032409540993168075706781753561e-09, 0.14938503128761465059143225550110e-09, -0.26687999885622329284924651063339e-10, 0.45712216985159458151405617724103e-11, -0.75187305222043565872243727326771e-12, 0.11893100052629681879029828987302e-12, -0.18116907933852346973490318263084e-13, 0.26611733684358969193001612199626e-14, -0.37738863052129419795444109905930e-15, 0.51727953789087172679680082229329e-16, -0.68603684084077500979419564670102e-17, 0.88123751354161071806469337321745e-18, -0.10974248249996606292106299624652e-18, 0.13261199326367178513595545891635e-19, -0.15562732768137380785488776571562e-20, 0.17751425583655720607833415570773e-21, -0.19695006967006578384953608765439e-22, 0.21270074896998699661924010120533e-23, -0.22375398124627973794182113962666e-24, 0.22942768578582348946971383125333e-25, -0.22943788846552928693329592319999e-26, 0.22391702100592453618342297600000e-27, -0.21338230616608897703678225066666e-28, 0.19866196585123531518028458666666e-29, -0.18079295866694391771955199999999e-30, 0.16090686015283030305450666666666e-31 }; static cheb_series daw2_cs = { daw2_data, 32, /* 44, */ -1, 1, 21 }; static double dawa_data[75] = { 0.1690485637765703755422637438849e-01, 0.8683252278406957990536107850768e-02, 0.2424864042417715453277703459889e-03, 0.1261182399572690001651949240377e-04, 0.1066453314636176955705691125906e-05, 0.1358159794790727611348424505728e-06, 0.2171042356577298398904312744743e-07, 0.2867010501805295270343676804813e-08, -0.1901336393035820112282492378024e-09, -0.3097780484395201125532065774268e-09, -0.1029414876057509247398132286413e-09, -0.6260356459459576150417587283121e-11, 0.8563132497446451216262303166276e-11, 0.3033045148075659292976266276257e-11, -0.2523618306809291372630886938826e-12, -0.4210604795440664513175461934510e-12, -0.4431140826646238312143429452036e-13, 0.4911210272841205205940037065117e-13, 0.1235856242283903407076477954739e-13, -0.5788733199016569246955765071069e-14, -0.2282723294807358620978183957030e-14, 0.7637149411014126476312362917590e-15, 0.3851546883566811728777594002095e-15, -0.1199932056928290592803237283045e-15, -0.6313439150094572347334270285250e-16, 0.2239559965972975375254912790237e-16, 0.9987925830076495995132891200749e-17, -0.4681068274322495334536246507252e-17, -0.1436303644349721337241628751534e-17, 0.1020822731410541112977908032130e-17, 0.1538908873136092072837389822372e-18, -0.2189157877645793888894790926056e-18, 0.2156879197938651750392359152517e-20, 0.4370219827442449851134792557395e-19, -0.8234581460977207241098927905177e-20, -0.7498648721256466222903202835420e-20, 0.3282536720735671610957612930039e-20, 0.8858064309503921116076561515151e-21, -0.9185087111727002988094460531485e-21, 0.2978962223788748988314166045791e-22, 0.1972132136618471883159505468041e-21, -0.5974775596362906638089584995117e-22, -0.2834410031503850965443825182441e-22, 0.2209560791131554514777150489012e-22, -0.5439955741897144300079480307711e-25, -0.5213549243294848668017136696470e-23, 0.1702350556813114199065671499076e-23, 0.6917400860836148343022185660197e-24, -0.6540941793002752512239445125802e-24, 0.6093576580439328960371824654636e-25, 0.1408070432905187461501945080272e-24, -0.6785886121054846331167674943755e-25, -0.9799732036214295711741583102225e-26, 0.2121244903099041332598960939160e-25, -0.5954455022548790938238802154487e-26, -0.3093088861875470177838847232049e-26, 0.2854389216344524682400691986104e-26, -0.3951289447379305566023477271811e-27, -0.5906000648607628478116840894453e-27, 0.3670236964668687003647889980609e-27, -0.4839958238042276256598303038941e-29, -0.9799265984210443869597404017022e-28, 0.4684773732612130606158908804300e-28, 0.5030877696993461051647667603155e-29, -0.1547395051706028239247552068295e-28, 0.6112180185086419243976005662714e-29, 0.1357913399124811650343602736158e-29, -0.2417687752768673088385304299044e-29, 0.8369074582074298945292887587291e-30, 0.2665413042788979165838319401566e-30, -0.3811653692354890336935691003712e-30, 0.1230054721884951464371706872585e-30, 0.4622506399041493508805536929983e-31, -0.6120087296881677722911435593001e-31, 0.1966024640193164686956230217896e-31 }; static cheb_series dawa_cs = { dawa_data, 34, /* 74, */ -1, 1, 12 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_dawson_e(double x, gsl_sf_result * result) { const double xsml = 1.225 * GSL_SQRT_DBL_EPSILON; const double xbig = 1.0/(M_SQRT2*GSL_SQRT_DBL_EPSILON); const double xmax = 0.1 * GSL_DBL_MAX; const double y = fabs(x); if(y < xsml) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(y < 1.0) { gsl_sf_result result_c; cheb_eval_e(&daw_cs, 2.0*y*y - 1.0, &result_c); result->val = x * (0.75 + result_c.val); result->err = y * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y < 4.0) { gsl_sf_result result_c; cheb_eval_e(&daw2_cs, 0.125*y*y - 1.0, &result_c); result->val = x * (0.25 + result_c.val); result->err = y * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y < xbig) { gsl_sf_result result_c; cheb_eval_e(&dawa_cs, 32.0/(y*y) - 1.0, &result_c); result->val = (0.5 + result_c.val) / x; result->err = result_c.err / y; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y < xmax) { result->val = 0.5/x; result->err = 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_dawson(double x) { EVAL_RESULT(gsl_sf_dawson_e(x, &result)); } gsl-1.16/specfunc/exp.c0000664000252300025230000003723612171574312011733 00000000000000/* specfunc/exp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" /* Evaluate the continued fraction for exprel. * [Abramowitz+Stegun, 4.2.41] */ static int exprel_n_CF(const double N, const double x, gsl_sf_result * result) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 5000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = 1.0; double b1 = 1.0; double a2 = -x; double b2 = N+1; double an, bn; double fn; double An = b1*Anm1 + a1*Anm2; /* A1 */ double Bn = b1*Bnm1 + a1*Bnm2; /* B1 */ /* One explicit step, before we get to the main pattern. */ n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; An = b2*Anm1 + a2*Anm2; /* A2 */ Bn = b2*Bnm1 + a2*Bnm2; /* B2 */ fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = ( GSL_IS_ODD(n) ? ((n-1)/2)*x : -(N+(n/2)-1)*x ); bn = N + n - 1; An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break; } result->val = fn; result->err = 4.0*(n+1.0)*GSL_DBL_EPSILON*fabs(fn); if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_exp_e(const double x, gsl_sf_result * result) { if(x > GSL_LOG_DBL_MAX) { OVERFLOW_ERROR(result); } else if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else { result->val = exp(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_exp_e10_e(const double x, gsl_sf_result_e10 * result) { if(x > INT_MAX-1) { OVERFLOW_ERROR_E10(result); } else if(x < INT_MIN+1) { UNDERFLOW_ERROR_E10(result); } else { const int N = (x > GSL_LOG_DBL_MAX || x < GSL_LOG_DBL_MIN) ? (int) floor(x/M_LN10) : 0; result->val = exp(x-N*M_LN10); result->err = 2.0 * (fabs(x)+1.0) * GSL_DBL_EPSILON * fabs(result->val); result->e10 = N; return GSL_SUCCESS; } } int gsl_sf_exp_mult_e(const double x, const double y, gsl_sf_result * result) { const double ay = fabs(y); if(y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if( ( x < 0.5*GSL_LOG_DBL_MAX && x > 0.5*GSL_LOG_DBL_MIN) && (ay < 0.8*GSL_SQRT_DBL_MAX && ay > 1.2*GSL_SQRT_DBL_MIN) ) { const double ex = exp(x); result->val = y * ex; result->err = (2.0 + fabs(x)) * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double ly = log(ay); const double lnr = x + ly; if(lnr > GSL_LOG_DBL_MAX - 0.01) { OVERFLOW_ERROR(result); } else if(lnr < GSL_LOG_DBL_MIN + 0.01) { UNDERFLOW_ERROR(result); } else { const double sy = GSL_SIGN(y); const double M = floor(x); const double N = floor(ly); const double a = x - M; const double b = ly - N; const double berr = 2.0 * GSL_DBL_EPSILON * (fabs(ly) + fabs(N)); result->val = sy * exp(M+N) * exp(a+b); result->err = berr * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * (M + N + 1.0) * fabs(result->val); return GSL_SUCCESS; } } } int gsl_sf_exp_mult_e10_e(const double x, const double y, gsl_sf_result_e10 * result) { const double ay = fabs(y); if(y == 0.0) { result->val = 0.0; result->err = 0.0; result->e10 = 0; return GSL_SUCCESS; } else if( ( x < 0.5*GSL_LOG_DBL_MAX && x > 0.5*GSL_LOG_DBL_MIN) && (ay < 0.8*GSL_SQRT_DBL_MAX && ay > 1.2*GSL_SQRT_DBL_MIN) ) { const double ex = exp(x); result->val = y * ex; result->err = (2.0 + fabs(x)) * GSL_DBL_EPSILON * fabs(result->val); result->e10 = 0; return GSL_SUCCESS; } else { const double ly = log(ay); const double l10_val = (x + ly)/M_LN10; if(l10_val > INT_MAX-1) { OVERFLOW_ERROR_E10(result); } else if(l10_val < INT_MIN+1) { UNDERFLOW_ERROR_E10(result); } else { const double sy = GSL_SIGN(y); const int N = (int) floor(l10_val); const double arg_val = (l10_val - N) * M_LN10; const double arg_err = 2.0 * GSL_DBL_EPSILON * (fabs(x) + fabs(ly) + M_LN10*fabs(N)); result->val = sy * exp(arg_val); result->err = arg_err * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->e10 = N; return GSL_SUCCESS; } } } int gsl_sf_exp_mult_err_e(const double x, const double dx, const double y, const double dy, gsl_sf_result * result) { const double ay = fabs(y); if(y == 0.0) { result->val = 0.0; result->err = fabs(dy * exp(x)); return GSL_SUCCESS; } else if( ( x < 0.5*GSL_LOG_DBL_MAX && x > 0.5*GSL_LOG_DBL_MIN) && (ay < 0.8*GSL_SQRT_DBL_MAX && ay > 1.2*GSL_SQRT_DBL_MIN) ) { double ex = exp(x); result->val = y * ex; result->err = ex * (fabs(dy) + fabs(y*dx)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double ly = log(ay); const double lnr = x + ly; if(lnr > GSL_LOG_DBL_MAX - 0.01) { OVERFLOW_ERROR(result); } else if(lnr < GSL_LOG_DBL_MIN + 0.01) { UNDERFLOW_ERROR(result); } else { const double sy = GSL_SIGN(y); const double M = floor(x); const double N = floor(ly); const double a = x - M; const double b = ly - N; const double eMN = exp(M+N); const double eab = exp(a+b); result->val = sy * eMN * eab; result->err = eMN * eab * 2.0*GSL_DBL_EPSILON; result->err += eMN * eab * fabs(dy/y); result->err += eMN * eab * fabs(dx); return GSL_SUCCESS; } } } int gsl_sf_exp_mult_err_e10_e(const double x, const double dx, const double y, const double dy, gsl_sf_result_e10 * result) { const double ay = fabs(y); if(y == 0.0) { result->val = 0.0; result->err = fabs(dy * exp(x)); result->e10 = 0; return GSL_SUCCESS; } else if( ( x < 0.5*GSL_LOG_DBL_MAX && x > 0.5*GSL_LOG_DBL_MIN) && (ay < 0.8*GSL_SQRT_DBL_MAX && ay > 1.2*GSL_SQRT_DBL_MIN) ) { const double ex = exp(x); result->val = y * ex; result->err = ex * (fabs(dy) + fabs(y*dx)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->e10 = 0; return GSL_SUCCESS; } else { const double ly = log(ay); const double l10_val = (x + ly)/M_LN10; if(l10_val > INT_MAX-1) { OVERFLOW_ERROR_E10(result); } else if(l10_val < INT_MIN+1) { UNDERFLOW_ERROR_E10(result); } else { const double sy = GSL_SIGN(y); const int N = (int) floor(l10_val); const double arg_val = (l10_val - N) * M_LN10; const double arg_err = dy/fabs(y) + dx + 2.0*GSL_DBL_EPSILON*fabs(arg_val); result->val = sy * exp(arg_val); result->err = arg_err * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->e10 = N; return GSL_SUCCESS; } } } int gsl_sf_expm1_e(const double x, gsl_sf_result * result) { const double cut = 0.002; if(x < GSL_LOG_DBL_MIN) { result->val = -1.0; result->err = GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < -cut) { result->val = exp(x) - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < cut) { result->val = x * (1.0 + 0.5*x*(1.0 + x/3.0*(1.0 + 0.25*x*(1.0 + 0.2*x)))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_LOG_DBL_MAX) { result->val = exp(x) - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_exprel_e(const double x, gsl_sf_result * result) { const double cut = 0.002; if(x < GSL_LOG_DBL_MIN) { result->val = -1.0/x; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -cut) { result->val = (exp(x) - 1.0)/x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < cut) { result->val = (1.0 + 0.5*x*(1.0 + x/3.0*(1.0 + 0.25*x*(1.0 + 0.2*x)))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_LOG_DBL_MAX) { result->val = (exp(x) - 1.0)/x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_exprel_2_e(double x, gsl_sf_result * result) { const double cut = 0.002; if(x < GSL_LOG_DBL_MIN) { result->val = -2.0/x*(1.0 + 1.0/x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -cut) { result->val = 2.0*(exp(x) - 1.0 - x)/(x*x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < cut) { result->val = (1.0 + 1.0/3.0*x*(1.0 + 0.25*x*(1.0 + 0.2*x*(1.0 + 1.0/6.0*x)))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_LOG_DBL_MAX) { result->val = 2.0*(exp(x) - 1.0 - x)/(x*x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_exprel_n_CF_e(const double N, const double x, gsl_sf_result * result) { return exprel_n_CF(N, x, result); } int gsl_sf_exprel_n_e(const int N, const double x, gsl_sf_result * result) { if(N < 0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(fabs(x) < GSL_ROOT3_DBL_EPSILON * N) { result->val = 1.0 + x/(N+1) * (1.0 + x/(N+2)); result->err = 2.0 * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(N == 0) { return gsl_sf_exp_e(x, result); } else if(N == 1) { return gsl_sf_exprel_e(x, result); } else if(N == 2) { return gsl_sf_exprel_2_e(x, result); } else { if(x > N && (-x + N*(1.0 + log(x/N)) < GSL_LOG_DBL_EPSILON)) { /* x is much larger than n. * Ignore polynomial part, so * exprel_N(x) ~= e^x N!/x^N */ gsl_sf_result lnf_N; double lnr_val; double lnr_err; double lnterm; gsl_sf_lnfact_e(N, &lnf_N); lnterm = N*log(x); lnr_val = x + lnf_N.val - lnterm; lnr_err = GSL_DBL_EPSILON * (fabs(x) + fabs(lnf_N.val) + fabs(lnterm)); lnr_err += lnf_N.err; return gsl_sf_exp_err_e(lnr_val, lnr_err, result); } else if(x > N) { /* Write the identity * exprel_n(x) = e^x n! / x^n (1 - Gamma[n,x]/Gamma[n]) * then use the asymptotic expansion * Gamma[n,x] ~ x^(n-1) e^(-x) (1 + (n-1)/x + (n-1)(n-2)/x^2 + ...) */ double ln_x = log(x); gsl_sf_result lnf_N; double lg_N; double lnpre_val; double lnpre_err; gsl_sf_lnfact_e(N, &lnf_N); /* log(N!) */ lg_N = lnf_N.val - log(N); /* log(Gamma(N)) */ lnpre_val = x + lnf_N.val - N*ln_x; lnpre_err = GSL_DBL_EPSILON * (fabs(x) + fabs(lnf_N.val) + fabs(N*ln_x)); lnpre_err += lnf_N.err; if(lnpre_val < GSL_LOG_DBL_MAX - 5.0) { int stat_eG; gsl_sf_result bigG_ratio; gsl_sf_result pre; int stat_ex = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &pre); double ln_bigG_ratio_pre = -x + (N-1)*ln_x - lg_N; double bigGsum = 1.0; double term = 1.0; int k; for(k=1; kval = pre.val * (1.0 - bigG_ratio.val); result->err = pre.val * (2.0*GSL_DBL_EPSILON + bigG_ratio.err); result->err += pre.err * fabs(1.0 - bigG_ratio.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ex; } else { result->val = 0.0; result->err = 0.0; return stat_eG; } } else { OVERFLOW_ERROR(result); } } else if(x > -10.0*N) { return exprel_n_CF(N, x, result); } else { /* x -> -Inf asymptotic: * exprel_n(x) ~ e^x n!/x^n - n/x (1 + (n-1)/x + (n-1)(n-2)/x + ...) * ~ - n/x (1 + (n-1)/x + (n-1)(n-2)/x + ...) */ double sum = 1.0; double term = 1.0; int k; for(k=1; kval = -N/x * sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } } int gsl_sf_exp_err_e(const double x, const double dx, gsl_sf_result * result) { const double adx = fabs(dx); /* CHECK_POINTER(result) */ if(x + adx > GSL_LOG_DBL_MAX) { OVERFLOW_ERROR(result); } else if(x - adx < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else { const double ex = exp(x); const double edx = exp(adx); result->val = ex; result->err = ex * GSL_MAX_DBL(GSL_DBL_EPSILON, edx - 1.0/edx); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_exp_err_e10_e(const double x, const double dx, gsl_sf_result_e10 * result) { const double adx = fabs(dx); /* CHECK_POINTER(result) */ if(x + adx > INT_MAX - 1) { OVERFLOW_ERROR_E10(result); } else if(x - adx < INT_MIN + 1) { UNDERFLOW_ERROR_E10(result); } else { const int N = (int)floor(x/M_LN10); const double ex = exp(x-N*M_LN10); result->val = ex; result->err = ex * (2.0 * GSL_DBL_EPSILON * (fabs(x) + 1.0) + adx); result->e10 = N; return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_exp(const double x) { EVAL_RESULT(gsl_sf_exp_e(x, &result)); } double gsl_sf_exp_mult(const double x, const double y) { EVAL_RESULT(gsl_sf_exp_mult_e(x, y, &result)); } double gsl_sf_expm1(const double x) { EVAL_RESULT(gsl_sf_expm1_e(x, &result)); } double gsl_sf_exprel(const double x) { EVAL_RESULT(gsl_sf_exprel_e(x, &result)); } double gsl_sf_exprel_2(const double x) { EVAL_RESULT(gsl_sf_exprel_2_e(x, &result)); } double gsl_sf_exprel_n(const int n, const double x) { EVAL_RESULT(gsl_sf_exprel_n_e(n, x, &result)); } gsl-1.16/specfunc/mathieu_radfunc.c0000664000252300025230000002743212171574312014272 00000000000000/* specfunc/mathieu_radfunc.c * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include #include #include int gsl_sf_mathieu_Mc(int kind, int order, double qq, double zz, gsl_sf_result *result) { int even_odd, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn, factor; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1pc, z2pc; double u1, u2; gsl_sf_result aa; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_a(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kkval = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_Ms(int kind, int order, double qq, double zz, gsl_sf_result *result) { int even_odd, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn, factor; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1mc, z2mc, j1pc, z2pc; double u1, u2; gsl_sf_result aa; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } /* Handle the trivial cases where order = 0. */ if (order == 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_b(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kkval = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_Mc_array(int kind, int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]) { int even_odd, order, ii, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1pc, z2pc; double u1, u2; double *aa = work->aa; /* Initialize the result array to zeroes. */ for (ii=0; ii 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); /* Compute all eigenvalues up to nmax. */ gsl_sf_mathieu_a_array(0, nmax, qq, work, aa); for (ii=0, order=nmin; order<=nmax; ii++, order++) { fn = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kkbb; /* Initialize the result array to zeroes. */ for (ii=0; ii 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); /* Compute all eigenvalues up to nmax. */ gsl_sf_mathieu_b_array(0, nmax, qq, work, bb); for (ii=0, order=nmin; order<=nmax; ii++, order++) { fn = 0.0; even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Handle the trivial cases where order = 0. */ if (order == 0) { result_array[ii] = 0.0; continue; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, bb[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kk #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Regular Bessel Function J_0(x) * * exceptions: none */ int gsl_sf_bessel_J0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_J0(const double x); /* Regular Bessel Function J_1(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_J1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_J1(const double x); /* Regular Bessel Function J_n(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_Jn_e(int n, double x, gsl_sf_result * result); double gsl_sf_bessel_Jn(const int n, const double x); /* Regular Bessel Function J_n(x), nmin <= n <= nmax * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Jn_array(int nmin, int nmax, double x, double * result_array); /* Irregular Bessel function Y_0(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Y0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_Y0(const double x); /* Irregular Bessel function Y_1(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_Y1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_Y1(const double x); /* Irregular Bessel function Y_n(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_Yn_e(int n,const double x, gsl_sf_result * result); double gsl_sf_bessel_Yn(const int n,const double x); /* Irregular Bessel function Y_n(x), nmin <= n <= nmax * * x > 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_Yn_array(const int nmin, const int nmax, const double x, double * result_array); /* Regular modified Bessel function I_0(x) * * exceptions: GSL_EOVRFLW */ int gsl_sf_bessel_I0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_I0(const double x); /* Regular modified Bessel function I_1(x) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_I1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_I1(const double x); /* Regular modified Bessel function I_n(x) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_In_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_bessel_In(const int n, const double x); /* Regular modified Bessel function I_n(x) for n=nmin,...,nmax * * nmin >=0, nmax >= nmin * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_In_array(const int nmin, const int nmax, const double x, double * result_array); /* Scaled regular modified Bessel function * exp(-|x|) I_0(x) * * exceptions: none */ int gsl_sf_bessel_I0_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_I0_scaled(const double x); /* Scaled regular modified Bessel function * exp(-|x|) I_1(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_I1_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_I1_scaled(const double x); /* Scaled regular modified Bessel function * exp(-|x|) I_n(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_In_scaled_e(int n, const double x, gsl_sf_result * result); double gsl_sf_bessel_In_scaled(const int n, const double x); /* Scaled regular modified Bessel function * exp(-|x|) I_n(x) for n=nmin,...,nmax * * nmin >=0, nmax >= nmin * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_In_scaled_array(const int nmin, const int nmax, const double x, double * result_array); /* Irregular modified Bessel function K_0(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_K0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_K0(const double x); /* Irregular modified Bessel function K_1(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_K1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_K1(const double x); /* Irregular modified Bessel function K_n(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_Kn_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_bessel_Kn(const int n, const double x); /* Irregular modified Bessel function K_n(x) for n=nmin,...,nmax * * x > 0.0, nmin >=0, nmax >= nmin * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_bessel_Kn_array(const int nmin, const int nmax, const double x, double * result_array); /* Scaled irregular modified Bessel function * exp(x) K_0(x) * * x > 0.0 * exceptions: GSL_EDOM */ int gsl_sf_bessel_K0_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_K0_scaled(const double x); /* Scaled irregular modified Bessel function * exp(x) K_1(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_K1_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_K1_scaled(const double x); /* Scaled irregular modified Bessel function * exp(x) K_n(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Kn_scaled_e(int n, const double x, gsl_sf_result * result); double gsl_sf_bessel_Kn_scaled(const int n, const double x); /* Scaled irregular modified Bessel function exp(x) K_n(x) for n=nmin,...,nmax * * x > 0.0, nmin >=0, nmax >= nmin * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Kn_scaled_array(const int nmin, const int nmax, const double x, double * result_array); /* Regular spherical Bessel function j_0(x) = sin(x)/x * * exceptions: none */ int gsl_sf_bessel_j0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_j0(const double x); /* Regular spherical Bessel function j_1(x) = (sin(x)/x - cos(x))/x * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_j1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_j1(const double x); /* Regular spherical Bessel function j_2(x) = ((3/x^2 - 1)sin(x) - 3cos(x)/x)/x * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_j2_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_j2(const double x); /* Regular spherical Bessel function j_l(x) * * l >= 0, x >= 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_jl_e(const int l, const double x, gsl_sf_result * result); double gsl_sf_bessel_jl(const int l, const double x); /* Regular spherical Bessel function j_l(x) for l=0,1,...,lmax * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_jl_array(const int lmax, const double x, double * result_array); /* Regular spherical Bessel function j_l(x) for l=0,1,...,lmax * Uses Steed's method. * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_jl_steed_array(const int lmax, const double x, double * jl_x_array); /* Irregular spherical Bessel function y_0(x) * * exceptions: none */ int gsl_sf_bessel_y0_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_y0(const double x); /* Irregular spherical Bessel function y_1(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_y1_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_y1(const double x); /* Irregular spherical Bessel function y_2(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_y2_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_y2(const double x); /* Irregular spherical Bessel function y_l(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_yl_e(int l, const double x, gsl_sf_result * result); double gsl_sf_bessel_yl(const int l, const double x); /* Irregular spherical Bessel function y_l(x) for l=0,1,...,lmax * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_yl_array(const int lmax, const double x, double * result_array); /* Regular scaled modified spherical Bessel function * * Exp[-|x|] i_0(x) * * exceptions: none */ int gsl_sf_bessel_i0_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_i0_scaled(const double x); /* Regular scaled modified spherical Bessel function * * Exp[-|x|] i_1(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_i1_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_i1_scaled(const double x); /* Regular scaled modified spherical Bessel function * * Exp[-|x|] i_2(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_i2_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_i2_scaled(const double x); /* Regular scaled modified spherical Bessel functions * * Exp[-|x|] i_l(x) * * i_l(x) = Sqrt[Pi/(2x)] BesselI[l+1/2,x] * * l >= 0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_il_scaled_e(const int l, double x, gsl_sf_result * result); double gsl_sf_bessel_il_scaled(const int l, const double x); /* Regular scaled modified spherical Bessel functions * * Exp[-|x|] i_l(x) * for l=0,1,...,lmax * * exceptions: GSL_EUNDRFLW */ int gsl_sf_bessel_il_scaled_array(const int lmax, const double x, double * result_array); /* Irregular scaled modified spherical Bessel function * Exp[x] k_0(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_k0_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_k0_scaled(const double x); /* Irregular modified spherical Bessel function * Exp[x] k_1(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_bessel_k1_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_k1_scaled(const double x); /* Irregular modified spherical Bessel function * Exp[x] k_2(x) * * x > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_bessel_k2_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_bessel_k2_scaled(const double x); /* Irregular modified spherical Bessel function * Exp[x] k_l[x] * * k_l(x) = Sqrt[Pi/(2x)] BesselK[l+1/2,x] * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_kl_scaled_e(int l, const double x, gsl_sf_result * result); double gsl_sf_bessel_kl_scaled(const int l, const double x); /* Irregular scaled modified spherical Bessel function * Exp[x] k_l(x) * * for l=0,1,...,lmax * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_kl_scaled_array(const int lmax, const double x, double * result_array); /* Regular cylindrical Bessel function J_nu(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Jnu_e(const double nu, const double x, gsl_sf_result * result); double gsl_sf_bessel_Jnu(const double nu, const double x); /* Irregular cylindrical Bessel function Y_nu(x) * * exceptions: */ int gsl_sf_bessel_Ynu_e(double nu, double x, gsl_sf_result * result); double gsl_sf_bessel_Ynu(const double nu, const double x); /* Regular cylindrical Bessel function J_nu(x) * evaluated at a series of x values. The array * contains the x values. They are assumed to be * strictly ordered and positive. The array is * over-written with the values of J_nu(x_i). * * exceptions: GSL_EDOM, GSL_EINVAL */ int gsl_sf_bessel_sequence_Jnu_e(double nu, gsl_mode_t mode, size_t size, double * v); /* Scaled modified cylindrical Bessel functions * * Exp[-|x|] BesselI[nu, x] * x >= 0, nu >= 0 * * exceptions: GSL_EDOM */ int gsl_sf_bessel_Inu_scaled_e(double nu, double x, gsl_sf_result * result); double gsl_sf_bessel_Inu_scaled(double nu, double x); /* Modified cylindrical Bessel functions * * BesselI[nu, x] * x >= 0, nu >= 0 * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_bessel_Inu_e(double nu, double x, gsl_sf_result * result); double gsl_sf_bessel_Inu(double nu, double x); /* Scaled modified cylindrical Bessel functions * * Exp[+|x|] BesselK[nu, x] * x > 0, nu >= 0 * * exceptions: GSL_EDOM */ int gsl_sf_bessel_Knu_scaled_e(const double nu, const double x, gsl_sf_result * result); double gsl_sf_bessel_Knu_scaled(const double nu, const double x); int gsl_sf_bessel_Knu_scaled_e10_e(const double nu, const double x, gsl_sf_result_e10 * result); /* Modified cylindrical Bessel functions * * BesselK[nu, x] * x > 0, nu >= 0 * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_bessel_Knu_e(const double nu, const double x, gsl_sf_result * result); double gsl_sf_bessel_Knu(const double nu, const double x); /* Logarithm of modified cylindrical Bessel functions. * * Log[BesselK[nu, x]] * x > 0, nu >= 0 * * exceptions: GSL_EDOM */ int gsl_sf_bessel_lnKnu_e(const double nu, const double x, gsl_sf_result * result); double gsl_sf_bessel_lnKnu(const double nu, const double x); /* s'th positive zero of the Bessel function J_0(x). * * exceptions: */ int gsl_sf_bessel_zero_J0_e(unsigned int s, gsl_sf_result * result); double gsl_sf_bessel_zero_J0(unsigned int s); /* s'th positive zero of the Bessel function J_1(x). * * exceptions: */ int gsl_sf_bessel_zero_J1_e(unsigned int s, gsl_sf_result * result); double gsl_sf_bessel_zero_J1(unsigned int s); /* s'th positive zero of the Bessel function J_nu(x). * * exceptions: */ int gsl_sf_bessel_zero_Jnu_e(double nu, unsigned int s, gsl_sf_result * result); double gsl_sf_bessel_zero_Jnu(double nu, unsigned int s); __END_DECLS #endif /* __GSL_SF_BESSEL_H__ */ gsl-1.16/specfunc/mathieu_charv.c0000664000252300025230000005625312171574312013756 00000000000000/* specfunc/mathieu_charv.c * * Copyright (C) 2002, 2009 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include #include #include #include #include #include #include #include /* prototypes */ static double solve_cubic(double c2, double c1, double c0); static double ceer(int order, double qq, double aa, int nterms) { double term, term1; int ii, n1; if (order == 0) term = 0.0; else { term = 2.0*qq*qq/aa; if (order != 2) { n1 = order/2 - 1; for (ii=0; ii= 0) { double t1 = rr + sqrt(ww); ss = fabs(t1)/t1*pow(fabs(t1), 1/3.); t1 = rr - sqrt(ww); tt = fabs(t1)/t1*pow(fabs(t1), 1/3.); } else { double theta = acos(rr/sqrt(-qq*qq*qq)); ss = 2*sqrt(-qq)*cos((theta + 4*M_PI)/3.); tt = 0.0; } return (ss + tt - c2/3); } /* Compute an initial approximation for the characteristic value. */ static double approx_c(int order, double qq) { double approx; double c0, c1, c2; if (order < 0) { GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0); } switch (order) { case 0: if (qq <= 4) return (2 - sqrt(4 + 2*qq*qq)); /* Eqn. 31 */ else return asymptotic(order, qq); break; case 1: if (qq <= 4) return (5 + 0.5*(qq - sqrt(5*qq*qq - 16*qq + 64))); /* Eqn. 32 */ else return asymptotic(order, qq); break; case 2: if (qq <= 3) { c2 = -8.0; /* Eqn. 33 */ c1 = -48 - 3*qq*qq; c0 = 20*qq*qq; } else return asymptotic(order, qq); break; case 3: if (qq <= 6.25) { c2 = -qq - 8; /* Eqn. 34 */ c1 = 16*qq - 128 - 2*qq*qq; c0 = qq*qq*(qq + 8); } else return asymptotic(order, qq); break; default: if (order < 70) { if (1.7*order > 2*sqrt(qq)) { /* Eqn. 30 */ double n2 = (double)(order*order); double n22 = (double)((n2 - 1)*(n2 - 1)); double q2 = qq*qq; double q4 = q2*q2; approx = n2 + 0.5*q2/(n2 - 1); approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4)); approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/ (64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9)); if (1.4*order < 2*sqrt(qq)) { approx += asymptotic(order, qq); approx *= 0.5; } } else approx = asymptotic(order, qq); return approx; } else return order*order; } /* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */ approx = solve_cubic(c2, c1, c0); if ( approx < 0 && sqrt(qq) > 0.1*order ) return asymptotic(order-1, qq); else return (order*order + fabs(approx)); } static double approx_s(int order, double qq) { double approx; double c0, c1, c2; if (order < 1) { GSL_ERROR_VAL("Undefined order for Mathieu function", GSL_EINVAL, 0.0); } switch (order) { case 1: if (qq <= 4) return (5 - 0.5*(qq + sqrt(5*qq*qq + 16*qq + 64))); /* Eqn. 35 */ else return asymptotic(order-1, qq); break; case 2: if (qq <= 5) return (10 - sqrt(36 + qq*qq)); /* Eqn. 36 */ else return asymptotic(order-1, qq); break; case 3: if (qq <= 6.25) { c2 = qq - 8; /* Eqn. 37 */ c1 = -128 - 16*qq - 2*qq*qq; c0 = qq*qq*(8 - qq); } else return asymptotic(order-1, qq); break; default: if (order < 70) { if (1.7*order > 2*sqrt(qq)) { /* Eqn. 30 */ double n2 = (double)(order*order); double n22 = (double)((n2 - 1)*(n2 - 1)); double q2 = qq*qq; double q4 = q2*q2; approx = n2 + 0.5*q2/(n2 - 1); approx += (5*n2 + 7)*q4/(32*n22*(n2 - 1)*(n2 - 4)); approx += (9*n2*n2 + 58*n2 + 29)*q4*q2/ (64*n22*n22*(n2 - 1)*(n2 - 4)*(n2 - 9)); if (1.4*order < 2*sqrt(qq)) { approx += asymptotic(order-1, qq); approx *= 0.5; } } else approx = asymptotic(order-1, qq); return approx; } else return order*order; } /* Solve the cubic x^3 + c2*x^2 + c1*x + c0 = 0 */ approx = solve_cubic(c2, c1, c0); if ( approx < 0 && sqrt(qq) > 0.1*order ) return asymptotic(order-1, qq); else return (order*order + fabs(approx)); } int gsl_sf_mathieu_a(int order, double qq, gsl_sf_result *result) { int even_odd, nterms = 50, ii, counter = 0, maxcount = 1000; int dir = 0; /* step direction for new search */ double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa; double aa_approx; /* current approximation for solution */ even_odd = 0; if (order % 2 != 0) even_odd = 1; /* If the argument is 0, then the coefficient is simply the square of the order. */ if (qq == 0) { result->val = order*order; result->err = 0.0; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */ if (order < 0) order *= -1; if (qq < 0.0) { if (even_odd == 0) return gsl_sf_mathieu_a(order, -qq, result); else return gsl_sf_mathieu_b(order, -qq, result); } /* Compute an initial approximation for the characteristic value. */ aa_approx = approx_c(order, qq); /* Save the original approximation for later comparison. */ aa_orig = aa = aa_approx; /* Loop as long as the final value is not near the approximate value (with a max limit to avoid potential infinite loop). */ while (counter < maxcount) { a1 = aa + 0.001; ii = 0; if (even_odd == 0) fa1 = ceer(order, qq, a1, nterms); else fa1 = ceor(order, qq, a1, nterms); for (;;) { if (even_odd == 0) fa = ceer(order, qq, aa, nterms); else fa = ceor(order, qq, aa, nterms); a2 = a1; a1 = aa; if (fa == fa1) { result->err = GSL_DBL_EPSILON; break; } aa -= (aa - a2)/(fa - fa1)*fa; dela = fabs(aa - a2); if (dela < GSL_DBL_EPSILON) { result->err = GSL_DBL_EPSILON; break; } if (ii > 40) { result->err = dela; break; } fa1 = fa; ii++; } /* If the solution found is not near the original approximation, tweak the approximate value, and try again. */ if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)) || (order > 10 && fabs(aa - aa_orig) > 1.5*order)) { counter++; if (counter == maxcount) { result->err = fabs(aa - aa_orig); break; } if (aa > aa_orig) { if (dir == 1) da /= 2; dir = -1; } else { if (dir == -1) da /= 2; dir = 1; } aa_approx += dir*da*counter; aa = aa_approx; continue; } else break; } result->val = aa; /* If we went through the maximum number of retries and still didn't find the solution, let us know. */ if (counter == maxcount) { GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_sf_mathieu_b(int order, double qq, gsl_sf_result *result) { int even_odd, nterms = 50, ii, counter = 0, maxcount = 1000; int dir = 0; /* step direction for new search */ double a1, a2, fa, fa1, dela, aa_orig, da = 0.025, aa; double aa_approx; /* current approximation for solution */ even_odd = 0; if (order % 2 != 0) even_odd = 1; /* The order cannot be 0. */ if (order == 0) { GSL_ERROR("Characteristic value undefined for order 0", GSL_EFAILED); } /* If the argument is 0, then the coefficient is simply the square of the order. */ if (qq == 0) { result->val = order*order; result->err = 0.0; return GSL_SUCCESS; } /* Use symmetry characteristics of the functions to handle cases with negative order and/or argument q. See Abramowitz & Stegun, 20.8.3. */ if (order < 0) order *= -1; if (qq < 0.0) { if (even_odd == 0) return gsl_sf_mathieu_b(order, -qq, result); else return gsl_sf_mathieu_a(order, -qq, result); } /* Compute an initial approximation for the characteristic value. */ aa_approx = approx_s(order, qq); /* Save the original approximation for later comparison. */ aa_orig = aa = aa_approx; /* Loop as long as the final value is not near the approximate value (with a max limit to avoid potential infinite loop). */ while (counter < maxcount) { a1 = aa + 0.001; ii = 0; if (even_odd == 0) fa1 = seer(order, qq, a1, nterms); else fa1 = seor(order, qq, a1, nterms); for (;;) { if (even_odd == 0) fa = seer(order, qq, aa, nterms); else fa = seor(order, qq, aa, nterms); a2 = a1; a1 = aa; if (fa == fa1) { result->err = GSL_DBL_EPSILON; break; } aa -= (aa - a2)/(fa - fa1)*fa; dela = fabs(aa - a2); if (dela < 1e-18) { result->err = GSL_DBL_EPSILON; break; } if (ii > 40) { result->err = dela; break; } fa1 = fa; ii++; } /* If the solution found is not near the original approximation, tweak the approximate value, and try again. */ if (fabs(aa - aa_orig) > (3 + 0.01*order*fabs(aa_orig)) || (order > 10 && fabs(aa - aa_orig) > 1.5*order)) { counter++; if (counter == maxcount) { result->err = fabs(aa - aa_orig); break; } if (aa > aa_orig) { if (dir == 1) da /= 2; dir = -1; } else { if (dir == -1) da /= 2; dir = 1; } aa_approx += dir*da*counter; aa = aa_approx; continue; } else break; } result->val = aa; /* If we went through the maximum number of retries and still didn't find the solution, let us know. */ if (counter == maxcount) { GSL_ERROR("Wrong characteristic Mathieu value", GSL_EFAILED); } return GSL_SUCCESS; } /* Eigenvalue solutions for characteristic values below. */ /* figi.c converted from EISPACK Fortran FIGI.F. * * given a nonsymmetric tridiagonal matrix such that the products * of corresponding pairs of off-diagonal elements are all * non-negative, this subroutine reduces it to a symmetric * tridiagonal matrix with the same eigenvalues. if, further, * a zero product only occurs when both factors are zero, * the reduced matrix is similar to the original matrix. * * on input * * n is the order of the matrix. * * t contains the input matrix. its subdiagonal is * stored in the last n-1 positions of the first column, * its diagonal in the n positions of the second column, * and its superdiagonal in the first n-1 positions of * the third column. t(1,1) and t(n,3) are arbitrary. * * on output * * t is unaltered. * * d contains the diagonal elements of the symmetric matrix. * * e contains the subdiagonal elements of the symmetric * matrix in its last n-1 positions. e(1) is not set. * * e2 contains the squares of the corresponding elements of e. * e2 may coincide with e if the squares are not needed. * * ierr is set to * zero for normal return, * n+i if t(i,1)*t(i-1,3) is negative, * -(3*n+i) if t(i,1)*t(i-1,3) is zero with one factor * non-zero. in this case, the eigenvectors of * the symmetric matrix are not simply related * to those of t and should not be sought. * * questions and comments should be directed to burton s. garbow, * mathematics and computer science div, argonne national laboratory * * this version dated august 1983. */ static int figi(int nn, double *tt, double *dd, double *ee, double *e2) { int ii; for (ii=0; iieven_order, odd_order = work->odd_order, extra_values = work->extra_values, ii, jj; int status; double *tt = work->tt, *dd = work->dd, *ee = work->ee, *e2 = work->e2, *zz = work->zz, *aa = work->aa; gsl_matrix_view mat, evec; gsl_vector_view eval; gsl_eigen_symmv_workspace *wmat = work->wmat; if (order_max > work->size || order_max <= order_min || order_min < 0) { GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL); } /* Convert the nonsymmetric tridiagonal matrix to a symmetric tridiagonal form. */ tt[0] = 0.0; tt[1] = 0.0; tt[2] = qq; for (ii=1; iieval, 0, even_order); evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order); gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat); gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC); for (ii=0; iieval, 0, odd_order); evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order); gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat); gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC); for (ii=0; iieven_order-1, odd_order = work->odd_order, extra_values = work->extra_values, ii, jj; double *zz = work->zz, *bb = work->bb; gsl_matrix_view mat, evec; gsl_vector_view eval; gsl_eigen_symmv_workspace *wmat = work->wmat; if (order_max > work->size || order_max <= order_min || order_min < 0) { GSL_ERROR ("invalid range [order_min,order_max]", GSL_EINVAL); } /* Fill the period \pi matrix. */ for (ii=0; iieval, 0, even_order); evec = gsl_matrix_submatrix(work->evec, 0, 0, even_order, even_order); gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat); gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC); bb[0] = 0.0; for (ii=0; iieval, 0, odd_order); evec = gsl_matrix_submatrix(work->evec, 0, 0, odd_order, odd_order); gsl_eigen_symmv(&mat.matrix, &eval.vector, &evec.matrix, wmat); gsl_eigen_symmv_sort(&eval.vector, &evec.matrix, GSL_EIGEN_SORT_VAL_ASC); for (ii=0; ii #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC bk0(), bk0e() */ /* chebyshev expansions series for bk0 on the interval 0. to 4.00000d+00 with weighted error 3.57e-19 log weighted error 18.45 significant figures required 17.99 decimal places required 18.97 series for ak0 on the interval 1.25000d-01 to 5.00000d-01 with weighted error 5.34e-17 log weighted error 16.27 significant figures required 14.92 decimal places required 16.89 series for ak02 on the interval 0. to 1.25000d-01 with weighted error 2.34e-17 log weighted error 16.63 significant figures required 14.67 decimal places required 17.20 */ static double bk0_data[11] = { -0.03532739323390276872, 0.3442898999246284869, 0.03597993651536150163, 0.00126461541144692592, 0.00002286212103119451, 0.00000025347910790261, 0.00000000190451637722, 0.00000000001034969525, 0.00000000000004259816, 0.00000000000000013744, 0.00000000000000000035 }; static cheb_series bk0_cs = { bk0_data, 10, -1, 1, 10 }; static double ak0_data[17] = { -0.07643947903327941, -0.02235652605699819, 0.00077341811546938, -0.00004281006688886, 0.00000308170017386, -0.00000026393672220, 0.00000002563713036, -0.00000000274270554, 0.00000000031694296, -0.00000000003902353, 0.00000000000506804, -0.00000000000068895, 0.00000000000009744, -0.00000000000001427, 0.00000000000000215, -0.00000000000000033, 0.00000000000000005 }; static cheb_series ak0_cs = { ak0_data, 16, -1, 1, 10 }; static double ak02_data[14] = { -0.01201869826307592, -0.00917485269102569, 0.00014445509317750, -0.00000401361417543, 0.00000015678318108, -0.00000000777011043, 0.00000000046111825, -0.00000000003158592, 0.00000000000243501, -0.00000000000020743, 0.00000000000001925, -0.00000000000000192, 0.00000000000000020, -0.00000000000000002 }; static cheb_series ak02_cs = { ak02_data, 13, -1, 1, 8 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_K0_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x <= 2.0) { const double lx = log(x); const double ex = exp(x); int stat_I0; gsl_sf_result I0; gsl_sf_result c; cheb_eval_e(&bk0_cs, 0.5*x*x-1.0, &c); stat_I0 = gsl_sf_bessel_I0_e(x, &I0); result->val = ex * ((-lx+M_LN2)*I0.val - 0.25 + c.val); result->err = ex * ((M_LN2+fabs(lx))*I0.err + c.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_I0; } else if(x <= 8.0) { const double sx = sqrt(x); gsl_sf_result c; cheb_eval_e(&ak0_cs, (16.0/x-5.0)/3.0, &c); result->val = (1.25 + c.val) / sx; result->err = c.err / sx; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sx = sqrt(x); gsl_sf_result c; cheb_eval_e(&ak02_cs, 16.0/x-1.0, &c); result->val = (1.25 + c.val) / sx; result->err = (c.err + GSL_DBL_EPSILON) / sx; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_K0_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x <= 2.0) { const double lx = log(x); int stat_I0; gsl_sf_result I0; gsl_sf_result c; cheb_eval_e(&bk0_cs, 0.5*x*x-1.0, &c); stat_I0 = gsl_sf_bessel_I0_e(x, &I0); result->val = (-lx+M_LN2)*I0.val - 0.25 + c.val; result->err = (fabs(lx) + M_LN2) * I0.err + c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_I0; } else { gsl_sf_result K0_scaled; int stat_K0 = gsl_sf_bessel_K0_scaled_e(x, &K0_scaled); int stat_e = gsl_sf_exp_mult_err_e(-x, GSL_DBL_EPSILON*fabs(x), K0_scaled.val, K0_scaled.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K0); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_K0_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_K0_scaled_e(x, &result)); } double gsl_sf_bessel_K0(const double x) { EVAL_RESULT(gsl_sf_bessel_K0_e(x, &result)); } gsl-1.16/specfunc/bessel_j.c0000664000252300025230000002545412171574312012724 00000000000000/* specfunc/bessel_j.c * * Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_olver.h" /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_j0_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(ax < 0.5) { const double y = x*x; const double c1 = -1.0/6.0; const double c2 = 1.0/120.0; const double c3 = -1.0/5040.0; const double c4 = 1.0/362880.0; const double c5 = -1.0/39916800.0; const double c6 = 1.0/6227020800.0; result->val = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*c6))))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result sin_result; const int stat = gsl_sf_sin_e(x, &sin_result); result->val = sin_result.val/x; result->err = fabs(sin_result.err/x); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } } int gsl_sf_bessel_j1_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 3.1*GSL_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(ax < 0.25) { const double y = x*x; const double c1 = -1.0/10.0; const double c2 = 1.0/280.0; const double c3 = -1.0/15120.0; const double c4 = 1.0/1330560.0; const double c5 = -1.0/172972800.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*c5)))); result->val = x/3.0 * sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result cos_result; gsl_sf_result sin_result; const int stat_cos = gsl_sf_cos_e(x, &cos_result); const int stat_sin = gsl_sf_sin_e(x, &sin_result); const double cos_x = cos_result.val; const double sin_x = sin_result.val; result->val = (sin_x/x - cos_x)/x; result->err = (fabs(sin_result.err/x) + fabs(cos_result.err))/fabs(x); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(sin_x/(x*x)) + fabs(cos_x/x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_cos, stat_sin); } } int gsl_sf_bessel_j2_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(ax < 4.0*GSL_SQRT_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(ax < 1.3) { const double y = x*x; const double c1 = -1.0/14.0; const double c2 = 1.0/504.0; const double c3 = -1.0/33264.0; const double c4 = 1.0/3459456.0; const double c5 = -1.0/518918400; const double c6 = 1.0/105859353600.0; const double c7 = -1.0/28158588057600.0; const double c8 = 1.0/9461285587353600.0; const double c9 = -1.0/3916972233164390400.0; const double sum = 1.0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*(c7+y*(c8+y*c9)))))))); result->val = y/15.0 * sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result cos_result; gsl_sf_result sin_result; const int stat_cos = gsl_sf_cos_e(x, &cos_result); const int stat_sin = gsl_sf_sin_e(x, &sin_result); const double cos_x = cos_result.val; const double sin_x = sin_result.val; const double f = (3.0/(x*x) - 1.0); result->val = (f * sin_x - 3.0*cos_x/x)/x; result->err = fabs(f * sin_result.err/x) + fabs((3.0*cos_result.err/x)/x); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(f*sin_x/x) + 3.0*fabs(cos_x/(x*x))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_cos, stat_sin); } } int gsl_sf_bessel_jl_e(const int l, const double x, gsl_sf_result * result) { if(l < 0 || x < 0.0) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = ( l > 0 ? 0.0 : 1.0 ); result->err = 0.0; return GSL_SUCCESS; } else if(l == 0) { return gsl_sf_bessel_j0_e(x, result); } else if(l == 1) { return gsl_sf_bessel_j1_e(x, result); } else if(l == 2) { return gsl_sf_bessel_j2_e(x, result); } else if(x*x < 10.0*(l+0.5)/M_E) { gsl_sf_result b; int status = gsl_sf_bessel_IJ_taylor_e(l+0.5, x, -1, 50, GSL_DBL_EPSILON, &b); double pre = sqrt((0.5*M_PI)/x); result->val = pre * b.val; result->err = pre * b.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return status; } else if(GSL_ROOT4_DBL_EPSILON * x > (l*l + l + 1.0)) { gsl_sf_result b; int status = gsl_sf_bessel_Jnu_asympx_e(l + 0.5, x, &b); double pre = sqrt((0.5*M_PI)/x); result->val = pre * b.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err; return status; } else if(l > 1.0/GSL_ROOT6_DBL_EPSILON) { gsl_sf_result b; int status = gsl_sf_bessel_Jnu_asymp_Olver_e(l + 0.5, x, &b); double pre = sqrt((0.5*M_PI)/x); result->val = pre * b.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err; return status; } else if(x > 1000.0 && x > l*l) { /* We need this path to avoid feeding large x to CF1 below; */ gsl_sf_result b; int status = gsl_sf_bessel_Jnu_asympx_e(l + 0.5, x, &b); double pre = sqrt((0.5*M_PI)/x); result->val = pre * b.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + pre * b.err; return status; } else { double sgn; double ratio; /* The CF1 call will hit 10000 iterations for x > 10000 + l */ int stat_CF1 = gsl_sf_bessel_J_CF1(l+0.5, x, &ratio, &sgn); double jellp1 = GSL_SQRT_DBL_EPSILON * ratio; double jell = GSL_SQRT_DBL_EPSILON; double jellm1; int ell; for(ell = l; ell > 0; ell--) { jellm1 = -jellp1 + (2*ell + 1)/x * jell; jellp1 = jell; jell = jellm1; } if(fabs(jell) > fabs(jellp1)) { gsl_sf_result j0_result; int stat_j0 = gsl_sf_bessel_j0_e(x, &j0_result); double pre = GSL_SQRT_DBL_EPSILON / jell; result->val = j0_result.val * pre; result->err = j0_result.err * fabs(pre); result->err += 4.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_j0, stat_CF1); } else { gsl_sf_result j1_result; int stat_j1 = gsl_sf_bessel_j1_e(x, &j1_result); double pre = GSL_SQRT_DBL_EPSILON / jellp1; result->val = j1_result.val * pre; result->err = j1_result.err * fabs(pre); result->err += 4.0 * GSL_DBL_EPSILON * (0.5*l + 1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_j1, stat_CF1); } } } int gsl_sf_bessel_jl_array(const int lmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(lmax < 0 || x < 0.0) { int j; for(j=0; j<=lmax; j++) result_array[j] = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(x == 0.0) { int j; for(j=1; j<=lmax; j++) result_array[j] = 0.0; result_array[0] = 1.0; return GSL_SUCCESS; } else { gsl_sf_result r_jellp1; gsl_sf_result r_jell; int stat_0 = gsl_sf_bessel_jl_e(lmax+1, x, &r_jellp1); int stat_1 = gsl_sf_bessel_jl_e(lmax, x, &r_jell); double jellp1 = r_jellp1.val; double jell = r_jell.val; double jellm1; int ell; result_array[lmax] = jell; for(ell = lmax; ell >= 1; ell--) { jellm1 = -jellp1 + (2*ell + 1)/x * jell; jellp1 = jell; jell = jellm1; result_array[ell-1] = jellm1; } return GSL_ERROR_SELECT_2(stat_0, stat_1); } } int gsl_sf_bessel_jl_steed_array(const int lmax, const double x, double * jl_x) { /* CHECK_POINTER(jl_x) */ if(lmax < 0 || x < 0.0) { int j; for(j=0; j<=lmax; j++) jl_x[j] = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(x == 0.0) { int j; for(j=1; j<=lmax; j++) jl_x[j] = 0.0; jl_x[0] = 1.0; return GSL_SUCCESS; } else if(x < 2.0*GSL_ROOT4_DBL_EPSILON) { /* first two terms of Taylor series */ double inv_fact = 1.0; /* 1/(1 3 5 ... (2l+1)) */ double x_l = 1.0; /* x^l */ int l; for(l=0; l<=lmax; l++) { jl_x[l] = x_l * inv_fact; jl_x[l] *= 1.0 - 0.5*x*x/(2.0*l+3.0); inv_fact /= 2.0*l+3.0; x_l *= x; } return GSL_SUCCESS; } else { /* Steed/Barnett algorithm [Comp. Phys. Comm. 21, 297 (1981)] */ double x_inv = 1.0/x; double W = 2.0*x_inv; double F = 1.0; double FP = (lmax+1.0) * x_inv; double B = 2.0*FP + x_inv; double end = B + 20000.0*W; double D = 1.0/B; double del = -D; FP += del; /* continued fraction */ do { B += W; D = 1.0/(B-D); del *= (B*D - 1.); FP += del; if(D < 0.0) F = -F; if(B > end) { GSL_ERROR ("error", GSL_EMAXITER); } } while(fabs(del) >= fabs(FP) * GSL_DBL_EPSILON); FP *= F; if(lmax > 0) { /* downward recursion */ double XP2 = FP; double PL = lmax * x_inv; int L = lmax; int LP; jl_x[lmax] = F; for(LP = 1; LP<=lmax; LP++) { jl_x[L-1] = PL * jl_x[L] + XP2; FP = PL*jl_x[L-1] - jl_x[L]; XP2 = FP; PL -= x_inv; --L; } F = jl_x[0]; } /* normalization */ W = x_inv / hypot(FP, F); jl_x[0] = W*F; if(lmax > 0) { int L; for(L=1; L<=lmax; L++) { jl_x[L] *= W; } } return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_j0(const double x) { EVAL_RESULT(gsl_sf_bessel_j0_e(x, &result)); } double gsl_sf_bessel_j1(const double x) { EVAL_RESULT(gsl_sf_bessel_j1_e(x, &result)); } double gsl_sf_bessel_j2(const double x) { EVAL_RESULT(gsl_sf_bessel_j2_e(x, &result)); } double gsl_sf_bessel_jl(const int l, const double x) { EVAL_RESULT(gsl_sf_bessel_jl_e(l, x, &result)); } gsl-1.16/specfunc/Makefile.am0000664000252300025230000000441012171574312013013 00000000000000noinst_LTLIBRARIES = libgslspecfunc.la pkginclude_HEADERS = gsl_sf.h gsl_sf_airy.h gsl_sf_bessel.h gsl_sf_clausen.h gsl_sf_coulomb.h gsl_sf_coupling.h gsl_sf_dawson.h gsl_sf_debye.h gsl_sf_dilog.h gsl_sf_elementary.h gsl_sf_ellint.h gsl_sf_elljac.h gsl_sf_erf.h gsl_sf_exp.h gsl_sf_expint.h gsl_sf_fermi_dirac.h gsl_sf_gamma.h gsl_sf_gegenbauer.h gsl_sf_hyperg.h gsl_sf_laguerre.h gsl_sf_lambert.h gsl_sf_legendre.h gsl_sf_log.h gsl_sf_mathieu.h gsl_sf_pow_int.h gsl_sf_psi.h gsl_sf_result.h gsl_sf_synchrotron.h gsl_sf_transport.h gsl_sf_trig.h gsl_sf_zeta.h gsl_specfunc.h noinst_HEADERS = bessel_amp_phase.h bessel_olver.h bessel_temme.h bessel.h hyperg.h legendre.h eval.h chebyshev.h cheb_eval.c cheb_eval_mode.c check.h error.h INCLUDES = -I$(top_srcdir) libgslspecfunc_la_SOURCES = airy.c airy_der.c airy_zero.c atanint.c bessel.c bessel.h bessel_I0.c bessel_I1.c bessel_In.c bessel_Inu.c bessel_J0.c bessel_J1.c bessel_Jn.c bessel_Jnu.c bessel_K0.c bessel_K1.c bessel_Kn.c bessel_Knu.c bessel_Y0.c bessel_Y1.c bessel_Yn.c bessel_Ynu.c bessel_amp_phase.c bessel_amp_phase.h bessel_i.c bessel_j.c bessel_k.c bessel_olver.c bessel_temme.c bessel_y.c bessel_zero.c bessel_sequence.c beta.c beta_inc.c clausen.c coulomb.c coupling.c coulomb_bound.c dawson.c debye.c dilog.c elementary.c ellint.c elljac.c erfc.c exp.c expint.c expint3.c fermi_dirac.c gegenbauer.c gamma.c gamma_inc.c hyperg_0F1.c hyperg_2F0.c hyperg_1F1.c hyperg_2F1.c hyperg_U.c hyperg.c laguerre.c lambert.c legendre_H3d.c legendre_Qn.c legendre_con.c legendre_poly.c log.c mathieu_angfunc.c mathieu_charv.c mathieu_coeff.c mathieu_radfunc.c mathieu_workspace.c poch.c pow_int.c psi.c recurse.h result.c shint.c sinint.c synchrotron.c transport.c trig.c zeta.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgslspecfunc.la ../eigen/libgsleigen.la ../linalg/libgsllinalg.la ../sort/libgslsort.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test_sf.c test_sf.h test_airy.c test_bessel.c test_coulomb.c test_dilog.c test_gamma.c test_hyperg.c test_legendre.c test_mathieu.c gsl-1.16/specfunc/fermi_dirac.c0000664000252300025230000010316012171574312013371 00000000000000/* specfunc/fermi_dirac.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" #define locEPS (1000.0*GSL_DBL_EPSILON) /* Chebyshev fit for F_{1}(t); -1 < t < 1, -1 < x < 1 */ static double fd_1_a_data[22] = { 1.8949340668482264365, 0.7237719066890052793, 0.1250000000000000000, 0.0101065196435973942, 0.0, -0.0000600615242174119, 0.0, 6.816528764623e-7, 0.0, -9.5895779195e-9, 0.0, 1.515104135e-10, 0.0, -2.5785616e-12, 0.0, 4.62270e-14, 0.0, -8.612e-16, 0.0, 1.65e-17, 0.0, -3.e-19 }; static cheb_series fd_1_a_cs = { fd_1_a_data, 21, -1, 1, 12 }; /* Chebyshev fit for F_{1}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */ static double fd_1_b_data[22] = { 10.409136795234611872, 3.899445098225161947, 0.513510935510521222, 0.010618736770218426, -0.001584468020659694, 0.000146139297161640, -1.408095734499e-6, -2.177993899484e-6, 3.91423660640e-7, -2.3860262660e-8, -4.138309573e-9, 1.283965236e-9, -1.39695990e-10, -4.907743e-12, 4.399878e-12, -7.17291e-13, 2.4320e-14, 1.4230e-14, -3.446e-15, 2.93e-16, 3.7e-17, -1.6e-17 }; static cheb_series fd_1_b_cs = { fd_1_b_data, 21, -1, 1, 11 }; /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */ static double fd_1_c_data[23] = { 56.78099449124299762, 21.00718468237668011, 2.24592457063193457, 0.00173793640425994, -0.00058716468739423, 0.00016306958492437, -0.00003817425583020, 7.64527252009e-6, -1.31348500162e-6, 1.9000646056e-7, -2.141328223e-8, 1.23906372e-9, 2.1848049e-10, -1.0134282e-10, 2.484728e-11, -4.73067e-12, 7.3555e-13, -8.740e-14, 4.85e-15, 1.23e-15, -5.6e-16, 1.4e-16, -3.e-17 }; static cheb_series fd_1_c_cs = { fd_1_c_data, 22, -1, 1, 13 }; /* Chebyshev fit for F_{1}(x) / x^2 * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 * x = 10(t+2) */ static double fd_1_d_data[30] = { 1.0126626021151374442, -0.0063312525536433793, 0.0024837319237084326, -0.0008764333697726109, 0.0002913344438921266, -0.0000931877907705692, 0.0000290151342040275, -8.8548707259955e-6, 2.6603474114517e-6, -7.891415690452e-7, 2.315730237195e-7, -6.73179452963e-8, 1.94048035606e-8, -5.5507129189e-9, 1.5766090896e-9, -4.449310875e-10, 1.248292745e-10, -3.48392894e-11, 9.6791550e-12, -2.6786240e-12, 7.388852e-13, -2.032828e-13, 5.58115e-14, -1.52987e-14, 4.1886e-15, -1.1458e-15, 3.132e-16, -8.56e-17, 2.33e-17, -5.9e-18 }; static cheb_series fd_1_d_cs = { fd_1_d_data, 29, -1, 1, 14 }; /* Chebyshev fit for F_{1}(x) / x^2 * 30 < x < Inf * -1 < t < 1 * t = 60/x - 1 * x = 60/(t+1) */ static double fd_1_e_data[10] = { 1.0013707783890401683, 0.0009138522593601060, 0.0002284630648400133, -1.57e-17, -1.27e-17, -9.7e-18, -6.9e-18, -4.6e-18, -2.9e-18, -1.7e-18 }; static cheb_series fd_1_e_cs = { fd_1_e_data, 9, -1, 1, 4 }; /* Chebyshev fit for F_{2}(t); -1 < t < 1, -1 < x < 1 */ static double fd_2_a_data[21] = { 2.1573661917148458336, 0.8849670334241132182, 0.1784163467613519713, 0.0208333333333333333, 0.0012708226459768508, 0.0, -5.0619314244895e-6, 0.0, 4.32026533989e-8, 0.0, -4.870544166e-10, 0.0, 6.4203740e-12, 0.0, -9.37424e-14, 0.0, 1.4715e-15, 0.0, -2.44e-17, 0.0, 4.e-19 }; static cheb_series fd_2_a_cs = { fd_2_a_data, 20, -1, 1, 12 }; /* Chebyshev fit for F_{2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */ static double fd_2_b_data[22] = { 16.508258811798623599, 7.421719394793067988, 1.458309885545603821, 0.128773850882795229, 0.001963612026198147, -0.000237458988738779, 0.000018539661382641, -1.92805649479e-7, -2.01950028452e-7, 3.2963497518e-8, -1.885817092e-9, -2.72632744e-10, 8.0554561e-11, -8.313223e-12, -2.24489e-13, 2.18778e-13, -3.4290e-14, 1.225e-15, 5.81e-16, -1.37e-16, 1.2e-17, 1.e-18 }; static cheb_series fd_2_b_cs = { fd_2_b_data, 21, -1, 1, 12 }; /* Chebyshev fit for F_{1}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */ static double fd_2_c_data[20] = { 168.87129776686440711, 81.80260488091659458, 15.75408505947931513, 1.12325586765966440, 0.00059057505725084, -0.00016469712946921, 0.00003885607810107, -7.89873660613e-6, 1.39786238616e-6, -2.1534528656e-7, 2.831510953e-8, -2.94978583e-9, 1.6755082e-10, 2.234229e-11, -1.035130e-11, 2.41117e-12, -4.3531e-13, 6.447e-14, -7.39e-15, 4.3e-16 }; static cheb_series fd_2_c_cs = { fd_2_c_data, 19, -1, 1, 12 }; /* Chebyshev fit for F_{1}(x) / x^3 * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 * x = 10(t+2) */ static double fd_2_d_data[30] = { 0.3459960518965277589, -0.00633136397691958024, 0.00248382959047594408, -0.00087651191884005114, 0.00029139255351719932, -0.00009322746111846199, 0.00002904021914564786, -8.86962264810663e-6, 2.66844972574613e-6, -7.9331564996004e-7, 2.3359868615516e-7, -6.824790880436e-8, 1.981036528154e-8, -5.71940426300e-9, 1.64379426579e-9, -4.7064937566e-10, 1.3432614122e-10, -3.823400534e-11, 1.085771994e-11, -3.07727465e-12, 8.7064848e-13, -2.4595431e-13, 6.938531e-14, -1.954939e-14, 5.50162e-15, -1.54657e-15, 4.3429e-16, -1.2178e-16, 3.394e-17, -8.81e-18 }; static cheb_series fd_2_d_cs = { fd_2_d_data, 29, -1, 1, 14 }; /* Chebyshev fit for F_{2}(x) / x^3 * 30 < x < Inf * -1 < t < 1 * t = 60/x - 1 * x = 60/(t+1) */ static double fd_2_e_data[4] = { 0.3347041117223735227, 0.00091385225936012645, 0.00022846306484003205, 5.2e-19 }; static cheb_series fd_2_e_cs = { fd_2_e_data, 3, -1, 1, 3 }; /* Chebyshev fit for F_{-1/2}(t); -1 < t < 1, -1 < x < 1 */ static double fd_mhalf_a_data[20] = { 1.2663290042859741974, 0.3697876251911153071, 0.0278131011214405055, -0.0033332848565672007, -0.0004438108265412038, 0.0000616495177243839, 8.7589611449897e-6, -1.2622936986172e-6, -1.837464037221e-7, 2.69495091400e-8, 3.9760866257e-9, -5.894468795e-10, -8.77321638e-11, 1.31016571e-11, 1.9621619e-12, -2.945887e-13, -4.43234e-14, 6.6816e-15, 1.0084e-15, -1.561e-16 }; static cheb_series fd_mhalf_a_cs = { fd_mhalf_a_data, 19, -1, 1, 12 }; /* Chebyshev fit for F_{-1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */ static double fd_mhalf_b_data[20] = { 3.270796131942071484, 0.5809004935853417887, -0.0299313438794694987, -0.0013287935412612198, 0.0009910221228704198, -0.0001690954939688554, 6.5955849946915e-6, 3.5953966033618e-6, -9.430672023181e-7, 8.75773958291e-8, 1.06247652607e-8, -4.9587006215e-9, 7.160432795e-10, 4.5072219e-12, -2.3695425e-11, 4.9122208e-12, -2.905277e-13, -9.59291e-14, 3.00028e-14, -3.4970e-15 }; static cheb_series fd_mhalf_b_cs = { fd_mhalf_b_data, 19, -1, 1, 12 }; /* Chebyshev fit for F_{-1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */ static double fd_mhalf_c_data[25] = { 5.828283273430595507, 0.677521118293264655, -0.043946248736481554, 0.005825595781828244, -0.000864858907380668, 0.000110017890076539, -6.973305225404e-6, -1.716267414672e-6, 8.59811582041e-7, -2.33066786976e-7, 4.8503191159e-8, -8.130620247e-9, 1.021068250e-9, -5.3188423e-11, -1.9430559e-11, 8.750506e-12, -2.324897e-12, 4.83102e-13, -8.1207e-14, 1.0132e-14, -4.64e-16, -2.24e-16, 9.7e-17, -2.6e-17, 5.e-18 }; static cheb_series fd_mhalf_c_cs = { fd_mhalf_c_data, 24, -1, 1, 13 }; /* Chebyshev fit for F_{-1/2}(x) / x^(1/2) * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 */ static double fd_mhalf_d_data[30] = { 2.2530744202862438709, 0.0018745152720114692, -0.0007550198497498903, 0.0002759818676644382, -0.0000959406283465913, 0.0000324056855537065, -0.0000107462396145761, 3.5126865219224e-6, -1.1313072730092e-6, 3.577454162766e-7, -1.104926666238e-7, 3.31304165692e-8, -9.5837381008e-9, 2.6575790141e-9, -7.015201447e-10, 1.747111336e-10, -4.04909605e-11, 8.5104999e-12, -1.5261885e-12, 1.876851e-13, 1.00574e-14, -1.82002e-14, 8.6634e-15, -3.2058e-15, 1.0572e-15, -3.259e-16, 9.60e-17, -2.74e-17, 7.6e-18, -1.9e-18 }; static cheb_series fd_mhalf_d_cs = { fd_mhalf_d_data, 29, -1, 1, 15 }; /* Chebyshev fit for F_{1/2}(t); -1 < t < 1, -1 < x < 1 */ static double fd_half_a_data[23] = { 1.7177138871306189157, 0.6192579515822668460, 0.0932802275119206269, 0.0047094853246636182, -0.0004243667967864481, -0.0000452569787686193, 5.2426509519168e-6, 6.387648249080e-7, -8.05777004848e-8, -1.04290272415e-8, 1.3769478010e-9, 1.847190359e-10, -2.51061890e-11, -3.4497818e-12, 4.784373e-13, 6.68828e-14, -9.4147e-15, -1.3333e-15, 1.898e-16, 2.72e-17, -3.9e-18, -6.e-19, 1.e-19 }; static cheb_series fd_half_a_cs = { fd_half_a_data, 22, -1, 1, 11 }; /* Chebyshev fit for F_{1/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */ static double fd_half_b_data[20] = { 7.651013792074984027, 2.475545606866155737, 0.218335982672476128, -0.007730591500584980, -0.000217443383867318, 0.000147663980681359, -0.000021586361321527, 8.07712735394e-7, 3.28858050706e-7, -7.9474330632e-8, 6.940207234e-9, 6.75594681e-10, -3.10200490e-10, 4.2677233e-11, -2.1696e-14, -1.170245e-12, 2.34757e-13, -1.4139e-14, -3.864e-15, 1.202e-15 }; static cheb_series fd_half_b_cs = { fd_half_b_data, 19, -1, 1, 12 }; /* Chebyshev fit for F_{1/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */ static double fd_half_c_data[23] = { 29.584339348839816528, 8.808344283250615592, 0.503771641883577308, -0.021540694914550443, 0.002143341709406890, -0.000257365680646579, 0.000027933539372803, -1.678525030167e-6, -2.78100117693e-7, 1.35218065147e-7, -3.3740425009e-8, 6.474834942e-9, -1.009678978e-9, 1.20057555e-10, -6.636314e-12, -1.710566e-12, 7.75069e-13, -1.97973e-13, 3.9414e-14, -6.374e-15, 7.77e-16, -4.0e-17, -1.4e-17 }; static cheb_series fd_half_c_cs = { fd_half_c_data, 22, -1, 1, 13 }; /* Chebyshev fit for F_{1/2}(x) / x^(3/2) * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 */ static double fd_half_d_data[30] = { 1.5116909434145508537, -0.0036043405371630468, 0.0014207743256393359, -0.0005045399052400260, 0.0001690758006957347, -0.0000546305872688307, 0.0000172223228484571, -5.3352603788706e-6, 1.6315287543662e-6, -4.939021084898e-7, 1.482515450316e-7, -4.41552276226e-8, 1.30503160961e-8, -3.8262599802e-9, 1.1123226976e-9, -3.204765534e-10, 9.14870489e-11, -2.58778946e-11, 7.2550731e-12, -2.0172226e-12, 5.566891e-13, -1.526247e-13, 4.16121e-14, -1.12933e-14, 3.0537e-15, -8.234e-16, 2.215e-16, -5.95e-17, 1.59e-17, -4.0e-18 }; static cheb_series fd_half_d_cs = { fd_half_d_data, 29, -1, 1, 15 }; /* Chebyshev fit for F_{3/2}(t); -1 < t < 1, -1 < x < 1 */ static double fd_3half_a_data[20] = { 2.0404775940601704976, 0.8122168298093491444, 0.1536371165644008069, 0.0156174323847845125, 0.0005943427879290297, -0.0000429609447738365, -3.8246452994606e-6, 3.802306180287e-7, 4.05746157593e-8, -4.5530360159e-9, -5.306873139e-10, 6.37297268e-11, 7.8403674e-12, -9.840241e-13, -1.255952e-13, 1.62617e-14, 2.1318e-15, -2.825e-16, -3.78e-17, 5.1e-18 }; static cheb_series fd_3half_a_cs = { fd_3half_a_data, 19, -1, 1, 11 }; /* Chebyshev fit for F_{3/2}(3/2(t+1) + 1); -1 < t < 1, 1 < x < 4 */ static double fd_3half_b_data[22] = { 13.403206654624176674, 5.574508357051880924, 0.931228574387527769, 0.054638356514085862, -0.001477172902737439, -0.000029378553381869, 0.000018357033493246, -2.348059218454e-6, 8.3173787440e-8, 2.6826486956e-8, -6.011244398e-9, 4.94345981e-10, 3.9557340e-11, -1.7894930e-11, 2.348972e-12, -1.2823e-14, -5.4192e-14, 1.0527e-14, -6.39e-16, -1.47e-16, 4.5e-17, -5.e-18 }; static cheb_series fd_3half_b_cs = { fd_3half_b_data, 21, -1, 1, 12 }; /* Chebyshev fit for F_{3/2}(3(t+1) + 4); -1 < t < 1, 4 < x < 10 */ static double fd_3half_c_data[21] = { 101.03685253378877642, 43.62085156043435883, 6.62241373362387453, 0.25081415008708521, -0.00798124846271395, 0.00063462245101023, -0.00006392178890410, 6.04535131939e-6, -3.4007683037e-7, -4.072661545e-8, 1.931148453e-8, -4.46328355e-9, 7.9434717e-10, -1.1573569e-10, 1.304658e-11, -7.4114e-13, -1.4181e-13, 6.491e-14, -1.597e-14, 3.05e-15, -4.8e-16 }; static cheb_series fd_3half_c_cs = { fd_3half_c_data, 20, -1, 1, 12 }; /* Chebyshev fit for F_{3/2}(x) / x^(5/2) * 10 < x < 30 * -1 < t < 1 * t = 1/10 (x-10) - 1 = x/10 - 2 */ static double fd_3half_d_data[25] = { 0.6160645215171852381, -0.0071239478492671463, 0.0027906866139659846, -0.0009829521424317718, 0.0003260229808519545, -0.0001040160912910890, 0.0000322931223232439, -9.8243506588102e-6, 2.9420132351277e-6, -8.699154670418e-7, 2.545460071999e-7, -7.38305056331e-8, 2.12545670310e-8, -6.0796532462e-9, 1.7294556741e-9, -4.896540687e-10, 1.380786037e-10, -3.88057305e-11, 1.08753212e-11, -3.0407308e-12, 8.485626e-13, -2.364275e-13, 6.57636e-14, -1.81807e-14, 4.6884e-15 }; static cheb_series fd_3half_d_cs = { fd_3half_d_data, 24, -1, 1, 16 }; /* Goano's modification of the Levin-u implementation. * This is a simplification of the original WHIZ algorithm. * See [Fessler et al., ACM Toms 9, 346 (1983)]. */ static int fd_whiz(const double term, const int iterm, double * qnum, double * qden, double * result, double * s) { if(iterm == 0) *s = 0.0; *s += term; qden[iterm] = 1.0/(term*(iterm+1.0)*(iterm+1.0)); qnum[iterm] = *s * qden[iterm]; if(iterm > 0) { double factor = 1.0; double ratio = iterm/(iterm+1.0); int j; for(j=iterm-1; j>=0; j--) { double c = factor * (j+1.0) / (iterm+1.0); factor *= ratio; qden[j] = qden[j+1] - c * qden[j]; qnum[j] = qnum[j+1] - c * qnum[j]; } } *result = qnum[0] / qden[0]; return GSL_SUCCESS; } /* Handle case of integer j <= -2. */ static int fd_nint(const int j, const double x, gsl_sf_result * result) { /* const int nsize = 100 + 1; */ enum { nsize = 100+1 }; double qcoeff[nsize]; if(j >= -1) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_ESANITY); } else if(j < -(nsize)) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EUNIMPL); } else { double a, p, f; int i, k; int n = -(j+1); qcoeff[1] = 1.0; for(k=2; k<=n; k++) { qcoeff[k] = -qcoeff[k-1]; for(i=k-1; i>=2; i--) { qcoeff[i] = i*qcoeff[i] - (k-(i-1))*qcoeff[i-1]; } } if(x >= 0.0) { a = exp(-x); f = qcoeff[1]; for(i=2; i<=n; i++) { f = f*a + qcoeff[i]; } } else { a = exp(x); f = qcoeff[n]; for(i=n-1; i>=1; i--) { f = f*a + qcoeff[i]; } } p = gsl_sf_pow_int(1.0+a, j); result->val = f*a*p; result->err = 3.0 * GSL_DBL_EPSILON * fabs(f*a*p); return GSL_SUCCESS; } } /* x < 0 */ static int fd_neg(const double j, const double x, gsl_sf_result * result) { enum { itmax = 100, qsize = 100+1 }; /* const int itmax = 100; */ /* const int qsize = 100 + 1; */ double qnum[qsize], qden[qsize]; if(x < GSL_LOG_DBL_MIN) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < -1.0 && x < -fabs(j+1.0)) { /* Simple series implementation. Avoid the * complexity and extra work of the series * acceleration method below. */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<100; n++) { double rat = (n-1.0)/n; double p = pow(rat, j+1.0); term *= -ex * p; sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum); return GSL_SUCCESS; } else { double s = 0.0; double xn = x; double ex = -exp(x); double enx = -ex; double f = 0.0; double f_previous; int jterm; for(jterm=0; jterm<=itmax; jterm++) { double p = pow(jterm+1.0, j+1.0); double term = enx/p; f_previous = f; fd_whiz(term, jterm, qnum, qden, &f, &s); xn += x; if(fabs(f-f_previous) < fabs(f)*2.0*GSL_DBL_EPSILON || xn < GSL_LOG_DBL_MIN) break; enx *= ex; } result->val = f; result->err = fabs(f-f_previous); result->err += 2.0 * GSL_DBL_EPSILON * fabs(f); if(jterm == itmax) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } } /* asymptotic expansion * j + 2.0 > 0.0 */ static int fd_asymp(const double j, const double x, gsl_sf_result * result) { const int j_integer = ( fabs(j - floor(j+0.5)) < 100.0*GSL_DBL_EPSILON ); const int itmax = 200; gsl_sf_result lg; int stat_lg = gsl_sf_lngamma_e(j + 2.0, &lg); double seqn_val = 0.5; double seqn_err = 0.0; double xm2 = (1.0/x)/x; double xgam = 1.0; double add = GSL_DBL_MAX; double cos_term; double ln_x; double ex_term_1; double ex_term_2; gsl_sf_result fneg; gsl_sf_result ex_arg; gsl_sf_result ex; int stat_fneg; int stat_e; int n; for(n=1; n<=itmax; n++) { double add_previous = add; gsl_sf_result eta; gsl_sf_eta_int_e(2*n, &eta); xgam = xgam * xm2 * (j + 1.0 - (2*n-2)) * (j + 1.0 - (2*n-1)); add = eta.val * xgam; if(!j_integer && fabs(add) > fabs(add_previous)) break; if(fabs(add/seqn_val) < GSL_DBL_EPSILON) break; seqn_val += add; seqn_err += 2.0 * GSL_DBL_EPSILON * fabs(add); } seqn_err += fabs(add); stat_fneg = fd_neg(j, -x, &fneg); ln_x = log(x); ex_term_1 = (j+1.0)*ln_x; ex_term_2 = lg.val; ex_arg.val = ex_term_1 - ex_term_2; /*(j+1.0)*ln_x - lg.val; */ ex_arg.err = GSL_DBL_EPSILON*(fabs(ex_term_1) + fabs(ex_term_2)) + lg.err; stat_e = gsl_sf_exp_err_e(ex_arg.val, ex_arg.err, &ex); cos_term = cos(j*M_PI); result->val = cos_term * fneg.val + 2.0 * seqn_val * ex.val; result->err = fabs(2.0 * ex.err * seqn_val); result->err += fabs(2.0 * ex.val * seqn_err); result->err += fabs(cos_term) * fneg.err; result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_fneg, stat_lg); } /* Series evaluation for small x, generic j. * [Goano (8)] */ #if 0 static int fd_series(const double j, const double x, double * result) { const int nmax = 1000; int n; double sum = 0.0; double prev; double pow_factor = 1.0; double eta_factor; gsl_sf_eta_e(j + 1.0, &eta_factor); prev = pow_factor * eta_factor; sum += prev; for(n=1; n 0, integer j > 0; x < Pi. * [Goano (8)] */ static int fd_series_int(const int j, const double x, gsl_sf_result * result) { int n; double sum = 0.0; double del; double pow_factor = 1.0; gsl_sf_result eta_factor; gsl_sf_eta_int_e(j + 1, &eta_factor); del = pow_factor * eta_factor.val; sum += del; /* Sum terms where the argument * of eta() is positive. */ for(n=1; n<=j+2; n++) { gsl_sf_eta_int_e(j+1-n, &eta_factor); pow_factor *= x/n; del = pow_factor * eta_factor.val; sum += del; if(fabs(del/sum) < GSL_DBL_EPSILON) break; } /* Now sum the terms where eta() is negative. * The argument of eta() must be odd as well, * so it is convenient to transform the series * as follows: * * Sum[ eta(j+1-n) x^n / n!, {n,j+4,Infinity}] * = x^j / j! Sum[ eta(1-2m) x^(2m) j! / (2m+j)! , {m,2,Infinity}] * * We do not need to do this sum if j is large enough. */ if(j < 32) { int m; gsl_sf_result jfact; double sum2; double pre2; gsl_sf_fact_e((unsigned int)j, &jfact); pre2 = gsl_sf_pow_int(x, j) / jfact.val; gsl_sf_eta_int_e(-3, &eta_factor); pow_factor = x*x*x*x / ((j+4)*(j+3)*(j+2)*(j+1)); sum2 = eta_factor.val * pow_factor; for(m=3; m<24; m++) { gsl_sf_eta_int_e(1-2*m, &eta_factor); pow_factor *= x*x / ((j+2*m)*(j+2*m-1)); sum2 += eta_factor.val * pow_factor; } sum += pre2 * sum2; } result->val = sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum); return GSL_SUCCESS; } /* series of hypergeometric functions for integer j > 0, x > 0 * [Goano (7)] */ static int fd_UMseries_int(const int j, const double x, gsl_sf_result * result) { const int nmax = 2000; double pre; double lnpre_val; double lnpre_err; double sum_even_val = 1.0; double sum_even_err = 0.0; double sum_odd_val = 0.0; double sum_odd_err = 0.0; int stat_sum; int stat_e; int stat_h = GSL_SUCCESS; int n; if(x < 500.0 && j < 80) { double p = gsl_sf_pow_int(x, j+1); gsl_sf_result g; gsl_sf_fact_e(j+1, &g); /* Gamma(j+2) */ lnpre_val = 0.0; lnpre_err = 0.0; pre = p/g.val; } else { double lnx = log(x); gsl_sf_result lg; gsl_sf_lngamma_e(j + 2.0, &lg); lnpre_val = (j+1.0)*lnx - lg.val; lnpre_err = 2.0 * GSL_DBL_EPSILON * fabs((j+1.0)*lnx) + lg.err; pre = 1.0; } /* Add up the odd terms of the sum. */ for(n=1; n= nmax ? GSL_EMAXITER : GSL_SUCCESS ); stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, pre*(sum_even_val + sum_odd_val), pre*(sum_even_err + sum_odd_err), result); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_h, stat_sum); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ /* [Goano (4)] */ int gsl_sf_fermi_dirac_m1_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < 0.0) { const double ex = exp(x); result->val = ex/(1.0+ex); result->err = 2.0 * (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double ex = exp(-x); result->val = 1.0/(1.0 + ex); result->err = 2.0 * GSL_DBL_EPSILON * (x + 1.0) * ex; return GSL_SUCCESS; } } /* [Goano (3)] */ int gsl_sf_fermi_dirac_0_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -5.0) { double ex = exp(x); double ser = 1.0 - ex*(0.5 - ex*(1.0/3.0 - ex*(1.0/4.0 - ex*(1.0/5.0 - ex/6.0)))); result->val = ex * ser; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 10.0) { result->val = log(1.0 + exp(x)); result->err = fabs(x * GSL_DBL_EPSILON); return GSL_SUCCESS; } else { double ex = exp(-x); result->val = x + ex * (1.0 - 0.5*ex + ex*ex/3.0 - ex*ex*ex/4.0); result->err = (x + ex) * GSL_DBL_EPSILON; return GSL_SUCCESS; } } int gsl_sf_fermi_dirac_1_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -1.0) { /* series [Goano (6)] */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<100 ; n++) { double rat = (n-1.0)/n; term *= -ex * rat * rat; sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 1.0) { return cheb_eval_e(&fd_1_a_cs, x, result); } else if(x < 4.0) { double t = 2.0/3.0*(x-1.0) - 1.0; return cheb_eval_e(&fd_1_b_cs, t, result); } else if(x < 10.0) { double t = 1.0/3.0*(x-4.0) - 1.0; return cheb_eval_e(&fd_1_c_cs, t, result); } else if(x < 30.0) { double t = 0.1*x - 2.0; gsl_sf_result c; cheb_eval_e(&fd_1_d_cs, t, &c); result->val = c.val * x*x; result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0/GSL_SQRT_DBL_EPSILON) { double t = 60.0/x - 1.0; gsl_sf_result c; cheb_eval_e(&fd_1_e_cs, t, &c); result->val = c.val * x*x; result->err = c.err * x*x + GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_SQRT_DBL_MAX) { result->val = 0.5 * x*x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_fermi_dirac_2_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -1.0) { /* series [Goano (6)] */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<100 ; n++) { double rat = (n-1.0)/n; term *= -ex * rat * rat * rat; sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum); return GSL_SUCCESS; } else if(x < 1.0) { return cheb_eval_e(&fd_2_a_cs, x, result); } else if(x < 4.0) { double t = 2.0/3.0*(x-1.0) - 1.0; return cheb_eval_e(&fd_2_b_cs, t, result); } else if(x < 10.0) { double t = 1.0/3.0*(x-4.0) - 1.0; return cheb_eval_e(&fd_2_c_cs, t, result); } else if(x < 30.0) { double t = 0.1*x - 2.0; gsl_sf_result c; cheb_eval_e(&fd_2_d_cs, t, &c); result->val = c.val * x*x*x; result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0/GSL_ROOT3_DBL_EPSILON) { double t = 60.0/x - 1.0; gsl_sf_result c; cheb_eval_e(&fd_2_e_cs, t, &c); result->val = c.val * x*x*x; result->err = c.err * x*x*x + 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < GSL_ROOT3_DBL_MAX) { result->val = 1.0/6.0 * x*x*x; result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } int gsl_sf_fermi_dirac_int_e(const int j, const double x, gsl_sf_result * result) { if(j < -1) { return fd_nint(j, x, result); } else if (j == -1) { return gsl_sf_fermi_dirac_m1_e(x, result); } else if(j == 0) { return gsl_sf_fermi_dirac_0_e(x, result); } else if(j == 1) { return gsl_sf_fermi_dirac_1_e(x, result); } else if(j == 2) { return gsl_sf_fermi_dirac_2_e(x, result); } else if(x < 0.0) { return fd_neg(j, x, result); } else if(x == 0.0) { return gsl_sf_eta_int_e(j+1, result); } else if(x < 1.5) { return fd_series_int(j, x, result); } else { gsl_sf_result fasymp; int stat_asymp = fd_asymp(j, x, &fasymp); if(stat_asymp == GSL_SUCCESS) { result->val = fasymp.val; result->err = fasymp.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_asymp; } else { return fd_UMseries_int(j, x, result); } } } int gsl_sf_fermi_dirac_mhalf_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -1.0) { /* series [Goano (6)] */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<200 ; n++) { double rat = (n-1.0)/n; term *= -ex * sqrt(rat); sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 1.0) { return cheb_eval_e(&fd_mhalf_a_cs, x, result); } else if(x < 4.0) { double t = 2.0/3.0*(x-1.0) - 1.0; return cheb_eval_e(&fd_mhalf_b_cs, t, result); } else if(x < 10.0) { double t = 1.0/3.0*(x-4.0) - 1.0; return cheb_eval_e(&fd_mhalf_c_cs, t, result); } else if(x < 30.0) { double rtx = sqrt(x); double t = 0.1*x - 2.0; gsl_sf_result c; cheb_eval_e(&fd_mhalf_d_cs, t, &c); result->val = c.val * rtx; result->err = c.err * rtx + 0.5 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return fd_asymp(-0.5, x, result); } } int gsl_sf_fermi_dirac_half_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -1.0) { /* series [Goano (6)] */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<100 ; n++) { double rat = (n-1.0)/n; term *= -ex * rat * sqrt(rat); sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 1.0) { return cheb_eval_e(&fd_half_a_cs, x, result); } else if(x < 4.0) { double t = 2.0/3.0*(x-1.0) - 1.0; return cheb_eval_e(&fd_half_b_cs, t, result); } else if(x < 10.0) { double t = 1.0/3.0*(x-4.0) - 1.0; return cheb_eval_e(&fd_half_c_cs, t, result); } else if(x < 30.0) { double x32 = x*sqrt(x); double t = 0.1*x - 2.0; gsl_sf_result c; cheb_eval_e(&fd_half_d_cs, t, &c); result->val = c.val * x32; result->err = c.err * x32 + 1.5 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return fd_asymp(0.5, x, result); } } int gsl_sf_fermi_dirac_3half_e(const double x, gsl_sf_result * result) { if(x < GSL_LOG_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(x < -1.0) { /* series [Goano (6)] */ double ex = exp(x); double term = ex; double sum = term; int n; for(n=2; n<100 ; n++) { double rat = (n-1.0)/n; term *= -ex * rat * rat * sqrt(rat); sum += term; if(fabs(term/sum) < GSL_DBL_EPSILON) break; } result->val = sum; result->err = 2.0 * fabs(sum) * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 1.0) { return cheb_eval_e(&fd_3half_a_cs, x, result); } else if(x < 4.0) { double t = 2.0/3.0*(x-1.0) - 1.0; return cheb_eval_e(&fd_3half_b_cs, t, result); } else if(x < 10.0) { double t = 1.0/3.0*(x-4.0) - 1.0; return cheb_eval_e(&fd_3half_c_cs, t, result); } else if(x < 30.0) { double x52 = x*x*sqrt(x); double t = 0.1*x - 2.0; gsl_sf_result c; cheb_eval_e(&fd_3half_d_cs, t, &c); result->val = c.val * x52; result->err = c.err * x52 + 2.5 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { return fd_asymp(1.5, x, result); } } /* [Goano p. 222] */ int gsl_sf_fermi_dirac_inc_0_e(const double x, const double b, gsl_sf_result * result) { if(b < 0.0) { DOMAIN_ERROR(result); } else { double arg = b - x; gsl_sf_result f0; int status = gsl_sf_fermi_dirac_0_e(arg, &f0); result->val = f0.val - arg; result->err = f0.err + GSL_DBL_EPSILON * (fabs(x) + fabs(b)); return status; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_fermi_dirac_m1(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_m1_e(x, &result)); } double gsl_sf_fermi_dirac_0(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_0_e(x, &result)); } double gsl_sf_fermi_dirac_1(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_1_e(x, &result)); } double gsl_sf_fermi_dirac_2(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_2_e(x, &result)); } double gsl_sf_fermi_dirac_int(const int j, const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_int_e(j, x, &result)); } double gsl_sf_fermi_dirac_mhalf(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_mhalf_e(x, &result)); } double gsl_sf_fermi_dirac_half(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_half_e(x, &result)); } double gsl_sf_fermi_dirac_3half(const double x) { EVAL_RESULT(gsl_sf_fermi_dirac_3half_e(x, &result)); } double gsl_sf_fermi_dirac_inc_0(const double x, const double b) { EVAL_RESULT(gsl_sf_fermi_dirac_inc_0_e(x, b, &result)); } gsl-1.16/specfunc/dilog.c0000664000252300025230000004320412171574312012225 00000000000000/* specfunc/dilog.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include /* Evaluate series for real dilog(x) * Sum[ x^k / k^2, {k,1,Infinity}] * * Converges rapidly for |x| < 1/2. */ static int dilog_series_1(const double x, gsl_sf_result * result) { const int kmax = 1000; double sum = x; double term = x; int k; for(k=2; kval = sum; result->err = 2.0 * fabs(term); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(k == kmax) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Compute the associated series * * sum_{k=1}{infty} r^k / (k^2 (k+1)) * * This is a series which appears in the one-step accelerated * method, which splits out one elementary function from the * full definition of Li_2(x). See below. */ static int series_2(double r, gsl_sf_result * result) { static const int kmax = 100; double rk = r; double sum = 0.5 * r; int k; for(k=2; k<10; k++) { double ds; rk *= r; ds = rk/(k*k*(k+1.0)); sum += ds; } for(; kval = sum; result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(sum); return GSL_SUCCESS; } /* Compute Li_2(x) using the accelerated series representation. * * Li_2(x) = 1 + (1-x)ln(1-x)/x + series_2(x) * * assumes: -1 < x < 1 */ static int dilog_series_2(double x, gsl_sf_result * result) { const int stat_s3 = series_2(x, result); double t; if(x > 0.01) t = (1.0 - x) * log(1.0-x) / x; else { static const double c3 = 1.0/3.0; static const double c4 = 1.0/4.0; static const double c5 = 1.0/5.0; static const double c6 = 1.0/6.0; static const double c7 = 1.0/7.0; static const double c8 = 1.0/8.0; const double t68 = c6 + x*(c7 + x*c8); const double t38 = c3 + x *(c4 + x *(c5 + x * t68)); t = (x - 1.0) * (1.0 + x*(0.5 + x*t38)); } result->val += 1.0 + t; result->err += 2.0 * GSL_DBL_EPSILON * fabs(t); return stat_s3; } /* Calculates Li_2(x) for real x. Assumes x >= 0.0. */ static int dilog_xge0(const double x, gsl_sf_result * result) { if(x > 2.0) { gsl_sf_result ser; const int stat_ser = dilog_series_2(1.0/x, &ser); const double log_x = log(x); const double t1 = M_PI*M_PI/3.0; const double t2 = ser.val; const double t3 = 0.5*log_x*log_x; result->val = t1 - t2 - t3; result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err; result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ser; } else if(x > 1.01) { gsl_sf_result ser; const int stat_ser = dilog_series_2(1.0 - 1.0/x, &ser); const double log_x = log(x); const double log_term = log_x * (log(1.0-1.0/x) + 0.5*log_x); const double t1 = M_PI*M_PI/6.0; const double t2 = ser.val; const double t3 = log_term; result->val = t1 + t2 - t3; result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err; result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ser; } else if(x > 1.0) { /* series around x = 1.0 */ const double eps = x - 1.0; const double lne = log(eps); const double c0 = M_PI*M_PI/6.0; const double c1 = 1.0 - lne; const double c2 = -(1.0 - 2.0*lne)/4.0; const double c3 = (1.0 - 3.0*lne)/9.0; const double c4 = -(1.0 - 4.0*lne)/16.0; const double c5 = (1.0 - 5.0*lne)/25.0; const double c6 = -(1.0 - 6.0*lne)/36.0; const double c7 = (1.0 - 7.0*lne)/49.0; const double c8 = -(1.0 - 8.0*lne)/64.0; result->val = c0+eps*(c1+eps*(c2+eps*(c3+eps*(c4+eps*(c5+eps*(c6+eps*(c7+eps*c8))))))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x == 1.0) { result->val = M_PI*M_PI/6.0; result->err = 2.0 * GSL_DBL_EPSILON * M_PI*M_PI/6.0; return GSL_SUCCESS; } else if(x > 0.5) { gsl_sf_result ser; const int stat_ser = dilog_series_2(1.0-x, &ser); const double log_x = log(x); const double t1 = M_PI*M_PI/6.0; const double t2 = ser.val; const double t3 = log_x*log(1.0-x); result->val = t1 - t2 - t3; result->err = GSL_DBL_EPSILON * fabs(log_x) + ser.err; result->err += GSL_DBL_EPSILON * (fabs(t1) + fabs(t2) + fabs(t3)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_ser; } else if(x > 0.25) { return dilog_series_2(x, result); } else if(x > 0.0) { return dilog_series_1(x, result); } else { /* x == 0.0 */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } } /* Evaluate the series representation for Li2(z): * * Li2(z) = Sum[ |z|^k / k^2 Exp[i k arg(z)], {k,1,Infinity}] * |z| = r * arg(z) = theta * * Assumes 0 < r < 1. * It is used only for small r. */ static int dilogc_series_1( const double r, const double x, const double y, gsl_sf_result * real_result, gsl_sf_result * imag_result ) { const double cos_theta = x/r; const double sin_theta = y/r; const double alpha = 1.0 - cos_theta; const double beta = sin_theta; double ck = cos_theta; double sk = sin_theta; double rk = r; double real_sum = r*ck; double imag_sum = r*sk; const int kmax = 50 + (int)(22.0/(-log(r))); /* tuned for double-precision */ int k; for(k=2; kval = real_sum; real_result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(real_sum); imag_result->val = imag_sum; imag_result->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(imag_sum); return GSL_SUCCESS; } /* Compute * * sum_{k=1}{infty} z^k / (k^2 (k+1)) * * This is a series which appears in the one-step accelerated * method, which splits out one elementary function from the * full definition of Li_2. */ static int series_2_c( double r, double x, double y, gsl_sf_result * sum_re, gsl_sf_result * sum_im ) { const double cos_theta = x/r; const double sin_theta = y/r; const double alpha = 1.0 - cos_theta; const double beta = sin_theta; double ck = cos_theta; double sk = sin_theta; double rk = r; double real_sum = 0.5 * r*ck; double imag_sum = 0.5 * r*sk; const int kmax = 30 + (int)(18.0/(-log(r))); /* tuned for double-precision */ int k; for(k=2; kval = real_sum; sum_re->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(real_sum); sum_im->val = imag_sum; sum_im->err = 2.0 * kmax * GSL_DBL_EPSILON * fabs(imag_sum); return GSL_SUCCESS; } /* Compute Li_2(z) using the one-step accelerated series. * * Li_2(z) = 1 + (1-z)ln(1-z)/z + series_2_c(z) * * z = r exp(i theta) * assumes: r < 1 * assumes: r > epsilon, so that we take no special care with log(1-z) */ static int dilogc_series_2( const double r, const double x, const double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl ) { if(r == 0.0) { real_dl->val = 0.0; imag_dl->val = 0.0; real_dl->err = 0.0; imag_dl->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result sum_re; gsl_sf_result sum_im; const int stat_s3 = series_2_c(r, x, y, &sum_re, &sum_im); /* t = ln(1-z)/z */ gsl_sf_result ln_omz_r; gsl_sf_result ln_omz_theta; const int stat_log = gsl_sf_complex_log_e(1.0-x, -y, &ln_omz_r, &ln_omz_theta); const double t_x = ( ln_omz_r.val * x + ln_omz_theta.val * y)/(r*r); const double t_y = (-ln_omz_r.val * y + ln_omz_theta.val * x)/(r*r); /* r = (1-z) ln(1-z)/z */ const double r_x = (1.0 - x) * t_x + y * t_y; const double r_y = (1.0 - x) * t_y - y * t_x; real_dl->val = sum_re.val + r_x + 1.0; imag_dl->val = sum_im.val + r_y; real_dl->err = sum_re.err + 2.0*GSL_DBL_EPSILON*(fabs(real_dl->val) + fabs(r_x)); imag_dl->err = sum_im.err + 2.0*GSL_DBL_EPSILON*(fabs(imag_dl->val) + fabs(r_y)); return GSL_ERROR_SELECT_2(stat_s3, stat_log); } } /* Evaluate a series for Li_2(z) when |z| is near 1. * This is uniformly good away from z=1. * * Li_2(z) = Sum[ a^n/n! H_n(theta), {n, 0, Infinity}] * * where * H_n(theta) = Sum[ e^(i m theta) m^n / m^2, {m, 1, Infinity}] * a = ln(r) * * H_0(t) = Gl_2(t) + i Cl_2(t) * H_1(t) = 1/2 ln(2(1-c)) + I atan2(-s, 1-c) * H_2(t) = -1/2 + I/2 s/(1-c) * H_3(t) = -1/2 /(1-c) * H_4(t) = -I/2 s/(1-c)^2 * H_5(t) = 1/2 (2 + c)/(1-c)^2 * H_6(t) = I/2 s/(1-c)^5 (8(1-c) - s^2 (3 + c)) */ static int dilogc_series_3( const double r, const double x, const double y, gsl_sf_result * real_result, gsl_sf_result * imag_result ) { const double theta = atan2(y, x); const double cos_theta = x/r; const double sin_theta = y/r; const double a = log(r); const double omc = 1.0 - cos_theta; const double omc2 = omc*omc; double H_re[7]; double H_im[7]; double an, nfact; double sum_re, sum_im; gsl_sf_result Him0; int n; H_re[0] = M_PI*M_PI/6.0 + 0.25*(theta*theta - 2.0*M_PI*fabs(theta)); gsl_sf_clausen_e(theta, &Him0); H_im[0] = Him0.val; H_re[1] = -0.5*log(2.0*omc); H_im[1] = -atan2(-sin_theta, omc); H_re[2] = -0.5; H_im[2] = 0.5 * sin_theta/omc; H_re[3] = -0.5/omc; H_im[3] = 0.0; H_re[4] = 0.0; H_im[4] = -0.5*sin_theta/omc2; H_re[5] = 0.5 * (2.0 + cos_theta)/omc2; H_im[5] = 0.0; H_re[6] = 0.0; H_im[6] = 0.5 * sin_theta/(omc2*omc2*omc) * (8.0*omc - sin_theta*sin_theta*(3.0 + cos_theta)); sum_re = H_re[0]; sum_im = H_im[0]; an = 1.0; nfact = 1.0; for(n=1; n<=6; n++) { double t; an *= a; nfact *= n; t = an/nfact; sum_re += t * H_re[n]; sum_im += t * H_im[n]; } real_result->val = sum_re; real_result->err = 2.0 * 6.0 * GSL_DBL_EPSILON * fabs(sum_re) + fabs(an/nfact); imag_result->val = sum_im; imag_result->err = 2.0 * 6.0 * GSL_DBL_EPSILON * fabs(sum_im) + Him0.err + fabs(an/nfact); return GSL_SUCCESS; } /* Calculate complex dilogarithm Li_2(z) in the fundamental region, * which we take to be the intersection of the unit disk with the * half-space x < MAGIC_SPLIT_VALUE. It turns out that 0.732 is a * nice choice for MAGIC_SPLIT_VALUE since then points mapped out * of the x > MAGIC_SPLIT_VALUE region and into another part of the * unit disk are bounded in radius by MAGIC_SPLIT_VALUE itself. * * If |z| < 0.98 we use a direct series summation. Otherwise z is very * near the unit circle, and the series_2 expansion is used; see above. * Because the fundamental region is bounded away from z = 1, this * works well. */ static int dilogc_fundamental(double r, double x, double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl) { if(r > 0.98) return dilogc_series_3(r, x, y, real_dl, imag_dl); else if(r > 0.25) return dilogc_series_2(r, x, y, real_dl, imag_dl); else return dilogc_series_1(r, x, y, real_dl, imag_dl); } /* Compute Li_2(z) for z in the unit disk, |z| < 1. If z is outside * the fundamental region, which means that it is too close to z = 1, * then it is reflected into the fundamental region using the identity * * Li2(z) = -Li2(1-z) + zeta(2) - ln(z) ln(1-z). */ static int dilogc_unitdisk(double x, double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl) { static const double MAGIC_SPLIT_VALUE = 0.732; static const double zeta2 = M_PI*M_PI/6.0; const double r = hypot(x, y); if(x > MAGIC_SPLIT_VALUE) { /* Reflect away from z = 1 if we are too close. The magic value * insures that the reflected value of the radius satisfies the * related inequality r_tmp < MAGIC_SPLIT_VALUE. */ const double x_tmp = 1.0 - x; const double y_tmp = - y; const double r_tmp = hypot(x_tmp, y_tmp); /* const double cos_theta_tmp = x_tmp/r_tmp; */ /* const double sin_theta_tmp = y_tmp/r_tmp; */ gsl_sf_result result_re_tmp; gsl_sf_result result_im_tmp; const int stat_dilog = dilogc_fundamental(r_tmp, x_tmp, y_tmp, &result_re_tmp, &result_im_tmp); const double lnz = log(r); /* log(|z|) */ const double lnomz = log(r_tmp); /* log(|1-z|) */ const double argz = atan2(y, x); /* arg(z) assuming principal branch */ const double argomz = atan2(y_tmp, x_tmp); /* arg(1-z) */ real_dl->val = -result_re_tmp.val + zeta2 - lnz*lnomz + argz*argomz; real_dl->err = result_re_tmp.err; real_dl->err += 2.0 * GSL_DBL_EPSILON * (zeta2 + fabs(lnz*lnomz) + fabs(argz*argomz)); imag_dl->val = -result_im_tmp.val - argz*lnomz - argomz*lnz; imag_dl->err = result_im_tmp.err; imag_dl->err += 2.0 * GSL_DBL_EPSILON * (fabs(argz*lnomz) + fabs(argomz*lnz)); return stat_dilog; } else { return dilogc_fundamental(r, x, y, real_dl, imag_dl); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_dilog_e(const double x, gsl_sf_result * result) { if(x >= 0.0) { return dilog_xge0(x, result); } else { gsl_sf_result d1, d2; int stat_d1 = dilog_xge0( -x, &d1); int stat_d2 = dilog_xge0(x*x, &d2); result->val = -d1.val + 0.5 * d2.val; result->err = d1.err + 0.5 * d2.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_d1, stat_d2); } } int gsl_sf_complex_dilog_xy_e( const double x, const double y, gsl_sf_result * real_dl, gsl_sf_result * imag_dl ) { const double zeta2 = M_PI*M_PI/6.0; const double r2 = x*x + y*y; if(y == 0.0) { if(x >= 1.0) { imag_dl->val = -M_PI * log(x); imag_dl->err = 2.0 * GSL_DBL_EPSILON * fabs(imag_dl->val); } else { imag_dl->val = 0.0; imag_dl->err = 0.0; } return gsl_sf_dilog_e(x, real_dl); } else if(fabs(r2 - 1.0) < GSL_DBL_EPSILON) { /* Lewin A.2.4.1 and A.2.4.2 */ const double theta = atan2(y, x); const double term1 = theta*theta/4.0; const double term2 = M_PI*fabs(theta)/2.0; real_dl->val = zeta2 + term1 - term2; real_dl->err = 2.0 * GSL_DBL_EPSILON * (zeta2 + term1 + term2); return gsl_sf_clausen_e(theta, imag_dl); } else if(r2 < 1.0) { return dilogc_unitdisk(x, y, real_dl, imag_dl); } else { /* Reduce argument to unit disk. */ const double r = sqrt(r2); const double x_tmp = x/r2; const double y_tmp = -y/r2; /* const double r_tmp = 1.0/r; */ gsl_sf_result result_re_tmp, result_im_tmp; const int stat_dilog = dilogc_unitdisk(x_tmp, y_tmp, &result_re_tmp, &result_im_tmp); /* Unwind the inversion. * * Li_2(z) + Li_2(1/z) = -zeta(2) - 1/2 ln(-z)^2 */ const double theta = atan2(y, x); const double theta_abs = fabs(theta); const double theta_sgn = ( theta < 0.0 ? -1.0 : 1.0 ); const double ln_minusz_re = log(r); const double ln_minusz_im = theta_sgn * (theta_abs - M_PI); const double lmz2_re = ln_minusz_re*ln_minusz_re - ln_minusz_im*ln_minusz_im; const double lmz2_im = 2.0*ln_minusz_re*ln_minusz_im; real_dl->val = -result_re_tmp.val - 0.5 * lmz2_re - zeta2; real_dl->err = result_re_tmp.err + 2.0*GSL_DBL_EPSILON*(0.5 * fabs(lmz2_re) + zeta2); imag_dl->val = -result_im_tmp.val - 0.5 * lmz2_im; imag_dl->err = result_im_tmp.err + 2.0*GSL_DBL_EPSILON*fabs(lmz2_im); return stat_dilog; } } int gsl_sf_complex_dilog_e( const double r, const double theta, gsl_sf_result * real_dl, gsl_sf_result * imag_dl ) { const double cos_theta = cos(theta); const double sin_theta = sin(theta); const double x = r * cos_theta; const double y = r * sin_theta; return gsl_sf_complex_dilog_xy_e(x, y, real_dl, imag_dl); } int gsl_sf_complex_spence_xy_e( const double x, const double y, gsl_sf_result * real_sp, gsl_sf_result * imag_sp ) { const double oms_x = 1.0 - x; const double oms_y = - y; return gsl_sf_complex_dilog_xy_e(oms_x, oms_y, real_sp, imag_sp); } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_dilog(const double x) { EVAL_RESULT(gsl_sf_dilog_e(x, &result)); } gsl-1.16/specfunc/error.h0000664000252300025230000000366112171574312012270 00000000000000#define OVERFLOW_ERROR(result) do { (result)->val = GSL_POSINF; (result)->err = GSL_POSINF; GSL_ERROR ("overflow", GSL_EOVRFLW); } while(0) #define UNDERFLOW_ERROR(result) do { (result)->val = 0.0; (result)->err = GSL_DBL_MIN; GSL_ERROR ("underflow", GSL_EUNDRFLW); } while(0) #define INTERNAL_OVERFLOW_ERROR(result) do { (result)->val = GSL_POSINF; (result)->err = GSL_POSINF; return GSL_EOVRFLW; } while(0) #define INTERNAL_UNDERFLOW_ERROR(result) do { (result)->val = 0.0; (result)->err = GSL_DBL_MIN; return GSL_EUNDRFLW; } while(0) #define DOMAIN_ERROR(result) do { (result)->val = GSL_NAN; (result)->err = GSL_NAN; GSL_ERROR ("domain error", GSL_EDOM); } while(0) #define DOMAIN_ERROR_MSG(msg, result) do { (result)->val = GSL_NAN; (result)->err = GSL_NAN; GSL_ERROR ((msg), GSL_EDOM); } while(0) #define DOMAIN_ERROR_E10(result) do { (result)->val = GSL_NAN; (result)->err = GSL_NAN; (result)->e10 = 0 ; GSL_ERROR ("domain error", GSL_EDOM); } while(0) #define OVERFLOW_ERROR_E10(result) do { (result)->val = GSL_POSINF; (result)->err = GSL_POSINF; (result)->e10 = 0; GSL_ERROR ("overflow", GSL_EOVRFLW); } while(0) #define UNDERFLOW_ERROR_E10(result) do { (result)->val = 0.0; (result)->err = GSL_DBL_MIN; (result)->e10 = 0; GSL_ERROR ("underflow", GSL_EUNDRFLW); } while(0) #define OVERFLOW_ERROR_2(r1,r2) do { (r1)->val = GSL_POSINF; (r1)->err = GSL_POSINF; (r2)->val = GSL_POSINF ; (r2)->err=GSL_POSINF; GSL_ERROR ("overflow", GSL_EOVRFLW); } while(0) #define UNDERFLOW_ERROR_2(r1,r2) do { (r1)->val = 0.0; (r1)->err = GSL_DBL_MIN; (r2)->val = 0.0 ; (r2)->err = GSL_DBL_MIN; GSL_ERROR ("underflow", GSL_EUNDRFLW); } while(0) #define DOMAIN_ERROR_2(r1,r2) do { (r1)->val = GSL_NAN; (r1)->err = GSL_NAN; (r2)->val = GSL_NAN; (r2)->err = GSL_NAN; GSL_ERROR ("domain error", GSL_EDOM); } while(0) #define MAXITER_ERROR(result) do { (result)->val = GSL_NAN; (result)->err = GSL_NAN; GSL_ERROR ("too many iterations error", GSL_EMAXITER); } while(0) gsl-1.16/specfunc/bessel_k.c0000664000252300025230000001445312171574312012722 00000000000000/* specfunc/bessel_k.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "check.h" #include "bessel.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* [Abramowitz+Stegun, 10.2.4 + 10.2.6] * with lmax=15, precision ~ 15D for x < 3 * * assumes l >= 1 */ static int bessel_kl_scaled_small_x(int l, const double x, gsl_sf_result * result) { gsl_sf_result num_fact; double den = gsl_sf_pow_int(x, l+1); int stat_df = gsl_sf_doublefact_e((unsigned int) (2*l-1), &num_fact); if(stat_df != GSL_SUCCESS || den == 0.0) { OVERFLOW_ERROR(result); } else { const int lmax = 50; gsl_sf_result ipos_term; double ineg_term; double sgn = (GSL_IS_ODD(l) ? -1.0 : 1.0); double ex = exp(x); double t = 0.5*x*x; double sum = 1.0; double t_coeff = 1.0; double t_power = 1.0; double delta; int stat_il; int i; for(i=1; ival = -sgn * 0.5*M_PI * (ex*ipos_term.val - ineg_term); result->val *= ex; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_il; } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_k0_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else { result->val = M_PI/(2.0*x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_bessel_k1_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < (M_SQRTPI+1.0)/(M_SQRT2*GSL_SQRT_DBL_MAX)) { OVERFLOW_ERROR(result); } else { result->val = M_PI/(2.0*x) * (1.0 + 1.0/x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_bessel_k2_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0/GSL_ROOT3_DBL_MAX) { OVERFLOW_ERROR(result); } else { result->val = M_PI/(2.0*x) * (1.0 + 3.0/x * (1.0 + 1.0/x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_bessel_kl_scaled_e(int l, const double x, gsl_sf_result * result) { if(l < 0 || x <= 0.0) { DOMAIN_ERROR(result); } else if(l == 0) { return gsl_sf_bessel_k0_scaled_e(x, result); } else if(l == 1) { return gsl_sf_bessel_k1_scaled_e(x, result); } else if(l == 2) { return gsl_sf_bessel_k2_scaled_e(x, result); } else if(x < 3.0) { return bessel_kl_scaled_small_x(l, x, result); } else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1)) { int status = gsl_sf_bessel_Knu_scaled_asympx_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else if(GSL_MIN(0.29/(l*l+1.0), 0.5/(l*l+1.0+x*x)) < GSL_ROOT3_DBL_EPSILON) { int status = gsl_sf_bessel_Knu_scaled_asymp_unif_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else { /* recurse upward */ gsl_sf_result r_bk; gsl_sf_result r_bkm; int stat_1 = gsl_sf_bessel_k1_scaled_e(x, &r_bk); int stat_0 = gsl_sf_bessel_k0_scaled_e(x, &r_bkm); double bkp; double bk = r_bk.val; double bkm = r_bkm.val; int j; for(j=1; jval = bk; result->err = fabs(bk) * (fabs(r_bk.err/r_bk.val) + fabs(r_bkm.err/r_bkm.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_1, stat_0); } } int gsl_sf_bessel_kl_scaled_array(const int lmax, const double x, double * result_array) { if(lmax < 0 || x <= 0.0) { GSL_ERROR("domain error", GSL_EDOM); } else if (lmax == 0) { gsl_sf_result result; int stat = gsl_sf_bessel_k0_scaled_e(x, &result); result_array[0] = result.val; return stat; } else { int ell; double kellp1, kell, kellm1; gsl_sf_result r_kell; gsl_sf_result r_kellm1; gsl_sf_bessel_k1_scaled_e(x, &r_kell); gsl_sf_bessel_k0_scaled_e(x, &r_kellm1); kell = r_kell.val; kellm1 = r_kellm1.val; result_array[0] = kellm1; result_array[1] = kell; for(ell = 1; ell < lmax; ell++) { kellp1 = (2*ell+1)/x * kell + kellm1; result_array[ell+1] = kellp1; kellm1 = kell; kell = kellp1; } return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_k0_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_k0_scaled_e(x, &result)); } double gsl_sf_bessel_k1_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_k1_scaled_e(x, &result)); } double gsl_sf_bessel_k2_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_k2_scaled_e(x, &result)); } double gsl_sf_bessel_kl_scaled(const int l, const double x) { EVAL_RESULT(gsl_sf_bessel_kl_scaled_e(l, x, &result)); } gsl-1.16/specfunc/legendre_con.c0000664000252300025230000012450112171574312013553 00000000000000/* specfunc/legendre_con.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Copyright (C) 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include #include #include #include "error.h" #include "legendre.h" #define Root_2OverPi_ 0.797884560802865355879892 #define locEPS (1000.0*GSL_DBL_EPSILON) /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ #define RECURSE_LARGE (1.0e-5*GSL_DBL_MAX) #define RECURSE_SMALL (1.0e+5*GSL_DBL_MIN) /* Continued fraction for f_{ell+1}/f_ell * f_ell := P^{-mu-ell}_{-1/2 + I tau}(x), x < 1.0 * * Uses standard CF method from Temme's book. */ static int conicalP_negmu_xlt1_CF1(const double mu, const int ell, const double tau, const double x, gsl_sf_result * result) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 5000; int n = 1; double xi = x/(sqrt(1.0-x)*sqrt(1.0+x)); double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = 1.0; double b1 = 2.0*(mu + ell + 1.0) * xi; double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = tau*tau + (mu - 0.5 + ell + n)*(mu - 0.5 + ell + n); bn = 2.0*(ell + mu + n) * xi; An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 2.0*GSL_DBL_EPSILON) break; } result->val = fn; result->err = 4.0 * GSL_DBL_EPSILON * (sqrt(n) + 1.0) * fabs(fn); if(n >= maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Continued fraction for f_{ell+1}/f_ell * f_ell := P^{-mu-ell}_{-1/2 + I tau}(x), x >= 1.0 * * Uses Gautschi (Euler) equivalent series. */ static int conicalP_negmu_xgt1_CF1(const double mu, const int ell, const double tau, const double x, gsl_sf_result * result) { const int maxk = 20000; const double gamma = 1.0-1.0/(x*x); const double pre = sqrt(x-1.0)*sqrt(x+1.0) / (x*(2.0*(ell+mu+1.0))); double tk = 1.0; double sum = 1.0; double rhok = 0.0; int k; for(k=1; kval = pre * sum; result->err = fabs(pre * tk); result->err += 2.0 * GSL_DBL_EPSILON * (sqrt(k) + 1.0) * fabs(pre*sum); if(k >= maxk) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Implementation of large negative mu asymptotic * [Dunster, Proc. Roy. Soc. Edinburgh 119A, 311 (1991), p. 326] */ inline static double olver_U1(double beta2, double p) { return (p-1.0)/(24.0*(1.0+beta2)) * (3.0 + beta2*(2.0 + 5.0*p*(1.0+p))); } inline static double olver_U2(double beta2, double p) { double beta4 = beta2*beta2; double p2 = p*p; double poly1 = 4.0*beta4 + 84.0*beta2 - 63.0; double poly2 = 16.0*beta4 + 90.0*beta2 - 81.0; double poly3 = beta2*p2*(97.0*beta2 - 432.0 + 77.0*p*(beta2-6.0) - 385.0*beta2*p2*(1.0 + p)); return (1.0-p)/(1152.0*(1.0+beta2)) * (poly1 + poly2 + poly3); } static const double U3c1[] = { -1307.0, -1647.0, 3375.0, 3675.0 }; static const double U3c2[] = { 29366.0, 35835.0, -252360.0, -272630.0, 276810.0, 290499.0 }; static const double U3c3[] = { -29748.0, -8840.0, 1725295.0, 1767025.0, -7313470.0, -754778.0, 6309875.0, 6480045.0 }; static const double U3c4[] = { 2696.0, -16740.0, -524250.0, -183975.0, 14670540.0, 14172939.0, -48206730.0, -48461985.0, 36756720.0, 37182145.0 }; static const double U3c5[] = { 9136.0, 22480.0, 12760.0, -252480.0, -4662165.0, -1705341.0, 92370135.0, 86244015.0, -263678415.0, -260275015.0, 185910725.0, 185910725.0 }; #if 0 static double olver_U3(double beta2, double p) { double beta4 = beta2*beta2; double beta6 = beta4*beta2; double opb2s = (1.0+beta2)*(1.0+beta2); double den = 39813120.0 * opb2s*opb2s; double poly1 = gsl_poly_eval(U3c1, 4, p); double poly2 = gsl_poly_eval(U3c2, 6, p); double poly3 = gsl_poly_eval(U3c3, 8, p); double poly4 = gsl_poly_eval(U3c4, 10, p); double poly5 = gsl_poly_eval(U3c5, 12, p); return (p-1.0)*( 1215.0*poly1 + 324.0*beta2*poly2 + 54.0*beta4*poly3 + 12.0*beta6*poly4 + beta4*beta4*poly5 ) / den; } #endif /* 0 */ /* Large negative mu asymptotic * P^{-mu}_{-1/2 + I tau}, mu -> Inf * |x| < 1 * * [Dunster, Proc. Roy. Soc. Edinburgh 119A, 311 (1991), p. 326] */ int gsl_sf_conicalP_xlt1_large_neg_mu_e(double mu, double tau, double x, gsl_sf_result * result, double * ln_multiplier) { double beta = tau/mu; double beta2 = beta*beta; double S = beta * acos((1.0-beta2)/(1.0+beta2)); double p = x/sqrt(beta2*(1.0-x*x) + 1.0); gsl_sf_result lg_mup1; int lg_stat = gsl_sf_lngamma_e(mu+1.0, &lg_mup1); double ln_pre_1 = 0.5*mu*(S - log(1.0+beta2) + log((1.0-p)/(1.0+p))) - lg_mup1.val; double ln_pre_2 = -0.25 * log(1.0 + beta2*(1.0-x)); double ln_pre_3 = -tau * atan(p*beta); double ln_pre = ln_pre_1 + ln_pre_2 + ln_pre_3; double sum = 1.0 - olver_U1(beta2, p)/mu + olver_U2(beta2, p)/(mu*mu); if(sum == 0.0) { result->val = 0.0; result->err = 0.0; *ln_multiplier = 0.0; return GSL_SUCCESS; } else { int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result); if(stat_e != GSL_SUCCESS) { result->val = sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum); *ln_multiplier = ln_pre; } else { *ln_multiplier = 0.0; } return lg_stat; } } /* Implementation of large tau asymptotic * * A_n^{-mu}, B_n^{-mu} [Olver, p.465, 469] */ inline static double olver_B0_xi(double mu, double xi) { return (1.0 - 4.0*mu*mu)/(8.0*xi) * (1.0/tanh(xi) - 1.0/xi); } static double olver_A1_xi(double mu, double xi, double x) { double B = olver_B0_xi(mu, xi); double psi; if(fabs(x - 1.0) < GSL_ROOT4_DBL_EPSILON) { double y = x - 1.0; double s = -1.0/3.0 + y*(2.0/15.0 - y *(61.0/945.0 - 452.0/14175.0*y)); psi = (4.0*mu*mu - 1.0)/16.0 * s; } else { psi = (4.0*mu*mu - 1.0)/16.0 * (1.0/(x*x-1.0) - 1.0/(xi*xi)); } return 0.5*xi*xi*B*B + (mu+0.5)*B - psi + mu/6.0*(0.25 - mu*mu); } inline static double olver_B0_th(double mu, double theta) { return -(1.0 - 4.0*mu*mu)/(8.0*theta) * (1.0/tan(theta) - 1.0/theta); } static double olver_A1_th(double mu, double theta, double x) { double B = olver_B0_th(mu, theta); double psi; if(fabs(x - 1.0) < GSL_ROOT4_DBL_EPSILON) { double y = 1.0 - x; double s = -1.0/3.0 + y*(2.0/15.0 - y *(61.0/945.0 - 452.0/14175.0*y)); psi = (4.0*mu*mu - 1.0)/16.0 * s; } else { psi = (4.0*mu*mu - 1.0)/16.0 * (1.0/(x*x-1.0) + 1.0/(theta*theta)); } return -0.5*theta*theta*B*B + (mu+0.5)*B - psi + mu/6.0*(0.25 - mu*mu); } /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau} * 1 < x * tau -> Inf * [Olver, p. 469] */ int gsl_sf_conicalP_xgt1_neg_mu_largetau_e(const double mu, const double tau, const double x, double acosh_x, gsl_sf_result * result, double * ln_multiplier) { double xi = acosh_x; double ln_xi_pre; double ln_pre; double sumA, sumB, sum; double arg; gsl_sf_result J_mup1; gsl_sf_result J_mu; double J_mum1; if(xi < GSL_ROOT4_DBL_EPSILON) { ln_xi_pre = -xi*xi/6.0; /* log(1.0 - xi*xi/6.0) */ } else { gsl_sf_result lnshxi; gsl_sf_lnsinh_e(xi, &lnshxi); ln_xi_pre = log(xi) - lnshxi.val; /* log(xi/sinh(xi) */ } ln_pre = 0.5*ln_xi_pre - mu*log(tau); arg = tau*xi; gsl_sf_bessel_Jnu_e(mu + 1.0, arg, &J_mup1); gsl_sf_bessel_Jnu_e(mu, arg, &J_mu); J_mum1 = -J_mup1.val + 2.0*mu/arg*J_mu.val; /* careful of mu < 1 */ sumA = 1.0 - olver_A1_xi(-mu, xi, x)/(tau*tau); sumB = olver_B0_xi(-mu, xi); sum = J_mu.val * sumA - xi/tau * J_mum1 * sumB; if(sum == 0.0) { result->val = 0.0; result->err = 0.0; *ln_multiplier = 0.0; return GSL_SUCCESS; } else { int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result); if(stat_e != GSL_SUCCESS) { result->val = sum; result->err = 2.0 * GSL_DBL_EPSILON * fabs(sum); *ln_multiplier = ln_pre; } else { *ln_multiplier = 0.0; } return GSL_SUCCESS; } } /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau} * -1 < x < 1 * tau -> Inf * [Olver, p. 473] */ int gsl_sf_conicalP_xlt1_neg_mu_largetau_e(const double mu, const double tau, const double x, const double acos_x, gsl_sf_result * result, double * ln_multiplier) { double theta = acos_x; double ln_th_pre; double ln_pre; double sumA, sumB, sum, sumerr; double arg; gsl_sf_result I_mup1, I_mu; double I_mum1; if(theta < GSL_ROOT4_DBL_EPSILON) { ln_th_pre = theta*theta/6.0; /* log(1.0 + theta*theta/6.0) */ } else { ln_th_pre = log(theta/sin(theta)); } ln_pre = 0.5 * ln_th_pre - mu * log(tau); arg = tau*theta; gsl_sf_bessel_Inu_e(mu + 1.0, arg, &I_mup1); gsl_sf_bessel_Inu_e(mu, arg, &I_mu); I_mum1 = I_mup1.val + 2.0*mu/arg * I_mu.val; /* careful of mu < 1 */ sumA = 1.0 - olver_A1_th(-mu, theta, x)/(tau*tau); sumB = olver_B0_th(-mu, theta); sum = I_mu.val * sumA - theta/tau * I_mum1 * sumB; sumerr = fabs(I_mu.err * sumA); sumerr += fabs(I_mup1.err * theta/tau * sumB); sumerr += fabs(I_mu.err * theta/tau * sumB * 2.0 * mu/arg); if(sum == 0.0) { result->val = 0.0; result->err = 0.0; *ln_multiplier = 0.0; return GSL_SUCCESS; } else { int stat_e = gsl_sf_exp_mult_e(ln_pre, sum, result); if(stat_e != GSL_SUCCESS) { result->val = sum; result->err = sumerr; result->err += GSL_DBL_EPSILON * fabs(sum); *ln_multiplier = ln_pre; } else { *ln_multiplier = 0.0; } return GSL_SUCCESS; } } /* Hypergeometric function which appears in the * large x expansion below: * * 2F1(1/4 - mu/2 - I tau/2, 3/4 - mu/2 - I tau/2, 1 - I tau, y) * * Note that for the usage below y = 1/x^2; */ static int conicalP_hyperg_large_x(const double mu, const double tau, const double y, double * reF, double * imF) { const int kmax = 1000; const double re_a = 0.25 - 0.5*mu; const double re_b = 0.75 - 0.5*mu; const double re_c = 1.0; const double im_a = -0.5*tau; const double im_b = -0.5*tau; const double im_c = -tau; double re_sum = 1.0; double im_sum = 0.0; double re_term = 1.0; double im_term = 0.0; int k; for(k=1; k<=kmax; k++) { double re_ak = re_a + k - 1.0; double re_bk = re_b + k - 1.0; double re_ck = re_c + k - 1.0; double im_ak = im_a; double im_bk = im_b; double im_ck = im_c; double den = re_ck*re_ck + im_ck*im_ck; double re_multiplier = ((re_ak*re_bk - im_ak*im_bk)*re_ck + im_ck*(im_ak*re_bk + re_ak*im_bk)) / den; double im_multiplier = ((im_ak*re_bk + re_ak*im_bk)*re_ck - im_ck*(re_ak*re_bk - im_ak*im_bk)) / den; double re_tmp = re_multiplier*re_term - im_multiplier*im_term; double im_tmp = im_multiplier*re_term + re_multiplier*im_term; double asum = fabs(re_sum) + fabs(im_sum); re_term = y/k * re_tmp; im_term = y/k * im_tmp; if(fabs(re_term/asum) < GSL_DBL_EPSILON && fabs(im_term/asum) < GSL_DBL_EPSILON) break; re_sum += re_term; im_sum += im_term; } *reF = re_sum; *imF = im_sum; if(k == kmax) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* P^{mu}_{-1/2 + I tau} * x->Inf */ int gsl_sf_conicalP_large_x_e(const double mu, const double tau, const double x, gsl_sf_result * result, double * ln_multiplier) { /* 2F1 term */ double y = ( x < 0.5*GSL_SQRT_DBL_MAX ? 1.0/(x*x) : 0.0 ); double reF, imF; int stat_F = conicalP_hyperg_large_x(mu, tau, y, &reF, &imF); /* f = Gamma(+i tau)/Gamma(1/2 - mu + i tau) * FIXME: shift so it's better for tau-> 0 */ gsl_sf_result lgr_num, lgth_num; gsl_sf_result lgr_den, lgth_den; int stat_gn = gsl_sf_lngamma_complex_e(0.0,tau,&lgr_num,&lgth_num); int stat_gd = gsl_sf_lngamma_complex_e(0.5-mu,tau,&lgr_den,&lgth_den); double angle = lgth_num.val - lgth_den.val + atan2(imF,reF); double lnx = log(x); double lnxp1 = log(x+1.0); double lnxm1 = log(x-1.0); double lnpre_const = 0.5*M_LN2 - 0.5*M_LNPI; double lnpre_comm = (mu-0.5)*lnx - 0.5*mu*(lnxp1 + lnxm1); double lnpre_err = GSL_DBL_EPSILON * (0.5*M_LN2 + 0.5*M_LNPI) + GSL_DBL_EPSILON * fabs((mu-0.5)*lnx) + GSL_DBL_EPSILON * fabs(0.5*mu)*(fabs(lnxp1)+fabs(lnxm1)); /* result = pre*|F|*|f| * cos(angle - tau * (log(x)+M_LN2)) */ gsl_sf_result cos_result; int stat_cos = gsl_sf_cos_e(angle + tau*(log(x) + M_LN2), &cos_result); int status = GSL_ERROR_SELECT_4(stat_cos, stat_gd, stat_gn, stat_F); if(cos_result.val == 0.0) { result->val = 0.0; result->err = 0.0; return status; } else { double lnFf_val = 0.5*log(reF*reF+imF*imF) + lgr_num.val - lgr_den.val; double lnFf_err = lgr_num.err + lgr_den.err + GSL_DBL_EPSILON * fabs(lnFf_val); double lnnoc_val = lnpre_const + lnpre_comm + lnFf_val; double lnnoc_err = lnpre_err + lnFf_err + GSL_DBL_EPSILON * fabs(lnnoc_val); int stat_e = gsl_sf_exp_mult_err_e(lnnoc_val, lnnoc_err, cos_result.val, cos_result.err, result); if(stat_e == GSL_SUCCESS) { *ln_multiplier = 0.0; } else { result->val = cos_result.val; result->err = cos_result.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = lnnoc_val; } return status; } } /* P^{mu}_{-1/2 + I tau} first hypergeometric representation * -1 < x < 1 * This is more effective for |x| small, however it will work w/o * reservation for any x < 0 because everything is positive * definite in that case. * * [Kolbig, (3)] (note typo in args of gamma functions) * [Bateman, (22)] (correct form) */ static int conicalP_xlt1_hyperg_A(double mu, double tau, double x, gsl_sf_result * result) { double x2 = x*x; double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x))); double pre_val = M_SQRTPI / pow(0.5*sqrt(1-x2), mu); double pre_err = err_amp * GSL_DBL_EPSILON * (fabs(mu)+1.0) * fabs(pre_val) ; gsl_sf_result ln_g1, ln_g2, arg_g1, arg_g2; gsl_sf_result F1, F2; gsl_sf_result pre1, pre2; double t1_val, t1_err; double t2_val, t2_err; int stat_F1 = gsl_sf_hyperg_2F1_conj_e(0.25 - 0.5*mu, 0.5*tau, 0.5, x2, &F1); int stat_F2 = gsl_sf_hyperg_2F1_conj_e(0.75 - 0.5*mu, 0.5*tau, 1.5, x2, &F2); int status = GSL_ERROR_SELECT_2(stat_F1, stat_F2); gsl_sf_lngamma_complex_e(0.75 - 0.5*mu, -0.5*tau, &ln_g1, &arg_g1); gsl_sf_lngamma_complex_e(0.25 - 0.5*mu, -0.5*tau, &ln_g2, &arg_g2); gsl_sf_exp_err_e(-2.0*ln_g1.val, 2.0*ln_g1.err, &pre1); gsl_sf_exp_err_e(-2.0*ln_g2.val, 2.0*ln_g2.err, &pre2); pre2.val *= -2.0*x; pre2.err *= 2.0*fabs(x); pre2.err += GSL_DBL_EPSILON * fabs(pre2.val); t1_val = pre1.val * F1.val; t1_err = fabs(pre1.val) * F1.err + pre1.err * fabs(F1.val); t2_val = pre2.val * F2.val; t2_err = fabs(pre2.val) * F2.err + pre2.err * fabs(F2.val); result->val = pre_val * (t1_val + t2_val); result->err = pre_val * (t1_err + t2_err); result->err += pre_err * fabs(t1_val + t2_val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return status; } /* P^{mu}_{-1/2 + I tau} * defining hypergeometric representation * [Abramowitz+Stegun, 8.1.2] * 1 < x < 3 * effective for x near 1 * */ #if 0 static int conicalP_def_hyperg(double mu, double tau, double x, double * result) { double F; int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5, tau, 1.0-mu, 0.5*(1.0-x), &F); *result = pow((x+1.0)/(x-1.0), 0.5*mu) * F; return stat_F; } #endif /* 0 */ /* P^{mu}_{-1/2 + I tau} second hypergeometric representation * [Zhurina+Karmazina, (3.1)] * -1 < x < 3 * effective for x near 1 * */ #if 0 static int conicalP_xnear1_hyperg_C(double mu, double tau, double x, double * result) { double ln_pre, arg_pre; double ln_g1, arg_g1; double ln_g2, arg_g2; double F; int stat_F = gsl_sf_hyperg_2F1_conj_renorm_e(0.5+mu, tau, 1.0+mu, 0.5*(1.0-x), &F); gsl_sf_lngamma_complex_e(0.5+mu, tau, &ln_g1, &arg_g1); gsl_sf_lngamma_complex_e(0.5-mu, tau, &ln_g2, &arg_g2); ln_pre = mu*M_LN2 - 0.5*mu*log(fabs(x*x-1.0)) + ln_g1 - ln_g2; arg_pre = arg_g1 - arg_g2; *result = exp(ln_pre) * F; return stat_F; } #endif /* 0 */ /* V0, V1 from Kolbig, m = 0 */ static int conicalP_0_V(const double t, const double f, const double tau, const double sgn, double * V0, double * V1) { double C[8]; double T[8]; double H[8]; double V[12]; int i; T[0] = 1.0; H[0] = 1.0; V[0] = 1.0; for(i=1; i<=7; i++) { T[i] = T[i-1] * t; H[i] = H[i-1] * (t*f); } for(i=1; i<=11; i++) { V[i] = V[i-1] * tau; } C[0] = 1.0; C[1] = (H[1]-1.0)/(8.0*T[1]); C[2] = (9.0*H[2] + 6.0*H[1] - 15.0 - sgn*8.0*T[2])/(128.0*T[2]); C[3] = 5.0*(15.0*H[3] + 27.0*H[2] + 21.0*H[1] - 63.0 - sgn*T[2]*(16.0*H[1]+24.0))/(1024.0*T[3]); C[4] = 7.0*(525.0*H[4] + 1500.0*H[3] + 2430.0*H[2] + 1980.0*H[1] - 6435.0 + 192.0*T[4] - sgn*T[2]*(720.0*H[2]+1600.0*H[1]+2160.0) ) / (32768.0*T[4]); C[5] = 21.0*(2835.0*H[5] + 11025.0*H[4] + 24750.0*H[3] + 38610.0*H[2] + 32175.0*H[1] - 109395.0 + T[4]*(1984.0*H[1]+4032.0) - sgn*T[2]*(4800.0*H[3]+15120.0*H[2]+26400.0*H[1]+34320.0) ) / (262144.0*T[5]); C[6] = 11.0*(218295.0*H[6] + 1071630.0*H[5] + 3009825.0*H[4] + 6142500.0*H[3] + 9398025.0*H[2] + 7936110.0*H[1] - 27776385.0 + T[4]*(254016.0*H[2]+749952.0*H[1]+1100736.0) - sgn*T[2]*(441000.0*H[4] + 1814400.0*H[3] + 4127760.0*H[2] + 6552000.0*H[1] + 8353800.0 + 31232.0*T[4] ) ) / (4194304.0*T[6]); *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4] + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8] + sgn * (-C[2]/V[2] + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] + (-1920.0*C[6]/T[4])/V[10] ); *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5] + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9] + sgn * ((2.0*C[2]/T[1]-C[3])/V[3] + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7] + (3840.0*C[6]/T[5])/V[11] ); return GSL_SUCCESS; } /* V0, V1 from Kolbig, m = 1 */ static int conicalP_1_V(const double t, const double f, const double tau, const double sgn, double * V0, double * V1) { double Cm1; double C[8]; double T[8]; double H[8]; double V[12]; int i; T[0] = 1.0; H[0] = 1.0; V[0] = 1.0; for(i=1; i<=7; i++) { T[i] = T[i-1] * t; H[i] = H[i-1] * (t*f); } for(i=1; i<=11; i++) { V[i] = V[i-1] * tau; } Cm1 = -1.0; C[0] = 3.0*(1.0-H[1])/(8.0*T[1]); C[1] = (-15.0*H[2]+6.0*H[1]+9.0+sgn*8.0*T[2])/(128.0*T[2]); C[2] = 3.0*(-35.0*H[3] - 15.0*H[2] + 15.0*H[1] + 35.0 + sgn*T[2]*(32.0*H[1]+8.0))/(1024.0*T[3]); C[3] = (-4725.0*H[4] - 6300.0*H[3] - 3150.0*H[2] + 3780.0*H[1] + 10395.0 -1216.0*T[4] + sgn*T[2]*(6000.0*H[2]+5760.0*H[1]+1680.0)) / (32768.0*T[4]); C[4] = 7.0*(-10395.0*H[5] - 23625.0*H[4] - 28350.0*H[3] - 14850.0*H[2] +19305.0*H[1] + 57915.0 - T[4]*(6336.0*H[1]+6080.0) + sgn*T[2]*(16800.0*H[3] + 30000.0*H[2] + 25920.0*H[1] + 7920.0) ) / (262144.0*T[5]); C[5] = (-2837835.0*H[6] - 9168390.0*H[5] - 16372125.0*H[4] - 18918900*H[3] -10135125.0*H[2] + 13783770.0*H[1] + 43648605.0 -T[4]*(3044160.0*H[2] + 5588352.0*H[1] + 4213440.0) +sgn*T[2]*(5556600.0*H[4] + 14817600.0*H[3] + 20790000.0*H[2] + 17297280.0*H[1] + 5405400.0 + 323072.0*T[4] ) ) / (4194304.0*T[6]); C[6] = 0.0; *V0 = C[0] + (-4.0*C[3]/T[1]+C[4])/V[4] + (-192.0*C[5]/T[3]+144.0*C[6]/T[2])/V[8] + sgn * (-C[2]/V[2] + (-24.0*C[4]/T[2]+12.0*C[5]/T[1]-C[6])/V[6] ); *V1 = C[1]/V[1] + (8.0*(C[3]/T[2]-C[4]/T[1])+C[5])/V[5] + (384.0*C[5]/T[4] - 768.0*C[6]/T[3])/V[9] + sgn * (Cm1*V[1] + (2.0*C[2]/T[1]-C[3])/V[3] + (48.0*C[4]/T[3]-72.0*C[5]/T[2] + 18.0*C[6]/T[1])/V[7] ); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ /* P^0_{-1/2 + I lambda} */ int gsl_sf_conicalP_0_e(const double lambda, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(x == 1.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(lambda == 0.0) { gsl_sf_result K; int stat_K; if(x < 1.0) { const double th = acos(x); const double s = sin(0.5*th); stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K); result->val = 2.0/M_PI * K.val; result->err = 2.0/M_PI * K.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_K; } else { const double xi = acosh(x); const double c = cosh(0.5*xi); const double t = tanh(0.5*xi); stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K); result->val = 2.0/M_PI / c * K.val; result->err = 2.0/M_PI / c * K.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_K; } } else if( (x <= 0.0 && lambda < 1000.0) || (x < 0.1 && lambda < 17.0) || (x < 0.2 && lambda < 5.0 ) ) { return conicalP_xlt1_hyperg_A(0.0, lambda, x, result); } else if( (x <= 0.2 && lambda < 17.0) || (x <= 1.5 && lambda < 20.0) ) { return gsl_sf_hyperg_2F1_conj_e(0.5, lambda, 1.0, (1.0-x)/2, result); } else if(1.5 < x && lambda < GSL_MAX(x,20.0)) { gsl_sf_result P; double lm; int stat_P = gsl_sf_conicalP_large_x_e(0.0, lambda, x, &P, &lm ); int stat_e = gsl_sf_exp_mult_err_e(lm, 2.0*GSL_DBL_EPSILON * fabs(lm), P.val, P.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_P); } else { double V0, V1; if(x < 1.0) { double th = acos(x); double sth = sqrt(1.0-x*x); /* sin(th) */ gsl_sf_result I0, I1; int stat_I0 = gsl_sf_bessel_I0_scaled_e(th * lambda, &I0); int stat_I1 = gsl_sf_bessel_I1_scaled_e(th * lambda, &I1); int stat_I = GSL_ERROR_SELECT_2(stat_I0, stat_I1); int stat_V = conicalP_0_V(th, x/sth, lambda, -1.0, &V0, &V1); double bessterm = V0 * I0.val + V1 * I1.val; double besserr = fabs(V0) * I0.err + fabs(V1) * I1.err; double arg1 = th*lambda; double sqts = sqrt(th/sth); int stat_e = gsl_sf_exp_mult_err_e(arg1, 4.0 * GSL_DBL_EPSILON * fabs(arg1), sqts * bessterm, sqts * besserr, result); return GSL_ERROR_SELECT_3(stat_e, stat_V, stat_I); } else { double sh = sqrt(x-1.0)*sqrt(x+1.0); /* sinh(xi) */ double xi = log(x + sh); /* xi = acosh(x) */ gsl_sf_result J0, J1; int stat_J0 = gsl_sf_bessel_J0_e(xi * lambda, &J0); int stat_J1 = gsl_sf_bessel_J1_e(xi * lambda, &J1); int stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1); int stat_V = conicalP_0_V(xi, x/sh, lambda, 1.0, &V0, &V1); double bessterm = V0 * J0.val + V1 * J1.val; double besserr = fabs(V0) * J0.err + fabs(V1) * J1.err; double pre_val = sqrt(xi/sh); double pre_err = 2.0 * fabs(pre_val); result->val = pre_val * bessterm; result->err = pre_val * besserr; result->err += pre_err * fabs(bessterm); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_V, stat_J); } } } /* P^1_{-1/2 + I lambda} */ int gsl_sf_conicalP_1_e(const double lambda, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(lambda == 0.0) { gsl_sf_result K, E; int stat_K, stat_E; if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 1.0) { if(1.0-x < GSL_SQRT_DBL_EPSILON) { double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x))); result->val = 0.25/M_SQRT2 * sqrt(1.0-x) * (1.0 + 5.0/16.0 * (1.0-x)); result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double th = acos(x); const double s = sin(0.5*th); const double c2 = 1.0 - s*s; const double sth = sin(th); const double pre = 2.0/(M_PI*sth); stat_K = gsl_sf_ellint_Kcomp_e(s, GSL_MODE_DEFAULT, &K); stat_E = gsl_sf_ellint_Ecomp_e(s, GSL_MODE_DEFAULT, &E); result->val = pre * (E.val - c2 * K.val); result->err = pre * (E.err + fabs(c2) * K.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_K, stat_E); } } else { if(x-1.0 < GSL_SQRT_DBL_EPSILON) { double err_amp = GSL_MAX_DBL(1.0, 1.0/(GSL_DBL_EPSILON + fabs(1.0-x))); result->val = -0.25/M_SQRT2 * sqrt(x-1.0) * (1.0 - 5.0/16.0 * (x-1.0)); result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double xi = acosh(x); const double c = cosh(0.5*xi); const double t = tanh(0.5*xi); const double sxi = sinh(xi); const double pre = 2.0/(M_PI*sxi) * c; stat_K = gsl_sf_ellint_Kcomp_e(t, GSL_MODE_DEFAULT, &K); stat_E = gsl_sf_ellint_Ecomp_e(t, GSL_MODE_DEFAULT, &E); result->val = pre * (E.val - K.val); result->err = pre * (E.err + K.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_K, stat_E); } } } else if( (x <= 0.0 && lambda < 1000.0) || (x < 0.1 && lambda < 17.0) || (x < 0.2 && lambda < 5.0 ) ) { return conicalP_xlt1_hyperg_A(1.0, lambda, x, result); } else if( (x <= 0.2 && lambda < 17.0) || (x < 1.5 && lambda < 20.0) ) { const double arg = fabs(x*x - 1.0); const double sgn = GSL_SIGN(1.0 - x); const double pre = 0.5*(lambda*lambda + 0.25) * sgn * sqrt(arg); gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F1_conj_e(1.5, lambda, 2.0, (1.0-x)/2, &F); result->val = pre * F.val; result->err = fabs(pre) * F.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_F; } else if(1.5 <= x && lambda < GSL_MAX(x,20.0)) { gsl_sf_result P; double lm; int stat_P = gsl_sf_conicalP_large_x_e(1.0, lambda, x, &P, &lm ); int stat_e = gsl_sf_exp_mult_err_e(lm, 2.0 * GSL_DBL_EPSILON * fabs(lm), P.val, P.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_P); } else { double V0, V1; if(x < 1.0) { const double sqrt_1mx = sqrt(1.0 - x); const double sqrt_1px = sqrt(1.0 + x); const double th = acos(x); const double sth = sqrt_1mx * sqrt_1px; /* sin(th) */ gsl_sf_result I0, I1; int stat_I0 = gsl_sf_bessel_I0_scaled_e(th * lambda, &I0); int stat_I1 = gsl_sf_bessel_I1_scaled_e(th * lambda, &I1); int stat_I = GSL_ERROR_SELECT_2(stat_I0, stat_I1); int stat_V = conicalP_1_V(th, x/sth, lambda, -1.0, &V0, &V1); double bessterm = V0 * I0.val + V1 * I1.val; double besserr = fabs(V0) * I0.err + fabs(V1) * I1.err + 2.0 * GSL_DBL_EPSILON * fabs(V0 * I0.val) + 2.0 * GSL_DBL_EPSILON * fabs(V1 * I1.val); double arg1 = th * lambda; double sqts = sqrt(th/sth); int stat_e = gsl_sf_exp_mult_err_e(arg1, 2.0 * GSL_DBL_EPSILON * fabs(arg1), sqts * bessterm, sqts * besserr, result); result->err *= 1.0/sqrt_1mx; return GSL_ERROR_SELECT_3(stat_e, stat_V, stat_I); } else { const double sqrt_xm1 = sqrt(x - 1.0); const double sqrt_xp1 = sqrt(x + 1.0); const double sh = sqrt_xm1 * sqrt_xp1; /* sinh(xi) */ const double xi = log(x + sh); /* xi = acosh(x) */ const double xi_lam = xi * lambda; gsl_sf_result J0, J1; const int stat_J0 = gsl_sf_bessel_J0_e(xi_lam, &J0); const int stat_J1 = gsl_sf_bessel_J1_e(xi_lam, &J1); const int stat_J = GSL_ERROR_SELECT_2(stat_J0, stat_J1); const int stat_V = conicalP_1_V(xi, x/sh, lambda, 1.0, &V0, &V1); const double bessterm = V0 * J0.val + V1 * J1.val; const double besserr = fabs(V0) * J0.err + fabs(V1) * J1.err + 512.0 * 2.0 * GSL_DBL_EPSILON * fabs(V0 * J0.val) + 512.0 * 2.0 * GSL_DBL_EPSILON * fabs(V1 * J1.val) + GSL_DBL_EPSILON * fabs(xi_lam * V0 * J1.val) + GSL_DBL_EPSILON * fabs(xi_lam * V1 * J0.val); const double pre = sqrt(xi/sh); result->val = pre * bessterm; result->err = pre * besserr * sqrt_xp1 / sqrt_xm1; result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_V, stat_J); } } } /* P^{1/2}_{-1/2 + I lambda} (x) * [Abramowitz+Stegun 8.6.8, 8.6.12] * checked OK [GJ] Fri May 8 12:24:36 MDT 1998 */ int gsl_sf_conicalP_half_e(const double lambda, const double x, gsl_sf_result * result ) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(x < 1.0) { double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x))); double ac = acos(x); double den = sqrt(sqrt(1.0-x)*sqrt(1.0+x)); result->val = Root_2OverPi_ / den * cosh(ac * lambda); result->err = err_amp * 3.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= fabs(ac * lambda) + 1.0; return GSL_SUCCESS; } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* x > 1 */ double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x))); double sq_term = sqrt(x-1.0)*sqrt(x+1.0); double ln_term = log(x + sq_term); double den = sqrt(sq_term); double carg_val = lambda * ln_term; double carg_err = 2.0 * GSL_DBL_EPSILON * fabs(carg_val); gsl_sf_result cos_result; int stat_cos = gsl_sf_cos_err_e(carg_val, carg_err, &cos_result); result->val = Root_2OverPi_ / den * cos_result.val; result->err = err_amp * Root_2OverPi_ / den * cos_result.err; result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_cos; } } /* P^{-1/2}_{-1/2 + I lambda} (x) * [Abramowitz+Stegun 8.6.9, 8.6.14] * checked OK [GJ] Fri May 8 12:24:43 MDT 1998 */ int gsl_sf_conicalP_mhalf_e(const double lambda, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(x < 1.0) { double ac = acos(x); double den = sqrt(sqrt(1.0-x)*sqrt(1.0+x)); double arg = ac * lambda; double err_amp = 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-fabs(x))); if(fabs(arg) < GSL_SQRT_DBL_EPSILON) { result->val = Root_2OverPi_ / den * ac; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= err_amp; } else { result->val = Root_2OverPi_ / (den*lambda) * sinh(arg); result->err = GSL_DBL_EPSILON * (fabs(arg)+1.0) * fabs(result->val); result->err *= err_amp; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* x > 1 */ double sq_term = sqrt(x-1.0)*sqrt(x+1.0); double ln_term = log(x + sq_term); double den = sqrt(sq_term); double arg_val = lambda * ln_term; double arg_err = 2.0 * GSL_DBL_EPSILON * fabs(arg_val); if(arg_val < GSL_SQRT_DBL_EPSILON) { result->val = Root_2OverPi_ / den * ln_term; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result sin_result; int stat_sin = gsl_sf_sin_err_e(arg_val, arg_err, &sin_result); result->val = Root_2OverPi_ / (den*lambda) * sin_result.val; result->err = Root_2OverPi_ / fabs(den*lambda) * sin_result.err; result->err += 3.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_sin; } } } int gsl_sf_conicalP_sph_reg_e(const int l, const double lambda, const double x, gsl_sf_result * result ) { /* CHECK_POINTER(result) */ if(x <= -1.0 || l < -1) { DOMAIN_ERROR(result); } else if(l == -1) { return gsl_sf_conicalP_half_e(lambda, x, result); } else if(l == 0) { return gsl_sf_conicalP_mhalf_e(lambda, x, result); } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 0.0) { double c = 1.0/sqrt(1.0-x*x); gsl_sf_result r_Pellm1; gsl_sf_result r_Pell; int stat_0 = gsl_sf_conicalP_half_e(lambda, x, &r_Pellm1); /* P^( 1/2) */ int stat_1 = gsl_sf_conicalP_mhalf_e(lambda, x, &r_Pell); /* P^(-1/2) */ int stat_P = GSL_ERROR_SELECT_2(stat_0, stat_1); double Pellm1 = r_Pellm1.val; double Pell = r_Pell.val; double Pellp1; int ell; for(ell=0; ellval = Pell; result->err = (0.5*l + 1.0) * GSL_DBL_EPSILON * fabs(Pell); result->err += GSL_DBL_EPSILON * l * fabs(result->val); return stat_P; } else if(x < 1.0) { const double xi = x/(sqrt(1.0-x)*sqrt(1.0+x)); gsl_sf_result rat; gsl_sf_result Phf; int stat_CF1 = conicalP_negmu_xlt1_CF1(0.5, l, lambda, x, &rat); int stat_Phf = gsl_sf_conicalP_half_e(lambda, x, &Phf); double Pellp1 = rat.val * GSL_SQRT_DBL_MIN; double Pell = GSL_SQRT_DBL_MIN; double Pellm1; int ell; for(ell=l; ell>=0; ell--) { double d = (ell+1.0)*(ell+1.0) + lambda*lambda; Pellm1 = (2.0*ell+1.0)*xi * Pell + d * Pellp1; Pellp1 = Pell; Pell = Pellm1; } result->val = GSL_SQRT_DBL_MIN * Phf.val / Pell; result->err = GSL_SQRT_DBL_MIN * Phf.err / fabs(Pell); result->err += fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Phf, stat_CF1); } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* x > 1.0 */ const double xi = x/sqrt((x-1.0)*(x+1.0)); gsl_sf_result rat; int stat_CF1 = conicalP_negmu_xgt1_CF1(0.5, l, lambda, x, &rat); int stat_P; double Pellp1 = rat.val * GSL_SQRT_DBL_MIN; double Pell = GSL_SQRT_DBL_MIN; double Pellm1; int ell; for(ell=l; ell>=0; ell--) { double d = (ell+1.0)*(ell+1.0) + lambda*lambda; Pellm1 = (2.0*ell+1.0)*xi * Pell - d * Pellp1; Pellp1 = Pell; Pell = Pellm1; } if(fabs(Pell) > fabs(Pellp1)){ gsl_sf_result Phf; stat_P = gsl_sf_conicalP_half_e(lambda, x, &Phf); result->val = GSL_SQRT_DBL_MIN * Phf.val / Pell; result->err = 2.0 * GSL_SQRT_DBL_MIN * Phf.err / fabs(Pell); result->err += 2.0 * fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } else { gsl_sf_result Pmhf; stat_P = gsl_sf_conicalP_mhalf_e(lambda, x, &Pmhf); result->val = GSL_SQRT_DBL_MIN * Pmhf.val / Pellp1; result->err = 2.0 * GSL_SQRT_DBL_MIN * Pmhf.err / fabs(Pellp1); result->err += 2.0 * fabs(rat.err/rat.val) * (l + 1.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_ERROR_SELECT_2(stat_P, stat_CF1); } } int gsl_sf_conicalP_cyl_reg_e(const int m, const double lambda, const double x, gsl_sf_result * result ) { /* CHECK_POINTER(result) */ if(x <= -1.0 || m < -1) { DOMAIN_ERROR(result); } else if(m == -1) { return gsl_sf_conicalP_1_e(lambda, x, result); } else if(m == 0) { return gsl_sf_conicalP_0_e(lambda, x, result); } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x < 0.0) { double c = 1.0/sqrt(1.0-x*x); gsl_sf_result r_Pkm1; gsl_sf_result r_Pk; int stat_0 = gsl_sf_conicalP_1_e(lambda, x, &r_Pkm1); /* P^1 */ int stat_1 = gsl_sf_conicalP_0_e(lambda, x, &r_Pk); /* P^0 */ int stat_P = GSL_ERROR_SELECT_2(stat_0, stat_1); double Pkm1 = r_Pkm1.val; double Pk = r_Pk.val; double Pkp1; int k; for(k=0; kval = Pk; result->err = (m + 2.0) * GSL_DBL_EPSILON * fabs(Pk); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_P; } else if(x < 1.0) { const double xi = x/(sqrt(1.0-x)*sqrt(1.0+x)); gsl_sf_result rat; gsl_sf_result P0; int stat_CF1 = conicalP_negmu_xlt1_CF1(0.0, m, lambda, x, &rat); int stat_P0 = gsl_sf_conicalP_0_e(lambda, x, &P0); double Pkp1 = rat.val * GSL_SQRT_DBL_MIN; double Pk = GSL_SQRT_DBL_MIN; double Pkm1; int k; for(k=m; k>0; k--) { double d = (k+0.5)*(k+0.5) + lambda*lambda; Pkm1 = 2.0*k*xi * Pk + d * Pkp1; Pkp1 = Pk; Pk = Pkm1; } result->val = GSL_SQRT_DBL_MIN * P0.val / Pk; result->err = 2.0 * GSL_SQRT_DBL_MIN * P0.err / fabs(Pk); result->err += 2.0 * fabs(rat.err/rat.val) * (m + 1.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_P0, stat_CF1); } else if(x == 1.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* x > 1.0 */ const double xi = x/sqrt((x-1.0)*(x+1.0)); gsl_sf_result rat; int stat_CF1 = conicalP_negmu_xgt1_CF1(0.0, m, lambda, x, &rat); int stat_P; double Pkp1 = rat.val * GSL_SQRT_DBL_MIN; double Pk = GSL_SQRT_DBL_MIN; double Pkm1; int k; for(k=m; k>-1; k--) { double d = (k+0.5)*(k+0.5) + lambda*lambda; Pkm1 = 2.0*k*xi * Pk - d * Pkp1; Pkp1 = Pk; Pk = Pkm1; } if(fabs(Pk) > fabs(Pkp1)){ gsl_sf_result P1; stat_P = gsl_sf_conicalP_1_e(lambda, x, &P1); result->val = GSL_SQRT_DBL_MIN * P1.val / Pk; result->err = 2.0 * GSL_SQRT_DBL_MIN * P1.err / fabs(Pk); result->err += 2.0 * fabs(rat.err/rat.val) * (m+2.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } else { gsl_sf_result P0; stat_P = gsl_sf_conicalP_0_e(lambda, x, &P0); result->val = GSL_SQRT_DBL_MIN * P0.val / Pkp1; result->err = 2.0 * GSL_SQRT_DBL_MIN * P0.err / fabs(Pkp1); result->err += 2.0 * fabs(rat.err/rat.val) * (m+2.0) * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_ERROR_SELECT_2(stat_P, stat_CF1); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_conicalP_0(const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_0_e(lambda, x, &result)); } double gsl_sf_conicalP_1(const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_1_e(lambda, x, &result)); } double gsl_sf_conicalP_half(const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_half_e(lambda, x, &result)); } double gsl_sf_conicalP_mhalf(const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_mhalf_e(lambda, x, &result)); } double gsl_sf_conicalP_sph_reg(const int l, const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_sph_reg_e(l, lambda, x, &result)); } double gsl_sf_conicalP_cyl_reg(const int m, const double lambda, const double x) { EVAL_RESULT(gsl_sf_conicalP_cyl_reg_e(m, lambda, x, &result)); } gsl-1.16/specfunc/test_sf.h0000664000252300025230000001064112171574312012602 00000000000000/* specfunc/test_sf.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef TEST_SF_H #define TEST_SF_H #include #include #include #include double test_sf_frac_diff(double x1, double x2); int test_sf_check_result(char * message_buff, gsl_sf_result r, double val, double tol); int test_sf_check_val(char * message_buff, double rval, double val, double tol); int test_sf_check_return(char * message_buff, int val_return, int expected_return); int test_sf_check_result_relax(char * message_buff, gsl_sf_result r, double val, double tol); /* Include an overall test factor to allow for differences between compilers, otherwise there are too many bug reports on the released versions. Turn this value down to 1.0 for development purposes */ #ifndef TEST_FACTOR #ifdef RELEASED #define TEST_FACTOR 100.0 #else #define TEST_FACTOR 1.0 #endif #endif #ifndef TEST_SIGMA #ifdef RELEASED #define TEST_SIGMA 1.5 #else #define TEST_SIGMA 1.0 #endif #endif #define TEST_TOL0 (2.0*GSL_DBL_EPSILON) #define TEST_TOL1 (16.0*GSL_DBL_EPSILON) #define TEST_TOL2 (256.0*GSL_DBL_EPSILON) #define TEST_TOL3 (2048.0*GSL_DBL_EPSILON) #define TEST_TOL4 (16384.0*GSL_DBL_EPSILON) #define TEST_TOL5 (131072.0*GSL_DBL_EPSILON) #define TEST_TOL6 (1048576.0*GSL_DBL_EPSILON) #define TEST_SQRT_TOL0 (2.0*GSL_SQRT_DBL_EPSILON) #define TEST_SNGL (1.0e-06) #define TEST_SF_INCONS 1 #define TEST_SF_ERRNEG 2 #define TEST_SF_TOLBAD 4 #define TEST_SF_RETBAD 8 #define TEST_SF_ERRBAD 16 #define TEST_SF_ERRBIG 32 #define TEST_SF_EXPBAD 64 int test_sf (gsl_sf_result r, double val_in, double tol, int status, int expect_return, const char * desc); int test_sf_e10 (gsl_sf_result_e10 r, double val_in, int e10_in, double tol, int status, int expect_return, const char * desc); int test_sf_val (double val, double val_in, double tol, const char * desc); int test_sf_rlx (gsl_sf_result r, double val_in, double tol, int status, int expect_return, const char * desc); int test_sf_2 (gsl_sf_result r1, double val1, double tol1, gsl_sf_result r2, double val2, double tol2, int status, int expect_return, const char * desc); int test_sf_sgn (gsl_sf_result r, double sgn, double val_in, double tol, double expect_sgn, int status, int expect_return, const char * desc); #define TEST_SF(stat, func, args, val_in, tol, expect_return) { int status = func args; stat += test_sf(r, val_in, tol, status, expect_return, #func #args); } #define TEST_SF_E10(stat, func, args, val_in, e10_in, tol, expect_return) { int status = func args; stat += test_sf_e10(re, val_in, e10_in, tol, status, expect_return, #func #args); } #define TEST_SF_VAL(stat, func, args, val_in, tol) { double val = func args; stat += test_sf_val(val, val_in, tol, #func #args); } #define TEST_SF_RLX(stat, func, args, val_in, tol, expect_return) { int status = func args; stat += test_sf_rlx(r, val_in, tol, status, expect_return, #func #args); } #define TEST_SF_2(stat, func, args, val1, tol1, val2, tol2, expect_return) { int status = func args; stat += test_sf_2(r1, val1, tol1, r2, val2, tol2, status, expect_return, #func #args); } #define TEST_SF_SGN(stat, func, args, val_in, tol, expect_sgn, expect_return) { int status = func args; stat += test_sf_sgn(r, sgn, val_in, tol, expect_sgn, status, expect_return, #func #args); } #define TEST_SF_THETA(stat, func, args, val_in, tol) { int status; theta=args; status = func (&theta); stat += test_sf_val(theta, val_in, tol, #func #args); } int test_airy(void); int test_bessel(void); int test_coulomb(void); int test_dilog(void); int test_gamma(void); int test_mathieu(void); int test_hyperg(void); int test_legendre(void); #endif /* !TEST_SF_H */ gsl-1.16/specfunc/gsl_sf_psi.h0000664000252300025230000000517312171574312013267 00000000000000/* specfunc/gsl_sf_psi.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_PSI_H__ #define __GSL_SF_PSI_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Poly-Gamma Functions * * psi(m,x) := (d/dx)^m psi(0,x) = (d/dx)^{m+1} log(gamma(x)) */ /* Di-Gamma Function psi(n) = psi(0,n) * * n > 0 * exceptions: GSL_EDOM */ int gsl_sf_psi_int_e(const int n, gsl_sf_result * result); double gsl_sf_psi_int(const int n); /* Di-Gamma Function psi(x) = psi(0, x) * * x != 0.0, -1.0, -2.0, ... * exceptions: GSL_EDOM, GSL_ELOSS */ int gsl_sf_psi_e(const double x, gsl_sf_result * result); double gsl_sf_psi(const double x); /* Di-Gamma Function Re[psi(1 + I y)] * * exceptions: none */ int gsl_sf_psi_1piy_e(const double y, gsl_sf_result * result); double gsl_sf_psi_1piy(const double y); /* Di-Gamma Function psi(z) for general complex argument z = x + iy * * exceptions: GSL_EDOM */ int gsl_sf_complex_psi_e( const double x, const double y, gsl_sf_result * result_re, gsl_sf_result * result_im ); /* Tri-Gamma Function psi^(1)(n) * * n > 0 * exceptions: GSL_EDOM */ int gsl_sf_psi_1_int_e(const int n, gsl_sf_result * result); double gsl_sf_psi_1_int(const int n); /* Tri-Gamma Function psi^(1)(x) * * x != 0.0, -1.0, -2.0, ... * exceptions: GSL_EDOM, GSL_ELOSS */ int gsl_sf_psi_1_e(const double x, gsl_sf_result * result); double gsl_sf_psi_1(const double x); /* Poly-Gamma Function psi^(n)(x) * * n >= 0, x > 0.0 * exceptions: GSL_EDOM */ int gsl_sf_psi_n_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_psi_n(const int n, const double x); __END_DECLS #endif /* __GSL_SF_PSI_H__ */ gsl-1.16/specfunc/erfc.c0000664000252300025230000002770412171574312012055 00000000000000/* specfunc/erfc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: J. Theiler (modifications by G. Jungman) */ /* * See Hart et al, Computer Approximations, John Wiley and Sons, New York (1968) * (This applies only to the erfc8 stuff, which is the part * of the original code that survives. I have replaced much of * the other stuff with Chebyshev fits. These are simpler and * more precise than the original approximations. [GJ]) */ #include #include #include #include #include #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" #define LogRootPi_ 0.57236494292470008706 static double erfc8_sum(double x) { /* estimates erfc(x) valid for 8 < x < 100 */ /* This is based on index 5725 in Hart et al */ static double P[] = { 2.97886562639399288862, 7.409740605964741794425, 6.1602098531096305440906, 5.019049726784267463450058, 1.275366644729965952479585264, 0.5641895835477550741253201704 }; static double Q[] = { 3.3690752069827527677, 9.608965327192787870698, 17.08144074746600431571095, 12.0489519278551290360340491, 9.396034016235054150430579648, 2.260528520767326969591866945, 1.0 }; double num=0.0, den=0.0; int i; num = P[5]; for (i=4; i>=0; --i) { num = x*num + P[i]; } den = Q[6]; for (i=5; i>=0; --i) { den = x*den + Q[i]; } return num/den; } inline static double erfc8(double x) { double e; e = erfc8_sum(x); e *= exp(-x*x); return e; } inline static double log_erfc8(double x) { double e; e = erfc8_sum(x); e = log(e) - x*x; return e; } #if 0 /* Abramowitz+Stegun, 7.2.14 */ static double erfcasympsum(double x) { int i; double e = 1.; double coef = 1.; for (i=1; i<5; ++i) { /* coef *= -(2*i-1)/(2*x*x); ??? [GJ] */ coef *= -(2*i+1)/(i*(4*x*x*x*x)); e += coef; /* if (fabs(coef) < 1.0e-15) break; if (fabs(coef) > 1.0e10) break; [GJ]: These tests are not useful. This function is only used below. Took them out; they gum up the pipeline. */ } return e; } #endif /* 0 */ /* Abramowitz+Stegun, 7.1.5 */ static int erfseries(double x, gsl_sf_result * result) { double coef = x; double e = coef; double del; int k; for (k=1; k<30; ++k) { coef *= -x*x/k; del = coef/(2.0*k+1.0); e += del; } result->val = 2.0 / M_SQRTPI * e; result->err = 2.0 / M_SQRTPI * (fabs(del) + GSL_DBL_EPSILON); return GSL_SUCCESS; } /* Chebyshev fit for erfc((t+1)/2), -1 < t < 1 */ static double erfc_xlt1_data[20] = { 1.06073416421769980345174155056, -0.42582445804381043569204735291, 0.04955262679620434040357683080, 0.00449293488768382749558001242, -0.00129194104658496953494224761, -0.00001836389292149396270416979, 0.00002211114704099526291538556, -5.23337485234257134673693179020e-7, -2.78184788833537885382530989578e-7, 1.41158092748813114560316684249e-8, 2.72571296330561699984539141865e-9, -2.06343904872070629406401492476e-10, -2.14273991996785367924201401812e-11, 2.22990255539358204580285098119e-12, 1.36250074650698280575807934155e-13, -1.95144010922293091898995913038e-14, -6.85627169231704599442806370690e-16, 1.44506492869699938239521607493e-16, 2.45935306460536488037576200030e-18, -9.29599561220523396007359328540e-19 }; static cheb_series erfc_xlt1_cs = { erfc_xlt1_data, 19, -1, 1, 12 }; /* Chebyshev fit for erfc(x) exp(x^2), 1 < x < 5, x = 2t + 3, -1 < t < 1 */ static double erfc_x15_data[25] = { 0.44045832024338111077637466616, -0.143958836762168335790826895326, 0.044786499817939267247056666937, -0.013343124200271211203618353102, 0.003824682739750469767692372556, -0.001058699227195126547306482530, 0.000283859419210073742736310108, -0.000073906170662206760483959432, 0.000018725312521489179015872934, -4.62530981164919445131297264430e-6, 1.11558657244432857487884006422e-6, -2.63098662650834130067808832725e-7, 6.07462122724551777372119408710e-8, -1.37460865539865444777251011793e-8, 3.05157051905475145520096717210e-9, -6.65174789720310713757307724790e-10, 1.42483346273207784489792999706e-10, -3.00141127395323902092018744545e-11, 6.22171792645348091472914001250e-12, -1.26994639225668496876152836555e-12, 2.55385883033257575402681845385e-13, -5.06258237507038698392265499770e-14, 9.89705409478327321641264227110e-15, -1.90685978789192181051961024995e-15, 3.50826648032737849245113757340e-16 }; static cheb_series erfc_x15_cs = { erfc_x15_data, 24, -1, 1, 16 }; /* Chebyshev fit for erfc(x) x exp(x^2), 5 < x < 10, x = (5t + 15)/2, -1 < t < 1 */ static double erfc_x510_data[20] = { 1.11684990123545698684297865808, 0.003736240359381998520654927536, -0.000916623948045470238763619870, 0.000199094325044940833965078819, -0.000040276384918650072591781859, 7.76515264697061049477127605790e-6, -1.44464794206689070402099225301e-6, 2.61311930343463958393485241947e-7, -4.61833026634844152345304095560e-8, 8.00253111512943601598732144340e-9, -1.36291114862793031395712122089e-9, 2.28570483090160869607683087722e-10, -3.78022521563251805044056974560e-11, 6.17253683874528285729910462130e-12, -9.96019290955316888445830597430e-13, 1.58953143706980770269506726000e-13, -2.51045971047162509999527428316e-14, 3.92607828989125810013581287560e-15, -6.07970619384160374392535453420e-16, 9.12600607264794717315507477670e-17 }; static cheb_series erfc_x510_cs = { erfc_x510_data, 19, -1, 1, 12 }; #if 0 inline static double erfc_asymptotic(double x) { return exp(-x*x)/x * erfcasympsum(x) / M_SQRTPI; } inline static double log_erfc_asymptotic(double x) { return log(erfcasympsum(x)/x) - x*x - LogRootPi_; } #endif /* 0 */ /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_erfc_e(double x, gsl_sf_result * result) { const double ax = fabs(x); double e_val, e_err; /* CHECK_POINTER(result) */ if(ax <= 1.0) { double t = 2.0*ax - 1.0; gsl_sf_result c; cheb_eval_e(&erfc_xlt1_cs, t, &c); e_val = c.val; e_err = c.err; } else if(ax <= 5.0) { double ex2 = exp(-x*x); double t = 0.5*(ax-3.0); gsl_sf_result c; cheb_eval_e(&erfc_x15_cs, t, &c); e_val = ex2 * c.val; e_err = ex2 * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON); } else if(ax < 10.0) { double exterm = exp(-x*x) / ax; double t = (2.0*ax - 15.0)/5.0; gsl_sf_result c; cheb_eval_e(&erfc_x510_cs, t, &c); e_val = exterm * c.val; e_err = exterm * (c.err + 2.0*fabs(x)*GSL_DBL_EPSILON + GSL_DBL_EPSILON); } else { e_val = erfc8(ax); e_err = (x*x + 1.0) * GSL_DBL_EPSILON * fabs(e_val); } if(x < 0.0) { result->val = 2.0 - e_val; result->err = e_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } else { result->val = e_val; result->err = e_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } int gsl_sf_log_erfc_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x*x < 10.0*GSL_ROOT6_DBL_EPSILON) { const double y = x / M_SQRTPI; /* series for -1/2 Log[Erfc[Sqrt[Pi] y]] */ const double c3 = (4.0 - M_PI)/3.0; const double c4 = 2.0*(1.0 - M_PI/3.0); const double c5 = -0.001829764677455021; /* (96.0 - 40.0*M_PI + 3.0*M_PI*M_PI)/30.0 */ const double c6 = 0.02629651521057465; /* 2.0*(120.0 - 60.0*M_PI + 7.0*M_PI*M_PI)/45.0 */ const double c7 = -0.01621575378835404; const double c8 = 0.00125993961762116; const double c9 = 0.00556964649138; const double c10 = -0.0045563339802; const double c11 = 0.0009461589032; const double c12 = 0.0013200243174; const double c13 = -0.00142906; const double c14 = 0.00048204; double series = c8 + y*(c9 + y*(c10 + y*(c11 + y*(c12 + y*(c13 + c14*y))))); series = y*(1.0 + y*(1.0 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*series))))))); result->val = -2.0 * series; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* don't like use of log1p(); added above series stuff for small x instead, should be ok [GJ] else if (fabs(x) < 1.0) { gsl_sf_result result_erf; gsl_sf_erf_e(x, &result_erf); result->val = log1p(-result_erf.val); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } */ else if(x > 8.0) { result->val = log_erfc8(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result result_erfc; gsl_sf_erfc_e(x, &result_erfc); result->val = log(result_erfc.val); result->err = fabs(result_erfc.err / result_erfc.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_erf_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(fabs(x) < 1.0) { return erfseries(x, result); } else { gsl_sf_result result_erfc; gsl_sf_erfc_e(x, &result_erfc); result->val = 1.0 - result_erfc.val; result->err = result_erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_erf_Z_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { const double ex2 = exp(-x*x/2.0); result->val = ex2 / (M_SQRT2 * M_SQRTPI); result->err = fabs(x * result->val) * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_erf_Q_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { gsl_sf_result result_erfc; int stat = gsl_sf_erfc_e(x/M_SQRT2, &result_erfc); result->val = 0.5 * result_erfc.val; result->err = 0.5 * result_erfc.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } } int gsl_sf_hazard_e(double x, gsl_sf_result * result) { if(x < 25.0) { gsl_sf_result result_ln_erfc; const int stat_l = gsl_sf_log_erfc_e(x/M_SQRT2, &result_ln_erfc); const double lnc = -0.22579135264472743236; /* ln(sqrt(2/pi)) */ const double arg = lnc - 0.5*x*x - result_ln_erfc.val; const int stat_e = gsl_sf_exp_e(arg, result); result->err += 3.0 * (1.0 + fabs(x)) * GSL_DBL_EPSILON * fabs(result->val); result->err += fabs(result_ln_erfc.err * result->val); return GSL_ERROR_SELECT_2(stat_l, stat_e); } else { const double ix2 = 1.0/(x*x); const double corrB = 1.0 - 9.0*ix2 * (1.0 - 11.0*ix2); const double corrM = 1.0 - 5.0*ix2 * (1.0 - 7.0*ix2 * corrB); const double corrT = 1.0 - ix2 * (1.0 - 3.0*ix2*corrM); result->val = x / corrT; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_erfc(double x) { EVAL_RESULT(gsl_sf_erfc_e(x, &result)); } double gsl_sf_log_erfc(double x) { EVAL_RESULT(gsl_sf_log_erfc_e(x, &result)); } double gsl_sf_erf(double x) { EVAL_RESULT(gsl_sf_erf_e(x, &result)); } double gsl_sf_erf_Z(double x) { EVAL_RESULT(gsl_sf_erf_Z_e(x, &result)); } double gsl_sf_erf_Q(double x) { EVAL_RESULT(gsl_sf_erf_Q_e(x, &result)); } double gsl_sf_hazard(double x) { EVAL_RESULT(gsl_sf_hazard_e(x, &result)); } gsl-1.16/specfunc/gsl_sf_pow_int.h0000664000252300025230000000255612171574312014155 00000000000000/* specfunc/gsl_sf_pow_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_POW_INT_H__ #define __GSL_SF_POW_INT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Calculate x^n. * Does not check for overflow/underflow. */ int gsl_sf_pow_int_e(double x, int n, gsl_sf_result * result); double gsl_sf_pow_int(const double x, const int n); __END_DECLS #endif /* __GSL_SF_POW_INT_H__ */ gsl-1.16/specfunc/legendre.h0000664000252300025230000000447712171574312012732 00000000000000/* specfunc/legendre.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Declare private but non-local support functions * used in various Legendre function evaluations. */ #include /* Large negative mu asymptotic * P^{-mu}_{-1/2 + I tau}, mu -> Inf * |x| < 1 */ int gsl_sf_conicalP_xlt1_large_neg_mu_e(double mu, double tau, double x, gsl_sf_result * result, double * ln_multiplier); /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau}, tau -> Inf * 1 < x */ int gsl_sf_conicalP_xgt1_neg_mu_largetau_e(const double mu, const double tau, const double x, double acosh_x, gsl_sf_result * result, double * ln_multiplier); /* Large tau uniform asymptotics * P^{-mu}_{-1/2 + I tau}, tau -> Inf * -1 < x < 1 */ int gsl_sf_conicalP_xlt1_neg_mu_largetau_e(const double mu, const double tau, const double x, const double acos_x, gsl_sf_result * result, double * ln_multiplier); /* P^{mu}_{-1/2 + I tau} * x->Inf * * * This is effective to precision EPS for * * (mu^2 + tau^2)/((1 + tau^2)^(1/2) x^2) < EPS^{1/3} * * since it goes only to a fixed order, based on the * representation in terms of hypegeometric functions * of argument 1/x^2. * [Zhurina+Karmazina, (3.8)] */ int gsl_sf_conicalP_large_x_e(const double mu, const double tau, const double x, gsl_sf_result * result, double * ln_multiplier); gsl-1.16/specfunc/gsl_sf_coulomb.h0000664000252300025230000001046212171574312014131 00000000000000/* specfunc/gsl_sf_coulomb.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_COULOMB_H__ #define __GSL_SF_COULOMB_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Normalized hydrogenic bound states, radial dependence. */ /* R_1 := 2Z sqrt(Z) exp(-Z r) */ int gsl_sf_hydrogenicR_1_e(const double Z, const double r, gsl_sf_result * result); double gsl_sf_hydrogenicR_1(const double Z, const double r); /* R_n := norm exp(-Z r/n) (2Z/n)^l Laguerre[n-l-1, 2l+1, 2Z/n r] * * normalization such that psi(n,l,r) = R_n Y_{lm} */ int gsl_sf_hydrogenicR_e(const int n, const int l, const double Z, const double r, gsl_sf_result * result); double gsl_sf_hydrogenicR(const int n, const int l, const double Z, const double r); /* Coulomb wave functions F_{lam_F}(eta,x), G_{lam_G}(eta,x) * and their derivatives; lam_G := lam_F - k_lam_G * * lam_F, lam_G > -0.5 * x > 0.0 * * Conventions of Abramowitz+Stegun. * * Because there can be a large dynamic range of values, * overflows are handled gracefully. If an overflow occurs, * GSL_EOVRFLW is signalled and exponent(s) are returned * through exp_F, exp_G. These are such that * * F_L(eta,x) = fc[k_L] * exp(exp_F) * G_L(eta,x) = gc[k_L] * exp(exp_G) * F_L'(eta,x) = fcp[k_L] * exp(exp_F) * G_L'(eta,x) = gcp[k_L] * exp(exp_G) */ int gsl_sf_coulomb_wave_FG_e(const double eta, const double x, const double lam_F, const int k_lam_G, gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G); /* F_L(eta,x) as array */ int gsl_sf_coulomb_wave_F_array( double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* F_L(eta,x), G_L(eta,x) as arrays */ int gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * gc_array, double * F_exponent, double * G_exponent ); /* F_L(eta,x), G_L(eta,x), F'_L(eta,x), G'_L(eta,x) as arrays */ int gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * fcp_array, double * gc_array, double * gcp_array, double * F_exponent, double * G_exponent ); /* Coulomb wave function divided by the argument, * F(eta, x)/x. This is the function which reduces to * spherical Bessel functions in the limit eta->0. */ int gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exponent ); /* Coulomb wave function normalization constant. * [Abramowitz+Stegun 14.1.8, 14.1.9] */ int gsl_sf_coulomb_CL_e(double L, double eta, gsl_sf_result * result); int gsl_sf_coulomb_CL_array(double Lmin, int kmax, double eta, double * cl); __END_DECLS #endif /* __GSL_SF_COULOMB_H__ */ gsl-1.16/specfunc/gsl_sf_expint.h0000664000252300025230000001045512171574312014002 00000000000000/* specfunc/gsl_sf_expint.h * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_EXPINT_H__ #define __GSL_SF_EXPINT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* E_1(x) := Re[ Integrate[ Exp[-xt]/t, {t,1,Infinity}] ] * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_E1_e(const double x, gsl_sf_result * result); double gsl_sf_expint_E1(const double x); /* E_2(x) := Re[ Integrate[ Exp[-xt]/t^2, {t,1,Infinity}] ] * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_E2_e(const double x, gsl_sf_result * result); double gsl_sf_expint_E2(const double x); /* E_n(x) := Re[ Integrate[ Exp[-xt]/t^n, {t,1,Infinity}] ] * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_En_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_expint_En(const int n, const double x); /* E_1_scaled(x) := exp(x) E_1(x) * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_E1_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_expint_E1_scaled(const double x); /* E_2_scaled(x) := exp(x) E_2(x) * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_E2_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_expint_E2_scaled(const double x); /* E_n_scaled(x) := exp(x) E_n(x) * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_En_scaled_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_expint_En_scaled(const int n, const double x); /* Ei(x) := - PV Integrate[ Exp[-t]/t, {t,-x,Infinity}] * := PV Integrate[ Exp[t]/t, {t,-Infinity,x}] * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_Ei_e(const double x, gsl_sf_result * result); double gsl_sf_expint_Ei(const double x); /* Ei_scaled(x) := exp(-x) Ei(x) * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_expint_Ei_scaled_e(const double x, gsl_sf_result * result); double gsl_sf_expint_Ei_scaled(const double x); /* Shi(x) := Integrate[ Sinh[t]/t, {t,0,x}] * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_Shi_e(const double x, gsl_sf_result * result); double gsl_sf_Shi(const double x); /* Chi(x) := Re[ M_EULER + log(x) + Integrate[(Cosh[t]-1)/t, {t,0,x}] ] * * x != 0.0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_Chi_e(const double x, gsl_sf_result * result); double gsl_sf_Chi(const double x); /* Ei_3(x) := Integral[ Exp[-t^3], {t,0,x}] * * x >= 0.0 * exceptions: GSL_EDOM */ int gsl_sf_expint_3_e(const double x, gsl_sf_result * result); double gsl_sf_expint_3(double x); /* Si(x) := Integrate[ Sin[t]/t, {t,0,x}] * * exceptions: none */ int gsl_sf_Si_e(const double x, gsl_sf_result * result); double gsl_sf_Si(const double x); /* Ci(x) := -Integrate[ Cos[t]/t, {t,x,Infinity}] * * x > 0.0 * exceptions: GSL_EDOM */ int gsl_sf_Ci_e(const double x, gsl_sf_result * result); double gsl_sf_Ci(const double x); /* AtanInt(x) := Integral[ Arctan[t]/t, {t,0,x}] * * * exceptions: */ int gsl_sf_atanint_e(const double x, gsl_sf_result * result); double gsl_sf_atanint(const double x); __END_DECLS #endif /* __GSL_SF_EXPINT_H__ */ gsl-1.16/specfunc/bessel_Jn.c0000664000252300025230000001171212171574312013032 00000000000000/* specfunc/bessel_Jn.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "bessel.h" #include "bessel_amp_phase.h" #include "bessel_olver.h" #include /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Jn_e(int n, double x, gsl_sf_result * result) { int sign = 1; if(n < 0) { /* reduce to case n >= 0 */ n = -n; if(GSL_IS_ODD(n)) sign = -sign; } if(x < 0.0) { /* reduce to case x >= 0. */ x = -x; if(GSL_IS_ODD(n)) sign = -sign; } /* CHECK_POINTER(result) */ if(n == 0) { gsl_sf_result b0; int stat_J0 = gsl_sf_bessel_J0_e(x, &b0); result->val = sign * b0.val; result->err = b0.err; return stat_J0; } else if(n == 1) { gsl_sf_result b1; int stat_J1 = gsl_sf_bessel_J1_e(x, &b1); result->val = sign * b1.val; result->err = b1.err; return stat_J1; } else { if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x*x < 10.0*(n+1.0)*GSL_ROOT5_DBL_EPSILON) { gsl_sf_result b; int status = gsl_sf_bessel_IJ_taylor_e((double)n, x, -1, 50, GSL_DBL_EPSILON, &b); result->val = sign * b.val; result->err = b.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return status; } else if(GSL_ROOT4_DBL_EPSILON * x > (n*n+1.0)) { int status = gsl_sf_bessel_Jnu_asympx_e((double)n, x, result); result->val *= sign; return status; } else if(n > 50) { int status = gsl_sf_bessel_Jnu_asymp_Olver_e((double)n, x, result); result->val *= sign; return status; } else if(x > 1000.0) { /* We need this to avoid feeding large x to CF1; note that * due to the above check, we know that n <= 50. */ int status = gsl_sf_bessel_Jnu_asympx_e((double)n, x, result); result->val *= sign; return status; } else { double ans; double err; double ratio; double sgn; int stat_b; int stat_CF1 = gsl_sf_bessel_J_CF1((double)n, x, &ratio, &sgn); /* backward recurrence */ double Jkp1 = GSL_SQRT_DBL_MIN * ratio; double Jk = GSL_SQRT_DBL_MIN; double Jkm1; int k; for(k=n; k>0; k--) { Jkm1 = 2.0*k/x * Jk - Jkp1; Jkp1 = Jk; Jk = Jkm1; } if(fabs(Jkp1) > fabs(Jk)) { gsl_sf_result b1; stat_b = gsl_sf_bessel_J1_e(x, &b1); ans = b1.val/Jkp1 * GSL_SQRT_DBL_MIN; err = b1.err/Jkp1 * GSL_SQRT_DBL_MIN; } else { gsl_sf_result b0; stat_b = gsl_sf_bessel_J0_e(x, &b0); ans = b0.val/Jk * GSL_SQRT_DBL_MIN; err = b0.err/Jk * GSL_SQRT_DBL_MIN; } result->val = sign * ans; result->err = fabs(err); return GSL_ERROR_SELECT_2(stat_CF1, stat_b); } } } int gsl_sf_bessel_Jn_array(int nmin, int nmax, double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(nmin < 0 || nmax < nmin) { int n; for(n=nmax; n>=nmin; n--) { result_array[n-nmin] = 0.0; } GSL_ERROR ("domain error", GSL_EDOM); } else if(x == 0.0) { int n; for(n=nmax; n>=nmin; n--) { result_array[n-nmin] = 0.0; } if(nmin == 0) result_array[0] = 1.0; return GSL_SUCCESS; } else { gsl_sf_result r_Jnp1; gsl_sf_result r_Jn; int stat_np1 = gsl_sf_bessel_Jn_e(nmax+1, x, &r_Jnp1); int stat_n = gsl_sf_bessel_Jn_e(nmax, x, &r_Jn); int stat = GSL_ERROR_SELECT_2(stat_np1, stat_n); double Jnp1 = r_Jnp1.val; double Jn = r_Jn.val; double Jnm1; int n; if(stat == GSL_SUCCESS) { for(n=nmax; n>=nmin; n--) { result_array[n-nmin] = Jn; Jnm1 = -Jnp1 + 2.0*n/x * Jn; Jnp1 = Jn; Jn = Jnm1; } } else { for(n=nmax; n>=nmin; n--) { result_array[n-nmin] = 0.0; } } return stat; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Jn(const int n, const double x) { EVAL_RESULT(gsl_sf_bessel_Jn_e(n, x, &result)); } gsl-1.16/specfunc/test_hyperg.c0000664000252300025230000015010212171574312013460 00000000000000/* specfunc/test_hyperg.c * * Copyright (C) 2007, 2009, 2010 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" int test_hyperg(void) { gsl_sf_result r; int s = 0; /* 0F1 */ TEST_SF(s, gsl_sf_hyperg_0F1_e, (1, 0.5, &r), 1.5660829297563505373, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (5, 0.5, &r), 1.1042674404828684574, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (100, 30, &r), 1.3492598639485110176, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-0.5, 3, &r), -39.29137997543434276, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-100.5, 50, &r), 0.6087930289227538496, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (1, -5.0, &r), -0.3268752818235339109, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_0F1_e, (-0.5, -5.0, &r),-4.581634759005381184, TEST_TOL1, GSL_SUCCESS); /* 1F1 for integer parameters */ TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 1, 0.5, &r), 1.6487212707001281468, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 2, 500.0, &r), 2.8071844357056748215e+214, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (1, 2, -500.0, &r), 0.002, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (8, 1, 0.5, &r), 13.108875178030540372, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 1.0, &r), 131.63017574352619931, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 10.0, &r), 8.514625476546280796e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, 100.0, &r), 1.5671363646800353320e+56, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 1.0, &r), 1.6585618002669675465, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 10.0, &r), 265.26686430340188871, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 20, 100.0, &r), 3.640477355063227129e+34, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 1.0, &r), 1.1056660194025527099, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 10.0, &r), 2.8491063634727594206, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 40.0, &r), 133.85880835831230986, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 80.0, &r), 310361.16228011433406, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 100.0, &r), 8.032171336754168282e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, 500.0, &r), 7.633961202528731426e+123, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 1.0, &r), 6.892842729046469965e+07, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 10.0, &r), 2.4175917112200409098e+28, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, 100.0, &r), 1.9303216896309102993e+110, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 1.0, &r), 1.6497469106162459226, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 10.0, &r), 157.93286197349321981, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 100.0, &r), 2.1819577501255075240e+24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 200, 400.0, &r), 3.728975529926573300e+119, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 10.0, &r), 12.473087623658878813, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 100.0, &r), 9.071230376818550241e+11, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 150.0, &r), 7.160949515742170775e+18, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 200.0, &r), 2.7406690412731576823e+26, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 300.0, &r), 6.175110613473276193e+43, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 400.0, &r), 1.1807417662711371440e+64, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 400, 600.0, &r), 2.4076076354888886030e+112, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -1.0, &r), 0.11394854824644542810, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -10.0, &r), 0.0006715506365396127863, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 1, -100.0, &r), -4.208138537480269868e-32, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 50, -1.0, &r), 0.820006196079380, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -10.0, &r), 0.38378859043466243, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -100.0, &r), 0.0008460143401464189061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -500.0, &r), 1.1090822141973655929e-08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (10, 100, -10000.0, &r), 5.173783508088272292e-21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -90.0, &r), -1.6624258547648311554e-21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -100.0, &r), 4.069661775122048204e-24, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (50, 1, -110.0, &r), 1.0072444993946236025e-25, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 10, -100.0, &r), -2.7819353611733941962e-37, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -90.0, &r), 7.501705041159802854e-22, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -100.0, &r), 6.305128893152291187e-25, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 1, -110.0, &r), -7.007122115422439755e-26, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (100, 10, -100.0, &r), -2.7819353611733941962e-37, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 50, -1.0, &r), 0.016087060191732290813, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 50, -300.0, &r), -4.294975979706421471e-121, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -1.0, &r), 0.13397521083325179687, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -10.0, &r), 5.835134393749807387e-10, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -100.0, &r), 4.888460453078914804e-74, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (200, 100, -500.0, &r), -1.4478509059582015053e-195, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, 1, 2.0, &r), -1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, -2, 2.0, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-2, -3, 2.0, &r), 3.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 1.0, &r), 0.4189459325396825397, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 10.0, &r), 27.984126984126984127, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, 1, 100.0, &r), 9.051283795429571429e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, 20, 1.0, &r), 0.0020203016320697069566, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 1.0, &r), 1.6379141878548080173, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 10.0, &r), 78.65202404521289970, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, 100.0, &r), 4.416169713262624315e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 1.0, &r), 1.1046713999681950919, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 10.0, &r), 2.6035952191039006838, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, 100.0, &r), 1151.6852040836932392, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 1.0, &r), 1.6476859702535324743, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 10.0, &r), 139.38026829540687270, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, 100.0, &r), 1.1669433576237933752e+19, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -1.0, &r), 0.6025549561148035735, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -10.0, &r), 0.00357079636732993491, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -20, -100.0, &r), 1.64284868563391159e-35, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -1.0, &r), 0.90442397250313899, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -10.0, &r), 0.35061515251367215, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-10, -100, -100.0, &r), 8.19512187960476424e-09, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -1.0, &r), 0.6061497939628952629, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -10.0, &r), 0.0063278543908877674, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-100, -200, -100.0, &r), 4.34111795007336552e-25, TEST_TOL2, GSL_SUCCESS); /* 1F1 */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 1, &r), 2.0300784692787049755, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 10, &r), 6172.859561078406855, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 100, &r), 2.3822817898485692114e+42, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, 500, &r), 5.562895351723513581e+215, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 2.5, 1, &r), 1.8834451238277954398, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 2.5, 10, &r), 3128.7352996840916381, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 1, &r), 110.17623733873889579, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 10, &r), 6.146657975268385438e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 100, &r), 9.331833897230312331e+55, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, 500, &r), 4.519403368795715843e+235, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 2, &r), 1.5001295507968071788, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 10, &r), 8.713385849265044908, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 100, &r), 5.909423932273380330e+18, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 50.1, 500, &r), 9.740060618457198900e+165, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 1, &r), 5.183531067116809033e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 10, &r), 1.6032649110096979462e+28, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, 100, &r), 1.1045151213192280064e+110, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 1, &r), 7.222953133216603757, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 10, &r), 1.0998696410887171538e+08, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 50.1, 100, &r), 7.235304862322283251e+63, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -1, &r), 0.5380795069127684191, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -10, &r), 0.05303758099290164485, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -100, &r), 0.005025384718759852803, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.5, -500, &r), 0.0010010030151059555322, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1, 1.1, -500, &r), 0.00020036137599690208265, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -1, &r), 0.07227645648935938168, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -10, &r), 0.0003192415409695588126, TEST_TOL1, GSL_SUCCESS); /* sensitive to the pair_ratio hack in hyperg_1F1.c TEST_SF_RLX(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -100, &r), -8.293425316123158950e-16, 50.0*TEST_SNGL, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (10, 1.1, -500, &r), -3.400379216707701408e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -90, &r), -7.843129411802921440e-22, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -100, &r), 4.632883869540640460e-24, TEST_SQRT_TOL0, GSL_SUCCESS); /* FIXME: tolerance is poor, but is consistent within reported error */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (50, 1.1, -110.0, &r), 5.642684651305310023e-26, 0.03, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -1, &r), 0.0811637344096042096, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -10, &r), 0.00025945610092231574387, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -50, &r), 2.4284830988994084452e-13, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -90, &r), 2.4468224638378426461e-22, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -99, &r), 1.0507096272617608461e-23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -100, &r), 1.8315497474210138602e-24, TEST_TOL2, GSL_SUCCESS); /* FIXME: Reported error is too small. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -101, &r), -2.3916306291344452490e-24, 0.04, GSL_SUCCESS); */ /* FIXME: Reported error is too small. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 1.1, -110, &r), -4.517581986037732280e-26, TEST_TOL0, GSL_SUCCESS); */ /* FIXME: Result is terrible, but reported error is very large, so consistent. TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, 10.1, -220, &r), -4.296130300021696573e-64, TEST_TOL1, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -10.1, 10.0, &r), 10959.603204633058116, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -10.1, 1000.0, &r), 2.0942691895502242831e+23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -100.1, 10.0, &r), 2.6012036337980078062, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1000, -1000.1, 10.0, &r), 22004.341698908631636, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1000, -1000.1, 200.0, &r), 7.066514294896245043e+86, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-8.1, -10.1, -10.0, &r), 0.00018469685276347199258, TEST_TOL0, GSL_SUCCESS); /* TEST_SF(s, gsl_sf_hyperg_1F1_e, (-8.1, -1000.1, -10.0, &r), 0.9218280185080036020, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 1, &r), 16.936141866089601635, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 10, &r), 771534.0349543820541, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10, -5.1, 100, &r), 2.2733956505084964469e+17, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -1, &r), 0.13854540373629275583, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -10, &r), -9.142260314353376284e+19, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, -100, &r), -1.7437371339223929259e+87, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 1, &r), 7.516831748170351173, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 10, &r), 1.0551632286359671976e+11, TEST_SQRT_TOL0, GSL_SUCCESS); /* These come out way off. On the other hand, the error estimates are also very large; so much so that the answers are consistent within the reported error. Something will need to be done about this eventually TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 50, &r), -7.564755600940346649e+36, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, -50.1, 100, &r), 4.218776962675977e+55, TEST_TOL3, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10.5, -8.1, 0.1, &r), 1.1387201443786421724, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-10.5, -11.1, 1, &r), 2.5682766147138452362, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -80.1, 10, &r), 355145.4517305220603, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -102.1, 10, &r), 18678.558725244365016, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -500.1, 10, &r), 7.342209011101454, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100.5, -500.1, 100, &r), 1.2077443075367177662e+8, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-500.5, -80.1, 2, &r), 774057.8541325341699, TEST_TOL4, GSL_SUCCESS); /* UNIMPL TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 1, &r), -2.1213846338338567395e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 10, &r), -6.624849346145112398e+39, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, 100, &r), -1.2413466759089171904e+129, TEST_TOL0, GSL_SUCCESS); */ /* UNIMPL TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -1, &r), 34456.29405305551691, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -10, &r), -7.809224251467710833e+07, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (100, -10.1, -100, &r), -5.214065452753988395e-07, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 1, &r), 0.21519810496314438414, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 10, &r), 8.196123715597869948, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, 100, &r), -1.4612966715976530293e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 1, &r), 0.0021267655527278456412, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 10, &r), 2.0908665169032186979e-11, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 20.1, 100, &r), -0.04159447537001340412, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -1, &r), 2.1214770215694685282e+07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -10, &r), 1.0258848879387572642e+24, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 1.1, -100, &r), 1.1811367147091759910e+67, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -1, &r), 6.965259317271427390, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -10, &r), 1.0690052487716998389e+07, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-100, 50.1, -100, &r), 6.889644435777096248e+36, TEST_TOL3, GSL_SUCCESS); /* Bug report from Fernando Pilotto */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-2.05, 1.0, 5.05, &r), 3.79393389516785e+00, TEST_TOL3, GSL_SUCCESS); /* Bug reports from Ivan Liu */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-26, 2.0, 100.0, &r), 1.444786781107436954e+19, TEST_TOL3, GSL_SUCCESS); #ifdef FIXME /* This one is computed with a huge error, there is loss of precision but the error estimate flags the problem (assuming the user looks at it). We should probably trap any return with err>|val| and signal loss of precision */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-26.1, 2.0, 100.0, &r), 1.341557199575986995e+19, TEST_TOL3, GSL_SUCCESS); #endif /* Bug report H.Moseby */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.2, 1.1e-15, 1.5, &r), 8254503159672429.02, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.0, 1000000.5, 0.8e6 + 0.5, &r), 4.999922505099443804e+00, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.0, 1000000.5, 1001000.5, &r), 3480.3699557431856166, TEST_TOL4, GSL_SUCCESS); #ifdef FIXME /* FIX THESE NEXT RELEASE */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.1, 1000000.5, 1001000.5, &r), 7304.6126942641350122, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (0.9, 1000000.5, 1001000.5, &r), 1645.4879293475410982, TEST_TOL3, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.1, 1000000.5, 1001000.5, &r), -5.30066488697455e-04, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (1.5, 1000000.5, 0.8e6 + 0.5, &r), 11.18001288977894650469927615, TEST_TOL4, GSL_SUCCESS); /* Bug report Lorenzo Moneta */ TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, -100., &r), 456.44010011787485545, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 99., &r), 4.13360436014643309757065e36, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 100., &r), 1.0893724312430935129254e37, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 709., &r), 8.7396804160264899999692120e298, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1.5, 1.5, 710., &r), 2.36563187217417898169834615e299, TEST_TOL4, GSL_SUCCESS); /* Bug report from Weibin Li */ #ifdef FIXME TEST_SF(s, gsl_sf_hyperg_1F1_e, (-37.8, 2.01, 103.58, &r), -6.21927211009e17, TEST_TOL1, GSL_SUCCESS); #endif /* Testing BJG */ #ifdef COMPARISON_WITH_MATHEMATICA /* Mathematica uses a different convention for M(-m,-n,x) */ TEST_SF(s, gsl_sf_hyperg_1F1_int_e, (-1, -1, 0.1, &r), 1.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_1F1_e, (-1, -1, 0.1, &r), 1.1, TEST_TOL0, GSL_SUCCESS); #endif /* U for integer parameters */ TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.0001, &r), 8.634088070212725330, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.01, &r), 4.078511443456425847, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 0.5, &r), 0.9229106324837304688, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 2.0, &r), 0.3613286168882225847, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 100, &r), 0.009901942286733018406, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1, 1000, &r), 0.0009990019940238807150, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 0.01, &r), 7.272361203006010000e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 1, &r), 1957.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 5, &r), 1.042496, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 8, &r), 0.3207168579101562500, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 50, &r), 0.022660399001600000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 100, &r), 0.010631236727200000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 8, 1000, &r), 0.0010060301203607207200, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 20, 1, &r), 1.7403456103284421000e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 20, 20, &r), 0.22597813610531052969, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 50, 1, &r), 3.374452117521520758e+61, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 50, 50, &r), 0.15394136814987651785, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 0.1, &r), 1.0418325171990852858e+253, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 1, &r), 2.5624945006073464385e+154, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 50, &r), 3.0978624160896431391e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 100, &r), 0.11323192555773717475, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 200, &r), 0.009715680951406713589, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 100, 1000, &r), 0.0011085142546061528661, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, 1000, 2000, &r), 0.0009970168547036318206, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1, 1, &r), 0.29817368116159703717, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1, 10, &r), 0.07816669698940409380, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 1, &r), 0.08271753756946041959, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 5, &r), 0.06127757419425055261, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 10, &r), 0.04656199948873187212, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -10, 20, &r), 0.031606421847946077709, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 0.01, &r), 0.009900000099999796950, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 1, &r), 0.009802970197050404429, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 10, &r), 0.009001648897173103447, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 20, &r), 0.008253126487166557546, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 50, &r), 0.006607993916432051008, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 90, &r), 0.005222713769726871937, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -100, 110, &r), 0.004727658137692606210, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_int_e, (1, -1000, 1, &r), 0.0009980029970019970050, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (1, -1000, 1010, &r), 0.0004971408839859245170, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 0.001, &r), 0.0007505359326875706975, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 0.5, &r), 6.449509938973479986e-06, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 8, &r), 6.190694573035761284e-10, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 1, 20, &r), 3.647213845460374016e-12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 1, &r), 0.12289755012652317578, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 10, &r), 5.687710359507564272e-09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (8, 8, 20, &r), 2.8175404594901039724e-11, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 0.01, &r), 1.0099979491941914867e+196, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 0.1, &r), 1.0090713562719862833e+97, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 1, &r), 0.009998990209084729106, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (100, 100, 20, &r), 1.3239363905866130603e-131, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 0.01, &r), 3.274012540759009536e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 1, &r), 1.5202710000000000000e+06, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 10, &r), 1.0154880000000000000e+08, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 1, 100, &r), 3.284529863685482880e+19, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 10, 1, &r), 1.1043089864100000000e+11, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 1, &r), 1.3991152402448957897e+20, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 10, &r), 5.364469916567136000e+19, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 100, &r), 3.909797568000000000e+12, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-10, 100, 500, &r), 8.082625576697984130e+25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 0.01, &r), 1.6973422555823855798e+64, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 1, &r), 7.086160198304780325e+63, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 1, 10, &r), 5.332862895528712200e+65, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 10, 1, &r), -7.106713471565790573e+71, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 100, 1, &r), 2.4661377199407186476e+104, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 10, 10, &r), 5.687538583671241287e+68, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, 100, 10, &r), 1.7880761664553373445e+102, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 0.01, &r), 4.185245354032917715e+137, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 0.1, &r), 2.4234043408007841358e+137, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1, 10, &r), -1.8987677149221888807e+139, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 10, 10, &r), -5.682999988842066677e+143, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 100, 10, &r), 2.3410029853990624280e+189, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-90, 1000, 10, &r), 1.9799451517572225316e+271, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -1, 10, &r), -9.083195466262584149e+64, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -10, 10, &r), -1.4418257327071634407e+62, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -100, 0.01, &r), 3.0838993811468983931e+93, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-50, -100, 10, &r), 4.014552630378340665e+95, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -100, 10, &r), 2.0556466922347982030e+162, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -200, 10, &r), 1.1778399522973555582e+219, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (-100, -200, 100, &r), 9.861313408898201873e+235, TEST_TOL3, GSL_SUCCESS); /* U */ TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 0.0001, &r), 1.0000576350699863577, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 1.0, &r), 0.9999403679233247536, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 0.0001, 100.0, &r), 0.9995385992657260887, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1, 0.0001, &r), 1.0009210608660065989, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1.0, 1.0, &r), 0.9999999925484179084, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 10, 1, &r), 13.567851006281412726, TEST_TOL3, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 10, 5, &r), 1.0006265020064596364, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 10, 10, &r), 0.9999244381454633265, TEST_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 1, &r), 2.5890615708804247881e+150, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 10, &r), 2.3127845417739661466e+55, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 100, 50, &r), 6402.818715083582554, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 100, 98, &r), 0.9998517867411840044, TEST_TOL2, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 300, &r), 2.5389557274938010716e+213, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 999, &r), 0.9997195294193261604, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.0001, 1000, 1100, &r), 0.9995342990014584713, TEST_TOL1, GSL_SUCCESS); TEST_SF_RLX(s, gsl_sf_hyperg_U_e, (0.5, 1000, 300, &r), 1.1977955438214207486e+217, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 1000, 800, &r), 9.103916020464797207e+08, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 1000, 998, &r), 0.21970269691801966806, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0.5, 0.5, 1.0, &r), 0.7578721561413121060, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 0.0001, &r), 0.9992361337764090785, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 1, &r), 0.4036664068111504538, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 0.0001, 100, &r), 0.009805780851264329587, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, 1.2, 2.0, &r), 0.3835044780075602550, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (1, -0.0001, 1, &r), 0.4036388693605999482, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 1, &r), 27.981926466707438538, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 10, &r), 2.4370135607662056809e-8, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (8, 10.5, 100, &r), 1.1226567526311488330e-16, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, -2.5, 10, &r), 6.734690720346560349e-14, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, 2.5, 10, &r), 6.787780794037971638e-13, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (10, 2.5, 50, &r), 2.4098720076596087125e-18, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 1, &r), -3.990841457734147e+6, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 10, &r), 1.307472052129343e+8, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 50, &r), 3.661978424114088e+16, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 90, &r), 8.09469542130868e+19, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 99, &r), 2.546328328942063e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 100, &r), 2.870463201832814e+20, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 1.1, 200, &r), 8.05143453769373e+23, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 0.1, &r), -3.043016255306515e+20, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 1, &r), -3.194745265896115e+12, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 4, &r), -6.764203430361954e+07, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 10, &r), -2.067399425480545e+09, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 10.1, 50, &r), 4.661837330822824e+14, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 10, &r), -6.805460513724838e+66, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 50, &r), -2.081052558162805e+18, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 80, &r), 2.034113191014443e+14, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 100, &r), 6.85047268436107e+13, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-10.5, 100.4, 200, &r), 1.430815706105649e+20, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-19.5, 82.1, 10, &r), 5.464313196201917432e+60, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 10, &r), -5.5740216266953e+126, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 40, &r), 5.937463786613894e+91, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 50, &r), -1.631898534447233e+89, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 70, &r), 3.249026971618851e+84, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-50.5, 100.1, 100, &r), 1.003401902126641e+85, TEST_TOL1, GSL_SUCCESS); /* Bug report from Stefan Gerlach */ TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 4.0, 1.0, &r), 11.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 3.14, &r), 1.1896, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 1.13, &r), -1.3631, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 0.0, &r), 0.75, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2.0, 0.5, 1e-20, &r), 0.75, TEST_TOL2, GSL_SUCCESS); /* U(a,b,x) for x<0 [bug #27859] */ /* Tests for b >= 0 */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 0, -0.1, &r), 1, TEST_TOL0, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0, -0.1, &r), -0.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 0, -0.1, &r), 0.21, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 0, -0.1, &r), -0.661, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 0, -0.1, &r), 2.7721, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 0, -0.1, &r), -14.52201, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 0, -0.1, &r), 91.230301, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 1, -0.1, &r), 1.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 1, -0.1, &r), -1.1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 1, -0.1, &r), 2.41, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 1, -0.1, &r), -7.891, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 1, -0.1, &r), 34.3361, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 1, -0.1, &r), -186.20251, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 1, -0.1, &r), 1208.445361, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 2, -0.1, &r), -10.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 2, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 2, -0.1, &r), -2.1, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 2, -0.1, &r), 6.61, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 2, -0.1, &r), -27.721, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 2, -0.1, &r), 145.2201, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 2, -0.1, &r), -912.30301, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 2, -0.1, &r), 6682.263421, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 2, 3, -0.1, &r), 100.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 3, -0.1, &r), 90.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 3, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 3, -0.1, &r), -3.10, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 3, -0.1, &r), 12.81, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 3, -0.1, &r), -66.151, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 3, -0.1, &r), 409.8241, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 3, -0.1, &r), -2961.42351, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 3, -0.1, &r), 24450.804481, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 3, 4, -0.1, &r), -1000.0, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 2, 4, -0.1, &r), -1900.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 1, 4, -0.1, &r), -1810.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, 4, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 4, -0.1, &r), -4.10, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 4, -0.1, &r), 21.01, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 4, -0.1, &r), -129.181, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, 4, -0.1, &r), 926.5481, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, 4, -0.1, &r), -7594.16401, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, 4, -0.1, &r), 70015.788541, TEST_TOL2, GSL_SUCCESS); /* Tests for b < 0 */ TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -1, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -1, -0.1, &r), 0.9, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -1, -0.1, &r), 0.01, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -1, -0.1, &r), -0.031, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -1, -0.1, &r), 0.1281, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -1, -0.1, &r), -0.66151, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -1, -0.1, &r), 4.098241, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -2, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -2, -0.1, &r), 1.9, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -2, -0.1, &r), 1.81, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -2, -0.1, &r), -0.001, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -2, -0.1, &r), 0.0041, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -2, -0.1, &r), -0.02101, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -2, -0.1, &r), 0.129181, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -3, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -3, -0.1, &r), 2.9, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -3, -0.1, &r), 5.61, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -3, -0.1, &r), 5.429, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -3, -0.1, &r), 0.0001, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -3, -0.1, &r), -0.00051, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -3, -0.1, &r), 0.003121, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_e, ( 0, -4, -0.1, &r), 1.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, -4, -0.1, &r), 3.9, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, -4, -0.1, &r), 11.41, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-3, -4, -0.1, &r), 22.259, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-4, -4, -0.1, &r), 21.7161, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-5, -4, -0.1, &r), -1e-5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-6, -4, -0.1, &r), 0.000061, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-7, -4, -0.1, &r), -0.0004341, TEST_TOL0, GSL_SUCCESS); #endif /* Tests for integer a */ TEST_SF(s, gsl_sf_hyperg_U_e, (-3, 0.5, -0.5, &r), -9.5, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 0.5, -0.5, &r), 180495.0625, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 1.5, -0.5, &r), 827341.0625, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-8, 1.5, -10, &r), 7.162987810253906e9, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (3, 6, -0.5, &r), -296.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (3, 7, -0.5, &r), 2824, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (5, 12, -1.7, &r), -153.262676210016018065768591104, TEST_TOL2, GSL_SUCCESS); /* A few random tests */ TEST_SF(s, gsl_sf_hyperg_U_e, (0, 0, -0.5, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0, 1, -0.5, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (0, 1, -0.001, &r), 1, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0.99, -0.1, &r), -1.09, TEST_TOL2, GSL_SUCCESS); #ifdef FIXME /* unimplemented case */ TEST_SF(s, gsl_sf_hyperg_U_e, (-1, 0, -0.5, &r), -0.5, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-2, 0, -0.5, &r), 1.25, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_e, (-7, 0, -0.1, &r), -668.2263421, TEST_TOL0, GSL_SUCCESS); #endif TEST_SF(s, gsl_sf_hyperg_U_int_e, (3, 6, -0.5, &r), -296.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (3, 7, -0.5, &r), 2824, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_U_int_e, (5, 12, -1.7, &r), -153.262676210016018065768591104, TEST_TOL2, GSL_SUCCESS); /* Bug report from Raymond Rogers */ TEST_SF(s, gsl_sf_hyperg_U_e, (4.11, 0.11, 6.4, &r), 6.422378238765078623739153038e-5, TEST_TOL2, GSL_SUCCESS); /* 2F1 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (1, 1, 1, 0.5, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 1, 0.5, &r), 12451584.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, 1, 0.5, &r), 0.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8.1, 1, 0.5, &r), 0.14147385378899930422, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, 1, -0.5, &r), 4945.136718750000000, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, -5.5, 0.5, &r), -906.6363636363636364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, -8, -5.5, -0.5, &r), 24565.363636363636364, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 1, -0.5, &r), -0.006476312098196747669, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 5, 0.5, &r), 4205.714285714285714, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (8, 8, 5, -0.5, &r), 0.0028489656290296436616, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, 1, 0.99, &r), 1.2363536673577259280e+38 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -1.5, 0.99, &r), 3.796186436458346579e+46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -1.5, -0.99, &r), 0.14733409946001025146, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -8.5, 0.99, &r), -1.1301780432998743440e+65, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -8.5, -0.99, &r), -8.856462606575344483, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -21.5, 0.99, &r), 2.0712920991876073253e+95, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -21.5, -0.99, &r), -74.30517015382249216, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -100.5, 0.99, &r), -3.186778061428268980e+262, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (9, 9, -100.5, -0.99, &r), 2.4454358338375677520, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (25, 25, 1, -0.5, &r), -2.9995530823639545027e-06, TEST_SQRT_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/64.0, &r), 3.17175539044729373926, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/128.0, &r), 3.59937243502024563424, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/256.0, &r), 4.03259299524392504369, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/1024.0, &r), 4.90784159359675398250, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/65536.0, &r), 7.552266033399683914, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, 1.0-1.0/16777216.0, &r), 11.08235454026043830363, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/1024.0, &r), 0.762910940909954974527, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/65536.0, &r), 0.762762124908845424449, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 2.0, -1.0+1.0/1048576.0, &r), 0.762759911089064738044, TEST_TOL0, GSL_SUCCESS); /* added special handling with x == 1.0 , Richard J. Mathar, 2008-01-09 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, 0.5, 3.0, 1.0, &r), 1.6976527263135502482014268 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (1.5, -4.2, 3.0, 1.0, &r), .15583601560025710649555254 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (-7.4, 0.7, -1.5, 1.0, &r), -.34478866959246584996859 , TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (0.1, -2.7, -1.5, 1.0, &r), 1.059766766063610122925 , TEST_TOL2, GSL_SUCCESS); /* Taylor Binnington a = 0 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (0, -2, -4, 0.5, &r), 1.0 , TEST_TOL2, GSL_SUCCESS); /* Andrew Benson bug #24812 in Pari: poch(a,x) = { gamma(a+x)/gamma(a) } t(a,b,c,x,k) = { (poch(a,k)*poch(b,k)/poch(c,k)) * (x^k)/(k!) } suminf(k=0,t(-10.34, 2.05, 3.05, 0.1725,k)) */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (-10.34, 2.05, 3.05, 0.1725, &r), 0.310473552213130010351006093079548, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_e, (-9.99999999999, 2.05, 3.05, 0.1725, &r),0.32141934630197487540298837643890, TEST_TOL2, GSL_SUCCESS); /* Didier Pinchon also bug #24812 */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (11, -1, 11.0/2.0, 0.125 , &r), 0.75, TEST_TOL2, GSL_SUCCESS); #if 0 /* XXX - bug #39056 */ /* Test case from Hatef Monajemi */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (3.5, -0.5, 5.0, 0.9, &r), 0.5923981284370653465208973272, TEST_TOL2, GSL_SUCCESS); /* Test case from Robert L Wolpert */ TEST_SF(s, gsl_sf_hyperg_2F1_e, (-1.0, -10.0, 1.0, 0.5, &r), 6.0, TEST_TOL0, GSL_SUCCESS); #endif /* 2F1 conj */ TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (1, 1, 1, 0.5, &r), 3.352857095662929028, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 1, 0.5, &r), 1.7078067538891293983e+09, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 5, 0.5, &r), 285767.15696901140627, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 1, -0.5, &r), 0.007248196261471276276, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (8, 8, 5, -0.5, &r), 0.00023301916814505902809, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_e, (25, 25, 1, -0.5, &r), 5.1696944096e-06, TEST_SQRT_TOL0, GSL_SUCCESS); /* updated correct values, testing enabled, Richard J. Mathar, 2008-01-09 */ TEST_SF(s, gsl_sf_hyperg_2F0_e, (0.01, 1.0, -0.02, &r), .99980388665511730901180717 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (0.1, 0.5, -0.02, &r), .99901595171179281891589794 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (1, 1, -0.02, &r), .98075549650574351826538049000 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (8, 8, -0.02, &r), .32990592849626965538692141 , TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F0_e, (50, 50, -0.02, &r), .2688995263772964415245902e-12 , TEST_TOL0, GSL_SUCCESS); /* 2F1 renorm */ TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (1, 1, 1, 0.5, &r), 2.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, 8, 1, 0.5, &r), 12451584.0, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, 1, 0.5, &r), 0.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, 1, -0.5, &r), 4945.13671875, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, -5.5, 0.5, &r), -83081.19167659493609, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, -8, -5.5, -0.5, &r), 2.2510895952730178518e+06, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (8, 8, 5, 0.5, &r), 175.2380952380952381, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (9, 9, -1.5, 0.99, &r), 1.6063266334913066551e+46, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (9, 9, -1.5, -0.99, &r), 0.06234327316254516616, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -1, 0.5, &r), 4949760.0, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -10, 0.5, &r), 139408493229637632000.0, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_renorm_e, (5, 5, -100, 0.5, &r), 3.0200107544594411315e+206, TEST_TOL3, GSL_SUCCESS); /* 2F1 conj renorm */ TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (9, 9, -1.5, 0.99, &r), 5.912269095984229412e+49, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (9, 9, -1.5, -0.99, &r), 0.10834020229476124874, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -1, 0.5, &r), 1.4885106335357933625e+08, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -10, 0.5, &r), 7.968479361426355095e+21, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_hyperg_2F1_conj_renorm_e, (5, 5, -100, 0.5, &r), 3.1113180227052313057e+208, TEST_TOL3, GSL_SUCCESS); return s; } gsl-1.16/specfunc/legendre_poly.c0000664000252300025230000005113012171574312013754 00000000000000/* specfunc/legendre_poly.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "error.h" /* Calculate P_m^m(x) from the analytic result: * P_m^m(x) = (-1)^m (2m-1)!! (1-x^2)^(m/2) , m > 0 * = 1 , m = 0 */ static double legendre_Pmm(int m, double x) { if(m == 0) { return 1.0; } else { double p_mm = 1.0; double root_factor = sqrt(1.0-x)*sqrt(1.0+x); double fact_coeff = 1.0; int i; for(i=1; i<=m; i++) { p_mm *= -fact_coeff * root_factor; fact_coeff += 2.0; } return p_mm; } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_legendre_P1_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { result->val = x; result->err = 0.0; return GSL_SUCCESS; } } int gsl_sf_legendre_P2_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { result->val = 0.5*(3.0*x*x - 1.0); result->err = GSL_DBL_EPSILON * (fabs(3.0*x*x) + 1.0); return GSL_SUCCESS; } } int gsl_sf_legendre_P3_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { result->val = 0.5*x*(5.0*x*x - 3.0); result->err = GSL_DBL_EPSILON * (fabs(result->val) + 0.5 * fabs(x) * (fabs(5.0*x*x) + 3.0)); return GSL_SUCCESS; } } int gsl_sf_legendre_Pl_e(const int l, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(l < 0 || x < -1.0 || x > 1.0) { DOMAIN_ERROR(result); } else if(l == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(l == 1) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(l == 2) { result->val = 0.5 * (3.0*x*x - 1.0); result->err = GSL_DBL_EPSILON * (fabs(3.0*x*x) + 1.0); /*result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val); removed this old bogus estimate [GJ] */ return GSL_SUCCESS; } else if(x == 1.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(x == -1.0) { result->val = ( GSL_IS_ODD(l) ? -1.0 : 1.0 ); result->err = 0.0; return GSL_SUCCESS; } else if(l < 100000) { /* upward recurrence: l P_l = (2l-1) z P_{l-1} - (l-1) P_{l-2} */ double p_ellm2 = 1.0; /* P_0(x) */ double p_ellm1 = x; /* P_1(x) */ double p_ell = p_ellm1; double e_ellm2 = GSL_DBL_EPSILON; double e_ellm1 = fabs(x)*GSL_DBL_EPSILON; double e_ell = e_ellm1; int ell; for(ell=2; ell <= l; ell++){ p_ell = (x*(2*ell-1)*p_ellm1 - (ell-1)*p_ellm2) / ell; p_ellm2 = p_ellm1; p_ellm1 = p_ell; e_ell = 0.5*(fabs(x)*(2*ell-1.0) * e_ellm1 + (ell-1.0)*e_ellm2)/ell; e_ellm2 = e_ellm1; e_ellm1 = e_ell; } result->val = p_ell; result->err = e_ell + l*fabs(p_ell)*GSL_DBL_EPSILON; return GSL_SUCCESS; } else { /* Asymptotic expansion. * [Olver, p. 473] */ double u = l + 0.5; double th = acos(x); gsl_sf_result J0; gsl_sf_result Jm1; int stat_J0 = gsl_sf_bessel_J0_e(u*th, &J0); int stat_Jm1 = gsl_sf_bessel_Jn_e(-1, u*th, &Jm1); double pre; double B00; double c1; /* B00 = 1/8 (1 - th cot(th) / th^2 * pre = sqrt(th/sin(th)) */ if(th < GSL_ROOT4_DBL_EPSILON) { B00 = (1.0 + th*th/15.0)/24.0; pre = 1.0 + th*th/12.0; } else { double sin_th = sqrt(1.0 - x*x); double cot_th = x / sin_th; B00 = 1.0/8.0 * (1.0 - th * cot_th) / (th*th); pre = sqrt(th/sin_th); } c1 = th/u * B00; result->val = pre * (J0.val + c1 * Jm1.val); result->err = pre * (J0.err + fabs(c1) * Jm1.err); result->err += GSL_SQRT_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_J0, stat_Jm1); } } int gsl_sf_legendre_Pl_array(const int lmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(lmax < 0 || x < -1.0 || x > 1.0) { GSL_ERROR ("domain error", GSL_EDOM); } else if(lmax == 0) { result_array[0] = 1.0; return GSL_SUCCESS; } else if(lmax == 1) { result_array[0] = 1.0; result_array[1] = x; return GSL_SUCCESS; } else { /* upward recurrence: l P_l = (2l-1) z P_{l-1} - (l-1) P_{l-2} */ double p_ellm2 = 1.0; /* P_0(x) */ double p_ellm1 = x; /* P_1(x) */ double p_ell = p_ellm1; int ell; result_array[0] = 1.0; result_array[1] = x; for(ell=2; ell <= lmax; ell++){ p_ell = (x*(2*ell-1)*p_ellm1 - (ell-1)*p_ellm2) / ell; p_ellm2 = p_ellm1; p_ellm1 = p_ell; result_array[ell] = p_ell; } return GSL_SUCCESS; } } int gsl_sf_legendre_Pl_deriv_array(const int lmax, const double x, double * result_array, double * result_deriv_array) { int stat_array = gsl_sf_legendre_Pl_array(lmax, x, result_array); if(lmax >= 0) result_deriv_array[0] = 0.0; if(lmax >= 1) result_deriv_array[1] = 1.0; if(stat_array == GSL_SUCCESS) { int ell; if(fabs(x - 1.0)*(lmax+1.0)*(lmax+1.0) < GSL_SQRT_DBL_EPSILON) { /* x is near 1 */ for(ell = 2; ell <= lmax; ell++) { const double pre = 0.5 * ell * (ell+1.0); result_deriv_array[ell] = pre * (1.0 - 0.25 * (1.0-x) * (ell+2.0)*(ell-1.0)); } } else if(fabs(x + 1.0)*(lmax+1.0)*(lmax+1.0) < GSL_SQRT_DBL_EPSILON) { /* x is near -1 */ for(ell = 2; ell <= lmax; ell++) { const double sgn = ( GSL_IS_ODD(ell) ? 1.0 : -1.0 ); /* derivative is odd in x for even ell */ const double pre = sgn * 0.5 * ell * (ell+1.0); result_deriv_array[ell] = pre * (1.0 - 0.25 * (1.0+x) * (ell+2.0)*(ell-1.0)); } } else { const double diff_a = 1.0 + x; const double diff_b = 1.0 - x; for(ell = 2; ell <= lmax; ell++) { result_deriv_array[ell] = - ell * (x * result_array[ell] - result_array[ell-1]) / (diff_a * diff_b); } } return GSL_SUCCESS; } else { return stat_array; } } int gsl_sf_legendre_Plm_e(const int l, const int m, const double x, gsl_sf_result * result) { /* If l is large and m is large, then we have to worry * about overflow. Calculate an approximate exponent which * measures the normalization of this thing. */ const double dif = l-m; const double sum = l+m; const double t_d = ( dif == 0.0 ? 0.0 : 0.5 * dif * (log(dif)-1.0) ); const double t_s = ( dif == 0.0 ? 0.0 : 0.5 * sum * (log(sum)-1.0) ); const double exp_check = 0.5 * log(2.0*l+1.0) + t_d - t_s; /* CHECK_POINTER(result) */ if(m < 0 || l < m || x < -1.0 || x > 1.0) { DOMAIN_ERROR(result); } else if(exp_check < GSL_LOG_DBL_MIN + 10.0){ /* Bail out. */ OVERFLOW_ERROR(result); } else { /* Account for the error due to the * representation of 1-x. */ const double err_amp = 1.0 / (GSL_DBL_EPSILON + fabs(1.0-fabs(x))); /* P_m^m(x) and P_{m+1}^m(x) */ double p_mm = legendre_Pmm(m, x); double p_mmp1 = x * (2*m + 1) * p_mm; if(l == m){ result->val = p_mm; result->err = err_amp * 2.0 * GSL_DBL_EPSILON * fabs(p_mm); return GSL_SUCCESS; } else if(l == m + 1) { result->val = p_mmp1; result->err = err_amp * 2.0 * GSL_DBL_EPSILON * fabs(p_mmp1); return GSL_SUCCESS; } else{ /* upward recurrence: (l-m) P(l,m) = (2l-1) z P(l-1,m) - (l+m-1) P(l-2,m) * start at P(m,m), P(m+1,m) */ double p_ellm2 = p_mm; double p_ellm1 = p_mmp1; double p_ell = 0.0; int ell; for(ell=m+2; ell <= l; ell++){ p_ell = (x*(2*ell-1)*p_ellm1 - (ell+m-1)*p_ellm2) / (ell-m); p_ellm2 = p_ellm1; p_ellm1 = p_ell; } result->val = p_ell; result->err = err_amp * (0.5*(l-m) + 1.0) * GSL_DBL_EPSILON * fabs(p_ell); return GSL_SUCCESS; } } } int gsl_sf_legendre_Plm_array(const int lmax, const int m, const double x, double * result_array) { /* If l is large and m is large, then we have to worry * about overflow. Calculate an approximate exponent which * measures the normalization of this thing. */ const double dif = lmax-m; const double sum = lmax+m; const double t_d = ( dif == 0.0 ? 0.0 : 0.5 * dif * (log(dif)-1.0) ); const double t_s = ( dif == 0.0 ? 0.0 : 0.5 * sum * (log(sum)-1.0) ); const double exp_check = 0.5 * log(2.0*lmax+1.0) + t_d - t_s; /* CHECK_POINTER(result_array) */ if(m < 0 || lmax < m || x < -1.0 || x > 1.0) { GSL_ERROR ("domain error", GSL_EDOM); } else if(m > 0 && (x == 1.0 || x == -1.0)) { int ell; for(ell=m; ell<=lmax; ell++) result_array[ell-m] = 0.0; return GSL_SUCCESS; } else if(exp_check < GSL_LOG_DBL_MIN + 10.0){ /* Bail out. */ GSL_ERROR ("overflow", GSL_EOVRFLW); } else { double p_mm = legendre_Pmm(m, x); double p_mmp1 = x * (2.0*m + 1.0) * p_mm; if(lmax == m){ result_array[0] = p_mm; return GSL_SUCCESS; } else if(lmax == m + 1) { result_array[0] = p_mm; result_array[1] = p_mmp1; return GSL_SUCCESS; } else { double p_ellm2 = p_mm; double p_ellm1 = p_mmp1; double p_ell = 0.0; int ell; result_array[0] = p_mm; result_array[1] = p_mmp1; for(ell=m+2; ell <= lmax; ell++){ p_ell = (x*(2.0*ell-1.0)*p_ellm1 - (ell+m-1)*p_ellm2) / (ell-m); p_ellm2 = p_ellm1; p_ellm1 = p_ell; result_array[ell-m] = p_ell; } return GSL_SUCCESS; } } } int gsl_sf_legendre_Plm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array) { if(m < 0 || m > lmax) { GSL_ERROR("m < 0 or m > lmax", GSL_EDOM); } else if(m == 0) { /* It is better to do m=0 this way, so we can more easily * trap the divergent case which can occur when m == 1. */ return gsl_sf_legendre_Pl_deriv_array(lmax, x, result_array, result_deriv_array); } else { int stat_array = gsl_sf_legendre_Plm_array(lmax, m, x, result_array); if(stat_array == GSL_SUCCESS) { int ell; if(m == 1 && (1.0 - fabs(x) < GSL_DBL_EPSILON)) { /* This divergence is real and comes from the cusp-like * behaviour for m = 1. For example, P[1,1] = - Sqrt[1-x^2]. */ GSL_ERROR("divergence near |x| = 1.0 since m = 1", GSL_EOVRFLW); } else if(m == 2 && (1.0 - fabs(x) < GSL_DBL_EPSILON)) { /* m = 2 gives a finite nonzero result for |x| near 1 */ if(fabs(x - 1.0) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = -0.25 * x * (ell - 1.0)*ell*(ell+1.0)*(ell+2.0); } else if(fabs(x + 1.0) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) { const double sgn = ( GSL_IS_ODD(ell) ? 1.0 : -1.0 ); result_deriv_array[ell-m] = -0.25 * sgn * x * (ell - 1.0)*ell*(ell+1.0)*(ell+2.0); } } return GSL_SUCCESS; } else { /* m > 2 is easier to deal with since the endpoints always vanish */ if(1.0 - fabs(x) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = 0.0; return GSL_SUCCESS; } else { const double diff_a = 1.0 + x; const double diff_b = 1.0 - x; result_deriv_array[0] = - m * x / (diff_a * diff_b) * result_array[0]; if(lmax-m >= 1) result_deriv_array[1] = (2.0 * m + 1.0) * (x * result_deriv_array[0] + result_array[0]); for(ell = m+2; ell <= lmax; ell++) { result_deriv_array[ell-m] = - (ell * x * result_array[ell-m] - (ell+m) * result_array[ell-1-m]) / (diff_a * diff_b); } return GSL_SUCCESS; } } } else { return stat_array; } } } int gsl_sf_legendre_sphPlm_e(const int l, int m, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(m < 0 || l < m || x < -1.0 || x > 1.0) { DOMAIN_ERROR(result); } else if(m == 0) { gsl_sf_result P; int stat_P = gsl_sf_legendre_Pl_e(l, x, &P); double pre = sqrt((2.0*l + 1.0)/(4.0*M_PI)); result->val = pre * P.val; result->err = pre * P.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_P; } else if(x == 1.0 || x == -1.0) { /* m > 0 here */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* m > 0 and |x| < 1 here */ /* Starting value for recursion. * Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) ) (-1)^m (1-x^2)^(m/2) / pi^(1/4) */ gsl_sf_result lncirc; gsl_sf_result lnpoch; double lnpre_val; double lnpre_err; gsl_sf_result ex_pre; double sr; const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0); const double y_mmp1_factor = x * sqrt(2.0*m + 3.0); double y_mm, y_mm_err; double y_mmp1, y_mmp1_err; gsl_sf_log_1plusx_e(-x*x, &lncirc); gsl_sf_lnpoch_e(m, 0.5, &lnpoch); /* Gamma(m+1/2)/Gamma(m) */ lnpre_val = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val); lnpre_err = 0.25*M_LNPI*GSL_DBL_EPSILON + 0.5 * (lnpoch.err + fabs(m)*lncirc.err); /* Compute exp(ln_pre) with error term, avoiding call to gsl_sf_exp_err BJG */ ex_pre.val = exp(lnpre_val); ex_pre.err = 2.0*(sinh(lnpre_err) + GSL_DBL_EPSILON)*ex_pre.val; sr = sqrt((2.0+1.0/m)/(4.0*M_PI)); y_mm = sgn * sr * ex_pre.val; y_mm_err = 2.0 * GSL_DBL_EPSILON * fabs(y_mm) + sr * ex_pre.err; y_mm_err *= 1.0 + 1.0/(GSL_DBL_EPSILON + fabs(1.0-x)); y_mmp1 = y_mmp1_factor * y_mm; y_mmp1_err=fabs(y_mmp1_factor) * y_mm_err; if(l == m){ result->val = y_mm; result->err = y_mm_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mm); return GSL_SUCCESS; } else if(l == m + 1) { result->val = y_mmp1; result->err = y_mmp1_err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(y_mmp1); return GSL_SUCCESS; } else{ double y_ell = 0.0; double y_ell_err; int ell; /* Compute Y_l^m, l > m+1, upward recursion on l. */ for(ell=m+2; ell <= l; ell++){ const double rat1 = (double)(ell-m)/(double)(ell+m); const double rat2 = (ell-m-1.0)/(ell+m-1.0); const double factor1 = sqrt(rat1*(2.0*ell+1.0)*(2.0*ell-1.0)); const double factor2 = sqrt(rat1*rat2*(2.0*ell+1.0)/(2.0*ell-3.0)); y_ell = (x*y_mmp1*factor1 - (ell+m-1.0)*y_mm*factor2) / (ell-m); y_mm = y_mmp1; y_mmp1 = y_ell; y_ell_err = 0.5*(fabs(x*factor1)*y_mmp1_err + fabs((ell+m-1.0)*factor2)*y_mm_err) / fabs(ell-m); y_mm_err = y_mmp1_err; y_mmp1_err = y_ell_err; } result->val = y_ell; result->err = y_ell_err + (0.5*(l-m) + 1.0) * GSL_DBL_EPSILON * fabs(y_ell); return GSL_SUCCESS; } } } int gsl_sf_legendre_sphPlm_array(const int lmax, int m, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(m < 0 || lmax < m || x < -1.0 || x > 1.0) { GSL_ERROR ("error", GSL_EDOM); } else if(m > 0 && (x == 1.0 || x == -1.0)) { int ell; for(ell=m; ell<=lmax; ell++) result_array[ell-m] = 0.0; return GSL_SUCCESS; } else { double y_mm; double y_mmp1; if(m == 0) { y_mm = 0.5/M_SQRTPI; /* Y00 = 1/sqrt(4pi) */ y_mmp1 = x * M_SQRT3 * y_mm; } else { /* |x| < 1 here */ gsl_sf_result lncirc; gsl_sf_result lnpoch; double lnpre; const double sgn = ( GSL_IS_ODD(m) ? -1.0 : 1.0); gsl_sf_log_1plusx_e(-x*x, &lncirc); gsl_sf_lnpoch_e(m, 0.5, &lnpoch); /* Gamma(m+1/2)/Gamma(m) */ lnpre = -0.25*M_LNPI + 0.5 * (lnpoch.val + m*lncirc.val); y_mm = sqrt((2.0+1.0/m)/(4.0*M_PI)) * sgn * exp(lnpre); y_mmp1 = x * sqrt(2.0*m + 3.0) * y_mm; } if(lmax == m){ result_array[0] = y_mm; return GSL_SUCCESS; } else if(lmax == m + 1) { result_array[0] = y_mm; result_array[1] = y_mmp1; return GSL_SUCCESS; } else{ double y_ell; int ell; result_array[0] = y_mm; result_array[1] = y_mmp1; /* Compute Y_l^m, l > m+1, upward recursion on l. */ for(ell=m+2; ell <= lmax; ell++){ const double rat1 = (double)(ell-m)/(double)(ell+m); const double rat2 = (ell-m-1.0)/(ell+m-1.0); const double factor1 = sqrt(rat1*(2*ell+1)*(2*ell-1)); const double factor2 = sqrt(rat1*rat2*(2*ell+1)/(2*ell-3)); y_ell = (x*y_mmp1*factor1 - (ell+m-1)*y_mm*factor2) / (ell-m); y_mm = y_mmp1; y_mmp1 = y_ell; result_array[ell-m] = y_ell; } } return GSL_SUCCESS; } } int gsl_sf_legendre_sphPlm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array) { if(m < 0 || lmax < m || x < -1.0 || x > 1.0) { GSL_ERROR ("domain", GSL_EDOM); } else if(m == 0) { /* m = 0 is easy to trap */ const int stat_array = gsl_sf_legendre_Pl_deriv_array(lmax, x, result_array, result_deriv_array); int ell; for(ell = 0; ell <= lmax; ell++) { const double prefactor = sqrt((2.0 * ell + 1.0)/(4.0*M_PI)); result_array[ell] *= prefactor; result_deriv_array[ell] *= prefactor; } return stat_array; } else if(m == 1) { /* Trapping m = 1 is necessary because of the possible divergence. * Recall that this divergence is handled properly in ..._Plm_deriv_array(), * and the scaling factor is not large for small m, so we just scale. */ const int stat_array = gsl_sf_legendre_Plm_deriv_array(lmax, m, x, result_array, result_deriv_array); int ell; for(ell = 1; ell <= lmax; ell++) { const double prefactor = sqrt((2.0 * ell + 1.0)/(ell + 1.0) / (4.0*M_PI*ell)); result_array[ell-1] *= prefactor; result_deriv_array[ell-1] *= prefactor; } return stat_array; } else { /* as for the derivative of P_lm, everything is regular for m >= 2 */ int stat_array = gsl_sf_legendre_sphPlm_array(lmax, m, x, result_array); if(stat_array == GSL_SUCCESS) { int ell; if(1.0 - fabs(x) < GSL_DBL_EPSILON) { for(ell = m; ell <= lmax; ell++) result_deriv_array[ell-m] = 0.0; return GSL_SUCCESS; } else { const double diff_a = 1.0 + x; const double diff_b = 1.0 - x; result_deriv_array[0] = - m * x / (diff_a * diff_b) * result_array[0]; if(lmax-m >= 1) result_deriv_array[1] = sqrt(2.0 * m + 3.0) * (x * result_deriv_array[0] + result_array[0]); for(ell = m+2; ell <= lmax; ell++) { const double c1 = sqrt(((2.0*ell+1.0)/(2.0*ell-1.0)) * ((double)(ell-m)/(double)(ell+m))); result_deriv_array[ell-m] = - (ell * x * result_array[ell-m] - c1 * (ell+m) * result_array[ell-1-m]) / (diff_a * diff_b); } return GSL_SUCCESS; } } else { return stat_array; } } } int gsl_sf_legendre_array_size(const int lmax, const int m) { return lmax-m+1; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_legendre_P1(const double x) { EVAL_RESULT(gsl_sf_legendre_P1_e(x, &result)); } double gsl_sf_legendre_P2(const double x) { EVAL_RESULT(gsl_sf_legendre_P2_e(x, &result)); } double gsl_sf_legendre_P3(const double x) { EVAL_RESULT(gsl_sf_legendre_P3_e(x, &result)); } double gsl_sf_legendre_Pl(const int l, const double x) { EVAL_RESULT(gsl_sf_legendre_Pl_e(l, x, &result)); } double gsl_sf_legendre_Plm(const int l, const int m, const double x) { EVAL_RESULT(gsl_sf_legendre_Plm_e(l, m, x, &result)); } double gsl_sf_legendre_sphPlm(const int l, const int m, const double x) { EVAL_RESULT(gsl_sf_legendre_sphPlm_e(l, m, x, &result)); } gsl-1.16/specfunc/bessel_I0.c0000664000252300025230000001416412171574312012737 00000000000000/* specfunc/bessel_I0.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besi0 */ /* chebyshev expansions series for bi0 on the interval 0. to 9.00000d+00 with weighted error 2.46e-18 log weighted error 17.61 significant figures required 17.90 decimal places required 18.15 series for ai0 on the interval 1.25000d-01 to 3.33333d-01 with weighted error 7.87e-17 log weighted error 16.10 significant figures required 14.69 decimal places required 16.76 series for ai02 on the interval 0. to 1.25000d-01 with weighted error 3.79e-17 log weighted error 16.42 significant figures required 14.86 decimal places required 17.09 */ static double bi0_data[12] = { -.07660547252839144951, 1.92733795399380827000, .22826445869203013390, .01304891466707290428, .00043442709008164874, .00000942265768600193, .00000014340062895106, .00000000161384906966, .00000000001396650044, .00000000000009579451, .00000000000000053339, .00000000000000000245 }; static cheb_series bi0_cs = { bi0_data, 11, -1, 1, 11 }; static double ai0_data[21] = { .07575994494023796, .00759138081082334, .00041531313389237, .00001070076463439, -.00000790117997921, -.00000078261435014, .00000027838499429, .00000000825247260, -.00000001204463945, .00000000155964859, .00000000022925563, -.00000000011916228, .00000000001757854, .00000000000112822, -.00000000000114684, .00000000000027155, -.00000000000002415, -.00000000000000608, .00000000000000314, -.00000000000000071, .00000000000000007 }; static cheb_series ai0_cs = { ai0_data, 20, -1, 1, 13 }; static double ai02_data[22] = { .05449041101410882, .00336911647825569, .00006889758346918, .00000289137052082, .00000020489185893, .00000002266668991, .00000000339623203, .00000000049406022, .00000000001188914, -.00000000003149915, -.00000000001321580, -.00000000000179419, .00000000000071801, .00000000000038529, .00000000000001539, -.00000000000004151, -.00000000000000954, .00000000000000382, .00000000000000176, -.00000000000000034, -.00000000000000027, .00000000000000003 }; static cheb_series ai02_cs = { ai02_data, 21, -1, 1, 11 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_I0_scaled_e(const double x, gsl_sf_result * result) { double y = fabs(x); /* CHECK_POINTER(result) */ if(y < 2.0 * GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - y; result->err = 0.5*y*y; return GSL_SUCCESS; } else if(y <= 3.0) { const double ey = exp(-y); gsl_sf_result c; cheb_eval_e(&bi0_cs, y*y/4.5-1.0, &c); result->val = ey * (2.75 + c.val); result->err = GSL_DBL_EPSILON * fabs(result->val) + ey * c.err; return GSL_SUCCESS; } else if(y <= 8.0) { const double sy = sqrt(y); gsl_sf_result c; cheb_eval_e(&ai0_cs, (48.0/y-11.0)/5.0, &c); result->val = (0.375 + c.val) / sy; result->err = 2.0 * GSL_DBL_EPSILON * (0.375 + fabs(c.val)) / sy; result->err += c.err / sy; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sy = sqrt(y); gsl_sf_result c; cheb_eval_e(&ai02_cs, 16.0/y-1.0, &c); result->val = (0.375 + c.val) / sy; result->err = 2.0 * GSL_DBL_EPSILON * (0.375 + fabs(c.val)) / sy; result->err += c.err / sy; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_I0_e(const double x, gsl_sf_result * result) { double y = fabs(x); /* CHECK_POINTER(result) */ if(y < 2.0 * GSL_SQRT_DBL_EPSILON) { result->val = 1.0; result->err = 0.5*y*y; return GSL_SUCCESS; } else if(y <= 3.0) { gsl_sf_result c; cheb_eval_e(&bi0_cs, y*y/4.5-1.0, &c); result->val = 2.75 + c.val; result->err = GSL_DBL_EPSILON * (2.75 + fabs(c.val)); result->err += c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(y < GSL_LOG_DBL_MAX - 1.0) { const double ey = exp(y); gsl_sf_result b_scaled; gsl_sf_bessel_I0_scaled_e(x, &b_scaled); result->val = ey * b_scaled.val; result->err = ey * b_scaled.err + y*GSL_DBL_EPSILON*fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_I0_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_I0_scaled_e(x, &result); ) } double gsl_sf_bessel_I0(const double x) { EVAL_RESULT(gsl_sf_bessel_I0_e(x, &result); ) } gsl-1.16/specfunc/gsl_sf_hyperg.h0000664000252300025230000001064512171574312013772 00000000000000/* specfunc/gsl_sf_hyperg.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_HYPERG_H__ #define __GSL_SF_HYPERG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Hypergeometric function related to Bessel functions * 0F1[c,x] = * Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) * Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x]) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result); double gsl_sf_hyperg_0F1(const double c, const double x); /* Confluent hypergeometric function for integer parameters. * 1F1[m,n,x] = M(m,n,x) * * exceptions: */ int gsl_sf_hyperg_1F1_int_e(const int m, const int n, const double x, gsl_sf_result * result); double gsl_sf_hyperg_1F1_int(const int m, const int n, double x); /* Confluent hypergeometric function. * 1F1[a,b,x] = M(a,b,x) * * exceptions: */ int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result); double gsl_sf_hyperg_1F1(double a, double b, double x); /* Confluent hypergeometric function for integer parameters. * U(m,n,x) * * exceptions: */ int gsl_sf_hyperg_U_int_e(const int m, const int n, const double x, gsl_sf_result * result); double gsl_sf_hyperg_U_int(const int m, const int n, const double x); /* Confluent hypergeometric function for integer parameters. * U(m,n,x) * * exceptions: */ int gsl_sf_hyperg_U_int_e10_e(const int m, const int n, const double x, gsl_sf_result_e10 * result); /* Confluent hypergeometric function. * U(a,b,x) * * exceptions: */ int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result); double gsl_sf_hyperg_U(const double a, const double b, const double x); /* Confluent hypergeometric function. * U(a,b,x) * * exceptions: */ int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result); /* Gauss hypergeometric function 2F1[a,b,c,x] * |x| < 1 * * exceptions: */ int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result); double gsl_sf_hyperg_2F1(double a, double b, double c, double x); /* Gauss hypergeometric function * 2F1[aR + I aI, aR - I aI, c, x] * |x| < 1 * * exceptions: */ int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x); /* Renormalized Gauss hypergeometric function * 2F1[a,b,c,x] / Gamma[c] * |x| < 1 * * exceptions: */ int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result); double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x); /* Renormalized Gauss hypergeometric function * 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c] * |x| < 1 * * exceptions: */ int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x); /* Mysterious hypergeometric function. The series representation * is a divergent hypergeometric series. However, for x < 0 we * have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x) * * exceptions: GSL_EDOM */ int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result); double gsl_sf_hyperg_2F0(const double a, const double b, const double x); __END_DECLS #endif /* __GSL_SF_HYPERG_H__ */ gsl-1.16/specfunc/hyperg_U.c0000664000252300025230000015700012171574312012711 00000000000000/* specfunc/hyperg_U.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Copyright (C) 2009, 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "error.h" #include "hyperg.h" #define INT_THRESHOLD (1000.0*GSL_DBL_EPSILON) #define SERIES_EVAL_OK(a,b,x) ((fabs(a) < 5 && b < 5 && x < 2.0) || (fabs(a) < 10 && b < 10 && x < 1.0)) #define ASYMP_EVAL_OK(a,b,x) (GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x)) /* Log[U(a,2a,x)] * [Abramowitz+stegun, 13.6.21] * Assumes x > 0, a > 1/2. */ static int hyperg_lnU_beq2a(const double a, const double x, gsl_sf_result * result) { const double lx = log(x); const double nu = a - 0.5; const double lnpre = 0.5*(x - M_LNPI) - nu*lx; gsl_sf_result lnK; gsl_sf_bessel_lnKnu_e(nu, 0.5*x, &lnK); result->val = lnpre + lnK.val; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + 0.5*M_LNPI + fabs(nu*lx)); result->err += lnK.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* Evaluate u_{N+1}/u_N by Steed's continued fraction method. * * u_N := Gamma[a+N]/Gamma[a] U(a + N, b, x) * * u_{N+1}/u_N = (a+N) U(a+N+1,b,x)/U(a+N,b,x) */ static int hyperg_U_CF1(const double a, const double b, const int N, const double x, double * result, int * count) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 20000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = -(a + N); double b1 = (b - 2.0*a - x - 2.0*(N+1)); double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = -(a + N + n - b)*(a + N + n - 1.0); bn = (b - 2.0*a - x - 2.0*(N+n)); An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break; } *result = fn; *count = n; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Large x asymptotic for x^a U(a,b,x) * Based on SLATEC D9CHU() [W. Fullerton] * * Uses a rational approximation due to Luke. * See [Luke, Algorithms for the Computation of Special Functions, p. 252] * [Luke, Utilitas Math. (1977)] * * z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z) * * This assumes that a is not a negative integer and * that 1+a-b is not a negative integer. If one of them * is, then the 2F0 actually terminates, the above * relation is an equality, and the sum should be * evaluated directly [see below]. */ static int d9chu(const double a, const double b, const double x, gsl_sf_result * result) { const double EPS = 8.0 * GSL_DBL_EPSILON; /* EPS = 4.0D0*D1MACH(4) */ const int maxiter = 500; double aa[4], bb[4]; int i; double bp = 1.0 + a - b; double ab = a*bp; double ct2 = 2.0 * (x - ab); double sab = a + bp; double ct3 = sab + 1.0 + ab; double anbn = ct3 + sab + 3.0; double ct1 = 1.0 + 2.0*x/anbn; bb[0] = 1.0; aa[0] = 1.0; bb[1] = 1.0 + 2.0*x/ct3; aa[1] = 1.0 + ct2/ct3; bb[2] = 1.0 + 6.0*ct1*x/ct3; aa[2] = 1.0 + 6.0*ab/anbn + 3.0*ct1*ct2/ct3; for(i=4; ival = aa[3]/bb[3]; result->err = 8.0 * GSL_DBL_EPSILON * fabs(result->val); if(i == maxiter) { GSL_ERROR ("error", GSL_EMAXITER); } else { return GSL_SUCCESS; } } /* Evaluate asymptotic for z^a U(a,b,z) ~ 2F0(a,1+a-b,-1/z) * We check for termination of the 2F0 as a special case. * Assumes x > 0. * Also assumes a,b are not too large compared to x. */ static int hyperg_zaU_asymp(const double a, const double b, const double x, gsl_sf_result *result) { const double ap = a; const double bp = 1.0 + a - b; const double rintap = floor(ap + 0.5); const double rintbp = floor(bp + 0.5); const int ap_neg_int = ( ap < 0.0 && fabs(ap - rintap) < INT_THRESHOLD ); const int bp_neg_int = ( bp < 0.0 && fabs(bp - rintbp) < INT_THRESHOLD ); if(ap_neg_int || bp_neg_int) { /* Evaluate 2F0 polynomial. */ double mxi = -1.0/x; double nmax = -(int)(GSL_MIN(ap,bp) - 0.1); double tn = 1.0; double sum = 1.0; double n = 1.0; double sum_err = 0.0; while(n <= nmax) { double apn = (ap+n-1.0); double bpn = (bp+n-1.0); tn *= ((apn/n)*mxi)*bpn; sum += tn; sum_err += 2.0 * GSL_DBL_EPSILON * fabs(tn); n += 1.0; } result->val = sum; result->err = sum_err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(nmax)+1.0) * fabs(sum); return GSL_SUCCESS; } else { return d9chu(a,b,x,result); } } /* Evaluate finite sum which appears below. */ static int hyperg_U_finite_sum(int N, double a, double b, double x, double xeps, gsl_sf_result * result) { int i; double sum_val; double sum_err; if(N <= 0) { double t_val = 1.0; double t_err = 0.0; gsl_sf_result poch; int stat_poch; sum_val = 1.0; sum_err = 0.0; for(i=1; i<= -N; i++) { const double xi1 = i - 1; const double mult = (a+xi1)*x/((b+xi1)*(xi1+1.0)); t_val *= mult; t_err += fabs(mult) * t_err + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; sum_val += t_val; sum_err += t_err; } stat_poch = gsl_sf_poch_e(1.0+a-b, -a, &poch); result->val = sum_val * poch.val; result->err = fabs(sum_val) * poch.err + sum_err * fabs(poch.val); result->err += fabs(poch.val) * (fabs(N) + 2.0) * GSL_DBL_EPSILON * fabs(sum_val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */ return stat_poch; } else { const int M = N - 2; if(M < 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result gbm1; gsl_sf_result gamr; int stat_gbm1; int stat_gamr; double t_val = 1.0; double t_err = 0.0; sum_val = 1.0; sum_err = 0.0; for(i=1; i<=M; i++) { const double mult = (a-b+i)*x/((1.0-b+i)*i); t_val *= mult; t_err += t_err * fabs(mult) + fabs(t_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; sum_val += t_val; sum_err += t_err; } stat_gbm1 = gsl_sf_gamma_e(b-1.0, &gbm1); stat_gamr = gsl_sf_gammainv_e(a, &gamr); if(stat_gbm1 == GSL_SUCCESS) { gsl_sf_result powx1N; int stat_p = gsl_sf_pow_int_e(x, 1-N, &powx1N); double pe_val = powx1N.val * xeps; double pe_err = powx1N.err * fabs(xeps) + 2.0 * GSL_DBL_EPSILON * fabs(pe_val); double coeff_val = gbm1.val * gamr.val * pe_val; double coeff_err = gbm1.err * fabs(gamr.val * pe_val) + gamr.err * fabs(gbm1.val * pe_val) + fabs(gbm1.val * gamr.val) * pe_err + 2.0 * GSL_DBL_EPSILON * fabs(coeff_val); result->val = sum_val * coeff_val; result->err = fabs(sum_val) * coeff_err + sum_err * fabs(coeff_val); result->err += 2.0 * GSL_DBL_EPSILON * (M+2.0) * fabs(result->val); result->err *= 2.0; /* FIXME: fudge factor... why is the error estimate too small? */ return stat_p; } else { result->val = 0.0; result->err = 0.0; return stat_gbm1; } } } } /* Evaluate infinite sum which appears below. */ static int hyperg_U_infinite_sum_stable(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum, gsl_sf_result * result) { const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */ int istrt = ( N < 1 ? 1-N : 0 ); double xi = istrt; gsl_sf_result gamr; gsl_sf_result powx; int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr); int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx); double sarg = beps*M_PI; double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 ); double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val; double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err + 2.0 * GSL_DBL_EPSILON * fabs(factor_val); gsl_sf_result pochai; gsl_sf_result gamri1; gsl_sf_result gamrni; int stat_pochai = gsl_sf_poch_e(a, xi, &pochai); int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1); int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni); int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni); int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx); gsl_sf_result pochaxibeps; gsl_sf_result gamrxi1beps; int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps); int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps); int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps); double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val; double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err + fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err + fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err + fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(b0_val); /* C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE C STRAIGHTFORWARD FORMULATION IS STABLE. */ int i; double dchu_val; double dchu_err; double t_val; double t_err; gsl_sf_result dgamrbxi; int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi); double a0_val = factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps; double a0_err = fabs(factor_val * pochai.val * dgamrbxi.val / beps) * gamri1.err + fabs(factor_val * pochai.val * gamri1.val / beps) * dgamrbxi.err + fabs(factor_val * dgamrbxi.val * gamri1.val / beps) * pochai.err + fabs(pochai.val * dgamrbxi.val * gamri1.val / beps) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(a0_val); stat_all = GSL_ERROR_SELECT_2(stat_all, stat_dgamrbxi); b0_val = xeps * b0_val / beps; b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val); dchu_val = sum.val + a0_val - b0_val; dchu_err = sum.err + a0_err + b0_err + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val)); for(i=1; i<2000; i++) { double xi = istrt + i; double xi1 = istrt + i - 1; double a0_multiplier = (a+xi1)*x/((b+xi1)*xi); double b0_multiplier = (a+xi1-beps)*x/((bint+xi1)*(xi-beps)); a0_val *= a0_multiplier; a0_err += fabs(a0_multiplier) * a0_err; b0_val *= b0_multiplier; b0_err += fabs(b0_multiplier) * b0_err; t_val = a0_val - b0_val; t_err = a0_err + b0_err; dchu_val += t_val; dchu_err += t_err; if(fabs(t_val) < EPS*fabs(dchu_val)) break; } result->val = dchu_val; result->err = 2.0 * dchu_err; result->err += 2.0 * fabs(t_val); result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val); result->err *= 2.0; /* FIXME: fudge factor */ if(i >= 2000) { GSL_ERROR ("error", GSL_EMAXITER); } else { return stat_all; } } static int hyperg_U_infinite_sum_simple(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum, gsl_sf_result * result) { const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */ int istrt = ( N < 1 ? 1-N : 0 ); double xi = istrt; gsl_sf_result powx; int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx); double sarg = beps*M_PI; double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 ); double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * powx.val; double factor_err = fabs(powx.err) + 2.0 * GSL_DBL_EPSILON * fabs(factor_val); gsl_sf_result pochai; gsl_sf_result gamri1; gsl_sf_result gamrni; int stat_pochai = gsl_sf_poch_e(a, xi, &pochai); int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1); int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni); int stat_gam123 = GSL_ERROR_SELECT_2(stat_gamri1, stat_gamrni); int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx); gsl_sf_result pochaxibeps; gsl_sf_result gamrxi1beps; int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps); int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps); int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps); double X = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * powx.val * gsl_sf_poch(1 + a - b, xi - 1 + b - beps) * gsl_sf_gammainv(a); double b0_val = X * gamrni.val * gamrxi1beps.val; double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err + fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err + fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err + fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(b0_val); /* C X**(-BEPS) IS VERY DIFFERENT FROM 1.0, SO THE C STRAIGHTFORWARD FORMULATION IS STABLE. */ int i; double dchu_val; double dchu_err; double t_val; double t_err; gsl_sf_result gamr; gsl_sf_result dgamrbxi; int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr); int stat_dgamrbxi = gsl_sf_gammainv_e(b+xi, &dgamrbxi); double a0_val = factor_val * gamr.val * pochai.val * dgamrbxi.val * gamri1.val / beps; double a0_err = fabs(factor_val * pochai.val * dgamrbxi.val * gamri1.val / beps) * gamr.err + fabs(factor_val * gamr.val * dgamrbxi.val * gamri1.val / beps) * pochai.err + fabs(factor_val * gamr.val * pochai.val * gamri1.val / beps) * dgamrbxi.err + fabs(factor_val * gamr.val * pochai.val * dgamrbxi.val / beps) * gamri1.err + fabs(pochai.val * gamr.val * dgamrbxi.val * gamri1.val / beps) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(a0_val); stat_all = GSL_ERROR_SELECT_3(stat_all, stat_gamr, stat_dgamrbxi); b0_val = xeps * b0_val / beps; b0_err = fabs(xeps / beps) * b0_err + 4.0 * GSL_DBL_EPSILON * fabs(b0_val); dchu_val = sum.val + a0_val - b0_val; dchu_err = sum.err + a0_err + b0_err + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(a0_val) + fabs(b0_val)); for(i=1; i<2000; i++) { double xi = istrt + i; double xi1 = istrt + i - 1; double a0_multiplier = (a+xi1)*x/((b+xi1)*xi); double b0_multiplier = (a+xi1-beps)*x/((bint+xi1)*(xi-beps)); a0_val *= a0_multiplier; a0_err += fabs(a0_multiplier) * a0_err; b0_val *= b0_multiplier; b0_err += fabs(b0_multiplier) * b0_err; t_val = a0_val - b0_val; t_err = a0_err + b0_err; dchu_val += t_val; dchu_err += t_err; if(!finite(t_val) || fabs(t_val) < EPS*fabs(dchu_val)) break; } result->val = dchu_val; result->err = 2.0 * dchu_err; result->err += 2.0 * fabs(t_val); result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val); result->err *= 2.0; /* FIXME: fudge factor */ if(i >= 2000) { GSL_ERROR ("error", GSL_EMAXITER); } else { return stat_all; } } static int hyperg_U_infinite_sum_improved(int N, double a, double bint, double b, double beps, double x, double xeps, gsl_sf_result sum, gsl_sf_result * result) { const double EPS = 2.0 * GSL_DBL_EPSILON; /* EPS = D1MACH(3) */ const double lnx = log(x); int istrt = ( N < 1 ? 1-N : 0 ); double xi = istrt; gsl_sf_result gamr; gsl_sf_result powx; int stat_gamr = gsl_sf_gammainv_e(1.0+a-b, &gamr); int stat_powx = gsl_sf_pow_int_e(x, istrt, &powx); double sarg = beps*M_PI; double sfact = ( sarg != 0.0 ? sarg/sin(sarg) : 1.0 ); double factor_val = sfact * ( GSL_IS_ODD(N) ? -1.0 : 1.0 ) * gamr.val * powx.val; double factor_err = fabs(gamr.val) * powx.err + fabs(powx.val) * gamr.err + 2.0 * GSL_DBL_EPSILON * fabs(factor_val); gsl_sf_result pochai; gsl_sf_result gamri1; gsl_sf_result gamrni; int stat_pochai = gsl_sf_poch_e(a, xi, &pochai); int stat_gamri1 = gsl_sf_gammainv_e(xi + 1.0, &gamri1); int stat_gamrni = gsl_sf_gammainv_e(bint + xi, &gamrni); int stat_gam123 = GSL_ERROR_SELECT_3(stat_gamr, stat_gamri1, stat_gamrni); int stat_gamall = GSL_ERROR_SELECT_3(stat_gam123, stat_pochai, stat_powx); gsl_sf_result pochaxibeps; gsl_sf_result gamrxi1beps; int stat_pochaxibeps = gsl_sf_poch_e(a, xi-beps, &pochaxibeps); int stat_gamrxi1beps = gsl_sf_gammainv_e(xi + 1.0 - beps, &gamrxi1beps); int stat_all = GSL_ERROR_SELECT_3(stat_gamall, stat_pochaxibeps, stat_gamrxi1beps); double b0_val = factor_val * pochaxibeps.val * gamrni.val * gamrxi1beps.val; double b0_err = fabs(factor_val * pochaxibeps.val * gamrni.val) * gamrxi1beps.err + fabs(factor_val * pochaxibeps.val * gamrxi1beps.val) * gamrni.err + fabs(factor_val * gamrni.val * gamrxi1beps.val) * pochaxibeps.err + fabs(pochaxibeps.val * gamrni.val * gamrxi1beps.val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(b0_val); /* C X**(-BEPS) IS CLOSE TO 1.0D0, SO WE MUST BE C CAREFUL IN EVALUATING THE DIFFERENCES. */ int i; gsl_sf_result pch1ai; gsl_sf_result pch1i; gsl_sf_result poch1bxibeps; int stat_pch1ai = gsl_sf_pochrel_e(a + xi, -beps, &pch1ai); int stat_pch1i = gsl_sf_pochrel_e(xi + 1.0 - beps, beps, &pch1i); int stat_poch1bxibeps = gsl_sf_pochrel_e(b+xi, -beps, &poch1bxibeps); double c0_t1_val = beps*pch1ai.val*pch1i.val; double c0_t1_err = fabs(beps) * fabs(pch1ai.val) * pch1i.err + fabs(beps) * fabs(pch1i.val) * pch1ai.err + 2.0 * GSL_DBL_EPSILON * fabs(c0_t1_val); double c0_t2_val = -poch1bxibeps.val + pch1ai.val - pch1i.val + c0_t1_val; double c0_t2_err = poch1bxibeps.err + pch1ai.err + pch1i.err + c0_t1_err + 2.0 * GSL_DBL_EPSILON * fabs(c0_t2_val); double c0_val = factor_val * pochai.val * gamrni.val * gamri1.val * c0_t2_val; double c0_err = fabs(factor_val * pochai.val * gamrni.val * gamri1.val) * c0_t2_err + fabs(factor_val * pochai.val * gamrni.val * c0_t2_val) * gamri1.err + fabs(factor_val * pochai.val * gamri1.val * c0_t2_val) * gamrni.err + fabs(factor_val * gamrni.val * gamri1.val * c0_t2_val) * pochai.err + fabs(pochai.val * gamrni.val * gamri1.val * c0_t2_val) * factor_err + 2.0 * GSL_DBL_EPSILON * fabs(c0_val); /* C XEPS1 = (1.0 - X**(-BEPS))/BEPS = (X**(-BEPS) - 1.0)/(-BEPS) */ gsl_sf_result dexprl; int stat_dexprl = gsl_sf_exprel_e(-beps*lnx, &dexprl); double xeps1_val = lnx * dexprl.val; double xeps1_err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(beps*lnx)) * fabs(dexprl.val) + fabs(lnx) * dexprl.err + 2.0 * GSL_DBL_EPSILON * fabs(xeps1_val); double dchu_val = sum.val + c0_val + xeps1_val*b0_val; double dchu_err = sum.err + c0_err + fabs(xeps1_val)*b0_err + xeps1_err * fabs(b0_val) + fabs(b0_val*lnx)*dexprl.err + 2.0 * GSL_DBL_EPSILON * (fabs(sum.val) + fabs(c0_val) + fabs(xeps1_val*b0_val)); double xn = N; double t_val; double t_err; stat_all = GSL_ERROR_SELECT_5(stat_all, stat_dexprl, stat_poch1bxibeps, stat_pch1i, stat_pch1ai); for(i=1; i<2000; i++) { const double xi = istrt + i; const double xi1 = istrt + i - 1; const double tmp = (a-1.0)*(xn+2.0*xi-1.0) + xi*(xi-beps); const double b0_multiplier = (a+xi1-beps)*x/((xn+xi1)*(xi-beps)); const double c0_multiplier_1 = (a+xi1)*x/((b+xi1)*xi); const double c0_multiplier_2 = tmp / (xi*(b+xi1)*(a+xi1-beps)); b0_val *= b0_multiplier; b0_err += fabs(b0_multiplier) * b0_err + fabs(b0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON; c0_val = c0_multiplier_1 * c0_val - c0_multiplier_2 * b0_val; c0_err = fabs(c0_multiplier_1) * c0_err + fabs(c0_multiplier_2) * b0_err + fabs(c0_val) * 8.0 * 2.0 * GSL_DBL_EPSILON + fabs(b0_val * c0_multiplier_2) * 16.0 * 2.0 * GSL_DBL_EPSILON; t_val = c0_val + xeps1_val*b0_val; t_err = c0_err + fabs(xeps1_val)*b0_err; t_err += fabs(b0_val*lnx) * dexprl.err; t_err += fabs(b0_val)*xeps1_err; dchu_val += t_val; dchu_err += t_err; if(fabs(t_val) < EPS*fabs(dchu_val)) break; } result->val = dchu_val; result->err = 2.0 * dchu_err; result->err += 2.0 * fabs(t_val); result->err += 4.0 * GSL_DBL_EPSILON * (i+2.0) * fabs(dchu_val); result->err *= 2.0; /* FIXME: fudge factor */ if(i >= 2000) { GSL_ERROR ("error", GSL_EMAXITER); } else { return stat_all; } } /* Based on SLATEC DCHU() [W. Fullerton] * Assumes x > 0. * This is just a series summation method, and * it is not good for large a. * * I patched up the window for 1+a-b near zero. [GJ] */ static int hyperg_U_series(const double a, const double b, const double x, gsl_sf_result * result) { const double SQRT_EPS = M_SQRT2 * GSL_SQRT_DBL_EPSILON; if(fabs(1.0 + a - b) < SQRT_EPS) { /* Original Comment: ALGORITHM IS BAD WHEN 1+A-B IS NEAR ZERO FOR SMALL X */ /* We can however do the following: * U(a,b,x) = U(a,a+1,x) when 1+a-b=0 * and U(a,a+1,x) = x^(-a). */ double lnr = -a * log(x); int stat_e = gsl_sf_exp_e(lnr, result); result->err += 2.0 * SQRT_EPS * fabs(result->val); return stat_e; } else { double bint = ( b < 0.0 ? ceil(b-0.5) : floor(b+0.5) ); double beps = b - bint; int N = bint; double lnx = log(x); double xeps = exp(-beps*lnx); /* Evaluate finite sum. */ gsl_sf_result sum; int stat_sum = hyperg_U_finite_sum(N, a, b, x, xeps, &sum); int stat_inf; /* Evaluate infinite sum. */ if(fabs(xeps-1.0) > 0.5 ) { stat_inf = hyperg_U_infinite_sum_stable(N, a, bint, b, beps, x, xeps, sum, result); } else if (1+a-b < 0 && 1+a-b==floor(1+a-b) && beps != 0) { stat_inf = hyperg_U_infinite_sum_simple(N, a, bint, b, beps, x, xeps, sum, result); } else { stat_inf = hyperg_U_infinite_sum_improved(N, a, bint, b, beps, x, xeps, sum, result); } return GSL_ERROR_SELECT_2(stat_sum, stat_inf); } } /* Assumes b > 0 and x > 0. */ static int hyperg_U_small_ab(const double a, const double b, const double x, gsl_sf_result * result) { if(a == -1.0) { /* U(-1,c+1,x) = Laguerre[c,0,x] = -b + x */ result->val = -b + x; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(a == 0.0) { /* U(0,c+1,x) = Laguerre[c,0,x] = 1 */ result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(ASYMP_EVAL_OK(a,b,x)) { double p = pow(x, -a); gsl_sf_result asymp; int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp); result->val = asymp.val * p; result->err = asymp.err * p; result->err += fabs(asymp.val) * GSL_DBL_EPSILON * fabs(a) * p; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_asymp; } else { return hyperg_U_series(a, b, x, result); } } /* Assumes b > 0 and x > 0. */ static int hyperg_U_small_a_bgt0(const double a, const double b, const double x, gsl_sf_result * result, double * ln_multiplier ) { if(a == 0.0) { result->val = 1.0; result->err = 0.0; *ln_multiplier = 0.0; return GSL_SUCCESS; } else if( (b > 5000.0 && x < 0.90 * fabs(b)) || (b > 500.0 && x < 0.50 * fabs(b)) ) { int stat = gsl_sf_hyperg_U_large_b_e(a, b, x, result, ln_multiplier); if(stat == GSL_EOVRFLW) return GSL_SUCCESS; else return stat; } else if(b > 15.0) { /* Recurse up from b near 1. */ double eps = b - floor(b); double b0 = 1.0 + eps; gsl_sf_result r_Ubm1; gsl_sf_result r_Ub; int stat_0 = hyperg_U_small_ab(a, b0, x, &r_Ubm1); int stat_1 = hyperg_U_small_ab(a, b0+1.0, x, &r_Ub); double Ubm1 = r_Ubm1.val; double Ub = r_Ub.val; double Ubp1; double bp; for(bp = b0+1.0; bpval = Ub; result->err = (fabs(r_Ubm1.err/r_Ubm1.val) + fabs(r_Ub.err/r_Ub.val)) * fabs(Ub); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-b0)+1.0) * fabs(Ub); *ln_multiplier = 0.0; return GSL_ERROR_SELECT_2(stat_0, stat_1); } else { *ln_multiplier = 0.0; return hyperg_U_small_ab(a, b, x, result); } } /* We use this to keep track of large * dynamic ranges in the recursions. * This can be important because sometimes * we want to calculate a very large and * a very small number and the answer is * the product, of order 1. This happens, * for instance, when we apply a Kummer * transform to make b positive and * both x and b are large. */ #define RESCALE_2(u0,u1,factor,count) \ do { \ double au0 = fabs(u0); \ if(au0 > factor) { \ u0 /= factor; \ u1 /= factor; \ count++; \ } \ else if(au0 < 1.0/factor) { \ u0 *= factor; \ u1 *= factor; \ count--; \ } \ } while (0) /* Specialization to b >= 1, for integer parameters. * Assumes x > 0. */ static int hyperg_U_int_bge1(const int a, const int b, const double x, gsl_sf_result_e10 * result) { if(a == 0) { result->val = 1.0; result->err = 0.0; result->e10 = 0; return GSL_SUCCESS; } else if(a == -1) { result->val = -b + x; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(b) + fabs(x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); result->e10 = 0; return GSL_SUCCESS; } else if(b == a + 1) { /* U(a,a+1,x) = x^(-a) */ return gsl_sf_exp_e10_e(-a*log(x), result); } else if(ASYMP_EVAL_OK(a,b,x)) { const double ln_pre_val = -a*log(x); const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val); gsl_sf_result asymp; int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp); int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err, asymp.val, asymp.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_asymp); } else if(SERIES_EVAL_OK(a,b,x) && 1 + a - b > 0) { gsl_sf_result ser; const int stat_ser = hyperg_U_series(a, b, x, &ser); result->val = ser.val; result->err = ser.err; result->e10 = 0; return stat_ser; } else if(a < 0) { /* Recurse backward from a = -1,0. */ int scale_count = 0; const double scale_factor = GSL_SQRT_DBL_MAX; gsl_sf_result lnm; gsl_sf_result y; double lnscale; double Uap1 = 1.0; /* U(0,b,x) */ double Ua = -b + x; /* U(-1,b,x) */ double Uam1; int ap; for(ap=-1; ap>a; ap--) { Uam1 = ap*(b-ap-1.0)*Uap1 + (x+2.0*ap-b)*Ua; Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } lnscale = log(scale_factor); lnm.val = scale_count*lnscale; lnm.err = 2.0 * GSL_DBL_EPSILON * fabs(lnm.val); y.val = Ua; y.err = 4.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(Ua); return gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result); } else if(b >= 2.0*a + x) { /* Recurse forward from a = 0,1. */ int scale_count = 0; const double scale_factor = GSL_SQRT_DBL_MAX; gsl_sf_result r_Ua; gsl_sf_result lnm; gsl_sf_result y; double lnscale; double lm; int stat_1 = hyperg_U_small_a_bgt0(1.0, b, x, &r_Ua, &lm); /* U(1,b,x) */ int stat_e; double Uam1 = 1.0; /* U(0,b,x) */ double Ua = r_Ua.val; double Uap1; int ap; Uam1 *= exp(-lm); for(ap=1; apa_target; ap--) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } if(Ua == 0.0) { result->val = 0.0; result->err = 0.0; result->e10 = 0; GSL_ERROR ("error", GSL_EZERODIV); } else { double lnscl = -scale_count*log(scale_factor); double lnpre_val = lnU_target + lnscl; double lnpre_err = 2.0 * GSL_DBL_EPSILON * (fabs(lnU_target) + fabs(lnscl)); double oUa_err = 2.0 * (fabs(a_target-a) + CF1_count + 1.0) * GSL_DBL_EPSILON * fabs(1.0/Ua); int stat_e = gsl_sf_exp_mult_err_e10_e(lnpre_val, lnpre_err, 1.0/Ua, oUa_err, result); return GSL_ERROR_SELECT_2(stat_e, stat_CF1); } } else { /* Recurse backward to near the b=2a+x line, then * determine normalization by either direct evaluation * or by a forward recursion. The direct evaluation * is needed when x is small (which is precisely * when it is easy to do). */ const double scale_factor = GSL_SQRT_DBL_MAX; int scale_count_for = 0; int scale_count_bck = 0; int a0 = 1; int a1 = a0 + ceil(0.5*(b-x) - a0); double Ua1_bck_val; double Ua1_bck_err; double Ua1_for_val; double Ua1_for_err; int stat_for; int stat_bck; gsl_sf_result lm_for; { /* Recurse back to determine U(a1,b), sans normalization. */ double ru; int CF1_count; int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count); double Ua = 1.0; double Uap1 = ru/a * Ua; double Uam1; int ap; for(ap=a; ap>a1; ap--) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck); } Ua1_bck_val = Ua; Ua1_bck_err = 2.0 * GSL_DBL_EPSILON * (fabs(a1-a)+CF1_count+1.0) * fabs(Ua); stat_bck = stat_CF1; } if(b == 2*a1 && a1 > 1) { /* This can happen when x is small, which is * precisely when we need to be careful with * this evaluation. */ hyperg_lnU_beq2a((double)a1, x, &lm_for); Ua1_for_val = 1.0; Ua1_for_err = 0.0; stat_for = GSL_SUCCESS; } else if(b == 2*a1 - 1 && a1 > 1) { /* Similar to the above. Happens when x is small. * Use * U(a,2a-1) = (x U(a,2a) - U(a-1,2(a-1))) / (2a - 2) */ gsl_sf_result lnU00, lnU12; gsl_sf_result U00, U12; hyperg_lnU_beq2a(a1-1.0, x, &lnU00); hyperg_lnU_beq2a(a1, x, &lnU12); if(lnU00.val > lnU12.val) { lm_for.val = lnU00.val; lm_for.err = lnU00.err; U00.val = 1.0; U00.err = 0.0; gsl_sf_exp_err_e(lnU12.val - lm_for.val, lnU12.err + lm_for.err, &U12); } else { lm_for.val = lnU12.val; lm_for.err = lnU12.err; U12.val = 1.0; U12.err = 0.0; gsl_sf_exp_err_e(lnU00.val - lm_for.val, lnU00.err + lm_for.err, &U00); } Ua1_for_val = (x * U12.val - U00.val) / (2.0*a1 - 2.0); Ua1_for_err = (fabs(x)*U12.err + U00.err) / fabs(2.0*a1 - 2.0); Ua1_for_err += 2.0 * GSL_DBL_EPSILON * fabs(Ua1_for_val); stat_for = GSL_SUCCESS; } else { /* Recurse forward to determine U(a1,b) with * absolute normalization. */ gsl_sf_result r_Ua; double Uam1 = 1.0; /* U(a0-1,b,x) = U(0,b,x) */ double Ua; double Uap1; int ap; double lm_for_local; stat_for = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_for_local); /* U(1,b,x) */ Ua = r_Ua.val; Uam1 *= exp(-lm_for_local); lm_for.val = lm_for_local; lm_for.err = 0.0; for(ap=a0; apval = 0.0; result->err = 0.0; result->e10 = 0; GSL_ERROR ("error", GSL_EZERODIV); } else if(Ua1_for_val == 0.0) { /* Should never happen. */ UNDERFLOW_ERROR_E10(result); } else { double lns = (scale_count_for - scale_count_bck)*log(scale_factor); double ln_for_val = log(fabs(Ua1_for_val)); double ln_for_err = GSL_DBL_EPSILON + fabs(Ua1_for_err/Ua1_for_val); double ln_bck_val = log(fabs(Ua1_bck_val)); double ln_bck_err = GSL_DBL_EPSILON + fabs(Ua1_bck_err/Ua1_bck_val); double lnr_val = lm_for.val + ln_for_val - ln_bck_val + lns; double lnr_err = lm_for.err + ln_for_err + ln_bck_err + 2.0 * GSL_DBL_EPSILON * (fabs(lm_for.val) + fabs(ln_for_val) + fabs(ln_bck_val) + fabs(lns)); double sgn = GSL_SIGN(Ua1_for_val) * GSL_SIGN(Ua1_bck_val); int stat_e = gsl_sf_exp_err_e10_e(lnr_val, lnr_err, result); result->val *= sgn; return GSL_ERROR_SELECT_3(stat_e, stat_bck, stat_for); } } } } /* Handle b >= 1 for generic a,b values. */ static int hyperg_U_bge1(const double a, const double b, const double x, gsl_sf_result_e10 * result) { const double rinta = floor(a+0.5); const int a_neg_integer = (a < 0.0 && fabs(a - rinta) < INT_THRESHOLD); if(a == 0.0) { result->val = 1.0; result->err = 0.0; result->e10 = 0; return GSL_SUCCESS; } else if(a_neg_integer && fabs(rinta) < INT_MAX) { /* U(-n,b,x) = (-1)^n n! Laguerre[n,b-1,x] */ const int n = -(int)rinta; const double sgn = (GSL_IS_ODD(n) ? -1.0 : 1.0); gsl_sf_result lnfact; gsl_sf_result L; const int stat_L = gsl_sf_laguerre_n_e(n, b-1.0, x, &L); gsl_sf_lnfact_e(n, &lnfact); { const int stat_e = gsl_sf_exp_mult_err_e10_e(lnfact.val, lnfact.err, sgn*L.val, L.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_L); } } else if(ASYMP_EVAL_OK(a,b,x)) { const double ln_pre_val = -a*log(x); const double ln_pre_err = 2.0 * GSL_DBL_EPSILON * fabs(ln_pre_val); gsl_sf_result asymp; int stat_asymp = hyperg_zaU_asymp(a, b, x, &asymp); int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val, ln_pre_err, asymp.val, asymp.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_asymp); } else if(fabs(a) <= 1.0) { gsl_sf_result rU; double ln_multiplier; int stat_U = hyperg_U_small_a_bgt0(a, b, x, &rU, &ln_multiplier); int stat_e = gsl_sf_exp_mult_err_e10_e(ln_multiplier, 2.0*GSL_DBL_EPSILON*fabs(ln_multiplier), rU.val, rU.err, result); return GSL_ERROR_SELECT_2(stat_U, stat_e); } else if(SERIES_EVAL_OK(a,b,x)) { gsl_sf_result ser; const int stat_ser = hyperg_U_series(a, b, x, &ser); result->val = ser.val; result->err = ser.err; result->e10 = 0; return stat_ser; } else if(a < 0.0) { /* Recurse backward on a and then upward on b. */ const double scale_factor = GSL_SQRT_DBL_MAX; const double a0 = a - floor(a) - 1.0; const double b0 = b - floor(b) + 1.0; int scale_count = 0; double lm_0, lm_1; double lm_max; gsl_sf_result r_Uap1; gsl_sf_result r_Ua; int stat_0 = hyperg_U_small_a_bgt0(a0+1.0, b0, x, &r_Uap1, &lm_0); int stat_1 = hyperg_U_small_a_bgt0(a0, b0, x, &r_Ua, &lm_1); int stat_e; double Uap1 = r_Uap1.val; double Ua = r_Ua.val; double Uam1; double ap; lm_max = GSL_MAX(lm_0, lm_1); Uap1 *= exp(lm_0-lm_max); Ua *= exp(lm_1-lm_max); /* Downward recursion on a. */ for(ap=a0; ap>a+0.1; ap -= 1.0) { Uam1 = ap*(b0-ap-1.0)*Uap1 + (x+2.0*ap-b0)*Ua; Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } if(b < 2.0) { /* b == b0, so no recursion necessary */ const double lnscale = log(scale_factor); gsl_sf_result lnm; gsl_sf_result y; lnm.val = lm_max + scale_count * lnscale; lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_max) + scale_count * fabs(lnscale)); y.val = Ua; y.err = fabs(r_Uap1.err/r_Uap1.val) * fabs(Ua); y.err += fabs(r_Ua.err/r_Ua.val) * fabs(Ua); y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a-a0) + 1.0) * fabs(Ua); y.err *= fabs(lm_0-lm_max) + 1.0; y.err *= fabs(lm_1-lm_max) + 1.0; stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result); } else { /* Upward recursion on b. */ const double err_mult = fabs(b-b0) + fabs(a-a0) + 1.0; const double lnscale = log(scale_factor); gsl_sf_result lnm; gsl_sf_result y; double Ubm1 = Ua; /* U(a,b0) */ double Ub = (a*(b0-a-1.0)*Uap1 + (a+x)*Ua)/x; /* U(a,b0+1) */ double Ubp1; double bp; for(bp=b0+1.0; bp= 2*a + x) { /* Recurse forward from a near zero. * Note that we cannot cross the singularity at * the line b=a+1, because the only way we could * be in that little wedge is if a < 1. But we * have already dealt with the small a case. */ int scale_count = 0; const double a0 = a - floor(a); const double scale_factor = GSL_SQRT_DBL_MAX; double lnscale; double lm_0, lm_1, lm_max; gsl_sf_result r_Uam1; gsl_sf_result r_Ua; int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0); int stat_1 = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_1); int stat_e; gsl_sf_result lnm; gsl_sf_result y; double Uam1 = r_Uam1.val; double Ua = r_Ua.val; double Uap1; double ap; lm_max = GSL_MAX(lm_0, lm_1); Uam1 *= exp(lm_0-lm_max); Ua *= exp(lm_1-lm_max); for(ap=a0; apa0+0.1; ap -= 1.0) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count); } stat_U0 = hyperg_U_small_a_bgt0(a0, b, x, &U0, &lm_0); lnscale = log(scale_factor); lnm.val = lm_0 - scale_count * lnscale; lnm.err = 2.0 * GSL_DBL_EPSILON * (fabs(lm_0) + fabs(scale_count * lnscale)); y.val = GSL_SQRT_DBL_MIN*(U0.val/Ua); y.err = GSL_SQRT_DBL_MIN*(U0.err/fabs(Ua)); y.err += 2.0 * GSL_DBL_EPSILON * (fabs(a0-a) + CF1_count + 1.0) * fabs(y.val); stat_e = gsl_sf_exp_mult_err_e10_e(lnm.val, lnm.err, y.val, y.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_U0, stat_CF1); } else { /* Recurse backward to near the b=2a+x line, then * forward from a near zero to get the normalization. */ int scale_count_for = 0; int scale_count_bck = 0; const double scale_factor = GSL_SQRT_DBL_MAX; const double eps = a - floor(a); const double a0 = ( eps == 0.0 ? 1.0 : eps ); const double a1 = a0 + ceil(0.5*(b-x) - a0); gsl_sf_result lnm; gsl_sf_result y; double lm_for; double lnscale; double Ua1_bck; double Ua1_for; int stat_for; int stat_bck; int stat_e; int CF1_count; { /* Recurse back to determine U(a1,b), sans normalization. */ double Uap1; double Ua; double Uam1; double ap; double ru; double r; int stat_CF1 = hyperg_U_CF1(a, b, 0, x, &ru, &CF1_count); r = ru/a; Ua = GSL_SQRT_DBL_MIN; Uap1 = r * Ua; for(ap=a; ap>a1+0.1; ap -= 1.0) { Uam1 = -((b-2.0*ap-x)*Ua + ap*(1.0+ap-b)*Uap1); Uap1 = Ua; Ua = Uam1; RESCALE_2(Ua,Uap1,scale_factor,scale_count_bck); } Ua1_bck = Ua; stat_bck = stat_CF1; } { /* Recurse forward to determine U(a1,b) with * absolute normalization. */ gsl_sf_result r_Uam1; gsl_sf_result r_Ua; double lm_0, lm_1; int stat_0 = hyperg_U_small_a_bgt0(a0-1.0, b, x, &r_Uam1, &lm_0); int stat_1 = hyperg_U_small_a_bgt0(a0, b, x, &r_Ua, &lm_1); double Uam1 = r_Uam1.val; double Ua = r_Ua.val; double Uap1; double ap; lm_for = GSL_MAX(lm_0, lm_1); Uam1 *= exp(lm_0 - lm_for); Ua *= exp(lm_1 - lm_for); for(ap=a0; apval = factor * r1.val * r2.val; result->err = fabs(factor) * (r1.err + r2.err); result->e10 = 0; return GSL_ERROR_SELECT_2(stat_1, stat_2); } static int hyperg_U_int_origin (const int a, const int b, gsl_sf_result_e10 * result) { return hyperg_U_origin (a, b, result); } /* Calculate U(a,b,x) for x < 0 Abramowitz and Stegun formula 13.1.3 U(a,b,x) = (gamma(1-b)/gamma(1+a-b)) M(a,b,x) - z^(1-b) (gamma(1-b)/gamma(a)) M(1+a-b,2-b,x) can be transformed into U(a,b,x) = poch(1+a-b,-a) M(a,b,x) + z^(1-b) poch(a,-(1+a-b)) M(1+a-b,2-b,x) using the reflection formula 6.1.17 and the definition of Poch(a,b)=gamma(a+b)/gamma(a). Our poch function already handles the special cases of ratios of gamma functions with negative integer argument. Note that U(a,b,x) is complex in general for x<0 due to the term x^(1-b), but is real when 1) b is an integer 4) a is zero or a negative integer so x^(1-b)/gamma(a) is zero. For integer b U(a,b,x) is defined as the limit beta->b U(a,beta,x). This makes the situation slightly more complicated. */ static int hyperg_U_negx (const double a, const double b, const double x, gsl_sf_result_e10 * result) { gsl_sf_result r1, r2; int stat_1, stat_2, status; int a_int = (a == floor(a)); int b_int = (b == floor(b)); double T1 = 0, T1_err = 0, T2 = 0, T2_err = 0; /* Compute the first term poch(1+a-b) M(a,b,x) */ if (b_int && b <= 0 && !(a_int && a <= 0 && a >= b)) { /* Need to handle first term as lim_{beta->b} poch(1+a-beta,-a) M(a,beta,x) due to pole in M(a,b,x) for b == 0 or -ve integer We skip this case when a is zero or a negative integer and a>=b because the hypergeometric series terminates before any singular terms */ /* FIXME: TO BE IMPLEMENTED ! */ result->val = GSL_NAN; result->err = GSL_NAN; GSL_ERROR("limit case integer b <= 0 unimplemented", GSL_EUNIMPL); } else { stat_1 = gsl_sf_poch_e(1+a-b,-a,&r1); status = stat_1; if (r1.val != 0.0) { gsl_sf_result Mr1; int stat_Mr1 = gsl_sf_hyperg_1F1_e (a, b, x, &Mr1); status = GSL_ERROR_SELECT_2(status, stat_Mr1); T1 = Mr1.val * r1.val; T1_err = 2.0 * GSL_DBL_EPSILON * fabs(T1) + fabs(Mr1.err * r1.val) + fabs(Mr1.val * r1.err) ; } } /* Compute the second term z^(1-b) poch(a,-(1+a-b)) M(1+a-b,2-b,x) */ if (b_int && b >= 2 && !(a_int && a <= (b - 2))) { /* Need to handle second term as a limit due to pole in M(1+a-b,2-b,x). We skip this case when a is integer and a <= b-2 because the hypergeometric series terminates before any singular terms */ /* FIXME: TO BE IMPLEMENTED ! */ result->val = GSL_NAN; result->err = GSL_NAN; GSL_ERROR("limit case integer b >= 2 unimplemented", GSL_EUNIMPL); } else { if (a_int && a <= 0 && (b >= 1)) { r2.val = 0; r2.err = 0; } else { stat_2 = gsl_sf_poch_e(a,-(1+a-b),&r2); status = GSL_ERROR_SELECT_2(status, stat_2); } if (r2.val != 0.0) { gsl_sf_result Mr2; int stat_Mr2 = gsl_sf_hyperg_1F1_e (1+a-b, 2-b, x, &Mr2); T2 = Mr2.val * r2.val; T2_err = 2.0 * GSL_DBL_EPSILON * fabs(T2) + fabs(Mr2.err * r2.val) + fabs(Mr2.val * r2.err); status = GSL_ERROR_SELECT_2(status, stat_Mr2); if (T2 != 0.0) { double x1mb = pow(x, 1-b); T2 = x1mb * T2; T2_err = fabs(x1mb) * T2_err; } } } result->val = (T1 + T2); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + (T1_err + T2_err); result->e10 = 0; return status; } static int hyperg_U_int_negx (const int a, const int b, const double x, gsl_sf_result_e10 * result) { return hyperg_U_negx (a, b, x, result); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hyperg_U_int_e10_e(const int a, const int b, const double x, gsl_sf_result_e10 * result) { /* CHECK_POINTER(result) */ if(x == 0.0 && b >= 1) { DOMAIN_ERROR_E10(result); } else if (x == 0.0) { return hyperg_U_int_origin (a, b, result); } else if (x < 0.0) { return hyperg_U_int_negx (a, b, x, result); } else { if(b >= 1) { return hyperg_U_int_bge1(a, b, x, result); } else { /* Use the reflection formula * U(a,b,x) = x^(1-b) U(1+a-b,2-b,x) */ gsl_sf_result_e10 U; double ln_x = log(x); int ap = 1 + a - b; int bp = 2 - b; int stat_e; int stat_U = hyperg_U_int_bge1(ap, bp, x, &U); double ln_pre_val = (1.0-b)*ln_x; double ln_pre_err = 2.0 * GSL_DBL_EPSILON * (fabs(b)+1.0) * fabs(ln_x); ln_pre_err += 2.0 * GSL_DBL_EPSILON * fabs(1.0-b); /* error in log(x) */ stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err, U.val, U.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_U); } } } int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result) { const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const int a_integer = ( fabs(a - rinta) < INT_THRESHOLD ); const int b_integer = ( fabs(b - rintb) < INT_THRESHOLD ); /* CHECK_POINTER(result) */ if(x == 0.0 && b >= 1) { DOMAIN_ERROR_E10(result); } else if(a == 0.0) { result->val = 1.0; result->err = 0.0; result->e10 = 0; return GSL_SUCCESS; } else if (x == 0.0) { return hyperg_U_origin (a, b, result); } else if (x < 0.0) { return hyperg_U_negx (a, b, x, result); } else if(a_integer && b_integer) { return gsl_sf_hyperg_U_int_e10_e(rinta, rintb, x, result); } else { if(b >= 1.0) { /* Use b >= 1 function. */ return hyperg_U_bge1(a, b, x, result); } else { /* Use the reflection formula * U(a,b,x) = x^(1-b) U(1+a-b,2-b,x) */ const double lnx = log(x); const double ln_pre_val = (1.0-b)*lnx; const double ln_pre_err = fabs(lnx) * 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(b)); const double ap = 1.0 + a - b; const double bp = 2.0 - b; gsl_sf_result_e10 U; int stat_U = hyperg_U_bge1(ap, bp, x, &U); int stat_e = gsl_sf_exp_mult_err_e10_e(ln_pre_val + U.e10*M_LN10, ln_pre_err, U.val, U.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_U); } } } int gsl_sf_hyperg_U_int_e(const int a, const int b, const double x, gsl_sf_result * result) { gsl_sf_result_e10 re = {0}; int stat_U = gsl_sf_hyperg_U_int_e10_e(a, b, x, &re); int stat_c = gsl_sf_result_smash_e(&re, result); return GSL_ERROR_SELECT_2(stat_c, stat_U); } int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result) { gsl_sf_result_e10 re = {0}; int stat_U = gsl_sf_hyperg_U_e10_e(a, b, x, &re); int stat_c = gsl_sf_result_smash_e(&re, result); return GSL_ERROR_SELECT_2(stat_c, stat_U); } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hyperg_U_int(const int a, const int b, const double x) { EVAL_RESULT(gsl_sf_hyperg_U_int_e(a, b, x, &result)); } double gsl_sf_hyperg_U(const double a, const double b, const double x) { EVAL_RESULT(gsl_sf_hyperg_U_e(a, b, x, &result)); } gsl-1.16/specfunc/elementary.c0000664000252300025230000000463512171574312013301 00000000000000/* specfunc/elementary.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "check.h" int gsl_sf_multiply_e(const double x, const double y, gsl_sf_result * result) { const double ax = fabs(x); const double ay = fabs(y); if(x == 0.0 || y == 0.0) { /* It is necessary to eliminate this immediately. */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if((ax <= 1.0 && ay >= 1.0) || (ay <= 1.0 && ax >= 1.0)) { /* Straddling 1.0 is always safe. */ result->val = x*y; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double f = 1.0 - 2.0 * GSL_DBL_EPSILON; const double min = GSL_MIN_DBL(fabs(x), fabs(y)); const double max = GSL_MAX_DBL(fabs(x), fabs(y)); if(max < 0.9 * GSL_SQRT_DBL_MAX || min < (f * DBL_MAX)/max) { result->val = GSL_COERCE_DBL(x*y); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); CHECK_UNDERFLOW(result); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } } int gsl_sf_multiply_err_e(const double x, const double dx, const double y, const double dy, gsl_sf_result * result) { int status = gsl_sf_multiply_e(x, y, result); result->err += fabs(dx*y) + fabs(dy*x); return status; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_multiply(const double x, const double y) { EVAL_RESULT(gsl_sf_multiply_e(x, y, &result)); } gsl-1.16/specfunc/synchrotron.c0000664000252300025230000001626412171574312013525 00000000000000/* specfunc/synchrotron.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" static double synchrotron1_data[13] = { 30.364682982501076273, 17.079395277408394574, 4.560132133545072889, 0.549281246730419979, 0.372976075069301172e-01, 0.161362430201041242e-02, 0.481916772120371e-04, 0.10512425288938e-05, 0.174638504670e-07, 0.22815486544e-09, 0.240443082e-11, 0.2086588e-13, 0.15167e-15 }; static cheb_series synchrotron1_cs = { synchrotron1_data, 12, -1.0, 1.0, 9 }; static double synchrotron2_data[12] = { 0.4490721623532660844, 0.898353677994187218e-01, 0.81044573772151290e-02, 0.4261716991089162e-03, 0.147609631270746e-04, 0.3628633615300e-06, 0.66634807498e-08, 0.949077166e-10, 0.1079125e-11, 0.10022e-13, 0.77e-16, 0.5e-18 }; static cheb_series synchrotron2_cs = { synchrotron2_data, 11, -1.0, 1.0, 7 }; static double synchrotron1a_data[23] = { 2.1329305161355000985, 0.741352864954200240e-01, 0.86968099909964198e-02, 0.11703826248775692e-02, 0.1645105798619192e-03, 0.240201021420640e-04, 0.35827756389389e-05, 0.5447747626984e-06, 0.838802856196e-07, 0.13069882684e-07, 0.2053099071e-08, 0.325187537e-09, 0.517914041e-10, 0.83002988e-11, 0.13352728e-11, 0.2159150e-12, 0.349967e-13, 0.56994e-14, 0.9291e-15, 0.152e-15, 0.249e-16, 0.41e-17, 0.7e-18 }; static cheb_series synchrotron1a_cs = { synchrotron1a_data, 22, -1.0, 1.0, 11 }; static double synchrotron21_data[13] = { 38.617839923843085480, 23.037715594963734597, 5.3802499868335705968, 0.6156793806995710776, 0.406688004668895584e-01, 0.17296274552648414e-02, 0.51061258836577e-04, 0.110459595022e-05, 0.18235530206e-07, 0.2370769803e-09, 0.24887296e-11, 0.21529e-13, 0.156e-15 }; static cheb_series synchrotron21_cs = { synchrotron21_data, 12, -1.0, 1.0, 9 }; static double synchrotron22_data[13] = { 7.9063148270660804288, 3.1353463612853425684, 0.4854879477453714538, 0.394816675827237234e-01, 0.19661622334808802e-02, 0.659078932293042e-04, 0.15857561349856e-05, 0.286865301123e-07, 0.4041202360e-09, 0.45568444e-11, 0.420459e-13, 0.3232e-15, 0.21e-17 }; static cheb_series synchrotron22_cs = { synchrotron22_data, 12, -1.0, 1.0, 8 }; static double synchrotron2a_data[17] = { 2.020337094170713600, 0.10956237121807404e-01, 0.8542384730114676e-03, 0.723430242132822e-04, 0.63124427962699e-05, 0.5648193141174e-06, 0.512832480138e-07, 0.47196532914e-08, 0.4380744214e-09, 0.410268149e-10, 0.38623072e-11, 0.3661323e-12, 0.348023e-13, 0.33301e-14, 0.319e-15, 0.307e-16, 0.3e-17 }; static cheb_series synchrotron2a_cs = { synchrotron2a_data, 16, -1.0, 1.0, 8 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_synchrotron_1_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2 * GSL_SQRT_DBL_EPSILON) { /* BJG: added first order correction term. The taylor series is S1(x) = ((4pi)/(sqrt(3)gamma(1/3))) * (x/2)^(1/3) * (1 - (gamma(1/3)/2)*(x/2)^2/3 + (3/4) * (x/2)^2 ....) */ double z = pow(x, 1.0/3.0); double cf = 1 - 8.43812762813205e-01 * z * z; result->val = 2.14952824153447863671 * z * cf; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double c0 = M_PI/M_SQRT3; const double px = pow(x,1.0/3.0); const double px11 = gsl_sf_pow_int(px,11); const double t = x*x/8.0 - 1.0; gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_e(&synchrotron1_cs, t, &result_c1); cheb_eval_e(&synchrotron2_cs, t, &result_c2); result->val = px * result_c1.val - px11 * result_c2.val - c0 * x; result->err = px * result_c1.err + px11 * result_c2.err + c0 * x * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -8.0*GSL_LOG_DBL_MIN/7.0) { const double c0 = 0.2257913526447274323630976; /* log(sqrt(pi/2)) */ const double t = (12.0 - x) / (x + 4.0); gsl_sf_result result_c1; cheb_eval_e(&synchrotron1a_cs, t, &result_c1); result->val = sqrt(x) * result_c1.val * exp(c0 - x); result->err = 2.0 * GSL_DBL_EPSILON * result->val * (fabs(c0-x)+1.0); return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } int gsl_sf_synchrotron_2_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { /* BJG: added first order correction term. The taylor series is S2(x) = ((2pi)/(sqrt(3)*gamma(1/3))) * (x/2)^(1/3) * (1 - (gamma(1/3)/gamma(4/3))*(x/2)^(4/3) + (gamma(1/3)/gamma(4/3))*(x/2)^2...) */ double z = pow(x, 1.0/3.0); double cf = 1 - 1.17767156510235e+00 * z * x; result->val = 1.07476412076723931836 * z * cf ; result->err = 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double px = pow(x, 1.0/3.0); const double px5 = gsl_sf_pow_int(px,5); const double t = x*x/8.0 - 1.0; gsl_sf_result cheb1; gsl_sf_result cheb2; cheb_eval_e(&synchrotron21_cs, t, &cheb1); cheb_eval_e(&synchrotron22_cs, t, &cheb2); result->val = px * cheb1.val - px5 * cheb2.val; result->err = px * cheb1.err + px5 * cheb2.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -8.0*GSL_LOG_DBL_MIN/7.0) { const double c0 = 0.22579135264472743236; /* log(sqrt(pi/2)) */ const double t = (10.0 - x) / (x + 2.0); gsl_sf_result cheb1; cheb_eval_e(&synchrotron2a_cs, t, &cheb1); result->val = sqrt(x) * exp(c0-x) * cheb1.val; result->err = GSL_DBL_EPSILON * result->val * (fabs(c0-x)+1.0); return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_synchrotron_1(const double x) { EVAL_RESULT(gsl_sf_synchrotron_1_e(x, &result)); } double gsl_sf_synchrotron_2(const double x) { EVAL_RESULT(gsl_sf_synchrotron_2_e(x, &result)); } gsl-1.16/specfunc/gsl_sf_zeta.h0000664000252300025230000000551612171574312013440 00000000000000/* specfunc/gsl_sf_zeta.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_ZETA_H__ #define __GSL_SF_ZETA_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Riemann Zeta Function * zeta(n) = Sum[ k^(-n), {k,1,Infinity} ] * * n=integer, n != 1 * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_zeta_int_e(const int n, gsl_sf_result * result); double gsl_sf_zeta_int(const int n); /* Riemann Zeta Function * zeta(x) = Sum[ k^(-s), {k,1,Infinity} ], s != 1.0 * * s != 1.0 * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_zeta_e(const double s, gsl_sf_result * result); double gsl_sf_zeta(const double s); /* Riemann Zeta Function minus 1 * useful for evaluating the fractional part * of Riemann zeta for large argument * * s != 1.0 * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_zetam1_e(const double s, gsl_sf_result * result); double gsl_sf_zetam1(const double s); /* Riemann Zeta Function minus 1 for integer arg * useful for evaluating the fractional part * of Riemann zeta for large argument * * s != 1.0 * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_zetam1_int_e(const int s, gsl_sf_result * result); double gsl_sf_zetam1_int(const int s); /* Hurwitz Zeta Function * zeta(s,q) = Sum[ (k+q)^(-s), {k,0,Infinity} ] * * s > 1.0, q > 0.0 * exceptions: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_hzeta_e(const double s, const double q, gsl_sf_result * result); double gsl_sf_hzeta(const double s, const double q); /* Eta Function * eta(n) = (1-2^(1-n)) zeta(n) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_eta_int_e(int n, gsl_sf_result * result); double gsl_sf_eta_int(const int n); /* Eta Function * eta(s) = (1-2^(1-s)) zeta(s) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_eta_e(const double s, gsl_sf_result * result); double gsl_sf_eta(const double s); __END_DECLS #endif /* __GSL_SF_ZETA_H__ */ gsl-1.16/specfunc/gsl_sf_elljac.h0000664000252300025230000000252412171574312013723 00000000000000/* specfunc/gsl_sf_elljac.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_ELLJAC_H__ #define __GSL_SF_ELLJAC_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Jacobian elliptic functions sn, dn, cn, * by descending Landen transformations * * exceptions: GSL_EDOM */ int gsl_sf_elljac_e(double u, double m, double * sn, double * cn, double * dn); __END_DECLS #endif /* __GSL_SF_ELLJAC_H__ */ gsl-1.16/specfunc/expint3.c0000664000252300025230000000661512171574312012526 00000000000000/* specfunc/expint3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" static double expint3_data[24] = { 1.269198414221126014, -0.248846446384140982, 0.80526220717231041e-01, -0.25772733251968330e-01, 0.7599878873073774e-02, -0.2030695581940405e-02, 0.490834586699330e-03, -0.107682239142021e-03, 0.21551726264290e-04, -0.3956705137384e-05, 0.6699240933896e-06, -0.105132180807e-06, 0.15362580199e-07, -0.20990960364e-08, 0.2692109538e-09, -0.325195242e-10, 0.37114816e-11, -0.4013652e-12, 0.412334e-13, -0.40338e-14, 0.3766e-15, -0.336e-16, 0.29e-17, -0.2e-18 }; static cheb_series expint3_cs = { expint3_data, 23, -1.0, 1.0, 15 }; static double expint3a_data[23] = { 1.9270464955068273729, -0.349293565204813805e-01, 0.14503383718983009e-02, -0.8925336718327903e-04, 0.70542392191184e-05, -0.6671727454761e-06, 0.724267589982e-07, -0.87825825606e-08, 0.11672234428e-08, -0.1676631281e-09, 0.257550158e-10, -0.41957888e-11, 0.7201041e-12, -0.1294906e-12, 0.24287e-13, -0.47331e-14, 0.95531e-15, -0.1991e-15, 0.428e-16, -0.94e-17, 0.21e-17, -0.5e-18, 0.1e-18 }; static cheb_series expint3a_cs = { expint3a_data, 22, -1.0, 1.0, 10 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_expint_3_e(const double x, gsl_sf_result * result) { const double val_infinity = 0.892979511569249211; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 1.6*GSL_ROOT3_DBL_EPSILON) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(x <= 2.0) { const double t = x*x*x/4.0 - 1.0; gsl_sf_result result_c; cheb_eval_e(&expint3_cs, t, &result_c); result->val = x * result_c.val; result->err = x * result_c.err; return GSL_SUCCESS; } else if(x < pow(-GSL_LOG_DBL_EPSILON, 1.0/3.0)) { const double t = 16.0/(x*x*x) - 1.0; const double s = exp(-x*x*x)/(3.0*x*x); gsl_sf_result result_c; cheb_eval_e(&expint3a_cs, t, &result_c); result->val = val_infinity - result_c.val * s; result->err = val_infinity * GSL_DBL_EPSILON + s * result_c.err; return GSL_SUCCESS; } else { result->val = val_infinity; result->err = val_infinity * GSL_DBL_EPSILON; return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_expint_3(double x) { EVAL_RESULT(gsl_sf_expint_3_e(x, &result)); } gsl-1.16/specfunc/legendre_Qn.c0000664000252300025230000002276512171574312013363 00000000000000/* specfunc/legendre_Qn.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" /* Evaluate f_{ell+1}/f_ell * f_ell := Q^{b}_{a+ell}(x) * x > 1 */ static int legendreQ_CF1_xgt1(int ell, double a, double b, double x, double * result) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 5000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = ell + 1.0 + a + b; double b1 = (2.0*(ell+1.0+a) + 1.0) * x; double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; double lna; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; lna = ell + n + a; an = b*b - lna*lna; bn = (2.0*lna + 1.0) * x; An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 4.0*GSL_DBL_EPSILON) break; } *result = fn; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /* Uniform asymptotic for Q_l(x). * Assumes x > -1.0 and x != 1.0. * Discards second order and higher terms. */ static int legendre_Ql_asymp_unif(const double ell, const double x, gsl_sf_result * result) { if(x < 1.0) { double u = ell + 0.5; double th = acos(x); gsl_sf_result Y0, Y1; int stat_Y0, stat_Y1; int stat_m; double pre; double B00; double sum; /* B00 = 1/8 (1 - th cot(th) / th^2 * pre = sqrt(th/sin(th)) */ if(th < GSL_ROOT4_DBL_EPSILON) { B00 = (1.0 + th*th/15.0)/24.0; pre = 1.0 + th*th/12.0; } else { double sin_th = sqrt(1.0 - x*x); double cot_th = x / sin_th; B00 = 1.0/8.0 * (1.0 - th * cot_th) / (th*th); pre = sqrt(th/sin_th); } stat_Y0 = gsl_sf_bessel_Y0_e(u*th, &Y0); stat_Y1 = gsl_sf_bessel_Y1_e(u*th, &Y1); sum = -0.5*M_PI * (Y0.val + th/u * Y1.val * B00); stat_m = gsl_sf_multiply_e(pre, sum, result); result->err += 0.5*M_PI * fabs(pre) * (Y0.err + fabs(th/u*B00)*Y1.err); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_m, stat_Y0, stat_Y1); } else { double u = ell + 0.5; double xi = acosh(x); gsl_sf_result K0_scaled, K1_scaled; int stat_K0, stat_K1; int stat_e; double pre; double B00; double sum; /* B00 = -1/8 (1 - xi coth(xi) / xi^2 * pre = sqrt(xi/sinh(xi)) */ if(xi < GSL_ROOT4_DBL_EPSILON) { B00 = (1.0-xi*xi/15.0)/24.0; pre = 1.0 - xi*xi/12.0; } else { double sinh_xi = sqrt(x*x - 1.0); double coth_xi = x / sinh_xi; B00 = -1.0/8.0 * (1.0 - xi * coth_xi) / (xi*xi); pre = sqrt(xi/sinh_xi); } stat_K0 = gsl_sf_bessel_K0_scaled_e(u*xi, &K0_scaled); stat_K1 = gsl_sf_bessel_K1_scaled_e(u*xi, &K1_scaled); sum = K0_scaled.val - xi/u * K1_scaled.val * B00; stat_e = gsl_sf_exp_mult_e(-u*xi, pre * sum, result); result->err = GSL_DBL_EPSILON * fabs(result->val) * fabs(u*xi); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_K0, stat_K1); } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_legendre_Q0_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0 || x == 1.0) { DOMAIN_ERROR(result); } else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */ const double c3 = 1.0/3.0; const double c5 = 1.0/5.0; const double c7 = 1.0/7.0; const double c9 = 1.0/9.0; const double c11 = 1.0/11.0; const double y = x * x; const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11)))); result->val = x * series; result->err = 2.0 * GSL_DBL_EPSILON * fabs(x); return GSL_SUCCESS; } else if(x < 1.0) { result->val = 0.5 * log((1.0+x)/(1.0-x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 10.0) { result->val = 0.5 * log((x+1.0)/(x-1.0)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x*GSL_DBL_MIN < 2.0) { const double y = 1.0/(x*x); const double c1 = 1.0/3.0; const double c2 = 1.0/5.0; const double c3 = 1.0/7.0; const double c4 = 1.0/9.0; const double c5 = 1.0/11.0; const double c6 = 1.0/13.0; const double c7 = 1.0/15.0; result->val = (1.0/x) * (1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7))))))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } int gsl_sf_legendre_Q1_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0 || x == 1.0) { DOMAIN_ERROR(result); } else if(x*x < GSL_ROOT6_DBL_EPSILON) { /* |x| <~ 0.05 */ const double c3 = 1.0/3.0; const double c5 = 1.0/5.0; const double c7 = 1.0/7.0; const double c9 = 1.0/9.0; const double c11 = 1.0/11.0; const double y = x * x; const double series = 1.0 + y*(c3 + y*(c5 + y*(c7 + y*(c9 + y*c11)))); result->val = x * x * series - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 1.0){ result->val = 0.5 * x * (log((1.0+x)/(1.0-x))) - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 6.0) { result->val = 0.5 * x * log((x+1.0)/(x-1.0)) - 1.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x*GSL_SQRT_DBL_MIN < 0.99/M_SQRT3) { const double y = 1/(x*x); const double c1 = 3.0/5.0; const double c2 = 3.0/7.0; const double c3 = 3.0/9.0; const double c4 = 3.0/11.0; const double c5 = 3.0/13.0; const double c6 = 3.0/15.0; const double c7 = 3.0/17.0; const double c8 = 3.0/19.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*(c7 + y*c8))))))); result->val = sum / (3.0*x*x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { UNDERFLOW_ERROR(result); } } int gsl_sf_legendre_Ql_e(const int l, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0 || x == 1.0 || l < 0) { DOMAIN_ERROR(result); } else if(l == 0) { return gsl_sf_legendre_Q0_e(x, result); } else if(l == 1) { return gsl_sf_legendre_Q1_e(x, result); } else if(l > 100000) { return legendre_Ql_asymp_unif(l, x, result); } else if(x < 1.0){ /* Forward recurrence. */ gsl_sf_result Q0, Q1; int stat_Q0 = gsl_sf_legendre_Q0_e(x, &Q0); int stat_Q1 = gsl_sf_legendre_Q1_e(x, &Q1); double Qellm1 = Q0.val; double Qell = Q1.val; double Qellp1; int ell; for(ell=1; ellval = Qell; result->err = GSL_DBL_EPSILON * l * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Q0, stat_Q1); } else { /* x > 1.0 */ double rat; int stat_CF1 = legendreQ_CF1_xgt1(l, 0.0, 0.0, x, &rat); int stat_Q; double Qellp1 = rat * GSL_SQRT_DBL_MIN; double Qell = GSL_SQRT_DBL_MIN; double Qellm1; int ell; for(ell=l; ell>0; ell--) { Qellm1 = (x * (2.0*ell + 1.0) * Qell - (ell+1.0) * Qellp1) / ell; Qellp1 = Qell; Qell = Qellm1; } if(fabs(Qell) > fabs(Qellp1)) { gsl_sf_result Q0; stat_Q = gsl_sf_legendre_Q0_e(x, &Q0); result->val = GSL_SQRT_DBL_MIN * Q0.val / Qell; result->err = l * GSL_DBL_EPSILON * fabs(result->val); } else { gsl_sf_result Q1; stat_Q = gsl_sf_legendre_Q1_e(x, &Q1); result->val = GSL_SQRT_DBL_MIN * Q1.val / Qellp1; result->err = l * GSL_DBL_EPSILON * fabs(result->val); } return GSL_ERROR_SELECT_2(stat_Q, stat_CF1); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_legendre_Q0(const double x) { EVAL_RESULT(gsl_sf_legendre_Q0_e(x, &result)); } double gsl_sf_legendre_Q1(const double x) { EVAL_RESULT(gsl_sf_legendre_Q1_e(x, &result)); } double gsl_sf_legendre_Ql(const int l, const double x) { EVAL_RESULT(gsl_sf_legendre_Ql_e(l, x, &result)); } gsl-1.16/specfunc/bessel_temme.h0000664000252300025230000000235112171574312013576 00000000000000/* specfunc/bessel_temme.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef BESSEL_TEMME_H_ #define BESSEL_TEMME_H_ #include int gsl_sf_bessel_Y_temme(const double nu, const double x, gsl_sf_result * Y_nu, gsl_sf_result * Y_nup1); int gsl_sf_bessel_K_scaled_temme(const double nu, const double x, double * K_nu, double * K_nup1, double * Kp_nu); #endif /* !BESSEL_TEMME_H_ */ gsl-1.16/specfunc/bessel_olver.c0000664000252300025230000007612412171574312013622 00000000000000/* specfunc/bessel_olver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_olver.h" #include "chebyshev.h" #include "cheb_eval.c" /* fit for f(x) = zofmzeta((x+1)/2), 0 <= mzeta <= 1 */ static double zofmzeta_a_data[20] = { 2.9332563730829348990, 0.4896518224847036624, 0.0228637617355380860, -0.0001715731377284693, -0.0000105927538148751, 1.0595602530419e-6, -4.68016051691e-8, 5.8310020e-12, 1.766537581e-10, -1.45034640e-11, 4.357772e-13, 4.60971e-14, -2.57571e-14, 2.26468e-14, -2.22053e-14, 2.08593e-14, -1.84454e-14, 1.50150e-14, -1.06506e-14, 5.5375e-15 }; static cheb_series zofmzeta_a_cs = { zofmzeta_a_data, 19, -1,1, 8 }; /* fit for f(x) = zofmzeta((9x+11)/2), 1 <= mzeta <= 10 */ static double zofmzeta_b_data[30] = { 22.40725276466303489, 10.39808258825165581, 1.092050144486018425, -0.071111274777921604, 0.008990125336059704, -0.001201950338088875, 0.000106686807968315, 0.000017406491576830, -0.000014946669657805, 6.189984487752e-6, -2.049466715178e-6, 5.87189458020e-7, -1.46077514157e-7, 2.9803936132e-8, -3.817692108e-9, -4.66980416e-10, 5.83860334e-10, -2.78825299e-10, 1.01682688e-10, -3.1209928e-11, 8.111122e-12, -1.663986e-12, 1.81364e-13, 5.3414e-14, -4.7234e-14, 2.1689e-14, -7.815e-15, 2.371e-15, -6.04e-16, 1.20e-16 }; static cheb_series zofmzeta_b_cs = { zofmzeta_b_data, 29, -1,1, 15 }; /* fit for f(x) = zofmzeta(mz(x))/mz(x)^(3/2), * mz(x) = (2/(x+1))^(2/3) 10 * 10 <= mzeta <= Inf */ static double zofmzeta_c_data[11] = { 1.3824761227122911500, 0.0244856101686774245, -0.0000842866496282540, 1.4656076569771e-6, -3.14874099476e-8, 7.561134833e-10, -1.94531643e-11, 5.245878e-13, -1.46380e-14, 4.192e-16, -1.23e-17 }; static cheb_series zofmzeta_c_cs = { zofmzeta_c_data, 10, -1,1, 6 }; /* Invert [Abramowitz+Stegun, 9.3.39]. * Assumes minus_zeta >= 0. */ double gsl_sf_bessel_Olver_zofmzeta(double minus_zeta) { if(minus_zeta < 1.0) { const double x = 2.0*minus_zeta - 1.0; gsl_sf_result c; cheb_eval_e(&zofmzeta_a_cs, x, &c); return c.val; } else if(minus_zeta < 10.0) { const double x = (2.0*minus_zeta - 11.0)/9.0; gsl_sf_result c; cheb_eval_e(&zofmzeta_b_cs, x, &c); return c.val; } else { const double TEN_32 = 31.62277660168379332; /* 10^(3/2) */ const double p = pow(minus_zeta, 3.0/2.0); const double x = 2.0*TEN_32/p - 1.0; gsl_sf_result c; cheb_eval_e(&zofmzeta_c_cs, x, &c); return c.val * p; } } /* Chebyshev fit for f(x) = z(x)^6 A_3(z(x)), z(x) = 22/(10(x+1)) */ static double A3_gt1_data[31] = { -0.123783199829515294670493131190, 0.104636462534700704670877382304, -0.067500816575851826744877535903, 0.035563362418888483652711005520, -0.0160738524035979408472979609051, 0.0064497878252851092073278056238, -0.00235408261133449663958121821593, 0.00079545702851302155411892534965, -0.00025214920745855079895784825637, 0.00007574004596069392921153301833, -0.00002172917966339623434407978263, 5.9914810727868915476543145465e-06, -1.5958781571808992162953719817e-06, 4.1232986512903717525448312012e-07, -1.0369725993417659101913919101e-07, 2.5457982304266541145999235022e-08, -6.1161715053791743082427422443e-09, 1.4409346199138658887871461320e-09, -3.3350445956255561668232014995e-10, 7.5950686572918996453336138108e-11, -1.7042296334409430377389900278e-11, 3.7723525020626230919721640081e-12, -8.2460237635733980528416501227e-13, 1.7816961527997797696251868875e-13, -3.8084101506541792942694560802e-14, 8.0593669930916099079755351563e-15, -1.6896565961641739017452636964e-15, 3.5115651805888443184822853595e-16, -7.2384771938569255638904297651e-17, 1.4806598977677176106283840244e-17, -3.0069285750787303634897997963e-18 }; static cheb_series A3_gt1_cs = { A3_gt1_data, 30, -1,1, 17 }; /* chebyshev expansion for f(x) = z(x)^8 A_4(z(x)), z(x) = 12/(5(x+1)) */ static double A4_gt1_data[30] = { 1.15309329391198493586724229008, -1.01812701728669338904729927846, 0.71964022270555684403652781941, -0.42359963977172689685150061355, 0.215024488759339557817435404261, -0.096751915348145944032096342479, 0.039413982058824310099856035361, -0.014775225692561697963781115014, 0.005162114514159370516947823271, -0.00169783446445524322560925166335, 0.00052995667873006847211519193478, -0.00015802027574996477115667974856, 0.000045254366680989687988902825193, -0.000012503722965474638015488600967, 3.3457656998119148699124716204e-06, -8.6981575241150758412492331833e-07, 2.2030895484325645640823940625e-07, -5.4493369492600677068285936533e-08, 1.3190457281724829107139385556e-08, -3.1301560183377379158951191769e-09, 7.2937802527123344842593076131e-10, -1.6712080137945140407348940109e-10, 3.7700053248213600430503521194e-11, -8.3824538848817227637828899571e-12, 1.8388741910049766865274037194e-12, -3.9835919980753778560117573063e-13, 8.5288827136546615604290389711e-14, -1.8060227869114416998653266836e-14, 3.7849342199690728470461022877e-15, -7.8552867468122209577151823365e-16 }; static cheb_series A4_gt1_cs = { A4_gt1_data, 17, /* 29, */ -1, 1, 17 }; /* Chebyshev fit for f(x) = z(x)^3 B_2(z(x)), z(x) = 12/(5(x+1)) */ static double B2_gt1_data[40] = { 0.00118587147272683864479328868589, 0.00034820459990648274622193981840, -0.00030411304425639768103075864567, 0.00002812066284012343531484682886, 0.00004493525295901613184489898748, -0.00003037629997093072196779489677, 0.00001125979647123875721949743970, -2.4832533969517775991951008218e-06, -9.9003813640537799587086928278e-08, 4.9259859656183110299492296029e-07, -3.7644120964426705960749504975e-07, 2.2887828521334625189639122509e-07, -1.3202687370822203731489855050e-07, 7.7019669092537400811434860763e-08, -4.6589706973010511603890144294e-08, 2.9396476233013923711978522963e-08, -1.9293230611988282919101954538e-08, 1.3099107013728717842406906896e-08, -9.1509111940885962831104149355e-09, 6.5483472971925614347299375295e-09, -4.7831253582139967461241674569e-09, 3.5562625457426178152760148639e-09, -2.6853389444008414186916562103e-09, 2.0554738667134200145781857289e-09, -1.5923172019517426277886522758e-09, 1.2465923213464381457319481498e-09, -9.8494846881180588507969988989e-10, 7.8438674499372126663957464312e-10, -6.2877567918342950225937136855e-10, 5.0662318868755257959686944117e-10, -4.0962270881243451160378710952e-10, 3.3168684677374908553161911299e-10, -2.6829406619847450633596163305e-10, 2.1603988122184568375561077873e-10, -1.7232373309560278402012124481e-10, 1.3512709089611470626617830434e-10, -1.0285354732538663013167579792e-10, 7.4211345443901713467637018423e-11, -4.8124980266864320351456993068e-11, 2.3666534694476306077416831958e-11 }; static cheb_series B2_gt1_cs = { B2_gt1_data, 39, -1, 1, 30 }; /* Chebyshev fit for f(x) = z(x)^6 B_3(z(x)), z(x) = 12/(5(x+1)) */ static double B3_gt1_data[30] = { -0.0102445379362695740863663926486, 0.0036618484329295342954730801917, 0.0026154252498599303282569321117, -0.0036187389410353156728771706336, 0.0021878564157692275944613452462, -0.0008219952303590803584426516821, 0.0001281773889155631494321316520, 0.0001000944653368032985720548637, -0.0001288293344663774273453147788, 0.00010136264202696513867821487205, -0.00007000275849659556221916572733, 0.00004694886396757430431607955146, -0.00003190003869717837686356945696, 0.00002231453668447775219665947479, -0.00001611102197712439539300336438, 0.00001196634424990735214466633513, -9.0986920398931223804111374679e-06, 7.0492613694235423068926562567e-06, -5.5425216624642184684300615394e-06, 4.4071884714230296614449244106e-06, -3.5328595506791663127928952625e-06, 2.84594975572077091520522824686e-06, -2.29592697828824392391071619788e-06, 1.84714740375289956396370322228e-06, -1.47383331248116454652025598620e-06, 1.15687781098593231076084710267e-06, -8.8174688524627071175315084910e-07, 6.3705856964426840441434605593e-07, -4.1358791499961929237755474814e-07, 2.0354151158738819867477996807e-07 }; static cheb_series B3_gt1_cs = { B3_gt1_data, 29, -1, 1, 29 }; /* Chebyshev fit for f(x) = z(x) B_2(z(x)), z(x) = 2(x+1)/5 */ static double B2_lt1_data[40] = { 0.00073681565841337130021924199490, 0.00033803599647571227535304316937, -0.00008251723219239754024210552679, -0.00003390879948656432545900779710, 0.00001961398056848881816694014889, -2.35593745904151401624656805567e-06, -1.79055017080406086541563835433e-06, 1.33129571185610681090725934031e-06, -5.38879444715436544130673956170e-07, 1.49603056041381416881299945557e-07, -1.83377228267274327911131293091e-08, -1.33191430762944336526965187651e-08, 1.60642096463700438411396889489e-08, -1.28932576330421806740136816643e-08, 9.6169275086179165484403221944e-09, -7.1818502280703532276832887290e-09, 5.4744009217215145730697754561e-09, -4.2680446690508456935030086136e-09, 3.3941665009266174865683284781e-09, -2.7440714072221673882163135170e-09, 2.2488361522108255229193038962e-09, -1.8638240716608748862087923337e-09, 1.5592350940805373500866440401e-09, -1.3145743937732330609242633070e-09, 1.1153716777215047842790244968e-09, -9.5117576805266622854647303110e-10, 8.1428799553234876296804561100e-10, -6.9893770813548773664326279169e-10, 6.0073113636087448745018831981e-10, -5.1627434258513453901420776514e-10, 4.4290993195074905891788459756e-10, -3.7852978599966867611179315200e-10, 3.2143959338863177145307610452e-10, -2.7025926680620777594992221143e-10, 2.2384857772457918539228234321e-10, -1.8125071664276678046551271701e-10, 1.4164870008713668767293008546e-10, -1.0433101857132782485813325981e-10, 6.8663910168392483929411418190e-11, -3.4068313177952244040559740439e-11 }; static cheb_series B2_lt1_cs = { B2_lt1_data, 39, -1, 1, 39 }; /* Chebyshev fit for f(x) = B_3(2(x+1)/5) */ static double B3_lt1_data[40] = { -0.00137160820526992057354001614451, -0.00025474937951101049982680561302, 0.00024762975547895881652073467771, 0.00005229657281480196749313930265, -0.00007488354272621512385016593760, 0.00001416880012891046449980449746, 0.00001528986060172183690742576230, -0.00001668672297078590514293325326, 0.00001061765189536459018739585094, -5.8220577442406209989680801335e-06, 3.3322423743855900506302033234e-06, -2.23292405803003860894449897815e-06, 1.74816651036678291794777245325e-06, -1.49581306041395051804547535093e-06, 1.32759146107893129050610165582e-06, -1.19376077392564467408373553343e-06, 1.07878303863211630544654040875e-06, -9.7743335011819134006676476250e-07, 8.8729318903693324226127054792e-07, -8.0671146292125665050876015280e-07, 7.3432860378667354971042255937e-07, -6.6897926072697370325310483359e-07, 6.0966619703735610352576581485e-07, -5.5554095284507959561958605420e-07, 5.0588335673197236002812826526e-07, -4.6008146297767601862670079590e-07, 4.1761348515688145911438168306e-07, -3.7803230006989446874174476515e-07, 3.4095248501364300041684648230e-07, -3.0603959751354749520615015472e-07, 2.7300134179365690589640458993e-07, -2.4158028250762304756044254231e-07, 2.1154781038298751985689113868e-07, -1.8269911328756771201465223313e-07, 1.5484895085808513749026173074e-07, -1.2782806851555809369226440495e-07, 1.0148011725394892565174207341e-07, -7.5658969771439627809239950461e-08, 5.0226342286491286957075289622e-08, -2.5049645660259882970547555831e-08 }; static cheb_series B3_lt1_cs = { B3_lt1_data, 39, -1, 1, 39 }; /* Chebyshev fit for f(x) = A_3(9(x+1)/20) */ static double A3_lt1_data[40] = { -0.00017982561472134418587634980117, -0.00036558603837525275836608884064, -0.00002819398055929628850294406363, 0.00016704539863875736769812786067, -0.00007098969970347674307623044850, -8.4470843942344237748899879940e-06, 0.0000273413090343147765148014327150, -0.0000199073838489821681991178018081, 0.0000100004176278235088881096950105, -3.9739852013143676487867902026e-06, 1.2265357766449574306882693267e-06, -1.88755584306424047416914864854e-07, -1.37482206060161206336523452036e-07, 2.10326379301853336795686477738e-07, -2.05583778245412633433934301948e-07, 1.82377384812654863038691147988e-07, -1.58130247846381041027699152436e-07, 1.36966982725588978654041029615e-07, -1.19250280944620257443805710485e-07, 1.04477169029350256435316644493e-07, -9.2064832489437534542041040184e-08, 8.1523798290458784610230199344e-08, -7.2471794980050867512294061891e-08, 6.4614432955971132569968860233e-08, -5.7724095125560946811081322985e-08, 5.1623107567436835158110947901e-08, -4.6171250746798606260216486042e-08, 4.1256621998650164023254101585e-08, -3.6788925543159819135102047082e-08, 3.2694499457951844422299750661e-08, -2.89125899697964696586521743928e-08, 2.53925288725374047626589488217e-08, -2.20915707933726481321465184207e-08, 1.89732166352720474944407102940e-08, -1.60058977893259856012119939554e-08, 1.31619294542205876946742394494e-08, -1.04166651771938038563454275883e-08, 7.7478015858156185064152078434e-09, -5.1347942579352613057675111787e-09, 2.5583541594586723967261504321e-09 }; static cheb_series A3_lt1_cs = { A3_lt1_data, 39, -1, 1, 39 }; /* chebyshev fit for f(x) = A_4(2(x+1)/5) */ static double A4_lt1_data[30] = { 0.00009054703770051610946958226736, 0.00033066000498098017589672988293, 0.00019737453734363989127226073272, -0.00015490809725932037720034762889, -0.00004514948935538730085479280454, 0.00007976881782603940889444573924, -0.00003314566154544740986264993251, -1.88212148790135672249935711657e-06, 0.0000114788756505519986352882940648, -9.2263039911196207101468331210e-06, 5.1401128250377780476084336340e-06, -2.38418218951722002658891397905e-06, 1.00664292214481531598338960828e-06, -4.23224678096490060264249970540e-07, 2.00132031535793489976535190025e-07, -1.18689501178886741400633921047e-07, 8.7819524319114212999768013738e-08, -7.3964150324206644900787216386e-08, 6.5780431507637165113885884236e-08, -5.9651053193022652369837650411e-08, 5.4447762662767276209052293773e-08, -4.9802057381568863702541294988e-08, 4.5571368194694340198117635845e-08, -4.1682117173547642845382848197e-08, 3.8084701352766049815367147717e-08, -3.4740302885185237434662649907e-08, 3.1616557064701510611273692060e-08, -2.8685739487689556252374879267e-08, 2.5923752117132254429002796600e-08, -2.3309428552190587304662883477e-08 }; static cheb_series A4_lt1_cs = { A4_lt1_data, 29, -1, 1, 29 }; static double olver_B0(double z, double abs_zeta) { if(z < 0.98) { const double t = 1.0/sqrt(1.0-z*z); return -5.0/(48.0*abs_zeta*abs_zeta) + t*(-3.0 + 5.0*t*t)/(24.0*sqrt(abs_zeta)); } else if(z < 1.02) { const double a = 1.0-z; const double c0 = 0.0179988721413553309252458658183; const double c1 = 0.0111992982212877614645974276203; const double c2 = 0.0059404069786014304317781160605; const double c3 = 0.0028676724516390040844556450173; const double c4 = 0.0012339189052567271708525111185; const double c5 = 0.0004169250674535178764734660248; const double c6 = 0.0000330173385085949806952777365; const double c7 = -0.0001318076238578203009990106425; const double c8 = -0.0001906870370050847239813945647; return c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*(c6 + a*(c7 + a*c8))))))); } else { const double t = 1.0/(z*sqrt(1.0 - 1.0/(z*z))); return -5.0/(48.0*abs_zeta*abs_zeta) + t*(3.0 + 5.0*t*t)/(24.0*sqrt(abs_zeta)); } } static double olver_B1(double z, double abs_zeta) { if(z < 0.88) { const double t = 1.0/sqrt(1.0-z*z); const double t2 = t*t; const double rz = sqrt(abs_zeta); const double z32 = rz*rz*rz; const double z92 = z32*z32*z32; const double term1 = t*t*t * (30375.0 - 369603.0*t2 + 765765.0*t2*t2 - 425425.0*t2*t2*t2)/414720.0; const double term2 = 85085.0/(663552.0*z92); const double term3 = 385.0/110592.*t*(3.0-5.0*t2)/(abs_zeta*abs_zeta*abs_zeta); const double term4 = 5.0/55296.0*t2*(81.0 - 462.0*t2 + 385.0*t2*t2)/z32; return -(term1 + term2 + term3 + term4)/rz; } else if(z < 1.12) { const double a = 1.0-z; const double c0 = -0.00149282953213429172050073403334; const double c1 = -0.00175640941909277865678308358128; const double c2 = -0.00113346148874174912576929663517; const double c3 = -0.00034691090981382974689396961817; const double c4 = 0.00022752516104839243675693256916; const double c5 = 0.00051764145724244846447294636552; const double c6 = 0.00058906174858194233998714243010; const double c7 = 0.00053485514521888073087240392846; const double c8 = 0.00042891792986220150647633418796; const double c9 = 0.00031639765900613633260381972850; const double c10 = 0.00021908147678699592975840749194; return c0+a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*(c9+a*c10))))))))); } else { const double t = 1.0/(z*sqrt(1.0 - 1.0/(z*z))); const double t2 = t*t; const double rz = sqrt(abs_zeta); const double z32 = rz*rz*rz; const double z92 = z32*z32*z32; const double term1 = -t2*t * (30375.0 + 369603.0*t2 + 765765.0*t2*t2 + 425425.0*t2*t2*t2)/414720.0; const double term2 = 85085.0/(663552.0*z92); const double term3 = -385.0/110592.0*t*(3.0+5.0*t2)/(abs_zeta*abs_zeta*abs_zeta); const double term4 = 5.0/55296.0*t2*(81.0 + 462.0*t2 + 385.0*t2*t2)/z32; return (term1 + term2 + term3 + term4)/rz; } } static double olver_B2(double z, double abs_zeta) { if(z < 0.8) { const double x = 5.0*z/2.0 - 1.0; gsl_sf_result c; cheb_eval_e(&B2_lt1_cs, x, &c); return c.val / z; } else if(z <= 1.2) { const double a = 1.0-z; const double c0 = 0.00055221307672129279005986982501; const double c1 = 0.00089586516310476929281129228969; const double c2 = 0.00067015003441569770883539158863; const double c3 = 0.00010166263361949045682945811828; const double c4 = -0.00044086345133806887291336488582; const double c5 = -0.00073963081508788743392883072523; const double c6 = -0.00076745494377839561259903887331; const double c7 = -0.00060829038106040362291568012663; const double c8 = -0.00037128707528893496121336168683; const double c9 = -0.00014116325105702609866850307176; return c0+a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*c9)))))))); } else { const double zi = 1.0/z; const double x = 12.0/5.0 * zi - 1.0; gsl_sf_result c; cheb_eval_e(&B2_gt1_cs, x, &c); return c.val * zi*zi*zi; } } static double olver_B3(double z, double abs_zeta) { if(z < 0.8) { const double x = 5.0*z/2.0 - 1.0; gsl_sf_result c; cheb_eval_e(&B3_lt1_cs, x, &c); return c.val; } else if(z < 1.2) { const double a = 1.0-z; const double c0 = -0.00047461779655995980754441833105; const double c1 = -0.00095572913429464297452176811898; const double c2 = -0.00080369634512082892655558133973; const double c3 = -0.00000727921669154784138080600339; const double c4 = 0.00093162500331581345235746518994; const double c5 = 0.00149848796913751497227188612403; const double c6 = 0.00148406039675949727870390426462; return c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*c6))))); } else { const double x = 12.0/(5.0*z) - 1.0; const double zi2 = 1.0/(z*z); gsl_sf_result c; cheb_eval_e(&B3_gt1_cs, x, &c); return c.val * zi2*zi2*zi2; } } static double olver_A1(double z, double abs_zeta, double * err) { if(z < 0.98) { double t = 1.0/sqrt(1.0-z*z); double rz = sqrt(abs_zeta); double t2 = t*t; double term1 = t2*(81.0 - 462.0*t2 + 385.0*t2*t2)/1152.0; double term2 = -455.0/(4608.0*abs_zeta*abs_zeta*abs_zeta); double term3 = 7.0*t*(-3.0 + 5.0*t2)/(1152.0*rz*rz*rz); *err = 2.0 * GSL_DBL_EPSILON * (fabs(term1) + fabs(term2) + fabs(term3)); return term1 + term2 + term3; } else if(z < 1.02) { const double a = 1.0-z; const double c0 = -0.00444444444444444444444444444444; const double c1 = -0.00184415584415584415584415584416; const double c2 = 0.00056812076812076812076812076812; const double c3 = 0.00168137865661675185484709294233; const double c4 = 0.00186744042139000122193399504324; const double c5 = 0.00161330105833747826430066790326; const double c6 = 0.00123177312220625816558607537838; const double c7 = 0.00087334711007377573881689318421; const double c8 = 0.00059004942455353250141217015410; const double sum = c0+a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*c8))))))); *err = 2.0 * GSL_DBL_EPSILON * fabs(sum); return sum; } else { const double t = 1.0/(z*sqrt(1.0 - 1.0/(z*z))); const double rz = sqrt(abs_zeta); const double t2 = t*t; const double term1 = -t2*(81.0 + 462.0*t2 + 385.0*t2*t2)/1152.0; const double term2 = 455.0/(4608.0*abs_zeta*abs_zeta*abs_zeta); const double term3 = -7.0*t*(3.0 + 5.0*t2)/(1152.0*rz*rz*rz); *err = 2.0 * GSL_DBL_EPSILON * (fabs(term1) + fabs(term2) + fabs(term3)); return term1 + term2 + term3; } } static double olver_A2(double z, double abs_zeta) { if(z < 0.88) { double t = 1.0/sqrt(1.0-z*z); double t2 = t*t; double t4 = t2*t2; double t6 = t4*t2; double t8 = t4*t4; double rz = sqrt(abs_zeta); double z3 = abs_zeta*abs_zeta*abs_zeta; double z32 = rz*rz*rz; double z92 = z3*z32; double term1 = t4*(4465125.0 - 94121676.0*t2 + 349922430.0*t4 - 446185740.0*t6 + 185910725.0*t8)/39813120.0; double term2 = -40415375.0/(127401984.0*z3*z3); double term3 = -95095.0/15925248.0*t*(3.0-5.0*t2)/z92; double term4 = -455.0/5308416.0 *t2*(81.0 - 462.0*t2 + 385.0*t4)/z3; double term5 = -7.0/19906560.0*t*t2*(30375.0 - 369603.0*t2 + 765765.0*t4 - 425425.0*t6)/z32; return term1 + term2 + term3 + term4 + term5; } else if(z < 1.12) { double a = 1.0-z; const double c0 = 0.000693735541354588973636592684210; const double c1 = 0.000464483490365843307019777608010; const double c2 = -0.000289036254605598132482570468291; const double c3 = -0.000874764943953712638574497548110; const double c4 = -0.001029716376139865629968584679350; const double c5 = -0.000836857329713810600584714031650; const double c6 = -0.000488910893527218954998270124540; const double c7 = -0.000144236747940817220502256810151; const double c8 = 0.000114363800986163478038576460325; const double c9 = 0.000266806881492777536223944807117; const double c10 = -0.011975517576151069627471048587000; return c0+a*(c1+a*(c2+a*(c3+a*(c4+a*(c5+a*(c6+a*(c7+a*(c8+a*(c9+a*c10))))))))); } else { const double t = 1.0/(z*sqrt(1.0 - 1.0/(z*z))); const double t2 = t*t; const double t4 = t2*t2; const double t6 = t4*t2; const double t8 = t4*t4; const double rz = sqrt(abs_zeta); const double z3 = abs_zeta*abs_zeta*abs_zeta; const double z32 = rz*rz*rz; const double z92 = z3*z32; const double term1 = t4*(4465125.0 + 94121676.0*t2 + 349922430.0*t4 + 446185740.0*t6 + 185910725.0*t8)/39813120.0; const double term2 = -40415375.0/(127401984.0*z3*z3); const double term3 = 95095.0/15925248.0*t*(3.0+5.0*t2)/z92; const double term4 = -455.0/5308416.0 *t2*(81.0 + 462.0*t2 + 385.0*t4)/z3; const double term5 = 7.0/19906560.0*t*t2*(30375.0 + 369603.0*t2 + 765765.0*t4 + 425425.0*t6)/z32; return term1 + term2 + term3 + term4 + term5; } } static double olver_A3(double z, double abs_zeta) { if(z < 0.9) { const double x = 20.0*z/9.0 - 1.0; gsl_sf_result c; cheb_eval_e(&A3_lt1_cs, x, &c); return c.val; } else if(z < 1.1) { double a = 1.0-z; const double c0 = -0.000354211971457743840771125759200; const double c1 = -0.000312322527890318832782774881353; const double c2 = 0.000277947465383133980329617631915; const double c3 = 0.000919803044747966977054155192400; const double c4 = 0.001147600388275977640983696906320; const double c5 = 0.000869239326123625742931772044544; const double c6 = 0.000287392257282507334785281718027; return c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*c6))))); } else { const double x = 11.0/(5.0*z) - 1.0; const double zi2 = 1.0/(z*z); gsl_sf_result c; cheb_eval_e(&A3_gt1_cs, x, &c); return c.val * zi2*zi2*zi2; } } static double olver_A4(double z, double abs_zeta) { if(z < 0.8) { const double x = 5.0*z/2.0 - 1.0; gsl_sf_result c; cheb_eval_e(&A4_lt1_cs, x, &c); return c.val; } else if(z < 1.2) { double a = 1.0-z; const double c0 = 0.00037819419920177291402661228437; const double c1 = 0.00040494390552363233477213857527; const double c2 = -0.00045764735528936113047289344569; const double c3 = -0.00165361044229650225813161341879; const double c4 = -0.00217527517983360049717137015539; const double c5 = -0.00152003287866490735107772795537; return c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*c5)))); } else { const double x = 12.0/(5.0*z) - 1.0; const double zi2 = 1.0/(z*z); gsl_sf_result c; cheb_eval_e(&A4_gt1_cs, x, &c); return c.val * zi2*zi2*zi2*zi2; } } inline static double olver_Asum(double nu, double z, double abs_zeta, double * err) { double nu2 = nu*nu; double A1_err; double A1 = olver_A1(z, abs_zeta, &A1_err); double A2 = olver_A2(z, abs_zeta); double A3 = olver_A3(z, abs_zeta); double A4 = olver_A4(z, abs_zeta); *err = A1_err/nu2 + GSL_DBL_EPSILON; return 1.0 + A1/nu2 + A2/(nu2*nu2) + A3/(nu2*nu2*nu2) + A4/(nu2*nu2*nu2*nu2); } inline static double olver_Bsum(double nu, double z, double abs_zeta) { double nu2 = nu*nu; double B0 = olver_B0(z, abs_zeta); double B1 = olver_B1(z, abs_zeta); double B2 = olver_B2(z, abs_zeta); double B3 = olver_B3(z, abs_zeta); return B0 + B1/nu2 + B2/(nu2*nu2) + B3/(nu2*nu2*nu2*nu2); } /* uniform asymptotic, nu -> Inf, [Abramowitz+Stegun, 9.3.35] * * error: * nu = 2: uniformly good to > 6D * nu = 5: uniformly good to > 8D * nu = 10: uniformly good to > 10D * nu = 20: uniformly good to > 13D * */ int gsl_sf_bessel_Jnu_asymp_Olver_e(double nu, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu <= 0.0) { DOMAIN_ERROR(result); } else { double zeta, abs_zeta; double arg; double pre; double asum, bsum, asum_err; gsl_sf_result ai; gsl_sf_result aip; double z = x/nu; double crnu = pow(nu, 1.0/3.0); double nu3 = nu*nu*nu; double nu11 = nu3*nu3*nu3*nu*nu; int stat_a, stat_ap; if(fabs(1.0-z) < 0.02) { const double a = 1.0-z; const double c0 = 1.25992104989487316476721060728; const double c1 = 0.37797631496846194943016318218; const double c2 = 0.230385563409348235843147082474; const double c3 = 0.165909603649648694839821892031; const double c4 = 0.12931387086451008907; const double c5 = 0.10568046188858133991; const double c6 = 0.08916997952268186978; const double c7 = 0.07700014900618802456; pre = c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*(c6 + a*c7)))))); zeta = a * pre; pre = sqrt(2.0*sqrt(pre/(1.0+z))); abs_zeta = fabs(zeta); } else if(z < 1.0) { double rt = sqrt(1.0 - z*z); abs_zeta = pow(1.5*(log((1.0+rt)/z) - rt), 2.0/3.0); zeta = abs_zeta; pre = sqrt(2.0*sqrt(abs_zeta/(rt*rt))); } else { /* z > 1 */ double rt = z * sqrt(1.0 - 1.0/(z*z)); abs_zeta = pow(1.5*(rt - acos(1.0/z)), 2.0/3.0); zeta = -abs_zeta; pre = sqrt(2.0*sqrt(abs_zeta/(rt*rt))); } asum = olver_Asum(nu, z, abs_zeta, &asum_err); bsum = olver_Bsum(nu, z, abs_zeta); arg = crnu*crnu * zeta; stat_a = gsl_sf_airy_Ai_e(arg, GSL_MODE_DEFAULT, &ai); stat_ap = gsl_sf_airy_Ai_deriv_e(arg, GSL_MODE_DEFAULT, &aip); result->val = pre * (ai.val*asum/crnu + aip.val*bsum/(nu*crnu*crnu)); result->err = pre * (ai.err * fabs(asum/crnu)); result->err += pre * fabs(ai.val) * asum_err / crnu; result->err += pre * fabs(ai.val * asum) / (crnu*nu11); result->err += 8.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_a, stat_ap); } } /* uniform asymptotic, nu -> Inf, [Abramowitz+Stegun, 9.3.36] * * error: * nu = 2: uniformly good to > 6D * nu = 5: uniformly good to > 8D * nu = 10: uniformly good to > 10D * nu = 20: uniformly good to > 13D */ int gsl_sf_bessel_Ynu_asymp_Olver_e(double nu, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu <= 0.0) { DOMAIN_ERROR(result); } else { double zeta, abs_zeta; double arg; double pre; double asum, bsum, asum_err; gsl_sf_result bi; gsl_sf_result bip; double z = x/nu; double crnu = pow(nu, 1.0/3.0); double nu3 = nu*nu*nu; double nu11 = nu3*nu3*nu3*nu*nu; int stat_b, stat_d; if(fabs(1.0-z) < 0.02) { const double a = 1.0-z; const double c0 = 1.25992104989487316476721060728; const double c1 = 0.37797631496846194943016318218; const double c2 = 0.230385563409348235843147082474; const double c3 = 0.165909603649648694839821892031; const double c4 = 0.12931387086451008907; const double c5 = 0.10568046188858133991; const double c6 = 0.08916997952268186978; const double c7 = 0.07700014900618802456; pre = c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*(c6 + a*c7)))))); zeta = a * pre; pre = sqrt(2.0*sqrt(pre/(1.0+z))); abs_zeta = fabs(zeta); } else if(z < 1.0) { double rt = sqrt(1.0 - z*z); abs_zeta = pow(1.5*(log((1.0+rt)/z) - rt), 2.0/3.0); zeta = abs_zeta; pre = sqrt(2.0*sqrt(abs_zeta/(rt*rt))); } else { /* z > 1 */ double rt = z * sqrt(1.0 - 1.0/(z*z)); double ac = acos(1.0/z); abs_zeta = pow(1.5*(rt - ac), 2.0/3.0); zeta = -abs_zeta; pre = sqrt(2.0*sqrt(abs_zeta)/rt); } asum = olver_Asum(nu, z, abs_zeta, &asum_err); bsum = olver_Bsum(nu, z, abs_zeta); arg = crnu*crnu * zeta; stat_b = gsl_sf_airy_Bi_e(arg, GSL_MODE_DEFAULT, &bi); stat_d = gsl_sf_airy_Bi_deriv_e(arg, GSL_MODE_DEFAULT, &bip); result->val = -pre * (bi.val*asum/crnu + bip.val*bsum/(nu*crnu*crnu)); result->err = pre * (bi.err * fabs(asum/crnu)); result->err += pre * fabs(bi.val) * asum_err / crnu; result->err += pre * fabs(bi.val*asum) / (crnu*nu11); result->err += 8.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_b, stat_d); } } gsl-1.16/specfunc/bessel_J1.c0000664000252300025230000000713712171574312012743 00000000000000/* specfunc/bessel_J1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_amp_phase.h" #include "cheb_eval.c" #define ROOT_EIGHT (2.0*M_SQRT2) /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besj1, 1983 version, w. fullerton */ /* chebyshev expansions series for bj1 on the interval 0. to 1.60000d+01 with weighted error 4.48e-17 log weighted error 16.35 significant figures required 15.77 decimal places required 16.89 */ static double bj1_data[12] = { -0.11726141513332787, -0.25361521830790640, 0.050127080984469569, -0.004631514809625081, 0.000247996229415914, -0.000008678948686278, 0.000000214293917143, -0.000000003936093079, 0.000000000055911823, -0.000000000000632761, 0.000000000000005840, -0.000000000000000044, }; static cheb_series bj1_cs = { bj1_data, 11, -1, 1, 8 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_J1_e(const double x, gsl_sf_result * result) { double y = fabs(x); /* CHECK_POINTER(result) */ if(y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(y < 2.0*GSL_DBL_MIN) { UNDERFLOW_ERROR(result); } else if(y < ROOT_EIGHT * GSL_SQRT_DBL_EPSILON) { result->val = 0.5*x; result->err = 0.0; return GSL_SUCCESS; } else if(y < 4.0) { gsl_sf_result c; cheb_eval_e(&bj1_cs, 0.125*y*y-1.0, &c); result->val = x * (0.25 + c.val); result->err = fabs(x * c.err); return GSL_SUCCESS; } else { /* Because the leading term in the phase is y, * which we assume is exactly known, the error * in the cos() evaluation is bounded. */ const double z = 32.0/(y*y) - 1.0; gsl_sf_result ca; gsl_sf_result ct; gsl_sf_result sp; const int stat_ca = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm1_cs, z, &ca); const int stat_ct = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth1_cs, z, &ct); const int stat_sp = gsl_sf_bessel_sin_pi4_e(y, ct.val/y, &sp); const double sqrty = sqrt(y); const double ampl = (0.75 + ca.val) / sqrty; result->val = (x < 0.0 ? -ampl : ampl) * sp.val; result->err = fabs(sp.val) * ca.err/sqrty + fabs(ampl) * sp.err; result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_ca, stat_ct, stat_sp); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_J1(const double x) { EVAL_RESULT(gsl_sf_bessel_J1_e(x, &result)); } gsl-1.16/specfunc/bessel_zero.c0000664000252300025230000007020612171574312013445 00000000000000/* specfunc/bessel_zero.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel_olver.h" /* For Chebyshev expansions of the roots as functions of nu, * see [G. Nemeth, Mathematical Approximation of Special Functions]. * This gives the fits for all nu and s <= 10. * I made the fits for other values of s myself [GJ]. */ /* Chebyshev expansion: j_{nu,1} = c_k T_k*(nu/2), nu <= 2 */ static const double coef_jnu1_a[] = { 3.801775243633476, 1.360704737511120, -0.030707710261106, 0.004526823746202, -0.000808682832134, 0.000159218792489, -0.000033225189761, 0.000007205599763, -0.000001606110397, 0.000000365439424, -0.000000084498039, 0.000000019793815, -0.000000004687054, 0.000000001120052, -0.000000000269767, 0.000000000065420, -0.000000000015961, 0.000000000003914, -0.000000000000965, 0.000000000000239, -0.000000000000059, 0.000000000000015, -0.000000000000004, 0.000000000000001 }; /* Chebyshev expansion: j_{nu,1} = nu c_k T_k*((2/nu)^(2/3)), nu >= 2 */ static const double coef_jnu1_b[] = { 1.735063412537096, 0.784478100951978, 0.048881473180370, -0.000578279783021, -0.000038984957864, 0.000005758297879, -0.000000327583229, -0.000000003853878, 0.000000002284653, -0.000000000153079, -0.000000000000895, 0.000000000000283, 0.000000000000043, 0.000000000000010, -0.000000000000003 }; /* Chebyshev expansion: j_{nu,2} = c_k T_k*(nu/2), nu <= 2 */ static const double coef_jnu2_a[] = { 6.992370244046161, 1.446379282056534, -0.023458616207293, 0.002172149448700, -0.000246262775620, 0.000030990180959, -0.000004154183047, 0.000000580766328, -0.000000083648175, 0.000000012317355, -0.000000001844887, 0.000000000280076, -0.000000000042986, 0.000000000006658, -0.000000000001039, 0.000000000000163, -0.000000000000026, 0.000000000000004, -0.000000000000001 }; /* Chebyshev expansion: j_{nu,2} = nu c_k T_k*((2/nu)^(2/3)), nu >= 2 */ static const double coef_jnu2_b[] = { 2.465611864263400, 1.607952988471069, 0.138758034431497, -0.003687791182054, -0.000051276007868, 0.000045113570749, -0.000007579172152, 0.000000736469208, -0.000000011118527, -0.000000011919884, 0.000000002696788, -0.000000000314488, 0.000000000008124, 0.000000000005211, -0.000000000001292, 0.000000000000158, -0.000000000000004, -0.000000000000003, 0.000000000000001 }; /* Chebyshev expansion: j_{nu,3} = c_k T_k*(nu/3), nu <= 3 */ static const double coef_jnu3_a[] = { 10.869647065239236, 2.177524286141710, -0.034822817125293, 0.003167249102413, -0.000353960349344, 0.000044039086085, -0.000005851380981, 0.000000812575483, -0.000000116463617, 0.000000017091246, -0.000000002554376, 0.000000000387335, -0.000000000059428, 0.000000000009207, -0.000000000001438, 0.000000000000226, -0.000000000000036, 0.000000000000006, -0.000000000000001 }; /* Chebyshev expansion: j_{nu,3} = nu c_k T_k*((3/nu)^(2/3)), nu >= 3 */ static const double coef_jnu3_b[] = { 2.522816775173244, 1.673199424973720, 0.146431617506314, -0.004049001763912, -0.000039517767244, 0.000048781729288, -0.000008729705695, 0.000000928737310, -0.000000028388244, -0.000000012927432, 0.000000003441008, -0.000000000471695, 0.000000000025590, 0.000000000005502, -0.000000000001881, 0.000000000000295, -0.000000000000020, -0.000000000000003, 0.000000000000001 }; /* Chebyshev expansion: j_{nu,4} = c_k T_k*(nu/4), nu <= 4 */ static const double coef_jnu4_a[] = { 14.750310252773009, 2.908010932941708, -0.046093293420315, 0.004147172321412, -0.000459092310473, 0.000056646951906, -0.000007472351546, 0.000001031210065, -0.000000147008137, 0.000000021475218, -0.000000003197208, 0.000000000483249, -0.000000000073946, 0.000000000011431, -0.000000000001782, 0.000000000000280, -0.000000000000044, 0.000000000000007, -0.000000000000001 }; /* Chebyshev expansion: j_{nu,4} = nu c_k T_k*((4/nu)^(2/3)), nu >= 4 */ static const double coef_jnu4_b[] = { 2.551681323117914, 1.706177978336572, 0.150357658406131, -0.004234001378590, -0.000033854229898, 0.000050763551485, -0.000009337464057, 0.000001029717834, -0.000000037474196, -0.000000013450153, 0.000000003836180, -0.000000000557404, 0.000000000035748, 0.000000000005487, -0.000000000002187, 0.000000000000374, -0.000000000000031, -0.000000000000003, 0.000000000000001 }; /* Chebyshev expansion: j_{nu,5} = c_k T_k*(nu/5), nu <= 5 */ static const double coef_jnu5_a[] = { 18.632261081028211, 3.638249012596966, -0.057329705998828, 0.005121709126820, -0.000563325259487, 0.000069100826174, -0.000009066603030, 0.000001245181383, -0.000000176737282, 0.000000025716695, -0.000000003815184, 0.000000000574839, -0.000000000087715, 0.000000000013526, -0.000000000002104, 0.000000000000330, -0.000000000000052, 0.000000000000008, -0.000000000000001 }; /* Chebyshev expansion: j_{nu,5} = nu c_k T_k*((5/nu)^(2/3)), nu >= 5 */ /* FIXME: There is something wrong with this fit, in about the * 9th or 10th decimal place. */ static const double coef_jnu5_b[] = { 2.569079487591442, 1.726073360882134, 0.152740776809531, -0.004346449660148, -0.000030512461856, 0.000052000821080, -0.000009713343981, 0.000001091997863, -0.000000043061707, -0.000000013779413, 0.000000004082870, -0.000000000611259, 0.000000000042242, 0.000000000005448, -0.000000000002377, 0.000000000000424, -0.000000000000038, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,6} = c_k T_k*(nu/6), nu <= 6 */ static const double coef_jnu6_a[] = { 22.514836143374042, 4.368367257557198, -0.068550155285562, 0.006093776505822, -0.000667152784957, 0.000081486022398, -0.000010649011647, 0.000001457089679, -0.000000206105082, 0.000000029894724, -0.000000004422012, 0.000000000664471, -0.000000000101140, 0.000000000015561, -0.000000000002416, 0.000000000000378, -0.000000000000060, 0.000000000000009, -0.000000000000002 }; /* Chebyshev expansion: j_{nu,6} = nu c_k T_k*((6/nu)^(2/3)), nu >= 6 */ static const double coef_jnu6_b[] = { 2.580710285494837, 1.739380728566154, 0.154340696401691, -0.004422028860168, -0.000028305272624, 0.000052845975269, -0.000009968794373, 0.000001134252926, -0.000000046841241, -0.000000014007555, 0.000000004251816, -0.000000000648213, 0.000000000046728, 0.000000000005414, -0.000000000002508, 0.000000000000459, -0.000000000000043, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,7} = c_k T_k*(nu/7), nu <= 7 */ static const double coef_jnu7_a[] = { 26.397760539730869, 5.098418721711790, -0.079761896398948, 0.007064521280487, -0.000770766522482, 0.000093835449636, -0.000012225308542, 0.000001667939800, -0.000000235288157, 0.000000034040347, -0.000000005023142, 0.000000000753101, -0.000000000114389, 0.000000000017564, -0.000000000002722, 0.000000000000425, -0.000000000000067, 0.000000000000011, -0.000000000000002 }; /* Chebyshev expansion: j_{nu,7} = nu c_k T_k*((7/nu)^(2/3)), nu >= 7 */ static const double coef_jnu7_b[] = { 2.589033335856773, 1.748907007612678, 0.155488900387653, -0.004476317805688, -0.000026737952924, 0.000053459680946, -0.000010153699240, 0.000001164804272, -0.000000049566917, -0.000000014175403, 0.000000004374840, -0.000000000675135, 0.000000000050004, 0.000000000005387, -0.000000000002603, 0.000000000000485, -0.000000000000047, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,8} = c_k T_k*(nu/8), nu <= 8 */ static const double coef_jnu8_a[] = { 30.280900001606662, 5.828429205461221, -0.090968381181069, 0.008034479731033, -0.000874254899080, 0.000106164151611, -0.000013798098749, 0.000001878187386, -0.000000264366627, 0.000000038167685, -0.000000005621060, 0.000000000841165, -0.000000000127538, 0.000000000019550, -0.000000000003025, 0.000000000000472, -0.000000000000074, 0.000000000000012, -0.000000000000002 }; /* Chebyshev expansion: j_{nu,8} = nu c_k T_k*((8/nu)^(2/3)), nu >= 8 */ static const double coef_jnu8_b[] = { 2.595283877150078, 1.756063044986928, 0.156352972371030, -0.004517201896761, -0.000025567187878, 0.000053925472558, -0.000010293734486, 0.000001187923085, -0.000000051625122, -0.000000014304212, 0.000000004468450, -0.000000000695620, 0.000000000052500, 0.000000000005367, -0.000000000002676, 0.000000000000505, -0.000000000000050, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,9} = c_k T_k*(nu/9), nu <= 9 */ static const double coef_jnu9_a[] = { 34.164181213238386, 6.558412747925228, -0.102171455365016, 0.009003934361201, -0.000977663914535, 0.000118479876579, -0.000015368714220, 0.000002088064285, -0.000000293381154, 0.000000042283900, -0.000000006217033, 0.000000000928887, -0.000000000140627, 0.000000000021526, -0.000000000003326, 0.000000000000518, -0.000000000000081, 0.000000000000013, -0.000000000000002 }; /* Chebyshev expansion: j_{nu,9} = nu c_k T_k*((9/nu)^(2/3)), nu >= 9 */ static const double coef_jnu9_b[] = { 2.600150240905079, 1.761635491694032, 0.157026743724010, -0.004549100368716, -0.000024659248617, 0.000054291035068, -0.000010403464334, 0.000001206027524, -0.000000053234089, -0.000000014406241, 0.000000004542078, -0.000000000711728, 0.000000000054464, 0.000000000005350, -0.000000000002733, 0.000000000000521, -0.000000000000052, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,10} = c_k T_k*(nu/10), nu <= 10 */ static const double coef_jnu10_a[] = { 38.047560766184647, 7.288377637926008, -0.113372193277897, 0.009973047509098, -0.001081019701335, 0.000130786983847, -0.000016937898538, 0.000002297699179, -0.000000322354218, 0.000000046392941, -0.000000006811759, 0.000000001016395, -0.000000000153677, 0.000000000023486, -0.000000000003616, 0.000000000000561, -0.000000000000095, 0.000000000000027, -0.000000000000013, 0.000000000000005 }; /* Chebyshev expansion: j_{nu,10} = nu c_k T_k*((10/nu)^(2/3)), nu >= 10 */ static const double coef_jnu10_b[] = { 2.604046346867949, 1.766097596481182, 0.157566834446511, -0.004574682244089, -0.000023934500688, 0.000054585558231, -0.000010491765415, 0.000001220589364, -0.000000054526331, -0.000000014489078, 0.000000004601510, -0.000000000724727, 0.000000000056049, 0.000000000005337, -0.000000000002779, 0.000000000000533, -0.000000000000054, -0.000000000000002, 0.000000000000002 }; /* Chebyshev expansion: j_{nu,11} = c_k T_k*(nu/22), nu <= 22 */ static const double coef_jnu11_a[] = { 49.5054081076848637, 15.33692279367165101, -0.33677234163517130, 0.04623235772920729, -0.00781084960665093, 0.00147217395434708, -0.00029695043846867, 0.00006273356860235, -0.00001370575125628, 3.07171282012e-6, -7.0235041249e-7, 1.6320559339e-7, -3.843117306e-8, 9.15083800e-9, -2.19957642e-9, 5.3301703e-10, -1.3007541e-10, 3.193827e-11, -7.88605e-12, 1.95918e-12, -4.9020e-13, 1.2207e-13, -2.820e-14, 5.25e-15, -1.88e-15, 2.80e-15, -2.45e-15 }; /* Chebyshev expansion: j_{nu,12} = c_k T_k*(nu/24), nu <= 24 */ static const double coef_jnu12_a[] = { 54.0787833216641519, 16.7336367772863598, -0.36718411124537953, 0.05035523375053820, -0.00849884978867533, 0.00160027692813434, -0.00032248114889921, 0.00006806354127199, -0.00001485665901339, 3.32668783672e-6, -7.5998952729e-7, 1.7644939709e-7, -4.151538210e-8, 9.87722772e-9, -2.37230133e-9, 5.7442875e-10, -1.4007767e-10, 3.437166e-11, -8.48215e-12, 2.10554e-12, -5.2623e-13, 1.3189e-13, -3.175e-14, 5.73e-15, 5.6e-16, -8.7e-16, -6.5e-16 }; /* Chebyshev expansion: j_{nu,13} = c_k T_k*(nu/26), nu <= 26 */ static const double coef_jnu13_a[] = { 58.6521941921708890, 18.1303398137970284, -0.39759381380126650, 0.05447765240465494, -0.00918674227679980, 0.00172835361420579, -0.00034800528297612, 0.00007339183835188, -0.00001600713368099, 3.58154960392e-6, -8.1759873497e-7, 1.8968523220e-7, -4.459745253e-8, 1.060304419e-8, -2.54487624e-9, 6.1580214e-10, -1.5006751e-10, 3.679707e-11, -9.07159e-12, 2.24713e-12, -5.5943e-13, 1.4069e-13, -3.679e-14, 1.119e-14, -4.99e-15, 3.43e-15, -2.85e-15, 2.3e-15, -1.7e-15, 8.7e-16 }; /* Chebyshev expansion: j_{nu,14} = c_k T_k*(nu/28), nu <= 28 */ static const double coef_jnu14_a[] = { 63.2256329577315566, 19.5270342832914901, -0.42800190567884337, 0.05859971627729398, -0.00987455163523582, 0.00185641011402081, -0.00037352439419968, 0.00007871886257265, -0.00001715728110045, 3.83632624437e-6, -8.7518558668e-7, 2.0291515353e-7, -4.767795233e-8, 1.132844415e-8, -2.71734219e-9, 6.5714886e-10, -1.6005342e-10, 3.922557e-11, -9.66637e-12, 2.39379e-12, -5.9541e-13, 1.4868e-13, -3.726e-14, 9.37e-15, -2.36e-15, 6.0e-16 }; /* Chebyshev expansion: j_{nu,15} = c_k T_k*(nu/30), nu <= 30 */ static const double coef_jnu15_a[] = { 67.7990939565631635, 20.9237219226859859, -0.45840871823085836, 0.06272149946755639, -0.01056229551143042, 0.00198445078693100, -0.00039903958650729, 0.00008404489865469, -0.00001830717574922, 4.09103745566e-6, -9.3275533309e-7, 2.1614056403e-7, -5.075725222e-8, 1.205352081e-8, -2.88971837e-9, 6.9846848e-10, -1.7002946e-10, 4.164941e-11, -1.025859e-11, 2.53921e-12, -6.3128e-13, 1.5757e-13, -3.947e-14, 9.92e-15, -2.50e-15, 6.3e-16 }; /* Chebyshev expansion: j_{nu,16} = c_k T_k*(nu/32), nu <= 32 */ static const double coef_jnu16_a[] = { 72.3725729616724770, 22.32040402918608585, -0.48881449782358690, 0.06684305681828766, -0.01124998690363398, 0.00211247882775445, -0.00042455166484632, 0.00008937015316346, -0.00001945687139551, 4.34569739281e-6, -9.9031173548e-7, 2.2936247195e-7, -5.383562595e-8, 1.277835103e-8, -3.06202860e-9, 7.3977037e-10, -1.8000071e-10, 4.407196e-11, -1.085046e-11, 2.68453e-12, -6.6712e-13, 1.6644e-13, -4.168e-14, 1.047e-14, -2.64e-15, 6.7e-16 }; /* Chebyshev expansion: j_{nu,17} = c_k T_k*(nu/34), nu <= 34 */ static const double coef_jnu17_a[] = { 76.9460667535209549, 23.71708159112252670, -0.51921943142405352, 0.07096442978067622, -0.01193763559341369, 0.00224049662974902, -0.00045006122941781, 0.00009469477941684, -0.00002060640777107, 4.60031647195e-6, -1.04785755046e-6, 2.4258161247e-7, -5.691327087e-8, 1.350298805e-8, -3.23428733e-9, 7.8105847e-10, -1.8996825e-10, 4.649350e-11, -1.144205e-11, 2.82979e-12, -7.0294e-13, 1.7531e-13, -4.388e-14, 1.102e-14, -2.78e-15, 7.0e-16 }; /* Chebyshev expansion: j_{nu,18} = c_k T_k*(nu/36), nu <= 36 */ static const double coef_jnu18_a[] = { 81.5195728368096659, 25.11375537470259305, -0.54962366347317668, 0.07508565026117689, -0.01262524908033818, 0.00236850602019778, -0.00047556873651929, 0.00010001889347161, -0.00002175581482429, 4.85490251239e-6, -1.10539483940e-6, 2.5579853343e-7, -5.999033352e-8, 1.422747129e-8, -3.40650521e-9, 8.2233565e-10, -1.9993286e-10, 4.891426e-11, -1.203343e-11, 2.97498e-12, -7.3875e-13, 1.8418e-13, -4.608e-14, 1.157e-14, -2.91e-15, 7.4e-16 }; /* Chebyshev expansion: j_{nu,19} = c_k T_k*(nu/38), nu <= 38 */ static const double coef_jnu19_a[] = { 86.0930892477047512, 26.51042598308271729, -0.58002730731948358, 0.07920674321589394, -0.01331283320930301, 0.00249650841778073, -0.00050107453900793, 0.00010534258471335, -0.00002290511552874, 5.10946148897e-6, -1.16292517157e-6, 2.6901365037e-7, -6.306692473e-8, 1.495183048e-8, -3.57869025e-9, 8.6360410e-10, -2.0989514e-10, 5.133439e-11, -1.262465e-11, 3.12013e-12, -7.7455e-13, 1.9304e-13, -4.829e-14, 1.212e-14, -3.05e-15, 7.7e-16 }; /* Chebyshev expansion: j_{nu,20} = c_k T_k*(nu/40), nu <= 40 */ static const double coef_jnu20_a[] = { 90.6666144195163770, 27.9070938975436823, -0.61043045315390591, 0.08332772844325554, -0.01400039260208282, 0.00262450494035660, -0.00052657891389470, 0.00011066592304919, -0.00002405432778364, 5.36399803946e-6, -1.22044976064e-6, 2.8222728362e-7, -6.614312964e-8, 1.567608839e-8, -3.75084856e-9, 9.0486546e-10, -2.1985553e-10, 5.375401e-11, -1.321572e-11, 3.26524e-12, -8.1033e-13, 2.0190e-13, -5.049e-14, 1.267e-14, -3.19e-15, 8.0e-16, -2.0e-16 }; static const double * coef_jnu_a[] = { 0, coef_jnu1_a, coef_jnu2_a, coef_jnu3_a, coef_jnu4_a, coef_jnu5_a, coef_jnu6_a, coef_jnu7_a, coef_jnu8_a, coef_jnu9_a, coef_jnu10_a, coef_jnu11_a, coef_jnu12_a, coef_jnu13_a, coef_jnu14_a, coef_jnu15_a, coef_jnu16_a, coef_jnu17_a, coef_jnu18_a, coef_jnu19_a, coef_jnu20_a }; static const size_t size_jnu_a[] = { 0, sizeof(coef_jnu1_a)/sizeof(double), sizeof(coef_jnu2_a)/sizeof(double), sizeof(coef_jnu3_a)/sizeof(double), sizeof(coef_jnu4_a)/sizeof(double), sizeof(coef_jnu5_a)/sizeof(double), sizeof(coef_jnu6_a)/sizeof(double), sizeof(coef_jnu7_a)/sizeof(double), sizeof(coef_jnu8_a)/sizeof(double), sizeof(coef_jnu9_a)/sizeof(double), sizeof(coef_jnu10_a)/sizeof(double), sizeof(coef_jnu11_a)/sizeof(double), sizeof(coef_jnu12_a)/sizeof(double), sizeof(coef_jnu13_a)/sizeof(double), sizeof(coef_jnu14_a)/sizeof(double), sizeof(coef_jnu15_a)/sizeof(double), sizeof(coef_jnu16_a)/sizeof(double), sizeof(coef_jnu17_a)/sizeof(double), sizeof(coef_jnu18_a)/sizeof(double), sizeof(coef_jnu19_a)/sizeof(double), sizeof(coef_jnu20_a)/sizeof(double) }; static const double * coef_jnu_b[] = { 0, coef_jnu1_b, coef_jnu2_b, coef_jnu3_b, coef_jnu4_b, coef_jnu5_b, coef_jnu6_b, coef_jnu7_b, coef_jnu8_b, coef_jnu9_b, coef_jnu10_b }; static const size_t size_jnu_b[] = { 0, sizeof(coef_jnu1_b)/sizeof(double), sizeof(coef_jnu2_b)/sizeof(double), sizeof(coef_jnu3_b)/sizeof(double), sizeof(coef_jnu4_b)/sizeof(double), sizeof(coef_jnu5_b)/sizeof(double), sizeof(coef_jnu6_b)/sizeof(double), sizeof(coef_jnu7_b)/sizeof(double), sizeof(coef_jnu8_b)/sizeof(double), sizeof(coef_jnu9_b)/sizeof(double), sizeof(coef_jnu10_b)/sizeof(double) }; /* Evaluate Clenshaw recurrence for * a T* Chebyshev series. * sizeof(c) = N+1 */ static double clenshaw(const double * c, int N, double u) { double B_np1 = 0.0; double B_n = c[N]; double B_nm1; int n; for(n=N; n>0; n--) { B_nm1 = 2.0*(2.0*u-1.0) * B_n - B_np1 + c[n-1]; B_np1 = B_n; B_n = B_nm1; } return B_n - (2.0*u-1.0)*B_np1; } /* correction terms to leading McMahon expansion * [Abramowitz+Stegun 9.5.12] * [Olver, Royal Society Math. Tables, v. 7] * We factor out a beta, so that this is a multiplicative * correction: * j_{nu,s} = beta(s,nu) * mcmahon_correction(nu, beta(s,nu)) * macmahon_correction --> 1 as s --> Inf */ static double mcmahon_correction(const double mu, const double beta) { const double eb = 8.0*beta; const double ebsq = eb*eb; if(mu < GSL_DBL_EPSILON) { /* Prevent division by zero below. */ const double term1 = 1.0/ebsq; const double term2 = -4.0*31.0/(3*ebsq*ebsq); const double term3 = 32.0*3779.0/(15.0*ebsq*ebsq*ebsq); const double term4 = -64.0*6277237.0/(105.0*ebsq*ebsq*ebsq*ebsq); const double term5 = 512.0*2092163573.0/(315.0*ebsq*ebsq*ebsq*ebsq*ebsq); return 1.0 + 8.0*(term1 + term2 + term3 + term4 + term5); } else { /* Here we do things in terms of 1/mu, which * is purely to prevent overflow in the very * unlikely case that mu is really big. */ const double mi = 1.0/mu; const double r = mu/ebsq; const double n2 = 4.0/3.0 * (7.0 - 31.0*mi); const double n3 = 32.0/15.0 * (83.0 + (-982.0 + 3779.0*mi)*mi); const double n4 = 64.0/105.0 * (6949.0 + (-153855.0 + (1585743.0 - 6277237.0*mi)*mi)*mi); const double n5 = 512.0/315.0 * (70197.0 + (-2479316.0 + (48010494.0 + (-512062548.0 + 2092163573.0*mi)*mi)*mi)*mi); const double n6 = 2048.0/3465.0 * (5592657.0 + (-287149133.0 + (8903961290.0 + (-179289628602.0 + (1982611456181.0 - 8249725736393.0*mi)*mi)*mi)*mi)*mi); const double term1 = (1.0 - mi) * r; const double term2 = term1 * n2 * r; const double term3 = term1 * n3 * r*r; const double term4 = term1 * n4 * r*r*r; const double term5 = term1 * n5 * r*r*r*r; const double term6 = term1 * n6 * r*r*r*r*r; return 1.0 - 8.0*(term1 + term2 + term3 + term4 + term5 + term6); } } /* Assumes z >= 1.0 */ static double olver_b0(double z, double minus_zeta) { if(z < 1.02) { const double a = 1.0-z; const double c0 = 0.0179988721413553309252458658183; const double c1 = 0.0111992982212877614645974276203; const double c2 = 0.0059404069786014304317781160605; const double c3 = 0.0028676724516390040844556450173; const double c4 = 0.0012339189052567271708525111185; const double c5 = 0.0004169250674535178764734660248; const double c6 = 0.0000330173385085949806952777365; const double c7 = -0.0001318076238578203009990106425; const double c8 = -0.0001906870370050847239813945647; return c0 + a*(c1 + a*(c2 + a*(c3 + a*(c4 + a*(c5 + a*(c6 + a*(c7 + a*c8))))))); } else { const double abs_zeta = minus_zeta; const double t = 1.0/(z*sqrt(1.0 - 1.0/(z*z))); return -5.0/(48.0*abs_zeta*abs_zeta) + t*(3.0 + 5.0*t*t)/(24.0*sqrt(abs_zeta)); } } inline static double olver_f1(double z, double minus_zeta) { const double b0 = olver_b0(z, minus_zeta); const double h2 = sqrt(4.0*minus_zeta/(z*z-1.0)); /* FIXME */ return 0.5 * z * h2 * b0; } int gsl_sf_bessel_zero_J0_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s == 0){ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EINVAL); } else { /* See [F. Lether, J. Comp. Appl .Math. 67, 167 (1996)]. */ static const double P[] = { 1567450796.0/12539606369.0, 8903660.0/2365861.0, 10747040.0/536751.0, 17590991.0/1696654.0 }; static const double Q[] = { 1.0, 29354255.0/954518.0, 76900001.0/431847.0, 67237052.0/442411.0 }; const double beta = (s - 0.25) * M_PI; const double bi2 = 1.0/(beta*beta); const double R33num = P[0] + bi2 * (P[1] + bi2 * (P[2] + P[3] * bi2)); const double R33den = Q[0] + bi2 * (Q[1] + bi2 * (Q[2] + Q[3] * bi2)); const double R33 = R33num/R33den; result->val = beta + R33/beta; result->err = fabs(3.0e-15 * result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_zero_J1_e(unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(s == 0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* See [M. Branders et al., J. Comp. Phys. 42, 403 (1981)]. */ static const double a[] = { -0.362804405737084, 0.120341279038597, 0.439454547101171e-01, 0.159340088474713e-02 }; static const double b[] = { 1.0, -0.325641790801361, -0.117453445968927, -0.424906902601794e-02 }; const double beta = (s + 0.25) * M_PI; const double bi2 = 1.0/(beta*beta); const double Rnum = a[3] + bi2 * (a[2] + bi2 * (a[1] + bi2 * a[0])); const double Rden = b[3] + bi2 * (b[2] + bi2 * (b[1] + bi2 * b[0])); const double R = Rnum/Rden; result->val = beta * (1.0 + R*bi2); result->err = fabs(2.0e-14 * result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_zero_Jnu_e(double nu, unsigned int s, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(nu <= -1.0) { DOMAIN_ERROR(result); } else if(s == 0) { result->val = 0.0; result->err = 0.0; if (nu == 0.0) { GSL_ERROR ("no zero-th root for nu = 0.0", GSL_EINVAL); } return GSL_SUCCESS; } else if(nu < 0.0) { /* This can be done, I'm just lazy now. */ result->val = 0.0; result->err = 0.0; GSL_ERROR("unimplemented", GSL_EUNIMPL); } else if(s == 1) { /* Chebyshev fits for the first positive zero. * For some reason Nemeth made this different from the others. */ if(nu < 2.0) { const double * c = coef_jnu_a[s]; const size_t L = size_jnu_a[s]; const double arg = nu/2.0; const double chb = clenshaw(c, L-1, arg); result->val = chb; result->err = 2.0e-15 * result->val; } else { const double * c = coef_jnu_b[s]; const size_t L = size_jnu_b[s]; const double arg = pow(2.0/nu, 2.0/3.0); const double chb = clenshaw(c, L-1, arg); result->val = nu * chb; result->err = 2.0e-15 * result->val; } return GSL_SUCCESS; } else if(s <= 10) { /* Chebyshev fits for the first 10 positive zeros. */ if(nu < s) { const double * c = coef_jnu_a[s]; const size_t L = size_jnu_a[s]; const double arg = nu/s; const double chb = clenshaw(c, L-1, arg); result->val = chb; result->err = 2.0e-15 * result->val; } else { const double * c = coef_jnu_b[s]; const size_t L = size_jnu_b[s]; const double arg = pow(s/nu, 2.0/3.0); const double chb = clenshaw(c, L-1, arg); result->val = nu * chb; result->err = 2.0e-15 * result->val; /* FIXME: truth in advertising for the screwed up * s = 5 fit. Need to fix that. */ if(s == 5) { result->err *= 5.0e+06; } } return GSL_SUCCESS; } else if(s > 0.5*nu && s <= 20) { /* Chebyshev fits for 10 < s <= 20. */ const double * c = coef_jnu_a[s]; const size_t L = size_jnu_a[s]; const double arg = nu/(2.0*s); const double chb = clenshaw(c, L-1, arg); result->val = chb; result->err = 4.0e-15 * chb; return GSL_SUCCESS; } else if(s > 2.0 * nu) { /* McMahon expansion if s is large compared to nu. */ const double beta = (s + 0.5*nu - 0.25) * M_PI; const double mc = mcmahon_correction(4.0*nu*nu, beta); gsl_sf_result rat12; gsl_sf_pow_int_e(nu/beta, 14, &rat12); result->val = beta * mc; result->err = 4.0 * fabs(beta) * rat12.val; result->err += 4.0 * fabs(GSL_DBL_EPSILON * result->val); return GSL_SUCCESS; } else { /* Olver uniform asymptotic. */ gsl_sf_result as; const int stat_as = gsl_sf_airy_zero_Ai_e(s, &as); const double minus_zeta = -pow(nu,-2.0/3.0) * as.val; const double z = gsl_sf_bessel_Olver_zofmzeta(minus_zeta); const double f1 = olver_f1(z, minus_zeta); result->val = nu * (z + f1/(nu*nu)); result->err = 0.001/(nu*nu*nu); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_as; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_zero_J0(unsigned int s) { EVAL_RESULT(gsl_sf_bessel_zero_J0_e(s, &result)); } double gsl_sf_bessel_zero_J1(unsigned int s) { EVAL_RESULT(gsl_sf_bessel_zero_J1_e(s, &result)); } double gsl_sf_bessel_zero_Jnu(double nu, unsigned int s) { EVAL_RESULT(gsl_sf_bessel_zero_Jnu_e(nu, s, &result)); } gsl-1.16/specfunc/gsl_sf_elementary.h0000664000252300025230000000317112171574312014635 00000000000000/* specfunc/gsl_sf_elementary.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Miscellaneous elementary functions and operations. */ #ifndef __GSL_SF_ELEMENTARY_H__ #define __GSL_SF_ELEMENTARY_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Multiplication. * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_multiply_e(const double x, const double y, gsl_sf_result * result); double gsl_sf_multiply(const double x, const double y); /* Multiplication of quantities with associated errors. */ int gsl_sf_multiply_err_e(const double x, const double dx, const double y, const double dy, gsl_sf_result * result); __END_DECLS #endif /* __GSL_SF_ELEMENTARY_H__ */ gsl-1.16/specfunc/bessel_Knu.c0000664000252300025230000001247512171574312013227 00000000000000/* specfunc/bessel_Knu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_temme.h" /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Knu_scaled_e(const double nu, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else { gsl_sf_result_e10 result_e10; int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &result_e10); int status2 = gsl_sf_result_smash_e(&result_e10, result); return GSL_ERROR_SELECT_2(status, status2); } } int gsl_sf_bessel_Knu_scaled_e10_e(const double nu, const double x, gsl_sf_result_e10 * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR_E10(result); } else { int N = (int)(nu + 0.5); double mu = nu - N; /* -1/2 <= mu <= 1/2 */ double K_mu, K_mup1, Kp_mu; double K_nu, K_nup1, K_num1; int n, e10 = 0; if(x < 2.0) { gsl_sf_bessel_K_scaled_temme(mu, x, &K_mu, &K_mup1, &Kp_mu); } else { gsl_sf_bessel_K_scaled_steed_temme_CF2(mu, x, &K_mu, &K_mup1, &Kp_mu); } /* recurse forward to obtain K_num1, K_nu */ K_nu = K_mu; K_nup1 = K_mup1; for(n=0; n GSL_SQRT_DBL_MAX) { double p = floor(log(fabs(K_nu))/M_LN10); double factor = pow(10.0, p); K_num1 /= factor; K_nu /= factor; e10 += p; }; K_nup1 = 2.0*(mu+n+1)/x * K_nu + K_num1; } result->val = K_nu; result->err = 2.0 * GSL_DBL_EPSILON * (N + 4.0) * fabs(result->val); result->e10 = e10; return GSL_SUCCESS; } } int gsl_sf_bessel_Knu_e(const double nu, const double x, gsl_sf_result * result) { gsl_sf_result b; int stat_K = gsl_sf_bessel_Knu_scaled_e(nu, x, &b); int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0, b.val, b.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } int gsl_sf_bessel_lnKnu_e(const double nu, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else if(nu == 0.0) { gsl_sf_result K_scaled; /* This cannot underflow, and * it will not throw GSL_EDOM * since that is already checked. */ gsl_sf_bessel_K0_scaled_e(x, &K_scaled); result->val = -x + log(fabs(K_scaled.val)); result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 2.0 && nu > 1.0) { /* Make use of the inequality * Knu(x) <= 1/2 (2/x)^nu Gamma(nu), * which follows from the integral representation * [Abramowitz+Stegun, 9.6.23 (2)]. With this * we decide whether or not there is an overflow * problem because x is small. */ double ln_bound; gsl_sf_result lg_nu; gsl_sf_lngamma_e(nu, &lg_nu); ln_bound = -M_LN2 - nu*log(0.5*x) + lg_nu.val; if(ln_bound > GSL_LOG_DBL_MAX - 20.0) { /* x must be very small or nu very large (or both). */ double xi = 0.25*x*x; double sum = 1.0 - xi/(nu-1.0); if(nu > 2.0) sum += (xi/(nu-1.0)) * (xi/(nu-2.0)); result->val = ln_bound + log(sum); result->err = lg_nu.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* can drop-through here */ } { /* We passed the above tests, so no problem. * Evaluate as usual. Note the possible drop-through * in the above code! */ gsl_sf_result_e10 K_scaled; int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &K_scaled); result->val = -x + log(fabs(K_scaled.val)) + K_scaled.e10 * M_LN10; result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val); result->err += GSL_DBL_EPSILON * fabs(result->val); return status; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Knu_scaled(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Knu_scaled_e(nu, x, &result)); } double gsl_sf_bessel_Knu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Knu_e(nu, x, &result)); } double gsl_sf_bessel_lnKnu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_lnKnu_e(nu, x, &result)); } gsl-1.16/specfunc/gsl_sf_fermi_dirac.h0000664000252300025230000000652512171574312014742 00000000000000/* specfunc/gsl_sf_fermi_dirac.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_FERMI_DIRAC_H__ #define __GSL_SF_FERMI_DIRAC_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Complete Fermi-Dirac Integrals: * * F_j(x) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,0,Infinity}] * * * Incomplete Fermi-Dirac Integrals: * * F_j(x,b) := 1/Gamma[j+1] Integral[ t^j /(Exp[t-x] + 1), {t,b,Infinity}] */ /* Complete integral F_{-1}(x) = e^x / (1 + e^x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_fermi_dirac_m1_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_m1(const double x); /* Complete integral F_0(x) = ln(1 + e^x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_fermi_dirac_0_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_0(const double x); /* Complete integral F_1(x) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_1_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_1(const double x); /* Complete integral F_2(x) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_2_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_2(const double x); /* Complete integral F_j(x) * for integer j * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_int_e(const int j, const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_int(const int j, const double x); /* Complete integral F_{-1/2}(x) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_mhalf_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_mhalf(const double x); /* Complete integral F_{1/2}(x) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_half_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_half(const double x); /* Complete integral F_{3/2}(x) * * exceptions: GSL_EUNDRFLW, GSL_EOVRFLW */ int gsl_sf_fermi_dirac_3half_e(const double x, gsl_sf_result * result); double gsl_sf_fermi_dirac_3half(const double x); /* Incomplete integral F_0(x,b) = ln(1 + e^(b-x)) - (b-x) * * exceptions: GSL_EUNDRFLW, GSL_EDOM */ int gsl_sf_fermi_dirac_inc_0_e(const double x, const double b, gsl_sf_result * result); double gsl_sf_fermi_dirac_inc_0(const double x, const double b); __END_DECLS #endif /* __GSL_SF_FERMI_DIRAC_H__ */ gsl-1.16/specfunc/gsl_sf_lambert.h0000664000252300025230000000342512171574312014120 00000000000000/* specfunc/gsl_sf_lambert.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_LAMBERT_H__ #define __GSL_SF_LAMBERT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Lambert's Function W_0(x) * * W_0(x) is the principal branch of the * implicit function defined by W e^W = x. * * -1/E < x < \infty * * exceptions: GSL_EMAXITER; */ int gsl_sf_lambert_W0_e(double x, gsl_sf_result * result); double gsl_sf_lambert_W0(double x); /* Lambert's Function W_{-1}(x) * * W_{-1}(x) is the second real branch of the * implicit function defined by W e^W = x. * It agrees with W_0(x) when x >= 0. * * -1/E < x < \infty * * exceptions: GSL_MAXITER; */ int gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result); double gsl_sf_lambert_Wm1(double x); __END_DECLS #endif /* __GSL_SF_LAMBERT_H__ */ gsl-1.16/specfunc/hyperg_2F0.c0000664000252300025230000000353312171574312013035 00000000000000/* specfunc/hyperg_2F0.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "hyperg.h" int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result) { if(x < 0.0) { /* Use "definition" 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x). */ gsl_sf_result U; double pre = pow(-1.0/x, a); int stat_U = gsl_sf_hyperg_U_e(a, 1.0+a-b, -1.0/x, &U); result->val = pre * U.val; result->err = GSL_DBL_EPSILON * fabs(result->val) + pre * U.err; return stat_U; } else if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else { /* Use asymptotic series. ?? */ /* return hyperg_2F0_series(a, b, x, -1, result, &prec); */ DOMAIN_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hyperg_2F0(const double a, const double b, const double x) { EVAL_RESULT(gsl_sf_hyperg_2F0_e(a, b, x, &result)); } gsl-1.16/specfunc/gsl_sf_exp.h0000664000252300025230000000740712171574312013272 00000000000000/* specfunc/gsl_sf_exp.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_EXP_H__ #define __GSL_SF_EXP_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Provide an exp() function with GSL semantics, * i.e. with proper error checking, etc. * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_e(const double x, gsl_sf_result * result); double gsl_sf_exp(const double x); /* Exp(x) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_e10_e(const double x, gsl_sf_result_e10 * result); /* Exponentiate and multiply by a given factor: y * Exp(x) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_mult_e(const double x, const double y, gsl_sf_result * result); double gsl_sf_exp_mult(const double x, const double y); /* Exponentiate and multiply by a given factor: y * Exp(x) * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_mult_e10_e(const double x, const double y, gsl_sf_result_e10 * result); /* exp(x)-1 * * exceptions: GSL_EOVRFLW */ int gsl_sf_expm1_e(const double x, gsl_sf_result * result); double gsl_sf_expm1(const double x); /* (exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + ... * * exceptions: GSL_EOVRFLW */ int gsl_sf_exprel_e(const double x, gsl_sf_result * result); double gsl_sf_exprel(const double x); /* 2(exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + ... * * exceptions: GSL_EOVRFLW */ int gsl_sf_exprel_2_e(double x, gsl_sf_result * result); double gsl_sf_exprel_2(const double x); /* Similarly for the N-th generalization of * the above. The so-called N-relative exponential * * exprel_N(x) = N!/x^N (exp(x) - Sum[x^k/k!, {k,0,N-1}]) * = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... * = 1F1(1,1+N,x) */ int gsl_sf_exprel_n_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_exprel_n(const int n, const double x); int gsl_sf_exprel_n_CF_e(const double n, const double x, gsl_sf_result * result); /* Exponentiate a quantity with an associated error. */ int gsl_sf_exp_err_e(const double x, const double dx, gsl_sf_result * result); /* Exponentiate a quantity with an associated error. */ int gsl_sf_exp_err_e10_e(const double x, const double dx, gsl_sf_result_e10 * result); /* Exponentiate and multiply by a given factor: y * Exp(x), * for quantities with associated errors. * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_mult_err_e(const double x, const double dx, const double y, const double dy, gsl_sf_result * result); /* Exponentiate and multiply by a given factor: y * Exp(x), * for quantities with associated errors. * * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_exp_mult_err_e10_e(const double x, const double dx, const double y, const double dy, gsl_sf_result_e10 * result); __END_DECLS #endif /* __GSL_SF_EXP_H__ */ gsl-1.16/specfunc/coupling.c0000664000252300025230000003377212171574312012760 00000000000000/* specfunc/coupling.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" inline static int locMax3(const int a, const int b, const int c) { int d = GSL_MAX(a, b); return GSL_MAX(d, c); } inline static int locMin3(const int a, const int b, const int c) { int d = GSL_MIN(a, b); return GSL_MIN(d, c); } inline static int locMin5(const int a, const int b, const int c, const int d, const int e) { int f = GSL_MIN(a, b); int g = GSL_MIN(c, d); int h = GSL_MIN(f, g); return GSL_MIN(e, h); } /* See: [Thompson, Atlas for Computing Mathematical Functions] */ static int delta(int ta, int tb, int tc, gsl_sf_result * d) { gsl_sf_result f1, f2, f3, f4; int status = 0; status += gsl_sf_fact_e((ta + tb - tc)/2, &f1); status += gsl_sf_fact_e((ta + tc - tb)/2, &f2); status += gsl_sf_fact_e((tb + tc - ta)/2, &f3); status += gsl_sf_fact_e((ta + tb + tc)/2 + 1, &f4); if(status != 0) { OVERFLOW_ERROR(d); } d->val = f1.val * f2.val * f3.val / f4.val; d->err = 4.0 * GSL_DBL_EPSILON * fabs(d->val); return GSL_SUCCESS; } static int triangle_selection_fails(int two_ja, int two_jb, int two_jc) { /* * enough to check the triangle condition for one spin vs. the other two */ return ( (two_jb < abs(two_ja - two_jc)) || (two_jb > two_ja + two_jc) || GSL_IS_ODD(two_ja + two_jb + two_jc) ); } static int m_selection_fails(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc) { return ( abs(two_ma) > two_ja || abs(two_mb) > two_jb || abs(two_mc) > two_jc || GSL_IS_ODD(two_ja + two_ma) || GSL_IS_ODD(two_jb + two_mb) || GSL_IS_ODD(two_jc + two_mc) || (two_ma + two_mb + two_mc) != 0 ); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_coupling_3j_e (int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(two_ja < 0 || two_jb < 0 || two_jc < 0) { DOMAIN_ERROR(result); } else if ( triangle_selection_fails(two_ja, two_jb, two_jc) || m_selection_fails(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc) ) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if ( two_ma == 0 && two_mb == 0 && two_mc == 0 && ((two_ja + two_jb + two_jc) % 4 == 2) ) { /* Special case for (ja jb jc; 0 0 0) = 0 when ja+jb+jc=odd */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { int jca = (-two_ja + two_jb + two_jc) / 2, jcb = ( two_ja - two_jb + two_jc) / 2, jcc = ( two_ja + two_jb - two_jc) / 2, jmma = ( two_ja - two_ma) / 2, jmmb = ( two_jb - two_mb) / 2, jmmc = ( two_jc - two_mc) / 2, jpma = ( two_ja + two_ma) / 2, jpmb = ( two_jb + two_mb) / 2, jpmc = ( two_jc + two_mc) / 2, jsum = ( two_ja + two_jb + two_jc) / 2, kmin = locMax3 (0, jpmb - jmmc, jmma - jpmc), kmax = locMin3 (jcc, jmma, jpmb), k, sign = GSL_IS_ODD (kmin - jpma + jmmb) ? -1 : 1, status = 0; double sum_pos = 0.0, sum_neg = 0.0, sum_err = 0.0; gsl_sf_result bc1, bc2, bc3, bcn1, bcn2, bcd1, bcd2, bcd3, bcd4, term, lnorm; status += gsl_sf_lnchoose_e (two_ja, jcc , &bcn1); status += gsl_sf_lnchoose_e (two_jb, jcc , &bcn2); status += gsl_sf_lnchoose_e (jsum+1, jcc , &bcd1); status += gsl_sf_lnchoose_e (two_ja, jmma, &bcd2); status += gsl_sf_lnchoose_e (two_jb, jmmb, &bcd3); status += gsl_sf_lnchoose_e (two_jc, jpmc, &bcd4); lnorm.val = 0.5 * (bcn1.val + bcn2.val - bcd1.val - bcd2.val - bcd3.val - bcd4.val - log(two_jc + 1.0)); lnorm.err = 0.5 * (bcn1.err + bcn2.err + bcd1.err + bcd2.err + bcd3.err + bcd4.err + GSL_DBL_EPSILON * log(two_jc + 1.0)); for (k = kmin; k <= kmax; k++) { status += gsl_sf_lnchoose_e (jcc, k, &bc1); status += gsl_sf_lnchoose_e (jcb, jmma - k, &bc2); status += gsl_sf_lnchoose_e (jca, jpmb - k, &bc3); status += gsl_sf_exp_err_e(bc1.val + bc2.val + bc3.val + lnorm.val, bc1.err + bc2.err + bc3.err + lnorm.err, &term); if (status != 0) { OVERFLOW_ERROR (result); } if (sign < 0) { sum_neg += term.val; } else { sum_pos += term.val; } sum_err += term.err; sign = -sign; } result->val = sum_pos - sum_neg; result->err = sum_err; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (kmax - kmin) * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_coupling_6j_INCORRECT_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result) { return gsl_sf_coupling_6j_e(two_ja, two_jb, two_je, two_jd, two_jc, two_jf, result); } int gsl_sf_coupling_6j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if( two_ja < 0 || two_jb < 0 || two_jc < 0 || two_jd < 0 || two_je < 0 || two_jf < 0 ) { DOMAIN_ERROR(result); } else if( triangle_selection_fails(two_ja, two_jb, two_jc) || triangle_selection_fails(two_ja, two_je, two_jf) || triangle_selection_fails(two_jb, two_jd, two_jf) || triangle_selection_fails(two_je, two_jd, two_jc) ) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result n1; gsl_sf_result d1, d2, d3, d4, d5, d6; double norm; int tk, tkmin, tkmax; double phase; double sum_pos = 0.0; double sum_neg = 0.0; double sumsq_err = 0.0; int status = 0; status += delta(two_ja, two_jb, two_jc, &d1); status += delta(two_ja, two_je, two_jf, &d2); status += delta(two_jb, two_jd, two_jf, &d3); status += delta(two_je, two_jd, two_jc, &d4); if(status != GSL_SUCCESS) { OVERFLOW_ERROR(result); } norm = sqrt(d1.val) * sqrt(d2.val) * sqrt(d3.val) * sqrt(d4.val); tkmin = locMax3(0, two_ja + two_jd - two_jc - two_jf, two_jb + two_je - two_jc - two_jf); tkmax = locMin5(two_ja + two_jb + two_je + two_jd + 2, two_ja + two_jb - two_jc, two_je + two_jd - two_jc, two_ja + two_je - two_jf, two_jb + two_jd - two_jf); phase = GSL_IS_ODD((two_ja + two_jb + two_je + two_jd + tkmin)/2) ? -1.0 : 1.0; for(tk=tkmin; tk<=tkmax; tk += 2) { double term; double term_err; gsl_sf_result den_1, den_2; gsl_sf_result d1_a, d1_b; status = 0; status += gsl_sf_fact_e((two_ja + two_jb + two_je + two_jd - tk)/2 + 1, &n1); status += gsl_sf_fact_e(tk/2, &d1_a); status += gsl_sf_fact_e((two_jc + two_jf - two_ja - two_jd + tk)/2, &d1_b); status += gsl_sf_fact_e((two_jc + two_jf - two_jb - two_je + tk)/2, &d2); status += gsl_sf_fact_e((two_ja + two_jb - two_jc - tk)/2, &d3); status += gsl_sf_fact_e((two_je + two_jd - two_jc - tk)/2, &d4); status += gsl_sf_fact_e((two_ja + two_je - two_jf - tk)/2, &d5); status += gsl_sf_fact_e((two_jb + two_jd - two_jf - tk)/2, &d6); if(status != GSL_SUCCESS) { OVERFLOW_ERROR(result); } d1.val = d1_a.val * d1_b.val; d1.err = d1_a.err * fabs(d1_b.val) + fabs(d1_a.val) * d1_b.err; den_1.val = d1.val*d2.val*d3.val; den_1.err = d1.err * fabs(d2.val*d3.val); den_1.err += d2.err * fabs(d1.val*d3.val); den_1.err += d3.err * fabs(d1.val*d2.val); den_2.val = d4.val*d5.val*d6.val; den_2.err = d4.err * fabs(d5.val*d6.val); den_2.err += d5.err * fabs(d4.val*d6.val); den_2.err += d6.err * fabs(d4.val*d5.val); term = phase * n1.val / den_1.val / den_2.val; phase = -phase; term_err = n1.err / fabs(den_1.val) / fabs(den_2.val); term_err += fabs(term / den_1.val) * den_1.err; term_err += fabs(term / den_2.val) * den_2.err; if(term >= 0.0) { sum_pos += norm*term; } else { sum_neg -= norm*term; } sumsq_err += norm*norm * term_err*term_err; } result->val = sum_pos - sum_neg; result->err = 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += sqrt(sumsq_err / (0.5*(tkmax-tkmin)+1.0)); result->err += 2.0 * GSL_DBL_EPSILON * (tkmax - tkmin + 2.0) * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_coupling_RacahW_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, gsl_sf_result * result) { int status = gsl_sf_coupling_6j_e(two_ja, two_jb, two_je, two_jd, two_jc, two_jf, result); int phase_sum = (two_ja + two_jb + two_jc + two_jd)/2; result->val *= ( GSL_IS_ODD(phase_sum) ? -1.0 : 1.0 ); return status; } int gsl_sf_coupling_9j_e(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if( two_ja < 0 || two_jb < 0 || two_jc < 0 || two_jd < 0 || two_je < 0 || two_jf < 0 || two_jg < 0 || two_jh < 0 || two_ji < 0 ) { DOMAIN_ERROR(result); } else if( triangle_selection_fails(two_ja, two_jb, two_jc) || triangle_selection_fails(two_jd, two_je, two_jf) || triangle_selection_fails(two_jg, two_jh, two_ji) || triangle_selection_fails(two_ja, two_jd, two_jg) || triangle_selection_fails(two_jb, two_je, two_jh) || triangle_selection_fails(two_jc, two_jf, two_ji) ) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { int tk; int tkmin = locMax3(abs(two_ja-two_ji), abs(two_jh-two_jd), abs(two_jb-two_jf)); int tkmax = locMin3(two_ja + two_ji, two_jh + two_jd, two_jb + two_jf); double sum_pos = 0.0; double sum_neg = 0.0; double sumsq_err = 0.0; double phase; for(tk=tkmin; tk<=tkmax; tk += 2) { gsl_sf_result s1, s2, s3; double term; double term_err; int status = 0; status += gsl_sf_coupling_6j_e(two_ja, two_ji, tk, two_jh, two_jd, two_jg, &s1); status += gsl_sf_coupling_6j_e(two_jb, two_jf, tk, two_jd, two_jh, two_je, &s2); status += gsl_sf_coupling_6j_e(two_ja, two_ji, tk, two_jf, two_jb, two_jc, &s3); if(status != GSL_SUCCESS) { OVERFLOW_ERROR(result); } term = s1.val * s2.val * s3.val; term_err = s1.err * fabs(s2.val*s3.val); term_err += s2.err * fabs(s1.val*s3.val); term_err += s3.err * fabs(s1.val*s2.val); if(term >= 0.0) { sum_pos += (tk + 1) * term; } else { sum_neg -= (tk + 1) * term; } sumsq_err += ((tk+1) * term_err) * ((tk+1) * term_err); } phase = GSL_IS_ODD(tkmin) ? -1.0 : 1.0; result->val = phase * (sum_pos - sum_neg); result->err = 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += sqrt(sumsq_err / (0.5*(tkmax-tkmin)+1.0)); result->err += 2.0 * GSL_DBL_EPSILON * (tkmax-tkmin + 2.0) * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_coupling_3j(int two_ja, int two_jb, int two_jc, int two_ma, int two_mb, int two_mc) { EVAL_RESULT(gsl_sf_coupling_3j_e(two_ja, two_jb, two_jc, two_ma, two_mb, two_mc, &result)); } double gsl_sf_coupling_6j_INCORRECT(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) { EVAL_RESULT(gsl_sf_coupling_6j_INCORRECT_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, &result)); } double gsl_sf_coupling_6j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) { EVAL_RESULT(gsl_sf_coupling_6j_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, &result)); } double gsl_sf_coupling_RacahW(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf) { EVAL_RESULT(gsl_sf_coupling_RacahW_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, &result)); } double gsl_sf_coupling_9j(int two_ja, int two_jb, int two_jc, int two_jd, int two_je, int two_jf, int two_jg, int two_jh, int two_ji) { EVAL_RESULT(gsl_sf_coupling_9j_e(two_ja, two_jb, two_jc, two_jd, two_je, two_jf, two_jg, two_jh, two_ji, &result)); } gsl-1.16/specfunc/legendre_H3d.c0000664000252300025230000004205512171574312013415 00000000000000/* specfunc/legendre_H3d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" #include "legendre.h" /* See [Abbott+Schaefer, Ap.J. 308, 546 (1986)] for * enough details to follow what is happening here. */ /* Logarithm of normalization factor, Log[N(ell,lambda)]. * N(ell,lambda) = Product[ lambda^2 + n^2, {n,0,ell} ] * = |Gamma(ell + 1 + I lambda)|^2 lambda sinh(Pi lambda) / Pi * Assumes ell >= 0. */ static int legendre_H3d_lnnorm(const int ell, const double lambda, double * result) { double abs_lam = fabs(lambda); if(abs_lam == 0.0) { *result = 0.0; GSL_ERROR ("error", GSL_EDOM); } else if(lambda > (ell + 1.0)/GSL_ROOT3_DBL_EPSILON) { /* There is a cancellation between the sinh(Pi lambda) * term and the log(gamma(ell + 1 + i lambda) in the * result below, so we show some care and save some digits. * Note that the above guarantees that lambda is large, * since ell >= 0. We use Stirling and a simple expansion * of sinh. */ double rat = (ell+1.0)/lambda; double ln_lam2ell2 = 2.0*log(lambda) + log(1.0 + rat*rat); double lg_corrected = -2.0*(ell+1.0) + M_LNPI + (ell+0.5)*ln_lam2ell2 + 1.0/(288.0*lambda*lambda); double angle_terms = lambda * 2.0 * rat * (1.0 - rat*rat/3.0); *result = log(abs_lam) + lg_corrected + angle_terms - M_LNPI; return GSL_SUCCESS; } else { gsl_sf_result lg_r; gsl_sf_result lg_theta; gsl_sf_result ln_sinh; gsl_sf_lngamma_complex_e(ell+1.0, lambda, &lg_r, &lg_theta); gsl_sf_lnsinh_e(M_PI * abs_lam, &ln_sinh); *result = log(abs_lam) + ln_sinh.val + 2.0*lg_r.val - M_LNPI; return GSL_SUCCESS; } } /* Calculate series for small eta*lambda. * Assumes eta > 0, lambda != 0. * * This is just the defining hypergeometric for the Legendre function. * * P^{mu}_{-1/2 + I lam}(z) = 1/Gamma(l+3/2) ((z+1)/(z-1)^(mu/2) * 2F1(1/2 - I lam, 1/2 + I lam; l+3/2; (1-z)/2) * We use * z = cosh(eta) * (z-1)/2 = sinh^2(eta/2) * * And recall * H3d = sqrt(Pi Norm /(2 lam^2 sinh(eta))) P^{-l-1/2}_{-1/2 + I lam}(cosh(eta)) */ static int legendre_H3d_series(const int ell, const double lambda, const double eta, gsl_sf_result * result) { const int nmax = 5000; const double shheta = sinh(0.5*eta); const double ln_zp1 = M_LN2 + log(1.0 + shheta*shheta); const double ln_zm1 = M_LN2 + 2.0*log(shheta); const double zeta = -shheta*shheta; gsl_sf_result lg_lp32; double term = 1.0; double sum = 1.0; double sum_err = 0.0; gsl_sf_result lnsheta; double lnN; double lnpre_val, lnpre_err, lnprepow; int stat_e; int n; gsl_sf_lngamma_e(ell + 3.0/2.0, &lg_lp32); gsl_sf_lnsinh_e(eta, &lnsheta); legendre_H3d_lnnorm(ell, lambda, &lnN); lnprepow = 0.5*(ell + 0.5) * (ln_zm1 - ln_zp1); lnpre_val = lnprepow + 0.5*(lnN + M_LNPI - M_LN2 - lnsheta.val) - lg_lp32.val - log(fabs(lambda)); lnpre_err = lnsheta.err + lg_lp32.err + GSL_DBL_EPSILON * fabs(lnpre_val); lnpre_err += 2.0*GSL_DBL_EPSILON * (fabs(lnN) + M_LNPI + M_LN2); lnpre_err += 2.0*GSL_DBL_EPSILON * (0.5*(ell + 0.5) * (fabs(ln_zm1) + fabs(ln_zp1))); for(n=1; n RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 4.0*GSL_DBL_EPSILON) break; } result->val = fn; result->err = 2.0 * GSL_DBL_EPSILON * (sqrt(n)+1.0) * fabs(fn); if(n >= maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } #endif /* 0 */ /* Evaluate legendre_H3d(ell+1)/legendre_H3d(ell) * by continued fraction. Use the Gautschi (Euler) * equivalent series. */ /* FIXME: Maybe we have to worry about this. The a_k are * not positive and there can be a blow-up. It happened * for J_nu once or twice. Then we should probably use * the method above. */ static int legendre_H3d_CF1_ser(const int ell, const double lambda, const double coth_eta, gsl_sf_result * result) { const double pre = hypot(lambda, ell+1.0)/((2.0*ell+3)*coth_eta); const int maxk = 20000; double tk = 1.0; double sum = 1.0; double rhok = 0.0; double sum_err = 0.0; int k; for(k=1; kval = pre * sum; result->err = fabs(pre * tk); result->err += fabs(pre * sum_err); result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); if(k >= maxk) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_legendre_H3d_0_e(const double lambda, const double eta, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(eta < 0.0) { DOMAIN_ERROR(result); } else if(eta == 0.0 || lambda == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else { const double lam_eta = lambda * eta; gsl_sf_result s; gsl_sf_sin_err_e(lam_eta, 2.0*GSL_DBL_EPSILON * fabs(lam_eta), &s); if(eta > -0.5*GSL_LOG_DBL_EPSILON) { double f = 2.0 / lambda * exp(-eta); result->val = f * s.val; result->err = fabs(f * s.val) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON; result->err += fabs(f) * s.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } else { double f = 1.0/(lambda*sinh(eta)); result->val = f * s.val; result->err = fabs(f * s.val) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON; result->err += fabs(f) * s.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } } int gsl_sf_legendre_H3d_1_e(const double lambda, const double eta, gsl_sf_result * result) { const double xi = fabs(eta*lambda); const double lsq = lambda*lambda; const double lsqp1 = lsq + 1.0; /* CHECK_POINTER(result) */ if(eta < 0.0) { DOMAIN_ERROR(result); } else if(eta == 0.0 || lambda == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(xi < GSL_ROOT5_DBL_EPSILON && eta < GSL_ROOT5_DBL_EPSILON) { double etasq = eta*eta; double xisq = xi*xi; double term1 = (etasq + xisq)/3.0; double term2 = -(2.0*etasq*etasq + 5.0*etasq*xisq + 3.0*xisq*xisq)/90.0; double sinh_term = 1.0 - eta*eta/6.0 * (1.0 - 7.0/60.0*eta*eta); double pre = sinh_term/sqrt(lsqp1) / eta; result->val = pre * (term1 + term2); result->err = pre * GSL_DBL_EPSILON * (fabs(term1) + fabs(term2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double sin_term; /* Sin(xi)/xi */ double cos_term; /* Cos(xi) */ double coth_term; /* eta/Tanh(eta) */ double sinh_term; /* eta/Sinh(eta) */ double sin_term_err; double cos_term_err; double t1; double pre_val; double pre_err; double term1; double term2; if(xi < GSL_ROOT5_DBL_EPSILON) { sin_term = 1.0 - xi*xi/6.0 * (1.0 - xi*xi/20.0); cos_term = 1.0 - 0.5*xi*xi * (1.0 - xi*xi/12.0); sin_term_err = GSL_DBL_EPSILON; cos_term_err = GSL_DBL_EPSILON; } else { gsl_sf_result sin_xi_result; gsl_sf_result cos_xi_result; gsl_sf_sin_e(xi, &sin_xi_result); gsl_sf_cos_e(xi, &cos_xi_result); sin_term = sin_xi_result.val/xi; cos_term = cos_xi_result.val; sin_term_err = sin_xi_result.err/fabs(xi); cos_term_err = cos_xi_result.err; } if(eta < GSL_ROOT5_DBL_EPSILON) { coth_term = 1.0 + eta*eta/3.0 * (1.0 - eta*eta/15.0); sinh_term = 1.0 - eta*eta/6.0 * (1.0 - 7.0/60.0*eta*eta); } else { coth_term = eta/tanh(eta); sinh_term = eta/sinh(eta); } t1 = sqrt(lsqp1) * eta; pre_val = sinh_term/t1; pre_err = 2.0 * GSL_DBL_EPSILON * fabs(pre_val); term1 = sin_term*coth_term; term2 = cos_term; result->val = pre_val * (term1 - term2); result->err = pre_err * fabs(term1 - term2); result->err += pre_val * (sin_term_err * coth_term + cos_term_err); result->err += pre_val * fabs(term1-term2) * (fabs(eta) + 1.0) * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_legendre_H3d_e(const int ell, const double lambda, const double eta, gsl_sf_result * result) { const double abs_lam = fabs(lambda); const double lsq = abs_lam*abs_lam; const double xi = abs_lam * eta; const double cosh_eta = cosh(eta); /* CHECK_POINTER(result) */ if(eta < 0.0) { DOMAIN_ERROR(result); } else if(eta > GSL_LOG_DBL_MAX) { /* cosh(eta) is too big. */ OVERFLOW_ERROR(result); } else if(ell == 0) { return gsl_sf_legendre_H3d_0_e(lambda, eta, result); } else if(ell == 1) { return gsl_sf_legendre_H3d_1_e(lambda, eta, result); } else if(eta == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(xi < 1.0) { return legendre_H3d_series(ell, lambda, eta, result); } else if((ell*ell+lsq)/sqrt(1.0+lsq)/(cosh_eta*cosh_eta) < 5.0*GSL_ROOT3_DBL_EPSILON) { /* Large argument. */ gsl_sf_result P; double lm; int stat_P = gsl_sf_conicalP_large_x_e(-ell-0.5, lambda, cosh_eta, &P, &lm); if(P.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_P; } else { double lnN; gsl_sf_result lnsh; double ln_abslam; double lnpre_val, lnpre_err; int stat_e; gsl_sf_lnsinh_e(eta, &lnsh); legendre_H3d_lnnorm(ell, lambda, &lnN); ln_abslam = log(abs_lam); lnpre_val = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam; lnpre_err = lnsh.err; lnpre_err += 2.0 * GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam)); lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_P); } } else if(abs_lam > 1000.0*ell*ell) { /* Large degree. */ gsl_sf_result P; double lm; int stat_P = gsl_sf_conicalP_xgt1_neg_mu_largetau_e(ell+0.5, lambda, cosh_eta, eta, &P, &lm); if(P.val == 0.0) { result->val = 0.0; result->err = 0.0; return stat_P; } else { double lnN; gsl_sf_result lnsh; double ln_abslam; double lnpre_val, lnpre_err; int stat_e; gsl_sf_lnsinh_e(eta, &lnsh); legendre_H3d_lnnorm(ell, lambda, &lnN); ln_abslam = log(abs_lam); lnpre_val = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam; lnpre_err = lnsh.err; lnpre_err += GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam)); lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_P); } } else { /* Backward recurrence. */ const double coth_eta = 1.0/tanh(eta); const double coth_err_mult = fabs(eta) + 1.0; gsl_sf_result rH; int stat_CF1 = legendre_H3d_CF1_ser(ell, lambda, coth_eta, &rH); double Hlm1; double Hl = GSL_SQRT_DBL_MIN; double Hlp1 = rH.val * Hl; int lp; for(lp=ell; lp>0; lp--) { double root_term_0 = hypot(lambda,lp); double root_term_1 = hypot(lambda,lp+1.0); Hlm1 = ((2.0*lp + 1.0)*coth_eta*Hl - root_term_1 * Hlp1)/root_term_0; Hlp1 = Hl; Hl = Hlm1; } if(fabs(Hl) > fabs(Hlp1)) { gsl_sf_result H0; int stat_H0 = gsl_sf_legendre_H3d_0_e(lambda, eta, &H0); result->val = GSL_SQRT_DBL_MIN/Hl * H0.val; result->err = GSL_SQRT_DBL_MIN/fabs(Hl) * H0.err; result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_H0, stat_CF1); } else { gsl_sf_result H1; int stat_H1 = gsl_sf_legendre_H3d_1_e(lambda, eta, &H1); result->val = GSL_SQRT_DBL_MIN/Hlp1 * H1.val; result->err = GSL_SQRT_DBL_MIN/fabs(Hlp1) * H1.err; result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_H1, stat_CF1); } } } int gsl_sf_legendre_H3d_array(const int lmax, const double lambda, const double eta, double * result_array) { /* CHECK_POINTER(result_array) */ if(eta < 0.0 || lmax < 0) { int ell; for(ell=0; ell<=lmax; ell++) result_array[ell] = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(eta > GSL_LOG_DBL_MAX) { /* cosh(eta) is too big. */ int ell; for(ell=0; ell<=lmax; ell++) result_array[ell] = 0.0; GSL_ERROR ("overflow", GSL_EOVRFLW); } else if(lmax == 0) { gsl_sf_result H0; int stat = gsl_sf_legendre_H3d_e(0, lambda, eta, &H0); result_array[0] = H0.val; return stat; } else { /* Not the most efficient method. But what the hell... it's simple. */ gsl_sf_result r_Hlp1; gsl_sf_result r_Hl; int stat_lmax = gsl_sf_legendre_H3d_e(lmax, lambda, eta, &r_Hlp1); int stat_lmaxm1 = gsl_sf_legendre_H3d_e(lmax-1, lambda, eta, &r_Hl); int stat_max = GSL_ERROR_SELECT_2(stat_lmax, stat_lmaxm1); const double coth_eta = 1.0/tanh(eta); int stat_recursion = GSL_SUCCESS; double Hlp1 = r_Hlp1.val; double Hl = r_Hl.val; double Hlm1; int ell; result_array[lmax] = Hlp1; result_array[lmax-1] = Hl; for(ell=lmax-1; ell>0; ell--) { double root_term_0 = hypot(lambda,ell); double root_term_1 = hypot(lambda,ell+1.0); Hlm1 = ((2.0*ell + 1.0)*coth_eta*Hl - root_term_1 * Hlp1)/root_term_0; result_array[ell-1] = Hlm1; if(!(Hlm1 < GSL_DBL_MAX)) stat_recursion = GSL_EOVRFLW; Hlp1 = Hl; Hl = Hlm1; } return GSL_ERROR_SELECT_2(stat_recursion, stat_max); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_legendre_H3d_0(const double lambda, const double eta) { EVAL_RESULT(gsl_sf_legendre_H3d_0_e(lambda, eta, &result)); } double gsl_sf_legendre_H3d_1(const double lambda, const double eta) { EVAL_RESULT(gsl_sf_legendre_H3d_1_e(lambda, eta, &result)); } double gsl_sf_legendre_H3d(const int l, const double lambda, const double eta) { EVAL_RESULT(gsl_sf_legendre_H3d_e(l, lambda, eta, &result)); } gsl-1.16/specfunc/trig.c0000664000252300025230000004643112171574312012101 00000000000000/* specfunc/trig.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /* sinh(x) series * double-precision for |x| < 1.0 */ inline static int sinh_series(const double x, double * result) { const double y = x*x; const double c0 = 1.0/6.0; const double c1 = 1.0/120.0; const double c2 = 1.0/5040.0; const double c3 = 1.0/362880.0; const double c4 = 1.0/39916800.0; const double c5 = 1.0/6227020800.0; const double c6 = 1.0/1307674368000.0; const double c7 = 1.0/355687428096000.0; *result = x*(1.0 + y*(c0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*c7)))))))); return GSL_SUCCESS; } /* cosh(x)-1 series * double-precision for |x| < 1.0 */ inline static int cosh_m1_series(const double x, double * result) { const double y = x*x; const double c0 = 0.5; const double c1 = 1.0/24.0; const double c2 = 1.0/720.0; const double c3 = 1.0/40320.0; const double c4 = 1.0/3628800.0; const double c5 = 1.0/479001600.0; const double c6 = 1.0/87178291200.0; const double c7 = 1.0/20922789888000.0; const double c8 = 1.0/6402373705728000.0; *result = y*(c0+y*(c1+y*(c2+y*(c3+y*(c4+y*(c5+y*(c6+y*(c7+y*c8)))))))); return GSL_SUCCESS; } /* Chebyshev expansion for f(t) = sinc((t+1)/2), -1 < t < 1 */ static double sinc_data[17] = { 1.133648177811747875422, -0.532677564732557348781, -0.068293048346633177859, 0.033403684226353715020, 0.001485679893925747818, -0.000734421305768455295, -0.000016837282388837229, 0.000008359950146618018, 0.000000117382095601192, -0.000000058413665922724, -0.000000000554763755743, 0.000000000276434190426, 0.000000000001895374892, -0.000000000000945237101, -0.000000000000004900690, 0.000000000000002445383, 0.000000000000000009925 }; static cheb_series sinc_cs = { sinc_data, 16, -1, 1, 10 }; /* Chebyshev expansion for f(t) = g((t+1)Pi/8), -1val = x * (1.0 - x2/6.0); result->err = fabs(x*x2*x2 / 100.0); return GSL_SUCCESS; } else { double sgn_result = sgn_x; double y = floor(abs_x/(0.25*M_PI)); int octant = y - ldexp(floor(ldexp(y,-3)),3); int stat_cs; double z; if(GSL_IS_ODD(octant)) { octant += 1; octant &= 07; y += 1.0; } if(octant > 3) { octant -= 4; sgn_result = -sgn_result; } z = ((abs_x - y * P1) - y * P2) - y * P3; if(octant == 0) { gsl_sf_result sin_cs_result; const double t = 8.0*fabs(z)/M_PI - 1.0; stat_cs = cheb_eval_e(&sin_cs, t, &sin_cs_result); result->val = z * (1.0 + z*z * sin_cs_result.val); } else { /* octant == 2 */ gsl_sf_result cos_cs_result; const double t = 8.0*fabs(z)/M_PI - 1.0; stat_cs = cheb_eval_e(&cos_cs, t, &cos_cs_result); result->val = 1.0 - 0.5*z*z * (1.0 - z*z * cos_cs_result.val); } result->val *= sgn_result; if(abs_x > 1.0/GSL_DBL_EPSILON) { result->err = fabs(result->val); } else if(abs_x > 100.0/GSL_SQRT_DBL_EPSILON) { result->err = 2.0 * abs_x * GSL_DBL_EPSILON * fabs(result->val); } else if(abs_x > 0.1/GSL_SQRT_DBL_EPSILON) { result->err = 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val); } else { result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return stat_cs; } } } int gsl_sf_cos_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { const double P1 = 7.85398125648498535156e-1; const double P2 = 3.77489470793079817668e-8; const double P3 = 2.69515142907905952645e-15; const double abs_x = fabs(x); if(abs_x < GSL_ROOT4_DBL_EPSILON) { const double x2 = x*x; result->val = 1.0 - 0.5*x2; result->err = fabs(x2*x2/12.0); return GSL_SUCCESS; } else { double sgn_result = 1.0; double y = floor(abs_x/(0.25*M_PI)); int octant = y - ldexp(floor(ldexp(y,-3)),3); int stat_cs; double z; if(GSL_IS_ODD(octant)) { octant += 1; octant &= 07; y += 1.0; } if(octant > 3) { octant -= 4; sgn_result = -sgn_result; } if(octant > 1) { sgn_result = -sgn_result; } z = ((abs_x - y * P1) - y * P2) - y * P3; if(octant == 0) { gsl_sf_result cos_cs_result; const double t = 8.0*fabs(z)/M_PI - 1.0; stat_cs = cheb_eval_e(&cos_cs, t, &cos_cs_result); result->val = 1.0 - 0.5*z*z * (1.0 - z*z * cos_cs_result.val); } else { /* octant == 2 */ gsl_sf_result sin_cs_result; const double t = 8.0*fabs(z)/M_PI - 1.0; stat_cs = cheb_eval_e(&sin_cs, t, &sin_cs_result); result->val = z * (1.0 + z*z * sin_cs_result.val); } result->val *= sgn_result; if(abs_x > 1.0/GSL_DBL_EPSILON) { result->err = fabs(result->val); } else if(abs_x > 100.0/GSL_SQRT_DBL_EPSILON) { result->err = 2.0 * abs_x * GSL_DBL_EPSILON * fabs(result->val); } else if(abs_x > 0.1/GSL_SQRT_DBL_EPSILON) { result->err = 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val); } else { result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); } return stat_cs; } } } int gsl_sf_hypot_e(const double x, const double y, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.0 && y == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { const double a = fabs(x); const double b = fabs(y); const double min = GSL_MIN_DBL(a,b); const double max = GSL_MAX_DBL(a,b); const double rat = min/max; const double root_term = sqrt(1.0 + rat*rat); if(max < GSL_DBL_MAX/root_term) { result->val = max * root_term; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } } int gsl_sf_complex_sin_e(const double zr, const double zi, gsl_sf_result * szr, gsl_sf_result * szi) { /* CHECK_POINTER(szr) */ /* CHECK_POINTER(szi) */ if(fabs(zi) < 1.0) { double ch_m1, sh; sinh_series(zi, &sh); cosh_m1_series(zi, &ch_m1); szr->val = sin(zr)*(ch_m1 + 1.0); szi->val = cos(zr)*sh; szr->err = 2.0 * GSL_DBL_EPSILON * fabs(szr->val); szi->err = 2.0 * GSL_DBL_EPSILON * fabs(szi->val); return GSL_SUCCESS; } else if(fabs(zi) < GSL_LOG_DBL_MAX) { double ex = exp(zi); double ch = 0.5*(ex+1.0/ex); double sh = 0.5*(ex-1.0/ex); szr->val = sin(zr)*ch; szi->val = cos(zr)*sh; szr->err = 2.0 * GSL_DBL_EPSILON * fabs(szr->val); szi->err = 2.0 * GSL_DBL_EPSILON * fabs(szi->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR_2(szr, szi); } } int gsl_sf_complex_cos_e(const double zr, const double zi, gsl_sf_result * czr, gsl_sf_result * czi) { /* CHECK_POINTER(czr) */ /* CHECK_POINTER(czi) */ if(fabs(zi) < 1.0) { double ch_m1, sh; sinh_series(zi, &sh); cosh_m1_series(zi, &ch_m1); czr->val = cos(zr)*(ch_m1 + 1.0); czi->val = -sin(zr)*sh; czr->err = 2.0 * GSL_DBL_EPSILON * fabs(czr->val); czi->err = 2.0 * GSL_DBL_EPSILON * fabs(czi->val); return GSL_SUCCESS; } else if(fabs(zi) < GSL_LOG_DBL_MAX) { double ex = exp(zi); double ch = 0.5*(ex+1.0/ex); double sh = 0.5*(ex-1.0/ex); czr->val = cos(zr)*ch; czi->val = -sin(zr)*sh; czr->err = 2.0 * GSL_DBL_EPSILON * fabs(czr->val); czi->err = 2.0 * GSL_DBL_EPSILON * fabs(czi->val); return GSL_SUCCESS; } else { OVERFLOW_ERROR_2(czr,czi); } } int gsl_sf_complex_logsin_e(const double zr, const double zi, gsl_sf_result * lszr, gsl_sf_result * lszi) { /* CHECK_POINTER(lszr) */ /* CHECK_POINTER(lszi) */ if(zi > 60.0) { lszr->val = -M_LN2 + zi; lszi->val = 0.5*M_PI - zr; lszr->err = 2.0 * GSL_DBL_EPSILON * fabs(lszr->val); lszi->err = 2.0 * GSL_DBL_EPSILON * fabs(lszi->val); } else if(zi < -60.0) { lszr->val = -M_LN2 - zi; lszi->val = -0.5*M_PI + zr; lszr->err = 2.0 * GSL_DBL_EPSILON * fabs(lszr->val); lszi->err = 2.0 * GSL_DBL_EPSILON * fabs(lszi->val); } else { gsl_sf_result sin_r, sin_i; int status; gsl_sf_complex_sin_e(zr, zi, &sin_r, &sin_i); /* ok by construction */ status = gsl_sf_complex_log_e(sin_r.val, sin_i.val, lszr, lszi); if(status == GSL_EDOM) { DOMAIN_ERROR_2(lszr, lszi); } } return gsl_sf_angle_restrict_symm_e(&(lszi->val)); } int gsl_sf_lnsinh_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(fabs(x) < 1.0) { double eps; sinh_series(x, &eps); result->val = log(eps); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < -0.5*GSL_LOG_DBL_EPSILON) { result->val = x + log(0.5*(1.0 - exp(-2.0*x))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = -M_LN2 + x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_lncosh_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(fabs(x) < 1.0) { double eps; cosh_m1_series(x, &eps); return gsl_sf_log_1plusx_e(eps, result); } else if(fabs(x) < -0.5*GSL_LOG_DBL_EPSILON) { result->val = fabs(x) + log(0.5*(1.0 + exp(-2.0*fabs(x)))); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = -M_LN2 + fabs(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /* inline int gsl_sf_sincos_e(const double theta, double * s, double * c) { double tan_half = tan(0.5 * theta); double den = 1. + tan_half*tan_half; double cos_theta = (1.0 - tan_half*tan_half) / den; double sin_theta = 2.0 * tan_half / den; } */ int gsl_sf_polar_to_rect(const double r, const double theta, gsl_sf_result * x, gsl_sf_result * y) { double t = theta; int status = gsl_sf_angle_restrict_symm_e(&t); double c = cos(t); double s = sin(t); x->val = r * cos(t); y->val = r * sin(t); x->err = r * fabs(s * GSL_DBL_EPSILON * t); x->err += 2.0 * GSL_DBL_EPSILON * fabs(x->val); y->err = r * fabs(c * GSL_DBL_EPSILON * t); y->err += 2.0 * GSL_DBL_EPSILON * fabs(y->val); return status; } int gsl_sf_rect_to_polar(const double x, const double y, gsl_sf_result * r, gsl_sf_result * theta) { int stat_h = gsl_sf_hypot_e(x, y, r); if(r->val > 0.0) { theta->val = atan2(y, x); theta->err = 2.0 * GSL_DBL_EPSILON * fabs(theta->val); return stat_h; } else { DOMAIN_ERROR(theta); } } int gsl_sf_angle_restrict_symm_err_e(const double theta, gsl_sf_result * result) { /* synthetic extended precision constants */ const double P1 = 4 * 7.8539812564849853515625e-01; const double P2 = 4 * 3.7748947079307981766760e-08; const double P3 = 4 * 2.6951514290790594840552e-15; const double TwoPi = 2*(P1 + P2 + P3); const double y = GSL_SIGN(theta) * 2 * floor(fabs(theta)/TwoPi); double r = ((theta - y*P1) - y*P2) - y*P3; if(r > M_PI) { r = (((r-2*P1)-2*P2)-2*P3); } /* r-TwoPi */ else if (r < -M_PI) r = (((r+2*P1)+2*P2)+2*P3); /* r+TwoPi */ result->val = r; if(fabs(theta) > 0.0625/GSL_DBL_EPSILON) { result->val = GSL_NAN; result->err = GSL_NAN; GSL_ERROR ("error", GSL_ELOSS); } else if(fabs(theta) > 0.0625/GSL_SQRT_DBL_EPSILON) { result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val - theta); return GSL_SUCCESS; } else { double delta = fabs(result->val - theta); result->err = 2.0 * GSL_DBL_EPSILON * ((delta < M_PI) ? delta : M_PI); return GSL_SUCCESS; } } int gsl_sf_angle_restrict_pos_err_e(const double theta, gsl_sf_result * result) { /* synthetic extended precision constants */ const double P1 = 4 * 7.85398125648498535156e-01; const double P2 = 4 * 3.77489470793079817668e-08; const double P3 = 4 * 2.69515142907905952645e-15; const double TwoPi = 2*(P1 + P2 + P3); const double y = 2*floor(theta/TwoPi); double r = ((theta - y*P1) - y*P2) - y*P3; if(r > TwoPi) {r = (((r-2*P1)-2*P2)-2*P3); } /* r-TwoPi */ else if (r < 0) { /* may happen due to FP rounding */ r = (((r+2*P1)+2*P2)+2*P3); /* r+TwoPi */ } result->val = r; if(fabs(theta) > 0.0625/GSL_DBL_EPSILON) { result->val = GSL_NAN; result->err = fabs(result->val); GSL_ERROR ("error", GSL_ELOSS); } else if(fabs(theta) > 0.0625/GSL_SQRT_DBL_EPSILON) { result->err = GSL_DBL_EPSILON * fabs(result->val - theta); return GSL_SUCCESS; } else { double delta = fabs(result->val - theta); result->err = 2.0 * GSL_DBL_EPSILON * ((delta < M_PI) ? delta : M_PI); return GSL_SUCCESS; } } int gsl_sf_angle_restrict_symm_e(double * theta) { gsl_sf_result r; int stat = gsl_sf_angle_restrict_symm_err_e(*theta, &r); *theta = r.val; return stat; } int gsl_sf_angle_restrict_pos_e(double * theta) { gsl_sf_result r; int stat = gsl_sf_angle_restrict_pos_err_e(*theta, &r); *theta = r.val; return stat; } int gsl_sf_sin_err_e(const double x, const double dx, gsl_sf_result * result) { int stat_s = gsl_sf_sin_e(x, result); result->err += fabs(cos(x) * dx); result->err += GSL_DBL_EPSILON * fabs(result->val); return stat_s; } int gsl_sf_cos_err_e(const double x, const double dx, gsl_sf_result * result) { int stat_c = gsl_sf_cos_e(x, result); result->err += fabs(sin(x) * dx); result->err += GSL_DBL_EPSILON * fabs(result->val); return stat_c; } #if 0 int gsl_sf_sin_pi_x_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(-100.0 < x && x < 100.0) { result->val = sin(M_PI * x) / (M_PI * x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double N = floor(x + 0.5); const double f = x - N; if(N < INT_MAX && N > INT_MIN) { /* Make it an integer if we can. Saves another * call to floor(). */ const int intN = (int)N; const double sign = ( GSL_IS_ODD(intN) ? -1.0 : 1.0 ); result->val = sign * sin(M_PI * f); result->err = GSL_DBL_EPSILON * fabs(result->val); } else if(N > 2.0/GSL_DBL_EPSILON || N < -2.0/GSL_DBL_EPSILON) { /* All integer-valued floating point numbers * bigger than 2/eps=2^53 are actually even. */ result->val = 0.0; result->err = 0.0; } else { const double resN = N - 2.0*floor(0.5*N); /* 0 for even N, 1 for odd N */ const double sign = ( fabs(resN) > 0.5 ? -1.0 : 1.0 ); result->val = sign * sin(M_PI*f); result->err = GSL_DBL_EPSILON * fabs(result->val); } return GSL_SUCCESS; } } #endif int gsl_sf_sinc_e(double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { const double ax = fabs(x); if(ax < 0.8) { /* Do not go to the limit of the fit since * there is a zero there and the Chebyshev * accuracy will go to zero. */ return cheb_eval_e(&sinc_cs, 2.0*ax-1.0, result); } else if(ax < 100.0) { /* Small arguments are no problem. * We trust the library sin() to * roughly machine precision. */ result->val = sin(M_PI * ax)/(M_PI * ax); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* Large arguments must be handled separately. */ const double r = M_PI*ax; gsl_sf_result s; int stat_s = gsl_sf_sin_e(r, &s); result->val = s.val/r; result->err = s.err/r + 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_s; } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_sin(const double x) { EVAL_RESULT(gsl_sf_sin_e(x, &result)); } double gsl_sf_cos(const double x) { EVAL_RESULT(gsl_sf_cos_e(x, &result)); } double gsl_sf_hypot(const double x, const double y) { EVAL_RESULT(gsl_sf_hypot_e(x, y, &result)); } double gsl_sf_lnsinh(const double x) { EVAL_RESULT(gsl_sf_lnsinh_e(x, &result)); } double gsl_sf_lncosh(const double x) { EVAL_RESULT(gsl_sf_lncosh_e(x, &result)); } double gsl_sf_angle_restrict_symm(const double theta) { double result = theta; EVAL_DOUBLE(gsl_sf_angle_restrict_symm_e(&result)); } double gsl_sf_angle_restrict_pos(const double theta) { double result = theta; EVAL_DOUBLE(gsl_sf_angle_restrict_pos_e(&result)); } #if 0 double gsl_sf_sin_pi_x(const double x) { EVAL_RESULT(gsl_sf_sin_pi_x_e(x, &result)); } #endif double gsl_sf_sinc(const double x) { EVAL_RESULT(gsl_sf_sinc_e(x, &result)); } gsl-1.16/specfunc/eval.h0000664000252300025230000000064012171574312012060 00000000000000/* evaluate a function discarding the status value in a modifiable way */ #define EVAL_RESULT(fn) \ gsl_sf_result result; \ int status = fn; \ if (status != GSL_SUCCESS) { \ GSL_ERROR_VAL(#fn, status, result.val); \ } ; \ return result.val; #define EVAL_DOUBLE(fn) \ int status = fn; \ if (status != GSL_SUCCESS) { \ GSL_ERROR_VAL(#fn, status, result); \ } ; \ return result; gsl-1.16/specfunc/bessel_Inu.c0000664000252300025230000000653012171574312013220 00000000000000/* specfunc/bessel_Inu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_temme.h" /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Inu_scaled_e(double nu, double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x < 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else if(x*x < 10.0*(nu+1.0)) { gsl_sf_result b; double ex = exp(-x); int stat = gsl_sf_bessel_IJ_taylor_e(nu, x, 1, 100, GSL_DBL_EPSILON, &b); result->val = b.val * ex; result->err = b.err * ex; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } else if(0.5/(nu*nu + x*x) < GSL_ROOT3_DBL_EPSILON) { return gsl_sf_bessel_Inu_scaled_asymp_unif_e(nu, x, result); } else { int N = (int)(nu + 0.5); double mu = nu - N; /* -1/2 <= mu <= 1/2 */ double K_mu, K_mup1, Kp_mu; double K_nu, K_nup1, K_num1; double I_nu_ratio; int stat_Irat; int stat_Kmu; int n; /* obtain K_mu, K_mup1 */ if(x < 2.0) { stat_Kmu = gsl_sf_bessel_K_scaled_temme(mu, x, &K_mu, &K_mup1, &Kp_mu); } else { stat_Kmu = gsl_sf_bessel_K_scaled_steed_temme_CF2(mu, x, &K_mu, &K_mup1, &Kp_mu); } /* recurse forward to obtain K_num1, K_nu */ K_nu = K_mu; K_nup1 = K_mup1; for(n=0; nval = 1.0/(x * (K_nup1 + I_nu_ratio * K_nu)); result->err = GSL_DBL_EPSILON * (0.5*N + 2.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Kmu, stat_Irat); } } int gsl_sf_bessel_Inu_e(double nu, double x, gsl_sf_result * result) { gsl_sf_result b; int stat_I = gsl_sf_bessel_Inu_scaled_e(nu, x, &b); int stat_e = gsl_sf_exp_mult_err_e(x, fabs(x*GSL_DBL_EPSILON), b.val, b.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_I); } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Inu_scaled(double nu, double x) { EVAL_RESULT(gsl_sf_bessel_Inu_scaled_e(nu, x, &result)); } double gsl_sf_bessel_Inu(double nu, double x) { EVAL_RESULT(gsl_sf_bessel_Inu_e(nu, x, &result)); } gsl-1.16/specfunc/coulomb.c0000664000252300025230000011501712171574312012571 00000000000000/* specfunc/coulomb.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Evaluation of Coulomb wave functions F_L(eta, x), G_L(eta, x), * and their derivatives. A combination of Steed's method, asymptotic * results, and power series. * * Steed's method: * [Barnett, CPC 21, 297 (1981)] * Power series and other methods: * [Biedenharn et al., PR 97, 542 (1954)] * [Bardin et al., CPC 3, 73 (1972)] * [Abad+Sesma, CPC 71, 110 (1992)] */ #include #include #include #include #include #include #include #include #include #include "error.h" /* the L=0 normalization constant * [Abramowitz+Stegun 14.1.8] */ static double C0sq(double eta) { double twopieta = 2.0*M_PI*eta; if(fabs(eta) < GSL_DBL_EPSILON) { return 1.0; } else if(twopieta > GSL_LOG_DBL_MAX) { return 0.0; } else { gsl_sf_result scale; gsl_sf_expm1_e(twopieta, &scale); return twopieta/scale.val; } } /* the full definition of C_L(eta) for any valid L and eta * [Abramowitz and Stegun 14.1.7] * This depends on the complex gamma function. For large * arguments the phase of the complex gamma function is not * very accurately determined. However the modulus is, and that * is all that we need to calculate C_L. * * This is not valid for L <= -3/2 or L = -1. */ static int CLeta(double L, double eta, gsl_sf_result * result) { gsl_sf_result ln1; /* log of numerator Gamma function */ gsl_sf_result ln2; /* log of denominator Gamma function */ double sgn = 1.0; double arg_val, arg_err; if(fabs(eta/(L+1.0)) < GSL_DBL_EPSILON) { gsl_sf_lngamma_e(L+1.0, &ln1); } else { gsl_sf_result p1; /* phase of numerator Gamma -- not used */ gsl_sf_lngamma_complex_e(L+1.0, eta, &ln1, &p1); /* should be ok */ } gsl_sf_lngamma_e(2.0*(L+1.0), &ln2); if(L < -1.0) sgn = -sgn; arg_val = L*M_LN2 - 0.5*eta*M_PI + ln1.val - ln2.val; arg_err = ln1.err + ln2.err; arg_err += GSL_DBL_EPSILON * (fabs(L*M_LN2) + fabs(0.5*eta*M_PI)); return gsl_sf_exp_err_e(arg_val, arg_err, result); } int gsl_sf_coulomb_CL_e(double lam, double eta, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(lam <= -1.0) { DOMAIN_ERROR(result); } else if(fabs(lam) < GSL_DBL_EPSILON) { /* saves a calculation of complex_lngamma(), otherwise not necessary */ result->val = sqrt(C0sq(eta)); result->err = 2.0 * GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { return CLeta(lam, eta, result); } } /* cl[0] .. cl[kmax] = C_{lam_min}(eta) .. C_{lam_min+kmax}(eta) */ int gsl_sf_coulomb_CL_array(double lam_min, int kmax, double eta, double * cl) { int k; gsl_sf_result cl_0; gsl_sf_coulomb_CL_e(lam_min, eta, &cl_0); cl[0] = cl_0.val; for(k=1; k<=kmax; k++) { double L = lam_min + k; cl[k] = cl[k-1] * hypot(L, eta)/(L*(2.0*L+1.0)); } return GSL_SUCCESS; } /* Evaluate the series for Phi_L(eta,x) and Phi_L*(eta,x) * [Abramowitz+Stegun 14.1.5] * [Abramowitz+Stegun 14.1.13] * * The sequence of coefficients A_k^L is * manifestly well-controlled for L >= -1/2 * and eta < 10. * * This makes sense since this is the region * away from threshold, and you expect * the evaluation to become easier as you * get farther from threshold. * * Empirically, this is quite well-behaved for * L >= -1/2 * eta < 10 * x < 10 */ #if 0 static int coulomb_Phi_series(const double lam, const double eta, const double x, double * result, double * result_star) { int kmin = 5; int kmax = 200; int k; double Akm2 = 1.0; double Akm1 = eta/(lam+1.0); double Ak; double xpow = x; double sum = Akm2 + Akm1*x; double sump = (lam+1.0)*Akm2 + (lam+2.0)*Akm1*x; double prev_abs_del = fabs(Akm1*x); double prev_abs_del_p = (lam+2.0) * prev_abs_del; for(k=2; k kmin ) break; /* We need to keep track of the previous delta because when * eta is near zero the odd terms of the sum are very small * and this could lead to premature termination. */ prev_abs_del = abs_del; prev_abs_del_p = abs_del_p; Akm2 = Akm1; Akm1 = Ak; } *result = sum; *result_star = sump; if(k==kmax) { GSL_ERROR ("error", GSL_EMAXITER); } else { return GSL_SUCCESS; } } #endif /* 0 */ /* Determine the connection phase, phi_lambda. * See coulomb_FG_series() below. We have * to be careful about sin(phi)->0. Note that * there is an underflow condition for large * positive eta in any case. */ static int coulomb_connection(const double lam, const double eta, double * cos_phi, double * sin_phi) { if(eta > -GSL_LOG_DBL_MIN/2.0*M_PI-1.0) { *cos_phi = 1.0; *sin_phi = 0.0; GSL_ERROR ("error", GSL_EUNDRFLW); } else if(eta > -GSL_LOG_DBL_EPSILON/(4.0*M_PI)) { const double eps = 2.0 * exp(-2.0*M_PI*eta); const double tpl = tan(M_PI * lam); const double dth = eps * tpl / (tpl*tpl + 1.0); *cos_phi = -1.0 + 0.5 * dth*dth; *sin_phi = -dth; return GSL_SUCCESS; } else { double X = tanh(M_PI * eta) / tan(M_PI * lam); double phi = -atan(X) - (lam + 0.5) * M_PI; *cos_phi = cos(phi); *sin_phi = sin(phi); return GSL_SUCCESS; } } /* Evaluate the Frobenius series for F_lam(eta,x) and G_lam(eta,x). * Homegrown algebra. Evaluates the series for F_{lam} and * F_{-lam-1}, then uses * G_{lam} = (F_{lam} cos(phi) - F_{-lam-1}) / sin(phi) * where * phi = Arg[Gamma[1+lam+I eta]] - Arg[Gamma[-lam + I eta]] - (lam+1/2)Pi * = Arg[Sin[Pi(-lam+I eta)] - (lam+1/2)Pi * = atan2(-cos(lam Pi)sinh(eta Pi), -sin(lam Pi)cosh(eta Pi)) - (lam+1/2)Pi * * = -atan(X) - (lam+1/2) Pi, X = tanh(eta Pi)/tan(lam Pi) * * Not appropriate for lam <= -1/2, lam = 0, or lam >= 1/2. */ static int coulomb_FG_series(const double lam, const double eta, const double x, gsl_sf_result * F, gsl_sf_result * G) { const int max_iter = 800; gsl_sf_result ClamA; gsl_sf_result ClamB; int stat_A = CLeta(lam, eta, &ClamA); int stat_B = CLeta(-lam-1.0, eta, &ClamB); const double tlp1 = 2.0*lam + 1.0; const double pow_x = pow(x, lam); double cos_phi_lam; double sin_phi_lam; double uA_mm2 = 1.0; /* uA sum is for F_{lam} */ double uA_mm1 = x*eta/(lam+1.0); double uA_m; double uB_mm2 = 1.0; /* uB sum is for F_{-lam-1} */ double uB_mm1 = -x*eta/lam; double uB_m; double A_sum = uA_mm2 + uA_mm1; double B_sum = uB_mm2 + uB_mm1; double A_abs_del_prev = fabs(A_sum); double B_abs_del_prev = fabs(B_sum); gsl_sf_result FA, FB; int m = 2; int stat_conn = coulomb_connection(lam, eta, &cos_phi_lam, &sin_phi_lam); if(stat_conn == GSL_EUNDRFLW) { F->val = 0.0; /* FIXME: should this be set to Inf too like G? */ F->err = 0.0; OVERFLOW_ERROR(G); } while(m < max_iter) { double abs_dA; double abs_dB; uA_m = x*(2.0*eta*uA_mm1 - x*uA_mm2)/(m*(m+tlp1)); uB_m = x*(2.0*eta*uB_mm1 - x*uB_mm2)/(m*(m-tlp1)); A_sum += uA_m; B_sum += uB_m; abs_dA = fabs(uA_m); abs_dB = fabs(uB_m); if(m > 15) { /* Don't bother checking until we have gone out a little ways; * a minor optimization. Also make sure to check both the * current and the previous increment because the odd and even * terms of the sum can have very different behaviour, depending * on the value of eta. */ double max_abs_dA = GSL_MAX(abs_dA, A_abs_del_prev); double max_abs_dB = GSL_MAX(abs_dB, B_abs_del_prev); double abs_A = fabs(A_sum); double abs_B = fabs(B_sum); if( max_abs_dA/(max_abs_dA + abs_A) < 4.0*GSL_DBL_EPSILON && max_abs_dB/(max_abs_dB + abs_B) < 4.0*GSL_DBL_EPSILON ) break; } A_abs_del_prev = abs_dA; B_abs_del_prev = abs_dB; uA_mm2 = uA_mm1; uA_mm1 = uA_m; uB_mm2 = uB_mm1; uB_mm1 = uB_m; m++; } FA.val = A_sum * ClamA.val * pow_x * x; FA.err = fabs(A_sum) * ClamA.err * pow_x * x + 2.0*GSL_DBL_EPSILON*fabs(FA.val); FB.val = B_sum * ClamB.val / pow_x; FB.err = fabs(B_sum) * ClamB.err / pow_x + 2.0*GSL_DBL_EPSILON*fabs(FB.val); F->val = FA.val; F->err = FA.err; G->val = (FA.val * cos_phi_lam - FB.val)/sin_phi_lam; G->err = (FA.err * fabs(cos_phi_lam) + FB.err)/fabs(sin_phi_lam); if(m >= max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_ERROR_SELECT_2(stat_A, stat_B); } /* Evaluate the Frobenius series for F_0(eta,x) and G_0(eta,x). * See [Bardin et al., CPC 3, 73 (1972), (14)-(17)]; * note the misprint in (17): nu_0=1 is correct, not nu_0=0. */ static int coulomb_FG0_series(const double eta, const double x, gsl_sf_result * F, gsl_sf_result * G) { const int max_iter = 800; const double x2 = x*x; const double tex = 2.0*eta*x; gsl_sf_result C0; int stat_CL = CLeta(0.0, eta, &C0); gsl_sf_result r1pie; int psi_stat = gsl_sf_psi_1piy_e(eta, &r1pie); double u_mm2 = 0.0; /* u_0 */ double u_mm1 = x; /* u_1 */ double u_m; double v_mm2 = 1.0; /* nu_0 */ double v_mm1 = tex*(2.0*M_EULER-1.0+r1pie.val); /* nu_1 */ double v_m; double u_sum = u_mm2 + u_mm1; double v_sum = v_mm2 + v_mm1; double u_abs_del_prev = fabs(u_sum); double v_abs_del_prev = fabs(v_sum); int m = 2; double u_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(u_sum); double v_sum_err = 2.0 * GSL_DBL_EPSILON * fabs(v_sum); double ln2x = log(2.0*x); while(m < max_iter) { double abs_du; double abs_dv; double m_mm1 = m*(m-1.0); u_m = (tex*u_mm1 - x2*u_mm2)/m_mm1; v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*eta*(2*m-1)*u_m)/m_mm1; u_sum += u_m; v_sum += v_m; abs_du = fabs(u_m); abs_dv = fabs(v_m); u_sum_err += 2.0 * GSL_DBL_EPSILON * abs_du; v_sum_err += 2.0 * GSL_DBL_EPSILON * abs_dv; if(m > 15) { /* Don't bother checking until we have gone out a little ways; * a minor optimization. Also make sure to check both the * current and the previous increment because the odd and even * terms of the sum can have very different behaviour, depending * on the value of eta. */ double max_abs_du = GSL_MAX(abs_du, u_abs_del_prev); double max_abs_dv = GSL_MAX(abs_dv, v_abs_del_prev); double abs_u = fabs(u_sum); double abs_v = fabs(v_sum); if( max_abs_du/(max_abs_du + abs_u) < 40.0*GSL_DBL_EPSILON && max_abs_dv/(max_abs_dv + abs_v) < 40.0*GSL_DBL_EPSILON ) break; } u_abs_del_prev = abs_du; v_abs_del_prev = abs_dv; u_mm2 = u_mm1; u_mm1 = u_m; v_mm2 = v_mm1; v_mm1 = v_m; m++; } F->val = C0.val * u_sum; F->err = C0.err * fabs(u_sum); F->err += fabs(C0.val) * u_sum_err; F->err += 2.0 * GSL_DBL_EPSILON * fabs(F->val); G->val = (v_sum + 2.0*eta*u_sum * ln2x) / C0.val; G->err = (fabs(v_sum) + fabs(2.0*eta*u_sum * ln2x)) / fabs(C0.val) * fabs(C0.err/C0.val); G->err += (v_sum_err + fabs(2.0*eta*u_sum_err*ln2x)) / fabs(C0.val); G->err += 2.0 * GSL_DBL_EPSILON * fabs(G->val); if(m == max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_ERROR_SELECT_2(psi_stat, stat_CL); } /* Evaluate the Frobenius series for F_{-1/2}(eta,x) and G_{-1/2}(eta,x). * Homegrown algebra. */ static int coulomb_FGmhalf_series(const double eta, const double x, gsl_sf_result * F, gsl_sf_result * G) { const int max_iter = 800; const double rx = sqrt(x); const double x2 = x*x; const double tex = 2.0*eta*x; gsl_sf_result Cmhalf; int stat_CL = CLeta(-0.5, eta, &Cmhalf); double u_mm2 = 1.0; /* u_0 */ double u_mm1 = tex * u_mm2; /* u_1 */ double u_m; double v_mm2, v_mm1, v_m; double f_sum, g_sum; double tmp1; gsl_sf_result rpsi_1pe; gsl_sf_result rpsi_1p2e; int m = 2; gsl_sf_psi_1piy_e(eta, &rpsi_1pe); gsl_sf_psi_1piy_e(2.0*eta, &rpsi_1p2e); v_mm2 = 2.0*M_EULER - M_LN2 - rpsi_1pe.val + 2.0*rpsi_1p2e.val; v_mm1 = tex*(v_mm2 - 2.0*u_mm2); f_sum = u_mm2 + u_mm1; g_sum = v_mm2 + v_mm1; while(m < max_iter) { double m2 = m*m; u_m = (tex*u_mm1 - x2*u_mm2)/m2; v_m = (tex*v_mm1 - x2*v_mm2 - 2.0*m*u_m)/m2; f_sum += u_m; g_sum += v_m; if( f_sum != 0.0 && g_sum != 0.0 && (fabs(u_m/f_sum) + fabs(v_m/g_sum) < 10.0*GSL_DBL_EPSILON)) break; u_mm2 = u_mm1; u_mm1 = u_m; v_mm2 = v_mm1; v_mm1 = v_m; m++; } F->val = Cmhalf.val * rx * f_sum; F->err = Cmhalf.err * fabs(rx * f_sum) + 2.0*GSL_DBL_EPSILON*fabs(F->val); tmp1 = f_sum*log(x); G->val = -rx*(tmp1 + g_sum)/Cmhalf.val; G->err = fabs(rx)*(fabs(tmp1) + fabs(g_sum))/fabs(Cmhalf.val) * fabs(Cmhalf.err/Cmhalf.val); if(m == max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return stat_CL; } /* Evolve the backwards recurrence for F,F'. * * F_{lam-1} = (S_lam F_lam + F_lam') / R_lam * F_{lam-1}' = (S_lam F_{lam-1} - R_lam F_lam) * where * R_lam = sqrt(1 + (eta/lam)^2) * S_lam = lam/x + eta/lam * */ static int coulomb_F_recur(double lam_min, int kmax, double eta, double x, double F_lam_max, double Fp_lam_max, double * F_lam_min, double * Fp_lam_min ) { double x_inv = 1.0/x; double fcl = F_lam_max; double fpl = Fp_lam_max; double lam_max = lam_min + kmax; double lam = lam_max; int k; for(k=kmax-1; k>=0; k--) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double fc_lm1; fc_lm1 = (fcl*sl + fpl)/rl; fpl = fc_lm1*sl - fcl*rl; fcl = fc_lm1; lam -= 1.0; } *F_lam_min = fcl; *Fp_lam_min = fpl; return GSL_SUCCESS; } /* Evolve the forward recurrence for G,G'. * * G_{lam+1} = (S_lam G_lam - G_lam')/R_lam * G_{lam+1}' = R_{lam+1} G_lam - S_lam G_{lam+1} * * where S_lam and R_lam are as above in the F recursion. */ static int coulomb_G_recur(const double lam_min, const int kmax, const double eta, const double x, const double G_lam_min, const double Gp_lam_min, double * G_lam_max, double * Gp_lam_max ) { double x_inv = 1.0/x; double gcl = G_lam_min; double gpl = Gp_lam_min; double lam = lam_min + 1.0; int k; for(k=1; k<=kmax; k++) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double gcl1 = (sl*gcl - gpl)/rl; gpl = rl*gcl - sl*gcl1; gcl = gcl1; lam += 1.0; } *G_lam_max = gcl; *Gp_lam_max = gpl; return GSL_SUCCESS; } /* Evaluate the first continued fraction, giving * the ratio F'/F at the upper lambda value. * We also determine the sign of F at that point, * since it is the sign of the last denominator * in the continued fraction. */ static int coulomb_CF1(double lambda, double eta, double x, double * fcl_sign, double * result, int * count ) { const double CF1_small = 1.e-30; const double CF1_abort = 1.0e+05; const double CF1_acc = 2.0*GSL_DBL_EPSILON; const double x_inv = 1.0/x; const double px = lambda + 1.0 + CF1_abort; double pk = lambda + 1.0; double F = eta/pk + pk*x_inv; double D, C; double df; *fcl_sign = 1.0; *count = 0; if(fabs(F) < CF1_small) F = CF1_small; D = 0.0; C = F; do { double pk1 = pk + 1.0; double ek = eta / pk; double rk2 = 1.0 + ek*ek; double tk = (pk + pk1)*(x_inv + ek/pk1); D = tk - rk2 * D; C = tk - rk2 / C; if(fabs(C) < CF1_small) C = CF1_small; if(fabs(D) < CF1_small) D = CF1_small; D = 1.0/D; df = D * C; F = F * df; if(D < 0.0) { /* sign of result depends on sign of denominator */ *fcl_sign = - *fcl_sign; } pk = pk1; if( pk > px ) { *result = F; GSL_ERROR ("error", GSL_ERUNAWAY); } ++(*count); } while(fabs(df-1.0) > CF1_acc); *result = F; return GSL_SUCCESS; } #if 0 static int old_coulomb_CF1(const double lambda, double eta, double x, double * fcl_sign, double * result ) { const double CF1_abort = 1.e5; const double CF1_acc = 10.0*GSL_DBL_EPSILON; const double x_inv = 1.0/x; const double px = lambda + 1.0 + CF1_abort; double pk = lambda + 1.0; double D; double df; double F; double p; double pk1; double ek; double fcl = 1.0; double tk; while(1) { ek = eta/pk; F = (ek + pk*x_inv)*fcl + (fcl - 1.0)*x_inv; pk1 = pk + 1.0; if(fabs(eta*x + pk*pk1) > CF1_acc) break; fcl = (1.0 + ek*ek)/(1.0 + eta*eta/(pk1*pk1)); pk = 2.0 + pk; } D = 1.0/((pk + pk1)*(x_inv + ek/pk1)); df = -fcl*(1.0 + ek*ek)*D; if(fcl != 1.0) fcl = -1.0; if(D < 0.0) fcl = -fcl; F = F + df; p = 1.0; do { pk = pk1; pk1 = pk + 1.0; ek = eta / pk; tk = (pk + pk1)*(x_inv + ek/pk1); D = tk - D*(1.0+ek*ek); if(fabs(D) < sqrt(CF1_acc)) { p += 1.0; if(p > 2.0) { printf("HELP............\n"); } } D = 1.0/D; if(D < 0.0) { /* sign of result depends on sign of denominator */ fcl = -fcl; } df = df*(D*tk - 1.0); F = F + df; if( pk > px ) { GSL_ERROR ("error", GSL_ERUNAWAY); } } while(fabs(df) > fabs(F)*CF1_acc); *fcl_sign = fcl; *result = F; return GSL_SUCCESS; } #endif /* 0 */ /* Evaluate the second continued fraction to * obtain the ratio * (G' + i F')/(G + i F) := P + i Q * at the specified lambda value. */ static int coulomb_CF2(const double lambda, const double eta, const double x, double * result_P, double * result_Q, int * count ) { int status = GSL_SUCCESS; const double CF2_acc = 4.0*GSL_DBL_EPSILON; const double CF2_abort = 2.0e+05; const double wi = 2.0*eta; const double x_inv = 1.0/x; const double e2mm1 = eta*eta + lambda*(lambda + 1.0); double ar = -e2mm1; double ai = eta; double br = 2.0*(x - eta); double bi = 2.0; double dr = br/(br*br + bi*bi); double di = -bi/(br*br + bi*bi); double dp = -x_inv*(ar*di + ai*dr); double dq = x_inv*(ar*dr - ai*di); double A, B, C, D; double pk = 0.0; double P = 0.0; double Q = 1.0 - eta*x_inv; *count = 0; do { P += dp; Q += dq; pk += 2.0; ar += pk; ai += wi; bi += 2.0; D = ar*dr - ai*di + br; di = ai*dr + ar*di + bi; C = 1.0/(D*D + di*di); dr = C*D; di = -C*di; A = br*dr - bi*di - 1.; B = bi*dr + br*di; C = dp*A - dq*B; dq = dp*B + dq*A; dp = C; if(pk > CF2_abort) { status = GSL_ERUNAWAY; break; } ++(*count); } while(fabs(dp)+fabs(dq) > (fabs(P)+fabs(Q))*CF2_acc); if(Q < CF2_abort*GSL_DBL_EPSILON*fabs(P)) { status = GSL_ELOSS; } *result_P = P; *result_Q = Q; return status; } /* WKB evaluation of F, G. Assumes 0 < x < turning point. * Overflows are trapped, GSL_EOVRFLW is signalled, * and an exponent is returned such that: * * result_F = fjwkb * exp(-exponent) * result_G = gjwkb * exp( exponent) * * See [Biedenharn et al. Phys. Rev. 97, 542-554 (1955), Section IV] * * Unfortunately, this is not very accurate in general. The * test cases typically have 3-4 digits of precision. One could * argue that this is ok for general use because, for instance, * F is exponentially small in this region and so the absolute * accuracy is still roughly acceptable. But it would be better * to have a systematic method for improving the precision. See * the Abad+Sesma method discussion below. */ static int coulomb_jwkb(const double lam, const double eta, const double x, gsl_sf_result * fjwkb, gsl_sf_result * gjwkb, double * exponent) { const double llp1 = lam*(lam+1.0) + 6.0/35.0; const double llp1_eff = GSL_MAX(llp1, 0.0); const double rho_ghalf = sqrt(x*(2.0*eta - x) + llp1_eff); const double sinh_arg = sqrt(llp1_eff/(eta*eta+llp1_eff)) * rho_ghalf / x; const double sinh_inv = log(sinh_arg + hypot(1.0,sinh_arg)); const double phi = fabs(rho_ghalf - eta*atan2(rho_ghalf,x-eta) - sqrt(llp1_eff) * sinh_inv); const double zeta_half = pow(3.0*phi/2.0, 1.0/3.0); const double prefactor = sqrt(M_PI*phi*x/(6.0 * rho_ghalf)); double F = prefactor * 3.0/zeta_half; double G = prefactor * 3.0/zeta_half; /* Note the sqrt(3) from Bi normalization */ double F_exp; double G_exp; const double airy_scale_exp = phi; gsl_sf_result ai; gsl_sf_result bi; gsl_sf_airy_Ai_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &ai); gsl_sf_airy_Bi_scaled_e(zeta_half*zeta_half, GSL_MODE_DEFAULT, &bi); F *= ai.val; G *= bi.val; F_exp = log(F) - airy_scale_exp; G_exp = log(G) + airy_scale_exp; if(G_exp >= GSL_LOG_DBL_MAX) { fjwkb->val = F; gjwkb->val = G; fjwkb->err = 1.0e-3 * fabs(F); /* FIXME: real error here ... could be smaller */ gjwkb->err = 1.0e-3 * fabs(G); *exponent = airy_scale_exp; GSL_ERROR ("error", GSL_EOVRFLW); } else { fjwkb->val = exp(F_exp); gjwkb->val = exp(G_exp); fjwkb->err = 1.0e-3 * fabs(fjwkb->val); gjwkb->err = 1.0e-3 * fabs(gjwkb->val); *exponent = 0.0; return GSL_SUCCESS; } } /* Asymptotic evaluation of F and G below the minimal turning point. * * This is meant to be a drop-in replacement for coulomb_jwkb(). * It uses the expressions in [Abad+Sesma]. This requires some * work because I am not sure where it is valid. They mumble * something about |x| < |lam|^(-1/2) or 8|eta x| > lam when |x| < 1. * This seems true, but I thought the result was based on a uniform * expansion and could be controlled by simply using more terms. */ #if 0 static int coulomb_AS_xlt2eta(const double lam, const double eta, const double x, gsl_sf_result * f_AS, gsl_sf_result * g_AS, double * exponent) { /* no time to do this now... */ } #endif /* 0 */ /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_coulomb_wave_FG_e(const double eta, const double x, const double lam_F, const int k_lam_G, /* lam_G = lam_F - k_lam_G */ gsl_sf_result * F, gsl_sf_result * Fp, gsl_sf_result * G, gsl_sf_result * Gp, double * exp_F, double * exp_G) { const double lam_G = lam_F - k_lam_G; if(x < 0.0 || lam_F <= -0.5 || lam_G <= -0.5) { GSL_SF_RESULT_SET(F, 0.0, 0.0); GSL_SF_RESULT_SET(Fp, 0.0, 0.0); GSL_SF_RESULT_SET(G, 0.0, 0.0); GSL_SF_RESULT_SET(Gp, 0.0, 0.0); *exp_F = 0.0; *exp_G = 0.0; GSL_ERROR ("domain error", GSL_EDOM); } else if(x == 0.0) { gsl_sf_result C0; CLeta(0.0, eta, &C0); GSL_SF_RESULT_SET(F, 0.0, 0.0); GSL_SF_RESULT_SET(Fp, 0.0, 0.0); GSL_SF_RESULT_SET(G, 0.0, 0.0); /* FIXME: should be Inf */ GSL_SF_RESULT_SET(Gp, 0.0, 0.0); /* FIXME: should be Inf */ *exp_F = 0.0; *exp_G = 0.0; if(lam_F == 0.0){ GSL_SF_RESULT_SET(Fp, C0.val, C0.err); } if(lam_G == 0.0) { GSL_SF_RESULT_SET(Gp, 1.0/C0.val, fabs(C0.err/C0.val)/fabs(C0.val)); } GSL_ERROR ("domain error", GSL_EDOM); /* After all, since we are asking for G, this is a domain error... */ } else if(x < 1.2 && 2.0*M_PI*eta < 0.9*(-GSL_LOG_DBL_MIN) && fabs(eta*x) < 10.0) { /* Reduce to a small lambda value and use the series * representations for F and G. We cannot allow eta to * be large and positive because the connection formula * for G_lam is badly behaved due to an underflow in sin(phi_lam) * [see coulomb_FG_series() and coulomb_connection() above]. * Note that large negative eta is ok however. */ const double SMALL = GSL_SQRT_DBL_EPSILON; const int N = (int)(lam_F + 0.5); const int span = GSL_MAX(k_lam_G, N); const double lam_min = lam_F - N; /* -1/2 <= lam_min < 1/2 */ double F_lam_F, Fp_lam_F; double G_lam_G, Gp_lam_G; double F_lam_F_err, Fp_lam_F_err; double Fp_over_F_lam_F; double F_sign_lam_F; double F_lam_min_unnorm, Fp_lam_min_unnorm; double Fp_over_F_lam_min; gsl_sf_result F_lam_min; gsl_sf_result G_lam_min, Gp_lam_min; double F_scale; double Gerr_frac; double F_scale_frac_err; double F_unnorm_frac_err; /* Determine F'/F at lam_F. */ int CF1_count; int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count); int stat_ser; int stat_Fr; int stat_Gr; /* Recurse down with unnormalized F,F' values. */ F_lam_F = SMALL; Fp_lam_F = Fp_over_F_lam_F * F_lam_F; if(span != 0) { stat_Fr = coulomb_F_recur(lam_min, span, eta, x, F_lam_F, Fp_lam_F, &F_lam_min_unnorm, &Fp_lam_min_unnorm ); } else { F_lam_min_unnorm = F_lam_F; Fp_lam_min_unnorm = Fp_lam_F; stat_Fr = GSL_SUCCESS; } /* Determine F and G at lam_min. */ if(lam_min == -0.5) { stat_ser = coulomb_FGmhalf_series(eta, x, &F_lam_min, &G_lam_min); } else if(lam_min == 0.0) { stat_ser = coulomb_FG0_series(eta, x, &F_lam_min, &G_lam_min); } else if(lam_min == 0.5) { /* This cannot happen. */ F->val = F_lam_F; F->err = 2.0 * GSL_DBL_EPSILON * fabs(F->val); Fp->val = Fp_lam_F; Fp->err = 2.0 * GSL_DBL_EPSILON * fabs(Fp->val); G->val = G_lam_G; G->err = 2.0 * GSL_DBL_EPSILON * fabs(G->val); Gp->val = Gp_lam_G; Gp->err = 2.0 * GSL_DBL_EPSILON * fabs(Gp->val); *exp_F = 0.0; *exp_G = 0.0; GSL_ERROR ("error", GSL_ESANITY); } else { stat_ser = coulomb_FG_series(lam_min, eta, x, &F_lam_min, &G_lam_min); } /* Determine remaining quantities. */ Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm; Gp_lam_min.val = Fp_over_F_lam_min*G_lam_min.val - 1.0/F_lam_min.val; Gp_lam_min.err = fabs(Fp_over_F_lam_min)*G_lam_min.err; Gp_lam_min.err += fabs(1.0/F_lam_min.val) * fabs(F_lam_min.err/F_lam_min.val); F_scale = F_lam_min.val / F_lam_min_unnorm; /* Apply scale to the original F,F' values. */ F_scale_frac_err = fabs(F_lam_min.err/F_lam_min.val); F_unnorm_frac_err = 2.0*GSL_DBL_EPSILON*(CF1_count+span+1); F_lam_F *= F_scale; F_lam_F_err = fabs(F_lam_F) * (F_unnorm_frac_err + F_scale_frac_err); Fp_lam_F *= F_scale; Fp_lam_F_err = fabs(Fp_lam_F) * (F_unnorm_frac_err + F_scale_frac_err); /* Recurse up to get the required G,G' values. */ stat_Gr = coulomb_G_recur(lam_min, GSL_MAX(N-k_lam_G,0), eta, x, G_lam_min.val, Gp_lam_min.val, &G_lam_G, &Gp_lam_G ); F->val = F_lam_F; F->err = F_lam_F_err; F->err += 2.0 * GSL_DBL_EPSILON * fabs(F_lam_F); Fp->val = Fp_lam_F; Fp->err = Fp_lam_F_err; Fp->err += 2.0 * GSL_DBL_EPSILON * fabs(Fp_lam_F); Gerr_frac = fabs(G_lam_min.err/G_lam_min.val) + fabs(Gp_lam_min.err/Gp_lam_min.val); G->val = G_lam_G; G->err = Gerr_frac * fabs(G_lam_G); G->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(G->val); Gp->val = Gp_lam_G; Gp->err = Gerr_frac * fabs(Gp->val); Gp->err += 2.0 * (CF1_count+1) * GSL_DBL_EPSILON * fabs(Gp->val); *exp_F = 0.0; *exp_G = 0.0; return GSL_ERROR_SELECT_4(stat_ser, stat_CF1, stat_Fr, stat_Gr); } else if(x < 2.0*eta) { /* Use WKB approximation to obtain F and G at the two * lambda values, and use the Wronskian and the * continued fractions for F'/F to obtain F' and G'. */ gsl_sf_result F_lam_F, G_lam_F; gsl_sf_result F_lam_G, G_lam_G; double exp_lam_F, exp_lam_G; int stat_lam_F; int stat_lam_G; int stat_CF1_lam_F; int stat_CF1_lam_G; int CF1_count; double Fp_over_F_lam_F; double Fp_over_F_lam_G; double F_sign_lam_F; double F_sign_lam_G; stat_lam_F = coulomb_jwkb(lam_F, eta, x, &F_lam_F, &G_lam_F, &exp_lam_F); if(k_lam_G == 0) { stat_lam_G = stat_lam_F; F_lam_G = F_lam_F; G_lam_G = G_lam_F; exp_lam_G = exp_lam_F; } else { stat_lam_G = coulomb_jwkb(lam_G, eta, x, &F_lam_G, &G_lam_G, &exp_lam_G); } stat_CF1_lam_F = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count); if(k_lam_G == 0) { stat_CF1_lam_G = stat_CF1_lam_F; F_sign_lam_G = F_sign_lam_F; Fp_over_F_lam_G = Fp_over_F_lam_F; } else { stat_CF1_lam_G = coulomb_CF1(lam_G, eta, x, &F_sign_lam_G, &Fp_over_F_lam_G, &CF1_count); } F->val = F_lam_F.val; F->err = F_lam_F.err; G->val = G_lam_G.val; G->err = G_lam_G.err; Fp->val = Fp_over_F_lam_F * F_lam_F.val; Fp->err = fabs(Fp_over_F_lam_F) * F_lam_F.err; Fp->err += 2.0*GSL_DBL_EPSILON*fabs(Fp->val); Gp->val = Fp_over_F_lam_G * G_lam_G.val - 1.0/F_lam_G.val; Gp->err = fabs(Fp_over_F_lam_G) * G_lam_G.err; Gp->err += fabs(1.0/F_lam_G.val) * fabs(F_lam_G.err/F_lam_G.val); *exp_F = exp_lam_F; *exp_G = exp_lam_G; if(stat_lam_F == GSL_EOVRFLW || stat_lam_G == GSL_EOVRFLW) { GSL_ERROR ("overflow", GSL_EOVRFLW); } else { return GSL_ERROR_SELECT_2(stat_lam_F, stat_lam_G); } } else { /* x > 2 eta, so we know that we can find a lambda value such * that x is above the turning point. We do this, evaluate * using Steed's method at that oscillatory point, then * use recursion on F and G to obtain the required values. * * lam_0 = a value of lambda such that x is below the turning point * lam_min = minimum of lam_0 and the requested lam_G, since * we must go at least as low as lam_G */ const double SMALL = GSL_SQRT_DBL_EPSILON; const double C = sqrt(1.0 + 4.0*x*(x-2.0*eta)); const int N = ceil(lam_F - C + 0.5); const double lam_0 = lam_F - GSL_MAX(N, 0); const double lam_min = GSL_MIN(lam_0, lam_G); double F_lam_F, Fp_lam_F; double G_lam_G, Gp_lam_G; double F_lam_min_unnorm, Fp_lam_min_unnorm; double F_lam_min, Fp_lam_min; double G_lam_min, Gp_lam_min; double Fp_over_F_lam_F; double Fp_over_F_lam_min; double F_sign_lam_F, F_sign_lam_min; double P_lam_min, Q_lam_min; double alpha; double gamma; double F_scale; int CF1_count; int CF2_count; int stat_CF1 = coulomb_CF1(lam_F, eta, x, &F_sign_lam_F, &Fp_over_F_lam_F, &CF1_count); int stat_CF2; int stat_Fr; int stat_Gr; int F_recur_count; int G_recur_count; double err_amplify; F_lam_F = F_sign_lam_F * SMALL; /* unnormalized */ Fp_lam_F = Fp_over_F_lam_F * F_lam_F; /* Backward recurrence to get F,Fp at lam_min */ F_recur_count = GSL_MAX(k_lam_G, N); stat_Fr = coulomb_F_recur(lam_min, F_recur_count, eta, x, F_lam_F, Fp_lam_F, &F_lam_min_unnorm, &Fp_lam_min_unnorm ); Fp_over_F_lam_min = Fp_lam_min_unnorm / F_lam_min_unnorm; /* Steed evaluation to complete evaluation of F,Fp,G,Gp at lam_min */ stat_CF2 = coulomb_CF2(lam_min, eta, x, &P_lam_min, &Q_lam_min, &CF2_count); alpha = Fp_over_F_lam_min - P_lam_min; gamma = alpha/Q_lam_min; F_sign_lam_min = GSL_SIGN(F_lam_min_unnorm) ; F_lam_min = F_sign_lam_min / sqrt(alpha*alpha/Q_lam_min + Q_lam_min); Fp_lam_min = Fp_over_F_lam_min * F_lam_min; G_lam_min = gamma * F_lam_min; Gp_lam_min = (P_lam_min * gamma - Q_lam_min) * F_lam_min; /* Apply scale to values of F,Fp at lam_F (the top). */ F_scale = F_lam_min / F_lam_min_unnorm; F_lam_F *= F_scale; Fp_lam_F *= F_scale; /* Forward recurrence to get G,Gp at lam_G (the top). */ G_recur_count = GSL_MAX(N-k_lam_G,0); stat_Gr = coulomb_G_recur(lam_min, G_recur_count, eta, x, G_lam_min, Gp_lam_min, &G_lam_G, &Gp_lam_G ); err_amplify = CF1_count + CF2_count + F_recur_count + G_recur_count + 1; F->val = F_lam_F; F->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(F->val); Fp->val = Fp_lam_F; Fp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Fp->val); G->val = G_lam_G; G->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(G->val); Gp->val = Gp_lam_G; Gp->err = 8.0*err_amplify*GSL_DBL_EPSILON * fabs(Gp->val); *exp_F = 0.0; *exp_G = 0.0; return GSL_ERROR_SELECT_4(stat_CF1, stat_CF2, stat_Fr, stat_Gr); } } int gsl_sf_coulomb_wave_F_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exp) { if(x == 0.0) { int k; *F_exp = 0.0; for(k=0; k<=kmax; k++) { fc_array[k] = 0.0; } if(lam_min == 0.0){ gsl_sf_result f_0; CLeta(0.0, eta, &f_0); fc_array[0] = f_0.val; } return GSL_SUCCESS; } else { const double x_inv = 1.0/x; const double lam_max = lam_min + kmax; gsl_sf_result F, Fp; gsl_sf_result G, Gp; double G_exp; int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, 0, &F, &Fp, &G, &Gp, F_exp, &G_exp); double fcl = F.val; double fpl = Fp.val; double lam = lam_max; int k; fc_array[kmax] = F.val; for(k=kmax-1; k>=0; k--) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double fc_lm1 = (fcl*sl + fpl)/rl; fc_array[k] = fc_lm1; fpl = fc_lm1*sl - fcl*rl; fcl = fc_lm1; lam -= 1.0; } return stat_FG; } } int gsl_sf_coulomb_wave_FG_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * gc_array, double * F_exp, double * G_exp) { const double x_inv = 1.0/x; const double lam_max = lam_min + kmax; gsl_sf_result F, Fp; gsl_sf_result G, Gp; int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax, &F, &Fp, &G, &Gp, F_exp, G_exp); double fcl = F.val; double fpl = Fp.val; double lam = lam_max; int k; double gcl, gpl; fc_array[kmax] = F.val; for(k=kmax-1; k>=0; k--) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double fc_lm1; fc_lm1 = (fcl*sl + fpl)/rl; fc_array[k] = fc_lm1; fpl = fc_lm1*sl - fcl*rl; fcl = fc_lm1; lam -= 1.0; } gcl = G.val; gpl = Gp.val; lam = lam_min + 1.0; gc_array[0] = G.val; for(k=1; k<=kmax; k++) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double gcl1 = (sl*gcl - gpl)/rl; gc_array[k] = gcl1; gpl = rl*gcl - sl*gcl1; gcl = gcl1; lam += 1.0; } return stat_FG; } int gsl_sf_coulomb_wave_FGp_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * fcp_array, double * gc_array, double * gcp_array, double * F_exp, double * G_exp) { const double x_inv = 1.0/x; const double lam_max = lam_min + kmax; gsl_sf_result F, Fp; gsl_sf_result G, Gp; int stat_FG = gsl_sf_coulomb_wave_FG_e(eta, x, lam_max, kmax, &F, &Fp, &G, &Gp, F_exp, G_exp); double fcl = F.val; double fpl = Fp.val; double lam = lam_max; int k; double gcl, gpl; fc_array[kmax] = F.val; fcp_array[kmax] = Fp.val; for(k=kmax-1; k>=0; k--) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double fc_lm1; fc_lm1 = (fcl*sl + fpl)/rl; fc_array[k] = fc_lm1; fpl = fc_lm1*sl - fcl*rl; fcp_array[k] = fpl; fcl = fc_lm1; lam -= 1.0; } gcl = G.val; gpl = Gp.val; lam = lam_min + 1.0; gc_array[0] = G.val; gcp_array[0] = Gp.val; for(k=1; k<=kmax; k++) { double el = eta/lam; double rl = hypot(1.0, el); double sl = el + lam*x_inv; double gcl1 = (sl*gcl - gpl)/rl; gc_array[k] = gcl1; gpl = rl*gcl - sl*gcl1; gcp_array[k] = gpl; gcl = gcl1; lam += 1.0; } return stat_FG; } int gsl_sf_coulomb_wave_sphF_array(double lam_min, int kmax, double eta, double x, double * fc_array, double * F_exp) { if(x < 0.0 || lam_min < -0.5) { GSL_ERROR ("domain error", GSL_EDOM); } else if(x < 10.0/GSL_DBL_MAX) { int k; for(k=0; k<=kmax; k++) { fc_array[k] = 0.0; } if(lam_min == 0.0) { fc_array[0] = sqrt(C0sq(eta)); } *F_exp = 0.0; if(x == 0.0) return GSL_SUCCESS; else GSL_ERROR ("underflow", GSL_EUNDRFLW); } else { int k; int stat_F = gsl_sf_coulomb_wave_F_array(lam_min, kmax, eta, x, fc_array, F_exp); for(k=0; k<=kmax; k++) { fc_array[k] = fc_array[k] / x; } return stat_F; } } gsl-1.16/specfunc/pow_int.c0000664000252300025230000000357212171574312012612 00000000000000/* specfunc/pow_int.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include /*-*-*-*-*-*-*-*-*-*-*-* Functions w/ Error handling *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_pow_int_e(double x, int n, gsl_sf_result * result) { double value = 1.0; int count = 0; /* CHECK_POINTER(result) */ if(n < 0) { n = -n; if(x == 0.0) { double u = 1.0 / x; result->val = (n % 2) ? u : (u * u) ; /* correct sign of infinity */ result->err = GSL_POSINF; GSL_ERROR ("overflow", GSL_EOVRFLW); } x = 1.0/x; } /* repeated squaring method * returns 0.0^0 = 1.0, so continuous in x */ do { if(GSL_IS_ODD(n)) value *= x; n >>= 1; x *= x; ++count; } while (n); result->val = value; result->err = 2.0 * GSL_DBL_EPSILON * (count + 1.0) * fabs(value); return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_pow_int(const double x, const int n) { EVAL_RESULT(gsl_sf_pow_int_e(x, n, &result)); } gsl-1.16/specfunc/laguerre.c0000664000252300025230000002335012171574312012735 00000000000000/* specfunc/laguerre.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "error.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on the large 2b-4a asymptotic for 1F1 * [Abramowitz+Stegun, 13.5.21] * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x) * * The second term (ser_term2) is from Slater,"The Confluent * Hypergeometric Function" p.73. I think there may be an error in * the first term of the expression given there, comparing with AS * 13.5.21 (cf sin(a\pi+\Theta) vs sin(a\pi) + sin(\Theta)) - but the * second term appears correct. * */ static int laguerre_large_n(const int n, const double alpha, const double x, gsl_sf_result * result) { const double a = -n; const double b = alpha + 1.0; const double eta = 2.0*b - 4.0*a; const double cos2th = x/eta; const double sin2th = 1.0 - cos2th; const double eps = asin(sqrt(cos2th)); /* theta = pi/2 - eps */ const double pre_h = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th; gsl_sf_result lg_b; gsl_sf_result lnfact; int stat_lg = gsl_sf_lngamma_e(b+n, &lg_b); int stat_lf = gsl_sf_lnfact_e(n, &lnfact); double pre_term1 = 0.5*(1.0-b)*log(0.25*x*eta); double pre_term2 = 0.25*log(pre_h); double lnpre_val = lg_b.val - lnfact.val + 0.5*x + pre_term1 - pre_term2; double lnpre_err = lg_b.err + lnfact.err + GSL_DBL_EPSILON * (fabs(pre_term1)+fabs(pre_term2)); double phi1 = 0.25*eta*(2*eps + sin(2.0*eps)); double ser_term1 = -sin(phi1); double A1 = (1.0/12.0)*(5.0/(4.0*sin2th)+(3.0*b*b-6.0*b+2.0)*sin2th - 1.0); double ser_term2 = -A1 * cos(phi1)/(0.25*eta*sin(2.0*eps)); double ser_val = ser_term1 + ser_term2; double ser_err = ser_term2*ser_term2 + GSL_DBL_EPSILON * (fabs(ser_term1) + fabs(ser_term2)); int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, ser_val, ser_err, result); result->err += 2.0 * GSL_SQRT_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_e, stat_lf, stat_lg); } /* Evaluate polynomial based on confluent hypergeometric representation. * * L^a_n(x) = (a+1)_n / n! 1F1(-n,a+1,x) * * assumes n > 0 and a != negative integer greater than -n */ static int laguerre_n_cp(const int n, const double a, const double x, gsl_sf_result * result) { gsl_sf_result lnfact; gsl_sf_result lg1; gsl_sf_result lg2; double s1, s2; int stat_f = gsl_sf_lnfact_e(n, &lnfact); int stat_g1 = gsl_sf_lngamma_sgn_e(a+1.0+n, &lg1, &s1); int stat_g2 = gsl_sf_lngamma_sgn_e(a+1.0, &lg2, &s2); double poly_1F1_val = 1.0; double poly_1F1_err = 0.0; int stat_e; int k; double lnpre_val = (lg1.val - lg2.val) - lnfact.val; double lnpre_err = lg1.err + lg2.err + lnfact.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); for(k=n-1; k>=0; k--) { double t = (-n+k)/(a+1.0+k) * (x/(k+1)); double r = t + 1.0/poly_1F1_val; if(r > 0.9*GSL_DBL_MAX/poly_1F1_val) { /* internal error only, don't call the error handler */ INTERNAL_OVERFLOW_ERROR(result); } else { /* Collect the Horner terms. */ poly_1F1_val = 1.0 + t * poly_1F1_val; poly_1F1_err += GSL_DBL_EPSILON + fabs(t) * poly_1F1_err; } } stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, poly_1F1_val, poly_1F1_err, result); return GSL_ERROR_SELECT_4(stat_e, stat_f, stat_g1, stat_g2); } /* Evaluate the polynomial based on the confluent hypergeometric * function in a safe way, with no restriction on the arguments. * * assumes x != 0 */ static int laguerre_n_poly_safe(const int n, const double a, const double x, gsl_sf_result * result) { const double b = a + 1.0; const double mx = -x; const double tc_sgn = (x < 0.0 ? 1.0 : (GSL_IS_ODD(n) ? -1.0 : 1.0)); gsl_sf_result tc; int stat_tc = gsl_sf_taylorcoeff_e(n, fabs(x), &tc); if(stat_tc == GSL_SUCCESS) { double term = tc.val * tc_sgn; double sum_val = term; double sum_err = tc.err; int k; for(k=n-1; k>=0; k--) { term *= ((b+k)/(n-k))*(k+1.0)/mx; sum_val += term; sum_err += 4.0 * GSL_DBL_EPSILON * fabs(term); } result->val = sum_val; result->err = sum_err + 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(stat_tc == GSL_EOVRFLW) { result->val = 0.0; /* FIXME: should be Inf */ result->err = 0.0; return stat_tc; } else { result->val = 0.0; result->err = 0.0; return stat_tc; } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_laguerre_1_e(const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ { result->val = 1.0 + a - x; result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x)); return GSL_SUCCESS; } } int gsl_sf_laguerre_2_e(const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(a == -2.0) { result->val = 0.5*x*x; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double c0 = 0.5 * (2.0+a)*(1.0+a); double c1 = -(2.0+a); double c2 = -0.5/(2.0+a); result->val = c0 + c1*x*(1.0 + c2*x); result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * (1.0 + 2.0 * fabs(c2*x))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_laguerre_3_e(const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(a == -2.0) { double x2_6 = x*x/6.0; result->val = x2_6 * (3.0 - x); result->err = x2_6 * (3.0 + fabs(x)) * 2.0 * GSL_DBL_EPSILON; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(a == -3.0) { result->val = -x*x/6.0; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { double c0 = (3.0+a)*(2.0+a)*(1.0+a) / 6.0; double c1 = -c0 * 3.0 / (1.0+a); double c2 = -1.0/(2.0+a); double c3 = -1.0/(3.0*(3.0+a)); result->val = c0 + c1*x*(1.0 + c2*x*(1.0 + c3*x)); result->err = 1.0 + 2.0 * fabs(c3*x); result->err = 1.0 + 2.0 * fabs(c2*x) * result->err; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(c0) + 2.0 * fabs(c1*x) * result->err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_laguerre_n_e(const int n, const double a, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(n < 0) { DOMAIN_ERROR(result); } else if(n == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(n == 1) { result->val = 1.0 + a - x; result->err = 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(a) + fabs(x)); return GSL_SUCCESS; } else if(x == 0.0) { double product = a + 1.0; int k; for(k=2; k<=n; k++) { product *= (a + k)/k; } result->val = product; result->err = 2.0 * (n + 1.0) * GSL_DBL_EPSILON * fabs(product) + GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < 0.0 && a > -1.0) { /* In this case all the terms in the polynomial * are of the same sign. Note that this also * catches overflows correctly. */ return laguerre_n_cp(n, a, x, result); } else if(n < 5 || (x > 0.0 && a < -n-1)) { /* Either the polynomial will not lose too much accuracy * or all the terms are negative. In any case, * the error estimate here is good. We try both * explicit summation methods, as they have different * characteristics. One may underflow/overflow while the * other does not. */ if(laguerre_n_cp(n, a, x, result) == GSL_SUCCESS) return GSL_SUCCESS; else return laguerre_n_poly_safe(n, a, x, result); } else if(n > 1.0e+07 && x > 0.0 && a > -1.0 && x < 2.0*(a+1.0)+4.0*n) { return laguerre_large_n(n, a, x, result); } else if(a >= 0.0 || (x > 0.0 && a < -n-1)) { gsl_sf_result lg2; int stat_lg2 = gsl_sf_laguerre_2_e(a, x, &lg2); double Lkm1 = 1.0 + a - x; double Lk = lg2.val; double Lkp1; int k; for(k=2; kval = Lk; result->err = (fabs(lg2.err/lg2.val) + GSL_DBL_EPSILON) * n * fabs(Lk); return stat_lg2; } else { /* Despair... or magic? */ return laguerre_n_poly_safe(n, a, x, result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_laguerre_1(double a, double x) { EVAL_RESULT(gsl_sf_laguerre_1_e(a, x, &result)); } double gsl_sf_laguerre_2(double a, double x) { EVAL_RESULT(gsl_sf_laguerre_2_e(a, x, &result)); } double gsl_sf_laguerre_3(double a, double x) { EVAL_RESULT(gsl_sf_laguerre_3_e(a, x, &result)); } double gsl_sf_laguerre_n(int n, double a, double x) { EVAL_RESULT(gsl_sf_laguerre_n_e(n, a, x, &result)); } gsl-1.16/specfunc/test_dilog.c0000664000252300025230000002727512171574312013276 00000000000000/* specfunc/test_dilog.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" int test_dilog(void) { gsl_sf_result r; gsl_sf_result r1, r2; int s = 0; /* real dilog */ TEST_SF(s, gsl_sf_dilog_e, (-3.0, &r), -1.9393754207667089531, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (-0.5, &r), -0.4484142069236462024, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (-0.001, &r), -0.0009997501110486510834, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (0.1, &r), 0.1026177910993911, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (0.7, &r), 0.8893776242860387386, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (1.0, &r), 1.6449340668482260, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (1.5, &r), 2.3743952702724802007, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (2.0, &r), 2.4674011002723397, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, ( 5.0, &r), 1.7837191612666306277, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, ( 11.0, &r), 0.3218540439999117111, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (12.59, &r), 0.0010060918167266208634, TEST_TOL3, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (12.595, &r), 0.00003314826006436236810, TEST_TOL5, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (13.0, &r), -0.07806971248458575855, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (20.0, &r), -1.2479770861745251168, TEST_TOL2, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (150.0, &r), -9.270042702348657270, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_dilog_e, (1100.0, &r), -21.232504073931749553, TEST_TOL0, GSL_SUCCESS); /* complex dilog */ TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99999, M_PI/2.0, &r1, &r2), -0.20561329262779687646, TEST_TOL0, 0.91595774018131512060, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.991, M_PI/2.0, &r1, &r2), -0.20250384721077806127, TEST_TOL0, 0.90888544355846447810, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.98, M_PI/2.0, &r1, &r2), -0.19871638377785918403, TEST_TOL2, 0.90020045882981847610, TEST_TOL2, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.98, -M_PI/2.0, &r1, &r2), -0.19871638377785918403, TEST_TOL2, -0.90020045882981847610, TEST_TOL2, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.95, M_PI/2.0, &r1, &r2), -0.18848636456893572091, TEST_TOL1, 0.87633754133420277830, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.8, M_PI/2.0, &r1, &r2), -0.13980800855429037810, TEST_TOL0, 0.75310609092419884460, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.8, -M_PI/2.0, &r1, &r2), -0.13980800855429037810, TEST_TOL0, -0.75310609092419884460, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.5, M_PI/2.0, &r1, &r2), -0.05897507442156586346, TEST_TOL1, 0.48722235829452235710, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.5, -M_PI/2.0, &r1, &r2), -0.05897507442156586346, TEST_TOL1, -0.48722235829452235710, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.01, M_PI/2.0, &r1, &r2), -0.000024999375027776215378, TEST_TOL3, 0.009999888892888684820, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.01, -M_PI/2.0, &r1, &r2), -0.000024999375027776215378, TEST_TOL3, -0.009999888892888684820, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, M_PI/4.0, &r1, &r2), 0.56273366219795547757, TEST_TOL3, 0.97009284079274560384, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, -M_PI/4.0, &r1, &r2), 0.56273366219795547757, TEST_TOL3, -0.97009284079274560384, TEST_TOL3, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, 3.0*M_PI/4.0, &r1, &r2), -0.66210902664245926235, TEST_TOL1, 0.51995305609998319025, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, 5.0*M_PI/4.0, &r1, &r2), -0.66210902664245926235, TEST_TOL1, -0.51995305609998319025, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, 3.0*M_PI/2.0, &r1, &r2), -0.20215874509123277909, TEST_TOL1, -0.90809733095648731408, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.25, 3.0*M_PI/2.0, &r1, &r2), -0.01538741178141053563, TEST_TOL1, -0.24830175098230686908, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.25, 15.0/8.0*M_PI, &r1, &r2), 0.24266162342377302235, TEST_TOL1, -0.10860883369274445067, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, M_PI/8.0, &r1, &r2), 1.0571539648820244720, TEST_TOL0, 0.7469145254610851318, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, M_PI/64.0, &r1, &r2), 1.5381800285902999666, TEST_TOL0, 0.1825271634987756651, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (0.99, -M_PI/8.0, &r1, &r2), 1.05715396488202447202, TEST_TOL1, -0.74691452546108513176, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.00001, M_PI/2.0, &r1, &r2), -0.20562022409960237363, TEST_TOL1, 0.91597344814458309320, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (10.0, M_PI/2.0, &r1, &r2), -3.0596887943287347304, TEST_TOL0, 3.7167814930680685900, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (100.0, M_PI/2.0, &r1, &r2), -11.015004738293824854, TEST_TOL0, 7.2437843013083534970, TEST_TOL0, GSL_SUCCESS); /** tests brought up by Jim McElwaine bug report */ TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, -M_PI/2.0, &r1, &r2), -0.24099184177382733037, TEST_TOL1, -0.99309132538137822631, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, 3.0*M_PI/2.0, &r1, &r2), -0.24099184177382733037, TEST_TOL1, -0.99309132538137822631, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, -3.0*M_PI/2.0, &r1, &r2), -0.24099184177382733037, TEST_TOL1, 0.99309132538137822631, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, -M_PI - 0.25*M_PI, &r1, &r2), -0.72908565537087935118, TEST_TOL1, 0.56225783937234862649, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, M_PI + 0.25*M_PI, &r1, &r2), -0.72908565537087935118, TEST_TOL1, -0.56225783937234862649, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, -M_PI/128.0, &r1, &r2), 1.8881719454909716580, TEST_TOL1, -0.3556738764969238976, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.1, M_PI/128.0, &r1, &r2), 1.8881719454909716580, TEST_TOL1, 0.3556738764969238976, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.5, M_PI/8.0, &r1, &r2), 1.3498525763442498343, TEST_TOL1, 1.4976532712229749493, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.5, -M_PI/8.0, &r1, &r2), 1.3498525763442498343, TEST_TOL1, -1.4976532712229749493, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.5, 2.0*M_PI + M_PI/8.0, &r1, &r2), 1.3498525763442498343, TEST_TOL1, 1.4976532712229749493, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_e, (1.5, 2.0*M_PI - M_PI/8.0, &r1, &r2), 1.3498525763442498343, TEST_TOL1, -1.4976532712229749493, TEST_TOL1, GSL_SUCCESS); /* tests of the (x,y) function, which is now the underlying implementation */ TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (0.0, 0.5, &r1, &r2), -0.05897507442156586346, TEST_TOL1, 0.48722235829452235710, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (0.0, -0.5, &r1, &r2), -0.05897507442156586346, TEST_TOL1, -0.48722235829452235710, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (0.91464073718617389108, 0.37885659804143889673, &r1, &r2), 1.0571539648820244720, TEST_TOL0, 0.7469145254610851318, TEST_TOL0, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (0.91464073718617389108, -0.37885659804143889673, &r1, &r2), 1.05715396488202447202, TEST_TOL1, -0.74691452546108513176, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (-1.5, 0.0, &r1, &r2), -1.1473806603755707541, TEST_TOL1, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (0.5, 0.0, &r1, &r2), 0.58224052646501250590, TEST_TOL1, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_dilog_xy_e, (1.5, 0.0, &r1, &r2), 2.3743952702724802007, TEST_TOL1, -1.2738062049196005309, TEST_TOL1, GSL_SUCCESS); /* small set of spence tests, mostly to check the value on the cut */ TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (1.5, 0.0, &r1, &r2), -0.44841420692364620244, TEST_TOL1, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (0.5, 0.0, &r1, &r2), 0.58224052646501250590, TEST_TOL1, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (0.0, 0.0, &r1, &r2), 1.6449340668482264365, TEST_TOL1, 0.0, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (-0.5, 0.0, &r1, &r2), 2.3743952702724802007, TEST_TOL1, -1.2738062049196005309, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (-0.5, 1.0/1024.0, &r1, &r2), 2.3723507455234125018, TEST_TOL1, -1.2742581376517839070, TEST_TOL1, GSL_SUCCESS); TEST_SF_2(s, gsl_sf_complex_spence_xy_e, (-0.5, -1.0/1024.0, &r1, &r2), 2.3723507455234125018, TEST_TOL1, 1.2742581376517839070, TEST_TOL1, GSL_SUCCESS); return s; } gsl-1.16/specfunc/gsl_sf_clausen.h0000664000252300025230000000267312171574312014130 00000000000000/* specfunc/gsl_sf_clausen.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_CLAUSEN_H__ #define __GSL_SF_CLAUSEN_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Calculate the Clausen integral: * Cl_2(x) := Integrate[-Log[2 Sin[t/2]], {t,0,x}] * * Relation to dilogarithm: * Cl_2(theta) = Im[ Li_2(e^(i theta)) ] */ int gsl_sf_clausen_e(double x, gsl_sf_result * result); double gsl_sf_clausen(const double x); __END_DECLS #endif /* __GSL_SF_CLAUSEN_H__ */ gsl-1.16/specfunc/gsl_sf_dilog.h0000664000252300025230000001011312171574312013560 00000000000000/* specfunc/gsl_sf_dilog.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_DILOG_H__ #define __GSL_SF_DILOG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Real part of DiLogarithm(x), for real argument. * In Lewin's notation, this is Li_2(x). * * Li_2(x) = - Re[ Integrate[ Log[1-s] / s, {s, 0, x}] ] * * The function in the complex plane has a branch point * at z = 1; we place the cut in the conventional way, * on [1, +infty). This means that the value for real x > 1 * is a matter of definition; however, this choice does not * affect the real part and so is not relevant to the * interpretation of this implemented function. */ int gsl_sf_dilog_e(const double x, gsl_sf_result * result); double gsl_sf_dilog(const double x); /* DiLogarithm(z), for complex argument z = x + i y. * Computes the principal branch. * * Recall that the branch cut is on the real axis with x > 1. * The imaginary part of the computed value on the cut is given * by -Pi*log(x), which is the limiting value taken approaching * from y < 0. This is a conventional choice, though there is no * true standardized choice. * * Note that there is no canonical way to lift the defining * contour to the full Riemann surface because of the appearance * of a "hidden branch point" at z = 0 on non-principal sheets. * Experts will know the simple algebraic prescription for * obtaining the sheet they want; non-experts will not want * to know anything about it. This is why GSL chooses to compute * only on the principal branch. */ int gsl_sf_complex_dilog_xy_e( const double x, const double y, gsl_sf_result * result_re, gsl_sf_result * result_im ); /* DiLogarithm(z), for complex argument z = r Exp[i theta]. * Computes the principal branch, thereby assuming an * implicit reduction of theta to the range (-2 pi, 2 pi). * * If theta is identically zero, the imaginary part is computed * as if approaching from y > 0. For other values of theta no * special consideration is given, since it is assumed that * no other machine representations of multiples of pi will * produce y = 0 precisely. This assumption depends on some * subtle properties of the machine arithmetic, such as * correct rounding and monotonicity of the underlying * implementation of sin() and cos(). * * This function is ok, but the interface is confusing since * it makes it appear that the branch structure is resolved. * Furthermore the handling of values close to the branch * cut is subtle. Perhap this interface should be deprecated. */ int gsl_sf_complex_dilog_e( const double r, const double theta, gsl_sf_result * result_re, gsl_sf_result * result_im ); /* Spence integral; spence(s) := Li_2(1-s) * * This function has a branch point at 0; we place the * cut on (-infty,0). Because of our choice for the value * of Li_2(z) on the cut, spence(s) is continuous as * s approaches the cut from above. In other words, * we define spence(x) = spence(x + i 0+). */ int gsl_sf_complex_spence_xy_e( const double x, const double y, gsl_sf_result * real_sp, gsl_sf_result * imag_sp ); __END_DECLS #endif /* __GSL_SF_DILOG_H__ */ gsl-1.16/specfunc/beta_inc.c0000664000252300025230000001363012171574312012673 00000000000000/* specfunc/beta_inc.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" #include "check.h" static double isnegint (const double x) { return (x < 0) && (x == floor(x)); } static int beta_cont_frac( const double a, const double b, const double x, gsl_sf_result * result ) { const unsigned int max_iter = 512; /* control iterations */ const double cutoff = 2.0 * GSL_DBL_MIN; /* control the zero cutoff */ unsigned int iter_count = 0; double cf; /* standard initialization for continued fraction */ double num_term = 1.0; double den_term = 1.0 - (a+b)*x/(a+1.0); if (fabs(den_term) < cutoff) den_term = cutoff; den_term = 1.0/den_term; cf = den_term; while(iter_count < max_iter) { const int k = iter_count + 1; double coeff = k*(b-k)*x/(((a-1.0)+2*k)*(a+2*k)); double delta_frac; /* first step */ den_term = 1.0 + coeff*den_term; num_term = 1.0 + coeff/num_term; if(fabs(den_term) < cutoff) den_term = cutoff; if(fabs(num_term) < cutoff) num_term = cutoff; den_term = 1.0/den_term; delta_frac = den_term * num_term; cf *= delta_frac; coeff = -(a+k)*(a+b+k)*x/((a+2*k)*(a+2*k+1.0)); /* second step */ den_term = 1.0 + coeff*den_term; num_term = 1.0 + coeff/num_term; if(fabs(den_term) < cutoff) den_term = cutoff; if(fabs(num_term) < cutoff) num_term = cutoff; den_term = 1.0/den_term; delta_frac = den_term*num_term; cf *= delta_frac; if(fabs(delta_frac-1.0) < 2.0*GSL_DBL_EPSILON) break; ++iter_count; } result->val = cf; result->err = iter_count * 4.0 * GSL_DBL_EPSILON * fabs(cf); if(iter_count >= max_iter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_beta_inc_e( const double a, const double b, const double x, gsl_sf_result * result ) { if(x < 0.0 || x > 1.0) { DOMAIN_ERROR(result); } else if (isnegint(a) || isnegint(b)) { DOMAIN_ERROR(result); } else if (isnegint(a+b)) { DOMAIN_ERROR(result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(x == 1.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if (a <= 0 || b <= 0) { gsl_sf_result f, beta; int stat; const int stat_f = gsl_sf_hyperg_2F1_e(a, 1-b, a+1, x, &f); const int stat_beta = gsl_sf_beta_e(a, b, &beta); double prefactor = (pow(x, a) / a); result->val = prefactor * f.val / beta.val; result->err = fabs(prefactor) * f.err/ fabs(beta.val) + fabs(result->val/beta.val) * beta.err; stat = GSL_ERROR_SELECT_2(stat_f, stat_beta); if(stat == GSL_SUCCESS) { CHECK_UNDERFLOW(result); } return stat; } else { gsl_sf_result ln_beta; gsl_sf_result ln_x; gsl_sf_result ln_1mx; gsl_sf_result prefactor; const int stat_ln_beta = gsl_sf_lnbeta_e(a, b, &ln_beta); const int stat_ln_1mx = gsl_sf_log_1plusx_e(-x, &ln_1mx); const int stat_ln_x = gsl_sf_log_e(x, &ln_x); const int stat_ln = GSL_ERROR_SELECT_3(stat_ln_beta, stat_ln_1mx, stat_ln_x); const double ln_pre_val = -ln_beta.val + a * ln_x.val + b * ln_1mx.val; const double ln_pre_err = ln_beta.err + fabs(a*ln_x.err) + fabs(b*ln_1mx.err); const int stat_exp = gsl_sf_exp_err_e(ln_pre_val, ln_pre_err, &prefactor); if(stat_ln != GSL_SUCCESS) { result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_ESANITY); } if(x < (a + 1.0)/(a+b+2.0)) { /* Apply continued fraction directly. */ gsl_sf_result cf; const int stat_cf = beta_cont_frac(a, b, x, &cf); int stat; result->val = prefactor.val * cf.val / a; result->err = (fabs(prefactor.err * cf.val) + fabs(prefactor.val * cf.err))/a; stat = GSL_ERROR_SELECT_2(stat_exp, stat_cf); if(stat == GSL_SUCCESS) { CHECK_UNDERFLOW(result); } return stat; } else { /* Apply continued fraction after hypergeometric transformation. */ gsl_sf_result cf; const int stat_cf = beta_cont_frac(b, a, 1.0-x, &cf); int stat; const double term = prefactor.val * cf.val / b; result->val = 1.0 - term; result->err = fabs(prefactor.err * cf.val)/b; result->err += fabs(prefactor.val * cf.err)/b; result->err += 2.0 * GSL_DBL_EPSILON * (1.0 + fabs(term)); /* since the prefactor term is subtracted from 1 we need to ignore underflow */ if (stat_exp != GSL_EUNDRFLW) { stat = GSL_ERROR_SELECT_2(stat_exp, stat_cf); } else { stat = stat_cf; }; if(stat == GSL_SUCCESS) { CHECK_UNDERFLOW(result); } return stat; } } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_beta_inc(const double a, const double b, const double x) { EVAL_RESULT(gsl_sf_beta_inc_e(a, b, x, &result)); } gsl-1.16/specfunc/gsl_sf_synchrotron.h0000664000252300025230000000327312171574312015063 00000000000000/* specfunc/gsl_sf_synchrotron.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_SYNCHROTRON_H__ #define __GSL_SF_SYNCHROTRON_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* First synchrotron function: * synchrotron_1(x) = x Integral[ K_{5/3}(t), {t, x, Infinity}] * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_synchrotron_1_e(const double x, gsl_sf_result * result); double gsl_sf_synchrotron_1(const double x); /* Second synchroton function: * synchrotron_2(x) = x * K_{2/3}(x) * * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_synchrotron_2_e(const double x, gsl_sf_result * result); double gsl_sf_synchrotron_2(const double x); __END_DECLS #endif /* __GSL_SF_SYNCHROTRON_H__ */ gsl-1.16/specfunc/gsl_sf_airy.h0000664000252300025230000000717512171574312013444 00000000000000/* specfunc/gsl_sf_airy.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_AIRY_H__ #define __GSL_SF_AIRY_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Airy function Ai(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_airy_Ai_e(const double x, const gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Ai(const double x, gsl_mode_t mode); /* Airy function Bi(x) * * exceptions: GSL_EOVRFLW */ int gsl_sf_airy_Bi_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Bi(const double x, gsl_mode_t mode); /* scaled Ai(x): * Ai(x) x < 0 * exp(+2/3 x^{3/2}) Ai(x) x > 0 * * exceptions: none */ int gsl_sf_airy_Ai_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Ai_scaled(const double x, gsl_mode_t mode); /* scaled Bi(x): * Bi(x) x < 0 * exp(-2/3 x^{3/2}) Bi(x) x > 0 * * exceptions: none */ int gsl_sf_airy_Bi_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Bi_scaled(const double x, gsl_mode_t mode); /* derivative Ai'(x) * * exceptions: GSL_EUNDRFLW */ int gsl_sf_airy_Ai_deriv_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Ai_deriv(const double x, gsl_mode_t mode); /* derivative Bi'(x) * * exceptions: GSL_EOVRFLW */ int gsl_sf_airy_Bi_deriv_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Bi_deriv(const double x, gsl_mode_t mode); /* scaled derivative Ai'(x): * Ai'(x) x < 0 * exp(+2/3 x^{3/2}) Ai'(x) x > 0 * * exceptions: none */ int gsl_sf_airy_Ai_deriv_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Ai_deriv_scaled(const double x, gsl_mode_t mode); /* scaled derivative: * Bi'(x) x < 0 * exp(-2/3 x^{3/2}) Bi'(x) x > 0 * * exceptions: none */ int gsl_sf_airy_Bi_deriv_scaled_e(const double x, gsl_mode_t mode, gsl_sf_result * result); double gsl_sf_airy_Bi_deriv_scaled(const double x, gsl_mode_t mode); /* Zeros of Ai(x) */ int gsl_sf_airy_zero_Ai_e(unsigned int s, gsl_sf_result * result); double gsl_sf_airy_zero_Ai(unsigned int s); /* Zeros of Bi(x) */ int gsl_sf_airy_zero_Bi_e(unsigned int s, gsl_sf_result * result); double gsl_sf_airy_zero_Bi(unsigned int s); /* Zeros of Ai'(x) */ int gsl_sf_airy_zero_Ai_deriv_e(unsigned int s, gsl_sf_result * result); double gsl_sf_airy_zero_Ai_deriv(unsigned int s); /* Zeros of Bi'(x) */ int gsl_sf_airy_zero_Bi_deriv_e(unsigned int s, gsl_sf_result * result); double gsl_sf_airy_zero_Bi_deriv(unsigned int s); __END_DECLS #endif /* __GSL_SF_AIRY_H__ */ gsl-1.16/specfunc/gsl_sf_gegenbauer.h0000664000252300025230000000415212171574312014574 00000000000000/* specfunc/gsl_sf_gegenbauer.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_GEGENBAUER_H__ #define __GSL_SF_GEGENBAUER_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Evaluate Gegenbauer polynomials * using explicit representations. * * exceptions: none */ int gsl_sf_gegenpoly_1_e(double lambda, double x, gsl_sf_result * result); int gsl_sf_gegenpoly_2_e(double lambda, double x, gsl_sf_result * result); int gsl_sf_gegenpoly_3_e(double lambda, double x, gsl_sf_result * result); double gsl_sf_gegenpoly_1(double lambda, double x); double gsl_sf_gegenpoly_2(double lambda, double x); double gsl_sf_gegenpoly_3(double lambda, double x); /* Evaluate Gegenbauer polynomials. * * lambda > -1/2, n >= 0 * exceptions: GSL_EDOM */ int gsl_sf_gegenpoly_n_e(int n, double lambda, double x, gsl_sf_result * result); double gsl_sf_gegenpoly_n(int n, double lambda, double x); /* Calculate array of Gegenbauer polynomials * for n = (0, 1, 2, ... nmax) * * lambda > -1/2, nmax >= 0 * exceptions: GSL_EDOM */ int gsl_sf_gegenpoly_array(int nmax, double lambda, double x, double * result_array); __END_DECLS #endif /* __GSL_SF_GEGENBAUER_H__ */ gsl-1.16/specfunc/gsl_sf_mathieu.h0000664000252300025230000000755112171574312014132 00000000000000/* specfunc/gsl_sf_mathieu.h * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #ifndef __GSL_SF_MATHIEU_H__ #define __GSL_SF_MATHIEU_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS #define GSL_SF_MATHIEU_COEFF 100 typedef struct { size_t size; size_t even_order; size_t odd_order; int extra_values; double qa; /* allow for caching of results: not implemented yet */ double qb; /* allow for caching of results: not implemented yet */ double *aa; double *bb; double *dd; double *ee; double *tt; double *e2; double *zz; gsl_vector *eval; gsl_matrix *evec; gsl_eigen_symmv_workspace *wmat; } gsl_sf_mathieu_workspace; /* Compute an array of characteristic (eigen) values from the recurrence matrices for the Mathieu equations. */ int gsl_sf_mathieu_a_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[]); int gsl_sf_mathieu_b_array(int order_min, int order_max, double qq, gsl_sf_mathieu_workspace *work, double result_array[]); /* Compute the characteristic value for a Mathieu function of order n and type ntype. */ int gsl_sf_mathieu_a(int order, double qq, gsl_sf_result *result); int gsl_sf_mathieu_b(int order, double qq, gsl_sf_result *result); /* Compute the Fourier coefficients for a Mathieu function. */ int gsl_sf_mathieu_a_coeff(int order, double qq, double aa, double coeff[]); int gsl_sf_mathieu_b_coeff(int order, double qq, double aa, double coeff[]); /* Allocate computational storage space for eigenvalue solution. */ gsl_sf_mathieu_workspace *gsl_sf_mathieu_alloc(const size_t nn, const double qq); void gsl_sf_mathieu_free(gsl_sf_mathieu_workspace *workspace); /* Compute an angular Mathieu function. */ int gsl_sf_mathieu_ce(int order, double qq, double zz, gsl_sf_result *result); int gsl_sf_mathieu_se(int order, double qq, double zz, gsl_sf_result *result); int gsl_sf_mathieu_ce_array(int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]); int gsl_sf_mathieu_se_array(int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]); /* Compute a radial Mathieu function. */ int gsl_sf_mathieu_Mc(int kind, int order, double qq, double zz, gsl_sf_result *result); int gsl_sf_mathieu_Ms(int kind, int order, double qq, double zz, gsl_sf_result *result); int gsl_sf_mathieu_Mc_array(int kind, int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]); int gsl_sf_mathieu_Ms_array(int kind, int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]); __END_DECLS #endif /* !__GSL_SF_MATHIEU_H__ */ gsl-1.16/specfunc/clausen.c0000664000252300025230000000526212171574312012563 00000000000000/* specfunc/clausen.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "chebyshev.h" #include "cheb_eval.c" static double aclaus_data[15] = { 2.142694363766688447e+00, 0.723324281221257925e-01, 0.101642475021151164e-02, 0.3245250328531645e-04, 0.133315187571472e-05, 0.6213240591653e-07, 0.313004135337e-08, 0.16635723056e-09, 0.919659293e-11, 0.52400462e-12, 0.3058040e-13, 0.18197e-14, 0.1100e-15, 0.68e-17, 0.4e-18 }; static cheb_series aclaus_cs = { aclaus_data, 14, -1, 1, 8 /* FIXME: this is a guess, correct value needed here BJG */ }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_clausen_e(double x, gsl_sf_result *result) { const double x_cut = M_PI * GSL_SQRT_DBL_EPSILON; double sgn = 1.0; int status_red; if(x < 0.0) { x = -x; sgn = -1.0; } /* Argument reduction to [0, 2pi) */ status_red = gsl_sf_angle_restrict_pos_e(&x); /* Further reduction to [0,pi) */ if(x > M_PI) { /* simulated extra precision: 2PI = p0 + p1 */ const double p0 = 6.28125; const double p1 = 0.19353071795864769253e-02; x = (p0 - x) + p1; sgn = -sgn; } if(x == 0.0) { result->val = 0.0; result->err = 0.0; } else if(x < x_cut) { result->val = x * (1.0 - log(x)); result->err = x * GSL_DBL_EPSILON; } else { const double t = 2.0*(x*x / (M_PI*M_PI) - 0.5); gsl_sf_result result_c; cheb_eval_e(&aclaus_cs, t, &result_c); result->val = x * (result_c.val - log(x)); result->err = x * (result_c.err + GSL_DBL_EPSILON); } result->val *= sgn; return status_red; } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_clausen(const double x) { EVAL_RESULT(gsl_sf_clausen_e(x, &result)); } gsl-1.16/specfunc/bessel_amp_phase.h0000664000252300025230000000276712171574312014437 00000000000000/* specfunc/bessel_amp_phase.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef _BESSEL_AMP_PHASE_H_ #define _BESSEL_AMP_PHASE_H_ #include "chebyshev.h" extern const cheb_series _gsl_sf_bessel_amp_phase_bm0_cs; extern const cheb_series _gsl_sf_bessel_amp_phase_bth0_cs; extern const cheb_series _gsl_sf_bessel_amp_phase_bm1_cs; extern const cheb_series _gsl_sf_bessel_amp_phase_bth1_cs; /* large argument expansions [Abramowitz+Stegun, 9.2.28-29] * * thetanu_corr = thetanu - x + 1/2 nu Pi * * assumes x > 0 */ int gsl_sf_bessel_asymp_Mnu_e(const double nu, const double x, double * result); int gsl_sf_bessel_asymp_thetanu_corr_e(const double nu, const double x, double * result); /* w/o x term */ #endif /* !_BESSEL_AMP_PHASE_H_ */ gsl-1.16/specfunc/log.c0000664000252300025230000001535012171574312011711 00000000000000/* specfunc/log.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* Chebyshev expansion for log(1 + x(t))/x(t) * * x(t) = (4t-1)/(2(4-t)) * t(x) = (8x+1)/(2(x+2)) * -1/2 < x < 1/2 * -1 < t < 1 */ static double lopx_data[21] = { 2.16647910664395270521272590407, -0.28565398551049742084877469679, 0.01517767255690553732382488171, -0.00200215904941415466274422081, 0.00019211375164056698287947962, -0.00002553258886105542567601400, 2.9004512660400621301999384544e-06, -3.8873813517057343800270917900e-07, 4.7743678729400456026672697926e-08, -6.4501969776090319441714445454e-09, 8.2751976628812389601561347296e-10, -1.1260499376492049411710290413e-10, 1.4844576692270934446023686322e-11, -2.0328515972462118942821556033e-12, 2.7291231220549214896095654769e-13, -3.7581977830387938294437434651e-14, 5.1107345870861673561462339876e-15, -7.0722150011433276578323272272e-16, 9.7089758328248469219003866867e-17, -1.3492637457521938883731579510e-17, 1.8657327910677296608121390705e-18 }; static cheb_series lopx_cs = { lopx_data, 20, -1, 1, 10 }; /* Chebyshev expansion for (log(1 + x(t)) - x(t))/x(t)^2 * * x(t) = (4t-1)/(2(4-t)) * t(x) = (8x+1)/(2(x+2)) * -1/2 < x < 1/2 * -1 < t < 1 */ static double lopxmx_data[20] = { -1.12100231323744103373737274541, 0.19553462773379386241549597019, -0.01467470453808083971825344956, 0.00166678250474365477643629067, -0.00018543356147700369785746902, 0.00002280154021771635036301071, -2.8031253116633521699214134172e-06, 3.5936568872522162983669541401e-07, -4.6241857041062060284381167925e-08, 6.0822637459403991012451054971e-09, -8.0339824424815790302621320732e-10, 1.0751718277499375044851551587e-10, -1.4445310914224613448759230882e-11, 1.9573912180610336168921438426e-12, -2.6614436796793061741564104510e-13, 3.6402634315269586532158344584e-14, -4.9937495922755006545809120531e-15, 6.8802890218846809524646902703e-16, -9.5034129794804273611403251480e-17, 1.3170135013050997157326965813e-17 }; static cheb_series lopxmx_cs = { lopxmx_data, 19, -1, 1, 9 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_log_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else { result->val = log(x); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_log_abs_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.0) { DOMAIN_ERROR(result); } else { result->val = log(fabs(x)); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_complex_log_e(const double zr, const double zi, gsl_sf_result * lnr, gsl_sf_result * theta) { /* CHECK_POINTER(lnr) */ /* CHECK_POINTER(theta) */ if(zr != 0.0 || zi != 0.0) { const double ax = fabs(zr); const double ay = fabs(zi); const double min = GSL_MIN(ax, ay); const double max = GSL_MAX(ax, ay); lnr->val = log(max) + 0.5 * log(1.0 + (min/max)*(min/max)); lnr->err = 2.0 * GSL_DBL_EPSILON * fabs(lnr->val); theta->val = atan2(zi, zr); theta->err = GSL_DBL_EPSILON * fabs(lnr->val); return GSL_SUCCESS; } else { DOMAIN_ERROR_2(lnr, theta); } } int gsl_sf_log_1plusx_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(fabs(x) < GSL_ROOT6_DBL_EPSILON) { const double c1 = -0.5; const double c2 = 1.0/3.0; const double c3 = -1.0/4.0; const double c4 = 1.0/5.0; const double c5 = -1.0/6.0; const double c6 = 1.0/7.0; const double c7 = -1.0/8.0; const double c8 = 1.0/9.0; const double c9 = -1.0/10.0; const double t = c5 + x*(c6 + x*(c7 + x*(c8 + x*c9))); result->val = x * (1.0 + x*(c1 + x*(c2 + x*(c3 + x*(c4 + x*t))))); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(fabs(x) < 0.5) { double t = 0.5*(8.0*x + 1.0)/(x+2.0); gsl_sf_result c; cheb_eval_e(&lopx_cs, t, &c); result->val = x * c.val; result->err = fabs(x * c.err); return GSL_SUCCESS; } else { result->val = log(1.0 + x); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_log_1plusx_mx_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= -1.0) { DOMAIN_ERROR(result); } else if(fabs(x) < GSL_ROOT5_DBL_EPSILON) { const double c1 = -0.5; const double c2 = 1.0/3.0; const double c3 = -1.0/4.0; const double c4 = 1.0/5.0; const double c5 = -1.0/6.0; const double c6 = 1.0/7.0; const double c7 = -1.0/8.0; const double c8 = 1.0/9.0; const double c9 = -1.0/10.0; const double t = c5 + x*(c6 + x*(c7 + x*(c8 + x*c9))); result->val = x*x * (c1 + x*(c2 + x*(c3 + x*(c4 + x*t)))); result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(fabs(x) < 0.5) { double t = 0.5*(8.0*x + 1.0)/(x+2.0); gsl_sf_result c; cheb_eval_e(&lopxmx_cs, t, &c); result->val = x*x * c.val; result->err = x*x * c.err; return GSL_SUCCESS; } else { const double lterm = log(1.0 + x); result->val = lterm - x; result->err = GSL_DBL_EPSILON * (fabs(lterm) + fabs(x)); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_log(const double x) { EVAL_RESULT(gsl_sf_log_e(x, &result)); } double gsl_sf_log_abs(const double x) { EVAL_RESULT(gsl_sf_log_abs_e(x, &result)); } double gsl_sf_log_1plusx(const double x) { EVAL_RESULT(gsl_sf_log_1plusx_e(x, &result)); } double gsl_sf_log_1plusx_mx(const double x) { EVAL_RESULT(gsl_sf_log_1plusx_mx_e(x, &result)); } gsl-1.16/specfunc/sinint.c0000664000252300025230000002560712171574312012442 00000000000000/* specfunc/sinint.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC r9sifg.f, W. Fullerton */ /* series for f1 on the interval 2.00000e-02 to 6.25000e-02 with weighted error 2.82e-17 log weighted error 16.55 significant figures required 15.36 decimal places required 17.20 */ static double f1_data[20] = { -0.1191081969051363610, -0.0247823144996236248, 0.0011910281453357821, -0.0000927027714388562, 0.0000093373141568271, -0.0000011058287820557, 0.0000001464772071460, -0.0000000210694496288, 0.0000000032293492367, -0.0000000005206529618, 0.0000000000874878885, -0.0000000000152176187, 0.0000000000027257192, -0.0000000000005007053, 0.0000000000000940241, -0.0000000000000180014, 0.0000000000000035063, -0.0000000000000006935, 0.0000000000000001391, -0.0000000000000000282 }; static cheb_series f1_cs = { f1_data, 19, -1, 1, 10 }; /* series for f2 on the interval 0.00000e+00 to 2.00000e-02 with weighted error 4.32e-17 log weighted error 16.36 significant figures required 14.75 decimal places required 17.10 */ static double f2_data[29] = { -0.0348409253897013234, -0.0166842205677959686, 0.0006752901241237738, -0.0000535066622544701, 0.0000062693421779007, -0.0000009526638801991, 0.0000001745629224251, -0.0000000368795403065, 0.0000000087202677705, -0.0000000022601970392, 0.0000000006324624977, -0.0000000001888911889, 0.0000000000596774674, -0.0000000000198044313, 0.0000000000068641396, -0.0000000000024731020, 0.0000000000009226360, -0.0000000000003552364, 0.0000000000001407606, -0.0000000000000572623, 0.0000000000000238654, -0.0000000000000101714, 0.0000000000000044259, -0.0000000000000019634, 0.0000000000000008868, -0.0000000000000004074, 0.0000000000000001901, -0.0000000000000000900, 0.0000000000000000432 }; static cheb_series f2_cs = { f2_data, 28, -1, 1, 14 }; /* series for g1 on the interval 2.00000e-02 to 6.25000e-02 with weighted error 5.48e-17 log weighted error 16.26 significant figures required 15.47 decimal places required 16.92 */ static double g1_data[21] = { -0.3040578798253495954, -0.0566890984597120588, 0.0039046158173275644, -0.0003746075959202261, 0.0000435431556559844, -0.0000057417294453025, 0.0000008282552104503, -0.0000001278245892595, 0.0000000207978352949, -0.0000000035313205922, 0.0000000006210824236, -0.0000000001125215474, 0.0000000000209088918, -0.0000000000039715832, 0.0000000000007690431, -0.0000000000001514697, 0.0000000000000302892, -0.0000000000000061400, 0.0000000000000012601, -0.0000000000000002615, 0.0000000000000000548 }; static cheb_series g1_cs = { g1_data, 20, -1, 1, 13 }; /* series for g2 on the interval 0.00000e+00 to 2.00000e-02 with weighted error 5.01e-17 log weighted error 16.30 significant figures required 15.12 decimal places required 17.07 */ static double g2_data[34] = { -0.0967329367532432218, -0.0452077907957459871, 0.0028190005352706523, -0.0002899167740759160, 0.0000407444664601121, -0.0000071056382192354, 0.0000014534723163019, -0.0000003364116512503, 0.0000000859774367886, -0.0000000238437656302, 0.0000000070831906340, -0.0000000022318068154, 0.0000000007401087359, -0.0000000002567171162, 0.0000000000926707021, -0.0000000000346693311, 0.0000000000133950573, -0.0000000000053290754, 0.0000000000021775312, -0.0000000000009118621, 0.0000000000003905864, -0.0000000000001708459, 0.0000000000000762015, -0.0000000000000346151, 0.0000000000000159996, -0.0000000000000075213, 0.0000000000000035970, -0.0000000000000017530, 0.0000000000000008738, -0.0000000000000004487, 0.0000000000000002397, -0.0000000000000001347, 0.0000000000000000801, -0.0000000000000000501 }; static cheb_series g2_cs = { g2_data, 33, -1, 1, 20 }; /* x >= 4.0 */ static void fg_asymp(const double x, gsl_sf_result * f, gsl_sf_result * g) { /* xbig = sqrt (1.0/r1mach(3)) xmaxf = exp (amin1(-alog(r1mach(1)), alog(r1mach(2))) - 0.01) xmaxg = 1.0/sqrt(r1mach(1)) xbnd = sqrt(50.0) */ const double xbig = 1.0/GSL_SQRT_DBL_EPSILON; const double xmaxf = 1.0/GSL_DBL_MIN; const double xmaxg = 1.0/GSL_SQRT_DBL_MIN; const double xbnd = 7.07106781187; const double x2 = x*x; if(x <= xbnd) { gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_e(&f1_cs, (1.0/x2-0.04125)/0.02125, &result_c1); cheb_eval_e(&g1_cs, (1.0/x2-0.04125)/0.02125, &result_c2); f->val = (1.0 + result_c1.val)/x; g->val = (1.0 + result_c2.val)/x2; f->err = result_c1.err/x + 2.0 * GSL_DBL_EPSILON * fabs(f->val); g->err = result_c2.err/x2 + 2.0 * GSL_DBL_EPSILON * fabs(g->val); } else if(x <= xbig) { gsl_sf_result result_c1; gsl_sf_result result_c2; cheb_eval_e(&f2_cs, 100.0/x2-1.0, &result_c1); cheb_eval_e(&g2_cs, 100.0/x2-1.0, &result_c2); f->val = (1.0 + result_c1.val)/x; g->val = (1.0 + result_c2.val)/x2; f->err = result_c1.err/x + 2.0 * GSL_DBL_EPSILON * fabs(f->val); g->err = result_c2.err/x2 + 2.0 * GSL_DBL_EPSILON * fabs(g->val); } else { f->val = (x < xmaxf ? 1.0/x : 0.0); g->val = (x < xmaxg ? 1.0/x2 : 0.0); f->err = 2.0 * GSL_DBL_EPSILON * fabs(f->val); g->err = 2.0 * GSL_DBL_EPSILON * fabs(g->val); } return; } /* based on SLATEC si.f, W. Fullerton series for si on the interval 0.00000e+00 to 1.60000e+01 with weighted error 1.22e-17 log weighted error 16.91 significant figures required 16.37 decimal places required 17.45 */ static double si_data[12] = { -0.1315646598184841929, -0.2776578526973601892, 0.0354414054866659180, -0.0025631631447933978, 0.0001162365390497009, -0.0000035904327241606, 0.0000000802342123706, -0.0000000013562997693, 0.0000000000179440722, -0.0000000000001908387, 0.0000000000000016670, -0.0000000000000000122 }; static cheb_series si_cs = { si_data, 11, -1, 1, 9 }; /* series for ci on the interval 0.00000e+00 to 1.60000e+01 with weighted error 1.94e-18 log weighted error 17.71 significant figures required 17.74 decimal places required 18.27 */ static double ci_data[13] = { -0.34004281856055363156, -1.03302166401177456807, 0.19388222659917082877, -0.01918260436019865894, 0.00110789252584784967, -0.00004157234558247209, 0.00000109278524300229, -0.00000002123285954183, 0.00000000031733482164, -0.00000000000376141548, 0.00000000000003622653, -0.00000000000000028912, 0.00000000000000000194 }; static cheb_series ci_cs = { ci_data, 12, -1, 1, 9 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_Si_e(const double x, gsl_sf_result * result) { double ax = fabs(x); /* CHECK_POINTER(result) */ if(ax < GSL_SQRT_DBL_EPSILON) { result->val = x; result->err = 0.0; return GSL_SUCCESS; } else if(ax <= 4.0) { gsl_sf_result result_c; cheb_eval_e(&si_cs, (x*x-8.0)*0.125, &result_c); result->val = x * (0.75 + result_c.val); result->err = ax * result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { /* Note there is no loss of precision * here bcause of the leading constant. */ gsl_sf_result f; gsl_sf_result g; fg_asymp(ax, &f, &g); result->val = 0.5 * M_PI - f.val*cos(ax) - g.val*sin(ax); result->err = f.err + g.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); if(x < 0.0) result->val = -result->val; return GSL_SUCCESS; } } int gsl_sf_Ci_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x <= 4.0) { const double lx = log(x); const double y = (x*x-8.0)*0.125; gsl_sf_result result_c; cheb_eval_e(&ci_cs, y, &result_c); result->val = lx - 0.5 + result_c.val; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(lx) + 0.5) + result_c.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result sin_result; gsl_sf_result cos_result; int stat_sin = gsl_sf_sin_e(x, &sin_result); int stat_cos = gsl_sf_cos_e(x, &cos_result); gsl_sf_result f; gsl_sf_result g; fg_asymp(x, &f, &g); result->val = f.val*sin_result.val - g.val*cos_result.val; result->err = fabs(f.err*sin_result.val); result->err += fabs(g.err*cos_result.val); result->err += fabs(f.val*sin_result.err); result->err += fabs(g.val*cos_result.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_2(stat_sin, stat_cos); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_Si(const double x) { EVAL_RESULT(gsl_sf_Si_e(x, &result)); } double gsl_sf_Ci(const double x) { EVAL_RESULT(gsl_sf_Ci_e(x, &result)); } gsl-1.16/specfunc/lambert.c0000664000252300025230000001404012171574312012551 00000000000000/* specfunc/lambert.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include /* Started with code donated by K. Briggs; added * error estimates, GSL foo, and minor tweaks. * Some Lambert-ology from * [Corless, Gonnet, Hare, and Jeffrey, "On Lambert's W Function".] */ /* Halley iteration (eqn. 5.12, Corless et al) */ static int halley_iteration( double x, double w_initial, unsigned int max_iters, gsl_sf_result * result ) { double w = w_initial; unsigned int i; for(i=0; i 0) { t = (t/p)/e; /* Newton iteration */ } else { t /= e*p - 0.5*(p + 1.0)*t/p; /* Halley iteration */ }; w -= t; tol = 10 * GSL_DBL_EPSILON * GSL_MAX_DBL(fabs(w), 1.0/(fabs(p)*e)); if(fabs(t) < tol) { result->val = w; result->err = 2.0*tol; return GSL_SUCCESS; } } /* should never get here */ result->val = w; result->err = fabs(w); return GSL_EMAXITER; } /* series which appears for q near zero; * only the argument is different for the different branches */ static double series_eval(double r) { static const double c[12] = { -1.0, 2.331643981597124203363536062168, -1.812187885639363490240191647568, 1.936631114492359755363277457668, -2.353551201881614516821543561516, 3.066858901050631912893148922704, -4.175335600258177138854984177460, 5.858023729874774148815053846119, -8.401032217523977370984161688514, 12.250753501314460424, -18.100697012472442755, 27.029044799010561650 }; const double t_8 = c[8] + r*(c[9] + r*(c[10] + r*c[11])); const double t_5 = c[5] + r*(c[6] + r*(c[7] + r*t_8)); const double t_1 = c[1] + r*(c[2] + r*(c[3] + r*(c[4] + r*t_5))); return c[0] + r*t_1; } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_lambert_W0_e(double x, gsl_sf_result * result) { const double one_over_E = 1.0/M_E; const double q = x + one_over_E; if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else if(q < 0.0) { /* Strictly speaking this is an error. But because of the * arithmetic operation connecting x and q, I am a little * lenient in case of some epsilon overshoot. The following * answer is quite accurate in that case. Anyway, we have * to return GSL_EDOM. */ result->val = -1.0; result->err = sqrt(-q); return GSL_EDOM; } else if(q == 0.0) { result->val = -1.0; result->err = GSL_DBL_EPSILON; /* cannot error is zero, maybe q == 0 by "accident" */ return GSL_SUCCESS; } else if(q < 1.0e-03) { /* series near -1/E in sqrt(q) */ const double r = sqrt(q); result->val = series_eval(r); result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { static const unsigned int MAX_ITERS = 10; double w; if (x < 1.0) { /* obtain initial approximation from series near x=0; * no need for extra care, since the Halley iteration * converges nicely on this branch */ const double p = sqrt(2.0 * M_E * q); w = -1.0 + p*(1.0 + p*(-1.0/3.0 + p*11.0/72.0)); } else { /* obtain initial approximation from rough asymptotic */ w = log(x); if(x > 3.0) w -= log(w); } return halley_iteration(x, w, MAX_ITERS, result); } } int gsl_sf_lambert_Wm1_e(double x, gsl_sf_result * result) { if(x > 0.0) { return gsl_sf_lambert_W0_e(x, result); } else if(x == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { static const unsigned int MAX_ITERS = 32; const double one_over_E = 1.0/M_E; const double q = x + one_over_E; double w; if (q < 0.0) { /* As in the W0 branch above, return some reasonable answer anyway. */ result->val = -1.0; result->err = sqrt(-q); return GSL_EDOM; } if(x < -1.0e-6) { /* Obtain initial approximation from series about q = 0, * as long as we're not very close to x = 0. * Use full series and try to bail out if q is too small, * since the Halley iteration has bad convergence properties * in finite arithmetic for q very small, because the * increment alternates and p is near zero. */ const double r = -sqrt(q); w = series_eval(r); if(q < 3.0e-3) { /* this approximation is good enough */ result->val = w; result->err = 5.0 * GSL_DBL_EPSILON * fabs(w); return GSL_SUCCESS; } } else { /* Obtain initial approximation from asymptotic near zero. */ const double L_1 = log(-x); const double L_2 = log(-L_1); w = L_1 - L_2 + L_2/L_1; } return halley_iteration(x, w, MAX_ITERS, result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_lambert_W0(double x) { EVAL_RESULT(gsl_sf_lambert_W0_e(x, &result)); } double gsl_sf_lambert_Wm1(double x) { EVAL_RESULT(gsl_sf_lambert_Wm1_e(x, &result)); } gsl-1.16/specfunc/gsl_specfunc.h0000664000252300025230000000025512171574312013606 00000000000000/* Author: G. Jungman */ /* Convenience header */ #ifndef __GSL_SPECFUNC_H__ #define __GSL_SPECFUNC_H__ #include #endif /* __GSL_SPECFUNC_H__ */ gsl-1.16/specfunc/gsl_sf_dawson.h0000664000252300025230000000257212171574312013767 00000000000000/* specfunc/gsl_sf_dawson.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_DAWSON_H__ #define __GSL_SF_DAWSON_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Dawson's integral: * * Exp[-x^2] Integral[ Exp[t^2], {t,0,x}] * * exceptions: GSL_EUNDRFLW; */ int gsl_sf_dawson_e(double x, gsl_sf_result * result); double gsl_sf_dawson(double x); __END_DECLS #endif /* __GSL_SF_DAWSON_H__ */ gsl-1.16/specfunc/bessel_K1.c0000664000252300025230000001375112171574312012743 00000000000000/* specfunc/bessel_K1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "chebyshev.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besk1(), besk1e() */ /* chebyshev expansions series for bk1 on the interval 0. to 4.00000d+00 with weighted error 7.02e-18 log weighted error 17.15 significant figures required 16.73 decimal places required 17.67 series for ak1 on the interval 1.25000d-01 to 5.00000d-01 with weighted error 6.06e-17 log weighted error 16.22 significant figures required 15.41 decimal places required 16.83 series for ak12 on the interval 0. to 1.25000d-01 with weighted error 2.58e-17 log weighted error 16.59 significant figures required 15.22 decimal places required 17.16 */ static double bk1_data[11] = { 0.0253002273389477705, -0.3531559607765448760, -0.1226111808226571480, -0.0069757238596398643, -0.0001730288957513052, -0.0000024334061415659, -0.0000000221338763073, -0.0000000001411488392, -0.0000000000006666901, -0.0000000000000024274, -0.0000000000000000070 }; static cheb_series bk1_cs = { bk1_data, 10, -1, 1, 8 }; static double ak1_data[17] = { 0.27443134069738830, 0.07571989953199368, -0.00144105155647540, 0.00006650116955125, -0.00000436998470952, 0.00000035402774997, -0.00000003311163779, 0.00000000344597758, -0.00000000038989323, 0.00000000004720819, -0.00000000000604783, 0.00000000000081284, -0.00000000000011386, 0.00000000000001654, -0.00000000000000248, 0.00000000000000038, -0.00000000000000006 }; static cheb_series ak1_cs = { ak1_data, 16, -1, 1, 9 }; static double ak12_data[14] = { 0.06379308343739001, 0.02832887813049721, -0.00024753706739052, 0.00000577197245160, -0.00000020689392195, 0.00000000973998344, -0.00000000055853361, 0.00000000003732996, -0.00000000000282505, 0.00000000000023720, -0.00000000000002176, 0.00000000000000215, -0.00000000000000022, 0.00000000000000002 }; static cheb_series ak12_cs = { ak12_data, 13, -1, 1, 7 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_K1_scaled_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*GSL_DBL_MIN) { OVERFLOW_ERROR(result); } else if(x <= 2.0) { const double lx = log(x); const double ex = exp(x); int stat_I1; gsl_sf_result I1; gsl_sf_result c; cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c); stat_I1 = gsl_sf_bessel_I1_e(x, &I1); result->val = ex * ((lx-M_LN2)*I1.val + (0.75 + c.val)/x); result->err = ex * (c.err/x + fabs(lx)*I1.err); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_I1; } else if(x <= 8.0) { const double sx = sqrt(x); gsl_sf_result c; cheb_eval_e(&ak1_cs, (16.0/x-5.0)/3.0, &c); result->val = (1.25 + c.val) / sx; result->err = c.err / sx; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { const double sx = sqrt(x); gsl_sf_result c; cheb_eval_e(&ak12_cs, 16.0/x-1.0, &c); result->val = (1.25 + c.val) / sx; result->err = c.err / sx; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_bessel_K1_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*GSL_DBL_MIN) { OVERFLOW_ERROR(result); } else if(x <= 2.0) { const double lx = log(x); int stat_I1; gsl_sf_result I1; gsl_sf_result c; cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c); stat_I1 = gsl_sf_bessel_I1_e(x, &I1); result->val = (lx-M_LN2)*I1.val + (0.75 + c.val)/x; result->err = c.err/x + fabs(lx)*I1.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_I1; } else { gsl_sf_result K1_scaled; int stat_K1 = gsl_sf_bessel_K1_scaled_e(x, &K1_scaled); int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0, K1_scaled.val, K1_scaled.err, result); result->err = fabs(result->val) * (GSL_DBL_EPSILON*fabs(x) + K1_scaled.err/K1_scaled.val); return GSL_ERROR_SELECT_2(stat_e, stat_K1); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_K1_scaled(const double x) { EVAL_RESULT(gsl_sf_bessel_K1_scaled_e(x, &result)); } double gsl_sf_bessel_K1(const double x) { EVAL_RESULT(gsl_sf_bessel_K1_e(x, &result)); } gsl-1.16/specfunc/debye.c0000664000252300025230000003340012171574312012214 00000000000000/* specfunc/debye.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* augmented to n=5 and 6 2005-11-08 by R. J. Mathar, http://www.strw.leidenuniv.nl/~mathar */ #include #include #include #include #include "error.h" #include "check.h" #include "chebyshev.h" #include "cheb_eval.c" static double adeb1_data[17] = { 2.4006597190381410194, 0.1937213042189360089, -0.62329124554895770e-02, 0.3511174770206480e-03, -0.228222466701231e-04, 0.15805467875030e-05, -0.1135378197072e-06, 0.83583361188e-08, -0.6264424787e-09, 0.476033489e-10, -0.36574154e-11, 0.2835431e-12, -0.221473e-13, 0.17409e-14, -0.1376e-15, 0.109e-16, -0.9e-18 }; static cheb_series adeb1_cs = { adeb1_data, 16, -1.0, 1.0, 9 }; static double adeb2_data[18] = { 2.5943810232570770282, 0.2863357204530719834, -0.102062656158046713e-01, 0.6049109775346844e-03, -0.405257658950210e-04, 0.28633826328811e-05, -0.2086394303065e-06, 0.155237875826e-07, -0.11731280087e-08, 0.897358589e-10, -0.69317614e-11, 0.5398057e-12, -0.423241e-13, 0.33378e-14, -0.2645e-15, 0.211e-16, -0.17e-17, 0.1e-18 }; static cheb_series adeb2_cs = { adeb2_data, 17, -1.0, 1.0, 10 }; static double adeb3_data[17] = { 2.707737068327440945, 0.340068135211091751, -0.12945150184440869e-01, 0.7963755380173816e-03, -0.546360009590824e-04, 0.39243019598805e-05, -0.2894032823539e-06, 0.217317613962e-07, -0.16542099950e-08, 0.1272796189e-09, -0.987963460e-11, 0.7725074e-12, -0.607797e-13, 0.48076e-14, -0.3820e-15, 0.305e-16, -0.24e-17 }; static cheb_series adeb3_cs = { adeb3_data, 16, -1.0, 1.0, 10 }; static double adeb4_data[17] = { 2.781869415020523460, 0.374976783526892863, -0.14940907399031583e-01, 0.945679811437042e-03, -0.66132916138933e-04, 0.4815632982144e-05, -0.3588083958759e-06, 0.271601187416e-07, -0.20807099122e-08, 0.1609383869e-09, -0.125470979e-10, 0.9847265e-12, -0.777237e-13, 0.61648e-14, -0.4911e-15, 0.393e-16, -0.32e-17 }; static cheb_series adeb4_cs = { adeb4_data, 16, -1.0, 1.0, 10 }; static double adeb5_data[17] = { 2.8340269546834530149, 0.3994098857106266445, -0.164566764773099646e-1, 0.10652138340664541e-2, -0.756730374875418e-4, 0.55745985240273e-5, -0.4190692330918e-6, 0.319456143678e-7, -0.24613318171e-8, 0.1912801633e-9, -0.149720049e-10, 0.11790312e-11, -0.933329e-13, 0.74218e-14, -0.5925e-15, 0.475e-16, -0.39e-17 }; static cheb_series adeb5_cs = { adeb5_data, 16, -1.0, 1.0, 10 }; static double adeb6_data[17] = { 2.8726727134130122113, 0.4174375352339027746, -0.176453849354067873e-1, 0.11629852733494556e-2, -0.837118027357117e-4, 0.62283611596189e-5, -0.4718644465636e-6, 0.361950397806e-7, -0.28030368010e-8, 0.2187681983e-9, -0.171857387e-10, 0.13575809e-11, -0.1077580e-12, 0.85893e-14, -0.6872e-15, 0.552e-16, -0.44e-17 }; static cheb_series adeb6_cs = { adeb6_data, 16, -1.0, 1.0, 10 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_debye_1_e(const double x, gsl_sf_result * result) { const double val_infinity = 1.64493406684822644; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - 0.25*x + x*x/36.0; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb1_cs, t, &c); result->val = c.val - 0.25 * x; result->err = c.err + 0.25 * x * GSL_DBL_EPSILON; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double sum = 0.0; double xk = nexp * x; double rk = nexp; int i; for(i=nexp; i>=1; i--) { sum *= ex; sum += (1.0 + 1.0/xk)/rk; rk -= 1.0; xk -= x; } result->val = val_infinity/x - sum*ex; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < xcut) { result->val = (val_infinity - exp(-x)*(x+1.0)) / x; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = val_infinity/x; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } int gsl_sf_debye_2_e(const double x, gsl_sf_result * result) { const double val_infinity = 4.80822761263837714; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - x/3.0 + x*x/24.0; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb2_cs, t, &c); result->val = c.val - x/3.0; result->err = c.err + GSL_DBL_EPSILON * x/3.0; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double xk = nexp * x; double rk = nexp; double sum = 0.0; int i; for(i=nexp; i>=1; i--) { sum *= ex; sum += (1.0 + 2.0/xk + 2.0/(xk*xk)) / rk; rk -= 1.0; xk -= x; } result->val = val_infinity/(x*x) - 2.0 * sum * ex; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < xcut) { const double x2 = x*x; const double sum = 2.0 + 2.0*x + x2; result->val = (val_infinity - 2.0 * sum * exp(-x)) / x2; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { result->val = (val_infinity/x)/x; result->err = GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_debye_3_e(const double x, gsl_sf_result * result) { const double val_infinity = 19.4818182068004875; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - 3.0*x/8.0 + x*x/20.0; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb3_cs, t, &c); result->val = c.val - 0.375*x; result->err = c.err + GSL_DBL_EPSILON * 0.375*x; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double xk = nexp * x; double rk = nexp; double sum = 0.0; int i; for(i=nexp; i>=1; i--) { double xk_inv = 1.0/xk; sum *= ex; sum += (((6.0*xk_inv + 6.0)*xk_inv + 3.0)*xk_inv + 1.0) / rk; rk -= 1.0; xk -= x; } result->val = val_infinity/(x*x*x) - 3.0 * sum * ex; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < xcut) { const double x3 = x*x*x; const double sum = 6.0 + 6.0*x + 3.0*x*x + x3; result->val = (val_infinity - 3.0 * sum * exp(-x)) / x3; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { result->val = ((val_infinity/x)/x)/x; result->err = GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_debye_4_e(const double x, gsl_sf_result * result) { const double val_infinity = 99.5450644937635129; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - 2.0*x/5.0 + x*x/18.0; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb4_cs, t, &c); result->val = c.val - 2.0*x/5.0; result->err = c.err + GSL_DBL_EPSILON * 2.0*x/5.0; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double xk = nexp * x; double rk = nexp; double sum = 0.0; int i; for(i=nexp; i>=1; i--) { double xk_inv = 1.0/xk; sum *= ex; sum += ((((24.0*xk_inv + 24.0)*xk_inv + 12.0)*xk_inv + 4.0)*xk_inv + 1.0) / rk; rk -= 1.0; xk -= x; } result->val = val_infinity/(x*x*x*x) - 4.0 * sum * ex; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < xcut) { const double x2 = x*x; const double x4 = x2*x2; const double sum = 24.0 + 24.0*x + 12.0*x2 + 4.0*x2*x + x4; result->val = (val_infinity - 4.0 * sum * exp(-x)) / x4; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { result->val = (((val_infinity/x)/x)/x)/x; result->err = GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_debye_5_e(const double x, gsl_sf_result * result) { const double val_infinity = 610.405837190669483828710757875 ; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - 5.0*x/12.0 + 5.0*x*x/84.0; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb5_cs, t, &c); result->val = c.val - 5.0*x/12.0; result->err = c.err + GSL_DBL_EPSILON * 5.0*x/12.0; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double xk = nexp * x; double rk = nexp; double sum = 0.0; int i; for(i=nexp; i>=1; i--) { double xk_inv = 1.0/xk; sum *= ex; sum += (((((120.0*xk_inv + 120.0)*xk_inv + 60.0)*xk_inv + 20.0)*xk_inv + 5.0)*xk_inv+ 1.0) / rk; rk -= 1.0; xk -= x; } result->val = val_infinity/(x*x*x*x*x) - 5.0 * sum * ex; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < xcut) { const double x2 = x*x; const double x4 = x2*x2; const double x5 = x4*x; const double sum = 120.0 + 120.0*x + 60.0*x2 + 20.0*x2*x + 5.0*x4 + x5; result->val = (val_infinity - 5.0 * sum * exp(-x)) / x5; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { result->val = ((((val_infinity/x)/x)/x)/x)/x; result->err = GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } int gsl_sf_debye_6_e(const double x, gsl_sf_result * result) { const double val_infinity = 4356.06887828990661194792541535 ; const double xcut = -GSL_LOG_DBL_MIN; /* CHECK_POINTER(result) */ if(x < 0.0) { DOMAIN_ERROR(result); } else if(x < 2.0*M_SQRT2*GSL_SQRT_DBL_EPSILON) { result->val = 1.0 - 3.0*x/7.0 + x*x/16.0; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x <= 4.0) { const double t = x*x/8.0 - 1.0; gsl_sf_result c; cheb_eval_e(&adeb6_cs, t, &c); result->val = c.val - 3.0*x/7.0; result->err = c.err + GSL_DBL_EPSILON * 3.0*x/7.0; return GSL_SUCCESS; } else if(x < -(M_LN2 + GSL_LOG_DBL_EPSILON)) { const int nexp = floor(xcut/x); const double ex = exp(-x); double xk = nexp * x; double rk = nexp; double sum = 0.0; int i; for(i=nexp; i>=1; i--) { double xk_inv = 1.0/xk; sum *= ex; sum += ((((((720.0*xk_inv + 720.0)*xk_inv + 360.0)*xk_inv + 120.0)*xk_inv + 30.0)*xk_inv+ 6.0)*xk_inv+ 1.0) / rk; rk -= 1.0; xk -= x; } result->val = val_infinity/(x*x*x*x*x*x) - 6.0 * sum * ex; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else if(x < xcut) { const double x2 = x*x; const double x4 = x2*x2; const double x6 = x4*x2; const double sum = 720.0 + 720.0*x + 360.0*x2 + 120.0*x2*x + 30.0*x4 + 6.0*x4*x +x6 ; result->val = (val_infinity - 6.0 * sum * exp(-x)) / x6; result->err = GSL_DBL_EPSILON * result->val; return GSL_SUCCESS; } else { result->val = (((((val_infinity/x)/x)/x)/x)/x)/x ; result->err = GSL_DBL_EPSILON * result->val; CHECK_UNDERFLOW(result); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_debye_1(const double x) { EVAL_RESULT(gsl_sf_debye_1_e(x, &result)); } double gsl_sf_debye_2(const double x) { EVAL_RESULT(gsl_sf_debye_2_e(x, &result)); } double gsl_sf_debye_3(const double x) { EVAL_RESULT(gsl_sf_debye_3_e(x, &result)); } double gsl_sf_debye_4(const double x) { EVAL_RESULT(gsl_sf_debye_4_e(x, &result)); } double gsl_sf_debye_5(const double x) { EVAL_RESULT(gsl_sf_debye_5_e(x, &result)); } double gsl_sf_debye_6(const double x) { EVAL_RESULT(gsl_sf_debye_6_e(x, &result)); } gsl-1.16/specfunc/hyperg.c0000664000252300025230000002107512171574312012427 00000000000000/* specfunc/hyperg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Miscellaneous implementations of use * for evaluation of hypergeometric functions. */ #include #include #include #include #include #include "error.h" #include "hyperg.h" #define SUM_LARGE (1.0e-5*GSL_DBL_MAX) int gsl_sf_hyperg_1F1_series_e(const double a, const double b, const double x, gsl_sf_result * result ) { double an = a; double bn = b; double n = 1.0; double del = 1.0; double abs_del = 1.0; double max_abs_del = 1.0; double sum_val = 1.0; double sum_err = 0.0; while(abs_del/fabs(sum_val) > 0.25*GSL_DBL_EPSILON) { double u, abs_u; if(bn == 0.0) { DOMAIN_ERROR(result); } if(an == 0.0) { result->val = sum_val; result->err = sum_err; result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val); return GSL_SUCCESS; } if (n > 10000.0) { result->val = sum_val; result->err = sum_err; GSL_ERROR ("hypergeometric series failed to converge", GSL_EFAILED); } u = x * (an/(bn*n)); abs_u = fabs(u); if(abs_u > 1.0 && max_abs_del > GSL_DBL_MAX/abs_u) { result->val = sum_val; result->err = fabs(sum_val); GSL_ERROR ("overflow", GSL_EOVRFLW); } del *= u; sum_val += del; if(fabs(sum_val) > SUM_LARGE) { result->val = sum_val; result->err = fabs(sum_val); GSL_ERROR ("overflow", GSL_EOVRFLW); } abs_del = fabs(del); max_abs_del = GSL_MAX_DBL(abs_del, max_abs_del); sum_err += 2.0*GSL_DBL_EPSILON*abs_del; an += 1.0; bn += 1.0; n += 1.0; } result->val = sum_val; result->err = sum_err; result->err += abs_del; result->err += 2.0 * GSL_DBL_EPSILON * n * fabs(sum_val); return GSL_SUCCESS; } int gsl_sf_hyperg_1F1_large_b_e(const double a, const double b, const double x, gsl_sf_result * result) { if(fabs(x/b) < 1.0) { const double u = x/b; const double v = 1.0/(1.0-u); const double pre = pow(v,a); const double uv = u*v; const double uv2 = uv*uv; const double t1 = a*(a+1.0)/(2.0*b)*uv2; const double t2a = a*(a+1.0)/(24.0*b*b)*uv2; const double t2b = 12.0 + 16.0*(a+2.0)*uv + 3.0*(a+2.0)*(a+3.0)*uv2; const double t2 = t2a*t2b; result->val = pre * (1.0 - t1 + t2); result->err = pre * GSL_DBL_EPSILON * (1.0 + fabs(t1) + fabs(t2)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { DOMAIN_ERROR(result); } } int gsl_sf_hyperg_U_large_b_e(const double a, const double b, const double x, gsl_sf_result * result, double * ln_multiplier ) { double N = floor(b); /* b = N + eps */ double eps = b - N; if(fabs(eps) < GSL_SQRT_DBL_EPSILON) { double lnpre_val; double lnpre_err; gsl_sf_result M; if(b > 1.0) { double tmp = (1.0-b)*log(x); gsl_sf_result lg_bm1; gsl_sf_result lg_a; gsl_sf_lngamma_e(b-1.0, &lg_bm1); gsl_sf_lngamma_e(a, &lg_a); lnpre_val = tmp + x + lg_bm1.val - lg_a.val; lnpre_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(x) + fabs(tmp)); gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, -x, &M); } else { gsl_sf_result lg_1mb; gsl_sf_result lg_1pamb; gsl_sf_lngamma_e(1.0-b, &lg_1mb); gsl_sf_lngamma_e(1.0+a-b, &lg_1pamb); lnpre_val = lg_1mb.val - lg_1pamb.val; lnpre_err = lg_1mb.err + lg_1pamb.err; gsl_sf_hyperg_1F1_large_b_e(a, b, x, &M); } if(lnpre_val > GSL_LOG_DBL_MAX-10.0) { result->val = M.val; result->err = M.err; *ln_multiplier = lnpre_val; GSL_ERROR ("overflow", GSL_EOVRFLW); } else { gsl_sf_result epre; int stat_e = gsl_sf_exp_err_e(lnpre_val, lnpre_err, &epre); result->val = epre.val * M.val; result->err = epre.val * M.err + epre.err * fabs(M.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = 0.0; return stat_e; } } else { double omb_lnx = (1.0-b)*log(x); gsl_sf_result lg_1mb; double sgn_1mb; gsl_sf_result lg_1pamb; double sgn_1pamb; gsl_sf_result lg_bm1; double sgn_bm1; gsl_sf_result lg_a; double sgn_a; gsl_sf_result M1, M2; double lnpre1_val, lnpre2_val; double lnpre1_err, lnpre2_err; double sgpre1, sgpre2; gsl_sf_hyperg_1F1_large_b_e( a, b, x, &M1); gsl_sf_hyperg_1F1_large_b_e(1.0-a, 2.0-b, x, &M2); gsl_sf_lngamma_sgn_e(1.0-b, &lg_1mb, &sgn_1mb); gsl_sf_lngamma_sgn_e(1.0+a-b, &lg_1pamb, &sgn_1pamb); gsl_sf_lngamma_sgn_e(b-1.0, &lg_bm1, &sgn_bm1); gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a); lnpre1_val = lg_1mb.val - lg_1pamb.val; lnpre1_err = lg_1mb.err + lg_1pamb.err; lnpre2_val = lg_bm1.val - lg_a.val - omb_lnx - x; lnpre2_err = lg_bm1.err + lg_a.err + GSL_DBL_EPSILON * (fabs(omb_lnx)+fabs(x)); sgpre1 = sgn_1mb * sgn_1pamb; sgpre2 = sgn_bm1 * sgn_a; if(lnpre1_val > GSL_LOG_DBL_MAX-10.0 || lnpre2_val > GSL_LOG_DBL_MAX-10.0) { double max_lnpre_val = GSL_MAX(lnpre1_val,lnpre2_val); double max_lnpre_err = GSL_MAX(lnpre1_err,lnpre2_err); double lp1 = lnpre1_val - max_lnpre_val; double lp2 = lnpre2_val - max_lnpre_val; double t1 = sgpre1*exp(lp1); double t2 = sgpre2*exp(lp2); result->val = t1*M1.val + t2*M2.val; result->err = fabs(t1)*M1.err + fabs(t2)*M2.err; result->err += GSL_DBL_EPSILON * exp(max_lnpre_err) * (fabs(t1*M1.val) + fabs(t2*M2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = max_lnpre_val; GSL_ERROR ("overflow", GSL_EOVRFLW); } else { double t1 = sgpre1*exp(lnpre1_val); double t2 = sgpre2*exp(lnpre2_val); result->val = t1*M1.val + t2*M2.val; result->err = fabs(t1) * M1.err + fabs(t2)*M2.err; result->err += GSL_DBL_EPSILON * (exp(lnpre1_err)*fabs(t1*M1.val) + exp(lnpre2_err)*fabs(t2*M2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); *ln_multiplier = 0.0; return GSL_SUCCESS; } } } /* [Carlson, p.109] says the error in truncating this asymptotic series * is less than the absolute value of the first neglected term. * * A termination argument is provided, so that the series will * be summed at most up to n=n_trunc. If n_trunc is set negative, * then the series is summed until it appears to start diverging. */ int gsl_sf_hyperg_2F0_series_e(const double a, const double b, const double x, int n_trunc, gsl_sf_result * result ) { const int maxiter = 2000; double an = a; double bn = b; double n = 1.0; double sum = 1.0; double del = 1.0; double abs_del = 1.0; double max_abs_del = 1.0; double last_abs_del = 1.0; while(abs_del/fabs(sum) > GSL_DBL_EPSILON && n < maxiter) { double u = an * (bn/n * x); double abs_u = fabs(u); if(abs_u > 1.0 && (max_abs_del > GSL_DBL_MAX/abs_u)) { result->val = sum; result->err = fabs(sum); GSL_ERROR ("overflow", GSL_EOVRFLW); } del *= u; sum += del; abs_del = fabs(del); if(abs_del > last_abs_del) break; /* series is probably starting to grow */ last_abs_del = abs_del; max_abs_del = GSL_MAX(abs_del, max_abs_del); an += 1.0; bn += 1.0; n += 1.0; if(an == 0.0 || bn == 0.0) break; /* series terminated */ if(n_trunc >= 0 && n >= n_trunc) break; /* reached requested timeout */ } result->val = sum; result->err = GSL_DBL_EPSILON * n + abs_del; if(n >= maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } gsl-1.16/specfunc/hyperg_1F1.c0000664000252300025230000017043112171574312013037 00000000000000/* specfunc/hyperg_1F1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Copyright (C) 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include "error.h" #include "hyperg.h" #define _1F1_INT_THRESHOLD (100.0*GSL_DBL_EPSILON) /* Asymptotic result for 1F1(a, b, x) x -> -Infinity. * Assumes b-a != neg integer and b != neg integer. */ static int hyperg_1F1_asymp_negx(const double a, const double b, const double x, gsl_sf_result * result) { gsl_sf_result lg_b; gsl_sf_result lg_bma; double sgn_b; double sgn_bma; int stat_b = gsl_sf_lngamma_sgn_e(b, &lg_b, &sgn_b); int stat_bma = gsl_sf_lngamma_sgn_e(b-a, &lg_bma, &sgn_bma); if(stat_b == GSL_SUCCESS && stat_bma == GSL_SUCCESS) { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F0_series_e(a, 1.0+a-b, -1.0/x, -1, &F); if(F.val != 0) { double ln_term_val = a*log(-x); double ln_term_err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + fabs(ln_term_val)); double ln_pre_val = lg_b.val - lg_bma.val - ln_term_val; double ln_pre_err = lg_b.err + lg_bma.err + ln_term_err; int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn_bma*sgn_b*F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } else { result->val = 0.0; result->err = 0.0; return stat_F; } } else { DOMAIN_ERROR(result); } } /* Asymptotic result for 1F1(a, b, x) x -> +Infinity * Assumes b != neg integer and a != neg integer */ static int hyperg_1F1_asymp_posx(const double a, const double b, const double x, gsl_sf_result * result) { gsl_sf_result lg_b; gsl_sf_result lg_a; double sgn_b; double sgn_a; int stat_b = gsl_sf_lngamma_sgn_e(b, &lg_b, &sgn_b); int stat_a = gsl_sf_lngamma_sgn_e(a, &lg_a, &sgn_a); if(stat_a == GSL_SUCCESS && stat_b == GSL_SUCCESS) { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F0_series_e(b-a, 1.0-a, 1.0/x, -1, &F); if(stat_F == GSL_SUCCESS && F.val != 0) { double lnx = log(x); double ln_term_val = (a-b)*lnx; double ln_term_err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + fabs(b)) * fabs(lnx) + 2.0 * GSL_DBL_EPSILON * fabs(a-b); double ln_pre_val = lg_b.val - lg_a.val + ln_term_val + x; double ln_pre_err = lg_b.err + lg_a.err + ln_term_err + 2.0 * GSL_DBL_EPSILON * fabs(x); int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sgn_a*sgn_b*F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } else { result->val = 0.0; result->err = 0.0; return stat_F; } } else { DOMAIN_ERROR(result); } } /* Asymptotic result from Slater 4.3.7 * * To get the general series, write M(a,b,x) as * * M(a,b,x)=sum ((a)_n/(b)_n) (x^n / n!) * * and expand (b)_n in inverse powers of b as follows * * -log(1/(b)_n) = sum_(k=0)^(n-1) log(b+k) * = n log(b) + sum_(k=0)^(n-1) log(1+k/b) * * Do a taylor expansion of the log in 1/b and sum the resulting terms * using the standard algebraic formulas for finite sums of powers of * k. This should then give * * M(a,b,x) = sum_(n=0)^(inf) (a_n/n!) (x/b)^n * (1 - n(n-1)/(2b) * + (n-1)n(n+1)(3n-2)/(24b^2) + ... * * which can be summed explicitly. The trick for summing it is to take * derivatives of sum_(i=0)^(inf) a_n*y^n/n! = (1-y)^(-a); * * [BJG 16/01/2007] */ static int hyperg_1F1_largebx(const double a, const double b, const double x, gsl_sf_result * result) { double y = x/b; double f = exp(-a*log1p(-y)); double t1 = -((a*(a+1.0))/(2*b))*pow((y/(1.0-y)),2.0); double t2 = (1/(24*b*b))*((a*(a+1)*y*y)/pow(1-y,4))*(12+8*(2*a+1)*y+(3*a*a-a-2)*y*y); double t3 = (-1/(48*b*b*b*pow(1-y,6)))*a*((a + 1)*((y*((a + 1)*(a*(y*(y*((y*(a - 2) + 16)*(a - 1)) + 72)) + 96)) + 24)*pow(y, 2))); result->val = f * (1 + t1 + t2 + t3); result->err = 2*fabs(f*t3) + 2*GSL_DBL_EPSILON*fabs(result->val); return GSL_SUCCESS; } /* Asymptotic result for x < 2b-4a, 2b-4a large. * [Abramowitz+Stegun, 13.5.21] * * assumes 0 <= x/(2b-4a) <= 1 */ static int hyperg_1F1_large2bm4a(const double a, const double b, const double x, gsl_sf_result * result) { double eta = 2.0*b - 4.0*a; double cos2th = x/eta; double sin2th = 1.0 - cos2th; double th = acos(sqrt(cos2th)); double pre_h = 0.25*M_PI*M_PI*eta*eta*cos2th*sin2th; gsl_sf_result lg_b; int stat_lg = gsl_sf_lngamma_e(b, &lg_b); double t1 = 0.5*(1.0-b)*log(0.25*x*eta); double t2 = 0.25*log(pre_h); double lnpre_val = lg_b.val + 0.5*x + t1 - t2; double lnpre_err = lg_b.err + 2.0 * GSL_DBL_EPSILON * (fabs(0.5*x) + fabs(t1) + fabs(t2)); #if SMALL_ANGLE const double eps = asin(sqrt(cos2th)); /* theta = pi/2 - eps */ double s1 = (fmod(a, 1.0) == 0.0) ? 0.0 : sin(a*M_PI); double eta_reduc = (fmod(eta + 1, 4.0) == 0.0) ? 0.0 : fmod(eta + 1, 8.0); double phi1 = 0.25*eta_reduc*M_PI; double phi2 = 0.25*eta*(2*eps + sin(2.0*eps)); double s2 = sin(phi1 - phi2); #else double s1 = sin(a*M_PI); double s2 = sin(0.25*eta*(2.0*th - sin(2.0*th)) + 0.25*M_PI); #endif double ser_val = s1 + s2; double ser_err = 2.0 * GSL_DBL_EPSILON * (fabs(s1) + fabs(s2)); int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, ser_val, ser_err, result); return GSL_ERROR_SELECT_2(stat_e, stat_lg); } /* Luke's rational approximation. * See [Luke, Algorithms for the Computation of Mathematical Functions, p.182] * * Like the case of the 2F1 rational approximations, these are * probably guaranteed to converge for x < 0, barring gross * numerical instability in the pre-asymptotic regime. */ static int hyperg_1F1_luke(const double a, const double c, const double xin, gsl_sf_result * result) { const double RECUR_BIG = 1.0e+50; const int nmax = 5000; int n = 3; const double x = -xin; const double x3 = x*x*x; const double t0 = a/c; const double t1 = (a+1.0)/(2.0*c); const double t2 = (a+2.0)/(2.0*(c+1.0)); double F = 1.0; double prec; double Bnm3 = 1.0; /* B0 */ double Bnm2 = 1.0 + t1 * x; /* B1 */ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */ double Anm3 = 1.0; /* A0 */ double Anm2 = Bnm2 - t0 * x; /* A1 */ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */ while(1) { double npam1 = n + a - 1; double npcm1 = n + c - 1; double npam2 = n + a - 2; double npcm2 = n + c - 2; double tnm1 = 2*n - 1; double tnm3 = 2*n - 3; double tnm5 = 2*n - 5; double F1 = (n-a-2) / (2*tnm3*npcm1); double F2 = (n+a)*npam1 / (4*tnm1*tnm3*npcm2*npcm1); double F3 = -npam2*npam1*(n-a-2) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1); double E = -npam1*(n-c-1) / (2*tnm3*npcm2*npcm1); double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3; double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3; double r = An/Bn; prec = fabs((F - r)/F); F = r; if(prec < GSL_DBL_EPSILON || n > nmax) break; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; Anm3 /= RECUR_BIG; Bnm3 /= RECUR_BIG; } else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) { An *= RECUR_BIG; Bn *= RECUR_BIG; Anm1 *= RECUR_BIG; Bnm1 *= RECUR_BIG; Anm2 *= RECUR_BIG; Bnm2 *= RECUR_BIG; Anm3 *= RECUR_BIG; Bnm3 *= RECUR_BIG; } n++; Bnm3 = Bnm2; Bnm2 = Bnm1; Bnm1 = Bn; Anm3 = Anm2; Anm2 = Anm1; Anm1 = An; } result->val = F; result->err = 2.0 * fabs(F * prec); result->err += 2.0 * GSL_DBL_EPSILON * (n-1.0) * fabs(F); return GSL_SUCCESS; } /* Series for 1F1(1,b,x) * b > 0 */ static int hyperg_1F1_1_series(const double b, const double x, gsl_sf_result * result) { double sum_val = 1.0; double sum_err = 0.0; double term = 1.0; double n = 1.0; while(fabs(term/sum_val) > 0.25*GSL_DBL_EPSILON) { term *= x/(b+n-1); sum_val += term; sum_err += 8.0*GSL_DBL_EPSILON*fabs(term) + GSL_DBL_EPSILON*fabs(sum_val); n += 1.0; } result->val = sum_val; result->err = sum_err; result->err += 2.0 * fabs(term); return GSL_SUCCESS; } /* 1F1(1,b,x) * b >= 1, b integer */ static int hyperg_1F1_1_int(const int b, const double x, gsl_sf_result * result) { if(b < 1) { DOMAIN_ERROR(result); } else if(b == 1) { return gsl_sf_exp_e(x, result); } else if(b == 2) { return gsl_sf_exprel_e(x, result); } else if(b == 3) { return gsl_sf_exprel_2_e(x, result); } else { return gsl_sf_exprel_n_e(b-1, x, result); } } /* 1F1(1,b,x) * b >=1, b real * * checked OK: [GJ] Thu Oct 1 16:46:35 MDT 1998 */ static int hyperg_1F1_1(const double b, const double x, gsl_sf_result * result) { double ax = fabs(x); double ib = floor(b + 0.1); if(b < 1.0) { DOMAIN_ERROR(result); } else if(b == 1.0) { return gsl_sf_exp_e(x, result); } else if(b >= 1.4*ax) { return hyperg_1F1_1_series(b, x, result); } else if(fabs(b - ib) < _1F1_INT_THRESHOLD && ib < INT_MAX) { return hyperg_1F1_1_int((int)ib, x, result); } else if(x > 0.0) { if(x > 100.0 && b < 0.75*x) { return hyperg_1F1_asymp_posx(1.0, b, x, result); } else if(b < 1.0e+05) { /* Recurse backward on b, from a * chosen offset point. For x > 0, * which holds here, this should * be a stable direction. */ const double off = ceil(1.4*x-b) + 1.0; double bp = b + off; gsl_sf_result M; int stat_s = hyperg_1F1_1_series(bp, x, &M); const double err_rat = M.err / fabs(M.val); while(bp > b+0.1) { /* M(1,b-1) = x/(b-1) M(1,b) + 1 */ bp -= 1.0; M.val = 1.0 + x/bp * M.val; } result->val = M.val; result->err = err_rat * fabs(M.val); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(off)+1.0) * fabs(M.val); return stat_s; } else if (fabs(x) < fabs(b) && fabs(x) < sqrt(fabs(b)) * fabs(b-x)) { return hyperg_1F1_largebx(1.0, b, x, result); } else if (fabs(x) > fabs(b)) { return hyperg_1F1_1_series(b, x, result); } else { return hyperg_1F1_large2bm4a(1.0, b, x, result); } } else { /* x <= 0 and b not large compared to |x| */ if(ax < 10.0 && b < 10.0) { return hyperg_1F1_1_series(b, x, result); } else if(ax >= 100.0 && GSL_MAX_DBL(fabs(2.0-b),1.0) < 0.99*ax) { return hyperg_1F1_asymp_negx(1.0, b, x, result); } else { return hyperg_1F1_luke(1.0, b, x, result); } } } /* 1F1(a,b,x)/Gamma(b) for b->0 * [limit of Abramowitz+Stegun 13.3.7] */ static int hyperg_1F1_renorm_b0(const double a, const double x, gsl_sf_result * result) { double eta = a*x; if(eta > 0.0) { double root_eta = sqrt(eta); gsl_sf_result I1_scaled; int stat_I = gsl_sf_bessel_I1_scaled_e(2.0*root_eta, &I1_scaled); if(I1_scaled.val <= 0.0) { result->val = 0.0; result->err = 0.0; return GSL_ERROR_SELECT_2(stat_I, GSL_EDOM); } else { /* Note that 13.3.7 contains higher terms which are zeroth order in b. These make a non-negligible contribution to the sum. With the first correction term, the I1 above is replaced by I1 + (2/3)*a*(x/(4a))**(3/2)*I2(2*root_eta). We will add this as part of the result and error estimate. */ const double corr1 =(2.0/3.0)*a*pow(x/(4.0*a),1.5)*gsl_sf_bessel_In_scaled(2, 2.0*root_eta) ; const double lnr_val = 0.5*x + 0.5*log(eta) + fabs(2.0*root_eta) + log(I1_scaled.val+corr1); const double lnr_err = GSL_DBL_EPSILON * (1.5*fabs(x) + 1.0) + fabs((I1_scaled.err+corr1)/I1_scaled.val); return gsl_sf_exp_err_e(lnr_val, lnr_err, result); } } else if(eta == 0.0) { result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* eta < 0 */ double root_eta = sqrt(-eta); gsl_sf_result J1; int stat_J = gsl_sf_bessel_J1_e(2.0*root_eta, &J1); if(J1.val <= 0.0) { result->val = 0.0; result->err = 0.0; return GSL_ERROR_SELECT_2(stat_J, GSL_EDOM); } else { const double t1 = 0.5*x; const double t2 = 0.5*log(-eta); const double t3 = fabs(x); const double t4 = log(J1.val); const double lnr_val = t1 + t2 + t3 + t4; const double lnr_err = GSL_DBL_EPSILON * (1.5*fabs(x) + 1.0) + fabs(J1.err/J1.val); gsl_sf_result ex; int stat_e = gsl_sf_exp_err_e(lnr_val, lnr_err, &ex); result->val = -ex.val; result->err = ex.err; return stat_e; } } } /* 1F1'(a,b,x)/1F1(a,b,x) * Uses Gautschi's version of the CF. * [Gautschi, Math. Comp. 31, 994 (1977)] * * Supposedly this suffers from the "anomalous convergence" * problem when b < x. I have seen anomalous convergence * in several of the continued fractions associated with * 1F1(a,b,x). This particular CF formulation seems stable * for b > x. However, it does display a painful artifact * of the anomalous convergence; the convergence plateaus * unless b >>> x. For example, even for b=1000, x=1, this * method locks onto a ratio which is only good to about * 4 digits. Apparently the rest of the digits are hiding * way out on the plateau, but finite-precision lossage * means you will never get them. */ #if 0 static int hyperg_1F1_CF1_p(const double a, const double b, const double x, double * result) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 5000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = 1.0; double b1 = 1.0; double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = (a+n)*x/((b-x+n-1)*(b-x+n)); bn = 1.0; An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break; } *result = a/(b-x) * fn; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } #endif /* 0 */ /* 1F1'(a,b,x)/1F1(a,b,x) * Uses Gautschi's series transformation of the * continued fraction. This is apparently the best * method for getting this ratio in the stable region. * The convergence is monotone and supergeometric * when b > x. * Assumes a >= -1. */ static int hyperg_1F1_CF1_p_ser(const double a, const double b, const double x, double * result) { if(a == 0.0) { *result = 0.0; return GSL_SUCCESS; } else { const int maxiter = 5000; double sum = 1.0; double pk = 1.0; double rhok = 0.0; int k; for(k=1; k RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break; } *result = fn; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } #endif /* 0 */ /* 1F1(a,b+1,x)/1F1(a,b,x) * * This seemed to suffer from "anomalous convergence". * However, I have no theory for this recurrence. */ #if 0 static int hyperg_1F1_CF1_b(const double a, const double b, const double x, double * result) { const double RECUR_BIG = GSL_SQRT_DBL_MAX; const int maxiter = 5000; int n = 1; double Anm2 = 1.0; double Bnm2 = 0.0; double Anm1 = 0.0; double Bnm1 = 1.0; double a1 = b + 1.0; double b1 = (b + 1.0) * (b - x); double An = b1*Anm1 + a1*Anm2; double Bn = b1*Bnm1 + a1*Bnm2; double an, bn; double fn = An/Bn; while(n < maxiter) { double old_fn; double del; n++; Anm2 = Anm1; Bnm2 = Bnm1; Anm1 = An; Bnm1 = Bn; an = (b + n) * (b + n - 1.0 - a) * x; bn = (b + n) * (b + n - 1.0 - x); An = bn*Anm1 + an*Anm2; Bn = bn*Bnm1 + an*Bnm2; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; } old_fn = fn; fn = An/Bn; del = old_fn/fn; if(fabs(del - 1.0) < 10.0*GSL_DBL_EPSILON) break; } *result = fn; if(n == maxiter) GSL_ERROR ("error", GSL_EMAXITER); else return GSL_SUCCESS; } #endif /* 0 */ /* 1F1(a,b,x) * |a| <= 1, b > 0 */ static int hyperg_1F1_small_a_bgt0(const double a, const double b, const double x, gsl_sf_result * result) { const double bma = b-a; const double oma = 1.0-a; const double ap1mb = 1.0+a-b; const double abs_bma = fabs(bma); const double abs_oma = fabs(oma); const double abs_ap1mb = fabs(ap1mb); const double ax = fabs(x); if(a == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == 1.0 && b >= 1.0) { return hyperg_1F1_1(b, x, result); } else if(a == -1.0) { result->val = 1.0 + a/b * x; result->err = GSL_DBL_EPSILON * (1.0 + fabs(a/b * x)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(b >= 1.4*ax) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if(x > 0.0) { if(x > 100.0 && abs_bma*abs_oma < 0.5*x) { return hyperg_1F1_asymp_posx(a, b, x, result); } else if(b < 5.0e+06) { /* Recurse backward on b from * a suitably high point. */ const double b_del = ceil(1.4*x-b) + 1.0; double bp = b + b_del; gsl_sf_result r_Mbp1; gsl_sf_result r_Mb; double Mbp1; double Mb; double Mbm1; int stat_0 = gsl_sf_hyperg_1F1_series_e(a, bp+1.0, x, &r_Mbp1); int stat_1 = gsl_sf_hyperg_1F1_series_e(a, bp, x, &r_Mb); const double err_rat = fabs(r_Mbp1.err/r_Mbp1.val) + fabs(r_Mb.err/r_Mb.val); Mbp1 = r_Mbp1.val; Mb = r_Mb.val; while(bp > b+0.1) { /* Do backward recursion. */ Mbm1 = ((x+bp-1.0)*Mb - x*(bp-a)/bp*Mbp1)/(bp-1.0); bp -= 1.0; Mbp1 = Mb; Mb = Mbm1; } result->val = Mb; result->err = err_rat * (fabs(b_del)+1.0) * fabs(Mb); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mb); return GSL_ERROR_SELECT_2(stat_0, stat_1); } else if (fabs(x) < fabs(b) && fabs(a*x) < sqrt(fabs(b)) * fabs(b-x)) { return hyperg_1F1_largebx(a, b, x, result); } else { return hyperg_1F1_large2bm4a(a, b, x, result); } } else { /* x < 0 and b not large compared to |x| */ if(ax < 10.0 && b < 10.0) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if(ax >= 100.0 && GSL_MAX(abs_ap1mb,1.0) < 0.99*ax) { return hyperg_1F1_asymp_negx(a, b, x, result); } else { return hyperg_1F1_luke(a, b, x, result); } } } /* 1F1(b+eps,b,x) * |eps|<=1, b > 0 */ static int hyperg_1F1_beps_bgt0(const double eps, const double b, const double x, gsl_sf_result * result) { if(b > fabs(x) && fabs(eps) < GSL_SQRT_DBL_EPSILON) { /* If b-a is very small and x/b is not too large we can * use this explicit approximation. * * 1F1(b+eps,b,x) = exp(ax/b) (1 - eps x^2 (v2 + v3 x + ...) + ...) * * v2 = a/(2b^2(b+1)) * v3 = a(b-2a)/(3b^3(b+1)(b+2)) * ... * * See [Luke, Mathematical Functions and Their Approximations, p.292] * * This cannot be used for b near a negative integer or zero. * Also, if x/b is large the deviation from exp(x) behaviour grows. */ double a = b + eps; gsl_sf_result exab; int stat_e = gsl_sf_exp_e(a*x/b, &exab); double v2 = a/(2.0*b*b*(b+1.0)); double v3 = a*(b-2.0*a)/(3.0*b*b*b*(b+1.0)*(b+2.0)); double v = v2 + v3 * x; double f = (1.0 - eps*x*x*v); result->val = exab.val * f; result->err = exab.err * fabs(f); result->err += fabs(exab.val) * GSL_DBL_EPSILON * (1.0 + fabs(eps*x*x*v)); result->err += 4.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else { /* Otherwise use a Kummer transformation to reduce * it to the small a case. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_small_a_bgt0(-eps, b, -x, &Kummer_1F1); if(Kummer_1F1.val != 0.0) { int stat_e = gsl_sf_exp_mult_err_e(x, 2.0*GSL_DBL_EPSILON*fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { result->val = 0.0; result->err = 0.0; return stat_K; } } } /* 1F1(a,2a,x) = Gamma(a + 1/2) E(x) (|x|/4)^(-a+1/2) scaled_I(a-1/2,|x|/2) * * E(x) = exp(x) x > 0 * = 1 x < 0 * * a >= 1/2 */ static int hyperg_1F1_beq2a_pos(const double a, const double x, gsl_sf_result * result) { if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else { gsl_sf_result I; int stat_I = gsl_sf_bessel_Inu_scaled_e(a-0.5, 0.5*fabs(x), &I); gsl_sf_result lg; int stat_g = gsl_sf_lngamma_e(a + 0.5, &lg); double ln_term = (0.5-a)*log(0.25*fabs(x)); double lnpre_val = lg.val + GSL_MAX_DBL(x,0.0) + ln_term; double lnpre_err = lg.err + GSL_DBL_EPSILON * (fabs(ln_term) + fabs(x)); int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, I.val, I.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_g, stat_I); } } /* Determine middle parts of diagonal recursion along b=2a * from two endpoints, i.e. * * given: M(a,b) and M(a+1,b+2) * get: M(a+1,b+1) and M(a,b+1) */ #if 0 inline static int hyperg_1F1_diag_step(const double a, const double b, const double x, const double Mab, const double Map1bp2, double * Map1bp1, double * Mabp1) { if(a == b) { *Map1bp1 = Mab; *Mabp1 = Mab - x/(b+1.0) * Map1bp2; } else { *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2; *Mabp1 = (a * *Map1bp1 - b * Mab)/(a-b); } return GSL_SUCCESS; } #endif /* 0 */ /* Determine endpoint of diagonal recursion. * * given: M(a,b) and M(a+1,b+2) * get: M(a+1,b) and M(a+1,b+1) */ #if 0 inline static int hyperg_1F1_diag_end_step(const double a, const double b, const double x, const double Mab, const double Map1bp2, double * Map1b, double * Map1bp1) { *Map1bp1 = Mab - x * (a-b)/(b*(b+1.0)) * Map1bp2; *Map1b = Mab + x/b * *Map1bp1; return GSL_SUCCESS; } #endif /* 0 */ /* Handle the case of a and b both positive integers. * Assumes a > 0 and b > 0. */ static int hyperg_1F1_ab_posint(const int a, const int b, const double x, gsl_sf_result * result) { double ax = fabs(x); if(a == b) { return gsl_sf_exp_e(x, result); /* 1F1(a,a,x) */ } else if(a == 1) { return gsl_sf_exprel_n_e(b-1, x, result); /* 1F1(1,b,x) */ } else if(b == a + 1) { gsl_sf_result K; int stat_K = gsl_sf_exprel_n_e(a, -x, &K); /* 1F1(1,1+a,-x) */ int stat_e = gsl_sf_exp_mult_err_e(x, 2.0 * GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a == b + 1) { gsl_sf_result ex; int stat_e = gsl_sf_exp_e(x, &ex); result->val = ex.val * (1.0 + x/b); result->err = ex.err * (1.0 + x/b); result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else if(a == b + 2) { gsl_sf_result ex; int stat_e = gsl_sf_exp_e(x, &ex); double poly = (1.0 + x/b*(2.0 + x/(b+1.0))); result->val = ex.val * poly; result->err = ex.err * fabs(poly); result->err += ex.val * GSL_DBL_EPSILON * (1.0 + fabs(x/b) * (2.0 + fabs(x/(b+1.0)))); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_e; } else if(b == 2*a) { return hyperg_1F1_beq2a_pos(a, x, result); /* 1F1(a,2a,x) */ } else if( ( b < 10 && a < 10 && ax < 5.0 ) || ( b > a*ax ) || ( b > a && ax < 5.0 ) ) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if(b > a && b >= 2*a + x) { /* Use the Gautschi CF series, then * recurse backward to a=0 for normalization. * This will work for either sign of x. */ double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; double Ma = GSL_SQRT_DBL_MIN; double Map1 = ra * Ma; double Mnp1 = Map1; double Mn = Ma; double Mnm1; int n; for(n=a; n>0; n--) { Mnm1 = (n * Mnp1 - (2*n-b+x) * Mn) / (b-n); Mnp1 = Mn; Mn = Mnm1; } result->val = Ma/Mn; result->err = 2.0 * GSL_DBL_EPSILON * (fabs(a) + 1.0) * fabs(Ma/Mn); return stat_CF1; } else if(b > a && b < 2*a + x && b > x) { /* Use the Gautschi series representation of * the continued fraction. Then recurse forward * to the a=b line for normalization. This will * work for either sign of x, although we do need * to check for b > x, for when x is positive. */ double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; gsl_sf_result ex; int stat_ex; double Ma = GSL_SQRT_DBL_MIN; double Map1 = ra * Ma; double Mnm1 = Ma; double Mn = Map1; double Mnp1; int n; for(n=a+1; nval = ex.val * Ma/Mn; result->err = ex.err * fabs(Ma/Mn); result->err += 4.0 * GSL_DBL_EPSILON * (fabs(b-a)+1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_ex, stat_CF1); } else if(x >= 0.0) { if(b < a) { /* The point b,b is below the b=2a+x line. * Forward recursion on a from b,b+1 is possible. * Note that a > b + 1 as well, since we already tried a = b + 1. */ if(x + log(fabs(x/b)) < GSL_LOG_DBL_MAX-2.0) { double ex = exp(x); int n; double Mnm1 = ex; /* 1F1(b,b,x) */ double Mn = ex * (1.0 + x/b); /* 1F1(b+1,b,x) */ double Mnp1; for(n=b+1; nval = Mn; result->err = (x + 1.0) * GSL_DBL_EPSILON * fabs(Mn); result->err *= fabs(a-b)+1.0; return GSL_SUCCESS; } else { OVERFLOW_ERROR(result); } } else { /* b > a * b < 2a + x * b <= x (otherwise we would have finished above) * * Gautschi anomalous convergence region. However, we can * recurse forward all the way from a=0,1 because we are * always underneath the b=2a+x line. */ gsl_sf_result r_Mn; double Mnm1 = 1.0; /* 1F1(0,b,x) */ double Mn; /* 1F1(1,b,x) */ double Mnp1; int n; gsl_sf_exprel_n_e(b-1, x, &r_Mn); Mn = r_Mn.val; for(n=1; nval = Mn; result->err = fabs(Mn) * (1.0 + fabs(a)) * fabs(r_Mn.err / r_Mn.val); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn); return GSL_SUCCESS; } } else { /* x < 0 * b < a (otherwise we would have tripped one of the above) */ if(a <= 0.5*(b-x) || a >= -x) { /* Gautschi continued fraction is in the anomalous region, * so we must find another way. We recurse down in b, * from the a=b line. */ double ex = exp(x); double Manp1 = ex; double Man = ex * (1.0 + x/(a-1.0)); double Manm1; int n; for(n=a-1; n>b; n--) { Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0)); Manp1 = Man; Man = Manm1; } result->val = Man; result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Man); result->err *= fabs(b-a)+1.0; return GSL_SUCCESS; } else { /* Pick a0 such that b ~= 2a0 + x, then * recurse down in b from a0,a0 to determine * the values near the line b=2a+x. Then recurse * forward on a from a0. */ int a0 = ceil(0.5*(b-x)); double Ma0b; /* M(a0,b) */ double Ma0bp1; /* M(a0,b+1) */ double Ma0p1b; /* M(a0+1,b) */ double Mnm1; double Mn; double Mnp1; int n; { double ex = exp(x); double Ma0np1 = ex; double Ma0n = ex * (1.0 + x/(a0-1.0)); double Ma0nm1; for(n=a0-1; n>b; n--) { Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0)); Ma0np1 = Ma0n; Ma0n = Ma0nm1; } Ma0bp1 = Ma0np1; Ma0b = Ma0n; Ma0p1b = (b*(a0+x)*Ma0b + x*(a0-b)*Ma0bp1)/(a0*b); } /* Initialise the recurrence correctly BJG */ if (a0 >= a) { Mn = Ma0b; } else if (a0 + 1>= a) { Mn = Ma0p1b; } else { Mnm1 = Ma0b; Mn = Ma0p1b; for(n=a0+1; nval = Mn; result->err = (fabs(x) + 1.0) * GSL_DBL_EPSILON * fabs(Mn); result->err *= fabs(b-a)+1.0; return GSL_SUCCESS; } } } /* Evaluate a <= 0, a integer, cases directly. (Polynomial; Horner) * When the terms are all positive, this * must work. We will assume this here. */ static int hyperg_1F1_a_negint_poly(const int a, const double b, const double x, gsl_sf_result * result) { if(a == 0) { result->val = 1.0; result->err = 1.0; return GSL_SUCCESS; } else { int N = -a; double poly = 1.0; int k; for(k=N-1; k>=0; k--) { double t = (a+k)/(b+k) * (x/(k+1)); double r = t + 1.0/poly; if(r > 0.9*GSL_DBL_MAX/poly) { OVERFLOW_ERROR(result); } else { poly *= r; /* P_n = 1 + t_n P_{n-1} */ } } result->val = poly; result->err = 2.0 * (sqrt(N) + 1.0) * GSL_DBL_EPSILON * fabs(poly); return GSL_SUCCESS; } } /* Evaluate negative integer a case by relation * to Laguerre polynomials. This is more general than * the direct polynomial evaluation, but is safe * for all values of x. * * 1F1(-n,b,x) = n!/(b)_n Laguerre[n,b-1,x] * = n B(b,n) Laguerre[n,b-1,x] * * assumes b is not a negative integer */ static int hyperg_1F1_a_negint_lag(const int a, const double b, const double x, gsl_sf_result * result) { const int n = -a; gsl_sf_result lag; const int stat_l = gsl_sf_laguerre_n_e(n, b-1.0, x, &lag); if(b < 0.0) { gsl_sf_result lnfact; gsl_sf_result lng1; gsl_sf_result lng2; double s1, s2; const int stat_f = gsl_sf_lnfact_e(n, &lnfact); const int stat_g1 = gsl_sf_lngamma_sgn_e(b + n, &lng1, &s1); const int stat_g2 = gsl_sf_lngamma_sgn_e(b, &lng2, &s2); const double lnpre_val = lnfact.val - (lng1.val - lng2.val); const double lnpre_err = lnfact.err + lng1.err + lng2.err + 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val); const int stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, s1*s2*lag.val, lag.err, result); return GSL_ERROR_SELECT_5(stat_e, stat_l, stat_g1, stat_g2, stat_f); } else { gsl_sf_result lnbeta; gsl_sf_lnbeta_e(b, n, &lnbeta); if(fabs(lnbeta.val) < 0.1) { /* As we have noted, when B(x,y) is near 1, * evaluating log(B(x,y)) is not accurate. * Instead we evaluate B(x,y) directly. */ const double ln_term_val = log(1.25*n); const double ln_term_err = 2.0 * GSL_DBL_EPSILON * ln_term_val; gsl_sf_result beta; int stat_b = gsl_sf_beta_e(b, n, &beta); int stat_e = gsl_sf_exp_mult_err_e(ln_term_val, ln_term_err, lag.val, lag.err, result); result->val *= beta.val/1.25; result->err *= beta.val/1.25; return GSL_ERROR_SELECT_3(stat_e, stat_l, stat_b); } else { /* B(x,y) was not near 1, so it is safe to use * the logarithmic values. */ const double ln_n = log(n); const double ln_term_val = lnbeta.val + ln_n; const double ln_term_err = lnbeta.err + 2.0 * GSL_DBL_EPSILON * fabs(ln_n); int stat_e = gsl_sf_exp_mult_err_e(ln_term_val, ln_term_err, lag.val, lag.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_l); } } } /* Handle negative integer a case for x > 0 and * generic b. * * Combine [Abramowitz+Stegun, 13.6.9 + 13.6.27] * M(-n,b,x) = (-1)^n / (b)_n U(-n,b,x) = n! / (b)_n Laguerre^(b-1)_n(x) */ #if 0 static int hyperg_1F1_a_negint_U(const int a, const double b, const double x, gsl_sf_result * result) { const int n = -a; const double sgn = ( GSL_IS_ODD(n) ? -1.0 : 1.0 ); double sgpoch; gsl_sf_result lnpoch; gsl_sf_result U; const int stat_p = gsl_sf_lnpoch_sgn_e(b, n, &lnpoch, &sgpoch); const int stat_U = gsl_sf_hyperg_U_e(-n, b, x, &U); const int stat_e = gsl_sf_exp_mult_err_e(-lnpoch.val, lnpoch.err, sgn * sgpoch * U.val, U.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_U, stat_p); } #endif /* Assumes a <= -1, b <= -1, and b <= a. */ static int hyperg_1F1_ab_negint(const int a, const int b, const double x, gsl_sf_result * result) { if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(x > 0.0) { return hyperg_1F1_a_negint_poly(a, b, x, result); } else { /* Apply a Kummer transformation to make x > 0 so * we can evaluate the polynomial safely. Of course, * this assumes b <= a, which must be true for * a<0 and b<0, since otherwise the thing is undefined. */ gsl_sf_result K; int stat_K = hyperg_1F1_a_negint_poly(b-a, b, -x, &K); int stat_e = gsl_sf_exp_mult_err_e(x, 2.0 * GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } } /* [Abramowitz+Stegun, 13.1.3] * * M(a,b,x) = Gamma(1+a-b)/Gamma(2-b) x^(1-b) * * { Gamma(b)/Gamma(a) M(1+a-b,2-b,x) - (b-1) U(1+a-b,2-b,x) } * * b not an integer >= 2 * a-b not a negative integer */ static int hyperg_1F1_U(const double a, const double b, const double x, gsl_sf_result * result) { const double bp = 2.0 - b; const double ap = a - b + 1.0; gsl_sf_result lg_ap, lg_bp; double sg_ap; int stat_lg0 = gsl_sf_lngamma_sgn_e(ap, &lg_ap, &sg_ap); int stat_lg1 = gsl_sf_lngamma_e(bp, &lg_bp); int stat_lg2 = GSL_ERROR_SELECT_2(stat_lg0, stat_lg1); double t1 = (bp-1.0) * log(x); double lnpre_val = lg_ap.val - lg_bp.val + t1; double lnpre_err = lg_ap.err + lg_bp.err + 2.0 * GSL_DBL_EPSILON * fabs(t1); gsl_sf_result lg_2mbp, lg_1papmbp; double sg_2mbp, sg_1papmbp; int stat_lg3 = gsl_sf_lngamma_sgn_e(2.0-bp, &lg_2mbp, &sg_2mbp); int stat_lg4 = gsl_sf_lngamma_sgn_e(1.0+ap-bp, &lg_1papmbp, &sg_1papmbp); int stat_lg5 = GSL_ERROR_SELECT_2(stat_lg3, stat_lg4); double lnc1_val = lg_2mbp.val - lg_1papmbp.val; double lnc1_err = lg_2mbp.err + lg_1papmbp.err + GSL_DBL_EPSILON * (fabs(lg_2mbp.val) + fabs(lg_1papmbp.val)); gsl_sf_result M; gsl_sf_result_e10 U; int stat_F = gsl_sf_hyperg_1F1_e(ap, bp, x, &M); int stat_U = gsl_sf_hyperg_U_e10_e(ap, bp, x, &U); int stat_FU = GSL_ERROR_SELECT_2(stat_F, stat_U); gsl_sf_result_e10 term_M; int stat_e0 = gsl_sf_exp_mult_err_e10_e(lnc1_val, lnc1_err, sg_2mbp*sg_1papmbp*M.val, M.err, &term_M); const double ombp = 1.0 - bp; const double Uee_val = U.e10*M_LN10; const double Uee_err = 2.0 * GSL_DBL_EPSILON * fabs(Uee_val); const double Mee_val = term_M.e10*M_LN10; const double Mee_err = 2.0 * GSL_DBL_EPSILON * fabs(Mee_val); int stat_e1; /* Do a little dance with the exponential prefactors * to avoid overflows in intermediate results. */ if(Uee_val > Mee_val) { const double factorM_val = exp(Mee_val-Uee_val); const double factorM_err = 2.0 * GSL_DBL_EPSILON * (fabs(Mee_val-Uee_val)+1.0) * factorM_val; const double inner_val = term_M.val*factorM_val - ombp*U.val; const double inner_err = term_M.err*factorM_val + fabs(ombp) * U.err + fabs(term_M.val) * factorM_err + GSL_DBL_EPSILON * (fabs(term_M.val*factorM_val) + fabs(ombp*U.val)); stat_e1 = gsl_sf_exp_mult_err_e(lnpre_val+Uee_val, lnpre_err+Uee_err, sg_ap*inner_val, inner_err, result); } else { const double factorU_val = exp(Uee_val - Mee_val); const double factorU_err = 2.0 * GSL_DBL_EPSILON * (fabs(Mee_val-Uee_val)+1.0) * factorU_val; const double inner_val = term_M.val - ombp*factorU_val*U.val; const double inner_err = term_M.err + fabs(ombp*factorU_val*U.err) + fabs(ombp*factorU_err*U.val) + GSL_DBL_EPSILON * (fabs(term_M.val) + fabs(ombp*factorU_val*U.val)); stat_e1 = gsl_sf_exp_mult_err_e(lnpre_val+Mee_val, lnpre_err+Mee_err, sg_ap*inner_val, inner_err, result); } return GSL_ERROR_SELECT_5(stat_e1, stat_e0, stat_FU, stat_lg5, stat_lg2); } /* Handle case of generic positive a, b. * Assumes b-a is not a negative integer. */ static int hyperg_1F1_ab_pos(const double a, const double b, const double x, gsl_sf_result * result) { const double ax = fabs(x); if( ( b < 10.0 && a < 10.0 && ax < 5.0 ) || ( b > a*ax ) || ( b > a && ax < 5.0 ) ) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if( x < -100.0 && GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.7*fabs(x) ) { /* Large negative x asymptotic. */ return hyperg_1F1_asymp_negx(a, b, x, result); } else if( x > 100.0 && GSL_MAX_DBL(fabs(b-a),1.0)*GSL_MAX_DBL(fabs(1.0-a),1.0) < 0.7*fabs(x) ) { /* Large positive x asymptotic. */ return hyperg_1F1_asymp_posx(a, b, x, result); } else if(fabs(b-a) <= 1.0) { /* Directly handle b near a. */ return hyperg_1F1_beps_bgt0(a-b, b, x, result); /* a = b + eps */ } else if(b > a && b >= 2*a + x) { /* Use the Gautschi CF series, then * recurse backward to a near 0 for normalization. * This will work for either sign of x. */ double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; double Ma = GSL_SQRT_DBL_MIN; double Map1 = ra * Ma; double Mnp1 = Map1; double Mn = Ma; double Mnm1; gsl_sf_result Mn_true; int stat_Mt; double n; for(n=a; n>0.5; n -= 1.0) { Mnm1 = (n * Mnp1 - (2.0*n-b+x) * Mn) / (b-n); Mnp1 = Mn; Mn = Mnm1; } stat_Mt = hyperg_1F1_small_a_bgt0(n, b, x, &Mn_true); result->val = (Ma/Mn) * Mn_true.val; result->err = fabs(Ma/Mn) * Mn_true.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(a)+1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Mt, stat_CF1); } else if(b > a && b < 2*a + x && b > x) { /* Use the Gautschi series representation of * the continued fraction. Then recurse forward * to near the a=b line for normalization. This will * work for either sign of x, although we do need * to check for b > x, which is relevant when x is positive. */ gsl_sf_result Mn_true; int stat_Mt; double rap; int stat_CF1 = hyperg_1F1_CF1_p_ser(a, b, x, &rap); double ra = 1.0 + x/a * rap; double Ma = GSL_SQRT_DBL_MIN; double Mnm1 = Ma; double Mn = ra * Mnm1; double Mnp1; double n; for(n=a+1.0; nval = Ma/Mn * Mn_true.val; result->err = fabs(Ma/Mn) * Mn_true.err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(b-a)+1.0) * fabs(result->val); return GSL_ERROR_SELECT_2(stat_Mt, stat_CF1); } else if(x >= 0.0) { if(b < a) { /* Forward recursion on a from a=b+eps-1,b+eps. */ double N = floor(a-b); double eps = a - b - N; gsl_sf_result r_M0; gsl_sf_result r_M1; int stat_0 = hyperg_1F1_beps_bgt0(eps-1.0, b, x, &r_M0); int stat_1 = hyperg_1F1_beps_bgt0(eps, b, x, &r_M1); double M0 = r_M0.val; double M1 = r_M1.val; double Mam1 = M0; double Ma = M1; double Map1; double ap; double start_pair = fabs(M0) + fabs(M1); double minim_pair = GSL_DBL_MAX; double pair_ratio; double rat_0 = fabs(r_M0.err/r_M0.val); double rat_1 = fabs(r_M1.err/r_M1.val); for(ap=b+eps; apval = Ma; result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Ma); result->err += 2.0 * (rat_0 + rat_1) * pair_ratio*pair_ratio * fabs(Ma); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Ma); return GSL_ERROR_SELECT_2(stat_0, stat_1); } else { /* b > a * b < 2a + x * b <= x * * Recurse forward on a from a=eps,eps+1. */ double eps = a - floor(a); gsl_sf_result r_Mnm1; gsl_sf_result r_Mn; int stat_0 = hyperg_1F1_small_a_bgt0(eps, b, x, &r_Mnm1); int stat_1 = hyperg_1F1_small_a_bgt0(eps+1.0, b, x, &r_Mn); double Mnm1 = r_Mnm1.val; double Mn = r_Mn.val; double Mnp1; double n; double start_pair = fabs(Mn) + fabs(Mnm1); double minim_pair = GSL_DBL_MAX; double pair_ratio; double rat_0 = fabs(r_Mnm1.err/r_Mnm1.val); double rat_1 = fabs(r_Mn.err/r_Mn.val); for(n=eps+1.0; nval = Mn; result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(a)+1.0) * fabs(Mn); result->err += 2.0 * (rat_0 + rat_1) * pair_ratio*pair_ratio * fabs(Mn); result->err += 2.0 * GSL_DBL_EPSILON * fabs(Mn); return GSL_ERROR_SELECT_2(stat_0, stat_1); } } else { /* x < 0 * b < a */ if(a <= 0.5*(b-x) || a >= -x) { /* Recurse down in b, from near the a=b line, b=a+eps,a+eps-1. */ double N = floor(a - b); double eps = 1.0 + N - a + b; gsl_sf_result r_Manp1; gsl_sf_result r_Man; int stat_0 = hyperg_1F1_beps_bgt0(-eps, a+eps, x, &r_Manp1); int stat_1 = hyperg_1F1_beps_bgt0(1.0-eps, a+eps-1.0, x, &r_Man); double Manp1 = r_Manp1.val; double Man = r_Man.val; double Manm1; double n; double start_pair = fabs(Manp1) + fabs(Man); double minim_pair = GSL_DBL_MAX; double pair_ratio; double rat_0 = fabs(r_Manp1.err/r_Manp1.val); double rat_1 = fabs(r_Man.err/r_Man.val); for(n=a+eps-1.0; n>b+0.1; n -= 1.0) { Manm1 = (-n*(1-n-x)*Man - x*(n-a)*Manp1)/(n*(n-1.0)); Manp1 = Man; Man = Manm1; minim_pair = GSL_MIN_DBL(fabs(Manp1) + fabs(Man), minim_pair); } /* FIXME: this is a nasty little hack; there is some (transient?) instability in this recurrence for some values. I can tell when it happens, which is when this pair_ratio is large. But I do not know how to measure the error in terms of it. I guessed quadratic below, but it is probably worse than that. */ pair_ratio = start_pair/minim_pair; result->val = Man; result->err = 2.0 * (rat_0 + rat_1 + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Man); result->err *= pair_ratio*pair_ratio + 1.0; return GSL_ERROR_SELECT_2(stat_0, stat_1); } else { /* Pick a0 such that b ~= 2a0 + x, then * recurse down in b from a0,a0 to determine * the values near the line b=2a+x. Then recurse * forward on a from a0. */ double epsa = a - floor(a); double a0 = floor(0.5*(b-x)) + epsa; double N = floor(a0 - b); double epsb = 1.0 + N - a0 + b; double Ma0b; double Ma0bp1; double Ma0p1b; int stat_a0; double Mnm1; double Mn; double Mnp1; double n; double err_rat; { gsl_sf_result r_Ma0np1; gsl_sf_result r_Ma0n; int stat_0 = hyperg_1F1_beps_bgt0(-epsb, a0+epsb, x, &r_Ma0np1); int stat_1 = hyperg_1F1_beps_bgt0(1.0-epsb, a0+epsb-1.0, x, &r_Ma0n); double Ma0np1 = r_Ma0np1.val; double Ma0n = r_Ma0n.val; double Ma0nm1; err_rat = fabs(r_Ma0np1.err/r_Ma0np1.val) + fabs(r_Ma0n.err/r_Ma0n.val); for(n=a0+epsb-1.0; n>b+0.1; n -= 1.0) { Ma0nm1 = (-n*(1-n-x)*Ma0n - x*(n-a0)*Ma0np1)/(n*(n-1.0)); Ma0np1 = Ma0n; Ma0n = Ma0nm1; } Ma0bp1 = Ma0np1; Ma0b = Ma0n; Ma0p1b = (b*(a0+x)*Ma0b+x*(a0-b)*Ma0bp1)/(a0*b); /* right-down hook */ stat_a0 = GSL_ERROR_SELECT_2(stat_0, stat_1); } /* Initialise the recurrence correctly BJG */ if (a0 >= a - 0.1) { Mn = Ma0b; } else if (a0 + 1>= a - 0.1) { Mn = Ma0p1b; } else { Mnm1 = Ma0b; Mn = Ma0p1b; for(n=a0+1.0; nval = Mn; result->err = (err_rat + GSL_DBL_EPSILON) * (fabs(b-a)+1.0) * fabs(Mn); return stat_a0; } } } /* Assumes b != integer * Assumes a != integer when x > 0 * Assumes b-a != neg integer when x < 0 */ static int hyperg_1F1_ab_neg(const double a, const double b, const double x, gsl_sf_result * result) { const double bma = b - a; const double abs_x = fabs(x); const double abs_a = fabs(a); const double abs_b = fabs(b); const double size_a = GSL_MAX(abs_a, 1.0); const double size_b = GSL_MAX(abs_b, 1.0); const int bma_integer = ( bma - floor(bma+0.5) < _1F1_INT_THRESHOLD ); if( (abs_a < 10.0 && abs_b < 10.0 && abs_x < 5.0) || (b > 0.8*GSL_MAX(fabs(a),1.0)*fabs(x)) ) { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if( x > 0.0 && size_b > size_a && size_a*log(M_E*x/size_b) < GSL_LOG_DBL_EPSILON+7.0 ) { /* Series terms are positive definite up until * there is a sign change. But by then the * terms are small due to the last condition. */ return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } else if( (abs_x < 5.0 && fabs(bma) < 10.0 && abs_b < 10.0) || (b > 0.8*GSL_MAX_DBL(fabs(bma),1.0)*abs_x) ) { /* Use Kummer transformation to render series safe. */ gsl_sf_result Kummer_1F1; int stat_K = gsl_sf_hyperg_1F1_series_e(bma, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if( x < -30.0 && GSL_MAX_DBL(fabs(a),1.0)*GSL_MAX_DBL(fabs(1.0+a-b),1.0) < 0.99*fabs(x) ) { /* Large negative x asymptotic. * Note that we do not check if b-a is a negative integer. */ return hyperg_1F1_asymp_negx(a, b, x, result); } else if( x > 100.0 && GSL_MAX_DBL(fabs(bma),1.0)*GSL_MAX_DBL(fabs(1.0-a),1.0) < 0.99*fabs(x) ) { /* Large positive x asymptotic. * Note that we do not check if a is a negative integer. */ return hyperg_1F1_asymp_posx(a, b, x, result); } else if(x > 0.0 && !(bma_integer && bma > 0.0)) { return hyperg_1F1_U(a, b, x, result); } else { /* FIXME: if all else fails, try the series... BJG */ if (x < 0.0) { /* Apply Kummer Transformation */ int status = gsl_sf_hyperg_1F1_series_e(b-a, b, -x, result); double K_factor = exp(x); result->val *= K_factor; result->err *= K_factor; return status; } else { int status = gsl_sf_hyperg_1F1_series_e(a, b, x, result); return status; } /* Sadness... */ /* result->val = 0.0; */ /* result->err = 0.0; */ /* GSL_ERROR ("error", GSL_EUNIMPL); */ } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hyperg_1F1_int_e(const int a, const int b, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == b) { return gsl_sf_exp_e(x, result); } else if(b == 0) { DOMAIN_ERROR(result); } else if(a == 0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(b < 0 && (a < b || a > 0)) { /* Standard domain error due to singularity. */ DOMAIN_ERROR(result); } else if(x > 100.0 && GSL_MAX_DBL(1.0,fabs(b-a))*GSL_MAX_DBL(1.0,fabs(1-a)) < 0.5 * x) { /* x -> +Inf asymptotic */ return hyperg_1F1_asymp_posx(a, b, x, result); } else if(x < -100.0 && GSL_MAX_DBL(1.0,fabs(a))*GSL_MAX_DBL(1.0,fabs(1+a-b)) < 0.5 * fabs(x)) { /* x -> -Inf asymptotic */ return hyperg_1F1_asymp_negx(a, b, x, result); } else if(a < 0 && b < 0) { return hyperg_1F1_ab_negint(a, b, x, result); } else if(a < 0 && b > 0) { /* Use Kummer to reduce it to the positive integer case. * Note that b > a, strictly, since we already trapped b = a. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_ab_posint(b-a, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { /* a > 0 and b > 0 */ return hyperg_1F1_ab_posint(a, b, x, result); } } int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result ) { const double bma = b - a; const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintbma = floor(bma + 0.5); const int a_integer = ( fabs(a-rinta) < _1F1_INT_THRESHOLD && rinta > INT_MIN && rinta < INT_MAX ); const int b_integer = ( fabs(b-rintb) < _1F1_INT_THRESHOLD && rintb > INT_MIN && rintb < INT_MAX ); const int bma_integer = ( fabs(bma-rintbma) < _1F1_INT_THRESHOLD && rintbma > INT_MIN && rintbma < INT_MAX ); const int b_neg_integer = ( b < -0.1 && b_integer ); const int a_neg_integer = ( a < -0.1 && a_integer ); const int bma_neg_integer = ( bma < -0.1 && bma_integer ); /* CHECK_POINTER(result) */ if(x == 0.0) { /* Testing for this before testing a and b * is somewhat arbitrary. The result is that * we have 1F1(a,0,0) = 1. */ result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(b == 0.0) { DOMAIN_ERROR(result); } else if(a == 0.0) { result->val = 1.0; result->err = 0.0; return GSL_SUCCESS; } else if(a == b) { /* case: a==b; exp(x) * It's good to test exact equality now. * We also test approximate equality later. */ return gsl_sf_exp_e(x, result); } else if(fabs(b) < _1F1_INT_THRESHOLD && fabs(a) < _1F1_INT_THRESHOLD) { /* a and b near zero: 1 + a/b (exp(x)-1) */ /* Note that neither a nor b is zero, since * we eliminated that with the above tests. */ gsl_sf_result exm1; int stat_e = gsl_sf_expm1_e(x, &exm1); double sa = ( a > 0.0 ? 1.0 : -1.0 ); double sb = ( b > 0.0 ? 1.0 : -1.0 ); double lnab = log(fabs(a/b)); /* safe */ gsl_sf_result hx; int stat_hx = gsl_sf_exp_mult_err_e(lnab, GSL_DBL_EPSILON * fabs(lnab), sa * sb * exm1.val, exm1.err, &hx); result->val = (hx.val == GSL_DBL_MAX ? hx.val : 1.0 + hx.val); /* FIXME: excessive paranoia ? what is DBL_MAX+1 ?*/ result->err = hx.err; return GSL_ERROR_SELECT_2(stat_hx, stat_e); } else if (fabs(b) < _1F1_INT_THRESHOLD && fabs(x*a) < 1) { /* b near zero and a not near zero */ const double m_arg = 1.0/(0.5*b); gsl_sf_result F_renorm; int stat_F = hyperg_1F1_renorm_b0(a, x, &F_renorm); int stat_m = gsl_sf_multiply_err_e(m_arg, 2.0 * GSL_DBL_EPSILON * m_arg, 0.5*F_renorm.val, 0.5*F_renorm.err, result); return GSL_ERROR_SELECT_2(stat_m, stat_F); } else if(a_integer && b_integer) { /* Check for reduction to the integer case. * Relies on the arbitrary "near an integer" test. */ return gsl_sf_hyperg_1F1_int_e((int)rinta, (int)rintb, x, result); } else if(b_neg_integer && !(a_neg_integer && a > b)) { /* Standard domain error due to * uncancelled singularity. */ DOMAIN_ERROR(result); } else if(a_neg_integer) { return hyperg_1F1_a_negint_lag((int)rinta, b, x, result); } else if(b > 0.0) { if(-1.0 <= a && a <= 1.0) { /* Handle small a explicitly. */ return hyperg_1F1_small_a_bgt0(a, b, x, result); } else if(bma_neg_integer) { /* Catch this now, to avoid problems in the * generic evaluation code. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a < 0.0 && fabs(x) < 2*GSL_LOG_DBL_MAX) { /* Use Kummer to reduce it to the generic positive case. * Note that b > a, strictly, since we already trapped b = a. * Also b-(b-a)=a, and a is not a negative integer here, * so the generic evaluation is safe. */ gsl_sf_result Kummer_1F1; int stat_K = hyperg_1F1_ab_pos(b-a, b, -x, &Kummer_1F1); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), Kummer_1F1.val, Kummer_1F1.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if (a > 0) { /* a > 0.0 */ return hyperg_1F1_ab_pos(a, b, x, result); } else { return gsl_sf_hyperg_1F1_series_e(a, b, x, result); } } else { /* b < 0.0 */ if(bma_neg_integer && x < 0.0) { /* Handle this now to prevent problems * in the generic evaluation. */ gsl_sf_result K; int stat_K; int stat_e; if(a < 0.0) { /* Kummer transformed version of safe polynomial. * The condition a < 0 is equivalent to b < b-a, * which is the condition required for the series * to be positive definite here. */ stat_K = hyperg_1F1_a_negint_poly((int)rintbma, b, -x, &K); } else { /* Generic eval for negative integer a. */ stat_K = hyperg_1F1_a_negint_lag((int)rintbma, b, -x, &K); } stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else if(a > 0.0) { /* Use Kummer to reduce it to the generic negative case. */ gsl_sf_result K; int stat_K = hyperg_1F1_ab_neg(b-a, b, -x, &K); int stat_e = gsl_sf_exp_mult_err_e(x, GSL_DBL_EPSILON * fabs(x), K.val, K.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } else { return hyperg_1F1_ab_neg(a, b, x, result); } } } #if 0 /* Luke in the canonical case. */ if(x < 0.0 && !a_neg_integer && !bma_neg_integer) { double prec; return hyperg_1F1_luke(a, b, x, result, &prec); } /* Luke with Kummer transformation. */ if(x > 0.0 && !a_neg_integer && !bma_neg_integer) { double prec; double Kummer_1F1; double ex; int stat_F = hyperg_1F1_luke(b-a, b, -x, &Kummer_1F1, &prec); int stat_e = gsl_sf_exp_e(x, &ex); if(stat_F == GSL_SUCCESS && stat_e == GSL_SUCCESS) { double lnr = log(fabs(Kummer_1F1)) + x; if(lnr < GSL_LOG_DBL_MAX) { *result = ex * Kummer_1F1; return GSL_SUCCESS; } else { *result = GSL_POSINF; GSL_ERROR ("overflow", GSL_EOVRFLW); } } else if(stat_F != GSL_SUCCESS) { *result = 0.0; return stat_F; } else { *result = 0.0; return stat_e; } } #endif /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hyperg_1F1_int(const int m, const int n, double x) { EVAL_RESULT(gsl_sf_hyperg_1F1_int_e(m, n, x, &result)); } double gsl_sf_hyperg_1F1(double a, double b, double x) { EVAL_RESULT(gsl_sf_hyperg_1F1_e(a, b, x, &result)); } gsl-1.16/specfunc/bessel_y.c0000664000252300025230000001720512171574312012736 00000000000000/* specfunc/bessel_y.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_olver.h" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* [Abramowitz+Stegun, 10.1.3] * with lmax=15, precision ~ 15D for x < 3 * * checked OK [GJ] Wed May 13 15:41:25 MDT 1998 */ static int bessel_yl_small_x(int l, const double x, gsl_sf_result * result) { gsl_sf_result num_fact; double den = gsl_sf_pow_int(x, l+1); int stat_df = gsl_sf_doublefact_e(2*l-1, &num_fact); if(stat_df != GSL_SUCCESS || den == 0.0) { OVERFLOW_ERROR(result); } else { const int lmax = 200; double t = -0.5*x*x; double sum = 1.0; double t_coeff = 1.0; double t_power = 1.0; double delta; int i; for(i=1; i<=lmax; i++) { t_coeff /= i*(2*(i-l) - 1); t_power *= t; delta = t_power*t_coeff; sum += delta; if(fabs(delta/sum) < 0.5*GSL_DBL_EPSILON) break; } result->val = -num_fact.val/den * sum; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_y0_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(1.0/GSL_DBL_MAX > 0.0 && x < 1.0/GSL_DBL_MAX) { OVERFLOW_ERROR(result); } else { gsl_sf_result cos_result; const int stat = gsl_sf_cos_e(x, &cos_result); result->val = -cos_result.val/x; result->err = fabs(cos_result.err/x); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat; } } int gsl_sf_bessel_y1_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 1.0/GSL_SQRT_DBL_MAX) { OVERFLOW_ERROR(result); } else if(x < 0.25) { const double y = x*x; const double c1 = 1.0/2.0; const double c2 = -1.0/8.0; const double c3 = 1.0/144.0; const double c4 = -1.0/5760.0; const double c5 = 1.0/403200.0; const double c6 = -1.0/43545600.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*c6))))); result->val = -sum/y; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result cos_result; gsl_sf_result sin_result; const int stat_cos = gsl_sf_cos_e(x, &cos_result); const int stat_sin = gsl_sf_sin_e(x, &sin_result); const double cx = cos_result.val; const double sx = sin_result.val; result->val = -(cx/x + sx)/x; result->err = (fabs(cos_result.err/x) + sin_result.err)/fabs(x); result->err += GSL_DBL_EPSILON * (fabs(sx/x) + fabs(cx/(x*x))); return GSL_ERROR_SELECT_2(stat_cos, stat_sin); } } int gsl_sf_bessel_y2_e(const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 1.0/GSL_ROOT3_DBL_MAX) { OVERFLOW_ERROR(result); } else if(x < 0.5) { const double y = x*x; const double c1 = 1.0/6.0; const double c2 = 1.0/24.0; const double c3 = -1.0/144.0; const double c4 = 1.0/3456.0; const double c5 = -1.0/172800.0; const double c6 = 1.0/14515200.0; const double c7 = -1.0/1828915200.0; const double sum = 1.0 + y*(c1 + y*(c2 + y*(c3 + y*(c4 + y*(c5 + y*(c6 + y*c7)))))); result->val = -3.0/(x*x*x) * sum; result->err = GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else { gsl_sf_result cos_result; gsl_sf_result sin_result; const int stat_cos = gsl_sf_cos_e(x, &cos_result); const int stat_sin = gsl_sf_sin_e(x, &sin_result); const double sx = sin_result.val; const double cx = cos_result.val; const double a = 3.0/(x*x); result->val = (1.0 - a)/x * cx - a * sx; result->err = cos_result.err * fabs((1.0 - a)/x) + sin_result.err * fabs(a); result->err += GSL_DBL_EPSILON * (fabs(cx/x) + fabs(sx/(x*x))); return GSL_ERROR_SELECT_2(stat_cos, stat_sin); } } int gsl_sf_bessel_yl_e(int l, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(l < 0 || x <= 0.0) { DOMAIN_ERROR(result); } else if(l == 0) { return gsl_sf_bessel_y0_e(x, result); } else if(l == 1) { return gsl_sf_bessel_y1_e(x, result); } else if(l == 2) { return gsl_sf_bessel_y2_e(x, result); } else if(x < 3.0) { return bessel_yl_small_x(l, x, result); } else if(GSL_ROOT3_DBL_EPSILON * x > (l*l + l + 1.0)) { int status = gsl_sf_bessel_Ynu_asympx_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else if(l > 40) { int status = gsl_sf_bessel_Ynu_asymp_Olver_e(l + 0.5, x, result); double pre = sqrt((0.5*M_PI)/x); result->val *= pre; result->err *= pre; return status; } else { /* recurse upward */ gsl_sf_result r_by; gsl_sf_result r_bym; int stat_1 = gsl_sf_bessel_y1_e(x, &r_by); int stat_0 = gsl_sf_bessel_y0_e(x, &r_bym); double bym = r_bym.val; double by = r_by.val; double byp; int j; for(j=1; jval = by; result->err = fabs(result->val) * (GSL_DBL_EPSILON + fabs(r_by.err/r_by.val) + fabs(r_bym.err/r_bym.val)); return GSL_ERROR_SELECT_2(stat_1, stat_0); } } int gsl_sf_bessel_yl_array(const int lmax, const double x, double * result_array) { /* CHECK_POINTER(result_array) */ if(lmax < 0 || x <= 0.0) { GSL_ERROR ("error", GSL_EDOM); } else if (lmax == 0) { gsl_sf_result result; int stat = gsl_sf_bessel_y0_e(x, &result); result_array[0] = result.val; return stat; } else { gsl_sf_result r_yell; gsl_sf_result r_yellm1; int stat_1 = gsl_sf_bessel_y1_e(x, &r_yell); int stat_0 = gsl_sf_bessel_y0_e(x, &r_yellm1); double yellp1; double yell = r_yell.val; double yellm1 = r_yellm1.val; int ell; result_array[0] = yellm1; result_array[1] = yell; for(ell = 1; ell < lmax; ell++) { yellp1 = (2*ell+1)/x * yell - yellm1; result_array[ell+1] = yellp1; yellm1 = yell; yell = yellp1; } return GSL_ERROR_SELECT_2(stat_0, stat_1); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_y0(const double x) { EVAL_RESULT(gsl_sf_bessel_y0_e(x, &result)); } double gsl_sf_bessel_y1(const double x) { EVAL_RESULT(gsl_sf_bessel_y1_e(x, &result)); } double gsl_sf_bessel_y2(const double x) { EVAL_RESULT(gsl_sf_bessel_y2_e(x, &result)); } double gsl_sf_bessel_yl(const int l, const double x) { EVAL_RESULT(gsl_sf_bessel_yl_e(l, x, &result)); } gsl-1.16/specfunc/gsl_sf_gamma.h0000664000252300025230000001710612171574312013555 00000000000000/* specfunc/gsl_sf_gamma.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_GAMMA_H__ #define __GSL_SF_GAMMA_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Log[Gamma(x)], x not a negative integer * Uses real Lanczos method. * Returns the real part of Log[Gamma[x]] when x < 0, * i.e. Log[|Gamma[x]|]. * * exceptions: GSL_EDOM, GSL_EROUND */ int gsl_sf_lngamma_e(double x, gsl_sf_result * result); double gsl_sf_lngamma(const double x); /* Log[Gamma(x)], x not a negative integer * Uses real Lanczos method. Determines * the sign of Gamma[x] as well as Log[|Gamma[x]|] for x < 0. * So Gamma[x] = sgn * Exp[result_lg]. * * exceptions: GSL_EDOM, GSL_EROUND */ int gsl_sf_lngamma_sgn_e(double x, gsl_sf_result * result_lg, double *sgn); /* Gamma(x), x not a negative integer * Uses real Lanczos method. * * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND */ int gsl_sf_gamma_e(const double x, gsl_sf_result * result); double gsl_sf_gamma(const double x); /* Regulated Gamma Function, x > 0 * Gamma^*(x) = Gamma(x)/(Sqrt[2Pi] x^(x-1/2) exp(-x)) * = (1 + 1/(12x) + ...), x->Inf * A useful suggestion of Temme. * * exceptions: GSL_EDOM */ int gsl_sf_gammastar_e(const double x, gsl_sf_result * result); double gsl_sf_gammastar(const double x); /* 1/Gamma(x) * Uses real Lanczos method. * * exceptions: GSL_EUNDRFLW, GSL_EROUND */ int gsl_sf_gammainv_e(const double x, gsl_sf_result * result); double gsl_sf_gammainv(const double x); /* Log[Gamma(z)] for z complex, z not a negative integer * Uses complex Lanczos method. Note that the phase part (arg) * is not well-determined when |z| is very large, due * to inevitable roundoff in restricting to (-Pi,Pi]. * This will raise the GSL_ELOSS exception when it occurs. * The absolute value part (lnr), however, never suffers. * * Calculates: * lnr = log|Gamma(z)| * arg = arg(Gamma(z)) in (-Pi, Pi] * * exceptions: GSL_EDOM, GSL_ELOSS */ int gsl_sf_lngamma_complex_e(double zr, double zi, gsl_sf_result * lnr, gsl_sf_result * arg); /* x^n / n! * * x >= 0.0, n >= 0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_taylorcoeff_e(const int n, const double x, gsl_sf_result * result); double gsl_sf_taylorcoeff(const int n, const double x); /* n! * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_fact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_fact(const unsigned int n); /* n!! = n(n-2)(n-4) ... * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_doublefact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_doublefact(const unsigned int n); /* log(n!) * Faster than ln(Gamma(n+1)) for n < 170; defers for larger n. * * exceptions: none */ int gsl_sf_lnfact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_lnfact(const unsigned int n); /* log(n!!) * * exceptions: none */ int gsl_sf_lndoublefact_e(const unsigned int n, gsl_sf_result * result); double gsl_sf_lndoublefact(const unsigned int n); /* log(n choose m) * * exceptions: GSL_EDOM */ int gsl_sf_lnchoose_e(unsigned int n, unsigned int m, gsl_sf_result * result); double gsl_sf_lnchoose(unsigned int n, unsigned int m); /* n choose m * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_choose_e(unsigned int n, unsigned int m, gsl_sf_result * result); double gsl_sf_choose(unsigned int n, unsigned int m); /* Logarithm of Pochhammer (Apell) symbol * log( (a)_x ) * where (a)_x := Gamma[a + x]/Gamma[a] * * a > 0, a+x > 0 * * exceptions: GSL_EDOM */ int gsl_sf_lnpoch_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_lnpoch(const double a, const double x); /* Logarithm of Pochhammer (Apell) symbol, with sign information. * result = log( |(a)_x| ) * sgn = sgn( (a)_x ) * where (a)_x := Gamma[a + x]/Gamma[a] * * a != neg integer, a+x != neg integer * * exceptions: GSL_EDOM */ int gsl_sf_lnpoch_sgn_e(const double a, const double x, gsl_sf_result * result, double * sgn); /* Pochhammer (Apell) symbol * (a)_x := Gamma[a + x]/Gamma[x] * * a != neg integer, a+x != neg integer * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_poch_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_poch(const double a, const double x); /* Relative Pochhammer (Apell) symbol * ((a,x) - 1)/x * where (a,x) = (a)_x := Gamma[a + x]/Gamma[a] * * exceptions: GSL_EDOM */ int gsl_sf_pochrel_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_pochrel(const double a, const double x); /* Normalized Incomplete Gamma Function * * Q(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,x,Infinity} ] * * a >= 0, x >= 0 * Q(a,0) := 1 * Q(0,x) := 0, x != 0 * * exceptions: GSL_EDOM */ int gsl_sf_gamma_inc_Q_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_gamma_inc_Q(const double a, const double x); /* Complementary Normalized Incomplete Gamma Function * * P(a,x) = 1/Gamma(a) Integral[ t^(a-1) e^(-t), {t,0,x} ] * * a > 0, x >= 0 * * exceptions: GSL_EDOM */ int gsl_sf_gamma_inc_P_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_gamma_inc_P(const double a, const double x); /* Non-normalized Incomplete Gamma Function * * Gamma(a,x) := Integral[ t^(a-1) e^(-t), {t,x,Infinity} ] * * x >= 0.0 * Gamma(a, 0) := Gamma(a) * * exceptions: GSL_EDOM */ int gsl_sf_gamma_inc_e(const double a, const double x, gsl_sf_result * result); double gsl_sf_gamma_inc(const double a, const double x); /* Logarithm of Beta Function * Log[B(a,b)] * * a > 0, b > 0 * exceptions: GSL_EDOM */ int gsl_sf_lnbeta_e(const double a, const double b, gsl_sf_result * result); double gsl_sf_lnbeta(const double a, const double b); int gsl_sf_lnbeta_sgn_e(const double x, const double y, gsl_sf_result * result, double * sgn); /* Beta Function * B(a,b) * * a > 0, b > 0 * exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW */ int gsl_sf_beta_e(const double a, const double b, gsl_sf_result * result); double gsl_sf_beta(const double a, const double b); /* Normalized Incomplete Beta Function * B_x(a,b)/B(a,b) * * a > 0, b > 0, 0 <= x <= 1 * exceptions: GSL_EDOM, GSL_EUNDRFLW */ int gsl_sf_beta_inc_e(const double a, const double b, const double x, gsl_sf_result * result); double gsl_sf_beta_inc(const double a, const double b, const double x); /* The maximum x such that gamma(x) is not * considered an overflow. */ #define GSL_SF_GAMMA_XMAX 171.0 /* The maximum n such that gsl_sf_fact(n) does not give an overflow. */ #define GSL_SF_FACT_NMAX 170 /* The maximum n such that gsl_sf_doublefact(n) does not give an overflow. */ #define GSL_SF_DOUBLEFACT_NMAX 297 __END_DECLS #endif /* __GSL_SF_GAMMA_H__ */ gsl-1.16/specfunc/bessel_amp_phase.c0000664000252300025230000001105312171574312014416 00000000000000/* specfunc/bessel_amp_phase.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "bessel_amp_phase.h" /* chebyshev expansions for amplitude and phase functions used in bessel evaluations These are the same for J0,Y0 and for J1,Y1, so they sit outside those functions. */ static double bm0_data[21] = { 0.09284961637381644, -0.00142987707403484, 0.00002830579271257, -0.00000143300611424, 0.00000012028628046, -0.00000001397113013, 0.00000000204076188, -0.00000000035399669, 0.00000000007024759, -0.00000000001554107, 0.00000000000376226, -0.00000000000098282, 0.00000000000027408, -0.00000000000008091, 0.00000000000002511, -0.00000000000000814, 0.00000000000000275, -0.00000000000000096, 0.00000000000000034, -0.00000000000000012, 0.00000000000000004 }; const cheb_series _gsl_sf_bessel_amp_phase_bm0_cs = { bm0_data, 20, -1, 1, 10 }; static double bth0_data[24] = { -0.24639163774300119, 0.001737098307508963, -0.000062183633402968, 0.000004368050165742, -0.000000456093019869, 0.000000062197400101, -0.000000010300442889, 0.000000001979526776, -0.000000000428198396, 0.000000000102035840, -0.000000000026363898, 0.000000000007297935, -0.000000000002144188, 0.000000000000663693, -0.000000000000215126, 0.000000000000072659, -0.000000000000025465, 0.000000000000009229, -0.000000000000003448, 0.000000000000001325, -0.000000000000000522, 0.000000000000000210, -0.000000000000000087, 0.000000000000000036 }; const cheb_series _gsl_sf_bessel_amp_phase_bth0_cs = { bth0_data, 23, -1, 1, 12 }; static double bm1_data[21] = { 0.1047362510931285, 0.00442443893702345, -0.00005661639504035, 0.00000231349417339, -0.00000017377182007, 0.00000001893209930, -0.00000000265416023, 0.00000000044740209, -0.00000000008691795, 0.00000000001891492, -0.00000000000451884, 0.00000000000116765, -0.00000000000032265, 0.00000000000009450, -0.00000000000002913, 0.00000000000000939, -0.00000000000000315, 0.00000000000000109, -0.00000000000000039, 0.00000000000000014, -0.00000000000000005, }; const cheb_series _gsl_sf_bessel_amp_phase_bm1_cs = { bm1_data, 20, -1, 1, 10 }; static double bth1_data[24] = { 0.74060141026313850, -0.004571755659637690, 0.000119818510964326, -0.000006964561891648, 0.000000655495621447, -0.000000084066228945, 0.000000013376886564, -0.000000002499565654, 0.000000000529495100, -0.000000000124135944, 0.000000000031656485, -0.000000000008668640, 0.000000000002523758, -0.000000000000775085, 0.000000000000249527, -0.000000000000083773, 0.000000000000029205, -0.000000000000010534, 0.000000000000003919, -0.000000000000001500, 0.000000000000000589, -0.000000000000000237, 0.000000000000000097, -0.000000000000000040, }; const cheb_series _gsl_sf_bessel_amp_phase_bth1_cs = { bth1_data, 23, -1, 1, 12 }; int gsl_sf_bessel_asymp_Mnu_e(const double nu, const double x, double * result) { const double r = 2.0*nu/x; const double r2 = r*r; const double x2 = x*x; const double term1 = (r2-1.0/x2)/8.0; const double term2 = (r2-1.0/x2)*(r2-9.0/x2)*3.0/128.0; const double Mnu2_c = 2.0/(M_PI) * (1.0 + term1 + term2); *result = sqrt(Mnu2_c)/sqrt(x); /* will never underflow this way */ return GSL_SUCCESS; } int gsl_sf_bessel_asymp_thetanu_corr_e(const double nu, const double x, double * result) { const double r = 2.0*nu/x; const double r2 = r*r; const double x2 = x*x; const double term1 = x*(r2 - 1.0/x2)/8.0; const double term2 = x*(r2 - 1.0/x2)*(r2 - 25.0/x2)/384.0; *result = (-0.25*M_PI + term1 + term2); return GSL_SUCCESS; } gsl-1.16/specfunc/gsl_sf_legendre.h0000664000252300025230000002060112171574312014252 00000000000000/* specfunc/gsl_sf_legendre.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SF_LEGENDRE_H__ #define __GSL_SF_LEGENDRE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* P_l(x) l >= 0; |x| <= 1 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Pl_e(const int l, const double x, gsl_sf_result * result); double gsl_sf_legendre_Pl(const int l, const double x); /* P_l(x) for l=0,...,lmax; |x| <= 1 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Pl_array( const int lmax, const double x, double * result_array ); /* P_l(x) and P_l'(x) for l=0,...,lmax; |x| <= 1 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Pl_deriv_array( const int lmax, const double x, double * result_array, double * result_deriv_array ); /* P_l(x), l=1,2,3 * * exceptions: none */ int gsl_sf_legendre_P1_e(double x, gsl_sf_result * result); int gsl_sf_legendre_P2_e(double x, gsl_sf_result * result); int gsl_sf_legendre_P3_e(double x, gsl_sf_result * result); double gsl_sf_legendre_P1(const double x); double gsl_sf_legendre_P2(const double x); double gsl_sf_legendre_P3(const double x); /* Q_0(x), x > -1, x != 1 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Q0_e(const double x, gsl_sf_result * result); double gsl_sf_legendre_Q0(const double x); /* Q_1(x), x > -1, x != 1 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Q1_e(const double x, gsl_sf_result * result); double gsl_sf_legendre_Q1(const double x); /* Q_l(x), x > -1, x != 1, l >= 0 * * exceptions: GSL_EDOM */ int gsl_sf_legendre_Ql_e(const int l, const double x, gsl_sf_result * result); double gsl_sf_legendre_Ql(const int l, const double x); /* P_l^m(x) m >= 0; l >= m; |x| <= 1.0 * * Note that this function grows combinatorially with l. * Therefore we can easily generate an overflow for l larger * than about 150. * * There is no trouble for small m, but when m and l are both large, * then there will be trouble. Rather than allow overflows, these * functions refuse to calculate when they can sense that l and m are * too big. * * If you really want to calculate a spherical harmonic, then DO NOT * use this. Instead use legendre_sphPlm() below, which uses a similar * recursion, but with the normalized functions. * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_legendre_Plm_e(const int l, const int m, const double x, gsl_sf_result * result); double gsl_sf_legendre_Plm(const int l, const int m, const double x); /* P_l^m(x) m >= 0; l >= m; |x| <= 1.0 * l=|m|,...,lmax * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_legendre_Plm_array( const int lmax, const int m, const double x, double * result_array ); /* P_l^m(x) and d(P_l^m(x))/dx; m >= 0; lmax >= m; |x| <= 1.0 * l=|m|,...,lmax * * exceptions: GSL_EDOM, GSL_EOVRFLW */ int gsl_sf_legendre_Plm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array ); /* P_l^m(x), normalized properly for use in spherical harmonics * m >= 0; l >= m; |x| <= 1.0 * * There is no overflow problem, as there is for the * standard normalization of P_l^m(x). * * Specifically, it returns: * * sqrt((2l+1)/(4pi)) sqrt((l-m)!/(l+m)!) P_l^m(x) * * exceptions: GSL_EDOM */ int gsl_sf_legendre_sphPlm_e(const int l, int m, const double x, gsl_sf_result * result); double gsl_sf_legendre_sphPlm(const int l, const int m, const double x); /* sphPlm(l,m,x) values * m >= 0; l >= m; |x| <= 1.0 * l=|m|,...,lmax * * exceptions: GSL_EDOM */ int gsl_sf_legendre_sphPlm_array( const int lmax, int m, const double x, double * result_array ); /* sphPlm(l,m,x) and d(sphPlm(l,m,x))/dx values * m >= 0; l >= m; |x| <= 1.0 * l=|m|,...,lmax * * exceptions: GSL_EDOM */ int gsl_sf_legendre_sphPlm_deriv_array( const int lmax, const int m, const double x, double * result_array, double * result_deriv_array ); /* size of result_array[] needed for the array versions of Plm * (lmax - m + 1) */ int gsl_sf_legendre_array_size(const int lmax, const int m); /* Irregular Spherical Conical Function * P^{1/2}_{-1/2 + I lambda}(x) * * x > -1.0 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_half_e(const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_half(const double lambda, const double x); /* Regular Spherical Conical Function * P^{-1/2}_{-1/2 + I lambda}(x) * * x > -1.0 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_mhalf_e(const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_mhalf(const double lambda, const double x); /* Conical Function * P^{0}_{-1/2 + I lambda}(x) * * x > -1.0 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_0_e(const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_0(const double lambda, const double x); /* Conical Function * P^{1}_{-1/2 + I lambda}(x) * * x > -1.0 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_1_e(const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_1(const double lambda, const double x); /* Regular Spherical Conical Function * P^{-1/2-l}_{-1/2 + I lambda}(x) * * x > -1.0, l >= -1 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_sph_reg_e(const int l, const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_sph_reg(const int l, const double lambda, const double x); /* Regular Cylindrical Conical Function * P^{-m}_{-1/2 + I lambda}(x) * * x > -1.0, m >= -1 * exceptions: GSL_EDOM */ int gsl_sf_conicalP_cyl_reg_e(const int m, const double lambda, const double x, gsl_sf_result * result); double gsl_sf_conicalP_cyl_reg(const int m, const double lambda, const double x); /* The following spherical functions are specializations * of Legendre functions which give the regular eigenfunctions * of the Laplacian on a 3-dimensional hyperbolic space. * Of particular interest is the flat limit, which is * Flat-Lim := {lambda->Inf, eta->0, lambda*eta fixed}. */ /* Zeroth radial eigenfunction of the Laplacian on the * 3-dimensional hyperbolic space. * * legendre_H3d_0(lambda,eta) := sin(lambda*eta)/(lambda*sinh(eta)) * * Normalization: * Flat-Lim legendre_H3d_0(lambda,eta) = j_0(lambda*eta) * * eta >= 0.0 * exceptions: GSL_EDOM */ int gsl_sf_legendre_H3d_0_e(const double lambda, const double eta, gsl_sf_result * result); double gsl_sf_legendre_H3d_0(const double lambda, const double eta); /* First radial eigenfunction of the Laplacian on the * 3-dimensional hyperbolic space. * * legendre_H3d_1(lambda,eta) := * 1/sqrt(lambda^2 + 1) sin(lam eta)/(lam sinh(eta)) * (coth(eta) - lambda cot(lambda*eta)) * * Normalization: * Flat-Lim legendre_H3d_1(lambda,eta) = j_1(lambda*eta) * * eta >= 0.0 * exceptions: GSL_EDOM */ int gsl_sf_legendre_H3d_1_e(const double lambda, const double eta, gsl_sf_result * result); double gsl_sf_legendre_H3d_1(const double lambda, const double eta); /* l'th radial eigenfunction of the Laplacian on the * 3-dimensional hyperbolic space. * * Normalization: * Flat-Lim legendre_H3d_l(l,lambda,eta) = j_l(lambda*eta) * * eta >= 0.0, l >= 0 * exceptions: GSL_EDOM */ int gsl_sf_legendre_H3d_e(const int l, const double lambda, const double eta, gsl_sf_result * result); double gsl_sf_legendre_H3d(const int l, const double lambda, const double eta); /* Array of H3d(ell), 0 <= ell <= lmax */ int gsl_sf_legendre_H3d_array(const int lmax, const double lambda, const double eta, double * result_array); __END_DECLS #endif /* __GSL_SF_LEGENDRE_H__ */ gsl-1.16/specfunc/hyperg_2F1.c0000664000252300025230000007020212171574312013033 00000000000000/* specfunc/hyperg_2F1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include "error.h" #define locEPS (1000.0*GSL_DBL_EPSILON) /* Assumes c != negative integer. */ static int hyperg_2F1_series(const double a, const double b, const double c, const double x, gsl_sf_result * result ) { double sum_pos = 1.0; double sum_neg = 0.0; double del_pos = 1.0; double del_neg = 0.0; double del = 1.0; double k = 0.0; int i = 0; if(fabs(c) < GSL_DBL_EPSILON) { result->val = 0.0; /* FIXME: ?? */ result->err = 1.0; GSL_ERROR ("error", GSL_EDOM); } do { if(++i > 30000) { result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val); GSL_ERROR ("error", GSL_EMAXITER); } del *= (a+k)*(b+k) * x / ((c+k) * (k+1.0)); /* Gauss series */ if(del > 0.0) { del_pos = del; sum_pos += del; } else if(del == 0.0) { /* Exact termination (a or b was a negative integer). */ del_pos = 0.0; del_neg = 0.0; break; } else { del_neg = -del; sum_neg -= del; } k += 1.0; } while(fabs((del_pos + del_neg)/(sum_pos-sum_neg)) > GSL_DBL_EPSILON); result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val); return GSL_SUCCESS; } /* a = aR + i aI, b = aR - i aI */ static int hyperg_2F1_conj_series(const double aR, const double aI, const double c, double x, gsl_sf_result * result) { if(c == 0.0) { result->val = 0.0; /* FIXME: should be Inf */ result->err = 0.0; GSL_ERROR ("error", GSL_EDOM); } else { double sum_pos = 1.0; double sum_neg = 0.0; double del_pos = 1.0; double del_neg = 0.0; double del = 1.0; double k = 0.0; do { del *= ((aR+k)*(aR+k) + aI*aI)/((k+1.0)*(c+k)) * x; if(del >= 0.0) { del_pos = del; sum_pos += del; } else { del_neg = -del; sum_neg -= del; } if(k > 30000) { result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val); GSL_ERROR ("error", GSL_EMAXITER); } k += 1.0; } while(fabs((del_pos + del_neg)/(sum_pos - sum_neg)) > GSL_DBL_EPSILON); result->val = sum_pos - sum_neg; result->err = del_pos + del_neg; result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg); result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val); return GSL_SUCCESS; } } /* Luke's rational approximation. The most accesible * discussion is in [Kolbig, CPC 23, 51 (1981)]. * The convergence is supposedly guaranteed for x < 0. * You have to read Luke's books to see this and other * results. Unfortunately, the stability is not so * clear to me, although it seems very efficient when * it works. */ static int hyperg_2F1_luke(const double a, const double b, const double c, const double xin, gsl_sf_result * result) { int stat_iter; const double RECUR_BIG = 1.0e+50; const int nmax = 20000; int n = 3; const double x = -xin; const double x3 = x*x*x; const double t0 = a*b/c; const double t1 = (a+1.0)*(b+1.0)/(2.0*c); const double t2 = (a+2.0)*(b+2.0)/(2.0*(c+1.0)); double F = 1.0; double prec; double Bnm3 = 1.0; /* B0 */ double Bnm2 = 1.0 + t1 * x; /* B1 */ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */ double Anm3 = 1.0; /* A0 */ double Anm2 = Bnm2 - t0 * x; /* A1 */ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */ while(1) { double npam1 = n + a - 1; double npbm1 = n + b - 1; double npcm1 = n + c - 1; double npam2 = n + a - 2; double npbm2 = n + b - 2; double npcm2 = n + c - 2; double tnm1 = 2*n - 1; double tnm3 = 2*n - 3; double tnm5 = 2*n - 5; double n2 = n*n; double F1 = (3.0*n2 + (a+b-6)*n + 2 - a*b - 2*(a+b)) / (2*tnm3*npcm1); double F2 = -(3.0*n2 - (a+b+6)*n + 2 - a*b)*npam1*npbm1/(4*tnm1*tnm3*npcm2*npcm1); double F3 = (npam2*npam1*npbm2*npbm1*(n-a-2)*(n-b-2)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1); double E = -npam1*npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1); double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3; double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3; double r = An/Bn; prec = fabs((F - r)/F); F = r; if(prec < GSL_DBL_EPSILON || n > nmax) break; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; Anm3 /= RECUR_BIG; Bnm3 /= RECUR_BIG; } else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) { An *= RECUR_BIG; Bn *= RECUR_BIG; Anm1 *= RECUR_BIG; Bnm1 *= RECUR_BIG; Anm2 *= RECUR_BIG; Bnm2 *= RECUR_BIG; Anm3 *= RECUR_BIG; Bnm3 *= RECUR_BIG; } n++; Bnm3 = Bnm2; Bnm2 = Bnm1; Bnm1 = Bn; Anm3 = Anm2; Anm2 = Anm1; Anm1 = An; } result->val = F; result->err = 2.0 * fabs(prec * F); result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F); /* FIXME: just a hack: there's a lot of shit going on here */ result->err *= 8.0 * (fabs(a) + fabs(b) + 1.0); stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS ); return stat_iter; } /* Luke's rational approximation for the * case a = aR + i aI, b = aR - i aI. */ static int hyperg_2F1_conj_luke(const double aR, const double aI, const double c, const double xin, gsl_sf_result * result) { int stat_iter; const double RECUR_BIG = 1.0e+50; const int nmax = 10000; int n = 3; const double x = -xin; const double x3 = x*x*x; const double atimesb = aR*aR + aI*aI; const double apb = 2.0*aR; const double t0 = atimesb/c; const double t1 = (atimesb + apb + 1.0)/(2.0*c); const double t2 = (atimesb + 2.0*apb + 4.0)/(2.0*(c+1.0)); double F = 1.0; double prec; double Bnm3 = 1.0; /* B0 */ double Bnm2 = 1.0 + t1 * x; /* B1 */ double Bnm1 = 1.0 + t2 * x * (1.0 + t1/3.0 * x); /* B2 */ double Anm3 = 1.0; /* A0 */ double Anm2 = Bnm2 - t0 * x; /* A1 */ double Anm1 = Bnm1 - t0*(1.0 + t2*x)*x + t0 * t1 * (c/(c+1.0)) * x*x; /* A2 */ while(1) { double nm1 = n - 1; double nm2 = n - 2; double npam1_npbm1 = atimesb + nm1*apb + nm1*nm1; double npam2_npbm2 = atimesb + nm2*apb + nm2*nm2; double npcm1 = nm1 + c; double npcm2 = nm2 + c; double tnm1 = 2*n - 1; double tnm3 = 2*n - 3; double tnm5 = 2*n - 5; double n2 = n*n; double F1 = (3.0*n2 + (apb-6)*n + 2 - atimesb - 2*apb) / (2*tnm3*npcm1); double F2 = -(3.0*n2 - (apb+6)*n + 2 - atimesb)*npam1_npbm1/(4*tnm1*tnm3*npcm2*npcm1); double F3 = (npam2_npbm2*npam1_npbm1*(nm2*nm2 - nm2*apb + atimesb)) / (8*tnm3*tnm3*tnm5*(n+c-3)*npcm2*npcm1); double E = -npam1_npbm1*(n-c-1) / (2*tnm3*npcm2*npcm1); double An = (1.0+F1*x)*Anm1 + (E + F2*x)*x*Anm2 + F3*x3*Anm3; double Bn = (1.0+F1*x)*Bnm1 + (E + F2*x)*x*Bnm2 + F3*x3*Bnm3; double r = An/Bn; prec = fabs(F - r)/fabs(F); F = r; if(prec < GSL_DBL_EPSILON || n > nmax) break; if(fabs(An) > RECUR_BIG || fabs(Bn) > RECUR_BIG) { An /= RECUR_BIG; Bn /= RECUR_BIG; Anm1 /= RECUR_BIG; Bnm1 /= RECUR_BIG; Anm2 /= RECUR_BIG; Bnm2 /= RECUR_BIG; Anm3 /= RECUR_BIG; Bnm3 /= RECUR_BIG; } else if(fabs(An) < 1.0/RECUR_BIG || fabs(Bn) < 1.0/RECUR_BIG) { An *= RECUR_BIG; Bn *= RECUR_BIG; Anm1 *= RECUR_BIG; Bnm1 *= RECUR_BIG; Anm2 *= RECUR_BIG; Bnm2 *= RECUR_BIG; Anm3 *= RECUR_BIG; Bnm3 *= RECUR_BIG; } n++; Bnm3 = Bnm2; Bnm2 = Bnm1; Bnm1 = Bn; Anm3 = Anm2; Anm2 = Anm1; Anm1 = An; } result->val = F; result->err = 2.0 * fabs(prec * F); result->err += 2.0 * GSL_DBL_EPSILON * (n+1.0) * fabs(F); /* FIXME: see above */ result->err *= 8.0 * (fabs(aR) + fabs(aI) + 1.0); stat_iter = (n >= nmax ? GSL_EMAXITER : GSL_SUCCESS ); return stat_iter; } /* Do the reflection described in [Moshier, p. 334]. * Assumes a,b,c != neg integer. */ static int hyperg_2F1_reflect(const double a, const double b, const double c, const double x, gsl_sf_result * result) { const double d = c - a - b; const int intd = floor(d+0.5); const int d_integer = ( fabs(d - intd) < locEPS ); if(d_integer) { const double ln_omx = log(1.0 - x); const double ad = fabs(d); int stat_F2 = GSL_SUCCESS; double sgn_2; gsl_sf_result F1; gsl_sf_result F2; double d1, d2; gsl_sf_result lng_c; gsl_sf_result lng_ad2; gsl_sf_result lng_bd2; int stat_c; int stat_ad2; int stat_bd2; if(d >= 0.0) { d1 = d; d2 = 0.0; } else { d1 = 0.0; d2 = d; } stat_ad2 = gsl_sf_lngamma_e(a+d2, &lng_ad2); stat_bd2 = gsl_sf_lngamma_e(b+d2, &lng_bd2); stat_c = gsl_sf_lngamma_e(c, &lng_c); /* Evaluate F1. */ if(ad < GSL_DBL_EPSILON) { /* d = 0 */ F1.val = 0.0; F1.err = 0.0; } else { gsl_sf_result lng_ad; gsl_sf_result lng_ad1; gsl_sf_result lng_bd1; int stat_ad = gsl_sf_lngamma_e(ad, &lng_ad); int stat_ad1 = gsl_sf_lngamma_e(a+d1, &lng_ad1); int stat_bd1 = gsl_sf_lngamma_e(b+d1, &lng_bd1); if(stat_ad1 == GSL_SUCCESS && stat_bd1 == GSL_SUCCESS && stat_ad == GSL_SUCCESS) { /* Gamma functions in the denominator are ok. * Proceed with evaluation. */ int i; double sum1 = 1.0; double term = 1.0; double ln_pre1_val = lng_ad.val + lng_c.val + d2*ln_omx - lng_ad1.val - lng_bd1.val; double ln_pre1_err = lng_ad.err + lng_c.err + lng_ad1.err + lng_bd1.err + GSL_DBL_EPSILON * fabs(ln_pre1_val); int stat_e; /* Do F1 sum. */ for(i=1; ival = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EOVRFLW); } } stat_F2 = GSL_ERROR_SELECT_2(stat_F2, stat_dall); } else { /* Gamma functions in the denominator not ok. * So the F2 term is zero. */ F2.val = 0.0; F2.err = 0.0; } /* end F2 evaluation */ sgn_2 = ( GSL_IS_ODD(intd) ? -1.0 : 1.0 ); result->val = F1.val + sgn_2 * F2.val; result->err = F1.err + F2. err; result->err += 2.0 * GSL_DBL_EPSILON * (fabs(F1.val) + fabs(F2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return stat_F2; } else { /* d not an integer */ gsl_sf_result pre1, pre2; double sgn1, sgn2; gsl_sf_result F1, F2; int status_F1, status_F2; /* These gamma functions appear in the denominator, so we * catch their harmless domain errors and set the terms to zero. */ gsl_sf_result ln_g1ca, ln_g1cb, ln_g2a, ln_g2b; double sgn_g1ca, sgn_g1cb, sgn_g2a, sgn_g2b; int stat_1ca = gsl_sf_lngamma_sgn_e(c-a, &ln_g1ca, &sgn_g1ca); int stat_1cb = gsl_sf_lngamma_sgn_e(c-b, &ln_g1cb, &sgn_g1cb); int stat_2a = gsl_sf_lngamma_sgn_e(a, &ln_g2a, &sgn_g2a); int stat_2b = gsl_sf_lngamma_sgn_e(b, &ln_g2b, &sgn_g2b); int ok1 = (stat_1ca == GSL_SUCCESS && stat_1cb == GSL_SUCCESS); int ok2 = (stat_2a == GSL_SUCCESS && stat_2b == GSL_SUCCESS); gsl_sf_result ln_gc, ln_gd, ln_gmd; double sgn_gc, sgn_gd, sgn_gmd; gsl_sf_lngamma_sgn_e( c, &ln_gc, &sgn_gc); gsl_sf_lngamma_sgn_e( d, &ln_gd, &sgn_gd); gsl_sf_lngamma_sgn_e(-d, &ln_gmd, &sgn_gmd); sgn1 = sgn_gc * sgn_gd * sgn_g1ca * sgn_g1cb; sgn2 = sgn_gc * sgn_gmd * sgn_g2a * sgn_g2b; if(ok1 && ok2) { double ln_pre1_val = ln_gc.val + ln_gd.val - ln_g1ca.val - ln_g1cb.val; double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val - ln_g2b.val + d*log(1.0-x); double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err; double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err + ln_g2b.err; if(ln_pre1_val < GSL_LOG_DBL_MAX && ln_pre2_val < GSL_LOG_DBL_MAX) { gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1); gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2); pre1.val *= sgn1; pre2.val *= sgn2; } else { OVERFLOW_ERROR(result); } } else if(ok1 && !ok2) { double ln_pre1_val = ln_gc.val + ln_gd.val - ln_g1ca.val - ln_g1cb.val; double ln_pre1_err = ln_gc.err + ln_gd.err + ln_g1ca.err + ln_g1cb.err; if(ln_pre1_val < GSL_LOG_DBL_MAX) { gsl_sf_exp_err_e(ln_pre1_val, ln_pre1_err, &pre1); pre1.val *= sgn1; pre2.val = 0.0; pre2.err = 0.0; } else { OVERFLOW_ERROR(result); } } else if(!ok1 && ok2) { double ln_pre2_val = ln_gc.val + ln_gmd.val - ln_g2a.val - ln_g2b.val + d*log(1.0-x); double ln_pre2_err = ln_gc.err + ln_gmd.err + ln_g2a.err + ln_g2b.err; if(ln_pre2_val < GSL_LOG_DBL_MAX) { pre1.val = 0.0; pre1.err = 0.0; gsl_sf_exp_err_e(ln_pre2_val, ln_pre2_err, &pre2); pre2.val *= sgn2; } else { OVERFLOW_ERROR(result); } } else { pre1.val = 0.0; pre2.val = 0.0; UNDERFLOW_ERROR(result); } status_F1 = hyperg_2F1_series( a, b, 1.0-d, 1.0-x, &F1); status_F2 = hyperg_2F1_series(c-a, c-b, 1.0+d, 1.0-x, &F2); result->val = pre1.val*F1.val + pre2.val*F2.val; result->err = fabs(pre1.val*F1.err) + fabs(pre2.val*F2.err); result->err += fabs(pre1.err*F1.val) + fabs(pre2.err*F2.val); result->err += 2.0 * GSL_DBL_EPSILON * (fabs(pre1.val*F1.val) + fabs(pre2.val*F2.val)); result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } } static int pow_omx(const double x, const double p, gsl_sf_result * result) { double ln_omx; double ln_result; if(fabs(x) < GSL_ROOT5_DBL_EPSILON) { ln_omx = -x*(1.0 + x*(1.0/2.0 + x*(1.0/3.0 + x/4.0 + x*x/5.0))); } else { ln_omx = log(1.0-x); } ln_result = p * ln_omx; return gsl_sf_exp_err_e(ln_result, GSL_DBL_EPSILON * fabs(ln_result), result); } /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result) { const double d = c - a - b; const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintc = floor(c + 0.5); const int a_neg_integer = ( a < 0.0 && fabs(a - rinta) < locEPS ); const int b_neg_integer = ( b < 0.0 && fabs(b - rintb) < locEPS ); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); result->val = 0.0; result->err = 0.0; /* Handle x == 1.0 RJM */ if (fabs (x - 1.0) < locEPS && (c - a - b) > 0 && c != 0 && !c_neg_integer) { gsl_sf_result lngamc, lngamcab, lngamca, lngamcb; double lngamc_sgn, lngamca_sgn, lngamcb_sgn; int status; int stat1 = gsl_sf_lngamma_sgn_e (c, &lngamc, &lngamc_sgn); int stat2 = gsl_sf_lngamma_e (c - a - b, &lngamcab); int stat3 = gsl_sf_lngamma_sgn_e (c - a, &lngamca, &lngamca_sgn); int stat4 = gsl_sf_lngamma_sgn_e (c - b, &lngamcb, &lngamcb_sgn); if (stat1 != GSL_SUCCESS || stat2 != GSL_SUCCESS || stat3 != GSL_SUCCESS || stat4 != GSL_SUCCESS) { DOMAIN_ERROR (result); } status = gsl_sf_exp_err_e (lngamc.val + lngamcab.val - lngamca.val - lngamcb.val, lngamc.err + lngamcab.err + lngamca.err + lngamcb.err, result); result->val *= lngamc_sgn / (lngamca_sgn * lngamcb_sgn); return status; } if(x < -1.0 || 1.0 <= x) { DOMAIN_ERROR(result); } if(c_neg_integer) { /* If c is a negative integer, then either a or b must be a negative integer of smaller magnitude than c to ensure cancellation of the series. */ if(! (a_neg_integer && a > c + 0.1) && ! (b_neg_integer && b > c + 0.1)) { DOMAIN_ERROR(result); } } if(fabs(c-b) < locEPS || fabs(c-a) < locEPS) { return pow_omx(x, d, result); /* (1-x)^(c-a-b) */ } if(a >= 0.0 && b >= 0.0 && c >=0.0 && x >= 0.0 && x < 0.995) { /* Series has all positive definite * terms and x is not close to 1. */ return hyperg_2F1_series(a, b, c, x, result); } if(fabs(a) < 10.0 && fabs(b) < 10.0) { /* a and b are not too large, so we attempt * variations on the series summation. */ if(a_neg_integer) { return hyperg_2F1_series(rinta, b, c, x, result); } if(b_neg_integer) { return hyperg_2F1_series(a, rintb, c, x, result); } if(x < -0.25) { return hyperg_2F1_luke(a, b, c, x, result); } else if(x < 0.5) { return hyperg_2F1_series(a, b, c, x, result); } else { if(fabs(c) > 10.0) { return hyperg_2F1_series(a, b, c, x, result); } else { return hyperg_2F1_reflect(a, b, c, x, result); } } } else { /* Either a or b or both large. * Introduce some new variables ap,bp so that bp is * the larger in magnitude. */ double ap, bp; if(fabs(a) > fabs(b)) { bp = a; ap = b; } else { bp = b; ap = a; } if(x < 0.0) { /* What the hell, maybe Luke will converge. */ return hyperg_2F1_luke(a, b, c, x, result); } if(GSL_MAX_DBL(fabs(ap),1.0)*fabs(bp)*fabs(x) < 2.0*fabs(c)) { /* If c is large enough or x is small enough, * we can attempt the series anyway. */ return hyperg_2F1_series(a, b, c, x, result); } if(fabs(bp*bp*x*x) < 0.001*fabs(bp) && fabs(ap) < 10.0) { /* The famous but nearly worthless "large b" asymptotic. */ int stat = gsl_sf_hyperg_1F1_e(ap, c, bp*x, result); result->err = 0.001 * fabs(result->val); return stat; } /* We give up. */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EUNIMPL); } } int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result) { const double ax = fabs(x); const double rintc = floor(c + 0.5); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); result->val = 0.0; result->err = 0.0; if(ax >= 1.0 || c_neg_integer || c == 0.0) { DOMAIN_ERROR(result); } if( (ax < 0.25 && fabs(aR) < 20.0 && fabs(aI) < 20.0) || (c > 0.0 && x > 0.0) ) { return hyperg_2F1_conj_series(aR, aI, c, x, result); } else if(fabs(aR) < 10.0 && fabs(aI) < 10.0) { if(x < -0.25) { return hyperg_2F1_conj_luke(aR, aI, c, x, result); } else { return hyperg_2F1_conj_series(aR, aI, c, x, result); } } else { if(x < 0.0) { /* What the hell, maybe Luke will converge. */ return hyperg_2F1_conj_luke(aR, aI, c, x, result); } /* Give up. */ result->val = 0.0; result->err = 0.0; GSL_ERROR ("error", GSL_EUNIMPL); } } int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result ) { const double rinta = floor(a + 0.5); const double rintb = floor(b + 0.5); const double rintc = floor(c + 0.5); const int a_neg_integer = ( a < 0.0 && fabs(a - rinta) < locEPS ); const int b_neg_integer = ( b < 0.0 && fabs(b - rintb) < locEPS ); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); if(c_neg_integer) { if((a_neg_integer && a > c+0.1) || (b_neg_integer && b > c+0.1)) { /* 2F1 terminates early */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* 2F1 does not terminate early enough, so something survives */ /* [Abramowitz+Stegun, 15.1.2] */ gsl_sf_result g1, g2, g3, g4, g5; double s1, s2, s3, s4, s5; int stat = 0; stat += gsl_sf_lngamma_sgn_e(a-c+1, &g1, &s1); stat += gsl_sf_lngamma_sgn_e(b-c+1, &g2, &s2); stat += gsl_sf_lngamma_sgn_e(a, &g3, &s3); stat += gsl_sf_lngamma_sgn_e(b, &g4, &s4); stat += gsl_sf_lngamma_sgn_e(-c+2, &g5, &s5); if(stat != 0) { DOMAIN_ERROR(result); } else { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F1_e(a-c+1, b-c+1, -c+2, x, &F); double ln_pre_val = g1.val + g2.val - g3.val - g4.val - g5.val; double ln_pre_err = g1.err + g2.err + g3.err + g4.err + g5.err; double sg = s1 * s2 * s3 * s4 * s5; int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, sg * F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } } } else { /* generic c */ gsl_sf_result F; gsl_sf_result lng; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn); int stat_F = gsl_sf_hyperg_2F1_e(a, b, c, x, &F); int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err, sgn*F.val, F.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g); } } int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result ) { const double rintc = floor(c + 0.5); const double rinta = floor(aR + 0.5); const int a_neg_integer = ( aR < 0.0 && fabs(aR-rinta) < locEPS && aI == 0.0); const int c_neg_integer = ( c < 0.0 && fabs(c - rintc) < locEPS ); if(c_neg_integer) { if(a_neg_integer && aR > c+0.1) { /* 2F1 terminates early */ result->val = 0.0; result->err = 0.0; return GSL_SUCCESS; } else { /* 2F1 does not terminate early enough, so something survives */ /* [Abramowitz+Stegun, 15.1.2] */ gsl_sf_result g1, g2; gsl_sf_result g3; gsl_sf_result a1, a2; int stat = 0; stat += gsl_sf_lngamma_complex_e(aR-c+1, aI, &g1, &a1); stat += gsl_sf_lngamma_complex_e(aR, aI, &g2, &a2); stat += gsl_sf_lngamma_e(-c+2.0, &g3); if(stat != 0) { DOMAIN_ERROR(result); } else { gsl_sf_result F; int stat_F = gsl_sf_hyperg_2F1_conj_e(aR-c+1, aI, -c+2, x, &F); double ln_pre_val = 2.0*(g1.val - g2.val) - g3.val; double ln_pre_err = 2.0 * (g1.err + g2.err) + g3.err; int stat_e = gsl_sf_exp_mult_err_e(ln_pre_val, ln_pre_err, F.val, F.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_F); } } } else { /* generic c */ gsl_sf_result F; gsl_sf_result lng; double sgn; int stat_g = gsl_sf_lngamma_sgn_e(c, &lng, &sgn); int stat_F = gsl_sf_hyperg_2F1_conj_e(aR, aI, c, x, &F); int stat_e = gsl_sf_exp_mult_err_e(-lng.val, lng.err, sgn*F.val, F.err, result); return GSL_ERROR_SELECT_3(stat_e, stat_F, stat_g); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_hyperg_2F1(double a, double b, double c, double x) { EVAL_RESULT(gsl_sf_hyperg_2F1_e(a, b, c, x, &result)); } double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x) { EVAL_RESULT(gsl_sf_hyperg_2F1_conj_e(aR, aI, c, x, &result)); } double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x) { EVAL_RESULT(gsl_sf_hyperg_2F1_renorm_e(a, b, c, x, &result)); } double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x) { EVAL_RESULT(gsl_sf_hyperg_2F1_conj_renorm_e(aR, aI, c, x, &result)); } gsl-1.16/specfunc/bessel_Y0.c0000664000252300025230000000704212171574312012754 00000000000000/* specfunc/bessel_Y0.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "error.h" #include "bessel.h" #include "bessel_amp_phase.h" #include "cheb_eval.c" /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/ /* based on SLATEC besy0, 1980 version, w. fullerton */ /* chebyshev expansions series for by0 on the interval 0. to 1.60000d+01 with weighted error 1.20e-17 log weighted error 16.92 significant figures required 16.15 decimal places required 17.48 */ static double by0_data[13] = { -0.011277839392865573, -0.128345237560420350, -0.104378847997942490, 0.023662749183969695, -0.002090391647700486, 0.000103975453939057, -0.000003369747162423, 0.000000077293842676, -0.000000001324976772, 0.000000000017648232, -0.000000000000188105, 0.000000000000001641, -0.000000000000000011 }; static cheb_series by0_cs = { by0_data, 12, -1, 1, 8 }; /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Y0_e(const double x, gsl_sf_result * result) { const double two_over_pi = 2.0/M_PI; const double xmax = 1.0/GSL_DBL_EPSILON; /* CHECK_POINTER(result) */ if (x <= 0.0) { DOMAIN_ERROR(result); } else if(x < 4.0) { gsl_sf_result J0; gsl_sf_result c; int stat_J0 = gsl_sf_bessel_J0_e(x, &J0); cheb_eval_e(&by0_cs, 0.125*x*x-1.0, &c); result->val = two_over_pi*(-M_LN2 + log(x))*J0.val + 0.375 + c.val; result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val) + c.err; return stat_J0; } else if(x < xmax) { /* Leading behaviour of phase is x, which is exact, * so the error is bounded. */ const double z = 32.0/(x*x) - 1.0; gsl_sf_result c1; gsl_sf_result c2; gsl_sf_result sp; const int stat_c1 = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bm0_cs, z, &c1); const int stat_c2 = cheb_eval_e(&_gsl_sf_bessel_amp_phase_bth0_cs, z, &c2); const int stat_sp = gsl_sf_bessel_sin_pi4_e(x, c2.val/x, &sp); const double sqrtx = sqrt(x); const double ampl = (0.75 + c1.val) / sqrtx; result->val = ampl * sp.val; result->err = fabs(sp.val) * c1.err/sqrtx + fabs(ampl) * sp.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_ERROR_SELECT_3(stat_sp, stat_c1, stat_c2); } else { UNDERFLOW_ERROR(result); } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Y0(const double x) { EVAL_RESULT(gsl_sf_bessel_Y0_e(x, &result)); } gsl-1.16/specfunc/gsl_sf.h0000664000252300025230000000202012171574312012400 00000000000000/* Author: G. Jungman */ #ifndef __GSL_SF_H__ #define __GSL_SF_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_SF_H__ */ gsl-1.16/specfunc/test_airy.c0000664000252300025230000002220412171574312013127 00000000000000/* specfunc/test_airy.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include "test_sf.h" int test_airy(void) { int s = 0; int m = GSL_MODE_DEFAULT; gsl_sf_result r; /** functions */ TEST_SF(s, gsl_sf_airy_Ai_e, (-500.0, m, &r), 0.0725901201040411396, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (-5.0, m, &r), 0.3507610090241142, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (-0.3000000000000094, m, &r), 0.4309030952855831, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (0.6999999999999907, m, &r), 0.1891624003981519, TEST_TOL0, GSL_SUCCESS); /* This original value seemed to be slightly inaccurate in the last place. I recomputed it with pari to get the new value which end in 885 instead of 882 */ /* TEST_SF(s, gsl_sf_airy_Ai_e, (1.649999999999991, m, &r), 0.05831058618720882, TEST_TOL0, GSL_SUCCESS); */ TEST_SF(s, gsl_sf_airy_Ai_e, (1.649999999999991, m, &r), 0.0583105861872088521, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (2.54999999999999, m, &r), 0.01446149513295428, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (3.499999999999987, m, &r), 0.002584098786989702, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_e, (5.39999999999998, m, &r), 4.272986169411866e-05, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (-5.0, m, &r), 0.3507610090241142, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (0.6999999999999907, m, &r), 0.2795125667681217, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (1.649999999999991, m, &r), 0.2395493001442741, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (2.54999999999999, m, &r), 0.2183658595899388, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (3.499999999999987, m, &r), 0.2032920808163519, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_scaled_e, (5.39999999999998, m, &r), 0.1836050093282229, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (-500.0, m, &r), -0.094688570132991028, TEST_TOL4, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (-5.0, m, &r), -0.1383691349016005, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (0.6999999999999907, m, &r), 0.9733286558781599, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (1.649999999999991, m, &r), 2.196407956850028, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (2.54999999999999, m, &r), 6.973628612493443, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (3.499999999999987, m, &r), 33.05550675461069, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_e, (5.39999999999998, m, &r), 1604.476078241272, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (-5.0, m, &r), -0.1383691349016005, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (0.6999999999999907, m, &r), 0.6587080754582302, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (1.649999999999991, m, &r), 0.5346449995597539, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (2.54999999999999, m, &r), 0.461835455542297, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (3.499999999999987, m, &r), 0.4201771882353061, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_scaled_e, (5.39999999999998, m, &r), 0.3734050675720473, TEST_TOL0, GSL_SUCCESS); /** derivatives */ TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (-5.0, m, &r), 0.3271928185544435, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (-0.5500000000000094, m, &r), -0.1914604987143629, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (0.4999999999999906, m, &r), -0.2249105326646850, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (1.899999999999992, m, &r), -0.06043678178575718, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (3.249999999999988, m, &r), -0.007792687926790889, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_e, (5.199999999999981, m, &r), -0.0001589434526459543, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (-5.0, m, &r), 0.3271928185544435, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (0.5499999999999906, m, &r), -0.2874057279170166, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (1.499999999999991, m, &r), -0.3314199796863637, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (2.49999999999999, m, &r), -0.3661089384751620, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (3.649999999999986, m, &r), -0.3974033831453963, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Ai_deriv_scaled_e, (6.299999999999977, m, &r), -0.4508799189585947, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (-5.0, m, &r), 0.778411773001899, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (-0.5500000000000094, m, &r), 0.5155785358765014, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (0.4999999999999906, m, &r), 0.5445725641405883, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (1.899999999999992, m, &r), 3.495165862891568, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (3.249999999999988, m, &r), 36.55485149250338, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_e, (5.199999999999981, m, &r), 2279.748293583233, TEST_TOL1, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (-5.0, m, &r), 0.778411773001899, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (0.5499999999999906, m, &r), 0.4322811281817566, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (1.499999999999991, m, &r), 0.5542307563918037, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (2.49999999999999, m, &r), 0.6755384441644985, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (3.649999999999986, m, &r), 0.7613959373000228, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_Bi_deriv_scaled_e, (6.299999999999977, m, &r), 0.8852064139737571, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_e, (2, &r), -4.087949444130970617, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_e, (50, &r), -38.02100867725525443, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_e, (100, &r), -60.45555727411669871, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_e, (110, &r), -64.43135670991324811, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (2, &r), -3.271093302836352716, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (50, &r), -37.76583438165180116, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (100, &r), -60.25336482580837088, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (110, &r), -64.2355167606561537, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (111, &r), -64.6268994819519378, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_e, (200, &r), -95.88699147356682665, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_deriv_e, (2, &r), -3.248197582179836561, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_deriv_e, (50, &r), -37.76565910053887108, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_deriv_e, (100, &r), -60.25329596442479317, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_deriv_e, (110, &r), -64.23545617243546956, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Ai_deriv_e, (1000, &r), -280.9378080358935071, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (2, &r), -4.073155089071828216, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (50, &r), -38.02083574095788210, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (100, &r), -60.45548887257140819, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (110, &r), -64.43129648944845060, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (111, &r), -64.82208737584206093, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (200, &r), -96.04731050310324450, TEST_TOL0, GSL_SUCCESS); TEST_SF(s, gsl_sf_airy_zero_Bi_deriv_e, (1000, &r), -281.0315164471118527, TEST_TOL0, GSL_SUCCESS); return s; } gsl-1.16/poly/0000775000252300025230000000000012172254161010213 500000000000000gsl-1.16/poly/zsolve_init.c0000664000252300025230000000346712171574312012660 00000000000000/* poly/zsolve_init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include gsl_poly_complex_workspace * gsl_poly_complex_workspace_alloc (size_t n) { size_t nc ; gsl_poly_complex_workspace * w ; if (n == 0) { GSL_ERROR_VAL ("matrix size n must be positive integer", GSL_EDOM, 0); } w = (gsl_poly_complex_workspace *) malloc (sizeof(gsl_poly_complex_workspace)); if (w == 0) { GSL_ERROR_VAL ("failed to allocate space for struct", GSL_ENOMEM, 0); } nc = n - 1; w->nc = nc; w->matrix = (double *) malloc (nc * nc * sizeof(double)); if (w->matrix == 0) { free (w) ; /* error in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for workspace matrix", GSL_ENOMEM, 0); } return w ; } void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * w) { RETURN_IF_NULL (w); free(w->matrix) ; free(w); } gsl-1.16/poly/solve_quadratic.c0000664000252300025230000000405612171574312013473 00000000000000/* poly/solve_quadratic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* solve_quadratic.c - finds the real roots of a x^2 + b x + c = 0 */ #include #include #include int gsl_poly_solve_quadratic (double a, double b, double c, double *x0, double *x1) { if (a == 0) /* Handle linear case */ { if (b == 0) { return 0; } else { *x0 = -c / b; return 1; }; } { double disc = b * b - 4 * a * c; if (disc > 0) { if (b == 0) { double r = sqrt (-c / a); *x0 = -r; *x1 = r; } else { double sgnb = (b > 0 ? 1 : -1); double temp = -0.5 * (b + sgnb * sqrt (disc)); double r1 = temp / a ; double r2 = c / temp ; if (r1 < r2) { *x0 = r1 ; *x1 = r2 ; } else { *x0 = r2 ; *x1 = r1 ; } } return 2; } else if (disc == 0) { *x0 = -0.5 * b / a ; *x1 = -0.5 * b / a ; return 2 ; } else { return 0; } } } gsl-1.16/poly/gsl_poly.h0000664000252300025230000001244012171574312012137 00000000000000/* poly/gsl_poly.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_POLY_H__ #define __GSL_POLY_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Evaluate polynomial * * c[0] + c[1] x + c[2] x^2 + ... + c[len-1] x^(len-1) * * exceptions: none */ /* real polynomial, real x */ INLINE_DECL double gsl_poly_eval(const double c[], const int len, const double x); /* real polynomial, complex x */ INLINE_DECL gsl_complex gsl_poly_complex_eval (const double c [], const int len, const gsl_complex z); /* complex polynomial, complex x */ INLINE_DECL gsl_complex gsl_complex_poly_complex_eval (const gsl_complex c [], const int len, const gsl_complex z); int gsl_poly_eval_derivs(const double c[], const size_t lenc, const double x, double res[], const size_t lenres); #ifdef HAVE_INLINE INLINE_FUN double gsl_poly_eval(const double c[], const int len, const double x) { int i; double ans = c[len-1]; for(i=len-1; i>0; i--) ans = c[i-1] + x * ans; return ans; } INLINE_FUN gsl_complex gsl_poly_complex_eval(const double c[], const int len, const gsl_complex z) { int i; gsl_complex ans; GSL_SET_COMPLEX (&ans, c[len-1], 0.0); for(i=len-1; i>0; i--) { /* The following three lines are equivalent to ans = gsl_complex_add_real (gsl_complex_mul (z, ans), c[i-1]); but faster */ double tmp = c[i-1] + GSL_REAL (z) * GSL_REAL (ans) - GSL_IMAG (z) * GSL_IMAG (ans); GSL_SET_IMAG (&ans, GSL_IMAG (z) * GSL_REAL (ans) + GSL_REAL (z) * GSL_IMAG (ans)); GSL_SET_REAL (&ans, tmp); } return ans; } INLINE_FUN gsl_complex gsl_complex_poly_complex_eval(const gsl_complex c[], const int len, const gsl_complex z) { int i; gsl_complex ans = c[len-1]; for(i=len-1; i>0; i--) { /* The following three lines are equivalent to ans = gsl_complex_add (c[i-1], gsl_complex_mul (x, ans)); but faster */ double tmp = GSL_REAL (c[i-1]) + GSL_REAL (z) * GSL_REAL (ans) - GSL_IMAG (z) * GSL_IMAG (ans); GSL_SET_IMAG (&ans, GSL_IMAG (c[i-1]) + GSL_IMAG (z) * GSL_REAL (ans) + GSL_REAL (z) * GSL_IMAG (ans)); GSL_SET_REAL (&ans, tmp); } return ans; } #endif /* HAVE_INLINE */ /* Work with divided-difference polynomials, Abramowitz & Stegun 25.2.26 */ int gsl_poly_dd_init (double dd[], const double x[], const double y[], size_t size); INLINE_DECL double gsl_poly_dd_eval (const double dd[], const double xa[], const size_t size, const double x); #ifdef HAVE_INLINE INLINE_FUN double gsl_poly_dd_eval(const double dd[], const double xa[], const size_t size, const double x) { size_t i; double y = dd[size - 1]; for (i = size - 1; i--;) y = dd[i] + (x - xa[i]) * y; return y; } #endif /* HAVE_INLINE */ int gsl_poly_dd_taylor (double c[], double xp, const double dd[], const double x[], size_t size, double w[]); int gsl_poly_dd_hermite_init (double dd[], double z[], const double xa[], const double ya[], const double dya[], const size_t size); /* Solve for real or complex roots of the standard quadratic equation, * returning the number of real roots. * * Roots are returned ordered. */ int gsl_poly_solve_quadratic (double a, double b, double c, double * x0, double * x1); int gsl_poly_complex_solve_quadratic (double a, double b, double c, gsl_complex * z0, gsl_complex * z1); /* Solve for real roots of the cubic equation * x^3 + a x^2 + b x + c = 0, returning the * number of real roots. * * Roots are returned ordered. */ int gsl_poly_solve_cubic (double a, double b, double c, double * x0, double * x1, double * x2); int gsl_poly_complex_solve_cubic (double a, double b, double c, gsl_complex * z0, gsl_complex * z1, gsl_complex * z2); /* Solve for the complex roots of a general real polynomial */ typedef struct { size_t nc ; double * matrix ; } gsl_poly_complex_workspace ; gsl_poly_complex_workspace * gsl_poly_complex_workspace_alloc (size_t n); void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * w); int gsl_poly_complex_solve (const double * a, size_t n, gsl_poly_complex_workspace * w, gsl_complex_packed_ptr z); __END_DECLS #endif /* __GSL_POLY_H__ */ gsl-1.16/poly/TODO0000664000252300025230000001333212171574312010627 00000000000000# -*- org -*- #+CATEGORY: poly * Estimate error on general poly roots using Newton method? Allow for multiple roots and higher derivatives * Newton-Maehly (Newton with implicit deflation) * Jenkins-Traub * Brian Smith's adaptation of Laguerre's method * Hirano's method, SIAM J Num Anal 19 (1982) 793-99 by Murota * Carstensen, Petkovic, "On iteration methods without derivatives for the simultaneous determination of polynomial zeros", J. Comput. Appl. Math., 45 (1993) 251-267 * Investigate this, > NA Digest Sunday, July 11, 1999 Volume 99 : Issue 28 > > From: Murakami Hiroshi > Date: Sun, 11 Jul 1999 18:56:54 +0900 (JST) > Subject: Code for Wilf's Complex Bisection Method > > A sample demo source of root finding method for the general complex > coefficient polynomial is placed to URL . > It is about 8KB in size and is a tar and gnu-zipped file. > The algorithm is taken from the following reference: > HERBERT S.WILF,"A Global Bisection Algorithm for Computing the Zeros > of Polynomials in the Complex Plane",ACM.vol.25,No.3,July 1978,pp.415-420. > > The Wilf's method is the complex plane version of the Sturm bi-section > method for the real polynomial. And theoretically very interesting. > For the given complex interval (complex rectilinear region and sides are > parallel to the x-y axis), the procedure gives the count of the complex > roots of the polynomial inside the interval. Thus, successive bi-section > or quad-section of the interval can give the sequence of the shrinking > intervals containing the root inside to attain the required accuracies. > The source code is written mostly Fortran77 language, however some > violations are intensionally left as: 1: The DO-ENDDO loop structure. > 2: The longer than 6 letter names. 3: The use of under-score letter. > 4: The use of include statement. > The code will be placed in the public domain. > * Investigate this From: "Steven G. Johnson" To: help-gsl@gnu.org Subject: [Help-gsl] (in)accuracy of gsl_poly_complex_solve for repeated roots? Date: Sun, 05 Jun 2005 16:25:40 -0400 Precedence: list Envelope-to: bjg@network-theory.co.uk Hi, I noticed that gsl_poly_complex_solve seems to be surprisingly inaccurate. For example, if you ask it for the roots of 1 + 4x + 6x^2 + 4x^3 + x^4, which should have x = -1 as a four-fold root (note that the coefficients and solutions are exactly representable), it gives roots: -0.999903+9.66605e-05i -0.999903-9.66605e-05i -1.0001+9.66834e-05i -1.0001-9.66834e-05i i.e. it is accurate to only 4 significant digits. (On the other hand, when I have 4 distinct real roots it seems to be accurate to machine precision.) If this kind of catastrophic accuracy loss is intrinsic to the algorithm when repeated roots are encountered, please note it in the manual. However, I suspect that there may be algorithms to obtain higher accuracy for multiple roots. I found the below references in a literature search on the topic, which you may want to look into. (The first reference can be found online at http://www.neiu.edu/~zzeng/multroot.htm) Cordially, Steven G. Johnson --------------------------------------------------------------------- Algorithm 835: MULTROOT - a Matlab package for computing polynomial roots and multiplicities Zeng, Z. (Dept. of Math., Northeastern Illinois Univ., Chicago, IL, USA) Source: ACM Transactions on Mathematical Software, v 30, n 2, June 2004, p 218-36 ISSN: 0098-3500 CODEN: ACMSCU Publisher: ACM, USA Abstract: MULTROOT is a collection of Matlab modules for accurate computation of polynomial roots, especially roots with nontrivial multiplicities. As a blackbox-type software, MULTROOT requires the polynomial coefficients as the only input, and outputs the computed roots, multiplicities, backward error, estimated forward error, and the structure-preserving condition number. The most significant features of MULTROOT are the multiplicity identification capability and high accuracy on multiple roots without using multiprecision arithmetic, even if the polynomial coefficients are inexact. A comprehensive test suite of polynomials that are collected from the literature is included for numerical experiments and performance comparison (21 refs.) --------------------------------------------------------------------- Ten methods to bound multiple roots of polynomials Rump, S.M. (Inst. fur Informatik III, Tech. Univ. Hamburg-Harburg, Hamburg, Germany) Source: Journal of Computational and Applied Mathematics, v 156, n 2, 15 July 2003, p 403-32 ISSN: 0377-0427 CODEN: JCAMDI Publisher: Elsevier, Netherlands Abstract: Given a univariate polynomial P with a k-fold multiple root or a k-fold root cluster near some z, we discuss nine different methods to compute a disc near z which either contains exactly or contains at least k roots of P. Many of the presented methods are known and of those some are new. We are especially interested in the behavior of methods when implemented in a rigorous way, that is, when taking into account all possible effects of rounding errors. In other words, every result shall be mathematically correct. We display extensive test sets comparing the methods under different circumstances. Based on the results, we present a tenth, hybrid method combining five of the previous methods which, for give z, (i) detects the number k of roots near z and (ii) computes an including disc with in most cases a radius of the order of the numerical sensitivity of the root cluster. Therefore, the resulting discs are numerically nearly optimal _______________________________________________ Help-gsl mailing list Help-gsl@gnu.org http://lists.gnu.org/mailman/listinfo/help-gsl gsl-1.16/poly/dd.c0000664000252300025230000000636612171574312010703 00000000000000/* interpolation/interp_poly.c * * Copyright (C) 2001 DAN, HO-JIN * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Modified for standalone use in polynomial directory, B.Gough 2001 */ #include #include #include int gsl_poly_dd_init (double dd[], const double xa[], const double ya[], size_t size) { size_t i, j; /* Newton's divided differences */ dd[0] = ya[0]; for (j = size - 1; j >= 1; j--) { dd[j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]); } for (i = 2; i < size; i++) { for (j = size - 1; j >= i; j--) { dd[j] = (dd[j] - dd[j - 1]) / (xa[j] - xa[j - i]); } } return GSL_SUCCESS; } int gsl_poly_dd_taylor (double c[], double xp, const double dd[], const double xa[], size_t size, double w[]) { size_t i, j; for (i = 0; i < size; i++) { c[i] = 0.0; w[i] = 0.0; } w[size - 1] = 1.0; c[0] = dd[0]; for (i = size - 1; i-- > 0;) { w[i] = -w[i + 1] * (xa[size - 2 - i] - xp); for (j = i + 1; j < size - 1; j++) { w[j] = w[j] - w[j + 1] * (xa[size - 2 - i] - xp); } for (j = i; j < size; j++) { c[j - i] += w[j] * dd[size - i - 1]; } } return GSL_SUCCESS; } /* gsl_poly_dd_hermite_init() Compute divided difference representation of data for Hermite polynomial interpolation Inputs: dd - (output) array of size 2*size containing divided differences, dd[k] = f[z_0,z_1,...,z_k] za - (output) array of size 2*size containing z values xa - x data ya - y data dya - dy/dx data size - size of xa,ya,dya arrays Return: success */ int gsl_poly_dd_hermite_init (double dd[], double za[], const double xa[], const double ya[], const double dya[], const size_t size) { const size_t N = 2 * size; size_t i, j; /* Hermite divided differences */ dd[0] = ya[0]; /* compute: dd[j] = f[z_{j-1},z_j] for j \in [1,N-1] */ for (j = 0; j < size; ++j) { za[2*j] = xa[j]; za[2*j + 1] = xa[j]; if (j != 0) { dd[2*j] = (ya[j] - ya[j - 1]) / (xa[j] - xa[j - 1]); dd[2*j - 1] = dya[j - 1]; } } dd[N - 1] = dya[size - 1]; for (i = 2; i < N; i++) { for (j = N - 1; j >= i; j--) { dd[j] = (dd[j] - dd[j - 1]) / (za[j] - za[j - i]); } } return GSL_SUCCESS; } /* gsl_poly_dd_hermite_init() */ gsl-1.16/poly/zsolve.c0000664000252300025230000000412212171574312011622 00000000000000/* poly/zsolve.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* zsolve.c - finds the complex roots of = 0 */ #include #include #include #include #include #include #include /* C-style matrix elements */ #define MAT(m,i,j,n) ((m)[(i)*(n) + (j)]) /* Fortran-style matrix elements */ #define FMAT(m,i,j,n) ((m)[((i)-1)*(n) + ((j)-1)]) #include "companion.c" #include "balance.c" #include "qr.c" int gsl_poly_complex_solve (const double *a, size_t n, gsl_poly_complex_workspace * w, gsl_complex_packed_ptr z) { int status; double *m; if (n == 0) { GSL_ERROR ("number of terms must be a positive integer", GSL_EINVAL); } if (n == 1) { GSL_ERROR ("cannot solve for only one term", GSL_EINVAL); } if (a[n - 1] == 0) { GSL_ERROR ("leading term of polynomial must be non-zero", GSL_EINVAL) ; } if (w->nc != n - 1) { GSL_ERROR ("size of workspace does not match polynomial", GSL_EINVAL); } m = w->matrix; set_companion_matrix (a, n - 1, m); balance_companion_matrix (m, n - 1); status = qr_companion (m, n - 1, z); if (status) { GSL_ERROR("root solving qr method failed to converge", GSL_EFAILED); } return GSL_SUCCESS; } gsl-1.16/poly/test.c0000664000252300025230000005511212171574312011264 00000000000000/* poly/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include static int cmp_cplx(const double *a, const double *b) { double t = (a[0] * a[0] + a[1] * a[1]) - (b[0] * b[0] + b[1] * b[1]); return t < 0.0 ? -1 : t > 0.0 ? 1 : 0; } int main (void) { const double eps = 100.0 * GSL_DBL_EPSILON; gsl_ieee_env_setup (); /* Polynomial evaluation */ { double x, y; double c[3] = { 1.0, 0.5, 0.3 }; x = 0.5; y = gsl_poly_eval (c, 3, x); gsl_test_rel (y, 1 + 0.5 * x + 0.3 * x * x, eps, "gsl_poly_eval({1, 0.5, 0.3}, 0.5)"); } { double x, y; double d[11] = { 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1 }; x = 1.0; y = gsl_poly_eval (d, 11, x); gsl_test_rel (y, 1.0, eps, "gsl_poly_eval({1,-1, 1, -1, 1, -1, 1, -1, 1, -1, 1}, 1.0)"); } { gsl_complex x, y; double c[1] = {0.3}; GSL_SET_REAL (&x, 0.75); GSL_SET_IMAG (&x, 1.2); y = gsl_poly_complex_eval (c, 1, x); gsl_test_rel (GSL_REAL (y), 0.3, eps, "y.real, gsl_poly_complex_eval ({0.3}, 0.75 + 1.2i)"); gsl_test_rel (GSL_IMAG (y), 0.0, eps, "y.imag, gsl_poly_complex_eval ({0.3}, 0.75 + 1.2i)"); } { gsl_complex x, y; double c[4] = {2.1, -1.34, 0.76, 0.45}; GSL_SET_REAL (&x, 0.49); GSL_SET_IMAG (&x, 0.95); y = gsl_poly_complex_eval (c, 4, x); gsl_test_rel (GSL_REAL (y), 0.3959143, eps, "y.real, gsl_poly_complex_eval ({2.1, -1.34, 0.76, 0.45}, 0.49 + 0.95i)"); gsl_test_rel (GSL_IMAG (y), -0.6433305, eps, "y.imag, gsl_poly_complex_eval ({2.1, -1.34, 0.76, 0.45}, 0.49 + 0.95i)"); } { gsl_complex x, y; gsl_complex c[1]; GSL_SET_REAL (&c[0], 0.674); GSL_SET_IMAG (&c[0], -1.423); GSL_SET_REAL (&x, -1.44); GSL_SET_IMAG (&x, 9.55); y = gsl_complex_poly_complex_eval (c, 1, x); gsl_test_rel (GSL_REAL (y), 0.674, eps, "y.real, gsl_complex_poly_complex_eval ({0.674 - 1.423i}, -1.44 + 9.55i)"); gsl_test_rel (GSL_IMAG (y), -1.423, eps, "y.imag, gsl_complex_poly_complex_eval ({0.674 - 1.423i}, -1.44 + 9.55i)"); } { gsl_complex x, y; gsl_complex c[4]; GSL_SET_REAL (&c[0], -2.31); GSL_SET_IMAG (&c[0], 0.44); GSL_SET_REAL (&c[1], 4.21); GSL_SET_IMAG (&c[1], -3.19); GSL_SET_REAL (&c[2], 0.93); GSL_SET_IMAG (&c[2], 1.04); GSL_SET_REAL (&c[3], -0.42); GSL_SET_IMAG (&c[3], 0.68); GSL_SET_REAL (&x, 0.49); GSL_SET_IMAG (&x, 0.95); y = gsl_complex_poly_complex_eval (c, 4, x); gsl_test_rel (GSL_REAL (y), 1.82462012, eps, "y.real, gsl_complex_poly_complex_eval ({-2.31 + 0.44i, 4.21 - 3.19i, 0.93 + 1.04i, -0.42 + 0.68i}, 0.49 + 0.95i)"); gsl_test_rel (GSL_IMAG (y), 2.30389412, eps, "y.imag, gsl_complex_poly_complex_eval ({-2.31 + 0.44i, 4.21 - 3.19i, 0.93 + 1.04i, -0.42 + 0.68i}, 0.49 + 0.95i)"); } /* Quadratic */ { double x0, x1; int n = gsl_poly_solve_quadratic (4.0, -20.0, 26.0, &x0, &x1); gsl_test (n != 0, "gsl_poly_solve_quadratic, no roots, (2x - 5)^2 = -1"); } { double x0, x1; int n = gsl_poly_solve_quadratic (4.0, -20.0, 25.0, &x0, &x1); gsl_test (n != 2, "gsl_poly_solve_quadratic, one root, (2x - 5)^2 = 0"); gsl_test_rel (x0, 2.5, 1e-9, "x0, (2x - 5)^2 = 0"); gsl_test_rel (x1, 2.5, 1e-9, "x1, (2x - 5)^2 = 0"); gsl_test (x0 != x1, "x0 == x1, (2x - 5)^2 = 0"); } { double x0, x1; int n = gsl_poly_solve_quadratic (4.0, -20.0, 21.0, &x0, &x1); gsl_test (n != 2, "gsl_poly_solve_quadratic, two roots, (2x - 5)^2 = 4"); gsl_test_rel (x0, 1.5, 1e-9, "x0, (2x - 5)^2 = 4"); gsl_test_rel (x1, 3.5, 1e-9, "x1, (2x - 5)^2 = 4"); } { double x0, x1; int n = gsl_poly_solve_quadratic (4.0, 7.0, 0.0, &x0, &x1); gsl_test (n != 2, "gsl_poly_solve_quadratic, two roots, x(4x + 7) = 0"); gsl_test_rel (x0, -1.75, 1e-9, "x0, x(4x + 7) = 0"); gsl_test_rel (x1, 0.0, 1e-9, "x1, x(4x + 7) = 0"); } { double x0, x1; int n = gsl_poly_solve_quadratic (5.0, 0.0, -20.0, &x0, &x1); gsl_test (n != 2, "gsl_poly_solve_quadratic, two roots b = 0, 5 x^2 = 20"); gsl_test_rel (x0, -2.0, 1e-9, "x0, 5 x^2 = 20"); gsl_test_rel (x1, 2.0, 1e-9, "x1, 5 x^2 = 20"); } { double x0, x1; int n = gsl_poly_solve_quadratic (0.0, 3.0, -21.0, &x0, &x1); gsl_test (n != 1, "gsl_poly_solve_quadratic, one root (linear) 3 x - 21 = 0"); gsl_test_rel (x0, 7.0, 1e-9, "x0, 3x - 21 = 0"); } { double x0, x1; int n = gsl_poly_solve_quadratic (0.0, 0.0, 1.0, &x0, &x1); gsl_test (n != 0, "gsl_poly_solve_quadratic, no roots 1 = 0"); } /* Cubic */ { double x0, x1, x2; int n = gsl_poly_solve_cubic (0.0, 0.0, -27.0, &x0, &x1, &x2); gsl_test (n != 1, "gsl_poly_solve_cubic, one root, x^3 = 27"); gsl_test_rel (x0, 3.0, 1e-9, "x0, x^3 = 27"); } { double x0, x1, x2; int n = gsl_poly_solve_cubic (-51.0, 867.0, -4913.0, &x0, &x1, &x2); gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x-17)^3=0"); gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)^3=0"); gsl_test_rel (x1, 17.0, 1e-9, "x1, (x-17)^3=0"); gsl_test_rel (x2, 17.0, 1e-9, "x2, (x-17)^3=0"); } { double x0, x1, x2; int n = gsl_poly_solve_cubic (-57.0, 1071.0, -6647.0, &x0, &x1, &x2); gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x-17)(x-17)(x-23)=0"); gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)(x-17)(x-23)=0"); gsl_test_rel (x1, 17.0, 1e-9, "x1, (x-17)(x-17)(x-23)=0"); gsl_test_rel (x2, 23.0, 1e-9, "x2, (x-17)(x-17)(x-23)=0"); } { double x0, x1, x2; int n = gsl_poly_solve_cubic (-11.0, -493.0, +6647.0, &x0, &x1, &x2); gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x+23)(x-17)(x-17)=0"); gsl_test_rel (x0, -23.0, 1e-9, "x0, (x+23)(x-17)(x-17)=0"); gsl_test_rel (x1, 17.0, 1e-9, "x1, (x+23)(x-17)(x-17)=0"); gsl_test_rel (x2, 17.0, 1e-9, "x2, (x+23)(x-17)(x-17)=0"); } { double x0, x1, x2; int n = gsl_poly_solve_cubic (-143.0, 5087.0, -50065.0, &x0, &x1, &x2); gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x-17)(x-31)(x-95)=0"); gsl_test_rel (x0, 17.0, 1e-9, "x0, (x-17)(x-31)(x-95)=0"); gsl_test_rel (x1, 31.0, 1e-9, "x1, (x-17)(x-31)(x-95)=0"); gsl_test_rel (x2, 95.0, 1e-9, "x2, (x-17)(x-31)(x-95)=0"); } { double x0, x1, x2; int n = gsl_poly_solve_cubic (-109.0, 803.0, 50065.0, &x0, &x1, &x2); gsl_test (n != 3, "gsl_poly_solve_cubic, three roots, (x+17)(x-31)(x-95)=0"); gsl_test_rel (x0, -17.0, 1e-9, "x0, (x+17)(x-31)(x-95)=0"); gsl_test_rel (x1, 31.0, 1e-9, "x1, (x+17)(x-31)(x-95)=0"); gsl_test_rel (x2, 95.0, 1e-9, "x2, (x+17)(x-31)(x-95)=0"); } /* Quadratic with complex roots */ { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 26.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, 2 roots (2x - 5)^2 = -1"); gsl_test_rel (GSL_REAL (z0), 2.5, 1e-9, "z0.real, (2x - 5)^2 = -1"); gsl_test_rel (GSL_IMAG (z0), -0.5, 1e-9, "z0.imag, (2x - 5)^2 = -1"); gsl_test_rel (GSL_REAL (z1), 2.5, 1e-9, "z1.real, (2x - 5)^2 = -1"); gsl_test_rel (GSL_IMAG (z1), 0.5, 1e-9, "z1.imag, (2x - 5)^2 = -1"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 25.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, one root, (2x - 5)^2 = 0"); gsl_test_rel (GSL_REAL (z0), 2.5, 1e-9, "z0.real, (2x - 5)^2 = 0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag (2x - 5)^2 = 0"); gsl_test_rel (GSL_REAL (z1), 2.5, 1e-9, "z1.real, (2x - 5)^2 = 0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag (2x - 5)^2 = 0"); gsl_test (GSL_REAL (z0) != GSL_REAL (z1), "z0.real == z1.real, (2x - 5)^2 = 0"); gsl_test (GSL_IMAG (z0) != GSL_IMAG (z1), "z0.imag == z1.imag, (2x - 5)^2 = 0"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (4.0, -20.0, 21.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, two roots, (2x - 5)^2 = 4"); gsl_test_rel (GSL_REAL (z0), 1.5, 1e-9, "z0.real, (2x - 5)^2 = 4"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (2x - 5)^2 = 4"); gsl_test_rel (GSL_REAL (z1), 3.5, 1e-9, "z1.real, (2x - 5)^2 = 4"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (2x - 5)^2 = 4"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (4.0, 7.0, 0.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, two roots, x(4x + 7) = 0"); gsl_test_rel (GSL_REAL (z0), -1.75, 1e-9, "z0.real, x(4x + 7) = 0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, x(4x + 7) = 0"); gsl_test_rel (GSL_REAL (z1), 0.0, 1e-9, "z1.real, x(4x + 7) = 0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, x(4x + 7) = 0"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (5.0, 0.0, -20.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, two roots b = 0, 5 x^2 = 20"); gsl_test_rel (GSL_REAL (z0), -2.0, 1e-9, "z0.real, 5 x^2 = 20"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, 5 x^2 = 20"); gsl_test_rel (GSL_REAL (z1), 2.0, 1e-9, "z1.real, 5 x^2 = 20"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, 5 x^2 = 20"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (5.0, 0.0, 20.0, &z0, &z1); gsl_test (n != 2, "gsl_poly_complex_solve_quadratic, two roots b = 0, 5 x^2 = -20"); gsl_test_rel (GSL_REAL (z0), 0.0, 1e-9, "z0.real, 5 x^2 = -20"); gsl_test_rel (GSL_IMAG (z0), -2.0, 1e-9, "z0.imag, 5 x^2 = -20"); gsl_test_rel (GSL_REAL (z1), 0.0, 1e-9, "z1.real, 5 x^2 = -20"); gsl_test_rel (GSL_IMAG (z1), 2.0, 1e-9, "z1.imag, 5 x^2 = -20"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (0.0, 3.0, -21.0, &z0, &z1); gsl_test (n != 1, "gsl_poly_complex_solve_quadratic, one root (linear) 3 x - 21 = 0"); gsl_test_rel (GSL_REAL (z0), 7.0, 1e-9, "z0.real, 3x - 21 = 0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, 3x - 21 = 0"); } { gsl_complex z0, z1; int n = gsl_poly_complex_solve_quadratic (0.0, 0.0, 1.0, &z0, &z1); gsl_test (n != 0, "gsl_poly_complex_solve_quadratic, no roots 1 = 0"); } /* Cubic with complex roots */ { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (0.0, 0.0, -27.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three root, x^3 = 27"); gsl_test_rel (GSL_REAL (z0), -1.5, 1e-9, "z0.real, x^3 = 27"); gsl_test_rel (GSL_IMAG (z0), -1.5 * sqrt (3.0), 1e-9, "z0.imag, x^3 = 27"); gsl_test_rel (GSL_REAL (z1), -1.5, 1e-9, "z1.real, x^3 = 27"); gsl_test_rel (GSL_IMAG (z1), 1.5 * sqrt (3.0), 1e-9, "z1.imag, x^3 = 27"); gsl_test_rel (GSL_REAL (z2), 3.0, 1e-9, "z2.real, x^3 = 27"); gsl_test_rel (GSL_IMAG (z2), 0.0, 1e-9, "z2.imag, x^3 = 27"); } { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (-1.0, 1.0, 39.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three root, (x+3)(x^2-4x+13) = 0"); gsl_test_rel (GSL_REAL (z0), -3.0, 1e-9, "z0.real, (x+3)(x^2+1) = 0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (x+3)(x^2+1) = 0"); gsl_test_rel (GSL_REAL (z1), 2.0, 1e-9, "z1.real, (x+3)(x^2+1) = 0"); gsl_test_rel (GSL_IMAG (z1), -3.0, 1e-9, "z1.imag, (x+3)(x^2+1) = 0"); gsl_test_rel (GSL_REAL (z2), 2.0, 1e-9, "z2.real, (x+3)(x^2+1) = 0"); gsl_test_rel (GSL_IMAG (z2), 3.0, 1e-9, "z2.imag, (x+3)(x^2+1) = 0"); } { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (-51.0, 867.0, -4913.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three roots, (x-17)^3=0"); gsl_test_rel (GSL_REAL (z0), 17.0, 1e-9, "z0.real, (x-17)^3=0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (x-17)^3=0"); gsl_test_rel (GSL_REAL (z1), 17.0, 1e-9, "z1.real, (x-17)^3=0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (x-17)^3=0"); gsl_test_rel (GSL_REAL (z2), 17.0, 1e-9, "z2.real, (x-17)^3=0"); gsl_test_rel (GSL_IMAG (z2), 0.0, 1e-9, "z2.imag, (x-17)^3=0"); } { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (-57.0, 1071.0, -6647.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three roots, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_REAL (z0), 17.0, 1e-9, "z0.real, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_REAL (z1), 17.0, 1e-9, "z1.real, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_REAL (z2), 23.0, 1e-9, "z2.real, (x-17)(x-17)(x-23)=0"); gsl_test_rel (GSL_IMAG (z2), 0.0, 1e-9, "z2.imag, (x-17)(x-17)(x-23)=0"); } { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (-11.0, -493.0, +6647.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three roots, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_REAL (z0), -23.0, 1e-9, "z0.real, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_REAL (z1), 17.0, 1e-9, "z1.real, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_REAL (z2), 17.0, 1e-9, "z2.real, (x+23)(x-17)(x-17)=0"); gsl_test_rel (GSL_IMAG (z2), 0.0, 1e-9, "z2.imag, (x+23)(x-17)(x-17)=0"); } { gsl_complex z0, z1, z2; int n = gsl_poly_complex_solve_cubic (-143.0, 5087.0, -50065.0, &z0, &z1, &z2); gsl_test (n != 3, "gsl_poly_complex_solve_cubic, three roots, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_REAL (z0), 17.0, 1e-9, "z0.real, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_IMAG (z0), 0.0, 1e-9, "z0.imag, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_REAL (z1), 31.0, 1e-9, "z1.real, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_IMAG (z1), 0.0, 1e-9, "z1.imag, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_REAL (z2), 95.0, 1e-9, "z2.real, (x-17)(x-31)(x-95)=0"); gsl_test_rel (GSL_IMAG (z2), 0.0, 1e-9, "z2.imag, (x-17)(x-31)(x-95)=0"); } { /* Wilkinson polynomial: y = (x-1)(x-2)(x-3)(x-4)(x-5) */ double a[6] = { -120, 274, -225, 85, -15, 1 }; double z[6*2]; gsl_poly_complex_workspace *w = gsl_poly_complex_workspace_alloc (6); int status = gsl_poly_complex_solve (a, 6, w, z); gsl_poly_complex_workspace_free (w); gsl_test (status, "gsl_poly_complex_solve, 5th-order Wilkinson polynomial"); gsl_test_rel (z[0], 1.0, 1e-9, "z0.real, 5th-order polynomial"); gsl_test_rel (z[1], 0.0, 1e-9, "z0.imag, 5th-order polynomial"); gsl_test_rel (z[2], 2.0, 1e-9, "z1.real, 5th-order polynomial"); gsl_test_rel (z[3], 0.0, 1e-9, "z1.imag, 5th-order polynomial"); gsl_test_rel (z[4], 3.0, 1e-9, "z2.real, 5th-order polynomial"); gsl_test_rel (z[5], 0.0, 1e-9, "z2.imag, 5th-order polynomial"); gsl_test_rel (z[6], 4.0, 1e-9, "z3.real, 5th-order polynomial"); gsl_test_rel (z[7], 0.0, 1e-9, "z3.imag, 5th-order polynomial"); gsl_test_rel (z[8], 5.0, 1e-9, "z4.real, 5th-order polynomial"); gsl_test_rel (z[9], 0.0, 1e-9, "z4.imag, 5th-order polynomial"); } { /* : 8-th order polynomial y = x^8 + x^4 + 1 */ double a[9] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 }; double z[8*2]; double C = 0.5; double S = sqrt (3.0) / 2.0; gsl_poly_complex_workspace *w = gsl_poly_complex_workspace_alloc (9); int status = gsl_poly_complex_solve (a, 9, w, z); gsl_poly_complex_workspace_free (w); gsl_test (status, "gsl_poly_complex_solve, 8th-order polynomial"); gsl_test_rel (z[0], -S, 1e-9, "z0.real, 8th-order polynomial"); gsl_test_rel (z[1], C, 1e-9, "z0.imag, 8th-order polynomial"); gsl_test_rel (z[2], -S, 1e-9, "z1.real, 8th-order polynomial"); gsl_test_rel (z[3], -C, 1e-9, "z1.imag, 8th-order polynomial"); gsl_test_rel (z[4], -C, 1e-9, "z2.real, 8th-order polynomial"); gsl_test_rel (z[5], S, 1e-9, "z2.imag, 8th-order polynomial"); gsl_test_rel (z[6], -C, 1e-9, "z3.real, 8th-order polynomial"); gsl_test_rel (z[7], -S, 1e-9, "z3.imag, 8th-order polynomial"); gsl_test_rel (z[8], C, 1e-9, "z4.real, 8th-order polynomial"); gsl_test_rel (z[9], S, 1e-9, "z4.imag, 8th-order polynomial"); gsl_test_rel (z[10], C, 1e-9, "z5.real, 8th-order polynomial"); gsl_test_rel (z[11], -S, 1e-9, "z5.imag, 8th-order polynomial"); gsl_test_rel (z[12], S, 1e-9, "z6.real, 8th-order polynomial"); gsl_test_rel (z[13], C, 1e-9, "z6.imag, 8th-order polynomial"); gsl_test_rel (z[14], S, 1e-9, "z7.real, 8th-order polynomial"); gsl_test_rel (z[15], -C, 1e-9, "z7.imag, 8th-order polynomial"); } { /* 15-th order polynomial y = (x + 1) * (x^10 + x^9 + 2 * x^7 + 4 * x^2 + 4 * x + 8) * (x - 1)^2 * (x - 2)^2 Problem reported by Munagala Ramanath (bug #39055) */ double a[16] = { 32, -48, -8, 28, -8, 16, -16, 12, -16, 6, 10, -17, 10, 2, -4, 1 }; double z[16*2]; double expected[16*20] = { 1.0000000000000000, 0.00000000000000000, 1.0000000000000000, 0.00000000000000000, -1.0000000000000000, 0.00000000000000000, -0.65893856175240950, 0.83459757287426684, -0.65893856175240950, -0.83459757287426684, -0.070891117403341281, -1.1359249087587791, -0.070891117403341281, 1.1359249087587791, 1.1142366961812986, -0.48083981203389980, 1.1142366961812986, 0.48083981203389980, -1.3066982484920768, 0.00000000000000000, 0.57284747839410854, 1.1987808988289705, 0.57284747839410854, -1.1987808988289705, -1.6078107423472359, 0.00000000000000000, 2.0000000000000000, 0.00000000000000000, 2.0000000000000000, 0.00000000000000000 }; int i; gsl_poly_complex_workspace *w = gsl_poly_complex_workspace_alloc (16); int status = gsl_poly_complex_solve (a, 16, w, z); gsl_poly_complex_workspace_free (w); gsl_test (status, "gsl_poly_complex_solve, 15th-order polynomial"); gsl_heapsort(z, 15, 2 * sizeof(double), (gsl_comparison_fn_t) &cmp_cplx); for (i = 0; i<15; i++) { gsl_test_abs (z[2*i], expected[2*i], 1e-7, "z%d.real, 15th-order polynomial", i); gsl_test_abs (z[2*i+1], expected[2*i+1], 1e-7, "z%d.imag, 15th-order polynomial", i); } } { int i; double xa[7] = {0.16, 0.97, 1.94, 2.74, 3.58, 3.73, 4.70 }; double ya[7] = {0.73, 1.11, 1.49, 1.84, 2.30, 2.41, 3.07 }; double dd_expected[7] = { 7.30000000000000e-01, 4.69135802469136e-01, -4.34737219941284e-02, 2.68681098870099e-02, -3.22937056934996e-03, 6.12763259971375e-03, -6.45402453527083e-03 }; double dd[7], coeff[7], work[7]; gsl_poly_dd_init (dd, xa, ya, 7); for (i = 0; i < 7; i++) { gsl_test_rel (dd[i], dd_expected[i], 1e-10, "divided difference dd[%d]", i); } for (i = 0; i < 7; i++) { double y = gsl_poly_dd_eval(dd, xa, 7, xa[i]); gsl_test_rel (y, ya[i], 1e-10, "divided difference y[%d]", i); } gsl_poly_dd_taylor (coeff, 1.5, dd, xa, 7, work); for (i = 0; i < 7; i++) { double y = gsl_poly_eval(coeff, 7, xa[i] - 1.5); gsl_test_rel (y, ya[i], 1e-10, "taylor expansion about 1.5 y[%d]", i); } } { size_t i; double xa[3] = { 1.3, 1.6, 1.9 }; double ya[3] = { 0.6200860, 0.4554022, 0.2818186 }; double dya[3] = { -0.5220232, -0.5698959, -0.5811571 }; double dd_expected[6] = { 6.200860000000e-01, -5.220232000000e-01, -8.974266666667e-02, 6.636555555556e-02, 2.666666666662e-03, -2.774691357989e-03 }; double dd[6], za[6], coeff[6], work[6]; gsl_poly_dd_hermite_init(dd, za, xa, ya, dya, 3); for (i = 0; i < 6; i++) { gsl_test_rel (dd[i], dd_expected[i], 1e-10, "hermite divided difference dd[%d]", i); } for (i = 0; i < 3; i++) { double y = gsl_poly_dd_eval(dd, za, 6, xa[i]); gsl_test_rel (y, ya[i], 1e-10, "hermite divided difference y[%d]", i); } for (i = 0; i < 3; i++) { gsl_poly_dd_taylor(coeff, xa[i], dd, za, 6, work); gsl_test_rel (coeff[1], dya[i], 1e-10, "hermite divided difference dy/dx[%d]", i); } } { double c[6] = { +1.0, -2.0, +3.0, -4.0, +5.0, -6.0 }; double dc[6]; double x; x = -0.5; gsl_poly_eval_derivs(c, 6, x, dc, 6); gsl_test_rel (dc[0], c[0] + c[1]*x + c[2]*x*x + c[3]*x*x*x + c[4]*x*x*x*x + c[5]*x*x*x*x*x , eps, "gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6}, 3.75)"); gsl_test_rel (dc[1], c[1] + 2.0*c[2]*x + 3.0*c[3]*x*x + 4.0*c[4]*x*x*x + 5.0*c[5]*x*x*x*x , eps, "gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6} deriv 1, -12.375)"); gsl_test_rel (dc[2], 2.0*c[2] + 3.0*2.0*c[3]*x + 4.0*3.0*c[4]*x*x + 5.0*4.0*c[5]*x*x*x , eps, "gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6} deriv 2, +48.0)"); gsl_test_rel (dc[3], 3.0*2.0*c[3] + 4.0*3.0*2.0*c[4]*x + 5.0*4.0*3.0*c[5]*x*x , eps,"gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6} deriv 3, -174.0)"); gsl_test_rel (dc[4], 4.0*3.0*2.0*c[4] + 5.0*4.0*3.0*2.0*c[5]*x, eps, "gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6} deriv 4, +480.0)"); gsl_test_rel (dc[5], 5.0*4.0*3.0*2.0*c[5] , eps, "gsl_poly_eval_dp({+1, -2, +3, -4, +5, -6} deriv 5, -720.0)"); } /* now summarize the results */ exit (gsl_test_summary ()); } gsl-1.16/poly/qr.c0000664000252300025230000001253612171574312010732 00000000000000/* poly/qr.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int qr_companion (double *h, size_t nc, gsl_complex_packed_ptr z); static int qr_companion (double *h, size_t nc, gsl_complex_packed_ptr zroot) { double t = 0.0; size_t iterations, e, i, j, k, m; double w, x, y, s, z; double p = 0, q = 0, r = 0; /* FIXME: if p,q,r, are not set to zero then the compiler complains that they ``might be used uninitialized in this function''. Looking at the code this does seem possible, so this should be checked. */ int notlast; size_t n = nc; next_root: if (n == 0) return GSL_SUCCESS ; iterations = 0; next_iteration: for (e = n; e >= 2; e--) { double a1 = fabs (FMAT (h, e, e - 1, nc)); double a2 = fabs (FMAT (h, e - 1, e - 1, nc)); double a3 = fabs (FMAT (h, e, e, nc)); if (a1 <= GSL_DBL_EPSILON * (a2 + a3)) break; } x = FMAT (h, n, n, nc); if (e == n) { GSL_SET_COMPLEX_PACKED (zroot, n-1, x + t, 0); /* one real root */ n--; goto next_root; /*continue;*/ } y = FMAT (h, n - 1, n - 1, nc); w = FMAT (h, n - 1, n, nc) * FMAT (h, n, n - 1, nc); if (e == n - 1) { p = (y - x) / 2; q = p * p + w; y = sqrt (fabs (q)); x += t; if (q > 0) /* two real roots */ { if (p < 0) y = -y; y += p; GSL_SET_COMPLEX_PACKED (zroot, n-1, x - w / y, 0); GSL_SET_COMPLEX_PACKED (zroot, n-2, x + y, 0); } else { GSL_SET_COMPLEX_PACKED (zroot, n-1, x + p, -y); GSL_SET_COMPLEX_PACKED (zroot, n-2, x + p, y); } n -= 2; goto next_root; /*continue;*/ } /* No more roots found yet, do another iteration */ if (iterations == 120) /* increased from 30 to 120 */ { /* too many iterations - give up! */ return GSL_FAILURE ; } if (iterations % 10 == 0 && iterations > 0) { /* use an exceptional shift */ t += x; for (i = 1; i <= n; i++) { FMAT (h, i, i, nc) -= x; } s = fabs (FMAT (h, n, n - 1, nc)) + fabs (FMAT (h, n - 1, n - 2, nc)); y = 0.75 * s; x = y; w = -0.4375 * s * s; } iterations++; for (m = n - 2; m >= e; m--) { double a1, a2, a3; z = FMAT (h, m, m, nc); r = x - z; s = y - z; p = FMAT (h, m, m + 1, nc) + (r * s - w) / FMAT (h, m + 1, m, nc); q = FMAT (h, m + 1, m + 1, nc) - z - r - s; r = FMAT (h, m + 2, m + 1, nc); s = fabs (p) + fabs (q) + fabs (r); p /= s; q /= s; r /= s; if (m == e) break; a1 = fabs (FMAT (h, m, m - 1, nc)); a2 = fabs (FMAT (h, m - 1, m - 1, nc)); a3 = fabs (FMAT (h, m + 1, m + 1, nc)); if (a1 * (fabs (q) + fabs (r)) <= GSL_DBL_EPSILON * fabs (p) * (a2 + a3)) break; } for (i = m + 2; i <= n; i++) { FMAT (h, i, i - 2, nc) = 0; } for (i = m + 3; i <= n; i++) { FMAT (h, i, i - 3, nc) = 0; } /* double QR step */ for (k = m; k <= n - 1; k++) { notlast = (k != n - 1); if (k != m) { p = FMAT (h, k, k - 1, nc); q = FMAT (h, k + 1, k - 1, nc); r = notlast ? FMAT (h, k + 2, k - 1, nc) : 0.0; x = fabs (p) + fabs (q) + fabs (r); if (x == 0) continue; /* FIXME????? */ p /= x; q /= x; r /= x; } s = sqrt (p * p + q * q + r * r); if (p < 0) s = -s; if (k != m) { FMAT (h, k, k - 1, nc) = -s * x; } else if (e != m) { FMAT (h, k, k - 1, nc) *= -1; } p += s; x = p / s; y = q / s; z = r / s; q /= p; r /= p; /* do row modifications */ for (j = k; j <= n; j++) { p = FMAT (h, k, j, nc) + q * FMAT (h, k + 1, j, nc); if (notlast) { p += r * FMAT (h, k + 2, j, nc); FMAT (h, k + 2, j, nc) -= p * z; } FMAT (h, k + 1, j, nc) -= p * y; FMAT (h, k, j, nc) -= p * x; } j = (k + 3 < n) ? (k + 3) : n; /* do column modifications */ for (i = e; i <= j; i++) { p = x * FMAT (h, i, k, nc) + y * FMAT (h, i, k + 1, nc); if (notlast) { p += z * FMAT (h, i, k + 2, nc); FMAT (h, i, k + 2, nc) -= p * r; } FMAT (h, i, k + 1, nc) -= p * q; FMAT (h, i, k, nc) -= p; } } goto next_iteration; } gsl-1.16/poly/Makefile.in0000664000252300025230000010477712172253756012231 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = poly DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslpoly_la_LIBADD = am_libgslpoly_la_OBJECTS = dd.lo eval.lo solve_quadratic.lo \ solve_cubic.lo zsolve_quadratic.lo zsolve_cubic.lo zsolve.lo \ zsolve_init.lo deriv.lo libgslpoly_la_OBJECTS = $(am_libgslpoly_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslpoly.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la ../sort/libgslsort.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslpoly_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslpoly_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslpoly.la pkginclude_HEADERS = gsl_poly.h INCLUDES = -I$(top_srcdir) libgslpoly_la_SOURCES = dd.c eval.c solve_quadratic.c solve_cubic.c zsolve_quadratic.c zsolve_cubic.c zsolve.c zsolve_init.c deriv.c noinst_HEADERS = balance.c companion.c qr.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslpoly.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../sort/libgslsort.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu poly/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu poly/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslpoly.la: $(libgslpoly_la_OBJECTS) $(libgslpoly_la_DEPENDENCIES) $(EXTRA_libgslpoly_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslpoly_la_OBJECTS) $(libgslpoly_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/deriv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/eval.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/solve_cubic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/solve_quadratic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsolve.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsolve_cubic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsolve_init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsolve_quadratic.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/poly/ChangeLog0000664000252300025230000000666312171574312011722 000000000000002011-04-13 Brian Gough * solve_quadratic.c (gsl_poly_solve_quadratic): simplify the case where b==0 and disc>0 (gsl_poly_solve_quadratic): delay the evaluation of the discriminant until it is needed 2009-07-09 Brian Gough * zsolve_init.c (gsl_poly_complex_workspace_free): handle NULL argument in free 2009-05-09 Brian Gough * zsolve_cubic.c (gsl_poly_complex_solve_cubic): test R2 < Q3 directly, to avoid argument of acos exceeding 1 due to extended precision. * solve_cubic.c (gsl_poly_solve_cubic): ditto 2008-07-03 Brian Gough * gsl_poly.h: use new inline declarations * inline.c: handle inline functions in separate file * dd.c: move gsl_poly_dd_eval to inline.c * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-04-28 Brian Gough * dd.c (gsl_poly_dd_taylor): use new descending loop convention 2007-12-17 Brian Gough * eval.c: added functions for complex polynomials 2005-07-03 Brian Gough * test.c (main): added tests for linear case * zsolve_quadratic.c (gsl_poly_complex_solve_quadratic): handle the linear case * solve_quadratic.c (gsl_poly_solve_quadratic): handle the linear case 2005-05-19 Brian Gough * Makefile.am (noinst_HEADERS): removed norm.c (unused) Sun Dec 2 22:02:31 2001 Brian Gough * dd.c: added divided differences code from Dan, Ho-Jin Wed Oct 31 18:42:10 2001 Brian Gough * qr.c (qr_companion): increased maximum number of iterations from 30 to 60 Thu Jun 28 11:24:51 2001 Brian Gough * test.c (main): fixed a subtle bug in the test where the array for the complex results was too small by a factor of two Mon Apr 30 12:36:08 2001 Brian Gough * eval.c (gsl_poly_eval): added eval function from specfunc Tue Aug 24 12:02:47 1999 Brian Gough * zsolve.c: added general solver using QR method 1999-08-22 Mark Galassi * Makefile.am (libgslpoly_a_SOURCES): for now commented out zsolve.c, since it has some strange errors that make it look like it was not committed. Tue Aug 17 14:23:47 1999 Brian Gough * zsolve_cubic.c (gsl_poly_complex_solve_cubic): compute the discriminant without division so that it is exact for exact inputs * solve_cubic.c (gsl_poly_solve_cubic): compute the discriminant without division so that it is exact for exact inputs * changed the way roots are counted to make all the routines consistent. Conincident roots are no longer a special case, now they are made up of separate roots which happen to have the same values. * zsolve_quadratic.c (gsl_poly_complex_solve_quadratic): in the case of a multiple root set all the returned values r0 = r1 = root, rather than just setting one and leaving the others potentially unset. * solve_quadratic.c (gsl_poly_solve_quadratic): ditto Tue Aug 3 19:36:26 1999 Brian Gough * gsl_poly.h: changed all functions to take separate variables for roots (z0, z1, z2) of variable-length arrays Sat Feb 20 12:13:46 1999 Brian Gough * split out polynomial root finding algorithms into a new poly/ directory gsl-1.16/poly/Makefile.am0000664000252300025230000000100312171574312012163 00000000000000noinst_LTLIBRARIES = libgslpoly.la pkginclude_HEADERS = gsl_poly.h INCLUDES = -I$(top_srcdir) libgslpoly_la_SOURCES = dd.c eval.c solve_quadratic.c solve_cubic.c zsolve_quadratic.c zsolve_cubic.c zsolve.c zsolve_init.c deriv.c noinst_HEADERS = balance.c companion.c qr.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslpoly.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../sort/libgslsort.la gsl-1.16/poly/companion.c0000664000252300025230000000226412171574312012270 00000000000000/* poly/companion.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void set_companion_matrix (const double *a, size_t n, double *m); static void set_companion_matrix (const double *a, size_t nc, double *m) { size_t i, j; for (i = 0; i < nc; i++) for (j = 0; j < nc; j++) MAT (m, i, j, nc) = 0.0; for (i = 1; i < nc; i++) MAT (m, i, i - 1, nc) = 1.0; for (i = 0; i < nc; i++) MAT (m, i, nc - 1, nc) = -a[i] / a[nc]; } gsl-1.16/poly/eval.c0000664000252300025230000000175312171574312011236 00000000000000/* poly/eval.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Complex functions Copyright (C) 2007 Frank Reininghaus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/poly/zsolve_quadratic.c0000664000252300025230000000505712171574312013667 00000000000000/* poly/zsolve_quadratic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* complex_solve_quadratic.c - finds complex roots of a x^2 + b x + c = 0 */ #include #include #include #include int gsl_poly_complex_solve_quadratic (double a, double b, double c, gsl_complex *z0, gsl_complex *z1) { double disc = b * b - 4 * a * c; if (a == 0) /* Handle linear case */ { if (b == 0) { return 0; } else { GSL_REAL(*z0) = -c / b; GSL_IMAG(*z0) = 0; return 1; }; } if (disc > 0) { if (b == 0) { double s = fabs (0.5 * sqrt (disc) / a); GSL_REAL (*z0) = -s; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = s; GSL_IMAG (*z1) = 0; } else { double sgnb = (b > 0 ? 1 : -1); double temp = -0.5 * (b + sgnb * sqrt (disc)); double r1 = temp / a; double r2 = c / temp; if (r1 < r2) { GSL_REAL (*z0) = r1; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = r2; GSL_IMAG (*z1) = 0; } else { GSL_REAL (*z0) = r2; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = r1; GSL_IMAG (*z1) = 0; } } return 2; } else if (disc == 0) { GSL_REAL (*z0) = -0.5 * b / a; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -0.5 * b / a; GSL_IMAG (*z1) = 0; return 2; } else { double s = fabs (0.5 * sqrt (-disc) / a); GSL_REAL (*z0) = -0.5 * b / a; GSL_IMAG (*z0) = -s; GSL_REAL (*z1) = -0.5 * b / a; GSL_IMAG (*z1) = s; return 2; } } gsl-1.16/poly/solve_cubic.c0000664000252300025230000000565512171574312012611 00000000000000/* poly/solve_cubic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* solve_cubic.c - finds the real roots of x^3 + a x^2 + b x + c = 0 */ #include #include #include #include #define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0) int gsl_poly_solve_cubic (double a, double b, double c, double *x0, double *x1, double *x2) { double q = (a * a - 3 * b); double r = (2 * a * a * a - 9 * a * b + 27 * c); double Q = q / 9; double R = r / 54; double Q3 = Q * Q * Q; double R2 = R * R; double CR2 = 729 * r * r; double CQ3 = 2916 * q * q * q; if (R == 0 && Q == 0) { *x0 = - a / 3 ; *x1 = - a / 3 ; *x2 = - a / 3 ; return 3 ; } else if (CR2 == CQ3) { /* this test is actually R2 == Q3, written in a form suitable for exact computation with integers */ /* Due to finite precision some double roots may be missed, and considered to be a pair of complex roots z = x +/- epsilon i close to the real axis. */ double sqrtQ = sqrt (Q); if (R > 0) { *x0 = -2 * sqrtQ - a / 3; *x1 = sqrtQ - a / 3; *x2 = sqrtQ - a / 3; } else { *x0 = - sqrtQ - a / 3; *x1 = - sqrtQ - a / 3; *x2 = 2 * sqrtQ - a / 3; } return 3 ; } else if (R2 < Q3) { double sgnR = (R >= 0 ? 1 : -1); double ratio = sgnR * sqrt (R2 / Q3); double theta = acos (ratio); double norm = -2 * sqrt (Q); *x0 = norm * cos (theta / 3) - a / 3; *x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3; *x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3; /* Sort *x0, *x1, *x2 into increasing order */ if (*x0 > *x1) SWAP(*x0, *x1) ; if (*x1 > *x2) { SWAP(*x1, *x2) ; if (*x0 > *x1) SWAP(*x0, *x1) ; } return 3; } else { double sgnR = (R >= 0 ? 1 : -1); double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0); double B = Q / A ; *x0 = A + B - a / 3; return 1; } } gsl-1.16/poly/deriv.c0000664000252300025230000000304312171574312011412 00000000000000/* poly/eval.c * * Copyright (C) 2009 Marc JOURDAIN * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_poly_eval_derivs (const double c[], const size_t lenc, const double x, double res[], const size_t lenres) { size_t i, n, nmax; size_t k, l, lmax; for (i = 0, n = 0, nmax = 0; i < lenres; i++) { if (n < lenc) { res[i] = c[lenc - 1]; nmax = n; n++; } else res[i] = 0.0; } for (i = 0; i < lenc - 1; i++) { k = (lenc - 1) - i; res[0] = ((x * res[0]) + c[k - 1]); lmax = (nmax < k) ? nmax : k - 1; for (l = 1; l <= lmax; l++) { res[l] = ((x * res[l]) + res[l - 1]); } } { double f = 1.0; for (i = 2; i <= nmax; i++) { f *= i; res[i] *= f; } } return GSL_SUCCESS; } gsl-1.16/poly/balance.c0000664000252300025230000000615112171574312011671 00000000000000/* poly/balance.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void balance_companion_matrix (double *m, size_t n); #define RADIX 2 #define RADIX2 (RADIX*RADIX) static void balance_companion_matrix (double *m, size_t nc) { int not_converged = 1; double row_norm = 0; double col_norm = 0; while (not_converged) { size_t i, j; double g, f, s; not_converged = 0; for (i = 0; i < nc; i++) { /* column norm, excluding the diagonal */ if (i != nc - 1) { col_norm = fabs (MAT (m, i + 1, i, nc)); } else { col_norm = 0; for (j = 0; j < nc - 1; j++) { col_norm += fabs (MAT (m, j, nc - 1, nc)); } } /* row norm, excluding the diagonal */ if (i == 0) { row_norm = fabs (MAT (m, 0, nc - 1, nc)); } else if (i == nc - 1) { row_norm = fabs (MAT (m, i, i - 1, nc)); } else { row_norm = (fabs (MAT (m, i, i - 1, nc)) + fabs (MAT (m, i, nc - 1, nc))); } if (col_norm == 0 || row_norm == 0) { continue; } g = row_norm / RADIX; f = 1; s = col_norm + row_norm; while (col_norm < g) { f *= RADIX; col_norm *= RADIX2; } g = row_norm * RADIX; while (col_norm > g) { f /= RADIX; col_norm /= RADIX2; } if ((row_norm + col_norm) < 0.95 * s * f) { not_converged = 1; g = 1 / f; if (i == 0) { MAT (m, 0, nc - 1, nc) *= g; } else { MAT (m, i, i - 1, nc) *= g; MAT (m, i, nc - 1, nc) *= g; } if (i == nc - 1) { for (j = 0; j < nc; j++) { MAT (m, j, i, nc) *= f; } } else { MAT (m, i + 1, i, nc) *= f; } } } } } gsl-1.16/poly/zsolve_cubic.c0000664000252300025230000001017412171574312012773 00000000000000/* poly/zsolve_cubic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 */ #include #include #include #include #include #define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0) int gsl_poly_complex_solve_cubic (double a, double b, double c, gsl_complex *z0, gsl_complex *z1, gsl_complex *z2) { double q = (a * a - 3 * b); double r = (2 * a * a * a - 9 * a * b + 27 * c); double Q = q / 9; double R = r / 54; double Q3 = Q * Q * Q; double R2 = R * R; double CR2 = 729 * r * r; double CQ3 = 2916 * q * q * q; if (R == 0 && Q == 0) { GSL_REAL (*z0) = -a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = -a / 3; GSL_IMAG (*z2) = 0; return 3; } else if (CR2 == CQ3) { /* this test is actually R2 == Q3, written in a form suitable for exact computation with integers */ /* Due to finite precision some double roots may be missed, and will be considered to be a pair of complex roots z = x +/- epsilon i close to the real axis. */ double sqrtQ = sqrt (Q); if (R > 0) { GSL_REAL (*z0) = -2 * sqrtQ - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = sqrtQ - a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = sqrtQ - a / 3; GSL_IMAG (*z2) = 0; } else { GSL_REAL (*z0) = -sqrtQ - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -sqrtQ - a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = 2 * sqrtQ - a / 3; GSL_IMAG (*z2) = 0; } return 3; } else if (R2 < Q3) { double sgnR = (R >= 0 ? 1 : -1); double ratio = sgnR * sqrt (R2 / Q3); double theta = acos (ratio); double norm = -2 * sqrt (Q); double r0 = norm * cos (theta / 3) - a / 3; double r1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3; double r2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3; /* Sort r0, r1, r2 into increasing order */ if (r0 > r1) SWAP (r0, r1); if (r1 > r2) { SWAP (r1, r2); if (r0 > r1) SWAP (r0, r1); } GSL_REAL (*z0) = r0; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = r1; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = r2; GSL_IMAG (*z2) = 0; return 3; } else { double sgnR = (R >= 0 ? 1 : -1); double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0 / 3.0); double B = Q / A; if (A + B < 0) { GSL_REAL (*z0) = A + B - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z1) = -(sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z2) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z2) = (sqrt (3.0) / 2.0) * fabs(A - B); } else { GSL_REAL (*z0) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z0) = -(sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z1) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z1) = (sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z2) = A + B - a / 3; GSL_IMAG (*z2) = 0; } return 3; } } gsl-1.16/monte/0000775000252300025230000000000012172254163010354 500000000000000gsl-1.16/monte/TODO0000664000252300025230000000230312171574312010762 00000000000000# -*- org -*- #+CATEGORY: monte * Add Lattice Method and Quasi-random Method to monte carlo integration * Fix the "No-points in left/right half space" error in miser. Random errors like that are discouraged in a library. The routine should iterate over the dimensions choosing a point on each side of the bisection to ensure that the error does not occur. * VEGAS could estimate its roundoff error, caused by dividing up into many boxes and then summing (I know this is ridiculous for any realistic case, but it shows up on the tests when integrating a constant!). In particular, there are some failures reported for the VEGAS constant tests on Windows. * VEGAS gives a negative chisq for some cases where there are wildly inconsistent values. Calculation should be improved so that chisq>=0. Also, when there are inconsistent values it might make sense to scale the error by chisq, as is often done experimentally -- at least that way the error would be increased. * The original VEGAS allowed to user to calculate other weighted quantities. The appropriate way to implement it in GSL would be to provide a separate routine which returns sample points and weights so that the user can caculate any quantity. gsl-1.16/monte/test_main.c0000664000252300025230000000277412171574312012435 00000000000000for (I = problems ; I->f != 0; I++) { size_t i; double res, err; gsl_rng * r; if (I->dim > 3) { continue ; } r = gsl_rng_alloc (gsl_rng_default); for (i = 0; i < TRIALS ; i++) { MONTE_STATE *s = MONTE_ALLOC (I->dim); #ifdef MONTE_PARAMS MONTE_PARAMS params; #endif I->f->dim = I->dim; MONTE_INTEGRATE (I->f, I->xl, I->xu, I->dim, I->calls / MONTE_SPEEDUP, r, s, &res, &err); gsl_test_abs (res, I->expected_result, 5 * GSL_MAX(err, 1024*GSL_DBL_EPSILON), NAME ", %s, result[%d]", I->description, i); MONTE_ERROR_TEST (err, I->expected_error); result[i] = res; error[i] = err; MONTE_FREE (s); } /* Check the results for consistency as an ensemble */ { double mean = 0, sumd2 = 0, sd; /* We need to compute the mean exactly when all terms are equal, to get an exact zero for the standard deviation (this is a common case when integrating a constant). */ for (i = 0; i < TRIALS; i++) { mean += (result[i] - mean) / (i + 1.0); } for (i = 0; i < TRIALS; i++) { sumd2 += pow(result[i] - mean, 2.0); } sd = sqrt(sumd2 / (TRIALS-1.0)) ; for (i = 0; i < TRIALS; i++) { gsl_test_factor (error[i], sd, 5.0, NAME ", %s, abserr[%d] vs sd", I->description, i); } } gsl_rng_free (r); } gsl-1.16/monte/plain.c0000664000252300025230000000656112171574312011553 00000000000000/* monte/plain.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2009 Michael Booth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Plain Monte-Carlo. */ /* Author: MJB */ #include #include #include #include #include int gsl_monte_plain_integrate (const gsl_monte_function * f, const double xl[], const double xu[], const size_t dim, const size_t calls, gsl_rng * r, gsl_monte_plain_state * state, double *result, double *abserr) { double vol, m = 0, q = 0; double *x = state->x; size_t n, i; if (dim != state->dim) { GSL_ERROR ("number of dimensions must match allocated size", GSL_EINVAL); } for (i = 0; i < dim; i++) { if (xu[i] <= xl[i]) { GSL_ERROR ("xu must be greater than xl", GSL_EINVAL); } if (xu[i] - xl[i] > GSL_DBL_MAX) { GSL_ERROR ("Range of integration is too large, please rescale", GSL_EINVAL); } } /* Compute the volume of the region */ vol = 1; for (i = 0; i < dim; i++) { vol *= xu[i] - xl[i]; } for (n = 0; n < calls; n++) { /* Choose a random point in the integration region */ for (i = 0; i < dim; i++) { x[i] = xl[i] + gsl_rng_uniform_pos (r) * (xu[i] - xl[i]); } { double fval = GSL_MONTE_FN_EVAL (f, x); /* recurrence for mean and variance */ double d = fval - m; m += d / (n + 1.0); q += d * d * (n / (n + 1.0)); } } *result = vol * m; if (calls < 2) { *abserr = GSL_POSINF; } else { *abserr = vol * sqrt (q / (calls * (calls - 1.0))); } return GSL_SUCCESS; } gsl_monte_plain_state * gsl_monte_plain_alloc (size_t dim) { gsl_monte_plain_state *s = (gsl_monte_plain_state *) malloc (sizeof (gsl_monte_plain_state)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for state struct", GSL_ENOMEM, 0); } s->x = (double *) malloc (dim * sizeof (double)); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for working vector", GSL_ENOMEM, 0); } s->dim = dim; return s; } /* Set some default values and whatever */ int gsl_monte_plain_init (gsl_monte_plain_state * s) { size_t i; for (i = 0; i < s->dim; i++) { s->x[i] = 0.0; } return GSL_SUCCESS; } void gsl_monte_plain_free (gsl_monte_plain_state * s) { RETURN_IF_NULL (s); free (s->x); free (s); } gsl-1.16/monte/test.c0000664000252300025230000004010412171574312011416 00000000000000/* monte/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * Copyright (C) 2009 Michael Booth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define CONSTANT #define STEP #define PRODUCT #define GAUSSIAN #define DBLGAUSSIAN #define TSUDA #define PLAIN #define MISER #define VEGAS double xl[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; double xu[11] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; double xu2[11] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }; double xu3[2] = { GSL_DBL_MAX, GSL_DBL_MAX }; double fconst (double x[], size_t d, void *params); double fstep (double x[], size_t d, void *params); double f0 (double x[], size_t d, void *params); double f1 (double x[], size_t d, void *params); double f2 (double x[], size_t d, void *params); double f3 (double x[], size_t d, void *params); void my_error_handler (const char *reason, const char *file, int line, int err); struct problem { gsl_monte_function * f; double * xl; double * xu; size_t dim; size_t calls; double expected_result; double expected_error; char * description; } ; gsl_monte_function make_function (double (*f)(double *, size_t, void *), size_t d, void * p); gsl_monte_function make_function (double (*f)(double *, size_t, void *), size_t d, void * p) { gsl_monte_function f_new; f_new.f = f; f_new.dim = d; f_new.params = p; return f_new; } void add (struct problem * problems, int * n, gsl_monte_function * f, double xl[], double xu[], size_t dim, size_t calls, double result, double err, char * description); void add (struct problem * problems, int * n, gsl_monte_function * f, double xl[], double xu[], size_t dim, size_t calls, double result, double err, char * description) { int i = *n; problems[i].f = f; problems[i].xl = xl; problems[i].xu = xu; problems[i].dim = dim; problems[i].calls = calls; problems[i].expected_result = result; problems[i].expected_error = err; problems[i].description = description; (*n)++; } #define TRIALS 10 int main (void) { double result[TRIALS], error[TRIALS]; double a = 0.1; double c = (1.0 + sqrt (10.0)) / 9.0; gsl_monte_function Fc = make_function(&fconst, 0, 0); gsl_monte_function Fs = make_function(&fstep, 0, 0); gsl_monte_function F0 = make_function(&f0, 0, &a); gsl_monte_function F1 = make_function(&f1, 0, &a); gsl_monte_function F2 = make_function(&f2, 0, &a); gsl_monte_function F3 = make_function(&f3, 0, &c); /* The relationship between the variance of the function itself, the error on the integral and the number of calls is, sigma = sqrt(variance/N) where the variance is the <(f - )^2> where <.> denotes the volume average (integral over the integration region divided by the volume) */ int n = 0; struct problem * I; struct problem problems[256]; #ifdef CONSTANT /* variance(Fc) = 0 */ add(problems,&n, &Fc, xl, xu, 1, 1000, 1.0, 0.0, "constant, 1d"); add(problems,&n, &Fc, xl, xu, 2, 1000, 1.0, 0.0, "constant, 2d"); add(problems,&n, &Fc, xl, xu, 3, 1000, 1.0, 0.0, "constant, 3d"); add(problems,&n, &Fc, xl, xu, 4, 1000, 1.0, 0.0, "constant, 4d"); add(problems,&n, &Fc, xl, xu, 5, 1000, 1.0, 0.0, "constant, 5d"); add(problems,&n, &Fc, xl, xu, 6, 1000, 1.0, 0.0, "constant, 6d"); add(problems,&n, &Fc, xl, xu, 7, 1000, 1.0, 0.0, "constant, 7d"); add(problems,&n, &Fc, xl, xu, 8, 1000, 1.0, 0.0, "constant, 8d"); add(problems,&n, &Fc, xl, xu, 9, 1000, 1.0, 0.0, "constant, 9d"); add(problems,&n, &Fc, xl, xu, 10, 1000, 1.0, 0.0, "constant, 10d"); #endif #ifdef STEP /* variance(Fs) = 0.4/sqrt(1000) */ add(problems,&n, &Fs, xl, xu, 1, 100000, 0.8, 1.264e-3, "step, 1d"); add(problems,&n, &Fs, xl, xu, 2, 100000, 0.8, 1.264e-3, "step, 2d"); add(problems,&n, &Fs, xl, xu, 3, 100000, 0.8, 1.264e-3, "step, 3d"); add(problems,&n, &Fs, xl, xu, 4, 100000, 0.8, 1.264e-3, "step, 4d"); add(problems,&n, &Fs, xl, xu, 5, 100000, 0.8, 1.264e-3, "step, 5d"); add(problems,&n, &Fs, xl, xu, 6, 100000, 0.8, 1.264e-3, "step, 6d"); add(problems,&n, &Fs, xl, xu, 7, 100000, 0.8, 1.264e-3, "step, 7d"); add(problems,&n, &Fs, xl, xu, 8, 100000, 0.8, 1.264e-3, "step, 8d"); add(problems,&n, &Fs, xl, xu, 9, 100000, 0.8, 1.264e-3, "step, 9d"); add(problems,&n, &Fs, xl, xu, 10, 100000, 0.8, 1.264e-3, "step, 10d"); #endif #ifdef PRODUCT /* variance(F0) = (4/3)^d - 1 */ add(problems,&n, &F0, xl, xu, 1, 3333, 1.0, 0.01, "product, 1d" ); add(problems,&n, &F0, xl, xu, 2, 7777, 1.0, 0.01, "product, 2d" ); add(problems,&n, &F0, xl, xu, 3, 13703, 1.0, 0.01, "product, 3d" ); add(problems,&n, &F0, xl, xu, 4, 21604, 1.0, 0.01, "product, 4d" ); add(problems,&n, &F0, xl, xu, 5, 32139, 1.0, 0.01, "product, 5d" ); add(problems,&n, &F0, xl, xu, 6, 46186, 1.0, 0.01, "product, 6d" ); add(problems,&n, &F0, xl, xu, 7, 64915, 1.0, 0.01, "product, 7d" ); add(problems,&n, &F0, xl, xu, 8, 89887, 1.0, 0.01, "product, 8d" ); add(problems,&n, &F0, xl, xu, 9, 123182, 1.0, 0.01, "product, 9d" ); add(problems,&n, &F0, xl, xu, 10, 167577, 1.0, 0.01, "product, 10d" ); #endif #ifdef GAUSSIAN /* variance(F1) = (1/(a sqrt(2 pi)))^d - 1 */ add(problems,&n, &F1, xl, xu, 1, 298, 1.0, 0.1, "gaussian, 1d" ); add(problems,&n, &F1, xl, xu, 2, 1492, 1.0, 0.1, "gaussian, 2d" ); add(problems,&n, &F1, xl, xu, 3, 6249, 1.0, 0.1, "gaussian, 3d" ); add(problems,&n, &F1, xl, xu, 4, 25230, 1.0, 0.1, "gaussian, 4d" ); add(problems,&n, &F1, xl, xu, 5, 100953, 1.0, 0.1, "gaussian, 5d" ); add(problems,&n, &F1, xl, xu, 6, 44782, 1.0, 0.3, "gaussian, 6d" ); add(problems,&n, &F1, xl, xu, 7, 178690, 1.0, 0.3, "gaussian, 7d" ); add(problems,&n, &F1, xl, xu, 8, 712904, 1.0, 0.3, "gaussian, 8d" ); add(problems,&n, &F1, xl, xu, 9, 2844109, 1.0, 0.3, "gaussian, 9d" ); add(problems,&n, &F1, xl, xu, 10, 11346390, 1.0, 0.3, "gaussian, 10d" ); #endif #ifdef DBLGAUSSIAN /* variance(F2) = 0.5 * (1/(a sqrt(2 pi)))^d - 1 */ add(problems,&n, &F2, xl, xu, 1, 9947, 1.0, 0.01, "double gaussian, 1d" ); add(problems,&n, &F2, xl, xu, 2, 695, 1.0, 0.1, "double gaussian, 2d" ); add(problems,&n, &F2, xl, xu, 3, 3074, 1.0, 0.1, "double gaussian, 3d" ); add(problems,&n, &F2, xl, xu, 4, 12565, 1.0, 0.1, "double gaussian, 4d" ); add(problems,&n, &F2, xl, xu, 5, 50426, 1.0, 0.1, "double gaussian, 5d" ); add(problems,&n, &F2, xl, xu, 6, 201472, 1.0, 0.1, "double gaussian, 6d" ); add(problems,&n, &F2, xl, xu, 7, 804056, 1.0, 0.1, "double gaussian, 7d" ); add(problems,&n, &F2, xl, xu, 8, 356446, 1.0, 0.3, "double gaussian, 8d" ); add(problems,&n, &F2, xl, xu, 9, 1422049, 1.0, 0.3, "double gaussian, 9d" ); add(problems,&n, &F2, xl, xu, 10, 5673189, 1.0, 0.3, "double gaussian, 10d" ); #endif #ifdef TSUDA /* variance(F3) = ((c^2 + c + 1/3)/(c(c+1)))^d - 1 */ add(problems,&n, &F3, xl, xu, 1, 4928, 1.0, 0.01, "tsuda function, 1d" ); add(problems,&n, &F3, xl, xu, 2, 12285, 1.0, 0.01, "tsuda function, 2d" ); add(problems,&n, &F3, xl, xu, 3, 23268, 1.0, 0.01, "tsuda function, 3d" ); add(problems,&n, &F3, xl, xu, 4, 39664, 1.0, 0.01, "tsuda function, 4d" ); add(problems,&n, &F3, xl, xu, 5, 64141, 1.0, 0.01, "tsuda function, 5d" ); add(problems,&n, &F3, xl, xu, 6, 100680, 1.0, 0.01, "tsuda function, 6d" ); add(problems,&n, &F3, xl, xu, 7, 155227, 1.0, 0.01, "tsuda function, 7d" ); add(problems,&n, &F3, xl, xu, 8, 236657, 1.0, 0.01, "tsuda function, 8d" ); add(problems,&n, &F3, xl, xu, 9, 358219, 1.0, 0.01, "tsuda function, 9d" ); add(problems,&n, &F3, xl, xu, 10, 539690, 1.0, 0.01, "tsuda function, 10d" ); #endif add(problems,&n, 0, 0, 0, 0, 0, 0, 0, 0 ); /* gsl_set_error_handler (&my_error_handler); */ gsl_ieee_env_setup (); gsl_rng_env_setup (); #ifdef A printf ("testing allocation/input checks\n"); status = gsl_monte_plain_validate (s, xl, xu3, 1, 1); gsl_test (status != 0, "error if limits too large"); status = gsl_monte_plain_validate (s, xl, xu, 0, 10); gsl_test (status != 0, "error if num_dim = 0"); status = gsl_monte_plain_validate (s, xl, xu, 1, 0); gsl_test (status != 0, "error if calls = 0"); status = gsl_monte_plain_validate (s, xu, xl, 1, 10); gsl_test (status != 0, "error if xu < xl"); #endif #ifdef PLAIN #define NAME "plain" #define MONTE_STATE gsl_monte_plain_state #define MONTE_ALLOC gsl_monte_plain_alloc #define MONTE_INTEGRATE gsl_monte_plain_integrate #define MONTE_FREE gsl_monte_plain_free #define MONTE_SPEEDUP 1 #define MONTE_ERROR_TEST(err,expected) gsl_test_factor(err,expected, 5.0, NAME ", %s, abserr[%d]", I->description, i) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef MISER #define NAME "miser" #define MONTE_STATE gsl_monte_miser_state #define MONTE_ALLOC gsl_monte_miser_alloc #define MONTE_INTEGRATE gsl_monte_miser_integrate #define MONTE_FREE gsl_monte_miser_free #define MONTE_SPEEDUP 2 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 5.0 * expected, NAME ", %s, abserr[%d] (obs %g vs plain %g)", I->description, i, err, expected) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef MISER #define NAME "miser(params)" #define MONTE_STATE gsl_monte_miser_state #define MONTE_ALLOC gsl_monte_miser_alloc #define MONTE_PARAMS gsl_monte_miser_params #define MONTE_INTEGRATE(f,xl,xu,dim,calls,r,s,res,err) { gsl_monte_miser_params_get(s, ¶ms) ; params.alpha = 1.5 ; gsl_monte_miser_params_set(s, ¶ms) ; gsl_monte_miser_integrate(f,xl,xu,dim,calls,r,s,res,err); } #define MONTE_FREE gsl_monte_miser_free #define MONTE_SPEEDUP 2 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 5.0 * expected, NAME ", %s, abserr[%d] (obs %g vs plain %g)", I->description, i, err, expected) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_PARAMS #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef MISER #define NAME "miser(params)" #define MONTE_STATE gsl_monte_miser_state #define MONTE_ALLOC gsl_monte_miser_alloc #define MONTE_PARAMS gsl_monte_miser_params #define MONTE_INTEGRATE(f,xl,xu,dim,calls,r,s,res,err) { gsl_monte_miser_params_get(s, ¶ms) ; params.alpha = 1.5 ; gsl_monte_miser_params_set(s, ¶ms) ; gsl_monte_miser_integrate(f,xl,xu,dim,calls,r,s,res,err); } #define MONTE_FREE gsl_monte_miser_free #define MONTE_SPEEDUP 2 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 5.0 * expected, NAME ", %s, abserr[%d] (obs %g vs plain %g)", I->description, i, err, expected) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_PARAMS #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef VEGAS #define NAME "vegas" #define MONTE_STATE gsl_monte_vegas_state #define MONTE_ALLOC gsl_monte_vegas_alloc #define MONTE_INTEGRATE(f,xl,xu,dim,calls,r,s,res,err) { gsl_monte_vegas_integrate(f,xl,xu,dim,calls,r,s,res,err) ; } #define MONTE_FREE gsl_monte_vegas_free #define MONTE_SPEEDUP 3 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 3.0 * (expected == 0 ? 1.0/(I->calls/MONTE_SPEEDUP) : expected), NAME ", %s, abserr[%d] (obs %g vs exp %g)", I->description, i, err, expected) ; gsl_test(gsl_monte_vegas_chisq(s) < 0, NAME " returns valid chisq (%g)", gsl_monte_vegas_chisq(s)) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef VEGAS #define NAME "vegas(warm)" #define MONTE_STATE gsl_monte_vegas_state #define MONTE_ALLOC gsl_monte_vegas_alloc #define MONTE_INTEGRATE(f,xl,xu,dim,calls,r,s,res,err) { gsl_monte_vegas_integrate(f,xl,xu,dim,calls,r,s,res,err) ; gsl_monte_vegas_integrate(f,xl,xu,dim,calls,r,s,res,err); } #define MONTE_FREE gsl_monte_vegas_free #define MONTE_SPEEDUP 3 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 3.0 * (expected == 0 ? 1.0/(I->calls/MONTE_SPEEDUP) : expected), NAME ", %s, abserr[%d] (obs %g vs exp %g)", I->description, i, err, expected); gsl_test(gsl_monte_vegas_chisq(s) < 0, NAME " returns valid chisq (%g)", gsl_monte_vegas_chisq(s)) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif #ifdef VEGAS #define NAME "vegas(params)" #define MONTE_STATE gsl_monte_vegas_state #define MONTE_ALLOC gsl_monte_vegas_alloc #define MONTE_PARAMS gsl_monte_vegas_params #define MONTE_INTEGRATE(f,xl,xu,dim,calls,r,s,res,err) { gsl_monte_vegas_params_get(s, ¶ms) ; params.alpha = 2 ; params.iterations = 3 ; gsl_monte_vegas_params_set(s, ¶ms) ; gsl_monte_vegas_integrate(f,xl,xu,dim,calls,r,s,res,err); } #define MONTE_FREE gsl_monte_vegas_free #define MONTE_SPEEDUP 3 #define MONTE_ERROR_TEST(err,expected) gsl_test(err > 3.0 * (expected == 0 ? 1.0/(I->calls/MONTE_SPEEDUP) : expected), NAME ", %s, abserr[%d] (obs %g vs exp %g)", I->description, i, err, expected); gsl_test(gsl_monte_vegas_chisq(s) < 0, NAME " returns valid chisq (%g)", gsl_monte_vegas_chisq(s)) #include "test_main.c" #undef NAME #undef MONTE_STATE #undef MONTE_ALLOC #undef MONTE_PARAMS #undef MONTE_INTEGRATE #undef MONTE_FREE #undef MONTE_ERROR_TEST #undef MONTE_SPEEDUP #endif exit (gsl_test_summary ()); } /* Simple constant function */ double fconst (double x[], size_t num_dim, void *params) { return 1; } /* Step-type (pulse) function */ double fstep (double x[], size_t num_dim, void *params) { return (x[0] > 0.1 && x[0] < 0.9) ? 1 : 0; } /* Simple product function */ double f0 (double x[], size_t num_dim, void *params) { double prod = 1.0; unsigned int i; for (i = 0; i < num_dim; ++i) { prod *= 2.0 * x[i]; } return prod; } /* Gaussian centered at 1/2. */ double f1 (double x[], size_t num_dim, void *params) { double a = *(double *)params; double sum = 0.; unsigned int i; for (i = 0; i < num_dim; i++) { double dx = x[i] - 0.5; sum += dx * dx; } return (pow (M_2_SQRTPI / (2. * a), (double) num_dim) * exp (-sum / (a * a))); } /* double gaussian */ double f2 (double x[], size_t num_dim, void *params) { double a = *(double *)params; double sum1 = 0.; double sum2 = 0.; unsigned int i; for (i = 0; i < num_dim; i++) { double dx1 = x[i] - 1. / 3.; double dx2 = x[i] - 2. / 3.; sum1 += dx1 * dx1; sum2 += dx2 * dx2; } return 0.5 * pow (M_2_SQRTPI / (2. * a), num_dim) * (exp (-sum1 / (a * a)) + exp (-sum2 / (a * a))); } /* Tsuda's example */ double f3 (double x[], size_t num_dim, void *params) { double c = *(double *)params; double prod = 1.; unsigned int i; for (i = 0; i < num_dim; i++) { prod *= c / (c + 1) * pow((c + 1) / (c + x[i]), 2.0); } return prod; } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); } gsl-1.16/monte/Makefile.in0000664000252300025230000010425212172253756012354 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = monte DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog README TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmonte_la_LIBADD = am_libgslmonte_la_OBJECTS = miser.lo plain.lo vegas.lo libgslmonte_la_OBJECTS = $(am_libgslmonte_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmonte.la ../rng/libgslrng.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmonte_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmonte_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmonte.la libgslmonte_la_SOURCES = miser.c plain.c gsl_monte_vegas.h gsl_monte_miser.h gsl_monte_plain.h gsl_monte.h vegas.c pkginclude_HEADERS = gsl_monte.h gsl_monte_vegas.h gsl_monte_miser.h gsl_monte_plain.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslmonte.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la noinst_HEADERS = test_main.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu monte/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu monte/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmonte.la: $(libgslmonte_la_OBJECTS) $(libgslmonte_la_DEPENDENCIES) $(EXTRA_libgslmonte_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmonte_la_OBJECTS) $(libgslmonte_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/miser.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/plain.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/vegas.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES= demo.c #demo_LDADD = libgslmonte.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/monte/ChangeLog0000664000252300025230000001625112171574312012053 000000000000002009-07-25 Brian Gough * vegas.c (gsl_monte_vegas_params_get) (gsl_monte_vegas_params_set): added get/set functions for params (gsl_monte_vegas_chisq): added chisq accessor * gsl_monte_vegas.h: added separate params struct * miser.c (gsl_monte_miser_params_set) (gsl_monte_miser_params_get): added get/set functions for params * gsl_monte_miser.h: added separate params struct 2009-07-09 Brian Gough * vegas.c (gsl_monte_vegas_free): handle NULL argument in free * plain.c (gsl_monte_plain_free): handle NULL argument in free * miser.c (gsl_monte_miser_free): handle NULL argument in free 2009-02-10 Brian Gough * vegas.c (gsl_monte_vegas_integrate): use gsl_pow_int to compute tot_boxes, avoids potentially inaccurate pow functions (MinGW). 2008-11-20 Brian Gough * vegas.c (gsl_monte_vegas_integrate): improve the chisq calculation to avoid cancellation errors in the original formula (fixes bug #24510) * test.c (MONTE_ERROR_TEST): added test cases for negative chisq in vegas 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-04-26 Brian Gough * vegas.c (gsl_monte_vegas_integrate): compute running totals as volatile double to prevent problems with excess precision, use meaningful variable names for sum of squares, variance and sigma. * test_main.c: compute the ensemble mean more accurately for the tests * test.c: added a test for warm-start vegas, as well as cold-start * miser.c (gsl_monte_miser_integrate): catch zero weights to avoid division by zero * test.c (main): added test for step-type function 2004-06-02 Brian Gough * test_main.c: handle the case where sd==0 && error[i] !=0 more carefully Mon Apr 23 13:23:47 2001 Brian Gough * test_main.c: removed unused status variable Sat Jan 6 19:56:49 2001 Brian Gough * miser.c (gsl_monte_miser_free): fixed memory leak for s->hits_{r,l} * vegas.c (gsl_monte_vegas_free): fixed memory leak for s->x Fri Dec 22 21:43:04 2000 Brian Gough * miser.c: removed max-min estimation method for subvolumes. We will use the standard variance method and try to use a sufficient number of points to estimate the variance reliably. Wed Dec 20 21:32:40 2000 Brian Gough * vegas.c: tidied up the algorithm, deal with cases of sigma = 0 explicitly. Sat Dec 9 14:19:53 2000 Brian Gough * reorganization and clean up Thu Nov 16 19:50:27 2000 Brian Gough * miser.c: rewrite to fix overflows and make calling conventions consistent * plain.c: rewrite to fix overflows and make calling conventions consistent Thu Oct 26 20:06:36 2000 Brian Gough * plain.c (gsl_monte_plain_integrate): integer factor calls*(calls-1) used in numerical expression can easily overflow, changed to calls*(calls-1.0). Sat Oct 21 20:36:06 2000 Brian Gough * miser.c (gsl_monte_miser_integrate): fixed bug where hits_l was used in place of hits_r Tue Sep 19 19:16:37 2000 Brian Gough * plain.c (gsl_monte_plain_alloc): initialise check_done to avoid warning about use of unitialised memory * vegas.c (gsl_monte_vegas_alloc): as above * miser.c (gsl_monte_miser_alloc): as above * plain.c miser.c: removed use of sprintf for error messages Wed May 31 19:50:19 2000 Brian Gough * miser_test.c (main): increased tolerances to allow tests to pass with different compilers Mon May 15 15:26:22 2000 Brian Gough * vegas_test.c (main): added gsl_ieee_env_setup() to allow change of precision in tests * miser_test.c (main): ditto * plain_test.c (main): ditto Fri Feb 26 14:49:56 1999 Brian Gough * Makefile.am: removed ..._LDFLAGS = -static since this is specific to gcc Wed Nov 18 10:59:56 1998 Brian Gough * use standard headers templates_on.h and templates_off.h instead of source.h Tue Nov 17 16:49:12 1998 Brian Gough * added #include to all top-level source files * plain.c (gsl_monte_plain_integrate): replaced myMAX by GSL_MAX * utils.c: move macros around to avoid double definition Fri Aug 14 10:12:06 1998 Brian Gough * Makefile.am: I needed to add utils.h to libgslmonte_a_SOURCES to get it to work with my automake Thu Jul 30 17:31:29 1998 booth * gsl_monte_miser.h, miser.c: Turn off the annoying warning in miser unless the user requests it. Wed Jul 29 20:24:54 1998 bjg * Makefile.am, Makefile.in: some fixes to pass make distcheck * Makefile.am, Makefile.in: experimenting with new top level makefile.am Tue Jul 28 17:05:20 1998 booth * plain.c, vegas.c, miser.c: make all the _free functions check their argument. Also, the init functions now throw EFAULT if given a null pointer. * gsl_monte_vegas.h, vegas.c: vegas1, vegas2 and vegas3 all go away. Get them by setting the "stage" variabe appropriately. Also, make _free check its argument. * vegas.c, gsl_monte_vegas.h: minor cleanup prior to be change. * vegas.c: minor changes, commiting by accident. Mon Jul 27 22:52:49 1998 bjg * Makefile.in, Makefile.am: fixed some of the include requirements for make dist Mon Jul 27 15:19:54 1998 booth * vegas_print.h, vegas_test.c, miser_test.c, vegas-print.c, vegas.c, Attic/gsl_vegas.h, Attic/gsl_vegas_print.h, gsl_monte_vegas.h, miser.c, Attic/gsl_miser.h, Makefile.am, Makefile.in, gsl_monte_miser.h: Renamed public header files to follow convention correctly. * vegas.c, vegas_test.c, miser.c, miser_test.c, plain.c, plain_test.c, Attic/gsl_miser.h, Attic/gsl_vegas.h, gsl_monte_plain.h: All the integration functions now end with _integrate (except for vegas1, vegas2 and vegas3 which are going away RSN). Tue Jul 21 21:54:33 1998 booth * vegas.c, vegas-print.c, Attic/gsl_vegas_print.h, Attic/gsl_vegas.h: trivial stuff: eliminate compiler warnings, eliminate some unneeded variables, change some types to make consistent with plain and miser. * gsl_monte_plain.h, plain.c, plain_test.c: Make "plain" conform to same style as miser and vegas. Fri Jul 17 02:23:40 1998 jungman * Makefile.in: we're gonna make it... Thu Jul 16 16:23:45 1998 booth * vegas-print.c, vegas.c, Attic/gsl_vegas_print.h: Have now completely eliminated all static variables. * vegas_test.c, vegas.c, Attic/gsl_vegas.h, Attic/gsl_vegas_print.h, vegas-print.c: Continuing to remove all static variables from vegas. Wed Jul 15 19:10:24 1998 booth * vegas.c, vegas_test.c, Attic/gsl_vegas.h: Do the state-structure thing for vegas. Not finished, so far the only real content is the rng structure. gsl-1.16/monte/Makefile.am0000664000252300025230000000131312171574312012326 00000000000000noinst_LTLIBRARIES = libgslmonte.la libgslmonte_la_SOURCES = miser.c plain.c gsl_monte_vegas.h gsl_monte_miser.h gsl_monte_plain.h gsl_monte.h vegas.c pkginclude_HEADERS = gsl_monte.h gsl_monte_vegas.h gsl_monte_miser.h gsl_monte_plain.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) check_PROGRAMS = test #demo test_SOURCES = test.c test_LDADD = libgslmonte.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la noinst_HEADERS = test_main.c #demo_SOURCES= demo.c #demo_LDADD = libgslmonte.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la gsl-1.16/monte/gsl_monte_plain.h0000664000252300025230000000353412171574312013624 00000000000000/* monte/gsl_monte_plain.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Plain Monte-Carlo. */ /* Author: MJB */ #ifndef __GSL_MONTE_PLAIN_H__ #define __GSL_MONTE_PLAIN_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t dim; double *x; } gsl_monte_plain_state; int gsl_monte_plain_integrate (const gsl_monte_function * f, const double xl[], const double xu[], const size_t dim, const size_t calls, gsl_rng * r, gsl_monte_plain_state * state, double *result, double *abserr); gsl_monte_plain_state* gsl_monte_plain_alloc(size_t dim); int gsl_monte_plain_init(gsl_monte_plain_state* state); void gsl_monte_plain_free (gsl_monte_plain_state* state); __END_DECLS #endif /* __GSL_MONTE_PLAIN_H__ */ gsl-1.16/monte/README0000664000252300025230000000302112171574312011150 00000000000000G. P. Lepage, "VEGAS..." J. Comp. Phys. 27, 192(1978). W.H. Press, G.R. Farrar, "Miser..." Computers in Physics, v4 (1990), pp190-195 References from PVEGAS by Richard Kreckel [1]: G.P. Lepage: A New Algorithm for Adaptive Multidimensional Integration; Journal of Computational Physics 27, 192-203, (1978) [2]: W. Press, S. Teukolsky, W. Vetterling, B. Flannery: Numerical Recipes in C, (second edition) Cambridge University Press, 1992. [3]: R.C. Tausworthe: Random numbers generated by linear recurrence modulo two, Math. Comput. 19, 201-209, (1965) [4]: I. Deak: Uniform random number generators for parallel computers; Parallel Computing, 15, 155-164, (1990) [5]: R. Kreckel: Parallelization of adaptive MC integrators, MZ-TH/97-30, physics/9710028; Comp. Phys. Comm., 106, 258-266, (1997) (A preliminary version of this article can be retrieved via anonymous ftp from ftpthep.physik.uni-mainz.de in the directory /pub/pvegas/.) [6]: S. Veseli: Multidimensional integration in a heterogeneous network environment; FERMILAB-PUB-97/271-T; physics/9710017 [7]: R. Kreckel: Addendum: Parallelization of adaptive MC integrators, (Available via anonymous ftp from ftpthep.physik.uni-mainz.de in the directory /pub/pvegas/.) [8]: MPI-Forum: MPI: A Message-Passing Interface Standard, University of Tennessee, Knoxville, Tennessee, (1995) [9]: T. Ohl: Vegas Revisited: Adaptive Monte Carlo Integration Beyond Factorization; hep-ph/9806432 gsl-1.16/monte/miser.c0000664000252300025230000004201612171574312011562 00000000000000/* monte/miser.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* MISER. Based on the algorithm described in the following article, W.H. Press, G.R. Farrar, "Recursive Stratified Sampling for Multidimensional Monte Carlo Integration", Computers in Physics, v4 (1990), pp190-195. */ /* Author: MJB */ /* Modified by Brian Gough 12/2000 */ #include #include #include #include #include #include #include #include static int estimate_corrmc (gsl_monte_function * f, const double xl[], const double xu[], size_t dim, size_t calls, gsl_rng * r, gsl_monte_miser_state * state, double *result, double *abserr, const double xmid[], double sigma_l[], double sigma_r[]); int gsl_monte_miser_integrate (gsl_monte_function * f, const double xl[], const double xu[], size_t dim, size_t calls, gsl_rng * r, gsl_monte_miser_state * state, double *result, double *abserr) { size_t n, estimate_calls, calls_l, calls_r; const size_t min_calls = state->min_calls; size_t i; size_t i_bisect; int found_best; double res_est = 0, err_est = 0; double res_r = 0, err_r = 0, res_l = 0, err_l = 0; double xbi_l, xbi_m, xbi_r, s; double vol; double weight_l, weight_r; double *x = state->x; double *xmid = state->xmid; double *sigma_l = state->sigma_l, *sigma_r = state->sigma_r; if (dim != state->dim) { GSL_ERROR ("number of dimensions must match allocated size", GSL_EINVAL); } for (i = 0; i < dim; i++) { if (xu[i] <= xl[i]) { GSL_ERROR ("xu must be greater than xl", GSL_EINVAL); } if (xu[i] - xl[i] > GSL_DBL_MAX) { GSL_ERROR ("Range of integration is too large, please rescale", GSL_EINVAL); } } if (state->alpha < 0) { GSL_ERROR ("alpha must be non-negative", GSL_EINVAL); } /* Compute volume */ vol = 1; for (i = 0; i < dim; i++) { vol *= xu[i] - xl[i]; } if (calls < state->min_calls_per_bisection) { double m = 0.0, q = 0.0; if (calls < 2) { GSL_ERROR ("insufficient calls for subvolume", GSL_EFAILED); } for (n = 0; n < calls; n++) { /* Choose a random point in the integration region */ for (i = 0; i < dim; i++) { x[i] = xl[i] + gsl_rng_uniform_pos (r) * (xu[i] - xl[i]); } { double fval = GSL_MONTE_FN_EVAL (f, x); /* recurrence for mean and variance */ double d = fval - m; m += d / (n + 1.0); q += d * d * (n / (n + 1.0)); } } *result = vol * m; *abserr = vol * sqrt (q / (calls * (calls - 1.0))); return GSL_SUCCESS; } estimate_calls = GSL_MAX (min_calls, calls * (state->estimate_frac)); if (estimate_calls < 4 * dim) { GSL_ERROR ("insufficient calls to sample all halfspaces", GSL_ESANITY); } /* Flip coins to bisect the integration region with some fuzz */ for (i = 0; i < dim; i++) { s = (gsl_rng_uniform (r) - 0.5) >= 0.0 ? state->dither : -state->dither; state->xmid[i] = (0.5 + s) * xl[i] + (0.5 - s) * xu[i]; } /* The idea is to chose the direction to bisect based on which will give the smallest total variance. We could (and may do so later) use MC to compute these variances. But the NR guys simply estimate the variances by finding the min and max function values for each half-region for each bisection. */ estimate_corrmc (f, xl, xu, dim, estimate_calls, r, state, &res_est, &err_est, xmid, sigma_l, sigma_r); /* We have now used up some calls for the estimation */ calls -= estimate_calls; /* Now find direction with the smallest total "variance" */ { double best_var = GSL_DBL_MAX; double beta = 2.0 / (1.0 + state->alpha); found_best = 0; i_bisect = 0; weight_l = weight_r = 1.0; for (i = 0; i < dim; i++) { if (sigma_l[i] >= 0 && sigma_r[i] >= 0) { /* estimates are okay */ double var = pow (sigma_l[i], beta) + pow (sigma_r[i], beta); if (var <= best_var) { found_best = 1; best_var = var; i_bisect = i; weight_l = pow (sigma_l[i], beta); weight_r = pow (sigma_r[i], beta); if (weight_l == 0 && weight_r == 0) { weight_l = 1; weight_r = 1; } } } else { if (sigma_l[i] < 0) { GSL_ERROR ("no points in left-half space!", GSL_ESANITY); } if (sigma_r[i] < 0) { GSL_ERROR ("no points in right-half space!", GSL_ESANITY); } } } } if (!found_best) { /* All estimates were the same, so chose a direction at random */ i_bisect = gsl_rng_uniform_int (r, dim); } xbi_l = xl[i_bisect]; xbi_m = xmid[i_bisect]; xbi_r = xu[i_bisect]; /* Get the actual fractional sizes of the two "halves", and distribute the remaining calls among them */ { double fraction_l = fabs ((xbi_m - xbi_l) / (xbi_r - xbi_l)); double fraction_r = 1 - fraction_l; double a = fraction_l * weight_l; double b = fraction_r * weight_r; calls_l = min_calls + (calls - 2 * min_calls) * a / (a + b); calls_r = min_calls + (calls - 2 * min_calls) * b / (a + b); } /* Compute the integral for the left hand side of the bisection */ /* Due to the recursive nature of the algorithm we must allocate some new memory for each recursive call */ { int status; double *xu_tmp = (double *) malloc (dim * sizeof (double)); if (xu_tmp == 0) { GSL_ERROR_VAL ("out of memory for left workspace", GSL_ENOMEM, 0); } for (i = 0; i < dim; i++) { xu_tmp[i] = xu[i]; } xu_tmp[i_bisect] = xbi_m; status = gsl_monte_miser_integrate (f, xl, xu_tmp, dim, calls_l, r, state, &res_l, &err_l); free (xu_tmp); if (status != GSL_SUCCESS) { return status; } } /* Compute the integral for the right hand side of the bisection */ { int status; double *xl_tmp = (double *) malloc (dim * sizeof (double)); if (xl_tmp == 0) { GSL_ERROR_VAL ("out of memory for right workspace", GSL_ENOMEM, 0); } for (i = 0; i < dim; i++) { xl_tmp[i] = xl[i]; } xl_tmp[i_bisect] = xbi_m; status = gsl_monte_miser_integrate (f, xl_tmp, xu, dim, calls_r, r, state, &res_r, &err_r); free (xl_tmp); if (status != GSL_SUCCESS) { return status; } } *result = res_l + res_r; *abserr = sqrt (err_l * err_l + err_r * err_r); return GSL_SUCCESS; } gsl_monte_miser_state * gsl_monte_miser_alloc (size_t dim) { gsl_monte_miser_state *s = (gsl_monte_miser_state *) malloc (sizeof (gsl_monte_miser_state)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for miser state struct", GSL_ENOMEM, 0); } s->x = (double *) malloc (dim * sizeof (double)); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->xmid = (double *) malloc (dim * sizeof (double)); if (s->xmid == 0) { free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for xmid", GSL_ENOMEM, 0); } s->sigma_l = (double *) malloc (dim * sizeof (double)); if (s->sigma_l == 0) { free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for sigma_l", GSL_ENOMEM, 0); } s->sigma_r = (double *) malloc (dim * sizeof (double)); if (s->sigma_r == 0) { free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for sigma_r", GSL_ENOMEM, 0); } s->fmax_l = (double *) malloc (dim * sizeof (double)); if (s->fmax_l == 0) { free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fmax_l", GSL_ENOMEM, 0); } s->fmax_r = (double *) malloc (dim * sizeof (double)); if (s->fmax_r == 0) { free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fmax_r", GSL_ENOMEM, 0); } s->fmin_l = (double *) malloc (dim * sizeof (double)); if (s->fmin_l == 0) { free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fmin_l", GSL_ENOMEM, 0); } s->fmin_r = (double *) malloc (dim * sizeof (double)); if (s->fmin_r == 0) { free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fmin_r", GSL_ENOMEM, 0); } s->fsum_l = (double *) malloc (dim * sizeof (double)); if (s->fsum_l == 0) { free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum_l", GSL_ENOMEM, 0); } s->fsum_r = (double *) malloc (dim * sizeof (double)); if (s->fsum_r == 0) { free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum_r", GSL_ENOMEM, 0); } s->fsum2_l = (double *) malloc (dim * sizeof (double)); if (s->fsum2_l == 0) { free (s->fsum_r); free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum2_l", GSL_ENOMEM, 0); } s->fsum2_r = (double *) malloc (dim * sizeof (double)); if (s->fsum2_r == 0) { free (s->fsum2_l); free (s->fsum_r); free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum2_r", GSL_ENOMEM, 0); } s->hits_r = (size_t *) malloc (dim * sizeof (size_t)); if (s->hits_r == 0) { free (s->fsum2_r); free (s->fsum2_l); free (s->fsum_r); free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum2_r", GSL_ENOMEM, 0); } s->hits_l = (size_t *) malloc (dim * sizeof (size_t)); if (s->hits_l == 0) { free (s->hits_r); free (s->fsum2_r); free (s->fsum2_l); free (s->fsum_r); free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for fsum2_r", GSL_ENOMEM, 0); } s->dim = dim; gsl_monte_miser_init (s); return s; } int gsl_monte_miser_init (gsl_monte_miser_state * s) { /* We use 8 points in each halfspace to estimate the variance. There are 2*dim halfspaces. A variance estimate requires a minimum of 2 points. */ s->min_calls = 16 * s->dim; s->min_calls_per_bisection = 32 * s->min_calls; s->estimate_frac = 0.1; s->alpha = 2.0; s->dither = 0.0; return GSL_SUCCESS; } void gsl_monte_miser_free (gsl_monte_miser_state * s) { RETURN_IF_NULL (s); free (s->hits_r); free (s->hits_l); free (s->fsum2_r); free (s->fsum2_l); free (s->fsum_r); free (s->fsum_l); free (s->fmin_r); free (s->fmin_l); free (s->fmax_r); free (s->fmax_l); free (s->sigma_r); free (s->sigma_l); free (s->xmid); free (s->x); free (s); } void gsl_monte_miser_params_get (const gsl_monte_miser_state * s, gsl_monte_miser_params * p) { p->estimate_frac = s->estimate_frac; p->min_calls = s->min_calls; p->min_calls_per_bisection = s->min_calls_per_bisection; p->alpha = s->alpha; p->dither = s->dither; } void gsl_monte_miser_params_set (gsl_monte_miser_state * s, const gsl_monte_miser_params * p) { s->estimate_frac = p->estimate_frac; s->min_calls = p->min_calls; s->min_calls_per_bisection = p->min_calls_per_bisection; s->alpha = p->alpha; s->dither = p->dither; } static int estimate_corrmc (gsl_monte_function * f, const double xl[], const double xu[], size_t dim, size_t calls, gsl_rng * r, gsl_monte_miser_state * state, double *result, double *abserr, const double xmid[], double sigma_l[], double sigma_r[]) { size_t i, n; double *x = state->x; double *fsum_l = state->fsum_l; double *fsum_r = state->fsum_r; double *fsum2_l = state->fsum2_l; double *fsum2_r = state->fsum2_r; size_t *hits_l = state->hits_l; size_t *hits_r = state->hits_r; double m = 0.0, q = 0.0; double vol = 1.0; for (i = 0; i < dim; i++) { vol *= xu[i] - xl[i]; hits_l[i] = hits_r[i] = 0; fsum_l[i] = fsum_r[i] = 0.0; fsum2_l[i] = fsum2_r[i] = 0.0; sigma_l[i] = sigma_r[i] = -1; } for (n = 0; n < calls; n++) { double fval; unsigned int j = (n/2) % dim; unsigned int side = (n % 2); for (i = 0; i < dim; i++) { double z = gsl_rng_uniform_pos (r) ; if (i != j) { x[i] = xl[i] + z * (xu[i] - xl[i]); } else { if (side == 0) { x[i] = xmid[i] + z * (xu[i] - xmid[i]); } else { x[i] = xl[i] + z * (xmid[i] - xl[i]); } } } fval = GSL_MONTE_FN_EVAL (f, x); /* recurrence for mean and variance */ { double d = fval - m; m += d / (n + 1.0); q += d * d * (n / (n + 1.0)); } /* compute the variances on each side of the bisection */ for (i = 0; i < dim; i++) { if (x[i] <= xmid[i]) { fsum_l[i] += fval; fsum2_l[i] += fval * fval; hits_l[i]++; } else { fsum_r[i] += fval; fsum2_r[i] += fval * fval; hits_r[i]++; } } } for (i = 0; i < dim; i++) { double fraction_l = (xmid[i] - xl[i]) / (xu[i] - xl[i]); if (hits_l[i] > 0) { fsum_l[i] /= hits_l[i]; sigma_l[i] = sqrt (fsum2_l[i] - fsum_l[i] * fsum_l[i] / hits_l[i]); sigma_l[i] *= fraction_l * vol / hits_l[i]; } if (hits_r[i] > 0) { fsum_r[i] /= hits_r[i]; sigma_r[i] = sqrt (fsum2_r[i] - fsum_r[i] * fsum_r[i] / hits_r[i]); sigma_r[i] *= (1 - fraction_l) * vol / hits_r[i]; } } *result = vol * m; if (calls < 2) { *abserr = GSL_POSINF; } else { *abserr = vol * sqrt (q / (calls * (calls - 1.0))); } return GSL_SUCCESS; } gsl-1.16/monte/gsl_monte_vegas.h0000664000252300025230000000624212171574312013625 00000000000000/* monte/gsl_monte_vegas.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* header for the gsl "vegas" routines. Mike Booth, May 1998 */ #ifndef __GSL_MONTE_VEGAS_H__ #define __GSL_MONTE_VEGAS_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS enum {GSL_VEGAS_MODE_IMPORTANCE = 1, GSL_VEGAS_MODE_IMPORTANCE_ONLY = 0, GSL_VEGAS_MODE_STRATIFIED = -1}; typedef struct { /* grid */ size_t dim; size_t bins_max; unsigned int bins; unsigned int boxes; /* these are both counted along the axes */ double * xi; double * xin; double * delx; double * weight; double vol; double * x; int * bin; int * box; /* distribution */ double * d; /* control variables */ double alpha; int mode; int verbose; unsigned int iterations; int stage; /* scratch variables preserved between calls to vegas1/2/3 */ double jac; double wtd_int_sum; double sum_wgts; double chi_sum; double chisq; double result; double sigma; unsigned int it_start; unsigned int it_num; unsigned int samples; unsigned int calls_per_box; FILE * ostream; } gsl_monte_vegas_state; int gsl_monte_vegas_integrate(gsl_monte_function * f, double xl[], double xu[], size_t dim, size_t calls, gsl_rng * r, gsl_monte_vegas_state *state, double* result, double* abserr); gsl_monte_vegas_state* gsl_monte_vegas_alloc(size_t dim); int gsl_monte_vegas_init(gsl_monte_vegas_state* state); void gsl_monte_vegas_free (gsl_monte_vegas_state* state); double gsl_monte_vegas_chisq (const gsl_monte_vegas_state* state); void gsl_monte_vegas_runval (const gsl_monte_vegas_state* state, double * result, double * sigma); typedef struct { double alpha; size_t iterations; int stage; int mode; int verbose; FILE * ostream; } gsl_monte_vegas_params; void gsl_monte_vegas_params_get (const gsl_monte_vegas_state * state, gsl_monte_vegas_params * params); void gsl_monte_vegas_params_set (gsl_monte_vegas_state * state, const gsl_monte_vegas_params * params); __END_DECLS #endif /* __GSL_MONTE_VEGAS_H__ */ gsl-1.16/monte/gsl_monte.h0000664000252300025230000000310112171574312012427 00000000000000/* monte/gsl_monte.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Some things common to all the Monte-Carlo implementations */ /* Author: MJB */ #ifndef __GSL_MONTE_H__ #define __GSL_MONTE_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Hide the function type in a typedef so that we can use it in all our integration functions, and make it easy to change things. */ struct gsl_monte_function_struct { double (*f)(double * x_array, size_t dim, void * params); size_t dim; void * params; }; typedef struct gsl_monte_function_struct gsl_monte_function; #define GSL_MONTE_FN_EVAL(F,x) (*((F)->f))(x,(F)->dim,(F)->params) __END_DECLS #endif /* __GSL_MONTE_H__ */ gsl-1.16/monte/vegas.c0000664000252300025230000005507012171574312011554 00000000000000/* monte/vegas.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: MJB */ /* Modified by: Brian Gough, 12/2000 */ /* This is an implementation of the adaptive Monte-Carlo algorithm of G. P. Lepage, originally described in J. Comp. Phys. 27, 192(1978). The current version of the algorithm was described in the Cornell preprint CLNS-80/447 of March, 1980. This code follows most closely the c version by D.R.Yennie, coded in 1984. The input coordinates are x[j], with upper and lower limits xu[j] and xl[j]. The integration length in the j-th direction is delx[j]. Each coordinate x[j] is rescaled to a variable y[j] in the range 0 to 1. The range is divided into bins with boundaries xi[i][j], where i=0 corresponds to y=0 and i=bins to y=1. The grid is refined (ie, bins are adjusted) using d[i][j] which is some variation on the squared sum. A third parameter used in defining the real coordinate using random numbers is called z. It ranges from 0 to bins. Its integer part gives the lower index of the bin into which a call is to be placed, and the remainder gives the location inside the bin. When stratified sampling is used the bins are grouped into boxes, and the algorithm allocates an equal number of function calls to each box. The variable alpha controls how "stiff" the rebinning algorithm is. alpha = 0 means never change the grid. Alpha is typically set between 1 and 2. */ /* configuration headers */ #include /* standard headers */ #include #include /* gsl headers */ #include #include #include #include /* lib-specific headers */ #define BINS_MAX 50 /* even integer, will be divided by two */ /* A separable grid with coordinates and values */ #define COORD(s,i,j) ((s)->xi[(i)*(s)->dim + (j)]) #define NEW_COORD(s,i) ((s)->xin[(i)]) #define VALUE(s,i,j) ((s)->d[(i)*(s)->dim + (j)]) #define USE_ORIGINAL_CHISQ_FORMULA 0 /* predeclare functions */ typedef int coord; static void init_grid (gsl_monte_vegas_state * s, double xl[], double xu[], size_t dim); static void reset_grid_values (gsl_monte_vegas_state * s); static void init_box_coord (gsl_monte_vegas_state * s, coord box[]); static int change_box_coord (gsl_monte_vegas_state * s, coord box[]); static void accumulate_distribution (gsl_monte_vegas_state * s, coord bin[], double y); static void random_point (double x[], coord bin[], double *bin_vol, const coord box[], const double xl[], const double xu[], gsl_monte_vegas_state * s, gsl_rng * r); static void resize_grid (gsl_monte_vegas_state * s, unsigned int bins); static void refine_grid (gsl_monte_vegas_state * s); static void print_lim (gsl_monte_vegas_state * state, double xl[], double xu[], unsigned long dim); static void print_head (gsl_monte_vegas_state * state, unsigned long num_dim, unsigned long calls, unsigned int it_num, unsigned int bins, unsigned int boxes); static void print_res (gsl_monte_vegas_state * state, unsigned int itr, double res, double err, double cum_res, double cum_err, double chi_sq); static void print_dist (gsl_monte_vegas_state * state, unsigned long dim); static void print_grid (gsl_monte_vegas_state * state, unsigned long dim); int gsl_monte_vegas_integrate (gsl_monte_function * f, double xl[], double xu[], size_t dim, size_t calls, gsl_rng * r, gsl_monte_vegas_state * state, double *result, double *abserr) { double cum_int, cum_sig; size_t i, k, it; if (dim != state->dim) { GSL_ERROR ("number of dimensions must match allocated size", GSL_EINVAL); } for (i = 0; i < dim; i++) { if (xu[i] <= xl[i]) { GSL_ERROR ("xu must be greater than xl", GSL_EINVAL); } if (xu[i] - xl[i] > GSL_DBL_MAX) { GSL_ERROR ("Range of integration is too large, please rescale", GSL_EINVAL); } } if (state->stage == 0) { init_grid (state, xl, xu, dim); if (state->verbose >= 0) { print_lim (state, xl, xu, dim); } } if (state->stage <= 1) { state->wtd_int_sum = 0; state->sum_wgts = 0; state->chi_sum = 0; state->it_num = 1; state->samples = 0; state->chisq = 0; } if (state->stage <= 2) { unsigned int bins = state->bins_max; unsigned int boxes = 1; if (state->mode != GSL_VEGAS_MODE_IMPORTANCE_ONLY) { /* shooting for 2 calls/box */ boxes = floor (pow (calls / 2.0, 1.0 / dim)); state->mode = GSL_VEGAS_MODE_IMPORTANCE; if (2 * boxes >= state->bins_max) { /* if bins/box < 2 */ int box_per_bin = GSL_MAX (boxes / state->bins_max, 1); bins = GSL_MIN(boxes / box_per_bin, state->bins_max); boxes = box_per_bin * bins; state->mode = GSL_VEGAS_MODE_STRATIFIED; } } { double tot_boxes = gsl_pow_int ((double) boxes, dim); state->calls_per_box = GSL_MAX (calls / tot_boxes, 2); calls = state->calls_per_box * tot_boxes; } /* total volume of x-space/(avg num of calls/bin) */ state->jac = state->vol * pow ((double) bins, (double) dim) / calls; state->boxes = boxes; /* If the number of bins changes from the previous invocation, bins are expanded or contracted accordingly, while preserving bin density */ if (bins != state->bins) { resize_grid (state, bins); if (state->verbose > 1) { print_grid (state, dim); } } if (state->verbose >= 0) { print_head (state, dim, calls, state->it_num, state->bins, state->boxes); } } state->it_start = state->it_num; cum_int = 0.0; cum_sig = 0.0; for (it = 0; it < state->iterations; it++) { double intgrl = 0.0, intgrl_sq = 0.0; double tss = 0.0; double wgt, var, sig; size_t calls_per_box = state->calls_per_box; double jacbin = state->jac; double *x = state->x; coord *bin = state->bin; state->it_num = state->it_start + it; reset_grid_values (state); init_box_coord (state, state->box); do { volatile double m = 0, q = 0; double f_sq_sum = 0.0; for (k = 0; k < calls_per_box; k++) { volatile double fval; double bin_vol; random_point (x, bin, &bin_vol, state->box, xl, xu, state, r); fval = jacbin * bin_vol * GSL_MONTE_FN_EVAL (f, x); /* recurrence for mean and variance (sum of squares) */ { double d = fval - m; m += d / (k + 1.0); q += d * d * (k / (k + 1.0)); } if (state->mode != GSL_VEGAS_MODE_STRATIFIED) { double f_sq = fval * fval; accumulate_distribution (state, bin, f_sq); } } intgrl += m * calls_per_box; f_sq_sum = q * calls_per_box; tss += f_sq_sum; if (state->mode == GSL_VEGAS_MODE_STRATIFIED) { accumulate_distribution (state, bin, f_sq_sum); } } while (change_box_coord (state, state->box)); /* Compute final results for this iteration */ var = tss / (calls_per_box - 1.0) ; if (var > 0) { wgt = 1.0 / var; } else if (state->sum_wgts > 0) { wgt = state->sum_wgts / state->samples; } else { wgt = 0.0; } intgrl_sq = intgrl * intgrl; sig = sqrt (var); state->result = intgrl; state->sigma = sig; if (wgt > 0.0) { double sum_wgts = state->sum_wgts; double wtd_int_sum = state->wtd_int_sum; double m = (sum_wgts > 0) ? (wtd_int_sum / sum_wgts) : 0; double q = intgrl - m; state->samples++ ; state->sum_wgts += wgt; state->wtd_int_sum += intgrl * wgt; state->chi_sum += intgrl_sq * wgt; cum_int = state->wtd_int_sum / state->sum_wgts; cum_sig = sqrt (1 / state->sum_wgts); #if USE_ORIGINAL_CHISQ_FORMULA /* This is the chisq formula from the original Lepage paper. It computes the variance from - ^2 and can suffer from catastrophic cancellations, e.g. returning negative chisq. */ if (state->samples > 1) { state->chisq = (state->chi_sum - state->wtd_int_sum * cum_int) / (state->samples - 1.0); } #else /* The new formula below computes exactly the same quantity as above but using a stable recurrence */ if (state->samples == 1) { state->chisq = 0; } else { state->chisq *= (state->samples - 2.0); state->chisq += (wgt / (1 + (wgt / sum_wgts))) * q * q; state->chisq /= (state->samples - 1.0); } #endif } else { cum_int += (intgrl - cum_int) / (it + 1.0); cum_sig = 0.0; } if (state->verbose >= 0) { print_res (state, state->it_num, intgrl, sig, cum_int, cum_sig, state->chisq); if (it + 1 == state->iterations && state->verbose > 0) { print_grid (state, dim); } } if (state->verbose > 1) { print_dist (state, dim); } refine_grid (state); if (state->verbose > 1) { print_grid (state, dim); } } /* By setting stage to 1 further calls will generate independent estimates based on the same grid, although it may be rebinned. */ state->stage = 1; *result = cum_int; *abserr = cum_sig; return GSL_SUCCESS; } gsl_monte_vegas_state * gsl_monte_vegas_alloc (size_t dim) { gsl_monte_vegas_state *s = (gsl_monte_vegas_state *) malloc (sizeof (gsl_monte_vegas_state)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for vegas state struct", GSL_ENOMEM, 0); } s->delx = (double *) malloc (dim * sizeof (double)); if (s->delx == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for delx", GSL_ENOMEM, 0); } s->d = (double *) malloc (BINS_MAX * dim * sizeof (double)); if (s->d == 0) { free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for d", GSL_ENOMEM, 0); } s->xi = (double *) malloc ((BINS_MAX + 1) * dim * sizeof (double)); if (s->xi == 0) { free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for xi", GSL_ENOMEM, 0); } s->xin = (double *) malloc ((BINS_MAX + 1) * sizeof (double)); if (s->xin == 0) { free (s->xi); free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for xin", GSL_ENOMEM, 0); } s->weight = (double *) malloc (BINS_MAX * sizeof (double)); if (s->weight == 0) { free (s->xin); free (s->xi); free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for xin", GSL_ENOMEM, 0); } s->box = (coord *) malloc (dim * sizeof (coord)); if (s->box == 0) { free (s->weight); free (s->xin); free (s->xi); free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for box", GSL_ENOMEM, 0); } s->bin = (coord *) malloc (dim * sizeof (coord)); if (s->bin == 0) { free (s->box); free (s->weight); free (s->xin); free (s->xi); free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for bin", GSL_ENOMEM, 0); } s->x = (double *) malloc (dim * sizeof (double)); if (s->x == 0) { free (s->bin); free (s->box); free (s->weight); free (s->xin); free (s->xi); free (s->d); free (s->delx); free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->dim = dim; s->bins_max = BINS_MAX; gsl_monte_vegas_init (s); return s; } /* Set some default values and whatever */ int gsl_monte_vegas_init (gsl_monte_vegas_state * state) { state->stage = 0; state->alpha = 1.5; state->verbose = -1; state->iterations = 5; state->mode = GSL_VEGAS_MODE_IMPORTANCE; state->chisq = 0; state->bins = state->bins_max; state->ostream = stdout; return GSL_SUCCESS; } void gsl_monte_vegas_free (gsl_monte_vegas_state * s) { RETURN_IF_NULL (s); free (s->x); free (s->delx); free (s->d); free (s->xi); free (s->xin); free (s->weight); free (s->box); free (s->bin); free (s); } double gsl_monte_vegas_chisq (const gsl_monte_vegas_state * s) { return s->chisq; } void gsl_monte_vegas_runval (const gsl_monte_vegas_state * s, double * result, double * sigma) { *result = s->result; *sigma = s->sigma; } void gsl_monte_vegas_params_get (const gsl_monte_vegas_state * s, gsl_monte_vegas_params * p) { p->alpha = s->alpha; p->iterations = s->iterations; p->stage = s->stage; p->mode = s->mode; p->verbose = s->verbose; p->ostream = s->ostream; } void gsl_monte_vegas_params_set (gsl_monte_vegas_state * s, const gsl_monte_vegas_params * p) { s->alpha = p->alpha; s->iterations = p->iterations; s->stage = p->stage; s->mode = p->mode; s->verbose = p->verbose; s->ostream = p->ostream; } static void init_box_coord (gsl_monte_vegas_state * s, coord box[]) { size_t i; size_t dim = s->dim; for (i = 0; i < dim; i++) { box[i] = 0; } } /* change_box_coord steps through the box coord like {0,0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}, {1, 2}, ... */ static int change_box_coord (gsl_monte_vegas_state * s, coord box[]) { int j = s->dim - 1; int ng = s->boxes; while (j >= 0) { box[j] = (box[j] + 1) % ng; if (box[j] != 0) { return 1; } j--; } return 0; } static void init_grid (gsl_monte_vegas_state * s, double xl[], double xu[], size_t dim) { size_t j; double vol = 1.0; s->bins = 1; for (j = 0; j < dim; j++) { double dx = xu[j] - xl[j]; s->delx[j] = dx; vol *= dx; COORD (s, 0, j) = 0.0; COORD (s, 1, j) = 1.0; } s->vol = vol; } static void reset_grid_values (gsl_monte_vegas_state * s) { size_t i, j; size_t dim = s->dim; size_t bins = s->bins; for (i = 0; i < bins; i++) { for (j = 0; j < dim; j++) { VALUE (s, i, j) = 0.0; } } } static void accumulate_distribution (gsl_monte_vegas_state * s, coord bin[], double y) { size_t j; size_t dim = s->dim; for (j = 0; j < dim; j++) { int i = bin[j]; VALUE (s, i, j) += y; } } static void random_point (double x[], coord bin[], double *bin_vol, const coord box[], const double xl[], const double xu[], gsl_monte_vegas_state * s, gsl_rng * r) { /* Use the random number generator r to return a random position x in a given box. The value of bin gives the bin location of the random position (there may be several bins within a given box) */ double vol = 1.0; size_t j; size_t dim = s->dim; size_t bins = s->bins; size_t boxes = s->boxes; DISCARD_POINTER(xu); /* prevent warning about unused parameter */ for (j = 0; j < dim; ++j) { /* box[j] + ran gives the position in the box units, while z is the position in bin units. */ double z = ((box[j] + gsl_rng_uniform_pos (r)) / boxes) * bins; int k = z; double y, bin_width; bin[j] = k; if (k == 0) { bin_width = COORD (s, 1, j); y = z * bin_width; } else { bin_width = COORD (s, k + 1, j) - COORD (s, k, j); y = COORD (s, k, j) + (z - k) * bin_width; } x[j] = xl[j] + y * s->delx[j]; vol *= bin_width; } *bin_vol = vol; } static void resize_grid (gsl_monte_vegas_state * s, unsigned int bins) { size_t j, k; size_t dim = s->dim; /* weight is ratio of bin sizes */ double pts_per_bin = (double) s->bins / (double) bins; for (j = 0; j < dim; j++) { double xold; double xnew = 0; double dw = 0; int i = 1; for (k = 1; k <= s->bins; k++) { dw += 1.0; xold = xnew; xnew = COORD (s, k, j); for (; dw > pts_per_bin; i++) { dw -= pts_per_bin; NEW_COORD (s, i) = xnew - (xnew - xold) * dw; } } for (k = 1 ; k < bins; k++) { COORD(s, k, j) = NEW_COORD(s, k); } COORD (s, bins, j) = 1; } s->bins = bins; } static void refine_grid (gsl_monte_vegas_state * s) { size_t i, j, k; size_t dim = s->dim; size_t bins = s->bins; for (j = 0; j < dim; j++) { double grid_tot_j, tot_weight; double * weight = s->weight; double oldg = VALUE (s, 0, j); double newg = VALUE (s, 1, j); VALUE (s, 0, j) = (oldg + newg) / 2; grid_tot_j = VALUE (s, 0, j); /* This implements gs[i][j] = (gs[i-1][j]+gs[i][j]+gs[i+1][j])/3 */ for (i = 1; i < bins - 1; i++) { double rc = oldg + newg; oldg = newg; newg = VALUE (s, i + 1, j); VALUE (s, i, j) = (rc + newg) / 3; grid_tot_j += VALUE (s, i, j); } VALUE (s, bins - 1, j) = (newg + oldg) / 2; grid_tot_j += VALUE (s, bins - 1, j); tot_weight = 0; for (i = 0; i < bins; i++) { weight[i] = 0; if (VALUE (s, i, j) > 0) { oldg = grid_tot_j / VALUE (s, i, j); /* damped change */ weight[i] = pow (((oldg - 1) / oldg / log (oldg)), s->alpha); } tot_weight += weight[i]; #ifdef DEBUG printf("weight[%d] = %g\n", i, weight[i]); #endif } { double pts_per_bin = tot_weight / bins; double xold; double xnew = 0; double dw = 0; i = 1; for (k = 0; k < bins; k++) { dw += weight[k]; xold = xnew; xnew = COORD (s, k + 1, j); for (; dw > pts_per_bin; i++) { dw -= pts_per_bin; NEW_COORD (s, i) = xnew - (xnew - xold) * dw / weight[k]; } } for (k = 1 ; k < bins ; k++) { COORD(s, k, j) = NEW_COORD(s, k); } COORD (s, bins, j) = 1; } } } static void print_lim (gsl_monte_vegas_state * state, double xl[], double xu[], unsigned long dim) { unsigned long j; fprintf (state->ostream, "The limits of integration are:\n"); for (j = 0; j < dim; ++j) fprintf (state->ostream, "\nxl[%lu]=%f xu[%lu]=%f", j, xl[j], j, xu[j]); fprintf (state->ostream, "\n"); fflush (state->ostream); } static void print_head (gsl_monte_vegas_state * state, unsigned long num_dim, unsigned long calls, unsigned int it_num, unsigned int bins, unsigned int boxes) { fprintf (state->ostream, "\nnum_dim=%lu, calls=%lu, it_num=%d, max_it_num=%d ", num_dim, calls, it_num, state->iterations); fprintf (state->ostream, "verb=%d, alph=%.2f,\nmode=%d, bins=%d, boxes=%d\n", state->verbose, state->alpha, state->mode, bins, boxes); fprintf (state->ostream, "\n single.......iteration "); fprintf (state->ostream, "accumulated......results \n"); fprintf (state->ostream, "iteration integral sigma integral "); fprintf (state->ostream, " sigma chi-sq/it\n\n"); fflush (state->ostream); } static void print_res (gsl_monte_vegas_state * state, unsigned int itr, double res, double err, double cum_res, double cum_err, double chi_sq) { fprintf (state->ostream, "%4d %6.4e %10.2e %6.4e %8.2e %10.2e\n", itr, res, err, cum_res, cum_err, chi_sq); fflush (state->ostream); } static void print_dist (gsl_monte_vegas_state * state, unsigned long dim) { unsigned long i, j; int p = state->verbose; if (p < 1) return; for (j = 0; j < dim; ++j) { fprintf (state->ostream, "\n axis %lu \n", j); fprintf (state->ostream, " x g\n"); for (i = 0; i < state->bins; i++) { fprintf (state->ostream, "weight [%11.2e , %11.2e] = ", COORD (state, i, j), COORD(state,i+1,j)); fprintf (state->ostream, " %11.2e\n", VALUE (state, i, j)); } fprintf (state->ostream, "\n"); } fprintf (state->ostream, "\n"); fflush (state->ostream); } static void print_grid (gsl_monte_vegas_state * state, unsigned long dim) { unsigned long i, j; int p = state->verbose; if (p < 1) return; for (j = 0; j < dim; ++j) { fprintf (state->ostream, "\n axis %lu \n", j); fprintf (state->ostream, " x \n"); for (i = 0; i <= state->bins; i++) { fprintf (state->ostream, "%11.2e", COORD (state, i, j)); if (i % 5 == 4) fprintf (state->ostream, "\n"); } fprintf (state->ostream, "\n"); } fprintf (state->ostream, "\n"); fflush (state->ostream); } gsl-1.16/monte/gsl_monte_miser.h0000664000252300025230000000514612171574312013641 00000000000000/* monte/gsl_monte_miser.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Michael Booth * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: MJB */ #ifndef __GSL_MONTE_MISER_H__ #define __GSL_MONTE_MISER_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t min_calls; size_t min_calls_per_bisection; double dither; double estimate_frac; double alpha; size_t dim; int estimate_style; int depth; int verbose; double * x; double * xmid; double * sigma_l; double * sigma_r; double * fmax_l; double * fmax_r; double * fmin_l; double * fmin_r; double * fsum_l; double * fsum_r; double * fsum2_l; double * fsum2_r; size_t * hits_l; size_t * hits_r; } gsl_monte_miser_state; int gsl_monte_miser_integrate(gsl_monte_function * f, const double xl[], const double xh[], size_t dim, size_t calls, gsl_rng *r, gsl_monte_miser_state* state, double *result, double *abserr); gsl_monte_miser_state* gsl_monte_miser_alloc(size_t dim); int gsl_monte_miser_init(gsl_monte_miser_state* state); void gsl_monte_miser_free(gsl_monte_miser_state* state); typedef struct { double estimate_frac; size_t min_calls; size_t min_calls_per_bisection; double alpha; double dither; } gsl_monte_miser_params; void gsl_monte_miser_params_get (const gsl_monte_miser_state * state, gsl_monte_miser_params * params); void gsl_monte_miser_params_set (gsl_monte_miser_state * state, const gsl_monte_miser_params * params); __END_DECLS #endif /* __GSL_MONTE_MISER_H__ */ gsl-1.16/gsl-histogram.c0000664000252300025230000000364012171574312012101 00000000000000/* histogram/gsl-histogram.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int main (int argc, char **argv) { double a = 0.0, b = 1.0; size_t n = 10; if (argc != 3 && argc !=4) { printf ("Usage: gsl-histogram xmin xmax [n]\n"); printf ( "Computes a histogram of the data on stdin using n bins from xmin to xmax.\n" "If n is unspecified then bins of integer width are used.\n"); exit (0); } a = atof (argv[1]); b = atof (argv[2]); if (argc == 4) { n = atoi (argv[3]); } else { n = (int)(b - a) ; } { double x; gsl_histogram *h = gsl_histogram_alloc (n); gsl_histogram_set_ranges_uniform (h, a, b); while (fscanf(stdin, "%lg", &x) == 1) { gsl_histogram_increment(h, x); } #ifdef DISPLAY_STATS { double mean = gsl_histogram_mean (h); double sigma = gsl_histogram_sigma (h); fprintf (stdout, "# mean = %g\n", mean); fprintf (stdout, "# sigma = %g\n", sigma); } #endif gsl_histogram_fprintf (stdout, h, "%g", "%g"); gsl_histogram_free (h); } return 0; } gsl-1.16/multiset/0000775000252300025230000000000012172254156011102 500000000000000gsl-1.16/multiset/TODO0000664000252300025230000000020712171574312011507 00000000000000# -*- org -*- #+CATEGORY: multiset * The module has a lot of overlap with combination/ some of the functions could be abstracted out. gsl-1.16/multiset/inline.c0000664000252300025230000000160712171574312012446 00000000000000/* multiset/inline.c * * Copyright (C) 2008 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/multiset/test.c0000664000252300025230000002057612171574312012155 00000000000000/* multiset/test.c * based on combination/test.c by Szymon Jaroszewicz * based on permutation/test.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include size_t c63[56][3] = { { 0,0,0 }, { 0,0,1 }, { 0,0,2 }, { 0,0,3 }, { 0,0,4 }, { 0,0,5 }, { 0,1,1 }, { 0,1,2 }, { 0,1,3 }, { 0,1,4 }, { 0,1,5 }, { 0,2,2 }, { 0,2,3 }, { 0,2,4 }, { 0,2,5 }, { 0,3,3 }, { 0,3,4 }, { 0,3,5 }, { 0,4,4 }, { 0,4,5 }, { 0,5,5 }, { 1,1,1 }, { 1,1,2 }, { 1,1,3 }, { 1,1,4 }, { 1,1,5 }, { 1,2,2 }, { 1,2,3 }, { 1,2,4 }, { 1,2,5 }, { 1,3,3 }, { 1,3,4 }, { 1,3,5 }, { 1,4,4 }, { 1,4,5 }, { 1,5,5 }, { 2,2,2 }, { 2,2,3 }, { 2,2,4 }, { 2,2,5 }, { 2,3,3 }, { 2,3,4 }, { 2,3,5 }, { 2,4,4 }, { 2,4,5 }, { 2,5,5 }, { 3,3,3 }, { 3,3,4 }, { 3,3,5 }, { 3,4,4 }, { 3,4,5 }, { 3,5,5 }, { 4,4,4 }, { 4,4,5 }, { 4,5,5 }, { 5,5,5 } } ; void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { size_t i, j; int status = 0, s; gsl_multiset * c ; gsl_ieee_env_setup (); c = gsl_multiset_alloc (6,3); /* Test multisets in forward order */ gsl_multiset_init_first (c); i = 0; do { if ( i >= 56 ) { status = 1; break; } for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[i][j]); } { int s1 = gsl_multiset_valid (c); gsl_test (s1, "gsl_multiset_valid (%u)", i); } i++; } while (gsl_multiset_next(c) == GSL_SUCCESS); gsl_test(status, "gsl_multiset_next, 6 choose 3 multiset, 56 steps"); gsl_multiset_next(c); gsl_multiset_next(c); gsl_multiset_next(c); for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[55][j]); } gsl_test(status, "gsl_multiset_next on the last multiset"); { int s1 = gsl_multiset_valid (c); gsl_test (s1, "gsl_multiset_valid on the last multiset"); } { gsl_multiset * d = gsl_multiset_alloc (6,3); gsl_multiset_memcpy (d, c); status = 0; for (j = 0; j < 3; j++) { status |= (d->data[j] != c->data[j]); } gsl_test (status, "gsl_multiset_memcpy, 6 choose 3 multiset"); gsl_multiset_free(d); } /* Now test multisets in reverse order */ gsl_multiset_init_last (c); i = 56; do { if ( i == 0 ) { status = 1; break; } i--; for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[i][j]); } { int s1 = gsl_multiset_valid (c); gsl_test (s1, "gsl_multiset_valid (%u)", i); } } while (gsl_multiset_prev(c) == GSL_SUCCESS); gsl_test(status, "gsl_multiset_prev, 6 choose 3 multiset, 20 steps"); gsl_multiset_prev(c); gsl_multiset_prev(c); gsl_multiset_prev(c); for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[0][j]); } gsl_test(status, "gsl_multiset_prev on the first multiset"); { int s1 = gsl_multiset_valid (c); gsl_test (s1, "gsl_multiset_valid on the first multiset"); } { gsl_multiset * d = gsl_multiset_alloc (6,3); gsl_multiset_memcpy (d, c); status = 0; for (j = 0; j < 3; j++) { status |= (d->data[j] != c->data[j]); } gsl_test (status, "gsl_multiset_memcpy, 6 choose 3 multiset"); gsl_multiset_free(d); } gsl_multiset_free (c); /* Check k = 3 strictly greater than n = 2 gives results */ /* {0, 0, 0}, {0, 0, 1}, {0, 1, 1,}, and {1, 1, 1}. */ c = gsl_multiset_calloc(2, 3); status |= (c->data[0] != 0); status |= (c->data[1] != 0); status |= (c->data[2] != 0); status |= (gsl_multiset_valid(c) != GSL_SUCCESS); status |= (gsl_multiset_next(c) == GSL_FAILURE); status |= (c->data[0] != 0); status |= (c->data[1] != 0); status |= (c->data[2] != 1); status |= (gsl_multiset_valid(c) != GSL_SUCCESS); status |= (gsl_multiset_next(c) == GSL_FAILURE); status |= (c->data[0] != 0); status |= (c->data[1] != 1); status |= (c->data[2] != 1); status |= (gsl_multiset_valid(c) != GSL_SUCCESS); status |= (gsl_multiset_next(c) == GSL_FAILURE); status |= (c->data[0] != 1); status |= (c->data[1] != 1); status |= (c->data[2] != 1); status |= (gsl_multiset_valid(c) != GSL_SUCCESS); status |= (gsl_multiset_next(c) != GSL_FAILURE); gsl_test(status, "gsl_multiset 2 choose 3"); gsl_multiset_free (c); c = gsl_multiset_calloc(7, 0); /* should return GSL_FAILURE every time */ status |= (gsl_multiset_next(c) != GSL_FAILURE); status |= (gsl_multiset_next(c) != GSL_FAILURE); status |= (gsl_multiset_prev(c) != GSL_FAILURE); status |= (gsl_multiset_prev(c) != GSL_FAILURE); gsl_test(status, "gsl_multiset 7 choose 0"); gsl_multiset_free (c); c = gsl_multiset_calloc(1, 1); /* should return GSL_FAILURE every time */ for(j = 0; j < 1; j++) { status |= (gsl_multiset_get(c, j) != j); } status |= (gsl_multiset_next(c) != GSL_FAILURE); for(j = 0; j < 1; j++) { status |= (gsl_multiset_get(c, j) != j); } status |= (gsl_multiset_next(c) != GSL_FAILURE); for(j = 0; j < 1; j++) { status |= (gsl_multiset_get(c, j) != j); } status |= (gsl_multiset_prev(c) != GSL_FAILURE); for(j = 0; j < 1; j++) { status |= (gsl_multiset_get(c, j) != j); } status |= (gsl_multiset_prev(c) != GSL_FAILURE); for(j = 0; j < 1; j++) { status |= (gsl_multiset_get(c, j) != j); } gsl_test(status, "gsl_multiset 7 choose 7"); gsl_multiset_free (c); c = gsl_multiset_calloc(6, 3); gsl_set_error_handler (&my_error_handler); c->data[0] = 1; c->data[1] = 2; c->data[2] = 1; s = gsl_multiset_valid (c); gsl_test (!s, "gsl_multiset_valid on an invalid multiset (1,1,2)"); c->data[0] = 2; c->data[1] = 1; c->data[2] = 0; s = gsl_multiset_valid (c); gsl_test (!s, "gsl_multiset_valid on an invalid multiset (2,1,0)"); c->data[0] = 1; c->data[1] = 2; c->data[2] = 0; s = gsl_multiset_valid (c); gsl_test (!s, "gsl_multiset_valid on an invalid multiset (1,2,0)"); { gsl_multiset * d = gsl_multiset_alloc (6,4); int s = gsl_multiset_memcpy (d, c); gsl_test (!s, "gsl_multiset_memcpy, (6,4) vs (6,3)"); gsl_multiset_free(d); } { gsl_multiset * d = gsl_multiset_alloc (7,3); int s = gsl_multiset_memcpy (d, c); gsl_test (!s, "gsl_multiset_memcpy, (7,3) vs (6,3)"); gsl_multiset_free(d); } { gsl_multiset * d = gsl_multiset_alloc (7,2); int s = gsl_multiset_memcpy (d, c); gsl_test (!s, "gsl_multiset_memcpy, (7,2) vs (6,3)"); gsl_multiset_free(d); } gsl_multiset_free (c); exit (gsl_test_summary()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err) ; } gsl-1.16/multiset/init.c0000664000252300025230000000523012171574312012127 00000000000000/* multiset/init.c * based on combination/init.c by Szymon Jaroszewicz * based on permutation/init.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * Copyright (C) 2009 Brian Gough * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_multiset * gsl_multiset_alloc (const size_t n, const size_t k) { gsl_multiset * c; if (n == 0) { GSL_ERROR_VAL ("multiset parameter n must be positive integer", GSL_EDOM, 0); } c = (gsl_multiset *) malloc (sizeof (gsl_multiset)); if (c == 0) { GSL_ERROR_VAL ("failed to allocate space for multiset struct", GSL_ENOMEM, 0); } if (k > 0) { c->data = (size_t *) malloc (k * sizeof (size_t)); if (c->data == 0) { free (c); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for multiset data", GSL_ENOMEM, 0); } } else { c->data = 0; } c->n = n; c->k = k; return c; } gsl_multiset * gsl_multiset_calloc (const size_t n, const size_t k) { size_t i; gsl_multiset * c = gsl_multiset_alloc (n, k); if (c == 0) return 0; /* initialize multiset to repeated first element */ for (i = 0; i < k; i++) { c->data[i] = 0; } return c; } void gsl_multiset_init_first (gsl_multiset * c) { const size_t k = c->k ; size_t i; /* initialize multiset to repeated first element */ for (i = 0; i < k; i++) { c->data[i] = 0; } } void gsl_multiset_init_last (gsl_multiset * c) { const size_t k = c->k ; size_t i; size_t n = c->n; /* initialize multiset to repeated last element */ for (i = 0; i < k; i++) { c->data[i] = n - 1; } } void gsl_multiset_free (gsl_multiset * c) { RETURN_IF_NULL (c); if (c->k > 0) free (c->data); free (c); } gsl-1.16/multiset/Makefile.in0000664000252300025230000010441312172253756013077 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = multiset DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmultiset_la_LIBADD = am_libgslmultiset_la_OBJECTS = init.lo file.lo multiset.lo inline.lo libgslmultiset_la_OBJECTS = $(am_libgslmultiset_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmultiset.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmultiset_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmultiset_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmultiset.la pkginclude_HEADERS = gsl_multiset.h INCLUDES = -I$(top_srcdir) libgslmultiset_la_SOURCES = init.c file.c multiset.c inline.c noinst_HEADERS = TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslmultiset.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu multiset/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu multiset/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmultiset.la: $(libgslmultiset_la_OBJECTS) $(libgslmultiset_la_DEPENDENCIES) $(EXTRA_libgslmultiset_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmultiset_la_OBJECTS) $(libgslmultiset_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/multiset.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #noinst_PROGRAMS = demo #demo_SOURCES = demo.c #demo_LDADD = libgslmultiset.la ../vector/libgslvector.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/multiset/ChangeLog0000664000252300025230000000077612171574312012604 000000000000002011-09-12 Rhys Ulerich * init.c (gsl_multiset_alloc): remove incorrect (k, n) constraint per question from Michael Underwood . k strictly greater than n is permissible. Incorrect constraint due to copy'n'pase from combinations logic. * multiset.c (gsl_multiset_valid): likewise * test.c: add tests to verify k > n working as expected. 2009-09-21 Rhys Ulerich * added multiset support to GSL based on combinations gsl-1.16/multiset/Makefile.am0000664000252300025230000000120612171574312013053 00000000000000noinst_LTLIBRARIES = libgslmultiset.la pkginclude_HEADERS = gsl_multiset.h INCLUDES = -I$(top_srcdir) libgslmultiset_la_SOURCES = init.c file.c multiset.c inline.c noinst_HEADERS = TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslmultiset.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #noinst_PROGRAMS = demo #demo_SOURCES = demo.c #demo_LDADD = libgslmultiset.la ../vector/libgslvector.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/multiset/multiset.c0000664000252300025230000000655612171574312013046 00000000000000/* multiset/multiset.c * based on combination/combination.c by Szymon Jaroszewicz * based on permutation/permutation.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include size_t gsl_multiset_n (const gsl_multiset * c) { return c->n ; } size_t gsl_multiset_k (const gsl_multiset * c) { return c->k ; } size_t * gsl_multiset_data (const gsl_multiset * c) { return c->data ; } int gsl_multiset_valid (gsl_multiset * c) { const size_t n = c->n ; const size_t k = c->k ; size_t i, j ; for (i = 0; i < k; i++) { const size_t ci = c->data[i]; if (ci >= n) { GSL_ERROR("multiset index outside range", GSL_FAILURE) ; } for (j = 0; j < i; j++) { if (c->data[j] > ci) { GSL_ERROR("multiset indices not in increasing order", GSL_FAILURE) ; } } } return GSL_SUCCESS; } int gsl_multiset_next (gsl_multiset * c) { /* Replaces c with the next multiset (in the standard lexicographical * ordering). Returns GSL_FAILURE if there is no next multiset. */ const size_t n = c->n; const size_t k = c->k; size_t *data = c->data; size_t i; if(k == 0) { return GSL_FAILURE; } i = k - 1; while(i > 0 && data[i] == n-1) { --i; } if (i == 0 && data[0] == n-1) { return GSL_FAILURE; } ++data[i]; while(i < k-1) { data[i+1] = data[i]; ++i; } return GSL_SUCCESS; } int gsl_multiset_prev (gsl_multiset * c) { /* Replaces c with the previous multiset (in the standard * lexicographical ordering). Returns GSL_FAILURE if there is no * previous multiset. */ const size_t n = c->n; const size_t k = c->k; size_t *data = c->data; size_t i; if(k == 0) { return GSL_FAILURE; } i = k - 1; while(i > 0 && data[i-1] == data[i]) { --i; } if(i == 0 && data[i] == 0) { return GSL_FAILURE; } data[i]--; if (data[i] < n-1) { while (i < k-1) { data[++i] = n - 1; } } return GSL_SUCCESS; } int gsl_multiset_memcpy (gsl_multiset * dest, const gsl_multiset * src) { const size_t src_n = src->n; const size_t src_k = src->k; const size_t dest_n = dest->n; const size_t dest_k = dest->k; if (src_n != dest_n || src_k != dest_k) { GSL_ERROR ("multiset lengths are not equal", GSL_EBADLEN); } { size_t j; for (j = 0; j < src_k; j++) { dest->data[j] = src->data[j]; } } return GSL_SUCCESS; } gsl-1.16/multiset/file.c0000664000252300025230000000470212171574312012106 00000000000000/* multiset/file.c * based on combination/file.c by Szymon Jaroszewicz * based on permutation/file.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #define IN_FORMAT "%lu" int gsl_multiset_fread (FILE * stream, gsl_multiset * c) { size_t k = c->k ; size_t * data = c->data ; size_t items = fread (data, sizeof (size_t), k, stream); if (items != k) { GSL_ERROR ("fread failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_multiset_fwrite (FILE * stream, const gsl_multiset * c) { size_t k = c->k ; size_t * data = c->data ; size_t items = fwrite (data, sizeof (size_t), k, stream); if (items != k) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_multiset_fprintf (FILE * stream, const gsl_multiset * c, const char *format) { size_t k = c->k ; size_t * data = c->data ; size_t i; for (i = 0; i < k; i++) { int status = fprintf (stream, format, data[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } } return GSL_SUCCESS; } int gsl_multiset_fscanf (FILE * stream, gsl_multiset * c) { size_t k = c->k ; size_t * data = c->data ; size_t i; for (i = 0; i < k; i++) { unsigned long j ; /* FIXME: what if size_t != unsigned long ??? want read in size_t but have to read in unsigned long to avoid error from compiler */ int status = fscanf (stream, IN_FORMAT, &j); if (status != 1) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } data[i] = j; } return GSL_SUCCESS; } gsl-1.16/multiset/gsl_multiset.h0000664000252300025230000000534012171574312013706 00000000000000/* multiset/gsl_multiset.h * based on combination/gsl_combination.h by Szymon Jaroszewicz * based on permutation/gsl_permutation.h by Brian Gough * * Copyright (C) 2009 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MULTISET_H__ #define __GSL_MULTISET_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_multiset_struct { size_t n; size_t k; size_t *data; }; typedef struct gsl_multiset_struct gsl_multiset; gsl_multiset *gsl_multiset_alloc (const size_t n, const size_t k); gsl_multiset *gsl_multiset_calloc (const size_t n, const size_t k); void gsl_multiset_init_first (gsl_multiset * c); void gsl_multiset_init_last (gsl_multiset * c); void gsl_multiset_free (gsl_multiset * c); int gsl_multiset_memcpy (gsl_multiset * dest, const gsl_multiset * src); int gsl_multiset_fread (FILE * stream, gsl_multiset * c); int gsl_multiset_fwrite (FILE * stream, const gsl_multiset * c); int gsl_multiset_fscanf (FILE * stream, gsl_multiset * c); int gsl_multiset_fprintf (FILE * stream, const gsl_multiset * c, const char *format); size_t gsl_multiset_n (const gsl_multiset * c); size_t gsl_multiset_k (const gsl_multiset * c); size_t * gsl_multiset_data (const gsl_multiset * c); int gsl_multiset_valid (gsl_multiset * c); int gsl_multiset_next (gsl_multiset * c); int gsl_multiset_prev (gsl_multiset * c); INLINE_DECL size_t gsl_multiset_get (const gsl_multiset * c, const size_t i); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_multiset_get (const gsl_multiset * c, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= c->k)) /* size_t is unsigned, can't be negative */ { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return c->data[i]; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_MULTISET_H__ */ gsl-1.16/fit/0000775000252300025230000000000012172254161010012 500000000000000gsl-1.16/fit/gsl_fit.h0000664000252300025230000000531412171574312011537 00000000000000/* fit/gsl_fit.h * * Copyright (C) 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FIT_H__ #define __GSL_FIT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_fit_linear (const double * x, const size_t xstride, const double * y, const size_t ystride, const size_t n, double * c0, double * c1, double * cov00, double * cov01, double * cov11, double * sumsq); int gsl_fit_wlinear (const double * x, const size_t xstride, const double * w, const size_t wstride, const double * y, const size_t ystride, const size_t n, double * c0, double * c1, double * cov00, double * cov01, double * cov11, double * chisq); int gsl_fit_linear_est (const double x, const double c0, const double c1, const double cov00, const double cov01, const double cov11, double *y, double *y_err); int gsl_fit_mul (const double * x, const size_t xstride, const double * y, const size_t ystride, const size_t n, double * c1, double * cov11, double * sumsq); int gsl_fit_wmul (const double * x, const size_t xstride, const double * w, const size_t wstride, const double * y, const size_t ystride, const size_t n, double * c1, double * cov11, double * sumsq); int gsl_fit_mul_est (const double x, const double c1, const double cov11, double *y, double *y_err); __END_DECLS #endif /* __GSL_FIT_H__ */ gsl-1.16/fit/linear.c0000664000252300025230000002034112171574312011352 00000000000000/* fit/linear.c * * Copyright (C) 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* Fit the data (x_i, y_i) to the linear relationship Y = c0 + c1 x returning, c0, c1 -- coefficients cov00, cov01, cov11 -- variance-covariance matrix of c0 and c1, sumsq -- sum of squares of residuals This fit can be used in the case where the errors for the data are uknown, but assumed equal for all points. The resulting variance-covariance matrix estimates the error in the coefficients from the observed variance of the points around the best fit line. */ int gsl_fit_linear (const double *x, const size_t xstride, const double *y, const size_t ystride, const size_t n, double *c0, double *c1, double *cov_00, double *cov_01, double *cov_11, double *sumsq) { double m_x = 0, m_y = 0, m_dx2 = 0, m_dxdy = 0; size_t i; for (i = 0; i < n; i++) { m_x += (x[i * xstride] - m_x) / (i + 1.0); m_y += (y[i * ystride] - m_y) / (i + 1.0); } for (i = 0; i < n; i++) { const double dx = x[i * xstride] - m_x; const double dy = y[i * ystride] - m_y; m_dx2 += (dx * dx - m_dx2) / (i + 1.0); m_dxdy += (dx * dy - m_dxdy) / (i + 1.0); } /* In terms of y = a + b x */ { double s2 = 0, d2 = 0; double b = m_dxdy / m_dx2; double a = m_y - m_x * b; *c0 = a; *c1 = b; /* Compute chi^2 = \sum (y_i - (a + b * x_i))^2 */ for (i = 0; i < n; i++) { const double dx = x[i * xstride] - m_x; const double dy = y[i * ystride] - m_y; const double d = dy - b * dx; d2 += d * d; } s2 = d2 / (n - 2.0); /* chisq per degree of freedom */ *cov_00 = s2 * (1.0 / n) * (1 + m_x * m_x / m_dx2); *cov_11 = s2 * 1.0 / (n * m_dx2); *cov_01 = s2 * (-m_x) / (n * m_dx2); *sumsq = d2; } return GSL_SUCCESS; } /* Fit the weighted data (x_i, w_i, y_i) to the linear relationship Y = c0 + c1 x returning, c0, c1 -- coefficients s0, s1 -- the standard deviations of c0 and c1, r -- the correlation coefficient between c0 and c1, chisq -- weighted sum of squares of residuals */ int gsl_fit_wlinear (const double *x, const size_t xstride, const double *w, const size_t wstride, const double *y, const size_t ystride, const size_t n, double *c0, double *c1, double *cov_00, double *cov_01, double *cov_11, double *chisq) { /* compute the weighted means and weighted deviations from the means */ /* wm denotes a "weighted mean", wm(f) = (sum_i w_i f_i) / (sum_i w_i) */ double W = 0, wm_x = 0, wm_y = 0, wm_dx2 = 0, wm_dxdy = 0; size_t i; for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { W += wi; wm_x += (x[i * xstride] - wm_x) * (wi / W); wm_y += (y[i * ystride] - wm_y) * (wi / W); } } W = 0; /* reset the total weight */ for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { const double dx = x[i * xstride] - wm_x; const double dy = y[i * ystride] - wm_y; W += wi; wm_dx2 += (dx * dx - wm_dx2) * (wi / W); wm_dxdy += (dx * dy - wm_dxdy) * (wi / W); } } /* In terms of y = a + b x */ { double d2 = 0; double b = wm_dxdy / wm_dx2; double a = wm_y - wm_x * b; *c0 = a; *c1 = b; *cov_00 = (1 / W) * (1 + wm_x * wm_x / wm_dx2); *cov_11 = 1 / (W * wm_dx2); *cov_01 = -wm_x / (W * wm_dx2); /* Compute chi^2 = \sum w_i (y_i - (a + b * x_i))^2 */ for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { const double dx = x[i * xstride] - wm_x; const double dy = y[i * ystride] - wm_y; const double d = dy - b * dx; d2 += wi * d * d; } } *chisq = d2; } return GSL_SUCCESS; } int gsl_fit_linear_est (const double x, const double c0, const double c1, const double cov00, const double cov01, const double cov11, double *y, double *y_err) { *y = c0 + c1 * x; *y_err = sqrt (cov00 + x * (2 * cov01 + cov11 * x)); return GSL_SUCCESS; } int gsl_fit_mul (const double *x, const size_t xstride, const double *y, const size_t ystride, const size_t n, double *c1, double *cov_11, double *sumsq) { double m_x = 0, m_y = 0, m_dx2 = 0, m_dxdy = 0; size_t i; for (i = 0; i < n; i++) { m_x += (x[i * xstride] - m_x) / (i + 1.0); m_y += (y[i * ystride] - m_y) / (i + 1.0); } for (i = 0; i < n; i++) { const double dx = x[i * xstride] - m_x; const double dy = y[i * ystride] - m_y; m_dx2 += (dx * dx - m_dx2) / (i + 1.0); m_dxdy += (dx * dy - m_dxdy) / (i + 1.0); } /* In terms of y = b x */ { double s2 = 0, d2 = 0; double b = (m_x * m_y + m_dxdy) / (m_x * m_x + m_dx2); *c1 = b; /* Compute chi^2 = \sum (y_i - b * x_i)^2 */ for (i = 0; i < n; i++) { const double dx = x[i * xstride] - m_x; const double dy = y[i * ystride] - m_y; const double d = (m_y - b * m_x) + dy - b * dx; d2 += d * d; } s2 = d2 / (n - 1.0); /* chisq per degree of freedom */ *cov_11 = s2 * 1.0 / (n * (m_x * m_x + m_dx2)); *sumsq = d2; } return GSL_SUCCESS; } int gsl_fit_wmul (const double *x, const size_t xstride, const double *w, const size_t wstride, const double *y, const size_t ystride, const size_t n, double *c1, double *cov_11, double *chisq) { /* compute the weighted means and weighted deviations from the means */ /* wm denotes a "weighted mean", wm(f) = (sum_i w_i f_i) / (sum_i w_i) */ double W = 0, wm_x = 0, wm_y = 0, wm_dx2 = 0, wm_dxdy = 0; size_t i; for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { W += wi; wm_x += (x[i * xstride] - wm_x) * (wi / W); wm_y += (y[i * ystride] - wm_y) * (wi / W); } } W = 0; /* reset the total weight */ for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { const double dx = x[i * xstride] - wm_x; const double dy = y[i * ystride] - wm_y; W += wi; wm_dx2 += (dx * dx - wm_dx2) * (wi / W); wm_dxdy += (dx * dy - wm_dxdy) * (wi / W); } } /* In terms of y = b x */ { double d2 = 0; double b = (wm_x * wm_y + wm_dxdy) / (wm_x * wm_x + wm_dx2); *c1 = b; *cov_11 = 1 / (W * (wm_x * wm_x + wm_dx2)); /* Compute chi^2 = \sum w_i (y_i - b * x_i)^2 */ for (i = 0; i < n; i++) { const double wi = w[i * wstride]; if (wi > 0) { const double dx = x[i * xstride] - wm_x; const double dy = y[i * ystride] - wm_y; const double d = (wm_y - b * wm_x) + (dy - b * dx); d2 += wi * d * d; } } *chisq = d2; } return GSL_SUCCESS; } int gsl_fit_mul_est (const double x, const double c1, const double cov11, double *y, double *y_err) { *y = c1 * x; *y_err = sqrt (cov11) * fabs (x); return GSL_SUCCESS; } gsl-1.16/fit/test.c0000664000252300025230000001405012171574312011057 00000000000000/* These tests are based on the NIST Statistical Reference Datasets See http://www.nist.gov/itl/div898/strd/index.html for more information. */ #include #include #include #include #include #include size_t norris_n = 36; double norris_x[] = { 0.2, 337.4, 118.2, 884.6, 10.1, 226.5, 666.3, 996.3, 448.6, 777.0, 558.2, 0.4, 0.6, 775.5, 666.9, 338.0, 447.5, 11.6, 556.0, 228.1, 995.8, 887.6, 120.2, 0.3, 0.3, 556.8, 339.1, 887.2, 999.0, 779.0, 11.1, 118.3, 229.2, 669.1, 448.9, 0.5 } ; double norris_y[] = { 0.1, 338.8, 118.1, 888.0, 9.2, 228.1, 668.5, 998.5, 449.1, 778.9, 559.2, 0.3, 0.1, 778.1, 668.8, 339.3, 448.9, 10.8, 557.7, 228.3, 998.0, 888.8, 119.6, 0.3, 0.6, 557.6, 339.3, 888.0, 998.5, 778.9, 10.2, 117.6, 228.9, 668.4, 449.2, 0.2}; size_t noint1_n = 11; double noint1_x[] = { 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70 }; double noint1_y[] = { 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140}; size_t noint2_n = 3; double noint2_x[] = { 4, 5, 6 } ; double noint2_y[] = { 3, 4, 4 } ; int main (void) { double x[1000], y[1000], w[1000]; size_t xstride = 2, wstride = 3, ystride = 5; size_t i; for (i = 0; i < norris_n; i++) { x[i*xstride] = norris_x[i]; w[i*wstride] = 1.0; y[i*ystride] = norris_y[i]; } gsl_ieee_env_setup(); { double c0, c1, cov00, cov01, cov11, sumsq; double expected_c0 = -0.262323073774029; double expected_c1 = 1.00211681802045; double expected_cov00 = pow(0.232818234301152, 2.0); double expected_cov01 = -7.74327536339570e-05; /* computed from octave */ double expected_cov11 = pow(0.429796848199937E-03, 2.0); double expected_sumsq = 26.6173985294224; gsl_fit_linear (x, xstride, y, ystride, norris_n, &c0, &c1, &cov00, &cov01, &cov11, &sumsq); /* gsl_fit_wlinear (x, xstride, w, wstride, y, ystride, norris_n, &c0, &c1, &cov00, &cov01, &cov11, &sumsq); */ gsl_test_rel (c0, expected_c0, 1e-10, "norris gsl_fit_linear c0") ; gsl_test_rel (c1, expected_c1, 1e-10, "norris gsl_fit_linear c1") ; gsl_test_rel (cov00, expected_cov00, 1e-10, "norris gsl_fit_linear cov00") ; gsl_test_rel (cov01, expected_cov01, 1e-10, "norris gsl_fit_linear cov01") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "norris gsl_fit_linear cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "norris gsl_fit_linear sumsq") ; } { double c0, c1, cov00, cov01, cov11, sumsq; double expected_c0 = -0.262323073774029; double expected_c1 = 1.00211681802045; double expected_cov00 = 6.92384428759429e-02; /* computed from octave */ double expected_cov01 = -9.89095016390515e-05; /* computed from octave */ double expected_cov11 = 2.35960747164148e-07; /* computed from octave */ double expected_sumsq = 26.6173985294224; gsl_fit_wlinear (x, xstride, w, wstride, y, ystride, norris_n, &c0, &c1, &cov00, &cov01, &cov11, &sumsq); gsl_test_rel (c0, expected_c0, 1e-10, "norris gsl_fit_wlinear c0") ; gsl_test_rel (c1, expected_c1, 1e-10, "norris gsl_fit_wlinear c1") ; gsl_test_rel (cov00, expected_cov00, 1e-10, "norris gsl_fit_wlinear cov00") ; gsl_test_rel (cov01, expected_cov01, 1e-10, "norris gsl_fit_wlinear cov01") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "norris gsl_fit_wlinear cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "norris gsl_fit_wlinear sumsq") ; } for (i = 0; i < noint1_n; i++) { x[i*xstride] = noint1_x[i]; w[i*wstride] = 1.0; y[i*ystride] = noint1_y[i]; } { double c1, cov11, sumsq; double expected_c1 = 2.07438016528926; double expected_cov11 = pow(0.165289256198347E-01, 2.0); double expected_sumsq = 127.272727272727; gsl_fit_mul (x, xstride, y, ystride, noint1_n, &c1, &cov11, &sumsq); gsl_test_rel (c1, expected_c1, 1e-10, "noint1 gsl_fit_mul c1") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "noint1 gsl_fit_mul cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "noint1 gsl_fit_mul sumsq") ; } { double c1, cov11, sumsq; double expected_c1 = 2.07438016528926; double expected_cov11 = 2.14661371686165e-05; /* computed from octave */ double expected_sumsq = 127.272727272727; gsl_fit_wmul (x, xstride, w, wstride, y, ystride, noint1_n, &c1, &cov11, &sumsq); gsl_test_rel (c1, expected_c1, 1e-10, "noint1 gsl_fit_wmul c1") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "noint1 gsl_fit_wmul cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "noint1 gsl_fit_wmul sumsq") ; } for (i = 0; i < noint2_n; i++) { x[i*xstride] = noint2_x[i]; w[i*wstride] = 1.0; y[i*ystride] = noint2_y[i]; } { double c1, cov11, sumsq; double expected_c1 = 0.727272727272727; double expected_cov11 = pow(0.420827318078432E-01, 2.0); double expected_sumsq = 0.272727272727273; gsl_fit_mul (x, xstride, y, ystride, noint2_n, &c1, &cov11, &sumsq); gsl_test_rel (c1, expected_c1, 1e-10, "noint2 gsl_fit_mul c1") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "noint2 gsl_fit_mul cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "noint2 gsl_fit_mul sumsq") ; } { double c1, cov11, sumsq; double expected_c1 = 0.727272727272727; double expected_cov11 = 1.29870129870130e-02 ; /* computed from octave */ double expected_sumsq = 0.272727272727273; gsl_fit_wmul (x, xstride, w, wstride, y, ystride, noint2_n, &c1, &cov11, &sumsq); gsl_test_rel (c1, expected_c1, 1e-10, "noint2 gsl_fit_wmul c1") ; gsl_test_rel (cov11, expected_cov11, 1e-10, "noint2 gsl_fit_wmul cov11") ; gsl_test_rel (sumsq, expected_sumsq, 1e-10, "noint2 gsl_fit_wmul sumsq") ; } /* now summarize the results */ exit (gsl_test_summary ()); } gsl-1.16/fit/Makefile.in0000664000252300025230000010334412172253755012014 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = fit DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslfit_la_LIBADD = am_libgslfit_la_OBJECTS = linear.lo libgslfit_la_OBJECTS = $(am_libgslfit_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslfit.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la \ ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslfit_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslfit_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslfit.la pkginclude_HEADERS = gsl_fit.h INCLUDES = -I$(top_srcdir) libgslfit_la_SOURCES = linear.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslfit.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu fit/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu fit/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslfit.la: $(libgslfit_la_OBJECTS) $(libgslfit_la_DEPENDENCIES) $(EXTRA_libgslfit_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslfit_la_OBJECTS) $(libgslfit_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/linear.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES = demo.c #demo_LDADD = libgslfit.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/fit/ChangeLog0000664000252300025230000000104512171574312011506 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-05-23 Brian Gough * gsl_fit.h linear.c (gsl_fit_mul_est, gsl_fit_linear_est): made parameters in prototypes for _est functions consistent, c00->cov00, c01->cov01, c11 -> cov11 2004-12-23 Brian Gough * gsl_fit.h: remove unused declarations Tue Sep 19 19:09:46 2000 Brian Gough * fit/test.c (main): removed unused variables gsl-1.16/fit/Makefile.am0000664000252300025230000000100512171574312011764 00000000000000noinst_LTLIBRARIES = libgslfit.la pkginclude_HEADERS = gsl_fit.h INCLUDES = -I$(top_srcdir) libgslfit_la_SOURCES = linear.c check_PROGRAMS = test #demo TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslfit.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la #demo_SOURCES = demo.c #demo_LDADD = libgslfit.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la gsl-1.16/block/0000775000252300025230000000000012172254156010326 500000000000000gsl-1.16/block/gsl_block_double.h0000664000252300025230000000421112171574312013704 00000000000000/* block/gsl_block_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_DOUBLE_H__ #define __GSL_BLOCK_DOUBLE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_struct { size_t size; double *data; }; typedef struct gsl_block_struct gsl_block; gsl_block *gsl_block_alloc (const size_t n); gsl_block *gsl_block_calloc (const size_t n); void gsl_block_free (gsl_block * b); int gsl_block_fread (FILE * stream, gsl_block * b); int gsl_block_fwrite (FILE * stream, const gsl_block * b); int gsl_block_fscanf (FILE * stream, gsl_block * b); int gsl_block_fprintf (FILE * stream, const gsl_block * b, const char *format); int gsl_block_raw_fread (FILE * stream, double * b, const size_t n, const size_t stride); int gsl_block_raw_fwrite (FILE * stream, const double * b, const size_t n, const size_t stride); int gsl_block_raw_fscanf (FILE * stream, double * b, const size_t n, const size_t stride); int gsl_block_raw_fprintf (FILE * stream, const double * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_size (const gsl_block * b); double * gsl_block_data (const gsl_block * b); __END_DECLS #endif /* __GSL_BLOCK_DOUBLE_H__ */ gsl-1.16/block/init_source.c0000664000252300025230000000367412171576230012746 00000000000000/* block/init_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE (gsl_block) * FUNCTION (gsl_block, alloc) (const size_t n) { TYPE (gsl_block) * b; if (n == 0) { GSL_ERROR_VAL ("block length n must be positive integer", GSL_EINVAL, 0); } b = (TYPE (gsl_block) *) malloc (sizeof (TYPE (gsl_block))); if (b == 0) { GSL_ERROR_VAL ("failed to allocate space for block struct", GSL_ENOMEM, 0); } b->data = (ATOMIC *) calloc (1, MULTIPLICITY * n * sizeof (ATOMIC)); if (b->data == 0) { free (b); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for block data", GSL_ENOMEM, 0); } b->size = n; return b; } TYPE (gsl_block) * FUNCTION (gsl_block, calloc) (const size_t n) { size_t i; TYPE (gsl_block) * b = FUNCTION (gsl_block, alloc) (n); if (b == 0) return 0; /* initialize block to zero */ for (i = 0; i < MULTIPLICITY * n; i++) { b->data[i] = 0; } return b; } void FUNCTION (gsl_block, free) (TYPE (gsl_block) * b) { RETURN_IF_NULL (b); free (b->data); free (b); } gsl-1.16/block/block.c0000664000252300025230000000337612171574312011513 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "block_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/block/fwrite_source.c0000664000252300025230000000551312171574312013274 00000000000000/* block/fwrite_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_block, fread) (FILE * stream, TYPE(gsl_block) * b) { size_t n = b->size ; ATOMIC * data = b->data ; size_t items = fread (data, MULTIPLICITY * sizeof (ATOMIC), n, stream); if (items != n) { GSL_ERROR ("fread failed", GSL_EFAILED); } return 0; } int FUNCTION (gsl_block, fwrite) (FILE * stream, const TYPE(gsl_block) * b) { size_t n = b->size ; ATOMIC * data = b->data ; size_t items = fwrite (data, MULTIPLICITY * sizeof (ATOMIC), n, stream); if (items != n) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } return 0; } int FUNCTION (gsl_block, raw_fread) (FILE * stream, ATOMIC * data, const size_t n, const size_t stride) { if (stride == 1) { size_t items = fread (data, MULTIPLICITY * sizeof (ATOMIC), n, stream); if (items != n) { GSL_ERROR ("fread failed", GSL_EFAILED); } } else { size_t i; for (i = 0; i < n; i++) { size_t item = fread (data + MULTIPLICITY * i * stride, MULTIPLICITY * sizeof (ATOMIC), 1, stream); if (item != 1) { GSL_ERROR ("fread failed", GSL_EFAILED); } } } return GSL_SUCCESS; } int FUNCTION (gsl_block, raw_fwrite) (FILE * stream, const ATOMIC * data, const size_t n, const size_t stride) { if (stride == 1) { size_t items = fwrite (data, MULTIPLICITY * sizeof (ATOMIC), n, stream); if (items != n) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } } else { size_t i; for (i = 0; i < n; i++) { size_t item = fwrite (data + MULTIPLICITY * i * stride, MULTIPLICITY * sizeof (ATOMIC), 1, stream); if (item != 1) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } } } return GSL_SUCCESS; } gsl-1.16/block/gsl_block_uint.h0000664000252300025230000000444212171574312013417 00000000000000/* block/gsl_block_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_UINT_H__ #define __GSL_BLOCK_UINT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_uint_struct { size_t size; unsigned int *data; }; typedef struct gsl_block_uint_struct gsl_block_uint; gsl_block_uint *gsl_block_uint_alloc (const size_t n); gsl_block_uint *gsl_block_uint_calloc (const size_t n); void gsl_block_uint_free (gsl_block_uint * b); int gsl_block_uint_fread (FILE * stream, gsl_block_uint * b); int gsl_block_uint_fwrite (FILE * stream, const gsl_block_uint * b); int gsl_block_uint_fscanf (FILE * stream, gsl_block_uint * b); int gsl_block_uint_fprintf (FILE * stream, const gsl_block_uint * b, const char *format); int gsl_block_uint_raw_fread (FILE * stream, unsigned int * b, const size_t n, const size_t stride); int gsl_block_uint_raw_fwrite (FILE * stream, const unsigned int * b, const size_t n, const size_t stride); int gsl_block_uint_raw_fscanf (FILE * stream, unsigned int * b, const size_t n, const size_t stride); int gsl_block_uint_raw_fprintf (FILE * stream, const unsigned int * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_uint_size (const gsl_block_uint * b); unsigned int * gsl_block_uint_data (const gsl_block_uint * b); __END_DECLS #endif /* __GSL_BLOCK_UINT_H__ */ gsl-1.16/block/test.c0000664000252300025230000001160112171574312011366 00000000000000/* block/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include int status = 0; #ifndef DESC #define DESC "" #endif #define N 1027 #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "test_complex_source.c" #if HAVE_PRINTF_LONGDOUBLE #include "test_complex_io.c" #endif #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "test_complex_source.c" #include "test_complex_io.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "test_complex_source.c" #include "test_complex_io.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "test_source.c" #if HAVE_PRINTF_LONGDOUBLE #include "test_io.c" #endif #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "test_source.c" #include "test_io.c" #include "templates_off.h" #undef BASE_CHAR void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { gsl_ieee_env_setup (); test_func (); test_float_func (); test_long_double_func (); test_ulong_func (); test_long_func (); test_uint_func (); test_int_func (); test_ushort_func (); test_short_func (); test_uchar_func (); test_char_func (); test_complex_func (); test_complex_float_func (); test_complex_long_double_func (); test_text (); test_float_text (); #if HAVE_PRINTF_LONGDOUBLE test_long_double_text (); #endif test_ulong_text (); test_long_text (); test_uint_text (); test_int_text (); test_ushort_text (); test_short_text (); test_uchar_text (); test_char_text (); test_complex_text (); test_complex_float_text (); #if HAVE_PRINTF_LONGDOUBLE test_complex_long_double_text (); #endif test_binary (); test_float_binary (); test_long_double_binary (); test_ulong_binary (); test_long_binary (); test_uint_binary (); test_int_binary (); test_ushort_binary (); test_short_binary (); test_uchar_binary (); test_char_binary (); test_complex_binary (); test_complex_float_binary (); test_complex_long_double_binary (); gsl_set_error_handler (&my_error_handler); test_trap (); test_float_trap (); test_long_double_trap (); test_ulong_trap (); test_long_trap (); test_uint_trap (); test_int_trap (); test_ushort_trap (); test_short_trap (); test_uchar_trap (); test_char_trap (); test_complex_trap (); test_complex_float_trap (); test_complex_long_double_trap (); exit (gsl_test_summary ()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); status = 1; } gsl-1.16/block/gsl_block_char.h0000664000252300025230000000436212171574312013356 00000000000000/* block/gsl_block_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_CHAR_H__ #define __GSL_BLOCK_CHAR_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_char_struct { size_t size; char *data; }; typedef struct gsl_block_char_struct gsl_block_char; gsl_block_char *gsl_block_char_alloc (const size_t n); gsl_block_char *gsl_block_char_calloc (const size_t n); void gsl_block_char_free (gsl_block_char * b); int gsl_block_char_fread (FILE * stream, gsl_block_char * b); int gsl_block_char_fwrite (FILE * stream, const gsl_block_char * b); int gsl_block_char_fscanf (FILE * stream, gsl_block_char * b); int gsl_block_char_fprintf (FILE * stream, const gsl_block_char * b, const char *format); int gsl_block_char_raw_fread (FILE * stream, char * b, const size_t n, const size_t stride); int gsl_block_char_raw_fwrite (FILE * stream, const char * b, const size_t n, const size_t stride); int gsl_block_char_raw_fscanf (FILE * stream, char * b, const size_t n, const size_t stride); int gsl_block_char_raw_fprintf (FILE * stream, const char * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_char_size (const gsl_block_char * b); char * gsl_block_char_data (const gsl_block_char * b); __END_DECLS #endif /* __GSL_BLOCK_CHAR_H__ */ gsl-1.16/block/init.c0000664000252300025230000000335112171574312011355 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/block/gsl_block_float.h0000664000252300025230000000442512171574312013546 00000000000000/* block/gsl_block_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_FLOAT_H__ #define __GSL_BLOCK_FLOAT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_float_struct { size_t size; float *data; }; typedef struct gsl_block_float_struct gsl_block_float; gsl_block_float *gsl_block_float_alloc (const size_t n); gsl_block_float *gsl_block_float_calloc (const size_t n); void gsl_block_float_free (gsl_block_float * b); int gsl_block_float_fread (FILE * stream, gsl_block_float * b); int gsl_block_float_fwrite (FILE * stream, const gsl_block_float * b); int gsl_block_float_fscanf (FILE * stream, gsl_block_float * b); int gsl_block_float_fprintf (FILE * stream, const gsl_block_float * b, const char *format); int gsl_block_float_raw_fread (FILE * stream, float * b, const size_t n, const size_t stride); int gsl_block_float_raw_fwrite (FILE * stream, const float * b, const size_t n, const size_t stride); int gsl_block_float_raw_fscanf (FILE * stream, float * b, const size_t n, const size_t stride); int gsl_block_float_raw_fprintf (FILE * stream, const float * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_float_size (const gsl_block_float * b); float * gsl_block_float_data (const gsl_block_float * b); __END_DECLS #endif /* __GSL_BLOCK_FLOAT_H__ */ gsl-1.16/block/gsl_block_complex_float.h0000664000252300025230000000477512171574312015305 00000000000000/* block/gsl_block_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_COMPLEX_FLOAT_H__ #define __GSL_BLOCK_COMPLEX_FLOAT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_complex_float_struct { size_t size; float *data; }; typedef struct gsl_block_complex_float_struct gsl_block_complex_float; gsl_block_complex_float *gsl_block_complex_float_alloc (const size_t n); gsl_block_complex_float *gsl_block_complex_float_calloc (const size_t n); void gsl_block_complex_float_free (gsl_block_complex_float * b); int gsl_block_complex_float_fread (FILE * stream, gsl_block_complex_float * b); int gsl_block_complex_float_fwrite (FILE * stream, const gsl_block_complex_float * b); int gsl_block_complex_float_fscanf (FILE * stream, gsl_block_complex_float * b); int gsl_block_complex_float_fprintf (FILE * stream, const gsl_block_complex_float * b, const char *format); int gsl_block_complex_float_raw_fread (FILE * stream, float * b, const size_t n, const size_t stride); int gsl_block_complex_float_raw_fwrite (FILE * stream, const float * b, const size_t n, const size_t stride); int gsl_block_complex_float_raw_fscanf (FILE * stream, float * b, const size_t n, const size_t stride); int gsl_block_complex_float_raw_fprintf (FILE * stream, const float * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_complex_float_size (const gsl_block_complex_float * b); float * gsl_block_complex_float_data (const gsl_block_complex_float * b); __END_DECLS #endif /* __GSL_BLOCK_COMPLEX_FLOAT_H__ */ gsl-1.16/block/Makefile.in0000664000252300025230000010450012172253754012316 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = block DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslblock_la_LIBADD = am_libgslblock_la_OBJECTS = init.lo file.lo block.lo libgslblock_la_OBJECTS = $(am_libgslblock_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslblock_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslblock_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslblock.la pkginclude_HEADERS = gsl_block.h gsl_block_char.h gsl_block_complex_double.h gsl_block_complex_float.h gsl_block_complex_long_double.h gsl_block_double.h gsl_block_float.h gsl_block_int.h gsl_block_long.h gsl_block_long_double.h gsl_block_short.h gsl_block_uchar.h gsl_block_uint.h gsl_block_ulong.h gsl_block_ushort.h gsl_check_range.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c CLEANFILES = test.txt test.dat noinst_HEADERS = block_source.c init_source.c fprintf_source.c fwrite_source.c test_complex_source.c test_source.c test_io.c test_complex_io.c libgslblock_la_SOURCES = init.c file.c block.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu block/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu block/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslblock.la: $(libgslblock_la_OBJECTS) $(libgslblock_la_DEPENDENCIES) $(EXTRA_libgslblock_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslblock_la_OBJECTS) $(libgslblock_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/block.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/block/gsl_block_long.h0000664000252300025230000000436212171574312013400 00000000000000/* block/gsl_block_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_LONG_H__ #define __GSL_BLOCK_LONG_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_long_struct { size_t size; long *data; }; typedef struct gsl_block_long_struct gsl_block_long; gsl_block_long *gsl_block_long_alloc (const size_t n); gsl_block_long *gsl_block_long_calloc (const size_t n); void gsl_block_long_free (gsl_block_long * b); int gsl_block_long_fread (FILE * stream, gsl_block_long * b); int gsl_block_long_fwrite (FILE * stream, const gsl_block_long * b); int gsl_block_long_fscanf (FILE * stream, gsl_block_long * b); int gsl_block_long_fprintf (FILE * stream, const gsl_block_long * b, const char *format); int gsl_block_long_raw_fread (FILE * stream, long * b, const size_t n, const size_t stride); int gsl_block_long_raw_fwrite (FILE * stream, const long * b, const size_t n, const size_t stride); int gsl_block_long_raw_fscanf (FILE * stream, long * b, const size_t n, const size_t stride); int gsl_block_long_raw_fprintf (FILE * stream, const long * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_long_size (const gsl_block_long * b); long * gsl_block_long_data (const gsl_block_long * b); __END_DECLS #endif /* __GSL_BLOCK_LONG_H__ */ gsl-1.16/block/ChangeLog0000664000252300025230000000236412171574312012023 000000000000002009-07-09 Brian Gough * init_source.c (FUNCTION): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): remove top_builddir 2005-05-21 Brian Gough * Makefile.am (pkginclude_HEADERS): removed unused file gsl_block_complex.h 2004-06-03 Brian Gough * gsl_check_range.h: provide backwards-compatible support for GSL_RANGE_CHECK_OFF and GSL_RANGE_CHECK Sat Jul 15 21:45:10 2000 Brian Gough * init_source.c (FUNCTION): changed GSL_EDOM to GSL_EINVAL for invalid size arguments Sun May 28 12:22:26 2000 Brian Gough * test_complex_source.c (FUNCTION): use binary mode "b" when reading and writing binary files * test_source.c (FUNCTION): use binary mode "b" when reading and writing binary files Thu Mar 2 20:51:23 2000 Brian Gough * fprintf_source.c: all input is now done through an ATOMIC_IO type, since char has to be written/read using a different type (int). Fri Oct 1 15:48:31 1999 Brian Gough * this directory handles the memory management for vectors and matrices gsl-1.16/block/test_complex_source.c0000664000252300025230000000625012171574312014501 00000000000000/* block/test_complex_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (void); void FUNCTION (test, binary) (void); void FUNCTION (test, trap) (void); void FUNCTION (test, func) (void) { TYPE (gsl_block) * b; ATOMIC * data; size_t i, size; b = FUNCTION (gsl_block, alloc) (N); gsl_test (b->data == 0, NAME (gsl_block) "_alloc returns valid pointer"); gsl_test (b->size != N, NAME (gsl_block) "_alloc returns valid size"); data = FUNCTION(gsl_block, data) (b); size = FUNCTION(gsl_block, size) (b); gsl_test (data == 0, NAME (gsl_block) "_data returns valid pointer"); gsl_test (size != N, NAME (gsl_block) "_size returns valid size"); FUNCTION (gsl_block, free) (b); /* free whatever is in v */ b = FUNCTION (gsl_block, calloc) (N); gsl_test (b->data == 0, NAME (gsl_block) "_calloc returns valid pointer"); gsl_test (b->size != N, NAME (gsl_block) "_calloc returns valid size"); data = FUNCTION(gsl_block, data) (b); size = FUNCTION(gsl_block, size) (b); gsl_test (data == 0, NAME (gsl_block) "_data returns valid pointer from calloc"); gsl_test (size != N, NAME (gsl_block) "_size returns valid size from calloc"); status = 0; for (i = 0; i < N; i++) { if (b->data[2 * i] != 0.0 || b->data[2 * i + 1] != 0.0) status = 1; }; gsl_test (status, NAME (gsl_block) "_calloc initializes array to zero"); FUNCTION (gsl_block, free) (b); } void FUNCTION (test, binary) (void) { size_t i; { TYPE (gsl_block) * v = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.dat", "wb"); for (i = 0; i < N; i++) { v->data[2*i] = (ATOMIC)(N - i); v->data[2*i + 1] = (ATOMIC)(10*(N-i) + 1); }; FUNCTION (gsl_block, fwrite) (f, v); fclose (f); FUNCTION (gsl_block, free) (v); } { TYPE (gsl_block) * w = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.dat", "rb"); FUNCTION (gsl_block, fread) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[2 * i] != (ATOMIC) (N - i) || w->data[2 * i + 1] != (ATOMIC) (10*(N - i) + 1)) status = 1; }; fclose (f); FUNCTION (gsl_block, free) (w); } gsl_test (status, NAME (gsl_block) "_write and read"); } void FUNCTION (test, trap) (void) { TYPE (gsl_block) * b = FUNCTION (gsl_block, alloc) (0); gsl_test (b != 0, NAME (gsl_block) "_alloc traps zero length"); } gsl-1.16/block/gsl_block_int.h0000664000252300025230000000431712171574312013233 00000000000000/* block/gsl_block_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_INT_H__ #define __GSL_BLOCK_INT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_int_struct { size_t size; int *data; }; typedef struct gsl_block_int_struct gsl_block_int; gsl_block_int *gsl_block_int_alloc (const size_t n); gsl_block_int *gsl_block_int_calloc (const size_t n); void gsl_block_int_free (gsl_block_int * b); int gsl_block_int_fread (FILE * stream, gsl_block_int * b); int gsl_block_int_fwrite (FILE * stream, const gsl_block_int * b); int gsl_block_int_fscanf (FILE * stream, gsl_block_int * b); int gsl_block_int_fprintf (FILE * stream, const gsl_block_int * b, const char *format); int gsl_block_int_raw_fread (FILE * stream, int * b, const size_t n, const size_t stride); int gsl_block_int_raw_fwrite (FILE * stream, const int * b, const size_t n, const size_t stride); int gsl_block_int_raw_fscanf (FILE * stream, int * b, const size_t n, const size_t stride); int gsl_block_int_raw_fprintf (FILE * stream, const int * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_int_size (const gsl_block_int * b); int * gsl_block_int_data (const gsl_block_int * b); __END_DECLS #endif /* __GSL_BLOCK_INT_H__ */ gsl-1.16/block/Makefile.am0000664000252300025230000000151512171574312012302 00000000000000noinst_LTLIBRARIES = libgslblock.la check_PROGRAMS = test pkginclude_HEADERS = gsl_block.h gsl_block_char.h gsl_block_complex_double.h gsl_block_complex_float.h gsl_block_complex_long_double.h gsl_block_double.h gsl_block_float.h gsl_block_int.h gsl_block_long.h gsl_block_long_double.h gsl_block_short.h gsl_block_uchar.h gsl_block_uint.h gsl_block_ulong.h gsl_block_ushort.h gsl_check_range.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c CLEANFILES = test.txt test.dat noinst_HEADERS = block_source.c init_source.c fprintf_source.c fwrite_source.c test_complex_source.c test_source.c test_io.c test_complex_io.c libgslblock_la_SOURCES = init.c file.c block.c gsl-1.16/block/fprintf_source.c0000664000252300025230000000757012171574312013451 00000000000000/* block/fprintf_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE) int FUNCTION (gsl_block, fprintf) (FILE * stream, const TYPE(gsl_block) * b, const char *format) { size_t n = b->size ; ATOMIC * data = b->data ; size_t i; for (i = 0; i < n; i++) { int k; int status; for (k = 0; k < MULTIPLICITY; k++) { if (k > 0) { status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } status = fprintf (stream, format, data[MULTIPLICITY * i + k]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } } status = putc ('\n', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } return 0; } int FUNCTION (gsl_block, fscanf) (FILE * stream, TYPE(gsl_block) * b) { size_t n = b->size ; ATOMIC * data = b->data ; size_t i; for (i = 0; i < n; i++) { int k; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC_IO tmp ; int status = fscanf (stream, IN_FORMAT, &tmp) ; data [MULTIPLICITY * i + k] = tmp; if (status != 1) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } } } return GSL_SUCCESS; } int FUNCTION (gsl_block, raw_fprintf) (FILE * stream, const ATOMIC * data, const size_t n, const size_t stride, const char *format) { size_t i; for (i = 0; i < n; i++) { int k; int status; for (k = 0; k < MULTIPLICITY; k++) { if (k > 0) { status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } status = fprintf (stream, format, data[MULTIPLICITY * i * stride + k]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } } status = putc ('\n', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } return 0; } int FUNCTION (gsl_block, raw_fscanf) (FILE * stream, ATOMIC * data, const size_t n, const size_t stride) { size_t i; for (i = 0; i < n; i++) { int k; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC_IO tmp; int status = fscanf (stream, IN_FORMAT, &tmp) ; data [MULTIPLICITY * i * stride + k] = tmp; if (status != 1) GSL_ERROR ("fscanf failed", GSL_EFAILED); } } return GSL_SUCCESS; } #endif gsl-1.16/block/gsl_block.h0000664000252300025230000000110412171574312012350 00000000000000#ifndef __GSL_BLOCK_H__ #define __GSL_BLOCK_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_BLOCK_H__ */ gsl-1.16/block/gsl_block_short.h0000664000252300025230000000442512171574312013600 00000000000000/* block/gsl_block_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_SHORT_H__ #define __GSL_BLOCK_SHORT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_short_struct { size_t size; short *data; }; typedef struct gsl_block_short_struct gsl_block_short; gsl_block_short *gsl_block_short_alloc (const size_t n); gsl_block_short *gsl_block_short_calloc (const size_t n); void gsl_block_short_free (gsl_block_short * b); int gsl_block_short_fread (FILE * stream, gsl_block_short * b); int gsl_block_short_fwrite (FILE * stream, const gsl_block_short * b); int gsl_block_short_fscanf (FILE * stream, gsl_block_short * b); int gsl_block_short_fprintf (FILE * stream, const gsl_block_short * b, const char *format); int gsl_block_short_raw_fread (FILE * stream, short * b, const size_t n, const size_t stride); int gsl_block_short_raw_fwrite (FILE * stream, const short * b, const size_t n, const size_t stride); int gsl_block_short_raw_fscanf (FILE * stream, short * b, const size_t n, const size_t stride); int gsl_block_short_raw_fprintf (FILE * stream, const short * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_short_size (const gsl_block_short * b); short * gsl_block_short_data (const gsl_block_short * b); __END_DECLS #endif /* __GSL_BLOCK_SHORT_H__ */ gsl-1.16/block/gsl_block_complex_double.h0000664000252300025230000000456112171574312015443 00000000000000/* block/gsl_block_complex_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_COMPLEX_DOUBLE_H__ #define __GSL_BLOCK_COMPLEX_DOUBLE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_complex_struct { size_t size; double *data; }; typedef struct gsl_block_complex_struct gsl_block_complex; gsl_block_complex *gsl_block_complex_alloc (const size_t n); gsl_block_complex *gsl_block_complex_calloc (const size_t n); void gsl_block_complex_free (gsl_block_complex * b); int gsl_block_complex_fread (FILE * stream, gsl_block_complex * b); int gsl_block_complex_fwrite (FILE * stream, const gsl_block_complex * b); int gsl_block_complex_fscanf (FILE * stream, gsl_block_complex * b); int gsl_block_complex_fprintf (FILE * stream, const gsl_block_complex * b, const char *format); int gsl_block_complex_raw_fread (FILE * stream, double * b, const size_t n, const size_t stride); int gsl_block_complex_raw_fwrite (FILE * stream, const double * b, const size_t n, const size_t stride); int gsl_block_complex_raw_fscanf (FILE * stream, double * b, const size_t n, const size_t stride); int gsl_block_complex_raw_fprintf (FILE * stream, const double * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_complex_size (const gsl_block_complex * b); double * gsl_block_complex_data (const gsl_block_complex * b); __END_DECLS #endif /* __GSL_BLOCK_COMPLEX_DOUBLE_H__ */ gsl-1.16/block/test_source.c0000664000252300025230000000606112171574312012752 00000000000000/* block/test_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (void); void FUNCTION (test, binary) (void); void FUNCTION (test, trap) (void); void FUNCTION (test, func) (void) { TYPE (gsl_block) * v; ATOMIC * data; size_t i, size; v = FUNCTION (gsl_block, alloc) (N); gsl_test (v->data == 0, NAME (gsl_block) "_alloc returns valid pointer"); gsl_test (v->size != N, NAME (gsl_block) "_alloc returns valid size"); data = FUNCTION(gsl_block, data) (v); size = FUNCTION(gsl_block, size) (v); gsl_test (data == 0, NAME (gsl_block) "_data returns valid pointer"); gsl_test (size != N, NAME (gsl_block) "_size returns valid size"); FUNCTION (gsl_block, free) (v); /* free whatever is in v */ v = FUNCTION (gsl_block, calloc) (N); gsl_test (v->data == 0, NAME (gsl_block) "_calloc returns valid pointer"); gsl_test (v->size != N, NAME (gsl_block) "_calloc returns valid size"); data = FUNCTION(gsl_block, data) (v); size = FUNCTION(gsl_block, size) (v); gsl_test (data == 0, NAME (gsl_block) "_data returns valid pointer from calloc"); gsl_test (size != N, NAME (gsl_block) "_size returns valid size from calloc"); status = 0; for (i = 0; i < N; i++) { if (v->data[i] != 0.0) status = 1; }; gsl_test (status, NAME (gsl_block) "_calloc initializes array to zero"); FUNCTION (gsl_block, free) (v); /* free whatever is in v */ } void FUNCTION (test, binary) (void) { size_t i; { TYPE (gsl_block) * v = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.dat", "wb"); for (i = 0; i < N; i++) { v->data[i] = (ATOMIC)(N - i); }; FUNCTION (gsl_block, fwrite) (f, v); fclose (f); FUNCTION (gsl_block, free) (v); } { TYPE (gsl_block) * w = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.dat", "rb"); FUNCTION (gsl_block, fread) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[i] != (ATOMIC) (N - i)) status = 1; }; fclose (f); FUNCTION (gsl_block, free) (w); } gsl_test (status, NAME (gsl_block) "_write and read"); } void FUNCTION (test, trap) (void) { TYPE (gsl_block) * b = FUNCTION (gsl_block, alloc) (0); gsl_test (b != 0, NAME (gsl_block) "_alloc traps zero length"); } gsl-1.16/block/gsl_check_range.h0000664000252300025230000000305312171574312013514 00000000000000/* vector/gsl_check_range.h * * Copyright (C) 2003, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CHECK_RANGE_H__ #define __GSL_CHECK_RANGE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS GSL_VAR int gsl_check_range; /* Turn range checking on by default, unless the user defines GSL_RANGE_CHECK_OFF, or defines GSL_RANGE_CHECK to 0 explicitly */ #ifdef GSL_RANGE_CHECK_OFF # ifndef GSL_RANGE_CHECK # define GSL_RANGE_CHECK 0 # else # error "cannot set both GSL_RANGE_CHECK and GSL_RANGE_CHECK_OFF" # endif #else # ifndef GSL_RANGE_CHECK # define GSL_RANGE_CHECK 1 # endif #endif __END_DECLS #endif /* __GSL_CHECK_RANGE_H__ */ gsl-1.16/block/block_source.c0000664000252300025230000000175612171574312013073 00000000000000/* block/block_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ size_t FUNCTION(gsl_block,size) (const TYPE(gsl_block) * b) { return b->size ; } ATOMIC * FUNCTION(gsl_block,data) (const TYPE(gsl_block) * b) { return b->data ; } gsl-1.16/block/gsl_block_ushort.h0000664000252300025230000000455012171574312013764 00000000000000/* block/gsl_block_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_USHORT_H__ #define __GSL_BLOCK_USHORT_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_ushort_struct { size_t size; unsigned short *data; }; typedef struct gsl_block_ushort_struct gsl_block_ushort; gsl_block_ushort *gsl_block_ushort_alloc (const size_t n); gsl_block_ushort *gsl_block_ushort_calloc (const size_t n); void gsl_block_ushort_free (gsl_block_ushort * b); int gsl_block_ushort_fread (FILE * stream, gsl_block_ushort * b); int gsl_block_ushort_fwrite (FILE * stream, const gsl_block_ushort * b); int gsl_block_ushort_fscanf (FILE * stream, gsl_block_ushort * b); int gsl_block_ushort_fprintf (FILE * stream, const gsl_block_ushort * b, const char *format); int gsl_block_ushort_raw_fread (FILE * stream, unsigned short * b, const size_t n, const size_t stride); int gsl_block_ushort_raw_fwrite (FILE * stream, const unsigned short * b, const size_t n, const size_t stride); int gsl_block_ushort_raw_fscanf (FILE * stream, unsigned short * b, const size_t n, const size_t stride); int gsl_block_ushort_raw_fprintf (FILE * stream, const unsigned short * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_ushort_size (const gsl_block_ushort * b); unsigned short * gsl_block_ushort_data (const gsl_block_ushort * b); __END_DECLS #endif /* __GSL_BLOCK_USHORT_H__ */ gsl-1.16/block/file.c0000664000252300025230000000424712171574312011336 00000000000000#include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "fwrite_source.c" #include "fprintf_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/block/test_complex_io.c0000664000252300025230000000325612171574312013613 00000000000000/* block/test_complex_io.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, text) (void); void FUNCTION (test, text) (void) { size_t i; { TYPE (gsl_block) *v = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.txt", "w"); for (i = 0; i < N; i++) { v->data[2*i] = (ATOMIC)i ; v->data[2*i + 1] = (ATOMIC)(10*i + 1) ; }; FUNCTION (gsl_block, fprintf) (f, v, OUT_FORMAT); fclose (f); FUNCTION (gsl_block, free) (v); } { TYPE (gsl_block) *w = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.txt", "r"); FUNCTION (gsl_block, fscanf) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[2 * i] != (ATOMIC) i || w->data[2 * i + 1] != (ATOMIC) (10*i + 1)) status = 1; }; fclose (f); FUNCTION (gsl_block, free) (w); } gsl_test (status, NAME (gsl_block) "_fprintf and fscanf"); } gsl-1.16/block/gsl_block_uchar.h0000664000252300025230000000450512171574312013542 00000000000000/* block/gsl_block_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_UCHAR_H__ #define __GSL_BLOCK_UCHAR_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_uchar_struct { size_t size; unsigned char *data; }; typedef struct gsl_block_uchar_struct gsl_block_uchar; gsl_block_uchar *gsl_block_uchar_alloc (const size_t n); gsl_block_uchar *gsl_block_uchar_calloc (const size_t n); void gsl_block_uchar_free (gsl_block_uchar * b); int gsl_block_uchar_fread (FILE * stream, gsl_block_uchar * b); int gsl_block_uchar_fwrite (FILE * stream, const gsl_block_uchar * b); int gsl_block_uchar_fscanf (FILE * stream, gsl_block_uchar * b); int gsl_block_uchar_fprintf (FILE * stream, const gsl_block_uchar * b, const char *format); int gsl_block_uchar_raw_fread (FILE * stream, unsigned char * b, const size_t n, const size_t stride); int gsl_block_uchar_raw_fwrite (FILE * stream, const unsigned char * b, const size_t n, const size_t stride); int gsl_block_uchar_raw_fscanf (FILE * stream, unsigned char * b, const size_t n, const size_t stride); int gsl_block_uchar_raw_fprintf (FILE * stream, const unsigned char * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_uchar_size (const gsl_block_uchar * b); unsigned char * gsl_block_uchar_data (const gsl_block_uchar * b); __END_DECLS #endif /* __GSL_BLOCK_UCHAR_H__ */ gsl-1.16/block/gsl_block_ulong.h0000664000252300025230000000450512171574312013564 00000000000000/* block/gsl_block_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_ULONG_H__ #define __GSL_BLOCK_ULONG_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_ulong_struct { size_t size; unsigned long *data; }; typedef struct gsl_block_ulong_struct gsl_block_ulong; gsl_block_ulong *gsl_block_ulong_alloc (const size_t n); gsl_block_ulong *gsl_block_ulong_calloc (const size_t n); void gsl_block_ulong_free (gsl_block_ulong * b); int gsl_block_ulong_fread (FILE * stream, gsl_block_ulong * b); int gsl_block_ulong_fwrite (FILE * stream, const gsl_block_ulong * b); int gsl_block_ulong_fscanf (FILE * stream, gsl_block_ulong * b); int gsl_block_ulong_fprintf (FILE * stream, const gsl_block_ulong * b, const char *format); int gsl_block_ulong_raw_fread (FILE * stream, unsigned long * b, const size_t n, const size_t stride); int gsl_block_ulong_raw_fwrite (FILE * stream, const unsigned long * b, const size_t n, const size_t stride); int gsl_block_ulong_raw_fscanf (FILE * stream, unsigned long * b, const size_t n, const size_t stride); int gsl_block_ulong_raw_fprintf (FILE * stream, const unsigned long * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_ulong_size (const gsl_block_ulong * b); unsigned long * gsl_block_ulong_data (const gsl_block_ulong * b); __END_DECLS #endif /* __GSL_BLOCK_ULONG_H__ */ gsl-1.16/block/gsl_block_long_double.h0000664000252300025230000000474712171574312014741 00000000000000/* block/gsl_block_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_LONG_DOUBLE_H__ #define __GSL_BLOCK_LONG_DOUBLE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_long_double_struct { size_t size; long double *data; }; typedef struct gsl_block_long_double_struct gsl_block_long_double; gsl_block_long_double *gsl_block_long_double_alloc (const size_t n); gsl_block_long_double *gsl_block_long_double_calloc (const size_t n); void gsl_block_long_double_free (gsl_block_long_double * b); int gsl_block_long_double_fread (FILE * stream, gsl_block_long_double * b); int gsl_block_long_double_fwrite (FILE * stream, const gsl_block_long_double * b); int gsl_block_long_double_fscanf (FILE * stream, gsl_block_long_double * b); int gsl_block_long_double_fprintf (FILE * stream, const gsl_block_long_double * b, const char *format); int gsl_block_long_double_raw_fread (FILE * stream, long double * b, const size_t n, const size_t stride); int gsl_block_long_double_raw_fwrite (FILE * stream, const long double * b, const size_t n, const size_t stride); int gsl_block_long_double_raw_fscanf (FILE * stream, long double * b, const size_t n, const size_t stride); int gsl_block_long_double_raw_fprintf (FILE * stream, const long double * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_long_double_size (const gsl_block_long_double * b); long double * gsl_block_long_double_data (const gsl_block_long_double * b); __END_DECLS #endif /* __GSL_BLOCK_LONG_DOUBLE_H__ */ gsl-1.16/block/gsl_block_complex_long_double.h0000664000252300025230000000531712171574312016462 00000000000000/* block/gsl_block_complex_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BLOCK_COMPLEX_LONG_DOUBLE_H__ #define __GSL_BLOCK_COMPLEX_LONG_DOUBLE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_block_complex_long_double_struct { size_t size; long double *data; }; typedef struct gsl_block_complex_long_double_struct gsl_block_complex_long_double; gsl_block_complex_long_double *gsl_block_complex_long_double_alloc (const size_t n); gsl_block_complex_long_double *gsl_block_complex_long_double_calloc (const size_t n); void gsl_block_complex_long_double_free (gsl_block_complex_long_double * b); int gsl_block_complex_long_double_fread (FILE * stream, gsl_block_complex_long_double * b); int gsl_block_complex_long_double_fwrite (FILE * stream, const gsl_block_complex_long_double * b); int gsl_block_complex_long_double_fscanf (FILE * stream, gsl_block_complex_long_double * b); int gsl_block_complex_long_double_fprintf (FILE * stream, const gsl_block_complex_long_double * b, const char *format); int gsl_block_complex_long_double_raw_fread (FILE * stream, long double * b, const size_t n, const size_t stride); int gsl_block_complex_long_double_raw_fwrite (FILE * stream, const long double * b, const size_t n, const size_t stride); int gsl_block_complex_long_double_raw_fscanf (FILE * stream, long double * b, const size_t n, const size_t stride); int gsl_block_complex_long_double_raw_fprintf (FILE * stream, const long double * b, const size_t n, const size_t stride, const char *format); size_t gsl_block_complex_long_double_size (const gsl_block_complex_long_double * b); long double * gsl_block_complex_long_double_data (const gsl_block_complex_long_double * b); __END_DECLS #endif /* __GSL_BLOCK_COMPLEX_LONG_DOUBLE_H__ */ gsl-1.16/block/test_io.c0000664000252300025230000000311412171574312012055 00000000000000/* block/test_io.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, text) (void); void FUNCTION (test, text) (void) { size_t i; { TYPE (gsl_block) * v = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.txt", "w"); for (i = 0; i < N; i++) { v->data[i] = (ATOMIC) i; }; FUNCTION (gsl_block, fprintf) (f, v, OUT_FORMAT); fclose (f); FUNCTION (gsl_block, free) (v); } { TYPE (gsl_block) * w = FUNCTION (gsl_block, calloc) (N); FILE *f = fopen ("test.txt", "r"); FUNCTION (gsl_block, fscanf) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[i] != (ATOMIC) i) status = 1; }; gsl_test (status, NAME (gsl_block) "_fprintf and fscanf"); fclose (f); FUNCTION (gsl_block, free) (w); } } gsl-1.16/statistics/0000775000252300025230000000000012172254162011423 500000000000000gsl-1.16/statistics/minmax.c0000664000252300025230000000260712171574312013006 00000000000000#include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/kurtosis_source.c0000664000252300025230000000364412171574312014762 00000000000000/* statistics/kurtosis_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,kurtosis) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean)(data, stride, n); const double est_sd = FUNCTION(gsl_stats,sd_m)(data, stride, n, mean); return FUNCTION(gsl_stats,kurtosis_m_sd)(data, stride, n, mean, est_sd); } double FUNCTION(gsl_stats,kurtosis_m_sd) (const BASE data[], const size_t stride, const size_t n, const double mean, const double sd) { /* takes a dataset and finds the kurtosis */ long double avg = 0, kurtosis; size_t i; /* find the fourth moment the deviations, normalized by the sd */ /* we use a recurrence relation to stably update a running value so there aren't any large sums that can overflow */ for (i = 0; i < n; i++) { const long double x = (data[i * stride] - mean) / sd; avg += (x * x * x * x - avg)/(i + 1); } kurtosis = avg - 3.0; /* makes kurtosis zero for a Gaussian */ return kurtosis; } gsl-1.16/statistics/median.c0000664000252300025230000000253212171574312012747 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "median_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/TODO0000664000252300025230000000603712171574312012042 00000000000000# -*- org -*- #+CATEGORY: statistics * From: James Theiler To: John Lamb Cc: gsl-discuss@sources.redhat.com Subject: Re: Collecting statistics for time dependent data? Date: Thu, 9 Dec 2004 14:18:36 -0700 (MST) On Thu, 9 Dec 2004, John Lamb wrote: ] Raimondo Giammanco wrote: ] > Hello, ] > ] > I was wondering if there is a way to compute "running" statistics with ] > gsl. ] > ] Yes you can do it, but there's nothing in GSL that does it and its eay ] enough that you don't need GSL. Something like (untested) ] ] double update_mean( double* mean, int* n, double x ){ ] if( *n == 1 ) ] *mean = x; ] else ] *mean = (1 - (double)1 / *n ) * *mean + x / n; ] } ] ] will work and you can derive a similar method for updating the variance ] using the usual textbook formula. ] ] var[x] = (1/n) sum x^2_i - mean(x)^2 ] ] I don't know if there is a method that avoids the rounding errors. I ] don't know why so many textbooks repeat this formula without the ] slightest warning that it can go so badly wrong. ] ] Stably updating mean and variance is remarkably nontrivial. There was a series of papers in Comm ACM that discussed the issue; the final one (that I know of) refers back to the earlier ones, and it can be found in D.H.D. West, Updating mean and variance estimates: an improved method, Comm ACM 22:9, 532 (1979) [* I see Luke Stras just sent this reference! *]. I'll just copy out the pseudocode since the paper is old enough that it might not be easy to find. This, by the way, is generalized for weighted data, so it assumes that you get a weight and a data value (W_i and X_i) that you use to update the estimates XBAR and S2: SUMW = W_1 M = X_1 T = 0 For i=2,3,...,n { Q = X_i - M TEMP = SUM + W_i // typo: He meant SUMW R = Q*W_i/TEMP M = M + R T = T + R*SUMW*Q SUMW = TEMP } XBAR = M S2 = T*n/((n-1)*SUMW) jt -- James Theiler Space and Remote Sensing Sciences MS-B244, ISR-2, LANL Los Alamos National Laboratory Los Alamos, NM 87545 http://nis-www.lanl.gov/~jt * Look at STARPAC ftp://ftp.ucar.edu/starpac/ and Statlib http://lib.stat.cmu.edu/ for more ideas * Try using the Kahan summation formula to improve accuracy for the NIST tests (see Brian for details, below is a sketch of the algorithm). sum = x(1) c = 0 DO i = 2, 1000000, 1 y = x(i) - c t = sum + y c = (t - sum) - y sum = t ENDDO * Prevent incorrect use of unsorted data for quartile calculations using a typedef for sorted data (?) * Rejection of outliers * Time series. Auto correlation, cross-correlation, smoothing (moving average), detrending, various econometric things. Integrated quantities (area under the curve). Interpolation of noisy data/fitting -- maybe add that to the existing interpolation stuff.What about missing data and gaps? There is a new GNU package called gretl which does econometrics * Statistical tests (equal means, equal variance, etc). gsl-1.16/statistics/p_variance.c0000664000252300025230000000260612171574312013623 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "p_variance_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/wskew.c0000664000252300025230000000066712171574312012661 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "wskew_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "wskew_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "wskew_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/statistics/lag1.c0000664000252300025230000000250312171574312012334 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "lag1_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/gsl_statistics_long.h0000664000252300025230000001111112171574312015566 00000000000000/* statistics/gsl_statistics_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_LONG_H__ #define __GSL_STATISTICS_LONG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_long_mean (const long data[], const size_t stride, const size_t n); double gsl_stats_long_variance (const long data[], const size_t stride, const size_t n); double gsl_stats_long_sd (const long data[], const size_t stride, const size_t n); double gsl_stats_long_variance_with_fixed_mean (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_sd_with_fixed_mean (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_tss (const long data[], const size_t stride, const size_t n); double gsl_stats_long_tss_m (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_absdev (const long data[], const size_t stride, const size_t n); double gsl_stats_long_skew (const long data[], const size_t stride, const size_t n); double gsl_stats_long_kurtosis (const long data[], const size_t stride, const size_t n); double gsl_stats_long_lag1_autocorrelation (const long data[], const size_t stride, const size_t n); double gsl_stats_long_covariance (const long data1[], const size_t stride1,const long data2[], const size_t stride2, const size_t n); double gsl_stats_long_correlation (const long data1[], const size_t stride1,const long data2[], const size_t stride2, const size_t n); double gsl_stats_long_spearman (const long data1[], const size_t stride1, const long data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_long_variance_m (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_sd_m (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_absdev_m (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_skew_m_sd (const long data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_long_kurtosis_m_sd (const long data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_long_lag1_autocorrelation_m (const long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_covariance_m (const long data1[], const size_t stride1,const long data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_long_pvariance (const long data1[], const size_t stride1, const size_t n1, const long data2[], const size_t stride2, const size_t n2); double gsl_stats_long_ttest (const long data1[], const size_t stride1, const size_t n1, const long data2[], const size_t stride2, const size_t n2); long gsl_stats_long_max (const long data[], const size_t stride, const size_t n); long gsl_stats_long_min (const long data[], const size_t stride, const size_t n); void gsl_stats_long_minmax (long * min, long * max, const long data[], const size_t stride, const size_t n); size_t gsl_stats_long_max_index (const long data[], const size_t stride, const size_t n); size_t gsl_stats_long_min_index (const long data[], const size_t stride, const size_t n); void gsl_stats_long_minmax_index (size_t * min_index, size_t * max_index, const long data[], const size_t stride, const size_t n); double gsl_stats_long_median_from_sorted_data (const long sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_long_quantile_from_sorted_data (const long sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_LONG_H__ */ gsl-1.16/statistics/test_nist.c0000664000252300025230000006354312171574312013537 00000000000000/* statistics/test_nist.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* These tests are based on the NIST Statistical Reference Datasets See http://www.nist.gov/itl/div898/strd/index.html for more information. */ #include #include #include #include #include #include int test_nist (void) { size_t i ; const size_t nlew = 200 ; const double lew[200] = { -213, -564, -35, -15, 141, 115, -420, -360, 203, -338, -431, 194, -220, -513, 154, -125, -559, 92, -21, -579, -52, 99, -543, -175, 162, -457, -346, 204, -300, -474, 164, -107, -572, -8, 83, -541, -224, 180, -420, -374, 201, -236, -531, 83, 27, -564, -112, 131, -507, -254, 199, -311, -495, 143, -46, -579, -90, 136, -472, -338, 202, -287, -477, 169, -124, -568, 17, 48, -568, -135, 162, -430, -422, 172, -74, -577, -13, 92, -534, -243, 194, -355, -465, 156, -81, -578, -64, 139, -449, -384, 193, -198, -538, 110, -44, -577, -6, 66, -552, -164, 161, -460, -344, 205, -281, -504, 134, -28, -576, -118, 156, -437, -381, 200, -220, -540, 83, 11, -568, -160, 172, -414, -408, 188, -125, -572, -32, 139, -492, -321, 205, -262, -504, 142, -83, -574, 0, 48, -571, -106, 137, -501, -266, 190, -391, -406, 194, -186, -553, 83, -13, -577, -49, 103, -515, -280, 201, 300, -506, 131, -45, -578, -80, 138, -462, -361, 201, -211, -554, 32, 74, -533, -235, 187, -372, -442, 182, -147, -566, 25, 68, -535, -244, 194, -351, -463, 174, -125, -570, 15, 72, -550, -190, 172, -424, -385, 198, -218, -536, 96 } ; const size_t nlottery = 218 ; const double lottery[218] = { 162, 671, 933, 414, 788, 730, 817, 33, 536, 875, 670, 236, 473, 167, 877, 980, 316, 950, 456, 92, 517, 557, 956, 954, 104, 178, 794, 278, 147, 773, 437, 435, 502, 610, 582, 780, 689, 562, 964, 791, 28, 97, 848, 281, 858, 538, 660, 972, 671, 613, 867, 448, 738, 966, 139, 636, 847, 659, 754, 243, 122, 455, 195, 968, 793, 59, 730, 361, 574, 522, 97, 762, 431, 158, 429, 414, 22, 629, 788, 999, 187, 215, 810, 782, 47, 34, 108, 986, 25, 644, 829, 630, 315, 567, 919, 331, 207, 412, 242, 607, 668, 944, 749, 168, 864, 442, 533, 805, 372, 63, 458, 777, 416, 340, 436, 140, 919, 350, 510, 572, 905, 900, 85, 389, 473, 758, 444, 169, 625, 692, 140, 897, 672, 288, 312, 860, 724, 226, 884, 508, 976, 741, 476, 417, 831, 15, 318, 432, 241, 114, 799, 955, 833, 358, 935, 146, 630, 830, 440, 642, 356, 373, 271, 715, 367, 393, 190, 669, 8, 861, 108, 795, 269, 590, 326, 866, 64, 523, 862, 840, 219, 382, 998, 4, 628, 305, 747, 247, 34, 747, 729, 645, 856, 974, 24, 568, 24, 694, 608, 480, 410, 729, 947, 293, 53, 930, 223, 203, 677, 227, 62, 455, 387, 318, 562, 242, 428, 968 } ; const size_t nmavro = 50 ; const double mavro[50] = { 2.00180, 2.00170, 2.00180, 2.00190, 2.00180, 2.00170, 2.00150, 2.00140, 2.00150, 2.00150, 2.00170, 2.00180, 2.00180, 2.00190, 2.00190, 2.00210, 2.00200, 2.00160, 2.00140, 2.00130, 2.00130, 2.00150, 2.00150, 2.00160, 2.00150, 2.00140, 2.00130, 2.00140, 2.00150, 2.00140, 2.00150, 2.00160, 2.00150, 2.00160, 2.00190, 2.00200, 2.00200, 2.00210, 2.00220, 2.00230, 2.00240, 2.00250, 2.00270, 2.00260, 2.00260, 2.00260, 2.00270, 2.00260, 2.00250, 2.00240 } ; const size_t nmichelson = 100 ; const double michelson [100] = { 299.85, 299.74, 299.90, 300.07, 299.93, 299.85, 299.95, 299.98, 299.98, 299.88, 300.00, 299.98, 299.93, 299.65, 299.76, 299.81, 300.00, 300.00, 299.96, 299.96, 299.96, 299.94, 299.96, 299.94, 299.88, 299.80, 299.85, 299.88, 299.90, 299.84, 299.83, 299.79, 299.81, 299.88, 299.88, 299.83, 299.80, 299.79, 299.76, 299.80, 299.88, 299.88, 299.88, 299.86, 299.72, 299.72, 299.62, 299.86, 299.97, 299.95, 299.88, 299.91, 299.85, 299.87, 299.84, 299.84, 299.85, 299.84, 299.84, 299.84, 299.89, 299.81, 299.81, 299.82, 299.80, 299.77, 299.76, 299.74, 299.75, 299.76, 299.91, 299.92, 299.89, 299.86, 299.88, 299.72, 299.84, 299.85, 299.85, 299.78, 299.89, 299.84, 299.78, 299.81, 299.76, 299.81, 299.79, 299.81, 299.82, 299.85, 299.87, 299.87, 299.81, 299.74, 299.81, 299.94, 299.95, 299.80, 299.81, 299.87 } ; const size_t npidigits = 5000 ; const double pidigits [5000] = { 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4, 1, 9, 7, 1, 6, 9, 3, 9, 9, 3, 7, 5, 1, 0, 5, 8, 2, 0, 9, 7, 4, 9, 4, 4, 5, 9, 2, 3, 0, 7, 8, 1, 6, 4, 0, 6, 2, 8, 6, 2, 0, 8, 9, 9, 8, 6, 2, 8, 0, 3, 4, 8, 2, 5, 3, 4, 2, 1, 1, 7, 0, 6, 7, 9, 8, 2, 1, 4, 8, 0, 8, 6, 5, 1, 3, 2, 8, 2, 3, 0, 6, 6, 4, 7, 0, 9, 3, 8, 4, 4, 6, 0, 9, 5, 5, 0, 5, 8, 2, 2, 3, 1, 7, 2, 5, 3, 5, 9, 4, 0, 8, 1, 2, 8, 4, 8, 1, 1, 1, 7, 4, 5, 0, 2, 8, 4, 1, 0, 2, 7, 0, 1, 9, 3, 8, 5, 2, 1, 1, 0, 5, 5, 5, 9, 6, 4, 4, 6, 2, 2, 9, 4, 8, 9, 5, 4, 9, 3, 0, 3, 8, 1, 9, 6, 4, 4, 2, 8, 8, 1, 0, 9, 7, 5, 6, 6, 5, 9, 3, 3, 4, 4, 6, 1, 2, 8, 4, 7, 5, 6, 4, 8, 2, 3, 3, 7, 8, 6, 7, 8, 3, 1, 6, 5, 2, 7, 1, 2, 0, 1, 9, 0, 9, 1, 4, 5, 6, 4, 8, 5, 6, 6, 9, 2, 3, 4, 6, 0, 3, 4, 8, 6, 1, 0, 4, 5, 4, 3, 2, 6, 6, 4, 8, 2, 1, 3, 3, 9, 3, 6, 0, 7, 2, 6, 0, 2, 4, 9, 1, 4, 1, 2, 7, 3, 7, 2, 4, 5, 8, 7, 0, 0, 6, 6, 0, 6, 3, 1, 5, 5, 8, 8, 1, 7, 4, 8, 8, 1, 5, 2, 0, 9, 2, 0, 9, 6, 2, 8, 2, 9, 2, 5, 4, 0, 9, 1, 7, 1, 5, 3, 6, 4, 3, 6, 7, 8, 9, 2, 5, 9, 0, 3, 6, 0, 0, 1, 1, 3, 3, 0, 5, 3, 0, 5, 4, 8, 8, 2, 0, 4, 6, 6, 5, 2, 1, 3, 8, 4, 1, 4, 6, 9, 5, 1, 9, 4, 1, 5, 1, 1, 6, 0, 9, 4, 3, 3, 0, 5, 7, 2, 7, 0, 3, 6, 5, 7, 5, 9, 5, 9, 1, 9, 5, 3, 0, 9, 2, 1, 8, 6, 1, 1, 7, 3, 8, 1, 9, 3, 2, 6, 1, 1, 7, 9, 3, 1, 0, 5, 1, 1, 8, 5, 4, 8, 0, 7, 4, 4, 6, 2, 3, 7, 9, 9, 6, 2, 7, 4, 9, 5, 6, 7, 3, 5, 1, 8, 8, 5, 7, 5, 2, 7, 2, 4, 8, 9, 1, 2, 2, 7, 9, 3, 8, 1, 8, 3, 0, 1, 1, 9, 4, 9, 1, 2, 9, 8, 3, 3, 6, 7, 3, 3, 6, 2, 4, 4, 0, 6, 5, 6, 6, 4, 3, 0, 8, 6, 0, 2, 1, 3, 9, 4, 9, 4, 6, 3, 9, 5, 2, 2, 4, 7, 3, 7, 1, 9, 0, 7, 0, 2, 1, 7, 9, 8, 6, 0, 9, 4, 3, 7, 0, 2, 7, 7, 0, 5, 3, 9, 2, 1, 7, 1, 7, 6, 2, 9, 3, 1, 7, 6, 7, 5, 2, 3, 8, 4, 6, 7, 4, 8, 1, 8, 4, 6, 7, 6, 6, 9, 4, 0, 5, 1, 3, 2, 0, 0, 0, 5, 6, 8, 1, 2, 7, 1, 4, 5, 2, 6, 3, 5, 6, 0, 8, 2, 7, 7, 8, 5, 7, 7, 1, 3, 4, 2, 7, 5, 7, 7, 8, 9, 6, 0, 9, 1, 7, 3, 6, 3, 7, 1, 7, 8, 7, 2, 1, 4, 6, 8, 4, 4, 0, 9, 0, 1, 2, 2, 4, 9, 5, 3, 4, 3, 0, 1, 4, 6, 5, 4, 9, 5, 8, 5, 3, 7, 1, 0, 5, 0, 7, 9, 2, 2, 7, 9, 6, 8, 9, 2, 5, 8, 9, 2, 3, 5, 4, 2, 0, 1, 9, 9, 5, 6, 1, 1, 2, 1, 2, 9, 0, 2, 1, 9, 6, 0, 8, 6, 4, 0, 3, 4, 4, 1, 8, 1, 5, 9, 8, 1, 3, 6, 2, 9, 7, 7, 4, 7, 7, 1, 3, 0, 9, 9, 6, 0, 5, 1, 8, 7, 0, 7, 2, 1, 1, 3, 4, 9, 9, 9, 9, 9, 9, 8, 3, 7, 2, 9, 7, 8, 0, 4, 9, 9, 5, 1, 0, 5, 9, 7, 3, 1, 7, 3, 2, 8, 1, 6, 0, 9, 6, 3, 1, 8, 5, 9, 5, 0, 2, 4, 4, 5, 9, 4, 5, 5, 3, 4, 6, 9, 0, 8, 3, 0, 2, 6, 4, 2, 5, 2, 2, 3, 0, 8, 2, 5, 3, 3, 4, 4, 6, 8, 5, 0, 3, 5, 2, 6, 1, 9, 3, 1, 1, 8, 8, 1, 7, 1, 0, 1, 0, 0, 0, 3, 1, 3, 7, 8, 3, 8, 7, 5, 2, 8, 8, 6, 5, 8, 7, 5, 3, 3, 2, 0, 8, 3, 8, 1, 4, 2, 0, 6, 1, 7, 1, 7, 7, 6, 6, 9, 1, 4, 7, 3, 0, 3, 5, 9, 8, 2, 5, 3, 4, 9, 0, 4, 2, 8, 7, 5, 5, 4, 6, 8, 7, 3, 1, 1, 5, 9, 5, 6, 2, 8, 6, 3, 8, 8, 2, 3, 5, 3, 7, 8, 7, 5, 9, 3, 7, 5, 1, 9, 5, 7, 7, 8, 1, 8, 5, 7, 7, 3, 0, 5, 3, 2, 1, 7, 1, 2, 2, 6, 8, 0, 6, 6, 1, 3, 0, 0, 1, 9, 2, 7, 8, 7, 6, 6, 1, 1, 1, 9, 5, 9, 0, 9, 2, 1, 6, 4, 2, 0, 1, 9, 8, 9, 3, 8, 0, 9, 5, 2, 5, 7, 2, 0, 1, 0, 6, 5, 4, 8, 5, 8, 6, 3, 2, 7, 8, 8, 6, 5, 9, 3, 6, 1, 5, 3, 3, 8, 1, 8, 2, 7, 9, 6, 8, 2, 3, 0, 3, 0, 1, 9, 5, 2, 0, 3, 5, 3, 0, 1, 8, 5, 2, 9, 6, 8, 9, 9, 5, 7, 7, 3, 6, 2, 2, 5, 9, 9, 4, 1, 3, 8, 9, 1, 2, 4, 9, 7, 2, 1, 7, 7, 5, 2, 8, 3, 4, 7, 9, 1, 3, 1, 5, 1, 5, 5, 7, 4, 8, 5, 7, 2, 4, 2, 4, 5, 4, 1, 5, 0, 6, 9, 5, 9, 5, 0, 8, 2, 9, 5, 3, 3, 1, 1, 6, 8, 6, 1, 7, 2, 7, 8, 5, 5, 8, 8, 9, 0, 7, 5, 0, 9, 8, 3, 8, 1, 7, 5, 4, 6, 3, 7, 4, 6, 4, 9, 3, 9, 3, 1, 9, 2, 5, 5, 0, 6, 0, 4, 0, 0, 9, 2, 7, 7, 0, 1, 6, 7, 1, 1, 3, 9, 0, 0, 9, 8, 4, 8, 8, 2, 4, 0, 1, 2, 8, 5, 8, 3, 6, 1, 6, 0, 3, 5, 6, 3, 7, 0, 7, 6, 6, 0, 1, 0, 4, 7, 1, 0, 1, 8, 1, 9, 4, 2, 9, 5, 5, 5, 9, 6, 1, 9, 8, 9, 4, 6, 7, 6, 7, 8, 3, 7, 4, 4, 9, 4, 4, 8, 2, 5, 5, 3, 7, 9, 7, 7, 4, 7, 2, 6, 8, 4, 7, 1, 0, 4, 0, 4, 7, 5, 3, 4, 6, 4, 6, 2, 0, 8, 0, 4, 6, 6, 8, 4, 2, 5, 9, 0, 6, 9, 4, 9, 1, 2, 9, 3, 3, 1, 3, 6, 7, 7, 0, 2, 8, 9, 8, 9, 1, 5, 2, 1, 0, 4, 7, 5, 2, 1, 6, 2, 0, 5, 6, 9, 6, 6, 0, 2, 4, 0, 5, 8, 0, 3, 8, 1, 5, 0, 1, 9, 3, 5, 1, 1, 2, 5, 3, 3, 8, 2, 4, 3, 0, 0, 3, 5, 5, 8, 7, 6, 4, 0, 2, 4, 7, 4, 9, 6, 4, 7, 3, 2, 6, 3, 9, 1, 4, 1, 9, 9, 2, 7, 2, 6, 0, 4, 2, 6, 9, 9, 2, 2, 7, 9, 6, 7, 8, 2, 3, 5, 4, 7, 8, 1, 6, 3, 6, 0, 0, 9, 3, 4, 1, 7, 2, 1, 6, 4, 1, 2, 1, 9, 9, 2, 4, 5, 8, 6, 3, 1, 5, 0, 3, 0, 2, 8, 6, 1, 8, 2, 9, 7, 4, 5, 5, 5, 7, 0, 6, 7, 4, 9, 8, 3, 8, 5, 0, 5, 4, 9, 4, 5, 8, 8, 5, 8, 6, 9, 2, 6, 9, 9, 5, 6, 9, 0, 9, 2, 7, 2, 1, 0, 7, 9, 7, 5, 0, 9, 3, 0, 2, 9, 5, 5, 3, 2, 1, 1, 6, 5, 3, 4, 4, 9, 8, 7, 2, 0, 2, 7, 5, 5, 9, 6, 0, 2, 3, 6, 4, 8, 0, 6, 6, 5, 4, 9, 9, 1, 1, 9, 8, 8, 1, 8, 3, 4, 7, 9, 7, 7, 5, 3, 5, 6, 6, 3, 6, 9, 8, 0, 7, 4, 2, 6, 5, 4, 2, 5, 2, 7, 8, 6, 2, 5, 5, 1, 8, 1, 8, 4, 1, 7, 5, 7, 4, 6, 7, 2, 8, 9, 0, 9, 7, 7, 7, 7, 2, 7, 9, 3, 8, 0, 0, 0, 8, 1, 6, 4, 7, 0, 6, 0, 0, 1, 6, 1, 4, 5, 2, 4, 9, 1, 9, 2, 1, 7, 3, 2, 1, 7, 2, 1, 4, 7, 7, 2, 3, 5, 0, 1, 4, 1, 4, 4, 1, 9, 7, 3, 5, 6, 8, 5, 4, 8, 1, 6, 1, 3, 6, 1, 1, 5, 7, 3, 5, 2, 5, 5, 2, 1, 3, 3, 4, 7, 5, 7, 4, 1, 8, 4, 9, 4, 6, 8, 4, 3, 8, 5, 2, 3, 3, 2, 3, 9, 0, 7, 3, 9, 4, 1, 4, 3, 3, 3, 4, 5, 4, 7, 7, 6, 2, 4, 1, 6, 8, 6, 2, 5, 1, 8, 9, 8, 3, 5, 6, 9, 4, 8, 5, 5, 6, 2, 0, 9, 9, 2, 1, 9, 2, 2, 2, 1, 8, 4, 2, 7, 2, 5, 5, 0, 2, 5, 4, 2, 5, 6, 8, 8, 7, 6, 7, 1, 7, 9, 0, 4, 9, 4, 6, 0, 1, 6, 5, 3, 4, 6, 6, 8, 0, 4, 9, 8, 8, 6, 2, 7, 2, 3, 2, 7, 9, 1, 7, 8, 6, 0, 8, 5, 7, 8, 4, 3, 8, 3, 8, 2, 7, 9, 6, 7, 9, 7, 6, 6, 8, 1, 4, 5, 4, 1, 0, 0, 9, 5, 3, 8, 8, 3, 7, 8, 6, 3, 6, 0, 9, 5, 0, 6, 8, 0, 0, 6, 4, 2, 2, 5, 1, 2, 5, 2, 0, 5, 1, 1, 7, 3, 9, 2, 9, 8, 4, 8, 9, 6, 0, 8, 4, 1, 2, 8, 4, 8, 8, 6, 2, 6, 9, 4, 5, 6, 0, 4, 2, 4, 1, 9, 6, 5, 2, 8, 5, 0, 2, 2, 2, 1, 0, 6, 6, 1, 1, 8, 6, 3, 0, 6, 7, 4, 4, 2, 7, 8, 6, 2, 2, 0, 3, 9, 1, 9, 4, 9, 4, 5, 0, 4, 7, 1, 2, 3, 7, 1, 3, 7, 8, 6, 9, 6, 0, 9, 5, 6, 3, 6, 4, 3, 7, 1, 9, 1, 7, 2, 8, 7, 4, 6, 7, 7, 6, 4, 6, 5, 7, 5, 7, 3, 9, 6, 2, 4, 1, 3, 8, 9, 0, 8, 6, 5, 8, 3, 2, 6, 4, 5, 9, 9, 5, 8, 1, 3, 3, 9, 0, 4, 7, 8, 0, 2, 7, 5, 9, 0, 0, 9, 9, 4, 6, 5, 7, 6, 4, 0, 7, 8, 9, 5, 1, 2, 6, 9, 4, 6, 8, 3, 9, 8, 3, 5, 2, 5, 9, 5, 7, 0, 9, 8, 2, 5, 8, 2, 2, 6, 2, 0, 5, 2, 2, 4, 8, 9, 4, 0, 7, 7, 2, 6, 7, 1, 9, 4, 7, 8, 2, 6, 8, 4, 8, 2, 6, 0, 1, 4, 7, 6, 9, 9, 0, 9, 0, 2, 6, 4, 0, 1, 3, 6, 3, 9, 4, 4, 3, 7, 4, 5, 5, 3, 0, 5, 0, 6, 8, 2, 0, 3, 4, 9, 6, 2, 5, 2, 4, 5, 1, 7, 4, 9, 3, 9, 9, 6, 5, 1, 4, 3, 1, 4, 2, 9, 8, 0, 9, 1, 9, 0, 6, 5, 9, 2, 5, 0, 9, 3, 7, 2, 2, 1, 6, 9, 6, 4, 6, 1, 5, 1, 5, 7, 0, 9, 8, 5, 8, 3, 8, 7, 4, 1, 0, 5, 9, 7, 8, 8, 5, 9, 5, 9, 7, 7, 2, 9, 7, 5, 4, 9, 8, 9, 3, 0, 1, 6, 1, 7, 5, 3, 9, 2, 8, 4, 6, 8, 1, 3, 8, 2, 6, 8, 6, 8, 3, 8, 6, 8, 9, 4, 2, 7, 7, 4, 1, 5, 5, 9, 9, 1, 8, 5, 5, 9, 2, 5, 2, 4, 5, 9, 5, 3, 9, 5, 9, 4, 3, 1, 0, 4, 9, 9, 7, 2, 5, 2, 4, 6, 8, 0, 8, 4, 5, 9, 8, 7, 2, 7, 3, 6, 4, 4, 6, 9, 5, 8, 4, 8, 6, 5, 3, 8, 3, 6, 7, 3, 6, 2, 2, 2, 6, 2, 6, 0, 9, 9, 1, 2, 4, 6, 0, 8, 0, 5, 1, 2, 4, 3, 8, 8, 4, 3, 9, 0, 4, 5, 1, 2, 4, 4, 1, 3, 6, 5, 4, 9, 7, 6, 2, 7, 8, 0, 7, 9, 7, 7, 1, 5, 6, 9, 1, 4, 3, 5, 9, 9, 7, 7, 0, 0, 1, 2, 9, 6, 1, 6, 0, 8, 9, 4, 4, 1, 6, 9, 4, 8, 6, 8, 5, 5, 5, 8, 4, 8, 4, 0, 6, 3, 5, 3, 4, 2, 2, 0, 7, 2, 2, 2, 5, 8, 2, 8, 4, 8, 8, 6, 4, 8, 1, 5, 8, 4, 5, 6, 0, 2, 8, 5, 0, 6, 0, 1, 6, 8, 4, 2, 7, 3, 9, 4, 5, 2, 2, 6, 7, 4, 6, 7, 6, 7, 8, 8, 9, 5, 2, 5, 2, 1, 3, 8, 5, 2, 2, 5, 4, 9, 9, 5, 4, 6, 6, 6, 7, 2, 7, 8, 2, 3, 9, 8, 6, 4, 5, 6, 5, 9, 6, 1, 1, 6, 3, 5, 4, 8, 8, 6, 2, 3, 0, 5, 7, 7, 4, 5, 6, 4, 9, 8, 0, 3, 5, 5, 9, 3, 6, 3, 4, 5, 6, 8, 1, 7, 4, 3, 2, 4, 1, 1, 2, 5, 1, 5, 0, 7, 6, 0, 6, 9, 4, 7, 9, 4, 5, 1, 0, 9, 6, 5, 9, 6, 0, 9, 4, 0, 2, 5, 2, 2, 8, 8, 7, 9, 7, 1, 0, 8, 9, 3, 1, 4, 5, 6, 6, 9, 1, 3, 6, 8, 6, 7, 2, 2, 8, 7, 4, 8, 9, 4, 0, 5, 6, 0, 1, 0, 1, 5, 0, 3, 3, 0, 8, 6, 1, 7, 9, 2, 8, 6, 8, 0, 9, 2, 0, 8, 7, 4, 7, 6, 0, 9, 1, 7, 8, 2, 4, 9, 3, 8, 5, 8, 9, 0, 0, 9, 7, 1, 4, 9, 0, 9, 6, 7, 5, 9, 8, 5, 2, 6, 1, 3, 6, 5, 5, 4, 9, 7, 8, 1, 8, 9, 3, 1, 2, 9, 7, 8, 4, 8, 2, 1, 6, 8, 2, 9, 9, 8, 9, 4, 8, 7, 2, 2, 6, 5, 8, 8, 0, 4, 8, 5, 7, 5, 6, 4, 0, 1, 4, 2, 7, 0, 4, 7, 7, 5, 5, 5, 1, 3, 2, 3, 7, 9, 6, 4, 1, 4, 5, 1, 5, 2, 3, 7, 4, 6, 2, 3, 4, 3, 6, 4, 5, 4, 2, 8, 5, 8, 4, 4, 4, 7, 9, 5, 2, 6, 5, 8, 6, 7, 8, 2, 1, 0, 5, 1, 1, 4, 1, 3, 5, 4, 7, 3, 5, 7, 3, 9, 5, 2, 3, 1, 1, 3, 4, 2, 7, 1, 6, 6, 1, 0, 2, 1, 3, 5, 9, 6, 9, 5, 3, 6, 2, 3, 1, 4, 4, 2, 9, 5, 2, 4, 8, 4, 9, 3, 7, 1, 8, 7, 1, 1, 0, 1, 4, 5, 7, 6, 5, 4, 0, 3, 5, 9, 0, 2, 7, 9, 9, 3, 4, 4, 0, 3, 7, 4, 2, 0, 0, 7, 3, 1, 0, 5, 7, 8, 5, 3, 9, 0, 6, 2, 1, 9, 8, 3, 8, 7, 4, 4, 7, 8, 0, 8, 4, 7, 8, 4, 8, 9, 6, 8, 3, 3, 2, 1, 4, 4, 5, 7, 1, 3, 8, 6, 8, 7, 5, 1, 9, 4, 3, 5, 0, 6, 4, 3, 0, 2, 1, 8, 4, 5, 3, 1, 9, 1, 0, 4, 8, 4, 8, 1, 0, 0, 5, 3, 7, 0, 6, 1, 4, 6, 8, 0, 6, 7, 4, 9, 1, 9, 2, 7, 8, 1, 9, 1, 1, 9, 7, 9, 3, 9, 9, 5, 2, 0, 6, 1, 4, 1, 9, 6, 6, 3, 4, 2, 8, 7, 5, 4, 4, 4, 0, 6, 4, 3, 7, 4, 5, 1, 2, 3, 7, 1, 8, 1, 9, 2, 1, 7, 9, 9, 9, 8, 3, 9, 1, 0, 1, 5, 9, 1, 9, 5, 6, 1, 8, 1, 4, 6, 7, 5, 1, 4, 2, 6, 9, 1, 2, 3, 9, 7, 4, 8, 9, 4, 0, 9, 0, 7, 1, 8, 6, 4, 9, 4, 2, 3, 1, 9, 6, 1, 5, 6, 7, 9, 4, 5, 2, 0, 8, 0, 9, 5, 1, 4, 6, 5, 5, 0, 2, 2, 5, 2, 3, 1, 6, 0, 3, 8, 8, 1, 9, 3, 0, 1, 4, 2, 0, 9, 3, 7, 6, 2, 1, 3, 7, 8, 5, 5, 9, 5, 6, 6, 3, 8, 9, 3, 7, 7, 8, 7, 0, 8, 3, 0, 3, 9, 0, 6, 9, 7, 9, 2, 0, 7, 7, 3, 4, 6, 7, 2, 2, 1, 8, 2, 5, 6, 2, 5, 9, 9, 6, 6, 1, 5, 0, 1, 4, 2, 1, 5, 0, 3, 0, 6, 8, 0, 3, 8, 4, 4, 7, 7, 3, 4, 5, 4, 9, 2, 0, 2, 6, 0, 5, 4, 1, 4, 6, 6, 5, 9, 2, 5, 2, 0, 1, 4, 9, 7, 4, 4, 2, 8, 5, 0, 7, 3, 2, 5, 1, 8, 6, 6, 6, 0, 0, 2, 1, 3, 2, 4, 3, 4, 0, 8, 8, 1, 9, 0, 7, 1, 0, 4, 8, 6, 3, 3, 1, 7, 3, 4, 6, 4, 9, 6, 5, 1, 4, 5, 3, 9, 0, 5, 7, 9, 6, 2, 6, 8, 5, 6, 1, 0, 0, 5, 5, 0, 8, 1, 0, 6, 6, 5, 8, 7, 9, 6, 9, 9, 8, 1, 6, 3, 5, 7, 4, 7, 3, 6, 3, 8, 4, 0, 5, 2, 5, 7, 1, 4, 5, 9, 1, 0, 2, 8, 9, 7, 0, 6, 4, 1, 4, 0, 1, 1, 0, 9, 7, 1, 2, 0, 6, 2, 8, 0, 4, 3, 9, 0, 3, 9, 7, 5, 9, 5, 1, 5, 6, 7, 7, 1, 5, 7, 7, 0, 0, 4, 2, 0, 3, 3, 7, 8, 6, 9, 9, 3, 6, 0, 0, 7, 2, 3, 0, 5, 5, 8, 7, 6, 3, 1, 7, 6, 3, 5, 9, 4, 2, 1, 8, 7, 3, 1, 2, 5, 1, 4, 7, 1, 2, 0, 5, 3, 2, 9, 2, 8, 1, 9, 1, 8, 2, 6, 1, 8, 6, 1, 2, 5, 8, 6, 7, 3, 2, 1, 5, 7, 9, 1, 9, 8, 4, 1, 4, 8, 4, 8, 8, 2, 9, 1, 6, 4, 4, 7, 0, 6, 0, 9, 5, 7, 5, 2, 7, 0, 6, 9, 5, 7, 2, 2, 0, 9, 1, 7, 5, 6, 7, 1, 1, 6, 7, 2, 2, 9, 1, 0, 9, 8, 1, 6, 9, 0, 9, 1, 5, 2, 8, 0, 1, 7, 3, 5, 0, 6, 7, 1, 2, 7, 4, 8, 5, 8, 3, 2, 2, 2, 8, 7, 1, 8, 3, 5, 2, 0, 9, 3, 5, 3, 9, 6, 5, 7, 2, 5, 1, 2, 1, 0, 8, 3, 5, 7, 9, 1, 5, 1, 3, 6, 9, 8, 8, 2, 0, 9, 1, 4, 4, 4, 2, 1, 0, 0, 6, 7, 5, 1, 0, 3, 3, 4, 6, 7, 1, 1, 0, 3, 1, 4, 1, 2, 6, 7, 1, 1, 1, 3, 6, 9, 9, 0, 8, 6, 5, 8, 5, 1, 6, 3, 9, 8, 3, 1, 5, 0, 1, 9, 7, 0, 1, 6, 5, 1, 5, 1, 1, 6, 8, 5, 1, 7, 1, 4, 3, 7, 6, 5, 7, 6, 1, 8, 3, 5, 1, 5, 5, 6, 5, 0, 8, 8, 4, 9, 0, 9, 9, 8, 9, 8, 5, 9, 9, 8, 2, 3, 8, 7, 3, 4, 5, 5, 2, 8, 3, 3, 1, 6, 3, 5, 5, 0, 7, 6, 4, 7, 9, 1, 8, 5, 3, 5, 8, 9, 3, 2, 2, 6, 1, 8, 5, 4, 8, 9, 6, 3, 2, 1, 3, 2, 9, 3, 3, 0, 8, 9, 8, 5, 7, 0, 6, 4, 2, 0, 4, 6, 7, 5, 2, 5, 9, 0, 7, 0, 9, 1, 5, 4, 8, 1, 4, 1, 6, 5, 4, 9, 8, 5, 9, 4, 6, 1, 6, 3, 7, 1, 8, 0, 2, 7, 0, 9, 8, 1, 9, 9, 4, 3, 0, 9, 9, 2, 4, 4, 8, 8, 9, 5, 7, 5, 7, 1, 2, 8, 2, 8, 9, 0, 5, 9, 2, 3, 2, 3, 3, 2, 6, 0, 9, 7, 2, 9, 9, 7, 1, 2, 0, 8, 4, 4, 3, 3, 5, 7, 3, 2, 6, 5, 4, 8, 9, 3, 8, 2, 3, 9, 1, 1, 9, 3, 2, 5, 9, 7, 4, 6, 3, 6, 6, 7, 3, 0, 5, 8, 3, 6, 0, 4, 1, 4, 2, 8, 1, 3, 8, 8, 3, 0, 3, 2, 0, 3, 8, 2, 4, 9, 0, 3, 7, 5, 8, 9, 8, 5, 2, 4, 3, 7, 4, 4, 1, 7, 0, 2, 9, 1, 3, 2, 7, 6, 5, 6, 1, 8, 0, 9, 3, 7, 7, 3, 4, 4, 4, 0, 3, 0, 7, 0, 7, 4, 6, 9, 2, 1, 1, 2, 0, 1, 9, 1, 3, 0, 2, 0, 3, 3, 0, 3, 8, 0, 1, 9, 7, 6, 2, 1, 1, 0, 1, 1, 0, 0, 4, 4, 9, 2, 9, 3, 2, 1, 5, 1, 6, 0, 8, 4, 2, 4, 4, 4, 8, 5, 9, 6, 3, 7, 6, 6, 9, 8, 3, 8, 9, 5, 2, 2, 8, 6, 8, 4, 7, 8, 3, 1, 2, 3, 5, 5, 2, 6, 5, 8, 2, 1, 3, 1, 4, 4, 9, 5, 7, 6, 8, 5, 7, 2, 6, 2, 4, 3, 3, 4, 4, 1, 8, 9, 3, 0, 3, 9, 6, 8, 6, 4, 2, 6, 2, 4, 3, 4, 1, 0, 7, 7, 3, 2, 2, 6, 9, 7, 8, 0, 2, 8, 0, 7, 3, 1, 8, 9, 1, 5, 4, 4, 1, 1, 0, 1, 0, 4, 4, 6, 8, 2, 3, 2, 5, 2, 7, 1, 6, 2, 0, 1, 0, 5, 2, 6, 5, 2, 2, 7, 2, 1, 1, 1, 6, 6, 0, 3, 9, 6, 6, 6, 5, 5, 7, 3, 0, 9, 2, 5, 4, 7, 1, 1, 0, 5, 5, 7, 8, 5, 3, 7, 6, 3, 4, 6, 6, 8, 2, 0, 6, 5, 3, 1, 0, 9, 8, 9, 6, 5, 2, 6, 9, 1, 8, 6, 2, 0, 5, 6, 4, 7, 6, 9, 3, 1, 2, 5, 7, 0, 5, 8, 6, 3, 5, 6, 6, 2, 0, 1, 8, 5, 5, 8, 1, 0, 0, 7, 2, 9, 3, 6, 0, 6, 5, 9, 8, 7, 6, 4, 8, 6, 1, 1, 7, 9, 1, 0, 4, 5, 3, 3, 4, 8, 8, 5, 0, 3, 4, 6, 1, 1, 3, 6, 5, 7, 6, 8, 6, 7, 5, 3, 2, 4, 9, 4, 4, 1, 6, 6, 8, 0, 3, 9, 6, 2, 6, 5, 7, 9, 7, 8, 7, 7, 1, 8, 5, 5, 6, 0, 8, 4, 5, 5, 2, 9, 6, 5, 4, 1, 2, 6, 6, 5, 4, 0, 8, 5, 3, 0, 6, 1, 4, 3, 4, 4, 4, 3, 1, 8, 5, 8, 6, 7, 6, 9, 7, 5, 1, 4, 5, 6, 6, 1, 4, 0, 6, 8, 0, 0, 7, 0, 0, 2, 3, 7, 8, 7, 7, 6, 5, 9, 1, 3, 4, 4, 0, 1, 7, 1, 2, 7, 4, 9, 4, 7, 0, 4, 2, 0, 5, 6, 2, 2, 3, 0, 5, 3, 8, 9, 9, 4, 5, 6, 1, 3, 1, 4, 0, 7, 1, 1, 2, 7, 0, 0, 0, 4, 0, 7, 8, 5, 4, 7, 3, 3, 2, 6, 9, 9, 3, 9, 0, 8, 1, 4, 5, 4, 6, 6, 4, 6, 4, 5, 8, 8, 0, 7, 9, 7, 2, 7, 0, 8, 2, 6, 6, 8, 3, 0, 6, 3, 4, 3, 2, 8, 5, 8, 7, 8, 5, 6, 9, 8, 3, 0, 5, 2, 3, 5, 8, 0, 8, 9, 3, 3, 0, 6, 5, 7, 5, 7, 4, 0, 6, 7, 9, 5, 4, 5, 7, 1, 6, 3, 7, 7, 5, 2, 5, 4, 2, 0, 2, 1, 1, 4, 9, 5, 5, 7, 6, 1, 5, 8, 1, 4, 0, 0, 2, 5, 0, 1, 2, 6, 2, 2, 8, 5, 9, 4, 1, 3, 0, 2, 1, 6, 4, 7, 1, 5, 5, 0, 9, 7, 9, 2, 5, 9, 2, 3, 0, 9, 9, 0, 7, 9, 6, 5, 4, 7, 3, 7, 6, 1, 2, 5, 5, 1, 7, 6, 5, 6, 7, 5, 1, 3, 5, 7, 5, 1, 7, 8, 2, 9, 6, 6, 6, 4, 5, 4, 7, 7, 9, 1, 7, 4, 5, 0, 1, 1, 2, 9, 9, 6, 1, 4, 8, 9, 0, 3, 0, 4, 6, 3, 9, 9, 4, 7, 1, 3, 2, 9, 6, 2, 1, 0, 7, 3, 4, 0, 4, 3, 7, 5, 1, 8, 9, 5, 7, 3, 5, 9, 6, 1, 4, 5, 8, 9, 0, 1, 9, 3, 8, 9, 7, 1, 3, 1, 1, 1, 7, 9, 0, 4, 2, 9, 7, 8, 2, 8, 5, 6, 4, 7, 5, 0, 3, 2, 0, 3, 1, 9, 8, 6, 9, 1, 5, 1, 4, 0, 2, 8, 7, 0, 8, 0, 8, 5, 9, 9, 0, 4, 8, 0, 1, 0, 9, 4, 1, 2, 1, 4, 7, 2, 2, 1, 3, 1, 7, 9, 4, 7, 6, 4, 7, 7, 7, 2, 6, 2, 2, 4, 1, 4, 2, 5, 4, 8, 5, 4, 5, 4, 0, 3, 3, 2, 1, 5, 7, 1, 8, 5, 3, 0, 6, 1, 4, 2, 2, 8, 8, 1, 3, 7, 5, 8, 5, 0, 4, 3, 0, 6, 3, 3, 2, 1, 7, 5, 1, 8, 2, 9, 7, 9, 8, 6, 6, 2, 2, 3, 7, 1, 7, 2, 1, 5, 9, 1, 6, 0, 7, 7, 1, 6, 6, 9, 2, 5, 4, 7, 4, 8, 7, 3, 8, 9, 8, 6, 6, 5, 4, 9, 4, 9, 4, 5, 0, 1, 1, 4, 6, 5, 4, 0, 6, 2, 8, 4, 3, 3, 6, 6, 3, 9, 3, 7, 9, 0, 0, 3, 9, 7, 6, 9, 2, 6, 5, 6, 7, 2, 1, 4, 6, 3, 8, 5, 3, 0, 6, 7, 3, 6, 0, 9, 6, 5, 7, 1, 2, 0, 9, 1, 8, 0, 7, 6, 3, 8, 3, 2, 7, 1, 6, 6, 4, 1, 6, 2, 7, 4, 8, 8, 8, 8, 0, 0, 7, 8, 6, 9, 2, 5, 6, 0, 2, 9, 0, 2, 2, 8, 4, 7, 2, 1, 0, 4, 0, 3, 1, 7, 2, 1, 1, 8, 6, 0, 8, 2, 0, 4, 1, 9, 0, 0, 0, 4, 2, 2, 9, 6, 6, 1, 7, 1, 1, 9, 6, 3, 7, 7, 9, 2, 1, 3, 3, 7, 5, 7, 5, 1, 1, 4, 9, 5, 9, 5, 0, 1, 5, 6, 6, 0, 4, 9, 6, 3, 1, 8, 6, 2, 9, 4, 7, 2, 6, 5, 4, 7, 3, 6, 4, 2, 5, 2, 3, 0, 8, 1, 7, 7, 0, 3, 6, 7, 5, 1, 5, 9, 0, 6, 7, 3, 5, 0, 2, 3, 5, 0, 7, 2, 8, 3, 5, 4, 0, 5, 6, 7, 0, 4, 0, 3, 8, 6, 7, 4, 3, 5, 1, 3, 6, 2, 2, 2, 2, 4, 7, 7, 1, 5, 8, 9, 1, 5, 0, 4, 9, 5, 3, 0, 9, 8, 4, 4, 4, 8, 9, 3, 3, 3, 0, 9, 6, 3, 4, 0, 8, 7, 8, 0, 7, 6, 9, 3, 2, 5, 9, 9, 3, 9, 7, 8, 0, 5, 4, 1, 9, 3, 4, 1, 4, 4, 7, 3, 7, 7, 4, 4, 1, 8, 4, 2, 6, 3, 1, 2, 9, 8, 6, 0, 8, 0, 9, 9, 8, 8, 8, 6, 8, 7, 4, 1, 3, 2, 6, 0, 4, 7, 2 } ; const size_t nacc1 = 3 ; const double numacc1[3] = { 10000001, 10000003, 10000002 } ; const size_t nacc2 = 1001 ; double numacc2[1001] ; const size_t nacc3 = 1001 ; double numacc3[1001] ; const size_t nacc4 = 1001 ; double numacc4[1001] ; numacc2[0] = 1.2 ; numacc3[0] = 1000000.2 ; numacc4[0] = 10000000.2 ; for (i = 1 ; i < 1000 ; i += 2) { numacc2[i] = 1.1 ; numacc2[i+1] = 1.3 ; numacc3[i] = 1000000.1 ; numacc3[i+1] = 1000000.3 ; numacc4[i] = 10000000.1 ; numacc4[i+1] = 10000000.3 ; } gsl_ieee_env_setup (); { double mean = gsl_stats_mean (lew, 1, nlew); double sd = gsl_stats_sd (lew, 1, nlew); double lag1 = gsl_stats_lag1_autocorrelation (lew, 1, nlew); double expected_mean = -177.435000000000; double expected_sd = 277.332168044316; double expected_lag1 = -0.307304800605679; gsl_test_rel (mean, expected_mean, 1e-15, "lew gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-15, "lew gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-14, "lew autocorrelation") ; } { double mean = gsl_stats_mean (lottery, 1, nlottery); double sd = gsl_stats_sd (lottery, 1, nlottery); double lag1 = gsl_stats_lag1_autocorrelation (lottery, 1, nlottery); double expected_mean = 518.958715596330; double expected_sd = 291.699727470969; double expected_lag1 = -0.120948622967393; gsl_test_rel (mean, expected_mean, 1e-15, "lottery gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-15, "lottery gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-14, "lottery autocorrelation") ; } { double mean = gsl_stats_mean (mavro, 1, nmavro); double sd = gsl_stats_sd (mavro, 1, nmavro); double lag1 = gsl_stats_lag1_autocorrelation (mavro, 1, nmavro); double expected_mean = 2.00185600000000; double expected_sd = 0.000429123454003053; double expected_lag1 = 0.937989183438248; gsl_test_rel (mean, expected_mean, 1e-15, "mavro gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-13, "mavro gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-13, "mavro autocorrelation") ; } { double mean = gsl_stats_mean (michelson, 1, nmichelson); double sd = gsl_stats_sd (michelson, 1, nmichelson); double lag1 = gsl_stats_lag1_autocorrelation (michelson, 1, nmichelson); double expected_mean = 299.852400000000; double expected_sd = 0.0790105478190518; double expected_lag1 = 0.535199668621283; gsl_test_rel (mean, expected_mean, 1e-15, "michelson gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-13, "michelson gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-13, "michelson autocorrelation") ; } { double mean = gsl_stats_mean (pidigits, 1, npidigits); double sd = gsl_stats_sd (pidigits, 1, npidigits); double lag1 = gsl_stats_lag1_autocorrelation (pidigits, 1, npidigits); double expected_mean = 4.53480000000000; double expected_sd = 2.86733906028871; double expected_lag1 = -0.00355099287237972; gsl_test_rel (mean, expected_mean, 1e-14, "pidigits gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-15, "pidigits gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-14, "pidigits autocorrelation") ; } { double mean = gsl_stats_mean (numacc1, 1, nacc1); double sd = gsl_stats_sd (numacc1, 1, nacc1); double lag1 = gsl_stats_lag1_autocorrelation (numacc1, 1, nacc1); double expected_mean = 10000002; double expected_sd = 1; double expected_lag1 = -0.5; gsl_test_rel (mean, expected_mean, 1e-15, "acc1 gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-15, "acc1 gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-15, "acc1 autocorrelation") ; } { double mean = gsl_stats_mean (numacc2, 1, nacc2); double sd = gsl_stats_sd (numacc2, 1, nacc2); double lag1 = gsl_stats_lag1_autocorrelation (numacc2, 1, nacc2); double expected_mean = 1.2; double expected_sd = 0.1; double expected_lag1 = -0.999; gsl_test_rel (mean, expected_mean, 1e-15, "acc2 gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-15, "acc2 gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-10, "acc2 autocorrelation") ; } { double mean = gsl_stats_mean (numacc3, 1, nacc3); double sd = gsl_stats_sd (numacc3, 1, nacc3); double lag1 = gsl_stats_lag1_autocorrelation (numacc3, 1, nacc3); double expected_mean = 1000000.2; double expected_sd = 0.1; double expected_lag1 = -0.999; gsl_test_rel (mean, expected_mean, 1e-15, "acc3 gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-9, "acc3 gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-10, "acc3 autocorrelation") ; } { double mean = gsl_stats_mean (numacc4, 1, nacc4); double sd = gsl_stats_sd (numacc4, 1, nacc4); double lag1 = gsl_stats_lag1_autocorrelation (numacc4, 1, nacc4); double expected_mean = 10000000.2; double expected_sd = 0.1; double expected_lag1 = -0.999; gsl_test_rel (mean, expected_mean, 1e-15, "acc4 gsl_stats_mean") ; gsl_test_rel (sd, expected_sd, 1e-7, "acc4 gsl_stats_sd") ; gsl_test_rel (lag1, expected_lag1, 1e-10, "acc4 autocorrelation") ; } return 0; } gsl-1.16/statistics/variance.c0000664000252300025230000000260212171574312013300 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "variance_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/gsl_statistics_uchar.h0000664000252300025230000001173512171574312015745 00000000000000/* statistics/gsl_statistics_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_UCHAR_H__ #define __GSL_STATISTICS_UCHAR_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_uchar_mean (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_variance (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_sd (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_variance_with_fixed_mean (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_sd_with_fixed_mean (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_tss (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_tss_m (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_absdev (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_skew (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_kurtosis (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_lag1_autocorrelation (const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_covariance (const unsigned char data1[], const size_t stride1,const unsigned char data2[], const size_t stride2, const size_t n); double gsl_stats_uchar_correlation (const unsigned char data1[], const size_t stride1,const unsigned char data2[], const size_t stride2, const size_t n); double gsl_stats_uchar_spearman (const unsigned char data1[], const size_t stride1, const unsigned char data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_uchar_variance_m (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_sd_m (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_absdev_m (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_skew_m_sd (const unsigned char data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_uchar_kurtosis_m_sd (const unsigned char data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_uchar_lag1_autocorrelation_m (const unsigned char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uchar_covariance_m (const unsigned char data1[], const size_t stride1,const unsigned char data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_uchar_pvariance (const unsigned char data1[], const size_t stride1, const size_t n1, const unsigned char data2[], const size_t stride2, const size_t n2); double gsl_stats_uchar_ttest (const unsigned char data1[], const size_t stride1, const size_t n1, const unsigned char data2[], const size_t stride2, const size_t n2); unsigned char gsl_stats_uchar_max (const unsigned char data[], const size_t stride, const size_t n); unsigned char gsl_stats_uchar_min (const unsigned char data[], const size_t stride, const size_t n); void gsl_stats_uchar_minmax (unsigned char * min, unsigned char * max, const unsigned char data[], const size_t stride, const size_t n); size_t gsl_stats_uchar_max_index (const unsigned char data[], const size_t stride, const size_t n); size_t gsl_stats_uchar_min_index (const unsigned char data[], const size_t stride, const size_t n); void gsl_stats_uchar_minmax_index (size_t * min_index, size_t * max_index, const unsigned char data[], const size_t stride, const size_t n); double gsl_stats_uchar_median_from_sorted_data (const unsigned char sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_uchar_quantile_from_sorted_data (const unsigned char sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_UCHAR_H__ */ gsl-1.16/statistics/test.c0000664000252300025230000000573512171574312012501 00000000000000/* statistics/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include int test_nist (void); /* Test program for mean.c. JimDavies 7.96 */ #define BASE_LONG_DOUBLE #include "templates_on.h" #include "test_float_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "test_float_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "test_float_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "test_int_source.c" #include "templates_off.h" #undef BASE_CHAR int main (void) { size_t s1, s2; gsl_ieee_env_setup (); for (s1 = 1; s1 < 4 ; s1++) { s2 = (s1 < 3) ? 1 : (s1 - 1) ; test_func (s1,s2); test_float_func (s1,s2); test_long_double_func (s1,s2); test_ulong_func (s1,s2); test_long_func (s1,s2); test_uint_func (s1,s2); test_int_func (s1,s2); test_ushort_func (s1,s2); test_short_func (s1,s2); test_uchar_func (s1,s2); test_char_func (s1,s2); } test_nist(); exit (gsl_test_summary ()); } gsl-1.16/statistics/lag1_source.c0000664000252300025230000000327512171574312013723 00000000000000/* statistics/lag1_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,lag1_autocorrelation) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean) (data, stride, n); return FUNCTION(gsl_stats,lag1_autocorrelation_m)(data, stride, n, mean); } double FUNCTION(gsl_stats,lag1_autocorrelation_m) (const BASE data[], const size_t stride, const size_t size, const double mean) { /* Compute the lag-1 autocorrelation of a dataset using the recurrence relation */ size_t i; long double r1 ; long double q = 0 ; long double v = (data[0 * stride] - mean) * (data[0 * stride] - mean) ; for (i = 1; i < size ; i++) { const long double delta0 = (data[(i-1) * stride] - mean); const long double delta1 = (data[i * stride] - mean); q += (delta0 * delta1 - q)/(i + 1); v += (delta1 * delta1 - v)/(i + 1); } r1 = q / v ; return r1; } gsl-1.16/statistics/mean_source.c0000664000252300025230000000230312171574312014006 00000000000000/* statistics/mean_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION (gsl_stats, mean) (const BASE data[], const size_t stride, const size_t size) { /* Compute the arithmetic mean of a dataset using the recurrence relation mean_(n) = mean(n-1) + (data[n] - mean(n-1))/(n+1) */ long double mean = 0; size_t i; for (i = 0; i < size; i++) { mean += (data[i * stride] - mean) / (i + 1); } return mean; } gsl-1.16/statistics/ttest_source.c0000664000252300025230000000324112171574312014233 00000000000000/* statistics/ttest_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,ttest) (const BASE data1[], const size_t stride1, const size_t n1, const BASE data2[], const size_t stride2, const size_t n2) { /* runs a t-test between two datasets representing independent samples. Tests to see if the difference between means of the samples is different from zero */ /* find means for the two samples */ const double mean1 = FUNCTION(gsl_stats,mean) (data1, stride1, n1); const double mean2 = FUNCTION(gsl_stats,mean) (data2, stride2, n2); /* find pooled variance for the two samples */ const double pv = FUNCTION(gsl_stats,pvariance) (data1, stride1, n1, data2, stride2, n2); /* calculate the t statistic */ const double t = (mean1 - mean2) / (sqrt (pv * ((1.0 / n1) + (1.0 / n2)))); return t; } gsl-1.16/statistics/wkurtosis_source.c0000664000252300025230000000427012171574312015145 00000000000000/* statistics/wkurtosis_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,wkurtosis) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean)(w, wstride, data, stride, n); const double wsd = FUNCTION(gsl_stats,wsd_m)(w, wstride, data, stride, n, wmean); return FUNCTION(gsl_stats,wkurtosis_m_sd)(w, wstride, data, stride, n, wmean, wsd); } double FUNCTION(gsl_stats,wkurtosis_m_sd) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean, const double wsd) { /* takes a dataset and finds the kurtosis */ long double wavg = 0, kurtosis; long double W = 0; size_t i; /* find the fourth moment the deviations, normalized by the sd */ /* we use a recurrence relation to stably update a running value so there aren't any large sums that can overflow */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { const long double x = (data[i * stride] - wmean) / wsd; W += wi ; wavg += (x * x * x * x - wavg) * (wi / W); } } kurtosis = wavg - 3.0; /* makes kurtosis zero for a Gaussian */ return kurtosis; } gsl-1.16/statistics/wvariance.c0000664000252300025230000000070212171574312013466 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "wvariance_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "wvariance_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "wvariance_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/statistics/Makefile.in0000664000252300025230000010774412172253757013436 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = statistics DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslstatistics_la_LIBADD = am_libgslstatistics_la_OBJECTS = mean.lo variance.lo absdev.lo skew.lo \ kurtosis.lo lag1.lo p_variance.lo minmax.lo ttest.lo median.lo \ covariance.lo quantiles.lo wmean.lo wvariance.lo wabsdev.lo \ wskew.lo wkurtosis.lo libgslstatistics_la_OBJECTS = $(am_libgslstatistics_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_nist.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslstatistics.la ../sort/libgslsort.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la \ ../vector/libgslvector.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslstatistics_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslstatistics_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslstatistics.la pkginclude_HEADERS = gsl_statistics.h gsl_statistics_char.h gsl_statistics_double.h gsl_statistics_float.h gsl_statistics_int.h gsl_statistics_long.h gsl_statistics_long_double.h gsl_statistics_short.h gsl_statistics_uchar.h gsl_statistics_uint.h gsl_statistics_ulong.h gsl_statistics_ushort.h INCLUDES = -I$(top_srcdir) libgslstatistics_la_SOURCES = mean.c variance.c absdev.c skew.c kurtosis.c lag1.c p_variance.c minmax.c ttest.c median.c covariance.c quantiles.c wmean.c wvariance.c wabsdev.c wskew.c wkurtosis.c noinst_HEADERS = mean_source.c variance_source.c covariance_source.c absdev_source.c skew_source.c kurtosis_source.c lag1_source.c p_variance_source.c minmax_source.c ttest_source.c median_source.c quantiles_source.c wmean_source.c wvariance_source.c wabsdev_source.c wskew_source.c wkurtosis_source.c test_float_source.c test_int_source.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_nist.c test_LDADD = libgslstatistics.la ../sort/libgslsort.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../vector/libgslvector.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu statistics/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu statistics/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslstatistics.la: $(libgslstatistics_la_OBJECTS) $(libgslstatistics_la_DEPENDENCIES) $(EXTRA_libgslstatistics_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslstatistics_la_OBJECTS) $(libgslstatistics_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/absdev.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/covariance.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/kurtosis.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lag1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mean.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/median.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/minmax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/p_variance.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/quantiles.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/skew.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_nist.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ttest.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/variance.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wabsdev.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wkurtosis.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wmean.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wskew.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wvariance.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/statistics/gsl_statistics_uint.h0000664000252300025230000001162112171574312015614 00000000000000/* statistics/gsl_statistics_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_UINT_H__ #define __GSL_STATISTICS_UINT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_uint_mean (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_variance (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_sd (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_variance_with_fixed_mean (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_sd_with_fixed_mean (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_tss (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_tss_m (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_absdev (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_skew (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_kurtosis (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_lag1_autocorrelation (const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_covariance (const unsigned int data1[], const size_t stride1,const unsigned int data2[], const size_t stride2, const size_t n); double gsl_stats_uint_correlation (const unsigned int data1[], const size_t stride1,const unsigned int data2[], const size_t stride2, const size_t n); double gsl_stats_uint_spearman (const unsigned int data1[], const size_t stride1, const unsigned int data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_uint_variance_m (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_sd_m (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_absdev_m (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_skew_m_sd (const unsigned int data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_uint_kurtosis_m_sd (const unsigned int data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_uint_lag1_autocorrelation_m (const unsigned int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_uint_covariance_m (const unsigned int data1[], const size_t stride1,const unsigned int data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_uint_pvariance (const unsigned int data1[], const size_t stride1, const size_t n1, const unsigned int data2[], const size_t stride2, const size_t n2); double gsl_stats_uint_ttest (const unsigned int data1[], const size_t stride1, const size_t n1, const unsigned int data2[], const size_t stride2, const size_t n2); unsigned int gsl_stats_uint_max (const unsigned int data[], const size_t stride, const size_t n); unsigned int gsl_stats_uint_min (const unsigned int data[], const size_t stride, const size_t n); void gsl_stats_uint_minmax (unsigned int * min, unsigned int * max, const unsigned int data[], const size_t stride, const size_t n); size_t gsl_stats_uint_max_index (const unsigned int data[], const size_t stride, const size_t n); size_t gsl_stats_uint_min_index (const unsigned int data[], const size_t stride, const size_t n); void gsl_stats_uint_minmax_index (size_t * min_index, size_t * max_index, const unsigned int data[], const size_t stride, const size_t n); double gsl_stats_uint_median_from_sorted_data (const unsigned int sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_uint_quantile_from_sorted_data (const unsigned int sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_UINT_H__ */ gsl-1.16/statistics/covariance.c0000664000252300025230000000515212171574312013625 00000000000000#include #include #include #include #include static int compute_rank(gsl_vector *v); #define BASE_LONG_DOUBLE #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "covariance_source.c" #include "templates_off.h" #undef BASE_CHAR /* compute_rank() Compute rank of a sorted vector Inputs: v - sorted data vector on input; rank vector on output Notes: ranks are always computed in double precision */ static int compute_rank(gsl_vector *v) { const size_t n = v->size; size_t i = 0; while (i < n - 1) { double vi = gsl_vector_get(v, i); if (vi == gsl_vector_get(v, i + 1)) { size_t j = i + 2; size_t k; double rank = 0.0; /* we have detected a tie, find number of equal elements */ while (j < n && vi == gsl_vector_get(v, j)) ++j; /* compute rank */ for (k = i; k < j; ++k) rank += k + 1.0; /* divide by number of ties */ rank /= (double) (j - i); for (k = i; k < j; ++k) gsl_vector_set(v, k, rank); i = j; } else { /* no tie - set rank to natural ordered position */ gsl_vector_set(v, i, i + 1.0); ++i; } } if (i == n - 1) gsl_vector_set(v, n - 1, (double) n); return GSL_SUCCESS; } /* compute_rank() */ gsl-1.16/statistics/ChangeLog0000664000252300025230000000771112171574312013124 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-10-02 Brian Gough * variance_source.c: added functions for sum of squares and weighted sum of squares 2006-01-07 Brian Gough * test_float_source.c: additional tests for NaNs * minmax_source.c: handle NaNs correctly, if any element is NaN then the max and min are NaN Sat Jul 15 12:23:09 2000 Brian Gough * test_nist.c: added url/reference to the original NIST datasets Thu May 4 15:11:11 2000 Brian Gough * covariance.c: added covariance function Wed Mar 8 15:29:19 2000 Brian Gough * Function Name Reorganization: The function suffix "_with_mean" has been changed to "_m", the function suffix "_with_mean_and_sd" has been changed to "_m_sd". The variance function est_variance has been changed to simply _variance, (similarly for est_sd, which is now _sd), while the function _variance is now _variance_with_fixed_mean (and _sd is _sd_with_fixed_mean). Wed Mar 1 11:09:21 2000 Brian Gough * wabsdev.c wabsdev_source.c wkurtosis.c wkurtosis_source.c wmean.c wmean_source.c wskew.c wskew_source.c wvariance.c wvariance_source.c: added support for weighted statistics * removed source.h (no longer used) Tue Feb 29 10:35:23 2000 Brian Gough * changed arguments of pvariance and ttest to have consistent form (DATA,STRIDE,SIZE) Mon Feb 28 20:29:08 2000 Brian Gough * removed sort function since this is now available in the sort directory. * converted all functions to take a stride argument, in preparation for supporting statistics on vectors 1998-11-06 * test.c: added prototype for memcpy using #include Wed Aug 12 12:34:24 1998 Brian Gough * quantiles.c: Renamed percentile to quantile throughout. This is the correct name for the quantity, mathematically speaking. Wed Aug 5 12:34:58 1998 Brian Gough * mkheaders.pl: script to generate all the headers from gsl_statistics_int.h * test.h: removed test.h, not needed * test.c: added tests for all types * converted functions to use 'long double' for internal calculations, for extra range. * converted all the functions to use templates_on.h and templates_off.h Mon Jun 1 23:47:23 1998 Brian Gough * lag1_source.c: added a new function to compute the lag1-autocorrelation * test_nist.c: added some numerical accuracy tests from NIST Fri Apr 10 15:11:51 1998 Brian Gough * renamed pooled_variance.c, etc to p_variance to avoid linker complaints about long filenames on some platforms Wed Apr 8 18:11:48 1998 Brian Gough * Added a new recurrence algorithm for the mean, variance, skew and kurtosis. It uses a running value which is less likely to overflow than a global sum. Mon Mar 30 22:18:59 1998 Brian Gough * completely reorganised the source system to use macros as a primitive form of templates. Sun Mar 29 16:25:24 1998 Brian Gough * make everything const where possible (to reduce the chance of errors) Sun Mar 22 23:34:05 1998 Brian Gough * skew.c: compute the skewness of a dataset * percentiles.c: find a given percentile from a sorted dataset * minmax.c: allow the user to find the indices of the max/min data points, in addition to the max/min values * median.c: compute the median of a sorted dataset * kurtosis.c: compute the kurtosis * absdev.c: compute absolute deviations * split statistics functions into double versions (gsl_stats) and integer versions (gsl_stats_int). There is a script (convert_double_to_int.pl) to make the integer versions from the double versions. gsl-1.16/statistics/test_int_source.c0000664000252300025230000002033412171574312014723 00000000000000/* statistics/test_int_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (const size_t stridea, const size_t strideb); void FUNCTION (test, func) (const size_t stridea, const size_t strideb) { /* sample sets of integers */ size_t i; const size_t ina = 20, inb = 20; const BASE raw1[] = {1, 2, 3, 4, 5, 6} ; const BASE irawa[] = {17, 18, 16, 18, 12, 20, 18, 20, 20, 22, 20, 10, 8, 12, 16, 16, 18, 20, 18, 21}; const BASE irawb[] = {19, 20, 22, 24, 10, 25, 20, 22, 21, 23, 20, 10, 12, 14, 12, 20, 22, 24, 23, 17}; BASE * sorted ; BASE * test1 = (BASE *) malloc (stridea * 6 * sizeof(BASE)); BASE * igroupa = (BASE *) malloc (stridea * ina * sizeof(BASE)); BASE * igroupb = (BASE *) malloc (strideb * inb * sizeof(BASE)); double rel = 1e-10 ; for (i = 0 ; i < ina ; i++) igroupa[i * stridea] = irawa[i] ; for (i = 0 ; i < inb ; i++) igroupb[i * strideb] = irawb[i] ; for (i = 0 ; i < 6 ; i++) test1[i * stridea] = raw1[i] ; { double mean = FUNCTION(gsl_stats,mean) (igroupa, stridea, ina); double expected = 17.0; gsl_test_rel (mean,expected, rel, NAME(gsl_stats) "_mean (integer)"); } { double mean = FUNCTION(gsl_stats,mean) (test1, stridea, 6); double expected = 3.5; gsl_test_rel (mean,expected, rel, NAME(gsl_stats) "_mean (fractional)"); } { double mean = FUNCTION(gsl_stats,mean) (igroupa, stridea, ina); double var = FUNCTION(gsl_stats,variance_with_fixed_mean) (igroupa, stridea, ina, mean); double expected = 13.7; gsl_test_rel (var, expected, rel, NAME(gsl_stats) "_variance_with_fixed_mean"); } { double mean = FUNCTION(gsl_stats,mean) (igroupa, stridea, ina); double sd = FUNCTION(gsl_stats,sd_with_fixed_mean) (igroupa, stridea, ina, mean); double expected = 3.70135110466435; gsl_test_rel (sd, expected, rel, NAME(gsl_stats) "_sd_with_fixed_mean"); } { double var = FUNCTION(gsl_stats,variance) (igroupa, stridea, ina); double expected = 14.4210526315789; gsl_test_rel (var, expected, rel, NAME(gsl_stats) "_variance"); } { double sd_est = FUNCTION(gsl_stats,sd) (igroupa, stridea, ina); double expected = 3.79750610685209; gsl_test_rel (sd_est, expected, rel, NAME(gsl_stats) "_sd"); } { double absdev = FUNCTION(gsl_stats,absdev) (igroupa, stridea, ina); double expected = 2.9; gsl_test_rel (absdev, expected, rel, NAME(gsl_stats) "_absdev"); } { double skew = FUNCTION(gsl_stats,skew) (igroupa, stridea, ina); double expected = -0.909355923168064; gsl_test_rel (skew, expected, rel, NAME(gsl_stats) "_skew"); } { double kurt = FUNCTION(gsl_stats,kurtosis) (igroupa, stridea, ina); double expected = -0.233692524908094 ; gsl_test_rel (kurt, expected, rel, NAME(gsl_stats) "_kurtosis"); } { double c = FUNCTION(gsl_stats,covariance) (igroupa, stridea, igroupb, strideb, inb); double expected = 14.5263157894737; gsl_test_rel (c, expected, rel, NAME(gsl_stats) "_covariance"); } { double r = FUNCTION(gsl_stats,correlation) (igroupa, stridea, igroupb, strideb, inb); double expected = 0.793090350710101; gsl_test_rel (r, expected, rel, NAME(gsl_stats) "_correlation"); } { double *work = malloc(2 * ina * sizeof(double)); double r = FUNCTION(gsl_stats,spearman) (igroupa, stridea, igroupb, strideb, inb, work); double expected = 0.644239670474577; gsl_test_rel (r, expected, rel, NAME(gsl_stats) "_spearman"); free(work); } { double pv = FUNCTION(gsl_stats,pvariance) (igroupa, stridea, ina, igroupb, strideb, inb); double expected = 18.8421052631579; gsl_test_rel (pv, expected, rel, NAME(gsl_stats) "_pvariance"); } { double t = FUNCTION(gsl_stats,ttest) (igroupa, stridea, ina, igroupb, strideb, inb); double expected = -1.45701922702927; gsl_test_rel (t, expected, rel, NAME(gsl_stats) "_ttest"); } { int max = FUNCTION(gsl_stats,max) (igroupa, stridea, ina); int expected = 22; gsl_test (max != expected, NAME(gsl_stats) "_max (%d observed vs %d expected)", max, expected); } { int min = FUNCTION(gsl_stats,min) (igroupa, stridea, ina); int expected = 8; gsl_test (min != expected, NAME(gsl_stats) "_min (%d observed vs %d expected)", min, expected); } { BASE min, max; BASE expected_max = 22; BASE expected_min = 8; FUNCTION(gsl_stats,minmax) (&min, &max, igroupa, stridea, ina); gsl_test (max != expected_max, NAME(gsl_stats) "_minmax max (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", max, expected_max); gsl_test (min != expected_min, NAME(gsl_stats) "_minmax min (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected_min); } { int max_index = FUNCTION(gsl_stats,max_index) (igroupa, stridea, ina); int expected = 9 ; gsl_test (max_index != expected, NAME(gsl_stats) "_max_index (%d observed vs %d expected)", max_index, expected); } { int min_index = FUNCTION(gsl_stats,min_index) (igroupa, stridea, ina); int expected = 12 ; gsl_test (min_index != expected, NAME(gsl_stats) "_min_index (%d observed vs %d expected)", min_index, expected); } { size_t min_index, max_index; size_t expected_max_index = 9; size_t expected_min_index = 12; FUNCTION(gsl_stats,minmax_index) (&min_index, &max_index, igroupa, stridea, ina); gsl_test (max_index != expected_max_index, NAME(gsl_stats) "_minmax_index max (%u observed vs %u expected)", max_index, expected_max_index); gsl_test (min_index != expected_min_index, NAME(gsl_stats) "_minmax_index min (%u observed vs %u expected)", min_index, expected_min_index); } sorted = (BASE *) malloc(stridea * ina * sizeof(BASE)) ; for (i = 0 ; i < ina ; i++) sorted[stridea * i] = igroupa[stridea * i] ; TYPE(gsl_sort)(sorted, stridea, ina) ; { double median = FUNCTION(gsl_stats,median_from_sorted_data)(sorted, stridea, ina) ; double expected = 18; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_median_from_sorted_data (even)"); } { double median = FUNCTION(gsl_stats,median_from_sorted_data)(sorted, stridea, ina - 1) ; double expected = 18; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_median_from_sorted_data (odd)"); } { double zeroth = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, ina, 0.0) ; double expected = 8; gsl_test_rel (zeroth,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (0)"); } { double top = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, ina, 1.0) ; double expected = 22; gsl_test_rel (top,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (100)"); } { double median = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, ina, 0.5) ; double expected = 18; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (50, even)"); } { double median = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, ina - 1, 0.5); double expected = 18; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (50, odd)"); } free (sorted); free (igroupa); free (igroupb); free (test1); } gsl-1.16/statistics/gsl_statistics_long_double.h0000664000252300025230000001706112171574312017132 00000000000000/* statistics/gsl_statistics_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_LONG_DOUBLE_H__ #define __GSL_STATISTICS_LONG_DOUBLE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_long_double_mean (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_variance (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_sd (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_variance_with_fixed_mean (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_sd_with_fixed_mean (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_tss (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_tss_m (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_absdev (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_skew (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_kurtosis (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_lag1_autocorrelation (const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_covariance (const long double data1[], const size_t stride1,const long double data2[], const size_t stride2, const size_t n); double gsl_stats_long_double_correlation (const long double data1[], const size_t stride1,const long double data2[], const size_t stride2, const size_t n); double gsl_stats_long_double_spearman (const long double data1[], const size_t stride1, const long double data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_long_double_variance_m (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_sd_m (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_absdev_m (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_skew_m_sd (const long double data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_long_double_kurtosis_m_sd (const long double data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_long_double_lag1_autocorrelation_m (const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_covariance_m (const long double data1[], const size_t stride1,const long double data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); /* DEFINED FOR FLOATING POINT TYPES ONLY */ double gsl_stats_long_double_wmean (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wvariance (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wsd (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wvariance_with_fixed_mean (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_wsd_with_fixed_mean (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_long_double_wtss (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wtss_m (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_long_double_wabsdev (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wskew (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wkurtosis (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_wvariance_m (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_long_double_wsd_m (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_long_double_wabsdev_m (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_long_double_wskew_m_sd (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean, const double wsd); double gsl_stats_long_double_wkurtosis_m_sd (const long double w[], const size_t wstride, const long double data[], const size_t stride, const size_t n, const double wmean, const double wsd); /* END OF FLOATING POINT TYPES */ double gsl_stats_long_double_pvariance (const long double data1[], const size_t stride1, const size_t n1, const long double data2[], const size_t stride2, const size_t n2); double gsl_stats_long_double_ttest (const long double data1[], const size_t stride1, const size_t n1, const long double data2[], const size_t stride2, const size_t n2); long double gsl_stats_long_double_max (const long double data[], const size_t stride, const size_t n); long double gsl_stats_long_double_min (const long double data[], const size_t stride, const size_t n); void gsl_stats_long_double_minmax (long double * min, long double * max, const long double data[], const size_t stride, const size_t n); size_t gsl_stats_long_double_max_index (const long double data[], const size_t stride, const size_t n); size_t gsl_stats_long_double_min_index (const long double data[], const size_t stride, const size_t n); void gsl_stats_long_double_minmax_index (size_t * min_index, size_t * max_index, const long double data[], const size_t stride, const size_t n); double gsl_stats_long_double_median_from_sorted_data (const long double sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_long_double_quantile_from_sorted_data (const long double sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_LONG_DOUBLE_H__ */ gsl-1.16/statistics/wabsdev_source.c0000664000252300025230000000327112171574312014526 00000000000000/* statistics/wabsdev_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,wabsdev) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean)(w, wstride, data, stride, n); return FUNCTION(gsl_stats,wabsdev_m)(w, wstride, data, stride, n, wmean); } double FUNCTION(gsl_stats,wabsdev_m) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { /* Compute the weighted absolute deviation of a dataset */ long double wabsdev = 0; long double W = 0; size_t i; /* find the sum of the absolute deviations */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { const long double delta = fabs(data[i * stride] - wmean); W += wi ; wabsdev += (delta - wabsdev) * (wi / W); } } return wabsdev; } gsl-1.16/statistics/Makefile.am0000664000252300025230000000233512171574312013403 00000000000000## Process this file with automake to produce Makefile.in noinst_LTLIBRARIES = libgslstatistics.la pkginclude_HEADERS = gsl_statistics.h gsl_statistics_char.h gsl_statistics_double.h gsl_statistics_float.h gsl_statistics_int.h gsl_statistics_long.h gsl_statistics_long_double.h gsl_statistics_short.h gsl_statistics_uchar.h gsl_statistics_uint.h gsl_statistics_ulong.h gsl_statistics_ushort.h INCLUDES = -I$(top_srcdir) libgslstatistics_la_SOURCES = mean.c variance.c absdev.c skew.c kurtosis.c lag1.c p_variance.c minmax.c ttest.c median.c covariance.c quantiles.c wmean.c wvariance.c wabsdev.c wskew.c wkurtosis.c noinst_HEADERS = mean_source.c variance_source.c covariance_source.c absdev_source.c skew_source.c kurtosis_source.c lag1_source.c p_variance_source.c minmax_source.c ttest_source.c median_source.c quantiles_source.c wmean_source.c wvariance_source.c wabsdev_source.c wskew_source.c wkurtosis_source.c test_float_source.c test_int_source.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_nist.c test_LDADD = libgslstatistics.la ../sort/libgslsort.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../vector/libgslvector.la gsl-1.16/statistics/mean.c0000664000252300025230000000250312171574312012430 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "mean_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/minmax_source.c0000664000252300025230000001021612171574312014361 00000000000000/* statistics/minmax_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ BASE FUNCTION (gsl_stats,max) (const BASE data[], const size_t stride, const size_t n) { /* finds the largest member of a dataset */ BASE max = data[0 * stride]; size_t i; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi > max) max = xi; #ifdef FP if (isnan (xi)) return xi; #endif } return max; } BASE FUNCTION (gsl_stats,min) (const BASE data[], const size_t stride, const size_t n) { /* finds the smallest member of a dataset */ BASE min = data[0 * stride]; size_t i; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi < min) min = xi; #ifdef FP if (isnan (xi)) return xi; #endif } return min; } void FUNCTION (gsl_stats,minmax) (BASE * min_out, BASE * max_out, const BASE data[], const size_t stride, const size_t n) { /* finds the smallest and largest members of a dataset */ BASE min = data[0 * stride]; BASE max = data[0 * stride]; size_t i; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi < min) min = xi; if (xi > max) max = xi; #ifdef FP if (isnan (xi)) { min = xi; max = xi; break; } #endif } *min_out = min; *max_out = max; } size_t FUNCTION (gsl_stats,max_index) (const BASE data[], const size_t stride, const size_t n) { /* finds the index of the largest member of a dataset */ /* if there is more than one largest value then we choose the first */ BASE max = data[0 * stride]; size_t i, max_index = 0; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi > max) { max = xi; max_index = i; } #ifdef FP if (isnan (xi)) { return i; } #endif } return max_index; } size_t FUNCTION (gsl_stats,min_index) (const BASE data[], const size_t stride, const size_t n) { /* finds the index of the smallest member of a dataset */ /* if there is more than one largest value then we choose the first */ BASE min = data[0 * stride]; size_t i, min_index = 0; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi < min) { min = xi; min_index = i; } #ifdef FP if (isnan (xi)) { return i; } #endif } return min_index; } void FUNCTION (gsl_stats,minmax_index) (size_t * min_index_out, size_t * max_index_out, const BASE data[], const size_t stride, const size_t n) { /* finds the smallest and largest members of a dataset */ BASE min = data[0 * stride]; BASE max = data[0 * stride]; size_t i, min_index = 0, max_index = 0; for (i = 0; i < n; i++) { BASE xi = data[i * stride]; if (xi < min) { min = xi; min_index = i; } if (xi > max) { max = xi; max_index = i; } #ifdef FP if (isnan (xi)) { min_index = i; max_index = i; break; } #endif } *min_index_out = min_index; *max_index_out = max_index; } gsl-1.16/statistics/gsl_statistics_char.h0000664000252300025230000001111112171574312015544 00000000000000/* statistics/gsl_statistics_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_CHAR_H__ #define __GSL_STATISTICS_CHAR_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_char_mean (const char data[], const size_t stride, const size_t n); double gsl_stats_char_variance (const char data[], const size_t stride, const size_t n); double gsl_stats_char_sd (const char data[], const size_t stride, const size_t n); double gsl_stats_char_variance_with_fixed_mean (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_sd_with_fixed_mean (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_tss (const char data[], const size_t stride, const size_t n); double gsl_stats_char_tss_m (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_absdev (const char data[], const size_t stride, const size_t n); double gsl_stats_char_skew (const char data[], const size_t stride, const size_t n); double gsl_stats_char_kurtosis (const char data[], const size_t stride, const size_t n); double gsl_stats_char_lag1_autocorrelation (const char data[], const size_t stride, const size_t n); double gsl_stats_char_covariance (const char data1[], const size_t stride1,const char data2[], const size_t stride2, const size_t n); double gsl_stats_char_correlation (const char data1[], const size_t stride1,const char data2[], const size_t stride2, const size_t n); double gsl_stats_char_spearman (const char data1[], const size_t stride1, const char data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_char_variance_m (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_sd_m (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_absdev_m (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_skew_m_sd (const char data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_char_kurtosis_m_sd (const char data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_char_lag1_autocorrelation_m (const char data[], const size_t stride, const size_t n, const double mean); double gsl_stats_char_covariance_m (const char data1[], const size_t stride1,const char data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_char_pvariance (const char data1[], const size_t stride1, const size_t n1, const char data2[], const size_t stride2, const size_t n2); double gsl_stats_char_ttest (const char data1[], const size_t stride1, const size_t n1, const char data2[], const size_t stride2, const size_t n2); char gsl_stats_char_max (const char data[], const size_t stride, const size_t n); char gsl_stats_char_min (const char data[], const size_t stride, const size_t n); void gsl_stats_char_minmax (char * min, char * max, const char data[], const size_t stride, const size_t n); size_t gsl_stats_char_max_index (const char data[], const size_t stride, const size_t n); size_t gsl_stats_char_min_index (const char data[], const size_t stride, const size_t n); void gsl_stats_char_minmax_index (size_t * min_index, size_t * max_index, const char data[], const size_t stride, const size_t n); double gsl_stats_char_median_from_sorted_data (const char sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_char_quantile_from_sorted_data (const char sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_CHAR_H__ */ gsl-1.16/statistics/gsl_statistics.h0000664000252300025230000000100712171574312014552 00000000000000#ifndef __GSL_STATISTICS_H__ #define __GSL_STATISTICS_H__ #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_STATISTICS_H__ */ gsl-1.16/statistics/wvariance_source.c0000664000252300025230000001235012171574312015050 00000000000000/* statistics/wvariance_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double FUNCTION(compute,wvariance) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean); static double FUNCTION(compute,wtss) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean); static double FUNCTION(compute,factor) (const BASE w[], const size_t wstride, const size_t n); static double FUNCTION(compute,wvariance) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { /* takes a dataset and finds the weighted variance */ long double wvariance = 0 ; long double W = 0; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { const long double delta = (data[i * stride] - wmean); W += wi ; wvariance += (delta * delta - wvariance) * (wi / W); } } return wvariance ; } static double FUNCTION(compute,wtss) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { /* takes a dataset and finds the weighted sum of squares about wmean*/ long double wtss = 0 ; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { const long double delta = (data[i * stride] - wmean); wtss += wi * delta * delta; } } return wtss ; } static double FUNCTION(compute,factor) (const BASE w[], const size_t wstride, const size_t n) { /* Find the factor ``N/(N-1)'' which multiplies the raw std dev see the file doc/statnotes.tex for the derivation */ long double a = 0 ; long double b = 0; long double factor; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { a += wi ; b += wi * wi ; } } factor = (a*a) / ((a*a) - b); return factor ; } double FUNCTION(gsl_stats,wvariance_with_fixed_mean) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { const double wvariance = FUNCTION(compute,wvariance) (w, wstride, data, stride, n, wmean); return wvariance; } double FUNCTION(gsl_stats,wsd_with_fixed_mean) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { const double wvariance = FUNCTION(compute,wvariance) (w, wstride, data, stride, n, wmean); const double wsd = sqrt (wvariance); return wsd; } double FUNCTION(gsl_stats,wvariance_m) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { const double variance = FUNCTION(compute,wvariance) (w, wstride, data, stride, n, wmean); const double scale = FUNCTION(compute,factor)(w, wstride, n); return scale * variance; } double FUNCTION(gsl_stats,wsd_m) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { const double variance = FUNCTION(compute,wvariance) (w, wstride, data, stride, n, wmean); const double scale = FUNCTION(compute,factor)(w, wstride, n); const double wsd = sqrt(scale * variance) ; return wsd; } double FUNCTION(gsl_stats,wsd) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean) (w, wstride, data, stride, n); return FUNCTION(gsl_stats,wsd_m) (w, wstride, data, stride, n, wmean) ; } double FUNCTION(gsl_stats,wvariance) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean) (w, wstride, data, stride, n); return FUNCTION(gsl_stats,wvariance_m)(w, wstride, data, stride, n, wmean); } double FUNCTION(gsl_stats,wtss_m) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean) { const double wtss = FUNCTION(compute,wtss) (w, wstride, data, stride, n, wmean); return wtss; } double FUNCTION(gsl_stats,wtss) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean) (w, wstride, data, stride, n); return FUNCTION(gsl_stats,wtss_m)(w, wstride, data, stride, n, wmean); } gsl-1.16/statistics/skew.c0000664000252300025230000000252612171574312012466 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "skew_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/quantiles_source.c0000664000252300025230000000272512171574312015103 00000000000000/* statistics/quantiles_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,quantile_from_sorted_data) (const BASE sorted_data[], const size_t stride, const size_t n, const double f) { const double index = f * (n - 1) ; const size_t lhs = (int)index ; const double delta = index - lhs ; double result; if (n == 0) return 0.0 ; if (lhs == n - 1) { result = sorted_data[lhs * stride] ; } else { result = (1 - delta) * sorted_data[lhs * stride] + delta * sorted_data[(lhs + 1) * stride] ; } return result ; } gsl-1.16/statistics/quantiles.c0000664000252300025230000000257312171574312013524 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "quantiles_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/absdev_source.c0000664000252300025230000000305012171574312014332 00000000000000/* statistics/absdev_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,absdev) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean)(data, stride, n); return FUNCTION(gsl_stats,absdev_m)(data, stride, n, mean); } double FUNCTION(gsl_stats,absdev_m) (const BASE data[], const size_t stride, const size_t n, const double mean) { /* takes a dataset and finds the absolute deviation */ double sum = 0, absdev; size_t i; /* find the sum of the absolute deviations */ for (i = 0; i < n; i++) { const double delta = fabs(data[i * stride] - mean); sum += delta; } absdev = sum / n; return absdev; } gsl-1.16/statistics/ttest.c0000664000252300025230000000254112171574312012655 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "ttest_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/gsl_statistics_double.h0000664000252300025230000001522212171574312016110 00000000000000/* statistics/gsl_statistics_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_DOUBLE_H__ #define __GSL_STATISTICS_DOUBLE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_mean (const double data[], const size_t stride, const size_t n); double gsl_stats_variance (const double data[], const size_t stride, const size_t n); double gsl_stats_sd (const double data[], const size_t stride, const size_t n); double gsl_stats_variance_with_fixed_mean (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_sd_with_fixed_mean (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_tss (const double data[], const size_t stride, const size_t n); double gsl_stats_tss_m (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_absdev (const double data[], const size_t stride, const size_t n); double gsl_stats_skew (const double data[], const size_t stride, const size_t n); double gsl_stats_kurtosis (const double data[], const size_t stride, const size_t n); double gsl_stats_lag1_autocorrelation (const double data[], const size_t stride, const size_t n); double gsl_stats_covariance (const double data1[], const size_t stride1,const double data2[], const size_t stride2, const size_t n); double gsl_stats_correlation (const double data1[], const size_t stride1,const double data2[], const size_t stride2, const size_t n); double gsl_stats_spearman (const double data1[], const size_t stride1, const double data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_variance_m (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_sd_m (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_absdev_m (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_skew_m_sd (const double data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_kurtosis_m_sd (const double data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_lag1_autocorrelation_m (const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_covariance_m (const double data1[], const size_t stride1,const double data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); /* DEFINED FOR FLOATING POINT TYPES ONLY */ double gsl_stats_wmean (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wvariance (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wsd (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wvariance_with_fixed_mean (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_wsd_with_fixed_mean (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double mean); double gsl_stats_wtss (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wtss_m (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_wabsdev (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wskew (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wkurtosis (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n); double gsl_stats_wvariance_m (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_wsd_m (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_wabsdev_m (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_wskew_m_sd (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean, const double wsd); double gsl_stats_wkurtosis_m_sd (const double w[], const size_t wstride, const double data[], const size_t stride, const size_t n, const double wmean, const double wsd); /* END OF FLOATING POINT TYPES */ double gsl_stats_pvariance (const double data1[], const size_t stride1, const size_t n1, const double data2[], const size_t stride2, const size_t n2); double gsl_stats_ttest (const double data1[], const size_t stride1, const size_t n1, const double data2[], const size_t stride2, const size_t n2); double gsl_stats_max (const double data[], const size_t stride, const size_t n); double gsl_stats_min (const double data[], const size_t stride, const size_t n); void gsl_stats_minmax (double * min, double * max, const double data[], const size_t stride, const size_t n); size_t gsl_stats_max_index (const double data[], const size_t stride, const size_t n); size_t gsl_stats_min_index (const double data[], const size_t stride, const size_t n); void gsl_stats_minmax_index (size_t * min_index, size_t * max_index, const double data[], const size_t stride, const size_t n); double gsl_stats_median_from_sorted_data (const double sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_quantile_from_sorted_data (const double sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_DOUBLE_H__ */ gsl-1.16/statistics/gsl_statistics_ulong.h0000664000252300025230000001173512171574312015767 00000000000000/* statistics/gsl_statistics_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_ULONG_H__ #define __GSL_STATISTICS_ULONG_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_ulong_mean (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_variance (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_sd (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_variance_with_fixed_mean (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_sd_with_fixed_mean (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_tss (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_tss_m (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_absdev (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_skew (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_kurtosis (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_lag1_autocorrelation (const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_covariance (const unsigned long data1[], const size_t stride1,const unsigned long data2[], const size_t stride2, const size_t n); double gsl_stats_ulong_correlation (const unsigned long data1[], const size_t stride1,const unsigned long data2[], const size_t stride2, const size_t n); double gsl_stats_ulong_spearman (const unsigned long data1[], const size_t stride1, const unsigned long data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_ulong_variance_m (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_sd_m (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_absdev_m (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_skew_m_sd (const unsigned long data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_ulong_kurtosis_m_sd (const unsigned long data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_ulong_lag1_autocorrelation_m (const unsigned long data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ulong_covariance_m (const unsigned long data1[], const size_t stride1,const unsigned long data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_ulong_pvariance (const unsigned long data1[], const size_t stride1, const size_t n1, const unsigned long data2[], const size_t stride2, const size_t n2); double gsl_stats_ulong_ttest (const unsigned long data1[], const size_t stride1, const size_t n1, const unsigned long data2[], const size_t stride2, const size_t n2); unsigned long gsl_stats_ulong_max (const unsigned long data[], const size_t stride, const size_t n); unsigned long gsl_stats_ulong_min (const unsigned long data[], const size_t stride, const size_t n); void gsl_stats_ulong_minmax (unsigned long * min, unsigned long * max, const unsigned long data[], const size_t stride, const size_t n); size_t gsl_stats_ulong_max_index (const unsigned long data[], const size_t stride, const size_t n); size_t gsl_stats_ulong_min_index (const unsigned long data[], const size_t stride, const size_t n); void gsl_stats_ulong_minmax_index (size_t * min_index, size_t * max_index, const unsigned long data[], const size_t stride, const size_t n); double gsl_stats_ulong_median_from_sorted_data (const unsigned long sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_ulong_quantile_from_sorted_data (const unsigned long sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_ULONG_H__ */ gsl-1.16/statistics/wskew_source.c0000664000252300025230000000400712171574312014231 00000000000000/* statistics/wskew_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,wskew) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n) { const double wmean = FUNCTION(gsl_stats,wmean)(w, wstride, data, stride, n); const double wsd = FUNCTION(gsl_stats,wsd_m)(w, wstride, data, stride, n, wmean); return FUNCTION(gsl_stats,wskew_m_sd)(w, wstride, data, stride, n, wmean, wsd); } double FUNCTION(gsl_stats,wskew_m_sd) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t n, const double wmean, const double wsd) { /* Compute the weighted skewness of a dataset */ long double wskew = 0; long double W = 0; size_t i; /* find the sum of the cubed deviations, normalized by the sd. */ /* we use a recurrence relation to stably update a running value so there aren't any large sums that can overflow */ for (i = 0; i < n; i++) { BASE wi = w[i * wstride]; if (wi > 0) { const long double x = (data[i * stride] - wmean) / wsd; W += wi ; wskew += (x * x * x - wskew) * (wi / W); } } return wskew; } gsl-1.16/statistics/gsl_statistics_int.h0000664000252300025230000001077512171574312015440 00000000000000/* statistics/gsl_statistics_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_INT_H__ #define __GSL_STATISTICS_INT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_int_mean (const int data[], const size_t stride, const size_t n); double gsl_stats_int_variance (const int data[], const size_t stride, const size_t n); double gsl_stats_int_sd (const int data[], const size_t stride, const size_t n); double gsl_stats_int_variance_with_fixed_mean (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_sd_with_fixed_mean (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_tss (const int data[], const size_t stride, const size_t n); double gsl_stats_int_tss_m (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_absdev (const int data[], const size_t stride, const size_t n); double gsl_stats_int_skew (const int data[], const size_t stride, const size_t n); double gsl_stats_int_kurtosis (const int data[], const size_t stride, const size_t n); double gsl_stats_int_lag1_autocorrelation (const int data[], const size_t stride, const size_t n); double gsl_stats_int_covariance (const int data1[], const size_t stride1,const int data2[], const size_t stride2, const size_t n); double gsl_stats_int_correlation (const int data1[], const size_t stride1,const int data2[], const size_t stride2, const size_t n); double gsl_stats_int_spearman (const int data1[], const size_t stride1, const int data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_int_variance_m (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_sd_m (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_absdev_m (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_skew_m_sd (const int data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_int_kurtosis_m_sd (const int data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_int_lag1_autocorrelation_m (const int data[], const size_t stride, const size_t n, const double mean); double gsl_stats_int_covariance_m (const int data1[], const size_t stride1,const int data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_int_pvariance (const int data1[], const size_t stride1, const size_t n1, const int data2[], const size_t stride2, const size_t n2); double gsl_stats_int_ttest (const int data1[], const size_t stride1, const size_t n1, const int data2[], const size_t stride2, const size_t n2); int gsl_stats_int_max (const int data[], const size_t stride, const size_t n); int gsl_stats_int_min (const int data[], const size_t stride, const size_t n); void gsl_stats_int_minmax (int * min, int * max, const int data[], const size_t stride, const size_t n); size_t gsl_stats_int_max_index (const int data[], const size_t stride, const size_t n); size_t gsl_stats_int_min_index (const int data[], const size_t stride, const size_t n); void gsl_stats_int_minmax_index (size_t * min_index, size_t * max_index, const int data[], const size_t stride, const size_t n); double gsl_stats_int_median_from_sorted_data (const int sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_int_quantile_from_sorted_data (const int sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_INT_H__ */ gsl-1.16/statistics/wmean_source.c0000664000252300025230000000263012171574312014200 00000000000000/* statistics/wmean_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION (gsl_stats, wmean) (const BASE w[], const size_t wstride, const BASE data[], const size_t stride, const size_t size) { /* Compute the weighted arithmetic mean M of a dataset using the recurrence relation M(n) = M(n-1) + (data[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wmean = 0; long double W = 0; size_t i; for (i = 0; i < size; i++) { BASE wi = w[i * wstride]; if (wi > 0) { W += wi; wmean += (data[i * stride] - wmean) * (wi / W); } } return wmean; } gsl-1.16/statistics/covariance_source.c0000664000252300025230000001373512171574312015213 00000000000000/* statistics/covar_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); static double FUNCTION(compute,covariance) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n, const double mean1, const double mean2) { /* takes a dataset and finds the covariance */ long double covariance = 0 ; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { const long double delta1 = (data1[i * stride1] - mean1); const long double delta2 = (data2[i * stride2] - mean2); covariance += (delta1 * delta2 - covariance) / (i + 1); } return covariance ; } double FUNCTION(gsl_stats,covariance_m) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n, const double mean1, const double mean2) { const double covariance = FUNCTION(compute,covariance) (data1, stride1, data2, stride2, n, mean1, mean2); return covariance * ((double)n / (double)(n - 1)); } double FUNCTION(gsl_stats,covariance) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n) { const double mean1 = FUNCTION(gsl_stats,mean) (data1, stride1, n); const double mean2 = FUNCTION(gsl_stats,mean) (data2, stride2, n); return FUNCTION(gsl_stats,covariance_m)(data1, stride1, data2, stride2, n, mean1, mean2); } /* gsl_stats_correlation() Calculate Pearson correlation = cov(X, Y) / (sigma_X * sigma_Y) This routine efficiently computes the correlation in one pass of the data and makes use of the algorithm described in: B. P. Welford, "Note on a Method for Calculating Corrected Sums of Squares and Products", Technometrics, Vol 4, No 3, 1962. This paper derives a numerically stable recurrence to compute a sum of products S = sum_{i=1..N} [ (x_i - mu_x) * (y_i - mu_y) ] with the relation S_n = S_{n-1} + ((n-1)/n) * (x_n - mu_x_{n-1}) * (y_n - mu_y_{n-1}) */ double FUNCTION(gsl_stats,correlation) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n) { size_t i; long double sum_xsq = 0.0; long double sum_ysq = 0.0; long double sum_cross = 0.0; long double ratio; long double delta_x, delta_y; long double mean_x, mean_y; long double r; /* * Compute: * sum_xsq = Sum [ (x_i - mu_x)^2 ], * sum_ysq = Sum [ (y_i - mu_y)^2 ] and * sum_cross = Sum [ (x_i - mu_x) * (y_i - mu_y) ] * using the above relation from Welford's paper */ mean_x = data1[0 * stride1]; mean_y = data2[0 * stride2]; for (i = 1; i < n; ++i) { ratio = i / (i + 1.0); delta_x = data1[i * stride1] - mean_x; delta_y = data2[i * stride2] - mean_y; sum_xsq += delta_x * delta_x * ratio; sum_ysq += delta_y * delta_y * ratio; sum_cross += delta_x * delta_y * ratio; mean_x += delta_x / (i + 1.0); mean_y += delta_y / (i + 1.0); } r = sum_cross / (sqrt(sum_xsq) * sqrt(sum_ysq)); return r; } /* gsl_stats_spearman() Compute Spearman rank correlation coefficient Inputs: data1 - data1 vector stride1 - stride of data1 data2 - data2 vector stride2 - stride of data2 n - number of elements in data1 and data2 work - additional workspace of size 2*n Return: Spearman rank correlation coefficient */ double FUNCTION(gsl_stats,spearman) (const BASE data1[], const size_t stride1, const BASE data2[], const size_t stride2, const size_t n, double work[]) { size_t i; gsl_vector_view ranks1 = gsl_vector_view_array(&work[0], n); gsl_vector_view ranks2 = gsl_vector_view_array(&work[n], n); double r; for (i = 0; i < n; ++i) { gsl_vector_set(&ranks1.vector, i, data1[i * stride1]); gsl_vector_set(&ranks2.vector, i, data2[i * stride2]); } /* sort data1 and update data2 at same time; compute rank of data1 */ gsl_sort_vector2(&ranks1.vector, &ranks2.vector); compute_rank(&ranks1.vector); /* now sort data2, updating ranks1 appropriately; compute rank of data2 */ gsl_sort_vector2(&ranks2.vector, &ranks1.vector); compute_rank(&ranks2.vector); /* compute correlation of rank vectors in double precision */ r = gsl_stats_correlation(ranks1.vector.data, ranks1.vector.stride, ranks2.vector.data, ranks2.vector.stride, n); return r; } gsl-1.16/statistics/gsl_statistics_short.h0000664000252300025230000001122512171574312015774 00000000000000/* statistics/gsl_statistics_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_SHORT_H__ #define __GSL_STATISTICS_SHORT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_short_mean (const short data[], const size_t stride, const size_t n); double gsl_stats_short_variance (const short data[], const size_t stride, const size_t n); double gsl_stats_short_sd (const short data[], const size_t stride, const size_t n); double gsl_stats_short_variance_with_fixed_mean (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_sd_with_fixed_mean (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_tss (const short data[], const size_t stride, const size_t n); double gsl_stats_short_tss_m (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_absdev (const short data[], const size_t stride, const size_t n); double gsl_stats_short_skew (const short data[], const size_t stride, const size_t n); double gsl_stats_short_kurtosis (const short data[], const size_t stride, const size_t n); double gsl_stats_short_lag1_autocorrelation (const short data[], const size_t stride, const size_t n); double gsl_stats_short_covariance (const short data1[], const size_t stride1,const short data2[], const size_t stride2, const size_t n); double gsl_stats_short_correlation (const short data1[], const size_t stride1,const short data2[], const size_t stride2, const size_t n); double gsl_stats_short_spearman (const short data1[], const size_t stride1, const short data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_short_variance_m (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_sd_m (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_absdev_m (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_skew_m_sd (const short data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_short_kurtosis_m_sd (const short data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_short_lag1_autocorrelation_m (const short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_short_covariance_m (const short data1[], const size_t stride1,const short data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_short_pvariance (const short data1[], const size_t stride1, const size_t n1, const short data2[], const size_t stride2, const size_t n2); double gsl_stats_short_ttest (const short data1[], const size_t stride1, const size_t n1, const short data2[], const size_t stride2, const size_t n2); short gsl_stats_short_max (const short data[], const size_t stride, const size_t n); short gsl_stats_short_min (const short data[], const size_t stride, const size_t n); void gsl_stats_short_minmax (short * min, short * max, const short data[], const size_t stride, const size_t n); size_t gsl_stats_short_max_index (const short data[], const size_t stride, const size_t n); size_t gsl_stats_short_min_index (const short data[], const size_t stride, const size_t n); void gsl_stats_short_minmax_index (size_t * min_index, size_t * max_index, const short data[], const size_t stride, const size_t n); double gsl_stats_short_median_from_sorted_data (const short sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_short_quantile_from_sorted_data (const short sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_SHORT_H__ */ gsl-1.16/statistics/kurtosis.c0000664000252300025230000000260112171574312013372 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "kurtosis_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/wabsdev.c0000664000252300025230000000067412171574312013152 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "wabsdev_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "wabsdev_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "wabsdev_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/statistics/wmean.c0000664000252300025230000000064512171574312012624 00000000000000#include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "wmean_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "wmean_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "wmean_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/statistics/gsl_statistics_ushort.h0000664000252300025230000001205112171574312016157 00000000000000/* statistics/gsl_statistics_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_USHORT_H__ #define __GSL_STATISTICS_USHORT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_ushort_mean (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_variance (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_sd (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_variance_with_fixed_mean (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_sd_with_fixed_mean (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_tss (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_tss_m (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_absdev (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_skew (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_kurtosis (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_lag1_autocorrelation (const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_covariance (const unsigned short data1[], const size_t stride1,const unsigned short data2[], const size_t stride2, const size_t n); double gsl_stats_ushort_correlation (const unsigned short data1[], const size_t stride1,const unsigned short data2[], const size_t stride2, const size_t n); double gsl_stats_ushort_spearman (const unsigned short data1[], const size_t stride1, const unsigned short data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_ushort_variance_m (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_sd_m (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_absdev_m (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_skew_m_sd (const unsigned short data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_ushort_kurtosis_m_sd (const unsigned short data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_ushort_lag1_autocorrelation_m (const unsigned short data[], const size_t stride, const size_t n, const double mean); double gsl_stats_ushort_covariance_m (const unsigned short data1[], const size_t stride1,const unsigned short data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); double gsl_stats_ushort_pvariance (const unsigned short data1[], const size_t stride1, const size_t n1, const unsigned short data2[], const size_t stride2, const size_t n2); double gsl_stats_ushort_ttest (const unsigned short data1[], const size_t stride1, const size_t n1, const unsigned short data2[], const size_t stride2, const size_t n2); unsigned short gsl_stats_ushort_max (const unsigned short data[], const size_t stride, const size_t n); unsigned short gsl_stats_ushort_min (const unsigned short data[], const size_t stride, const size_t n); void gsl_stats_ushort_minmax (unsigned short * min, unsigned short * max, const unsigned short data[], const size_t stride, const size_t n); size_t gsl_stats_ushort_max_index (const unsigned short data[], const size_t stride, const size_t n); size_t gsl_stats_ushort_min_index (const unsigned short data[], const size_t stride, const size_t n); void gsl_stats_ushort_minmax_index (size_t * min_index, size_t * max_index, const unsigned short data[], const size_t stride, const size_t n); double gsl_stats_ushort_median_from_sorted_data (const unsigned short sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_ushort_quantile_from_sorted_data (const unsigned short sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_USHORT_H__ */ gsl-1.16/statistics/median_source.c0000664000252300025230000000251412171574312014327 00000000000000/* statistics/median_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,median_from_sorted_data) (const BASE sorted_data[], const size_t stride, const size_t n) { double median ; const size_t lhs = (n - 1) / 2 ; const size_t rhs = n / 2 ; if (n == 0) return 0.0 ; if (lhs == rhs) { median = sorted_data[lhs * stride] ; } else { median = (sorted_data[lhs * stride] + sorted_data[rhs * stride])/2.0 ; } return median ; } gsl-1.16/statistics/skew_source.c0000664000252300025230000000335512171574312014047 00000000000000/* statistics/skew_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,skew) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean)(data, stride, n); const double sd = FUNCTION(gsl_stats,sd_m)(data, stride, n, mean); return FUNCTION(gsl_stats,skew_m_sd)(data, stride, n, mean, sd); } double FUNCTION(gsl_stats,skew_m_sd) (const BASE data[], const size_t stride, const size_t n, const double mean, const double sd) { /* takes a dataset and finds the skewness */ long double skew = 0; size_t i; /* find the sum of the cubed deviations, normalized by the sd. */ /* we use a recurrence relation to stably update a running value so there aren't any large sums that can overflow */ for (i = 0; i < n; i++) { const long double x = (data[i * stride] - mean) / sd; skew += (x * x * x - skew) / (i + 1); } return skew; } gsl-1.16/statistics/test_float_source.c0000664000252300025230000003261612171574312015244 00000000000000/* statistics/test_float_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (const size_t stridea, const size_t strideb); void FUNCTION (test, func) (const size_t stridea, const size_t strideb) { /* sample sets of doubles */ size_t i; const size_t na = 14, nb = 14; const double rawa[] = {.0421, .0941, .1064, .0242, .1331, .0773, .0243, .0815, .1186, .0356, .0728, .0999, .0614, .0479}; const double rawb[] = {.1081, .0986, .1566, .1961, .1125, .1942, .1079, .1021, .1583, .1673, .1675, .1856, .1688, .1512}; const double raww[] = {.0000, .0000, .0000, 3.000, .0000, 1.000, 1.000, 1.000, 0.000, .5000, 7.000, 5.000, 4.000, 0.123}; BASE * sorted ; BASE * groupa = (BASE *) malloc (stridea * na * sizeof(BASE)); BASE * groupb = (BASE *) malloc (strideb * nb * sizeof(BASE)); BASE * w = (BASE *) malloc (strideb * na * sizeof(BASE)); #ifdef BASE_FLOAT double rel = 1e-6; #else double rel = 1e-10; #endif for (i = 0 ; i < na ; i++) groupa[i * stridea] = (BASE) rawa[i] ; for (i = 0 ; i < na ; i++) w[i * strideb] = (BASE) raww[i] ; for (i = 0 ; i < nb ; i++) groupb[i * strideb] = (BASE) rawb[i] ; { double mean = FUNCTION(gsl_stats,mean) (groupa, stridea, na); double expected = 0.0728; gsl_test_rel (mean, expected, rel, NAME(gsl_stats) "_mean"); } { double mean = FUNCTION(gsl_stats,mean) (groupa, stridea, na); double var = FUNCTION(gsl_stats,variance_with_fixed_mean) (groupa, stridea, na, mean); double expected = 0.00113837428571429; gsl_test_rel (var, expected, rel, NAME(gsl_stats) "_variance_with_fixed_mean"); } { double mean = FUNCTION(gsl_stats,mean) (groupa, stridea, na); double var = FUNCTION(gsl_stats,sd_with_fixed_mean) (groupa, stridea, na, mean); double expected = 0.0337398026922845; gsl_test_rel (var, expected, rel, NAME(gsl_stats) "_sd_with_fixed_mean"); } { double var = FUNCTION(gsl_stats,variance) (groupb, strideb, nb); double expected = 0.00124956615384615; gsl_test_rel (var, expected, rel, NAME(gsl_stats) "_variance"); } { double sd = FUNCTION(gsl_stats,sd) (groupa, stridea, na); double expected = 0.0350134479659107; gsl_test_rel (sd, expected, rel, NAME(gsl_stats) "_sd"); } { double ss = FUNCTION(gsl_stats,tss) (groupb, strideb, nb); double expected = 0.01624436; gsl_test_rel (ss, expected, rel, NAME(gsl_stats) "_ss"); } { double mean = FUNCTION(gsl_stats,mean) (groupa, stridea, na); double ss = FUNCTION(gsl_stats,tss_m) (groupa, stridea, na, mean); double expected = 1.59372400000000e-02; gsl_test_rel (ss, expected, rel, NAME(gsl_stats) "_ss_m"); } { double absdev = FUNCTION(gsl_stats,absdev) (groupa, stridea, na); double expected = 0.0287571428571429; gsl_test_rel (absdev, expected, rel, NAME(gsl_stats) "_absdev"); } { double skew = FUNCTION(gsl_stats,skew) (groupa, stridea, na); double expected = 0.0954642051479004; gsl_test_rel (skew, expected, rel, NAME(gsl_stats) "_skew"); } { double kurt = FUNCTION(gsl_stats,kurtosis) (groupa, stridea, na); double expected = -1.38583851548909 ; gsl_test_rel (kurt, expected, rel, NAME(gsl_stats) "_kurtosis"); } { double wmean = FUNCTION(gsl_stats,wmean) (w, strideb, groupa, stridea, na); double expected = 0.0678111523670601; gsl_test_rel (wmean, expected, rel, NAME(gsl_stats) "_wmean"); } { double wmean = FUNCTION(gsl_stats,wmean) (w, strideb, groupa, stridea, na); double wvar = FUNCTION(gsl_stats,wvariance_with_fixed_mean) (w, strideb, groupa, stridea, na, wmean); double expected = 0.000615793060878654; gsl_test_rel (wvar, expected, rel, NAME(gsl_stats) "_wvariance_with_fixed_mean"); } { double est_wvar = FUNCTION(gsl_stats,wvariance) (w, strideb, groupa, stridea, na); double expected = 0.000769562962860317; gsl_test_rel (est_wvar, expected, rel, NAME(gsl_stats) "_wvariance"); } { double wsd = FUNCTION(gsl_stats,wsd) (w, strideb, groupa, stridea, na); double expected = 0.0277409978706664; gsl_test_rel (wsd, expected, rel, NAME(gsl_stats) "_wsd"); } { double wtss = FUNCTION(gsl_stats,wtss) (w, strideb, groupa, stridea, na); double expected = 1.39310864162578e-02; gsl_test_rel (wtss, expected, rel, NAME(gsl_stats) "_wtss"); } { double wmean = FUNCTION(gsl_stats,wmean) (w, strideb, groupa, stridea, na); double wtss = FUNCTION(gsl_stats,wtss_m) (w, strideb, groupa, stridea, na, wmean); double expected = 1.39310864162578e-02; gsl_test_rel (wtss, expected, rel, NAME(gsl_stats) "_wtss_m"); } { double wabsdev = FUNCTION(gsl_stats,wabsdev) (w, strideb, groupa, stridea, na); double expected = 0.0193205027504008; gsl_test_rel (wabsdev, expected, rel, NAME(gsl_stats) "_wabsdev"); } { double wskew = FUNCTION(gsl_stats,wskew) (w, strideb, groupa, stridea, na); double expected = -0.373631000307076; gsl_test_rel (wskew, expected, rel, NAME(gsl_stats) "_wskew"); } { double wkurt = FUNCTION(gsl_stats,wkurtosis) (w, strideb, groupa, stridea, na); double expected = -1.48114233353963; gsl_test_rel (wkurt, expected, rel, NAME(gsl_stats) "_wkurtosis"); } { double c = FUNCTION(gsl_stats,covariance) (groupa, stridea, groupb, strideb, nb); double expected = -0.000139021538461539; gsl_test_rel (c, expected, rel, NAME(gsl_stats) "_covariance"); } { double r = FUNCTION(gsl_stats,correlation) (groupa, stridea, groupb, strideb, nb); double expected = -0.112322712666074171; gsl_test_rel (r, expected, rel, NAME(gsl_stats) "_correlation"); } { double *work = malloc(2 * na * sizeof(double)); double r = FUNCTION(gsl_stats,spearman) (groupa, stridea, groupb, strideb, nb, work); double expected = -0.1604395604395604396; gsl_test_rel (r, expected, rel, NAME(gsl_stats) "_spearman"); free(work); } { double pv = FUNCTION(gsl_stats,pvariance) (groupa, stridea, na, groupb, strideb, nb); double expected = 0.00123775384615385; gsl_test_rel (pv, expected, rel, NAME(gsl_stats) "_pvariance"); } { double t = FUNCTION(gsl_stats,ttest) (groupa, stridea, na, groupb, strideb, nb); double expected = -5.67026326985851; gsl_test_rel (t, expected, rel, NAME(gsl_stats) "_ttest"); } { BASE expected = (BASE)0.1331; gsl_test (FUNCTION(gsl_stats,max) (groupa, stridea, na) != expected, NAME(gsl_stats) "_max (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", FUNCTION(gsl_stats,max) (groupa, stridea, na), expected); } { BASE min = FUNCTION(gsl_stats,min) (groupa, stridea, na); BASE expected = (BASE)0.0242; gsl_test (min != expected, NAME(gsl_stats) "_min (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected); } { BASE min, max; BASE expected_max = (BASE)0.1331; BASE expected_min = (BASE)0.0242; FUNCTION(gsl_stats,minmax) (&min, &max, groupa, stridea, na); gsl_test (max != expected_max, NAME(gsl_stats) "_minmax max (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", max, expected_max); gsl_test (min != expected_min, NAME(gsl_stats) "_minmax min (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected_min); } { int max_index = FUNCTION(gsl_stats,max_index) (groupa, stridea, na); int expected = 4; gsl_test (max_index != expected, NAME(gsl_stats) "_max_index (%d observed vs %d expected)", max_index, expected); } { int min_index = FUNCTION(gsl_stats,min_index) (groupa, stridea, na); int expected = 3; gsl_test (min_index != expected, NAME(gsl_stats) "_min_index (%d observed vs %d expected)", min_index, expected); } { size_t min_index, max_index; size_t expected_max_index = 4; size_t expected_min_index = 3; FUNCTION(gsl_stats,minmax_index) (&min_index, &max_index, groupa, stridea, na); gsl_test (max_index != expected_max_index, NAME(gsl_stats) "_minmax_index max (%u observed vs %u expected)", max_index, expected_max_index); gsl_test (min_index != expected_min_index, NAME(gsl_stats) "_minmax_index min (%u observed vs %u expected)", min_index, expected_min_index); } sorted = (BASE *) malloc(stridea * na * sizeof(BASE)) ; for (i = 0 ; i < na ; i++) sorted[stridea * i] = groupa[stridea * i] ; TYPE(gsl_sort)(sorted, stridea, na) ; { double median = FUNCTION(gsl_stats,median_from_sorted_data)(sorted, stridea, na) ; double expected = 0.07505; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_median_from_sorted_data (even)"); } { double median = FUNCTION(gsl_stats,median_from_sorted_data)(sorted, stridea, na - 1) ; double expected = 0.0728; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_median_from_sorted_data"); } { double zeroth = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, na, 0.0) ; double expected = 0.0242; gsl_test_rel (zeroth,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (0)"); } { double top = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, na, 1.0) ; double expected = 0.1331; gsl_test_rel (top,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (100)"); } { double median = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, na, 0.5) ; double expected = 0.07505; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (50even)"); } { double median = FUNCTION(gsl_stats,quantile_from_sorted_data)(sorted, stridea, na - 1, 0.5); double expected = 0.0728; gsl_test_rel (median,expected, rel, NAME(gsl_stats) "_quantile_from_sorted_data (50odd)"); } /* Test for IEEE handling - set third element to NaN */ groupa [3*stridea] = GSL_NAN; { BASE max = FUNCTION(gsl_stats,max) (groupa, stridea, na); BASE expected = GSL_NAN; gsl_test (!isnan(max), NAME(gsl_stats) "_max NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", max, expected); } { BASE min = FUNCTION(gsl_stats,min) (groupa, stridea, na); BASE expected = GSL_NAN; gsl_test (!isnan(min), NAME(gsl_stats) "_min NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected); } { BASE min, max; BASE expected_max = GSL_NAN; BASE expected_min = GSL_NAN; FUNCTION(gsl_stats,minmax) (&min, &max, groupa, stridea, na); gsl_test (!isnan(max), NAME(gsl_stats) "_minmax max NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", max, expected_max); gsl_test (!isnan(min), NAME(gsl_stats) "_minmax min NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected_min); } #ifdef FAST { BASE min, max; BASE expected_max = GSL_NAN; BASE expected_min = GSL_NAN; FUNCTION(gsl_stats,minmax) (&min, &max, groupa, stridea, na-1); gsl_test (!isnan(max), NAME(gsl_stats) "_minmax(-1) max NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", max, expected_max); gsl_test (!isnan(min), NAME(gsl_stats) "_minmax(-1) min NaN (" OUT_FORMAT " observed vs " OUT_FORMAT " expected)", min, expected_min); } #endif { int max_index = FUNCTION(gsl_stats,max_index) (groupa, stridea, na); int expected = 3; gsl_test (max_index != expected, NAME(gsl_stats) "_max_index NaN (%d observed vs %d expected)", max_index, expected); } { int min_index = FUNCTION(gsl_stats,min_index) (groupa, stridea, na); int expected = 3; gsl_test (min_index != expected, NAME(gsl_stats) "_min_index NaN (%d observed vs %d expected)", min_index, expected); } { size_t min_index, max_index; size_t expected_max_index = 3; size_t expected_min_index = 3; FUNCTION(gsl_stats,minmax_index) (&min_index, &max_index, groupa, stridea, na); gsl_test (max_index != expected_max_index, NAME(gsl_stats) "_minmax_index max NaN (%u observed vs %u expected)", max_index, expected_max_index); gsl_test (min_index != expected_min_index, NAME(gsl_stats) "_minmax_index min NaN (%u observed vs %u expected)", min_index, expected_min_index); } free (sorted); free (groupa); free (groupb); free (w); } gsl-1.16/statistics/absdev.c0000664000252300025230000000255212171574312012760 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "absdev_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/statistics/gsl_statistics_float.h0000664000252300025230000001553312171574312015750 00000000000000/* statistics/gsl_statistics_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_STATISTICS_FLOAT_H__ #define __GSL_STATISTICS_FLOAT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_stats_float_mean (const float data[], const size_t stride, const size_t n); double gsl_stats_float_variance (const float data[], const size_t stride, const size_t n); double gsl_stats_float_sd (const float data[], const size_t stride, const size_t n); double gsl_stats_float_variance_with_fixed_mean (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_sd_with_fixed_mean (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_tss (const float data[], const size_t stride, const size_t n); double gsl_stats_float_tss_m (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_absdev (const float data[], const size_t stride, const size_t n); double gsl_stats_float_skew (const float data[], const size_t stride, const size_t n); double gsl_stats_float_kurtosis (const float data[], const size_t stride, const size_t n); double gsl_stats_float_lag1_autocorrelation (const float data[], const size_t stride, const size_t n); double gsl_stats_float_covariance (const float data1[], const size_t stride1,const float data2[], const size_t stride2, const size_t n); double gsl_stats_float_correlation (const float data1[], const size_t stride1,const float data2[], const size_t stride2, const size_t n); double gsl_stats_float_spearman (const float data1[], const size_t stride1, const float data2[], const size_t stride2, const size_t n, double work[]); double gsl_stats_float_variance_m (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_sd_m (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_absdev_m (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_skew_m_sd (const float data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_float_kurtosis_m_sd (const float data[], const size_t stride, const size_t n, const double mean, const double sd); double gsl_stats_float_lag1_autocorrelation_m (const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_covariance_m (const float data1[], const size_t stride1,const float data2[], const size_t stride2, const size_t n, const double mean1, const double mean2); /* DEFINED FOR FLOATING POINT TYPES ONLY */ double gsl_stats_float_wmean (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wvariance (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wsd (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wvariance_with_fixed_mean (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_wsd_with_fixed_mean (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double mean); double gsl_stats_float_wtss (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wtss_m (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_float_wabsdev (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wskew (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wkurtosis (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n); double gsl_stats_float_wvariance_m (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_float_wsd_m (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_float_wabsdev_m (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean); double gsl_stats_float_wskew_m_sd (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean, const double wsd); double gsl_stats_float_wkurtosis_m_sd (const float w[], const size_t wstride, const float data[], const size_t stride, const size_t n, const double wmean, const double wsd); /* END OF FLOATING POINT TYPES */ double gsl_stats_float_pvariance (const float data1[], const size_t stride1, const size_t n1, const float data2[], const size_t stride2, const size_t n2); double gsl_stats_float_ttest (const float data1[], const size_t stride1, const size_t n1, const float data2[], const size_t stride2, const size_t n2); float gsl_stats_float_max (const float data[], const size_t stride, const size_t n); float gsl_stats_float_min (const float data[], const size_t stride, const size_t n); void gsl_stats_float_minmax (float * min, float * max, const float data[], const size_t stride, const size_t n); size_t gsl_stats_float_max_index (const float data[], const size_t stride, const size_t n); size_t gsl_stats_float_min_index (const float data[], const size_t stride, const size_t n); void gsl_stats_float_minmax_index (size_t * min_index, size_t * max_index, const float data[], const size_t stride, const size_t n); double gsl_stats_float_median_from_sorted_data (const float sorted_data[], const size_t stride, const size_t n) ; double gsl_stats_float_quantile_from_sorted_data (const float sorted_data[], const size_t stride, const size_t n, const double f) ; __END_DECLS #endif /* __GSL_STATISTICS_FLOAT_H__ */ gsl-1.16/statistics/variance_source.c0000664000252300025230000000731012171574312014661 00000000000000/* statistics/variance_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double FUNCTION(compute,variance) (const BASE data[], const size_t stride, const size_t n, const double mean); static double FUNCTION(compute,tss) (const BASE data[], const size_t stride, const size_t n, const double mean); static double FUNCTION(compute,variance) (const BASE data[], const size_t stride, const size_t n, const double mean) { /* takes a dataset and finds the variance */ long double variance = 0 ; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { const long double delta = (data[i * stride] - mean); variance += (delta * delta - variance) / (i + 1); } return variance ; } static double FUNCTION(compute,tss) (const BASE data[], const size_t stride, const size_t n, const double mean) { /* takes a dataset and finds the sum of squares about the mean */ long double tss = 0 ; size_t i; /* find the sum of the squares */ for (i = 0; i < n; i++) { const long double delta = (data[i * stride] - mean); tss += delta * delta; } return tss ; } double FUNCTION(gsl_stats,variance_with_fixed_mean) (const BASE data[], const size_t stride, const size_t n, const double mean) { const double variance = FUNCTION(compute,variance) (data, stride, n, mean); return variance; } double FUNCTION(gsl_stats,sd_with_fixed_mean) (const BASE data[], const size_t stride, const size_t n, const double mean) { const double variance = FUNCTION(compute,variance) (data, stride, n, mean); const double sd = sqrt (variance); return sd; } double FUNCTION(gsl_stats,variance_m) (const BASE data[], const size_t stride, const size_t n, const double mean) { const double variance = FUNCTION(compute,variance) (data, stride, n, mean); return variance * ((double)n / (double)(n - 1)); } double FUNCTION(gsl_stats,sd_m) (const BASE data[], const size_t stride, const size_t n, const double mean) { const double variance = FUNCTION(compute,variance) (data, stride, n, mean); const double sd = sqrt (variance * ((double)n / (double)(n - 1))); return sd; } double FUNCTION(gsl_stats,variance) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean) (data, stride, n); return FUNCTION(gsl_stats,variance_m)(data, stride, n, mean); } double FUNCTION(gsl_stats,sd) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean) (data, stride, n); return FUNCTION(gsl_stats,sd_m) (data, stride, n, mean); } double FUNCTION(gsl_stats,tss_m) (const BASE data[], const size_t stride, const size_t n, const double mean) { const double tss = FUNCTION(compute,tss) (data, stride, n, mean); return tss; } double FUNCTION(gsl_stats,tss) (const BASE data[], const size_t stride, const size_t n) { const double mean = FUNCTION(gsl_stats,mean) (data, stride, n); return FUNCTION(gsl_stats,tss_m)(data, stride, n, mean); } gsl-1.16/statistics/wkurtosis.c0000664000252300025230000000070212171574312013561 00000000000000#include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "wkurtosis_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "wkurtosis_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "wkurtosis_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/statistics/p_variance_source.c0000664000252300025230000000266412171574312015207 00000000000000/* statistics/p_variance_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double FUNCTION(gsl_stats,pvariance) (const BASE data1[], const size_t stride1, const size_t n1, const BASE data2[], const size_t stride2, const size_t n2) { /* Find the pooled variance of two datasets */ const double var1 = FUNCTION(gsl_stats,variance) (data1, stride1, n1); const double var2 = FUNCTION(gsl_stats,variance) (data2, stride2, n2); /* calculate the pooled variance */ const double pooled_variance = (((n1 - 1) * var1) + ((n2 - 1) * var2)) / (n1 + n2 - 2); return pooled_variance; } gsl-1.16/INSTALL0000664000252300025230000004751512172057063010217 00000000000000GSL - GNU Scientific Library ============================ Installation Instructions ========================= GSL follows the standard GNU installation procedure. To compile GSL you will need an ANSI C-compiler. After unpacking the distribution the Makefiles can be prepared using the configure command, ./configure You can then build the library by typing, make Both static and shared versions of the libraries will be compiled by default. Compilation of shared libraries can be turned off by specifying the `--disable-shared' option to `configure', e.g. ./configure --disable-shared If you encounter problems building the library try using the above option, because some platforms do not support shared libraries. If you change any compilation options you will need to remove any existing compiled files with, make clean before running "make" again, so the new settings take effect. For notes about problems with specific platforms and compilers see the next section of this file (below). An extensive test suite is available. After compiling the library with "make", it can be invoked with "make check" at the top level. The test output should be directed to a file rather than a terminal, with the command, make check > log 2>&1 to allow any errors to be examined in detail. By default, only test failures are shown. To see the complete output, set the environment variable GSL_TEST_VERBOSE=1. Use "make -k check" to continue running the remaining tests in the event of failures. If you run the tests and get some failures, please see the notes on platform specific problems below. If you find failures that are not mentioned, please report them to bug-gsl@gnu.org. The library can be installed using the command, make install The default installation directory prefix is /usr/local. Installing in this directory will require root privileges on most systems (use "su" or "sudo"). The installation directory can be changed with the --prefix option to configure. Consult the "Further Information" section below for instructions on installing the library in another location or changing other default compilation options. When building from source, GNU packages are compiled with debugging symbols enabled by default (CFLAGS="-g -O2"). It's part of the philosophy that anyone should be able to examine any program on the system. ------------------------------ Platform Specific Compilation Notes =================================== This section documents any known issues with installing GSL on specific platforms. * General hints for all platforms * AIX * Compaq/DEC Alpha * HP-UX * IRIX * MacOS X / PowerPC * Microsoft Windows * OpenBSD * OS/2 * Solaris Hints for any platform ====================== 1) If there are problems building the library try using ./configure --disable-shared --disable-dependency-tracking This will turn off the compilation of shared libraries and dependency tracking and may allow the build process to complete successfully. If you get any problems try this first. 2) If your compiler uses the C99-style inline keyword, use ./configure CFLAGS="-DGSL_C99_INLINE -g -O2" to avoid problems with duplicate function definitions. For gcc this is handled automatically. See the file gsl_inline.h for the preprocessor definitions that are used. 3) If you want to pass C++ functions with exceptions to GSL, the library needs to be compiled with the GCC option -fexceptions ./confugire CFLAGS="-fexceptions ..." to allow C++ exceptions to be handled. 4) With gcc-4.3.2 the tests in the poly/ directory fail due to a compiler optimization bug which is fixed in later versions of GCC (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=38478). FAIL: y.real, gsl_complex_poly_complex_eval ({-2.31 + 0.44i, 4.21 - 3.19i, 0.93 + 1.04i, -0.42 + 0.68i}, 0.49 + 0.95i) (-1.68450788000000018 observed vs 1.82462012000000007 expected) [9] FAIL: y.imag, gsl_complex_poly_complex_eval ({-2.31 + 0.44i, 4.21 - 3.19i, 0.93 + 1.04i, -0.42 + 0.68i}, 0.49 + 0.95i) (-0.30943988 observed vs 2.30389411999999982 expected) [10] With gcc-2.95/2.96 the tests fail in the eigen/ directory. This is due to a compiler optimization bug which causes errors in the manipulation of complex numbers. If you encounter these problems, install a different version of gcc. 5) Attempts to run 'strip' on the static library libgsl.a will probably produce a broken library (it is known to happen with GNU binutils strip, and probably affects others too). The libgsl.a ar archive made by libtool contains files with the same filenames from different directories, and this causes the strip program to overwrite these archive entries. If you need to produce a compact version of the library compile without -g instead of using strip. make install-strip does not work, due to a minor problem with autoconf which is fixed in the 2.5 development version of autoconf. In the meantime compile without -g instead if you need to reduce the file size. 6) The configure script can fail with a segmentation fault on bash-2.01 $ ./configure Segmentation fault This is due to a bug in bash, related to the MAIL environment variable. To work around it use $ unset ENV MAIL MAILPATH $ ./configure which should avoid the problem. Hints for AIX ============= For compilation problems with the native compiler xlc, try disabling shared libraries, setenv CC 'xlc' setenv CFLAGS '-O -qmaxmem=8192' ./configure --disable-shared make If you compile with higher optimisation -O3 you will also need -qstrict. The -O3 flag causes the -nostrict option to be enabled. This affects the accuracy of the results and causes some of the tests to fail. If you get errors like ld: 0711-593 SEVERE ERROR: Symbol C_BSTAT (entry 635) in object siman_tsp.o: The symbol refers to a csect with symbol number 0, which was not found. The new symbol cannot be associated with a csect and is being ignored. this is due to problems with some versions of the IBM assembler. Try compiling with CFLAGS="-g0" as a workaround. For details and other solutions see https://www-304.ibm.com/support/docview.wss?uid=isg1IZ98134 and http://gcc.gnu.org/bugzilla/show_bug.cgi?id=46072 If you get the error, ld: 0711-781 ERROR: TOC overflow. you can try building the library with a larger linker table-of-contents by setting LDFLAGS before compilation, ./configure LDFLAGS="-Wl,-bbigtoc" On older versions of AIX (e.g. 4.2) the size of the command-line is limited to 24kb, which causes linking to fail (due to the large number of files to be linked). Unfortunately this limit cannot be increased. To link the library you may need to use a manual approach of incrementally combining the object files in smaller groups. On more recent versions of AIX (e.g >= 5.1) use chdev -l sys0 -a ncargs=NNN to increase the allowed number of arguments. NNN is the amount of space measured in 4k blocks (default 6, maximum 1024) Hints for Compaq/DEC Alpha ========================== When comping with GCC use the -mieee and -mfp-rounding-mode options as appropriate, e.g. ./configure CFLAGS="-mieee -mfp-rounding-mode=d -g -O2" The library should compile successfully with Compaq's C compiler on Tru64 Unix 'cc' using the -std, -ieee and -fprm options. Use ./configure CC=cc make CFLAGS="-std -ieee -fprm d" to build the library this way. Use GNU tar to unpack the tar file, as Tru64 tar gives an error halfway through. Hints for HP-UX =============== The default mode of the HP-UX C compiler does not use ANSI C. To compile GSL you need to select ANSI C mode with the following configuration option: ./configure CFLAGS="-Ae" To switch on optimization use CFLAGS="-Ae -O". Hints for IRIX (SGI) ==================== The library should be compiled with the CFLAGS option -OPT:IEEE_NaN_inf=ON to ensure correct IEEE arithmetic. The tests in sys/ will fail without this option. The older deprecated option -OPT:IEEE_comparisons=ON will also work. The 32 bit IRIX compiler gives warnings about "long double" not being supported. These can be ignored or turned off with, ./configure CFLAGS="-woff 728" or make CFLAGS="-woff 728" The compiler also gives warnings about certain libraries that are "not used for resolving any symbol". This is harmless and the warnings can be ignored. You may get warnings about " /usr/bin/ld: arg list too long" when building shared libraries. If so, try increasing the ncargs kernel parameter with the systune(1m) command. For 64-bit compilation use the following options, ./configure CC=cc CFLAGS="-64" LDFLAGS="-64" or for gcc CFLAGS="-mabi-64" LDFLAGS="-mabi=64 -mips4 -L/usr/local/lib/mabi=64" Hints for MacOS X and PowerPC ============================= To install in /usr/local on MacOS systems, do "sudo make install" to gain root privileges. Note that GSL contains files with filenames of 32 characters or more. Therefore you need to be careful in unpacking the tar file, as some MacOS applications such as Stuffit Expander will truncate filenames to 31 characters. Using GNU tar and gunzip directly is the safe way to unpack the distribution. There are problems with dynamic linker, so the library should be compiled with, ./configure --disable-shared --disable-dependency-tracking It has been reported that shared libraries can be built if MacOS X specific versions of libtool, automake and autoconf from http://fink.sourceforge.net/ are installed, and the GSL source is reconfigured from scratch (./autogen.sh; ./configure; make) To avoid warnings about long-double, use the flag CFLAGS="-Wno-long-double ....(other options here)" in addition to the normal compilation options. If you get make check failures with OS X 10.x try using CC=gcc-4.2 or CC=clang since the llvm compiler has bugs that make the tests fail. The GCC 3.3 compiler shipped by Apple contains a bug which causes the wavelet tests to fail on "data untouched" tests at optimisation level -O2. You may be able work around this by compiling with CFLAGS="-O1 ..." instead. F J Frankin reported that some early versions of GCC-2.95 have a problem with long argument lists on PPC architecture, and this prevents GSL from compiling correctly (e.g. the test program in the blas directory gives a segmentation fault when run). This problem is fixed in more recent versions of GCC. Hints for Microsoft Windows =========================== GSL should compile with GCC under Cygwin on Microsoft Windows. There is a gsl package in the standard Cygwin distribution which contains any patches needed. With Mingw/MSYS some floating point issues have been reported which cause failures in the monte/ test directory. Hints for OpenBSD ================= As of July 2001 the OpenBSD log1p() function on i386 causes failures in the gsl complex tests. The configure script has been hardcoded to substitute gsl_log1p instead on OpenBSD. The log1p() bug has been reported and so may be fixed in future versions of OpenBSD. Hints for OS/2 ============== The configure script fails to detect the function 'isnan', leading to a slew of errors 'isnan redefined'. To work around this problem, run configure and edit the resulting config.h file to comment out the line which defines HAVE_ISINF. Hints for Solaris ================= If you are using the Sun compilers then the library should be compiled with the Sun C compiler 'cc', not 'CC' which is the C++ compiler. The Sun compiler tools are stored in non-standard directories -- make sure that all the compiler and linker tools (cc, ar, ranlib, ld) are on the PATH. A typical PATH should include the directories /opt/SUNWspro/bin:/usr/ccs/bin:/usr/ucb in that order. For example, $ PATH=/opt/SUNWspro/bin:/usr/ccs/bin:/usr/ucb:$PATH $ ./configure CC=cc CFLAGS=-O If you see configure output checking for ar... : it means that 'ar' has not been found, and the library will fail to build. If you use the Sun compiler you should use the Sun linker and assembler. If you use GCC, you can use the GNU linker and assembler or the Sun linker and assembler. There may be some warnings about "end of loop code not reached". These can be ignored -- they come from the do { ... ; return ; } while(0) statement in the GSL_ERROR macro. If you get errors such as symbol `gsl_complex_rect' is multiply-defined you will need to use ./configure CFLAGS="-DGSL_C99_INLINE -g -O2" ------------------------------ Further information on the standard GNU installation procedure ============================================================== The sections below describe the general features of the standard GNU installation procedure. Basic Installation ================== These are generic installation instructions. The `configure' shell script attempts to guess correct values for various system-dependent variables used during compilation. It uses those values to create a `Makefile' in each directory of the package. It may also create one or more `.h' files containing system-dependent definitions. Finally, it creates a shell script `config.status' that you can run in the future to recreate the current configuration, a file `config.cache' that saves the results of its tests to speed up reconfiguring, and a file `config.log' containing compiler output (useful mainly for debugging `configure'). If you need to do unusual things to compile the package, please try to figure out how `configure' could check whether to do them, and mail diffs or instructions to the address given in the `README' so they can be considered for the next release. If at some point `config.cache' contains results you don't want to keep, you may remove or edit it. The file `configure.in' is used to create `configure' by a program called `autoconf'. You only need `configure.in' if you want to change it or regenerate `configure' using a newer version of `autoconf'. The simplest way to compile this package is: 1. `cd' to the directory containing the package's source code and type `./configure' to configure the package for your system. If you're using `csh' on an old version of System V, you might need to type `sh ./configure' instead to prevent `csh' from trying to execute `configure' itself. Running `configure' takes a while. While running, it prints some messages telling which features it is checking for. 2. Type `make' to compile the package. 3. Optionally, type `make check' to run any self-tests that come with the package. 4. Type `make install' to install the programs and any data files and documentation. 5. You can remove the program binaries and object files from the source code directory by typing `make clean'. To also remove the files that `configure' created (so you can compile the package for a different kind of computer), type `make distclean'. There is also a `make maintainer-clean' target, but that is intended mainly for the package's developers. If you use it, you may have to get all sorts of other programs in order to regenerate files that came with the distribution. Compilers and Options ===================== Some systems require unusual options for compilation or linking that the `configure' script does not know about. You can give `configure' initial values for variables by setting them in the environment. Using a Bourne-compatible shell, you can do that on the command line like this: CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure Or on systems that have the `env' program, you can do it like this: env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure Compiling For Multiple Architectures ==================================== You can compile the package for more than one kind of computer at the same time, by placing the object files for each architecture in their own directory. To do this, you must use a version of `make' that supports the `VPATH' variable, such as GNU `make'. `cd' to the directory where you want the object files and executables to go and run the `configure' script. `configure' automatically checks for the source code in the directory that `configure' is in and in `..'. If you have to use a `make' that does not supports the `VPATH' variable, you have to compile the package for one architecture at a time in the source code directory. After you have installed the package for one architecture, use `make distclean' before reconfiguring for another architecture. Installation Names ================== By default, `make install' will install the package's files in `/usr/local/bin', `/usr/local/man', etc. You can specify an installation prefix other than `/usr/local' by giving `configure' the option `--prefix=PATH'. You can specify separate installation prefixes for architecture-specific files and architecture-independent files. If you give `configure' the option `--exec-prefix=PATH', the package will use PATH as the prefix for installing programs and libraries. Documentation and other data files will still use the regular prefix. If the package supports it, you can cause programs to be installed with an extra prefix or suffix on their names by giving `configure' the option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'. Optional Features ================= Some packages pay attention to `--enable-FEATURE' options to `configure', where FEATURE indicates an optional part of the package. They may also pay attention to `--with-PACKAGE' options, where PACKAGE is something like `gnu-as' or `x' (for the X Window System). The `README' should mention any `--enable-' and `--with-' options that the package recognizes. For packages that use the X Window System, `configure' can usually find the X include and library files automatically, but if it doesn't, you can use the `configure' options `--x-includes=DIR' and `--x-libraries=DIR' to specify their locations. Specifying the System Type ========================== There may be some features `configure' can not figure out automatically, but needs to determine by the type of host the package will run on. Usually `configure' can figure that out, but if it prints a message saying it can not guess the host type, give it the `--host=TYPE' option. TYPE can either be a short name for the system type, such as `sun4', or a canonical name with three fields: CPU-COMPANY-SYSTEM See the file `config.sub' for the possible values of each field. If `config.sub' isn't included in this package, then this package doesn't need to know the host type. If you are building compiler tools for cross-compiling, you can also use the `--target=TYPE' option to select the type of system they will produce code for and the `--build=TYPE' option to select the type of system on which you are compiling the package. Sharing Defaults ================ If you want to set default values for `configure' scripts to share, you can create a site shell script called `config.site' that gives default values for variables like `CC', `cache_file', and `prefix'. `configure' looks for `PREFIX/share/config.site' if it exists, then `PREFIX/etc/config.site' if it exists. Or, you can set the `CONFIG_SITE' environment variable to the location of the site script. A warning: not all `configure' scripts look for a site script. Operation Controls ================== `configure' recognizes the following options to control how it operates. `--cache-file=FILE' Use and save the results of the tests in FILE instead of `./config.cache'. Set FILE to `/dev/null' to disable caching, for debugging `configure'. `--help' Print a summary of the options to `configure', and exit. `--quiet' `--silent' `-q' Do not print messages saying which checks are being made. `--srcdir=DIR' Look for the package's source code in directory DIR. Usually `configure' can determine that directory automatically. `--version' Print the version of Autoconf used to generate the `configure' script, and exit. `configure' also accepts some other, not widely useful, options. gsl-1.16/sys/0000775000252300025230000000000012172254155010051 500000000000000gsl-1.16/sys/ldfrexp.c0000664000252300025230000000435112171574312011603 00000000000000/* sys/ldfrexp.c * * Copyright (C) 2002, Gert Van den Eynde * Copyright (C) 2007, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_ldexp (const double x, const int e) { int ex; if (x == 0.0) { return x; } { double y = gsl_frexp (x, &ex); double e2 = e + ex, p2; if (e2 >= DBL_MAX_EXP) { y *= pow (2.0, e2 - DBL_MAX_EXP + 1); e2 = DBL_MAX_EXP - 1; } else if (e2 <= DBL_MIN_EXP) { y *= pow (2.0, e2 - DBL_MIN_EXP - 1); e2 = DBL_MIN_EXP + 1; } p2 = pow (2.0, e2); return y * p2; } } double gsl_frexp (const double x, int *e) { if (x == 0.0) { *e = 0; return 0.0; } else if (!finite (x)) { *e = 0; return x; } else if (fabs (x) >= 0.5 && fabs (x) < 1) /* Handle the common case */ { *e = 0; return x; } else { double ex = ceil (log (fabs (x)) / M_LN2); int ei = (int) ex; double f; /* Prevent underflow and overflow of 2**(-ei) */ if (ei < DBL_MIN_EXP) ei = DBL_MIN_EXP; if (ei > -DBL_MIN_EXP) ei = -DBL_MIN_EXP; f = x * pow (2.0, -ei); if (!finite (f)) { /* This should not happen */ *e = 0; return f; } while (fabs (f) >= 1.0) { ei++; f /= 2.0; } while (fabs (f) > 0 && fabs (f) < 0.5) { ei--; f *= 2.0; } *e = ei; return f; } } gsl-1.16/sys/infnan.c0000664000252300025230000000527212171574312011413 00000000000000/* sys/infnan.c * * Copyright (C) 2001, 2004, 2007, 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #if HAVE_IEEEFP_H #include #endif #include double gsl_nan (void) { return gsl_fdiv (0.0, 0.0); } double gsl_posinf (void) { return gsl_fdiv (+1.0, 0.0); } double gsl_neginf (void) { return gsl_fdiv (-1.0, 0.0); } int gsl_isnan (const double x); int gsl_isinf (const double x); int gsl_finite (const double x); #if defined(_MSC_VER) /* Microsoft Visual C++ */ #include int gsl_isnan (const double x) { return _isnan(x); } int gsl_isinf (const double x) { int fpc = _fpclass(x); if (fpc == _FPCLASS_PINF) return +1; else if (fpc == _FPCLASS_NINF) return -1; else return 0; } int gsl_finite (const double x) { return _finite(x); } #else # if HAVE_DECL_ISFINITE int gsl_finite (const double x) { return isfinite(x); } # elif HAVE_DECL_FINITE int gsl_finite (const double x) { return finite(x); } # elif HAVE_IEEE_COMPARISONS int gsl_finite (const double x) { const double y = x - x; int status = (y == y); return status; } # else # error "cannot define gsl_finite without HAVE_DECL_FINITE or HAVE_IEEE_COMPARISONS" # endif # if HAVE_DECL_ISNAN int gsl_isnan (const double x) { return isnan(x); } #elif HAVE_IEEE_COMPARISONS int gsl_isnan (const double x) { int status = (x != x); return status; } # else # error "cannot define gsl_isnan without HAVE_DECL_ISNAN or HAVE_IEEE_COMPARISONS" # endif # if HAVE_DECL_ISINF int gsl_isinf (const double x) { /* isinf(3): In glibc 2.01 and earlier, isinf() returns a non-zero value (actually: 1) if x is an infinity (positive or negative). (This is all that C99 requires.) */ if (isinf(x)) { return (x > 0) ? 1 : -1; } else { return 0; } } # else int gsl_isinf (const double x) { if (! gsl_finite(x) && ! gsl_isnan(x)) { return (x > 0 ? +1 : -1); } else { return 0; } } # endif #endif gsl-1.16/sys/minmax.c0000664000252300025230000000221312171574312011423 00000000000000/* sys/minmax.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include /* Define some static functions which are always available */ double gsl_max (double a, double b) { return GSL_MAX (a, b); } double gsl_min (double a, double b) { return GSL_MIN (a, b); } gsl-1.16/sys/test.c0000664000252300025230000004435312171574312011124 00000000000000/* sys/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include int main (void) { double y, y_expected; int e, e_expected; gsl_ieee_env_setup (); /* Test for expm1 */ y = gsl_expm1 (0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(0.0)"); y = gsl_expm1 (1e-10); y_expected = 1.000000000050000000002e-10; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(1e-10)"); y = gsl_expm1 (-1e-10); y_expected = -9.999999999500000000017e-11; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(-1e-10)"); y = gsl_expm1 (0.1); y_expected = 0.1051709180756476248117078264902; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(0.1)"); y = gsl_expm1 (-0.1); y_expected = -0.09516258196404042683575094055356; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(-0.1)"); y = gsl_expm1 (10.0); y_expected = 22025.465794806716516957900645284; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(10.0)"); y = gsl_expm1 (-10.0); y_expected = -0.99995460007023751514846440848444; gsl_test_rel (y, y_expected, 1e-15, "gsl_expm1(-10.0)"); /* Test for log1p */ y = gsl_log1p (0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_log1p(0.0)"); y = gsl_log1p (1e-10); y_expected = 9.9999999995000000000333333333308e-11; gsl_test_rel (y, y_expected, 1e-15, "gsl_log1p(1e-10)"); y = gsl_log1p (0.1); y_expected = 0.095310179804324860043952123280765; gsl_test_rel (y, y_expected, 1e-15, "gsl_log1p(0.1)"); y = gsl_log1p (10.0); y_expected = 2.3978952727983705440619435779651; gsl_test_rel (y, y_expected, 1e-15, "gsl_log1p(10.0)"); /* Test for gsl_hypot */ y = gsl_hypot (0.0, 0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(0.0, 0.0)"); y = gsl_hypot (1e-10, 1e-10); y_expected = 1.414213562373095048801688e-10; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e-10, 1e-10)"); y = gsl_hypot (1e-38, 1e-38); y_expected = 1.414213562373095048801688e-38; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e-38, 1e-38)"); y = gsl_hypot (1e-10, -1.0); y_expected = 1.000000000000000000005; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e-10, -1)"); y = gsl_hypot (-1.0, 1e-10); y_expected = 1.000000000000000000005; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(-1, 1e-10)"); y = gsl_hypot (1e307, 1e301); y_expected = 1.000000000000499999999999e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e307, 1e301)"); y = gsl_hypot (1e301, 1e307); y_expected = 1.000000000000499999999999e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e301, 1e307)"); y = gsl_hypot (1e307, 1e307); y_expected = 1.414213562373095048801688e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1e307, 1e307)"); /* Test +-Inf, finite */ y = gsl_hypot (GSL_POSINF, 1.2); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_POSINF, 1.2)"); y = gsl_hypot (GSL_NEGINF, 1.2); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NEGINF, 1.2)"); y = gsl_hypot (1.2, GSL_POSINF); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1.2, GSL_POSINF)"); y = gsl_hypot (1.2, GSL_NEGINF); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1.2, GSL_NEGINF)"); /* Test NaN, finite */ y = gsl_hypot (GSL_NAN, 1.2); y_expected = GSL_NAN; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NAN, 1.2)"); y = gsl_hypot (1.2, GSL_NAN); y_expected = GSL_NAN; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(1.2, GSL_NAN)"); /* Test NaN, NaN */ y = gsl_hypot (GSL_NAN, GSL_NAN); y_expected = GSL_NAN; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NAN, GSL_NAN)"); /* Test +Inf, NaN */ y = gsl_hypot (GSL_POSINF, GSL_NAN); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_POSINF, GSL_NAN)"); /* Test -Inf, NaN */ y = gsl_hypot (GSL_NEGINF, GSL_NAN); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NEGINF, GSL_NAN)"); /* Test NaN, +Inf */ y = gsl_hypot (GSL_NAN, GSL_POSINF); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NAN, GSL_POSINF)"); /* Test NaN, -Inf */ y = gsl_hypot (GSL_NAN, GSL_NEGINF); y_expected = GSL_POSINF; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot(GSL_NAN, GSL_NEGINF)"); /* Test for gsl_hypot3 */ y = gsl_hypot3 (0.0, 0.0, 0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(0.0, 0.0, 0.0)"); y = gsl_hypot3 (1e-10, 1e-10, 1e-10); y_expected = 1.732050807568877293527446e-10; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e-10, 1e-10, 1e-10)"); y = gsl_hypot3 (1e-38, 1e-38, 1e-38); y_expected = 1.732050807568877293527446e-38; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e-38, 1e-38, 1e-38)"); y = gsl_hypot3 (1e-10, 1e-10, -1.0); y_expected = 1.000000000000000000099; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e-10, 1e-10, -1)"); y = gsl_hypot3 (1e-10, -1.0, 1e-10); y_expected = 1.000000000000000000099; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e-10, -1, 1e-10)"); y = gsl_hypot3 (-1.0, 1e-10, 1e-10); y_expected = 1.000000000000000000099; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(-1, 1e-10, 1e-10)"); y = gsl_hypot3 (1e307, 1e301, 1e301); y_expected = 1.0000000000009999999999995e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e307, 1e301, 1e301)"); y = gsl_hypot3 (1e307, 1e307, 1e307); y_expected = 1.732050807568877293527446e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e307, 1e307, 1e307)"); y = gsl_hypot3 (1e307, 1e-307, 1e-307); y_expected = 1.0e307; gsl_test_rel (y, y_expected, 1e-15, "gsl_hypot3(1e307, 1e-307, 1e-307)"); /* Test for acosh */ y = gsl_acosh (1.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_acosh(1.0)"); y = gsl_acosh (1.1); y_expected = 4.435682543851151891329110663525e-1; gsl_test_rel (y, y_expected, 1e-15, "gsl_acosh(1.1)"); y = gsl_acosh (10.0); y_expected = 2.9932228461263808979126677137742e0; gsl_test_rel (y, y_expected, 1e-15, "gsl_acosh(10.0)"); y = gsl_acosh (1e10); y_expected = 2.3718998110500402149594646668302e1; gsl_test_rel (y, y_expected, 1e-15, "gsl_acosh(1e10)"); /* Test for asinh */ y = gsl_asinh (0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(0.0)"); y = gsl_asinh (1e-10); y_expected = 9.9999999999999999999833333333346e-11; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(1e-10)"); y = gsl_asinh (-1e-10); y_expected = -9.9999999999999999999833333333346e-11; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(1e-10)"); y = gsl_asinh (0.1); y_expected = 9.983407889920756332730312470477e-2; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(0.1)"); y = gsl_asinh (-0.1); y_expected = -9.983407889920756332730312470477e-2; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(-0.1)"); y = gsl_asinh (1.0); y_expected = 8.8137358701954302523260932497979e-1; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(1.0)"); y = gsl_asinh (-1.0); y_expected = -8.8137358701954302523260932497979e-1; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(-1.0)"); y = gsl_asinh (10.0); y_expected = 2.9982229502979697388465955375965e0; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(10)"); y = gsl_asinh (-10.0); y_expected = -2.9982229502979697388465955375965e0; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(-10)"); y = gsl_asinh (1e10); y_expected = 2.3718998110500402149599646668302e1; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(1e10)"); y = gsl_asinh (-1e10); y_expected = -2.3718998110500402149599646668302e1; gsl_test_rel (y, y_expected, 1e-15, "gsl_asinh(-1e10)"); /* Test for atanh */ y = gsl_atanh (0.0); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(0.0)"); y = gsl_atanh (1e-20); y_expected = 1e-20; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(1e-20)"); y = gsl_atanh (-1e-20); y_expected = -1e-20; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(-1e-20)"); y = gsl_atanh (0.1); y_expected = 1.0033534773107558063572655206004e-1; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(0.1)"); y = gsl_atanh (-0.1); y_expected = -1.0033534773107558063572655206004e-1; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(-0.1)"); y = gsl_atanh (0.9); y_expected = 1.4722194895832202300045137159439e0; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(0.9)"); y = gsl_atanh (-0.9); y_expected = -1.4722194895832202300045137159439e0; gsl_test_rel (y, y_expected, 1e-15, "gsl_atanh(0.9)"); /* Test for pow_int */ y = gsl_pow_2 (-3.14); y_expected = pow (-3.14, 2.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_2(-3.14)"); y = gsl_pow_3 (-3.14); y_expected = pow (-3.14, 3.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_3(-3.14)"); y = gsl_pow_4 (-3.14); y_expected = pow (-3.14, 4.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_4(-3.14)"); y = gsl_pow_5 (-3.14); y_expected = pow (-3.14, 5.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_5(-3.14)"); y = gsl_pow_6 (-3.14); y_expected = pow (-3.14, 6.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_6(-3.14)"); y = gsl_pow_7 (-3.14); y_expected = pow (-3.14, 7.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_7(-3.14)"); y = gsl_pow_8 (-3.14); y_expected = pow (-3.14, 8.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_8(-3.14)"); y = gsl_pow_9 (-3.14); y_expected = pow (-3.14, 9.0); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_9(-3.14)"); { int n; for (n = -9; n < 10; n++) { y = gsl_pow_int (-3.14, n); y_expected = pow (-3.14, n); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_int(-3.14,%d)", n); } } { unsigned int n; for (n = 0; n < 10; n++) { y = gsl_pow_uint (-3.14, n); y_expected = pow (-3.14, n); gsl_test_rel (y, y_expected, 1e-15, "gsl_pow_uint(-3.14,%d)", n); } } /* Test case for n at INT_MAX, INT_MIN */ { double u = 1.0000001; int n = INT_MAX; y = gsl_pow_int (u, n); y_expected = pow (u, n); gsl_test_rel (y, y_expected, 1e-6, "gsl_pow_int(%.7f,%d)", u, n); n = INT_MIN; y = gsl_pow_int (u, n); y_expected = pow (u, n); gsl_test_rel (y, y_expected, 1e-6, "gsl_pow_int(%.7f,%d)", u, n); } /* Test for ldexp */ y = gsl_ldexp (M_PI, -2); y_expected = M_PI_4; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(pi,-2)"); y = gsl_ldexp (1.0, 2); y_expected = 4.000000; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(1.0,2)"); y = gsl_ldexp (0.0, 2); y_expected = 0.0; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(0.0,2)"); y = gsl_ldexp (9.999999999999998890e-01, 1024); y_expected = GSL_DBL_MAX; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp DBL_MAX"); y = gsl_ldexp (1e308, -2000); y_expected = 8.7098098162172166755761e-295; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(1e308,-2000)"); y = gsl_ldexp (GSL_DBL_MIN, 2000); y_expected = 2.554675596204441378334779940e294; gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(DBL_MIN,2000)"); /* Test subnormals */ { int i = 0; volatile double x = GSL_DBL_MIN; y_expected = 2.554675596204441378334779940e294; x /= 2; while (x > 0) { i++ ; y = gsl_ldexp (x, 2000 + i); gsl_test_rel (y, y_expected, 1e-15, "gsl_ldexp(DBL_MIN/2**%d,%d)",i,2000+i); x /= 2; } } /* Test for frexp */ y = gsl_frexp (0.0, &e); y_expected = 0; e_expected = 0; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(0) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(0) exponent"); y = gsl_frexp (M_PI, &e); y_expected = M_PI_4; e_expected = 2; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(pi) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(pi) exponent"); y = gsl_frexp (2.0, &e); y_expected = 0.5; e_expected = 2; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(2.0) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(2.0) exponent"); y = gsl_frexp (1.0 / 4.0, &e); y_expected = 0.5; e_expected = -1; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(0.25) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(0.25) exponent"); y = gsl_frexp (1.0 / 4.0 - 4.0 * GSL_DBL_EPSILON, &e); y_expected = 0.999999999999996447; e_expected = -2; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(0.25-eps) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(0.25-eps) exponent"); y = gsl_frexp (GSL_DBL_MAX, &e); y_expected = 9.999999999999998890e-01; e_expected = 1024; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(DBL_MAX) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(DBL_MAX) exponent"); y = gsl_frexp (-GSL_DBL_MAX, &e); y_expected = -9.999999999999998890e-01; e_expected = 1024; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(-DBL_MAX) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(-DBL_MAX) exponent"); y = gsl_frexp (GSL_DBL_MIN, &e); y_expected = 0.5; e_expected = -1021; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(DBL_MIN) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(DBL_MIN) exponent"); y = gsl_frexp (-GSL_DBL_MIN, &e); y_expected = -0.5; e_expected = -1021; gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(-DBL_MIN) fraction"); gsl_test_int (e, e_expected, "gsl_frexp(-DBL_MIN) exponent"); /* Test subnormals */ { int i = 0; volatile double x = GSL_DBL_MIN; y_expected = 0.5; e_expected = -1021; x /= 2; while (x > 0) { e_expected--; i++ ; y = gsl_frexp (x, &e); gsl_test_rel (y, y_expected, 1e-15, "gsl_frexp(DBL_MIN/2**%d) fraction",i); gsl_test_int (e, e_expected, "gsl_frexp(DBL_MIN/2**%d) exponent", i); x /= 2; } } /* Test for approximate floating point comparison */ { double x, y; int i; x = M_PI; y = 22.0 / 7.0; /* test the basic function */ for (i = 0; i < 10; i++) { double tol = pow (10, -i); int res = gsl_fcmp (x, y, tol); gsl_test_int (res, -(i >= 4), "gsl_fcmp(%.5f,%.5f,%g)", x, y, tol); } for (i = 0; i < 10; i++) { double tol = pow (10, -i); int res = gsl_fcmp (y, x, tol); gsl_test_int (res, (i >= 4), "gsl_fcmp(%.5f,%.5f,%g)", y, x, tol); } } #if HAVE_IEEE_COMPARISONS /* Test for isinf, isnan, finite */ { double zero, one, inf, nan; int s; zero = 0.0; one = 1.0; inf = exp (1.0e10); nan = inf / inf; s = gsl_isinf (zero); gsl_test_int (s, 0, "gsl_isinf(0)"); s = gsl_isinf (one); gsl_test_int (s, 0, "gsl_isinf(1)"); s = gsl_isinf (inf); gsl_test_int (s, 1, "gsl_isinf(inf)"); s = gsl_isinf (-inf); gsl_test_int (s, -1, "gsl_isinf(-inf)"); s = gsl_isinf (nan); gsl_test_int (s, 0, "gsl_isinf(nan)"); s = gsl_isnan (zero); gsl_test_int (s, 0, "gsl_isnan(0)"); s = gsl_isnan (one); gsl_test_int (s, 0, "gsl_isnan(1)"); s = gsl_isnan (inf); gsl_test_int (s, 0, "gsl_isnan(inf)"); s = gsl_isnan (-inf); gsl_test_int (s, 0, "gsl_isnan(-inf)"); s = gsl_isnan (nan); gsl_test_int (s, 1, "gsl_isnan(nan)"); s = gsl_finite (zero); gsl_test_int (s, 1, "gsl_finite(0)"); s = gsl_finite (one); gsl_test_int (s, 1, "gsl_finite(1)"); s = gsl_finite (inf); gsl_test_int (s, 0, "gsl_finite(inf)"); s = gsl_finite (-inf); gsl_test_int (s, 0, "gsl_finite(-inf)"); s = gsl_finite (nan); gsl_test_int (s, 0, "gsl_finite(nan)"); } #endif { double x = gsl_fdiv (2.0, 3.0); gsl_test_rel (x, 2.0 / 3.0, 4 * GSL_DBL_EPSILON, "gsl_fdiv(2,3)"); } /* Test constants in gsl_math.h */ { double x = log(M_E); gsl_test_rel (x, 1.0, 4 * GSL_DBL_EPSILON, "ln(M_E)"); } { double x=pow(2.0,M_LOG2E); gsl_test_rel (x, exp(1.0), 4 * GSL_DBL_EPSILON, "2^M_LOG2E"); } { double x=pow(10.0,M_LOG10E); gsl_test_rel (x, exp(1.0), 4 * GSL_DBL_EPSILON, "10^M_LOG10E"); } { double x=pow(M_SQRT2, 2.0); gsl_test_rel (x, 2.0, 4 * GSL_DBL_EPSILON, "M_SQRT2^2"); } { double x=pow(M_SQRT1_2, 2.0); gsl_test_rel (x, 1.0/2.0, 4 * GSL_DBL_EPSILON, "M_SQRT1_2"); } { double x=pow(M_SQRT3, 2.0); gsl_test_rel (x, 3.0, 4 * GSL_DBL_EPSILON, "M_SQRT3^2"); } { double x = M_PI; gsl_test_rel (x, 3.1415926535897932384626433832795, 4 * GSL_DBL_EPSILON, "M_PI"); } { double x = 2 * M_PI_2; gsl_test_rel (x, M_PI, 4 * GSL_DBL_EPSILON, "2*M_PI_2"); } { double x = 4 * M_PI_4; gsl_test_rel (x, M_PI, 4 * GSL_DBL_EPSILON, "4*M_PI_4"); } { double x = pow(M_SQRTPI, 2.0); gsl_test_rel (x, M_PI, 4 * GSL_DBL_EPSILON, "M_SQRTPI^2"); } { double x = pow(M_2_SQRTPI, 2.0); gsl_test_rel (x, 4/M_PI, 4 * GSL_DBL_EPSILON, "M_SQRTPI^2"); } { double x = M_1_PI; gsl_test_rel (x, 1/M_PI, 4 * GSL_DBL_EPSILON, "M_1_SQRTPI"); } { double x = M_2_PI; gsl_test_rel (x, 2.0/M_PI, 4 * GSL_DBL_EPSILON, "M_2_PI"); } { double x = exp(M_LN10); gsl_test_rel (x, 10, 4 * GSL_DBL_EPSILON, "exp(M_LN10)"); } { double x = exp(M_LN2); gsl_test_rel (x, 2, 4 * GSL_DBL_EPSILON, "exp(M_LN2)"); } { double x = exp(M_LNPI); gsl_test_rel (x, M_PI, 4 * GSL_DBL_EPSILON, "exp(M_LNPI)"); } { double x = M_EULER; gsl_test_rel (x, 0.5772156649015328606065120900824, 4 * GSL_DBL_EPSILON, "M_EULER"); } exit (gsl_test_summary ()); } gsl-1.16/sys/fcmp.c0000664000252300025230000000320712171574312011063 00000000000000/* sys/gsl_compare.c * * Copyright (C) 2002 Gert Van den Eynde * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Based on fcmp 1.2.2 Copyright (c) 1998-2000 Theodore C. Belding * University of Michigan Center for the Study of Complex Systems * Ted.Belding@umich.edu * */ #include #include #include int gsl_fcmp (const double x1, const double x2, const double epsilon) { int exponent; double delta, difference; /* Find exponent of largest absolute value */ { double max = (fabs (x1) > fabs (x2)) ? x1 : x2; frexp (max, &exponent); } /* Form a neighborhood of size 2 * delta */ delta = ldexp (epsilon, exponent); difference = x1 - x2; if (difference > delta) /* x1 > x2 */ { return 1; } else if (difference < -delta) /* x1 < x2 */ { return -1; } else /* -delta <= difference <= delta */ { return 0; /* x1 ~=~ x2 */ } } gsl-1.16/sys/Makefile.in0000664000252300025230000010477612172253757012064 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = sys DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslsys_la_LIBADD = am_libgslsys_la_OBJECTS = minmax.lo prec.lo hypot.lo log1p.lo expm1.lo \ coerce.lo invhyp.lo pow_int.lo infnan.lo fdiv.lo fcmp.lo \ ldfrexp.lo libgslsys_la_OBJECTS = $(am_libgslsys_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslsys.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslsys_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslsys_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslsys.la pkginclude_HEADERS = gsl_sys.h libgslsys_la_SOURCES = minmax.c prec.c hypot.c log1p.c expm1.c coerce.c invhyp.c pow_int.c infnan.c fdiv.c fcmp.c ldfrexp.c INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslsys.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu sys/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu sys/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslsys.la: $(libgslsys_la_OBJECTS) $(libgslsys_la_DEPENDENCIES) $(EXTRA_libgslsys_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslsys_la_OBJECTS) $(libgslsys_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/coerce.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/expm1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fcmp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdiv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hypot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/infnan.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/invhyp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ldfrexp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/log1p.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/minmax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pow_int.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/prec.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/sys/ChangeLog0000664000252300025230000001216412171574312011546 000000000000002011-05-20 Brian Gough * hypot.c (gsl_hypot): handle case where x or y is infinite 2010-10-12 Brian Gough * pow_int.c (gsl_pow_uint): added function gsl_pow_uint(x,n) for unsigned n (larger range) (gsl_pow_int): handle case where n=MIN_INT correctly 2010-02-15 Brian Gough * infnan.c: use #error if gsl_isnan or gsl_finite cannot be defined 2009-08-21 Brian Gough * test.c (main): move x/=2 outside test of while loops because it is (possibly) not volatile. 2008-10-13 Brian Gough * log1p.c: use gsl_sys.h header file * infnan.c: use gsl_sys.h header file * hypot.c: use gsl_sys.h header file * fdiv.c: use gsl_sys.h header file * coerce.c: use gsl_sys.h header file 2008-10-08 Brian Gough * infnan.c (gsl_isinf): handle the case where isinf(-inf) returns +1 2008-07-03 Brian Gough * prec.c: compile inline functions from header here * pow_int.c: compile inline functions from header here * minmax.c: compile inline functions from header here 2008-03-18 Brian Gough * test.c (main): use volatile to avoid extended precision in loop * ldfrexp.c (gsl_ldexp): added a test for x==0 2007-11-04 Brian Gough * ldfrexp.c (gsl_ldexp): handle full range of double precision (gsl_frexp): handle full range of double precision 2007-07-30 Brian Gough * infnan.c (gsl_finite): use isfinite (c99) in preference to finite 2007-07-23 Brian Gough * log1p.c (gsl_log1p): added another volatile to prevent unwanted optimisation 2007-04-03 Brian Gough * infnan.c (gsl_isinf): now return -1 for -Inf instead of +1 * test.c (main): add test for -inf * infnan.c (gsl_finite): always use finite where available (gsl_isnan): always use isnan where available (gsl_isinf): always use isinf where available 2005-11-14 Brian Gough * test.c: added tests for constants 2005-04-05 Brian Gough * infnan.c: added #include ieeefp.h for Solaris 2004-12-22 Brian Gough * infnan.c (gsl_isinf): added missing return type of int 2003-09-02 Brian Gough * infnan.c (gsl_isinf): added fallback for missing isinf (IRIX) 2003-07-24 Brian Gough * invhyp.c: removed duplicate declarations * ldfrexp.c: removed duplicate declarations * expm1.c: removed duplicate declaration of gsl_expm1 2003-01-02 Brian Gough * infnan.c (gsl_isnan): fall back to isnan,isinf,finite/isfinite if available and IEEE comparisons do not work Wed Dec 11 17:29:24 2002 Brian Gough * ldfrexp.c: fix include to use instead of 2002-08-25 Brian Gough * fcmp.c (gsl_fcmp): approximate comparison of floating point numbers using Knuth's algorithm * ldfrexp.c (gsl_ldexp): portable replacement for ldexp() (gsl_frexp): portable replacement for frexp() Wed Jan 16 16:35:58 2002 Brian Gough * test.c (main): only test gsl_isnan, gsl_isinf, gsl_finite functions if they have been compiled in. * infnan.c (gsl_isnan): #ifdef out the gsl_isnan, gsl_isinf and gsl_finite functions if IEEE comparisons for nans and infs are not supported (HAVE_IEEE_COMPARISONS). Tue Aug 21 22:54:08 2001 Brian Gough * test.c (main): use inf/inf to generate a nan, because MSVC optimizes inf-inf to zero Sun May 6 14:28:57 2001 Brian Gough * infnan.c: added gsl_isnan, gsl_isinf, gsl_isreal Sun Feb 25 11:54:21 2001 Brian Gough * invhyp.c: added gsl_acosh, gsl_asinh, gsl_atanh Mon Jan 29 10:53:06 2001 Brian Gough * hypot.c: removed the inline from gsl_hypot, since this is the static version of the function * test.c (main): added an underflow test for gsl_hypot Thu Nov 16 19:28:38 2000 Brian Gough * coerce.c: added functions for coercing values out of registers so they are correctly rounded Sun Oct 22 15:00:24 2000 Brian Gough * expm1.c (gsl_expm1): added gsl_expm1, a substitute for BSD's expm1 Mon Apr 3 16:58:53 2000 Brian Gough * params.c (main): added parentheses around negative output values Tue Mar 21 12:44:07 2000 Brian Gough * hypot.c: added a quick gsl_hypot function for sqrt(x^2+y^2) 1999-07-14 Mark Galassi * prec.c (GSL_MODE_PREC): surrounded this with function with an #ifndef, since it might already be defined as a macro. In truth, this function might be completely unnecessary, since the logic in ../gsl_mode.h seems to cover all cases. Fri Nov 20 17:41:35 1998 Brian Gough * params.c: added program for printing ieee parameters gsl-1.16/sys/Makefile.am0000664000252300025230000000065212171574312012027 00000000000000noinst_LTLIBRARIES = libgslsys.la pkginclude_HEADERS = gsl_sys.h libgslsys_la_SOURCES = minmax.c prec.c hypot.c log1p.c expm1.c coerce.c invhyp.c pow_int.c infnan.c fdiv.c fcmp.c ldfrexp.c INCLUDES = -I$(top_srcdir) check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslsys.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la libgslsys.la ../utils/libutils.la gsl-1.16/sys/gsl_sys.h0000664000252300025230000000364212171574312011631 00000000000000/* sys/gsl_sys.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SYS_H__ #define __GSL_SYS_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_log1p (const double x); double gsl_expm1 (const double x); double gsl_hypot (const double x, const double y); double gsl_hypot3 (const double x, const double y, const double z); double gsl_acosh (const double x); double gsl_asinh (const double x); double gsl_atanh (const double x); int gsl_isnan (const double x); int gsl_isinf (const double x); int gsl_finite (const double x); double gsl_nan (void); double gsl_posinf (void); double gsl_neginf (void); double gsl_fdiv (const double x, const double y); double gsl_coerce_double (const double x); float gsl_coerce_float (const float x); long double gsl_coerce_long_double (const long double x); double gsl_ldexp(const double x, const int e); double gsl_frexp(const double x, int * e); int gsl_fcmp (const double x1, const double x2, const double epsilon); __END_DECLS #endif /* __GSL_SYS_H__ */ gsl-1.16/sys/fdiv.c0000664000252300025230000000163112171574312011065 00000000000000/* sys/fdiv.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_fdiv (const double x, const double y) { return x / y; } gsl-1.16/sys/pow_int.c0000664000252300025230000000256212171574312011620 00000000000000/* sys/pow_int.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include double gsl_pow_int(double x, int n) { unsigned int un; if(n < 0) { x = 1.0/x; un = -n; } else { un = n; } return gsl_pow_uint(x, un); } double gsl_pow_uint(double x, unsigned int n) { double value = 1.0; /* repeated squaring method * returns 0.0^0 = 1.0, so continuous in x */ do { if(n & 1) value *= x; /* for n odd */ n >>= 1; x *= x; } while (n); return value; } gsl-1.16/sys/log1p.c0000664000252300025230000000203312171574312011154 00000000000000/* sys/log1p.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_log1p (const double x) { volatile double y, z; y = 1 + x; z = y - 1; return log(y) - (z-x)/y ; /* cancels errors with IEEE arithmetic */ } gsl-1.16/sys/hypot.c0000664000252300025230000000367712171574312011314 00000000000000/* sys/hypot.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_hypot (const double x, const double y) { double xabs = fabs(x) ; double yabs = fabs(y) ; double min, max; /* Follow the optional behavior of the ISO C standard and return +Inf when any of the argument is +-Inf, even if the other is NaN. http://pubs.opengroup.org/onlinepubs/009695399/functions/hypot.html */ if (gsl_isinf(x) || gsl_isinf(y)) { return GSL_POSINF; } if (xabs < yabs) { min = xabs ; max = yabs ; } else { min = yabs ; max = xabs ; } if (min == 0) { return max ; } { double u = min / max ; return max * sqrt (1 + u * u) ; } } double gsl_hypot3(const double x, const double y, const double z) { double xabs = fabs(x); double yabs = fabs(y); double zabs = fabs(z); double w = GSL_MAX(xabs, GSL_MAX(yabs, zabs)); if (w == 0.0) { return (0.0); } else { double r = w * sqrt((xabs / w) * (xabs / w) + (yabs / w) * (yabs / w) + (zabs / w) * (zabs / w)); return r; } } gsl-1.16/sys/expm1.c0000664000252300025230000000253712171574312011175 00000000000000/* sys/expm1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_expm1 (const double x) { /* FIXME: this should be improved */ if (fabs(x) < M_LN2) { /* Compute the taylor series S = x + (1/2!) x^2 + (1/3!) x^3 + ... */ double i = 1.0; double sum = x; double term = x / 1.0; do { i++ ; term *= x/i; sum += term; } while (fabs(term) > fabs(sum) * GSL_DBL_EPSILON) ; return sum ; } else { return exp(x) - 1; } } gsl-1.16/sys/prec.c0000664000252300025230000000342712171574312011073 00000000000000/* sys/prec.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include #include const double gsl_prec_eps[_GSL_PREC_T_NUM] = { GSL_DBL_EPSILON, GSL_FLT_EPSILON, GSL_SFLT_EPSILON }; const double gsl_prec_sqrt_eps[_GSL_PREC_T_NUM] = { GSL_SQRT_DBL_EPSILON, GSL_SQRT_FLT_EPSILON, GSL_SQRT_SFLT_EPSILON }; const double gsl_prec_root3_eps[_GSL_PREC_T_NUM] = { GSL_ROOT3_DBL_EPSILON, GSL_ROOT3_FLT_EPSILON, GSL_ROOT3_SFLT_EPSILON }; const double gsl_prec_root4_eps[_GSL_PREC_T_NUM] = { GSL_ROOT4_DBL_EPSILON, GSL_ROOT4_FLT_EPSILON, GSL_ROOT4_SFLT_EPSILON }; const double gsl_prec_root5_eps[_GSL_PREC_T_NUM] = { GSL_ROOT5_DBL_EPSILON, GSL_ROOT5_FLT_EPSILON, GSL_ROOT5_SFLT_EPSILON }; const double gsl_prec_root6_eps[_GSL_PREC_T_NUM] = { GSL_ROOT6_DBL_EPSILON, GSL_ROOT6_FLT_EPSILON, GSL_ROOT6_SFLT_EPSILON }; gsl-1.16/sys/coerce.c0000664000252300025230000000233112171574312011373 00000000000000/* sys/coerce.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_coerce_double (const double x) { volatile double y; y = x; return y; } float gsl_coerce_float (const float x) { volatile float y; y = x; return y; } /* The following function is not needed, but is included for completeness */ long double gsl_coerce_long_double (const long double x) { volatile long double y; y = x; return y; } gsl-1.16/sys/invhyp.c0000664000252300025230000000417212171574312011455 00000000000000/* sys/invhyp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_acosh (const double x) { if (x > 1.0 / GSL_SQRT_DBL_EPSILON) { return log (x) + M_LN2; } else if (x > 2) { return log (2 * x - 1 / (sqrt (x * x - 1) + x)); } else if (x > 1) { double t = x - 1; return log1p (t + sqrt (2 * t + t * t)); } else if (x == 1) { return 0; } else { return GSL_NAN; } } double gsl_asinh (const double x) { double a = fabs (x); double s = (x < 0) ? -1 : 1; if (a > 1 / GSL_SQRT_DBL_EPSILON) { return s * (log (a) + M_LN2); } else if (a > 2) { return s * log (2 * a + 1 / (a + sqrt (a * a + 1))); } else if (a > GSL_SQRT_DBL_EPSILON) { double a2 = a * a; return s * log1p (a + a2 / (1 + sqrt (1 + a2))); } else { return x; } } double gsl_atanh (const double x) { double a = fabs (x); double s = (x < 0) ? -1 : 1; if (a > 1) { return GSL_NAN; } else if (a == 1) { return (x < 0) ? GSL_NEGINF : GSL_POSINF; } else if (a >= 0.5) { return s * 0.5 * log1p (2 * a / (1 - a)); } else if (a > GSL_DBL_EPSILON) { return s * 0.5 * log1p (2 * a + 2 * a * a / (1 - a)); } else { return x; } } gsl-1.16/eigen/0000775000252300025230000000000012172254160010316 500000000000000gsl-1.16/eigen/nonsymm.c0000664000252300025230000001574112171574312012115 00000000000000/* eigen/nonsymm.c * * Copyright (C) 2006 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues of a real nonsymmetric * matrix, using the double shift Francis method. * * See the references in francis.c. * * This module gets the matrix ready by balancing it and * reducing it to Hessenberg form before passing it to the * francis module. */ /* gsl_eigen_nonsymm_alloc() Allocate a workspace for solving the nonsymmetric eigenvalue problem. The size of this workspace is O(2n) Inputs: n - size of matrix Return: pointer to workspace */ gsl_eigen_nonsymm_workspace * gsl_eigen_nonsymm_alloc(const size_t n) { gsl_eigen_nonsymm_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_nonsymm_workspace *) calloc (1, sizeof (gsl_eigen_nonsymm_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->Z = NULL; w->do_balance = 0; w->diag = gsl_vector_alloc(n); if (w->diag == 0) { gsl_eigen_nonsymm_free(w); GSL_ERROR_NULL ("failed to allocate space for balancing vector", GSL_ENOMEM); } w->tau = gsl_vector_alloc(n); if (w->tau == 0) { gsl_eigen_nonsymm_free(w); GSL_ERROR_NULL ("failed to allocate space for hessenberg coefficients", GSL_ENOMEM); } w->francis_workspace_p = gsl_eigen_francis_alloc(); if (w->francis_workspace_p == 0) { gsl_eigen_nonsymm_free(w); GSL_ERROR_NULL ("failed to allocate space for francis workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_nonsymm_alloc() */ /* gsl_eigen_nonsymm_free() Free workspace w */ void gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * w) { RETURN_IF_NULL (w); if (w->tau) gsl_vector_free(w->tau); if (w->diag) gsl_vector_free(w->diag); if (w->francis_workspace_p) gsl_eigen_francis_free(w->francis_workspace_p); free(w); } /* gsl_eigen_nonsymm_free() */ /* gsl_eigen_nonsymm_params() Set some parameters which define how we solve the eigenvalue problem. Inputs: compute_t - 1 if we want to compute T, 0 if not balance - 1 if we want to balance the matrix, 0 if not w - nonsymm workspace */ void gsl_eigen_nonsymm_params (const int compute_t, const int balance, gsl_eigen_nonsymm_workspace *w) { gsl_eigen_francis_T(compute_t, w->francis_workspace_p); w->do_balance = balance; } /* gsl_eigen_nonsymm_params() */ /* gsl_eigen_nonsymm() Solve the nonsymmetric eigenvalue problem A x = \lambda x for the eigenvalues \lambda using the Francis method. Here we compute the real Schur form T = Z^t A Z with the diagonal blocks of T giving us the eigenvalues. Z is a matrix of Schur vectors which is not computed by this algorithm. See gsl_eigen_nonsymm_Z(). Inputs: A - general real matrix eval - where to store eigenvalues w - workspace Return: success or error Notes: If T is computed, it is stored in A on output. Otherwise the diagonal of A contains the 1-by-1 and 2-by-2 eigenvalue blocks. */ int gsl_eigen_nonsymm (gsl_matrix * A, gsl_vector_complex * eval, gsl_eigen_nonsymm_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else { int s; if (w->do_balance) { /* balance the matrix */ gsl_linalg_balance_matrix(A, w->diag); } /* compute the Hessenberg reduction of A */ gsl_linalg_hessenberg_decomp(A, w->tau); if (w->Z) { /* * initialize the matrix Z to U, which is the matrix used * to construct the Hessenberg reduction. */ /* compute U and store it in Z */ gsl_linalg_hessenberg_unpack(A, w->tau, w->Z); /* find the eigenvalues and Schur vectors */ s = gsl_eigen_francis_Z(A, eval, w->Z, w->francis_workspace_p); if (w->do_balance) { /* * The Schur vectors in Z are the vectors for the balanced * matrix. We now must undo the balancing to get the * vectors for the original matrix A. */ gsl_linalg_balance_accum(w->Z, w->diag); } } else { /* find the eigenvalues only */ s = gsl_eigen_francis(A, eval, w->francis_workspace_p); } w->n_evals = w->francis_workspace_p->n_evals; return s; } } /* gsl_eigen_nonsymm() */ /* gsl_eigen_nonsymm_Z() Solve the nonsymmetric eigenvalue problem A x = \lambda x for the eigenvalues \lambda. Here we compute the real Schur form T = Z^t A Z with the diagonal blocks of T giving us the eigenvalues. Z is the matrix of Schur vectors. Inputs: A - general real matrix eval - where to store eigenvalues Z - where to store Schur vectors w - workspace Return: success or error Notes: If T is computed, it is stored in A on output. Otherwise the diagonal of A contains the 1-by-1 and 2-by-2 eigenvalue blocks. */ int gsl_eigen_nonsymm_Z (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix * Z, gsl_eigen_nonsymm_workspace * w) { /* check matrix and vector sizes */ if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if ((Z->size1 != Z->size2) || (Z->size1 != A->size1)) { GSL_ERROR ("Z matrix has wrong dimensions", GSL_EBADLEN); } else { int s; w->Z = Z; s = gsl_eigen_nonsymm(A, eval, w); w->Z = NULL; return s; } } /* gsl_eigen_nonsymm_Z() */ gsl-1.16/eigen/herm.c0000664000252300025230000001124012171574312011336 00000000000000/* eigen/herm.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* Compute eigenvalues of complex hermitian matrix using reduction to real symmetric tridiagonal form, followed by QR iteration with implicit shifts. See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include "qrstep.c" gsl_eigen_herm_workspace * gsl_eigen_herm_alloc (const size_t n) { gsl_eigen_herm_workspace * w ; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_herm_workspace *) malloc (sizeof(gsl_eigen_herm_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->d = (double *) malloc (n * sizeof (double)); if (w->d == 0) { GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM); } w->sd = (double *) malloc (n * sizeof (double)); if (w->sd == 0) { GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM); } w->tau = (double *) malloc (2 * n * sizeof (double)); if (w->tau == 0) { GSL_ERROR_NULL ("failed to allocate space for tau", GSL_ENOMEM); } w->size = n; return w; } void gsl_eigen_herm_free (gsl_eigen_herm_workspace * w) { RETURN_IF_NULL (w); free (w->tau); free (w->sd); free (w->d); free(w); } int gsl_eigen_herm (gsl_matrix_complex * A, gsl_vector * eval, gsl_eigen_herm_workspace * w) { if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; double *const d = w->d; double *const sd = w->sd; size_t a, b; /* handle special case */ if (N == 1) { gsl_complex A00 = gsl_matrix_complex_get (A, 0, 0); gsl_vector_set (eval, 0, GSL_REAL(A00)); return GSL_SUCCESS; } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1); gsl_vector_complex_view tau_vec = gsl_vector_complex_view_array (w->tau, N-1); gsl_linalg_hermtd_decomp (A, &tau_vec.vector); gsl_linalg_hermtd_unpack_T (A, &d_vec.vector, &sd_vec.vector); } /* Make an initial pass through the tridiagonal decomposition to remove off-diagonal elements which are effectively zero */ chop_small_elements (N, d, sd); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (sd[b - 1] == 0.0 || isnan(sd[b - 1])) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (sd[a - 1] == 0.0) { break; } a--; } { const size_t n_block = b - a + 1; double *d_block = d + a; double *sd_block = sd + a; /* apply QR reduction with implicit deflation to the unreduced block */ qrstep (n_block, d_block, sd_block, NULL, NULL); /* remove any small off-diagonal elements */ chop_small_elements (n_block, d_block, sd_block); } } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_memcpy (eval, &d_vec.vector); } return GSL_SUCCESS; } } gsl-1.16/eigen/schur.c0000664000252300025230000005300412171574312011533 00000000000000/* eigen/schur.c * * Copyright (C) 2006, 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include /* * This module contains some routines related to manipulating the * Schur form of a matrix which are needed by the eigenvalue solvers * * This file contains routines based on original code from LAPACK * which is distributed under the modified BSD license. */ #define GSL_SCHUR_SMLNUM (2.0 * GSL_DBL_MIN) #define GSL_SCHUR_BIGNUM ((1.0 - GSL_DBL_EPSILON) / GSL_SCHUR_SMLNUM) /* gsl_schur_gen_eigvals() Compute the eigenvalues of a 2-by-2 generalized block. Inputs: A - 2-by-2 matrix B - 2-by-2 upper triangular matrix wr1 - (output) see notes wr2 - (output) see notes wi - (output) see notes scale1 - (output) see notes scale2 - (output) see notes Return: success Notes: 1) If the block contains real eigenvalues, then wi is set to 0, and wr1, wr2, scale1, and scale2 are set such that: eval1 = wr1 * scale1 eval2 = wr2 * scale2 If the block contains complex eigenvalues, then wr1, wr2, scale1, scale2, and wi are set such that: wr1 = wr2 = scale1 * Re(eval) wi = scale1 * Im(eval) wi is always non-negative 2) This routine is based on LAPACK DLAG2 */ int gsl_schur_gen_eigvals(const gsl_matrix *A, const gsl_matrix *B, double *wr1, double *wr2, double *wi, double *scale1, double *scale2) { const double safemin = GSL_DBL_MIN * 1.0e2; const double safemax = 1.0 / safemin; const double rtmin = sqrt(safemin); const double rtmax = 1.0 / rtmin; double anorm, bnorm; double ascale, bscale, bsize; double s1, s2; double A11, A12, A21, A22; double B11, B12, B22; double binv11, binv22; double bmin; double as11, as12, as22, abi22; double pp, qq, shift, ss, discr, r; /* scale A */ anorm = GSL_MAX(GSL_MAX(fabs(gsl_matrix_get(A, 0, 0)) + fabs(gsl_matrix_get(A, 1, 0)), fabs(gsl_matrix_get(A, 0, 1)) + fabs(gsl_matrix_get(A, 1, 1))), safemin); ascale = 1.0 / anorm; A11 = ascale * gsl_matrix_get(A, 0, 0); A12 = ascale * gsl_matrix_get(A, 0, 1); A21 = ascale * gsl_matrix_get(A, 1, 0); A22 = ascale * gsl_matrix_get(A, 1, 1); /* perturb B if necessary to ensure non-singularity */ B11 = gsl_matrix_get(B, 0, 0); B12 = gsl_matrix_get(B, 0, 1); B22 = gsl_matrix_get(B, 1, 1); bmin = rtmin * GSL_MAX(fabs(B11), GSL_MAX(fabs(B12), GSL_MAX(fabs(B22), rtmin))); if (fabs(B11) < bmin) B11 = GSL_SIGN(B11) * bmin; if (fabs(B22) < bmin) B22 = GSL_SIGN(B22) * bmin; /* scale B */ bnorm = GSL_MAX(fabs(B11), GSL_MAX(fabs(B12) + fabs(B22), safemin)); bsize = GSL_MAX(fabs(B11), fabs(B22)); bscale = 1.0 / bsize; B11 *= bscale; B12 *= bscale; B22 *= bscale; /* compute larger eigenvalue */ binv11 = 1.0 / B11; binv22 = 1.0 / B22; s1 = A11 * binv11; s2 = A22 * binv22; if (fabs(s1) <= fabs(s2)) { as12 = A12 - s1 * B12; as22 = A22 - s1 * B22; ss = A21 * (binv11 * binv22); abi22 = as22 * binv22 - ss * B12; pp = 0.5 * abi22; shift = s1; } else { as12 = A12 - s2 * B12; as11 = A11 - s2 * B11; ss = A21 * (binv11 * binv22); abi22 = -ss * B12; pp = 0.5 * (as11 * binv11 + abi22); shift = s2; } qq = ss * as12; if (fabs(pp * rtmin) >= 1.0) { discr = (rtmin * pp) * (rtmin * pp) + qq * safemin; r = sqrt(fabs(discr)) * rtmax; } else if (pp * pp + fabs(qq) <= safemin) { discr = (rtmax * pp) * (rtmax * pp) + qq * safemax; r = sqrt(fabs(discr)) * rtmin; } else { discr = pp * pp + qq; r = sqrt(fabs(discr)); } if (discr >= 0.0 || r == 0.0) { double sum = pp + GSL_SIGN(pp) * r; double diff = pp - GSL_SIGN(pp) * r; double wbig = shift + sum; double wsmall = shift + diff; /* compute smaller eigenvalue */ if (0.5 * fabs(wbig) > GSL_MAX(fabs(wsmall), safemin)) { double wdet = (A11*A22 - A12*A21) * (binv11 * binv22); wsmall = wdet / wbig; } /* choose (real) eigenvalue closest to 2,2 element of AB^{-1} for wr1 */ if (pp > abi22) { *wr1 = GSL_MIN(wbig, wsmall); *wr2 = GSL_MAX(wbig, wsmall); } else { *wr1 = GSL_MAX(wbig, wsmall); *wr2 = GSL_MIN(wbig, wsmall); } *wi = 0.0; } else { /* complex eigenvalues */ *wr1 = shift + pp; *wr2 = *wr1; *wi = r; } /* compute scaling */ { const double fuzzy1 = 1.0 + 1.0e-5; double c1, c2, c3, c4, c5; double wabs, wsize, wscale; c1 = bsize * (safemin * GSL_MAX(1.0, ascale)); c2 = safemin * GSL_MAX(1.0, bnorm); c3 = bsize * safemin; if (ascale <= 1.0 && bsize <= 1.0) c4 = GSL_MIN(1.0, (ascale / safemin) * bsize); else c4 = 1.0; if (ascale <= 1.0 || bsize <= 1.0) c5 = GSL_MIN(1.0, ascale * bsize); else c5 = 1.0; /* scale first eigenvalue */ wabs = fabs(*wr1) + fabs(*wi); wsize = GSL_MAX(safemin, GSL_MAX(c1, GSL_MAX(fuzzy1 * (wabs*c2 + c3), GSL_MIN(c4, 0.5 * GSL_MAX(wabs, c5))))); if (wsize != 1.0) { wscale = 1.0 / wsize; if (wsize > 1.0) { *scale1 = (GSL_MAX(ascale, bsize) * wscale) * GSL_MIN(ascale, bsize); } else { *scale1 = (GSL_MIN(ascale, bsize) * wscale) * GSL_MAX(ascale, bsize); } *wr1 *= wscale; if (*wi != 0.0) { *wi *= wscale; *wr2 = *wr1; *scale2 = *scale1; } } else { *scale1 = ascale * bsize; *scale2 = *scale1; } /* scale second eigenvalue if real */ if (*wi == 0.0) { wsize = GSL_MAX(safemin, GSL_MAX(c1, GSL_MAX(fuzzy1 * (fabs(*wr2) * c2 + c3), GSL_MIN(c4, 0.5 * GSL_MAX(fabs(*wr2), c5))))); if (wsize != 1.0) { wscale = 1.0 / wsize; if (wsize > 1.0) { *scale2 = (GSL_MAX(ascale, bsize) * wscale) * GSL_MIN(ascale, bsize); } else { *scale2 = (GSL_MIN(ascale, bsize) * wscale) * GSL_MAX(ascale, bsize); } *wr2 *= wscale; } else { *scale2 = ascale * bsize; } } } return GSL_SUCCESS; } /* gsl_schur_gen_eigvals() */ /* gsl_schur_solve_equation() Solve the equation which comes up in the back substitution when computing eigenvectors corresponding to real eigenvalues. The equation that is solved is: (ca*A - z*D)*x = s*b where A is n-by-n with n = 1 or 2 D is a n-by-n diagonal matrix b and x are n-by-1 real vectors s is a scaling factor set by this function to prevent overflow in x Inputs: ca - coefficient multiplying A A - square matrix (n-by-n) z - real scalar (eigenvalue) d1 - (1,1) element in diagonal matrix D d2 - (2,2) element in diagonal matrix D b - right hand side vector x - (output) where to store solution s - (output) scale factor xnorm - (output) infinity norm of X smin - lower bound on singular values of A - if ca*A - z*D is less than this value, we'll use smin*I instead. This value should be a safe distance above underflow. Return: success Notes: 1) A and b are not changed on output 2) Based on lapack routine DLALN2 */ int gsl_schur_solve_equation(double ca, const gsl_matrix *A, double z, double d1, double d2, const gsl_vector *b, gsl_vector *x, double *s, double *xnorm, double smin) { size_t N = A->size1; double bnorm; double scale = 1.0; if (N == 1) { double c, /* denominator */ cnorm; /* |c| */ /* we have a 1-by-1 (real) scalar system to solve */ c = ca * gsl_matrix_get(A, 0, 0) - z * d1; cnorm = fabs(c); if (cnorm < smin) { /* set c = smin*I */ c = smin; cnorm = smin; } /* check scaling for x = b / c */ bnorm = fabs(gsl_vector_get(b, 0)); if (cnorm < 1.0 && bnorm > 1.0) { if (bnorm > GSL_SCHUR_BIGNUM*cnorm) scale = 1.0 / bnorm; } /* compute x */ gsl_vector_set(x, 0, gsl_vector_get(b, 0) * scale / c); *xnorm = fabs(gsl_vector_get(x, 0)); } /* if (N == 1) */ else { double cr[2][2]; double *crv; double cmax; size_t icmax, j; double bval1, bval2; double ur11, ur12, ur22, ur11r; double cr21, cr22; double lr21; double b1, b2, bbnd; double x1, x2; double temp; size_t ipivot[4][4] = { { 0, 1, 2, 3 }, { 1, 0, 3, 2 }, { 2, 3, 0, 1 }, { 3, 2, 1, 0 } }; int rswap[4] = { 0, 1, 0, 1 }; int zswap[4] = { 0, 0, 1, 1 }; /* * we have a 2-by-2 real system to solve: * * ( ca * [ A11 A12 ] - z * [ D1 0 ] ) [ x1 ] = [ b1 ] * ( [ A21 A22 ] [ 0 D2 ] ) [ x2 ] [ b2 ] * * (z real) */ crv = (double *) cr; /* * compute the real part of C = ca*A - z*D - use column ordering * here since porting from lapack */ cr[0][0] = ca * gsl_matrix_get(A, 0, 0) - z * d1; cr[1][1] = ca * gsl_matrix_get(A, 1, 1) - z * d2; cr[0][1] = ca * gsl_matrix_get(A, 1, 0); cr[1][0] = ca * gsl_matrix_get(A, 0, 1); /* find the largest element in C */ cmax = 0.0; icmax = 0; for (j = 0; j < 4; ++j) { if (fabs(crv[j]) > cmax) { cmax = fabs(crv[j]); icmax = j; } } bval1 = gsl_vector_get(b, 0); bval2 = gsl_vector_get(b, 1); /* if norm(C) < smin, use smin*I */ if (cmax < smin) { bnorm = GSL_MAX(fabs(bval1), fabs(bval2)); if (smin < 1.0 && bnorm > 1.0) { if (bnorm > GSL_SCHUR_BIGNUM*smin) scale = 1.0 / bnorm; } temp = scale / smin; gsl_vector_set(x, 0, temp * bval1); gsl_vector_set(x, 1, temp * bval2); *xnorm = temp * bnorm; *s = scale; return GSL_SUCCESS; } /* gaussian elimination with complete pivoting */ ur11 = crv[icmax]; cr21 = crv[ipivot[1][icmax]]; ur12 = crv[ipivot[2][icmax]]; cr22 = crv[ipivot[3][icmax]]; ur11r = 1.0 / ur11; lr21 = ur11r * cr21; ur22 = cr22 - ur12 * lr21; /* if smaller pivot < smin, use smin */ if (fabs(ur22) < smin) ur22 = smin; if (rswap[icmax]) { b1 = bval2; b2 = bval1; } else { b1 = bval1; b2 = bval2; } b2 -= lr21 * b1; bbnd = GSL_MAX(fabs(b1 * (ur22 * ur11r)), fabs(b2)); if (bbnd > 1.0 && fabs(ur22) < 1.0) { if (bbnd >= GSL_SCHUR_BIGNUM * fabs(ur22)) scale = 1.0 / bbnd; } x2 = (b2 * scale) / ur22; x1 = (scale * b1) * ur11r - x2 * (ur11r * ur12); if (zswap[icmax]) { gsl_vector_set(x, 0, x2); gsl_vector_set(x, 1, x1); } else { gsl_vector_set(x, 0, x1); gsl_vector_set(x, 1, x2); } *xnorm = GSL_MAX(fabs(x1), fabs(x2)); /* further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1.0 && cmax > 1.0) { if (*xnorm > GSL_SCHUR_BIGNUM / cmax) { temp = cmax / GSL_SCHUR_BIGNUM; gsl_blas_dscal(temp, x); *xnorm *= temp; scale *= temp; } } } /* if (N == 2) */ *s = scale; return GSL_SUCCESS; } /* gsl_schur_solve_equation() */ /* gsl_schur_solve_equation_z() Solve the equation which comes up in the back substitution when computing eigenvectors corresponding to complex eigenvalues. The equation that is solved is: (ca*A - z*D)*x = s*b where A is n-by-n with n = 1 or 2 D is a n-by-n diagonal matrix b and x are n-by-1 complex vectors s is a scaling factor set by this function to prevent overflow in x Inputs: ca - coefficient multiplying A A - square matrix (n-by-n) z - complex scalar (eigenvalue) d1 - (1,1) element in diagonal matrix D d2 - (2,2) element in diagonal matrix D b - right hand side vector x - (output) where to store solution s - (output) scale factor xnorm - (output) infinity norm of X smin - lower bound on singular values of A - if ca*A - z*D is less than this value, we'll use smin*I instead. This value should be a safe distance above underflow. Notes: 1) A and b are not changed on output 2) Based on lapack routine DLALN2 */ int gsl_schur_solve_equation_z(double ca, const gsl_matrix *A, gsl_complex *z, double d1, double d2, const gsl_vector_complex *b, gsl_vector_complex *x, double *s, double *xnorm, double smin) { size_t N = A->size1; double scale = 1.0; double bnorm; if (N == 1) { double cr, /* denominator */ ci, cnorm; /* |c| */ gsl_complex bval, c, xval, tmp; /* we have a 1-by-1 (complex) scalar system to solve */ /* c = ca*a - z*d1 */ cr = ca * gsl_matrix_get(A, 0, 0) - GSL_REAL(*z) * d1; ci = -GSL_IMAG(*z) * d1; cnorm = fabs(cr) + fabs(ci); if (cnorm < smin) { /* set c = smin*I */ cr = smin; ci = 0.0; cnorm = smin; } /* check scaling for x = b / c */ bval = gsl_vector_complex_get(b, 0); bnorm = fabs(GSL_REAL(bval)) + fabs(GSL_IMAG(bval)); if (cnorm < 1.0 && bnorm > 1.0) { if (bnorm > GSL_SCHUR_BIGNUM*cnorm) scale = 1.0 / bnorm; } /* compute x */ GSL_SET_COMPLEX(&tmp, scale*GSL_REAL(bval), scale*GSL_IMAG(bval)); GSL_SET_COMPLEX(&c, cr, ci); xval = gsl_complex_div(tmp, c); gsl_vector_complex_set(x, 0, xval); *xnorm = fabs(GSL_REAL(xval)) + fabs(GSL_IMAG(xval)); } /* if (N == 1) */ else { double cr[2][2], ci[2][2]; double *civ, *crv; double cmax; gsl_complex bval1, bval2; gsl_complex xval1, xval2; double xr1, xi1; size_t icmax; size_t j; double temp; double ur11, ur12, ur22, ui11, ui12, ui22, ur11r, ui11r; double ur12s, ui12s; double u22abs; double lr21, li21; double cr21, cr22, ci21, ci22; double br1, bi1, br2, bi2, bbnd; gsl_complex b1, b2; size_t ipivot[4][4] = { { 0, 1, 2, 3 }, { 1, 0, 3, 2 }, { 2, 3, 0, 1 }, { 3, 2, 1, 0 } }; int rswap[4] = { 0, 1, 0, 1 }; int zswap[4] = { 0, 0, 1, 1 }; /* * complex 2-by-2 system: * * ( ca * [ A11 A12 ] - z * [ D1 0 ] ) [ X1 ] = [ B1 ] * ( [ A21 A22 ] [ 0 D2] ) [ X2 ] [ B2 ] * * (z complex) * * where the X and B values are complex. */ civ = (double *) ci; crv = (double *) cr; /* * compute the real part of C = ca*A - z*D - use column ordering * here since porting from lapack */ cr[0][0] = ca*gsl_matrix_get(A, 0, 0) - GSL_REAL(*z)*d1; cr[1][1] = ca*gsl_matrix_get(A, 1, 1) - GSL_REAL(*z)*d2; cr[0][1] = ca*gsl_matrix_get(A, 1, 0); cr[1][0] = ca*gsl_matrix_get(A, 0, 1); /* compute the imaginary part */ ci[0][0] = -GSL_IMAG(*z) * d1; ci[0][1] = 0.0; ci[1][0] = 0.0; ci[1][1] = -GSL_IMAG(*z) * d2; cmax = 0.0; icmax = 0; for (j = 0; j < 4; ++j) { if (fabs(crv[j]) + fabs(civ[j]) > cmax) { cmax = fabs(crv[j]) + fabs(civ[j]); icmax = j; } } bval1 = gsl_vector_complex_get(b, 0); bval2 = gsl_vector_complex_get(b, 1); /* if norm(C) < smin, use smin*I */ if (cmax < smin) { bnorm = GSL_MAX(fabs(GSL_REAL(bval1)) + fabs(GSL_IMAG(bval1)), fabs(GSL_REAL(bval2)) + fabs(GSL_IMAG(bval2))); if (smin < 1.0 && bnorm > 1.0) { if (bnorm > GSL_SCHUR_BIGNUM*smin) scale = 1.0 / bnorm; } temp = scale / smin; xval1 = gsl_complex_mul_real(bval1, temp); xval2 = gsl_complex_mul_real(bval2, temp); gsl_vector_complex_set(x, 0, xval1); gsl_vector_complex_set(x, 1, xval2); *xnorm = temp * bnorm; *s = scale; return GSL_SUCCESS; } /* gaussian elimination with complete pivoting */ ur11 = crv[icmax]; ui11 = civ[icmax]; cr21 = crv[ipivot[1][icmax]]; ci21 = civ[ipivot[1][icmax]]; ur12 = crv[ipivot[2][icmax]]; ui12 = civ[ipivot[2][icmax]]; cr22 = crv[ipivot[3][icmax]]; ci22 = civ[ipivot[3][icmax]]; if (icmax == 0 || icmax == 3) { /* off diagonals of pivoted C are real */ if (fabs(ur11) > fabs(ui11)) { temp = ui11 / ur11; ur11r = 1.0 / (ur11 * (1.0 + temp*temp)); ui11r = -temp * ur11r; } else { temp = ur11 / ui11; ui11r = -1.0 / (ui11 * (1.0 + temp*temp)); ur11r = -temp*ui11r; } lr21 = cr21 * ur11r; li21 = cr21 * ui11r; ur12s = ur12 * ur11r; ui12s = ur12 * ui11r; ur22 = cr22 - ur12 * lr21; ui22 = ci22 - ur12 * li21; } else { /* diagonals of pivoted C are real */ ur11r = 1.0 / ur11; ui11r = 0.0; lr21 = cr21 * ur11r; li21 = ci21 * ur11r; ur12s = ur12 * ur11r; ui12s = ui12 * ur11r; ur22 = cr22 - ur12 * lr21 + ui12 * li21; ui22 = -ur12 * li21 - ui12 * lr21; } u22abs = fabs(ur22) + fabs(ui22); /* if smaller pivot < smin, use smin */ if (u22abs < smin) { ur22 = smin; ui22 = 0.0; } if (rswap[icmax]) { br2 = GSL_REAL(bval1); bi2 = GSL_IMAG(bval1); br1 = GSL_REAL(bval2); bi1 = GSL_IMAG(bval2); } else { br1 = GSL_REAL(bval1); bi1 = GSL_IMAG(bval1); br2 = GSL_REAL(bval2); bi2 = GSL_IMAG(bval2); } br2 += li21*bi1 - lr21*br1; bi2 -= li21*br1 + lr21*bi1; bbnd = GSL_MAX((fabs(br1) + fabs(bi1)) * (u22abs * (fabs(ur11r) + fabs(ui11r))), fabs(br2) + fabs(bi2)); if (bbnd > 1.0 && u22abs < 1.0) { if (bbnd >= GSL_SCHUR_BIGNUM*u22abs) { scale = 1.0 / bbnd; br1 *= scale; bi1 *= scale; br2 *= scale; bi2 *= scale; } } GSL_SET_COMPLEX(&b1, br2, bi2); GSL_SET_COMPLEX(&b2, ur22, ui22); xval2 = gsl_complex_div(b1, b2); xr1 = ur11r*br1 - ui11r*bi1 - ur12s*GSL_REAL(xval2) + ui12s*GSL_IMAG(xval2); xi1 = ui11r*br1 + ur11r*bi1 - ui12s*GSL_REAL(xval2) - ur12s*GSL_IMAG(xval2); GSL_SET_COMPLEX(&xval1, xr1, xi1); if (zswap[icmax]) { gsl_vector_complex_set(x, 0, xval2); gsl_vector_complex_set(x, 1, xval1); } else { gsl_vector_complex_set(x, 0, xval1); gsl_vector_complex_set(x, 1, xval2); } *xnorm = GSL_MAX(fabs(GSL_REAL(xval1)) + fabs(GSL_IMAG(xval1)), fabs(GSL_REAL(xval2)) + fabs(GSL_IMAG(xval2))); /* further scaling if norm(A) norm(X) > overflow */ if (*xnorm > 1.0 && cmax > 1.0) { if (*xnorm > GSL_SCHUR_BIGNUM / cmax) { temp = cmax / GSL_SCHUR_BIGNUM; gsl_blas_zdscal(temp, x); *xnorm *= temp; scale *= temp; } } } /* if (N == 2) */ *s = scale; return GSL_SUCCESS; } /* gsl_schur_solve_equation_z() */ gsl-1.16/eigen/sort.c0000664000252300025230000002264412171574312011404 00000000000000/* eigen/sort.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 Gerard Jungman, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman, Modified: B. Gough. */ #include #include #include #include #include #include /* The eigen_sort below is not very good, but it is simple and * self-contained. We can always implement an improved sort later. */ int gsl_eigen_symmv_sort (gsl_vector * eval, gsl_matrix * evec, gsl_eigen_sort_t sort_type) { if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (eval->size != evec->size1) { GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN); } else { const size_t N = eval->size; size_t i; for (i = 0; i < N - 1; i++) { size_t j; size_t k = i; double ek = gsl_vector_get (eval, i); /* search for something to swap */ for (j = i + 1; j < N; j++) { int test; const double ej = gsl_vector_get (eval, j); switch (sort_type) { case GSL_EIGEN_SORT_VAL_ASC: test = (ej < ek); break; case GSL_EIGEN_SORT_VAL_DESC: test = (ej > ek); break; case GSL_EIGEN_SORT_ABS_ASC: test = (fabs (ej) < fabs (ek)); break; case GSL_EIGEN_SORT_ABS_DESC: test = (fabs (ej) > fabs (ek)); break; default: GSL_ERROR ("unrecognized sort type", GSL_EINVAL); } if (test) { k = j; ek = ej; } } if (k != i) { /* swap eigenvalues */ gsl_vector_swap_elements (eval, i, k); /* swap eigenvectors */ gsl_matrix_swap_columns (evec, i, k); } } return GSL_SUCCESS; } } int gsl_eigen_hermv_sort (gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type) { if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (eval->size != evec->size1) { GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN); } else { const size_t N = eval->size; size_t i; for (i = 0; i < N - 1; i++) { size_t j; size_t k = i; double ek = gsl_vector_get (eval, i); /* search for something to swap */ for (j = i + 1; j < N; j++) { int test; const double ej = gsl_vector_get (eval, j); switch (sort_type) { case GSL_EIGEN_SORT_VAL_ASC: test = (ej < ek); break; case GSL_EIGEN_SORT_VAL_DESC: test = (ej > ek); break; case GSL_EIGEN_SORT_ABS_ASC: test = (fabs (ej) < fabs (ek)); break; case GSL_EIGEN_SORT_ABS_DESC: test = (fabs (ej) > fabs (ek)); break; default: GSL_ERROR ("unrecognized sort type", GSL_EINVAL); } if (test) { k = j; ek = ej; } } if (k != i) { /* swap eigenvalues */ gsl_vector_swap_elements (eval, i, k); /* swap eigenvectors */ gsl_matrix_complex_swap_columns (evec, i, k); } } return GSL_SUCCESS; } } int gsl_eigen_nonsymmv_sort (gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type) { if (evec && (evec->size1 != evec->size2)) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (evec && (eval->size != evec->size1)) { GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN); } else { const size_t N = eval->size; size_t i; for (i = 0; i < N - 1; i++) { size_t j; size_t k = i; gsl_complex ek = gsl_vector_complex_get (eval, i); /* search for something to swap */ for (j = i + 1; j < N; j++) { int test; const gsl_complex ej = gsl_vector_complex_get (eval, j); switch (sort_type) { case GSL_EIGEN_SORT_ABS_ASC: test = (gsl_complex_abs (ej) < gsl_complex_abs (ek)); break; case GSL_EIGEN_SORT_ABS_DESC: test = (gsl_complex_abs (ej) > gsl_complex_abs (ek)); break; case GSL_EIGEN_SORT_VAL_ASC: case GSL_EIGEN_SORT_VAL_DESC: default: GSL_ERROR ("invalid sort type", GSL_EINVAL); } if (test) { k = j; ek = ej; } } if (k != i) { /* swap eigenvalues */ gsl_vector_complex_swap_elements (eval, i, k); /* swap eigenvectors */ if (evec) gsl_matrix_complex_swap_columns (evec, i, k); } } return GSL_SUCCESS; } } int gsl_eigen_gensymmv_sort (gsl_vector * eval, gsl_matrix * evec, gsl_eigen_sort_t sort_type) { int s; s = gsl_eigen_symmv_sort(eval, evec, sort_type); return s; } int gsl_eigen_genhermv_sort (gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type) { int s; s = gsl_eigen_hermv_sort(eval, evec, sort_type); return s; } int gsl_eigen_genv_sort (gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type) { if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (alpha->size != evec->size1 || beta->size != evec->size1) { GSL_ERROR ("eigenvalues must match eigenvector matrix", GSL_EBADLEN); } else { const size_t N = alpha->size; size_t i; for (i = 0; i < N - 1; i++) { size_t j; size_t k = i; gsl_complex ak = gsl_vector_complex_get (alpha, i); double bk = gsl_vector_get(beta, i); gsl_complex ek; if (bk < GSL_DBL_EPSILON) { GSL_SET_COMPLEX(&ek, GSL_SIGN(GSL_REAL(ak)) ? GSL_POSINF : GSL_NEGINF, GSL_SIGN(GSL_IMAG(ak)) ? GSL_POSINF : GSL_NEGINF); } else ek = gsl_complex_div_real(ak, bk); /* search for something to swap */ for (j = i + 1; j < N; j++) { int test; const gsl_complex aj = gsl_vector_complex_get (alpha, j); double bj = gsl_vector_get(beta, j); gsl_complex ej; if (bj < GSL_DBL_EPSILON) { GSL_SET_COMPLEX(&ej, GSL_SIGN(GSL_REAL(aj)) ? GSL_POSINF : GSL_NEGINF, GSL_SIGN(GSL_IMAG(aj)) ? GSL_POSINF : GSL_NEGINF); } else ej = gsl_complex_div_real(aj, bj); switch (sort_type) { case GSL_EIGEN_SORT_ABS_ASC: test = (gsl_complex_abs (ej) < gsl_complex_abs (ek)); break; case GSL_EIGEN_SORT_ABS_DESC: test = (gsl_complex_abs (ej) > gsl_complex_abs (ek)); break; case GSL_EIGEN_SORT_VAL_ASC: case GSL_EIGEN_SORT_VAL_DESC: default: GSL_ERROR ("invalid sort type", GSL_EINVAL); } if (test) { k = j; ek = ej; } } if (k != i) { /* swap eigenvalues */ gsl_vector_complex_swap_elements (alpha, i, k); gsl_vector_swap_elements (beta, i, k); /* swap eigenvectors */ gsl_matrix_complex_swap_columns (evec, i, k); } } return GSL_SUCCESS; } } gsl-1.16/eigen/TODO0000664000252300025230000000115112171574312010727 00000000000000# -*- org -*- #+CATEGORY: eigen * Merge improvements from SVD qrstep to eigen - these should be combined somehow as we only need one version of them. * dlae2.f has better handling of 2x2 eigenvalues than our qrstep.c * Document Jacobi eigen function, in particular that it only works for symmetric matrices. * add support for nonsymmv left eigenvectors?: gsl_eigen_nonsymmv_params(const int lr) to specify whether we should compute left/right eigenvectors (or both). If they want both, we'll need a new function: gsl_eigen_nonsymmv_lr(..., evec_r, evec_l, ...) and gsl_eigen_nonsymmv_lr_Z(...) gsl-1.16/eigen/genherm.c0000664000252300025230000001345612171574312012043 00000000000000/* eigen/genherm.c * * Copyright (C) 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues of a complex generalized * hermitian-definite eigensystem A x = \lambda B x, where A and * B are hermitian, and B is positive-definite. */ /* gsl_eigen_genherm_alloc() Allocate a workspace for solving the generalized hermitian-definite eigenvalue problem. The size of this workspace is O(3n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_genherm_workspace * gsl_eigen_genherm_alloc(const size_t n) { gsl_eigen_genherm_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_genherm_workspace *) calloc (1, sizeof (gsl_eigen_genherm_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->herm_workspace_p = gsl_eigen_herm_alloc(n); if (!w->herm_workspace_p) { gsl_eigen_genherm_free(w); GSL_ERROR_NULL("failed to allocate space for herm workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_genherm_alloc() */ /* gsl_eigen_genherm_free() Free workspace w */ void gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * w) { RETURN_IF_NULL (w); if (w->herm_workspace_p) gsl_eigen_herm_free(w->herm_workspace_p); free(w); } /* gsl_eigen_genherm_free() */ /* gsl_eigen_genherm() Solve the generalized hermitian-definite eigenvalue problem A x = \lambda B x for the eigenvalues \lambda. Inputs: A - complex hermitian matrix B - complex hermitian and positive definite matrix eval - where to store eigenvalues w - workspace Return: success or error */ int gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_eigen_genherm_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else { int s; /* compute Cholesky factorization of B */ s = gsl_linalg_complex_cholesky_decomp(B); if (s != GSL_SUCCESS) return s; /* B is not positive definite */ /* transform to standard hermitian eigenvalue problem */ gsl_eigen_genherm_standardize(A, B); s = gsl_eigen_herm(A, eval, w->herm_workspace_p); return s; } } /* gsl_eigen_genherm() */ /* gsl_eigen_genherm_standardize() Reduce the generalized hermitian-definite eigenproblem to the standard hermitian eigenproblem by computing C = L^{-1} A L^{-H} where L L^H is the Cholesky decomposition of B Inputs: A - (input/output) complex hermitian matrix B - complex hermitian, positive definite matrix in Cholesky form Return: success Notes: A is overwritten by L^{-1} A L^{-H} */ int gsl_eigen_genherm_standardize(gsl_matrix_complex *A, const gsl_matrix_complex *B) { const size_t N = A->size1; size_t i; double a, b; gsl_complex y, z; GSL_SET_IMAG(&z, 0.0); for (i = 0; i < N; ++i) { /* update lower triangle of A(i:n, i:n) */ y = gsl_matrix_complex_get(A, i, i); a = GSL_REAL(y); y = gsl_matrix_complex_get(B, i, i); b = GSL_REAL(y); a /= b * b; GSL_SET_REAL(&z, a); gsl_matrix_complex_set(A, i, i, z); if (i < N - 1) { gsl_vector_complex_view ai = gsl_matrix_complex_subcolumn(A, i, i + 1, N - i - 1); gsl_matrix_complex_view ma = gsl_matrix_complex_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1); gsl_vector_complex_const_view bi = gsl_matrix_complex_const_subcolumn(B, i, i + 1, N - i - 1); gsl_matrix_complex_const_view mb = gsl_matrix_complex_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1); gsl_blas_zdscal(1.0 / b, &ai.vector); GSL_SET_REAL(&z, -0.5 * a); gsl_blas_zaxpy(z, &bi.vector, &ai.vector); gsl_blas_zher2(CblasLower, GSL_COMPLEX_NEGONE, &ai.vector, &bi.vector, &ma.matrix); gsl_blas_zaxpy(z, &bi.vector, &ai.vector); gsl_blas_ztrsv(CblasLower, CblasNoTrans, CblasNonUnit, &mb.matrix, &ai.vector); } } return GSL_SUCCESS; } /* gsl_eigen_genherm_standardize() */ gsl-1.16/eigen/genv.c0000664000252300025230000007013712171574312011354 00000000000000/* eigen/genv.c * * Copyright (C) 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues and eigenvectors of a * real generalized eigensystem A x = \lambda B x. Left and right * Schur vectors are optionally computed as well. * * This file contains routines based on original code from LAPACK * which is distributed under the modified BSD license. */ static int genv_get_right_eigenvectors(const gsl_matrix *S, const gsl_matrix *T, gsl_matrix *Z, gsl_matrix_complex *evec, gsl_eigen_genv_workspace *w); static void genv_normalize_eigenvectors(gsl_vector_complex *alpha, gsl_matrix_complex *evec); /* gsl_eigen_genv_alloc() Allocate a workspace for solving the generalized eigenvalue problem. The size of this workspace is O(7n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_genv_workspace * gsl_eigen_genv_alloc(const size_t n) { gsl_eigen_genv_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_genv_workspace *) calloc (1, sizeof (gsl_eigen_genv_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->Q = NULL; w->Z = NULL; w->gen_workspace_p = gsl_eigen_gen_alloc(n); if (w->gen_workspace_p == 0) { gsl_eigen_genv_free(w); GSL_ERROR_NULL ("failed to allocate space for gen workspace", GSL_ENOMEM); } /* compute the full Schur forms */ gsl_eigen_gen_params(1, 1, 1, w->gen_workspace_p); w->work1 = gsl_vector_alloc(n); w->work2 = gsl_vector_alloc(n); w->work3 = gsl_vector_alloc(n); w->work4 = gsl_vector_alloc(n); w->work5 = gsl_vector_alloc(n); w->work6 = gsl_vector_alloc(n); if (w->work1 == 0 || w->work2 == 0 || w->work3 == 0 || w->work4 == 0 || w->work5 == 0 || w->work6 == 0) { gsl_eigen_genv_free(w); GSL_ERROR_NULL ("failed to allocate space for additional workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_genv_alloc() */ /* gsl_eigen_genv_free() Free workspace w */ void gsl_eigen_genv_free(gsl_eigen_genv_workspace *w) { RETURN_IF_NULL (w); if (w->gen_workspace_p) gsl_eigen_gen_free(w->gen_workspace_p); if (w->work1) gsl_vector_free(w->work1); if (w->work2) gsl_vector_free(w->work2); if (w->work3) gsl_vector_free(w->work3); if (w->work4) gsl_vector_free(w->work4); if (w->work5) gsl_vector_free(w->work5); if (w->work6) gsl_vector_free(w->work6); free(w); } /* gsl_eigen_genv_free() */ /* gsl_eigen_genv() Solve the generalized eigenvalue problem A x = \lambda B x for the eigenvalues \lambda and right eigenvectors x. Inputs: A - general real matrix B - general real matrix alpha - (output) where to store eigenvalue numerators beta - (output) where to store eigenvalue denominators evec - (output) where to store eigenvectors w - workspace Return: success or error */ int gsl_eigen_genv (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex *evec, gsl_eigen_genv_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (alpha->size != N || beta->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else if (evec->size1 != N) { GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN); } else { int s; gsl_matrix Z; /* * We need a place to store the right Schur vectors, so we will * treat evec as a real matrix and store them in the left * half - the factor of 2 in the tda corresponds to the * complex multiplicity */ Z.size1 = N; Z.size2 = N; Z.tda = 2 * N; Z.data = evec->data; Z.block = 0; Z.owner = 0; s = gsl_eigen_gen_QZ(A, B, alpha, beta, w->Q, &Z, w->gen_workspace_p); if (w->Z) { /* save right Schur vectors */ gsl_matrix_memcpy(w->Z, &Z); } /* only compute eigenvectors if we found all eigenvalues */ if (s == GSL_SUCCESS) { /* compute eigenvectors */ s = genv_get_right_eigenvectors(A, B, &Z, evec, w); if (s == GSL_SUCCESS) genv_normalize_eigenvectors(alpha, evec); } return s; } } /* gsl_eigen_genv() */ /* gsl_eigen_genv_QZ() Solve the generalized eigenvalue problem A x = \lambda B x for the eigenvalues \lambda and right eigenvectors x. Optionally compute left and/or right Schur vectors Q and Z which satisfy: A = Q S Z^t B = Q T Z^t where (S, T) is the generalized Schur form of (A, B) Inputs: A - general real matrix B - general real matrix alpha - (output) where to store eigenvalue numerators beta - (output) where to store eigenvalue denominators evec - (output) where to store eigenvectors Q - (output) if non-null, where to store left Schur vectors Z - (output) if non-null, where to store right Schur vectors w - workspace Return: success or error */ int gsl_eigen_genv_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex * evec, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_genv_workspace * w) { if (Q && (A->size1 != Q->size1 || A->size1 != Q->size2)) { GSL_ERROR("Q matrix has wrong dimensions", GSL_EBADLEN); } else if (Z && (A->size1 != Z->size1 || A->size1 != Z->size2)) { GSL_ERROR("Z matrix has wrong dimensions", GSL_EBADLEN); } else { int s; w->Q = Q; w->Z = Z; s = gsl_eigen_genv(A, B, alpha, beta, evec, w); w->Q = NULL; w->Z = NULL; return s; } } /* gsl_eigen_genv_QZ() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* genv_get_right_eigenvectors() Compute right eigenvectors of the Schur form (S, T) and then backtransform them using the right Schur vectors to get right eigenvectors of the original system. Inputs: S - upper quasi-triangular Schur form of A T - upper triangular Schur form of B Z - right Schur vectors evec - (output) where to store eigenvectors w - workspace Return: success or error Notes: 1) based on LAPACK routine DTGEVC 2) eigenvectors are stored in the order that their eigenvalues appear in the Schur form */ static int genv_get_right_eigenvectors(const gsl_matrix *S, const gsl_matrix *T, gsl_matrix *Z, gsl_matrix_complex *evec, gsl_eigen_genv_workspace *w) { const size_t N = w->size; const double small = GSL_DBL_MIN * N / GSL_DBL_EPSILON; const double big = 1.0 / small; const double bignum = 1.0 / (GSL_DBL_MIN * N); size_t i, j, k, end; int is; double anorm, bnorm; double temp, temp2, temp2r, temp2i; double ascale, bscale; double salfar, sbeta; double acoef, bcoefr, bcoefi, acoefa, bcoefa; double creala, cimaga, crealb, cimagb, cre2a, cim2a, cre2b, cim2b; double dmin, xmax; double scale; size_t nw, na; int lsa, lsb; int complex_pair; gsl_complex z_zero, z_one; double bdiag[2] = { 0.0, 0.0 }; double sum[4]; int il2by2; size_t jr, jc, ja; double xscale; gsl_vector_complex_view ecol; gsl_vector_view re, im, re2, im2; GSL_SET_COMPLEX(&z_zero, 0.0, 0.0); GSL_SET_COMPLEX(&z_one, 1.0, 0.0); /* * Compute the 1-norm of each column of (S, T) excluding elements * belonging to the diagonal blocks to check for possible overflow * in the triangular solver */ anorm = fabs(gsl_matrix_get(S, 0, 0)); if (N > 1) anorm += fabs(gsl_matrix_get(S, 1, 0)); bnorm = fabs(gsl_matrix_get(T, 0, 0)); gsl_vector_set(w->work1, 0, 0.0); gsl_vector_set(w->work2, 0, 0.0); for (j = 1; j < N; ++j) { temp = temp2 = 0.0; if (gsl_matrix_get(S, j, j - 1) == 0.0) end = j; else end = j - 1; for (i = 0; i < end; ++i) { temp += fabs(gsl_matrix_get(S, i, j)); temp2 += fabs(gsl_matrix_get(T, i, j)); } gsl_vector_set(w->work1, j, temp); gsl_vector_set(w->work2, j, temp2); for (i = end; i < GSL_MIN(j + 2, N); ++i) { temp += fabs(gsl_matrix_get(S, i, j)); temp2 += fabs(gsl_matrix_get(T, i, j)); } anorm = GSL_MAX(anorm, temp); bnorm = GSL_MAX(bnorm, temp2); } ascale = 1.0 / GSL_MAX(anorm, GSL_DBL_MIN); bscale = 1.0 / GSL_MAX(bnorm, GSL_DBL_MIN); complex_pair = 0; for (k = 0; k < N; ++k) { size_t je = N - 1 - k; if (complex_pair) { complex_pair = 0; continue; } nw = 1; if (je > 0) { if (gsl_matrix_get(S, je, je - 1) != 0.0) { complex_pair = 1; nw = 2; } } if (!complex_pair) { if (fabs(gsl_matrix_get(S, je, je)) <= GSL_DBL_MIN && fabs(gsl_matrix_get(T, je, je)) <= GSL_DBL_MIN) { /* singular matrix pencil - unit eigenvector */ for (i = 0; i < N; ++i) gsl_matrix_complex_set(evec, i, je, z_zero); gsl_matrix_complex_set(evec, je, je, z_one); continue; } /* clear vector */ for (i = 0; i < N; ++i) gsl_vector_set(w->work3, i, 0.0); } else { /* clear vectors */ for (i = 0; i < N; ++i) { gsl_vector_set(w->work3, i, 0.0); gsl_vector_set(w->work4, i, 0.0); } } if (!complex_pair) { /* real eigenvalue */ temp = 1.0 / GSL_MAX(GSL_DBL_MIN, GSL_MAX(fabs(gsl_matrix_get(S, je, je)) * ascale, fabs(gsl_matrix_get(T, je, je)) * bscale)); salfar = (temp * gsl_matrix_get(S, je, je)) * ascale; sbeta = (temp * gsl_matrix_get(T, je, je)) * bscale; acoef = sbeta * ascale; bcoefr = salfar * bscale; bcoefi = 0.0; /* scale to avoid underflow */ scale = 1.0; lsa = fabs(sbeta) >= GSL_DBL_MIN && fabs(acoef) < small; lsb = fabs(salfar) >= GSL_DBL_MIN && fabs(bcoefr) < small; if (lsa) scale = (small / fabs(sbeta)) * GSL_MIN(anorm, big); if (lsb) scale = GSL_MAX(scale, (small / fabs(salfar)) * GSL_MIN(bnorm, big)); if (lsa || lsb) { scale = GSL_MIN(scale, 1.0 / (GSL_DBL_MIN * GSL_MAX(1.0, GSL_MAX(fabs(acoef), fabs(bcoefr))))); if (lsa) acoef = ascale * (scale * sbeta); else acoef *= scale; if (lsb) bcoefr = bscale * (scale * salfar); else bcoefr *= scale; } acoefa = fabs(acoef); bcoefa = fabs(bcoefr); /* first component is 1 */ gsl_vector_set(w->work3, je, 1.0); xmax = 1.0; /* compute contribution from column je of A and B to sum */ for (i = 0; i < je; ++i) { gsl_vector_set(w->work3, i, bcoefr*gsl_matrix_get(T, i, je) - acoef * gsl_matrix_get(S, i, je)); } } else { gsl_matrix_const_view vs = gsl_matrix_const_submatrix(S, je - 1, je - 1, 2, 2); gsl_matrix_const_view vt = gsl_matrix_const_submatrix(T, je - 1, je - 1, 2, 2); /* complex eigenvalue */ gsl_schur_gen_eigvals(&vs.matrix, &vt.matrix, &bcoefr, &temp2, &bcoefi, &acoef, &temp); if (bcoefi == 0.0) { GSL_ERROR("gsl_schur_gen_eigvals failed on complex block", GSL_FAILURE); } /* scale to avoid over/underflow */ acoefa = fabs(acoef); bcoefa = fabs(bcoefr) + fabs(bcoefi); scale = 1.0; if (acoefa*GSL_DBL_EPSILON < GSL_DBL_MIN && acoefa >= GSL_DBL_MIN) scale = (GSL_DBL_MIN / GSL_DBL_EPSILON) / acoefa; if (bcoefa*GSL_DBL_EPSILON < GSL_DBL_MIN && bcoefa >= GSL_DBL_MIN) scale = GSL_MAX(scale, (GSL_DBL_MIN/GSL_DBL_EPSILON) / bcoefa); if (GSL_DBL_MIN*acoefa > ascale) scale = ascale / (GSL_DBL_MIN * acoefa); if (GSL_DBL_MIN*bcoefa > bscale) scale = GSL_MIN(scale, bscale / (GSL_DBL_MIN*bcoefa)); if (scale != 1.0) { acoef *= scale; acoefa = fabs(acoef); bcoefr *= scale; bcoefi *= scale; bcoefa = fabs(bcoefr) + fabs(bcoefi); } /* compute first two components of eigenvector */ temp = acoef * gsl_matrix_get(S, je, je - 1); temp2r = acoef * gsl_matrix_get(S, je, je) - bcoefr * gsl_matrix_get(T, je, je); temp2i = -bcoefi * gsl_matrix_get(T, je, je); if (fabs(temp) >= fabs(temp2r) + fabs(temp2i)) { gsl_vector_set(w->work3, je, 1.0); gsl_vector_set(w->work4, je, 0.0); gsl_vector_set(w->work3, je - 1, -temp2r / temp); gsl_vector_set(w->work4, je - 1, -temp2i / temp); } else { gsl_vector_set(w->work3, je - 1, 1.0); gsl_vector_set(w->work4, je - 1, 0.0); temp = acoef * gsl_matrix_get(S, je - 1, je); gsl_vector_set(w->work3, je, (bcoefr*gsl_matrix_get(T, je - 1, je - 1) - acoef*gsl_matrix_get(S, je - 1, je - 1)) / temp); gsl_vector_set(w->work4, je, bcoefi*gsl_matrix_get(T, je - 1, je - 1) / temp); } xmax = GSL_MAX(fabs(gsl_vector_get(w->work3, je)) + fabs(gsl_vector_get(w->work4, je)), fabs(gsl_vector_get(w->work3, je - 1)) + fabs(gsl_vector_get(w->work4, je - 1))); /* compute contribution from column je and je - 1 */ creala = acoef * gsl_vector_get(w->work3, je - 1); cimaga = acoef * gsl_vector_get(w->work4, je - 1); crealb = bcoefr * gsl_vector_get(w->work3, je - 1) - bcoefi * gsl_vector_get(w->work4, je - 1); cimagb = bcoefi * gsl_vector_get(w->work3, je - 1) + bcoefr * gsl_vector_get(w->work4, je - 1); cre2a = acoef * gsl_vector_get(w->work3, je); cim2a = acoef * gsl_vector_get(w->work4, je); cre2b = bcoefr * gsl_vector_get(w->work3, je) - bcoefi * gsl_vector_get(w->work4, je); cim2b = bcoefi * gsl_vector_get(w->work3, je) + bcoefr * gsl_vector_get(w->work4, je); for (i = 0; i < je - 1; ++i) { gsl_vector_set(w->work3, i, -creala * gsl_matrix_get(S, i, je - 1) + crealb * gsl_matrix_get(T, i, je - 1) - cre2a * gsl_matrix_get(S, i, je) + cre2b * gsl_matrix_get(T, i, je)); gsl_vector_set(w->work4, i, -cimaga * gsl_matrix_get(S, i, je - 1) + cimagb * gsl_matrix_get(T, i, je - 1) - cim2a * gsl_matrix_get(S, i, je) + cim2b * gsl_matrix_get(T, i, je)); } } dmin = GSL_MAX(GSL_DBL_MIN, GSL_MAX(GSL_DBL_EPSILON*acoefa*anorm, GSL_DBL_EPSILON*bcoefa*bnorm)); /* triangular solve of (a A - b B) x = 0 */ il2by2 = 0; for (is = (int) je - (int) nw; is >= 0; --is) { j = (size_t) is; if (!il2by2 && j > 0) { if (gsl_matrix_get(S, j, j - 1) != 0.0) { il2by2 = 1; continue; } } bdiag[0] = gsl_matrix_get(T, j, j); if (il2by2) { na = 2; bdiag[1] = gsl_matrix_get(T, j + 1, j + 1); } else na = 1; if (nw == 1) { gsl_matrix_const_view sv = gsl_matrix_const_submatrix(S, j, j, na, na); gsl_vector_view xv, bv; bv = gsl_vector_subvector(w->work3, j, na); /* * the loop below expects the solution in the first column * of sum, so set stride to 2 */ xv = gsl_vector_view_array_with_stride(sum, 2, na); gsl_schur_solve_equation(acoef, &sv.matrix, bcoefr, bdiag[0], bdiag[1], &bv.vector, &xv.vector, &scale, &temp, dmin); } else { double bdat[4]; gsl_matrix_const_view sv = gsl_matrix_const_submatrix(S, j, j, na, na); gsl_vector_complex_view xv = gsl_vector_complex_view_array(sum, na); gsl_vector_complex_view bv = gsl_vector_complex_view_array(bdat, na); gsl_complex z; bdat[0] = gsl_vector_get(w->work3, j); bdat[1] = gsl_vector_get(w->work4, j); if (na == 2) { bdat[2] = gsl_vector_get(w->work3, j + 1); bdat[3] = gsl_vector_get(w->work4, j + 1); } GSL_SET_COMPLEX(&z, bcoefr, bcoefi); gsl_schur_solve_equation_z(acoef, &sv.matrix, &z, bdiag[0], bdiag[1], &bv.vector, &xv.vector, &scale, &temp, dmin); } if (scale < 1.0) { for (jr = 0; jr <= je; ++jr) { gsl_vector_set(w->work3, jr, scale * gsl_vector_get(w->work3, jr)); if (nw == 2) { gsl_vector_set(w->work4, jr, scale * gsl_vector_get(w->work4, jr)); } } } xmax = GSL_MAX(scale * xmax, temp); for (jr = 0; jr < na; ++jr) { gsl_vector_set(w->work3, j + jr, sum[jr*na]); if (nw == 2) gsl_vector_set(w->work4, j + jr, sum[jr*na + 1]); } if (j > 0) { xscale = 1.0 / GSL_MAX(1.0, xmax); temp = acoefa * gsl_vector_get(w->work1, j) + bcoefa * gsl_vector_get(w->work2, j); if (il2by2) { temp = GSL_MAX(temp, acoefa * gsl_vector_get(w->work1, j + 1) + bcoefa * gsl_vector_get(w->work2, j + 1)); } temp = GSL_MAX(temp, GSL_MAX(acoefa, bcoefa)); if (temp > bignum * xscale) { for (jr = 0; jr <= je; ++jr) { gsl_vector_set(w->work3, jr, xscale * gsl_vector_get(w->work3, jr)); if (nw == 2) { gsl_vector_set(w->work4, jr, xscale * gsl_vector_get(w->work4, jr)); } } xmax *= xscale; } for (ja = 0; ja < na; ++ja) { if (complex_pair) { creala = acoef * gsl_vector_get(w->work3, j + ja); cimaga = acoef * gsl_vector_get(w->work4, j + ja); crealb = bcoefr * gsl_vector_get(w->work3, j + ja) - bcoefi * gsl_vector_get(w->work4, j + ja); cimagb = bcoefi * gsl_vector_get(w->work3, j + ja) + bcoefr * gsl_vector_get(w->work4, j + ja); for (jr = 0; jr <= j - 1; ++jr) { gsl_vector_set(w->work3, jr, gsl_vector_get(w->work3, jr) - creala * gsl_matrix_get(S, jr, j + ja) + crealb * gsl_matrix_get(T, jr, j + ja)); gsl_vector_set(w->work4, jr, gsl_vector_get(w->work4, jr) - cimaga * gsl_matrix_get(S, jr, j + ja) + cimagb * gsl_matrix_get(T, jr, j + ja)); } } else { creala = acoef * gsl_vector_get(w->work3, j + ja); crealb = bcoefr * gsl_vector_get(w->work3, j + ja); for (jr = 0; jr <= j - 1; ++jr) { gsl_vector_set(w->work3, jr, gsl_vector_get(w->work3, jr) - creala * gsl_matrix_get(S, jr, j + ja) + crealb * gsl_matrix_get(T, jr, j + ja)); } } /* if (!complex_pair) */ } /* for (ja = 0; ja < na; ++ja) */ } /* if (j > 0) */ il2by2 = 0; } /* for (i = 0; i < je - nw; ++i) */ for (jr = 0; jr < N; ++jr) { gsl_vector_set(w->work5, jr, gsl_vector_get(w->work3, 0) * gsl_matrix_get(Z, jr, 0)); if (nw == 2) { gsl_vector_set(w->work6, jr, gsl_vector_get(w->work4, 0) * gsl_matrix_get(Z, jr, 0)); } } for (jc = 1; jc <= je; ++jc) { for (jr = 0; jr < N; ++jr) { gsl_vector_set(w->work5, jr, gsl_vector_get(w->work5, jr) + gsl_vector_get(w->work3, jc) * gsl_matrix_get(Z, jr, jc)); if (nw == 2) { gsl_vector_set(w->work6, jr, gsl_vector_get(w->work6, jr) + gsl_vector_get(w->work4, jc) * gsl_matrix_get(Z, jr, jc)); } } } /* store the eigenvector */ if (complex_pair) { ecol = gsl_matrix_complex_column(evec, je - 1); re = gsl_vector_complex_real(&ecol.vector); im = gsl_vector_complex_imag(&ecol.vector); ecol = gsl_matrix_complex_column(evec, je); re2 = gsl_vector_complex_real(&ecol.vector); im2 = gsl_vector_complex_imag(&ecol.vector); } else { ecol = gsl_matrix_complex_column(evec, je); re = gsl_vector_complex_real(&ecol.vector); im = gsl_vector_complex_imag(&ecol.vector); } for (jr = 0; jr < N; ++jr) { gsl_vector_set(&re.vector, jr, gsl_vector_get(w->work5, jr)); if (complex_pair) { gsl_vector_set(&im.vector, jr, gsl_vector_get(w->work6, jr)); gsl_vector_set(&re2.vector, jr, gsl_vector_get(w->work5, jr)); gsl_vector_set(&im2.vector, jr, -gsl_vector_get(w->work6, jr)); } else { gsl_vector_set(&im.vector, jr, 0.0); } } /* scale eigenvector */ xmax = 0.0; if (complex_pair) { for (j = 0; j < N; ++j) { xmax = GSL_MAX(xmax, fabs(gsl_vector_get(&re.vector, j)) + fabs(gsl_vector_get(&im.vector, j))); } } else { for (j = 0; j < N; ++j) { xmax = GSL_MAX(xmax, fabs(gsl_vector_get(&re.vector, j))); } } if (xmax > GSL_DBL_MIN) { xscale = 1.0 / xmax; for (j = 0; j < N; ++j) { gsl_vector_set(&re.vector, j, gsl_vector_get(&re.vector, j) * xscale); if (complex_pair) { gsl_vector_set(&im.vector, j, gsl_vector_get(&im.vector, j) * xscale); gsl_vector_set(&re2.vector, j, gsl_vector_get(&re2.vector, j) * xscale); gsl_vector_set(&im2.vector, j, gsl_vector_get(&im2.vector, j) * xscale); } } } } /* for (k = 0; k < N; ++k) */ return GSL_SUCCESS; } /* genv_get_right_eigenvectors() */ /* genv_normalize_eigenvectors() Normalize eigenvectors so that their Euclidean norm is 1 Inputs: alpha - eigenvalue numerators evec - eigenvectors */ static void genv_normalize_eigenvectors(gsl_vector_complex *alpha, gsl_matrix_complex *evec) { const size_t N = evec->size1; size_t i; /* looping */ gsl_complex ai; gsl_vector_complex_view vi; gsl_vector_view re, im; double scale; /* scaling factor */ for (i = 0; i < N; ++i) { ai = gsl_vector_complex_get(alpha, i); vi = gsl_matrix_complex_column(evec, i); re = gsl_vector_complex_real(&vi.vector); if (GSL_IMAG(ai) == 0.0) { scale = 1.0 / gsl_blas_dnrm2(&re.vector); gsl_blas_dscal(scale, &re.vector); } else if (GSL_IMAG(ai) > 0.0) { im = gsl_vector_complex_imag(&vi.vector); scale = 1.0 / gsl_hypot(gsl_blas_dnrm2(&re.vector), gsl_blas_dnrm2(&im.vector)); gsl_blas_zdscal(scale, &vi.vector); vi = gsl_matrix_complex_column(evec, i + 1); gsl_blas_zdscal(scale, &vi.vector); } } } /* genv_normalize_eigenvectors() */ gsl-1.16/eigen/test.c0000664000252300025230000012112512171574312011366 00000000000000/* eigen/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 Gerard Jungman, Patrick Alken, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /****************************************** * common test code * ******************************************/ double chop_subnormals (double x) { /* Chop any subnormal values */ return fabs(x) < GSL_DBL_MIN ? 0 : x; } void create_random_symm_matrix(gsl_matrix *m, gsl_rng *r, int lower, int upper) { size_t i, j; for (i = 0; i < m->size1; ++i) { for (j = i; j < m->size2; ++j) { double x = gsl_rng_uniform(r) * (upper - lower) + lower; gsl_matrix_set(m, i, j, x); gsl_matrix_set(m, j, i, x); } } } /* create_random_symm_matrix() */ void create_random_herm_matrix(gsl_matrix_complex *m, gsl_rng *r, int lower, int upper) { size_t i, j; for (i = 0; i < m->size1; ++i) { for (j = i; j < m->size2; ++j) { gsl_complex z; GSL_REAL(z) = gsl_rng_uniform(r) * (upper - lower) + lower; if (i == j) GSL_IMAG(z) = 0.0; else GSL_IMAG(z) = gsl_rng_uniform(r) * (upper - lower) + lower; gsl_matrix_complex_set(m, i, j, z); gsl_matrix_complex_set(m, j, i, gsl_complex_conjugate(z)); } } } /* create_random_herm_matrix() */ /* with r \in (0,1) if m_{ij} = r^{|i - j|} then m is positive definite */ void create_random_posdef_matrix(gsl_matrix *m, gsl_rng *r) { size_t i, j; double x = gsl_rng_uniform(r); for (i = 0; i < m->size1; ++i) { for (j = i; j < m->size2; ++j) { double a = pow(x, (double) (j - i)); gsl_matrix_set(m, i, j, a); gsl_matrix_set(m, j, i, a); } } } /* create_random_posdef_matrix() */ void create_random_complex_posdef_matrix(gsl_matrix_complex *m, gsl_rng *r, gsl_vector_complex *work) { const size_t N = m->size1; size_t i, j; double x, y; gsl_complex z; gsl_complex tau; GSL_SET_IMAG(&z, 0.0); /* make a positive diagonal matrix */ gsl_matrix_complex_set_zero(m); for (i = 0; i < N; ++i) { x = gsl_rng_uniform(r); GSL_SET_REAL(&z, x); gsl_matrix_complex_set(m, i, i, z); } /* now generate random householder reflections and form P D P^H */ for (i = 0; i < N; ++i) { /* form complex vector */ for (j = 0; j < N; ++j) { x = 2.0 * gsl_rng_uniform(r) - 1.0; y = 2.0 * gsl_rng_uniform(r) - 1.0; GSL_SET_COMPLEX(&z, x, y); gsl_vector_complex_set(work, j, z); } tau = gsl_linalg_complex_householder_transform(work); gsl_linalg_complex_householder_hm(tau, work, m); gsl_linalg_complex_householder_mh(gsl_complex_conjugate(tau), work, m); } } /* create_random_complex_posdef_matrix() */ void create_random_nonsymm_matrix(gsl_matrix *m, gsl_rng *r, int lower, int upper) { size_t i, j; for (i = 0; i < m->size1; ++i) { for (j = 0; j < m->size2; ++j) { gsl_matrix_set(m, i, j, gsl_rng_uniform(r) * (upper - lower) + lower); } } } /* create_random_nonsymm_matrix() */ /* test if A Z = Q S */ void test_eigen_schur(const gsl_matrix * A, const gsl_matrix * S, const gsl_matrix * Q, const gsl_matrix * Z, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; gsl_matrix * T1 = gsl_matrix_alloc(N, N); gsl_matrix * T2 = gsl_matrix_alloc(N, N); /* compute T1 = A Z */ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, A, Z, 0.0, T1); /* compute T2 = Q S */ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, Q, S, 0.0, T2); for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { double x = gsl_matrix_get(T1, i, j); double y = gsl_matrix_get(T2, i, j); gsl_test_abs(x, y, 1.0e8 * GSL_DBL_EPSILON, "%s(N=%u,cnt=%u), %s, schur(%d,%d)", desc, N, count, desc2, i, j); } } gsl_matrix_free (T1); gsl_matrix_free (T2); } /* test_eigen_schur() */ /* test if A is orthogonal */ int test_eigen_orthog(gsl_matrix *A, size_t count, const char *desc, const char *desc2) { size_t N = A->size1; gsl_matrix *M = gsl_matrix_alloc(A->size1, A->size2); size_t i, j; gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, A, A, 0.0, M); for (i = 0; i < A->size1; ++i) { for (j = 0; j < A->size2; ++j) { double val; double mij = gsl_matrix_get(M, i, j); if (i == j) val = 1.0; else val = 0.0; gsl_test_abs(mij, val, 1.0e8 * GSL_DBL_EPSILON, "%s(N=%u,cnt=%u), %s, orthog(%d,%d)", desc, N, count, desc2, i, j); } } gsl_matrix_free(M); return 1; } /* test_eigen_orthog() */ void test_eigenvalues_real (const gsl_vector *eval, const gsl_vector * eval2, const char * desc, const char * desc2) { const size_t N = eval->size; size_t i; double emax = 0; /* check eigenvalues */ for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); if (fabs(ei) > emax) emax = fabs(ei); } for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); double e2i = gsl_vector_get (eval2, i); e2i = chop_subnormals(e2i); gsl_test_abs(ei, e2i, emax * 1e8 * GSL_DBL_EPSILON, "%s, direct eigenvalue(%d), %s", desc, i, desc2); } } void test_eigenvalues_complex (const gsl_vector_complex * eval, const gsl_vector_complex * eval2, const char * desc, const char * desc2) { const size_t N = eval->size; size_t i; for (i = 0; i < N; i++) { gsl_complex ei = gsl_vector_complex_get (eval, i); gsl_complex e2i = gsl_vector_complex_get (eval2, i); gsl_test_rel(GSL_REAL(ei), GSL_REAL(e2i), 10*N*GSL_DBL_EPSILON, "%s, direct eigenvalue(%d) real, %s", desc, i, desc2); gsl_test_rel(GSL_IMAG(ei), GSL_IMAG(e2i), 10*N*GSL_DBL_EPSILON, "%s, direct eigenvalue(%d) imag, %s", desc, i, desc2); } } /****************************************** * symm test code * ******************************************/ void test_eigen_symm_results (const gsl_matrix * A, const gsl_vector * eval, const gsl_matrix * evec, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; double emax = 0; gsl_vector * x = gsl_vector_alloc(N); gsl_vector * y = gsl_vector_alloc(N); /* check eigenvalues */ for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); if (fabs(ei) > emax) emax = fabs(ei); } for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); gsl_vector_const_view vi = gsl_matrix_const_column(evec, i); gsl_vector_memcpy(x, &vi.vector); /* compute y = A x (should = lambda v) */ gsl_blas_dgemv (CblasNoTrans, 1.0, A, x, 0.0, y); for (j = 0; j < N; j++) { double xj = gsl_vector_get (x, j); double yj = gsl_vector_get (y, j); double eixj = chop_subnormals(ei * xj); gsl_test_abs(yj, eixj, emax * 1e8 * GSL_DBL_EPSILON, "%s, eigenvalue(%d,%d), %s", desc, i, j, desc2); } } /* check eigenvectors are orthonormal */ for (i = 0; i < N; i++) { gsl_vector_const_view vi = gsl_matrix_const_column(evec, i); double nrm_v = gsl_blas_dnrm2(&vi.vector); gsl_test_rel (nrm_v, 1.0, N * GSL_DBL_EPSILON, "%s, normalized(%d), %s", desc, i, desc2); } for (i = 0; i < N; i++) { gsl_vector_const_view vi = gsl_matrix_const_column(evec, i); for (j = i + 1; j < N; j++) { gsl_vector_const_view vj = gsl_matrix_const_column(evec, j); double vivj; gsl_blas_ddot (&vi.vector, &vj.vector, &vivj); gsl_test_abs (vivj, 0.0, N * GSL_DBL_EPSILON, "%s, orthogonal(%d,%d), %s", desc, i, j, desc2); } } gsl_vector_free(x); gsl_vector_free(y); } void test_eigen_symm_matrix(const gsl_matrix * m, size_t count, const char * desc) { const size_t N = m->size1; gsl_matrix * A = gsl_matrix_alloc(N, N); gsl_vector * eval = gsl_vector_alloc(N); gsl_vector * evalv = gsl_vector_alloc(N); gsl_vector * x = gsl_vector_alloc(N); gsl_vector * y = gsl_vector_alloc(N); gsl_matrix * evec = gsl_matrix_alloc(N, N); gsl_eigen_symm_workspace * w = gsl_eigen_symm_alloc(N); gsl_eigen_symmv_workspace * wv = gsl_eigen_symmv_alloc(N); gsl_matrix_memcpy(A, m); gsl_eigen_symmv(A, evalv, evec, wv); test_eigen_symm_results(m, evalv, evec, count, desc, "unsorted"); gsl_matrix_memcpy(A, m); gsl_eigen_symm(A, eval, w); /* sort eval and evalv */ gsl_vector_memcpy(x, eval); gsl_vector_memcpy(y, evalv); gsl_sort_vector(x); gsl_sort_vector(y); test_eigenvalues_real(y, x, desc, "unsorted"); gsl_eigen_symmv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_ASC); test_eigen_symm_results(m, evalv, evec, count, desc, "val/asc"); gsl_eigen_symmv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_DESC); test_eigen_symm_results(m, evalv, evec, count, desc, "val/desc"); gsl_eigen_symmv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_symm_results(m, evalv, evec, count, desc, "abs/asc"); gsl_eigen_symmv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_symm_results(m, evalv, evec, count, desc, "abs/desc"); gsl_matrix_free(A); gsl_vector_free(eval); gsl_vector_free(evalv); gsl_vector_free(x); gsl_vector_free(y); gsl_matrix_free(evec); gsl_eigen_symm_free(w); gsl_eigen_symmv_free(wv); } /* test_eigen_symm_matrix() */ void test_eigen_symm(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix * A = gsl_matrix_alloc(n, n); for (i = 0; i < 5; ++i) { create_random_symm_matrix(A, r, -10, 10); test_eigen_symm_matrix(A, i, "symm random"); } gsl_matrix_free(A); } gsl_rng_free(r); { double dat1[] = { 0, 0, -1, 0, 0, 1, 0, 1, -1, 0, 0, 0, 0, 1, 0, 0 }; double dat2[] = { 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4 }; gsl_matrix_view m; m = gsl_matrix_view_array (dat1, 4, 4); test_eigen_symm_matrix(&m.matrix, 0, "symm(4)"); m = gsl_matrix_view_array (dat2, 4, 4); test_eigen_symm_matrix(&m.matrix, 0, "symm(4) diag"); } { double dat[27*27] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0, 0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; gsl_matrix_view m; m = gsl_matrix_view_array (dat, 27, 27); test_eigen_symm_matrix(&m.matrix, 0, "symm(27)"); }; } /* test_eigen_symm() */ /****************************************** * herm test code * ******************************************/ void test_eigen_herm_results (const gsl_matrix_complex * A, const gsl_vector * eval, const gsl_matrix_complex * evec, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; gsl_vector_complex * x = gsl_vector_complex_alloc(N); gsl_vector_complex * y = gsl_vector_complex_alloc(N); /* check eigenvalues */ for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); gsl_vector_complex_memcpy(x, &vi.vector); /* compute y = m x (should = lambda v) */ gsl_blas_zgemv (CblasNoTrans, GSL_COMPLEX_ONE, A, x, GSL_COMPLEX_ZERO, y); for (j = 0; j < N; j++) { gsl_complex xj = gsl_vector_complex_get (x, j); gsl_complex yj = gsl_vector_complex_get (y, j); gsl_test_rel(GSL_REAL(yj), ei * GSL_REAL(xj), 1e8*GSL_DBL_EPSILON, "%s, eigenvalue(%d,%d), real, %s", desc, i, j, desc2); gsl_test_rel(GSL_IMAG(yj), ei * GSL_IMAG(xj), 1e8*GSL_DBL_EPSILON, "%s, eigenvalue(%d,%d), imag, %s", desc, i, j, desc2); } } /* check eigenvectors are orthonormal */ for (i = 0; i < N; i++) { gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); double nrm_v = gsl_blas_dznrm2(&vi.vector); gsl_test_rel (nrm_v, 1.0, N * GSL_DBL_EPSILON, "%s, normalized(%d), %s", desc, i, desc2); } for (i = 0; i < N; i++) { gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); for (j = i + 1; j < N; j++) { gsl_vector_complex_const_view vj = gsl_matrix_complex_const_column(evec, j); gsl_complex vivj; gsl_blas_zdotc (&vi.vector, &vj.vector, &vivj); gsl_test_abs (gsl_complex_abs(vivj), 0.0, 10.0 * N * GSL_DBL_EPSILON, "%s, orthogonal(%d,%d), %s", desc, i, j, desc2); } } gsl_vector_complex_free(x); gsl_vector_complex_free(y); } /* test_eigen_herm_results() */ void test_eigen_herm_matrix(const gsl_matrix_complex * m, size_t count, const char * desc) { const size_t N = m->size1; gsl_matrix_complex * A = gsl_matrix_complex_alloc(N, N); gsl_vector * eval = gsl_vector_alloc(N); gsl_vector * evalv = gsl_vector_alloc(N); gsl_vector * x = gsl_vector_alloc(N); gsl_vector * y = gsl_vector_alloc(N); gsl_matrix_complex * evec = gsl_matrix_complex_alloc(N, N); gsl_eigen_herm_workspace * w = gsl_eigen_herm_alloc(N); gsl_eigen_hermv_workspace * wv = gsl_eigen_hermv_alloc(N); gsl_matrix_complex_memcpy(A, m); gsl_eigen_hermv(A, evalv, evec, wv); test_eigen_herm_results(m, evalv, evec, count, desc, "unsorted"); gsl_matrix_complex_memcpy(A, m); gsl_eigen_herm(A, eval, w); /* sort eval and evalv */ gsl_vector_memcpy(x, eval); gsl_vector_memcpy(y, evalv); gsl_sort_vector(x); gsl_sort_vector(y); test_eigenvalues_real(y, x, desc, "unsorted"); gsl_eigen_hermv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_ASC); test_eigen_herm_results(m, evalv, evec, count, desc, "val/asc"); gsl_eigen_hermv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_DESC); test_eigen_herm_results(m, evalv, evec, count, desc, "val/desc"); gsl_eigen_hermv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_herm_results(m, evalv, evec, count, desc, "abs/asc"); gsl_eigen_hermv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_herm_results(m, evalv, evec, count, desc, "abs/desc"); gsl_matrix_complex_free(A); gsl_vector_free(eval); gsl_vector_free(evalv); gsl_vector_free(x); gsl_vector_free(y); gsl_matrix_complex_free(evec); gsl_eigen_herm_free(w); gsl_eigen_hermv_free(wv); } /* test_eigen_herm_matrix() */ void test_eigen_herm(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix_complex * A = gsl_matrix_complex_alloc(n, n); for (i = 0; i < 5; ++i) { create_random_herm_matrix(A, r, -10, 10); test_eigen_herm_matrix(A, i, "herm random"); } gsl_matrix_complex_free(A); } gsl_rng_free(r); { double dat1[] = { 0,0, 0,0, -1,0, 0,0, 0,0, 1,0, 0,0, 1,0, -1,0, 0,0, 0,0, 0,0, 0,0, 1,0, 0,0, 0,0 }; double dat2[] = { 1,0, 0,0, 0,0, 0,0, 0,0, 2,0, 0,0, 0,0, 0,0, 0,0, 3,0, 0,0, 0,0, 0,0, 0,0, 4,0 }; gsl_matrix_complex_view m; m = gsl_matrix_complex_view_array (dat1, 4, 4); test_eigen_herm_matrix(&m.matrix, 0, "herm(4)"); m = gsl_matrix_complex_view_array (dat2, 4, 4); test_eigen_herm_matrix(&m.matrix, 1, "herm(4) diag"); } } /* test_eigen_herm() */ /****************************************** * nonsymm test code * ******************************************/ void test_eigen_nonsymm_results (const gsl_matrix * m, const gsl_vector_complex * eval, const gsl_matrix_complex * evec, size_t count, const char * desc, const char * desc2) { size_t i,j; size_t N = m->size1; gsl_vector_complex * x = gsl_vector_complex_alloc(N); gsl_vector_complex * y = gsl_vector_complex_alloc(N); gsl_matrix_complex * A = gsl_matrix_complex_alloc(N, N); /* we need a complex matrix for the blas routines, so copy m into A */ for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { gsl_complex z; GSL_SET_COMPLEX(&z, gsl_matrix_get(m, i, j), 0.0); gsl_matrix_complex_set(A, i, j, z); } } for (i = 0; i < N; i++) { gsl_complex ei = gsl_vector_complex_get (eval, i); gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); double norm = gsl_blas_dznrm2(&vi.vector); /* check that eigenvector is normalized */ gsl_test_rel(norm, 1.0, N * GSL_DBL_EPSILON, "nonsymm(N=%u,cnt=%u), %s, normalized(%d), %s", N, count, desc, i, desc2); gsl_vector_complex_memcpy(x, &vi.vector); /* compute y = m x (should = lambda v) */ gsl_blas_zgemv (CblasNoTrans, GSL_COMPLEX_ONE, A, x, GSL_COMPLEX_ZERO, y); /* compute x = lambda v */ gsl_blas_zscal(ei, x); /* now test if y = x */ for (j = 0; j < N; j++) { gsl_complex xj = gsl_vector_complex_get (x, j); gsl_complex yj = gsl_vector_complex_get (y, j); /* use abs here in case the values are close to 0 */ gsl_test_abs(GSL_REAL(yj), GSL_REAL(xj), 1e8*GSL_DBL_EPSILON, "nonsymm(N=%u,cnt=%u), %s, eigenvalue(%d,%d), real, %s", N, count, desc, i, j, desc2); gsl_test_abs(GSL_IMAG(yj), GSL_IMAG(xj), 1e8*GSL_DBL_EPSILON, "nonsymm(N=%u,cnt=%u), %s, eigenvalue(%d,%d), imag, %s", N, count, desc, i, j, desc2); } } gsl_matrix_complex_free(A); gsl_vector_complex_free(x); gsl_vector_complex_free(y); } void test_eigen_nonsymm_matrix(const gsl_matrix * m, size_t count, const char * desc, gsl_eigen_nonsymmv_workspace *w) { const size_t N = m->size1; gsl_matrix * A = gsl_matrix_alloc(N, N); gsl_matrix * Z = gsl_matrix_alloc(N, N); gsl_matrix_complex * evec = gsl_matrix_complex_alloc(N, N); gsl_vector_complex * eval = gsl_vector_complex_alloc(N); /* * calculate eigenvalues and eigenvectors - it is sufficient to * test gsl_eigen_nonsymmv() since that function calls * gsl_eigen_nonsymm() for the eigenvalues */ gsl_matrix_memcpy(A, m); gsl_eigen_nonsymmv(A, eval, evec, w); test_eigen_nonsymm_results (m, eval, evec, count, desc, "unsorted"); /* test sort routines */ gsl_eigen_nonsymmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_nonsymm_results (m, eval, evec, count, desc, "abs/asc"); gsl_eigen_nonsymmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_nonsymm_results (m, eval, evec, count, desc, "abs/desc"); /* test Schur vectors */ gsl_matrix_memcpy(A, m); gsl_eigen_nonsymmv_Z(A, eval, evec, Z, w); gsl_linalg_hessenberg_set_zero(A); test_eigen_schur(m, A, Z, Z, count, "nonsymm", desc); /* test if Z is an orthogonal matrix */ if (w->nonsymm_workspace_p->do_balance == 0) test_eigen_orthog(Z, count, "nonsymm", desc); gsl_matrix_free(A); gsl_matrix_free(Z); gsl_matrix_complex_free(evec); gsl_vector_complex_free(eval); } void test_eigen_nonsymm(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix * m = gsl_matrix_alloc(n, n); gsl_eigen_nonsymmv_workspace * w = gsl_eigen_nonsymmv_alloc(n); for (i = 0; i < 5; ++i) { create_random_nonsymm_matrix(m, r, -10, 10); gsl_eigen_nonsymmv_params(0, w); test_eigen_nonsymm_matrix(m, i, "random, unbalanced", w); gsl_eigen_nonsymmv_params(1, w); test_eigen_nonsymm_matrix(m, i, "random, balanced", w); } gsl_matrix_free(m); gsl_eigen_nonsymmv_free(w); } gsl_rng_free(r); { double dat1[] = { 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; double dat2[] = { 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0 }; gsl_matrix_view v; gsl_eigen_nonsymmv_workspace * w = gsl_eigen_nonsymmv_alloc(4); v = gsl_matrix_view_array (dat1, 4, 4); test_eigen_nonsymm_matrix(&v.matrix, 0, "integer", w); v = gsl_matrix_view_array (dat2, 4, 4); test_eigen_nonsymm_matrix(&v.matrix, 1, "integer", w); gsl_eigen_nonsymmv_free(w); } } /* test_eigen_nonsymm() */ /****************************************** * gensymm test code * ******************************************/ void test_eigen_gensymm_results (const gsl_matrix * A, const gsl_matrix * B, const gsl_vector * eval, const gsl_matrix * evec, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; gsl_vector * x = gsl_vector_alloc(N); gsl_vector * y = gsl_vector_alloc(N); gsl_vector * z = gsl_vector_alloc(N); /* check A v = lambda B v */ for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); gsl_vector_const_view vi = gsl_matrix_const_column(evec, i); double norm = gsl_blas_dnrm2(&vi.vector); /* check that eigenvector is normalized */ gsl_test_rel(norm, 1.0, N * GSL_DBL_EPSILON, "gensymm(N=%u,cnt=%u), %s, normalized(%d), %s", N, count, desc, i, desc2); gsl_vector_memcpy(z, &vi.vector); /* compute y = A z */ gsl_blas_dgemv (CblasNoTrans, 1.0, A, z, 0.0, y); /* compute x = B z */ gsl_blas_dgemv (CblasNoTrans, 1.0, B, z, 0.0, x); /* compute x = lambda B z */ gsl_blas_dscal(ei, x); /* now test if y = x */ for (j = 0; j < N; j++) { double xj = gsl_vector_get (x, j); double yj = gsl_vector_get (y, j); gsl_test_rel(yj, xj, 1e9 * GSL_DBL_EPSILON, "gensymm(N=%u,cnt=%u), %s, eigenvalue(%d,%d), real, %s", N, count, desc, i, j, desc2); } } gsl_vector_free(x); gsl_vector_free(y); gsl_vector_free(z); } void test_eigen_gensymm(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix * A = gsl_matrix_alloc(n, n); gsl_matrix * B = gsl_matrix_alloc(n, n); gsl_matrix * ma = gsl_matrix_alloc(n, n); gsl_matrix * mb = gsl_matrix_alloc(n, n); gsl_vector * eval = gsl_vector_alloc(n); gsl_vector * evalv = gsl_vector_alloc(n); gsl_vector * x = gsl_vector_alloc(n); gsl_vector * y = gsl_vector_alloc(n); gsl_matrix * evec = gsl_matrix_alloc(n, n); gsl_eigen_gensymm_workspace * w = gsl_eigen_gensymm_alloc(n); gsl_eigen_gensymmv_workspace * wv = gsl_eigen_gensymmv_alloc(n); for (i = 0; i < 5; ++i) { create_random_symm_matrix(A, r, -10, 10); create_random_posdef_matrix(B, r); gsl_matrix_memcpy(ma, A); gsl_matrix_memcpy(mb, B); gsl_eigen_gensymmv(ma, mb, evalv, evec, wv); test_eigen_gensymm_results(A, B, evalv, evec, i, "random", "unsorted"); gsl_matrix_memcpy(ma, A); gsl_matrix_memcpy(mb, B); gsl_eigen_gensymm(ma, mb, eval, w); /* eval and evalv have to be sorted? not sure why */ gsl_vector_memcpy(x, eval); gsl_vector_memcpy(y, evalv); gsl_sort_vector(x); gsl_sort_vector(y); test_eigenvalues_real(y, x, "gensymm, random", "unsorted"); gsl_eigen_gensymmv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_ASC); test_eigen_gensymm_results(A, B, evalv, evec, i, "random", "val/asc"); gsl_eigen_gensymmv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_DESC); test_eigen_gensymm_results(A, B, evalv, evec, i, "random", "val/desc"); gsl_eigen_gensymmv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_gensymm_results(A, B, evalv, evec, i, "random", "abs/asc"); gsl_eigen_gensymmv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_gensymm_results(A, B, evalv, evec, i, "random", "abs/desc"); } gsl_matrix_free(A); gsl_matrix_free(B); gsl_matrix_free(ma); gsl_matrix_free(mb); gsl_vector_free(eval); gsl_vector_free(evalv); gsl_vector_free(x); gsl_vector_free(y); gsl_matrix_free(evec); gsl_eigen_gensymm_free(w); gsl_eigen_gensymmv_free(wv); } gsl_rng_free(r); } /* test_eigen_gensymm() */ /****************************************** * genherm test code * ******************************************/ void test_eigen_genherm_results (const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_vector * eval, const gsl_matrix_complex * evec, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; gsl_vector_complex * x = gsl_vector_complex_alloc(N); gsl_vector_complex * y = gsl_vector_complex_alloc(N); /* check A v = lambda B v */ for (i = 0; i < N; i++) { double ei = gsl_vector_get (eval, i); gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); double norm = gsl_blas_dznrm2(&vi.vector); /* check that eigenvector is normalized */ gsl_test_rel(norm, 1.0, N * GSL_DBL_EPSILON, "genherm(N=%u,cnt=%u), %s, normalized(%d), %s", N, count, desc, i, desc2); /* compute y = A z */ gsl_blas_zgemv (CblasNoTrans, GSL_COMPLEX_ONE, A, &vi.vector, GSL_COMPLEX_ZERO, y); /* compute x = B z */ gsl_blas_zgemv (CblasNoTrans, GSL_COMPLEX_ONE, B, &vi.vector, GSL_COMPLEX_ZERO, x); /* compute x = lambda B z */ gsl_blas_zdscal(ei, x); /* now test if y = x */ for (j = 0; j < N; j++) { gsl_complex xj = gsl_vector_complex_get (x, j); gsl_complex yj = gsl_vector_complex_get (y, j); gsl_test_rel(GSL_REAL(yj), GSL_REAL(xj), 1e9 * GSL_DBL_EPSILON, "genherm(N=%u,cnt=%u), %s, eigenvalue(%d,%d), real, %s", N, count, desc, i, j, desc2); gsl_test_abs(GSL_IMAG(yj), GSL_IMAG(xj), 1e9 * GSL_DBL_EPSILON, "genherm(N=%u,cnt=%u), %s, eigenvalue(%d,%d), imag, %s", N, count, desc, i, j, desc2); } } gsl_vector_complex_free(x); gsl_vector_complex_free(y); } void test_eigen_genherm(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix_complex * A = gsl_matrix_complex_alloc(n, n); gsl_matrix_complex * B = gsl_matrix_complex_alloc(n, n); gsl_matrix_complex * ma = gsl_matrix_complex_alloc(n, n); gsl_matrix_complex * mb = gsl_matrix_complex_alloc(n, n); gsl_vector * eval = gsl_vector_alloc(n); gsl_vector * evalv = gsl_vector_alloc(n); gsl_vector * x = gsl_vector_alloc(n); gsl_vector * y = gsl_vector_alloc(n); gsl_vector_complex * work = gsl_vector_complex_alloc(n); gsl_matrix_complex * evec = gsl_matrix_complex_alloc(n, n); gsl_eigen_genherm_workspace * w = gsl_eigen_genherm_alloc(n); gsl_eigen_genhermv_workspace * wv = gsl_eigen_genhermv_alloc(n); for (i = 0; i < 5; ++i) { create_random_herm_matrix(A, r, -10, 10); create_random_complex_posdef_matrix(B, r, work); gsl_matrix_complex_memcpy(ma, A); gsl_matrix_complex_memcpy(mb, B); gsl_eigen_genhermv(ma, mb, evalv, evec, wv); test_eigen_genherm_results(A, B, evalv, evec, i, "random", "unsorted"); gsl_matrix_complex_memcpy(ma, A); gsl_matrix_complex_memcpy(mb, B); gsl_eigen_genherm(ma, mb, eval, w); /* eval and evalv have to be sorted? not sure why */ gsl_vector_memcpy(x, eval); gsl_vector_memcpy(y, evalv); gsl_sort_vector(x); gsl_sort_vector(y); test_eigenvalues_real(y, x, "genherm, random", "unsorted"); gsl_eigen_genhermv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_ASC); test_eigen_genherm_results(A, B, evalv, evec, i, "random", "val/asc"); gsl_eigen_genhermv_sort(evalv, evec, GSL_EIGEN_SORT_VAL_DESC); test_eigen_genherm_results(A, B, evalv, evec, i, "random", "val/desc"); gsl_eigen_genhermv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_genherm_results(A, B, evalv, evec, i, "random", "abs/asc"); gsl_eigen_genhermv_sort(evalv, evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_genherm_results(A, B, evalv, evec, i, "random", "abs/desc"); } gsl_matrix_complex_free(A); gsl_matrix_complex_free(B); gsl_matrix_complex_free(ma); gsl_matrix_complex_free(mb); gsl_vector_free(eval); gsl_vector_free(evalv); gsl_vector_free(x); gsl_vector_free(y); gsl_vector_complex_free(work); gsl_matrix_complex_free(evec); gsl_eigen_genherm_free(w); gsl_eigen_genhermv_free(wv); } gsl_rng_free(r); } /* test_eigen_genherm() */ /****************************************** * gen test code * ******************************************/ typedef struct { gsl_matrix *A; gsl_matrix *B; gsl_vector_complex *alpha; gsl_vector *beta; gsl_vector_complex *alphav; gsl_vector *betav; gsl_vector_complex *eval; gsl_vector_complex *evalv; gsl_vector *x; gsl_vector *y; gsl_matrix *Q; gsl_matrix *Z; gsl_matrix_complex *evec; gsl_eigen_gen_workspace *gen_p; gsl_eigen_genv_workspace *genv_p; } test_eigen_gen_workspace; test_eigen_gen_workspace * test_eigen_gen_alloc(const size_t n) { test_eigen_gen_workspace *w; w = (test_eigen_gen_workspace *) calloc(1, sizeof(test_eigen_gen_workspace)); w->A = gsl_matrix_alloc(n, n); w->B = gsl_matrix_alloc(n, n); w->alpha = gsl_vector_complex_alloc(n); w->beta = gsl_vector_alloc(n); w->alphav = gsl_vector_complex_alloc(n); w->betav = gsl_vector_alloc(n); w->eval = gsl_vector_complex_alloc(n); w->evalv = gsl_vector_complex_alloc(n); w->x = gsl_vector_alloc(n); w->y = gsl_vector_alloc(n); w->Q = gsl_matrix_alloc(n, n); w->Z = gsl_matrix_alloc(n, n); w->evec = gsl_matrix_complex_alloc(n, n); w->gen_p = gsl_eigen_gen_alloc(n); w->genv_p = gsl_eigen_genv_alloc(n); return (w); } /* test_eigen_gen_alloc() */ void test_eigen_gen_free(test_eigen_gen_workspace *w) { gsl_matrix_free(w->A); gsl_matrix_free(w->B); gsl_vector_complex_free(w->alpha); gsl_vector_free(w->beta); gsl_vector_complex_free(w->alphav); gsl_vector_free(w->betav); gsl_vector_complex_free(w->eval); gsl_vector_complex_free(w->evalv); gsl_vector_free(w->x); gsl_vector_free(w->y); gsl_matrix_free(w->Q); gsl_matrix_free(w->Z); gsl_matrix_complex_free(w->evec); gsl_eigen_gen_free(w->gen_p); gsl_eigen_genv_free(w->genv_p); free(w); } /* test_eigen_gen_free() */ void test_eigen_gen_results (const gsl_matrix * A, const gsl_matrix * B, const gsl_vector_complex * alpha, const gsl_vector * beta, const gsl_matrix_complex * evec, size_t count, const char * desc, const char * desc2) { const size_t N = A->size1; size_t i, j; gsl_matrix_complex *ma, *mb; gsl_vector_complex *x, *y; gsl_complex z_one, z_zero; ma = gsl_matrix_complex_alloc(N, N); mb = gsl_matrix_complex_alloc(N, N); y = gsl_vector_complex_alloc(N); x = gsl_vector_complex_alloc(N); /* ma <- A, mb <- B */ for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { gsl_complex z; GSL_SET_COMPLEX(&z, gsl_matrix_get(A, i, j), 0.0); gsl_matrix_complex_set(ma, i, j, z); GSL_SET_COMPLEX(&z, gsl_matrix_get(B, i, j), 0.0); gsl_matrix_complex_set(mb, i, j, z); } } GSL_SET_COMPLEX(&z_one, 1.0, 0.0); GSL_SET_COMPLEX(&z_zero, 0.0, 0.0); /* check eigenvalues */ for (i = 0; i < N; ++i) { gsl_vector_complex_const_view vi = gsl_matrix_complex_const_column(evec, i); gsl_complex ai = gsl_vector_complex_get(alpha, i); double bi = gsl_vector_get(beta, i); /* compute x = alpha * B * v */ gsl_blas_zgemv(CblasNoTrans, z_one, mb, &vi.vector, z_zero, x); gsl_blas_zscal(ai, x); /* compute y = beta * A v */ gsl_blas_zgemv(CblasNoTrans, z_one, ma, &vi.vector, z_zero, y); gsl_blas_zdscal(bi, y); /* now test if y = x */ for (j = 0; j < N; ++j) { gsl_complex xj = gsl_vector_complex_get(x, j); gsl_complex yj = gsl_vector_complex_get(y, j); gsl_test_abs(GSL_REAL(yj), GSL_REAL(xj), 1e8*GSL_DBL_EPSILON, "gen(N=%u,cnt=%u), %s, eigenvalue(%d,%d), real, %s", N, count, desc, i, j, desc2); gsl_test_abs(GSL_IMAG(yj), GSL_IMAG(xj), 1e8*GSL_DBL_EPSILON, "gen(N=%u,cnt=%u), %s, eigenvalue(%d,%d), real, %s", N, count, desc, i, j, desc2); } } gsl_matrix_complex_free(ma); gsl_matrix_complex_free(mb); gsl_vector_complex_free(y); gsl_vector_complex_free(x); } /* test_eigen_gen_results() */ void test_eigen_gen_pencil(const gsl_matrix * A, const gsl_matrix * B, size_t count, const char * desc, int test_schur, test_eigen_gen_workspace *w) { const size_t N = A->size1; size_t i; gsl_matrix_memcpy(w->A, A); gsl_matrix_memcpy(w->B, B); if (test_schur) { gsl_eigen_genv_QZ(w->A, w->B, w->alphav, w->betav, w->evec, w->Q, w->Z, w->genv_p); test_eigen_schur(A, w->A, w->Q, w->Z, count, "genv/A", desc); test_eigen_schur(B, w->B, w->Q, w->Z, count, "genv/B", desc); } else gsl_eigen_genv(w->A, w->B, w->alphav, w->betav, w->evec, w->genv_p); test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "unsorted"); gsl_matrix_memcpy(w->A, A); gsl_matrix_memcpy(w->B, B); if (test_schur) { gsl_eigen_gen_params(1, 1, 0, w->gen_p); gsl_eigen_gen_QZ(w->A, w->B, w->alpha, w->beta, w->Q, w->Z, w->gen_p); test_eigen_schur(A, w->A, w->Q, w->Z, count, "gen/A", desc); test_eigen_schur(B, w->B, w->Q, w->Z, count, "gen/B", desc); } else { gsl_eigen_gen_params(0, 0, 0, w->gen_p); gsl_eigen_gen(w->A, w->B, w->alpha, w->beta, w->gen_p); } /* compute eval = alpha / beta values */ for (i = 0; i < N; ++i) { gsl_complex z, ai; double bi; ai = gsl_vector_complex_get(w->alpha, i); bi = gsl_vector_get(w->beta, i); GSL_SET_COMPLEX(&z, GSL_REAL(ai) / bi, GSL_IMAG(ai) / bi); gsl_vector_complex_set(w->eval, i, z); ai = gsl_vector_complex_get(w->alphav, i); bi = gsl_vector_get(w->betav, i); GSL_SET_COMPLEX(&z, GSL_REAL(ai) / bi, GSL_IMAG(ai) / bi); gsl_vector_complex_set(w->evalv, i, z); } /* sort eval and evalv and test them */ gsl_eigen_nonsymmv_sort(w->eval, NULL, GSL_EIGEN_SORT_ABS_ASC); gsl_eigen_nonsymmv_sort(w->evalv, NULL, GSL_EIGEN_SORT_ABS_ASC); test_eigenvalues_complex(w->evalv, w->eval, "gen", desc); gsl_eigen_genv_sort(w->alphav, w->betav, w->evec, GSL_EIGEN_SORT_ABS_ASC); test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "abs/asc"); gsl_eigen_genv_sort(w->alphav, w->betav, w->evec, GSL_EIGEN_SORT_ABS_DESC); test_eigen_gen_results(A, B, w->alphav, w->betav, w->evec, count, desc, "abs/desc"); } /* test_eigen_gen_pencil() */ void test_eigen_gen(void) { size_t N_max = 20; size_t n, i; gsl_rng *r = gsl_rng_alloc(gsl_rng_default); for (n = 1; n <= N_max; ++n) { gsl_matrix * A = gsl_matrix_alloc(n, n); gsl_matrix * B = gsl_matrix_alloc(n, n); test_eigen_gen_workspace * w = test_eigen_gen_alloc(n); for (i = 0; i < 5; ++i) { create_random_nonsymm_matrix(A, r, -10, 10); create_random_nonsymm_matrix(B, r, -10, 10); test_eigen_gen_pencil(A, B, i, "random", 0, w); test_eigen_gen_pencil(A, B, i, "random", 1, w); } gsl_matrix_free(A); gsl_matrix_free(B); test_eigen_gen_free(w); } gsl_rng_free(r); /* this system will test the exceptional shift code */ { double datA[] = { 1, 1, 0, 0, 0, -1, 1, 0, 0 }; double datB[] = { -1, 0, -1, 0, -1, 0, 0, 0, -1 }; gsl_matrix_view va = gsl_matrix_view_array (datA, 3, 3); gsl_matrix_view vb = gsl_matrix_view_array (datB, 3, 3); test_eigen_gen_workspace * w = test_eigen_gen_alloc(3); test_eigen_gen_pencil(&va.matrix, &vb.matrix, 0, "integer", 0, w); test_eigen_gen_pencil(&va.matrix, &vb.matrix, 0, "integer", 1, w); test_eigen_gen_free(w); } } /* test_eigen_gen() */ int main() { gsl_ieee_env_setup (); gsl_rng_env_setup (); test_eigen_symm(); test_eigen_herm(); test_eigen_nonsymm(); test_eigen_gensymm(); test_eigen_genherm(); test_eigen_gen(); exit (gsl_test_summary()); } gsl-1.16/eigen/nonsymmv.c0000664000252300025230000007615712171574312012313 00000000000000/* eigen/nonsymmv.c * * Copyright (C) 2006 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues and eigenvectors of a real * nonsymmetric matrix. * * This file contains routines based on original code from LAPACK * which is distributed under the modified BSD license. The LAPACK * routines used are DTREVC and DLALN2. */ #define GSL_NONSYMMV_SMLNUM (2.0 * GSL_DBL_MIN) #define GSL_NONSYMMV_BIGNUM ((1.0 - GSL_DBL_EPSILON) / GSL_NONSYMMV_SMLNUM) static void nonsymmv_get_right_eigenvectors(gsl_matrix *T, gsl_matrix *Z, gsl_vector_complex *eval, gsl_matrix_complex *evec, gsl_eigen_nonsymmv_workspace *w); static void nonsymmv_normalize_eigenvectors(gsl_vector_complex *eval, gsl_matrix_complex *evec); /* gsl_eigen_nonsymmv_alloc() Allocate a workspace for solving the nonsymmetric eigenvalue problem. The size of this workspace is O(5n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_nonsymmv_workspace * gsl_eigen_nonsymmv_alloc(const size_t n) { gsl_eigen_nonsymmv_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_nonsymmv_workspace *) calloc (1, sizeof (gsl_eigen_nonsymmv_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->Z = NULL; w->nonsymm_workspace_p = gsl_eigen_nonsymm_alloc(n); if (w->nonsymm_workspace_p == 0) { gsl_eigen_nonsymmv_free(w); GSL_ERROR_NULL ("failed to allocate space for nonsymm workspace", GSL_ENOMEM); } /* * set parameters to compute the full Schur form T and balance * the matrices */ gsl_eigen_nonsymm_params(1, 0, w->nonsymm_workspace_p); w->work = gsl_vector_alloc(n); w->work2 = gsl_vector_alloc(n); w->work3 = gsl_vector_alloc(n); if (w->work == 0 || w->work2 == 0 || w->work3 == 0) { gsl_eigen_nonsymmv_free(w); GSL_ERROR_NULL ("failed to allocate space for nonsymmv additional workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_nonsymmv_alloc() */ /* gsl_eigen_nonsymmv_free() Free workspace w */ void gsl_eigen_nonsymmv_free (gsl_eigen_nonsymmv_workspace * w) { RETURN_IF_NULL (w); if (w->nonsymm_workspace_p) gsl_eigen_nonsymm_free(w->nonsymm_workspace_p); if (w->work) gsl_vector_free(w->work); if (w->work2) gsl_vector_free(w->work2); if (w->work3) gsl_vector_free(w->work3); free(w); } /* gsl_eigen_nonsymmv_free() */ /* gsl_eigen_nonsymmv_params() Set some parameters which define how we solve the eigenvalue problem. Inputs: balance - 1 if we want to balance the matrix, 0 if not w - nonsymmv workspace */ void gsl_eigen_nonsymmv_params (const int balance, gsl_eigen_nonsymmv_workspace *w) { gsl_eigen_nonsymm_params(1, balance, w->nonsymm_workspace_p); } /* gsl_eigen_nonsymm_params() */ /* gsl_eigen_nonsymmv() Solve the nonsymmetric eigensystem problem A x = \lambda x for the eigenvalues \lambda and right eigenvectors x Inputs: A - general real matrix eval - where to store eigenvalues evec - where to store eigenvectors w - workspace Return: success or error */ int gsl_eigen_nonsymmv (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_eigen_nonsymmv_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (evec->size1 != N) { GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN); } else { int s; gsl_matrix Z; /* * We need a place to store the Schur vectors, so we will * treat evec as a real matrix and store them in the left * half - the factor of 2 in the tda corresponds to the * complex multiplicity */ Z.size1 = N; Z.size2 = N; Z.tda = 2 * N; Z.data = evec->data; Z.block = 0; Z.owner = 0; /* compute eigenvalues, Schur form, and Schur vectors */ s = gsl_eigen_nonsymm_Z(A, eval, &Z, w->nonsymm_workspace_p); if (w->Z) { /* * save the Schur vectors in user supplied matrix, since * they will be destroyed when computing eigenvectors */ gsl_matrix_memcpy(w->Z, &Z); } /* only compute eigenvectors if we found all eigenvalues */ if (s == GSL_SUCCESS) { /* compute eigenvectors */ nonsymmv_get_right_eigenvectors(A, &Z, eval, evec, w); /* normalize so that Euclidean norm is 1 */ nonsymmv_normalize_eigenvectors(eval, evec); } return s; } } /* gsl_eigen_nonsymmv() */ /* gsl_eigen_nonsymmv_Z() Compute eigenvalues and eigenvectors of a real nonsymmetric matrix and also save the Schur vectors. See comments in gsl_eigen_nonsymm_Z for more information. Inputs: A - real nonsymmetric matrix eval - where to store eigenvalues evec - where to store eigenvectors Z - where to store Schur vectors w - nonsymmv workspace Return: success or error */ int gsl_eigen_nonsymmv_Z (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_matrix * Z, gsl_eigen_nonsymmv_workspace * w) { /* check matrix and vector sizes */ if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues/eigenvectors", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (evec->size1 != A->size1) { GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN); } else if ((Z->size1 != Z->size2) || (Z->size1 != A->size1)) { GSL_ERROR ("Z matrix has wrong dimensions", GSL_EBADLEN); } else { int s; w->Z = Z; s = gsl_eigen_nonsymmv(A, eval, evec, w); w->Z = NULL; return s; } } /* gsl_eigen_nonsymmv_Z() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* nonsymmv_get_right_eigenvectors() Compute the right eigenvectors of the Schur form T and then backtransform them using the Schur vectors to get right eigenvectors of the original matrix. Inputs: T - Schur form Z - Schur vectors eval - where to store eigenvalues (to ensure that the correct eigenvalue is stored in the same position as the eigenvectors) evec - where to store eigenvectors w - nonsymmv workspace Return: none Notes: 1) based on LAPACK routine DTREVC - the algorithm used is backsubstitution on the upper quasi triangular system T followed by backtransformation by Z to get vectors of the original matrix. 2) The Schur vectors in Z are destroyed and replaced with eigenvectors stored with the same storage scheme as DTREVC. The eigenvectors are also stored in 'evec' 3) The matrix T is unchanged on output 4) Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x| + |y| */ static void nonsymmv_get_right_eigenvectors(gsl_matrix *T, gsl_matrix *Z, gsl_vector_complex *eval, gsl_matrix_complex *evec, gsl_eigen_nonsymmv_workspace *w) { const size_t N = T->size1; const double smlnum = GSL_DBL_MIN * N / GSL_DBL_EPSILON; const double bignum = (1.0 - GSL_DBL_EPSILON) / smlnum; int i; /* looping */ size_t iu, /* looping */ ju, ii; gsl_complex lambda; /* current eigenvalue */ double lambda_re, /* Re(lambda) */ lambda_im; /* Im(lambda) */ gsl_matrix_view Tv, /* temporary views */ Zv; gsl_vector_view y, /* temporary views */ y2, ev, ev2; double dat[4], /* scratch arrays */ dat_X[4]; double scale; /* scale factor */ double xnorm; /* |X| */ gsl_vector_complex_view ecol, /* column of evec */ ecol2; int complex_pair; /* complex eigenvalue pair? */ double smin; /* * Compute 1-norm of each column of upper triangular part of T * to control overflow in triangular solver */ gsl_vector_set(w->work3, 0, 0.0); for (ju = 1; ju < N; ++ju) { gsl_vector_set(w->work3, ju, 0.0); for (iu = 0; iu < ju; ++iu) { gsl_vector_set(w->work3, ju, gsl_vector_get(w->work3, ju) + fabs(gsl_matrix_get(T, iu, ju))); } } for (i = (int) N - 1; i >= 0; --i) { iu = (size_t) i; /* get current eigenvalue and store it in lambda */ lambda_re = gsl_matrix_get(T, iu, iu); if (iu != 0 && gsl_matrix_get(T, iu, iu - 1) != 0.0) { lambda_im = sqrt(fabs(gsl_matrix_get(T, iu, iu - 1))) * sqrt(fabs(gsl_matrix_get(T, iu - 1, iu))); } else { lambda_im = 0.0; } GSL_SET_COMPLEX(&lambda, lambda_re, lambda_im); smin = GSL_MAX(GSL_DBL_EPSILON * (fabs(lambda_re) + fabs(lambda_im)), smlnum); smin = GSL_MAX(smin, GSL_NONSYMMV_SMLNUM); if (lambda_im == 0.0) { int k, l; gsl_vector_view bv, xv; /* real eigenvector */ /* * The ordering of eigenvalues in 'eval' is arbitrary and * does not necessarily follow the Schur form T, so store * lambda in the right slot in eval to ensure it corresponds * to the eigenvector we are about to compute */ gsl_vector_complex_set(eval, iu, lambda); /* * We need to solve the system: * * (T(1:iu-1, 1:iu-1) - lambda*I)*X = -T(1:iu-1,iu) */ /* construct right hand side */ for (k = 0; k < i; ++k) { gsl_vector_set(w->work, (size_t) k, -gsl_matrix_get(T, (size_t) k, iu)); } gsl_vector_set(w->work, iu, 1.0); for (l = i - 1; l >= 0; --l) { size_t lu = (size_t) l; if (lu == 0) complex_pair = 0; else complex_pair = gsl_matrix_get(T, lu, lu - 1) != 0.0; if (!complex_pair) { double x; /* * 1-by-1 diagonal block - solve the system: * * (T_{ll} - lambda)*x = -T_{l(iu)} */ Tv = gsl_matrix_submatrix(T, lu, lu, 1, 1); bv = gsl_vector_view_array(dat, 1); gsl_vector_set(&bv.vector, 0, gsl_vector_get(w->work, lu)); xv = gsl_vector_view_array(dat_X, 1); gsl_schur_solve_equation(1.0, &Tv.matrix, lambda_re, 1.0, 1.0, &bv.vector, &xv.vector, &scale, &xnorm, smin); /* scale x to avoid overflow */ x = gsl_vector_get(&xv.vector, 0); if (xnorm > 1.0) { if (gsl_vector_get(w->work3, lu) > bignum / xnorm) { x /= xnorm; scale /= xnorm; } } if (scale != 1.0) { gsl_vector_view wv; wv = gsl_vector_subvector(w->work, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); } gsl_vector_set(w->work, lu, x); if (lu > 0) { gsl_vector_view v1, v2; /* update right hand side */ v1 = gsl_matrix_subcolumn(T, lu, 0, lu); v2 = gsl_vector_subvector(w->work, 0, lu); gsl_blas_daxpy(-x, &v1.vector, &v2.vector); } /* if (l > 0) */ } /* if (!complex_pair) */ else { double x11, x21; /* * 2-by-2 diagonal block */ Tv = gsl_matrix_submatrix(T, lu - 1, lu - 1, 2, 2); bv = gsl_vector_view_array(dat, 2); gsl_vector_set(&bv.vector, 0, gsl_vector_get(w->work, lu - 1)); gsl_vector_set(&bv.vector, 1, gsl_vector_get(w->work, lu)); xv = gsl_vector_view_array(dat_X, 2); gsl_schur_solve_equation(1.0, &Tv.matrix, lambda_re, 1.0, 1.0, &bv.vector, &xv.vector, &scale, &xnorm, smin); /* scale X(1,1) and X(2,1) to avoid overflow */ x11 = gsl_vector_get(&xv.vector, 0); x21 = gsl_vector_get(&xv.vector, 1); if (xnorm > 1.0) { double beta; beta = GSL_MAX(gsl_vector_get(w->work3, lu - 1), gsl_vector_get(w->work3, lu)); if (beta > bignum / xnorm) { x11 /= xnorm; x21 /= xnorm; scale /= xnorm; } } /* scale if necessary */ if (scale != 1.0) { gsl_vector_view wv; wv = gsl_vector_subvector(w->work, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); } gsl_vector_set(w->work, lu - 1, x11); gsl_vector_set(w->work, lu, x21); /* update right hand side */ if (lu > 1) { gsl_vector_view v1, v2; v1 = gsl_matrix_subcolumn(T, lu - 1, 0, lu - 1); v2 = gsl_vector_subvector(w->work, 0, lu - 1); gsl_blas_daxpy(-x11, &v1.vector, &v2.vector); v1 = gsl_matrix_subcolumn(T, lu, 0, lu - 1); gsl_blas_daxpy(-x21, &v1.vector, &v2.vector); } --l; } /* if (complex_pair) */ } /* for (l = i - 1; l >= 0; --l) */ /* * At this point, w->work is an eigenvector of the * Schur form T. To get an eigenvector of the original * matrix, we multiply on the left by Z, the matrix of * Schur vectors */ ecol = gsl_matrix_complex_column(evec, iu); y = gsl_matrix_column(Z, iu); if (iu > 0) { gsl_vector_view x; Zv = gsl_matrix_submatrix(Z, 0, 0, N, iu); x = gsl_vector_subvector(w->work, 0, iu); /* compute Z * w->work and store it in Z(:,iu) */ gsl_blas_dgemv(CblasNoTrans, 1.0, &Zv.matrix, &x.vector, gsl_vector_get(w->work, iu), &y.vector); } /* if (iu > 0) */ /* store eigenvector into evec */ ev = gsl_vector_complex_real(&ecol.vector); ev2 = gsl_vector_complex_imag(&ecol.vector); scale = 0.0; for (ii = 0; ii < N; ++ii) { double a = gsl_vector_get(&y.vector, ii); /* store real part of eigenvector */ gsl_vector_set(&ev.vector, ii, a); /* set imaginary part to 0 */ gsl_vector_set(&ev2.vector, ii, 0.0); if (fabs(a) > scale) scale = fabs(a); } if (scale != 0.0) scale = 1.0 / scale; /* scale by magnitude of largest element */ gsl_blas_dscal(scale, &ev.vector); } /* if (GSL_IMAG(lambda) == 0.0) */ else { gsl_vector_complex_view bv, xv; size_t k; int l; gsl_complex lambda2; /* complex eigenvector */ /* * Store the complex conjugate eigenvalues in the right * slots in eval */ GSL_SET_REAL(&lambda2, GSL_REAL(lambda)); GSL_SET_IMAG(&lambda2, -GSL_IMAG(lambda)); gsl_vector_complex_set(eval, iu - 1, lambda); gsl_vector_complex_set(eval, iu, lambda2); /* * First solve: * * [ T(i:i+1,i:i+1) - lambda*I ] * X = 0 */ if (fabs(gsl_matrix_get(T, iu - 1, iu)) >= fabs(gsl_matrix_get(T, iu, iu - 1))) { gsl_vector_set(w->work, iu - 1, 1.0); gsl_vector_set(w->work2, iu, lambda_im / gsl_matrix_get(T, iu - 1, iu)); } else { gsl_vector_set(w->work, iu - 1, -lambda_im / gsl_matrix_get(T, iu, iu - 1)); gsl_vector_set(w->work2, iu, 1.0); } gsl_vector_set(w->work, iu, 0.0); gsl_vector_set(w->work2, iu - 1, 0.0); /* construct right hand side */ for (k = 0; k < iu - 1; ++k) { gsl_vector_set(w->work, k, -gsl_vector_get(w->work, iu - 1) * gsl_matrix_get(T, k, iu - 1)); gsl_vector_set(w->work2, k, -gsl_vector_get(w->work2, iu) * gsl_matrix_get(T, k, iu)); } /* * We must solve the upper quasi-triangular system: * * [ T(1:i-2,1:i-2) - lambda*I ] * X = s*(work + i*work2) */ for (l = i - 2; l >= 0; --l) { size_t lu = (size_t) l; if (lu == 0) complex_pair = 0; else complex_pair = gsl_matrix_get(T, lu, lu - 1) != 0.0; if (!complex_pair) { gsl_complex bval; gsl_complex x; /* * 1-by-1 diagonal block - solve the system: * * (T_{ll} - lambda)*x = work + i*work2 */ Tv = gsl_matrix_submatrix(T, lu, lu, 1, 1); bv = gsl_vector_complex_view_array(dat, 1); xv = gsl_vector_complex_view_array(dat_X, 1); GSL_SET_COMPLEX(&bval, gsl_vector_get(w->work, lu), gsl_vector_get(w->work2, lu)); gsl_vector_complex_set(&bv.vector, 0, bval); gsl_schur_solve_equation_z(1.0, &Tv.matrix, &lambda, 1.0, 1.0, &bv.vector, &xv.vector, &scale, &xnorm, smin); if (xnorm > 1.0) { if (gsl_vector_get(w->work3, lu) > bignum / xnorm) { gsl_blas_zdscal(1.0/xnorm, &xv.vector); scale /= xnorm; } } /* scale if necessary */ if (scale != 1.0) { gsl_vector_view wv; wv = gsl_vector_subvector(w->work, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); wv = gsl_vector_subvector(w->work2, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); } x = gsl_vector_complex_get(&xv.vector, 0); gsl_vector_set(w->work, lu, GSL_REAL(x)); gsl_vector_set(w->work2, lu, GSL_IMAG(x)); /* update the right hand side */ if (lu > 0) { gsl_vector_view v1, v2; v1 = gsl_matrix_subcolumn(T, lu, 0, lu); v2 = gsl_vector_subvector(w->work, 0, lu); gsl_blas_daxpy(-GSL_REAL(x), &v1.vector, &v2.vector); v2 = gsl_vector_subvector(w->work2, 0, lu); gsl_blas_daxpy(-GSL_IMAG(x), &v1.vector, &v2.vector); } /* if (lu > 0) */ } /* if (!complex_pair) */ else { gsl_complex b1, b2, x1, x2; /* * 2-by-2 diagonal block - solve the system */ Tv = gsl_matrix_submatrix(T, lu - 1, lu - 1, 2, 2); bv = gsl_vector_complex_view_array(dat, 2); xv = gsl_vector_complex_view_array(dat_X, 2); GSL_SET_COMPLEX(&b1, gsl_vector_get(w->work, lu - 1), gsl_vector_get(w->work2, lu - 1)); GSL_SET_COMPLEX(&b2, gsl_vector_get(w->work, lu), gsl_vector_get(w->work2, lu)); gsl_vector_complex_set(&bv.vector, 0, b1); gsl_vector_complex_set(&bv.vector, 1, b2); gsl_schur_solve_equation_z(1.0, &Tv.matrix, &lambda, 1.0, 1.0, &bv.vector, &xv.vector, &scale, &xnorm, smin); x1 = gsl_vector_complex_get(&xv.vector, 0); x2 = gsl_vector_complex_get(&xv.vector, 1); if (xnorm > 1.0) { double beta; beta = GSL_MAX(gsl_vector_get(w->work3, lu - 1), gsl_vector_get(w->work3, lu)); if (beta > bignum / xnorm) { gsl_blas_zdscal(1.0/xnorm, &xv.vector); scale /= xnorm; } } /* scale if necessary */ if (scale != 1.0) { gsl_vector_view wv; wv = gsl_vector_subvector(w->work, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); wv = gsl_vector_subvector(w->work2, 0, iu + 1); gsl_blas_dscal(scale, &wv.vector); } gsl_vector_set(w->work, lu - 1, GSL_REAL(x1)); gsl_vector_set(w->work, lu, GSL_REAL(x2)); gsl_vector_set(w->work2, lu - 1, GSL_IMAG(x1)); gsl_vector_set(w->work2, lu, GSL_IMAG(x2)); /* update right hand side */ if (lu > 1) { gsl_vector_view v1, v2, v3, v4; v1 = gsl_matrix_subcolumn(T, lu - 1, 0, lu - 1); v4 = gsl_matrix_subcolumn(T, lu, 0, lu - 1); v2 = gsl_vector_subvector(w->work, 0, lu - 1); v3 = gsl_vector_subvector(w->work2, 0, lu - 1); gsl_blas_daxpy(-GSL_REAL(x1), &v1.vector, &v2.vector); gsl_blas_daxpy(-GSL_REAL(x2), &v4.vector, &v2.vector); gsl_blas_daxpy(-GSL_IMAG(x1), &v1.vector, &v3.vector); gsl_blas_daxpy(-GSL_IMAG(x2), &v4.vector, &v3.vector); } /* if (lu > 1) */ --l; } /* if (complex_pair) */ } /* for (l = i - 2; l >= 0; --l) */ /* * At this point, work + i*work2 is an eigenvector * of T - backtransform to get an eigenvector of the * original matrix */ y = gsl_matrix_column(Z, iu - 1); y2 = gsl_matrix_column(Z, iu); if (iu > 1) { gsl_vector_view x; /* compute real part of eigenvectors */ Zv = gsl_matrix_submatrix(Z, 0, 0, N, iu - 1); x = gsl_vector_subvector(w->work, 0, iu - 1); gsl_blas_dgemv(CblasNoTrans, 1.0, &Zv.matrix, &x.vector, gsl_vector_get(w->work, iu - 1), &y.vector); /* now compute the imaginary part */ x = gsl_vector_subvector(w->work2, 0, iu - 1); gsl_blas_dgemv(CblasNoTrans, 1.0, &Zv.matrix, &x.vector, gsl_vector_get(w->work2, iu), &y2.vector); } else { gsl_blas_dscal(gsl_vector_get(w->work, iu - 1), &y.vector); gsl_blas_dscal(gsl_vector_get(w->work2, iu), &y2.vector); } /* * Now store the eigenvectors into evec - the real parts * are Z(:,iu - 1) and the imaginary parts are * +/- Z(:,iu) */ /* get views of the two eigenvector slots */ ecol = gsl_matrix_complex_column(evec, iu - 1); ecol2 = gsl_matrix_complex_column(evec, iu); /* * save imaginary part first as it may get overwritten * when copying the real part due to our storage scheme * in Z/evec */ ev = gsl_vector_complex_imag(&ecol.vector); ev2 = gsl_vector_complex_imag(&ecol2.vector); scale = 0.0; for (ii = 0; ii < N; ++ii) { double a = gsl_vector_get(&y2.vector, ii); scale = GSL_MAX(scale, fabs(a) + fabs(gsl_vector_get(&y.vector, ii))); gsl_vector_set(&ev.vector, ii, a); gsl_vector_set(&ev2.vector, ii, -a); } /* now save the real part */ ev = gsl_vector_complex_real(&ecol.vector); ev2 = gsl_vector_complex_real(&ecol2.vector); for (ii = 0; ii < N; ++ii) { double a = gsl_vector_get(&y.vector, ii); gsl_vector_set(&ev.vector, ii, a); gsl_vector_set(&ev2.vector, ii, a); } if (scale != 0.0) scale = 1.0 / scale; /* scale by largest element magnitude */ gsl_blas_zdscal(scale, &ecol.vector); gsl_blas_zdscal(scale, &ecol2.vector); /* * decrement i since we took care of two eigenvalues at * the same time */ --i; } /* if (GSL_IMAG(lambda) != 0.0) */ } /* for (i = (int) N - 1; i >= 0; --i) */ } /* nonsymmv_get_right_eigenvectors() */ /* nonsymmv_normalize_eigenvectors() Normalize eigenvectors so that their Euclidean norm is 1 Inputs: eval - eigenvalues evec - eigenvectors */ static void nonsymmv_normalize_eigenvectors(gsl_vector_complex *eval, gsl_matrix_complex *evec) { const size_t N = evec->size1; size_t i; /* looping */ gsl_complex ei; gsl_vector_complex_view vi; gsl_vector_view re, im; double scale; /* scaling factor */ for (i = 0; i < N; ++i) { ei = gsl_vector_complex_get(eval, i); vi = gsl_matrix_complex_column(evec, i); re = gsl_vector_complex_real(&vi.vector); if (GSL_IMAG(ei) == 0.0) { scale = 1.0 / gsl_blas_dnrm2(&re.vector); gsl_blas_dscal(scale, &re.vector); } else if (GSL_IMAG(ei) > 0.0) { im = gsl_vector_complex_imag(&vi.vector); scale = 1.0 / gsl_hypot(gsl_blas_dnrm2(&re.vector), gsl_blas_dnrm2(&im.vector)); gsl_blas_zdscal(scale, &vi.vector); vi = gsl_matrix_complex_column(evec, i + 1); gsl_blas_zdscal(scale, &vi.vector); } } } /* nonsymmv_normalize_eigenvectors() */ gsl-1.16/eigen/symm.c0000664000252300025230000001117412171574312011376 00000000000000/* eigen/symm.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* Compute eigenvalues/eigenvectors of real symmetric matrix using reduction to tridiagonal form, followed by QR iteration with implicit shifts. See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include "qrstep.c" gsl_eigen_symm_workspace * gsl_eigen_symm_alloc (const size_t n) { gsl_eigen_symm_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = ((gsl_eigen_symm_workspace *) malloc (sizeof (gsl_eigen_symm_workspace))); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->d = (double *) malloc (n * sizeof (double)); if (w->d == 0) { GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM); } w->sd = (double *) malloc (n * sizeof (double)); if (w->sd == 0) { GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM); } w->size = n; return w; } void gsl_eigen_symm_free (gsl_eigen_symm_workspace * w) { RETURN_IF_NULL (w); free (w->sd); free (w->d); free (w); } int gsl_eigen_symm (gsl_matrix * A, gsl_vector * eval, gsl_eigen_symm_workspace * w) { if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; double *const d = w->d; double *const sd = w->sd; size_t a, b; /* handle special case */ if (N == 1) { double A00 = gsl_matrix_get (A, 0, 0); gsl_vector_set (eval, 0, A00); return GSL_SUCCESS; } /* use sd as the temporary workspace for the decomposition, since we can discard the tau result immediately if we are not computing eigenvectors */ { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1); gsl_vector_view tau = gsl_vector_view_array (sd, N - 1); gsl_linalg_symmtd_decomp (A, &tau.vector); gsl_linalg_symmtd_unpack_T (A, &d_vec.vector, &sd_vec.vector); } /* Make an initial pass through the tridiagonal decomposition to remove off-diagonal elements which are effectively zero */ chop_small_elements (N, d, sd); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (sd[b - 1] == 0.0 || isnan(sd[b - 1])) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (sd[a - 1] == 0.0) { break; } a--; } { const size_t n_block = b - a + 1; double *d_block = d + a; double *sd_block = sd + a; /* apply QR reduction with implicit deflation to the unreduced block */ qrstep (n_block, d_block, sd_block, NULL, NULL); /* remove any small off-diagonal elements */ chop_small_elements (n_block, d_block, sd_block); } } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_memcpy (eval, &d_vec.vector); } return GSL_SUCCESS; } } gsl-1.16/eigen/gen.c0000664000252300025230000016632312171574312011171 00000000000000/* eigen/gen.c * * Copyright (C) 2006, 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues of a real generalized * eigensystem A x = \lambda B x. Left and right Schur vectors * are optionally computed as well. * * Based on the algorithm from Moler and Stewart * [1] C. Moler, G. Stewart, "An Algorithm for Generalized Matrix * Eigenvalue Problems", SIAM J. Numer. Anal., Vol 10, No 2, 1973. * * This algorithm is also described in the book * [2] Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 7.7.3 * * This file contains routines based on original code from LAPACK * which is distributed under the modified BSD license. */ #define GEN_ESHIFT_COEFF (1.736) static void gen_schur_decomp(gsl_matrix *H, gsl_matrix *R, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w); static inline int gen_qzstep(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w); static inline void gen_qzstep_d(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w); static void gen_tri_split_top(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w); static inline void gen_tri_chase_zero(gsl_matrix *H, gsl_matrix *R, size_t q, gsl_eigen_gen_workspace *w); static inline void gen_tri_zero_H(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w); static inline size_t gen_search_small_elements(gsl_matrix *H, gsl_matrix *R, int *flag, gsl_eigen_gen_workspace *w); static int gen_schur_standardize1(gsl_matrix *A, gsl_matrix *B, double *alphar, double *beta, gsl_eigen_gen_workspace *w); static int gen_schur_standardize2(gsl_matrix *A, gsl_matrix *B, gsl_complex *alpha1, gsl_complex *alpha2, double *beta1, double *beta2, gsl_eigen_gen_workspace *w); static int gen_compute_eigenvals(gsl_matrix *A, gsl_matrix *B, gsl_complex *alpha1, gsl_complex *alpha2, double *beta1, double *beta2); static void gen_store_eigval1(const gsl_matrix *H, const double a, const double b, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w); static void gen_store_eigval2(const gsl_matrix *H, const gsl_complex *alpha1, const double beta1, const gsl_complex *alpha2, const double beta2, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w); static inline size_t gen_get_submatrix(const gsl_matrix *A, const gsl_matrix *B); /*FIX**/ inline static double normF (gsl_matrix * A); inline static void create_givens (const double a, const double b, double *c, double *s); /* gsl_eigen_gen_alloc() Allocate a workspace for solving the generalized eigenvalue problem. The size of this workspace is O(n) Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_gen_workspace * gsl_eigen_gen_alloc(const size_t n) { gsl_eigen_gen_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_gen_workspace *) calloc (1, sizeof (gsl_eigen_gen_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->max_iterations = 30 * n; w->n_evals = 0; w->n_iter = 0; w->needtop = 0; w->atol = 0.0; w->btol = 0.0; w->ascale = 0.0; w->bscale = 0.0; w->eshift = 0.0; w->H = NULL; w->R = NULL; w->compute_s = 0; w->compute_t = 0; w->Q = NULL; w->Z = NULL; w->work = gsl_vector_alloc(n); if (w->work == 0) { gsl_eigen_gen_free(w); GSL_ERROR_NULL ("failed to allocate space for additional workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_gen_alloc() */ /* gsl_eigen_gen_free() Free workspace w */ void gsl_eigen_gen_free (gsl_eigen_gen_workspace * w) { RETURN_IF_NULL (w); if (w->work) gsl_vector_free(w->work); free(w); } /* gsl_eigen_gen_free() */ /* gsl_eigen_gen_params() Set parameters which define how we solve the eigenvalue problem Inputs: compute_s - 1 if we want to compute S, 0 if not compute_t - 1 if we want to compute T, 0 if not balance - 1 if we want to balance matrices, 0 if not w - gen workspace Return: none */ void gsl_eigen_gen_params (const int compute_s, const int compute_t, const int balance, gsl_eigen_gen_workspace *w) { w->compute_s = compute_s; w->compute_t = compute_t; } /* gsl_eigen_gen_params() */ /* gsl_eigen_gen() Solve the generalized eigenvalue problem A x = \lambda B x for the eigenvalues \lambda. Inputs: A - general real matrix B - general real matrix alpha - where to store eigenvalue numerators beta - where to store eigenvalue denominators w - workspace Return: success or error */ int gsl_eigen_gen (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_eigen_gen_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (alpha->size != N || beta->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else { double anorm, bnorm; /* compute the Hessenberg-Triangular reduction of (A, B) */ gsl_linalg_hesstri_decomp(A, B, w->Q, w->Z, w->work); /* save pointers to original matrices */ w->H = A; w->R = B; w->n_evals = 0; w->n_iter = 0; w->eshift = 0.0; /* determine if we need to compute top indices in QZ step */ w->needtop = w->Q != 0 || w->Z != 0 || w->compute_t || w->compute_s; /* compute matrix norms */ anorm = normF(A); bnorm = normF(B); /* compute tolerances and scaling factors */ w->atol = GSL_MAX(GSL_DBL_MIN, GSL_DBL_EPSILON * anorm); w->btol = GSL_MAX(GSL_DBL_MIN, GSL_DBL_EPSILON * bnorm); w->ascale = 1.0 / GSL_MAX(GSL_DBL_MIN, anorm); w->bscale = 1.0 / GSL_MAX(GSL_DBL_MIN, bnorm); /* compute the generalized Schur decomposition and eigenvalues */ gen_schur_decomp(A, B, alpha, beta, w); if (w->n_evals != N) return GSL_EMAXITER; return GSL_SUCCESS; } } /* gsl_eigen_gen() */ /* gsl_eigen_gen_QZ() Solve the generalized eigenvalue problem A x = \lambda B x for the eigenvalues \lambda. Optionally compute left and/or right Schur vectors Q and Z which satisfy: A = Q S Z^t B = Q T Z^t where (S, T) is the generalized Schur form of (A, B) Inputs: A - general real matrix B - general real matrix alpha - where to store eigenvalue numerators beta - where to store eigenvalue denominators Q - if non-null, where to store left Schur vectors Z - if non-null, where to store right Schur vectors w - workspace Return: success or error */ int gsl_eigen_gen_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_gen_workspace * w) { if (Q && (A->size1 != Q->size1 || A->size1 != Q->size2)) { GSL_ERROR("Q matrix has wrong dimensions", GSL_EBADLEN); } else if (Z && (A->size1 != Z->size1 || A->size1 != Z->size2)) { GSL_ERROR("Z matrix has wrong dimensions", GSL_EBADLEN); } else { int s; w->Q = Q; w->Z = Z; s = gsl_eigen_gen(A, B, alpha, beta, w); w->Q = NULL; w->Z = NULL; return s; } } /* gsl_eigen_gen_QZ() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* gen_schur_decomp() Compute the generalized Schur decomposition of the matrix pencil (H, R) which is in Hessenberg-Triangular form Inputs: H - upper hessenberg matrix R - upper triangular matrix alpha - (output) where to store eigenvalue numerators beta - (output) where to store eigenvalue denominators w - workspace Return: none Notes: 1) w->n_evals is updated to keep track of how many eigenvalues are found */ static void gen_schur_decomp(gsl_matrix *H, gsl_matrix *R, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w) { size_t N; gsl_matrix_view h, r; gsl_matrix_view vh, vr; size_t q; /* index of small subdiagonal element */ gsl_complex z1, z2; /* complex values */ double a, b; int s; int flag; N = H->size1; h = gsl_matrix_submatrix(H, 0, 0, N, N); r = gsl_matrix_submatrix(R, 0, 0, N, N); while ((N > 1) && (w->n_iter)++ < w->max_iterations) { q = gen_search_small_elements(&h.matrix, &r.matrix, &flag, w); if (flag == 0) { /* no small elements found - do a QZ sweep */ s = gen_qzstep(&h.matrix, &r.matrix, w); if (s == GSL_CONTINUE) { /* * (h, r) is a 2-by-2 block with complex eigenvalues - * standardize and read off eigenvalues */ s = gen_schur_standardize2(&h.matrix, &r.matrix, &z1, &z2, &a, &b, w); if (s != GSL_SUCCESS) { /* * if we get here, then the standardization process * perturbed the eigenvalues onto the real line - * continue QZ iteration to break them into 1-by-1 * blocks */ continue; } gen_store_eigval2(&h.matrix, &z1, a, &z2, b, alpha, beta, w); N = 0; } /* if (s) */ continue; } /* if (flag == 0) */ else if (flag == 2) { if (q == 0) { /* * the leading element of R is zero, split off a block * at the top */ gen_tri_split_top(&h.matrix, &r.matrix, w); } else { /* * we found a small element on the diagonal of R - chase the * zero to the bottom of the active block and then zero * H(n, n - 1) to split off a 1-by-1 block */ if (q != N - 1) gen_tri_chase_zero(&h.matrix, &r.matrix, q, w); /* now zero H(n, n - 1) */ gen_tri_zero_H(&h.matrix, &r.matrix, w); } /* continue so the next iteration detects the zero in H */ continue; } /* * a small subdiagonal element of H was found - one or two * eigenvalues have converged or the matrix has split into * two smaller matrices */ if (q == (N - 1)) { /* * the last subdiagonal element of the hessenberg matrix is 0 - * H_{NN} / R_{NN} is a real eigenvalue - standardize so * R_{NN} > 0 */ vh = gsl_matrix_submatrix(&h.matrix, q, q, 1, 1); vr = gsl_matrix_submatrix(&r.matrix, q, q, 1, 1); gen_schur_standardize1(&vh.matrix, &vr.matrix, &a, &b, w); gen_store_eigval1(&vh.matrix, a, b, alpha, beta, w); --N; h = gsl_matrix_submatrix(&h.matrix, 0, 0, N, N); r = gsl_matrix_submatrix(&r.matrix, 0, 0, N, N); } else if (q == (N - 2)) { /* bottom right 2-by-2 block may have converged */ vh = gsl_matrix_submatrix(&h.matrix, q, q, 2, 2); vr = gsl_matrix_submatrix(&r.matrix, q, q, 2, 2); s = gen_schur_standardize2(&vh.matrix, &vr.matrix, &z1, &z2, &a, &b, w); if (s != GSL_SUCCESS) { /* * this 2-by-2 block contains real eigenvalues that * have not yet separated into 1-by-1 blocks - * recursively call gen_schur_decomp() to finish off * this block */ gen_schur_decomp(&vh.matrix, &vr.matrix, alpha, beta, w); } else { /* we got 2 complex eigenvalues */ gen_store_eigval2(&vh.matrix, &z1, a, &z2, b, alpha, beta, w); } N -= 2; h = gsl_matrix_submatrix(&h.matrix, 0, 0, N, N); r = gsl_matrix_submatrix(&r.matrix, 0, 0, N, N); } else if (q == 1) { /* H_{11} / R_{11} is an eigenvalue */ vh = gsl_matrix_submatrix(&h.matrix, 0, 0, 1, 1); vr = gsl_matrix_submatrix(&r.matrix, 0, 0, 1, 1); gen_schur_standardize1(&vh.matrix, &vr.matrix, &a, &b, w); gen_store_eigval1(&vh.matrix, a, b, alpha, beta, w); --N; h = gsl_matrix_submatrix(&h.matrix, 1, 1, N, N); r = gsl_matrix_submatrix(&r.matrix, 1, 1, N, N); } else if (q == 2) { /* upper left 2-by-2 block may have converged */ vh = gsl_matrix_submatrix(&h.matrix, 0, 0, 2, 2); vr = gsl_matrix_submatrix(&r.matrix, 0, 0, 2, 2); s = gen_schur_standardize2(&vh.matrix, &vr.matrix, &z1, &z2, &a, &b, w); if (s != GSL_SUCCESS) { /* * this 2-by-2 block contains real eigenvalues that * have not yet separated into 1-by-1 blocks - * recursively call gen_schur_decomp() to finish off * this block */ gen_schur_decomp(&vh.matrix, &vr.matrix, alpha, beta, w); } else { /* we got 2 complex eigenvalues */ gen_store_eigval2(&vh.matrix, &z1, a, &z2, b, alpha, beta, w); } N -= 2; h = gsl_matrix_submatrix(&h.matrix, 2, 2, N, N); r = gsl_matrix_submatrix(&r.matrix, 2, 2, N, N); } else { /* * There is a zero element on the subdiagonal somewhere * in the middle of the matrix - we can now operate * separately on the two submatrices split by this * element. q is the row index of the zero element. */ /* operate on lower right (N - q)-by-(N - q) block first */ vh = gsl_matrix_submatrix(&h.matrix, q, q, N - q, N - q); vr = gsl_matrix_submatrix(&r.matrix, q, q, N - q, N - q); gen_schur_decomp(&vh.matrix, &vr.matrix, alpha, beta, w); /* operate on upper left q-by-q block */ vh = gsl_matrix_submatrix(&h.matrix, 0, 0, q, q); vr = gsl_matrix_submatrix(&r.matrix, 0, 0, q, q); gen_schur_decomp(&vh.matrix, &vr.matrix, alpha, beta, w); N = 0; } } /* while ((N > 1) && (w->n_iter)++ < w->max_iterations) */ /* handle special case of N = 1 */ if (N == 1) { gen_schur_standardize1(&h.matrix, &r.matrix, &a, &b, w); gen_store_eigval1(&h.matrix, a, b, alpha, beta, w); } } /* gen_schur_decomp() */ /* gen_qzstep() This routine determines what type of QZ step to perform on the generalized matrix pair (H, R). If the pair is 3-by-3 or bigger, we look at the bottom right 2-by-2 block. If this block has complex eigenvalues, we perform a Francis double shift QZ sweep. If it has real eigenvalues, we perform an implicit single shift QZ sweep. If the pair is 2-by-2 with real eigenvalues, we perform a single shift sweep. If it has complex eigenvalues, we return GSL_CONTINUE to notify the calling function that a 2-by-2 block with complex eigenvalues has converged, so that it may then call gen_schur_standardize2(). In the real eigenvalue case, we want to continue doing QZ sweeps to break it up into two 1-by-1 blocks. See LAPACK routine DHGEQZ and [1] for more information. Inputs: H - upper Hessenberg matrix (at least 2-by-2) R - upper triangular matrix (at least 2-by-2) w - workspace Return: GSL_SUCCESS on normal completion GSL_CONTINUE if we detect a 2-by-2 block with complex eigenvalues */ static inline int gen_qzstep(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; gsl_matrix_view vh, vr; /* views of bottom right 2-by-2 block */ double wr1, wr2, wi; double scale1, scale2, scale; double cs, sn; /* givens rotation */ double temp, /* temporary variables */ temp2; size_t j; /* looping */ gsl_vector_view xv, yv; /* temporary views */ size_t top; size_t rows; if (w->n_iter % 10 == 0) { /* * Exceptional shift - we have gone 10 iterations without finding * a new eigenvalue, do a single shift sweep with an * exceptional shift */ if ((GSL_DBL_MIN * w->max_iterations) * fabs(gsl_matrix_get(H, N - 2, N - 1)) < fabs(gsl_matrix_get(R, N - 2, N - 2))) { w->eshift += gsl_matrix_get(H, N - 2, N - 1) / gsl_matrix_get(R, N - 2, N - 2); } else w->eshift += 1.0 / (GSL_DBL_MIN * w->max_iterations); if ((w->eshift < GSL_DBL_EPSILON) && (GSL_DBL_MIN * w->max_iterations) * fabs(gsl_matrix_get(H, N - 1, N - 2)) < fabs(gsl_matrix_get(R, N - 2, N - 2))) { w->eshift = GEN_ESHIFT_COEFF * (w->ascale * gsl_matrix_get(H, N - 1, N - 2)) / (w->bscale * gsl_matrix_get(R, N - 2, N - 2)); } scale1 = 1.0; wr1 = w->eshift; } else { /* * Compute generalized eigenvalues of bottom right 2-by-2 block * to be used as shifts - wr1 is the Wilkinson shift */ vh = gsl_matrix_submatrix(H, N - 2, N - 2, 2, 2); vr = gsl_matrix_submatrix(R, N - 2, N - 2, 2, 2); gsl_schur_gen_eigvals(&vh.matrix, &vr.matrix, &wr1, &wr2, &wi, &scale1, &scale2); if (wi != 0.0) { /* complex eigenvalues */ if (N == 2) { /* * its a 2-by-2 block with complex eigenvalues - notify * the calling function to deflate */ return (GSL_CONTINUE); } else { /* do a francis double shift sweep */ gen_qzstep_d(H, R, w); } return GSL_SUCCESS; } } /* real eigenvalues - perform single shift QZ step */ temp = GSL_MIN(w->ascale, 1.0) * (0.5 / GSL_DBL_MIN); if (scale1 > temp) scale = temp / scale1; else scale = 1.0; temp = GSL_MIN(w->bscale, 1.0) * (0.5 / GSL_DBL_MIN); if (fabs(wr1) > temp) scale = GSL_MIN(scale, temp / fabs(wr1)); scale1 *= scale; wr1 *= scale; if (w->needtop) { /* get absolute index of this matrix relative to original matrix */ top = gen_get_submatrix(w->H, H); } temp = scale1*gsl_matrix_get(H, 0, 0) - wr1*gsl_matrix_get(R, 0, 0); temp2 = scale1*gsl_matrix_get(H, 1, 0); create_givens(temp, temp2, &cs, &sn); sn = -sn; for (j = 0; j < N - 1; ++j) { if (j > 0) { temp = gsl_matrix_get(H, j, j - 1); temp2 = gsl_matrix_get(H, j + 1, j - 1); create_givens(temp, temp2, &cs, &sn); sn = -sn; /* apply to column (j - 1) */ temp = cs * gsl_matrix_get(H, j, j - 1) + sn * gsl_matrix_get(H, j + 1, j - 1); gsl_matrix_set(H, j, j - 1, temp); gsl_matrix_set(H, j + 1, j - 1, 0.0); } /* apply G to H(j:j+1,:) and T(j:j+1,:) */ if (w->compute_s) { xv = gsl_matrix_subrow(w->H, top + j, top + j, w->size - top - j); yv = gsl_matrix_subrow(w->H, top + j + 1, top + j, w->size - top - j); } else { xv = gsl_matrix_subrow(H, j, j, N - j); yv = gsl_matrix_subrow(H, j + 1, j, N - j); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->compute_t) { xv = gsl_matrix_subrow(w->R, top + j, top + j, w->size - top - j); yv = gsl_matrix_subrow(w->R, top + j + 1, top + j, w->size - top - j); } else { xv = gsl_matrix_subrow(R, j, j, N - j); yv = gsl_matrix_subrow(R, j + 1, j, N - j); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Q) { /* accumulate Q: Q -> QG */ xv = gsl_matrix_column(w->Q, top + j); yv = gsl_matrix_column(w->Q, top + j + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } temp = gsl_matrix_get(R, j + 1, j + 1); temp2 = gsl_matrix_get(R, j + 1, j); create_givens(temp, temp2, &cs, &sn); rows = GSL_MIN(j + 3, N); if (w->compute_s) { xv = gsl_matrix_subcolumn(w->H, top + j, 0, top + rows); yv = gsl_matrix_subcolumn(w->H, top + j + 1, 0, top + rows); } else { xv = gsl_matrix_subcolumn(H, j, 0, rows); yv = gsl_matrix_subcolumn(H, j + 1, 0, rows); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); rows = GSL_MIN(j + 2, N); if (w->compute_t) { xv = gsl_matrix_subcolumn(w->R, top + j, 0, top + rows); yv = gsl_matrix_subcolumn(w->R, top + j + 1, 0, top + rows); } else { xv = gsl_matrix_subcolumn(R, j, 0, rows); yv = gsl_matrix_subcolumn(R, j + 1, 0, rows); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Z) { /* accumulate Z: Z -> ZG */ xv = gsl_matrix_column(w->Z, top + j); yv = gsl_matrix_column(w->Z, top + j + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } /* for (j = 0; j < N - 1; ++j) */ return GSL_SUCCESS; } /* gen_qzstep() */ /* gen_qzstep_d() Perform an implicit double shift QZ step. See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 7.7.2 Inputs: H - upper Hessenberg matrix (at least 3-by-3) R - upper triangular matrix (at least 3-by-3) w - workspace */ static inline void gen_qzstep_d(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; size_t j; /* looping */ double dat[3]; /* householder vector */ double tau; /* householder coefficient */ gsl_vector_view v2, v3; /* views into 'dat' */ gsl_matrix_view m; /* temporary view */ double tmp; size_t q, r; size_t top; /* location of H in original matrix */ double scale; double AB11, /* various matrix element ratios */ AB22, ABNN, ABMM, AMNBNN, ANMBMM, A21B11, A12B22, A32B22, B12B22, BMNBNN; v2 = gsl_vector_view_array(dat, 2); v3 = gsl_vector_view_array(dat, 3); if (w->needtop) { /* get absolute index of this matrix relative to original matrix */ top = gen_get_submatrix(w->H, H); } /* * Similar to the QR method, we take the shifts to be the two * zeros of the problem * * det[H(n-1:n,n-1:n) - s*R(n-1:n,n-1:n)] = 0 * * The initial householder vector elements are then given by * Eq. 4.1 of [1], which are designed to reduce errors when * off diagonal elements are small. */ ABMM = (w->ascale * gsl_matrix_get(H, N - 2, N - 2)) / (w->bscale * gsl_matrix_get(R, N - 2, N - 2)); ABNN = (w->ascale * gsl_matrix_get(H, N - 1, N - 1)) / (w->bscale * gsl_matrix_get(R, N - 1, N - 1)); AB11 = (w->ascale * gsl_matrix_get(H, 0, 0)) / (w->bscale * gsl_matrix_get(R, 0, 0)); AB22 = (w->ascale * gsl_matrix_get(H, 1, 1)) / (w->bscale * gsl_matrix_get(R, 1, 1)); AMNBNN = (w->ascale * gsl_matrix_get(H, N - 2, N - 1)) / (w->bscale * gsl_matrix_get(R, N - 1, N - 1)); ANMBMM = (w->ascale * gsl_matrix_get(H, N - 1, N - 2)) / (w->bscale * gsl_matrix_get(R, N - 2, N - 2)); BMNBNN = gsl_matrix_get(R, N - 2, N - 1) / gsl_matrix_get(R, N - 1, N - 1); A21B11 = (w->ascale * gsl_matrix_get(H, 1, 0)) / (w->bscale * gsl_matrix_get(R, 0, 0)); A12B22 = (w->ascale * gsl_matrix_get(H, 0, 1)) / (w->bscale * gsl_matrix_get(R, 1, 1)); A32B22 = (w->ascale * gsl_matrix_get(H, 2, 1)) / (w->bscale * gsl_matrix_get(R, 1, 1)); B12B22 = gsl_matrix_get(R, 0, 1) / gsl_matrix_get(R, 1, 1); /* * These are the Eqs (4.1) of [1], just multiplied by the factor * (A_{21} / B_{11}) */ dat[0] = (ABMM - AB11) * (ABNN - AB11) - (AMNBNN * ANMBMM) + (ANMBMM * BMNBNN * AB11) + (A12B22 - (AB11 * B12B22)) * A21B11; dat[1] = ((AB22 - AB11) - (A21B11 * B12B22) - (ABMM - AB11) - (ABNN - AB11) + (ANMBMM * BMNBNN)) * A21B11; dat[2] = A32B22 * A21B11; scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; dat[2] /= scale; } for (j = 0; j < N - 2; ++j) { r = GSL_MIN(j + 4, N); /* * Find householder Q so that * * Q [x y z]^t = [ * 0 0 ]^t */ tau = gsl_linalg_householder_transform(&v3.vector); if (tau != 0.0) { /* * q is the initial column to start applying the householder * transformation. The GSL_MAX() simply ensures we don't * try to apply it to column (-1), since we are zeroing out * column (j - 1) except for the first iteration which * introduces the bulge. */ q = (size_t) GSL_MAX(0, (int)j - 1); /* H -> QH, R -> QR */ if (w->compute_s) { /* * We are computing the Schur form S, so we need to * transform the whole matrix H */ m = gsl_matrix_submatrix(w->H, top + j, top + q, 3, w->size - top - q); gsl_linalg_householder_hm(tau, &v3.vector, &m.matrix); } else { /* just transform the active block */ m = gsl_matrix_submatrix(H, j, q, 3, N - q); gsl_linalg_householder_hm(tau, &v3.vector, &m.matrix); } if (w->compute_t) { /* * We are computing the Schur form T, so we need to * transform the whole matrix R */ m = gsl_matrix_submatrix(w->R, top + j, top + j, 3, w->size - top - j); gsl_linalg_householder_hm(tau, &v3.vector, &m.matrix); } else { /* just transform the active block */ m = gsl_matrix_submatrix(R, j, j, 3, N - j); gsl_linalg_householder_hm(tau, &v3.vector, &m.matrix); } if (w->Q) { /* accumulate the transformation into Q */ m = gsl_matrix_submatrix(w->Q, 0, top + j, w->size, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } } /* if (tau != 0.0) */ /* * Find householder Z so that * * [ r_{j+2,j} r_{j+2, j+1}, r_{j+2, j+2} ] Z = [ 0 0 * ] * * This isn't exactly what gsl_linalg_householder_transform * does, so we need to rotate the input vector so it preserves * the last element, and then rotate it back afterwards. * * So instead of transforming [x y z], we transform [z x y], * and the resulting HH vector [1 v2 v3] -> [v2 v3 1] but * then needs to be scaled to have the first element = 1, so * it becomes [1 v3/v2 1/v2] (tau must also be scaled accordingly). */ dat[0] = gsl_matrix_get(R, j + 2, j + 2); dat[1] = gsl_matrix_get(R, j + 2, j); dat[2] = gsl_matrix_get(R, j + 2, j + 1); scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; dat[2] /= scale; } tau = gsl_linalg_householder_transform(&v3.vector); if (tau != 0.0) { /* rotate back */ tmp = gsl_vector_get(&v3.vector, 1); gsl_vector_set(&v3.vector, 1, gsl_vector_get(&v3.vector, 2)/tmp); gsl_vector_set(&v3.vector, 2, 1.0 / tmp); tau *= tmp * tmp; /* H -> HZ, R -> RZ */ if (w->compute_s) { m = gsl_matrix_submatrix(w->H, 0, top + j, top + r, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } else { m = gsl_matrix_submatrix(H, 0, j, r, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } if (w->compute_t) { m = gsl_matrix_submatrix(w->R, 0, top + j, top + j + 3, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } else { m = gsl_matrix_submatrix(R, 0, j, j + 3, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } if (w->Z) { /* accumulate transformation into Z */ m = gsl_matrix_submatrix(w->Z, 0, top + j, w->size, 3); gsl_linalg_householder_mh(tau, &v3.vector, &m.matrix); } } /* if (tau != 0.0) */ /* * Find householder Z so that * * [ r_{j+1,j} r_{j+1, j+1} ] Z = [ 0 * ] */ dat[0] = gsl_matrix_get(R, j + 1, j + 1); dat[1] = gsl_matrix_get(R, j + 1, j); scale = fabs(dat[0]) + fabs(dat[1]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; } tau = gsl_linalg_householder_transform(&v2.vector); if (tau != 0.0) { /* rotate back */ tmp = gsl_vector_get(&v2.vector, 1); gsl_vector_set(&v2.vector, 1, 1.0 / tmp); tau *= tmp * tmp; /* H -> HZ, R -> RZ */ if (w->compute_s) { m = gsl_matrix_submatrix(w->H, 0, top + j, top + r, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(H, 0, j, r, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } if (w->compute_t) { m = gsl_matrix_submatrix(w->R, 0, top + j, top + j + 3, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(R, 0, j, j + 3, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } if (w->Z) { /* accumulate transformation into Z */ m = gsl_matrix_submatrix(w->Z, 0, top + j, w->size, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } } /* if (tau != 0.0) */ dat[0] = gsl_matrix_get(H, j + 1, j); dat[1] = gsl_matrix_get(H, j + 2, j); if (j < N - 3) dat[2] = gsl_matrix_get(H, j + 3, j); scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; dat[2] /= scale; } } /* for (j = 0; j < N - 2; ++j) */ /* * Find Householder Q so that * * Q [ x y ]^t = [ * 0 ]^t */ scale = fabs(dat[0]) + fabs(dat[1]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; } tau = gsl_linalg_householder_transform(&v2.vector); if (w->compute_s) { m = gsl_matrix_submatrix(w->H, top + N - 2, top + N - 3, 2, w->size - top - N + 3); gsl_linalg_householder_hm(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(H, N - 2, N - 3, 2, 3); gsl_linalg_householder_hm(tau, &v2.vector, &m.matrix); } if (w->compute_t) { m = gsl_matrix_submatrix(w->R, top + N - 2, top + N - 2, 2, w->size - top - N + 2); gsl_linalg_householder_hm(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(R, N - 2, N - 2, 2, 2); gsl_linalg_householder_hm(tau, &v2.vector, &m.matrix); } if (w->Q) { /* accumulate the transformation into Q */ m = gsl_matrix_submatrix(w->Q, 0, top + N - 2, w->size, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } /* * Find Householder Z so that * * [ b_{n,n-1} b_{nn} ] Z = [ 0 * ] */ dat[0] = gsl_matrix_get(R, N - 1, N - 1); dat[1] = gsl_matrix_get(R, N - 1, N - 2); scale = fabs(dat[0]) + fabs(dat[1]); if (scale != 0.0) { dat[0] /= scale; dat[1] /= scale; } tau = gsl_linalg_householder_transform(&v2.vector); /* rotate back */ tmp = gsl_vector_get(&v2.vector, 1); gsl_vector_set(&v2.vector, 1, 1.0 / tmp); tau *= tmp * tmp; if (w->compute_s) { m = gsl_matrix_submatrix(w->H, 0, top + N - 2, top + N, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(H, 0, N - 2, N, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } if (w->compute_t) { m = gsl_matrix_submatrix(w->R, 0, top + N - 2, top + N, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(R, 0, N - 2, N, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } if (w->Z) { /* accumulate the transformation into Z */ m = gsl_matrix_submatrix(w->Z, 0, top + N - 2, w->size, 2); gsl_linalg_householder_mh(tau, &v2.vector, &m.matrix); } } /* gen_qzstep_d() */ /* gen_tri_split_top() This routine is called when the leading element on the diagonal of R has become negligible. Split off a 1-by-1 block at the top. Inputs: H - upper hessenberg matrix R - upper triangular matrix w - workspace */ static void gen_tri_split_top(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; size_t j, top; double cs, sn; gsl_vector_view xv, yv; if (w->needtop) top = gen_get_submatrix(w->H, H); j = 0; create_givens(gsl_matrix_get(H, j, j), gsl_matrix_get(H, j + 1, j), &cs, &sn); sn = -sn; if (w->compute_s) { xv = gsl_matrix_subrow(w->H, top + j, top, w->size - top); yv = gsl_matrix_subrow(w->H, top + j + 1, top, w->size - top); } else { xv = gsl_matrix_row(H, j); yv = gsl_matrix_row(H, j + 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); gsl_matrix_set(H, j + 1, j, 0.0); if (w->compute_t) { xv = gsl_matrix_subrow(w->R, top + j, top + 1, w->size - top - 1); yv = gsl_matrix_subrow(w->R, top + j + 1, top + 1, w->size - top - 1); } else { xv = gsl_matrix_subrow(R, j, 1, N - 1); yv = gsl_matrix_subrow(R, j + 1, 1, N - 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Q) { xv = gsl_matrix_column(w->Q, top + j); yv = gsl_matrix_column(w->Q, top + j + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } /* gen_tri_split_top() */ /* gen_tri_chase_zero() This routine is called when an element on the diagonal of R has become negligible. Chase the zero to the bottom of the active block so we can split off a 1-by-1 block. Inputs: H - upper hessenberg matrix R - upper triangular matrix q - index such that R(q,q) = 0 (q must be > 0) w - workspace */ static inline void gen_tri_chase_zero(gsl_matrix *H, gsl_matrix *R, size_t q, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; size_t j, top; double cs, sn; gsl_vector_view xv, yv; if (w->needtop) top = gen_get_submatrix(w->H, H); for (j = q; j < N - 1; ++j) { create_givens(gsl_matrix_get(R, j, j + 1), gsl_matrix_get(R, j + 1, j + 1), &cs, &sn); sn = -sn; if (w->compute_t) { xv = gsl_matrix_subrow(w->R, top + j, top + j + 1, w->size - top - j - 1); yv = gsl_matrix_subrow(w->R, top + j + 1, top + j + 1, w->size - top - j - 1); } else { xv = gsl_matrix_subrow(R, j, j + 1, N - j - 1); yv = gsl_matrix_subrow(R, j + 1, j + 1, N - j - 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); gsl_matrix_set(R, j + 1, j + 1, 0.0); if (w->compute_s) { xv = gsl_matrix_subrow(w->H, top + j, top + j - 1, w->size - top - j + 1); yv = gsl_matrix_subrow(w->H, top + j + 1, top + j - 1, w->size - top - j + 1); } else { xv = gsl_matrix_subrow(H, j, j - 1, N - j + 1); yv = gsl_matrix_subrow(H, j + 1, j - 1, N - j + 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Q) { /* accumulate Q */ xv = gsl_matrix_column(w->Q, top + j); yv = gsl_matrix_column(w->Q, top + j + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } create_givens(gsl_matrix_get(H, j + 1, j), gsl_matrix_get(H, j + 1, j - 1), &cs, &sn); sn = -sn; if (w->compute_s) { xv = gsl_matrix_subcolumn(w->H, top + j, 0, top + j + 2); yv = gsl_matrix_subcolumn(w->H, top + j - 1, 0, top + j + 2); } else { xv = gsl_matrix_subcolumn(H, j, 0, j + 2); yv = gsl_matrix_subcolumn(H, j - 1, 0, j + 2); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); gsl_matrix_set(H, j + 1, j - 1, 0.0); if (w->compute_t) { xv = gsl_matrix_subcolumn(w->R, top + j, 0, top + j + 1); yv = gsl_matrix_subcolumn(w->R, top + j - 1, 0, top + j + 1); } else { xv = gsl_matrix_subcolumn(R, j, 0, j + 1); yv = gsl_matrix_subcolumn(R, j - 1, 0, j + 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Z) { /* accumulate Z */ xv = gsl_matrix_column(w->Z, top + j); yv = gsl_matrix_column(w->Z, top + j - 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } } /* gen_tri_chase_zero() */ /* gen_tri_zero_H() Companion function to get_tri_chase_zero(). After the zero on the diagonal of R has been chased to the bottom, we zero the element H(n, n - 1) in order to split off a 1-by-1 block. */ static inline void gen_tri_zero_H(gsl_matrix *H, gsl_matrix *R, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; size_t top; double cs, sn; gsl_vector_view xv, yv; if (w->needtop) top = gen_get_submatrix(w->H, H); create_givens(gsl_matrix_get(H, N - 1, N - 1), gsl_matrix_get(H, N - 1, N - 2), &cs, &sn); sn = -sn; if (w->compute_s) { xv = gsl_matrix_subcolumn(w->H, top + N - 1, 0, top + N); yv = gsl_matrix_subcolumn(w->H, top + N - 2, 0, top + N); } else { xv = gsl_matrix_column(H, N - 1); yv = gsl_matrix_column(H, N - 2); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); gsl_matrix_set(H, N - 1, N - 2, 0.0); if (w->compute_t) { xv = gsl_matrix_subcolumn(w->R, top + N - 1, 0, top + N - 1); yv = gsl_matrix_subcolumn(w->R, top + N - 2, 0, top + N - 1); } else { xv = gsl_matrix_subcolumn(R, N - 1, 0, N - 1); yv = gsl_matrix_subcolumn(R, N - 2, 0, N - 1); } gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (w->Z) { /* accumulate Z */ xv = gsl_matrix_column(w->Z, top + N - 1); yv = gsl_matrix_column(w->Z, top + N - 2); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } /* gen_tri_zero_H() */ /* gen_search_small_elements() This routine searches for small elements in the matrix pencil (H, R) to determine if any eigenvalues have converged. Tests: 1. Test if the Hessenberg matrix has a small subdiagonal element: H(i, i - 1) < tolerance 2. Test if the Triangular matrix has a small diagonal element: R(i, i) < tolerance Possible outcomes: (A) Neither test passed: in this case 'flag' is set to 0 and the function returns 0 (B) Test 1 passes and 2 does not: in this case 'flag' is set to 1 and we return the row index i such that H(i, i - 1) < tol (C) Test 2 passes and 1 does not: in this case 'flag' is set to 2 and we return the index i such that R(i, i) < tol (D) Tests 1 and 2 both pass: in this case 'flag' is set to 3 and we return the index i such that H(i, i - 1) < tol and R(i, i) < tol Inputs: H - upper Hessenberg matrix R - upper Triangular matrix flag - (output) flag set on output (see above) w - workspace Return: see above */ static inline size_t gen_search_small_elements(gsl_matrix *H, gsl_matrix *R, int *flag, gsl_eigen_gen_workspace *w) { const size_t N = H->size1; int k; size_t i; int pass1 = 0; int pass2 = 0; for (k = (int) N - 1; k >= 0; --k) { i = (size_t) k; if (i != 0 && fabs(gsl_matrix_get(H, i, i - 1)) <= w->atol) { gsl_matrix_set(H, i, i - 1, 0.0); pass1 = 1; } if (fabs(gsl_matrix_get(R, i, i)) < w->btol) { gsl_matrix_set(R, i, i, 0.0); pass2 = 1; } if (pass1 && !pass2) /* case B */ { *flag = 1; return (i); } else if (!pass1 && pass2) /* case C */ { *flag = 2; return (i); } else if (pass1 && pass2) /* case D */ { *flag = 3; return (i); } } /* neither test passed: case A */ *flag = 0; return (0); } /* gen_search_subdiag_small_elements() */ /* gen_schur_standardize1() This function is called when a 1-by-1 block has converged - convert the block to standard form and update the Schur forms and vectors if required. Standard form here means that the diagonal element of B is positive. Inputs: A - 1-by-1 matrix in Schur form S B - 1-by-1 matrix in Schur form T alphar - where to store real part of eigenvalue numerator beta - where to store eigenvalue denominator w - workspace Return: success */ static int gen_schur_standardize1(gsl_matrix *A, gsl_matrix *B, double *alphar, double *beta, gsl_eigen_gen_workspace *w) { size_t i; size_t top; /* * it is a 1-by-1 block - the only requirement is that * B_{00} is > 0, so if it isn't apply a -I transformation */ if (gsl_matrix_get(B, 0, 0) < 0.0) { if (w->needtop) top = gen_get_submatrix(w->H, A); if (w->compute_t) { for (i = 0; i <= top; ++i) gsl_matrix_set(w->R, i, top, -gsl_matrix_get(w->R, i, top)); } else gsl_matrix_set(B, 0, 0, -gsl_matrix_get(B, 0, 0)); if (w->compute_s) { for (i = 0; i <= top; ++i) gsl_matrix_set(w->H, i, top, -gsl_matrix_get(w->H, i, top)); } else gsl_matrix_set(A, 0, 0, -gsl_matrix_get(A, 0, 0)); if (w->Z) { for (i = 0; i < w->size; ++i) gsl_matrix_set(w->Z, i, top, -gsl_matrix_get(w->Z, i, top)); } } *alphar = gsl_matrix_get(A, 0, 0); *beta = gsl_matrix_get(B, 0, 0); return GSL_SUCCESS; } /* gen_schur_standardize1() */ /* gen_schur_standardize2() This function is called when a 2-by-2 generalized block has converged. Convert the block to standard form, which means B is rotated so that B = [ B11 0 ] with B11, B22 non-negative [ 0 B22 ] If the resulting block (A, B) has complex eigenvalues, they are computed. Otherwise, the function will return GSL_CONTINUE to notify caller that we need to do more single shift sweeps to convert the 2-by-2 block into two 1-by-1 blocks. Inputs: A - 2-by-2 submatrix of schur form S B - 2-by-2 submatrix of schur form T alpha1 - (output) where to store eigenvalue 1 numerator alpha2 - (output) where to store eigenvalue 2 numerator beta1 - (output) where to store eigenvalue 1 denominator beta2 - (output) where to store eigenvalue 2 denominator w - workspace Return: GSL_SUCCESS if block has complex eigenvalues (they are computed) GSL_CONTINUE if block has real eigenvalues (they are not computed) */ static int gen_schur_standardize2(gsl_matrix *A, gsl_matrix *B, gsl_complex *alpha1, gsl_complex *alpha2, double *beta1, double *beta2, gsl_eigen_gen_workspace *w) { double datB[4], datV[4], datS[2], work[2]; gsl_matrix_view uv = gsl_matrix_view_array(datB, 2, 2); gsl_matrix_view vv = gsl_matrix_view_array(datV, 2, 2); gsl_vector_view sv = gsl_vector_view_array(datS, 2); gsl_vector_view wv = gsl_vector_view_array(work, 2); double B11, B22; size_t top; double det; double cr, sr, cl, sl; gsl_vector_view xv, yv; int s; if (w->needtop) top = gen_get_submatrix(w->H, A); /* * Rotate B so that * * B = [ B11 0 ] * [ 0 B22 ] * * with B11 non-negative */ gsl_matrix_memcpy(&uv.matrix, B); gsl_linalg_SV_decomp(&uv.matrix, &vv.matrix, &sv.vector, &wv.vector); /* * Right now, B = U S V^t, where S = diag(s) * * The SVD routine may have computed reflection matrices U and V, * but it would be much nicer to have rotations since we won't have * to use BLAS mat-mat multiplications to update our matrices, * and can instead use drot. So convert them to rotations if * necessary */ det = gsl_matrix_get(&vv.matrix, 0, 0) * gsl_matrix_get(&vv.matrix, 1, 1) - gsl_matrix_get(&vv.matrix, 0, 1) * gsl_matrix_get(&vv.matrix, 1, 0); if (det < 0.0) { /* V is a reflection, convert it to a rotation by inserting * F = [1 0; 0 -1] so that: * * B = U S [1 0] [1 0] V^t * [0 -1] [0 -1] * * so S -> S F and V -> V F where F is the reflection matrix * We just need to invert S22 since the first column of V * will remain unchanged and we can just read off the CS and SN * parameters. */ datS[1] = -datS[1]; } cr = gsl_matrix_get(&vv.matrix, 0, 0); sr = gsl_matrix_get(&vv.matrix, 1, 0); /* same for U */ det = gsl_matrix_get(&uv.matrix, 0, 0) * gsl_matrix_get(&uv.matrix, 1, 1) - gsl_matrix_get(&uv.matrix, 0, 1) * gsl_matrix_get(&uv.matrix, 1, 0); if (det < 0.0) datS[1] = -datS[1]; cl = gsl_matrix_get(&uv.matrix, 0, 0); sl = gsl_matrix_get(&uv.matrix, 1, 0); B11 = gsl_vector_get(&sv.vector, 0); B22 = gsl_vector_get(&sv.vector, 1); /* make sure B11 is positive */ if (B11 < 0.0) { B11 = -B11; B22 = -B22; cr = -cr; sr = -sr; } /* * At this point, * * [ S11 0 ] = [ CSL SNL ] B [ CSR -SNR ] * [ 0 S22 ] [-SNL CSL ] [ SNR CSR ] * * apply rotations to H and rest of R */ if (w->compute_s) { xv = gsl_matrix_subrow(w->H, top, top, w->size - top); yv = gsl_matrix_subrow(w->H, top + 1, top, w->size - top); gsl_blas_drot(&xv.vector, &yv.vector, cl, sl); xv = gsl_matrix_subcolumn(w->H, top, 0, top + 2); yv = gsl_matrix_subcolumn(w->H, top + 1, 0, top + 2); gsl_blas_drot(&xv.vector, &yv.vector, cr, sr); } else { xv = gsl_matrix_row(A, 0); yv = gsl_matrix_row(A, 1); gsl_blas_drot(&xv.vector, &yv.vector, cl, sl); xv = gsl_matrix_column(A, 0); yv = gsl_matrix_column(A, 1); gsl_blas_drot(&xv.vector, &yv.vector, cr, sr); } if (w->compute_t) { if (top != (w->size - 2)) { xv = gsl_matrix_subrow(w->R, top, top + 2, w->size - top - 2); yv = gsl_matrix_subrow(w->R, top + 1, top + 2, w->size - top - 2); gsl_blas_drot(&xv.vector, &yv.vector, cl, sl); } if (top != 0) { xv = gsl_matrix_subcolumn(w->R, top, 0, top); yv = gsl_matrix_subcolumn(w->R, top + 1, 0, top); gsl_blas_drot(&xv.vector, &yv.vector, cr, sr); } } if (w->Q) { xv = gsl_matrix_column(w->Q, top); yv = gsl_matrix_column(w->Q, top + 1); gsl_blas_drot(&xv.vector, &yv.vector, cl, sl); } if (w->Z) { xv = gsl_matrix_column(w->Z, top); yv = gsl_matrix_column(w->Z, top + 1); gsl_blas_drot(&xv.vector, &yv.vector, cr, sr); } gsl_matrix_set(B, 0, 0, B11); gsl_matrix_set(B, 0, 1, 0.0); gsl_matrix_set(B, 1, 0, 0.0); gsl_matrix_set(B, 1, 1, B22); /* if B22 is < 0, make it positive by negating its column */ if (B22 < 0.0) { size_t i; if (w->compute_s) { for (i = 0; i < top + 2; ++i) gsl_matrix_set(w->H, i, top + 1, -gsl_matrix_get(w->H, i, top + 1)); } else { gsl_matrix_set(A, 0, 1, -gsl_matrix_get(A, 0, 1)); gsl_matrix_set(A, 1, 1, -gsl_matrix_get(A, 1, 1)); } if (w->compute_t) { for (i = 0; i < top + 2; ++i) gsl_matrix_set(w->R, i, top + 1, -gsl_matrix_get(w->R, i, top + 1)); } else { gsl_matrix_set(B, 0, 1, -gsl_matrix_get(B, 0, 1)); gsl_matrix_set(B, 1, 1, -gsl_matrix_get(B, 1, 1)); } if (w->Z) { xv = gsl_matrix_column(w->Z, top + 1); gsl_vector_scale(&xv.vector, -1.0); } } /* our block is now in standard form - compute eigenvalues */ s = gen_compute_eigenvals(A, B, alpha1, alpha2, beta1, beta2); return s; } /* gen_schur_standardize2() */ /* gen_compute_eigenvals() Compute the complex eigenvalues of a 2-by-2 block Return: GSL_CONTINUE if block contains real eigenvalues (they are not computed) GSL_SUCCESS on normal completion */ static int gen_compute_eigenvals(gsl_matrix *A, gsl_matrix *B, gsl_complex *alpha1, gsl_complex *alpha2, double *beta1, double *beta2) { double wr1, wr2, wi, scale1, scale2; double s1inv; double A11, A12, A21, A22; double B11, B22; double c11r, c11i, c12, c21, c22r, c22i; double cz, cq; double szr, szi, sqr, sqi; double a1r, a1i, a2r, a2i, b1r, b1i, b1a, b2r, b2i, b2a; double alphar, alphai; double t1, an, bn, tempr, tempi, wabs; /* * This function is called from gen_schur_standardize2() and * its possible the standardization has perturbed the eigenvalues * onto the real line - so check for this before computing them */ gsl_schur_gen_eigvals(A, B, &wr1, &wr2, &wi, &scale1, &scale2); if (wi == 0.0) return GSL_CONTINUE; /* real eigenvalues - continue QZ iteration */ /* complex eigenvalues - compute alpha and beta */ s1inv = 1.0 / scale1; A11 = gsl_matrix_get(A, 0, 0); A12 = gsl_matrix_get(A, 0, 1); A21 = gsl_matrix_get(A, 1, 0); A22 = gsl_matrix_get(A, 1, 1); B11 = gsl_matrix_get(B, 0, 0); B22 = gsl_matrix_get(B, 1, 1); c11r = scale1 * A11 - wr1 * B11; c11i = -wi * B11; c12 = scale1 * A12; c21 = scale1 * A21; c22r = scale1 * A22 - wr1 * B22; c22i = -wi * B22; if (fabs(c11r) + fabs(c11i) + fabs(c12) > fabs(c21) + fabs(c22r) + fabs(c22i)) { t1 = gsl_hypot3(c12, c11r, c11i); if (t1 != 0.0) { cz = c12 / t1; szr = -c11r / t1; szi = -c11i / t1; } else { cz = 0.0; szr = 1.0; szi = 0.0; } } else { cz = hypot(c22r, c22i); if (cz <= GSL_DBL_MIN) { cz = 0.0; szr = 1.0; szi = 0.0; } else { tempr = c22r / cz; tempi = c22i / cz; t1 = hypot(cz, c21); cz /= t1; szr = -c21*tempr / t1; szi = c21*tempi / t1; } } an = fabs(A11) + fabs(A12) + fabs(A21) + fabs(A22); bn = fabs(B11) + fabs(B22); wabs = fabs(wr1) + fabs(wi); if (scale1*an > wabs*bn) { cq = cz * B11; if (cq <= GSL_DBL_MIN) { cq = 0.0; sqr = 1.0; sqi = 0.0; } else { sqr = szr * B22; sqi = -szi * B22; } } else { a1r = cz * A11 + szr * A12; a1i = szi * A12; a2r = cz * A21 + szr * A22; a2i = szi * A22; cq = hypot(a1r, a1i); if (cq <= GSL_DBL_MIN) { cq = 0.0; sqr = 1.0; sqi = 0.0; } else { tempr = a1r / cq; tempi = a1i / cq; sqr = tempr * a2r + tempi * a2i; sqi = tempi * a2r - tempr * a2i; } } t1 = gsl_hypot3(cq, sqr, sqi); cq /= t1; sqr /= t1; sqi /= t1; tempr = sqr*szr - sqi*szi; tempi = sqr*szi + sqi*szr; b1r = cq*cz*B11 + tempr*B22; b1i = tempi*B22; b1a = hypot(b1r, b1i); b2r = cq*cz*B22 + tempr*B11; b2i = -tempi*B11; b2a = hypot(b2r, b2i); *beta1 = b1a; *beta2 = b2a; alphar = (wr1 * b1a) * s1inv; alphai = (wi * b1a) * s1inv; GSL_SET_COMPLEX(alpha1, alphar, alphai); alphar = (wr1 * b2a) * s1inv; alphai = -(wi * b2a) * s1inv; GSL_SET_COMPLEX(alpha2, alphar, alphai); return GSL_SUCCESS; } /* gen_compute_eigenvals() */ /* gen_store_eigval1() Store eigenvalue of a 1-by-1 block into the alpha and beta output vectors. This routine ensures that eigenvalues are stored in the same order as they appear in the Schur form and updates various internal workspace quantities. */ static void gen_store_eigval1(const gsl_matrix *H, const double a, const double b, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w) { size_t top = gen_get_submatrix(w->H, H); gsl_complex z; GSL_SET_COMPLEX(&z, a, 0.0); gsl_vector_complex_set(alpha, top, z); gsl_vector_set(beta, top, b); w->n_evals += 1; w->n_iter = 0; w->eshift = 0.0; } /* gen_store_eigval1() */ /* gen_store_eigval2() Store eigenvalues of a 2-by-2 block into the alpha and beta output vectors. This routine ensures that eigenvalues are stored in the same order as they appear in the Schur form and updates various internal workspace quantities. */ static void gen_store_eigval2(const gsl_matrix *H, const gsl_complex *alpha1, const double beta1, const gsl_complex *alpha2, const double beta2, gsl_vector_complex *alpha, gsl_vector *beta, gsl_eigen_gen_workspace *w) { size_t top = gen_get_submatrix(w->H, H); gsl_vector_complex_set(alpha, top, *alpha1); gsl_vector_set(beta, top, beta1); gsl_vector_complex_set(alpha, top + 1, *alpha2); gsl_vector_set(beta, top + 1, beta2); w->n_evals += 2; w->n_iter = 0; w->eshift = 0.0; } /* gen_store_eigval2() */ /* gen_get_submatrix() B is a submatrix of A. The goal of this function is to compute the indices in A of where the matrix B resides */ static inline size_t gen_get_submatrix(const gsl_matrix *A, const gsl_matrix *B) { size_t diff; double ratio; size_t top; diff = (size_t) (B->data - A->data); /* B is on the diagonal of A, so measure distance in units of tda+1 */ ratio = (double)diff / ((double) (A->tda + 1)); top = (size_t) floor(ratio); return top; } /* gen_get_submatrix() */ /* Frobenius norm */ inline static double normF (gsl_matrix * A) { size_t i, j, M = A->size1, N = A->size2; double sum = 0.0, scale = 0.0, ssq = 1.0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { double Aij = gsl_matrix_get (A, i, j); if (Aij != 0.0) { double ax = fabs (Aij); if (scale < ax) { ssq = 1.0 + ssq * (scale / ax) * (scale / ax); scale = ax; } else { ssq += (ax / scale) * (ax / scale); } } } } sum = scale * sqrt (ssq); return sum; } /* Generate a Givens rotation (cos,sin) which takes v=(x,y) to (|v|,0) From Golub and Van Loan, "Matrix Computations", Section 5.1.8 */ inline static void create_givens (const double a, const double b, double *c, double *s) { if (b == 0) { *c = 1; *s = 0; } else if (fabs (b) > fabs (a)) { double t = -a / b; double s1 = 1.0 / sqrt (1 + t * t); *s = s1; *c = s1 * t; } else { double t = -b / a; double c1 = 1.0 / sqrt (1 + t * t); *c = c1; *s = c1 * t; } } gsl-1.16/eigen/qrstep.c0000664000252300025230000001045512171574312011730 00000000000000/* eigen/qrstep.c * * Copyright (C) 2007, 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* remove off-diagonal elements which are neglegible compared with the neighboring diagonal elements */ static void chop_small_elements (const size_t N, const double d[], double sd[]) { double d_i = d[0]; size_t i; for (i = 0; i < N - 1; i++) { double sd_i = sd[i]; double d_ip1 = d[i + 1]; if (fabs (sd_i) < GSL_DBL_EPSILON * (fabs (d_i) + fabs (d_ip1))) { sd[i] = 0.0; } d_i = d_ip1; } } /* Generate a Givens rotation (cos,sin) which takes v=(x,y) to (|v|,0) From Golub and Van Loan, "Matrix Computations", Section 5.1.8 */ inline static void create_givens (const double a, const double b, double *c, double *s) { if (b == 0) { *c = 1; *s = 0; } else if (fabs (b) > fabs (a)) { double t = -a / b; double s1 = 1.0 / sqrt (1 + t * t); *s = s1; *c = s1 * t; } else { double t = -b / a; double c1 = 1.0 / sqrt (1 + t * t); *c = c1; *s = c1 * t; } } inline static double trailing_eigenvalue (const size_t n, const double d[], const double sd[]) { double ta = d[n - 2]; double tb = d[n - 1]; double tab = sd[n - 2]; double dt = (ta - tb) / 2.0; double mu; if (dt > 0) { mu = tb - tab * (tab / (dt + hypot (dt, tab))); } else if (dt == 0) { mu = tb - fabs(tab); } else { mu = tb + tab * (tab / ((-dt) + hypot (dt, tab))); } return mu; } static void qrstep (const size_t n, double d[], double sd[], double gc[], double gs[]) { double x, z; double ak, bk, zk, ap, bp, aq, bq; size_t k; double mu = trailing_eigenvalue (n, d, sd); /* If mu is large relative to d_0 and sd_0 then the Givens rotation will have no effect, leading to an infinite loop. We set mu to zero in this case, which at least diagonalises the submatrix [d_0, sd_0 ; sd_0, d_0] and allows further progress. */ if (GSL_DBL_EPSILON * fabs(mu) > (fabs(d[0]) + fabs(sd[0]))) { mu = 0; } x = d[0] - mu; z = sd[0]; ak = 0; bk = 0; zk = 0; ap = d[0]; bp = sd[0]; aq = d[1]; if (n == 2) { double c, s; create_givens (x, z, &c, &s); if (gc != NULL) gc[0] = c; if (gs != NULL) gs[0] = s; { double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp); double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq); double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq); ak = ap1; bk = bp1; ap = aq1; } d[0] = ak; sd[0] = bk; d[1] = ap; return; } bq = sd[1]; for (k = 0; k < n - 1; k++) { double c, s; create_givens (x, z, &c, &s); /* store Givens rotation */ if (gc != NULL) gc[k] = c; if (gs != NULL) gs[k] = s; /* compute G' T G */ { double bk1 = c * bk - s * zk; double ap1 = c * (c * ap - s * bp) + s * (s * aq - c * bp); double bp1 = c * (s * ap + c * bp) - s * (s * bp + c * aq); double zp1 = -s * bq; double aq1 = s * (s * ap + c * bp) + c * (s * bp + c * aq); double bq1 = c * bq; ak = ap1; bk = bp1; zk = zp1; ap = aq1; bp = bq1; if (k < n - 2) aq = d[k + 2]; if (k < n - 3) bq = sd[k + 2]; d[k] = ak; if (k > 0) sd[k - 1] = bk1; if (k < n - 2) sd[k + 1] = bp; x = bk; z = zk; } } /* k = n - 1 */ d[k] = ap; sd[k - 1] = bk; } gsl-1.16/eigen/genhermv.c0000664000252300025230000001252612171574312012226 00000000000000/* eigen/genhermv.c * * Copyright (C) 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues and eigenvectors of a complex * generalized hermitian-definite eigensystem A x = \lambda B x, where * A and B are hermitian, and B is positive-definite. */ static void genhermv_normalize_eigenvectors(gsl_matrix_complex *evec); /* gsl_eigen_genhermv_alloc() Allocate a workspace for solving the generalized hermitian-definite eigenvalue problem. The size of this workspace is O(5n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_genhermv_workspace * gsl_eigen_genhermv_alloc(const size_t n) { gsl_eigen_genhermv_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_genhermv_workspace *) calloc (1, sizeof (gsl_eigen_genhermv_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->hermv_workspace_p = gsl_eigen_hermv_alloc(n); if (!w->hermv_workspace_p) { gsl_eigen_genhermv_free(w); GSL_ERROR_NULL("failed to allocate space for hermv workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_genhermv_alloc() */ /* gsl_eigen_genhermv_free() Free workspace w */ void gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * w) { RETURN_IF_NULL (w); if (w->hermv_workspace_p) gsl_eigen_hermv_free(w->hermv_workspace_p); free(w); } /* gsl_eigen_genhermv_free() */ /* gsl_eigen_genhermv() Solve the generalized hermitian-definite eigenvalue problem A x = \lambda B x for the eigenvalues \lambda and eigenvectors x. Inputs: A - complex hermitian matrix B - complex hermitian and positive definite matrix eval - where to store eigenvalues evec - where to store eigenvectors w - workspace Return: success or error */ int gsl_eigen_genhermv (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_genhermv_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (evec->size1 != N) { GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else { int s; /* compute Cholesky factorization of B */ s = gsl_linalg_complex_cholesky_decomp(B); if (s != GSL_SUCCESS) return s; /* B is not positive definite */ /* transform to standard hermitian eigenvalue problem */ gsl_eigen_genherm_standardize(A, B); /* compute eigenvalues and eigenvectors */ s = gsl_eigen_hermv(A, eval, evec, w->hermv_workspace_p); if (s != GSL_SUCCESS) return s; /* backtransform eigenvectors: evec -> L^{-H} evec */ gsl_blas_ztrsm(CblasLeft, CblasLower, CblasConjTrans, CblasNonUnit, GSL_COMPLEX_ONE, B, evec); /* the blas call destroyed the normalization - renormalize */ genhermv_normalize_eigenvectors(evec); return GSL_SUCCESS; } } /* gsl_eigen_genhermv() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* genhermv_normalize_eigenvectors() Normalize eigenvectors so that their Euclidean norm is 1 Inputs: evec - eigenvectors */ static void genhermv_normalize_eigenvectors(gsl_matrix_complex *evec) { const size_t N = evec->size1; size_t i; /* looping */ for (i = 0; i < N; ++i) { gsl_vector_complex_view vi = gsl_matrix_complex_column(evec, i); double scale = 1.0 / gsl_blas_dznrm2(&vi.vector); gsl_blas_zdscal(scale, &vi.vector); } } /* genhermv_normalize_eigenvectors() */ gsl-1.16/eigen/Makefile.in0000664000252300025230000010677012172253755012327 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = eigen DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgsleigen_la_LIBADD = am_libgsleigen_la_OBJECTS = jacobi.lo symm.lo symmv.lo nonsymm.lo \ nonsymmv.lo herm.lo hermv.lo gensymm.lo gensymmv.lo genherm.lo \ genhermv.lo gen.lo genv.lo sort.lo francis.lo schur.lo libgsleigen_la_OBJECTS = $(am_libgsleigen_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgsleigen.la ../test/libgsltest.la \ ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la \ ../blas/libgslblas.la ../cblas/libgslcblas.la \ ../matrix/libgslmatrix.la ../vector/libgslvector.la \ ../block/libgslblock.la ../complex/libgslcomplex.la \ ../ieee-utils/libgslieeeutils.la ../sys/libgslsys.la \ ../err/libgslerr.la ../utils/libutils.la ../rng/libgslrng.la \ ../sort/libgslsort.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsleigen_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgsleigen_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgsleigen.la pkginclude_HEADERS = gsl_eigen.h libgsleigen_la_SOURCES = jacobi.c symm.c symmv.c nonsymm.c nonsymmv.c herm.c hermv.c gensymm.c gensymmv.c genherm.c genhermv.c gen.c genv.c sort.c francis.c schur.c INCLUDES = -I$(top_srcdir) noinst_HEADERS = qrstep.c TESTS = $(check_PROGRAMS) test_LDADD = libgsleigen.la ../test/libgsltest.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../sys/libgslsys.la ../err/libgslerr.la ../utils/libutils.la ../rng/libgslrng.la ../sort/libgslsort.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu eigen/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu eigen/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsleigen.la: $(libgsleigen_la_OBJECTS) $(libgsleigen_la_DEPENDENCIES) $(EXTRA_libgsleigen_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgsleigen_la_OBJECTS) $(libgsleigen_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/francis.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gen.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/genherm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/genhermv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gensymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gensymmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/genv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/herm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hermv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/jacobi.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/nonsymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/nonsymmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/schur.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sort.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/symm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/symmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/eigen/symmv.c0000664000252300025230000001345112171574312011564 00000000000000/* eigen/symmv.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* Compute eigenvalues/eigenvectors of real symmetric matrix using reduction to tridiagonal form, followed by QR iteration with implicit shifts. See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include "qrstep.c" gsl_eigen_symmv_workspace * gsl_eigen_symmv_alloc (const size_t n) { gsl_eigen_symmv_workspace * w ; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w= ((gsl_eigen_symmv_workspace *) malloc (sizeof(gsl_eigen_symmv_workspace))); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->d = (double *) malloc (n * sizeof (double)); if (w->d == 0) { GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM); } w->sd = (double *) malloc (n * sizeof (double)); if (w->sd == 0) { GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM); } w->gc = (double *) malloc (n * sizeof (double)); if (w->gc == 0) { GSL_ERROR_NULL ("failed to allocate space for cosines", GSL_ENOMEM); } w->gs = (double *) malloc (n * sizeof (double)); if (w->gs == 0) { GSL_ERROR_NULL ("failed to allocate space for sines", GSL_ENOMEM); } w->size = n; return w; } void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * w) { RETURN_IF_NULL (w); free(w->gs); free(w->gc); free(w->sd); free(w->d); free(w); } int gsl_eigen_symmv (gsl_matrix * A, gsl_vector * eval, gsl_matrix * evec, gsl_eigen_symmv_workspace * w) { if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != A->size1 || evec->size2 != A->size1) { GSL_ERROR ("eigenvector matrix must match matrix size", GSL_EBADLEN); } else { double *const d = w->d; double *const sd = w->sd; const size_t N = A->size1; size_t a, b; /* handle special case */ if (N == 1) { double A00 = gsl_matrix_get (A, 0, 0); gsl_vector_set (eval, 0, A00); gsl_matrix_set (evec, 0, 0, 1.0); return GSL_SUCCESS; } /* use sd as the temporary workspace for the decomposition when computing eigenvectors */ { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1); gsl_vector_view tau = gsl_vector_view_array (sd, N - 1); gsl_linalg_symmtd_decomp (A, &tau.vector); gsl_linalg_symmtd_unpack (A, &tau.vector, evec, &d_vec.vector, &sd_vec.vector); } /* Make an initial pass through the tridiagonal decomposition to remove off-diagonal elements which are effectively zero */ chop_small_elements (N, d, sd); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (sd[b - 1] == 0.0 || isnan(sd[b - 1])) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (sd[a - 1] == 0.0) { break; } a--; } { size_t i; const size_t n_block = b - a + 1; double *d_block = d + a; double *sd_block = sd + a; double * const gc = w->gc; double * const gs = w->gs; /* apply QR reduction with implicit deflation to the unreduced block */ qrstep (n_block, d_block, sd_block, gc, gs); /* Apply Givens rotation Gij(c,s) to matrix Q, Q <- Q G */ for (i = 0; i < n_block - 1; i++) { const double c = gc[i], s = gs[i]; size_t k; for (k = 0; k < N; k++) { double qki = gsl_matrix_get (evec, k, a + i); double qkj = gsl_matrix_get (evec, k, a + i + 1); gsl_matrix_set (evec, k, a + i, qki * c - qkj * s); gsl_matrix_set (evec, k, a + i + 1, qki * s + qkj * c); } } /* remove any small off-diagonal elements */ chop_small_elements (N, d, sd); } } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_memcpy (eval, &d_vec.vector); } return GSL_SUCCESS; } } gsl-1.16/eigen/ChangeLog0000664000252300025230000001055412171574312012020 000000000000002011-03-27 Brian Gough * jacobi.c (norm): compute norm of off-diagonal elements only as per algorithm 8.4.3 in Golub and van Loan 2009-11-26 Brian Gough * qrstep.c (qrstep): handle the case where |mu| >> |d0| + |sd0| to prevent infinite loop 2009-07-09 Brian Gough * symmv.c (gsl_eigen_symmv_free): handle NULL argument in free * symm.c (gsl_eigen_symm_free): handle NULL argument in free * nonsymmv.c (gsl_eigen_nonsymmv_free): handle NULL argument in free * nonsymm.c (gsl_eigen_nonsymm_free): handle NULL argument in free * hermv.c (gsl_eigen_hermv_free): handle NULL argument in free * herm.c (gsl_eigen_herm_free): handle NULL argument in free * genv.c (gsl_eigen_genv_free): handle NULL argument in free * gensymmv.c (gsl_eigen_gensymmv_free): handle NULL argument in free * gensymm.c (gsl_eigen_gensymm_free): handle NULL argument in free * genhermv.c (gsl_eigen_genhermv_free): handle NULL argument in free * genherm.c (gsl_eigen_genherm_free): handle NULL argument in free * gen.c (gsl_eigen_gen_free): handle NULL argument in free * francis.c (gsl_eigen_francis_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-08-30 Brian Gough * test.c (test_eigen_symm): added new test case for underflow * qrstep.c (trailing_eigenvalue): handle underflow for small tab, also handle dt==0 directly. 2007-07-30 Brian Gough * testgen.c (main): use gsl_finite instead of finite 2006-09-14 Brian Gough * test.c (test_eigen_symm): fix duplicate VAL_DESC to ABS_DESC (test_eigen_herm): fix duplicate VAL_DESC to ABS_DESC 2006-08-14 Brian Gough * unsymm.c (gsl_eigen_unsymm): support for unsymmetric matrices (P.Alken) 2006-04-18 Brian Gough * test.c (test_eigenvalues): increase error bound 2006-03-26 Brian Gough * jacobi.c (gsl_eigen_invert_jacobi): use unsigned int for nrot consistently 2005-08-22 Brian Gough * test.c (test_eigenvalues): increased test tolerance 2004-12-03 Brian Gough * jacobi.c (gsl_eigen_jacobi): use algorithm from Golub and Van Loan (gsl_eigen_invert_jacobi): new code 2003-01-02 Brian Gough * symmv.c (gsl_eigen_symmv): change gsl_isnan to isnan * symm.c (gsl_eigen_symm): change gsl_isnan to isnan * hermv.c (gsl_eigen_hermv): change gsl_isnan to isnan * herm.c (gsl_eigen_herm): change gsl_isnan to isnan 2002-11-16 Brian Gough * symm.c (gsl_eigen_symm): prevent infinite loop for NaNs * herm.c (gsl_eigen_herm): prevent infinite loop for NaNs * symmv.c (gsl_eigen_symmv): prevent infinite loop for NaNs * hermv.c (gsl_eigen_hermv): prevent infinite loop for NaNs Fri Oct 18 17:58:35 2002 Brian Gough * test.c (main): added test cases to catch division by zero (beta_r=0) in householdercomplex.c Wed Aug 28 19:05:54 2002 Brian Gough * Makefile.am (test_LDADD): fix link order to have libgslsys near end Thu Aug 2 18:17:58 2001 Brian Gough * hermv.c (gsl_eigen_hermv): fixed index bug in accumulation of evec. * symmv.c (gsl_eigen_symmv): fixed index bug in accumulation of evec. * test.c (main): added two new test cases * qrstep.c (trailing_eigenvalue): chose better value of mu when dt=0, prevents infinite loop. Sun Jul 1 22:43:45 2001 Brian Gough * modified to use new-style vector views Wed Jun 20 12:30:38 2001 Brian Gough * hermv.c (gsl_eigen_hermv): additional workspace argument no longer required Mon Apr 23 10:31:01 2001 Brian Gough * unified error handling conventions to _e for error handling functions and no suffix for plain functions, so _impl functions are no longer needed. * removed tests for EFAULT, since EFAULT should only apply to invalid non-null pointers. Fri Apr 13 20:33:18 2001 Brian Gough * eigen/test.c (test_invert_jacobi): removed matmult and replaced by gsl_blas_dgemm gsl-1.16/eigen/gensymm.c0000664000252300025230000001250112171574312012063 00000000000000/* eigen/gensymm.c * * Copyright (C) 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues of a real generalized * symmetric-definite eigensystem A x = \lambda B x, where A and * B are symmetric, and B is positive-definite. */ /* gsl_eigen_gensymm_alloc() Allocate a workspace for solving the generalized symmetric-definite eigenvalue problem. The size of this workspace is O(2n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_gensymm_workspace * gsl_eigen_gensymm_alloc(const size_t n) { gsl_eigen_gensymm_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_gensymm_workspace *) calloc (1, sizeof (gsl_eigen_gensymm_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->symm_workspace_p = gsl_eigen_symm_alloc(n); if (!w->symm_workspace_p) { gsl_eigen_gensymm_free(w); GSL_ERROR_NULL("failed to allocate space for symm workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_gensymm_alloc() */ /* gsl_eigen_gensymm_free() Free workspace w */ void gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * w) { RETURN_IF_NULL (w); if (w->symm_workspace_p) gsl_eigen_symm_free(w->symm_workspace_p); free(w); } /* gsl_eigen_gensymm_free() */ /* gsl_eigen_gensymm() Solve the generalized symmetric-definite eigenvalue problem A x = \lambda B x for the eigenvalues \lambda. Inputs: A - real symmetric matrix B - real symmetric and positive definite matrix eval - where to store eigenvalues w - workspace Return: success or error */ int gsl_eigen_gensymm (gsl_matrix * A, gsl_matrix * B, gsl_vector * eval, gsl_eigen_gensymm_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else { int s; /* compute Cholesky factorization of B */ s = gsl_linalg_cholesky_decomp(B); if (s != GSL_SUCCESS) return s; /* B is not positive definite */ /* transform to standard symmetric eigenvalue problem */ gsl_eigen_gensymm_standardize(A, B); s = gsl_eigen_symm(A, eval, w->symm_workspace_p); return s; } } /* gsl_eigen_gensymm() */ /* gsl_eigen_gensymm_standardize() Reduce the generalized symmetric-definite eigenproblem to the standard symmetric eigenproblem by computing C = L^{-1} A L^{-t} where L L^t is the Cholesky decomposition of B Inputs: A - (input/output) real symmetric matrix B - real symmetric, positive definite matrix in Cholesky form Return: success Notes: A is overwritten by L^{-1} A L^{-t} */ int gsl_eigen_gensymm_standardize(gsl_matrix *A, const gsl_matrix *B) { const size_t N = A->size1; size_t i; double a, b, c; for (i = 0; i < N; ++i) { /* update lower triangle of A(i:n, i:n) */ a = gsl_matrix_get(A, i, i); b = gsl_matrix_get(B, i, i); a /= b * b; gsl_matrix_set(A, i, i, a); if (i < N - 1) { gsl_vector_view ai = gsl_matrix_subcolumn(A, i, i + 1, N - i - 1); gsl_matrix_view ma = gsl_matrix_submatrix(A, i + 1, i + 1, N - i - 1, N - i - 1); gsl_vector_const_view bi = gsl_matrix_const_subcolumn(B, i, i + 1, N - i - 1); gsl_matrix_const_view mb = gsl_matrix_const_submatrix(B, i + 1, i + 1, N - i - 1, N - i - 1); gsl_blas_dscal(1.0 / b, &ai.vector); c = -0.5 * a; gsl_blas_daxpy(c, &bi.vector, &ai.vector); gsl_blas_dsyr2(CblasLower, -1.0, &ai.vector, &bi.vector, &ma.matrix); gsl_blas_daxpy(c, &bi.vector, &ai.vector); gsl_blas_dtrsv(CblasLower, CblasNoTrans, CblasNonUnit, &mb.matrix, &ai.vector); } } return GSL_SUCCESS; } /* gsl_eigen_gensymm_standardize() */ gsl-1.16/eigen/Makefile.am0000664000252300025230000000140112171574312012271 00000000000000noinst_LTLIBRARIES = libgsleigen.la check_PROGRAMS = test pkginclude_HEADERS = gsl_eigen.h libgsleigen_la_SOURCES = jacobi.c symm.c symmv.c nonsymm.c nonsymmv.c herm.c hermv.c gensymm.c gensymmv.c genherm.c genhermv.c gen.c genv.c sort.c francis.c schur.c INCLUDES = -I$(top_srcdir) noinst_HEADERS = qrstep.c TESTS = $(check_PROGRAMS) test_LDADD = libgsleigen.la ../test/libgsltest.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../sys/libgslsys.la ../err/libgslerr.la ../utils/libutils.la ../rng/libgslrng.la ../sort/libgslsort.la test_SOURCES = test.c gsl-1.16/eigen/francis.c0000664000252300025230000007171312171574312012043 00000000000000/* eigen/francis.c * * Copyright (C) 2006, 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This module computes the eigenvalues of a real upper hessenberg * matrix, using the classical double shift Francis QR algorithm. * It will also optionally compute the full Schur form and matrix of * Schur vectors. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), * algorithm 7.5.2 */ /* exceptional shift coefficients - these values are from LAPACK DLAHQR */ #define GSL_FRANCIS_COEFF1 (0.75) #define GSL_FRANCIS_COEFF2 (-0.4375) static inline void francis_schur_decomp(gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w); static inline size_t francis_search_subdiag_small_elements(gsl_matrix * A); static inline int francis_qrstep(gsl_matrix * H, gsl_eigen_francis_workspace * w); static inline void francis_schur_standardize(gsl_matrix *A, gsl_complex *eval1, gsl_complex *eval2, gsl_eigen_francis_workspace *w); static inline size_t francis_get_submatrix(gsl_matrix *A, gsl_matrix *B); static void francis_standard_form(gsl_matrix *A, double *cs, double *sn); /* gsl_eigen_francis_alloc() Allocate a workspace for solving the nonsymmetric eigenvalue problem. The size of this workspace is O(1) Inputs: none Return: pointer to workspace */ gsl_eigen_francis_workspace * gsl_eigen_francis_alloc(void) { gsl_eigen_francis_workspace *w; w = (gsl_eigen_francis_workspace *) calloc (1, sizeof (gsl_eigen_francis_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } /* these are filled in later */ w->size = 0; w->max_iterations = 0; w->n_iter = 0; w->n_evals = 0; w->compute_t = 0; w->Z = NULL; w->H = NULL; return (w); } /* gsl_eigen_francis_alloc() */ /* gsl_eigen_francis_free() Free francis workspace w */ void gsl_eigen_francis_free (gsl_eigen_francis_workspace *w) { RETURN_IF_NULL (w); free(w); } /* gsl_eigen_francis_free() */ /* gsl_eigen_francis_T() Called when we want to compute the Schur form T, or no longer compute the Schur form T Inputs: compute_t - 1 to compute T, 0 to not compute T w - francis workspace */ void gsl_eigen_francis_T (const int compute_t, gsl_eigen_francis_workspace *w) { w->compute_t = compute_t; } /* gsl_eigen_francis() Solve the nonsymmetric eigenvalue problem H x = \lambda x for the eigenvalues \lambda using algorithm 7.5.2 of Golub & Van Loan, "Matrix Computations" (3rd ed) Inputs: H - upper hessenberg matrix eval - where to store eigenvalues w - workspace Return: success or error - if error code is returned, then the QR procedure did not converge in the allowed number of iterations. In the event of non- convergence, the number of eigenvalues found will still be stored in the beginning of eval, Notes: On output, the diagonal of H contains 1-by-1 or 2-by-2 blocks containing the eigenvalues. If T is desired, H will contain the full Schur form on output. */ int gsl_eigen_francis (gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w) { /* check matrix and vector sizes */ if (H->size1 != H->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != H->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else { const size_t N = H->size1; int j; /* * Set internal parameters which depend on matrix size. * The Francis solver can be called with any size matrix * since the workspace does not depend on N. * Furthermore, multishift solvers which call the Francis * solver may need to call it with different sized matrices */ w->size = N; w->max_iterations = 30 * N; /* * save a pointer to original matrix since francis_schur_decomp * is recursive */ w->H = H; w->n_iter = 0; w->n_evals = 0; /* * zero out the first two subdiagonals (below the main subdiagonal) * needed as scratch space by the QR sweep routine */ for (j = 0; j < (int) N - 3; ++j) { gsl_matrix_set(H, (size_t) j + 2, (size_t) j, 0.0); gsl_matrix_set(H, (size_t) j + 3, (size_t) j, 0.0); } if (N > 2) gsl_matrix_set(H, N - 1, N - 3, 0.0); /* * compute Schur decomposition of H and store eigenvalues * into eval */ francis_schur_decomp(H, eval, w); if (w->n_evals != N) { GSL_ERROR ("maximum iterations reached without finding all eigenvalues", GSL_EMAXITER); } return GSL_SUCCESS; } } /* gsl_eigen_francis() */ /* gsl_eigen_francis_Z() Solve the nonsymmetric eigenvalue problem for a Hessenberg matrix H x = \lambda x for the eigenvalues \lambda using the Francis double-shift method. Here we compute the real Schur form T = Q^t H Q with the diagonal blocks of T giving us the eigenvalues. Q is the matrix of Schur vectors. Originally, H was obtained from a general nonsymmetric matrix A via a transformation H = U^t A U so that T = (UQ)^t A (UQ) = Z^t A Z Z is the matrix of Schur vectors computed by this algorithm Inputs: H - upper hessenberg matrix eval - where to store eigenvalues Z - where to store Schur vectors w - workspace Notes: 1) If T is computed, it is stored in H on output. Otherwise, the diagonal of H will contain 1-by-1 and 2-by-2 blocks containing the eigenvalues. 2) The matrix Z must be initialized to the Hessenberg similarity matrix U. Or if you want the eigenvalues of H, initialize Z to the identity matrix. */ int gsl_eigen_francis_Z (gsl_matrix * H, gsl_vector_complex * eval, gsl_matrix * Z, gsl_eigen_francis_workspace * w) { int s; /* set internal Z pointer so we know to accumulate transformations */ w->Z = Z; s = gsl_eigen_francis(H, eval, w); w->Z = NULL; return s; } /* gsl_eigen_francis_Z() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* francis_schur_decomp() Compute the Schur decomposition of the matrix H Inputs: H - hessenberg matrix eval - where to store eigenvalues w - workspace Return: none */ static inline void francis_schur_decomp(gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w) { gsl_matrix_view m; /* active matrix we are working on */ size_t N; /* size of matrix */ size_t q; /* index of small subdiagonal element */ gsl_complex lambda1, /* eigenvalues */ lambda2; N = H->size1; m = gsl_matrix_submatrix(H, 0, 0, N, N); while ((N > 2) && ((w->n_iter)++ < w->max_iterations)) { q = francis_search_subdiag_small_elements(&m.matrix); if (q == 0) { /* * no small subdiagonal element found - perform a QR * sweep on the active reduced hessenberg matrix */ francis_qrstep(&m.matrix, w); continue; } /* * a small subdiagonal element was found - one or two eigenvalues * have converged or the matrix has split into two smaller matrices */ if (q == (N - 1)) { /* * the last subdiagonal element of the matrix is 0 - * m_{NN} is a real eigenvalue */ GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, q, q), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; --N; m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N); } else if (q == (N - 2)) { gsl_matrix_view v; /* * The bottom right 2-by-2 block of m is an eigenvalue * system */ v = gsl_matrix_submatrix(&m.matrix, q, q, 2, 2); francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; N -= 2; m = gsl_matrix_submatrix(&m.matrix, 0, 0, N, N); } else if (q == 1) { /* the first matrix element is an eigenvalue */ GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, 0, 0), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; --N; m = gsl_matrix_submatrix(&m.matrix, 1, 1, N, N); } else if (q == 2) { gsl_matrix_view v; /* the upper left 2-by-2 block is an eigenvalue system */ v = gsl_matrix_submatrix(&m.matrix, 0, 0, 2, 2); francis_schur_standardize(&v.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; N -= 2; m = gsl_matrix_submatrix(&m.matrix, 2, 2, N, N); } else { gsl_matrix_view v; /* * There is a zero element on the subdiagonal somewhere * in the middle of the matrix - we can now operate * separately on the two submatrices split by this * element. q is the row index of the zero element. */ /* operate on lower right (N - q)-by-(N - q) block first */ v = gsl_matrix_submatrix(&m.matrix, q, q, N - q, N - q); francis_schur_decomp(&v.matrix, eval, w); /* operate on upper left q-by-q block */ v = gsl_matrix_submatrix(&m.matrix, 0, 0, q, q); francis_schur_decomp(&v.matrix, eval, w); N = 0; } } /* handle special cases of N = 1 or 2 */ if (N == 1) { GSL_SET_COMPLEX(&lambda1, gsl_matrix_get(&m.matrix, 0, 0), 0.0); gsl_vector_complex_set(eval, w->n_evals, lambda1); w->n_evals += 1; w->n_iter = 0; } else if (N == 2) { francis_schur_standardize(&m.matrix, &lambda1, &lambda2, w); gsl_vector_complex_set(eval, w->n_evals, lambda1); gsl_vector_complex_set(eval, w->n_evals + 1, lambda2); w->n_evals += 2; w->n_iter = 0; } } /* francis_schur_decomp() */ /* francis_qrstep() Perform a Francis QR step. See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 7.5.1 Inputs: H - upper Hessenberg matrix w - workspace Notes: The matrix H must be "reduced", ie: have no tiny subdiagonal elements. When computing the first householder reflection, we divide by H_{21} so it is necessary that this element is not zero. When a subdiagonal element becomes negligible, the calling function should call this routine with the submatrices split by that element, so that we don't divide by zeros. */ static inline int francis_qrstep(gsl_matrix * H, gsl_eigen_francis_workspace * w) { const size_t N = H->size1; size_t i; /* looping */ gsl_matrix_view m; double tau_i; /* householder coefficient */ double dat[3]; /* householder vector */ double scale; /* scale factor to avoid overflow */ gsl_vector_view v2, v3; size_t q, r; size_t top = 0; /* location of H in original matrix */ double s, disc; double h_nn, /* H(n,n) */ h_nm1nm1, /* H(n-1,n-1) */ h_cross, /* H(n,n-1) * H(n-1,n) */ h_tmp1, h_tmp2; v2 = gsl_vector_view_array(dat, 2); v3 = gsl_vector_view_array(dat, 3); if ((w->n_iter % 10) == 0) { /* * exceptional shifts: we have gone 10 iterations * without finding a new eigenvalue, try a new choice of shifts. * See LAPACK routine DLAHQR */ s = fabs(gsl_matrix_get(H, N - 1, N - 2)) + fabs(gsl_matrix_get(H, N - 2, N - 3)); h_nn = gsl_matrix_get(H, N - 1, N - 1) + GSL_FRANCIS_COEFF1 * s; h_nm1nm1 = h_nn; h_cross = GSL_FRANCIS_COEFF2 * s * s; } else { /* * normal shifts - compute Rayleigh quotient and use * Wilkinson shift if possible */ h_nn = gsl_matrix_get(H, N - 1, N - 1); h_nm1nm1 = gsl_matrix_get(H, N - 2, N - 2); h_cross = gsl_matrix_get(H, N - 1, N - 2) * gsl_matrix_get(H, N - 2, N - 1); disc = 0.5 * (h_nm1nm1 - h_nn); disc = disc * disc + h_cross; if (disc > 0.0) { double ave; /* real roots - use Wilkinson's shift twice */ disc = sqrt(disc); ave = 0.5 * (h_nm1nm1 + h_nn); if (fabs(h_nm1nm1) - fabs(h_nn) > 0.0) { h_nm1nm1 = h_nm1nm1 * h_nn - h_cross; h_nn = h_nm1nm1 / (disc * GSL_SIGN(ave) + ave); } else { h_nn = disc * GSL_SIGN(ave) + ave; } h_nm1nm1 = h_nn; h_cross = 0.0; } } h_tmp1 = h_nm1nm1 - gsl_matrix_get(H, 0, 0); h_tmp2 = h_nn - gsl_matrix_get(H, 0, 0); /* * These formulas are equivalent to those in Golub & Van Loan * for the normal shift case - the terms have been rearranged * to reduce possible roundoff error when subdiagonal elements * are small */ dat[0] = (h_tmp1*h_tmp2 - h_cross) / gsl_matrix_get(H, 1, 0) + gsl_matrix_get(H, 0, 1); dat[1] = gsl_matrix_get(H, 1, 1) - gsl_matrix_get(H, 0, 0) - h_tmp1 - h_tmp2; dat[2] = gsl_matrix_get(H, 2, 1); scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]); if (scale != 0.0) { /* scale to prevent overflow or underflow */ dat[0] /= scale; dat[1] /= scale; dat[2] /= scale; } if (w->Z || w->compute_t) { /* * get absolute indices of this (sub)matrix relative to the * original Hessenberg matrix */ top = francis_get_submatrix(w->H, H); } for (i = 0; i < N - 2; ++i) { tau_i = gsl_linalg_householder_transform(&v3.vector); if (tau_i != 0.0) { /* q = max(1, i - 1) */ q = (1 > ((int)i - 1)) ? 0 : (i - 1); /* r = min(i + 3, N - 1) */ r = ((i + 3) < (N - 1)) ? (i + 3) : (N - 1); if (w->compute_t) { /* * We are computing the Schur form T, so we * need to transform the whole matrix H * * H -> P_k^t H P_k * * where P_k is the current Householder matrix */ /* apply left householder matrix (I - tau_i v v') to H */ m = gsl_matrix_submatrix(w->H, top + i, top + q, 3, w->size - top - q); gsl_linalg_householder_hm(tau_i, &v3.vector, &m.matrix); /* apply right householder matrix (I - tau_i v v') to H */ m = gsl_matrix_submatrix(w->H, 0, top + i, top + r + 1, 3); gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix); } else { /* * We are not computing the Schur form T, so we * only need to transform the active block */ /* apply left householder matrix (I - tau_i v v') to H */ m = gsl_matrix_submatrix(H, i, q, 3, N - q); gsl_linalg_householder_hm(tau_i, &v3.vector, &m.matrix); /* apply right householder matrix (I - tau_i v v') to H */ m = gsl_matrix_submatrix(H, 0, i, r + 1, 3); gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix); } if (w->Z) { /* accumulate the similarity transformation into Z */ m = gsl_matrix_submatrix(w->Z, 0, top + i, w->size, 3); gsl_linalg_householder_mh(tau_i, &v3.vector, &m.matrix); } } /* if (tau_i != 0.0) */ dat[0] = gsl_matrix_get(H, i + 1, i); dat[1] = gsl_matrix_get(H, i + 2, i); if (i < (N - 3)) { dat[2] = gsl_matrix_get(H, i + 3, i); } scale = fabs(dat[0]) + fabs(dat[1]) + fabs(dat[2]); if (scale != 0.0) { /* scale to prevent overflow or underflow */ dat[0] /= scale; dat[1] /= scale; dat[2] /= scale; } } /* for (i = 0; i < N - 2; ++i) */ scale = fabs(dat[0]) + fabs(dat[1]); if (scale != 0.0) { /* scale to prevent overflow or underflow */ dat[0] /= scale; dat[1] /= scale; } tau_i = gsl_linalg_householder_transform(&v2.vector); if (w->compute_t) { m = gsl_matrix_submatrix(w->H, top + N - 2, top + N - 3, 2, w->size - top - N + 3); gsl_linalg_householder_hm(tau_i, &v2.vector, &m.matrix); m = gsl_matrix_submatrix(w->H, 0, top + N - 2, top + N, 2); gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix); } else { m = gsl_matrix_submatrix(H, N - 2, N - 3, 2, 3); gsl_linalg_householder_hm(tau_i, &v2.vector, &m.matrix); m = gsl_matrix_submatrix(H, 0, N - 2, N, 2); gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix); } if (w->Z) { /* accumulate transformation into Z */ m = gsl_matrix_submatrix(w->Z, 0, top + N - 2, w->size, 2); gsl_linalg_householder_mh(tau_i, &v2.vector, &m.matrix); } return GSL_SUCCESS; } /* francis_qrstep() */ /* francis_search_subdiag_small_elements() Search for a small subdiagonal element starting from the bottom of a matrix A. A small element is one that satisfies: |A_{i,i-1}| <= eps * (|A_{i,i}| + |A_{i-1,i-1}|) Inputs: A - matrix (must be at least 3-by-3) Return: row index of small subdiagonal element or 0 if not found Notes: the first small element that is found (starting from bottom) is set to zero */ static inline size_t francis_search_subdiag_small_elements(gsl_matrix * A) { const size_t N = A->size1; size_t i; double dpel = gsl_matrix_get(A, N - 2, N - 2); for (i = N - 1; i > 0; --i) { double sel = gsl_matrix_get(A, i, i - 1); double del = gsl_matrix_get(A, i, i); if ((sel == 0.0) || (fabs(sel) < GSL_DBL_EPSILON * (fabs(del) + fabs(dpel)))) { gsl_matrix_set(A, i, i - 1, 0.0); return (i); } dpel = del; } return (0); } /* francis_search_subdiag_small_elements() */ /* francis_schur_standardize() Convert a 2-by-2 diagonal block in the Schur form to standard form and update the rest of T and Z matrices if required. Inputs: A - 2-by-2 matrix eval1 - where to store eigenvalue 1 eval2 - where to store eigenvalue 2 w - francis workspace */ static inline void francis_schur_standardize(gsl_matrix *A, gsl_complex *eval1, gsl_complex *eval2, gsl_eigen_francis_workspace *w) { const size_t N = w->size; double cs, sn; size_t top; /* * figure out where the submatrix A resides in the * original matrix H */ top = francis_get_submatrix(w->H, A); /* convert 2-by-2 block to standard form */ francis_standard_form(A, &cs, &sn); /* set eigenvalues */ GSL_SET_REAL(eval1, gsl_matrix_get(A, 0, 0)); GSL_SET_REAL(eval2, gsl_matrix_get(A, 1, 1)); if (gsl_matrix_get(A, 1, 0) == 0.0) { GSL_SET_IMAG(eval1, 0.0); GSL_SET_IMAG(eval2, 0.0); } else { double tmp = sqrt(fabs(gsl_matrix_get(A, 0, 1)) * fabs(gsl_matrix_get(A, 1, 0))); GSL_SET_IMAG(eval1, tmp); GSL_SET_IMAG(eval2, -tmp); } if (w->compute_t) { gsl_vector_view xv, yv; /* * The above call to francis_standard_form transformed a 2-by-2 block * of T into upper triangular form via the transformation * * U = [ CS -SN ] * [ SN CS ] * * The original matrix T was * * T = [ T_{11} | T_{12} | T_{13} ] * [ 0* | A | T_{23} ] * [ 0 | 0* | T_{33} ] * * where 0* indicates all zeros except for possibly * one subdiagonal element next to A. * * After francis_standard_form, T looks like this: * * T = [ T_{11} | T_{12} | T_{13} ] * [ 0* | U^t A U | T_{23} ] * [ 0 | 0* | T_{33} ] * * since only the 2-by-2 block of A was changed. However, * in order to be able to back transform T at the end, * we need to apply the U transformation to the rest * of the matrix T since there is no way to apply a * similarity transformation to T and change only the * middle 2-by-2 block. In other words, let * * M = [ I 0 0 ] * [ 0 U 0 ] * [ 0 0 I ] * * and compute * * M^t T M = [ T_{11} | T_{12} U | T_{13} ] * [ U^t 0* | U^t A U | U^t T_{23} ] * [ 0 | 0* U | T_{33} ] * * So basically we need to apply the transformation U * to the i x 2 matrix T_{12} and the 2 x (n - i + 2) * matrix T_{23}, where i is the index of the top of A * in T. * * The BLAS routine drot() is suited for this. */ if (top < (N - 2)) { /* transform the 2 rows of T_{23} */ xv = gsl_matrix_subrow(w->H, top, top + 2, N - top - 2); yv = gsl_matrix_subrow(w->H, top + 1, top + 2, N - top - 2); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } if (top > 0) { /* transform the 2 columns of T_{12} */ xv = gsl_matrix_subcolumn(w->H, top, 0, top); yv = gsl_matrix_subcolumn(w->H, top + 1, 0, top); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } /* if (w->compute_t) */ if (w->Z) { gsl_vector_view xv, yv; /* * Accumulate the transformation in Z. Here, Z -> Z * M * * So: * * Z -> [ Z_{11} | Z_{12} U | Z_{13} ] * [ Z_{21} | Z_{22} U | Z_{23} ] * [ Z_{31} | Z_{32} U | Z_{33} ] * * So we just need to apply drot() to the 2 columns * starting at index 'top' */ xv = gsl_matrix_column(w->Z, top); yv = gsl_matrix_column(w->Z, top + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } /* if (w->Z) */ } /* francis_schur_standardize() */ /* francis_get_submatrix() B is a submatrix of A. The goal of this function is to compute the indices in A of where the matrix B resides */ static inline size_t francis_get_submatrix(gsl_matrix *A, gsl_matrix *B) { size_t diff; double ratio; size_t top; diff = (size_t) (B->data - A->data); ratio = (double)diff / ((double) (A->tda + 1)); top = (size_t) floor(ratio); return top; } /* francis_get_submatrix() */ /* francis_standard_form() Compute the Schur factorization of a real 2-by-2 matrix in standard form: [ A B ] = [ CS -SN ] [ T11 T12 ] [ CS SN ] [ C D ] [ SN CS ] [ T21 T22 ] [-SN CS ] where either: 1) T21 = 0 so that T11 and T22 are real eigenvalues of the matrix, or 2) T11 = T22 and T21*T12 < 0, so that T11 +/- sqrt(|T21*T12|) are complex conjugate eigenvalues Inputs: A - 2-by-2 matrix cs - where to store cosine parameter of rotation matrix sn - where to store sine parameter of rotation matrix Notes: 1) based on LAPACK routine DLANV2 2) On output, A is modified to contain the matrix in standard form */ static void francis_standard_form(gsl_matrix *A, double *cs, double *sn) { double a, b, c, d; /* input matrix values */ double tmp; double p, z; double bcmax, bcmis, scale; double tau, sigma; double cs1, sn1; double aa, bb, cc, dd; double sab, sac; a = gsl_matrix_get(A, 0, 0); b = gsl_matrix_get(A, 0, 1); c = gsl_matrix_get(A, 1, 0); d = gsl_matrix_get(A, 1, 1); if (c == 0.0) { /* * matrix is already upper triangular - set rotation matrix * to the identity */ *cs = 1.0; *sn = 0.0; } else if (b == 0.0) { /* swap rows and columns to make it upper triangular */ *cs = 0.0; *sn = 1.0; tmp = d; d = a; a = tmp; b = -c; c = 0.0; } else if (((a - d) == 0.0) && (GSL_SIGN(b) != GSL_SIGN(c))) { /* the matrix has complex eigenvalues with a == d */ *cs = 1.0; *sn = 0.0; } else { tmp = a - d; p = 0.5 * tmp; bcmax = GSL_MAX(fabs(b), fabs(c)); bcmis = GSL_MIN(fabs(b), fabs(c)) * GSL_SIGN(b) * GSL_SIGN(c); scale = GSL_MAX(fabs(p), bcmax); z = (p / scale) * p + (bcmax / scale) * bcmis; if (z >= 4.0 * GSL_DBL_EPSILON) { /* real eigenvalues, compute a and d */ z = p + GSL_SIGN(p) * fabs(sqrt(scale) * sqrt(z)); a = d + z; d -= (bcmax / z) * bcmis; /* compute b and the rotation matrix */ tau = gsl_hypot(c, z); *cs = z / tau; *sn = c / tau; b -= c; c = 0.0; } else { /* * complex eigenvalues, or real (almost) equal eigenvalues - * make diagonal elements equal */ sigma = b + c; tau = gsl_hypot(sigma, tmp); *cs = sqrt(0.5 * (1.0 + fabs(sigma) / tau)); *sn = -(p / (tau * (*cs))) * GSL_SIGN(sigma); /* * Compute [ AA BB ] = [ A B ] [ CS -SN ] * [ CC DD ] [ C D ] [ SN CS ] */ aa = a * (*cs) + b * (*sn); bb = -a * (*sn) + b * (*cs); cc = c * (*cs) + d * (*sn); dd = -c * (*sn) + d * (*cs); /* * Compute [ A B ] = [ CS SN ] [ AA BB ] * [ C D ] [-SN CS ] [ CC DD ] */ a = aa * (*cs) + cc * (*sn); b = bb * (*cs) + dd * (*sn); c = -aa * (*sn) + cc * (*cs); d = -bb * (*sn) + dd * (*cs); tmp = 0.5 * (a + d); a = d = tmp; if (c != 0.0) { if (b != 0.0) { if (GSL_SIGN(b) == GSL_SIGN(c)) { /* * real eigenvalues: reduce to upper triangular * form */ sab = sqrt(fabs(b)); sac = sqrt(fabs(c)); p = GSL_SIGN(c) * fabs(sab * sac); tau = 1.0 / sqrt(fabs(b + c)); a = tmp + p; d = tmp - p; b -= c; c = 0.0; cs1 = sab * tau; sn1 = sac * tau; tmp = (*cs) * cs1 - (*sn) * sn1; *sn = (*cs) * sn1 + (*sn) * cs1; *cs = tmp; } } else { b = -c; c = 0.0; tmp = *cs; *cs = -(*sn); *sn = tmp; } } } } /* set new matrix elements */ gsl_matrix_set(A, 0, 0, a); gsl_matrix_set(A, 0, 1, b); gsl_matrix_set(A, 1, 0, c); gsl_matrix_set(A, 1, 1, d); } /* francis_standard_form() */ gsl-1.16/eigen/jacobi.c0000664000252300025230000001412412171574312011636 00000000000000/* eigen/jacobi.c * * Copyright (C) 2004, 2007 Brian Gough, Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* Algorithm 8.4.3 - Cyclic Jacobi. Golub & Van Loan, Matrix Computations */ static inline double symschur2 (gsl_matrix * A, size_t p, size_t q, double *c, double *s) { double Apq = gsl_matrix_get (A, p, q); if (Apq != 0.0) { double App = gsl_matrix_get (A, p, p); double Aqq = gsl_matrix_get (A, q, q); double tau = (Aqq - App) / (2.0 * Apq); double t, c1; if (tau >= 0.0) { t = 1.0 / (tau + hypot (1.0, tau)); } else { t = -1.0 / (-tau + hypot (1.0, tau)); } c1 = 1.0 / hypot (1.0, t); *c = c1; *s = t * c1; } else { *c = 1.0; *s = 0.0; } /* reduction in off(A) is 2*(A_pq)^2 */ return fabs (Apq); } inline static void apply_jacobi_L (gsl_matrix * A, size_t p, size_t q, double c, double s) { size_t j; const size_t N = A->size2; /* Apply rotation to matrix A, A' = J^T A */ for (j = 0; j < N; j++) { double Apj = gsl_matrix_get (A, p, j); double Aqj = gsl_matrix_get (A, q, j); gsl_matrix_set (A, p, j, Apj * c - Aqj * s); gsl_matrix_set (A, q, j, Apj * s + Aqj * c); } } inline static void apply_jacobi_R (gsl_matrix * A, size_t p, size_t q, double c, double s) { size_t i; const size_t M = A->size1; /* Apply rotation to matrix A, A' = A J */ for (i = 0; i < M; i++) { double Aip = gsl_matrix_get (A, i, p); double Aiq = gsl_matrix_get (A, i, q); gsl_matrix_set (A, i, p, Aip * c - Aiq * s); gsl_matrix_set (A, i, q, Aip * s + Aiq * c); } } inline static double norm (gsl_matrix * A) { size_t i, j, M = A->size1, N = A->size2; double sum = 0.0, scale = 0.0, ssq = 1.0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { double Aij = gsl_matrix_get (A, i, j); /* compute norm of off-diagonal elements as per algorithm 8.4.3 and definition at start of section 8.4.1 */ if (i == j) continue; if (Aij != 0.0) { double ax = fabs (Aij); if (scale < ax) { ssq = 1.0 + ssq * (scale / ax) * (scale / ax); scale = ax; } else { ssq += (ax / scale) * (ax / scale); } } } } sum = scale * sqrt (ssq); return sum; } int gsl_eigen_jacobi (gsl_matrix * a, gsl_vector * eval, gsl_matrix * evec, unsigned int max_rot, unsigned int *nrot) { size_t i, p, q; const size_t M = a->size1, N = a->size2; double red, redsum = 0.0; if (M != N) { GSL_ERROR ("eigenproblem requires square matrix", GSL_ENOTSQR); } else if (M != evec->size1 || M != evec->size2) { GSL_ERROR ("eigenvector matrix must match input matrix", GSL_EBADLEN); } else if (M != eval->size) { GSL_ERROR ("eigenvalue vector must match input matrix", GSL_EBADLEN); } gsl_vector_set_zero (eval); gsl_matrix_set_identity (evec); for (i = 0; i < max_rot; i++) { double nrm = norm (a); if (nrm == 0.0) break; for (p = 0; p < N; p++) { for (q = p + 1; q < N; q++) { double c, s; red = symschur2 (a, p, q, &c, &s); redsum += red; /* Compute A <- J^T A J */ apply_jacobi_L (a, p, q, c, s); apply_jacobi_R (a, p, q, c, s); /* Compute V <- V J */ apply_jacobi_R (evec, p, q, c, s); } } } *nrot = i; for (p = 0; p < N; p++) { double ep = gsl_matrix_get (a, p, p); gsl_vector_set (eval, p, ep); } if (i == max_rot) { return GSL_EMAXITER; } return GSL_SUCCESS; } int gsl_eigen_invert_jacobi (const gsl_matrix * a, gsl_matrix * ainv, unsigned int max_rot) { if (a->size1 != a->size2 || ainv->size1 != ainv->size2) { GSL_ERROR("jacobi method requires square matrix", GSL_ENOTSQR); } else if (a->size1 != ainv->size2) { GSL_ERROR ("inverse matrix must match input matrix", GSL_EBADLEN); } { const size_t n = a->size2; size_t i,j,k; unsigned int nrot = 0; int status; gsl_vector * eval = gsl_vector_alloc(n); gsl_matrix * evec = gsl_matrix_alloc(n, n); gsl_matrix * tmp = gsl_matrix_alloc(n, n); gsl_matrix_memcpy (tmp, a); status = gsl_eigen_jacobi(tmp, eval, evec, max_rot, &nrot); for(i=0; i #include #include #include #include #include #include #include /* * This module computes the eigenvalues and eigenvectors of a real * generalized symmetric-definite eigensystem A x = \lambda B x, where * A and B are symmetric, and B is positive-definite. */ static void gensymmv_normalize_eigenvectors(gsl_matrix *evec); /* gsl_eigen_gensymmv_alloc() Allocate a workspace for solving the generalized symmetric-definite eigenvalue problem. The size of this workspace is O(4n). Inputs: n - size of matrices Return: pointer to workspace */ gsl_eigen_gensymmv_workspace * gsl_eigen_gensymmv_alloc(const size_t n) { gsl_eigen_gensymmv_workspace *w; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_gensymmv_workspace *) calloc (1, sizeof (gsl_eigen_gensymmv_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->size = n; w->symmv_workspace_p = gsl_eigen_symmv_alloc(n); if (!w->symmv_workspace_p) { gsl_eigen_gensymmv_free(w); GSL_ERROR_NULL("failed to allocate space for symmv workspace", GSL_ENOMEM); } return (w); } /* gsl_eigen_gensymmv_alloc() */ /* gsl_eigen_gensymmv_free() Free workspace w */ void gsl_eigen_gensymmv_free (gsl_eigen_gensymmv_workspace * w) { RETURN_IF_NULL (w); if (w->symmv_workspace_p) gsl_eigen_symmv_free(w->symmv_workspace_p); free(w); } /* gsl_eigen_gensymmv_free() */ /* gsl_eigen_gensymmv() Solve the generalized symmetric-definite eigenvalue problem A x = \lambda B x for the eigenvalues \lambda and eigenvectors x. Inputs: A - real symmetric matrix B - real symmetric and positive definite matrix eval - where to store eigenvalues evec - where to store eigenvectors w - workspace Return: success or error */ int gsl_eigen_gensymmv (gsl_matrix * A, gsl_matrix * B, gsl_vector * eval, gsl_matrix * evec, gsl_eigen_gensymmv_workspace * w) { const size_t N = A->size1; /* check matrix and vector sizes */ if (N != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if ((N != B->size1) || (N != B->size2)) { GSL_ERROR ("B matrix dimensions must match A", GSL_EBADLEN); } else if (eval->size != N) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != evec->size2) { GSL_ERROR ("eigenvector matrix must be square", GSL_ENOTSQR); } else if (evec->size1 != N) { GSL_ERROR ("eigenvector matrix has wrong size", GSL_EBADLEN); } else if (w->size != N) { GSL_ERROR ("matrix size does not match workspace", GSL_EBADLEN); } else { int s; /* compute Cholesky factorization of B */ s = gsl_linalg_cholesky_decomp(B); if (s != GSL_SUCCESS) return s; /* B is not positive definite */ /* transform to standard symmetric eigenvalue problem */ gsl_eigen_gensymm_standardize(A, B); /* compute eigenvalues and eigenvectors */ s = gsl_eigen_symmv(A, eval, evec, w->symmv_workspace_p); if (s != GSL_SUCCESS) return s; /* backtransform eigenvectors: evec -> L^{-T} evec */ gsl_blas_dtrsm(CblasLeft, CblasLower, CblasTrans, CblasNonUnit, 1.0, B, evec); /* the blas call destroyed the normalization - renormalize */ gensymmv_normalize_eigenvectors(evec); return GSL_SUCCESS; } } /* gsl_eigen_gensymmv() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ /* gensymmv_normalize_eigenvectors() Normalize eigenvectors so that their Euclidean norm is 1 Inputs: evec - eigenvectors */ static void gensymmv_normalize_eigenvectors(gsl_matrix *evec) { const size_t N = evec->size1; size_t i; /* looping */ for (i = 0; i < N; ++i) { gsl_vector_view vi = gsl_matrix_column(evec, i); double scale = 1.0 / gsl_blas_dnrm2(&vi.vector); gsl_blas_dscal(scale, &vi.vector); } } /* gensymmv_normalize_eigenvectors() */ gsl-1.16/eigen/hermv.c0000664000252300025230000001571212171574312011534 00000000000000/* eigen/hermv.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include /* Compute eigenvalues/eigenvectors of complex hermitian matrix using reduction to real symmetric tridiagonal form, followed by QR iteration with implicit shifts. See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include "qrstep.c" gsl_eigen_hermv_workspace * gsl_eigen_hermv_alloc (const size_t n) { gsl_eigen_hermv_workspace * w ; if (n == 0) { GSL_ERROR_NULL ("matrix dimension must be positive integer", GSL_EINVAL); } w = (gsl_eigen_hermv_workspace *) malloc (sizeof(gsl_eigen_hermv_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->d = (double *) malloc (n * sizeof (double)); if (w->d == 0) { free (w); GSL_ERROR_NULL ("failed to allocate space for diagonal", GSL_ENOMEM); } w->sd = (double *) malloc (n * sizeof (double)); if (w->sd == 0) { free (w->d); free (w); GSL_ERROR_NULL ("failed to allocate space for subdiagonal", GSL_ENOMEM); } w->tau = (double *) malloc (2 * n * sizeof (double)); if (w->tau == 0) { free (w->sd); free (w->d); free (w); GSL_ERROR_NULL ("failed to allocate space for tau", GSL_ENOMEM); } w->gc = (double *) malloc (n * sizeof (double)); if (w->gc == 0) { free (w->tau); free (w->sd); free (w->d); free (w); GSL_ERROR_NULL ("failed to allocate space for cosines", GSL_ENOMEM); } w->gs = (double *) malloc (n * sizeof (double)); if (w->gs == 0) { free (w->gc); free (w->tau); free (w->sd); free (w->d); free (w); GSL_ERROR_NULL ("failed to allocate space for sines", GSL_ENOMEM); } w->size = n; return w; } void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * w) { RETURN_IF_NULL (w); free (w->gs); free (w->gc); free (w->tau); free (w->sd); free (w->d); free (w); } int gsl_eigen_hermv (gsl_matrix_complex * A, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_hermv_workspace * w) { if (A->size1 != A->size2) { GSL_ERROR ("matrix must be square to compute eigenvalues", GSL_ENOTSQR); } else if (eval->size != A->size1) { GSL_ERROR ("eigenvalue vector must match matrix size", GSL_EBADLEN); } else if (evec->size1 != A->size1 || evec->size2 != A->size1) { GSL_ERROR ("eigenvector matrix must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; double *const d = w->d; double *const sd = w->sd; size_t a, b; /* handle special case */ if (N == 1) { gsl_complex A00 = gsl_matrix_complex_get (A, 0, 0); gsl_vector_set (eval, 0, GSL_REAL(A00)); gsl_matrix_complex_set (evec, 0, 0, GSL_COMPLEX_ONE); return GSL_SUCCESS; } /* Transform the matrix into a symmetric tridiagonal form */ { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_view sd_vec = gsl_vector_view_array (sd, N - 1); gsl_vector_complex_view tau_vec = gsl_vector_complex_view_array (w->tau, N-1); gsl_linalg_hermtd_decomp (A, &tau_vec.vector); gsl_linalg_hermtd_unpack (A, &tau_vec.vector, evec, &d_vec.vector, &sd_vec.vector); } /* Make an initial pass through the tridiagonal decomposition to remove off-diagonal elements which are effectively zero */ chop_small_elements (N, d, sd); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; while (b > 0) { if (sd[b - 1] == 0.0 || isnan(sd[b - 1])) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { if (sd[a - 1] == 0.0) { break; } a--; } { size_t i; const size_t n_block = b - a + 1; double *d_block = d + a; double *sd_block = sd + a; double * const gc = w->gc; double * const gs = w->gs; /* apply QR reduction with implicit deflation to the unreduced block */ qrstep (n_block, d_block, sd_block, gc, gs); /* Apply Givens rotation Gij(c,s) to matrix Q, Q <- Q G */ for (i = 0; i < n_block - 1; i++) { const double c = gc[i], s = gs[i]; size_t k; for (k = 0; k < N; k++) { gsl_complex qki = gsl_matrix_complex_get (evec, k, a + i); gsl_complex qkj = gsl_matrix_complex_get (evec, k, a + i + 1); /* qki <= qki * c - qkj * s */ /* qkj <= qki * s + qkj * c */ gsl_complex x1 = gsl_complex_mul_real(qki, c); gsl_complex y1 = gsl_complex_mul_real(qkj, -s); gsl_complex x2 = gsl_complex_mul_real(qki, s); gsl_complex y2 = gsl_complex_mul_real(qkj, c); gsl_complex qqki = gsl_complex_add(x1, y1); gsl_complex qqkj = gsl_complex_add(x2, y2); gsl_matrix_complex_set (evec, k, a + i, qqki); gsl_matrix_complex_set (evec, k, a + i + 1, qqkj); } } /* remove any small off-diagonal elements */ chop_small_elements (n_block, d_block, sd_block); } } { gsl_vector_view d_vec = gsl_vector_view_array (d, N); gsl_vector_memcpy (eval, &d_vec.vector); } return GSL_SUCCESS; } } gsl-1.16/eigen/gsl_eigen.h0000664000252300025230000003173212171574312012354 00000000000000/* eigen/gsl_eigen.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 Gerard Jungman, Brian Gough, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_EIGEN_H__ #define __GSL_EIGEN_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; double * d; double * sd; } gsl_eigen_symm_workspace; gsl_eigen_symm_workspace * gsl_eigen_symm_alloc (const size_t n); void gsl_eigen_symm_free (gsl_eigen_symm_workspace * w); int gsl_eigen_symm (gsl_matrix * A, gsl_vector * eval, gsl_eigen_symm_workspace * w); typedef struct { size_t size; double * d; double * sd; double * gc; double * gs; } gsl_eigen_symmv_workspace; gsl_eigen_symmv_workspace * gsl_eigen_symmv_alloc (const size_t n); void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * w); int gsl_eigen_symmv (gsl_matrix * A, gsl_vector * eval, gsl_matrix * evec, gsl_eigen_symmv_workspace * w); typedef struct { size_t size; double * d; double * sd; double * tau; } gsl_eigen_herm_workspace; gsl_eigen_herm_workspace * gsl_eigen_herm_alloc (const size_t n); void gsl_eigen_herm_free (gsl_eigen_herm_workspace * w); int gsl_eigen_herm (gsl_matrix_complex * A, gsl_vector * eval, gsl_eigen_herm_workspace * w); typedef struct { size_t size; double * d; double * sd; double * tau; double * gc; double * gs; } gsl_eigen_hermv_workspace; gsl_eigen_hermv_workspace * gsl_eigen_hermv_alloc (const size_t n); void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * w); int gsl_eigen_hermv (gsl_matrix_complex * A, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_hermv_workspace * w); typedef struct { size_t size; /* matrix size */ size_t max_iterations; /* max iterations since last eigenvalue found */ size_t n_iter; /* number of iterations since last eigenvalue found */ size_t n_evals; /* number of eigenvalues found so far */ int compute_t; /* compute Schur form T = Z^t A Z */ gsl_matrix *H; /* pointer to Hessenberg matrix */ gsl_matrix *Z; /* pointer to Schur vector matrix */ } gsl_eigen_francis_workspace; gsl_eigen_francis_workspace * gsl_eigen_francis_alloc (void); void gsl_eigen_francis_free (gsl_eigen_francis_workspace * w); void gsl_eigen_francis_T (const int compute_t, gsl_eigen_francis_workspace * w); int gsl_eigen_francis (gsl_matrix * H, gsl_vector_complex * eval, gsl_eigen_francis_workspace * w); int gsl_eigen_francis_Z (gsl_matrix * H, gsl_vector_complex * eval, gsl_matrix * Z, gsl_eigen_francis_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_vector *diag; /* diagonal matrix elements from balancing */ gsl_vector *tau; /* Householder coefficients */ gsl_matrix *Z; /* pointer to Z matrix */ int do_balance; /* perform balancing transformation? */ size_t n_evals; /* number of eigenvalues found */ gsl_eigen_francis_workspace *francis_workspace_p; } gsl_eigen_nonsymm_workspace; gsl_eigen_nonsymm_workspace * gsl_eigen_nonsymm_alloc (const size_t n); void gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * w); void gsl_eigen_nonsymm_params (const int compute_t, const int balance, gsl_eigen_nonsymm_workspace *w); int gsl_eigen_nonsymm (gsl_matrix * A, gsl_vector_complex * eval, gsl_eigen_nonsymm_workspace * w); int gsl_eigen_nonsymm_Z (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix * Z, gsl_eigen_nonsymm_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_vector *work; /* scratch workspace */ gsl_vector *work2; /* scratch workspace */ gsl_vector *work3; /* scratch workspace */ gsl_matrix *Z; /* pointer to Schur vectors */ gsl_eigen_nonsymm_workspace *nonsymm_workspace_p; } gsl_eigen_nonsymmv_workspace; gsl_eigen_nonsymmv_workspace * gsl_eigen_nonsymmv_alloc (const size_t n); void gsl_eigen_nonsymmv_free (gsl_eigen_nonsymmv_workspace * w); void gsl_eigen_nonsymmv_params (const int balance, gsl_eigen_nonsymmv_workspace *w); int gsl_eigen_nonsymmv (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_eigen_nonsymmv_workspace * w); int gsl_eigen_nonsymmv_Z (gsl_matrix * A, gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_matrix * Z, gsl_eigen_nonsymmv_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_eigen_symm_workspace *symm_workspace_p; } gsl_eigen_gensymm_workspace; gsl_eigen_gensymm_workspace * gsl_eigen_gensymm_alloc (const size_t n); void gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * w); int gsl_eigen_gensymm (gsl_matrix * A, gsl_matrix * B, gsl_vector * eval, gsl_eigen_gensymm_workspace * w); int gsl_eigen_gensymm_standardize (gsl_matrix * A, const gsl_matrix * B); typedef struct { size_t size; /* size of matrices */ gsl_eigen_symmv_workspace *symmv_workspace_p; } gsl_eigen_gensymmv_workspace; gsl_eigen_gensymmv_workspace * gsl_eigen_gensymmv_alloc (const size_t n); void gsl_eigen_gensymmv_free (gsl_eigen_gensymmv_workspace * w); int gsl_eigen_gensymmv (gsl_matrix * A, gsl_matrix * B, gsl_vector * eval, gsl_matrix * evec, gsl_eigen_gensymmv_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_eigen_herm_workspace *herm_workspace_p; } gsl_eigen_genherm_workspace; gsl_eigen_genherm_workspace * gsl_eigen_genherm_alloc (const size_t n); void gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * w); int gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_eigen_genherm_workspace * w); int gsl_eigen_genherm_standardize (gsl_matrix_complex * A, const gsl_matrix_complex * B); typedef struct { size_t size; /* size of matrices */ gsl_eigen_hermv_workspace *hermv_workspace_p; } gsl_eigen_genhermv_workspace; gsl_eigen_genhermv_workspace * gsl_eigen_genhermv_alloc (const size_t n); void gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * w); int gsl_eigen_genhermv (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_genhermv_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_vector *work; /* scratch workspace */ size_t n_evals; /* number of eigenvalues found */ size_t max_iterations; /* maximum QZ iterations allowed */ size_t n_iter; /* number of iterations since last eigenvalue found */ double eshift; /* exceptional shift counter */ int needtop; /* need to compute top index? */ double atol; /* tolerance for splitting A matrix */ double btol; /* tolerance for splitting B matrix */ double ascale; /* scaling factor for shifts */ double bscale; /* scaling factor for shifts */ gsl_matrix *H; /* pointer to hessenberg matrix */ gsl_matrix *R; /* pointer to upper triangular matrix */ int compute_s; /* compute generalized Schur form S */ int compute_t; /* compute generalized Schur form T */ gsl_matrix *Q; /* pointer to left Schur vectors */ gsl_matrix *Z; /* pointer to right Schur vectors */ } gsl_eigen_gen_workspace; gsl_eigen_gen_workspace * gsl_eigen_gen_alloc (const size_t n); void gsl_eigen_gen_free (gsl_eigen_gen_workspace * w); void gsl_eigen_gen_params (const int compute_s, const int compute_t, const int balance, gsl_eigen_gen_workspace * w); int gsl_eigen_gen (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_eigen_gen_workspace * w); int gsl_eigen_gen_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_gen_workspace * w); typedef struct { size_t size; /* size of matrices */ gsl_vector *work1; /* 1-norm of columns of A */ gsl_vector *work2; /* 1-norm of columns of B */ gsl_vector *work3; /* real part of eigenvector */ gsl_vector *work4; /* imag part of eigenvector */ gsl_vector *work5; /* real part of back-transformed eigenvector */ gsl_vector *work6; /* imag part of back-transformed eigenvector */ gsl_matrix *Q; /* pointer to left Schur vectors */ gsl_matrix *Z; /* pointer to right Schur vectors */ gsl_eigen_gen_workspace *gen_workspace_p; } gsl_eigen_genv_workspace; gsl_eigen_genv_workspace * gsl_eigen_genv_alloc (const size_t n); void gsl_eigen_genv_free (gsl_eigen_genv_workspace * w); int gsl_eigen_genv (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex * evec, gsl_eigen_genv_workspace * w); int gsl_eigen_genv_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex * evec, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_genv_workspace * w); typedef enum { GSL_EIGEN_SORT_VAL_ASC, GSL_EIGEN_SORT_VAL_DESC, GSL_EIGEN_SORT_ABS_ASC, GSL_EIGEN_SORT_ABS_DESC } gsl_eigen_sort_t; /* Sort eigensystem results based on eigenvalues. * Sorts in order of increasing value or increasing * absolute value. * * exceptions: GSL_EBADLEN */ int gsl_eigen_symmv_sort(gsl_vector * eval, gsl_matrix * evec, gsl_eigen_sort_t sort_type); int gsl_eigen_hermv_sort(gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type); int gsl_eigen_nonsymmv_sort(gsl_vector_complex * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type); int gsl_eigen_gensymmv_sort (gsl_vector * eval, gsl_matrix * evec, gsl_eigen_sort_t sort_type); int gsl_eigen_genhermv_sort (gsl_vector * eval, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type); int gsl_eigen_genv_sort (gsl_vector_complex * alpha, gsl_vector * beta, gsl_matrix_complex * evec, gsl_eigen_sort_t sort_type); /* Prototypes for the schur module */ int gsl_schur_gen_eigvals(const gsl_matrix *A, const gsl_matrix *B, double *wr1, double *wr2, double *wi, double *scale1, double *scale2); int gsl_schur_solve_equation(double ca, const gsl_matrix *A, double z, double d1, double d2, const gsl_vector *b, gsl_vector *x, double *s, double *xnorm, double smin); int gsl_schur_solve_equation_z(double ca, const gsl_matrix *A, gsl_complex *z, double d1, double d2, const gsl_vector_complex *b, gsl_vector_complex *x, double *s, double *xnorm, double smin); /* The following functions are obsolete: */ /* Eigensolve by Jacobi Method * * The data in the matrix input is destroyed. * * exceptions: */ int gsl_eigen_jacobi(gsl_matrix * matrix, gsl_vector * eval, gsl_matrix * evec, unsigned int max_rot, unsigned int * nrot); /* Invert by Jacobi Method * * exceptions: */ int gsl_eigen_invert_jacobi(const gsl_matrix * matrix, gsl_matrix * ainv, unsigned int max_rot); __END_DECLS #endif /* __GSL_EIGEN_H__ */ gsl-1.16/depcomp0000755000252300025230000005570312172014014010524 00000000000000#! /bin/sh # depcomp - compile a program generating dependencies as side-effects scriptversion=2012-10-18.11; # UTC # Copyright (C) 1999-2013 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Originally written by Alexandre Oliva . case $1 in '') echo "$0: No command. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: depcomp [--help] [--version] PROGRAM [ARGS] Run PROGRAMS ARGS to compile a file, generating dependencies as side-effects. Environment variables: depmode Dependency tracking mode. source Source file read by 'PROGRAMS ARGS'. object Object file output by 'PROGRAMS ARGS'. DEPDIR directory where to store dependencies. depfile Dependency file to output. tmpdepfile Temporary file to use when outputting dependencies. libtool Whether libtool is used (yes/no). Report bugs to . EOF exit $? ;; -v | --v*) echo "depcomp $scriptversion" exit $? ;; esac # Get the directory component of the given path, and save it in the # global variables '$dir'. Note that this directory component will # be either empty or ending with a '/' character. This is deliberate. set_dir_from () { case $1 in */*) dir=`echo "$1" | sed -e 's|/[^/]*$|/|'`;; *) dir=;; esac } # Get the suffix-stripped basename of the given path, and save it the # global variable '$base'. set_base_from () { base=`echo "$1" | sed -e 's|^.*/||' -e 's/\.[^.]*$//'` } # If no dependency file was actually created by the compiler invocation, # we still have to create a dummy depfile, to avoid errors with the # Makefile "include basename.Plo" scheme. make_dummy_depfile () { echo "#dummy" > "$depfile" } # Factor out some common post-processing of the generated depfile. # Requires the auxiliary global variable '$tmpdepfile' to be set. aix_post_process_depfile () { # If the compiler actually managed to produce a dependency file, # post-process it. if test -f "$tmpdepfile"; then # Each line is of the form 'foo.o: dependency.h'. # Do two passes, one to just change these to # $object: dependency.h # and one to simply output # dependency.h: # which is needed to avoid the deleted-header problem. { sed -e "s,^.*\.[$lower]*:,$object:," < "$tmpdepfile" sed -e "s,^.*\.[$lower]*:[$tab ]*,," -e 's,$,:,' < "$tmpdepfile" } > "$depfile" rm -f "$tmpdepfile" else make_dummy_depfile fi } # A tabulation character. tab=' ' # A newline character. nl=' ' # Character ranges might be problematic outside the C locale. # These definitions help. upper=ABCDEFGHIJKLMNOPQRSTUVWXYZ lower=abcdefghijklmnopqrstuvwxyz digits=0123456789 alpha=${upper}${lower} if test -z "$depmode" || test -z "$source" || test -z "$object"; then echo "depcomp: Variables source, object and depmode must be set" 1>&2 exit 1 fi # Dependencies for sub/bar.o or sub/bar.obj go into sub/.deps/bar.Po. depfile=${depfile-`echo "$object" | sed 's|[^\\/]*$|'${DEPDIR-.deps}'/&|;s|\.\([^.]*\)$|.P\1|;s|Pobj$|Po|'`} tmpdepfile=${tmpdepfile-`echo "$depfile" | sed 's/\.\([^.]*\)$/.T\1/'`} rm -f "$tmpdepfile" # Avoid interferences from the environment. gccflag= dashmflag= # Some modes work just like other modes, but use different flags. We # parameterize here, but still list the modes in the big case below, # to make depend.m4 easier to write. Note that we *cannot* use a case # here, because this file can only contain one case statement. if test "$depmode" = hp; then # HP compiler uses -M and no extra arg. gccflag=-M depmode=gcc fi if test "$depmode" = dashXmstdout; then # This is just like dashmstdout with a different argument. dashmflag=-xM depmode=dashmstdout fi cygpath_u="cygpath -u -f -" if test "$depmode" = msvcmsys; then # This is just like msvisualcpp but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvisualcpp fi if test "$depmode" = msvc7msys; then # This is just like msvc7 but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvc7 fi if test "$depmode" = xlc; then # IBM C/C++ Compilers xlc/xlC can output gcc-like dependency information. gccflag=-qmakedep=gcc,-MF depmode=gcc fi case "$depmode" in gcc3) ## gcc 3 implements dependency tracking that does exactly what ## we want. Yay! Note: for some reason libtool 1.4 doesn't like ## it if -MD -MP comes after the -MF stuff. Hmm. ## Unfortunately, FreeBSD c89 acceptance of flags depends upon ## the command line argument order; so add the flags where they ## appear in depend2.am. Note that the slowdown incurred here ## affects only configure: in makefiles, %FASTDEP% shortcuts this. for arg do case $arg in -c) set fnord "$@" -MT "$object" -MD -MP -MF "$tmpdepfile" "$arg" ;; *) set fnord "$@" "$arg" ;; esac shift # fnord shift # $arg done "$@" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi mv "$tmpdepfile" "$depfile" ;; gcc) ## Note that this doesn't just cater to obsosete pre-3.x GCC compilers. ## but also to in-use compilers like IMB xlc/xlC and the HP C compiler. ## (see the conditional assignment to $gccflag above). ## There are various ways to get dependency output from gcc. Here's ## why we pick this rather obscure method: ## - Don't want to use -MD because we'd like the dependencies to end ## up in a subdir. Having to rename by hand is ugly. ## (We might end up doing this anyway to support other compilers.) ## - The DEPENDENCIES_OUTPUT environment variable makes gcc act like ## -MM, not -M (despite what the docs say). Also, it might not be ## supported by the other compilers which use the 'gcc' depmode. ## - Using -M directly means running the compiler twice (even worse ## than renaming). if test -z "$gccflag"; then gccflag=-MD, fi "$@" -Wp,"$gccflag$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The second -e expression handles DOS-style file names with drive # letters. sed -e 's/^[^:]*: / /' \ -e 's/^['$alpha']:\/[^:]*: / /' < "$tmpdepfile" >> "$depfile" ## This next piece of magic avoids the "deleted header file" problem. ## The problem is that when a header file which appears in a .P file ## is deleted, the dependency causes make to die (because there is ## typically no way to rebuild the header). We avoid this by adding ## dummy dependencies for each header file. Too bad gcc doesn't do ## this for us directly. ## Some versions of gcc put a space before the ':'. On the theory ## that the space means something, we add a space to the output as ## well. hp depmode also adds that space, but also prefixes the VPATH ## to the object. Take care to not repeat it in the output. ## Some versions of the HPUX 10.20 sed can't process this invocation ## correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e "s|.*$object$||" -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; sgi) if test "$libtool" = yes; then "$@" "-Wp,-MDupdate,$tmpdepfile" else "$@" -MDupdate "$tmpdepfile" fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" if test -f "$tmpdepfile"; then # yes, the sourcefile depend on other files echo "$object : \\" > "$depfile" # Clip off the initial element (the dependent). Don't try to be # clever and replace this with sed code, as IRIX sed won't handle # lines with more than a fixed number of characters (4096 in # IRIX 6.2 sed, 8192 in IRIX 6.5). We also remove comment lines; # the IRIX cc adds comments like '#:fec' to the end of the # dependency line. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' \ | tr "$nl" ' ' >> "$depfile" echo >> "$depfile" # The second pass generates a dummy entry for each header file. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' -e 's/$/:/' \ >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" ;; xlc) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; aix) # The C for AIX Compiler uses -M and outputs the dependencies # in a .u file. In older versions, this file always lives in the # current directory. Also, the AIX compiler puts '$object:' at the # start of each line; $object doesn't have directory information. # Version 6 uses the directory in both cases. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.u tmpdepfile2=$base.u tmpdepfile3=$dir.libs/$base.u "$@" -Wc,-M else tmpdepfile1=$dir$base.u tmpdepfile2=$dir$base.u tmpdepfile3=$dir$base.u "$@" -M fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done aix_post_process_depfile ;; tcc) # tcc (Tiny C Compiler) understand '-MD -MF file' since version 0.9.26 # FIXME: That version still under development at the moment of writing. # Make that this statement remains true also for stable, released # versions. # It will wrap lines (doesn't matter whether long or short) with a # trailing '\', as in: # # foo.o : \ # foo.c \ # foo.h \ # # It will put a trailing '\' even on the last line, and will use leading # spaces rather than leading tabs (at least since its commit 0394caf7 # "Emit spaces for -MD"). "$@" -MD -MF "$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each non-empty line is of the form 'foo.o : \' or ' dep.h \'. # We have to change lines of the first kind to '$object: \'. sed -e "s|.*:|$object :|" < "$tmpdepfile" > "$depfile" # And for each line of the second kind, we have to emit a 'dep.h:' # dummy dependency, to avoid the deleted-header problem. sed -n -e 's|^ *\(.*\) *\\$|\1:|p' < "$tmpdepfile" >> "$depfile" rm -f "$tmpdepfile" ;; ## The order of this option in the case statement is important, since the ## shell code in configure will try each of these formats in the order ## listed in this file. A plain '-MD' option would be understood by many ## compilers, so we must ensure this comes after the gcc and icc options. pgcc) # Portland's C compiler understands '-MD'. # Will always output deps to 'file.d' where file is the root name of the # source file under compilation, even if file resides in a subdirectory. # The object file name does not affect the name of the '.d' file. # pgcc 10.2 will output # foo.o: sub/foo.c sub/foo.h # and will wrap long lines using '\' : # foo.o: sub/foo.c ... \ # sub/foo.h ... \ # ... set_dir_from "$object" # Use the source, not the object, to determine the base name, since # that's sadly what pgcc will do too. set_base_from "$source" tmpdepfile=$base.d # For projects that build the same source file twice into different object # files, the pgcc approach of using the *source* file root name can cause # problems in parallel builds. Use a locking strategy to avoid stomping on # the same $tmpdepfile. lockdir=$base.d-lock trap " echo '$0: caught signal, cleaning up...' >&2 rmdir '$lockdir' exit 1 " 1 2 13 15 numtries=100 i=$numtries while test $i -gt 0; do # mkdir is a portable test-and-set. if mkdir "$lockdir" 2>/dev/null; then # This process acquired the lock. "$@" -MD stat=$? # Release the lock. rmdir "$lockdir" break else # If the lock is being held by a different process, wait # until the winning process is done or we timeout. while test -d "$lockdir" && test $i -gt 0; do sleep 1 i=`expr $i - 1` done fi i=`expr $i - 1` done trap - 1 2 13 15 if test $i -le 0; then echo "$0: failed to acquire lock after $numtries attempts" >&2 echo "$0: check lockdir '$lockdir'" >&2 exit 1 fi if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each line is of the form `foo.o: dependent.h', # or `foo.o: dep1.h dep2.h \', or ` dep3.h dep4.h \'. # Do two passes, one to just change these to # `$object: dependent.h' and one to simply `dependent.h:'. sed "s,^[^:]*:,$object :," < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this invocation # correctly. Breaking it into two sed invocations is a workaround. sed 's,^[^:]*: \(.*\)$,\1,;s/^\\$//;/^$/d;/:$/d' < "$tmpdepfile" \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp2) # The "hp" stanza above does not work with aCC (C++) and HP's ia64 # compilers, which have integrated preprocessors. The correct option # to use with these is +Maked; it writes dependencies to a file named # 'foo.d', which lands next to the object file, wherever that # happens to be. # Much of this is similar to the tru64 case; see comments there. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.d tmpdepfile2=$dir.libs/$base.d "$@" -Wc,+Maked else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d "$@" +Maked fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" do test -f "$tmpdepfile" && break done if test -f "$tmpdepfile"; then sed -e "s,^.*\.[$lower]*:,$object:," "$tmpdepfile" > "$depfile" # Add 'dependent.h:' lines. sed -ne '2,${ s/^ *// s/ \\*$// s/$/:/ p }' "$tmpdepfile" >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" "$tmpdepfile2" ;; tru64) # The Tru64 compiler uses -MD to generate dependencies as a side # effect. 'cc -MD -o foo.o ...' puts the dependencies into 'foo.o.d'. # At least on Alpha/Redhat 6.1, Compaq CCC V6.2-504 seems to put # dependencies in 'foo.d' instead, so we check for that too. # Subdirectories are respected. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then # Libtool generates 2 separate objects for the 2 libraries. These # two compilations output dependencies in $dir.libs/$base.o.d and # in $dir$base.o.d. We have to check for both files, because # one of the two compilations can be disabled. We should prefer # $dir$base.o.d over $dir.libs/$base.o.d because the latter is # automatically cleaned when .libs/ is deleted, while ignoring # the former would cause a distcleancheck panic. tmpdepfile1=$dir$base.o.d # libtool 1.5 tmpdepfile2=$dir.libs/$base.o.d # Likewise. tmpdepfile3=$dir.libs/$base.d # Compaq CCC V6.2-504 "$@" -Wc,-MD else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d tmpdepfile3=$dir$base.d "$@" -MD fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done # Same post-processing that is required for AIX mode. aix_post_process_depfile ;; msvc7) if test "$libtool" = yes; then showIncludes=-Wc,-showIncludes else showIncludes=-showIncludes fi "$@" $showIncludes > "$tmpdepfile" stat=$? grep -v '^Note: including file: ' "$tmpdepfile" if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The first sed program below extracts the file names and escapes # backslashes for cygpath. The second sed program outputs the file # name when reading, but also accumulates all include files in the # hold buffer in order to output them again at the end. This only # works with sed implementations that can handle large buffers. sed < "$tmpdepfile" -n ' /^Note: including file: *\(.*\)/ { s//\1/ s/\\/\\\\/g p }' | $cygpath_u | sort -u | sed -n ' s/ /\\ /g s/\(.*\)/'"$tab"'\1 \\/p s/.\(.*\) \\/\1:/ H $ { s/.*/'"$tab"'/ G p }' >> "$depfile" rm -f "$tmpdepfile" ;; msvc7msys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; #nosideeffect) # This comment above is used by automake to tell side-effect # dependency tracking mechanisms from slower ones. dashmstdout) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout, regardless of -o. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done test -z "$dashmflag" && dashmflag=-M # Require at least two characters before searching for ':' # in the target name. This is to cope with DOS-style filenames: # a dependency such as 'c:/foo/bar' could be seen as target 'c' otherwise. "$@" $dashmflag | sed "s|^[$tab ]*[^:$tab ][^:][^:]*:[$tab ]*|$object: |" > "$tmpdepfile" rm -f "$depfile" cat < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this sed invocation # correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; dashXmstdout) # This case only exists to satisfy depend.m4. It is never actually # run, as this mode is specially recognized in the preamble. exit 1 ;; makedepend) "$@" || exit $? # Remove any Libtool call if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # X makedepend shift cleared=no eat=no for arg do case $cleared in no) set ""; shift cleared=yes ;; esac if test $eat = yes; then eat=no continue fi case "$arg" in -D*|-I*) set fnord "$@" "$arg"; shift ;; # Strip any option that makedepend may not understand. Remove # the object too, otherwise makedepend will parse it as a source file. -arch) eat=yes ;; -*|$object) ;; *) set fnord "$@" "$arg"; shift ;; esac done obj_suffix=`echo "$object" | sed 's/^.*\././'` touch "$tmpdepfile" ${MAKEDEPEND-makedepend} -o"$obj_suffix" -f"$tmpdepfile" "$@" rm -f "$depfile" # makedepend may prepend the VPATH from the source file name to the object. # No need to regex-escape $object, excess matching of '.' is harmless. sed "s|^.*\($object *:\)|\1|" "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process the last invocation # correctly. Breaking it into two sed invocations is a workaround. sed '1,2d' "$tmpdepfile" \ | tr ' ' "$nl" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" "$tmpdepfile".bak ;; cpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done "$@" -E \ | sed -n -e '/^# [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ -e '/^#line [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ | sed '$ s: \\$::' > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" cat < "$tmpdepfile" >> "$depfile" sed < "$tmpdepfile" '/^$/d;s/^ //;s/ \\$//;s/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; msvisualcpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi IFS=" " for arg do case "$arg" in -o) shift ;; $object) shift ;; "-Gm"|"/Gm"|"-Gi"|"/Gi"|"-ZI"|"/ZI") set fnord "$@" shift shift ;; *) set fnord "$@" "$arg" shift shift ;; esac done "$@" -E 2>/dev/null | sed -n '/^#line [0-9][0-9]* "\([^"]*\)"/ s::\1:p' | $cygpath_u | sort -u > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::'"$tab"'\1 \\:p' >> "$depfile" echo "$tab" >> "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::\1\::p' >> "$depfile" rm -f "$tmpdepfile" ;; msvcmsys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; none) exec "$@" ;; *) echo "Unknown depmode $depmode" 1>&2 exit 1 ;; esac exit 0 # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: gsl-1.16/config.guess0000755000252300025230000012757212172014010011467 00000000000000#! /bin/sh # Attempt to guess a canonical system name. # Copyright 1992-2013 Free Software Foundation, Inc. timestamp='2013-04-24' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # # Originally written by Per Bothner. # # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD # # Please send patches with a ChangeLog entry to config-patches@gnu.org. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] Output the configuration name of the system \`$me' is run on. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.guess ($timestamp) Originally written by Per Bothner. Copyright 1992-2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" >&2 exit 1 ;; * ) break ;; esac done if test $# != 0; then echo "$me: too many arguments$help" >&2 exit 1 fi trap 'exit 1' 1 2 15 # CC_FOR_BUILD -- compiler used by this script. Note that the use of a # compiler to aid in system detection is discouraged as it requires # temporary files to be created and, as you can see below, it is a # headache to deal with in a portable fashion. # Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still # use `HOST_CC' if defined, but it is deprecated. # Portable tmp directory creation inspired by the Autoconf team. set_cc_for_build=' trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ; trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" 1 2 13 15 ; : ${TMPDIR=/tmp} ; { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } || { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } || { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } || { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ; dummy=$tmp/dummy ; tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ; case $CC_FOR_BUILD,$HOST_CC,$CC in ,,) echo "int x;" > $dummy.c ; for c in cc gcc c89 c99 ; do if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then CC_FOR_BUILD="$c"; break ; fi ; done ; if test x"$CC_FOR_BUILD" = x ; then CC_FOR_BUILD=no_compiler_found ; fi ;; ,,*) CC_FOR_BUILD=$CC ;; ,*,*) CC_FOR_BUILD=$HOST_CC ;; esac ; set_cc_for_build= ;' # This is needed to find uname on a Pyramid OSx when run in the BSD universe. # (ghazi@noc.rutgers.edu 1994-08-24) if (test -f /.attbin/uname) >/dev/null 2>&1 ; then PATH=$PATH:/.attbin ; export PATH fi UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown # Note: order is significant - the case branches are not exclusive. case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in *:NetBSD:*:*) # NetBSD (nbsd) targets should (where applicable) match one or # more of the tuples: *-*-netbsdelf*, *-*-netbsdaout*, # *-*-netbsdecoff* and *-*-netbsd*. For targets that recently # switched to ELF, *-*-netbsd* would select the old # object file format. This provides both forward # compatibility and a consistent mechanism for selecting the # object file format. # # Note: NetBSD doesn't particularly care about the vendor # portion of the name. We always set it to "unknown". sysctl="sysctl -n hw.machine_arch" UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \ /usr/sbin/$sysctl 2>/dev/null || echo unknown)` case "${UNAME_MACHINE_ARCH}" in armeb) machine=armeb-unknown ;; arm*) machine=arm-unknown ;; sh3el) machine=shl-unknown ;; sh3eb) machine=sh-unknown ;; sh5el) machine=sh5le-unknown ;; *) machine=${UNAME_MACHINE_ARCH}-unknown ;; esac # The Operating System including object format, if it has switched # to ELF recently, or will in the future. case "${UNAME_MACHINE_ARCH}" in arm*|i386|m68k|ns32k|sh3*|sparc|vax) eval $set_cc_for_build if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ELF__ then # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout). # Return netbsd for either. FIX? os=netbsd else os=netbsdelf fi ;; *) os=netbsd ;; esac # The OS release # Debian GNU/NetBSD machines have a different userland, and # thus, need a distinct triplet. However, they do not need # kernel version information, so it can be replaced with a # suitable tag, in the style of linux-gnu. case "${UNAME_VERSION}" in Debian*) release='-gnu' ;; *) release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'` ;; esac # Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM: # contains redundant information, the shorter form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used. echo "${machine}-${os}${release}" exit ;; *:Bitrig:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/Bitrig.//'` echo ${UNAME_MACHINE_ARCH}-unknown-bitrig${UNAME_RELEASE} exit ;; *:OpenBSD:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'` echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE} exit ;; *:ekkoBSD:*:*) echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE} exit ;; *:SolidBSD:*:*) echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE} exit ;; macppc:MirBSD:*:*) echo powerpc-unknown-mirbsd${UNAME_RELEASE} exit ;; *:MirBSD:*:*) echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE} exit ;; alpha:OSF1:*:*) case $UNAME_RELEASE in *4.0) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'` ;; *5.*) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'` ;; esac # According to Compaq, /usr/sbin/psrinfo has been available on # OSF/1 and Tru64 systems produced since 1995. I hope that # covers most systems running today. This code pipes the CPU # types through head -n 1, so we only detect the type of CPU 0. ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1` case "$ALPHA_CPU_TYPE" in "EV4 (21064)") UNAME_MACHINE="alpha" ;; "EV4.5 (21064)") UNAME_MACHINE="alpha" ;; "LCA4 (21066/21068)") UNAME_MACHINE="alpha" ;; "EV5 (21164)") UNAME_MACHINE="alphaev5" ;; "EV5.6 (21164A)") UNAME_MACHINE="alphaev56" ;; "EV5.6 (21164PC)") UNAME_MACHINE="alphapca56" ;; "EV5.7 (21164PC)") UNAME_MACHINE="alphapca57" ;; "EV6 (21264)") UNAME_MACHINE="alphaev6" ;; "EV6.7 (21264A)") UNAME_MACHINE="alphaev67" ;; "EV6.8CB (21264C)") UNAME_MACHINE="alphaev68" ;; "EV6.8AL (21264B)") UNAME_MACHINE="alphaev68" ;; "EV6.8CX (21264D)") UNAME_MACHINE="alphaev68" ;; "EV6.9A (21264/EV69A)") UNAME_MACHINE="alphaev69" ;; "EV7 (21364)") UNAME_MACHINE="alphaev7" ;; "EV7.9 (21364A)") UNAME_MACHINE="alphaev79" ;; esac # A Pn.n version is a patched version. # A Vn.n version is a released version. # A Tn.n version is a released field test version. # A Xn.n version is an unreleased experimental baselevel. # 1.2 uses "1.2" for uname -r. echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` # Reset EXIT trap before exiting to avoid spurious non-zero exit code. exitcode=$? trap '' 0 exit $exitcode ;; Alpha\ *:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # Should we change UNAME_MACHINE based on the output of uname instead # of the specific Alpha model? echo alpha-pc-interix exit ;; 21064:Windows_NT:50:3) echo alpha-dec-winnt3.5 exit ;; Amiga*:UNIX_System_V:4.0:*) echo m68k-unknown-sysv4 exit ;; *:[Aa]miga[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-amigaos exit ;; *:[Mm]orph[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-morphos exit ;; *:OS/390:*:*) echo i370-ibm-openedition exit ;; *:z/VM:*:*) echo s390-ibm-zvmoe exit ;; *:OS400:*:*) echo powerpc-ibm-os400 exit ;; arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*) echo arm-acorn-riscix${UNAME_RELEASE} exit ;; arm*:riscos:*:*|arm*:RISCOS:*:*) echo arm-unknown-riscos exit ;; SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*) echo hppa1.1-hitachi-hiuxmpp exit ;; Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*) # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE. if test "`(/bin/universe) 2>/dev/null`" = att ; then echo pyramid-pyramid-sysv3 else echo pyramid-pyramid-bsd fi exit ;; NILE*:*:*:dcosx) echo pyramid-pyramid-svr4 exit ;; DRS?6000:unix:4.0:6*) echo sparc-icl-nx6 exit ;; DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*) case `/usr/bin/uname -p` in sparc) echo sparc-icl-nx7; exit ;; esac ;; s390x:SunOS:*:*) echo ${UNAME_MACHINE}-ibm-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4H:SunOS:5.*:*) echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*) echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; i86pc:AuroraUX:5.*:* | i86xen:AuroraUX:5.*:*) echo i386-pc-auroraux${UNAME_RELEASE} exit ;; i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*) eval $set_cc_for_build SUN_ARCH="i386" # If there is a compiler, see if it is configured for 64-bit objects. # Note that the Sun cc does not turn __LP64__ into 1 like gcc does. # This test works for both compilers. if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __amd64'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then SUN_ARCH="x86_64" fi fi echo ${SUN_ARCH}-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:6*:*) # According to config.sub, this is the proper way to canonicalize # SunOS6. Hard to guess exactly what SunOS6 will be like, but # it's likely to be more like Solaris than SunOS4. echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:*:*) case "`/usr/bin/arch -k`" in Series*|S4*) UNAME_RELEASE=`uname -v` ;; esac # Japanese Language versions have a version number like `4.1.3-JL'. echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'` exit ;; sun3*:SunOS:*:*) echo m68k-sun-sunos${UNAME_RELEASE} exit ;; sun*:*:4.2BSD:*) UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null` test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3 case "`/bin/arch`" in sun3) echo m68k-sun-sunos${UNAME_RELEASE} ;; sun4) echo sparc-sun-sunos${UNAME_RELEASE} ;; esac exit ;; aushp:SunOS:*:*) echo sparc-auspex-sunos${UNAME_RELEASE} exit ;; # The situation for MiNT is a little confusing. The machine name # can be virtually everything (everything which is not # "atarist" or "atariste" at least should have a processor # > m68000). The system name ranges from "MiNT" over "FreeMiNT" # to the lowercase version "mint" (or "freemint"). Finally # the system name "TOS" denotes a system which is actually not # MiNT. But MiNT is downward compatible to TOS, so this should # be no problem. atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*) echo m68k-milan-mint${UNAME_RELEASE} exit ;; hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*) echo m68k-hades-mint${UNAME_RELEASE} exit ;; *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*) echo m68k-unknown-mint${UNAME_RELEASE} exit ;; m68k:machten:*:*) echo m68k-apple-machten${UNAME_RELEASE} exit ;; powerpc:machten:*:*) echo powerpc-apple-machten${UNAME_RELEASE} exit ;; RISC*:Mach:*:*) echo mips-dec-mach_bsd4.3 exit ;; RISC*:ULTRIX:*:*) echo mips-dec-ultrix${UNAME_RELEASE} exit ;; VAX*:ULTRIX*:*:*) echo vax-dec-ultrix${UNAME_RELEASE} exit ;; 2020:CLIX:*:* | 2430:CLIX:*:*) echo clipper-intergraph-clix${UNAME_RELEASE} exit ;; mips:*:*:UMIPS | mips:*:*:RISCos) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __cplusplus #include /* for printf() prototype */ int main (int argc, char *argv[]) { #else int main (argc, argv) int argc; char *argv[]; { #endif #if defined (host_mips) && defined (MIPSEB) #if defined (SYSTYPE_SYSV) printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_SVR4) printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD) printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0); #endif #endif exit (-1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` && SYSTEM_NAME=`$dummy $dummyarg` && { echo "$SYSTEM_NAME"; exit; } echo mips-mips-riscos${UNAME_RELEASE} exit ;; Motorola:PowerMAX_OS:*:*) echo powerpc-motorola-powermax exit ;; Motorola:*:4.3:PL8-*) echo powerpc-harris-powermax exit ;; Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*) echo powerpc-harris-powermax exit ;; Night_Hawk:Power_UNIX:*:*) echo powerpc-harris-powerunix exit ;; m88k:CX/UX:7*:*) echo m88k-harris-cxux7 exit ;; m88k:*:4*:R4*) echo m88k-motorola-sysv4 exit ;; m88k:*:3*:R3*) echo m88k-motorola-sysv3 exit ;; AViiON:dgux:*:*) # DG/UX returns AViiON for all architectures UNAME_PROCESSOR=`/usr/bin/uname -p` if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110 ] then if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \ [ ${TARGET_BINARY_INTERFACE}x = x ] then echo m88k-dg-dgux${UNAME_RELEASE} else echo m88k-dg-dguxbcs${UNAME_RELEASE} fi else echo i586-dg-dgux${UNAME_RELEASE} fi exit ;; M88*:DolphinOS:*:*) # DolphinOS (SVR3) echo m88k-dolphin-sysv3 exit ;; M88*:*:R3*:*) # Delta 88k system running SVR3 echo m88k-motorola-sysv3 exit ;; XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3) echo m88k-tektronix-sysv3 exit ;; Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD) echo m68k-tektronix-bsd exit ;; *:IRIX*:*:*) echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'` exit ;; ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX. echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id exit ;; # Note that: echo "'`uname -s`'" gives 'AIX ' i*86:AIX:*:*) echo i386-ibm-aix exit ;; ia64:AIX:*:*) if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${UNAME_MACHINE}-ibm-aix${IBM_REV} exit ;; *:AIX:2:3) if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include main() { if (!__power_pc()) exit(1); puts("powerpc-ibm-aix3.2.5"); exit(0); } EOF if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` then echo "$SYSTEM_NAME" else echo rs6000-ibm-aix3.2.5 fi elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then echo rs6000-ibm-aix3.2.4 else echo rs6000-ibm-aix3.2 fi exit ;; *:AIX:*:[4567]) IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'` if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then IBM_ARCH=rs6000 else IBM_ARCH=powerpc fi if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${IBM_ARCH}-ibm-aix${IBM_REV} exit ;; *:AIX:*:*) echo rs6000-ibm-aix exit ;; ibmrt:4.4BSD:*|romp-ibm:BSD:*) echo romp-ibm-bsd4.4 exit ;; ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to exit ;; # report: romp-ibm BSD 4.3 *:BOSX:*:*) echo rs6000-bull-bosx exit ;; DPX/2?00:B.O.S.:*:*) echo m68k-bull-sysv3 exit ;; 9000/[34]??:4.3bsd:1.*:*) echo m68k-hp-bsd exit ;; hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*) echo m68k-hp-bsd4.4 exit ;; 9000/[34678]??:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "${UNAME_MACHINE}" in 9000/31? ) HP_ARCH=m68000 ;; 9000/[34]?? ) HP_ARCH=m68k ;; 9000/[678][0-9][0-9]) if [ -x /usr/bin/getconf ]; then sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null` sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null` case "${sc_cpu_version}" in 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1 532) # CPU_PA_RISC2_0 case "${sc_kernel_bits}" in 32) HP_ARCH="hppa2.0n" ;; 64) HP_ARCH="hppa2.0w" ;; '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20 esac ;; esac fi if [ "${HP_ARCH}" = "" ]; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #define _HPUX_SOURCE #include #include int main () { #if defined(_SC_KERNEL_BITS) long bits = sysconf(_SC_KERNEL_BITS); #endif long cpu = sysconf (_SC_CPU_VERSION); switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0"); break; case CPU_PA_RISC1_1: puts ("hppa1.1"); break; case CPU_PA_RISC2_0: #if defined(_SC_KERNEL_BITS) switch (bits) { case 64: puts ("hppa2.0w"); break; case 32: puts ("hppa2.0n"); break; default: puts ("hppa2.0"); break; } break; #else /* !defined(_SC_KERNEL_BITS) */ puts ("hppa2.0"); break; #endif default: puts ("hppa1.0"); break; } exit (0); } EOF (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy` test -z "$HP_ARCH" && HP_ARCH=hppa fi ;; esac if [ ${HP_ARCH} = "hppa2.0w" ] then eval $set_cc_for_build # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler # generating 64-bit code. GNU and HP use different nomenclature: # # $ CC_FOR_BUILD=cc ./config.guess # => hppa2.0w-hp-hpux11.23 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess # => hppa64-hp-hpux11.23 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | grep -q __LP64__ then HP_ARCH="hppa2.0w" else HP_ARCH="hppa64" fi fi echo ${HP_ARCH}-hp-hpux${HPUX_REV} exit ;; ia64:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` echo ia64-hp-hpux${HPUX_REV} exit ;; 3050*:HI-UX:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include int main () { long cpu = sysconf (_SC_CPU_VERSION); /* The order matters, because CPU_IS_HP_MC68K erroneously returns true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct results, however. */ if (CPU_IS_PA_RISC (cpu)) { switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break; case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break; case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break; default: puts ("hppa-hitachi-hiuxwe2"); break; } } else if (CPU_IS_HP_MC68K (cpu)) puts ("m68k-hitachi-hiuxwe2"); else puts ("unknown-hitachi-hiuxwe2"); exit (0); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } echo unknown-hitachi-hiuxwe2 exit ;; 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* ) echo hppa1.1-hp-bsd exit ;; 9000/8??:4.3bsd:*:*) echo hppa1.0-hp-bsd exit ;; *9??*:MPE/iX:*:* | *3000*:MPE/iX:*:*) echo hppa1.0-hp-mpeix exit ;; hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* ) echo hppa1.1-hp-osf exit ;; hp8??:OSF1:*:*) echo hppa1.0-hp-osf exit ;; i*86:OSF1:*:*) if [ -x /usr/sbin/sysversion ] ; then echo ${UNAME_MACHINE}-unknown-osf1mk else echo ${UNAME_MACHINE}-unknown-osf1 fi exit ;; parisc*:Lites*:*:*) echo hppa1.1-hp-lites exit ;; C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*) echo c1-convex-bsd exit ;; C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*) echo c34-convex-bsd exit ;; C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*) echo c38-convex-bsd exit ;; C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*) echo c4-convex-bsd exit ;; CRAY*Y-MP:*:*:*) echo ymp-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*[A-Z]90:*:*:*) echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \ | sed -e 's/CRAY.*\([A-Z]90\)/\1/' \ -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ \ -e 's/\.[^.]*$/.X/' exit ;; CRAY*TS:*:*:*) echo t90-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*T3E:*:*:*) echo alphaev5-cray-unicosmk${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*SV1:*:*:*) echo sv1-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; *:UNICOS/mp:*:*) echo craynv-cray-unicosmp${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; F30[01]:UNIX_System_V:*:* | F700:UNIX_System_V:*:*) FUJITSU_PROC=`uname -m | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'` echo "${FUJITSU_PROC}-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; 5000:UNIX_System_V:4.*:*) FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/ /_/'` echo "sparc-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; i*86:BSD/386:*:* | i*86:BSD/OS:*:* | *:Ascend\ Embedded/OS:*:*) echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE} exit ;; sparc*:BSD/OS:*:*) echo sparc-unknown-bsdi${UNAME_RELEASE} exit ;; *:BSD/OS:*:*) echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE} exit ;; *:FreeBSD:*:*) UNAME_PROCESSOR=`/usr/bin/uname -p` case ${UNAME_PROCESSOR} in amd64) echo x86_64-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; *) echo ${UNAME_PROCESSOR}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; esac exit ;; i*:CYGWIN*:*) echo ${UNAME_MACHINE}-pc-cygwin exit ;; *:MINGW64*:*) echo ${UNAME_MACHINE}-pc-mingw64 exit ;; *:MINGW*:*) echo ${UNAME_MACHINE}-pc-mingw32 exit ;; i*:MSYS*:*) echo ${UNAME_MACHINE}-pc-msys exit ;; i*:windows32*:*) # uname -m includes "-pc" on this system. echo ${UNAME_MACHINE}-mingw32 exit ;; i*:PW*:*) echo ${UNAME_MACHINE}-pc-pw32 exit ;; *:Interix*:*) case ${UNAME_MACHINE} in x86) echo i586-pc-interix${UNAME_RELEASE} exit ;; authenticamd | genuineintel | EM64T) echo x86_64-unknown-interix${UNAME_RELEASE} exit ;; IA64) echo ia64-unknown-interix${UNAME_RELEASE} exit ;; esac ;; [345]86:Windows_95:* | [345]86:Windows_98:* | [345]86:Windows_NT:*) echo i${UNAME_MACHINE}-pc-mks exit ;; 8664:Windows_NT:*) echo x86_64-pc-mks exit ;; i*:Windows_NT*:* | Pentium*:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # It also conflicts with pre-2.0 versions of AT&T UWIN. Should we # UNAME_MACHINE based on the output of uname instead of i386? echo i586-pc-interix exit ;; i*:UWIN*:*) echo ${UNAME_MACHINE}-pc-uwin exit ;; amd64:CYGWIN*:*:* | x86_64:CYGWIN*:*:*) echo x86_64-unknown-cygwin exit ;; p*:CYGWIN*:*) echo powerpcle-unknown-cygwin exit ;; prep*:SunOS:5.*:*) echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; *:GNU:*:*) # the GNU system echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'` exit ;; *:GNU/*:*:*) # other systems with GNU libc and userland echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-gnu exit ;; i*86:Minix:*:*) echo ${UNAME_MACHINE}-pc-minix exit ;; aarch64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; aarch64_be:Linux:*:*) UNAME_MACHINE=aarch64_be echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; alpha:Linux:*:*) case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in EV5) UNAME_MACHINE=alphaev5 ;; EV56) UNAME_MACHINE=alphaev56 ;; PCA56) UNAME_MACHINE=alphapca56 ;; PCA57) UNAME_MACHINE=alphapca56 ;; EV6) UNAME_MACHINE=alphaev6 ;; EV67) UNAME_MACHINE=alphaev67 ;; EV68*) UNAME_MACHINE=alphaev68 ;; esac objdump --private-headers /bin/sh | grep -q ld.so.1 if test "$?" = 0 ; then LIBC="libc1" ; else LIBC="" ; fi echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC} exit ;; arc:Linux:*:* | arceb:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; arm*:Linux:*:*) eval $set_cc_for_build if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_EABI__ then echo ${UNAME_MACHINE}-unknown-linux-gnu else if echo __ARM_PCS_VFP | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_PCS_VFP then echo ${UNAME_MACHINE}-unknown-linux-gnueabi else echo ${UNAME_MACHINE}-unknown-linux-gnueabihf fi fi exit ;; avr32*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; cris:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-gnu exit ;; crisv32:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-gnu exit ;; frv:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; hexagon:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; i*86:Linux:*:*) LIBC=gnu eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __dietlibc__ LIBC=dietlibc #endif #else #include #ifdef __UCLIBC__ LIBC=uclibc #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC'` echo "${UNAME_MACHINE}-pc-linux-${LIBC}" exit ;; ia64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; m32r*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; m68*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; mips:Linux:*:* | mips64:Linux:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #undef CPU #undef ${UNAME_MACHINE} #undef ${UNAME_MACHINE}el #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) CPU=${UNAME_MACHINE}el #else #if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) CPU=${UNAME_MACHINE} #else CPU= #endif #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^CPU'` test x"${CPU}" != x && { echo "${CPU}-unknown-linux-gnu"; exit; } ;; or1k:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; or32:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; padre:Linux:*:*) echo sparc-unknown-linux-gnu exit ;; parisc64:Linux:*:* | hppa64:Linux:*:*) echo hppa64-unknown-linux-gnu exit ;; parisc:Linux:*:* | hppa:Linux:*:*) # Look for CPU level case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in PA7*) echo hppa1.1-unknown-linux-gnu ;; PA8*) echo hppa2.0-unknown-linux-gnu ;; *) echo hppa-unknown-linux-gnu ;; esac exit ;; ppc64:Linux:*:*) echo powerpc64-unknown-linux-gnu exit ;; ppc:Linux:*:*) echo powerpc-unknown-linux-gnu exit ;; s390:Linux:*:* | s390x:Linux:*:*) echo ${UNAME_MACHINE}-ibm-linux exit ;; sh64*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; sh*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; sparc:Linux:*:* | sparc64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; tile*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; vax:Linux:*:*) echo ${UNAME_MACHINE}-dec-linux-gnu exit ;; x86_64:Linux:*:*) LIBC=gnu test -r /lib/libc.so && od -An -S13 /lib/libc.so | grep -q __uClibc_main && LIBC=uclibc echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; xtensa*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-gnu exit ;; i*86:DYNIX/ptx:4*:*) # ptx 4.0 does uname -s correctly, with DYNIX/ptx in there. # earlier versions are messed up and put the nodename in both # sysname and nodename. echo i386-sequent-sysv4 exit ;; i*86:UNIX_SV:4.2MP:2.*) # Unixware is an offshoot of SVR4, but it has its own version # number series starting with 2... # I am not positive that other SVR4 systems won't match this, # I just have to hope. -- rms. # Use sysv4.2uw... so that sysv4* matches it. echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION} exit ;; i*86:OS/2:*:*) # If we were able to find `uname', then EMX Unix compatibility # is probably installed. echo ${UNAME_MACHINE}-pc-os2-emx exit ;; i*86:XTS-300:*:STOP) echo ${UNAME_MACHINE}-unknown-stop exit ;; i*86:atheos:*:*) echo ${UNAME_MACHINE}-unknown-atheos exit ;; i*86:syllable:*:*) echo ${UNAME_MACHINE}-pc-syllable exit ;; i*86:LynxOS:2.*:* | i*86:LynxOS:3.[01]*:* | i*86:LynxOS:4.[02]*:*) echo i386-unknown-lynxos${UNAME_RELEASE} exit ;; i*86:*DOS:*:*) echo ${UNAME_MACHINE}-pc-msdosdjgpp exit ;; i*86:*:4.*:* | i*86:SYSTEM_V:4.*:*) UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'` if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL} else echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL} fi exit ;; i*86:*:5:[678]*) # UnixWare 7.x, OpenUNIX and OpenServer 6. case `/bin/uname -X | grep "^Machine"` in *486*) UNAME_MACHINE=i486 ;; *Pentium) UNAME_MACHINE=i586 ;; *Pent*|*Celeron) UNAME_MACHINE=i686 ;; esac echo ${UNAME_MACHINE}-unknown-sysv${UNAME_RELEASE}${UNAME_SYSTEM}${UNAME_VERSION} exit ;; i*86:*:3.2:*) if test -f /usr/options/cb.name; then UNAME_REL=`sed -n 's/.*Version //p' /dev/null >/dev/null ; then UNAME_REL=`(/bin/uname -X|grep Release|sed -e 's/.*= //')` (/bin/uname -X|grep i80486 >/dev/null) && UNAME_MACHINE=i486 (/bin/uname -X|grep '^Machine.*Pentium' >/dev/null) \ && UNAME_MACHINE=i586 (/bin/uname -X|grep '^Machine.*Pent *II' >/dev/null) \ && UNAME_MACHINE=i686 (/bin/uname -X|grep '^Machine.*Pentium Pro' >/dev/null) \ && UNAME_MACHINE=i686 echo ${UNAME_MACHINE}-pc-sco$UNAME_REL else echo ${UNAME_MACHINE}-pc-sysv32 fi exit ;; pc:*:*:*) # Left here for compatibility: # uname -m prints for DJGPP always 'pc', but it prints nothing about # the processor, so we play safe by assuming i586. # Note: whatever this is, it MUST be the same as what config.sub # prints for the "djgpp" host, or else GDB configury will decide that # this is a cross-build. echo i586-pc-msdosdjgpp exit ;; Intel:Mach:3*:*) echo i386-pc-mach3 exit ;; paragon:*:*:*) echo i860-intel-osf1 exit ;; i860:*:4.*:*) # i860-SVR4 if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4 else # Add other i860-SVR4 vendors below as they are discovered. echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4 fi exit ;; mini*:CTIX:SYS*5:*) # "miniframe" echo m68010-convergent-sysv exit ;; mc68k:UNIX:SYSTEM5:3.51m) echo m68k-convergent-sysv exit ;; M680?0:D-NIX:5.3:*) echo m68k-diab-dnix exit ;; M68*:*:R3V[5678]*:*) test -r /sysV68 && { echo 'm68k-motorola-sysv'; exit; } ;; 3[345]??:*:4.0:3.0 | 3[34]??A:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 3[34]??/*:*:4.0:3.0 | 4400:*:4.0:3.0 | 4850:*:4.0:3.0 | SKA40:*:4.0:3.0 | SDS2:*:4.0:3.0 | SHG2:*:4.0:3.0 | S7501*:*:4.0:3.0) OS_REL='' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*) /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4; exit; } ;; NCR*:*:4.2:* | MPRAS*:*:4.2:*) OS_REL='.3' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep pteron >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; m68*:LynxOS:2.*:* | m68*:LynxOS:3.0*:*) echo m68k-unknown-lynxos${UNAME_RELEASE} exit ;; mc68030:UNIX_System_V:4.*:*) echo m68k-atari-sysv4 exit ;; TSUNAMI:LynxOS:2.*:*) echo sparc-unknown-lynxos${UNAME_RELEASE} exit ;; rs6000:LynxOS:2.*:*) echo rs6000-unknown-lynxos${UNAME_RELEASE} exit ;; PowerPC:LynxOS:2.*:* | PowerPC:LynxOS:3.[01]*:* | PowerPC:LynxOS:4.[02]*:*) echo powerpc-unknown-lynxos${UNAME_RELEASE} exit ;; SM[BE]S:UNIX_SV:*:*) echo mips-dde-sysv${UNAME_RELEASE} exit ;; RM*:ReliantUNIX-*:*:*) echo mips-sni-sysv4 exit ;; RM*:SINIX-*:*:*) echo mips-sni-sysv4 exit ;; *:SINIX-*:*:*) if uname -p 2>/dev/null >/dev/null ; then UNAME_MACHINE=`(uname -p) 2>/dev/null` echo ${UNAME_MACHINE}-sni-sysv4 else echo ns32k-sni-sysv fi exit ;; PENTIUM:*:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort # says echo i586-unisys-sysv4 exit ;; *:UNIX_System_V:4*:FTX*) # From Gerald Hewes . # How about differentiating between stratus architectures? -djm echo hppa1.1-stratus-sysv4 exit ;; *:*:*:FTX*) # From seanf@swdc.stratus.com. echo i860-stratus-sysv4 exit ;; i*86:VOS:*:*) # From Paul.Green@stratus.com. echo ${UNAME_MACHINE}-stratus-vos exit ;; *:VOS:*:*) # From Paul.Green@stratus.com. echo hppa1.1-stratus-vos exit ;; mc68*:A/UX:*:*) echo m68k-apple-aux${UNAME_RELEASE} exit ;; news*:NEWS-OS:6*:*) echo mips-sony-newsos6 exit ;; R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*) if [ -d /usr/nec ]; then echo mips-nec-sysv${UNAME_RELEASE} else echo mips-unknown-sysv${UNAME_RELEASE} fi exit ;; BeBox:BeOS:*:*) # BeOS running on hardware made by Be, PPC only. echo powerpc-be-beos exit ;; BeMac:BeOS:*:*) # BeOS running on Mac or Mac clone, PPC only. echo powerpc-apple-beos exit ;; BePC:BeOS:*:*) # BeOS running on Intel PC compatible. echo i586-pc-beos exit ;; BePC:Haiku:*:*) # Haiku running on Intel PC compatible. echo i586-pc-haiku exit ;; x86_64:Haiku:*:*) echo x86_64-unknown-haiku exit ;; SX-4:SUPER-UX:*:*) echo sx4-nec-superux${UNAME_RELEASE} exit ;; SX-5:SUPER-UX:*:*) echo sx5-nec-superux${UNAME_RELEASE} exit ;; SX-6:SUPER-UX:*:*) echo sx6-nec-superux${UNAME_RELEASE} exit ;; SX-7:SUPER-UX:*:*) echo sx7-nec-superux${UNAME_RELEASE} exit ;; SX-8:SUPER-UX:*:*) echo sx8-nec-superux${UNAME_RELEASE} exit ;; SX-8R:SUPER-UX:*:*) echo sx8r-nec-superux${UNAME_RELEASE} exit ;; Power*:Rhapsody:*:*) echo powerpc-apple-rhapsody${UNAME_RELEASE} exit ;; *:Rhapsody:*:*) echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE} exit ;; *:Darwin:*:*) UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown case $UNAME_PROCESSOR in i386) eval $set_cc_for_build if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __LP64__'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then UNAME_PROCESSOR="x86_64" fi fi ;; unknown) UNAME_PROCESSOR=powerpc ;; esac echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE} exit ;; *:procnto*:*:* | *:QNX:[0123456789]*:*) UNAME_PROCESSOR=`uname -p` if test "$UNAME_PROCESSOR" = "x86"; then UNAME_PROCESSOR=i386 UNAME_MACHINE=pc fi echo ${UNAME_PROCESSOR}-${UNAME_MACHINE}-nto-qnx${UNAME_RELEASE} exit ;; *:QNX:*:4*) echo i386-pc-qnx exit ;; NEO-?:NONSTOP_KERNEL:*:*) echo neo-tandem-nsk${UNAME_RELEASE} exit ;; NSE-*:NONSTOP_KERNEL:*:*) echo nse-tandem-nsk${UNAME_RELEASE} exit ;; NSR-?:NONSTOP_KERNEL:*:*) echo nsr-tandem-nsk${UNAME_RELEASE} exit ;; *:NonStop-UX:*:*) echo mips-compaq-nonstopux exit ;; BS2000:POSIX*:*:*) echo bs2000-siemens-sysv exit ;; DS/*:UNIX_System_V:*:*) echo ${UNAME_MACHINE}-${UNAME_SYSTEM}-${UNAME_RELEASE} exit ;; *:Plan9:*:*) # "uname -m" is not consistent, so use $cputype instead. 386 # is converted to i386 for consistency with other x86 # operating systems. if test "$cputype" = "386"; then UNAME_MACHINE=i386 else UNAME_MACHINE="$cputype" fi echo ${UNAME_MACHINE}-unknown-plan9 exit ;; *:TOPS-10:*:*) echo pdp10-unknown-tops10 exit ;; *:TENEX:*:*) echo pdp10-unknown-tenex exit ;; KS10:TOPS-20:*:* | KL10:TOPS-20:*:* | TYPE4:TOPS-20:*:*) echo pdp10-dec-tops20 exit ;; XKL-1:TOPS-20:*:* | TYPE5:TOPS-20:*:*) echo pdp10-xkl-tops20 exit ;; *:TOPS-20:*:*) echo pdp10-unknown-tops20 exit ;; *:ITS:*:*) echo pdp10-unknown-its exit ;; SEI:*:*:SEIUX) echo mips-sei-seiux${UNAME_RELEASE} exit ;; *:DragonFly:*:*) echo ${UNAME_MACHINE}-unknown-dragonfly`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` exit ;; *:*VMS:*:*) UNAME_MACHINE=`(uname -p) 2>/dev/null` case "${UNAME_MACHINE}" in A*) echo alpha-dec-vms ; exit ;; I*) echo ia64-dec-vms ; exit ;; V*) echo vax-dec-vms ; exit ;; esac ;; *:XENIX:*:SysV) echo i386-pc-xenix exit ;; i*86:skyos:*:*) echo ${UNAME_MACHINE}-pc-skyos`echo ${UNAME_RELEASE}` | sed -e 's/ .*$//' exit ;; i*86:rdos:*:*) echo ${UNAME_MACHINE}-pc-rdos exit ;; i*86:AROS:*:*) echo ${UNAME_MACHINE}-pc-aros exit ;; x86_64:VMkernel:*:*) echo ${UNAME_MACHINE}-unknown-esx exit ;; esac eval $set_cc_for_build cat >$dummy.c < # include #endif main () { #if defined (sony) #if defined (MIPSEB) /* BFD wants "bsd" instead of "newsos". Perhaps BFD should be changed, I don't know.... */ printf ("mips-sony-bsd\n"); exit (0); #else #include printf ("m68k-sony-newsos%s\n", #ifdef NEWSOS4 "4" #else "" #endif ); exit (0); #endif #endif #if defined (__arm) && defined (__acorn) && defined (__unix) printf ("arm-acorn-riscix\n"); exit (0); #endif #if defined (hp300) && !defined (hpux) printf ("m68k-hp-bsd\n"); exit (0); #endif #if defined (NeXT) #if !defined (__ARCHITECTURE__) #define __ARCHITECTURE__ "m68k" #endif int version; version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`; if (version < 4) printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version); else printf ("%s-next-openstep%d\n", __ARCHITECTURE__, version); exit (0); #endif #if defined (MULTIMAX) || defined (n16) #if defined (UMAXV) printf ("ns32k-encore-sysv\n"); exit (0); #else #if defined (CMU) printf ("ns32k-encore-mach\n"); exit (0); #else printf ("ns32k-encore-bsd\n"); exit (0); #endif #endif #endif #if defined (__386BSD__) printf ("i386-pc-bsd\n"); exit (0); #endif #if defined (sequent) #if defined (i386) printf ("i386-sequent-dynix\n"); exit (0); #endif #if defined (ns32000) printf ("ns32k-sequent-dynix\n"); exit (0); #endif #endif #if defined (_SEQUENT_) struct utsname un; uname(&un); if (strncmp(un.version, "V2", 2) == 0) { printf ("i386-sequent-ptx2\n"); exit (0); } if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */ printf ("i386-sequent-ptx1\n"); exit (0); } printf ("i386-sequent-ptx\n"); exit (0); #endif #if defined (vax) # if !defined (ultrix) # include # if defined (BSD) # if BSD == 43 printf ("vax-dec-bsd4.3\n"); exit (0); # else # if BSD == 199006 printf ("vax-dec-bsd4.3reno\n"); exit (0); # else printf ("vax-dec-bsd\n"); exit (0); # endif # endif # else printf ("vax-dec-bsd\n"); exit (0); # endif # else printf ("vax-dec-ultrix\n"); exit (0); # endif #endif #if defined (alliant) && defined (i860) printf ("i860-alliant-bsd\n"); exit (0); #endif exit (1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } # Apollos put the system type in the environment. test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit; } # Convex versions that predate uname can use getsysinfo(1) if [ -x /usr/convex/getsysinfo ] then case `getsysinfo -f cpu_type` in c1*) echo c1-convex-bsd exit ;; c2*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; c34*) echo c34-convex-bsd exit ;; c38*) echo c38-convex-bsd exit ;; c4*) echo c4-convex-bsd exit ;; esac fi cat >&2 < in order to provide the needed information to handle your system. config.guess timestamp = $timestamp uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null` /bin/uname -X = `(/bin/uname -X) 2>/dev/null` hostinfo = `(hostinfo) 2>/dev/null` /bin/universe = `(/bin/universe) 2>/dev/null` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null` /bin/arch = `(/bin/arch) 2>/dev/null` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null` UNAME_MACHINE = ${UNAME_MACHINE} UNAME_RELEASE = ${UNAME_RELEASE} UNAME_SYSTEM = ${UNAME_SYSTEM} UNAME_VERSION = ${UNAME_VERSION} EOF exit 1 # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: gsl-1.16/mdate-sh0000664000252300025230000000500312171574312010575 00000000000000#!/bin/sh # mdate-sh - get modification time of a file and pretty-print it # Copyright (C) 1995 Software Foundation, Inc. # Written by Ulrich Drepper , June 1995 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # Prevent date giving response in another language. LANG=C export LANG LC_ALL=C export LC_ALL LC_TIME=C export LC_TIME # Get the extended ls output of the file. if ls -L /dev/null 1>/dev/null 2>&1; then set - `ls -L -l $1` else set - `ls -l $1` fi # The month is at least the fourth argument. # (3 shifts here, the next inside the loop) shift shift shift # Find the month. Next argument is day, followed by the year or time. month= until test $month do shift case $1 in Jan) month=January; nummonth=1;; Feb) month=February; nummonth=2;; Mar) month=March; nummonth=3;; Apr) month=April; nummonth=4;; May) month=May; nummonth=5;; Jun) month=June; nummonth=6;; Jul) month=July; nummonth=7;; Aug) month=August; nummonth=8;; Sep) month=September; nummonth=9;; Oct) month=October; nummonth=10;; Nov) month=November; nummonth=11;; Dec) month=December; nummonth=12;; esac done day=$2 # Here we have to deal with the problem that the ls output gives either # the time of day or the year. case $3 in *:*) set `date`; eval year=\$$# case $2 in Jan) nummonthtod=1;; Feb) nummonthtod=2;; Mar) nummonthtod=3;; Apr) nummonthtod=4;; May) nummonthtod=5;; Jun) nummonthtod=6;; Jul) nummonthtod=7;; Aug) nummonthtod=8;; Sep) nummonthtod=9;; Oct) nummonthtod=10;; Nov) nummonthtod=11;; Dec) nummonthtod=12;; esac # For the first six month of the year the time notation can also # be used for files modified in the last year. if (expr $nummonth \> $nummonthtod) > /dev/null; then year=`expr $year - 1` fi;; *) year=$3;; esac # The result. echo $day $month $year gsl-1.16/ode-initval2/0000775000252300025230000000000012172254162011526 500000000000000gsl-1.16/ode-initval2/rk8pd.c0000664000252300025230000002775312171574312012661 00000000000000/* ode-initval2/rk8pd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 8(9), Prince-Dormand * * High Order Embedded Runge-Kutta Formulae * P.J. Prince and J.R. Dormand * J. Comp. Appl. Math.,7, pp. 67-75, 1981 */ /* Author: G. Jungman */ #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" /* Prince-Dormand constants */ static const double Abar[] = { 14005451.0 / 335480064.0, 0.0, 0.0, 0.0, 0.0, -59238493.0 / 1068277825.0, 181606767.0 / 758867731.0, 561292985.0 / 797845732.0, -1041891430.0 / 1371343529.0, 760417239.0 / 1151165299.0, 118820643.0 / 751138087.0, -528747749.0 / 2220607170.0, 1.0 / 4.0 }; static const double A[] = { 13451932.0 / 455176623.0, 0.0, 0.0, 0.0, 0.0, -808719846.0 / 976000145.0, 1757004468.0 / 5645159321.0, 656045339.0 / 265891186.0, -3867574721.0 / 1518517206.0, 465885868.0 / 322736535.0, 53011238.0 / 667516719.0, 2.0 / 45.0 }; static const double ah[] = { 1.0 / 18.0, 1.0 / 12.0, 1.0 / 8.0, 5.0 / 16.0, 3.0 / 8.0, 59.0 / 400.0, 93.0 / 200.0, 5490023248.0 / 9719169821.0, 13.0 / 20.0, 1201146811.0 / 1299019798.0 }; static const double b21 = 1.0 / 18.0; static const double b3[] = { 1.0 / 48.0, 1.0 / 16.0 }; static const double b4[] = { 1.0 / 32.0, 0.0, 3.0 / 32.0 }; static const double b5[] = { 5.0 / 16.0, 0.0, -75.0 / 64.0, 75.0 / 64.0 }; static const double b6[] = { 3.0 / 80.0, 0.0, 0.0, 3.0 / 16.0, 3.0 / 20.0 }; static const double b7[] = { 29443841.0 / 614563906.0, 0.0, 0.0, 77736538.0 / 692538347.0, -28693883.0 / 1125000000.0, 23124283.0 / 1800000000.0 }; static const double b8[] = { 16016141.0 / 946692911.0, 0.0, 0.0, 61564180.0 / 158732637.0, 22789713.0 / 633445777.0, 545815736.0 / 2771057229.0, -180193667.0 / 1043307555.0 }; static const double b9[] = { 39632708.0 / 573591083.0, 0.0, 0.0, -433636366.0 / 683701615.0, -421739975.0 / 2616292301.0, 100302831.0 / 723423059.0, 790204164.0 / 839813087.0, 800635310.0 / 3783071287.0 }; static const double b10[] = { 246121993.0 / 1340847787.0, 0.0, 0.0, -37695042795.0 / 15268766246.0, -309121744.0 / 1061227803.0, -12992083.0 / 490766935.0, 6005943493.0 / 2108947869.0, 393006217.0 / 1396673457.0, 123872331.0 / 1001029789.0 }; static const double b11[] = { -1028468189.0 / 846180014.0, 0.0, 0.0, 8478235783.0 / 508512852.0, 1311729495.0 / 1432422823.0, -10304129995.0 / 1701304382.0, -48777925059.0 / 3047939560.0, 15336726248.0 / 1032824649.0, -45442868181.0 / 3398467696.0, 3065993473.0 / 597172653.0 }; static const double b12[] = { 185892177.0 / 718116043.0, 0.0, 0.0, -3185094517.0 / 667107341.0, -477755414.0 / 1098053517.0, -703635378.0 / 230739211.0, 5731566787.0 / 1027545527.0, 5232866602.0 / 850066563.0, -4093664535.0 / 808688257.0, 3962137247.0 / 1805957418.0, 65686358.0 / 487910083.0 }; static const double b13[] = { 403863854.0 / 491063109.0, 0.0, 0.0, -5068492393.0 / 434740067.0, -411421997.0 / 543043805.0, 652783627.0 / 914296604.0, 11173962825.0 / 925320556.0, -13158990841.0 / 6184727034.0, 3936647629.0 / 1978049680.0, -160528059.0 / 685178525.0, 248638103.0 / 1413531060.0, 0.0 }; typedef struct { double *k[13]; double *ytmp; double *y0; } rk8pd_state_t; static void * rk8pd_alloc (size_t dim) { rk8pd_state_t *state = (rk8pd_state_t *) malloc (sizeof (rk8pd_state_t)); int i, j; if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk8pd_state", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } for (i = 0; i < 13; i++) { state->k[i] = (double *) malloc (dim * sizeof (double)); if (state->k[i] == 0) { for (j = 0; j < i; j++) { free (state->k[j]); } free (state->y0); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for k's", GSL_ENOMEM); } } return state; } static int rk8pd_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; size_t i; double *const ytmp = state->ytmp; double *const y0 = state->y0; /* Note that k1 is stored in state->k[0] due to zero-based indexing */ double *const k1 = state->k[0]; double *const k2 = state->k[1]; double *const k3 = state->k[2]; double *const k4 = state->k[3]; double *const k5 = state->k[4]; double *const k6 = state->k[5]; double *const k7 = state->k[6]; double *const k8 = state->k[7]; double *const k9 = state->k[8]; double *const k10 = state->k[9]; double *const k11 = state->k[10]; double *const k12 = state->k[11]; double *const k13 = state->k[12]; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + b21 * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b7[0] * k1[i] + b7[3] * k4[i] + b7[4] * k5[i] + b7[5] * k6[i]); /* k7 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[5] * h, ytmp, k7); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b8[0] * k1[i] + b8[3] * k4[i] + b8[4] * k5[i] + b8[5] * k6[i] + b8[6] * k7[i]); /* k8 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[6] * h, ytmp, k8); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b9[0] * k1[i] + b9[3] * k4[i] + b9[4] * k5[i] + b9[5] * k6[i] + b9[6] * k7[i] + b9[7] * k8[i]); /* k9 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[7] * h, ytmp, k9); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b10[0] * k1[i] + b10[3] * k4[i] + b10[4] * k5[i] + b10[5] * k6[i] + b10[6] * k7[i] + b10[7] * k8[i] + b10[8] * k9[i]); /* k10 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[8] * h, ytmp, k10); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b11[0] * k1[i] + b11[3] * k4[i] + b11[4] * k5[i] + b11[5] * k6[i] + b11[6] * k7[i] + b11[7] * k8[i] + b11[8] * k9[i] + b11[9] * k10[i]); /* k11 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[9] * h, ytmp, k11); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b12[0] * k1[i] + b12[3] * k4[i] + b12[4] * k5[i] + b12[5] * k6[i] + b12[6] * k7[i] + b12[7] * k8[i] + b12[8] * k9[i] + b12[9] * k10[i] + b12[10] * k11[i]); /* k12 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k12); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b13[0] * k1[i] + b13[3] * k4[i] + b13[4] * k5[i] + b13[5] * k6[i] + b13[6] * k7[i] + b13[7] * k8[i] + b13[8] * k9[i] + b13[9] * k10[i] + b13[10] * k11[i] + b13[11] * k12[i]); /* k13 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k13); if (s != GSL_SUCCESS) { return s; } } /* final sum */ for (i = 0; i < dim; i++) { const double ksum8 = Abar[0] * k1[i] + Abar[5] * k6[i] + Abar[6] * k7[i] + Abar[7] * k8[i] + Abar[8] * k9[i] + Abar[9] * k10[i] + Abar[10] * k11[i] + Abar[11] * k12[i] + Abar[12] * k13[i]; y[i] += h * ksum8; } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* error estimate */ for (i = 0; i < dim; i++) { const double ksum8 = Abar[0] * k1[i] + Abar[5] * k6[i] + Abar[6] * k7[i] + Abar[7] * k8[i] + Abar[8] * k9[i] + Abar[9] * k10[i] + Abar[10] * k11[i] + Abar[11] * k12[i] + Abar[12] * k13[i]; const double ksum7 = A[0] * k1[i] + A[5] * k6[i] + A[6] * k7[i] + A[7] * k8[i] + A[8] * k9[i] + A[9] * k10[i] + A[10] * k11[i] + A[11] * k12[i]; yerr[i] = h * (ksum7 - ksum8); } return GSL_SUCCESS; } static int rk8pd_reset (void *vstate, size_t dim) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; int i; for (i = 0; i < 13; i++) { DBL_ZERO_MEMSET (state->k[i], dim); } DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->ytmp, dim); return GSL_SUCCESS; } static unsigned int rk8pd_order (void *vstate) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 8; } static void rk8pd_free (void *vstate) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; int i; for (i = 0; i < 13; i++) { free (state->k[i]); } free (state->y0); free (state->ytmp); free (state); } static const gsl_odeiv2_step_type rk8pd_type = { "rk8pd", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk8pd_alloc, &rk8pd_apply, &stepper_set_driver_null, &rk8pd_reset, &rk8pd_order, &rk8pd_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk8pd = &rk8pd_type; gsl-1.16/ode-initval2/control.c0000664000252300025230000000553512171574312013303 00000000000000/* ode-initval/control.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include gsl_odeiv2_control * gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * T) { gsl_odeiv2_control *c = (gsl_odeiv2_control *) malloc (sizeof (gsl_odeiv2_control)); if (c == 0) { GSL_ERROR_NULL ("failed to allocate space for control struct", GSL_ENOMEM); }; c->type = T; c->state = c->type->alloc (); if (c->state == 0) { free (c); /* exception in constructor, avoid memory leak */ GSL_ERROR_NULL ("failed to allocate space for control state", GSL_ENOMEM); }; return c; } int gsl_odeiv2_control_init (gsl_odeiv2_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt) { return c->type->init (c->state, eps_abs, eps_rel, a_y, a_dydt); } void gsl_odeiv2_control_free (gsl_odeiv2_control * c) { RETURN_IF_NULL (c); c->type->free (c->state); free (c); } const char * gsl_odeiv2_control_name (const gsl_odeiv2_control * c) { return c->type->name; } int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * c, gsl_odeiv2_step * s, const double y[], const double yerr[], const double dydt[], double *h) { return c->type->hadjust (c->state, s->dimension, s->type->order (s->state), y, yerr, dydt, h); } int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * c, const double y, const double dydt, const double h, const size_t ind, double *errlev) { return c->type->errlevel (c->state, y, dydt, h, ind, errlev); } int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * c, const gsl_odeiv2_driver * d) { if (d != NULL) { c->type->set_driver (c->state, d); } else { GSL_ERROR_NULL ("driver pointer is null", GSL_EFAULT); } return GSL_SUCCESS; } gsl-1.16/ode-initval2/TODO0000664000252300025230000000653712171574312012152 00000000000000* Implement other stepping methods from well-known packages such as RKSUITE, DASSL, etc * The entry below has been downgraded from a bug. We use the coefficients given in the original paper by Prince and Dormand, and it is true that these are inexact (the values in the paper are said to be accurate 18 figures). If somebody publishes exact versions we will use them, but at present it is better to stick with the published versions of the coefficients them use our own. ---------------------------------------------------------------------- BUG#8 -- inexact coefficients in rk8pd.c From: Luc Maisonobe To: gsl-discuss@sources.redhat.com Subject: further thoughts about Dormand-Prince 8 (RK8PD) Date: Wed, 14 Aug 2002 10:50:49 +0200 I was looking for some references concerning Runge-Kutta methods when I noticed GSL had an high order one. I also found a question in the list archive (April 2002) about the references of this method which is implemented in rk8pd.c. It was said the coefficients were taken from the "Numerical Algorithms with C" book by Engeln-Mullges and Uhlig. I have checked the coefficients somewhat with a little java tool I have developped (see http://www.spaceroots.org/archive.htm#RKCheckSoftware) and found they were not exact. I think this method is really the method that is already in rksuite (http://www.netlib.org/ode/rksuite/) were the coefficients are given as real values with 30 decimal digits. The coefficients have probably been approximated as fractions later on. However, these approximations are not perfect, they are good only for the first 16 or 18 digits depending on the coefficient. This has no consequence for practical purposes since they are stored in double variables, but give a false impression of beeing exact expressions. Well, there are even some coefficients that should really be rational numbers but for which wrong numerators and denominators are given. As an example, the first and fourth elements of the b7 array are given as 29443841.0 / 614563906.0 and 77736538.0 / 692538347, hence the sum off all elements of the b7 array (which should theoretically be equal to ah[5]) only approximate this. For these two coefficients, this could have been avoided using 215595617.0 / 4500000000.0 and 202047683.0 / 1800000000.0, which also looks more coherent with the other coefficients. The rksuite comments say this method is described in this paper : High Order Embedded Runge-Kutta Formulae P.J. Prince and J.R. Dormand J. Comp. Appl. Math.,7, pp. 67-75, 1981 It also says the method is an 8(7) method (i.e. the coefficients set used to advance integration is order 8 and error estimation is order 7). If I use my tool to check the order, I am forced to check the order conditions numerically with a tolerance since I do not have an exact expression of the coefficients. Since even if some conditions are not mathematically met, the residuals are small and could be below the tolerance. There are tolerance values for which such numerical test dedeuce the method is of order 9, as is said in GSL. However, I am not convinced, there are to few parameters for the large number of order conditions needed at order 9. I would suggest to correct the coefficients in rk8pd.c (just put the literal constants of rksuite) and to add the reference to the article. ---------------------------------------------------------------------- gsl-1.16/ode-initval2/rk2imp.c0000664000252300025230000002771612171574312013034 00000000000000/* ode-initval2/rk2imp.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Based on rk2imp.c by Gerard Jungman */ /* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule. Error estimation is carried out by the step doubling method. */ /* Reference: Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include #include "odeiv_util.h" #include "rksubs.c" #include "modnewton1.c" /* Stage of method */ #define RK2IMP_STAGE 1 typedef struct { gsl_matrix *A; /* Runge-Kutta coefficients */ double *y_onestep; /* Result with one step */ double *y_twostep; /* Result with two half steps */ double *ytmp; /* Temporary work space */ double *y_save; /* Backup space */ double *YZ; /* Runge-Kutta points */ double *fYZ; /* Derivatives at YZ */ gsl_matrix *dfdy; /* Jacobian matrix */ double *dfdt; /* time derivative of f */ modnewton1_state_t *esol; /* nonlinear equation solver */ double *errlev; /* desired error level of y */ const gsl_odeiv2_driver *driver; /* pointer to driver object */ } rk2imp_state_t; static void * rk2imp_alloc (size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) malloc (sizeof (rk2imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2imp_state", GSL_ENOMEM); } state->A = gsl_matrix_alloc (RK2IMP_STAGE, RK2IMP_STAGE); if (state->A == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for A", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->y_twostep = (double *) malloc (dim * sizeof (double)); if (state->y_twostep == 0) { free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_save = (double *) malloc (dim * sizeof (double)); if (state->y_save == 0) { free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_save", GSL_ENOMEM); } state->YZ = (double *) malloc (dim * RK2IMP_STAGE * sizeof (double)); if (state->YZ == 0) { free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for YZ", GSL_ENOMEM); } state->fYZ = (double *) malloc (dim * RK2IMP_STAGE * sizeof (double)); if (state->fYZ == 0) { free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for fYZ", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->dfdy = gsl_matrix_alloc (dim, dim); if (state->dfdy == 0) { free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->esol = modnewton1_alloc (dim, RK2IMP_STAGE); if (state->esol == 0) { gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for esol", GSL_ENOMEM); } state->errlev = (double *) malloc (dim * sizeof (double)); if (state->errlev == 0) { modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM); } state->driver = NULL; return state; } static int rk2imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { /* Makes a Gaussian implicit 4th order Runge-Kutta step with size h and estimates the local error of the step by step doubling. */ rk2imp_state_t *state = (rk2imp_state_t *) vstate; double *const y_onestep = state->y_onestep; double *const y_twostep = state->y_twostep; double *const ytmp = state->ytmp; double *const y_save = state->y_save; double *const YZ = state->YZ; double *const fYZ = state->fYZ; gsl_matrix *const dfdy = state->dfdy; double *const dfdt = state->dfdt; double *const errlev = state->errlev; const modnewton1_state_t *esol = state->esol; /* Runge-Kutta coefficients */ gsl_matrix *A = state->A; const double b[] = { 1.0 }; const double c[] = { 0.5 }; gsl_matrix_set (A, 0, 0, 0.5); if (esol == NULL) { GSL_ERROR ("no non-linear equation solver speficied", GSL_EINVAL); } /* Get desired error levels via gsl_odeiv2_control object through driver object, which is a requirement for this stepper. */ if (state->driver == NULL) { return GSL_EFAULT; } else { size_t i; for (i = 0; i < dim; i++) { if (dydt_in != NULL) { gsl_odeiv2_control_errlevel (state->driver->c, y[i], dydt_in[i], h, i, &errlev[i]); } else { gsl_odeiv2_control_errlevel (state->driver->c, y[i], 0.0, h, i, &errlev[i]); } } } /* Evaluate Jacobian for modnewton1 */ { int s = GSL_ODEIV_JA_EVAL (sys, t, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Calculate a single step with size h */ { int s = modnewton1_init ((void *) esol, A, h, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } { int s = modnewton1_solve ((void *) esol, A, c, t, h, y, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + c[0] * h, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { int s = rksubs (y_onestep, h, y, fYZ, b, RK2IMP_STAGE, dim); if (s != GSL_SUCCESS) { return s; } } /* Error estimation by step doubling */ { int s = modnewton1_init ((void *) esol, A, h / 2.0, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } /* 1st half step */ { int s = modnewton1_solve ((void *) esol, A, c, t, h / 2.0, y, sys, YZ, errlev); if (s != GSL_SUCCESS) return s; } { int s = GSL_ODEIV_FN_EVAL (sys, t + c[0] * h / 2.0, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { int s = rksubs (ytmp, h / 2.0, y, fYZ, b, RK2IMP_STAGE, dim); if (s != GSL_SUCCESS) { return s; } } /* Save original y values in case of error */ DBL_MEMCPY (y_save, y, dim); /* 2nd half step */ { int s = modnewton1_solve ((void *) esol, A, c, t + h / 2.0, h / 2.0, ytmp, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0 + c[0] * h / 2.0, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { /* Note: rk2imp returns y using the results from two half steps instead of the single step since the results are freely available and more precise. */ int s = rksubs (y_twostep, h / 2.0, ytmp, fYZ, b, RK2IMP_STAGE, dim); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); return s; } } DBL_MEMCPY (y, y_twostep, dim); /* Error estimation */ { size_t i; for (i = 0; i < dim; i++) { yerr[i] = ODEIV_ERR_SAFETY * 0.5 * fabs (y_twostep[i] - y_onestep[i]) / 3.0; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y_save, dim); return s; } } return GSL_SUCCESS; } static int rk2imp_set_driver (void *vstate, const gsl_odeiv2_driver * d) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; state->driver = d; return GSL_SUCCESS; } static int rk2imp_reset (void *vstate, size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y_twostep, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_save, dim); DBL_ZERO_MEMSET (state->YZ, dim); DBL_ZERO_MEMSET (state->fYZ, dim); return GSL_SUCCESS; } static unsigned int rk2imp_order (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2imp_free (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; free (state->errlev); modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); } static const gsl_odeiv2_step_type rk2imp_type = { "rk2imp", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk2imp_alloc, &rk2imp_apply, &rk2imp_set_driver, &rk2imp_reset, &rk2imp_order, &rk2imp_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2imp = &rk2imp_type; gsl-1.16/ode-initval2/rkf45.c0000664000252300025230000002107412171574312012552 00000000000000/* ode-initval2/rkf45.c * * Copyright (C) 2001, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta-Fehlberg 4(5)*/ /* Reference eg. Hairer, E., Norsett S.P., Wanner, G. Solving ordinary differential equations I, Nonstiff Problems, 2nd revised edition, Springer, 2000. */ #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" /* Runge-Kutta-Fehlberg coefficients. Zero elements left out */ static const double ah[] = { 1.0 / 4.0, 3.0 / 8.0, 12.0 / 13.0, 1.0, 1.0 / 2.0 }; static const double b3[] = { 3.0 / 32.0, 9.0 / 32.0 }; static const double b4[] = { 1932.0 / 2197.0, -7200.0 / 2197.0, 7296.0 / 2197.0 }; static const double b5[] = { 8341.0 / 4104.0, -32832.0 / 4104.0, 29440.0 / 4104.0, -845.0 / 4104.0 }; static const double b6[] = { -6080.0 / 20520.0, 41040.0 / 20520.0, -28352.0 / 20520.0, 9295.0 / 20520.0, -5643.0 / 20520.0 }; static const double c1 = 902880.0 / 7618050.0; static const double c3 = 3953664.0 / 7618050.0; static const double c4 = 3855735.0 / 7618050.0; static const double c5 = -1371249.0 / 7618050.0; static const double c6 = 277020.0 / 7618050.0; /* These are the differences of fifth and fourth order coefficients for error estimation */ static const double ec[] = { 0.0, 1.0 / 360.0, 0.0, -128.0 / 4275.0, -2197.0 / 75240.0, 1.0 / 50.0, 2.0 / 55.0 }; typedef struct { double *k1; double *k2; double *k3; double *k4; double *k5; double *k6; double *y0; double *ytmp; } rkf45_state_t; static void * rkf45_alloc (size_t dim) { rkf45_state_t *state = (rkf45_state_t *) malloc (sizeof (rkf45_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rkf45_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->k4 = (double *) malloc (dim * sizeof (double)); if (state->k4 == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k4", GSL_ENOMEM); } state->k5 = (double *) malloc (dim * sizeof (double)); if (state->k5 == 0) { free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k5", GSL_ENOMEM); } state->k6 = (double *) malloc (dim * sizeof (double)); if (state->k6 == 0) { free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k6", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rkf45_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { rkf45_state_t *state = (rkf45_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const k4 = state->k4; double *const k5 = state->k5; double *const k6 = state->k6; double *const ytmp = state->ytmp; double *const y0 = state->y0; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + ah[0] * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[1] * k2[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[1] * k2[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[1] * k2[i] + b6[2] * k3[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step and final sum */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { const double d_i = c1 * k1[i] + c3 * k3[i] + c4 * k4[i] + c5 * k5[i] + c6 * k6[i]; y[i] += h * d_i; } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* difference between 4th and 5th order */ for (i = 0; i < dim; i++) { yerr[i] = h * (ec[1] * k1[i] + ec[3] * k3[i] + ec[4] * k4[i] + ec[5] * k5[i] + ec[6] * k6[i]); } return GSL_SUCCESS; } static int rkf45_reset (void *vstate, size_t dim) { rkf45_state_t *state = (rkf45_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->k4, dim); DBL_ZERO_MEMSET (state->k5, dim); DBL_ZERO_MEMSET (state->k6, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); return GSL_SUCCESS; } static unsigned int rkf45_order (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 5; } static void rkf45_free (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; free (state->ytmp); free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); } static const gsl_odeiv2_step_type rkf45_type = { "rkf45", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rkf45_alloc, &rkf45_apply, &stepper_set_driver_null, &rkf45_reset, &rkf45_order, &rkf45_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rkf45 = &rkf45_type; gsl-1.16/ode-initval2/gsl_odeiv2.h0000664000252300025230000003272512171574312013666 00000000000000/* ode-initval/odeiv2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Modified by Tuomo Keskitalo */ #ifndef __GSL_ODEIV2_H__ #define __GSL_ODEIV2_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Description of a system of ODEs. * * y' = f(t,y) = dydt(t, y) * * The system is specified by giving the right-hand-side * of the equation and possibly a jacobian function. * * Some methods require the jacobian function, which calculates * the matrix dfdy and the vector dfdt. The matrix dfdy conforms * to the GSL standard, being a continuous range of floating point * values, in row-order. * * As with GSL function objects, user-supplied parameter * data is also present. */ typedef struct { int (*function) (double t, const double y[], double dydt[], void *params); int (*jacobian) (double t, const double y[], double *dfdy, double dfdt[], void *params); size_t dimension; void *params; } gsl_odeiv2_system; /* Function evaluation macros */ #define GSL_ODEIV_FN_EVAL(S,t,y,f) (*((S)->function))(t,y,f,(S)->params) #define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt) (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params) /* Type definitions */ typedef struct gsl_odeiv2_step_struct gsl_odeiv2_step; typedef struct gsl_odeiv2_control_struct gsl_odeiv2_control; typedef struct gsl_odeiv2_evolve_struct gsl_odeiv2_evolve; typedef struct gsl_odeiv2_driver_struct gsl_odeiv2_driver; /* Stepper object * * Opaque object for stepping an ODE system from t to t+h. * In general the object has some state which facilitates * iterating the stepping operation. */ typedef struct { const char *name; int can_use_dydt_in; int gives_exact_dydt_out; void *(*alloc) (size_t dim); int (*apply) (void *state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * dydt); int (*set_driver) (void *state, const gsl_odeiv2_driver * d); int (*reset) (void *state, size_t dim); unsigned int (*order) (void *state); void (*free) (void *state); } gsl_odeiv2_step_type; struct gsl_odeiv2_step_struct { const gsl_odeiv2_step_type *type; size_t dimension; void *state; }; /* Available stepper types */ GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rkf45; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rkck; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk8pd; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_bsimp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_rk1imp; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_msadams; GSL_VAR const gsl_odeiv2_step_type *gsl_odeiv2_step_msbdf; /* Stepper object methods */ gsl_odeiv2_step *gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * T, size_t dim); int gsl_odeiv2_step_reset (gsl_odeiv2_step * s); void gsl_odeiv2_step_free (gsl_odeiv2_step * s); const char *gsl_odeiv2_step_name (const gsl_odeiv2_step * s); unsigned int gsl_odeiv2_step_order (const gsl_odeiv2_step * s); int gsl_odeiv2_step_apply (gsl_odeiv2_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * dydt); int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * s, const gsl_odeiv2_driver * d); /* Step size control object. */ typedef struct { const char *name; void *(*alloc) (void); int (*init) (void *state, double eps_abs, double eps_rel, double a_y, double a_dydt); int (*hadjust) (void *state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double *h); int (*errlevel) (void *state, const double y, const double dydt, const double h, const size_t ind, double *errlev); int (*set_driver) (void *state, const gsl_odeiv2_driver * d); void (*free) (void *state); } gsl_odeiv2_control_type; struct gsl_odeiv2_control_struct { const gsl_odeiv2_control_type *type; void *state; }; /* Possible return values for an hadjust() evolution method */ #define GSL_ODEIV_HADJ_INC 1 /* step was increased */ #define GSL_ODEIV_HADJ_NIL 0 /* step unchanged */ #define GSL_ODEIV_HADJ_DEC (-1) /* step decreased */ /* General step size control methods. * * The hadjust() method controls the adjustment of * step size given the result of a step and the error. * Valid hadjust() methods must return one of the codes below. * errlevel function calculates the desired error level D0. * * The general data can be used by specializations * to store state and control their heuristics. */ gsl_odeiv2_control *gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * T); int gsl_odeiv2_control_init (gsl_odeiv2_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt); void gsl_odeiv2_control_free (gsl_odeiv2_control * c); int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * c, gsl_odeiv2_step * s, const double y[], const double yerr[], const double dydt[], double *h); const char *gsl_odeiv2_control_name (const gsl_odeiv2_control * c); int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * c, const double y, const double dydt, const double h, const size_t ind, double *errlev); int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * c, const gsl_odeiv2_driver * d); /* Available control object constructors. * * The standard control object is a four parameter heuristic * defined as follows: * D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|) * D1 = |yerr| * q = consistency order of method (q=4 for 4(5) embedded RK) * S = safety factor (0.9 say) * * / (D0/D1)^(1/(q+1)) D0 >= D1 * h_NEW = S h_OLD * | * \ (D0/D1)^(1/q) D0 < D1 * * This encompasses all the standard error scaling methods. * * The y method is the standard method with a_y=1, a_dydt=0. * The yp method is the standard method with a_y=0, a_dydt=1. */ gsl_odeiv2_control *gsl_odeiv2_control_standard_new (double eps_abs, double eps_rel, double a_y, double a_dydt); gsl_odeiv2_control *gsl_odeiv2_control_y_new (double eps_abs, double eps_rel); gsl_odeiv2_control *gsl_odeiv2_control_yp_new (double eps_abs, double eps_rel); /* This controller computes errors using different absolute errors for * each component * * D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|) */ gsl_odeiv2_control *gsl_odeiv2_control_scaled_new (double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim); /* Evolution object */ struct gsl_odeiv2_evolve_struct { size_t dimension; double *y0; double *yerr; double *dydt_in; double *dydt_out; double last_step; unsigned long int count; unsigned long int failed_steps; const gsl_odeiv2_driver *driver; }; /* Evolution object methods */ gsl_odeiv2_evolve *gsl_odeiv2_evolve_alloc (size_t dim); int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, double t1, double *h, double y[]); int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, const double h0, double y[]); int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * e); void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * e); int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * e, const gsl_odeiv2_driver * d); /* Driver object * * This is a high level wrapper for step, control and * evolve objects. */ struct gsl_odeiv2_driver_struct { const gsl_odeiv2_system *sys; /* ODE system */ gsl_odeiv2_step *s; /* stepper object */ gsl_odeiv2_control *c; /* control object */ gsl_odeiv2_evolve *e; /* evolve object */ double h; /* step size */ double hmin; /* minimum step size allowed */ double hmax; /* maximum step size allowed */ unsigned long int n; /* number of steps taken */ unsigned long int nmax; /* Maximum number of steps allowed */ }; /* Driver object methods */ gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel); gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel); gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt, const double scale_abs[]); gsl_odeiv2_driver *gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt); int gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * d, const double hmin); int gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * d, const double hmax); int gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * d, const unsigned long int nmax); int gsl_odeiv2_driver_apply (gsl_odeiv2_driver * d, double *t, const double t1, double y[]); int gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * d, double *t, const double h, const unsigned long int n, double y[]); int gsl_odeiv2_driver_reset (gsl_odeiv2_driver * d); int gsl_odeiv2_driver_reset_hstart (gsl_odeiv2_driver * d, const double hstart); void gsl_odeiv2_driver_free (gsl_odeiv2_driver * state); __END_DECLS #endif /* __GSL_ODEIV2_H__ */ gsl-1.16/ode-initval2/test.c0000664000252300025230000016512012171574312012577 00000000000000/* ode-initval/test.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Some functions and tests based on test.c by G. Jungman. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "odeiv_util.h" /* Maximum number of ODE equations */ #define MAXEQ 15 /* Maximum number of ODE solvers */ #define MAXNS 20 /* Track number of function and jacobian evaluations in tests with global variables */ int nfe; int nje; /**********************************************************/ /* ODE test system definitions */ /**********************************************************/ /* RHS for f=2. Solution y = 2 * t + t0 */ int rhs_linear (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = 2.0; return GSL_SUCCESS; } int jac_linear (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = 0.0; dfdt[0] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_lin = { rhs_linear, jac_linear, 1, 0 }; /* RHS for f=y. Equals y=exp(t) with initial value y(0)=1.0 */ int rhs_exp (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = y[0]; return GSL_SUCCESS; } int jac_exp (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = y[0]; dfdt[0] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_exp = { rhs_exp, jac_exp, 1, 0 }; int rhs_sin (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = -y[1]; f[1] = y[0]; return GSL_SUCCESS; } int jac_sin (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = 0.0; dfdy[1] = -1.0; dfdy[2] = 1.0; dfdy[3] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_sin = { rhs_sin, jac_sin, 2, 0 }; /* Sine/cosine with random failures */ static int rhs_xsin_reset = 0; static int jac_xsin_reset = 0; int rhs_xsin (double t, const double y[], double f[], void *params) { static int n = 0, m = 0; extern int nfe; nfe += 1; if (rhs_xsin_reset) { rhs_xsin_reset = 0; n = 0; m = 1; } n++; if (n >= m) { m = n * 1.3; return GSL_EFAILED; } if (n > 40 && n < 65) { f[0] = GSL_NAN; f[1] = GSL_NAN; return GSL_EFAILED; } f[0] = -y[1]; f[1] = y[0]; return GSL_SUCCESS; } int jac_xsin (double t, const double y[], double *dfdy, double dfdt[], void *params) { static int n = 0; extern int nje; nje += 1; if (jac_xsin_reset) { jac_xsin_reset = 0; n = 0; } n++; if (n > 50 && n < 55) { dfdy[0] = GSL_NAN; dfdy[1] = GSL_NAN; dfdy[2] = GSL_NAN; dfdy[3] = GSL_NAN; dfdt[0] = GSL_NAN; dfdt[1] = GSL_NAN; return GSL_EFAILED; } dfdy[0] = 0.0; dfdy[1] = -1.0; dfdy[2] = 1.0; dfdy[3] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_xsin = { rhs_xsin, jac_xsin, 2, 0 }; /* RHS for classic stiff example dy0 / dt = 998 * y0 + 1998 * y1 y0(0) = 1.0 dy1 / dt = -999 * y0 - 1999 * y1 y1(0) = 0.0 solution is y0 = 2 * exp(-t) - exp(-1000 * t) y1 = - exp(-t) + exp(-1000 * t) */ int rhs_stiff (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = 998.0 * y[0] + 1998.0 * y[1]; f[1] = -999.0 * y[0] - 1999.0 * y[1]; return GSL_SUCCESS; } int jac_stiff (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = 998.0; dfdy[1] = 1998.0; dfdy[2] = -999.0; dfdy[3] = -1999.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_stiff = { rhs_stiff, jac_stiff, 2, 0 }; /* Cosine function */ int rhs_cos (double t, const double *y, double *dydt, void *params) { dydt[0] = cos (t); return GSL_SUCCESS; } int jac_cos (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 0.0; dfdt[0] = -sin (t); return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_cos = { rhs_cos, jac_cos, 1, 0 }; /* Broken problem for testing numerical problems in user function that leads to decrease of step size in gsl_odeiv2_evolve below machine precision. */ int rhs_broken (double t, const double y[], double f[], void *params) { if (t < 10.0) { f[0] = 1.0; } else { f[0] = GSL_NAN; return 123; } return GSL_SUCCESS; } int jac_broken (double t, const double y[], double *dfdy, double dfdt[], void *params) { if (t < 10.0) { dfdy[0] = 0.0; dfdt[0] = 0.0; } else { dfdy[0] = GSL_NAN; dfdt[0] = GSL_NAN; return 123; } return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_broken = { rhs_broken, jac_broken, 1, 0 }; /* Immediate user break (at t > 1.5) test sine system */ int rhs_sin_ub (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = -y[1]; f[1] = y[0]; if (t > 1.5) { return GSL_EBADFUNC; } return GSL_SUCCESS; } int jac_sin_ub (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = 0.0; dfdy[1] = -1.0; dfdy[2] = 1.0; dfdy[3] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; if (t > 1.5) { return GSL_EBADFUNC; } return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_sin_ub = { rhs_sin_ub, jac_sin_ub, 2, 0 }; /* Badly scaled random function */ int rhs_br (double t, const double *y, double *dydt, void *params) { dydt[0] = (rand () - RAND_MAX / 2) * 2e100; return GSL_SUCCESS; } int jac_br (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = (rand () - RAND_MAX / 2) * 2e100; dfdt[0] = (rand () - RAND_MAX / 2) * 2e100; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_br = { rhs_br, jac_br, 1, 0 }; /* stepfn and stepfn2 based on testcases from Frank Reininghaus */ /* Derivative change at t=0, small derivative */ int rhs_stepfn (double t, const double *y, double *dydt, void *params) { if (t >= 1.0) dydt[0] = 1; else dydt[0] = 0; return GSL_SUCCESS; } int jac_stepfn (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 0.0; dfdt[0] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_stepfn = { rhs_stepfn, jac_stepfn, 1, 0 }; /* Derivative change at t=0, large derivative */ int rhs_stepfn2 (double t, const double *y, double *dydt, void *params) { if (t >= 0.0) dydt[0] = 1e300; else dydt[0] = 0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_stepfn2 = { rhs_stepfn2, jac_stepfn, 1, 0 }; /* Volterra-Lotka predator-prey model f0 = (a - b * y1) * y0 y0(0) = 2.725 f1 = (-c + d * y0) * y1 y1(0) = 1.0 */ int rhs_vl (double t, const double y[], double f[], void *params) { const double a = -1.0; const double b = -1.0; const double c = -2.0; const double d = -1.0; extern int nfe; nfe += 1; f[0] = (a - b * y[1]) * y[0]; f[1] = (-c + d * y[0]) * y[1]; return GSL_SUCCESS; } int jac_vl (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double a = -1.0; const double b = -1.0; const double c = -2.0; const double d = -1.0; extern int nje; nje += 1; dfdy[0] = a - b * y[1]; dfdy[1] = -b * y[0]; dfdy[2] = d * y[1]; dfdy[3] = -c + d * y[0]; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_vl = { rhs_vl, jac_vl, 2, 0 }; /* van Der Pol oscillator f0 = y1 y0(0) = 1.0 f1 = -y0 + mu * y1 * (1 - y0^2) y1(0) = 0.0 */ int rhs_vanderpol (double t, const double y[], double f[], void *params) { const double mu = 10.0; extern int nfe; nfe += 1; f[0] = y[1]; f[1] = -y[0] + mu * y[1] * (1.0 - y[0] * y[0]); return GSL_SUCCESS; } int jac_vanderpol (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double mu = 10.0; extern int nje; nje += 1; dfdy[0] = 0.0; dfdy[1] = 1.0; dfdy[2] = -2.0 * mu * y[0] * y[1] - 1.0; dfdy[3] = mu * (1.0 - y[0] * y[0]); dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_vanderpol = { rhs_vanderpol, jac_vanderpol, 2, 0 }; /* Stiff trigonometric example f0 = -50 * (y0 - cos(t)) y0(0) = 0.0 */ int rhs_stifftrig (double t, const double y[], double f[], void *params) { extern int nfe; nfe += 1; f[0] = -50 * (y[0] - cos (t)); return GSL_SUCCESS; } int jac_stifftrig (double t, const double y[], double *dfdy, double dfdt[], void *params) { extern int nje; nje += 1; dfdy[0] = -50; dfdt[0] = -50 * sin (t); return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_stifftrig = { rhs_stifftrig, jac_stifftrig, 1, 0 }; /* The Oregonator - chemical Belusov-Zhabotinskii reaction y0(0) = 1.0, y1(0) = 2.0, y2(0) = 3.0 */ int rhs_oregonator (double t, const double y[], double f[], void *params) { const double c1 = 77.27; const double c2 = 8.375e-6; const double c3 = 0.161; extern int nfe; nfe += 1; f[0] = c1 * (y[1] + y[0] * (1 - c2 * y[0] - y[1])); f[1] = 1 / c1 * (y[2] - y[1] * (1 + y[0])); f[2] = c3 * (y[0] - y[2]); return GSL_SUCCESS; } int jac_oregonator (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double c1 = 77.27; const double c2 = 8.375e-6; const double c3 = 0.161; extern int nje; nje += 1; dfdy[0] = c1 * (1 - 2 * c2 * y[0] - y[1]); dfdy[1] = c1 * (1 - y[0]); dfdy[2] = 0.0; dfdy[3] = 1 / c1 * (-y[1]); dfdy[4] = 1 / c1 * (-1 - y[0]); dfdy[5] = 1 / c1; dfdy[6] = c3; dfdy[7] = 0.0; dfdy[8] = -c3; dfdt[0] = 0.0; dfdt[1] = 0.0; dfdt[2] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_oregonator = { rhs_oregonator, jac_oregonator, 3, 0 }; /* E5 - a stiff badly scaled chemical problem by Enright, Hull & Lindberg (1975): Comparing numerical methods for stiff systems of ODEs. BIT, vol. 15, pp. 10-48. f0 = -a * y0 - b * y0 * y2 y0(0) = 1.76e-3 f1 = a * y0 - m * c * y1 * y2 y1(0) = 0.0 f2 = a * y0 - b * y0 * y2 - m * c * y1 * y2 + c * y3 y2(0) = 0.0 f3 = b * y0 * y2 - c * y3 y3(0) = 0.0 */ int rhs_e5 (double t, const double y[], double f[], void *params) { const double a = 7.89e-10; const double b = 1.1e7; const double c = 1.13e3; const double m = 1.0e6; extern int nfe; nfe += 1; f[0] = -a * y[0] - b * y[0] * y[2]; f[1] = a * y[0] - m * c * y[1] * y[2]; f[3] = b * y[0] * y[2] - c * y[3]; f[2] = f[1] - f[3]; return GSL_SUCCESS; } int jac_e5 (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double a = 7.89e-10; const double b = 1.1e7; const double c = 1.13e3; const double m = 1.0e6; extern int nje; nje += 1; dfdy[0] = -a - b * y[2]; dfdy[1] = 0.0; dfdy[2] = -b * y[0]; dfdy[3] = 0.0; dfdy[4] = a; dfdy[5] = -m * c * y[2]; dfdy[6] = -m * c * y[1]; dfdy[7] = 0.0; dfdy[8] = a - b * y[2]; dfdy[9] = -m * c * y[2]; dfdy[10] = -b * y[0] - m * c * y[1]; dfdy[11] = c; dfdy[12] = b * y[2]; dfdy[13] = 0.0; dfdy[14] = b * y[0]; dfdy[15] = -c; dfdt[0] = 0.0; dfdt[1] = 0.0; dfdt[2] = 0.0; dfdt[3] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_e5 = { rhs_e5, jac_e5, 4, 0 }; /* Chemical reaction system of H.H. Robertson (1966): The solution of a set of reaction rate equations. In: J. Walsh, ed.: Numer. Anal., an Introduction, Academ. Press, pp. 178-182. f0 = -a * y0 + b * y1 * y2 y0(0) = 1.0 f1 = a * y0 - b * y1 * y2 - c * y1^2 y1(0) = 0.0 f2 = c * y1^2 y2(0) = 0.0 */ int rhs_robertson (double t, const double y[], double f[], void *params) { const double a = 0.04; const double b = 1.0e4; const double c = 3.0e7; extern int nfe; nfe += 1; f[0] = -a * y[0] + b * y[1] * y[2]; f[2] = c * y[1] * y[1]; f[1] = -f[0] - f[2]; return GSL_SUCCESS; } int jac_robertson (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double a = 0.04; const double b = 1.0e4; const double c = 3.0e7; extern int nje; nje += 1; dfdy[0] = -a; dfdy[1] = b * y[2]; dfdy[2] = b * y[1]; dfdy[3] = a; dfdy[4] = -b * y[2] - 2 * c * y[1]; dfdy[5] = -b * y[1]; dfdy[6] = 0.0; dfdy[7] = 2 * c * y[1]; dfdy[8] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; dfdt[2] = 0.0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_robertson = { rhs_robertson, jac_robertson, 3, 0 }; /* A two-dimensional oscillating Brusselator system. f0 = a + y0^2 * y1 - (b + 1) * y0 y0(0) = 1.5 f1 = b * y0 - y0^2 * y1 y1(0) = 3.0 */ int rhs_brusselator (double t, const double y[], double f[], void *params) { const double a = 1.0; const double b = 3.0; extern int nfe; nfe += 1; f[0] = a + y[0] * y[0] * y[1] - (b + 1.0) * y[0]; f[1] = b * y[0] - y[0] * y[0] * y[1]; return GSL_SUCCESS; } int jac_brusselator (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double b = 3.0; extern int nje; nje += 1; dfdy[0] = 2 * y[0] * y[1] - (b + 1.0); dfdy[1] = y[0] * y[0]; dfdy[2] = b - 2 * y[0] * y[1]; dfdy[3] = -y[0] * y[0]; dfdt[0] = 0; dfdt[1] = 0; return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_brusselator = { rhs_brusselator, jac_brusselator, 2, 0 }; /* Ring Modulator, stiff ODE of dimension 15. Reference: Walter M. Lioen, Jacques J.B. de Swart, Test Set for Initial Value Problem Solvers, Release 2.1 September 1999, http://ftp.cwi.nl/IVPtestset/software.htm */ #define NRINGMOD 15 int rhs_ringmod (double t, const double y[], double f[], void *params) { const double c = 1.6e-8; const double cs = 2e-12; const double cp = 1e-8; const double r = 25e3; const double rp = 50e0; const double lh = 4.45e0; const double ls1 = 2e-3; const double ls2 = 5e-4; const double ls3 = 5e-4; const double rg1 = 36.3; const double rg2 = 17.3; const double rg3 = 17.3; const double ri = 5e1; const double rc = 6e2; const double gamma = 40.67286402e-9; const double delta = 17.7493332; const double pi = 3.141592653589793238462643383; const double uin1 = 0.5 * sin (2e3 * pi * t); const double uin2 = 2 * sin (2e4 * pi * t); const double ud1 = +y[2] - y[4] - y[6] - uin2; const double ud2 = -y[3] + y[5] - y[6] - uin2; const double ud3 = +y[3] + y[4] + y[6] + uin2; const double ud4 = -y[2] - y[5] + y[6] + uin2; const double qud1 = gamma * (exp (delta * ud1) - 1.0); const double qud2 = gamma * (exp (delta * ud2) - 1.0); const double qud3 = gamma * (exp (delta * ud3) - 1.0); const double qud4 = gamma * (exp (delta * ud4) - 1.0); extern int nfe; nfe += 1; f[0] = (y[7] - 0.5 * y[9] + 0.5 * y[10] + y[13] - y[0] / r) / c; f[1] = (y[8] - 0.5 * y[11] + 0.5 * y[12] + y[14] - y[1] / r) / c; f[2] = (y[9] - qud1 + qud4) / cs; f[3] = (-y[10] + qud2 - qud3) / cs; f[4] = (y[11] + qud1 - qud3) / cs; f[5] = (-y[12] - qud2 + qud4) / cs; f[6] = (-y[6] / rp + qud1 + qud2 - qud3 - qud4) / cp; f[7] = -y[0] / lh; f[8] = -y[1] / lh; f[9] = (0.5 * y[0] - y[2] - rg2 * y[9]) / ls2; f[10] = (-0.5 * y[0] + y[3] - rg3 * y[10]) / ls3; f[11] = (0.5 * y[1] - y[4] - rg2 * y[11]) / ls2; f[12] = (-0.5 * y[1] + y[5] - rg3 * y[12]) / ls3; f[13] = (-y[0] + uin1 - (ri + rg1) * y[13]) / ls1; f[14] = (-y[1] - (rc + rg1) * y[14]) / ls1; return GSL_SUCCESS; } int jac_ringmod (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double c = 1.6e-8; const double cs = 2e-12; const double cp = 1e-8; const double r = 25e3; const double rp = 50e0; const double lh = 4.45e0; const double ls1 = 2e-3; const double ls2 = 5e-4; const double ls3 = 5e-4; const double rg1 = 36.3; const double rg2 = 17.3; const double rg3 = 17.3; const double ri = 5e1; const double rc = 6e2; const double gamma = 40.67286402e-9; const double delta = 17.7493332; const double pi = 3.141592653589793238462643383; const double uin2 = 2 * sin (2e4 * pi * t); const double ud1 = +y[2] - y[4] - y[6] - uin2; const double ud2 = -y[3] + y[5] - y[6] - uin2; const double ud3 = +y[3] + y[4] + y[6] + uin2; const double ud4 = -y[2] - y[5] + y[6] + uin2; const double qpud1 = gamma * delta * exp (delta * ud1); const double qpud2 = gamma * delta * exp (delta * ud2); const double qpud3 = gamma * delta * exp (delta * ud3); const double qpud4 = gamma * delta * exp (delta * ud4); extern int nje; size_t i; nje += 1; for (i = 0; i < NRINGMOD * NRINGMOD; i++) { dfdy[i] = 0.0; } dfdy[0 * NRINGMOD + 0] = -1 / (c * r); dfdy[0 * NRINGMOD + 7] = 1 / c; dfdy[0 * NRINGMOD + 9] = -0.5 / c; dfdy[0 * NRINGMOD + 10] = -dfdy[0 * NRINGMOD + 9]; dfdy[0 * NRINGMOD + 13] = dfdy[0 * NRINGMOD + 7]; dfdy[1 * NRINGMOD + 1] = dfdy[0 * NRINGMOD + 0]; dfdy[1 * NRINGMOD + 8] = dfdy[0 * NRINGMOD + 7]; dfdy[1 * NRINGMOD + 11] = dfdy[0 * NRINGMOD + 9]; dfdy[1 * NRINGMOD + 12] = dfdy[0 * NRINGMOD + 10]; dfdy[1 * NRINGMOD + 14] = dfdy[0 * NRINGMOD + 13]; dfdy[2 * NRINGMOD + 2] = (-qpud1 - qpud4) / cs; dfdy[2 * NRINGMOD + 4] = qpud1 / cs; dfdy[2 * NRINGMOD + 5] = -qpud4 / cs; dfdy[2 * NRINGMOD + 6] = (qpud1 + qpud4) / cs; dfdy[2 * NRINGMOD + 9] = 1 / cs; dfdy[3 * NRINGMOD + 3] = (-qpud2 - qpud3) / cs; dfdy[3 * NRINGMOD + 4] = -qpud3 / cs; dfdy[3 * NRINGMOD + 5] = qpud2 / cs; dfdy[3 * NRINGMOD + 6] = (-qpud2 - qpud3) / cs; dfdy[3 * NRINGMOD + 10] = -1 / cs; dfdy[4 * NRINGMOD + 2] = qpud1 / cs; dfdy[4 * NRINGMOD + 3] = -qpud3 / cs; dfdy[4 * NRINGMOD + 4] = (-qpud1 - qpud3) / cs; dfdy[4 * NRINGMOD + 6] = (-qpud1 - qpud3) / cs; dfdy[4 * NRINGMOD + 11] = 1 / cs; dfdy[5 * NRINGMOD + 2] = -qpud4 / cs; dfdy[5 * NRINGMOD + 3] = qpud2 / cs; dfdy[5 * NRINGMOD + 5] = (-qpud2 - qpud4) / cs; dfdy[5 * NRINGMOD + 6] = (qpud2 + qpud4) / cs; dfdy[5 * NRINGMOD + 12] = -1 / cs; dfdy[6 * NRINGMOD + 2] = (qpud1 + qpud4) / cp; dfdy[6 * NRINGMOD + 3] = (-qpud2 - qpud3) / cp; dfdy[6 * NRINGMOD + 4] = (-qpud1 - qpud3) / cp; dfdy[6 * NRINGMOD + 5] = (qpud2 + qpud4) / cp; dfdy[6 * NRINGMOD + 6] = (-qpud1 - qpud2 - qpud3 - qpud4 - 1 / rp) / cp; dfdy[7 * NRINGMOD + 0] = -1 / lh; dfdy[8 * NRINGMOD + 1] = dfdy[7 * NRINGMOD + 0]; dfdy[9 * NRINGMOD + 0] = 0.5 / ls2; dfdy[9 * NRINGMOD + 2] = -1 / ls2; dfdy[9 * NRINGMOD + 9] = -rg2 / ls2; dfdy[10 * NRINGMOD + 0] = -0.5 / ls3; dfdy[10 * NRINGMOD + 3] = 1 / ls3; dfdy[10 * NRINGMOD + 10] = -rg3 / ls3; dfdy[11 * NRINGMOD + 1] = dfdy[9 * NRINGMOD + 0]; dfdy[11 * NRINGMOD + 4] = dfdy[9 * NRINGMOD + 2]; dfdy[11 * NRINGMOD + 11] = dfdy[9 * NRINGMOD + 9]; dfdy[12 * NRINGMOD + 1] = dfdy[10 * NRINGMOD + 0]; dfdy[12 * NRINGMOD + 5] = dfdy[10 * NRINGMOD + 3]; dfdy[12 * NRINGMOD + 12] = dfdy[10 * NRINGMOD + 10]; dfdy[13 * NRINGMOD + 0] = -1 / ls1; dfdy[13 * NRINGMOD + 13] = -(ri + rg1) / ls1; dfdy[14 * NRINGMOD + 1] = dfdy[13 * NRINGMOD + 0]; dfdy[14 * NRINGMOD + 14] = -(rc + rg1) / ls1; for (i = 0; i < NRINGMOD; i++) { dfdt[i] = 0.0; } return GSL_SUCCESS; } gsl_odeiv2_system rhs_func_ringmod = { rhs_ringmod, jac_ringmod, NRINGMOD, NULL }; /**********************************************************/ /* Functions for carrying out tests */ /**********************************************************/ void test_odeiv_stepper (const gsl_odeiv2_step_type * T, const gsl_odeiv2_system * sys, const double h, const double t, const char desc[], const double ystart[], const double yfin[], const double relerr) { /* tests stepper T with one fixed length step advance of system sys and compares the result with given values yfin */ double y[MAXEQ] = { 0.0 }; double yerr[MAXEQ] = { 0.0 }; double scale_abs[MAXEQ]; size_t ne = sys->dimension; size_t i; gsl_odeiv2_driver *d; for (i = 0; i < MAXEQ; i++) { scale_abs[i] = 1.0; } d = gsl_odeiv2_driver_alloc_scaled_new (sys, T, h, relerr, relerr, 1.0, 0.0, scale_abs); DBL_MEMCPY (y, ystart, MAXEQ); { int s = gsl_odeiv2_step_apply (d->s, t, h, y, yerr, 0, 0, sys); if (s != GSL_SUCCESS) { gsl_test (s, "test_odeiv_stepper: %s step_apply returned %d", desc, s); } } for (i = 0; i < ne; i++) { gsl_test_rel (y[i], yfin[i], relerr, "%s %s step(%d)", gsl_odeiv2_step_name (d->s), desc, i); } gsl_odeiv2_driver_free (d); } void test_stepper (const gsl_odeiv2_step_type * T) { /* Tests stepper T with a step of selected systems */ double y[MAXEQ] = { 0.0 }; double yfin[MAXEQ] = { 0.0 }; /* Step length */ double h; /* Required tolerance */ double err_target; /* classic stiff */ h = 1e-7; err_target = 1e-4; y[0] = 1.0; y[1] = 0.0; { const double e1 = exp (-h); const double e2 = exp (-1000.0 * h); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_odeiv_stepper (T, &rhs_func_stiff, h, 0.0, "classic_stiff", y, yfin, err_target); /* linear */ h = 1e-1; err_target = 1e-10; y[0] = 0.58; yfin[0] = y[0] + 2 * h; test_odeiv_stepper (T, &rhs_func_lin, h, 0.0, "linear", y, yfin, err_target); /* exponential */ h = 1e-4; err_target = 1e-8; y[0] = exp (2.7); yfin[0] = exp (2.7 + h); test_odeiv_stepper (T, &rhs_func_exp, h, 2.7, "exponential", y, yfin, err_target); /* cosine-sine */ h = 1e-3; err_target = 1e-6; y[0] = cos (1.2); y[1] = sin (1.2); yfin[0] = cos (1.2 + h); yfin[1] = sin (1.2 + h); test_odeiv_stepper (T, &rhs_func_sin, h, 1.2, "cosine-sine", y, yfin, err_target); } void test_evolve_system (const gsl_odeiv2_step_type * T, const gsl_odeiv2_system * sys, double t0, double t1, double hstart, double y[], double yfin[], double err_target, const char *desc) { /* Tests system sys with stepper T. Step length is controlled by error estimation from the stepper. */ int steps = 0; size_t i; double t = t0; double h = hstart; /* Tolerance factor in testing errors */ const double factor = 10; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_standard_new (sys, T, h, err_target, err_target, 1.0, 0.0); double *y_orig = (double *) malloc (sys->dimension * sizeof (double)); int s = 0; extern int nfe, nje; nfe = 0; nje = 0; while (t < t1) { double t_orig = t; memcpy (y_orig, y, sys->dimension * sizeof (double)); s = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, sys, &t, t1, &h, y); #ifdef DEBUG printf (" %.5e %.5e %.5e %d\n", t, y[0], y[1], gsl_odeiv2_step_order (d->s)); #endif if (s != GSL_SUCCESS) { /* check that t and y are unchanged */ gsl_test_abs (t, t_orig, 0.0, "%s t must be restored on failure", gsl_odeiv2_step_name (d->s)); for (i = 0; i < sys->dimension; i++) { gsl_test_abs (y[i], y_orig[i], 0.0, "%s y must be restored on failure", gsl_odeiv2_step_name (d->s), desc, i); } if (sys != &rhs_func_xsin) { /* apart from xsin, other functions should not return errors */ gsl_test (s, "%s evolve_apply returned %d", gsl_odeiv2_step_name (d->s), s); break; } } if (steps > 100000) { gsl_test (GSL_EFAILED, "%s evolve_apply reached maxiter", gsl_odeiv2_step_name (d->s)); break; } steps++; } gsl_test (s, "%s %s [%g,%g], %d steps (nfe %d, nje %d) completed", gsl_odeiv2_step_name (d->s), desc, t0, t1, steps, nfe, nje); /* err_target is target error of one step. Test if stepper has made larger error than (tolerance factor times) the number of steps times the err_target. */ for (i = 0; i < sys->dimension; i++) { gsl_test_abs (y[i], yfin[i], factor * d->e->count * err_target, "%s %s evolve(%d)", gsl_odeiv2_step_name (d->s), desc, i); } free (y_orig); gsl_odeiv2_driver_free (d); } int sys_driver (const gsl_odeiv2_step_type * T, const gsl_odeiv2_system * sys, double t0, double t1, double hstart, double y[], double epsabs, double epsrel, const char desc[]) { /* This function evolves a system sys with stepper T from t0 to t1. Step length is varied via error control with possibly different absolute and relative error tolerances. */ int s = 0; int steps = 0; double t = t0; double h = hstart; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_standard_new (sys, T, h, epsabs, epsrel, 1.0, 0.0); extern int nfe, nje; nfe = 0; nje = 0; while (t < t1) { s = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, sys, &t, t1, &h, y); #ifdef DEBUG printf ("%.5e %.5e %.5e %d\n", t, y[0], y[1], gsl_odeiv2_step_order (d->s)); #endif if (s != GSL_SUCCESS) { gsl_test (s, "sys_driver: %s evolve_apply returned %d", gsl_odeiv2_step_name (d->s), s); break; } if (steps > 1e7) { gsl_test (GSL_EMAXITER, "sys_driver: %s evolve_apply reached maxiter at t=%g", gsl_odeiv2_step_name (d->s), t); s = GSL_EMAXITER; break; } steps++; } gsl_test (s, "%s %s [%g,%g], %d steps (nfe %d, nje %d) completed", gsl_odeiv2_step_name (d->s), desc, t0, t1, steps, nfe, nje); gsl_odeiv2_driver_free (d); return s; } void test_evolve_linear (const gsl_odeiv2_step_type * T, double h, double err) { /* Test linear evolve */ double y[1]; double yfin[1]; y[0] = 1.0; yfin[0] = 9.0; test_evolve_system (T, &rhs_func_lin, 0.0, 4.0, h, y, yfin, err, "linear[0,4]"); } void test_evolve_exp (const gsl_odeiv2_step_type * T, double h, double err) { /* Test exponential evolve */ double y[1]; double yfin[1]; y[0] = 1.0; yfin[0] = exp (2.0); test_evolve_system (T, &rhs_func_exp, 0.0, 2.0, h, y, yfin, err, "exp[0,2]"); } void test_evolve_sin (const gsl_odeiv2_step_type * T, double h, double err) { /* Test sinusoidal evolve */ double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; yfin[0] = cos (2.0); yfin[1] = sin (2.0); test_evolve_system (T, &rhs_func_sin, 0.0, 2.0, h, y, yfin, err, "sine[0,2]"); } void test_evolve_xsin (const gsl_odeiv2_step_type * T, double h, double err) { /* Test sinusoidal evolve including a failing window */ double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; yfin[0] = cos (2.0); yfin[1] = sin (2.0); rhs_xsin_reset = 1; jac_xsin_reset = 1; test_evolve_system (T, &rhs_func_xsin, 0.0, 2.0, h, y, yfin, err, "sine[0,2] w/errors"); } void test_evolve_stiff1 (const gsl_odeiv2_step_type * T, double h, double err) { /* Test classical stiff problem evolve, t=[0,1] */ double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; { double arg = 1.0; double e1 = exp (-arg); double e2 = exp (-1000.0 * arg); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_evolve_system (T, &rhs_func_stiff, 0.0, 1.0, h, y, yfin, err, "stiff[0,1]"); } void test_evolve_stiff5 (const gsl_odeiv2_step_type * T, double h, double err) { /* Test classical stiff problem evolve, t=[0,5] */ double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; { double arg = 5.0; double e1 = exp (-arg); double e2 = exp (-1000.0 * arg); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_evolve_system (T, &rhs_func_stiff, 0.0, 5.0, h, y, yfin, err, "stiff[0,5]"); } void test_evolve_negative_h (const gsl_odeiv2_step_type * T, double h, double err) { /* Test evolution in negative direction */ /* Tolerance factor in testing errors */ const double factor = 10; const gsl_odeiv2_system sys = rhs_func_cos; double t = 0; double t1 = -4.0; double y = 0.0; double yfin = sin (t1); gsl_odeiv2_driver *d; /* Make initial h negative */ h = -fabs (h); d = gsl_odeiv2_driver_alloc_standard_new (&sys, T, h, err, err, 1.0, 0.0); while (t > t1) { int status = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, &sys, &t, t1, &h, &y); if (status != GSL_SUCCESS) { gsl_test (status, "%s evolve_apply returned %d for negative h", gsl_odeiv2_step_name (d->s), status); break; } } gsl_test_abs (y, yfin, factor * d->e->count * err, "%s evolution with negative h", gsl_odeiv2_step_name (d->s)); gsl_odeiv2_driver_free (d); } void test_broken (const gsl_odeiv2_step_type * T, double h, double err) { /* Check for gsl_odeiv2_evolve_apply. The user function fails at t>=10, which in this test causes step size to decrease below machine precision and return with a failure code. */ /* Tolerance factor in testing errors */ const double factor = 10; const gsl_odeiv2_system sys = rhs_func_broken; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&sys, T, h, err, err); double t = 0; double t1 = 100.0; double y = 0.0; const double final_max_h = GSL_DBL_EPSILON; int status; while (t < t1) { status = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, &sys, &t, t1, &h, &y); if (status != GSL_SUCCESS) { break; } } gsl_test_abs (h + final_max_h, final_max_h, factor * final_max_h, "%s test_broken: step size at break point", gsl_odeiv2_step_name (d->s)); gsl_test_abs (t, 10.0, factor * err, "%s test_broken: point of break", gsl_odeiv2_step_name (d->s)); /* GSL_FAILURE results from stepper failure, 123 from user function */ if (status != GSL_FAILURE && status != 123) { gsl_test (status, "%s test_broken: evolve return value %d", gsl_odeiv2_step_name (d->s), status); } else { gsl_test (GSL_SUCCESS, "%s test_broken: evolve return value %d", gsl_odeiv2_step_name (d->s), status); } gsl_odeiv2_driver_free (d); } void test_stepsize_fail (const gsl_odeiv2_step_type * T, double h) { /* Check for gsl_odeiv2_evolve_apply. The user function works apparently fine (returns GSL_SUCCESS) but is faulty in this case. gsl_odeiv2_evolve_apply therefore decreases the step-size below machine precision and therefore stops with GSL_FAILURE. */ /* Error tolerance */ const double epsabs = 1e-16; const double epsrel = 1e-6; /* Tolerance factor in testing errors */ const double factor = 10; const double final_max_h = GSL_DBL_EPSILON; const gsl_odeiv2_system sys = rhs_func_br; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&sys, T, h, epsabs, epsrel); double t = 1.0; double t1 = 1e5; double y = 0.0; int status; while (t < t1) { status = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, &sys, &t, t1, &h, &y); if (status != GSL_SUCCESS) { break; } } gsl_test_abs (h + final_max_h, final_max_h, factor * final_max_h, "%s test_stepsize_fail: step size at break point", gsl_odeiv2_step_name (d->s)); gsl_test_abs (t, 1.0, 1e-6, "%s test_stepsize_fail: point of break", gsl_odeiv2_step_name (d->s)); gsl_test_int (status, GSL_FAILURE, "%s test_stepsize_fail: evolve return value", gsl_odeiv2_step_name (d->s)); gsl_odeiv2_driver_free (d); } void test_user_break (const gsl_odeiv2_step_type * T, double h) { /* Tests for user signaled immediate break */ const double tol = 1e-8; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&rhs_func_sin_ub, T, h, tol, tol); double y[] = { 1.0, 0.0 }; double t = 0.0; const double t1 = 8.25; int s = gsl_odeiv2_driver_apply (d, &t, t1, y); gsl_test ((s - GSL_EBADFUNC), "%s test_user_break returned %d", gsl_odeiv2_step_name (d->s), s); gsl_odeiv2_driver_free (d); } void test_stepfn (const gsl_odeiv2_step_type * T) { /* Test evolve on a small derivative change at t=0 */ double epsabs = 1e-16; double epsrel = 1e-6; const gsl_odeiv2_system sys = rhs_func_stepfn; double t = 0.0; double h = 1e-6; double y = 0.0; int i = 0; int status = 0; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&sys, T, h, epsabs, epsrel); while (t < 2 && i < 1000000) { status = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, &sys, &t, 2, &h, &y); #ifdef DEBUG printf ("i=%d status=%d t=%g h=%g y=%g\n", i, status, t, h, y); #endif if (status != GSL_SUCCESS) break; i++; } gsl_test (status, "evolve step function, return value (stepfn/%s): %d", gsl_odeiv2_step_name (d->s), status); gsl_test_abs (t, 2, 1e-16, "evolve step function, t (stepfn/%s)", gsl_odeiv2_step_name (d->s)); gsl_test_rel (y, 1, epsrel, "evolve step function, y (stepfn/%s)", gsl_odeiv2_step_name (d->s)); gsl_odeiv2_driver_free (d); } void test_stepfn2 (const gsl_odeiv2_step_type * T) { /* Test evolve on a large derivative change at t=0 */ double epsabs = 1e-16; double epsrel = 1e-6; const gsl_odeiv2_system sys = rhs_func_stepfn2; double t = -1.0; double h = 1e-6; double y = 0.0; int i = 0; int status; const int maxiter = 100000; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_yp_new (&sys, T, h, epsabs, epsrel); while (t < 1.0 && i < maxiter) { status = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, &sys, &t, 1.0, &h, &y); #ifdef DEBUG printf ("i=%d status=%d t=%g h=%g y=%g\n", i, status, t, h, y); #endif if (status != GSL_SUCCESS) break; i++; } if (i >= maxiter) printf ("FAIL: evolve big step function, (stepfn2/%s) reached maxiter\n", gsl_odeiv2_step_name (d->s)); gsl_test_abs (t, 1.0, 1e-16, "evolve big step function, t (stepfn2/%s)", gsl_odeiv2_step_name (d->s)); gsl_test_rel (y, 1e300, epsrel, "evolve big step function, y (stepfn2/%s)", gsl_odeiv2_step_name (d->s)); gsl_odeiv2_driver_free (d); } void test_nonstiff_problems (void) { /* Compares output of non-stiff (or only moderately stiff) problems with several steppers */ const gsl_odeiv2_step_type *steppers[MAXNS]; /* Required error tolerance for each stepper. */ double err_target[MAXNS]; /* initial values for each ode-solver */ double y[MAXEQ * MAXNS]; size_t i, k, p; /* Number of problems to test */ #define CONST_NONSTIFF_NPROB 4 /* Problems, their names and number of equations */ const gsl_odeiv2_system *prob[] = { &rhs_func_vl, &rhs_func_vanderpol, &rhs_func_stifftrig, &rhs_func_brusselator }; const char *probname[] = { "volterra-lotka", "vanderpol", "stifftrig", "brusselator" }; const size_t sd[] = { 2, 2, 1, 2 }; /* Integration interval for problems */ const double start[CONST_NONSTIFF_NPROB] = { 0.0 }; const double end[] = { 9.0, 100.0, 1.5, 20.0 }; const double epsabs = 1e-8; const double epsrel = 1e-8; const double initstepsize = 1e-5; /* Steppers */ steppers[0] = gsl_odeiv2_step_rk4; err_target[0] = 1e-6; steppers[1] = gsl_odeiv2_step_rk2; err_target[1] = 1e-6; steppers[2] = gsl_odeiv2_step_rkf45; err_target[2] = 1e-6; steppers[3] = gsl_odeiv2_step_rkck; err_target[3] = 1e-6; steppers[4] = gsl_odeiv2_step_rk8pd; err_target[4] = 1e-6; steppers[5] = gsl_odeiv2_step_rk1imp; err_target[5] = 1e-3; steppers[6] = gsl_odeiv2_step_rk2imp; err_target[6] = 1e-5; steppers[7] = gsl_odeiv2_step_rk4imp; err_target[7] = 1e-6; steppers[8] = gsl_odeiv2_step_bsimp; err_target[8] = 1e-6; steppers[9] = gsl_odeiv2_step_msadams; err_target[9] = 1e-5; steppers[10] = gsl_odeiv2_step_msbdf; err_target[10] = 1e-5; steppers[11] = 0; /* Loop over problems */ for (p = 0; p < CONST_NONSTIFF_NPROB; p++) { /* Initialize */ for (i = 0; i < MAXNS * MAXEQ; i++) { y[i] = 0.0; } for (i = 0; i < MAXNS; i++) { switch (p) { case 0: y[i * sd[p]] = 2.725; y[i * sd[p] + 1] = 1.0; break; case 1: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 0.0; break; case 2: y[i * sd[p]] = 0.0; break; case 3: y[i * sd[p]] = 1.5; y[i * sd[p] + 1] = 3.0; break; default: gsl_test (GSL_EFAILED, "test_nonstiff_problems: initialization error\n"); return; } } /* Call each solver for the problem */ for (i = 0; steppers[i] != 0; i++) { int s = sys_driver (steppers[i], prob[p], start[p], end[p], initstepsize, &y[sd[p] * i], epsabs, epsrel, probname[p]); if (s != GSL_SUCCESS) { gsl_test (s, "test_nonstiff_problems %s %s", steppers[i]->name, probname[p]); } } /* Compare results */ for (i = 1; steppers[i] != 0; i++) for (k = 0; k < sd[p]; k++) { const double val1 = y[k]; const double val2 = y[sd[p] * i + k]; gsl_test_rel (val1, val2, (GSL_MAX (err_target[0], err_target[i])), "%s/%s %s [%d]", steppers[0]->name, steppers[i]->name, probname[p], k); } } } void test_stiff_problems (void) { /* Compares output of stiff problems with several steppers */ const gsl_odeiv2_step_type *steppers[MAXNS]; /* Required error tolerance for each stepper. */ double err_target[MAXNS]; /* initial values for each ode-solver */ double y[MAXEQ * MAXNS]; size_t i, k, p; /* Number of problems to test */ #define CONST_STIFF_NPROB 3 /* Problems, their names and number of equations */ const gsl_odeiv2_system *prob[] = { &rhs_func_oregonator, &rhs_func_e5, &rhs_func_robertson }; const char *probname[] = { "oregonator", "e5", "robertson" }; const size_t sd[] = { 3, 4, 3 }; /* Integration interval for problems */ const double start[CONST_STIFF_NPROB] = { 0.0 }; const double end[] = { 360.0, 1e4, 1e4 }; const double epsabs = 1e-40; const double epsrel = 1e-7; const double initstepsize = 1e-5; /* Steppers */ steppers[0] = gsl_odeiv2_step_bsimp; err_target[0] = 1e-6; steppers[1] = gsl_odeiv2_step_rk1imp; err_target[1] = 5e-3; steppers[2] = gsl_odeiv2_step_rk2imp; err_target[2] = 5e-5; steppers[3] = gsl_odeiv2_step_rk4imp; err_target[3] = 5e-5; steppers[4] = gsl_odeiv2_step_msbdf; err_target[4] = 1e-4; steppers[5] = 0; /* Loop over problems */ for (p = 0; p < CONST_STIFF_NPROB; p++) { /* Initialize */ for (i = 0; i < MAXNS * MAXEQ; i++) { y[i] = 0.0; } for (i = 0; i < MAXNS; i++) { switch (p) { case 0: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 2.0; y[i * sd[p] + 2] = 3.0; break; case 1: y[i * sd[p]] = 1.76e-3; y[i * sd[p] + 1] = 0.0; y[i * sd[p] + 2] = 0.0; y[i * sd[p] + 3] = 0.0; break; case 2: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 0.0; y[i * sd[p] + 2] = 0.0; break; default: gsl_test (GSL_EFAILED, "test_stiff_problems: initialization error\n"); return; } } /* Call each solver for the problem */ for (i = 0; steppers[i] != 0; i++) { int s = sys_driver (steppers[i], prob[p], start[p], end[p], initstepsize, &y[sd[p] * i], epsabs, epsrel, probname[p]); if (s != GSL_SUCCESS) { gsl_test (s, "test_stiff_problems %s %s", steppers[i]->name, probname[p]); } } /* Compare results */ for (i = 1; steppers[i] != 0; i++) for (k = 0; k < sd[p]; k++) { const double val1 = y[k]; const double val2 = y[sd[p] * i + k]; gsl_test_rel (val1, val2, (GSL_MAX (err_target[0], err_target[i])), "%s/%s %s [%d]", steppers[0]->name, steppers[i]->name, probname[p], k); } } } void test_extreme_problems (void) { /* Compares output of numerically particularly demanding problems with several steppers */ const gsl_odeiv2_step_type *steppers[MAXNS]; /* Required error tolerance for each stepper. */ double err_target[MAXNS]; /* initial values for each ode-solver */ double y[MAXEQ * MAXNS]; size_t i, k, p; /* Number of problems to test */ #define CONST_EXTREME_NPROB 3 /* Problems, their names and number of equations */ const gsl_odeiv2_system *prob[] = { &rhs_func_e5, &rhs_func_robertson, &rhs_func_ringmod }; const char *probname[] = { "e5_bigt", "robertson_bigt", "ringmod" }; const size_t sd[] = { 4, 3, NRINGMOD }; /* Integration interval for problems */ const double start[CONST_EXTREME_NPROB] = { 0.0 }; const double end[CONST_EXTREME_NPROB] = { 1e11, 1e11, 1e-5 }; const double epsabs[CONST_EXTREME_NPROB] = { 1e1 * GSL_DBL_MIN, 1e1 * GSL_DBL_MIN, 1e-12 }; const double epsrel[CONST_EXTREME_NPROB] = { 1e-12, 1e-12, 1e-12 }; const double initstepsize[CONST_EXTREME_NPROB] = { 1e-5, 1e-5, 1e-10 }; /* Steppers */ steppers[0] = gsl_odeiv2_step_bsimp; err_target[0] = 1e-3; steppers[1] = gsl_odeiv2_step_msbdf; err_target[1] = 1e-3; steppers[2] = 0; /* Loop over problems */ for (p = 0; p < CONST_EXTREME_NPROB; p++) { /* Initialize */ for (i = 0; i < MAXNS * MAXEQ; i++) { y[i] = 0.0; } for (i = 0; i < MAXNS; i++) { switch (p) { case 0: y[i * sd[p]] = 1.76e-3; y[i * sd[p] + 1] = 0.0; y[i * sd[p] + 2] = 0.0; y[i * sd[p] + 3] = 0.0; break; case 1: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 0.0; y[i * sd[p] + 2] = 0.0; break; case 2: { size_t j; for (j = 0; j < NRINGMOD; j++) { y[i * sd[p] + j] = 0.0; } } break; default: gsl_test (GSL_EFAILED, "test_extreme_problems: initialization error\n"); return; } } /* Call each solver for the problem */ for (i = 0; steppers[i] != 0; i++) { int s = sys_driver (steppers[i], prob[p], start[p], end[p], initstepsize[p], &y[sd[p] * i], epsabs[p], epsrel[p], probname[p]); if (s != GSL_SUCCESS) { printf ("start=%.5e, initstepsize=%.5e\n", start[p], initstepsize[p]); gsl_test (s, "test_extreme_problems %s %s", steppers[i]->name, probname[p]); } } /* Compare results */ for (i = 1; steppers[i] != 0; i++) for (k = 0; k < sd[p]; k++) { const double val1 = y[k]; const double val2 = y[sd[p] * i + k]; gsl_test_rel (val1, val2, (GSL_MAX (err_target[0], err_target[i])), "%s/%s %s [%d]", steppers[0]->name, steppers[i]->name, probname[p], k); } } } void test_driver (const gsl_odeiv2_step_type * T) { /* Tests for gsl_odeiv2_driver object */ int s; const double tol = 1e-8; const double hmax = 1e-2; double y[] = { 1.0, 0.0 }; double t = 0.0; const double tinit = 0.0; const double t1 = 8.25; const double t2 = 100; const double t3 = -2.5; const size_t minsteps = ceil (t1 / hmax); const size_t maxsteps = 20; const double hmin = 1e-10; const unsigned long int nfsteps = 100000; const double hfixed = 0.000025; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&rhs_func_sin, T, 1e-3, tol, tol); gsl_odeiv2_driver_set_hmax (d, hmax); s = gsl_odeiv2_driver_apply (d, &t, t1, y); if (s != GSL_SUCCESS) { gsl_test (s, "%s test_driver apply returned %d", gsl_odeiv2_step_name (d->s), s); } /* Test that result is correct */ gsl_test_rel (y[0], cos (t1), d->n * tol, "%s test_driver y0", gsl_odeiv2_step_name (d->s)); gsl_test_rel (y[1], sin (t1), d->n * tol, "%s test_driver y1", gsl_odeiv2_step_name (d->s)); /* Test that maximum step length is obeyed */ if (d->n < minsteps) { gsl_test (1, "%s test_driver steps %d < minsteps %d \n", gsl_odeiv2_step_name (d->s), d->n, minsteps); } else { gsl_test (0, "%s test_driver max step length test", gsl_odeiv2_step_name (d->s)); } /* Test changing integration direction from forward to backward */ gsl_odeiv2_driver_reset_hstart (d, -1e-3); s = gsl_odeiv2_driver_apply (d, &t, tinit, y); if (s != GSL_SUCCESS) { gsl_test (s, "%s test_driver apply returned %d", gsl_odeiv2_step_name (d->s), s); } gsl_test_rel (y[0], cos (tinit), d->n * tol, "%s test_driver y0", gsl_odeiv2_step_name (d->s)); gsl_test_rel (y[1], sin (tinit), d->n * tol, "%s test_driver y1", gsl_odeiv2_step_name (d->s)); gsl_odeiv2_driver_free (d); /* Test that maximum number of steps is obeyed */ d = gsl_odeiv2_driver_alloc_y_new (&rhs_func_sin, T, 1e-3, tol, tol); gsl_odeiv2_driver_set_hmax (d, hmax); gsl_odeiv2_driver_set_nmax (d, maxsteps); s = gsl_odeiv2_driver_apply (d, &t, t2, y); if (d->n != maxsteps + 1) { gsl_test (1, "%s test_driver steps %d, expected %d", gsl_odeiv2_step_name (d->s), d->n, maxsteps + 1); } else { gsl_test (0, "%s test_driver max steps test", gsl_odeiv2_step_name (d->s)); } gsl_odeiv2_driver_free (d); /* Test that minimum step length is obeyed */ d = gsl_odeiv2_driver_alloc_y_new (&rhs_func_broken, T, 1e-3, tol, tol); gsl_odeiv2_driver_set_hmin (d, hmin); y[0] = 0.0; t = 0.0; s = gsl_odeiv2_driver_apply (d, &t, t2, y); if (s != GSL_ENOPROG) { gsl_test (1, "%s test_driver min step test returned %d", gsl_odeiv2_step_name (d->s), s); } else { gsl_test (0, "%s test_driver min step test", gsl_odeiv2_step_name (d->s)); } gsl_odeiv2_driver_free (d); /* Test negative integration direction */ d = gsl_odeiv2_driver_alloc_y_new (&rhs_func_sin, T, -1e-3, tol, tol); y[0] = 1.0; y[1] = 0.0; t = 2.5; s = gsl_odeiv2_driver_apply (d, &t, t3, y); { const double tol = 1e-3; const double test = fabs (t - t3); const double val = fabs (sin (-5.0) - y[1]); if (test > GSL_DBL_EPSILON) { gsl_test (1, "%s test_driver negative dir diff %e, expected less than %e", gsl_odeiv2_step_name (d->s), test, GSL_DBL_EPSILON); } else if (val > tol) { gsl_test (1, "%s test_driver negative dir val %e, expected less than %e", gsl_odeiv2_step_name (d->s), val, tol); } else { gsl_test (s, "%s test_driver negative direction test", gsl_odeiv2_step_name (d->s)); } } /* Test driver_apply_fixed_step */ gsl_odeiv2_driver_reset_hstart (d, 1e-3); s = gsl_odeiv2_driver_apply_fixed_step (d, &t, hfixed, nfsteps, y); if (s != GSL_SUCCESS) { gsl_test (s, "%s test_driver apply_fixed_step returned %d", gsl_odeiv2_step_name (d->s), s); } { const double tol = 1e-3; const double val = fabs (sin (-2.5) - y[1]); if (fabs (t) > nfsteps * GSL_DBL_EPSILON) { gsl_test (1, "%s test_driver apply_fixed_step t %e, expected less than %e", gsl_odeiv2_step_name (d->s), fabs (t), nfsteps * GSL_DBL_EPSILON); } else if (val > tol) { gsl_test (1, "%s test_driver apply_fixed_step val %e, expected less than %e", gsl_odeiv2_step_name (d->s), val, tol); } else { gsl_test (s, "%s test_driver apply_fixed_step test", gsl_odeiv2_step_name (d->s)); } } gsl_odeiv2_driver_free (d); } void benchmark_precision (void) { /* Tests steppers with several error tolerances and evaluates their performance and precision. */ /* Maximum number of tolerances to be tested */ #define MAXNT 12 const gsl_odeiv2_step_type *steppers[MAXNS]; /* Required error tolerance for each stepper. */ double err_target[MAXNS]; /* initial values for each ode-solver */ double y[MAXEQ * MAXNS * MAXNT]; /* precise results from e.g. analytical solution */ double yres[MAXEQ]; size_t i, j, k, p; /* Number of problems to test */ #define CONST_BENCHMARK_PRECISION_NPROB 3 /* Problems, their names and number of equations */ const gsl_odeiv2_system *prob[] = { &rhs_func_sin, &rhs_func_exp, &rhs_func_stiff }; const char *probname[] = { "rhs_func_sin", "rhs_func_exp", "rhs_func_stiff" }; const size_t sd[] = { 2, 1, 2 }; /* Integration interval for problems */ const double start[] = { 0.0, 0.0, 0.0 }; const double end[] = { 2.4, 8.4, 1.2 }; const double epsabs[] = { 1e-4, 1e-6, 1e-8, 1e-10, 1e-12, 1e-14, 0 }; const double epsrel[] = { 1e-4, 1e-6, 1e-8, 1e-10, 1e-12, 1e-14, 0 }; const double initstepsize = 1e-5; /* number of function and jacobian evaluations */ extern int nfe, nje; int nnfe[MAXNS * MAXNT] = { 0.0 }; int nnje[MAXNS * MAXNT] = { 0.0 }; /* Steppers */ steppers[0] = gsl_odeiv2_step_rk4; err_target[0] = 1e-6; steppers[1] = gsl_odeiv2_step_rk2; err_target[1] = 1e-6; steppers[2] = gsl_odeiv2_step_rkf45; err_target[2] = 1e-6; steppers[3] = gsl_odeiv2_step_rkck; err_target[3] = 1e-6; steppers[4] = gsl_odeiv2_step_rk8pd; err_target[4] = 1e-6; steppers[5] = gsl_odeiv2_step_rk1imp; err_target[5] = 1e-3; steppers[6] = gsl_odeiv2_step_rk2imp; err_target[6] = 1e-5; steppers[7] = gsl_odeiv2_step_rk4imp; err_target[7] = 1e-6; steppers[8] = gsl_odeiv2_step_bsimp; err_target[8] = 1e-6; steppers[9] = gsl_odeiv2_step_msadams; err_target[9] = 1e-5; steppers[10] = gsl_odeiv2_step_msbdf; err_target[10] = 1e-5; steppers[11] = 0; /* Loop over problems */ for (p = 0; p < CONST_BENCHMARK_PRECISION_NPROB; p++) { /* Initialize */ for (i = 0; i < MAXNS * MAXEQ * MAXNT; i++) { y[i] = 0.0; } for (i = 0; i < MAXNS * MAXNT; i++) { switch (p) { case 0: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 0.0; yres[0] = cos (2.4); yres[1] = sin (2.4); break; case 1: y[i * sd[p]] = 1.0; yres[0] = exp (8.4); break; case 2: y[i * sd[p]] = 1.0; y[i * sd[p] + 1] = 0.0; yres[0] = 2 * exp (-1.2) - exp (-1000 * 1.2); yres[1] = -exp (-1.2) + exp (-1000 * 1.2); break; default: gsl_test (GSL_EFAILED, "benchmark_precision: initialization error\n"); return; } } /* Call each solver for the problem */ for (i = 0; steppers[i] != 0; i++) for (j = 0; epsrel[j] != 0; j++) { int s = sys_driver (steppers[i], prob[p], start[p], end[p], initstepsize, &y[sd[p] * (j + i * MAXNT)], epsabs[j], epsrel[j], probname[p]); if (s != GSL_SUCCESS) { for (k = 0; k < sd[p]; k++) { y[sd[p] * (j + i * MAXNT) + k] = GSL_NAN; } } else { nnfe[j + i * MAXNT] = nfe; nnje[j + i * MAXNT] = nje; } } /* Print results */ printf ("benchmark_precision: diff = (y_true - y) / y_true with %s\n epsrel: ", probname[p]); for (i = 0; epsrel[i] != 0.0; i++) { printf ("%12.0e ", epsrel[i]); } printf ("\n"); for (i = 0; steppers[i] != 0; i++) { for (k = 0; k < sd[p]; k++) { printf ("%8s diff[%d]: ", steppers[i]->name, (int) k); for (j = 0; epsrel[j] != 0; j++) { const double diff = (yres[k] - y[sd[p] * (j + i * MAXNT) + k]) / yres[k]; printf ("%12.5e ", diff); } printf ("\n"); } } printf ("\n"); /* Print number of function/jacobian evaluations */ printf ("benchmark_precision: number of function/jacobian evaluations with %s\n epsrel: ", probname[p]); for (i = 0; epsrel[i] != 0.0; i++) { printf ("%12.0e ", epsrel[i]); } printf ("\n"); for (i = 0; steppers[i] != 0; i++) { printf ("%8s nfe/nje: ", steppers[i]->name); for (j = 0; epsrel[j] != 0; j++) { printf ("%9d %9d | ", nnfe[j + i * MAXNT], nnje[j + i * MAXNT]); } printf ("\n"); } printf ("\n"); } } void test_evolve_temp (const gsl_odeiv2_step_type * T, double h, double err) { /* Temporary test */ double y[3]; double yfin[3]; y[0] = 1.0; y[1] = 0.0; y[2] = 0.0; yfin[0] = 0; yfin[1] = 0; yfin[2] = 0; test_evolve_system (T, &rhs_func_stiff, 0.0, 1.0, h, y, yfin, err, "temp"); } /**********************************************************/ /* Main function */ /**********************************************************/ int main (void) { /* Benchmark routine to compare stepper performance */ /* benchmark_precision(); return 0; */ /* Test single problem, for debugging purposes */ /* test_evolve_temp (gsl_odeiv2_step_msadams, 1e-3, 1e-8); return 0; */ int i; struct ptype { const gsl_odeiv2_step_type *type; double h; } p[MAXNS]; struct ptype explicit_stepper[MAXNS]; p[0].type = gsl_odeiv2_step_rk4; p[0].h = 1.0e-3; p[1].type = gsl_odeiv2_step_rk2; p[1].h = 1.0e-3; p[2].type = gsl_odeiv2_step_rkf45; p[2].h = 1.0e-3; p[3].type = gsl_odeiv2_step_rkck; p[3].h = 1.0e-3; p[4].type = gsl_odeiv2_step_rk8pd; p[4].h = 1.0e-3; p[5].type = gsl_odeiv2_step_rk1imp; p[5].h = 1.0e-3; p[6].type = gsl_odeiv2_step_rk2imp; p[6].h = 1.0e-3; p[7].type = gsl_odeiv2_step_rk4imp; p[7].h = 1.0e-3; p[8].type = gsl_odeiv2_step_bsimp; p[8].h = 1.0e-3; p[9].type = gsl_odeiv2_step_msadams; p[9].h = 1.0e-3; p[10].type = gsl_odeiv2_step_msbdf; p[10].h = 1.0e-3; p[11].type = 0; gsl_ieee_env_setup (); /* Basic tests for all steppers */ for (i = 0; p[i].type != 0; i++) { test_stepper (p[i].type); test_evolve_linear (p[i].type, p[i].h, 1e-10); test_evolve_exp (p[i].type, p[i].h, 1e-5); test_evolve_sin (p[i].type, p[i].h, 1e-8); test_evolve_xsin (p[i].type, p[i].h, 1e-8); test_evolve_xsin (p[i].type, 0.1, 1e-8); test_evolve_stiff1 (p[i].type, p[i].h, 1e-7); test_evolve_stiff5 (p[i].type, p[i].h, 1e-7); test_evolve_negative_h (p[i].type, p[i].h, 1e-7); test_broken (p[i].type, p[i].h, 1e-8); test_stepsize_fail (p[i].type, p[i].h); test_user_break (p[i].type, p[i].h); test_driver (p[i].type); } /* Derivative test for explicit steppers */ explicit_stepper[0].type = gsl_odeiv2_step_rk4; explicit_stepper[0].h = 1.0e-3; explicit_stepper[1].type = gsl_odeiv2_step_rk2; explicit_stepper[1].h = 1.0e-3; explicit_stepper[2].type = gsl_odeiv2_step_rkf45; explicit_stepper[2].h = 1.0e-3; explicit_stepper[3].type = gsl_odeiv2_step_rkck; explicit_stepper[3].h = 1.0e-3; explicit_stepper[4].type = gsl_odeiv2_step_rk8pd; explicit_stepper[4].h = 1.0e-3; explicit_stepper[5].type = gsl_odeiv2_step_msadams; explicit_stepper[5].h = 1.0e-3; explicit_stepper[6].type = 0; for (i = 0; explicit_stepper[i].type != 0; i++) { test_stepfn (explicit_stepper[i].type); test_stepfn2 (explicit_stepper[i].type); } /* Special tests */ test_nonstiff_problems (); test_stiff_problems (); test_extreme_problems (); exit (gsl_test_summary ()); } gsl-1.16/ode-initval2/cscal.c0000664000252300025230000001254212171574312012704 00000000000000/* ode-initval2/cscal.c * * Copyright (C) 2002, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "control_utils.c" typedef struct { double eps_abs; double eps_rel; double a_y; double a_dydt; double *scale_abs; } sc_control_state_t; static void * sc_control_alloc (void) { sc_control_state_t *s = (sc_control_state_t *) malloc (sizeof (sc_control_state_t)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for sc_control_state", GSL_ENOMEM); } return s; } static int sc_control_init (void *vstate, double eps_abs, double eps_rel, double a_y, double a_dydt) { sc_control_state_t *s = (sc_control_state_t *) vstate; if (eps_abs < 0) { GSL_ERROR ("eps_abs is negative", GSL_EINVAL); } else if (eps_rel < 0) { GSL_ERROR ("eps_rel is negative", GSL_EINVAL); } else if (a_y < 0) { GSL_ERROR ("a_y is negative", GSL_EINVAL); } else if (a_dydt < 0) { GSL_ERROR ("a_dydt is negative", GSL_EINVAL); } s->eps_rel = eps_rel; s->eps_abs = eps_abs; s->a_y = a_y; s->a_dydt = a_dydt; return GSL_SUCCESS; } static int sc_control_hadjust (void *vstate, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double *h) { sc_control_state_t *state = (sc_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; const double *scale_abs = state->scale_abs; const double S = 0.9; const double h_old = *h; double rmax = DBL_MIN; size_t i; for (i = 0; i < dim; i++) { const double D0 = eps_rel * (a_y * fabs (y[i]) + a_dydt * fabs (h_old * yp[i])) + eps_abs * scale_abs[i]; const double r = fabs (yerr[i]) / fabs (D0); rmax = GSL_MAX_DBL (r, rmax); } if (rmax > 1.1) { /* decrease step, no more than factor of 5, but a fraction S more than scaling suggests (for better accuracy) */ double r = S / pow (rmax, 1.0 / ord); if (r < 0.2) r = 0.2; *h = r * h_old; return GSL_ODEIV_HADJ_DEC; } else if (rmax < 0.5) { /* increase step, no more than factor of 5 */ double r = S / pow (rmax, 1.0 / (ord + 1.0)); if (r > 5.0) r = 5.0; if (r < 1.0) /* don't allow any decrease caused by S<1 */ r = 1.0; *h = r * h_old; return GSL_ODEIV_HADJ_INC; } else { /* no change */ return GSL_ODEIV_HADJ_NIL; } } static int sc_control_errlevel (void *vstate, const double y, const double dydt, const double h, const size_t ind, double *errlev) { sc_control_state_t *state = (sc_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; const double *scale_abs = state->scale_abs; *errlev = eps_rel * (a_y * fabs (y) + a_dydt * fabs (h * dydt)) + eps_abs * scale_abs[ind]; if (*errlev <= 0.0) { GSL_ERROR_NULL ("errlev <= zero", GSL_ESANITY); } return GSL_SUCCESS; } static void sc_control_free (void *vstate) { sc_control_state_t *state = (sc_control_state_t *) vstate; free (state->scale_abs); free (state); } static const gsl_odeiv2_control_type sc_control_type = { "scaled", /* name */ &sc_control_alloc, &sc_control_init, &sc_control_hadjust, &sc_control_errlevel, &control_set_driver_null, &sc_control_free }; const gsl_odeiv2_control_type *gsl_odeiv2_control_scaled = &sc_control_type; gsl_odeiv2_control * gsl_odeiv2_control_scaled_new (double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim) { gsl_odeiv2_control *c = gsl_odeiv2_control_alloc (gsl_odeiv2_control_scaled); int status = gsl_odeiv2_control_init (c, eps_abs, eps_rel, a_y, a_dydt); if (status != GSL_SUCCESS) { gsl_odeiv2_control_free (c); GSL_ERROR_NULL ("error trying to initialize control", status); } { sc_control_state_t *s = (sc_control_state_t *) c->state; s->scale_abs = (double *) malloc (dim * sizeof (double)); if (s->scale_abs == 0) { free (s); GSL_ERROR_NULL ("failed to allocate space for scale_abs", GSL_ENOMEM); } memcpy (s->scale_abs, scale_abs, dim * sizeof (double)); } return c; } gsl-1.16/ode-initval2/control_utils.c0000664000252300025230000000176212171574312014521 00000000000000/* ode-initval2/control_utils.c * * Copyright (C) 2009 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int control_set_driver_null (void *vstate, const gsl_odeiv2_driver * d) { /* Dummy set function for those control objects that do not need pointer to driver object. */ return GSL_SUCCESS; } gsl-1.16/ode-initval2/msbdf.c0000664000252300025230000013104412171574312012711 00000000000000/* ode-initval2/msbdf.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* A variable-coefficient linear multistep backward differentiation formula (BDF) method in Nordsieck form. This stepper uses the explicit BDF formula as predictor and implicit BDF formula as corrector. A modified Newton iteration method is used to solve the system of non-linear equations. Method order varies dynamically between 1 and 5. References: Byrne, G. D., and Hindmarsh, A. C., A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations, ACM Trans. Math. Software, 1 (1975), pp. 71-96. Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., VODE: A Variable-coefficient ODE Solver, SIAM J. Sci. Stat. Comput. 10, (1989), pp. 1038-1051. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S., SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Trans. Math. Software 31 (2005), pp. 363-396. Note: The algorithms have been adapted for GSL ode-initval2 framework. */ #include #include #include #include #include #include #include #include #include "odeiv_util.h" /* Maximum order of BDF methods */ #define MSBDF_MAX_ORD 5 /* Steps until Jacobian evaluation is forced */ #define MSBDF_JAC_WAIT 50 /* Steps until iteration matrix M evaluation is forced */ #define MSBDF_M_WAIT 20 typedef struct { /* Nordsieck history matrix. Includes concatenated Nordsieck vectors [y_n, h*y_n', (h^2/2!)*y_n'', ..., (h^ord/ord!)*d^(ord)(y_n)]. Nordsieck vector number i is located at z[i*dim] (i=0..ord). */ double *z; double *zbackup; /* backup of Nordsieck matrix */ double *ytmp; /* work area */ double *ytmp2; /* work area */ double *l; /* polynomial coefficients */ double *hprev; /* previous step sizes */ double *hprevbackup; /* backup of hprev */ size_t *ordprev; /* orders of previous calls */ size_t *ordprevbackup; /* backup of ordprev */ double *errlev; /* desired error level of y */ gsl_vector *abscor; /* absolute y values for correction */ gsl_vector *abscorscaled; /* scaled abscor for order evaluation */ gsl_vector *relcor; /* relative y values for correction */ gsl_vector *svec; /* saved abscor & work area */ gsl_vector *tempvec; /* work area */ const gsl_odeiv2_driver *driver; /* pointer to gsl_odeiv2_driver object */ gsl_matrix *dfdy; /* Jacobian */ double *dfdt; /* storage for time derivative of f */ gsl_matrix *M; /* Newton iteration matrix */ gsl_permutation *p; /* permutation for LU decomposition of M */ gsl_vector *rhs; /* right hand side equations (-G) */ long int ni; /* stepper call counter */ size_t ord; /* current order of method */ double tprev; /* t point of previous call */ size_t ordwait; /* counter for order change */ size_t ordwaitbackup; /* backup of ordwait */ size_t failord; /* order of convergence failure */ double failt; /* t point of convergence failure */ double ordp1coeffprev; /* saved order coefficient */ size_t nJ; /* step counter for Jacobian evaluation */ size_t nM; /* step counter for update of M */ double gammaprev; /* gamma of previous call */ double gammaprevbackup; /* backup of gammaprev */ size_t failcount; /* counter for rejected steps */ } msbdf_state_t; /* Introduce msbdf_reset for use in msbdf_alloc and _apply */ static int msbdf_reset (void *, size_t); static void * msbdf_alloc (size_t dim) { msbdf_state_t *state = (msbdf_state_t *) malloc (sizeof (msbdf_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for msbdf_state", GSL_ENOMEM); } state->z = (double *) malloc ((MSBDF_MAX_ORD + 1) * dim * sizeof (double)); if (state->z == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for z", GSL_ENOMEM); } state->zbackup = (double *) malloc ((MSBDF_MAX_ORD + 1) * dim * sizeof (double)); if (state->zbackup == 0) { free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for zbackup", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->ytmp2 = (double *) malloc (dim * sizeof (double)); if (state->ytmp2 == 0) { free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp2", GSL_ENOMEM); } state->l = (double *) malloc ((MSBDF_MAX_ORD + 1) * sizeof (double)); if (state->l == 0) { free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for l", GSL_ENOMEM); } state->hprev = (double *) malloc (MSBDF_MAX_ORD * sizeof (double)); if (state->hprev == 0) { free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for hprev", GSL_ENOMEM); } state->hprevbackup = (double *) malloc (MSBDF_MAX_ORD * sizeof (double)); if (state->hprevbackup == 0) { free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for hprevbackup", GSL_ENOMEM); } state->ordprev = (size_t *) malloc (MSBDF_MAX_ORD * sizeof (size_t)); if (state->ordprev == 0) { free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ordprev", GSL_ENOMEM); } state->ordprevbackup = (size_t *) malloc (MSBDF_MAX_ORD * sizeof (size_t)); if (state->ordprevbackup == 0) { free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ordprevbackup", GSL_ENOMEM); } state->errlev = (double *) malloc (dim * sizeof (double)); if (state->errlev == 0) { free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM); } state->abscor = gsl_vector_alloc (dim); if (state->abscor == 0) { free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for abscor", GSL_ENOMEM); } state->relcor = gsl_vector_alloc (dim); if (state->relcor == 0) { gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for relcor", GSL_ENOMEM); } state->svec = gsl_vector_alloc (dim); if (state->svec == 0) { gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for svec", GSL_ENOMEM); } state->tempvec = gsl_vector_alloc (dim); if (state->tempvec == 0) { gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for tempvec", GSL_ENOMEM); } state->dfdy = gsl_matrix_alloc (dim, dim); if (state->dfdy == 0) { gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->M = gsl_matrix_alloc (dim, dim); if (state->M == 0) { free (state->dfdt); gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for M", GSL_ENOMEM); } state->p = gsl_permutation_alloc (dim); if (state->p == 0) { gsl_matrix_free (state->M); free (state->dfdt); gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM); } state->rhs = gsl_vector_alloc (dim); if (state->rhs == 0) { gsl_permutation_free (state->p); gsl_matrix_free (state->M); free (state->dfdt); gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for rhs", GSL_ENOMEM); } state->abscorscaled = gsl_vector_alloc (dim); if (state->abscorscaled == 0) { gsl_vector_free (state->rhs); gsl_permutation_free (state->p); gsl_matrix_free (state->M); free (state->dfdt); gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for abscorscaled", GSL_ENOMEM); } msbdf_reset ((void *) state, dim); state->driver = NULL; return state; } static int msbdf_failurehandler (void *vstate, const size_t dim, const double t) { /* Internal failure handler routine for msbdf. Adjusted strategy for GSL: Decrease order if this is the second time a failure has occurred at this order and point. */ msbdf_state_t *state = (msbdf_state_t *) vstate; const size_t ord = state->ord; if (ord > 1 && (ord - state->ordprev[0] == 0) && ord == state->failord && t == state->failt) { state->ord--; } /* Save information about failure */ state->failord = ord; state->failt = t; state->ni++; /* Force reinitialization if failure took place at lowest order */ if (ord == 1) { msbdf_reset (vstate, dim); } return GSL_SUCCESS; } static int msbdf_calccoeffs (const size_t ord, const size_t ordwait, const double h, const double hprev[], double l[], double *errcoeff, double *ordm1coeff, double *ordp1coeff, double *ordp2coeff, double *gamma) { /* Calculates coefficients (l) of polynomial Lambda, error and auxiliary order change evaluation coefficients. */ if (ord == 1) { l[0] = 1.0; l[1] = 1.0; *errcoeff = 0.5; *ordp1coeff = 2.0; { const double hsum = h + hprev[0]; const double a5 = -1.5; const double a6 = -1.0 - h / hsum; const double c2 = 2.0 / (1.0 - a6 + a5); *ordp2coeff = fabs (c2 * (h / hsum) * 3.0 * a5); } } else { size_t i, j; double hsum = h; double coeff1 = -1.0; double x; /* Calculate the actual polynomial coefficients (l) */ DBL_ZERO_MEMSET (l, MSBDF_MAX_ORD + 1); l[0] = 1.0; l[1] = 1.0; for (i = 2; i < ord; i++) { hsum += hprev[i - 2]; coeff1 += -1.0 / i; for (j = i; j > 0; j--) { l[j] += h / hsum * l[j - 1]; } } coeff1 += -1.0 / ord; x = -l[1] - coeff1; for (i = ord; i > 0; i--) { l[i] += l[i - 1] * x; } #ifdef DEBUG { size_t di; printf ("-- calccoeffs l: "); for (di = 0; di < ord + 1; di++) { printf ("%.5e ", l[di]); } printf ("\n"); } #endif hsum += hprev[ord - 2]; { const double coeff2 = -l[1] - h / hsum; const double a1 = 1.0 - coeff2 + coeff1; const double a2 = 1.0 + ord * a1; /* Calculate error coefficient */ *errcoeff = fabs (a1 / (coeff1 * a2)); /* Calculate auxiliary coefficients used in evaluation of change of order */ if (ordwait < 2) { const double a3 = coeff1 + 1.0 / ord; const double a4 = coeff2 + h / hsum; const double c1 = a3 / (1.0 - a4 + a3); *ordm1coeff = fabs (c1 / (x / l[ord])); *ordp1coeff = fabs (a2 / (l[ord] * (h / hsum) / x)); hsum += hprev[ord - 1]; { const double a5 = coeff1 - 1.0 / (ord + 1.0); const double a6 = coeff2 - h / hsum; const double c2 = a2 / (1.0 - a6 + a5); *ordp2coeff = fabs (c2 * (h / hsum) * (ord + 2) * a5); } } } } *gamma = h / l[1]; #ifdef DEBUG printf ("-- calccoeffs ordm1coeff=%.5e ", *ordm1coeff); printf ("ordp1coeff=%.5e ", *ordp1coeff); printf ("ordp2coeff=%.5e ", *ordp2coeff); printf ("errcoeff=%.5e\n", *errcoeff); #endif return GSL_SUCCESS; } static int msbdf_update (void *vstate, const size_t dim, gsl_matrix * dfdy, double *dfdt, const double t, const double *y, const gsl_odeiv2_system * sys, gsl_matrix * M, gsl_permutation * p, const size_t iter, size_t * nJ, size_t * nM, const double tprev, const double failt, const double gamma, const double gammaprev, const double hratio) { /* Evaluates Jacobian dfdy and updates iteration matrix M if criteria for update is met. */ /* Jacobian is evaluated - at first step - if MSBDF_JAC_WAIT steps have been made without re-evaluation - in case of a convergence failure if --- change in gamma is small, or --- convergence failure resulted in step size decrease */ const double c = 0.2; const double gammarel = fabs (gamma / gammaprev - 1.0); if (*nJ == 0 || *nJ > MSBDF_JAC_WAIT || (t == failt && (gammarel < c || hratio < 1.0))) { #ifdef DEBUG printf ("-- evaluate jacobian\n"); #endif int s = GSL_ODEIV_JA_EVAL (sys, t, y, dfdy->data, dfdt); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at jacobian function evaluation\n"); #endif return s; } /* Reset counter */ *nJ = 0; } /* Iteration matrix M (and it's LU decomposition) is generated - at first step - if MSBDF_M_WAIT steps have been made without an update - if change in gamma is significant (e.g. change in step size) - if previous step was rejected */ if (*nM == 0 || *nM > MSBDF_M_WAIT || gammarel >= c || t == tprev || t == failt) { #ifdef DEBUG printf ("-- update M, gamma=%.5e\n", gamma); #endif size_t i; gsl_matrix_memcpy (M, dfdy); gsl_matrix_scale (M, -gamma); for (i = 0; i < dim; i++) { gsl_matrix_set (M, i, i, gsl_matrix_get (M, i, i) + 1.0); } { int signum; int s = gsl_linalg_LU_decomp (M, p, &signum); if (s != GSL_SUCCESS) { return GSL_FAILURE; } } /* Reset counter */ *nM = 0; } return GSL_SUCCESS; } static int msbdf_corrector (void *vstate, const gsl_odeiv2_system * sys, const double t, const double h, const size_t dim, const double z[], const double errlev[], const double l[], const double errcoeff, gsl_vector * abscor, gsl_vector * relcor, double ytmp[], double ytmp2[], gsl_matrix * dfdy, double dfdt[], gsl_matrix * M, gsl_permutation * p, gsl_vector * rhs, size_t * nJ, size_t * nM, const double tprev, const double failt, const double gamma, const double gammaprev, const double hprev0) { /* Calculates the correction step (abscor). Equation system M = I - gamma * dfdy = -G is solved by Newton iteration. */ size_t mi, i; const size_t max_iter = 3; /* Maximum number of iterations */ double convrate = 1.0; /* convergence rate */ double stepnorm = 0.0; /* norm of correction step */ double stepnormprev = 0.0; /* previous norm value */ /* Evaluate at predicted values */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, z, ytmp); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } /* Calculate correction step (abscor) */ gsl_vector_set_zero (abscor); for (mi = 0; mi < max_iter; mi++) { const double safety = 0.3; const double safety2 = 0.1; /* Generate or update Jacobian and/or iteration matrix M if needed */ if (mi == 0) { int s = msbdf_update (vstate, dim, dfdy, dfdt, t + h, z, sys, M, p, mi, nJ, nM, tprev, failt, gamma, gammaprev, h / hprev0); if (s != GSL_SUCCESS) { return s; } } /* Evaluate the right hand side (-G) */ for (i = 0; i < dim; i++) { const double r = -1.0 * gsl_vector_get (abscor, i) - z[1 * dim + i] / l[1] + gamma * ytmp[i]; gsl_vector_set (rhs, i, r); } /* Solve system of equations */ { int s = gsl_linalg_LU_solve (M, p, rhs, relcor); if (s != GSL_SUCCESS) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at LU_solve\n"); #endif return GSL_FAILURE; } } #ifdef DEBUG { size_t di; printf ("-- dstep: "); for (di = 0; di < dim; di++) { printf ("%.5e ", gsl_vector_get (relcor, di)); } printf ("\n"); } #endif /* Add iteration results */ for (i = 0; i < dim; i++) { const double r = gsl_vector_get (abscor, i) + gsl_vector_get (relcor, i); gsl_vector_set (abscor, i, r); ytmp2[i] = z[i] + r; gsl_vector_set (relcor, i, gsl_vector_get (relcor, i) / errlev[i]); } #ifdef DEBUG { size_t di; printf ("-- abscor: "); for (di = 0; di < dim; di++) { printf ("%.5e ", gsl_vector_get (abscor, di)); } printf ("\n"); } #endif /* Convergence test. Norms used are root-mean-square norms. */ stepnorm = gsl_blas_dnrm2 (relcor) / sqrt (dim); if (mi > 0) { convrate = GSL_MAX_DBL (safety * convrate, stepnorm / stepnormprev); } else { convrate = 1.0; } { const double convtest = GSL_MIN_DBL (convrate, 1.0) * stepnorm * errcoeff / safety2; #ifdef DEBUG printf ("-- newt iter loop %d, errcoeff=%.5e, stepnorm =%.5e, convrate = %.5e, convtest = %.5e\n", (int) mi, errcoeff, stepnorm, convrate, convtest); #endif if (convtest <= 1.0) { break; } } /* Check for divergence during iteration */ { const double div_const = 2.0; if (mi > 1 && stepnorm > div_const * stepnormprev) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL, diverging Newton iteration\n"); #endif return GSL_FAILURE; } } /* Evaluate at new y */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp2, ytmp); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } stepnormprev = stepnorm; } #ifdef DEBUG printf ("-- Newton iteration exit at mi=%d\n", (int) mi); #endif /* Handle convergence failure */ if (mi == max_iter) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL, max_iter reached\n"); #endif return GSL_FAILURE; } return GSL_SUCCESS; } static int msbdf_eval_order (gsl_vector * abscorscaled, gsl_vector * tempvec, gsl_vector * svec, const double errcoeff, const size_t dim, const double errlev[], const double ordm1coeff, const double ordp1coeff, const double ordp1coeffprev, const double ordp2coeff, const double hprev[], const double h, const double z[], size_t * ord) { /* Evaluates and executes change in method order (current, current-1 or current+1). Order which maximizes the step length is selected. */ size_t i; /* step size estimates at current order, order-1 and order+1 */ double ordest = 0.0; double ordm1est = 0.0; double ordp1est = 0.0; const double safety = 1e-6; const double bias = 6.0; const double bias2 = 10.0; const double min_incr = 1.5; /* Relative step length estimate for current order */ ordest = 1.0 / (pow (bias * gsl_blas_dnrm2 (abscorscaled) / sqrt (dim) * errcoeff, 1.0 / (*ord + 1)) + safety); /* Relative step length estimate for order ord - 1 */ if (*ord > 1) { for (i = 0; i < dim; i++) { gsl_vector_set (tempvec, i, z[*ord * dim + i] / errlev[i]); } ordm1est = 1.0 / (pow (bias * gsl_blas_dnrm2 (tempvec) / sqrt (dim) / ordm1coeff, 1.0 / (*ord)) + safety); } else { ordm1est = 0.0; } /* Relative step length estimate for order ord + 1 */ if (*ord < MSBDF_MAX_ORD) { const double c = -ordp1coeff / ordp1coeffprev * pow (h / hprev[1], *ord + 1); for (i = 0; i < dim; i++) { gsl_vector_set (svec, i, gsl_vector_get (svec, i) * c + gsl_vector_get (abscorscaled, i)); } ordp1est = 1.0 / (pow (bias2 * gsl_blas_dnrm2 (svec) / sqrt (dim) / ordp2coeff, 1.0 / (*ord + 2)) + safety); } else { ordp1est = 0.0; } #ifdef DEBUG printf ("-- eval_order ord=%d, ordest=%.5e, ordm1est=%.5e, ordp1est=%.5e\n", (int) *ord, ordest, ordm1est, ordp1est); #endif /* Choose order that maximises step size and increases step size markedly compared to current step */ if (ordm1est > ordest && ordm1est > ordp1est && ordm1est > min_incr) { *ord -= 1; #ifdef DEBUG printf ("-- eval_order order DECREASED to %d\n", (int) *ord); #endif } else if (ordp1est > ordest && ordp1est > ordm1est && ordp1est > min_incr) { *ord += 1; #ifdef DEBUG printf ("-- eval_order order INCREASED to %d\n", (int) *ord); #endif } return GSL_SUCCESS; } static int msbdf_check_no_order_decrease (size_t const ordprev[]) { /* Checks if order has not been decreased according to order history array. Used in stability enhancement. */ size_t i; for (i = 0; i < MSBDF_MAX_ORD - 1; i++) { if (ordprev[i + 1] > ordprev[i]) { return 0; } } return 1; } static int msbdf_check_step_size_decrease (double const hprev[]) { /* Checks if step size has decreased markedly according to step size history array. Used in stability enhancement. */ size_t i; double max = fabs (hprev[0]); const double min = fabs (hprev[0]); const double decrease_limit = 0.5; for (i = 1; i < MSBDF_MAX_ORD; i++) { const double h = fabs (hprev[i]); if (h > min && h > max) { max = h; } } if (min / max < decrease_limit) { return 1; } return 0; } static int msbdf_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { /* Carries out a step by BDF linear multistep methods. */ msbdf_state_t *state = (msbdf_state_t *) vstate; double *const z = state->z; double *const zbackup = state->zbackup; double *const ytmp = state->ytmp; double *const ytmp2 = state->ytmp2; double *const l = state->l; double *const hprev = state->hprev; double *const hprevbackup = state->hprevbackup; size_t *const ordprev = state->ordprev; size_t *const ordprevbackup = state->ordprevbackup; double *const errlev = state->errlev; gsl_vector *const abscor = state->abscor; gsl_vector *const abscorscaled = state->abscorscaled; gsl_vector *const relcor = state->relcor; gsl_vector *const svec = state->svec; gsl_vector *const tempvec = state->tempvec; size_t ord = state->ord; /* order for this step */ double ordm1coeff = 0.0; double ordp1coeff = 0.0; double ordp2coeff = 0.0; double errcoeff = 0.0; /* error coefficient */ double gamma = 0.0; /* gamma coefficient */ const size_t max_failcount = 3; size_t i; #ifdef DEBUG { size_t di; printf ("msbdf_apply: t=%.5e, ord=%d, h=%.5e, y:", t, (int) ord, h); for (di = 0; di < dim; di++) { printf ("%.5e ", y[di]); } printf ("\n"); } #endif /* Check if t is the same as on previous stepper call (or last failed call). This means that calculation of previous step failed or the step was rejected, and therefore previous state will be restored or the method will be reset. */ if (state->ni > 0 && (t == state->tprev || t == state->failt)) { if (state->ni == 1) { /* No step has been accepted yet, reset method */ msbdf_reset (vstate, dim); #ifdef DEBUG printf ("-- first step was REJECTED, msbdf_reset called\n"); #endif } else { /* A succesful step has been saved, restore previous state. */ /* If previous step suggests order increase, but the step was rejected, then do not increase order. */ if (ord > ordprev[0]) { state->ord = ordprev[0]; ord = state->ord; } /* Restore previous state */ DBL_MEMCPY (z, zbackup, (MSBDF_MAX_ORD + 1) * dim); DBL_MEMCPY (hprev, hprevbackup, MSBDF_MAX_ORD); for (i = 0; i < MSBDF_MAX_ORD; i++) { ordprev[i] = ordprevbackup[i]; } state->ordwait = state->ordwaitbackup; state->gammaprev = state->gammaprevbackup; #ifdef DEBUG printf ("-- previous step was REJECTED, state restored\n"); #endif } /* If step is repeatedly rejected, then reset method */ state->failcount++; if (state->failcount > max_failcount && state->ni > 1) { msbdf_reset (vstate, dim); ord = state->ord; #ifdef DEBUG printf ("-- max_failcount reached, msbdf_reset called\n"); #endif } } else { /* The previous step was accepted. Backup current state. */ DBL_MEMCPY (zbackup, z, (MSBDF_MAX_ORD + 1) * dim); DBL_MEMCPY (hprevbackup, hprev, MSBDF_MAX_ORD); for (i = 0; i < MSBDF_MAX_ORD; i++) { ordprevbackup[i] = ordprev[i]; } state->ordwaitbackup = state->ordwait; state->gammaprevbackup = state->gammaprev; state->failcount = 0; #ifdef DEBUG if (state->ni > 0) { printf ("-- previous step was ACCEPTED, state saved\n"); } #endif } #ifdef DEBUG printf ("-- ord=%d, ni=%ld, ordwait=%d\n", (int) ord, state->ni, (int) state->ordwait); size_t di; printf ("-- ordprev: "); for (di = 0; di < MSBDF_MAX_ORD; di++) { printf ("%d ", (int) ordprev[di]); } printf ("\n"); #endif /* Get desired error levels via gsl_odeiv2_control object through driver object, which is a requirement for this stepper. */ if (state->driver == NULL) { return GSL_EFAULT; } else { size_t i; for (i = 0; i < dim; i++) { if (dydt_in != NULL) { gsl_odeiv2_control_errlevel (state->driver->c, y[i], dydt_in[i], h, i, &errlev[i]); } else { gsl_odeiv2_control_errlevel (state->driver->c, y[i], 0.0, h, i, &errlev[i]); } } } #ifdef DEBUG { size_t di; printf ("-- errlev: "); for (di = 0; di < dim; di++) { printf ("%.5e ", errlev[di]); } printf ("\n"); } #endif /* On first call initialize Nordsieck matrix */ if (state->ni == 0) { size_t i; DBL_ZERO_MEMSET (z, (MSBDF_MAX_ORD + 1) * dim); if (dydt_in != NULL) { DBL_MEMCPY (ytmp, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, ytmp); if (s != GSL_SUCCESS) { return s; } } DBL_MEMCPY (&z[0 * dim], y, dim); DBL_MEMCPY (&z[1 * dim], ytmp, dim); for (i = 0; i < dim; i++) { z[1 * dim + i] *= h; } } /* Stability enhancement heuristic for msbdf: If order > 1 and order has not been changed, check for decrease in step size, that is not accompanied by a decrease in method order. This condition may be indication of BDF method stability problems, a change in ODE system, or convergence problems in Newton iteration. In all cases, the strategy is to decrease method order. */ #ifdef DEBUG printf ("-- check_no_order_decrease %d, check_step_size_decrease %d\n", msbdf_check_no_order_decrease (ordprev), msbdf_check_step_size_decrease (hprev)); #endif if (ord > 1 && ord - ordprev[0] == 0 && msbdf_check_no_order_decrease (ordprev) && msbdf_check_step_size_decrease (hprev)) { state->ord--; state->ordwait = ord + 2; ord = state->ord; #ifdef DEBUG printf ("-- stability enhancement decreased order to %d\n", (int) ord); #endif } /* Sanity check */ { const int deltaord = ord - ordprev[0]; if (deltaord > 1 || deltaord < -1) { printf ("-- order change %d\n", deltaord); GSL_ERROR_NULL ("msbdf_apply too large order change", GSL_ESANITY); } /* Modify Nordsieck matrix if order or step length has been changed */ /* If order increased by 1, adjust Nordsieck matrix */ if (deltaord == 1) { if (ord > 2) { size_t i, j; double hsum = h; double coeff1 = -1.0; double coeff2 = 1.0; double hrelprev = 1.0; double hrelprod = 1.0; double hrel = 0.0; /* Calculate coefficients used in adjustment to l */ DBL_ZERO_MEMSET (l, MSBDF_MAX_ORD + 1); l[2] = 1.0; for (i = 1; i < ord - 1; i++) { hsum += hprev[i]; hrel = hsum / h; hrelprod *= hrel; coeff1 -= 1.0 / (i + 1); coeff2 += 1.0 / hrel; for (j = i + 2; j > 1; j--) { l[j] *= hrelprev; l[j] += l[j - 1]; } hrelprev = hrel; } /* Scale Nordsieck matrix */ { const double c = (-coeff1 - coeff2) / hrelprod; for (i = 0; i < dim; i++) { z[ord * dim + i] = c * gsl_vector_get (abscor, i); } } for (i = 2; i < ord; i++) for (j = 0; j < dim; j++) { z[i * dim + j] += l[i] * z[ord * dim + j]; } } else { /* zero new vector for order incease from 1 to 2 */ DBL_ZERO_MEMSET (&z[ord * dim], dim); } #ifdef DEBUG printf ("-- order increase detected, Nordsieck modified\n"); #endif } /* If order decreased by 1, adjust Nordsieck matrix */ if (deltaord == -1) { size_t i, j; double hsum = 0.0; /* Calculate coefficients used in adjustment to l */ DBL_ZERO_MEMSET (l, MSBDF_MAX_ORD + 1); l[2] = 1.0; for (i = 1; i < ord; i++) { hsum += hprev[i - 1]; for (j = i + 2; j > 1; j--) { l[j] *= hsum / h; l[j] += l[j - 1]; } } /* Scale Nordsieck matrix */ for (i = 2; i < ord + 1; i++) for (j = 0; j < dim; j++) { z[i * dim + j] += -l[i] * z[(ord + 1) * dim + j]; } #ifdef DEBUG printf ("-- order decrease detected, Nordsieck modified\n"); #endif } /* Scale Nordsieck vectors if step size has been changed */ if (state->ni > 0 && h != hprev[0]) { size_t i, j; const double hrel = h / hprev[0]; double coeff = hrel; for (i = 1; i < ord + 1; i++) { for (j = 0; j < dim; j++) { z[i * dim + j] *= coeff; } coeff *= hrel; } #ifdef DEBUG printf ("-- h != hprev, Nordsieck modified\n"); #endif } /* Calculate polynomial coefficients (l), error coefficient and auxiliary coefficients */ msbdf_calccoeffs (ord, state->ordwait, h, hprev, l, &errcoeff, º1coeff, &ordp1coeff, &ordp2coeff, &gamma); /* Carry out the prediction step */ { size_t i, j, k; for (i = 1; i < ord + 1; i++) for (j = ord; j > i - 1; j--) for (k = 0; k < dim; k++) { z[(j - 1) * dim + k] += z[j * dim + k]; } #ifdef DEBUG { size_t di; printf ("-- predicted y: "); for (di = 0; di < dim; di++) { printf ("%.5e ", z[di]); } printf ("\n"); } #endif } /* Calculate correction step to abscor */ { int s; s = msbdf_corrector (vstate, sys, t, h, dim, z, errlev, l, errcoeff, abscor, relcor, ytmp, ytmp2, state->dfdy, state->dfdt, state->M, state->p, state->rhs, &(state->nJ), &(state->nM), state->tprev, state->failt, gamma, state->gammaprev, hprev[0]); if (s != GSL_SUCCESS) { return s; } } { /* Add accepted final correction step to Nordsieck matrix */ size_t i, j; for (i = 0; i < ord + 1; i++) for (j = 0; j < dim; j++) { z[i * dim + j] += l[i] * gsl_vector_get (abscor, j); } #ifdef DEBUG { size_t di; printf ("---- l: "); for (di = 0; di < ord + 1; di++) { printf ("%.5e ", l[di]); } printf ("\n"); printf ("-- corrected y: "); for (di = 0; di < dim; di++) { printf ("%.5e ", z[di]); } printf ("\n"); } #endif /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, z, dydt_out); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msbdf_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } /* Calculate error estimate */ for (i = 0; i < dim; i++) { yerr[i] = fabs (gsl_vector_get (abscor, i)) * errcoeff; } #ifdef DEBUG { size_t di; printf ("-- yerr: "); for (di = 0; di < dim; di++) { printf ("%.5e ", yerr[di]); } printf ("\n"); } #endif /* Save y values */ for (i = 0; i < dim; i++) { y[i] = z[0 * dim + i]; } } /* Scale abscor with errlev for later use in norm calculations in order evaluation in msbdf_eval_order */ { size_t i; for (i = 0; i < dim; i++) { gsl_vector_set (abscorscaled, i, gsl_vector_get (abscor, i) / errlev[i]); } } /* Save items needed for evaluation of order increase on next call, if needed */ if (state->ordwait == 1 && ord < MSBDF_MAX_ORD) { size_t i; state->ordp1coeffprev = ordp1coeff; for (i = 0; i < dim; i++) { gsl_vector_set (svec, i, gsl_vector_get (abscorscaled, i)); } } /* Consider and execute order change for next step if order is unchanged. */ if (state->ordwait == 0) { if (ord - ordprev[0] == 0) { msbdf_eval_order (abscorscaled, tempvec, svec, errcoeff, dim, errlev, ordm1coeff, ordp1coeff, state->ordp1coeffprev, ordp2coeff, hprev, h, z, &(state->ord)); state->ordwait = state->ord + 2; } else { /* Postpone order evaluation if order has been modified elsewhere */ state->ordwait = 2; } } /* Save information about current step in state and update counters */ { size_t i; for (i = MSBDF_MAX_ORD - 1; i > 0; i--) { hprev[i] = hprev[i - 1]; ordprev[i] = ordprev[i - 1]; } } hprev[0] = h; ordprev[0] = ord; #ifdef DEBUG { size_t di; printf ("-- hprev: "); for (di = 0; di < MSBDF_MAX_ORD; di++) { printf ("%.5e ", hprev[di]); } printf ("\n"); } #endif state->tprev = t; state->ordwait--; state->ni++; state->gammaprev = gamma; state->nJ++; state->nM++; #ifdef DEBUG printf ("-- nJ=%d, nM=%d\n", (int) state->nJ, (int) state->nM); #endif } return GSL_SUCCESS; } static int msbdf_set_driver (void *vstate, const gsl_odeiv2_driver * d) { msbdf_state_t *state = (msbdf_state_t *) vstate; state->driver = d; return GSL_SUCCESS; } static int msbdf_reset (void *vstate, size_t dim) { msbdf_state_t *state = (msbdf_state_t *) vstate; size_t i; state->ni = 0; state->ord = 1; state->ordwait = 2; state->ordwaitbackup = 2; state->failord = 0; state->failt = GSL_NAN; state->tprev = GSL_NAN; state->gammaprev = 1.0; state->gammaprevbackup = 1.0; state->nJ = 0; state->nM = 0; state->failcount = 0; state->ordp1coeffprev = 0.0; DBL_ZERO_MEMSET (state->hprev, MSBDF_MAX_ORD); DBL_ZERO_MEMSET (state->hprevbackup, MSBDF_MAX_ORD); DBL_ZERO_MEMSET (state->z, (MSBDF_MAX_ORD + 1) * dim); DBL_ZERO_MEMSET (state->zbackup, (MSBDF_MAX_ORD + 1) * dim); for (i = 0; i < MSBDF_MAX_ORD; i++) { state->ordprev[i] = 1; state->ordprevbackup[i] = 1; } #ifdef DEBUG printf ("-- msbdf_reset called\n"); #endif return GSL_SUCCESS; } static unsigned int msbdf_order (void *vstate) { msbdf_state_t *state = (msbdf_state_t *) vstate; return state->ord; } static void msbdf_free (void *vstate) { msbdf_state_t *state = (msbdf_state_t *) vstate; gsl_vector_free (state->rhs); gsl_permutation_free (state->p); gsl_matrix_free (state->M); free (state->dfdt); gsl_matrix_free (state->dfdy); gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); gsl_vector_free (state->abscorscaled); free (state->errlev); free (state->ordprevbackup); free (state->ordprev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); } static const gsl_odeiv2_step_type msbdf_type = { "msbdf", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &msbdf_alloc, &msbdf_apply, &msbdf_set_driver, &msbdf_reset, &msbdf_order, &msbdf_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_msbdf = &msbdf_type; gsl-1.16/ode-initval2/odeiv_util.h0000664000252300025230000000136512171574312013770 00000000000000#define DBL_MEMCPY(dest,src,n) memcpy((dest),(src),(n)*sizeof(double)) #define DBL_ZERO_MEMSET(dest,n) memset((dest),0,(n)*sizeof(double)) /* Error estimation safety coefficient for methods that use step * doubling for error estimates. Error estimates are multiplied by * this constant to ensure that the error of a step is not * underestimated. * * The default safety value of 8.0 ensures 90% of samples lie within * the error (assuming a Gaussian distribution with prior * p(sigma) = 1 / sigma). Value of 1.0 conforms to equation * by Ascher and Petzold (reference: Ascher, U.M., Petzold, L.R., * Computer methods for ordinary differential and * differential-algebraic equations, SIAM, Philadelphia, 1998). */ #define ODEIV_ERR_SAFETY 8.0 gsl-1.16/ode-initval2/Makefile.in0000664000252300025230000010706712172253756013536 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = ode-initval2 DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslodeiv2_la_LIBADD = am_libgslodeiv2_la_OBJECTS = control.lo cstd.lo cscal.lo evolve.lo \ step.lo rk2.lo rk2imp.lo rk4.lo rk4imp.lo rkf45.lo rk8pd.lo \ rkck.lo bsimp.lo rk1imp.lo msadams.lo msbdf.lo driver.lo libgslodeiv2_la_OBJECTS = $(am_libgslodeiv2_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslodeiv2.la ../linalg/libgsllinalg.la \ ../blas/libgslblas.la ../cblas/libgslcblas.la \ ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslodeiv2_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslodeiv2_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslodeiv2.la pkginclude_HEADERS = gsl_odeiv2.h INCLUDES = -I$(top_srcdir) libgslodeiv2_la_SOURCES = control.c cstd.c cscal.c evolve.c step.c rk2.c rk2imp.c rk4.c rk4imp.c rkf45.c rk8pd.c rkck.c bsimp.c rk1imp.c msadams.c msbdf.c driver.c noinst_HEADERS = odeiv_util.h step_utils.c rksubs.c modnewton1.c control_utils.c TESTS = $(check_PROGRAMS) test_LDADD = libgslodeiv2.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu ode-initval2/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu ode-initval2/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslodeiv2.la: $(libgslodeiv2_la_OBJECTS) $(libgslodeiv2_la_DEPENDENCIES) $(EXTRA_libgslodeiv2_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslodeiv2_la_OBJECTS) $(libgslodeiv2_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bsimp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/control.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cstd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/driver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/evolve.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/msadams.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/msbdf.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk1imp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk2imp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk4.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk4imp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk8pd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rkck.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rkf45.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/step.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/ode-initval2/rkck.c0000664000252300025230000002071312171574312012550 00000000000000/* ode-initval2/rkck.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4(5), Cash-Karp */ /* Reference: Cash, J.R., Karp, A.H., ACM Transactions of Mathematical Software, vol. 16 (1990) 201-222. */ /* Author: G. Jungman */ #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" /* Cash-Karp constants */ static const double ah[] = { 1.0 / 5.0, 0.3, 3.0 / 5.0, 1.0, 7.0 / 8.0 }; static const double b21 = 1.0 / 5.0; static const double b3[] = { 3.0 / 40.0, 9.0 / 40.0 }; static const double b4[] = { 0.3, -0.9, 1.2 }; static const double b5[] = { -11.0 / 54.0, 2.5, -70.0 / 27.0, 35.0 / 27.0 }; static const double b6[] = { 1631.0 / 55296.0, 175.0 / 512.0, 575.0 / 13824.0, 44275.0 / 110592.0, 253.0 / 4096.0 }; static const double c1 = 37.0 / 378.0; static const double c3 = 250.0 / 621.0; static const double c4 = 125.0 / 594.0; static const double c6 = 512.0 / 1771.0; /* These are the differences of fifth and fourth order coefficients for error estimation */ static const double ec[] = { 0.0, 37.0 / 378.0 - 2825.0 / 27648.0, 0.0, 250.0 / 621.0 - 18575.0 / 48384.0, 125.0 / 594.0 - 13525.0 / 55296.0, -277.0 / 14336.0, 512.0 / 1771.0 - 0.25 }; typedef struct { double *k1; double *k2; double *k3; double *k4; double *k5; double *k6; double *y0; double *ytmp; } rkck_state_t; static void * rkck_alloc (size_t dim) { rkck_state_t *state = (rkck_state_t *) malloc (sizeof (rkck_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rkck_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->k4 = (double *) malloc (dim * sizeof (double)); if (state->k4 == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k4", GSL_ENOMEM); } state->k5 = (double *) malloc (dim * sizeof (double)); if (state->k5 == 0) { free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k5", GSL_ENOMEM); } state->k6 = (double *) malloc (dim * sizeof (double)); if (state->k6 == 0) { free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k6", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rkck_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { rkck_state_t *state = (rkck_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const k4 = state->k4; double *const k5 = state->k5; double *const k6 = state->k6; double *const ytmp = state->ytmp; double *const y0 = state->y0; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + b21 * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[1] * k2[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[1] * k2[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[1] * k2[i] + b6[2] * k3[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step and final sum */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { const double d_i = c1 * k1[i] + c3 * k3[i] + c4 * k4[i] + c6 * k6[i]; y[i] += h * d_i; } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* difference between 4th and 5th order */ for (i = 0; i < dim; i++) { yerr[i] = h * (ec[1] * k1[i] + ec[3] * k3[i] + ec[4] * k4[i] + ec[5] * k5[i] + ec[6] * k6[i]); } return GSL_SUCCESS; } static int rkck_reset (void *vstate, size_t dim) { rkck_state_t *state = (rkck_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->k4, dim); DBL_ZERO_MEMSET (state->k5, dim); DBL_ZERO_MEMSET (state->k6, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); return GSL_SUCCESS; } static unsigned int rkck_order (void *vstate) { rkck_state_t *state = (rkck_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 5; /* FIXME: should this be 4? */ } static void rkck_free (void *vstate) { rkck_state_t *state = (rkck_state_t *) vstate; free (state->ytmp); free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); } static const gsl_odeiv2_step_type rkck_type = { "rkck", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rkck_alloc, &rkck_apply, &stepper_set_driver_null, &rkck_reset, &rkck_order, &rkck_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rkck = &rkck_type; gsl-1.16/ode-initval2/ChangeLog0000664000252300025230000003011512171574312013221 000000000000002013-06-08 Tuomo Keskitalo * driver.c: Removed redundant if clause. Thanks to David Binderman for the report! 2013-01-27 Tuomo Keskitalo * msbdf.c: Corrected bug which enabled order to be changed by two (first by stability enhancement, then by order evaluation after a rejected step). Thanks for Frantisek Kluknavsky and Andreas Schwab for bug reports! * msbdf.c: Added more state variables explicitly to be reset in msbdf_reset. *msbdf.c: Added abscorscaled to remove division of abscor for use in msbdf_eval_order and subsequent backwards multiplication. *test.c: test_extreme_problems: Increased ringmod case tolerances from 1e-7 to 1e-12 to increase precision. Because that increases computational burden, I also decreased end time from 1e-3 to 1e-5. That decreased the acidity of the test significantly, but the test case is now more appropriate for normal "make check". Thanks for Frantisek Kluknavsky for pointing out bad design of the test case. 2012-09-10 Rhys Ulerich * test.c: Correct two out-of-order declarations. Thanks to Brian Gladman for spotting the problem. 2012-03-10 Tuomo Keskitalo * driver.c: Added function gsl_odeiv2_driver_reset_hstart to allow resetting step size, possibly change its sign, too. Check for non-zero hstart in initializations. * test.c: Modified test_driver to carry out tests with all steppers. Small printout changes. 2012-01-21 Tuomo Keskitalo * rkf45.c: Bug correction: Set gives_exact_dydt_out to 1 in rkf45_type 2012-01-14 Tuomo Keskitalo * evolve.c: Modified initial derivative evaluation in evolve_apply to reuse previously calculated values. This saves calls to the user function. Thanks for Illes Farkas for pointing out redundant function calls! 2011-06-28 Brian Gough * rk4imp.c (rk4imp_apply): use M_SQRT3 instead of sqrt(3) in array initialiser. 2011-05-02 Brian Gough * gsl_odeiv2.h: fix header guard to __GSL_ODEIV2_H__ 2011-05-01 Tuomo Keskitalo * Replaced ChangeLog with contents of ode-initval2 development log file (ChangeLog-odeiv2_development) and reformatted the log file. 2010-10-16 Tuomo Keskitalo * Modified evolve and driver so that when user function returns GSL_EBADFUNC, then ode-initval2 functions return immediately with that same return value. * Corrected bug in msadams for saving ordm1coeff to state. Thanks to Andrew Benson for pointing out this bug! 2010-10-10 Tuomo Keskitalo * driver.c: Corrected error in driver_evolve_apply, integration to negative direction should work now. * Added evolve_apply_fixed_step and driver_apply_fixed_step for users who want to use a constant step size to evolve the system. * test.c: added test cases for driver (negative evolution, apply_fixed_step). * gsl_odeiv2.h: cleaning and add apply_fixed_step functions. * doc/ode-initval.texi: Replaced derivative apostrophe with \prime (because my new system fails to make ps otherwise). Added new documentation about apply_fixed_step functions. 2010-10-09 Tuomo Keskitalo * ode-initval2 bzr development branch now at savannah: http://bzr.savannah.gnu.org/r/gsl/ode-initval2/ 2010-01-02 Tuomo Keskitalo * Changes from ode-initval2-0.9 to ode-initval2-1.0: * Removed set_control member from step object and added a set_driver member to evolve, control and step objects, so that the driver object and consequently evolve, control and step objects are all accessible from another. Currently only some steppers utilize this. They access the control_errlevel function via state->driver->c instead of state->control. This modification to the framework enables implementation of more efficient ODE solvers, which utilize communication among evolve, control and stepper objects. This also means that some steppers now require a driver object, and it is best to use those stepper methods through driver object functions. * cstd.c and cscal.c: Added a sanity check for errlev <= 0 * run indent -gnu -nut for *.c *.h * driver.c: added function odeiv2_driver_alloc_standard_new and odeiv2_driver_alloc_yp_new * driver.c: changed n and nmax in driver struct to unsigned long int * modified documentation accordingly with small nomenclature changes and made year updates to source files 2009-11-01 Tuomo Keskitalo * Merged with master and modified source to be published as a package for gsl-1.13. 2009-05-09 Tuomo Keskitalo * Agreed with Brian Gough that the modification I've made cannot be incorporated to GSL until a major version number change, due to changes in API. * Replated rk2imp with imprk2 and rk4imp with imprk4. Also renamed impeuler to rk1imp for consistency. * Deleted steppers that are deprecated considering new major release: gear1, gear2, and rk2simp. Modified test.c accordingly. 2009-05-01 Tuomo Keskitalo * Merged with master (evolve.c and test.c needed some manual work). * driver.c: Modified alloc-functions to minimal interface, added set_hmax, set_nmax and set_hmin functions. * test.c: Added test for minimum allowed step size. Applied indent -gnu -nut. * doc/ode-initval.texi: Updated documentation, added Driver section, updated examples. 2009-04-05 Tuomo Keskitalo * Several uninitialized variable corrections from Brian Gough added * modnewton1, impeuler, imprk2, imprk4: removed unneeded arguments from solve and init * msadams and msbdf modifications: * added ordprevbackup, ordwaitbackup (backups) and failcount (to detect repeated steps rejections). * added checks to make sure order is not changed by more than one order. Added sanity check to catch it. * corrected failure and rejection handling for first step * Added a heuristic stability enhancement for msbdf. This is yet to be tested in practice. * test.c: Added more benchmark test cases. The results seem sensible. * test.c: Note for benchmark_precision: msbdf performs badly in rhs_func_exp. Newton iteration starts to fail to converge at some point, and this forces very small step sizes to be used. I currently think that this is not a bug, but that msbdf is just not suitable for this problem. I think that msbdf's prediction step does not give a good initial guess for Newton iteration in this case. * I tried to increase max_iter in msbdf from 3 to 7 (value used in modnewton1), and as a result, the performance was better for this case (Newton iteration convergence was better). However, I would not increase max_iter, because the default value of 3 is the value used by the authors in the references, and because it would decrease the efficiency of msbdf (method would use more function evaluations per step, and convergence might still not be achieved). It is best to useanother stepper in this kind of a case. 2009-02-28 Tuomo Keskitalo * new stepper: msbdf. This is a variable-coefficient linear multistep backward differentiation formula (BDF) method in Nordsieck form. It appears to handle stiff cases well and it is efficient! * test.c: Ordered functions in file. Added extreme test case. * modnewton1: Convergence test now takes the desired error level via control object into account. Modified steppers that use modnewton1 accordingly. * modnewton1: Removed reuse_decomp. The variable was useless since iteration matrix is reconstructed at each stepper call. * modnewton1: Dropped max_iter from 10 to 7. Hairer and Wanner suggests a "relatively high number", but many iterations per step is costly. * steppers that use step doubling for error estimates: Introduced constant GSL_ODEIV_ERR_SAFETY in gsl_odeiv.h that is used to multiply the error estimates (yerr). This way user can modify this coefficient in one place if a change is wanted. * driver.c: This is a high level wrapper for ode-initval, which was wished for in TODO. Added test_driver to test.c to test it. Is this functionality enough? * ode-initval.texi: Added documentation for new steppers. Moved note about user error codes to system definition. * Some finetuning / code cleanup. 2009-01-21 Tuomo Keskitalo * New explicit stepper: msadams (An explicit variable-coefficient linear multistep Adams method in Nordsieck form). Functional iteration is used to solve the non-linear equation system. The algorithms described in the references (see msadams.c) have been adapted to fit GSL odeiv framework. Currently this is beta, but the stepper now passes the odeiv test suite. * control.c, cstd.c, cscal.c: Added errlev function which calculates desired error level. This is used in masadams (and can be used in imp* steppers, too) to control accuracy of functional iteration. User must call gsl_odeiv_step_set_control after allocating step and control objects to pass the information about control object to stepper. This change (or something similar) is needed to pass tolerance for the stepper routines that need it. Modified stepper routines accordingly. * evolve.c: Changed the step length scaling coefficient for stepper failure from 0.1 to 0.5, because msadams seems to cope much better with this change in stiff[0,1] test case. * gsl_odeiv.h: gsl_odeiv_control and control_type introduced earlier because gsl_odeiv_step_type now refers to it. 2008-11-01 Tuomo Keskitalo * New implicit solvers: imprk4 (replaces imprk42 in previous test package), imprk2 (replaces imprk21 in previous test package) and impeuler, which use modified Newton iteration to solve the implicit equations. I decided to dump imprk42 and imprk21 because I was unsure how to calculate the error estimates for them. I think that these new implicit methods could be used instead of rk4imp, rk2imp, gear2 and gear1, which use functional iteration (which is inefficient for stiff problems.) However, even these new solvers can not be used efficiently for truly nasty stiff problems, and better solvers are still needed. * modnewton1.c: a modified Newton solver for solution of non-linear equations of implicit solvers. Jacobian evaluation has been moved from modnewton1 to imprk2, imprk4 and impeuler. * evolve.c: modification to decrease step size if stepper fails, instead of giving up immediately. * evolve.c: A bug fix: Exit with GSL_FAILURE if step size reaches machine precision instead of continuing with old step size. * test.c: added Robertson stiff test * test.c: embedded test_oregonator to test_compare_stiff_probelms to test several stiff problems. Note: the tested integration interval is rather short due to inefficiency of solvers other than bsimp in these problems. * test.c: modified test_compare_vanderpol and test_compare_stiff_problems to check against results from first ode-solver. Changed rk4 or bsimp to first place. * test.c: modified stepfn and stepfn2 and expanded these to be tested with all explicit solvers * test.c: removed stepfn3 and added test_broken and test_stepsize_fail to check that evolve decreases step size below machine precision and exits with a failure code in the end if user functions fail continuously. * Changes in ode-initval.texi: * removed untrue sentence concerning stepping functions: "The step-size @var{h} will be set to the step-size which caused the error." * Changed gsl_odeiv_system variable name from dydt to sys for clarity * added "explicit" or "implicit" to stepper introductions for clarity * reformulated description of evolve_apply and step_apply and made changes to reflect the modifications to the code. * clarified the point on integrating over discontinuities. It is best to integrate in sequences. * removed the text suggesting the user to force a step size to integrate over the edge of a discontinuity. The applicability of this kind of a numerical tweak depends on the case, and should in my opinion not to be included in a reference book. gsl-1.16/ode-initval2/Makefile.am0000664000252300025230000000141612171574312013505 00000000000000noinst_LTLIBRARIES = libgslodeiv2.la pkginclude_HEADERS = gsl_odeiv2.h INCLUDES = -I$(top_srcdir) libgslodeiv2_la_SOURCES = control.c cstd.c cscal.c evolve.c step.c rk2.c rk2imp.c rk4.c rk4imp.c rkf45.c rk8pd.c rkck.c bsimp.c rk1imp.c msadams.c msbdf.c driver.c noinst_HEADERS = odeiv_util.h step_utils.c rksubs.c modnewton1.c control_utils.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_LDADD = libgslodeiv2.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/ode-initval2/cstd.c0000664000252300025230000001217312171574312012554 00000000000000/* ode-initval2/cstd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "control_utils.c" typedef struct { double eps_abs; double eps_rel; double a_y; double a_dydt; } std_control_state_t; static void * std_control_alloc (void) { std_control_state_t *s = (std_control_state_t *) malloc (sizeof (std_control_state_t)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for std_control_state", GSL_ENOMEM); } return s; } static int std_control_init (void *vstate, double eps_abs, double eps_rel, double a_y, double a_dydt) { std_control_state_t *s = (std_control_state_t *) vstate; if (eps_abs < 0) { GSL_ERROR ("eps_abs is negative", GSL_EINVAL); } else if (eps_rel < 0) { GSL_ERROR ("eps_rel is negative", GSL_EINVAL); } else if (a_y < 0) { GSL_ERROR ("a_y is negative", GSL_EINVAL); } else if (a_dydt < 0) { GSL_ERROR ("a_dydt is negative", GSL_EINVAL); } s->eps_rel = eps_rel; s->eps_abs = eps_abs; s->a_y = a_y; s->a_dydt = a_dydt; return GSL_SUCCESS; } static int std_control_hadjust (void *vstate, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double *h) { std_control_state_t *state = (std_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; const double S = 0.9; const double h_old = *h; double rmax = DBL_MIN; size_t i; for (i = 0; i < dim; i++) { const double D0 = eps_rel * (a_y * fabs (y[i]) + a_dydt * fabs (h_old * yp[i])) + eps_abs; const double r = fabs (yerr[i]) / fabs (D0); rmax = GSL_MAX_DBL (r, rmax); } if (rmax > 1.1) { /* decrease step, no more than factor of 5, but a fraction S more than scaling suggests (for better accuracy) */ double r = S / pow (rmax, 1.0 / ord); if (r < 0.2) r = 0.2; *h = r * h_old; return GSL_ODEIV_HADJ_DEC; } else if (rmax < 0.5) { /* increase step, no more than factor of 5 */ double r = S / pow (rmax, 1.0 / (ord + 1.0)); if (r > 5.0) r = 5.0; if (r < 1.0) /* don't allow any decrease caused by S<1 */ r = 1.0; *h = r * h_old; return GSL_ODEIV_HADJ_INC; } else { /* no change */ return GSL_ODEIV_HADJ_NIL; } } static int std_control_errlevel (void *vstate, const double y, const double dydt, const double h, const size_t ind, double *errlev) { std_control_state_t *state = (std_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; *errlev = eps_rel * (a_y * fabs (y) + a_dydt * fabs (h * dydt)) + eps_abs; if (*errlev <= 0.0) { GSL_ERROR_NULL ("errlev <= zero", GSL_ESANITY); } return GSL_SUCCESS; } static void std_control_free (void *vstate) { std_control_state_t *state = (std_control_state_t *) vstate; free (state); } static const gsl_odeiv2_control_type std_control_type = { "standard", /* name */ &std_control_alloc, &std_control_init, &std_control_hadjust, &std_control_errlevel, &control_set_driver_null, &std_control_free }; const gsl_odeiv2_control_type *gsl_odeiv2_control_standard = &std_control_type; gsl_odeiv2_control * gsl_odeiv2_control_standard_new (double eps_abs, double eps_rel, double a_y, double a_dydt) { gsl_odeiv2_control *c = gsl_odeiv2_control_alloc (gsl_odeiv2_control_standard); int status = gsl_odeiv2_control_init (c, eps_abs, eps_rel, a_y, a_dydt); if (status != GSL_SUCCESS) { gsl_odeiv2_control_free (c); GSL_ERROR_NULL ("error trying to initialize control", status); } return c; } gsl_odeiv2_control * gsl_odeiv2_control_y_new (double eps_abs, double eps_rel) { return gsl_odeiv2_control_standard_new (eps_abs, eps_rel, 1.0, 0.0); } gsl_odeiv2_control * gsl_odeiv2_control_yp_new (double eps_abs, double eps_rel) { return gsl_odeiv2_control_standard_new (eps_abs, eps_rel, 0.0, 1.0); } gsl-1.16/ode-initval2/msadams.c0000664000252300025230000007635212171574312013255 00000000000000/* ode-initval2/msadams.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* A variable-coefficient linear multistep Adams method in Nordsieck form. This stepper uses explicit Adams-Bashforth (predictor) and implicit Adams-Moulton (corrector) methods in P(EC)^m functional iteration mode. Method order varies dynamically between 1 and 12. References: Byrne, G. D., and Hindmarsh, A. C., A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations, ACM Trans. Math. Software, 1 (1975), pp. 71-96. Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., VODE: A Variable-coefficient ODE Solver, SIAM J. Sci. Stat. Comput. 10, (1989), pp. 1038-1051. Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E., and Woodward, C. S., SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Trans. Math. Software 31 (2005), pp. 363-396. Note: The algorithms have been adapted for GSL ode-initval2 framework. */ #include #include #include #include #include #include #include #include "odeiv_util.h" /* Maximum order of Adams methods */ #define MSADAMS_MAX_ORD 12 typedef struct { /* Nordsieck history matrix. Includes concatenated Nordsieck vectors [y_n, h*y_n', (h^2/2!)*y_n'', ..., (h^ord/ord!)*d^(ord)(y_n)]. Nordsieck vector number i is located at z[i*dim] (i=0..ord). */ double *z; double *zbackup; /* backup of Nordsieck matrix */ double *ytmp; /* work area */ double *ytmp2; /* work area */ double *pc; /* product term coefficients */ double *l; /* polynomial coefficients */ double *hprev; /* previous step sizes */ double *hprevbackup; /* backup of hprev */ double *errlev; /* desired error level of y */ gsl_vector *abscor; /* absolute y values for correction */ gsl_vector *relcor; /* relative y values for correction */ gsl_vector *svec; /* saved abscor & work area */ gsl_vector *tempvec; /* work area */ const gsl_odeiv2_driver *driver; /* pointer to gsl_odeiv2_driver object */ long int ni; /* stepper call counter */ size_t ord; /* current order of method */ size_t ordprev; /* order of previous call */ size_t ordprevbackup; /* backup of ordprev */ double tprev; /* t point of previous call */ size_t ordwait; /* counter for order change */ size_t ordwaitbackup; /* backup of ordwait */ size_t failord; /* order of convergence failure */ double failt; /* t point of convergence failure */ double ordm1coeff; /* saved order-1 coefficiet */ double ordp1coeffprev; /* saved order+1 coefficient */ size_t failcount; /* counter for rejected steps */ } msadams_state_t; /* Introduce msadams_reset for use in msadams_alloc and _apply */ static int msadams_reset (void *, size_t); static void * msadams_alloc (size_t dim) { msadams_state_t *state = (msadams_state_t *) malloc (sizeof (msadams_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for msadams_state", GSL_ENOMEM); } state->z = (double *) malloc ((MSADAMS_MAX_ORD + 1) * dim * sizeof (double)); if (state->z == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for z", GSL_ENOMEM); } state->zbackup = (double *) malloc ((MSADAMS_MAX_ORD + 1) * dim * sizeof (double)); if (state->zbackup == 0) { free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for zbackup", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->ytmp2 = (double *) malloc (dim * sizeof (double)); if (state->ytmp2 == 0) { free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp2", GSL_ENOMEM); } state->pc = (double *) malloc ((MSADAMS_MAX_ORD + 1) * sizeof (double)); if (state->pc == 0) { free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for pc", GSL_ENOMEM); } state->l = (double *) malloc ((MSADAMS_MAX_ORD + 1) * sizeof (double)); if (state->l == 0) { free (state->pc); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for l", GSL_ENOMEM); } state->hprev = (double *) malloc (MSADAMS_MAX_ORD * sizeof (double)); if (state->hprev == 0) { free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for hprev", GSL_ENOMEM); } state->hprevbackup = (double *) malloc (MSADAMS_MAX_ORD * sizeof (double)); if (state->hprevbackup == 0) { free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for hprevbackup", GSL_ENOMEM); } state->errlev = (double *) malloc (dim * sizeof (double)); if (state->errlev == 0) { free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM); } state->abscor = gsl_vector_alloc (dim); if (state->abscor == 0) { free (state->errlev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for abscor", GSL_ENOMEM); } state->relcor = gsl_vector_alloc (dim); if (state->relcor == 0) { gsl_vector_free (state->abscor); free (state->errlev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for relcor", GSL_ENOMEM); } state->svec = gsl_vector_alloc (dim); if (state->svec == 0) { gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for svec", GSL_ENOMEM); } state->tempvec = gsl_vector_alloc (dim); if (state->tempvec == 0) { gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); GSL_ERROR_NULL ("failed to allocate space for tempvec", GSL_ENOMEM); } msadams_reset ((void *) state, dim); state->driver = NULL; return state; } static int msadams_failurehandler (void *vstate, const size_t dim, const double t) { /* Internal failure handler routine for msadams. Adjusted strategy for GSL: Decrease order if this is the second time a failure has occurred at this order and point. */ msadams_state_t *state = (msadams_state_t *) vstate; const size_t ord = state->ord; if (ord > 1 && (ord - state->ordprev == 0) && ord == state->failord && t == state->failt) { state->ord--; } /* Save information about failure */ state->failord = ord; state->failt = t; state->ni++; /* Force reinitialization if failure took place at lowest order */ if (ord == 1) { msadams_reset (vstate, dim); } return GSL_SUCCESS; } static int msadams_calccoeffs (const size_t ord, const size_t ordwait, const double h, const double hprev[], double pc[], double l[], double *errcoeff, double *ordm1coeff, double *ordp1coeff, double *ordp2coeff) { /* Calculates coefficients (l) of polynomial Lambda, error and auxiliary order change evaluation coefficients. */ if (ord == 1) { l[0] = 1.0; l[1] = 1.0; *errcoeff = 0.5; *ordp1coeff = 1.0; *ordp2coeff = 12.0; } else { size_t i, j; double hsum = h; double st1 = 0.0; /* sum term coefficients */ double st2 = 0.0; /* Calculate coefficients (pc) of product terms */ DBL_ZERO_MEMSET (pc, MSADAMS_MAX_ORD + 1); pc[0] = 1.0; for (i = 1; i < ord; i++) { /* Calculate auxiliary coefficient used in evaluation of change of order */ if (i == ord - 1 && ordwait == 1) { int s = 1; *ordm1coeff = 0.0; for (j = 0; j < ord - 1; j++) { *ordm1coeff += s * pc[j] / (j + 2); s = -s; } *ordm1coeff = pc[ord - 2] / (ord * (*ordm1coeff)); } for (j = i; j > 0; j--) { pc[j] += pc[j - 1] * h / hsum; } hsum += hprev[i - 1]; } /* Calculate sum term 1 for error estimation */ { int s = 1; for (i = 0; i < ord; i++) { st1 += s * pc[i] / (i + 1.0); s = -s; } } /* Calculate sum term 2 for error estimation */ { int s = 1; for (i = 0; i < ord; i++) { st2 += s * pc[i] / (i + 2.0); s = -s; } } /* Calculate the actual polynomial coefficients (l) */ DBL_ZERO_MEMSET (l, MSADAMS_MAX_ORD + 1); l[0] = 1.0; for (i = 1; i < ord + 1; i++) { l[i] = pc[i - 1] / (i * st1); } #ifdef DEBUG { size_t di; printf ("-- calccoeffs l: "); for (di = 0; di < ord + 1; di++) { printf ("%.5e ", l[di]); } printf ("\n"); printf ("-- calccoeffs pc: "); for (di = 0; di < ord; di++) { printf ("%.5e ", pc[di]); } printf ("\n"); printf ("-- calccoeffs st1=%.5e, st2=%.5e\n", st1, st2); } #endif /* Calculate error coefficient */ *errcoeff = (h / hsum) * (st2 / st1); /* Calculate auxiliary coefficients used in evaluation of change of order */ if (ordwait < 2) { int s = 1; *ordp1coeff = hsum / (h * l[ord]); *ordp2coeff = 0.0; for (i = ord; i > 0; i--) { pc[i] += pc[i - 1] * (h / hsum); } for (i = 0; i < ord + 1; i++) { *ordp2coeff += s * pc[i] / (i + 2); s = -s; } *ordp2coeff = (ord + 1) * st1 / (*ordp2coeff); } } #ifdef DEBUG printf ("-- calccoeffs ordm1coeff=%.5e ", *ordm1coeff); printf ("ordp1coeff=%.5e ", *ordp1coeff); printf ("ordp2coeff=%.5e ", *ordp2coeff); printf ("errcoeff=%.5e\n", *errcoeff); #endif return GSL_SUCCESS; } static int msadams_corrector (void *vstate, const gsl_odeiv2_system * sys, const double t, const double h, const size_t dim, const double z[], const double errlev[], const double l[], const double errcoeff, gsl_vector * abscor, gsl_vector * relcor, double ytmp[], double ytmp2[]) { /* Calculates the correction step (abscor). Non-linear equation system is solved by functional iteration. */ size_t mi, i; const size_t max_iter = 3; /* Maximum number of iterations */ double convrate = 1.0; /* convergence rate */ double stepnorm = 0.0; /* norm of correction step */ double stepnormprev = 0.0; /* Evaluate at predicted values */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, z, ytmp); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msadams_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } /* Calculate correction step (abscor) */ gsl_vector_set_zero (abscor); for (mi = 0; mi < max_iter; mi++) { const double safety = 0.3; const double safety2 = 0.1; /* Calculate new y values to ytmp2 */ for (i = 0; i < dim; i++) { ytmp[i] *= h; ytmp[i] -= z[1 * dim + i]; ytmp[i] /= l[1]; ytmp2[i] = z[0 * dim + i] + ytmp[i]; } #ifdef DEBUG { size_t di; printf ("-- dstep: "); for (di = 0; di < dim; di++) { printf ("%.5e ", ytmp[di]); } printf ("\n"); } #endif /* Convergence test. Norms used are root-mean-square norms. */ for (i = 0; i < dim; i++) { gsl_vector_set (relcor, i, (ytmp[i] - gsl_vector_get (abscor, i)) / errlev[i]); gsl_vector_set (abscor, i, ytmp[i]); } stepnorm = gsl_blas_dnrm2 (relcor) / sqrt (dim); if (mi > 0) { convrate = GSL_MAX_DBL (safety * convrate, stepnorm / stepnormprev); } else { convrate = 1.0; } { const double convtest = GSL_MIN_DBL (convrate, 1.0) * stepnorm * errcoeff / safety2; #ifdef DEBUG printf ("-- func iter loop %d, errcoeff=%.5e, stepnorm =%.5e, convrate = %.5e, convtest = %.5e\n", (int) mi, errcoeff, stepnorm, convrate, convtest); #endif if (convtest <= 1.0) { break; } } /* Check for divergence during iteration */ { const double div_const = 2.0; if (mi > 1 && stepnorm > div_const * stepnormprev) { msadams_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL, diverging functional iteration\n"); #endif return GSL_FAILURE; } } /* Evaluate at new y */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp2, ytmp); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msadams_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } stepnormprev = stepnorm; } #ifdef DEBUG printf ("-- functional iteration exit at mi=%d\n", (int) mi); #endif /* Handle convergence failure */ if (mi == max_iter) { msadams_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL, max_iter reached\n"); #endif return GSL_FAILURE; } return GSL_SUCCESS; } static int msadams_eval_order (gsl_vector * abscor, gsl_vector * tempvec, gsl_vector * svec, const double errcoeff, const size_t dim, const double errlev[], const double ordm1coeff, const double ordp1coeff, const double ordp1coeffprev, const double ordp2coeff, const double hprev[], const double h, const double z[], size_t * ord, size_t * ordwait) { /* Evaluates and executes change in method order (current, current-1 or current+1). Order which maximizes the step length is selected. */ size_t i; /* step size estimates at current order, order-1 and order+1 */ double ordest = 0.0; double ordm1est = 0.0; double ordp1est = 0.0; const double safety = 1e-6; const double bias = 6.0; const double bias2 = 10.0; /* Relative step length estimate for current order */ ordest = 1.0 / (pow (bias * gsl_blas_dnrm2 (abscor) / sqrt (dim) * errcoeff, 1.0 / (*ord + 1)) + safety); /* Relative step length estimate for order ord - 1 */ if (*ord > 1) { for (i = 0; i < dim; i++) { gsl_vector_set (tempvec, i, z[*ord * dim + i] / errlev[i]); } ordm1est = 1.0 / (pow (bias * gsl_blas_dnrm2 (tempvec) / sqrt (dim) / ordm1coeff, 1.0 / (*ord)) + safety); } else { ordm1est = 0.0; } /* Relative step length estimate for order ord + 1 */ if (*ord < MSADAMS_MAX_ORD) { const double c = -ordp1coeff / ordp1coeffprev * pow (h / hprev[1], *ord + 1); for (i = 0; i < dim; i++) { gsl_vector_set (svec, i, gsl_vector_get (svec, i) * c + gsl_vector_get (abscor, i)); } ordp1est = 1.0 / (pow (bias2 * gsl_blas_dnrm2 (svec) / sqrt (dim) / ordp2coeff, 1.0 / (*ord + 2)) + safety); } else { ordp1est = 0.0; } #ifdef DEBUG printf ("-- eval_order ord=%d, ordest=%.5e, ordm1est=%.5e, ordp1est=%.5e\n", (int) *ord, ordest, ordm1est, ordp1est); #endif /* Choose order that maximises step size and increases step size markedly compared to current step */ { const double min_incr = 1.5; if (ordm1est > ordest && ordm1est > ordp1est && ordm1est > min_incr) { *ord -= 1; #ifdef DEBUG printf ("-- eval_order order DECREASED to %d\n", (int) *ord); #endif } else if (ordp1est > ordest && ordp1est > ordm1est && ordp1est > min_incr) { *ord += 1; #ifdef DEBUG printf ("-- eval_order order INCREASED to %d\n", (int) *ord); #endif } } *ordwait = *ord + 2; return GSL_SUCCESS; } static int msadams_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { /* Conducts a step by Adams linear multistep methods. */ msadams_state_t *state = (msadams_state_t *) vstate; double *const z = state->z; double *const zbackup = state->zbackup; double *const ytmp = state->ytmp; double *const ytmp2 = state->ytmp2; double *const pc = state->pc; double *const l = state->l; double *const hprev = state->hprev; double *const hprevbackup = state->hprevbackup; double *const errlev = state->errlev; gsl_vector *const abscor = state->abscor; gsl_vector *const relcor = state->relcor; gsl_vector *const svec = state->svec; gsl_vector *const tempvec = state->tempvec; size_t ord = state->ord; double ordm1coeff = 0.0; double ordp1coeff = 0.0; double ordp2coeff = 0.0; double errcoeff = 0.0; /* error coefficient */ int deltaord; #ifdef DEBUG { size_t di; printf ("msadams_apply: t=%.5e, ord=%d, h=%.5e, y:", t, (int) ord, h); for (di = 0; di < dim; di++) { printf ("%.5e ", y[di]); } printf ("\n"); } #endif /* Check if t is the same as on previous stepper call (or last failed call). This means that calculation of previous step failed or the step was rejected, and therefore previous state will be restored or the method will be reset. */ if (state->ni > 0 && (t == state->tprev || t == state->failt)) { if (state->ni == 1) { /* No step has been accepted yet, reset method */ msadams_reset (vstate, dim); #ifdef DEBUG printf ("-- first step was REJECTED, msadams_reset called\n"); #endif } else { /* A succesful step has been saved, restore previous state. */ /* If previous step suggests order increase, but the step was rejected, then do not increase order. */ if (ord > state->ordprev) { state->ord = state->ordprev; ord = state->ord; } /* Restore previous state */ DBL_MEMCPY (z, zbackup, (MSADAMS_MAX_ORD + 1) * dim); DBL_MEMCPY (hprev, hprevbackup, MSADAMS_MAX_ORD); state->ordprev = state->ordprevbackup; state->ordwait = state->ordwaitbackup; #ifdef DEBUG printf ("-- previous step was REJECTED, state restored\n"); #endif } /* If step is repeatedly rejected, then reset method */ state->failcount++; { const size_t max_failcount = 3; if (state->failcount > max_failcount && state->ni > 1) { msadams_reset (vstate, dim); ord = state->ord; #ifdef DEBUG printf ("-- max_failcount reached, msadams_reset called\n"); #endif } } } else { /* The previous step was accepted. Backup current state. */ DBL_MEMCPY (zbackup, z, (MSADAMS_MAX_ORD + 1) * dim); DBL_MEMCPY (hprevbackup, hprev, MSADAMS_MAX_ORD); state->ordprevbackup = state->ordprev; state->ordwaitbackup = state->ordwait; state->failcount = 0; #ifdef DEBUG if (state->ni > 0) { printf ("-- previous step was ACCEPTED, state saved\n"); } #endif } #ifdef DEBUG printf ("-- ord=%d, ni=%ld, ordwait=%d\n", (int) ord, state->ni, (int) state->ordwait); printf ("-- ordprev: %d\n", (int) state->ordprev); #endif /* Get desired error levels via gsl_odeiv2_control object through driver object, which is a requirement for this stepper. */ if (state->driver == NULL) { return GSL_EFAULT; } else { size_t i; for (i = 0; i < dim; i++) { if (dydt_in != NULL) { gsl_odeiv2_control_errlevel (state->driver->c, y[i], dydt_in[i], h, i, &errlev[i]); } else { gsl_odeiv2_control_errlevel (state->driver->c, y[i], 0.0, h, i, &errlev[i]); } } } #ifdef DEBUG { size_t di; printf ("-- errlev: "); for (di = 0; di < dim; di++) { printf ("%.5e ", errlev[di]); } printf ("\n"); } #endif /* On first call initialize Nordsieck matrix */ if (state->ni == 0) { size_t i; DBL_ZERO_MEMSET (z, (MSADAMS_MAX_ORD + 1) * dim); if (dydt_in != NULL) { DBL_MEMCPY (ytmp, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, ytmp); if (s != GSL_SUCCESS) { return s; } } DBL_MEMCPY (&z[0 * dim], y, dim); DBL_MEMCPY (&z[1 * dim], ytmp, dim); for (i = 0; i < dim; i++) { z[1 * dim + i] *= h; } } /* Sanity check */ deltaord = ord - state->ordprev; if (deltaord > 1 || deltaord < -1) { printf ("-- order change %d\n", deltaord); GSL_ERROR_NULL ("msadams_apply too large order change", GSL_ESANITY); } /* Modify Nordsieck matrix if order or step length has been changed */ /* If order increased by 1, initialize new Nordsieck vector */ if (deltaord == 1) { DBL_ZERO_MEMSET (&z[ord * dim], dim); #ifdef DEBUG printf ("-- order increase detected, Nordsieck modified\n"); #endif } /* If order decreased by 1, adjust Nordsieck matrix */ if (deltaord == -1) { double hsum = 0.0; size_t i, j; /* Calculate coefficients used in adjustment to l */ DBL_ZERO_MEMSET (l, MSADAMS_MAX_ORD + 1); l[1] = 1.0; for (i = 1; i < ord; i++) { hsum += hprev[i - 1]; for (j = i + 1; j > 0; j--) { l[j] *= hsum / hprev[0]; l[j] += l[j - 1]; } } for (i = 1; i < ord; i++) { l[i + 1] = (ord + 1) * l[i] / (i + 1); } /* Scale Nordsieck matrix */ for (i = 2; i < ord + 1; i++) for (j = 0; j < dim; j++) { z[i * dim + j] += -l[i] * z[(ord + 1) * dim + j]; } #ifdef DEBUG printf ("-- order decrease detected, Nordsieck modified\n"); #endif } /* Scale Nordsieck vectors if step size has been changed */ if (state->ni > 0 && h != hprev[0]) { size_t i, j; const double hrel = h / hprev[0]; double coeff = hrel; for (i = 1; i < ord + 1; i++) { for (j = 0; j < dim; j++) { z[i * dim + j] *= coeff; } coeff *= hrel; } #ifdef DEBUG printf ("-- h != hprev, Nordsieck modified\n"); #endif } /* Calculate polynomial coefficients (l), error coefficient and auxiliary coefficients */ msadams_calccoeffs (ord, state->ordwait, h, hprev, pc, l, &errcoeff, º1coeff, &ordp1coeff, &ordp2coeff); /* Carry out the prediction step */ { size_t i, j, k; for (i = 1; i < ord + 1; i++) for (j = ord; j > i - 1; j--) for (k = 0; k < dim; k++) { z[(j - 1) * dim + k] += z[j * dim + k]; } #ifdef DEBUG { size_t di; printf ("-- predicted y: "); for (di = 0; di < dim; di++) { printf ("%.5e ", z[di]); } printf ("\n"); } #endif } /* Calculate correction step to abscor */ { int s; s = msadams_corrector (vstate, sys, t, h, dim, z, errlev, l, errcoeff, abscor, relcor, ytmp, ytmp2); if (s != GSL_SUCCESS) { return s; } } { /* Add accepted final correction step to Nordsieck matrix */ size_t i, j; for (i = 0; i < ord + 1; i++) for (j = 0; j < dim; j++) { z[i * dim + j] += l[i] * gsl_vector_get (abscor, j); } #ifdef DEBUG { size_t di; printf ("-- corrected y: "); for (di = 0; di < dim; di++) { printf ("%.5e ", z[di]); } printf ("\n"); } #endif /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, z, dydt_out); if (s == GSL_EBADFUNC) { return s; } if (s != GSL_SUCCESS) { msadams_failurehandler (vstate, dim, t); #ifdef DEBUG printf ("-- FAIL at user function evaluation\n"); #endif return s; } } /* Calculate error estimate */ for (i = 0; i < dim; i++) { yerr[i] = fabs (gsl_vector_get (abscor, i)) * errcoeff; } #ifdef DEBUG { size_t di; printf ("-- yerr: "); for (di = 0; di < dim; di++) { printf ("%.5e ", yerr[di]); } printf ("\n"); } #endif /* Save y values */ for (i = 0; i < dim; i++) { y[i] = z[0 * dim + i]; } } /* Scale abscor with errlev for later use in norm calculations */ { size_t i; for (i = 0; i < dim; i++) { gsl_vector_set (abscor, i, gsl_vector_get (abscor, i) / errlev[i]); } } /* Save items needed for evaluation of order increase on next call, if needed */ if (state->ordwait == 1 && ord < MSADAMS_MAX_ORD) { size_t i; state->ordp1coeffprev = ordp1coeff; state->ordm1coeff = ordm1coeff; for (i = 0; i < dim; i++) { gsl_vector_set (svec, i, gsl_vector_get (abscor, i)); } } /* Consider and execute order change for next step */ if (state->ordwait == 0) { msadams_eval_order (abscor, tempvec, svec, errcoeff, dim, errlev, state->ordm1coeff, ordp1coeff, state->ordp1coeffprev, ordp2coeff, hprev, h, z, &(state->ord), &(state->ordwait)); } /* Save information about current step in state and update counters */ { size_t i; state->ordprev = ord; for (i = MSADAMS_MAX_ORD - 1; i > 0; i--) { hprev[i] = hprev[i - 1]; } hprev[0] = h; #ifdef DEBUG { size_t di; printf ("-- hprev: "); for (di = 0; di < MSADAMS_MAX_ORD; di++) { printf ("%.5e ", hprev[di]); } printf ("\n"); } #endif state->tprev = t; state->ordwait--; state->ni++; } return GSL_SUCCESS; } static int msadams_set_driver (void *vstate, const gsl_odeiv2_driver * d) { msadams_state_t *state = (msadams_state_t *) vstate; state->driver = d; return GSL_SUCCESS; } static int msadams_reset (void *vstate, size_t dim) { msadams_state_t *state = (msadams_state_t *) vstate; state->ni = 0; state->ord = 1; state->ordprev = 1; state->ordprevbackup = 1; state->ordwait = 2; state->ordwaitbackup = 2; state->failord = 0; state->failt = GSL_NAN; state->failcount = 0; DBL_ZERO_MEMSET (state->hprev, MSADAMS_MAX_ORD); DBL_ZERO_MEMSET (state->z, (MSADAMS_MAX_ORD + 1) * dim); #ifdef DEBUG printf ("-- msadams_reset called\n"); #endif return GSL_SUCCESS; } static unsigned int msadams_order (void *vstate) { msadams_state_t *state = (msadams_state_t *) vstate; return state->ord; } static void msadams_free (void *vstate) { msadams_state_t *state = (msadams_state_t *) vstate; gsl_vector_free (state->tempvec); gsl_vector_free (state->svec); gsl_vector_free (state->relcor); gsl_vector_free (state->abscor); free (state->errlev); free (state->hprevbackup); free (state->hprev); free (state->l); free (state->pc); free (state->ytmp2); free (state->ytmp); free (state->zbackup); free (state->z); free (state); } static const gsl_odeiv2_step_type msadams_type = { "msadams", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &msadams_alloc, &msadams_apply, &msadams_set_driver, &msadams_reset, &msadams_order, &msadams_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_msadams = &msadams_type; gsl-1.16/ode-initval2/modnewton1.c0000664000252300025230000002571612171574312013721 00000000000000/* ode-initval2/modnewton1.c * * Copyright (C) 2008, 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* A modified Newton iteration method for solving non-linear equations in implicit Runge-Kutta methods. */ /* References: Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. ISBN 0898714125, 9780898714128 Hairer, E., Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, 1996. ISBN 3540604529, 9783540604525 */ #include #include #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { /* iteration matrix I - h A (*) J */ gsl_matrix *IhAJ; /* permutation for LU-decomposition */ gsl_permutation *p; /* difference vector for kth Newton iteration */ gsl_vector *dYk; /* scaled dYk with desired error level */ gsl_vector *dScal; /* current Runge-Kutta points (absolute values) */ double *Yk; /* function values at points Yk */ double *fYk; /* right hand side of Newton iteration formula */ gsl_vector *rhs; /* stopping criterion value from previous step */ double eeta_prev; } modnewton1_state_t; static void * modnewton1_alloc (size_t dim, size_t stage) { modnewton1_state_t *state = (modnewton1_state_t *) malloc (sizeof (modnewton1_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for modnewton1_state_t", GSL_ENOMEM); } state->IhAJ = gsl_matrix_alloc (dim * stage, dim * stage); if (state->IhAJ == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for IhAJ", GSL_ENOMEM); } state->p = gsl_permutation_alloc (dim * stage); if (state->p == 0) { gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM); } state->dYk = gsl_vector_alloc (dim * stage); if (state->dYk == 0) { gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for dYk", GSL_ENOMEM); } state->dScal = gsl_vector_alloc (dim * stage); if (state->dScal == 0) { gsl_vector_free (state->dYk); gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for dScal", GSL_ENOMEM); } state->Yk = (double *) malloc (dim * stage * sizeof (double)); if (state->Yk == 0) { gsl_vector_free (state->dScal); gsl_vector_free (state->dYk); gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for Yk", GSL_ENOMEM); } state->fYk = (double *) malloc (dim * stage * sizeof (double)); if (state->fYk == 0) { free (state->Yk); gsl_vector_free (state->dScal); gsl_vector_free (state->dYk); gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for Yk", GSL_ENOMEM); } state->rhs = gsl_vector_alloc (dim * stage); if (state->rhs == 0) { free (state->fYk); free (state->Yk); gsl_vector_free (state->dScal); gsl_vector_free (state->dYk); gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); GSL_ERROR_NULL ("failed to allocate space for rhs", GSL_ENOMEM); } state->eeta_prev = GSL_DBL_MAX; return state; } static int modnewton1_init (void *vstate, const gsl_matrix * A, const double h, const gsl_matrix * dfdy, const gsl_odeiv2_system * sys) { /* Initializes the method by forming the iteration matrix IhAJ and generating its LU-decomposition */ modnewton1_state_t *state = (modnewton1_state_t *) vstate; gsl_matrix *const IhAJ = state->IhAJ; gsl_permutation *const p = state->p; const size_t dim = sys->dimension; const size_t stage = A->size1; state->eeta_prev = GSL_DBL_MAX; /* Generate IhAJ */ { size_t i, j, k, m; for (i = 0; i < dim; i++) for (j = 0; j < dim; j++) for (k = 0; k < stage; k++) for (m = 0; m < stage; m++) { size_t x = dim * k + i; size_t y = dim * m + j; if (x != y) gsl_matrix_set (IhAJ, x, y, -h * gsl_matrix_get (A, k, m) * gsl_matrix_get (dfdy, i, j)); else gsl_matrix_set (IhAJ, x, y, 1.0 - h * gsl_matrix_get (A, k, m) * gsl_matrix_get (dfdy, i, j)); } } /* decompose */ { int signum; int s = gsl_linalg_LU_decomp (IhAJ, p, &signum); if (s != GSL_SUCCESS) return s; } return GSL_SUCCESS; } static int modnewton1_solve (void *vstate, const gsl_matrix * A, const double c[], const double t, const double h, const double y0[], const gsl_odeiv2_system * sys, double YZ[], const double errlev[]) { /* Solves the non-linear equation system resulting from implicit Runge-Kutta methods by a modified Newton iteration. The modified Newton iteration with this problem is stated in the form IhAJ * dYk = rhs in which IhAJ is the iteration matrix: IhAJ = (I - hA (*) J) in which (*) is the Kronecker matrix product (size of IhAJ = dim*stage, dim*stage), dYk is the Runge-Kutta point (Y) difference vector for kth Newton iteration: dYk = Y(k+1) - Y(k), and rhs = Y(k) - y0 - h * sum j=1..stage (a_j * f(Y(k))) This function solves dYk by LU-decomposition of IhAJ with partial pivoting. */ modnewton1_state_t *state = (modnewton1_state_t *) vstate; gsl_matrix *const IhAJ = state->IhAJ; gsl_permutation *const p = state->p; gsl_vector *const dYk = state->dYk; double *const Yk = state->Yk; double *const fYk = state->fYk; gsl_vector *const rhs = state->rhs; double *const eeta_prev = &(state->eeta_prev); gsl_vector *const dScal = state->dScal; const size_t dim = sys->dimension; const size_t stage = A->size1; int status = GSL_CONTINUE; /* Convergence status for Newton iteration */ /* Set starting values for iteration. Use starting values of Y(k) = y0. FIXME: Implement better initial guess described in Hairer and Wanner. */ { size_t j, m; gsl_vector_set_zero (dYk); for (j = 0; j < stage; j++) for (m = 0; m < dim; m++) Yk[j * dim + m] = y0[m]; } /* Loop modified Newton iterations */ { size_t iter = 0; size_t j, m, n; /* Maximum number of Newton iterations. */ const size_t max_iter = 7; double dScal_norm = 0.0; /* Newton iteration step length */ double dScal_norm_prev = 0.0; /* Previous dScal_norm */ while (status == GSL_CONTINUE && iter < max_iter) { iter++; /* Update Y(k) and evaluate function */ for (j = 0; j < stage; j++) { for (m = 0; m < dim; m++) { Yk[j * dim + m] += gsl_vector_get (dYk, j * dim + m); } { int s = GSL_ODEIV_FN_EVAL (sys, t + c[j] * h, &Yk[j * dim], &fYk[j * dim]); if (s != GSL_SUCCESS) { return s; } } } /* Calculate rhs */ for (j = 0; j < stage; j++) for (m = 0; m < dim; m++) { double sum = 0; for (n = 0; n < stage; n++) sum += gsl_matrix_get (A, j, n) * fYk[n * dim + m]; gsl_vector_set (rhs, j * dim + m, -1.0 * Yk[j * dim + m] + y0[m] + h * sum); } /* Solve dYk */ { int s = gsl_linalg_LU_solve (IhAJ, p, rhs, dYk); if (s != GSL_SUCCESS) { return s; } } /* Evaluate convergence according to method by Hairer and Wanner, section IV.8. The iteration step is normalized by desired error level before calculation of the norm, to take the tolerance on each component of y into account. */ { /* relative change in two Newton iteration steps */ double theta_k; /* transformation of theta_k */ double eeta_k = 0.0; for (j = 0; j < stage; j++) for (m = 0; m < dim; m++) { gsl_vector_set (dScal, j * dim + m, gsl_vector_get (dYk, j * dim + m) / errlev[m]); } dScal_norm_prev = dScal_norm; dScal_norm = gsl_blas_dnrm2 (dScal); theta_k = dScal_norm / dScal_norm_prev; if (iter > 1) { /* check for increase in step size, which indicates divergence */ if (theta_k >= 1.0) { return GSL_FAILURE; } eeta_k = theta_k / (1.0 - theta_k); } else { eeta_k = pow (GSL_MAX_DBL (*eeta_prev, GSL_DBL_EPSILON), 0.8); } *eeta_prev = eeta_k; if (eeta_k * dScal_norm < 1.0) { status = GSL_SUCCESS; } } } } /* No convergence reached within allowed iterations */ if (status != GSL_SUCCESS) { return GSL_FAILURE; } /* Give solution in YZ */ else { size_t j, m; for (j = 0; j < stage; j++) for (m = 0; m < dim; m++) YZ[j * dim + m] = Yk[j * dim + m] + gsl_vector_get (dYk, j * dim + m); return status; } } static void modnewton1_free (void *vstate) { modnewton1_state_t *state = (modnewton1_state_t *) vstate; gsl_vector_free (state->rhs); free (state->fYk); free (state->Yk); gsl_vector_free (state->dScal); gsl_vector_free (state->dYk); gsl_permutation_free (state->p); gsl_matrix_free (state->IhAJ); free (state); } gsl-1.16/ode-initval2/driver.c0000664000252300025230000002767412171574312013126 00000000000000/* ode-initval2/driver.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Driver routine for odeiv2. This is a wrapper for low level GSL functions that allows a simple interface to step, control and evolve layers. */ #include #include #include #include #include static gsl_odeiv2_driver * driver_alloc (const gsl_odeiv2_system * sys, const double hstart, const gsl_odeiv2_step_type * T) { /* Allocates and initializes an ODE driver system. Step and evolve objects are allocated here, but control object is allocated in another function. */ gsl_odeiv2_driver *state = (gsl_odeiv2_driver *) malloc (sizeof (gsl_odeiv2_driver)); if (state == NULL) { GSL_ERROR_NULL ("failed to allocate space for driver state", GSL_ENOMEM); } if (sys == NULL) { GSL_ERROR_NULL ("gsl_odeiv2_system must be defined", GSL_EINVAL); } { const size_t dim = sys->dimension; if (dim == 0) { GSL_ERROR_NULL ("gsl_odeiv2_system dimension must be a positive integer", GSL_EINVAL); } state->sys = sys; state->s = gsl_odeiv2_step_alloc (T, dim); if (state->s == NULL) { free (state); GSL_ERROR_NULL ("failed to allocate step object", GSL_ENOMEM); } state->e = gsl_odeiv2_evolve_alloc (dim); } if (state->e == NULL) { gsl_odeiv2_step_free (state->s); free (state); GSL_ERROR_NULL ("failed to allocate evolve object", GSL_ENOMEM); } if (hstart > 0.0 || hstart < 0.0) { state->h = hstart; } else { GSL_ERROR_NULL ("invalid hstart", GSL_EINVAL); } state->h = hstart; state->hmin = 0.0; state->hmax = GSL_DBL_MAX; state->nmax = 0; state->n = 0; state->c = NULL; return state; } int gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * d, const double hmin) { /* Sets minimum allowed step size fabs(hmin) for driver. It is required that hmin <= fabs(h) <= hmax. */ if ((fabs (hmin) > fabs (d->h)) || (fabs (hmin) > d->hmax)) { GSL_ERROR_NULL ("hmin <= fabs(h) <= hmax required", GSL_EINVAL); } d->hmin = fabs (hmin); return GSL_SUCCESS; } int gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * d, const double hmax) { /* Sets maximum allowed step size fabs(hmax) for driver. It is required that hmin <= fabs(h) <= hmax. */ if ((fabs (hmax) < fabs (d->h)) || (fabs (hmax) < d->hmin)) { GSL_ERROR_NULL ("hmin <= fabs(h) <= hmax required", GSL_EINVAL); } if (hmax > 0.0 || hmax < 0.0) { d->hmax = fabs (hmax); } else { GSL_ERROR_NULL ("invalid hmax", GSL_EINVAL); } return GSL_SUCCESS; } int gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * d, const unsigned long int nmax) { /* Sets maximum number of allowed steps (nmax) for driver */ d->nmax = nmax; return GSL_SUCCESS; } gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel) { /* Initializes an ODE driver system with control object of type y_new. */ gsl_odeiv2_driver *state = driver_alloc (sys, hstart, T); if (state == NULL) { GSL_ERROR_NULL ("failed to allocate driver object", GSL_ENOMEM); } if (epsabs >= 0.0 && epsrel >= 0.0) { state->c = gsl_odeiv2_control_y_new (epsabs, epsrel); if (state->c == NULL) { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("failed to allocate control object", GSL_ENOMEM); } } else { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("epsabs and epsrel must be positive", GSL_EINVAL); } /* Distribute pointer to driver object */ gsl_odeiv2_step_set_driver (state->s, state); gsl_odeiv2_evolve_set_driver (state->e, state); gsl_odeiv2_control_set_driver (state->c, state); return state; } gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel) { /* Initializes an ODE driver system with control object of type yp_new. */ gsl_odeiv2_driver *state = driver_alloc (sys, hstart, T); if (state == NULL) { GSL_ERROR_NULL ("failed to allocate driver object", GSL_ENOMEM); } if (epsabs >= 0.0 && epsrel >= 0.0) { state->c = gsl_odeiv2_control_yp_new (epsabs, epsrel); if (state->c == NULL) { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("failed to allocate control object", GSL_ENOMEM); } } else { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("epsabs and epsrel must be positive", GSL_EINVAL); } /* Distribute pointer to driver object */ gsl_odeiv2_step_set_driver (state->s, state); gsl_odeiv2_evolve_set_driver (state->e, state); gsl_odeiv2_control_set_driver (state->c, state); return state; } gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt) { /* Initializes an ODE driver system with control object of type standard_new. */ gsl_odeiv2_driver *state = driver_alloc (sys, hstart, T); if (state == NULL) { GSL_ERROR_NULL ("failed to allocate driver object", GSL_ENOMEM); } if (epsabs >= 0.0 && epsrel >= 0.0) { state->c = gsl_odeiv2_control_standard_new (epsabs, epsrel, a_y, a_dydt); if (state->c == NULL) { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("failed to allocate control object", GSL_ENOMEM); } } else { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("epsabs and epsrel must be positive", GSL_EINVAL); } /* Distribute pointer to driver object */ gsl_odeiv2_step_set_driver (state->s, state); gsl_odeiv2_evolve_set_driver (state->e, state); gsl_odeiv2_control_set_driver (state->c, state); return state; } gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * sys, const gsl_odeiv2_step_type * T, const double hstart, const double epsabs, const double epsrel, const double a_y, const double a_dydt, const double scale_abs[]) { /* Initializes an ODE driver system with control object of type scaled_new. */ gsl_odeiv2_driver *state = driver_alloc (sys, hstart, T); if (state == NULL) { GSL_ERROR_NULL ("failed to allocate driver object", GSL_ENOMEM); } if (epsabs >= 0.0 && epsrel >= 0.0) { state->c = gsl_odeiv2_control_scaled_new (epsabs, epsrel, a_y, a_dydt, scale_abs, sys->dimension); if (state->c == NULL) { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("failed to allocate control object", GSL_ENOMEM); } } else { gsl_odeiv2_driver_free (state); GSL_ERROR_NULL ("epsabs and epsrel must be positive", GSL_EINVAL); } /* Distribute pointer to driver object */ gsl_odeiv2_step_set_driver (state->s, state); gsl_odeiv2_evolve_set_driver (state->e, state); gsl_odeiv2_control_set_driver (state->c, state); return state; } int gsl_odeiv2_driver_apply (gsl_odeiv2_driver * d, double *t, const double t1, double y[]) { /* Main driver function that evolves the system from t to t1. In beginning vector y contains the values of dependent variables at t. This function returns values at t=t1 in y. In case of unrecoverable error, y and t contains the values after the last successful step. */ int sign = 0; d->n = 0; /* Determine integration direction sign */ if (d->h > 0.0) { sign = 1; } else { sign = -1; } /* Check that t, t1 and step direction are sensible */ if (sign * (t1 - *t) < 0.0) { GSL_ERROR_NULL ("integration limits and/or step direction not consistent", GSL_EINVAL); } /* Evolution loop */ while (sign * (t1 - *t) > 0.0) { int s = gsl_odeiv2_evolve_apply (d->e, d->c, d->s, d->sys, t, t1, &(d->h), y); if (s != GSL_SUCCESS) { return s; } /* Check for maximum allowed steps */ if ((d->nmax > 0) && (d->n > d->nmax)) { return GSL_EMAXITER; } /* Set step size if maximum size is exceeded */ if (fabs (d->h) > d->hmax) { d->h = sign * d->hmax; } /* Check for too small step size */ if (fabs (d->h) < d->hmin) { return GSL_ENOPROG; } d->n++; } return GSL_SUCCESS; } int gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * d, double *t, const double h, const unsigned long int n, double y[]) { /* Alternative driver function that evolves the system from t using * n steps of size h. In the beginning vector y contains the values * of dependent variables at t. This function returns values at t = * t + n * h in y. In case of an unrecoverable error, y and t * contains the values after the last successful step. */ unsigned long int i; d->n = 0; /* Evolution loop */ for (i = 0; i < n; i++) { int s = gsl_odeiv2_evolve_apply_fixed_step (d->e, d->c, d->s, d->sys, t, h, y); if (s != GSL_SUCCESS) { return s; } d->n++; } return GSL_SUCCESS; } int gsl_odeiv2_driver_reset (gsl_odeiv2_driver * d) { /* Reset the driver. Resets evolve and step objects. */ { int s = gsl_odeiv2_evolve_reset (d->e); if (s != GSL_SUCCESS) { return s; } } { int s = gsl_odeiv2_step_reset (d->s); if (s != GSL_SUCCESS) { return s; } } return GSL_SUCCESS; } int gsl_odeiv2_driver_reset_hstart (gsl_odeiv2_driver * d, const double hstart) { /* Resets current driver and sets initial step size to hstart */ gsl_odeiv2_driver_reset (d); if ((d->hmin > fabs (hstart)) || (fabs (hstart) > d->hmax)) { GSL_ERROR_NULL ("hmin <= fabs(h) <= hmax required", GSL_EINVAL); } if (hstart > 0.0 || hstart < 0.0) { d->h = hstart; } else { GSL_ERROR_NULL ("invalid hstart", GSL_EINVAL); } return GSL_SUCCESS; } void gsl_odeiv2_driver_free (gsl_odeiv2_driver * state) { if (state->c != NULL) { gsl_odeiv2_control_free (state->c); } gsl_odeiv2_evolve_free (state->e); gsl_odeiv2_step_free (state->s); free (state); } gsl-1.16/ode-initval2/rk4.c0000664000252300025230000001662212171574312012322 00000000000000/* ode-initval/rk4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4th order, Classical */ /* Author: G. Jungman */ /* Reference: Abramowitz & Stegun, section 25.5. equation 25.5.10 Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" typedef struct { double *k; double *k1; double *y0; double *ytmp; double *y_onestep; } rk4_state_t; static void * rk4_alloc (size_t dim) { rk4_state_t *state = (rk4_state_t *) malloc (sizeof (rk4_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4_state", GSL_ENOMEM); } state->k = (double *) malloc (dim * sizeof (double)); if (state->k == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->ytmp); free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rk4_step (double *y, const rk4_state_t * state, const double h, const double t, const size_t dim, const gsl_odeiv2_system * sys) { /* Makes a Runge-Kutta 4th order advance with step size h. */ /* initial values of variables y. */ const double *y0 = state->y0; /* work space */ double *ytmp = state->ytmp; /* Runge-Kutta coefficients. Contains values of coefficient k1 in the beginning */ double *k = state->k; size_t i; /* k1 step */ for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + h * k[i]; } /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; } return GSL_SUCCESS; } static int rk4_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { rk4_state_t *state = (rk4_state_t *) vstate; size_t i; double *const k = state->k; double *const k1 = state->k1; double *const y0 = state->y0; double *const y_onestep = state->y_onestep; DBL_MEMCPY (y0, y, dim); if (dydt_in != NULL) { DBL_MEMCPY (k, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y0, k); if (s != GSL_SUCCESS) { return s; } } /* Error estimation is done by step doubling procedure */ /* Save first point derivatives */ DBL_MEMCPY (k1, k, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk4_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ DBL_MEMCPY (k, k1, dim); { int s = rk4_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Update before second step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0, y, k); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Save original y0 to k1 for possible failures */ DBL_MEMCPY (k1, y0, dim); /* Update y0 for second step */ DBL_MEMCPY (y0, y, dim); { int s = rk4_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = ODEIV_ERR_SAFETY * 0.5 * (y[i] - y_onestep[i]) / 15.0; } return GSL_SUCCESS; } static int rk4_reset (void *vstate, size_t dim) { rk4_state_t *state = (rk4_state_t *) vstate; DBL_ZERO_MEMSET (state->k, dim); DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); return GSL_SUCCESS; } static unsigned int rk4_order (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4_free (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; free (state->k); free (state->k1); free (state->y0); free (state->ytmp); free (state->y_onestep); free (state); } static const gsl_odeiv2_step_type rk4_type = { "rk4", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk4_alloc, &rk4_apply, &stepper_set_driver_null, &rk4_reset, &rk4_order, &rk4_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4 = &rk4_type; gsl-1.16/ode-initval2/step.c0000664000252300025230000000504412171574312012571 00000000000000/* ode-initval/odeiv.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include gsl_odeiv2_step * gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * T, size_t dim) { gsl_odeiv2_step *s = (gsl_odeiv2_step *) malloc (sizeof (gsl_odeiv2_step)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for ode struct", GSL_ENOMEM); }; s->type = T; s->dimension = dim; s->state = s->type->alloc (dim); if (s->state == 0) { free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_NULL ("failed to allocate space for ode state", GSL_ENOMEM); }; return s; } const char * gsl_odeiv2_step_name (const gsl_odeiv2_step * s) { return s->type->name; } unsigned int gsl_odeiv2_step_order (const gsl_odeiv2_step * s) { return s->type->order (s->state); } int gsl_odeiv2_step_apply (gsl_odeiv2_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * dydt) { return s->type->apply (s->state, s->dimension, t, h, y, yerr, dydt_in, dydt_out, dydt); } int gsl_odeiv2_step_reset (gsl_odeiv2_step * s) { return s->type->reset (s->state, s->dimension); } void gsl_odeiv2_step_free (gsl_odeiv2_step * s) { RETURN_IF_NULL (s); s->type->free (s->state); free (s); } int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * s, const gsl_odeiv2_driver * d) { if (d != NULL) { s->type->set_driver (s->state, d); } else { GSL_ERROR_NULL ("driver pointer is null", GSL_EFAULT); } return GSL_SUCCESS; } gsl-1.16/ode-initval2/step_utils.c0000664000252300025230000000175012171574312014011 00000000000000/* ode-initval2/step_utils.c * * Copyright (C) 2009 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int stepper_set_driver_null (void *vstate, const gsl_odeiv2_driver * d) { /* Dummy set function for those steppers that do not need pointer to driver object. */ return GSL_SUCCESS; } gsl-1.16/ode-initval2/rk2.c0000664000252300025230000001236712171574312012322 00000000000000/* ode-initval/rk2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2(3), Euler-Cauchy */ /* Author: G. Jungman */ /* Reference: Abramowitz & Stegun, section 25.5. Runge-Kutta 2nd (25.5.7) and 3rd (25.5.8) order methods */ #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" typedef struct { double *k1; double *k2; double *k3; double *ytmp; } rk2_state_t; static void * rk2_alloc (size_t dim) { rk2_state_t *state = (rk2_state_t *) malloc (sizeof (rk2_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rk2_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { rk2_state_t *state = (rk2_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const ytmp = state->ytmp; /* k1 step */ /* k1 = f(t,y) */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } /* k2 step */ /* k2 = f(t + 0.5*h, y + 0.5*k1) */ for (i = 0; i < dim; i++) { ytmp[i] = y[i] + 0.5 * h * k1[i]; } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } /* k3 step */ /* for 3rd order estimates, is used for error estimation k3 = f(t + h, y - k1 + 2*k2) */ for (i = 0; i < dim; i++) { ytmp[i] = y[i] + h * (-k1[i] + 2.0 * k2[i]); } { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } /* final sum */ for (i = 0; i < dim; i++) { /* Save original values if derivative evaluation below fails */ ytmp[i] = y[i]; { const double ksum3 = (k1[i] + 4.0 * k2[i] + k3[i]) / 6.0; y[i] += h * ksum3; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, ytmp, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { const double ksum3 = (k1[i] + 4.0 * k2[i] + k3[i]) / 6.0; yerr[i] = h * (k2[i] - ksum3); } return GSL_SUCCESS; } static int rk2_reset (void *vstate, size_t dim) { rk2_state_t *state = (rk2_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->ytmp, dim); return GSL_SUCCESS; } static unsigned int rk2_order (void *vstate) { rk2_state_t *state = (rk2_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2_free (void *vstate) { rk2_state_t *state = (rk2_state_t *) vstate; free (state->k1); free (state->k2); free (state->k3); free (state->ytmp); free (state); } static const gsl_odeiv2_step_type rk2_type = { "rk2", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk2_alloc, &rk2_apply, &stepper_set_driver_null, &rk2_reset, &rk2_order, &rk2_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk2 = &rk2_type; gsl-1.16/ode-initval2/evolve.c0000664000252300025230000002213312171574312013114 00000000000000/* ode-initval/evolve.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "odeiv_util.h" gsl_odeiv2_evolve * gsl_odeiv2_evolve_alloc (size_t dim) { gsl_odeiv2_evolve *e = (gsl_odeiv2_evolve *) malloc (sizeof (gsl_odeiv2_evolve)); if (e == 0) { GSL_ERROR_NULL ("failed to allocate space for evolve struct", GSL_ENOMEM); } e->y0 = (double *) malloc (dim * sizeof (double)); if (e->y0 == 0) { free (e); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } e->yerr = (double *) malloc (dim * sizeof (double)); if (e->yerr == 0) { free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for yerr", GSL_ENOMEM); } e->dydt_in = (double *) malloc (dim * sizeof (double)); if (e->dydt_in == 0) { free (e->yerr); free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for dydt_in", GSL_ENOMEM); } e->dydt_out = (double *) malloc (dim * sizeof (double)); if (e->dydt_out == 0) { free (e->dydt_in); free (e->yerr); free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for dydt_out", GSL_ENOMEM); } e->dimension = dim; e->count = 0; e->failed_steps = 0; e->last_step = 0.0; e->driver = NULL; return e; } int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * e) { e->count = 0; e->failed_steps = 0; e->last_step = 0.0; return GSL_SUCCESS; } void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * e) { RETURN_IF_NULL (e); free (e->dydt_out); free (e->dydt_in); free (e->yerr); free (e->y0); free (e); } /* Evolution framework method. * * Uses an adaptive step control object */ int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, double t1, double *h, double y[]) { const double t0 = *t; double h0 = *h; int step_status; int final_step = 0; double dt = t1 - t0; /* remaining time, possibly less than h */ if (e->dimension != step->dimension) { GSL_ERROR ("step dimension must match evolution size", GSL_EINVAL); } if ((dt < 0.0 && h0 > 0.0) || (dt > 0.0 && h0 < 0.0)) { GSL_ERROR ("step direction must match interval direction", GSL_EINVAL); } /* Save y in case of failure in a step */ DBL_MEMCPY (e->y0, y, e->dimension); /* Calculate initial dydt once or reuse previous value if the method can benefit. */ if (step->type->can_use_dydt_in) { if (e->count == 0) { int status = GSL_ODEIV_FN_EVAL (dydt, t0, y, e->dydt_in); if (status) { return status; } } else { DBL_MEMCPY (e->dydt_in, e->dydt_out, e->dimension); } } try_step: if ((dt >= 0.0 && h0 > dt) || (dt < 0.0 && h0 < dt)) { h0 = dt; final_step = 1; } else { final_step = 0; } if (step->type->can_use_dydt_in) { step_status = gsl_odeiv2_step_apply (step, t0, h0, y, e->yerr, e->dydt_in, e->dydt_out, dydt); } else { step_status = gsl_odeiv2_step_apply (step, t0, h0, y, e->yerr, NULL, e->dydt_out, dydt); } /* Return if stepper indicates a pointer or user function failure */ if (step_status == GSL_EFAULT || step_status == GSL_EBADFUNC) { return step_status; } /* Check for stepper internal failure */ if (step_status != GSL_SUCCESS) { /* Stepper was unable to calculate step. Try decreasing step size. */ double h_old = h0; h0 *= 0.5; /* Check that an actual decrease in h0 occured and the suggested h0 will change the time by at least 1 ulp */ { double t_curr = GSL_COERCE_DBL (*t); double t_next = GSL_COERCE_DBL ((*t) + h0); if (fabs (h0) < fabs (h_old) && t_next != t_curr) { /* Step was decreased. Undo step, and try again with new h0. */ DBL_MEMCPY (y, e->y0, dydt->dimension); e->failed_steps++; goto try_step; } else { *h = h0; /* notify user of step-size which caused the failure */ *t = t0; /* restore original t value */ return step_status; } } } e->count++; e->last_step = h0; if (final_step) { *t = t1; } else { *t = t0 + h0; } if (con != NULL) { /* Check error and attempt to adjust the step. */ double h_old = h0; const int hadjust_status = gsl_odeiv2_control_hadjust (con, step, y, e->yerr, e->dydt_out, &h0); if (hadjust_status == GSL_ODEIV_HADJ_DEC) { /* Check that the reported status is correct (i.e. an actual decrease in h0 occured) and the suggested h0 will change the time by at least 1 ulp */ double t_curr = GSL_COERCE_DBL (*t); double t_next = GSL_COERCE_DBL ((*t) + h0); if (fabs (h0) < fabs (h_old) && t_next != t_curr) { /* Step was decreased. Undo step, and try again with new h0. */ DBL_MEMCPY (y, e->y0, dydt->dimension); e->failed_steps++; goto try_step; } else { /* Can not obtain required error tolerance, and can not decrease step-size any further, so give up and return GSL_FAILURE. */ *h = h0; /* notify user of step-size which caused the failure */ return GSL_FAILURE; } } } /* Suggest step size for next time-step. Change of step size is not suggested in the final step, because that step can be very small compared to previous step, to reach t1. */ if (final_step == 0) { *h = h0; } return step_status; } /* Evolves the system using the user specified constant step size h. */ int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * e, gsl_odeiv2_control * con, gsl_odeiv2_step * step, const gsl_odeiv2_system * dydt, double *t, const double h, double y[]) { const double t0 = *t; int step_status; if (e->dimension != step->dimension) { GSL_ERROR ("step dimension must match evolution size", GSL_EINVAL); } /* Save y in case of failure in a step */ DBL_MEMCPY (e->y0, y, e->dimension); /* Calculate initial dydt once if the method can benefit. */ if (step->type->can_use_dydt_in) { int status = GSL_ODEIV_FN_EVAL (dydt, t0, y, e->dydt_in); if (status) { return status; } } if (step->type->can_use_dydt_in) { step_status = gsl_odeiv2_step_apply (step, t0, h, y, e->yerr, e->dydt_in, e->dydt_out, dydt); } else { step_status = gsl_odeiv2_step_apply (step, t0, h, y, e->yerr, NULL, e->dydt_out, dydt); } /* Return the stepper return value in case of an error */ if (step_status != GSL_SUCCESS) { return step_status; } if (con != NULL) { /* Calculate error level. Fail if error level exceeds desired error level. */ double htemp = h; const int hadjust_status = gsl_odeiv2_control_hadjust (con, step, y, e->yerr, e->dydt_out, &htemp); if (hadjust_status == GSL_ODEIV_HADJ_DEC) { DBL_MEMCPY (y, e->y0, dydt->dimension); e->failed_steps++; return GSL_FAILURE; } } /* Step is accepted, update status */ e->count++; e->last_step = h; *t = t0 + h; return GSL_SUCCESS; } int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * e, const gsl_odeiv2_driver * d) { if (d != NULL) { e->driver = d; } else { GSL_ERROR_NULL ("driver pointer is null", GSL_EFAULT); } return GSL_SUCCESS; } gsl-1.16/ode-initval2/rksubs.c0000664000252300025230000000307712171574312013133 00000000000000/* ode-initval2/rksubs.c * * Copyright (C) 2008, 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int rksubs (double y[], const double h, const double y0[], const double fY[], const double b[], const size_t stage, const size_t dim) { /* The final substitution step in Runge-Kutta equation: Calculates new values y by substituting the value of step size (h), current initial values of y (y0), function f values at Runge-Kutta points (fY), Runge-Kutta b-coefficients (b) and method stage (stage) into the equation y = y0 + h * sum j=1..stage (b_j * fY_j) dim is the number of ODEs. */ size_t i, j; for (i = 0; i < dim; i++) { y[i] = 0.0; for (j = 0; j < stage; j++) y[i] += b[j] * fY[j * dim + i]; } for (i = 0; i < dim; i++) { y[i] *= h; y[i] += y0[i]; } return GSL_SUCCESS; } gsl-1.16/ode-initval2/rk1imp.c0000664000252300025230000002741012171574312013022 00000000000000/* ode-initval2/rk1imp.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Implicit Euler a.k.a backward Euler method. */ /* Reference: Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include #include "odeiv_util.h" #include "rksubs.c" #include "modnewton1.c" /* Stage of method */ #define RK1IMP_STAGE 1 typedef struct { gsl_matrix *A; /* Runge-Kutta coefficients */ double *y_onestep; /* Result with one step */ double *y_twostep; /* Result with two half steps */ double *ytmp; /* Temporary work space */ double *y_save; /* Backup space */ double *YZ; /* Runge-Kutta points */ double *fYZ; /* Derivatives at YZ */ gsl_matrix *dfdy; /* Jacobian matrix */ double *dfdt; /* time derivative of f */ modnewton1_state_t *esol; /* nonlinear equation solver */ double *errlev; /* desired error level of y */ const gsl_odeiv2_driver *driver; /* pointer to driver object */ } rk1imp_state_t; static void * rk1imp_alloc (size_t dim) { rk1imp_state_t *state = (rk1imp_state_t *) malloc (sizeof (rk1imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk1imp_state", GSL_ENOMEM); } state->A = gsl_matrix_alloc (RK1IMP_STAGE, RK1IMP_STAGE); if (state->A == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for A", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->y_twostep = (double *) malloc (dim * sizeof (double)); if (state->y_twostep == 0) { free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_save = (double *) malloc (dim * sizeof (double)); if (state->y_save == 0) { free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_save", GSL_ENOMEM); } state->YZ = (double *) malloc (dim * RK1IMP_STAGE * sizeof (double)); if (state->YZ == 0) { free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for YZ", GSL_ENOMEM); } state->fYZ = (double *) malloc (dim * RK1IMP_STAGE * sizeof (double)); if (state->fYZ == 0) { free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for fYZ", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->dfdy = gsl_matrix_alloc (dim, dim); if (state->dfdy == 0) { free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->esol = modnewton1_alloc (dim, RK1IMP_STAGE); if (state->esol == 0) { gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for esol", GSL_ENOMEM); } state->errlev = (double *) malloc (dim * sizeof (double)); if (state->errlev == 0) { modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM); } state->driver = NULL; return state; } static int rk1imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { /* Makes an implicit Euler step with size h and estimates the local error of the step by step doubling. */ rk1imp_state_t *state = (rk1imp_state_t *) vstate; double *const y_onestep = state->y_onestep; double *const y_twostep = state->y_twostep; double *const ytmp = state->ytmp; double *const y_save = state->y_save; double *const YZ = state->YZ; double *const fYZ = state->fYZ; gsl_matrix *const dfdy = state->dfdy; double *const dfdt = state->dfdt; double *const errlev = state->errlev; const modnewton1_state_t *esol = state->esol; /* Runge-Kutta coefficients */ gsl_matrix *A = state->A; const double b[] = { 1.0 }; const double c[] = { 1.0 }; gsl_matrix_set (A, 0, 0, 1.0); if (esol == NULL) { GSL_ERROR ("no non-linear equation solver speficied", GSL_EINVAL); } /* Get desired error levels via gsl_odeiv2_control object through driver object, which is a requirement for this stepper. */ if (state->driver == NULL) { return GSL_EFAULT; } else { size_t i; for (i = 0; i < dim; i++) { if (dydt_in != NULL) { gsl_odeiv2_control_errlevel (state->driver->c, y[i], dydt_in[i], h, i, &errlev[i]); } else { gsl_odeiv2_control_errlevel (state->driver->c, y[i], 0.0, h, i, &errlev[i]); } } } /* Evaluate Jacobian for modnewton1 */ { int s = GSL_ODEIV_JA_EVAL (sys, t, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Calculate a single step with size h */ { int s = modnewton1_init ((void *) esol, A, h, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } { int s = modnewton1_solve ((void *) esol, A, c, t, h, y, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + c[0] * h, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { int s = rksubs (y_onestep, h, y, fYZ, b, RK1IMP_STAGE, dim); if (s != GSL_SUCCESS) return s; } /* Error estimation by step doubling */ { int s = modnewton1_init ((void *) esol, A, h / 2.0, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } /* 1st half step */ { int s = modnewton1_solve ((void *) esol, A, c, t, h / 2.0, y, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + c[0] * h / 2.0, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { int s = rksubs (ytmp, h / 2.0, y, fYZ, b, RK1IMP_STAGE, dim); if (s != GSL_SUCCESS) return s; } /* Save original y values in case of error */ DBL_MEMCPY (y_save, y, dim); /* 2nd half step */ { int s = modnewton1_solve ((void *) esol, A, c, t + h / 2.0, h / 2.0, ytmp, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0 + c[0] * h / 2.0, YZ, fYZ); if (s != GSL_SUCCESS) { return s; } } { /* Note: rk1imp returns y using the results from two half steps instead of the single step since the results are freely available and more precise. */ int s = rksubs (y_twostep, h / 2.0, ytmp, fYZ, b, RK1IMP_STAGE, dim); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); return s; } } DBL_MEMCPY (y, y_twostep, dim); /* Error estimation */ { size_t i; for (i = 0; i < dim; i++) { yerr[i] = ODEIV_ERR_SAFETY * 0.5 * fabs (y_twostep[i] - y_onestep[i]); } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y_save, dim); return s; } } return GSL_SUCCESS; } static int rk1imp_set_driver (void *vstate, const gsl_odeiv2_driver * d) { rk1imp_state_t *state = (rk1imp_state_t *) vstate; state->driver = d; return GSL_SUCCESS; } static int rk1imp_reset (void *vstate, size_t dim) { rk1imp_state_t *state = (rk1imp_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y_twostep, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_save, dim); DBL_ZERO_MEMSET (state->YZ, dim); DBL_ZERO_MEMSET (state->fYZ, dim); return GSL_SUCCESS; } static unsigned int rk1imp_order (void *vstate) { rk1imp_state_t *state = (rk1imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 1; } static void rk1imp_free (void *vstate) { rk1imp_state_t *state = (rk1imp_state_t *) vstate; free (state->errlev); modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); } static const gsl_odeiv2_step_type rk1imp_type = { "rk1imp", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk1imp_alloc, &rk1imp_apply, &rk1imp_set_driver, &rk1imp_reset, &rk1imp_order, &rk1imp_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk1imp = &rk1imp_type; gsl-1.16/ode-initval2/rk4imp.c0000664000252300025230000003113012171574312013017 00000000000000/* ode-initval2/rk4imp.c * * Copyright (C) 2009, 2010 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Based on rk4imp.c by Gerard Jungman */ /* Gaussian implicit 4th order Runge-Kutta method. Error estimation is carried out by the step doubling method. */ /* References: Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. ISBN 0898714125, 9780898714128 */ #include #include #include #include #include #include #include "odeiv_util.h" #include "rksubs.c" #include "modnewton1.c" /* Stage of method */ #define RK4IMP_STAGE 2 typedef struct { gsl_matrix *A; /* Runge-Kutta coefficients */ double *y_onestep; /* Result with one step */ double *y_twostep; /* Result with two half steps */ double *ytmp; /* Temporary work space */ double *y_save; /* Backup space */ double *YZ; /* Runge-Kutta points */ double *fYZ; /* Derivatives at YZ */ gsl_matrix *dfdy; /* Jacobian matrix */ double *dfdt; /* time derivative of f */ modnewton1_state_t *esol; /* nonlinear equation solver */ double *errlev; /* desired error level of y */ const gsl_odeiv2_driver *driver; /* pointer to driver object */ } rk4imp_state_t; static void * rk4imp_alloc (size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) malloc (sizeof (rk4imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4imp_state", GSL_ENOMEM); } state->A = gsl_matrix_alloc (RK4IMP_STAGE, RK4IMP_STAGE); if (state->A == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for A", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->y_twostep = (double *) malloc (dim * sizeof (double)); if (state->y_twostep == 0) { free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_save = (double *) malloc (dim * sizeof (double)); if (state->y_save == 0) { free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for y_save", GSL_ENOMEM); } state->YZ = (double *) malloc (dim * RK4IMP_STAGE * sizeof (double)); if (state->YZ == 0) { free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for YZ", GSL_ENOMEM); } state->fYZ = (double *) malloc (dim * RK4IMP_STAGE * sizeof (double)); if (state->fYZ == 0) { free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for fYZ", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->dfdy = gsl_matrix_alloc (dim, dim); if (state->dfdy == 0) { free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->esol = modnewton1_alloc (dim, RK4IMP_STAGE); if (state->esol == 0) { gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for esol", GSL_ENOMEM); } state->errlev = (double *) malloc (dim * sizeof (double)); if (state->errlev == 0) { modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); GSL_ERROR_NULL ("failed to allocate space for errlev", GSL_ENOMEM); } state->driver = NULL; return state; } static int rk4imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { /* Makes a Gaussian implicit 4th order Runge-Kutta with step size h and estimates the local error of the step. */ rk4imp_state_t *state = (rk4imp_state_t *) vstate; double *const y_onestep = state->y_onestep; double *const y_twostep = state->y_twostep; double *const ytmp = state->ytmp; double *const y_save = state->y_save; double *const YZ = state->YZ; /* Runge-Kutta points */ double *const fYZ = state->fYZ; gsl_matrix *const dfdy = state->dfdy; double *const dfdt = state->dfdt; double *const errlev = state->errlev; const modnewton1_state_t *esol = state->esol; /* Runge-Kutta coefficients */ gsl_matrix *A = state->A; const double b[] = { 0.5, 0.5 }; const double c[] = { (3.0 - M_SQRT3) / 6.0, (3.0 + M_SQRT3) / 6.0 }; gsl_matrix_set (A, 0, 0, 1.0 / 4); gsl_matrix_set (A, 0, 1, (3 - 2 * sqrt (3)) / 12); gsl_matrix_set (A, 1, 0, (3 + 2 * sqrt (3)) / 12); gsl_matrix_set (A, 1, 1, 1.0 / 4); if (esol == NULL) { GSL_ERROR ("no non-linear equation solver speficied", GSL_EINVAL); } /* Get desired error levels via gsl_odeiv2_control object through driver object, which is a requirement for this stepper. */ if (state->driver == NULL) { return GSL_EFAULT; } else { size_t i; for (i = 0; i < dim; i++) { if (dydt_in != NULL) { gsl_odeiv2_control_errlevel (state->driver->c, y[i], dydt_in[i], h, i, &errlev[i]); } else { gsl_odeiv2_control_errlevel (state->driver->c, y[i], 0.0, h, i, &errlev[i]); } } } /* Evaluate Jacobian for modnewton1 */ { int s = GSL_ODEIV_JA_EVAL (sys, t, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Calculate a single step with size h */ { int s = modnewton1_init ((void *) esol, A, h, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } { int s = modnewton1_solve ((void *) esol, A, c, t, h, y, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { size_t j; for (j = 0; j < RK4IMP_STAGE; j++) { int s = GSL_ODEIV_FN_EVAL (sys, t + c[j] * h, &YZ[j * dim], &fYZ[j * dim]); if (s != GSL_SUCCESS) { return s; } } } { int s = rksubs (y_onestep, h, y, fYZ, b, RK4IMP_STAGE, dim); if (s != GSL_SUCCESS) { return s; } } /* Error estimation by step doubling */ { int s = modnewton1_init ((void *) esol, A, h / 2.0, dfdy, sys); if (s != GSL_SUCCESS) { return s; } } /* 1st half step */ { int s = modnewton1_solve ((void *) esol, A, c, t, h / 2.0, y, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { size_t j; for (j = 0; j < RK4IMP_STAGE; j++) { int s = GSL_ODEIV_FN_EVAL (sys, t + c[j] * h / 2.0, &YZ[j * dim], &fYZ[j * dim]); if (s != GSL_SUCCESS) { return s; } } } { int s = rksubs (ytmp, h / 2.0, y, fYZ, b, RK4IMP_STAGE, dim); if (s != GSL_SUCCESS) return s; } /* Save original y values in case of error */ DBL_MEMCPY (y_save, y, dim); /* 2nd half step */ { int s = modnewton1_solve ((void *) esol, A, c, t + h / 2.0, h / 2.0, ytmp, sys, YZ, errlev); if (s != GSL_SUCCESS) { return s; } } { size_t j; for (j = 0; j < RK4IMP_STAGE; j++) { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0 + c[j] * h / 2.0, &YZ[j * dim], &fYZ[j * dim]); if (s != GSL_SUCCESS) { return s; } } } { int s = rksubs (y_twostep, h / 2.0, ytmp, fYZ, b, RK4IMP_STAGE, dim); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); return s; } } /* Note: rk4imp returns y using the results from two half steps instead of the single step since the results are freely available and more precise. */ DBL_MEMCPY (y, y_twostep, dim); /* Error estimation */ { size_t i; for (i = 0; i < dim; i++) { yerr[i] = ODEIV_ERR_SAFETY * 0.5 * fabs (y_twostep[i] - y_onestep[i]) / 15.0; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y_save, dim); return s; } } return GSL_SUCCESS; } static int rk4imp_set_driver (void *vstate, const gsl_odeiv2_driver * d) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; state->driver = d; return GSL_SUCCESS; } static int rk4imp_reset (void *vstate, size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y_twostep, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_save, dim); DBL_ZERO_MEMSET (state->YZ, dim * RK4IMP_STAGE); DBL_ZERO_MEMSET (state->fYZ, dim * RK4IMP_STAGE); return GSL_SUCCESS; } static unsigned int rk4imp_order (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4imp_free (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; free (state->errlev); modnewton1_free (state->esol); gsl_matrix_free (state->dfdy); free (state->dfdt); free (state->fYZ); free (state->YZ); free (state->y_save); free (state->ytmp); free (state->y_twostep); free (state->y_onestep); gsl_matrix_free (state->A); free (state); } static const gsl_odeiv2_step_type rk4imp_type = { "rk4imp", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk4imp_alloc, &rk4imp_apply, &rk4imp_set_driver, &rk4imp_reset, &rk4imp_order, &rk4imp_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_rk4imp = &rk4imp_type; gsl-1.16/ode-initval2/bsimp.c0000664000252300025230000003316012171574312012730 00000000000000/* ode-initval2/bsimp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Bulirsch-Stoer Implicit */ /* Author: G. Jungman */ /* Bader-Deuflhard implicit extrapolative stepper. * [Numer. Math., 41, 373 (1983)] */ #include #include #include #include #include #include #include #include "odeiv_util.h" #include "step_utils.c" #define SEQUENCE_COUNT 8 #define SEQUENCE_MAX 7 /* Bader-Deuflhard extrapolation sequence */ static const int bd_sequence[SEQUENCE_COUNT] = { 2, 6, 10, 14, 22, 34, 50, 70 }; typedef struct { gsl_matrix *d; /* workspace for extrapolation */ gsl_matrix *a_mat; /* workspace for linear system matrix */ gsl_permutation *p_vec; /* workspace for LU permutation */ double x[SEQUENCE_MAX]; /* workspace for extrapolation */ /* state info */ size_t k_current; size_t k_choice; double h_next; double eps; /* workspace for extrapolation step */ double *yp; double *y_save; double *yerr_save; double *y_extrap_save; double *y_extrap_sequence; double *extrap_work; double *dfdt; double *y_temp; double *delta_temp; double *weight; gsl_matrix *dfdy; /* workspace for the basic stepper */ double *rhs_temp; double *delta; /* order of last step */ size_t order; } bsimp_state_t; /* Compute weighting factor */ static void compute_weights (const double y[], double w[], size_t dim) { size_t i; for (i = 0; i < dim; i++) { double u = fabs (y[i]); w[i] = (u > 0.0) ? u : 1.0; } } /* Calculate a choice for the "order" of the method, using the * Deuflhard criteria. */ static size_t bsimp_deuf_kchoice (double eps, size_t dimension) { const double safety_f = 0.25; const double small_eps = safety_f * eps; double a_work[SEQUENCE_COUNT]; double alpha[SEQUENCE_MAX][SEQUENCE_MAX]; int i, k; a_work[0] = bd_sequence[0] + 1.0; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (i = 0; i < SEQUENCE_MAX; i++) { alpha[i][i] = 1.0; for (k = 0; k < i; k++) { const double tmp1 = a_work[k + 1] - a_work[i + 1]; const double tmp2 = (a_work[i + 1] - a_work[0] + 1.0) * (2 * k + 1); alpha[k][i] = pow (small_eps, tmp1 / tmp2); } } a_work[0] += dimension; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (k = 0; k < SEQUENCE_MAX - 1; k++) { if (a_work[k + 2] > a_work[k + 1] * alpha[k][k + 1]) break; } return k; } static void poly_extrap (gsl_matrix * d, const double x[], const unsigned int i_step, const double x_i, const double y_i[], double y_0[], double y_0_err[], double work[], const size_t dim) { size_t j, k; DBL_MEMCPY (y_0_err, y_i, dim); DBL_MEMCPY (y_0, y_i, dim); if (i_step == 0) { for (j = 0; j < dim; j++) { gsl_matrix_set (d, 0, j, y_i[j]); } } else { DBL_MEMCPY (work, y_i, dim); for (k = 0; k < i_step; k++) { double delta = 1.0 / (x[i_step - k - 1] - x_i); const double f1 = delta * x_i; const double f2 = delta * x[i_step - k - 1]; for (j = 0; j < dim; j++) { const double q_kj = gsl_matrix_get (d, k, j); gsl_matrix_set (d, k, j, y_0_err[j]); delta = work[j] - q_kj; y_0_err[j] = f1 * delta; work[j] = f2 * delta; y_0[j] += y_0_err[j]; } } for (j = 0; j < dim; j++) { gsl_matrix_set (d, i_step, j, y_0_err[j]); } } } /* Basic implicit Bulirsch-Stoer step. Divide the step h_total into * n_step smaller steps and do the Bader-Deuflhard semi-implicit * iteration. */ static int bsimp_step_local (void *vstate, size_t dim, const double t0, const double h_total, const unsigned int n_step, const double y[], const double yp[], const double dfdt[], const gsl_matrix * dfdy, double y_out[], const gsl_odeiv2_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; gsl_matrix *const a_mat = state->a_mat; gsl_permutation *const p_vec = state->p_vec; double *const delta = state->delta; double *const y_temp = state->y_temp; double *const delta_temp = state->delta_temp; double *const rhs_temp = state->rhs_temp; double *const w = state->weight; gsl_vector_view y_temp_vec = gsl_vector_view_array (y_temp, dim); gsl_vector_view delta_temp_vec = gsl_vector_view_array (delta_temp, dim); gsl_vector_view rhs_temp_vec = gsl_vector_view_array (rhs_temp, dim); const double h = h_total / n_step; double t = t0 + h; double sum; /* This is the factor sigma referred to in equation 3.4 of the paper. A relative change in y exceeding sigma indicates a runaway behavior. According to the authors suitable values for sigma are >>1. I have chosen a value of 100*dim. BJG */ const double max_sum = 100.0 * dim; int signum, status; size_t i, j; size_t n_inter; /* Calculate the matrix for the linear system. */ for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { gsl_matrix_set (a_mat, i, j, -h * gsl_matrix_get (dfdy, i, j)); } gsl_matrix_set (a_mat, i, i, gsl_matrix_get (a_mat, i, i) + 1.0); } /* LU decomposition for the linear system. */ gsl_linalg_LU_decomp (a_mat, p_vec, &signum); /* Compute weighting factors */ compute_weights (y, w, dim); /* Initial step. */ for (i = 0; i < dim; i++) { y_temp[i] = h * (yp[i] + h * dfdt[i]); } gsl_linalg_LU_solve (a_mat, p_vec, &y_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { const double di = delta_temp[i]; delta[i] = di; y_temp[i] = y[i] + di; sum += fabs (di) / w[i]; } if (sum > max_sum) { return GSL_EFAILED; } /* Intermediate steps. */ status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } for (n_inter = 1; n_inter < n_step; n_inter++) { for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { delta[i] += 2.0 * delta_temp[i]; y_temp[i] += delta[i]; sum += fabs (delta[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED; } t += h; status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } } /* Final step. */ for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { y_out[i] = y_temp[i] + delta_temp[i]; sum += fabs (delta_temp[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED; } return GSL_SUCCESS; } static void * bsimp_alloc (size_t dim) { bsimp_state_t *state = (bsimp_state_t *) malloc (sizeof (bsimp_state_t)); state->d = gsl_matrix_alloc (SEQUENCE_MAX, dim); state->a_mat = gsl_matrix_alloc (dim, dim); state->p_vec = gsl_permutation_alloc (dim); state->yp = (double *) malloc (dim * sizeof (double)); state->y_save = (double *) malloc (dim * sizeof (double)); state->yerr_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_sequence = (double *) malloc (dim * sizeof (double)); state->extrap_work = (double *) malloc (dim * sizeof (double)); state->dfdt = (double *) malloc (dim * sizeof (double)); state->y_temp = (double *) malloc (dim * sizeof (double)); state->delta_temp = (double *) malloc (dim * sizeof (double)); state->weight = (double *) malloc (dim * sizeof (double)); state->dfdy = gsl_matrix_alloc (dim, dim); state->rhs_temp = (double *) malloc (dim * sizeof (double)); state->delta = (double *) malloc (dim * sizeof (double)); { size_t k_choice = bsimp_deuf_kchoice (GSL_SQRT_DBL_EPSILON, dim); /*FIXME: choice of epsilon? */ state->k_choice = k_choice; state->k_current = k_choice; state->order = 2 * k_choice; } state->h_next = -GSL_SQRT_DBL_MAX; return state; } /* Perform the basic semi-implicit extrapolation * step, of size h, at a Deuflhard determined order. */ static int bsimp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv2_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; double *const x = state->x; double *const yp = state->yp; double *const y_save = state->y_save; double *const yerr_save = state->yerr_save; double *const y_extrap_sequence = state->y_extrap_sequence; double *const y_extrap_save = state->y_extrap_save; double *const extrap_work = state->extrap_work; double *const dfdt = state->dfdt; gsl_matrix *d = state->d; gsl_matrix *dfdy = state->dfdy; const double t_local = t; size_t i, k; if (h + t_local == t_local) { return GSL_EUNDRFLW; /* FIXME: error condition */ } DBL_MEMCPY (y_extrap_save, y, dim); /* Save inputs */ DBL_MEMCPY (y_save, y, dim); DBL_MEMCPY (yerr_save, yerr, dim); /* Evaluate the derivative. */ if (dydt_in != NULL) { DBL_MEMCPY (yp, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t_local, y, yp); if (s != GSL_SUCCESS) { return s; } } /* Evaluate the Jacobian for the system. */ { int s = GSL_ODEIV_JA_EVAL (sys, t_local, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Make a series of refined extrapolations, * up to the specified maximum order, which * was calculated based on the Deuflhard * criterion upon state initialization. */ for (k = 0; k <= state->k_current; k++) { const unsigned int N = bd_sequence[k]; const double r = (h / N); const double x_k = r * r; int status = bsimp_step_local (state, dim, t_local, h, N, y_extrap_save, yp, dfdt, dfdy, y_extrap_sequence, sys); if (status == GSL_EFAILED) { /* If the local step fails, set the error to infinity in order to force a reduction in the step size */ for (i = 0; i < dim; i++) { yerr[i] = GSL_POSINF; } break; } else if (status != GSL_SUCCESS) { return status; } x[k] = x_k; poly_extrap (d, x, k, x_k, y_extrap_sequence, y, yerr, extrap_work, dim); } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); DBL_MEMCPY (yerr, yerr_save, dim); return s; } } return GSL_SUCCESS; } static unsigned int bsimp_order (void *vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; return state->order; } static int bsimp_reset (void *vstate, size_t dim) { bsimp_state_t *state = (bsimp_state_t *) vstate; state->h_next = 0; DBL_ZERO_MEMSET (state->yp, dim); return GSL_SUCCESS; } static void bsimp_free (void *vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; free (state->delta); free (state->rhs_temp); gsl_matrix_free (state->dfdy); free (state->weight); free (state->delta_temp); free (state->y_temp); free (state->dfdt); free (state->extrap_work); free (state->y_extrap_sequence); free (state->y_extrap_save); free (state->y_save); free (state->yerr_save); free (state->yp); gsl_permutation_free (state->p_vec); gsl_matrix_free (state->a_mat); gsl_matrix_free (state->d); free (state); } static const gsl_odeiv2_step_type bsimp_type = { "bsimp", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &bsimp_alloc, &bsimp_apply, &stepper_set_driver_null, &bsimp_reset, &bsimp_order, &bsimp_free }; const gsl_odeiv2_step_type *gsl_odeiv2_step_bsimp = &bsimp_type; gsl-1.16/TODO0000664000252300025230000001606412171574312007651 00000000000000# -*- org -*- #+TITLE: GSL TODO File * Main Todo Items We are looking for volunteers to do the following tasks. Consult the TODO files in each directory first for specific requirements. ** Document LQ linalg functions ** 1st-line support on the mailing lists (e.g. checking that bugs are reproducible, and that all relevant information is supplied) ** Modified Ei(x) function (see specfunc/TODO) ** Quasi-random number distributions ** ODE algorithms from RKSUITE ** Incomplete Fermi-Dirac functions ** General Legendre functions ** Spheroidal wave functions ** Weierstrass elliptic functions ** Complex Bessel Functions ** Additional volunteers with access to a good library to get copies of papers for other developers. ** Estimates of condition numbers for linear solvers ** Sine and Cosine Transforms from FFTPACK (Alok Singhal ) ** Cubature, e.g as provided by Cubpack. (Gert Van den Eynde ?) ** Fresnel Integrals ("Juergen J. Zach" ) ** Cumulative Distribution functions for discrete random distributions * Changes for Release 2.0 Break binary compatibility, but keep source compatibility. ** Add a 'void *' to all workspaces, to allow for future changes. ** Disable deprecated functions ** Fix up the workspace_alloc functions so they have consistent names (add functions where needed, don't remove) ** Standardize function names, in particular VERB vs NOUN (e.g. _invert vs _inverse). Also adopt a convection for functions which can operate in place vs use of workspace (e.g linalg_solve functions). ** gsl_sf_ellint_D - remove useless argument n? ** gsl_roots doesn't store function value, so testing the residual requires function to be recomputed Generally all the iterative routines should follow a consistent approach to outputting everything that is necessary for the next iteration * Other tasks ** Remove use of long double internally, e.g. as an accumulator in loops. It introduces variation between platforms which is undesirable. It should be replaced with a preprocessor variable ACC_DOUBLE so that the user can compile the library with the old long double behavior if desired. ** Use BLAS internally as much as possible, to take advantage of speed improvements on large-scale systems. There may be some instances where a simple for() loop is preferred since there's a function-call overhead in calling BLAS routines. ** More tests. We should (at least) have a test for every error condition. Use GCOV to improve coverage. ** Annotate the header files with GAMS classifications. See if they can be included in the GAMs website. ** Make the return value EINVAL vs EDOM consistent for invalid parameters. EDOM means a domain error (i.e. float or mathematically undefined), EINVAL means invalid (i.e. zero length) ** Change return 0 to return GSL_SUCCESS, and return -1 to GSL_FAILURE throughout, where appropriate. Similarly change any if(...) checks of return values to use == GSL_SUCCESS, if they are checking for zero. N.B. want to be careful about accidentally omitting error conditions if using something like == GSL_FAILURE when function returns a different error code. ** Make sure that all #defines are fully wrapped in ()'s, especially the outermost layer which may have been missed. Everything should be of the form #define foo(x) (....) so there is no possibility of bad parsing. Need a perl script to check this! ** Eliminate use of volatile where it has been used to force rounding (integration/). It is better to write the code to avoid dependence on rounding. ** Constant objects (like gsl_roots_fsolver_brent) ought to have constant pointers (const gsl_roots_fsolver_type * const gsl_roots_fsolver_brent) ** PyGSL -- python bindings for GSL, see http://pygsl.sf.net/ ** From Goose ASCII import Categorical Sets Kernel Density Estimation Shampine Polynomial Regression Bootstrapping, Jacknife Descriptive: Range, Trimmed Mean, Winsorized Mean, Moments Harmonic mean, RMS, Durbin-Watson, AR1 independence Autocorr, Autocorr_z, Cramer vos Mises, Anderson-Darling Spearman-rho, Kendall-tau, EDF_D_both EDF_D_plus, EDF_D_minus, EDF_D, EDF_kuiper_V, pooled mean pooled var, Tests: kolmogorov_smirnov Moving average, Exponential moving average wilcoxon_statistic, wilcoxon_noties_cdf, wilcoxon_general_cdf Cochran Q test, KruskalWallis, McNemar, spearman_Rocc * Wishlist or vague ideas ** An example chapter on how to link GSL code with GNU Guile, and Python We could also provide g-wrap wrappers for guile, or swig.i files and swig demos so that swig can be run more easily. ** Provide an interface to LAPACK, as for BLAS? Clarify the license for LAPACK first, their web page is vague on what the license terms are. Some parts of LAPACK are included in octave so maybe the Octave maintainers will know more. ** Public domain or free texts which could be distributed with GSL: Abramowitz and Stegun, "Handbook of Mathematical Functions" appears to be public domain. SEPT/02: See online images at http://members.fortunecity.com/aands/ Devroye's book on Random Variates (1st ed) is/was in the public domain. ** Investigate complex support in GCC: Operations like sin(z) silently convert argument to double, losing the imaginary part. This is mentioned in CEPHES documentation in 1998 with a patch to generate a warning. What happened? (Does it now work with gcc-3.0?) ** Go through the matrix and vector functions systematically and decide what should be provided outside of BLAS. ** Change from gsl-ref.texi to gsl.texi since it is the main file? Also, put under dir section "Math" (which seems to be the appropriate one for Debian, as Octave, Gnuplot etc are in that) ** Remove error stream stuff?? It is hardly used. ** Extend histogram routines as described in recent discussion ** Check that there are no conflicts when linking with Lapack. CBLAS, ATLAS ** Make a sorted datatype for the median and quantile functions so that the user can be prevented from passing unsorted data, which is not checked for. ** Optimization/error for dest == src as appropriate ** Provide a run-time expression evaluator for interactive programs where the user can provide formulas as strings. Keith Briggs recommended formulc2.22 which he had found useful in several projects. http://www.cs.brandeis.edu/~hhelf/formu/formulc.html. It is LGPL. Alternatively, the source code for GDB contains yacc grammars and evaluators for expressions in various languages, so that would be another way to go. It would have the advantage of following the language standards. If I was going to write something from scratch I would think about using that as a base, as the full set of operators are already included with the correct precedence rules. Being able to evaluate C and Fortran expressions could be useful. ** We should have an index mapping type object which handles elements of size_t for vectors and matrices, or at least vectors and matrices of size_t in addition to long, int, etc. gsl-1.16/templates_on.h0000664000252300025230000001443712171574312012026 00000000000000/* If BASE is undefined we use function names like gsl_name() and assume that we are using doubles. If BASE is defined we used function names like gsl_BASE_name() and use BASE as the base datatype */ #if defined(BASE_GSL_COMPLEX_LONG) #define BASE gsl_complex_long_double #define SHORT complex_long_double #define SHORT_REAL long_double #define ATOMIC long double #define USES_LONGDOUBLE 1 #define MULTIPLICITY 2 #define FP 1 #define IN_FORMAT "%Lg" #define OUT_FORMAT "%Lg" #define ATOMIC_IO ATOMIC #define ZERO {{0.0L,0.0L}} #define ONE {{1.0L,0.0L}} #define BASE_EPSILON GSL_DBL_EPSILON #elif defined(BASE_GSL_COMPLEX) #if defined(_MSC_VER) && defined(complex) #undef complex #endif #define BASE gsl_complex #define SHORT complex #define SHORT_REAL #define ATOMIC double #define MULTIPLICITY 2 #define FP 1 #define IN_FORMAT "%lg" #define OUT_FORMAT "%g" #define ATOMIC_IO ATOMIC #define ZERO {{0.0,0.0}} #define ONE {{1.0,0.0}} #define BASE_EPSILON GSL_DBL_EPSILON #elif defined(BASE_GSL_COMPLEX_FLOAT) #define BASE gsl_complex_float #define SHORT complex_float #define SHORT_REAL float #define ATOMIC float #define MULTIPLICITY 2 #define FP 1 #define IN_FORMAT "%g" #define OUT_FORMAT "%g" #define ATOMIC_IO ATOMIC #define ZERO {{0.0F,0.0F}} #define ONE {{1.0F,0.0F}} #define BASE_EPSILON GSL_FLT_EPSILON #elif defined(BASE_LONG_DOUBLE) #define BASE long double #define SHORT long_double #define ATOMIC long double #define USES_LONGDOUBLE 1 #define MULTIPLICITY 1 #define FP 1 #define IN_FORMAT "%Lg" #define OUT_FORMAT "%Lg" #define ATOMIC_IO ATOMIC #define ZERO 0.0L #define ONE 1.0L #define BASE_EPSILON GSL_DBL_EPSILON #elif defined(BASE_DOUBLE) #define BASE double #define SHORT #define ATOMIC double #define MULTIPLICITY 1 #define FP 1 #define IN_FORMAT "%lg" #define OUT_FORMAT "%g" #define ATOMIC_IO ATOMIC #define ZERO 0.0 #define ONE 1.0 #define BASE_EPSILON GSL_DBL_EPSILON #elif defined(BASE_FLOAT) #define BASE float #define SHORT float #define ATOMIC float #define MULTIPLICITY 1 #define FP 1 #define IN_FORMAT "%g" #define OUT_FORMAT "%g" #define ATOMIC_IO ATOMIC #define ZERO 0.0F #define ONE 1.0F #define BASE_EPSILON GSL_FLT_EPSILON #elif defined(BASE_ULONG) #define BASE unsigned long #define SHORT ulong #define ATOMIC unsigned long #define MULTIPLICITY 1 #define IN_FORMAT "%lu" #define OUT_FORMAT "%lu" #define ATOMIC_IO ATOMIC #define ZERO 0UL #define ONE 1UL #define UNSIGNED 1 #elif defined(BASE_LONG) #define BASE long #define SHORT long #define ATOMIC long #define MULTIPLICITY 1 #define IN_FORMAT "%ld" #define OUT_FORMAT "%ld" #define ATOMIC_IO ATOMIC #define ZERO 0L #define ONE 1L #elif defined(BASE_UINT) #define BASE unsigned int #define SHORT uint #define ATOMIC unsigned int #define MULTIPLICITY 1 #define IN_FORMAT "%u" #define OUT_FORMAT "%u" #define ATOMIC_IO ATOMIC #define ZERO 0U #define ONE 1U #define UNSIGNED 1 #elif defined(BASE_INT) #define BASE int #define SHORT int #define ATOMIC int #define MULTIPLICITY 1 #define IN_FORMAT "%d" #define OUT_FORMAT "%d" #define ATOMIC_IO ATOMIC #define ZERO 0 #define ONE 1 #elif defined(BASE_USHORT) #define BASE unsigned short #define SHORT ushort #define ATOMIC unsigned short #define MULTIPLICITY 1 #define IN_FORMAT "%hu" #define OUT_FORMAT "%hu" #define ATOMIC_IO ATOMIC #define ZERO 0U #define ONE 1U #define UNSIGNED 1 #elif defined(BASE_SHORT) #define BASE short #define SHORT short #define ATOMIC short #define MULTIPLICITY 1 #define IN_FORMAT "%hd" #define OUT_FORMAT "%hd" #define ATOMIC_IO ATOMIC #define ZERO 0 #define ONE 1 #elif defined(BASE_UCHAR) #define BASE unsigned char #define SHORT uchar #define ATOMIC unsigned char #define MULTIPLICITY 1 #define IN_FORMAT "%u" #define OUT_FORMAT "%u" #define ATOMIC_IO unsigned int #define ZERO 0U #define ONE 1U #define UNSIGNED 1 #elif defined(BASE_CHAR) #define BASE char #define SHORT char #define ATOMIC char #define MULTIPLICITY 1 #define IN_FORMAT "%d" #define OUT_FORMAT "%d" #define ATOMIC_IO int #define ZERO 0 #define ONE 1 #ifdef __CHAR_UNSIGNED__ #define UNSIGNED 1 #endif #else #error unknown BASE_ directive in source.h #endif #define CONCAT2x(a,b) a ## _ ## b #define CONCAT2(a,b) CONCAT2x(a,b) #define CONCAT3x(a,b,c) a ## _ ## b ## _ ## c #define CONCAT3(a,b,c) CONCAT3x(a,b,c) #define CONCAT4x(a,b,c,d) a ## _ ## b ## _ ## c ## _ ## d #define CONCAT4(a,b,c,d) CONCAT4x(a,b,c,d) #ifndef USE_QUALIFIER #define QUALIFIER #endif #ifdef USE_QUALIFIER #if defined(BASE_DOUBLE) #define FUNCTION(dir,name) CONCAT3(dir,QUALIFIER,name) #define TYPE(dir) dir #define VIEW(dir,name) CONCAT2(dir,name) #define QUALIFIED_TYPE(dir) QUALIFIER dir #define QUALIFIED_VIEW(dir,name) CONCAT3(dir,QUALIFIER,name) #else #define FUNCTION(a,c) CONCAT4(a,SHORT,QUALIFIER,c) #define TYPE(dir) CONCAT2(dir,SHORT) #define VIEW(dir,name) CONCAT3(dir,SHORT,name) #define QUALIFIED_TYPE(dir) QUALIFIER CONCAT2(dir,SHORT) #define QUALIFIED_VIEW(dir,name) CONCAT4(dir,SHORT,QUALIFIER,name) #endif #if defined(BASE_GSL_COMPLEX) #define REAL_TYPE(dir) dir #define REAL_VIEW(dir,name) CONCAT2(dir,name) #define QUALIFIED_REAL_TYPE(dir) QUALIFIER dir #define QUALIFIED_REAL_VIEW(dir,name) CONCAT3(dir,QUALIFIER,name) #else #define REAL_TYPE(dir) CONCAT2(dir,SHORT_REAL) #define REAL_VIEW(dir,name) CONCAT3(dir,SHORT_REAL,name) #define QUALIFIED_REAL_TYPE(dir) QUALIFIER CONCAT2(dir,SHORT_REAL) #define QUALIFIED_REAL_VIEW(dir,name) CONCAT4(dir,SHORT_REAL,QUALIFIER,name) #endif #else #if defined(BASE_DOUBLE) #define FUNCTION(dir,name) CONCAT2(dir,name) #define TYPE(dir) dir #define VIEW(dir,name) CONCAT2(dir,name) #define QUALIFIED_TYPE(dir) TYPE(dir) #define QUALIFIED_VIEW(dir,name) CONCAT2(dir,name) #else #define FUNCTION(a,c) CONCAT3(a,SHORT,c) #define TYPE(dir) CONCAT2(dir,SHORT) #define VIEW(dir,name) CONCAT3(dir,SHORT,name) #define QUALIFIED_TYPE(dir) TYPE(dir) #define QUALIFIED_VIEW(dir,name) CONCAT3(dir,SHORT,name) #endif #if defined(BASE_GSL_COMPLEX) #define REAL_TYPE(dir) dir #define REAL_VIEW(dir,name) CONCAT2(dir,name) #define QUALIFIED_REAL_TYPE(dir) dir #define QUALIFIED_REAL_VIEW(dir,name) CONCAT2(dir,name) #else #define REAL_TYPE(dir) CONCAT2(dir,SHORT_REAL) #define REAL_VIEW(dir,name) CONCAT3(dir,SHORT_REAL,name) #define QUALIFIED_REAL_TYPE(dir) CONCAT2(dir,SHORT_REAL) #define QUALIFIED_REAL_VIEW(dir,name) CONCAT3(dir,SHORT_REAL,name) #endif #endif #define STRING(x) #x #define EXPAND(x) STRING(x) #define NAME(x) EXPAND(TYPE(x)) gsl-1.16/siman/0000775000252300025230000000000012172254162010340 500000000000000gsl-1.16/siman/TODO0000664000252300025230000000050712171574312010753 00000000000000# -*- org -*- #+CATEGORY: siman * Reorganize siman interfaces to allow iterative use. * Maybe the routines can be made to work with pointers instead of structs so that only pointer manipulation is done by the siman algorithm and there is no need for malloc. A call would look something like siman(&start,&result, ...) gsl-1.16/siman/siman_tsp.c0000664000252300025230000002242312171574312012425 00000000000000/* siman/siman_tsp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include /* set up parameters for this simulated annealing run */ #define N_TRIES 200 /* how many points do we try before stepping */ #define ITERS_FIXED_T 2000 /* how many iterations for each T? */ #define STEP_SIZE 1.0 /* max step size in random walk */ #define K 1.0 /* Boltzmann constant */ #define T_INITIAL 5000.0 /* initial temperature */ #define MU_T 1.002 /* damping factor for temperature */ #define T_MIN 5.0e-1 gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE, K, T_INITIAL, MU_T, T_MIN}; struct s_tsp_city { const char * name; double lat, longitude; /* coordinates */ }; typedef struct s_tsp_city Stsp_city; void prepare_distance_matrix(void); void exhaustive_search(void); void print_distance_matrix(void); double city_distance(Stsp_city c1, Stsp_city c2); double Etsp(void *xp); double Mtsp(void *xp, void *yp); void Stsp(const gsl_rng * r, void *xp, double step_size); void Ptsp(void *xp); /* in this table, latitude and longitude are obtained from the US Census Bureau, at http://www.census.gov/cgi-bin/gazetteer */ Stsp_city cities[] = {{"Santa Fe", 35.68, 105.95}, {"Phoenix", 33.54, 112.07}, {"Albuquerque", 35.12, 106.62}, {"Clovis", 34.41, 103.20}, {"Durango", 37.29, 107.87}, {"Dallas", 32.79, 96.77}, {"Tesuque", 35.77, 105.92}, {"Grants", 35.15, 107.84}, {"Los Alamos", 35.89, 106.28}, {"Las Cruces", 32.34, 106.76}, {"Cortez", 37.35, 108.58}, {"Gallup", 35.52, 108.74}}; #define N_CITIES (sizeof(cities)/sizeof(Stsp_city)) double distance_matrix[N_CITIES][N_CITIES]; /* distance between two cities */ double city_distance(Stsp_city c1, Stsp_city c2) { const double earth_radius = 6375.000; /* 6000KM approximately */ /* sin and cos of lat and long; must convert to radians */ double sla1 = sin(c1.lat*M_PI/180), cla1 = cos(c1.lat*M_PI/180), slo1 = sin(c1.longitude*M_PI/180), clo1 = cos(c1.longitude*M_PI/180); double sla2 = sin(c2.lat*M_PI/180), cla2 = cos(c2.lat*M_PI/180), slo2 = sin(c2.longitude*M_PI/180), clo2 = cos(c2.longitude*M_PI/180); double x1 = cla1*clo1; double x2 = cla2*clo2; double y1 = cla1*slo1; double y2 = cla2*slo2; double z1 = sla1; double z2 = sla2; double dot_product = x1*x2 + y1*y2 + z1*z2; double angle = acos(dot_product); /* distance is the angle (in radians) times the earth radius */ return angle*earth_radius; } /* energy for the travelling salesman problem */ double Etsp(void *xp) { /* an array of N_CITIES integers describing the order */ int *route = (int *) xp; double E = 0; unsigned int i; for (i = 0; i < N_CITIES; ++i) { /* use the distance_matrix to optimize this calculation; it had better be allocated!! */ E += distance_matrix[route[i]][route[(i + 1) % N_CITIES]]; } return E; } double Mtsp(void *xp, void *yp) { int *route1 = (int *) xp, *route2 = (int *) yp; double distance = 0; unsigned int i; for (i = 0; i < N_CITIES; ++i) { distance += ((route1[i] == route2[i]) ? 0 : 1); } return distance; } /* take a step through the TSP space */ void Stsp(const gsl_rng * r, void *xp, double step_size) { int x1, x2, dummy; int *route = (int *) xp; step_size = 0 ; /* prevent warnings about unused parameter */ /* pick the two cities to swap in the matrix; we leave the first city fixed */ x1 = (gsl_rng_get (r) % (N_CITIES-1)) + 1; do { x2 = (gsl_rng_get (r) % (N_CITIES-1)) + 1; } while (x2 == x1); dummy = route[x1]; route[x1] = route[x2]; route[x2] = dummy; } void Ptsp(void *xp) { unsigned int i; int *route = (int *) xp; printf(" ["); for (i = 0; i < N_CITIES; ++i) { printf(" %d ", route[i]); } printf("] "); } int main(void) { int x_initial[N_CITIES]; unsigned int i; const gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ; gsl_ieee_env_setup (); prepare_distance_matrix(); /* set up a trivial initial route */ printf("# initial order of cities:\n"); for (i = 0; i < N_CITIES; ++i) { printf("# \"%s\"\n", cities[i].name); x_initial[i] = i; } printf("# distance matrix is:\n"); print_distance_matrix(); printf("# initial coordinates of cities (longitude and latitude)\n"); /* this can be plotted with */ /* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */ for (i = 0; i < N_CITIES+1; ++i) { printf("###initial_city_coord: %g %g \"%s\"\n", -cities[x_initial[i % N_CITIES]].longitude, cities[x_initial[i % N_CITIES]].lat, cities[x_initial[i % N_CITIES]].name); } /* exhaustive_search(); */ gsl_siman_solve(r, x_initial, Etsp, Stsp, Mtsp, Ptsp, NULL, NULL, NULL, N_CITIES*sizeof(int), params); printf("# final order of cities:\n"); for (i = 0; i < N_CITIES; ++i) { printf("# \"%s\"\n", cities[x_initial[i]].name); } printf("# final coordinates of cities (longitude and latitude)\n"); /* this can be plotted with */ /* ./siman_tsp > hhh ; grep city_coord hhh | awk '{print $2 " " $3}' | xyplot -ps -d "xy" > c.eps */ for (i = 0; i < N_CITIES+1; ++i) { printf("###final_city_coord: %g %g %s\n", -cities[x_initial[i % N_CITIES]].longitude, cities[x_initial[i % N_CITIES]].lat, cities[x_initial[i % N_CITIES]].name); } printf("# "); fflush(stdout); #if 0 system("date"); #endif /* 0 */ fflush(stdout); return 0; } void prepare_distance_matrix() { unsigned int i, j; double dist; for (i = 0; i < N_CITIES; ++i) { for (j = 0; j < N_CITIES; ++j) { if (i == j) { dist = 0; } else { dist = city_distance(cities[i], cities[j]); } distance_matrix[i][j] = dist; } } } void print_distance_matrix() { unsigned int i, j; for (i = 0; i < N_CITIES; ++i) { printf("# "); for (j = 0; j < N_CITIES; ++j) { printf("%15.8f ", distance_matrix[i][j]); } printf("\n"); } } /* [only works for 12] search the entire space for solutions */ static double best_E = 1.0e100, second_E = 1.0e100, third_E = 1.0e100; static int best_route[N_CITIES]; static int second_route[N_CITIES]; static int third_route[N_CITIES]; static void do_all_perms(int *route, int n); void exhaustive_search() { static int initial_route[N_CITIES] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; printf("\n# "); fflush(stdout); #if 0 system("date"); #endif fflush(stdout); do_all_perms(initial_route, 1); printf("\n# "); fflush(stdout); #if 0 system("date"); #endif /* 0 */ fflush(stdout); printf("# exhaustive best route: "); Ptsp(best_route); printf("\n# its energy is: %g\n", best_E); printf("# exhaustive second_best route: "); Ptsp(second_route); printf("\n# its energy is: %g\n", second_E); printf("# exhaustive third_best route: "); Ptsp(third_route); printf("\n# its energy is: %g\n", third_E); } /* James Theiler's recursive algorithm for generating all routes */ static void do_all_perms(int *route, int n) { if (n == (N_CITIES-1)) { /* do it! calculate the energy/cost for that route */ double E; E = Etsp(route); /* TSP energy function */ /* now save the best 3 energies and routes */ if (E < best_E) { third_E = second_E; memcpy(third_route, second_route, N_CITIES*sizeof(*route)); second_E = best_E; memcpy(second_route, best_route, N_CITIES*sizeof(*route)); best_E = E; memcpy(best_route, route, N_CITIES*sizeof(*route)); } else if (E < second_E) { third_E = second_E; memcpy(third_route, second_route, N_CITIES*sizeof(*route)); second_E = E; memcpy(second_route, route, N_CITIES*sizeof(*route)); } else if (E < third_E) { third_E = E; memcpy(route, third_route, N_CITIES*sizeof(*route)); } } else { int new_route[N_CITIES]; unsigned int j; int swap_tmp; memcpy(new_route, route, N_CITIES*sizeof(*route)); for (j = n; j < N_CITIES; ++j) { swap_tmp = new_route[j]; new_route[j] = new_route[n]; new_route[n] = swap_tmp; do_all_perms(new_route, n+1); } } } gsl-1.16/siman/test.c0000664000252300025230000001122712171574312011407 00000000000000/* siman/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include /* set up parameters for this simulated annealing run */ #define N_TRIES 200 /* how many points do we try before stepping */ #define ITERS_FIXED_T 1000 /* how many iterations for each T? */ #define STEP_SIZE 1.0 /* max step size in random walk */ #define K 1.0 /* Boltzmann constant */ #define T_INITIAL 0.008 /* initial temperature */ #define MU_T 1.003 /* damping factor for temperature */ #define T_MIN 2.0e-6 gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE, K, T_INITIAL, MU_T, T_MIN}; double square (double x) ; double square (double x) { return x * x ; } double E1(void *xp); double M1(void *xp, void *yp); void S1(const gsl_rng * r, void *xp, double step_size); void P1(void *xp); /* now some functions to test in one dimension */ double E1(void *xp) { double x = * ((double *) xp); return exp(-square(x-1))*sin(8*x) - exp(-square(x-1000))*0.89; } double M1(void *xp, void *yp) { double x = *((double *) xp); double y = *((double *) yp); return fabs(x - y); } void S1(const gsl_rng * r, void *xp, double step_size) { double old_x = *((double *) xp); double new_x; new_x = gsl_rng_uniform(r)*2*step_size - step_size + old_x; memcpy(xp, &new_x, sizeof(new_x)); } void P1(void *xp) { printf(" %12g ", *((double *) xp)); } int main(void) { double x_min = 1.36312999455315182 ; double x ; gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ; gsl_ieee_env_setup (); /* The function tested here has multiple mimima. The global minimum is at x = 1.36312999, (f = -0.87287) There is a local minimum at x = 0.60146196, (f = -0.84893) */ x = -10.0 ; gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL, sizeof(double), params); gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=-10") ; x = +10.0 ; gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL, sizeof(double), params); gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=10") ; /* Start at the false minimum */ x = +0.6 ; gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL, sizeof(double), params); gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.6") ; x = +0.5 ; gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL, sizeof(double), params); gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.5") ; x = +0.4 ; gsl_siman_solve(r, &x, E1, S1, M1, NULL, NULL, NULL, NULL, sizeof(double), params); gsl_test_rel(x, x_min, 1e-3, "f(x)= exp(-(x-1)^2) sin(8x), x0=0.4") ; gsl_rng_free(r); exit (gsl_test_summary ()); #ifdef JUNK x0.D1 = 12.0; printf("#one dimensional problem, x0 = %f\n", x0.D1); gsl_siman_Usolve(r, &x0, test_E_1D, test_step_1D, distance_1D, print_pos_1D, params); x0.D2[0] = 12.0; x0.D2[1] = 5.5; printf("#two dimensional problem, (x0,y0) = (%f,%f)\n", x0.D2[0], x0.D2[1]); gsl_siman_Usolve(r, &x0, test_E_2D, test_step_2D, distance_2D, print_pos_2D, params); x0.D3[0] = 12.2; x0.D3[1] = 5.5; x0.D3[2] = -15.5; printf("#three dimensional problem, (x0,y0,z0) = (%f,%f,%f)\n", x0.D3[0], x0.D3[1], x0.D3[2]); gsl_siman_Usolve(r, &x0, test_E_3D, test_step_3D, distance_3D, print_pos_3D, params); x0.D2[0] = 12.2; x0.D2[1] = 5.5; gsl_siman_solve(r, &x0, test_E_2D, test_step_2D, distance_2D, print_pos_2D, params); x0.D3[0] = 12.2; x0.D3[1] = 5.5; x0.D3[2] = -15.5; gsl_siman_solve(r, &x0, test_E_3D, test_step_3D, distance_3D, print_pos_3D, params); return 0; #endif } gsl-1.16/siman/siman.c0000664000252300025230000001772712171574312011552 00000000000000/* siman/siman.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include static inline double boltzmann(double E, double new_E, double T, gsl_siman_params_t *params) { double x = -(new_E - E) / (params->k * T); /* avoid underflow errors for large uphill steps */ return (x < GSL_LOG_DBL_MIN) ? 0.0 : exp(x); } static inline void copy_state(void *src, void *dst, size_t size, gsl_siman_copy_t copyfunc) { if (copyfunc) { copyfunc(src, dst); } else { memcpy(dst, src, size); } } /* implementation of a basic simulated annealing algorithm */ void gsl_siman_solve (const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef, gsl_siman_step_t take_step, gsl_siman_metric_t distance, gsl_siman_print_t print_position, gsl_siman_copy_t copyfunc, gsl_siman_copy_construct_t copy_constructor, gsl_siman_destroy_t destructor, size_t element_size, gsl_siman_params_t params) { void *x, *new_x, *best_x; double E, new_E, best_E; int i; double T, T_factor; int n_evals = 1, n_iter = 0, n_accepts, n_rejects, n_eless; /* this function requires that either the dynamic functions (copy, copy_constructor and destrcutor) are passed, or that an element size is given */ assert((copyfunc != NULL && copy_constructor != NULL && destructor != NULL) || (element_size != 0)); distance = 0 ; /* This parameter is not currently used */ E = Ef(x0_p); if (copyfunc) { x = copy_constructor(x0_p); new_x = copy_constructor(x0_p); best_x = copy_constructor(x0_p); } else { x = (void *) malloc (element_size); memcpy (x, x0_p, element_size); new_x = (void *) malloc (element_size); best_x = (void *) malloc (element_size); memcpy (best_x, x0_p, element_size); } best_E = E; T = params.t_initial; T_factor = 1.0 / params.mu_t; if (print_position) { printf ("#-iter #-evals temperature position energy\n"); } while (1) { n_accepts = 0; n_rejects = 0; n_eless = 0; for (i = 0; i < params.iters_fixed_T; ++i) { copy_state(x, new_x, element_size, copyfunc); take_step (r, new_x, params.step_size); new_E = Ef (new_x); if(new_E <= best_E){ if (copyfunc) { copyfunc(new_x,best_x); } else { memcpy (best_x, new_x, element_size); } best_E=new_E; } ++n_evals; /* keep track of Ef() evaluations */ /* now take the crucial step: see if the new point is accepted or not, as determined by the boltzmann probability */ if (new_E < E) { if (new_E < best_E) { copy_state(new_x, best_x, element_size, copyfunc); best_E = new_E; } /* yay! take a step */ copy_state(new_x, x, element_size, copyfunc); E = new_E; ++n_eless; } else if (gsl_rng_uniform(r) < boltzmann(E, new_E, T, ¶ms)) { /* yay! take a step */ copy_state(new_x, x, element_size, copyfunc); E = new_E; ++n_accepts; } else { ++n_rejects; } } if (print_position) { /* see if we need to print stuff as we go */ /* printf("%5d %12g %5d %3d %3d %3d", n_iter, T, n_evals, */ /* 100*n_eless/n_steps, 100*n_accepts/n_steps, */ /* 100*n_rejects/n_steps); */ printf ("%5d %7d %12g", n_iter, n_evals, T); print_position (x); printf (" %12g %12g\n", E, best_E); } /* apply the cooling schedule to the temperature */ /* FIXME: I should also introduce a cooling schedule for the iters */ T *= T_factor; ++n_iter; if (T < params.t_min) { break; } } /* at the end, copy the result onto the initial point, so we pass it back to the caller */ copy_state(best_x, x0_p, element_size, copyfunc); if (copyfunc) { destructor(x); destructor(new_x); destructor(best_x); } else { free (x); free (new_x); free (best_x); } } /* implementation of a simulated annealing algorithm with many tries */ void gsl_siman_solve_many (const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef, gsl_siman_step_t take_step, gsl_siman_metric_t distance, gsl_siman_print_t print_position, size_t element_size, gsl_siman_params_t params) { /* the new set of trial points, and their energies and probabilities */ void *x, *new_x; double *energies, *probs, *sum_probs; double Ex; /* energy of the chosen point */ double T, T_factor; /* the temperature and a step multiplier */ int i; double u; /* throw the die to choose a new "x" */ int n_iter; if (print_position) { printf ("#-iter temperature position"); printf (" delta_pos energy\n"); } x = (void *) malloc (params.n_tries * element_size); new_x = (void *) malloc (params.n_tries * element_size); energies = (double *) malloc (params.n_tries * sizeof (double)); probs = (double *) malloc (params.n_tries * sizeof (double)); sum_probs = (double *) malloc (params.n_tries * sizeof (double)); T = params.t_initial; T_factor = 1.0 / params.mu_t; memcpy (x, x0_p, element_size); n_iter = 0; while (1) { Ex = Ef (x); for (i = 0; i < params.n_tries - 1; ++i) { /* only go to N_TRIES-2 */ /* center the new_x[] around x, then pass it to take_step() */ sum_probs[i] = 0; memcpy ((char *)new_x + i * element_size, x, element_size); take_step (r, (char *)new_x + i * element_size, params.step_size); energies[i] = Ef ((char *)new_x + i * element_size); probs[i] = boltzmann(Ex, energies[i], T, ¶ms); } /* now add in the old value of "x", so it is a contendor */ memcpy ((char *)new_x + (params.n_tries - 1) * element_size, x, element_size); energies[params.n_tries - 1] = Ex; probs[params.n_tries - 1] = boltzmann(Ex, energies[i], T, ¶ms); /* now throw biased die to see which new_x[i] we choose */ sum_probs[0] = probs[0]; for (i = 1; i < params.n_tries; ++i) { sum_probs[i] = sum_probs[i - 1] + probs[i]; } u = gsl_rng_uniform (r) * sum_probs[params.n_tries - 1]; for (i = 0; i < params.n_tries; ++i) { if (u < sum_probs[i]) { memcpy (x, (char *) new_x + i * element_size, element_size); break; } } if (print_position) { printf ("%5d\t%12g\t", n_iter, T); print_position (x); printf ("\t%12g\t%12g\n", distance (x, x0_p), Ex); } T *= T_factor; ++n_iter; if (T < params.t_min) { break; } } /* now return the value via x0_p */ memcpy (x0_p, x, element_size); /* printf("the result is: %g (E=%g)\n", x, Ex); */ free (x); free (new_x); free (energies); free (probs); free (sum_probs); } gsl-1.16/siman/Makefile.in0000664000252300025230000010557012172253757012346 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) noinst_PROGRAMS = siman_tsp$(EXEEXT) subdir = siman DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslsiman_la_LIBADD = am_libgslsiman_la_OBJECTS = siman.lo libgslsiman_la_OBJECTS = $(am_libgslsiman_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = PROGRAMS = $(noinst_PROGRAMS) am_siman_tsp_OBJECTS = siman_tsp.$(OBJEXT) siman_tsp_OBJECTS = $(am_siman_tsp_OBJECTS) siman_tsp_DEPENDENCIES = libgslsiman.la ../rng/libgslrng.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../sys/libgslsys.la ../utils/libutils.la am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslsiman.la ../rng/libgslrng.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslsiman_la_SOURCES) $(siman_tsp_SOURCES) \ $(test_SOURCES) DIST_SOURCES = $(libgslsiman_la_SOURCES) $(siman_tsp_SOURCES) \ $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslsiman.la TESTS = $(check_PROGRAMS) EXTRA_DIST = siman_test_driver.sh test_SOURCES = test.c test_LDADD = libgslsiman.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la siman_tsp_SOURCES = siman_tsp.c siman_tsp_LDADD = libgslsiman.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../sys/libgslsys.la ../utils/libutils.la CLEANFILES = siman_test.out libgslsiman_la_SOURCES = siman.c pkginclude_HEADERS = gsl_siman.h INCLUDES = -I$(top_srcdir) all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu siman/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu siman/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslsiman.la: $(libgslsiman_la_OBJECTS) $(libgslsiman_la_DEPENDENCIES) $(EXTRA_libgslsiman_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslsiman_la_OBJECTS) $(libgslsiman_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list clean-noinstPROGRAMS: @list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list siman_tsp$(EXEEXT): $(siman_tsp_OBJECTS) $(siman_tsp_DEPENDENCIES) $(EXTRA_siman_tsp_DEPENDENCIES) @rm -f siman_tsp$(EXEEXT) $(AM_V_CCLD)$(LINK) $(siman_tsp_OBJECTS) $(siman_tsp_LDADD) $(LIBS) test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/siman.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/siman_tsp.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(PROGRAMS) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES clean-noinstPROGRAMS mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES clean-noinstPROGRAMS cscopelist-am \ ctags ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-compile mostlyclean-generic mostlyclean-libtool \ pdf pdf-am ps ps-am recheck tags tags-am uninstall \ uninstall-am uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/siman/ChangeLog0000664000252300025230000001105712171574312012037 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-05-30 Brian Gough * siman.c (boltzmann): moved safe_exp into boltzmann (copy_state): put all copying into one function 2006-03-08 Brian Gough * test.c (square): removed inline since it causes problems with some compilers 2005-11-14 Brian Gough * siman.c (safe_exp): added a safe_exp function to avoid underflow for large uphill steps 2003-03-31 Brian Gough * siman.c (gsl_siman_solve): avoid reevaluation for best_E (gsl_siman_solve): loop over param.iters_fixed_T not params.n_tries (gsl_siman_solve): initialise energy at start Sat Aug 3 20:32:38 2002 Brian Gough * siman.c (gsl_siman_solve): fix acceptance criterion to match documentation (Peter S. Christopher) Thu Jun 13 20:57:00 2002 Brian Gough * siman.c (gsl_siman_solve): keep track of the best result 2002-02-07 Mark Galassi * siman.c (gsl_siman_solve): bug fix in the destructor for x and new_x which was being called on &x and &new_x instead of x and new_x; thanks to Karsten Howes Thu Jul 12 21:50:07 2001 Brian Gough * gsl_siman.h: changed renamed gsl_Efunc_t to gsl_siman_Efunc_t, in accordance with namespace conventions 2000-12-15 Mark Galassi * siman.c (gsl_siman_solve): reversed a small change I had made earlier and went back to taking Boltzmann-conditional steps when the new energy is equal to the previous one. This allows you to move around if you are stuck on a plateau. * gsl_siman.h, siman.c, siman_test.c, siman_tsp.c, test.c: changed the siman_solve API to allow for more general search spaces. The problem was that we assumed that points in the search space were data structures that were allocated in continguous memory, so they could not be linked structures. I replaced the malloc(), memcpy() and free() calls with copy_constructor(), copyfunc() and copy_destructor() functions. The user passes these functions, which means that siman_solve() now takes three more arguments of type gsl_siman_copy_t, gsl_siman_copy_construct_t and gsl_siman_destroy_t. If these arguments are NULL (and all three of them have to be NULL together), the traditional memcpy() approach is used. 1999-02-14 Mark Galassi * minor fixes. Tue Nov 17 17:22:14 1998 Brian Gough * added #include to all top-level source files Sun Nov 8 20:40:28 1998 Brian Gough * siman_tsp.c: clean up for make strict 1998-11-06 * test.c: added prototype for memcpy using #include * siman_test.c: added prototype for memcpy using #include Wed Oct 28 15:06:58 1998 Brian Gough * siman.c: added #include for memcpy Thu Aug 20 12:22:28 1998 Brian Gough * siman.c: use (char *) judiciously to avoid warnings about void pointer arithmetic (see randist/shuffle.c for similar examples) * siman_test.c: perform several tests, using the exact answer as the comparison value, rather than checking for stationarity. Sun Jun 28 14:11:04 1998 Brian Gough * Converted to work with rng-style random number generators * gsl_siman.h: gsl_siman_step_t type functions now take a gsl_rng random number generator as their first argument * siman.c (gsl_siman_solve): Now takes a gsl_rng random number generator as the first argument Fri Jun 19 11:17:24 1998 Brian Gough * siman.c (gsl_siman_solve_many): changed the variable 'throw' to 'u' (for uniform-random-number) so that we can compile with c++ where throw is a reserved word. Sat May 23 13:59:55 1998 Brian Gough * siman.c: made the solving functions deterministic by removing the random seed, gsl_ran_seed(time(0L)). When the function is non-deterministic it is hard to debug and test (about 1 time in 20 the test would fail due to the randomness). We can let the user do the seeding if they need that. 1998-02-09 Mark Galassi * siman_test_driver.sh (LAST_ENERGY): fixed a typo; the tests now report well when they converge. 1998-01-30 Mark Galassi * siman_test_driver.sh, Makefile.am (TESTS): added a test driver so that now "make check" does something interesting. gsl-1.16/siman/Makefile.am0000664000252300025230000000127212171574312012317 00000000000000## Process this file with automake to produce Makefile.in check_PROGRAMS = test noinst_PROGRAMS = siman_tsp noinst_LTLIBRARIES = libgslsiman.la TESTS = $(check_PROGRAMS) EXTRA_DIST = siman_test_driver.sh test_SOURCES = test.c test_LDADD = libgslsiman.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la siman_tsp_SOURCES = siman_tsp.c siman_tsp_LDADD = libgslsiman.la ../rng/libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../sys/libgslsys.la ../utils/libutils.la CLEANFILES = siman_test.out libgslsiman_la_SOURCES = siman.c pkginclude_HEADERS = gsl_siman.h INCLUDES = -I$(top_srcdir) gsl-1.16/siman/siman_test_driver.sh0000775000252300025230000000107612171574312014345 00000000000000#! /bin/sh # assume good result from tests; increment it if any test fails EXIT_STATUS=0 for seed in "" 12345 ; do ./siman_test > siman_test.out 2>&1 SECOND_LAST_ENERGY=`tail -2 siman_test.out1 | head -1 | awk '{print $4}'` LAST_ENERGY=`tail -1 siman_test.out1 | awk '{print $4}'` # echo " " $SECOND_LAST_ENERGY $LAST_ENERGY if [ $SECOND_LAST_ENERGY = $LAST_ENERGY ]; then echo -n "PASS: " else echo -n "FAIL: " EXIT_STATUS=`expr $EXIT_STATUS + 1` fi echo "simulated annealing test (travelling salesman problem) seed=${seed:-default}" done exit $EXIT_STATUS gsl-1.16/siman/gsl_siman.h0000664000252300025230000000571212171574312012413 00000000000000/* siman/gsl_siman.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Mark Galassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SIMAN_H__ #define __GSL_SIMAN_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* types for the function pointers passed to gsl_siman_solve */ typedef double (*gsl_siman_Efunc_t) (void *xp); typedef void (*gsl_siman_step_t) (const gsl_rng *r, void *xp, double step_size); typedef double (*gsl_siman_metric_t) (void *xp, void *yp); typedef void (*gsl_siman_print_t) (void *xp); typedef void (*gsl_siman_copy_t) (void *source, void *dest); typedef void * (*gsl_siman_copy_construct_t) (void *xp); typedef void (*gsl_siman_destroy_t) (void *xp); /* this structure contains all the information needed to structure the search, beyond the energy function, the step function and the initial guess. */ typedef struct { int n_tries; /* how many points to try for each step */ int iters_fixed_T; /* how many iterations at each temperature? */ double step_size; /* max step size in the random walk */ /* the following parameters are for the Boltzmann distribution */ double k, t_initial, mu_t, t_min; } gsl_siman_params_t; /* prototype for the workhorse function */ void gsl_siman_solve(const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef, gsl_siman_step_t take_step, gsl_siman_metric_t distance, gsl_siman_print_t print_position, gsl_siman_copy_t copyfunc, gsl_siman_copy_construct_t copy_constructor, gsl_siman_destroy_t destructor, size_t element_size, gsl_siman_params_t params); void gsl_siman_solve_many (const gsl_rng * r, void *x0_p, gsl_siman_Efunc_t Ef, gsl_siman_step_t take_step, gsl_siman_metric_t distance, gsl_siman_print_t print_position, size_t element_size, gsl_siman_params_t params); __END_DECLS #endif /* __GSL_SIMAN_H__ */ gsl-1.16/blas/0000775000252300025230000000000012172254157010156 500000000000000gsl-1.16/blas/gsl_blas.h0000664000252300025230000005265612171574312012050 00000000000000/* blas/gsl_blas.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Author: G. Jungman */ #ifndef __GSL_BLAS_H__ #define __GSL_BLAS_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* ======================================================================== * Level 1 * ======================================================================== */ int gsl_blas_sdsdot (float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, float * result ); int gsl_blas_dsdot (const gsl_vector_float * X, const gsl_vector_float * Y, double * result ); int gsl_blas_sdot (const gsl_vector_float * X, const gsl_vector_float * Y, float * result ); int gsl_blas_ddot (const gsl_vector * X, const gsl_vector * Y, double * result ); int gsl_blas_cdotu (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * dotu); int gsl_blas_cdotc (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * dotc); int gsl_blas_zdotu (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * dotu); int gsl_blas_zdotc (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * dotc); float gsl_blas_snrm2 (const gsl_vector_float * X); float gsl_blas_sasum (const gsl_vector_float * X); double gsl_blas_dnrm2 (const gsl_vector * X); double gsl_blas_dasum (const gsl_vector * X); float gsl_blas_scnrm2 (const gsl_vector_complex_float * X); float gsl_blas_scasum (const gsl_vector_complex_float * X); double gsl_blas_dznrm2 (const gsl_vector_complex * X); double gsl_blas_dzasum (const gsl_vector_complex * X); CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * X); CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * X); CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * X); CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * X); int gsl_blas_sswap (gsl_vector_float * X, gsl_vector_float * Y); int gsl_blas_scopy (const gsl_vector_float * X, gsl_vector_float * Y); int gsl_blas_saxpy (float alpha, const gsl_vector_float * X, gsl_vector_float * Y); int gsl_blas_dswap (gsl_vector * X, gsl_vector * Y); int gsl_blas_dcopy (const gsl_vector * X, gsl_vector * Y); int gsl_blas_daxpy (double alpha, const gsl_vector * X, gsl_vector * Y); int gsl_blas_cswap (gsl_vector_complex_float * X, gsl_vector_complex_float * Y); int gsl_blas_ccopy (const gsl_vector_complex_float * X, gsl_vector_complex_float * Y); int gsl_blas_caxpy (const gsl_complex_float alpha, const gsl_vector_complex_float * X, gsl_vector_complex_float * Y); int gsl_blas_zswap (gsl_vector_complex * X, gsl_vector_complex * Y); int gsl_blas_zcopy (const gsl_vector_complex * X, gsl_vector_complex * Y); int gsl_blas_zaxpy (const gsl_complex alpha, const gsl_vector_complex * X, gsl_vector_complex * Y); int gsl_blas_srotg (float a[], float b[], float c[], float s[]); int gsl_blas_srotmg (float d1[], float d2[], float b1[], float b2, float P[]); int gsl_blas_srot (gsl_vector_float * X, gsl_vector_float * Y, float c, float s); int gsl_blas_srotm (gsl_vector_float * X, gsl_vector_float * Y, const float P[]); int gsl_blas_drotg (double a[], double b[], double c[], double s[]); int gsl_blas_drotmg (double d1[], double d2[], double b1[], double b2, double P[]); int gsl_blas_drot (gsl_vector * X, gsl_vector * Y, const double c, const double s); int gsl_blas_drotm (gsl_vector * X, gsl_vector * Y, const double P[]); void gsl_blas_sscal (float alpha, gsl_vector_float * X); void gsl_blas_dscal (double alpha, gsl_vector * X); void gsl_blas_cscal (const gsl_complex_float alpha, gsl_vector_complex_float * X); void gsl_blas_zscal (const gsl_complex alpha, gsl_vector_complex * X); void gsl_blas_csscal (float alpha, gsl_vector_complex_float * X); void gsl_blas_zdscal (double alpha, gsl_vector_complex * X); /* =========================================================================== * Level 2 * =========================================================================== */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ int gsl_blas_sgemv (CBLAS_TRANSPOSE_t TransA, float alpha, const gsl_matrix_float * A, const gsl_vector_float * X, float beta, gsl_vector_float * Y); int gsl_blas_strmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * X); int gsl_blas_strsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * X); int gsl_blas_dgemv (CBLAS_TRANSPOSE_t TransA, double alpha, const gsl_matrix * A, const gsl_vector * X, double beta, gsl_vector * Y); int gsl_blas_dtrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * X); int gsl_blas_dtrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * X); int gsl_blas_cgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float beta, gsl_vector_complex_float * Y); int gsl_blas_ctrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X); int gsl_blas_ctrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X); int gsl_blas_zgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex beta, gsl_vector_complex * Y); int gsl_blas_ztrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex * X); int gsl_blas_ztrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex *X); /* * Routines with S and D prefixes only */ int gsl_blas_ssymv (CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_vector_float * X, float beta, gsl_vector_float * Y); int gsl_blas_sger (float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A); int gsl_blas_ssyr (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * X, gsl_matrix_float * A); int gsl_blas_ssyr2 (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A); int gsl_blas_dsymv (CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_vector * X, double beta, gsl_vector * Y); int gsl_blas_dger (double alpha, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A); int gsl_blas_dsyr (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * X, gsl_matrix * A); int gsl_blas_dsyr2 (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A); /* * Routines with C and Z prefixes only */ int gsl_blas_chemv (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float beta, gsl_vector_complex_float * Y); int gsl_blas_cgeru (const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A); int gsl_blas_cgerc (const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A); int gsl_blas_cher (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_complex_float * X, gsl_matrix_complex_float * A); int gsl_blas_cher2 (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A); int gsl_blas_zhemv (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex beta, gsl_vector_complex * Y); int gsl_blas_zgeru (const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A); int gsl_blas_zgerc (const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A); int gsl_blas_zher (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector_complex * X, gsl_matrix_complex * A); int gsl_blas_zher2 (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A); /* * =========================================================================== * Prototypes for level 3 BLAS * =========================================================================== */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ int gsl_blas_sgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C); int gsl_blas_ssymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C); int gsl_blas_ssyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, float beta, gsl_matrix_float * C); int gsl_blas_ssyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C); int gsl_blas_strmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B); int gsl_blas_strsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B); int gsl_blas_dgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C); int gsl_blas_dsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C); int gsl_blas_dsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, double beta, gsl_matrix * C); int gsl_blas_dsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C); int gsl_blas_dtrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B); int gsl_blas_dtrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B); int gsl_blas_cgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C); int gsl_blas_csymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C); int gsl_blas_csyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_complex_float beta, gsl_matrix_complex_float * C); int gsl_blas_csyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C); int gsl_blas_ctrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B); int gsl_blas_ctrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B); int gsl_blas_zgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C); int gsl_blas_zsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C); int gsl_blas_zsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_complex beta, gsl_matrix_complex * C); int gsl_blas_zsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex *C); int gsl_blas_ztrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B); int gsl_blas_ztrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B); /* * Routines with prefixes C and Z only */ int gsl_blas_chemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C); int gsl_blas_cherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_complex_float * A, float beta, gsl_matrix_complex_float * C); int gsl_blas_cher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, float beta, gsl_matrix_complex_float * C); int gsl_blas_zhemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C); int gsl_blas_zherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix_complex * A, double beta, gsl_matrix_complex * C); int gsl_blas_zher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, double beta, gsl_matrix_complex * C); __END_DECLS #endif /* __GSL_BLAS_H__ */ gsl-1.16/blas/blas.c0000664000252300025230000016000212171574312011157 00000000000000/* blas/blas.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2009 Gerard Jungman & Brian * Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* GSL implementation of BLAS operations for vectors and dense * matrices. Note that GSL native storage is row-major. */ #include #include #include #include #include #include #include /* ======================================================================== * Level 1 * ======================================================================== */ /* CBLAS defines vector sizes in terms of int. GSL defines sizes in terms of size_t, so we need to convert these into integers. There is the possibility of overflow here. FIXME: Maybe this could be caught */ #define INT(X) ((int)(X)) int gsl_blas_sdsdot (float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, float *result) { if (X->size == Y->size) { *result = cblas_sdsdot (INT (X->size), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dsdot (const gsl_vector_float * X, const gsl_vector_float * Y, double *result) { if (X->size == Y->size) { *result = cblas_dsdot (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_sdot (const gsl_vector_float * X, const gsl_vector_float * Y, float *result) { if (X->size == Y->size) { *result = cblas_sdot (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ddot (const gsl_vector * X, const gsl_vector * Y, double *result) { if (X->size == Y->size) { *result = cblas_ddot (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_cdotu (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * dotu) { if (X->size == Y->size) { cblas_cdotu_sub (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), GSL_COMPLEX_P (dotu)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_cdotc (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * dotc) { if (X->size == Y->size) { cblas_cdotc_sub (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), GSL_COMPLEX_P (dotc)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zdotu (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * dotu) { if (X->size == Y->size) { cblas_zdotu_sub (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), GSL_COMPLEX_P (dotu)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zdotc (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * dotc) { if (X->size == Y->size) { cblas_zdotc_sub (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), GSL_COMPLEX_P (dotc)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Norms of vectors */ float gsl_blas_snrm2 (const gsl_vector_float * X) { return cblas_snrm2 (INT (X->size), X->data, INT (X->stride)); } double gsl_blas_dnrm2 (const gsl_vector * X) { return cblas_dnrm2 (INT (X->size), X->data, INT (X->stride)); } float gsl_blas_scnrm2 (const gsl_vector_complex_float * X) { return cblas_scnrm2 (INT (X->size), X->data, INT (X->stride)); } double gsl_blas_dznrm2 (const gsl_vector_complex * X) { return cblas_dznrm2 (INT (X->size), X->data, INT (X->stride)); } /* Absolute sums of vectors */ float gsl_blas_sasum (const gsl_vector_float * X) { return cblas_sasum (INT (X->size), X->data, INT (X->stride)); } double gsl_blas_dasum (const gsl_vector * X) { return cblas_dasum (INT (X->size), X->data, INT (X->stride)); } float gsl_blas_scasum (const gsl_vector_complex_float * X) { return cblas_scasum (INT (X->size), X->data, INT (X->stride)); } double gsl_blas_dzasum (const gsl_vector_complex * X) { return cblas_dzasum (INT (X->size), X->data, INT (X->stride)); } /* Maximum elements of vectors */ CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * X) { return cblas_isamax (INT (X->size), X->data, INT (X->stride)); } CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * X) { return cblas_idamax (INT (X->size), X->data, INT (X->stride)); } CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * X) { return cblas_icamax (INT (X->size), X->data, INT (X->stride)); } CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * X) { return cblas_izamax (INT (X->size), X->data, INT (X->stride)); } /* Swap vectors */ int gsl_blas_sswap (gsl_vector_float * X, gsl_vector_float * Y) { if (X->size == Y->size) { cblas_sswap (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dswap (gsl_vector * X, gsl_vector * Y) { if (X->size == Y->size) { cblas_dswap (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); }; } int gsl_blas_cswap (gsl_vector_complex_float * X, gsl_vector_complex_float * Y) { if (X->size == Y->size) { cblas_cswap (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zswap (gsl_vector_complex * X, gsl_vector_complex * Y) { if (X->size == Y->size) { cblas_zswap (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Copy vectors */ int gsl_blas_scopy (const gsl_vector_float * X, gsl_vector_float * Y) { if (X->size == Y->size) { cblas_scopy (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dcopy (const gsl_vector * X, gsl_vector * Y) { if (X->size == Y->size) { cblas_dcopy (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ccopy (const gsl_vector_complex_float * X, gsl_vector_complex_float * Y) { if (X->size == Y->size) { cblas_ccopy (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zcopy (const gsl_vector_complex * X, gsl_vector_complex * Y) { if (X->size == Y->size) { cblas_zcopy (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Compute Y = alpha X + Y */ int gsl_blas_saxpy (float alpha, const gsl_vector_float * X, gsl_vector_float * Y) { if (X->size == Y->size) { cblas_saxpy (INT (X->size), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_daxpy (double alpha, const gsl_vector * X, gsl_vector * Y) { if (X->size == Y->size) { cblas_daxpy (INT (X->size), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_caxpy (const gsl_complex_float alpha, const gsl_vector_complex_float * X, gsl_vector_complex_float * Y) { if (X->size == Y->size) { cblas_caxpy (INT (X->size), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zaxpy (const gsl_complex alpha, const gsl_vector_complex * X, gsl_vector_complex * Y) { if (X->size == Y->size) { cblas_zaxpy (INT (X->size), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Generate rotation */ int gsl_blas_srotg (float a[], float b[], float c[], float s[]) { cblas_srotg (a, b, c, s); return GSL_SUCCESS; } int gsl_blas_drotg (double a[], double b[], double c[], double s[]) { cblas_drotg (a, b, c, s); return GSL_SUCCESS; } /* Apply rotation to vectors */ int gsl_blas_srot (gsl_vector_float * X, gsl_vector_float * Y, float c, float s) { if (X->size == Y->size) { cblas_srot (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), c, s); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_drot (gsl_vector * X, gsl_vector * Y, const double c, const double s) { if (X->size == Y->size) { cblas_drot (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), c, s); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Generate modified rotation */ int gsl_blas_srotmg (float d1[], float d2[], float b1[], float b2, float P[]) { cblas_srotmg (d1, d2, b1, b2, P); return GSL_SUCCESS; } int gsl_blas_drotmg (double d1[], double d2[], double b1[], double b2, double P[]) { cblas_drotmg (d1, d2, b1, b2, P); return GSL_SUCCESS; } /* Apply modified rotation */ int gsl_blas_srotm (gsl_vector_float * X, gsl_vector_float * Y, const float P[]) { if (X->size == Y->size) { cblas_srotm (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), P); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_drotm (gsl_vector * X, gsl_vector * Y, const double P[]) { if (X->size == Y->size) { cblas_drotm (INT (X->size), X->data, INT (X->stride), Y->data, INT (Y->stride), P); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* Scale vector */ void gsl_blas_sscal (float alpha, gsl_vector_float * X) { cblas_sscal (INT (X->size), alpha, X->data, INT (X->stride)); } void gsl_blas_dscal (double alpha, gsl_vector * X) { cblas_dscal (INT (X->size), alpha, X->data, INT (X->stride)); } void gsl_blas_cscal (const gsl_complex_float alpha, gsl_vector_complex_float * X) { cblas_cscal (INT (X->size), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride)); } void gsl_blas_zscal (const gsl_complex alpha, gsl_vector_complex * X) { cblas_zscal (INT (X->size), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride)); } void gsl_blas_csscal (float alpha, gsl_vector_complex_float * X) { cblas_csscal (INT (X->size), alpha, X->data, INT (X->stride)); } void gsl_blas_zdscal (double alpha, gsl_vector_complex * X) { cblas_zdscal (INT (X->size), alpha, X->data, INT (X->stride)); } /* =========================================================================== * Level 2 * =========================================================================== */ /* GEMV */ int gsl_blas_sgemv (CBLAS_TRANSPOSE_t TransA, float alpha, const gsl_matrix_float * A, const gsl_vector_float * X, float beta, gsl_vector_float * Y) { const size_t M = A->size1; const size_t N = A->size2; if ((TransA == CblasNoTrans && N == X->size && M == Y->size) || (TransA == CblasTrans && M == X->size && N == Y->size)) { cblas_sgemv (CblasRowMajor, TransA, INT (M), INT (N), alpha, A->data, INT (A->tda), X->data, INT (X->stride), beta, Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dgemv (CBLAS_TRANSPOSE_t TransA, double alpha, const gsl_matrix * A, const gsl_vector * X, double beta, gsl_vector * Y) { const size_t M = A->size1; const size_t N = A->size2; if ((TransA == CblasNoTrans && N == X->size && M == Y->size) || (TransA == CblasTrans && M == X->size && N == Y->size)) { cblas_dgemv (CblasRowMajor, TransA, INT (M), INT (N), alpha, A->data, INT (A->tda), X->data, INT (X->stride), beta, Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_cgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float beta, gsl_vector_complex_float * Y) { const size_t M = A->size1; const size_t N = A->size2; if ((TransA == CblasNoTrans && N == X->size && M == Y->size) || (TransA == CblasTrans && M == X->size && N == Y->size) || (TransA == CblasConjTrans && M == X->size && N == Y->size)) { cblas_cgemv (CblasRowMajor, TransA, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), X->data, INT (X->stride), GSL_COMPLEX_P (&beta), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex beta, gsl_vector_complex * Y) { const size_t M = A->size1; const size_t N = A->size2; if ((TransA == CblasNoTrans && N == X->size && M == Y->size) || (TransA == CblasTrans && M == X->size && N == Y->size) || (TransA == CblasConjTrans && M == X->size && N == Y->size)) { cblas_zgemv (CblasRowMajor, TransA, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), X->data, INT (X->stride), GSL_COMPLEX_P (&beta), Y->data, INT (Y->stride)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* HEMV */ int gsl_blas_chemv (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float beta, gsl_vector_complex_float * Y) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size || N != Y->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_chemv (CblasRowMajor, Uplo, INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), X->data, INT (X->stride), GSL_COMPLEX_P (&beta), Y->data, INT (Y->stride)); return GSL_SUCCESS; } int gsl_blas_zhemv (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex beta, gsl_vector_complex * Y) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size || N != Y->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zhemv (CblasRowMajor, Uplo, INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), X->data, INT (X->stride), GSL_COMPLEX_P (&beta), Y->data, INT (Y->stride)); return GSL_SUCCESS; } /* SYMV */ int gsl_blas_ssymv (CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_vector_float * X, float beta, gsl_vector_float * Y) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size || N != Y->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ssymv (CblasRowMajor, Uplo, INT (N), alpha, A->data, INT (A->tda), X->data, INT (X->stride), beta, Y->data, INT (Y->stride)); return GSL_SUCCESS; } int gsl_blas_dsymv (CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_vector * X, double beta, gsl_vector * Y) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size || N != Y->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dsymv (CblasRowMajor, Uplo, INT (N), alpha, A->data, INT (A->tda), X->data, INT (X->stride), beta, Y->data, INT (Y->stride)); return GSL_SUCCESS; } /* TRMV */ int gsl_blas_strmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_strmv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_dtrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dtrmv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_ctrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ctrmv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_ztrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ztrmv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } /* TRSV */ int gsl_blas_strsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_strsv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_dtrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dtrsv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_ctrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ctrsv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } int gsl_blas_ztrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex * X) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (N != X->size) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ztrsv (CblasRowMajor, Uplo, TransA, Diag, INT (N), A->data, INT (A->tda), X->data, INT (X->stride)); return GSL_SUCCESS; } /* GER */ int gsl_blas_sger (float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_sger (CblasRowMajor, INT (M), INT (N), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dger (double alpha, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_dger (CblasRowMajor, INT (M), INT (N), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* GERU */ int gsl_blas_cgeru (const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_cgeru (CblasRowMajor, INT (M), INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zgeru (const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_zgeru (CblasRowMajor, INT (M), INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* GERC */ int gsl_blas_cgerc (const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_cgerc (CblasRowMajor, INT (M), INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zgerc (const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) { const size_t M = A->size1; const size_t N = A->size2; if (X->size == M && Y->size == N) { cblas_zgerc (CblasRowMajor, INT (M), INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* HER */ int gsl_blas_cher (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_complex_float * X, gsl_matrix_complex_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_cher (CblasRowMajor, Uplo, INT (M), alpha, X->data, INT (X->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } int gsl_blas_zher (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector_complex * X, gsl_matrix_complex * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zher (CblasRowMajor, Uplo, INT (N), alpha, X->data, INT (X->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } /* HER2 */ int gsl_blas_cher2 (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N || Y->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_cher2 (CblasRowMajor, Uplo, INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } int gsl_blas_zher2 (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N || Y->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zher2 (CblasRowMajor, Uplo, INT (N), GSL_COMPLEX_P (&alpha), X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } /* SYR */ int gsl_blas_ssyr (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * X, gsl_matrix_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ssyr (CblasRowMajor, Uplo, INT (N), alpha, X->data, INT (X->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } int gsl_blas_dsyr (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * X, gsl_matrix * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dsyr (CblasRowMajor, Uplo, INT (N), alpha, X->data, INT (X->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } /* SYR2 */ int gsl_blas_ssyr2 (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N || Y->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ssyr2 (CblasRowMajor, Uplo, INT (N), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } int gsl_blas_dsyr2 (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR ("matrix must be square", GSL_ENOTSQR); } else if (X->size != N || Y->size != N) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dsyr2 (CblasRowMajor, Uplo, INT (N), alpha, X->data, INT (X->stride), Y->data, INT (Y->stride), A->data, INT (A->tda)); return GSL_SUCCESS; } /* * =========================================================================== * Prototypes for level 3 BLAS * =========================================================================== */ /* GEMM */ int gsl_blas_sgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (TransA == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (TransA == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (TransB == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (TransB == CblasNoTrans) ? B->size2 : B->size1; if (M == MA && N == NB && NA == MB) /* [MxN] = [MAxNA][MBxNB] */ { cblas_sgemm (CblasRowMajor, TransA, TransB, INT (M), INT (N), INT (NA), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (TransA == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (TransA == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (TransB == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (TransB == CblasNoTrans) ? B->size2 : B->size1; if (M == MA && N == NB && NA == MB) /* [MxN] = [MAxNA][MBxNB] */ { cblas_dgemm (CblasRowMajor, TransA, TransB, INT (M), INT (N), INT (NA), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_cgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (TransA == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (TransA == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (TransB == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (TransB == CblasNoTrans) ? B->size2 : B->size1; if (M == MA && N == NB && NA == MB) /* [MxN] = [MAxNA][MBxNB] */ { cblas_cgemm (CblasRowMajor, TransA, TransB, INT (M), INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zgemm (CBLAS_TRANSPOSE_t TransA, CBLAS_TRANSPOSE_t TransB, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (TransA == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (TransA == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (TransB == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (TransB == CblasNoTrans) ? B->size2 : B->size1; if (M == MA && N == NB && NA == MB) /* [MxN] = [MAxNA][MBxNB] */ { cblas_zgemm (CblasRowMajor, TransA, TransB, INT (M), INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* SYMM */ int gsl_blas_ssymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_ssymm (CblasRowMajor, Side, Uplo, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_dsymm (CblasRowMajor, Side, Uplo, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_csymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_csymm (CblasRowMajor, Side, Uplo, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zsymm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_zsymm (CblasRowMajor, Side, Uplo, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* HEMM */ int gsl_blas_chemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_chemm (CblasRowMajor, Side, Uplo, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_zhemm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = A->size1; const size_t NA = A->size2; const size_t MB = B->size1; const size_t NB = B->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && (M == MA && N == NB && NA == MB)) || (Side == CblasRight && (M == MB && N == NA && NB == MA))) { cblas_zhemm (CblasRowMajor, Side, Uplo, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* SYRK */ int gsl_blas_ssyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, float beta, gsl_matrix_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ssyrk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), alpha, A->data, INT (A->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_dsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, double beta, gsl_matrix * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dsyrk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), alpha, A->data, INT (A->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_csyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_complex_float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_csyrk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_zsyrk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_complex beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zsyrk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } /* HERK */ int gsl_blas_cherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_complex_float * A, float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_cherk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), alpha, A->data, INT (A->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_zherk (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix_complex * A, double beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t J = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t K = (Trans == CblasNoTrans) ? A->size2 : A->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != J) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zherk (CblasRowMajor, Uplo, Trans, INT (N), INT (K), alpha, A->data, INT (A->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } /* SYR2K */ int gsl_blas_ssyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, float alpha, const gsl_matrix_float * A, const gsl_matrix_float * B, float beta, gsl_matrix_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_ssyr2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_dsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, double alpha, const gsl_matrix * A, const gsl_matrix * B, double beta, gsl_matrix * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_dsyr2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), alpha, A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_csyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_csyr2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_zsyr2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zsyr2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), GSL_COMPLEX_P (&beta), C->data, INT (C->tda)); return GSL_SUCCESS; } /* HER2K */ int gsl_blas_cher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, float beta, gsl_matrix_complex_float * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_cher2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } int gsl_blas_zher2k (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t Trans, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_matrix_complex * B, double beta, gsl_matrix_complex * C) { const size_t M = C->size1; const size_t N = C->size2; const size_t MA = (Trans == CblasNoTrans) ? A->size1 : A->size2; const size_t NA = (Trans == CblasNoTrans) ? A->size2 : A->size1; const size_t MB = (Trans == CblasNoTrans) ? B->size1 : B->size2; const size_t NB = (Trans == CblasNoTrans) ? B->size2 : B->size1; if (M != N) { GSL_ERROR ("matrix C must be square", GSL_ENOTSQR); } else if (N != MA || N != MB || NA != NB) { GSL_ERROR ("invalid length", GSL_EBADLEN); } cblas_zher2k (CblasRowMajor, Uplo, Trans, INT (N), INT (NA), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda), beta, C->data, INT (C->tda)); return GSL_SUCCESS; } /* TRMM */ int gsl_blas_strmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_strmm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dtrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_dtrmm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ctrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_ctrmm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ztrmm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_ztrmm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } /* TRSM */ int gsl_blas_strsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, float alpha, const gsl_matrix_float * A, gsl_matrix_float * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_strsm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_dtrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, double alpha, const gsl_matrix * A, gsl_matrix * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_dtrsm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), alpha, A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ctrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_ctrsm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } int gsl_blas_ztrsm (CBLAS_SIDE_t Side, CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_complex alpha, const gsl_matrix_complex * A, gsl_matrix_complex * B) { const size_t M = B->size1; const size_t N = B->size2; const size_t MA = A->size1; const size_t NA = A->size2; if (MA != NA) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } if ((Side == CblasLeft && M == MA) || (Side == CblasRight && N == MA)) { cblas_ztrsm (CblasRowMajor, Side, Uplo, TransA, Diag, INT (M), INT (N), GSL_COMPLEX_P (&alpha), A->data, INT (A->tda), B->data, INT (B->tda)); return GSL_SUCCESS; } else { GSL_ERROR ("invalid length", GSL_EBADLEN); } } gsl-1.16/blas/TODO0000664000252300025230000000041612171574312010564 00000000000000# -*- org -*- #+CATEGORY: blas * We need a test suite for this directory! * Verify that we support the full CBLAS interface and that the GSL CBLAS library can be used standalone * Check that substituting the Reference Blas, ATLAS, and Intel BLAS all work correctly gsl-1.16/blas/Makefile.in0000664000252300025230000005102312172253754012146 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = blas DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslblas_la_LIBADD = am_libgslblas_la_OBJECTS = blas.lo libgslblas_la_OBJECTS = $(am_libgslblas_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslblas_la_SOURCES) DIST_SOURCES = $(libgslblas_la_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslblas.la pkginclude_HEADERS = gsl_blas.h gsl_blas_types.h INCLUDES = -I$(top_srcdir) libgslblas_la_SOURCES = blas.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .o .obj $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu blas/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu blas/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslblas.la: $(libgslblas_la_OBJECTS) $(libgslblas_la_DEPENDENCIES) $(EXTRA_libgslblas_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslblas_la_OBJECTS) $(libgslblas_la_LIBADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/blas.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool clean-noinstLTLIBRARIES \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstLTLIBRARIES cscopelist-am ctags \ ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-compile mostlyclean-generic mostlyclean-libtool \ pdf pdf-am ps ps-am tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #check_PROGRAMS = test #TESTS = test #test_LDADD = libgslblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #test_SOURCES = test_blas_raw.c test_cases.c test_cases.h # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/blas/ChangeLog0000664000252300025230000000467412171574312011660 000000000000002009-04-30 Brian Gough * blas.c (gsl_blas_drotm): fix incorrect length check 2005-04-05 Brian Gough * blas.c (gsl_blas_ssyrk): test conformance against size correctly allowing for transpose 2004-12-21 Brian Gough * blas.c (gsl_blas_ssyrk): corrected K to be A->size2 instead of A->size1 (gsl_blas_dsyrk): as above (gsl_blas_csyrk): as above (gsl_blas_zsyrk): as above (gsl_blas_cherk): as above (gsl_blas_zherk): as above Mon Mar 18 19:39:34 2002 Brian Gough * blas.c (gsl_blas_zgemv): added missing case of CblasConjTrans to zgemv and cgemv Mon Feb 18 20:01:49 2002 Brian Gough * gsl_blas_types.h: removed unneeded header files Sat Apr 28 15:25:16 2001 Brian Gough * blas.c: cast size_t to int for calls to CBLAS Mon Mar 19 17:04:47 2001 Brian Gough * split cblas routines out into a separate directory and library which can be used as a cblas outside gsl Tue Sep 19 19:07:44 2000 Brian Gough * test_blas_raw.c: added tests for dtbsv Sat Sep 16 20:27:18 2000 Brian Gough * blas.c: use GSL_ERROR macro to signal errors Fri Sep 15 20:04:28 2000 Brian Gough * source_iamax_r.h source_iamax_c.h: initialize max index to zero before loop, so that the result is defined for a null vector Mon May 22 12:27:47 2000 Brian Gough * Makefile.am (lib_LTLIBRARIES): renamed libgslblasnative.la to libgslblas.la since "native" is ambiguous (suggests system-supplied blas). * test_blas_raw.c (test_L1): added test to cover for initial run-in of odd lengths on loop unrolling in saxpy. Tue Mar 21 14:22:30 2000 Brian Gough * test_blas_raw.c (test_L1): test norms for zero vectors * source_nrm2_r.h, source_nrm2_r.h: skip zero elements of array, as in original BLAS, fixes bug for vectors with leading zeros. Tue Mar 7 19:05:43 2000 Brian Gough * Makefile.am (noinst_LTLIBRARIES): with libtool blasnative and blascblas layers need to be installed as additional libraries, not in libgsl.a. Fri Oct 1 15:50:14 1999 Brian Gough * blas.c: make use of "trailing dimension" in matrix struct to support LDA arguments for level 2 BLAS. gsl-1.16/blas/Makefile.am0000664000252300025230000000055712171574312012136 00000000000000noinst_LTLIBRARIES = libgslblas.la pkginclude_HEADERS = gsl_blas.h gsl_blas_types.h INCLUDES = -I$(top_srcdir) libgslblas_la_SOURCES = blas.c #check_PROGRAMS = test #TESTS = test #test_LDADD = libgslblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #test_SOURCES = test_blas_raw.c test_cases.c test_cases.h gsl-1.16/blas/gsl_blas_types.h0000664000252300025230000000305312171574312013257 00000000000000/* blas/gsl_blas_types.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Author: G. Jungman */ /* Based on draft BLAST C interface specification [Jul 7 1998] */ #ifndef __GSL_BLAS_TYPES_H__ #define __GSL_BLAS_TYPES_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef CBLAS_INDEX CBLAS_INDEX_t; typedef enum CBLAS_ORDER CBLAS_ORDER_t; typedef enum CBLAS_TRANSPOSE CBLAS_TRANSPOSE_t; typedef enum CBLAS_UPLO CBLAS_UPLO_t; typedef enum CBLAS_DIAG CBLAS_DIAG_t; typedef enum CBLAS_SIDE CBLAS_SIDE_t; /* typedef gsl_complex COMPLEX; */ __END_DECLS #endif /* __GSL_BLAS_TYPES_H__ */ gsl-1.16/THANKS0000664000252300025230000004145612171574312010077 00000000000000* Jim McElwaine for very useful comments and discussions about the dilogarithm and related functions. * Simone Piccardi for extensions to the histogram routines, and providing the ntuple code * Nelson H. F. Beebe for references and testing the software on many different platforms. * Tim Mooney for IEEE support for Tru64, AIX, IRIX, fixes for odes, and testing * Thomas Walter for heapsort routines, cholesky decomposition, bug reports and useful suggestions * Jorma Olavi Tähtinen for complex arithmetic functions * Barak Pearlmutter * Frederick W. Wheeler * Bernd Petrovitsch * Jacek Pliszka for bug report * Michele Clark for bug report * Jeffrey Russell Horner for information on CBLAS * Rahul V. Herwadkar for testing * Trond Bo for bug report * Jan Kasprzak for bug report * David Kaelbling for testing * Mark Levedahl for bug report * David Billinghurst for testing * Jean-Bernard ADDOR for bug report * Fabrice Rossi bug reports and suggestions * Paul Walmsley for bug report and patch for fixing matmult. * Dave Morrison for advice on build procedure and various patches, the diff/ numerical differentiation routines, multmin documentation, and Landau distribution * Brett Viren for debugging qpsrt.c. * Christopher Gabriel contributed the gsl-config and gsl.m4 we use. * C M Murphy patch to fix up consts in header files * Bracy H. Elton for correcting a reference in the FFT Algorithms document * Tadhg O'Meara for finding a bug in gsl-randist * Steve Robbins patch to work around FP_RND problems on Tru64, testing and other patches., bug fix for nm_simplex algorithm. * John Fisher testing on powerpc linux and support for fp-ppclinux.c * OKUJI Yoshinori for a patch for fp-x86linux.c for libc5 * Pablo Bianucci for patches to complex matrix/vectors * Toby White for several patches and improvements to the design, OpenBSD support * Bill Brower for bug report on gsl.m4 * Vladimir Kushnir for ieee support for FreeBSD * F J Franklin for test reports and debugging * Keith Briggs for bug reports and code for the skewed Levy alpha-stable variates gsl_ran_levy_skew * Vince for permutation iterator functions * Henry Sobotka for ieee support for OS/2 and bug fixes * Remy Bruno for bug fix * M. Lavasani for bug reports and testing on HPUX11 * Jason Beegan for NetBSD support * Zeger Knops for bug fix * Rodney Sparapani for Darwin support * Ramin Nakisa for bug reports * Achim Gaedke for bug reports and suggestions, additional histogram code, PyGSL python interface, 2d histogram statistics, bug fixes for simulated annealing * Eric Rose for bug report and useful tip on casting * M Joonas Pihlaja for bug reports * Albert Chin for bug reports, patches, and providing HP-UX platforms for testing * Asterio Gonzalez for a bug report for multmin * Carlo Perassi for implementing the random number generators in Knuth's Seminumerical Algorithms, 3rd Ed. * Dan, Ho-Jin for divided differences interpolation routines * Stefan Koch for useful bug reports and fixes for the special functions * Szymon Jaroszewicz for the combinations modules and bug reports * Theis Peter Hansen fixed unchecked status values in multiroots * Jungemann Markus documentation fixes * Hans E. Plesser (hans dot plesser at itf dot nlh dot no) more reliable implementation of gamma_inc, multifit bug fixes * Arin Chaudhuri documentation bug reports * Karsten Howes siman bug fix * Vladimir Savichev bug reports * Jochen Küpper doc bug fixes, additional constants * John Ketchum for bug reports for the blas library * Nicolas Darnis additional permutation functions * Jeff Spirko patch for 1d minimization * David Necas (Yeti) bug reports and patches for linear algebra, interpolation, additional tridiagonal solvers * for bug report * Christian T. Steigies for documentation bug report * Atakan Gurkan for bug reports and patches for the random number generators. * David Ronis for bug reports and patches * Christian T. Steigies for a documentation fix * Teun Burgers improvements to configure script * Olivier Andrieu bug report for Chebyschev memory leak * Hiroshi Imamura extension to psi(1+iy) * Taliver Heath keep track of best solution in siman_solve. * Trevor Blackwell bug report test case for SVD d_n = 0, bug fix to mt19937 generator * Nicolas Bock documentation bug report * Alan Aspuru-Guzik documentation bug report * Peter S. Christopher bug fix for simulated annealing * Gene Carter build shared libraries on MacOS X * Fabian Jakobs fixed a bug in gsl_linalg_bidiag_unpack_B, and documentation bug-fix for blas * Gavin Crooks documentation bug fix, dirichlet distribution, multinomial distribution * Gert Van den Eynde gsl_ldexp, gsl_frexp, gsl_fcmp * Reinhold Bader , fixes for Hitachi SR8000 * Slaven Peles , build options for Compaq cc, doc bug fix * David Favis-Mortlock bug report for gsl_rng_taus2 seeding * Alexander Babansky documentation bug report for Ei(x) * Tiago de Paula Peixoto bug report for multifit memory allocation * Adam Johansen bug report for eigenvalue routines * Wolfgang Hoermann bug report for niederreiter qrng * Jerome Houdayer bug report for taus seeding * Conrad Curry bug and documentation reports * Erik Schnetter documentation bug reports * Maarten De Munck bug fix for vector/matrix get * Axel Hutt bug fix for QAWC integration, documentation bug fix * Martin Jansche various bug reports * Gregory Soyez documentation bug report * Attilio Rivoldini bug report for CBLAS tests * W.M. Vissers bug report for gsl_complex_arccsc_real * Paolo Redaelli bug report for chebyshev functions * Andrew Howard bug report for gsl_ran_discrete * Heiko Bauke bug reports and patches for random number generators * Vincent Sacksteder bug reports for MSVC7 * Peter Verveer improvement to memory usage of MINPACK routines * Mario Pernici bug fix for gsl_combination_valid and new function gsl_permutation_memcpy, doc fix for bessel functions, bug fix for gsl_sf_psi_1_int, bug report for gsl_permutation_canonical_to_linear, linalg QRPT bug reports and fixes, and many other corrections. * Fabio Brugnara provided a much-needed bug fix for the conjugate gradient algorithm multidimensional minimisers. * Krzysztof Pachucki bug report for gsl_sf_hypergU_int * Carsten Svaneborg documentation bug report * Liguo Song documentation bug report * Carlo Ferrigno bug report for CGS units * Giulio Bottazzi many useful bug reports * Olaf Lenz rng frwite/fread, bug reports * Jamie Lokier for testing * Grant Lythe documentation bug report * Jussi Piitulainen documentation bug report * Aaron Schweiger bug report for SVD/column balancing * Carlo Ferrigno bug report about const problems * Jussi Piitulainen documenation bug report for gsl_ran_hypergeometric_pdf * Bas Zoetekouw documentation bug report * Paul Sydney bug report and patch for min/brent.c * Alexei Podtelezhnikov patch for sphere.c * Neil Bushong documentation typo bug report * Brad Bell documentation bug report * Andreas Schneider <1@c07.de> bug report for R250 * Luigi Ballabio fix m4 quoting in gsl.m4 * Zbigniew Koza documentation bug fix for odes * James Scott fix for linalg tests on MSVC * Rémi Butel fixes for multimin overflow conditions * Andris Pavenis Makefile fix for EXEEXT * Daniel Webb bug report for potential cspline division by zero * Ewald Stamp bugfix for vector/swap_source.c * Joerg Wensch LQ decompositions * Jason Stover patch for cdf/beta.c, inverse cumulative distributions, discrete cumulative distributions * Ralph Menikoff bug report for gsl_sf_expint_scaled * Yoshiki documentation bug report * Nigel Lowry documentation proofreading * Giulio Bottazzi cdf for exponential power distribution, bug reports * Tuomo Keskitalo many improvements to ode-initval * Britton Kerin documentation bug reports * Patricio Rojo patch for numerical instability in interpolation integrate function * Damir Herman improved accuracy of histogram range calculations * John Salmon bug report for gsl_cheb_eval_n_err * Dirk Eddelbuettel for bug reports and testing, and maintaining the Debian package for GSL. * Jari Häkkinen for svd bug reports, rng bug reports * Marco Canini patch for IXP2400 Xscale * Ben Klemens bug report for sorting vectors with NANs * Peter Brommer bug report and patch for Brent minimisation algorithm. * Gabriel Withington typo in docs * Stewart V. Wright patch for missing spline functions * Richard Mathar additional Debye functions n=5,6, handle case x==1 in 2F1. * Stefan Jahn bug fix for periodic cubic splines with n=3 * Yoram Burak bug report for scaled bessel function In_scaled * Mario Santos bug report for spherical bessel function * Vincent Plagnol bug report for gsl_randist_binomial_pdf * John Houck bug report for gsl_sf_synchrotron_1 * Jochen Voss ziggurat gaussian generator * John D Lamb Marsaglia-Tsang gamma generator, bug reports * Giulio Bottazzi improved exponential power distribution and gsl_multifit_linear_est * Charles Karney added Leva bounds to gaussian ratio method generator * Torquil Sorenson documentation bug fixes for FFTs * Yajun Wang - bug report for multifit n

- patch for Macos X on Intel * Lowell Johnson - implementation of mathieu functions * Brian Gladman - useful bug reports * B. Lazarov - compilation bug report for randist * Harald Moseby - special functions bug reports * Neil Harvey - bug report for beta pdf * Felipe G. Nievinski - documentation bug report * Daisuke TOMINAGA - Japanese translation of manual and numerous corrections * Andoline Bucciolini - documentation bug for BLAS * Daniel Falster bug report for fdist_Pinv * Giancarlo Marra bug report for M_PI_4 * Alan Irwin for sample implementation of improved BFGS algorithm. * Lionel Barnett for pointing out an error in the elliptic integrals * Ed Smith-Rowland <3dw4rd@verizon.net> patch for laguerre polynomials * Katrin Wolff bug report for Lambert W function * "Heikki Orsila " cleaning up siman code * Eugene Loh bug report for gsl_log1p * Richard Smith bug report and suggestions for correct use of isfinite * Marco Lombardi bug report for svd * I J Wilson bug report for dirichlet function * Justin Lenzo bug reports for vector/matrix tests. * Sebastian Queißer bug report for gsl_cdf_beta_Pinv * Andries Brouwer bug report for underflow in symmetric eigenvalues * Mingxi Wu bug report for multinomial pdf * Chris Mihelich bug reports and suggestions for gsl_ldexp and gsl_frexp * Frank Reininghaus complex polynomial evaluation and ode improvements * Jason Coy optimisation for dwt.c * Richard Guenther bug reports * Stijn van Dongen bug fix for overflow in gsl_cdf_hypergeometric_{P,Q} * Claude Dion documentation bug reports * Michael Kuklik bug report for simplex * Paul Accisano, bug report and fix for cyclic solver * Thomas Weber bug and patch for interp accelerator * Lori A. Pritchett-Sheats bug report for vegas chisq. * Frank Wang bug report for gsl_ran_gamma_knuth. * Peter Johansson fix for make install prefix=PREFIX * Taneli Kalvas bug report for odes * Marco Maggi bug fix for gsl_blas_drotm * Mateus Araújo Santos - bug fix for LM set * James Howse - quad_golden minimisation algorithm * Marc JOURDAIN - polynomial derivatives function * Andrew Steiner - for bug reports * Ettl Martin - bug report, rk4 memory * Yevgeniy Naumovich - bspline allocators fix * Huan Wu - gsl_linalg_complex_cholesky_invert * Ralf Wildenhues - numerous proofreading corrections * Thomas Tanner - bug report for gsl_sf_beta_inc * Sam Mason - bug fix for gsl_pow_int * José Luis García Pallero - error checking for GSL cblas * Teemu Ikonen patch for gsl_ran_chisq_pdf * Evgeny Kurbatov - patch for error handling in interpolation routines * Michel Kern - fix for singular Jacobian in Newton solver * Nikolay Simakov - bug report for gsl_eigen_jacobi * Jim Ward - numerous bug reports and useful suggestions * Josh Neil & Curt Hash - patch for negative binomial * Maximilian Treiber - bug report for gsl_sf_lncosh * Martin Landriau bug report for 3j coupling * Grigory I. Rubtsov - extend range of 3j * Matthias Sitte - bug report and patch for failing complex matrix IO routines gsl-1.16/roots/0000775000252300025230000000000012172254163010400 500000000000000gsl-1.16/roots/TODO0000664000252300025230000000064412171574312011014 00000000000000# -*- org -*- #+CATEGORY: roots * Add an inline version of the iterate method for speed? Perhaps not, the time taken for each iteration surely dominated by the convergence test. * Numerical derivatives? Maybe have a function to manufacture an fdf from an f and optionally a df. (We'll need to approximate the derivative if it is not provided; this is something which should be done outside the root finding package.) gsl-1.16/roots/fsolver.c0000664000252300025230000000512312171574312012145 00000000000000/* roots/fsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_root_fsolver * gsl_root_fsolver_alloc (const gsl_root_fsolver_type * T) { gsl_root_fsolver * s = (gsl_root_fsolver *) malloc (sizeof (gsl_root_fsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for root solver struct", GSL_ENOMEM, 0); }; s->state = malloc (T->size); if (s->state == 0) { free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for root solver state", GSL_ENOMEM, 0); }; s->type = T ; s->function = NULL ; return s; } int gsl_root_fsolver_set (gsl_root_fsolver * s, gsl_function * f, double x_lower, double x_upper) { if (x_lower > x_upper) { GSL_ERROR ("invalid interval (lower > upper)", GSL_EINVAL); } s->function = f; s->root = 0.5 * (x_lower + x_upper); /* initial estimate */ s->x_lower = x_lower; s->x_upper = x_upper; return (s->type->set) (s->state, s->function, &(s->root), x_lower, x_upper); } int gsl_root_fsolver_iterate (gsl_root_fsolver * s) { return (s->type->iterate) (s->state, s->function, &(s->root), &(s->x_lower), &(s->x_upper)); } void gsl_root_fsolver_free (gsl_root_fsolver * s) { RETURN_IF_NULL (s); free (s->state); free (s); } const char * gsl_root_fsolver_name (const gsl_root_fsolver * s) { return s->type->name; } double gsl_root_fsolver_root (const gsl_root_fsolver * s) { return s->root; } double gsl_root_fsolver_x_lower (const gsl_root_fsolver * s) { return s->x_lower; } double gsl_root_fsolver_x_upper (const gsl_root_fsolver * s) { return s->x_upper; } gsl-1.16/roots/test.c0000664000252300025230000002326412171574312011452 00000000000000/* roots/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "roots.h" #include "test.h" /* stopping parameters */ const double EPSREL = (10 * GSL_DBL_EPSILON); const double EPSABS = (10 * GSL_DBL_EPSILON); const unsigned int MAX_ITERATIONS = 150; void my_error_handler (const char *reason, const char *file, int line, int err); #define WITHIN_TOL(a, b, epsrel, epsabs) \ ((fabs((a) - (b)) < (epsrel) * GSL_MIN(fabs(a), fabs(b)) + (epsabs))) int main (void) { gsl_function F_sin, F_cos, F_func1, F_func2, F_func3, F_func4, F_func5, F_func6; gsl_function_fdf FDF_sin, FDF_cos, FDF_func1, FDF_func2, FDF_func3, FDF_func4, FDF_func5, FDF_func6; const gsl_root_fsolver_type * fsolver[4] ; const gsl_root_fdfsolver_type * fdfsolver[4] ; const gsl_root_fsolver_type ** T; const gsl_root_fdfsolver_type ** S; gsl_ieee_env_setup(); fsolver[0] = gsl_root_fsolver_bisection; fsolver[1] = gsl_root_fsolver_brent; fsolver[2] = gsl_root_fsolver_falsepos; fsolver[3] = 0; fdfsolver[0] = gsl_root_fdfsolver_newton; fdfsolver[1] = gsl_root_fdfsolver_secant; fdfsolver[2] = gsl_root_fdfsolver_steffenson; fdfsolver[3] = 0; F_sin = create_function (sin_f) ; F_cos = create_function (cos_f) ; F_func1 = create_function (func1) ; F_func2 = create_function (func2) ; F_func3 = create_function (func3) ; F_func4 = create_function (func4) ; F_func5 = create_function (func5) ; F_func6 = create_function (func6) ; FDF_sin = create_fdf (sin_f, sin_df, sin_fdf) ; FDF_cos = create_fdf (cos_f, cos_df, cos_fdf) ; FDF_func1 = create_fdf (func1, func1_df, func1_fdf) ; FDF_func2 = create_fdf (func2, func2_df, func2_fdf) ; FDF_func3 = create_fdf (func3, func3_df, func3_fdf) ; FDF_func4 = create_fdf (func4, func4_df, func4_fdf) ; FDF_func5 = create_fdf (func5, func5_df, func5_fdf) ; FDF_func6 = create_fdf (func6, func6_df, func6_fdf) ; gsl_set_error_handler (&my_error_handler); for (T = fsolver ; *T != 0 ; T++) { test_f (*T, "sin(x) [3, 4]", &F_sin, 3.0, 4.0, M_PI); test_f (*T, "sin(x) [-4, -3]", &F_sin, -4.0, -3.0, -M_PI); test_f (*T, "sin(x) [-1/3, 1]", &F_sin, -1.0 / 3.0, 1.0, 0.0); test_f (*T, "cos(x) [0, 3]", &F_cos, 0.0, 3.0, M_PI / 2.0); test_f (*T, "cos(x) [-3, 0]", &F_cos, -3.0, 0.0, -M_PI / 2.0); test_f (*T, "x^20 - 1 [0.1, 2]", &F_func1, 0.1, 2.0, 1.0); test_f (*T, "sqrt(|x|)*sgn(x)", &F_func2, -1.0 / 3.0, 1.0, 0.0); test_f (*T, "x^2 - 1e-8 [0, 1]", &F_func3, 0.0, 1.0, sqrt (1e-8)); test_f (*T, "x exp(-x) [-1/3, 2]", &F_func4, -1.0 / 3.0, 2.0, 0.0); test_f (*T, "(x - 1)^7 [0.9995, 1.0002]", &F_func6, 0.9995, 1.0002, 1.0); test_f_e (*T, "invalid range check [4, 0]", &F_sin, 4.0, 0.0, M_PI); test_f_e (*T, "invalid range check [1, 1]", &F_sin, 1.0, 1.0, M_PI); test_f_e (*T, "invalid range check [0.1, 0.2]", &F_sin, 0.1, 0.2, M_PI); } for (S = fdfsolver ; *S != 0 ; S++) { test_fdf (*S,"sin(x) {3.4}", &FDF_sin, 3.4, M_PI); test_fdf (*S,"sin(x) {-3.3}", &FDF_sin, -3.3, -M_PI); test_fdf (*S,"sin(x) {0.5}", &FDF_sin, 0.5, 0.0); test_fdf (*S,"cos(x) {0.6}", &FDF_cos, 0.6, M_PI / 2.0); test_fdf (*S,"cos(x) {-2.5}", &FDF_cos, -2.5, -M_PI / 2.0); test_fdf (*S,"x^{20} - 1 {0.9}", &FDF_func1, 0.9, 1.0); test_fdf (*S,"x^{20} - 1 {1.1}", &FDF_func1, 1.1, 1.0); test_fdf (*S,"sqrt(|x|)*sgn(x) {1.001}", &FDF_func2, 0.001, 0.0); test_fdf (*S,"x^2 - 1e-8 {1}", &FDF_func3, 1.0, sqrt (1e-8)); test_fdf (*S,"x exp(-x) {-2}", &FDF_func4, -2.0, 0.0); test_fdf_e (*S,"max iterations x -> +Inf, x exp(-x) {2}", &FDF_func4, 2.0, 0.0); test_fdf_e (*S,"max iterations x -> -Inf, 1/(1 + exp(-x)) {0}", &FDF_func5, 0.0, 0.0); } test_fdf (gsl_root_fdfsolver_steffenson, "(x - 1)^7 {0.9}", &FDF_func6, 0.9, 1.0); /* now summarize the results */ exit (gsl_test_summary ()); } /* Using gsl_root_bisection, find the root of the function pointed to by f, using the interval [lower_bound, upper_bound]. Check if f succeeded and that it was accurate enough. */ void test_f (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root) { int status; size_t iterations = 0; double r, a, b; double x_lower, x_upper; gsl_root_fsolver * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_root_fsolver_alloc(T); gsl_root_fsolver_set(s, f, x_lower, x_upper) ; do { iterations++ ; gsl_root_fsolver_iterate (s); r = gsl_root_fsolver_root(s); a = gsl_root_fsolver_x_lower(s); b = gsl_root_fsolver_x_upper(s); if (a > b) gsl_test (GSL_FAILURE, "interval is invalid (%g,%g)", a, b); if (r < a || r > b) gsl_test (GSL_FAILURE, "r lies outside interval %g (%g,%g)", r, a, b); status = gsl_root_test_interval (a,b, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (status, "%s, %s (%g obs vs %g expected) ", gsl_root_fsolver_name(s), description, gsl_root_fsolver_root(s), correct_root); if (iterations == MAX_ITERATIONS) { gsl_test (GSL_FAILURE, "exceeded maximum number of iterations"); } /* check the validity of the returned result */ if (!WITHIN_TOL (r, correct_root, EPSREL, EPSABS)) { gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", r, correct_root); } gsl_root_fsolver_free(s); } void test_f_e (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root) { int status; size_t iterations = 0; double x_lower, x_upper; gsl_root_fsolver * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_root_fsolver_alloc(T); status = gsl_root_fsolver_set(s, f, x_lower, x_upper) ; gsl_test (status != GSL_EINVAL, "%s (set), %s", T->name, description); if (status == GSL_EINVAL) { gsl_root_fsolver_free(s); return ; } do { iterations++ ; gsl_root_fsolver_iterate (s); x_lower = gsl_root_fsolver_x_lower(s); x_upper = gsl_root_fsolver_x_lower(s); status = gsl_root_test_interval (x_lower, x_upper, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (!status, "%s, %s", gsl_root_fsolver_name(s), description, gsl_root_fsolver_root(s) - correct_root); gsl_root_fsolver_free(s); } void test_fdf (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root) { int status; size_t iterations = 0; double prev = 0 ; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T); gsl_root_fdfsolver_set (s, fdf, root) ; do { iterations++ ; prev = gsl_root_fdfsolver_root(s); gsl_root_fdfsolver_iterate (s); status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (status, "%s, %s (%g obs vs %g expected) ", gsl_root_fdfsolver_name(s), description, gsl_root_fdfsolver_root(s), correct_root); if (iterations == MAX_ITERATIONS) { gsl_test (GSL_FAILURE, "exceeded maximum number of iterations"); } /* check the validity of the returned result */ if (!WITHIN_TOL (gsl_root_fdfsolver_root(s), correct_root, EPSREL, EPSABS)) { gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", gsl_root_fdfsolver_root(s), correct_root); } gsl_root_fdfsolver_free(s); } void test_fdf_e (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root) { int status; size_t iterations = 0; double prev = 0 ; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc(T); status = gsl_root_fdfsolver_set (s, fdf, root) ; gsl_test (status, "%s (set), %s", T->name, description); do { iterations++ ; prev = gsl_root_fdfsolver_root(s); gsl_root_fdfsolver_iterate (s); status = gsl_root_test_delta(gsl_root_fdfsolver_root(s), prev, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (!status, "%s, %s", gsl_root_fdfsolver_name(s), description, gsl_root_fdfsolver_root(s) - correct_root); gsl_root_fdfsolver_free(s); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); } gsl-1.16/roots/convergence.c0000664000252300025230000000447012171574312012767 00000000000000/* roots/convergence.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_root_test_interval (double x_lower, double x_upper, double epsabs, double epsrel) { const double abs_lower = fabs(x_lower) ; const double abs_upper = fabs(x_upper) ; double min_abs, tolerance; if (epsrel < 0.0) GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL); if (epsabs < 0.0) GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); if (x_lower > x_upper) GSL_ERROR ("lower bound larger than upper bound", GSL_EINVAL); if ((x_lower > 0.0 && x_upper > 0.0) || (x_lower < 0.0 && x_upper < 0.0)) { min_abs = GSL_MIN_DBL(abs_lower, abs_upper) ; } else { min_abs = 0; } tolerance = epsabs + epsrel * min_abs ; if (fabs(x_upper - x_lower) < tolerance) return GSL_SUCCESS; return GSL_CONTINUE ; } int gsl_root_test_delta (double x1, double x0, double epsabs, double epsrel) { const double tolerance = epsabs + epsrel * fabs(x1) ; if (epsrel < 0.0) GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL); if (epsabs < 0.0) GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); if (fabs(x1 - x0) < tolerance || x1 == x0) return GSL_SUCCESS; return GSL_CONTINUE ; } int gsl_root_test_residual (double f, double epsabs) { if (epsabs < 0.0) GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); if (fabs(f) < epsabs) return GSL_SUCCESS; return GSL_CONTINUE ; } gsl-1.16/roots/Makefile.in0000664000252300025230000010507312172253756012402 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ # -*-makefile-*- VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = roots DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslroots_la_LIBADD = am_libgslroots_la_OBJECTS = bisection.lo brent.lo falsepos.lo \ newton.lo secant.lo steffenson.lo convergence.lo fsolver.lo \ fdfsolver.lo libgslroots_la_OBJECTS = $(am_libgslroots_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_funcs.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslroots.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslroots_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslroots_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslroots.la pkginclude_HEADERS = gsl_roots.h noinst_HEADERS = roots.h INCLUDES = -I$(top_srcdir) libgslroots_la_SOURCES = bisection.c brent.c falsepos.c newton.c secant.c steffenson.c convergence.c fsolver.c fdfsolver.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test.h test_LDADD = libgslroots.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu roots/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu roots/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslroots.la: $(libgslroots_la_OBJECTS) $(libgslroots_la_DEPENDENCIES) $(EXTRA_libgslroots_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslroots_la_OBJECTS) $(libgslroots_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bisection.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/brent.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/convergence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/falsepos.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdfsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/newton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/secant.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/steffenson.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_funcs.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/roots/test_funcs.c0000664000252300025230000000775012171574312012652 00000000000000/* roots/test_funcs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "test.h" gsl_function create_function (double (*f)(double, void *)) { gsl_function F ; F.function = f; F.params = 0; return F ; } gsl_function_fdf create_fdf (double (*f)(double, void *), double (*df)(double, void *), void (*fdf)(double, void *, double *, double *)) { gsl_function_fdf FDF ; FDF.f = f ; FDF.df = df ; FDF.fdf = fdf ; FDF.params = 0 ; return FDF ; } /* f(x) = x^{20} - 1 */ /* f'(x) = 20x^{19} */ /* zero at x = 1 or -1 */ double func1 (double x, void *p) { return pow (x, 20.0) - 1; } double func1_df (double x, void * p) { return 20.0 * pow (x, 19.0); } void func1_fdf (double x, void * p, double *y, double *yprime) { *y = func1 (x, p); *yprime = 20.0 * pow (x, 19.0); } /* f(x) = sqrt(abs(x))*sgn(x) */ /* f'(x) = 1 / sqrt(abs(x) */ /* zero at x = 0 */ double func2 (double x, void * p) { double delta; if (x > 0) delta = 1.0; else if (x < 0) delta = -1.0; else delta = 0.0; return sqrt (fabs (x)) * delta; } double func2_df (double x, void * p) { return 1 / sqrt (fabs (x)); } void func2_fdf (double x, void * p, double *y, double *yprime) { *y = func2 (x, p); *yprime = 1 / sqrt (fabs (x)); } /* f(x) = x^2 - 1e-8 */ /* f'(x) = 2x */ /* zero at x = sqrt(1e-8) or -sqrt(1e-8) */ double func3 (double x, void * p) { return pow (x, 2.0) - 1e-8; } double func3_df (double x, void * p) { return 2 * x; } void func3_fdf (double x, void * p, double *y, double *yprime) { *y = func3 (x, p); *yprime = 2 * x; } /* f(x) = x exp(-x) */ /* f'(x) = exp(-x) - x exp(-x) */ /* zero at x = 0 */ double func4 (double x, void * p) { return x * exp (-x); } double func4_df (double x, void * p) { return exp (-x) - x * exp (-x); } void func4_fdf (double x, void * p, double *y, double *yprime) { *y = func4 (x, p); *yprime = exp (-x) - x * exp (-x); } /* f(x) = 1/(1+exp(x)) */ /* f'(x) = -exp(x) / (1 + exp(x))^2 */ /* no roots! */ double func5 (double x, void * p) { return 1 / (1 + exp (x)); } double func5_df (double x, void * p) { return -exp (x) / pow (1 + exp (x), 2.0); } void func5_fdf (double x, void * p, double *y, double *yprime) { *y = func5 (x, p); *yprime = -exp (x) / pow (1 + exp (x), 2.0); } /* f(x) = (x - 1)^7 */ /* f'(x) = 7 * (x - 1)^6 */ /* zero at x = 1 */ double func6 (double x, void * p) { return pow (x - 1, 7.0); } double func6_df (double x, void * p) { return 7.0 * pow (x - 1, 6.0); } void func6_fdf (double x, void * p, double *y, double *yprime) { *y = func6 (x, p); *yprime = 7.0 * pow (x - 1, 6.0); } /* sin(x) packaged up nicely. */ double sin_f (double x, void * p) { return sin (x); } double sin_df (double x, void * p) { return cos (x); } void sin_fdf (double x, void * p, double *y, double *yprime) { *y = sin (x); *yprime = cos (x); } /* cos(x) packaged up nicely. */ double cos_f (double x, void * p) { return cos (x); } double cos_df (double x, void * p) { return -sin (x); } void cos_fdf (double x, void * p, double *y, double *yprime) { *y = cos (x); *yprime = -sin (x); } gsl-1.16/roots/fdfsolver.c0000664000252300025230000000416412171574312012463 00000000000000/* roots/fdfsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_root_fdfsolver * gsl_root_fdfsolver_alloc (const gsl_root_fdfsolver_type * T) { gsl_root_fdfsolver * s = (gsl_root_fdfsolver *) malloc (sizeof (gsl_root_fdfsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for root solver struct", GSL_ENOMEM, 0); }; s->state = malloc (T->size); if (s->state == 0) { free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for root solver state", GSL_ENOMEM, 0); }; s->type = T ; s->fdf = NULL; return s; } int gsl_root_fdfsolver_set (gsl_root_fdfsolver * s, gsl_function_fdf * f, double root) { s->fdf = f; s->root = root; return (s->type->set) (s->state, s->fdf, &(s->root)); } int gsl_root_fdfsolver_iterate (gsl_root_fdfsolver * s) { return (s->type->iterate) (s->state, s->fdf, &(s->root)); } void gsl_root_fdfsolver_free (gsl_root_fdfsolver * s) { RETURN_IF_NULL (s); free (s->state); free (s); } const char * gsl_root_fdfsolver_name (const gsl_root_fdfsolver * s) { return s->type->name; } double gsl_root_fdfsolver_root (const gsl_root_fdfsolver * s) { return s->root; } gsl-1.16/roots/ChangeLog0000664000252300025230000001335712171574312012103 000000000000002009-07-09 Brian Gough * fsolver.c (gsl_root_fsolver_free): handle NULL argument in free * fdfsolver.c (gsl_root_fdfsolver_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-07-30 Brian Gough * newton.c (newton_iterate): use gsl_finite instead of finite * roots.h (SAFE_FUNC_CALL): use gsl_finite instead of finite * secant.c (secant_iterate): use gsl_finite instead of finite * steffenson.c (steffenson_iterate): use gsl_finite instead of finite 2007-01-04 Brian Gough * convergence.c (gsl_root_test_delta): added termination alternative condition x1==x0 2005-03-02 Brian Gough * steffenson.c (steffenson_iterate): improved wording of error messages * secant.c (secant_iterate): improved wording of error messages * roots.h (SAFE_FUNC_CALL): improved wording of error message * newton.c (newton_iterate): improved wording of error messages * utility.c: removed, not needed any more Sun Jul 15 17:53:48 2001 Brian Gough * removed interval type Sun May 6 14:26:59 2001 Brian Gough * test.c: removed tests for macros, which are now in sys/. Mon Apr 16 20:17:04 2001 Brian Gough * fsolver.c (gsl_root_fsolver_alloc): removed unnecessary status variable Sun Feb 18 15:35:25 2001 Brian Gough * fdfsolver.c fsolver.c: changed so that the solver _alloc function no longer calls _set, the user must do that separately. Wed May 17 11:37:15 2000 Brian Gough * test_macros.c (test_macros): use GSL_POSINF and GSL_NAN macros instead of 1/0 and 0/0 Mon Feb 14 13:05:30 2000 Brian Gough * removed definition of isinf macro (no longer needed) * made all internal functions static Wed Nov 3 11:59:35 1999 Brian Gough * fixed test failures * test.c (main): added a call to gsl_ieee_env_setup for testing * test_roots.c: increased the maximum number of iterations to 150 so that the tests still work on the difficult cases. * steffenson.c (steffenson_iterate): add a check to avoid division by zero Sat Oct 16 19:43:14 1999 Brian Gough * removed GSL_ROOT_EPSILON_BUFFER, not needed anymore Wed Jul 21 18:47:01 1999 Brian Gough * gsl_roots.h, convergence.c: changed order of relative and absolute errors to make them the same as quadpack routines (abs,rel) Wed Jul 21 16:30:56 1999 Brian Gough * brent.c (brent_iterate): fixed bug where bounding interval could be incorrect and not include root. Mon Mar 1 15:38:06 1999 Brian Gough * moved static class data out of gsl_root_fsolver and gsl_root_fdfsolver and into gsl_root_fsolver_type and gsl_root_fdfsolver_type Mon Mar 1 15:38:06 1999 Brian Gough * renamed f_solver to fsolver and fdf_solver to fdfsolver, since these look neater Sun Feb 28 21:11:21 1999 Brian Gough * rewrote the root finding functions in an iterative framework Tue Nov 17 16:47:09 1998 Brian Gough * secant.c, falsepos.c newton.c: added gsl_math.h to included headers to import GSL_MAX and GSL_MIN Mon Nov 9 21:21:45 1998 Brian Gough * roots.h: got rid of local MAX(a,b) and MIN(a,b) definitions since they are now in config.h Wed Nov 4 16:08:32 1998 Brian Gough * test.c (test_brent): allow the brent tests to run for more iterations since they take longer on the pathological cases. * brent.c (gsl_root_brent): on each iteration keep track of current best estimates of the root and the bounds so that they are returned to the user if the function exits prematurely. clean up the brent algorithm based on remarks in the original paper Mon Oct 26 16:31:21 1998 Brian Gough * in all routines with upper and lower bounds if a root is found exactly then the bracket is collapsed onto the root instead of being untouched. Thu Oct 15 13:59:30 1998 Brian Gough * bisection.c, falsepos.c, secant.c: reordered the tests so that the minimum number of function evaluations are performed when there is an early exit due to one of the supplied limits lying on a root. Fri Aug 21 14:48:13 1998 Brian Gough * test.c: clean up of tests to get rid of warnings Thu Aug 20 10:21:15 1998 Brian Gough * roots.h (_WITHIN_TOL): added extra parens in macro definition, for safety * falsepos.c (gsl_root_falsepos): removed test for absolute equality and replaced by a flag indicating which variables changed. * test.c (main): simplified the tests, removed command line arguments (can use the debugger to select which ones to run) Mon Jun 15 22:22:54 1998 Brian Gough * started to eliminate void * arguments for function types (they are not a good idea and can easily be specified) 1998-02-09 Mark Galassi * test.c (main): added an extra argument so that the $(srcdir) can be passed along when "make check" is run in a separate build directory. * test-macros, test-secant, test-bisection, test-newton, test-falsepos: modified these to use build and source directories explicitly. Now "make check" in a separate build directory works. 1998-02-02 Mark Galassi * Makefile.am (TESTS): added $(srcdir) before these scripts, since the TESTS target picks things from the build directory. gsl-1.16/roots/test.h0000664000252300025230000000577012171574312011461 00000000000000/* roots/test.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ gsl_function create_function (double (*f)(double, void *)) ; gsl_function_fdf create_fdf (double (*f)(double, void *), double (*df)(double, void *), void (*fdf)(double, void *, double *, double *)); void test_macros (void); void test_roots (void); void test_poly (void); void test_f (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root); void test_f_e (const gsl_root_fsolver_type * T, const char * description, gsl_function *f, double lower_bound, double upper_bound, double correct_root); void test_fdf (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root); void test_fdf_e (const gsl_root_fdfsolver_type * T, const char * description, gsl_function_fdf *fdf, double root, double correct_root); void usage (void); void error_handler (const char *reason, const char *file, int line); double func1 (double x, void * p); double func1_df (double x, void * p); void func1_fdf (double x, void * p, double *y, double *yprime); double func2 (double x, void * p); double func2_df (double x, void * p); void func2_fdf (double x, void * p, double *y, double *yprime); double func3 (double x, void * p); double func3_df (double x, void * p); void func3_fdf (double x, void * p, double *y, double *yprime); double func4 (double x, void * p); double func4_df (double x, void * p); void func4_fdf (double x, void * p, double *y, double *yprime); double func5 (double x, void * p); double func5_df (double x, void * p); void func5_fdf (double x, void * p, double *y, double *yprime); double func6 (double x, void * p); double func6_df (double x, void * p); void func6_fdf (double x, void * p, double *y, double *yprime); double sin_f (double x, void * p); double sin_df (double x, void * p); void sin_fdf (double x, void * p, double *y, double *yprime); double cos_f (double x, void * p); double cos_df (double x, void * p); void cos_fdf (double x, void * p, double *y, double *yprime); gsl-1.16/roots/Makefile.am0000664000252300025230000000077412171574312012364 00000000000000# -*-makefile-*- noinst_LTLIBRARIES = libgslroots.la pkginclude_HEADERS = gsl_roots.h noinst_HEADERS = roots.h INCLUDES = -I$(top_srcdir) libgslroots_la_SOURCES = bisection.c brent.c falsepos.c newton.c secant.c steffenson.c convergence.c fsolver.c fdfsolver.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test.h test_LDADD = libgslroots.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/roots/steffenson.c0000664000252300025230000000673012171574312012644 00000000000000/* roots/steffenson.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* steffenson.c -- steffenson root finding algorithm This is Newton's method with an Aitken "delta-squared" acceleration of the iterates. This can improve the convergence on multiple roots where the ordinary Newton algorithm is slow. x[i+1] = x[i] - f(x[i]) / f'(x[i]) x_accelerated[i] = x[i] - (x[i+1] - x[i])**2 / (x[i+2] - 2*x[i+1] + x[i]) We can only use the accelerated estimate after three iterations, and use the unaccelerated value until then. */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double f, df; double x; double x_1; double x_2; int count; } steffenson_state_t; static int steffenson_init (void * vstate, gsl_function_fdf * fdf, double * root); static int steffenson_iterate (void * vstate, gsl_function_fdf * fdf, double * root); static int steffenson_init (void * vstate, gsl_function_fdf * fdf, double * root) { steffenson_state_t * state = (steffenson_state_t *) vstate; const double x = *root ; state->f = GSL_FN_FDF_EVAL_F (fdf, x); state->df = GSL_FN_FDF_EVAL_DF (fdf, x) ; state->x = x; state->x_1 = 0.0; state->x_2 = 0.0; state->count = 1; return GSL_SUCCESS; } static int steffenson_iterate (void * vstate, gsl_function_fdf * fdf, double * root) { steffenson_state_t * state = (steffenson_state_t *) vstate; double x_new, f_new, df_new; double x_1 = state->x_1 ; double x = state->x ; if (state->df == 0.0) { GSL_ERROR("derivative is zero", GSL_EZERODIV); } x_new = x - (state->f / state->df); GSL_FN_FDF_EVAL_F_DF(fdf, x_new, &f_new, &df_new); state->x_2 = x_1 ; state->x_1 = x ; state->x = x_new; state->f = f_new ; state->df = df_new ; if (!gsl_finite (f_new)) { GSL_ERROR ("function value is not finite", GSL_EBADFUNC); } if (state->count < 3) { *root = x_new ; state->count++ ; } else { double u = (x - x_1) ; double v = (x_new - 2 * x + x_1); if (v == 0) *root = x_new; /* avoid division by zero */ else *root = x_1 - u * u / v ; /* accelerated value */ } if (!gsl_finite (df_new)) { GSL_ERROR ("derivative value is not finite", GSL_EBADFUNC); } return GSL_SUCCESS; } static const gsl_root_fdfsolver_type steffenson_type = {"steffenson", /* name */ sizeof (steffenson_state_t), &steffenson_init, &steffenson_iterate}; const gsl_root_fdfsolver_type * gsl_root_fdfsolver_steffenson = &steffenson_type; gsl-1.16/roots/gsl_roots.h0000664000252300025230000000722012171574312012505 00000000000000/* roots/gsl_roots.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_ROOTS_H__ #define __GSL_ROOTS_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { const char *name; size_t size; int (*set) (void *state, gsl_function * f, double * root, double x_lower, double x_upper); int (*iterate) (void *state, gsl_function * f, double * root, double * x_lower, double * x_upper); } gsl_root_fsolver_type; typedef struct { const gsl_root_fsolver_type * type; gsl_function * function ; double root ; double x_lower; double x_upper; void *state; } gsl_root_fsolver; typedef struct { const char *name; size_t size; int (*set) (void *state, gsl_function_fdf * f, double * root); int (*iterate) (void *state, gsl_function_fdf * f, double * root); } gsl_root_fdfsolver_type; typedef struct { const gsl_root_fdfsolver_type * type; gsl_function_fdf * fdf ; double root ; void *state; } gsl_root_fdfsolver; gsl_root_fsolver * gsl_root_fsolver_alloc (const gsl_root_fsolver_type * T); void gsl_root_fsolver_free (gsl_root_fsolver * s); int gsl_root_fsolver_set (gsl_root_fsolver * s, gsl_function * f, double x_lower, double x_upper); int gsl_root_fsolver_iterate (gsl_root_fsolver * s); const char * gsl_root_fsolver_name (const gsl_root_fsolver * s); double gsl_root_fsolver_root (const gsl_root_fsolver * s); double gsl_root_fsolver_x_lower (const gsl_root_fsolver * s); double gsl_root_fsolver_x_upper (const gsl_root_fsolver * s); gsl_root_fdfsolver * gsl_root_fdfsolver_alloc (const gsl_root_fdfsolver_type * T); int gsl_root_fdfsolver_set (gsl_root_fdfsolver * s, gsl_function_fdf * fdf, double root); int gsl_root_fdfsolver_iterate (gsl_root_fdfsolver * s); void gsl_root_fdfsolver_free (gsl_root_fdfsolver * s); const char * gsl_root_fdfsolver_name (const gsl_root_fdfsolver * s); double gsl_root_fdfsolver_root (const gsl_root_fdfsolver * s); int gsl_root_test_interval (double x_lower, double x_upper, double epsabs, double epsrel); int gsl_root_test_residual (double f, double epsabs); int gsl_root_test_delta (double x1, double x0, double epsabs, double epsrel); GSL_VAR const gsl_root_fsolver_type * gsl_root_fsolver_bisection; GSL_VAR const gsl_root_fsolver_type * gsl_root_fsolver_brent; GSL_VAR const gsl_root_fsolver_type * gsl_root_fsolver_falsepos; GSL_VAR const gsl_root_fdfsolver_type * gsl_root_fdfsolver_newton; GSL_VAR const gsl_root_fdfsolver_type * gsl_root_fdfsolver_secant; GSL_VAR const gsl_root_fdfsolver_type * gsl_root_fdfsolver_steffenson; __END_DECLS #endif /* __GSL_ROOTS_H__ */ gsl-1.16/roots/bisection.c0000664000252300025230000000660112171574312012446 00000000000000/* roots/bisection.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* bisection.c -- bisection root finding algorithm */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double f_lower, f_upper; } bisection_state_t; static int bisection_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper); static int bisection_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper); static int bisection_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper) { bisection_state_t * state = (bisection_state_t *) vstate; double f_lower, f_upper ; *root = 0.5 * (x_lower + x_upper) ; SAFE_FUNC_CALL (f, x_lower, &f_lower); SAFE_FUNC_CALL (f, x_upper, &f_upper); state->f_lower = f_lower; state->f_upper = f_upper; if ((f_lower < 0.0 && f_upper < 0.0) || (f_lower > 0.0 && f_upper > 0.0)) { GSL_ERROR ("endpoints do not straddle y=0", GSL_EINVAL); } return GSL_SUCCESS; } static int bisection_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper) { bisection_state_t * state = (bisection_state_t *) vstate; double x_bisect, f_bisect; const double x_left = *x_lower ; const double x_right = *x_upper ; const double f_lower = state->f_lower; const double f_upper = state->f_upper; if (f_lower == 0.0) { *root = x_left ; *x_upper = x_left; return GSL_SUCCESS; } if (f_upper == 0.0) { *root = x_right ; *x_lower = x_right; return GSL_SUCCESS; } x_bisect = (x_left + x_right) / 2.0; SAFE_FUNC_CALL (f, x_bisect, &f_bisect); if (f_bisect == 0.0) { *root = x_bisect; *x_lower = x_bisect; *x_upper = x_bisect; return GSL_SUCCESS; } /* Discard the half of the interval which doesn't contain the root. */ if ((f_lower > 0.0 && f_bisect < 0.0) || (f_lower < 0.0 && f_bisect > 0.0)) { *root = 0.5 * (x_left + x_bisect) ; *x_upper = x_bisect; state->f_upper = f_bisect; } else { *root = 0.5 * (x_bisect + x_right) ; *x_lower = x_bisect; state->f_lower = f_bisect; } return GSL_SUCCESS; } static const gsl_root_fsolver_type bisection_type = {"bisection", /* name */ sizeof (bisection_state_t), &bisection_init, &bisection_iterate}; const gsl_root_fsolver_type * gsl_root_fsolver_bisection = &bisection_type; gsl-1.16/roots/falsepos.c0000664000252300025230000001106112171574312012277 00000000000000/* roots/falsepos.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* falsepos.c -- falsepos root finding algorithm The false position algorithm uses bracketing by linear interpolation. If a linear interpolation step would decrease the size of the bracket by less than a bisection step would then the algorithm takes a bisection step instead. The last linear interpolation estimate of the root is used. If a bisection step causes it to fall outside the brackets then it is replaced by the bisection estimate (x_upper + x_lower)/2. */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double f_lower, f_upper; } falsepos_state_t; static int falsepos_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper); static int falsepos_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper); static int falsepos_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper) { falsepos_state_t * state = (falsepos_state_t *) vstate; double f_lower, f_upper ; *root = 0.5 * (x_lower + x_upper); SAFE_FUNC_CALL (f, x_lower, &f_lower); SAFE_FUNC_CALL (f, x_upper, &f_upper); state->f_lower = f_lower; state->f_upper = f_upper; if ((f_lower < 0.0 && f_upper < 0.0) || (f_lower > 0.0 && f_upper > 0.0)) { GSL_ERROR ("endpoints do not straddle y=0", GSL_EINVAL); } return GSL_SUCCESS; } static int falsepos_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper) { falsepos_state_t * state = (falsepos_state_t *) vstate; double x_linear, f_linear; double x_bisect, f_bisect; double x_left = *x_lower ; double x_right = *x_upper ; double f_lower = state->f_lower; double f_upper = state->f_upper; double w ; if (f_lower == 0.0) { *root = x_left ; *x_upper = x_left; return GSL_SUCCESS; } if (f_upper == 0.0) { *root = x_right ; *x_lower = x_right; return GSL_SUCCESS; } /* Draw a line between f(*lower_bound) and f(*upper_bound) and note where it crosses the X axis; that's where we will split the interval. */ x_linear = x_right - (f_upper * (x_left - x_right) / (f_lower - f_upper)); SAFE_FUNC_CALL (f, x_linear, &f_linear); if (f_linear == 0.0) { *root = x_linear; *x_lower = x_linear; *x_upper = x_linear; return GSL_SUCCESS; } /* Discard the half of the interval which doesn't contain the root. */ if ((f_lower > 0.0 && f_linear < 0.0) || (f_lower < 0.0 && f_linear > 0.0)) { *root = x_linear ; *x_upper = x_linear; state->f_upper = f_linear; w = x_linear - x_left ; } else { *root = x_linear ; *x_lower = x_linear; state->f_lower = f_linear; w = x_right - x_linear; } if (w < 0.5 * (x_right - x_left)) { return GSL_SUCCESS ; } x_bisect = 0.5 * (x_left + x_right); SAFE_FUNC_CALL (f, x_bisect, &f_bisect); if ((f_lower > 0.0 && f_bisect < 0.0) || (f_lower < 0.0 && f_bisect > 0.0)) { *x_upper = x_bisect; state->f_upper = f_bisect; if (*root > x_bisect) *root = 0.5 * (x_left + x_bisect) ; } else { *x_lower = x_bisect; state->f_lower = f_bisect; if (*root < x_bisect) *root = 0.5 * (x_bisect + x_right) ; } return GSL_SUCCESS; } static const gsl_root_fsolver_type falsepos_type = {"falsepos", /* name */ sizeof (falsepos_state_t), &falsepos_init, &falsepos_iterate}; const gsl_root_fsolver_type * gsl_root_fsolver_falsepos = &falsepos_type; gsl-1.16/roots/brent.c0000664000252300025230000001146512171574312011605 00000000000000/* roots/brent.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* brent.c -- brent root finding algorithm */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double a, b, c, d, e; double fa, fb, fc; } brent_state_t; static int brent_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper); static int brent_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper); static int brent_init (void * vstate, gsl_function * f, double * root, double x_lower, double x_upper) { brent_state_t * state = (brent_state_t *) vstate; double f_lower, f_upper ; *root = 0.5 * (x_lower + x_upper) ; SAFE_FUNC_CALL (f, x_lower, &f_lower); SAFE_FUNC_CALL (f, x_upper, &f_upper); state->a = x_lower; state->fa = f_lower; state->b = x_upper; state->fb = f_upper; state->c = x_upper; state->fc = f_upper; state->d = x_upper - x_lower ; state->e = x_upper - x_lower ; if ((f_lower < 0.0 && f_upper < 0.0) || (f_lower > 0.0 && f_upper > 0.0)) { GSL_ERROR ("endpoints do not straddle y=0", GSL_EINVAL); } return GSL_SUCCESS; } static int brent_iterate (void * vstate, gsl_function * f, double * root, double * x_lower, double * x_upper) { brent_state_t * state = (brent_state_t *) vstate; double tol, m; int ac_equal = 0; double a = state->a, b = state->b, c = state->c; double fa = state->fa, fb = state->fb, fc = state->fc; double d = state->d, e = state->e; if ((fb < 0 && fc < 0) || (fb > 0 && fc > 0)) { ac_equal = 1; c = a; fc = fa; d = b - a; e = b - a; } if (fabs (fc) < fabs (fb)) { ac_equal = 1; a = b; b = c; c = a; fa = fb; fb = fc; fc = fa; } tol = 0.5 * GSL_DBL_EPSILON * fabs (b); m = 0.5 * (c - b); if (fb == 0) { *root = b; *x_lower = b; *x_upper = b; return GSL_SUCCESS; } if (fabs (m) <= tol) { *root = b; if (b < c) { *x_lower = b; *x_upper = c; } else { *x_lower = c; *x_upper = b; } return GSL_SUCCESS; } if (fabs (e) < tol || fabs (fa) <= fabs (fb)) { d = m; /* use bisection */ e = m; } else { double p, q, r; /* use inverse cubic interpolation */ double s = fb / fa; if (ac_equal) { p = 2 * m * s; q = 1 - s; } else { q = fa / fc; r = fb / fc; p = s * (2 * m * q * (q - r) - (b - a) * (r - 1)); q = (q - 1) * (r - 1) * (s - 1); } if (p > 0) { q = -q; } else { p = -p; } if (2 * p < GSL_MIN (3 * m * q - fabs (tol * q), fabs (e * q))) { e = d; d = p / q; } else { /* interpolation failed, fall back to bisection */ d = m; e = m; } } a = b; fa = fb; if (fabs (d) > tol) { b += d; } else { b += (m > 0 ? +tol : -tol); } SAFE_FUNC_CALL (f, b, &fb); state->a = a ; state->b = b ; state->c = c ; state->d = d ; state->e = e ; state->fa = fa ; state->fb = fb ; state->fc = fc ; /* Update the best estimate of the root and bounds on each iteration */ *root = b; if ((fb < 0 && fc < 0) || (fb > 0 && fc > 0)) { c = a; } if (b < c) { *x_lower = b; *x_upper = c; } else { *x_lower = c; *x_upper = b; } return GSL_SUCCESS ; } static const gsl_root_fsolver_type brent_type = {"brent", /* name */ sizeof (brent_state_t), &brent_init, &brent_iterate}; const gsl_root_fsolver_type * gsl_root_fsolver_brent = &brent_type; gsl-1.16/roots/newton.c0000664000252300025230000000505412171574312012002 00000000000000/* roots/newton.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* newton.c -- newton root finding algorithm This is the classical Newton-Raphson iteration. x[i+1] = x[i] - f(x[i])/f'(x[i]) */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double f, df; } newton_state_t; static int newton_init (void * vstate, gsl_function_fdf * fdf, double * root); static int newton_iterate (void * vstate, gsl_function_fdf * fdf, double * root); static int newton_init (void * vstate, gsl_function_fdf * fdf, double * root) { newton_state_t * state = (newton_state_t *) vstate; const double x = *root ; state->f = GSL_FN_FDF_EVAL_F (fdf, x); state->df = GSL_FN_FDF_EVAL_DF (fdf, x) ; return GSL_SUCCESS; } static int newton_iterate (void * vstate, gsl_function_fdf * fdf, double * root) { newton_state_t * state = (newton_state_t *) vstate; double root_new, f_new, df_new; if (state->df == 0.0) { GSL_ERROR("derivative is zero", GSL_EZERODIV); } root_new = *root - (state->f / state->df); *root = root_new ; GSL_FN_FDF_EVAL_F_DF(fdf, root_new, &f_new, &df_new); state->f = f_new ; state->df = df_new ; if (!gsl_finite(f_new)) { GSL_ERROR ("function value is not finite", GSL_EBADFUNC); } if (!gsl_finite (df_new)) { GSL_ERROR ("derivative value is not finite", GSL_EBADFUNC); } return GSL_SUCCESS; } static const gsl_root_fdfsolver_type newton_type = {"newton", /* name */ sizeof (newton_state_t), &newton_init, &newton_iterate}; const gsl_root_fdfsolver_type * gsl_root_fdfsolver_newton = &newton_type; gsl-1.16/roots/roots.h0000664000252300025230000000240312171574312011636 00000000000000/* roots/roots.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* roots.h -- declarations for internal root finding and RF support stuff. */ #ifndef __ROOTS_H__ #define __ROOTS_H__ /* Call the pointed-to function with argument x, put its result in y, and return an error if the function value is Inf/Nan. */ #define SAFE_FUNC_CALL(f, x, yp) \ do { \ *yp = GSL_FN_EVAL(f,x); \ if (!gsl_finite(*yp)) \ GSL_ERROR("function value is not finite", GSL_EBADFUNC); \ } while (0) #endif /* __ROOTS_H__ */ gsl-1.16/roots/secant.c0000664000252300025230000000554312171574312011750 00000000000000/* roots/secant.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Reid Priedhorsky, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* secant.c -- secant root finding algorithm The secant algorithm is a variant of the Newton algorithm with the derivative term replaced by a numerical estimate from the last two function evaluations. x[i+1] = x[i] - f(x[i]) / f'_est where f'_est = (f(x[i]) - f(x[i-1])) / (x[i] - x[i-1]) The exact derivative is used for the initial value of f'_est. */ #include #include #include #include #include #include #include #include #include #include "roots.h" typedef struct { double f; double df; } secant_state_t; static int secant_init (void * vstate, gsl_function_fdf * fdf, double * root); static int secant_iterate (void * vstate, gsl_function_fdf * fdf, double * root); static int secant_init (void * vstate, gsl_function_fdf * fdf, double * root) { secant_state_t * state = (secant_state_t *) vstate; const double x = *root; GSL_FN_FDF_EVAL_F_DF (fdf, x, &(state->f), &(state->df)); return GSL_SUCCESS; } static int secant_iterate (void * vstate, gsl_function_fdf * fdf, double * root) { secant_state_t * state = (secant_state_t *) vstate; const double x = *root ; const double f = state->f; const double df = state->df; double x_new, f_new, df_new; if (state->df == 0.0) { GSL_ERROR("derivative is zero", GSL_EZERODIV); } x_new = x - (f / df); f_new = GSL_FN_FDF_EVAL_F(fdf, x_new) ; df_new = (f_new - f) / (x_new - x) ; *root = x_new ; state->f = f_new ; state->df = df_new ; if (!gsl_finite (f_new)) { GSL_ERROR ("function value is not finite", GSL_EBADFUNC); } if (!gsl_finite (df_new)) { GSL_ERROR ("derivative value is not finite", GSL_EBADFUNC); } return GSL_SUCCESS; } static const gsl_root_fdfsolver_type secant_type = {"secant", /* name */ sizeof (secant_state_t), &secant_init, &secant_iterate}; const gsl_root_fdfsolver_type * gsl_root_fdfsolver_secant = &secant_type; gsl-1.16/gsl_math.h0000664000252300025230000001037112171574312011123 00000000000000/* gsl_math.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATH_H__ #define __GSL_MATH_H__ #include #include #include #include #include #include #include #include #ifndef M_E #define M_E 2.71828182845904523536028747135 /* e */ #endif #ifndef M_LOG2E #define M_LOG2E 1.44269504088896340735992468100 /* log_2 (e) */ #endif #ifndef M_LOG10E #define M_LOG10E 0.43429448190325182765112891892 /* log_10 (e) */ #endif #ifndef M_SQRT2 #define M_SQRT2 1.41421356237309504880168872421 /* sqrt(2) */ #endif #ifndef M_SQRT1_2 #define M_SQRT1_2 0.70710678118654752440084436210 /* sqrt(1/2) */ #endif #ifndef M_SQRT3 #define M_SQRT3 1.73205080756887729352744634151 /* sqrt(3) */ #endif #ifndef M_PI #define M_PI 3.14159265358979323846264338328 /* pi */ #endif #ifndef M_PI_2 #define M_PI_2 1.57079632679489661923132169164 /* pi/2 */ #endif #ifndef M_PI_4 #define M_PI_4 0.78539816339744830961566084582 /* pi/4 */ #endif #ifndef M_SQRTPI #define M_SQRTPI 1.77245385090551602729816748334 /* sqrt(pi) */ #endif #ifndef M_2_SQRTPI #define M_2_SQRTPI 1.12837916709551257389615890312 /* 2/sqrt(pi) */ #endif #ifndef M_1_PI #define M_1_PI 0.31830988618379067153776752675 /* 1/pi */ #endif #ifndef M_2_PI #define M_2_PI 0.63661977236758134307553505349 /* 2/pi */ #endif #ifndef M_LN10 #define M_LN10 2.30258509299404568401799145468 /* ln(10) */ #endif #ifndef M_LN2 #define M_LN2 0.69314718055994530941723212146 /* ln(2) */ #endif #ifndef M_LNPI #define M_LNPI 1.14472988584940017414342735135 /* ln(pi) */ #endif #ifndef M_EULER #define M_EULER 0.57721566490153286060651209008 /* Euler constant */ #endif #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* other needlessly compulsive abstractions */ #define GSL_IS_ODD(n) ((n) & 1) #define GSL_IS_EVEN(n) (!(GSL_IS_ODD(n))) #define GSL_SIGN(x) ((x) >= 0.0 ? 1 : -1) /* Return nonzero if x is a real number, i.e. non NaN or infinite. */ #define GSL_IS_REAL(x) (gsl_finite(x)) /* Definition of an arbitrary function with parameters */ struct gsl_function_struct { double (* function) (double x, void * params); void * params; }; typedef struct gsl_function_struct gsl_function ; #define GSL_FN_EVAL(F,x) (*((F)->function))(x,(F)->params) /* Definition of an arbitrary function returning two values, r1, r2 */ struct gsl_function_fdf_struct { double (* f) (double x, void * params); double (* df) (double x, void * params); void (* fdf) (double x, void * params, double * f, double * df); void * params; }; typedef struct gsl_function_fdf_struct gsl_function_fdf ; #define GSL_FN_FDF_EVAL_F(FDF,x) (*((FDF)->f))(x,(FDF)->params) #define GSL_FN_FDF_EVAL_DF(FDF,x) (*((FDF)->df))(x,(FDF)->params) #define GSL_FN_FDF_EVAL_F_DF(FDF,x,y,dy) (*((FDF)->fdf))(x,(FDF)->params,(y),(dy)) /* Definition of an arbitrary vector-valued function with parameters */ struct gsl_function_vec_struct { int (* function) (double x, double y[], void * params); void * params; }; typedef struct gsl_function_vec_struct gsl_function_vec ; #define GSL_FN_VEC_EVAL(F,x,y) (*((F)->function))(x,y,(F)->params) __END_DECLS #endif /* __GSL_MATH_H__ */ gsl-1.16/bspline/0000775000252300025230000000000012172254164010667 500000000000000gsl-1.16/bspline/bspline.c0000664000252300025230000006712012171574312012414 00000000000000/* bspline/bspline.c * * Copyright (C) 2006, 2007, 2008, 2009 Patrick Alken * Copyright (C) 2008 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* * This module contains routines related to calculating B-splines. * The algorithms used are described in * * [1] Carl de Boor, "A Practical Guide to Splines", Springer * Verlag, 1978. * * The bspline_pppack_* internal routines contain code adapted from * * [2] "PPPACK - Piecewise Polynomial Package", * http://www.netlib.org/pppack/ * */ #include "bspline.h" /* gsl_bspline_alloc() Allocate space for a bspline workspace. The size of the workspace is O(5k + nbreak) Inputs: k - spline order (cubic = 4) nbreak - number of breakpoints Return: pointer to workspace */ gsl_bspline_workspace * gsl_bspline_alloc (const size_t k, const size_t nbreak) { if (k == 0) { GSL_ERROR_NULL ("k must be at least 1", GSL_EINVAL); } else if (nbreak < 2) { GSL_ERROR_NULL ("nbreak must be at least 2", GSL_EINVAL); } else { gsl_bspline_workspace *w; w = (gsl_bspline_workspace *) malloc (sizeof (gsl_bspline_workspace)); if (w == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } w->k = k; w->km1 = k - 1; w->nbreak = nbreak; w->l = nbreak - 1; w->n = w->l + k - 1; w->knots = gsl_vector_alloc (w->n + k); if (w->knots == 0) { free (w); GSL_ERROR_NULL ("failed to allocate space for knots vector", GSL_ENOMEM); } w->deltal = gsl_vector_alloc (k); if (w->deltal == 0) { gsl_vector_free (w->knots); free (w); GSL_ERROR_NULL ("failed to allocate space for deltal vector", GSL_ENOMEM); } w->deltar = gsl_vector_alloc (k); if (w->deltar == 0) { gsl_vector_free (w->deltal); gsl_vector_free (w->knots); free (w); GSL_ERROR_NULL ("failed to allocate space for deltar vector", GSL_ENOMEM); } w->B = gsl_vector_alloc (k); if (w->B == 0) { gsl_vector_free (w->deltar);; gsl_vector_free (w->deltal); gsl_vector_free (w->knots); free (w); GSL_ERROR_NULL ("failed to allocate space for temporary spline vector", GSL_ENOMEM); } return w; } } /* gsl_bspline_alloc() */ /* gsl_bspline_deriv_alloc() Allocate space for a bspline derivative workspace. The size of the workspace is O(2k^2) Inputs: k - spline order (cubic = 4) Return: pointer to workspace */ gsl_bspline_deriv_workspace * gsl_bspline_deriv_alloc (const size_t k) { if (k == 0) { GSL_ERROR_NULL ("k must be at least 1", GSL_EINVAL); } else { gsl_bspline_deriv_workspace *dw; dw = (gsl_bspline_deriv_workspace *) malloc (sizeof (gsl_bspline_deriv_workspace)); if (dw == 0) { GSL_ERROR_NULL ("failed to allocate space for workspace", GSL_ENOMEM); } dw->A = gsl_matrix_alloc (k, k); if (dw->A == 0) { free (dw); GSL_ERROR_NULL ("failed to allocate space for derivative work matrix", GSL_ENOMEM); } dw->dB = gsl_matrix_alloc (k, k + 1); if (dw->dB == 0) { gsl_matrix_free (dw->A); free (dw); GSL_ERROR_NULL ("failed to allocate space for temporary derivative matrix", GSL_ENOMEM); } dw->k = k; return dw; } } /* gsl_bspline_deriv_alloc() */ /* Return number of coefficients */ size_t gsl_bspline_ncoeffs (gsl_bspline_workspace * w) { return w->n; } /* Return order */ size_t gsl_bspline_order (gsl_bspline_workspace * w) { return w->k; } /* Return number of breakpoints */ size_t gsl_bspline_nbreak (gsl_bspline_workspace * w) { return w->nbreak; } /* Return the location of the i-th breakpoint*/ double gsl_bspline_breakpoint (size_t i, gsl_bspline_workspace * w) { size_t j = i + w->k - 1; return gsl_vector_get (w->knots, j); } /* gsl_bspline_free() Free a gsl_bspline_workspace. Inputs: w - workspace to free Return: none */ void gsl_bspline_free (gsl_bspline_workspace * w) { RETURN_IF_NULL (w); gsl_vector_free (w->knots); gsl_vector_free (w->deltal); gsl_vector_free (w->deltar); gsl_vector_free (w->B); free (w); } /* gsl_bspline_free() */ /* gsl_bspline_deriv_free() Free a gsl_bspline_deriv_workspace. Inputs: dw - workspace to free Return: none */ void gsl_bspline_deriv_free (gsl_bspline_deriv_workspace * dw) { RETURN_IF_NULL (dw); gsl_matrix_free (dw->A); gsl_matrix_free (dw->dB); free (dw); } /* gsl_bspline_deriv_free() */ /* gsl_bspline_knots() Compute the knots from the given breakpoints: knots(1:k) = breakpts(1) knots(k+1:k+l-1) = breakpts(i), i = 2 .. l knots(n+1:n+k) = breakpts(l + 1) where l is the number of polynomial pieces (l = nbreak - 1) and n = k + l - 1 (using matlab syntax for the arrays) The repeated knots at the beginning and end of the interval correspond to the continuity condition there. See pg. 119 of [1]. Inputs: breakpts - breakpoints w - bspline workspace Return: success or error */ int gsl_bspline_knots (const gsl_vector * breakpts, gsl_bspline_workspace * w) { if (breakpts->size != w->nbreak) { GSL_ERROR ("breakpts vector has wrong size", GSL_EBADLEN); } else { size_t i; /* looping */ for (i = 0; i < w->k; i++) gsl_vector_set (w->knots, i, gsl_vector_get (breakpts, 0)); for (i = 1; i < w->l; i++) { gsl_vector_set (w->knots, w->k - 1 + i, gsl_vector_get (breakpts, i)); } for (i = w->n; i < w->n + w->k; i++) gsl_vector_set (w->knots, i, gsl_vector_get (breakpts, w->l)); return GSL_SUCCESS; } } /* gsl_bspline_knots() */ /* gsl_bspline_knots_uniform() Construct uniformly spaced knots on the interval [a,b] using the previously specified number of breakpoints. 'a' is the position of the first breakpoint and 'b' is the position of the last breakpoint. Inputs: a - left side of interval b - right side of interval w - bspline workspace Return: success or error Notes: 1) w->knots is modified to contain the uniformly spaced knots 2) The knots vector is set up as follows (using octave syntax): knots(1:k) = a knots(k+1:k+l-1) = a + i*delta, i = 1 .. l - 1 knots(n+1:n+k) = b */ int gsl_bspline_knots_uniform (const double a, const double b, gsl_bspline_workspace * w) { size_t i; /* looping */ double delta; /* interval spacing */ double x; delta = (b - a) / (double) w->l; for (i = 0; i < w->k; i++) gsl_vector_set (w->knots, i, a); x = a + delta; for (i = 0; i < w->l - 1; i++) { gsl_vector_set (w->knots, w->k + i, x); x += delta; } for (i = w->n; i < w->n + w->k; i++) gsl_vector_set (w->knots, i, b); return GSL_SUCCESS; } /* gsl_bspline_knots_uniform() */ /* gsl_bspline_eval() Evaluate the basis functions B_i(x) for all i. This is a wrapper function for gsl_bspline_eval_nonzero() which formats the output in a nice way. Inputs: x - point for evaluation B - (output) where to store B_i(x) values the length of this vector is n = nbreak + k - 2 = l + k - 1 = w->n w - bspline workspace Return: success or error Notes: The w->knots vector must be initialized prior to calling this function (see gsl_bspline_knots()) */ int gsl_bspline_eval (const double x, gsl_vector * B, gsl_bspline_workspace * w) { if (B->size != w->n) { GSL_ERROR ("vector B not of length n", GSL_EBADLEN); } else { size_t i; /* looping */ size_t istart; /* first non-zero spline for x */ size_t iend; /* last non-zero spline for x, knot for x */ int error; /* error handling */ /* find all non-zero B_i(x) values */ error = gsl_bspline_eval_nonzero (x, w->B, &istart, &iend, w); if (error) { return error; } /* store values in appropriate part of given vector */ for (i = 0; i < istart; i++) gsl_vector_set (B, i, 0.0); for (i = istart; i <= iend; i++) gsl_vector_set (B, i, gsl_vector_get (w->B, i - istart)); for (i = iend + 1; i < w->n; i++) gsl_vector_set (B, i, 0.0); return GSL_SUCCESS; } } /* gsl_bspline_eval() */ /* gsl_bspline_eval_nonzero() Evaluate all non-zero B-spline functions at point x. These are the B_i(x) for i in [istart, iend]. Always B_i(x) = 0 for i < istart and for i > iend. Inputs: x - point at which to evaluate splines Bk - (output) where to store B-spline values (length k) istart - (output) B-spline function index of first non-zero basis for given x iend - (output) B-spline function index of last non-zero basis for given x. This is also the knot index corresponding to x. w - bspline workspace Return: success or error Notes: 1) the w->knots vector must be initialized before calling this function 2) On output, B contains [B_{istart,k}, B_{istart+1,k}, ..., B_{iend-1,k}, B_{iend,k}] evaluated at the given x. */ int gsl_bspline_eval_nonzero (const double x, gsl_vector * Bk, size_t * istart, size_t * iend, gsl_bspline_workspace * w) { if (Bk->size != w->k) { GSL_ERROR ("Bk vector length does not match order k", GSL_EBADLEN); } else { size_t i; /* spline index */ size_t j; /* looping */ int flag = 0; /* interval search flag */ int error = 0; /* error flag */ i = bspline_find_interval (x, &flag, w); error = bspline_process_interval_for_eval (x, &i, flag, w); if (error) { return error; } *istart = i - w->k + 1; *iend = i; bspline_pppack_bsplvb (w->knots, w->k, 1, x, *iend, &j, w->deltal, w->deltar, Bk); return GSL_SUCCESS; } } /* gsl_bspline_eval_nonzero() */ /* gsl_bspline_deriv_eval() Evaluate d^j/dx^j B_i(x) for all i, 0 <= j <= nderiv. This is a wrapper function for gsl_bspline_deriv_eval_nonzero() which formats the output in a nice way. Inputs: x - point for evaluation nderiv - number of derivatives to compute, inclusive. dB - (output) where to store d^j/dx^j B_i(x) values. the size of this matrix is (n = nbreak + k - 2 = l + k - 1 = w->n) by (nderiv + 1) w - bspline derivative workspace Return: success or error Notes: 1) The w->knots vector must be initialized prior to calling this function (see gsl_bspline_knots()) 2) based on PPPACK's bsplvd */ int gsl_bspline_deriv_eval (const double x, const size_t nderiv, gsl_matrix * dB, gsl_bspline_workspace * w, gsl_bspline_deriv_workspace * dw) { if (dB->size1 != w->n) { GSL_ERROR ("dB matrix first dimension not of length n", GSL_EBADLEN); } else if (dB->size2 < nderiv + 1) { GSL_ERROR ("dB matrix second dimension must be at least length nderiv+1", GSL_EBADLEN); } else if (dw->k < w->k) { GSL_ERROR ("derivative workspace is too small", GSL_EBADLEN); } else { size_t i; /* looping */ size_t j; /* looping */ size_t istart; /* first non-zero spline for x */ size_t iend; /* last non-zero spline for x, knot for x */ int error; /* error handling */ /* find all non-zero d^j/dx^j B_i(x) values */ error = gsl_bspline_deriv_eval_nonzero (x, nderiv, dw->dB, &istart, &iend, w, dw); if (error) { return error; } /* store values in appropriate part of given matrix */ for (j = 0; j <= nderiv; j++) { for (i = 0; i < istart; i++) gsl_matrix_set (dB, i, j, 0.0); for (i = istart; i <= iend; i++) gsl_matrix_set (dB, i, j, gsl_matrix_get (dw->dB, i - istart, j)); for (i = iend + 1; i < w->n; i++) gsl_matrix_set (dB, i, j, 0.0); } return GSL_SUCCESS; } } /* gsl_bspline_deriv_eval() */ /* gsl_bspline_deriv_eval_nonzero() At point x evaluate all requested, non-zero B-spline function derivatives and store them in dB. These are the d^j/dx^j B_i(x) with i in [istart, iend] and j in [0, nderiv]. Always d^j/dx^j B_i(x) = 0 for i < istart and for i > iend. Inputs: x - point at which to evaluate splines nderiv - number of derivatives to request, inclusive dB - (output) where to store dB-spline derivatives (size k by nderiv + 1) istart - (output) B-spline function index of first non-zero basis for given x iend - (output) B-spline function index of last non-zero basis for given x. This is also the knot index corresponding to x. w - bspline derivative workspace Return: success or error Notes: 1) the w->knots vector must be initialized before calling this function 2) On output, dB contains [[B_{istart, k}, ..., d^nderiv/dx^nderiv B_{istart ,k}], [B_{istart+1,k}, ..., d^nderiv/dx^nderiv B_{istart+1,k}], ... [B_{iend-1, k}, ..., d^nderiv/dx^nderiv B_{iend-1, k}], [B_{iend, k}, ..., d^nderiv/dx^nderiv B_{iend, k}]] evaluated at x. B_{istart, k} is stored in dB(0,0). Each additional column contains an additional derivative. 3) Note that the zero-th column of the result contains the 0th derivative, which is simply a function evaluation. 4) based on PPPACK's bsplvd */ int gsl_bspline_deriv_eval_nonzero (const double x, const size_t nderiv, gsl_matrix * dB, size_t * istart, size_t * iend, gsl_bspline_workspace * w, gsl_bspline_deriv_workspace * dw) { if (dB->size1 != w->k) { GSL_ERROR ("dB matrix first dimension not of length k", GSL_EBADLEN); } else if (dB->size2 < nderiv + 1) { GSL_ERROR ("dB matrix second dimension must be at least length nderiv+1", GSL_EBADLEN); } else if (dw->k < w->k) { GSL_ERROR ("derivative workspace is too small", GSL_EBADLEN); } else { size_t i; /* spline index */ size_t j; /* looping */ int flag = 0; /* interval search flag */ int error = 0; /* error flag */ size_t min_nderivk; i = bspline_find_interval (x, &flag, w); error = bspline_process_interval_for_eval (x, &i, flag, w); if (error) { return error; } *istart = i - w->k + 1; *iend = i; bspline_pppack_bsplvd (w->knots, w->k, x, *iend, w->deltal, w->deltar, dw->A, dB, nderiv); /* An order k b-spline has at most k-1 nonzero derivatives so we need to zero all requested higher order derivatives */ min_nderivk = GSL_MIN_INT (nderiv, w->k - 1); for (j = min_nderivk + 1; j <= nderiv; j++) { for (i = 0; i < w->k; i++) { gsl_matrix_set (dB, i, j, 0.0); } } return GSL_SUCCESS; } } /* gsl_bspline_deriv_eval_nonzero() */ /**************************************** * INTERNAL ROUTINES * ****************************************/ /* bspline_find_interval() Find knot interval such that t_i <= x < t_{i + 1} where the t_i are knot values. Inputs: x - x value flag - (output) error flag w - bspline workspace Return: i (index in w->knots corresponding to left limit of interval) Notes: The error conditions are reported as follows: Condition Return value Flag --------- ------------ ---- x < t_0 0 -1 t_i <= x < t_{i+1} i 0 t_i < x = t_{i+1} = t_{n+k-1} i 0 t_{n+k-1} < x l+k-1 +1 */ static inline size_t bspline_find_interval (const double x, int *flag, gsl_bspline_workspace * w) { size_t i; if (x < gsl_vector_get (w->knots, 0)) { *flag = -1; return 0; } /* find i such that t_i <= x < t_{i+1} */ for (i = w->k - 1; i < w->k + w->l - 1; i++) { const double ti = gsl_vector_get (w->knots, i); const double tip1 = gsl_vector_get (w->knots, i + 1); if (tip1 < ti) { GSL_ERROR ("knots vector is not increasing", GSL_EINVAL); } if (ti <= x && x < tip1) break; if (ti < x && x == tip1 && tip1 == gsl_vector_get (w->knots, w->k + w->l - 1)) break; } if (i == w->k + w->l - 1) *flag = 1; else *flag = 0; return i; } /* bspline_find_interval() */ /* bspline_process_interval_for_eval() Consumes an x location, left knot from bspline_find_interval, flag from bspline_find_interval, and a workspace. Checks that x lies within the splines' knots, enforces some endpoint continuity requirements, and avoids divide by zero errors in the underlying bspline_pppack_* functions. */ static inline int bspline_process_interval_for_eval (const double x, size_t * i, const int flag, gsl_bspline_workspace * w) { if (flag == -1) { GSL_ERROR ("x outside of knot interval", GSL_EINVAL); } else if (flag == 1) { if (x <= gsl_vector_get (w->knots, *i) + GSL_DBL_EPSILON) { *i -= 1; } else { GSL_ERROR ("x outside of knot interval", GSL_EINVAL); } } if (gsl_vector_get (w->knots, *i) == gsl_vector_get (w->knots, *i + 1)) { GSL_ERROR ("knot(i) = knot(i+1) will result in division by zero", GSL_EINVAL); } return GSL_SUCCESS; } /* bspline_process_interval_for_eval */ /******************************************************************** * PPPACK ROUTINES * * The routines herein deliberately avoid using the bspline workspace, * choosing instead to pass all work areas explicitly. This allows * others to more easily adapt these routines to low memory or * parallel scenarios. ********************************************************************/ /* bspline_pppack_bsplvb() calculates the value of all possibly nonzero b-splines at x of order jout = max( jhigh , (j+1)*(index-1) ) with knot sequence t. Parameters: t - knot sequence, of length left + jout , assumed to be nondecreasing. assumption t(left).lt.t(left + 1). division by zero will result if t(left) = t(left+1) jhigh - index - integers which determine the order jout = max(jhigh, (j+1)*(index-1)) of the b-splines whose values at x are to be returned. index is used to avoid recalculations when several columns of the triangular array of b-spline values are needed (e.g., in bsplpp or in bsplvd ). precisely, if index = 1 , the calculation starts from scratch and the entire triangular array of b-spline values of orders 1,2,...,jhigh is generated order by order , i.e., column by column . if index = 2 , only the b-spline values of order j+1, j+2, ..., jout are generated, the assumption being that biatx, j, deltal, deltar are, on entry, as they were on exit at the previous call. in particular, if jhigh = 0, then jout = j+1, i.e., just the next column of b-spline values is generated. x - the point at which the b-splines are to be evaluated. left - an integer chosen (usually) so that t(left) .le. x .le. t(left+1). j - (output) a working scalar for indexing deltal - (output) a working area which must be of length at least jout deltar - (output) a working area which must be of length at least jout biatx - (output) array of length jout, with biatx(i) containing the value at x of the polynomial of order jout which agrees with the b-spline b(left-jout+i,jout,t) on the interval (t(left), t(left+1)) . Method: the recurrence relation x - t(i) t(i+j+1) - x b(i,j+1)(x) = -----------b(i,j)(x) + ---------------b(i+1,j)(x) t(i+j)-t(i) t(i+j+1)-t(i+1) is used (repeatedly) to generate the (j+1)-vector b(left-j,j+1)(x), ...,b(left,j+1)(x) from the j-vector b(left-j+1,j)(x),..., b(left,j)(x), storing the new values in biatx over the old. the facts that b(i,1) = 1 if t(i) .le. x .lt. t(i+1) and that b(i,j)(x) = 0 unless t(i) .le. x .lt. t(i+j) are used. the particular organization of the calculations follows algorithm (8) in chapter x of [1]. Notes: (1) This is a direct translation of PPPACK's bsplvb routine with j, deltal, deltar rewritten as input parameters and utilizing zero-based indexing. (2) This routine contains no error checking. Please use routines like gsl_bspline_eval(). */ static void bspline_pppack_bsplvb (const gsl_vector * t, const size_t jhigh, const size_t index, const double x, const size_t left, size_t * j, gsl_vector * deltal, gsl_vector * deltar, gsl_vector * biatx) { size_t i; /* looping */ double saved; double term; if (index == 1) { *j = 0; gsl_vector_set (biatx, 0, 1.0); } for ( /* NOP */ ; *j < jhigh - 1; *j += 1) { gsl_vector_set (deltar, *j, gsl_vector_get (t, left + *j + 1) - x); gsl_vector_set (deltal, *j, x - gsl_vector_get (t, left - *j)); saved = 0.0; for (i = 0; i <= *j; i++) { term = gsl_vector_get (biatx, i) / (gsl_vector_get (deltar, i) + gsl_vector_get (deltal, *j - i)); gsl_vector_set (biatx, i, saved + gsl_vector_get (deltar, i) * term); saved = gsl_vector_get (deltal, *j - i) * term; } gsl_vector_set (biatx, *j + 1, saved); } return; } /* gsl_bspline_pppack_bsplvb */ /* bspline_pppack_bsplvd() calculates value and derivs of all b-splines which do not vanish at x Parameters: t - the knot array, of length left+k (at least) k - the order of the b-splines to be evaluated x - the point at which these values are sought left - an integer indicating the left endpoint of the interval of interest. the k b-splines whose support contains the interval (t(left), t(left+1)) are to be considered. it is assumed that t(left) .lt. t(left+1) division by zero will result otherwise (in bsplvb). also, the output is as advertised only if t(left) .le. x .le. t(left+1) . deltal - a working area which must be of length at least k deltar - a working area which must be of length at least k a - an array of order (k,k), to contain b-coeffs of the derivatives of a certain order of the k b-splines of interest. dbiatx - an array of order (k,nderiv). its entry (i,m) contains value of (m)th derivative of (left-k+i)-th b-spline of order k for knot sequence t, i=1,...,k, m=0,...,nderiv. nderiv - an integer indicating that values of b-splines and their derivatives up to AND INCLUDING the nderiv-th are asked for. (nderiv is replaced internally by the integer mhigh in (1,k) closest to it.) Method: values at x of all the relevant b-splines of order k,k-1,..., k+1-nderiv are generated via bsplvb and stored temporarily in dbiatx. then, the b-coeffs of the required derivatives of the b-splines of interest are generated by differencing, each from the preceeding one of lower order, and combined with the values of b-splines of corresponding order in dbiatx to produce the desired values . Notes: (1) This is a direct translation of PPPACK's bsplvd routine with deltal, deltar rewritten as input parameters (to later feed them to bspline_pppack_bsplvb) and utilizing zero-based indexing. (2) This routine contains no error checking. */ static void bspline_pppack_bsplvd (const gsl_vector * t, const size_t k, const double x, const size_t left, gsl_vector * deltal, gsl_vector * deltar, gsl_matrix * a, gsl_matrix * dbiatx, const size_t nderiv) { int i, ideriv, il, j, jlow, jp1mid, kmm, ldummy, m, mhigh; double factor, fkmm, sum; size_t bsplvb_j; gsl_vector_view dbcol = gsl_matrix_column (dbiatx, 0); mhigh = GSL_MIN_INT (nderiv, k - 1); bspline_pppack_bsplvb (t, k - mhigh, 1, x, left, &bsplvb_j, deltal, deltar, &dbcol.vector); if (mhigh > 0) { /* the first column of dbiatx always contains the b-spline values for the current order. these are stored in column k-current order before bsplvb is called to put values for the next higher order on top of it. */ ideriv = mhigh; for (m = 1; m <= mhigh; m++) { for (j = ideriv, jp1mid = 0; j < (int) k; j++, jp1mid++) { gsl_matrix_set (dbiatx, j, ideriv, gsl_matrix_get (dbiatx, jp1mid, 0)); } ideriv--; bspline_pppack_bsplvb (t, k - ideriv, 2, x, left, &bsplvb_j, deltal, deltar, &dbcol.vector); } /* at this point, b(left-k+i, k+1-j)(x) is in dbiatx(i,j) for i=j,...,k-1 and j=0,...,mhigh. in particular, the first column of dbiatx is already in final form. to obtain corresponding derivatives of b-splines in subsequent columns, generate their b-repr. by differencing, then evaluate at x. */ jlow = 0; for (i = 0; i < (int) k; i++) { for (j = jlow; j < (int) k; j++) { gsl_matrix_set (a, j, i, 0.0); } jlow = i; gsl_matrix_set (a, i, i, 1.0); } /* at this point, a(.,j) contains the b-coeffs for the j-th of the k b-splines of interest here. */ for (m = 1; m <= mhigh; m++) { kmm = k - m; fkmm = (float) kmm; il = left; i = k - 1; /* for j=1,...,k, construct b-coeffs of (m)th derivative of b-splines from those for preceding derivative by differencing and store again in a(.,j) . the fact that a(i,j) = 0 for i .lt. j is used. */ for (ldummy = 0; ldummy < kmm; ldummy++) { factor = fkmm / (gsl_vector_get (t, il + kmm) - gsl_vector_get (t, il)); /* the assumption that t(left).lt.t(left+1) makes denominator in factor nonzero. */ for (j = 0; j <= i; j++) { gsl_matrix_set (a, i, j, factor * (gsl_matrix_get (a, i, j) - gsl_matrix_get (a, i - 1, j))); } il--; i--; } /* for i=1,...,k, combine b-coeffs a(.,i) with b-spline values stored in dbiatx(.,m) to get value of (m)th derivative of i-th b-spline (of interest here) at x, and store in dbiatx(i,m). storage of this value over the value of a b-spline of order m there is safe since the remaining b-spline derivatives of the same order do not use this value due to the fact that a(j,i) = 0 for j .lt. i . */ for (i = 0; i < (int) k; i++) { sum = 0; jlow = GSL_MAX_INT (i, m); for (j = jlow; j < (int) k; j++) { sum += gsl_matrix_get (a, j, i) * gsl_matrix_get (dbiatx, j, m); } gsl_matrix_set (dbiatx, i, m, sum); } } } return; } /* bspline_pppack_bsplvd */ gsl-1.16/bspline/TODO0000664000252300025230000000037712171574312011305 00000000000000# -*- org -*- #+CATEGORY: bspline Add functions: gsl_bspline_smooth to fit smoothing splines to data more efficiently than the standard least squares inversion (see pppack l2appr and smooth.spline() from GNU R) + any other useful functions from pppack gsl-1.16/bspline/test.c0000664000252300025230000004535612171574312011746 00000000000000/* bspline/test.c * * Copyright (C) 2006, 2007, 2009 Brian Gough * Copyright (C) 2008, 2011 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include void test_bspline(gsl_bspline_workspace * bw, gsl_bspline_deriv_workspace * dbw) { gsl_vector *B; gsl_matrix *dB; size_t i, j; size_t n = 100; size_t ncoeffs = gsl_bspline_ncoeffs(bw); size_t order = gsl_bspline_order(bw); size_t nbreak = gsl_bspline_nbreak(bw); double a = gsl_bspline_breakpoint(0, bw); double b = gsl_bspline_breakpoint(nbreak - 1, bw); B = gsl_vector_alloc(ncoeffs); dB = gsl_matrix_alloc(ncoeffs, 1); /* Ensure B-splines form a partition of unity */ for (i = 0; i < n; i++) { double xi = a + (b - a) * (i / (n - 1.0)); double sum = 0; gsl_bspline_eval(xi, B, bw); for (j = 0; j < ncoeffs; j++) { double Bj = gsl_vector_get(B, j); int s = (Bj < 0 || Bj > 1); gsl_test(s, "basis-spline coefficient %u is in range [0,1] for x=%g", j, xi); sum += Bj; } gsl_test_rel(sum, 1.0, order * GSL_DBL_EPSILON, "basis-spline order %u is normalized for x=%g", order, xi); } /* Ensure B-splines 0th derivatives agree with regular evaluation */ for (i = 0; i < n; i++) { double xi = a + (b - a) * (i / (n - 1.0)); gsl_bspline_eval(xi, B, bw); gsl_bspline_deriv_eval(xi, 0, dB, bw, dbw); for (j = 0; j < ncoeffs; j++) { gsl_test_abs(gsl_matrix_get(dB, j, 0), gsl_vector_get(B, j), GSL_DBL_EPSILON, "b-spline order %d basis #%d evaluation and 0th derivative consistent for x=%g", order, j, xi); } } gsl_vector_free(B); gsl_matrix_free(dB); } int main(int argc, char **argv) { size_t order, breakpoints, i; gsl_ieee_env_setup(); argc = 0; /* prevent warnings about unused parameters */ argv = 0; for (order = 1; order < 10; order++) { for (breakpoints = 2; breakpoints < 100; breakpoints++) { double a = -1.23 * order, b = 45.6 * order; gsl_bspline_workspace *bw = gsl_bspline_alloc(order, breakpoints); gsl_bspline_deriv_workspace *dbw = gsl_bspline_deriv_alloc(order); gsl_bspline_knots_uniform(a, b, bw); test_bspline(bw, dbw); gsl_bspline_deriv_free(dbw); gsl_bspline_free(bw); } } for (order = 1; order < 10; order++) { for (breakpoints = 2; breakpoints < 100; breakpoints++) { double a = -1.23 * order, b = 45.6 * order; gsl_bspline_workspace *bw = gsl_bspline_alloc(order, breakpoints); gsl_bspline_deriv_workspace *dbw = gsl_bspline_deriv_alloc(order); gsl_vector *k = gsl_vector_alloc(breakpoints); for (i = 0; i < breakpoints; i++) { double f, x; f = sqrt(i / (breakpoints - 1.0)); x = (1 - f) * a + f * b; gsl_vector_set(k, i, x); }; gsl_bspline_knots(k, bw); test_bspline(bw, dbw); gsl_vector_free(k); gsl_bspline_deriv_free(dbw); gsl_bspline_free(bw); } } /* Spot check known 0th, 1st, 2nd derivative evaluations for a particular k = 2 case. */ { size_t i, j; /* looping */ const double xloc[4] = { 0.0, 1.0, 6.0, 7.0}; const double deriv[4][3] = { { -1.0/2.0, 1.0/2.0, 0.0 }, { -1.0/2.0, 1.0/2.0, 0.0 }, { 0.0, -1.0/5.0, 1.0/5.0 }, { 0.0, -1.0/5.0, 1.0/5.0 } }; gsl_bspline_workspace *bw = gsl_bspline_alloc(2, 3); gsl_bspline_deriv_workspace *dbw = gsl_bspline_deriv_alloc(2); gsl_matrix *dB = gsl_matrix_alloc(gsl_bspline_ncoeffs(bw), gsl_bspline_order(bw) + 1); gsl_vector *breakpts = gsl_vector_alloc(3); gsl_vector_set(breakpts, 0, 0.0); gsl_vector_set(breakpts, 1, 2.0); gsl_vector_set(breakpts, 2, 7.0); gsl_bspline_knots(breakpts, bw); for (i = 0; i < 4; ++i) /* at each location */ { /* Initialize dB with poison to ensure we overwrite it */ gsl_matrix_set_all(dB, GSL_NAN); gsl_bspline_deriv_eval(xloc[i], gsl_bspline_order(bw), dB, bw, dbw); for (j = 0; j < gsl_bspline_ncoeffs(bw) ; ++j) { /* check basis function 1st deriv */ gsl_test_abs(gsl_matrix_get(dB, j, 1), deriv[i][j], GSL_DBL_EPSILON, "b-spline k=%d basis #%d derivative %d at x = %f", gsl_bspline_order(bw), j, 1, xloc[i]); } for (j = 0; j < gsl_bspline_ncoeffs(bw); ++j) { /* check k order basis function has k-th deriv equal to 0 */ gsl_test_abs(gsl_matrix_get(dB, j, gsl_bspline_order(bw)), 0.0, GSL_DBL_EPSILON, "b-spline k=%d basis #%d derivative %d at x = %f", gsl_bspline_order(bw), j, gsl_bspline_order(bw), xloc[i]); } } gsl_matrix_free(dB); gsl_bspline_deriv_free(dbw); gsl_bspline_free(bw); gsl_vector_free(breakpts); } /* Spot check known 0th, 1st, 2nd derivative evaluations for a particular k = 3 case. */ { size_t i, j; /* looping */ const double xloc[5] = { 0.0, 5.0, 9.0, 12.0, 15.0 }; const double eval[5][6] = { { 4./25., 69./100., 3./ 20. , 0. , 0. , 0. }, { 0. , 4./21. , 143./210. , 9./70., 0. , 0. }, { 0. , 0. , 3./ 10. , 7./10., 0. , 0. }, { 0. , 0. , 0. , 3./4. , 1./4., 0. }, { 0. , 0. , 0. , 1./3. , 5./9., 1./9. } }; const double deriv[5][6] = { { -4./25., 3./50., 1./ 10., 0. , 0. , 0. }, { 0. , -2./21., 1./105., 3./35., 0. , 0. }, { 0. , 0. , -1./5. , 1./ 5., 0. , 0. }, { 0. , 0. , 0. , -1./ 6., 1./6. , 0. }, { 0. , 0. , 0. , -1./ 9., 1./27., 2./27. } }; const double deriv2[5][6] = { { 2./25., -17./150., 1.0/30.0 , 0.0 , 0. , 0. }, { 0. , 1./ 42., -11.0/210.0, 1.0/35.0, 0. , 0. }, { 0. , 0. , 1.0/15.0 ,-11.0/90.0, 1./18. , 0. }, { 0. , 0. , 0.0 , 1.0/54.0, -7./162., 2./81. }, { 0. , 0. , 0.0 , 1.0/54.0, -7./162., 2./81. } }; gsl_bspline_workspace *bw = gsl_bspline_alloc(3, 5); gsl_bspline_deriv_workspace *dbw = gsl_bspline_deriv_alloc(3); gsl_matrix *dB = gsl_matrix_alloc(gsl_bspline_ncoeffs(bw), gsl_bspline_order(bw) + 1); gsl_vector *breakpts = gsl_vector_alloc(5); gsl_vector_set(breakpts, 0, -3.0); gsl_vector_set(breakpts, 1, 2.0); gsl_vector_set(breakpts, 2, 9.0); gsl_vector_set(breakpts, 3, 12.0); gsl_vector_set(breakpts, 4, 21.0); gsl_bspline_knots(breakpts, bw); for (i = 0; i < 5; ++i) /* at each location */ { /* Initialize dB with poison to ensure we overwrite it */ gsl_matrix_set_all(dB, GSL_NAN); gsl_bspline_deriv_eval(xloc[i], gsl_bspline_order(bw), dB, bw, dbw); /* check basis function evaluation */ for (j = 0; j < gsl_bspline_ncoeffs(bw); ++j) { gsl_test_abs(gsl_matrix_get(dB, j, 0), eval[i][j], GSL_DBL_EPSILON, "b-spline k=%d basis #%d derivative %d at x = %f", gsl_bspline_order(bw), j, 0, xloc[i]); } /* check 1st derivative evaluation */ for (j = 0; j < gsl_bspline_ncoeffs(bw); ++j) { gsl_test_abs(gsl_matrix_get(dB, j, 1), deriv[i][j], GSL_DBL_EPSILON, "b-spline k=%d basis #%d derivative %d at x = %f", gsl_bspline_order(bw), j, 1, xloc[i]); } /* check 2nd derivative evaluation */ for (j = 0; j < gsl_bspline_ncoeffs(bw); ++j) { gsl_test_abs(gsl_matrix_get(dB, j, 2), deriv2[i][j], GSL_DBL_EPSILON, "b-spline k=%d basis #%d derivative %d at x = %f", gsl_bspline_order(bw), j, 2, xloc[i]); } } gsl_matrix_free(dB); gsl_bspline_deriv_free(dbw); gsl_bspline_free(bw); gsl_vector_free(breakpts); } /* Check Greville abscissae functionality on a non-uniform k=1 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 1; const double bpoint_data[] = { 0.0, 0.2, 0.5, 0.75, 1.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Expected results */ const double abscissae_data[] = { 0.1, 0.35, 0.625, 0.875 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); gsl_vector_const_view bpoints = gsl_vector_const_view_array(bpoint_data, nbreak); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots((const gsl_vector *) &bpoints, w); gsl_test_int(nabscissae, gsl_bspline_ncoeffs(w), "b-spline k=%d number of abscissae", k); for (i = 0; i < nabscissae; ++i) { gsl_test_abs(gsl_bspline_greville_abscissa(i, w), abscissae_data[i], 2*k*GSL_DBL_EPSILON, "b-spline k=%d Greville abscissa #%d at x = %f", k, i, abscissae_data[i]); } gsl_bspline_free(w); } /* Check Greville abscissae functionality on a non-uniform k=2 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 2; const double bpoint_data[] = { 0.0, 0.2, 0.5, 0.75, 1.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Expected results */ const double abscissae_data[] = { 0.0, 0.2, 0.5, 0.75, 1.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); gsl_vector_const_view bpoints = gsl_vector_const_view_array(bpoint_data, nbreak); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots((const gsl_vector *) &bpoints, w); gsl_test_int(nabscissae, gsl_bspline_ncoeffs(w), "b-spline k=%d number of abscissae", k); for (i = 0; i < nabscissae; ++i) { gsl_test_abs(gsl_bspline_greville_abscissa(i, w), abscissae_data[i], 2*k*GSL_DBL_EPSILON, "b-spline k=%d Greville abscissa #%d at x = %f", k, i, abscissae_data[i]); } gsl_bspline_free(w); } /* Check Greville abscissae functionality on non-uniform k=3 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 3; const double bpoint_data[] = { 0.0, 0.2, 0.5, 0.75, 1.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Expected results */ const double abscissae_data[] = { 0.0, 1.0/10.0, 7.0/20.0, 5.0/ 8.0, 7.0/ 8.0, 1.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); gsl_vector_const_view bpoints = gsl_vector_const_view_array(bpoint_data, nbreak); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots((const gsl_vector *) &bpoints, w); gsl_test_int(nabscissae, gsl_bspline_ncoeffs(w), "b-spline k=%d number of abscissae", k); for (i = 0; i < nabscissae; ++i) { gsl_test_abs(gsl_bspline_greville_abscissa(i, w), abscissae_data[i], 2*k*GSL_DBL_EPSILON, "b-spline k=%d Greville abscissa #%d at x = %f", k, i, abscissae_data[i]); } gsl_bspline_free(w); } /* Check Greville abscissae functionality on non-uniform k=4 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 4; const double bpoint_data[] = { 0.0, 0.2, 0.5, 0.75, 1.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Expected results */ const double abscissae_data[] = { 0.0, 1.0/15.0, 7.0/30.0, 29.0/60.0, 3.0/ 4.0, 11.0/12.0, 1.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); gsl_vector_const_view bpoints = gsl_vector_const_view_array(bpoint_data, nbreak); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots((const gsl_vector *) &bpoints, w); gsl_test_int(nabscissae, gsl_bspline_ncoeffs(w), "b-spline k=%d number of abscissae", k); for (i = 0; i < nabscissae; ++i) { gsl_test_abs(gsl_bspline_greville_abscissa(i, w), abscissae_data[i], 2*k*GSL_DBL_EPSILON, "b-spline k=%d Greville abscissa #%d at x = %f", k, i, abscissae_data[i]); } gsl_bspline_free(w); } /* Knots computed from prescribed Greville abscissae for k = 4 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 4; const double abscissae_data[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); /* Expected results */ const double bpoint_data[] = { 1.0, 4.0, 4.0, 4.0, 7.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Compute knots from Greville abscissae */ double abserr; gsl_vector_const_view abscissae = gsl_vector_const_view_array(abscissae_data, nabscissae); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots_greville(&abscissae.vector, w, &abserr); for (i = 0; i < nbreak; ++i) { gsl_test_abs(gsl_bspline_breakpoint(i,w), bpoint_data[i], GSL_DBL_EPSILON*50, "b-spline k=%d knots_greville breakpoint #%d", k, i); } gsl_test_abs(abserr, 0.0, GSL_DBL_EPSILON*15, "b-spline k=%d nbreak=%d knots_greville abserr", k, nbreak); gsl_bspline_free(w); } /* Knots computed from prescribed Greville abscissae for k = 8 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 8; const double abscissae_data[] = { 1.0, 10.0/7, 13.0/7, 16.0/7, 22.0/7, 4.0, 34.0/7, 40.0/7, 43.0/7, 46.0/7, 7.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); /* Expected results */ const double bpoint_data[] = { 1.0, 4.0, 4.0, 4.0, 7.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Compute knots from Greville abscissae */ double abserr; gsl_vector_const_view abscissae = gsl_vector_const_view_array(abscissae_data, nabscissae); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots_greville(&abscissae.vector, w, &abserr); for (i = 0; i < nbreak; ++i) { gsl_test_abs(gsl_bspline_breakpoint(i,w), bpoint_data[i], GSL_DBL_EPSILON*50, "b-spline k=%d knots_greville breakpoint #%d", k, i); } gsl_test_abs(abserr, 0.0, GSL_DBL_EPSILON*15, "b-spline k=%d nbreak=%d knots_greville abserr", k, nbreak); gsl_bspline_free(w); } /* Knots computed from prescribed Greville abscissae for k = 2 */ /* Not an interesting calculation but checks the k = 2 edge case */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 2; const double abscissae_data[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); /* Expected results */ const double bpoint_data[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Compute knots from Greville abscissae */ double abserr; gsl_vector_const_view abscissae = gsl_vector_const_view_array(abscissae_data, nabscissae); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots_greville(&abscissae.vector, w, &abserr); for (i = 0; i < nbreak; ++i) { gsl_test_abs(gsl_bspline_breakpoint(i,w), bpoint_data[i], GSL_DBL_EPSILON, "b-spline k=%d knots_greville breakpoint #%d", k, i); } gsl_test_abs(abserr, 0.0, GSL_DBL_EPSILON, "b-spline k=%d nbreak=%d knots_greville abserr", k, nbreak); gsl_bspline_free(w); } /* Knots computed from prescribed abscissae for edge case when nbreak = 2 */ { size_t i; /* looping */ /* Test parameters */ const size_t k = 4; double abscissae_data[] = { 1.0, 3.0, 5.0, 7.0 }; const size_t nabscissae = sizeof(abscissae_data)/sizeof(abscissae_data[0]); /* Expected results */ const double bpoint_data[] = { 1.0, 7.0 }; const size_t nbreak = sizeof(bpoint_data)/sizeof(bpoint_data[0]); /* Compute knots from Greville abscissae where abscissae are recoverable */ double abserr; gsl_vector_view abscissae = gsl_vector_view_array(abscissae_data, nabscissae); gsl_bspline_workspace *w = gsl_bspline_alloc(k, nbreak); gsl_bspline_knots_greville(&abscissae.vector, w, &abserr); /* Check recovery of breakpoints and abscissae */ for (i = 0; i < nbreak; ++i) { gsl_test_abs(gsl_bspline_breakpoint(i,w), bpoint_data[i], GSL_DBL_EPSILON, "b-spline k=%d knots_greville breakpoint #%d", k, i); } gsl_test_abs(abserr, 0.0, GSL_DBL_EPSILON, "b-spline k=%d nbreak=%d knots_greville abserr", k, nbreak); /* Modify interior abscissae so they cannot be recovered with nbreak = 2 */ /* Then recompute breakpoints and check that abserr is as expected */ abscissae_data[1] -= 1; abscissae_data[2] += 1; gsl_bspline_knots_greville(&abscissae.vector, w, &abserr); for (i = 0; i < nbreak; ++i) { gsl_test_abs(gsl_bspline_breakpoint(i,w), bpoint_data[i], GSL_DBL_EPSILON, "b-spline k=%d knots_greville breakpoint #%d", k, i); } gsl_test_abs(abserr, /* deliberate error */ 2.0, GSL_DBL_EPSILON, "b-spline k=%d nbreak=%d knots_greville abserr large", k, nbreak); gsl_bspline_free(w); } exit(gsl_test_summary()); } gsl-1.16/bspline/Makefile.in0000664000252300025230000010446012172253754012665 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = bspline DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslbspline_la_LIBADD = am_libgslbspline_la_OBJECTS = bspline.lo greville.lo libgslbspline_la_OBJECTS = $(am_libgslbspline_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslbspline.la ../linalg/libgsllinalg.la \ ../permutation/libgslpermutation.la ../blas/libgslblas.la \ ../matrix/libgslmatrix.la ../vector/libgslvector.la \ ../block/libgslblock.la ../complex/libgslcomplex.la \ ../cblas/libgslcblas.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la ../statistics/libgslstatistics.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslbspline_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslbspline_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslbspline.la pkginclude_HEADERS = gsl_bspline.h INCLUDES = -I$(top_srcdir) libgslbspline_la_SOURCES = bspline.c greville.c noinst_HEADERS = bspline.h TESTS = $(check_PROGRAMS) test_LDADD = libgslbspline.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../cblas/libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../statistics/libgslstatistics.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu bspline/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu bspline/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslbspline.la: $(libgslbspline_la_OBJECTS) $(libgslbspline_la_DEPENDENCIES) $(EXTRA_libgslbspline_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslbspline_la_OBJECTS) $(libgslbspline_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bspline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/greville.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/bspline/ChangeLog0000664000252300025230000000300512171574312012356 000000000000002011-09-21 Rhys Ulerich * greville.c (gsl_bspline_knots_greville) Added routine to initialize breakpoints prescribed by specifying the desired Greville abscissae * test.c Add tests for the new gsl_bspline_knots_greville 2011-09-20 Rhys Ulerich * bspline.c (gsl_bspline_greville_abscissa) Greville-related logic moved to greville.c in preparation for upcoming gsl_bspline_knots_greville_abscissae functionality. 2009-08-12 Brian Gough * bspline.c (gsl_bspline_alloc): correct free to gsl_vector_free for components allocated with gsl_vector_alloc (gsl_bspline_deriv_alloc): correct free to gsl_matrix_free for components allocated with gsl_matrix_alloc 2009-07-21 Brian Gough * bspline.c (gsl_bspline_greville_abscissa): added function for greville abscissae 2009-07-09 Brian Gough * bspline.c (gsl_bspline_free): handle NULL argument in free (gsl_bspline_deriv_free): handle NULL argument in free 2008-12-09 Brian Gough * bspline.c (gsl_bspline_deriv_alloc): add size to derivative struct 2008-12-08 Brian Gough * gsl_bspline.h: preserve binary compatibility in workspaces 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2006-11-02 Brian Gough * added test program * initial checkin from P.Alken gsl-1.16/bspline/bspline.h0000664000252300025230000000140212171574312012410 00000000000000static inline size_t bspline_find_interval (const double x, int *flag, gsl_bspline_workspace * w); static inline int bspline_process_interval_for_eval (const double x, size_t * i, int flag, gsl_bspline_workspace * w); static void bspline_pppack_bsplvb (const gsl_vector * t, const size_t jhigh, const size_t index, const double x, const size_t left, size_t * j, gsl_vector * deltal, gsl_vector * deltar, gsl_vector * biatx); static void bspline_pppack_bsplvd (const gsl_vector * t, const size_t k, const double x, const size_t left, gsl_vector * deltal, gsl_vector * deltar, gsl_matrix * a, gsl_matrix * dbiatx, const size_t nderiv); gsl-1.16/bspline/Makefile.am0000664000252300025230000000121012171574312012634 00000000000000noinst_LTLIBRARIES = libgslbspline.la pkginclude_HEADERS = gsl_bspline.h INCLUDES = -I$(top_srcdir) libgslbspline_la_SOURCES = bspline.c greville.c noinst_HEADERS = bspline.h check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_LDADD = libgslbspline.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../cblas/libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la ../statistics/libgslstatistics.la test_SOURCES = test.c gsl-1.16/bspline/gsl_bspline.h0000664000252300025230000000722712171574312013270 00000000000000/* bspline/gsl_bspline.h * * Copyright (C) 2006 Patrick Alken * Copyright (C) 2008 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_BSPLINE_H__ #define __GSL_BSPLINE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t k; /* spline order */ size_t km1; /* k - 1 (polynomial order) */ size_t l; /* number of polynomial pieces on interval */ size_t nbreak; /* number of breakpoints (l + 1) */ size_t n; /* number of bspline basis functions (l + k - 1) */ gsl_vector *knots; /* knots vector */ gsl_vector *deltal; /* left delta */ gsl_vector *deltar; /* right delta */ gsl_vector *B; /* temporary spline results */ } gsl_bspline_workspace; typedef struct { size_t k; /* spline order */ gsl_matrix *A; /* work matrix */ gsl_matrix *dB; /* temporary derivative results */ } gsl_bspline_deriv_workspace; gsl_bspline_workspace * gsl_bspline_alloc(const size_t k, const size_t nbreak); void gsl_bspline_free(gsl_bspline_workspace *w); size_t gsl_bspline_ncoeffs(gsl_bspline_workspace * w); size_t gsl_bspline_order(gsl_bspline_workspace * w); size_t gsl_bspline_nbreak(gsl_bspline_workspace * w); double gsl_bspline_breakpoint(size_t i, gsl_bspline_workspace * w); double gsl_bspline_greville_abscissa(size_t i, gsl_bspline_workspace *w); int gsl_bspline_knots(const gsl_vector *breakpts, gsl_bspline_workspace *w); int gsl_bspline_knots_uniform(const double a, const double b, gsl_bspline_workspace *w); int gsl_bspline_knots_greville(const gsl_vector *abscissae, gsl_bspline_workspace *w, double *abserr); int gsl_bspline_eval(const double x, gsl_vector *B, gsl_bspline_workspace *w); int gsl_bspline_eval_nonzero(const double x, gsl_vector *Bk, size_t *istart, size_t *iend, gsl_bspline_workspace *w); gsl_bspline_deriv_workspace * gsl_bspline_deriv_alloc(const size_t k); void gsl_bspline_deriv_free(gsl_bspline_deriv_workspace *w); int gsl_bspline_deriv_eval(const double x, const size_t nderiv, gsl_matrix *dB, gsl_bspline_workspace *w, gsl_bspline_deriv_workspace *dw); int gsl_bspline_deriv_eval_nonzero(const double x, const size_t nderiv, gsl_matrix *dB, size_t *istart, size_t *iend, gsl_bspline_workspace *w, gsl_bspline_deriv_workspace *dw); __END_DECLS #endif /* __GSL_BSPLINE_H__ */ gsl-1.16/bspline/greville.c0000664000252300025230000001370712171574312012573 00000000000000/* bspline/greville.c * * Copyright (C) 2006, 2007, 2008, 2009 Patrick Alken * Copyright (C) 2008, 2011 Rhys Ulerich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* Return the location of the i-th Greville abscissa */ double gsl_bspline_greville_abscissa (size_t i, gsl_bspline_workspace *w) { const size_t stride = w->knots->stride; size_t km1 = w->km1; double * data = w->knots->data + (i+1)*stride; #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= gsl_bspline_ncoeffs(w))) { GSL_ERROR_VAL ("Greville abscissa index out of range", GSL_EINVAL, 0); } #endif if (km1 == 0) { /* Return interval midpoints in degenerate k = 1 case*/ km1 = 2; data -= stride; } return gsl_stats_mean(data, stride, km1); } int gsl_bspline_knots_greville (const gsl_vector *abscissae, gsl_bspline_workspace *w, double *abserr) { /* Limited function: see https://savannah.gnu.org/bugs/index.php?34361 */ int s; /* Check incoming arguments satisfy mandatory algorithmic assumptions */ if (w->k < 2) GSL_ERROR ("w->k must be at least 2", GSL_EINVAL); else if (abscissae->size < 2) GSL_ERROR ("abscissae->size must be at least 2", GSL_EINVAL); else if (w->nbreak != abscissae->size - w->k + 2) GSL_ERROR ("w->nbreak must equal abscissae->size - w->k + 2", GSL_EINVAL); if (w->nbreak == 2) { /* No flexibility in abscissae values possible in this degenerate case */ s = gsl_bspline_knots_uniform ( gsl_vector_get (abscissae, 0), gsl_vector_get (abscissae, abscissae->size - 1), w); } else { double * storage; gsl_matrix_view A; gsl_vector_view tau, b, x, r; size_t i, j; /* Constants derived from the B-spline workspace and abscissae details */ const size_t km2 = w->k - 2; const size_t M = abscissae->size - 2; const size_t N = w->nbreak - 2; const double invkm1 = 1.0 / w->km1; /* Allocate working storage and prepare multiple, zero-filled views */ storage = (double *) calloc (M*N + 2*N + 2*M, sizeof (double)); if (storage == 0) GSL_ERROR ("failed to allocate working storage", GSL_ENOMEM); A = gsl_matrix_view_array (storage, M, N); tau = gsl_vector_view_array (storage + M*N, N); b = gsl_vector_view_array (storage + M*N + N, M); x = gsl_vector_view_array (storage + M*N + N + M, N); r = gsl_vector_view_array (storage + M*N + N + M + N, M); /* Build matrix from interior breakpoints to interior Greville abscissae. * For example, when w->k = 4 and w->nbreak = 7 the matrix is * [ 1, 0, 0, 0, 0; * 2/3, 1/3, 0, 0, 0; * 1/3, 1/3, 1/3, 0, 0; * 0, 1/3, 1/3, 1/3, 0; * 0, 0, 1/3, 1/3, 1/3; * 0, 0, 0, 1/3, 2/3; * 0, 0, 0, 0, 1 ] * but only center formed as first/last breakpoint is known. */ for (j = 0; j < N; ++j) for (i = 0; i <= km2; ++i) gsl_matrix_set (&A.matrix, i+j, j, invkm1); /* Copy interior collocation points from abscissae into b */ for (i = 0; i < M; ++i) gsl_vector_set (&b.vector, i, gsl_vector_get (abscissae, i+1)); /* Adjust b to account for constraint columns not stored in A */ for (i = 0; i < km2; ++i) { double * const v = gsl_vector_ptr (&b.vector, i); *v -= (1 - (i+1)*invkm1) * gsl_vector_get (abscissae, 0); } for (i = 0; i < km2; ++i) { double * const v = gsl_vector_ptr (&b.vector, M - km2 + i); *v -= (i+1)*invkm1 * gsl_vector_get (abscissae, abscissae->size - 1); } /* Perform linear least squares to determine interior breakpoints */ s = gsl_linalg_QR_decomp (&A.matrix, &tau.vector) || gsl_linalg_QR_lssolve (&A.matrix, &tau.vector, &b.vector, &x.vector, &r.vector); if (s) { free (storage); return s; } /* "Expand" solution x by adding known first and last breakpoints. */ x = gsl_vector_view_array_with_stride ( gsl_vector_ptr (&x.vector, 0) - x.vector.stride, x.vector.stride, x.vector.size + 2); gsl_vector_set (&x.vector, 0, gsl_vector_get (abscissae, 0)); gsl_vector_set (&x.vector, x.vector.size - 1, gsl_vector_get (abscissae, abscissae->size - 1)); /* Finally, initialize workspace knots using the now-known breakpoints */ s = gsl_bspline_knots (&x.vector, w); free (storage); } /* Sum absolute errors in the resulting vs requested interior abscissae */ /* Provided as a fit quality metric which may be monitored by callers */ if (!s && abserr) { size_t i; *abserr = 0; for (i = 1; i < abscissae->size - 1; ++i) *abserr += fabs ( gsl_bspline_greville_abscissa (i, w) - gsl_vector_get (abscissae, i) ); } return s; } gsl-1.16/configure0000775000252300025230000155104712172253753011102 00000000000000#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for gsl 1.16. # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Use a proper internal environment variable to ensure we don't fall # into an infinite loop, continuously re-executing ourselves. if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then _as_can_reexec=no; export _as_can_reexec; # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 as_fn_exit 255 fi # We don't want this to propagate to other subprocesses. { _as_can_reexec=; unset _as_can_reexec;} if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1 test -x / || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test \$(( 1 + 1 )) = 2 || exit 1 test -n \"\${ZSH_VERSION+set}\${BASH_VERSION+set}\" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test \"X\`printf %s \$ECHO\`\" = \"X\$ECHO\" \\ || test \"X\`print -r -- \$ECHO\`\" = \"X\$ECHO\" ) || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : export CONFIG_SHELL # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 exit 255 fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # If we had to re-execute with $CONFIG_SHELL, we're ensured to have # already done that, so ensure we don't try to do so again and fall # in an infinite loop. This has already happened in practice. _as_can_reexec=no; export _as_can_reexec # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" SHELL=${CONFIG_SHELL-/bin/sh} test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='gsl' PACKAGE_TARNAME='gsl' PACKAGE_VERSION='1.16' PACKAGE_STRING='gsl 1.16' PACKAGE_BUGREPORT='' PACKAGE_URL='' ac_unique_file="gsl_math.h" # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='am__EXEEXT_FALSE am__EXEEXT_TRUE LTLIBOBJS HAVE_DARWIN86_IEEE_INTERFACE HAVE_DARWIN_IEEE_INTERFACE HAVE_OPENBSD_IEEE_INTERFACE HAVE_NETBSD_IEEE_INTERFACE HAVE_OS2EMX_IEEE_INTERFACE HAVE_FREEBSD_IEEE_INTERFACE HAVE_AIX_IEEE_INTERFACE HAVE_IRIX_IEEE_INTERFACE HAVE_TRU64_IEEE_INTERFACE HAVE_HPUX_IEEE_INTERFACE HAVE_HPUX11_IEEE_INTERFACE HAVE_SOLARIS_IEEE_INTERFACE HAVE_SUNOS4_IEEE_INTERFACE HAVE_GNUX86_IEEE_INTERFACE HAVE_GNUPPC_IEEE_INTERFACE HAVE_GNUM68K_IEEE_INTERFACE HAVE_GNUSPARC_IEEE_INTERFACE LIBOBJS MINGW32_HOST_FALSE MINGW32_HOST_TRUE GSL_LIBM GSL_LIBS GSL_CFLAGS LIBM OTOOL64 OTOOL LIPO NMEDIT DSYMUTIL MANIFEST_TOOL RANLIB ac_ct_AR AR DLLTOOL OBJDUMP NM ac_ct_DUMPBIN DUMPBIN LD FGREP EGREP GREP LIBTOOL LN_S CPP am__fastdepCC_FALSE am__fastdepCC_TRUE CCDEPMODE am__nodep AMDEPBACKSLASH AMDEP_FALSE AMDEP_TRUE am__quote am__include DEPDIR OBJEXT EXEEXT ac_ct_CC CPPFLAGS LDFLAGS CFLAGS CC host_os host_vendor host_cpu host build_os build_vendor build_cpu build GSL_MINOR_VERSION GSL_MAJOR_VERSION SED GSL_LT_CBLAS_VERSION GSL_LT_VERSION MAINT MAINTAINER_MODE_FALSE MAINTAINER_MODE_TRUE AM_BACKSLASH AM_DEFAULT_VERBOSITY AM_DEFAULT_V AM_V am__untar am__tar AMTAR am__leading_dot SET_MAKE AWK mkdir_p MKDIR_P INSTALL_STRIP_PROGRAM STRIP install_sh MAKEINFO AUTOHEADER AUTOMAKE AUTOCONF ACLOCAL VERSION PACKAGE CYGPATH_W am__isrc INSTALL_DATA INSTALL_SCRIPT INSTALL_PROGRAM target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking enable_silent_rules enable_maintainer_mode enable_dependency_tracking enable_shared enable_static with_pic enable_fast_install with_gnu_ld with_sysroot enable_libtool_lock ' ac_precious_vars='build_alias host_alias target_alias CC CFLAGS LDFLAGS LIBS CPPFLAGS CPP' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE_TARNAME}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *=) ac_optarg= ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error $? "unrecognized option: \`$ac_option' Try \`$0 --help' for more information" ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error $? "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}" ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error $? "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error $? "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error $? "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures gsl 1.16 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking ...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/gsl] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF Program names: --program-prefix=PREFIX prepend PREFIX to installed program names --program-suffix=SUFFIX append SUFFIX to installed program names --program-transform-name=PROGRAM run sed PROGRAM on installed program names System types: --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of gsl 1.16:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] --enable-silent-rules less verbose build output (undo: "make V=1") --disable-silent-rules verbose build output (undo: "make V=0") --enable-maintainer-mode enable make rules and dependencies not useful (and sometimes confusing) to the casual installer --enable-dependency-tracking do not reject slow dependency extractors --disable-dependency-tracking speeds up one-time build --enable-shared[=PKGS] build shared libraries [default=yes] --enable-static[=PKGS] build static libraries [default=yes] --enable-fast-install[=PKGS] optimize for fast installation [default=yes] --disable-libtool-lock avoid locking (might break parallel builds) Optional Packages: --with-PACKAGE[=ARG] use PACKAGE [ARG=yes] --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no) --with-pic[=PKGS] try to use only PIC/non-PIC objects [default=use both] --with-gnu-ld assume the C compiler uses GNU ld [default=no] --with-sysroot=DIR Search for dependent libraries within DIR (or the compiler's sysroot if not specified). Some influential environment variables: CC C compiler command CFLAGS C compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CPP C preprocessor Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to the package provider. _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF gsl configure 1.16 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_c_try_cpp LINENO # ---------------------- # Try to preprocess conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_cpp () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_cpp conftest.$ac_ext" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_compile # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_check_func LINENO FUNC VAR # ---------------------------------- # Tests whether FUNC exists, setting the cache variable VAR accordingly ac_fn_c_check_func () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Define $2 to an innocuous variant, in case declares $2. For example, HP-UX 11i declares gettimeofday. */ #define $2 innocuous_$2 /* System header to define __stub macros and hopefully few prototypes, which can conflict with char $2 (); below. Prefer to if __STDC__ is defined, since exists even on freestanding compilers. */ #ifdef __STDC__ # include #else # include #endif #undef $2 /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char $2 (); /* The GNU C library defines this for functions which it implements to always fail with ENOSYS. Some functions are actually named something starting with __ and the normal name is an alias. */ #if defined __stub_$2 || defined __stub___$2 choke me #endif int main () { return $2 (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_func # ac_fn_c_check_type LINENO TYPE VAR INCLUDES # ------------------------------------------- # Tests whether TYPE exists after having included INCLUDES, setting cache # variable VAR accordingly. ac_fn_c_check_type () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=no" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof ($2)) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof (($2))) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else eval "$3=yes" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_type # ac_fn_c_check_header_mongrel LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists, giving a warning if it cannot be compiled using # the include files in INCLUDES and setting the cache variable VAR # accordingly. ac_fn_c_check_header_mongrel () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if eval \${$3+:} false; then : { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } else # Is the header compilable? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 $as_echo_n "checking $2 usability... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_header_compiler=yes else ac_header_compiler=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 $as_echo "$ac_header_compiler" >&6; } # Is the header present? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 $as_echo_n "checking $2 presence... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include <$2> _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : ac_header_preproc=yes else ac_header_preproc=no fi rm -f conftest.err conftest.i conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 $as_echo "$ac_header_preproc" >&6; } # So? What about this header? case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #(( yes:no: ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; no:yes:* ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=\$ac_header_compiler" fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel # ac_fn_c_check_decl LINENO SYMBOL VAR INCLUDES # --------------------------------------------- # Tests whether SYMBOL is declared in INCLUDES, setting cache variable VAR # accordingly. ac_fn_c_check_decl () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack as_decl_name=`echo $2|sed 's/ *(.*//'` as_decl_use=`echo $2|sed -e 's/(/((/' -e 's/)/) 0&/' -e 's/,/) 0& (/g'` { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $as_decl_name is declared" >&5 $as_echo_n "checking whether $as_decl_name is declared... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { #ifndef $as_decl_name #ifdef __cplusplus (void) $as_decl_use; #else (void) $as_decl_name; #endif #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_decl cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by gsl $as_me 1.16, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo $as_echo "## ---------------- ## ## Cache variables. ## ## ---------------- ##" echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo $as_echo "## ----------------- ## ## Output variables. ## ## ----------------- ##" echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then $as_echo "## ------------------- ## ## File substitutions. ## ## ------------------- ##" echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then $as_echo "## ----------- ## ## confdefs.h. ## ## ----------- ##" echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then # We do not want a PATH search for config.site. case $CONFIG_SITE in #(( -*) ac_site_file1=./$CONFIG_SITE;; */*) ac_site_file1=$CONFIG_SITE;; *) ac_site_file1=./$CONFIG_SITE;; esac elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" \ || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "failed to load site script $ac_site_file See \`config.log' for more details" "$LINENO" 5; } fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu am__api_version='1.13' ac_aux_dir= for ac_dir in "$srcdir" "$srcdir/.." "$srcdir/../.."; do if test -f "$ac_dir/install-sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install-sh -c" break elif test -f "$ac_dir/install.sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install.sh -c" break elif test -f "$ac_dir/shtool"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/shtool install -c" break fi done if test -z "$ac_aux_dir"; then as_fn_error $? "cannot find install-sh, install.sh, or shtool in \"$srcdir\" \"$srcdir/..\" \"$srcdir/../..\"" "$LINENO" 5 fi # These three variables are undocumented and unsupported, # and are intended to be withdrawn in a future Autoconf release. # They can cause serious problems if a builder's source tree is in a directory # whose full name contains unusual characters. ac_config_guess="$SHELL $ac_aux_dir/config.guess" # Please don't use this var. ac_config_sub="$SHELL $ac_aux_dir/config.sub" # Please don't use this var. ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var. # Find a good install program. We prefer a C program (faster), # so one script is as good as another. But avoid the broken or # incompatible versions: # SysV /etc/install, /usr/sbin/install # SunOS /usr/etc/install # IRIX /sbin/install # AIX /bin/install # AmigaOS /C/install, which installs bootblocks on floppy discs # AIX 4 /usr/bin/installbsd, which doesn't work without a -g flag # AFS /usr/afsws/bin/install, which mishandles nonexistent args # SVR4 /usr/ucb/install, which tries to use the nonexistent group "staff" # OS/2's system install, which has a completely different semantic # ./install, which can be erroneously created by make from ./install.sh. # Reject install programs that cannot install multiple files. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a BSD-compatible install" >&5 $as_echo_n "checking for a BSD-compatible install... " >&6; } if test -z "$INSTALL"; then if ${ac_cv_path_install+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. # Account for people who put trailing slashes in PATH elements. case $as_dir/ in #(( ./ | .// | /[cC]/* | \ /etc/* | /usr/sbin/* | /usr/etc/* | /sbin/* | /usr/afsws/bin/* | \ ?:[\\/]os2[\\/]install[\\/]* | ?:[\\/]OS2[\\/]INSTALL[\\/]* | \ /usr/ucb/* ) ;; *) # OSF1 and SCO ODT 3.0 have their own names for install. # Don't use installbsd from OSF since it installs stuff as root # by default. for ac_prog in ginstall scoinst install; do for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext"; then if test $ac_prog = install && grep dspmsg "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # AIX install. It has an incompatible calling convention. : elif test $ac_prog = install && grep pwplus "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # program-specific install script used by HP pwplus--don't use. : else rm -rf conftest.one conftest.two conftest.dir echo one > conftest.one echo two > conftest.two mkdir conftest.dir if "$as_dir/$ac_prog$ac_exec_ext" -c conftest.one conftest.two "`pwd`/conftest.dir" && test -s conftest.one && test -s conftest.two && test -s conftest.dir/conftest.one && test -s conftest.dir/conftest.two then ac_cv_path_install="$as_dir/$ac_prog$ac_exec_ext -c" break 3 fi fi fi done done ;; esac done IFS=$as_save_IFS rm -rf conftest.one conftest.two conftest.dir fi if test "${ac_cv_path_install+set}" = set; then INSTALL=$ac_cv_path_install else # As a last resort, use the slow shell script. Don't cache a # value for INSTALL within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. INSTALL=$ac_install_sh fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $INSTALL" >&5 $as_echo "$INSTALL" >&6; } # Use test -z because SunOS4 sh mishandles braces in ${var-val}. # It thinks the first close brace ends the variable substitution. test -z "$INSTALL_PROGRAM" && INSTALL_PROGRAM='${INSTALL}' test -z "$INSTALL_SCRIPT" && INSTALL_SCRIPT='${INSTALL}' test -z "$INSTALL_DATA" && INSTALL_DATA='${INSTALL} -m 644' { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether build environment is sane" >&5 $as_echo_n "checking whether build environment is sane... " >&6; } # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[\\\"\#\$\&\'\`$am_lf]*) as_fn_error $? "unsafe absolute working directory name" "$LINENO" 5;; esac case $srcdir in *[\\\"\#\$\&\'\`$am_lf\ \ ]*) as_fn_error $? "unsafe srcdir value: '$srcdir'" "$LINENO" 5;; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$*" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$*" != "X $srcdir/configure conftest.file" \ && test "$*" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". as_fn_error $? "ls -t appears to fail. Make sure there is not a broken alias in your environment" "$LINENO" 5 fi if test "$2" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$2" = conftest.file ) then # Ok. : else as_fn_error $? "newly created file is older than distributed files! Check your system clock" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi rm -f conftest.file test "$program_prefix" != NONE && program_transform_name="s&^&$program_prefix&;$program_transform_name" # Use a double $ so make ignores it. test "$program_suffix" != NONE && program_transform_name="s&\$&$program_suffix&;$program_transform_name" # Double any \ or $. # By default was `s,x,x', remove it if useless. ac_script='s/[\\$]/&&/g;s/;s,x,x,$//' program_transform_name=`$as_echo "$program_transform_name" | sed "$ac_script"` # expand $ac_aux_dir to an absolute path am_aux_dir=`cd $ac_aux_dir && pwd` if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: 'missing' script is too old or missing" >&5 $as_echo "$as_me: WARNING: 'missing' script is too old or missing" >&2;} fi if test x"${install_sh}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. if test "$cross_compiling" != no; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a thread-safe mkdir -p" >&5 $as_echo_n "checking for a thread-safe mkdir -p... " >&6; } if test -z "$MKDIR_P"; then if ${ac_cv_path_mkdir+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/opt/sfw/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in mkdir gmkdir; do for ac_exec_ext in '' $ac_executable_extensions; do as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext" || continue case `"$as_dir/$ac_prog$ac_exec_ext" --version 2>&1` in #( 'mkdir (GNU coreutils) '* | \ 'mkdir (coreutils) '* | \ 'mkdir (fileutils) '4.1*) ac_cv_path_mkdir=$as_dir/$ac_prog$ac_exec_ext break 3;; esac done done done IFS=$as_save_IFS fi test -d ./--version && rmdir ./--version if test "${ac_cv_path_mkdir+set}" = set; then MKDIR_P="$ac_cv_path_mkdir -p" else # As a last resort, use the slow shell script. Don't cache a # value for MKDIR_P within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. MKDIR_P="$ac_install_sh -d" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MKDIR_P" >&5 $as_echo "$MKDIR_P" >&6; } for ac_prog in gawk mawk nawk awk do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AWK+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AWK"; then ac_cv_prog_AWK="$AWK" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AWK="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AWK=$ac_cv_prog_AWK if test -n "$AWK"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AWK" >&5 $as_echo "$AWK" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AWK" && break done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ${MAKE-make} sets \$(MAKE)" >&5 $as_echo_n "checking whether ${MAKE-make} sets \$(MAKE)... " >&6; } set x ${MAKE-make} ac_make=`$as_echo "$2" | sed 's/+/p/g; s/[^a-zA-Z0-9_]/_/g'` if eval \${ac_cv_prog_make_${ac_make}_set+:} false; then : $as_echo_n "(cached) " >&6 else cat >conftest.make <<\_ACEOF SHELL = /bin/sh all: @echo '@@@%%%=$(MAKE)=@@@%%%' _ACEOF # GNU make sometimes prints "make[1]: Entering ...", which would confuse us. case `${MAKE-make} -f conftest.make 2>/dev/null` in *@@@%%%=?*=@@@%%%*) eval ac_cv_prog_make_${ac_make}_set=yes;; *) eval ac_cv_prog_make_${ac_make}_set=no;; esac rm -f conftest.make fi if eval test \$ac_cv_prog_make_${ac_make}_set = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } SET_MAKE= else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } SET_MAKE="MAKE=${MAKE-make}" fi rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null # Check whether --enable-silent-rules was given. if test "${enable_silent_rules+set}" = set; then : enableval=$enable_silent_rules; fi case $enable_silent_rules in # ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=1;; esac am_make=${MAKE-make} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $am_make supports nested variables" >&5 $as_echo_n "checking whether $am_make supports nested variables... " >&6; } if ${am_cv_make_support_nested_variables+:} false; then : $as_echo_n "(cached) " >&6 else if $as_echo 'TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit' | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_make_support_nested_variables" >&5 $as_echo "$am_cv_make_support_nested_variables" >&6; } if test $am_cv_make_support_nested_variables = yes; then AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AM_BACKSLASH='\' if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." am__isrc=' -I$(srcdir)' # test to see if srcdir already configured if test -f $srcdir/config.status; then as_fn_error $? "source directory already configured; run \"make distclean\" there first" "$LINENO" 5 fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi # Define the identity of the package. PACKAGE='gsl' VERSION='1.16' cat >>confdefs.h <<_ACEOF #define PACKAGE "$PACKAGE" _ACEOF cat >>confdefs.h <<_ACEOF #define VERSION "$VERSION" _ACEOF # Some tools Automake needs. ACLOCAL=${ACLOCAL-"${am_missing_run}aclocal-${am__api_version}"} AUTOCONF=${AUTOCONF-"${am_missing_run}autoconf"} AUTOMAKE=${AUTOMAKE-"${am_missing_run}automake-${am__api_version}"} AUTOHEADER=${AUTOHEADER-"${am_missing_run}autoheader"} MAKEINFO=${MAKEINFO-"${am_missing_run}makeinfo"} # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # mkdir_p='$(MKDIR_P)' # We need awk for the "check" target. The system "awk" is bad on # some platforms. # Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AMTAR='$${TAR-tar}' # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar pax cpio none' am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -' ac_config_headers="$ac_config_headers config.h" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to enable maintainer-specific portions of Makefiles" >&5 $as_echo_n "checking whether to enable maintainer-specific portions of Makefiles... " >&6; } # Check whether --enable-maintainer-mode was given. if test "${enable_maintainer_mode+set}" = set; then : enableval=$enable_maintainer_mode; USE_MAINTAINER_MODE=$enableval else USE_MAINTAINER_MODE=no fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $USE_MAINTAINER_MODE" >&5 $as_echo "$USE_MAINTAINER_MODE" >&6; } if test $USE_MAINTAINER_MODE = yes; then MAINTAINER_MODE_TRUE= MAINTAINER_MODE_FALSE='#' else MAINTAINER_MODE_TRUE='#' MAINTAINER_MODE_FALSE= fi MAINT=$MAINTAINER_MODE_TRUE GSL_CURRENT=17 GSL_REVISION=0 GSL_AGE=17 CBLAS_CURRENT=0 CBLAS_REVISION=0 CBLAS_AGE=0 GSL_LT_VERSION="${GSL_CURRENT}:${GSL_REVISION}:${GSL_AGE}" GSL_LT_CBLAS_VERSION="${CBLAS_CURRENT}:${CBLAS_REVISION}:${CBLAS_AGE}" case "$VERSION" in *+) ;; *) $as_echo "#define RELEASED /**/" >>confdefs.h ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5 $as_echo_n "checking for a sed that does not truncate output... " >&6; } if ${ac_cv_path_SED+:} false; then : $as_echo_n "(cached) " >&6 else ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for ac_i in 1 2 3 4 5 6 7; do ac_script="$ac_script$as_nl$ac_script" done echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed { ac_script=; unset ac_script;} if test -z "$SED"; then ac_path_SED_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_SED="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_SED" || continue # Check for GNU ac_path_SED and select it if it is found. # Check for GNU $ac_path_SED case `"$ac_path_SED" --version 2>&1` in *GNU*) ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo '' >> "conftest.nl" "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_SED_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_SED="$ac_path_SED" ac_path_SED_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_SED_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_SED"; then as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5 fi else ac_cv_path_SED=$SED fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5 $as_echo "$ac_cv_path_SED" >&6; } SED="$ac_cv_path_SED" rm -f conftest.sed GSL_MAJOR_VERSION=`echo "$VERSION" | $SED 's/\([^.][^.]*\).*/\1/'` GSL_MINOR_VERSION=`echo "$VERSION" | $SED 's/[^.][^.]*.\([^.][^.]*\).*/\1/'` { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ${MAKE-make} sets \$(MAKE)" >&5 $as_echo_n "checking whether ${MAKE-make} sets \$(MAKE)... " >&6; } set x ${MAKE-make} ac_make=`$as_echo "$2" | sed 's/+/p/g; s/[^a-zA-Z0-9_]/_/g'` if eval \${ac_cv_prog_make_${ac_make}_set+:} false; then : $as_echo_n "(cached) " >&6 else cat >conftest.make <<\_ACEOF SHELL = /bin/sh all: @echo '@@@%%%=$(MAKE)=@@@%%%' _ACEOF # GNU make sometimes prints "make[1]: Entering ...", which would confuse us. case `${MAKE-make} -f conftest.make 2>/dev/null` in *@@@%%%=?*=@@@%%%*) eval ac_cv_prog_make_${ac_make}_set=yes;; *) eval ac_cv_prog_make_${ac_make}_set=no;; esac rm -f conftest.make fi if eval test \$ac_cv_prog_make_${ac_make}_set = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } SET_MAKE= else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } SET_MAKE="MAKE=${MAKE-make}" fi # Make sure we can run config.sub. $SHELL "$ac_aux_dir/config.sub" sun4 >/dev/null 2>&1 || as_fn_error $? "cannot run $SHELL $ac_aux_dir/config.sub" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking build system type" >&5 $as_echo_n "checking build system type... " >&6; } if ${ac_cv_build+:} false; then : $as_echo_n "(cached) " >&6 else ac_build_alias=$build_alias test "x$ac_build_alias" = x && ac_build_alias=`$SHELL "$ac_aux_dir/config.guess"` test "x$ac_build_alias" = x && as_fn_error $? "cannot guess build type; you must specify one" "$LINENO" 5 ac_cv_build=`$SHELL "$ac_aux_dir/config.sub" $ac_build_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $ac_build_alias failed" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_build" >&5 $as_echo "$ac_cv_build" >&6; } case $ac_cv_build in *-*-*) ;; *) as_fn_error $? "invalid value of canonical build" "$LINENO" 5;; esac build=$ac_cv_build ac_save_IFS=$IFS; IFS='-' set x $ac_cv_build shift build_cpu=$1 build_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: build_os=$* IFS=$ac_save_IFS case $build_os in *\ *) build_os=`echo "$build_os" | sed 's/ /-/g'`;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking host system type" >&5 $as_echo_n "checking host system type... " >&6; } if ${ac_cv_host+:} false; then : $as_echo_n "(cached) " >&6 else if test "x$host_alias" = x; then ac_cv_host=$ac_cv_build else ac_cv_host=`$SHELL "$ac_aux_dir/config.sub" $host_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $host_alias failed" "$LINENO" 5 fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_host" >&5 $as_echo "$ac_cv_host" >&6; } case $ac_cv_host in *-*-*) ;; *) as_fn_error $? "invalid value of canonical host" "$LINENO" 5;; esac host=$ac_cv_host ac_save_IFS=$IFS; IFS='-' set x $ac_cv_host shift host_cpu=$1 host_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: host_os=$* IFS=$ac_save_IFS case $host_os in *\ *) host_os=`echo "$host_os" | sed 's/ /-/g'`;; esac ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5 $as_echo_n "checking whether the C compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "C compiler cannot create executables See \`config.log' for more details" "$LINENO" 5; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5 $as_echo_n "checking for C compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { FILE *f = fopen ("conftest.out", "w"); return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot run C compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details" "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if ${ac_cv_objext+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of object files: cannot compile See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu DEPDIR="${am__leading_dot}deps" ac_config_commands="$ac_config_commands depfiles" am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for style of include used by $am_make" >&5 $as_echo_n "checking for style of include used by $am_make... " >&6; } am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $_am_result" >&5 $as_echo "$_am_result" >&6; } rm -f confinc confmf # Check whether --enable-dependency-tracking was given. if test "${enable_dependency_tracking+set}" = set; then : enableval=$enable_dependency_tracking; fi if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi if test "x$enable_dependency_tracking" != xno; then AMDEP_TRUE= AMDEP_FALSE='#' else AMDEP_TRUE='#' AMDEP_FALSE= fi depcc="$CC" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CC_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CC_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CC_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CC_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CC_dependencies_compiler_type" >&5 $as_echo "$am_cv_CC_dependencies_compiler_type" >&6; } CCDEPMODE=depmode=$am_cv_CC_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CC_dependencies_compiler_type" = gcc3; then am__fastdepCC_TRUE= am__fastdepCC_FALSE='#' else am__fastdepCC_TRUE='#' am__fastdepCC_FALSE= fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if ${ac_cv_prog_CPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ln -s works" >&5 $as_echo_n "checking whether ln -s works... " >&6; } LN_S=$as_ln_s if test "$LN_S" = "ln -s"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no, using $LN_S" >&5 $as_echo "no, using $LN_S" >&6; } fi case `pwd` in *\ * | *\ *) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&5 $as_echo "$as_me: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&2;} ;; esac macro_version='2.4.2' macro_revision='1.3337' ltmain="$ac_aux_dir/ltmain.sh" # Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\(["`$\\]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to print strings" >&5 $as_echo_n "checking how to print strings... " >&6; } # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "" } case "$ECHO" in printf*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: printf" >&5 $as_echo "printf" >&6; } ;; print*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: print -r" >&5 $as_echo "print -r" >&6; } ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: cat" >&5 $as_echo "cat" >&6; } ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5 $as_echo_n "checking for a sed that does not truncate output... " >&6; } if ${ac_cv_path_SED+:} false; then : $as_echo_n "(cached) " >&6 else ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for ac_i in 1 2 3 4 5 6 7; do ac_script="$ac_script$as_nl$ac_script" done echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed { ac_script=; unset ac_script;} if test -z "$SED"; then ac_path_SED_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_SED="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_SED" || continue # Check for GNU ac_path_SED and select it if it is found. # Check for GNU $ac_path_SED case `"$ac_path_SED" --version 2>&1` in *GNU*) ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo '' >> "conftest.nl" "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_SED_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_SED="$ac_path_SED" ac_path_SED_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_SED_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_SED"; then as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5 fi else ac_cv_path_SED=$SED fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5 $as_echo "$ac_cv_path_SED" >&6; } SED="$ac_cv_path_SED" rm -f conftest.sed test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if ${ac_cv_path_EGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_EGREP" || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for fgrep" >&5 $as_echo_n "checking for fgrep... " >&6; } if ${ac_cv_path_FGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo 'ab*c' | $GREP -F 'ab*c' >/dev/null 2>&1 then ac_cv_path_FGREP="$GREP -F" else if test -z "$FGREP"; then ac_path_FGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in fgrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_FGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_FGREP" || continue # Check for GNU ac_path_FGREP and select it if it is found. # Check for GNU $ac_path_FGREP case `"$ac_path_FGREP" --version 2>&1` in *GNU*) ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'FGREP' >> "conftest.nl" "$ac_path_FGREP" FGREP < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_FGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_FGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_FGREP"; then as_fn_error $? "no acceptable fgrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_FGREP=$FGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_FGREP" >&5 $as_echo "$ac_cv_path_FGREP" >&6; } FGREP="$ac_cv_path_FGREP" test -z "$GREP" && GREP=grep # Check whether --with-gnu-ld was given. if test "${with_gnu_ld+set}" = set; then : withval=$with_gnu_ld; test "$withval" = no || with_gnu_ld=yes else with_gnu_ld=no fi ac_prog=ld if test "$GCC" = yes; then # Check if gcc -print-prog-name=ld gives a path. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5 $as_echo_n "checking for ld used by $CC... " >&6; } case $host in *-*-mingw*) # gcc leaves a trailing carriage return which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [\\/]* | ?:[\\/]*) re_direlt='/[^/][^/]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD="$ac_prog" ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test "$with_gnu_ld" = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5 $as_echo_n "checking for GNU ld... " >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5 $as_echo_n "checking for non-GNU ld... " >&6; } fi if ${lt_cv_path_LD+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$LD"; then lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD="$ac_dir/$ac_prog" # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &5 $as_echo "$LD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5 $as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; } if ${lt_cv_prog_gnu_ld+:} false; then : $as_echo_n "(cached) " >&6 else # I'd rather use --version here, but apparently some GNU lds only accept -v. case `$LD -v 2>&1 &5 $as_echo "$lt_cv_prog_gnu_ld" >&6; } with_gnu_ld=$lt_cv_prog_gnu_ld { $as_echo "$as_me:${as_lineno-$LINENO}: checking for BSD- or MS-compatible name lister (nm)" >&5 $as_echo_n "checking for BSD- or MS-compatible name lister (nm)... " >&6; } if ${lt_cv_path_NM+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM="$NM" else lt_nm_to_check="${ac_tool_prefix}nm" if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. tmp_nm="$ac_dir/$lt_tmp_nm" if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext" ; then # Check to see if the nm accepts a BSD-compat flag. # Adding the `sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file case `"$tmp_nm" -B /dev/null 2>&1 | sed '1q'` in */dev/null* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS="$lt_save_ifs" done : ${lt_cv_path_NM=no} fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_NM" >&5 $as_echo "$lt_cv_path_NM" >&6; } if test "$lt_cv_path_NM" != "no"; then NM="$lt_cv_path_NM" else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else if test -n "$ac_tool_prefix"; then for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DUMPBIN"; then ac_cv_prog_DUMPBIN="$DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DUMPBIN="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DUMPBIN=$ac_cv_prog_DUMPBIN if test -n "$DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DUMPBIN" >&5 $as_echo "$DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$DUMPBIN" && break done fi if test -z "$DUMPBIN"; then ac_ct_DUMPBIN=$DUMPBIN for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DUMPBIN"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_ct_DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DUMPBIN=$ac_cv_prog_ac_ct_DUMPBIN if test -n "$ac_ct_DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DUMPBIN" >&5 $as_echo "$ac_ct_DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_DUMPBIN" && break done if test "x$ac_ct_DUMPBIN" = x; then DUMPBIN=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DUMPBIN=$ac_ct_DUMPBIN fi fi case `$DUMPBIN -symbols /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols" ;; *) DUMPBIN=: ;; esac fi if test "$DUMPBIN" != ":"; then NM="$DUMPBIN" fi fi test -z "$NM" && NM=nm { $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if ${lt_cv_nm_interface+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&5) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&5) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: output\"" >&5) cat conftest.out >&5 if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5 $as_echo "$lt_cv_nm_interface" >&6; } # find the maximum length of command line arguments { $as_echo "$as_me:${as_lineno-$LINENO}: checking the maximum length of command line arguments" >&5 $as_echo_n "checking the maximum length of command line arguments... " >&6; } if ${lt_cv_sys_max_cmd_len+:} false; then : $as_echo_n "(cached) " >&6 else i=0 teststring="ABCD" case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; netbsd* | freebsd* | openbsd* | darwin* | dragonfly*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[ ]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8 ; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test "X"`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test $i != 17 # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac fi if test -n $lt_cv_sys_max_cmd_len ; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sys_max_cmd_len" >&5 $as_echo "$lt_cv_sys_max_cmd_len" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: none" >&5 $as_echo "none" >&6; } fi max_cmd_len=$lt_cv_sys_max_cmd_len : ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the shell understands some XSI constructs" >&5 $as_echo_n "checking whether the shell understands some XSI constructs... " >&6; } # Try some XSI features xsi_shell=no ( _lt_dummy="a/b/c" test "${_lt_dummy##*/},${_lt_dummy%/*},${_lt_dummy#??}"${_lt_dummy%"$_lt_dummy"}, \ = c,a/b,b/c, \ && eval 'test $(( 1 + 1 )) -eq 2 \ && test "${#_lt_dummy}" -eq 5' ) >/dev/null 2>&1 \ && xsi_shell=yes { $as_echo "$as_me:${as_lineno-$LINENO}: result: $xsi_shell" >&5 $as_echo "$xsi_shell" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the shell understands \"+=\"" >&5 $as_echo_n "checking whether the shell understands \"+=\"... " >&6; } lt_shell_append=no ( foo=bar; set foo baz; eval "$1+=\$2" && test "$foo" = barbaz ) \ >/dev/null 2>&1 \ && lt_shell_append=yes { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_shell_append" >&5 $as_echo "$lt_shell_append" >&6; } if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to $host format" >&5 $as_echo_n "checking how to convert $build file names to $host format... " >&6; } if ${lt_cv_to_host_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac fi to_host_file_cmd=$lt_cv_to_host_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_host_file_cmd" >&5 $as_echo "$lt_cv_to_host_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to toolchain format" >&5 $as_echo_n "checking how to convert $build file names to toolchain format... " >&6; } if ${lt_cv_to_tool_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else #assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac fi to_tool_file_cmd=$lt_cv_to_tool_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_tool_file_cmd" >&5 $as_echo "$lt_cv_to_tool_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $LD option to reload object files" >&5 $as_echo_n "checking for $LD option to reload object files... " >&6; } if ${lt_cv_ld_reload_flag+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_reload_flag='-r' fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_reload_flag" >&5 $as_echo "$lt_cv_ld_reload_flag" >&6; } reload_flag=$lt_cv_ld_reload_flag case $reload_flag in "" | " "*) ;; *) reload_flag=" $reload_flag" ;; esac reload_cmds='$LD$reload_flag -o $output$reload_objs' case $host_os in cygwin* | mingw* | pw32* | cegcc*) if test "$GCC" != yes; then reload_cmds=false fi ;; darwin*) if test "$GCC" = yes; then reload_cmds='$LTCC $LTCFLAGS -nostdlib ${wl}-r -o $output$reload_objs' else reload_cmds='$LD$reload_flag -o $output$reload_objs' fi ;; esac if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}objdump", so it can be a program name with args. set dummy ${ac_tool_prefix}objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OBJDUMP"; then ac_cv_prog_OBJDUMP="$OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OBJDUMP="${ac_tool_prefix}objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OBJDUMP=$ac_cv_prog_OBJDUMP if test -n "$OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OBJDUMP" >&5 $as_echo "$OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OBJDUMP"; then ac_ct_OBJDUMP=$OBJDUMP # Extract the first word of "objdump", so it can be a program name with args. set dummy objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OBJDUMP"; then ac_cv_prog_ac_ct_OBJDUMP="$ac_ct_OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OBJDUMP="objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OBJDUMP=$ac_cv_prog_ac_ct_OBJDUMP if test -n "$ac_ct_OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OBJDUMP" >&5 $as_echo "$ac_ct_OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OBJDUMP" = x; then OBJDUMP="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OBJDUMP=$ac_ct_OBJDUMP fi else OBJDUMP="$ac_cv_prog_OBJDUMP" fi test -z "$OBJDUMP" && OBJDUMP=objdump { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to recognize dependent libraries" >&5 $as_echo_n "checking how to recognize dependent libraries... " >&6; } if ${lt_cv_deplibs_check_method+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_file_magic_cmd='$MAGIC_CMD' lt_cv_file_magic_test_file= lt_cv_deplibs_check_method='unknown' # Need to set the preceding variable on all platforms that support # interlibrary dependencies. # 'none' -- dependencies not supported. # `unknown' -- same as none, but documents that we really don't know. # 'pass_all' -- all dependencies passed with no checks. # 'test_compile' -- check by making test program. # 'file_magic [[regex]]' -- check by looking for files in library path # which responds to the $file_magic_cmd with a given extended regex. # If you have `file' or equivalent on your system and you're not sure # whether `pass_all' will *always* work, you probably want this one. case $host_os in aix[4-9]*) lt_cv_deplibs_check_method=pass_all ;; beos*) lt_cv_deplibs_check_method=pass_all ;; bsdi[45]*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib)' lt_cv_file_magic_cmd='/usr/bin/file -L' lt_cv_file_magic_test_file=/shlib/libc.so ;; cygwin*) # func_win32_libid is a shell function defined in ltmain.sh lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' ;; mingw* | pw32*) # Base MSYS/MinGW do not provide the 'file' command needed by # func_win32_libid shell function, so use a weaker test based on 'objdump', # unless we find 'file', for example because we are cross-compiling. # func_win32_libid assumes BSD nm, so disallow it if using MS dumpbin. if ( test "$lt_cv_nm_interface" = "BSD nm" && file / ) >/dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[3-9]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; gnu*) lt_cv_deplibs_check_method=pass_all ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF-[0-9][0-9]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]' lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|PA-RISC[0-9]\.[0-9]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[3-9]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib) M[0-9][0-9]* Version [0-9]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [0-9][0-9]*-bit [LM]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_deplibs_check_method" >&5 $as_echo "$lt_cv_deplibs_check_method" >&6; } file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[\1]\/[\1]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dlltool", so it can be a program name with args. set dummy ${ac_tool_prefix}dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DLLTOOL"; then ac_cv_prog_DLLTOOL="$DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DLLTOOL="${ac_tool_prefix}dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DLLTOOL=$ac_cv_prog_DLLTOOL if test -n "$DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DLLTOOL" >&5 $as_echo "$DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DLLTOOL"; then ac_ct_DLLTOOL=$DLLTOOL # Extract the first word of "dlltool", so it can be a program name with args. set dummy dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DLLTOOL"; then ac_cv_prog_ac_ct_DLLTOOL="$ac_ct_DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DLLTOOL="dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DLLTOOL=$ac_cv_prog_ac_ct_DLLTOOL if test -n "$ac_ct_DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DLLTOOL" >&5 $as_echo "$ac_ct_DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DLLTOOL" = x; then DLLTOOL="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DLLTOOL=$ac_ct_DLLTOOL fi else DLLTOOL="$ac_cv_prog_DLLTOOL" fi test -z "$DLLTOOL" && DLLTOOL=dlltool { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to associate runtime and link libraries" >&5 $as_echo_n "checking how to associate runtime and link libraries... " >&6; } if ${lt_cv_sharedlib_from_linklib_cmd+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh # decide which to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd="$ECHO" ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sharedlib_from_linklib_cmd" >&5 $as_echo "$lt_cv_sharedlib_from_linklib_cmd" >&6; } sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO if test -n "$ac_tool_prefix"; then for ac_prog in ar do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AR"; then ac_cv_prog_AR="$AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AR="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AR=$ac_cv_prog_AR if test -n "$AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AR" >&5 $as_echo "$AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AR" && break done fi if test -z "$AR"; then ac_ct_AR=$AR for ac_prog in ar do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_AR"; then ac_cv_prog_ac_ct_AR="$ac_ct_AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_AR="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_AR=$ac_cv_prog_ac_ct_AR if test -n "$ac_ct_AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AR" >&5 $as_echo "$ac_ct_AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_AR" && break done if test "x$ac_ct_AR" = x; then AR="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac AR=$ac_ct_AR fi fi : ${AR=ar} : ${AR_FLAGS=cru} { $as_echo "$as_me:${as_lineno-$LINENO}: checking for archiver @FILE support" >&5 $as_echo_n "checking for archiver @FILE support... " >&6; } if ${lt_cv_ar_at_file+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ar_at_file=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test "$ac_status" -eq 0; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test "$ac_status" -ne 0; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ar_at_file" >&5 $as_echo "$lt_cv_ar_at_file" >&6; } if test "x$lt_cv_ar_at_file" = xno; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi test -z "$STRIP" && STRIP=: if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}ranlib", so it can be a program name with args. set dummy ${ac_tool_prefix}ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$RANLIB"; then ac_cv_prog_RANLIB="$RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_RANLIB="${ac_tool_prefix}ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi RANLIB=$ac_cv_prog_RANLIB if test -n "$RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $RANLIB" >&5 $as_echo "$RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_RANLIB"; then ac_ct_RANLIB=$RANLIB # Extract the first word of "ranlib", so it can be a program name with args. set dummy ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_RANLIB"; then ac_cv_prog_ac_ct_RANLIB="$ac_ct_RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_RANLIB="ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_RANLIB=$ac_cv_prog_ac_ct_RANLIB if test -n "$ac_ct_RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_RANLIB" >&5 $as_echo "$ac_ct_RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_RANLIB" = x; then RANLIB=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac RANLIB=$ac_ct_RANLIB fi else RANLIB="$ac_cv_prog_RANLIB" fi test -z "$RANLIB" && RANLIB=: # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Check for command to grab the raw symbol name followed by C symbol from nm. { $as_echo "$as_me:${as_lineno-$LINENO}: checking command to parse $NM output from $compiler object" >&5 $as_echo_n "checking command to parse $NM output from $compiler object... " >&6; } if ${lt_cv_sys_global_symbol_pipe+:} false; then : $as_echo_n "(cached) " >&6 else # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[BCDEGRST]' # Regexp to match symbols that can be accessed directly from C. sympat='\([_A-Za-z][_A-Za-z0-9]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[BCDT]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[ABCDGISTW]' ;; hpux*) if test "$host_cpu" = ia64; then symcode='[ABCDEGRST]' fi ;; irix* | nonstopux*) symcode='[BCDEGRST]' ;; osf*) symcode='[BCDEGQRST]' ;; solaris*) symcode='[BDRT]' ;; sco3.2v5*) symcode='[DT]' ;; sysv4.2uw2*) symcode='[DT]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[ABDT]' ;; sysv4) symcode='[DFNSTU]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[ABCDGIRSTW]' ;; esac # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n -e 's/^T .* \(.*\)$/extern int \1();/p' -e 's/^$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n -e 's/^: \([^ ]*\)[ ]*$/ {\\\"\1\\\", (void *) 0},/p' -e 's/^$symcode* \([^ ]*\) \([^ ]*\)$/ {\"\2\", (void *) \&\2},/p'" lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n -e 's/^: \([^ ]*\)[ ]*$/ {\\\"\1\\\", (void *) 0},/p' -e 's/^$symcode* \([^ ]*\) \(lib[^ ]*\)$/ {\"\2\", (void *) \&\2},/p' -e 's/^$symcode* \([^ ]*\) \([^ ]*\)$/ {\"lib\2\", (void *) \&\2},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function # and D for any global variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK '"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=0}; \$ 0~/\(\).*\|/{f=1}; {printf f ? \"T \" : \"D \"};"\ " {split(\$ 0, a, /\||\r/); split(a[2], s)};"\ " s[1]~/^[@?]/{print s[1], s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print t[1], substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[ ]\($symcode$symcode*\)[ ][ ]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then # Now try to grab the symbols. nlist=conftest.nm if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist\""; } >&5 (eval $NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined(_WIN32) || defined(__CYGWIN__) || defined(_WIN32_WCE) /* DATA imports from DLLs on WIN32 con't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined(__osf__) /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* \(.*\) \(.*\)$/ {\"\2\", (void *) \&\2},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS="conftstm.$ac_objext" CFLAGS="$CFLAGS$lt_prog_compiler_no_builtin_flag" if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest${ac_exeext}; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&5 fi else echo "cannot find nm_test_var in $nlist" >&5 fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&5 fi else echo "$progname: failed program was:" >&5 cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test "$pipe_works" = yes; then break else lt_cv_sys_global_symbol_pipe= fi done fi if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: failed" >&5 $as_echo "failed" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: ok" >&5 $as_echo "ok" >&6; } fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[@]FILE' >/dev/null; then nm_file_list_spec='@' fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for sysroot" >&5 $as_echo_n "checking for sysroot... " >&6; } # Check whether --with-sysroot was given. if test "${with_sysroot+set}" = set; then : withval=$with_sysroot; else with_sysroot=no fi lt_sysroot= case ${with_sysroot} in #( yes) if test "$GCC" = yes; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${with_sysroot}" >&5 $as_echo "${with_sysroot}" >&6; } as_fn_error $? "The sysroot must be an absolute path." "$LINENO" 5 ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${lt_sysroot:-no}" >&5 $as_echo "${lt_sysroot:-no}" >&6; } # Check whether --enable-libtool-lock was given. if test "${enable_libtool_lock+set}" = set; then : enableval=$enable_libtool_lock; fi test "x$enable_libtool_lock" != xno && enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE="32" ;; *ELF-64*) HPUX_IA64_MODE="64" ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. echo '#line '$LINENO' "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then if test "$lt_cv_prog_gnu_ld" = yes; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|ppc*-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_i386" ;; ppc64-*linux*|powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; ppc*-*linux*|powerpc*-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS -belf" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler needs -belf" >&5 $as_echo_n "checking whether the C compiler needs -belf... " >&6; } if ${lt_cv_cc_needs_belf+:} false; then : $as_echo_n "(cached) " >&6 else ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_cc_needs_belf=yes else lt_cv_cc_needs_belf=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_cc_needs_belf" >&5 $as_echo "$lt_cv_cc_needs_belf" >&6; } if test x"$lt_cv_cc_needs_belf" != x"yes"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS="$SAVE_CFLAGS" fi ;; *-*solaris*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD="${LD-ld}_sol2" fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks="$enable_libtool_lock" if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}mt", so it can be a program name with args. set dummy ${ac_tool_prefix}mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$MANIFEST_TOOL"; then ac_cv_prog_MANIFEST_TOOL="$MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_MANIFEST_TOOL="${ac_tool_prefix}mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi MANIFEST_TOOL=$ac_cv_prog_MANIFEST_TOOL if test -n "$MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MANIFEST_TOOL" >&5 $as_echo "$MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_MANIFEST_TOOL"; then ac_ct_MANIFEST_TOOL=$MANIFEST_TOOL # Extract the first word of "mt", so it can be a program name with args. set dummy mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_MANIFEST_TOOL"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="$ac_ct_MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_MANIFEST_TOOL=$ac_cv_prog_ac_ct_MANIFEST_TOOL if test -n "$ac_ct_MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_MANIFEST_TOOL" >&5 $as_echo "$ac_ct_MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_MANIFEST_TOOL" = x; then MANIFEST_TOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac MANIFEST_TOOL=$ac_ct_MANIFEST_TOOL fi else MANIFEST_TOOL="$ac_cv_prog_MANIFEST_TOOL" fi test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $MANIFEST_TOOL is a manifest tool" >&5 $as_echo_n "checking if $MANIFEST_TOOL is a manifest tool... " >&6; } if ${lt_cv_path_mainfest_tool+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&5 $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&5 if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_mainfest_tool" >&5 $as_echo "$lt_cv_path_mainfest_tool" >&6; } if test "x$lt_cv_path_mainfest_tool" != xyes; then MANIFEST_TOOL=: fi case $host_os in rhapsody* | darwin*) if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dsymutil", so it can be a program name with args. set dummy ${ac_tool_prefix}dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DSYMUTIL"; then ac_cv_prog_DSYMUTIL="$DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DSYMUTIL="${ac_tool_prefix}dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DSYMUTIL=$ac_cv_prog_DSYMUTIL if test -n "$DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DSYMUTIL" >&5 $as_echo "$DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DSYMUTIL"; then ac_ct_DSYMUTIL=$DSYMUTIL # Extract the first word of "dsymutil", so it can be a program name with args. set dummy dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DSYMUTIL"; then ac_cv_prog_ac_ct_DSYMUTIL="$ac_ct_DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DSYMUTIL="dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DSYMUTIL=$ac_cv_prog_ac_ct_DSYMUTIL if test -n "$ac_ct_DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DSYMUTIL" >&5 $as_echo "$ac_ct_DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DSYMUTIL" = x; then DSYMUTIL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DSYMUTIL=$ac_ct_DSYMUTIL fi else DSYMUTIL="$ac_cv_prog_DSYMUTIL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}nmedit", so it can be a program name with args. set dummy ${ac_tool_prefix}nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NMEDIT"; then ac_cv_prog_NMEDIT="$NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_NMEDIT="${ac_tool_prefix}nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi NMEDIT=$ac_cv_prog_NMEDIT if test -n "$NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NMEDIT" >&5 $as_echo "$NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_NMEDIT"; then ac_ct_NMEDIT=$NMEDIT # Extract the first word of "nmedit", so it can be a program name with args. set dummy nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_NMEDIT"; then ac_cv_prog_ac_ct_NMEDIT="$ac_ct_NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_NMEDIT="nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_NMEDIT=$ac_cv_prog_ac_ct_NMEDIT if test -n "$ac_ct_NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_NMEDIT" >&5 $as_echo "$ac_ct_NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_NMEDIT" = x; then NMEDIT=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac NMEDIT=$ac_ct_NMEDIT fi else NMEDIT="$ac_cv_prog_NMEDIT" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}lipo", so it can be a program name with args. set dummy ${ac_tool_prefix}lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$LIPO"; then ac_cv_prog_LIPO="$LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_LIPO="${ac_tool_prefix}lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi LIPO=$ac_cv_prog_LIPO if test -n "$LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LIPO" >&5 $as_echo "$LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_LIPO"; then ac_ct_LIPO=$LIPO # Extract the first word of "lipo", so it can be a program name with args. set dummy lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_LIPO"; then ac_cv_prog_ac_ct_LIPO="$ac_ct_LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_LIPO="lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_LIPO=$ac_cv_prog_ac_ct_LIPO if test -n "$ac_ct_LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_LIPO" >&5 $as_echo "$ac_ct_LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_LIPO" = x; then LIPO=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac LIPO=$ac_ct_LIPO fi else LIPO="$ac_cv_prog_LIPO" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool", so it can be a program name with args. set dummy ${ac_tool_prefix}otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL"; then ac_cv_prog_OTOOL="$OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL="${ac_tool_prefix}otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL=$ac_cv_prog_OTOOL if test -n "$OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL" >&5 $as_echo "$OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL"; then ac_ct_OTOOL=$OTOOL # Extract the first word of "otool", so it can be a program name with args. set dummy otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL"; then ac_cv_prog_ac_ct_OTOOL="$ac_ct_OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL="otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL=$ac_cv_prog_ac_ct_OTOOL if test -n "$ac_ct_OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL" >&5 $as_echo "$ac_ct_OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL" = x; then OTOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL=$ac_ct_OTOOL fi else OTOOL="$ac_cv_prog_OTOOL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool64", so it can be a program name with args. set dummy ${ac_tool_prefix}otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL64"; then ac_cv_prog_OTOOL64="$OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL64="${ac_tool_prefix}otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL64=$ac_cv_prog_OTOOL64 if test -n "$OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL64" >&5 $as_echo "$OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL64"; then ac_ct_OTOOL64=$OTOOL64 # Extract the first word of "otool64", so it can be a program name with args. set dummy otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL64"; then ac_cv_prog_ac_ct_OTOOL64="$ac_ct_OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL64="otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL64=$ac_cv_prog_ac_ct_OTOOL64 if test -n "$ac_ct_OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL64" >&5 $as_echo "$ac_ct_OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL64" = x; then OTOOL64=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL64=$ac_ct_OTOOL64 fi else OTOOL64="$ac_cv_prog_OTOOL64" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -single_module linker flag" >&5 $as_echo_n "checking for -single_module linker flag... " >&6; } if ${lt_cv_apple_cc_single_mod+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_apple_cc_single_mod=no if test -z "${LT_MULTI_MODULE}"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&5 $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&5 # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test $_lt_result -eq 0; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&5 fi rm -rf libconftest.dylib* rm -f conftest.* fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_apple_cc_single_mod" >&5 $as_echo "$lt_cv_apple_cc_single_mod" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -exported_symbols_list linker flag" >&5 $as_echo_n "checking for -exported_symbols_list linker flag... " >&6; } if ${lt_cv_ld_exported_symbols_list+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_ld_exported_symbols_list=yes else lt_cv_ld_exported_symbols_list=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS="$save_LDFLAGS" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_exported_symbols_list" >&5 $as_echo "$lt_cv_ld_exported_symbols_list" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -force_load linker flag" >&5 $as_echo_n "checking for -force_load linker flag... " >&6; } if ${lt_cv_ld_force_load+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&5 $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&5 echo "$AR cru libconftest.a conftest.o" >&5 $AR cru libconftest.a conftest.o 2>&5 echo "$RANLIB libconftest.a" >&5 $RANLIB libconftest.a 2>&5 cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&5 $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&5 elif test -f conftest && test $_lt_result -eq 0 && $GREP forced_load conftest >/dev/null 2>&1 ; then lt_cv_ld_force_load=yes else cat conftest.err >&5 fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_force_load" >&5 $as_echo "$lt_cv_ld_force_load" >&6; } case $host_os in rhapsody* | darwin1.[012]) _lt_dar_allow_undefined='${wl}-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='${wl}-flat_namespace ${wl}-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[91]*) _lt_dar_allow_undefined='${wl}-undefined ${wl}dynamic_lookup' ;; 10.[012]*) _lt_dar_allow_undefined='${wl}-flat_namespace ${wl}-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='${wl}-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test "$lt_cv_apple_cc_single_mod" = "yes"; then _lt_dar_single_mod='$single_module' fi if test "$lt_cv_ld_exported_symbols_list" = "yes"; then _lt_dar_export_syms=' ${wl}-exported_symbols_list,$output_objdir/${libname}-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/${libname}-symbols.expsym ${lib}' fi if test "$DSYMUTIL" != ":" && test "$lt_cv_ld_force_load" = "no"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done for ac_header in dlfcn.h do : ac_fn_c_check_header_compile "$LINENO" "dlfcn.h" "ac_cv_header_dlfcn_h" "$ac_includes_default " if test "x$ac_cv_header_dlfcn_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_DLFCN_H 1 _ACEOF fi done # Set options enable_dlopen=no enable_win32_dll=no # Check whether --enable-shared was given. if test "${enable_shared+set}" = set; then : enableval=$enable_shared; p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS="$lt_save_ifs" ;; esac else enable_shared=yes fi # Check whether --enable-static was given. if test "${enable_static+set}" = set; then : enableval=$enable_static; p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS="$lt_save_ifs" ;; esac else enable_static=yes fi # Check whether --with-pic was given. if test "${with_pic+set}" = set; then : withval=$with_pic; lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for lt_pkg in $withval; do IFS="$lt_save_ifs" if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS="$lt_save_ifs" ;; esac else pic_mode=default fi test -z "$pic_mode" && pic_mode=default # Check whether --enable-fast-install was given. if test "${enable_fast_install+set}" = set; then : enableval=$enable_fast_install; p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS="$lt_save_ifs" ;; esac else enable_fast_install=yes fi # This can be used to rebuild libtool when needed LIBTOOL_DEPS="$ltmain" # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' test -z "$LN_S" && LN_S="ln -s" if test -n "${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for objdir" >&5 $as_echo_n "checking for objdir... " >&6; } if ${lt_cv_objdir+:} false; then : $as_echo_n "(cached) " >&6 else rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_objdir" >&5 $as_echo "$lt_cv_objdir" >&6; } objdir=$lt_cv_objdir cat >>confdefs.h <<_ACEOF #define LT_OBJDIR "$lt_cv_objdir/" _ACEOF case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test "X${COLLECT_NAMES+set}" != Xset; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a `.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld="$lt_cv_prog_gnu_ld" old_CC="$CC" old_CFLAGS="$CFLAGS" # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o for cc_temp in $compiler""; do case $cc_temp in compile | *[\\/]compile | ccache | *[\\/]ccache ) ;; distcc | *[\\/]distcc | purify | *[\\/]purify ) ;; \-*) ;; *) break;; esac done cc_basename=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ${ac_tool_prefix}file" >&5 $as_echo_n "checking for ${ac_tool_prefix}file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD="$MAGIC_CMD" # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD="$MAGIC_CMD" lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. if test -f $ac_dir/${ac_tool_prefix}file; then lt_cv_path_MAGIC_CMD="$ac_dir/${ac_tool_prefix}file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS="$lt_save_ifs" MAGIC_CMD="$lt_save_MAGIC_CMD" ;; esac fi MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for file" >&5 $as_echo_n "checking for file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD="$MAGIC_CMD" # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD="$MAGIC_CMD" lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. if test -f $ac_dir/file; then lt_cv_path_MAGIC_CMD="$ac_dir/file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS="$lt_save_ifs" MAGIC_CMD="$lt_save_MAGIC_CMD" ;; esac fi MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi else MAGIC_CMD=: fi fi fi ;; esac # Use C for the default configuration in the libtool script lt_save_CC="$CC" ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o objext=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* if test -n "$compiler"; then lt_prog_compiler_no_builtin_flag= if test "$GCC" = yes; then case $cc_basename in nvcc*) lt_prog_compiler_no_builtin_flag=' -Xcompiler -fno-builtin' ;; *) lt_prog_compiler_no_builtin_flag=' -fno-builtin' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -fno-rtti -fno-exceptions" >&5 $as_echo_n "checking if $compiler supports -fno-rtti -fno-exceptions... " >&6; } if ${lt_cv_prog_compiler_rtti_exceptions+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_rtti_exceptions=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-fno-rtti -fno-exceptions" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_rtti_exceptions=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_rtti_exceptions" >&5 $as_echo "$lt_cv_prog_compiler_rtti_exceptions" >&6; } if test x"$lt_cv_prog_compiler_rtti_exceptions" = xyes; then lt_prog_compiler_no_builtin_flag="$lt_prog_compiler_no_builtin_flag -fno-rtti -fno-exceptions" else : fi fi lt_prog_compiler_wl= lt_prog_compiler_pic= lt_prog_compiler_static= if test "$GCC" = yes; then lt_prog_compiler_wl='-Wl,' lt_prog_compiler_static='-static' case $host_os in aix*) # All AIX code is PIC. if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support lt_prog_compiler_pic='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the `-m68020' flag to GCC prevents building anything better, # like `-m68040'. lt_prog_compiler_pic='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries lt_prog_compiler_pic='-DDLL_EXPORT' ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. lt_prog_compiler_static= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) lt_prog_compiler_pic='-fPIC' ;; esac ;; interix[3-9]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. lt_prog_compiler_can_build_shared=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic=-Kconform_pic fi ;; *) lt_prog_compiler_pic='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 lt_prog_compiler_wl='-Xlinker ' if test -n "$lt_prog_compiler_pic"; then lt_prog_compiler_pic="-Xcompiler $lt_prog_compiler_pic" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) lt_prog_compiler_wl='-Wl,' if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' else lt_prog_compiler_static='-bnso -bI:/lib/syscalls.exp' fi ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). lt_prog_compiler_pic='-DDLL_EXPORT' ;; hpux9* | hpux10* | hpux11*) lt_prog_compiler_wl='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) lt_prog_compiler_pic='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? lt_prog_compiler_static='${wl}-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) lt_prog_compiler_wl='-Wl,' # PIC (with -KPIC) is the default. lt_prog_compiler_static='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu) case $cc_basename in # old Intel for x86_64 which still supported -KPIC. ecc*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; # Lahey Fortran 8.1. lf95*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='--shared' lt_prog_compiler_static='--static' ;; nagfor*) # NAG Fortran compiler lt_prog_compiler_wl='-Wl,-Wl,,' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; ccc*) lt_prog_compiler_wl='-Wl,' # All Alpha code is PIC. lt_prog_compiler_static='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-qpic' lt_prog_compiler_static='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [1-7].* | *Sun*Fortran*\ 8.[0-3]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='' ;; *Sun\ F* | *Sun*Fortran*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Wl,' ;; *Intel*\ [CF]*Compiler*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; *Portland\ Group*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; esac ;; esac ;; newsos6) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; osf3* | osf4* | osf5*) lt_prog_compiler_wl='-Wl,' # All OSF/1 code is PIC. lt_prog_compiler_static='-non_shared' ;; rdos*) lt_prog_compiler_static='-non_shared' ;; solaris*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) lt_prog_compiler_wl='-Qoption ld ';; *) lt_prog_compiler_wl='-Wl,';; esac ;; sunos4*) lt_prog_compiler_wl='-Qoption ld ' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec ;then lt_prog_compiler_pic='-Kconform_pic' lt_prog_compiler_static='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; unicos*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_can_build_shared=no ;; uts4*) lt_prog_compiler_pic='-pic' lt_prog_compiler_static='-Bstatic' ;; *) lt_prog_compiler_can_build_shared=no ;; esac fi case $host_os in # For platforms which do not support PIC, -DPIC is meaningless: *djgpp*) lt_prog_compiler_pic= ;; *) lt_prog_compiler_pic="$lt_prog_compiler_pic -DPIC" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5 $as_echo_n "checking for $compiler option to produce PIC... " >&6; } if ${lt_cv_prog_compiler_pic+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic=$lt_prog_compiler_pic fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic" >&5 $as_echo "$lt_cv_prog_compiler_pic" >&6; } lt_prog_compiler_pic=$lt_cv_prog_compiler_pic # # Check to make sure the PIC flag actually works. # if test -n "$lt_prog_compiler_pic"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic works" >&5 $as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic works... " >&6; } if ${lt_cv_prog_compiler_pic_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic_works=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$lt_prog_compiler_pic -DPIC" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works" >&5 $as_echo "$lt_cv_prog_compiler_pic_works" >&6; } if test x"$lt_cv_prog_compiler_pic_works" = xyes; then case $lt_prog_compiler_pic in "" | " "*) ;; *) lt_prog_compiler_pic=" $lt_prog_compiler_pic" ;; esac else lt_prog_compiler_pic= lt_prog_compiler_can_build_shared=no fi fi # # Check to make sure the static flag actually works. # wl=$lt_prog_compiler_wl eval lt_tmp_static_flag=\"$lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5 $as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; } if ${lt_cv_prog_compiler_static_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_static_works=no save_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS $lt_tmp_static_flag" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_static_works=yes fi else lt_cv_prog_compiler_static_works=yes fi fi $RM -r conftest* LDFLAGS="$save_LDFLAGS" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works" >&5 $as_echo "$lt_cv_prog_compiler_static_works" >&6; } if test x"$lt_cv_prog_compiler_static_works" = xyes; then : else lt_prog_compiler_static= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } hard_links="nottested" if test "$lt_cv_prog_compiler_c_o" = no && test "$need_locks" != no; then # do not overwrite the value of need_locks provided by the user { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5 $as_echo_n "checking if we can lock with hard links... " >&6; } hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5 $as_echo "$hard_links" >&6; } if test "$hard_links" = no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: \`$CC' does not support \`-c -o', so \`make -j' may be unsafe" >&5 $as_echo "$as_me: WARNING: \`$CC' does not support \`-c -o', so \`make -j' may be unsafe" >&2;} need_locks=warn fi else need_locks=no fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5 $as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; } runpath_var= allow_undefined_flag= always_export_symbols=no archive_cmds= archive_expsym_cmds= compiler_needs_object=no enable_shared_with_static_runtimes=no export_dynamic_flag_spec= export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' hardcode_automatic=no hardcode_direct=no hardcode_direct_absolute=no hardcode_libdir_flag_spec= hardcode_libdir_separator= hardcode_minus_L=no hardcode_shlibpath_var=unsupported inherit_rpath=no link_all_deplibs=unknown module_cmds= module_expsym_cmds= old_archive_from_new_cmds= old_archive_from_expsyms_cmds= thread_safe_flag_spec= whole_archive_flag_spec= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list include_expsyms= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ` (' and `)$', so one must not match beginning or # end of line. Example: `a|bc|.*d.*' will exclude the symbols `a' and `bc', # as well as any symbol that contains `d'. exclude_expsyms='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*' # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test "$GCC" != yes; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd*) with_gnu_ld=no ;; esac ld_shlibs=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test "$with_gnu_ld" = yes; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[2-9]*) ;; *\ \(GNU\ Binutils\)\ [3-9]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test "$lt_use_gnu_ld_interface" = yes; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='${wl}' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' export_dynamic_flag_spec='${wl}--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then whole_archive_flag_spec="$wlarc"'--whole-archive$convenience '"$wlarc"'--no-whole-archive' else whole_archive_flag_spec= fi supports_anon_versioning=no case `$LD -v 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [01].* | *\ 2.[0-9].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[3-9]*) # On AIX/PPC, the GNU linker is very broken if test "$host_cpu" != ia64; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then allow_undefined_flag=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME archive_cmds='$CC -nostart $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' else ld_shlibs=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, ) is actually meaningless, # as there is no search path for DLLs. hardcode_libdir_flag_spec='-L$libdir' export_dynamic_flag_spec='${wl}--export-all-symbols' allow_undefined_flag=unsupported always_export_symbols=no enable_shared_with_static_runtimes=yes export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1 DATA/;s/^.*[ ]__nm__\([^ ]*\)[ ][^ ]*/\1 DATA/;/^I[ ]/d;/^[AITW][ ]/s/.* //'\'' | sort | uniq > $export_symbols' exclude_expsyms='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname' if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file (1st line # is EXPORTS), use it as is; otherwise, prepend... archive_expsym_cmds='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else ld_shlibs=no fi ;; haiku*) archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' link_all_deplibs=yes ;; interix[3-9]*) hardcode_direct=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='${wl}-rpath,$libdir' export_dynamic_flag_spec='${wl}-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' archive_expsym_cmds='sed "s,^,_," $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--retain-symbols-file,$output_objdir/$soname.expsym ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test "$host_os" = linux-dietlibc; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test "$tmp_diet" = no then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler whole_archive_flag_spec='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers whole_archive_flag_spec='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 whole_archive_flag_spec= tmp_sharedflag='--shared' ;; xl[cC]* | bgxl[cC]* | mpixl[cC]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 whole_archive_flag_spec='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' compiler_needs_object=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 whole_archive_flag_spec='${wl}--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' compiler_needs_object=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac archive_cmds='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' if test "x$supports_anon_versioning" = xyes; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-version-script ${wl}$output_objdir/$libname.ver -o $lib' fi case $cc_basename in xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself whole_archive_flag_spec='--whole-archive$convenience --no-whole-archive' hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' archive_cmds='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test "x$supports_anon_versioning" = xyes; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else ld_shlibs=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [01].* | *\ 2.[0-9].* | *\ 2.1[0-5].*) ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 can not *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac ;; sunos4*) archive_cmds='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= hardcode_direct=yes hardcode_shlibpath_var=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac if test "$ld_shlibs" = no; then runpath_var= hardcode_libdir_flag_spec= export_dynamic_flag_spec= whole_archive_flag_spec= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) allow_undefined_flag=unsupported always_export_symbols=yes archive_expsym_cmds='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. hardcode_minus_L=yes if test "$GCC" = yes && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. hardcode_direct=unsupported fi ;; aix[4-9]*) if test "$host_cpu" = ia64; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag="" else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global # defined symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else export_symbols_cmds='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*) for ld_flag in $LDFLAGS; do if (test $ld_flag = "-brtl" || test $ld_flag = "-Wl,-brtl"); then aix_use_runtimelinking=yes break fi done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. archive_cmds='' hardcode_direct=yes hardcode_direct_absolute=yes hardcode_libdir_separator=':' link_all_deplibs=yes file_list_spec='${wl}-f,' if test "$GCC" = yes; then case $host_os in aix4.[012]|aix4.[012].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`${CC} -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 hardcode_direct=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking hardcode_minus_L=yes hardcode_libdir_flag_spec='-L$libdir' hardcode_libdir_separator= fi ;; esac shared_flag='-shared' if test "$aix_use_runtimelinking" = yes; then shared_flag="$shared_flag "'${wl}-G' fi else # not using gcc if test "$host_cpu" = ia64; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test "$aix_use_runtimelinking" = yes; then shared_flag='${wl}-G' else shared_flag='${wl}-bM:SRE' fi fi fi export_dynamic_flag_spec='${wl}-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. always_export_symbols=yes if test "$aix_use_runtimelinking" = yes; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. allow_undefined_flag='-berok' # Determine the default libpath from the value encoded in an # empty executable. if test "${lt_cv_aix_libpath+set}" = set; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_="/usr/lib:/lib" fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='${wl}-blibpath:$libdir:'"$aix_libpath" archive_expsym_cmds='$CC -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags `if test "x${allow_undefined_flag}" != "x"; then func_echo_all "${wl}${allow_undefined_flag}"; else :; fi` '"\${wl}$exp_sym_flag:\$export_symbols $shared_flag" else if test "$host_cpu" = ia64; then hardcode_libdir_flag_spec='${wl}-R $libdir:/usr/lib:/lib' allow_undefined_flag="-z nodefs" archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags ${wl}${allow_undefined_flag} '"\${wl}$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. if test "${lt_cv_aix_libpath+set}" = set; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_="/usr/lib:/lib" fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='${wl}-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. no_undefined_flag=' ${wl}-bernotok' allow_undefined_flag=' ${wl}-berok' if test "$with_gnu_ld" = yes; then # We only use this code for GNU lds that support --whole-archive. whole_archive_flag_spec='${wl}--whole-archive$convenience ${wl}--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives whole_archive_flag_spec='$convenience' fi archive_cmds_need_lc=yes # This is similar to how AIX traditionally builds its shared libraries. archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs ${wl}-bnoentry $compiler_flags ${wl}-bE:$export_symbols${allow_undefined_flag}~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; bsdi[45]*) export_dynamic_flag_spec=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported always_export_symbols=yes file_list_spec='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=".dll" # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-dll~linknames=' archive_expsym_cmds='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then sed -n -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' -e '1\\\!p' < $export_symbols > $output_objdir/$soname.exp; else sed -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, )='true' enable_shared_with_static_runtimes=yes exclude_expsyms='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1,DATA/'\'' | $SED -e '\''/^[AITW][ ]/s/.*[ ]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib old_postinstall_cmds='chmod 644 $oldlib' postlink_cmds='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile="$lt_outputfile.exe" lt_tool_outputfile="$lt_tool_outputfile.exe" ;; esac~ if test "$MANIFEST_TOOL" != ":" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=".dll" # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. old_archive_from_new_cmds='true' # FIXME: Should let the user specify the lib program. old_archive_cmds='lib -OUT:$oldlib$oldobjs$old_deplibs' enable_shared_with_static_runtimes=yes ;; esac ;; darwin* | rhapsody*) archive_cmds_need_lc=no hardcode_direct=no hardcode_automatic=yes hardcode_shlibpath_var=unsupported if test "$lt_cv_ld_force_load" = "yes"; then whole_archive_flag_spec='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience ${wl}-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' else whole_archive_flag_spec='' fi link_all_deplibs=yes allow_undefined_flag="$_lt_dar_allow_undefined" case $cc_basename in ifort*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test "$_lt_dar_can_shared" = "yes"; then output_verbose_link_cmd=func_echo_all archive_cmds="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod${_lt_dsymutil}" module_cmds="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags${_lt_dsymutil}" archive_expsym_cmds="sed 's,^,_,' < \$export_symbols > \$output_objdir/\${libname}-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring ${_lt_dar_single_mod}${_lt_dar_export_syms}${_lt_dsymutil}" module_expsym_cmds="sed -e 's,^,_,' < \$export_symbols > \$output_objdir/\${libname}-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags${_lt_dar_export_syms}${_lt_dsymutil}" else ld_shlibs=no fi ;; dgux*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; hpux9*) if test "$GCC" = yes; then archive_cmds='$RM $output_objdir/$soname~$CC -shared $pic_flag ${wl}+b ${wl}$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' else archive_cmds='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' fi hardcode_libdir_flag_spec='${wl}+b ${wl}$libdir' hardcode_libdir_separator=: hardcode_direct=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes export_dynamic_flag_spec='${wl}-E' ;; hpux10*) if test "$GCC" = yes && test "$with_gnu_ld" = no; then archive_cmds='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test "$with_gnu_ld" = no; then hardcode_libdir_flag_spec='${wl}+b ${wl}$libdir' hardcode_libdir_separator=: hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='${wl}-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes fi ;; hpux11*) if test "$GCC" = yes && test "$with_gnu_ld" = no; then case $host_cpu in hppa*64*) archive_cmds='$CC -shared ${wl}+h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) archive_cmds='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) archive_cmds='$CC -b ${wl}+h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -b ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $CC understands -b" >&5 $as_echo_n "checking if $CC understands -b... " >&6; } if ${lt_cv_prog_compiler__b+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler__b=no save_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS -b" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler__b=yes fi else lt_cv_prog_compiler__b=yes fi fi $RM -r conftest* LDFLAGS="$save_LDFLAGS" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler__b" >&5 $as_echo "$lt_cv_prog_compiler__b" >&6; } if test x"$lt_cv_prog_compiler__b" = xyes; then archive_cmds='$CC -b ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi ;; esac fi if test "$with_gnu_ld" = no; then hardcode_libdir_flag_spec='${wl}+b ${wl}$libdir' hardcode_libdir_separator=: case $host_cpu in hppa*64*|ia64*) hardcode_direct=no hardcode_shlibpath_var=no ;; *) hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='${wl}-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test "$GCC" = yes; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $host_os linker accepts -exported_symbol" >&5 $as_echo_n "checking whether the $host_os linker accepts -exported_symbol... " >&6; } if ${lt_cv_irix_exported_symbol+:} false; then : $as_echo_n "(cached) " >&6 else save_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS -shared ${wl}-exported_symbol ${wl}foo ${wl}-update_registry ${wl}/dev/null" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int foo (void) { return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_irix_exported_symbol=yes else lt_cv_irix_exported_symbol=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS="$save_LDFLAGS" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_irix_exported_symbol" >&5 $as_echo "$lt_cv_irix_exported_symbol" >&6; } if test "$lt_cv_irix_exported_symbol" = yes; then archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations ${wl}-exports_file ${wl}$export_symbols -o $lib' fi else archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -exports_file $export_symbols -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' hardcode_libdir_separator=: inherit_rpath=yes link_all_deplibs=yes ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else archive_cmds='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; newsos6) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' hardcode_libdir_separator=: hardcode_shlibpath_var=no ;; *nto* | *qnx*) ;; openbsd*) if test -f /usr/libexec/ld.so; then hardcode_direct=yes hardcode_shlibpath_var=no hardcode_direct_absolute=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags ${wl}-retain-symbols-file,$export_symbols' hardcode_libdir_flag_spec='${wl}-rpath,$libdir' export_dynamic_flag_spec='${wl}-E' else case $host_os in openbsd[01].* | openbsd2.[0-7] | openbsd2.[0-7].*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-R$libdir' ;; *) archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='${wl}-rpath,$libdir' ;; esac fi else ld_shlibs=no fi ;; os2*) hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes allow_undefined_flag=unsupported archive_cmds='$ECHO "LIBRARY $libname INITINSTANCE" > $output_objdir/$libname.def~$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~echo DATA >> $output_objdir/$libname.def~echo " SINGLE NONSHARED" >> $output_objdir/$libname.def~echo EXPORTS >> $output_objdir/$libname.def~emxexp $libobjs >> $output_objdir/$libname.def~$CC -Zdll -Zcrtdll -o $lib $libobjs $deplibs $compiler_flags $output_objdir/$libname.def' old_archive_from_new_cmds='emximp -o $output_objdir/$libname.a $output_objdir/$libname.def' ;; osf3*) if test "$GCC" = yes; then allow_undefined_flag=' ${wl}-expect_unresolved ${wl}\*' archive_cmds='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' hardcode_libdir_separator=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test "$GCC" = yes; then allow_undefined_flag=' ${wl}-expect_unresolved ${wl}\*' archive_cmds='$CC -shared${allow_undefined_flag} $pic_flag $libobjs $deplibs $compiler_flags ${wl}-msym ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' hardcode_libdir_flag_spec='${wl}-rpath ${wl}$libdir' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' archive_expsym_cmds='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared${allow_undefined_flag} ${wl}-input ${wl}$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly hardcode_libdir_flag_spec='-rpath $libdir' fi archive_cmds_need_lc='no' hardcode_libdir_separator=: ;; solaris*) no_undefined_flag=' -z defs' if test "$GCC" = yes; then wlarc='${wl}' archive_cmds='$CC -shared $pic_flag ${wl}-z ${wl}text ${wl}-h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag ${wl}-z ${wl}text ${wl}-M ${wl}$lib.exp ${wl}-h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' archive_cmds='$LD -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $linker_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='${wl}' archive_cmds='$CC -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi hardcode_libdir_flag_spec='-R$libdir' hardcode_shlibpath_var=no case $host_os in solaris2.[0-5] | solaris2.[0-5].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands `-z linker_flag'. GCC discards it without `$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test "$GCC" = yes; then whole_archive_flag_spec='${wl}-z ${wl}allextract$convenience ${wl}-z ${wl}defaultextract' else whole_archive_flag_spec='-z allextract$convenience -z defaultextract' fi ;; esac link_all_deplibs=yes ;; sunos4*) if test "x$host_vendor" = xsequent; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. archive_cmds='$CC -G ${wl}-h $soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi hardcode_libdir_flag_spec='-L$libdir' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; sysv4) case $host_vendor in sni) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. archive_cmds='$LD -G -o $lib $libobjs $deplibs $linker_flags' reload_cmds='$CC -r -o $output$reload_objs' hardcode_direct=no ;; motorola) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' hardcode_shlibpath_var=no ;; sysv4.3*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no export_dynamic_flag_spec='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes ld_shlibs=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*) no_undefined_flag='${wl}-z,text' archive_cmds_need_lc=no hardcode_shlibpath_var=no runpath_var='LD_RUN_PATH' if test "$GCC" = yes; then archive_cmds='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We can NOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. no_undefined_flag='${wl}-z,text' allow_undefined_flag='${wl}-z,nodefs' archive_cmds_need_lc=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='${wl}-R,$libdir' hardcode_libdir_separator=':' link_all_deplibs=yes export_dynamic_flag_spec='${wl}-Bexport' runpath_var='LD_RUN_PATH' if test "$GCC" = yes; then archive_cmds='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; *) ld_shlibs=no ;; esac if test x$host_vendor = xsni; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) export_dynamic_flag_spec='${wl}-Blargedynsym' ;; esac fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs" >&5 $as_echo "$ld_shlibs" >&6; } test "$ld_shlibs" = no && can_build_shared=no with_gnu_ld=$with_gnu_ld # # Do we need to explicitly link libc? # case "x$archive_cmds_need_lc" in x|xyes) # Assume -lc should be added archive_cmds_need_lc=yes if test "$enable_shared" = yes && test "$GCC" = yes; then case $archive_cmds in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5 $as_echo_n "checking whether -lc should be explicitly linked in... " >&6; } if ${lt_cv_archive_cmds_need_lc+:} false; then : $as_echo_n "(cached) " >&6 else $RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$lt_prog_compiler_wl pic_flag=$lt_prog_compiler_pic compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$allow_undefined_flag allow_undefined_flag= if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5 (eval $archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } then lt_cv_archive_cmds_need_lc=no else lt_cv_archive_cmds_need_lc=yes fi allow_undefined_flag=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc" >&5 $as_echo "$lt_cv_archive_cmds_need_lc" >&6; } archive_cmds_need_lc=$lt_cv_archive_cmds_need_lc ;; esac fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5 $as_echo_n "checking dynamic linker characteristics... " >&6; } if test "$GCC" = yes; then case $host_os in darwin*) lt_awk_arg="/^libraries:/,/LR/" ;; *) lt_awk_arg="/^libraries:/" ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq="s,=\([A-Za-z]:\),\1,g" ;; *) lt_sed_strip_eq="s,=/,/,g" ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary. lt_tmp_lt_search_path_spec= lt_multi_os_dir=`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path/$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path/$lt_multi_os_dir" else test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS=" "; FS="/|\n";} { lt_foo=""; lt_count=0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo="/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[lt_foo]++; } if (lt_freq[lt_foo] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's,/\([A-Za-z]:\),\1,g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=".so" postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='${libname}${release}${shared_ext}$major' ;; aix[4-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test "$host_cpu" = ia64; then # AIX 5 supports IA64 library_names_spec='${libname}${release}${shared_ext}$major ${libname}${release}${shared_ext}$versuffix $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line `#! .'. This would cause the generated library to # depend on `.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[01] | aix4.[01].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | ${CC} -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # AIX (on Power*) has no versioning support, so currently we can not hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. if test "$aix_use_runtimelinking" = yes; then # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' else # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='${libname}${release}.a $libname.a' soname_spec='${libname}${release}${shared_ext}$major' fi shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; test $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='${libname}${shared_ext}' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[45]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=".dll" need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \${file}`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\${base_file}'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo ${libname} | sed -e 's/^lib/cyg/'``echo ${release} | $SED -e 's/[.]/-/g'`${versuffix}${shared_ext}' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api" ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='${libname}`echo ${release} | $SED -e 's/[.]/-/g'`${versuffix}${shared_ext}' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo ${libname} | sed -e 's/^lib/pw/'``echo ${release} | $SED -e 's/[.]/-/g'`${versuffix}${shared_ext}' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='${libname}`echo ${release} | $SED -e 's/[.]/-/g'`${versuffix}${shared_ext}' library_names_spec='${libname}.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec="$LIB" if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \${file}`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\${base_file}'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='${libname}`echo ${release} | $SED -e 's/[.]/-/g'`${versuffix}${shared_ext} $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${major}$shared_ext ${libname}$shared_ext' soname_spec='${libname}${release}${major}$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib" sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname$shared_ext' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[23].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext} $libname${shared_ext}' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='${libname}${release}${shared_ext}$versuffix $libname${shared_ext}$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[01]* | freebsdelf3.[01]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[2-9]* | freebsdelf3.[2-9]* | \ freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}${major} ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}${major} ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=yes sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' if test "X$HPUX_IA64_MODE" = X32; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" fi sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[3-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test "$lt_cv_prog_gnu_ld" = yes; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='${libname}${release}${shared_ext}$major' library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${release}${shared_ext} $libname${shared_ext}' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib${libsuff} /lib${libsuff} /usr/local/lib${libsuff}" sys_lib_dlsearch_path_spec="/usr/lib${libsuff} /lib${libsuff}" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH if ${lt_cv_shlibpath_overrides_runpath+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$lt_prog_compiler_wl\"; \ LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec\"" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then : lt_cv_shlibpath_overrides_runpath=yes fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS libdir=$save_libdir fi shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Append ld.so.conf contents to the search path if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd*) version_type=sunos sys_lib_dlsearch_path_spec="/usr/lib" need_lib_prefix=no # Some older versions of OpenBSD (3.3 at least) *do* need versioned libs. case $host_os in openbsd3.3 | openbsd3.3.*) need_version=yes ;; *) need_version=no ;; esac library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then case $host_os in openbsd2.[89] | openbsd2.[89].*) shlibpath_overrides_runpath=no ;; *) shlibpath_overrides_runpath=yes ;; esac else shlibpath_overrides_runpath=yes fi ;; os2*) libname_spec='$name' shrext_cmds=".dll" need_lib_prefix=no library_names_spec='$libname${shared_ext} $libname.a' dynamic_linker='OS/2 ld.exe' shlibpath_var=LIBPATH ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='${libname}${release}${shared_ext}$major' library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec="$sys_lib_search_path_spec" ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test "$with_gnu_ld" = yes; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec ;then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname${shared_ext}.$versuffix $libname${shared_ext}.$major $libname${shared_ext}' soname_spec='$libname${shared_ext}.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=freebsd-elf need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext} $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test "$with_gnu_ld" = yes; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5 $as_echo "$dynamic_linker" >&6; } test "$dynamic_linker" = no && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test "$GCC" = yes; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test "${lt_cv_sys_lib_search_path_spec+set}" = set; then sys_lib_search_path_spec="$lt_cv_sys_lib_search_path_spec" fi if test "${lt_cv_sys_lib_dlsearch_path_spec+set}" = set; then sys_lib_dlsearch_path_spec="$lt_cv_sys_lib_dlsearch_path_spec" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5 $as_echo_n "checking how to hardcode library paths into programs... " >&6; } hardcode_action= if test -n "$hardcode_libdir_flag_spec" || test -n "$runpath_var" || test "X$hardcode_automatic" = "Xyes" ; then # We can hardcode non-existent directories. if test "$hardcode_direct" != no && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test "$_LT_TAGVAR(hardcode_shlibpath_var, )" != no && test "$hardcode_minus_L" != no; then # Linking always hardcodes the temporary library directory. hardcode_action=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. hardcode_action=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. hardcode_action=unsupported fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action" >&5 $as_echo "$hardcode_action" >&6; } if test "$hardcode_action" = relink || test "$inherit_rpath" = yes; then # Fast installation is not supported enable_fast_install=no elif test "$shlibpath_overrides_runpath" = yes || test "$enable_shared" = no; then # Fast installation is not necessary enable_fast_install=needless fi if test "x$enable_dlopen" != xyes; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen="load_add_on" lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen="LoadLibrary" lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen="dlopen" lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-ldl" else lt_cv_dlopen="dyld" lt_cv_dlopen_libs= lt_cv_dlopen_self=yes fi ;; *) ac_fn_c_check_func "$LINENO" "shl_load" "ac_cv_func_shl_load" if test "x$ac_cv_func_shl_load" = xyes; then : lt_cv_dlopen="shl_load" else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for shl_load in -ldld" >&5 $as_echo_n "checking for shl_load in -ldld... " >&6; } if ${ac_cv_lib_dld_shl_load+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char shl_load (); int main () { return shl_load (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_shl_load=yes else ac_cv_lib_dld_shl_load=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_shl_load" >&5 $as_echo "$ac_cv_lib_dld_shl_load" >&6; } if test "x$ac_cv_lib_dld_shl_load" = xyes; then : lt_cv_dlopen="shl_load" lt_cv_dlopen_libs="-ldld" else ac_fn_c_check_func "$LINENO" "dlopen" "ac_cv_func_dlopen" if test "x$ac_cv_func_dlopen" = xyes; then : lt_cv_dlopen="dlopen" else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-ldl" else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -lsvld" >&5 $as_echo_n "checking for dlopen in -lsvld... " >&6; } if ${ac_cv_lib_svld_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lsvld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_svld_dlopen=yes else ac_cv_lib_svld_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_svld_dlopen" >&5 $as_echo "$ac_cv_lib_svld_dlopen" >&6; } if test "x$ac_cv_lib_svld_dlopen" = xyes; then : lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-lsvld" else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dld_link in -ldld" >&5 $as_echo_n "checking for dld_link in -ldld... " >&6; } if ${ac_cv_lib_dld_dld_link+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dld_link (); int main () { return dld_link (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_dld_link=yes else ac_cv_lib_dld_dld_link=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_dld_link" >&5 $as_echo "$ac_cv_lib_dld_dld_link" >&6; } if test "x$ac_cv_lib_dld_dld_link" = xyes; then : lt_cv_dlopen="dld_link" lt_cv_dlopen_libs="-ldld" fi fi fi fi fi fi ;; esac if test "x$lt_cv_dlopen" != xno; then enable_dlopen=yes else enable_dlopen=no fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS="$CPPFLAGS" test "x$ac_cv_header_dlfcn_h" = xyes && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS="$LDFLAGS" wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS="$LIBS" LIBS="$lt_cv_dlopen_libs $LIBS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a program can dlopen itself" >&5 $as_echo_n "checking whether a program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined(__GNUC__) && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest${ac_exeext} 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self=no ;; esac else : # compilation failed lt_cv_dlopen_self=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self" >&5 $as_echo "$lt_cv_dlopen_self" >&6; } if test "x$lt_cv_dlopen_self" = xyes; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a statically linked program can dlopen itself" >&5 $as_echo_n "checking whether a statically linked program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self_static+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined(__GNUC__) && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest${ac_exeext} 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self_static=no ;; esac else : # compilation failed lt_cv_dlopen_self_static=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self_static" >&5 $as_echo "$lt_cv_dlopen_self_static" >&6; } fi CPPFLAGS="$save_CPPFLAGS" LDFLAGS="$save_LDFLAGS" LIBS="$save_LIBS" ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi striplib= old_striplib= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether stripping libraries is possible" >&5 $as_echo_n "checking whether stripping libraries is possible... " >&6; } if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP" ; then striplib="$STRIP -x" old_striplib="$STRIP -S" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } ;; esac fi # Report which library types will actually be built { $as_echo "$as_me:${as_lineno-$LINENO}: checking if libtool supports shared libraries" >&5 $as_echo_n "checking if libtool supports shared libraries... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $can_build_shared" >&5 $as_echo "$can_build_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build shared libraries" >&5 $as_echo_n "checking whether to build shared libraries... " >&6; } test "$can_build_shared" = "no" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test "$enable_shared" = yes && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[4-9]*) if test "$host_cpu" != ia64 && test "$aix_use_runtimelinking" = no ; then test "$enable_shared" = yes && enable_static=no fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_shared" >&5 $as_echo "$enable_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build static libraries" >&5 $as_echo_n "checking whether to build static libraries... " >&6; } # Make sure either enable_shared or enable_static is yes. test "$enable_shared" = yes || enable_static=yes { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_static" >&5 $as_echo "$enable_static" >&6; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu CC="$lt_save_CC" ac_config_commands="$ac_config_commands libtool" # Only expand once: ac_fn_c_check_type "$LINENO" "size_t" "ac_cv_type_size_t" "$ac_includes_default" if test "x$ac_cv_type_size_t" = xyes; then : else cat >>confdefs.h <<_ACEOF #define size_t unsigned int _ACEOF fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for working volatile" >&5 $as_echo_n "checking for working volatile... " >&6; } if ${ac_cv_c_volatile+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { volatile int x; int * volatile y = (int *) 0; return !x && !y; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_volatile=yes else ac_cv_c_volatile=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_volatile" >&5 $as_echo "$ac_cv_c_volatile" >&6; } if test $ac_cv_c_volatile = no; then $as_echo "#define volatile /**/" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for inline" >&5 $as_echo_n "checking for inline... " >&6; } if ${ac_cv_c_inline+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_inline=no for ac_kw in inline __inline__ __inline; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifndef __cplusplus typedef int foo_t; static $ac_kw foo_t static_foo () {return 0; } $ac_kw foo_t foo () {return 0; } #endif _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_inline=$ac_kw fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext test "$ac_cv_c_inline" != no && break done fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_inline" >&5 $as_echo "$ac_cv_c_inline" >&6; } case $ac_cv_c_inline in inline | yes) ;; *) case $ac_cv_c_inline in no) ac_val=;; *) ac_val=$ac_cv_c_inline;; esac cat >>confdefs.h <<_ACEOF #ifndef __cplusplus #define inline $ac_val #endif _ACEOF ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether char is unsigned" >&5 $as_echo_n "checking whether char is unsigned... " >&6; } if ${ac_cv_c_char_unsigned+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $ac_includes_default int main () { static int test_array [1 - 2 * !(((char) -1) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_char_unsigned=no else ac_cv_c_char_unsigned=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_char_unsigned" >&5 $as_echo "$ac_cv_c_char_unsigned" >&6; } if test $ac_cv_c_char_unsigned = yes && test "$GCC" != yes; then $as_echo "#define __CHAR_UNSIGNED__ 1" >>confdefs.h fi GSL_CFLAGS="-I$includedir" GSL_LIBS="-L$libdir -lgsl" LIBM= case $host in *-*-beos* | *-*-cegcc* | *-*-cygwin* | *-*-haiku* | *-*-pw32* | *-*-darwin*) # These system don't have libm, or don't need it ;; *-ncr-sysv4.3*) { $as_echo "$as_me:${as_lineno-$LINENO}: checking for _mwvalidcheckl in -lmw" >&5 $as_echo_n "checking for _mwvalidcheckl in -lmw... " >&6; } if ${ac_cv_lib_mw__mwvalidcheckl+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lmw $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char _mwvalidcheckl (); int main () { return _mwvalidcheckl (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_mw__mwvalidcheckl=yes else ac_cv_lib_mw__mwvalidcheckl=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_mw__mwvalidcheckl" >&5 $as_echo "$ac_cv_lib_mw__mwvalidcheckl" >&6; } if test "x$ac_cv_lib_mw__mwvalidcheckl" = xyes; then : LIBM="-lmw" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for cos in -lm" >&5 $as_echo_n "checking for cos in -lm... " >&6; } if ${ac_cv_lib_m_cos+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lm $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char cos (); int main () { return cos (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_m_cos=yes else ac_cv_lib_m_cos=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_m_cos" >&5 $as_echo "$ac_cv_lib_m_cos" >&6; } if test "x$ac_cv_lib_m_cos" = xyes; then : LIBM="$LIBM -lm" fi ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: checking for cos in -lm" >&5 $as_echo_n "checking for cos in -lm... " >&6; } if ${ac_cv_lib_m_cos+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lm $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char cos (); int main () { return cos (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_m_cos=yes else ac_cv_lib_m_cos=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_m_cos" >&5 $as_echo "$ac_cv_lib_m_cos" >&6; } if test "x$ac_cv_lib_m_cos" = xyes; then : LIBM="-lm" fi ;; esac GSL_LIBM=$LIBM if test "$ac_cv_c_inline" != no ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU-style extern inline" >&5 $as_echo_n "checking for GNU-style extern inline... " >&6; } if ${ac_cv_c_extern_inline+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_extern_inline=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ extern $ac_cv_c_inline double foo(double x); extern $ac_cv_c_inline double foo(double x) { return x + 1.0 ; } ; double foo (double x) { return x + 1.0 ; }; int main () { foo(1.0) ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_extern_inline="yes" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_extern_inline" >&5 $as_echo "$ac_cv_c_extern_inline" >&6; } if test "$ac_cv_c_extern_inline" != no ; then $as_echo "#define HAVE_INLINE 1" >>confdefs.h else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C99-style inline" >&5 $as_echo_n "checking for C99-style inline... " >&6; } if ${ac_cv_c_c99inline+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_c99inline=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ extern inline void* foo() { foo(); return &foo ; }; int main () { return foo() != 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_c99inline="yes" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test "$ac_cv_c_c99inline" != no ; then cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ inline void* foo() { foo(); return &foo ; }; int main () { return foo() != 0 ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_cv_c_c99inline="no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_c99inline" >&5 $as_echo "$ac_cv_c_c99inline" >&6; } if test "$ac_cv_c_c99inline" != no ; then $as_echo "#define HAVE_INLINE 1" >>confdefs.h $as_echo "#define HAVE_C99_INLINE 1" >>confdefs.h fi fi fi for ac_header in ieeefp.h do : ac_fn_c_check_header_mongrel "$LINENO" "ieeefp.h" "ac_cv_header_ieeefp_h" "$ac_includes_default" if test "x$ac_cv_header_ieeefp_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_IEEEFP_H 1 _ACEOF fi done case "$host_os" in *mingw*) MINGW=true ;; esac if test "$MINGW" = "true"; then MINGW32_HOST_TRUE= MINGW32_HOST_FALSE='#' else MINGW32_HOST_TRUE='#' MINGW32_HOST_FALSE= fi for ac_func in vprintf do : ac_fn_c_check_func "$LINENO" "vprintf" "ac_cv_func_vprintf" if test "x$ac_cv_func_vprintf" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_VPRINTF 1 _ACEOF ac_fn_c_check_func "$LINENO" "_doprnt" "ac_cv_func__doprnt" if test "x$ac_cv_func__doprnt" = xyes; then : $as_echo "#define HAVE_DOPRNT 1" >>confdefs.h fi fi done ac_fn_c_check_func "$LINENO" "memcpy" "ac_cv_func_memcpy" if test "x$ac_cv_func_memcpy" = xyes; then : $as_echo "#define HAVE_MEMCPY 1" >>confdefs.h else case " $LIBOBJS " in *" memcpy.$ac_objext "* ) ;; *) LIBOBJS="$LIBOBJS memcpy.$ac_objext" ;; esac fi ac_fn_c_check_func "$LINENO" "memmove" "ac_cv_func_memmove" if test "x$ac_cv_func_memmove" = xyes; then : $as_echo "#define HAVE_MEMMOVE 1" >>confdefs.h else case " $LIBOBJS " in *" memmove.$ac_objext "* ) ;; *) LIBOBJS="$LIBOBJS memmove.$ac_objext" ;; esac fi ac_fn_c_check_func "$LINENO" "strdup" "ac_cv_func_strdup" if test "x$ac_cv_func_strdup" = xyes; then : $as_echo "#define HAVE_STRDUP 1" >>confdefs.h else case " $LIBOBJS " in *" strdup.$ac_objext "* ) ;; *) LIBOBJS="$LIBOBJS strdup.$ac_objext" ;; esac fi ac_fn_c_check_func "$LINENO" "strtol" "ac_cv_func_strtol" if test "x$ac_cv_func_strtol" = xyes; then : $as_echo "#define HAVE_STRTOL 1" >>confdefs.h else case " $LIBOBJS " in *" strtol.$ac_objext "* ) ;; *) LIBOBJS="$LIBOBJS strtol.$ac_objext" ;; esac fi ac_fn_c_check_func "$LINENO" "strtoul" "ac_cv_func_strtoul" if test "x$ac_cv_func_strtoul" = xyes; then : $as_echo "#define HAVE_STRTOUL 1" >>confdefs.h else case " $LIBOBJS " in *" strtoul.$ac_objext "* ) ;; *) LIBOBJS="$LIBOBJS strtoul.$ac_objext" ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for EXIT_SUCCESS and EXIT_FAILURE" >&5 $as_echo_n "checking for EXIT_SUCCESS and EXIT_FAILURE... " >&6; } if ${ac_cv_decl_exit_success_and_failure+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #ifdef EXIT_SUCCESS yes #endif _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "yes" >/dev/null 2>&1; then : ac_cv_decl_exit_success_and_failure=yes else ac_cv_decl_exit_success_and_failure=no fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_decl_exit_success_and_failure" >&5 $as_echo "$ac_cv_decl_exit_success_and_failure" >&6; } if test "$ac_cv_decl_exit_success_and_failure" = yes ; then $as_echo "#define HAVE_EXIT_SUCCESS_AND_FAILURE 1" >>confdefs.h fi ; if test "x$LIBS" = "x" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for cos in -lm" >&5 $as_echo_n "checking for cos in -lm... " >&6; } if ${ac_cv_lib_m_cos+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lm $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char cos (); int main () { return cos (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_m_cos=yes else ac_cv_lib_m_cos=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_m_cos" >&5 $as_echo "$ac_cv_lib_m_cos" >&6; } if test "x$ac_cv_lib_m_cos" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_LIBM 1 _ACEOF LIBS="-lm $LIBS" fi fi ac_fn_c_check_decl "$LINENO" "feenableexcept" "ac_cv_have_decl_feenableexcept" "#define _GNU_SOURCE 1 #include " if test "x$ac_cv_have_decl_feenableexcept" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FEENABLEEXCEPT $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "fesettrapenable" "ac_cv_have_decl_fesettrapenable" "#define _GNU_SOURCE 1 #include " if test "x$ac_cv_have_decl_fesettrapenable" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FESETTRAPENABLE $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "hypot" "ac_cv_have_decl_hypot" "#include " if test "x$ac_cv_have_decl_hypot" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_HYPOT $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "expm1" "ac_cv_have_decl_expm1" "#include " if test "x$ac_cv_have_decl_expm1" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_EXPM1 $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "acosh" "ac_cv_have_decl_acosh" "#include " if test "x$ac_cv_have_decl_acosh" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ACOSH $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "asinh" "ac_cv_have_decl_asinh" "#include " if test "x$ac_cv_have_decl_asinh" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ASINH $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "atanh" "ac_cv_have_decl_atanh" "#include " if test "x$ac_cv_have_decl_atanh" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ATANH $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "ldexp" "ac_cv_have_decl_ldexp" "#include " if test "x$ac_cv_have_decl_ldexp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_LDEXP $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "frexp" "ac_cv_have_decl_frexp" "#include " if test "x$ac_cv_have_decl_frexp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FREXP $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "fprnd_t" "ac_cv_have_decl_fprnd_t" "#include " if test "x$ac_cv_have_decl_fprnd_t" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FPRND_T $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "isinf" "ac_cv_have_decl_isinf" "#include " if test "x$ac_cv_have_decl_isinf" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ISINF $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "isfinite" "ac_cv_have_decl_isfinite" "#include " if test "x$ac_cv_have_decl_isfinite" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ISFINITE $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "finite" "ac_cv_have_decl_finite" "#include #if HAVE_IEEEFP_H #include #endif " if test "x$ac_cv_have_decl_finite" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FINITE $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "isnan" "ac_cv_have_decl_isnan" "#include " if test "x$ac_cv_have_decl_isnan" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_ISNAN $ac_have_decl _ACEOF case "$host" in *-*-*openbsd*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: avoiding OpenBSD system log1p - using gsl version" >&5 $as_echo "avoiding OpenBSD system log1p - using gsl version" >&6; } ;; *) ac_fn_c_check_decl "$LINENO" "log1p" "ac_cv_have_decl_log1p" "#include " if test "x$ac_cv_have_decl_log1p" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_LOG1P $ac_have_decl _ACEOF ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for long double stdio" >&5 $as_echo_n "checking for long double stdio... " >&6; } if ${ac_cv_func_printf_longdouble+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ac_cv_func_printf_longdouble="no" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include int main (void) { const char * s = "5678.25"; long double x = 1.234 ; fprintf(stderr,"%Lg\n",x) ; sscanf(s, "%Lg", &x); if (x == 5678.25) {exit (0);} else {exit(1); }; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ac_cv_func_printf_longdouble="yes" else ac_cv_func_printf_longdouble="no" fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_func_printf_longdouble" >&5 $as_echo "$ac_cv_func_printf_longdouble" >&6; } if test "$ac_cv_func_printf_longdouble" != no; then $as_echo "#define HAVE_PRINTF_LONGDOUBLE 1" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for extended floating point registers" >&5 $as_echo_n "checking for extended floating point registers... " >&6; } if ${ac_cv_c_extended_fp+:} false; then : $as_echo_n "(cached) " >&6 else case "$host" in *sparc*-*-*) ac_cv_c_extended_fp=no ;; *powerpc*-*-*) ac_cv_c_extended_fp=no ;; *hppa*-*-*) ac_cv_c_extended_fp=no ;; *alpha*-*-*) ac_cv_c_extended_fp=no ;; *68k*-*-*) ac_cv_c_extended_fp=yes ;; *86-*-*) ac_cv_c_extended_fp=yes ;; x86_64-*-*) ac_cv_c_extended_fp=yes ;; *) ac_cv_c_extended_fp=unknown ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_extended_fp" >&5 $as_echo "$ac_cv_c_extended_fp" >&6; } if test $ac_cv_c_extended_fp != "no" ; then $as_echo "#define HAVE_EXTENDED_PRECISION_REGISTERS 1" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for IEEE arithmetic interface type" >&5 $as_echo_n "checking for IEEE arithmetic interface type... " >&6; } if ${ac_cv_c_ieee_interface+:} false; then : $as_echo_n "(cached) " >&6 else case "$host" in sparc-*-linux*) ac_cv_c_ieee_interface=gnusparc ;; m68k-*-linux*) ac_cv_c_ieee_interface=gnum68k ;; powerpc-*-linux*) ac_cv_c_ieee_interface=gnuppc ;; *86-*-gnu | *86_64-*-gnu | *86-*-linux* | *86_64-*-linux*) ac_cv_c_ieee_interface=gnux86 ;; *-*-sunos4*) ac_cv_c_ieee_interface=sunos4 ;; *-*-solaris*) ac_cv_c_ieee_interface=solaris ;; *-*-hpux11*) ac_cv_c_ieee_interface=hpux11 ;; *-*-hpux*) ac_cv_c_ieee_interface=hpux ;; *-*-osf*) ac_cv_c_ieee_interface=tru64 ;; *-*-aix*) ac_cv_c_ieee_interface=aix ;; *-*-irix*) ac_cv_c_ieee_interface=irix ;; powerpc-*-*darwin*) ac_cv_c_ieee_interface=darwin ;; *86-*-*darwin*) ac_cv_c_ieee_interface=darwin86 ;; *-*-*netbsd*) ac_cv_c_ieee_interface=netbsd ;; *-*-*openbsd*) ac_cv_c_ieee_interface=openbsd ;; *-*-*bsd*) ac_cv_c_ieee_interface=freebsd ;; *-*-os2*) ac_cv_c_ieee_interface=os2emx ;; *) ac_cv_c_ieee_interface=unknown ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_ieee_interface" >&5 $as_echo "$ac_cv_c_ieee_interface" >&6; } if test "$ac_cv_c_ieee_interface" = "gnux86" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for FPU_SETCW" >&5 $as_echo_n "checking for FPU_SETCW... " >&6; } if ${ac_cv_c_fpu_setcw+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_fpu_setcw=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #ifndef _FPU_SETCW #include #define _FPU_SETCW(cw) __setfpucw(cw) #endif int main () { unsigned short mode = 0 ; _FPU_SETCW(mode); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_fpu_setcw="yes" else ac_cv_c_ieee_interface=unknown fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_fpu_setcw" >&5 $as_echo "$ac_cv_c_fpu_setcw" >&6; } fi if test "$ac_cv_c_ieee_interface" = "gnux86" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for SSE extensions" >&5 $as_echo_n "checking for SSE extensions... " >&6; } if ${ac_cv_c_fpu_sse+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_c_fpu_sse=no if test "$cross_compiling" = yes; then : cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (*&cw_sse)) int main () { unsigned int mode = 0x1f80 ; _FPU_SETMXCSR(mode); exit(0); ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_fpu_sse="yes" else ac_cv_c_fpu_sse="no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (*&cw_sse)) int main () { unsigned int mode = 0x1f80 ; _FPU_SETMXCSR(mode); exit(0); ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ac_cv_c_fpu_sse="yes" else ac_cv_c_fpu_sse="no" fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_fpu_sse" >&5 $as_echo "$ac_cv_c_fpu_sse" >&6; } if test $ac_cv_c_fpu_sse = yes; then $as_echo "#define HAVE_FPU_X86_SSE 1" >>confdefs.h fi fi ac_tr_ieee_interface=HAVE_`echo $ac_cv_c_ieee_interface | tr 'abcdefghijklmnopqrstuvwxyz' 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'`_IEEE_INTERFACE cat >>confdefs.h <<_ACEOF #define $ac_tr_ieee_interface 1 _ACEOF save_cflags="$CFLAGS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for IEEE compiler flags" >&5 $as_echo_n "checking for IEEE compiler flags... " >&6; } if ${ac_cv_c_ieee_flags+:} false; then : $as_echo_n "(cached) " >&6 else case "$host" in alpha*-*-*) if test X"$GCC" = Xyes ; then ieee_flags='-mieee -mfp-rounding-mode=d' else # This assumes Compaq's C compiler. ieee_flags='-ieee -fprm d' fi ;; esac if test X"$ieee_flags" != X ; then CFLAGS="$ieee_flags $CFLAGS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { int foo; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_c_ieee_flags="$ieee_flags" else ac_cv_c_ieee_flags="none" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext else ac_cv_c_ieee_flags="none" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_ieee_flags" >&5 $as_echo "$ac_cv_c_ieee_flags" >&6; } if test "$ac_cv_c_ieee_flags" != "none" ; then CFLAGS="$ac_cv_c_ieee_flags $save_cflags" else CFLAGS="$save_cflags" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for IEEE comparisons" >&5 $as_echo_n "checking for IEEE comparisons... " >&6; } if ${ac_cv_c_ieee_comparisons+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ac_cv_c_ieee_comparisons="yes" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main (void) { int status; double inf, nan; inf = exp(1.0e10); nan = inf / inf ; status = (nan == nan); exit (status); } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ac_cv_c_ieee_comparisons="yes" else ac_cv_c_ieee_comparisons="no" fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_ieee_comparisons" >&5 $as_echo "$ac_cv_c_ieee_comparisons" >&6; } if test "$ac_cv_c_ieee_comparisons" != no ; then $as_echo "#define HAVE_IEEE_COMPARISONS 1" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for IEEE denormalized values" >&5 $as_echo_n "checking for IEEE denormalized values... " >&6; } if ${ac_cv_c_ieee_denormals+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ac_cv_c_ieee_denormals="yes" else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main (void) { int i, status; volatile double z = 1e-308; for (i = 0; i < 5; i++) { z = z / 10.0 ; }; for (i = 0; i < 5; i++) { z = z * 10.0 ; }; status = (z == 0.0); exit (status); } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ac_cv_c_ieee_denormals="yes" else ac_cv_c_ieee_denormals="no" fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_ieee_denormals" >&5 $as_echo "$ac_cv_c_ieee_denormals" >&6; } if test "$ac_cv_c_ieee_denormals" != no ; then $as_echo "#define HAVE_IEEE_DENORMALS 1" >>confdefs.h fi ac_config_files="$ac_config_files gsl_version.h gsl.spec gsl/Makefile test/Makefile err/Makefile sys/Makefile utils/Makefile const/Makefile min/Makefile multimin/Makefile ieee-utils/Makefile fft/Makefile specfunc/Makefile dht/Makefile fit/Makefile multifit/Makefile bspline/Makefile statistics/Makefile sum/Makefile roots/Makefile multiroots/Makefile ntuple/Makefile poly/Makefile qrng/Makefile rng/Makefile randist/Makefile siman/Makefile integration/Makefile interpolation/Makefile doc/Makefile block/Makefile vector/Makefile matrix/Makefile histogram/Makefile monte/Makefile ode-initval/Makefile ode-initval2/Makefile cblas/Makefile blas/Makefile linalg/Makefile eigen/Makefile permutation/Makefile combination/Makefile multiset/Makefile sort/Makefile complex/Makefile diff/Makefile deriv/Makefile cheb/Makefile cdf/Makefile wavelet/Makefile Makefile" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then if test "x$cache_file" != "x/dev/null"; then { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} if test ! -f "$cache_file" || test -h "$cache_file"; then cat confcache >"$cache_file" else case $cache_file in #( */* | ?:*) mv -f confcache "$cache_file"$$ && mv -f "$cache_file"$$ "$cache_file" ;; #( *) mv -f confcache "$cache_file" ;; esac fi fi else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' DEFS=-DHAVE_CONFIG_H ac_libobjs= ac_ltlibobjs= U= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs { $as_echo "$as_me:${as_lineno-$LINENO}: checking that generated files are newer than configure" >&5 $as_echo_n "checking that generated files are newer than configure... " >&6; } if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: done" >&5 $as_echo "done" >&6; } if test -n "$EXEEXT"; then am__EXEEXT_TRUE= am__EXEEXT_FALSE='#' else am__EXEEXT_TRUE='#' am__EXEEXT_FALSE= fi if test -z "${MAINTAINER_MODE_TRUE}" && test -z "${MAINTAINER_MODE_FALSE}"; then as_fn_error $? "conditional \"MAINTAINER_MODE\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${AMDEP_TRUE}" && test -z "${AMDEP_FALSE}"; then as_fn_error $? "conditional \"AMDEP\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCC_TRUE}" && test -z "${am__fastdepCC_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${MINGW32_HOST_TRUE}" && test -z "${MINGW32_HOST_FALSE}"; then as_fn_error $? "conditional \"MINGW32_HOST\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi : "${CONFIG_STATUS=./config.status}" ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by gsl $as_me 1.16, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac case $ac_config_headers in *" "*) set x $ac_config_headers; shift; ac_config_headers=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" config_headers="$ac_config_headers" config_commands="$ac_config_commands" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE --header=FILE[:TEMPLATE] instantiate the configuration header FILE Configuration files: $config_files Configuration headers: $config_headers Configuration commands: $config_commands Report bugs to the package provider." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ gsl config.status 1.16 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' INSTALL='$INSTALL' MKDIR_P='$MKDIR_P' AWK='$AWK' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=?*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; --*=) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg= ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; '') as_fn_error $? "missing file argument" ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --header | --heade | --head | --hea ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; esac as_fn_append CONFIG_HEADERS " '$ac_optarg'" ac_need_defaults=false;; --he | --h) # Conflict between --help and --header as_fn_error $? "ambiguous option: \`$1' Try \`$0 --help' for more information.";; --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error $? "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # # INIT-COMMANDS # AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir" # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' macro_version='`$ECHO "$macro_version" | $SED "$delay_single_quote_subst"`' macro_revision='`$ECHO "$macro_revision" | $SED "$delay_single_quote_subst"`' enable_shared='`$ECHO "$enable_shared" | $SED "$delay_single_quote_subst"`' enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`' pic_mode='`$ECHO "$pic_mode" | $SED "$delay_single_quote_subst"`' enable_fast_install='`$ECHO "$enable_fast_install" | $SED "$delay_single_quote_subst"`' SHELL='`$ECHO "$SHELL" | $SED "$delay_single_quote_subst"`' ECHO='`$ECHO "$ECHO" | $SED "$delay_single_quote_subst"`' PATH_SEPARATOR='`$ECHO "$PATH_SEPARATOR" | $SED "$delay_single_quote_subst"`' host_alias='`$ECHO "$host_alias" | $SED "$delay_single_quote_subst"`' host='`$ECHO "$host" | $SED "$delay_single_quote_subst"`' host_os='`$ECHO "$host_os" | $SED "$delay_single_quote_subst"`' build_alias='`$ECHO "$build_alias" | $SED "$delay_single_quote_subst"`' build='`$ECHO "$build" | $SED "$delay_single_quote_subst"`' build_os='`$ECHO "$build_os" | $SED "$delay_single_quote_subst"`' SED='`$ECHO "$SED" | $SED "$delay_single_quote_subst"`' Xsed='`$ECHO "$Xsed" | $SED "$delay_single_quote_subst"`' GREP='`$ECHO "$GREP" | $SED "$delay_single_quote_subst"`' EGREP='`$ECHO "$EGREP" | $SED "$delay_single_quote_subst"`' FGREP='`$ECHO "$FGREP" | $SED "$delay_single_quote_subst"`' LD='`$ECHO "$LD" | $SED "$delay_single_quote_subst"`' NM='`$ECHO "$NM" | $SED "$delay_single_quote_subst"`' LN_S='`$ECHO "$LN_S" | $SED "$delay_single_quote_subst"`' max_cmd_len='`$ECHO "$max_cmd_len" | $SED "$delay_single_quote_subst"`' ac_objext='`$ECHO "$ac_objext" | $SED "$delay_single_quote_subst"`' exeext='`$ECHO "$exeext" | $SED "$delay_single_quote_subst"`' lt_unset='`$ECHO "$lt_unset" | $SED "$delay_single_quote_subst"`' lt_SP2NL='`$ECHO "$lt_SP2NL" | $SED "$delay_single_quote_subst"`' lt_NL2SP='`$ECHO "$lt_NL2SP" | $SED "$delay_single_quote_subst"`' lt_cv_to_host_file_cmd='`$ECHO "$lt_cv_to_host_file_cmd" | $SED "$delay_single_quote_subst"`' lt_cv_to_tool_file_cmd='`$ECHO "$lt_cv_to_tool_file_cmd" | $SED "$delay_single_quote_subst"`' reload_flag='`$ECHO "$reload_flag" | $SED "$delay_single_quote_subst"`' reload_cmds='`$ECHO "$reload_cmds" | $SED "$delay_single_quote_subst"`' OBJDUMP='`$ECHO "$OBJDUMP" | $SED "$delay_single_quote_subst"`' deplibs_check_method='`$ECHO "$deplibs_check_method" | $SED "$delay_single_quote_subst"`' file_magic_cmd='`$ECHO "$file_magic_cmd" | $SED "$delay_single_quote_subst"`' file_magic_glob='`$ECHO "$file_magic_glob" | $SED "$delay_single_quote_subst"`' want_nocaseglob='`$ECHO "$want_nocaseglob" | $SED "$delay_single_quote_subst"`' DLLTOOL='`$ECHO "$DLLTOOL" | $SED "$delay_single_quote_subst"`' sharedlib_from_linklib_cmd='`$ECHO "$sharedlib_from_linklib_cmd" | $SED "$delay_single_quote_subst"`' AR='`$ECHO "$AR" | $SED "$delay_single_quote_subst"`' AR_FLAGS='`$ECHO "$AR_FLAGS" | $SED "$delay_single_quote_subst"`' archiver_list_spec='`$ECHO "$archiver_list_spec" | $SED "$delay_single_quote_subst"`' STRIP='`$ECHO "$STRIP" | $SED "$delay_single_quote_subst"`' RANLIB='`$ECHO "$RANLIB" | $SED "$delay_single_quote_subst"`' old_postinstall_cmds='`$ECHO "$old_postinstall_cmds" | $SED "$delay_single_quote_subst"`' old_postuninstall_cmds='`$ECHO "$old_postuninstall_cmds" | $SED "$delay_single_quote_subst"`' old_archive_cmds='`$ECHO "$old_archive_cmds" | $SED "$delay_single_quote_subst"`' lock_old_archive_extraction='`$ECHO "$lock_old_archive_extraction" | $SED "$delay_single_quote_subst"`' CC='`$ECHO "$CC" | $SED "$delay_single_quote_subst"`' CFLAGS='`$ECHO "$CFLAGS" | $SED "$delay_single_quote_subst"`' compiler='`$ECHO "$compiler" | $SED "$delay_single_quote_subst"`' GCC='`$ECHO "$GCC" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_pipe='`$ECHO "$lt_cv_sys_global_symbol_pipe" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_cdecl='`$ECHO "$lt_cv_sys_global_symbol_to_cdecl" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address_lib_prefix='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address_lib_prefix" | $SED "$delay_single_quote_subst"`' nm_file_list_spec='`$ECHO "$nm_file_list_spec" | $SED "$delay_single_quote_subst"`' lt_sysroot='`$ECHO "$lt_sysroot" | $SED "$delay_single_quote_subst"`' objdir='`$ECHO "$objdir" | $SED "$delay_single_quote_subst"`' MAGIC_CMD='`$ECHO "$MAGIC_CMD" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_no_builtin_flag='`$ECHO "$lt_prog_compiler_no_builtin_flag" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_pic='`$ECHO "$lt_prog_compiler_pic" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_wl='`$ECHO "$lt_prog_compiler_wl" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_static='`$ECHO "$lt_prog_compiler_static" | $SED "$delay_single_quote_subst"`' lt_cv_prog_compiler_c_o='`$ECHO "$lt_cv_prog_compiler_c_o" | $SED "$delay_single_quote_subst"`' need_locks='`$ECHO "$need_locks" | $SED "$delay_single_quote_subst"`' MANIFEST_TOOL='`$ECHO "$MANIFEST_TOOL" | $SED "$delay_single_quote_subst"`' DSYMUTIL='`$ECHO "$DSYMUTIL" | $SED "$delay_single_quote_subst"`' NMEDIT='`$ECHO "$NMEDIT" | $SED "$delay_single_quote_subst"`' LIPO='`$ECHO "$LIPO" | $SED "$delay_single_quote_subst"`' OTOOL='`$ECHO "$OTOOL" | $SED "$delay_single_quote_subst"`' OTOOL64='`$ECHO "$OTOOL64" | $SED "$delay_single_quote_subst"`' libext='`$ECHO "$libext" | $SED "$delay_single_quote_subst"`' shrext_cmds='`$ECHO "$shrext_cmds" | $SED "$delay_single_quote_subst"`' extract_expsyms_cmds='`$ECHO "$extract_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds_need_lc='`$ECHO "$archive_cmds_need_lc" | $SED "$delay_single_quote_subst"`' enable_shared_with_static_runtimes='`$ECHO "$enable_shared_with_static_runtimes" | $SED "$delay_single_quote_subst"`' export_dynamic_flag_spec='`$ECHO "$export_dynamic_flag_spec" | $SED "$delay_single_quote_subst"`' whole_archive_flag_spec='`$ECHO "$whole_archive_flag_spec" | $SED "$delay_single_quote_subst"`' compiler_needs_object='`$ECHO "$compiler_needs_object" | $SED "$delay_single_quote_subst"`' old_archive_from_new_cmds='`$ECHO "$old_archive_from_new_cmds" | $SED "$delay_single_quote_subst"`' old_archive_from_expsyms_cmds='`$ECHO "$old_archive_from_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds='`$ECHO "$archive_cmds" | $SED "$delay_single_quote_subst"`' archive_expsym_cmds='`$ECHO "$archive_expsym_cmds" | $SED "$delay_single_quote_subst"`' module_cmds='`$ECHO "$module_cmds" | $SED "$delay_single_quote_subst"`' module_expsym_cmds='`$ECHO "$module_expsym_cmds" | $SED "$delay_single_quote_subst"`' with_gnu_ld='`$ECHO "$with_gnu_ld" | $SED "$delay_single_quote_subst"`' allow_undefined_flag='`$ECHO "$allow_undefined_flag" | $SED "$delay_single_quote_subst"`' no_undefined_flag='`$ECHO "$no_undefined_flag" | $SED "$delay_single_quote_subst"`' hardcode_libdir_flag_spec='`$ECHO "$hardcode_libdir_flag_spec" | $SED "$delay_single_quote_subst"`' hardcode_libdir_separator='`$ECHO "$hardcode_libdir_separator" | $SED "$delay_single_quote_subst"`' hardcode_direct='`$ECHO "$hardcode_direct" | $SED "$delay_single_quote_subst"`' hardcode_direct_absolute='`$ECHO "$hardcode_direct_absolute" | $SED "$delay_single_quote_subst"`' hardcode_minus_L='`$ECHO "$hardcode_minus_L" | $SED "$delay_single_quote_subst"`' hardcode_shlibpath_var='`$ECHO "$hardcode_shlibpath_var" | $SED "$delay_single_quote_subst"`' hardcode_automatic='`$ECHO "$hardcode_automatic" | $SED "$delay_single_quote_subst"`' inherit_rpath='`$ECHO "$inherit_rpath" | $SED "$delay_single_quote_subst"`' link_all_deplibs='`$ECHO "$link_all_deplibs" | $SED "$delay_single_quote_subst"`' always_export_symbols='`$ECHO "$always_export_symbols" | $SED "$delay_single_quote_subst"`' export_symbols_cmds='`$ECHO "$export_symbols_cmds" | $SED "$delay_single_quote_subst"`' exclude_expsyms='`$ECHO "$exclude_expsyms" | $SED "$delay_single_quote_subst"`' include_expsyms='`$ECHO "$include_expsyms" | $SED "$delay_single_quote_subst"`' prelink_cmds='`$ECHO "$prelink_cmds" | $SED "$delay_single_quote_subst"`' postlink_cmds='`$ECHO "$postlink_cmds" | $SED "$delay_single_quote_subst"`' file_list_spec='`$ECHO "$file_list_spec" | $SED "$delay_single_quote_subst"`' variables_saved_for_relink='`$ECHO "$variables_saved_for_relink" | $SED "$delay_single_quote_subst"`' need_lib_prefix='`$ECHO "$need_lib_prefix" | $SED "$delay_single_quote_subst"`' need_version='`$ECHO "$need_version" | $SED "$delay_single_quote_subst"`' version_type='`$ECHO "$version_type" | $SED "$delay_single_quote_subst"`' runpath_var='`$ECHO "$runpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_var='`$ECHO "$shlibpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_overrides_runpath='`$ECHO "$shlibpath_overrides_runpath" | $SED "$delay_single_quote_subst"`' libname_spec='`$ECHO "$libname_spec" | $SED "$delay_single_quote_subst"`' library_names_spec='`$ECHO "$library_names_spec" | $SED "$delay_single_quote_subst"`' soname_spec='`$ECHO "$soname_spec" | $SED "$delay_single_quote_subst"`' install_override_mode='`$ECHO "$install_override_mode" | $SED "$delay_single_quote_subst"`' postinstall_cmds='`$ECHO "$postinstall_cmds" | $SED "$delay_single_quote_subst"`' postuninstall_cmds='`$ECHO "$postuninstall_cmds" | $SED "$delay_single_quote_subst"`' finish_cmds='`$ECHO "$finish_cmds" | $SED "$delay_single_quote_subst"`' finish_eval='`$ECHO "$finish_eval" | $SED "$delay_single_quote_subst"`' hardcode_into_libs='`$ECHO "$hardcode_into_libs" | $SED "$delay_single_quote_subst"`' sys_lib_search_path_spec='`$ECHO "$sys_lib_search_path_spec" | $SED "$delay_single_quote_subst"`' sys_lib_dlsearch_path_spec='`$ECHO "$sys_lib_dlsearch_path_spec" | $SED "$delay_single_quote_subst"`' hardcode_action='`$ECHO "$hardcode_action" | $SED "$delay_single_quote_subst"`' enable_dlopen='`$ECHO "$enable_dlopen" | $SED "$delay_single_quote_subst"`' enable_dlopen_self='`$ECHO "$enable_dlopen_self" | $SED "$delay_single_quote_subst"`' enable_dlopen_self_static='`$ECHO "$enable_dlopen_self_static" | $SED "$delay_single_quote_subst"`' old_striplib='`$ECHO "$old_striplib" | $SED "$delay_single_quote_subst"`' striplib='`$ECHO "$striplib" | $SED "$delay_single_quote_subst"`' LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } # Quote evaled strings. for var in SHELL \ ECHO \ PATH_SEPARATOR \ SED \ GREP \ EGREP \ FGREP \ LD \ NM \ LN_S \ lt_SP2NL \ lt_NL2SP \ reload_flag \ OBJDUMP \ deplibs_check_method \ file_magic_cmd \ file_magic_glob \ want_nocaseglob \ DLLTOOL \ sharedlib_from_linklib_cmd \ AR \ AR_FLAGS \ archiver_list_spec \ STRIP \ RANLIB \ CC \ CFLAGS \ compiler \ lt_cv_sys_global_symbol_pipe \ lt_cv_sys_global_symbol_to_cdecl \ lt_cv_sys_global_symbol_to_c_name_address \ lt_cv_sys_global_symbol_to_c_name_address_lib_prefix \ nm_file_list_spec \ lt_prog_compiler_no_builtin_flag \ lt_prog_compiler_pic \ lt_prog_compiler_wl \ lt_prog_compiler_static \ lt_cv_prog_compiler_c_o \ need_locks \ MANIFEST_TOOL \ DSYMUTIL \ NMEDIT \ LIPO \ OTOOL \ OTOOL64 \ shrext_cmds \ export_dynamic_flag_spec \ whole_archive_flag_spec \ compiler_needs_object \ with_gnu_ld \ allow_undefined_flag \ no_undefined_flag \ hardcode_libdir_flag_spec \ hardcode_libdir_separator \ exclude_expsyms \ include_expsyms \ file_list_spec \ variables_saved_for_relink \ libname_spec \ library_names_spec \ soname_spec \ install_override_mode \ finish_eval \ old_striplib \ striplib; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in reload_cmds \ old_postinstall_cmds \ old_postuninstall_cmds \ old_archive_cmds \ extract_expsyms_cmds \ old_archive_from_new_cmds \ old_archive_from_expsyms_cmds \ archive_cmds \ archive_expsym_cmds \ module_cmds \ module_expsym_cmds \ export_symbols_cmds \ prelink_cmds \ postlink_cmds \ postinstall_cmds \ postuninstall_cmds \ finish_cmds \ sys_lib_search_path_spec \ sys_lib_dlsearch_path_spec; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done ac_aux_dir='$ac_aux_dir' xsi_shell='$xsi_shell' lt_shell_append='$lt_shell_append' # See if we are running on zsh, and set the options which allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi PACKAGE='$PACKAGE' VERSION='$VERSION' TIMESTAMP='$TIMESTAMP' RM='$RM' ofile='$ofile' _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "config.h") CONFIG_HEADERS="$CONFIG_HEADERS config.h" ;; "depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;; "libtool") CONFIG_COMMANDS="$CONFIG_COMMANDS libtool" ;; "gsl_version.h") CONFIG_FILES="$CONFIG_FILES gsl_version.h" ;; "gsl.spec") CONFIG_FILES="$CONFIG_FILES gsl.spec" ;; "gsl/Makefile") CONFIG_FILES="$CONFIG_FILES gsl/Makefile" ;; "test/Makefile") CONFIG_FILES="$CONFIG_FILES test/Makefile" ;; "err/Makefile") CONFIG_FILES="$CONFIG_FILES err/Makefile" ;; "sys/Makefile") CONFIG_FILES="$CONFIG_FILES sys/Makefile" ;; "utils/Makefile") CONFIG_FILES="$CONFIG_FILES utils/Makefile" ;; "const/Makefile") CONFIG_FILES="$CONFIG_FILES const/Makefile" ;; "min/Makefile") CONFIG_FILES="$CONFIG_FILES min/Makefile" ;; "multimin/Makefile") CONFIG_FILES="$CONFIG_FILES multimin/Makefile" ;; "ieee-utils/Makefile") CONFIG_FILES="$CONFIG_FILES ieee-utils/Makefile" ;; "fft/Makefile") CONFIG_FILES="$CONFIG_FILES fft/Makefile" ;; "specfunc/Makefile") CONFIG_FILES="$CONFIG_FILES specfunc/Makefile" ;; "dht/Makefile") CONFIG_FILES="$CONFIG_FILES dht/Makefile" ;; "fit/Makefile") CONFIG_FILES="$CONFIG_FILES fit/Makefile" ;; "multifit/Makefile") CONFIG_FILES="$CONFIG_FILES multifit/Makefile" ;; "bspline/Makefile") CONFIG_FILES="$CONFIG_FILES bspline/Makefile" ;; "statistics/Makefile") CONFIG_FILES="$CONFIG_FILES statistics/Makefile" ;; "sum/Makefile") CONFIG_FILES="$CONFIG_FILES sum/Makefile" ;; "roots/Makefile") CONFIG_FILES="$CONFIG_FILES roots/Makefile" ;; "multiroots/Makefile") CONFIG_FILES="$CONFIG_FILES multiroots/Makefile" ;; "ntuple/Makefile") CONFIG_FILES="$CONFIG_FILES ntuple/Makefile" ;; "poly/Makefile") CONFIG_FILES="$CONFIG_FILES poly/Makefile" ;; "qrng/Makefile") CONFIG_FILES="$CONFIG_FILES qrng/Makefile" ;; "rng/Makefile") CONFIG_FILES="$CONFIG_FILES rng/Makefile" ;; "randist/Makefile") CONFIG_FILES="$CONFIG_FILES randist/Makefile" ;; "siman/Makefile") CONFIG_FILES="$CONFIG_FILES siman/Makefile" ;; "integration/Makefile") CONFIG_FILES="$CONFIG_FILES integration/Makefile" ;; "interpolation/Makefile") CONFIG_FILES="$CONFIG_FILES interpolation/Makefile" ;; "doc/Makefile") CONFIG_FILES="$CONFIG_FILES doc/Makefile" ;; "block/Makefile") CONFIG_FILES="$CONFIG_FILES block/Makefile" ;; "vector/Makefile") CONFIG_FILES="$CONFIG_FILES vector/Makefile" ;; "matrix/Makefile") CONFIG_FILES="$CONFIG_FILES matrix/Makefile" ;; "histogram/Makefile") CONFIG_FILES="$CONFIG_FILES histogram/Makefile" ;; "monte/Makefile") CONFIG_FILES="$CONFIG_FILES monte/Makefile" ;; "ode-initval/Makefile") CONFIG_FILES="$CONFIG_FILES ode-initval/Makefile" ;; "ode-initval2/Makefile") CONFIG_FILES="$CONFIG_FILES ode-initval2/Makefile" ;; "cblas/Makefile") CONFIG_FILES="$CONFIG_FILES cblas/Makefile" ;; "blas/Makefile") CONFIG_FILES="$CONFIG_FILES blas/Makefile" ;; "linalg/Makefile") CONFIG_FILES="$CONFIG_FILES linalg/Makefile" ;; "eigen/Makefile") CONFIG_FILES="$CONFIG_FILES eigen/Makefile" ;; "permutation/Makefile") CONFIG_FILES="$CONFIG_FILES permutation/Makefile" ;; "combination/Makefile") CONFIG_FILES="$CONFIG_FILES combination/Makefile" ;; "multiset/Makefile") CONFIG_FILES="$CONFIG_FILES multiset/Makefile" ;; "sort/Makefile") CONFIG_FILES="$CONFIG_FILES sort/Makefile" ;; "complex/Makefile") CONFIG_FILES="$CONFIG_FILES complex/Makefile" ;; "diff/Makefile") CONFIG_FILES="$CONFIG_FILES diff/Makefile" ;; "deriv/Makefile") CONFIG_FILES="$CONFIG_FILES deriv/Makefile" ;; "cheb/Makefile") CONFIG_FILES="$CONFIG_FILES cheb/Makefile" ;; "cdf/Makefile") CONFIG_FILES="$CONFIG_FILES cdf/Makefile" ;; "wavelet/Makefile") CONFIG_FILES="$CONFIG_FILES wavelet/Makefile" ;; "Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= ac_tmp= trap 'exit_status=$? : "${ac_tmp:=$tmp}" { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5 ac_tmp=$tmp # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$ac_tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$ac_tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \ || as_fn_error $? "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove sole $(srcdir), # ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{ h s/// s/^/:/ s/[ ]*$/:/ s/:\$(srcdir):/:/g s/:\${srcdir}:/:/g s/:@srcdir@:/:/g s/^:*// s/:*$// x s/\(=[ ]*\).*/\1/ G s/\n// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" # Set up the scripts for CONFIG_HEADERS section. # No need to generate them if there are no CONFIG_HEADERS. # This happens for instance with `./config.status Makefile'. if test -n "$CONFIG_HEADERS"; then cat >"$ac_tmp/defines.awk" <<\_ACAWK || BEGIN { _ACEOF # Transform confdefs.h into an awk script `defines.awk', embedded as # here-document in config.status, that substitutes the proper values into # config.h.in to produce config.h. # Create a delimiter string that does not exist in confdefs.h, to ease # handling of long lines. ac_delim='%!_!# ' for ac_last_try in false false :; do ac_tt=`sed -n "/$ac_delim/p" confdefs.h` if test -z "$ac_tt"; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done # For the awk script, D is an array of macro values keyed by name, # likewise P contains macro parameters if any. Preserve backslash # newline sequences. ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]* sed -n ' s/.\{148\}/&'"$ac_delim"'/g t rset :rset s/^[ ]*#[ ]*define[ ][ ]*/ / t def d :def s/\\$// t bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3"/p s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2"/p d :bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3\\\\\\n"\\/p t cont s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p t cont d :cont n s/.\{148\}/&'"$ac_delim"'/g t clear :clear s/\\$// t bsnlc s/["\\]/\\&/g; s/^/"/; s/$/"/p d :bsnlc s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p b cont ' >$CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 for (key in D) D_is_set[key] = 1 FS = "" } /^[\t ]*#[\t ]*(define|undef)[\t ]+$ac_word_re([\t (]|\$)/ { line = \$ 0 split(line, arg, " ") if (arg[1] == "#") { defundef = arg[2] mac1 = arg[3] } else { defundef = substr(arg[1], 2) mac1 = arg[2] } split(mac1, mac2, "(") #) macro = mac2[1] prefix = substr(line, 1, index(line, defundef) - 1) if (D_is_set[macro]) { # Preserve the white space surrounding the "#". print prefix "define", macro P[macro] D[macro] next } else { # Replace #undef with comments. This is necessary, for example, # in the case of _POSIX_SOURCE, which is predefined and required # on some systems where configure will not decide to define it. if (defundef == "undef") { print "/*", prefix defundef, macro, "*/" next } } } { print } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5 fi # test -n "$CONFIG_HEADERS" eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS" shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$ac_tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$ac_tmp/stdin" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # case $INSTALL in [\\/$]* | ?:[\\/]* ) ac_INSTALL=$INSTALL ;; *) ac_INSTALL=$ac_top_build_prefix$INSTALL ;; esac ac_MKDIR_P=$MKDIR_P case $MKDIR_P in [\\/$]* | ?:[\\/]* ) ;; */*) ac_MKDIR_P=$ac_top_build_prefix$MKDIR_P ;; esac _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t s&@INSTALL@&$ac_INSTALL&;t t s&@MKDIR_P@&$ac_MKDIR_P&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \ >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \ "$ac_tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&2;} rm -f "$ac_tmp/stdin" case $ac_file in -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";; *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";; esac \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; :H) # # CONFIG_HEADER # if test x"$ac_file" != x-; then { $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" } >"$ac_tmp/config.h" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5 $as_echo "$as_me: $ac_file is unchanged" >&6;} else rm -f "$ac_file" mv "$ac_tmp/config.h" "$ac_file" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 fi else $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \ || as_fn_error $? "could not create -" "$LINENO" 5 fi # Compute "$ac_file"'s index in $config_headers. _am_arg="$ac_file" _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`$as_dirname -- "$_am_arg" || $as_expr X"$_am_arg" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$_am_arg" : 'X\(//\)[^/]' \| \ X"$_am_arg" : 'X\(//\)$' \| \ X"$_am_arg" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$_am_arg" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'`/stamp-h$_am_stamp_count ;; :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5 $as_echo "$as_me: executing $ac_file commands" >&6;} ;; esac case $ac_file$ac_mode in "depfiles":C) test x"$AMDEP_TRUE" != x"" || { # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`$as_dirname -- "$mf" || $as_expr X"$mf" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$mf" : 'X\(//\)[^/]' \| \ X"$mf" : 'X\(//\)$' \| \ X"$mf" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$mf" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`$as_dirname -- "$file" || $as_expr X"$file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$file" : 'X\(//\)[^/]' \| \ X"$file" : 'X\(//\)$' \| \ X"$file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir=$dirpart/$fdir; as_fn_mkdir_p # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ;; "libtool":C) # See if we are running on zsh, and set the options which allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi cfgfile="${ofile}T" trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # `$ECHO "$ofile" | sed 's%^.*/%%'` - Provide generalized library-building support services. # Generated automatically by $as_me ($PACKAGE$TIMESTAMP) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # 2006, 2007, 2008, 2009, 2010, 2011 Free Software # Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is part of GNU Libtool. # # GNU Libtool is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Libtool; see the file COPYING. If not, a copy # can be downloaded from http://www.gnu.org/licenses/gpl.html, or # obtained by writing to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # The names of the tagged configurations supported by this script. available_tags="" # ### BEGIN LIBTOOL CONFIG # Which release of libtool.m4 was used? macro_version=$macro_version macro_revision=$macro_revision # Whether or not to build shared libraries. build_libtool_libs=$enable_shared # Whether or not to build static libraries. build_old_libs=$enable_static # What type of objects to build. pic_mode=$pic_mode # Whether or not to optimize for fast installation. fast_install=$enable_fast_install # Shell to use when invoking shell scripts. SHELL=$lt_SHELL # An echo program that protects backslashes. ECHO=$lt_ECHO # The PATH separator for the build system. PATH_SEPARATOR=$lt_PATH_SEPARATOR # The host system. host_alias=$host_alias host=$host host_os=$host_os # The build system. build_alias=$build_alias build=$build build_os=$build_os # A sed program that does not truncate output. SED=$lt_SED # Sed that helps us avoid accidentally triggering echo(1) options like -n. Xsed="\$SED -e 1s/^X//" # A grep program that handles long lines. GREP=$lt_GREP # An ERE matcher. EGREP=$lt_EGREP # A literal string matcher. FGREP=$lt_FGREP # A BSD- or MS-compatible name lister. NM=$lt_NM # Whether we need soft or hard links. LN_S=$lt_LN_S # What is the maximum length of a command? max_cmd_len=$max_cmd_len # Object file suffix (normally "o"). objext=$ac_objext # Executable file suffix (normally ""). exeext=$exeext # whether the shell understands "unset". lt_unset=$lt_unset # turn spaces into newlines. SP2NL=$lt_lt_SP2NL # turn newlines into spaces. NL2SP=$lt_lt_NL2SP # convert \$build file names to \$host format. to_host_file_cmd=$lt_cv_to_host_file_cmd # convert \$build files to toolchain format. to_tool_file_cmd=$lt_cv_to_tool_file_cmd # An object symbol dumper. OBJDUMP=$lt_OBJDUMP # Method to check whether dependent libraries are shared objects. deplibs_check_method=$lt_deplibs_check_method # Command to use when deplibs_check_method = "file_magic". file_magic_cmd=$lt_file_magic_cmd # How to find potential files when deplibs_check_method = "file_magic". file_magic_glob=$lt_file_magic_glob # Find potential files using nocaseglob when deplibs_check_method = "file_magic". want_nocaseglob=$lt_want_nocaseglob # DLL creation program. DLLTOOL=$lt_DLLTOOL # Command to associate shared and link libraries. sharedlib_from_linklib_cmd=$lt_sharedlib_from_linklib_cmd # The archiver. AR=$lt_AR # Flags to create an archive. AR_FLAGS=$lt_AR_FLAGS # How to feed a file listing to the archiver. archiver_list_spec=$lt_archiver_list_spec # A symbol stripping program. STRIP=$lt_STRIP # Commands used to install an old-style archive. RANLIB=$lt_RANLIB old_postinstall_cmds=$lt_old_postinstall_cmds old_postuninstall_cmds=$lt_old_postuninstall_cmds # Whether to use a lock for old archive extraction. lock_old_archive_extraction=$lock_old_archive_extraction # A C compiler. LTCC=$lt_CC # LTCC compiler flags. LTCFLAGS=$lt_CFLAGS # Take the output of nm and produce a listing of raw symbols and C names. global_symbol_pipe=$lt_lt_cv_sys_global_symbol_pipe # Transform the output of nm in a proper C declaration. global_symbol_to_cdecl=$lt_lt_cv_sys_global_symbol_to_cdecl # Transform the output of nm in a C name address pair. global_symbol_to_c_name_address=$lt_lt_cv_sys_global_symbol_to_c_name_address # Transform the output of nm in a C name address pair when lib prefix is needed. global_symbol_to_c_name_address_lib_prefix=$lt_lt_cv_sys_global_symbol_to_c_name_address_lib_prefix # Specify filename containing input files for \$NM. nm_file_list_spec=$lt_nm_file_list_spec # The root where to search for dependent libraries,and in which our libraries should be installed. lt_sysroot=$lt_sysroot # The name of the directory that contains temporary libtool files. objdir=$objdir # Used to examine libraries when file_magic_cmd begins with "file". MAGIC_CMD=$MAGIC_CMD # Must we lock files when doing compilation? need_locks=$lt_need_locks # Manifest tool. MANIFEST_TOOL=$lt_MANIFEST_TOOL # Tool to manipulate archived DWARF debug symbol files on Mac OS X. DSYMUTIL=$lt_DSYMUTIL # Tool to change global to local symbols on Mac OS X. NMEDIT=$lt_NMEDIT # Tool to manipulate fat objects and archives on Mac OS X. LIPO=$lt_LIPO # ldd/readelf like tool for Mach-O binaries on Mac OS X. OTOOL=$lt_OTOOL # ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4. OTOOL64=$lt_OTOOL64 # Old archive suffix (normally "a"). libext=$libext # Shared library suffix (normally ".so"). shrext_cmds=$lt_shrext_cmds # The commands to extract the exported symbol list from a shared archive. extract_expsyms_cmds=$lt_extract_expsyms_cmds # Variables whose values should be saved in libtool wrapper scripts and # restored at link time. variables_saved_for_relink=$lt_variables_saved_for_relink # Do we need the "lib" prefix for modules? need_lib_prefix=$need_lib_prefix # Do we need a version for libraries? need_version=$need_version # Library versioning type. version_type=$version_type # Shared library runtime path variable. runpath_var=$runpath_var # Shared library path variable. shlibpath_var=$shlibpath_var # Is shlibpath searched before the hard-coded library search path? shlibpath_overrides_runpath=$shlibpath_overrides_runpath # Format of library name prefix. libname_spec=$lt_libname_spec # List of archive names. First name is the real one, the rest are links. # The last name is the one that the linker finds with -lNAME library_names_spec=$lt_library_names_spec # The coded name of the library, if different from the real name. soname_spec=$lt_soname_spec # Permission mode override for installation of shared libraries. install_override_mode=$lt_install_override_mode # Command to use after installation of a shared archive. postinstall_cmds=$lt_postinstall_cmds # Command to use after uninstallation of a shared archive. postuninstall_cmds=$lt_postuninstall_cmds # Commands used to finish a libtool library installation in a directory. finish_cmds=$lt_finish_cmds # As "finish_cmds", except a single script fragment to be evaled but # not shown. finish_eval=$lt_finish_eval # Whether we should hardcode library paths into libraries. hardcode_into_libs=$hardcode_into_libs # Compile-time system search path for libraries. sys_lib_search_path_spec=$lt_sys_lib_search_path_spec # Run-time system search path for libraries. sys_lib_dlsearch_path_spec=$lt_sys_lib_dlsearch_path_spec # Whether dlopen is supported. dlopen_support=$enable_dlopen # Whether dlopen of programs is supported. dlopen_self=$enable_dlopen_self # Whether dlopen of statically linked programs is supported. dlopen_self_static=$enable_dlopen_self_static # Commands to strip libraries. old_striplib=$lt_old_striplib striplib=$lt_striplib # The linker used to build libraries. LD=$lt_LD # How to create reloadable object files. reload_flag=$lt_reload_flag reload_cmds=$lt_reload_cmds # Commands used to build an old-style archive. old_archive_cmds=$lt_old_archive_cmds # A language specific compiler. CC=$lt_compiler # Is the compiler the GNU compiler? with_gcc=$GCC # Compiler flag to turn off builtin functions. no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag # Additional compiler flags for building library objects. pic_flag=$lt_lt_prog_compiler_pic # How to pass a linker flag through the compiler. wl=$lt_lt_prog_compiler_wl # Compiler flag to prevent dynamic linking. link_static_flag=$lt_lt_prog_compiler_static # Does compiler simultaneously support -c and -o options? compiler_c_o=$lt_lt_cv_prog_compiler_c_o # Whether or not to add -lc for building shared libraries. build_libtool_need_lc=$archive_cmds_need_lc # Whether or not to disallow shared libs when runtime libs are static. allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes # Compiler flag to allow reflexive dlopens. export_dynamic_flag_spec=$lt_export_dynamic_flag_spec # Compiler flag to generate shared objects directly from archives. whole_archive_flag_spec=$lt_whole_archive_flag_spec # Whether the compiler copes with passing no objects directly. compiler_needs_object=$lt_compiler_needs_object # Create an old-style archive from a shared archive. old_archive_from_new_cmds=$lt_old_archive_from_new_cmds # Create a temporary old-style archive to link instead of a shared archive. old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds # Commands used to build a shared archive. archive_cmds=$lt_archive_cmds archive_expsym_cmds=$lt_archive_expsym_cmds # Commands used to build a loadable module if different from building # a shared archive. module_cmds=$lt_module_cmds module_expsym_cmds=$lt_module_expsym_cmds # Whether we are building with GNU ld or not. with_gnu_ld=$lt_with_gnu_ld # Flag that allows shared libraries with undefined symbols to be built. allow_undefined_flag=$lt_allow_undefined_flag # Flag that enforces no undefined symbols. no_undefined_flag=$lt_no_undefined_flag # Flag to hardcode \$libdir into a binary during linking. # This must work even if \$libdir does not exist hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec # Whether we need a single "-rpath" flag with a separated argument. hardcode_libdir_separator=$lt_hardcode_libdir_separator # Set to "yes" if using DIR/libNAME\${shared_ext} during linking hardcodes # DIR into the resulting binary. hardcode_direct=$hardcode_direct # Set to "yes" if using DIR/libNAME\${shared_ext} during linking hardcodes # DIR into the resulting binary and the resulting library dependency is # "absolute",i.e impossible to change by setting \${shlibpath_var} if the # library is relocated. hardcode_direct_absolute=$hardcode_direct_absolute # Set to "yes" if using the -LDIR flag during linking hardcodes DIR # into the resulting binary. hardcode_minus_L=$hardcode_minus_L # Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR # into the resulting binary. hardcode_shlibpath_var=$hardcode_shlibpath_var # Set to "yes" if building a shared library automatically hardcodes DIR # into the library and all subsequent libraries and executables linked # against it. hardcode_automatic=$hardcode_automatic # Set to yes if linker adds runtime paths of dependent libraries # to runtime path list. inherit_rpath=$inherit_rpath # Whether libtool must link a program against all its dependency libraries. link_all_deplibs=$link_all_deplibs # Set to "yes" if exported symbols are required. always_export_symbols=$always_export_symbols # The commands to list exported symbols. export_symbols_cmds=$lt_export_symbols_cmds # Symbols that should not be listed in the preloaded symbols. exclude_expsyms=$lt_exclude_expsyms # Symbols that must always be exported. include_expsyms=$lt_include_expsyms # Commands necessary for linking programs (against libraries) with templates. prelink_cmds=$lt_prelink_cmds # Commands necessary for finishing linking programs. postlink_cmds=$lt_postlink_cmds # Specify filename containing input files. file_list_spec=$lt_file_list_spec # How to hardcode a shared library path into an executable. hardcode_action=$hardcode_action # ### END LIBTOOL CONFIG _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test "X${COLLECT_NAMES+set}" != Xset; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac ltmain="$ac_aux_dir/ltmain.sh" # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) if test x"$xsi_shell" = xyes; then sed -e '/^func_dirname ()$/,/^} # func_dirname /c\ func_dirname ()\ {\ \ case ${1} in\ \ */*) func_dirname_result="${1%/*}${2}" ;;\ \ * ) func_dirname_result="${3}" ;;\ \ esac\ } # Extended-shell func_dirname implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_basename ()$/,/^} # func_basename /c\ func_basename ()\ {\ \ func_basename_result="${1##*/}"\ } # Extended-shell func_basename implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_dirname_and_basename ()$/,/^} # func_dirname_and_basename /c\ func_dirname_and_basename ()\ {\ \ case ${1} in\ \ */*) func_dirname_result="${1%/*}${2}" ;;\ \ * ) func_dirname_result="${3}" ;;\ \ esac\ \ func_basename_result="${1##*/}"\ } # Extended-shell func_dirname_and_basename implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_stripname ()$/,/^} # func_stripname /c\ func_stripname ()\ {\ \ # pdksh 5.2.14 does not do ${X%$Y} correctly if both X and Y are\ \ # positional parameters, so assign one to ordinary parameter first.\ \ func_stripname_result=${3}\ \ func_stripname_result=${func_stripname_result#"${1}"}\ \ func_stripname_result=${func_stripname_result%"${2}"}\ } # Extended-shell func_stripname implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_split_long_opt ()$/,/^} # func_split_long_opt /c\ func_split_long_opt ()\ {\ \ func_split_long_opt_name=${1%%=*}\ \ func_split_long_opt_arg=${1#*=}\ } # Extended-shell func_split_long_opt implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_split_short_opt ()$/,/^} # func_split_short_opt /c\ func_split_short_opt ()\ {\ \ func_split_short_opt_arg=${1#??}\ \ func_split_short_opt_name=${1%"$func_split_short_opt_arg"}\ } # Extended-shell func_split_short_opt implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_lo2o ()$/,/^} # func_lo2o /c\ func_lo2o ()\ {\ \ case ${1} in\ \ *.lo) func_lo2o_result=${1%.lo}.${objext} ;;\ \ *) func_lo2o_result=${1} ;;\ \ esac\ } # Extended-shell func_lo2o implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_xform ()$/,/^} # func_xform /c\ func_xform ()\ {\ func_xform_result=${1%.*}.lo\ } # Extended-shell func_xform implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_arith ()$/,/^} # func_arith /c\ func_arith ()\ {\ func_arith_result=$(( $* ))\ } # Extended-shell func_arith implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_len ()$/,/^} # func_len /c\ func_len ()\ {\ func_len_result=${#1}\ } # Extended-shell func_len implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: fi if test x"$lt_shell_append" = xyes; then sed -e '/^func_append ()$/,/^} # func_append /c\ func_append ()\ {\ eval "${1}+=\\${2}"\ } # Extended-shell func_append implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: sed -e '/^func_append_quoted ()$/,/^} # func_append_quoted /c\ func_append_quoted ()\ {\ \ func_quote_for_eval "${2}"\ \ eval "${1}+=\\\\ \\$func_quote_for_eval_result"\ } # Extended-shell func_append_quoted implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: # Save a `func_append' function call where possible by direct use of '+=' sed -e 's%func_append \([a-zA-Z_]\{1,\}\) "%\1+="%g' $cfgfile > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: else # Save a `func_append' function call even when '+=' is not available sed -e 's%func_append \([a-zA-Z_]\{1,\}\) "%\1="$\1%g' $cfgfile > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: fi if test x"$_lt_function_replace_fail" = x":"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Unable to substitute extended shell functions in $ofile" >&5 $as_echo "$as_me: WARNING: Unable to substitute extended shell functions in $ofile" >&2;} fi mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5 # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit 1 fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi gsl-1.16/config.sub0000755000252300025230000010530112172014010011114 00000000000000#! /bin/sh # Configuration validation subroutine script. # Copyright 1992-2013 Free Software Foundation, Inc. timestamp='2013-04-24' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # Please send patches with a ChangeLog entry to config-patches@gnu.org. # # Configuration subroutine to validate and canonicalize a configuration type. # Supply the specified configuration type as an argument. # If it is invalid, we print an error message on stderr and exit with code 1. # Otherwise, we print the canonical config type on stdout and succeed. # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD # This file is supposed to be the same for all GNU packages # and recognize all the CPU types, system types and aliases # that are meaningful with *any* GNU software. # Each package is responsible for reporting which valid configurations # it does not support. The user should be able to distinguish # a failure to support a valid configuration from a meaningless # configuration. # The goal of this file is to map all the various variations of a given # machine specification into a single specification in the form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM # or in some cases, the newer four-part form: # CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM # It is wrong to echo any other type of specification. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] CPU-MFR-OPSYS $0 [OPTION] ALIAS Canonicalize a configuration name. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.sub ($timestamp) Copyright 1992-2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" exit 1 ;; *local*) # First pass through any local machine types. echo $1 exit ;; * ) break ;; esac done case $# in 0) echo "$me: missing argument$help" >&2 exit 1;; 1) ;; *) echo "$me: too many arguments$help" >&2 exit 1;; esac # Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any). # Here we must recognize all the valid KERNEL-OS combinations. maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'` case $maybe_os in nto-qnx* | linux-gnu* | linux-android* | linux-dietlibc | linux-newlib* | \ linux-musl* | linux-uclibc* | uclinux-uclibc* | uclinux-gnu* | kfreebsd*-gnu* | \ knetbsd*-gnu* | netbsd*-gnu* | \ kopensolaris*-gnu* | \ storm-chaos* | os2-emx* | rtmk-nova*) os=-$maybe_os basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'` ;; android-linux) os=-linux-android basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`-unknown ;; *) basic_machine=`echo $1 | sed 's/-[^-]*$//'` if [ $basic_machine != $1 ] then os=`echo $1 | sed 's/.*-/-/'` else os=; fi ;; esac ### Let's recognize common machines as not being operating systems so ### that things like config.sub decstation-3100 work. We also ### recognize some manufacturers as not being operating systems, so we ### can provide default operating systems below. case $os in -sun*os*) # Prevent following clause from handling this invalid input. ;; -dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \ -att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \ -unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \ -convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\ -c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \ -harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \ -apple | -axis | -knuth | -cray | -microblaze*) os= basic_machine=$1 ;; -bluegene*) os=-cnk ;; -sim | -cisco | -oki | -wec | -winbond) os= basic_machine=$1 ;; -scout) ;; -wrs) os=-vxworks basic_machine=$1 ;; -chorusos*) os=-chorusos basic_machine=$1 ;; -chorusrdb) os=-chorusrdb basic_machine=$1 ;; -hiux*) os=-hiuxwe2 ;; -sco6) os=-sco5v6 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5) os=-sco3.2v5 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco4) os=-sco3.2v4 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2.[4-9]*) os=`echo $os | sed -e 's/sco3.2./sco3.2v/'` basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2v[4-9]*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5v6*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco*) os=-sco3.2v2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -udk*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -isc) os=-isc2.2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -clix*) basic_machine=clipper-intergraph ;; -isc*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -lynx*178) os=-lynxos178 ;; -lynx*5) os=-lynxos5 ;; -lynx*) os=-lynxos ;; -ptx*) basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'` ;; -windowsnt*) os=`echo $os | sed -e 's/windowsnt/winnt/'` ;; -psos*) os=-psos ;; -mint | -mint[0-9]*) basic_machine=m68k-atari os=-mint ;; esac # Decode aliases for certain CPU-COMPANY combinations. case $basic_machine in # Recognize the basic CPU types without company name. # Some are omitted here because they have special meanings below. 1750a | 580 \ | a29k \ | aarch64 | aarch64_be \ | alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \ | alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \ | am33_2.0 \ | arc | arceb \ | arm | arm[bl]e | arme[lb] | armv[2-8] | armv[3-8][lb] | armv7[arm] \ | avr | avr32 \ | be32 | be64 \ | bfin \ | c4x | clipper \ | d10v | d30v | dlx | dsp16xx \ | epiphany \ | fido | fr30 | frv \ | h8300 | h8500 | hppa | hppa1.[01] | hppa2.0 | hppa2.0[nw] | hppa64 \ | hexagon \ | i370 | i860 | i960 | ia64 \ | ip2k | iq2000 \ | le32 | le64 \ | lm32 \ | m32c | m32r | m32rle | m68000 | m68k | m88k \ | maxq | mb | microblaze | microblazeel | mcore | mep | metag \ | mips | mipsbe | mipseb | mipsel | mipsle \ | mips16 \ | mips64 | mips64el \ | mips64octeon | mips64octeonel \ | mips64orion | mips64orionel \ | mips64r5900 | mips64r5900el \ | mips64vr | mips64vrel \ | mips64vr4100 | mips64vr4100el \ | mips64vr4300 | mips64vr4300el \ | mips64vr5000 | mips64vr5000el \ | mips64vr5900 | mips64vr5900el \ | mipsisa32 | mipsisa32el \ | mipsisa32r2 | mipsisa32r2el \ | mipsisa64 | mipsisa64el \ | mipsisa64r2 | mipsisa64r2el \ | mipsisa64sb1 | mipsisa64sb1el \ | mipsisa64sr71k | mipsisa64sr71kel \ | mipsr5900 | mipsr5900el \ | mipstx39 | mipstx39el \ | mn10200 | mn10300 \ | moxie \ | mt \ | msp430 \ | nds32 | nds32le | nds32be \ | nios | nios2 | nios2eb | nios2el \ | ns16k | ns32k \ | open8 \ | or1k | or32 \ | pdp10 | pdp11 | pj | pjl \ | powerpc | powerpc64 | powerpc64le | powerpcle \ | pyramid \ | rl78 | rx \ | score \ | sh | sh[1234] | sh[24]a | sh[24]aeb | sh[23]e | sh[34]eb | sheb | shbe | shle | sh[1234]le | sh3ele \ | sh64 | sh64le \ | sparc | sparc64 | sparc64b | sparc64v | sparc86x | sparclet | sparclite \ | sparcv8 | sparcv9 | sparcv9b | sparcv9v \ | spu \ | tahoe | tic4x | tic54x | tic55x | tic6x | tic80 | tron \ | ubicom32 \ | v850 | v850e | v850e1 | v850e2 | v850es | v850e2v3 \ | we32k \ | x86 | xc16x | xstormy16 | xtensa \ | z8k | z80) basic_machine=$basic_machine-unknown ;; c54x) basic_machine=tic54x-unknown ;; c55x) basic_machine=tic55x-unknown ;; c6x) basic_machine=tic6x-unknown ;; m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | picochip) basic_machine=$basic_machine-unknown os=-none ;; m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | v70 | w65 | z8k) ;; ms1) basic_machine=mt-unknown ;; strongarm | thumb | xscale) basic_machine=arm-unknown ;; xgate) basic_machine=$basic_machine-unknown os=-none ;; xscaleeb) basic_machine=armeb-unknown ;; xscaleel) basic_machine=armel-unknown ;; # We use `pc' rather than `unknown' # because (1) that's what they normally are, and # (2) the word "unknown" tends to confuse beginning users. i*86 | x86_64) basic_machine=$basic_machine-pc ;; # Object if more than one company name word. *-*-*) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; # Recognize the basic CPU types with company name. 580-* \ | a29k-* \ | aarch64-* | aarch64_be-* \ | alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \ | alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \ | alphapca5[67]-* | alpha64pca5[67]-* | arc-* | arceb-* \ | arm-* | armbe-* | armle-* | armeb-* | armv*-* \ | avr-* | avr32-* \ | be32-* | be64-* \ | bfin-* | bs2000-* \ | c[123]* | c30-* | [cjt]90-* | c4x-* \ | clipper-* | craynv-* | cydra-* \ | d10v-* | d30v-* | dlx-* \ | elxsi-* \ | f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \ | h8300-* | h8500-* \ | hppa-* | hppa1.[01]-* | hppa2.0-* | hppa2.0[nw]-* | hppa64-* \ | hexagon-* \ | i*86-* | i860-* | i960-* | ia64-* \ | ip2k-* | iq2000-* \ | le32-* | le64-* \ | lm32-* \ | m32c-* | m32r-* | m32rle-* \ | m68000-* | m680[012346]0-* | m68360-* | m683?2-* | m68k-* \ | m88110-* | m88k-* | maxq-* | mcore-* | metag-* \ | microblaze-* | microblazeel-* \ | mips-* | mipsbe-* | mipseb-* | mipsel-* | mipsle-* \ | mips16-* \ | mips64-* | mips64el-* \ | mips64octeon-* | mips64octeonel-* \ | mips64orion-* | mips64orionel-* \ | mips64r5900-* | mips64r5900el-* \ | mips64vr-* | mips64vrel-* \ | mips64vr4100-* | mips64vr4100el-* \ | mips64vr4300-* | mips64vr4300el-* \ | mips64vr5000-* | mips64vr5000el-* \ | mips64vr5900-* | mips64vr5900el-* \ | mipsisa32-* | mipsisa32el-* \ | mipsisa32r2-* | mipsisa32r2el-* \ | mipsisa64-* | mipsisa64el-* \ | mipsisa64r2-* | mipsisa64r2el-* \ | mipsisa64sb1-* | mipsisa64sb1el-* \ | mipsisa64sr71k-* | mipsisa64sr71kel-* \ | mipsr5900-* | mipsr5900el-* \ | mipstx39-* | mipstx39el-* \ | mmix-* \ | mt-* \ | msp430-* \ | nds32-* | nds32le-* | nds32be-* \ | nios-* | nios2-* | nios2eb-* | nios2el-* \ | none-* | np1-* | ns16k-* | ns32k-* \ | open8-* \ | orion-* \ | pdp10-* | pdp11-* | pj-* | pjl-* | pn-* | power-* \ | powerpc-* | powerpc64-* | powerpc64le-* | powerpcle-* \ | pyramid-* \ | rl78-* | romp-* | rs6000-* | rx-* \ | sh-* | sh[1234]-* | sh[24]a-* | sh[24]aeb-* | sh[23]e-* | sh[34]eb-* | sheb-* | shbe-* \ | shle-* | sh[1234]le-* | sh3ele-* | sh64-* | sh64le-* \ | sparc-* | sparc64-* | sparc64b-* | sparc64v-* | sparc86x-* | sparclet-* \ | sparclite-* \ | sparcv8-* | sparcv9-* | sparcv9b-* | sparcv9v-* | sv1-* | sx?-* \ | tahoe-* \ | tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \ | tile*-* \ | tron-* \ | ubicom32-* \ | v850-* | v850e-* | v850e1-* | v850es-* | v850e2-* | v850e2v3-* \ | vax-* \ | we32k-* \ | x86-* | x86_64-* | xc16x-* | xps100-* \ | xstormy16-* | xtensa*-* \ | ymp-* \ | z8k-* | z80-*) ;; # Recognize the basic CPU types without company name, with glob match. xtensa*) basic_machine=$basic_machine-unknown ;; # Recognize the various machine names and aliases which stand # for a CPU type and a company and sometimes even an OS. 386bsd) basic_machine=i386-unknown os=-bsd ;; 3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc) basic_machine=m68000-att ;; 3b*) basic_machine=we32k-att ;; a29khif) basic_machine=a29k-amd os=-udi ;; abacus) basic_machine=abacus-unknown ;; adobe68k) basic_machine=m68010-adobe os=-scout ;; alliant | fx80) basic_machine=fx80-alliant ;; altos | altos3068) basic_machine=m68k-altos ;; am29k) basic_machine=a29k-none os=-bsd ;; amd64) basic_machine=x86_64-pc ;; amd64-*) basic_machine=x86_64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; amdahl) basic_machine=580-amdahl os=-sysv ;; amiga | amiga-*) basic_machine=m68k-unknown ;; amigaos | amigados) basic_machine=m68k-unknown os=-amigaos ;; amigaunix | amix) basic_machine=m68k-unknown os=-sysv4 ;; apollo68) basic_machine=m68k-apollo os=-sysv ;; apollo68bsd) basic_machine=m68k-apollo os=-bsd ;; aros) basic_machine=i386-pc os=-aros ;; aux) basic_machine=m68k-apple os=-aux ;; balance) basic_machine=ns32k-sequent os=-dynix ;; blackfin) basic_machine=bfin-unknown os=-linux ;; blackfin-*) basic_machine=bfin-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; bluegene*) basic_machine=powerpc-ibm os=-cnk ;; c54x-*) basic_machine=tic54x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c55x-*) basic_machine=tic55x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c6x-*) basic_machine=tic6x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c90) basic_machine=c90-cray os=-unicos ;; cegcc) basic_machine=arm-unknown os=-cegcc ;; convex-c1) basic_machine=c1-convex os=-bsd ;; convex-c2) basic_machine=c2-convex os=-bsd ;; convex-c32) basic_machine=c32-convex os=-bsd ;; convex-c34) basic_machine=c34-convex os=-bsd ;; convex-c38) basic_machine=c38-convex os=-bsd ;; cray | j90) basic_machine=j90-cray os=-unicos ;; craynv) basic_machine=craynv-cray os=-unicosmp ;; cr16 | cr16-*) basic_machine=cr16-unknown os=-elf ;; crds | unos) basic_machine=m68k-crds ;; crisv32 | crisv32-* | etraxfs*) basic_machine=crisv32-axis ;; cris | cris-* | etrax*) basic_machine=cris-axis ;; crx) basic_machine=crx-unknown os=-elf ;; da30 | da30-*) basic_machine=m68k-da30 ;; decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn) basic_machine=mips-dec ;; decsystem10* | dec10*) basic_machine=pdp10-dec os=-tops10 ;; decsystem20* | dec20*) basic_machine=pdp10-dec os=-tops20 ;; delta | 3300 | motorola-3300 | motorola-delta \ | 3300-motorola | delta-motorola) basic_machine=m68k-motorola ;; delta88) basic_machine=m88k-motorola os=-sysv3 ;; dicos) basic_machine=i686-pc os=-dicos ;; djgpp) basic_machine=i586-pc os=-msdosdjgpp ;; dpx20 | dpx20-*) basic_machine=rs6000-bull os=-bosx ;; dpx2* | dpx2*-bull) basic_machine=m68k-bull os=-sysv3 ;; ebmon29k) basic_machine=a29k-amd os=-ebmon ;; elxsi) basic_machine=elxsi-elxsi os=-bsd ;; encore | umax | mmax) basic_machine=ns32k-encore ;; es1800 | OSE68k | ose68k | ose | OSE) basic_machine=m68k-ericsson os=-ose ;; fx2800) basic_machine=i860-alliant ;; genix) basic_machine=ns32k-ns ;; gmicro) basic_machine=tron-gmicro os=-sysv ;; go32) basic_machine=i386-pc os=-go32 ;; h3050r* | hiux*) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; h8300hms) basic_machine=h8300-hitachi os=-hms ;; h8300xray) basic_machine=h8300-hitachi os=-xray ;; h8500hms) basic_machine=h8500-hitachi os=-hms ;; harris) basic_machine=m88k-harris os=-sysv3 ;; hp300-*) basic_machine=m68k-hp ;; hp300bsd) basic_machine=m68k-hp os=-bsd ;; hp300hpux) basic_machine=m68k-hp os=-hpux ;; hp3k9[0-9][0-9] | hp9[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k2[0-9][0-9] | hp9k31[0-9]) basic_machine=m68000-hp ;; hp9k3[2-9][0-9]) basic_machine=m68k-hp ;; hp9k6[0-9][0-9] | hp6[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k7[0-79][0-9] | hp7[0-79][0-9]) basic_machine=hppa1.1-hp ;; hp9k78[0-9] | hp78[0-9]) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[0-9][13679] | hp8[0-9][13679]) basic_machine=hppa1.1-hp ;; hp9k8[0-9][0-9] | hp8[0-9][0-9]) basic_machine=hppa1.0-hp ;; hppa-next) os=-nextstep3 ;; hppaosf) basic_machine=hppa1.1-hp os=-osf ;; hppro) basic_machine=hppa1.1-hp os=-proelf ;; i370-ibm* | ibm*) basic_machine=i370-ibm ;; i*86v32) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv32 ;; i*86v4*) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv4 ;; i*86v) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv ;; i*86sol2) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-solaris2 ;; i386mach) basic_machine=i386-mach os=-mach ;; i386-vsta | vsta) basic_machine=i386-unknown os=-vsta ;; iris | iris4d) basic_machine=mips-sgi case $os in -irix*) ;; *) os=-irix4 ;; esac ;; isi68 | isi) basic_machine=m68k-isi os=-sysv ;; m68knommu) basic_machine=m68k-unknown os=-linux ;; m68knommu-*) basic_machine=m68k-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; m88k-omron*) basic_machine=m88k-omron ;; magnum | m3230) basic_machine=mips-mips os=-sysv ;; merlin) basic_machine=ns32k-utek os=-sysv ;; microblaze*) basic_machine=microblaze-xilinx ;; mingw64) basic_machine=x86_64-pc os=-mingw64 ;; mingw32) basic_machine=i386-pc os=-mingw32 ;; mingw32ce) basic_machine=arm-unknown os=-mingw32ce ;; miniframe) basic_machine=m68000-convergent ;; *mint | -mint[0-9]* | *MiNT | *MiNT[0-9]*) basic_machine=m68k-atari os=-mint ;; mips3*-*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'` ;; mips3*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown ;; monitor) basic_machine=m68k-rom68k os=-coff ;; morphos) basic_machine=powerpc-unknown os=-morphos ;; msdos) basic_machine=i386-pc os=-msdos ;; ms1-*) basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'` ;; msys) basic_machine=i386-pc os=-msys ;; mvs) basic_machine=i370-ibm os=-mvs ;; nacl) basic_machine=le32-unknown os=-nacl ;; ncr3000) basic_machine=i486-ncr os=-sysv4 ;; netbsd386) basic_machine=i386-unknown os=-netbsd ;; netwinder) basic_machine=armv4l-rebel os=-linux ;; news | news700 | news800 | news900) basic_machine=m68k-sony os=-newsos ;; news1000) basic_machine=m68030-sony os=-newsos ;; news-3600 | risc-news) basic_machine=mips-sony os=-newsos ;; necv70) basic_machine=v70-nec os=-sysv ;; next | m*-next ) basic_machine=m68k-next case $os in -nextstep* ) ;; -ns2*) os=-nextstep2 ;; *) os=-nextstep3 ;; esac ;; nh3000) basic_machine=m68k-harris os=-cxux ;; nh[45]000) basic_machine=m88k-harris os=-cxux ;; nindy960) basic_machine=i960-intel os=-nindy ;; mon960) basic_machine=i960-intel os=-mon960 ;; nonstopux) basic_machine=mips-compaq os=-nonstopux ;; np1) basic_machine=np1-gould ;; neo-tandem) basic_machine=neo-tandem ;; nse-tandem) basic_machine=nse-tandem ;; nsr-tandem) basic_machine=nsr-tandem ;; op50n-* | op60c-*) basic_machine=hppa1.1-oki os=-proelf ;; openrisc | openrisc-*) basic_machine=or32-unknown ;; os400) basic_machine=powerpc-ibm os=-os400 ;; OSE68000 | ose68000) basic_machine=m68000-ericsson os=-ose ;; os68k) basic_machine=m68k-none os=-os68k ;; pa-hitachi) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; paragon) basic_machine=i860-intel os=-osf ;; parisc) basic_machine=hppa-unknown os=-linux ;; parisc-*) basic_machine=hppa-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; pbd) basic_machine=sparc-tti ;; pbb) basic_machine=m68k-tti ;; pc532 | pc532-*) basic_machine=ns32k-pc532 ;; pc98) basic_machine=i386-pc ;; pc98-*) basic_machine=i386-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium | p5 | k5 | k6 | nexgen | viac3) basic_machine=i586-pc ;; pentiumpro | p6 | 6x86 | athlon | athlon_*) basic_machine=i686-pc ;; pentiumii | pentium2 | pentiumiii | pentium3) basic_machine=i686-pc ;; pentium4) basic_machine=i786-pc ;; pentium-* | p5-* | k5-* | k6-* | nexgen-* | viac3-*) basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumpro-* | p6-* | 6x86-* | athlon-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumii-* | pentium2-* | pentiumiii-* | pentium3-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium4-*) basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pn) basic_machine=pn-gould ;; power) basic_machine=power-ibm ;; ppc | ppcbe) basic_machine=powerpc-unknown ;; ppc-* | ppcbe-*) basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppcle | powerpclittle | ppc-le | powerpc-little) basic_machine=powerpcle-unknown ;; ppcle-* | powerpclittle-*) basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64) basic_machine=powerpc64-unknown ;; ppc64-*) basic_machine=powerpc64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64le | powerpc64little | ppc64-le | powerpc64-little) basic_machine=powerpc64le-unknown ;; ppc64le-* | powerpc64little-*) basic_machine=powerpc64le-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ps2) basic_machine=i386-ibm ;; pw32) basic_machine=i586-unknown os=-pw32 ;; rdos | rdos64) basic_machine=x86_64-pc os=-rdos ;; rdos32) basic_machine=i386-pc os=-rdos ;; rom68k) basic_machine=m68k-rom68k os=-coff ;; rm[46]00) basic_machine=mips-siemens ;; rtpc | rtpc-*) basic_machine=romp-ibm ;; s390 | s390-*) basic_machine=s390-ibm ;; s390x | s390x-*) basic_machine=s390x-ibm ;; sa29200) basic_machine=a29k-amd os=-udi ;; sb1) basic_machine=mipsisa64sb1-unknown ;; sb1el) basic_machine=mipsisa64sb1el-unknown ;; sde) basic_machine=mipsisa32-sde os=-elf ;; sei) basic_machine=mips-sei os=-seiux ;; sequent) basic_machine=i386-sequent ;; sh) basic_machine=sh-hitachi os=-hms ;; sh5el) basic_machine=sh5le-unknown ;; sh64) basic_machine=sh64-unknown ;; sparclite-wrs | simso-wrs) basic_machine=sparclite-wrs os=-vxworks ;; sps7) basic_machine=m68k-bull os=-sysv2 ;; spur) basic_machine=spur-unknown ;; st2000) basic_machine=m68k-tandem ;; stratus) basic_machine=i860-stratus os=-sysv4 ;; strongarm-* | thumb-*) basic_machine=arm-`echo $basic_machine | sed 's/^[^-]*-//'` ;; sun2) basic_machine=m68000-sun ;; sun2os3) basic_machine=m68000-sun os=-sunos3 ;; sun2os4) basic_machine=m68000-sun os=-sunos4 ;; sun3os3) basic_machine=m68k-sun os=-sunos3 ;; sun3os4) basic_machine=m68k-sun os=-sunos4 ;; sun4os3) basic_machine=sparc-sun os=-sunos3 ;; sun4os4) basic_machine=sparc-sun os=-sunos4 ;; sun4sol2) basic_machine=sparc-sun os=-solaris2 ;; sun3 | sun3-*) basic_machine=m68k-sun ;; sun4) basic_machine=sparc-sun ;; sun386 | sun386i | roadrunner) basic_machine=i386-sun ;; sv1) basic_machine=sv1-cray os=-unicos ;; symmetry) basic_machine=i386-sequent os=-dynix ;; t3e) basic_machine=alphaev5-cray os=-unicos ;; t90) basic_machine=t90-cray os=-unicos ;; tile*) basic_machine=$basic_machine-unknown os=-linux-gnu ;; tx39) basic_machine=mipstx39-unknown ;; tx39el) basic_machine=mipstx39el-unknown ;; toad1) basic_machine=pdp10-xkl os=-tops20 ;; tower | tower-32) basic_machine=m68k-ncr ;; tpf) basic_machine=s390x-ibm os=-tpf ;; udi29k) basic_machine=a29k-amd os=-udi ;; ultra3) basic_machine=a29k-nyu os=-sym1 ;; v810 | necv810) basic_machine=v810-nec os=-none ;; vaxv) basic_machine=vax-dec os=-sysv ;; vms) basic_machine=vax-dec os=-vms ;; vpp*|vx|vx-*) basic_machine=f301-fujitsu ;; vxworks960) basic_machine=i960-wrs os=-vxworks ;; vxworks68) basic_machine=m68k-wrs os=-vxworks ;; vxworks29k) basic_machine=a29k-wrs os=-vxworks ;; w65*) basic_machine=w65-wdc os=-none ;; w89k-*) basic_machine=hppa1.1-winbond os=-proelf ;; xbox) basic_machine=i686-pc os=-mingw32 ;; xps | xps100) basic_machine=xps100-honeywell ;; xscale-* | xscalee[bl]-*) basic_machine=`echo $basic_machine | sed 's/^xscale/arm/'` ;; ymp) basic_machine=ymp-cray os=-unicos ;; z8k-*-coff) basic_machine=z8k-unknown os=-sim ;; z80-*-coff) basic_machine=z80-unknown os=-sim ;; none) basic_machine=none-none os=-none ;; # Here we handle the default manufacturer of certain CPU types. It is in # some cases the only manufacturer, in others, it is the most popular. w89k) basic_machine=hppa1.1-winbond ;; op50n) basic_machine=hppa1.1-oki ;; op60c) basic_machine=hppa1.1-oki ;; romp) basic_machine=romp-ibm ;; mmix) basic_machine=mmix-knuth ;; rs6000) basic_machine=rs6000-ibm ;; vax) basic_machine=vax-dec ;; pdp10) # there are many clones, so DEC is not a safe bet basic_machine=pdp10-unknown ;; pdp11) basic_machine=pdp11-dec ;; we32k) basic_machine=we32k-att ;; sh[1234] | sh[24]a | sh[24]aeb | sh[34]eb | sh[1234]le | sh[23]ele) basic_machine=sh-unknown ;; sparc | sparcv8 | sparcv9 | sparcv9b | sparcv9v) basic_machine=sparc-sun ;; cydra) basic_machine=cydra-cydrome ;; orion) basic_machine=orion-highlevel ;; orion105) basic_machine=clipper-highlevel ;; mac | mpw | mac-mpw) basic_machine=m68k-apple ;; pmac | pmac-mpw) basic_machine=powerpc-apple ;; *-unknown) # Make sure to match an already-canonicalized machine name. ;; *) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; esac # Here we canonicalize certain aliases for manufacturers. case $basic_machine in *-digital*) basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'` ;; *-commodore*) basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'` ;; *) ;; esac # Decode manufacturer-specific aliases for certain operating systems. if [ x"$os" != x"" ] then case $os in # First match some system type aliases # that might get confused with valid system types. # -solaris* is a basic system type, with this one exception. -auroraux) os=-auroraux ;; -solaris1 | -solaris1.*) os=`echo $os | sed -e 's|solaris1|sunos4|'` ;; -solaris) os=-solaris2 ;; -svr4*) os=-sysv4 ;; -unixware*) os=-sysv4.2uw ;; -gnu/linux*) os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'` ;; # First accept the basic system types. # The portable systems comes first. # Each alternative MUST END IN A *, to match a version number. # -sysv* is not here because it comes later, after sysvr4. -gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \ | -*vms* | -sco* | -esix* | -isc* | -aix* | -cnk* | -sunos | -sunos[34]*\ | -hpux* | -unos* | -osf* | -luna* | -dgux* | -auroraux* | -solaris* \ | -sym* | -kopensolaris* | -plan9* \ | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \ | -aos* | -aros* \ | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \ | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \ | -hiux* | -386bsd* | -knetbsd* | -mirbsd* | -netbsd* \ | -bitrig* | -openbsd* | -solidbsd* \ | -ekkobsd* | -kfreebsd* | -freebsd* | -riscix* | -lynxos* \ | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \ | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \ | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \ | -chorusos* | -chorusrdb* | -cegcc* \ | -cygwin* | -msys* | -pe* | -psos* | -moss* | -proelf* | -rtems* \ | -mingw32* | -mingw64* | -linux-gnu* | -linux-android* \ | -linux-newlib* | -linux-musl* | -linux-uclibc* \ | -uxpv* | -beos* | -mpeix* | -udk* \ | -interix* | -uwin* | -mks* | -rhapsody* | -darwin* | -opened* \ | -openstep* | -oskit* | -conix* | -pw32* | -nonstopux* \ | -storm-chaos* | -tops10* | -tenex* | -tops20* | -its* \ | -os2* | -vos* | -palmos* | -uclinux* | -nucleus* \ | -morphos* | -superux* | -rtmk* | -rtmk-nova* | -windiss* \ | -powermax* | -dnix* | -nx6 | -nx7 | -sei* | -dragonfly* \ | -skyos* | -haiku* | -rdos* | -toppers* | -drops* | -es*) # Remember, each alternative MUST END IN *, to match a version number. ;; -qnx*) case $basic_machine in x86-* | i*86-*) ;; *) os=-nto$os ;; esac ;; -nto-qnx*) ;; -nto*) os=`echo $os | sed -e 's|nto|nto-qnx|'` ;; -sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \ | -windows* | -osx | -abug | -netware* | -os9* | -beos* | -haiku* \ | -macos* | -mpw* | -magic* | -mmixware* | -mon960* | -lnews*) ;; -mac*) os=`echo $os | sed -e 's|mac|macos|'` ;; -linux-dietlibc) os=-linux-dietlibc ;; -linux*) os=`echo $os | sed -e 's|linux|linux-gnu|'` ;; -sunos5*) os=`echo $os | sed -e 's|sunos5|solaris2|'` ;; -sunos6*) os=`echo $os | sed -e 's|sunos6|solaris3|'` ;; -opened*) os=-openedition ;; -os400*) os=-os400 ;; -wince*) os=-wince ;; -osfrose*) os=-osfrose ;; -osf*) os=-osf ;; -utek*) os=-bsd ;; -dynix*) os=-bsd ;; -acis*) os=-aos ;; -atheos*) os=-atheos ;; -syllable*) os=-syllable ;; -386bsd) os=-bsd ;; -ctix* | -uts*) os=-sysv ;; -nova*) os=-rtmk-nova ;; -ns2 ) os=-nextstep2 ;; -nsk*) os=-nsk ;; # Preserve the version number of sinix5. -sinix5.*) os=`echo $os | sed -e 's|sinix|sysv|'` ;; -sinix*) os=-sysv4 ;; -tpf*) os=-tpf ;; -triton*) os=-sysv3 ;; -oss*) os=-sysv3 ;; -svr4) os=-sysv4 ;; -svr3) os=-sysv3 ;; -sysvr4) os=-sysv4 ;; # This must come after -sysvr4. -sysv*) ;; -ose*) os=-ose ;; -es1800*) os=-ose ;; -xenix) os=-xenix ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) os=-mint ;; -aros*) os=-aros ;; -zvmoe) os=-zvmoe ;; -dicos*) os=-dicos ;; -nacl*) ;; -none) ;; *) # Get rid of the `-' at the beginning of $os. os=`echo $os | sed 's/[^-]*-//'` echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2 exit 1 ;; esac else # Here we handle the default operating systems that come with various machines. # The value should be what the vendor currently ships out the door with their # machine or put another way, the most popular os provided with the machine. # Note that if you're going to try to match "-MANUFACTURER" here (say, # "-sun"), then you have to tell the case statement up towards the top # that MANUFACTURER isn't an operating system. Otherwise, code above # will signal an error saying that MANUFACTURER isn't an operating # system, and we'll never get to this point. case $basic_machine in score-*) os=-elf ;; spu-*) os=-elf ;; *-acorn) os=-riscix1.2 ;; arm*-rebel) os=-linux ;; arm*-semi) os=-aout ;; c4x-* | tic4x-*) os=-coff ;; hexagon-*) os=-elf ;; tic54x-*) os=-coff ;; tic55x-*) os=-coff ;; tic6x-*) os=-coff ;; # This must come before the *-dec entry. pdp10-*) os=-tops20 ;; pdp11-*) os=-none ;; *-dec | vax-*) os=-ultrix4.2 ;; m68*-apollo) os=-domain ;; i386-sun) os=-sunos4.0.2 ;; m68000-sun) os=-sunos3 ;; m68*-cisco) os=-aout ;; mep-*) os=-elf ;; mips*-cisco) os=-elf ;; mips*-*) os=-elf ;; or1k-*) os=-elf ;; or32-*) os=-coff ;; *-tti) # must be before sparc entry or we get the wrong os. os=-sysv3 ;; sparc-* | *-sun) os=-sunos4.1.1 ;; *-be) os=-beos ;; *-haiku) os=-haiku ;; *-ibm) os=-aix ;; *-knuth) os=-mmixware ;; *-wec) os=-proelf ;; *-winbond) os=-proelf ;; *-oki) os=-proelf ;; *-hp) os=-hpux ;; *-hitachi) os=-hiux ;; i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent) os=-sysv ;; *-cbm) os=-amigaos ;; *-dg) os=-dgux ;; *-dolphin) os=-sysv3 ;; m68k-ccur) os=-rtu ;; m88k-omron*) os=-luna ;; *-next ) os=-nextstep ;; *-sequent) os=-ptx ;; *-crds) os=-unos ;; *-ns) os=-genix ;; i370-*) os=-mvs ;; *-next) os=-nextstep3 ;; *-gould) os=-sysv ;; *-highlevel) os=-bsd ;; *-encore) os=-bsd ;; *-sgi) os=-irix ;; *-siemens) os=-sysv4 ;; *-masscomp) os=-rtu ;; f30[01]-fujitsu | f700-fujitsu) os=-uxpv ;; *-rom68k) os=-coff ;; *-*bug) os=-coff ;; *-apple) os=-macos ;; *-atari*) os=-mint ;; *) os=-none ;; esac fi # Here we handle the case where we know the os, and the CPU type, but not the # manufacturer. We pick the logical manufacturer. vendor=unknown case $basic_machine in *-unknown) case $os in -riscix*) vendor=acorn ;; -sunos*) vendor=sun ;; -cnk*|-aix*) vendor=ibm ;; -beos*) vendor=be ;; -hpux*) vendor=hp ;; -mpeix*) vendor=hp ;; -hiux*) vendor=hitachi ;; -unos*) vendor=crds ;; -dgux*) vendor=dg ;; -luna*) vendor=omron ;; -genix*) vendor=ns ;; -mvs* | -opened*) vendor=ibm ;; -os400*) vendor=ibm ;; -ptx*) vendor=sequent ;; -tpf*) vendor=ibm ;; -vxsim* | -vxworks* | -windiss*) vendor=wrs ;; -aux*) vendor=apple ;; -hms*) vendor=hitachi ;; -mpw* | -macos*) vendor=apple ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) vendor=atari ;; -vos*) vendor=stratus ;; esac basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"` ;; esac echo $basic_machine$os exit # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: gsl-1.16/gsl_pow_int.h0000664000252300025230000000437512171574312011660 00000000000000/* gsl_pow_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_POW_INT_H__ #define __GSL_POW_INT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS INLINE_DECL double gsl_pow_2(const double x); INLINE_DECL double gsl_pow_3(const double x); INLINE_DECL double gsl_pow_4(const double x); INLINE_DECL double gsl_pow_5(const double x); INLINE_DECL double gsl_pow_6(const double x); INLINE_DECL double gsl_pow_7(const double x); INLINE_DECL double gsl_pow_8(const double x); INLINE_DECL double gsl_pow_9(const double x); #ifdef HAVE_INLINE INLINE_FUN double gsl_pow_2(const double x) { return x*x; } INLINE_FUN double gsl_pow_3(const double x) { return x*x*x; } INLINE_FUN double gsl_pow_4(const double x) { double x2 = x*x; return x2*x2; } INLINE_FUN double gsl_pow_5(const double x) { double x2 = x*x; return x2*x2*x; } INLINE_FUN double gsl_pow_6(const double x) { double x2 = x*x; return x2*x2*x2; } INLINE_FUN double gsl_pow_7(const double x) { double x3 = x*x*x; return x3*x3*x; } INLINE_FUN double gsl_pow_8(const double x) { double x2 = x*x; double x4 = x2*x2; return x4*x4; } INLINE_FUN double gsl_pow_9(const double x) { double x3 = x*x*x; return x3*x3*x3; } #endif double gsl_pow_int(double x, int n); double gsl_pow_uint(double x, unsigned int n); __END_DECLS #endif /* __GSL_POW_INT_H__ */ gsl-1.16/pkgconfig.test0000775000252300025230000000036312171574312012027 00000000000000#!/bin/sh set -e # skip test if we have no pkg-config pkg-config --version >/dev/null 2>&1 || exit 77 PKG_CONFIG_PATH=. export PKG_CONFIG_PATH pkg-config --define-variable=GSL_CBLAS_LIB=-lfoo --libs gsl | grep 'lfoo' > /dev/null 2>&1 exit 0 gsl-1.16/cblas/0000775000252300025230000000000012172254157010321 500000000000000gsl-1.16/cblas/zscal.c0000664000252300025230000000032312171574312011514 00000000000000#include #include #include "cblas.h" void cblas_zscal (const int N, const void *alpha, void *X, const int incX) { #define BASE double #include "source_scal_c.h" #undef BASE } gsl-1.16/cblas/source_hemm.h0000664000252300025230000002050012171574312012712 00000000000000/* blas/source_hemm.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; int uplo, side; CHECK_ARGS13(HEMM,Order,Side,Uplo,M,N,alpha,A,lda,B,ldb,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (Order == CblasRowMajor) { n1 = M; n2 = N; uplo = Uplo; side = Side; } else { n1 = N; n2 = M; uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; side = (Side == CblasLeft) ? CblasRight : CblasLeft; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (side == CblasLeft && uplo == CblasUpper) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; { const BASE Aii_real = CONST_REAL(A, i * lda + i); /* const BASE Aii_imag = 0.0; */ REAL(C, i * ldc + j) += temp1_real * Aii_real; IMAG(C, i * ldc + j) += temp1_imag * Aii_real; } for (k = i + 1; k < n1; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bkj_real = CONST_REAL(B, ldb * k + j); const BASE Bkj_imag = CONST_IMAG(B, ldb * k + j); REAL(C, k * ldc + j) += Aik_real * temp1_real - (-Aik_imag) * temp1_imag; IMAG(C, k * ldc + j) += Aik_real * temp1_imag + (-Aik_imag) * temp1_real; temp2_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp2_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasLeft && uplo == CblasLower) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; for (k = 0; k < i; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bkj_real = CONST_REAL(B, ldb * k + j); const BASE Bkj_imag = CONST_IMAG(B, ldb * k + j); REAL(C, k * ldc + j) += Aik_real * temp1_real - (-Aik_imag) * temp1_imag; IMAG(C, k * ldc + j) += Aik_real * temp1_imag + (-Aik_imag) * temp1_real; temp2_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp2_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } { const BASE Aii_real = CONST_REAL(A, i * lda + i); /* const BASE Aii_imag = 0.0; */ REAL(C, i * ldc + j) += temp1_real * Aii_real; IMAG(C, i * ldc + j) += temp1_imag * Aii_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasRight && uplo == CblasUpper) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; { const BASE Ajj_real = CONST_REAL(A, j * lda + j); /* const BASE Ajj_imag = 0.0; */ REAL(C, i * ldc + j) += temp1_real * Ajj_real; IMAG(C, i * ldc + j) += temp1_imag * Ajj_real; } for (k = j + 1; k < n2; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bik_real = CONST_REAL(B, ldb * i + k); const BASE Bik_imag = CONST_IMAG(B, ldb * i + k); REAL(C, i * ldc + k) += temp1_real * Ajk_real - temp1_imag * Ajk_imag; IMAG(C, i * ldc + k) += temp1_real * Ajk_imag + temp1_imag * Ajk_real; temp2_real += Bik_real * Ajk_real - Bik_imag * (-Ajk_imag); temp2_imag += Bik_real * (-Ajk_imag) + Bik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasRight && uplo == CblasLower) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; for (k = 0; k < j; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bik_real = CONST_REAL(B, ldb * i + k); const BASE Bik_imag = CONST_IMAG(B, ldb * i + k); REAL(C, i * ldc + k) += temp1_real * Ajk_real - temp1_imag * Ajk_imag; IMAG(C, i * ldc + k) += temp1_real * Ajk_imag + temp1_imag * Ajk_real; temp2_real += Bik_real * Ajk_real - Bik_imag * (-Ajk_imag); temp2_imag += Bik_real * (-Ajk_imag) + Bik_imag * Ajk_real; } { const BASE Ajj_real = CONST_REAL(A, j * lda + j); /* const BASE Ajj_imag = 0.0; */ REAL(C, i * ldc + j) += temp1_real * Ajj_real; IMAG(C, i * ldc + j) += temp1_imag * Ajj_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/error_cblas.h0000664000252300025230000000617012171574312012710 00000000000000/* cblas/error_cblas.h * * Copyright (C) 2010 José Luis García Pallero * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __ERROR_CBLAS_H__ #define __ERROR_CBLAS_H__ #define CHECK_ARGS_X(FUNCTION,VAR,ARGS) do { int VAR = 0 ; \ CBLAS_ERROR_##FUNCTION ARGS ; \ if (VAR) cblas_xerbla(pos,__FILE__,""); } while (0) #define CHECK_ARGS7(FUNCTION,A1,A2,A3,A4,A5,A6,A7) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7)) #define CHECK_ARGS8(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8)) #define CHECK_ARGS9(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9)) #define CHECK_ARGS10(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10)) #define CHECK_ARGS11(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11)) #define CHECK_ARGS12(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12)) #define CHECK_ARGS13(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13)) #define CHECK_ARGS14(FUNCTION,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14) \ CHECK_ARGS_X(FUNCTION,pos,(pos,A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14)) /* check if CBLAS_ORDER is correct */ #define CHECK_ORDER(pos,posIfError,order) \ if(((order)!=CblasRowMajor)&&((order)!=CblasColMajor)) \ pos = posIfError; /* check if CBLAS_TRANSPOSE is correct */ #define CHECK_TRANSPOSE(pos,posIfError,Trans) \ if(((Trans)!=CblasNoTrans)&&((Trans)!=CblasTrans)&&((Trans)!=CblasConjTrans)) \ pos = posIfError; /* check if CBLAS_UPLO is correct */ #define CHECK_UPLO(pos,posIfError,Uplo) \ if(((Uplo)!=CblasUpper)&&((Uplo)!=CblasLower)) \ pos = posIfError; /* check if CBLAS_DIAG is correct */ #define CHECK_DIAG(pos,posIfError,Diag) \ if(((Diag)!=CblasNonUnit)&&((Diag)!=CblasUnit)) \ pos = posIfError; /* check if CBLAS_SIDE is correct */ #define CHECK_SIDE(pos,posIfError,Side) \ if(((Side)!=CblasLeft)&&((Side)!=CblasRight)) \ pos = posIfError; /* check if a dimension argument is correct */ #define CHECK_DIM(pos,posIfError,dim) \ if((dim)<0) \ pos = posIfError; /* check if a stride argument is correct */ #define CHECK_STRIDE(pos,posIfError,stride) \ if((stride)==0) \ pos = posIfError; #endif /* __ERROR_CBLAS_H__ */ gsl-1.16/cblas/ctbsv.c0000664000252300025230000000067212171574312011530 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ctbsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX) { #define BASE float #include "source_tbsv_c.h" #undef BASE } gsl-1.16/cblas/sspr.c0000664000252300025230000000051612171574312011373 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *Ap) { #define BASE float #include "source_spr.h" #undef BASE } gsl-1.16/cblas/test_syr2.c0000664000252300025230000000735112171574312012346 00000000000000#include #include #include #include #include "tests.h" void test_syr2 (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 1; int lda = 1; float alpha = 0.0f; float A[] = { 0.862f }; float X[] = { 0.823f }; int incX = -1; float Y[] = { 0.699f }; int incY = -1; float A_expected[] = { 0.862f }; cblas_ssyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr2(case 1434)"); } }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; float alpha = 0.0f; float A[] = { 0.862f }; float X[] = { 0.823f }; int incX = -1; float Y[] = { 0.699f }; int incY = -1; float A_expected[] = { 0.862f }; cblas_ssyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr2(case 1435)"); } }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; float alpha = 0.0f; float A[] = { 0.862f }; float X[] = { 0.823f }; int incX = -1; float Y[] = { 0.699f }; int incY = -1; float A_expected[] = { 0.862f }; cblas_ssyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr2(case 1436)"); } }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; float alpha = 0.0f; float A[] = { 0.862f }; float X[] = { 0.823f }; int incX = -1; float Y[] = { 0.699f }; int incY = -1; float A_expected[] = { 0.862f }; cblas_ssyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr2(case 1437)"); } }; }; { int order = 101; int uplo = 121; int N = 1; int lda = 1; double alpha = 0; double A[] = { -0.824 }; double X[] = { 0.684 }; int incX = -1; double Y[] = { 0.965 }; int incY = -1; double A_expected[] = { -0.824 }; cblas_dsyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr2(case 1438)"); } }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; double alpha = 0; double A[] = { -0.824 }; double X[] = { 0.684 }; int incX = -1; double Y[] = { 0.965 }; int incY = -1; double A_expected[] = { -0.824 }; cblas_dsyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr2(case 1439)"); } }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; double alpha = 0; double A[] = { -0.824 }; double X[] = { 0.684 }; int incX = -1; double Y[] = { 0.965 }; int incY = -1; double A_expected[] = { -0.824 }; cblas_dsyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr2(case 1440)"); } }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; double alpha = 0; double A[] = { -0.824 }; double X[] = { 0.684 }; int incX = -1; double Y[] = { 0.965 }; int incY = -1; double A_expected[] = { -0.824 }; cblas_dsyr2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr2(case 1441)"); } }; }; } gsl-1.16/cblas/stbsv.c0000664000252300025230000000065012171574312011544 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_stbsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX) { #define BASE float #include "source_tbsv_r.h" #undef BASE } gsl-1.16/cblas/test_spmv.c0000664000252300025230000002021112171574312012422 00000000000000#include #include #include #include #include "tests.h" void test_spmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1134)"); } }; }; { int order = 101; int uplo = 121; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1135)"); } }; }; { int order = 101; int uplo = 122; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1136)"); } }; }; { int order = 101; int uplo = 122; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1137)"); } }; }; { int order = 102; int uplo = 121; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1138)"); } }; }; { int order = 102; int uplo = 121; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1139)"); } }; }; { int order = 102; int uplo = 122; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1140)"); } }; }; { int order = 102; int uplo = 122; float alpha = 0.1f; float beta = -0.3f; int N = 2; float A[] = { -0.174f, 0.878f, 0.478f }; float X[] = { 0.503f, 0.313f }; int incX = -1; float Y[] = { -0.565f, -0.109f }; int incY = -1; float y_expected[] = { 0.221025f, 0.0714172f }; cblas_sspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sspmv(case 1141)"); } }; }; { int order = 101; int uplo = 121; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1142)"); } }; }; { int order = 101; int uplo = 121; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1143)"); } }; }; { int order = 101; int uplo = 122; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1144)"); } }; }; { int order = 101; int uplo = 122; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1145)"); } }; }; { int order = 102; int uplo = 121; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1146)"); } }; }; { int order = 102; int uplo = 121; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1147)"); } }; }; { int order = 102; int uplo = 122; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1148)"); } }; }; { int order = 102; int uplo = 122; double alpha = -1; double beta = 0.1; int N = 2; double A[] = { -0.181, -0.071, -0.038 }; double X[] = { -0.015, 0.132 }; int incX = -1; double Y[] = { -0.449, -0.219 }; int incY = -1; double y_expected[] = { -0.036098, 9.27e-04 }; cblas_dspmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dspmv(case 1149)"); } }; }; } gsl-1.16/cblas/dsbmv.c0000664000252300025230000000066212171574312011521 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dsbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY) { #define BASE double #include "source_sbmv.h" #undef BASE } gsl-1.16/cblas/scnrm2.c0000664000252300025230000000030712171574312011606 00000000000000#include #include #include "cblas.h" float cblas_scnrm2 (const int N, const void *X, const int incX) { #define BASE float #include "source_nrm2_c.h" #undef BASE } gsl-1.16/cblas/cdotc_sub.c0000664000252300025230000000045412171574312012352 00000000000000#include #include #include "cblas.h" void cblas_cdotc_sub (const int N, const void *X, const int incX, const void *Y, const int incY, void *result) { #define BASE float #define CONJ_SIGN (-1.0) #include "source_dot_c.h" #undef CONJ_SIGN #undef BASE } gsl-1.16/cblas/source_tpsv_c.h0000664000252300025230000002017612171574312013273 00000000000000/* blas/source_tpsv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); INDEX i, j; CHECK_ARGS8(TPSV,order,Uplo,TransA,Diag,N,Ap,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPUP(N, (N - 1), (N - 1))); const BASE a_imag = conj * CONST_IMAG(Ap, TPUP(N, (N - 1), (N - 1))); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); INDEX jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij_real = CONST_REAL(Ap, TPUP(N, i, j)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPUP(N, i, j)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPUP(N, i, i)); const BASE a_imag = conj * CONST_IMAG(Ap, TPUP(N, i, i)); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ INDEX ix = OFFSET(N, incX); if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPLO(N, 0, 0)); const BASE a_imag = conj * CONST_IMAG(Ap, TPLO(N, 0, 0)); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix += incX; for (i = 1; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij_real = CONST_REAL(Ap, TPLO(N, i, j)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPLO(N, i, j)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPLO(N, i, i)); const BASE a_imag = conj * CONST_IMAG(Ap, TPLO(N, i, i)); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ INDEX ix = OFFSET(N, incX); if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPUP(N, 0, 0)); const BASE a_imag = conj * CONST_IMAG(Ap, TPUP(N, 0, 0)); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix += incX; for (i = 1; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij_real = CONST_REAL(Ap, TPUP(N, j, i)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPUP(N, j, i)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPUP(N, i, i)); const BASE a_imag = conj * CONST_IMAG(Ap, TPUP(N, i, i)); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPLO(N, (N - 1), (N - 1))); const BASE a_imag = conj * CONST_IMAG(Ap, TPLO(N, (N - 1), (N - 1))); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); INDEX jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij_real = CONST_REAL(Ap, TPLO(N, j, i)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPLO(N, j, i)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(Ap, TPLO(N, i, i)); const BASE a_imag = conj * CONST_IMAG(Ap, TPLO(N, i, i)); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/test_rotg.c0000664000252300025230000013527712171574312012433 00000000000000#include #include #include #include #include "tests.h" void test_rotg (void) { const double flteps = 1e-4, dbleps = 1e-6; { float a = -1.5f; float b = -1.5f; float c; float s; float r_expected = -2.12132034356f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 166)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 167)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 168)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 169)"); }; { float a = -1.5f; float b = -1.0f; float c; float s; float r_expected = -1.80277563773f; float z_expected = 0.554700196225f; float c_expected = 0.832050294338f; float s_expected = 0.554700196225f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 170)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 171)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 172)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 173)"); }; { float a = -1.5f; float b = -0.1f; float c; float s; float r_expected = -1.50332963784f; float z_expected = 0.0665190105238f; float c_expected = 0.997785157857f; float s_expected = 0.0665190105238f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 174)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 175)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 176)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 177)"); }; { float a = -1.5f; float b = 0.0f; float c; float s; float r_expected = -1.5f; float z_expected = -0.0f; float c_expected = 1.0f; float s_expected = -0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 178)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 179)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 180)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 181)"); }; { float a = -1.5f; float b = 0.1f; float c; float s; float r_expected = -1.50332963784f; float z_expected = -0.0665190105238f; float c_expected = 0.997785157857f; float s_expected = -0.0665190105238f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 182)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 183)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 184)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 185)"); }; { float a = -1.5f; float b = 1.0f; float c; float s; float r_expected = -1.80277563773f; float z_expected = -0.554700196225f; float c_expected = 0.832050294338f; float s_expected = -0.554700196225f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 186)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 187)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 188)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 189)"); }; { float a = -1.5f; float b = 1.5f; float c; float s; float r_expected = 2.12132034356f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 190)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 191)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 192)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 193)"); }; { float a = -1.0f; float b = -1.5f; float c; float s; float r_expected = -1.80277563773f; float z_expected = 1.80277563773f; float c_expected = 0.554700196225f; float s_expected = 0.832050294338f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 194)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 195)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 196)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 197)"); }; { float a = -1.0f; float b = -1.0f; float c; float s; float r_expected = -1.41421356237f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 198)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 199)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 200)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 201)"); }; { float a = -1.0f; float b = -0.1f; float c; float s; float r_expected = -1.00498756211f; float z_expected = 0.099503719021f; float c_expected = 0.99503719021f; float s_expected = 0.099503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 202)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 203)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 204)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 205)"); }; { float a = -1.0f; float b = 0.0f; float c; float s; float r_expected = -1.0f; float z_expected = -0.0f; float c_expected = 1.0f; float s_expected = -0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 206)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 207)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 208)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 209)"); }; { float a = -1.0f; float b = 0.1f; float c; float s; float r_expected = -1.00498756211f; float z_expected = -0.099503719021f; float c_expected = 0.99503719021f; float s_expected = -0.099503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 210)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 211)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 212)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 213)"); }; { float a = -1.0f; float b = 1.0f; float c; float s; float r_expected = 1.41421356237f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 214)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 215)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 216)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 217)"); }; { float a = -1.0f; float b = 1.5f; float c; float s; float r_expected = 1.80277563773f; float z_expected = -1.80277563773f; float c_expected = -0.554700196225f; float s_expected = 0.832050294338f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 218)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 219)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 220)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 221)"); }; { float a = -0.1f; float b = -1.5f; float c; float s; float r_expected = -1.50332963784f; float z_expected = 15.0332963784f; float c_expected = 0.0665190105238f; float s_expected = 0.997785157857f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 222)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 223)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 224)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 225)"); }; { float a = -0.1f; float b = -1.0f; float c; float s; float r_expected = -1.00498756211f; float z_expected = 10.0498756211f; float c_expected = 0.099503719021f; float s_expected = 0.99503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 226)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 227)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 228)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 229)"); }; { float a = -0.1f; float b = -0.1f; float c; float s; float r_expected = -0.141421356237f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 230)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 231)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 232)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 233)"); }; { float a = -0.1f; float b = 0.0f; float c; float s; float r_expected = -0.1f; float z_expected = -0.0f; float c_expected = 1.0f; float s_expected = -0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 234)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 235)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 236)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 237)"); }; { float a = -0.1f; float b = 0.1f; float c; float s; float r_expected = 0.141421356237f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 238)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 239)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 240)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 241)"); }; { float a = -0.1f; float b = 1.0f; float c; float s; float r_expected = 1.00498756211f; float z_expected = -10.0498756211f; float c_expected = -0.099503719021f; float s_expected = 0.99503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 242)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 243)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 244)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 245)"); }; { float a = -0.1f; float b = 1.5f; float c; float s; float r_expected = 1.50332963784f; float z_expected = -15.0332963784f; float c_expected = -0.0665190105238f; float s_expected = 0.997785157857f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 246)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 247)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 248)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 249)"); }; { float a = 0.0f; float b = -1.5f; float c; float s; float r_expected = -1.5f; float z_expected = 1.0f; float c_expected = -0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 250)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 251)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 252)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 253)"); }; { float a = 0.0f; float b = -1.0f; float c; float s; float r_expected = -1.0f; float z_expected = 1.0f; float c_expected = -0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 254)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 255)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 256)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 257)"); }; { float a = 0.0f; float b = -0.1f; float c; float s; float r_expected = -0.1f; float z_expected = 1.0f; float c_expected = -0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 258)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 259)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 260)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 261)"); }; { float a = 0.0f; float b = 0.0f; float c; float s; float r_expected = 0.0f; float z_expected = 0.0f; float c_expected = 1.0f; float s_expected = 0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 262)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 263)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 264)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 265)"); }; { float a = 0.0f; float b = 0.1f; float c; float s; float r_expected = 0.1f; float z_expected = 1.0f; float c_expected = 0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 266)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 267)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 268)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 269)"); }; { float a = 0.0f; float b = 1.0f; float c; float s; float r_expected = 1.0f; float z_expected = 1.0f; float c_expected = 0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 270)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 271)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 272)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 273)"); }; { float a = 0.0f; float b = 1.5f; float c; float s; float r_expected = 1.5f; float z_expected = 1.0f; float c_expected = 0.0f; float s_expected = 1.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 274)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 275)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 276)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 277)"); }; { float a = 0.1f; float b = -1.5f; float c; float s; float r_expected = -1.50332963784f; float z_expected = -15.0332963784f; float c_expected = -0.0665190105238f; float s_expected = 0.997785157857f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 278)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 279)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 280)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 281)"); }; { float a = 0.1f; float b = -1.0f; float c; float s; float r_expected = -1.00498756211f; float z_expected = -10.0498756211f; float c_expected = -0.099503719021f; float s_expected = 0.99503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 282)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 283)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 284)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 285)"); }; { float a = 0.1f; float b = -0.1f; float c; float s; float r_expected = -0.141421356237f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 286)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 287)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 288)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 289)"); }; { float a = 0.1f; float b = 0.0f; float c; float s; float r_expected = 0.1f; float z_expected = 0.0f; float c_expected = 1.0f; float s_expected = 0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 290)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 291)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 292)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 293)"); }; { float a = 0.1f; float b = 0.1f; float c; float s; float r_expected = 0.141421356237f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 294)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 295)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 296)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 297)"); }; { float a = 0.1f; float b = 1.0f; float c; float s; float r_expected = 1.00498756211f; float z_expected = 10.0498756211f; float c_expected = 0.099503719021f; float s_expected = 0.99503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 298)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 299)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 300)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 301)"); }; { float a = 0.1f; float b = 1.5f; float c; float s; float r_expected = 1.50332963784f; float z_expected = 15.0332963784f; float c_expected = 0.0665190105238f; float s_expected = 0.997785157857f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 302)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 303)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 304)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 305)"); }; { float a = 1.0f; float b = -1.5f; float c; float s; float r_expected = -1.80277563773f; float z_expected = -1.80277563773f; float c_expected = -0.554700196225f; float s_expected = 0.832050294338f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 306)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 307)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 308)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 309)"); }; { float a = 1.0f; float b = -1.0f; float c; float s; float r_expected = -1.41421356237f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 310)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 311)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 312)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 313)"); }; { float a = 1.0f; float b = -0.1f; float c; float s; float r_expected = 1.00498756211f; float z_expected = -0.099503719021f; float c_expected = 0.99503719021f; float s_expected = -0.099503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 314)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 315)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 316)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 317)"); }; { float a = 1.0f; float b = 0.0f; float c; float s; float r_expected = 1.0f; float z_expected = 0.0f; float c_expected = 1.0f; float s_expected = 0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 318)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 319)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 320)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 321)"); }; { float a = 1.0f; float b = 0.1f; float c; float s; float r_expected = 1.00498756211f; float z_expected = 0.099503719021f; float c_expected = 0.99503719021f; float s_expected = 0.099503719021f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 322)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 323)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 324)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 325)"); }; { float a = 1.0f; float b = 1.0f; float c; float s; float r_expected = 1.41421356237f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 326)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 327)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 328)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 329)"); }; { float a = 1.0f; float b = 1.5f; float c; float s; float r_expected = 1.80277563773f; float z_expected = 1.80277563773f; float c_expected = 0.554700196225f; float s_expected = 0.832050294338f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 330)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 331)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 332)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 333)"); }; { float a = 1.5f; float b = -1.5f; float c; float s; float r_expected = -2.12132034356f; float z_expected = -1.41421356237f; float c_expected = -0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 334)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 335)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 336)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 337)"); }; { float a = 1.5f; float b = -1.0f; float c; float s; float r_expected = 1.80277563773f; float z_expected = -0.554700196225f; float c_expected = 0.832050294338f; float s_expected = -0.554700196225f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 338)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 339)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 340)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 341)"); }; { float a = 1.5f; float b = -0.1f; float c; float s; float r_expected = 1.50332963784f; float z_expected = -0.0665190105238f; float c_expected = 0.997785157857f; float s_expected = -0.0665190105238f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 342)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 343)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 344)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 345)"); }; { float a = 1.5f; float b = 0.0f; float c; float s; float r_expected = 1.5f; float z_expected = 0.0f; float c_expected = 1.0f; float s_expected = 0.0f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 346)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 347)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 348)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 349)"); }; { float a = 1.5f; float b = 0.1f; float c; float s; float r_expected = 1.50332963784f; float z_expected = 0.0665190105238f; float c_expected = 0.997785157857f; float s_expected = 0.0665190105238f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 350)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 351)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 352)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 353)"); }; { float a = 1.5f; float b = 1.0f; float c; float s; float r_expected = 1.80277563773f; float z_expected = 0.554700196225f; float c_expected = 0.832050294338f; float s_expected = 0.554700196225f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 354)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 355)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 356)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 357)"); }; { float a = 1.5f; float b = 1.5f; float c; float s; float r_expected = 2.12132034356f; float z_expected = 1.41421356237f; float c_expected = 0.707106781187f; float s_expected = 0.707106781187f; cblas_srotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, flteps, "srotg(case 358)"); gsl_test_rel(b, z_expected, flteps, "srotg(case 359)"); gsl_test_rel(c, c_expected, flteps, "srotg(case 360)"); gsl_test_rel(s, s_expected, flteps, "srotg(case 361)"); }; { double a = -1.5; double b = -1.5; double c; double s; double r_expected = -2.12132034356; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 362)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 363)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 364)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 365)"); }; { double a = -1.5; double b = -1; double c; double s; double r_expected = -1.80277563773; double z_expected = 0.554700196225; double c_expected = 0.832050294338; double s_expected = 0.554700196225; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 366)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 367)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 368)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 369)"); }; { double a = -1.5; double b = -0.1; double c; double s; double r_expected = -1.50332963784; double z_expected = 0.0665190105238; double c_expected = 0.997785157857; double s_expected = 0.0665190105238; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 370)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 371)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 372)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 373)"); }; { double a = -1.5; double b = 0; double c; double s; double r_expected = -1.5; double z_expected = -0; double c_expected = 1; double s_expected = -0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 374)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 375)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 376)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 377)"); }; { double a = -1.5; double b = 0.1; double c; double s; double r_expected = -1.50332963784; double z_expected = -0.0665190105238; double c_expected = 0.997785157857; double s_expected = -0.0665190105238; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 378)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 379)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 380)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 381)"); }; { double a = -1.5; double b = 1; double c; double s; double r_expected = -1.80277563773; double z_expected = -0.554700196225; double c_expected = 0.832050294338; double s_expected = -0.554700196225; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 382)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 383)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 384)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 385)"); }; { double a = -1.5; double b = 1.5; double c; double s; double r_expected = 2.12132034356; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 386)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 387)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 388)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 389)"); }; { double a = -1; double b = -1.5; double c; double s; double r_expected = -1.80277563773; double z_expected = 1.80277563773; double c_expected = 0.554700196225; double s_expected = 0.832050294338; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 390)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 391)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 392)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 393)"); }; { double a = -1; double b = -1; double c; double s; double r_expected = -1.41421356237; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 394)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 395)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 396)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 397)"); }; { double a = -1; double b = -0.1; double c; double s; double r_expected = -1.00498756211; double z_expected = 0.099503719021; double c_expected = 0.99503719021; double s_expected = 0.099503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 398)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 399)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 400)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 401)"); }; { double a = -1; double b = 0; double c; double s; double r_expected = -1; double z_expected = -0; double c_expected = 1; double s_expected = -0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 402)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 403)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 404)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 405)"); }; { double a = -1; double b = 0.1; double c; double s; double r_expected = -1.00498756211; double z_expected = -0.099503719021; double c_expected = 0.99503719021; double s_expected = -0.099503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 406)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 407)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 408)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 409)"); }; { double a = -1; double b = 1; double c; double s; double r_expected = 1.41421356237; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 410)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 411)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 412)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 413)"); }; { double a = -1; double b = 1.5; double c; double s; double r_expected = 1.80277563773; double z_expected = -1.80277563773; double c_expected = -0.554700196225; double s_expected = 0.832050294338; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 414)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 415)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 416)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 417)"); }; { double a = -0.1; double b = -1.5; double c; double s; double r_expected = -1.50332963784; double z_expected = 15.0332963784; double c_expected = 0.0665190105238; double s_expected = 0.997785157857; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 418)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 419)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 420)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 421)"); }; { double a = -0.1; double b = -1; double c; double s; double r_expected = -1.00498756211; double z_expected = 10.0498756211; double c_expected = 0.099503719021; double s_expected = 0.99503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 422)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 423)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 424)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 425)"); }; { double a = -0.1; double b = -0.1; double c; double s; double r_expected = -0.141421356237; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 426)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 427)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 428)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 429)"); }; { double a = -0.1; double b = 0; double c; double s; double r_expected = -0.1; double z_expected = -0; double c_expected = 1; double s_expected = -0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 430)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 431)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 432)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 433)"); }; { double a = -0.1; double b = 0.1; double c; double s; double r_expected = 0.141421356237; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 434)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 435)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 436)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 437)"); }; { double a = -0.1; double b = 1; double c; double s; double r_expected = 1.00498756211; double z_expected = -10.0498756211; double c_expected = -0.099503719021; double s_expected = 0.99503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 438)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 439)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 440)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 441)"); }; { double a = -0.1; double b = 1.5; double c; double s; double r_expected = 1.50332963784; double z_expected = -15.0332963784; double c_expected = -0.0665190105238; double s_expected = 0.997785157857; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 442)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 443)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 444)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 445)"); }; { double a = 0; double b = -1.5; double c; double s; double r_expected = -1.5; double z_expected = 1; double c_expected = -0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 446)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 447)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 448)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 449)"); }; { double a = 0; double b = -1; double c; double s; double r_expected = -1; double z_expected = 1; double c_expected = -0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 450)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 451)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 452)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 453)"); }; { double a = 0; double b = -0.1; double c; double s; double r_expected = -0.1; double z_expected = 1; double c_expected = -0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 454)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 455)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 456)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 457)"); }; { double a = 0; double b = 0; double c; double s; double r_expected = 0; double z_expected = 0; double c_expected = 1; double s_expected = 0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 458)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 459)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 460)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 461)"); }; { double a = 0; double b = 0.1; double c; double s; double r_expected = 0.1; double z_expected = 1; double c_expected = 0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 462)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 463)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 464)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 465)"); }; { double a = 0; double b = 1; double c; double s; double r_expected = 1; double z_expected = 1; double c_expected = 0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 466)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 467)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 468)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 469)"); }; { double a = 0; double b = 1.5; double c; double s; double r_expected = 1.5; double z_expected = 1; double c_expected = 0; double s_expected = 1; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 470)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 471)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 472)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 473)"); }; { double a = 0.1; double b = -1.5; double c; double s; double r_expected = -1.50332963784; double z_expected = -15.0332963784; double c_expected = -0.0665190105238; double s_expected = 0.997785157857; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 474)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 475)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 476)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 477)"); }; { double a = 0.1; double b = -1; double c; double s; double r_expected = -1.00498756211; double z_expected = -10.0498756211; double c_expected = -0.099503719021; double s_expected = 0.99503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 478)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 479)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 480)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 481)"); }; { double a = 0.1; double b = -0.1; double c; double s; double r_expected = -0.141421356237; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 482)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 483)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 484)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 485)"); }; { double a = 0.1; double b = 0; double c; double s; double r_expected = 0.1; double z_expected = 0; double c_expected = 1; double s_expected = 0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 486)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 487)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 488)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 489)"); }; { double a = 0.1; double b = 0.1; double c; double s; double r_expected = 0.141421356237; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 490)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 491)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 492)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 493)"); }; { double a = 0.1; double b = 1; double c; double s; double r_expected = 1.00498756211; double z_expected = 10.0498756211; double c_expected = 0.099503719021; double s_expected = 0.99503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 494)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 495)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 496)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 497)"); }; { double a = 0.1; double b = 1.5; double c; double s; double r_expected = 1.50332963784; double z_expected = 15.0332963784; double c_expected = 0.0665190105238; double s_expected = 0.997785157857; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 498)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 499)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 500)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 501)"); }; { double a = 1; double b = -1.5; double c; double s; double r_expected = -1.80277563773; double z_expected = -1.80277563773; double c_expected = -0.554700196225; double s_expected = 0.832050294338; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 502)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 503)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 504)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 505)"); }; { double a = 1; double b = -1; double c; double s; double r_expected = -1.41421356237; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 506)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 507)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 508)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 509)"); }; { double a = 1; double b = -0.1; double c; double s; double r_expected = 1.00498756211; double z_expected = -0.099503719021; double c_expected = 0.99503719021; double s_expected = -0.099503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 510)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 511)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 512)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 513)"); }; { double a = 1; double b = 0; double c; double s; double r_expected = 1; double z_expected = 0; double c_expected = 1; double s_expected = 0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 514)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 515)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 516)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 517)"); }; { double a = 1; double b = 0.1; double c; double s; double r_expected = 1.00498756211; double z_expected = 0.099503719021; double c_expected = 0.99503719021; double s_expected = 0.099503719021; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 518)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 519)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 520)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 521)"); }; { double a = 1; double b = 1; double c; double s; double r_expected = 1.41421356237; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 522)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 523)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 524)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 525)"); }; { double a = 1; double b = 1.5; double c; double s; double r_expected = 1.80277563773; double z_expected = 1.80277563773; double c_expected = 0.554700196225; double s_expected = 0.832050294338; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 526)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 527)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 528)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 529)"); }; { double a = 1.5; double b = -1.5; double c; double s; double r_expected = -2.12132034356; double z_expected = -1.41421356237; double c_expected = -0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 530)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 531)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 532)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 533)"); }; { double a = 1.5; double b = -1; double c; double s; double r_expected = 1.80277563773; double z_expected = -0.554700196225; double c_expected = 0.832050294338; double s_expected = -0.554700196225; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 534)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 535)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 536)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 537)"); }; { double a = 1.5; double b = -0.1; double c; double s; double r_expected = 1.50332963784; double z_expected = -0.0665190105238; double c_expected = 0.997785157857; double s_expected = -0.0665190105238; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 538)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 539)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 540)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 541)"); }; { double a = 1.5; double b = 0; double c; double s; double r_expected = 1.5; double z_expected = 0; double c_expected = 1; double s_expected = 0; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 542)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 543)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 544)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 545)"); }; { double a = 1.5; double b = 0.1; double c; double s; double r_expected = 1.50332963784; double z_expected = 0.0665190105238; double c_expected = 0.997785157857; double s_expected = 0.0665190105238; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 546)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 547)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 548)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 549)"); }; { double a = 1.5; double b = 1; double c; double s; double r_expected = 1.80277563773; double z_expected = 0.554700196225; double c_expected = 0.832050294338; double s_expected = 0.554700196225; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 550)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 551)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 552)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 553)"); }; { double a = 1.5; double b = 1.5; double c; double s; double r_expected = 2.12132034356; double z_expected = 1.41421356237; double c_expected = 0.707106781187; double s_expected = 0.707106781187; cblas_drotg(&a, &b, &c, &s); gsl_test_rel(a, r_expected, dbleps, "drotg(case 554)"); gsl_test_rel(b, z_expected, dbleps, "drotg(case 555)"); gsl_test_rel(c, c_expected, dbleps, "drotg(case 556)"); gsl_test_rel(s, s_expected, dbleps, "drotg(case 557)"); }; } gsl-1.16/cblas/source_nrm2_r.h0000664000252300025230000000243712171574312013174 00000000000000/* blas/source_nrm2_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE scale = 0.0; BASE ssq = 1.0; INDEX i; INDEX ix = 0; if (N <= 0 || incX <= 0) { return 0; } else if (N == 1) { return fabs(X[0]); } for (i = 0; i < N; i++) { const BASE x = X[ix]; if (x != 0.0) { const BASE ax = fabs(x); if (scale < ax) { ssq = 1.0 + ssq * (scale / ax) * (scale / ax); scale = ax; } else { ssq += (ax / scale) * (ax / scale); } } ix += incX; } return scale * sqrt(ssq); } gsl-1.16/cblas/idamax.c0000664000252300025230000000032112171574312011641 00000000000000#include #include #include "cblas.h" CBLAS_INDEX cblas_idamax (const int N, const double *X, const int incX) { #define BASE double #include "source_iamax_r.h" #undef BASE } gsl-1.16/cblas/source_herk.h0000664000252300025230000001215412171574312012723 00000000000000/* blas/source_herk.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS11(HERK,Order,Uplo,Trans,N,K,alpha,A,lda,beta,C,ldc); if (beta == 1.0 && (alpha == 0.0 || K == 0)) return; if (Order == CblasRowMajor) { uplo = Uplo; trans = Trans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (Trans == CblasNoTrans) ? CblasConjTrans : CblasNoTrans; } /* form y := beta*y */ if (beta == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } } else if (beta != 1.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { REAL(C, ldc * i + i) *= beta; IMAG(C, ldc * i + i) = 0; for (j = i + 1; j < N; j++) { REAL(C, ldc * i + j) *= beta; IMAG(C, ldc * i + j) *= beta; } } } else { for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { REAL(C, ldc * i + j) *= beta; IMAG(C, ldc * i + j) *= beta; } REAL(C, ldc * i + i) *= beta; IMAG(C, ldc * i + i) = 0; } } } else { /* set imaginary part of Aii to zero */ for (i = 0; i < N; i++) { IMAG(C, ldc * i + i) = 0.0; } } if (alpha == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = -CONST_IMAG(A, j * lda + k); temp_real += Aik_real * Ajk_real - Aik_imag * Ajk_imag; temp_imag += Aik_real * Ajk_imag + Aik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha * temp_real; IMAG(C, i * ldc + j) += alpha * temp_imag; } } } else if (uplo == CblasUpper && trans == CblasConjTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = -CONST_IMAG(A, k * lda + i); const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = CONST_IMAG(A, k * lda + j); temp_real += Aki_real * Akj_real - Aki_imag * Akj_imag; temp_imag += Aki_real * Akj_imag + Aki_imag * Akj_real; } REAL(C, i * ldc + j) += alpha * temp_real; IMAG(C, i * ldc + j) += alpha * temp_imag; } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = -CONST_IMAG(A, j * lda + k); temp_real += Aik_real * Ajk_real - Aik_imag * Ajk_imag; temp_imag += Aik_real * Ajk_imag + Aik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha * temp_real; IMAG(C, i * ldc + j) += alpha * temp_imag; } } } else if (uplo == CblasLower && trans == CblasConjTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = -CONST_IMAG(A, k * lda + i); const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = CONST_IMAG(A, k * lda + j); temp_real += Aki_real * Akj_real - Aki_imag * Akj_imag; temp_imag += Aki_real * Akj_imag + Aki_imag * Akj_real; } REAL(C, i * ldc + j) += alpha * temp_real; IMAG(C, i * ldc + j) += alpha * temp_imag; } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/srotg.c0000664000252300025230000000027712171574312011546 00000000000000#include #include #include "cblas.h" void cblas_srotg (float *a, float *b, float *c, float *s) { #define BASE float #include "source_rotg.h" #undef BASE } gsl-1.16/cblas/source_syr.h0000664000252300025230000000331712171574312012610 00000000000000/* blas/source_syr.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS8(SD_SYR,order,Uplo,N,alpha,X,incX,A,lda); if (N == 0) return; if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp = alpha * X[ix]; INDEX jx = ix; for (j = i; j < N; j++) { A[lda * i + j] += X[jx] * tmp; jx += incX; } ix += incX; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp = alpha * X[ix]; INDEX jx = OFFSET(N, incX); for (j = 0; j <= i; j++) { A[lda * i + j] += X[jx] * tmp; jx += incX; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/cher.c0000664000252300025230000000053212171574312011323 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A, const int lda) { #define BASE float #include "source_her.h" #undef BASE } gsl-1.16/cblas/drotm.c0000664000252300025230000000037112171574312011530 00000000000000#include #include #include "cblas.h" void cblas_drotm (const int N, double *X, const int incX, double *Y, const int incY, const double *P) { #define BASE double #include "source_rotm.h" #undef BASE } gsl-1.16/cblas/source_hemv.h0000664000252300025230000001230012171574312012722 00000000000000/* blas/source_hemv.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (order == CblasColMajor) ? -1 : 1; INDEX i, j; CHECK_ARGS11(CZ_HEMV,order,Uplo,N,alpha,A,lda,X,incX,beta,Y,incY); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { REAL(Y, iy) = 0.0; IMAG(Y, iy) = 0.0; iy += incY; } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE y_real = REAL(Y, iy); const BASE y_imag = IMAG(Y, iy); const BASE tmpR = y_real * beta_real - y_imag * beta_imag; const BASE tmpI = y_real * beta_imag + y_imag * beta_real; REAL(Y, iy) = tmpR; IMAG(Y, iy) = tmpI; iy += incY; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; BASE Aii_real = CONST_REAL(A, lda * i + i); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(A, lda * i + j); BASE Aij_imag = conj * CONST_IMAG(A, lda * i + j); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; INDEX iy = OFFSET(N, incY) + (N - 1) * incY; for (i = N; i > 0 && i--;) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; BASE Aii_real = CONST_REAL(A, lda * i + i); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(A, lda * i + j); BASE Aij_imag = conj * CONST_IMAG(A, lda * i + j); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix -= incX; iy -= incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/srotmg.c0000664000252300025230000000032412171574312011714 00000000000000#include #include #include "cblas.h" void cblas_srotmg (float *d1, float *d2, float *b1, const float b2, float *P) { #define BASE float #include "source_rotmg.h" #undef BASE } gsl-1.16/cblas/ztrmm.c0000664000252300025230000000074212171574312011556 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_ztrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb) { #define BASE double #include "source_trmm_c.h" #undef BASE } gsl-1.16/cblas/dsymm.c0000664000252300025230000000073312171574312011536 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dsymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc) { #define BASE double #include "source_symm_r.h" #undef BASE } gsl-1.16/cblas/TODO0000664000252300025230000000063112171574312010726 00000000000000# -*- org -*- #+CATEGORY: cblas use macros so that all complex arithmetic can use native complex types if compiler supports them make sure double/float are replaced by BASE everywhere well... not _everywhere_; internal accumulations should be done in double always; there's no reason not too, it's safer and maybe even faster [GJ] gbmv_c : use conj*imag instead of having branches form Trans & ConjTrans gsl-1.16/cblas/izamax.c0000664000252300025230000000031712171574312011674 00000000000000#include #include #include "cblas.h" CBLAS_INDEX cblas_izamax (const int N, const void *X, const int incX) { #define BASE double #include "source_iamax_c.h" #undef BASE } gsl-1.16/cblas/cgbmv.c0000664000252300025230000000071612171574312011504 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cgbmv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE float #include "source_gbmv_c.h" #undef BASE } gsl-1.16/cblas/test_symv.c0000664000252300025230000001740112171574312012442 00000000000000#include #include #include #include #include "tests.h" void test_symv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1054)"); } }; }; { int order = 101; int uplo = 121; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1055)"); } }; }; { int order = 101; int uplo = 122; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1056)"); } }; }; { int order = 101; int uplo = 122; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1057)"); } }; }; { int order = 102; int uplo = 121; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1058)"); } }; }; { int order = 102; int uplo = 121; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1059)"); } }; }; { int order = 102; int uplo = 122; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1060)"); } }; }; { int order = 102; int uplo = 122; float alpha = 1.0f; float beta = -1.0f; int N = 1; int lda = 1; float A[] = { -0.428f }; float X[] = { -0.34f }; int incX = -1; float Y[] = { -0.888f }; int incY = -1; float y_expected[] = { 1.03352f }; cblas_ssymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssymv(case 1061)"); } }; }; { int order = 101; int uplo = 121; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1062)"); } }; }; { int order = 101; int uplo = 121; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1063)"); } }; }; { int order = 101; int uplo = 122; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1064)"); } }; }; { int order = 101; int uplo = 122; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1065)"); } }; }; { int order = 102; int uplo = 121; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1066)"); } }; }; { int order = 102; int uplo = 121; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1067)"); } }; }; { int order = 102; int uplo = 122; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1068)"); } }; }; { int order = 102; int uplo = 122; double alpha = 0; double beta = -0.3; int N = 1; int lda = 1; double A[] = { 0.544 }; double X[] = { -0.601 }; int incX = -1; double Y[] = { -0.852 }; int incY = -1; double y_expected[] = { 0.2556 }; cblas_dsymv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsymv(case 1069)"); } }; }; } gsl-1.16/cblas/source_tbmv_r.h0000664000252300025230000000677312171574312013275 00000000000000/* blas/source_tbmv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int nonunit = (Diag == CblasNonUnit); const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS10 (TBMV,order,Uplo,TransA,Diag,N,K,A,lda,X,incX); if (N == 0) return; if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x := A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp = (nonunit ? A[lda * i + 0] : 1.0) * X[ix]; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * i + (j - i)]; jx += incX; } X[ix] = temp; ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp = (nonunit ? A[lda * i + K] : 1.0) * X[ix]; const INDEX j_min = (i > K ? i - K : 0); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * i + (K - i + j)]; jx += incX; } X[ix] = temp; ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp = 0.0; const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * j + (i - j)]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + 0]; } else { X[ix] += temp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp = 0.0; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * j + (K - j + i)]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + K]; } else { X[ix] += temp; } ix += incX; } } } gsl-1.16/cblas/dtrmv.c0000664000252300025230000000063612171574312011543 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtrmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX) { #define BASE double #include "source_trmv_r.h" #undef BASE } gsl-1.16/cblas/source_her.h0000664000252300025230000000541712171574312012554 00000000000000/* blas/source_her.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS8(CZ_HER,order,Uplo,N,alpha,X,incX,A,lda); if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp_real = alpha * CONST_REAL(X, ix); const BASE tmp_imag = alpha * conj * CONST_IMAG(X, ix); INDEX jx = ix; { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(A, lda * i + i) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, lda * i + i) = 0; jx += incX; } for (j = i + 1; j < N; j++) { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(A, lda * i + j) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, lda * i + j) += X_imag * tmp_real + X_real * tmp_imag; jx += incX; } ix += incX; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp_real = alpha * CONST_REAL(X, ix); const BASE tmp_imag = alpha * conj * CONST_IMAG(X, ix); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(A, lda * i + j) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, lda * i + j) += X_imag * tmp_real + X_real * tmp_imag; jx += incX; } { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(A, lda * i + i) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, lda * i + i) = 0; jx += incX; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/dsdot.c0000664000252300025230000000050312171574312011515 00000000000000#include #include #include "cblas.h" double cblas_dsdot (const int N, const float *X, const int incX, const float *Y, const int incY) { #define INIT_VAL 0.0 #define ACC_TYPE double #define BASE float #include "source_dot_r.h" #undef ACC_TYPE #undef BASE #undef INIT_VAL } gsl-1.16/cblas/strsm.c0000664000252300025230000000074312171574312011556 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_strsm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb) { #define BASE float #include "source_trsm_r.h" #undef BASE } gsl-1.16/cblas/dspmv.c0000664000252300025230000000062712171574312011540 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dspmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *Ap, const double *X, const int incX, const double beta, double *Y, const int incY) { #define BASE double #include "source_spmv.h" #undef BASE } gsl-1.16/cblas/test_axpy.c0000664000252300025230000001170112171574312012422 00000000000000#include #include #include #include #include "tests.h" void test_axpy (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float alpha = 0.0f; float X[] = { 0.018f }; int incX = 1; float Y[] = { -0.417f }; int incY = -1; float expected[] = { -0.417f }; cblas_saxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "saxpy(case 64)"); } }; }; { int N = 1; double alpha = 0; double X[] = { 0.071 }; int incX = 1; double Y[] = { -0.888 }; int incY = -1; double expected[] = { -0.888 }; cblas_daxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "daxpy(case 65)"); } }; }; { int N = 1; float alpha[2] = {1.0f, 0.0f}; float X[] = { -0.542f, -0.362f }; int incX = 1; float Y[] = { -0.459f, -0.433f }; int incY = -1; float expected[] = { -1.001f, -0.795f }; cblas_caxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "caxpy(case 66) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "caxpy(case 66) imag"); }; }; }; { int N = 1; double alpha[2] = {-1, 0}; double X[] = { 0.003, -0.514 }; int incX = 1; double Y[] = { -0.529, 0.743 }; int incY = -1; double expected[] = { -0.532, 1.257 }; cblas_zaxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zaxpy(case 67) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zaxpy(case 67) imag"); }; }; }; { int N = 1; float alpha = 0.1f; float X[] = { 0.771f }; int incX = -1; float Y[] = { 0.507f }; int incY = 1; float expected[] = { 0.5841f }; cblas_saxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "saxpy(case 68)"); } }; }; { int N = 1; double alpha = -0.3; double X[] = { 0.029 }; int incX = -1; double Y[] = { -0.992 }; int incY = 1; double expected[] = { -1.0007 }; cblas_daxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "daxpy(case 69)"); } }; }; { int N = 1; float alpha[2] = {-0.3f, 0.1f}; float X[] = { 0.194f, -0.959f }; int incX = -1; float Y[] = { 0.096f, 0.032f }; int incY = 1; float expected[] = { 0.1337f, 0.3391f }; cblas_caxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "caxpy(case 70) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "caxpy(case 70) imag"); }; }; }; { int N = 1; double alpha[2] = {0, 1}; double X[] = { 0.776, -0.671 }; int incX = -1; double Y[] = { 0.39, 0.404 }; int incY = 1; double expected[] = { 1.061, 1.18 }; cblas_zaxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zaxpy(case 71) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zaxpy(case 71) imag"); }; }; }; { int N = 1; float alpha = 1.0f; float X[] = { 0.647f }; int incX = -1; float Y[] = { 0.016f }; int incY = -1; float expected[] = { 0.663f }; cblas_saxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "saxpy(case 72)"); } }; }; { int N = 1; double alpha = -1; double X[] = { -0.558 }; int incX = -1; double Y[] = { 0.308 }; int incY = -1; double expected[] = { 0.866 }; cblas_daxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "daxpy(case 73)"); } }; }; { int N = 1; float alpha[2] = {-0.3f, 0.1f}; float X[] = { 0.899f, -0.624f }; int incX = -1; float Y[] = { 0.155f, -0.33f }; int incY = -1; float expected[] = { -0.0523f, -0.0529f }; cblas_caxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "caxpy(case 74) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "caxpy(case 74) imag"); }; }; }; { int N = 1; double alpha[2] = {0, 1}; double X[] = { -0.451, 0.768 }; int incX = -1; double Y[] = { 0.007, 0.732 }; int incY = -1; double expected[] = { -0.761, 0.281 }; cblas_zaxpy(N, alpha, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zaxpy(case 75) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zaxpy(case 75) imag"); }; }; }; } gsl-1.16/cblas/source_copy_c.h0000664000252300025230000000201012171574312013234 00000000000000/* blas/source_copy_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { REAL(Y, iy) = CONST_REAL(X, ix); IMAG(Y, iy) = CONST_IMAG(X, ix); ix += incX; iy += incY; } } gsl-1.16/cblas/ztbsv.c0000664000252300025230000000067312171574312011560 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ztbsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX) { #define BASE double #include "source_tbsv_c.h" #undef BASE } gsl-1.16/cblas/ztpsv.c0000664000252300025230000000062312171574312011571 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ztpsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX) { #define BASE double #include "source_tpsv_c.h" #undef BASE } gsl-1.16/cblas/test_hemv.c0000664000252300025230000002375112171574312012410 00000000000000#include #include #include #include #include "tests.h" void test_hemv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1070) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1070) imag"); }; }; }; { int order = 101; int uplo = 121; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1071) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1071) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1072) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1072) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1073) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1073) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1074) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1074) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1075) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1075) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1076) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1076) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 1; int lda = 1; float A[] = { -0.434f, 0.837f }; float X[] = { 0.209f, -0.935f }; int incX = -1; float Y[] = { 0.346f, -0.412f }; int incY = -1; float y_expected[] = { -0.153306f, 0.56399f }; cblas_chemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chemv(case 1077) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chemv(case 1077) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1078) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1078) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1079) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1079) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1080) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1080) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1081) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1081) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1082) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1082) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1083) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1083) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1084) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1084) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {0, 0}; double beta[2] = {1, 0}; int N = 1; int lda = 1; double A[] = { 0.036, -0.966 }; double X[] = { -0.695, 0.886 }; int incX = -1; double Y[] = { 0.486, 0.629 }; int incY = -1; double y_expected[] = { 0.486, 0.629 }; cblas_zhemv(order, uplo, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhemv(case 1085) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhemv(case 1085) imag"); }; }; }; } gsl-1.16/cblas/ztbmv.c0000664000252300025230000000064712171574312011553 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ztbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX) { #define BASE double #include "source_tbmv_c.h" #undef BASE } gsl-1.16/cblas/dtrsv.c0000664000252300025230000000063612171574312011551 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtrsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX) { #define BASE double #include "source_trsv_r.h" #undef BASE } gsl-1.16/cblas/strsv.c0000664000252300025230000000063312171574312011565 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_strsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX) { #define BASE float #include "source_trsv_r.h" #undef BASE } gsl-1.16/cblas/sger.c0000664000252300025230000000055512171574312011347 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sger (const enum CBLAS_ORDER order, const int M, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A, const int lda) { #define BASE float #include "source_ger.h" #undef BASE } gsl-1.16/cblas/test_ger.c0000664000252300025230000001476412171574312012232 00000000000000#include #include #include #include #include "tests.h" void test_ger (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { -0.515f }; float X[] = { 0.611f }; int incX = -1; float Y[] = { -0.082f }; int incY = -1; float A_expected[] = { -0.565102f }; cblas_sger(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "sger(case 1390)"); } }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { -0.515f }; float X[] = { 0.611f }; int incX = -1; float Y[] = { -0.082f }; int incY = -1; float A_expected[] = { -0.565102f }; cblas_sger(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "sger(case 1391)"); } }; }; { int order = 101; int M = 1; int N = 1; int lda = 1; double alpha = 1; double A[] = { -0.809 }; double X[] = { -0.652 }; int incX = -1; double Y[] = { 0.712 }; int incY = -1; double A_expected[] = { -1.273224 }; cblas_dger(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dger(case 1392)"); } }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; double alpha = 1; double A[] = { -0.809 }; double X[] = { -0.652 }; int incX = -1; double Y[] = { 0.712 }; int incY = -1; double A_expected[] = { -1.273224 }; cblas_dger(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dger(case 1393)"); } }; }; { int order = 101; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.651f, 0.856f }; float X[] = { -0.38f, -0.235f }; int incX = -1; float Y[] = { -0.627f, 0.757f }; int incY = -1; float A_expected[] = { -0.651f, 0.856f }; cblas_cgeru(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cgeru(case 1394) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cgeru(case 1394) imag"); }; }; }; { int order = 101; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.651f, 0.856f }; float X[] = { -0.38f, -0.235f }; int incX = -1; float Y[] = { -0.627f, 0.757f }; int incY = -1; float A_expected[] = { -0.651f, 0.856f }; cblas_cgerc(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cgerc(case 1395) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cgerc(case 1395) imag"); }; }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.651f, 0.856f }; float X[] = { -0.38f, -0.235f }; int incX = -1; float Y[] = { -0.627f, 0.757f }; int incY = -1; float A_expected[] = { -0.651f, 0.856f }; cblas_cgeru(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cgeru(case 1396) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cgeru(case 1396) imag"); }; }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.651f, 0.856f }; float X[] = { -0.38f, -0.235f }; int incX = -1; float Y[] = { -0.627f, 0.757f }; int incY = -1; float A_expected[] = { -0.651f, 0.856f }; cblas_cgerc(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cgerc(case 1397) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cgerc(case 1397) imag"); }; }; }; { int order = 101; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-1, 0}; double A[] = { -0.426, 0.757 }; double X[] = { -0.579, -0.155 }; int incX = -1; double Y[] = { 0.831, 0.035 }; int incY = -1; double A_expected[] = { 0.049724, 0.90607 }; cblas_zgeru(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zgeru(case 1398) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zgeru(case 1398) imag"); }; }; }; { int order = 101; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-1, 0}; double A[] = { -0.426, 0.757 }; double X[] = { -0.579, -0.155 }; int incX = -1; double Y[] = { 0.831, 0.035 }; int incY = -1; double A_expected[] = { 0.060574, 0.86554 }; cblas_zgerc(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zgerc(case 1399) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zgerc(case 1399) imag"); }; }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-1, 0}; double A[] = { -0.426, 0.757 }; double X[] = { -0.579, -0.155 }; int incX = -1; double Y[] = { 0.831, 0.035 }; int incY = -1; double A_expected[] = { 0.049724, 0.90607 }; cblas_zgeru(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zgeru(case 1400) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zgeru(case 1400) imag"); }; }; }; { int order = 102; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-1, 0}; double A[] = { -0.426, 0.757 }; double X[] = { -0.579, -0.155 }; int incX = -1; double Y[] = { 0.831, 0.035 }; int incY = -1; double A_expected[] = { 0.060574, 0.86554 }; cblas_zgerc(order, M, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zgerc(case 1401) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zgerc(case 1401) imag"); }; }; }; } gsl-1.16/cblas/ctrsm.c0000664000252300025230000000076512171574312011542 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" #include "hypot.c" void cblas_ctrsm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb) { #define BASE float #include "source_trsm_c.h" #undef BASE } gsl-1.16/cblas/dscal.c0000664000252300025230000000032612171574312011471 00000000000000#include #include #include "cblas.h" void cblas_dscal (const int N, const double alpha, double *X, const int incX) { #define BASE double #include "source_scal_r.h" #undef BASE } gsl-1.16/cblas/cgemv.c0000664000252300025230000000066212171574312011507 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE float #include "source_gemv_c.h" #undef BASE } gsl-1.16/cblas/cgemm.c0000664000252300025230000000075512171574312011501 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_cgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE float #include "source_gemm_c.h" #undef BASE } gsl-1.16/cblas/test.c0000664000252300025230000000204112171574312011356 00000000000000/* blas/test.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "tests.h" int main (void) { gsl_ieee_env_setup (); #include "tests.c" exit (gsl_test_summary()); } gsl-1.16/cblas/dasum.c0000664000252300025230000000031212171574312011507 00000000000000#include #include #include "cblas.h" double cblas_dasum (const int N, const double *X, const int incX) { #define BASE double #include "source_asum_r.h" #undef BASE } gsl-1.16/cblas/dtpsv.c0000664000252300025230000000060312171574312011541 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtpsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *Ap, double *X, const int incX) { #define BASE double #include "source_tpsv_r.h" #undef BASE } gsl-1.16/cblas/cherk.c0000664000252300025230000000065312171574312011502 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_cherk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const void *A, const int lda, const float beta, void *C, const int ldc) { #define BASE float #include "source_herk.h" #undef BASE } gsl-1.16/cblas/ctrmm.c0000664000252300025230000000074112171574312011526 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_ctrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb) { #define BASE float #include "source_trmm_c.h" #undef BASE } gsl-1.16/cblas/source_syr2.h0000664000252300025230000000401412171574312012665 00000000000000/* blas/source_syr2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS10(SD_SYR2,order,Uplo,N,alpha,X,incX,Y,incY,A,lda); if (N == 0) return; if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp1 = alpha * X[ix]; const BASE tmp2 = alpha * Y[iy]; INDEX jx = ix; INDEX jy = iy; for (j = i; j < N; j++) { A[lda * i + j] += tmp1 * Y[jy] + tmp2 * X[jx]; jx += incX; jy += incY; } ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp1 = alpha * X[ix]; const BASE tmp2 = alpha * Y[iy]; INDEX jx = OFFSET(N, incX); INDEX jy = OFFSET(N, incY); for (j = 0; j <= i; j++) { A[lda * i + j] += tmp1 * Y[jy] + tmp2 * X[jx]; jx += incX; jy += incY; } ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_gemm_c.h0000664000252300025230000001423712171574312013225 00000000000000/* blas/source_gemm_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; INDEX ldf, ldg; int conjF, conjG, TransF, TransG; const BASE *F, *G; CHECK_ARGS14(GEMM,Order,TransA,TransB,M,N,K,alpha,A,lda,B,ldb,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (Order == CblasRowMajor) { n1 = M; n2 = N; F = (const BASE *)A; ldf = lda; conjF = (TransA == CblasConjTrans) ? -1 : 1; TransF = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; G = (const BASE *)B; ldg = ldb; conjG = (TransB == CblasConjTrans) ? -1 : 1; TransG = (TransB == CblasNoTrans) ? CblasNoTrans : CblasTrans; } else { n1 = N; n2 = M; F = (const BASE *)B; ldf = ldb; conjF = (TransB == CblasConjTrans) ? -1 : 1; TransF = (TransB == CblasNoTrans) ? CblasNoTrans : CblasTrans; G = (const BASE *)A; ldg = lda; conjG = (TransA == CblasConjTrans) ? -1 : 1; TransG = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (TransF == CblasNoTrans && TransG == CblasNoTrans) { /* form C := alpha*A*B + C */ for (k = 0; k < K; k++) { for (i = 0; i < n1; i++) { const BASE Fik_real = CONST_REAL(F, ldf * i + k); const BASE Fik_imag = conjF * CONST_IMAG(F, ldf * i + k); const BASE temp_real = alpha_real * Fik_real - alpha_imag * Fik_imag; const BASE temp_imag = alpha_real * Fik_imag + alpha_imag * Fik_real; if (!(temp_real == 0.0 && temp_imag == 0.0)) { for (j = 0; j < n2; j++) { const BASE Gkj_real = CONST_REAL(G, ldg * k + j); const BASE Gkj_imag = conjG * CONST_IMAG(G, ldg * k + j); REAL(C, ldc * i + j) += temp_real * Gkj_real - temp_imag * Gkj_imag; IMAG(C, ldc * i + j) += temp_real * Gkj_imag + temp_imag * Gkj_real; } } } } } else if (TransF == CblasNoTrans && TransG == CblasTrans) { /* form C := alpha*A*B' + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Fik_real = CONST_REAL(F, ldf * i + k); const BASE Fik_imag = conjF * CONST_IMAG(F, ldf * i + k); const BASE Gjk_real = CONST_REAL(G, ldg * j + k); const BASE Gjk_imag = conjG * CONST_IMAG(G, ldg * j + k); temp_real += Fik_real * Gjk_real - Fik_imag * Gjk_imag; temp_imag += Fik_real * Gjk_imag + Fik_imag * Gjk_real; } REAL(C, ldc * i + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, ldc * i + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (TransF == CblasTrans && TransG == CblasNoTrans) { for (k = 0; k < K; k++) { for (i = 0; i < n1; i++) { const BASE Fki_real = CONST_REAL(F, ldf * k + i); const BASE Fki_imag = conjF * CONST_IMAG(F, ldf * k + i); const BASE temp_real = alpha_real * Fki_real - alpha_imag * Fki_imag; const BASE temp_imag = alpha_real * Fki_imag + alpha_imag * Fki_real; if (!(temp_real == 0.0 && temp_imag == 0.0)) { for (j = 0; j < n2; j++) { const BASE Gkj_real = CONST_REAL(G, ldg * k + j); const BASE Gkj_imag = conjG * CONST_IMAG(G, ldg * k + j); REAL(C, ldc * i + j) += temp_real * Gkj_real - temp_imag * Gkj_imag; IMAG(C, ldc * i + j) += temp_real * Gkj_imag + temp_imag * Gkj_real; } } } } } else if (TransF == CblasTrans && TransG == CblasTrans) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Fki_real = CONST_REAL(F, ldf * k + i); const BASE Fki_imag = conjF * CONST_IMAG(F, ldf * k + i); const BASE Gjk_real = CONST_REAL(G, ldg * j + k); const BASE Gjk_imag = conjG * CONST_IMAG(G, ldg * j + k); temp_real += Fki_real * Gjk_real - Fki_imag * Gjk_imag; temp_imag += Fki_real * Gjk_imag + Fki_imag * Gjk_real; } REAL(C, ldc * i + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, ldc * i + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/source_scal_c.h0000664000252300025230000000230612171574312013214 00000000000000/* blas/source_scal_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = 0; const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (incX <= 0) { return; } for (i = 0; i < N; i++) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); REAL(X, ix) = x_real * alpha_real - x_imag * alpha_imag; IMAG(X, ix) = x_real * alpha_imag + x_imag * alpha_real; ix += incX; } } gsl-1.16/cblas/source_geru.h0000664000252300025230000000470012171574312012732 00000000000000/* blas/source_geru.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS10(CZ_GERU,order,M,N,alpha,X,incX,Y,incY,A,lda); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (order == CblasRowMajor) { INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { const BASE X_real = CONST_REAL(X, ix); const BASE X_imag = CONST_IMAG(X, ix); const BASE tmp_real = alpha_real * X_real - alpha_imag * X_imag; const BASE tmp_imag = alpha_imag * X_real + alpha_real * X_imag; INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { const BASE Y_real = CONST_REAL(Y, jy); const BASE Y_imag = CONST_IMAG(Y, jy); REAL(A, lda * i + j) += Y_real * tmp_real - Y_imag * tmp_imag; IMAG(A, lda * i + j) += Y_imag * tmp_real + Y_real * tmp_imag; jy += incY; } ix += incX; } } else if (order == CblasColMajor) { INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { const BASE Y_real = CONST_REAL(Y, jy); const BASE Y_imag = CONST_IMAG(Y, jy); const BASE tmp_real = alpha_real * Y_real - alpha_imag * Y_imag; const BASE tmp_imag = alpha_imag * Y_real + alpha_real * Y_imag; INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { const BASE X_real = CONST_REAL(X, ix); const BASE X_imag = CONST_IMAG(X, ix); REAL(A, i + lda * j) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, i + lda * j) += X_imag * tmp_real + X_real * tmp_imag; ix += incX; } jy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/sgemm.c0000664000252300025230000000076012171574312011515 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_sgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc) { #define BASE float #include "source_gemm_r.h" #undef BASE } gsl-1.16/cblas/source_symv.h0000664000252300025230000000540612171574312012772 00000000000000/* blas/source_symv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS11(SD_SYMV,order,Uplo,N,alpha,A,lda,X,incX,beta,Y,incY); if (alpha == 0.0 && beta == 1.0) return; /* form y := beta*y */ if (beta == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] = 0.0; iy += incY; } } else if (beta != 1.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] *= beta; iy += incY; } } if (alpha == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE temp1 = alpha * X[ix]; BASE temp2 = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; Y[iy] += temp1 * A[lda * i + i]; for (j = j_min; j < j_max; j++) { Y[jy] += temp1 * A[lda * i + j]; temp2 += X[jx] * A[lda * i + j]; jx += incX; jy += incY; } Y[iy] += alpha * temp2; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; INDEX iy = OFFSET(N, incY) + (N - 1) * incY; for (i = N; i > 0 && i--;) { BASE temp1 = alpha * X[ix]; BASE temp2 = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; Y[iy] += temp1 * A[lda * i + i]; for (j = j_min; j < j_max; j++) { Y[jy] += temp1 * A[lda * i + j]; temp2 += X[jx] * A[lda * i + j]; jx += incX; jy += incY; } Y[iy] += alpha * temp2; ix -= incX; iy -= incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_tbmv_c.h0000664000252300025230000001432112171574312013242 00000000000000/* blas/source_tbmv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); INDEX i, j; CHECK_ARGS10(TBMV,order,Uplo,TransA,Diag,N,K,A,lda,X,incX); if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x := A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + incX * j_min; for (j = j_min; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * i + (j - i)); const BASE A_imag = conj * CONST_IMAG(A, lda * i + (j - i)); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + 0); const BASE A_imag = conj * CONST_IMAG(A, lda * i + 0); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { /* N-1 ... 0 */ BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * i + (K - i + j)); const BASE A_imag = conj * CONST_IMAG(A, lda * i + (K - i + j)); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + K); const BASE A_imag = conj * CONST_IMAG(A, lda * i + K); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { /* N-1 ... 0 */ BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * j + (i - j)); const BASE A_imag = conj * CONST_IMAG(A, lda * j + (i - j)); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + 0); const BASE A_imag = conj * CONST_IMAG(A, lda * i + 0); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * j + (K - j + i)); const BASE A_imag = conj * CONST_IMAG(A, lda * j + (K - j + i)); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + K); const BASE A_imag = conj * CONST_IMAG(A, lda * i + K); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_symm_r.h0000664000252300025230000000701212171574312013275 00000000000000/* blas/source_symm_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; int uplo, side; CHECK_ARGS13(SYMM,Order,Side,Uplo,M,N,alpha,A,lda,B,ldb,beta,C,ldc); if (alpha == 0.0 && beta == 1.0) return; if (Order == CblasRowMajor) { n1 = M; n2 = N; uplo = Uplo; side = Side; } else { n1 = N; n2 = M; uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; side = (Side == CblasLeft) ? CblasRight : CblasLeft; } /* form y := beta*y */ if (beta == 0.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { C[ldc * i + j] = 0.0; } } } else if (beta != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { C[ldc * i + j] *= beta; } } } if (alpha == 0.0) return; if (side == CblasLeft && uplo == CblasUpper) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE temp1 = alpha * B[ldb * i + j]; BASE temp2 = 0.0; C[i * ldc + j] += temp1 * A[i * lda + i]; for (k = i + 1; k < n1; k++) { const BASE Aik = A[i * lda + k]; C[k * ldc + j] += Aik * temp1; temp2 += Aik * B[ldb * k + j]; } C[i * ldc + j] += alpha * temp2; } } } else if (side == CblasLeft && uplo == CblasLower) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE temp1 = alpha * B[ldb * i + j]; BASE temp2 = 0.0; for (k = 0; k < i; k++) { const BASE Aik = A[i * lda + k]; C[k * ldc + j] += Aik * temp1; temp2 += Aik * B[ldb * k + j]; } C[i * ldc + j] += temp1 * A[i * lda + i] + alpha * temp2; } } } else if (side == CblasRight && uplo == CblasUpper) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE temp1 = alpha * B[ldb * i + j]; BASE temp2 = 0.0; C[i * ldc + j] += temp1 * A[j * lda + j]; for (k = j + 1; k < n2; k++) { const BASE Ajk = A[j * lda + k]; C[i * ldc + k] += temp1 * Ajk; temp2 += B[ldb * i + k] * Ajk; } C[i * ldc + j] += alpha * temp2; } } } else if (side == CblasRight && uplo == CblasLower) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE temp1 = alpha * B[ldb * i + j]; BASE temp2 = 0.0; for (k = 0; k < j; k++) { const BASE Ajk = A[j * lda + k]; C[i * ldc + k] += temp1 * Ajk; temp2 += B[ldb * i + k] * Ajk; } C[i * ldc + j] += temp1 * A[j * lda + j] + alpha * temp2; } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/chpr2.c0000664000252300025230000000055712171574312011427 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_chpr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap) { #define BASE float #include "source_hpr2.h" #undef BASE } gsl-1.16/cblas/cscal.c0000664000252300025230000000032212171574312011464 00000000000000#include #include #include "cblas.h" void cblas_cscal (const int N, const void *alpha, void *X, const int incX) { #define BASE float #include "source_scal_c.h" #undef BASE } gsl-1.16/cblas/test_syrk.c0000664000252300025230000004765612171574312012453 00000000000000#include #include #include #include #include "tests.h" void test_syrk (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha = -1.0f; float beta = 0.1f; float A[] = { 0.412f, -0.229f }; int lda = 1; float C[] = { 0.628f, -0.664f, -0.268f, 0.096f }; int ldc = 2; float C_expected[] = { -0.106944f, 0.027948f, -0.268f, -0.042841f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1566)"); } }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha = -1.0f; float beta = 0.1f; float A[] = { 0.101f, -0.653f }; int lda = 2; float C[] = { 0.432f, 0.107f, -0.952f, -0.532f }; int ldc = 2; float C_expected[] = { 0.032999f, 0.107f, -0.029247f, -0.479609f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1567)"); } }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 2; int K = 1; float alpha = 1.0f; float beta = 0.1f; float A[] = { 0.79f, 0.595f }; int lda = 2; float C[] = { 0.257f, 0.183f, -0.021f, -0.053f }; int ldc = 2; float C_expected[] = { 0.6498f, 0.48835f, -0.021f, 0.348725f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1568)"); } }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 2; int K = 1; float alpha = 1.0f; float beta = 0.1f; float A[] = { -0.181f, -0.654f }; int lda = 1; float C[] = { -0.4f, 0.615f, 0.147f, -0.163f }; int ldc = 2; float C_expected[] = { -0.007239f, 0.615f, 0.133074f, 0.411416f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1569)"); } }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha = 0.0f; float beta = -1.0f; float A[] = { -0.191f, 0.584f }; int lda = 1; float C[] = { -0.719f, -0.681f, -0.003f, 0.544f }; int ldc = 2; float C_expected[] = { 0.719f, -0.681f, 0.003f, -0.544f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1570)"); } }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha = 0.0f; float beta = -1.0f; float A[] = { 0.788f, 0.041f }; int lda = 2; float C[] = { 0.029f, 0.365f, 0.739f, -0.769f }; int ldc = 2; float C_expected[] = { -0.029f, -0.365f, 0.739f, 0.769f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1571)"); } }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 2; int K = 1; float alpha = -0.3f; float beta = -1.0f; float A[] = { 0.733f, 0.678f }; int lda = 2; float C[] = { -0.941f, 0.96f, 0.07f, -0.295f }; int ldc = 2; float C_expected[] = { 0.779813f, 0.96f, -0.219092f, 0.157095f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1572)"); } }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 2; int K = 1; float alpha = -0.3f; float beta = -1.0f; float A[] = { -0.87f, 0.675f }; int lda = 1; float C[] = { -0.602f, -0.432f, -0.984f, 0.384f }; int ldc = 2; float C_expected[] = { 0.37493f, 0.608175f, -0.984f, -0.520687f }; cblas_ssyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyrk(case 1573)"); } }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha = 0.1; double beta = -0.3; double A[] = { 0.169, -0.875 }; int lda = 1; double C[] = { 0.159, 0.277, 0.865, 0.346 }; int ldc = 2; double C_expected[] = { -0.0448439, -0.0978875, 0.865, -0.0272375 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1574)"); } }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha = 0.1; double beta = -0.3; double A[] = { 0.536, -0.725 }; int lda = 2; double C[] = { 0.154, -0.445, -0.841, -0.91 }; int ldc = 2; double C_expected[] = { -0.0174704, -0.445, 0.21344, 0.3255625 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1575)"); } }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 2; int K = 1; double alpha = 0; double beta = -1; double A[] = { -0.07, 0.8 }; int lda = 2; double C[] = { 0.823, -0.88, -0.136, 0.793 }; int ldc = 2; double C_expected[] = { -0.823, 0.88, -0.136, -0.793 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1576)"); } }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 2; int K = 1; double alpha = 0; double beta = -1; double A[] = { -0.058, 0.649 }; int lda = 1; double C[] = { -0.187, 0.294, -0.004, -0.933 }; int ldc = 2; double C_expected[] = { 0.187, 0.294, 0.004, 0.933 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1577)"); } }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha = 1; double beta = -1; double A[] = { 0.263, -0.289 }; int lda = 1; double C[] = { 0.554, -0.679, 0.993, 0.758 }; int ldc = 2; double C_expected[] = { -0.484831, -0.679, -1.069007, -0.674479 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1578)"); } }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha = 1; double beta = -1; double A[] = { -0.265, -0.837 }; int lda = 2; double C[] = { -0.994, 0.967, -0.34, -0.069 }; int ldc = 2; double C_expected[] = { 1.064225, -0.745195, -0.34, 0.769569 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1579)"); } }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 2; int K = 1; double alpha = -0.3; double beta = 1; double A[] = { -0.464, 0.394 }; int lda = 2; double C[] = { -0.45, -0.447, 0.649, 0.055 }; int ldc = 2; double C_expected[] = { -0.5145888, -0.447, 0.7038448, 0.0084292 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1580)"); } }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 2; int K = 1; double alpha = -0.3; double beta = 1; double A[] = { 0.815, 0.168 }; int lda = 1; double C[] = { 0.817, -0.957, -0.395, -0.382 }; int ldc = 2; double C_expected[] = { 0.6177325, -0.998076, -0.395, -0.3904672 }; cblas_dsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyrk(case 1581)"); } }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.447f, -0.507f, -0.425f, 0.701f }; int lda = 1; float C[] = { 0.16f, -0.245f, 0.922f, -0.437f, 0.24f, 0.008f, -0.095f, 0.749f }; int ldc = 2; float C_expected[] = { -0.0235f, 0.0895f, -0.2329f, 0.2233f, 0.24f, 0.008f, -0.0464f, -0.2342f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1582) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1582) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { -0.421f, -0.435f, -0.914f, -0.493f }; int lda = 2; float C[] = { -0.761f, -0.38f, 0.043f, -0.999f, 0.779f, 0.238f, 0.082f, 0.394f }; int ldc = 2; float C_expected[] = { 0.2663f, 0.0379f, 0.043f, -0.999f, -0.2575f, 0.0065f, -0.064f, -0.11f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1583) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1583) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 2; int K = 1; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.827f, -0.896f, 0.417f, 0.865f }; int lda = 2; float C[] = { -0.349f, -0.31f, 0.972f, 0.794f, -0.906f, -0.595f, -0.089f, -0.333f }; int ldc = 2; float C_expected[] = { 0.254587f, 1.54008f, -1.4909f, -0.482723f, -0.906f, -0.595f, 0.634336f, -0.63041f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1584) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1584) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 2; int K = 1; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.607f, 0.747f, -0.889f, 0.333f }; int lda = 1; float C[] = { 0.244f, 0.564f, 0.009f, 0.578f, -0.827f, 0.558f, -0.337f, 0.731f }; int ldc = 2; float C_expected[] = { 0.05996f, -1.05166f, 0.009f, 0.578f, 0.980674f, 0.211852f, -0.651432f, 0.339074f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1585) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1585) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.784f, -0.281f, -0.88f, 0.479f }; int lda = 1; float C[] = { 0.491f, 0.531f, 0.805f, -0.097f, 0.728f, 0.674f, -0.705f, -0.754f }; int ldc = 2; float C_expected[] = { 0.004695f, 0.050392f, 0.805f, -0.097f, -1.22932f, 1.35082f, 1.29896f, -1.54804f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1586) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1586) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.272f, -0.146f, 0.155f, 0.038f }; int lda = 2; float C[] = { 0.533f, -0.41f, -0.904f, 0.301f, -0.836f, 0.57f, -0.374f, -0.293f }; int ldc = 2; float C_expected[] = { 0.462668f, 0.453576f, -0.253292f, -0.916294f, -0.836f, 0.57f, 0.315581f, -0.36222f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1587) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1587) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 2; int K = 1; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { -0.055f, -0.127f, -0.896f, -0.625f }; int lda = 2; float C[] = { -0.619f, 0.511f, -0.877f, 0.557f, -0.801f, -0.437f, -0.922f, 0.332f }; int ldc = 2; float C_expected[] = { 0.60503f, -0.524104f, -0.877f, 0.557f, 0.652833f, 0.406905f, -0.198f, 0.080191f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1588) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1588) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 2; int K = 1; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { -0.528f, 0.759f, -0.079f, 0.952f }; int lda = 1; float C[] = { 0.775f, 0.855f, 0.786f, 0.525f, 0.85f, 0.044f, 0.658f, 0.947f }; int ldc = 2; float C_expected[] = { 0.026504f, -1.1523f, -0.223383f, -1.20586f, 0.85f, 0.044f, -0.507584f, -1.84706f }; cblas_csyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyrk(case 1589) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyrk(case 1589) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { -0.049, -0.687, -0.434, 0.294 }; int lda = 1; double C[] = { 0.937, -0.113, 0.796, 0.293, 0.876, -0.199, -0.757, -0.103 }; int ldc = 2; double C_expected[] = { 0.467432, -0.045674, 1.019244, 0.576752, 0.876, -0.199, -0.65508, -0.358192 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1590) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1590) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { 0.359, -0.364, 0.926, -0.69 }; int lda = 2; double C[] = { 0.306, 0.249, 0.28, 0.229, 0.866, 0.092, 0.886, -0.283 }; int ldc = 2; double C_expected[] = { 0.302385, -0.012352, 0.28, 0.229, 0.947274, -0.492774, 1.267376, -1.56088 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1591) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1591) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 0}; double A[] = { 0.607, 0.555, -0.85, 0.831 }; int lda = 2; double C[] = { 0.069, 0.368, 0.551, -0.912, -0.243, -0.063, -0.924, 0.192 }; int ldc = 2; double C_expected[] = { -0.0855042, -0.1960886, 0.2898798, -0.1075156, -0.243, -0.063, 0.1316883, 0.4270039 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1592) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1592) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 0}; double A[] = { 0.427, 0.86, -0.136, 0.002 }; int lda = 1; double C[] = { 0.398, -0.47, 0.011, -0.547, -0.106, 0.016, 0.681, 0.246 }; int ldc = 2; double C_expected[] = { 0.0937373, -0.2760591, 0.011, -0.547, 0.0295482, 0.0288526, -0.0054932, 0.0020124 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1593) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1593) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.718, 0.023, 0.355, -0.492 }; int lda = 1; double C[] = { -0.637, -0.727, -0.475, -0.776, 0.802, -0.55, -0.837, 0.222 }; int ldc = 2; double C_expected[] = { -0.7948013, -0.6854089, -0.475, -0.776, 0.7566473, -0.4198521, -0.7672563, 0.3151921 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1594) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1594) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.209, 0.139, -0.202, -0.223 }; int lda = 2; double C[] = { -0.695, 0.524, 0.212, -0.88, -0.752, 0.291, 0.684, -0.124 }; int ldc = 2; double C_expected[] = { -0.7081182, 0.5090054, 0.2228348, -0.8587166, -0.752, 0.291, 0.6776683, -0.1519201 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1595) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1595) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {1, 0}; double A[] = { -0.365, -0.624, 0.632, 0.348 }; int lda = 2; double C[] = { 0.877, 0.927, -0.377, 0.967, 0.008, 0.292, -0.779, 0.794 }; int ldc = 2; double C_expected[] = { 0.9082933, 0.7647289, -0.377, 0.967, 0.0641972, 0.4470636, -0.9064832, 0.6898704 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1596) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1596) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 2; int K = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {1, 0}; double A[] = { -0.067, -0.586, 0.208, 0.331 }; int lda = 1; double C[] = { 0.584, -0.454, 0.93, 0.782, 0.489, -0.278, 0.081, -0.919 }; int ldc = 2; double C_expected[] = { 0.6778197, -0.5114479, 0.8903975, 0.8432225, 0.489, -0.278, 0.0871195, -0.9669385 }; cblas_zsyrk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyrk(case 1597) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyrk(case 1597) imag"); }; }; }; } gsl-1.16/cblas/test_gemm.c0000664000252300025230000012251712171574312012376 00000000000000#include #include #include #include #include "tests.h" void test_gemm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha = 1.0f; float beta = 0.0f; float A[] = { 0.199f, 0.237f, 0.456f, 0.377f }; int lda = 4; float B[] = { 0.842f, -0.734f, 0.323f, -0.957f, -0.303f, -0.873f, -0.871f, -0.819f }; int ldb = 2; float C[] = { 0.498f, -0.925f }; int ldc = 2; float C_expected[] = { -0.222426f, -1.07973f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1466)"); } }; }; { int order = 102; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha = 1.0f; float beta = 0.0f; float A[] = { -0.83f, 0.922f, -0.228f, -0.003f }; int lda = 1; float B[] = { 0.072f, 0.345f, 0.944f, -0.39f, -0.577f, 0.656f, -0.693f, -0.453f }; int ldb = 4; float C[] = { 0.583f, 0.522f }; int ldc = 1; float C_expected[] = { 0.044268f, 1.24311f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1467)"); } }; }; { int order = 101; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha = 0.1f; float beta = 0.1f; float A[] = { -0.838f, 0.622f, -0.494f, 0.304f }; int lda = 4; float B[] = { 0.147f, 0.134f, 0.169f, 0.734f, -0.7f, 0.541f, -0.794f, -0.256f }; int ldb = 4; float C[] = { -0.632f, -0.559f }; int ldc = 2; float C_expected[] = { -0.0532188f, 0.0678514f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1468)"); } }; }; { int order = 102; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha = 0.1f; float beta = 0.1f; float A[] = { -0.937f, 0.635f, 0.596f, -0.51f }; int lda = 1; float B[] = { -0.688f, -0.265f, 0.049f, 0.133f, -0.918f, -0.147f, 0.977f, -0.21f }; int ldb = 2; float C[] = { 0.844f, 0.999f }; int ldc = 1; float C_expected[] = { 0.0474373f, 0.135125f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1469)"); } }; }; { int order = 101; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha = -0.3f; float beta = 0.1f; float A[] = { -0.165f, 0.638f, 0.346f, -0.697f }; int lda = 1; float B[] = { 0.499f, -0.73f, 0.262f, 0.759f, 0.664f, 0.997f, -0.702f, -0.839f }; int ldb = 2; float C[] = { 0.17f, 0.425f }; int ldc = 2; float C_expected[] = { -0.224158f, -0.417831f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1470)"); } }; }; { int order = 102; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha = -0.3f; float beta = 0.1f; float A[] = { -0.603f, -0.714f, -0.893f, 0.046f }; int lda = 4; float B[] = { 0.859f, -0.694f, -0.868f, -0.98f, -0.103f, 0.567f, -0.277f, -0.734f }; int ldb = 4; float C[] = { 0.517f, -0.622f }; int ldc = 1; float C_expected[] = { -0.160575f, -0.0234604f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1471)"); } }; }; { int order = 101; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.087f, -0.047f, -0.051f, -0.615f }; int lda = 1; float B[] = { -0.722f, -0.077f, 0.563f, 0.501f, 0.855f, 0.605f, 0.556f, -0.627f }; int ldb = 4; float C[] = { -0.181f, -0.89f }; int ldc = 2; float C_expected[] = { -0.208039f, -0.864557f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1472)"); } }; }; { int order = 102; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.753f, -0.074f, -0.247f, -0.19f }; int lda = 4; float B[] = { 0.061f, 0.743f, 0.22f, -0.682f, 0.733f, 0.417f, 0.772f, 0.665f }; int ldb = 2; float C[] = { -0.253f, 0.972f }; int ldc = 1; float C_expected[] = { -0.291994f, 0.898164f }; cblas_sgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "sgemm(case 1473)"); } }; }; { int order = 101; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha = 0; double beta = 0; double A[] = { 0.017, 0.191, 0.863, -0.97 }; int lda = 4; double B[] = { -0.207, -0.916, -0.278, 0.403, 0.885, 0.409, -0.772, -0.27 }; int ldb = 2; double C[] = { -0.274, -0.858 }; int ldc = 2; double C_expected[] = { 0.0, 0.0 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1474)"); } }; }; { int order = 102; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha = 0; double beta = 0; double A[] = { 0.571, 0.081, 0.109, 0.988 }; int lda = 1; double B[] = { -0.048, -0.753, -0.8, -0.89, -0.535, -0.017, -0.018, -0.544 }; int ldb = 4; double C[] = { -0.876, -0.792 }; int ldc = 1; double C_expected[] = { 0.0, 0.0 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1475)"); } }; }; { int order = 101; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha = -0.3; double beta = 1; double A[] = { 0.939, 0.705, 0.977, 0.4 }; int lda = 4; double B[] = { -0.089, -0.822, 0.937, 0.159, 0.789, -0.413, -0.172, 0.88 }; int ldb = 4; double C[] = { -0.619, 0.063 }; int ldc = 2; double C_expected[] = { -0.7137904, -0.1270986 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1476)"); } }; }; { int order = 102; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha = -0.3; double beta = 1; double A[] = { -0.795, 0.81, 0.388, 0.09 }; int lda = 1; double B[] = { -0.847, 0.031, -0.938, 0.09, -0.286, -0.478, -0.981, 0.881 }; int ldb = 2; double C[] = { -0.242, -0.02 }; int ldc = 1; double C_expected[] = { -0.1562981, -0.0026243 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1477)"); } }; }; { int order = 101; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha = -1; double beta = 0; double A[] = { -0.556, 0.532, 0.746, 0.673 }; int lda = 1; double B[] = { -0.525, 0.967, 0.687, -0.024, 0.527, 0.485, 0.109, -0.46 }; int ldb = 2; double C[] = { -0.495, 0.859 }; int ldc = 2; double C_expected[] = { -1.123883, 0.49819 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1478)"); } }; }; { int order = 102; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha = -1; double beta = 0; double A[] = { -0.358, 0.224, -0.941, 0.513 }; int lda = 4; double B[] = { -0.201, -0.159, -0.586, -0.016, -0.324, 0.411, 0.115, -0.229 }; int ldb = 4; double C[] = { 0.558, 0.596 }; int ldc = 1; double C_expected[] = { -0.57956, 0.017636 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1479)"); } }; }; { int order = 101; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha = -0.3; double beta = 1; double A[] = { -0.586, 0.809, 0.709, -0.524 }; int lda = 1; double B[] = { 0.768, 0.7, 0.619, -0.478, -0.129, -0.778, -0.432, 0.454 }; int ldb = 4; double C[] = { 0.042, 0.252 }; int ldc = 2; double C_expected[] = { -0.1996785, 0.5813976 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1480)"); } }; }; { int order = 102; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha = -0.3; double beta = 1; double A[] = { -0.164, 0.522, 0.948, -0.624 }; int lda = 4; double B[] = { -0.142, 0.778, 0.359, 0.622, -0.637, -0.757, -0.282, -0.805 }; int ldb = 2; double C[] = { -0.09, 0.183 }; int ldc = 1; double C_expected[] = { -0.0248334, 0.1884672 }; cblas_dgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dgemm(case 1481)"); } }; }; { int order = 101; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.082f, -0.281f, -0.096f, 0.913f, 0.974f, -0.706f, -0.773f, 0.522f }; int lda = 4; float B[] = { 0.745f, -0.664f, 0.352f, -0.733f, 0.304f, -0.555f, -0.493f, -0.089f, 0.188f, 0.631f, 0.235f, 0.152f, -0.299f, -0.731f, -0.686f, -0.332f }; int ldb = 2; float C[] = { -0.179f, -0.284f, -0.996f, -0.414f }; int ldc = 2; float C_expected[] = { -1.06679f, 1.47116f, 0.599689f, 0.933532f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1482) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1482) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.0f}; float A[] = { 0.044f, -0.33f, 0.279f, 0.712f, -0.363f, -0.788f, -0.768f, -0.551f }; int lda = 1; float B[] = { 0.138f, 0.927f, -0.178f, -0.864f, 0.888f, 0.844f, -0.199f, 0.706f, -0.034f, 0.483f, 0.499f, 0.664f, 0.648f, 0.324f, 0.97f, 0.609f }; int ldb = 4; float C[] = { -0.129f, 0.842f, 0.214f, -0.626f }; int ldc = 1; float C_expected[] = { 1.81122f, 1.76205f, 1.0574f, -0.564966f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1483) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1483) imag"); }; }; }; { int order = 101; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.812f, -0.471f, 0.241f, 0.795f, 0.439f, 0.131f, -0.636f, 0.531f }; int lda = 4; float B[] = { 0.062f, 0.807f, 0.873f, 0.372f, 0.239f, 0.804f, 0.537f, -0.954f, -0.396f, 0.838f, 0.081f, 0.15f, 0.489f, -0.438f, 0.165f, 0.429f }; int ldb = 4; float C[] = { 0.868f, 0.329f, -0.509f, 0.724f }; int ldc = 2; float C_expected[] = { -0.868f, -0.329f, 0.509f, -0.724f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1484) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1484) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.832f, 0.198f, 0.794f, -0.522f, -0.319f, 0.578f, 0.332f, 0.746f }; int lda = 1; float B[] = { -0.361f, 0.187f, -0.163f, -0.781f, 0.536f, 0.888f, -0.969f, 0.899f, 0.961f, -0.583f, 0.753f, 0.29f, -0.997f, 0.729f, -0.352f, -0.2f }; int ldb = 2; float C[] = { 0.864f, 0.735f, -0.074f, -0.228f }; int ldc = 1; float C_expected[] = { -0.864f, -0.735f, 0.074f, 0.228f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1485) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1485) imag"); }; }; }; { int order = 101; int transA = 111; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { 0.149f, 0.187f, 0.263f, -0.715f, -0.882f, -0.907f, 0.87f, -0.527f }; int lda = 4; float B[] = { -0.915f, -0.249f, -0.986f, -0.799f, -0.136f, 0.712f, 0.964f, 0.799f, -0.569f, 0.686f, 0.603f, 0.758f, 0.161f, -0.698f, -0.263f, -0.256f }; int ldb = 4; float C[] = { 0.622f, -0.824f, -0.482f, -0.161f }; int ldc = 2; float C_expected[] = { -0.246901f, 0.083044f, 1.25556f, 0.009106f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1486) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1486) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { 0.963f, -0.943f, -0.734f, -0.253f, 0.832f, 0.545f, -0.815f, -0.434f }; int lda = 1; float B[] = { 0.23f, -0.211f, 0.906f, 0.232f, -0.339f, 0.597f, -0.919f, 0.793f, 0.535f, 0.526f, 0.119f, 0.053f, 0.751f, 0.044f, 0.752f, -0.469f }; int ldb = 2; float C[] = { 0.483f, -0.266f, -0.224f, -0.692f }; int ldc = 1; float C_expected[] = { -0.047537f, 0.667177f, 1.02025f, 0.823778f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1487) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1487) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { -0.657f, -0.497f, -0.293f, -0.168f, -0.943f, -0.181f, 0.569f, 0.91f }; int lda = 1; float B[] = { -0.047f, 0.796f, -0.913f, 0.998f, 0.365f, 0.467f, -0.627f, -0.523f, 0.885f, 0.234f, -0.494f, 0.071f, -0.361f, -0.154f, -0.055f, -0.32f }; int ldb = 2; float C[] = { 0.956f, 0.268f, 0.152f, 0.717f }; int ldc = 2; float C_expected[] = { -0.668685f, 0.134477f, -0.715786f, -0.478065f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1488) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1488) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.394f, -0.482f, 0.631f, -0.833f, 0.221f, 0.672f, 0.2f, 0.967f }; int lda = 4; float B[] = { 0.708f, 0.695f, 0.111f, -0.912f, 0.376f, 0.606f, -0.997f, -0.741f, 0.349f, 0.543f, 0.372f, -0.563f, 0.129f, -0.295f, -0.672f, -0.95f }; int ldb = 4; float C[] = { 0.436f, 0.752f, 0.074f, 0.209f }; int ldc = 1; float C_expected[] = { -0.325083f, -0.301952f, -0.283022f, 0.339919f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1489) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1489) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.827f, -0.862f, 0.373f, -0.265f, -0.9f, 0.892f, -0.319f, 0.151f }; int lda = 1; float B[] = { 0.603f, 0.816f, -0.511f, 0.831f, -0.36f, -0.954f, -0.978f, 0.485f, 0.675f, 0.186f, 0.463f, 0.144f, 0.851f, -0.458f, 0.766f, -0.213f }; int ldb = 4; float C[] = { -0.335f, 0.333f, -0.4f, 0.422f }; int ldc = 2; float C_expected[] = { 2.7126f, 0.702111f, 0.437661f, 0.691294f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1490) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1490) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {1.0f, 0.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.966f, 0.476f, -0.013f, -0.655f, 0.773f, -0.543f, -0.231f, -0.353f }; int lda = 4; float B[] = { -0.684f, 0.144f, 0.018f, -0.77f, -0.688f, 0.909f, -0.094f, -0.938f, -0.757f, 0.574f, -0.479f, 0.473f, 0.0f, 0.064f, -0.168f, 0.858f }; int ldb = 2; float C[] = { -0.912f, 0.54f, 0.756f, 0.024f }; int ldc = 1; float C_expected[] = { -0.156236f, 0.839112f, -0.230206f, -0.106256f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1491) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1491) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { 0.66f, -0.113f, -0.663f, -0.856f, 0.614f, -0.344f, -0.964f, -0.532f }; int lda = 1; float B[] = { -0.606f, -0.965f, -0.279f, -0.312f, 0.63f, 0.967f, 0.041f, -0.557f, 0.663f, 0.619f, -0.134f, 0.261f, -0.388f, 0.525f, 0.222f, 0.538f }; int ldb = 4; float C[] = { 0.114f, -0.376f, -0.851f, -0.682f }; int ldc = 2; float C_expected[] = { 0.114f, -0.376f, -0.851f, -0.682f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1492) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1492) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { 0.212f, -0.752f, 0.679f, 0.49f, -0.029f, -0.488f, 0.567f, 0.374f }; int lda = 4; float B[] = { -0.914f, 0.734f, -0.845f, 0.059f, -0.297f, 0.152f, -0.417f, -0.669f, 0.831f, -0.544f, 0.022f, 0.102f, -0.379f, -0.357f, -0.394f, -0.588f }; int ldb = 2; float C[] = { -0.584f, 0.373f, 0.235f, 0.521f }; int ldc = 1; float C_expected[] = { -0.584f, 0.373f, 0.235f, 0.521f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1493) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1493) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.135f, 0.128f, 0.909f, -0.963f, 0.299f, -0.944f, 0.944f, 0.942f }; int lda = 1; float B[] = { 0.924f, -0.317f, -0.992f, -0.854f, -0.435f, 0.102f, 0.126f, 0.862f, 0.952f, 0.68f, 0.545f, 0.168f, 0.752f, 0.549f, 0.687f, -0.76f }; int ldb = 2; float C[] = { -0.369f, -0.33f, 0.849f, -0.632f }; int ldc = 2; float C_expected[] = { 0.326537f, 0.37603f, -0.86067f, 0.529817f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1494) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1494) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 111; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.061f, -0.271f, -0.043f, -0.023f, 0.694f, 0.333f, 0.733f, -0.967f }; int lda = 4; float B[] = { 0.088f, -0.607f, 0.589f, 0.375f, -0.897f, -0.954f, -0.216f, -0.195f, -0.865f, -0.511f, -0.219f, 0.535f, 0.976f, 0.582f, 0.464f, -0.041f }; int ldb = 4; float C[] = { 0.533f, -0.63f, 0.405f, 0.667f }; int ldc = 1; float C_expected[] = { -0.459906f, 0.552595f, -0.425391f, -0.533626f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1495) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1495) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { -0.676f, -0.116f, 0.707f, -0.256f, -0.893f, -0.966f, 0.159f, -0.246f }; int lda = 1; float B[] = { 0.059f, 0.281f, -0.93f, -0.263f, 0.583f, -0.11f, 0.639f, -0.96f, -0.878f, 0.984f, 0.058f, 0.977f, -0.567f, 0.561f, -0.048f, -0.798f }; int ldb = 4; float C[] = { 0.362f, -0.808f, 0.428f, -0.112f }; int ldc = 2; float C_expected[] = { 0.362f, -0.808f, 0.428f, -0.112f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1496) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1496) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 112; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { -0.915f, 0.439f, 0.171f, -0.019f, 0.843f, 0.944f, -0.581f, 0.856f }; int lda = 4; float B[] = { -0.284f, 0.207f, -0.27f, 0.832f, 0.894f, -0.626f, -0.305f, -0.006f, 0.562f, -0.744f, -0.533f, 0.126f, -0.375f, -0.333f, 0.275f, 0.748f }; int ldb = 2; float C[] = { -0.763f, -0.829f, 0.708f, -0.613f }; int ldc = 1; float C_expected[] = { -0.763f, -0.829f, 0.708f, -0.613f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1497) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1497) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.496f, -0.9f, 0.825f, -0.678f, 0.41f, -0.585f, -0.264f, 0.308f }; int lda = 1; float B[] = { 0.907f, 0.972f, -0.724f, 0.745f, -0.601f, 0.589f, 0.759f, -0.521f, -0.161f, -0.321f, 0.341f, -0.981f, -0.378f, -0.671f, -0.314f, -0.878f }; int ldb = 4; float C[] = { -0.293f, 0.07f, 0.087f, -0.542f }; int ldc = 2; float C_expected[] = { 0.10357f, -0.163927f, 0.444626f, -0.0076744f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1498) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1498) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 113; int M = 1; int N = 2; int K = 4; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { -0.225f, -0.629f, -0.939f, -0.836f, -0.841f, -0.794f, 0.836f, -0.65f }; int lda = 4; float B[] = { 0.869f, -0.453f, 0.8f, -0.947f, 0.545f, 0.716f, -0.507f, -0.228f, 0.722f, 0.372f, 0.77f, 0.317f, -0.153f, -0.524f, -0.465f, -0.684f }; int ldb = 2; float C[] = { -0.896f, 0.91f, -0.973f, -0.269f }; int ldc = 1; float C_expected[] = { -1.18974f, -1.0134f, 0.189027f, -1.14494f }; cblas_cgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cgemm(case 1499) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cgemm(case 1499) imag"); }; }; }; { int order = 101; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {1, 0}; double beta[2] = {-1, 0}; double A[] = { -0.33, 0.457, 0.428, -0.19, 0.86, -0.53, 0.058, -0.942 }; int lda = 4; double B[] = { 0.434, 0.653, -0.124, 0.191, -0.112, -0.84, -0.72, 0.075, -0.503, -0.109, 0.3, -0.898, 0.489, 0.384, 0.993, -0.804 }; int ldb = 2; double C[] = { -0.792, -0.155, -0.608, -0.243 }; int ldc = 2; double C_expected[] = { 0.042563, -0.465908, -0.649991, -1.621116 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1500) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1500) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {1, 0}; double beta[2] = {-1, 0}; double A[] = { 0.726, -0.438, -0.23, -0.054, -0.019, 0.902, -0.883, -0.235 }; int lda = 1; double B[] = { 0.159, -0.18, 0.386, -0.167, 0.971, -0.072, 0.87, -0.839, 0.474, 0.956, -0.235, 0.332, 0.826, -0.056, -0.941, 0.01 }; int ldb = 4; double C[] = { -0.799, 0.973, -0.549, -0.177 }; int ldc = 1; double C_expected[] = { -0.181084, 0.257841, 2.251901, 1.558195 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1501) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1501) imag"); }; }; }; { int order = 101; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.109, 0.892, -0.723, 0.793, 0.109, -0.419, -0.534, 0.448 }; int lda = 4; double B[] = { -0.875, -0.31, -0.027, 0.067, 0.274, -0.126, -0.548, 0.497, 0.681, 0.388, 0.909, 0.889, 0.982, -0.074, -0.788, 0.233 }; int ldb = 4; double C[] = { 0.503, 0.067, 0.239, 0.876 }; int ldc = 2; double C_expected[] = { 0.6553584, 0.0864583, 0.2559136, 0.7518389 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1502) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1502) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.334, 0.192, -0.992, -0.168, 0.154, -0.75, -0.797, -0.76 }; int lda = 1; double B[] = { -0.82, 0.147, -0.237, 0.68, 0.317, 0.257, -0.406, -0.802, 0.058, 0.012, -0.832, 0.949, -0.263, -0.085, -0.064, 0.492 }; int ldb = 2; double C[] = { 0.079, -0.602, -0.392, 0.316 }; int ldc = 1; double C_expected[] = { 0.0980569, -0.6430449, -0.539207, 0.4226848 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1503) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1503) imag"); }; }; }; { int order = 101; int transA = 111; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0}; double beta[2] = {-1, 0}; double A[] = { -0.305, -0.698, -0.072, -0.383, 0.364, -0.656, 0.819, 0.194 }; int lda = 4; double B[] = { 0.682, 0.498, -0.389, 0.923, -0.853, -0.558, -0.722, -0.085, -0.27, 0.026, -0.107, -0.036, 0.644, -0.327, -0.894, 0.34 }; int ldb = 4; double C[] = { 0.981, -0.336, -0.377, -0.41 }; int ldc = 2; double C_expected[] = { -0.981, 0.336, 0.377, 0.41 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1504) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1504) imag"); }; }; }; { int order = 102; int transA = 111; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0}; double beta[2] = {-1, 0}; double A[] = { -0.306, -0.709, -0.196, 0.285, 0.873, -0.802, 0.715, -0.179 }; int lda = 1; double B[] = { 0.028, 0.109, 0.87, -0.446, 0.735, 0.731, 0.021, -0.186, 0.541, 0.97, -0.333, 0.002, -0.089, -0.01, 0.331, 0.851 }; int ldb = 2; double C[] = { 0.902, -0.584, -0.695, -0.607 }; int ldc = 1; double C_expected[] = { -0.902, 0.584, 0.695, 0.607 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1505) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1505) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {-1, 0}; double beta[2] = {1, 0}; double A[] = { 0.517, -0.136, 0.72, -0.237, 0.121, -0.66, 0.005, 0.759 }; int lda = 1; double B[] = { -0.606, 0.049, 0.807, -0.236, -0.258, -0.412, 0.75, -0.659, 0.993, -0.029, -0.968, 0.707, -0.362, -0.005, 0.096, -0.241 }; int ldb = 2; double C[] = { 0.63, 0.922, 0.025, -0.535 }; int ldc = 2; double C_expected[] = { 1.117044, 1.983417, -1.276831, -0.447092 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1506) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1506) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {-1, 0}; double beta[2] = {1, 0}; double A[] = { 0.064, 0.371, -0.01, -0.262, 0.143, -0.081, 0.1, -0.062 }; int lda = 4; double B[] = { -0.749, 0.289, -0.239, -0.226, 0.284, 0.668, 0.305, 0.075, -0.36, 0.166, -0.416, 0.234, -0.267, 0.525, 0.116, -0.561 }; int ldb = 4; double C[] = { 0.671, 0.763, 0.444, -0.246 }; int ldc = 1; double C_expected[] = { 0.753107, 0.896395, 0.481996, -0.263126 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1507) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1507) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.956, -0.751, 0.671, -0.633, 0.648, -0.042, 0.948, 0.826 }; int lda = 1; double B[] = { 0.921, 0.506, -0.609, 0.817, -0.686, 0.991, 0.616, -0.482, -0.02, -0.34, 0.559, 0.976, 0.431, 0.385, -0.164, -0.778 }; int ldb = 4; double C[] = { 0.074, -0.01, 0.165, 0.166 }; int ldc = 2; double C_expected[] = { 0.166046, 0.491557, 1.473191, -0.033821 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1508) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1508) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.698, -0.062, 0.023, 0.704, 0.443, -0.46, 0.541, 0.296 }; int lda = 4; double B[] = { 0.787, -0.199, 0.835, -0.276, -0.515, 0.467, -0.76, -0.483, 0.015, -0.394, -0.748, 0.02, 0.573, 0.3, -0.088, -0.238 }; int ldb = 2; double C[] = { 0.935, -0.655, -0.797, 0.071 }; int ldc = 1; double C_expected[] = { -1.070679, 0.178755, -0.344714, -0.308137 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1509) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1509) imag"); }; }; }; { int order = 101; int transA = 112; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0.1}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.202, -0.219, 0.741, 0.527, 0.054, 0.16, -0.359, 0.338 }; int lda = 1; double B[] = { -0.872, 0.995, 0.722, 0.618, -0.27, 0.939, -0.743, 0.547, -0.864, 0.376, -0.997, -0.63, 0.887, -0.454, 0.436, -0.039 }; int ldb = 4; double C[] = { -0.684, 0.463, -0.386, -0.524 }; int ldc = 2; double C_expected[] = { 0.1423153, -0.066679, 0.1175618, 0.0012949 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1510) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1510) imag"); }; }; }; { int order = 102; int transA = 112; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0.1}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.855, -0.173, -0.679, 0.824, 0.469, 0.786, 0.757, -0.109 }; int lda = 4; double B[] = { 0.483, -0.888, -0.757, 0.551, -0.81, 0.23, -0.078, 0.725, -0.592, 0.394, 0.884, 0.802, -0.813, -0.016, -0.853, 0.783 }; int ldb = 2; double C[] = { 0.181, -0.368, -0.864, -0.784 }; int ldc = 1; double C_expected[] = { 0.1728438, 0.1183508, 0.2526999, 0.3004174 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1511) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1511) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {-1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.446, -0.65, -0.724, 0.014, 0.792, -0.695, -0.81, -0.358 }; int lda = 1; double B[] = { -0.08, 0.216, 0.689, 0.699, 0.073, -0.346, 0.821, -0.668, -0.798, 0.869, 0.451, -0.061, -0.41, 0.316, 0.104, -0.514 }; int ldb = 2; double C[] = { -0.476, 0.211, -0.912, -0.243 }; int ldc = 2; double C_expected[] = { 1.372475, -0.135616, 0.549353, -1.968747 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1512) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1512) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 111; int M = 1; int N = 2; int K = 4; double alpha[2] = {-1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.669, 0.046, -0.094, 0.666, 0.23, 0.448, -0.795, -0.142 }; int lda = 4; double B[] = { 0.037, -0.154, -0.739, 0.905, 0.793, -0.53, -0.34, 0.428, 0.072, -0.263, -0.603, -0.905, 0.681, -0.083, -0.511, -0.337 }; int ldb = 4; double C[] = { 0.247, 0.575, -0.836, -0.883 }; int ldc = 1; double C_expected[] = { -0.975939, 0.415528, 0.275533, 0.002716 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1513) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1513) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0}; double beta[2] = {-1, 0}; double A[] = { 0.369, 0.506, 0.217, -0.739, -0.395, 0.16, -0.329, -0.954 }; int lda = 1; double B[] = { -0.622, -0.945, 0.416, -0.884, 0.797, -0.74, 0.519, -0.789, -0.348, 0.563, -0.398, -0.956, 0.227, 0.84, -0.079, 0.847 }; int ldb = 4; double C[] = { 0.833, 0.761, 0.074, -0.448 }; int ldc = 2; double C_expected[] = { -0.833, -0.761, -0.074, 0.448 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1514) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1514) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 112; int M = 1; int N = 2; int K = 4; double alpha[2] = {0, 0}; double beta[2] = {-1, 0}; double A[] = { -0.141, 0.275, 0.717, 0.775, -0.701, -0.689, -0.883, -0.077 }; int lda = 4; double B[] = { -0.526, -0.437, 0.133, -0.209, -0.83, 0.328, 0.916, -0.337, 0.762, -0.664, -0.566, 0.955, 0.168, 0.488, -0.172, -0.535 }; int ldb = 2; double C[] = { -0.88, 0.945, 0.416, 0.99 }; int ldc = 1; double C_expected[] = { 0.88, -0.945, -0.416, -0.99 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1515) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1515) imag"); }; }; }; { int order = 101; int transA = 113; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 0.1}; double A[] = { -0.534, -0.013, -0.258, -0.31, -0.211, -0.883, -0.89, -0.499 }; int lda = 1; double B[] = { -0.185, -0.798, -0.34, 0.716, 0.035, 0.968, -0.26, 0.784, -0.889, -0.344, -0.685, -0.647, -0.764, 0.03, 0.626, -0.989 }; int ldb = 4; double C[] = { -0.793, -0.551, 0.182, 0.838 }; int ldc = 2; double C_expected[] = { -0.5507177, -0.0286821, 0.2222276, 0.5197398 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1516) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1516) imag"); }; }; }; { int order = 102; int transA = 113; int transB = 113; int M = 1; int N = 2; int K = 4; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 0.1}; double A[] = { 0.575, -0.128, -0.702, 0.758, 0.383, -0.914, 0.157, 0.368 }; int lda = 4; double B[] = { 0.572, -0.841, 0.223, -0.334, -0.823, -0.84, 0.671, -0.871, 0.241, 0.927, -0.344, 0.281, -0.034, -0.104, 0.587, -0.329 }; int ldb = 2; double C[] = { -0.612, 0.167, 0.647, 0.447 }; int ldc = 1; double C_expected[] = { -0.7876717, 0.0341179, -0.0800018, 0.5717566 }; cblas_zgemm(order, transA, transB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zgemm(case 1517) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zgemm(case 1517) imag"); }; }; }; } gsl-1.16/cblas/test_rotmg.c0000664000252300025230000001430112171574312012570 00000000000000#include #include #include #include #include "tests.h" void test_rotmg (void) { const double flteps = 1e-4, dbleps = 1e-6; { float d1 = -1630.28519312f; float d2 = 44320.1964703f; float b1 = 1274.7681352f; float b2 = 0.983006912864f; float h[] = { -999.0f, -999.1f, -999.2f, -999.3f, -999.4f }; float d1_expected = 0.0f; float d2_expected = 0.0f; float b1_expected = 0.0f; float h0_expected = -1.0f; float h11_expected = 0.0f; float h21_expected = 0.0f; float h12_expected = 0.0f; float h22_expected = 0.0f; cblas_srotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, flteps, "srotmg(case 606)"); gsl_test_rel(d2, d2_expected, flteps, "srotmg(case 607)"); gsl_test_rel(b1, b1_expected, flteps, "srotmg(case 608)"); gsl_test_rel(h[0], h0_expected, flteps, "srotmg(case 609)"); gsl_test_rel(h[1], h11_expected, flteps, "srotmg(case 610)"); gsl_test_rel(h[2], h21_expected, flteps, "srotmg(case 611)"); gsl_test_rel(h[3], h12_expected, flteps, "srotmg(case 612)"); gsl_test_rel(h[4], h22_expected, flteps, "srotmg(case 613)"); }; { double d1 = 0.0890831089656; double d2 = 24998.3892082; double b1 = 34657.8864443; double b2 = 1.27708980357; double h[] = { -999.0, -999.1, -999.2, -999.3, -999.4 }; double d1_expected = 0.0890491788526; double d2_expected = 24988.8677829; double b1_expected = 34671.0920237; double h0_expected = 0; double h11_expected = -999.1; double h21_expected = -3.6848461767e-05; double h12_expected = 10.34036867; double h22_expected = -999.4; cblas_drotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, dbleps, "drotmg(case 614)"); gsl_test_rel(d2, d2_expected, dbleps, "drotmg(case 615)"); gsl_test_rel(b1, b1_expected, dbleps, "drotmg(case 616)"); gsl_test_rel(h[0], h0_expected, dbleps, "drotmg(case 617)"); gsl_test_rel(h[1], h11_expected, dbleps, "drotmg(case 618)"); gsl_test_rel(h[2], h21_expected, dbleps, "drotmg(case 619)"); gsl_test_rel(h[3], h12_expected, dbleps, "drotmg(case 620)"); gsl_test_rel(h[4], h22_expected, dbleps, "drotmg(case 621)"); }; { float d1 = 0.00100326116366f; float d2 = -1.20359225232f; float b1 = -7.45489498808f; float b2 = 0.159616854019f; float h[] = { -999.0f, -999.1f, -999.2f, -999.3f, -999.4f }; float d1_expected = 0.00222932574734f; float d2_expected = -2.67447728926f; float b1_expected = -3.35491869218f; float h0_expected = 0.0f; float h11_expected = -999.1f; float h21_expected = 0.0214110130692f; float h12_expected = 25.6863620142f; float h22_expected = -999.4f; cblas_srotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, flteps, "srotmg(case 622)"); gsl_test_rel(d2, d2_expected, flteps, "srotmg(case 623)"); gsl_test_rel(b1, b1_expected, flteps, "srotmg(case 624)"); gsl_test_rel(h[0], h0_expected, flteps, "srotmg(case 625)"); gsl_test_rel(h[1], h11_expected, flteps, "srotmg(case 626)"); gsl_test_rel(h[2], h21_expected, flteps, "srotmg(case 627)"); gsl_test_rel(h[3], h12_expected, flteps, "srotmg(case 628)"); gsl_test_rel(h[4], h22_expected, flteps, "srotmg(case 629)"); }; { double d1 = -49.1978123005; double d2 = 0.228703451277; double b1 = 1.8901039144; double b2 = 7081.47754386; double h[] = { -999.0, -999.1, -999.2, -999.3, -999.4 }; double d1_expected = 0; double d2_expected = 0; double b1_expected = 0; double h0_expected = -1; double h11_expected = 0; double h21_expected = 0; double h12_expected = 0; double h22_expected = 0; cblas_drotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, dbleps, "drotmg(case 630)"); gsl_test_rel(d2, d2_expected, dbleps, "drotmg(case 631)"); gsl_test_rel(b1, b1_expected, dbleps, "drotmg(case 632)"); gsl_test_rel(h[0], h0_expected, dbleps, "drotmg(case 633)"); gsl_test_rel(h[1], h11_expected, dbleps, "drotmg(case 634)"); gsl_test_rel(h[2], h21_expected, dbleps, "drotmg(case 635)"); gsl_test_rel(h[3], h12_expected, dbleps, "drotmg(case 636)"); gsl_test_rel(h[4], h22_expected, dbleps, "drotmg(case 637)"); }; { float d1 = 0.00760694276009f; float d2 = -1.07649167228f; float b1 = -22584.0076391f; float b2 = -0.00305597817159f; float h[] = { -999.0f, -999.1f, -999.2f, -999.3f, -999.4f }; float d1_expected = 0.00760694276011f; float d2_expected = -1.07649167228f; float b1_expected = -22584.007639f; float h0_expected = 0.0f; float h11_expected = -999.1f; float h21_expected = -1.35316026298e-07f; float h12_expected = -1.91491615001e-05f; float h22_expected = -999.4f; cblas_srotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, flteps, "srotmg(case 638)"); gsl_test_rel(d2, d2_expected, flteps, "srotmg(case 639)"); gsl_test_rel(b1, b1_expected, flteps, "srotmg(case 640)"); gsl_test_rel(h[0], h0_expected, flteps, "srotmg(case 641)"); gsl_test_rel(h[1], h11_expected, flteps, "srotmg(case 642)"); gsl_test_rel(h[2], h21_expected, flteps, "srotmg(case 643)"); gsl_test_rel(h[3], h12_expected, flteps, "srotmg(case 644)"); gsl_test_rel(h[4], h22_expected, flteps, "srotmg(case 645)"); }; { double d1 = 0.000283076346391; double d2 = 20.1907649901; double b1 = -0.274927034914; double b2 = 18.6645358259; double h[] = { -999.0, -999.1, -999.2, -999.3, -999.4 }; double d1_expected = 20.1907649287; double d2_expected = 0.00028307634553; double b1_expected = 18.6645358827; double h0_expected = 1; double h11_expected = -2.06514743478e-07; double h21_expected = -999.2; double h12_expected = -999.3; double h22_expected = -0.0147299154652; cblas_drotmg(&d1, &d2, &b1, b2, h); gsl_test_rel(d1, d1_expected, dbleps, "drotmg(case 646)"); gsl_test_rel(d2, d2_expected, dbleps, "drotmg(case 647)"); gsl_test_rel(b1, b1_expected, dbleps, "drotmg(case 648)"); gsl_test_rel(h[0], h0_expected, dbleps, "drotmg(case 649)"); gsl_test_rel(h[1], h11_expected, dbleps, "drotmg(case 650)"); gsl_test_rel(h[2], h21_expected, dbleps, "drotmg(case 651)"); gsl_test_rel(h[3], h12_expected, dbleps, "drotmg(case 652)"); gsl_test_rel(h[4], h22_expected, dbleps, "drotmg(case 653)"); }; } gsl-1.16/cblas/dspr.c0000664000252300025230000000052212171574312011351 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dspr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *Ap) { #define BASE double #include "source_spr.h" #undef BASE } gsl-1.16/cblas/chbmv.c0000664000252300025230000000065112171574312011503 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_chbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE float #include "source_hbmv.h" #undef BASE } gsl-1.16/cblas/test_nrm2.c0000664000252300025230000000527212171574312012325 00000000000000#include #include #include #include #include "tests.h" void test_nrm2 (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float X[] = { 0.317f }; int incX = -1; float expected = 0.0f; float f; f = cblas_snrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "snrm2(case 28)"); }; { int N = 1; double X[] = { 0.071 }; int incX = -1; double expected = 0; double f; f = cblas_dnrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dnrm2(case 29)"); }; { int N = 1; float X[] = { 0.776f, 0.983f }; int incX = -1; float expected = 0.0f; float f; f = cblas_scnrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "scnrm2(case 30)"); }; { int N = 1; double X[] = { 0.549, -0.354 }; int incX = -1; double expected = 0; double f; f = cblas_dznrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dznrm2(case 31)"); }; { int N = 2; float X[] = { 0.14f, -0.632f }; int incX = 1; float expected = 0.647320631527f; float f; f = cblas_snrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "snrm2(case 32)"); }; { int N = 2; double X[] = { 0.696, -0.804 }; int incX = 1; double expected = 1.06340584915; double f; f = cblas_dnrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dnrm2(case 33)"); }; { int N = 2; float X[] = { 0.281f, -0.063f, 0.367f, 0.232f }; int incX = 1; float expected = 0.521001919382f; float f; f = cblas_scnrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "scnrm2(case 34)"); }; { int N = 2; double X[] = { -0.359, -0.76, -0.906, -0.108 }; int incX = 1; double expected = 1.24055672986; double f; f = cblas_dznrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dznrm2(case 35)"); }; { int N = 2; float X[] = { 0.918f, -0.126f }; int incX = -1; float expected = 0.0f; float f; f = cblas_snrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "snrm2(case 36)"); }; { int N = 2; double X[] = { 0.217, -0.588 }; int incX = -1; double expected = 0; double f; f = cblas_dnrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dnrm2(case 37)"); }; { int N = 2; float X[] = { 0.31f, 0.059f, -0.442f, 0.987f }; int incX = -1; float expected = 0.0f; float f; f = cblas_scnrm2(N, X, incX); gsl_test_rel(f, expected, flteps, "scnrm2(case 38)"); }; { int N = 2; double X[] = { 0.609, 0.615, -0.143, -0.957 }; int incX = -1; double expected = 0; double f; f = cblas_dznrm2(N, X, incX); gsl_test_rel(f, expected, dbleps, "dznrm2(case 39)"); }; } gsl-1.16/cblas/source_syr2k_c.h0000664000252300025230000001714112171574312013347 00000000000000/* blas/source_syr2k_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS13(SYR2K,Order,Uplo,Trans,N,K,alpha,A,lda,B,ldb,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (Order == CblasRowMajor) { uplo = Uplo; trans = Trans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (Trans == CblasNoTrans) ? CblasTrans : CblasNoTrans; } /* form C := beta*C */ if (beta_real == 0.0 && beta_imag == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bjk_real = CONST_REAL(B, j * ldb + k); const BASE Bjk_imag = CONST_IMAG(B, j * ldb + k); temp_real += ((Aik_real * Bjk_real - Aik_imag * Bjk_imag) + (Bik_real * Ajk_real - Bik_imag * Ajk_imag)); temp_imag += ((Aik_real * Bjk_imag + Aik_imag * Bjk_real) + (Bik_real * Ajk_imag + Bik_imag * Ajk_real)); } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (uplo == CblasUpper && trans == CblasTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE Aki_real = CONST_REAL(A, k * lda + i); BASE Aki_imag = CONST_IMAG(A, k * lda + i); BASE Bki_real = CONST_REAL(B, k * ldb + i); BASE Bki_imag = CONST_IMAG(B, k * ldb + i); BASE temp1_real = alpha_real * Aki_real - alpha_imag * Aki_imag; BASE temp1_imag = alpha_real * Aki_imag + alpha_imag * Aki_real; BASE temp2_real = alpha_real * Bki_real - alpha_imag * Bki_imag; BASE temp2_imag = alpha_real * Bki_imag + alpha_imag * Bki_real; for (j = i; j < N; j++) { BASE Akj_real = CONST_REAL(A, k * lda + j); BASE Akj_imag = CONST_IMAG(A, k * lda + j); BASE Bkj_real = CONST_REAL(B, k * ldb + j); BASE Bkj_imag = CONST_IMAG(B, k * ldb + j); REAL(C, i * lda + j) += (temp1_real * Bkj_real - temp1_imag * Bkj_imag) + (temp2_real * Akj_real - temp2_imag * Akj_imag); IMAG(C, i * lda + j) += (temp1_real * Bkj_imag + temp1_imag * Bkj_real) + (temp2_real * Akj_imag + temp2_imag * Akj_real); } } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bjk_real = CONST_REAL(B, j * ldb + k); const BASE Bjk_imag = CONST_IMAG(B, j * ldb + k); temp_real += ((Aik_real * Bjk_real - Aik_imag * Bjk_imag) + (Bik_real * Ajk_real - Bik_imag * Ajk_imag)); temp_imag += ((Aik_real * Bjk_imag + Aik_imag * Bjk_real) + (Bik_real * Ajk_imag + Bik_imag * Ajk_real)); } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (uplo == CblasLower && trans == CblasTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE Aki_real = CONST_REAL(A, k * lda + i); BASE Aki_imag = CONST_IMAG(A, k * lda + i); BASE Bki_real = CONST_REAL(B, k * ldb + i); BASE Bki_imag = CONST_IMAG(B, k * ldb + i); BASE temp1_real = alpha_real * Aki_real - alpha_imag * Aki_imag; BASE temp1_imag = alpha_real * Aki_imag + alpha_imag * Aki_real; BASE temp2_real = alpha_real * Bki_real - alpha_imag * Bki_imag; BASE temp2_imag = alpha_real * Bki_imag + alpha_imag * Bki_real; for (j = 0; j <= i; j++) { BASE Akj_real = CONST_REAL(A, k * lda + j); BASE Akj_imag = CONST_IMAG(A, k * lda + j); BASE Bkj_real = CONST_REAL(B, k * ldb + j); BASE Bkj_imag = CONST_IMAG(B, k * ldb + j); REAL(C, i * lda + j) += (temp1_real * Bkj_real - temp1_imag * Bkj_imag) + (temp2_real * Akj_real - temp2_imag * Akj_imag); IMAG(C, i * lda + j) += (temp1_real * Bkj_imag + temp1_imag * Bkj_real) + (temp2_real * Akj_imag + temp2_imag * Akj_real); } } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/error_cblas_l2.h0000664000252300025230000001562212171574312013307 00000000000000/* cblas/error_cblas_l2.h * * Copyright (C) 2010 José Luis García Pallero * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __ERROR_CBLAS_L2_H__ #define __ERROR_CBLAS_L2_H__ #include #include "error_cblas.h" /* * ============================================================================= * Prototypes for level 2 BLAS * ============================================================================= */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ /* cblas_xgemv() */ #define CBLAS_ERROR_GEMV(pos,order,TransA,M,N,alpha,A,lda,X,incX,beta,Y,incY) \ CHECK_ORDER(pos,1,order); \ CHECK_TRANSPOSE(pos,2,TransA); \ CHECK_DIM(pos,3,M); \ CHECK_DIM(pos,4,N); \ if((order)==CblasRowMajor) { \ if((lda) #include #include #include #include "tests.h" void test_trmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.136206f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 814)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.138f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 815)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.136206f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 816)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.138f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 817)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.136206f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 818)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.138f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 819)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.136206f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 820)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.987f }; float X[] = { -0.138f }; int incX = -1; float x_expected[] = { -0.138f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 821)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { -0.152327f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 822)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { 0.463f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 823)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { -0.152327f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 824)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { 0.463f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 825)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { -0.152327f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 826)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { 0.463f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 827)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { -0.152327f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 828)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.329f }; float X[] = { 0.463f }; int incX = -1; float x_expected[] = { 0.463f }; cblas_strmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strmv(case 829)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { 0.385671 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 830)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { -0.899 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 831)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { 0.385671 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 832)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { -0.899 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 833)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { 0.385671 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 834)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { -0.899 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 835)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { 0.385671 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 836)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.429 }; double X[] = { -0.899 }; int incX = -1; double x_expected[] = { -0.899 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 837)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.161664 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 838)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.192 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 839)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.161664 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 840)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.192 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 841)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.161664 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 842)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.192 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 843)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.161664 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 844)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.842 }; double X[] = { 0.192 }; int incX = -1; double x_expected[] = { 0.192 }; cblas_dtrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrmv(case 845)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { -0.038016f, -0.133218f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 846) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 846) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { 0.542f, 0.461f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 847) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 847) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { -0.038016f, -0.133218f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 848) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 848) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { 0.542f, 0.461f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 849) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 849) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { -0.038016f, -0.133218f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 850) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 850) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { 0.542f, 0.461f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 851) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 851) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { -0.038016f, -0.133218f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 852) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 852) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { -0.162f, -0.108f }; float X[] = { 0.542f, 0.461f }; int incX = -1; float x_expected[] = { 0.542f, 0.461f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 853) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 853) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.418216f, 0.061332f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 854) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 854) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.302f, 0.434f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 855) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 855) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.418216f, 0.061332f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 856) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 856) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.302f, 0.434f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 857) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 857) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.418216f, 0.061332f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 858) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 858) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.302f, 0.434f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 859) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 859) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.418216f, 0.061332f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 860) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 860) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.547f, 0.583f }; float X[] = { -0.302f, 0.434f }; int incX = -1; float x_expected[] = { -0.302f, 0.434f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 861) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 861) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.178848f, 0.044136f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 862) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 862) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.564f, -0.297f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 863) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 863) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.178848f, 0.044136f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 864) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 864) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.564f, -0.297f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 865) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 865) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.178848f, 0.044136f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 866) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 866) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.564f, -0.297f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 867) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 867) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.178848f, 0.044136f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 868) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 868) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.216f, 0.192f }; float X[] = { -0.564f, -0.297f }; int incX = -1; float x_expected[] = { -0.564f, -0.297f }; cblas_ctrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrmv(case 869) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrmv(case 869) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { 0.125587, 0.638297 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 870) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 870) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { -0.101, 0.889 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 871) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 871) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { 0.125587, 0.638297 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 872) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 872) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { -0.101, 0.889 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 873) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 873) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { 0.125587, 0.638297 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 874) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 874) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { -0.101, 0.889 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 875) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 875) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { 0.125587, 0.638297 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 876) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 876) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.693, -0.22 }; double X[] = { -0.101, 0.889 }; int incX = -1; double x_expected[] = { -0.101, 0.889 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 877) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 877) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.172171, -0.093192 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 878) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 878) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.048, 0.293 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 879) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 879) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.172171, -0.093192 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 880) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 880) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.048, 0.293 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 881) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 881) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.172171, -0.093192 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 882) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 882) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.048, 0.293 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 883) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 883) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.172171, -0.093192 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 884) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 884) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.216, -0.623 }; double X[] = { 0.048, 0.293 }; int incX = -1; double x_expected[] = { 0.048, 0.293 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 885) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 885) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.009338, -0.705318 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 886) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 886) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.708, 0.298 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 887) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 887) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.009338, -0.705318 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 888) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 888) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.708, 0.298 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 889) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 889) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.009338, -0.705318 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 890) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 890) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.708, 0.298 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 891) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 891) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.009338, -0.705318 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 892) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 892) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.345, -0.851 }; double X[] = { -0.708, 0.298 }; int incX = -1; double x_expected[] = { -0.708, 0.298 }; cblas_ztrmv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrmv(case 893) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrmv(case 893) imag"); }; }; }; } gsl-1.16/cblas/csymm.c0000664000252300025230000000070512171574312011534 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_csymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE float #include "source_symm_c.h" #undef BASE } gsl-1.16/cblas/sswap.c0000664000252300025230000000033212171574312011535 00000000000000#include #include #include "cblas.h" void cblas_sswap (const int N, float *X, const int incX, float *Y, const int incY) { #define BASE float #include "source_swap_r.h" #undef BASE } gsl-1.16/cblas/zgbmv.c0000664000252300025230000000071712171574312011534 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zgbmv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE double #include "source_gbmv_c.h" #undef BASE } gsl-1.16/cblas/source_gemv_c.h0000664000252300025230000001212412171574312013227 00000000000000/* blas/source_gemv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; INDEX lenX, lenY; const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); CHECK_ARGS12(GEMV,order,TransA,M,N,alpha,A,lda,X,incX,beta,Y,incY); if (M == 0 || N == 0) return; if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (TransA == CblasNoTrans) { lenX = N; lenY = M; } else { lenX = M; lenY = N; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { REAL(Y, iy) = 0.0; IMAG(Y, iy) = 0.0; iy += incY; } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { const BASE y_real = REAL(Y, iy); const BASE y_imag = IMAG(Y, iy); const BASE tmpR = y_real * beta_real - y_imag * beta_imag; const BASE tmpI = y_real * beta_imag + y_imag * beta_real; REAL(Y, iy) = tmpR; IMAG(Y, iy) = tmpI; iy += incY; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if ((order == CblasRowMajor && TransA == CblasNoTrans) || (order == CblasColMajor && TransA == CblasTrans)) { /* form y := alpha*A*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE dotR = 0.0; BASE dotI = 0.0; INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + j); const BASE A_imag = CONST_IMAG(A, lda * i + j); dotR += A_real * x_real - A_imag * x_imag; dotI += A_real * x_imag + A_imag * x_real; ix += incX; } REAL(Y, iy) += alpha_real * dotR - alpha_imag * dotI; IMAG(Y, iy) += alpha_real * dotI + alpha_imag * dotR; iy += incY; } } else if ((order == CblasRowMajor && TransA == CblasTrans) || (order == CblasColMajor && TransA == CblasNoTrans)) { /* form y := alpha*A'*x + y */ INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE tmpR = alpha_real * x_real - alpha_imag * x_imag; BASE tmpI = alpha_real * x_imag + alpha_imag * x_real; INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { const BASE A_real = CONST_REAL(A, lda * j + i); const BASE A_imag = CONST_IMAG(A, lda * j + i); REAL(Y, iy) += A_real * tmpR - A_imag * tmpI; IMAG(Y, iy) += A_real * tmpI + A_imag * tmpR; iy += incY; } ix += incX; } } else if (order == CblasRowMajor && TransA == CblasConjTrans) { /* form y := alpha*A^H*x + y */ INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE tmpR = alpha_real * x_real - alpha_imag * x_imag; BASE tmpI = alpha_real * x_imag + alpha_imag * x_real; INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { const BASE A_real = CONST_REAL(A, lda * j + i); const BASE A_imag = CONST_IMAG(A, lda * j + i); REAL(Y, iy) += A_real * tmpR - (-A_imag) * tmpI; IMAG(Y, iy) += A_real * tmpI + (-A_imag) * tmpR; iy += incY; } ix += incX; } } else if (order == CblasColMajor && TransA == CblasConjTrans) { /* form y := alpha*A^H*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE dotR = 0.0; BASE dotI = 0.0; INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + j); const BASE A_imag = CONST_IMAG(A, lda * i + j); dotR += A_real * x_real - (-A_imag) * x_imag; dotI += A_real * x_imag + (-A_imag) * x_real; ix += incX; } REAL(Y, iy) += alpha_real * dotR - alpha_imag * dotI; IMAG(Y, iy) += alpha_real * dotI + alpha_imag * dotR; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_rotg.h0000664000252300025230000000246512171574312012751 00000000000000/* blas/source_rotg.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const BASE roe = (fabs(*a) > fabs(*b) ? *a : *b); const BASE scale = fabs(*a) + fabs(*b); BASE r, z; if (scale != 0.0) { const BASE aos = *a / scale; const BASE bos = *b / scale; r = scale * sqrt(aos * aos + bos * bos); r = GSL_SIGN(roe) * r; *c = *a / r; *s = *b / r; z = 1.0; if (fabs(*a) > fabs(*b)) z = *s; if (fabs(*b) >= fabs(*a) && *c != 0.0) z = 1.0 / (*c); } else { *c = 1.0; *s = 0.0; r = 0.0; z = 0.0; } *a = r; *b = z; } gsl-1.16/cblas/Makefile.in0000664000252300025230000015203612172253754012317 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ @MINGW32_HOST_TRUE@am__append_1 = -no-undefined check_PROGRAMS = test$(EXEEXT) subdir = cblas DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(libdir)" "$(DESTDIR)$(pkgincludedir)" LTLIBRARIES = $(lib_LTLIBRARIES) libgslcblas_la_LIBADD = am_libgslcblas_la_OBJECTS = sasum.lo saxpy.lo scasum.lo scnrm2.lo \ scopy.lo sdot.lo sdsdot.lo sgbmv.lo sgemm.lo sgemv.lo sger.lo \ snrm2.lo srot.lo srotg.lo srotm.lo srotmg.lo ssbmv.lo sscal.lo \ sspmv.lo sspr.lo sspr2.lo sswap.lo ssymm.lo ssymv.lo ssyr.lo \ ssyr2.lo ssyr2k.lo ssyrk.lo stbmv.lo stbsv.lo stpmv.lo \ stpsv.lo strmm.lo strmv.lo strsm.lo strsv.lo dasum.lo daxpy.lo \ dcopy.lo ddot.lo dgbmv.lo dgemm.lo dgemv.lo dger.lo dnrm2.lo \ drot.lo drotg.lo drotm.lo drotmg.lo dsbmv.lo dscal.lo dsdot.lo \ dspmv.lo dspr.lo dspr2.lo dswap.lo dsymm.lo dsymv.lo dsyr.lo \ dsyr2.lo dsyr2k.lo dsyrk.lo dtbmv.lo dtbsv.lo dtpmv.lo \ dtpsv.lo dtrmm.lo dtrmv.lo dtrsm.lo dtrsv.lo dzasum.lo \ dznrm2.lo caxpy.lo ccopy.lo cdotc_sub.lo cdotu_sub.lo cgbmv.lo \ cgemm.lo cgemv.lo cgerc.lo cgeru.lo chbmv.lo chemm.lo chemv.lo \ cher.lo cher2.lo cher2k.lo cherk.lo chpmv.lo chpr.lo chpr2.lo \ cscal.lo csscal.lo cswap.lo csymm.lo csyr2k.lo csyrk.lo \ ctbmv.lo ctbsv.lo ctpmv.lo ctpsv.lo ctrmm.lo ctrmv.lo ctrsm.lo \ ctrsv.lo zaxpy.lo zcopy.lo zdotc_sub.lo zdotu_sub.lo zdscal.lo \ zgbmv.lo zgemm.lo zgemv.lo zgerc.lo zgeru.lo zhbmv.lo zhemm.lo \ zhemv.lo zher.lo zher2.lo zher2k.lo zherk.lo zhpmv.lo zhpr.lo \ zhpr2.lo zscal.lo zswap.lo zsymm.lo zsyr2k.lo zsyrk.lo \ ztbmv.lo ztbsv.lo ztpmv.lo ztpsv.lo ztrmm.lo ztrmv.lo ztrsm.lo \ ztrsv.lo icamax.lo idamax.lo isamax.lo izamax.lo xerbla.lo libgslcblas_la_OBJECTS = $(am_libgslcblas_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = libgslcblas_la_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC \ $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=link $(CCLD) \ $(AM_CFLAGS) $(CFLAGS) $(libgslcblas_la_LDFLAGS) $(LDFLAGS) -o \ $@ am_test_OBJECTS = test.$(OBJEXT) test_amax.$(OBJEXT) \ test_asum.$(OBJEXT) test_axpy.$(OBJEXT) test_copy.$(OBJEXT) \ test_dot.$(OBJEXT) test_gbmv.$(OBJEXT) test_gemm.$(OBJEXT) \ test_gemv.$(OBJEXT) test_ger.$(OBJEXT) test_hbmv.$(OBJEXT) \ test_hemm.$(OBJEXT) test_hemv.$(OBJEXT) test_her.$(OBJEXT) \ test_her2.$(OBJEXT) test_her2k.$(OBJEXT) test_herk.$(OBJEXT) \ test_hpmv.$(OBJEXT) test_hpr.$(OBJEXT) test_hpr2.$(OBJEXT) \ test_nrm2.$(OBJEXT) test_rot.$(OBJEXT) test_rotg.$(OBJEXT) \ test_rotm.$(OBJEXT) test_rotmg.$(OBJEXT) test_sbmv.$(OBJEXT) \ test_scal.$(OBJEXT) test_spmv.$(OBJEXT) test_spr.$(OBJEXT) \ test_spr2.$(OBJEXT) test_swap.$(OBJEXT) test_symm.$(OBJEXT) \ test_symv.$(OBJEXT) test_syr.$(OBJEXT) test_syr2.$(OBJEXT) \ test_syr2k.$(OBJEXT) test_syrk.$(OBJEXT) test_tbmv.$(OBJEXT) \ test_tbsv.$(OBJEXT) test_tpmv.$(OBJEXT) test_tpsv.$(OBJEXT) \ test_trmm.$(OBJEXT) test_trmv.$(OBJEXT) test_trsm.$(OBJEXT) \ test_trsv.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslcblas.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslcblas_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslcblas_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ lib_LTLIBRARIES = libgslcblas.la libgslcblas_la_LDFLAGS = -version-info $(GSL_LT_CBLAS_VERSION) \ $(am__append_1) MINGW32_HOST = @MINGW32_HOST@ pkginclude_HEADERS = gsl_cblas.h INCLUDES = -I$(top_srcdir) libgslcblas_la_SOURCES = sasum.c saxpy.c scasum.c scnrm2.c scopy.c \ sdot.c sdsdot.c sgbmv.c sgemm.c sgemv.c sger.c snrm2.c srot.c \ srotg.c srotm.c srotmg.c ssbmv.c sscal.c sspmv.c sspr.c \ sspr2.c sswap.c ssymm.c ssymv.c ssyr.c ssyr2.c ssyr2k.c \ ssyrk.c stbmv.c stbsv.c stpmv.c stpsv.c strmm.c strmv.c \ strsm.c strsv.c dasum.c daxpy.c dcopy.c ddot.c dgbmv.c dgemm.c \ dgemv.c dger.c dnrm2.c drot.c drotg.c drotm.c drotmg.c dsbmv.c \ dscal.c dsdot.c dspmv.c dspr.c dspr2.c dswap.c dsymm.c dsymv.c \ dsyr.c dsyr2.c dsyr2k.c dsyrk.c dtbmv.c dtbsv.c dtpmv.c \ dtpsv.c dtrmm.c dtrmv.c dtrsm.c dtrsv.c dzasum.c dznrm2.c \ caxpy.c ccopy.c cdotc_sub.c cdotu_sub.c cgbmv.c cgemm.c \ cgemv.c cgerc.c cgeru.c chbmv.c chemm.c chemv.c cher.c cher2.c \ cher2k.c cherk.c chpmv.c chpr.c chpr2.c cscal.c csscal.c \ cswap.c csymm.c csyr2k.c csyrk.c ctbmv.c ctbsv.c ctpmv.c \ ctpsv.c ctrmm.c ctrmv.c ctrsm.c ctrsv.c zaxpy.c zcopy.c \ zdotc_sub.c zdotu_sub.c zdscal.c zgbmv.c zgemm.c zgemv.c \ zgerc.c zgeru.c zhbmv.c zhemm.c zhemv.c zher.c zher2.c \ zher2k.c zherk.c zhpmv.c zhpr.c zhpr2.c zscal.c zswap.c \ zsymm.c zsyr2k.c zsyrk.c ztbmv.c ztbsv.c ztpmv.c ztpsv.c \ ztrmm.c ztrmv.c ztrsm.c ztrsv.c icamax.c idamax.c isamax.c \ izamax.c xerbla.c noinst_HEADERS = tests.c tests.h error_cblas.h error_cblas_l2.h \ error_cblas_l3.h cblas.h source_asum_c.h source_asum_r.h \ source_axpy_c.h source_axpy_r.h source_copy_c.h \ source_copy_r.h source_dot_c.h source_dot_r.h source_gbmv_c.h \ source_gbmv_r.h source_gemm_c.h source_gemm_r.h \ source_gemv_c.h source_gemv_r.h source_ger.h source_gerc.h \ source_geru.h source_hbmv.h source_hemm.h source_hemv.h \ source_her.h source_her2.h source_her2k.h source_herk.h \ source_hpmv.h source_hpr.h source_hpr2.h source_iamax_c.h \ source_iamax_r.h source_nrm2_c.h source_nrm2_r.h source_rot.h \ source_rotg.h source_rotm.h source_rotmg.h source_sbmv.h \ source_scal_c.h source_scal_c_s.h source_scal_r.h \ source_spmv.h source_spr.h source_spr2.h source_swap_c.h \ source_swap_r.h source_symm_c.h source_symm_r.h source_symv.h \ source_syr.h source_syr2.h source_syr2k_c.h source_syr2k_r.h \ source_syrk_c.h source_syrk_r.h source_tbmv_c.h \ source_tbmv_r.h source_tbsv_c.h source_tbsv_r.h \ source_tpmv_c.h source_tpmv_r.h source_tpsv_c.h \ source_tpsv_r.h source_trmm_c.h source_trmm_r.h \ source_trmv_c.h source_trmv_r.h source_trsm_c.h \ source_trsm_r.h source_trsv_c.h source_trsv_r.h hypot.c TESTS = $(check_PROGRAMS) test_LDADD = libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la test_SOURCES = test.c test_amax.c test_asum.c test_axpy.c test_copy.c test_dot.c test_gbmv.c test_gemm.c test_gemv.c test_ger.c test_hbmv.c test_hemm.c test_hemv.c test_her.c test_her2.c test_her2k.c test_herk.c test_hpmv.c test_hpr.c test_hpr2.c test_nrm2.c test_rot.c test_rotg.c test_rotm.c test_rotmg.c test_sbmv.c test_scal.c test_spmv.c test_spr.c test_spr2.c test_swap.c test_symm.c test_symv.c test_syr.c test_syr2.c test_syr2k.c test_syrk.c test_tbmv.c test_tbsv.c test_tpmv.c test_tpsv.c test_trmm.c test_trmv.c test_trsm.c test_trsv.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu cblas/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu cblas/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): install-libLTLIBRARIES: $(lib_LTLIBRARIES) @$(NORMAL_INSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ list2=; for p in $$list; do \ if test -f $$p; then \ list2="$$list2 $$p"; \ else :; fi; \ done; \ test -z "$$list2" || { \ echo " $(MKDIR_P) '$(DESTDIR)$(libdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(libdir)" || exit 1; \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 '$(DESTDIR)$(libdir)'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 "$(DESTDIR)$(libdir)"; \ } uninstall-libLTLIBRARIES: @$(NORMAL_UNINSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f '$(DESTDIR)$(libdir)/$$f'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f "$(DESTDIR)$(libdir)/$$f"; \ done clean-libLTLIBRARIES: -test -z "$(lib_LTLIBRARIES)" || rm -f $(lib_LTLIBRARIES) @list='$(lib_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslcblas.la: $(libgslcblas_la_OBJECTS) $(libgslcblas_la_DEPENDENCIES) $(EXTRA_libgslcblas_la_DEPENDENCIES) $(AM_V_CCLD)$(libgslcblas_la_LINK) -rpath $(libdir) $(libgslcblas_la_OBJECTS) $(libgslcblas_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/caxpy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ccopy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cdotc_sub.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cdotu_sub.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cgbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cgemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cgemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cgerc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cgeru.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cher.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cher2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cher2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cherk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chpr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chpr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/csscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cswap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/csymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/csyr2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/csyrk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctbsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctpsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctrmm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctrmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctrsm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ctrsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dasum.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/daxpy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dcopy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ddot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dgbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dgemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dgemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dger.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dnrm2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/drot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/drotg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/drotm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/drotmg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsdot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dspmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dspr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dspr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dswap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsymv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsyr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsyr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsyr2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dsyrk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtbsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtpsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtrmm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtrmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtrsm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dtrsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dzasum.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dznrm2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/icamax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/idamax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isamax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/izamax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sasum.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/saxpy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/scasum.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/scnrm2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/scopy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sdot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sdsdot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sgbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sgemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sgemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sger.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/snrm2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/srot.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/srotg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/srotm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/srotmg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sspmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sspr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sspr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sswap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssymv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssyr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssyr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssyr2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ssyrk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stbsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stpsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/strmm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/strmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/strsm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/strsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_amax.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_asum.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_axpy.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_copy.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_dot.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_gbmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_gemm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_gemv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_ger.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hbmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hemm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hemv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_her.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_her2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_her2k.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_herk.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hpmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hpr.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_hpr2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_nrm2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_rot.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_rotg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_rotm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_rotmg.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_sbmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_scal.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_spmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_spr.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_spr2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_swap.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_symm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_symv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_syr.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_syr2.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_syr2k.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_syrk.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_tbmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_tbsv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_tpmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_tpsv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_trmm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_trmv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_trsm.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_trsv.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/xerbla.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zaxpy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zcopy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zdotc_sub.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zdotu_sub.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zdscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zgbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zgemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zgemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zgerc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zgeru.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhemm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhemv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zher.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zher2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zher2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zherk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhpr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zhpr2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zswap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsymm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsyr2k.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zsyrk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztbmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztbsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztpmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztpsv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztrmm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztrmv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztrsm.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ztrsv.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(libdir)" "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libLTLIBRARIES \ clean-libtool mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-libLTLIBRARIES install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-libLTLIBRARIES uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libLTLIBRARIES \ clean-libtool cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am \ install-libLTLIBRARIES install-man install-pdf install-pdf-am \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-compile mostlyclean-generic mostlyclean-libtool \ pdf pdf-am ps ps-am recheck tags tags-am uninstall \ uninstall-am uninstall-libLTLIBRARIES \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/cblas/stpsv.c0000664000252300025230000000060012171574312011555 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_stpsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const int incX) { #define BASE float #include "source_tpsv_r.h" #undef BASE } gsl-1.16/cblas/source_her2k.h0000664000252300025230000002542212171574312013007 00000000000000/* blas/source_her2k.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS13(HER2K,Order,Uplo,Trans,N,K,alpha,A,lda,B,ldb,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); BASE alpha_imag = CONST_IMAG0(alpha); if (beta == 1.0 && ((alpha_real == 0.0 && alpha_imag == 0.0) || K == 0)) return; if (Order == CblasRowMajor) { uplo = Uplo; trans = Trans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (Trans == CblasNoTrans) ? CblasConjTrans : CblasNoTrans; alpha_imag *= -1; /* conjugate alpha */ } /* form C := beta*C */ if (beta == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } } else if (beta != 1.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { REAL(C, ldc * i + i) *= beta; IMAG(C, ldc * i + i) = 0.0; for (j = i + 1; j < N; j++) { REAL(C, ldc * i + j) *= beta; IMAG(C, ldc * i + j) *= beta; } } } else { for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { REAL(C, ldc * i + j) *= beta; IMAG(C, ldc * i + j) *= beta; } REAL(C, ldc * i + i) *= beta; IMAG(C, ldc * i + i) = 0.0; } } } else { for (i = 0; i < N; i++) { IMAG(C, ldc * i + i) = 0.0; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { /* Cii += alpha Aik conj(Bik) + conj(alpha) Bik conj(Aik) */ { BASE temp_real = 0.0; /* BASE temp_imag = 0.0; */ for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); /* temp1 = alpha * Aik */ const BASE temp1_real = alpha_real * Aik_real - alpha_imag * Aik_imag; const BASE temp1_imag = alpha_real * Aik_imag + alpha_imag * Aik_real; const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); temp_real += temp1_real * Bik_real + temp1_imag * Bik_imag; } REAL(C, i * ldc + i) += 2 * temp_real; IMAG(C, i * ldc + i) = 0.0; } /* Cij += alpha Aik conj(Bjk) + conj(alpha) Bik conj(Ajk) */ for (j = i + 1; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); /* temp1 = alpha * Aik */ const BASE temp1_real = alpha_real * Aik_real - alpha_imag * Aik_imag; const BASE temp1_imag = alpha_real * Aik_imag + alpha_imag * Aik_real; const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); /* temp2 = alpha * Ajk */ const BASE temp2_real = alpha_real * Ajk_real - alpha_imag * Ajk_imag; const BASE temp2_imag = alpha_real * Ajk_imag + alpha_imag * Ajk_real; const BASE Bjk_real = CONST_REAL(B, j * ldb + k); const BASE Bjk_imag = CONST_IMAG(B, j * ldb + k); /* Cij += alpha * Aik * conj(Bjk) + conj(alpha) * Bik * conj(Ajk) */ temp_real += ((temp1_real * Bjk_real + temp1_imag * Bjk_imag) + (Bik_real * temp2_real + Bik_imag * temp2_imag)); temp_imag += ((temp1_real * (-Bjk_imag) + temp1_imag * Bjk_real) + (Bik_real * (-temp2_imag) + Bik_imag * temp2_real)); } REAL(C, i * ldc + j) += temp_real; IMAG(C, i * ldc + j) += temp_imag; } } } else if (uplo == CblasUpper && trans == CblasConjTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE Aki_real = CONST_REAL(A, k * lda + i); BASE Aki_imag = CONST_IMAG(A, k * lda + i); BASE Bki_real = CONST_REAL(B, k * ldb + i); BASE Bki_imag = CONST_IMAG(B, k * ldb + i); /* temp1 = alpha * conj(Aki) */ BASE temp1_real = alpha_real * Aki_real - alpha_imag * (-Aki_imag); BASE temp1_imag = alpha_real * (-Aki_imag) + alpha_imag * Aki_real; /* temp2 = conj(alpha) * conj(Bki) */ BASE temp2_real = alpha_real * Bki_real - alpha_imag * Bki_imag; BASE temp2_imag = -(alpha_real * Bki_imag + alpha_imag * Bki_real); /* Cii += alpha * conj(Aki) * Bki + conj(alpha) * conj(Bki) * Aki */ { REAL(C, i * lda + i) += 2 * (temp1_real * Bki_real - temp1_imag * Bki_imag); IMAG(C, i * lda + i) = 0.0; } for (j = i + 1; j < N; j++) { BASE Akj_real = CONST_REAL(A, k * lda + j); BASE Akj_imag = CONST_IMAG(A, k * lda + j); BASE Bkj_real = CONST_REAL(B, k * ldb + j); BASE Bkj_imag = CONST_IMAG(B, k * ldb + j); /* Cij += alpha * conj(Aki) * Bkj + conj(alpha) * conj(Bki) * Akj */ REAL(C, i * lda + j) += (temp1_real * Bkj_real - temp1_imag * Bkj_imag) + (temp2_real * Akj_real - temp2_imag * Akj_imag); IMAG(C, i * lda + j) += (temp1_real * Bkj_imag + temp1_imag * Bkj_real) + (temp2_real * Akj_imag + temp2_imag * Akj_real); } } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { /* Cij += alpha Aik conj(Bjk) + conj(alpha) Bik conj(Ajk) */ for (j = 0; j < i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); /* temp1 = alpha * Aik */ const BASE temp1_real = alpha_real * Aik_real - alpha_imag * Aik_imag; const BASE temp1_imag = alpha_real * Aik_imag + alpha_imag * Aik_real; const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); /* temp2 = alpha * Ajk */ const BASE temp2_real = alpha_real * Ajk_real - alpha_imag * Ajk_imag; const BASE temp2_imag = alpha_real * Ajk_imag + alpha_imag * Ajk_real; const BASE Bjk_real = CONST_REAL(B, j * ldb + k); const BASE Bjk_imag = CONST_IMAG(B, j * ldb + k); /* Cij += alpha * Aik * conj(Bjk) + conj(alpha) * Bik * conj(Ajk) */ temp_real += ((temp1_real * Bjk_real + temp1_imag * Bjk_imag) + (Bik_real * temp2_real + Bik_imag * temp2_imag)); temp_imag += ((temp1_real * (-Bjk_imag) + temp1_imag * Bjk_real) + (Bik_real * (-temp2_imag) + Bik_imag * temp2_real)); } REAL(C, i * ldc + j) += temp_real; IMAG(C, i * ldc + j) += temp_imag; } /* Cii += alpha Aik conj(Bik) + conj(alpha) Bik conj(Aik) */ { BASE temp_real = 0.0; /* BASE temp_imag = 0.0; */ for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); /* temp1 = alpha * Aik */ const BASE temp1_real = alpha_real * Aik_real - alpha_imag * Aik_imag; const BASE temp1_imag = alpha_real * Aik_imag + alpha_imag * Aik_real; const BASE Bik_real = CONST_REAL(B, i * ldb + k); const BASE Bik_imag = CONST_IMAG(B, i * ldb + k); temp_real += temp1_real * Bik_real + temp1_imag * Bik_imag; } REAL(C, i * ldc + i) += 2 * temp_real; IMAG(C, i * ldc + i) = 0.0; } } } else if (uplo == CblasLower && trans == CblasConjTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE Aki_real = CONST_REAL(A, k * lda + i); BASE Aki_imag = CONST_IMAG(A, k * lda + i); BASE Bki_real = CONST_REAL(B, k * ldb + i); BASE Bki_imag = CONST_IMAG(B, k * ldb + i); /* temp1 = alpha * conj(Aki) */ BASE temp1_real = alpha_real * Aki_real - alpha_imag * (-Aki_imag); BASE temp1_imag = alpha_real * (-Aki_imag) + alpha_imag * Aki_real; /* temp2 = conj(alpha) * conj(Bki) */ BASE temp2_real = alpha_real * Bki_real - alpha_imag * Bki_imag; BASE temp2_imag = -(alpha_real * Bki_imag + alpha_imag * Bki_real); for (j = 0; j < i; j++) { BASE Akj_real = CONST_REAL(A, k * lda + j); BASE Akj_imag = CONST_IMAG(A, k * lda + j); BASE Bkj_real = CONST_REAL(B, k * ldb + j); BASE Bkj_imag = CONST_IMAG(B, k * ldb + j); /* Cij += alpha * conj(Aki) * Bkj + conj(alpha) * conj(Bki) * Akj */ REAL(C, i * lda + j) += (temp1_real * Bkj_real - temp1_imag * Bkj_imag) + (temp2_real * Akj_real - temp2_imag * Akj_imag); IMAG(C, i * lda + j) += (temp1_real * Bkj_imag + temp1_imag * Bkj_real) + (temp2_real * Akj_imag + temp2_imag * Akj_real); } /* Cii += alpha * conj(Aki) * Bki + conj(alpha) * conj(Bki) * Aki */ { REAL(C, i * lda + i) += 2 * (temp1_real * Bki_real - temp1_imag * Bki_imag); IMAG(C, i * lda + i) = 0.0; } } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/dgemv.c0000664000252300025230000000067312171574312011512 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY) { #define BASE double #include "source_gemv_r.h" #undef BASE } gsl-1.16/cblas/ctrmv.c0000664000252300025230000000063112171574312011535 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ctrmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX) { #define BASE float #include "source_trmv_c.h" #undef BASE } gsl-1.16/cblas/zswap.c0000664000252300025230000000033112171574312011543 00000000000000#include #include #include "cblas.h" void cblas_zswap (const int N, void *X, const int incX, void *Y, const int incY) { #define BASE double #include "source_swap_c.h" #undef BASE } gsl-1.16/cblas/source_tbsv_r.h0000664000252300025230000000755312171574312013300 00000000000000/* blas/source_tbsv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int nonunit = (Diag == CblasNonUnit); INDEX i, j; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS10(TBSV,order,Uplo,TransA,Diag,N,K,A,lda,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + incX * (N - 1); for (i = N; i > 0 && i--;) { BASE tmp = X[ix]; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij = A[lda * i + (j - i)]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + 0]; } else { X[ix] = tmp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE tmp = X[ix]; const INDEX j_min = (i > K ? i - K : 0); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij = A[lda * i + (K + j - i)]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + K]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE tmp = X[ix]; const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aji = A[(i - j) + lda * j]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[0 + lda * i]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE tmp = X[ix]; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aji = A[(K + i - j) + lda * j]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[K + lda * i]; } else { X[ix] = tmp; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/ChangeLog0000664000252300025230000000237012171574312012012 000000000000002010-10-12 Brian Gough * added error checking to selected cblas functions (José Luis García Pallero) 2009-06-24 Brian Gough * source_scal_c.h source_scal_r.h: remove needless use of OFFSET macro when incX is known to be positive 2003-01-21 Brian Gough * test.m: skip trans=113 for complex matrix on SYRK tests. Tue Feb 19 20:50:27 2002 Brian Gough * gsl_cblas.h: added extern "C" Mon Jul 2 22:21:00 2001 Brian Gough * test.c: added missing #include Fri Apr 27 19:53:10 2001 Brian Gough * source_tpmv_r.h: moved index declarations to more restricted scope * source_rotmg.h: changed declaration y1 to y in order to avoid confusion with function y0(x) in C library. Also changed x1 to x. * source_syr2k_r.h: error where lda was used instead of ldb in syr2k_r was not picked up by any tests! Now fixed Thu Apr 12 16:46:16 2001 Brian Gough * all routines now included for Level 1, 2, 3-- passes blas test suite for numerical results, but no error handling yet * split out from blas directory to make an independent blas library gsl-1.16/cblas/strmv.c0000664000252300025230000000063312171574312011557 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_strmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX) { #define BASE float #include "source_trmv_r.h" #undef BASE } gsl-1.16/cblas/source_spr2.h0000664000252300025230000000401512171574312012655 00000000000000/* blas/source_spr2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS9(SD_SPR2,order,Uplo,N,alpha,X,incX,Y,incY,A); if (N == 0) return; if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp1 = alpha * X[ix]; const BASE tmp2 = alpha * Y[iy]; INDEX jx = ix; INDEX jy = iy; for (j = i; j < N; j++) { Ap[TPUP(N, i, j)] += tmp1 * Y[jy] + tmp2 * X[jx]; jx += incX; jy += incY; } ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp1 = alpha * X[ix]; const BASE tmp2 = alpha * Y[iy]; INDEX jx = OFFSET(N, incX); INDEX jy = OFFSET(N, incY); for (j = 0; j <= i; j++) { Ap[TPLO(N, i, j)] += tmp1 * Y[jy] + tmp2 * X[jx]; jx += incX; jy += incY; } ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/dswap.c0000664000252300025230000000035212171574312011520 00000000000000#include #include #include "cblas.h" void cblas_dswap (const int N, double *X, const int incX, double *Y, const int incY) { #define BASE double #include "source_swap_r.h" #undef BASE } gsl-1.16/cblas/test_tbmv.c0000664000252300025230000015104112171574312012413 00000000000000#include #include #include #include #include "tests.h" void test_tbmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { 0.017088f, 0.315595f, 0.243875f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 894)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { -0.089f, -0.721909f, 0.129992f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 895)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { 0.156927f, -0.159004f, 0.098252f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 896)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { 0.043096f, -0.584876f, -0.203f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 897)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { 0.024831f, -0.24504f, 0.447756f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 898)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { -0.089f, -0.670912f, 0.146504f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 899)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { -0.24504f, 0.447756f, -0.089117f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 900)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.439f, -0.484f, -0.952f, -0.508f, 0.381f, -0.889f, -0.192f, -0.279f, -0.155f }; float X[] = { -0.089f, -0.688f, -0.203f }; int incX = -1; float x_expected[] = { -0.351128f, -0.589748f, -0.203f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 901)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.156047f, 0.189418f, -0.52828f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 902)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.194342f, -0.449858f, -0.562f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 903)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { -0.0046f, 0.156047f, 0.189418f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 904)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.023f, -0.516295f, -0.423724f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 905)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.328565f, 0.326454f, 0.051142f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 906)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.356165f, -0.345888f, -0.562f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 907)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { -0.015295f, 0.13041f, -0.482689f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 908)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.94f, -0.091f, 0.984f, -0.276f, -0.342f, -0.484f, -0.665f, -0.2f, 0.349f }; float X[] = { 0.023f, -0.501f, -0.562f }; int incX = -1; float x_expected[] = { 0.023f, -0.508866f, -0.516409f }; cblas_stbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbmv(case 909)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { 0.50204, 0.563918, -0.590448 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 910)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { -0.77, -0.95429, -0.44419 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 911)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { 1.214016, -0.433258, 0.321835 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 912)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { -0.236664, -1.106472, 0.337 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 913)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { 0.68068, 0.357254, 1.022043 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 914)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { -0.77, -0.31596, 1.037208 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 915)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { 0.357254, 1.022043, 0.190742 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 916)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.566, 0.955, -0.086, -0.856, 0.177, 0.974, -0.652, -0.884, 0.77 }; double X[] = { -0.77, -0.818, 0.337 }; int incX = -1; double x_expected[] = { -0.914786, -0.496165, 0.337 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 917)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { 0.610833, -0.293243, 0.02914 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 918)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { -0.635031, 0.574, 0.155 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 919)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { 0.024679, 0.610833, -0.293243 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 920)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { -0.851, 0.875864, -0.231243 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 921)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { -0.198505, 0.091504, 0.093 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 922)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { -1.074184, 0.356535, 0.155 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 923)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { 0.394864, -0.768342, 0.31774 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 924)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.188, 0.6, -0.743, -0.803, 0.449, -0.681, -0.464, -0.029, 0.553 }; double X[] = { -0.851, 0.481, 0.155 }; int incX = -1; double x_expected[] = { -0.851, 0.098901, 0.4436 }; cblas_dtbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbmv(case 925)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.113114f, -0.051704f, -0.403567f, -0.288349f, -0.223936f, 0.841145f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 926) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 926) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.46f, 0.069f, -0.14027f, -0.23208f, -0.537722f, 0.841425f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 927) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 927) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.099689f, 0.487805f, 0.353793f, 0.325411f, -0.225658f, -0.776023f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 928) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 928) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.39057f, 0.113296f, 0.388863f, 0.131011f, -0.236f, 0.605f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 929) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 929) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.169119f, 0.443509f, 0.159816f, 0.139696f, -0.180955f, -0.835292f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 930) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 930) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.46f, 0.069f, 0.194886f, -0.054704f, -0.191297f, 0.545731f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 931) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 931) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { 0.159816f, 0.139696f, -0.180955f, -0.835292f, 0.077786f, 0.60472f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 932) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 932) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.824f, -0.45f, -0.987f, 0.758f, 0.42f, -0.357f, 0.147f, -0.191f, 0.88f, 0.63f, 0.155f, -0.573f, 0.224f, 0.146f, 0.501f, -0.889f, 0.456f, 0.796f }; float X[] = { -0.46f, 0.069f, 0.308f, -0.003f, -0.236f, 0.605f }; int incX = -1; float x_expected[] = { -0.18707f, 0.2604f, 0.082342f, -0.779023f, -0.236f, 0.605f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 933) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 933) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.647885f, 0.621535f, -0.104407f, 0.05309f, 0.732704f, 0.055982f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 934) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 934) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 1.2955f, 0.190774f, -0.247934f, 0.982616f, -0.894f, -0.116f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 935) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 935) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.096482f, -0.071661f, 0.647885f, 0.621535f, -0.104407f, 0.05309f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 936) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 936) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.411f, -0.308f, -1.14861f, 0.933761f, -1.66247f, -0.234526f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 937) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 937) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.632361f, -0.409373f, 0.578489f, 0.012724f, 0.664066f, 0.171616f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 938) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 938) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.946879f, -0.645712f, -1.21801f, 0.32495f, -0.894f, -0.116f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 939) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 939) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { -0.236612f, 0.122761f, -1.12184f, -0.358823f, 1.4975f, -0.470595f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 940) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 940) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.814f, 0.043f, -0.755f, -0.094f, 0.876f, 0.257f, 0.406f, 0.491f, -0.27f, -0.787f, 0.545f, 0.732f, -0.512f, -0.085f, 0.234f, 0.001f, -0.225f, -0.002f }; float X[] = { 0.411f, -0.308f, -0.912f, 0.811f, -0.894f, -0.116f }; int incX = -1; float x_expected[] = { 0.411f, -0.308f, -1.26537f, 0.570703f, -0.129206f, -0.642577f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 941) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 941) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { 0.413357f, 0.178267f, -0.114618f, -1.35595f, -0.513288f, 0.611332f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 942) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 942) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { 0.368428f, 0.071217f, -0.954366f, -0.390486f, 0.694f, -0.954f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 943) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 943) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { -0.084786f, -0.059464f, 0.413357f, 0.178267f, -0.114618f, -1.35595f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 944) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 944) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { 0.065f, -0.082f, -0.636071f, 0.80005f, 0.787748f, -1.14446f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 945) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 945) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { -1.18498f, -0.424201f, 0.230196f, 0.374209f, -0.208366f, -1.16549f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 946) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 946) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { -1.03519f, -0.446737f, -0.819232f, 0.995992f, 0.694f, -0.954f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 947) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 947) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { 0.109929f, 0.02505f, 0.062939f, -0.202464f, -0.470658f, 1.69006f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 948) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 948) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.675f, 0.047f, 0.695f, 0.724f, -0.438f, 0.991f, -0.188f, -0.06f, -0.093f, 0.302f, 0.842f, -0.753f, 0.465f, -0.972f, -0.058f, 0.988f, 0.093f, 0.164f }; float X[] = { 0.065f, -0.082f, -0.746f, 0.775f, 0.694f, -0.954f }; int incX = -1; float x_expected[] = { 0.065f, -0.082f, -0.776809f, 0.762996f, 0.73663f, 0.124729f }; cblas_ctbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbmv(case 949) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbmv(case 949) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { -0.010019, -0.1678, -0.042017, -1.112094, 0.010004, -0.480427 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 950) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 950) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { 0.064, 0.169, -0.80842, -0.715637, -0.829924, -0.212971 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 951) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 951) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { 0.634014, 0.796937, -0.585538, -0.895375, -0.125887, 0.010019 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 952) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 952) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { 0.567497, 1.085122, -1.217792, -1.322566, -0.641, -0.103 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 953) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 953) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { 0.130517, -0.119185, -0.187765, -0.519609, -0.169484, -1.165438 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 954) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 954) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { 0.064, 0.169, -0.820019, -0.9468, -0.684597, -1.278457 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 955) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 955) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { -0.187765, -0.519609, -0.169484, -1.165438, 0.198928, -0.370456 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 956) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 956) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.212, 0.612, 0.189, -0.046, -0.124, 0.82, 0.753, 0.727, 0.331, 0.116, 0.504, -0.673, -0.888, -0.277, -0.361, -0.909, 0.982, -0.124 }; double X[] = { 0.064, 0.169, -0.81, -0.779, -0.641, -0.103 }; int incX = -1; double x_expected[] = { -0.113746, -0.182809, -0.935887, -0.768981, -0.641, -0.103 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 957) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 957) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { -0.436746, 0.963714, -1.087615, -0.018695, 0.30063, 0.12958 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 958) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 958) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.895682, 1.407174, 0.2408, -0.14282, -0.649, 0.188 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 959) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 959) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.785744, -0.3966, -0.436746, 0.963714, -1.087615, -0.018695 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 960) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 960) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.884, 0.636, 0.472572, 0.47454, -1.056415, 0.594125 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 961) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 961) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.464705, -0.108078, 0.094975, 0.376323, -0.6802, -0.42482 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 962) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 962) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.562961, 0.924522, 1.004293, -0.112851, -0.649, 0.188 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 963) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 963) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { -0.448428, 0.19254, -0.674583, 1.236189, 0.780774, 1.167088 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 964) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 964) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.374, -0.308, 0.792, 0.884, -0.794, -0.055, -0.281, 0.527, 0.246, 0.762, 0.853, 0.891, -0.231, 0.384, 0.373, -0.717, -0.957, -0.338 }; double X[] = { 0.884, 0.636, 0.921, 0.282, -0.649, 0.188 }; int incX = -1; double x_expected[] = { 0.884, 0.636, 0.653832, 1.112064, -0.168856, 1.225508 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 965) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 965) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -0.59515, 0.077106, -0.27658, -0.637356, 0.407252, -0.308844 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 966) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 966) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -1.46131, 0.537642, 0.624614, 0.762252, 0.326, 0.428 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 967) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 967) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -0.536274, 0.421806, -0.59515, 0.077106, -0.27658, -0.637356 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 968) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 968) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -0.591, -0.084, 0.98216, 0.400464, 0.131806, -0.026608 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 969) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 969) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -1.68293, 0.796222, -0.96062, 0.415172, -0.082386, -0.182748 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 970) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 970) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -1.737656, 0.290416, 0.61669, 0.73853, 0.326, 0.428 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 971) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 971) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { 0.27516, -0.544536, -0.10627, -0.988374, 0.229991, -0.711267 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 972) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 972) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.002, 0.95, -0.363, 0.084, -0.646, 0.816, -0.407, 0.099, -0.02, -0.906, -0.874, 0.191, -0.328, -0.968, 0.79, 0.826, -0.795, 0.277 }; double X[] = { -0.591, -0.084, 0.707, 0.945, 0.326, 0.428 }; int incX = -1; double x_expected[] = { -0.591, -0.084, 0.794924, 0.411234, 0.148739, 0.025577 }; cblas_ztbmv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbmv(case 973) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbmv(case 973) imag"); }; }; }; } gsl-1.16/cblas/ctpsv.c0000664000252300025230000000062212171574312011541 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ctpsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX) { #define BASE float #include "source_tpsv_c.h" #undef BASE } gsl-1.16/cblas/source_rot.h0000664000252300025230000000204512171574312012574 00000000000000/* blas/source_rot.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE x = X[ix]; const BASE y = Y[iy]; X[ix] = c * x + s * y; Y[iy] = -s * x + c * y; ix += incX; iy += incY; } } gsl-1.16/cblas/icamax.c0000664000252300025230000000031612171574312011644 00000000000000#include #include #include "cblas.h" CBLAS_INDEX cblas_icamax (const int N, const void *X, const int incX) { #define BASE float #include "source_iamax_c.h" #undef BASE } gsl-1.16/cblas/source_rotm.h0000664000252300025230000000270412171574312012753 00000000000000/* blas/source_rotm.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX n; INDEX i = OFFSET(N, incX); INDEX j = OFFSET(N, incY); BASE h11, h21, h12, h22; if (P[0] == -1.0) { h11 = P[1]; h21 = P[2]; h12 = P[3]; h22 = P[4]; } else if (P[0] == 0.0) { h11 = 1.0; h21 = P[2]; h12 = P[3]; h22 = 1.0; } else if (P[0] == 1.0) { h11 = P[1]; h21 = -1.0; h12 = 1.0; h22 = P[4]; } else if (P[0] == -2.0) { return; } else { BLAS_ERROR("unrecognized value of P[0]"); return; } for (n = 0; n < N; n++) { const BASE w = X[i]; const BASE z = Y[j]; X[i] = h11 * w + h12 * z; Y[j] = h21 * w + h22 * z; i += incX; j += incY; } } gsl-1.16/cblas/source_tpmv_c.h0000664000252300025230000001367612171574312013274 00000000000000/* blas/source_tpmv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); CHECK_ARGS8(TPMV,order,Uplo,TransA,Diag,N,Ap,X,incX); if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x:= A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE Aii_real = CONST_REAL(Ap, TPUP(N, i, i)); const BASE Aii_imag = conj * CONST_IMAG(Ap, TPUP(N, i, i)); BASE temp_r; BASE temp_i; if (nonunit) { BASE x_real = REAL(X, ix); BASE x_imag = IMAG(X, ix); temp_r = Aii_real * x_real - Aii_imag * x_imag; temp_i = Aii_real * x_imag + Aii_imag * x_real; } else { temp_r = REAL(X, ix); temp_i = IMAG(X, ix); } { INDEX jx = OFFSET(N, incX) + (i + 1) * incX; for (j = i + 1; j < N; j++) { const BASE Aij_real = CONST_REAL(Ap, TPUP(N, i, j)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPUP(N, i, j)); BASE x_real = REAL(X, jx); BASE x_imag = IMAG(X, jx); temp_r += Aij_real * x_real - Aij_imag * x_imag; temp_i += Aij_real * x_imag + Aij_imag * x_real; jx += incX; } } REAL(X, ix) = temp_r; IMAG(X, ix) = temp_i; ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + incX * (N - 1); for (i = N; i > 0 && i--;) { const BASE Aii_real = CONST_REAL(Ap, TPLO(N, i, i)); const BASE Aii_imag = conj * CONST_IMAG(Ap, TPLO(N, i, i)); BASE temp_r; BASE temp_i; if (nonunit) { BASE x_real = REAL(X, ix); BASE x_imag = IMAG(X, ix); temp_r = Aii_real * x_real - Aii_imag * x_imag; temp_i = Aii_real * x_imag + Aii_imag * x_real; } else { temp_r = REAL(X, ix); temp_i = IMAG(X, ix); } { INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij_real = CONST_REAL(Ap, TPLO(N, i, j)); const BASE Aij_imag = conj * CONST_IMAG(Ap, TPLO(N, i, j)); BASE x_real = REAL(X, jx); BASE x_imag = IMAG(X, jx); temp_r += Aij_real * x_real - Aij_imag * x_imag; temp_i += Aij_real * x_imag + Aij_imag * x_real; jx += incX; } } REAL(X, ix) = temp_r; IMAG(X, ix) = temp_i; ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + incX * (N - 1); for (i = N; i > 0 && i--;) { const BASE Aii_real = CONST_REAL(Ap, TPUP(N, i, i)); const BASE Aii_imag = conj * CONST_IMAG(Ap, TPUP(N, i, i)); BASE temp_r; BASE temp_i; if (nonunit) { BASE x_real = REAL(X, ix); BASE x_imag = IMAG(X, ix); temp_r = Aii_real * x_real - Aii_imag * x_imag; temp_i = Aii_real * x_imag + Aii_imag * x_real; } else { temp_r = REAL(X, ix); temp_i = IMAG(X, ix); } { INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { BASE x_real = REAL(X, jx); BASE x_imag = IMAG(X, jx); const BASE Aji_real = CONST_REAL(Ap, TPUP(N, j, i)); const BASE Aji_imag = conj * CONST_IMAG(Ap, TPUP(N, j, i)); temp_r += Aji_real * x_real - Aji_imag * x_imag; temp_i += Aji_real * x_imag + Aji_imag * x_real; jx += incX; } } REAL(X, ix) = temp_r; IMAG(X, ix) = temp_i; ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE Aii_real = CONST_REAL(Ap, TPLO(N, i, i)); const BASE Aii_imag = conj * CONST_IMAG(Ap, TPLO(N, i, i)); BASE temp_r; BASE temp_i; if (nonunit) { BASE x_real = REAL(X, ix); BASE x_imag = IMAG(X, ix); temp_r = Aii_real * x_real - Aii_imag * x_imag; temp_i = Aii_real * x_imag + Aii_imag * x_real; } else { temp_r = REAL(X, ix); temp_i = IMAG(X, ix); } { INDEX jx = OFFSET(N, incX) + (i + 1) * incX; for (j = i + 1; j < N; j++) { BASE x_real = REAL(X, jx); BASE x_imag = IMAG(X, jx); const BASE Aji_real = CONST_REAL(Ap, TPLO(N, j, i)); const BASE Aji_imag = conj * CONST_IMAG(Ap, TPLO(N, j, i)); temp_r += Aji_real * x_real - Aji_imag * x_imag; temp_i += Aji_real * x_imag + Aji_imag * x_real; jx += incX; } } REAL(X, ix) = temp_r; IMAG(X, ix) = temp_i; ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/ssymv.c0000664000252300025230000000063712171574312011571 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ssymv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY) { #define BASE float #include "source_symv.h" #undef BASE } gsl-1.16/cblas/source_axpy_c.h0000664000252300025230000000247212171574312013257 00000000000000/* blas/source_axpy_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (fabs(alpha_real) == 0 && fabs(alpha_imag) == 0) { return; } for (i = 0; i < N; i++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); REAL(Y, iy) += (alpha_real * x_real - alpha_imag * x_imag); IMAG(Y, iy) += (alpha_real * x_imag + alpha_imag * x_real); ix += incX; iy += incY; } } gsl-1.16/cblas/source_symm_c.h0000664000252300025230000002105512171574312013261 00000000000000/* blas/source_symm_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; int uplo, side; CHECK_ARGS13(SYMM,Order,Side,Uplo,M,N,alpha,A,lda,B,ldb,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (Order == CblasRowMajor) { n1 = M; n2 = N; uplo = Uplo; side = Side; } else { n1 = N; n2 = M; uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; side = (Side == CblasLeft) ? CblasRight : CblasLeft; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (side == CblasLeft && uplo == CblasUpper) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = CONST_IMAG(A, i * lda + i); REAL(C, i * ldc + j) += temp1_real * Aii_real - temp1_imag * Aii_imag; IMAG(C, i * ldc + j) += temp1_real * Aii_imag + temp1_imag * Aii_real; } for (k = i + 1; k < n1; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bkj_real = CONST_REAL(B, ldb * k + j); const BASE Bkj_imag = CONST_IMAG(B, ldb * k + j); REAL(C, k * ldc + j) += Aik_real * temp1_real - Aik_imag * temp1_imag; IMAG(C, k * ldc + j) += Aik_real * temp1_imag + Aik_imag * temp1_real; temp2_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp2_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasLeft && uplo == CblasLower) { /* form C := alpha*A*B + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; for (k = 0; k < i; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Bkj_real = CONST_REAL(B, ldb * k + j); const BASE Bkj_imag = CONST_IMAG(B, ldb * k + j); REAL(C, k * ldc + j) += Aik_real * temp1_real - Aik_imag * temp1_imag; IMAG(C, k * ldc + j) += Aik_real * temp1_imag + Aik_imag * temp1_real; temp2_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp2_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = CONST_IMAG(A, i * lda + i); REAL(C, i * ldc + j) += temp1_real * Aii_real - temp1_imag * Aii_imag; IMAG(C, i * ldc + j) += temp1_real * Aii_imag + temp1_imag * Aii_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasRight && uplo == CblasUpper) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = CONST_IMAG(A, j * lda + j); REAL(C, i * ldc + j) += temp1_real * Ajj_real - temp1_imag * Ajj_imag; IMAG(C, i * ldc + j) += temp1_real * Ajj_imag + temp1_imag * Ajj_real; } for (k = j + 1; k < n2; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bik_real = CONST_REAL(B, ldb * i + k); const BASE Bik_imag = CONST_IMAG(B, ldb * i + k); REAL(C, i * ldc + k) += temp1_real * Ajk_real - temp1_imag * Ajk_imag; IMAG(C, i * ldc + k) += temp1_real * Ajk_imag + temp1_imag * Ajk_real; temp2_real += Bik_real * Ajk_real - Bik_imag * Ajk_imag; temp2_imag += Bik_real * Ajk_imag + Bik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else if (side == CblasRight && uplo == CblasLower) { /* form C := alpha*B*A + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = CONST_REAL(B, ldb * i + j); const BASE Bij_imag = CONST_IMAG(B, ldb * i + j); const BASE temp1_real = alpha_real * Bij_real - alpha_imag * Bij_imag; const BASE temp1_imag = alpha_real * Bij_imag + alpha_imag * Bij_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; for (k = 0; k < j; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); const BASE Bik_real = CONST_REAL(B, ldb * i + k); const BASE Bik_imag = CONST_IMAG(B, ldb * i + k); REAL(C, i * ldc + k) += temp1_real * Ajk_real - temp1_imag * Ajk_imag; IMAG(C, i * ldc + k) += temp1_real * Ajk_imag + temp1_imag * Ajk_real; temp2_real += Bik_real * Ajk_real - Bik_imag * Ajk_imag; temp2_imag += Bik_real * Ajk_imag + Bik_imag * Ajk_real; } { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = CONST_IMAG(A, j * lda + j); REAL(C, i * ldc + j) += temp1_real * Ajj_real - temp1_imag * Ajj_imag; IMAG(C, i * ldc + j) += temp1_real * Ajj_imag + temp1_imag * Ajj_real; } REAL(C, i * ldc + j) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(C, i * ldc + j) += alpha_real * temp2_imag + alpha_imag * temp2_real; } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/zgerc.c0000664000252300025230000000055712171574312011523 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zgerc (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE double #include "source_gerc.h" #undef BASE } gsl-1.16/cblas/test_tpmv.c0000664000252300025230000012305112171574312012431 00000000000000#include #include #include #include #include "tests.h" void test_tpmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.179133f, -0.549315f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 974)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.213f, 0.85518f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 975)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.055233f, -0.519495f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 976)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.0891f, 0.885f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 977)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.179133f, -0.549315f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 978)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.213f, 0.85518f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 979)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.055233f, -0.519495f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 980)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.587f, 0.14f, 0.841f }; float X[] = { -0.213f, 0.885f }; int incX = -1; float x_expected[] = { -0.0891f, 0.885f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 981)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.49754f, 0.20961f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 982)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.022232f, -0.274f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 983)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.232308f, 0.444834f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 984)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { 0.243f, -0.038776f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 985)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.49754f, 0.20961f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 986)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.022232f, -0.274f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 987)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { -0.232308f, 0.444834f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 988)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.765f, 0.968f, -0.956f }; float X[] = { 0.243f, -0.274f }; int incX = -1; float x_expected[] = { 0.243f, -0.038776f }; cblas_stpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpmv(case 989)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.022072, -0.073151 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 990)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.062, -0.207298 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 991)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { 0.026769, -0.086853 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 992)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.013159, -0.221 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 993)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.022072, -0.073151 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 994)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.062, -0.207298 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 995)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { 0.026769, -0.086853 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 996)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.393, -0.221, 0.356 }; double X[] = { -0.062, -0.221 }; int incX = -1; double x_expected[] = { -0.013159, -0.221 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 997)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { 0.165233, 0.25331 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 998)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.745135, 0.365 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 999)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.017632, -0.211618 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1000)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.928, -0.099928 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1001)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { 0.165233, 0.25331 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1002)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.745135, 0.365 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1003)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.017632, -0.211618 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1004)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.694, 0.501, 0.019 }; double X[] = { -0.928, 0.365 }; int incX = -1; double x_expected[] = { -0.928, -0.099928 }; cblas_dtpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpmv(case 1005)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 0.880215f, -0.602509f, -0.225207f, -0.564235f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1006) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1006) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 0.904f, 0.461f, -0.58925f, -0.778204f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1007) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1007) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 1.21467f, -0.432639f, -0.002957f, 0.366969f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1008) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1008) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 1.23846f, 0.63087f, -0.367f, 0.153f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1009) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1009) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 0.880215f, -0.602509f, -0.225207f, -0.564235f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1010) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1010) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 0.904f, 0.461f, -0.58925f, -0.778204f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1011) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1011) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 1.21467f, -0.432639f, -0.002957f, 0.366969f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1012) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1012) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { 0.362f, -0.849f, -0.612f, -0.718f, 0.503f, -0.923f }; float X[] = { 0.904f, 0.461f, -0.367f, 0.153f }; int incX = -1; float x_expected[] = { 1.23846f, 0.63087f, -0.367f, 0.153f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1013) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1013) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { -0.281591f, -0.161308f, -0.9103f, 0.34578f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1014) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1014) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { -0.05924f, -0.5178f, 0.444f, -0.748f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1015) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1015) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { 0.115649f, -0.450508f, -1.26568f, 0.689239f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1016) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1016) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { 0.338f, -0.807f, 0.088617f, -0.404541f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1017) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1017) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { -0.281591f, -0.161308f, -0.9103f, 0.34578f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1018) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1018) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { -0.05924f, -0.5178f, 0.444f, -0.748f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1019) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1019) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { 0.115649f, -0.450508f, -1.26568f, 0.689239f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1020) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1020) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.876f, -0.697f, -0.519f, -0.223f, 0.526f, -0.077f }; float X[] = { 0.338f, -0.807f, 0.444f, -0.748f }; int incX = -1; float x_expected[] = { 0.338f, -0.807f, 0.088617f, -0.404541f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1021) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1021) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.295592f, 1.11591f, 0.610498f, -0.779458f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1022) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1022) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.646798f, 0.455824f, 0.602f, -0.96f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1023) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1023) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { 0.229206f, 0.296082f, 0.712384f, -0.465806f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1024) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1024) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.122f, -0.364f, 0.703886f, -0.646348f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1025) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1025) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.295592f, 1.11591f, 0.610498f, -0.779458f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1026) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1026) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.646798f, 0.455824f, 0.602f, -0.96f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1027) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1027) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { 0.229206f, 0.296082f, 0.712384f, -0.465806f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1028) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1028) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 2; float A[] = { 0.869f, -0.091f, -0.859f, 0.008f, -0.921f, -0.321f }; float X[] = { -0.122f, -0.364f, 0.602f, -0.96f }; int incX = -1; float x_expected[] = { -0.122f, -0.364f, 0.703886f, -0.646348f }; cblas_ctpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpmv(case 1029) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpmv(case 1029) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.466116, 0.156534, -0.248261, -0.067936 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1030) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1030) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.042, -0.705, -0.663093, -0.637955 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1031) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1031) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.905141, 0.539693, 0.159832, -0.283981 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1032) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1032) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.481025, -0.321841, -0.255, -0.854 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1033) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1033) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.466116, 0.156534, -0.248261, -0.067936 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1034) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1034) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.042, -0.705, -0.663093, -0.637955 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1035) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1035) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.905141, 0.539693, 0.159832, -0.283981 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1036) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1036) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.254, 0.263, -0.271, -0.595, -0.182, -0.672 }; double X[] = { -0.042, -0.705, -0.255, -0.854 }; int incX = -1; double x_expected[] = { -0.481025, -0.321841, -0.255, -0.854 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1037) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1037) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.590302, 1.473768, -0.566422, -0.005436 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1038) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1038) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.139182, 1.574648, -0.689, -0.679 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1039) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1039) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.44312, 0.80312, -0.211814, -0.54022 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1040) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1040) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { -0.008, 0.904, -0.334392, -1.213784 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1041) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1041) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.590302, 1.473768, -0.566422, -0.005436 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1042) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1042) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.139182, 1.574648, -0.689, -0.679 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1043) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1043) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { 0.44312, 0.80312, -0.211814, -0.54022 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1044) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1044) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.421, -0.407, -0.595, -0.387, 0.884, -0.498 }; double X[] = { -0.008, 0.904, -0.689, -0.679 }; int incX = -1; double x_expected[] = { -0.008, 0.904, -0.334392, -1.213784 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1045) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1045) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -1.449087, -1.068251, 0.375602, 0.672696 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1046) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1046) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -1.43236, 0.04007, -0.406, -0.948 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1047) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1047) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -0.657727, -0.543321, 0.167357, 1.431451 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1048) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1048) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -0.641, 0.565, -0.614245, -0.189245 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1049) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1049) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -1.449087, -1.068251, 0.375602, 0.672696 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1050) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1050) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -1.43236, 0.04007, -0.406, -0.948 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1051) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1051) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -0.657727, -0.543321, 0.167357, 1.431451 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1052) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1052) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 2; double A[] = { -0.743, -0.078, 0.77, 0.505, 0.157, -0.986 }; double X[] = { -0.641, 0.565, -0.406, -0.948 }; int incX = -1; double x_expected[] = { -0.641, 0.565, -0.614245, -0.189245 }; cblas_ztpmv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpmv(case 1053) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpmv(case 1053) imag"); }; }; }; } gsl-1.16/cblas/zhemv.c0000664000252300025230000000063512171574312011537 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zhemv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE double #include "source_hemv.h" #undef BASE } gsl-1.16/cblas/source_syrk_c.h0000664000252300025230000001415512171574312013267 00000000000000/* blas/source_syrk_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS11(SYRK,Order,Uplo,Trans,N,K,alpha,A,lda,beta,C,ldc); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (Order == CblasRowMajor) { uplo = Uplo; /* FIXME: original blas does not make distinction between Trans and ConjTrans?? */ trans = (Trans == CblasNoTrans) ? CblasNoTrans : CblasTrans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (Trans == CblasNoTrans) ? CblasTrans : CblasNoTrans; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { REAL(C, ldc * i + j) = 0.0; IMAG(C, ldc * i + j) = 0.0; } } } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { const BASE Cij_real = REAL(C, ldc * i + j); const BASE Cij_imag = IMAG(C, ldc * i + j); REAL(C, ldc * i + j) = beta_real * Cij_real - beta_imag * Cij_imag; IMAG(C, ldc * i + j) = beta_real * Cij_imag + beta_imag * Cij_real; } } } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); temp_real += Aik_real * Ajk_real - Aik_imag * Ajk_imag; temp_imag += Aik_real * Ajk_imag + Aik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (uplo == CblasUpper && trans == CblasTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = CONST_IMAG(A, k * lda + i); const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = CONST_IMAG(A, k * lda + j); temp_real += Aki_real * Akj_real - Aki_imag * Akj_imag; temp_imag += Aki_real * Akj_imag + Aki_imag * Akj_real; } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = CONST_IMAG(A, i * lda + k); const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = CONST_IMAG(A, j * lda + k); temp_real += Aik_real * Ajk_real - Aik_imag * Ajk_imag; temp_imag += Aik_real * Ajk_imag + Aik_imag * Ajk_real; } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (uplo == CblasLower && trans == CblasTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < K; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = CONST_IMAG(A, k * lda + i); const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = CONST_IMAG(A, k * lda + j); temp_real += Aki_real * Akj_real - Aki_imag * Akj_imag; temp_imag += Aki_real * Akj_imag + Aki_imag * Akj_real; } REAL(C, i * ldc + j) += alpha_real * temp_real - alpha_imag * temp_imag; IMAG(C, i * ldc + j) += alpha_real * temp_imag + alpha_imag * temp_real; } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/source_hpr.h0000664000252300025230000000544312171574312012566 00000000000000/* blas/source_hpr.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS7(CZ_HPR,order,Uplo,N,alpha,X,incX,A); if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp_real = alpha * CONST_REAL(X, ix); const BASE tmp_imag = alpha * conj * CONST_IMAG(X, ix); INDEX jx = ix; { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(Ap, TPUP(N, i, i)) += X_real * tmp_real - X_imag * tmp_imag; IMAG(Ap, TPUP(N, i, i)) = 0; jx += incX; } for (j = i + 1; j < N; j++) { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(Ap, TPUP(N, i, j)) += X_real * tmp_real - X_imag * tmp_imag; IMAG(Ap, TPUP(N, i, j)) += X_imag * tmp_real + X_real * tmp_imag; jx += incX; } ix += incX; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp_real = alpha * CONST_REAL(X, ix); const BASE tmp_imag = alpha * conj * CONST_IMAG(X, ix); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(Ap, TPLO(N, i, j)) += X_real * tmp_real - X_imag * tmp_imag; IMAG(Ap, TPLO(N, i, j)) += X_imag * tmp_real + X_real * tmp_imag; jx += incX; } { const BASE X_real = CONST_REAL(X, jx); const BASE X_imag = -conj * CONST_IMAG(X, jx); REAL(Ap, TPLO(N, i, i)) += X_real * tmp_real - X_imag * tmp_imag; IMAG(Ap, TPLO(N, i, i)) = 0; jx += incX; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/test_tpsv.c0000664000252300025230000012343112171574312012441 00000000000000#include #include #include #include #include "tests.h" void test_tpsv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.31929f, 0.360168f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1310)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.144f, -0.04432f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1311)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.417992f, -0.0839895f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1312)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.12704f, 0.032f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1313)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.31929f, 0.360168f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1314)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.144f, -0.04432f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1315)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.417992f, -0.0839895f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1316)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.12704f, 0.032f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1317)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.417992f, -0.0839895f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1318)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.12704f, 0.032f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1319)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.31929f, 0.360168f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1320)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.144f, -0.04432f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1321)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.417992f, -0.0839895f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1322)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.12704f, 0.032f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1323)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.31929f, 0.360168f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1324)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.381f, 0.53f, 0.451f }; float X[] = { 0.144f, 0.032f }; int incX = -1; float x_expected[] = { 0.144f, -0.04432f }; cblas_stpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stpsv(case 1325)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 1.67142857143, 1.42438631791 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1326)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -0.702, -1.150996 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1327)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 4.76584842388, -1.86197183099 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1328)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -1.163378, -0.661 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1329)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 1.67142857143, 1.42438631791 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1330)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -0.702, -1.150996 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1331)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 4.76584842388, -1.86197183099 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1332)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -1.163378, -0.661 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1333)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 4.76584842388, -1.86197183099 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1334)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -1.163378, -0.661 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1335)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 1.67142857143, 1.42438631791 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1336)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -0.702, -1.150996 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1337)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 4.76584842388, -1.86197183099 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1338)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -1.163378, -0.661 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1339)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { 1.67142857143, 1.42438631791 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1340)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.355, -0.698, -0.42 }; double X[] = { -0.702, -0.661 }; int incX = -1; double x_expected[] = { -0.702, -1.150996 }; cblas_dtpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtpsv(case 1341)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -1.05533f, 0.0529057f, -3.93625f, 1.36003f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1342) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1342) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, 0.818576f, 0.163438f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1343) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1343) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -2.48362f, 1.13085f, -1.67581f, -0.273264f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1344) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1344) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 0.431924f, 0.679112f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1345) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1345) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -1.05533f, 0.0529057f, -3.93625f, 1.36003f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1346) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1346) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, 0.818576f, 0.163438f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1347) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1347) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -2.48362f, 1.13085f, -1.67581f, -0.273264f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1348) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1348) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 0.431924f, 0.679112f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1349) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1349) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -2.48362f, 1.13085f, -1.67581f, -0.273264f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1350) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1350) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 0.431924f, 0.679112f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1351) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1351) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -1.05533f, 0.0529057f, -3.93625f, 1.36003f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1352) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1352) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, 0.818576f, 0.163438f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1353) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1353) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -2.48362f, 1.13085f, -1.67581f, -0.273264f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1354) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1354) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 0.431924f, 0.679112f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1355) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1355) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -1.05533f, 0.0529057f, -3.93625f, 1.36003f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1356) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1356) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, 0.818576f, 0.163438f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1357) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1357) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 2.15867f, 1.69498f, 1.69471f, 0.104738f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1358) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1358) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.613252f, 0.561896f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1359) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1359) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 1.00465f, 0.327432f, 3.44853f, 2.273f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1360) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1360) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, -0.806168f, -0.053086f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1361) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1361) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 2.15867f, 1.69498f, 1.69471f, 0.104738f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1362) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1362) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.613252f, 0.561896f, -0.072f, 0.642f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1363) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1363) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { 1.00465f, 0.327432f, 3.44853f, 2.273f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1364) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1364) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 2; float A[] = { -0.019f, -0.38f, 0.588f, 0.814f, 0.173f, -0.937f }; float X[] = { -0.133f, 0.998f, -0.072f, 0.642f }; int incX = -1; float x_expected[] = { -0.133f, 0.998f, -0.806168f, -0.053086f }; cblas_ctpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctpsv(case 1365) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctpsv(case 1365) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.430509772467, -0.0927067365535, -0.611144484555, 0.999982608216 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1366) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1366) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -0.795928, -0.523879 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1367) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1367) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.00136463678, -1.84591534629, -1.12140892769, 0.696784840869 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1368) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1368) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.707508, -0.042521, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1369) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1369) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.430509772467, -0.0927067365535, -0.611144484555, 0.999982608216 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1370) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1370) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -0.795928, -0.523879 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1371) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1371) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.00136463678, -1.84591534629, -1.12140892769, 0.696784840869 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1372) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1372) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.707508, -0.042521, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1373) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1373) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.00136463678, -1.84591534629, -1.12140892769, 0.696784840869 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1374) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1374) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.707508, -0.042521, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1375) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1375) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.430509772467, -0.0927067365535, -0.611144484555, 0.999982608216 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1376) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1376) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -0.795928, -0.523879 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1377) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1377) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.00136463678, -1.84591534629, -1.12140892769, 0.696784840869 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1378) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1378) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 1.707508, -0.042521, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1379) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1379) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.430509772467, -0.0927067365535, -0.611144484555, 0.999982608216 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1380) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1380) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -0.795928, -0.523879 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1381) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1381) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { -1.47384781823, -0.286556198408, 1.03098932879, -0.824698794397 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1382) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1382) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { -0.016172, 1.175911, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1383) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1383) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.369363905801, -0.239798891331, 1.1759505739, -1.40027235656 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1384) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1384) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -1.05676, -1.151335 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1385) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1385) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { -1.47384781823, -0.286556198408, 1.03098932879, -0.824698794397 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1386) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1386) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { -0.016172, 1.175911, -0.668, -0.945 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1387) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1387) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.369363905801, -0.239798891331, 1.1759505739, -1.40027235656 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1388) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1388) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 2; double A[] = { 0.052, 0.875, 0.751, -0.912, 0.832, -0.153 }; double X[] = { 0.344, -0.143, -0.668, -0.945 }; int incX = -1; double x_expected[] = { 0.344, -0.143, -1.05676, -1.151335 }; cblas_ztpsv(order, uplo, trans, diag, N, A, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztpsv(case 1389) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztpsv(case 1389) imag"); }; }; }; } gsl-1.16/cblas/Makefile.am0000664000252300025230000000636712171574312012306 00000000000000lib_LTLIBRARIES = libgslcblas.la libgslcblas_la_LDFLAGS = -version-info $(GSL_LT_CBLAS_VERSION) MINGW32_HOST = @MINGW32_HOST@ if MINGW32_HOST libgslcblas_la_LDFLAGS += -no-undefined endif pkginclude_HEADERS = gsl_cblas.h INCLUDES = -I$(top_srcdir) libgslcblas_la_SOURCES = sasum.c saxpy.c scasum.c scnrm2.c scopy.c sdot.c sdsdot.c sgbmv.c sgemm.c sgemv.c sger.c snrm2.c srot.c srotg.c srotm.c srotmg.c ssbmv.c sscal.c sspmv.c sspr.c sspr2.c sswap.c ssymm.c ssymv.c ssyr.c ssyr2.c ssyr2k.c ssyrk.c stbmv.c stbsv.c stpmv.c stpsv.c strmm.c strmv.c strsm.c strsv.c dasum.c daxpy.c dcopy.c ddot.c dgbmv.c dgemm.c dgemv.c dger.c dnrm2.c drot.c drotg.c drotm.c drotmg.c dsbmv.c dscal.c dsdot.c dspmv.c dspr.c dspr2.c dswap.c dsymm.c dsymv.c dsyr.c dsyr2.c dsyr2k.c dsyrk.c dtbmv.c dtbsv.c dtpmv.c dtpsv.c dtrmm.c dtrmv.c dtrsm.c dtrsv.c dzasum.c dznrm2.c caxpy.c ccopy.c cdotc_sub.c cdotu_sub.c cgbmv.c cgemm.c cgemv.c cgerc.c cgeru.c chbmv.c chemm.c chemv.c cher.c cher2.c cher2k.c cherk.c chpmv.c chpr.c chpr2.c cscal.c csscal.c cswap.c csymm.c csyr2k.c csyrk.c ctbmv.c ctbsv.c ctpmv.c ctpsv.c ctrmm.c ctrmv.c ctrsm.c ctrsv.c zaxpy.c zcopy.c zdotc_sub.c zdotu_sub.c zdscal.c zgbmv.c zgemm.c zgemv.c zgerc.c zgeru.c zhbmv.c zhemm.c zhemv.c zher.c zher2.c zher2k.c zherk.c zhpmv.c zhpr.c zhpr2.c zscal.c zswap.c zsymm.c zsyr2k.c zsyrk.c ztbmv.c ztbsv.c ztpmv.c ztpsv.c ztrmm.c ztrmv.c ztrsm.c ztrsv.c icamax.c idamax.c isamax.c izamax.c xerbla.c noinst_HEADERS = tests.c tests.h error_cblas.h error_cblas_l2.h error_cblas_l3.h cblas.h source_asum_c.h source_asum_r.h source_axpy_c.h source_axpy_r.h source_copy_c.h source_copy_r.h source_dot_c.h source_dot_r.h source_gbmv_c.h source_gbmv_r.h source_gemm_c.h source_gemm_r.h source_gemv_c.h source_gemv_r.h source_ger.h source_gerc.h source_geru.h source_hbmv.h source_hemm.h source_hemv.h source_her.h source_her2.h source_her2k.h source_herk.h source_hpmv.h source_hpr.h source_hpr2.h source_iamax_c.h source_iamax_r.h source_nrm2_c.h source_nrm2_r.h source_rot.h source_rotg.h source_rotm.h source_rotmg.h source_sbmv.h source_scal_c.h source_scal_c_s.h source_scal_r.h source_spmv.h source_spr.h source_spr2.h source_swap_c.h source_swap_r.h source_symm_c.h source_symm_r.h source_symv.h source_syr.h source_syr2.h source_syr2k_c.h source_syr2k_r.h source_syrk_c.h source_syrk_r.h source_tbmv_c.h source_tbmv_r.h source_tbsv_c.h source_tbsv_r.h source_tpmv_c.h source_tpmv_r.h source_tpsv_c.h source_tpsv_r.h source_trmm_c.h source_trmm_r.h source_trmv_c.h source_trmv_r.h source_trsm_c.h source_trsm_r.h source_trsv_c.h source_trsv_r.h hypot.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_LDADD = libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la test_SOURCES = test.c test_amax.c test_asum.c test_axpy.c test_copy.c test_dot.c test_gbmv.c test_gemm.c test_gemv.c test_ger.c test_hbmv.c test_hemm.c test_hemv.c test_her.c test_her2.c test_her2k.c test_herk.c test_hpmv.c test_hpr.c test_hpr2.c test_nrm2.c test_rot.c test_rotg.c test_rotm.c test_rotmg.c test_sbmv.c test_scal.c test_spmv.c test_spr.c test_spr2.c test_swap.c test_symm.c test_symv.c test_syr.c test_syr2.c test_syr2k.c test_syrk.c test_tbmv.c test_tbsv.c test_tpmv.c test_tpsv.c test_trmm.c test_trmv.c test_trsm.c test_trsv.c gsl-1.16/cblas/test_dot.c0000664000252300025230000002112212171574312012225 00000000000000#include #include #include #include #include "tests.h" void test_dot (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float alpha = 0.0f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 0.604725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 1)"); }; { int N = 1; float alpha = 0.1f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 0.704725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 2)"); }; { int N = 1; float alpha = 1.0f; float X[] = { 0.733f }; float Y[] = { 0.825f }; int incX = 1; int incY = -1; float expected = 1.604725f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 3)"); }; { int N = 1; float alpha = 0.0f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 0.541604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 4)"); }; { int N = 1; float alpha = 0.1f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 0.641604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 5)"); }; { int N = 1; float alpha = 1.0f; float X[] = { -0.812f }; float Y[] = { -0.667f }; int incX = -1; int incY = 1; float expected = 1.541604f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 6)"); }; { int N = 1; float alpha = 0.0f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 0.251563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 7)"); }; { int N = 1; float alpha = 0.1f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 0.351563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 8)"); }; { int N = 1; float alpha = 1.0f; float X[] = { 0.481f }; float Y[] = { 0.523f }; int incX = -1; int incY = -1; float expected = 1.251563f; float f; f = cblas_sdsdot (N, alpha, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdsdot(case 9)"); }; { int N = 1; float X[] = { 0.785f }; float Y[] = { -0.7f }; int incX = 1; int incY = -1; float expected = -0.5495f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 10)"); }; { int N = 1; double X[] = { 0.79 }; double Y[] = { -0.679 }; int incX = 1; int incY = -1; double expected = -0.53641; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 11)"); }; { int N = 1; float X[] = { 0.474f, -0.27f }; float Y[] = { -0.144f, -0.392f }; int incX = 1; int incY = -1; float expected[2] = {-0.174096f, -0.146928f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 12) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 12) imag"); }; { int N = 1; float X[] = { 0.474f, -0.27f }; float Y[] = { -0.144f, -0.392f }; int incX = 1; int incY = -1; float expected[2] = {0.037584f, -0.224688f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 13) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 13) imag"); }; { int N = 1; double X[] = { -0.87, -0.631 }; double Y[] = { -0.7, -0.224 }; int incX = 1; int incY = -1; double expected[2] = {0.467656, 0.63658}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 14) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 14) imag"); }; { int N = 1; double X[] = { -0.87, -0.631 }; double Y[] = { -0.7, -0.224 }; int incX = 1; int incY = -1; double expected[2] = {0.750344, -0.24682}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 15) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 15) imag"); }; { int N = 1; float X[] = { -0.457f }; float Y[] = { 0.839f }; int incX = -1; int incY = 1; float expected = -0.383423f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 16)"); }; { int N = 1; double X[] = { 0.949 }; double Y[] = { -0.873 }; int incX = -1; int incY = 1; double expected = -0.828477; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 17)"); }; { int N = 1; float X[] = { 0.852f, -0.045f }; float Y[] = { 0.626f, -0.164f }; int incX = -1; int incY = 1; float expected[2] = {0.525972f, -0.167898f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 18) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 18) imag"); }; { int N = 1; float X[] = { 0.852f, -0.045f }; float Y[] = { 0.626f, -0.164f }; int incX = -1; int incY = 1; float expected[2] = {0.540732f, -0.111558f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 19) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 19) imag"); }; { int N = 1; double X[] = { -0.786, -0.341 }; double Y[] = { -0.271, -0.896 }; int incX = -1; int incY = 1; double expected[2] = {-0.09253, 0.796667}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 20) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 20) imag"); }; { int N = 1; double X[] = { -0.786, -0.341 }; double Y[] = { -0.271, -0.896 }; int incX = -1; int incY = 1; double expected[2] = {0.518542, 0.611845}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 21) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 21) imag"); }; { int N = 1; float X[] = { -0.088f }; float Y[] = { -0.165f }; int incX = -1; int incY = -1; float expected = 0.01452f; float f; f = cblas_sdot(N, X, incX, Y, incY); gsl_test_rel(f, expected, flteps, "sdot(case 22)"); }; { int N = 1; double X[] = { -0.434 }; double Y[] = { -0.402 }; int incX = -1; int incY = -1; double expected = 0.174468; double f; f = cblas_ddot(N, X, incX, Y, incY); gsl_test_rel(f, expected, dbleps, "ddot(case 23)"); }; { int N = 1; float X[] = { -0.347f, 0.899f }; float Y[] = { -0.113f, -0.858f }; int incX = -1; int incY = -1; float expected[2] = {0.810553f, 0.196139f}; float f[2]; cblas_cdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotu(case 24) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotu(case 24) imag"); }; { int N = 1; float X[] = { -0.347f, 0.899f }; float Y[] = { -0.113f, -0.858f }; int incX = -1; int incY = -1; float expected[2] = {-0.732131f, 0.399313f}; float f[2]; cblas_cdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], flteps, "cdotc(case 25) real"); gsl_test_rel(f[1], expected[1], flteps, "cdotc(case 25) imag"); }; { int N = 1; double X[] = { -0.897, -0.204 }; double Y[] = { -0.759, 0.557 }; int incX = -1; int incY = -1; double expected[2] = {0.794451, -0.344793}; double f[2]; cblas_zdotu_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotu(case 26) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotu(case 26) imag"); }; { int N = 1; double X[] = { -0.897, -0.204 }; double Y[] = { -0.759, 0.557 }; int incX = -1; int incY = -1; double expected[2] = {0.567195, -0.654465}; double f[2]; cblas_zdotc_sub(N, X, incX, Y, incY, &f); gsl_test_rel(f[0], expected[0], dbleps, "zdotc(case 27) real"); gsl_test_rel(f[1], expected[1], dbleps, "zdotc(case 27) imag"); }; } gsl-1.16/cblas/source_hbmv.h0000664000252300025230000001246712171574312012735 00000000000000/* blas/source_hbmv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS12(CZ_HBMV,order,Uplo,N,K,alpha,A,lda,X,incX,beta,Y,incY); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if (N == 0) return; if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { REAL(Y, iy) = 0.0; IMAG(Y, iy) = 0.0; iy += incY; } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE y_real = REAL(Y, iy); const BASE y_imag = IMAG(Y, iy); const BASE tmpR = y_real * beta_real - y_imag * beta_imag; const BASE tmpI = y_real * beta_imag + y_imag * beta_real; REAL(Y, iy) = tmpR; IMAG(Y, iy) = tmpI; iy += incY; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; BASE Aii_real = CONST_REAL(A, lda * i + 0); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(A, lda * i + (j - i)); BASE Aij_imag = conj * CONST_IMAG(A, lda * i + (j - i)); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(A, i * lda + (K - i + j)); BASE Aij_imag = conj * CONST_IMAG(A, i * lda + (K - i + j)); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } { BASE Aii_real = CONST_REAL(A, lda * i + K); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/zsyr2k.c0000664000252300025230000000072112171574312011646 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zsyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE double #include "source_syr2k_c.h" #undef BASE } gsl-1.16/cblas/tests.h0000664000252300025230000000176012171574312011555 00000000000000void test_dot (void); void test_nrm2 (void); void test_asum (void); void test_amax (void); void test_axpy (void); void test_copy (void); void test_swap (void); void test_scal (void); void test_rotg (void); void test_rot (void); void test_rotmg (void); void test_rotm (void); void test_gemv (void); void test_gbmv (void); void test_trmv (void); void test_tbmv (void); void test_tpmv (void); void test_symv (void); void test_hemv (void); void test_hbmv (void); void test_sbmv (void); void test_hpmv (void); void test_spmv (void); void test_trsv (void); void test_tbsv (void); void test_tpsv (void); void test_ger (void); void test_syr (void); void test_her (void); void test_hpr (void); void test_spr (void); void test_syr2 (void); void test_spr2 (void); void test_her2 (void); void test_hpr2 (void); void test_gemm (void); void test_symm (void); void test_hemm (void); void test_syrk (void); void test_herk (void); void test_syr2k (void); void test_her2k (void); void test_trmm (void); void test_trsm (void); gsl-1.16/cblas/ctpmv.c0000664000252300025230000000057612171574312011543 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ctpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX) { #define BASE float #include "source_tpmv_c.h" #undef BASE } gsl-1.16/cblas/test_spr2.c0000664000252300025230000001001112171574312012320 00000000000000#include #include #include #include #include "tests.h" void test_spr2 (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 2; float alpha = -1.0f; float Ap[] = { 0.493f, -0.175f, -0.831f }; float X[] = { -0.163f, 0.489f }; int incX = -1; float Y[] = { 0.154f, 0.769f }; int incY = -1; float Ap_expected[] = { -0.259082f, -0.124959f, -0.780796f }; cblas_sspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr2(case 1442)"); } }; }; { int order = 101; int uplo = 122; int N = 2; float alpha = -1.0f; float Ap[] = { 0.493f, -0.175f, -0.831f }; float X[] = { -0.163f, 0.489f }; int incX = -1; float Y[] = { 0.154f, 0.769f }; int incY = -1; float Ap_expected[] = { -0.259082f, -0.124959f, -0.780796f }; cblas_sspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr2(case 1443)"); } }; }; { int order = 102; int uplo = 121; int N = 2; float alpha = -1.0f; float Ap[] = { 0.493f, -0.175f, -0.831f }; float X[] = { -0.163f, 0.489f }; int incX = -1; float Y[] = { 0.154f, 0.769f }; int incY = -1; float Ap_expected[] = { -0.259082f, -0.124959f, -0.780796f }; cblas_sspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr2(case 1444)"); } }; }; { int order = 102; int uplo = 122; int N = 2; float alpha = -1.0f; float Ap[] = { 0.493f, -0.175f, -0.831f }; float X[] = { -0.163f, 0.489f }; int incX = -1; float Y[] = { 0.154f, 0.769f }; int incY = -1; float Ap_expected[] = { -0.259082f, -0.124959f, -0.780796f }; cblas_sspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr2(case 1445)"); } }; }; { int order = 101; int uplo = 121; int N = 2; double alpha = 0; double Ap[] = { 0.938, 0.342, 0.74 }; double X[] = { 0.216, -0.566 }; int incX = -1; double Y[] = { -0.845, 0.282 }; int incY = -1; double Ap_expected[] = { 0.938, 0.342, 0.74 }; cblas_dspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr2(case 1446)"); } }; }; { int order = 101; int uplo = 122; int N = 2; double alpha = 0; double Ap[] = { 0.938, 0.342, 0.74 }; double X[] = { 0.216, -0.566 }; int incX = -1; double Y[] = { -0.845, 0.282 }; int incY = -1; double Ap_expected[] = { 0.938, 0.342, 0.74 }; cblas_dspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr2(case 1447)"); } }; }; { int order = 102; int uplo = 121; int N = 2; double alpha = 0; double Ap[] = { 0.938, 0.342, 0.74 }; double X[] = { 0.216, -0.566 }; int incX = -1; double Y[] = { -0.845, 0.282 }; int incY = -1; double Ap_expected[] = { 0.938, 0.342, 0.74 }; cblas_dspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr2(case 1448)"); } }; }; { int order = 102; int uplo = 122; int N = 2; double alpha = 0; double Ap[] = { 0.938, 0.342, 0.74 }; double X[] = { 0.216, -0.566 }; int incX = -1; double Y[] = { -0.845, 0.282 }; int incY = -1; double Ap_expected[] = { 0.938, 0.342, 0.74 }; cblas_dspr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr2(case 1449)"); } }; }; } gsl-1.16/cblas/ctbmv.c0000664000252300025230000000064612171574312011523 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ctbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX) { #define BASE float #include "source_tbmv_c.h" #undef BASE } gsl-1.16/cblas/source_gbmv_r.h0000664000252300025230000000537412171574312013254 00000000000000/* blas/source_gbmv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; INDEX lenX, lenY, L, U; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS14(GBMV,order,TransA,M,N,KL,KU,alpha,A,lda,X,incX,beta,Y,incY); if (M == 0 || N == 0) return; if (alpha == 0.0 && beta == 1.0) return; if (Trans == CblasNoTrans) { lenX = N; lenY = M; L = KL; U = KU; } else { lenX = M; lenY = N; L = KU; U = KL; } /* form y := beta*y */ if (beta == 0.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { Y[iy] = 0; iy += incY; } } else if (beta != 1.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { Y[iy] *= beta; iy += incY; } } if (alpha == 0.0) return; if ((order == CblasRowMajor && Trans == CblasNoTrans) || (order == CblasColMajor && Trans == CblasTrans)) { /* form y := alpha*A*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE temp = 0.0; const INDEX j_min = (i > L ? i - L : 0); const INDEX j_max = GSL_MIN(lenX, i + U + 1); INDEX jx = OFFSET(lenX, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[(L - i + j) + i * lda]; jx += incX; } Y[iy] += alpha * temp; iy += incY; } } else if ((order == CblasRowMajor && Trans == CblasTrans) || (order == CblasColMajor && Trans == CblasNoTrans)) { /* form y := alpha*A'*x + y */ INDEX jx = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE temp = alpha * X[jx]; if (temp != 0.0) { const INDEX i_min = (j > U ? j - U : 0); const INDEX i_max = GSL_MIN(lenY, j + L + 1); INDEX iy = OFFSET(lenY, incY) + i_min * incY; for (i = i_min; i < i_max; i++) { Y[iy] += temp * A[lda * j + (U + i - j)]; iy += incY; } } jx += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/zhpr2.c0000664000252300025230000000056012171574312011450 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zhpr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap) { #define BASE double #include "source_hpr2.h" #undef BASE } gsl-1.16/cblas/cswap.c0000664000252300025230000000033012171574312011513 00000000000000#include #include #include "cblas.h" void cblas_cswap (const int N, void *X, const int incX, void *Y, const int incY) { #define BASE float #include "source_swap_c.h" #undef BASE } gsl-1.16/cblas/zher2k.c0000664000252300025230000000072012171574312011606 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zher2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const double beta, void *C, const int ldc) { #define BASE double #include "source_her2k.h" #undef BASE } gsl-1.16/cblas/chpmv.c0000664000252300025230000000060112171574312011514 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_chpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE float #include "source_hpmv.h" #undef BASE } gsl-1.16/cblas/test_copy.c0000664000252300025230000001103212171574312012410 00000000000000#include #include #include #include #include "tests.h" void test_copy (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float X[] = { 0.898f }; int incX = 1; float Y[] = { 0.699f }; int incY = -1; float expected[] = { 0.898f }; cblas_scopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "scopy(case 76)"); } }; }; { int N = 1; double X[] = { 0.002 }; int incX = 1; double Y[] = { -0.921 }; int incY = -1; double expected[] = { 0.002 }; cblas_dcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "dcopy(case 77)"); } }; }; { int N = 1; float X[] = { -0.166f, 0.639f }; int incX = 1; float Y[] = { 0.863f, 0.613f }; int incY = -1; float expected[] = { -0.166f, 0.639f }; cblas_ccopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "ccopy(case 78) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "ccopy(case 78) imag"); }; }; }; { int N = 1; double X[] = { 0.315, -0.324 }; int incX = 1; double Y[] = { -0.312, -0.748 }; int incY = -1; double expected[] = { 0.315, -0.324 }; cblas_zcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zcopy(case 79) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zcopy(case 79) imag"); }; }; }; { int N = 1; float X[] = { 0.222f }; int incX = -1; float Y[] = { 0.522f }; int incY = 1; float expected[] = { 0.222f }; cblas_scopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "scopy(case 80)"); } }; }; { int N = 1; double X[] = { 0.021 }; int incX = -1; double Y[] = { 0.898 }; int incY = 1; double expected[] = { 0.021 }; cblas_dcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "dcopy(case 81)"); } }; }; { int N = 1; float X[] = { 0.376f, 0.229f }; int incX = -1; float Y[] = { 0.143f, -0.955f }; int incY = 1; float expected[] = { 0.376f, 0.229f }; cblas_ccopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "ccopy(case 82) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "ccopy(case 82) imag"); }; }; }; { int N = 1; double X[] = { -0.265, -0.84 }; int incX = -1; double Y[] = { -0.156, 0.939 }; int incY = 1; double expected[] = { -0.265, -0.84 }; cblas_zcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zcopy(case 83) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zcopy(case 83) imag"); }; }; }; { int N = 1; float X[] = { 0.074f }; int incX = -1; float Y[] = { -0.802f }; int incY = -1; float expected[] = { 0.074f }; cblas_scopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], flteps, "scopy(case 84)"); } }; }; { int N = 1; double X[] = { -0.374 }; int incX = -1; double Y[] = { -0.161 }; int incY = -1; double expected[] = { -0.374 }; cblas_dcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected[i], dbleps, "dcopy(case 85)"); } }; }; { int N = 1; float X[] = { 0.084f, 0.778f }; int incX = -1; float Y[] = { 0.31f, -0.797f }; int incY = -1; float expected[] = { 0.084f, 0.778f }; cblas_ccopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], flteps, "ccopy(case 86) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], flteps, "ccopy(case 86) imag"); }; }; }; { int N = 1; double X[] = { 0.831, -0.282 }; int incX = -1; double Y[] = { -0.62, 0.32 }; int incY = -1; double expected[] = { 0.831, -0.282 }; cblas_zcopy(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected[2*i], dbleps, "zcopy(case 87) real"); gsl_test_rel(Y[2*i+1], expected[2*i+1], dbleps, "zcopy(case 87) imag"); }; }; }; } gsl-1.16/cblas/srot.c0000664000252300025230000000040012171574312011363 00000000000000#include #include #include "cblas.h" void cblas_srot (const int N, float *X, const int incX, float *Y, const int incY, const float c, const float s) { #define BASE float #include "source_rot.h" #undef BASE } gsl-1.16/cblas/source_spr.h0000664000252300025230000000332212171574312012573 00000000000000/* blas/source_spr.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS7(SD_SPR,order,Uplo,N,alpha,X,incX,Ap); if (N == 0) return; if (alpha == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp = alpha * X[ix]; INDEX jx = ix; for (j = i; j < N; j++) { Ap[TPUP(N, i, j)] += X[jx] * tmp; jx += incX; } ix += incX; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { const BASE tmp = alpha * X[ix]; INDEX jx = OFFSET(N, incX); for (j = 0; j <= i; j++) { Ap[TPLO(N, i, j)] += X[jx] * tmp; jx += incX; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/test_hpr.c0000664000252300025230000001141212171574312012231 00000000000000#include #include #include #include #include "tests.h" void test_hpr (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 2; float alpha = 0.1f; float Ap[] = { -0.273f, -0.499f, -0.305f, -0.277f, 0.238f, -0.369f }; float X[] = { 0.638f, -0.905f, 0.224f, 0.182f }; int incX = -1; float Ap_expected[] = { -0.26467f, 0.0f, -0.30718f, -0.245116f, 0.360607f, 0.0f }; cblas_chpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr(case 1418) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr(case 1418) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 2; float alpha = 0.1f; float Ap[] = { -0.273f, -0.499f, -0.305f, -0.277f, 0.238f, -0.369f }; float X[] = { 0.638f, -0.905f, 0.224f, 0.182f }; int incX = -1; float Ap_expected[] = { -0.26467f, 0.0f, -0.30718f, -0.308884f, 0.360607f, 0.0f }; cblas_chpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr(case 1419) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr(case 1419) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 2; float alpha = 0.1f; float Ap[] = { -0.273f, -0.499f, -0.305f, -0.277f, 0.238f, -0.369f }; float X[] = { 0.638f, -0.905f, 0.224f, 0.182f }; int incX = -1; float Ap_expected[] = { -0.26467f, 0.0f, -0.30718f, -0.245116f, 0.360607f, 0.0f }; cblas_chpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr(case 1420) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr(case 1420) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 2; float alpha = 0.1f; float Ap[] = { -0.273f, -0.499f, -0.305f, -0.277f, 0.238f, -0.369f }; float X[] = { 0.638f, -0.905f, 0.224f, 0.182f }; int incX = -1; float Ap_expected[] = { -0.26467f, 0.0f, -0.30718f, -0.308884f, 0.360607f, 0.0f }; cblas_chpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr(case 1421) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr(case 1421) imag"); }; }; }; { int order = 101; int uplo = 121; int N = 2; double alpha = 1; double Ap[] = { 0.265, 0.362, -0.855, 0.035, 0.136, 0.133 }; double X[] = { -0.278, -0.686, -0.736, -0.918 }; int incX = -1; double Ap_expected[] = { 1.64942, 0.0, -0.020644, -0.214692, 0.68388, 0.0 }; cblas_zhpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr(case 1422) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr(case 1422) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 2; double alpha = 1; double Ap[] = { 0.265, 0.362, -0.855, 0.035, 0.136, 0.133 }; double X[] = { -0.278, -0.686, -0.736, -0.918 }; int incX = -1; double Ap_expected[] = { 1.64942, 0.0, -0.020644, 0.284692, 0.68388, 0.0 }; cblas_zhpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr(case 1423) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr(case 1423) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 2; double alpha = 1; double Ap[] = { 0.265, 0.362, -0.855, 0.035, 0.136, 0.133 }; double X[] = { -0.278, -0.686, -0.736, -0.918 }; int incX = -1; double Ap_expected[] = { 1.64942, 0.0, -0.020644, -0.214692, 0.68388, 0.0 }; cblas_zhpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr(case 1424) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr(case 1424) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 2; double alpha = 1; double Ap[] = { 0.265, 0.362, -0.855, 0.035, 0.136, 0.133 }; double X[] = { -0.278, -0.686, -0.736, -0.918 }; int incX = -1; double Ap_expected[] = { 1.64942, 0.0, -0.020644, 0.284692, 0.68388, 0.0 }; cblas_zhpr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr(case 1425) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr(case 1425) imag"); }; }; }; } gsl-1.16/cblas/chemv.c0000664000252300025230000000063412171574312011507 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_chemv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE float #include "source_hemv.h" #undef BASE } gsl-1.16/cblas/source_spmv.h0000664000252300025230000000541112171574312012755 00000000000000/* blas/source_spmv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS10(SD_SPMV,order,Uplo,N,alpha,Ap,X,incX,beta,Y,incY); if (alpha == 0.0 && beta == 1.0) return; /* form y := beta*y */ if (beta == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] = 0.0; iy += incY; } } else if (beta != 1.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] *= beta; iy += incY; } } if (alpha == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE tmp1 = alpha * X[ix]; BASE tmp2 = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; Y[iy] += tmp1 * Ap[TPUP(N, i, i)]; for (j = j_min; j < j_max; j++) { const BASE apk = Ap[TPUP(N, i, j)]; Y[jy] += tmp1 * apk; tmp2 += apk * X[jx]; jy += incY; jx += incX; } Y[iy] += alpha * tmp2; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE tmp1 = alpha * X[ix]; BASE tmp2 = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; Y[iy] += tmp1 * Ap[TPLO(N, i, i)]; for (j = j_min; j < j_max; j++) { const BASE apk = Ap[TPLO(N, i, j)]; Y[jy] += tmp1 * apk; tmp2 += apk * X[jx]; jy += incY; jx += incX; } Y[iy] += alpha * tmp2; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_gerc.h0000664000252300025230000000470212171574312012712 00000000000000/* blas/source_gerc.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS10(CZ_GERC,order,M,N,alpha,X,incX,Y,incY,A,lda); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (order == CblasRowMajor) { INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { const BASE X_real = CONST_REAL(X, ix); const BASE X_imag = CONST_IMAG(X, ix); const BASE tmp_real = alpha_real * X_real - alpha_imag * X_imag; const BASE tmp_imag = alpha_imag * X_real + alpha_real * X_imag; INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { const BASE Y_real = CONST_REAL(Y, jy); const BASE Y_imag = -CONST_IMAG(Y, jy); REAL(A, lda * i + j) += Y_real * tmp_real - Y_imag * tmp_imag; IMAG(A, lda * i + j) += Y_imag * tmp_real + Y_real * tmp_imag; jy += incY; } ix += incX; } } else if (order == CblasColMajor) { INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { const BASE Y_real = CONST_REAL(Y, jy); const BASE Y_imag = -CONST_IMAG(Y, jy); const BASE tmp_real = alpha_real * Y_real - alpha_imag * Y_imag; const BASE tmp_imag = alpha_imag * Y_real + alpha_real * Y_imag; INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { const BASE X_real = CONST_REAL(X, ix); const BASE X_imag = CONST_IMAG(X, ix); REAL(A, i + lda * j) += X_real * tmp_real - X_imag * tmp_imag; IMAG(A, i + lda * j) += X_imag * tmp_real + X_real * tmp_imag; ix += incX; } jy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/stbmv.c0000664000252300025230000000065012171574312011536 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_stbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX) { #define BASE float #include "source_tbmv_r.h" #undef BASE } gsl-1.16/cblas/csscal.c0000664000252300025230000000032512171574312011652 00000000000000#include #include #include "cblas.h" void cblas_csscal (const int N, const float alpha, void *X, const int incX) { #define BASE float #include "source_scal_c_s.h" #undef BASE } gsl-1.16/cblas/test_hpmv.c0000664000252300025230000002615112171574312012420 00000000000000#include #include #include #include #include "tests.h" void test_hpmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0627557f, -0.839323f, -0.0877262f, -0.169208f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1118) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1118) imag"); }; }; }; { int order = 101; int uplo = 121; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0627557f, -0.839323f, -0.0877262f, -0.169208f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1119) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1119) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0037603f, -0.816761f, -0.0392456f, -0.121154f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1120) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1120) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0037603f, -0.816761f, -0.0392456f, -0.121154f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1121) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1121) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0627557f, -0.839323f, -0.0877262f, -0.169208f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1122) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1122) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0627557f, -0.839323f, -0.0877262f, -0.169208f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1123) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1123) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0037603f, -0.816761f, -0.0392456f, -0.121154f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1124) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1124) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; int N = 2; float A[] = { 0.339f, -0.102f, 0.908f, 0.097f, -0.808f, 0.236f }; float X[] = { 0.993f, -0.502f, -0.653f, 0.796f }; int incX = -1; float Y[] = { -0.35f, 0.339f, -0.269f, -0.122f }; int incY = -1; float y_expected[] = { -0.0037603f, -0.816761f, -0.0392456f, -0.121154f }; cblas_chpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chpmv(case 1125) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chpmv(case 1125) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.745218, -0.60699, -0.37301, -0.983688 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1126) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1126) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.745218, -0.60699, -0.37301, -0.983688 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1127) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1127) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.646956, -0.542012, -0.282168, -0.912668 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1128) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1128) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.646956, -0.542012, -0.282168, -0.912668 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1129) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1129) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.745218, -0.60699, -0.37301, -0.983688 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1130) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1130) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.745218, -0.60699, -0.37301, -0.983688 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1131) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1131) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.646956, -0.542012, -0.282168, -0.912668 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1132) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1132) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; int N = 2; double A[] = { 0.543, -0.737, 0.281, -0.053, -0.098, -0.826 }; double X[] = { 0.67, -0.857, -0.613, -0.927 }; int incX = -1; double Y[] = { -0.398, -0.934, -0.204, 0.183 }; int incY = -1; double y_expected[] = { 0.646956, -0.542012, -0.282168, -0.912668 }; cblas_zhpmv(order, uplo, N, alpha, A, X, incX, beta, Y, incY); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhpmv(case 1133) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhpmv(case 1133) imag"); }; }; }; } gsl-1.16/cblas/source_her2.h0000664000252300025230000001065112171574312012632 00000000000000/* blas/source_her2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS10(CZ_HER2,order,Uplo,N,alpha,X,incX,Y,incY,A,lda); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (alpha_real == 0.0 && alpha_imag == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE Xi_real = CONST_REAL(X, ix); const BASE Xi_imag = CONST_IMAG(X, ix); /* tmp1 = alpha Xi */ const BASE tmp1_real = alpha_real * Xi_real - alpha_imag * Xi_imag; const BASE tmp1_imag = alpha_imag * Xi_real + alpha_real * Xi_imag; const BASE Yi_real = CONST_REAL(Y, iy); const BASE Yi_imag = CONST_IMAG(Y, iy); /* tmp2 = conj(alpha) Yi */ const BASE tmp2_real = alpha_real * Yi_real + alpha_imag * Yi_imag; const BASE tmp2_imag = -alpha_imag * Yi_real + alpha_real * Yi_imag; INDEX jx = ix + incX; INDEX jy = iy + incY; /* Aij = alpha*Xi*conj(Yj) + conj(alpha)*Yi*conj(Xj) */ REAL(A, lda * i + i) += 2 * (tmp1_real * Yi_real + tmp1_imag * Yi_imag); IMAG(A, lda * i + i) = 0; for (j = i + 1; j < N; j++) { const BASE Xj_real = CONST_REAL(X, jx); const BASE Xj_imag = CONST_IMAG(X, jx); const BASE Yj_real = CONST_REAL(Y, jy); const BASE Yj_imag = CONST_IMAG(Y, jy); REAL(A, lda * i + j) += ((tmp1_real * Yj_real + tmp1_imag * Yj_imag) + (tmp2_real * Xj_real + tmp2_imag * Xj_imag)); IMAG(A, lda * i + j) += conj * ((tmp1_imag * Yj_real - tmp1_real * Yj_imag) + (tmp2_imag * Xj_real - tmp2_real * Xj_imag)); jx += incX; jy += incY; } ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE Xi_real = CONST_REAL(X, ix); const BASE Xi_imag = CONST_IMAG(X, ix); const BASE tmp1_real = alpha_real * Xi_real - alpha_imag * Xi_imag; const BASE tmp1_imag = alpha_imag * Xi_real + alpha_real * Xi_imag; const BASE Yi_real = CONST_REAL(Y, iy); const BASE Yi_imag = CONST_IMAG(Y, iy); const BASE tmp2_real = alpha_real * Yi_real + alpha_imag * Yi_imag; const BASE tmp2_imag = -alpha_imag * Yi_real + alpha_real * Yi_imag; INDEX jx = OFFSET(N, incX); INDEX jy = OFFSET(N, incY); /* Aij = alpha*Xi*conj(Yj) + conj(alpha)*Yi*conj(Xj) */ for (j = 0; j < i; j++) { const BASE Xj_real = CONST_REAL(X, jx); const BASE Xj_imag = CONST_IMAG(X, jx); const BASE Yj_real = CONST_REAL(Y, jy); const BASE Yj_imag = CONST_IMAG(Y, jy); REAL(A, lda * i + j) += ((tmp1_real * Yj_real + tmp1_imag * Yj_imag) + (tmp2_real * Xj_real + tmp2_imag * Xj_imag)); IMAG(A, lda * i + j) += conj * ((tmp1_imag * Yj_real - tmp1_real * Yj_imag) + (tmp2_imag * Xj_real - tmp2_real * Xj_imag)); jx += incX; jy += incY; } REAL(A, lda * i + i) += 2 * (tmp1_real * Yi_real + tmp1_imag * Yi_imag); IMAG(A, lda * i + i) = 0; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/test_amax.c0000664000252300025230000000466112171574312012376 00000000000000#include #include #include #include #include "tests.h" void test_amax (void) { { int N = 1; float X[] = { -0.388f }; int incX = -1; int expected = 0; int k; k = cblas_isamax(N, X, incX); gsl_test_int(k, expected, "samax(case 52)"); }; { int N = 1; double X[] = { 0.247 }; int incX = -1; int expected = 0; int k; k = cblas_idamax(N, X, incX); gsl_test_int(k, expected, "damax(case 53)"); }; { int N = 1; float X[] = { 0.704f, 0.665f }; int incX = -1; int expected = 0; int k; k = cblas_icamax(N, X, incX); gsl_test_int(k, expected, "camax(case 54)"); }; { int N = 1; double X[] = { -0.599, -0.758 }; int incX = -1; int expected = 0; int k; k = cblas_izamax(N, X, incX); gsl_test_int(k, expected, "zamax(case 55)"); }; { int N = 2; float X[] = { 0.909f, 0.037f }; int incX = 1; int expected = 0; int k; k = cblas_isamax(N, X, incX); gsl_test_int(k, expected, "samax(case 56)"); }; { int N = 2; double X[] = { 0.271, -0.426 }; int incX = 1; int expected = 1; int k; k = cblas_idamax(N, X, incX); gsl_test_int(k, expected, "damax(case 57)"); }; { int N = 2; float X[] = { -0.648f, 0.317f, 0.62f, 0.392f }; int incX = 1; int expected = 1; int k; k = cblas_icamax(N, X, incX); gsl_test_int(k, expected, "camax(case 58)"); }; { int N = 2; double X[] = { -0.789, 0.352, 0.562, 0.697 }; int incX = 1; int expected = 1; int k; k = cblas_izamax(N, X, incX); gsl_test_int(k, expected, "zamax(case 59)"); }; { int N = 2; float X[] = { 0.487f, 0.918f }; int incX = -1; int expected = 0; int k; k = cblas_isamax(N, X, incX); gsl_test_int(k, expected, "samax(case 60)"); }; { int N = 2; double X[] = { 0.537, 0.826 }; int incX = -1; int expected = 0; int k; k = cblas_idamax(N, X, incX); gsl_test_int(k, expected, "damax(case 61)"); }; { int N = 2; float X[] = { 0.993f, 0.172f, -0.825f, 0.873f }; int incX = -1; int expected = 0; int k; k = cblas_icamax(N, X, incX); gsl_test_int(k, expected, "camax(case 62)"); }; { int N = 2; double X[] = { 0.913, -0.436, -0.134, 0.129 }; int incX = -1; int expected = 0; int k; k = cblas_izamax(N, X, incX); gsl_test_int(k, expected, "zamax(case 63)"); }; } gsl-1.16/cblas/zhpmv.c0000664000252300025230000000060212171574312011544 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zhpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE double #include "source_hpmv.h" #undef BASE } gsl-1.16/cblas/source_asum_c.h0000664000252300025230000000200012171574312013226 00000000000000/* blas/source_asum_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE r = 0.0; INDEX i; INDEX ix = 0; if (incX <= 0) { return 0; } for (i = 0; i < N; i++) { r += fabs(CONST_REAL(X, ix)) + fabs(CONST_IMAG(X, ix)); ix += incX; } return r; } gsl-1.16/cblas/isamax.c0000664000252300025230000000031712171574312011665 00000000000000#include #include #include "cblas.h" CBLAS_INDEX cblas_isamax (const int N, const float *X, const int incX) { #define BASE float #include "source_iamax_r.h" #undef BASE } gsl-1.16/cblas/zgeru.c0000664000252300025230000000055712171574312011545 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zgeru (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE double #include "source_geru.h" #undef BASE } gsl-1.16/cblas/tests.c0000664000252300025230000000127412171574312011550 00000000000000 test_dot (); test_nrm2 (); test_asum (); test_amax (); test_axpy (); test_copy (); test_swap (); test_scal (); test_rotg (); test_rot (); test_rotmg (); test_rotm (); test_gemv (); test_gbmv (); test_trmv (); test_tbmv (); test_tpmv (); test_symv (); test_hemv (); test_hbmv (); test_sbmv (); test_hpmv (); test_spmv (); test_trsv (); test_tbsv (); test_tpsv (); test_ger (); test_syr (); test_her (); test_hpr (); test_spr (); test_syr2 (); test_spr2 (); test_her2 (); test_hpr2 (); test_gemm (); test_symm (); test_hemm (); test_syrk (); test_herk (); test_syr2k (); test_her2k (); test_trmm (); test_trsm (); gsl-1.16/cblas/dznrm2.c0000664000252300025230000000031112171574312011611 00000000000000#include #include #include "cblas.h" double cblas_dznrm2 (const int N, const void *X, const int incX) { #define BASE double #include "source_nrm2_c.h" #undef BASE } gsl-1.16/cblas/source_ger.h0000664000252300025230000000277512171574312012557 00000000000000/* blas/source_ger.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS10(SD_GER,order,M,N,alpha,X,incX,Y,incY,A,lda); if (order == CblasRowMajor) { INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { const BASE tmp = alpha * X[ix]; INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { A[lda * i + j] += Y[jy] * tmp; jy += incY; } ix += incX; } } else if (order == CblasColMajor) { INDEX jy = OFFSET(N, incY); for (j = 0; j < N; j++) { const BASE tmp = alpha * Y[jy]; INDEX ix = OFFSET(M, incX); for (i = 0; i < M; i++) { A[i + lda * j] += X[ix] * tmp; ix += incX; } jy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/zdotc_sub.c0000664000252300025230000000045512171574312012402 00000000000000#include #include #include "cblas.h" void cblas_zdotc_sub (const int N, const void *X, const int incX, const void *Y, const int incY, void *result) { #define BASE double #define CONJ_SIGN (-1.0) #include "source_dot_c.h" #undef CONJ_SIGN #undef BASE } gsl-1.16/cblas/caxpy.c0000664000252300025230000000037612171574312011534 00000000000000#include #include #include "cblas.h" void cblas_caxpy (const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY) { #define BASE float #include "source_axpy_c.h" #undef BASE } gsl-1.16/cblas/ssyr2k.c0000664000252300025230000000074112171574312011641 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_ssyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc) { #define BASE float #include "source_syr2k_r.h" #undef BASE } gsl-1.16/cblas/zhemm.c0000664000252300025230000000070412171574312011523 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zhemm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE double #include "source_hemm.h" #undef BASE } gsl-1.16/cblas/dtbmv.c0000664000252300025230000000065312171574312011522 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX) { #define BASE double #include "source_tbmv_r.h" #undef BASE } gsl-1.16/cblas/source_gemv_r.h0000664000252300025230000000467412171574312013261 00000000000000/* blas/source_gemv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; INDEX lenX, lenY; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS12(GEMV,order,TransA,M,N,alpha,A,lda,X,incX,beta,Y,incY); if (M == 0 || N == 0) return; if (alpha == 0.0 && beta == 1.0) return; if (Trans == CblasNoTrans) { lenX = N; lenY = M; } else { lenX = M; lenY = N; } /* form y := beta*y */ if (beta == 0.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { Y[iy] = 0.0; iy += incY; } } else if (beta != 1.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { Y[iy] *= beta; iy += incY; } } if (alpha == 0.0) return; if ((order == CblasRowMajor && Trans == CblasNoTrans) || (order == CblasColMajor && Trans == CblasTrans)) { /* form y := alpha*A*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE temp = 0.0; INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { temp += X[ix] * A[lda * i + j]; ix += incX; } Y[iy] += alpha * temp; iy += incY; } } else if ((order == CblasRowMajor && Trans == CblasTrans) || (order == CblasColMajor && Trans == CblasNoTrans)) { /* form y := alpha*A'*x + y */ INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE temp = alpha * X[ix]; if (temp != 0.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { Y[iy] += temp * A[lda * j + i]; iy += incY; } } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/dger.c0000664000252300025230000000056212171574312011326 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dger (const enum CBLAS_ORDER order, const int M, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A, const int lda) { #define BASE double #include "source_ger.h" #undef BASE } gsl-1.16/cblas/test_her2.c0000664000252300025230000001147512171574312012311 00000000000000#include #include #include #include #include "tests.h" void test_her2 (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 1; int lda = 1; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.821f, 0.954f }; float X[] = { 0.532f, 0.802f }; int incX = -1; float Y[] = { 0.016f, -0.334f }; int incY = -1; float A_expected[] = { -0.302288f, 0.0f }; cblas_cher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher2(case 1450) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher2(case 1450) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.821f, 0.954f }; float X[] = { 0.532f, 0.802f }; int incX = -1; float Y[] = { 0.016f, -0.334f }; int incY = -1; float A_expected[] = { -0.302288f, 0.0f }; cblas_cher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher2(case 1451) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher2(case 1451) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.821f, 0.954f }; float X[] = { 0.532f, 0.802f }; int incX = -1; float Y[] = { 0.016f, -0.334f }; int incY = -1; float A_expected[] = { -0.302288f, 0.0f }; cblas_cher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher2(case 1452) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher2(case 1452) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.821f, 0.954f }; float X[] = { 0.532f, 0.802f }; int incX = -1; float Y[] = { 0.016f, -0.334f }; int incY = -1; float A_expected[] = { -0.302288f, 0.0f }; cblas_cher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher2(case 1453) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher2(case 1453) imag"); }; }; }; { int order = 101; int uplo = 121; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double A[] = { -0.334, 0.286 }; double X[] = { -0.14, -0.135 }; int incX = -1; double Y[] = { 0.455, 0.358 }; int incY = -1; double A_expected[] = { -0.264521, 0.0 }; cblas_zher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher2(case 1454) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher2(case 1454) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double A[] = { -0.334, 0.286 }; double X[] = { -0.14, -0.135 }; int incX = -1; double Y[] = { 0.455, 0.358 }; int incY = -1; double A_expected[] = { -0.264521, 0.0 }; cblas_zher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher2(case 1455) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher2(case 1455) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double A[] = { -0.334, 0.286 }; double X[] = { -0.14, -0.135 }; int incX = -1; double Y[] = { 0.455, 0.358 }; int incY = -1; double A_expected[] = { -0.264521, 0.0 }; cblas_zher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher2(case 1456) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher2(case 1456) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double A[] = { -0.334, 0.286 }; double X[] = { -0.14, -0.135 }; int incX = -1; double Y[] = { 0.455, 0.358 }; int incY = -1; double A_expected[] = { -0.264521, 0.0 }; cblas_zher2(order, uplo, N, alpha, X, incX, Y, incY, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher2(case 1457) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher2(case 1457) imag"); }; }; }; } gsl-1.16/cblas/source_syrk_r.h0000664000252300025230000000616212171574312013305 00000000000000/* blas/source_syrk_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS11(SYRK,Order,Uplo,Trans,N,K,alpha,A,lda,beta,C,ldc); if (alpha == 0.0 && beta == 1.0) return; if (Order == CblasRowMajor) { uplo = Uplo; trans = (Trans == CblasConjTrans) ? CblasTrans : Trans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; if (Trans == CblasTrans || Trans == CblasConjTrans) { trans = CblasNoTrans; } else { trans = CblasTrans; } } /* form y := beta*y */ if (beta == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { C[ldc * i + j] = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { C[ldc * i + j] = 0.0; } } } } else if (beta != 1.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { C[ldc * i + j] *= beta; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { C[ldc * i + j] *= beta; } } } } if (alpha == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += A[i * lda + k] * A[j * lda + k]; } C[i * ldc + j] += alpha * temp; } } } else if (uplo == CblasUpper && trans == CblasTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += A[k * lda + i] * A[k * lda + j]; } C[i * ldc + j] += alpha * temp; } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += A[i * lda + k] * A[j * lda + k]; } C[i * ldc + j] += alpha * temp; } } } else if (uplo == CblasLower && trans == CblasTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += A[k * lda + i] * A[k * lda + j]; } C[i * ldc + j] += alpha * temp; } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/zdscal.c0000664000252300025230000000032712171574312011664 00000000000000#include #include #include "cblas.h" void cblas_zdscal (const int N, const double alpha, void *X, const int incX) { #define BASE double #include "source_scal_c_s.h" #undef BASE } gsl-1.16/cblas/source_asum_r.h0000664000252300025230000000173212171574312013260 00000000000000/* blas/source_asum_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE r = 0.0; INDEX i; INDEX ix = 0; if (incX <= 0) { return 0; } for (i = 0; i < N; i++) { r += fabs(X[ix]); ix += incX; } return r; } gsl-1.16/cblas/zgemm.c0000664000252300025230000000075612171574312011531 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE double #include "source_gemm_c.h" #undef BASE } gsl-1.16/cblas/ssbmv.c0000664000252300025230000000065412171574312011541 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ssbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY) { #define BASE float #include "source_sbmv.h" #undef BASE } gsl-1.16/cblas/zher.c0000664000252300025230000000053412171574312011354 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zher (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *A, const int lda) { #define BASE double #include "source_her.h" #undef BASE } gsl-1.16/cblas/dspr2.c0000664000252300025230000000056712171574312011444 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *Ap) { #define BASE double #include "source_spr2.h" #undef BASE } gsl-1.16/cblas/dtpmv.c0000664000252300025230000000060312171574312011533 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *Ap, double *X, const int incX) { #define BASE double #include "source_tpmv_r.h" #undef BASE } gsl-1.16/cblas/source_scal_r.h0000664000252300025230000000167212171574312013240 00000000000000/* blas/source_scal_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = 0; if (incX <= 0) { return; } for (i = 0; i < N; i++) { X[ix] *= alpha; ix += incX; } } gsl-1.16/cblas/saxpy.c0000664000252300025230000000040012171574312011540 00000000000000#include #include #include "cblas.h" void cblas_saxpy (const int N, const float alpha, const float *X, const int incX, float *Y, const int incY) { #define BASE float #include "source_axpy_r.h" #undef BASE } gsl-1.16/cblas/cblas.h0000664000252300025230000000170412171574312011475 00000000000000#define INDEX int #define OFFSET(N, incX) ((incX) > 0 ? 0 : ((N) - 1) * (-(incX))) #define BLAS_ERROR(x) cblas_xerbla(0, __FILE__, x); #define CONJUGATE(x) ((x) == CblasConjTrans) #define TRANSPOSE(x) ((x) == CblasTrans || (x) == CblasConjTrans) #define UPPER(x) ((x) == CblasUpper) #define LOWER(x) ((x) == CblasLower) /* Handling of packed complex types... */ #define REAL(a,i) (((BASE *) a)[2*(i)]) #define IMAG(a,i) (((BASE *) a)[2*(i)+1]) #define REAL0(a) (((BASE *)a)[0]) #define IMAG0(a) (((BASE *)a)[1]) #define CONST_REAL(a,i) (((const BASE *) a)[2*(i)]) #define CONST_IMAG(a,i) (((const BASE *) a)[2*(i)+1]) #define CONST_REAL0(a) (((const BASE *)a)[0]) #define CONST_IMAG0(a) (((const BASE *)a)[1]) #define GB(KU,KL,lda,i,j) ((KU+1+(i-j))*lda + j) #define TRCOUNT(N,i) ((((i)+1)*(2*(N)-(i)))/2) /* #define TBUP(N,i,j) */ /* #define TBLO(N,i,j) */ #define TPUP(N,i,j) (TRCOUNT(N,(i)-1)+(j)-(i)) #define TPLO(N,i,j) (((i)*((i)+1))/2 + (j)) gsl-1.16/cblas/zherk.c0000664000252300025230000000065612171574312011534 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zherk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const void *A, const int lda, const double beta, void *C, const int ldc) { #define BASE double #include "source_herk.h" #undef BASE } gsl-1.16/cblas/chemm.c0000664000252300025230000000070312171574312011473 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_chemm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE float #include "source_hemm.h" #undef BASE } gsl-1.16/cblas/zgemv.c0000664000252300025230000000066312171574312011537 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE double #include "source_gemv_c.h" #undef BASE } gsl-1.16/cblas/sdot.c0000664000252300025230000000047712171574312011363 00000000000000#include #include #include "cblas.h" float cblas_sdot (const int N, const float *X, const int incX, const float *Y, const int incY) { #define INIT_VAL 0.0 #define ACC_TYPE float #define BASE float #include "source_dot_r.h" #undef ACC_TYPE #undef BASE #undef INIT_VAL } gsl-1.16/cblas/source_tpsv_r.h0000664000252300025230000000745212171574312013314 00000000000000/* blas/source_tpsv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int nonunit = (Diag == CblasNonUnit); const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS8(TPSV,order,Uplo,TransA,Diag,N,Ap,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { X[ix] = X[ix] / Ap[TPUP(N, (N - 1), (N - 1))]; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp = X[ix]; INDEX jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij = Ap[TPUP(N, i, j)]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / Ap[TPUP(N, i, i)]; } else { X[ix] = tmp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ INDEX ix = OFFSET(N, incX); if (nonunit) { X[ix] = X[ix] / Ap[TPLO(N, 0, 0)]; } ix += incX; for (i = 1; i < N; i++) { BASE tmp = X[ix]; INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij = Ap[TPLO(N, i, j)]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / Ap[TPLO(N, i, j)]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ INDEX ix = OFFSET(N, incX); if (nonunit) { X[ix] = X[ix] / Ap[TPUP(N, 0, 0)]; } ix += incX; for (i = 1; i < N; i++) { BASE tmp = X[ix]; INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aji = Ap[TPUP(N, j, i)]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / Ap[TPUP(N, i, i)]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; if (nonunit) { X[ix] = X[ix] / Ap[TPLO(N, (N - 1), (N - 1))]; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp = X[ix]; INDEX jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aji = Ap[TPLO(N, j, i)]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / Ap[TPLO(N, i, i)]; } else { X[ix] = tmp; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/ztrmv.c0000664000252300025230000000063212171574312011565 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ztrmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX) { #define BASE double #include "source_trmv_c.h" #undef BASE } gsl-1.16/cblas/test_gbmv.c0000664000252300025230000004602412171574312012402 00000000000000#include #include #include #include #include "tests.h" void test_gbmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha = -1.0f; float beta = -1.0f; float A[] = { 0.423f, -0.143f, -0.182f, -0.076f, -0.855f, 0.599f, 0.389f, -0.473f, 0.493f, -0.902f, -0.889f, -0.256f, 0.112f, 0.128f, -0.277f, -0.777f }; float X[] = { 0.488f, 0.029f, -0.633f, 0.84f }; int incX = -1; float Y[] = { 0.874f, 0.322f, -0.477f }; int incY = -1; float y_expected[] = { -0.101941f, 0.764086f, 0.481914f }; cblas_sgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgbmv(case 794)"); } }; }; { int order = 102; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha = -1.0f; float beta = -1.0f; float A[] = { 0.423f, -0.143f, -0.182f, -0.076f, -0.855f, 0.599f, 0.389f, -0.473f, 0.493f, -0.902f, -0.889f, -0.256f, 0.112f, 0.128f, -0.277f, -0.777f }; float X[] = { 0.488f, 0.029f, -0.633f, 0.84f }; int incX = -1; float Y[] = { 0.874f, 0.322f, -0.477f }; int incY = -1; float y_expected[] = { -0.656261f, 0.19575f, 0.055905f }; cblas_sgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgbmv(case 795)"); } }; }; { int order = 101; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha = 0.0f; float beta = 0.1f; float A[] = { -0.066f, -0.153f, -0.619f, 0.174f, 0.777f, 0.543f, 0.614f, -0.446f, -0.138f, -0.767f, 0.725f, 0.222f, 0.165f, -0.063f, -0.047f, 0.267f }; float X[] = { -0.096f, -0.007f, -0.657f }; int incX = -1; float Y[] = { -0.88f, 0.102f, -0.278f, 0.403f }; int incY = -1; float y_expected[] = { -0.088f, 0.0102f, -0.0278f, 0.0403f }; cblas_sgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgbmv(case 796)"); } }; }; { int order = 102; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha = 0.0f; float beta = 0.1f; float A[] = { -0.066f, -0.153f, -0.619f, 0.174f, 0.777f, 0.543f, 0.614f, -0.446f, -0.138f, -0.767f, 0.725f, 0.222f, 0.165f, -0.063f, -0.047f, 0.267f }; float X[] = { -0.096f, -0.007f, -0.657f }; int incX = -1; float Y[] = { -0.88f, 0.102f, -0.278f, 0.403f }; int incY = -1; float y_expected[] = { -0.088f, 0.0102f, -0.0278f, 0.0403f }; cblas_sgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgbmv(case 797)"); } }; }; { int order = 101; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha = 0.1; double beta = 0; double A[] = { -0.688, 0.29, 0.442, -0.001, 0.313, -0.073, 0.991, -0.654, -0.12, 0.416, 0.571, 0.932, -0.179, -0.724, 0.492, -0.965 }; double X[] = { 0.187, -0.338, -0.976, -0.052 }; int incX = -1; double Y[] = { -0.101, 0.8, 0.026 }; int incY = -1; double y_expected[] = { 0.0083289, -0.0279986, -0.0446472 }; cblas_dgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgbmv(case 798)"); } }; }; { int order = 102; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha = 0.1; double beta = 0; double A[] = { -0.688, 0.29, 0.442, -0.001, 0.313, -0.073, 0.991, -0.654, -0.12, 0.416, 0.571, 0.932, -0.179, -0.724, 0.492, -0.965 }; double X[] = { 0.187, -0.338, -0.976, -0.052 }; int incX = -1; double Y[] = { -0.101, 0.8, 0.026 }; int incY = -1; double y_expected[] = { -0.1141297, 0.0088824, -0.0320568 }; cblas_dgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgbmv(case 799)"); } }; }; { int order = 101; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha = -0.3; double beta = -0.3; double A[] = { 0.746, 0.262, -0.449, -0.954, -0.093, 0.108, -0.496, 0.927, 0.177, 0.729, -0.92, -0.469, 0.87, -0.877, -0.308, -0.806 }; double X[] = { 0.662, -0.887, 0.261 }; int incX = -1; double Y[] = { 0.771, 0.637, -0.177, -0.018 }; int incY = -1; double y_expected[] = { -0.048588, -0.467865, 0.0818433, -0.0398619 }; cblas_dgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgbmv(case 800)"); } }; }; { int order = 102; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha = -0.3; double beta = -0.3; double A[] = { 0.746, 0.262, -0.449, -0.954, -0.093, 0.108, -0.496, 0.927, 0.177, 0.729, -0.92, -0.469, 0.87, -0.877, -0.308, -0.806 }; double X[] = { 0.662, -0.887, 0.261 }; int incX = -1; double Y[] = { 0.771, 0.637, -0.177, -0.018 }; int incY = -1; double y_expected[] = { -0.404082, -0.2887797, 0.1876263, -0.1345935 }; cblas_dgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgbmv(case 801)"); } }; }; { int order = 101; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.107f, 0.926f, -0.246f, -0.555f, -0.301f, 0.276f, 0.471f, -0.084f, -0.754f, 0.082f, -0.952f, -0.394f, 0.659f, 0.054f, 0.795f, 0.923f, 0.232f, -0.788f, 0.478f, 0.775f, -0.118f, 0.691f, -0.933f, 0.809f, 0.164f, -0.263f, -0.923f, -0.88f, 0.819f, -0.521f, -0.045f, 0.034f }; float X[] = { 0.407f, 0.895f, 0.301f, 0.769f, -0.269f, -0.465f, 0.455f, -0.628f }; int incX = -1; float Y[] = { -0.116f, -0.744f, -0.936f, -0.064f, -0.232f, -0.665f }; int incY = -1; float y_expected[] = { -0.806176f, -1.559f, -1.57611f, -0.155463f, 0.098816f, -0.274361f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 802) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 802) imag"); }; }; }; { int order = 102; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.107f, 0.926f, -0.246f, -0.555f, -0.301f, 0.276f, 0.471f, -0.084f, -0.754f, 0.082f, -0.952f, -0.394f, 0.659f, 0.054f, 0.795f, 0.923f, 0.232f, -0.788f, 0.478f, 0.775f, -0.118f, 0.691f, -0.933f, 0.809f, 0.164f, -0.263f, -0.923f, -0.88f, 0.819f, -0.521f, -0.045f, 0.034f }; float X[] = { 0.407f, 0.895f, 0.301f, 0.769f, -0.269f, -0.465f, 0.455f, -0.628f }; int incX = -1; float Y[] = { -0.116f, -0.744f, -0.936f, -0.064f, -0.232f, -0.665f }; int incY = -1; float y_expected[] = { -0.245235f, -0.313725f, -0.798094f, 0.691455f, -0.164015f, -0.242714f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 803) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 803) imag"); }; }; }; { int order = 101; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.258f, 0.838f, -0.106f, -0.066f, 0.395f, 0.982f, -0.546f, 0.565f, 0.14f, -0.18f, 0.165f, -0.186f, 0.499f, -0.038f, -0.305f, -0.653f, -0.811f, -0.466f, -0.674f, -0.013f, -0.552f, -0.807f, -0.536f, 0.864f, -0.027f, -0.606f, 0.459f, 0.564f, -0.968f, 0.717f, -0.312f, -0.485f }; float X[] = { -0.399f, 0.459f, 0.398f, 0.358f, -0.161f, -0.359f }; int incX = -1; float Y[] = { 0.572f, 0.293f, -0.813f, -0.096f, -0.611f, -0.717f, 0.736f, 0.259f }; int incY = -1; float y_expected[] = { -0.619961f, -0.011425f, -0.477499f, 0.059361f, -0.886984f, 0.44008f, -0.139432f, 0.04644f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 804) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 804) imag"); }; }; }; { int order = 102; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.258f, 0.838f, -0.106f, -0.066f, 0.395f, 0.982f, -0.546f, 0.565f, 0.14f, -0.18f, 0.165f, -0.186f, 0.499f, -0.038f, -0.305f, -0.653f, -0.811f, -0.466f, -0.674f, -0.013f, -0.552f, -0.807f, -0.536f, 0.864f, -0.027f, -0.606f, 0.459f, 0.564f, -0.968f, 0.717f, -0.312f, -0.485f }; float X[] = { -0.399f, 0.459f, 0.398f, 0.358f, -0.161f, -0.359f }; int incX = -1; float Y[] = { 0.572f, 0.293f, -0.813f, -0.096f, -0.611f, -0.717f, 0.736f, 0.259f }; int incY = -1; float y_expected[] = { -0.318227f, -0.172201f, -0.109343f, 0.698685f, 0.208261f, -0.269065f, 0.175074f, -0.507326f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 805) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 805) imag"); }; }; }; { int order = 101; int trans = 113; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.804f, 0.232f, -0.448f, -0.558f, -0.078f, -0.056f, -0.345f, -0.379f, 0.369f, -0.662f, -0.169f, -0.391f, -0.215f, 0.467f, 0.374f, 0.889f, -0.698f, 0.734f, 0.377f, -0.955f, 0.498f, 0.151f, -0.725f, -0.728f, -0.655f, -0.581f, 0.389f, 0.949f, -0.553f, -0.434f, 0.237f, 0.641f }; float X[] = { -0.262f, -0.823f, -0.357f, -0.994f, -0.347f, -0.375f }; int incX = -1; float Y[] = { -0.683f, -0.87f, -0.708f, 0.071f, 0.575f, -0.575f, 0.845f, 0.032f }; int incY = -1; float y_expected[] = { 0.341749f, 0.301992f, -0.306848f, 0.109252f, -0.018347f, -0.747479f, -0.894201f, 0.713246f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 806) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 806) imag"); }; }; }; { int order = 102; int trans = 113; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.804f, 0.232f, -0.448f, -0.558f, -0.078f, -0.056f, -0.345f, -0.379f, 0.369f, -0.662f, -0.169f, -0.391f, -0.215f, 0.467f, 0.374f, 0.889f, -0.698f, 0.734f, 0.377f, -0.955f, 0.498f, 0.151f, -0.725f, -0.728f, -0.655f, -0.581f, 0.389f, 0.949f, -0.553f, -0.434f, 0.237f, 0.641f }; float X[] = { -0.262f, -0.823f, -0.357f, -0.994f, -0.347f, -0.375f }; int incX = -1; float Y[] = { -0.683f, -0.87f, -0.708f, 0.071f, 0.575f, -0.575f, 0.845f, 0.032f }; int incY = -1; float y_expected[] = { -0.562773f, -0.455143f, -0.213881f, -0.466169f, -0.183683f, 0.097891f, -0.451416f, 0.052586f }; cblas_cgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgbmv(case 807) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgbmv(case 807) imag"); }; }; }; { int order = 101; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { -0.919, -0.002, 0.105, -0.338, -0.358, -0.715, -0.157, 0.307, 0.334, 0.121, 0.366, 0.029, -0.006, -0.662, -0.314, 0.061, -0.322, -0.865, -0.586, 0.556, 0.507, 0.581, 0.855, -0.09, 0.836, -0.788, -0.209, -0.694, -0.695, 0.11, -0.234, 0.17 }; double X[] = { 0.356, -0.76, -0.96, 0.437, -0.849, 0.397, -0.382, -0.826 }; int incX = -1; double Y[] = { 0.288, -0.832, 0.889, 0.576, -0.809, 0.4 }; int incY = -1; double y_expected[] = { 0.3241775, -0.6761577, 0.8458527, 0.5705165, -0.8597295, 0.4268499 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 808) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 808) imag"); }; }; }; { int order = 102; int trans = 111; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { -0.919, -0.002, 0.105, -0.338, -0.358, -0.715, -0.157, 0.307, 0.334, 0.121, 0.366, 0.029, -0.006, -0.662, -0.314, 0.061, -0.322, -0.865, -0.586, 0.556, 0.507, 0.581, 0.855, -0.09, 0.836, -0.788, -0.209, -0.694, -0.695, 0.11, -0.234, 0.17 }; double X[] = { 0.356, -0.76, -0.96, 0.437, -0.849, 0.397, -0.382, -0.826 }; int incX = -1; double Y[] = { 0.288, -0.832, 0.889, 0.576, -0.809, 0.4 }; int incY = -1; double y_expected[] = { 0.4026074, -0.8033768, 0.7510795, 0.5671044, -0.8162255, 0.3349099 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 809) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 809) imag"); }; }; }; { int order = 101; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { 0.511, -0.707, -0.906, 0.345, -0.524, -0.933, 0.154, -0.529, -0.651, -0.851, 0.104, 0.532, -0.297, 0.477, 0.511, 0.469, -0.888, -0.789, 0.656, 0.288, -0.749, 0.961, 0.571, 0.539, 0.465, 0.647, 0.653, -0.994, -0.515, 0.297, 0.35, -0.707 }; double X[] = { -0.991, 0.658, -0.909, -0.99, -0.517, -0.071 }; int incX = -1; double Y[] = { 0.451, 0.351, -0.113, -0.62, 0.983, 0.511, 0.142, -0.186 }; int incY = -1; double y_expected[] = { 0.560921, -1.094193, -0.210397, -0.613323, 3.018979, 0.641612, 0.384166, 1.11801 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 810) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 810) imag"); }; }; }; { int order = 102; int trans = 112; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { 0.511, -0.707, -0.906, 0.345, -0.524, -0.933, 0.154, -0.529, -0.651, -0.851, 0.104, 0.532, -0.297, 0.477, 0.511, 0.469, -0.888, -0.789, 0.656, 0.288, -0.749, 0.961, 0.571, 0.539, 0.465, 0.647, 0.653, -0.994, -0.515, 0.297, 0.35, -0.707 }; double X[] = { -0.991, 0.658, -0.909, -0.99, -0.517, -0.071 }; int incX = -1; double Y[] = { 0.451, 0.351, -0.113, -0.62, 0.983, 0.511, 0.142, -0.186 }; int incY = -1; double y_expected[] = { -0.435541, 0.015793, -0.926518, 1.122561, 1.671751, -0.257493, 0.187543, 1.066818 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 811) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 811) imag"); }; }; }; { int order = 101; int trans = 113; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {0, 0.1}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.534, 0.67, -0.621, 0.143, -0.794, 0.073, 0.414, -0.9, 0.155, -0.368, 0.122, -0.583, 0.03, 0.646, -0.768, -0.892, -0.741, -0.397, 0.626, 0.004, -0.515, 0.355, 0.196, -0.989, -0.982, 0.985, 0.445, 0.63, -0.849, -0.528, 0.146, -0.319 }; double X[] = { -0.199, -0.259, 0.386, -0.131, -0.867, 0.888 }; int incX = -1; double Y[] = { 0.106, 0.874, 0.962, 0.636, -0.759, 0.415, -0.053, 0.315 }; int incY = -1; double y_expected[] = { -0.139603, -0.250546, -0.3107376, -0.1144656, 0.2181809, -0.0877031, 0.0149724, -0.0224571 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 812) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 812) imag"); }; }; }; { int order = 102; int trans = 113; int M = 3; int N = 4; int KL = 1; int KU = 1; int lda = 4; double alpha[2] = {0, 0.1}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.534, 0.67, -0.621, 0.143, -0.794, 0.073, 0.414, -0.9, 0.155, -0.368, 0.122, -0.583, 0.03, 0.646, -0.768, -0.892, -0.741, -0.397, 0.626, 0.004, -0.515, 0.355, 0.196, -0.989, -0.982, 0.985, 0.445, 0.63, -0.849, -0.528, 0.146, -0.319 }; double X[] = { -0.199, -0.259, 0.386, -0.131, -0.867, 0.888 }; int incX = -1; double Y[] = { 0.106, 0.874, 0.962, 0.636, -0.759, 0.415, -0.053, 0.315 }; int incY = -1; double y_expected[] = { -0.1642353, -0.2575697, -0.3610975, -0.1305629, 0.1713576, -0.2514988, 0.0195631, -0.0648656 }; cblas_zgbmv(order, trans, M, N, KU, KL, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgbmv(case 813) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgbmv(case 813) imag"); }; }; }; } gsl-1.16/cblas/sasum.c0000664000252300025230000000030712171574312011532 00000000000000#include #include #include "cblas.h" float cblas_sasum (const int N, const float *X, const int incX) { #define BASE float #include "source_asum_r.h" #undef BASE } gsl-1.16/cblas/zhpr.c0000664000252300025230000000051612171574312011367 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zhpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *Ap) { #define BASE double #include "source_hpr.h" #undef BASE } gsl-1.16/cblas/drotg.c0000664000252300025230000000030412171574312011516 00000000000000#include #include #include "cblas.h" void cblas_drotg (double *a, double *b, double *c, double *s) { #define BASE double #include "source_rotg.h" #undef BASE } gsl-1.16/cblas/ssyr.c0000664000252300025230000000053412171574312011404 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ssyr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *A, const int lda) { #define BASE float #include "source_syr.h" #undef BASE } gsl-1.16/cblas/strmm.c0000664000252300025230000000074312171574312011550 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_strmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb) { #define BASE float #include "source_trmm_r.h" #undef BASE } gsl-1.16/cblas/source_axpy_r.h0000664000252300025230000000251712171574312013276 00000000000000/* blas/source_axpy_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; if (alpha == 0.0) { return; } if (incX == 1 && incY == 1) { const INDEX m = N % 4; for (i = 0; i < m; i++) { Y[i] += alpha * X[i]; } for (i = m; i + 3 < N; i += 4) { Y[i] += alpha * X[i]; Y[i + 1] += alpha * X[i + 1]; Y[i + 2] += alpha * X[i + 2]; Y[i + 3] += alpha * X[i + 3]; } } else { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] += alpha * X[ix]; ix += incX; iy += incY; } } } gsl-1.16/cblas/dtrmm.c0000664000252300025230000000074712171574312011535 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dtrmm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb) { #define BASE double #include "source_trmm_r.h" #undef BASE } gsl-1.16/cblas/dgbmv.c0000664000252300025230000000074412171574312011506 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dgbmv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY) { #define BASE double #include "source_gbmv_r.h" #undef BASE } gsl-1.16/cblas/test_her2k.c0000664000252300025230000002570512171574312012465 00000000000000#include #include #include #include #include "tests.h" void test_her2k (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha[2] = {-1.0f, 0.0f}; float beta = -0.3f; float A[] = { 0.178f, 0.545f, -0.491f, 0.979f }; int lda = 2; float B[] = { -0.665f, -0.531f, -0.4f, 0.227f }; int ldb = 2; float C[] = { 0.115f, -0.193f }; int ldc = 1; float C_expected[] = { -0.056236f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1646) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1646) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha[2] = {-1.0f, 0.0f}; float beta = -0.3f; float A[] = { -0.808f, 0.447f, 0.145f, -0.226f }; int lda = 2; float B[] = { -0.413f, 0.904f, -0.585f, 0.717f }; int ldb = 2; float C[] = { -0.725f, -0.244f }; int ldc = 1; float C_expected[] = { -0.76435f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1647) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1647) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha[2] = {-1.0f, 0.0f}; float beta = -0.3f; float A[] = { 0.337f, -0.737f, -0.993f, 0.69f }; int lda = 1; float B[] = { -0.39f, -0.836f, -0.32f, 0.368f }; int ldb = 1; float C[] = { 0.844f, -0.763f }; int ldc = 1; float C_expected[] = { -2.36596f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1648) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1648) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha[2] = {-1.0f, 0.0f}; float beta = -0.3f; float A[] = { 0.386f, -0.465f, 0.719f, -0.378f }; int lda = 1; float B[] = { 0.099f, -0.879f, 0.864f, 0.141f }; int ldb = 1; float C[] = { -0.599f, -0.47f }; int ldc = 1; float C_expected[] = { -1.85003f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1649) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1649) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 113; int N = 1; int K = 2; float alpha[2] = {0.0f, 1.0f}; float beta = -1.0f; float A[] = { 0.128f, 0.431f, -0.26f, 0.75f }; int lda = 1; float B[] = { 0.276f, 0.058f, 0.904f, -0.116f }; int ldb = 1; float C[] = { 0.914f, -0.262f }; int ldc = 1; float C_expected[] = { 0.604744f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1650) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1650) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 113; int N = 1; int K = 2; float alpha[2] = {0.0f, 1.0f}; float beta = -1.0f; float A[] = { 0.72f, 0.783f, -0.737f, 0.375f }; int lda = 1; float B[] = { 0.531f, 0.167f, 0.203f, -0.221f }; int ldb = 1; float C[] = { 0.618f, 0.392f }; int ldc = 1; float C_expected[] = { -0.200438f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1651) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1651) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 113; int N = 1; int K = 2; float alpha[2] = {0.0f, 1.0f}; float beta = -1.0f; float A[] = { -0.372f, -0.735f, -0.711f, 0.051f }; int lda = 2; float B[] = { 0.257f, 0.097f, 0.338f, -0.484f }; int ldb = 2; float C[] = { -0.142f, -0.197f }; int ldc = 1; float C_expected[] = { -0.817394f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1652) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1652) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 113; int N = 1; int K = 2; float alpha[2] = {0.0f, 1.0f}; float beta = -1.0f; float A[] = { 0.1f, -0.878f, 0.28f, -0.381f }; int lda = 2; float B[] = { -0.208f, 0.309f, -0.276f, 0.123f }; int ldb = 2; float C[] = { 0.483f, -0.541f }; int ldc = 1; float C_expected[] = { -0.03812f, 0.0f }; cblas_cher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cher2k(case 1653) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cher2k(case 1653) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta = 1; double A[] = { 0.515, -0.034, 0.067, 0.66 }; int lda = 2; double B[] = { 0.408, -0.85, -0.945, -0.799 }; int ldb = 2; double C[] = { -0.918, -0.985 }; int ldc = 1; double C_expected[] = { -1.62127, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1654) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1654) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta = 1; double A[] = { -0.009, 0.495, -0.008, -0.973 }; int lda = 2; double B[] = { -0.239, -0.373, -0.032, -0.539 }; int ldb = 2; double C[] = { 0.443, -0.245 }; int ldc = 1; double C_expected[] = { 1.127438, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1655) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1655) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta = 1; double A[] = { 0.531, 0.721, -0.848, 0.826 }; int lda = 1; double B[] = { -0.711, -0.2, -0.92, -0.676 }; int ldb = 1; double C[] = { -0.447, 0.701 }; int ldc = 1; double C_expected[] = { -1.046914, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1656) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1656) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta = 1; double A[] = { 0.68, 0.079, 0.837, -0.814 }; int lda = 1; double B[] = { -0.986, 0.024, 0.584, -0.248 }; int ldb = 1; double C[] = { 0.477, -0.551 }; int ldc = 1; double C_expected[] = { 0.521192, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1657) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1657) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 113; int N = 1; int K = 2; double alpha[2] = {-1, 0}; double beta = 0.1; double A[] = { -0.63, 0.787, 0.426, -0.568 }; int lda = 1; double B[] = { -0.228, 0.302, 0.83, 0.023 }; int ldb = 1; double C[] = { 0.354, -0.85 }; int ldc = 1; double C_expected[] = { -1.40826, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1658) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1658) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 113; int N = 1; int K = 2; double alpha[2] = {-1, 0}; double beta = 0.1; double A[] = { 0.224, -0.191, 0.46, 0.464 }; int lda = 1; double B[] = { -0.815, 0.634, 0.066, -0.873 }; int ldb = 1; double C[] = { -0.49, -0.606 }; int ldc = 1; double C_expected[] = { 1.307732, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1659) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1659) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 113; int N = 1; int K = 2; double alpha[2] = {-1, 0}; double beta = 0.1; double A[] = { 0.943, 0.075, 0.15, -0.141 }; int lda = 2; double B[] = { -0.962, 0.422, -0.592, -0.789 }; int ldb = 2; double C[] = { 0.728, 0.601 }; int ldc = 1; double C_expected[] = { 1.778934, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1660) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1660) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 113; int N = 1; int K = 2; double alpha[2] = {-1, 0}; double beta = 0.1; double A[] = { -0.93, -0.386, 0.565, 0.141 }; int lda = 2; double B[] = { -0.801, 0.022, 0.558, -0.932 }; int ldb = 2; double C[] = { 0.068, 0.501 }; int ldc = 1; double C_expected[] = { -1.833792, 0.0 }; cblas_zher2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zher2k(case 1661) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zher2k(case 1661) imag"); }; }; }; } gsl-1.16/cblas/test_symm.c0000664000252300025230000005075412171574312012441 00000000000000#include #include #include #include #include "tests.h" void test_symm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha = -0.3f; float beta = -1.0f; float A[] = { -0.581f }; int lda = 1; float B[] = { 0.157f, 0.451f }; int ldb = 2; float C[] = { -0.869f, -0.871f }; int ldc = 2; float C_expected[] = { 0.896365f, 0.949609f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1518)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha = -0.3f; float beta = -1.0f; float A[] = { 0.874f }; int lda = 1; float B[] = { 0.085f, 0.069f }; int ldb = 1; float C[] = { -0.495f, -0.828f }; int ldc = 1; float C_expected[] = { 0.472713f, 0.809908f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1519)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha = -1.0f; float beta = 0.0f; float A[] = { -0.671f, -0.343f, 0.6f, 0.177f }; int lda = 2; float B[] = { 0.043f, 0.01f }; int ldb = 2; float C[] = { 0.988f, 0.478f }; int ldc = 2; float C_expected[] = { 0.032283f, 0.012979f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1520)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha = -1.0f; float beta = 0.0f; float A[] = { 0.069f, 0.096f, 0.139f, -0.044f }; int lda = 2; float B[] = { -0.448f, 0.07f }; int ldb = 1; float C[] = { 0.361f, 0.995f }; int ldc = 1; float C_expected[] = { 0.021182f, 0.065352f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1521)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha = 0.0f; float beta = -0.3f; float A[] = { 0.745f }; int lda = 1; float B[] = { -0.269f, 0.448f }; int ldb = 2; float C[] = { -0.986f, 0.2f }; int ldc = 2; float C_expected[] = { 0.2958f, -0.06f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1522)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha = 0.0f; float beta = -0.3f; float A[] = { 0.96f }; int lda = 1; float B[] = { 0.392f, -0.07f }; int ldb = 1; float C[] = { -0.235f, 0.554f }; int ldc = 1; float C_expected[] = { 0.0705f, -0.1662f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1523)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha = -0.3f; float beta = 0.1f; float A[] = { -0.839f, 0.498f, -0.215f, -0.314f }; int lda = 2; float B[] = { -0.66f, 0.593f }; int ldb = 2; float C[] = { -0.806f, 0.525f }; int ldc = 2; float C_expected[] = { -0.208474f, 0.0657906f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1524)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha = -0.3f; float beta = 0.1f; float A[] = { 0.994f, -0.117f, -0.639f, 0.925f }; int lda = 2; float B[] = { -0.478f, 0.147f }; int ldb = 1; float C[] = { -0.814f, 0.316f }; int ldc = 1; float C_expected[] = { 0.0662993f, -0.0259703f }; cblas_ssymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssymm(case 1525)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha = -0.3; double beta = 1; double A[] = { -0.981 }; int lda = 1; double B[] = { -0.823, 0.83 }; int ldb = 2; double C[] = { 0.991, 0.382 }; int ldc = 2; double C_expected[] = { 0.7487911, 0.626269 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1526)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha = -0.3; double beta = 1; double A[] = { -0.248 }; int lda = 1; double B[] = { 0.74, 0.068 }; int ldb = 1; double C[] = { -0.905, 0.742 }; int ldc = 1; double C_expected[] = { -0.849944, 0.7470592 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1527)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha = -1; double beta = 1; double A[] = { 0.591, -0.01, -0.192, -0.376 }; int lda = 2; double B[] = { 0.561, 0.946 }; int ldb = 2; double C[] = { 0.763, 0.189 }; int ldc = 2; double C_expected[] = { 0.440909, 0.550306 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1528)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha = -1; double beta = 1; double A[] = { -0.786, 0.87, 0.222, -0.043 }; int lda = 2; double B[] = { -0.503, -0.526 }; int ldb = 1; double C[] = { -0.027, -0.391 }; int ldc = 1; double C_expected[] = { -0.305586, -0.301952 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1529)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha = 0.1; double beta = 0.1; double A[] = { -0.468 }; int lda = 1; double B[] = { -0.881, 0.692 }; int ldb = 2; double C[] = { -0.812, -0.395 }; int ldc = 2; double C_expected[] = { -0.0399692, -0.0718856 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1530)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha = 0.1; double beta = 0.1; double A[] = { 0.849 }; int lda = 1; double B[] = { -0.887, 0.518 }; int ldb = 1; double C[] = { 0.414, -0.251 }; int ldc = 1; double C_expected[] = { -0.0339063, 0.0188782 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1531)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha = -1; double beta = 1; double A[] = { 0.457, 0.624, 0.807, 0.349 }; int lda = 2; double B[] = { -0.609, 0.03 }; int ldb = 2; double C[] = { 0.719, -0.624 }; int ldc = 2; double C_expected[] = { 0.973103, -0.143007 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1532)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha = -1; double beta = 1; double A[] = { -0.133, -0.117, -0.163, 0.795 }; int lda = 2; double B[] = { -0.882, 0.549 }; int ldb = 1; double C[] = { 0.715, -0.327 }; int ldc = 1; double C_expected[] = { 0.661927, -0.866649 }; cblas_dsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsymm(case 1533)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { 0.476f, 0.816f }; int lda = 1; float B[] = { 0.282f, 0.852f, -0.891f, -0.588f }; int ldb = 2; float C[] = { 0.9f, 0.486f, -0.78f, -0.637f }; int ldc = 2; float C_expected[] = { 1.461f, -0.149664f, -0.835692f, 0.369944f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1534) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1534) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {1.0f, 0.0f}; float A[] = { 0.048f, 0.172f }; int lda = 1; float B[] = { 0.786f, 0.783f, 0.809f, -0.569f }; int ldb = 1; float C[] = { -0.227f, -0.215f, 0.881f, 0.233f }; int ldc = 1; float C_expected[] = { -0.130052f, -0.387776f, 0.7443f, 0.121164f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1535) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1535) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { -0.495f, -0.012f, 0.843f, -0.986f, -0.243f, 0.833f, 0.921f, 0.004f }; int lda = 2; float B[] = { 0.876f, 0.612f, 0.805f, -0.57f }; int ldb = 2; float C[] = { 0.938f, -0.24f, -0.874f, -0.062f }; int ldc = 2; float C_expected[] = { 1.82769f, 0.628319f, 0.93157f, 1.21158f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1536) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1536) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { -0.812f, 0.83f, 0.705f, 0.15f, -0.463f, 0.901f, -0.547f, -0.483f }; int lda = 2; float B[] = { -0.808f, -0.664f, 0.352f, -0.102f }; int ldb = 1; float C[] = { -0.64f, 0.399f, 0.896f, -0.163f }; int ldc = 1; float C_expected[] = { -0.631906f, 0.496142f, 0.697798f, 1.62656f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1537) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1537) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.342f, -0.906f }; int lda = 1; float B[] = { 0.676f, 0.863f, -0.517f, -0.138f }; int ldb = 2; float C[] = { 0.274f, 0.388f, -0.271f, 0.205f }; int ldc = 2; float C_expected[] = { -1.40107f, 0.59131f, 0.096842f, -0.692206f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1538) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1538) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.418f, 0.354f }; int lda = 1; float B[] = { -0.74f, 0.018f, 0.395f, 0.248f }; int ldb = 1; float C[] = { -0.162f, 0.175f, -0.853f, 0.652f }; int ldc = 1; float C_expected[] = { 0.140692f, 0.092436f, -0.729318f, -1.09649f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1539) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1539) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 0.1f}; float A[] = { 0.12f, 0.496f, 0.313f, -0.136f, 0.987f, 0.532f, 0.58f, -0.687f }; int lda = 2; float B[] = { -0.587f, 0.278f, 0.857f, 0.136f }; int ldb = 2; float C[] = { 0.162f, 0.249f, -0.665f, 0.456f }; int ldc = 2; float C_expected[] = { -0.22769f, -0.0269913f, 0.0502096f, 0.0841558f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1540) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1540) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 0.1f}; float A[] = { 0.579f, -0.859f, 0.192f, -0.737f, 0.396f, -0.498f, 0.751f, -0.379f }; int lda = 2; float B[] = { 0.84f, -0.755f, -0.019f, -0.063f }; int ldb = 1; float C[] = { 0.04f, 0.639f, -0.876f, -0.778f }; int ldc = 1; float C_expected[] = { 0.115459f, 0.329813f, 0.288206f, 0.110315f }; cblas_csymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csymm(case 1541) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csymm(case 1541) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0}; double beta[2] = {0, 0}; double A[] = { 0.511, -0.486 }; int lda = 1; double B[] = { 0.985, -0.923, -0.234, -0.756 }; int ldb = 2; double C[] = { -0.16, 0.049, 0.618, -0.349 }; int ldc = 2; double C_expected[] = { 0.0, 0.0, 0.0, 0.0 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1542) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1542) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0}; double beta[2] = {0, 0}; double A[] = { 0.46, -0.816 }; int lda = 1; double B[] = { 0.404, 0.113, -0.904, -0.627 }; int ldb = 1; double C[] = { 0.114, 0.318, 0.636, -0.839 }; int ldc = 1; double C_expected[] = { 0.0, 0.0, 0.0, 0.0 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1543) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1543) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {-1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.835, 0.344, 0.975, 0.634, 0.312, -0.659, -0.624, -0.175 }; int lda = 2; double B[] = { -0.707, -0.846, 0.825, -0.661 }; int ldb = 2; double C[] = { 0.352, -0.499, 0.267, 0.548 }; int ldc = 2; double C_expected[] = { -2.160518, -0.156877, 0.648536, 0.867299 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1544) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1544) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {-1, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.409, 0.013, -0.308, -0.317, -0.535, -0.697, -0.385, 0.119 }; int lda = 2; double B[] = { 0.299, -0.233, 0.093, 0.664 }; int ldb = 1; double C[] = { 0.699, 0.47, -0.347, -0.182 }; int ldc = 1; double C_expected[] = { -0.550491, 0.249777, 0.559487, 0.348221 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1545) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1545) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; double A[] = { -0.151, 0.635 }; int lda = 1; double B[] = { 0.711, -0.869, 0.153, 0.647 }; int ldb = 2; double C[] = { -0.299, 0.43, -0.307, 0.133 }; int ldc = 2; double C_expected[] = { 0.014454, 0.283704, -0.566948, -0.307542 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1546) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1546) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 1}; double A[] = { 0.793, -0.543 }; int lda = 1; double B[] = { 0.054, -0.045, 0.989, 0.453 }; int ldb = 1; double C[] = { 0.443, -0.641, -0.809, -0.83 }; int ldc = 1; double C_expected[] = { 0.659387, 0.377993, 1.860256, -0.986798 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1547) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1547) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {-1, 0}; double A[] = { -0.432, -0.293, -0.819, 0.44, -0.818, -0.258, -0.836, 0.683 }; int lda = 2; double B[] = { -0.259, -0.878, 0.161, 0.744 }; int ldb = 2; double C[] = { 0.436, -0.655, -0.61, -0.875 }; int ldc = 2; double C_expected[] = { -0.521112, 0.460053, -0.04741, 1.148005 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1548) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1548) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {-1, 0}; double A[] = { -0.656, 0.378, -0.688, 0.676, 0.967, -0.804, 0.455, -0.425 }; int lda = 2; double B[] = { 0.791, -0.947, -0.945, -0.444 }; int ldb = 1; double C[] = { 0.014, -0.814, -0.091, -0.417 }; int ldc = 1; double C_expected[] = { 0.775374, 1.400882, -0.431711, 1.802857 }; cblas_zsymm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsymm(case 1549) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsymm(case 1549) imag"); }; }; }; } gsl-1.16/cblas/zhbmv.c0000664000252300025230000000065212171574312011533 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zhbmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY) { #define BASE double #include "source_hbmv.h" #undef BASE } gsl-1.16/cblas/zcopy.c0000664000252300025230000000035412171574312011550 00000000000000#include #include #include "cblas.h" void cblas_zcopy (const int N, const void *X, const int incX, void *Y, const int incY) { #define BASE double #include "source_copy_c.h" #undef BASE } gsl-1.16/cblas/ctrsv.c0000664000252300025230000000065512171574312011551 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ctrsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX) { #define BASE float #include "source_trsv_c.h" #undef BASE } gsl-1.16/cblas/source_trsv_c.h0000664000252300025230000002003112171574312013263 00000000000000/* blas/source_trsv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); INDEX i, j; INDEX ix, jx; CHECK_ARGS9(TRSV,order,Uplo,TransA,Diag,N,A,lda,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { const BASE a_real = CONST_REAL(A, lda * (N - 1) + (N - 1)); const BASE a_imag = conj * CONST_IMAG(A, lda * (N - 1) + (N - 1)); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij_real = CONST_REAL(A, lda * i + j); const BASE Aij_imag = conj * CONST_IMAG(A, lda * i + j); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + i); const BASE a_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ ix = OFFSET(N, incX); if (nonunit) { const BASE a_real = CONST_REAL(A, lda * 0 + 0); const BASE a_imag = conj * CONST_IMAG(A, lda * 0 + 0); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix += incX; for (i = 1; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij_real = CONST_REAL(A, lda * i + j); const BASE Aij_imag = conj * CONST_IMAG(A, lda * i + j); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + i); const BASE a_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ ix = OFFSET(N, incX); if (nonunit) { const BASE a_real = CONST_REAL(A, lda * 0 + 0); const BASE a_imag = conj * CONST_IMAG(A, lda * 0 + 0); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix += incX; for (i = 1; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij_real = CONST_REAL(A, lda * j + i); const BASE Aij_imag = conj * CONST_IMAG(A, lda * j + i); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + i); const BASE a_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { const BASE a_real = CONST_REAL(A, lda * (N - 1) + (N - 1)); const BASE a_imag = conj * CONST_IMAG(A, lda * (N - 1) + (N - 1)); const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (x_real * b_real + x_imag * b_imag) / s; IMAG(X, ix) = (x_imag * b_real - b_imag * x_real) / s; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij_real = CONST_REAL(A, lda * j + i); const BASE Aij_imag = conj * CONST_IMAG(A, lda * j + i); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + i); const BASE a_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/srotm.c0000664000252300025230000000036512171574312011552 00000000000000#include #include #include "cblas.h" void cblas_srotm (const int N, float *X, const int incX, float *Y, const int incY, const float *P) { #define BASE float #include "source_rotm.h" #undef BASE } gsl-1.16/cblas/sgemv.c0000664000252300025230000000066512171574312011532 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sgemv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY) { #define BASE float #include "source_gemv_r.h" #undef BASE } gsl-1.16/cblas/source_iamax_c.h0000664000252300025230000000215012171574312013366 00000000000000/* blas/source_iamax_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE max = 0.0; INDEX ix = 0; INDEX i; CBLAS_INDEX result = 0; if (incX <= 0) { return 0; } for (i = 0; i < N; i++) { const BASE a = fabs(CONST_REAL(X, ix)) + fabs(CONST_IMAG(X, ix)); if (a > max) { max = a; result = i; } ix += incX; } return result; } gsl-1.16/cblas/dsyr2k.c0000664000252300025230000000074712171574312011630 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dsyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc) { #define BASE double #include "source_syr2k_r.h" #undef BASE } gsl-1.16/cblas/test_her.c0000664000252300025230000001032412171574312012217 00000000000000#include #include #include #include #include "tests.h" void test_her (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { 0.188f, 0.856f }; float X[] = { -0.832f, -0.151f }; int incX = -1; float A_expected[] = { 0.903025f, 0.0f }; cblas_cher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher(case 1410) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher(case 1410) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { 0.188f, 0.856f }; float X[] = { -0.832f, -0.151f }; int incX = -1; float A_expected[] = { 0.903025f, 0.0f }; cblas_cher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher(case 1411) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher(case 1411) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { 0.188f, 0.856f }; float X[] = { -0.832f, -0.151f }; int incX = -1; float A_expected[] = { 0.903025f, 0.0f }; cblas_cher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher(case 1412) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher(case 1412) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; float alpha = 1.0f; float A[] = { 0.188f, 0.856f }; float X[] = { -0.832f, -0.151f }; int incX = -1; float A_expected[] = { 0.903025f, 0.0f }; cblas_cher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], flteps, "cher(case 1413) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], flteps, "cher(case 1413) imag"); }; }; }; { int order = 101; int uplo = 121; int N = 1; int lda = 1; double alpha = 0.1; double A[] = { 0.257, 0.326 }; double X[] = { 0.319, -0.009 }; int incX = -1; double A_expected[] = { 0.2671842, 0.0 }; cblas_zher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher(case 1414) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher(case 1414) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; double alpha = 0.1; double A[] = { 0.257, 0.326 }; double X[] = { 0.319, -0.009 }; int incX = -1; double A_expected[] = { 0.2671842, 0.0 }; cblas_zher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher(case 1415) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher(case 1415) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; double alpha = 0.1; double A[] = { 0.257, 0.326 }; double X[] = { 0.319, -0.009 }; int incX = -1; double A_expected[] = { 0.2671842, 0.0 }; cblas_zher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher(case 1416) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher(case 1416) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; double alpha = 0.1; double A[] = { 0.257, 0.326 }; double X[] = { 0.319, -0.009 }; int incX = -1; double A_expected[] = { 0.2671842, 0.0 }; cblas_zher(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[2*i], A_expected[2*i], dbleps, "zher(case 1417) real"); gsl_test_rel(A[2*i+1], A_expected[2*i+1], dbleps, "zher(case 1417) imag"); }; }; }; } gsl-1.16/cblas/source_tpmv_r.h0000664000252300025230000000637112171574312013305 00000000000000/* blas/source_tpmv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int nonunit = (Diag == CblasNonUnit); const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS8(TPMV,order,Uplo,TransA,Diag,N,Ap,X,incX); if (N == 0) return; if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x:= A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE atmp = Ap[TPUP(N, i, i)]; BASE temp = (nonunit ? X[ix] * atmp : X[ix]); INDEX jx = OFFSET(N, incX) + (i + 1) * incX; for (j = i + 1; j < N; j++) { atmp = Ap[TPUP(N, i, j)]; temp += atmp * X[jx]; jx += incX; } X[ix] = temp; ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE atmp = Ap[TPLO(N, i, i)]; BASE temp = (nonunit ? X[ix] * atmp : X[ix]); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { atmp = Ap[TPLO(N, i, j)]; temp += atmp * X[jx]; jx += incX; } X[ix] = temp; ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE atmp = Ap[TPUP(N, i, i)]; BASE temp = (nonunit ? X[ix] * atmp : X[ix]); INDEX jx = OFFSET(N, incX); for (j = 0; j < i; j++) { atmp = Ap[TPUP(N, j, i)]; temp += atmp * X[jx]; jx += incX; } X[ix] = temp; ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE atmp = Ap[TPLO(N, i, i)]; BASE temp = (nonunit ? X[ix] * atmp : X[ix]); INDEX jx = OFFSET(N, incX) + (i + 1) * incX; for (j = i + 1; j < N; j++) { atmp = Ap[TPLO(N, j, i)]; temp += atmp * X[jx]; jx += incX; } X[ix] = temp; ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/zsymm.c0000664000252300025230000000070612171574312011564 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zsymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE double #include "source_symm_c.h" #undef BASE } gsl-1.16/cblas/test_tbsv.c0000664000252300025230000015223412171574312012426 00000000000000#include #include #include #include #include "tests.h" void test_tbsv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -0.354651f, -2.40855f, 0.481076f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1230)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -0.305f, 0.84973f, -1.00859f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1231)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -2.71619f, -1.09055f, -3.97608f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1232)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -0.56589f, 0.303361f, -0.831f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1233)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { 1.30901f, -0.656172f, -5.13458f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1234)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -0.305f, 0.8723f, -0.509121f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1235)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { 0.524539f, -0.961964f, 1.22026f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1236)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.681f, 0.209f, 0.436f, -0.369f, 0.786f, -0.84f, 0.86f, -0.233f, 0.734f }; float X[] = { -0.305f, 0.61f, -0.831f }; int incX = -1; float x_expected[] = { -0.920972f, 0.783679f, -0.831f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1237)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 16.8676f, 17.3503f, 5.27273f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1238)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 0.209676f, 0.54278f, 0.116f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1239)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 0.212077f, -5.01482f, -1.14722f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1240)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 0.144f, 0.615848f, 0.242249f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1241)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 1.28844f, -5.49514f, 0.145912f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1242)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 0.0563823f, 0.65878f, 0.116f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1243)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 1.08271f, -3.73662f, 140.301f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1244)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.022f, 0.795f, -0.389f, -0.205f, -0.121f, 0.323f, 0.133f, 0.679f, 0.742f }; float X[] = { 0.144f, 0.635f, 0.116f }; int incX = -1; float x_expected[] = { 0.144f, 0.652424f, -0.402677f }; cblas_stbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "stbsv(case 1245)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { -0.967930029155, 0.138412575592, 0.506166027443 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1246)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { 0.332, 0.819736, 0.615143048 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1247)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { -0.364842154056, -0.326531140246, -0.568848758465 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1248)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { 0.588397988, 0.747516, 0.252 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1249)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { -0.550580431177, -0.571849444278, 0.248263427151 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1250)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { 0.332, 0.701876, 0.696287508 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1251)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { 1.50217883761, -1.21382140588, 0.407108239095 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1252)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.619, -0.443, 0.957, -0.633, -0.698, 0.783, -0.343, -0.603, 0.735 }; double X[] = { 0.332, 0.588, 0.252 }; int incX = -1; double x_expected[] = { 0.820345928, 0.699636, 0.252 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1253)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 18.994209959, 20.323927329, 2.7135678392 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1254)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 1.06925836, 0.72162, -0.54 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1255)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { -3.27683615819, -4.47682615869, -1.97425326753 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1256)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 0.58, 0.11952, -0.53844624 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1257)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { -6.6461072986, -0.788837290809, -1.78217821782 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1258)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 0.16345912, 0.55098, -0.54 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1259)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 0.767195767196, -82.9352869353, -123.564783625 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1260)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.199, 0.303, -0.705, -0.013, -0.678, 0.547, 0.756, -0.177, -0.079 }; double X[] = { 0.58, 0.558, -0.54 }; int incX = -1; double x_expected[] = { 0.58, 0.95124, -0.82822572 }; cblas_dtbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtbsv(case 1261)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 1.28871f, 0.289887f, 1.76043f, 1.27481f, 1.56506f, -2.35181f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1262) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1262) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 0.11f, 0.787f, -1.04259f, 0.18935f, 0.228474f, -0.564917f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1263) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1263) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { -0.0906249f, 3.09442f, -1.60036f, 1.28475f, -0.582941f, 0.0383898f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1264) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1264) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 1.05233f, 0.79657f, -0.566883f, 1.46031f, -0.437f, 0.592f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1265) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1265) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { -0.735844f, 1.11782f, -0.28244f, 1.16117f, -0.66707f, 0.938302f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1266) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1266) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 0.11f, 0.787f, -0.406239f, 0.580226f, -0.171935f, 1.2125f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1267) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1267) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 1.70081f, 2.20477f, 1.32753f, -0.522112f, 0.0223652f, -0.62248f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1268) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1268) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { -0.975f, -0.667f, 0.813f, -0.962f, -0.961f, 0.226f, -0.503f, 0.809f, 0.81f, -0.162f, -0.027f, -0.044f, 0.212f, 0.563f, 0.446f, -0.392f, 0.798f, -0.07f }; float X[] = { 0.11f, 0.787f, -0.826f, 0.809f, -0.437f, 0.592f }; int incX = -1; float x_expected[] = { 0.967596f, 0.693563f, -1.04022f, -0.09269f, -0.437f, 0.592f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1269) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1269) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -1.11985f, 0.801655f, 0.273814f, -1.09438f, -0.52531f, 0.166748f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1270) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1270) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { 0.266087f, 0.618557f, 0.031897f, -0.914419f, -0.134f, 0.179f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1271) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1271) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -0.762749f, -0.016292f, 1.59299f, 0.158751f, -4.75603f, -1.78591f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1272) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1272) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -0.509f, 0.608f, -0.332731f, -1.24444f, 0.262904f, 1.21961f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1273) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1273) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -1.76046f, 0.0455463f, 1.38348f, 0.700097f, -0.669451f, 0.321896f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1274) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1274) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { 0.151523f, 0.78611f, 0.120309f, -1.01387f, -0.134f, 0.179f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1275) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1275) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -1.00779f, -0.620278f, 0.81164f, -1.90759f, -1.32022f, 1.48356f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1276) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1276) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.33f, -0.236f, 0.267f, -0.139f, 0.25f, 0.509f, 0.86f, -0.089f, -0.018f, -0.847f, 0.424f, -0.573f, 0.097f, -0.663f, 0.65f, -0.811f, 0.283f, 0.032f }; float X[] = { -0.509f, 0.608f, 0.021f, -0.848f, -0.134f, 0.179f }; int incX = -1; float x_expected[] = { -0.509f, 0.608f, -0.503138f, -1.26818f, 0.176615f, 0.447668f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1277) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1277) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -0.613838f, -1.13321f, -1.34847f, 0.0432903f, 0.0879552f, -0.479334f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1278) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1278) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { 0.76323f, -1.23595f, 0.943058f, -0.618694f, 0.296f, 0.034f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1279) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1279) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -1.15557f, -2.50103f, -3.85402f, -1.04833f, 0.414582f, 5.91218f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1280) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1280) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -0.037f, -0.599f, 1.39953f, -0.064424f, 1.0801f, -0.481747f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1281) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1281) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -3.0802f, -9.09377f, -1.05845f, 0.99239f, 0.259763f, -0.687744f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1282) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1282) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -0.513897f, 0.632031f, 1.14112f, -0.580648f, 0.296f, 0.034f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1283) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1283) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { 0.360899f, -0.456643f, -2.31803f, 0.257877f, 1.56928f, -0.922115f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1284) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1284) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; float A[] = { 0.041f, -0.61f, 0.099f, -0.393f, 0.357f, -0.984f, -0.576f, -0.342f, -0.903f, -0.083f, -0.157f, -0.694f, 0.768f, 0.688f, 0.203f, -0.079f, 0.298f, -0.424f }; float X[] = { -0.037f, -0.599f, 0.959f, -0.499f, 0.296f, 0.034f }; int incX = -1; float x_expected[] = { -0.037f, -0.599f, 0.875872f, -1.03683f, -0.198184f, -0.207572f }; cblas_ctbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctbsv(case 1285) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctbsv(case 1285) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { 0.0490338308139, -0.158433417494, 0.261604043488, 1.28058846321, 1.77633350191, -1.07039599422 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1286) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1286) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { -0.123, 0.122, 0.96534, 0.346049, 1.067212328, 0.445330131 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1287) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1287) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { 72.7437666278, 10.4206532927, -4.34946941374, -14.8012581742, 2.01859491883, -1.53922125931 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1288) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1288) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { -0.464775024, 0.662224708, -0.0457, 0.610264, 0.942, 0.98 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1289) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1289) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { -0.591747295323, -0.534096923761, -4.60251824353, 1.70172936273, -4.94687072873, -3.32536493524 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1290) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1290) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { -0.123, 0.122, 0.807692, 0.373091, 0.384974988, 1.400879194 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1291) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1291) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { -0.129998778267, -0.116630230861, 0.993340886904, 0.530739563688, 1.55891621291, -0.284019181928 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1292) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1292) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.474, 0.715, 0.061, 0.532, 0.004, -0.318, 0.37, -0.692, -0.166, 0.039, -0.946, 0.857, -0.922, -0.491, 0.012, -0.217, -0.674, -0.429 }; double X[] = { -0.123, 0.122, 0.981, 0.321, 0.942, 0.98 }; int incX = -1; double x_expected[] = { 0.107496032, 0.025821594, 1.444898, -0.239924, 0.942, 0.98 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1293) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1293) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -0.825842176606, 0.212941473892, -0.548817434511, -0.703261551538, 0.0746069436827, 0.425751789407 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1294) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1294) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -0.619710352, 0.018225936, 1.211252, 0.891864, 0.293, -0.434 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1295) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1295) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { 0.203289119964, 1.58288482537, -1.7720160159, 0.479463518178, -0.511241930019, -1.79333888299 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1296) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1296) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -0.373, 0.566, 0.618602, -0.084689, 0.887531803, -0.570220771 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1297) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1297) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { 1.72799012007, 13.4612400765, 4.46126528205, -0.0212528722047, 0.627282377919, 0.302760084926 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1298) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1298) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -1.280839615, 1.560525655, 1.167331, 0.179227, 0.293, -0.434 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1299) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1299) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -0.594503951847, 0.00287302167266, -1.08185265666, -0.859860374254, 0.0331027077244, 1.28233265933 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1300) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1300) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { -0.872, -0.841, 0.108, -0.744, 0.231, -0.513, -0.973, 0.087, 0.348, 0.196, 0.447, 0.307, 0.632, -0.949, 0.322, 0.277, 0.282, 0.831 }; double X[] = { -0.373, 0.566, 0.92, 0.627, 0.293, -0.434 }; int incX = -1; double x_expected[] = { -0.373, 0.566, 1.16074, 0.50314, -0.20669608, 0.37525144 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1301) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1301) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 0.0654496252357, 0.224007771015, -0.752486084395, -0.554870892947, -0.587163401057, 0.166737652215 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1302) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1302) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { -0.595558802, -1.147174647, 0.589506, -0.500919, -0.126, 0.459 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1303) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1303) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 3.39346077201, 0.652889512141, -2.33602680355, -2.7859245153, -5.04672104102, -0.334110541026 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1304) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1304) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 0.028, -0.804, -0.109456, -0.217192, -0.41110804, 0.41693792 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1305) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1305) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 7.16970224467, -0.772071373678, 0.833386981173, -0.673826630129, -0.26524050899, 0.465327628365 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1306) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1306) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 0.471459157, -1.566755859, 0.940839, 0.357132, -0.126, 0.459 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1307) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1307) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { -0.909961830373, 0.118063054039, -0.0169425582229, -1.00055409731, -1.37205489923, 0.994032418785 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1308) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1308) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 3; int K = 1; int lda = 3; double A[] = { 0.404, 0.667, 0.861, 0.22, 0.298, -0.858, -0.682, -0.969, 0.327, -0.86, 0.125, 0.606, -0.143, -0.865, -0.036, 0.23, -0.776, 0.079 }; double X[] = { 0.028, -0.804, 0.582, -0.078, -0.126, 0.459 }; int incX = -1; double x_expected[] = { 0.028, -0.804, -0.118596, 0.160828, -0.059271004, 0.294435972 }; cblas_ztbsv(order, uplo, trans, diag, N, K, A, lda, X, incX); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztbsv(case 1309) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztbsv(case 1309) imag"); }; }; }; } gsl-1.16/cblas/test_hbmv.c0000664000252300025230000003372112171574312012403 00000000000000#include #include #include #include #include "tests.h" void test_hbmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { 0.02698f, 0.521724f, -0.379354f, 1.27743f, -0.25427f, -0.043268f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1086) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1086) imag"); }; }; }; { int order = 101; int uplo = 121; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { 0.02698f, 0.521724f, -0.379354f, 1.27743f, -0.25427f, -0.043268f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1087) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1087) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { -0.06422f, -0.016288f, 0.734206f, 0.108366f, -0.411982f, 0.347068f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1088) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1088) imag"); }; }; }; { int order = 101; int uplo = 122; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { -0.06422f, -0.016288f, 0.734206f, 0.108366f, -0.411982f, 0.347068f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1089) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1089) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { 0.19354f, 0.056192f, 0.72585f, 0.42717f, -0.2047f, 0.405354f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1090) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1090) imag"); }; }; }; { int order = 102; int uplo = 121; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { 0.19354f, 0.056192f, 0.72585f, 0.42717f, -0.2047f, 0.405354f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1091) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1091) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { -0.151304f, 0.471592f, -0.507714f, -0.304446f, -1.16395f, -0.299062f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1092) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1092) imag"); }; }; }; { int order = 102; int uplo = 122; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; int N = 3; int k = 1; int lda = 3; float A[] = { 0.937f, -0.035f, 0.339f, 0.847f, 0.022f, 0.153f, -0.785f, 0.193f, -0.731f, -0.166f, -0.243f, -0.319f, 0.173f, -0.24f, 0.079f, -0.058f, 0.124f, 0.445f }; float X[] = { -0.093f, -0.103f, -0.537f, -0.151f, 0.094f, 0.954f }; int incX = -1; float Y[] = { 0.029f, -0.391f, -0.256f, 0.031f, -0.478f, 0.098f }; int incY = -1; float y_expected[] = { -0.151304f, 0.471592f, -0.507714f, -0.304446f, -1.16395f, -0.299062f }; cblas_chbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "chbmv(case 1093) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "chbmv(case 1093) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.902712, -0.524419, -0.307439, -2.167713, 1.059385, 1.104445 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1094) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1094) imag"); }; }; }; { int order = 101; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.902712, -0.524419, -0.307439, -2.167713, 1.059385, 1.104445 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1095) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1095) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.960834, -0.558818, 1.042598, -1.102864, 0.507945, 0.11149 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1096) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1096) imag"); }; }; }; { int order = 101; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.960834, -0.558818, 1.042598, -1.102864, 0.507945, 0.11149 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1097) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1097) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -1.626828, 0.003954, 0.437012, -2.365106, 0.446715, 0.16323 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1098) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1098) imag"); }; }; }; { int order = 102; int uplo = 121; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -1.626828, 0.003954, 0.437012, -2.365106, 0.446715, 0.16323 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1099) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1099) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.097302, -1.204999, 1.168771, -0.822543, 0.734395, 1.379065 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1100) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1100) imag"); }; }; }; { int order = 102; int uplo = 122; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; int N = 3; int k = 1; int lda = 3; double A[] = { 0.662, 0.24, -0.311, -0.345, -0.782, 0.904, -0.842, 0.065, -0.168, -0.855, -0.692, 0.113, 0.009, -0.707, -0.981, 0.019, -0.687, 0.861 }; double X[] = { 0.873, -0.509, 0.398, 0.471, 0.214, 0.878 }; int incX = -1; double Y[] = { -0.441, -0.781, 0.979, -0.911, 0.879, 0.807 }; int incY = -1; double y_expected[] = { -0.097302, -1.204999, 1.168771, -0.822543, 0.734395, 1.379065 }; cblas_zhbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zhbmv(case 1101) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zhbmv(case 1101) imag"); }; }; }; } gsl-1.16/cblas/source_trsv_r.h0000664000252300025230000000735012171574312013313 00000000000000/* blas/source_trsv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int nonunit = (Diag == CblasNonUnit); INDEX ix, jx; INDEX i, j; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS9(TRSV,order,Uplo,TransA,Diag,N,A,lda,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* backsubstitution */ ix = OFFSET(N, incX) + incX * (N - 1); if (nonunit) { X[ix] = X[ix] / A[lda * (N - 1) + (N - 1)]; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp = X[ix]; jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aij = A[lda * i + j]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + i]; } else { X[ix] = tmp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ ix = OFFSET(N, incX); if (nonunit) { X[ix] = X[ix] / A[lda * 0 + 0]; } ix += incX; for (i = 1; i < N; i++) { BASE tmp = X[ix]; jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aij = A[lda * i + j]; tmp -= Aij * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + i]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ ix = OFFSET(N, incX); if (nonunit) { X[ix] = X[ix] / A[lda * 0 + 0]; } ix += incX; for (i = 1; i < N; i++) { BASE tmp = X[ix]; jx = OFFSET(N, incX); for (j = 0; j < i; j++) { const BASE Aji = A[lda * j + i]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + i]; } else { X[ix] = tmp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ ix = OFFSET(N, incX) + (N - 1) * incX; if (nonunit) { X[ix] = X[ix] / A[lda * (N - 1) + (N - 1)]; } ix -= incX; for (i = N - 1; i > 0 && i--;) { BASE tmp = X[ix]; jx = ix + incX; for (j = i + 1; j < N; j++) { const BASE Aji = A[lda * j + i]; tmp -= Aji * X[jx]; jx += incX; } if (nonunit) { X[ix] = tmp / A[lda * i + i]; } else { X[ix] = tmp; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_gemm_r.h0000664000252300025230000000617012171574312013241 00000000000000/* blas/source_gemm_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; INDEX ldf, ldg; int TransF, TransG; const BASE *F, *G; CHECK_ARGS14(GEMM,Order,TransA,TransB,M,N,K,alpha,A,lda,B,ldb,beta,C,ldc); if (alpha == 0.0 && beta == 1.0) return; if (Order == CblasRowMajor) { n1 = M; n2 = N; F = A; ldf = lda; TransF = (TransA == CblasConjTrans) ? CblasTrans : TransA; G = B; ldg = ldb; TransG = (TransB == CblasConjTrans) ? CblasTrans : TransB; } else { n1 = N; n2 = M; F = B; ldf = ldb; TransF = (TransB == CblasConjTrans) ? CblasTrans : TransB; G = A; ldg = lda; TransG = (TransA == CblasConjTrans) ? CblasTrans : TransA; } /* form y := beta*y */ if (beta == 0.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { C[ldc * i + j] = 0.0; } } } else if (beta != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { C[ldc * i + j] *= beta; } } } if (alpha == 0.0) return; if (TransF == CblasNoTrans && TransG == CblasNoTrans) { /* form C := alpha*A*B + C */ for (k = 0; k < K; k++) { for (i = 0; i < n1; i++) { const BASE temp = alpha * F[ldf * i + k]; if (temp != 0.0) { for (j = 0; j < n2; j++) { C[ldc * i + j] += temp * G[ldg * k + j]; } } } } } else if (TransF == CblasNoTrans && TransG == CblasTrans) { /* form C := alpha*A*B' + C */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += F[ldf * i + k] * G[ldg * j + k]; } C[ldc * i + j] += alpha * temp; } } } else if (TransF == CblasTrans && TransG == CblasNoTrans) { for (k = 0; k < K; k++) { for (i = 0; i < n1; i++) { const BASE temp = alpha * F[ldf * k + i]; if (temp != 0.0) { for (j = 0; j < n2; j++) { C[ldc * i + j] += temp * G[ldg * k + j]; } } } } } else if (TransF == CblasTrans && TransG == CblasTrans) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += F[ldf * k + i] * G[ldg * j + k]; } C[ldc * i + j] += alpha * temp; } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_syr2k_r.h0000664000252300025230000000652012171574312013365 00000000000000/* blas/source_syr2k_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; int uplo, trans; CHECK_ARGS13(SYR2K,Order,Uplo,Trans,N,K,alpha,A,lda,B,ldb,beta,C,ldc); if (alpha == 0.0 && beta == 1.0) return; if (Order == CblasRowMajor) { uplo = Uplo; trans = (Trans == CblasConjTrans) ? CblasTrans : Trans; } else { uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; if (Trans == CblasTrans || Trans == CblasConjTrans) { trans = CblasNoTrans; } else { trans = CblasTrans; } } /* form C := beta*C */ if (beta == 0.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { C[ldc * i + j] = 0.0; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { C[ldc * i + j] = 0.0; } } } } else if (beta != 1.0) { if (uplo == CblasUpper) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { C[ldc * i + j] *= beta; } } } else { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { C[ldc * i + j] *= beta; } } } } if (alpha == 0.0) return; if (uplo == CblasUpper && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = i; j < N; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += (A[i * lda + k] * B[j * ldb + k] + B[i * ldb + k] * A[j * lda + k]); } C[i * ldc + j] += alpha * temp; } } } else if (uplo == CblasUpper && trans == CblasTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE temp1 = alpha * A[k * lda + i]; BASE temp2 = alpha * B[k * ldb + i]; for (j = i; j < N; j++) { C[i * lda + j] += temp1 * B[k * ldb + j] + temp2 * A[k * lda + j]; } } } } else if (uplo == CblasLower && trans == CblasNoTrans) { for (i = 0; i < N; i++) { for (j = 0; j <= i; j++) { BASE temp = 0.0; for (k = 0; k < K; k++) { temp += (A[i * lda + k] * B[j * ldb + k] + B[i * ldb + k] * A[j * lda + k]); } C[i * ldc + j] += alpha * temp; } } } else if (uplo == CblasLower && trans == CblasTrans) { for (k = 0; k < K; k++) { for (i = 0; i < N; i++) { BASE temp1 = alpha * A[k * lda + i]; BASE temp2 = alpha * B[k * ldb + i]; for (j = 0; j <= i; j++) { C[i * lda + j] += temp1 * B[k * ldb + j] + temp2 * A[k * lda + j]; } } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/sspmv.c0000664000252300025230000000060412171574312011552 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sspmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *Ap, const float *X, const int incX, const float beta, float *Y, const int incY) { #define BASE float #include "source_spmv.h" #undef BASE } gsl-1.16/cblas/ddot.c0000664000252300025230000000050412171574312011333 00000000000000#include #include #include "cblas.h" double cblas_ddot (const int N, const double *X, const int incX, const double *Y, const int incY) { #define INIT_VAL 0.0 #define ACC_TYPE double #define BASE double #include "source_dot_r.h" #undef ACC_TYPE #undef BASE #undef INIT_VAL } gsl-1.16/cblas/source_copy_r.h0000664000252300025230000000172112171574312013263 00000000000000/* blas/source_copy_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] = X[ix]; ix += incX; iy += incY; } } gsl-1.16/cblas/test_herk.c0000664000252300025230000002621012171574312012373 00000000000000#include #include #include #include #include "tests.h" void test_herk (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha = 0.0f; float beta = 0.1f; float A[] = { -0.617f, 0.179f, -0.626f, 0.334f }; int lda = 1; float C[] = { 0.346f, -0.903f, 0.022f, -0.839f, -0.715f, 0.049f, -0.338f, 0.149f }; int ldc = 2; float C_expected[] = { 0.0346f, 0.0f, 0.0022f, -0.0839f, -0.715f, 0.049f, -0.0338f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1598) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1598) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; float alpha = 0.0f; float beta = 0.1f; float A[] = { -0.356f, -0.308f, 0.493f, -0.351f }; int lda = 2; float C[] = { -0.898f, -0.905f, 0.002f, -0.219f, 0.881f, 0.879f, 0.275f, -0.351f }; int ldc = 2; float C_expected[] = { -0.0898f, 0.0f, 0.002f, -0.219f, 0.0881f, 0.0879f, 0.0275f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1599) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1599) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 113; int N = 2; int K = 1; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.103f, -0.951f, -0.601f, -0.041f }; int lda = 2; float C[] = { -0.918f, -0.018f, 0.991f, -0.789f, -0.698f, -0.067f, 0.956f, -0.599f }; int ldc = 2; float C_expected[] = { -0.826499f, 0.0f, 1.00109f, -0.845733f, -0.698f, -0.067f, 0.992288f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1600) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1600) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 113; int N = 2; int K = 1; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.237f, 0.925f, -0.904f, -0.091f }; int lda = 1; float C[] = { -0.572f, 0.915f, 0.398f, 0.222f, 0.016f, 0.288f, -0.078f, -0.507f }; int ldc = 2; float C_expected[] = { -0.480821f, 0.0f, 0.398f, 0.222f, 0.0290073f, 0.373777f, 0.0045497f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1601) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1601) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha = -0.3f; float beta = 0.0f; float A[] = { 0.963f, -0.23f, -0.435f, 0.289f }; int lda = 1; float C[] = { 0.282f, -0.272f, -0.516f, -0.594f, -0.001f, 0.155f, -0.39f, -0.354f }; int ldc = 2; float C_expected[] = { -0.294081f, 0.0f, -0.516f, -0.594f, 0.145613f, -0.0534771f, -0.0818238f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1602) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1602) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; float alpha = -0.3f; float beta = 0.0f; float A[] = { 0.674f, 0.1f, -0.098f, 0.552f }; int lda = 2; float C[] = { 0.089f, -0.523f, -0.551f, 0.618f, 0.67f, 0.247f, 0.975f, -0.714f }; int ldc = 2; float C_expected[] = { -0.139283f, 0.0f, 0.0032556f, -0.114554f, 0.67f, 0.247f, -0.0942924f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1603) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1603) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 113; int N = 2; int K = 1; float alpha = 1.0f; float beta = 0.1f; float A[] = { 0.033f, -0.864f, 0.168f, 0.524f }; int lda = 2; float C[] = { 0.788f, 0.016f, -0.436f, 0.749f, -0.89f, -0.87f, 0.421f, -0.203f }; int ldc = 2; float C_expected[] = { 0.826385f, 0.0f, -0.436f, 0.749f, -0.536192f, -0.249444f, 0.3449f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1604) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1604) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 113; int N = 2; int K = 1; float alpha = 1.0f; float beta = 0.1f; float A[] = { 0.957f, -0.079f, 0.935f, 0.232f }; int lda = 1; float C[] = { -0.744f, -0.061f, 0.195f, -0.574f, 0.551f, 0.478f, -0.337f, 0.1f }; int ldc = 2; float C_expected[] = { 0.84769f, 0.0f, 0.895967f, -0.353289f, 0.551f, 0.478f, 0.894349f, 0.0f }; cblas_cherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "cherk(case 1605) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "cherk(case 1605) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha = 1; double beta = 1; double A[] = { 0.934, 0.664, 0.426, 0.263 }; int lda = 1; double C[] = { 0.251, -0.97, 0.76, -0.349, 0.152, -0.899, -0.17, 0.707 }; int ldc = 2; double C_expected[] = { 1.564252, 0.0, 1.332516, -0.311778, 0.152, -0.899, 0.080645, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1606) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1606) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 2; int K = 1; double alpha = 1; double beta = 1; double A[] = { 0.16, 0.464, -0.623, 0.776 }; int lda = 2; double C[] = { 0.771, -0.449, 0.776, 0.112, -0.134, 0.317, 0.547, -0.551 }; int ldc = 2; double C_expected[] = { 1.011896, 0.0, 0.776, 0.112, 0.126384, -0.096232, 1.537305, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1607) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1607) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 113; int N = 2; int K = 1; double alpha = 0.1; double beta = 1; double A[] = { 0.787, 0.057, -0.49, 0.47 }; int lda = 2; double C[] = { -0.758, 0.912, 0.992, -0.356, 0.584, 0.806, 0.965, 0.674 }; int ldc = 2; double C_expected[] = { -0.6957382, 0.0, 0.956116, -0.316218, 0.584, 0.806, 1.0111, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1608) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1608) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 113; int N = 2; int K = 1; double alpha = 0.1; double beta = 1; double A[] = { 0.961, -0.384, 0.165, 0.395 }; int lda = 1; double C[] = { -0.186, 0.404, -0.873, 0.09, -0.451, -0.972, -0.203, -0.304 }; int ldc = 2; double C_expected[] = { -0.0789023, 0.0, -0.873, 0.09, -0.4503115, -0.9277045, -0.184675, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1609) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1609) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha = 0; double beta = -0.3; double A[] = { 0.04, 0.608, 0.21, -0.44 }; int lda = 1; double C[] = { 0.285, -0.943, 0.581, -0.56, 0.112, 0.529, 0.16, -0.913 }; int ldc = 2; double C_expected[] = { -0.0855, 0.0, 0.581, -0.56, -0.0336, -0.1587, -0.048, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1610) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1610) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 2; int K = 1; double alpha = 0; double beta = -0.3; double A[] = { -0.984, -0.398, -0.379, 0.919 }; int lda = 2; double C[] = { -0.44, -0.087, 0.156, -0.945, -0.943, -0.355, 0.577, 0.053 }; int ldc = 2; double C_expected[] = { 0.132, 0.0, -0.0468, 0.2835, -0.943, -0.355, -0.1731, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1611) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1611) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 113; int N = 2; int K = 1; double alpha = 1; double beta = -1; double A[] = { 0.269, -0.428, -0.029, 0.964 }; int lda = 2; double C[] = { 0.473, -0.932, -0.689, -0.072, -0.952, -0.862, 0.001, 0.282 }; int ldc = 2; double C_expected[] = { -0.217455, 0.0, -0.689, -0.072, 0.531607, 0.615096, 0.929137, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1612) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1612) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 113; int N = 2; int K = 1; double alpha = 1; double beta = -1; double A[] = { -0.303, -0.037, -0.411, -0.243 }; int lda = 1; double C[] = { 0.652, -0.227, -0.849, 0.87, -0.051, -0.535, 0.418, -0.681 }; int ldc = 2; double C_expected[] = { -0.558822, 0.0, 0.982524, -0.928422, -0.051, -0.535, -0.19003, 0.0 }; cblas_zherk(order, uplo, trans, N, K, alpha, A, lda, beta, C, ldc); { int i; for (i = 0; i < 4; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zherk(case 1613) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zherk(case 1613) imag"); }; }; }; } gsl-1.16/cblas/dsyr2.c0000664000252300025230000000060512171574312011446 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dsyr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A, const int lda) { #define BASE double #include "source_syr2.h" #undef BASE } gsl-1.16/cblas/cgerc.c0000664000252300025230000000055612171574312011473 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cgerc (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE float #include "source_gerc.h" #undef BASE } gsl-1.16/cblas/csyrk.c0000664000252300025230000000065512171574312011543 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_csyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc) { #define BASE float #include "source_syrk_c.h" #undef BASE } gsl-1.16/cblas/hypot.c0000664000252300025230000000065612171574312011554 00000000000000#include static double xhypot (const double x, const double y); static double xhypot (const double x, const double y) { double xabs = fabs(x) ; double yabs = fabs(y) ; double min, max; if (xabs < yabs) { min = xabs ; max = yabs ; } else { min = yabs ; max = xabs ; } if (min == 0) { return max ; } { double u = min / max ; return max * sqrt (1 + u * u) ; } } gsl-1.16/cblas/source_trmm_c.h0000664000252300025230000003113212171574312013250 00000000000000/* blas/source_trmm_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; const int nonunit = (Diag == CblasNonUnit); const int conj = (TransA == CblasConjTrans) ? -1 : 1; int side, uplo, trans; CHECK_ARGS12(TRMM,Order,Side,Uplo,TransA,Diag,M,N,alpha,A,lda,B,ldb); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (Order == CblasRowMajor) { n1 = M; n2 = N; side = Side; uplo = Uplo; trans = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; } else { n1 = N; n2 = M; side = (Side == CblasLeft) ? CblasRight : CblasLeft; /* exchanged */ uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; /* exchanged */ trans = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; /* same */ } if (side == CblasLeft && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * TriU(A)*B */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; if (nonunit) { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = conj * CONST_IMAG(A, i * lda + i); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real = Aii_real * Bij_real - Aii_imag * Bij_imag; temp_imag = Aii_real * Bij_imag + Aii_imag * Bij_real; } else { temp_real = REAL(B, i * ldb + j); temp_imag = IMAG(B, i * ldb + j); } for (k = i + 1; k < n1; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = conj * CONST_IMAG(A, i * lda + k); const BASE Bkj_real = REAL(B, k * ldb + j); const BASE Bkj_imag = IMAG(B, k * ldb + j); temp_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasLeft && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * (TriU(A))' *B */ for (i = n1; i > 0 && i--;) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < i; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = conj * CONST_IMAG(A, k * lda + i); const BASE Bkj_real = REAL(B, k * ldb + j); const BASE Bkj_imag = IMAG(B, k * ldb + j); temp_real += Aki_real * Bkj_real - Aki_imag * Bkj_imag; temp_imag += Aki_real * Bkj_imag + Aki_imag * Bkj_real; } if (nonunit) { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = conj * CONST_IMAG(A, i * lda + i); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real += Aii_real * Bij_real - Aii_imag * Bij_imag; temp_imag += Aii_real * Bij_imag + Aii_imag * Bij_real; } else { temp_real += REAL(B, i * ldb + j); temp_imag += IMAG(B, i * ldb + j); } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * TriL(A)*B */ for (i = n1; i > 0 && i--;) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < i; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = conj * CONST_IMAG(A, i * lda + k); const BASE Bkj_real = REAL(B, k * ldb + j); const BASE Bkj_imag = IMAG(B, k * ldb + j); temp_real += Aik_real * Bkj_real - Aik_imag * Bkj_imag; temp_imag += Aik_real * Bkj_imag + Aik_imag * Bkj_real; } if (nonunit) { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = conj * CONST_IMAG(A, i * lda + i); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real += Aii_real * Bij_real - Aii_imag * Bij_imag; temp_imag += Aii_real * Bij_imag + Aii_imag * Bij_real; } else { temp_real += REAL(B, i * ldb + j); temp_imag += IMAG(B, i * ldb + j); } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * TriL(A)' *B */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; if (nonunit) { const BASE Aii_real = CONST_REAL(A, i * lda + i); const BASE Aii_imag = conj * CONST_IMAG(A, i * lda + i); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real = Aii_real * Bij_real - Aii_imag * Bij_imag; temp_imag = Aii_real * Bij_imag + Aii_imag * Bij_real; } else { temp_real = REAL(B, i * ldb + j); temp_imag = IMAG(B, i * ldb + j); } for (k = i + 1; k < n1; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = conj * CONST_IMAG(A, k * lda + i); const BASE Bkj_real = REAL(B, k * ldb + j); const BASE Bkj_imag = IMAG(B, k * ldb + j); temp_real += Aki_real * Bkj_real - Aki_imag * Bkj_imag; temp_imag += Aki_real * Bkj_imag + Aki_imag * Bkj_real; } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * B * TriU(A) */ for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < j; k++) { const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = conj * CONST_IMAG(A, k * lda + j); const BASE Bik_real = REAL(B, i * ldb + k); const BASE Bik_imag = IMAG(B, i * ldb + k); temp_real += Akj_real * Bik_real - Akj_imag * Bik_imag; temp_imag += Akj_real * Bik_imag + Akj_imag * Bik_real; } if (nonunit) { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = conj * CONST_IMAG(A, j * lda + j); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real += Ajj_real * Bij_real - Ajj_imag * Bij_imag; temp_imag += Ajj_real * Bij_imag + Ajj_imag * Bij_real; } else { temp_real += REAL(B, i * ldb + j); temp_imag += IMAG(B, i * ldb + j); } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * B * (TriU(A))' */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; if (nonunit) { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = conj * CONST_IMAG(A, j * lda + j); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real = Ajj_real * Bij_real - Ajj_imag * Bij_imag; temp_imag = Ajj_real * Bij_imag + Ajj_imag * Bij_real; } else { temp_real = REAL(B, i * ldb + j); temp_imag = IMAG(B, i * ldb + j); } for (k = j + 1; k < n2; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = conj * CONST_IMAG(A, j * lda + k); const BASE Bik_real = REAL(B, i * ldb + k); const BASE Bik_imag = IMAG(B, i * ldb + k); temp_real += Ajk_real * Bik_real - Ajk_imag * Bik_imag; temp_imag += Ajk_real * Bik_imag + Ajk_imag * Bik_real; } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha *B * TriL(A) */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp_real = 0.0; BASE temp_imag = 0.0; if (nonunit) { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = conj * CONST_IMAG(A, j * lda + j); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real = Ajj_real * Bij_real - Ajj_imag * Bij_imag; temp_imag = Ajj_real * Bij_imag + Ajj_imag * Bij_real; } else { temp_real = REAL(B, i * ldb + j); temp_imag = IMAG(B, i * ldb + j); } for (k = j + 1; k < n2; k++) { const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = conj * CONST_IMAG(A, k * lda + j); const BASE Bik_real = REAL(B, i * ldb + k); const BASE Bik_imag = IMAG(B, i * ldb + k); temp_real += Akj_real * Bik_real - Akj_imag * Bik_imag; temp_imag += Akj_real * Bik_imag + Akj_imag * Bik_real; } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * B * TriL(A)' */ for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { BASE temp_real = 0.0; BASE temp_imag = 0.0; for (k = 0; k < j; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = conj * CONST_IMAG(A, j * lda + k); const BASE Bik_real = REAL(B, i * ldb + k); const BASE Bik_imag = IMAG(B, i * ldb + k); temp_real += Ajk_real * Bik_real - Ajk_imag * Bik_imag; temp_imag += Ajk_real * Bik_imag + Ajk_imag * Bik_real; } if (nonunit) { const BASE Ajj_real = CONST_REAL(A, j * lda + j); const BASE Ajj_imag = conj * CONST_IMAG(A, j * lda + j); const BASE Bij_real = REAL(B, i * ldb + j); const BASE Bij_imag = IMAG(B, i * ldb + j); temp_real += Ajj_real * Bij_real - Ajj_imag * Bij_imag; temp_imag += Ajj_real * Bij_imag + Ajj_imag * Bij_real; } else { temp_real += REAL(B, i * ldb + j); temp_imag += IMAG(B, i * ldb + j); } REAL(B, ldb * i + j) = alpha_real * temp_real - alpha_imag * temp_imag; IMAG(B, ldb * i + j) = alpha_real * temp_imag + alpha_imag * temp_real; } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/chpr.c0000664000252300025230000000051412171574312011336 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_chpr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *Ap) { #define BASE float #include "source_hpr.h" #undef BASE } gsl-1.16/cblas/cgeru.c0000664000252300025230000000055612171574312011515 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cgeru (const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE float #include "source_geru.h" #undef BASE } gsl-1.16/cblas/dtbsv.c0000664000252300025230000000065312171574312011530 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dtbsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX) { #define BASE double #include "source_tbsv_r.h" #undef BASE } gsl-1.16/cblas/source_trmv_c.h0000664000252300025230000001356312171574312013271 00000000000000/* blas/source_trmv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); INDEX i, j; CHECK_ARGS9(TRMV,order,Uplo,TransA,Diag,N,A,lda,X,incX); if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x := A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = i + 1; INDEX jx = OFFSET(N, incX) + incX * j_min; for (j = j_min; j < N; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * i + j); const BASE A_imag = conj * CONST_IMAG(A, lda * i + j); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + i); const BASE A_imag = conj * CONST_IMAG(A, lda * i + i); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX); for (j = 0; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * i + j); const BASE A_imag = conj * CONST_IMAG(A, lda * i + j); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + i); const BASE A_imag = conj * CONST_IMAG(A, lda * i + i); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX); for (j = 0; j < j_max; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * j + i); const BASE A_imag = conj * CONST_IMAG(A, lda * j + i); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + i); const BASE A_imag = conj * CONST_IMAG(A, lda * i + i); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp_r = 0.0; BASE temp_i = 0.0; const INDEX j_min = i + 1; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < N; j++) { const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); const BASE A_real = CONST_REAL(A, lda * j + i); const BASE A_imag = conj * CONST_IMAG(A, lda * j + i); temp_r += A_real * x_real - A_imag * x_imag; temp_i += A_real * x_imag + A_imag * x_real; jx += incX; } if (nonunit) { const BASE x_real = REAL(X, ix); const BASE x_imag = IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + i); const BASE A_imag = conj * CONST_IMAG(A, lda * i + i); REAL(X, ix) = temp_r + (A_real * x_real - A_imag * x_imag); IMAG(X, ix) = temp_i + (A_real * x_imag + A_imag * x_real); } else { REAL(X, ix) += temp_r; IMAG(X, ix) += temp_i; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/drotmg.c0000664000252300025230000000033212171574312011674 00000000000000#include #include #include "cblas.h" void cblas_drotmg (double *d1, double *d2, double *b1, const double b2, double *P) { #define BASE double #include "source_rotmg.h" #undef BASE } gsl-1.16/cblas/ccopy.c0000664000252300025230000000035312171574312011520 00000000000000#include #include #include "cblas.h" void cblas_ccopy (const int N, const void *X, const int incX, void *Y, const int incY) { #define BASE float #include "source_copy_c.h" #undef BASE } gsl-1.16/cblas/source_trmm_r.h0000664000252300025230000001245512171574312013276 00000000000000/* blas/source_trmm_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; const int nonunit = (Diag == CblasNonUnit); int side, uplo, trans; CHECK_ARGS12(TRMM,Order,Side,Uplo,TransA,Diag,M,N,alpha,A,lda,B,ldb); if (Order == CblasRowMajor) { n1 = M; n2 = N; side = Side; uplo = Uplo; trans = (TransA == CblasConjTrans) ? CblasTrans : TransA; } else { n1 = N; n2 = M; side = (Side == CblasLeft) ? CblasRight : CblasLeft; uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (TransA == CblasConjTrans) ? CblasTrans : TransA; } if (side == CblasLeft && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * TriU(A)*B */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; if (nonunit) { temp = A[i * lda + i] * B[i * ldb + j]; } else { temp = B[i * ldb + j]; } for (k = i + 1; k < n1; k++) { temp += A[lda * i + k] * B[k * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasLeft && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * (TriU(A))' *B */ for (i = n1; i > 0 && i--;) { for (j = 0; j < n2; j++) { BASE temp = 0.0; for (k = 0; k < i; k++) { temp += A[lda * k + i] * B[k * ldb + j]; } if (nonunit) { temp += A[i * lda + i] * B[i * ldb + j]; } else { temp += B[i * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * TriL(A)*B */ for (i = n1; i > 0 && i--;) { for (j = 0; j < n2; j++) { BASE temp = 0.0; for (k = 0; k < i; k++) { temp += A[lda * i + k] * B[k * ldb + j]; } if (nonunit) { temp += A[i * lda + i] * B[i * ldb + j]; } else { temp += B[i * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * TriL(A)' *B */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; if (nonunit) { temp = A[i * lda + i] * B[i * ldb + j]; } else { temp = B[i * ldb + j]; } for (k = i + 1; k < n1; k++) { temp += A[lda * k + i] * B[k * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * B * TriU(A) */ for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { BASE temp = 0.0; for (k = 0; k < j; k++) { temp += A[lda * k + j] * B[i * ldb + k]; } if (nonunit) { temp += A[j * lda + j] * B[i * ldb + j]; } else { temp += B[i * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * B * (TriU(A))' */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; if (nonunit) { temp = A[j * lda + j] * B[i * ldb + j]; } else { temp = B[i * ldb + j]; } for (k = j + 1; k < n2; k++) { temp += A[lda * j + k] * B[i * ldb + k]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha *B * TriL(A) */ for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { BASE temp = 0.0; if (nonunit) { temp = A[j * lda + j] * B[i * ldb + j]; } else { temp = B[i * ldb + j]; } for (k = j + 1; k < n2; k++) { temp += A[lda * k + j] * B[i * ldb + k]; } B[ldb * i + j] = alpha * temp; } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * B * TriL(A)' */ for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { BASE temp = 0.0; for (k = 0; k < j; k++) { temp += A[lda * j + k] * B[i * ldb + k]; } if (nonunit) { temp += A[j * lda + j] * B[i * ldb + j]; } else { temp += B[i * ldb + j]; } B[ldb * i + j] = alpha * temp; } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/dtrsm.c0000664000252300025230000000074712171574312011543 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dtrsm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb) { #define BASE double #include "source_trsm_r.h" #undef BASE } gsl-1.16/cblas/source_sbmv.h0000664000252300025230000000546712171574312012752 00000000000000/* blas/source_sbmv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; CHECK_ARGS12(SD_SBMV,order,Uplo,N,K,alpha,A,lda,X,incX,beta,Y,incY); if (N == 0) return; if (alpha == 0.0 && beta == 1.0) return; /* form y := beta*y */ if (beta == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] = 0.0; iy += incY; } } else if (beta != 1.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { Y[iy] *= beta; iy += incY; } } if (alpha == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE tmp1 = alpha * X[ix]; BASE tmp2 = 0.0; const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; Y[iy] += tmp1 * A[0 + i * lda]; for (j = j_min; j < j_max; j++) { BASE Aij = A[(j - i) + i * lda]; Y[jy] += tmp1 * Aij; tmp2 += Aij * X[jx]; jx += incX; jy += incY; } Y[iy] += alpha * tmp2; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE tmp1 = alpha * X[ix]; BASE tmp2 = 0.0; const INDEX j_min = (i > K) ? i - K : 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; for (j = j_min; j < j_max; j++) { BASE Aij = A[(K - i + j) + i * lda]; Y[jy] += tmp1 * Aij; tmp2 += Aij * X[jx]; jx += incX; jy += incY; } Y[iy] += tmp1 * A[K + i * lda] + alpha * tmp2; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/source_swap_r.h0000664000252300025230000000177512171574312013274 00000000000000/* blas/source_swap_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp = X[ix]; X[ix] = Y[iy]; Y[iy] = tmp; ix += incX; iy += incY; } } gsl-1.16/cblas/source_trsm_r.h0000664000252300025230000001447612171574312013311 00000000000000/* blas/source_trsm_r.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; const int nonunit = (Diag == CblasNonUnit); int side, uplo, trans; CHECK_ARGS12(TRSM,Order,Side,Uplo,TransA,Diag,M,N,alpha,A,lda,B,ldb); if (Order == CblasRowMajor) { n1 = M; n2 = N; side = Side; uplo = Uplo; trans = (TransA == CblasConjTrans) ? CblasTrans : TransA; } else { n1 = N; n2 = M; side = (Side == CblasLeft) ? CblasRight : CblasLeft; uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; trans = (TransA == CblasConjTrans) ? CblasTrans : TransA; } if (side == CblasLeft && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * inv(TriU(A)) *B */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = n1; i > 0 && i--;) { if (nonunit) { BASE Aii = A[lda * i + i]; for (j = 0; j < n2; j++) { B[ldb * i + j] /= Aii; } } for (k = 0; k < i; k++) { const BASE Aki = A[k * lda + i]; for (j = 0; j < n2; j++) { B[ldb * k + j] -= Aki * B[ldb * i + j]; } } } } else if (side == CblasLeft && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * inv(TriU(A))' *B */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { if (nonunit) { BASE Aii = A[lda * i + i]; for (j = 0; j < n2; j++) { B[ldb * i + j] /= Aii; } } for (k = i + 1; k < n1; k++) { const BASE Aik = A[i * lda + k]; for (j = 0; j < n2; j++) { B[ldb * k + j] -= Aik * B[ldb * i + j]; } } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * inv(TriL(A))*B */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { if (nonunit) { BASE Aii = A[lda * i + i]; for (j = 0; j < n2; j++) { B[ldb * i + j] /= Aii; } } for (k = i + 1; k < n1; k++) { const BASE Aki = A[k * lda + i]; for (j = 0; j < n2; j++) { B[ldb * k + j] -= Aki * B[ldb * i + j]; } } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * TriL(A)' *B */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = n1; i > 0 && i--;) { if (nonunit) { BASE Aii = A[lda * i + i]; for (j = 0; j < n2; j++) { B[ldb * i + j] /= Aii; } } for (k = 0; k < i; k++) { const BASE Aik = A[i * lda + k]; for (j = 0; j < n2; j++) { B[ldb * k + j] -= Aik * B[ldb * i + j]; } } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * B * inv(TriU(A)) */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { if (nonunit) { BASE Ajj = A[lda * j + j]; B[ldb * i + j] /= Ajj; } { BASE Bij = B[ldb * i + j]; for (k = j + 1; k < n2; k++) { B[ldb * i + k] -= A[j * lda + k] * Bij; } } } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * B * inv(TriU(A))' */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { if (nonunit) { BASE Ajj = A[lda * j + j]; B[ldb * i + j] /= Ajj; } { BASE Bij = B[ldb * i + j]; for (k = 0; k < j; k++) { B[ldb * i + k] -= A[k * lda + j] * Bij; } } } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * B * inv(TriL(A)) */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { if (nonunit) { BASE Ajj = A[lda * j + j]; B[ldb * i + j] /= Ajj; } { BASE Bij = B[ldb * i + j]; for (k = 0; k < j; k++) { B[ldb * i + k] -= A[j * lda + k] * Bij; } } } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * B * inv(TriL(A))' */ if (alpha != 1.0) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { B[ldb * i + j] *= alpha; } } } for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { if (nonunit) { BASE Ajj = A[lda * j + j]; B[ldb * i + j] /= Ajj; } { BASE Bij = B[ldb * i + j]; for (k = j + 1; k < n2; k++) { B[ldb * i + k] -= A[k * lda + j] * Bij; } } } } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/ssyrk.c0000664000252300025230000000065712171574312011565 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_ssyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float beta, float *C, const int ldc) { #define BASE float #include "source_syrk_r.h" #undef BASE } gsl-1.16/cblas/source_tbsv_c.h0000664000252300025230000001514412171574312013254 00000000000000/* blas/source_tbsv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const int conj = (TransA == CblasConjTrans) ? -1 : 1; const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; const int nonunit = (Diag == CblasNonUnit); INDEX i, j; CHECK_ARGS10(TBSV,order,Uplo,TransA,Diag,N,K,A,lda,X,incX); if (N == 0) return; /* form x := inv( A )*x */ if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX) + incX * (N - 1); for (i = N; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij_real = CONST_REAL(A, lda * i + (j - i)); const BASE Aij_imag = conj * CONST_IMAG(A, lda * i + (j - i)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + 0); const BASE a_imag = conj * CONST_IMAG(A, lda * i + 0); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { /* forward substitution */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij_real = CONST_REAL(A, lda * i + (K + j - i)); const BASE Aij_imag = conj * CONST_IMAG(A, lda * i + (K + j - i)); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, lda * i + K); const BASE a_imag = conj * CONST_IMAG(A, lda * i + K); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := inv( A' )*x */ /* forward substitution */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); const INDEX j_min = (K > i ? 0 : i - K); const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij_real = CONST_REAL(A, (i - j) + lda * j); const BASE Aij_imag = conj * CONST_IMAG(A, (i - j) + lda * j); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, 0 + lda * i); const BASE a_imag = conj * CONST_IMAG(A, 0 + lda * i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { /* backsubstitution */ INDEX ix = OFFSET(N, incX) + incX * (N - 1); for (i = N; i > 0 && i--;) { BASE tmp_real = REAL(X, ix); BASE tmp_imag = IMAG(X, ix); const INDEX j_min = i + 1; const INDEX j_max = GSL_MIN(N, i + K + 1); INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE Aij_real = CONST_REAL(A, (K + i - j) + lda * j); const BASE Aij_imag = conj * CONST_IMAG(A, (K + i - j) + lda * j); const BASE x_real = REAL(X, jx); const BASE x_imag = IMAG(X, jx); tmp_real -= Aij_real * x_real - Aij_imag * x_imag; tmp_imag -= Aij_real * x_imag + Aij_imag * x_real; jx += incX; } if (nonunit) { const BASE a_real = CONST_REAL(A, K + lda * i); const BASE a_imag = conj * CONST_IMAG(A, K + lda * i); const BASE s = xhypot(a_real, a_imag); const BASE b_real = a_real / s; const BASE b_imag = a_imag / s; REAL(X, ix) = (tmp_real * b_real + tmp_imag * b_imag) / s; IMAG(X, ix) = (tmp_imag * b_real - tmp_real * b_imag) / s; } else { REAL(X, ix) = tmp_real; IMAG(X, ix) = tmp_imag; } ix -= incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/snrm2.c0000664000252300025230000000030712171574312011443 00000000000000#include #include #include "cblas.h" float cblas_snrm2 (const int N, const float *X, const int incX) { #define BASE float #include "source_nrm2_r.h" #undef BASE } gsl-1.16/cblas/ztpmv.c0000664000252300025230000000057712171574312011573 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ztpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX) { #define BASE double #include "source_tpmv_c.h" #undef BASE } gsl-1.16/cblas/daxpy.c0000664000252300025230000000040412171574312011525 00000000000000#include #include #include "cblas.h" void cblas_daxpy (const int N, const double alpha, const double *X, const int incX, double *Y, const int incY) { #define BASE double #include "source_axpy_r.h" #undef BASE } gsl-1.16/cblas/test_hemm.c0000664000252300025230000002746412171574312012404 00000000000000#include #include #include #include #include "tests.h" void test_hemm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.1f}; float A[] = { -0.126f, 0.079f }; int lda = 1; float B[] = { -0.954f, -0.059f, 0.296f, -0.988f }; int ldb = 2; float C[] = { -0.859f, -0.731f, 0.737f, 0.593f }; int ldc = 2; float C_expected[] = { 0.0723566f, -0.0738796f, -0.0717488f, 0.0699704f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1550) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1550) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.1f}; float A[] = { 0.652f, 0.584f }; int lda = 1; float B[] = { -0.983f, -0.734f, -0.422f, -0.825f }; int ldb = 1; float C[] = { 0.387f, 0.341f, -0.734f, 0.632f }; int ldc = 1; float C_expected[] = { 0.0137568f, -0.0253916f, -0.00941f, -0.100914f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1551) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1551) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.78f, 0.885f, 0.507f, 0.765f, 0.911f, -0.461f, 0.707f, 0.508f }; int lda = 2; float B[] = { -0.905f, 0.633f, 0.85f, -0.943f }; int ldb = 2; float C[] = { 0.045f, -0.237f, 0.078f, -0.252f }; int ldc = 2; float C_expected[] = { 0.589611f, -0.759345f, 0.960095f, -0.09013f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1552) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1552) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-1.0f, 0.0f}; float A[] = { 0.947f, 0.939f, -0.267f, -0.819f, -0.827f, -0.937f, 0.991f, 0.838f }; int lda = 2; float B[] = { 0.871f, -0.988f, -0.232f, -0.434f }; int ldb = 1; float C[] = { -0.261f, 0.927f, -0.351f, -0.203f }; int ldc = 1; float C_expected[] = { 1.0551f, 0.496359f, 0.780145f, -1.67298f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1553) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1553) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.593f, -0.9f }; int lda = 1; float B[] = { -0.861f, 0.747f, -0.984f, 0.595f }; int ldb = 2; float C[] = { -0.589f, -0.671f, -0.011f, -0.417f }; int ldc = 2; float C_expected[] = { -0.510573f, 0.442971f, -0.583512f, 0.352835f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1554) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1554) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-1.0f, 0.0f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.79f, 0.132f }; int lda = 1; float B[] = { -0.243f, -0.12f, 0.633f, -0.556f }; int ldb = 1; float C[] = { -0.658f, -0.74f, -0.47f, 0.481f }; int ldc = 1; float C_expected[] = { -0.19197f, -0.0948f, 0.50007f, -0.43924f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1555) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1555) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { -0.114f, -0.515f, -0.513f, -0.527f, -0.995f, 0.986f, 0.229f, -0.076f }; int lda = 2; float B[] = { 0.084f, 0.522f, 0.61f, 0.694f }; int ldb = 2; float C[] = { 0.802f, 0.136f, -0.161f, -0.364f }; int ldc = 2; float C_expected[] = { 0.269101f, 0.716492f, 0.237088f, 0.0290666f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1556) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1556) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; float alpha[2] = {-0.3f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.798f, -0.324f, -0.693f, -0.893f, -0.223f, 0.749f, 0.102f, -0.357f }; int lda = 2; float B[] = { -0.572f, -0.569f, -0.391f, -0.938f }; int ldb = 1; float C[] = { 0.152f, -0.834f, -0.633f, -0.473f }; int ldc = 1; float C_expected[] = { 1.08642f, -0.113853f, 0.234826f, -0.48289f }; cblas_chemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "chemm(case 1557) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "chemm(case 1557) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0.1}; double beta[2] = {0, 0.1}; double A[] = { -0.359, 0.089 }; int lda = 1; double B[] = { -0.451, -0.337, -0.901, -0.871 }; int ldb = 2; double C[] = { 0.729, 0.631, 0.364, 0.246 }; int ldc = 2; double C_expected[] = { -0.0751983, 0.0890909, -0.0558689, 0.0687459 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1558) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1558) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0.1}; double beta[2] = {0, 0.1}; double A[] = { 0.044, -0.496 }; int lda = 1; double B[] = { -0.674, 0.281, 0.366, 0.888 }; int ldb = 1; double C[] = { -0.9, 0.919, 0.857, -0.049 }; int ldc = 1; double C_expected[] = { -0.0931364, -0.0929656, 0.0009928, 0.0873104 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1559) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1559) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0}; double beta[2] = {0, 0.1}; double A[] = { -0.314, 0.115, 0.114, 0.878, 0.961, -0.224, 0.973, 0.771 }; int lda = 2; double B[] = { 0.5, -0.016, -0.5, 0.149 }; int ldb = 2; double C[] = { -0.054, 0.064, 0.02, 0.245 }; int ldc = 2; double C_expected[] = { -0.0064, -0.0054, -0.0245, 0.002 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1560) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1560) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int M = 1; int N = 2; double alpha[2] = {0, 0}; double beta[2] = {0, 0.1}; double A[] = { 0.186, 0.578, 0.797, -0.957, -0.539, -0.969, -0.21, 0.354 }; int lda = 2; double B[] = { 0.641, -0.968, 0.15, -0.569 }; int ldb = 1; double C[] = { -0.556, -0.9, 0.197, 0.31 }; int ldc = 1; double C_expected[] = { 0.09, -0.0556, -0.031, 0.0197 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1561) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1561) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { 0.323, 0.641 }; int lda = 1; double B[] = { -0.188, 0.091, -0.235, 0.523 }; int ldb = 2; double C[] = { 0.919, 0.806, 0.823, -0.94 }; int ldc = 2; double C_expected[] = { 0.858276, 0.835393, 0.747095, -0.771071 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1562) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1562) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {1, 0}; double beta[2] = {1, 0}; double A[] = { -0.688, 0.915 }; int lda = 1; double B[] = { 0.914, -0.204, 0.205, -0.476 }; int ldb = 1; double C[] = { 0.27, -0.628, -0.079, 0.507 }; int ldc = 1; double C_expected[] = { -0.358832, -0.487648, -0.22004, 0.834488 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1563) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1563) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {0, 1}; double beta[2] = {0, 0.1}; double A[] = { 0.681, 0.574, -0.425, -0.64, 0.792, 0.661, -0.009, 0.005 }; int lda = 2; double B[] = { -0.221, 0.554, -0.465, -0.95 }; int ldb = 2; double C[] = { 0.331, -0.958, -0.826, -0.972 }; int ldc = 2; double C_expected[] = { 0.778291, 0.142269, -0.496199, 0.112747 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1564) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1564) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int M = 1; int N = 2; double alpha[2] = {0, 1}; double beta[2] = {0, 0.1}; double A[] = { 0.959, 0.34, -0.23, 0.064, 0.516, -0.275, 0.714, 0.899 }; int lda = 2; double B[] = { -0.502, -0.987, -0.134, 0.215 }; int ldb = 1; double C[] = { 0.929, 0.181, -0.16, -0.921 }; int ldc = 1; double C_expected[] = { 0.986459, -0.371458, -0.320548, -0.059384 }; cblas_zhemm(order, side, uplo, M, N, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zhemm(case 1565) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zhemm(case 1565) imag"); }; }; }; } gsl-1.16/cblas/test_gemv.c0000664000252300025230000003054712171574312012410 00000000000000#include #include #include #include #include "tests.h" void test_gemv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float beta = -0.3f; float A[] = { -0.805f }; float X[] = { -0.965f }; int incX = -1; float Y[] = { 0.537f }; int incY = -1; float y_expected[] = { 0.615725f }; cblas_sgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgemv(case 774)"); } }; }; { int order = 102; int trans = 111; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float beta = -0.3f; float A[] = { -0.805f }; float X[] = { -0.965f }; int incX = -1; float Y[] = { 0.537f }; int incY = -1; float y_expected[] = { 0.615725f }; cblas_sgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgemv(case 775)"); } }; }; { int order = 101; int trans = 112; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float beta = 0.0f; float A[] = { -0.805f }; float X[] = { -0.965f }; int incX = -1; float Y[] = { 0.537f }; int incY = -1; float y_expected[] = { 0.776825f }; cblas_sgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgemv(case 776)"); } }; }; { int order = 102; int trans = 112; int M = 1; int N = 1; int lda = 1; float alpha = 1.0f; float beta = 0.0f; float A[] = { -0.805f }; float X[] = { -0.965f }; int incX = -1; float Y[] = { 0.537f }; int incY = -1; float y_expected[] = { 0.776825f }; cblas_sgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "sgemv(case 777)"); } }; }; { int order = 101; int trans = 111; int M = 1; int N = 1; int lda = 1; double alpha = -0.3; double beta = -1; double A[] = { -0.047 }; double X[] = { 0.672 }; int incX = -1; double Y[] = { 0.554 }; int incY = -1; double y_expected[] = { -0.5445248 }; cblas_dgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgemv(case 778)"); } }; }; { int order = 102; int trans = 111; int M = 1; int N = 1; int lda = 1; double alpha = -0.3; double beta = -1; double A[] = { -0.047 }; double X[] = { 0.672 }; int incX = -1; double Y[] = { 0.554 }; int incY = -1; double y_expected[] = { -0.5445248 }; cblas_dgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgemv(case 779)"); } }; }; { int order = 101; int trans = 112; int M = 1; int N = 1; int lda = 1; double alpha = -1; double beta = 1; double A[] = { -0.047 }; double X[] = { 0.672 }; int incX = -1; double Y[] = { 0.554 }; int incY = -1; double y_expected[] = { 0.585584 }; cblas_dgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgemv(case 780)"); } }; }; { int order = 102; int trans = 112; int M = 1; int N = 1; int lda = 1; double alpha = -1; double beta = 1; double A[] = { -0.047 }; double X[] = { 0.672 }; int incX = -1; double Y[] = { 0.554 }; int incY = -1; double y_expected[] = { 0.585584 }; cblas_dgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dgemv(case 781)"); } }; }; { int order = 101; int trans = 111; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { 0.624274f, -0.921216f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 782) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 782) imag"); }; }; }; { int order = 102; int trans = 111; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 1.0f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { 0.624274f, -0.921216f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 783) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 783) imag"); }; }; }; { int order = 101; int trans = 112; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { -0.216261f, 0.654835f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 784) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 784) imag"); }; }; }; { int order = 102; int trans = 112; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 1.0f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { -0.216261f, 0.654835f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 785) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 785) imag"); }; }; }; { int order = 101; int trans = 113; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { 0.427909f, 0.150089f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 786) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 786) imag"); }; }; }; { int order = 102; int trans = 113; int M = 1; int N = 1; int lda = 1; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {-0.3f, 0.1f}; float A[] = { 0.629f, 0.801f }; float X[] = { 0.778f, -0.073f }; int incX = -1; float Y[] = { -0.976f, -0.682f }; int incY = -1; float y_expected[] = { 0.427909f, 0.150089f }; cblas_cgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], flteps, "cgemv(case 787) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], flteps, "cgemv(case 787) imag"); }; }; }; { int order = 101; int trans = 111; int M = 1; int N = 1; int lda = 1; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { 0.401726, 0.078178 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 788) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 788) imag"); }; }; }; { int order = 102; int trans = 111; int M = 1; int N = 1; int lda = 1; double alpha[2] = {0, 0.1}; double beta[2] = {1, 0}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { 0.401726, 0.078178 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 789) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 789) imag"); }; }; }; { int order = 101; int trans = 112; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 1}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { -0.040808, 0.517356 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 790) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 790) imag"); }; }; }; { int order = 102; int trans = 112; int M = 1; int N = 1; int lda = 1; double alpha[2] = {-0.3, 0.1}; double beta[2] = {0, 1}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { -0.040808, 0.517356 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 791) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 791) imag"); }; }; }; { int order = 101; int trans = 113; int M = 1; int N = 1; int lda = 1; double alpha[2] = {1, 0}; double beta[2] = {0, 0}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { 0.540796, -0.053628 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 792) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 792) imag"); }; }; }; { int order = 102; int trans = 113; int M = 1; int N = 1; int lda = 1; double alpha[2] = {1, 0}; double beta[2] = {0, 0}; double A[] = { 0.932, -0.724 }; double X[] = { 0.334, -0.317 }; int incX = -1; double Y[] = { 0.348, 0.07 }; int incY = -1; double y_expected[] = { 0.540796, -0.053628 }; cblas_zgemv(order, trans, M, N, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], y_expected[2*i], dbleps, "zgemv(case 793) real"); gsl_test_rel(Y[2*i+1], y_expected[2*i+1], dbleps, "zgemv(case 793) imag"); }; }; }; } gsl-1.16/cblas/sscal.c0000664000252300025230000000032312171574312011505 00000000000000#include #include #include "cblas.h" void cblas_sscal (const int N, const float alpha, float *X, const int incX) { #define BASE float #include "source_scal_r.h" #undef BASE } gsl-1.16/cblas/source_trmv_r.h0000664000252300025230000000702312171574312013302 00000000000000/* blas/source_trmv_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int nonunit = (Diag == CblasNonUnit); const int Trans = (TransA != CblasConjTrans) ? TransA : CblasTrans; CHECK_ARGS9(TRMV,order,Uplo,TransA,Diag,N,A,lda,X,incX); if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasLower)) { /* form x := A*x */ INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * i + j]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + i]; } else { X[ix] += temp; } ix += incX; } } else if ((order == CblasRowMajor && Trans == CblasNoTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * i + j]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + i]; } else { X[ix] += temp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasUpper) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasLower)) { /* form x := A'*x */ INDEX ix = OFFSET(N, incX) + (N - 1) * incX; for (i = N; i > 0 && i--;) { BASE temp = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * j + i]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + i]; } else { X[ix] += temp; } ix -= incX; } } else if ((order == CblasRowMajor && Trans == CblasTrans && Uplo == CblasLower) || (order == CblasColMajor && Trans == CblasNoTrans && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); for (i = 0; i < N; i++) { BASE temp = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + (i + 1) * incX; for (j = j_min; j < j_max; j++) { temp += X[jx] * A[lda * j + i]; jx += incX; } if (nonunit) { X[ix] = temp + X[ix] * A[lda * i + i]; } else { X[ix] += temp; } ix += incX; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/ztrsv.c0000664000252300025230000000065612171574312011601 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" #include "hypot.c" void cblas_ztrsv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX) { #define BASE double #include "source_trsv_c.h" #undef BASE } gsl-1.16/cblas/zdotu_sub.c0000664000252300025230000000045212171574312012421 00000000000000#include #include #include "cblas.h" void cblas_zdotu_sub (const int N, const void *X, const int incX, const void *Y, const int incY, void *result) { #define BASE double #define CONJ_SIGN 1.0 #include "source_dot_c.h" #undef CONJ_SIGN #undef BASE } gsl-1.16/cblas/zaxpy.c0000664000252300025230000000037712171574312011564 00000000000000#include #include #include "cblas.h" void cblas_zaxpy (const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY) { #define BASE double #include "source_axpy_c.h" #undef BASE } gsl-1.16/cblas/source_dot_c.h0000664000252300025230000000250012171574312013054 00000000000000/* blas/source_dot_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE r_real = 0.0; BASE r_imag = 0.0; INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); const BASE y_real = CONST_REAL(Y, iy); const BASE y_imag = CONST_IMAG(Y, iy); r_real += x_real * y_real - CONJ_SIGN * x_imag * y_imag; r_imag += x_real * y_imag + CONJ_SIGN * x_imag * y_real; ix += incX; iy += incY; } REAL0(result) = r_real; IMAG0(result) = r_imag; } gsl-1.16/cblas/source_dot_r.h0000664000252300025230000000177312171574312013106 00000000000000/* blas/source_dot_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { ACC_TYPE r = INIT_VAL; INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { r += X[ix] * Y[iy]; ix += incX; iy += incY; } return r; } gsl-1.16/cblas/ssyr2.c0000664000252300025230000000060012171574312011460 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_ssyr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A, const int lda) { #define BASE float #include "source_syr2.h" #undef BASE } gsl-1.16/cblas/test_trmm.c0000664000252300025230000036501612171574312012433 00000000000000#include #include #include #include #include "tests.h" void test_trmm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.18f, 0.199f, 0.122f, -0.547f }; int lda = 2; float B[] = { -0.874f, -0.383f, 0.458f, 0.124f, -0.221f, -0.107f }; int ldb = 3; float B_expected[] = { 0.0397932f, 0.0338757f, -0.0183441f, 0.0203484f, -0.0362661f, -0.0175587f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1662)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.195f, -0.453f, -0.579f, 0.697f }; int lda = 2; float B[] = { 0.736f, 0.131f, 0.533f, 0.692f, -0.672f, -0.435f }; int ldb = 3; float B_expected[] = { -0.126757f, -0.130625f, -0.219017f, -0.2076f, 0.2016f, 0.1305f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1663)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.53f, 0.787f, 0.889f, -0.379f }; int lda = 2; float B[] = { -0.355f, 0.002f, 0.266f, 0.972f, 0.712f, -0.353f }; int ldb = 3; float B_expected[] = { -0.056445f, 3.18e-04f, 0.042294f, 0.205195f, 0.080421f, -0.111078f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1664)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.198f, -0.673f, 0.792f, 0.781f }; int lda = 2; float B[] = { 0.901f, 0.719f, -0.339f, -0.36f, 0.539f, 0.192f }; int ldb = 3; float B_expected[] = { -0.2703f, -0.2157f, 0.1017f, -0.106078f, -0.332534f, 0.0229464f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1665)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.522f, 0.851f, 0.586f, 0.196f }; int lda = 2; float B[] = { 0.335f, 0.617f, 0.118f, -0.143f, 0.677f, 0.456f }; int ldb = 2; float B_expected[] = { -0.0560076f, -0.0362796f, 0.0436182f, 0.0084084f, 0.0258534f, -0.0268128f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1666)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.006f, -0.613f, -0.966f, -0.758f }; int lda = 2; float B[] = { 0.64f, -0.723f, -0.765f, 0.801f, 0.376f, 0.91f }; int ldb = 2; float B_expected[] = { -0.401525f, 0.2169f, 0.46163f, -0.2403f, 0.150918f, -0.273f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1667)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.738f, 0.913f, -0.227f, 0.787f }; int lda = 2; float B[] = { 0.194f, 0.988f, -0.274f, -0.652f, -0.281f, -0.359f }; int ldb = 2; float B_expected[] = { -0.0429516f, -0.286403f, 0.0606636f, 0.228986f, 0.0622134f, 0.161726f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1668)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.952f, 0.598f, 0.25f, -0.508f }; int lda = 2; float B[] = { 0.036f, 0.745f, -0.606f, 0.215f, 0.943f, -0.933f }; int ldb = 2; float B_expected[] = { -0.0108f, -0.229958f, 0.1818f, 0.0442164f, -0.2829f, 0.110726f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1669)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.251f, 0.372f, -0.168f, 0.217f, -0.179f, 0.863f, -0.057f, 0.256f, 0.093f }; int lda = 3; float B[] = { -0.727f, -0.461f, 0.162f, 0.579f, -0.305f, -0.735f }; int ldb = 3; float B_expected[] = { -0.0547431f, 0.0563775f, 0.0781923f, 0.0435987f, -0.0809949f, 0.128653f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1670)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.014f, 0.204f, 0.163f, 0.842f, -0.918f, -0.748f, -0.859f, -0.463f, 0.292f }; int lda = 3; float B[] = { -0.587f, -0.625f, -0.994f, 0.681f, -0.577f, -0.434f }; int ldb = 3; float B_expected[] = { 0.1761f, 0.223424f, 0.186654f, -0.2043f, 0.131423f, -0.0325797f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1671)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.682f, -0.71f, 0.475f, -0.59f, -0.748f, 0.548f, 0.245f, 0.761f, -0.4f }; int lda = 3; float B[] = { 0.565f, 0.967f, -0.969f, 0.184f, 0.349f, -0.552f }; int ldb = 3; float B_expected[] = { 0.357979f, 0.438217f, -0.11628f, 0.139991f, 0.204337f, -0.06624f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1672)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.617f, -0.998f, -0.97f, 0.364f, 0.09f, 0.588f, -0.263f, 0.584f, 0.463f }; int lda = 3; float B[] = { 0.773f, 0.074f, -0.388f, 0.825f, -0.608f, 0.788f }; int ldb = 3; float B_expected[] = { -0.270594f, 0.0457776f, 0.1164f, -0.118933f, 0.0443424f, -0.2364f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1673)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.217f, -0.672f, -0.378f, -0.005f, -0.586f, -0.426f, 0.765f, -0.239f, -0.145f }; int lda = 3; float B[] = { 0.01f, 0.387f, -0.953f, -0.374f, -0.673f, -0.724f }; int ldb = 2; float B_expected[] = { -6.51e-04f, -0.0251937f, -0.167522f, -0.0651687f, -0.0999006f, -0.147126f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1674)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.962f, 0.515f, 0.292f, 0.354f, -0.366f, 0.455f, 0.134f, -0.564f, -0.303f }; int lda = 3; float B[] = { -0.337f, 0.718f, -0.866f, -0.454f, -0.439f, -0.668f }; int ldb = 2; float B_expected[] = { 0.1011f, -0.2154f, 0.295589f, 0.0599484f, -0.0012798f, 0.0947196f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1675)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.228f, -0.097f, 0.205f, 0.875f, -0.162f, 0.542f, -0.839f, -0.935f, 0.2f }; int lda = 3; float B[] = { -0.125f, -0.676f, 0.181f, 0.741f, 0.216f, 0.766f }; int ldb = 2; float B_expected[] = { -0.0165669f, -0.0717843f, -0.026325f, -0.088539f, -0.01296f, -0.04596f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1676)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.854f, -0.502f, 0.591f, -0.934f, -0.729f, 0.063f, 0.352f, 0.126f, -0.905f }; int lda = 3; float B[] = { -0.626f, -0.694f, -0.889f, -0.251f, -0.42f, -0.353f }; int ldb = 2; float B_expected[] = { 0.128383f, 0.232986f, 0.274638f, 0.0819717f, 0.126f, 0.1059f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1677)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.755f, 0.12f, 0.525f, 0.917f }; int lda = 2; float B[] = { -0.927f, -0.813f, 0.624f, -0.366f, -0.864f, -0.046f }; int ldb = 3; float B_expected[] = { 0.0699885f, 0.0613815f, -0.047112f, -0.0446862f, -0.0889848f, 0.0032698f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1678)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.444f, 0.515f, 0.081f, -0.69f }; int lda = 2; float B[] = { 0.571f, -0.098f, -0.226f, -0.587f, 0.788f, -0.629f }; int ldb = 3; float B_expected[] = { 0.0571f, -0.0098f, -0.0226f, -0.0292935f, 0.073753f, -0.074539f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1679)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.954f, 0.651f, -0.982f, 0.388f }; int lda = 2; float B[] = { -0.927f, -0.281f, -0.918f, -0.527f, -0.652f, -0.393f }; int ldb = 3; float B_expected[] = { 0.140187f, 0.0908338f, 0.12617f, -0.0204476f, -0.0252976f, -0.0152484f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1680)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { 0.811f, 0.852f, 0.224f, 0.443f }; int lda = 2; float B[] = { -0.493f, -0.497f, -0.605f, 0.433f, -0.082f, -0.077f }; int ldb = 3; float B_expected[] = { -0.0396008f, -0.0515368f, -0.0622248f, 0.0433f, -0.0082f, -0.0077f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1681)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.777f, 0.812f, 0.254f, 0.97f }; int lda = 2; float B[] = { -0.509f, 0.171f, 0.986f, -0.644f, -0.97f, 0.814f }; int ldb = 2; float B_expected[] = { 0.0395493f, 0.0036584f, -0.0766122f, -0.0374236f, 0.075369f, 0.05432f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1682)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { 0.962f, 0.912f, -0.238f, -0.336f }; int lda = 2; float B[] = { -0.666f, 0.066f, -0.176f, 0.402f, 0.286f, -0.703f }; int ldb = 2; float B_expected[] = { -0.0666f, 0.0224508f, -0.0176f, 0.0443888f, 0.0286f, -0.0771068f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1683)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { 0.859f, -0.547f, 0.076f, 0.542f }; int lda = 2; float B[] = { 0.402f, 0.945f, -0.242f, -0.062f, 0.714f, 0.468f }; int ldb = 2; float B_expected[] = { -0.0171597f, 0.051219f, -0.0173964f, -0.0033604f, 0.035733f, 0.0253656f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1684)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.779f, 0.435f, 0.612f, -0.723f }; int lda = 2; float B[] = { 0.512f, -0.987f, -0.167f, 0.047f, -0.701f, -0.25f }; int ldb = 2; float B_expected[] = { 0.0082655f, -0.0987f, -0.0146555f, 0.0047f, -0.080975f, -0.025f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1685)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.757f, 0.396f, -0.927f, -0.558f, -0.289f, -0.66f, 0.83f, 0.363f, -0.13f }; int lda = 3; float B[] = { 0.041f, 0.333f, -0.682f, 0.193f, 0.581f, 0.963f }; int ldb = 3; float B_expected[] = { 0.0733045f, 0.0353883f, 0.008866f, -0.0808726f, -0.0803489f, -0.012519f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1686)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.75f, 0.674f, -0.576f, 0.376f, -0.46f, -0.813f, 0.419f, 0.792f, 0.226f }; int lda = 3; float B[] = { 0.511f, -0.544f, 0.938f, -0.126f, -0.873f, 0.118f }; int ldb = 3; float B_expected[] = { -0.0395944f, -0.130659f, 0.0938f, -0.078237f, -0.0968934f, 0.0118f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1687)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.045f, -0.809f, 0.654f, 0.611f, -0.038f, -0.105f, -0.946f, 0.474f, -0.097f }; int lda = 3; float B[] = { -0.625f, -0.123f, -0.48f, -0.088f, -0.757f, 0.974f }; int ldb = 3; float B_expected[] = { 0.0028125f, -0.0377201f, 0.0579508f, 3.96e-04f, -0.0025002f, -0.0370048f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1688)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { 0.713f, 0.781f, 0.084f, -0.498f, 0.692f, 0.125f, 0.706f, -0.118f, -0.907f }; int lda = 3; float B[] = { 0.442f, -0.563f, 0.065f, -0.18f, 0.63f, -0.328f }; int ldb = 3; float B_expected[] = { 0.0442f, -0.0783116f, 0.0443486f, -0.018f, 0.071964f, -0.052942f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1689)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.442f, 0.566f, 0.064f, 0.962f, -0.669f, 0.416f, 0.761f, -0.359f, 0.863f }; int lda = 3; float B[] = { 0.261f, -0.659f, -0.536f, 0.694f, -0.305f, -0.675f }; int ldb = 2; float B_expected[] = { -0.0863099f, 0.0445231f, 0.0468079f, -0.0221961f, -0.0263215f, -0.0582525f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1690)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { 0.386f, 0.643f, -0.028f, -0.758f, -0.63f, -0.043f, 0.666f, -0.088f, 0.382f }; int lda = 3; float B[] = { -0.241f, 0.766f, 0.656f, -0.977f, 0.274f, 0.565f }; int ldb = 2; float B_expected[] = { -0.0555764f, 0.188286f, 0.0631888f, -0.102672f, 0.0274f, 0.0565f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1691)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.855f, -0.587f, 0.062f, 0.372f, 0.48f, -0.63f, -0.786f, -0.437f, -0.431f }; int lda = 3; float B[] = { 0.116f, 0.534f, 0.043f, 0.73f, 0.945f, 0.528f }; int ldb = 2; float B_expected[] = { -0.009918f, -0.045657f, -0.0047452f, 0.0036942f, -0.0427193f, -0.065436f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1692)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 0.1f; float A[] = { -0.068f, 0.119f, -0.244f, -0.05f, 0.685f, 0.752f, -0.059f, -0.935f, -0.571f }; int lda = 3; float B[] = { -0.753f, -0.319f, 0.164f, 0.979f, 0.885f, -0.822f }; int ldb = 2; float B_expected[] = { -0.0753f, -0.0319f, 0.0074393f, 0.0941039f, 0.119206f, -7.956e-04f }; cblas_strmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strmm(case 1693)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.174, -0.308, 0.997, -0.484 }; int lda = 2; double B[] = { -0.256, -0.178, 0.098, 0.004, 0.97, -0.408 }; int ldb = 3; double B_expected[] = { 0.0137328, 0.0989196, -0.0428148, 5.808e-04, 0.140844, -0.0592416 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1694)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.722, -0.372, 0.466, -0.831 }; int lda = 2; double B[] = { 0.322, -0.183, 0.849, -0.051, -0.343, -0.98 }; int ldb = 3; double B_expected[] = { -0.1022916, 0.0166212, -0.364068, 0.0153, 0.1029, 0.294 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1695)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.656, -0.066, 0.582, 0.141 }; int lda = 2; double B[] = { 0.73, 0.407, 0.721, 0.086, -0.294, 0.941 }; int ldb = 3; double B_expected[] = { 0.143664, 0.0800976, 0.1418928, -0.1310958, -0.058626, -0.1656909 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1696)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.341, 0.386, -0.578, 0.863 }; int lda = 2; double B[] = { -0.306, -0.047, -0.162, -0.784, 0.472, 0.137 }; int ldb = 3; double B_expected[] = { 0.0918, 0.0141, 0.0486, 0.1821396, -0.1497498, -0.0691908 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1697)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.844, -0.832, 0.179, -0.775 }; int lda = 2; double B[] = { -0.415, -0.547, -0.023, 0.42, 0.917, 0.485 }; int ldb = 2; double B_expected[] = { 0.1344519, -0.1271775, -0.0167304, 0.09765, -0.2582289, 0.1127625 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1698)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.239, 0.34, 0.964, -0.575 }; int lda = 2; double B[] = { 0.762, -0.038, -0.8, 0.626, -0.701, 0.639 }; int ldb = 2; double B_expected[] = { -0.2176104, 0.0114, 0.0589608, -0.1878, 0.0255012, -0.1917 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1699)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.785, -0.0, -0.592, -0.661 }; int lda = 2; double B[] = { -0.215, 0.953, 0.527, -0.418, -0.675, 0.283 }; int ldb = 2; double B_expected[] = { 0.0506325, 0.1889799, -0.1241085, -0.0828894, 0.1589625, 0.0561189 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1700)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.423, -0.807, -0.683, -0.225 }; int lda = 2; double B[] = { 0.149, -0.129, 0.149, -0.234, 0.275, 0.658 }; int ldb = 2; double B_expected[] = { -0.0447, 0.0747729, -0.0447, 0.1062729, -0.0825, -0.1308225 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1701)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.276, 0.434, 0.917, 0.682, -0.32, 0.557, -0.302, 0.989, -0.043 }; int lda = 3; double B[] = { -0.943, 0.839, 0.759, 0.752, 0.807, 0.288 }; int ldb = 3; double B_expected[] = { -0.0780804, 0.2033226, 0.1290135, 0.0622656, -0.0204384, -0.3380097 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1702)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.731, -0.953, -0.666, 0.684, 0.38, 0.419, -0.361, 0.378, -0.423 }; int lda = 3; double B[] = { -0.983, 0.479, -0.136, 0.048, 0.745, -0.408 }; int ldb = 3; double B_expected[] = { 0.2949, -0.4247397, -0.2158137, -0.0144, -0.2097768, 0.0383439 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1703)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.953, -0.983, 0.237, 0.128, -0.378, 0.607, 0.41, 0.418, -0.221 }; int lda = 3; double B[] = { -0.561, -0.114, -0.148, 0.488, 0.146, -0.688 }; int ldb = 3; double B_expected[] = { -0.1378083, 0.0056316, -0.0098124, 0.2185368, 0.1028316, -0.0456144 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1704)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.277, -0.587, 0.885, -0.933, -0.582, 0.528, 0.268, -0.804, 0.62 }; int lda = 3; double B[] = { -0.831, -0.319, -0.547, -0.577, 0.295, -0.31 }; int ldb = 3; double B_expected[] = { 0.2039907, -0.0362364, 0.1641, 0.2805945, -0.163272, 0.093 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1705)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.256, 0.554, 0.342, 0.318, -0.824, -0.119, -0.399, -0.653, -0.83 }; int lda = 3; double B[] = { -0.577, 0.861, -0.439, -0.916, 0.452, -0.168 }; int ldb = 2; double B_expected[] = { 0.0443136, -0.0661248, -0.053475, -0.3085746, -0.042519, -0.1182147 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1706)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.837, -0.03, 0.552, -0.43, 0.841, 0.035, 0.7, 0.637, 0.095 }; int lda = 3; double B[] = { -0.82, -0.362, -0.252, -0.062, -0.942, -0.299 }; int ldb = 2; double B_expected[] = { 0.246, 0.1086, -0.03018, -0.028098, 0.5029572, 0.1775682 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1707)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -0.3; double A[] = { -0.074, 0.49, 0.802, -0.454, 0.626, 0.123, -0.959, 0.971, 0.75 }; int lda = 3; double B[] = { -0.545, -0.107, 0.096, 0.183, 0.185, -0.218 }; int ldb = 2; double B_expected[] = { -0.070722, 0.0231744, -0.0248553, -0.0263232, -0.041625, 0.04905 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1708)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -0.3; double A[] = { 0.048, 0.148, 0.834, -0.98, -0.009, -0.727, 0.241, 0.276, 0.518 }; int lda = 3; double B[] = { -0.664, -0.136, -0.793, -0.742, 0.126, -0.131 }; int ldb = 2; double B_expected[] = { 0.202884, 0.106521, 0.2653806, 0.1940289, -0.0378, 0.0393 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1709)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.427, 0.495, 0.282, 0.158 }; int lda = 2; double B[] = { 0.899, -0.375, 0.376, -0.831, 0.431, -0.387 }; int ldb = 3; double B_expected[] = { 0.0383873, -0.0160125, 0.0160552, 0.0313707, -0.0117527, 0.0124974 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1710)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.632, -0.174, 0.608, -0.669 }; int lda = 2; double B[] = { -0.335, 0.535, -0.978, 0.31, 0.023, -0.853 }; int ldb = 3; double B_expected[] = { -0.0335, 0.0535, -0.0978, 0.036829, -0.007009, -0.0682828 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1711)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.779, -0.73, 0.343, -0.665 }; int lda = 2; double B[] = { -0.976, -0.2, 0.661, -0.975, -0.965, -0.861 }; int ldb = 3; double B_expected[] = { 0.0425879, -0.0175195, -0.0810242, 0.0648375, 0.0641725, 0.0572565 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1712)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.127, -0.634, -0.384, -0.815 }; int lda = 2; double B[] = { -0.348, 0.748, 0.893, 0.91, 0.153, -0.408 }; int ldb = 3; double B_expected[] = { -0.069744, 0.0689248, 0.1049672, 0.091, 0.0153, -0.0408 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1713)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.603, -0.617, 0.402, -0.918 }; int lda = 2; double B[] = { 0.051, -0.096, 0.476, 0.377, 0.931, 0.291 }; int ldb = 2; double B_expected[] = { -0.0030753, 0.010863, -0.0287028, -0.0154734, -0.0561393, 0.0107124 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1714)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.67, -0.475, 0.032, -0.036 }; int lda = 2; double B[] = { -0.19, 0.829, 0.942, 0.885, 0.087, 0.321 }; int ldb = 2; double B_expected[] = { -0.019, 0.082292, 0.0942, 0.0915144, 0.0087, 0.0323784 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1715)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.64, 0.595, 0.642, -0.921 }; int lda = 2; double B[] = { -0.278, -0.83, 0.922, -0.701, -0.598, -0.232 }; int ldb = 2; double B_expected[] = { -0.031593, 0.076443, -0.1007175, 0.0645621, 0.024468, 0.0213672 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1716)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.842, 0.625, 0.967, 0.341 }; int lda = 2; double B[] = { -0.679, -0.846, -0.921, 0.672, 0.292, 0.752 }; int ldb = 2; double B_expected[] = { -0.120775, -0.0846, -0.0501, 0.0672, 0.0762, 0.0752 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1717)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.612, 0.593, 0.113, -0.658, 0.703, -0.023, -0.384, 0.439, 0.958 }; int lda = 3; double B[] = { -0.858, -0.559, 0.499, -0.114, 0.57, 0.847 }; int ldb = 3; double B_expected[] = { 0.0249996, -0.0404454, 0.0478042, 0.0503489, 0.0381229, 0.0811426 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1718)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.844, 0.205, -0.692, -0.401, -0.823, 0.342, -0.384, 0.344, 0.18 }; int lda = 3; double B[] = { 0.823, -0.181, 0.141, 0.932, 0.097, -0.636 }; int ldb = 3; double B_expected[] = { 0.0688323, -0.0132778, 0.0141, 0.1391997, -0.0120512, -0.0636 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1719)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.065, 0.678, 0.044, -0.472, 0.932, -0.388, 0.432, -0.167, -0.277 }; int lda = 3; double B[] = { 0.675, -0.468, -0.564, 0.71, -0.624, 0.023 }; int ldb = 3; double B_expected[] = { 0.0043875, -0.0754776, 0.0525984, 0.004615, -0.0916688, 0.0404557 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1720)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.649, -0.171, -0.462, 0.593, 0.131, -0.317, -0.254, -0.948, 0.002 }; int lda = 3; double B[] = { -0.519, -0.501, -0.024, -0.767, -0.591, -0.738 }; int ldb = 3; double B_expected[] = { -0.0519, -0.0808767, 0.0582774, -0.0767, -0.1045831, 0.0017086 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1721)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.023, -0.872, -0.313, -0.698, 0.06, -0.838, -0.455, -0.715, -0.257 }; int lda = 3; double B[] = { -0.17, -0.184, -0.243, 0.907, -0.423, 0.665 }; int ldb = 2; double B_expected[] = { 0.0365989, -0.0931429, 0.0287865, -0.0421055, 0.0108711, -0.0170905 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1722)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.792, 0.338, -0.155, 0.009, 0.485, -0.633, -0.08, -0.579, 0.223 }; int lda = 3; double B[] = { -0.19, 0.201, 0.685, 0.663, 0.302, -0.506 }; int ldb = 2; double B_expected[] = { -0.0207995, 0.0247447, 0.0510142, 0.0955974, 0.0302, -0.0506 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1723)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = 0.1; double A[] = { -0.076, 0.103, -0.021, -0.866, 0.777, 0.723, 0.378, 0.98, -0.32 }; int lda = 3; double B[] = { 0.739, -0.996, 0.182, 0.626, 0.291, -0.267 }; int ldb = 2; double B_expected[] = { -0.0056164, 0.0075696, 0.0217531, 0.0383814, 0.0022947, 0.0558954 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1724)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = 0.1; double A[] = { 0.469, 0.822, -0.619, 0.953, -0.706, 0.318, 0.559, -0.68, -0.208 }; int lda = 3; double B[] = { 0.362, 0.719, -0.661, -0.504, 0.595, -0.771 }; int ldb = 2; double B_expected[] = { 0.0362, 0.0719, -0.0363436, 0.0087018, 0.0160724, -0.1376333 }; cblas_dtrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrmm(case 1725)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.023f, 0.762f, -0.687f, -0.039f, -0.459f, 0.047f, 0.189f, 0.33f }; int lda = 2; float B[] = { 0.827f, -0.561f, 0.641f, -0.229f, -0.884f, -0.533f, -0.624f, -0.138f, 0.073f, 0.924f, -0.501f, -0.164f }; int ldb = 3; float B_expected[] = { -0.831767f, -0.762219f, -0.14564f, 0.143926f, -0.764269f, 0.529142f, 0.072396f, 0.232002f, 0.291123f, -0.198726f, 0.040569f, 0.196326f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1726) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1726) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.24f, 0.581f, 0.06f, 0.064f, 0.981f, 0.792f, 0.242f, -0.529f }; int lda = 2; float B[] = { -0.649f, -0.774f, -0.43f, -0.447f, -0.266f, 0.285f, 0.787f, 0.274f, 0.449f, -0.912f, 0.435f, 0.601f }; int ldb = 3; float B_expected[] = { 0.619316f, 0.707192f, 0.344692f, 0.472984f, 0.278364f, -0.3489f, -0.787f, -0.274f, -0.449f, 0.912f, -0.435f, -0.601f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1727) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1727) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.68f, -0.728f, -0.59f, -0.434f, -0.936f, 0.915f, 0.236f, -0.118f }; int lda = 2; float B[] = { 0.461f, 0.48f, 0.224f, 0.215f, -0.419f, -0.525f, 0.113f, -0.582f, 0.468f, 0.269f, 0.943f, -0.587f }; int ldb = 3; float B_expected[] = { -0.66292f, 0.009208f, -0.30884f, 0.016872f, 0.66712f, 0.051968f, 0.912704f, 0.178151f, 0.264199f, -0.01198f, -1.02584f, 0.141791f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1728) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1728) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.699f, -0.709f, -0.775f, 0.779f, 0.5f, 0.774f, -0.399f, -0.843f }; int lda = 2; float B[] = { 0.538f, 0.556f, -0.186f, -0.678f, -0.413f, -0.612f, -0.216f, -0.519f, -0.344f, -0.578f, -0.938f, -0.848f }; int ldb = 3; float B_expected[] = { -0.538f, -0.556f, 0.186f, 0.678f, 0.413f, 0.612f, 0.377344f, -0.175412f, -0.087772f, 1.06096f, 0.670812f, 1.47366f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1729) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1729) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.527f, 0.318f, -0.224f, 0.547f, -0.765f, -0.469f, 0.233f, 0.023f }; int lda = 2; float B[] = { 0.54f, -0.418f, -0.892f, -0.118f, -0.296f, 0.019f, 0.786f, -0.145f, 0.136f, 0.472f, 0.731f, 0.333f }; int ldb = 2; float B_expected[] = { -1.04454f, -0.460052f, 0.205122f, 0.04801f, 0.831329f, 0.341824f, -0.186473f, 0.015707f, 0.481462f, 0.305592f, -0.162664f, -0.094402f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1730) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1730) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.109f, -0.852f, 0.395f, 0.871f, 0.378f, -0.493f, 0.51f, 0.973f }; int lda = 2; float B[] = { -0.867f, -0.758f, 0.687f, -0.596f, -0.912f, -0.561f, -0.389f, 0.21f, -0.561f, 0.132f, 0.689f, 0.653f }; int ldb = 2; float B_expected[] = { 0.901142f, 1.32198f, -0.687f, 0.596f, 0.955512f, 0.289843f, 0.389f, -0.21f, -0.021371f, -0.039157f, -0.689f, -0.653f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1731) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1731) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.686f, 0.349f, 0.299f, -0.462f, 0.009f, -0.693f, -0.478f, -0.617f }; int lda = 2; float B[] = { -0.409f, 0.986f, -0.854f, 0.346f, 0.444f, -0.659f, 0.027f, 0.007f, 0.842f, -0.473f, 0.825f, 0.866f }; int ldb = 2; float B_expected[] = { 0.624688f, -0.533655f, -0.954935f, -0.845302f, -0.534575f, 0.297118f, 0.180289f, 0.422174f, -0.742689f, 0.03062f, -0.173204f, 1.4534f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1732) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1732) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.286f, 0.661f, 0.372f, 0.28f, 0.482f, 0.267f, -0.436f, 0.844f }; int lda = 2; float B[] = { 0.0f, -0.513f, 0.91f, 0.109f, 0.587f, -0.183f, 0.112f, 0.362f, -0.256f, -0.518f, -0.933f, 0.066f }; int ldb = 2; float B_expected[] = { 0.0f, 0.513f, -1.05364f, 0.081836f, -0.587f, 0.183f, -0.381604f, -0.458284f, 0.256f, 0.518f, 0.883192f, 0.198376f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1733) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1733) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.678f, 0.717f, 0.228f, 0.001f, -0.16f, -0.387f, -0.281f, -0.002f, 0.623f, 0.162f, -0.594f, 0.632f, 0.566f, 0.352f, -0.411f, 0.574f, 0.314f, -0.139f }; int lda = 3; float B[] = { -0.823f, -0.042f, 0.171f, -0.928f, 0.66f, 0.965f, 0.472f, 0.006f, -0.083f, 0.937f, -0.814f, 0.9f }; int ldb = 3; float B_expected[] = { 0.52788f, 0.618567f, -0.069267f, 0.560841f, -0.941723f, -1.19579f, -0.315714f, -0.342492f, 0.095893f, -0.572145f, 0.746576f, 0.396912f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1734) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1734) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.346f, 0.915f, -0.227f, -0.066f, -0.166f, -0.921f, -0.373f, 0.312f, -0.824f, 0.699f, -0.114f, -0.152f, 0.862f, -0.077f, 0.221f, -0.757f, -0.413f, -0.494f }; int lda = 3; float B[] = { -0.02f, -0.247f, -0.62f, 0.651f, -0.07f, -0.491f, 0.042f, 0.936f, 0.272f, -0.582f, 0.012f, -0.534f }; int ldb = 3; float B_expected[] = { 0.02f, 0.247f, 0.631762f, -0.708389f, 0.124535f, 0.411552f, -0.042f, -0.936f, -0.324242f, 0.797244f, -0.747612f, 0.703054f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1735) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1735) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.493f, -0.882f, -0.82f, 0.627f, 0.301f, -0.903f, -0.092f, 0.787f, -0.426f, -0.854f, -0.993f, 0.118f, 0.615f, 0.362f, -0.238f, -0.076f, 0.817f, -0.286f }; int lda = 3; float B[] = { 0.395f, 0.074f, -0.191f, -0.548f, 0.858f, 0.323f, -0.734f, 0.612f, 0.895f, 0.849f, 0.811f, 0.402f }; int ldb = 3; float B_expected[] = { -0.730125f, -0.024468f, 0.566282f, -0.25448f, -0.793364f, -0.018503f, -0.504384f, -1.51274f, -0.18131f, 1.28332f, -0.777559f, -0.096488f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1736) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1736) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.033f, -0.383f, 0.116f, 0.797f, -0.99f, 0.765f, 0.915f, 0.002f, 0.228f, 0.077f, 0.597f, -0.454f, -0.629f, 0.424f, -0.89f, 0.339f, -0.484f, 0.169f }; int lda = 3; float B[] = { -0.377f, -0.451f, -0.464f, -0.673f, 0.231f, -0.712f, -0.457f, -0.588f, 0.373f, -0.754f, -0.468f, 0.433f }; int ldb = 3; float B_expected[] = { 0.643625f, 0.521931f, 0.428222f, -0.038989f, -0.231f, 0.712f, 0.003417f, 1.74795f, -0.642733f, 1.29802f, 0.468f, -0.433f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1737) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1737) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.946f, -0.007f, 0.677f, -0.923f, 0.651f, -0.685f, 0.591f, 0.135f, 0.171f, 0.979f, -0.029f, -0.008f, -0.049f, 0.174f, 0.578f, 0.388f, 0.187f, -0.479f }; int lda = 3; float B[] = { -0.607f, -0.907f, -0.156f, -0.141f, -0.254f, 0.364f, 0.209f, 0.955f, 0.93f, 0.962f, 0.494f, 0.079f }; int ldb = 2; float B_expected[] = { 0.580571f, 0.853773f, 0.148563f, 0.132294f, 0.636082f, 0.804404f, 0.972367f, -0.263525f, -0.534225f, 0.214911f, 0.087341f, -0.390994f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1738) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1738) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.203f, -0.791f, -0.415f, -0.56f, 0.782f, -0.691f, -0.441f, 0.545f, -0.09f, 0.595f, -0.438f, 0.952f, 0.88f, 0.944f, -0.55f, -0.762f, -0.035f, -0.949f }; int lda = 3; float B[] = { -0.035f, 0.448f, 0.487f, -0.108f, -0.482f, -0.708f, -0.317f, 0.816f, -0.547f, 0.22f, -0.654f, 0.57f }; int ldb = 2; float B_expected[] = { 0.035f, -0.448f, -0.487f, 0.108f, 0.710725f, 0.924643f, 0.472907f, -1.12904f, 1.27511f, -1.33788f, -0.672654f, -0.727442f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1739) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1739) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { -0.09f, 0.742f, 0.081f, 0.459f, -0.54f, 0.04f, 0.574f, -0.858f, 0.704f, 0.686f, -0.9f, -0.519f, 0.538f, -0.934f, 0.467f, 0.376f, 0.149f, 0.322f }; int lda = 3; float B[] = { 0.307f, 0.294f, -0.428f, -0.7f, 0.496f, 0.167f, -0.611f, 0.904f, -0.846f, -0.411f, 0.29f, 0.004f }; int ldb = 2; float B_expected[] = { -0.191025f, -0.630625f, 0.063267f, 0.452361f, -0.782713f, -1.2668f, 1.30921f, -0.06316f, -0.006288f, 0.333651f, -0.041922f, -0.093976f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1740) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1740) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-1.0f, 0.0f}; float A[] = { 0.434f, 0.691f, 0.983f, -0.481f, -0.156f, -0.117f, -0.231f, 0.526f, 0.935f, 0.417f, -0.142f, -0.541f, 0.529f, 0.014f, 0.266f, 0.086f, 0.666f, 0.033f }; int lda = 3; float B[] = { 0.972f, -0.219f, -0.735f, -0.967f, 0.084f, -0.355f, -0.152f, -0.156f, 0.267f, 0.928f, 0.708f, -0.267f }; int ldb = 2; float B_expected[] = { -0.950741f, 0.784376f, 1.10114f, 1.08842f, -0.548134f, 0.631223f, 0.396983f, 0.501114f, -0.267f, -0.928f, -0.708f, 0.267f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1741) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1741) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.25f, -0.779f, -0.138f, -0.017f, -0.319f, -0.555f, 0.674f, -0.256f }; int lda = 2; float B[] = { -0.651f, -0.525f, 0.409f, -0.932f, 0.359f, 0.321f, 0.419f, 0.027f, 0.67f, 0.328f, 0.446f, -0.615f }; int ldb = 3; float B_expected[] = { 0.0100296f, -0.216136f, 0.257045f, -0.0571445f, -0.0121016f, 0.124004f, -0.110514f, 0.0386878f, -0.1561f, -0.0050383f, 0.028185f, 0.183634f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1742) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1742) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.012f, 0.978f, 0.617f, -0.361f, -0.349f, 0.712f, 0.008f, 0.305f }; int lda = 2; float B[] = { -0.771f, -0.335f, -0.565f, 0.866f, -0.516f, -0.869f, -0.097f, -0.711f, 0.308f, 0.207f, -0.459f, 0.766f }; int ldb = 3; float B_expected[] = { 0.2648f, 0.0234f, 0.0829f, -0.3163f, 0.2417f, 0.2091f, 0.272029f, 0.122445f, -0.176135f, -0.256384f, 0.285714f, -0.233939f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1743) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1743) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.063f, -0.605f, 0.473f, 0.763f, 0.548f, -0.167f, -0.825f, 0.011f }; int lda = 2; float B[] = { -0.262f, 0.135f, -0.333f, -0.671f, 0.91f, 0.874f, 0.305f, -0.255f, 0.882f, 0.883f, 0.088f, -0.473f }; int ldb = 3; float B_expected[] = { -0.0627538f, 0.0344746f, -0.131779f, -0.149516f, -0.0442507f, 0.307921f, 0.053273f, -0.089001f, 0.293086f, 0.141896f, -0.0189002f, -0.124098f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1744) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1744) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.493f, -0.852f, -0.567f, 0.21f, 0.168f, 0.666f, -0.328f, 0.803f }; int lda = 2; float B[] = { 0.24f, -0.578f, 0.293f, -0.233f, -0.348f, -0.853f, -0.145f, 0.192f, -0.785f, -0.72f, -0.508f, 0.023f }; int ldb = 3; float B_expected[] = { 0.037901f, 0.201471f, -0.104515f, 0.327095f, 0.253345f, 0.311373f, 0.0243f, -0.0721f, 0.3075f, 0.1375f, 0.1501f, -0.0577f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1745) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1745) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.089f, -0.135f, 0.987f, 0.936f, 0.353f, 0.638f, 0.845f, 0.343f }; int lda = 2; float B[] = { 0.744f, 0.445f, 0.835f, 0.273f, 0.702f, 0.03f, -0.618f, 0.141f, -0.303f, -0.399f, 0.63f, -0.037f }; int ldb = 2; float B_expected[] = { 0.0158468f, 0.0413994f, -0.292082f, -0.285588f, 0.0272724f, 0.0233892f, 0.0660084f, -0.143882f, 0.0004278f, -0.0256146f, -0.19286f, 0.114065f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1746) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1746) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.187f, -0.741f, 0.287f, -0.599f, -0.293f, -0.297f, 0.778f, -0.056f }; int lda = 2; float B[] = { -0.335f, -0.713f, 0.081f, -0.589f, -0.256f, -0.809f, -0.473f, 0.418f, 0.646f, -0.447f, -0.147f, 0.314f }; int ldb = 2; float B_expected[] = { 0.1718f, 0.1804f, 0.0378414f, 0.0809182f, 0.1577f, 0.2171f, 0.118373f, -0.283147f, -0.1491f, 0.1987f, 0.1154f, -0.122836f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1747) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1747) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.259f, -0.645f, -0.09f, 0.709f, 0.729f, -0.023f, -0.792f, 0.03f }; int lda = 2; float B[] = { 0.904f, -0.402f, 0.753f, 0.104f, 0.38f, 0.944f, -0.715f, -0.378f, -0.16f, 0.254f, -0.68f, 0.183f }; int ldb = 2; float B_expected[] = { 0.185924f, -0.0771597f, 0.185827f, -0.0420162f, -0.156592f, 0.373034f, -0.201079f, -0.0256158f, 0.0051007f, 0.152025f, -0.143387f, 0.102908f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1748) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1748) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.938f, 0.25f, -0.509f, 0.377f, -0.063f, 0.166f, 0.227f, -0.24f }; int lda = 2; float B[] = { 0.756f, -0.08f, -0.657f, -0.837f, -0.714f, 0.781f, 0.239f, -0.953f, 0.26f, 0.696f, -0.183f, 0.668f }; int ldb = 2; float B_expected[] = { -0.431623f, 0.111093f, 0.2808f, 0.1854f, 0.007293f, -0.454491f, 0.0236f, 0.3098f, -0.059093f, -0.075968f, -0.0119f, -0.2187f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1749) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1749) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.055f, -0.682f, 0.361f, 0.521f, -0.192f, -0.664f, -0.167f, 0.731f, -0.668f, 0.983f, 0.608f, 0.533f, -0.513f, -0.781f, 0.878f, 0.875f, 0.804f, -0.179f }; int lda = 3; float B[] = { -0.038f, -0.787f, -0.209f, -0.686f, -0.073f, -0.662f, 0.938f, -0.301f, -0.871f, 0.699f, 0.561f, 0.823f }; int ldb = 3; float B_expected[] = { 0.224558f, -0.0087435f, -0.317863f, 0.168822f, 0.105075f, 0.138035f, 0.256887f, 0.377119f, 0.113231f, 0.136832f, -0.235636f, -0.108546f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1750) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1750) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.397f, -0.154f, -0.944f, -0.137f, 0.65f, -0.49f, -0.883f, 0.273f, -0.137f, 0.655f, 0.531f, 0.676f, 0.052f, 0.03f, -0.602f, 0.002f, 0.005f, 0.984f }; int lda = 3; float B[] = { -0.446f, 0.091f, 0.793f, -0.221f, 0.386f, 0.354f, -0.063f, 0.105f, -0.128f, 0.189f, -0.079f, 0.749f }; int ldb = 3; float B_expected[] = { 0.216958f, -0.149634f, -0.25039f, 0.0074932f, -0.1512f, -0.0676f, -0.166784f, -0.100965f, 0.14955f, -0.227622f, -0.0512f, -0.2326f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1751) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1751) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.976f, -0.488f, -0.762f, -0.057f, 0.812f, 0.006f, 0.06f, -0.271f, 0.832f, -0.232f, 0.188f, -0.466f, -0.051f, -0.745f, 0.909f, -0.091f, -0.559f, 0.595f }; int lda = 3; float B[] = { 0.644f, -0.584f, 0.456f, 0.443f, -0.909f, 0.43f, 0.771f, -0.075f, -0.408f, 0.303f, 0.03f, 0.529f }; int ldb = 3; float B_expected[] = { 0.24849f, -0.168067f, -0.114085f, 0.0202884f, 0.0152508f, 0.284926f, 0.267034f, 0.0120048f, 0.0596364f, -0.0643158f, 0.284594f, 0.0837608f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1752) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1752) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.924f, -0.247f, -0.131f, 0.932f, -0.415f, 0.454f, -0.539f, 0.693f, -0.725f, -0.601f, 0.565f, 0.002f, -0.118f, 0.626f, -0.968f, 0.874f, 0.156f, -0.227f }; int lda = 3; float B[] = { 0.793f, -0.15f, -0.967f, 0.821f, 0.37f, -0.572f, -0.156f, 0.106f, -0.877f, -0.297f, 0.448f, -0.576f }; int ldb = 3; float B_expected[] = { -0.2229f, 0.1243f, 0.242003f, -0.564467f, -0.0068716f, 0.568213f, 0.0362f, -0.0474f, 0.306136f, 0.0520352f, -0.336053f, 0.500406f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1753) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1753) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.671f, 0.477f, 0.227f, 0.685f, -0.648f, 0.277f, -0.295f, -0.632f, 0.509f, -0.798f, 0.875f, 0.89f, -0.34f, -0.786f, -0.453f, 0.511f, -0.189f, 0.385f }; int lda = 3; float B[] = { -0.895f, -0.148f, 0.934f, 0.229f, 0.958f, -0.55f, 0.49f, 0.586f, -0.871f, 0.618f, -0.0f, -0.543f }; int ldb = 2; float B_expected[] = { 0.162976f, 0.110656f, -0.12507f, -0.0587256f, 0.138701f, 0.543589f, -0.313677f, 0.0534812f, 0.067207f, 0.12831f, -0.0729792f, -0.0098826f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1754) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1754) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.438f, -0.618f, 0.524f, 0.525f, -0.268f, -0.502f, -0.685f, 0.28f, 0.508f, 0.664f, -0.492f, 0.772f, -0.997f, 0.693f, 0.63f, -0.328f, -0.521f, -0.869f }; int lda = 3; float B[] = { 0.527f, 0.999f, -0.078f, 0.599f, 0.004f, -0.615f, -0.281f, -0.328f, 0.456f, -0.666f, 0.309f, -0.69f }; int ldb = 2; float B_expected[] = { -0.45115f, -0.650085f, -0.277633f, -0.456478f, 0.0965652f, 0.362528f, 0.1802f, 0.227951f, -0.0702f, 0.2454f, -0.0237f, 0.2379f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1755) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1755) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.454f, 0.517f, -0.794f, -0.181f, 0.292f, 0.954f, -0.93f, -0.128f, 0.123f, -0.997f, 0.325f, -0.317f, -0.988f, 0.732f, 0.637f, 0.457f, -0.665f, 0.529f }; int lda = 3; float B[] = { -0.055f, 0.803f, -0.981f, -0.627f, 0.147f, -0.656f, -0.824f, -0.366f, -0.445f, -0.151f, 0.686f, -0.368f }; int ldb = 2; float B_expected[] = { 0.156354f, 0.078881f, -0.208608f, 0.143709f, 0.219569f, 0.211768f, -0.204943f, -0.415655f, 0.191227f, 0.0071854f, 0.136999f, 0.0773624f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1756) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1756) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.623f, -0.129f, -0.419f, -0.006f, 0.21f, -0.165f, 0.218f, 0.915f, 0.736f, 0.07f, 0.502f, -0.809f, 0.242f, -0.015f, 0.67f, -0.956f, 0.153f, 0.365f }; int lda = 3; float B[] = { -0.927f, 0.383f, -0.471f, 0.443f, -0.731f, -0.949f, -0.142f, -0.65f, 0.159f, -0.624f, -0.822f, 0.107f }; int ldb = 2; float B_expected[] = { 0.2398f, -0.2076f, 0.097f, -0.18f, 0.212478f, 0.297146f, 0.065877f, 0.255638f, 0.359717f, -0.0280276f, 0.426852f, -0.164392f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1757) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1757) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.628f, -0.771f, 0.827f, -0.979f, 0.395f, -0.166f, 0.88f, 0.958f }; int lda = 2; float B[] = { 0.297f, 0.49f, 0.425f, -0.386f, 0.672f, 0.992f, -0.077f, 0.761f, 0.393f, -0.605f, -0.273f, 0.725f }; int ldb = 3; float B_expected[] = { 0.177165f, -0.0328107f, -0.0662201f, -0.167954f, 0.366541f, -0.0872256f, -0.2721f, -0.389113f, -0.0674816f, 0.293174f, -0.249446f, -0.709453f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1758) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1758) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.876f, 0.752f, -0.148f, 0.972f, -0.508f, -0.752f, -0.861f, 0.074f }; int lda = 2; float B[] = { 0.878f, -0.987f, -0.896f, 0.519f, -0.355f, -0.117f, 0.329f, 0.068f, -0.644f, 0.344f, -0.187f, -0.343f }; int ldb = 3; float B_expected[] = { -0.1647f, 0.3839f, 0.2169f, -0.2453f, 0.1182f, -0.0004f, 0.292026f, 0.115771f, -0.111733f, -0.342122f, 0.0725176f, -0.0306312f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1759) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1759) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.072f, -0.966f, 0.648f, 0.43f, -0.623f, -0.221f, -0.622f, 0.977f }; int lda = 2; float B[] = { 0.0f, 0.028f, 0.857f, -0.171f, -0.933f, 0.159f, 0.315f, -0.297f, -0.864f, 0.519f, -0.601f, -0.119f }; int ldb = 3; float B_expected[] = { 0.0216306f, -0.0927642f, -0.225266f, -0.0253344f, 0.0408658f, 0.302549f, 0.158132f, -0.0117036f, -0.365472f, -0.0519459f, -0.143387f, -0.172603f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1760) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1760) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.903f, -0.972f, -0.812f, 0.605f, 0.085f, -0.025f, -0.443f, 0.518f }; int lda = 2; float B[] = { -0.725f, -0.451f, 0.779f, 0.969f, 0.25f, 0.021f, 0.029f, -0.382f, 0.022f, 0.957f, 0.704f, 0.832f }; int ldb = 3; float B_expected[] = { 0.26217f, 0.073525f, -0.332173f, -0.239574f, -0.097644f, -0.003892f, 0.0295f, 0.1175f, -0.1023f, -0.2849f, -0.2944f, -0.1792f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1761) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1761) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.322f, -0.981f, 0.193f, -0.604f, 0.87f, -0.384f, 0.463f, -0.502f }; int lda = 2; float B[] = { -0.447f, 0.21f, 0.928f, -0.496f, 0.889f, -0.354f, -0.258f, -0.149f, 0.98f, -0.958f, 0.106f, -0.579f }; int ldb = 2; float B_expected[] = { 0.0692355f, 0.14563f, -0.0874638f, -0.0532654f, -0.116915f, -0.289728f, -0.242902f, 0.136003f, -0.314257f, -0.318533f, -0.400862f, 0.357622f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1762) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1762) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.924f, -0.553f, 0.985f, -0.793f, 0.406f, 0.741f, -0.956f, 0.945f }; int lda = 2; float B[] = { 0.736f, -0.81f, 0.028f, 0.474f, 0.14f, -0.03f, -0.756f, 0.923f, -0.515f, 0.532f, -0.321f, 0.326f }; int ldb = 2; float B_expected[] = { -0.1398f, 0.3166f, 0.122042f, 0.0927314f, -0.039f, 0.023f, 0.135709f, -0.314263f, 0.1013f, -0.2111f, -0.0515973f, -0.29067f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1763) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1763) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.04f, -0.41f, -0.643f, 0.988f, 0.86f, -0.281f, -0.017f, 0.389f }; int lda = 2; float B[] = { 0.204f, 0.524f, -0.558f, -0.736f, 0.26f, -0.202f, -0.757f, 0.346f, 0.917f, 0.541f, -0.108f, -0.965f }; int ldb = 2; float B_expected[] = { 0.059601f, -0.396251f, 0.060088f, -0.096554f, -0.338942f, -0.0950055f, -0.073098f, -0.071831f, 0.208251f, -0.444353f, 0.106223f, -0.05488f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1764) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1764) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.375f, 0.153f, -0.343f, -0.742f, 0.563f, 0.473f, 0.451f, -0.433f }; int lda = 2; float B[] = { -0.804f, -0.016f, -0.715f, -0.902f, -0.89f, 0.155f, -0.408f, 0.419f, 0.078f, -0.691f, -0.717f, -0.637f }; int ldb = 2; float B_expected[] = { -0.0094443f, 0.0821961f, 0.3047f, 0.1991f, 0.347432f, -0.0186595f, 0.0805f, -0.1665f, -0.138523f, 0.381015f, 0.2788f, 0.1194f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1765) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1765) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.867f, -0.597f, -0.577f, 0.735f, 0.827f, -0.104f, -0.861f, -0.802f, -0.288f, 0.293f, 0.593f, 0.228f, -0.469f, 0.942f, 0.193f, 0.591f, 0.241f, 0.382f }; int lda = 3; float B[] = { -0.812f, -0.874f, -0.18f, -0.81f, 0.023f, 0.352f, 0.559f, 0.237f, -0.835f, 0.037f, -0.762f, 0.782f }; int ldb = 3; float B_expected[] = { -0.331628f, -0.278177f, -0.0214727f, -0.156013f, -0.0496067f, -0.0088131f, 0.119788f, -0.469291f, -0.0804714f, -0.263663f, -0.0824792f, -0.132356f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1766) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1766) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.258f, -0.812f, -0.858f, -0.107f, -0.151f, 0.785f, 0.717f, 0.992f, -0.649f, -0.242f, -0.454f, 0.916f, 0.86f, 0.834f, -0.244f, 0.391f, 0.818f, -0.714f }; int lda = 3; float B[] = { 0.163f, 0.441f, 0.54f, 0.679f, 0.071f, -0.76f, 0.345f, -0.956f, 0.654f, -0.217f, -0.892f, 0.106f }; int ldb = 3; float B_expected[] = { 0.296566f, -0.0905963f, -0.0393822f, -0.306541f, 0.0547f, 0.2351f, -0.0059345f, 0.0071855f, -0.402014f, -0.049978f, 0.257f, -0.121f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1767) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1767) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.525f, 0.182f, 0.851f, -0.348f, -0.046f, 0.839f, -0.045f, -0.149f, -0.992f, 0.588f, -0.01f, -0.409f, 0.527f, 0.263f, -0.509f, -0.026f, 0.284f, 0.507f }; int lda = 3; float B[] = { 0.909f, 0.216f, 0.38f, 0.198f, -0.412f, -0.102f, -0.456f, 0.079f, 0.504f, -0.782f, -0.88f, 0.079f }; int ldb = 3; float B_expected[] = { -0.149757f, 0.0672651f, 0.129501f, 0.054878f, -0.0469462f, 0.0277224f, 0.0550599f, -0.0598423f, 0.244521f, -0.217471f, 0.0955519f, -0.37895f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1768) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1768) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.893f, -0.758f, 0.145f, 0.623f, -0.018f, -0.733f, -0.144f, -0.192f, 0.53f, 0.773f, -0.771f, 0.36f, 0.932f, -0.771f, 0.997f, -0.671f, 0.574f, -0.771f }; int lda = 3; float B[] = { 0.592f, 0.985f, -0.62f, -0.095f, -0.344f, -0.607f, 0.759f, 0.085f, -0.609f, 0.068f, -0.084f, -0.575f }; int ldb = 3; float B_expected[] = { -0.2761f, -0.2363f, 0.280628f, -0.052484f, 0.306154f, -0.187624f, -0.2362f, 0.0504f, 0.200236f, -0.133908f, 0.0536278f, 0.0659354f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1769) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1769) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.503f, -0.057f, -0.581f, -0.77f, -0.907f, -0.843f, 0.56f, -0.554f, 0.054f, 0.988f, 0.868f, -0.627f, 0.645f, -0.246f, -0.958f, 0.66f, 0.956f, 0.99f }; int lda = 3; float B[] = { 0.282f, -0.442f, 0.564f, -0.691f, -0.743f, 0.113f, -0.395f, 0.312f, -0.167f, -0.568f, 0.508f, 0.912f }; int ldb = 2; float B_expected[] = { 0.180092f, 0.260648f, -0.045069f, -0.102868f, -0.0964434f, -0.432702f, -0.0404678f, 0.280779f, 0.254359f, 0.0411062f, -0.453454f, 0.0281672f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1770) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1770) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { -0.851f, 0.296f, -0.683f, -0.53f, 0.38f, -0.837f, 0.977f, 0.189f, -0.624f, -0.664f, 0.73f, -0.882f, 0.105f, -0.868f, 0.362f, -0.006f, -0.435f, 0.757f }; int lda = 3; float B[] = { -0.259f, -0.091f, 0.606f, -0.983f, -0.238f, 0.057f, 0.358f, 0.18f, -0.71f, 0.058f, 0.511f, 0.717f }; int ldb = 2; float B_expected[] = { 0.241746f, 0.119591f, -0.0907286f, 0.148899f, 0.141237f, -0.0716576f, -0.205866f, -0.078918f, 0.2072f, -0.0884f, -0.225f, -0.164f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1771) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1771) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.956f, 0.972f, 0.771f, 0.187f, 0.948f, 0.303f, -0.854f, 0.123f, 0.704f, 0.152f, 0.347f, 0.595f, -0.865f, 0.75f, -0.041f, -0.572f, 0.749f, 0.216f }; int lda = 3; float B[] = { -0.821f, -0.098f, 0.347f, -0.639f, 0.314f, -0.009f, -0.725f, 0.45f, 0.536f, 0.801f, 0.431f, 0.936f }; int ldb = 2; float B_expected[] = { 0.193607f, -0.29931f, 0.18163f, 0.255513f, 0.127098f, -0.0503344f, 0.101243f, 0.0097718f, -0.0060322f, -0.148016f, -0.251411f, -0.0777231f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1772) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1772) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {-0.3f, 0.1f}; float A[] = { 0.78f, -0.205f, 0.073f, -0.859f, 0.568f, -0.599f, -0.947f, -0.514f, 0.835f, 0.176f, 0.27f, -0.617f, 0.171f, -0.074f, 0.939f, -0.469f, -0.471f, 0.25f }; int lda = 3; float B[] = { -0.279f, 0.16f, -0.495f, 0.658f, 0.071f, 0.557f, -0.116f, 0.095f, -0.104f, 0.503f, -0.775f, -0.03f }; int ldb = 2; float B_expected[] = { 0.0677f, -0.0759f, 0.0827f, -0.2469f, -0.0068598f, -0.107386f, 0.243424f, 0.0129156f, 0.142748f, -0.254568f, 0.461939f, -0.154419f }; cblas_ctrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrmm(case 1773) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrmm(case 1773) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.463, 0.033, -0.929, 0.949, 0.864, 0.986, 0.393, 0.885 }; int lda = 2; double B[] = { -0.321, -0.852, -0.337, -0.175, 0.607, -0.613, 0.688, 0.973, -0.331, -0.35, 0.719, -0.553 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1774) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1774) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.608, -0.393, 0.921, 0.282, -0.857, -0.286, -0.31, -0.057 }; int lda = 2; double B[] = { -0.548, 0.728, 0.391, -0.506, 0.186, 0.97, -0.435, 0.375, -0.995, -0.496, 0.99, 0.186 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1775) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1775) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.253, 0.969, 0.654, -0.016, -0.774, -0.11, -0.101, -0.287 }; int lda = 2; double B[] = { -0.34, -0.268, -0.52, 0.021, -0.875, 0.98, 0.255, 0.564, -0.478, -0.818, -0.043, 0.224 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1776) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1776) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.64, -0.222, 0.922, 0.417, -0.724, 0.012, 0.418, 0.39 }; int lda = 2; double B[] = { 0.619, -0.024, -0.068, 0.219, 0.374, -0.937, 0.79, 0.166, -0.92, 0.753, -0.017, 0.076 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1777) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1777) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.57, 0.987, 0.116, -0.691, -0.603, -0.778, 0.14, -0.073 }; int lda = 2; double B[] = { 0.421, -0.055, 0.92, 0.664, 0.835, 0.861, -0.392, -0.897, -0.346, 0.516, -0.068, -0.156 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1778) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1778) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.754, 0.904, 0.089, 0.206, 0.974, -0.946, -0.55, -0.675 }; int lda = 2; double B[] = { -0.42, -0.372, 0.628, 0.148, 0.344, -0.924, -0.802, -0.307, 0.427, 0.116, 0.916, -0.384 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1779) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1779) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.152, -0.898, -0.024, 0.719, 0.992, -0.841, 0.901, 0.202 }; int lda = 2; double B[] = { 0.243, -0.811, 0.68, 0.118, 0.946, -0.632, 0.729, -0.942, 0.308, 0.507, -0.838, 0.594 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1780) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1780) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.119, -0.849, 0.425, -0.273, -0.918, 0.196, -0.871, -0.39 }; int lda = 2; double B[] = { 0.709, 0.33, -0.207, 0.012, -0.017, 0.787, -0.385, 0.739, -0.874, 0.188, -0.039, 0.692 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1781) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1781) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.837, -0.603, 0.755, -0.92, 0.892, -0.009, -0.741, 0.271, -0.325, -0.861, 0.902, -0.088, 0.091, 0.256, 0.209, -0.724, 0.28, -0.604 }; int lda = 3; double B[] = { 0.455, -0.215, -0.668, 0.917, -0.985, 0.477, 0.564, -0.524, -0.202, -0.53, -0.88, -0.688 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1782) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1782) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.991, 0.253, 0.813, 0.497, -0.268, 0.623, 0.82, -0.946, -0.883, 0.333, -0.265, -0.371, 0.131, -0.812, -0.365, 0.45, 0.929, -0.704 }; int lda = 3; double B[] = { 0.783, -0.756, 0.635, 0.56, 0.434, -0.831, -0.34, -0.531, -0.277, 0.874, 0.986, 0.157 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1783) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1783) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.265, -0.592, -0.721, -0.838, -0.952, 0.115, -0.34, -0.789, -0.265, -0.779, -0.676, 0.048, 0.78, -0.272, -0.651, 0.272, 0.8, -0.693 }; int lda = 3; double B[] = { -0.609, 0.028, -0.818, 0.289, -0.41, -0.25, -0.917, 0.463, 0.942, 0.692, -0.516, 0.378 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1784) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1784) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.962, 0.945, -0.58, -0.358, -0.769, 0.751, -0.068, -0.321, 0.938, 0.183, -0.17, 0.251, -0.248, -0.092, -0.818, 0.928, -0.059, -0.222 }; int lda = 3; double B[] = { 0.015, -0.852, -0.565, 0.16, -0.095, 0.073, 0.405, 0.509, 0.082, -0.478, -0.365, 0.824 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1785) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1785) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.616, 0.669, 0.323, -0.238, 0.153, 0.891, -0.4, 0.996, 0.689, -0.736, -0.259, -0.707, 0.993, 0.13, -0.829, -0.564, -0.09, 0.118 }; int lda = 3; double B[] = { 0.113, 0.724, 0.148, -0.309, -0.833, -0.791, 0.354, -0.528, 0.313, 0.421, 0.28, 0.371 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1786) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1786) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.957, -0.713, 0.976, 0.183, -0.145, -0.858, -0.497, -0.605, -0.742, 0.686, 0.272, 0.83, -0.606, -0.099, -0.807, 0.767, 0.254, 0.244 }; int lda = 3; double B[] = { -0.124, -0.19, 0.665, -0.74, 0.505, -0.194, 0.588, -0.421, -0.727, 0.308, -0.802, -0.278 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1787) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1787) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.649, 0.856, 0.969, 0.382, 0.963, 0.567, 0.599, 0.018, -0.924, 0.578, -0.531, -0.091, -0.454, -0.834, 0.97, -0.126, -0.859, 0.879 }; int lda = 3; double B[] = { 0.35, 0.824, -0.084, 0.662, -0.752, 0.872, 0.129, 0.969, -0.539, 0.907, 0.316, -0.675 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1788) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1788) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.315, -0.459, 0.327, -0.132, -0.283, 0.173, -0.356, -0.427, 0.508, 0.347, -0.804, -0.849, 0.779, 0.673, 0.019, -0.869, 0.999, -0.338 }; int lda = 3; double B[] = { 0.678, -0.171, 0.136, -0.268, -0.578, -0.431, 0.978, -0.749, 0.333, -0.757, 0.658, 0.456 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1789) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1789) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.532, -0.877, 0.308, -0.807, 0.013, 0.891, 0.077, -0.004 }; int lda = 2; double B[] = { 0.634, -0.969, 0.228, -0.097, 0.419, 0.903, 0.21, 0.313, -0.819, -0.028, 0.574, -0.762 }; int ldb = 3; double B_expected[] = { 0.004051, -0.1187101, 0.0148352, -0.0206365, 0.0847859, 0.0569023, 0.0786829, -0.0569289, 0.0212752, -0.007123, 0.0120979, 0.0898923 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1790) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1790) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.77, -0.037, -0.021, -0.831, -0.663, -0.241, -0.273, -0.023 }; int lda = 2; double B[] = { 0.354, -0.95, -0.944, -0.497, 0.741, 0.084, -0.3, 0.023, -0.056, 0.063, -0.117, -0.498 }; int ldb = 3; double B_expected[] = { 0.095, 0.0354, 0.0497, -0.0944, -0.0084, 0.0741, 0.0251224, -0.1096884, -0.0857901, -0.0449183, 0.1115535, -0.0062757 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1791) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1791) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.623, 0.379, 0.903, -0.378, -0.088, 0.24, -0.964, 0.558 }; int lda = 2; double B[] = { -0.137, 0.706, 0.457, 0.399, -0.69, -0.7, 0.34, 0.479, 0.539, -0.133, 0.876, -0.347 }; int ldb = 3; double B_expected[] = { 0.0452313, -0.0327103, -0.006569, -0.0451444, -0.0415366, 0.0701362, 0.0272036, -0.0595042, -0.0428974, -0.0445382, -0.0823316, -0.0650838 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1792) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1792) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.253, 0.657, 0.636, 0.827, -0.107, 0.353, 0.425, -0.365 }; int lda = 2; double B[] = { -0.402, -0.409, 0.421, -0.333, -0.771, -0.099, 0.697, -0.812, -0.653, 0.823, 0.994, 0.998 }; int ldb = 3; double B_expected[] = { 0.0076075, -0.0189943, 0.065157, 0.0200352, -0.0145096, -0.1229652, 0.0812, 0.0697, -0.0823, -0.0653, -0.0998, 0.0994 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1793) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1793) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.57, -0.805, -0.66, -0.421, 0.643, -0.534, -0.988, -0.581 }; int lda = 2; double B[] = { -0.279, -0.253, 0.976, -0.051, 0.294, 0.451, 0.187, -0.177, 0.31, -0.714, -0.104, -0.177 }; int ldb = 2; double B_expected[] = { -0.0368805, -0.0044635, 0.0530361, -0.1308418, 0.049374, 0.0195475, -0.0199226, 0.0142283, -0.015743, -0.075147, 0.0389342, -0.0182031 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1794) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1794) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.594, 0.273, 0.457, 0.295, 0.434, -0.227, -0.662, 0.623 }; int lda = 2; double B[] = { -0.582, -0.581, 0.259, -0.833, -0.864, -0.284, 0.965, -0.459, -0.539, -0.551, -0.969, 0.09 }; int ldb = 2; double B_expected[] = { 0.0581, -0.0582, 0.095304, -0.0125475, 0.0284, -0.0864, 0.0386128, 0.0525556, 0.0551, -0.0539, 0.0026781, -0.1328003 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1795) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1795) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.398, 0.323, 0.31, 0.718, 0.181, 0.665, 0.402, 0.317 }; int lda = 2; double B[] = { 0.812, -0.244, -0.415, 0.602, 0.901, -0.017, 0.786, -0.119, 0.448, -0.75, 0.851, 0.172 }; int ldb = 2; double B_expected[] = { -0.0053814, -0.0158898, -0.0110449, -0.0357664, -0.0811715, 0.0693191, -0.0201324, 0.0353695, -0.0510542, 0.0560868, -0.0338911, 0.0287578 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1796) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1796) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.265, -0.578, 0.218, -0.093, -0.172, 0.414, 0.448, 0.696 }; int lda = 2; double B[] = { 0.02, -0.254, 0.152, 0.304, 0.289, 0.247, 0.705, 0.419, -0.735, 0.788, -0.942, -0.71 }; int ldb = 2; double B_expected[] = { 0.0201864, 0.0081408, -0.0304, 0.0152, -0.0272777, 0.0481657, -0.0419, 0.0705, -0.0720826, -0.1006386, 0.071, -0.0942 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1797) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1797) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.971, 0.532, 0.175, 0.455, 0.191, 0.493, 0.882, -0.944, 0.358, 0.142, -0.065, 0.632, -0.319, -0.101, 0.578, 0.476, -0.773, 0.912 }; int lda = 3; double B[] = { 0.018, -0.131, 0.964, -0.467, -0.729, -0.794, 0.874, 0.361, 0.744, -0.958, 0.162, 0.555 }; int ldb = 3; double B_expected[] = { 0.0271781, 0.0720558, 0.0439416, 0.0960619, 0.0051086, 0.1287645, -0.117224, 0.0980019, 0.0171007, 0.0041098, 0.0281271, -0.0631386 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1798) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1798) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.506, -0.263, -0.994, 0.681, 0.889, -0.5, -0.912, 0.741, -0.329, -0.912, 0.332, -0.001, -0.484, 0.942, -0.728, -0.104, -0.216, 0.679 }; int lda = 3; double B[] = { 0.562, -0.354, 0.742, -0.177, -0.627, -0.762, 0.476, 0.758, 0.675, -0.504, -0.33, 0.186 }; int ldb = 3; double B_expected[] = { 0.0036678, -0.0993414, 0.0429357, 0.0533074, 0.0762, -0.0627, -0.2049005, -0.0052096, 0.0441918, 0.0565626, -0.0186, -0.033 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1799) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1799) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.341, -0.27, 0.001, 0.939, 0.714, 0.803, -0.508, -0.331, -0.563, -0.725, -0.902, -0.793, 0.461, 0.127, -0.597, -0.498, 0.394, -0.019 }; int lda = 3; double B[] = { 0.015, 0.803, 0.497, 0.667, 0.803, 0.775, 0.026, 0.908, 0.535, -0.111, 0.379, -0.036 }; int ldb = 3; double B_expected[] = { 0.0277873, 0.0211695, 0.1148735, 0.0461937, -0.0016476, 0.0271498, 0.0316648, 0.0236294, 0.0795252, -0.009434, -0.0200342, -0.0329361 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1800) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1800) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.132, 0.903, -0.235, -0.294, -0.09, 0.74, -0.707, -0.855, 0.632, 0.543, -0.558, -0.416, -0.99, -0.088, -0.189, -0.371, -0.844, -0.737 }; int lda = 3; double B[] = { -0.257, 0.159, 0.689, 0.785, 0.398, -0.128, -0.098, -0.735, -0.307, 0.032, 0.517, 0.049 }; int ldb = 3; double B_expected[] = { -0.0159, -0.0257, -0.0892322, 0.1006644, 0.0666778, 0.0827436, 0.0735, -0.0098, -0.0635435, -0.0866139, -0.0893123, 0.0619235 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1801) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1801) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.993, 0.709, 0.225, -0.704, -0.396, 0.656, -0.588, -0.085, -0.024, 0.264, -0.988, -0.67, 0.665, -0.165, -0.778, -0.43, 0.71, -0.35 }; int lda = 3; double B[] = { 0.321, 0.614, 0.058, 0.983, 0.153, -0.647, 0.342, -0.518, -0.071, -0.533, -0.424, 0.283 }; int ldb = 2; double B_expected[] = { -0.0861992, -0.0396692, -0.155091, -0.1119744, -0.0501124, -0.0006816, -0.0064866, 0.0580106, 0.035358, -0.023696, -0.034933, -0.020199 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1802) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1802) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.034, -0.02, -0.401, -0.892, 0.329, -0.799, -0.018, 0.564, 0.095, 0.965, -0.105, 0.756, -0.583, -0.706, -0.436, -0.145, 0.921, 0.416 }; int lda = 3; double B[] = { 0.972, 0.157, -0.029, 0.674, 0.914, 0.434, 0.132, -0.116, -0.907, 0.316, -0.423, 0.321 }; int ldb = 2; double B_expected[] = { -0.1120798, 0.1462649, -0.0862031, 0.0507283, -0.0427739, 0.1355272, 0.0194621, 0.0362973, -0.0316, -0.0907, -0.0321, -0.0423 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1803) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1803) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.195, -0.36, 0.834, -0.505, -0.87, -0.787, 0.997, 0.965, -0.046, -0.591, 0.082, 0.552, 0.414, -0.013, -0.048, -0.766, 0.728, 0.088 }; int lda = 3; double B[] = { -0.916, -0.162, -0.863, 0.67, -0.079, -0.27, -0.191, 0.995, 0.981, -0.25, -0.149, 0.248 }; int ldb = 2; double B_expected[] = { -0.036135, 0.01203, -0.018003, 0.0409485, -0.0386581, -0.100169, -0.1061706, 0.0215439, -0.0700412, 0.1548156, -0.0239871, 0.0582902 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1804) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1804) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.553, -0.63, -0.079, 0.351, 0.865, -0.062, 0.165, -0.634, -0.513, 0.216, -0.521, 0.349, 0.54, 0.545, -0.719, -0.306, 0.501, 0.757 }; int lda = 3; double B[] = { -0.311, 0.088, -0.328, 0.977, 0.659, -0.06, -0.276, 0.872, -0.734, -0.01, -0.668, -0.327 }; int ldb = 2; double B_expected[] = { -0.0088, -0.0311, -0.0977, -0.0328, 0.0176113, 0.0652681, -0.0679689, -0.0593015, -0.0346653, -0.1319958, 0.0012195, -0.1051678 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1805) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1805) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.993, -0.018, 0.162, -0.222, 0.188, 0.672, -0.675, -0.345 }; int lda = 2; double B[] = { 0.476, -0.009, 0.725, -0.925, -0.245, 0.308, 0.515, 0.1, -0.072, -0.757, 0.212, 0.571 }; int ldb = 3; double B_expected[] = { 0.000369, 0.47283, 0.905475, 0.736575, -0.301434, -0.248829, -0.214389, -0.303015, -0.497235, 0.632565, 0.316779, -0.448161 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1806) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1806) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.78, 0.346, -0.663, -0.86, -0.496, -0.154, 0.356, 0.228 }; int lda = 2; double B[] = { 0.578, 0.492, 0.775, 0.353, 0.198, -0.519, -0.52, -0.677, -0.438, 0.313, 0.941, -0.56 }; int ldb = 3; double B_expected[] = { -0.492, 0.578, -0.353, 0.775, 0.519, 0.198, 0.506116, -1.326334, -0.745461, -1.255405, 0.045623, 1.256066 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1807) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1807) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.455, 0.442, 0.062, 0.815, 0.03, 0.55, 0.592, -0.487 }; int lda = 2; double B[] = { -0.451, 0.01, 0.174, -0.775, 0.22, -0.644, 0.858, -0.004, 0.59, -0.395, -0.943, 0.824 }; int ldb = 3; double B_expected[] = { 0.268128, -0.177245, 0.765883, -0.46293, -0.15311, 0.240362, -0.415478, 0.509884, -0.05349, 0.541645, -0.028567, -0.959544 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1808) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1808) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.268, -0.886, -0.805, 0.875, 0.481, 0.095, -0.057, 0.605 }; int lda = 2; double B[] = { 0.708, -0.638, 0.408, -0.512, 0.175, 0.181, -0.919, -0.126, 0.708, -0.51, 0.212, 0.114 }; int ldb = 3; double B_expected[] = { 0.611301, 0.253991, 0.82457, 0.700098, -0.215694, 0.287802, 0.126, -0.919, 0.51, 0.708, -0.114, 0.212 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1809) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1809) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.881, 0.555, 0.774, 0.148, -0.915, 0.336, 0.103, 0.381 }; int lda = 2; double B[] = { 0.163, 0.963, -0.017, 0.921, 0.809, 0.846, 0.905, -0.43, 0.894, -0.371, -0.988, -0.487 }; int ldb = 2; double B_expected[] = { -0.757938, 0.678068, 0.834573, 0.523573, -0.296331, 1.182259, 1.435009, -0.526594, 0.823021, 0.581709, -0.365348, -1.229977 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1810) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1810) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.719, -0.513, 0.169, -0.524, 0.352, 0.823, -0.741, -0.355 }; int lda = 2; double B[] = { 0.717, 0.052, -0.777, 0.277, -0.962, 0.894, 0.905, -0.216, -0.707, 0.016, 0.481, 0.935 }; int ldb = 2; double B_expected[] = { -0.052, 0.717, 0.294787, -0.48182, -0.894, -0.962, -0.890414, 1.302138, -0.016, -0.707, -1.522493, 0.245304 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1811) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1811) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.501, -0.136, -0.502, 0.669, -0.498, -0.4, -0.518, 0.833 }; int lda = 2; double B[] = { -0.385, 0.88, 0.726, 0.911, 0.839, 0.573, -0.881, -0.517, -0.861, -0.278, 0.941, 0.822 }; int ldb = 2; double B_expected[] = { 0.554496, -0.067558, 1.076656, 0.382795, -1.2501, 0.4388, -1.001679, 0.025697, 1.298547, -0.316017, 1.209649, 0.197288 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1812) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1812) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.049, 0.641, -0.9, 0.246, -0.734, -0.686, 0.76, -0.869 }; int lda = 2; double B[] = { -0.37, 0.206, -0.731, -0.573, 0.638, -0.417, -0.29, -0.719, 0.107, -0.333, 0.556, 0.124 }; int ldb = 2; double B_expected[] = { -0.901526, 0.146942, 0.573, -0.731, -0.30144, 0.722126, 0.719, -0.29, 0.581376, -0.362896, -0.124, 0.556 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1813) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1813) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.553, 0.338, 0.229, -0.828, -0.594, -0.036, -0.335, -0.249, 0.083, -0.197, 0.995, 0.85, -0.988, 0.596, -0.254, 0.179, 0.441, -0.859 }; int lda = 3; double B[] = { -0.058, -0.225, 0.884, 0.348, 0.123, -0.151, 0.891, 0.711, -0.792, 0.552, 0.033, -0.178 }; int ldb = 3; double B_expected[] = { -0.800945, -0.261458, 0.051763, -0.001149, -0.039066, 0.183952, 0.330423, 0.081423, 0.315368, -0.292945, 0.050151, 0.167455 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1814) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1814) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.257, -0.565, -0.123, 0.129, 0.817, -0.516, -0.613, -0.42, -0.494, 0.122, -0.593, -0.972, -0.695, -0.968, 0.848, -0.2, -0.17, 0.436 }; int lda = 3; double B[] = { -0.274, 0.105, -0.899, -0.33, -0.318, -0.096, -0.237, 0.327, 0.046, 0.584, -0.459, -0.182 }; int ldb = 3; double B_expected[] = { -0.019041, -0.416263, 0.582168, -0.617114, 0.096, -0.318, 0.136304, -0.448413, -0.245778, 0.495091, 0.182, -0.459 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1815) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1815) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.127, 0.025, 0.036, 0.612, 0.773, 0.953, 0.074, -0.006, 0.373, 0.292, -0.052, -0.319, -0.878, -0.401, 0.486, -0.493, -0.316, 0.003 }; int lda = 3; double B[] = { 0.794, -0.666, -0.406, 0.622, -0.512, -0.761, 0.161, -0.137, -0.626, 0.408, 0.536, 0.66 }; int ldb = 3; double B_expected[] = { -0.064732, -0.117488, -0.306038, 0.092938, -1.247288, -0.774519, -0.013374, -0.023872, -0.325804, -0.101626, 0.135651, -0.759197 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1816) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1816) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.724, -0.423, 0.028, 0.043, 0.812, -0.568, 0.294, -0.375, -0.85, -0.119, -0.338, -0.415, 0.976, 0.507, 0.913, 0.697, 0.323, 0.206 }; int lda = 3; double B[] = { 0.427, 0.621, -0.212, -0.942, -0.08, 0.416, 0.465, -0.972, -0.529, -0.252, -0.19, 0.073 }; int ldb = 3; double B_expected[] = { -0.621, 0.427, 0.599301, -0.319337, -0.093325, -0.198531, 0.972, 0.465, 0.363393, -0.02779, 0.97279, -0.887585 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1817) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1817) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.501, -0.632, 0.663, 0.151, -0.523, -0.71, -0.811, 0.8, -0.06, 0.994, -0.962, 0.827, -0.543, 0.719, -0.264, -0.942, 0.365, 0.051 }; int lda = 3; double B[] = { -0.974, 0.094, -0.533, 0.633, -0.982, -0.383, -0.297, 0.734, -0.092, -0.15, 0.215, -0.232 }; int ldb = 2; double B_expected[] = { -0.675337, -0.115274, 0.406006, -0.122575, -0.952024, -0.156194, -0.514956, 0.9092, 0.050058, -0.04123, 0.095645, 0.066643 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1818) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1818) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { 0.669, 0.332, -0.661, 0.611, 0.279, -0.133, -0.033, 0.06, 0.788, -0.407, -0.644, 0.958, 0.247, -0.161, 0.125, -0.184, 0.041, -0.045 }; int lda = 3; double B[] = { -0.603, 0.88, 0.668, -0.152, 0.082, 0.033, 0.733, -0.557, 0.722, 0.024, -0.754, 0.458 }; int ldb = 2; double B_expected[] = { -0.996161, -0.429256, 0.185867, 0.350415, -0.168848, 0.167834, 0.638486, 0.554478, -0.024, 0.722, -0.458, -0.754 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1819) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1819) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.91, 0.05, -0.944, 0.748, -0.712, 0.619, -0.28, -0.906, 0.314, 0.943, -0.719, -0.983, 0.474, -0.115, -0.859, 0.837, 0.364, -0.164 }; int lda = 3; double B[] = { -0.278, -0.34, 0.584, 0.43, -0.794, -0.465, -0.65, 0.461, 0.24, 0.003, 0.948, -0.778 }; int ldb = 2; double B_expected[] = { -0.3233, 0.23598, 0.4205, -0.50994, -1.131636, -0.679699, 0.085048, 0.000967, -0.008447, 1.102325, 1.765785, 0.337213 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1820) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1820) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 1}; double A[] = { -0.39, -0.916, 0.257, -0.082, -0.802, 0.215, -0.155, 0.911, -0.099, 0.41, 0.057, 0.105, 0.94, -0.17, -0.714, -0.861, 0.292, -0.231 }; int lda = 3; double B[] = { -0.453, -0.542, 0.135, 0.518, -0.199, 0.776, 0.784, -0.28, -0.499, -0.377, -0.795, -0.965 }; int ldb = 2; double B_expected[] = { 0.542, -0.453, -0.518, 0.135, -0.59956, -0.270977, 0.135804, 0.776219, -0.220206, -0.182087, 1.507741, -0.776612 }; cblas_ztrmm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrmm(case 1821) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrmm(case 1821) imag"); }; }; }; } gsl-1.16/cblas/zsyrk.c0000664000252300025230000000065612171574312011573 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_zsyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc) { #define BASE double #include "source_syrk_c.h" #undef BASE } gsl-1.16/cblas/dsyrk.c0000664000252300025230000000066412171574312011544 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dsyrk (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double beta, double *C, const int ldc) { #define BASE double #include "source_syrk_r.h" #undef BASE } gsl-1.16/cblas/drot.c0000664000252300025230000000040512171574312011351 00000000000000#include #include #include "cblas.h" void cblas_drot (const int N, double *X, const int incX, double *Y, const int incY, const double c, const double s) { #define BASE double #include "source_rot.h" #undef BASE } gsl-1.16/cblas/dsyr.c0000664000252300025230000000054012171574312011362 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dsyr (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *A, const int lda) { #define BASE double #include "source_syr.h" #undef BASE } gsl-1.16/cblas/error_cblas_l3.h0000664000252300025230000001537012171574312013310 00000000000000/* cblas/error_cblas_l3.h * * Copyright (C) 2010 José Luis García Pallero * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __ERROR_CBLAS_L3_H__ #define __ERROR_CBLAS_L3_H__ #include #include "error_cblas.h" /* * ============================================================================= * Prototypes for level 3 BLAS * ============================================================================= */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ /* cblas_xgemm() */ #define CBLAS_ERROR_GEMM(pos,Order,TransA,TransB,M,N,K,alpha,A,lda,B,ldb,beta,C,ldc) \ { \ enum CBLAS_TRANSPOSE __transF=CblasNoTrans,__transG=CblasNoTrans; \ if((Order)==CblasRowMajor) { \ __transF = ((TransA)!=CblasConjTrans) ? (TransA) : CblasTrans; \ __transG = ((TransB)!=CblasConjTrans) ? (TransB) : CblasTrans; \ } else { \ __transF = ((TransB)!=CblasConjTrans) ? (TransB) : CblasTrans; \ __transG = ((TransA)!=CblasConjTrans) ? (TransA) : CblasTrans; \ } \ CHECK_ORDER(pos,1,Order); \ CHECK_TRANSPOSE(pos,2,TransA); \ CHECK_TRANSPOSE(pos,3,TransB); \ CHECK_DIM(pos,4,M); \ CHECK_DIM(pos,5,N); \ CHECK_DIM(pos,6,K); \ if((Order)==CblasRowMajor) { \ if(__transF==CblasNoTrans) { \ if((lda) #include #include #include #include "tests.h" void test_trsm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.279f, 0.058f, 0.437f, 0.462f }; int lda = 2; float B[] = { 0.578f, 0.473f, -0.34f, -0.128f, 0.503f, 0.2f }; int ldb = 3; float B_expected[] = { 0.638784f, 0.440702f, -0.392589f, 0.0831169f, -0.326623f, -0.12987f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1822)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.735f, -0.861f, 0.772f, -0.242f }; int lda = 2; float B[] = { -0.793f, -0.162f, -0.844f, 0.143f, -0.379f, -0.46f }; int ldb = 3; float B_expected[] = { 0.200963f, 0.146496f, 0.372018f, -0.0429f, 0.1137f, 0.138f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1823)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.498f, 0.777f, -0.913f, 0.779f }; int lda = 2; float B[] = { -0.831f, -0.663f, -0.098f, -0.894f, -0.059f, 0.468f }; int ldb = 3; float B_expected[] = { -0.500602f, -0.399398f, -0.0590361f, -0.242426f, -0.445379f, -0.249422f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1824)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.543f, 0.095f, -0.933f, -0.669f }; int lda = 2; float B[] = { 0.068f, 0.715f, 0.012f, -0.785f, 0.378f, 0.251f }; int ldb = 3; float B_expected[] = { -0.0204f, -0.2145f, -0.0036f, 0.216467f, -0.313528f, -0.0786588f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1825)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.75f, 0.777f, -0.025f, 0.572f }; int lda = 2; float B[] = { 0.03f, 0.392f, -0.056f, 0.399f, -0.489f, -0.167f }; int ldb = 2; float B_expected[] = { -0.0188531f, -0.205594f, 0.0154245f, -0.209266f, 0.19852f, 0.0875874f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1826)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.899f, -0.447f, 0.338f, -0.74f }; int lda = 2; float B[] = { 0.964f, -0.104f, -0.199f, 0.503f, -0.386f, -0.764f }; int ldb = 2; float B_expected[] = { -0.299746f, 0.0312f, 0.110704f, -0.1509f, 0.0383304f, 0.2292f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1827)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.279f, 0.73f, -0.366f, 0.583f }; int lda = 2; float B[] = { -0.572f, 0.75f, 0.603f, 0.697f, 0.908f, 0.119f }; int ldb = 2; float B_expected[] = { 0.615054f, -1.15607f, -0.648387f, 0.453212f, -0.976344f, 1.16129f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1828)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.581f, -0.911f, 0.438f, 0.731f }; int lda = 2; float B[] = { 0.519f, 0.831f, 0.822f, 0.182f, 0.571f, -0.357f }; int ldb = 2; float B_expected[] = { -0.1557f, -0.391143f, -0.2466f, -0.279253f, -0.1713f, -0.0489543f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1829)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.065f, 0.099f, 0.48f, 0.746f, -0.739f, 0.695f, 0.197f, 0.621f, 0.063f }; int lda = 3; float B[] = { 0.01f, -0.612f, 0.756f, -0.225f, 0.546f, 0.432f }; int ldb = 3; float B_expected[] = { -0.0461538f, -0.254627f, -0.439373f, 1.03846f, 0.360768f, -13.9491f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1830)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.86f, -0.653f, 0.87f, -0.037f, 0.788f, 0.015f, 0.028f, -0.804f, -0.357f }; int lda = 3; float B[] = { -0.546f, 0.892f, -0.085f, -0.541f, -0.207f, 0.765f }; int ldb = 3; float B_expected[] = { 0.1638f, -0.160639f, -0.114596f, 0.1623f, 0.168082f, -0.373222f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1831)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.872f, -0.35f, 0.518f, -0.8f, -0.13f, -0.832f, 0.426f, 0.195f, -0.735f }; int lda = 3; float B[] = { 0.773f, 0.069f, 0.45f, 0.189f, 0.504f, 0.996f }; int ldb = 3; float B_expected[] = { 0.0431742f, 0.434741f, 0.183673f, 1.36286f, 1.77287f, 0.406531f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1832)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.053f, -0.132f, -0.515f, -0.411f, 0.134f, 0.657f, 0.072f, -0.007f, -0.34f }; int lda = 3; float B[] = { 0.494f, 0.072f, -0.882f, -0.112f, 0.904f, 0.755f }; int ldb = 3; float B_expected[] = { -0.175368f, -0.0197478f, 0.2646f, -0.0622068f, -0.272786f, -0.2265f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1833)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { -0.154f, -0.54f, 0.146f, -0.106f, -0.478f, 0.938f, -0.731f, 0.25f, -0.4f }; int lda = 3; float B[] = { -0.88f, -0.555f, 0.642f, 0.751f, -0.859f, -0.409f }; int ldb = 2; float B_expected[] = { -1.71429f, -1.08117f, 0.783084f, 0.711096f, 2.97803f, 2.11352f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1834)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.249f, -0.451f, -0.781f, 0.157f, -0.02f, 0.57f, 0.309f, -0.159f, 0.266f }; int lda = 3; float B[] = { -0.546f, 0.839f, 0.392f, -0.445f, -0.818f, 0.953f }; int ldb = 2; float B_expected[] = { 0.1638f, -0.2517f, -0.143317f, 0.173017f, 0.171998f, -0.180615f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1835)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.299f, 0.626f, -0.471f, 0.208f, -0.842f, 0.674f, 0.03f, 0.628f, 0.534f }; int lda = 3; float B[] = { 0.831f, -0.997f, -0.366f, 0.307f, -0.426f, 0.806f }; int ldb = 2; float B_expected[] = { -0.584851f, 0.816906f, 0.0611706f, -0.25308f, 0.239326f, -0.452809f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1836)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha = -0.3f; float A[] = { 0.301f, 0.168f, 0.934f, 0.107f, 0.068f, 0.384f, -0.201f, 0.116f, -0.436f }; int lda = 3; float B[] = { 0.773f, -0.304f, -0.402f, 0.642f, -0.102f, -0.095f }; int ldb = 2; float B_expected[] = { -0.278767f, 0.0987764f, 0.10885f, -0.203544f, 0.0306f, 0.0285f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1837)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { -0.616f, 0.304f, 0.403f, 0.739f }; int lda = 2; float B[] = { 0.273f, -0.609f, 0.858f, 0.993f, -0.738f, -0.353f }; int ldb = 3; float B_expected[] = { -0.443182f, 0.988636f, -1.39286f, 1.52602f, -1.40534f, 0.0953025f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1838)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.811f, 0.257f, 0.98f, -0.956f }; int lda = 2; float B[] = { 0.996f, 0.329f, 0.273f, -0.744f, 0.662f, -0.31f }; int ldb = 3; float B_expected[] = { 0.996f, 0.329f, 0.273f, -0.999972f, 0.577447f, -0.380161f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1839)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.845f, 0.064f, 0.29f, -0.291f }; int lda = 2; float B[] = { 0.878f, 0.156f, 0.217f, 0.082f, -0.869f, 0.595f }; int ldb = 3; float B_expected[] = { 1.13576f, -0.840253f, 0.958527f, -0.281787f, 2.98625f, -2.04467f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1840)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.836f, 0.359f, -0.415f, 0.154f }; int lda = 2; float B[] = { 0.652f, 0.614f, 0.922f, -0.063f, 0.313f, -0.316f }; int ldb = 3; float B_expected[] = { 0.625855f, 0.743895f, 0.79086f, -0.063f, 0.313f, -0.316f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1841)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.94f, -0.656f, 0.645f, -0.634f }; int lda = 2; float B[] = { -0.948f, -0.596f, -0.799f, 0.133f, -0.843f, -0.179f }; int ldb = 2; float B_expected[] = { -1.00851f, -0.0859454f, -0.85f, -1.07453f, -0.896809f, -0.630034f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1842)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { -0.332f, 0.705f, -0.792f, -0.033f }; int lda = 2; float B[] = { 0.561f, 0.883f, -0.136f, 0.203f, -0.531f, 0.733f }; int ldb = 2; float B_expected[] = { 0.561f, 1.32731f, -0.136f, 0.095288f, -0.531f, 0.312448f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1843)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.991f, 0.614f, 0.108f, -0.125f }; int lda = 2; float B[] = { -0.723f, 0.885f, 0.336f, 0.584f, 0.742f, -0.438f }; int ldb = 2; float B_expected[] = { 3.65703f, -7.08f, 3.23371f, -4.672f, -1.42226f, 3.504f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1844)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { -0.626f, 0.912f, -0.003f, 0.761f }; int lda = 2; float B[] = { 0.736f, -0.383f, 0.0f, -0.238f, 0.013f, 0.473f }; int ldb = 2; float B_expected[] = { 1.0853f, -0.383f, 0.217056f, -0.238f, -0.418376f, 0.473f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1845)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { -0.416f, 0.599f, -0.705f, 0.326f, 0.184f, 0.079f, -0.173f, 0.125f, 0.567f }; int lda = 3; float B[] = { 0.466f, 0.907f, -0.85f, -0.342f, -0.058f, -0.379f }; int ldb = 3; float B_expected[] = { 9.44495f, 5.57299f, -1.49912f, 1.91427f, -0.0282283f, -0.66843f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1846)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { -0.75f, 0.856f, 0.773f, -0.241f, -0.357f, -0.683f, -0.718f, 0.69f, -0.486f }; int lda = 3; float B[] = { -0.532f, -0.817f, 0.85f, -0.135f, 0.797f, 0.981f }; int ldb = 3; float B_expected[] = { -0.986649f, -0.23645f, 0.85f, -2.14908f, 1.46702f, 0.981f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1847)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.765f, -0.408f, 0.404f, 0.764f, 0.157f, -0.741f, 0.844f, 0.206f, -0.215f }; int lda = 3; float B[] = { -0.859f, 0.563f, -0.61f, 0.2f, 0.816f, -0.692f }; int ldb = 3; float B_expected[] = { -1.12288f, 9.05017f, 7.1006f, 0.261438f, 3.92523f, 8.00582f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1848)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.354f, -0.931f, 0.18f, 0.391f, 0.01f, 0.429f, 0.685f, 0.332f, -0.643f }; int lda = 3; float B[] = { -0.645f, 0.847f, 0.014f, 0.83f, 0.761f, 0.187f }; int ldb = 3; float B_expected[] = { -0.645f, 1.09919f, 0.0908923f, 0.83f, 0.43647f, -0.526458f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1849)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.569f, 0.85f, 0.642f, -0.051f, 0.724f, 0.201f, 0.87f, -0.638f, 0.008f }; int lda = 3; float B[] = { -0.923f, 0.27f, -0.319f, -0.856f, -0.533f, 0.183f }; int ldb = 2; float B_expected[] = { 94.9456f, -32.8005f, -59.1516f, 18.9755f, -66.625f, 22.875f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1850)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.244f, 0.931f, 0.857f, -0.295f, 0.551f, 0.832f, 0.744f, -0.326f, 0.111f }; int lda = 3; float B[] = { -0.478f, -0.252f, -0.155f, 0.419f, -0.192f, 0.291f }; int ldb = 2; float B_expected[] = { -0.399342f, -0.316914f, -0.217592f, 0.513866f, -0.192f, 0.291f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1851)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.36f, 0.356f, -0.858f, 0.879f, 0.641f, 0.989f, 0.998f, -0.005f, 0.64f }; int lda = 3; float B[] = { -0.634f, -0.529f, -0.344f, 0.375f, -0.168f, 0.465f }; int ldb = 2; float B_expected[] = { -1.76111f, -1.46944f, 0.441428f, 1.40113f, -3.30563f, -3.40859f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1852)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha = 1.0f; float A[] = { 0.389f, 0.997f, 0.909f, -0.598f, -0.43f, -0.345f, -0.897f, 0.119f, -0.285f }; int lda = 3; float B[] = { 0.779f, -0.129f, 0.016f, 0.599f, -0.668f, -0.638f }; int ldb = 2; float B_expected[] = { 0.779f, -0.129f, -0.760663f, 0.727613f, -1.63854f, -0.269713f }; cblas_strsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], flteps, "strsm(case 1853)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.876, -0.503, -0.062, -0.987 }; int lda = 2; double B[] = { 0.219, -0.986, -0.0, -0.605, 0.289, 0.641 }; int ldb = 3; double B_expected[] = { 0.601967125138, -1.29370052694, -0.372910623494, -0.612968591692, 0.292806484296, 0.649442755826 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1854)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.266, -0.505, -0.55, 0.524 }; int lda = 2; double B[] = { 0.1, -0.105, 0.757, 0.522, -0.269, -0.142 }; int ldb = 3; double B_expected[] = { -0.36361, 0.240845, -0.68529, -0.522, 0.269, 0.142 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1855)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.101, 0.871, 0.202, 0.169 }; int lda = 2; double B[] = { 0.018, 0.292, -0.573, 0.866, 0.749, 0.99 }; int ldb = 3; double B_expected[] = { -0.178217821782, -2.89108910891, 5.67326732673, -4.91124260355, -0.976331360947, -12.6390532544 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1856)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.387, -0.739, -0.599, 0.114 }; int lda = 2; double B[] = { 0.7, 0.473, 0.86, -0.557, 0.283, 0.62 }; int ldb = 3; double B_expected[] = { -0.7, -0.473, -0.86, 0.1377, -0.566327, -1.13514 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1857)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.683, -0.009, -0.451, -0.185 }; int lda = 2; double B[] = { 0.552, 0.083, -0.976, 0.22, -0.895, -0.301 }; int ldb = 2; double B_expected[] = { 0.511946499941, 0.448648648649, -2.21423766373, 1.18918918919, -0.236033397966, -1.62702702703 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1858)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.141, 0.944, 0.529, 0.636 }; int lda = 2; double B[] = { 0.178, -0.22, -0.645, -0.585, -0.342, -0.594 }; int ldb = 2; double B_expected[] = { -0.29438, 0.22, 0.335535, 0.585, 0.027774, 0.594 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1859)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.541, 0.584, -0.394, 0.371 }; int lda = 2; double B[] = { 0.668, 0.848, -0.816, -0.925, -0.145, 0.746 }; int ldb = 2; double B_expected[] = { -1.23475046211, -0.342063962613, 1.50831792976, 0.118982018923, 0.268022181146, -2.43268181614 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1860)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.836, -0.024, 0.226, 0.416 }; int lda = 2; double B[] = { -0.172, -0.601, 0.542, 0.25, 0.746, 0.55 }; int ldb = 2; double B_expected[] = { 0.172, 0.605128, -0.542, -0.263008, -0.746, -0.567904 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1861)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.544, 0.721, 0.623, 0.392, -0.808, -0.022, -0.665, -0.616, -0.735 }; int lda = 3; double B[] = { -0.526, -0.486, -0.716, 0.361, 0.365, -0.492 }; int ldb = 3; double B_expected[] = { 0.966911764706, 0.261316067268, -0.162398536147, -0.663602941176, -0.140417971025, -1.22766726121 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1862)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.907, 0.558, -0.233, 0.073, -0.734, -0.058, -0.115, 0.513, 0.503 }; int lda = 3; double B[] = { -0.606, -0.124, 0.641, -0.074, -0.053, -0.734 }; int ldb = 3; double B_expected[] = { 0.606, -0.214148, -0.512222584, 0.074, 0.011708, 0.751921064 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1863)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.9, 0.063, -0.652, -0.841, 0.251, -0.8, 0.365, 0.809, 0.336 }; int lda = 3; double B[] = { -0.584, -0.058, -0.964, -0.214, -0.632, -0.611 }; int ldb = 3; double B_expected[] = { -8.93978245747, -9.01617340163, 2.86904761905, -3.62368367799, -3.34313934737, 1.81845238095 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1864)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.934, -0.608, 0.49, 0.351, -0.301, 0.602, 0.873, 0.031, -0.2 }; int lda = 3; double B[] = { -0.541, -0.729, -0.382, 0.741, 0.546, -0.833 }; int ldb = 3; double B_expected[] = { -0.044208458, 0.717158, 0.382, -1.267499127, -0.571823, 0.833 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1865)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.339, 0.049, 0.734, -0.182, 0.427, 0.193, -0.959, -0.679, 0.269 }; int lda = 3; double B[] = { 0.824, 0.907, 0.632, -0.348, -0.646, 0.741 }; int ldb = 2; double B_expected[] = { 2.43067846608, 2.67551622419, -0.444066789635, 1.95537225481, 9.9460940476, 11.7193971004 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1866)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.766, -0.422, -0.518, 0.517, 0.669, 0.337, -0.579, 0.885, -0.677 }; int lda = 3; double B[] = { 0.211, -0.911, -0.685, -0.777, -0.919, 0.282 }; int ldb = 2; double B_expected[] = { -0.211, 0.911, 0.794087, 0.306013, 0.094064005, -0.025352505 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1867)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.686, -0.256, 0.028, 0.371, 0.469, 0.115, 0.284, 0.139, 0.677 }; int lda = 3; double B[] = { -0.877, -0.818, 0.191, 0.468, 0.889, -0.002 }; int ldb = 2; double B_expected[] = { -1.30020532939, -0.819646768394, -0.0852626506631, -0.998592183627, -1.31314623338, 0.00295420974889 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1868)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.819, -0.523, 0.042, 0.545, -0.292, 0.283, 0.224, 0.247, -0.325 }; int lda = 3; double B[] = { 0.153, -0.272, -0.226, 0.987, -0.216, -0.218 }; int ldb = 2; double B_expected[] = { -0.075843944, -0.285622962, 0.164872, -1.048694, 0.216, 0.218 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1869)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.164, 0.486, 0.891, -0.508 }; int lda = 2; double B[] = { 0.368, 0.761, -0.349, 0.324, 0.241, 0.561 }; int ldb = 3; double B_expected[] = { -2.24390243902, -4.64024390244, 2.12804878049, -1.50893028615, -3.96487900903, 3.14021989629 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1870)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.019, -0.382, -0.579, 0.76 }; int lda = 2; double B[] = { -0.596, -0.074, 0.576, 0.861, -0.44, 0.842 }; int ldb = 3; double B_expected[] = { 0.596, 0.074, -0.576, -0.633328, 0.468268, -1.062032 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1871)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.449, -0.367, -0.268, 0.1 }; int lda = 2; double B[] = { 0.58, -0.203, 0.053, 0.792, 0.355, -0.685 }; int ldb = 3; double B_expected[] = { -6.01906458797, -1.66681514477, 3.9706013363, -7.92, -3.55, 6.85 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1872)"); } }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.159, 0.333, 0.515, 0.715 }; int lda = 2; double B[] = { -0.631, 0.472, 0.796, 0.278, 0.802, 0.298 }; int ldb = 3; double B_expected[] = { 0.77417, -0.05897, -0.64253, -0.278, -0.802, -0.298 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1873)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.056, -0.493, 0.619, -0.028 }; int lda = 2; double B[] = { -0.32, -0.217, 0.301, 0.729, -0.847, -0.577 }; int ldb = 2; double B_expected[] = { 5.71428571429, 118.576530612, -5.375, -92.7901785714, 15.125, 313.763392857 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1874)"); } }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.595, 0.64, 0.109, 0.969 }; int lda = 2; double B[] = { 0.186, -0.435, -0.747, 0.212, 0.257, 0.804 }; int ldb = 2; double B_expected[] = { -0.186, 0.455274, 0.747, -0.293423, -0.257, -0.775987 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1875)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.484, 0.769, 0.91, 0.817 }; int lda = 2; double B[] = { -0.668, 0.544, 0.753, 0.796, -0.74, -0.091 }; int ldb = 2; double B_expected[] = { 2.4380974539, -0.665850673195, -0.0077814418807, -0.97429620563, 1.35195534965, 0.111383108935 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1876)"); } }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.725, 0.73, -0.095, 0.123 }; int lda = 2; double B[] = { -0.26, 0.579, 0.393, -0.18, 0.358, 0.839 }; int ldb = 2; double B_expected[] = { 0.68267, -0.579, -0.5244, 0.18, 0.25447, -0.839 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1877)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.009, 0.237, -0.563, 0.993, 0.508, 0.771, 0.745, 0.233, 0.255 }; int lda = 3; double B[] = { -0.328, -0.482, 0.083, -0.125, -0.712, -0.757 }; int ldb = 3; double B_expected[] = { 21.9110553583, 1.44282075035, -0.325490196078, -281.330646047, -3.10396016674, 2.96862745098 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1878)"); } }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.484, -0.131, 0.563, -0.095, 0.012, -0.988, -0.722, 0.738, 0.05 }; int lda = 3; double B[] = { -0.069, -0.137, -0.45, -0.24, 0.221, -0.509 }; int ldb = 3; double B_expected[] = { -0.1081604, 0.5816, 0.45, -0.009639148, 0.281892, 0.509 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1879)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.521, 0.487, -0.961, 0.903, -0.045, 0.059, -0.61, -0.328, 0.883 }; int lda = 3; double B[] = { -0.772, 0.079, -0.227, 0.998, 0.302, -0.099 }; int ldb = 3; double B_expected[] = { 1.48176583493, 31.4896566432, 12.9778986844, -1.91554702495, -31.7275325229, -12.9967319963 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1880)"); } }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.642, 0.511, 0.762, 0.804, -0.28, -0.318, 0.382, -0.165, -0.007 }; int lda = 3; double B[] = { 0.987, 0.436, -0.783, 0.175, -0.973, -0.319 }; int ldb = 3; double B_expected[] = { -0.987, 0.357548, 1.21902942, -0.175, 1.1137, 0.5696105 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1881)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.995, 0.625, 0.16, -0.127, -0.722, -0.355, -0.14, -0.146, -0.756 }; int lda = 3; double B[] = { 0.676, 0.038, 0.543, 0.296, -0.44, 0.751 }; int ldb = 2; double B_expected[] = { 0.650272121575, -0.128270318012, 0.869769452872, 0.209093640534, -0.582010582011, 0.993386243386 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1882)"); } }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { -0.619, 0.548, 0.064, -0.483, -0.508, -0.819, 0.237, 0.852, -0.512 }; int lda = 3; double B[] = { -0.169, 0.429, -0.789, 0.79, 0.479, 0.817 }; int ldb = 2; double B_expected[] = { 0.860726164, -0.280732428, 1.197108, -0.093916, -0.479, -0.817 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1883)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.794, -0.098, 0.442, -0.991, 0.049, 0.079, -0.8, -0.762, 0.395 }; int lda = 3; double B[] = { 0.496, -0.734, -0.679, -0.697, 0.426, 0.094 }; int ldb = 2; double B_expected[] = { -0.624685138539, 0.92443324937, 12.6077725801, 16.0733562947, -2.90102076605, -4.48707504683 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1884)"); } }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha = -1; double A[] = { 0.848, -0.765, 0.528, -0.693, 0.252, -0.135, -0.507, 0.954, -0.056 }; int lda = 3; double B[] = { 0.791, -0.787, 0.636, 0.271, -0.905, -0.974 }; int ldb = 2; double B_expected[] = { -0.791, 0.787, -1.241115, 0.331055, 1.155097475, 0.603156425 }; cblas_dtrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[i], B_expected[i], dbleps, "dtrsm(case 1885)"); } }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.491f, -0.317f, -0.14f, -0.739f, -0.969f, -0.518f, 0.702f, -0.287f }; int lda = 2; float B[] = { -0.962f, -0.38f, 0.656f, 0.587f, -0.195f, -0.862f, -0.679f, 0.598f, 0.919f, 0.714f, -0.513f, 0.726f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1886) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1886) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.6f, 0.338f, -0.048f, -0.926f, 0.236f, 0.362f, 0.605f, 0.562f }; int lda = 2; float B[] = { -0.009f, 0.371f, -0.989f, 0.728f, -0.062f, 0.113f, 0.714f, 0.604f, -0.293f, 0.859f, -0.875f, 0.216f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1887) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1887) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.889f, -0.479f, -0.526f, 0.077f, -0.704f, 0.242f, 0.458f, -0.553f }; int lda = 2; float B[] = { -0.554f, 0.966f, 0.076f, 0.42f, 0.85f, 0.369f, 0.124f, -0.476f, -0.007f, 0.428f, 0.452f, -0.214f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1888) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1888) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.947f, 0.444f, 0.079f, -0.597f, 0.978f, -0.64f, 0.82f, 0.808f }; int lda = 2; float B[] = { -0.899f, -0.964f, -0.714f, 0.422f, -0.084f, -0.78f, -0.609f, -0.595f, 0.748f, -0.926f, 0.242f, -0.474f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1889) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1889) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.547f, -0.763f, -0.805f, 0.498f, 0.786f, -0.082f, 0.922f, 0.538f }; int lda = 2; float B[] = { -0.074f, -0.617f, 0.359f, -0.383f, -0.172f, 0.911f, -0.934f, 0.066f, -0.67f, 0.895f, 0.92f, 0.255f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1890) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1890) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.096f, -0.362f, -0.311f, -0.347f, 0.161f, -0.517f, -0.393f, 0.572f }; int lda = 2; float B[] = { 0.742f, -0.419f, -0.391f, 0.846f, -0.255f, -0.364f, 0.006f, -0.496f, 0.118f, -0.593f, 0.773f, 0.053f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1891) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1891) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.669f, 0.845f, 0.657f, -0.43f, 0.19f, 0.206f, -0.305f, 0.761f }; int lda = 2; float B[] = { -0.457f, 0.857f, -0.203f, 0.942f, 0.462f, 0.52f, 0.521f, -0.609f, 0.069f, 0.005f, -0.419f, 0.806f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1892) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1892) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.269f, -0.87f, -0.592f, 0.813f, 0.977f, -0.848f, 0.282f, -0.311f }; int lda = 2; float B[] = { -0.654f, 0.857f, -0.834f, 0.796f, 0.414f, -0.499f, 0.961f, 0.643f, 0.117f, 0.758f, -0.189f, -0.768f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1893) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1893) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.361f, -0.818f, 0.039f, 0.275f, 0.541f, -0.615f, 0.025f, -0.691f, -0.697f, 0.976f, 0.746f, 0.607f, 0.651f, -0.918f, -0.702f, 0.37f, -0.668f, -0.114f }; int lda = 3; float B[] = { 0.218f, 0.75f, 0.575f, -0.702f, 0.7f, -0.41f, 0.374f, 0.489f, -0.876f, 0.842f, -0.848f, 0.901f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1894) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1894) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.483f, 0.088f, -0.192f, 0.17f, 0.683f, 0.293f, -0.773f, 0.365f, -0.28f, 0.257f, 0.818f, 0.45f, -0.551f, -0.051f, 0.899f, -0.127f, -0.915f, 0.152f }; int lda = 3; float B[] = { 0.732f, -0.394f, 0.073f, -0.082f, 0.918f, -0.53f, 0.67f, 0.149f, -0.344f, -0.65f, -0.62f, -0.632f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1895) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1895) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.508f, -0.251f, 0.655f, -0.315f, -0.26f, 0.229f, 0.05f, -0.276f, -0.993f, 0.647f, -0.547f, -0.34f, 0.781f, -0.819f, 0.865f, 0.361f, -0.028f, 0.178f }; int lda = 3; float B[] = { 0.972f, 0.048f, 0.71f, -0.168f, -0.274f, 0.92f, 0.789f, 0.485f, 0.578f, 0.73f, -0.931f, 0.288f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1896) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1896) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.874f, 0.651f, 0.074f, -0.862f, -0.42f, 0.066f, -0.845f, 0.482f, -0.44f, 0.724f, 0.137f, -0.123f, -0.63f, -0.011f, -0.187f, -0.205f, 0.976f, -0.81f }; int lda = 3; float B[] = { 0.539f, 0.131f, 0.986f, 0.615f, 0.983f, -0.22f, 0.144f, 0.677f, 0.561f, -0.494f, -0.433f, -0.089f }; int ldb = 3; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1897) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1897) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.284f, 0.871f, -0.835f, 0.926f, 0.459f, -0.889f, 0.387f, 0.319f, -0.366f, 0.884f, 0.236f, 0.921f, 0.619f, -0.41f, -0.709f, -0.372f, 0.06f, 0.551f }; int lda = 3; float B[] = { 0.354f, 0.245f, 0.552f, 0.77f, -0.524f, -0.973f, -0.814f, -0.835f, -0.976f, 0.396f, -0.726f, -0.204f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1898) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1898) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.98f, -0.854f, -0.832f, 0.514f, -0.028f, -0.857f, 0.066f, 0.415f, -0.316f, 0.538f, -0.465f, -0.691f, 0.286f, 0.954f, -0.486f, -0.574f, -0.429f, 0.992f }; int lda = 3; float B[] = { 0.295f, 0.578f, -0.167f, 0.106f, -0.782f, 0.668f, 0.278f, 0.855f, 0.038f, 0.976f, 0.167f, -0.777f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1899) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1899) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { 0.534f, 0.782f, 0.282f, 0.581f, 0.804f, -0.68f, 0.234f, -0.758f, 0.033f, -0.503f, 0.981f, -0.839f, 0.919f, 0.175f, 0.152f, -0.683f, -0.346f, -0.279f }; int lda = 3; float B[] = { 0.135f, -0.969f, -0.314f, -0.026f, -0.284f, 0.529f, 0.781f, -0.413f, -0.018f, -0.859f, -0.817f, -0.849f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1900) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1900) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.0f}; float A[] = { -0.426f, 0.148f, 0.889f, 0.217f, 0.779f, -0.963f, -0.516f, -0.366f, 0.721f, 0.4f, -0.976f, -0.365f, 0.532f, 0.188f, 0.176f, 0.082f, -0.691f, -0.833f }; int lda = 3; float B[] = { -0.71f, 0.72f, 0.533f, 0.395f, -0.749f, 0.151f, 0.871f, 0.445f, 0.195f, -0.38f, -0.318f, -0.833f }; int ldb = 2; float B_expected[] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1901) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1901) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.068f, 0.806f, -0.621f, 0.037f, 0.096f, -0.312f, 0.416f, 0.428f }; int lda = 2; float B[] = { 0.481f, 0.192f, -0.954f, -0.958f, -0.015f, -0.203f, -0.352f, 0.08f, -0.662f, 0.681f, -0.571f, 0.146f }; int ldb = 3; float B_expected[] = { 0.612512f, 0.186537f, -1.27483f, -1.08103f, -0.0395775f, -0.248522f, 0.0478574f, -0.671409f, -3.31165f, 0.315466f, -1.07961f, -0.629312f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1902) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1902) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.863f, 0.689f, 0.171f, -0.164f, 0.065f, -0.727f, -0.245f, -0.556f }; int lda = 2; float B[] = { 0.711f, -0.616f, -0.684f, 0.823f, 0.491f, 0.06f, -0.776f, 0.768f, 0.391f, 0.897f, 0.779f, -0.875f }; int ldb = 3; float B_expected[] = { 0.616f, 0.711f, -0.823f, -0.684f, -0.06f, 0.491f, -0.98994f, -0.796557f, -0.644091f, 0.372992f, 0.804736f, 0.685199f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1903) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1903) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.718f, -0.323f, 0.264f, 0.081f, -0.73f, 0.809f, -0.349f, -0.543f }; int lda = 2; float B[] = { 0.862f, 0.676f, -0.085f, 0.204f, 0.063f, -0.124f, 0.162f, 0.754f, -0.978f, -0.097f, 0.986f, 0.943f }; int ldb = 3; float B_expected[] = { -1.32203f, -1.00495f, 1.84655f, 0.329156f, -1.66053f, -2.19061f, 0.420449f, -1.11835f, 1.19333f, 0.945621f, -0.495118f, -2.05487f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1904) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1904) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.515f, -0.166f, -0.364f, 0.24f, 0.056f, 0.023f, 0.05f, 0.853f }; int lda = 2; float B[] = { 0.779f, 0.443f, -0.852f, 0.037f, -0.649f, 0.554f, 0.469f, 0.632f, 0.224f, -0.148f, 0.457f, -0.78f }; int ldb = 3; float B_expected[] = { -0.396821f, 0.767272f, -0.040136f, -0.867948f, -0.587169f, -0.692532f, -0.632f, 0.469f, 0.148f, 0.224f, 0.78f, 0.457f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1905) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1905) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.576f, 0.785f, 0.297f, -0.561f, -0.164f, 0.463f, -0.454f, 0.803f }; int lda = 2; float B[] = { -0.78f, -0.792f, 0.223f, 0.206f, -0.097f, 0.504f, 0.721f, 0.205f, 0.508f, -0.8f, -0.469f, 0.283f }; int ldb = 2; float B_expected[] = { -0.164671f, -1.12975f, 0.510941f, 0.652691f, -0.386549f, 0.358405f, 0.959415f, -0.414847f, 0.906729f, -0.353789f, -0.734462f, 0.786484f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1906) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1906) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.04f, 0.917f, 0.327f, -0.115f, -0.656f, -0.811f, -0.646f, 0.78f }; int lda = 2; float B[] = { 0.131f, 0.677f, -0.431f, -0.652f, -0.415f, 0.094f, -0.253f, 0.496f, 0.797f, 0.166f, 0.737f, -0.685f }; int ldb = 2; float B_expected[] = { -0.677f, 0.131f, 0.101647f, -0.894111f, -0.094f, -0.415f, -0.221099f, -0.601474f, -0.166f, 0.797f, -0.070263f, 1.12521f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1907) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1907) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.769f, -0.384f, -0.522f, -0.086f, -0.129f, -0.574f, 0.56f, -0.809f }; int lda = 2; float B[] = { 0.367f, 0.169f, -0.321f, -0.982f, -0.563f, -0.051f, -0.742f, 0.595f, 0.067f, -0.183f, -0.524f, 0.77f }; int ldb = 2; float B_expected[] = { -0.178752f, 0.912513f, 0.836303f, 0.634945f, 0.817549f, -0.921899f, 0.275884f, -0.926446f, 0.49345f, -0.309856f, -0.00752416f, -0.946584f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1908) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1908) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.758f, 0.228f, 0.263f, 0.731f, 0.171f, 0.051f, 0.968f, 0.731f }; int lda = 2; float B[] = { 0.783f, 0.422f, -0.649f, -0.428f, 0.216f, 0.659f, -0.608f, -0.239f, -0.588f, 0.01f, -0.009f, -0.374f }; int ldb = 2; float B_expected[] = { -1.00898f, 0.640819f, 0.428f, -0.649f, -1.1663f, 0.201195f, 0.239f, -0.608f, -0.114941f, -0.859027f, 0.374f, -0.009f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1909) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1909) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.601f, -0.017f, 0.518f, -0.975f, -0.394f, 0.396f, 0.395f, -0.374f, -0.321f, 0.221f, 0.809f, 0.74f, -0.009f, 0.88f, 0.057f, 0.65f, 0.761f, -0.839f }; int lda = 3; float B[] = { -0.644f, 0.29f, 0.458f, 0.755f, -0.725f, 0.313f, 0.537f, 0.945f, 0.377f, 0.776f, -0.686f, -0.561f }; int ldb = 3; float B_expected[] = { -5.28862f, 4.51343f, 4.18447f, 0.519474f, 0.288441f, -0.634688f, -7.53878f, 2.5597f, 2.79299f, 2.44873f, 0.781327f, -0.0400353f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1910) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1910) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.746f, 0.079f, -0.151f, -0.433f, 0.524f, -0.201f, 0.198f, -0.368f, -0.449f, 0.693f, -0.14f, -0.574f, -0.242f, -0.584f, -0.298f, 0.41f, -0.234f, 0.92f }; int lda = 3; float B[] = { -0.787f, 0.186f, -0.104f, -0.142f, -0.548f, 0.332f, -0.66f, 0.413f, 0.046f, 0.818f, -0.783f, -0.376f }; int ldb = 3; float B_expected[] = { 0.320805f, -0.445083f, 0.410072f, -0.371288f, -0.332f, -0.548f, -0.566249f, -0.287942f, -0.315918f, 0.152204f, 0.376f, -0.783f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1911) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1911) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.623f, -0.229f, 0.653f, -0.19f, 0.42f, -0.181f, -0.061f, 0.963f, 0.422f, 0.989f, 0.919f, -0.352f, -0.849f, 0.052f, 0.02f, -0.771f, -0.38f, -0.566f }; int lda = 3; float B[] = { 0.018f, 0.461f, -0.184f, 0.334f, 0.075f, 0.694f, 0.022f, 0.239f, 0.971f, -0.339f, 0.203f, 0.083f }; int ldb = 3; float B_expected[] = { 0.642534f, -0.265073f, -0.901268f, 0.171623f, 1.29999f, 0.384146f, 0.326529f, -0.155337f, 0.629902f, 0.0571184f, -0.761884f, -0.282697f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1912) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1912) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.35f, 0.154f, 0.397f, -0.709f, 0.587f, -0.895f, -0.848f, 0.933f, -0.887f, -0.393f, 0.824f, 0.182f, 0.159f, 0.303f, -0.011f, -0.363f, 0.875f, 0.991f }; int lda = 3; float B[] = { -0.513f, 0.564f, 0.404f, -0.635f, 0.924f, 0.238f, -0.059f, 0.96f, 0.341f, 0.483f, -0.844f, 0.84f }; int ldb = 3; float B_expected[] = { -0.564f, -0.513f, -0.321901f, 0.495188f, -0.487057f, 1.06506f, -0.96f, -0.059f, -1.35213f, 1.18665f, -1.15086f, -1.02151f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1913) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1913) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.87f, 0.914f, -0.097f, -0.138f, 0.894f, -0.173f, 0.648f, -0.327f, 0.7f, 0.816f, 0.63f, 0.637f, -0.671f, 0.322f, -0.922f, 0.618f, 0.93f, 0.654f }; int lda = 3; float B[] = { -0.347f, -0.273f, -0.384f, 0.02f, 0.392f, -0.206f, 0.347f, 0.269f, 0.016f, 0.797f, 0.699f, -0.966f }; int ldb = 2; float B_expected[] = { -0.443754f, 0.343363f, 0.300599f, -0.548484f, 0.757674f, 0.722159f, 0.224607f, -0.673284f, -0.565323f, 0.414754f, 1.04867f, 0.014162f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1914) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1914) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { 0.965f, -0.191f, 0.489f, 0.84f, 0.011f, -0.951f, 0.067f, -0.21f, -0.911f, 0.767f, -0.162f, 0.274f, -0.502f, -0.445f, 0.492f, 0.023f, -0.818f, 0.859f }; int lda = 3; float B[] = { 0.66f, -0.303f, 0.223f, 0.261f, -0.252f, -0.238f, -0.012f, -0.485f, 0.783f, -0.196f, -0.57f, 0.929f }; int ldb = 2; float B_expected[] = { 0.177032f, 1.21679f, -0.596808f, -0.300881f, 0.159577f, -0.641744f, 0.928958f, 0.289807f, 0.196f, 0.783f, -0.929f, -0.57f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1915) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1915) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.652f, 0.046f, -0.229f, 0.473f, -0.783f, -0.211f, 0.698f, 0.201f, -0.153f, 0.918f, -0.996f, -0.186f, 0.84f, -0.545f, -0.457f, 0.057f, 0.649f, 0.77f }; int lda = 3; float B[] = { -0.227f, 0.14f, 0.165f, -0.945f, -0.212f, -0.522f, 0.908f, 0.722f, -0.208f, 0.969f, 0.721f, -0.816f }; int ldb = 2; float B_expected[] = { 0.189219f, 0.361509f, -1.42444f, -0.353565f, -0.361882f, -0.741783f, 1.80537f, 1.02311f, -1.24128f, 0.407779f, 2.0229f, -0.0912412f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1916) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1916) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 1.0f}; float A[] = { -0.945f, 0.36f, 0.3f, 0.128f, -0.27f, -0.834f, 0.349f, -0.6f, -0.293f, 0.122f, -0.481f, -0.681f, -0.815f, -0.195f, 0.728f, 0.016f, 0.037f, 0.989f }; int lda = 3; float B[] = { -0.97f, 0.784f, 0.488f, 0.39f, -0.482f, -0.518f, -0.797f, 0.271f, 0.257f, 0.637f, 0.118f, -0.993f }; int ldb = 2; float B_expected[] = { -0.784f, -0.97f, -0.39f, 0.488f, 0.62904f, -0.090648f, -0.091536f, -0.89348f, 0.3246f, -0.273981f, 1.04514f, -0.5676f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1917) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1917) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.795f, 0.073f, 0.104f, -0.261f, -0.712f, 0.881f, -0.474f, -0.906f }; int lda = 2; float B[] = { -0.41f, -0.191f, -0.359f, -0.718f, -0.902f, 0.646f, -0.703f, -0.809f, -0.342f, -0.783f, -0.053f, 0.917f }; int ldb = 3; float B_expected[] = { 0.0285203f, -0.0489535f, 0.0936712f, -0.036556f, -0.0702473f, -0.11991f, -0.0924979f, -0.0235243f, -0.0742841f, -0.0262764f, 0.074552f, 0.0886899f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1918) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1918) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { -0.281f, -0.111f, 0.055f, -0.643f, 0.33f, -0.663f, 0.32f, 0.423f }; int lda = 2; float B[] = { 0.103f, 0.357f, -0.591f, 0.833f, -0.906f, -0.192f, -0.391f, -0.622f, -0.345f, -0.58f, -0.132f, -0.874f }; int ldb = 3; float B_expected[] = { -0.0357f, 0.0103f, -0.0833f, -0.0591f, 0.0192f, -0.0906f, 0.0707864f, -0.0167114f, 0.0245802f, 0.0223124f, 0.0280882f, -0.0205626f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1919) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1919) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.311f, -0.648f, -0.732f, 0.825f, 0.152f, -0.529f, -0.353f, 0.568f }; int lda = 2; float B[] = { 0.86f, -0.991f, -0.992f, -0.617f, 0.137f, -0.585f, -0.467f, 0.632f, 0.672f, 0.777f, -0.609f, 0.511f }; int ldb = 3; float B_expected[] = { 0.0795347f, -0.0537122f, -0.0885393f, -0.0194836f, -0.0386006f, -0.0674606f, 0.109194f, -0.0434058f, -0.0240177f, -0.151722f, 0.117678f, -0.0168304f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1920) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1920) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.318f, -0.946f, -0.389f, 0.051f, 0.322f, -0.626f, -0.839f, -0.252f }; int lda = 2; float B[] = { 0.372f, -0.23f, 0.515f, 0.213f, 0.222f, 0.296f, -0.524f, 0.442f, -0.581f, -0.409f, 0.894f, -0.246f }; int ldb = 3; float B_expected[] = { 0.00443f, 0.081742f, -0.0708404f, 0.0446048f, 0.0184432f, -0.0219864f, -0.0442f, -0.0524f, 0.0409f, -0.0581f, 0.0246f, 0.0894f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1921) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1921) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { -0.411f, 0.34f, -0.85f, 0.557f, -0.918f, 0.484f, -0.889f, 0.561f }; int lda = 2; float B[] = { -0.763f, -0.514f, -0.744f, -0.948f, -0.312f, 0.818f, -0.686f, 0.341f, -0.043f, 0.235f, -0.201f, 0.874f }; int ldb = 2; float B_expected[] = { 0.0169288f, 0.17164f, -0.0683166f, -0.0596556f, 0.155447f, -0.0526808f, -0.086698f, 0.101645f, 0.039085f, -0.0218708f, 0.0437248f, -0.0036776f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1922) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1922) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.046f, 0.571f, 0.825f, 0.665f, 0.658f, -0.977f, 0.247f, -0.944f }; int lda = 2; float B[] = { -0.342f, 0.089f, -0.975f, 0.027f, -0.621f, -0.127f, 0.937f, -0.332f, -0.357f, -0.213f, 0.57f, 0.134f }; int ldb = 2; float B_expected[] = { -0.0089f, -0.0342f, -0.0302572f, -0.0663011f, 0.0127f, -0.0621f, -0.0358283f, 0.122154f, 0.0213f, -0.0357f, -0.0622943f, 0.0596805f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1923) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1923) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.655f, 0.051f, -0.864f, 0.04f, -0.45f, 0.276f, -0.365f, 0.766f }; int lda = 2; float B[] = { 0.12f, 0.036f, 0.425f, -0.145f, -0.772f, -0.483f, -0.154f, -0.327f, 0.532f, 0.59f, 0.305f, 0.443f }; int ldb = 2; float B_expected[] = { -0.0745593f, 0.00123365f, -0.0525674f, -0.00611891f, 0.0752311f, -0.0558274f, -0.0001932f, 0.0425972f, -0.0986826f, -0.00963885f, -0.00999124f, -0.0625937f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1924) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1924) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.253f, -0.163f, -0.061f, -0.032f, -0.764f, 0.863f, 0.051f, 0.669f }; int lda = 2; float B[] = { 0.966f, 0.42f, -0.765f, 0.186f, -0.798f, 0.278f, -0.37f, -0.484f, -0.724f, -0.682f, 0.034f, 0.352f }; int ldb = 2; float B_expected[] = { -0.0455826f, 0.0925287f, -0.0186f, -0.0765f, -0.0260316f, -0.0836058f, 0.0484f, -0.037f, 0.0661616f, -0.0710662f, -0.0352f, 0.0034f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1925) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1925) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.017f, -0.631f, -0.052f, 0.296f, -0.486f, -0.279f, -0.378f, 0.997f, 0.533f, 0.87f, 0.808f, 0.007f, 0.185f, -0.263f, -0.757f, -0.856f, 0.575f, -0.81f }; int lda = 3; float B[] = { -0.238f, -0.924f, 0.494f, -0.089f, 0.96f, 0.959f, 0.415f, 0.39f, -0.744f, -0.881f, -0.594f, 0.629f }; int ldb = 3; float B_expected[] = { 0.0798921f, -0.243487f, 0.0441094f, -0.0391653f, 0.0229218f, 0.134667f, 0.192099f, 0.152741f, 0.154557f, 0.0857677f, -0.0854154f, 0.0170199f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1926) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1926) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { -0.977f, -0.949f, 0.192f, 0.803f, -0.964f, -0.162f, 0.799f, -0.081f, -0.055f, 0.014f, 0.99f, 0.804f, 0.913f, -0.898f, -0.057f, 0.51f, 0.453f, 0.622f }; int lda = 3; float B[] = { -0.852f, -0.001f, -0.955f, -0.97f, -0.071f, -0.664f, -0.077f, -0.746f, 0.228f, -0.948f, 0.476f, -0.285f }; int ldb = 3; float B_expected[] = { 0.0840343f, -0.066376f, 0.0369724f, -0.0350854f, 0.0664f, -0.0071f, 0.105481f, 0.0565767f, 0.0283146f, -0.00141f, 0.0285f, 0.0476f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1927) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1927) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.822f, 0.618f, -0.935f, 0.49f, 0.885f, -0.488f, 0.412f, 0.861f, -0.144f, 0.906f, -0.054f, 0.455f, 0.213f, 0.34f, -0.465f, 0.107f, -0.611f, 0.088f }; int lda = 3; float B[] = { 0.476f, -0.297f, -0.966f, -0.038f, -0.346f, -0.81f, -0.749f, -0.065f, -0.225f, -0.663f, 0.073f, -0.379f }; int ldb = 3; float B_expected[] = { -0.00473086f, 0.0543508f, 0.139511f, -0.0231317f, -0.199775f, 0.100154f, 0.0488188f, -0.054416f, -0.0610839f, 0.0929832f, -0.0289368f, -0.113983f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1928) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1928) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { -0.188f, 0.741f, 0.583f, 0.527f, 0.025f, 0.216f, -0.44f, -0.071f, -0.126f, -0.093f, 0.743f, -0.476f, 0.661f, -0.66f, 0.564f, -0.943f, -0.976f, -0.035f }; int lda = 3; float B[] = { -0.648f, -0.367f, -0.402f, -0.309f, 0.412f, 0.531f, -0.248f, 0.181f, 0.507f, 0.502f, -0.593f, 0.404f }; int ldb = 3; float B_expected[] = { 0.0367f, -0.0648f, 0.0424472f, -0.0713177f, -0.21132f, 0.0600063f, -0.0181f, -0.0248f, -0.0599248f, 0.0410731f, 0.0277256f, 0.00238266f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1929) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1929) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.76f, -0.021f, -0.011f, 0.14f, 0.699f, 0.94f, 0.296f, 0.333f, 0.654f, -0.917f, 0.008f, -0.999f, -0.963f, 0.687f, -0.481f, 0.106f, 0.128f, -0.165f }; int lda = 3; float B[] = { -0.742f, 0.774f, -0.335f, -0.99f, 0.799f, 0.901f, 0.753f, -0.085f, -0.042f, -0.591f, 0.202f, 0.515f }; int ldb = 2; float B_expected[] = { 0.313744f, -0.259345f, -0.290807f, 0.212822f, -0.00668591f, -0.0164417f, 0.10903f, 0.137068f, 0.157578f, -0.23594f, -0.0747323f, 0.254147f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1930) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1930) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.582f, -0.175f, -0.48f, 0.567f, -0.571f, 0.062f, 0.038f, -0.625f, 0.737f, 0.799f, -0.569f, -0.932f, 0.522f, -0.763f, 0.156f, -0.524f, 0.138f, 0.007f }; int lda = 3; float B[] = { 0.998f, 0.6f, 0.555f, -0.737f, -0.162f, 0.263f, 0.317f, -0.092f, 0.302f, -0.671f, 0.418f, -0.814f }; int ldb = 2; float B_expected[] = { -0.106233f, 0.0480583f, 0.0514817f, -0.0392668f, -0.0209428f, -0.0560716f, 0.0184048f, -0.0174744f, 0.0671f, 0.0302f, 0.0814f, 0.0418f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1931) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1931) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.964f, 0.509f, 0.48f, -0.833f, 0.867f, 0.51f, -0.643f, 0.115f, -0.594f, -0.409f, -0.174f, 0.527f, 0.676f, 0.431f, 0.261f, -0.239f, 0.816f, -0.231f }; int lda = 3; float B[] = { -0.659f, -0.029f, -0.581f, -0.938f, -0.904f, -0.445f, 0.119f, 0.709f, -0.649f, 0.825f, 0.532f, -0.453f }; int ldb = 2; float B_expected[] = { 0.0305784f, -0.0522153f, 0.100975f, -0.00695419f, -0.055793f, 0.11446f, 0.0887801f, 0.177079f, -0.177262f, 0.0336107f, -0.0717714f, 0.251108f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1932) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1932) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; float alpha[2] = {0.0f, 0.1f}; float A[] = { 0.859f, 0.745f, 0.03f, -0.98f, -0.402f, 0.38f, -0.214f, 0.605f, 0.342f, -0.059f, -0.096f, 0.606f, -0.543f, 0.503f, 0.63f, -0.269f, 0.252f, 0.626f }; int lda = 3; float B[] = { 0.85f, 0.642f, 0.679f, -0.254f, 0.192f, 0.766f, -0.869f, -0.09f, 0.68f, -0.898f, 0.272f, -0.651f }; int ldb = 2; float B_expected[] = { -0.0642f, 0.085f, 0.0254f, 0.0679f, 0.008626f, 0.079566f, 0.07478f, -0.113829f, -0.0156973f, 0.0906397f, 0.125668f, 0.0985369f }; cblas_ctrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], flteps, "ctrsm(case 1933) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], flteps, "ctrsm(case 1933) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.189, 0.519, -0.455, -0.444, -0.21, -0.507, -0.591, 0.859 }; int lda = 2; double B[] = { -0.779, -0.484, 0.249, -0.107, -0.755, -0.047, 0.941, 0.675, -0.757, 0.645, -0.649, 0.242 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1934) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1934) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.988, 0.73, 0.279, -0.967, -0.288, -0.095, -0.821, 0.178 }; int lda = 2; double B[] = { 0.702, 0.943, -0.235, -0.565, 0.279, -0.146, 0.816, 0.473, 0.893, 0.877, -0.797, -0.159 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1935) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1935) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.716, -0.549, 0.436, -0.822, -0.029, -0.586, 0.791, -0.159 }; int lda = 2; double B[] = { 0.021, 0.391, 0.296, -0.154, -0.513, 0.738, -0.336, 0.317, 0.502, 0.543, 0.027, 0.802 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1936) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1936) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.715, -0.875, -0.501, 0.425, -0.928, -0.929, -0.542, 0.915 }; int lda = 2; double B[] = { 0.065, 0.679, -0.545, 0.042, 0.199, -0.86, 0.159, 0.943, 0.19, 0.403, 0.994, 0.76 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1937) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1937) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.936, -0.989, -0.57, 0.018, -0.821, 0.516, -0.479, 0.209 }; int lda = 2; double B[] = { 0.722, -0.756, -0.828, -0.191, -0.981, -0.466, 0.347, 0.85, -0.596, -0.826, -0.182, -0.321 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1938) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1938) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.693, 0.976, -0.356, -0.313, 0.926, -0.164, -0.337, 0.056 }; int lda = 2; double B[] = { -0.988, -0.633, -0.745, -0.392, -0.362, -0.708, -0.706, -0.093, -0.177, 0.837, 0.391, -0.853 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1939) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1939) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.483, -0.383, 0.357, 0.889, 0.523, -0.148, -0.592, 0.481 }; int lda = 2; double B[] = { -0.41, 0.994, -0.779, -0.354, 0.571, 0.51, -0.526, 0.934, 0.469, 0.735, -0.47, -0.164 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1940) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1940) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.576, -0.089, 0.953, -0.317, 0.408, 0.618, 0.092, -0.84 }; int lda = 2; double B[] = { 0.141, -0.32, -0.007, -0.682, -0.068, -0.412, 0.675, -0.809, 0.931, -0.257, -0.048, 0.633 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1941) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1941) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.269, 0.567, 0.497, -0.969, 0.957, 0.538, -0.921, 0.639, 0.599, -0.436, -0.045, 0.164, 0.827, 0.489, -0.729, 0.723, -0.01, 0.934 }; int lda = 3; double B[] = { -0.391, 0.434, -0.349, -0.456, -0.541, 0.289, 0.31, 0.447, 0.971, -0.626, -0.77, -0.882 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1942) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1942) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.523, -0.364, -0.492, 0.294, 0.71, -0.401, 0.947, -0.008, 0.235, -0.47, 0.298, -0.603, -0.193, 0.598, 0.122, -0.733, -0.827, 0.491 }; int lda = 3; double B[] = { 0.872, 0.441, 0.518, 0.607, -0.04, -0.976, 0.201, -0.136, -0.958, -0.501, -0.549, -0.4 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1943) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1943) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.177, -0.965, 0.589, -0.236, -0.303, -0.301, 0.982, 0.006, -0.73, 0.241, 0.636, -0.672, 0.886, 0.952, 0.501, -0.803, -0.823, -0.09 }; int lda = 3; double B[] = { -0.475, -0.646, -0.666, -0.886, 0.04, -0.736, -0.592, -0.995, 0.259, 0.701, -0.033, 0.616 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1944) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1944) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.76, -0.29, -0.601, 0.327, 0.383, 0.883, 0.589, -0.708, 0.912, -0.982, 0.629, 0.879, -0.578, -0.814, 0.168, 0.91, 0.328, 0.223 }; int lda = 3; double B[] = { 0.381, 0.829, 0.096, 0.382, 0.664, 0.006, -0.376, -0.338, 0.344, -0.889, -0.175, 0.083 }; int ldb = 3; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1945) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1945) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.129, -0.161, 0.102, 0.443, -0.138, 0.677, -0.87, 0.327, 0.917, 0.446, 0.798, -0.91, -0.574, 0.333, -0.626, 0.14, 0.109, 0.161 }; int lda = 3; double B[] = { -0.689, -0.94, -0.814, 0.761, 0.389, 0.03, -0.175, -0.739, -0.904, 0.463, -0.511, 0.615 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1946) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1946) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { 0.062, 0.756, 0.179, 0.359, -0.047, -0.197, 0.678, 0.873, 0.003, -0.996, 0.507, -0.491, -0.726, -0.833, -0.118, -0.71, 0.714, 0.638 }; int lda = 3; double B[] = { -0.614, 0.193, 0.881, 0.538, 0.183, -0.034, 0.099, -0.154, -0.121, 0.842, -0.182, -0.229 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1947) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1947) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.874, 0.171, 0.637, 0.554, 0.852, -0.203, 0.455, 0.619, -0.128, 0.759, 0.342, 0.372, 0.669, -0.537, -0.76, -0.348, -0.714, 0.573 }; int lda = 3; double B[] = { -0.434, 0.921, -0.949, 0.282, -0.665, 0.223, -0.633, 0.921, -0.73, 0.457, -0.021, -0.844 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1948) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1948) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 111; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0}; double A[] = { -0.189, -0.931, 0.414, 0.288, -0.245, 0.252, -0.465, -0.073, 0.327, 0.176, -0.067, 0.1, 0.124, 0.885, -0.731, -0.303, 0.954, -0.763 }; int lda = 3; double B[] = { 0.818, 0.948, -0.749, 0.808, -0.959, -0.797, 0.727, 0.701, 0.244, -0.801, 0.354, -0.781 }; int ldb = 2; double B_expected[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1949) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1949) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.65, -0.279, -0.543, -0.097, -0.641, 0.984, 0.507, -0.809 }; int lda = 2; double B[] = { -0.176, 0.87, -0.681, 0.409, -0.878, 0.522, 0.348, 0.679, -0.975, -0.815, -0.608, 0.86 }; int ldb = 3; double B_expected[] = { 0.256485077177, 1.22837025149, -0.656630178218, 0.911076645728, -0.849544610576, 1.16772760977, -0.193804546743, -0.283833884163, -0.811035478317, 1.16349859839, 0.292241175557, -0.141827660937 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1950) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1950) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.23, -0.597, 0.068, 0.945, 0.045, -0.436, 0.113, 0.035 }; int lda = 2; double B[] = { -0.744, -0.465, -0.742, 0.996, -0.835, 0.712, -0.968, 0.053, -0.813, 0.36, 0.572, -0.489 }; int ldb = 3; double B_expected[] = { 0.744, 0.465, 0.742, -0.996, 0.835, -0.712, 1.356833, -0.7877, -0.178676, -0.993462, -1.30162, -0.251659 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1951) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1951) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.689, -0.396, 0.415, -0.567, 0.001, 0.513, 0.837, 0.045 }; int lda = 2; double B[] = { -0.012, 0.2, 0.22, 0.81, -0.586, -0.198, 0.16, -0.958, -0.125, 0.833, 0.344, 0.213 }; int ldb = 3; double B_expected[] = { -0.573154258944, 0.525131422048, 1.33801555643, 0.47629585874, -0.770607912552, -0.160087833623, -0.129249609305, 1.15151282248, 0.0955601670381, -1.00035867087, -0.423449388979, -0.231714190557 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1952) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1952) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.102, 0.86, -0.067, 0.12, 0.92, 0.441, 0.367, -0.104 }; int lda = 2; double B[] = { 0.386, 0.59, 0.222, 0.824, 0.091, 0.486, 0.43, 0.766, 0.576, 0.042, 0.013, -0.008 }; int ldb = 3; double B_expected[] = { -0.328206, 0.30435, 0.289398, -0.531344, -0.075512, -0.487627, -0.43, -0.766, -0.576, -0.042, -0.013, 0.008 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1953) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1953) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.087, 0.925, -0.315, 0.251, 0.7, -0.223, 0.448, 0.373 }; int lda = 2; double B[] = { -0.333, -0.495, 0.995, -0.229, 0.425, -0.269, -0.756, -0.783, -0.214, 0.582, -0.351, -0.095 }; int ldb = 2; double B_expected[] = { 0.496880191475, -0.406733596387, -0.965186357327, 2.19761676664, 0.331095906598, 0.428318547163, 1.17655095681, 0.263745306399, -0.645240814927, -0.170663836866, 1.18578937767, -0.829739852214 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1954) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1954) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.717, 0.572, -0.304, 0.878, 0.625, -0.615, -0.565, -0.643 }; int lda = 2; double B[] = { -0.383, -0.669, -0.043, -0.09, -0.999, -0.427, 0.834, 0.539, -0.973, -0.481, 0.071, -0.71 }; int ldb = 2; double B_expected[] = { 0.383, 0.669, -0.60781, -0.09258, 0.999, 0.427, -1.72098, -0.19149, 0.973, 0.481, -0.97494, 1.00777 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1955) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1955) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.143, -0.022, 0.487, 0.444, 0.138, -0.871, 0.572, -0.093 }; int lda = 2; double B[] = { -0.073, -0.9, -0.688, 0.436, -0.213, -0.733, 0.809, -0.618, 0.696, 0.259, 0.494, 0.162 }; int ldb = 2; double B_expected[] = { -6.10129128737, 3.22195959384, 1.29255909931, -0.552083922664, 8.05253150033, 8.35261031753, -1.54904967648, 0.828563601552, -3.66721033067, 1.50334288416, -0.796532800529, -0.412722990296 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1956) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1956) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.544, 0.918, -0.524, 0.547, -0.839, 0.4, -0.548, 0.49 }; int lda = 2; double B[] = { 0.475, -0.594, 0.252, -0.717, 0.867, 0.07, 0.264, 0.538, 0.028, 0.482, -0.59, -0.533 }; int ldb = 2; double B_expected[] = { -0.214849, 1.107552, -0.252, 0.717, -1.299622, -0.207504, -0.264, -0.538, 0.572711, -0.525438, 0.59, 0.533 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1957) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1957) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.038, -0.116, -0.476, -0.818, 0.961, 0.271, -0.593, 0.548, -0.86, 0.429, -0.396, -0.559, 0.766, -0.326, -0.335, 0.633, -0.532, 0.317 }; int lda = 3; double B[] = { -0.459, 0.904, 0.887, 0.07, -0.497, -0.48, -0.313, 0.864, -0.029, -0.754, -0.566, -0.108 }; int ldb = 3; double B_expected[] = { -4.58258258525, -3.00717937382, 0.0668903493808, 0.800759804641, -0.292673260098, -1.0766492922, -0.911020412982, 7.68812066826, -0.0359723342287, -0.157963939743, -0.695872108638, -0.617653117365 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1958) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1958) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.886, 0.945, 0.065, 0.882, -0.46, -0.095, 0.823, -0.245, -0.825, 0.904, -0.214, -0.268, -0.935, -0.017, 0.902, 0.561, 0.954, -0.665 }; int lda = 3; double B[] = { 0.076, -0.043, 0.873, -0.831, -0.329, -0.896, -0.174, 0.653, 0.489, 0.25, -0.896, 0.609 }; int ldb = 3; double B_expected[] = { 1.037824842, 1.333886264, -1.042722, 1.110916, 0.329, 0.896, 0.529073224, -0.720680322, -0.134044, -0.140198, 0.896, -0.609 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1959) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1959) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.691, -0.056, -0.339, -0.483, -0.975, -0.052, -0.198, 0.576, -0.075, 0.718, -0.321, 0.728, -0.124, 0.774, 0.685, -0.112, 0.178, 0.275 }; int lda = 3; double B[] = { -0.062, -0.391, 0.326, 0.42, -0.203, 0.45, 0.338, 0.991, -0.47, -0.363, 0.766, -0.961 }; int ldb = 3; double B_expected[] = { -0.134697690677, -0.554930433172, -0.526377715671, 0.991348747823, -2.94323584375, -1.92805449726, 0.601422754501, 1.38541291715, 0.201151053335, -1.95287726277, 5.96201044303, 2.1797020274 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1960) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1960) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.318, 0.067, -0.097, 0.359, -0.688, 0.307, -0.63, -0.616, 0.193, 0.817, -0.792, -0.117, -0.501, -0.929, -0.595, -0.144, 0.453, 0.658 }; int lda = 3; double B[] = { -0.249, -0.206, 0.424, -0.681, -0.464, 0.21, 0.541, 0.082, 0.803, -0.461, -0.638, 0.358 }; int ldb = 3; double B_expected[] = { 0.249, 0.206, -0.394026, 0.964164, 0.024089914, 0.641464836, -0.541, -0.082, -1.093318, 0.076084, -0.218343306, -1.013838812 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1961) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1961) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.691, 0.808, -0.178, 0.489, 0.159, -0.646, -0.692, -0.968, -0.146, -0.281, -0.385, 0.773, 0.704, 0.782, 0.551, -0.727, 0.669, 0.858 }; int lda = 3; double B[] = { -0.657, -0.69, -0.051, 0.28, -0.846, 0.304, 0.052, 0.543, 0.613, -0.98, 0.983, -0.484 }; int ldb = 2; double B_expected[] = { 2.42007211075, -0.148130095453, 4.93683906416, -0.804178199722, 1.76852672271, 0.633536755193, 4.41638755104, -0.0400468884046, 0.363887727302, 0.998182854971, -0.204739276437, 0.986048279795 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1962) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1962) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.244, -0.925, -0.539, 0.422, 0.285, -0.954, -0.347, -0.255, -0.616, -0.979, 0.631, -0.864, -0.053, -0.715, -0.749, -0.973, -0.409, -0.247 }; int lda = 3; double B[] = { 0.922, -0.728, 0.588, -0.715, -0.92, -0.065, -0.583, 0.178, 0.996, 0.215, -0.614, -0.443 }; int ldb = 2; double B_expected[] = { -0.416484258, -0.267425916, -0.851455486, 1.594186448, 0.383191, -1.065143, 0.611847, 0.751229, -0.996, -0.215, 0.614, 0.443 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1963) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1963) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 131; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { 0.992, 0.172, -0.646, 0.067, -0.823, -0.013, -0.55, -0.438, -0.44, -0.302, 0.99, -0.373, 0.513, -0.106, -0.591, -0.504, 0.929, -0.318 }; int lda = 3; double B[] = { 0.467, 0.227, 0.988, -0.709, -0.272, -0.601, 0.719, -0.133, 0.203, 0.937, -0.382, -0.334 }; int ldb = 2; double B_expected[] = { -0.495544804508, -0.142909570186, -0.846593689328, 0.861506163875, -0.485462670276, -0.898345893497, 1.07522946065, -2.43403194583, 0.315527055267, -0.271726799352, -1.73234815305, 3.5434654009 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1964) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1964) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 112; int diag = 132; int M = 2; int N = 3; double alpha[2] = {-1, 0}; double A[] = { -0.692, -0.245, -0.874, 0.77, 0.07, 0.01, 0.018, -0.42, -0.405, -0.387, 0.888, -0.912, -0.81, 0.314, 0.66, -0.895, -0.556, 0.157 }; int lda = 3; double B[] = { -0.801, 0.542, 0.699, 0.574, -0.56, 0.043, 0.742, -0.331, -0.614, 0.776, -0.335, 0.131 }; int ldb = 2; double B_expected[] = { 0.801, -0.542, -0.699, -0.574, 0.842734, -1.133478, -1.794906, 0.367554, 0.837894144, 1.029031872, 1.63685728, -2.047172224 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1965) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1965) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.035, -0.456, 0.152, 0.976, 0.687, -0.527, -0.571, 0.832 }; int lda = 2; double B[] = { -0.868, 0.033, -0.131, -0.936, 0.993, 0.104, -0.684, 0.851, 0.523, 0.836, -0.205, 0.319 }; int ldb = 3; double B_expected[] = { -0.188683836853, 0.0217191541444, -0.044222393276, -0.201868895253, 0.218228063549, 0.00605705652583, 0.252579293874, 0.0800538768738, -0.099911150161, 0.0758372341381, -0.116723296822, -0.16542230206 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1966) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1966) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.481, -0.442, 0.69, 0.415, 0.983, -0.466, 0.503, -0.147 }; int lda = 2; double B[] = { -0.287, -0.777, -0.187, 0.061, 0.631, 0.797, 0.833, -0.49, -0.188, 0.386, -0.904, -0.793 }; int ldb = 3; double B_expected[] = { 0.0777, -0.0287, -0.0061, -0.0187, -0.0797, 0.0631, 0.0072975, 0.1353485, -0.0266305, -0.0084285, 0.1081065, -0.1670145 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1967) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1967) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.286, 0.025, -0.111, 0.724, -0.973, -0.071, 0.527, -0.334 }; int lda = 2; double B[] = { -0.381, -0.131, 0.33, 0.09, 0.35, 0.062, -0.874, 0.252, 0.924, 0.251, 0.559, -0.619 }; int ldb = 3; double B_expected[] = { 0.38447496828, 0.401499279514, -0.210140860451, -0.584596680596, -0.443343106286, -0.127686958741, -0.109102585509, -0.096697792106, 0.045298174859, 0.146623168116, 0.131759250934, 0.0225662432408 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1968) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1968) imag"); }; }; }; { int order = 101; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.862, -0.003, 0.975, 0.364, -0.996, 0.909, -0.316, -0.816 }; int lda = 2; double B[] = { 0.167, 0.961, 0.116, 0.675, 0.086, 0.259, -0.483, 0.898, 0.434, 0.723, 0.505, 0.042 }; int ldb = 3; double B_expected[] = { -0.1416361, -0.113035, -0.1789614, -0.0108943, -0.0759877, 0.0550802, -0.0898, -0.0483, -0.0723, 0.0434, -0.0042, 0.0505 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1969) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1969) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.826, -0.025, 0.638, -0.183, -0.184, 0.806, 0.131, 0.764 }; int lda = 2; double B[] = { -0.038, 0.14, -0.31, -0.494, -0.974, -0.396, -0.217, 0.519, -0.656, -0.737, 0.383, -0.03 }; int ldb = 2; double B_expected[] = { 0.0167945280502, 0.00510879322186, 0.0315562985639, 0.0579039669012, -0.0514636821443, 0.116360058046, 0.0192833017545, -0.206389577002, -0.0915450409357, 0.0766481525141, 0.0107002286761, -0.100817314679 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1970) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1970) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.282, -0.433, -0.793, -0.008, -0.999, 0.377, -0.979, 0.421 }; int lda = 2; double B[] = { 0.622, -0.722, 0.605, -0.877, 0.935, -0.906, 0.719, -0.607, 0.022, -0.326, -0.905, 0.323 }; int ldb = 2; double B_expected[] = { 0.0722, 0.0622, 0.1363784, 0.1498572, 0.0906, 0.0935, 0.1159599, 0.1994627, 0.0326, 0.0022, -0.000562, -0.076012 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1971) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1971) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.934, 0.007, -0.958, 0.434, 0.263, 0.776, 0.097, 0.83 }; int lda = 2; double B[] = { -0.405, 0.251, 0.13, 0.388, -0.664, -0.732, -0.779, -0.5, 0.775, -0.299, -0.45, 0.923 }; int ldb = 2; double B_expected[] = { -0.026920633021, -0.0986978374343, -0.020841203536, -0.0443113292253, 0.157683298836, 0.0261984465224, 0.099536165222, 0.0486084240644, 0.127725373746, -0.0161073528761, 0.0406652355905, -0.115957262473 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1972) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1972) imag"); }; }; }; { int order = 102; int side = 141; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.169, -0.768, -0.529, 0.236, -0.506, 0.691, -0.786, -0.36 }; int lda = 2; double B[] = { 0.289, -0.985, 0.931, 0.652, -0.861, -0.51, -0.753, -0.542, -0.822, 0.174, 0.799, 0.8 }; int ldb = 2; double B_expected[] = { 0.0420376, 0.0627627, -0.0652, 0.0931, 0.0974426, -0.1131425, 0.0542, -0.0753, -0.0785764, -0.0588129, -0.08, 0.0799 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1973) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1973) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.834, 0.53, 0.278, 0.293, 0.66, 0.497, -0.664, 0.429, -0.294, -0.661, 0.52, -0.247, 0.392, -0.227, 0.209, -0.902, 0.843, 0.37 }; int lda = 3; double B[] = { -0.738, 0.166, 0.721, -0.541, -0.963, -0.832, -0.376, -0.718, 0.765, -0.547, 0.451, -0.581 }; int ldb = 3; double B_expected[] = { -0.115188282202, -0.000411685478887, 0.105497263516, -0.0083759187965, 0.124793492766, -0.0594619308146, 0.0499107469, -0.0152598288542, 0.00927285309719, -0.0831454824908, 0.0380996260983, 0.0702216627003 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1974) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1974) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.531, -0.691, 0.801, 0.437, 0.402, 0.788, 0.824, 0.599, -0.362, 0.076, 0.192, 0.229, -0.259, -0.279, 0.79, -0.797, 0.728, 0.397 }; int lda = 3; double B[] = { -0.049, 0.642, 0.36, 0.428, 0.523, -0.612, 0.459, -0.664, 0.328, 0.513, -0.225, 0.273 }; int ldb = 3; double B_expected[] = { -0.0941948813, -0.0387898759, -0.0665271, 0.0399732, 0.0612, 0.0523, 0.1143807788, -0.0091687866, -0.0409059, 0.0308683, -0.0273, -0.0225 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1975) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1975) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.169, -0.092, -0.13, 0.001, 0.573, 0.256, 0.632, -0.09, -0.942, 0.948, 0.595, -0.337, 0.01, -0.786, 0.944, 0.906, -0.832, -0.566 }; int lda = 3; double B[] = { -0.461, -0.112, 0.674, -0.268, -0.286, -0.657, 0.329, 0.91, 0.73, 0.488, -0.363, -0.01 }; int ldb = 3; double B_expected[] = { -0.0634274139095, -0.238252532073, -0.142693434208, -0.0938542376785, -0.0907100858097, -0.0412217911039, -0.333617825793, 0.376288993923, -0.0317846476268, 0.175075250306, -0.125200687799, -0.118937960805 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1976) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1976) imag"); }; }; }; { int order = 101; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.53, 0.141, 0.235, 0.474, -0.964, -0.441, 0.197, -0.703, 0.942, 0.98, 0.741, 0.499, -0.738, 0.234, -0.27, -0.158, 0.804, -0.878 }; int lda = 3; double B[] = { 0.46, -0.508, 0.918, -0.516, 0.012, -0.451, -0.676, 0.551, -0.38, 0.053, 0.645, 0.785 }; int ldb = 3; double B_expected[] = { 0.0508, 0.046, 0.0739304, 0.0470256, 0.0992176528, 0.0480511088, -0.0551, -0.0676, -0.0419681, 0.0140525, -0.112456492, 0.0121429348 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1977) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1977) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { 0.286, 0.548, 0.637, -0.856, -0.739, 0.307, -0.049, -0.342, -0.39, 0.618, -0.757, -0.453, -0.533, 0.131, 0.431, 0.087, -0.776, -0.439 }; int lda = 3; double B[] = { 0.968, 0.032, 0.013, 0.684, -0.485, 0.613, 0.316, 0.812, -0.459, 0.34, -0.268, -0.565 }; int ldb = 2; double B_expected[] = { -0.126374952238, 0.0484874156039, -0.0755178690743, -0.200973083054, 0.138328459491, -0.0263170966956, 0.00492064241274, -0.0787874374991, 0.00784239970713, 0.0635860998343, -0.0699577429529, -0.00504052726328 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1978) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1978) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 121; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.911, 0.645, -0.525, 0.045, -0.654, -0.896, -0.39, 0.419, 0.867, 0.561, -0.842, -0.835, -0.249, -0.384, 0.575, -0.41, 0.105, -0.282 }; int lda = 3; double B[] = { 0.777, 0.361, 0.535, 0.441, 0.508, 0.439, -0.347, 0.131, -0.874, 0.646, 0.917, 0.746 }; int ldb = 2; double B_expected[] = { -0.155796389, 0.112639999, 0.0226368685, 0.111048763, -0.042589, 0.127541, 0.067392, -0.0568415, -0.0646, -0.0874, -0.0746, 0.0917 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1979) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1979) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 131; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.519, 0.318, -0.318, 0.73, 0.721, 0.302, -0.604, 0.721, 0.387, 0.673, -0.549, -0.136, 0.101, 0.676, -0.064, -0.659, -0.141, 0.991 }; int lda = 3; double B[] = { -0.856, -0.128, 0.721, -0.511, 0.175, -0.341, 0.832, -0.662, 0.652, -0.939, -0.775, -0.899 }; int ldb = 2; double B_expected[] = { 0.055542329649, 0.130900846188, -0.133470180979, -0.0571415846795, -0.13942012508, 0.0150972236507, 0.0782230770838, 0.0522994181773, -0.00621452256957, -0.0615971232698, 0.0222285648871, 0.258910370231 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1980) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1980) imag"); }; }; }; { int order = 102; int side = 142; int uplo = 122; int trans = 113; int diag = 132; int M = 2; int N = 3; double alpha[2] = {0, 0.1}; double A[] = { -0.092, -0.392, 0.108, -0.918, 0.505, -0.974, 0.213, 0.97, -0.465, 0.604, -0.737, -0.578, -0.051, -0.43, 0.066, -0.934, -0.347, 0.157 }; int lda = 3; double B[] = { -0.489, 0.673, -0.232, 0.668, -0.396, -0.569, 0.763, 0.581, 0.117, -0.249, 0.272, -0.832 }; int ldb = 2; double B_expected[] = { -0.0673, -0.0489, -0.0668, -0.0232, 0.0192782, 0.0274626, -0.0721832, 0.140128, 0.0413393162, 0.1110418366, 0.1221321656, 0.2489754256 }; cblas_ztrsm(order, side, uplo, trans, diag, M, N, alpha, A, lda, B, ldb); { int i; for (i = 0; i < 6; i++) { gsl_test_rel(B[2*i], B_expected[2*i], dbleps, "ztrsm(case 1981) real"); gsl_test_rel(B[2*i+1], B_expected[2*i+1], dbleps, "ztrsm(case 1981) imag"); }; }; }; } gsl-1.16/cblas/scopy.c0000664000252300025230000000035512171574312011542 00000000000000#include #include #include "cblas.h" void cblas_scopy (const int N, const float *X, const int incX, float *Y, const int incY) { #define BASE float #include "source_copy_r.h" #undef BASE } gsl-1.16/cblas/source_iamax_r.h0000664000252300025230000000206512171574312013412 00000000000000/* blas/source_iamax_r.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE max = 0.0; INDEX ix = 0; INDEX i; CBLAS_INDEX result = 0; if (incX <= 0) { return 0; } for (i = 0; i < N; i++) { if (fabs(X[ix]) > max) { max = fabs(X[ix]); result = i; } ix += incX; } return result; } gsl-1.16/cblas/test_sbmv.c0000664000252300025230000002327512171574312012421 00000000000000#include #include #include #include #include "tests.h" void test_sbmv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { -0.236236f, -0.215242f, 0.266757f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1102)"); } }; }; { int order = 101; int uplo = 121; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { -0.236236f, -0.215242f, 0.266757f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1103)"); } }; }; { int order = 101; int uplo = 122; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { 0.187592f, -0.01232f, -0.040176f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1104)"); } }; }; { int order = 101; int uplo = 122; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { 0.187592f, -0.01232f, -0.040176f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1105)"); } }; }; { int order = 102; int uplo = 121; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { 0.187592f, -0.01232f, -0.040176f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1106)"); } }; }; { int order = 102; int uplo = 121; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { 0.187592f, -0.01232f, -0.040176f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1107)"); } }; }; { int order = 102; int uplo = 122; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { -0.236236f, -0.215242f, 0.266757f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1108)"); } }; }; { int order = 102; int uplo = 122; float alpha = 1.0f; float beta = 0.0f; int N = 3; int k = 1; int lda = 3; float A[] = { 0.627f, -0.312f, 0.031f, 0.308f, 0.323f, -0.578f, 0.797f, 0.545f, -0.476f }; float X[] = { -0.542f, 0.606f, 0.727f }; int incX = -1; float Y[] = { 0.755f, 0.268f, -0.99f }; int incY = -1; float y_expected[] = { -0.236236f, -0.215242f, 0.266757f }; cblas_ssbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "ssbmv(case 1109)"); } }; }; { int order = 101; int uplo = 121; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1110)"); } }; }; { int order = 101; int uplo = 121; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1111)"); } }; }; { int order = 101; int uplo = 122; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1112)"); } }; }; { int order = 101; int uplo = 122; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1113)"); } }; }; { int order = 102; int uplo = 121; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1114)"); } }; }; { int order = 102; int uplo = 121; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1115)"); } }; }; { int order = 102; int uplo = 122; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1116)"); } }; }; { int order = 102; int uplo = 122; double alpha = 0; double beta = 1; int N = 3; int k = 1; int lda = 3; double A[] = { 0.83, -0.568, -0.888, 0.281, -0.779, -0.148, 0.138, 0.053, -0.757 }; double X[] = { 0.166, 0.808, 0.723 }; int incX = -1; double Y[] = { 0.9, 0.99, -0.578 }; int incY = -1; double y_expected[] = { 0.9, 0.99, -0.578 }; cblas_dsbmv(order, uplo, N, k, alpha, A, lda, X, incX, beta, Y, incY); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "dsbmv(case 1117)"); } }; }; } gsl-1.16/cblas/test_syr2k.c0000664000252300025230000004715412171574312012526 00000000000000#include #include #include #include #include "tests.h" void test_syr2k (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.915f, 0.445f }; int lda = 2; float B[] = { 0.213f, -0.194f }; int ldb = 2; float C[] = { -0.117f }; int ldc = 1; float C_expected[] = { -0.173245f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1614)"); } }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha = 0.1f; float beta = 1.0f; float A[] = { 0.089f, -0.889f }; int lda = 2; float B[] = { -0.384f, 0.518f }; int ldb = 2; float C[] = { 0.069f }; int ldc = 1; float C_expected[] = { -0.0299356f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1615)"); } }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha = 0.1f; float beta = 1.0f; float A[] = { 0.492f, 0.021f }; int lda = 1; float B[] = { -0.804f, -0.912f }; int ldb = 1; float C[] = { -0.851f }; int ldc = 1; float C_expected[] = { -0.933944f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1616)"); } }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha = 0.1f; float beta = 1.0f; float A[] = { -0.376f, 0.689f }; int lda = 1; float B[] = { 0.21f, 0.406f }; int ldb = 1; float C[] = { -0.581f }; int ldc = 1; float C_expected[] = { -0.540845f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1617)"); } }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 1; int K = 2; float alpha = 1.0f; float beta = -0.3f; float A[] = { 0.629f, -0.883f }; int lda = 1; float B[] = { -0.165f, 0.02f }; int ldb = 1; float C[] = { 0.236f }; int ldc = 1; float C_expected[] = { -0.31369f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1618)"); } }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 1; int K = 2; float alpha = 1.0f; float beta = -0.3f; float A[] = { 0.412f, -0.411f }; int lda = 1; float B[] = { 0.313f, 0.301f }; int ldb = 1; float C[] = { 0.222f }; int ldc = 1; float C_expected[] = { -0.05611f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1619)"); } }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 1; int K = 2; float alpha = 1.0f; float beta = -0.3f; float A[] = { -0.02f, 0.593f }; int lda = 2; float B[] = { -0.144f, 0.846f }; int ldb = 2; float C[] = { -0.645f }; int ldc = 1; float C_expected[] = { 1.20262f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1620)"); } }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 1; int K = 2; float alpha = 1.0f; float beta = -0.3f; float A[] = { 0.253f, 0.937f }; int lda = 2; float B[] = { 0.24f, -0.27f }; int ldb = 2; float C[] = { 0.128f }; int ldc = 1; float C_expected[] = { -0.42294f }; cblas_ssyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], flteps, "ssyr2k(case 1621)"); } }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha = 0.1; double beta = 0; double A[] = { -0.225, 0.857 }; int lda = 2; double B[] = { -0.933, 0.994 }; int ldb = 2; double C[] = { 0.177 }; int ldc = 1; double C_expected[] = { 0.2123566 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1622)"); } }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha = 0.1; double beta = 0; double A[] = { -0.955, 0.112 }; int lda = 2; double B[] = { -0.695, 0.719 }; int ldb = 2; double C[] = { 0.069 }; int ldc = 1; double C_expected[] = { 0.1488506 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1623)"); } }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha = 0.1; double beta = 0; double A[] = { 0.216, 0.911 }; int lda = 1; double B[] = { -0.074, -0.256 }; int ldb = 1; double C[] = { -0.621 }; int ldc = 1; double C_expected[] = { -0.04984 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1624)"); } }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha = 0.1; double beta = 0; double A[] = { -0.343, -0.381 }; int lda = 1; double B[] = { -0.433, -0.087 }; int ldb = 1; double C[] = { -0.889 }; int ldc = 1; double C_expected[] = { 0.0363332 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1625)"); } }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 1; int K = 2; double alpha = 1; double beta = -1; double A[] = { -0.633, 0.219 }; int lda = 1; double B[] = { 0.817, -0.683 }; int ldb = 1; double C[] = { -0.294 }; int ldc = 1; double C_expected[] = { -1.039476 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1626)"); } }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 1; int K = 2; double alpha = 1; double beta = -1; double A[] = { -0.887, -0.43 }; int lda = 1; double B[] = { 0.557, 0.912 }; int ldb = 1; double C[] = { 0.831 }; int ldc = 1; double C_expected[] = { -2.603438 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1627)"); } }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 1; int K = 2; double alpha = 1; double beta = -1; double A[] = { 0.397, -0.173 }; int lda = 2; double B[] = { 0.155, -0.99 }; int ldb = 2; double C[] = { 0.621 }; int ldc = 1; double C_expected[] = { -0.15539 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1628)"); } }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 1; int K = 2; double alpha = 1; double beta = -1; double A[] = { 0.833, -0.52 }; int lda = 2; double B[] = { 0.28, 0.481 }; int ldb = 2; double C[] = { 0.455 }; int ldc = 1; double C_expected[] = { -0.48876 }; cblas_dsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[i], C_expected[i], dbleps, "dsyr2k(case 1629)"); } }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.248f, -0.037f, -0.124f, 0.998f }; int lda = 2; float B[] = { -0.608f, -0.115f, -0.718f, -0.551f }; int ldb = 2; float C[] = { 0.187f, -0.329f }; int ldc = 1; float C_expected[] = { 0.119445f, 0.157092f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1630) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1630) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { 0.068f, 0.751f, -0.449f, -0.598f }; int lda = 2; float B[] = { 0.616f, 0.805f, -0.635f, 0.773f }; int ldb = 2; float C[] = { -0.287f, 0.917f }; int ldc = 1; float C_expected[] = { -0.110002f, 0.0369404f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1631) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1631) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.396f, -0.603f, -0.131f, -0.288f }; int lda = 1; float B[] = { -0.64f, -0.444f, -0.085f, 0.936f }; int ldb = 1; float C[] = { 0.375f, -0.434f }; int ldc = 1; float C_expected[] = { -0.0927216f, 0.0532822f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1632) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1632) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { 0.655f, 0.16f, 0.45f, -0.747f }; int lda = 1; float B[] = { 0.923f, 0.432f, -0.986f, 0.259f }; int ldb = 1; float C[] = { 0.752f, 0.576f }; int ldc = 1; float C_expected[] = { -0.256746f, 0.0570436f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1633) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1633) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.765f, 0.487f, 0.7f, 0.768f }; int lda = 1; float B[] = { -0.529f, 0.056f, -0.584f, 0.928f }; int ldb = 1; float C[] = { -0.426f, 0.836f }; int ldc = 1; float C_expected[] = { 0.019875f, -0.148818f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1634) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1634) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { 0.25f, 0.489f, 0.8f, -0.642f }; int lda = 1; float B[] = { -0.732f, -0.856f, -0.654f, 0.591f }; int ldb = 1; float C[] = { -0.101f, 0.322f }; int ldc = 1; float C_expected[] = { -0.064144f, 0.0183612f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1635) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1635) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.579f, -0.971f, 0.521f, -0.824f }; int lda = 2; float B[] = { -0.227f, 0.907f, 0.457f, -0.274f }; int ldb = 2; float C[] = { 0.21f, -0.718f }; int ldc = 1; float C_expected[] = { 0.164812f, 0.20489f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1636) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1636) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 1; int K = 2; float alpha[2] = {0.0f, 0.1f}; float beta[2] = {0.0f, 0.0f}; float A[] = { -0.83f, -0.512f, -0.667f, -0.436f }; int lda = 2; float B[] = { -0.443f, 0.82f, -0.259f, -0.618f }; int ldb = 2; float C[] = { 0.583f, 0.668f }; int ldc = 1; float C_expected[] = { -0.0142692f, 0.138167f }; cblas_csyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], flteps, "csyr2k(case 1637) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], flteps, "csyr2k(case 1637) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha[2] = {0, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.315, 0.03, 0.281, 0.175 }; int lda = 2; double B[] = { -0.832, -0.964, 0.291, 0.476 }; int ldb = 2; double C[] = { -0.341, 0.743 }; int ldc = 1; double C_expected[] = { 0.028, -0.257 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1638) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1638) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha[2] = {0, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { -0.159, -0.489, -0.11, 0.611 }; int lda = 2; double B[] = { -0.285, -0.048, -0.673, -0.492 }; int ldb = 2; double C[] = { 0.496, -0.626 }; int ldc = 1; double C_expected[] = { -0.0862, 0.2374 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1639) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1639) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 111; int N = 1; int K = 2; double alpha[2] = {0, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.796, 0.872, -0.919, 0.748 }; int lda = 1; double B[] = { -0.945, 0.915, -0.252, -0.276 }; int ldb = 1; double C[] = { 0.07, -0.957 }; int ldc = 1; double C_expected[] = { 0.0747, 0.2941 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1640) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1640) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 111; int N = 1; int K = 2; double alpha[2] = {0, 0}; double beta[2] = {-0.3, 0.1}; double A[] = { 0.984, 0.526, 0.284, 0.806 }; int lda = 1; double B[] = { -0.509, -0.178, 0.188, -0.221 }; int ldb = 1; double C[] = { -0.388, 0.795 }; int ldc = 1; double C_expected[] = { 0.0369, -0.2773 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1641) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1641) imag"); }; }; }; { int order = 101; int uplo = 121; int trans = 112; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 0.1}; double A[] = { 0.628, 0.846, -0.645, 0.032 }; int lda = 1; double B[] = { 0.545, -0.54, 0.493, -0.035 }; int ldb = 1; double C[] = { -0.16, -0.06 }; int ldc = 1; double C_expected[] = { 0.97047, 0.304602 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1642) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1642) imag"); }; }; }; { int order = 101; int uplo = 122; int trans = 112; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 0.1}; double A[] = { -0.556, -0.946, 0.177, -0.859 }; int lda = 1; double B[] = { 0.423, -0.91, 0.736, -0.251 }; int ldb = 1; double C[] = { -0.478, 0.519 }; int ldc = 1; double C_expected[] = { -2.41467, -1.189498 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1643) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1643) imag"); }; }; }; { int order = 102; int uplo = 121; int trans = 112; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 0.1}; double A[] = { -0.582, 0.09, -0.176, 0.784 }; int lda = 2; double B[] = { 0.687, -0.859, 0.945, 0.756 }; int ldb = 2; double C[] = { -0.663, -0.186 }; int ldc = 1; double C_expected[] = { -2.144496, 2.272884 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1644) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1644) imag"); }; }; }; { int order = 102; int uplo = 122; int trans = 112; int N = 1; int K = 2; double alpha[2] = {1, 0}; double beta[2] = {0, 0.1}; double A[] = { 0.231, -0.452, -0.112, -0.837 }; int lda = 2; double B[] = { -0.258, 0.464, -0.224, 0.893 }; int ldb = 2; double C[] = { -0.448, 0.046 }; int ldc = 1; double C_expected[] = { 1.840718, 0.577744 }; cblas_zsyr2k(order, uplo, trans, N, K, alpha, A, lda, B, ldb, beta, C, ldc); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(C[2*i], C_expected[2*i], dbleps, "zsyr2k(case 1645) real"); gsl_test_rel(C[2*i+1], C_expected[2*i+1], dbleps, "zsyr2k(case 1645) imag"); }; }; }; } gsl-1.16/cblas/source_gbmv_c.h0000664000252300025230000001353612171574312013234 00000000000000/* blas/source_gbmv_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; INDEX lenX, lenY, L, U; const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); CHECK_ARGS14(GBMV,order,TransA,M,N,KL,KU,alpha,A,lda,X,incX,beta,Y,incY); if (M == 0 || N == 0) return; if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; if (TransA == CblasNoTrans) { lenX = N; lenY = M; L = KL; U = KU; } else { lenX = M; lenY = N; L = KU; U = KL; } /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { REAL(Y, iy) = 0.0; IMAG(Y, iy) = 0.0; iy += incY; } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { const BASE y_real = REAL(Y, iy); const BASE y_imag = IMAG(Y, iy); const BASE tmpR = y_real * beta_real - y_imag * beta_imag; const BASE tmpI = y_real * beta_imag + y_imag * beta_real; REAL(Y, iy) = tmpR; IMAG(Y, iy) = tmpI; iy += incY; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; if ((order == CblasRowMajor && TransA == CblasNoTrans) || (order == CblasColMajor && TransA == CblasTrans)) { /* form y := alpha*A*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE dotR = 0.0; BASE dotI = 0.0; const INDEX j_min = (i > L ? i - L : 0); const INDEX j_max = GSL_MIN(lenX, i + U + 1); INDEX ix = OFFSET(lenX, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + (L + j - i)); const BASE A_imag = CONST_IMAG(A, lda * i + (L + j - i)); dotR += A_real * x_real - A_imag * x_imag; dotI += A_real * x_imag + A_imag * x_real; ix += incX; } REAL(Y, iy) += alpha_real * dotR - alpha_imag * dotI; IMAG(Y, iy) += alpha_real * dotI + alpha_imag * dotR; iy += incY; } } else if ((order == CblasRowMajor && TransA == CblasTrans) || (order == CblasColMajor && TransA == CblasNoTrans)) { /* form y := alpha*A'*x + y */ INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); BASE tmpR = alpha_real * x_real - alpha_imag * x_imag; BASE tmpI = alpha_real * x_imag + alpha_imag * x_real; if (!(tmpR == 0.0 && tmpI == 0.0)) { const INDEX i_min = (j > U ? j - U : 0); const INDEX i_max = GSL_MIN(lenY, j + L + 1); INDEX iy = OFFSET(lenY, incY) + i_min * incY; for (i = i_min; i < i_max; i++) { const BASE A_real = CONST_REAL(A, lda * j + (U + i - j)); const BASE A_imag = CONST_IMAG(A, lda * j + (U + i - j)); REAL(Y, iy) += A_real * tmpR - A_imag * tmpI; IMAG(Y, iy) += A_real * tmpI + A_imag * tmpR; iy += incY; } } ix += incX; } } else if (order == CblasRowMajor && TransA == CblasConjTrans) { /* form y := alpha*A^H*x + y */ INDEX ix = OFFSET(lenX, incX); for (j = 0; j < lenX; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); BASE tmpR = alpha_real * x_real - alpha_imag * x_imag; BASE tmpI = alpha_real * x_imag + alpha_imag * x_real; if (!(tmpR == 0.0 && tmpI == 0.0)) { const INDEX i_min = (j > U ? j - U : 0); const INDEX i_max = GSL_MIN(lenY, j + L + 1); INDEX iy = OFFSET(lenY, incY) + i_min * incY; for (i = i_min; i < i_max; i++) { const BASE A_real = CONST_REAL(A, lda * j + (U + i - j)); const BASE A_imag = CONST_IMAG(A, lda * j + (U + i - j)); REAL(Y, iy) += A_real * tmpR - (-A_imag) * tmpI; IMAG(Y, iy) += A_real * tmpI + (-A_imag) * tmpR; iy += incY; } } ix += incX; } } else if (order == CblasColMajor && TransA == CblasConjTrans) { /* form y := alpha*A^H*x + y */ INDEX iy = OFFSET(lenY, incY); for (i = 0; i < lenY; i++) { BASE dotR = 0.0; BASE dotI = 0.0; const INDEX j_min = (i > L ? i - L : 0); const INDEX j_max = GSL_MIN(lenX, i + U + 1); INDEX ix = OFFSET(lenX, incX) + j_min * incX; for (j = j_min; j < j_max; j++) { const BASE x_real = CONST_REAL(X, ix); const BASE x_imag = CONST_IMAG(X, ix); const BASE A_real = CONST_REAL(A, lda * i + (L + j - i)); const BASE A_imag = CONST_IMAG(A, lda * i + (L + j - i)); dotR += A_real * x_real - (-A_imag) * x_imag; dotI += A_real * x_imag + (-A_imag) * x_real; ix += incX; } REAL(Y, iy) += alpha_real * dotR - alpha_imag * dotI; IMAG(Y, iy) += alpha_real * dotI + alpha_imag * dotR; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } gsl-1.16/cblas/dgemm.c0000664000252300025230000000076612171574312011504 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_dgemm (const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc) { #define BASE double #include "source_gemm_r.h" #undef BASE } gsl-1.16/cblas/cdotu_sub.c0000664000252300025230000000045112171574312012371 00000000000000#include #include #include "cblas.h" void cblas_cdotu_sub (const int N, const void *X, const int incX, const void *Y, const int incY, void *result) { #define BASE float #define CONJ_SIGN 1.0 #include "source_dot_c.h" #undef CONJ_SIGN #undef BASE } gsl-1.16/cblas/dzasum.c0000664000252300025230000000031112171574312011700 00000000000000#include #include #include "cblas.h" double cblas_dzasum (const int N, const void *X, const int incX) { #define BASE double #include "source_asum_c.h" #undef BASE } gsl-1.16/cblas/test_swap.c0000664000252300025230000001611712171574312012421 00000000000000#include #include #include #include #include "tests.h" void test_swap (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float X[] = { 0.539f }; int incX = 1; float Y[] = { -0.262f }; int incY = -1; float expected1[] = { -0.262f }; float expected2[] = { 0.539f }; cblas_sswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], flteps, "sswap(case 88)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], flteps, "sswap(case 89)"); } }; }; { int N = 1; double X[] = { 0.906 }; int incX = 1; double Y[] = { 0.373 }; int incY = -1; double expected1[] = { 0.373 }; double expected2[] = { 0.906 }; cblas_dswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], dbleps, "dswap(case 90)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], dbleps, "dswap(case 91)"); } }; }; { int N = 1; float X[] = { -0.316f, -0.529f }; int incX = 1; float Y[] = { -0.313f, 0.363f }; int incY = -1; float expected1[] = { -0.313f, 0.363f }; float expected2[] = { -0.316f, -0.529f }; cblas_cswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], flteps, "cswap(case 92) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], flteps, "cswap(case 92) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], flteps, "cswap(case 93) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], flteps, "cswap(case 93) imag"); }; }; }; { int N = 1; double X[] = { 0.512, -0.89 }; int incX = 1; double Y[] = { -0.225, -0.511 }; int incY = -1; double expected1[] = { -0.225, -0.511 }; double expected2[] = { 0.512, -0.89 }; cblas_zswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], dbleps, "zswap(case 94) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], dbleps, "zswap(case 94) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], dbleps, "zswap(case 95) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], dbleps, "zswap(case 95) imag"); }; }; }; { int N = 1; float X[] = { 0.336f }; int incX = -1; float Y[] = { -0.431f }; int incY = 1; float expected1[] = { -0.431f }; float expected2[] = { 0.336f }; cblas_sswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], flteps, "sswap(case 96)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], flteps, "sswap(case 97)"); } }; }; { int N = 1; double X[] = { 0.764 }; int incX = -1; double Y[] = { -0.293 }; int incY = 1; double expected1[] = { -0.293 }; double expected2[] = { 0.764 }; cblas_dswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], dbleps, "dswap(case 98)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], dbleps, "dswap(case 99)"); } }; }; { int N = 1; float X[] = { -0.239f, 0.361f }; int incX = -1; float Y[] = { 0.149f, 0.347f }; int incY = 1; float expected1[] = { 0.149f, 0.347f }; float expected2[] = { -0.239f, 0.361f }; cblas_cswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], flteps, "cswap(case 100) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], flteps, "cswap(case 100) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], flteps, "cswap(case 101) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], flteps, "cswap(case 101) imag"); }; }; }; { int N = 1; double X[] = { -0.171, -0.936 }; int incX = -1; double Y[] = { 0.495, -0.835 }; int incY = 1; double expected1[] = { 0.495, -0.835 }; double expected2[] = { -0.171, -0.936 }; cblas_zswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], dbleps, "zswap(case 102) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], dbleps, "zswap(case 102) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], dbleps, "zswap(case 103) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], dbleps, "zswap(case 103) imag"); }; }; }; { int N = 1; float X[] = { -0.405f }; int incX = -1; float Y[] = { -0.213f }; int incY = -1; float expected1[] = { -0.213f }; float expected2[] = { -0.405f }; cblas_sswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], flteps, "sswap(case 104)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], flteps, "sswap(case 105)"); } }; }; { int N = 1; double X[] = { -0.761 }; int incX = -1; double Y[] = { -0.585 }; int incY = -1; double expected1[] = { -0.585 }; double expected2[] = { -0.761 }; cblas_dswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected1[i], dbleps, "dswap(case 106)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], expected2[i], dbleps, "dswap(case 107)"); } }; }; { int N = 1; float X[] = { 0.853f, 0.146f }; int incX = -1; float Y[] = { 0.009f, -0.178f }; int incY = -1; float expected1[] = { 0.009f, -0.178f }; float expected2[] = { 0.853f, 0.146f }; cblas_cswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], flteps, "cswap(case 108) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], flteps, "cswap(case 108) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], flteps, "cswap(case 109) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], flteps, "cswap(case 109) imag"); }; }; }; { int N = 1; double X[] = { -0.228, 0.386 }; int incX = -1; double Y[] = { 0.988, -0.084 }; int incY = -1; double expected1[] = { 0.988, -0.084 }; double expected2[] = { -0.228, 0.386 }; cblas_zswap(N, X, incX, Y, incY); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected1[2*i], dbleps, "zswap(case 110) real"); gsl_test_rel(X[2*i+1], expected1[2*i+1], dbleps, "zswap(case 110) imag"); }; }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[2*i], expected2[2*i], dbleps, "zswap(case 111) real"); gsl_test_rel(Y[2*i+1], expected2[2*i+1], dbleps, "zswap(case 111) imag"); }; }; }; } gsl-1.16/cblas/test_syr.c0000664000252300025230000000653012171574312012262 00000000000000#include #include #include #include #include "tests.h" void test_syr (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 1; int lda = 1; float alpha = 0.1f; float A[] = { -0.291f }; float X[] = { 0.845f }; int incX = -1; float A_expected[] = { -0.219597f }; cblas_ssyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr(case 1402)"); } }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; float alpha = 0.1f; float A[] = { -0.291f }; float X[] = { 0.845f }; int incX = -1; float A_expected[] = { -0.219597f }; cblas_ssyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr(case 1403)"); } }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; float alpha = 0.1f; float A[] = { -0.291f }; float X[] = { 0.845f }; int incX = -1; float A_expected[] = { -0.219597f }; cblas_ssyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr(case 1404)"); } }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; float alpha = 0.1f; float A[] = { -0.291f }; float X[] = { 0.845f }; int incX = -1; float A_expected[] = { -0.219597f }; cblas_ssyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], flteps, "ssyr(case 1405)"); } }; }; { int order = 101; int uplo = 121; int N = 1; int lda = 1; double alpha = -0.3; double A[] = { -0.65 }; double X[] = { -0.891 }; int incX = -1; double A_expected[] = { -0.8881643 }; cblas_dsyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr(case 1406)"); } }; }; { int order = 101; int uplo = 122; int N = 1; int lda = 1; double alpha = -0.3; double A[] = { -0.65 }; double X[] = { -0.891 }; int incX = -1; double A_expected[] = { -0.8881643 }; cblas_dsyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr(case 1407)"); } }; }; { int order = 102; int uplo = 121; int N = 1; int lda = 1; double alpha = -0.3; double A[] = { -0.65 }; double X[] = { -0.891 }; int incX = -1; double A_expected[] = { -0.8881643 }; cblas_dsyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr(case 1408)"); } }; }; { int order = 102; int uplo = 122; int N = 1; int lda = 1; double alpha = -0.3; double A[] = { -0.65 }; double X[] = { -0.891 }; int incX = -1; double A_expected[] = { -0.8881643 }; cblas_dsyr(order, uplo, N, alpha, X, incX, A, lda); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(A[i], A_expected[i], dbleps, "dsyr(case 1409)"); } }; }; } gsl-1.16/cblas/source_nrm2_c.h0000664000252300025230000000300312171574312013143 00000000000000/* blas/source_nrm2_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { BASE scale = 0.0; BASE ssq = 1.0; INDEX i; INDEX ix = 0; if (N == 0 || incX < 1) { return 0; } for (i = 0; i < N; i++) { const BASE x = CONST_REAL(X, ix); const BASE y = CONST_IMAG(X, ix); if (x != 0.0) { const BASE ax = fabs(x); if (scale < ax) { ssq = 1.0 + ssq * (scale / ax) * (scale / ax); scale = ax; } else { ssq += (ax / scale) * (ax / scale); } } if (y != 0.0) { const BASE ay = fabs(y); if (scale < ay) { ssq = 1.0 + ssq * (scale / ay) * (scale / ay); scale = ay; } else { ssq += (ay / scale) * (ay / scale); } } ix += incX; } return scale * sqrt(ssq); } gsl-1.16/cblas/test_rot.c0000664000252300025230000003117212171574312012251 00000000000000#include #include #include #include #include "tests.h" void test_rot (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float c = 0.0f; float s = 0.0f; float X[] = { -0.314f }; int incX = 1; float Y[] = { -0.406f }; int incY = -1; float x_expected[] = { 0.0f }; float y_expected[] = { 0.0f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 558)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 559)"); } }; }; { int N = 1; float c = 0.866025403784f; float s = 0.5f; float X[] = { -0.314f }; int incX = 1; float Y[] = { -0.406f }; int incY = -1; float x_expected[] = { -0.474932f }; float y_expected[] = { -0.194606f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 560)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 561)"); } }; }; { int N = 1; float c = 0.0f; float s = -1.0f; float X[] = { -0.314f }; int incX = 1; float Y[] = { -0.406f }; int incY = -1; float x_expected[] = { 0.406f }; float y_expected[] = { -0.314f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 562)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 563)"); } }; }; { int N = 1; float c = -1.0f; float s = 0.0f; float X[] = { -0.314f }; int incX = 1; float Y[] = { -0.406f }; int incY = -1; float x_expected[] = { 0.314f }; float y_expected[] = { 0.406f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 564)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 565)"); } }; }; { int N = 1; double c = 0; double s = 0; double X[] = { -0.493 }; int incX = 1; double Y[] = { -0.014 }; int incY = -1; double x_expected[] = { 0.0 }; double y_expected[] = { 0.0 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 566)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 567)"); } }; }; { int N = 1; double c = 0.866025403784; double s = 0.5; double X[] = { -0.493 }; int incX = 1; double Y[] = { -0.014 }; int incY = -1; double x_expected[] = { -0.433950524066 }; double y_expected[] = { 0.234375644347 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 568)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 569)"); } }; }; { int N = 1; double c = 0; double s = -1; double X[] = { -0.493 }; int incX = 1; double Y[] = { -0.014 }; int incY = -1; double x_expected[] = { 0.014 }; double y_expected[] = { -0.493 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 570)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 571)"); } }; }; { int N = 1; double c = -1; double s = 0; double X[] = { -0.493 }; int incX = 1; double Y[] = { -0.014 }; int incY = -1; double x_expected[] = { 0.493 }; double y_expected[] = { 0.014 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 572)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 573)"); } }; }; { int N = 1; float c = 0.0f; float s = 0.0f; float X[] = { -0.808f }; int incX = -1; float Y[] = { -0.511f }; int incY = 1; float x_expected[] = { 0.0f }; float y_expected[] = { 0.0f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 574)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 575)"); } }; }; { int N = 1; float c = 0.866025403784f; float s = 0.5f; float X[] = { -0.808f }; int incX = -1; float Y[] = { -0.511f }; int incY = 1; float x_expected[] = { -0.955249f }; float y_expected[] = { -0.038539f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 576)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 577)"); } }; }; { int N = 1; float c = 0.0f; float s = -1.0f; float X[] = { -0.808f }; int incX = -1; float Y[] = { -0.511f }; int incY = 1; float x_expected[] = { 0.511f }; float y_expected[] = { -0.808f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 578)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 579)"); } }; }; { int N = 1; float c = -1.0f; float s = 0.0f; float X[] = { -0.808f }; int incX = -1; float Y[] = { -0.511f }; int incY = 1; float x_expected[] = { 0.808f }; float y_expected[] = { 0.511f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 580)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 581)"); } }; }; { int N = 1; double c = 0; double s = 0; double X[] = { -0.176 }; int incX = -1; double Y[] = { -0.165 }; int incY = 1; double x_expected[] = { 0.0 }; double y_expected[] = { 0.0 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 582)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 583)"); } }; }; { int N = 1; double c = 0.866025403784; double s = 0.5; double X[] = { -0.176 }; int incX = -1; double Y[] = { -0.165 }; int incY = 1; double x_expected[] = { -0.234920471066 }; double y_expected[] = { -0.0548941916244 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 584)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 585)"); } }; }; { int N = 1; double c = 0; double s = -1; double X[] = { -0.176 }; int incX = -1; double Y[] = { -0.165 }; int incY = 1; double x_expected[] = { 0.165 }; double y_expected[] = { -0.176 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 586)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 587)"); } }; }; { int N = 1; double c = -1; double s = 0; double X[] = { -0.176 }; int incX = -1; double Y[] = { -0.165 }; int incY = 1; double x_expected[] = { 0.176 }; double y_expected[] = { 0.165 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 588)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 589)"); } }; }; { int N = 1; float c = 0.0f; float s = 0.0f; float X[] = { -0.201f }; int incX = -1; float Y[] = { 0.087f }; int incY = -1; float x_expected[] = { 0.0f }; float y_expected[] = { 0.0f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 590)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 591)"); } }; }; { int N = 1; float c = 0.866025403784f; float s = 0.5f; float X[] = { -0.201f }; int incX = -1; float Y[] = { 0.087f }; int incY = -1; float x_expected[] = { -0.130571f }; float y_expected[] = { 0.175844f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 592)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 593)"); } }; }; { int N = 1; float c = 0.0f; float s = -1.0f; float X[] = { -0.201f }; int incX = -1; float Y[] = { 0.087f }; int incY = -1; float x_expected[] = { -0.087f }; float y_expected[] = { -0.201f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 594)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 595)"); } }; }; { int N = 1; float c = -1.0f; float s = 0.0f; float X[] = { -0.201f }; int incX = -1; float Y[] = { 0.087f }; int incY = -1; float x_expected[] = { 0.201f }; float y_expected[] = { -0.087f }; cblas_srot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srot(case 596)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srot(case 597)"); } }; }; { int N = 1; double c = 0; double s = 0; double X[] = { -0.464 }; int incX = -1; double Y[] = { 0.7 }; int incY = -1; double x_expected[] = { 0.0 }; double y_expected[] = { 0.0 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 598)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 599)"); } }; }; { int N = 1; double c = 0.866025403784; double s = 0.5; double X[] = { -0.464 }; int incX = -1; double Y[] = { 0.7 }; int incY = -1; double x_expected[] = { -0.051835787356 }; double y_expected[] = { 0.838217782649 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 600)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 601)"); } }; }; { int N = 1; double c = 0; double s = -1; double X[] = { -0.464 }; int incX = -1; double Y[] = { 0.7 }; int incY = -1; double x_expected[] = { -0.7 }; double y_expected[] = { -0.464 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 602)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 603)"); } }; }; { int N = 1; double c = -1; double s = 0; double X[] = { -0.464 }; int incX = -1; double Y[] = { 0.7 }; int incY = -1; double x_expected[] = { 0.464 }; double y_expected[] = { -0.7 }; cblas_drot(N, X, incX, Y, incY, c, s); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drot(case 604)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drot(case 605)"); } }; }; } gsl-1.16/cblas/xerbla.c0000664000252300025230000000226612171574312011665 00000000000000/* xerbla.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "cblas.h" void cblas_xerbla (int p, const char *rout, const char *form, ...) { va_list ap; va_start (ap, form); if (p) { fprintf (stderr, "Parameter %d to routine %s was incorrect\n", p, rout); } vfprintf (stderr, form, ap); va_end (ap); abort (); } gsl-1.16/cblas/source_hpr2.h0000664000252300025230000001070312171574312012643 00000000000000/* blas/source_hpr2.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS9(CZ_HPR2,order,Uplo,N,alpha,X,incX,Y,incY,Ap); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (alpha_real == 0.0 && alpha_imag == 0.0) return; if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE Xi_real = CONST_REAL(X, ix); const BASE Xi_imag = CONST_IMAG(X, ix); /* tmp1 = alpha Xi */ const BASE tmp1_real = alpha_real * Xi_real - alpha_imag * Xi_imag; const BASE tmp1_imag = alpha_imag * Xi_real + alpha_real * Xi_imag; const BASE Yi_real = CONST_REAL(Y, iy); const BASE Yi_imag = CONST_IMAG(Y, iy); /* tmp2 = conj(alpha) Yi */ const BASE tmp2_real = alpha_real * Yi_real + alpha_imag * Yi_imag; const BASE tmp2_imag = -alpha_imag * Yi_real + alpha_real * Yi_imag; INDEX jx = ix + incX; INDEX jy = iy + incY; /* Aij = alpha*Xi*conj(Yj) + conj(alpha)*Yi*conj(Xj) */ REAL(Ap, TPUP(N, i, i)) += 2 * (tmp1_real * Yi_real + tmp1_imag * Yi_imag); IMAG(Ap, TPUP(N, i, i)) = 0; for (j = i + 1; j < N; j++) { const BASE Xj_real = CONST_REAL(X, jx); const BASE Xj_imag = CONST_IMAG(X, jx); const BASE Yj_real = CONST_REAL(Y, jy); const BASE Yj_imag = CONST_IMAG(Y, jy); REAL(Ap, TPUP(N, i, j)) += ((tmp1_real * Yj_real + tmp1_imag * Yj_imag) + (tmp2_real * Xj_real + tmp2_imag * Xj_imag)); IMAG(Ap, TPUP(N, i, j)) += conj * ((tmp1_imag * Yj_real - tmp1_real * Yj_imag) + (tmp2_imag * Xj_real - tmp2_real * Xj_imag)); jx += incX; jy += incY; } ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE Xi_real = CONST_REAL(X, ix); const BASE Xi_imag = CONST_IMAG(X, ix); const BASE tmp1_real = alpha_real * Xi_real - alpha_imag * Xi_imag; const BASE tmp1_imag = alpha_imag * Xi_real + alpha_real * Xi_imag; const BASE Yi_real = CONST_REAL(Y, iy); const BASE Yi_imag = CONST_IMAG(Y, iy); const BASE tmp2_real = alpha_real * Yi_real + alpha_imag * Yi_imag; const BASE tmp2_imag = -alpha_imag * Yi_real + alpha_real * Yi_imag; INDEX jx = OFFSET(N, incX); INDEX jy = OFFSET(N, incY); /* Aij = alpha*Xi*conj(Yj) + conj(alpha)*Yi*conj(Xj) */ for (j = 0; j < i; j++) { const BASE Xj_real = CONST_REAL(X, jx); const BASE Xj_imag = CONST_IMAG(X, jx); const BASE Yj_real = CONST_REAL(Y, jy); const BASE Yj_imag = CONST_IMAG(Y, jy); REAL(Ap, TPLO(N, i, j)) += ((tmp1_real * Yj_real + tmp1_imag * Yj_imag) + (tmp2_real * Xj_real + tmp2_imag * Xj_imag)); IMAG(Ap, TPLO(N, i, j)) += conj * ((tmp1_imag * Yj_real - tmp1_real * Yj_imag) + (tmp2_imag * Xj_real - tmp2_real * Xj_imag)); jx += incX; jy += incY; } REAL(Ap, TPLO(N, i, i)) += 2 * (tmp1_real * Yi_real + tmp1_imag * Yi_imag); IMAG(Ap, TPLO(N, i, i)) = 0; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/test_rotm.c0000664000252300025230000010502512171574312012425 00000000000000#include #include #include #include #include "tests.h" void test_rotm (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float h[] = { -1.0f, -4.44982e+03f, -15.5826f, 7.091334e+04f, 2.95912e+04f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -3.956017e+04f }; float y_expected[] = { -1.657054e+04f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 654)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 655)"); } }; }; { int N = 1; float h[] = { 0.0f, 15.9728f, 6.400638e+03f, 1.733082e-05f, 1.524511e-04f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -0.0340097f }; float y_expected[] = { -218.182f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 656)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 657)"); } }; }; { int N = 1; float h[] = { 1.0f, 5.688411e+04f, 5.914789e+03f, 0.00210473f, 0.0231019f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -1.93462e+03f }; float y_expected[] = { 0.0210629f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 658)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 659)"); } }; }; { int N = 1; float h[] = { -2.0f, -0.582083f, 0.00103161f, -3.429851e-05f, 7.411469e-05f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -0.034f }; float y_expected[] = { -0.56f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 660)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 661)"); } }; }; { int N = 1; float h[] = { -1.0f, 115.163f, -6.715448e+04f, -258.695f, -16.2552f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { 140.954f }; float y_expected[] = { 2.292355e+03f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 662)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 663)"); } }; }; { int N = 1; float h[] = { 0.0f, -3.314862e+03f, -442.976f, -214.586f, -25.9716f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { 120.134f }; float y_expected[] = { 14.5012f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 664)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 665)"); } }; }; { int N = 1; float h[] = { 1.0f, -1.177304e+03f, -1.236662e-04f, -0.186585f, 1.15841f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { 39.4683f }; float y_expected[] = { -0.614711f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 666)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 667)"); } }; }; { int N = 1; float h[] = { -2.0f, -88.9796f, 0.808226f, 1.106582e-05f, -0.00862288f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -0.034f }; float y_expected[] = { -0.56f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 668)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 669)"); } }; }; { int N = 1; float h[] = { -1.0f, -0.00225865f, 8.338551e+04f, -1.98282f, -2.409905e-05f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { 1.11046f }; float y_expected[] = { -2.835107e+03f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 670)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 671)"); } }; }; { int N = 1; float h[] = { 0.0f, 0.258779f, 74.2802f, 0.923299f, 4.847128e+03f }; float X[] = { -0.034f }; int incX = 1; float Y[] = { -0.56f }; int incY = -1; float x_expected[] = { -0.551048f }; float y_expected[] = { -3.08553f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 672)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 673)"); } }; }; { int N = 1; double h[] = { -1.0, -8.00850735044, 0.0204647351647, 1.898461360078e-04, -4.32701487194 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -6.72728115497 }; double y_expected[] = { 3.09369795149 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 674)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 675)"); } }; }; { int N = 1; double h[] = { 0.0, 1.230610998905e+04, 210.056650134, 9.20757074452, 2.072879691524e+03 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -5.70658279935 }; double y_expected[] = { 175.736586112 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 676)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 677)"); } }; }; { int N = 1; double h[] = { 1.0, -1.244580625511e+03, 1.11154682624, 2.269384716089e-05, -0.0143785338883 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -1.046158725429e+03 }; double y_expected[] = { -0.829776862405 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 678)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 679)"); } }; }; { int N = 1; double h[] = { -2.0, 293.927527276, -2.614737743134e+03, 10.3164975867, -7.947030813329e+03 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { 0.84 }; double y_expected[] = { -0.711 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 680)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 681)"); } }; }; { int N = 1; double h[] = { -1.0, -0.0178609251786, 0.00983044958941, 105.944529127, 1.687350579234e-05 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -75.3415633866 }; double y_expected[] = { 0.00824558059248 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 682)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 683)"); } }; }; { int N = 1; double h[] = { 0.0, 6.241999071283e-05, 2.495425882445e+03, 304.604891146, 1.604644714854e+04 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -215.734077605 }; double y_expected[] = { 2.095446741254e+03 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 684)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 685)"); } }; }; { int N = 1; double h[] = { 1.0, -0.058097639487, 8.386083625428e+03, -10.5233229994, 184.653245391 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { -0.759802017169 }; double y_expected[] = { -132.128457473 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 686)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 687)"); } }; }; { int N = 1; double h[] = { -2.0, -92.8754629217, 1.467547244529e-04, -3.197881072301e-04, -1.89874629713 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { 0.84 }; double y_expected[] = { -0.711 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 688)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 689)"); } }; }; { int N = 1; double h[] = { -1.0, -0.0961996230646, -2.248344186185e-05, -316.856396787, 1.663969157848e+03 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { 225.204090432 }; double y_expected[] = { -1.183082090116e+03 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 690)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 691)"); } }; }; { int N = 1; double h[] = { 0.0, -201.862043128, 4.999906166451e-04, -0.0653365534487, 586.454083328 }; double X[] = { 0.84 }; int incX = 1; double Y[] = { -0.711 }; int incY = -1; double x_expected[] = { 0.886454289502 }; double y_expected[] = { -0.710580007882 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 692)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 693)"); } }; }; { int N = 1; float h[] = { -1.0f, 162.86f, 1.379231e-04f, 9.67285f, 0.929218f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 106.173f }; float y_expected[] = { 0.358765f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 694)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 695)"); } }; }; { int N = 1; float h[] = { 0.0f, 537.387f, -21.6404f, -1.017074e+03f, -1.730546e-05f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { -391.961f }; float y_expected[] = { -13.2258f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 696)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 697)"); } }; }; { int N = 1; float h[] = { 1.0f, -1.339977e-05f, 0.00522784f, 2.020352e-05f, -0.0654088f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 0.385992f }; float y_expected[] = { -0.654248f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 698)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 699)"); } }; }; { int N = 1; float h[] = { -2.0f, -50.922f, 31.5261f, -0.194913f, 0.206417f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 0.629f }; float y_expected[] = { 0.386f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 700)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 701)"); } }; }; { int N = 1; float h[] = { -1.0f, 1.15659f, 2.599832e+04f, 435.891f, 1.546671e+03f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 168.981f }; float y_expected[] = { 1.694996e+04f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 702)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 703)"); } }; }; { int N = 1; float h[] = { 0.0f, 3.359889e-04f, -0.00134822f, -12.9136f, -5.655622e+04f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { -4.35566f }; float y_expected[] = { 0.385152f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 704)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 705)"); } }; }; { int N = 1; float h[] = { 1.0f, 2.75119e-05f, 1.70314f, 18.4063f, 185.731f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 0.386017f }; float y_expected[] = { 71.063f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 706)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 707)"); } }; }; { int N = 1; float h[] = { -2.0f, -1.031009e-04f, -3.378602e+04f, 7.869358e-05f, 157.303f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 0.629f }; float y_expected[] = { 0.386f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 708)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 709)"); } }; }; { int N = 1; float h[] = { -1.0f, 0.00207419f, -89.9374f, -1.40414f, -25.1433f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { -0.540694f }; float y_expected[] = { -66.276f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 710)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 711)"); } }; }; { int N = 1; float h[] = { 0.0f, -4.972562e+04f, 3.65698e-05f, 632.116f, 0.195207f }; float X[] = { 0.629f }; int incX = -1; float Y[] = { 0.386f }; int incY = 1; float x_expected[] = { 244.626f }; float y_expected[] = { 0.386023f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 712)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 713)"); } }; }; { int N = 1; double h[] = { -1.0, 8.64768339859, -105.906731008, -347.053994991, -1.28802789909 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { 218.021288159 }; double y_expected[] = { 72.2119146942 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 714)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 715)"); } }; }; { int N = 1; double h[] = { 0.0, 0.926057152065, 3.315158944851e-04, -1.203638835886e+03, 0.00197484344868 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { 775.673049147 }; double y_expected[] = { -0.645223441713 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 716)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 717)"); } }; }; { int N = 1; double h[] = { 1.0, -9.404298701289e-05, -0.00380843381223, -0.0767212569647, -3.66628238398 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { -0.644936615027 }; double y_expected[] = { 3.03875213767 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 718)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 719)"); } }; }; { int N = 1; double h[] = { -2.0, 0.0900662226146, 0.00250500071094, 6.46624826995, -2.159443948633e-05 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { -0.674 }; double y_expected[] = { -0.645 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 720)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 721)"); } }; }; { int N = 1; double h[] = { -1.0, 8.011686652935e+03, -23.8989526115, -1.104879849207e+04, 0.108740065261 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { 1.726598223305e+03 }; double y_expected[] = { 16.0377567181 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 722)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 723)"); } }; }; { int N = 1; double h[] = { 0.0, 5.162681717012e-05, 48.059409562, -4.701209666609e+04, -6.80333644488e+04 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { 3.032212834963e+04 }; double y_expected[] = { -33.0370420448 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 724)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 725)"); } }; }; { int N = 1; double h[] = { 1.0, -5.554806445579e-04, 5.101973060197e+04, -5.932040237374e+03, 3.91045757161 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { -0.644625606046 }; double y_expected[] = { -1.84824513369 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 726)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 727)"); } }; }; { int N = 1; double h[] = { -2.0, -1.697234884626e-05, 101.466514367, 5.772202675851e+03, -6.884724590773e-04 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { -0.674 }; double y_expected[] = { -0.645 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 728)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 729)"); } }; }; { int N = 1; double h[] = { -1.0, -0.0199779342753, 13.013123509, -17.8393347684, 0.129333249919 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { 11.5198360534 }; double y_expected[] = { -8.85426519126 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 730)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 731)"); } }; }; { int N = 1; double h[] = { 0.0, -6.673799053773e+04, 587.759435538, 3.493966594965e+04, 2.098374142331e-05 }; double X[] = { -0.674 }; int incX = -1; double Y[] = { -0.645 }; int incY = 1; double x_expected[] = { -2.253675853752e+04 }; double y_expected[] = { -396.794859553 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 732)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 733)"); } }; }; { int N = 1; float h[] = { -1.0f, 0.070033f, 0.034824f, -0.00740144f, -0.153474f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.00701131f }; float y_expected[] = { 0.0119423f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 734)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 735)"); } }; }; { int N = 1; float h[] = { 0.0f, 7.618016e-04f, -0.00396806f, -92.8408f, -0.0018571f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { 9.4516f }; float y_expected[] = { -0.10256f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 736)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 737)"); } }; }; { int N = 1; float h[] = { 1.0f, -5.833806e+03f, 0.00265668f, -587.573f, 0.0972416f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { 647.449f }; float y_expected[] = { 0.100984f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 738)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 739)"); } }; }; { int N = 1; float h[] = { -2.0f, -8.93339e+04f, -5.16022e-05f, 2.589784e-05f, -7.52586f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.111f }; float y_expected[] = { -0.103f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 740)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 741)"); } }; }; { int N = 1; float h[] = { -1.0f, 0.125135f, 0.00586453f, 1.100694e-05f, -0.0137436f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.0138912f }; float y_expected[] = { 7.64631e-04f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 742)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 743)"); } }; }; { int N = 1; float h[] = { 0.0f, -0.0996414f, 0.00505806f, 1.321441e-05f, 1.151406e-04f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.111001f }; float y_expected[] = { -0.103561f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 744)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 745)"); } }; }; { int N = 1; float h[] = { 1.0f, 8.18165f, 169.902f, -1.453316e-05f, 1.539957e+03f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -1.01116f }; float y_expected[] = { -158.505f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 746)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 747)"); } }; }; { int N = 1; float h[] = { -2.0f, 1.827623e-04f, -0.0528808f, 24.7305f, 328.39f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.111f }; float y_expected[] = { -0.103f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 748)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 749)"); } }; }; { int N = 1; float h[] = { -1.0f, -0.0876053f, 7.858704e+04f, -4.758389e+03f, -0.0114841f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { 490.124f }; float y_expected[] = { -8.72316e+03f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 750)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 751)"); } }; }; { int N = 1; float h[] = { 0.0f, 0.00192188f, -1.031412e-05f, -0.00123957f, 0.312197f }; float X[] = { -0.111f }; int incX = -1; float Y[] = { -0.103f }; int incY = -1; float x_expected[] = { -0.110872f }; float y_expected[] = { -0.102999f }; cblas_srotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "srotm(case 752)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], flteps, "srotm(case 753)"); } }; }; { int N = 1; double h[] = { -1.0, -0.0253351881542, -0.105247702585, -7.18405641016, -5.409804811228e+04 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.21037864911 }; double y_expected[] = { 1.622920078085e+03 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 754)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 755)"); } }; }; { int N = 1; double h[] = { 0.0, 8.503080247483e+03, -6.186691885896e-05, -0.201279925805, -5.810746179529e-05 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.209038397774 }; double y_expected[] = { -0.0300125589845 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 756)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 757)"); } }; }; { int N = 1; double h[] = { 1.0, 0.351101212426, 64.9574703355, 3.015315809025e-05, -5.291308403203e-04 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.0412735461225 }; double y_expected[] = { -0.202984126075 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 758)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 759)"); } }; }; { int N = 1; double h[] = { -2.0, 0.0220262018719, -0.00311338149392, -70.6413298654, 31.8952671416 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.203 }; double y_expected[] = { -0.03 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 760)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 761)"); } }; }; { int N = 1; double h[] = { -1.0, 1.549812806922e+04, -4.868519165134e+04, -5.230242596804e+04, 1.58043443456e+04 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 4.715192777093e+03 }; double y_expected[] = { -1.035722423559e+04 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 762)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 763)"); } }; }; { int N = 1; double h[] = { 0.0, -3.30917942895, -0.0100316602276, -0.0222191220411, -0.0881815578726 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.203666573661 }; double y_expected[] = { -0.0320364270262 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 764)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 765)"); } }; }; { int N = 1; double h[] = { 1.0, 5.68327898035, 1.646867755046e-04, -0.106527931872, -28.2458905362 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 1.12370563301 }; double y_expected[] = { 0.644376716086 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 766)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 767)"); } }; }; { int N = 1; double h[] = { -2.0, 2.20585352008, 1.117638462348e+03, -0.116329468158, 0.00362096329059 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.203 }; double y_expected[] = { -0.03 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 768)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 769)"); } }; }; { int N = 1; double h[] = { -1.0, -0.00182683798892, -2.288460066516e-05, -37.55844708, -9.54075659826e-05 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 1.12638256429 }; double y_expected[] = { -1.783346955549e-06 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 770)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 771)"); } }; }; { int N = 1; double h[] = { 0.0, 1.02690456955e-04, -20.1292302013, -1.703870486677e-04, 5.17477399477 }; double X[] = { 0.203 }; int incX = -1; double Y[] = { -0.03 }; int incY = -1; double x_expected[] = { 0.203005111611 }; double y_expected[] = { -4.11623373087 }; cblas_drotm(N, X, incX, Y, incY, h); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "drotm(case 772)"); } }; { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Y[i], y_expected[i], dbleps, "drotm(case 773)"); } }; }; } gsl-1.16/cblas/source_hpmv.h0000664000252300025230000001230112171574312012736 00000000000000/* blas/source_hpmv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j; const int conj = (order == CblasColMajor) ? -1 : 1; CHECK_ARGS10(CZ_HPMV,order,Uplo,N,alpha,Ap,X,incX,beta,Y,incY); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); const BASE beta_real = CONST_REAL0(beta); const BASE beta_imag = CONST_IMAG0(beta); if ((alpha_real == 0.0 && alpha_imag == 0.0) && (beta_real == 1.0 && beta_imag == 0.0)) return; /* form y := beta*y */ if (beta_real == 0.0 && beta_imag == 0.0) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { REAL(Y, iy) = 0.0; IMAG(Y, iy) = 0.0; iy += incY; } } else if (!(beta_real == 1.0 && beta_imag == 0.0)) { INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE y_real = REAL(Y, iy); const BASE y_imag = IMAG(Y, iy); const BASE tmpR = y_real * beta_real - y_imag * beta_imag; const BASE tmpI = y_real * beta_imag + y_imag * beta_real; REAL(Y, iy) = tmpR; IMAG(Y, iy) = tmpI; iy += incY; } } if (alpha_real == 0.0 && alpha_imag == 0.0) return; /* form y := alpha*A*x + y */ if ((order == CblasRowMajor && Uplo == CblasUpper) || (order == CblasColMajor && Uplo == CblasLower)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = i + 1; const INDEX j_max = N; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; BASE Aii_real = CONST_REAL(Ap, TPUP(N, i, i)); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(Ap, TPUP(N, i, j)); BASE Aij_imag = conj * CONST_IMAG(Ap, TPUP(N, i, j)); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix += incX; iy += incY; } } else if ((order == CblasRowMajor && Uplo == CblasLower) || (order == CblasColMajor && Uplo == CblasUpper)) { INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { BASE x_real = CONST_REAL(X, ix); BASE x_imag = CONST_IMAG(X, ix); BASE temp1_real = alpha_real * x_real - alpha_imag * x_imag; BASE temp1_imag = alpha_real * x_imag + alpha_imag * x_real; BASE temp2_real = 0.0; BASE temp2_imag = 0.0; const INDEX j_min = 0; const INDEX j_max = i; INDEX jx = OFFSET(N, incX) + j_min * incX; INDEX jy = OFFSET(N, incY) + j_min * incY; BASE Aii_real = CONST_REAL(Ap, TPLO(N, i, i)); /* Aii_imag is zero */ REAL(Y, iy) += temp1_real * Aii_real; IMAG(Y, iy) += temp1_imag * Aii_real; for (j = j_min; j < j_max; j++) { BASE Aij_real = CONST_REAL(Ap, TPLO(N, i, j)); BASE Aij_imag = conj * CONST_IMAG(Ap, TPLO(N, i, j)); REAL(Y, jy) += temp1_real * Aij_real - temp1_imag * (-Aij_imag); IMAG(Y, jy) += temp1_real * (-Aij_imag) + temp1_imag * Aij_real; x_real = CONST_REAL(X, jx); x_imag = CONST_IMAG(X, jx); temp2_real += x_real * Aij_real - x_imag * Aij_imag; temp2_imag += x_real * Aij_imag + x_imag * Aij_real; jx += incX; jy += incY; } REAL(Y, iy) += alpha_real * temp2_real - alpha_imag * temp2_imag; IMAG(Y, iy) += alpha_real * temp2_imag + alpha_imag * temp2_real; ix += incX; iy += incY; } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cblas/test_trsv.c0000664000252300025230000011554112171574312012446 00000000000000#include #include #include #include #include "tests.h" void test_trsv (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.349749f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1150)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.348f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1151)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.349749f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1152)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.348f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1153)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.349749f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1154)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.348f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1155)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.349749f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1156)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.995f }; float X[] = { 0.348f }; int incX = -1; float x_expected[] = { 0.348f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1157)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.42623f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1158)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.338f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1159)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.42623f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1160)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.338f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1161)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.42623f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1162)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.338f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1163)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.42623f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1164)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.793f }; float X[] = { 0.338f }; int incX = -1; float x_expected[] = { 0.338f }; cblas_strsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], flteps, "strsv(case 1165)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { -2.25238095238 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1166)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { 0.473 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1167)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { -2.25238095238 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1168)"); } }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { 0.473 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1169)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { -2.25238095238 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1170)"); } }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { 0.473 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1171)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { -2.25238095238 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1172)"); } }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { -0.21 }; double X[] = { 0.473 }; int incX = -1; double x_expected[] = { 0.473 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1173)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 1.30882352941 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1174)"); } }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 0.979 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1175)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 1.30882352941 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1176)"); } }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 0.979 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1177)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 1.30882352941 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1178)"); } }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 0.979 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1179)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 1.30882352941 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1180)"); } }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.748 }; double X[] = { 0.979 }; int incX = -1; double x_expected[] = { 0.979 }; cblas_dtrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], x_expected[i], dbleps, "dtrsv(case 1181)"); } }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -1.55112f, -0.372004f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1182) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1182) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -0.95f, 0.343f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1183) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1183) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -1.55112f, -0.372004f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1184) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1184) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -0.95f, 0.343f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1185) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1185) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -1.55112f, -0.372004f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1186) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1186) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -0.95f, 0.343f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1187) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1187) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -1.55112f, -0.372004f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1188) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1188) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.529f, -0.348f }; float X[] = { -0.95f, 0.343f }; int incX = -1; float x_expected[] = { -0.95f, 0.343f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1189) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1189) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 1.43572f, -0.843108f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1190) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1190) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 0.896f, -0.447f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1191) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1191) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 1.43572f, -0.843108f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1192) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1192) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 0.896f, -0.447f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1193) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1193) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 1.43572f, -0.843108f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1194) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1194) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 0.896f, -0.447f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1195) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1195) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 1.43572f, -0.843108f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1196) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1196) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.6f, 0.041f }; float X[] = { 0.896f, -0.447f }; int incX = -1; float x_expected[] = { 0.896f, -0.447f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1197) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1197) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.289642f, 0.951701f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1198) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1198) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.765f, 0.18f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1199) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1199) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.289642f, 0.951701f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1200) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1200) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.765f, 0.18f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1201) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1201) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.289642f, 0.951701f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1202) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1202) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.765f, 0.18f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1203) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1203) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.289642f, 0.951701f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1204) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1204) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; float A[] = { 0.397f, 0.683f }; float X[] = { 0.765f, 0.18f }; int incX = -1; float x_expected[] = { 0.765f, 0.18f }; cblas_ctrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], flteps, "ctrsv(case 1205) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], flteps, "ctrsv(case 1205) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.471957414573, -0.173714770642 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1206) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1206) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.627, 0.281 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1207) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1207) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.471957414573, -0.173714770642 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1208) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1208) imag"); }; }; }; { int order = 101; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.627, 0.281 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1209) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1209) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.471957414573, -0.173714770642 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1210) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1210) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.627, 0.281 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1211) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1211) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.471957414573, -0.173714770642 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1212) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1212) imag"); }; }; }; { int order = 102; int trans = 111; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.977, -0.955 }; double X[] = { -0.627, 0.281 }; int incX = -1; double x_expected[] = { -0.627, 0.281 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1213) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1213) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 5.18357980622, -0.587200407955 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1214) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1214) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 0.3, -0.874 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1215) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1215) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 5.18357980622, -0.587200407955 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1216) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1216) imag"); }; }; }; { int order = 101; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 0.3, -0.874 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1217) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1217) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 5.18357980622, -0.587200407955 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1218) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1218) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 0.3, -0.874 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1219) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1219) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 5.18357980622, -0.587200407955 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1220) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1220) imag"); }; }; }; { int order = 102; int trans = 112; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.076, -0.16 }; double X[] = { 0.3, -0.874 }; int incX = -1; double x_expected[] = { 0.3, -0.874 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1221) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1221) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.371144591432, -0.0712292456544 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1222) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1222) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.085, -0.303 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1223) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1223) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.371144591432, -0.0712292456544 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1224) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1224) imag"); }; }; }; { int order = 101; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.085, -0.303 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1225) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1225) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.371144591432, -0.0712292456544 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1226) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1226) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 121; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.085, -0.303 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1227) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1227) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 131; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.371144591432, -0.0712292456544 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1228) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1228) imag"); }; }; }; { int order = 102; int trans = 113; int uplo = 122; int diag = 132; int N = 1; int lda = 1; double A[] = { 0.372, -0.745 }; double X[] = { -0.085, -0.303 }; int incX = -1; double x_expected[] = { -0.085, -0.303 }; cblas_ztrsv(order, uplo, trans, diag, N, A, lda, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], x_expected[2*i], dbleps, "ztrsv(case 1229) real"); gsl_test_rel(X[2*i+1], x_expected[2*i+1], dbleps, "ztrsv(case 1229) imag"); }; }; }; } gsl-1.16/cblas/cher2.c0000664000252300025230000000057512171574312011414 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_cher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE float #include "source_her2.h" #undef BASE } gsl-1.16/cblas/csyr2k.c0000664000252300025230000000072012171574312011616 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_csyr2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc) { #define BASE float #include "source_syr2k_c.h" #undef BASE } gsl-1.16/cblas/ztrsm.c0000664000252300025230000000076612171574312011572 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" #include "hypot.c" void cblas_ztrsm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb) { #define BASE double #include "source_trsm_c.h" #undef BASE } gsl-1.16/cblas/dnrm2.c0000664000252300025230000000031212171574312011420 00000000000000#include #include #include "cblas.h" double cblas_dnrm2 (const int N, const double *X, const int incX) { #define BASE double #include "source_nrm2_r.h" #undef BASE } gsl-1.16/cblas/dsymv.c0000664000252300025230000000064512171574312011551 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_dsymv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY) { #define BASE double #include "source_symv.h" #undef BASE } gsl-1.16/cblas/zher2.c0000664000252300025230000000057612171574312011444 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_zher2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda) { #define BASE double #include "source_her2.h" #undef BASE } gsl-1.16/cblas/ssymm.c0000664000252300025230000000071012171574312011550 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_ssymm (const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc) { #define BASE float #include "source_symm_r.h" #undef BASE } gsl-1.16/cblas/test_asum.c0000664000252300025230000000523512171574312012413 00000000000000#include #include #include #include #include "tests.h" void test_asum (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float X[] = { 0.239f }; int incX = -1; float expected = 0.0f; float f; f = cblas_sasum(N, X, incX); gsl_test_rel(f, expected, flteps, "sasum(case 40)"); }; { int N = 1; double X[] = { -0.413 }; int incX = -1; double expected = 0; double f; f = cblas_dasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dasum(case 41)"); }; { int N = 1; float X[] = { 0.1f, 0.017f }; int incX = -1; float expected = 0.0f; float f; f = cblas_scasum(N, X, incX); gsl_test_rel(f, expected, flteps, "scasum(case 42)"); }; { int N = 1; double X[] = { -0.651, 0.079 }; int incX = -1; double expected = 0; double f; f = cblas_dzasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dzasum(case 43)"); }; { int N = 2; float X[] = { 0.899f, -0.72f }; int incX = 1; float expected = 1.619f; float f; f = cblas_sasum(N, X, incX); gsl_test_rel(f, expected, flteps, "sasum(case 44)"); }; { int N = 2; double X[] = { 0.271, -0.012 }; int incX = 1; double expected = 0.283; double f; f = cblas_dasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dasum(case 45)"); }; { int N = 2; float X[] = { -0.567f, -0.645f, 0.098f, 0.256f }; int incX = 1; float expected = 1.566f; float f; f = cblas_scasum(N, X, incX); gsl_test_rel(f, expected, flteps, "scasum(case 46)"); }; { int N = 2; double X[] = { -0.046, -0.671, -0.323, 0.785 }; int incX = 1; double expected = 1.825; double f; f = cblas_dzasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dzasum(case 47)"); }; { int N = 2; float X[] = { 0.169f, 0.833f }; int incX = -1; float expected = 0.0f; float f; f = cblas_sasum(N, X, incX); gsl_test_rel(f, expected, flteps, "sasum(case 48)"); }; { int N = 2; double X[] = { -0.586, -0.486 }; int incX = -1; double expected = 0; double f; f = cblas_dasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dasum(case 49)"); }; { int N = 2; float X[] = { -0.314f, -0.318f, -0.835f, -0.807f }; int incX = -1; float expected = 0.0f; float f; f = cblas_scasum(N, X, incX); gsl_test_rel(f, expected, flteps, "scasum(case 50)"); }; { int N = 2; double X[] = { -0.927, 0.152, -0.554, -0.844 }; int incX = -1; double expected = 0; double f; f = cblas_dzasum(N, X, incX); gsl_test_rel(f, expected, dbleps, "dzasum(case 51)"); }; } gsl-1.16/cblas/sspr2.c0000664000252300025230000000056312171574312011457 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sspr2 (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *Ap) { #define BASE double #include "source_spr2.h" #undef BASE } gsl-1.16/cblas/source_rotmg.h0000664000252300025230000000552012171574312013121 00000000000000/* blas/source_rotmg.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { const BASE G = 4096.0, G2 = G * G; BASE D1 = *d1, D2 = *d2, x = *b1, y = b2; BASE h11, h12, h21, h22, u; BASE c, s; /* case of d1 < 0, appendix A, second to last paragraph */ if (D1 < 0.0) { P[0] = -1; P[1] = 0; P[2] = 0; P[3] = 0; P[4] = 0; *d1 = 0; *d2 = 0; *b1 = 0; return; } if (D2 * y == 0.0) { P[0] = -2; /* case of H = I, page 315 */ return; } c = fabs(D1 * x * x); s = fabs(D2 * y * y); if (c > s) { /* case of equation A6 */ P[0] = 0.0; h11 = 1; h12 = (D2 * y) / (D1 * x); h21 = -y / x; h22 = 1; u = 1 - h21 * h12; if (u <= 0.0) { /* the case u <= 0 is rejected */ P[0] = -1; P[1] = 0; P[2] = 0; P[3] = 0; P[4] = 0; *d1 = 0; *d2 = 0; *b1 = 0; return; } D1 /= u; D2 /= u; x *= u; } else { /* case of equation A7 */ if (D2 * y * y < 0.0) { P[0] = -1; P[1] = 0; P[2] = 0; P[3] = 0; P[4] = 0; *d1 = 0; *d2 = 0; *b1 = 0; return; } P[0] = 1; h11 = (D1 * x) / (D2 * y); h12 = 1; h21 = -1; h22 = x / y; u = 1 + h11 * h22; D1 /= u; D2 /= u; { BASE tmp = D2; D2 = D1; D1 = tmp; } x = y * u; } /* rescale D1 to range [1/G2,G2] */ while (D1 <= 1.0 / G2 && D1 != 0.0) { P[0] = -1; D1 *= G2; x /= G; h11 /= G; h12 /= G; } while (D1 >= G2) { P[0] = -1; D1 /= G2; x *= G; h11 *= G; h12 *= G; } /* rescale D2 to range [1/G2,G2] */ while (fabs(D2) <= 1.0 / G2 && D2 != 0.0) { P[0] = -1; D2 *= G2; h21 /= G; h22 /= G; } while (fabs(D2) >= G2) { P[0] = -1; D2 /= G2; h21 *= G; h22 *= G; } *d1 = D1; *d2 = D2; *b1 = x; if (P[0] == -1.0) { P[1] = h11; P[2] = h21; P[3] = h12; P[4] = h22; } else if (P[0] == 0.0) { P[2] = h21; P[3] = h12; } else if (P[0] == 1.0) { P[1] = h11; P[4] = h22; } } gsl-1.16/cblas/gsl_cblas.h0000664000252300025230000010161512171574312012344 00000000000000/* blas/gsl_cblas.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* This is a copy of the CBLAS standard header. * We carry this around so we do not have to * break our model for flexible BLAS functionality. */ #ifndef __GSL_CBLAS_H__ #define __GSL_CBLAS_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus #define __BEGIN_DECLS extern "C" { #define __END_DECLS } #else #define __BEGIN_DECLS /* empty */ #define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* * Enumerated and derived types */ #define CBLAS_INDEX size_t /* this may vary between platforms */ enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102}; enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113}; enum CBLAS_UPLO {CblasUpper=121, CblasLower=122}; enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132}; enum CBLAS_SIDE {CblasLeft=141, CblasRight=142}; /* * =========================================================================== * Prototypes for level 1 BLAS functions (complex are recast as routines) * =========================================================================== */ float cblas_sdsdot(const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY); double cblas_dsdot(const int N, const float *X, const int incX, const float *Y, const int incY); float cblas_sdot(const int N, const float *X, const int incX, const float *Y, const int incY); double cblas_ddot(const int N, const double *X, const int incX, const double *Y, const int incY); /* * Functions having prefixes Z and C only */ void cblas_cdotu_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void *dotu); void cblas_cdotc_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void *dotc); void cblas_zdotu_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void *dotu); void cblas_zdotc_sub(const int N, const void *X, const int incX, const void *Y, const int incY, void *dotc); /* * Functions having prefixes S D SC DZ */ float cblas_snrm2(const int N, const float *X, const int incX); float cblas_sasum(const int N, const float *X, const int incX); double cblas_dnrm2(const int N, const double *X, const int incX); double cblas_dasum(const int N, const double *X, const int incX); float cblas_scnrm2(const int N, const void *X, const int incX); float cblas_scasum(const int N, const void *X, const int incX); double cblas_dznrm2(const int N, const void *X, const int incX); double cblas_dzasum(const int N, const void *X, const int incX); /* * Functions having standard 4 prefixes (S D C Z) */ CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX); CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX); CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX); CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX); /* * =========================================================================== * Prototypes for level 1 BLAS routines * =========================================================================== */ /* * Routines with standard 4 prefixes (s, d, c, z) */ void cblas_sswap(const int N, float *X, const int incX, float *Y, const int incY); void cblas_scopy(const int N, const float *X, const int incX, float *Y, const int incY); void cblas_saxpy(const int N, const float alpha, const float *X, const int incX, float *Y, const int incY); void cblas_dswap(const int N, double *X, const int incX, double *Y, const int incY); void cblas_dcopy(const int N, const double *X, const int incX, double *Y, const int incY); void cblas_daxpy(const int N, const double alpha, const double *X, const int incX, double *Y, const int incY); void cblas_cswap(const int N, void *X, const int incX, void *Y, const int incY); void cblas_ccopy(const int N, const void *X, const int incX, void *Y, const int incY); void cblas_caxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY); void cblas_zswap(const int N, void *X, const int incX, void *Y, const int incY); void cblas_zcopy(const int N, const void *X, const int incX, void *Y, const int incY); void cblas_zaxpy(const int N, const void *alpha, const void *X, const int incX, void *Y, const int incY); /* * Routines with S and D prefix only */ void cblas_srotg(float *a, float *b, float *c, float *s); void cblas_srotmg(float *d1, float *d2, float *b1, const float b2, float *P); void cblas_srot(const int N, float *X, const int incX, float *Y, const int incY, const float c, const float s); void cblas_srotm(const int N, float *X, const int incX, float *Y, const int incY, const float *P); void cblas_drotg(double *a, double *b, double *c, double *s); void cblas_drotmg(double *d1, double *d2, double *b1, const double b2, double *P); void cblas_drot(const int N, double *X, const int incX, double *Y, const int incY, const double c, const double s); void cblas_drotm(const int N, double *X, const int incX, double *Y, const int incY, const double *P); /* * Routines with S D C Z CS and ZD prefixes */ void cblas_sscal(const int N, const float alpha, float *X, const int incX); void cblas_dscal(const int N, const double alpha, double *X, const int incX); void cblas_cscal(const int N, const void *alpha, void *X, const int incX); void cblas_zscal(const int N, const void *alpha, void *X, const int incX); void cblas_csscal(const int N, const float alpha, void *X, const int incX); void cblas_zdscal(const int N, const double alpha, void *X, const int incX); /* * =========================================================================== * Prototypes for level 2 BLAS * =========================================================================== */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ void cblas_sgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_sgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_strmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX); void cblas_stbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX); void cblas_stpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const int incX); void cblas_strsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *A, const int lda, float *X, const int incX); void cblas_stbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const float *A, const int lda, float *X, const int incX); void cblas_stpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const int incX); void cblas_dgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY); void cblas_dgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY); void cblas_dtrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX); void cblas_dtbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX); void cblas_dtpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *Ap, double *X, const int incX); void cblas_dtrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *A, const int lda, double *X, const int incX); void cblas_dtbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const double *A, const int lda, double *X, const int incX); void cblas_dtpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const double *Ap, double *X, const int incX); void cblas_cgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_cgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_ctrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX); void cblas_ctbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX); void cblas_ctpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX); void cblas_ctrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX); void cblas_ctbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX); void cblas_ctpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX); void cblas_zgemv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_zgbmv(const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_ztrmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX); void cblas_ztbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX); void cblas_ztpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX); void cblas_ztrsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *A, const int lda, void *X, const int incX); void cblas_ztbsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const int K, const void *A, const int lda, void *X, const int incX); void cblas_ztpsv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const void *Ap, void *X, const int incX); /* * Routines with S and D prefixes only */ void cblas_ssymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_ssbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_sspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *Ap, const float *X, const int incX, const float beta, float *Y, const int incY); void cblas_sger(const enum CBLAS_ORDER order, const int M, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A, const int lda); void cblas_ssyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *A, const int lda); void cblas_sspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, float *Ap); void cblas_ssyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A, const int lda); void cblas_sspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY, float *A); void cblas_dsymv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY); void cblas_dsbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const double alpha, const double *A, const int lda, const double *X, const int incX, const double beta, double *Y, const int incY); void cblas_dspmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *Ap, const double *X, const int incX, const double beta, double *Y, const int incY); void cblas_dger(const enum CBLAS_ORDER order, const int M, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A, const int lda); void cblas_dsyr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *A, const int lda); void cblas_dspr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, double *Ap); void cblas_dsyr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A, const int lda); void cblas_dspr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const double *X, const int incX, const double *Y, const int incY, double *A); /* * Routines with C and Z prefixes only */ void cblas_chemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_chbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_chpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_cgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_cgerc(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_cher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A, const int lda); void cblas_chpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const float alpha, const void *X, const int incX, void *A); void cblas_cher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_chpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap); void cblas_zhemv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_zhbmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const int K, const void *alpha, const void *A, const int lda, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_zhpmv(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *Ap, const void *X, const int incX, const void *beta, void *Y, const int incY); void cblas_zgeru(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_zgerc(const enum CBLAS_ORDER order, const int M, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_zher(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *A, const int lda); void cblas_zhpr(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const double alpha, const void *X, const int incX, void *A); void cblas_zher2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *A, const int lda); void cblas_zhpr2(const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X, const int incX, const void *Y, const int incY, void *Ap); /* * =========================================================================== * Prototypes for level 3 BLAS * =========================================================================== */ /* * Routines with standard 4 prefixes (S, D, C, Z) */ void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc); void cblas_ssymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc); void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float beta, float *C, const int ldc); void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const float *A, const int lda, const float *B, const int ldb, const float beta, float *C, const int ldc); void cblas_strmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb); void cblas_strsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const float alpha, const float *A, const int lda, float *B, const int ldb); void cblas_dgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc); void cblas_dsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc); void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double beta, double *C, const int ldc); void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const double *A, const int lda, const double *B, const int ldb, const double beta, double *C, const int ldc); void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb); void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const double alpha, const double *A, const int lda, double *B, const int ldb); void cblas_cgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_csymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_csyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc); void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb); void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb); void cblas_zgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB, const int M, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_zsymm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *beta, void *C, const int ldc); void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb); void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int M, const int N, const void *alpha, const void *A, const int lda, void *B, const int ldb); /* * Routines with prefixes C and Z only */ void cblas_chemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_cherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const float alpha, const void *A, const int lda, const float beta, void *C, const int ldc); void cblas_cher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const float beta, void *C, const int ldc); void cblas_zhemm(const enum CBLAS_ORDER Order, const enum CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const int N, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const void *beta, void *C, const int ldc); void cblas_zherk(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const double alpha, const void *A, const int lda, const double beta, void *C, const int ldc); void cblas_zher2k(const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const double beta, void *C, const int ldc); void cblas_xerbla(int p, const char *rout, const char *form, ...); __END_DECLS #endif /* __GSL_CBLAS_H__ */ gsl-1.16/cblas/scasum.c0000664000252300025230000000030712171574312011675 00000000000000#include #include #include "cblas.h" float cblas_scasum (const int N, const void *X, const int incX) { #define BASE float #include "source_asum_c.h" #undef BASE } gsl-1.16/cblas/test_scal.c0000664000252300025230000005076212171574312012375 00000000000000#include #include #include #include #include "tests.h" void test_scal (void) { const double flteps = 1e-4, dbleps = 1e-6; { int N = 1; float alpha = 0.0f; float X[] = { 0.651f }; int incX = -1; float expected[] = { 0.651f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 112)"); } }; }; { int N = 1; float alpha = 0.1f; float X[] = { 0.651f }; int incX = -1; float expected[] = { 0.651f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 113)"); } }; }; { int N = 1; float alpha = 1.0f; float X[] = { 0.651f }; int incX = -1; float expected[] = { 0.651f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 114)"); } }; }; { int N = 1; double alpha = 0; double X[] = { 0.686 }; int incX = -1; double expected[] = { 0.686 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 115)"); } }; }; { int N = 1; double alpha = 0.1; double X[] = { 0.686 }; int incX = -1; double expected[] = { 0.686 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 116)"); } }; }; { int N = 1; double alpha = 1; double X[] = { 0.686 }; int incX = -1; double expected[] = { 0.686 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 117)"); } }; }; { int N = 1; float alpha[2] = {0.0f, 0.0f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 118) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 118) imag"); }; }; }; { int N = 1; float alpha[2] = {0.1f, 0.0f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 119) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 119) imag"); }; }; }; { int N = 1; float alpha[2] = {1.0f, 0.0f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 120) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 120) imag"); }; }; }; { int N = 1; float alpha[2] = {0.0f, 0.1f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 121) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 121) imag"); }; }; }; { int N = 1; float alpha[2] = {0.1f, 0.2f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 122) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 122) imag"); }; }; }; { int N = 1; float alpha[2] = {1.0f, 0.3f}; float X[] = { 0.986f, -0.775f }; int incX = -1; float expected[] = { 0.986f, -0.775f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 123) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 123) imag"); }; }; }; { int N = 1; double alpha[2] = {0, 0}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 124) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 124) imag"); }; }; }; { int N = 1; double alpha[2] = {0.1, 0}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 125) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 125) imag"); }; }; }; { int N = 1; double alpha[2] = {1, 0}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 126) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 126) imag"); }; }; }; { int N = 1; double alpha[2] = {0, 0.1}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 127) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 127) imag"); }; }; }; { int N = 1; double alpha[2] = {0.1, 0.2}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 128) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 128) imag"); }; }; }; { int N = 1; double alpha[2] = {1, 0.3}; double X[] = { 0.454, -0.478 }; int incX = -1; double expected[] = { 0.454, -0.478 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 129) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 129) imag"); }; }; }; { int N = 2; float alpha = 0.0f; float X[] = { 0.389f, -0.236f }; int incX = 1; float expected[] = { 0.0f, -0.0f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 130)"); } }; }; { int N = 2; float alpha = 0.1f; float X[] = { 0.389f, -0.236f }; int incX = 1; float expected[] = { 0.0389f, -0.0236f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 131)"); } }; }; { int N = 2; float alpha = 1.0f; float X[] = { 0.389f, -0.236f }; int incX = 1; float expected[] = { 0.389f, -0.236f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 132)"); } }; }; { int N = 2; double alpha = 0; double X[] = { -0.429, -0.183 }; int incX = 1; double expected[] = { -0.0, -0.0 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 133)"); } }; }; { int N = 2; double alpha = 0.1; double X[] = { -0.429, -0.183 }; int incX = 1; double expected[] = { -0.0429, -0.0183 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 134)"); } }; }; { int N = 2; double alpha = 1; double X[] = { -0.429, -0.183 }; int incX = 1; double expected[] = { -0.429, -0.183 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 135)"); } }; }; { int N = 2; float alpha[2] = {0.0f, 0.0f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.0f, 0.0f, 0.0f, 0.0f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 136) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 136) imag"); }; }; }; { int N = 2; float alpha[2] = {0.1f, 0.0f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.0603f, 0.0239f, 0.0339f, -0.058f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 137) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 137) imag"); }; }; }; { int N = 2; float alpha[2] = {1.0f, 0.0f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.603f, 0.239f, 0.339f, -0.58f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 138) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 138) imag"); }; }; }; { int N = 2; float alpha[2] = {0.0f, 0.1f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.0239f, -0.0603f, 0.058f, 0.0339f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 139) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 139) imag"); }; }; }; { int N = 2; float alpha[2] = {0.1f, 0.2f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.1081f, -0.0967f, 0.1499f, 0.0098f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 140) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 140) imag"); }; }; }; { int N = 2; float alpha[2] = {1.0f, 0.3f}; float X[] = { -0.603f, 0.239f, 0.339f, -0.58f }; int incX = 1; float expected[] = { -0.6747f, 0.0581f, 0.513f, -0.4783f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 141) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 141) imag"); }; }; }; { int N = 2; double alpha[2] = {0, 0}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -0.0, 0.0, 0.0, 0.0 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 142) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 142) imag"); }; }; }; { int N = 2; double alpha[2] = {0.1, 0}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -0.0956, 0.0613, 0.0443, 0.0503 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 143) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 143) imag"); }; }; }; { int N = 2; double alpha[2] = {1, 0}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -0.956, 0.613, 0.443, 0.503 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 144) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 144) imag"); }; }; }; { int N = 2; double alpha[2] = {0, 0.1}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -0.0613, -0.0956, -0.0503, 0.0443 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 145) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 145) imag"); }; }; }; { int N = 2; double alpha[2] = {0.1, 0.2}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -0.2182, -0.1299, -0.0563, 0.1389 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 146) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 146) imag"); }; }; }; { int N = 2; double alpha[2] = {1, 0.3}; double X[] = { -0.956, 0.613, 0.443, 0.503 }; int incX = 1; double expected[] = { -1.1399, 0.3262, 0.2921, 0.6359 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 147) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 147) imag"); }; }; }; { int N = 2; float alpha = 0.0f; float X[] = { 0.629f, -0.419f }; int incX = -1; float expected[] = { 0.629f, -0.419f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 148)"); } }; }; { int N = 2; float alpha = 0.1f; float X[] = { 0.629f, -0.419f }; int incX = -1; float expected[] = { 0.629f, -0.419f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 149)"); } }; }; { int N = 2; float alpha = 1.0f; float X[] = { 0.629f, -0.419f }; int incX = -1; float expected[] = { 0.629f, -0.419f }; cblas_sscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], flteps, "sscal(case 150)"); } }; }; { int N = 2; double alpha = 0; double X[] = { 0.398, -0.656 }; int incX = -1; double expected[] = { 0.398, -0.656 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 151)"); } }; }; { int N = 2; double alpha = 0.1; double X[] = { 0.398, -0.656 }; int incX = -1; double expected[] = { 0.398, -0.656 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 152)"); } }; }; { int N = 2; double alpha = 1; double X[] = { 0.398, -0.656 }; int incX = -1; double expected[] = { 0.398, -0.656 }; cblas_dscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[i], expected[i], dbleps, "dscal(case 153)"); } }; }; { int N = 2; float alpha[2] = {0.0f, 0.0f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 154) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 154) imag"); }; }; }; { int N = 2; float alpha[2] = {0.1f, 0.0f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 155) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 155) imag"); }; }; }; { int N = 2; float alpha[2] = {1.0f, 0.0f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 156) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 156) imag"); }; }; }; { int N = 2; float alpha[2] = {0.0f, 0.1f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 157) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 157) imag"); }; }; }; { int N = 2; float alpha[2] = {0.1f, 0.2f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 158) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 158) imag"); }; }; }; { int N = 2; float alpha[2] = {1.0f, 0.3f}; float X[] = { 0.736f, 0.331f, -0.318f, 0.622f }; int incX = -1; float expected[] = { 0.736f, 0.331f, -0.318f, 0.622f }; cblas_cscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], flteps, "cscal(case 159) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], flteps, "cscal(case 159) imag"); }; }; }; { int N = 2; double alpha[2] = {0, 0}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 160) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 160) imag"); }; }; }; { int N = 2; double alpha[2] = {0.1, 0}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 161) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 161) imag"); }; }; }; { int N = 2; double alpha[2] = {1, 0}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 162) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 162) imag"); }; }; }; { int N = 2; double alpha[2] = {0, 0.1}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 163) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 163) imag"); }; }; }; { int N = 2; double alpha[2] = {0.1, 0.2}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 164) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 164) imag"); }; }; }; { int N = 2; double alpha[2] = {1, 0.3}; double X[] = { 0.521, -0.811, 0.556, -0.147 }; int incX = -1; double expected[] = { 0.521, -0.811, 0.556, -0.147 }; cblas_zscal(N, alpha, X, incX); { int i; for (i = 0; i < 2; i++) { gsl_test_rel(X[2*i], expected[2*i], dbleps, "zscal(case 165) real"); gsl_test_rel(X[2*i+1], expected[2*i+1], dbleps, "zscal(case 165) imag"); }; }; }; } gsl-1.16/cblas/stpmv.c0000664000252300025230000000060012171574312011547 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_stpmv (const enum CBLAS_ORDER order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const int incX) { #define BASE float #include "source_tpmv_r.h" #undef BASE } gsl-1.16/cblas/cher2k.c0000664000252300025230000000071612171574312011564 00000000000000#include #include #include "cblas.h" #include "error_cblas_l3.h" void cblas_cher2k (const enum CBLAS_ORDER Order, const enum CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N, const int K, const void *alpha, const void *A, const int lda, const void *B, const int ldb, const float beta, void *C, const int ldc) { #define BASE float #include "source_her2k.h" #undef BASE } gsl-1.16/cblas/test_spr.c0000664000252300025230000000710412171574312012247 00000000000000#include #include #include #include #include "tests.h" void test_spr (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1426)"); } }; }; { int order = 101; int uplo = 122; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1427)"); } }; }; { int order = 102; int uplo = 121; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1428)"); } }; }; { int order = 102; int uplo = 122; int N = 2; float alpha = -0.3f; float Ap[] = { -0.764f, -0.257f, -0.064f }; float X[] = { 0.455f, -0.285f }; int incX = -1; float Ap_expected[] = { -0.788367f, -0.218097f, -0.126108f }; cblas_sspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], flteps, "sspr(case 1429)"); } }; }; { int order = 101; int uplo = 121; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1430)"); } }; }; { int order = 101; int uplo = 122; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1431)"); } }; }; { int order = 102; int uplo = 121; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1432)"); } }; }; { int order = 102; int uplo = 122; int N = 2; double alpha = -1; double Ap[] = { 0.819, 0.175, -0.809 }; double X[] = { -0.645, -0.222 }; int incX = -1; double Ap_expected[] = { 0.769716, 0.03181, -1.225025 }; cblas_dspr(order, uplo, N, alpha, X, incX, Ap); { int i; for (i = 0; i < 3; i++) { gsl_test_rel(Ap[i], Ap_expected[i], dbleps, "dspr(case 1433)"); } }; }; } gsl-1.16/cblas/sgbmv.c0000664000252300025230000000072112171574312011520 00000000000000#include #include #include "cblas.h" #include "error_cblas_l2.h" void cblas_sgbmv (const enum CBLAS_ORDER order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL, const int KU, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY) { #define BASE float #include "source_gbmv_r.h" #undef BASE } gsl-1.16/cblas/sdsdot.c0000664000252300025230000000053112171574312011701 00000000000000#include #include #include "cblas.h" float cblas_sdsdot (const int N, const float alpha, const float *X, const int incX, const float *Y, const int incY) { #define INIT_VAL alpha #define ACC_TYPE double #define BASE float #include "source_dot_r.h" #undef ACC_TYPE #undef BASE #undef INIT_VAL } gsl-1.16/cblas/test_hpr2.c0000664000252300025230000001131112171574312012311 00000000000000#include #include #include #include #include "tests.h" void test_hpr2 (void) { const double flteps = 1e-4, dbleps = 1e-6; { int order = 101; int uplo = 121; int N = 1; float alpha[2] = {-1.0f, 0.0f}; float Ap[] = { 0.159f, -0.13f }; float X[] = { 0.854f, 0.851f }; int incX = -1; float Y[] = { 0.526f, -0.267f }; int incY = -1; float Ap_expected[] = { -0.284974f, 0.0f }; cblas_chpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr2(case 1458) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr2(case 1458) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; float alpha[2] = {-1.0f, 0.0f}; float Ap[] = { 0.159f, -0.13f }; float X[] = { 0.854f, 0.851f }; int incX = -1; float Y[] = { 0.526f, -0.267f }; int incY = -1; float Ap_expected[] = { -0.284974f, 0.0f }; cblas_chpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr2(case 1459) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr2(case 1459) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; float alpha[2] = {-1.0f, 0.0f}; float Ap[] = { 0.159f, -0.13f }; float X[] = { 0.854f, 0.851f }; int incX = -1; float Y[] = { 0.526f, -0.267f }; int incY = -1; float Ap_expected[] = { -0.284974f, 0.0f }; cblas_chpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr2(case 1460) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr2(case 1460) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; float alpha[2] = {-1.0f, 0.0f}; float Ap[] = { 0.159f, -0.13f }; float X[] = { 0.854f, 0.851f }; int incX = -1; float Y[] = { 0.526f, -0.267f }; int incY = -1; float Ap_expected[] = { -0.284974f, 0.0f }; cblas_chpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], flteps, "chpr2(case 1461) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], flteps, "chpr2(case 1461) imag"); }; }; }; { int order = 101; int uplo = 121; int N = 1; double alpha[2] = {-0.3, 0.1}; double Ap[] = { 0.772, 0.997 }; double X[] = { -0.173, -0.839 }; int incX = -1; double Y[] = { 0.941, -0.422 }; int incY = -1; double Ap_expected[] = { 0.829742, 0.0 }; cblas_zhpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr2(case 1462) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr2(case 1462) imag"); }; }; }; { int order = 101; int uplo = 122; int N = 1; double alpha[2] = {-0.3, 0.1}; double Ap[] = { 0.772, 0.997 }; double X[] = { -0.173, -0.839 }; int incX = -1; double Y[] = { 0.941, -0.422 }; int incY = -1; double Ap_expected[] = { 0.829742, 0.0 }; cblas_zhpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr2(case 1463) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr2(case 1463) imag"); }; }; }; { int order = 102; int uplo = 121; int N = 1; double alpha[2] = {-0.3, 0.1}; double Ap[] = { 0.772, 0.997 }; double X[] = { -0.173, -0.839 }; int incX = -1; double Y[] = { 0.941, -0.422 }; int incY = -1; double Ap_expected[] = { 0.829742, 0.0 }; cblas_zhpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr2(case 1464) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr2(case 1464) imag"); }; }; }; { int order = 102; int uplo = 122; int N = 1; double alpha[2] = {-0.3, 0.1}; double Ap[] = { 0.772, 0.997 }; double X[] = { -0.173, -0.839 }; int incX = -1; double Y[] = { 0.941, -0.422 }; int incY = -1; double Ap_expected[] = { 0.829742, 0.0 }; cblas_zhpr2(order, uplo, N, alpha, X, incX, Y, incY, Ap); { int i; for (i = 0; i < 1; i++) { gsl_test_rel(Ap[2*i], Ap_expected[2*i], dbleps, "zhpr2(case 1465) real"); gsl_test_rel(Ap[2*i+1], Ap_expected[2*i+1], dbleps, "zhpr2(case 1465) imag"); }; }; }; } gsl-1.16/cblas/source_swap_c.h0000664000252300025230000000220212171574312013237 00000000000000/* blas/source_swap_c.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i; INDEX ix = OFFSET(N, incX); INDEX iy = OFFSET(N, incY); for (i = 0; i < N; i++) { const BASE tmp_real = REAL(X, ix); const BASE tmp_imag = IMAG(X, ix); REAL(X, ix) = REAL(Y, iy); IMAG(X, ix) = IMAG(Y, iy); REAL(Y, iy) = tmp_real; IMAG(Y, iy) = tmp_imag; ix += incX; iy += incY; } } gsl-1.16/cblas/dcopy.c0000664000252300025230000000036012171574312011517 00000000000000#include #include #include "cblas.h" void cblas_dcopy (const int N, const double *X, const int incX, double *Y, const int incY) { #define BASE double #include "source_copy_r.h" #undef BASE } gsl-1.16/cblas/source_trsm_c.h0000664000252300025230000003622712171574312013270 00000000000000/* blas/source_trsm_c.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ { INDEX i, j, k; INDEX n1, n2; const int nonunit = (Diag == CblasNonUnit); const int conj = (TransA == CblasConjTrans) ? -1 : 1; int side, uplo, trans; CHECK_ARGS12(TRSM,Order,Side,Uplo,TransA,Diag,M,N,alpha,A,lda,B,ldb); { const BASE alpha_real = CONST_REAL0(alpha); const BASE alpha_imag = CONST_IMAG0(alpha); if (Order == CblasRowMajor) { n1 = M; n2 = N; side = Side; uplo = Uplo; trans = TransA; trans = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; } else { n1 = N; n2 = M; side = (Side == CblasLeft) ? CblasRight : CblasLeft; /* exchanged */ uplo = (Uplo == CblasUpper) ? CblasLower : CblasUpper; /* exchanged */ trans = (TransA == CblasNoTrans) ? CblasNoTrans : CblasTrans; /* same */ } if (side == CblasLeft && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * inv(TriU(A)) *B */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = n1; i > 0 && i--;) { if (nonunit) { const BASE Aii_real = CONST_REAL(A, lda * i + i); const BASE Aii_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(Aii_real, Aii_imag); const BASE a_real = Aii_real / s; const BASE a_imag = Aii_imag / s; for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } } for (k = 0; k < i; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = conj * CONST_IMAG(A, k * lda + i); for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * k + j) -= Aki_real * Bij_real - Aki_imag * Bij_imag; IMAG(B, ldb * k + j) -= Aki_real * Bij_imag + Aki_imag * Bij_real; } } } } else if (side == CblasLeft && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * inv(TriU(A))' *B */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { if (nonunit) { const BASE Aii_real = CONST_REAL(A, lda * i + i); const BASE Aii_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(Aii_real, Aii_imag); const BASE a_real = Aii_real / s; const BASE a_imag = Aii_imag / s; for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } } for (k = i + 1; k < n1; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = conj * CONST_IMAG(A, i * lda + k); for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * k + j) -= Aik_real * Bij_real - Aik_imag * Bij_imag; IMAG(B, ldb * k + j) -= Aik_real * Bij_imag + Aik_imag * Bij_real; } } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * inv(TriL(A))*B */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { if (nonunit) { const BASE Aii_real = CONST_REAL(A, lda * i + i); const BASE Aii_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(Aii_real, Aii_imag); const BASE a_real = Aii_real / s; const BASE a_imag = Aii_imag / s; for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } } for (k = i + 1; k < n1; k++) { const BASE Aki_real = CONST_REAL(A, k * lda + i); const BASE Aki_imag = conj * CONST_IMAG(A, k * lda + i); for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * k + j) -= Aki_real * Bij_real - Aki_imag * Bij_imag; IMAG(B, ldb * k + j) -= Aki_real * Bij_imag + Aki_imag * Bij_real; } } } } else if (side == CblasLeft && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * TriL(A)' *B */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = n1; i > 0 && i--;) { if (nonunit) { const BASE Aii_real = CONST_REAL(A, lda * i + i); const BASE Aii_imag = conj * CONST_IMAG(A, lda * i + i); const BASE s = xhypot(Aii_real, Aii_imag); const BASE a_real = Aii_real / s; const BASE a_imag = Aii_imag / s; for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } } for (k = 0; k < i; k++) { const BASE Aik_real = CONST_REAL(A, i * lda + k); const BASE Aik_imag = conj * CONST_IMAG(A, i * lda + k); for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * k + j) -= Aik_real * Bij_real - Aik_imag * Bij_imag; IMAG(B, ldb * k + j) -= Aik_real * Bij_imag + Aik_imag * Bij_real; } } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasNoTrans) { /* form B := alpha * B * inv(TriU(A)) */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { if (nonunit) { const BASE Ajj_real = CONST_REAL(A, lda * j + j); const BASE Ajj_imag = conj * CONST_IMAG(A, lda * j + j); const BASE s = xhypot(Ajj_real, Ajj_imag); const BASE a_real = Ajj_real / s; const BASE a_imag = Ajj_imag / s; const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); for (k = j + 1; k < n2; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = conj * CONST_IMAG(A, j * lda + k); REAL(B, ldb * i + k) -= Ajk_real * Bij_real - Ajk_imag * Bij_imag; IMAG(B, ldb * i + k) -= Ajk_real * Bij_imag + Ajk_imag * Bij_real; } } } } } else if (side == CblasRight && uplo == CblasUpper && trans == CblasTrans) { /* form B := alpha * B * inv(TriU(A))' */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { if (nonunit) { const BASE Ajj_real = CONST_REAL(A, lda * j + j); const BASE Ajj_imag = conj * CONST_IMAG(A, lda * j + j); const BASE s = xhypot(Ajj_real, Ajj_imag); const BASE a_real = Ajj_real / s; const BASE a_imag = Ajj_imag / s; const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); for (k = 0; k < j; k++) { const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = conj * CONST_IMAG(A, k * lda + j); REAL(B, ldb * i + k) -= Akj_real * Bij_real - Akj_imag * Bij_imag; IMAG(B, ldb * i + k) -= Akj_real * Bij_imag + Akj_imag * Bij_real; } } } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasNoTrans) { /* form B := alpha * B * inv(TriL(A)) */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { for (j = n2; j > 0 && j--;) { if (nonunit) { const BASE Ajj_real = CONST_REAL(A, lda * j + j); const BASE Ajj_imag = conj * CONST_IMAG(A, lda * j + j); const BASE s = xhypot(Ajj_real, Ajj_imag); const BASE a_real = Ajj_real / s; const BASE a_imag = Ajj_imag / s; const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); for (k = 0; k < j; k++) { const BASE Ajk_real = CONST_REAL(A, j * lda + k); const BASE Ajk_imag = conj * CONST_IMAG(A, j * lda + k); REAL(B, ldb * i + k) -= Ajk_real * Bij_real - Ajk_imag * Bij_imag; IMAG(B, ldb * i + k) -= Ajk_real * Bij_imag + Ajk_imag * Bij_real; } } } } } else if (side == CblasRight && uplo == CblasLower && trans == CblasTrans) { /* form B := alpha * B * inv(TriL(A))' */ if (!(alpha_real == 1.0 && alpha_imag == 0.0)) { for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = alpha_real * Bij_real - alpha_imag * Bij_imag; IMAG(B, ldb * i + j) = alpha_real * Bij_imag + alpha_imag * Bij_real; } } } for (i = 0; i < n1; i++) { for (j = 0; j < n2; j++) { if (nonunit) { const BASE Ajj_real = CONST_REAL(A, lda * j + j); const BASE Ajj_imag = conj * CONST_IMAG(A, lda * j + j); const BASE s = xhypot(Ajj_real, Ajj_imag); const BASE a_real = Ajj_real / s; const BASE a_imag = Ajj_imag / s; const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); REAL(B, ldb * i + j) = (Bij_real * a_real + Bij_imag * a_imag) / s; IMAG(B, ldb * i + j) = (Bij_imag * a_real - Bij_real * a_imag) / s; } { const BASE Bij_real = REAL(B, ldb * i + j); const BASE Bij_imag = IMAG(B, ldb * i + j); for (k = j + 1; k < n2; k++) { const BASE Akj_real = CONST_REAL(A, k * lda + j); const BASE Akj_imag = conj * CONST_IMAG(A, k * lda + j); REAL(B, ldb * i + k) -= Akj_real * Bij_real - Akj_imag * Bij_imag; IMAG(B, ldb * i + k) -= Akj_real * Bij_imag + Akj_imag * Bij_real; } } } } } else { BLAS_ERROR("unrecognized operation"); } } } gsl-1.16/cheb/0000775000252300025230000000000012172254155010134 500000000000000gsl-1.16/cheb/TODO0000664000252300025230000000015312171574312010542 00000000000000# -*- org -*- #+CATEGORY: cheb Provide a way to save/restore coefficients, or access the coefficient data.gsl-1.16/cheb/gsl_chebyshev.h0000664000252300025230000001063512171574312013056 00000000000000/* cheb/gsl_chebyshev.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CHEBYSHEV_H__ #define __GSL_CHEBYSHEV_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* data for a Chebyshev series over a given interval */ struct gsl_cheb_series_struct { double * c; /* coefficients */ size_t order; /* order of expansion */ double a; /* lower interval point */ double b; /* upper interval point */ /* The following exists (mostly) for the benefit * of the implementation. It is an effective single * precision order, for use in single precision * evaluation. Users can use it if they like, but * only they know how to calculate it, since it is * specific to the approximated function. By default, * order_sp = order. * It is used explicitly only by the gsl_cheb_eval_mode * functions, which are not meant for casual use. */ size_t order_sp; /* Additional elements not used by specfunc */ double * f; /* function evaluated at chebyschev points */ }; typedef struct gsl_cheb_series_struct gsl_cheb_series; /* Calculate a Chebyshev series of specified order over * a specified interval, for a given function. * Return 0 on failure. */ gsl_cheb_series * gsl_cheb_alloc(const size_t order); /* Free a Chebyshev series previously calculated with gsl_cheb_alloc(). */ void gsl_cheb_free(gsl_cheb_series * cs); /* Calculate a Chebyshev series using the storage provided. * Uses the interval (a,b) and the order with which it * was initially created. * */ int gsl_cheb_init(gsl_cheb_series * cs, const gsl_function * func, const double a, const double b); /* Return the order, size of coefficient array and coefficient array ptr */ size_t gsl_cheb_order (const gsl_cheb_series * cs); size_t gsl_cheb_size (const gsl_cheb_series * cs); double *gsl_cheb_coeffs (const gsl_cheb_series * cs); /* Evaluate a Chebyshev series at a given point. * No errors can occur for a struct obtained from gsl_cheb_new(). */ double gsl_cheb_eval(const gsl_cheb_series * cs, const double x); int gsl_cheb_eval_err(const gsl_cheb_series * cs, const double x, double * result, double * abserr); /* Evaluate a Chebyshev series at a given point, to (at most) the given order. * No errors can occur for a struct obtained from gsl_cheb_new(). */ double gsl_cheb_eval_n(const gsl_cheb_series * cs, const size_t order, const double x); int gsl_cheb_eval_n_err(const gsl_cheb_series * cs, const size_t order, const double x, double * result, double * abserr); /* Evaluate a Chebyshev series at a given point, using the default * order for double precision mode(s) and the single precision * order for other modes. * No errors can occur for a struct obtained from gsl_cheb_new(). */ double gsl_cheb_eval_mode(const gsl_cheb_series * cs, const double x, gsl_mode_t mode); int gsl_cheb_eval_mode_e(const gsl_cheb_series * cs, const double x, gsl_mode_t mode, double * result, double * abserr); /* Compute the derivative of a Chebyshev series. */ int gsl_cheb_calc_deriv(gsl_cheb_series * deriv, const gsl_cheb_series * cs); /* Compute the integral of a Chebyshev series. The * integral is fixed by the condition that it equals zero at * the left end-point, ie it is precisely * Integrate[cs(t; a,b), {t, a, x}] */ int gsl_cheb_calc_integ(gsl_cheb_series * integ, const gsl_cheb_series * cs); __END_DECLS #endif /* __GSL_CHEBYSHEV_H__ */ gsl-1.16/cheb/integ.c0000664000252300025230000000346512171574312011335 00000000000000/* cheb/integ.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_cheb_calc_integ(gsl_cheb_series * integ, const gsl_cheb_series * f) { const size_t n = f->order + 1; const double con = 0.25 * (f->b - f->a); if(integ->order != f->order) { GSL_ERROR ("order of chebyshev series must be equal", GSL_ENOMEM); } /* set the other parameters in the chebyshev struct */ integ->a = f->a; integ->b = f->b; /* FIXME: should probably set integ->f[] as well */ if(n == 1) { integ->c[0] = 0.; } else if(n == 2) { integ->c[1] = con * f->c[0]; integ->c[0] = 2.0 * integ->c[1]; } else { double sum = 0.0; double fac = 1.0; size_t i; for(i=1; i<=n-2; i++) { integ->c[i] = con * (f->c[i-1] - f->c[i+1])/((double)i); sum += fac * integ->c[i]; fac = -fac; } integ->c[n-1] = con * f->c[n-2]/(n-1.0); sum += fac * integ->c[n-1]; integ->c[0] = 2.0 * sum; } return GSL_SUCCESS; } gsl-1.16/cheb/test.c0000664000252300025230000001744012171574312011204 00000000000000/* cheb/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include double f_T0 (double x, void * p) { p = 0; return 1.0; } double f_T1 (double x, void * p) { p = 0; return x; } double f_T2 (double x, void * p) { p = 0; return 2*x*x - 1; } double f_sin (double x, void * p) { p = 0; return sin(x); } double f_DP (double x, void * p) { p = 0; return 2.0; } double f_P (double x, void * p) { p = 0; return 2.0*x + 3.0; } double f_IP1 (double x, void * p) { p = 0; return 30*(x+5.0)/10.0; /* first order approximation to integral over -5,5 */ } double f_IP2 (double x, void * p) { p = 0; return x*x + 3*x - 10.0; } void test_dim (const size_t n, const double a, const double b, gsl_function * F, gsl_function * DF, gsl_function *IF) { double tol = 100.0 * GSL_DBL_EPSILON; double x; gsl_cheb_series * cs = gsl_cheb_alloc(n); gsl_cheb_series * csd = gsl_cheb_alloc(n); gsl_cheb_series * csi = gsl_cheb_alloc(n); gsl_cheb_init(cs, F, a, b); for(x=a; xc, "gsl_cheb_coeffs"); } for (i = 0; iorder; i++) { double c_exp = (i == 0) ? 2.0 : 0.0; gsl_test_abs (cs->c[i], c_exp, tol, "c[%d] for T_0(x)", i); } gsl_cheb_init(cs, &F_T1, -1.0, 1.0); for (i = 0; iorder; i++) { double c_exp = (i == 1) ? 1.0 : 0.0; gsl_test_abs (cs->c[i], c_exp, tol, "c[%d] for T_1(x)", i); } gsl_cheb_init(cs, &F_T2, -1.0, 1.0); for (i = 0; iorder; i++) { double c_exp = (i == 2) ? 1.0 : 0.0; gsl_test_abs (cs->c[i], c_exp, tol, "c[%d] for T_2(x)", i); } gsl_cheb_init(cs, &F_sin, -M_PI, M_PI); gsl_test_abs (cs->c[0], 0.0, tol, "c[0] for F_sin(x)"); gsl_test_abs (cs->c[1], 5.69230686359506e-01, tol, "c[1] for F_sin(x)"); gsl_test_abs (cs->c[2], 0.0, tol, "c[2] for F_sin(x)"); gsl_test_abs (cs->c[3], -6.66916672405979e-01, tol, "c[3] for F_sin(x)"); gsl_test_abs (cs->c[4], 0.0, tol, "c[4] for F_sin(x)"); gsl_test_abs (cs->c[5], 1.04282368734237e-01, tol, "c[5] for F_sin(x)"); for(x=-M_PI; x #include #include #include #include /*-*-*-*-*-*-*-*-*-*-*-* Allocators *-*-*-*-*-*-*-*-*-*-*-*/ gsl_cheb_series * gsl_cheb_alloc(const size_t order) { gsl_cheb_series * cs = (gsl_cheb_series *) malloc(sizeof(gsl_cheb_series)); if(cs == 0) { GSL_ERROR_VAL("failed to allocate gsl_cheb_series struct", GSL_ENOMEM, 0); } cs->order = order; cs->order_sp = order; cs->c = (double *) malloc((order+1) * sizeof(double)); if(cs->c == 0) { GSL_ERROR_VAL("failed to allocate cheb coefficients", GSL_ENOMEM, 0); } cs->f = (double *) malloc((order+1) * sizeof(double)); if(cs->f == 0) { GSL_ERROR_VAL("failed to allocate cheb function space", GSL_ENOMEM, 0); } return cs; } void gsl_cheb_free(gsl_cheb_series * cs) { RETURN_IF_NULL (cs); free(cs->f); free(cs->c); free(cs); } /*-*-*-*-*-*-*-*-*-*-*-* Initializer *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_cheb_init(gsl_cheb_series * cs, const gsl_function *func, const double a, const double b) { size_t k, j; if(a >= b) { GSL_ERROR_VAL("null function interval [a,b]", GSL_EDOM, 0); } cs->a = a; cs->b = b; /* cs->err = 0.0; */ { double bma = 0.5 * (cs->b - cs->a); double bpa = 0.5 * (cs->b + cs->a); double fac = 2.0/(cs->order +1.0); for(k = 0; k<=cs->order; k++) { double y = cos(M_PI * (k+0.5)/(cs->order+1)); cs->f[k] = GSL_FN_EVAL(func, (y*bma + bpa)); } for(j = 0; j<=cs->order; j++) { double sum = 0.0; for(k = 0; k<=cs->order; k++) sum += cs->f[k]*cos(M_PI * j*(k+0.5)/(cs->order+1)); cs->c[j] = fac * sum; } } return GSL_SUCCESS; } size_t gsl_cheb_order (const gsl_cheb_series * cs) { return cs->order; } size_t gsl_cheb_size (const gsl_cheb_series * cs) { return (cs->order + 1); } double * gsl_cheb_coeffs (const gsl_cheb_series * cs) { return cs->c; } gsl-1.16/cheb/Makefile.in0000664000252300025230000010352712172253754012135 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = cheb DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslcheb_la_LIBADD = am_libgslcheb_la_OBJECTS = deriv.lo eval.lo init.lo integ.lo libgslcheb_la_OBJECTS = $(am_libgslcheb_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslcheb.la ../ieee-utils/libgslieeeutils.la \ ../test/libgsltest.la ../sys/libgslsys.la ../err/libgslerr.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslcheb_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslcheb_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslcheb.la pkginclude_HEADERS = gsl_chebyshev.h INCLUDES = -I$(top_srcdir) libgslcheb_la_SOURCES = deriv.c eval.c init.c integ.c TESTS = $(check_PROGRAMS) test_LDADD = libgslcheb.la ../ieee-utils/libgslieeeutils.la ../test/libgsltest.la ../sys/libgslsys.la ../err/libgslerr.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu cheb/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu cheb/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslcheb.la: $(libgslcheb_la_OBJECTS) $(libgslcheb_la_DEPENDENCIES) $(EXTRA_libgslcheb_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslcheb_la_OBJECTS) $(libgslcheb_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/deriv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/eval.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/integ.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/cheb/ChangeLog0000664000252300025230000000415412171574312011631 000000000000002010-03-12 Brian Gough * deriv.c (gsl_cheb_calc_deriv): shift loop variable to avoid unsigned integer wraparound when n < 3 2009-07-09 Brian Gough * init.c (gsl_cheb_free): handle NULL argument in free 2008-11-18 Brian Gough * gsl_chebyshev.h: added auxiliary functions * init.c (gsl_cheb_order, gsl_cheb_size, gsl_cheb_coeffs): added auxiliary functions 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-01-29 Brian Gough * eval.c (gsl_cheb_eval_mode_e): compute error consistently with other routines 2004-12-29 Brian Gough * gsl_chebyshev.h: added const to declaration of gsl_cheb_eval_mode to match definition 2004-12-24 Brian Gough * eval.c (gsl_cheb_eval_n_err): use eval_order instead of cs->order for error estimate 2004-12-23 Brian Gough * eval.c (gsl_cheb_eval_mode): added missing function 2004-08-27 Brian Gough * test.c (main): make the hard-coded tolerances a variable, ftol 2003-06-09 Brian Gough * test.c (main): added some tests for the coefficients 2003-02-09 Brian Gough * gsl_chebyshev.h: added missing #include for gsl_math (to declare gsl_function) fixes Debian Bug#179665 Fri May 24 19:23:47 2002 Brian Gough * init.c (gsl_cheb_free): added missing free() for cs->f Fri Aug 24 19:18:23 2001 Brian Gough * test.c (main): renamed fsin to f_sin to avoid conflicts with irix math libs. Sun May 6 09:49:28 2001 Brian Gough * eval.c (gsl_cheb_eval_err): take roundoff into account when computing evaluation error (important when result is near zero). (gsl_cheb_eval_n_err): ditto Tue Apr 24 17:08:29 2001 Brian Gough * made deriv/integ functions thread safe * split out from specfunc directory gsl-1.16/cheb/Makefile.am0000664000252300025230000000057112171574312012112 00000000000000noinst_LTLIBRARIES = libgslcheb.la pkginclude_HEADERS = gsl_chebyshev.h INCLUDES = -I$(top_srcdir) libgslcheb_la_SOURCES = deriv.c eval.c init.c integ.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgslcheb.la ../ieee-utils/libgslieeeutils.la ../test/libgsltest.la ../sys/libgslsys.la ../err/libgslerr.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/cheb/eval.c0000664000252300025230000001070512171574312011151 00000000000000/* cheb/eval.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* For efficiency there are separate implementations of each of these functions */ double gsl_cheb_eval (const gsl_cheb_series * cs, const double x) { size_t i; double d1 = 0.0; double d2 = 0.0; double y = (2.0 * x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; for (i = cs->order; i >= 1; i--) { double temp = d1; d1 = y2 * d1 - d2 + cs->c[i]; d2 = temp; } return y * d1 - d2 + 0.5 * cs->c[0]; } double gsl_cheb_eval_n (const gsl_cheb_series * cs, const size_t n, const double x) { size_t i; double d1 = 0.0; double d2 = 0.0; size_t eval_order = GSL_MIN (n, cs->order); double y = (2.0 * x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; for (i = eval_order; i >= 1; i--) { double temp = d1; d1 = y2 * d1 - d2 + cs->c[i]; d2 = temp; } return y * d1 - d2 + 0.5 * cs->c[0]; } int gsl_cheb_eval_err (const gsl_cheb_series * cs, const double x, double *result, double *abserr) { size_t i; double d1 = 0.0; double d2 = 0.0; double y = (2. * x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; double absc = 0.0; for (i = cs->order; i >= 1; i--) { double temp = d1; d1 = y2 * d1 - d2 + cs->c[i]; d2 = temp; } *result = y * d1 - d2 + 0.5 * cs->c[0]; /* Estimate cumulative numerical error */ for (i = 0; i <= cs->order; i++) { absc += fabs(cs->c[i]); } /* Combine truncation error and numerical error */ *abserr = fabs (cs->c[cs->order]) + absc * GSL_DBL_EPSILON; return GSL_SUCCESS; } int gsl_cheb_eval_n_err (const gsl_cheb_series * cs, const size_t n, const double x, double *result, double *abserr) { size_t i; double d1 = 0.0; double d2 = 0.0; double y = (2. * x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; double absc = 0.0; size_t eval_order = GSL_MIN (n, cs->order); for (i = eval_order; i >= 1; i--) { double temp = d1; d1 = y2 * d1 - d2 + cs->c[i]; d2 = temp; } *result = y * d1 - d2 + 0.5 * cs->c[0]; /* Estimate cumulative numerical error */ for (i = 0; i <= eval_order; i++) { absc += fabs(cs->c[i]); } /* Combine truncation error and numerical error */ *abserr = fabs (cs->c[eval_order]) + absc * GSL_DBL_EPSILON; return GSL_SUCCESS; } int gsl_cheb_eval_mode_e (const gsl_cheb_series * cs, const double x, gsl_mode_t mode, double *result, double *abserr) { size_t i; double d1 = 0.0; double d2 = 0.0; double y = (2. * x - cs->a - cs->b) / (cs->b - cs->a); double y2 = 2.0 * y; double absc = 0.0; size_t eval_order; if (GSL_MODE_PREC (mode) == GSL_PREC_DOUBLE) eval_order = cs->order; else eval_order = cs->order_sp; for (i = eval_order; i >= 1; i--) { double temp = d1; d1 = y2 * d1 - d2 + cs->c[i]; d2 = temp; } *result = y * d1 - d2 + 0.5 * cs->c[0]; /* Estimate cumulative numerical error */ for (i = 0; i <= eval_order; i++) { absc += fabs(cs->c[i]); } /* Combine truncation error and numerical error */ *abserr = fabs (cs->c[eval_order]) + absc * GSL_DBL_EPSILON; return GSL_SUCCESS; } double gsl_cheb_eval_mode (const gsl_cheb_series * cs, const double x, gsl_mode_t mode) { double result, abserr; int status = gsl_cheb_eval_mode_e (cs, x, mode, &result, &abserr); if (status != GSL_SUCCESS) { GSL_ERROR_VAL("gsl_cheb_eval_mode", status, result); }; return result; } gsl-1.16/cheb/deriv.c0000664000252300025230000000327412171574312011336 00000000000000/* cheb/deriv.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_cheb_calc_deriv(gsl_cheb_series * deriv, const gsl_cheb_series * f) { const size_t n = f->order + 1; const double con = 2.0 / (f->b - f->a); size_t i; if(deriv->order != f->order) { GSL_ERROR ("order of chebyshev series must be equal", GSL_ENOMEM); } /* set the other parameters in the chebyshev struct */ deriv->a = f->a; deriv->b = f->b; /* error in derivative is n^2 c_n */ /* deriv->err = n * n * f->c[n-1];*/ /* FIXME: should probably set deriv->f[] as well */ deriv->c[n-1] = 0.0; if(n > 1) { deriv->c[n-2] = 2.0 *(n-1.0) * f->c[n-1]; for(i = n; i>=3; i--) deriv->c[i-3] = deriv->c[i-1] + 2.0 *(i-2.0) * f->c[i-2]; for(i = 0 ; ic[i] *= con; } return GSL_SUCCESS; } gsl-1.16/wavelet/0000775000252300025230000000000012172254164010702 500000000000000gsl-1.16/wavelet/bspline.c0000664000252300025230000003674612171574312012441 00000000000000/* wavelet/bspline.c * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Coefficients are from A. Cohen, I. Daubechies, and J.-C. Feauveau; * "Biorthogonal Bases of Compactly Supported Wavelets", Communications * on Pure and Applied Mathematics, 45 (1992) 485--560 (table 6.1). * * Note the following errors in table 1: * * N = 2, N~ = 4, m0~ * the second term in z^-1 (45/64 z^-1) should be left out. * * N = 3, N~ = 7, m0~ * the term 336z^-3 should read 363z^-3. */ #include #include #include #include static const double h1_103[6] = { -0.0883883476483184405501055452631, 0.0883883476483184405501055452631, M_SQRT1_2, M_SQRT1_2, 0.0883883476483184405501055452631, -0.0883883476483184405501055452631 }; static const double g2_103[6] = { -0.0883883476483184405501055452631, -0.0883883476483184405501055452631, M_SQRT1_2, -(M_SQRT1_2), 0.0883883476483184405501055452631, 0.0883883476483184405501055452631 }; static const double h1_105[10] = { 0.0165728151840597076031447897368, -0.0165728151840597076031447897368, -0.1215339780164378557563951247368, 0.1215339780164378557563951247368, M_SQRT1_2, M_SQRT1_2, 0.1215339780164378557563951247368, -0.1215339780164378557563951247368, -0.0165728151840597076031447897368, 0.0165728151840597076031447897368 }; static const double g2_105[10] = { 0.0165728151840597076031447897368, 0.0165728151840597076031447897368, -0.1215339780164378557563951247368, -0.1215339780164378557563951247368, M_SQRT1_2, -(M_SQRT1_2), 0.1215339780164378557563951247368, 0.1215339780164378557563951247368, -0.0165728151840597076031447897368, -0.0165728151840597076031447897368 }; static const double g1_1[10] = { 0.0, 0.0, 0.0, 0.0, M_SQRT1_2, -(M_SQRT1_2), 0.0, 0.0, 0.0, 0.0 }; static const double h2_1[10] = { 0.0, 0.0, 0.0, 0.0, M_SQRT1_2, M_SQRT1_2, 0.0, 0.0, 0.0, 0.0 }; static const double h1_202[6] = { -0.1767766952966368811002110905262, 0.3535533905932737622004221810524, 1.0606601717798212866012665431573, 0.3535533905932737622004221810524, -0.1767766952966368811002110905262, 0.0 }; static const double g2_202[6] = { 0.0, -0.1767766952966368811002110905262, -0.3535533905932737622004221810524, 1.0606601717798212866012665431573, -0.3535533905932737622004221810524, -0.1767766952966368811002110905262 }; static const double h1_204[10] = { 0.0331456303681194152062895794737, -0.0662912607362388304125791589473, -0.1767766952966368811002110905262, 0.4198446513295125926130013399998, 0.9943689110435824561886873842099, 0.4198446513295125926130013399998, -0.1767766952966368811002110905262, -0.0662912607362388304125791589473, 0.0331456303681194152062895794737, 0.0 }; static const double g2_204[10] = { 0.0, 0.0331456303681194152062895794737, 0.0662912607362388304125791589473, -0.1767766952966368811002110905262, -0.4198446513295125926130013399998, 0.9943689110435824561886873842099, -0.4198446513295125926130013399998, -0.1767766952966368811002110905262, 0.0662912607362388304125791589473, 0.0331456303681194152062895794737 }; static const double h1_206[14] = { -0.0069053396600248781679769957237, 0.0138106793200497563359539914474, 0.0469563096881691715422435709210, -0.1077232986963880994204411332894, -0.1698713556366120029322340948025, 0.4474660099696121052849093228945, 0.9667475524034829435167794013152, 0.4474660099696121052849093228945, -0.1698713556366120029322340948025, -0.1077232986963880994204411332894, 0.0469563096881691715422435709210, 0.0138106793200497563359539914474, -0.0069053396600248781679769957237, 0.0 }; static const double g2_206[14] = { 0.0, -0.0069053396600248781679769957237, -0.0138106793200497563359539914474, 0.0469563096881691715422435709210, 0.1077232986963880994204411332894, -0.1698713556366120029322340948025, -0.4474660099696121052849093228945, 0.9667475524034829435167794013152, -0.4474660099696121052849093228945, -0.1698713556366120029322340948025, 0.1077232986963880994204411332894, 0.0469563096881691715422435709210, -0.0138106793200497563359539914474, -0.0069053396600248781679769957237, }; static const double h1_208[18] = { 0.0015105430506304420992449678146, -0.0030210861012608841984899356291, -0.0129475118625466465649568669819, 0.0289161098263541773284036695929, 0.0529984818906909399392234421792, -0.1349130736077360572068505539514, -0.1638291834340902345352542235443, 0.4625714404759165262773590010400, 0.9516421218971785225243297231697, 0.4625714404759165262773590010400, -0.1638291834340902345352542235443, -0.1349130736077360572068505539514, 0.0529984818906909399392234421792, 0.0289161098263541773284036695929, -0.0129475118625466465649568669819, -0.0030210861012608841984899356291, 0.0015105430506304420992449678146, 0.0 }; static const double g2_208[18] = { 0.0, 0.0015105430506304420992449678146, 0.0030210861012608841984899356291, -0.0129475118625466465649568669819, -0.0289161098263541773284036695929, 0.0529984818906909399392234421792, 0.1349130736077360572068505539514, -0.1638291834340902345352542235443, -0.4625714404759165262773590010400, 0.9516421218971785225243297231697, -0.4625714404759165262773590010400, -0.1638291834340902345352542235443, 0.1349130736077360572068505539514, 0.0529984818906909399392234421792, -0.0289161098263541773284036695929, -0.0129475118625466465649568669819, 0.0030210861012608841984899356291, 0.0015105430506304420992449678146, }; static const double h2_2[18] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3535533905932737622004221810524, 0.7071067811865475244008443621048, 0.3535533905932737622004221810524, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static const double g1_2[18] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.3535533905932737622004221810524, 0.7071067811865475244008443621048, -0.3535533905932737622004221810524, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static const double h1_301[4] = { -0.3535533905932737622004221810524, 1.0606601717798212866012665431573, 1.0606601717798212866012665431573, -0.3535533905932737622004221810524 }; static const double g2_301[4] = { 0.3535533905932737622004221810524, 1.0606601717798212866012665431573, -1.0606601717798212866012665431573, -0.3535533905932737622004221810524 }; static const double h1_303[8] = { 0.0662912607362388304125791589473, -0.1988737822087164912377374768420, -0.1546796083845572709626847042104, 0.9943689110435824561886873842099, 0.9943689110435824561886873842099, -0.1546796083845572709626847042104, -0.1988737822087164912377374768420, 0.0662912607362388304125791589473 }; static const double g2_303[8] = { -0.0662912607362388304125791589473, -0.1988737822087164912377374768420, 0.1546796083845572709626847042104, 0.9943689110435824561886873842099, -0.9943689110435824561886873842099, -0.1546796083845572709626847042104, 0.1988737822087164912377374768420, 0.0662912607362388304125791589473 }; static const double h1_305[12] = { -0.0138106793200497563359539914474, 0.0414320379601492690078619743421, 0.0524805814161890740766251675000, -0.2679271788089652729175074340788, -0.0718155324642587329469607555263, 0.9667475524034829435167794013152, 0.9667475524034829435167794013152, -0.0718155324642587329469607555263, -0.2679271788089652729175074340788, 0.0524805814161890740766251675000, 0.0414320379601492690078619743421, -0.0138106793200497563359539914474 }; static const double g2_305[12] = { 0.0138106793200497563359539914474, 0.0414320379601492690078619743421, -0.0524805814161890740766251675000, -0.2679271788089652729175074340788, 0.0718155324642587329469607555263, 0.9667475524034829435167794013152, -0.9667475524034829435167794013152, -0.0718155324642587329469607555263, 0.2679271788089652729175074340788, 0.0524805814161890740766251675000, -0.0414320379601492690078619743421, -0.0138106793200497563359539914474 }; static const double h1_307[16] = { 0.0030210861012608841984899356291, -0.0090632583037826525954698068873, -0.0168317654213106405344439270765, 0.0746639850740189951912512662623, 0.0313329787073628846871956180962, -0.3011591259228349991008967259990, -0.0264992409453454699696117210896, 0.9516421218971785225243297231697, 0.9516421218971785225243297231697, -0.0264992409453454699696117210896, -0.3011591259228349991008967259990, 0.0313329787073628846871956180962, 0.0746639850740189951912512662623, -0.0168317654213106405344439270765, -0.0090632583037826525954698068873, 0.0030210861012608841984899356291 }; static const double g2_307[16] = { -0.0030210861012608841984899356291, -0.0090632583037826525954698068873, 0.0168317654213106405344439270765, 0.0746639850740189951912512662623, -0.0313329787073628846871956180962, -0.3011591259228349991008967259990, 0.0264992409453454699696117210896, 0.9516421218971785225243297231697, -0.9516421218971785225243297231697, -0.0264992409453454699696117210896, 0.3011591259228349991008967259990, 0.0313329787073628846871956180962, -0.0746639850740189951912512662623, -0.0168317654213106405344439270765, 0.0090632583037826525954698068873, 0.0030210861012608841984899356291 }; static const double h1_309[20] = { -0.0006797443727836989446602355165, 0.0020392331183510968339807065496, 0.0050603192196119810324706421788, -0.0206189126411055346546938106687, -0.0141127879301758447558029850103, 0.0991347824942321571990197448581, 0.0123001362694193142367090236328, -0.3201919683607785695513833204624, 0.0020500227115698857061181706055, 0.9421257006782067372990864259380, 0.9421257006782067372990864259380, 0.0020500227115698857061181706055, -0.3201919683607785695513833204624, 0.0123001362694193142367090236328, 0.0991347824942321571990197448581, -0.0141127879301758447558029850103, -0.0206189126411055346546938106687, 0.0050603192196119810324706421788, 0.0020392331183510968339807065496, -0.0006797443727836989446602355165 }; static const double g2_309[20] = { 0.0006797443727836989446602355165, 0.0020392331183510968339807065496, -0.0050603192196119810324706421788, -0.0206189126411055346546938106687, 0.0141127879301758447558029850103, 0.0991347824942321571990197448581, -0.0123001362694193142367090236328, -0.3201919683607785695513833204624, -0.0020500227115698857061181706055, 0.9421257006782067372990864259380, -0.9421257006782067372990864259380, 0.0020500227115698857061181706055, 0.3201919683607785695513833204624, 0.0123001362694193142367090236328, -0.0991347824942321571990197448581, -0.0141127879301758447558029850103, 0.0206189126411055346546938106687, 0.0050603192196119810324706421788, -0.0020392331183510968339807065496, -0.0006797443727836989446602355165 }; static const double h2_3[20] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1767766952966368811002110905262, 0.5303300858899106433006332715786, 0.5303300858899106433006332715786, 0.1767766952966368811002110905262, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static const double g1_3[20] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.1767766952966368811002110905262, 0.5303300858899106433006332715786, -0.5303300858899106433006332715786, 0.1767766952966368811002110905262, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }; static int bspline_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, size_t member) { switch (member) { case 103: *nc = 6; *h1 = h1_103; *g1 = &g1_1[2]; *h2 = &h2_1[2]; *g2 = g2_103; break; case 105: *nc = 10; *h1 = h1_105; *g1 = g1_1; *h2 = h2_1; *g2 = g2_105; break; case 202: *nc = 6; *h1 = h1_202; *g1 = &g1_2[6]; *h2 = &h2_2[6]; *g2 = g2_202; break; case 204: *nc = 10; *h1 = h1_204; *g1 = &g1_2[4]; *h2 = &h2_2[4]; *g2 = g2_204; break; case 206: *nc = 14; *h1 = h1_206; *g1 = &g1_2[2]; *h2 = &h2_2[2]; *g2 = g2_206; break; case 208: *nc = 18; *h1 = h1_208; *g1 = g1_2; *h2 = h2_2; *g2 = g2_208; break; case 301: *nc = 4; *h1 = h1_301; *g1 = &g1_3[8]; *h2 = &h2_3[8]; *g2 = g2_301; break; case 303: *nc = 8; *h1 = h1_303; *g1 = &g1_3[6]; *h2 = &h2_3[6]; *g2 = g2_303; break; case 305: *nc = 12; *h1 = h1_305; *g1 = &g1_3[4]; *h2 = &h2_3[4]; *g2 = g2_305; break; case 307: *nc = 16; *h1 = h1_307; *g1 = &g1_3[2]; *h2 = &h2_3[2]; *g2 = g2_307; break; case 309: *nc = 20; *h1 = h1_309; *g1 = g1_3; *h2 = h2_3; *g2 = g2_309; break; default: return GSL_FAILURE; } *offset = 0; return GSL_SUCCESS; } static int bspline_centered_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, size_t member) { switch (member) { case 103: *nc = 6; *h1 = h1_103; *g1 = &g1_1[2]; *h2 = &h2_1[2]; *g2 = g2_103; break; case 105: *nc = 10; *h1 = h1_105; *g1 = g1_1; *h2 = h2_1; *g2 = g2_105; break; case 202: *nc = 6; *h1 = h1_202; *g1 = &g1_2[6]; *h2 = &h2_2[6]; *g2 = g2_202; break; case 204: *nc = 10; *h1 = h1_204; *g1 = &g1_2[4]; *h2 = &h2_2[4]; *g2 = g2_204; break; case 206: *nc = 14; *h1 = h1_206; *g1 = &g1_2[2]; *h2 = &h2_2[2]; *g2 = g2_206; break; case 208: *nc = 18; *h1 = h1_208; *g1 = g1_2; *h2 = h2_2; *g2 = g2_208; break; case 301: *nc = 4; *h1 = h1_301; *g1 = &g1_3[8]; *h2 = &h2_3[8]; *g2 = g2_301; break; case 303: *nc = 8; *h1 = h1_303; *g1 = &g1_3[6]; *h2 = &h2_3[6]; *g2 = g2_303; break; case 305: *nc = 12; *h1 = h1_305; *g1 = &g1_3[4]; *h2 = &h2_3[4]; *g2 = g2_305; break; case 307: *nc = 16; *h1 = h1_307; *g1 = &g1_3[2]; *h2 = &h2_3[2]; *g2 = g2_307; break; case 309: *nc = 20; *h1 = h1_309; *g1 = g1_3; *h2 = h2_3; *g2 = g2_309; break; default: return GSL_FAILURE; } *offset = ((*nc) >> 1); return GSL_SUCCESS; } static const gsl_wavelet_type bspline_type = { "bspline", &bspline_init }; static const gsl_wavelet_type bspline_centered_type = { "bspline-centered", &bspline_centered_init }; const gsl_wavelet_type *gsl_wavelet_bspline = &bspline_type; const gsl_wavelet_type *gsl_wavelet_bspline_centered = &bspline_centered_type; gsl-1.16/wavelet/gsl_wavelet.h0000664000252300025230000000574312171574312013317 00000000000000/* wavelet/gsl_wavelet.h * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_WAVELET_H__ #define __GSL_WAVELET_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef enum { gsl_wavelet_forward = 1, gsl_wavelet_backward = -1 } gsl_wavelet_direction; typedef struct { const char *name; int (*init) (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, size_t member); } gsl_wavelet_type; typedef struct { const gsl_wavelet_type *type; const double *h1; const double *g1; const double *h2; const double *g2; size_t nc; size_t offset; } gsl_wavelet; typedef struct { double *scratch; size_t n; } gsl_wavelet_workspace; GSL_VAR const gsl_wavelet_type *gsl_wavelet_daubechies; GSL_VAR const gsl_wavelet_type *gsl_wavelet_daubechies_centered; GSL_VAR const gsl_wavelet_type *gsl_wavelet_haar; GSL_VAR const gsl_wavelet_type *gsl_wavelet_haar_centered; GSL_VAR const gsl_wavelet_type *gsl_wavelet_bspline; GSL_VAR const gsl_wavelet_type *gsl_wavelet_bspline_centered; gsl_wavelet *gsl_wavelet_alloc (const gsl_wavelet_type * T, size_t k); void gsl_wavelet_free (gsl_wavelet * w); const char *gsl_wavelet_name (const gsl_wavelet * w); gsl_wavelet_workspace *gsl_wavelet_workspace_alloc (size_t n); void gsl_wavelet_workspace_free (gsl_wavelet_workspace * work); int gsl_wavelet_transform (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); int gsl_wavelet_transform_forward (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_workspace * work); int gsl_wavelet_transform_inverse (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_workspace * work); __END_DECLS #endif /* __GSL_WAVELET_H__ */ gsl-1.16/wavelet/TODO0000664000252300025230000000076212171574312011316 00000000000000# -*- org -*- #+CATEGORY: wavelet * Implement more wavelet types: Check the literature to find out what are commonly used types. Candidates could be coiflets and symmlets. ** Coefficients for coiflets and symmlets found so far are only with a precision of about eight digts. This is probaly insufficient. * Wavelet packet transform: Should include utility functions for selecting the coefficients according to "dwt-type", "best basis" or "best level". * Continuous wavelet transform. gsl-1.16/wavelet/gsl_wavelet2d.h0000664000252300025230000001012712171574312013535 00000000000000/* wavelet/gsl_wavelet.h * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_WAVELET2D_H__ #define __GSL_WAVELET2D_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_wavelet2d_transform (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); int gsl_wavelet2d_transform_forward (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work); int gsl_wavelet2d_transform_inverse (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform_forward (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform_inverse (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work); int gsl_wavelet2d_transform_matrix (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); int gsl_wavelet2d_transform_matrix_forward (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work); int gsl_wavelet2d_transform_matrix_inverse (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform_matrix (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform_matrix_forward (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work); int gsl_wavelet2d_nstransform_matrix_inverse (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work); __END_DECLS #endif /* __GSL_WAVELET2D_H__ */ gsl-1.16/wavelet/test.c0000664000252300025230000001466512171574312011760 00000000000000#include #include #include #include #include #include #include #include #include #define N_BS 11 double urand (void); double urand (void) { static unsigned long int x = 1; x = (1103515245 * x + 12345) & 0x7fffffffUL; return x / 2147483648.0; } const size_t member[N_BS] = { 309, 307, 305, 303, 301, 208, 206, 204, 202, 105, 103 }; void test_1d (size_t N, size_t stride, const gsl_wavelet_type * T, size_t member); void test_2d (size_t N, size_t tda, const gsl_wavelet_type * T, size_t member, int type); int main (int argc, char **argv) { size_t i, N, stride, tda; const int S = 1, NS = 2; /* Standard & Non-standard transforms */ /* One-dimensional tests */ for (N = 1; N <= 16384; N *= 2) { for (stride = 1; stride <= 5; stride++) { for (i = 0; i < N_BS; i++) { test_1d (N, stride, gsl_wavelet_bspline, member[i]); test_1d (N, stride, gsl_wavelet_bspline_centered, member[i]); } for (i = 4; i <= 20; i += 2) { test_1d (N, stride, gsl_wavelet_daubechies, i); test_1d (N, stride, gsl_wavelet_daubechies_centered, i); } test_1d (N, stride, gsl_wavelet_haar, 2); test_1d (N, stride, gsl_wavelet_haar_centered, 2); } } /* Two-dimensional tests */ for (N = 1; N <= 64; N *= 2) { for (tda = N; tda <= N + 5; tda++) { for (i = 0; i < N_BS; i++) { test_2d (N, tda, gsl_wavelet_bspline, member[i], S); test_2d (N, tda, gsl_wavelet_bspline_centered, member[i], S); test_2d (N, tda, gsl_wavelet_bspline, member[i], NS); test_2d (N, tda, gsl_wavelet_bspline_centered, member[i], NS); } for (i = 4; i <= 20; i += 2) { test_2d (N, tda, gsl_wavelet_daubechies, i, S); test_2d (N, tda, gsl_wavelet_daubechies_centered, i, S); test_2d (N, tda, gsl_wavelet_daubechies, i, NS); test_2d (N, tda, gsl_wavelet_daubechies_centered, i, NS); } test_2d (N, tda, gsl_wavelet_haar, 2, S); test_2d (N, tda, gsl_wavelet_haar_centered, 2, S); test_2d (N, tda, gsl_wavelet_haar, 2, NS); test_2d (N, tda, gsl_wavelet_haar_centered, 2, NS); } } exit (gsl_test_summary ()); } void test_1d (size_t N, size_t stride, const gsl_wavelet_type * T, size_t member) { gsl_wavelet_workspace *work; gsl_vector *v1, *v2, *vdelta; gsl_vector_view v; gsl_wavelet *w; size_t i; double *data = (double *)malloc (N * stride * sizeof (double)); for (i = 0; i < N * stride; i++) data[i] = 12345.0 + i; v = gsl_vector_view_array_with_stride (data, stride, N); v1 = &(v.vector); for (i = 0; i < N; i++) { gsl_vector_set (v1, i, urand ()); } v2 = gsl_vector_alloc (N); gsl_vector_memcpy (v2, v1); vdelta = gsl_vector_alloc (N); work = gsl_wavelet_workspace_alloc (N); w = gsl_wavelet_alloc (T, member); gsl_wavelet_transform_forward (w, v2->data, v2->stride, v2->size, work); gsl_wavelet_transform_inverse (w, v2->data, v2->stride, v2->size, work); for (i = 0; i < N; i++) { double x1 = gsl_vector_get (v1, i); double x2 = gsl_vector_get (v2, i); gsl_vector_set (vdelta, i, fabs (x1 - x2)); } { double x1, x2; i = gsl_vector_max_index (vdelta); x1 = gsl_vector_get (v1, i); x2 = gsl_vector_get (v2, i); gsl_test (fabs (x2 - x1) > N * 1e-15, "%s(%d), n = %d, stride = %d, maxerr = %g", gsl_wavelet_name (w), member, N, stride, fabs (x2 - x1)); } if (stride > 1) { int status = 0; for (i = 0; i < N * stride; i++) { if (i % stride == 0) continue; status |= (data[i] != (12345.0 + i)); } gsl_test (status, "%s(%d) other data untouched, n = %d, stride = %d", gsl_wavelet_name (w), member, N, stride); } gsl_wavelet_workspace_free (work); gsl_wavelet_free (w); gsl_vector_free (vdelta); gsl_vector_free (v2); free (data); } void test_2d (size_t N, size_t tda, const gsl_wavelet_type * T, size_t member, int type) { gsl_wavelet_workspace *work; gsl_matrix *m2; gsl_wavelet *w; gsl_matrix *m1; gsl_matrix *mdelta; gsl_matrix_view m; size_t i; size_t j; double *data = (double *)malloc (N * tda * sizeof (double)); const char * name; name = (type == 1) ? "standard" : "nonstd" ; for (i = 0; i < N * tda; i++) data[i] = 12345.0 + i; m = gsl_matrix_view_array_with_tda (data, N, N, tda); m1 = &(m.matrix); for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { gsl_matrix_set (m1, i, j, urand()); } } m2 = gsl_matrix_alloc (N, N); gsl_matrix_memcpy (m2, m1); mdelta = gsl_matrix_alloc (N, N); work = gsl_wavelet_workspace_alloc (N); w = gsl_wavelet_alloc (T, member); switch (type) { case 1: gsl_wavelet2d_transform_matrix_forward (w, m2, work); gsl_wavelet2d_transform_matrix_inverse (w, m2, work); break; case 2: gsl_wavelet2d_nstransform_matrix_forward (w, m2, work); gsl_wavelet2d_nstransform_matrix_inverse (w, m2, work); break; } for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { double x1 = gsl_matrix_get (m1, i, j); double x2 = gsl_matrix_get (m2, i, j ); gsl_matrix_set (mdelta, i, j, fabs (x1 - x2)); } } { double x1, x2; gsl_matrix_max_index (mdelta, &i, &j); x1 = gsl_matrix_get (m1, i, j); x2 = gsl_matrix_get (m2, i, j); gsl_test (fabs (x2 - x1) > N * 1e-15, "%s(%d)-2d %s, n = %d, tda = %d, maxerr = %g", gsl_wavelet_name (w), member, name, N, tda, fabs (x2 - x1)); } if (tda > N) { int status = 0; for (i = 0; i < N ; i++) { for (j = N; j < tda; j++) { status |= (data[i*tda+j] != (12345.0 + (i*tda+j))); } } gsl_test (status, "%s(%d)-2d %s other data untouched, n = %d, tda = %d", gsl_wavelet_name (w), member, name, N, tda); } free (data); gsl_wavelet_workspace_free (work); gsl_wavelet_free (w); gsl_matrix_free (m2); gsl_matrix_free (mdelta); } gsl-1.16/wavelet/haar.c0000664000252300025230000000373012171574312011703 00000000000000/* wavelet/haar.c * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include static const double ch_2[2] = { M_SQRT1_2, M_SQRT1_2 }; static const double cg_2[2] = { M_SQRT1_2, -(M_SQRT1_2) }; static int haar_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, const size_t member) { if (member != 2) { return GSL_FAILURE; } *h1 = ch_2; *g1 = cg_2; *h2 = ch_2; *g2 = cg_2; *nc = 2; *offset = 0; return GSL_SUCCESS; } static int haar_centered_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, const size_t member) { if (member != 2) { return GSL_FAILURE; } *h1 = ch_2; *g1 = cg_2; *h2 = ch_2; *g2 = cg_2; *nc = 2; *offset = 1; return GSL_SUCCESS; } static const gsl_wavelet_type haar_type = { "haar", &haar_init }; static const gsl_wavelet_type haar_centered_type = { "haar-centered", &haar_centered_init }; const gsl_wavelet_type *gsl_wavelet_haar = &haar_type; const gsl_wavelet_type *gsl_wavelet_haar_centered = &haar_centered_type; gsl-1.16/wavelet/wavelet.c0000664000252300025230000000613312171574312012437 00000000000000/* wavelet/wavelet.c * * Copyright (C) 2004, 2009 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_wavelet * gsl_wavelet_alloc (const gsl_wavelet_type * T, size_t k) { int status; gsl_wavelet *w = (gsl_wavelet *) malloc (sizeof (gsl_wavelet)); if (w == NULL) { GSL_ERROR_VAL ("failed to allocate space for wavelet struct", GSL_ENOMEM, 0); }; w->type = T; status = (T->init) (&(w->h1), &(w->g1), &(w->h2), &(w->g2), &(w->nc), &(w->offset), k); if (status) { free (w); GSL_ERROR_VAL ("invalid wavelet member", GSL_EINVAL, 0); } return w; } void gsl_wavelet_free (gsl_wavelet * w) { RETURN_IF_NULL (w); free (w); } const char * gsl_wavelet_name (const gsl_wavelet * w) { return w->type->name; } /* Let's not export this for now (BJG) */ #if 0 void gsl_wavelet_print (const gsl_wavelet * w) { size_t n = w->nc; size_t i; printf ("Wavelet type: %s\n", w->type->name); printf (" h1(%d):%12.8f g1(%d):%12.8f h2(%d):%12.8f g2(%d):%12.8f\n", 0, w->h1[0], 0, w->g1[0], 0, w->h2[0], 0, w->g2[0]); for (i = 1; i < (n < 10 ? n : 10); i++) { printf (" h1(%d):%12.8f g1(%d):%12.8f h2(%d):%12.8f g2(%d):%12.8f\n", i, w->h1[i], i, w->g1[i], i, w->h2[i], i, w->g2[i]); } for (; i < n; i++) { printf ("h1(%d):%12.8f g1(%d):%12.8f h2(%d):%12.8f g2(%d):%12.8f\n", i, w->h1[i], i, w->g1[i], i, w->h2[i], i, w->g2[i]); } } #endif gsl_wavelet_workspace * gsl_wavelet_workspace_alloc (size_t n) { gsl_wavelet_workspace *work; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } work = (gsl_wavelet_workspace *) malloc (sizeof (gsl_wavelet_workspace)); if (work == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } work->n = n; work->scratch = (double *) malloc (n * sizeof (double)); if (work->scratch == NULL) { /* error in constructor, prevent memory leak */ free (work); GSL_ERROR_VAL ("failed to allocate scratch space", GSL_ENOMEM, 0); } return work; } void gsl_wavelet_workspace_free (gsl_wavelet_workspace * work) { RETURN_IF_NULL (work); /* release scratch space */ free (work->scratch); work->scratch = NULL; free (work); } gsl-1.16/wavelet/Makefile.in0000664000252300025230000010441312172253757012701 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = wavelet DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslwavelet_la_LIBADD = am_libgslwavelet_la_OBJECTS = dwt.lo wavelet.lo bspline.lo \ daubechies.lo haar.lo libgslwavelet_la_OBJECTS = $(am_libgslwavelet_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslwavelet.la ../blas/libgslblas.la \ ../cblas/libgslcblas.la ../matrix/libgslmatrix.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslwavelet_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslwavelet_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslwavelet.la pkginclude_HEADERS = gsl_wavelet.h gsl_wavelet2d.h INCLUDES = -I$(top_srcdir) libgslwavelet_la_SOURCES = dwt.c wavelet.c bspline.c daubechies.c haar.c TESTS = $(check_PROGRAMS) test_LDADD = libgslwavelet.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu wavelet/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu wavelet/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslwavelet.la: $(libgslwavelet_la_OBJECTS) $(libgslwavelet_la_DEPENDENCIES) $(EXTRA_libgslwavelet_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslwavelet_la_OBJECTS) $(libgslwavelet_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bspline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/daubechies.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dwt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/haar.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/wavelet.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/wavelet/ChangeLog0000664000252300025230000000171012171574312012372 000000000000002009-07-09 Brian Gough * wavelet.c (gsl_wavelet_free): handle NULL argument in free (gsl_wavelet_workspace_free): handle NULL argument in free 2008-10-13 Brian Gough * test.c (test_2d): change typename variable to name to avoid conflict with C++ typename keyword 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-01-03 Brian Gough * dwt.c (dwt_step): move pointer dereference out of loop 2006-03-16 Brian Gough * changed to gsl_wavelet_forward and gsl_wavelet_backward enums throughout internally instead of forward and backward. 2004-12-29 Brian Gough * gsl_wavelet.h: added missing includes, use GSL_VAR instead of extern 2004-07-23 Brian Gough * added wavelet directory from Ivo Alxneit. gsl-1.16/wavelet/Makefile.am0000664000252300025230000000103212171574312012651 00000000000000noinst_LTLIBRARIES = libgslwavelet.la pkginclude_HEADERS = gsl_wavelet.h gsl_wavelet2d.h INCLUDES = -I$(top_srcdir) libgslwavelet_la_SOURCES = dwt.c wavelet.c bspline.c daubechies.c haar.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_LDADD = libgslwavelet.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/wavelet/daubechies.c0000664000252300025230000003000412171574312013056 00000000000000/* wavelet/daubechies.c * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Coefficients for Daubechies wavelets of extremal phase are from * I. Daubechies, "Orthonormal Bases of Compactly Supported Wavelets", * Communications on Pure and Applied Mathematics, 41 (1988) 909--996 * (table 1). * Additional digits have been obtained using the Mathematica package * Daubechies.m by Tong Chen & Meng Xu available at * http://www.cwp.mines.edu/wavelets/. */ #include #include #include static const double h_4[4] = { 0.48296291314453414337487159986, 0.83651630373780790557529378092, 0.22414386804201338102597276224, -0.12940952255126038117444941881 }; static const double g_4[4] = { -0.12940952255126038117444941881, -0.22414386804201338102597276224, 0.83651630373780790557529378092, -0.48296291314453414337487159986 }; static const double h_6[6] = { 0.33267055295008261599851158914, 0.80689150931109257649449360409, 0.45987750211849157009515194215, -0.13501102001025458869638990670, -0.08544127388202666169281916918, 0.03522629188570953660274066472 }; static const double g_6[6] = { 0.03522629188570953660274066472, 0.08544127388202666169281916918, -0.13501102001025458869638990670, -0.45987750211849157009515194215, 0.80689150931109257649449360409, -0.33267055295008261599851158914 }; static const double h_8[8] = { 0.23037781330889650086329118304, 0.71484657055291564708992195527, 0.63088076792985890788171633830, -0.02798376941685985421141374718, -0.18703481171909308407957067279, 0.03084138183556076362721936253, 0.03288301166688519973540751355, -0.01059740178506903210488320852 }; static const double g_8[8] = { -0.01059740178506903210488320852, -0.03288301166688519973540751355, 0.03084138183556076362721936253, 0.18703481171909308407957067279, -0.02798376941685985421141374718, -0.63088076792985890788171633830, 0.71484657055291564708992195527, -0.23037781330889650086329118304 }; static const double h_10[10] = { 0.16010239797419291448072374802, 0.60382926979718967054011930653, 0.72430852843777292772807124410, 0.13842814590132073150539714634, -0.24229488706638203186257137947, -0.03224486958463837464847975506, 0.07757149384004571352313048939, -0.00624149021279827427419051911, -0.01258075199908199946850973993, 0.00333572528547377127799818342 }; static const double g_10[10] = { 0.00333572528547377127799818342, 0.01258075199908199946850973993, -0.00624149021279827427419051911, -0.07757149384004571352313048939, -0.03224486958463837464847975506, 0.24229488706638203186257137947, 0.13842814590132073150539714634, -0.72430852843777292772807124410, 0.60382926979718967054011930653, -0.16010239797419291448072374802 }; static const double h_12[12] = { 0.11154074335010946362132391724, 0.49462389039845308567720417688, 0.75113390802109535067893449844, 0.31525035170919762908598965481, -0.22626469396543982007631450066, -0.12976686756726193556228960588, 0.09750160558732304910234355254, 0.02752286553030572862554083950, -0.03158203931748602956507908070, 0.00055384220116149613925191840, 0.00477725751094551063963597525, -0.00107730108530847956485262161 }; static const double g_12[12] = { -0.00107730108530847956485262161, -0.00477725751094551063963597525, 0.00055384220116149613925191840, 0.03158203931748602956507908070, 0.02752286553030572862554083950, -0.09750160558732304910234355254, -0.12976686756726193556228960588, 0.22626469396543982007631450066, 0.31525035170919762908598965481, -0.75113390802109535067893449844, 0.49462389039845308567720417688, -0.11154074335010946362132391724 }; static const double h_14[14] = { 0.07785205408500917901996352196, 0.39653931948191730653900039094, 0.72913209084623511991694307034, 0.46978228740519312247159116097, -0.14390600392856497540506836221, -0.22403618499387498263814042023, 0.07130921926683026475087657050, 0.08061260915108307191292248036, -0.03802993693501441357959206160, -0.01657454163066688065410767489, 0.01255099855609984061298988603, 0.00042957797292136652113212912, -0.00180164070404749091526826291, 0.00035371379997452024844629584 }; static const double g_14[14] = { 0.00035371379997452024844629584, 0.00180164070404749091526826291, 0.00042957797292136652113212912, -0.01255099855609984061298988603, -0.01657454163066688065410767489, 0.03802993693501441357959206160, 0.08061260915108307191292248036, -0.07130921926683026475087657050, -0.22403618499387498263814042023, 0.14390600392856497540506836221, 0.46978228740519312247159116097, -0.72913209084623511991694307034, 0.39653931948191730653900039094, -0.07785205408500917901996352196 }; static const double h_16[16] = { 0.05441584224310400995500940520, 0.31287159091429997065916237551, 0.67563073629728980680780076705, 0.58535468365420671277126552005, -0.01582910525634930566738054788, -0.28401554296154692651620313237, 0.00047248457391328277036059001, 0.12874742662047845885702928751, -0.01736930100180754616961614887, -0.04408825393079475150676372324, 0.01398102791739828164872293057, 0.00874609404740577671638274325, -0.00487035299345157431042218156, -0.00039174037337694704629808036, 0.00067544940645056936636954757, -0.00011747678412476953373062823 }; static const double g_16[16] = { -0.00011747678412476953373062823, -0.00067544940645056936636954757, -0.00039174037337694704629808036, 0.00487035299345157431042218156, 0.00874609404740577671638274325, -0.01398102791739828164872293057, -0.04408825393079475150676372324, 0.01736930100180754616961614887, 0.12874742662047845885702928751, -0.00047248457391328277036059001, -0.28401554296154692651620313237, 0.01582910525634930566738054788, 0.58535468365420671277126552005, -0.67563073629728980680780076705, 0.31287159091429997065916237551, -0.05441584224310400995500940520 }; static const double h_18[18] = { 0.03807794736387834658869765888, 0.24383467461259035373204158165, 0.60482312369011111190307686743, 0.65728807805130053807821263905, 0.13319738582500757619095494590, -0.29327378327917490880640319524, -0.09684078322297646051350813354, 0.14854074933810638013507271751, 0.03072568147933337921231740072, -0.06763282906132997367564227483, 0.00025094711483145195758718975, 0.02236166212367909720537378270, -0.00472320475775139727792570785, -0.00428150368246342983449679500, 0.00184764688305622647661912949, 0.00023038576352319596720521639, -0.00025196318894271013697498868, 0.00003934732031627159948068988 }; static const double g_18[18] = { 0.00003934732031627159948068988, 0.00025196318894271013697498868, 0.00023038576352319596720521639, -0.00184764688305622647661912949, -0.00428150368246342983449679500, 0.00472320475775139727792570785, 0.02236166212367909720537378270, -0.00025094711483145195758718975, -0.06763282906132997367564227483, -0.03072568147933337921231740072, 0.14854074933810638013507271751, 0.09684078322297646051350813354, -0.29327378327917490880640319524, -0.13319738582500757619095494590, 0.65728807805130053807821263905, -0.60482312369011111190307686743, 0.24383467461259035373204158165, -0.03807794736387834658869765888 }; static const double h_20[20] = { 0.02667005790055555358661744877, 0.18817680007769148902089297368, 0.52720118893172558648174482796, 0.68845903945360356574187178255, 0.28117234366057746074872699845, -0.24984642432731537941610189792, -0.19594627437737704350429925432, 0.12736934033579326008267723320, 0.09305736460357235116035228984, -0.07139414716639708714533609308, -0.02945753682187581285828323760, 0.03321267405934100173976365318, 0.00360655356695616965542329142, -0.01073317548333057504431811411, 0.00139535174705290116578931845, 0.00199240529518505611715874224, -0.00068585669495971162656137098, -0.00011646685512928545095148097, 0.00009358867032006959133405013, -0.00001326420289452124481243668 }; static const double g_20[20] = { -0.00001326420289452124481243668, -0.00009358867032006959133405013, -0.00011646685512928545095148097, 0.00068585669495971162656137098, 0.00199240529518505611715874224, -0.00139535174705290116578931845, -0.01073317548333057504431811411, -0.00360655356695616965542329142, 0.03321267405934100173976365318, 0.02945753682187581285828323760, -0.07139414716639708714533609308, -0.09305736460357235116035228984, 0.12736934033579326008267723320, 0.19594627437737704350429925432, -0.24984642432731537941610189792, -0.28117234366057746074872699845, 0.68845903945360356574187178255, -0.52720118893172558648174482796, 0.18817680007769148902089297368, -0.02667005790055555358661744877 }; static int daubechies_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, size_t member) { switch (member) { case 4: *h1 = h_4; *g1 = g_4; *h2 = h_4; *g2 = g_4; break; case 6: *h1 = h_6; *g1 = g_6; *h2 = h_6; *g2 = g_6; break; case 8: *h1 = h_8; *g1 = g_8; *h2 = h_8; *g2 = g_8; break; case 10: *h1 = h_10; *g1 = g_10; *h2 = h_10; *g2 = g_10; break; case 12: *h1 = h_12; *g1 = g_12; *h2 = h_12; *g2 = g_12; break; case 14: *h1 = h_14; *g1 = g_14; *h2 = h_14; *g2 = g_14; break; case 16: *h1 = h_16; *g1 = g_16; *h2 = h_16; *g2 = g_16; break; case 18: *h1 = h_18; *g1 = g_18; *h2 = h_18; *g2 = g_18; break; case 20: *h1 = h_20; *g1 = g_20; *h2 = h_20; *g2 = g_20; break; default: return GSL_FAILURE; } *nc = member; *offset = 0; return GSL_SUCCESS; } static int daubechies_centered_init (const double **h1, const double **g1, const double **h2, const double **g2, size_t * nc, size_t * offset, size_t member) { switch (member) { case 4: *h1 = h_4; *g1 = g_4; *h2 = h_4; *g2 = g_4; break; case 6: *h1 = h_6; *g1 = g_6; *h2 = h_6; *g2 = g_6; break; case 8: *h1 = h_8; *g1 = g_8; *h2 = h_8; *g2 = g_8; break; case 10: *h1 = h_10; *g1 = g_10; *h2 = h_10; *g2 = g_10; break; case 12: *h1 = h_12; *g1 = g_12; *h2 = h_12; *g2 = g_12; break; case 14: *h1 = h_14; *g1 = g_14; *h2 = h_14; *g2 = g_14; break; case 16: *h1 = h_16; *g1 = g_16; *h2 = h_16; *g2 = g_16; break; case 18: *h1 = h_18; *g1 = g_18; *h2 = h_18; *g2 = g_18; break; case 20: *h1 = h_20; *g1 = g_20; *h2 = h_20; *g2 = g_20; break; default: return GSL_FAILURE; } *nc = member; *offset = (member >> 1); return GSL_SUCCESS; } static const gsl_wavelet_type daubechies_type = { "daubechies", &daubechies_init }; static const gsl_wavelet_type daubechies_centered_type = { "daubechies-centered", &daubechies_centered_init }; const gsl_wavelet_type *gsl_wavelet_daubechies = &daubechies_type; const gsl_wavelet_type *gsl_wavelet_daubechies_centered = &daubechies_centered_type; gsl-1.16/wavelet/dwt.c0000664000252300025230000002511112171574312011563 00000000000000/* wavelet/dwt.c * * Copyright (C) 2004 Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* function dwt_step is based on the public domain function pwt.c * available from http://www.numerical-recipes.com */ #include #include #include #include #define ELEMENT(a,stride,i) ((a)[(stride)*(i)]) static int binary_logn (const size_t n); static void dwt_step (const gsl_wavelet * w, double *a, size_t stride, size_t n, gsl_wavelet_direction dir, gsl_wavelet_workspace * work); static int binary_logn (const size_t n) { size_t ntest; size_t logn = 0; size_t k = 1; while (k < n) { k *= 2; logn++; } ntest = (1 << logn); if (n != ntest) { return -1; /* n is not a power of 2 */ } return logn; } static void dwt_step (const gsl_wavelet * w, double *a, size_t stride, size_t n, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { double ai, ai1; size_t i, ii; size_t jf; size_t k; size_t n1, ni, nh, nmod; for (i = 0; i < work->n; i++) { work->scratch[i] = 0.0; } nmod = w->nc * n; nmod -= w->offset; /* center support */ n1 = n - 1; nh = n >> 1; if (dir == gsl_wavelet_forward) { for (ii = 0, i = 0; i < n; i += 2, ii++) { double h = 0, g = 0; ni = i + nmod; for (k = 0; k < w->nc; k++) { jf = n1 & (ni + k); h += w->h1[k] * ELEMENT (a, stride, jf); g += w->g1[k] * ELEMENT (a, stride, jf); } work->scratch[ii] += h; work->scratch[ii + nh] += g; } } else { for (ii = 0, i = 0; i < n; i += 2, ii++) { ai = ELEMENT (a, stride, ii); ai1 = ELEMENT (a, stride, ii + nh); ni = i + nmod; for (k = 0; k < w->nc; k++) { jf = (n1 & (ni + k)); work->scratch[jf] += (w->h2[k] * ai + w->g2[k] * ai1); } } } for (i = 0; i < n; i++) { ELEMENT (a, stride, i) = work->scratch[i]; } } int gsl_wavelet_transform (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { size_t i; if (work->n < n) { GSL_ERROR ("not enough workspace provided", GSL_EINVAL); } if (binary_logn (n) == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } if (n < 2) { return GSL_SUCCESS; } if (dir == gsl_wavelet_forward) { for (i = n; i >= 2; i >>= 1) { dwt_step (w, data, stride, i, dir, work); } } else { for (i = 2; i <= n; i <<= 1) { dwt_step (w, data, stride, i, dir, work); } } return GSL_SUCCESS; } int gsl_wavelet_transform_forward (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_workspace * work) { return gsl_wavelet_transform (w, data, stride, n, gsl_wavelet_forward, work); } int gsl_wavelet_transform_inverse (const gsl_wavelet * w, double *data, size_t stride, size_t n, gsl_wavelet_workspace * work) { return gsl_wavelet_transform (w, data, stride, n, gsl_wavelet_backward, work); } /* Leaving this out for now BJG */ #if 0 int gsl_dwt_vector (const gsl_wavelet * w, gsl_vector *v, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { return gsl_dwt (w, v->data, v->stride, v->size, dir, work); } #endif int gsl_wavelet2d_transform (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { size_t i; if (size1 != size2) { GSL_ERROR ("2d dwt works only with square matrix", GSL_EINVAL); } if (work->n < size1) { GSL_ERROR ("not enough workspace provided", GSL_EINVAL); } if (binary_logn (size1) == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } if (size1 < 2) { return GSL_SUCCESS; } if (dir == gsl_wavelet_forward) { for (i = 0; i < size1; i++) /* for every row j */ { gsl_wavelet_transform (w, &ELEMENT(data, tda, i), 1, size1, dir, work); } for (i = 0; i < size2; i++) /* for every column j */ { gsl_wavelet_transform (w, &ELEMENT(data, 1, i), tda, size2, dir, work); } } else { for (i = 0; i < size2; i++) /* for every column j */ { gsl_wavelet_transform (w, &ELEMENT(data, 1, i), tda, size2, dir, work); } for (i = 0; i < size1; i++) /* for every row j */ { gsl_wavelet_transform (w, &ELEMENT(data, tda, i), 1, size1, dir, work); } } return GSL_SUCCESS; } int gsl_wavelet2d_nstransform (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { size_t i, j; if (size1 != size2) { GSL_ERROR ("2d dwt works only with square matrix", GSL_EINVAL); } if (work->n < size1) { GSL_ERROR ("not enough workspace provided", GSL_EINVAL); } if (binary_logn (size1) == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } if (size1 < 2) { return GSL_SUCCESS; } if (dir == gsl_wavelet_forward) { for (i = size1; i >= 2; i >>= 1) { for (j = 0; j < i; j++) /* for every row j */ { dwt_step (w, &ELEMENT(data, tda, j), 1, i, dir, work); } for (j = 0; j < i; j++) /* for every column j */ { dwt_step (w, &ELEMENT(data, 1, j), tda, i, dir, work); } } } else { for (i = 2; i <= size1; i <<= 1) { for (j = 0; j < i; j++) /* for every column j */ { dwt_step (w, &ELEMENT(data, 1, j), tda, i, dir, work); } for (j = 0; j < i; j++) /* for every row j */ { dwt_step (w, &ELEMENT(data, tda, j), 1, i, dir, work); } } } return GSL_SUCCESS; } int gsl_wavelet2d_transform_forward (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work) { return gsl_wavelet2d_transform (w, data, tda, size1, size2, gsl_wavelet_forward, work); } int gsl_wavelet2d_transform_inverse (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work) { return gsl_wavelet2d_transform (w, data, tda, size1, size2, gsl_wavelet_backward, work); } int gsl_wavelet2d_nstransform_forward (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work) { return gsl_wavelet2d_nstransform (w, data, tda, size1, size2, gsl_wavelet_forward, work); } int gsl_wavelet2d_nstransform_inverse (const gsl_wavelet * w, double *data, size_t tda, size_t size1, size_t size2, gsl_wavelet_workspace * work) { return gsl_wavelet2d_nstransform (w, data, tda, size1, size2, gsl_wavelet_backward, work); } int gsl_wavelet2d_transform_matrix (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { return gsl_wavelet2d_transform (w, a->data, a->tda, a->size1, a->size2, dir, work); } int gsl_wavelet2d_transform_matrix_forward (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work) { return gsl_wavelet2d_transform (w, a->data, a->tda, a->size1, a->size2, gsl_wavelet_forward, work); } int gsl_wavelet2d_transform_matrix_inverse (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work) { return gsl_wavelet2d_transform (w, a->data, a->tda, a->size1, a->size2, gsl_wavelet_backward, work); } int gsl_wavelet2d_nstransform_matrix (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_direction dir, gsl_wavelet_workspace * work) { return gsl_wavelet2d_nstransform (w, a->data, a->tda, a->size1, a->size2, dir, work); } int gsl_wavelet2d_nstransform_matrix_forward (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work) { return gsl_wavelet2d_nstransform (w, a->data, a->tda, a->size1, a->size2, gsl_wavelet_forward, work); } int gsl_wavelet2d_nstransform_matrix_inverse (const gsl_wavelet * w, gsl_matrix * a, gsl_wavelet_workspace * work) { return gsl_wavelet2d_nstransform (w, a->data, a->tda, a->size1, a->size2, gsl_wavelet_backward, work); } gsl-1.16/AUTHORS0000664000252300025230000000347112171574312010227 00000000000000Mark Galassi (rosalia@lanl.gov) - overall design, simulated annealing Jim Davies (jimmyd@nis.lanl.gov) - statistics library James Theiler (jt@lanl.gov) - random number generators Brian Gough (bjg@network-theory.co.uk) - FFTs, numerical integration, random number generators and distributions, root finding, minimization and fitting, polynomial solvers, complex numbers, physical constants, permutations, vector and matrix functions, histograms, statistics, ieee-utils, revised CBLAS Level 2 & 3, matrix decompositions and eigensystems. Reid Priedhorsky (rp@lanl.gov) - root finding Gerard Jungman (jungman@lanl.gov) special functions, interpolation, series acceleration, ODEs, BLAS, Linear Algebra, Eigensystems, Hankel Transforms. Michael Booth (booth@debian.org (email address not working)) - Monte Carlo integration Fabrice Rossi (rossi@ufrmd.dauphine.fr) - Multidimensional minimization Simone Piccardi (piccardi@fi.infn.it) - Ntuples Carlo Perassi (carlo@linux.it) - Additional random number generators Dan, Ho-Jin (hjdan@sys713.kaist.ac.kr) - divided differences interpolation Szymon Jaroszewicz (sj@cs.umb.edu) - combinations Nicolas Darnis (ndarnis@cvf.fr) - cyclic functions and the initial functions for canonical permutations. Tuomo Keskitalo (tuomo.keskitalo@iki.fi) - multidimensional minimization and ode-initval2 routines for ordinary differential equations Ivo Alxneit (ivo.alxneit@psi.ch) - multidimensional minimization, wavelet transforms Jason H. Stover (jason@sakla.net) - cumulative distribution functions Patrick Alken - nonsymmetric and generalized eigensystems, B-splines Rhys Ulerich (rhys.ulerich@gmail.com) - multisets Pavel Holoborodko - fixed order Gauss-Legendre quadrature Pedro Gonnet - CQUAD integration routines. gsl-1.16/err/0000775000252300025230000000000012172254155010023 500000000000000gsl-1.16/err/TODO0000664000252300025230000000017212171574312010432 00000000000000# -*- org -*- #+CATEGORY: err * Add a GSL_ERROR_MODE environment variable for choosing error behavior at runtime (???). gsl-1.16/err/error.c0000664000252300025230000000400612171574312011237 00000000000000/* err/error.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include gsl_error_handler_t * gsl_error_handler = NULL; static void no_error_handler (const char *reason, const char *file, int line, int gsl_errno); void gsl_error (const char * reason, const char * file, int line, int gsl_errno) { if (gsl_error_handler) { (*gsl_error_handler) (reason, file, line, gsl_errno); return ; } gsl_stream_printf ("ERROR", file, line, reason); fflush (stdout); fprintf (stderr, "Default GSL error handler invoked.\n"); fflush (stderr); abort (); } gsl_error_handler_t * gsl_set_error_handler (gsl_error_handler_t * new_handler) { gsl_error_handler_t * previous_handler = gsl_error_handler; gsl_error_handler = new_handler; return previous_handler; } gsl_error_handler_t * gsl_set_error_handler_off (void) { gsl_error_handler_t * previous_handler = gsl_error_handler; gsl_error_handler = no_error_handler; return previous_handler; } static void no_error_handler (const char *reason, const char *file, int line, int gsl_errno) { /* do nothing */ reason = 0; file = 0; line = 0; gsl_errno = 0; return; } gsl-1.16/err/test.c0000664000252300025230000000532012171574312011065 00000000000000/* err/test_errnos.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #define CHECK(x) errors[n].number = x ; errors[n].name = #x ; n++ ; #define MAX_ERRS 64 int verbose = 0 ; int main (void) { int i, j, n = 0 ; struct { int number; const char * name; } errors[MAX_ERRS] ; CHECK(GSL_SUCCESS); CHECK(GSL_FAILURE); CHECK(GSL_CONTINUE); CHECK(GSL_EDOM); CHECK(GSL_ERANGE); CHECK(GSL_EFAULT); CHECK(GSL_EINVAL); CHECK(GSL_EFAILED); CHECK(GSL_EFACTOR); CHECK(GSL_ESANITY); CHECK(GSL_ENOMEM); CHECK(GSL_EBADFUNC); CHECK(GSL_ERUNAWAY); CHECK(GSL_EMAXITER); CHECK(GSL_EZERODIV); CHECK(GSL_EBADTOL); CHECK(GSL_ETOL); CHECK(GSL_EUNDRFLW); CHECK(GSL_EOVRFLW); CHECK(GSL_ELOSS); CHECK(GSL_EROUND); CHECK(GSL_EBADLEN); CHECK(GSL_ENOTSQR); CHECK(GSL_ESING); CHECK(GSL_EDIVERGE); CHECK(GSL_EUNSUP); CHECK(GSL_EUNIMPL); CHECK(GSL_ECACHE); CHECK(GSL_ETABLE); CHECK(GSL_ENOPROG); CHECK(GSL_ENOPROGJ); CHECK(GSL_ETOLF); CHECK(GSL_ETOLX); CHECK(GSL_ETOLG); CHECK(GSL_EOF); for (i = 0 ; i < n ; i++) { if (verbose) printf ("%s = %d\n", errors[i].name, errors[i].number) ; } for (i = 0; i < n; i++) { int status = 0; for (j = 0; j < n; j++) { if (j != i) status |= (errors[i].number == errors[j].number); } gsl_test (status, "%s is distinct from other error values", errors[i].name); } for (i = 0; i < n; i++) { int status = 0; int e1 = errors[i].number ; for (j = 0; j < n; j++) { if (j != i) { int e2 = errors[j].number; status |= (gsl_strerror(e1) == gsl_strerror(e2)) ; } } gsl_test (status, "%s has a distinct error message", errors[i].name); } exit (gsl_test_summary ()); } gsl-1.16/err/Makefile.in0000664000252300025230000010333512172253755012022 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = err DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslerr_la_LIBADD = am_libgslerr_la_OBJECTS = error.lo stream.lo message.lo strerror.lo libgslerr_la_OBJECTS = $(am_libgslerr_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslerr.la ../test/libgsltest.la \ ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslerr_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslerr_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslerr.la pkginclude_HEADERS = gsl_errno.h gsl_message.h libgslerr_la_SOURCES = error.c stream.c message.c strerror.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu err/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu err/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslerr.la: $(libgslerr_la_OBJECTS) $(libgslerr_la_DEPENDENCIES) $(EXTRA_libgslerr_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslerr_la_OBJECTS) $(libgslerr_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/error.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/message.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stream.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/strerror.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/err/ChangeLog0000664000252300025230000001251412171574312011517 000000000000002004-07-10 Brian Gough * error.c (gsl_error): flush stdout/stderr before aborting (needed to get a useful error message on some platforms) 2003-06-17 Brian Gough * warn.c: removed, the functions are not used Sat Apr 27 21:27:32 2002 Brian Gough * error.c (gsl_error): added an explanatory message in the default error handler before aborting Tue Jun 12 11:52:23 2001 Brian Gough * gsl_errno.h (GSL_STATUS_UPDATE): added macro for updating status value multiple times Fri Apr 27 18:18:59 2001 Brian Gough * gsl_errno.h (GSL_ERROR_NULL): added macro which returns NULL, for out of memory conditions Mon Jan 22 16:01:55 2001 Brian Gough * gsl_errno.h: added EOF for end of file Sat Aug 26 19:26:59 2000 Brian Gough * gsl_errno.h: added error codes ETOLF, ETOLX, ETOLG for unattainable tolerances in (F,X,G) in multimin MINPACK LM algorithm. Fri May 5 11:20:10 2000 Brian Gough * split gsl_test code out into separate test/ directory Sun Nov 28 17:17:03 1999 Brian Gough * gsl_errno.h: added GSL_ENOPROG and GSL_ENOPROGJ to handle error conditions from minpack hybrid algorithms (INFO=5,4 in the original code) Thu Oct 28 14:41:31 1999 Brian Gough * gsl_test.h: changed variable name in prototype for clarity Thu Oct 7 11:46:53 1999 Brian Gough * test_results.c (gsl_test_str): changed #if __STDC__ to #ifdef __STDC__ so the code will compile with compilers that define __STDC__ to 0 meaning STDC+extensions. Sun Jul 11 21:48:25 1999 Brian Gough * test_errnos.c (main): added GSL_ECACHE to handle internal cache structures which grow and can hit a limit Sun Mar 7 17:00:08 1999 Brian Gough * gsl_errno.h, test_errnos.c, strerror.c: added GSL_EDIVERGE for divergent integrals and series Sat Feb 20 12:14:47 1999 Brian Gough * test_errnos.c (main): added the new error codes to the tests * gsl_errno.h: moved all the error codes into a single enum instead of having a separate enum for GSL_SUCCESS and GSL_FAILURE Fri Feb 19 15:56:15 1999 Brian Gough * gsl_errno.h, strerror.c: added GSL_CONTINUE as an error code indicating that an iteration process has not converged and should be continued for more iterations. Tue Nov 17 17:11:31 1998 Brian Gough * gsl_test.h: removed #include which should not be present in installed header files Tue Nov 10 15:55:56 1998 Brian Gough * test_results.c (gsl_test_abs), gsl_test.h: added gsl_test_abs for absolute errors, like gsl_test_rel for relative errors Fri Oct 23 12:51:01 1998 Brian Gough * test_results.c (gsl_test_rel): print a shorter "observed vs expected" message if the description is 45 characters or longer Mon Jun 1 11:02:04 1998 Brian Gough * gsl_errno.h: added GSL_EUNSUP for errors caused by a hardware feature which is not supported on a particular platform * renamed test.c to test_results.c to avoid confusion when debugging other test programs called test.c Sat May 30 16:11:34 1998 Brian Gough * gsl_errno.h: add GSL_ESING for errors caused by singularities or other bad function behavior Fri May 29 14:41:19 1998 Brian Gough * gsl_errno.h: added GSL_EBADLEN to signify bad lengths of matrices or vectors (e.g. non-conformant sizes in a matrix or vector multiplication) Wed May 27 18:15:34 1998 Brian Gough * test.c (gsl_test_str): changed things so that the strings aren't printed unless the string equality test fails (usually they were too long) Mon May 18 17:58:20 1998 Brian Gough * test.c (gsl_test_rel): added a test for numerical quantities, given a result, an expected result and an allowable relative error. (gsl_test_int): added a test for comparing integers Sun May 10 16:03:12 1998 Brian Gough * gsl_errno.h: added GSL_EROUND for roundoff errors Fri May 8 18:50:13 1998 Brian Gough * gsl_errno.h: changed GSL_ETIMEOUT to GSL_EMAXITER to describe the error that occurs when a specified number of iterations is exceeded. Sun Apr 19 19:14:05 1998 Brian Gough * strerror.c (gsl_strerror): added an strerror function for making readable descriptions of the error number Wed Apr 15 21:59:57 1998 Brian Gough * added a stream handler, for the error stream * completely reorganized the files, but the functions are relatively unchanged Wed Apr 8 13:55:48 1998 Brian Gough * gsl_errno.h (GSL_ERROR_RETURN_NOTHING): added an error macro suitable for void functions Mon Apr 6 14:10:48 1998 Brian Gough * gsl_errno.h: use enum instead of #define for symbolic constants, so that they can be seen in the debugger Sun Apr 5 19:49:17 1998 Brian Gough * err/errno.c (gsl_error): now takes gsl_errno as an argument (this is useful for doing conditional breakpoints) gsl-1.16/err/strerror.c0000664000252300025230000000651212171574312011774 00000000000000/* err/strerror.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include const char * gsl_strerror (const int gsl_errno) { switch (gsl_errno) { case GSL_SUCCESS: return "success" ; case GSL_FAILURE: return "failure" ; case GSL_CONTINUE: return "the iteration has not converged yet"; case GSL_EDOM: return "input domain error" ; case GSL_ERANGE: return "output range error" ; case GSL_EFAULT: return "invalid pointer" ; case GSL_EINVAL: return "invalid argument supplied by user" ; case GSL_EFAILED: return "generic failure" ; case GSL_EFACTOR: return "factorization failed" ; case GSL_ESANITY: return "sanity check failed - shouldn't happen" ; case GSL_ENOMEM: return "malloc failed" ; case GSL_EBADFUNC: return "problem with user-supplied function"; case GSL_ERUNAWAY: return "iterative process is out of control"; case GSL_EMAXITER: return "exceeded max number of iterations" ; case GSL_EZERODIV: return "tried to divide by zero" ; case GSL_EBADTOL: return "specified tolerance is invalid or theoretically unattainable" ; case GSL_ETOL: return "failed to reach the specified tolerance" ; case GSL_EUNDRFLW: return "underflow" ; case GSL_EOVRFLW: return "overflow" ; case GSL_ELOSS: return "loss of accuracy" ; case GSL_EROUND: return "roundoff error" ; case GSL_EBADLEN: return "matrix/vector sizes are not conformant" ; case GSL_ENOTSQR: return "matrix not square" ; case GSL_ESING: return "singularity or extremely bad function behavior detected" ; case GSL_EDIVERGE: return "integral or series is divergent" ; case GSL_EUNSUP: return "the required feature is not supported by this hardware platform"; case GSL_EUNIMPL: return "the requested feature is not (yet) implemented"; case GSL_ECACHE: return "cache limit exceeded"; case GSL_ETABLE: return "table limit exceeded"; case GSL_ENOPROG: return "iteration is not making progress towards solution"; case GSL_ENOPROGJ: return "jacobian evaluations are not improving the solution"; case GSL_ETOLF: return "cannot reach the specified tolerance in F"; case GSL_ETOLX: return "cannot reach the specified tolerance in X"; case GSL_ETOLG: return "cannot reach the specified tolerance in gradient"; case GSL_EOF: return "end of file"; default: return "unknown error code" ; } } gsl-1.16/err/Makefile.am0000664000252300025230000000046212171574312012000 00000000000000noinst_LTLIBRARIES = libgslerr.la pkginclude_HEADERS = gsl_errno.h gsl_message.h libgslerr_la_SOURCES = error.c stream.c message.c strerror.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/err/gsl_message.h0000664000252300025230000000456412171574312012415 00000000000000/* err/gsl_message.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MESSAGE_H__ #define __GSL_MESSAGE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Provide a general messaging service for client use. Messages can * be selectively turned off at compile time by defining an * appropriate message mask. Client code which uses the GSL_MESSAGE() * macro must provide a mask which is or'ed with the GSL_MESSAGE_MASK. * * The messaging service can be completely turned off * by defining GSL_MESSAGING_OFF. */ void gsl_message(const char * message, const char * file, int line, unsigned int mask); #ifndef GSL_MESSAGE_MASK #define GSL_MESSAGE_MASK 0xffffffffu /* default all messages allowed */ #endif GSL_VAR unsigned int gsl_message_mask ; /* Provide some symolic masks for client ease of use. */ enum { GSL_MESSAGE_MASK_A = 1, GSL_MESSAGE_MASK_B = 2, GSL_MESSAGE_MASK_C = 4, GSL_MESSAGE_MASK_D = 8, GSL_MESSAGE_MASK_E = 16, GSL_MESSAGE_MASK_F = 32, GSL_MESSAGE_MASK_G = 64, GSL_MESSAGE_MASK_H = 128 } ; #ifdef GSL_MESSAGING_OFF /* throw away messages */ #define GSL_MESSAGE(message, mask) do { } while(0) #else /* output all messages */ #define GSL_MESSAGE(message, mask) \ do { \ if (mask & GSL_MESSAGE_MASK) \ gsl_message (message, __FILE__, __LINE__, mask) ; \ } while (0) #endif __END_DECLS #endif /* __GSL_MESSAGE_H__ */ gsl-1.16/err/gsl_errno.h0000664000252300025230000001351512171574312012112 00000000000000/* err/gsl_errno.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_ERRNO_H__ #define __GSL_ERRNO_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS enum { GSL_SUCCESS = 0, GSL_FAILURE = -1, GSL_CONTINUE = -2, /* iteration has not converged */ GSL_EDOM = 1, /* input domain error, e.g sqrt(-1) */ GSL_ERANGE = 2, /* output range error, e.g. exp(1e100) */ GSL_EFAULT = 3, /* invalid pointer */ GSL_EINVAL = 4, /* invalid argument supplied by user */ GSL_EFAILED = 5, /* generic failure */ GSL_EFACTOR = 6, /* factorization failed */ GSL_ESANITY = 7, /* sanity check failed - shouldn't happen */ GSL_ENOMEM = 8, /* malloc failed */ GSL_EBADFUNC = 9, /* problem with user-supplied function */ GSL_ERUNAWAY = 10, /* iterative process is out of control */ GSL_EMAXITER = 11, /* exceeded max number of iterations */ GSL_EZERODIV = 12, /* tried to divide by zero */ GSL_EBADTOL = 13, /* user specified an invalid tolerance */ GSL_ETOL = 14, /* failed to reach the specified tolerance */ GSL_EUNDRFLW = 15, /* underflow */ GSL_EOVRFLW = 16, /* overflow */ GSL_ELOSS = 17, /* loss of accuracy */ GSL_EROUND = 18, /* failed because of roundoff error */ GSL_EBADLEN = 19, /* matrix, vector lengths are not conformant */ GSL_ENOTSQR = 20, /* matrix not square */ GSL_ESING = 21, /* apparent singularity detected */ GSL_EDIVERGE = 22, /* integral or series is divergent */ GSL_EUNSUP = 23, /* requested feature is not supported by the hardware */ GSL_EUNIMPL = 24, /* requested feature not (yet) implemented */ GSL_ECACHE = 25, /* cache limit exceeded */ GSL_ETABLE = 26, /* table limit exceeded */ GSL_ENOPROG = 27, /* iteration is not making progress towards solution */ GSL_ENOPROGJ = 28, /* jacobian evaluations are not improving the solution */ GSL_ETOLF = 29, /* cannot reach the specified tolerance in F */ GSL_ETOLX = 30, /* cannot reach the specified tolerance in X */ GSL_ETOLG = 31, /* cannot reach the specified tolerance in gradient */ GSL_EOF = 32 /* end of file */ } ; void gsl_error (const char * reason, const char * file, int line, int gsl_errno); void gsl_stream_printf (const char *label, const char *file, int line, const char *reason); const char * gsl_strerror (const int gsl_errno); typedef void gsl_error_handler_t (const char * reason, const char * file, int line, int gsl_errno); typedef void gsl_stream_handler_t (const char * label, const char * file, int line, const char * reason); gsl_error_handler_t * gsl_set_error_handler (gsl_error_handler_t * new_handler); gsl_error_handler_t * gsl_set_error_handler_off (void); gsl_stream_handler_t * gsl_set_stream_handler (gsl_stream_handler_t * new_handler); FILE * gsl_set_stream (FILE * new_stream); /* GSL_ERROR: call the error handler, and return the error code */ #define GSL_ERROR(reason, gsl_errno) \ do { \ gsl_error (reason, __FILE__, __LINE__, gsl_errno) ; \ return gsl_errno ; \ } while (0) /* GSL_ERROR_VAL: call the error handler, and return the given value */ #define GSL_ERROR_VAL(reason, gsl_errno, value) \ do { \ gsl_error (reason, __FILE__, __LINE__, gsl_errno) ; \ return value ; \ } while (0) /* GSL_ERROR_VOID: call the error handler, and then return (for void functions which still need to generate an error) */ #define GSL_ERROR_VOID(reason, gsl_errno) \ do { \ gsl_error (reason, __FILE__, __LINE__, gsl_errno) ; \ return ; \ } while (0) /* GSL_ERROR_NULL suitable for out-of-memory conditions */ #define GSL_ERROR_NULL(reason, gsl_errno) GSL_ERROR_VAL(reason, gsl_errno, 0) /* Sometimes you have several status results returned from * function calls and you want to combine them in some sensible * way. You cannot produce a "total" status condition, but you can * pick one from a set of conditions based on an implied hierarchy. * * In other words: * you have: status_a, status_b, ... * you want: status = (status_a if it is bad, or status_b if it is bad,...) * * In this example you consider status_a to be more important and * it is checked first, followed by the others in the order specified. * * Here are some dumb macros to do this. */ #define GSL_ERROR_SELECT_2(a,b) ((a) != GSL_SUCCESS ? (a) : ((b) != GSL_SUCCESS ? (b) : GSL_SUCCESS)) #define GSL_ERROR_SELECT_3(a,b,c) ((a) != GSL_SUCCESS ? (a) : GSL_ERROR_SELECT_2(b,c)) #define GSL_ERROR_SELECT_4(a,b,c,d) ((a) != GSL_SUCCESS ? (a) : GSL_ERROR_SELECT_3(b,c,d)) #define GSL_ERROR_SELECT_5(a,b,c,d,e) ((a) != GSL_SUCCESS ? (a) : GSL_ERROR_SELECT_4(b,c,d,e)) #define GSL_STATUS_UPDATE(sp, s) do { if ((s) != GSL_SUCCESS) *(sp) = (s);} while(0) __END_DECLS #endif /* __GSL_ERRNO_H__ */ gsl-1.16/err/message.c0000664000252300025230000000230712171574312011534 00000000000000/* err/message.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include unsigned int gsl_message_mask = GSL_MESSAGE_MASK; void gsl_message (const char * reason, const char * file, int line, unsigned int mask) { if (mask & gsl_message_mask) { gsl_stream_printf ("MESSAGE", file, line, reason); } } gsl-1.16/err/stream.c0000664000252300025230000000345712171574312011412 00000000000000/* err/stream.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include FILE * gsl_stream = NULL ; gsl_stream_handler_t * gsl_stream_handler = NULL; void gsl_stream_printf (const char *label, const char *file, int line, const char *reason) { if (gsl_stream == NULL) { gsl_stream = stderr; } if (gsl_stream_handler) { (*gsl_stream_handler) (label, file, line, reason); return; } fprintf (gsl_stream, "gsl: %s:%d: %s: %s\n", file, line, label, reason); } gsl_stream_handler_t * gsl_set_stream_handler (gsl_stream_handler_t * new_handler) { gsl_stream_handler_t * previous_handler = gsl_stream_handler; gsl_stream_handler = new_handler; return previous_handler; } FILE * gsl_set_stream (FILE * new_stream) { FILE * previous_stream; if (gsl_stream == NULL) { gsl_stream = stderr; } previous_stream = gsl_stream; gsl_stream = new_stream; return previous_stream; } gsl-1.16/doc/0000775000252300025230000000000012172254234007776 500000000000000gsl-1.16/doc/roots-false-position.eps0000664000252300025230000002161412171574312014534 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Mathematica-PSRender %%BoundingBox: 0 79 432 353 %%Pages: (atend) %%EndComments %%BeginProlog /setrgbcolor dup where { pop pop } { { .114 mul exch .587 mul add exch .299 mul add setgray } bind def } ifelse /C /curveto load def /f /fill load def /F { closepath fill } bind def /L /lineto load def /S /stroke load def /s { closepath stroke } bind def /d /setdash load def /g /setgray load def /m /moveto load def /r /setrgbcolor load def /w /setlinewidth load def /b { gsave gsave F grestore 0 g S grestore newpath } bind def /dot { newpath 0 360 arc fill } bind def %%EndProlog %%Page: 1 1 0 g 0.25 w [ ] 0 d 31.8389 99.7849 m 31.8389 102.339 L S 25.3389 83.6772 m /F1 /Times-Roman findfont def F1 10. scalefont setfont (-) show 31.9639 83.6772 m /F0 /Times-Roman findfont def F0 10. scalefont setfont (2) show 87.4313 99.7849 m 87.4313 102.339 L S 74.9313 83.6772 m F1 10. scalefont setfont (-) show 81.5563 83.6772 m F0 10. scalefont setfont (1.5) show 143.028 99.7849 m 143.028 102.339 L S 136.528 83.6772 m F1 10. scalefont setfont (-) show 143.153 83.6772 m F0 10. scalefont setfont (1) show 198.62 99.7849 m 198.62 102.339 L S 186.12 83.6772 m F1 10. scalefont setfont (-) show 192.745 83.6772 m F0 10. scalefont setfont (0.5) show 254.217 99.7849 m 254.217 102.339 L S 251.217 83.6772 m (0) show 309.809 99.7849 m 309.809 102.339 L S 300.809 83.6772 m (0.5) show 365.406 99.7849 m 365.406 102.339 L S 362.406 83.6772 m (1) show 420.998 99.7849 m 420.998 102.339 L S 411.998 83.6772 m (1.5) show 0.125 w 42.9574 99.7849 m 42.9574 101.317 L S 54.0759 99.7849 m 54.0759 101.317 L S 65.1944 99.7849 m 65.1944 101.317 L S 76.3128 99.7849 m 76.3128 101.317 L S 98.5498 99.7849 m 98.5498 101.317 L S 109.672 99.7849 m 109.672 101.317 L S 120.791 99.7849 m 120.791 101.317 L S 131.909 99.7849 m 131.909 101.317 L S 154.146 99.7849 m 154.146 101.317 L S 165.265 99.7849 m 165.265 101.317 L S 176.383 99.7849 m 176.383 101.317 L S 187.502 99.7849 m 187.502 101.317 L S 209.739 99.7849 m 209.739 101.317 L S 220.857 99.7849 m 220.857 101.317 L S 231.98 99.7849 m 231.98 101.317 L S 243.098 99.7849 m 243.098 101.317 L S 265.335 99.7849 m 265.335 101.317 L S 276.454 99.7849 m 276.454 101.317 L S 287.572 99.7849 m 287.572 101.317 L S 298.691 99.7849 m 298.691 101.317 L S 320.928 99.7849 m 320.928 101.317 L S 332.046 99.7849 m 332.046 101.317 L S 343.165 99.7849 m 343.165 101.317 L S 354.287 99.7849 m 354.287 101.317 L S 376.524 99.7849 m 376.524 101.317 L S 387.643 99.7849 m 387.643 101.317 L S 398.761 99.7849 m 398.761 101.317 L S 409.879 99.7849 m 409.879 101.317 L S 0.25 w 22.1097 99.7849 m 430.727 99.7849 L S 22.1097 141.039 m 24.6636 141.039 L S 2.00202 137.539 m F1 10. scalefont setfont (-) show 8.62702 137.539 m F0 10. scalefont setfont (4) show 22.1097 183.327 m 24.6636 183.327 L S 2.00202 179.827 m F1 10. scalefont setfont (-) show 8.62702 179.827 m F0 10. scalefont setfont (2) show 22.1097 225.615 m 24.6636 225.615 L S 9.00202 222.115 m (0) show 22.1097 267.902 m 24.6636 267.902 L S 9.00202 264.402 m (2) show 22.1097 310.19 m 24.6636 310.19 L S 9.00202 306.69 m (4) show 0.125 w 22.1097 109.322 m 23.6421 109.322 L S 22.1097 119.893 m 23.6421 119.893 L S 22.1097 130.464 m 23.6421 130.464 L S 22.1097 151.61 m 23.6421 151.61 L S 22.1097 162.181 m 23.6421 162.181 L S 22.1097 172.756 m 23.6421 172.756 L S 22.1097 193.898 m 23.6421 193.898 L S 22.1097 204.469 m 23.6421 204.469 L S 22.1097 215.044 m 23.6421 215.044 L S 22.1097 236.186 m 23.6421 236.186 L S 22.1097 246.756 m 23.6421 246.756 L S 22.1097 257.331 m 23.6421 257.331 L S 22.1097 278.473 m 23.6421 278.473 L S 22.1097 289.048 m 23.6421 289.048 L S 22.1097 299.619 m 23.6421 299.619 L S 22.1097 320.761 m 23.6421 320.761 L S 22.1097 331.336 m 23.6421 331.336 L S 22.1097 341.907 m 23.6421 341.907 L S 0.25 w 22.1097 99.7849 m 22.1097 352.323 L S 31.8389 349.769 m 31.8389 352.323 L S 87.4313 349.769 m 87.4313 352.323 L S 143.028 349.769 m 143.028 352.323 L S 198.62 349.769 m 198.62 352.323 L S 254.217 349.769 m 254.217 352.323 L S 309.809 349.769 m 309.809 352.323 L S 365.406 349.769 m 365.406 352.323 L S 420.998 349.769 m 420.998 352.323 L S 0.125 w 42.9574 350.79 m 42.9574 352.323 L S 54.0759 350.79 m 54.0759 352.323 L S 65.1944 350.79 m 65.1944 352.323 L S 76.3128 350.79 m 76.3128 352.323 L S 98.5498 350.79 m 98.5498 352.323 L S 109.672 350.79 m 109.672 352.323 L S 120.791 350.79 m 120.791 352.323 L S 131.909 350.79 m 131.909 352.323 L S 154.146 350.79 m 154.146 352.323 L S 165.265 350.79 m 165.265 352.323 L S 176.383 350.79 m 176.383 352.323 L S 187.502 350.79 m 187.502 352.323 L S 209.739 350.79 m 209.739 352.323 L S 220.857 350.79 m 220.857 352.323 L S 231.98 350.79 m 231.98 352.323 L S 243.098 350.79 m 243.098 352.323 L S 265.335 350.79 m 265.335 352.323 L S 276.454 350.79 m 276.454 352.323 L S 287.572 350.79 m 287.572 352.323 L S 298.691 350.79 m 298.691 352.323 L S 320.928 350.79 m 320.928 352.323 L S 332.046 350.79 m 332.046 352.323 L S 343.165 350.79 m 343.165 352.323 L S 354.287 350.79 m 354.287 352.323 L S 376.524 350.79 m 376.524 352.323 L S 387.643 350.79 m 387.643 352.323 L S 398.761 350.79 m 398.761 352.323 L S 409.879 350.79 m 409.879 352.323 L S 0.25 w 22.1097 352.323 m 430.727 352.323 L S 428.173 141.039 m 430.727 141.039 L S 428.173 183.327 m 430.727 183.327 L S 428.173 225.615 m 430.727 225.615 L S 428.173 267.902 m 430.727 267.902 L S 428.173 310.19 m 430.727 310.19 L S 0.125 w 429.195 109.322 m 430.727 109.322 L S 429.195 119.893 m 430.727 119.893 L S 429.195 130.464 m 430.727 130.464 L S 429.195 151.61 m 430.727 151.61 L S 429.195 162.181 m 430.727 162.181 L S 429.195 172.756 m 430.727 172.756 L S 429.195 193.898 m 430.727 193.898 L S 429.195 204.469 m 430.727 204.469 L S 429.195 215.044 m 430.727 215.044 L S 429.195 236.186 m 430.727 236.186 L S 429.195 246.756 m 430.727 246.756 L S 429.195 257.331 m 430.727 257.331 L S 429.195 278.473 m 430.727 278.473 L S 429.195 289.048 m 430.727 289.048 L S 429.195 299.619 m 430.727 299.619 L S 429.195 320.761 m 430.727 320.761 L S 429.195 331.336 m 430.727 331.336 L S 429.195 341.907 m 430.727 341.907 L S 0.25 w 430.727 99.7849 m 430.727 352.323 L S 22.1097 225.615 m 430.727 225.615 L S 1.5 w 31.8389 105.8 m 47.6238 139.327 L 64.8429 170.488 L 81.0119 195.025 L 96.5639 214.68 L 113.117 231.74 L 129.049 244.787 L 145.986 255.448 L 162.302 263.007 L 177.997 268.139 L 186.104 270.089 L 194.697 271.707 L 202.678 272.847 L 210.155 273.635 L 214.397 273.979 L 218.43 274.244 L 222.398 274.457 L 225.998 274.604 L 229.916 274.73 L 231.923 274.779 L 234.092 274.824 L 236.107 274.857 L 237.962 274.886 L 239.866 274.906 L 241.607 274.918 L 243.523 274.931 L 244.581 274.935 L 245.583 274.939 L 246.445 274.943 L 247.36 274.947 L 248.365 274.947 L 249.297 274.947 L 249.816 274.951 L 250.294 274.951 L 250.817 274.951 L 251.083 274.951 L 251.369 274.951 L 251.847 274.951 L 252.296 274.951 L 252.827 274.951 L 253.31 274.951 L 253.587 274.951 L 253.878 274.951 L 254.405 274.951 L 254.695 274.951 L 254.969 274.951 L 255.267 274.951 L 255.59 274.951 L 255.863 274.951 L 256.166 274.951 L S 256.166 274.951 m 256.448 274.951 L 256.713 274.951 L 257.212 274.951 L 257.739 274.951 L 258.25 274.951 L 258.81 274.951 L 259.394 274.951 L 259.937 274.955 L 260.91 274.955 L 261.952 274.959 L 263.178 274.963 L 264.338 274.967 L 266.508 274.98 L 268.559 274.996 L 270.459 275.016 L 272.543 275.045 L 274.754 275.082 L 278.591 275.172 L 282.726 275.307 L 286.628 275.474 L 290.2 275.666 L 297.947 276.238 L 302.335 276.663 L 306.414 277.137 L 314.786 278.367 L 322.386 279.822 L 330.906 281.889 L 338.747 284.243 L 354.487 290.458 L 370.607 299.203 L 386.11 310.243 L 402.614 325.219 L 418.501 343.153 L 420.998 346.312 L S 0.5 g 0.5 w 42.9574 129.925 m 409.879 332.971 L S 215.88 225.615 m 215.88 274.085 L S 42.9574 129.925 m 215.88 274.085 L S 157.738 225.615 m 157.738 261.14 L S 42.9574 129.925 m 157.738 261.14 L S 126.663 225.615 m 126.663 243.03 L S 42.9574 129.925 m 126.663 243.03 L S 113.775 225.615 m 113.775 232.345 L S 0 g 42.9574 129.925 2. dot 409.879 332.971 2. dot 215.88 274.085 2. dot 215.88 274.085 2. dot 157.738 261.14 2. dot 113.775 232.345 2. dot 126.663 243.03 2. dot 44.4574 121.425 m (a) show 50.4574 119.925 m F0 7.125 scalefont setfont (0) show 54.7074 119.925 m F1 7.125 scalefont setfont (-) show 58.9574 119.925 m F0 7.125 scalefont setfont (4) show 397.879 336.471 m F0 10. scalefont setfont (b) show 403.879 334.971 m F0 7.125 scalefont setfont (0) show 209.88 279.585 m F0 10. scalefont setfont (b) show 215.88 278.085 m F0 7.125 scalefont setfont (1) show 147.738 266.64 m F0 10. scalefont setfont (b) show 153.738 265.14 m F0 7.125 scalefont setfont (2) show 116.663 247.53 m F0 10. scalefont setfont (b) show 122.663 246.03 m F0 7.125 scalefont setfont (3) show 99.7749 232.845 m F0 10. scalefont setfont (b) show 105.775 231.345 m F0 7.125 scalefont setfont (4) show gsave 22.1097 99.7849 m 430.727 99.7849 L 430.727 352.323 L 22.1097 352.323 L 22.1097 99.7849 L closepath clip newpath grestore showpage %%PageTrailer %%Trailer %%Pages: 1 %%EOF gsl-1.16/doc/rand-landau.tex0000664000252300025230000004534312171574312012640 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-landau.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-landau.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 387 31 R 0 -31 V 388 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 388 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 388 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 387 31 R 0 -31 V 388 31 R 0 -31 V 387 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 1051 631 M 39 0 V 38 0 V 39 0 V 39 0 V 39 0 V 38 0 V 39 0 V 39 0 V 39 0 V 38 0 V 39 0 V 39 0 V 38 0 V 39 0 V 39 0 V 39 0 V 38 1 V 39 2 V 39 4 V 39 8 V 38 13 V 39 22 V 39 35 V 38 51 V 39 72 V 39 95 V 39 121 V 38 149 V 39 175 V 39 201 V 39 221 V 38 238 V 39 250 V 39 255 V 38 255 V 39 249 V 39 238 V 39 223 V 38 204 V 39 183 V 39 159 V 39 136 V 38 112 V 39 87 V 39 65 V 38 43 V 39 24 V 39 4 V 39 -11 V 38 -27 V 39 -40 V 39 -50 V 39 -61 V 38 -68 V 39 -75 V 39 -80 V 38 -84 V 39 -87 V 39 -90 V 39 -91 V 38 -91 V 39 -91 V 39 -91 V 39 -90 V 38 -89 V 39 -87 V 39 -86 V 38 -83 V 39 -81 V 39 -80 V 39 -76 V 38 -75 V 39 -72 V 39 -69 V 38 -67 V 39 -65 V 39 -63 V 39 -60 V 38 -58 V 39 -56 V 39 -54 V 39 -51 V 38 -50 V 39 -48 V 39 -45 V 38 -45 V 39 -42 V 39 -41 V 39 -39 V 38 -37 V 39 -36 V 39 -35 V 39 -33 V 38 -32 V 39 -31 V 39 -30 V 38 -28 V 39 -28 V 39 -26 V 39 -25 V 38 -25 V 39 -23 V 39 -23 V 39 -22 V 5117 1362 L 39 -20 V 39 -19 V 38 -19 V 39 -18 V 39 -18 V 39 -16 V 38 -17 V 39 -15 V 39 -15 V 39 -15 V 38 -14 V 39 -14 V 39 -13 V 38 -13 V 39 -12 V 39 -12 V 39 -11 V 38 -11 V 39 -11 V 39 -11 V 39 -10 V 38 -9 V 39 -10 V 39 -9 V 38 -9 V 39 -8 V 39 -9 V 39 -8 V 38 -8 V 39 -7 V 39 -8 V 39 -7 V 38 -7 V 39 -7 V 39 -6 V 38 -7 V 39 -6 V 39 -6 V 39 -6 V 38 -5 V 39 -6 V 39 -5 V 39 -6 V 38 -5 V 39 -5 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(3955,5244){\cjust{\strut{}Landau Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}10}}% \put(6473,400){\cjust{\strut{}9}}% \put(6085,400){\cjust{\strut{}8}}% \put(5698,400){\cjust{\strut{}7}}% \put(5311,400){\cjust{\strut{}6}}% \put(4924,400){\cjust{\strut{}5}}% \put(4536,400){\cjust{\strut{}4}}% \put(4149,400){\cjust{\strut{}3}}% \put(3762,400){\cjust{\strut{}2}}% \put(3375,400){\cjust{\strut{}1}}% \put(2987,400){\cjust{\strut{}0}}% \put(2600,400){\cjust{\strut{}-1}}% \put(2213,400){\cjust{\strut{}-2}}% \put(1826,400){\cjust{\strut{}-3}}% \put(1438,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4944){\rjust{\strut{} 0.2}}% \put(900,2788){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/combination.texi0000664000252300025230000002051112171574312013113 00000000000000@cindex combinations This chapter describes functions for creating and manipulating combinations. A combination @math{c} is represented by an array of @math{k} integers in the range 0 to @math{n-1}, where each value @math{c_i} occurs at most once. The combination @math{c} corresponds to indices of @math{k} elements chosen from an @math{n} element vector. Combinations are useful for iterating over all @math{k}-element subsets of a set. The functions described in this chapter are defined in the header file @file{gsl_combination.h}. @menu * The Combination struct:: * Combination allocation:: * Accessing combination elements:: * Combination properties:: * Combination functions:: * Reading and writing combinations:: * Combination Examples:: * Combination References and Further Reading:: @end menu @node The Combination struct @section The Combination struct @tpindex gsl_combination A combination is defined by a structure containing three components, the values of @math{n} and @math{k}, and a pointer to the combination array. The elements of the combination array are all of type @code{size_t}, and are stored in increasing order. The @code{gsl_combination} structure looks like this, @example typedef struct @{ size_t n; size_t k; size_t *data; @} gsl_combination; @end example @comment @noindent @node Combination allocation @section Combination allocation @deftypefun {gsl_combination *} gsl_combination_alloc (size_t @var{n}, size_t @var{k}) This function allocates memory for a new combination with parameters @var{n}, @var{k}. The combination is not initialized and its elements are undefined. Use the function @code{gsl_combination_calloc} if you want to create a combination which is initialized to the lexicographically first combination. A null pointer is returned if insufficient memory is available to create the combination. @end deftypefun @deftypefun {gsl_combination *} gsl_combination_calloc (size_t @var{n}, size_t @var{k}) This function allocates memory for a new combination with parameters @var{n}, @var{k} and initializes it to the lexicographically first combination. A null pointer is returned if insufficient memory is available to create the combination. @end deftypefun @deftypefun void gsl_combination_init_first (gsl_combination * @var{c}) This function initializes the combination @var{c} to the lexicographically first combination, i.e. @math{(0,1,2,@dots{},k-1)}. @end deftypefun @deftypefun void gsl_combination_init_last (gsl_combination * @var{c}) This function initializes the combination @var{c} to the lexicographically last combination, i.e. @math{(n-k,n-k+1,@dots{},n-1)}. @end deftypefun @deftypefun void gsl_combination_free (gsl_combination * @var{c}) This function frees all the memory used by the combination @var{c}. @end deftypefun @deftypefun int gsl_combination_memcpy (gsl_combination * @var{dest}, const gsl_combination * @var{src}) This function copies the elements of the combination @var{src} into the combination @var{dest}. The two combinations must have the same size. @end deftypefun @node Accessing combination elements @section Accessing combination elements The following function can be used to access the elements of a combination. @deftypefun size_t gsl_combination_get (const gsl_combination * @var{c}, const size_t @var{i}) This function returns the value of the @var{i}-th element of the combination @var{c}. If @var{i} lies outside the allowed range of 0 to @math{@var{k}-1} then the error handler is invoked and 0 is returned. @inlinefn{} @end deftypefun @node Combination properties @section Combination properties @deftypefun size_t gsl_combination_n (const gsl_combination * @var{c}) This function returns the range (@math{n}) of the combination @var{c}. @end deftypefun @deftypefun size_t gsl_combination_k (const gsl_combination * @var{c}) This function returns the number of elements (@math{k}) in the combination @var{c}. @end deftypefun @deftypefun {size_t *} gsl_combination_data (const gsl_combination * @var{c}) This function returns a pointer to the array of elements in the combination @var{c}. @end deftypefun @deftypefun int gsl_combination_valid (gsl_combination * @var{c}) @cindex checking combination for validity @cindex testing combination for validity This function checks that the combination @var{c} is valid. The @var{k} elements should lie in the range 0 to @math{@var{n}-1}, with each value occurring once at most and in increasing order. @end deftypefun @node Combination functions @section Combination functions @deftypefun int gsl_combination_next (gsl_combination * @var{c}) @cindex iterating through combinations This function advances the combination @var{c} to the next combination in lexicographic order and returns @code{GSL_SUCCESS}. If no further combinations are available it returns @code{GSL_FAILURE} and leaves @var{c} unmodified. Starting with the first combination and repeatedly applying this function will iterate through all possible combinations of a given order. @end deftypefun @deftypefun int gsl_combination_prev (gsl_combination * @var{c}) This function steps backwards from the combination @var{c} to the previous combination in lexicographic order, returning @code{GSL_SUCCESS}. If no previous combination is available it returns @code{GSL_FAILURE} and leaves @var{c} unmodified. @end deftypefun @node Reading and writing combinations @section Reading and writing combinations The library provides functions for reading and writing combinations to a file as binary data or formatted text. @deftypefun int gsl_combination_fwrite (FILE * @var{stream}, const gsl_combination * @var{c}) This function writes the elements of the combination @var{c} to the stream @var{stream} in binary format. The function returns @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_combination_fread (FILE * @var{stream}, gsl_combination * @var{c}) This function reads elements from the open stream @var{stream} into the combination @var{c} in binary format. The combination @var{c} must be preallocated with correct values of @math{n} and @math{k} since the function uses the size of @var{c} to determine how many bytes to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_combination_fprintf (FILE * @var{stream}, const gsl_combination * @var{c}, const char * @var{format}) This function writes the elements of the combination @var{c} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be suitable for a type of @var{size_t}. In ISO C99 the type modifier @code{z} represents @code{size_t}, so @code{"%zu\n"} is a suitable format.@footnote{In versions of the GNU C library prior to the ISO C99 standard, the type modifier @code{Z} was used instead.} The function returns @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_combination_fscanf (FILE * @var{stream}, gsl_combination * @var{c}) This function reads formatted data from the stream @var{stream} into the combination @var{c}. The combination @var{c} must be preallocated with correct values of @math{n} and @math{k} since the function uses the size of @var{c} to determine how many numbers to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Combination Examples @section Examples The example program below prints all subsets of the set @math{@{0,1,2,3@}} ordered by size. Subsets of the same size are ordered lexicographically. @example @verbatiminclude examples/combination.c @end example @noindent Here is the output from the program, @example $ ./a.out @verbatiminclude examples/combination.out @end example @noindent All 16 subsets are generated, and the subsets of each size are sorted lexicographically. @node Combination References and Further Reading @section References and Further Reading @noindent Further information on combinations can be found in, @itemize @w{} @item Donald L. Kreher, Douglas R. Stinson, @cite{Combinatorial Algorithms: Generation, Enumeration and Search}, 1998, CRC Press LLC, ISBN 084933988X @end itemize @noindent gsl-1.16/doc/specfunc-log.texi0000664000252300025230000000360712171574312013205 00000000000000@cindex logarithm and related functions Information on the properties of the Logarithm function can be found in Abramowitz & Stegun, Chapter 4. The functions described in this section are declared in the header file @file{gsl_sf_log.h}. @deftypefun double gsl_sf_log (double @var{x}) @deftypefunx int gsl_sf_log_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the logarithm of @var{x}, @math{\log(x)}, for @math{x > 0}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_log_abs (double @var{x}) @deftypefunx int gsl_sf_log_abs_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the logarithm of the magnitude of @var{x}, @math{\log(|x|)}, for @math{x \ne 0}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_complex_log_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{lnr}, gsl_sf_result * @var{theta}) This routine computes the complex logarithm of @math{z = z_r + i z_i}. The results are returned as @var{lnr}, @var{theta} such that @math{\exp(lnr + i \theta) = z_r + i z_i}, where @math{\theta} lies in the range @math{[-\pi,\pi]}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_log_1plusx (double @var{x}) @deftypefunx int gsl_sf_log_1plusx_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute @math{\log(1 + x)} for @math{x > -1} using an algorithm that is accurate for small @math{x}. @comment Domain: x > -1.0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_log_1plusx_mx (double @var{x}) @deftypefunx int gsl_sf_log_1plusx_mx_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute @math{\log(1 + x) - x} for @math{x > -1} using an algorithm that is accurate for small @math{x}. @comment Domain: x > -1.0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/statnotes.tex0000664000252300025230000000665312171574312012477 00000000000000\documentclass[fleqn,12pt]{article} \newcommand{\expectation}[1]{\langle #1 \rangle} \begin{document} \title{Statistical Function Notes} \author{Brian Gough} \date{November 2008} \maketitle \section{Weighted mean and variance} We have $N$ samples $x_i$ drawn from a Gaussian distribution $G(\mu,\sigma)$ (or any distribution with finite first and second moments). Each sample has a weight $w_i$ which represents the relative value we place on it. Given the estimate of the mean % \begin{eqnarray} \bar{x} &=& {1 \over W} \sum_i w_i x_i \\ W &=& \sum_i w_i \end{eqnarray} % \noindent we want an unbiased estimator of the variance of the underlying distribution $\sigma^2$. We start with the standard definition of the sample variance $V$ and compute the bias correction factor. % \begin{eqnarray} V &=& {1\over W} \sum_i w_i (x_i - \bar{x})^2 \\ &=& {1\over W} \sum_i w_i \left(x_i - {1\over W}\sum_j w_j x_j\right)^2 \\ &=& {1\over W} \sum_i w_i \left(x_i^2 - {2 \over W} x_i \sum_j w_j x_j + {1 \over W^2} (\sum_j w_j x_j)^2\right) \\ &=& {1\over W} \left( \sum_i w_i x_i^2 - {2 \over W} \sum_i w_i x_i \sum_j w_j x_j + {1 \over W} (\sum_j w_j x_j)^2\right)\\ &=& {1\over W} \left( \sum_i w_i x_i^2 - {1 \over W} \sum_i w_i x_i \sum_j w_j x_j\right)\\ &=& {1\over W} \left( \sum_i w_i x_i^2 - {1 \over W} \sum_{ij} w_i w_j x_i x_j\right) \end{eqnarray} % We find the expectation value $\expectation{V}$ using the Gaussian formulas $\expectation{x_i} = \mu$, $\expectation{x_i x_j} = \mu^2 + \delta_{ij} \sigma^2$. We assume that any random contribution dependent on the weights themselves is zero or can be neglected in comparison to $\sigma$. % \begin{eqnarray} \expectation{V} &=& {1\over W} \left( \sum_i w_i \expectation{x_i^2} - {1 \over W} \sum_{ij} w_i w_j \expectation{x_i x_j}\right)\\ &=& {1\over W} \left( \sum_i w_i (\mu^2 + \sigma^2) - {1 \over W} \sum_{ij} w_i w_j (\mu^2 + \delta_{ij} \sigma^2)\right)\\ &=& {1\over W} \left( W (\mu^2 + \sigma^2) - {1 \over W} ( W^2 \mu^2 +( \sum_i w_i^2) \sigma^2)\right)\\ &=& {1\over W} \left(W \sigma^2 - {1 \over W} ( \sum_i w_i^2)\sigma^2\right)\\ &=& \left({{W^2 - \sum_i w_i^2} \over W^2}\right) \sigma^2 \end{eqnarray} % Therefore an unbiased estimator $U$ of $\sigma^2$ is % \begin{eqnarray} U &=& {W^2 \over {(W^2 - \sum_i w_i^2)}} \expectation{V}\\ &=& {W^2 \over {(W^2 - \sum_i w_i^2)}} {1\over W} \sum_i w_i (x_i - \bar{x})^2 \\ &=& {W \over {(W^2 - \sum_i w_i^2)}} \sum_i w_i (x_i - \bar{x})^2 \end{eqnarray} % And this is the formula used in GSL. \subsection{Notes} Note the following properties: \begin{itemize} \item The formula is invariant under rescaling of the weights. \item For equal weights $w_i = w$ the factor reduces to $N/(N^2-N) = 1/(N-1)$, which is the familiar factor of the unbiased estimator of the variance for data without weights. \item When $\sum_i (w_i/W)^2 \ll 1$ the commonly-used weighted variance formula $V = (1/W)\sum_i w_i (x_i - \bar{x})^2$ is a good approximation. \end{itemize} If we assume that the ``experimental errors'' arising from the weights contribute, the underlying variance $\sigma^2$ is overestimated by this formula (e.g. consider the case $\sigma = 0$---all the variation will come from the Gaussian fluctuations represented by the $w_i$). The appropriate expectation in this case is $\expectation{x_i x_j} = \mu^2 + \delta_{ij} (\sigma^2 + 1/w_i)$ \end{document} gsl-1.16/doc/fftalgorithms.bib0000664000252300025230000001344112171574312013251 00000000000000@string{jcp = {Journal of Computational Physics}} @string{assp = {IEEE Transactions on Acoustics, Speech, and Signal Processing}} @Article{mehalic85, author = {Mehalic and Rustan and Route}, title = {Effects of Architecture Implementation on {DFT} Algorithm Performance}, journal = assp, year = 1985, volume = {ASP-33}, pages = {684-693} } @Article{temperton83, author = {Clive Temperton}, title = {Self-Sorting Mixed-Radix Fast Fourier Transforms}, journal = {Journal of Computational Physics}, year = 1983, volume = 52, number = 1, pages = {1-23} } @Article{symfft, title= {Symmetric {FFT}s}, author= {Paul N. Swarztrauber}, journal= {Mathematics of Computation}, volume= {47}, number= {185}, pages = {323-346}, year = {1986} } @Article{temperton83real, author = {Clive Temperton}, title = {Fast Mixed-Radix Real Fourier Transforms}, journal = {Journal of Computational Physics}, year = 1983, volume = 52, pages = {340-350} } @Article{temperton85, author = {Clive Temperton}, title = {Implementation of a Self-Sorting In-Place Prime Factor {FFT} Algorithm}, journal = {Journal of Computational Physics}, year = 1985, volume = 58, pages = {283-299} } @Article{temperton83pfa, author = {Clive Temperton}, title = {A Note on Prime Factor {FFT} Algorithms}, journal = {Journal of Computational Physics}, year = 1983, volume = 58, pages = {198-204} } @Article{burrus87real, author = {Henrik V. Sorenson and Douglas L. Jones and Michael T. Heideman and C. Sidney Burrus}, title = {Real-Valued Fast Fourier Transform Algorithms}, journal = assp, year = 1987, volume = {ASSP-35}, number = 6, pages = {849-863} } @Article{sorenson86, author = {Henrik V. Sorenson and Michael T. Heideman and C. Sidney Burrus}, title = {On Computing the Split-Radix {FFT} }, journal = assp, year = 1986, volume = {ASSP-34}, number = 1, pages = {152-156} } @Article{duhamel86, author = {Pierre Duhamel}, title = {Implementation of Split-Radix {FFT} Algorithms for Complex, Real, and Real-Symmetric Data}, journal = assp, year = 1986, volume = {ASSP-34}, number = 2, pages = {285-295} } @Article{visscher96, author = {P. B. Visscher}, title = {The {FFT}: Fourier Transforming One Bit at a Time}, journal = {Computers in Physics}, year = 1996, volume = 10, number = 5, month = {Sep/Oct}, pages = {438-443} } @Article{uniyal94:_trans_real_value_sequen, author = {P. R. Uniyal}, title = {Transforming Real-Value Sequences: Fast Fourier versus Fast Hartley Tranform Algorithms}, journal = {IEEE Transactions on Signal Processing}, year = 1994, volume = 42, number = 11, pages = {3249-3254 } } @Article{duhamel90, author = {P. Duhamel and M. Vetterli}, title = {Fast Fourier Transforms: A Tutorial Review and A State of the Art}, journal = {Signal Processing}, year = 1990, volume = 19, pages = {259-299} } @Article{rodriguez89, author = {Jeffrey J. Rodriguez}, title = {An Improved {FFT} Digit-Reversal Algorithm}, journal = assp, year = 1989, volume = 37, number = 8, pages = {1298-1300} } @Article{rosel89, author = {Petr R\"osel}, title = {Timing of some bit reversal algorithms}, journal = {Signal Processing}, year = 1989, volume = 18, pages = {425-433} } @Book{brigham74, author = {E. Oran Brigham}, title = {The Fast Fourier Transform}, publisher = {Prentice Hall}, year = 1974, isbn = {0-13-307496-X} } @Book{elliott82, author = {Douglas F. Elliott and K. Ramamohan Rao}, title = {Fast transforms: algorithms, analyses, applications}, publisher = {Academic Press}, year = 1982, note = {This book does not contain actual code, but covers the more advanced mathematics and number theory needed in the derivation of fast transforms.}, isbn = {0-12-237080-5} } @Article{raderprimes, author = {Charles M. Rader}, title = {Discrete Fourier Transform when the number of data samples is prime}, journal = {IEEE Proceedings}, year = 1968, volume = 56, number = 6, pages = {1107-1108} } @Book{mcclellan79, author = {James H. McClellan and Charles M. Rader}, title = {Number Theory in Digital Signal Processing}, publisher = {Prentice-Hall}, year = 1979, isbn = {ISBN 0-13-627349-1} } @Book{burrus84, author = {C. S. Burrus and T. W. Parks}, title = {DFT/FFT and Convolution Algorithms}, publisher = {Wiley}, year = 1984, isbn = {0-471-81932-8} } @Book{smith95, author = {Winthrop W. Smith and Joanne M. Smith}, title = {Handbook of Real-Time Fast Fourier Transforms}, publisher = {IEEE Press}, year = 1995, isbn = {0-7803-1091-8} } @Book{committee79, title = {Programs for Digital Signal Processing}, publisher = {IEEE Press}, year = 1979, editor = {Digital Signal Processing Committee and {IEEE Acoustics, Speech, and Signal Processing Committee}}, isbn = {0-87942-127-4 (pb) 0-87942-128-2 (hb)} } @Book{blahut, author = {Richard E. Blahut}, title = {Fast Algorithms for Digital Signal Processing}, publisher = {Addison-Wesley}, year = 1984, isbn = {0-201-10155-6} } @Unpublished{burrus-note, author = {C. S. Burrus}, title = {Notes on the {FFT}}, note = {Available from http://www-dsp.rice.edu/res/fft/fftnote.asc} } @Article{singleton, author = {Richard C. Singleton}, title = {An Algorithm for Computing the Mixed Radix Fast Fourier Transform}, journal = {IEEE Transactions on Audio and Electroacoustics}, year = 1969, volume = {AU-17}, number = 2, month = {June}, pages = {93-103} } gsl-1.16/doc/siman.texi0000664000252300025230000003036312171574312011726 00000000000000@cindex simulated annealing @cindex combinatorial optimization @cindex optimization, combinatorial @cindex energy function @cindex cost function Stochastic search techniques are used when the structure of a space is not well understood or is not smooth, so that techniques like Newton's method (which requires calculating Jacobian derivative matrices) cannot be used. In particular, these techniques are frequently used to solve combinatorial optimization problems, such as the traveling salesman problem. The goal is to find a point in the space at which a real valued @dfn{energy function} (or @dfn{cost function}) is minimized. Simulated annealing is a minimization technique which has given good results in avoiding local minima; it is based on the idea of taking a random walk through the space at successively lower temperatures, where the probability of taking a step is given by a Boltzmann distribution. The functions described in this chapter are declared in the header file @file{gsl_siman.h}. @menu * Simulated Annealing algorithm:: * Simulated Annealing functions:: * Examples with Simulated Annealing:: * Simulated Annealing References and Further Reading:: @end menu @node Simulated Annealing algorithm @section Simulated Annealing algorithm The simulated annealing algorithm takes random walks through the problem space, looking for points with low energies; in these random walks, the probability of taking a step is determined by the Boltzmann distribution, @tex \beforedisplay $$ p = e^{-(E_{i+1} - E_i)/(kT)} $$ \afterdisplay @end tex @ifinfo @example p = e^@{-(E_@{i+1@} - E_i)/(kT)@} @end example @end ifinfo @noindent if @c{$E_{i+1} > E_i$} @math{E_@{i+1@} > E_i}, and @math{p = 1} when @c{$E_{i+1} \le E_i$} @math{E_@{i+1@} <= E_i}. In other words, a step will occur if the new energy is lower. If the new energy is higher, the transition can still occur, and its likelihood is proportional to the temperature @math{T} and inversely proportional to the energy difference @c{$E_{i+1} - E_i$} @math{E_@{i+1@} - E_i}. The temperature @math{T} is initially set to a high value, and a random walk is carried out at that temperature. Then the temperature is lowered very slightly according to a @dfn{cooling schedule}, for example: @c{$T \rightarrow T/\mu_T$} @math{T -> T/mu_T} where @math{\mu_T} is slightly greater than 1. @cindex cooling schedule @cindex schedule, cooling The slight probability of taking a step that gives higher energy is what allows simulated annealing to frequently get out of local minima. @node Simulated Annealing functions @section Simulated Annealing functions @deftypefun void gsl_siman_solve (const gsl_rng * @var{r}, void * @var{x0_p}, gsl_siman_Efunc_t @var{Ef}, gsl_siman_step_t @var{take_step}, gsl_siman_metric_t @var{distance}, gsl_siman_print_t @var{print_position}, gsl_siman_copy_t @var{copyfunc}, gsl_siman_copy_construct_t @var{copy_constructor}, gsl_siman_destroy_t @var{destructor}, size_t @var{element_size}, gsl_siman_params_t @var{params}) This function performs a simulated annealing search through a given space. The space is specified by providing the functions @var{Ef} and @var{distance}. The simulated annealing steps are generated using the random number generator @var{r} and the function @var{take_step}. The starting configuration of the system should be given by @var{x0_p}. The routine offers two modes for updating configurations, a fixed-size mode and a variable-size mode. In the fixed-size mode the configuration is stored as a single block of memory of size @var{element_size}. Copies of this configuration are created, copied and destroyed internally using the standard library functions @code{malloc}, @code{memcpy} and @code{free}. The function pointers @var{copyfunc}, @var{copy_constructor} and @var{destructor} should be null pointers in fixed-size mode. In the variable-size mode the functions @var{copyfunc}, @var{copy_constructor} and @var{destructor} are used to create, copy and destroy configurations internally. The variable @var{element_size} should be zero in the variable-size mode. The @var{params} structure (described below) controls the run by providing the temperature schedule and other tunable parameters to the algorithm. On exit the best result achieved during the search is placed in @code{*@var{x0_p}}. If the annealing process has been successful this should be a good approximation to the optimal point in the space. If the function pointer @var{print_position} is not null, a debugging log will be printed to @code{stdout} with the following columns: @example #-iter #-evals temperature position energy best_energy @end example and the output of the function @var{print_position} itself. If @var{print_position} is null then no information is printed. @end deftypefun @noindent The simulated annealing routines require several user-specified functions to define the configuration space and energy function. The prototypes for these functions are given below. @deftp {Data Type} gsl_siman_Efunc_t This function type should return the energy of a configuration @var{xp}. @example double (*gsl_siman_Efunc_t) (void *xp) @end example @end deftp @deftp {Data Type} gsl_siman_step_t This function type should modify the configuration @var{xp} using a random step taken from the generator @var{r}, up to a maximum distance of @var{step_size}. @example void (*gsl_siman_step_t) (const gsl_rng *r, void *xp, double step_size) @end example @end deftp @deftp {Data Type} gsl_siman_metric_t This function type should return the distance between two configurations @var{xp} and @var{yp}. @example double (*gsl_siman_metric_t) (void *xp, void *yp) @end example @end deftp @deftp {Data Type} gsl_siman_print_t This function type should print the contents of the configuration @var{xp}. @example void (*gsl_siman_print_t) (void *xp) @end example @end deftp @deftp {Data Type} gsl_siman_copy_t This function type should copy the configuration @var{source} into @var{dest}. @example void (*gsl_siman_copy_t) (void *source, void *dest) @end example @end deftp @deftp {Data Type} gsl_siman_copy_construct_t This function type should create a new copy of the configuration @var{xp}. @example void * (*gsl_siman_copy_construct_t) (void *xp) @end example @end deftp @deftp {Data Type} gsl_siman_destroy_t This function type should destroy the configuration @var{xp}, freeing its memory. @example void (*gsl_siman_destroy_t) (void *xp) @end example @end deftp @deftp {Data Type} gsl_siman_params_t These are the parameters that control a run of @code{gsl_siman_solve}. This structure contains all the information needed to control the search, beyond the energy function, the step function and the initial guess. @table @code @item int n_tries The number of points to try for each step. @item int iters_fixed_T The number of iterations at each temperature. @item double step_size The maximum step size in the random walk. @item double k, t_initial, mu_t, t_min The parameters of the Boltzmann distribution and cooling schedule. @end table @end deftp @node Examples with Simulated Annealing @section Examples The simulated annealing package is clumsy, and it has to be because it is written in C, for C callers, and tries to be polymorphic at the same time. But here we provide some examples which can be pasted into your application with little change and should make things easier. @menu * Trivial example:: * Traveling Salesman Problem:: @end menu @node Trivial example @subsection Trivial example The first example, in one dimensional Cartesian space, sets up an energy function which is a damped sine wave; this has many local minima, but only one global minimum, somewhere between 1.0 and 1.5. The initial guess given is 15.5, which is several local minima away from the global minimum. @smallexample @verbatiminclude examples/siman.c @end smallexample @need 2000 Here are a couple of plots that are generated by running @code{siman_test} in the following way: @example $ ./siman_test | awk '!/^#/ @{print $1, $4@}' | graph -y 1.34 1.4 -W0 -X generation -Y position | plot -Tps > siman-test.eps $ ./siman_test | awk '!/^#/ @{print $1, $5@}' | graph -y -0.88 -0.83 -W0 -X generation -Y energy | plot -Tps > siman-energy.eps @end example @iftex @sp 1 @center @image{siman-test,2.8in} @center @image{siman-energy,2.8in} @quotation Example of a simulated annealing run: at higher temperatures (early in the plot) you see that the solution can fluctuate, but at lower temperatures it converges. @end quotation @end iftex @node Traveling Salesman Problem @subsection Traveling Salesman Problem @cindex TSP @cindex traveling salesman problem The TSP (@dfn{Traveling Salesman Problem}) is the classic combinatorial optimization problem. I have provided a very simple version of it, based on the coordinates of twelve cities in the southwestern United States. This should maybe be called the @dfn{Flying Salesman Problem}, since I am using the great-circle distance between cities, rather than the driving distance. Also: I assume the earth is a sphere, so I don't use geoid distances. The @code{gsl_siman_solve} routine finds a route which is 3490.62 Kilometers long; this is confirmed by an exhaustive search of all possible routes with the same initial city. The full code can be found in @file{siman/siman_tsp.c}, but I include here some plots generated in the following way: @smallexample $ ./siman_tsp > tsp.output $ grep -v "^#" tsp.output | awk '@{print $1, $NF@}' | graph -y 3300 6500 -W0 -X generation -Y distance -L "TSP - 12 southwest cities" | plot -Tps > 12-cities.eps $ grep initial_city_coord tsp.output | awk '@{print $2, $3@}' | graph -X "longitude (- means west)" -Y "latitude" -L "TSP - initial-order" -f 0.03 -S 1 0.1 | plot -Tps > initial-route.eps $ grep final_city_coord tsp.output | awk '@{print $2, $3@}' | graph -X "longitude (- means west)" -Y "latitude" -L "TSP - final-order" -f 0.03 -S 1 0.1 | plot -Tps > final-route.eps @end smallexample @noindent This is the output showing the initial order of the cities; longitude is negative, since it is west and I want the plot to look like a map. @smallexample # initial coordinates of cities (longitude and latitude) ###initial_city_coord: -105.95 35.68 Santa Fe ###initial_city_coord: -112.07 33.54 Phoenix ###initial_city_coord: -106.62 35.12 Albuquerque ###initial_city_coord: -103.2 34.41 Clovis ###initial_city_coord: -107.87 37.29 Durango ###initial_city_coord: -96.77 32.79 Dallas ###initial_city_coord: -105.92 35.77 Tesuque ###initial_city_coord: -107.84 35.15 Grants ###initial_city_coord: -106.28 35.89 Los Alamos ###initial_city_coord: -106.76 32.34 Las Cruces ###initial_city_coord: -108.58 37.35 Cortez ###initial_city_coord: -108.74 35.52 Gallup ###initial_city_coord: -105.95 35.68 Santa Fe @end smallexample The optimal route turns out to be: @smallexample # final coordinates of cities (longitude and latitude) ###final_city_coord: -105.95 35.68 Santa Fe ###final_city_coord: -103.2 34.41 Clovis ###final_city_coord: -96.77 32.79 Dallas ###final_city_coord: -106.76 32.34 Las Cruces ###final_city_coord: -112.07 33.54 Phoenix ###final_city_coord: -108.74 35.52 Gallup ###final_city_coord: -108.58 37.35 Cortez ###final_city_coord: -107.87 37.29 Durango ###final_city_coord: -107.84 35.15 Grants ###final_city_coord: -106.62 35.12 Albuquerque ###final_city_coord: -106.28 35.89 Los Alamos ###final_city_coord: -105.92 35.77 Tesuque ###final_city_coord: -105.95 35.68 Santa Fe @end smallexample @iftex @sp 1 @center @image{initial-route,2.2in} @center @image{final-route,2.2in} @quotation Initial and final (optimal) route for the 12 southwestern cities Flying Salesman Problem. @end quotation @end iftex @noindent Here's a plot of the cost function (energy) versus generation (point in the calculation at which a new temperature is set) for this problem: @iftex @sp 1 @center @image{12-cities,2.8in} @quotation Example of a simulated annealing run for the 12 southwestern cities Flying Salesman Problem. @end quotation @end iftex @node Simulated Annealing References and Further Reading @section References and Further Reading Further information is available in the following book, @itemize @w{} @item @cite{Modern Heuristic Techniques for Combinatorial Problems}, Colin R. Reeves (ed.), McGraw-Hill, 1995 (ISBN 0-07-709239-2). @end itemize gsl-1.16/doc/gsl-config.10000664000252300025230000000265312171574312012037 00000000000000.TH GSL 1 "22 May 2001" .SH NAME gsl-config - script to get version number and compiler flags of the installed GSL library .SH SYNOPSIS .B gsl-config [\-\-prefix] [\-\-version] [\-\-libs] [\-\-libs\-without\-cblas] [\-\-cflags] .SH DESCRIPTION .PP \fIgsl-config\fP is a tool that is used to configure to determine the compiler and linker flags that should be used to compile and link programs that use \fIGSL\fP. It is also used internally to the .m4 macros for GNU autoconf that are included with \fIGSL\fP. . .SH OPTIONS \fIgsl-config\fP accepts the following options: .TP 8 .B \-\-version Print the currently installed version of \fIGSL\fP on the standard output. .TP 8 .B \-\-libs Print the linker flags that are necessary to link a \fIGSL\fP program, with cblas .TP 8 .B \-\-libs\-without\-cblas Print the linker flags that are necessary to link a \fIGSL\fP program, without cblas .TP 8 .B \-\-cflags Print the compiler flags that are necessary to compile a \fIGSL\fP program. .TP 8 .B \-\-prefix Show the GSL installation prefix. .SH SEE ALSO .BR gtk-config (1), .BR gnome-config (1) .SH COPYRIGHT Copyright \(co 2001 Christopher R. Gabriel Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. gsl-1.16/doc/dwt-samp.eps0000664000252300025230000012277412171574312012201 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Jul 22 17:12:13 2004 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 112 210 487 402 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 112 210 487 402 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 5760 Rect End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 130.678 218.1928 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2304 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 171.356 218.1928 ] concat %I [ (32) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3168 5760 3168 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3168 2304 3168 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 214.556 218.1928 ] concat %I [ (64) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 5760 4032 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 257.756 218.1928 ] concat %I [ (96) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4896 5760 4896 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4896 2304 4896 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 298.434 218.1928 ] concat %I [ (128) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 5760 5760 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 341.634 218.1928 ] concat %I [ (160) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6624 5760 6624 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6624 2304 6624 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 384.834 218.1928 ] concat %I [ (192) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 5760 7488 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 428.034 218.1928 ] concat %I [ (224) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8352 5760 8352 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8352 2304 8352 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 471.234 218.1928 ] concat %I [ (256) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9216 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 112.6999 226.0284 ] concat %I [ (-0.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9147 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2373 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 112.6999 245.2284 ] concat %I [ (-0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2688 9147 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2688 2373 2688 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 264.4284 ] concat %I [ (0.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3072 9147 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 2373 3072 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 283.6284 ] concat %I [ (0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9147 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2373 3456 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 302.8284 ] concat %I [ (0.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3840 9147 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3840 2373 3840 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 322.0284 ] concat %I [ (0.6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4224 9147 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4224 2373 4224 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 341.2284 ] concat %I [ (0.8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9147 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2373 4608 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 360.4284 ] concat %I [ (1.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4992 9147 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4992 2373 4992 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 379.6284 ] concat %I [ (1.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5376 9147 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5376 2373 5376 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 398.8284 ] concat %I [ (1.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9147 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2373 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9188 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2332 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2496 9188 2496 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2496 2332 2496 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2688 9188 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2688 2332 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2880 9188 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2880 2332 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3072 9188 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 2332 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3264 9188 3264 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3264 2332 3264 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9188 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2332 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3648 9188 3648 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3648 2332 3648 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3840 9188 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3840 2332 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9188 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2332 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4224 9188 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4224 2332 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4416 9188 4416 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4416 2332 4416 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9188 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2332 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4800 9188 4800 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4800 2332 4800 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4992 9188 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4992 2332 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5184 9188 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5184 2332 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5376 9188 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5376 2332 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5568 9188 5568 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5568 2332 5568 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9188 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2332 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 34952 1 0 0 [ 1.48 4.43 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 9216 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 256 2304 3104 2331 3133 2358 3151 2385 3172 2412 3182 2439 3195 2466 3211 2493 3226 2520 3230 2547 3238 2574 3248 2601 3257 2628 3269 2655 3280 2682 3291 2709 3302 2736 3272 2763 3253 2790 3244 2817 3233 2844 3233 2871 3230 2898 3224 2925 3219 2952 3170 2979 3133 3006 3107 3033 3079 3060 3062 3087 3042 3114 3018 3141 2996 3168 3041 3195 3068 3222 3077 3249 3091 3276 3087 3303 3088 3330 3093 3357 3097 3384 3083 3411 3074 3438 3070 3465 3064 3492 3064 3519 3062 3546 3059 3573 3056 3600 3044 3627 3036 3654 3029 3681 3022 3708 3016 3735 3011 3762 3004 3789 2998 3816 2918 3843 2858 3870 2817 3897 2771 3924 2760 3951 2739 3978 2709 4005 2681 4032 3062 4059 3334 4086 3727 4113 4088 4140 4611 4167 5091 4194 5289 4221 5563 4248 5317 4275 5210 4302 4533 4329 4009 4356 3548 4383 3070 4410 2955 4437 2743 4464 2875 4491 2915 4518 2863 4545 2836 4572 2893 4599 2928 4626 2940 4653 2958 4680 2933 4707 2920 4734 2918 4761 2913 4788 2920 4815 2924 4842 2924 4869 2925 4896 2920 4923 2917 4950 2916 4977 2913 5004 2913 5031 2912 5058 2911 5085 2910 5112 2910 5139 2910 5166 2910 5193 2910 5220 2909 5247 2908 5274 2908 5301 2907 5328 2907 5355 2907 5382 2907 5409 2906 5436 2906 5463 2905 5490 2905 5517 2905 5544 2904 5571 2904 5598 2903 5625 2903 5652 2902 5679 2902 5706 2902 5733 2901 5760 2901 5787 2901 5814 2900 5841 2900 5868 2900 5895 2900 5922 2899 5949 2899 5976 2899 6003 2898 6030 2898 6057 2898 6084 2897 6111 2897 6138 2897 6165 2896 6192 2896 6219 2895 6246 2895 6273 2895 6300 2894 6327 2894 6354 2894 6381 2893 6408 2893 6435 2892 6462 2892 6489 2892 6516 2891 6543 2891 6570 2891 6597 2890 6624 2873 6651 2860 6678 2852 6705 2843 6732 2838 6759 2832 6786 2824 6813 2817 6840 2815 6867 2811 6894 2806 6921 2802 6948 2796 6975 2791 7002 2785 7029 2780 7056 2839 7083 2881 7110 2906 7137 2935 7164 2947 7191 2964 7218 2985 7245 3005 7272 3008 7299 3015 7326 3027 7353 3038 7380 3053 7407 3067 7434 3080 7461 3093 7488 3068 7515 3052 7542 3048 7569 3040 7596 3043 7623 3043 7650 3040 7677 3038 7704 3046 7731 3052 7758 3055 7785 3058 7812 3059 7839 3061 7866 3063 7893 3065 7920 3077 7947 3087 7974 3094 8001 3102 8028 3106 8055 3112 8082 3118 8109 3125 8136 3128 8163 3132 8190 3137 8217 3142 8244 3147 8271 3152 8298 3157 8325 3162 8352 3139 8379 3123 8406 3115 8433 3105 8460 3102 8487 3097 8514 3091 8541 3085 8568 3086 8595 3086 8622 3083 8649 3081 8676 3077 8703 3073 8730 3070 8757 3067 8784 3072 8811 3074 8838 3075 8865 3076 8892 3074 8919 3074 8946 3074 8973 3074 9000 3072 9027 3070 9054 3069 9081 3068 9108 3067 9135 3066 9162 3065 9189 3064 256 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/rand-logistic.tex0000664000252300025230000005427512171574312013215 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-logistic.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-logistic.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 727 M 19 3 V 20 3 V 19 4 V 20 3 V 19 4 V 20 3 V 19 4 V 19 4 V 20 5 V 19 4 V 20 4 V 19 5 V 20 5 V 19 4 V 19 5 V 20 6 V 19 5 V 20 6 V 19 5 V 20 6 V 19 6 V 19 7 V 20 6 V 19 7 V 20 7 V 19 7 V 20 7 V 19 8 V 19 8 V 20 8 V 19 8 V 20 9 V 19 9 V 20 9 V 19 9 V 19 10 V 20 10 V 19 10 V 20 11 V 19 11 V 20 11 V 19 12 V 19 12 V 20 12 V 19 13 V 20 13 V 19 14 V 20 14 V 19 14 V 19 15 V 20 15 V 19 15 V 20 17 V 19 16 V 20 17 V 19 18 V 19 17 V 20 19 V 19 19 V 20 19 V 19 20 V 20 21 V 19 21 V 19 22 V 20 22 V 19 23 V 20 23 V 19 24 V 20 25 V 19 25 V 19 26 V 20 27 V 19 27 V 20 28 V 19 28 V 20 29 V 19 30 V 19 30 V 20 31 V 19 32 V 20 32 V 19 34 V 20 33 V 19 35 V 19 35 V 20 36 V 19 36 V 20 37 V 19 38 V 20 38 V 19 39 V 19 40 V 20 40 V 19 40 V 20 42 V 19 42 V 20 42 V 19 43 V 19 43 V 20 44 V 19 44 V 20 45 V 3052 2700 L 20 46 V 19 45 V 19 46 V 20 46 V 19 46 V 20 46 V 19 46 V 20 47 V 19 46 V 19 46 V 20 46 V 19 46 V 20 45 V 19 45 V 20 45 V 19 44 V 19 44 V 20 43 V 19 43 V 20 41 V 19 41 V 20 40 V 19 40 V 19 38 V 20 37 V 19 36 V 20 35 V 19 33 V 20 32 V 19 31 V 19 29 V 20 28 V 19 26 V 20 25 V 19 22 V 20 22 V 19 19 V 19 18 V 20 15 V 19 14 V 20 12 V 19 10 V 20 8 V 19 6 V 19 4 V 20 2 V 19 0 V 20 -2 V 19 -4 V 19 -6 V 20 -8 V 19 -10 V 20 -12 V 19 -14 V 20 -15 V 19 -18 V 19 -19 V 20 -22 V 19 -22 V 20 -25 V 19 -26 V 20 -28 V 19 -29 V 19 -31 V 20 -32 V 19 -33 V 20 -35 V 19 -36 V 20 -37 V 19 -38 V 19 -40 V 20 -40 V 19 -41 V 20 -41 V 19 -43 V 20 -43 V 19 -44 V 19 -44 V 20 -45 V 19 -45 V 20 -45 V 19 -46 V 20 -46 V 19 -46 V 19 -46 V 20 -47 V 19 -46 V 20 -46 V 19 -46 V 20 -46 V 19 -46 V 19 -45 V 20 -46 V 19 -44 V 20 -45 V 19 -44 V 20 -44 V 19 -43 V 19 -43 V 20 -42 V 19 -42 V 20 -42 V 19 -40 V 20 -40 V 5092 2191 L 19 -39 V 20 -38 V 19 -38 V 20 -37 V 19 -36 V 20 -36 V 19 -35 V 19 -35 V 20 -33 V 19 -34 V 20 -32 V 19 -32 V 20 -31 V 19 -30 V 19 -30 V 20 -29 V 19 -28 V 20 -28 V 19 -27 V 20 -27 V 19 -26 V 19 -25 V 20 -25 V 19 -24 V 20 -23 V 19 -23 V 20 -22 V 19 -22 V 19 -21 V 20 -21 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -17 V 19 -18 V 20 -17 V 19 -16 V 20 -17 V 19 -15 V 20 -15 V 19 -15 V 19 -14 V 20 -14 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -4 V 20 -5 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 1135 M 19 7 V 20 7 V 19 8 V 20 7 V 19 8 V 20 7 V 19 8 V 19 8 V 20 8 V 19 8 V 20 8 V 19 8 V 20 8 V 19 8 V 19 8 V 20 9 V 19 8 V 20 9 V 19 9 V 20 8 V 19 9 V 19 9 V 20 9 V 19 9 V 20 10 V 19 9 V 20 9 V 19 10 V 19 9 V 20 10 V 19 9 V 20 10 V 19 10 V 20 10 V 19 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 11 V 20 10 V 19 10 V 19 11 V 20 11 V 19 10 V 20 11 V 19 11 V 20 11 V 19 10 V 19 11 V 20 11 V 19 11 V 20 12 V 19 11 V 20 11 V 19 11 V 19 11 V 20 12 V 19 11 V 20 11 V 19 12 V 20 11 V 19 12 V 19 11 V 20 12 V 19 11 V 20 12 V 19 11 V 20 12 V 19 11 V 19 12 V 20 12 V 19 11 V 20 12 V 19 11 V 20 12 V 19 11 V 19 12 V 20 11 V 19 12 V 20 11 V 19 11 V 20 12 V 19 11 V 19 11 V 20 11 V 19 12 V 20 11 V 19 11 V 20 11 V 19 10 V 19 11 V 20 11 V 19 11 V 20 10 V 19 11 V 20 10 V 19 10 V 19 10 V 20 10 V 19 10 V 20 10 V 3052 2182 L 20 9 V 19 10 V 19 9 V 20 9 V 19 9 V 20 9 V 19 8 V 20 9 V 19 8 V 19 9 V 20 8 V 19 7 V 20 8 V 19 8 V 20 7 V 19 7 V 19 7 V 20 7 V 19 6 V 20 7 V 19 6 V 20 6 V 19 5 V 19 6 V 20 5 V 19 5 V 20 5 V 19 5 V 20 4 V 19 4 V 19 4 V 20 4 V 19 3 V 20 4 V 19 3 V 20 2 V 19 3 V 19 2 V 20 2 V 19 2 V 20 1 V 19 2 V 20 1 V 19 0 V 19 1 V 20 0 V 19 0 V 20 0 V 19 -1 V 19 0 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -11 V 20 -10 V 19 -11 V 20 -11 V 5092 2058 L 19 -10 V 20 -11 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 19 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 19 -12 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 20 -12 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -10 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -11 V 19 -11 V 19 -10 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=2$}}% \put(5957,4781){\rjust{\strut{}$a=1$}}% \put(3955,5244){\cjust{\strut{}Logistic Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4944){\rjust{\strut{} 0.3}}% \put(900,3506){\rjust{\strut{} 0.2}}% \put(900,2069){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/mdate-sh0000755000252300025230000001363712172014011011341 00000000000000#!/bin/sh # Get modification time of a file or directory and pretty-print it. scriptversion=2010-08-21.06; # UTC # Copyright (C) 1995-2013 Free Software Foundation, Inc. # written by Ulrich Drepper , June 1995 # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST fi case $1 in '') echo "$0: No file. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: mdate-sh [--help] [--version] FILE Pretty-print the modification day of FILE, in the format: 1 January 1970 Report bugs to . EOF exit $? ;; -v | --v*) echo "mdate-sh $scriptversion" exit $? ;; esac error () { echo "$0: $1" >&2 exit 1 } # Prevent date giving response in another language. LANG=C export LANG LC_ALL=C export LC_ALL LC_TIME=C export LC_TIME # GNU ls changes its time format in response to the TIME_STYLE # variable. Since we cannot assume 'unset' works, revert this # variable to its documented default. if test "${TIME_STYLE+set}" = set; then TIME_STYLE=posix-long-iso export TIME_STYLE fi save_arg1=$1 # Find out how to get the extended ls output of a file or directory. if ls -L /dev/null 1>/dev/null 2>&1; then ls_command='ls -L -l -d' else ls_command='ls -l -d' fi # Avoid user/group names that might have spaces, when possible. if ls -n /dev/null 1>/dev/null 2>&1; then ls_command="$ls_command -n" fi # A 'ls -l' line looks as follows on OS/2. # drwxrwx--- 0 Aug 11 2001 foo # This differs from Unix, which adds ownership information. # drwxrwx--- 2 root root 4096 Aug 11 2001 foo # # To find the date, we split the line on spaces and iterate on words # until we find a month. This cannot work with files whose owner is a # user named "Jan", or "Feb", etc. However, it's unlikely that '/' # will be owned by a user whose name is a month. So we first look at # the extended ls output of the root directory to decide how many # words should be skipped to get the date. # On HPUX /bin/sh, "set" interprets "-rw-r--r--" as options, so the "x" below. set x`$ls_command /` # Find which argument is the month. month= command= until test $month do test $# -gt 0 || error "failed parsing '$ls_command /' output" shift # Add another shift to the command. command="$command shift;" case $1 in Jan) month=January; nummonth=1;; Feb) month=February; nummonth=2;; Mar) month=March; nummonth=3;; Apr) month=April; nummonth=4;; May) month=May; nummonth=5;; Jun) month=June; nummonth=6;; Jul) month=July; nummonth=7;; Aug) month=August; nummonth=8;; Sep) month=September; nummonth=9;; Oct) month=October; nummonth=10;; Nov) month=November; nummonth=11;; Dec) month=December; nummonth=12;; esac done test -n "$month" || error "failed parsing '$ls_command /' output" # Get the extended ls output of the file or directory. set dummy x`eval "$ls_command \"\\\$save_arg1\""` # Remove all preceding arguments eval $command # Because of the dummy argument above, month is in $2. # # On a POSIX system, we should have # # $# = 5 # $1 = file size # $2 = month # $3 = day # $4 = year or time # $5 = filename # # On Darwin 7.7.0 and 7.6.0, we have # # $# = 4 # $1 = day # $2 = month # $3 = year or time # $4 = filename # Get the month. case $2 in Jan) month=January; nummonth=1;; Feb) month=February; nummonth=2;; Mar) month=March; nummonth=3;; Apr) month=April; nummonth=4;; May) month=May; nummonth=5;; Jun) month=June; nummonth=6;; Jul) month=July; nummonth=7;; Aug) month=August; nummonth=8;; Sep) month=September; nummonth=9;; Oct) month=October; nummonth=10;; Nov) month=November; nummonth=11;; Dec) month=December; nummonth=12;; esac case $3 in ???*) day=$1;; *) day=$3; shift;; esac # Here we have to deal with the problem that the ls output gives either # the time of day or the year. case $3 in *:*) set `date`; eval year=\$$# case $2 in Jan) nummonthtod=1;; Feb) nummonthtod=2;; Mar) nummonthtod=3;; Apr) nummonthtod=4;; May) nummonthtod=5;; Jun) nummonthtod=6;; Jul) nummonthtod=7;; Aug) nummonthtod=8;; Sep) nummonthtod=9;; Oct) nummonthtod=10;; Nov) nummonthtod=11;; Dec) nummonthtod=12;; esac # For the first six month of the year the time notation can also # be used for files modified in the last year. if (expr $nummonth \> $nummonthtod) > /dev/null; then year=`expr $year - 1` fi;; *) year=$3;; esac # The result. echo $day $month $year # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: gsl-1.16/doc/gsl-ref.info-10000664000252300025230000111353712172254214012301 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  File: gsl-ref.info, Node: Top, Next: Introduction, Prev: (dir), Up: (dir) GSL *** This file documents the GNU Scientific Library (GSL), a collection of numerical routines for scientific computing. It corresponds to release 1.16 of the library. Please report any errors in this manual to . More information about GSL can be found at the project homepage, . Printed copies of this manual can be purchased from Network Theory Ltd at . The money raised from sales of the manual helps support the development of GSL. A Japanese translation of this manual is available from the GSL project homepage thanks to Daisuke Tominaga. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". * Menu: * Introduction:: * Using the library:: * Error Handling:: * Mathematical Functions:: * Complex Numbers:: * Polynomials:: * Special Functions:: * Vectors and Matrices:: * Permutations:: * Combinations:: * Multisets:: * Sorting:: * BLAS Support:: * Linear Algebra:: * Eigensystems:: * Fast Fourier Transforms:: * Numerical Integration:: * Random Number Generation:: * Quasi-Random Sequences:: * Random Number Distributions:: * Statistics:: * Histograms:: * N-tuples:: * Monte Carlo Integration:: * Simulated Annealing:: * Ordinary Differential Equations:: * Interpolation:: * Numerical Differentiation:: * Chebyshev Approximations:: * Series Acceleration:: * Wavelet Transforms:: * Discrete Hankel Transforms:: * One dimensional Root-Finding:: * One dimensional Minimization:: * Multidimensional Root-Finding:: * Multidimensional Minimization:: * Least-Squares Fitting:: * Nonlinear Least-Squares Fitting:: * Basis Splines:: * Physical Constants:: * IEEE floating-point arithmetic:: * Debugging Numerical Programs:: * Contributors to GSL:: * Autoconf Macros:: * GSL CBLAS Library:: * GNU General Public License:: * GNU Free Documentation License:: * Function Index:: * Variable Index:: * Type Index:: * Concept Index::  File: gsl-ref.info, Node: Introduction, Next: Using the library, Prev: Top, Up: Top 1 Introduction ************** The GNU Scientific Library (GSL) is a collection of routines for numerical computing. The routines have been written from scratch in C, and present a modern Applications Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages. The source code is distributed under the GNU General Public License. * Menu: * Routines available in GSL:: * GSL is Free Software:: * Obtaining GSL:: * No Warranty:: * Reporting Bugs:: * Further Information:: * Conventions used in this manual::  File: gsl-ref.info, Node: Routines available in GSL, Next: GSL is Free Software, Up: Introduction 1.1 Routines available in GSL ============================= The library covers a wide range of topics in numerical computing. Routines are available for the following areas, Complex Numbers Roots of Polynomials Special Functions Vectors and Matrices Permutations Combinations Sorting BLAS Support Linear Algebra CBLAS Library Fast Fourier Transforms Eigensystems Random Numbers Quadrature Random Distributions Quasi-Random Sequences Histograms Statistics Monte Carlo Integration N-Tuples Differential Equations Simulated Annealing Numerical Differentiation Interpolation Series Acceleration Chebyshev Approximations Root-Finding Discrete Hankel Transforms Least-Squares Fitting Minimization IEEE Floating-Point Physical Constants Basis Splines Wavelets The use of these routines is described in this manual. Each chapter provides detailed definitions of the functions, followed by example programs and references to the articles on which the algorithms are based. Where possible the routines have been based on reliable public-domain packages such as FFTPACK and QUADPACK, which the developers of GSL have reimplemented in C with modern coding conventions.  File: gsl-ref.info, Node: GSL is Free Software, Next: Obtaining GSL, Prev: Routines available in GSL, Up: Introduction 1.2 GSL is Free Software ======================== The subroutines in the GNU Scientific Library are "free software"; this means that everyone is free to use them, and to redistribute them in other free programs. The library is not in the public domain; it is copyrighted and there are conditions on its distribution. These conditions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of the software that they might get from you. Specifically, we want to make sure that you have the right to share copies of programs that you are given which use the GNU Scientific Library, that you receive their source code or else can get it if you want it, that you can change these programs or use pieces of them in new free programs, and that you know you can do these things. To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of any code which uses the GNU Scientific Library, you must give the recipients all the rights that you have received. You must make sure that they, too, receive or can get the source code, both to the library and the code which uses it. And you must tell them their rights. This means that the library should not be redistributed in proprietary programs. Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the GNU Scientific Library. If these programs are modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation. The precise conditions for the distribution of software related to the GNU Scientific Library are found in the GNU General Public License (*note GNU General Public License::). Further information about this license is available from the GNU Project webpage 'Frequently Asked Questions about the GNU GPL', The Free Software Foundation also operates a license consulting service for commercial users (contact details available from ).  File: gsl-ref.info, Node: Obtaining GSL, Next: No Warranty, Prev: GSL is Free Software, Up: Introduction 1.3 Obtaining GSL ================= The source code for the library can be obtained in different ways, by copying it from a friend, purchasing it on CDROM or downloading it from the internet. A list of public ftp servers which carry the source code can be found on the GNU website, The preferred platform for the library is a GNU system, which allows it to take advantage of additional features in the GNU C compiler and GNU C library. However, the library is fully portable and should compile on most systems with a C compiler. Announcements of new releases, updates and other relevant events are made on the 'info-gsl@gnu.org' mailing list. To subscribe to this low-volume list, send an email of the following form: To: info-gsl-request@gnu.org Subject: subscribe You will receive a response asking you to reply in order to confirm your subscription.  File: gsl-ref.info, Node: No Warranty, Next: Reporting Bugs, Prev: Obtaining GSL, Up: Introduction 1.4 No Warranty =============== The software described in this manual has no warranty, it is provided "as is". It is your responsibility to validate the behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from commercial redistributors. Consult the GNU General Public license for further details (*note GNU General Public License::).  File: gsl-ref.info, Node: Reporting Bugs, Next: Further Information, Prev: No Warranty, Up: Introduction 1.5 Reporting Bugs ================== A list of known bugs can be found in the 'BUGS' file included in the GSL distribution or online in the GSL bug tracker.(1) Details of compilation problems can be found in the 'INSTALL' file. If you find a bug which is not listed in these files, please report it to . All bug reports should include: * The version number of GSL * The hardware and operating system * The compiler used, including version number and compilation options * A description of the bug behavior * A short program which exercises the bug It is useful if you can check whether the same problem occurs when the library is compiled without optimization. Thank you. Any errors or omissions in this manual can also be reported to the same address. ---------- Footnotes ---------- (1)  File: gsl-ref.info, Node: Further Information, Next: Conventions used in this manual, Prev: Reporting Bugs, Up: Introduction 1.6 Further Information ======================= Additional information, including online copies of this manual, links to related projects, and mailing list archives are available from the website mentioned above. Any questions about the use and installation of the library can be asked on the mailing list 'help-gsl@gnu.org'. To subscribe to this list, send an email of the following form: To: help-gsl-request@gnu.org Subject: subscribe This mailing list can be used to ask questions not covered by this manual, and to contact the developers of the library. If you would like to refer to the GNU Scientific Library in a journal article, the recommended way is to cite this reference manual, e.g. 'M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078'. If you want to give a url, use "".  File: gsl-ref.info, Node: Conventions used in this manual, Prev: Further Information, Up: Introduction 1.7 Conventions used in this manual =================================== This manual contains many examples which can be typed at the keyboard. A command entered at the terminal is shown like this, $ command The first character on the line is the terminal prompt, and should not be typed. The dollar sign '$' is used as the standard prompt in this manual, although some systems may use a different character. The examples assume the use of the GNU operating system. There may be minor differences in the output on other systems. The commands for setting environment variables use the Bourne shell syntax of the standard GNU shell ('bash').  File: gsl-ref.info, Node: Using the library, Next: Error Handling, Prev: Introduction, Up: Top 2 Using the library ******************* This chapter describes how to compile programs that use GSL, and introduces its conventions. * Menu: * An Example Program:: * Compiling and Linking:: * Shared Libraries:: * ANSI C Compliance:: * Inline functions:: * Long double:: * Portability functions:: * Alternative optimized functions:: * Support for different numeric types:: * Compatibility with C++:: * Aliasing of arrays:: * Thread-safety:: * Deprecated Functions:: * Code Reuse::  File: gsl-ref.info, Node: An Example Program, Next: Compiling and Linking, Up: Using the library 2.1 An Example Program ====================== The following short program demonstrates the use of the library by computing the value of the Bessel function J_0(x) for x=5, #include #include int main (void) { double x = 5.0; double y = gsl_sf_bessel_J0 (x); printf ("J0(%g) = %.18e\n", x, y); return 0; } The output is shown below, and should be correct to double-precision accuracy,(1) J0(5) = -1.775967713143382920e-01 The steps needed to compile this program are described in the following sections. ---------- Footnotes ---------- (1) The last few digits may vary slightly depending on the compiler and platform used--this is normal.  File: gsl-ref.info, Node: Compiling and Linking, Next: Shared Libraries, Prev: An Example Program, Up: Using the library 2.2 Compiling and Linking ========================= The library header files are installed in their own 'gsl' directory. You should write any preprocessor include statements with a 'gsl/' directory prefix thus, #include If the directory is not installed on the standard search path of your compiler you will also need to provide its location to the preprocessor as a command line flag. The default location of the 'gsl' directory is '/usr/local/include/gsl'. A typical compilation command for a source file 'example.c' with the GNU C compiler 'gcc' is, $ gcc -Wall -I/usr/local/include -c example.c This results in an object file 'example.o'. The default include path for 'gcc' searches '/usr/local/include' automatically so the '-I' option can actually be omitted when GSL is installed in its default location. * Menu: * Linking programs with the library:: * Linking with an alternative BLAS library::  File: gsl-ref.info, Node: Linking programs with the library, Next: Linking with an alternative BLAS library, Up: Compiling and Linking 2.2.1 Linking programs with the library --------------------------------------- The library is installed as a single file, 'libgsl.a'. A shared version of the library 'libgsl.so' is also installed on systems that support shared libraries. The default location of these files is '/usr/local/lib'. If this directory is not on the standard search path of your linker you will also need to provide its location as a command line flag. To link against the library you need to specify both the main library and a supporting CBLAS library, which provides standard basic linear algebra subroutines. A suitable CBLAS implementation is provided in the library 'libgslcblas.a' if your system does not provide one. The following example shows how to link an application with the library, $ gcc -L/usr/local/lib example.o -lgsl -lgslcblas -lm The default library path for 'gcc' searches '/usr/local/lib' automatically so the '-L' option can be omitted when GSL is installed in its default location. The option '-lm' links with the system math library. On some systems it is not needed.(1) For a tutorial introduction to the GNU C Compiler and related programs, see 'An Introduction to GCC' (ISBN 0954161793).(2) ---------- Footnotes ---------- (1) It is not needed on MacOS X. (2)  File: gsl-ref.info, Node: Linking with an alternative BLAS library, Prev: Linking programs with the library, Up: Compiling and Linking 2.2.2 Linking with an alternative BLAS library ---------------------------------------------- The following command line shows how you would link the same application with an alternative CBLAS library 'libcblas.a', $ gcc example.o -lgsl -lcblas -lm For the best performance an optimized platform-specific CBLAS library should be used for '-lcblas'. The library must conform to the CBLAS standard. The ATLAS package provides a portable high-performance BLAS library with a CBLAS interface. It is free software and should be installed for any work requiring fast vector and matrix operations. The following command line will link with the ATLAS library and its CBLAS interface, $ gcc example.o -lgsl -lcblas -latlas -lm If the ATLAS library is installed in a non-standard directory use the '-L' option to add it to the search path, as described above. For more information about BLAS functions see *note BLAS Support::.  File: gsl-ref.info, Node: Shared Libraries, Next: ANSI C Compliance, Prev: Compiling and Linking, Up: Using the library 2.3 Shared Libraries ==================== To run a program linked with the shared version of the library the operating system must be able to locate the corresponding '.so' file at runtime. If the library cannot be found, the following error will occur: $ ./a.out ./a.out: error while loading shared libraries: libgsl.so.0: cannot open shared object file: No such file or directory To avoid this error, either modify the system dynamic linker configuration(1) or define the shell variable 'LD_LIBRARY_PATH' to include the directory where the library is installed. For example, in the Bourne shell ('/bin/sh' or '/bin/bash'), the library search path can be set with the following commands: $ LD_LIBRARY_PATH=/usr/local/lib $ export LD_LIBRARY_PATH $ ./example In the C-shell ('/bin/csh' or '/bin/tcsh') the equivalent command is, % setenv LD_LIBRARY_PATH /usr/local/lib The standard prompt for the C-shell in the example above is the percent character '%', and should not be typed as part of the command. To save retyping these commands each session they can be placed in an individual or system-wide login file. To compile a statically linked version of the program, use the '-static' flag in 'gcc', $ gcc -static example.o -lgsl -lgslcblas -lm ---------- Footnotes ---------- (1) '/etc/ld.so.conf' on GNU/Linux systems.  File: gsl-ref.info, Node: ANSI C Compliance, Next: Inline functions, Prev: Shared Libraries, Up: Using the library 2.4 ANSI C Compliance ===================== The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). It should be portable to any system with a working ANSI C compiler. The library does not rely on any non-ANSI extensions in the interface it exports to the user. Programs you write using GSL can be ANSI compliant. Extensions which can be used in a way compatible with pure ANSI C are supported, however, via conditional compilation. This allows the library to take advantage of compiler extensions on those platforms which support them. When an ANSI C feature is known to be broken on a particular system the library will exclude any related functions at compile-time. This should make it impossible to link a program that would use these functions and give incorrect results. To avoid namespace conflicts all exported function names and variables have the prefix 'gsl_', while exported macros have the prefix 'GSL_'.  File: gsl-ref.info, Node: Inline functions, Next: Long double, Prev: ANSI C Compliance, Up: Using the library 2.5 Inline functions ==================== The 'inline' keyword is not part of the original ANSI C standard (C89) so the library does not export any inline function definitions by default. Inline functions were introduced officially in the newer C99 standard but most C89 compilers have also included 'inline' as an extension for a long time. To allow the use of inline functions, the library provides optional inline versions of performance-critical routines by conditional compilation in the exported header files. The inline versions of these functions can be included by defining the macro 'HAVE_INLINE' when compiling an application, $ gcc -Wall -c -DHAVE_INLINE example.c If you use 'autoconf' this macro can be defined automatically. If you do not define the macro 'HAVE_INLINE' then the slower non-inlined versions of the functions will be used instead. By default, the actual form of the inline keyword is 'extern inline', which is a 'gcc' extension that eliminates unnecessary function definitions. If the form 'extern inline' causes problems with other compilers a stricter autoconf test can be used, see *note Autoconf Macros::. When compiling with 'gcc' in C99 mode ('gcc -std=c99') the header files automatically switch to C99-compatible inline function declarations instead of 'extern inline'. With other C99 compilers, define the macro 'GSL_C99_INLINE' to use these declarations.  File: gsl-ref.info, Node: Long double, Next: Portability functions, Prev: Inline functions, Up: Using the library 2.6 Long double =============== In general, the algorithms in the library are written for double precision only. The 'long double' type is not supported for actual computation. One reason for this choice is that the precision of 'long double' is platform dependent. The IEEE standard only specifies the minimum precision of extended precision numbers, while the precision of 'double' is the same on all platforms. However, it is sometimes necessary to interact with external data in long-double format, so the vector and matrix datatypes include long-double versions. It should be noted that in some system libraries the 'stdio.h' formatted input/output functions 'printf' and 'scanf' are not implemented correctly for 'long double'. Undefined or incorrect results are avoided by testing these functions during the 'configure' stage of library compilation and eliminating certain GSL functions which depend on them if necessary. The corresponding line in the 'configure' output looks like this, checking whether printf works with long double... no Consequently when 'long double' formatted input/output does not work on a given system it should be impossible to link a program which uses GSL functions dependent on this. If it is necessary to work on a system which does not support formatted 'long double' input/output then the options are to use binary formats or to convert 'long double' results into 'double' for reading and writing.  File: gsl-ref.info, Node: Portability functions, Next: Alternative optimized functions, Prev: Long double, Up: Using the library 2.7 Portability functions ========================= To help in writing portable applications GSL provides some implementations of functions that are found in other libraries, such as the BSD math library. You can write your application to use the native versions of these functions, and substitute the GSL versions via a preprocessor macro if they are unavailable on another platform. For example, after determining whether the BSD function 'hypot' is available you can include the following macro definitions in a file 'config.h' with your application, /* Substitute gsl_hypot for missing system hypot */ #ifndef HAVE_HYPOT #define hypot gsl_hypot #endif The application source files can then use the include command '#include ' to replace each occurrence of 'hypot' by 'gsl_hypot' when 'hypot' is not available. This substitution can be made automatically if you use 'autoconf', see *note Autoconf Macros::. In most circumstances the best strategy is to use the native versions of these functions when available, and fall back to GSL versions otherwise, since this allows your application to take advantage of any platform-specific optimizations in the system library. This is the strategy used within GSL itself.  File: gsl-ref.info, Node: Alternative optimized functions, Next: Support for different numeric types, Prev: Portability functions, Up: Using the library 2.8 Alternative optimized functions =================================== The main implementation of some functions in the library will not be optimal on all architectures. For example, there are several ways to compute a Gaussian random variate and their relative speeds are platform-dependent. In cases like this the library provides alternative implementations of these functions with the same interface. If you write your application using calls to the standard implementation you can select an alternative version later via a preprocessor definition. It is also possible to introduce your own optimized functions this way while retaining portability. The following lines demonstrate the use of a platform-dependent choice of methods for sampling from the Gaussian distribution, #ifdef SPARC #define gsl_ran_gaussian gsl_ran_gaussian_ratio_method #endif #ifdef INTEL #define gsl_ran_gaussian my_gaussian #endif These lines would be placed in the configuration header file 'config.h' of the application, which should then be included by all the source files. Note that the alternative implementations will not produce bit-for-bit identical results, and in the case of random number distributions will produce an entirely different stream of random variates.  File: gsl-ref.info, Node: Support for different numeric types, Next: Compatibility with C++, Prev: Alternative optimized functions, Up: Using the library 2.9 Support for different numeric types ======================================= Many functions in the library are defined for different numeric types. This feature is implemented by varying the name of the function with a type-related modifier--a primitive form of C++ templates. The modifier is inserted into the function name after the initial module prefix. The following table shows the function names defined for all the numeric types of an imaginary module 'gsl_foo' with function 'fn', gsl_foo_fn double gsl_foo_long_double_fn long double gsl_foo_float_fn float gsl_foo_long_fn long gsl_foo_ulong_fn unsigned long gsl_foo_int_fn int gsl_foo_uint_fn unsigned int gsl_foo_short_fn short gsl_foo_ushort_fn unsigned short gsl_foo_char_fn char gsl_foo_uchar_fn unsigned char The normal numeric precision 'double' is considered the default and does not require a suffix. For example, the function 'gsl_stats_mean' computes the mean of double precision numbers, while the function 'gsl_stats_int_mean' computes the mean of integers. A corresponding scheme is used for library defined types, such as 'gsl_vector' and 'gsl_matrix'. In this case the modifier is appended to the type name. For example, if a module defines a new type-dependent struct or typedef 'gsl_foo' it is modified for other types in the following way, gsl_foo double gsl_foo_long_double long double gsl_foo_float float gsl_foo_long long gsl_foo_ulong unsigned long gsl_foo_int int gsl_foo_uint unsigned int gsl_foo_short short gsl_foo_ushort unsigned short gsl_foo_char char gsl_foo_uchar unsigned char When a module contains type-dependent definitions the library provides individual header files for each type. The filenames are modified as shown in the below. For convenience the default header includes the definitions for all the types. To include only the double precision header file, or any other specific type, use its individual filename. #include All types #include double #include long double #include float #include long #include unsigned long #include int #include unsigned int #include short #include unsigned short #include char #include unsigned char  File: gsl-ref.info, Node: Compatibility with C++, Next: Aliasing of arrays, Prev: Support for different numeric types, Up: Using the library 2.10 Compatibility with C++ =========================== The library header files automatically define functions to have 'extern "C"' linkage when included in C++ programs. This allows the functions to be called directly from C++. To use C++ exception handling within user-defined functions passed to the library as parameters, the library must be built with the additional 'CFLAGS' compilation option '-fexceptions'.  File: gsl-ref.info, Node: Aliasing of arrays, Next: Thread-safety, Prev: Compatibility with C++, Up: Using the library 2.11 Aliasing of arrays ======================= The library assumes that arrays, vectors and matrices passed as modifiable arguments are not aliased and do not overlap with each other. This removes the need for the library to handle overlapping memory regions as a special case, and allows additional optimizations to be used. If overlapping memory regions are passed as modifiable arguments then the results of such functions will be undefined. If the arguments will not be modified (for example, if a function prototype declares them as 'const' arguments) then overlapping or aliased memory regions can be safely used.  File: gsl-ref.info, Node: Thread-safety, Next: Deprecated Functions, Prev: Aliasing of arrays, Up: Using the library 2.12 Thread-safety ================== The library can be used in multi-threaded programs. All the functions are thread-safe, in the sense that they do not use static variables. Memory is always associated with objects and not with functions. For functions which use "workspace" objects as temporary storage the workspaces should be allocated on a per-thread basis. For functions which use "table" objects as read-only memory the tables can be used by multiple threads simultaneously. Table arguments are always declared 'const' in function prototypes, to indicate that they may be safely accessed by different threads. There are a small number of static global variables which are used to control the overall behavior of the library (e.g. whether to use range-checking, the function to call on fatal error, etc). These variables are set directly by the user, so they should be initialized once at program startup and not modified by different threads.  File: gsl-ref.info, Node: Deprecated Functions, Next: Code Reuse, Prev: Thread-safety, Up: Using the library 2.13 Deprecated Functions ========================= From time to time, it may be necessary for the definitions of some functions to be altered or removed from the library. In these circumstances the functions will first be declared "deprecated" and then removed from subsequent versions of the library. Functions that are deprecated can be disabled in the current release by setting the preprocessor definition 'GSL_DISABLE_DEPRECATED'. This allows existing code to be tested for forwards compatibility.  File: gsl-ref.info, Node: Code Reuse, Prev: Deprecated Functions, Up: Using the library 2.14 Code Reuse =============== Where possible the routines in the library have been written to avoid dependencies between modules and files. This should make it possible to extract individual functions for use in your own applications, without needing to have the whole library installed. You may need to define certain macros such as 'GSL_ERROR' and remove some '#include' statements in order to compile the files as standalone units. Reuse of the library code in this way is encouraged, subject to the terms of the GNU General Public License.  File: gsl-ref.info, Node: Error Handling, Next: Mathematical Functions, Prev: Using the library, Up: Top 3 Error Handling **************** This chapter describes the way that GSL functions report and handle errors. By examining the status information returned by every function you can determine whether it succeeded or failed, and if it failed you can find out what the precise cause of failure was. You can also define your own error handling functions to modify the default behavior of the library. The functions described in this section are declared in the header file 'gsl_errno.h'. * Menu: * Error Reporting:: * Error Codes:: * Error Handlers:: * Using GSL error reporting in your own functions:: * Error Reporting Examples::  File: gsl-ref.info, Node: Error Reporting, Next: Error Codes, Up: Error Handling 3.1 Error Reporting =================== The library follows the thread-safe error reporting conventions of the POSIX Threads library. Functions return a non-zero error code to indicate an error and '0' to indicate success. int status = gsl_function (...) if (status) { /* an error occurred */ ..... /* status value specifies the type of error */ } The routines report an error whenever they cannot perform the task requested of them. For example, a root-finding function would return a non-zero error code if could not converge to the requested accuracy, or exceeded a limit on the number of iterations. Situations like this are a normal occurrence when using any mathematical library and you should check the return status of the functions that you call. Whenever a routine reports an error the return value specifies the type of error. The return value is analogous to the value of the variable 'errno' in the C library. The caller can examine the return code and decide what action to take, including ignoring the error if it is not considered serious. In addition to reporting errors by return codes the library also has an error handler function 'gsl_error'. This function is called by other library functions when they report an error, just before they return to the caller. The default behavior of the error handler is to print a message and abort the program, gsl: file.c:67: ERROR: invalid argument supplied by user Default GSL error handler invoked. Aborted The purpose of the 'gsl_error' handler is to provide a function where a breakpoint can be set that will catch library errors when running under the debugger. It is not intended for use in production programs, which should handle any errors using the return codes.  File: gsl-ref.info, Node: Error Codes, Next: Error Handlers, Prev: Error Reporting, Up: Error Handling 3.2 Error Codes =============== The error code numbers returned by library functions are defined in the file 'gsl_errno.h'. They all have the prefix 'GSL_' and expand to non-zero constant integer values. Error codes above 1024 are reserved for applications, and are not used by the library. Many of the error codes use the same base name as the corresponding error code in the C library. Here are some of the most common error codes, -- Macro: int GSL_EDOM Domain error; used by mathematical functions when an argument value does not fall into the domain over which the function is defined (like EDOM in the C library) -- Macro: int GSL_ERANGE Range error; used by mathematical functions when the result value is not representable because of overflow or underflow (like ERANGE in the C library) -- Macro: int GSL_ENOMEM No memory available. The system cannot allocate more virtual memory because its capacity is full (like ENOMEM in the C library). This error is reported when a GSL routine encounters problems when trying to allocate memory with 'malloc'. -- Macro: int GSL_EINVAL Invalid argument. This is used to indicate various kinds of problems with passing the wrong argument to a library function (like EINVAL in the C library). The error codes can be converted into an error message using the function 'gsl_strerror'. -- Function: const char * gsl_strerror (const int GSL_ERRNO) This function returns a pointer to a string describing the error code GSL_ERRNO. For example, printf ("error: %s\n", gsl_strerror (status)); would print an error message like 'error: output range error' for a status value of 'GSL_ERANGE'.  File: gsl-ref.info, Node: Error Handlers, Next: Using GSL error reporting in your own functions, Prev: Error Codes, Up: Error Handling 3.3 Error Handlers ================== The default behavior of the GSL error handler is to print a short message and call 'abort'. When this default is in use programs will stop with a core-dump whenever a library routine reports an error. This is intended as a fail-safe default for programs which do not check the return status of library routines (we don't encourage you to write programs this way). If you turn off the default error handler it is your responsibility to check the return values of routines and handle them yourself. You can also customize the error behavior by providing a new error handler. For example, an alternative error handler could log all errors to a file, ignore certain error conditions (such as underflows), or start the debugger and attach it to the current process when an error occurs. All GSL error handlers have the type 'gsl_error_handler_t', which is defined in 'gsl_errno.h', -- Data Type: gsl_error_handler_t This is the type of GSL error handler functions. An error handler will be passed four arguments which specify the reason for the error (a string), the name of the source file in which it occurred (also a string), the line number in that file (an integer) and the error number (an integer). The source file and line number are set at compile time using the '__FILE__' and '__LINE__' directives in the preprocessor. An error handler function returns type 'void'. Error handler functions should be defined like this, void handler (const char * reason, const char * file, int line, int gsl_errno) To request the use of your own error handler you need to call the function 'gsl_set_error_handler' which is also declared in 'gsl_errno.h', -- Function: gsl_error_handler_t * gsl_set_error_handler (gsl_error_handler_t * NEW_HANDLER) This function sets a new error handler, NEW_HANDLER, for the GSL library routines. The previous handler is returned (so that you can restore it later). Note that the pointer to a user defined error handler function is stored in a static variable, so there can be only one error handler per program. This function should be not be used in multi-threaded programs except to set up a program-wide error handler from a master thread. The following example shows how to set and restore a new error handler, /* save original handler, install new handler */ old_handler = gsl_set_error_handler (&my_handler); /* code uses new handler */ ..... /* restore original handler */ gsl_set_error_handler (old_handler); To use the default behavior ('abort' on error) set the error handler to 'NULL', old_handler = gsl_set_error_handler (NULL); -- Function: gsl_error_handler_t * gsl_set_error_handler_off () This function turns off the error handler by defining an error handler which does nothing. This will cause the program to continue after any error, so the return values from any library routines must be checked. This is the recommended behavior for production programs. The previous handler is returned (so that you can restore it later). The error behavior can be changed for specific applications by recompiling the library with a customized definition of the 'GSL_ERROR' macro in the file 'gsl_errno.h'.  File: gsl-ref.info, Node: Using GSL error reporting in your own functions, Next: Error Reporting Examples, Prev: Error Handlers, Up: Error Handling 3.4 Using GSL error reporting in your own functions =================================================== If you are writing numerical functions in a program which also uses GSL code you may find it convenient to adopt the same error reporting conventions as in the library. To report an error you need to call the function 'gsl_error' with a string describing the error and then return an appropriate error code from 'gsl_errno.h', or a special value, such as 'NaN'. For convenience the file 'gsl_errno.h' defines two macros which carry out these steps: -- Macro: GSL_ERROR (REASON, GSL_ERRNO) This macro reports an error using the GSL conventions and returns a status value of 'gsl_errno'. It expands to the following code fragment, gsl_error (reason, __FILE__, __LINE__, gsl_errno); return gsl_errno; The macro definition in 'gsl_errno.h' actually wraps the code in a 'do { ... } while (0)' block to prevent possible parsing problems. Here is an example of how the macro could be used to report that a routine did not achieve a requested tolerance. To report the error the routine needs to return the error code 'GSL_ETOL'. if (residual > tolerance) { GSL_ERROR("residual exceeds tolerance", GSL_ETOL); } -- Macro: GSL_ERROR_VAL (REASON, GSL_ERRNO, VALUE) This macro is the same as 'GSL_ERROR' but returns a user-defined value of VALUE instead of an error code. It can be used for mathematical functions that return a floating point value. The following example shows how to return a 'NaN' at a mathematical singularity using the 'GSL_ERROR_VAL' macro, if (x == 0) { GSL_ERROR_VAL("argument lies on singularity", GSL_ERANGE, GSL_NAN); }  File: gsl-ref.info, Node: Error Reporting Examples, Prev: Using GSL error reporting in your own functions, Up: Error Handling 3.5 Examples ============ Here is an example of some code which checks the return value of a function where an error might be reported, #include #include #include ... int status; size_t n = 37; gsl_set_error_handler_off(); status = gsl_fft_complex_radix2_forward (data, stride, n); if (status) { if (status == GSL_EINVAL) { fprintf (stderr, "invalid argument, n=%d\n", n); } else { fprintf (stderr, "failed, gsl_errno=%d\n", status); } exit (-1); } ... The function 'gsl_fft_complex_radix2' only accepts integer lengths which are a power of two. If the variable 'n' is not a power of two then the call to the library function will return 'GSL_EINVAL', indicating that the length argument is invalid. The function call to 'gsl_set_error_handler_off' stops the default error handler from aborting the program. The 'else' clause catches any other possible errors.  File: gsl-ref.info, Node: Mathematical Functions, Next: Complex Numbers, Prev: Error Handling, Up: Top 4 Mathematical Functions ************************ This chapter describes basic mathematical functions. Some of these functions are present in system libraries, but the alternative versions given here can be used as a substitute when the system functions are not available. The functions and macros described in this chapter are defined in the header file 'gsl_math.h'. * Menu: * Mathematical Constants:: * Infinities and Not-a-number:: * Elementary Functions:: * Small integer powers:: * Testing the Sign of Numbers:: * Testing for Odd and Even Numbers:: * Maximum and Minimum functions:: * Approximate Comparison of Floating Point Numbers::  File: gsl-ref.info, Node: Mathematical Constants, Next: Infinities and Not-a-number, Up: Mathematical Functions 4.1 Mathematical Constants ========================== The library ensures that the standard BSD mathematical constants are defined. For reference, here is a list of the constants: 'M_E' The base of exponentials, e 'M_LOG2E' The base-2 logarithm of e, \log_2 (e) 'M_LOG10E' The base-10 logarithm of e, \log_10 (e) 'M_SQRT2' The square root of two, \sqrt 2 'M_SQRT1_2' The square root of one-half, \sqrt{1/2} 'M_SQRT3' The square root of three, \sqrt 3 'M_PI' The constant pi, \pi 'M_PI_2' Pi divided by two, \pi/2 'M_PI_4' Pi divided by four, \pi/4 'M_SQRTPI' The square root of pi, \sqrt\pi 'M_2_SQRTPI' Two divided by the square root of pi, 2/\sqrt\pi 'M_1_PI' The reciprocal of pi, 1/\pi 'M_2_PI' Twice the reciprocal of pi, 2/\pi 'M_LN10' The natural logarithm of ten, \ln(10) 'M_LN2' The natural logarithm of two, \ln(2) 'M_LNPI' The natural logarithm of pi, \ln(\pi) 'M_EULER' Euler's constant, \gamma  File: gsl-ref.info, Node: Infinities and Not-a-number, Next: Elementary Functions, Prev: Mathematical Constants, Up: Mathematical Functions 4.2 Infinities and Not-a-number =============================== -- Macro: GSL_POSINF This macro contains the IEEE representation of positive infinity, +\infty. It is computed from the expression '+1.0/0.0'. -- Macro: GSL_NEGINF This macro contains the IEEE representation of negative infinity, -\infty. It is computed from the expression '-1.0/0.0'. -- Macro: GSL_NAN This macro contains the IEEE representation of the Not-a-Number symbol, 'NaN'. It is computed from the ratio '0.0/0.0'. -- Function: int gsl_isnan (const double X) This function returns 1 if X is not-a-number. -- Function: int gsl_isinf (const double X) This function returns +1 if X is positive infinity, -1 if X is negative infinity and 0 otherwise.(1) -- Function: int gsl_finite (const double X) This function returns 1 if X is a real number, and 0 if it is infinite or not-a-number. ---------- Footnotes ---------- (1) Note that the C99 standard only requires the system 'isinf' function to return a non-zero value, without the sign of the infinity. The implementation in some earlier versions of GSL used the system 'isinf' function and may have this behavior on some platforms. Therefore, it is advisable to test the sign of X separately, if needed, rather than relying the sign of the return value from 'gsl_isinf()'.  File: gsl-ref.info, Node: Elementary Functions, Next: Small integer powers, Prev: Infinities and Not-a-number, Up: Mathematical Functions 4.3 Elementary Functions ======================== The following routines provide portable implementations of functions found in the BSD math library. When native versions are not available the functions described here can be used instead. The substitution can be made automatically if you use 'autoconf' to compile your application (*note Portability functions::). -- Function: double gsl_log1p (const double X) This function computes the value of \log(1+x) in a way that is accurate for small X. It provides an alternative to the BSD math function 'log1p(x)'. -- Function: double gsl_expm1 (const double X) This function computes the value of \exp(x)-1 in a way that is accurate for small X. It provides an alternative to the BSD math function 'expm1(x)'. -- Function: double gsl_hypot (const double X, const double Y) This function computes the value of \sqrt{x^2 + y^2} in a way that avoids overflow. It provides an alternative to the BSD math function 'hypot(x,y)'. -- Function: double gsl_hypot3 (const double X, const double Y, const double Z) This function computes the value of \sqrt{x^2 + y^2 + z^2} in a way that avoids overflow. -- Function: double gsl_acosh (const double X) This function computes the value of \arccosh(x). It provides an alternative to the standard math function 'acosh(x)'. -- Function: double gsl_asinh (const double X) This function computes the value of \arcsinh(x). It provides an alternative to the standard math function 'asinh(x)'. -- Function: double gsl_atanh (const double X) This function computes the value of \arctanh(x). It provides an alternative to the standard math function 'atanh(x)'. -- Function: double gsl_ldexp (double X, int E) This function computes the value of x * 2^e. It provides an alternative to the standard math function 'ldexp(x,e)'. -- Function: double gsl_frexp (double X, int * E) This function splits the number x into its normalized fraction f and exponent e, such that x = f * 2^e and 0.5 <= f < 1. The function returns f and stores the exponent in e. If x is zero, both f and e are set to zero. This function provides an alternative to the standard math function 'frexp(x, e)'.  File: gsl-ref.info, Node: Small integer powers, Next: Testing the Sign of Numbers, Prev: Elementary Functions, Up: Mathematical Functions 4.4 Small integer powers ======================== A common complaint about the standard C library is its lack of a function for calculating (small) integer powers. GSL provides some simple functions to fill this gap. For reasons of efficiency, these functions do not check for overflow or underflow conditions. -- Function: double gsl_pow_int (double X, int N) -- Function: double gsl_pow_uint (double X, unsigned int N) These routines computes the power x^n for integer N. The power is computed efficiently--for example, x^8 is computed as ((x^2)^2)^2, requiring only 3 multiplications. A version of this function which also computes the numerical error in the result is available as 'gsl_sf_pow_int_e'. -- Function: double gsl_pow_2 (const double X) -- Function: double gsl_pow_3 (const double X) -- Function: double gsl_pow_4 (const double X) -- Function: double gsl_pow_5 (const double X) -- Function: double gsl_pow_6 (const double X) -- Function: double gsl_pow_7 (const double X) -- Function: double gsl_pow_8 (const double X) -- Function: double gsl_pow_9 (const double X) These functions can be used to compute small integer powers x^2, x^3, etc. efficiently. The functions will be inlined when 'HAVE_INLINE' is defined, so that use of these functions should be as efficient as explicitly writing the corresponding product expression. #include double y = gsl_pow_4 (3.141) /* compute 3.141**4 */  File: gsl-ref.info, Node: Testing the Sign of Numbers, Next: Testing for Odd and Even Numbers, Prev: Small integer powers, Up: Mathematical Functions 4.5 Testing the Sign of Numbers =============================== -- Macro: GSL_SIGN (x) This macro returns the sign of X. It is defined as '((x) >= 0 ? 1 : -1)'. Note that with this definition the sign of zero is positive (regardless of its IEEE sign bit).  File: gsl-ref.info, Node: Testing for Odd and Even Numbers, Next: Maximum and Minimum functions, Prev: Testing the Sign of Numbers, Up: Mathematical Functions 4.6 Testing for Odd and Even Numbers ==================================== -- Macro: GSL_IS_ODD (n) This macro evaluates to 1 if N is odd and 0 if N is even. The argument N must be of integer type. -- Macro: GSL_IS_EVEN (n) This macro is the opposite of 'GSL_IS_ODD(n)'. It evaluates to 1 if N is even and 0 if N is odd. The argument N must be of integer type.  File: gsl-ref.info, Node: Maximum and Minimum functions, Next: Approximate Comparison of Floating Point Numbers, Prev: Testing for Odd and Even Numbers, Up: Mathematical Functions 4.7 Maximum and Minimum functions ================================= Note that the following macros perform multiple evaluations of their arguments, so they should not be used with arguments that have side effects (such as a call to a random number generator). -- Macro: GSL_MAX (a, b) This macro returns the maximum of A and B. It is defined as '((a) > (b) ? (a):(b))'. -- Macro: GSL_MIN (a, b) This macro returns the minimum of A and B. It is defined as '((a) < (b) ? (a):(b))'. -- Function: extern inline double GSL_MAX_DBL (double A, double B) This function returns the maximum of the double precision numbers A and B using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro 'GSL_MAX' will be automatically substituted. -- Function: extern inline double GSL_MIN_DBL (double A, double B) This function returns the minimum of the double precision numbers A and B using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro 'GSL_MIN' will be automatically substituted. -- Function: extern inline int GSL_MAX_INT (int A, int B) -- Function: extern inline int GSL_MIN_INT (int A, int B) These functions return the maximum or minimum of the integers A and B using an inline function. On platforms where inline functions are not available the macros 'GSL_MAX' or 'GSL_MIN' will be automatically substituted. -- Function: extern inline long double GSL_MAX_LDBL (long double A, long double B) -- Function: extern inline long double GSL_MIN_LDBL (long double A, long double B) These functions return the maximum or minimum of the long doubles A and B using an inline function. On platforms where inline functions are not available the macros 'GSL_MAX' or 'GSL_MIN' will be automatically substituted.  File: gsl-ref.info, Node: Approximate Comparison of Floating Point Numbers, Prev: Maximum and Minimum functions, Up: Mathematical Functions 4.8 Approximate Comparison of Floating Point Numbers ==================================================== It is sometimes useful to be able to compare two floating point numbers approximately, to allow for rounding and truncation errors. The following function implements the approximate floating-point comparison algorithm proposed by D.E. Knuth in Section 4.2.2 of 'Seminumerical Algorithms' (3rd edition). -- Function: int gsl_fcmp (double X, double Y, double EPSILON) This function determines whether x and y are approximately equal to a relative accuracy EPSILON. The relative accuracy is measured using an interval of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2 exponent of x and y as computed by the function 'frexp'. If x and y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if x < y, the function returns -1, or if x > y, the function returns +1. Note that x and y are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package 'fcmp' by T.C. Belding.  File: gsl-ref.info, Node: Complex Numbers, Next: Polynomials, Prev: Mathematical Functions, Up: Top 5 Complex Numbers ***************** The functions described in this chapter provide support for complex numbers. The algorithms take care to avoid unnecessary intermediate underflows and overflows, allowing the functions to be evaluated over as much of the complex plane as possible. For multiple-valued functions the branch cuts have been chosen to follow the conventions of Abramowitz and Stegun in the 'Handbook of Mathematical Functions'. The functions return principal values which are the same as those in GNU Calc, which in turn are the same as those in 'Common Lisp, The Language (Second Edition)'(1) and the HP-28/48 series of calculators. The complex types are defined in the header file 'gsl_complex.h', while the corresponding complex functions and arithmetic operations are defined in 'gsl_complex_math.h'. * Menu: * Representation of complex numbers:: * Properties of complex numbers:: * Complex arithmetic operators:: * Elementary Complex Functions:: * Complex Trigonometric Functions:: * Inverse Complex Trigonometric Functions:: * Complex Hyperbolic Functions:: * Inverse Complex Hyperbolic Functions:: * Complex Number References and Further Reading:: ---------- Footnotes ---------- (1) Note that the first edition uses different definitions.  File: gsl-ref.info, Node: Representation of complex numbers, Next: Properties of complex numbers, Up: Complex Numbers 5.1 Representation of complex numbers ===================================== Complex numbers are represented using the type 'gsl_complex'. The internal representation of this type may vary across platforms and should not be accessed directly. The functions and macros described below allow complex numbers to be manipulated in a portable way. For reference, the default form of the 'gsl_complex' type is given by the following struct, typedef struct { double dat[2]; } gsl_complex; The real and imaginary part are stored in contiguous elements of a two element array. This eliminates any padding between the real and imaginary parts, 'dat[0]' and 'dat[1]', allowing the struct to be mapped correctly onto packed complex arrays. -- Function: gsl_complex gsl_complex_rect (double X, double Y) This function uses the rectangular Cartesian components (X,Y) to return the complex number z = x + i y. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: gsl_complex gsl_complex_polar (double R, double THETA) This function returns the complex number z = r \exp(i \theta) = r (\cos(\theta) + i \sin(\theta)) from the polar representation (R,THETA). -- Macro: GSL_REAL (Z) -- Macro: GSL_IMAG (Z) These macros return the real and imaginary parts of the complex number Z. -- Macro: GSL_SET_COMPLEX (ZP, X, Y) This macro uses the Cartesian components (X,Y) to set the real and imaginary parts of the complex number pointed to by ZP. For example, GSL_SET_COMPLEX(&z, 3, 4) sets Z to be 3 + 4i. -- Macro: GSL_SET_REAL (ZP,X) -- Macro: GSL_SET_IMAG (ZP,Y) These macros allow the real and imaginary parts of the complex number pointed to by ZP to be set independently.  File: gsl-ref.info, Node: Properties of complex numbers, Next: Complex arithmetic operators, Prev: Representation of complex numbers, Up: Complex Numbers 5.2 Properties of complex numbers ================================= -- Function: double gsl_complex_arg (gsl_complex Z) This function returns the argument of the complex number Z, \arg(z), where -\pi < \arg(z) <= \pi. -- Function: double gsl_complex_abs (gsl_complex Z) This function returns the magnitude of the complex number Z, |z|. -- Function: double gsl_complex_abs2 (gsl_complex Z) This function returns the squared magnitude of the complex number Z, |z|^2. -- Function: double gsl_complex_logabs (gsl_complex Z) This function returns the natural logarithm of the magnitude of the complex number Z, \log|z|. It allows an accurate evaluation of \log|z| when |z| is close to one. The direct evaluation of 'log(gsl_complex_abs(z))' would lead to a loss of precision in this case.  File: gsl-ref.info, Node: Complex arithmetic operators, Next: Elementary Complex Functions, Prev: Properties of complex numbers, Up: Complex Numbers 5.3 Complex arithmetic operators ================================ -- Function: gsl_complex gsl_complex_add (gsl_complex A, gsl_complex B) This function returns the sum of the complex numbers A and B, z=a+b. -- Function: gsl_complex gsl_complex_sub (gsl_complex A, gsl_complex B) This function returns the difference of the complex numbers A and B, z=a-b. -- Function: gsl_complex gsl_complex_mul (gsl_complex A, gsl_complex B) This function returns the product of the complex numbers A and B, z=ab. -- Function: gsl_complex gsl_complex_div (gsl_complex A, gsl_complex B) This function returns the quotient of the complex numbers A and B, z=a/b. -- Function: gsl_complex gsl_complex_add_real (gsl_complex A, double X) This function returns the sum of the complex number A and the real number X, z=a+x. -- Function: gsl_complex gsl_complex_sub_real (gsl_complex A, double X) This function returns the difference of the complex number A and the real number X, z=a-x. -- Function: gsl_complex gsl_complex_mul_real (gsl_complex A, double X) This function returns the product of the complex number A and the real number X, z=ax. -- Function: gsl_complex gsl_complex_div_real (gsl_complex A, double X) This function returns the quotient of the complex number A and the real number X, z=a/x. -- Function: gsl_complex gsl_complex_add_imag (gsl_complex A, double Y) This function returns the sum of the complex number A and the imaginary number iY, z=a+iy. -- Function: gsl_complex gsl_complex_sub_imag (gsl_complex A, double Y) This function returns the difference of the complex number A and the imaginary number iY, z=a-iy. -- Function: gsl_complex gsl_complex_mul_imag (gsl_complex A, double Y) This function returns the product of the complex number A and the imaginary number iY, z=a*(iy). -- Function: gsl_complex gsl_complex_div_imag (gsl_complex A, double Y) This function returns the quotient of the complex number A and the imaginary number iY, z=a/(iy). -- Function: gsl_complex gsl_complex_conjugate (gsl_complex Z) This function returns the complex conjugate of the complex number Z, z^* = x - i y. -- Function: gsl_complex gsl_complex_inverse (gsl_complex Z) This function returns the inverse, or reciprocal, of the complex number Z, 1/z = (x - i y)/(x^2 + y^2). -- Function: gsl_complex gsl_complex_negative (gsl_complex Z) This function returns the negative of the complex number Z, -z = (-x) + i(-y).  File: gsl-ref.info, Node: Elementary Complex Functions, Next: Complex Trigonometric Functions, Prev: Complex arithmetic operators, Up: Complex Numbers 5.4 Elementary Complex Functions ================================ -- Function: gsl_complex gsl_complex_sqrt (gsl_complex Z) This function returns the square root of the complex number Z, \sqrt z. The branch cut is the negative real axis. The result always lies in the right half of the complex plane. -- Function: gsl_complex gsl_complex_sqrt_real (double X) This function returns the complex square root of the real number X, where X may be negative. -- Function: gsl_complex gsl_complex_pow (gsl_complex Z, gsl_complex A) The function returns the complex number Z raised to the complex power A, z^a. This is computed as \exp(\log(z)*a) using complex logarithms and complex exponentials. -- Function: gsl_complex gsl_complex_pow_real (gsl_complex Z, double X) This function returns the complex number Z raised to the real power X, z^x. -- Function: gsl_complex gsl_complex_exp (gsl_complex Z) This function returns the complex exponential of the complex number Z, \exp(z). -- Function: gsl_complex gsl_complex_log (gsl_complex Z) This function returns the complex natural logarithm (base e) of the complex number Z, \log(z). The branch cut is the negative real axis. -- Function: gsl_complex gsl_complex_log10 (gsl_complex Z) This function returns the complex base-10 logarithm of the complex number Z, \log_10 (z). -- Function: gsl_complex gsl_complex_log_b (gsl_complex Z, gsl_complex B) This function returns the complex base-B logarithm of the complex number Z, \log_b(z). This quantity is computed as the ratio \log(z)/\log(b).  File: gsl-ref.info, Node: Complex Trigonometric Functions, Next: Inverse Complex Trigonometric Functions, Prev: Elementary Complex Functions, Up: Complex Numbers 5.5 Complex Trigonometric Functions =================================== -- Function: gsl_complex gsl_complex_sin (gsl_complex Z) This function returns the complex sine of the complex number Z, \sin(z) = (\exp(iz) - \exp(-iz))/(2i). -- Function: gsl_complex gsl_complex_cos (gsl_complex Z) This function returns the complex cosine of the complex number Z, \cos(z) = (\exp(iz) + \exp(-iz))/2. -- Function: gsl_complex gsl_complex_tan (gsl_complex Z) This function returns the complex tangent of the complex number Z, \tan(z) = \sin(z)/\cos(z). -- Function: gsl_complex gsl_complex_sec (gsl_complex Z) This function returns the complex secant of the complex number Z, \sec(z) = 1/\cos(z). -- Function: gsl_complex gsl_complex_csc (gsl_complex Z) This function returns the complex cosecant of the complex number Z, \csc(z) = 1/\sin(z). -- Function: gsl_complex gsl_complex_cot (gsl_complex Z) This function returns the complex cotangent of the complex number Z, \cot(z) = 1/\tan(z).  File: gsl-ref.info, Node: Inverse Complex Trigonometric Functions, Next: Complex Hyperbolic Functions, Prev: Complex Trigonometric Functions, Up: Complex Numbers 5.6 Inverse Complex Trigonometric Functions =========================================== -- Function: gsl_complex gsl_complex_arcsin (gsl_complex Z) This function returns the complex arcsine of the complex number Z, \arcsin(z). The branch cuts are on the real axis, less than -1 and greater than 1. -- Function: gsl_complex gsl_complex_arcsin_real (double Z) This function returns the complex arcsine of the real number Z, \arcsin(z). For z between -1 and 1, the function returns a real value in the range [-\pi/2,\pi/2]. For z less than -1 the result has a real part of -\pi/2 and a positive imaginary part. For z greater than 1 the result has a real part of \pi/2 and a negative imaginary part. -- Function: gsl_complex gsl_complex_arccos (gsl_complex Z) This function returns the complex arccosine of the complex number Z, \arccos(z). The branch cuts are on the real axis, less than -1 and greater than 1. -- Function: gsl_complex gsl_complex_arccos_real (double Z) This function returns the complex arccosine of the real number Z, \arccos(z). For z between -1 and 1, the function returns a real value in the range [0,\pi]. For z less than -1 the result has a real part of \pi and a negative imaginary part. For z greater than 1 the result is purely imaginary and positive. -- Function: gsl_complex gsl_complex_arctan (gsl_complex Z) This function returns the complex arctangent of the complex number Z, \arctan(z). The branch cuts are on the imaginary axis, below -i and above i. -- Function: gsl_complex gsl_complex_arcsec (gsl_complex Z) This function returns the complex arcsecant of the complex number Z, \arcsec(z) = \arccos(1/z). -- Function: gsl_complex gsl_complex_arcsec_real (double Z) This function returns the complex arcsecant of the real number Z, \arcsec(z) = \arccos(1/z). -- Function: gsl_complex gsl_complex_arccsc (gsl_complex Z) This function returns the complex arccosecant of the complex number Z, \arccsc(z) = \arcsin(1/z). -- Function: gsl_complex gsl_complex_arccsc_real (double Z) This function returns the complex arccosecant of the real number Z, \arccsc(z) = \arcsin(1/z). -- Function: gsl_complex gsl_complex_arccot (gsl_complex Z) This function returns the complex arccotangent of the complex number Z, \arccot(z) = \arctan(1/z).  File: gsl-ref.info, Node: Complex Hyperbolic Functions, Next: Inverse Complex Hyperbolic Functions, Prev: Inverse Complex Trigonometric Functions, Up: Complex Numbers 5.7 Complex Hyperbolic Functions ================================ -- Function: gsl_complex gsl_complex_sinh (gsl_complex Z) This function returns the complex hyperbolic sine of the complex number Z, \sinh(z) = (\exp(z) - \exp(-z))/2. -- Function: gsl_complex gsl_complex_cosh (gsl_complex Z) This function returns the complex hyperbolic cosine of the complex number Z, \cosh(z) = (\exp(z) + \exp(-z))/2. -- Function: gsl_complex gsl_complex_tanh (gsl_complex Z) This function returns the complex hyperbolic tangent of the complex number Z, \tanh(z) = \sinh(z)/\cosh(z). -- Function: gsl_complex gsl_complex_sech (gsl_complex Z) This function returns the complex hyperbolic secant of the complex number Z, \sech(z) = 1/\cosh(z). -- Function: gsl_complex gsl_complex_csch (gsl_complex Z) This function returns the complex hyperbolic cosecant of the complex number Z, \csch(z) = 1/\sinh(z). -- Function: gsl_complex gsl_complex_coth (gsl_complex Z) This function returns the complex hyperbolic cotangent of the complex number Z, \coth(z) = 1/\tanh(z).  File: gsl-ref.info, Node: Inverse Complex Hyperbolic Functions, Next: Complex Number References and Further Reading, Prev: Complex Hyperbolic Functions, Up: Complex Numbers 5.8 Inverse Complex Hyperbolic Functions ======================================== -- Function: gsl_complex gsl_complex_arcsinh (gsl_complex Z) This function returns the complex hyperbolic arcsine of the complex number Z, \arcsinh(z). The branch cuts are on the imaginary axis, below -i and above i. -- Function: gsl_complex gsl_complex_arccosh (gsl_complex Z) This function returns the complex hyperbolic arccosine of the complex number Z, \arccosh(z). The branch cut is on the real axis, less than 1. Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}). -- Function: gsl_complex gsl_complex_arccosh_real (double Z) This function returns the complex hyperbolic arccosine of the real number Z, \arccosh(z). -- Function: gsl_complex gsl_complex_arctanh (gsl_complex Z) This function returns the complex hyperbolic arctangent of the complex number Z, \arctanh(z). The branch cuts are on the real axis, less than -1 and greater than 1. -- Function: gsl_complex gsl_complex_arctanh_real (double Z) This function returns the complex hyperbolic arctangent of the real number Z, \arctanh(z). -- Function: gsl_complex gsl_complex_arcsech (gsl_complex Z) This function returns the complex hyperbolic arcsecant of the complex number Z, \arcsech(z) = \arccosh(1/z). -- Function: gsl_complex gsl_complex_arccsch (gsl_complex Z) This function returns the complex hyperbolic arccosecant of the complex number Z, \arccsch(z) = \arcsin(1/z). -- Function: gsl_complex gsl_complex_arccoth (gsl_complex Z) This function returns the complex hyperbolic arccotangent of the complex number Z, \arccoth(z) = \arctanh(1/z).  File: gsl-ref.info, Node: Complex Number References and Further Reading, Prev: Inverse Complex Hyperbolic Functions, Up: Complex Numbers 5.9 References and Further Reading ================================== The implementations of the elementary and trigonometric functions are based on the following papers, T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, "Implementing Complex Elementary Functions Using Exception Handling", 'ACM Transactions on Mathematical Software', Volume 20 (1994), pp 215-244, Corrigenda, p553 T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, "Implementing the complex arcsin and arccosine functions using exception handling", 'ACM Transactions on Mathematical Software', Volume 23 (1997) pp 299-335 The general formulas and details of branch cuts can be found in the following books, Abramowitz and Stegun, 'Handbook of Mathematical Functions', "Circular Functions in Terms of Real and Imaginary Parts", Formulas 4.3.55-58, "Inverse Circular Functions in Terms of Real and Imaginary Parts", Formulas 4.4.37-39, "Hyperbolic Functions in Terms of Real and Imaginary Parts", Formulas 4.5.49-52, "Inverse Hyperbolic Functions--relation to Inverse Circular Functions", Formulas 4.6.14-19. Dave Gillespie, 'Calc Manual', Free Software Foundation, ISBN 1-882114-18-3  File: gsl-ref.info, Node: Polynomials, Next: Special Functions, Prev: Complex Numbers, Up: Top 6 Polynomials ************* This chapter describes functions for evaluating and solving polynomials. There are routines for finding real and complex roots of quadratic and cubic equations using analytic methods. An iterative polynomial solver is also available for finding the roots of general polynomials with real coefficients (of any order). The functions are declared in the header file 'gsl_poly.h'. * Menu: * Polynomial Evaluation:: * Divided Difference Representation of Polynomials:: * Quadratic Equations:: * Cubic Equations:: * General Polynomial Equations:: * Roots of Polynomials Examples:: * Roots of Polynomials References and Further Reading::  File: gsl-ref.info, Node: Polynomial Evaluation, Next: Divided Difference Representation of Polynomials, Up: Polynomials 6.1 Polynomial Evaluation ========================= The functions described here evaluate the polynomial P(x) = c[0] + c[1] x + c[2] x^2 + \dots + c[len-1] x^{len-1} using Horner's method for stability. Inline versions of these functions are used when 'HAVE_INLINE' is defined. -- Function: double gsl_poly_eval (const double C[], const int LEN, const double X) This function evaluates a polynomial with real coefficients for the real variable X. -- Function: gsl_complex gsl_poly_complex_eval (const double C[], const int LEN, const gsl_complex Z) This function evaluates a polynomial with real coefficients for the complex variable Z. -- Function: gsl_complex gsl_complex_poly_complex_eval (const gsl_complex C[], const int LEN, const gsl_complex Z) This function evaluates a polynomial with complex coefficients for the complex variable Z. -- Function: int gsl_poly_eval_derivs (const double C[], const size_t LENC, const double X, double RES[], const size_t LENRES) This function evaluates a polynomial and its derivatives storing the results in the array RES of size LENRES. The output array contains the values of d^k P/d x^k for the specified value of X starting with k = 0.  File: gsl-ref.info, Node: Divided Difference Representation of Polynomials, Next: Quadratic Equations, Prev: Polynomial Evaluation, Up: Polynomials 6.2 Divided Difference Representation of Polynomials ==================================================== The functions described here manipulate polynomials stored in Newton's divided-difference representation. The use of divided-differences is described in Abramowitz & Stegun sections 25.1.4 and 25.2.26, and Burden and Faires, chapter 3, and discussed briefly below. Given a function f(x), an nth degree interpolating polynomial P_{n}(x) can be constructed which agrees with f at n+1 distinct points x_0,x_1,...,x_{n}. This polynomial can be written in a form known as Newton's divided-difference representation: P_n(x) = f(x_0) + \sum_(k=1)^n [x_0,x_1,...,x_k] (x-x_0)(x-x_1)...(x-x_(k-1)) where the divided differences [x_0,x_1,...,x_k] are defined in section 25.1.4 of Abramowitz and Stegun. Additionally, it is possible to construct an interpolating polynomial of degree 2n+1 which also matches the first derivatives of f at the points x_0,x_1,...,x_n. This is called the Hermite interpolating polynomial and is defined as H_(2n+1)(x) = f(z_0) + \sum_(k=1)^(2n+1) [z_0,z_1,...,z_k] (x-z_0)(x-z_1)...(x-z_(k-1)) where the elements of z = \{x_0,x_0,x_1,x_1,...,x_n,x_n\} are defined by z_{2k} = z_{2k+1} = x_k. The divided-differences [z_0,z_1,...,z_k] are discussed in Burden and Faires, section 3.4. -- Function: int gsl_poly_dd_init (double DD[], const double XA[], const double YA[], size_t SIZE) This function computes a divided-difference representation of the interpolating polynomial for the points (X, Y) stored in the arrays XA and YA of length SIZE. On output the divided-differences of (XA,YA) are stored in the array DD, also of length SIZE. Using the notation above, dd[k] = [x_0,x_1,...,x_k]. -- Function: double gsl_poly_dd_eval (const double DD[], const double XA[], const size_t SIZE, const double X) This function evaluates the polynomial stored in divided-difference form in the arrays DD and XA of length SIZE at the point X. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: int gsl_poly_dd_taylor (double C[], double XP, const double DD[], const double XA[], size_t SIZE, double W[]) This function converts the divided-difference representation of a polynomial to a Taylor expansion. The divided-difference representation is supplied in the arrays DD and XA of length SIZE. On output the Taylor coefficients of the polynomial expanded about the point XP are stored in the array C also of length SIZE. A workspace of length SIZE must be provided in the array W. -- Function: int gsl_poly_dd_hermite_init (double DD[], double ZA[], const double XA[], const double YA[], const double DYA[], const size_t SIZE) This function computes a divided-difference representation of the interpolating Hermite polynomial for the points (X, Y) stored in the arrays XA and YA of length SIZE. Hermite interpolation constructs polynomials which also match first derivatives dy/dx which are provided in the array DYA also of length SIZE. The first derivatives can be incorported into the usual divided-difference algorithm by forming a new dataset z = \{x_0,x_0,x_1,x_1,...\}, which is stored in the array ZA of length 2*SIZE on output. On output the divided-differences of the Hermite representation are stored in the array DD, also of length 2*SIZE. Using the notation above, dd[k] = [z_0,z_1,...,z_k]. The resulting Hermite polynomial can be evaluated by calling 'gsl_poly_dd_eval' and using ZA for the input argument XA.  File: gsl-ref.info, Node: Quadratic Equations, Next: Cubic Equations, Prev: Divided Difference Representation of Polynomials, Up: Polynomials 6.3 Quadratic Equations ======================= -- Function: int gsl_poly_solve_quadratic (double A, double B, double C, double * X0, double * X1) This function finds the real roots of the quadratic equation, a x^2 + b x + c = 0 The number of real roots (either zero, one or two) is returned, and their locations are stored in X0 and X1. If no real roots are found then X0 and X1 are not modified. If one real root is found (i.e. if a=0) then it is stored in X0. When two real roots are found they are stored in X0 and X1 in ascending order. The case of coincident roots is not considered special. For example (x-1)^2=0 will have two roots, which happen to have exactly equal values. The number of roots found depends on the sign of the discriminant b^2 - 4 a c. This will be subject to rounding and cancellation errors when computed in double precision, and will also be subject to errors if the coefficients of the polynomial are inexact. These errors may cause a discrete change in the number of roots. However, for polynomials with small integer coefficients the discriminant can always be computed exactly. -- Function: int gsl_poly_complex_solve_quadratic (double A, double B, double C, gsl_complex * Z0, gsl_complex * Z1) This function finds the complex roots of the quadratic equation, a z^2 + b z + c = 0 The number of complex roots is returned (either one or two) and the locations of the roots are stored in Z0 and Z1. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components. If only one real root is found (i.e. if a=0) then it is stored in Z0.  File: gsl-ref.info, Node: Cubic Equations, Next: General Polynomial Equations, Prev: Quadratic Equations, Up: Polynomials 6.4 Cubic Equations =================== -- Function: int gsl_poly_solve_cubic (double A, double B, double C, double * X0, double * X1, double * X2) This function finds the real roots of the cubic equation, x^3 + a x^2 + b x + c = 0 with a leading coefficient of unity. The number of real roots (either one or three) is returned, and their locations are stored in X0, X1 and X2. If one real root is found then only X0 is modified. When three real roots are found they are stored in X0, X1 and X2 in ascending order. The case of coincident roots is not considered special. For example, the equation (x-1)^3=0 will have three roots with exactly equal values. As in the quadratic case, finite precision may cause equal or closely-spaced real roots to move off the real axis into the complex plane, leading to a discrete change in the number of real roots. -- Function: int gsl_poly_complex_solve_cubic (double A, double B, double C, gsl_complex * Z0, gsl_complex * Z1, gsl_complex * Z2) This function finds the complex roots of the cubic equation, z^3 + a z^2 + b z + c = 0 The number of complex roots is returned (always three) and the locations of the roots are stored in Z0, Z1 and Z2. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components.  File: gsl-ref.info, Node: General Polynomial Equations, Next: Roots of Polynomials Examples, Prev: Cubic Equations, Up: Polynomials 6.5 General Polynomial Equations ================================ The roots of polynomial equations cannot be found analytically beyond the special cases of the quadratic, cubic and quartic equation. The algorithm described in this section uses an iterative method to find the approximate locations of roots of higher order polynomials. -- Function: gsl_poly_complex_workspace * gsl_poly_complex_workspace_alloc (size_t N) This function allocates space for a 'gsl_poly_complex_workspace' struct and a workspace suitable for solving a polynomial with N coefficients using the routine 'gsl_poly_complex_solve'. The function returns a pointer to the newly allocated 'gsl_poly_complex_workspace' if no errors were detected, and a null pointer in the case of error. -- Function: void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * W) This function frees all the memory associated with the workspace W. -- Function: int gsl_poly_complex_solve (const double * A, size_t N, gsl_poly_complex_workspace * W, gsl_complex_packed_ptr Z) This function computes the roots of the general polynomial P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} using balanced-QR reduction of the companion matrix. The parameter N specifies the length of the coefficient array. The coefficient of the highest order term must be non-zero. The function requires a workspace W of the appropriate size. The n-1 roots are returned in the packed complex array Z of length 2(n-1), alternating real and imaginary parts. The function returns 'GSL_SUCCESS' if all the roots are found. If the QR reduction does not converge, the error handler is invoked with an error code of 'GSL_EFAILED'. Note that due to finite precision, roots of higher multiplicity are returned as a cluster of simple roots with reduced accuracy. The solution of polynomials with higher-order roots requires specialized algorithms that take the multiplicity structure into account (see e.g. Z. Zeng, Algorithm 835, ACM Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp 218-236).  File: gsl-ref.info, Node: Roots of Polynomials Examples, Next: Roots of Polynomials References and Further Reading, Prev: General Polynomial Equations, Up: Polynomials 6.6 Examples ============ To demonstrate the use of the general polynomial solver we will take the polynomial P(x) = x^5 - 1 which has the following roots, 1, e^{2\pi i /5}, e^{4\pi i /5}, e^{6\pi i /5}, e^{8\pi i /5} The following program will find these roots. #include #include int main (void) { int i; /* coefficients of P(x) = -1 + x^5 */ double a[6] = { -1, 0, 0, 0, 0, 1 }; double z[10]; gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (6); gsl_poly_complex_solve (a, 6, w, z); gsl_poly_complex_workspace_free (w); for (i = 0; i < 5; i++) { printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]); } return 0; } The output of the program is, $ ./a.out z0 = -0.809016994374947451 +0.587785252292473137 z1 = -0.809016994374947451 -0.587785252292473137 z2 = +0.309016994374947451 +0.951056516295153642 z3 = +0.309016994374947451 -0.951056516295153642 z4 = +1.000000000000000000 +0.000000000000000000 which agrees with the analytic result, z_n = \exp(2 \pi n i/5).  File: gsl-ref.info, Node: Roots of Polynomials References and Further Reading, Prev: Roots of Polynomials Examples, Up: Polynomials 6.7 References and Further Reading ================================== The balanced-QR method and its error analysis are described in the following papers, R.S. Martin, G. Peters and J.H. Wilkinson, "The QR Algorithm for Real Hessenberg Matrices", 'Numerische Mathematik', 14 (1970), 219-231. B.N. Parlett and C. Reinsch, "Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors", 'Numerische Mathematik', 13 (1969), 293-304. A. Edelman and H. Murakami, "Polynomial roots from companion matrix eigenvalues", 'Mathematics of Computation', Vol. 64, No. 210 (1995), 763-776. The formulas for divided differences are given in the following texts, Abramowitz and Stegun, 'Handbook of Mathematical Functions', Sections 25.1.4 and 25.2.26. R. L. Burden and J. D. Faires, 'Numerical Analysis', 9th edition, ISBN 0-538-73351-9, 2011.  File: gsl-ref.info, Node: Special Functions, Next: Vectors and Matrices, Prev: Polynomials, Up: Top 7 Special Functions ******************* This chapter describes the GSL special function library. The library includes routines for calculating the values of Airy functions, Bessel functions, Clausen functions, Coulomb wave functions, Coupling coefficients, the Dawson function, Debye functions, Dilogarithms, Elliptic integrals, Jacobi elliptic functions, Error functions, Exponential integrals, Fermi-Dirac functions, Gamma functions, Gegenbauer functions, Hypergeometric functions, Laguerre functions, Legendre functions and Spherical Harmonics, the Psi (Digamma) Function, Synchrotron functions, Transport functions, Trigonometric functions and Zeta functions. Each routine also computes an estimate of the numerical error in the calculated value of the function. The functions in this chapter are declared in individual header files, such as 'gsl_sf_airy.h', 'gsl_sf_bessel.h', etc. The complete set of header files can be included using the file 'gsl_sf.h'. * Menu: * Special Function Usage:: * The gsl_sf_result struct:: * Special Function Modes:: * Airy Functions and Derivatives:: * Bessel Functions:: * Clausen Functions:: * Coulomb Functions:: * Coupling Coefficients:: * Dawson Function:: * Debye Functions:: * Dilogarithm:: * Elementary Operations:: * Elliptic Integrals:: * Elliptic Functions (Jacobi):: * Error Functions:: * Exponential Functions:: * Exponential Integrals:: * Fermi-Dirac Function:: * Gamma and Beta Functions:: * Gegenbauer Functions:: * Hypergeometric Functions:: * Laguerre Functions:: * Lambert W Functions:: * Legendre Functions and Spherical Harmonics:: * Logarithm and Related Functions:: * Mathieu Functions:: * Power Function:: * Psi (Digamma) Function:: * Synchrotron Functions:: * Transport Functions:: * Trigonometric Functions:: * Zeta Functions:: * Special Functions Examples:: * Special Functions References and Further Reading::  File: gsl-ref.info, Node: Special Function Usage, Next: The gsl_sf_result struct, Up: Special Functions 7.1 Usage ========= The special functions are available in two calling conventions, a "natural form" which returns the numerical value of the function and an "error-handling form" which returns an error code. The two types of function provide alternative ways of accessing the same underlying code. The "natural form" returns only the value of the function and can be used directly in mathematical expressions. For example, the following function call will compute the value of the Bessel function J_0(x), double y = gsl_sf_bessel_J0 (x); There is no way to access an error code or to estimate the error using this method. To allow access to this information the alternative error-handling form stores the value and error in a modifiable argument, gsl_sf_result result; int status = gsl_sf_bessel_J0_e (x, &result); The error-handling functions have the suffix '_e'. The returned status value indicates error conditions such as overflow, underflow or loss of precision. If there are no errors the error-handling functions return 'GSL_SUCCESS'.  File: gsl-ref.info, Node: The gsl_sf_result struct, Next: Special Function Modes, Prev: Special Function Usage, Up: Special Functions 7.2 The gsl_sf_result struct ============================ The error handling form of the special functions always calculate an error estimate along with the value of the result. Therefore, structures are provided for amalgamating a value and error estimate. These structures are declared in the header file 'gsl_sf_result.h'. The 'gsl_sf_result' struct contains value and error fields. typedef struct { double val; double err; } gsl_sf_result; The field VAL contains the value and the field ERR contains an estimate of the absolute error in the value. In some cases, an overflow or underflow can be detected and handled by a function. In this case, it may be possible to return a scaling exponent as well as an error/value pair in order to save the result from exceeding the dynamic range of the built-in types. The 'gsl_sf_result_e10' struct contains value and error fields as well as an exponent field such that the actual result is obtained as 'result * 10^(e10)'. typedef struct { double val; double err; int e10; } gsl_sf_result_e10;  File: gsl-ref.info, Node: Special Function Modes, Next: Airy Functions and Derivatives, Prev: The gsl_sf_result struct, Up: Special Functions 7.3 Modes ========= The goal of the library is to achieve double precision accuracy wherever possible. However the cost of evaluating some special functions to double precision can be significant, particularly where very high order terms are required. In these cases a 'mode' argument allows the accuracy of the function to be reduced in order to improve performance. The following precision levels are available for the mode argument, 'GSL_PREC_DOUBLE' Double-precision, a relative accuracy of approximately 2 * 10^-16. 'GSL_PREC_SINGLE' Single-precision, a relative accuracy of approximately 10^-7. 'GSL_PREC_APPROX' Approximate values, a relative accuracy of approximately 5 * 10^-4. The approximate mode provides the fastest evaluation at the lowest accuracy.  File: gsl-ref.info, Node: Airy Functions and Derivatives, Next: Bessel Functions, Prev: Special Function Modes, Up: Special Functions 7.4 Airy Functions and Derivatives ================================== The Airy functions Ai(x) and Bi(x) are defined by the integral representations, Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3 + xt) + \sin((1/3) t^3 + xt)) dt For further information see Abramowitz & Stegun, Section 10.4. The Airy functions are defined in the header file 'gsl_sf_airy.h'. * Menu: * Airy Functions:: * Derivatives of Airy Functions:: * Zeros of Airy Functions:: * Zeros of Derivatives of Airy Functions::  File: gsl-ref.info, Node: Airy Functions, Next: Derivatives of Airy Functions, Up: Airy Functions and Derivatives 7.4.1 Airy Functions -------------------- -- Function: double gsl_sf_airy_Ai (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Ai_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the Airy function Ai(x) with an accuracy specified by MODE. -- Function: double gsl_sf_airy_Bi (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Bi_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the Airy function Bi(x) with an accuracy specified by MODE. -- Function: double gsl_sf_airy_Ai_scaled (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Ai_scaled_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute a scaled version of the Airy function S_A(x) Ai(x). For x>0 the scaling factor S_A(x) is \exp(+(2/3) x^(3/2)), and is 1 for x<0. -- Function: double gsl_sf_airy_Bi_scaled (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Bi_scaled_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute a scaled version of the Airy function S_B(x) Bi(x). For x>0 the scaling factor S_B(x) is exp(-(2/3) x^(3/2)), and is 1 for x<0.  File: gsl-ref.info, Node: Derivatives of Airy Functions, Next: Zeros of Airy Functions, Prev: Airy Functions, Up: Airy Functions and Derivatives 7.4.2 Derivatives of Airy Functions ----------------------------------- -- Function: double gsl_sf_airy_Ai_deriv (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Ai_deriv_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the Airy function derivative Ai'(x) with an accuracy specified by MODE. -- Function: double gsl_sf_airy_Bi_deriv (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Bi_deriv_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the Airy function derivative Bi'(x) with an accuracy specified by MODE. -- Function: double gsl_sf_airy_Ai_deriv_scaled (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Ai_deriv_scaled_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the scaled Airy function derivative S_A(x) Ai'(x). For x>0 the scaling factor S_A(x) is \exp(+(2/3) x^(3/2)), and is 1 for x<0. -- Function: double gsl_sf_airy_Bi_deriv_scaled (double X, gsl_mode_t MODE) -- Function: int gsl_sf_airy_Bi_deriv_scaled_e (double X, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the scaled Airy function derivative S_B(x) Bi'(x). For x>0 the scaling factor S_B(x) is exp(-(2/3) x^(3/2)), and is 1 for x<0.  File: gsl-ref.info, Node: Zeros of Airy Functions, Next: Zeros of Derivatives of Airy Functions, Prev: Derivatives of Airy Functions, Up: Airy Functions and Derivatives 7.4.3 Zeros of Airy Functions ----------------------------- -- Function: double gsl_sf_airy_zero_Ai (unsigned int S) -- Function: int gsl_sf_airy_zero_Ai_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th zero of the Airy function Ai(x). -- Function: double gsl_sf_airy_zero_Bi (unsigned int S) -- Function: int gsl_sf_airy_zero_Bi_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th zero of the Airy function Bi(x).  File: gsl-ref.info, Node: Zeros of Derivatives of Airy Functions, Prev: Zeros of Airy Functions, Up: Airy Functions and Derivatives 7.4.4 Zeros of Derivatives of Airy Functions -------------------------------------------- -- Function: double gsl_sf_airy_zero_Ai_deriv (unsigned int S) -- Function: int gsl_sf_airy_zero_Ai_deriv_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th zero of the Airy function derivative Ai'(x). -- Function: double gsl_sf_airy_zero_Bi_deriv (unsigned int S) -- Function: int gsl_sf_airy_zero_Bi_deriv_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th zero of the Airy function derivative Bi'(x).  File: gsl-ref.info, Node: Bessel Functions, Next: Clausen Functions, Prev: Airy Functions and Derivatives, Up: Special Functions 7.5 Bessel Functions ==================== The routines described in this section compute the Cylindrical Bessel functions J_n(x), Y_n(x), Modified cylindrical Bessel functions I_n(x), K_n(x), Spherical Bessel functions j_l(x), y_l(x), and Modified Spherical Bessel functions i_l(x), k_l(x). For more information see Abramowitz & Stegun, Chapters 9 and 10. The Bessel functions are defined in the header file 'gsl_sf_bessel.h'. * Menu: * Regular Cylindrical Bessel Functions:: * Irregular Cylindrical Bessel Functions:: * Regular Modified Cylindrical Bessel Functions:: * Irregular Modified Cylindrical Bessel Functions:: * Regular Spherical Bessel Functions:: * Irregular Spherical Bessel Functions:: * Regular Modified Spherical Bessel Functions:: * Irregular Modified Spherical Bessel Functions:: * Regular Bessel Function - Fractional Order:: * Irregular Bessel Functions - Fractional Order:: * Regular Modified Bessel Functions - Fractional Order:: * Irregular Modified Bessel Functions - Fractional Order:: * Zeros of Regular Bessel Functions::  File: gsl-ref.info, Node: Regular Cylindrical Bessel Functions, Next: Irregular Cylindrical Bessel Functions, Up: Bessel Functions 7.5.1 Regular Cylindrical Bessel Functions ------------------------------------------ -- Function: double gsl_sf_bessel_J0 (double X) -- Function: int gsl_sf_bessel_J0_e (double X, gsl_sf_result * RESULT) These routines compute the regular cylindrical Bessel function of zeroth order, J_0(x). -- Function: double gsl_sf_bessel_J1 (double X) -- Function: int gsl_sf_bessel_J1_e (double X, gsl_sf_result * RESULT) These routines compute the regular cylindrical Bessel function of first order, J_1(x). -- Function: double gsl_sf_bessel_Jn (int N, double X) -- Function: int gsl_sf_bessel_Jn_e (int N, double X, gsl_sf_result * RESULT) These routines compute the regular cylindrical Bessel function of order N, J_n(x). -- Function: int gsl_sf_bessel_Jn_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the regular cylindrical Bessel functions J_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Irregular Cylindrical Bessel Functions, Next: Regular Modified Cylindrical Bessel Functions, Prev: Regular Cylindrical Bessel Functions, Up: Bessel Functions 7.5.2 Irregular Cylindrical Bessel Functions -------------------------------------------- -- Function: double gsl_sf_bessel_Y0 (double X) -- Function: int gsl_sf_bessel_Y0_e (double X, gsl_sf_result * RESULT) These routines compute the irregular cylindrical Bessel function of zeroth order, Y_0(x), for x>0. -- Function: double gsl_sf_bessel_Y1 (double X) -- Function: int gsl_sf_bessel_Y1_e (double X, gsl_sf_result * RESULT) These routines compute the irregular cylindrical Bessel function of first order, Y_1(x), for x>0. -- Function: double gsl_sf_bessel_Yn (int N, double X) -- Function: int gsl_sf_bessel_Yn_e (int N, double X, gsl_sf_result * RESULT) These routines compute the irregular cylindrical Bessel function of order N, Y_n(x), for x>0. -- Function: int gsl_sf_bessel_Yn_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the irregular cylindrical Bessel functions Y_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The domain of the function is x>0. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Regular Modified Cylindrical Bessel Functions, Next: Irregular Modified Cylindrical Bessel Functions, Prev: Irregular Cylindrical Bessel Functions, Up: Bessel Functions 7.5.3 Regular Modified Cylindrical Bessel Functions --------------------------------------------------- -- Function: double gsl_sf_bessel_I0 (double X) -- Function: int gsl_sf_bessel_I0_e (double X, gsl_sf_result * RESULT) These routines compute the regular modified cylindrical Bessel function of zeroth order, I_0(x). -- Function: double gsl_sf_bessel_I1 (double X) -- Function: int gsl_sf_bessel_I1_e (double X, gsl_sf_result * RESULT) These routines compute the regular modified cylindrical Bessel function of first order, I_1(x). -- Function: double gsl_sf_bessel_In (int N, double X) -- Function: int gsl_sf_bessel_In_e (int N, double X, gsl_sf_result * RESULT) These routines compute the regular modified cylindrical Bessel function of order N, I_n(x). -- Function: int gsl_sf_bessel_In_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the regular modified cylindrical Bessel functions I_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The start of the range NMIN must be positive or zero. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. -- Function: double gsl_sf_bessel_I0_scaled (double X) -- Function: int gsl_sf_bessel_I0_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified cylindrical Bessel function of zeroth order \exp(-|x|) I_0(x). -- Function: double gsl_sf_bessel_I1_scaled (double X) -- Function: int gsl_sf_bessel_I1_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified cylindrical Bessel function of first order \exp(-|x|) I_1(x). -- Function: double gsl_sf_bessel_In_scaled (int N, double X) -- Function: int gsl_sf_bessel_In_scaled_e (int N, double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified cylindrical Bessel function of order N, \exp(-|x|) I_n(x) -- Function: int gsl_sf_bessel_In_scaled_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the scaled regular cylindrical Bessel functions \exp(-|x|) I_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The start of the range NMIN must be positive or zero. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Irregular Modified Cylindrical Bessel Functions, Next: Regular Spherical Bessel Functions, Prev: Regular Modified Cylindrical Bessel Functions, Up: Bessel Functions 7.5.4 Irregular Modified Cylindrical Bessel Functions ----------------------------------------------------- -- Function: double gsl_sf_bessel_K0 (double X) -- Function: int gsl_sf_bessel_K0_e (double X, gsl_sf_result * RESULT) These routines compute the irregular modified cylindrical Bessel function of zeroth order, K_0(x), for x > 0. -- Function: double gsl_sf_bessel_K1 (double X) -- Function: int gsl_sf_bessel_K1_e (double X, gsl_sf_result * RESULT) These routines compute the irregular modified cylindrical Bessel function of first order, K_1(x), for x > 0. -- Function: double gsl_sf_bessel_Kn (int N, double X) -- Function: int gsl_sf_bessel_Kn_e (int N, double X, gsl_sf_result * RESULT) These routines compute the irregular modified cylindrical Bessel function of order N, K_n(x), for x > 0. -- Function: int gsl_sf_bessel_Kn_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the irregular modified cylindrical Bessel functions K_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The start of the range NMIN must be positive or zero. The domain of the function is x>0. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. -- Function: double gsl_sf_bessel_K0_scaled (double X) -- Function: int gsl_sf_bessel_K0_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified cylindrical Bessel function of zeroth order \exp(x) K_0(x) for x>0. -- Function: double gsl_sf_bessel_K1_scaled (double X) -- Function: int gsl_sf_bessel_K1_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified cylindrical Bessel function of first order \exp(x) K_1(x) for x>0. -- Function: double gsl_sf_bessel_Kn_scaled (int N, double X) -- Function: int gsl_sf_bessel_Kn_scaled_e (int N, double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified cylindrical Bessel function of order N, \exp(x) K_n(x), for x>0. -- Function: int gsl_sf_bessel_Kn_scaled_array (int NMIN, int NMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the scaled irregular cylindrical Bessel functions \exp(x) K_n(x) for n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY. The start of the range NMIN must be positive or zero. The domain of the function is x>0. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Regular Spherical Bessel Functions, Next: Irregular Spherical Bessel Functions, Prev: Irregular Modified Cylindrical Bessel Functions, Up: Bessel Functions 7.5.5 Regular Spherical Bessel Functions ---------------------------------------- -- Function: double gsl_sf_bessel_j0 (double X) -- Function: int gsl_sf_bessel_j0_e (double X, gsl_sf_result * RESULT) These routines compute the regular spherical Bessel function of zeroth order, j_0(x) = \sin(x)/x. -- Function: double gsl_sf_bessel_j1 (double X) -- Function: int gsl_sf_bessel_j1_e (double X, gsl_sf_result * RESULT) These routines compute the regular spherical Bessel function of first order, j_1(x) = (\sin(x)/x - \cos(x))/x. -- Function: double gsl_sf_bessel_j2 (double X) -- Function: int gsl_sf_bessel_j2_e (double X, gsl_sf_result * RESULT) These routines compute the regular spherical Bessel function of second order, j_2(x) = ((3/x^2 - 1)\sin(x) - 3\cos(x)/x)/x. -- Function: double gsl_sf_bessel_jl (int L, double X) -- Function: int gsl_sf_bessel_jl_e (int L, double X, gsl_sf_result * RESULT) These routines compute the regular spherical Bessel function of order L, j_l(x), for l >= 0 and x >= 0. -- Function: int gsl_sf_bessel_jl_array (int LMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the regular spherical Bessel functions j_l(x) for l from 0 to LMAX inclusive for lmax >= 0 and x >= 0, storing the results in the array RESULT_ARRAY. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. -- Function: int gsl_sf_bessel_jl_steed_array (int LMAX, double X, double * RESULT_ARRAY) This routine uses Steed's method to compute the values of the regular spherical Bessel functions j_l(x) for l from 0 to LMAX inclusive for lmax >= 0 and x >= 0, storing the results in the array RESULT_ARRAY. The Steed/Barnett algorithm is described in 'Comp. Phys. Comm.' 21, 297 (1981). Steed's method is more stable than the recurrence used in the other functions but is also slower.  File: gsl-ref.info, Node: Irregular Spherical Bessel Functions, Next: Regular Modified Spherical Bessel Functions, Prev: Regular Spherical Bessel Functions, Up: Bessel Functions 7.5.6 Irregular Spherical Bessel Functions ------------------------------------------ -- Function: double gsl_sf_bessel_y0 (double X) -- Function: int gsl_sf_bessel_y0_e (double X, gsl_sf_result * RESULT) These routines compute the irregular spherical Bessel function of zeroth order, y_0(x) = -\cos(x)/x. -- Function: double gsl_sf_bessel_y1 (double X) -- Function: int gsl_sf_bessel_y1_e (double X, gsl_sf_result * RESULT) These routines compute the irregular spherical Bessel function of first order, y_1(x) = -(\cos(x)/x + \sin(x))/x. -- Function: double gsl_sf_bessel_y2 (double X) -- Function: int gsl_sf_bessel_y2_e (double X, gsl_sf_result * RESULT) These routines compute the irregular spherical Bessel function of second order, y_2(x) = (-3/x^3 + 1/x)\cos(x) - (3/x^2)\sin(x). -- Function: double gsl_sf_bessel_yl (int L, double X) -- Function: int gsl_sf_bessel_yl_e (int L, double X, gsl_sf_result * RESULT) These routines compute the irregular spherical Bessel function of order L, y_l(x), for l >= 0. -- Function: int gsl_sf_bessel_yl_array (int LMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the irregular spherical Bessel functions y_l(x) for l from 0 to LMAX inclusive for lmax >= 0, storing the results in the array RESULT_ARRAY. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Regular Modified Spherical Bessel Functions, Next: Irregular Modified Spherical Bessel Functions, Prev: Irregular Spherical Bessel Functions, Up: Bessel Functions 7.5.7 Regular Modified Spherical Bessel Functions ------------------------------------------------- The regular modified spherical Bessel functions i_l(x) are related to the modified Bessel functions of fractional order, i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x) -- Function: double gsl_sf_bessel_i0_scaled (double X) -- Function: int gsl_sf_bessel_i0_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified spherical Bessel function of zeroth order, \exp(-|x|) i_0(x). -- Function: double gsl_sf_bessel_i1_scaled (double X) -- Function: int gsl_sf_bessel_i1_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified spherical Bessel function of first order, \exp(-|x|) i_1(x). -- Function: double gsl_sf_bessel_i2_scaled (double X) -- Function: int gsl_sf_bessel_i2_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified spherical Bessel function of second order, \exp(-|x|) i_2(x) -- Function: double gsl_sf_bessel_il_scaled (int L, double X) -- Function: int gsl_sf_bessel_il_scaled_e (int L, double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified spherical Bessel function of order L, \exp(-|x|) i_l(x) -- Function: int gsl_sf_bessel_il_scaled_array (int LMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the scaled regular modified cylindrical Bessel functions \exp(-|x|) i_l(x) for l from 0 to LMAX inclusive for lmax >= 0, storing the results in the array RESULT_ARRAY. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Irregular Modified Spherical Bessel Functions, Next: Regular Bessel Function - Fractional Order, Prev: Regular Modified Spherical Bessel Functions, Up: Bessel Functions 7.5.8 Irregular Modified Spherical Bessel Functions --------------------------------------------------- The irregular modified spherical Bessel functions k_l(x) are related to the irregular modified Bessel functions of fractional order, k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x). -- Function: double gsl_sf_bessel_k0_scaled (double X) -- Function: int gsl_sf_bessel_k0_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified spherical Bessel function of zeroth order, \exp(x) k_0(x), for x>0. -- Function: double gsl_sf_bessel_k1_scaled (double X) -- Function: int gsl_sf_bessel_k1_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified spherical Bessel function of first order, \exp(x) k_1(x), for x>0. -- Function: double gsl_sf_bessel_k2_scaled (double X) -- Function: int gsl_sf_bessel_k2_scaled_e (double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified spherical Bessel function of second order, \exp(x) k_2(x), for x>0. -- Function: double gsl_sf_bessel_kl_scaled (int L, double X) -- Function: int gsl_sf_bessel_kl_scaled_e (int L, double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified spherical Bessel function of order L, \exp(x) k_l(x), for x>0. -- Function: int gsl_sf_bessel_kl_scaled_array (int LMAX, double X, double RESULT_ARRAY[]) This routine computes the values of the scaled irregular modified spherical Bessel functions \exp(x) k_l(x) for l from 0 to LMAX inclusive for lmax >= 0 and x>0, storing the results in the array RESULT_ARRAY. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.  File: gsl-ref.info, Node: Regular Bessel Function - Fractional Order, Next: Irregular Bessel Functions - Fractional Order, Prev: Irregular Modified Spherical Bessel Functions, Up: Bessel Functions 7.5.9 Regular Bessel Function--Fractional Order ----------------------------------------------- -- Function: double gsl_sf_bessel_Jnu (double NU, double X) -- Function: int gsl_sf_bessel_Jnu_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the regular cylindrical Bessel function of fractional order \nu, J_\nu(x). -- Function: int gsl_sf_bessel_sequence_Jnu_e (double NU, gsl_mode_t MODE, size_t SIZE, double V[]) This function computes the regular cylindrical Bessel function of fractional order \nu, J_\nu(x), evaluated at a series of x values. The array V of length SIZE contains the x values. They are assumed to be strictly ordered and positive. The array is over-written with the values of J_\nu(x_i).  File: gsl-ref.info, Node: Irregular Bessel Functions - Fractional Order, Next: Regular Modified Bessel Functions - Fractional Order, Prev: Regular Bessel Function - Fractional Order, Up: Bessel Functions 7.5.10 Irregular Bessel Functions--Fractional Order --------------------------------------------------- -- Function: double gsl_sf_bessel_Ynu (double NU, double X) -- Function: int gsl_sf_bessel_Ynu_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the irregular cylindrical Bessel function of fractional order \nu, Y_\nu(x).  File: gsl-ref.info, Node: Regular Modified Bessel Functions - Fractional Order, Next: Irregular Modified Bessel Functions - Fractional Order, Prev: Irregular Bessel Functions - Fractional Order, Up: Bessel Functions 7.5.11 Regular Modified Bessel Functions--Fractional Order ---------------------------------------------------------- -- Function: double gsl_sf_bessel_Inu (double NU, double X) -- Function: int gsl_sf_bessel_Inu_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the regular modified Bessel function of fractional order \nu, I_\nu(x) for x>0, \nu>0. -- Function: double gsl_sf_bessel_Inu_scaled (double NU, double X) -- Function: int gsl_sf_bessel_Inu_scaled_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the scaled regular modified Bessel function of fractional order \nu, \exp(-|x|)I_\nu(x) for x>0, \nu>0.  File: gsl-ref.info, Node: Irregular Modified Bessel Functions - Fractional Order, Next: Zeros of Regular Bessel Functions, Prev: Regular Modified Bessel Functions - Fractional Order, Up: Bessel Functions 7.5.12 Irregular Modified Bessel Functions--Fractional Order ------------------------------------------------------------ -- Function: double gsl_sf_bessel_Knu (double NU, double X) -- Function: int gsl_sf_bessel_Knu_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the irregular modified Bessel function of fractional order \nu, K_\nu(x) for x>0, \nu>0. -- Function: double gsl_sf_bessel_lnKnu (double NU, double X) -- Function: int gsl_sf_bessel_lnKnu_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the logarithm of the irregular modified Bessel function of fractional order \nu, \ln(K_\nu(x)) for x>0, \nu>0. -- Function: double gsl_sf_bessel_Knu_scaled (double NU, double X) -- Function: int gsl_sf_bessel_Knu_scaled_e (double NU, double X, gsl_sf_result * RESULT) These routines compute the scaled irregular modified Bessel function of fractional order \nu, \exp(+|x|) K_\nu(x) for x>0, \nu>0.  File: gsl-ref.info, Node: Zeros of Regular Bessel Functions, Prev: Irregular Modified Bessel Functions - Fractional Order, Up: Bessel Functions 7.5.13 Zeros of Regular Bessel Functions ---------------------------------------- -- Function: double gsl_sf_bessel_zero_J0 (unsigned int S) -- Function: int gsl_sf_bessel_zero_J0_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th positive zero of the Bessel function J_0(x). -- Function: double gsl_sf_bessel_zero_J1 (unsigned int S) -- Function: int gsl_sf_bessel_zero_J1_e (unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th positive zero of the Bessel function J_1(x). -- Function: double gsl_sf_bessel_zero_Jnu (double NU, unsigned int S) -- Function: int gsl_sf_bessel_zero_Jnu_e (double NU, unsigned int S, gsl_sf_result * RESULT) These routines compute the location of the S-th positive zero of the Bessel function J_\nu(x). The current implementation does not support negative values of NU.  File: gsl-ref.info, Node: Clausen Functions, Next: Coulomb Functions, Prev: Bessel Functions, Up: Special Functions 7.6 Clausen Functions ===================== The Clausen function is defined by the following integral, Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2)) It is related to the dilogarithm by Cl_2(\theta) = \Im Li_2(\exp(i\theta)). The Clausen functions are declared in the header file 'gsl_sf_clausen.h'. -- Function: double gsl_sf_clausen (double X) -- Function: int gsl_sf_clausen_e (double X, gsl_sf_result * RESULT) These routines compute the Clausen integral Cl_2(x).  File: gsl-ref.info, Node: Coulomb Functions, Next: Coupling Coefficients, Prev: Clausen Functions, Up: Special Functions 7.7 Coulomb Functions ===================== The prototypes of the Coulomb functions are declared in the header file 'gsl_sf_coulomb.h'. Both bound state and scattering solutions are available. * Menu: * Normalized Hydrogenic Bound States:: * Coulomb Wave Functions:: * Coulomb Wave Function Normalization Constant::  File: gsl-ref.info, Node: Normalized Hydrogenic Bound States, Next: Coulomb Wave Functions, Up: Coulomb Functions 7.7.1 Normalized Hydrogenic Bound States ---------------------------------------- -- Function: double gsl_sf_hydrogenicR_1 (double Z, double R) -- Function: int gsl_sf_hydrogenicR_1_e (double Z, double R, gsl_sf_result * RESULT) These routines compute the lowest-order normalized hydrogenic bound state radial wavefunction R_1 := 2Z \sqrt{Z} \exp(-Z r). -- Function: double gsl_sf_hydrogenicR (int N, int L, double Z, double R) -- Function: int gsl_sf_hydrogenicR_e (int N, int L, double Z, double R, gsl_sf_result * RESULT) These routines compute the N-th normalized hydrogenic bound state radial wavefunction, R_n := 2 (Z^{3/2}/n^2) \sqrt{(n-l-1)!/(n+l)!} \exp(-Z r/n) (2Zr/n)^l L^{2l+1}_{n-l-1}(2Zr/n). where L^a_b(x) is the generalized Laguerre polynomial (*note Laguerre Functions::). The normalization is chosen such that the wavefunction \psi is given by \psi(n,l,r) = R_n Y_{lm}.  File: gsl-ref.info, Node: Coulomb Wave Functions, Next: Coulomb Wave Function Normalization Constant, Prev: Normalized Hydrogenic Bound States, Up: Coulomb Functions 7.7.2 Coulomb Wave Functions ---------------------------- The Coulomb wave functions F_L(\eta,x), G_L(\eta,x) are described in Abramowitz & Stegun, Chapter 14. Because there can be a large dynamic range of values for these functions, overflows are handled gracefully. If an overflow occurs, 'GSL_EOVRFLW' is signalled and exponent(s) are returned through the modifiable parameters EXP_F, EXP_G. The full solution can be reconstructed from the following relations, F_L(eta,x) = fc[k_L] * exp(exp_F) G_L(eta,x) = gc[k_L] * exp(exp_G) F_L'(eta,x) = fcp[k_L] * exp(exp_F) G_L'(eta,x) = gcp[k_L] * exp(exp_G) -- Function: int gsl_sf_coulomb_wave_FG_e (double ETA, double X, double L_F, int K, gsl_sf_result * F, gsl_sf_result * FP, gsl_sf_result * G, gsl_sf_result * GP, double * EXP_F, double * EXP_G) This function computes the Coulomb wave functions F_L(\eta,x), G_{L-k}(\eta,x) and their derivatives F'_L(\eta,x), G'_{L-k}(\eta,x) with respect to x. The parameters are restricted to L, L-k > -1/2, x > 0 and integer k. Note that L itself is not restricted to being an integer. The results are stored in the parameters F, G for the function values and FP, GP for the derivative values. If an overflow occurs, 'GSL_EOVRFLW' is returned and scaling exponents are stored in the modifiable parameters EXP_F, EXP_G. -- Function: int gsl_sf_coulomb_wave_F_array (double L_MIN, int KMAX, double ETA, double X, double FC_ARRAY[], double * F_EXPONENT) This function computes the Coulomb wave function F_L(\eta,x) for L = Lmin \dots Lmin + kmax, storing the results in FC_ARRAY. In the case of overflow the exponent is stored in F_EXPONENT. -- Function: int gsl_sf_coulomb_wave_FG_array (double L_MIN, int KMAX, double ETA, double X, double FC_ARRAY[], double GC_ARRAY[], double * F_EXPONENT, double * G_EXPONENT) This function computes the functions F_L(\eta,x), G_L(\eta,x) for L = Lmin \dots Lmin + kmax storing the results in FC_ARRAY and GC_ARRAY. In the case of overflow the exponents are stored in F_EXPONENT and G_EXPONENT. -- Function: int gsl_sf_coulomb_wave_FGp_array (double L_MIN, int KMAX, double ETA, double X, double FC_ARRAY[], double FCP_ARRAY[], double GC_ARRAY[], double GCP_ARRAY[], double * F_EXPONENT, double * G_EXPONENT) This function computes the functions F_L(\eta,x), G_L(\eta,x) and their derivatives F'_L(\eta,x), G'_L(\eta,x) for L = Lmin \dots Lmin + kmax storing the results in FC_ARRAY, GC_ARRAY, FCP_ARRAY and GCP_ARRAY. In the case of overflow the exponents are stored in F_EXPONENT and G_EXPONENT. -- Function: int gsl_sf_coulomb_wave_sphF_array (double L_MIN, int KMAX, double ETA, double X, double FC_ARRAY[], double F_EXPONENT[]) This function computes the Coulomb wave function divided by the argument F_L(\eta, x)/x for L = Lmin \dots Lmin + kmax, storing the results in FC_ARRAY. In the case of overflow the exponent is stored in F_EXPONENT. This function reduces to spherical Bessel functions in the limit \eta \to 0.  File: gsl-ref.info, Node: Coulomb Wave Function Normalization Constant, Prev: Coulomb Wave Functions, Up: Coulomb Functions 7.7.3 Coulomb Wave Function Normalization Constant -------------------------------------------------- The Coulomb wave function normalization constant is defined in Abramowitz 14.1.7. -- Function: int gsl_sf_coulomb_CL_e (double L, double ETA, gsl_sf_result * RESULT) This function computes the Coulomb wave function normalization constant C_L(\eta) for L > -1. -- Function: int gsl_sf_coulomb_CL_array (double LMIN, int KMAX, double ETA, double CL[]) This function computes the Coulomb wave function normalization constant C_L(\eta) for L = Lmin \dots Lmin + kmax, Lmin > -1.  File: gsl-ref.info, Node: Coupling Coefficients, Next: Dawson Function, Prev: Coulomb Functions, Up: Special Functions 7.8 Coupling Coefficients ========================= The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients for combined angular momentum vectors. Since the arguments of the standard coupling coefficient functions are integer or half-integer, the arguments of the following functions are, by convention, integers equal to twice the actual spin value. For information on the 3-j coefficients see Abramowitz & Stegun, Section 27.9. The functions described in this section are declared in the header file 'gsl_sf_coupling.h'. * Menu: * 3-j Symbols:: * 6-j Symbols:: * 9-j Symbols::  File: gsl-ref.info, Node: 3-j Symbols, Next: 6-j Symbols, Up: Coupling Coefficients 7.8.1 3-j Symbols ----------------- -- Function: double gsl_sf_coupling_3j (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_MA, int TWO_MB, int TWO_MC) -- Function: int gsl_sf_coupling_3j_e (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_MA, int TWO_MB, int TWO_MC, gsl_sf_result * RESULT) These routines compute the Wigner 3-j coefficient, (ja jb jc ma mb mc) where the arguments are given in half-integer units, ja = TWO_JA/2, ma = TWO_MA/2, etc.  File: gsl-ref.info, Node: 6-j Symbols, Next: 9-j Symbols, Prev: 3-j Symbols, Up: Coupling Coefficients 7.8.2 6-j Symbols ----------------- -- Function: double gsl_sf_coupling_6j (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_JD, int TWO_JE, int TWO_JF) -- Function: int gsl_sf_coupling_6j_e (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_JD, int TWO_JE, int TWO_JF, gsl_sf_result * RESULT) These routines compute the Wigner 6-j coefficient, {ja jb jc jd je jf} where the arguments are given in half-integer units, ja = TWO_JA/2, ma = TWO_MA/2, etc.  File: gsl-ref.info, Node: 9-j Symbols, Prev: 6-j Symbols, Up: Coupling Coefficients 7.8.3 9-j Symbols ----------------- -- Function: double gsl_sf_coupling_9j (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_JD, int TWO_JE, int TWO_JF, int TWO_JG, int TWO_JH, int TWO_JI) -- Function: int gsl_sf_coupling_9j_e (int TWO_JA, int TWO_JB, int TWO_JC, int TWO_JD, int TWO_JE, int TWO_JF, int TWO_JG, int TWO_JH, int TWO_JI, gsl_sf_result * RESULT) These routines compute the Wigner 9-j coefficient, {ja jb jc jd je jf jg jh ji} where the arguments are given in half-integer units, ja = TWO_JA/2, ma = TWO_MA/2, etc.  File: gsl-ref.info, Node: Dawson Function, Next: Debye Functions, Prev: Coupling Coefficients, Up: Special Functions 7.9 Dawson Function =================== The Dawson integral is defined by \exp(-x^2) \int_0^x dt \exp(t^2). A table of Dawson's integral can be found in Abramowitz & Stegun, Table 7.5. The Dawson functions are declared in the header file 'gsl_sf_dawson.h'. -- Function: double gsl_sf_dawson (double X) -- Function: int gsl_sf_dawson_e (double X, gsl_sf_result * RESULT) These routines compute the value of Dawson's integral for X.  File: gsl-ref.info, Node: Debye Functions, Next: Dilogarithm, Prev: Dawson Function, Up: Special Functions 7.10 Debye Functions ==================== The Debye functions D_n(x) are defined by the following integral, D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1)) For further information see Abramowitz & Stegun, Section 27.1. The Debye functions are declared in the header file 'gsl_sf_debye.h'. -- Function: double gsl_sf_debye_1 (double X) -- Function: int gsl_sf_debye_1_e (double X, gsl_sf_result * RESULT) These routines compute the first-order Debye function D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1)). -- Function: double gsl_sf_debye_2 (double X) -- Function: int gsl_sf_debye_2_e (double X, gsl_sf_result * RESULT) These routines compute the second-order Debye function D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1)). -- Function: double gsl_sf_debye_3 (double X) -- Function: int gsl_sf_debye_3_e (double X, gsl_sf_result * RESULT) These routines compute the third-order Debye function D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1)). -- Function: double gsl_sf_debye_4 (double X) -- Function: int gsl_sf_debye_4_e (double X, gsl_sf_result * RESULT) These routines compute the fourth-order Debye function D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1)). -- Function: double gsl_sf_debye_5 (double X) -- Function: int gsl_sf_debye_5_e (double X, gsl_sf_result * RESULT) These routines compute the fifth-order Debye function D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1)). -- Function: double gsl_sf_debye_6 (double X) -- Function: int gsl_sf_debye_6_e (double X, gsl_sf_result * RESULT) These routines compute the sixth-order Debye function D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1)).  File: gsl-ref.info, Node: Dilogarithm, Next: Elementary Operations, Prev: Debye Functions, Up: Special Functions 7.11 Dilogarithm ================ The functions described in this section are declared in the header file 'gsl_sf_dilog.h'. * Menu: * Real Argument:: * Complex Argument::  File: gsl-ref.info, Node: Real Argument, Next: Complex Argument, Up: Dilogarithm 7.11.1 Real Argument -------------------- -- Function: double gsl_sf_dilog (double X) -- Function: int gsl_sf_dilog_e (double X, gsl_sf_result * RESULT) These routines compute the dilogarithm for a real argument. In Lewin's notation this is Li_2(x), the real part of the dilogarithm of a real x. It is defined by the integral representation Li_2(x) = - \Re \int_0^x ds \log(1-s) / s. Note that \Im(Li_2(x)) = 0 for x <= 1, and -\pi\log(x) for x > 1. Note that Abramowitz & Stegun refer to the Spence integral S(x)=Li_2(1-x) as the dilogarithm rather than Li_2(x).  File: gsl-ref.info, Node: Complex Argument, Prev: Real Argument, Up: Dilogarithm 7.11.2 Complex Argument ----------------------- -- Function: int gsl_sf_complex_dilog_e (double R, double THETA, gsl_sf_result * RESULT_RE, gsl_sf_result * RESULT_IM) This function computes the full complex-valued dilogarithm for the complex argument z = r \exp(i \theta). The real and imaginary parts of the result are returned in RESULT_RE, RESULT_IM.  File: gsl-ref.info, Node: Elementary Operations, Next: Elliptic Integrals, Prev: Dilogarithm, Up: Special Functions 7.12 Elementary Operations ========================== The following functions allow for the propagation of errors when combining quantities by multiplication. The functions are declared in the header file 'gsl_sf_elementary.h'. -- Function: int gsl_sf_multiply_e (double X, double Y, gsl_sf_result * RESULT) This function multiplies X and Y storing the product and its associated error in RESULT. -- Function: int gsl_sf_multiply_err_e (double X, double DX, double Y, double DY, gsl_sf_result * RESULT) This function multiplies X and Y with associated absolute errors DX and DY. The product xy +/- xy \sqrt((dx/x)^2 +(dy/y)^2) is stored in RESULT.  File: gsl-ref.info, Node: Elliptic Integrals, Next: Elliptic Functions (Jacobi), Prev: Elementary Operations, Up: Special Functions 7.13 Elliptic Integrals ======================= The functions described in this section are declared in the header file 'gsl_sf_ellint.h'. Further information about the elliptic integrals can be found in Abramowitz & Stegun, Chapter 17. * Menu: * Definition of Legendre Forms:: * Definition of Carlson Forms:: * Legendre Form of Complete Elliptic Integrals:: * Legendre Form of Incomplete Elliptic Integrals:: * Carlson Forms::  File: gsl-ref.info, Node: Definition of Legendre Forms, Next: Definition of Carlson Forms, Up: Elliptic Integrals 7.13.1 Definition of Legendre Forms ----------------------------------- The Legendre forms of elliptic integrals F(\phi,k), E(\phi,k) and \Pi(\phi,k,n) are defined by, F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t))) E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t))) Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t))) The complete Legendre forms are denoted by K(k) = F(\pi/2, k) and E(k) = E(\pi/2, k). The notation used here is based on Carlson, 'Numerische Mathematik' 33 (1979) 1 and differs slightly from that used by Abramowitz & Stegun, where the functions are given in terms of the parameter m = k^2 and n is replaced by -n.  File: gsl-ref.info, Node: Definition of Carlson Forms, Next: Legendre Form of Complete Elliptic Integrals, Prev: Definition of Legendre Forms, Up: Elliptic Integrals 7.13.2 Definition of Carlson Forms ---------------------------------- The Carlson symmetric forms of elliptical integrals RC(x,y), RD(x,y,z), RF(x,y,z) and RJ(x,y,z,p) are defined by, RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1) RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2) RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) RJ(x,y,z,p) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)  File: gsl-ref.info, Node: Legendre Form of Complete Elliptic Integrals, Next: Legendre Form of Incomplete Elliptic Integrals, Prev: Definition of Carlson Forms, Up: Elliptic Integrals 7.13.3 Legendre Form of Complete Elliptic Integrals --------------------------------------------------- -- Function: double gsl_sf_ellint_Kcomp (double K, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_Kcomp_e (double K, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the complete elliptic integral K(k) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2. -- Function: double gsl_sf_ellint_Ecomp (double K, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_Ecomp_e (double K, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the complete elliptic integral E(k) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2. -- Function: double gsl_sf_ellint_Pcomp (double K, double N, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_Pcomp_e (double K, double N, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the complete elliptic integral \Pi(k,n) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameters m = k^2 and \sin^2(\alpha) = k^2, with the change of sign n \to -n.  File: gsl-ref.info, Node: Legendre Form of Incomplete Elliptic Integrals, Next: Carlson Forms, Prev: Legendre Form of Complete Elliptic Integrals, Up: Elliptic Integrals 7.13.4 Legendre Form of Incomplete Elliptic Integrals ----------------------------------------------------- -- Function: double gsl_sf_ellint_F (double PHI, double K, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_F_e (double PHI, double K, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral F(\phi,k) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2. -- Function: double gsl_sf_ellint_E (double PHI, double K, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_E_e (double PHI, double K, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral E(\phi,k) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameter m = k^2. -- Function: double gsl_sf_ellint_P (double PHI, double K, double N, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_P_e (double PHI, double K, double N, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral \Pi(\phi,k,n) to the accuracy specified by the mode variable MODE. Note that Abramowitz & Stegun define this function in terms of the parameters m = k^2 and \sin^2(\alpha) = k^2, with the change of sign n \to -n. -- Function: double gsl_sf_ellint_D (double PHI, double K, double N, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_D_e (double PHI, double K, double N, gsl_mode_t MODE, gsl_sf_result * RESULT) These functions compute the incomplete elliptic integral D(\phi,k) which is defined through the Carlson form RD(x,y,z) by the following relation, D(\phi,k,n) = (1/3)(\sin(\phi))^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1). The argument N is not used and will be removed in a future release.  File: gsl-ref.info, Node: Carlson Forms, Prev: Legendre Form of Incomplete Elliptic Integrals, Up: Elliptic Integrals 7.13.5 Carlson Forms -------------------- -- Function: double gsl_sf_ellint_RC (double X, double Y, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_RC_e (double X, double Y, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral RC(x,y) to the accuracy specified by the mode variable MODE. -- Function: double gsl_sf_ellint_RD (double X, double Y, double Z, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_RD_e (double X, double Y, double Z, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral RD(x,y,z) to the accuracy specified by the mode variable MODE. -- Function: double gsl_sf_ellint_RF (double X, double Y, double Z, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_RF_e (double X, double Y, double Z, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral RF(x,y,z) to the accuracy specified by the mode variable MODE. -- Function: double gsl_sf_ellint_RJ (double X, double Y, double Z, double P, gsl_mode_t MODE) -- Function: int gsl_sf_ellint_RJ_e (double X, double Y, double Z, double P, gsl_mode_t MODE, gsl_sf_result * RESULT) These routines compute the incomplete elliptic integral RJ(x,y,z,p) to the accuracy specified by the mode variable MODE.  File: gsl-ref.info, Node: Elliptic Functions (Jacobi), Next: Error Functions, Prev: Elliptic Integrals, Up: Special Functions 7.14 Elliptic Functions (Jacobi) ================================ The Jacobian Elliptic functions are defined in Abramowitz & Stegun, Chapter 16. The functions are declared in the header file 'gsl_sf_elljac.h'. -- Function: int gsl_sf_elljac_e (double U, double M, double * SN, double * CN, double * DN) This function computes the Jacobian elliptic functions sn(u|m), cn(u|m), dn(u|m) by descending Landen transformations.  File: gsl-ref.info, Node: Error Functions, Next: Exponential Functions, Prev: Elliptic Functions (Jacobi), Up: Special Functions 7.15 Error Functions ==================== The error function is described in Abramowitz & Stegun, Chapter 7. The functions in this section are declared in the header file 'gsl_sf_erf.h'. * Menu: * Error Function:: * Complementary Error Function:: * Log Complementary Error Function:: * Probability functions::  File: gsl-ref.info, Node: Error Function, Next: Complementary Error Function, Up: Error Functions 7.15.1 Error Function --------------------- -- Function: double gsl_sf_erf (double X) -- Function: int gsl_sf_erf_e (double X, gsl_sf_result * RESULT) These routines compute the error function erf(x), where erf(x) = (2/\sqrt(\pi)) \int_0^x dt \exp(-t^2).  File: gsl-ref.info, Node: Complementary Error Function, Next: Log Complementary Error Function, Prev: Error Function, Up: Error Functions 7.15.2 Complementary Error Function ----------------------------------- -- Function: double gsl_sf_erfc (double X) -- Function: int gsl_sf_erfc_e (double X, gsl_sf_result * RESULT) These routines compute the complementary error function erfc(x) = 1 - erf(x) = (2/\sqrt(\pi)) \int_x^\infty \exp(-t^2).  File: gsl-ref.info, Node: Log Complementary Error Function, Next: Probability functions, Prev: Complementary Error Function, Up: Error Functions 7.15.3 Log Complementary Error Function --------------------------------------- -- Function: double gsl_sf_log_erfc (double X) -- Function: int gsl_sf_log_erfc_e (double X, gsl_sf_result * RESULT) These routines compute the logarithm of the complementary error function \log(\erfc(x)).  File: gsl-ref.info, Node: Probability functions, Prev: Log Complementary Error Function, Up: Error Functions 7.15.4 Probability functions ---------------------------- The probability functions for the Normal or Gaussian distribution are described in Abramowitz & Stegun, Section 26.2. -- Function: double gsl_sf_erf_Z (double X) -- Function: int gsl_sf_erf_Z_e (double X, gsl_sf_result * RESULT) These routines compute the Gaussian probability density function Z(x) = (1/\sqrt{2\pi}) \exp(-x^2/2). -- Function: double gsl_sf_erf_Q (double X) -- Function: int gsl_sf_erf_Q_e (double X, gsl_sf_result * RESULT) These routines compute the upper tail of the Gaussian probability function Q(x) = (1/\sqrt{2\pi}) \int_x^\infty dt \exp(-t^2/2). The "hazard function" for the normal distribution, also known as the inverse Mills' ratio, is defined as, h(x) = Z(x)/Q(x) = \sqrt{2/\pi} \exp(-x^2 / 2) / \erfc(x/\sqrt 2) It decreases rapidly as x approaches -\infty and asymptotes to h(x) \sim x as x approaches +\infty. -- Function: double gsl_sf_hazard (double X) -- Function: int gsl_sf_hazard_e (double X, gsl_sf_result * RESULT) These routines compute the hazard function for the normal distribution.  File: gsl-ref.info, Node: Exponential Functions, Next: Exponential Integrals, Prev: Error Functions, Up: Special Functions 7.16 Exponential Functions ========================== The functions described in this section are declared in the header file 'gsl_sf_exp.h'. * Menu: * Exponential Function:: * Relative Exponential Functions:: * Exponentiation With Error Estimate::  File: gsl-ref.info, Node: Exponential Function, Next: Relative Exponential Functions, Up: Exponential Functions 7.16.1 Exponential Function --------------------------- -- Function: double gsl_sf_exp (double X) -- Function: int gsl_sf_exp_e (double X, gsl_sf_result * RESULT) These routines provide an exponential function \exp(x) using GSL semantics and error checking. -- Function: int gsl_sf_exp_e10_e (double X, gsl_sf_result_e10 * RESULT) This function computes the exponential \exp(x) using the 'gsl_sf_result_e10' type to return a result with extended range. This function may be useful if the value of \exp(x) would overflow the numeric range of 'double'. -- Function: double gsl_sf_exp_mult (double X, double Y) -- Function: int gsl_sf_exp_mult_e (double X, double Y, gsl_sf_result * RESULT) These routines exponentiate X and multiply by the factor Y to return the product y \exp(x). -- Function: int gsl_sf_exp_mult_e10_e (const double X, const double Y, gsl_sf_result_e10 * RESULT) This function computes the product y \exp(x) using the 'gsl_sf_result_e10' type to return a result with extended numeric range.  File: gsl-ref.info, Node: Relative Exponential Functions, Next: Exponentiation With Error Estimate, Prev: Exponential Function, Up: Exponential Functions 7.16.2 Relative Exponential Functions ------------------------------------- -- Function: double gsl_sf_expm1 (double X) -- Function: int gsl_sf_expm1_e (double X, gsl_sf_result * RESULT) These routines compute the quantity \exp(x)-1 using an algorithm that is accurate for small x. -- Function: double gsl_sf_exprel (double X) -- Function: int gsl_sf_exprel_e (double X, gsl_sf_result * RESULT) These routines compute the quantity (\exp(x)-1)/x using an algorithm that is accurate for small x. For small x the algorithm is based on the expansion (\exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + \dots. -- Function: double gsl_sf_exprel_2 (double X) -- Function: int gsl_sf_exprel_2_e (double X, gsl_sf_result * RESULT) These routines compute the quantity 2(\exp(x)-1-x)/x^2 using an algorithm that is accurate for small x. For small x the algorithm is based on the expansion 2(\exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + \dots. -- Function: double gsl_sf_exprel_n (int N, double X) -- Function: int gsl_sf_exprel_n_e (int N, double X, gsl_sf_result * RESULT) These routines compute the N-relative exponential, which is the N-th generalization of the functions 'gsl_sf_exprel' and 'gsl_sf_exprel_2'. The N-relative exponential is given by, exprel_N(x) = N!/x^N (\exp(x) - \sum_{k=0}^{N-1} x^k/k!) = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... = 1F1 (1,1+N,x)  File: gsl-ref.info, Node: Exponentiation With Error Estimate, Prev: Relative Exponential Functions, Up: Exponential Functions 7.16.3 Exponentiation With Error Estimate ----------------------------------------- -- Function: int gsl_sf_exp_err_e (double X, double DX, gsl_sf_result * RESULT) This function exponentiates X with an associated absolute error DX. -- Function: int gsl_sf_exp_err_e10_e (double X, double DX, gsl_sf_result_e10 * RESULT) This function exponentiates a quantity X with an associated absolute error DX using the 'gsl_sf_result_e10' type to return a result with extended range. -- Function: int gsl_sf_exp_mult_err_e (double X, double DX, double Y, double DY, gsl_sf_result * RESULT) This routine computes the product y \exp(x) for the quantities X, Y with associated absolute errors DX, DY. -- Function: int gsl_sf_exp_mult_err_e10_e (double X, double DX, double Y, double DY, gsl_sf_result_e10 * RESULT) This routine computes the product y \exp(x) for the quantities X, Y with associated absolute errors DX, DY using the 'gsl_sf_result_e10' type to return a result with extended range.  File: gsl-ref.info, Node: Exponential Integrals, Next: Fermi-Dirac Function, Prev: Exponential Functions, Up: Special Functions 7.17 Exponential Integrals ========================== Information on the exponential integrals can be found in Abramowitz & Stegun, Chapter 5. These functions are declared in the header file 'gsl_sf_expint.h'. * Menu: * Exponential Integral:: * Ei(x):: * Hyperbolic Integrals:: * Ei_3(x):: * Trigonometric Integrals:: * Arctangent Integral::  File: gsl-ref.info, Node: Exponential Integral, Next: Ei(x), Up: Exponential Integrals 7.17.1 Exponential Integral --------------------------- -- Function: double gsl_sf_expint_E1 (double X) -- Function: int gsl_sf_expint_E1_e (double X, gsl_sf_result * RESULT) These routines compute the exponential integral E_1(x), E_1(x) := \Re \int_1^\infty dt \exp(-xt)/t. -- Function: double gsl_sf_expint_E2 (double X) -- Function: int gsl_sf_expint_E2_e (double X, gsl_sf_result * RESULT) These routines compute the second-order exponential integral E_2(x), E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2. -- Function: double gsl_sf_expint_En (int N, double X) -- Function: int gsl_sf_expint_En_e (int N, double X, gsl_sf_result * RESULT) These routines compute the exponential integral E_n(x) of order n, E_n(x) := \Re \int_1^\infty dt \exp(-xt)/t^n.  File: gsl-ref.info, Node: Ei(x), Next: Hyperbolic Integrals, Prev: Exponential Integral, Up: Exponential Integrals 7.17.2 Ei(x) ------------ -- Function: double gsl_sf_expint_Ei (double X) -- Function: int gsl_sf_expint_Ei_e (double X, gsl_sf_result * RESULT) These routines compute the exponential integral Ei(x), Ei(x) := - PV(\int_{-x}^\infty dt \exp(-t)/t) where PV denotes the principal value of the integral.  File: gsl-ref.info, Node: Hyperbolic Integrals, Next: Ei_3(x), Prev: Ei(x), Up: Exponential Integrals 7.17.3 Hyperbolic Integrals --------------------------- -- Function: double gsl_sf_Shi (double X) -- Function: int gsl_sf_Shi_e (double X, gsl_sf_result * RESULT) These routines compute the integral Shi(x) = \int_0^x dt \sinh(t)/t. -- Function: double gsl_sf_Chi (double X) -- Function: int gsl_sf_Chi_e (double X, gsl_sf_result * RESULT) These routines compute the integral Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] , where \gamma_E is the Euler constant (available as the macro 'M_EULER').  File: gsl-ref.info, Node: Ei_3(x), Next: Trigonometric Integrals, Prev: Hyperbolic Integrals, Up: Exponential Integrals 7.17.4 Ei_3(x) -------------- -- Function: double gsl_sf_expint_3 (double X) -- Function: int gsl_sf_expint_3_e (double X, gsl_sf_result * RESULT) These routines compute the third-order exponential integral Ei_3(x) = \int_0^xdt \exp(-t^3) for x >= 0.  File: gsl-ref.info, Node: Trigonometric Integrals, Next: Arctangent Integral, Prev: Ei_3(x), Up: Exponential Integrals 7.17.5 Trigonometric Integrals ------------------------------ -- Function: double gsl_sf_Si (const double X) -- Function: int gsl_sf_Si_e (double X, gsl_sf_result * RESULT) These routines compute the Sine integral Si(x) = \int_0^x dt \sin(t)/t. -- Function: double gsl_sf_Ci (const double X) -- Function: int gsl_sf_Ci_e (double X, gsl_sf_result * RESULT) These routines compute the Cosine integral Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0.  File: gsl-ref.info, Node: Arctangent Integral, Prev: Trigonometric Integrals, Up: Exponential Integrals 7.17.6 Arctangent Integral -------------------------- -- Function: double gsl_sf_atanint (double X) -- Function: int gsl_sf_atanint_e (double X, gsl_sf_result * RESULT) These routines compute the Arctangent integral, which is defined as AtanInt(x) = \int_0^x dt \arctan(t)/t.  File: gsl-ref.info, Node: Fermi-Dirac Function, Next: Gamma and Beta Functions, Prev: Exponential Integrals, Up: Special Functions 7.18 Fermi-Dirac Function ========================= The functions described in this section are declared in the header file 'gsl_sf_fermi_dirac.h'. * Menu: * Complete Fermi-Dirac Integrals:: * Incomplete Fermi-Dirac Integrals::  File: gsl-ref.info, Node: Complete Fermi-Dirac Integrals, Next: Incomplete Fermi-Dirac Integrals, Up: Fermi-Dirac Function 7.18.1 Complete Fermi-Dirac Integrals ------------------------------------- The complete Fermi-Dirac integral F_j(x) is given by, F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1)) Note that the Fermi-Dirac integral is sometimes defined without the normalisation factor in other texts. -- Function: double gsl_sf_fermi_dirac_m1 (double X) -- Function: int gsl_sf_fermi_dirac_m1_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral with an index of -1. This integral is given by F_{-1}(x) = e^x / (1 + e^x). -- Function: double gsl_sf_fermi_dirac_0 (double X) -- Function: int gsl_sf_fermi_dirac_0_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral with an index of 0. This integral is given by F_0(x) = \ln(1 + e^x). -- Function: double gsl_sf_fermi_dirac_1 (double X) -- Function: int gsl_sf_fermi_dirac_1_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral with an index of 1, F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1)). -- Function: double gsl_sf_fermi_dirac_2 (double X) -- Function: int gsl_sf_fermi_dirac_2_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral with an index of 2, F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1)). -- Function: double gsl_sf_fermi_dirac_int (int J, double X) -- Function: int gsl_sf_fermi_dirac_int_e (int J, double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral with an integer index of j, F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1)). -- Function: double gsl_sf_fermi_dirac_mhalf (double X) -- Function: int gsl_sf_fermi_dirac_mhalf_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral F_{-1/2}(x). -- Function: double gsl_sf_fermi_dirac_half (double X) -- Function: int gsl_sf_fermi_dirac_half_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral F_{1/2}(x). -- Function: double gsl_sf_fermi_dirac_3half (double X) -- Function: int gsl_sf_fermi_dirac_3half_e (double X, gsl_sf_result * RESULT) These routines compute the complete Fermi-Dirac integral F_{3/2}(x).  File: gsl-ref.info, Node: Incomplete Fermi-Dirac Integrals, Prev: Complete Fermi-Dirac Integrals, Up: Fermi-Dirac Function 7.18.2 Incomplete Fermi-Dirac Integrals --------------------------------------- The incomplete Fermi-Dirac integral F_j(x,b) is given by, F_j(x,b) := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1)) -- Function: double gsl_sf_fermi_dirac_inc_0 (double X, double B) -- Function: int gsl_sf_fermi_dirac_inc_0_e (double X, double B, gsl_sf_result * RESULT) These routines compute the incomplete Fermi-Dirac integral with an index of zero, F_0(x,b) = \ln(1 + e^{b-x}) - (b-x).  File: gsl-ref.info, Node: Gamma and Beta Functions, Next: Gegenbauer Functions, Prev: Fermi-Dirac Function, Up: Special Functions 7.19 Gamma and Beta Functions ============================= This following routines compute the gamma and beta functions in their full and incomplete forms, as well as various kinds of factorials. The functions described in this section are declared in the header file 'gsl_sf_gamma.h'. * Menu: * Gamma Functions:: * Factorials:: * Pochhammer Symbol:: * Incomplete Gamma Functions:: * Beta Functions:: * Incomplete Beta Function::  File: gsl-ref.info, Node: Gamma Functions, Next: Factorials, Up: Gamma and Beta Functions 7.19.1 Gamma Functions ---------------------- The Gamma function is defined by the following integral, \Gamma(x) = \int_0^\infty dt t^{x-1} \exp(-t) It is related to the factorial function by \Gamma(n)=(n-1)! for positive integer n. Further information on the Gamma function can be found in Abramowitz & Stegun, Chapter 6. -- Function: double gsl_sf_gamma (double X) -- Function: int gsl_sf_gamma_e (double X, gsl_sf_result * RESULT) These routines compute the Gamma function \Gamma(x), subject to x not being a negative integer or zero. The function is computed using the real Lanczos method. The maximum value of x such that \Gamma(x) is not considered an overflow is given by the macro 'GSL_SF_GAMMA_XMAX' and is 171.0. -- Function: double gsl_sf_lngamma (double X) -- Function: int gsl_sf_lngamma_e (double X, gsl_sf_result * RESULT) These routines compute the logarithm of the Gamma function, \log(\Gamma(x)), subject to x not being a negative integer or zero. For x<0 the real part of \log(\Gamma(x)) is returned, which is equivalent to \log(|\Gamma(x)|). The function is computed using the real Lanczos method. -- Function: int gsl_sf_lngamma_sgn_e (double X, gsl_sf_result * RESULT_LG, double * SGN) This routine computes the sign of the gamma function and the logarithm of its magnitude, subject to x not being a negative integer or zero. The function is computed using the real Lanczos method. The value of the gamma function and its error can be reconstructed using the relation \Gamma(x) = sgn * \exp(result\_lg), taking into account the two components of RESULT_LG. -- Function: double gsl_sf_gammastar (double X) -- Function: int gsl_sf_gammastar_e (double X, gsl_sf_result * RESULT) These routines compute the regulated Gamma Function \Gamma^*(x) for x > 0. The regulated gamma function is given by, \Gamma^*(x) = \Gamma(x)/(\sqrt{2\pi} x^{(x-1/2)} \exp(-x)) = (1 + (1/12x) + ...) for x \to \infty and is a useful suggestion of Temme. -- Function: double gsl_sf_gammainv (double X) -- Function: int gsl_sf_gammainv_e (double X, gsl_sf_result * RESULT) These routines compute the reciprocal of the gamma function, 1/\Gamma(x) using the real Lanczos method. -- Function: int gsl_sf_lngamma_complex_e (double ZR, double ZI, gsl_sf_result * LNR, gsl_sf_result * ARG) This routine computes \log(\Gamma(z)) for complex z=z_r+i z_i and z not a negative integer or zero, using the complex Lanczos method. The returned parameters are lnr = \log|\Gamma(z)| and arg = \arg(\Gamma(z)) in (-\pi,\pi]. Note that the phase part (ARG) is not well-determined when |z| is very large, due to inevitable roundoff in restricting to (-\pi,\pi]. This will result in a 'GSL_ELOSS' error when it occurs. The absolute value part (LNR), however, never suffers from loss of precision.  File: gsl-ref.info, Node: Factorials, Next: Pochhammer Symbol, Prev: Gamma Functions, Up: Gamma and Beta Functions 7.19.2 Factorials ----------------- Although factorials can be computed from the Gamma function, using the relation n! = \Gamma(n+1) for non-negative integer n, it is usually more efficient to call the functions in this section, particularly for small values of n, whose factorial values are maintained in hardcoded tables. -- Function: double gsl_sf_fact (unsigned int N) -- Function: int gsl_sf_fact_e (unsigned int N, gsl_sf_result * RESULT) These routines compute the factorial n!. The factorial is related to the Gamma function by n! = \Gamma(n+1). The maximum value of n such that n! is not considered an overflow is given by the macro 'GSL_SF_FACT_NMAX' and is 170. -- Function: double gsl_sf_doublefact (unsigned int N) -- Function: int gsl_sf_doublefact_e (unsigned int N, gsl_sf_result * RESULT) These routines compute the double factorial n!! = n(n-2)(n-4) \dots. The maximum value of n such that n!! is not considered an overflow is given by the macro 'GSL_SF_DOUBLEFACT_NMAX' and is 297. -- Function: double gsl_sf_lnfact (unsigned int N) -- Function: int gsl_sf_lnfact_e (unsigned int N, gsl_sf_result * RESULT) These routines compute the logarithm of the factorial of N, \log(n!). The algorithm is faster than computing \ln(\Gamma(n+1)) via 'gsl_sf_lngamma' for n < 170, but defers for larger N. -- Function: double gsl_sf_lndoublefact (unsigned int N) -- Function: int gsl_sf_lndoublefact_e (unsigned int N, gsl_sf_result * RESULT) These routines compute the logarithm of the double factorial of N, \log(n!!). -- Function: double gsl_sf_choose (unsigned int N, unsigned int M) -- Function: int gsl_sf_choose_e (unsigned int N, unsigned int M, gsl_sf_result * RESULT) These routines compute the combinatorial factor 'n choose m' = n!/(m!(n-m)!) -- Function: double gsl_sf_lnchoose (unsigned int N, unsigned int M) -- Function: int gsl_sf_lnchoose_e (unsigned int N, unsigned int M, gsl_sf_result * RESULT) These routines compute the logarithm of 'n choose m'. This is equivalent to the sum \log(n!) - \log(m!) - \log((n-m)!). -- Function: double gsl_sf_taylorcoeff (int N, double X) -- Function: int gsl_sf_taylorcoeff_e (int N, double X, gsl_sf_result * RESULT) These routines compute the Taylor coefficient x^n / n! for x >= 0, n >= 0.  File: gsl-ref.info, Node: Pochhammer Symbol, Next: Incomplete Gamma Functions, Prev: Factorials, Up: Gamma and Beta Functions 7.19.3 Pochhammer Symbol ------------------------ -- Function: double gsl_sf_poch (double A, double X) -- Function: int gsl_sf_poch_e (double A, double X, gsl_sf_result * RESULT) These routines compute the Pochhammer symbol (a)_x = \Gamma(a + x)/\Gamma(a). The Pochhammer symbol is also known as the Apell symbol and sometimes written as (a,x). When a and a+x are negative integers or zero, the limiting value of the ratio is returned. -- Function: double gsl_sf_lnpoch (double A, double X) -- Function: int gsl_sf_lnpoch_e (double A, double X, gsl_sf_result * RESULT) These routines compute the logarithm of the Pochhammer symbol, \log((a)_x) = \log(\Gamma(a + x)/\Gamma(a)). -- Function: int gsl_sf_lnpoch_sgn_e (double A, double X, gsl_sf_result * RESULT, double * SGN) These routines compute the sign of the Pochhammer symbol and the logarithm of its magnitude. The computed parameters are result = \log(|(a)_x|) with a corresponding error term, and sgn = \sgn((a)_x) where (a)_x = \Gamma(a + x)/\Gamma(a). -- Function: double gsl_sf_pochrel (double A, double X) -- Function: int gsl_sf_pochrel_e (double A, double X, gsl_sf_result * RESULT) These routines compute the relative Pochhammer symbol ((a)_x - 1)/x where (a)_x = \Gamma(a + x)/\Gamma(a).  File: gsl-ref.info, Node: Incomplete Gamma Functions, Next: Beta Functions, Prev: Pochhammer Symbol, Up: Gamma and Beta Functions 7.19.4 Incomplete Gamma Functions --------------------------------- -- Function: double gsl_sf_gamma_inc (double A, double X) -- Function: int gsl_sf_gamma_inc_e (double A, double X, gsl_sf_result * RESULT) These functions compute the unnormalized incomplete Gamma Function \Gamma(a,x) = \int_x^\infty dt t^{a-1} \exp(-t) for a real and x >= 0. -- Function: double gsl_sf_gamma_inc_Q (double A, double X) -- Function: int gsl_sf_gamma_inc_Q_e (double A, double X, gsl_sf_result * RESULT) These routines compute the normalized incomplete Gamma Function Q(a,x) = 1/\Gamma(a) \int_x^\infty dt t^{a-1} \exp(-t) for a > 0, x >= 0. -- Function: double gsl_sf_gamma_inc_P (double A, double X) -- Function: int gsl_sf_gamma_inc_P_e (double A, double X, gsl_sf_result * RESULT) These routines compute the complementary normalized incomplete Gamma Function P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt t^{a-1} \exp(-t) for a > 0, x >= 0. Note that Abramowitz & Stegun call P(a,x) the incomplete gamma function (section 6.5).  File: gsl-ref.info, Node: Beta Functions, Next: Incomplete Beta Function, Prev: Incomplete Gamma Functions, Up: Gamma and Beta Functions 7.19.5 Beta Functions --------------------- -- Function: double gsl_sf_beta (double A, double B) -- Function: int gsl_sf_beta_e (double A, double B, gsl_sf_result * RESULT) These routines compute the Beta Function, B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b) subject to a and b not being negative integers. -- Function: double gsl_sf_lnbeta (double A, double B) -- Function: int gsl_sf_lnbeta_e (double A, double B, gsl_sf_result * RESULT) These routines compute the logarithm of the Beta Function, \log(B(a,b)) subject to a and b not being negative integers.  File: gsl-ref.info, Node: Incomplete Beta Function, Prev: Beta Functions, Up: Gamma and Beta Functions 7.19.6 Incomplete Beta Function ------------------------------- -- Function: double gsl_sf_beta_inc (double A, double B, double X) -- Function: int gsl_sf_beta_inc_e (double A, double B, double X, gsl_sf_result * RESULT) These routines compute the normalized incomplete Beta function I_x(a,b)=B_x(a,b)/B(a,b) where B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt for 0 <= x <= 1. For a > 0, b > 0 the value is computed using a continued fraction expansion. For all other values it is computed using the relation I_x(a,b,x) = (1/a) x^a 2F1(a,1-b,a+1,x)/B(a,b).  File: gsl-ref.info, Node: Gegenbauer Functions, Next: Hypergeometric Functions, Prev: Gamma and Beta Functions, Up: Special Functions 7.20 Gegenbauer Functions ========================= The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials. The functions described in this section are declared in the header file 'gsl_sf_gegenbauer.h'. -- Function: double gsl_sf_gegenpoly_1 (double LAMBDA, double X) -- Function: double gsl_sf_gegenpoly_2 (double LAMBDA, double X) -- Function: double gsl_sf_gegenpoly_3 (double LAMBDA, double X) -- Function: int gsl_sf_gegenpoly_1_e (double LAMBDA, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_gegenpoly_2_e (double LAMBDA, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_gegenpoly_3_e (double LAMBDA, double X, gsl_sf_result * RESULT) These functions evaluate the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3. -- Function: double gsl_sf_gegenpoly_n (int N, double LAMBDA, double X) -- Function: int gsl_sf_gegenpoly_n_e (int N, double LAMBDA, double X, gsl_sf_result * RESULT) These functions evaluate the Gegenbauer polynomial C^{(\lambda)}_n(x) for a specific value of N, LAMBDA, X subject to \lambda > -1/2, n >= 0. -- Function: int gsl_sf_gegenpoly_array (int NMAX, double LAMBDA, double X, double RESULT_ARRAY[]) This function computes an array of Gegenbauer polynomials C^{(\lambda)}_n(x) for n = 0, 1, 2, \dots, nmax, subject to \lambda > -1/2, nmax >= 0.  File: gsl-ref.info, Node: Hypergeometric Functions, Next: Laguerre Functions, Prev: Gegenbauer Functions, Up: Special Functions 7.21 Hypergeometric Functions ============================= Hypergeometric functions are described in Abramowitz & Stegun, Chapters 13 and 15. These functions are declared in the header file 'gsl_sf_hyperg.h'. -- Function: double gsl_sf_hyperg_0F1 (double C, double X) -- Function: int gsl_sf_hyperg_0F1_e (double C, double X, gsl_sf_result * RESULT) These routines compute the hypergeometric function 0F1(c,x). -- Function: double gsl_sf_hyperg_1F1_int (int M, int N, double X) -- Function: int gsl_sf_hyperg_1F1_int_e (int M, int N, double X, gsl_sf_result * RESULT) These routines compute the confluent hypergeometric function 1F1(m,n,x) = M(m,n,x) for integer parameters M, N. -- Function: double gsl_sf_hyperg_1F1 (double A, double B, double X) -- Function: int gsl_sf_hyperg_1F1_e (double A, double B, double X, gsl_sf_result * RESULT) These routines compute the confluent hypergeometric function 1F1(a,b,x) = M(a,b,x) for general parameters A, B. -- Function: double gsl_sf_hyperg_U_int (int M, int N, double X) -- Function: int gsl_sf_hyperg_U_int_e (int M, int N, double X, gsl_sf_result * RESULT) These routines compute the confluent hypergeometric function U(m,n,x) for integer parameters M, N. -- Function: int gsl_sf_hyperg_U_int_e10_e (int M, int N, double X, gsl_sf_result_e10 * RESULT) This routine computes the confluent hypergeometric function U(m,n,x) for integer parameters M, N using the 'gsl_sf_result_e10' type to return a result with extended range. -- Function: double gsl_sf_hyperg_U (double A, double B, double X) -- Function: int gsl_sf_hyperg_U_e (double A, double B, double X, gsl_sf_result * RESULT) These routines compute the confluent hypergeometric function U(a,b,x). -- Function: int gsl_sf_hyperg_U_e10_e (double A, double B, double X, gsl_sf_result_e10 * RESULT) This routine computes the confluent hypergeometric function U(a,b,x) using the 'gsl_sf_result_e10' type to return a result with extended range. -- Function: double gsl_sf_hyperg_2F1 (double A, double B, double C, double X) -- Function: int gsl_sf_hyperg_2F1_e (double A, double B, double C, double X, gsl_sf_result * RESULT) These routines compute the Gauss hypergeometric function 2F1(a,b,c,x) = F(a,b,c,x) for |x| < 1. If the arguments (a,b,c,x) are too close to a singularity then the function can return the error code 'GSL_EMAXITER' when the series approximation converges too slowly. This occurs in the region of x=1, c - a - b = m for integer m. -- Function: double gsl_sf_hyperg_2F1_conj (double AR, double AI, double C, double X) -- Function: int gsl_sf_hyperg_2F1_conj_e (double AR, double AI, double C, double X, gsl_sf_result * RESULT) These routines compute the Gauss hypergeometric function 2F1(a_R + i a_I, a_R - i a_I, c, x) with complex parameters for |x| < 1. -- Function: double gsl_sf_hyperg_2F1_renorm (double A, double B, double C, double X) -- Function: int gsl_sf_hyperg_2F1_renorm_e (double A, double B, double C, double X, gsl_sf_result * RESULT) These routines compute the renormalized Gauss hypergeometric function 2F1(a,b,c,x) / \Gamma(c) for |x| < 1. -- Function: double gsl_sf_hyperg_2F1_conj_renorm (double AR, double AI, double C, double X) -- Function: int gsl_sf_hyperg_2F1_conj_renorm_e (double AR, double AI, double C, double X, gsl_sf_result * RESULT) These routines compute the renormalized Gauss hypergeometric function 2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c) for |x| < 1. -- Function: double gsl_sf_hyperg_2F0 (double A, double B, double X) -- Function: int gsl_sf_hyperg_2F0_e (double A, double B, double X, gsl_sf_result * RESULT) These routines compute the hypergeometric function 2F0(a,b,x). The series representation is a divergent hypergeometric series. However, for x < 0 we have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)  File: gsl-ref.info, Node: Laguerre Functions, Next: Lambert W Functions, Prev: Hypergeometric Functions, Up: Special Functions 7.22 Laguerre Functions ======================= The generalized Laguerre polynomials are defined in terms of confluent hypergeometric functions as L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x), and are sometimes referred to as the associated Laguerre polynomials. They are related to the plain Laguerre polynomials L_n(x) by L^0_n(x) = L_n(x) and L^k_n(x) = (-1)^k (d^k/dx^k) L_(n+k)(x). For more information see Abramowitz & Stegun, Chapter 22. The functions described in this section are declared in the header file 'gsl_sf_laguerre.h'. -- Function: double gsl_sf_laguerre_1 (double A, double X) -- Function: double gsl_sf_laguerre_2 (double A, double X) -- Function: double gsl_sf_laguerre_3 (double A, double X) -- Function: int gsl_sf_laguerre_1_e (double A, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_laguerre_2_e (double A, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_laguerre_3_e (double A, double X, gsl_sf_result * RESULT) These routines evaluate the generalized Laguerre polynomials L^a_1(x), L^a_2(x), L^a_3(x) using explicit representations. -- Function: double gsl_sf_laguerre_n (const int N, const double A, const double X) -- Function: int gsl_sf_laguerre_n_e (int N, double A, double X, gsl_sf_result * RESULT) These routines evaluate the generalized Laguerre polynomials L^a_n(x) for a > -1, n >= 0.  File: gsl-ref.info, Node: Lambert W Functions, Next: Legendre Functions and Spherical Harmonics, Prev: Laguerre Functions, Up: Special Functions 7.23 Lambert W Functions ======================== Lambert's W functions, W(x), are defined to be solutions of the equation W(x) \exp(W(x)) = x. This function has multiple branches for x < 0; however, it has only two real-valued branches. We define W_0(x) to be the principal branch, where W > -1 for x < 0, and W_{-1}(x) to be the other real branch, where W < -1 for x < 0. The Lambert functions are declared in the header file 'gsl_sf_lambert.h'. -- Function: double gsl_sf_lambert_W0 (double X) -- Function: int gsl_sf_lambert_W0_e (double X, gsl_sf_result * RESULT) These compute the principal branch of the Lambert W function, W_0(x). -- Function: double gsl_sf_lambert_Wm1 (double X) -- Function: int gsl_sf_lambert_Wm1_e (double X, gsl_sf_result * RESULT) These compute the secondary real-valued branch of the Lambert W function, W_{-1}(x).  File: gsl-ref.info, Node: Legendre Functions and Spherical Harmonics, Next: Logarithm and Related Functions, Prev: Lambert W Functions, Up: Special Functions 7.24 Legendre Functions and Spherical Harmonics =============================================== The Legendre Functions and Legendre Polynomials are described in Abramowitz & Stegun, Chapter 8. These functions are declared in the header file 'gsl_sf_legendre.h'. * Menu: * Legendre Polynomials:: * Associated Legendre Polynomials and Spherical Harmonics:: * Conical Functions:: * Radial Functions for Hyperbolic Space::  File: gsl-ref.info, Node: Legendre Polynomials, Next: Associated Legendre Polynomials and Spherical Harmonics, Up: Legendre Functions and Spherical Harmonics 7.24.1 Legendre Polynomials --------------------------- -- Function: double gsl_sf_legendre_P1 (double X) -- Function: double gsl_sf_legendre_P2 (double X) -- Function: double gsl_sf_legendre_P3 (double X) -- Function: int gsl_sf_legendre_P1_e (double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_legendre_P2_e (double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_legendre_P3_e (double X, gsl_sf_result * RESULT) These functions evaluate the Legendre polynomials P_l(x) using explicit representations for l=1, 2, 3. -- Function: double gsl_sf_legendre_Pl (int L, double X) -- Function: int gsl_sf_legendre_Pl_e (int L, double X, gsl_sf_result * RESULT) These functions evaluate the Legendre polynomial P_l(x) for a specific value of L, X subject to l >= 0, |x| <= 1 -- Function: int gsl_sf_legendre_Pl_array (int LMAX, double X, double RESULT_ARRAY[]) -- Function: int gsl_sf_legendre_Pl_deriv_array (int LMAX, double X, double RESULT_ARRAY[], double RESULT_DERIV_ARRAY[]) These functions compute arrays of Legendre polynomials P_l(x) and derivatives dP_l(x)/dx, for l = 0, \dots, lmax, |x| <= 1 -- Function: double gsl_sf_legendre_Q0 (double X) -- Function: int gsl_sf_legendre_Q0_e (double X, gsl_sf_result * RESULT) These routines compute the Legendre function Q_0(x) for x > -1, x != 1. -- Function: double gsl_sf_legendre_Q1 (double X) -- Function: int gsl_sf_legendre_Q1_e (double X, gsl_sf_result * RESULT) These routines compute the Legendre function Q_1(x) for x > -1, x != 1. -- Function: double gsl_sf_legendre_Ql (int L, double X) -- Function: int gsl_sf_legendre_Ql_e (int L, double X, gsl_sf_result * RESULT) These routines compute the Legendre function Q_l(x) for x > -1, x != 1 and l >= 0.  File: gsl-ref.info, Node: Associated Legendre Polynomials and Spherical Harmonics, Next: Conical Functions, Prev: Legendre Polynomials, Up: Legendre Functions and Spherical Harmonics 7.24.2 Associated Legendre Polynomials and Spherical Harmonics -------------------------------------------------------------- The following functions compute the associated Legendre Polynomials P_l^m(x). Note that this function grows combinatorially with l and can overflow for l larger than about 150. There is no trouble for small m, but overflow occurs when m and l are both large. Rather than allow overflows, these functions refuse to calculate P_l^m(x) and return 'GSL_EOVRFLW' when they can sense that l and m are too big. If you want to calculate a spherical harmonic, then _do not_ use these functions. Instead use 'gsl_sf_legendre_sphPlm' below, which uses a similar recursion, but with the normalized functions. -- Function: double gsl_sf_legendre_Plm (int L, int M, double X) -- Function: int gsl_sf_legendre_Plm_e (int L, int M, double X, gsl_sf_result * RESULT) These routines compute the associated Legendre polynomial P_l^m(x) for m >= 0, l >= m, |x| <= 1. -- Function: int gsl_sf_legendre_Plm_array (int LMAX, int M, double X, double RESULT_ARRAY[]) -- Function: int gsl_sf_legendre_Plm_deriv_array (int LMAX, int M, double X, double RESULT_ARRAY[], double RESULT_DERIV_ARRAY[]) These functions compute arrays of Legendre polynomials P_l^m(x) and derivatives dP_l^m(x)/dx, for m >= 0, l = |m|, ..., lmax, |x| <= 1. -- Function: double gsl_sf_legendre_sphPlm (int L, int M, double X) -- Function: int gsl_sf_legendre_sphPlm_e (int L, int M, double X, gsl_sf_result * RESULT) These routines compute the normalized associated Legendre polynomial \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x) suitable for use in spherical harmonics. The parameters must satisfy m >= 0, l >= m, |x| <= 1. Theses routines avoid the overflows that occur for the standard normalization of P_l^m(x). -- Function: int gsl_sf_legendre_sphPlm_array (int LMAX, int M, double X, double RESULT_ARRAY[]) -- Function: int gsl_sf_legendre_sphPlm_deriv_array (int LMAX, int M, double X, double RESULT_ARRAY[], double RESULT_DERIV_ARRAY[]) These functions compute arrays of normalized associated Legendre functions \sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x), and derivatives, for m >= 0, l = |m|, ..., lmax, |x| <= 1.0 -- Function: int gsl_sf_legendre_array_size (const int LMAX, const int M) This function returns the size of RESULT_ARRAY[] needed for the array versions of P_l^m(x), LMAX - M + 1. An inline version of this function is used when 'HAVE_INLINE' is defined.  File: gsl-ref.info, Node: Conical Functions, Next: Radial Functions for Hyperbolic Space, Prev: Associated Legendre Polynomials and Spherical Harmonics, Up: Legendre Functions and Spherical Harmonics 7.24.3 Conical Functions ------------------------ The Conical Functions P^\mu_{-(1/2)+i\lambda}(x) and Q^\mu_{-(1/2)+i\lambda} are described in Abramowitz & Stegun, Section 8.12. -- Function: double gsl_sf_conicalP_half (double LAMBDA, double X) -- Function: int gsl_sf_conicalP_half_e (double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the irregular Spherical Conical Function P^{1/2}_{-1/2 + i \lambda}(x) for x > -1. -- Function: double gsl_sf_conicalP_mhalf (double LAMBDA, double X) -- Function: int gsl_sf_conicalP_mhalf_e (double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the regular Spherical Conical Function P^{-1/2}_{-1/2 + i \lambda}(x) for x > -1. -- Function: double gsl_sf_conicalP_0 (double LAMBDA, double X) -- Function: int gsl_sf_conicalP_0_e (double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the conical function P^0_{-1/2 + i \lambda}(x) for x > -1. -- Function: double gsl_sf_conicalP_1 (double LAMBDA, double X) -- Function: int gsl_sf_conicalP_1_e (double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the conical function P^1_{-1/2 + i \lambda}(x) for x > -1. -- Function: double gsl_sf_conicalP_sph_reg (int L, double LAMBDA, double X) -- Function: int gsl_sf_conicalP_sph_reg_e (int L, double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the Regular Spherical Conical Function P^{-1/2-l}_{-1/2 + i \lambda}(x) for x > -1, l >= -1. -- Function: double gsl_sf_conicalP_cyl_reg (int M, double LAMBDA, double X) -- Function: int gsl_sf_conicalP_cyl_reg_e (int M, double LAMBDA, double X, gsl_sf_result * RESULT) These routines compute the Regular Cylindrical Conical Function P^{-m}_{-1/2 + i \lambda}(x) for x > -1, m >= -1.  File: gsl-ref.info, Node: Radial Functions for Hyperbolic Space, Prev: Conical Functions, Up: Legendre Functions and Spherical Harmonics 7.24.4 Radial Functions for Hyperbolic Space -------------------------------------------- The following spherical functions are specializations of Legendre functions which give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space H3d. Of particular interest is the flat limit, \lambda \to \infty, \eta \to 0, \lambda\eta fixed. -- Function: double gsl_sf_legendre_H3d_0 (double LAMBDA, double ETA) -- Function: int gsl_sf_legendre_H3d_0_e (double LAMBDA, double ETA, gsl_sf_result * RESULT) These routines compute the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta)) for \eta >= 0. In the flat limit this takes the form L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta). -- Function: double gsl_sf_legendre_H3d_1 (double LAMBDA, double ETA) -- Function: int gsl_sf_legendre_H3d_1_e (double LAMBDA, double ETA, gsl_sf_result * RESULT) These routines compute the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, L^{H3d}_1(\lambda,\eta) := 1/\sqrt{\lambda^2 + 1} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta)) for \eta >= 0. In the flat limit this takes the form L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta). -- Function: double gsl_sf_legendre_H3d (int L, double LAMBDA, double ETA) -- Function: int gsl_sf_legendre_H3d_e (int L, double LAMBDA, double ETA, gsl_sf_result * RESULT) These routines compute the L-th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space \eta >= 0, l >= 0. In the flat limit this takes the form L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta). -- Function: int gsl_sf_legendre_H3d_array (int LMAX, double LAMBDA, double ETA, double RESULT_ARRAY[]) This function computes an array of radial eigenfunctions L^{H3d}_l(\lambda, \eta) for 0 <= l <= lmax.  File: gsl-ref.info, Node: Logarithm and Related Functions, Next: Mathieu Functions, Prev: Legendre Functions and Spherical Harmonics, Up: Special Functions 7.25 Logarithm and Related Functions ==================================== Information on the properties of the Logarithm function can be found in Abramowitz & Stegun, Chapter 4. The functions described in this section are declared in the header file 'gsl_sf_log.h'. -- Function: double gsl_sf_log (double X) -- Function: int gsl_sf_log_e (double X, gsl_sf_result * RESULT) These routines compute the logarithm of X, \log(x), for x > 0. -- Function: double gsl_sf_log_abs (double X) -- Function: int gsl_sf_log_abs_e (double X, gsl_sf_result * RESULT) These routines compute the logarithm of the magnitude of X, \log(|x|), for x \ne 0. -- Function: int gsl_sf_complex_log_e (double ZR, double ZI, gsl_sf_result * LNR, gsl_sf_result * THETA) This routine computes the complex logarithm of z = z_r + i z_i. The results are returned as LNR, THETA such that \exp(lnr + i \theta) = z_r + i z_i, where \theta lies in the range [-\pi,\pi]. -- Function: double gsl_sf_log_1plusx (double X) -- Function: int gsl_sf_log_1plusx_e (double X, gsl_sf_result * RESULT) These routines compute \log(1 + x) for x > -1 using an algorithm that is accurate for small x. -- Function: double gsl_sf_log_1plusx_mx (double X) -- Function: int gsl_sf_log_1plusx_mx_e (double X, gsl_sf_result * RESULT) These routines compute \log(1 + x) - x for x > -1 using an algorithm that is accurate for small x.  File: gsl-ref.info, Node: Mathieu Functions, Next: Power Function, Prev: Logarithm and Related Functions, Up: Special Functions 7.26 Mathieu Functions ====================== The routines described in this section compute the angular and radial Mathieu functions, and their characteristic values. Mathieu functions are the solutions of the following two differential equations: d^2y/dv^2 + (a - 2q\cos 2v)y = 0 d^2f/du^2 - (a - 2q\cosh 2u)f = 0 The angular Mathieu functions ce_r(x,q), se_r(x,q) are the even and odd periodic solutions of the first equation, which is known as Mathieu's equation. These exist only for the discrete sequence of characteristic values a=a_r(q) (even-periodic) and a=b_r(q) (odd-periodic). The radial Mathieu functions Mc^{(j)}_{r}(z,q), Ms^{(j)}_{r}(z,q) are the solutions of the second equation, which is referred to as Mathieu's modified equation. The radial Mathieu functions of the first, second, third and fourth kind are denoted by the parameter j, which takes the value 1, 2, 3 or 4. For more information on the Mathieu functions, see Abramowitz and Stegun, Chapter 20. These functions are defined in the header file 'gsl_sf_mathieu.h'. * Menu: * Mathieu Function Workspace:: * Mathieu Function Characteristic Values:: * Angular Mathieu Functions:: * Radial Mathieu Functions::  File: gsl-ref.info, Node: Mathieu Function Workspace, Next: Mathieu Function Characteristic Values, Up: Mathieu Functions 7.26.1 Mathieu Function Workspace --------------------------------- The Mathieu functions can be computed for a single order or for multiple orders, using array-based routines. The array-based routines require a preallocated workspace. -- Function: gsl_sf_mathieu_workspace * gsl_sf_mathieu_alloc (size_t N, double QMAX) This function returns a workspace for the array versions of the Mathieu routines. The arguments N and QMAX specify the maximum order and q-value of Mathieu functions which can be computed with this workspace. -- Function: void gsl_sf_mathieu_free (gsl_sf_mathieu_workspace * WORK) This function frees the workspace WORK.  File: gsl-ref.info, Node: Mathieu Function Characteristic Values, Next: Angular Mathieu Functions, Prev: Mathieu Function Workspace, Up: Mathieu Functions 7.26.2 Mathieu Function Characteristic Values --------------------------------------------- -- Function: int gsl_sf_mathieu_a (int N, double Q, gsl_sf_result * RESULT) -- Function: int gsl_sf_mathieu_b (int N, double Q, gsl_sf_result * RESULT) These routines compute the characteristic values a_n(q), b_n(q) of the Mathieu functions ce_n(q,x) and se_n(q,x), respectively. -- Function: int gsl_sf_mathieu_a_array (int ORDER_MIN, int ORDER_MAX, double Q, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) -- Function: int gsl_sf_mathieu_b_array (int ORDER_MIN, int ORDER_MAX, double Q, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) These routines compute a series of Mathieu characteristic values a_n(q), b_n(q) for n from ORDER_MIN to ORDER_MAX inclusive, storing the results in the array RESULT_ARRAY.  File: gsl-ref.info, Node: Angular Mathieu Functions, Next: Radial Mathieu Functions, Prev: Mathieu Function Characteristic Values, Up: Mathieu Functions 7.26.3 Angular Mathieu Functions -------------------------------- -- Function: int gsl_sf_mathieu_ce (int N, double Q, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_mathieu_se (int N, double Q, double X, gsl_sf_result * RESULT) These routines compute the angular Mathieu functions ce_n(q,x) and se_n(q,x), respectively. -- Function: int gsl_sf_mathieu_ce_array (int NMIN, int NMAX, double Q, double X, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) -- Function: int gsl_sf_mathieu_se_array (int NMIN, int NMAX, double Q, double X, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) These routines compute a series of the angular Mathieu functions ce_n(q,x) and se_n(q,x) of order n from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY.  File: gsl-ref.info, Node: Radial Mathieu Functions, Prev: Angular Mathieu Functions, Up: Mathieu Functions 7.26.4 Radial Mathieu Functions ------------------------------- -- Function: int gsl_sf_mathieu_Mc (int J, int N, double Q, double X, gsl_sf_result * RESULT) -- Function: int gsl_sf_mathieu_Ms (int J, int N, double Q, double X, gsl_sf_result * RESULT) These routines compute the radial J-th kind Mathieu functions Mc_n^{(j)}(q,x) and Ms_n^{(j)}(q,x) of order N. The allowed values of J are 1 and 2. The functions for j = 3,4 can be computed as M_n^{(3)} = M_n^{(1)} + iM_n^{(2)} and M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}, where M_n^{(j)} = Mc_n^{(j)} or Ms_n^{(j)}. -- Function: int gsl_sf_mathieu_Mc_array (int J, int NMIN, int NMAX, double Q, double X, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) -- Function: int gsl_sf_mathieu_Ms_array (int J, int NMIN, int NMAX, double Q, double X, gsl_sf_mathieu_workspace * WORK, double RESULT_ARRAY[]) These routines compute a series of the radial Mathieu functions of kind J, with order from NMIN to NMAX inclusive, storing the results in the array RESULT_ARRAY.  File: gsl-ref.info, Node: Power Function, Next: Psi (Digamma) Function, Prev: Mathieu Functions, Up: Special Functions 7.27 Power Function =================== The following functions are equivalent to the function 'gsl_pow_int' (*note Small integer powers::) with an error estimate. These functions are declared in the header file 'gsl_sf_pow_int.h'. -- Function: double gsl_sf_pow_int (double X, int N) -- Function: int gsl_sf_pow_int_e (double X, int N, gsl_sf_result * RESULT) These routines compute the power x^n for integer N. The power is computed using the minimum number of multiplications. For example, x^8 is computed as ((x^2)^2)^2, requiring only 3 multiplications. For reasons of efficiency, these functions do not check for overflow or underflow conditions. #include /* compute 3.0**12 */ double y = gsl_sf_pow_int(3.0, 12);  File: gsl-ref.info, Node: Psi (Digamma) Function, Next: Synchrotron Functions, Prev: Power Function, Up: Special Functions 7.28 Psi (Digamma) Function =========================== The polygamma functions of order n are defined by \psi^{(n)}(x) = (d/dx)^n \psi(x) = (d/dx)^{n+1} \log(\Gamma(x)) where \psi(x) = \Gamma'(x)/\Gamma(x) is known as the digamma function. These functions are declared in the header file 'gsl_sf_psi.h'. * Menu: * Digamma Function:: * Trigamma Function:: * Polygamma Function::  File: gsl-ref.info, Node: Digamma Function, Next: Trigamma Function, Up: Psi (Digamma) Function 7.28.1 Digamma Function ----------------------- -- Function: double gsl_sf_psi_int (int N) -- Function: int gsl_sf_psi_int_e (int N, gsl_sf_result * RESULT) These routines compute the digamma function \psi(n) for positive integer N. The digamma function is also called the Psi function. -- Function: double gsl_sf_psi (double X) -- Function: int gsl_sf_psi_e (double X, gsl_sf_result * RESULT) These routines compute the digamma function \psi(x) for general x, x \ne 0. -- Function: double gsl_sf_psi_1piy (double Y) -- Function: int gsl_sf_psi_1piy_e (double Y, gsl_sf_result * RESULT) These routines compute the real part of the digamma function on the line 1+i y, \Re[\psi(1 + i y)].  File: gsl-ref.info, Node: Trigamma Function, Next: Polygamma Function, Prev: Digamma Function, Up: Psi (Digamma) Function 7.28.2 Trigamma Function ------------------------ -- Function: double gsl_sf_psi_1_int (int N) -- Function: int gsl_sf_psi_1_int_e (int N, gsl_sf_result * RESULT) These routines compute the Trigamma function \psi'(n) for positive integer n. -- Function: double gsl_sf_psi_1 (double X) -- Function: int gsl_sf_psi_1_e (double X, gsl_sf_result * RESULT) These routines compute the Trigamma function \psi'(x) for general x.  File: gsl-ref.info, Node: Polygamma Function, Prev: Trigamma Function, Up: Psi (Digamma) Function 7.28.3 Polygamma Function ------------------------- -- Function: double gsl_sf_psi_n (int N, double X) -- Function: int gsl_sf_psi_n_e (int N, double X, gsl_sf_result * RESULT) These routines compute the polygamma function \psi^{(n)}(x) for n >= 0, x > 0.  File: gsl-ref.info, Node: Synchrotron Functions, Next: Transport Functions, Prev: Psi (Digamma) Function, Up: Special Functions 7.29 Synchrotron Functions ========================== The functions described in this section are declared in the header file 'gsl_sf_synchrotron.h'. -- Function: double gsl_sf_synchrotron_1 (double X) -- Function: int gsl_sf_synchrotron_1_e (double X, gsl_sf_result * RESULT) These routines compute the first synchrotron function x \int_x^\infty dt K_{5/3}(t) for x >= 0. -- Function: double gsl_sf_synchrotron_2 (double X) -- Function: int gsl_sf_synchrotron_2_e (double X, gsl_sf_result * RESULT) These routines compute the second synchrotron function x K_{2/3}(x) for x >= 0.  File: gsl-ref.info, Node: Transport Functions, Next: Trigonometric Functions, Prev: Synchrotron Functions, Up: Special Functions 7.30 Transport Functions ======================== The transport functions J(n,x) are defined by the integral representations J(n,x) := \int_0^x dt t^n e^t /(e^t - 1)^2. They are declared in the header file 'gsl_sf_transport.h'. -- Function: double gsl_sf_transport_2 (double X) -- Function: int gsl_sf_transport_2_e (double X, gsl_sf_result * RESULT) These routines compute the transport function J(2,x). -- Function: double gsl_sf_transport_3 (double X) -- Function: int gsl_sf_transport_3_e (double X, gsl_sf_result * RESULT) These routines compute the transport function J(3,x). -- Function: double gsl_sf_transport_4 (double X) -- Function: int gsl_sf_transport_4_e (double X, gsl_sf_result * RESULT) These routines compute the transport function J(4,x). -- Function: double gsl_sf_transport_5 (double X) -- Function: int gsl_sf_transport_5_e (double X, gsl_sf_result * RESULT) These routines compute the transport function J(5,x).  File: gsl-ref.info, Node: Trigonometric Functions, Next: Zeta Functions, Prev: Transport Functions, Up: Special Functions 7.31 Trigonometric Functions ============================ The library includes its own trigonometric functions in order to provide consistency across platforms and reliable error estimates. These functions are declared in the header file 'gsl_sf_trig.h'. * Menu: * Circular Trigonometric Functions:: * Trigonometric Functions for Complex Arguments:: * Hyperbolic Trigonometric Functions:: * Conversion Functions:: * Restriction Functions:: * Trigonometric Functions With Error Estimates::  File: gsl-ref.info, Node: Circular Trigonometric Functions, Next: Trigonometric Functions for Complex Arguments, Up: Trigonometric Functions 7.31.1 Circular Trigonometric Functions --------------------------------------- -- Function: double gsl_sf_sin (double X) -- Function: int gsl_sf_sin_e (double X, gsl_sf_result * RESULT) These routines compute the sine function \sin(x). -- Function: double gsl_sf_cos (double X) -- Function: int gsl_sf_cos_e (double X, gsl_sf_result * RESULT) These routines compute the cosine function \cos(x). -- Function: double gsl_sf_hypot (double X, double Y) -- Function: int gsl_sf_hypot_e (double X, double Y, gsl_sf_result * RESULT) These routines compute the hypotenuse function \sqrt{x^2 + y^2} avoiding overflow and underflow. -- Function: double gsl_sf_sinc (double X) -- Function: int gsl_sf_sinc_e (double X, gsl_sf_result * RESULT) These routines compute \sinc(x) = \sin(\pi x) / (\pi x) for any value of X.  File: gsl-ref.info, Node: Trigonometric Functions for Complex Arguments, Next: Hyperbolic Trigonometric Functions, Prev: Circular Trigonometric Functions, Up: Trigonometric Functions 7.31.2 Trigonometric Functions for Complex Arguments ---------------------------------------------------- -- Function: int gsl_sf_complex_sin_e (double ZR, double ZI, gsl_sf_result * SZR, gsl_sf_result * SZI) This function computes the complex sine, \sin(z_r + i z_i) storing the real and imaginary parts in SZR, SZI. -- Function: int gsl_sf_complex_cos_e (double ZR, double ZI, gsl_sf_result * CZR, gsl_sf_result * CZI) This function computes the complex cosine, \cos(z_r + i z_i) storing the real and imaginary parts in CZR, CZI. -- Function: int gsl_sf_complex_logsin_e (double ZR, double ZI, gsl_sf_result * LSZR, gsl_sf_result * LSZI) This function computes the logarithm of the complex sine, \log(\sin(z_r + i z_i)) storing the real and imaginary parts in LSZR, LSZI.  File: gsl-ref.info, Node: Hyperbolic Trigonometric Functions, Next: Conversion Functions, Prev: Trigonometric Functions for Complex Arguments, Up: Trigonometric Functions 7.31.3 Hyperbolic Trigonometric Functions ----------------------------------------- -- Function: double gsl_sf_lnsinh (double X) -- Function: int gsl_sf_lnsinh_e (double X, gsl_sf_result * RESULT) These routines compute \log(\sinh(x)) for x > 0. -- Function: double gsl_sf_lncosh (double X) -- Function: int gsl_sf_lncosh_e (double X, gsl_sf_result * RESULT) These routines compute \log(\cosh(x)) for any X.  File: gsl-ref.info, Node: Conversion Functions, Next: Restriction Functions, Prev: Hyperbolic Trigonometric Functions, Up: Trigonometric Functions 7.31.4 Conversion Functions --------------------------- -- Function: int gsl_sf_polar_to_rect (double R, double THETA, gsl_sf_result * X, gsl_sf_result * Y); This function converts the polar coordinates (R,THETA) to rectilinear coordinates (X,Y), x = r\cos(\theta), y = r\sin(\theta). -- Function: int gsl_sf_rect_to_polar (double X, double Y, gsl_sf_result * R, gsl_sf_result * THETA) This function converts the rectilinear coordinates (X,Y) to polar coordinates (R,THETA), such that x = r\cos(\theta), y = r\sin(\theta). The argument THETA lies in the range [-\pi, \pi].  File: gsl-ref.info, Node: Restriction Functions, Next: Trigonometric Functions With Error Estimates, Prev: Conversion Functions, Up: Trigonometric Functions 7.31.5 Restriction Functions ---------------------------- -- Function: double gsl_sf_angle_restrict_symm (double THETA) -- Function: int gsl_sf_angle_restrict_symm_e (double * THETA) These routines force the angle THETA to lie in the range (-\pi,\pi]. Note that the mathematical value of \pi is slightly greater than 'M_PI', so the machine numbers 'M_PI' and '-M_PI' are included in the range. -- Function: double gsl_sf_angle_restrict_pos (double THETA) -- Function: int gsl_sf_angle_restrict_pos_e (double * THETA) These routines force the angle THETA to lie in the range [0, 2\pi). Note that the mathematical value of 2\pi is slightly greater than '2*M_PI', so the machine number '2*M_PI' is included in the range.  File: gsl-ref.info, Node: Trigonometric Functions With Error Estimates, Prev: Restriction Functions, Up: Trigonometric Functions 7.31.6 Trigonometric Functions With Error Estimates --------------------------------------------------- -- Function: int gsl_sf_sin_err_e (double X, double DX, gsl_sf_result * RESULT) This routine computes the sine of an angle X with an associated absolute error DX, \sin(x \pm dx). Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error. -- Function: int gsl_sf_cos_err_e (double X, double DX, gsl_sf_result * RESULT) This routine computes the cosine of an angle X with an associated absolute error DX, \cos(x \pm dx). Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error.  File: gsl-ref.info, Node: Zeta Functions, Next: Special Functions Examples, Prev: Trigonometric Functions, Up: Special Functions 7.32 Zeta Functions =================== The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The functions described in this section are declared in the header file 'gsl_sf_zeta.h'. * Menu: * Riemann Zeta Function:: * Riemann Zeta Function Minus One:: * Hurwitz Zeta Function:: * Eta Function::  File: gsl-ref.info, Node: Riemann Zeta Function, Next: Riemann Zeta Function Minus One, Up: Zeta Functions 7.32.1 Riemann Zeta Function ---------------------------- The Riemann zeta function is defined by the infinite sum \zeta(s) = \sum_{k=1}^\infty k^{-s}. -- Function: double gsl_sf_zeta_int (int N) -- Function: int gsl_sf_zeta_int_e (int N, gsl_sf_result * RESULT) These routines compute the Riemann zeta function \zeta(n) for integer N, n \ne 1. -- Function: double gsl_sf_zeta (double S) -- Function: int gsl_sf_zeta_e (double S, gsl_sf_result * RESULT) These routines compute the Riemann zeta function \zeta(s) for arbitrary S, s \ne 1.  File: gsl-ref.info, Node: Riemann Zeta Function Minus One, Next: Hurwitz Zeta Function, Prev: Riemann Zeta Function, Up: Zeta Functions 7.32.2 Riemann Zeta Function Minus One -------------------------------------- For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting, and therefore we need a function to evaluate it explicitly. -- Function: double gsl_sf_zetam1_int (int N) -- Function: int gsl_sf_zetam1_int_e (int N, gsl_sf_result * RESULT) These routines compute \zeta(n) - 1 for integer N, n \ne 1. -- Function: double gsl_sf_zetam1 (double S) -- Function: int gsl_sf_zetam1_e (double S, gsl_sf_result * RESULT) These routines compute \zeta(s) - 1 for arbitrary S, s \ne 1.  File: gsl-ref.info, Node: Hurwitz Zeta Function, Next: Eta Function, Prev: Riemann Zeta Function Minus One, Up: Zeta Functions 7.32.3 Hurwitz Zeta Function ---------------------------- The Hurwitz zeta function is defined by \zeta(s,q) = \sum_0^\infty (k+q)^{-s}. -- Function: double gsl_sf_hzeta (double S, double Q) -- Function: int gsl_sf_hzeta_e (double S, double Q, gsl_sf_result * RESULT) These routines compute the Hurwitz zeta function \zeta(s,q) for s > 1, q > 0.  File: gsl-ref.info, Node: Eta Function, Prev: Hurwitz Zeta Function, Up: Zeta Functions 7.32.4 Eta Function ------------------- The eta function is defined by \eta(s) = (1-2^{1-s}) \zeta(s). -- Function: double gsl_sf_eta_int (int N) -- Function: int gsl_sf_eta_int_e (int N, gsl_sf_result * RESULT) These routines compute the eta function \eta(n) for integer N. -- Function: double gsl_sf_eta (double S) -- Function: int gsl_sf_eta_e (double S, gsl_sf_result * RESULT) These routines compute the eta function \eta(s) for arbitrary S.  File: gsl-ref.info, Node: Special Functions Examples, Next: Special Functions References and Further Reading, Prev: Zeta Functions, Up: Special Functions 7.33 Examples ============= The following example demonstrates the use of the error handling form of the special functions, in this case to compute the Bessel function J_0(5.0), #include #include #include int main (void) { double x = 5.0; gsl_sf_result result; double expected = -0.17759677131433830434739701; int status = gsl_sf_bessel_J0_e (x, &result); printf ("status = %s\n", gsl_strerror(status)); printf ("J0(5.0) = %.18f\n" " +/- % .18f\n", result.val, result.err); printf ("exact = %.18f\n", expected); return status; } Here are the results of running the program, $ ./a.out status = success J0(5.0) = -0.177596771314338292 +/- 0.000000000000000193 exact = -0.177596771314338292 The next program computes the same quantity using the natural form of the function. In this case the error term RESULT.ERR and return status are not accessible. #include #include int main (void) { double x = 5.0; double expected = -0.17759677131433830434739701; double y = gsl_sf_bessel_J0 (x); printf ("J0(5.0) = %.18f\n", y); printf ("exact = %.18f\n", expected); return 0; } The results of the function are the same, $ ./a.out J0(5.0) = -0.177596771314338292 exact = -0.177596771314338292  File: gsl-ref.info, Node: Special Functions References and Further Reading, Prev: Special Functions Examples, Up: Special Functions 7.34 References and Further Reading =================================== The library follows the conventions of 'Abramowitz & Stegun' where possible, Abramowitz & Stegun (eds.), 'Handbook of Mathematical Functions' The following papers contain information on the algorithms used to compute the special functions, Allan J. MacLeod, MISCFUN: A software package to compute uncommon special functions. 'ACM Trans. Math. Soft.', vol. 22, 1996, 288-301 G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge University Press, 1944). G. Nemeth, Mathematical Approximations of Special Functions, Nova Science Publishers, ISBN 1-56072-052-2 B.C. Carlson, Special Functions of Applied Mathematics (1977) N. M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), ISBN 978-0471113133. W.J. Thompson, Atlas for Computing Mathematical Functions, John Wiley & Sons, New York (1997). Y.Y. Luke, Algorithms for the Computation of Mathematical Functions, Academic Press, New York (1977).  File: gsl-ref.info, Node: Vectors and Matrices, Next: Permutations, Prev: Special Functions, Up: Top 8 Vectors and Matrices ********************** The functions described in this chapter provide a simple vector and matrix interface to ordinary C arrays. The memory management of these arrays is implemented using a single underlying type, known as a block. By writing your functions in terms of vectors and matrices you can pass a single structure containing both data and dimensions as an argument without needing additional function parameters. The structures are compatible with the vector and matrix formats used by BLAS routines. * Menu: * Data types:: * Blocks:: * Vectors:: * Matrices:: * Vector and Matrix References and Further Reading::  File: gsl-ref.info, Node: Data types, Next: Blocks, Up: Vectors and Matrices 8.1 Data types ============== All the functions are available for each of the standard data-types. The versions for 'double' have the prefix 'gsl_block', 'gsl_vector' and 'gsl_matrix'. Similarly the versions for single-precision 'float' arrays have the prefix 'gsl_block_float', 'gsl_vector_float' and 'gsl_matrix_float'. The full list of available types is given below, gsl_block double gsl_block_float float gsl_block_long_double long double gsl_block_int int gsl_block_uint unsigned int gsl_block_long long gsl_block_ulong unsigned long gsl_block_short short gsl_block_ushort unsigned short gsl_block_char char gsl_block_uchar unsigned char gsl_block_complex complex double gsl_block_complex_float complex float gsl_block_complex_long_double complex long double Corresponding types exist for the 'gsl_vector' and 'gsl_matrix' functions.  File: gsl-ref.info, Node: Blocks, Next: Vectors, Prev: Data types, Up: Vectors and Matrices 8.2 Blocks ========== For consistency all memory is allocated through a 'gsl_block' structure. The structure contains two components, the size of an area of memory and a pointer to the memory. The 'gsl_block' structure looks like this, typedef struct { size_t size; double * data; } gsl_block; Vectors and matrices are made by "slicing" an underlying block. A slice is a set of elements formed from an initial offset and a combination of indices and step-sizes. In the case of a matrix the step-size for the column index represents the row-length. The step-size for a vector is known as the "stride". The functions for allocating and deallocating blocks are defined in 'gsl_block.h' * Menu: * Block allocation:: * Reading and writing blocks:: * Example programs for blocks::  File: gsl-ref.info, Node: Block allocation, Next: Reading and writing blocks, Up: Blocks 8.2.1 Block allocation ---------------------- The functions for allocating memory to a block follow the style of 'malloc' and 'free'. In addition they also perform their own error checking. If there is insufficient memory available to allocate a block then the functions call the GSL error handler (with an error number of 'GSL_ENOMEM') in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every 'alloc'. -- Function: gsl_block * gsl_block_alloc (size_t N) This function allocates memory for a block of N double-precision elements, returning a pointer to the block struct. The block is not initialized and so the values of its elements are undefined. Use the function 'gsl_block_calloc' if you want to ensure that all the elements are initialized to zero. A null pointer is returned if insufficient memory is available to create the block. -- Function: gsl_block * gsl_block_calloc (size_t N) This function allocates memory for a block and initializes all the elements of the block to zero. -- Function: void gsl_block_free (gsl_block * B) This function frees the memory used by a block B previously allocated with 'gsl_block_alloc' or 'gsl_block_calloc'.  File: gsl-ref.info, Node: Reading and writing blocks, Next: Example programs for blocks, Prev: Block allocation, Up: Blocks 8.2.2 Reading and writing blocks -------------------------------- The library provides functions for reading and writing blocks to a file as binary data or formatted text. -- Function: int gsl_block_fwrite (FILE * STREAM, const gsl_block * B) This function writes the elements of the block B to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_block_fread (FILE * STREAM, gsl_block * B) This function reads into the block B from the open stream STREAM in binary format. The block B must be preallocated with the correct length since the function uses the size of B to determine how many bytes to read. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_block_fprintf (FILE * STREAM, const gsl_block * B, const char * FORMAT) This function writes the elements of the block B line-by-line to the stream STREAM using the format specifier FORMAT, which should be one of the '%g', '%e' or '%f' formats for floating point numbers and '%d' for integers. The function returns 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_block_fscanf (FILE * STREAM, gsl_block * B) This function reads formatted data from the stream STREAM into the block B. The block B must be preallocated with the correct length since the function uses the size of B to determine how many numbers to read. The function returns 0 for success and 'GSL_EFAILED' if there was a problem reading from the file.  File: gsl-ref.info, Node: Example programs for blocks, Prev: Reading and writing blocks, Up: Blocks 8.2.3 Example programs for blocks --------------------------------- The following program shows how to allocate a block, #include #include int main (void) { gsl_block * b = gsl_block_alloc (100); printf ("length of block = %u\n", b->size); printf ("block data address = %#x\n", b->data); gsl_block_free (b); return 0; } Here is the output from the program, length of block = 100 block data address = 0x804b0d8  File: gsl-ref.info, Node: Vectors, Next: Matrices, Prev: Blocks, Up: Vectors and Matrices 8.3 Vectors =========== Vectors are defined by a 'gsl_vector' structure which describes a slice of a block. Different vectors can be created which point to the same block. A vector slice is a set of equally-spaced elements of an area of memory. The 'gsl_vector' structure contains five components, the "size", the "stride", a pointer to the memory where the elements are stored, DATA, a pointer to the block owned by the vector, BLOCK, if any, and an ownership flag, OWNER. The structure is very simple and looks like this, typedef struct { size_t size; size_t stride; double * data; gsl_block * block; int owner; } gsl_vector; The SIZE is simply the number of vector elements. The range of valid indices runs from 0 to 'size-1'. The STRIDE is the step-size from one element to the next in physical memory, measured in units of the appropriate datatype. The pointer DATA gives the location of the first element of the vector in memory. The pointer BLOCK stores the location of the memory block in which the vector elements are located (if any). If the vector owns this block then the OWNER field is set to one and the block will be deallocated when the vector is freed. If the vector points to a block owned by another object then the OWNER field is zero and any underlying block will not be deallocated with the vector. The functions for allocating and accessing vectors are defined in 'gsl_vector.h' * Menu: * Vector allocation:: * Accessing vector elements:: * Initializing vector elements:: * Reading and writing vectors:: * Vector views:: * Copying vectors:: * Exchanging elements:: * Vector operations:: * Finding maximum and minimum elements of vectors:: * Vector properties:: * Example programs for vectors::  File: gsl-ref.info, Node: Vector allocation, Next: Accessing vector elements, Up: Vectors 8.3.1 Vector allocation ----------------------- The functions for allocating memory to a vector follow the style of 'malloc' and 'free'. In addition they also perform their own error checking. If there is insufficient memory available to allocate a vector then the functions call the GSL error handler (with an error number of 'GSL_ENOMEM') in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every 'alloc'. -- Function: gsl_vector * gsl_vector_alloc (size_t N) This function creates a vector of length N, returning a pointer to a newly initialized vector struct. A new block is allocated for the elements of the vector, and stored in the BLOCK component of the vector struct. The block is "owned" by the vector, and will be deallocated when the vector is deallocated. -- Function: gsl_vector * gsl_vector_calloc (size_t N) This function allocates memory for a vector of length N and initializes all the elements of the vector to zero. -- Function: void gsl_vector_free (gsl_vector * V) This function frees a previously allocated vector V. If the vector was created using 'gsl_vector_alloc' then the block underlying the vector will also be deallocated. If the vector has been created from another object then the memory is still owned by that object and will not be deallocated.  File: gsl-ref.info, Node: Accessing vector elements, Next: Initializing vector elements, Prev: Vector allocation, Up: Vectors 8.3.2 Accessing vector elements ------------------------------- Unlike FORTRAN compilers, C compilers do not usually provide support for range checking of vectors and matrices.(1) The functions 'gsl_vector_get' and 'gsl_vector_set' can perform portable range checking for you and report an error if you attempt to access elements outside the allowed range. The functions for accessing the elements of a vector or matrix are defined in 'gsl_vector.h' and declared 'extern inline' to eliminate function-call overhead. You must compile your program with the preprocessor macro 'HAVE_INLINE' defined to use these functions. If necessary you can turn off range checking completely without modifying any source files by recompiling your program with the preprocessor definition 'GSL_RANGE_CHECK_OFF'. Provided your compiler supports inline functions the effect of turning off range checking is to replace calls to 'gsl_vector_get(v,i)' by 'v->data[i*v->stride]' and calls to 'gsl_vector_set(v,i,x)' by 'v->data[i*v->stride]=x'. Thus there should be no performance penalty for using the range checking functions when range checking is turned off. If you use a C99 compiler which requires inline functions in header files to be declared 'inline' instead of 'extern inline', define the macro 'GSL_C99_INLINE' (*note Inline functions::). With GCC this is selected automatically when compiling in C99 mode ('-std=c99'). If inline functions are not used, calls to the functions 'gsl_vector_get' and 'gsl_vector_set' will link to the compiled versions of these functions in the library itself. The range checking in these functions is controlled by the global integer variable 'gsl_check_range'. It is enabled by default--to disable it, set 'gsl_check_range' to zero. Due to function-call overhead, there is less benefit in disabling range checking here than for inline functions. -- Function: double gsl_vector_get (const gsl_vector * V, size_t I) This function returns the I-th element of a vector V. If I lies outside the allowed range of 0 to N-1 then the error handler is invoked and 0 is returned. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: void gsl_vector_set (gsl_vector * V, size_t I, double X) This function sets the value of the I-th element of a vector V to X. If I lies outside the allowed range of 0 to N-1 then the error handler is invoked. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: double * gsl_vector_ptr (gsl_vector * V, size_t I) -- Function: const double * gsl_vector_const_ptr (const gsl_vector * V, size_t I) These functions return a pointer to the I-th element of a vector V. If I lies outside the allowed range of 0 to N-1 then the error handler is invoked and a null pointer is returned. Inline versions of these functions are used when 'HAVE_INLINE' is defined. ---------- Footnotes ---------- (1) Range checking is available in the GNU C Compiler bounds-checking extension, but it is not part of the default installation of GCC. Memory accesses can also be checked with Valgrind or the 'gcc -fmudflap' memory protection option.  File: gsl-ref.info, Node: Initializing vector elements, Next: Reading and writing vectors, Prev: Accessing vector elements, Up: Vectors 8.3.3 Initializing vector elements ---------------------------------- -- Function: void gsl_vector_set_all (gsl_vector * V, double X) This function sets all the elements of the vector V to the value X. -- Function: void gsl_vector_set_zero (gsl_vector * V) This function sets all the elements of the vector V to zero. -- Function: int gsl_vector_set_basis (gsl_vector * V, size_t I) This function makes a basis vector by setting all the elements of the vector V to zero except for the I-th element which is set to one.  File: gsl-ref.info, Node: Reading and writing vectors, Next: Vector views, Prev: Initializing vector elements, Up: Vectors 8.3.4 Reading and writing vectors --------------------------------- The library provides functions for reading and writing vectors to a file as binary data or formatted text. -- Function: int gsl_vector_fwrite (FILE * STREAM, const gsl_vector * V) This function writes the elements of the vector V to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_vector_fread (FILE * STREAM, gsl_vector * V) This function reads into the vector V from the open stream STREAM in binary format. The vector V must be preallocated with the correct length since the function uses the size of V to determine how many bytes to read. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_vector_fprintf (FILE * STREAM, const gsl_vector * V, const char * FORMAT) This function writes the elements of the vector V line-by-line to the stream STREAM using the format specifier FORMAT, which should be one of the '%g', '%e' or '%f' formats for floating point numbers and '%d' for integers. The function returns 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_vector_fscanf (FILE * STREAM, gsl_vector * V) This function reads formatted data from the stream STREAM into the vector V. The vector V must be preallocated with the correct length since the function uses the size of V to determine how many numbers to read. The function returns 0 for success and 'GSL_EFAILED' if there was a problem reading from the file.  File: gsl-ref.info, Node: Vector views, Next: Copying vectors, Prev: Reading and writing vectors, Up: Vectors 8.3.5 Vector views ------------------ In addition to creating vectors from slices of blocks it is also possible to slice vectors and create vector views. For example, a subvector of another vector can be described with a view, or two views can be made which provide access to the even and odd elements of a vector. A vector view is a temporary object, stored on the stack, which can be used to operate on a subset of vector elements. Vector views can be defined for both constant and non-constant vectors, using separate types that preserve constness. A vector view has the type 'gsl_vector_view' and a constant vector view has the type 'gsl_vector_const_view'. In both cases the elements of the view can be accessed as a 'gsl_vector' using the 'vector' component of the view object. A pointer to a vector of type 'gsl_vector *' or 'const gsl_vector *' can be obtained by taking the address of this component with the '&' operator. When using this pointer it is important to ensure that the view itself remains in scope--the simplest way to do so is by always writing the pointer as '&'VIEW'.vector', and never storing this value in another variable. -- Function: gsl_vector_view gsl_vector_subvector (gsl_vector * V, size_t OFFSET, size_t N) -- Function: gsl_vector_const_view gsl_vector_const_subvector (const gsl_vector * V, size_t OFFSET, size_t N) These functions return a vector view of a subvector of another vector V. The start of the new vector is offset by OFFSET elements from the start of the original vector. The new vector has N elements. Mathematically, the I-th element of the new vector V' is given by, v'(i) = v->data[(offset + i)*v->stride] where the index I runs from 0 to 'n-1'. The 'data' pointer of the returned vector struct is set to null if the combined parameters (OFFSET,N) overrun the end of the original vector. The new vector is only a view of the block underlying the original vector, V. The block containing the elements of V is not owned by the new vector. When the view goes out of scope the original vector V and its block will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function 'gsl_vector_const_subvector' is equivalent to 'gsl_vector_subvector' but can be used for vectors which are declared 'const'. -- Function: gsl_vector_view gsl_vector_subvector_with_stride (gsl_vector * V, size_t OFFSET, size_t STRIDE, size_t N) -- Function: gsl_vector_const_view gsl_vector_const_subvector_with_stride (const gsl_vector * V, size_t OFFSET, size_t STRIDE, size_t N) These functions return a vector view of a subvector of another vector V with an additional stride argument. The subvector is formed in the same way as for 'gsl_vector_subvector' but the new vector has N elements with a step-size of STRIDE from one element to the next in the original vector. Mathematically, the I-th element of the new vector V' is given by, v'(i) = v->data[(offset + i*stride)*v->stride] where the index I runs from 0 to 'n-1'. Note that subvector views give direct access to the underlying elements of the original vector. For example, the following code will zero the even elements of the vector 'v' of length 'n', while leaving the odd elements untouched, gsl_vector_view v_even = gsl_vector_subvector_with_stride (v, 0, 2, n/2); gsl_vector_set_zero (&v_even.vector); A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using '&'VIEW'.vector'. For example, the following code computes the norm of the odd elements of 'v' using the BLAS routine DNRM2, gsl_vector_view v_odd = gsl_vector_subvector_with_stride (v, 1, 2, n/2); double r = gsl_blas_dnrm2 (&v_odd.vector); The function 'gsl_vector_const_subvector_with_stride' is equivalent to 'gsl_vector_subvector_with_stride' but can be used for vectors which are declared 'const'. -- Function: gsl_vector_view gsl_vector_complex_real (gsl_vector_complex * V) -- Function: gsl_vector_const_view gsl_vector_complex_const_real (const gsl_vector_complex * V) These functions return a vector view of the real parts of the complex vector V. The function 'gsl_vector_complex_const_real' is equivalent to 'gsl_vector_complex_real' but can be used for vectors which are declared 'const'. -- Function: gsl_vector_view gsl_vector_complex_imag (gsl_vector_complex * V) -- Function: gsl_vector_const_view gsl_vector_complex_const_imag (const gsl_vector_complex * V) These functions return a vector view of the imaginary parts of the complex vector V. The function 'gsl_vector_complex_const_imag' is equivalent to 'gsl_vector_complex_imag' but can be used for vectors which are declared 'const'. -- Function: gsl_vector_view gsl_vector_view_array (double * BASE, size_t N) -- Function: gsl_vector_const_view gsl_vector_const_view_array (const double * BASE, size_t N) These functions return a vector view of an array. The start of the new vector is given by BASE and has N elements. Mathematically, the I-th element of the new vector V' is given by, v'(i) = base[i] where the index I runs from 0 to 'n-1'. The array containing the elements of V is not owned by the new vector view. When the view goes out of scope the original array will continue to exist. The original memory can only be deallocated by freeing the original pointer BASE. Of course, the original array should not be deallocated while the view is still in use. The function 'gsl_vector_const_view_array' is equivalent to 'gsl_vector_view_array' but can be used for arrays which are declared 'const'. -- Function: gsl_vector_view gsl_vector_view_array_with_stride (double * BASE, size_t STRIDE, size_t N) -- Function: gsl_vector_const_view gsl_vector_const_view_array_with_stride (const double * BASE, size_t STRIDE, size_t N) These functions return a vector view of an array BASE with an additional stride argument. The subvector is formed in the same way as for 'gsl_vector_view_array' but the new vector has N elements with a step-size of STRIDE from one element to the next in the original array. Mathematically, the I-th element of the new vector V' is given by, v'(i) = base[i*stride] where the index I runs from 0 to 'n-1'. Note that the view gives direct access to the underlying elements of the original array. A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using '&'VIEW'.vector'. The function 'gsl_vector_const_view_array_with_stride' is equivalent to 'gsl_vector_view_array_with_stride' but can be used for arrays which are declared 'const'.  File: gsl-ref.info, Node: Copying vectors, Next: Exchanging elements, Prev: Vector views, Up: Vectors 8.3.6 Copying vectors --------------------- Common operations on vectors such as addition and multiplication are available in the BLAS part of the library (*note BLAS Support::). However, it is useful to have a small number of utility functions which do not require the full BLAS code. The following functions fall into this category. -- Function: int gsl_vector_memcpy (gsl_vector * DEST, const gsl_vector * SRC) This function copies the elements of the vector SRC into the vector DEST. The two vectors must have the same length. -- Function: int gsl_vector_swap (gsl_vector * V, gsl_vector * W) This function exchanges the elements of the vectors V and W by copying. The two vectors must have the same length.  File: gsl-ref.info, Node: Exchanging elements, Next: Vector operations, Prev: Copying vectors, Up: Vectors 8.3.7 Exchanging elements ------------------------- The following function can be used to exchange, or permute, the elements of a vector. -- Function: int gsl_vector_swap_elements (gsl_vector * V, size_t I, size_t J) This function exchanges the I-th and J-th elements of the vector V in-place. -- Function: int gsl_vector_reverse (gsl_vector * V) This function reverses the order of the elements of the vector V.  File: gsl-ref.info, Node: Vector operations, Next: Finding maximum and minimum elements of vectors, Prev: Exchanging elements, Up: Vectors 8.3.8 Vector operations ----------------------- -- Function: int gsl_vector_add (gsl_vector * A, const gsl_vector * B) This function adds the elements of vector B to the elements of vector A. The result a_i \leftarrow a_i + b_i is stored in A and B remains unchanged. The two vectors must have the same length. -- Function: int gsl_vector_sub (gsl_vector * A, const gsl_vector * B) This function subtracts the elements of vector B from the elements of vector A. The result a_i \leftarrow a_i - b_i is stored in A and B remains unchanged. The two vectors must have the same length. -- Function: int gsl_vector_mul (gsl_vector * A, const gsl_vector * B) This function multiplies the elements of vector A by the elements of vector B. The result a_i \leftarrow a_i * b_i is stored in A and B remains unchanged. The two vectors must have the same length. -- Function: int gsl_vector_div (gsl_vector * A, const gsl_vector * B) This function divides the elements of vector A by the elements of vector B. The result a_i \leftarrow a_i / b_i is stored in A and B remains unchanged. The two vectors must have the same length. -- Function: int gsl_vector_scale (gsl_vector * A, const double X) This function multiplies the elements of vector A by the constant factor X. The result a_i \leftarrow x a_i is stored in A. -- Function: int gsl_vector_add_constant (gsl_vector * A, const double X) This function adds the constant value X to the elements of the vector A. The result a_i \leftarrow a_i + x is stored in A.  File: gsl-ref.info, Node: Finding maximum and minimum elements of vectors, Next: Vector properties, Prev: Vector operations, Up: Vectors 8.3.9 Finding maximum and minimum elements of vectors ----------------------------------------------------- The following operations are only defined for real vectors. -- Function: double gsl_vector_max (const gsl_vector * V) This function returns the maximum value in the vector V. -- Function: double gsl_vector_min (const gsl_vector * V) This function returns the minimum value in the vector V. -- Function: void gsl_vector_minmax (const gsl_vector * V, double * MIN_OUT, double * MAX_OUT) This function returns the minimum and maximum values in the vector V, storing them in MIN_OUT and MAX_OUT. -- Function: size_t gsl_vector_max_index (const gsl_vector * V) This function returns the index of the maximum value in the vector V. When there are several equal maximum elements then the lowest index is returned. -- Function: size_t gsl_vector_min_index (const gsl_vector * V) This function returns the index of the minimum value in the vector V. When there are several equal minimum elements then the lowest index is returned. -- Function: void gsl_vector_minmax_index (const gsl_vector * V, size_t * IMIN, size_t * IMAX) This function returns the indices of the minimum and maximum values in the vector V, storing them in IMIN and IMAX. When there are several equal minimum or maximum elements then the lowest indices are returned.  File: gsl-ref.info, Node: Vector properties, Next: Example programs for vectors, Prev: Finding maximum and minimum elements of vectors, Up: Vectors 8.3.10 Vector properties ------------------------ The following functions are defined for real and complex vectors. For complex vectors both the real and imaginary parts must satisfy the conditions. -- Function: int gsl_vector_isnull (const gsl_vector * V) -- Function: int gsl_vector_ispos (const gsl_vector * V) -- Function: int gsl_vector_isneg (const gsl_vector * V) -- Function: int gsl_vector_isnonneg (const gsl_vector * V) These functions return 1 if all the elements of the vector V are zero, strictly positive, strictly negative, or non-negative respectively, and 0 otherwise. -- Function: int gsl_vector_equal (const gsl_vector * U, const gsl_vector * V) This function returns 1 if the vectors U and V are equal (by comparison of element values) and 0 otherwise.  File: gsl-ref.info, Node: Example programs for vectors, Prev: Vector properties, Up: Vectors 8.3.11 Example programs for vectors ----------------------------------- This program shows how to allocate, initialize and read from a vector using the functions 'gsl_vector_alloc', 'gsl_vector_set' and 'gsl_vector_get'. #include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (3); for (i = 0; i < 3; i++) { gsl_vector_set (v, i, 1.23 + i); } for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */ { printf ("v_%d = %g\n", i, gsl_vector_get (v, i)); } gsl_vector_free (v); return 0; } Here is the output from the program. The final loop attempts to read outside the range of the vector 'v', and the error is trapped by the range-checking code in 'gsl_vector_get'. $ ./a.out v_0 = 1.23 v_1 = 2.23 v_2 = 3.23 gsl: vector_source.c:12: ERROR: index out of range Default GSL error handler invoked. Aborted (core dumped) The next program shows how to write a vector to a file. #include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (100); for (i = 0; i < 100; i++) { gsl_vector_set (v, i, 1.23 + i); } { FILE * f = fopen ("test.dat", "w"); gsl_vector_fprintf (f, v, "%.5g"); fclose (f); } gsl_vector_free (v); return 0; } After running this program the file 'test.dat' should contain the elements of 'v', written using the format specifier '%.5g'. The vector could then be read back in using the function 'gsl_vector_fscanf (f, v)' as follows: #include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (10); { FILE * f = fopen ("test.dat", "r"); gsl_vector_fscanf (f, v); fclose (f); } for (i = 0; i < 10; i++) { printf ("%g\n", gsl_vector_get(v, i)); } gsl_vector_free (v); return 0; }  File: gsl-ref.info, Node: Matrices, Next: Vector and Matrix References and Further Reading, Prev: Vectors, Up: Vectors and Matrices 8.4 Matrices ============ Matrices are defined by a 'gsl_matrix' structure which describes a generalized slice of a block. Like a vector it represents a set of elements in an area of memory, but uses two indices instead of one. The 'gsl_matrix' structure contains six components, the two dimensions of the matrix, a physical dimension, a pointer to the memory where the elements of the matrix are stored, DATA, a pointer to the block owned by the matrix BLOCK, if any, and an ownership flag, OWNER. The physical dimension determines the memory layout and can differ from the matrix dimension to allow the use of submatrices. The 'gsl_matrix' structure is very simple and looks like this, typedef struct { size_t size1; size_t size2; size_t tda; double * data; gsl_block * block; int owner; } gsl_matrix; Matrices are stored in row-major order, meaning that each row of elements forms a contiguous block in memory. This is the standard "C-language ordering" of two-dimensional arrays. Note that FORTRAN stores arrays in column-major order. The number of rows is SIZE1. The range of valid row indices runs from 0 to 'size1-1'. Similarly SIZE2 is the number of columns. The range of valid column indices runs from 0 to 'size2-1'. The physical row dimension TDA, or "trailing dimension", specifies the size of a row of the matrix as laid out in memory. For example, in the following matrix SIZE1 is 3, SIZE2 is 4, and TDA is 8. The physical memory layout of the matrix begins in the top left hand-corner and proceeds from left to right along each row in turn. 00 01 02 03 XX XX XX XX 10 11 12 13 XX XX XX XX 20 21 22 23 XX XX XX XX Each unused memory location is represented by "'XX'". The pointer DATA gives the location of the first element of the matrix in memory. The pointer BLOCK stores the location of the memory block in which the elements of the matrix are located (if any). If the matrix owns this block then the OWNER field is set to one and the block will be deallocated when the matrix is freed. If the matrix is only a slice of a block owned by another object then the OWNER field is zero and any underlying block will not be freed. The functions for allocating and accessing matrices are defined in 'gsl_matrix.h' * Menu: * Matrix allocation:: * Accessing matrix elements:: * Initializing matrix elements:: * Reading and writing matrices:: * Matrix views:: * Creating row and column views:: * Copying matrices:: * Copying rows and columns:: * Exchanging rows and columns:: * Matrix operations:: * Finding maximum and minimum elements of matrices:: * Matrix properties:: * Example programs for matrices::  File: gsl-ref.info, Node: Matrix allocation, Next: Accessing matrix elements, Up: Matrices 8.4.1 Matrix allocation ----------------------- The functions for allocating memory to a matrix follow the style of 'malloc' and 'free'. They also perform their own error checking. If there is insufficient memory available to allocate a matrix then the functions call the GSL error handler (with an error number of 'GSL_ENOMEM') in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every 'alloc'. -- Function: gsl_matrix * gsl_matrix_alloc (size_t N1, size_t N2) This function creates a matrix of size N1 rows by N2 columns, returning a pointer to a newly initialized matrix struct. A new block is allocated for the elements of the matrix, and stored in the BLOCK component of the matrix struct. The block is "owned" by the matrix, and will be deallocated when the matrix is deallocated. -- Function: gsl_matrix * gsl_matrix_calloc (size_t N1, size_t N2) This function allocates memory for a matrix of size N1 rows by N2 columns and initializes all the elements of the matrix to zero. -- Function: void gsl_matrix_free (gsl_matrix * M) This function frees a previously allocated matrix M. If the matrix was created using 'gsl_matrix_alloc' then the block underlying the matrix will also be deallocated. If the matrix has been created from another object then the memory is still owned by that object and will not be deallocated.  File: gsl-ref.info, Node: Accessing matrix elements, Next: Initializing matrix elements, Prev: Matrix allocation, Up: Matrices 8.4.2 Accessing matrix elements ------------------------------- The functions for accessing the elements of a matrix use the same range checking system as vectors. You can turn off range checking by recompiling your program with the preprocessor definition 'GSL_RANGE_CHECK_OFF'. The elements of the matrix are stored in "C-order", where the second index moves continuously through memory. More precisely, the element accessed by the function 'gsl_matrix_get(m,i,j)' and 'gsl_matrix_set(m,i,j,x)' is m->data[i * m->tda + j] where TDA is the physical row-length of the matrix. -- Function: double gsl_matrix_get (const gsl_matrix * M, size_t I, size_t J) This function returns the (i,j)-th element of a matrix M. If I or J lie outside the allowed range of 0 to N1-1 and 0 to N2-1 then the error handler is invoked and 0 is returned. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: void gsl_matrix_set (gsl_matrix * M, size_t I, size_t J, double X) This function sets the value of the (i,j)-th element of a matrix M to X. If I or J lies outside the allowed range of 0 to N1-1 and 0 to N2-1 then the error handler is invoked. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: double * gsl_matrix_ptr (gsl_matrix * M, size_t I, size_t J) -- Function: const double * gsl_matrix_const_ptr (const gsl_matrix * M, size_t I, size_t J) These functions return a pointer to the (i,j)-th element of a matrix M. If I or J lie outside the allowed range of 0 to N1-1 and 0 to N2-1 then the error handler is invoked and a null pointer is returned. Inline versions of these functions are used when 'HAVE_INLINE' is defined.  File: gsl-ref.info, Node: Initializing matrix elements, Next: Reading and writing matrices, Prev: Accessing matrix elements, Up: Matrices 8.4.3 Initializing matrix elements ---------------------------------- -- Function: void gsl_matrix_set_all (gsl_matrix * M, double X) This function sets all the elements of the matrix M to the value X. -- Function: void gsl_matrix_set_zero (gsl_matrix * M) This function sets all the elements of the matrix M to zero. -- Function: void gsl_matrix_set_identity (gsl_matrix * M) This function sets the elements of the matrix M to the corresponding elements of the identity matrix, m(i,j) = \delta(i,j), i.e. a unit diagonal with all off-diagonal elements zero. This applies to both square and rectangular matrices.  File: gsl-ref.info, Node: Reading and writing matrices, Next: Matrix views, Prev: Initializing matrix elements, Up: Matrices 8.4.4 Reading and writing matrices ---------------------------------- The library provides functions for reading and writing matrices to a file as binary data or formatted text. -- Function: int gsl_matrix_fwrite (FILE * STREAM, const gsl_matrix * M) This function writes the elements of the matrix M to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_matrix_fread (FILE * STREAM, gsl_matrix * M) This function reads into the matrix M from the open stream STREAM in binary format. The matrix M must be preallocated with the correct dimensions since the function uses the size of M to determine how many bytes to read. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_matrix_fprintf (FILE * STREAM, const gsl_matrix * M, const char * FORMAT) This function writes the elements of the matrix M line-by-line to the stream STREAM using the format specifier FORMAT, which should be one of the '%g', '%e' or '%f' formats for floating point numbers and '%d' for integers. The function returns 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_matrix_fscanf (FILE * STREAM, gsl_matrix * M) This function reads formatted data from the stream STREAM into the matrix M. The matrix M must be preallocated with the correct dimensions since the function uses the size of M to determine how many numbers to read. The function returns 0 for success and 'GSL_EFAILED' if there was a problem reading from the file.  File: gsl-ref.info, Node: Matrix views, Next: Creating row and column views, Prev: Reading and writing matrices, Up: Matrices 8.4.5 Matrix views ------------------ A matrix view is a temporary object, stored on the stack, which can be used to operate on a subset of matrix elements. Matrix views can be defined for both constant and non-constant matrices using separate types that preserve constness. A matrix view has the type 'gsl_matrix_view' and a constant matrix view has the type 'gsl_matrix_const_view'. In both cases the elements of the view can by accessed using the 'matrix' component of the view object. A pointer 'gsl_matrix *' or 'const gsl_matrix *' can be obtained by taking the address of the 'matrix' component with the '&' operator. In addition to matrix views it is also possible to create vector views of a matrix, such as row or column views. -- Function: gsl_matrix_view gsl_matrix_submatrix (gsl_matrix * M, size_t K1, size_t K2, size_t N1, size_t N2) -- Function: gsl_matrix_const_view gsl_matrix_const_submatrix (const gsl_matrix * M, size_t K1, size_t K2, size_t N1, size_t N2) These functions return a matrix view of a submatrix of the matrix M. The upper-left element of the submatrix is the element (K1,K2) of the original matrix. The submatrix has N1 rows and N2 columns. The physical number of columns in memory given by TDA is unchanged. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = m->data[(k1*m->tda + k2) + i*m->tda + j] where the index I runs from 0 to 'n1-1' and the index J runs from 0 to 'n2-1'. The 'data' pointer of the returned matrix struct is set to null if the combined parameters (I,J,N1,N2,TDA) overrun the ends of the original matrix. The new matrix view is only a view of the block underlying the existing matrix, M. The block containing the elements of M is not owned by the new matrix view. When the view goes out of scope the original matrix M and its block will continue to exist. The original memory can only be deallocated by freeing the original matrix. Of course, the original matrix should not be deallocated while the view is still in use. The function 'gsl_matrix_const_submatrix' is equivalent to 'gsl_matrix_submatrix' but can be used for matrices which are declared 'const'. -- Function: gsl_matrix_view gsl_matrix_view_array (double * BASE, size_t N1, size_t N2) -- Function: gsl_matrix_const_view gsl_matrix_const_view_array (const double * BASE, size_t N1, size_t N2) These functions return a matrix view of the array BASE. The matrix has N1 rows and N2 columns. The physical number of columns in memory is also given by N2. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = base[i*n2 + j] where the index I runs from 0 to 'n1-1' and the index J runs from 0 to 'n2-1'. The new matrix is only a view of the array BASE. When the view goes out of scope the original array BASE will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use. The function 'gsl_matrix_const_view_array' is equivalent to 'gsl_matrix_view_array' but can be used for matrices which are declared 'const'. -- Function: gsl_matrix_view gsl_matrix_view_array_with_tda (double * BASE, size_t N1, size_t N2, size_t TDA) -- Function: gsl_matrix_const_view gsl_matrix_const_view_array_with_tda (const double * BASE, size_t N1, size_t N2, size_t TDA) These functions return a matrix view of the array BASE with a physical number of columns TDA which may differ from the corresponding dimension of the matrix. The matrix has N1 rows and N2 columns, and the physical number of columns in memory is given by TDA. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = base[i*tda + j] where the index I runs from 0 to 'n1-1' and the index J runs from 0 to 'n2-1'. The new matrix is only a view of the array BASE. When the view goes out of scope the original array BASE will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use. The function 'gsl_matrix_const_view_array_with_tda' is equivalent to 'gsl_matrix_view_array_with_tda' but can be used for matrices which are declared 'const'. -- Function: gsl_matrix_view gsl_matrix_view_vector (gsl_vector * V, size_t N1, size_t N2) -- Function: gsl_matrix_const_view gsl_matrix_const_view_vector (const gsl_vector * V, size_t N1, size_t N2) These functions return a matrix view of the vector V. The matrix has N1 rows and N2 columns. The vector must have unit stride. The physical number of columns in memory is also given by N2. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = v->data[i*n2 + j] where the index I runs from 0 to 'n1-1' and the index J runs from 0 to 'n2-1'. The new matrix is only a view of the vector V. When the view goes out of scope the original vector V will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function 'gsl_matrix_const_view_vector' is equivalent to 'gsl_matrix_view_vector' but can be used for matrices which are declared 'const'. -- Function: gsl_matrix_view gsl_matrix_view_vector_with_tda (gsl_vector * V, size_t N1, size_t N2, size_t TDA) -- Function: gsl_matrix_const_view gsl_matrix_const_view_vector_with_tda (const gsl_vector * V, size_t N1, size_t N2, size_t TDA) These functions return a matrix view of the vector V with a physical number of columns TDA which may differ from the corresponding matrix dimension. The vector must have unit stride. The matrix has N1 rows and N2 columns, and the physical number of columns in memory is given by TDA. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = v->data[i*tda + j] where the index I runs from 0 to 'n1-1' and the index J runs from 0 to 'n2-1'. The new matrix is only a view of the vector V. When the view goes out of scope the original vector V will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function 'gsl_matrix_const_view_vector_with_tda' is equivalent to 'gsl_matrix_view_vector_with_tda' but can be used for matrices which are declared 'const'.  File: gsl-ref.info, Node: Creating row and column views, Next: Copying matrices, Prev: Matrix views, Up: Matrices 8.4.6 Creating row and column views ----------------------------------- In general there are two ways to access an object, by reference or by copying. The functions described in this section create vector views which allow access to a row or column of a matrix by reference. Modifying elements of the view is equivalent to modifying the matrix, since both the vector view and the matrix point to the same memory block. -- Function: gsl_vector_view gsl_matrix_row (gsl_matrix * M, size_t I) -- Function: gsl_vector_const_view gsl_matrix_const_row (const gsl_matrix * M, size_t I) These functions return a vector view of the I-th row of the matrix M. The 'data' pointer of the new vector is set to null if I is out of range. The function 'gsl_vector_const_row' is equivalent to 'gsl_matrix_row' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_column (gsl_matrix * M, size_t J) -- Function: gsl_vector_const_view gsl_matrix_const_column (const gsl_matrix * M, size_t J) These functions return a vector view of the J-th column of the matrix M. The 'data' pointer of the new vector is set to null if J is out of range. The function 'gsl_vector_const_column' is equivalent to 'gsl_matrix_column' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_subrow (gsl_matrix * M, size_t I, size_t OFFSET, size_t N) -- Function: gsl_vector_const_view gsl_matrix_const_subrow (const gsl_matrix * M, size_t I, size_t OFFSET, size_t N) These functions return a vector view of the I-th row of the matrix M beginning at OFFSET elements past the first column and containing N elements. The 'data' pointer of the new vector is set to null if I, OFFSET, or N are out of range. The function 'gsl_vector_const_subrow' is equivalent to 'gsl_matrix_subrow' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_subcolumn (gsl_matrix * M, size_t J, size_t OFFSET, size_t N) -- Function: gsl_vector_const_view gsl_matrix_const_subcolumn (const gsl_matrix * M, size_t J, size_t OFFSET, size_t N) These functions return a vector view of the J-th column of the matrix M beginning at OFFSET elements past the first row and containing N elements. The 'data' pointer of the new vector is set to null if J, OFFSET, or N are out of range. The function 'gsl_vector_const_subcolumn' is equivalent to 'gsl_matrix_subcolumn' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_diagonal (gsl_matrix * M) -- Function: gsl_vector_const_view gsl_matrix_const_diagonal (const gsl_matrix * M) These functions return a vector view of the diagonal of the matrix M. The matrix M is not required to be square. For a rectangular matrix the length of the diagonal is the same as the smaller dimension of the matrix. The function 'gsl_matrix_const_diagonal' is equivalent to 'gsl_matrix_diagonal' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_subdiagonal (gsl_matrix * M, size_t K) -- Function: gsl_vector_const_view gsl_matrix_const_subdiagonal (const gsl_matrix * M, size_t K) These functions return a vector view of the K-th subdiagonal of the matrix M. The matrix M is not required to be square. The diagonal of the matrix corresponds to k = 0. The function 'gsl_matrix_const_subdiagonal' is equivalent to 'gsl_matrix_subdiagonal' but can be used for matrices which are declared 'const'. -- Function: gsl_vector_view gsl_matrix_superdiagonal (gsl_matrix * M, size_t K) -- Function: gsl_vector_const_view gsl_matrix_const_superdiagonal (const gsl_matrix * M, size_t K) These functions return a vector view of the K-th superdiagonal of the matrix M. The matrix M is not required to be square. The diagonal of the matrix corresponds to k = 0. The function 'gsl_matrix_const_superdiagonal' is equivalent to 'gsl_matrix_superdiagonal' but can be used for matrices which are declared 'const'.  File: gsl-ref.info, Node: Copying matrices, Next: Copying rows and columns, Prev: Creating row and column views, Up: Matrices 8.4.7 Copying matrices ---------------------- -- Function: int gsl_matrix_memcpy (gsl_matrix * DEST, const gsl_matrix * SRC) This function copies the elements of the matrix SRC into the matrix DEST. The two matrices must have the same size. -- Function: int gsl_matrix_swap (gsl_matrix * M1, gsl_matrix * M2) This function exchanges the elements of the matrices M1 and M2 by copying. The two matrices must have the same size.  File: gsl-ref.info, Node: Copying rows and columns, Next: Exchanging rows and columns, Prev: Copying matrices, Up: Matrices 8.4.8 Copying rows and columns ------------------------------ The functions described in this section copy a row or column of a matrix into a vector. This allows the elements of the vector and the matrix to be modified independently. Note that if the matrix and the vector point to overlapping regions of memory then the result will be undefined. The same effect can be achieved with more generality using 'gsl_vector_memcpy' with vector views of rows and columns. -- Function: int gsl_matrix_get_row (gsl_vector * V, const gsl_matrix * M, size_t I) This function copies the elements of the I-th row of the matrix M into the vector V. The length of the vector must be the same as the length of the row. -- Function: int gsl_matrix_get_col (gsl_vector * V, const gsl_matrix * M, size_t J) This function copies the elements of the J-th column of the matrix M into the vector V. The length of the vector must be the same as the length of the column. -- Function: int gsl_matrix_set_row (gsl_matrix * M, size_t I, const gsl_vector * V) This function copies the elements of the vector V into the I-th row of the matrix M. The length of the vector must be the same as the length of the row. -- Function: int gsl_matrix_set_col (gsl_matrix * M, size_t J, const gsl_vector * V) This function copies the elements of the vector V into the J-th column of the matrix M. The length of the vector must be the same as the length of the column.  File: gsl-ref.info, Node: Exchanging rows and columns, Next: Matrix operations, Prev: Copying rows and columns, Up: Matrices 8.4.9 Exchanging rows and columns --------------------------------- The following functions can be used to exchange the rows and columns of a matrix. -- Function: int gsl_matrix_swap_rows (gsl_matrix * M, size_t I, size_t J) This function exchanges the I-th and J-th rows of the matrix M in-place. -- Function: int gsl_matrix_swap_columns (gsl_matrix * M, size_t I, size_t J) This function exchanges the I-th and J-th columns of the matrix M in-place. -- Function: int gsl_matrix_swap_rowcol (gsl_matrix * M, size_t I, size_t J) This function exchanges the I-th row and J-th column of the matrix M in-place. The matrix must be square for this operation to be possible. -- Function: int gsl_matrix_transpose_memcpy (gsl_matrix * DEST, const gsl_matrix * SRC) This function makes the matrix DEST the transpose of the matrix SRC by copying the elements of SRC into DEST. This function works for all matrices provided that the dimensions of the matrix DEST match the transposed dimensions of the matrix SRC. -- Function: int gsl_matrix_transpose (gsl_matrix * M) This function replaces the matrix M by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.  File: gsl-ref.info, Node: Matrix operations, Next: Finding maximum and minimum elements of matrices, Prev: Exchanging rows and columns, Up: Matrices 8.4.10 Matrix operations ------------------------ The following operations are defined for real and complex matrices. -- Function: int gsl_matrix_add (gsl_matrix * A, const gsl_matrix * B) This function adds the elements of matrix B to the elements of matrix A. The result a(i,j) \leftarrow a(i,j) + b(i,j) is stored in A and B remains unchanged. The two matrices must have the same dimensions. -- Function: int gsl_matrix_sub (gsl_matrix * A, const gsl_matrix * B) This function subtracts the elements of matrix B from the elements of matrix A. The result a(i,j) \leftarrow a(i,j) - b(i,j) is stored in A and B remains unchanged. The two matrices must have the same dimensions. -- Function: int gsl_matrix_mul_elements (gsl_matrix * A, const gsl_matrix * B) This function multiplies the elements of matrix A by the elements of matrix B. The result a(i,j) \leftarrow a(i,j) * b(i,j) is stored in A and B remains unchanged. The two matrices must have the same dimensions. -- Function: int gsl_matrix_div_elements (gsl_matrix * A, const gsl_matrix * B) This function divides the elements of matrix A by the elements of matrix B. The result a(i,j) \leftarrow a(i,j) / b(i,j) is stored in A and B remains unchanged. The two matrices must have the same dimensions. -- Function: int gsl_matrix_scale (gsl_matrix * A, const double X) This function multiplies the elements of matrix A by the constant factor X. The result a(i,j) \leftarrow x a(i,j) is stored in A. -- Function: int gsl_matrix_add_constant (gsl_matrix * A, const double X) This function adds the constant value X to the elements of the matrix A. The result a(i,j) \leftarrow a(i,j) + x is stored in A.  File: gsl-ref.info, Node: Finding maximum and minimum elements of matrices, Next: Matrix properties, Prev: Matrix operations, Up: Matrices 8.4.11 Finding maximum and minimum elements of matrices ------------------------------------------------------- The following operations are only defined for real matrices. -- Function: double gsl_matrix_max (const gsl_matrix * M) This function returns the maximum value in the matrix M. -- Function: double gsl_matrix_min (const gsl_matrix * M) This function returns the minimum value in the matrix M. -- Function: void gsl_matrix_minmax (const gsl_matrix * M, double * MIN_OUT, double * MAX_OUT) This function returns the minimum and maximum values in the matrix M, storing them in MIN_OUT and MAX_OUT. -- Function: void gsl_matrix_max_index (const gsl_matrix * M, size_t * IMAX, size_t * JMAX) This function returns the indices of the maximum value in the matrix M, storing them in IMAX and JMAX. When there are several equal maximum elements then the first element found is returned, searching in row-major order. -- Function: void gsl_matrix_min_index (const gsl_matrix * M, size_t * IMIN, size_t * JMIN) This function returns the indices of the minimum value in the matrix M, storing them in IMIN and JMIN. When there are several equal minimum elements then the first element found is returned, searching in row-major order. -- Function: void gsl_matrix_minmax_index (const gsl_matrix * M, size_t * IMIN, size_t * JMIN, size_t * IMAX, size_t * JMAX) This function returns the indices of the minimum and maximum values in the matrix M, storing them in (IMIN,JMIN) and (IMAX,JMAX). When there are several equal minimum or maximum elements then the first elements found are returned, searching in row-major order.  File: gsl-ref.info, Node: Matrix properties, Next: Example programs for matrices, Prev: Finding maximum and minimum elements of matrices, Up: Matrices 8.4.12 Matrix properties ------------------------ The following functions are defined for real and complex matrices. For complex matrices both the real and imaginary parts must satisfy the conditions. -- Function: int gsl_matrix_isnull (const gsl_matrix * M) -- Function: int gsl_matrix_ispos (const gsl_matrix * M) -- Function: int gsl_matrix_isneg (const gsl_matrix * M) -- Function: int gsl_matrix_isnonneg (const gsl_matrix * M) These functions return 1 if all the elements of the matrix M are zero, strictly positive, strictly negative, or non-negative respectively, and 0 otherwise. To test whether a matrix is positive-definite, use the Cholesky decomposition (*note Cholesky Decomposition::). -- Function: int gsl_matrix_equal (const gsl_matrix * A, const gsl_matrix * B) This function returns 1 if the matrices A and B are equal (by comparison of element values) and 0 otherwise.  File: gsl-ref.info, Node: Example programs for matrices, Prev: Matrix properties, Up: Matrices 8.4.13 Example programs for matrices ------------------------------------ The program below shows how to allocate, initialize and read from a matrix using the functions 'gsl_matrix_alloc', 'gsl_matrix_set' and 'gsl_matrix_get'. #include #include int main (void) { int i, j; gsl_matrix * m = gsl_matrix_alloc (10, 3); for (i = 0; i < 10; i++) for (j = 0; j < 3; j++) gsl_matrix_set (m, i, j, 0.23 + 100*i + j); for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */ for (j = 0; j < 3; j++) printf ("m(%d,%d) = %g\n", i, j, gsl_matrix_get (m, i, j)); gsl_matrix_free (m); return 0; } Here is the output from the program. The final loop attempts to read outside the range of the matrix 'm', and the error is trapped by the range-checking code in 'gsl_matrix_get'. $ ./a.out m(0,0) = 0.23 m(0,1) = 1.23 m(0,2) = 2.23 m(1,0) = 100.23 m(1,1) = 101.23 m(1,2) = 102.23 ... m(9,2) = 902.23 gsl: matrix_source.c:13: ERROR: first index out of range Default GSL error handler invoked. Aborted (core dumped) The next program shows how to write a matrix to a file. #include #include int main (void) { int i, j, k = 0; gsl_matrix * m = gsl_matrix_alloc (100, 100); gsl_matrix * a = gsl_matrix_alloc (100, 100); for (i = 0; i < 100; i++) for (j = 0; j < 100; j++) gsl_matrix_set (m, i, j, 0.23 + i + j); { FILE * f = fopen ("test.dat", "wb"); gsl_matrix_fwrite (f, m); fclose (f); } { FILE * f = fopen ("test.dat", "rb"); gsl_matrix_fread (f, a); fclose (f); } for (i = 0; i < 100; i++) for (j = 0; j < 100; j++) { double mij = gsl_matrix_get (m, i, j); double aij = gsl_matrix_get (a, i, j); if (mij != aij) k++; } gsl_matrix_free (m); gsl_matrix_free (a); printf ("differences = %d (should be zero)\n", k); return (k > 0); } After running this program the file 'test.dat' should contain the elements of 'm', written in binary format. The matrix which is read back in using the function 'gsl_matrix_fread' should be exactly equal to the original matrix. The following program demonstrates the use of vector views. The program computes the column norms of a matrix. #include #include #include #include int main (void) { size_t i,j; gsl_matrix *m = gsl_matrix_alloc (10, 10); for (i = 0; i < 10; i++) for (j = 0; j < 10; j++) gsl_matrix_set (m, i, j, sin (i) + cos (j)); for (j = 0; j < 10; j++) { gsl_vector_view column = gsl_matrix_column (m, j); double d; d = gsl_blas_dnrm2 (&column.vector); printf ("matrix column %d, norm = %g\n", j, d); } gsl_matrix_free (m); return 0; } Here is the output of the program, $ ./a.out matrix column 0, norm = 4.31461 matrix column 1, norm = 3.1205 matrix column 2, norm = 2.19316 matrix column 3, norm = 3.26114 matrix column 4, norm = 2.53416 matrix column 5, norm = 2.57281 matrix column 6, norm = 4.20469 matrix column 7, norm = 3.65202 matrix column 8, norm = 2.08524 matrix column 9, norm = 3.07313 The results can be confirmed using GNU OCTAVE, $ octave GNU Octave, version 2.0.16.92 octave> m = sin(0:9)' * ones(1,10) + ones(10,1) * cos(0:9); octave> sqrt(sum(m.^2)) ans = 4.3146 3.1205 2.1932 3.2611 2.5342 2.5728 4.2047 3.6520 2.0852 3.0731  File: gsl-ref.info, Node: Vector and Matrix References and Further Reading, Prev: Matrices, Up: Vectors and Matrices 8.5 References and Further Reading ================================== The block, vector and matrix objects in GSL follow the 'valarray' model of C++. A description of this model can be found in the following reference, B. Stroustrup, 'The C++ Programming Language' (3rd Ed), Section 22.4 Vector Arithmetic. Addison-Wesley 1997, ISBN 0-201-88954-4.  File: gsl-ref.info, Node: Permutations, Next: Combinations, Prev: Vectors and Matrices, Up: Top 9 Permutations ************** This chapter describes functions for creating and manipulating permutations. A permutation p is represented by an array of n integers in the range 0 to n-1, where each value p_i occurs once and only once. The application of a permutation p to a vector v yields a new vector v' where v'_i = v_{p_i}. For example, the array (0,1,3,2) represents a permutation which exchanges the last two elements of a four element vector. The corresponding identity permutation is (0,1,2,3). Note that the permutations produced by the linear algebra routines correspond to the exchange of matrix columns, and so should be considered as applying to row-vectors in the form v' = v P rather than column-vectors, when permuting the elements of a vector. The functions described in this chapter are defined in the header file 'gsl_permutation.h'. * Menu: * The Permutation struct:: * Permutation allocation:: * Accessing permutation elements:: * Permutation properties:: * Permutation functions:: * Applying Permutations:: * Reading and writing permutations:: * Permutations in cyclic form:: * Permutation Examples:: * Permutation References and Further Reading::  File: gsl-ref.info, Node: The Permutation struct, Next: Permutation allocation, Up: Permutations 9.1 The Permutation struct ========================== A permutation is defined by a structure containing two components, the size of the permutation and a pointer to the permutation array. The elements of the permutation array are all of type 'size_t'. The 'gsl_permutation' structure looks like this, typedef struct { size_t size; size_t * data; } gsl_permutation;  File: gsl-ref.info, Node: Permutation allocation, Next: Accessing permutation elements, Prev: The Permutation struct, Up: Permutations 9.2 Permutation allocation ========================== -- Function: gsl_permutation * gsl_permutation_alloc (size_t N) This function allocates memory for a new permutation of size N. The permutation is not initialized and its elements are undefined. Use the function 'gsl_permutation_calloc' if you want to create a permutation which is initialized to the identity. A null pointer is returned if insufficient memory is available to create the permutation. -- Function: gsl_permutation * gsl_permutation_calloc (size_t N) This function allocates memory for a new permutation of size N and initializes it to the identity. A null pointer is returned if insufficient memory is available to create the permutation. -- Function: void gsl_permutation_init (gsl_permutation * P) This function initializes the permutation P to the identity, i.e. (0,1,2,...,n-1). -- Function: void gsl_permutation_free (gsl_permutation * P) This function frees all the memory used by the permutation P. -- Function: int gsl_permutation_memcpy (gsl_permutation * DEST, const gsl_permutation * SRC) This function copies the elements of the permutation SRC into the permutation DEST. The two permutations must have the same size.  File: gsl-ref.info, Node: Accessing permutation elements, Next: Permutation properties, Prev: Permutation allocation, Up: Permutations 9.3 Accessing permutation elements ================================== The following functions can be used to access and manipulate permutations. -- Function: size_t gsl_permutation_get (const gsl_permutation * P, const size_t I) This function returns the value of the I-th element of the permutation P. If I lies outside the allowed range of 0 to N-1 then the error handler is invoked and 0 is returned. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: int gsl_permutation_swap (gsl_permutation * P, const size_t I, const size_t J) This function exchanges the I-th and J-th elements of the permutation P.  File: gsl-ref.info, Node: Permutation properties, Next: Permutation functions, Prev: Accessing permutation elements, Up: Permutations 9.4 Permutation properties ========================== -- Function: size_t gsl_permutation_size (const gsl_permutation * P) This function returns the size of the permutation P. -- Function: size_t * gsl_permutation_data (const gsl_permutation * P) This function returns a pointer to the array of elements in the permutation P. -- Function: int gsl_permutation_valid (const gsl_permutation * P) This function checks that the permutation P is valid. The N elements should contain each of the numbers 0 to N-1 once and only once.  File: gsl-ref.info, Node: Permutation functions, Next: Applying Permutations, Prev: Permutation properties, Up: Permutations 9.5 Permutation functions ========================= -- Function: void gsl_permutation_reverse (gsl_permutation * P) This function reverses the elements of the permutation P. -- Function: int gsl_permutation_inverse (gsl_permutation * INV, const gsl_permutation * P) This function computes the inverse of the permutation P, storing the result in INV. -- Function: int gsl_permutation_next (gsl_permutation * P) This function advances the permutation P to the next permutation in lexicographic order and returns 'GSL_SUCCESS'. If no further permutations are available it returns 'GSL_FAILURE' and leaves P unmodified. Starting with the identity permutation and repeatedly applying this function will iterate through all possible permutations of a given order. -- Function: int gsl_permutation_prev (gsl_permutation * P) This function steps backwards from the permutation P to the previous permutation in lexicographic order, returning 'GSL_SUCCESS'. If no previous permutation is available it returns 'GSL_FAILURE' and leaves P unmodified.  File: gsl-ref.info, Node: Applying Permutations, Next: Reading and writing permutations, Prev: Permutation functions, Up: Permutations 9.6 Applying Permutations ========================= -- Function: int gsl_permute (const size_t * P, double * DATA, size_t STRIDE, size_t N) This function applies the permutation P to the array DATA of size N with stride STRIDE. -- Function: int gsl_permute_inverse (const size_t * P, double * DATA, size_t STRIDE, size_t N) This function applies the inverse of the permutation P to the array DATA of size N with stride STRIDE. -- Function: int gsl_permute_vector (const gsl_permutation * P, gsl_vector * V) This function applies the permutation P to the elements of the vector V, considered as a row-vector acted on by a permutation matrix from the right, v' = v P. The j-th column of the permutation matrix P is given by the P_j-th column of the identity matrix. The permutation P and the vector V must have the same length. -- Function: int gsl_permute_vector_inverse (const gsl_permutation * P, gsl_vector * V) This function applies the inverse of the permutation P to the elements of the vector V, considered as a row-vector acted on by an inverse permutation matrix from the right, v' = v P^T. Note that for permutation matrices the inverse is the same as the transpose. The j-th column of the permutation matrix P is given by the P_j-th column of the identity matrix. The permutation P and the vector V must have the same length. -- Function: int gsl_permutation_mul (gsl_permutation * P, const gsl_permutation * PA, const gsl_permutation * PB) This function combines the two permutations PA and PB into a single permutation P, where P = PA * PB. The permutation P is equivalent to applying PB first and then PA.  File: gsl-ref.info, Node: Reading and writing permutations, Next: Permutations in cyclic form, Prev: Applying Permutations, Up: Permutations 9.7 Reading and writing permutations ==================================== The library provides functions for reading and writing permutations to a file as binary data or formatted text. -- Function: int gsl_permutation_fwrite (FILE * STREAM, const gsl_permutation * P) This function writes the elements of the permutation P to the stream STREAM in binary format. The function returns 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_permutation_fread (FILE * STREAM, gsl_permutation * P) This function reads into the permutation P from the open stream STREAM in binary format. The permutation P must be preallocated with the correct length since the function uses the size of P to determine how many bytes to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_permutation_fprintf (FILE * STREAM, const gsl_permutation * P, const char * FORMAT) This function writes the elements of the permutation P line-by-line to the stream STREAM using the format specifier FORMAT, which should be suitable for a type of SIZE_T. In ISO C99 the type modifier 'z' represents 'size_t', so '"%zu\n"' is a suitable format.(1) The function returns 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_permutation_fscanf (FILE * STREAM, gsl_permutation * P) This function reads formatted data from the stream STREAM into the permutation P. The permutation P must be preallocated with the correct length since the function uses the size of P to determine how many numbers to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. ---------- Footnotes ---------- (1) In versions of the GNU C library prior to the ISO C99 standard, the type modifier 'Z' was used instead.  File: gsl-ref.info, Node: Permutations in cyclic form, Next: Permutation Examples, Prev: Reading and writing permutations, Up: Permutations 9.8 Permutations in cyclic form =============================== A permutation can be represented in both "linear" and "cyclic" notations. The functions described in this section convert between the two forms. The linear notation is an index mapping, and has already been described above. The cyclic notation expresses a permutation as a series of circular rearrangements of groups of elements, or "cycles". For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different sets of elements can be combined independently, for example (1 2 3) (4 5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of elements 4 and 5. A cycle of length one represents an element which is unchanged by the permutation and is referred to as a "singleton". It can be shown that every permutation can be decomposed into combinations of cycles. The decomposition is not unique, but can always be rearranged into a standard "canonical form" by a reordering of elements. The library uses the canonical form defined in Knuth's 'Art of Computer Programming' (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178. The procedure for obtaining the canonical form given by Knuth is, 1. Write all singleton cycles explicitly 2. Within each cycle, put the smallest number first 3. Order the cycles in decreasing order of the first number in the cycle. For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation corresponds to an exchange of elements 1 and 4, and rotation of elements 0, 2 and 3. The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the brackets. In addition, by removing the brackets it can be considered as a linear representation of a different permutation. In the example given above the permutation (2 4 3 0 1) would become (1 4 0 2 3). This mapping has many applications in the theory of permutations. -- Function: int gsl_permutation_linear_to_canonical (gsl_permutation * Q, const gsl_permutation * P) This function computes the canonical form of the permutation P and stores it in the output argument Q. -- Function: int gsl_permutation_canonical_to_linear (gsl_permutation * P, const gsl_permutation * Q) This function converts a permutation Q in canonical form back into linear form storing it in the output argument P. -- Function: size_t gsl_permutation_inversions (const gsl_permutation * P) This function counts the number of inversions in the permutation P. An inversion is any pair of elements that are not in order. For example, the permutation 2031 has three inversions, corresponding to the pairs (2,0) (2,1) and (3,1). The identity permutation has no inversions. -- Function: size_t gsl_permutation_linear_cycles (const gsl_permutation * P) This function counts the number of cycles in the permutation P, given in linear form. -- Function: size_t gsl_permutation_canonical_cycles (const gsl_permutation * Q) This function counts the number of cycles in the permutation Q, given in canonical form.  File: gsl-ref.info, Node: Permutation Examples, Next: Permutation References and Further Reading, Prev: Permutations in cyclic form, Up: Permutations 9.9 Examples ============ The example program below creates a random permutation (by shuffling the elements of the identity) and finds its inverse. #include #include #include #include int main (void) { const size_t N = 10; const gsl_rng_type * T; gsl_rng * r; gsl_permutation * p = gsl_permutation_alloc (N); gsl_permutation * q = gsl_permutation_alloc (N); gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("initial permutation:"); gsl_permutation_init (p); gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); printf (" random permutation:"); gsl_ran_shuffle (r, p->data, N, sizeof(size_t)); gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); printf ("inverse permutation:"); gsl_permutation_inverse (q, p); gsl_permutation_fprintf (stdout, q, " %u"); printf ("\n"); gsl_permutation_free (p); gsl_permutation_free (q); gsl_rng_free (r); return 0; } Here is the output from the program, $ ./a.out initial permutation: 0 1 2 3 4 5 6 7 8 9 random permutation: 1 3 5 2 7 6 0 4 9 8 inverse permutation: 6 0 3 1 7 2 5 4 9 8 The random permutation 'p[i]' and its inverse 'q[i]' are related through the identity 'p[q[i]] = i', which can be verified from the output. The next example program steps forwards through all possible third order permutations, starting from the identity, #include #include int main (void) { gsl_permutation * p = gsl_permutation_alloc (3); gsl_permutation_init (p); do { gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); } while (gsl_permutation_next(p) == GSL_SUCCESS); gsl_permutation_free (p); return 0; } Here is the output from the program, $ ./a.out 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 The permutations are generated in lexicographic order. To reverse the sequence, begin with the final permutation (which is the reverse of the identity) and replace 'gsl_permutation_next' with 'gsl_permutation_prev'.  File: gsl-ref.info, Node: Permutation References and Further Reading, Prev: Permutation Examples, Up: Permutations 9.10 References and Further Reading =================================== The subject of permutations is covered extensively in Knuth's 'Sorting and Searching', Donald E. Knuth, 'The Art of Computer Programming: Sorting and Searching' (Vol 3, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. For the definition of the "canonical form" see, Donald E. Knuth, 'The Art of Computer Programming: Fundamental Algorithms' (Vol 1, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. Section 1.3.3, 'An Unusual Correspondence', p.178-179.  File: gsl-ref.info, Node: Combinations, Next: Multisets, Prev: Permutations, Up: Top 10 Combinations *************** This chapter describes functions for creating and manipulating combinations. A combination c is represented by an array of k integers in the range 0 to n-1, where each value c_i occurs at most once. The combination c corresponds to indices of k elements chosen from an n element vector. Combinations are useful for iterating over all k-element subsets of a set. The functions described in this chapter are defined in the header file 'gsl_combination.h'. * Menu: * The Combination struct:: * Combination allocation:: * Accessing combination elements:: * Combination properties:: * Combination functions:: * Reading and writing combinations:: * Combination Examples:: * Combination References and Further Reading::  File: gsl-ref.info, Node: The Combination struct, Next: Combination allocation, Up: Combinations 10.1 The Combination struct =========================== A combination is defined by a structure containing three components, the values of n and k, and a pointer to the combination array. The elements of the combination array are all of type 'size_t', and are stored in increasing order. The 'gsl_combination' structure looks like this, typedef struct { size_t n; size_t k; size_t *data; } gsl_combination;  File: gsl-ref.info, Node: Combination allocation, Next: Accessing combination elements, Prev: The Combination struct, Up: Combinations 10.2 Combination allocation =========================== -- Function: gsl_combination * gsl_combination_alloc (size_t N, size_t K) This function allocates memory for a new combination with parameters N, K. The combination is not initialized and its elements are undefined. Use the function 'gsl_combination_calloc' if you want to create a combination which is initialized to the lexicographically first combination. A null pointer is returned if insufficient memory is available to create the combination. -- Function: gsl_combination * gsl_combination_calloc (size_t N, size_t K) This function allocates memory for a new combination with parameters N, K and initializes it to the lexicographically first combination. A null pointer is returned if insufficient memory is available to create the combination. -- Function: void gsl_combination_init_first (gsl_combination * C) This function initializes the combination C to the lexicographically first combination, i.e. (0,1,2,...,k-1). -- Function: void gsl_combination_init_last (gsl_combination * C) This function initializes the combination C to the lexicographically last combination, i.e. (n-k,n-k+1,...,n-1). -- Function: void gsl_combination_free (gsl_combination * C) This function frees all the memory used by the combination C. -- Function: int gsl_combination_memcpy (gsl_combination * DEST, const gsl_combination * SRC) This function copies the elements of the combination SRC into the combination DEST. The two combinations must have the same size.  File: gsl-ref.info, Node: Accessing combination elements, Next: Combination properties, Prev: Combination allocation, Up: Combinations 10.3 Accessing combination elements =================================== The following function can be used to access the elements of a combination. -- Function: size_t gsl_combination_get (const gsl_combination * C, const size_t I) This function returns the value of the I-th element of the combination C. If I lies outside the allowed range of 0 to K-1 then the error handler is invoked and 0 is returned. An inline version of this function is used when 'HAVE_INLINE' is defined.  File: gsl-ref.info, Node: Combination properties, Next: Combination functions, Prev: Accessing combination elements, Up: Combinations 10.4 Combination properties =========================== -- Function: size_t gsl_combination_n (const gsl_combination * C) This function returns the range (n) of the combination C. -- Function: size_t gsl_combination_k (const gsl_combination * C) This function returns the number of elements (k) in the combination C. -- Function: size_t * gsl_combination_data (const gsl_combination * C) This function returns a pointer to the array of elements in the combination C. -- Function: int gsl_combination_valid (gsl_combination * C) This function checks that the combination C is valid. The K elements should lie in the range 0 to N-1, with each value occurring once at most and in increasing order.  File: gsl-ref.info, Node: Combination functions, Next: Reading and writing combinations, Prev: Combination properties, Up: Combinations 10.5 Combination functions ========================== -- Function: int gsl_combination_next (gsl_combination * C) This function advances the combination C to the next combination in lexicographic order and returns 'GSL_SUCCESS'. If no further combinations are available it returns 'GSL_FAILURE' and leaves C unmodified. Starting with the first combination and repeatedly applying this function will iterate through all possible combinations of a given order. -- Function: int gsl_combination_prev (gsl_combination * C) This function steps backwards from the combination C to the previous combination in lexicographic order, returning 'GSL_SUCCESS'. If no previous combination is available it returns 'GSL_FAILURE' and leaves C unmodified. gsl-1.16/doc/rand-gaussian-tail.tex0000664000252300025230000004667312171574312014144 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gaussian-tail.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-gaussian-tail.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1078 R -31 0 V 31 1079 R -31 0 V 31 1078 R -31 0 V 31 1078 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 4149 V 19 -103 V 19 -103 V 20 -100 V 19 -99 V 20 -98 V 19 -96 V 20 -95 V 19 -93 V 19 -91 V 20 -90 V 19 -88 V 20 -86 V 3052 3553 L 20 -84 V 19 -81 V 19 -81 V 20 -78 V 19 -77 V 20 -75 V 19 -74 V 20 -72 V 19 -71 V 19 -69 V 20 -67 V 19 -66 V 20 -65 V 19 -63 V 20 -61 V 19 -60 V 19 -58 V 20 -57 V 19 -56 V 20 -54 V 19 -53 V 20 -51 V 19 -50 V 19 -49 V 20 -47 V 19 -46 V 20 -45 V 19 -43 V 20 -42 V 19 -41 V 19 -40 V 20 -39 V 19 -37 V 20 -36 V 19 -36 V 20 -34 V 19 -33 V 19 -32 V 20 -31 V 19 -30 V 20 -29 V 19 -28 V 20 -27 V 19 -26 V 19 -26 V 20 -24 V 19 -24 V 20 -23 V 19 -22 V 19 -21 V 20 -21 V 19 -19 V 20 -19 V 19 -19 V 20 -17 V 19 -17 V 19 -17 V 20 -16 V 19 -15 V 20 -14 V 19 -14 V 20 -14 V 19 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 5092 661 L 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 -1 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 -1 V 19 0 V 20 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$\sigma=1,a=1.5$}}% \put(3955,5244){\cjust{\strut{}Gaussian Tail Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 2}}% \put(900,3866){\rjust{\strut{} 1.5}}% \put(900,2788){\rjust{\strut{} 1}}% \put(900,1709){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/gsl-ref.info-40000664000252300025230000204047112172254234012303 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  File: gsl-ref.info, Node: Minimization References and Further Reading, Prev: Minimization Examples, Up: One dimensional Minimization 34.9 References and Further Reading =================================== Further information on Brent's algorithm is available in the following book, Richard Brent, 'Algorithms for minimization without derivatives', Prentice-Hall (1973), republished by Dover in paperback (2002), ISBN 0-486-41998-3.  File: gsl-ref.info, Node: Multidimensional Root-Finding, Next: Multidimensional Minimization, Prev: One dimensional Minimization, Up: Top 35 Multidimensional Root-Finding ******************************** This chapter describes functions for multidimensional root-finding (solving nonlinear systems with n equations in n unknowns). The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The solvers are based on the original Fortran library MINPACK. The header file 'gsl_multiroots.h' contains prototypes for the multidimensional root finding functions and related declarations. * Menu: * Overview of Multidimensional Root Finding:: * Initializing the Multidimensional Solver:: * Providing the multidimensional system of equations to solve:: * Iteration of the multidimensional solver:: * Search Stopping Parameters for the multidimensional solver:: * Algorithms using Derivatives:: * Algorithms without Derivatives:: * Example programs for Multidimensional Root finding:: * References and Further Reading for Multidimensional Root Finding::  File: gsl-ref.info, Node: Overview of Multidimensional Root Finding, Next: Initializing the Multidimensional Solver, Up: Multidimensional Root-Finding 35.1 Overview ============= The problem of multidimensional root finding requires the simultaneous solution of n equations, f_i, in n variables, x_i, f_i (x_1, ..., x_n) = 0 for i = 1 ... n. In general there are no bracketing methods available for n dimensional systems, and no way of knowing whether any solutions exist. All algorithms proceed from an initial guess using a variant of the Newton iteration, x -> x' = x - J^{-1} f(x) where x, f are vector quantities and J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies can be used to enlarge the region of convergence. These include requiring a decrease in the norm |f| on each step proposed by Newton's method, or taking steepest-descent steps in the direction of the negative gradient of |f|. Several root-finding algorithms are available within a single framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, * initialize solver state, S, for algorithm T * update S using the iteration T * test S for convergence, and repeat iteration if necessary The evaluation of the Jacobian matrix can be problematic, either because programming the derivatives is intractable or because computation of the n^2 terms of the matrix becomes too expensive. For these reasons the algorithms provided by the library are divided into two classes according to whether the derivatives are available or not. The state for solvers with an analytic Jacobian matrix is held in a 'gsl_multiroot_fdfsolver' struct. The updating procedure requires both the function and its derivatives to be supplied by the user. The state for solvers which do not use an analytic Jacobian matrix is held in a 'gsl_multiroot_fsolver' struct. The updating procedure uses only function evaluations (not derivatives). The algorithms estimate the matrix J or J^{-1} by approximate methods.  File: gsl-ref.info, Node: Initializing the Multidimensional Solver, Next: Providing the multidimensional system of equations to solve, Prev: Overview of Multidimensional Root Finding, Up: Multidimensional Root-Finding 35.2 Initializing the Solver ============================ The following functions initialize a multidimensional solver, either with or without derivatives. The solver itself depends only on the dimension of the problem and the algorithm and can be reused for different problems. -- Function: gsl_multiroot_fsolver * gsl_multiroot_fsolver_alloc (const gsl_multiroot_fsolver_type * T, size_t N) This function returns a pointer to a newly allocated instance of a solver of type T for a system of N dimensions. For example, the following code creates an instance of a hybrid solver, to solve a 3-dimensional system of equations. const gsl_multiroot_fsolver_type * T = gsl_multiroot_fsolver_hybrid; gsl_multiroot_fsolver * s = gsl_multiroot_fsolver_alloc (T, 3); If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: gsl_multiroot_fdfsolver * gsl_multiroot_fdfsolver_alloc (const gsl_multiroot_fdfsolver_type * T, size_t N) This function returns a pointer to a newly allocated instance of a derivative solver of type T for a system of N dimensions. For example, the following code creates an instance of a Newton-Raphson solver, for a 2-dimensional system of equations. const gsl_multiroot_fdfsolver_type * T = gsl_multiroot_fdfsolver_newton; gsl_multiroot_fdfsolver * s = gsl_multiroot_fdfsolver_alloc (T, 2); If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_multiroot_fsolver_set (gsl_multiroot_fsolver * S, gsl_multiroot_function * F, const gsl_vector * X) -- Function: int gsl_multiroot_fdfsolver_set (gsl_multiroot_fdfsolver * S, gsl_multiroot_function_fdf * FDF, const gsl_vector * X) These functions set, or reset, an existing solver S to use the function F or function and derivative FDF, and the initial guess X. Note that the initial position is copied from X, this argument is not modified by subsequent iterations. -- Function: void gsl_multiroot_fsolver_free (gsl_multiroot_fsolver * S) -- Function: void gsl_multiroot_fdfsolver_free (gsl_multiroot_fdfsolver * S) These functions free all the memory associated with the solver S. -- Function: const char * gsl_multiroot_fsolver_name (const gsl_multiroot_fsolver * S) -- Function: const char * gsl_multiroot_fdfsolver_name (const gsl_multiroot_fdfsolver * S) These functions return a pointer to the name of the solver. For example, printf ("s is a '%s' solver\n", gsl_multiroot_fdfsolver_name (s)); would print something like 's is a 'newton' solver'.  File: gsl-ref.info, Node: Providing the multidimensional system of equations to solve, Next: Iteration of the multidimensional solver, Prev: Initializing the Multidimensional Solver, Up: Multidimensional Root-Finding 35.3 Providing the function to solve ==================================== You must provide n functions of n variables for the root finders to operate on. In order to allow for general parameters the functions are defined by the following data types: -- Data Type: gsl_multiroot_function This data type defines a general system of functions with parameters. 'int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)' this function should store the vector result f(x,params) in F for argument X and parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'size_t n' the dimension of the system, i.e. the number of components of the vectors X and F. 'void * params' a pointer to the parameters of the function. Here is an example using Powell's test function, f_1(x) = A x_0 x_1 - 1, f_2(x) = exp(-x_0) + exp(-x_1) - (1 + 1/A) with A = 10^4. The following code defines a 'gsl_multiroot_function' system 'F' which you could pass to a solver: struct powell_params { double A; }; int powell (gsl_vector * x, void * p, gsl_vector * f) { struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); gsl_vector_set (f, 0, A * x0 * x1 - 1); gsl_vector_set (f, 1, (exp(-x0) + exp(-x1) - (1.0 + 1.0/A))); return GSL_SUCCESS } gsl_multiroot_function F; struct powell_params params = { 10000.0 }; F.f = &powell; F.n = 2; F.params = ¶ms; -- Data Type: gsl_multiroot_function_fdf This data type defines a general system of functions with parameters and the corresponding Jacobian matrix of derivatives, 'int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)' this function should store the vector result f(x,params) in F for argument X and parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'int (* df) (const gsl_vector * X, void * PARAMS, gsl_matrix * J)' this function should store the N-by-N matrix result J_ij = d f_i(x,params) / d x_j in J for argument X and parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'int (* fdf) (const gsl_vector * X, void * PARAMS, gsl_vector * F, gsl_matrix * J)' This function should set the values of the F and J as above, for arguments X and parameters PARAMS. This function provides an optimization of the separate functions for f(x) and J(x)--it is always faster to compute the function and its derivative at the same time. 'size_t n' the dimension of the system, i.e. the number of components of the vectors X and F. 'void * params' a pointer to the parameters of the function. The example of Powell's test function defined above can be extended to include analytic derivatives using the following code, int powell_df (gsl_vector * x, void * p, gsl_matrix * J) { struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); gsl_matrix_set (J, 0, 0, A * x1); gsl_matrix_set (J, 0, 1, A * x0); gsl_matrix_set (J, 1, 0, -exp(-x0)); gsl_matrix_set (J, 1, 1, -exp(-x1)); return GSL_SUCCESS } int powell_fdf (gsl_vector * x, void * p, gsl_matrix * f, gsl_matrix * J) { struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); const double u0 = exp(-x0); const double u1 = exp(-x1); gsl_vector_set (f, 0, A * x0 * x1 - 1); gsl_vector_set (f, 1, u0 + u1 - (1 + 1/A)); gsl_matrix_set (J, 0, 0, A * x1); gsl_matrix_set (J, 0, 1, A * x0); gsl_matrix_set (J, 1, 0, -u0); gsl_matrix_set (J, 1, 1, -u1); return GSL_SUCCESS } gsl_multiroot_function_fdf FDF; FDF.f = &powell_f; FDF.df = &powell_df; FDF.fdf = &powell_fdf; FDF.n = 2; FDF.params = 0; Note that the function 'powell_fdf' is able to reuse existing terms from the function when calculating the Jacobian, thus saving time.  File: gsl-ref.info, Node: Iteration of the multidimensional solver, Next: Search Stopping Parameters for the multidimensional solver, Prev: Providing the multidimensional system of equations to solve, Up: Multidimensional Root-Finding 35.4 Iteration ============== The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. -- Function: int gsl_multiroot_fsolver_iterate (gsl_multiroot_fsolver * S) -- Function: int gsl_multiroot_fdfsolver_iterate (gsl_multiroot_fdfsolver * S) These functions perform a single iteration of the solver S. If the iteration encounters an unexpected problem then an error code will be returned, 'GSL_EBADFUNC' the iteration encountered a singular point where the function or its derivative evaluated to 'Inf' or 'NaN'. 'GSL_ENOPROG' the iteration is not making any progress, preventing the algorithm from continuing. The solver maintains a current best estimate of the root 's->x' and its function value 's->f' at all times. This information can be accessed with the following auxiliary functions, -- Function: gsl_vector * gsl_multiroot_fsolver_root (const gsl_multiroot_fsolver * S) -- Function: gsl_vector * gsl_multiroot_fdfsolver_root (const gsl_multiroot_fdfsolver * S) These functions return the current estimate of the root for the solver S, given by 's->x'. -- Function: gsl_vector * gsl_multiroot_fsolver_f (const gsl_multiroot_fsolver * S) -- Function: gsl_vector * gsl_multiroot_fdfsolver_f (const gsl_multiroot_fdfsolver * S) These functions return the function value f(x) at the current estimate of the root for the solver S, given by 's->f'. -- Function: gsl_vector * gsl_multiroot_fsolver_dx (const gsl_multiroot_fsolver * S) -- Function: gsl_vector * gsl_multiroot_fdfsolver_dx (const gsl_multiroot_fdfsolver * S) These functions return the last step dx taken by the solver S, given by 's->dx'.  File: gsl-ref.info, Node: Search Stopping Parameters for the multidimensional solver, Next: Algorithms using Derivatives, Prev: Iteration of the multidimensional solver, Up: Multidimensional Root-Finding 35.5 Search Stopping Parameters =============================== A root finding procedure should stop when one of the following conditions is true: * A multidimensional root has been found to within the user-specified precision. * A user-specified maximum number of iterations has been reached. * An error has occurred. The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result in several standard ways. -- Function: int gsl_multiroot_test_delta (const gsl_vector * DX, const gsl_vector * X, double EPSABS, double EPSREL) This function tests for the convergence of the sequence by comparing the last step DX with the absolute error EPSABS and relative error EPSREL to the current position X. The test returns 'GSL_SUCCESS' if the following condition is achieved, |dx_i| < epsabs + epsrel |x_i| for each component of X and returns 'GSL_CONTINUE' otherwise. -- Function: int gsl_multiroot_test_residual (const gsl_vector * F, double EPSABS) This function tests the residual value F against the absolute error bound EPSABS. The test returns 'GSL_SUCCESS' if the following condition is achieved, \sum_i |f_i| < epsabs and returns 'GSL_CONTINUE' otherwise. This criterion is suitable for situations where the precise location of the root, x, is unimportant provided a value can be found where the residual is small enough.  File: gsl-ref.info, Node: Algorithms using Derivatives, Next: Algorithms without Derivatives, Prev: Search Stopping Parameters for the multidimensional solver, Up: Multidimensional Root-Finding 35.6 Algorithms using Derivatives ================================= The root finding algorithms described in this section make use of both the function and its derivative. They require an initial guess for the location of the root, but there is no absolute guarantee of convergence--the function must be suitable for this technique and the initial guess must be sufficiently close to the root for it to work. When the conditions are satisfied then convergence is quadratic. -- Derivative Solver: gsl_multiroot_fdfsolver_hybridsj This is a modified version of Powell's Hybrid method as implemented in the HYBRJ algorithm in MINPACK. Minpack was written by Jorge J. More', Burton S. Garbow and Kenneth E. Hillstrom. The Hybrid algorithm retains the fast convergence of Newton's method but will also reduce the residual when Newton's method is unreliable. The algorithm uses a generalized trust region to keep each step under control. In order to be accepted a proposed new position x' must satisfy the condition |D (x' - x)| < \delta, where D is a diagonal scaling matrix and \delta is the size of the trust region. The components of D are computed internally, using the column norms of the Jacobian to estimate the sensitivity of the residual to each component of x. This improves the behavior of the algorithm for badly scaled functions. On each iteration the algorithm first determines the standard Newton step by solving the system J dx = - f. If this step falls inside the trust region it is used as a trial step in the next stage. If not, the algorithm uses the linear combination of the Newton and gradient directions which is predicted to minimize the norm of the function while staying inside the trust region, dx = - \alpha J^{-1} f(x) - \beta \nabla |f(x)|^2. This combination of Newton and gradient directions is referred to as a "dogleg step". The proposed step is now tested by evaluating the function at the resulting point, x'. If the step reduces the norm of the function sufficiently then it is accepted and size of the trust region is increased. If the proposed step fails to improve the solution then the size of the trust region is decreased and another trial step is computed. The speed of the algorithm is increased by computing the changes to the Jacobian approximately, using a rank-1 update. If two successive attempts fail to reduce the residual then the full Jacobian is recomputed. The algorithm also monitors the progress of the solution and returns an error if several steps fail to make any improvement, 'GSL_ENOPROG' the iteration is not making any progress, preventing the algorithm from continuing. 'GSL_ENOPROGJ' re-evaluations of the Jacobian indicate that the iteration is not making any progress, preventing the algorithm from continuing. -- Derivative Solver: gsl_multiroot_fdfsolver_hybridj This algorithm is an unscaled version of 'hybridsj'. The steps are controlled by a spherical trust region |x' - x| < \delta, instead of a generalized region. This can be useful if the generalized region estimated by 'hybridsj' is inappropriate. -- Derivative Solver: gsl_multiroot_fdfsolver_newton Newton's Method is the standard root-polishing algorithm. The algorithm begins with an initial guess for the location of the solution. On each iteration a linear approximation to the function F is used to estimate the step which will zero all the components of the residual. The iteration is defined by the following sequence, x -> x' = x - J^{-1} f(x) where the Jacobian matrix J is computed from the derivative functions provided by F. The step dx is obtained by solving the linear system, J dx = - f(x) using LU decomposition. If the Jacobian matrix is singular, an error code of 'GSL_EDOM' is returned. -- Derivative Solver: gsl_multiroot_fdfsolver_gnewton This is a modified version of Newton's method which attempts to improve global convergence by requiring every step to reduce the Euclidean norm of the residual, |f(x)|. If the Newton step leads to an increase in the norm then a reduced step of relative size, t = (\sqrt(1 + 6 r) - 1) / (3 r) is proposed, with r being the ratio of norms |f(x')|^2/|f(x)|^2. This procedure is repeated until a suitable step size is found.  File: gsl-ref.info, Node: Algorithms without Derivatives, Next: Example programs for Multidimensional Root finding, Prev: Algorithms using Derivatives, Up: Multidimensional Root-Finding 35.7 Algorithms without Derivatives =================================== The algorithms described in this section do not require any derivative information to be supplied by the user. Any derivatives needed are approximated by finite differences. Note that if the finite-differencing step size chosen by these routines is inappropriate, an explicit user-supplied numerical derivative can always be used with the algorithms described in the previous section. -- Solver: gsl_multiroot_fsolver_hybrids This is a version of the Hybrid algorithm which replaces calls to the Jacobian function by its finite difference approximation. The finite difference approximation is computed using 'gsl_multiroots_fdjac' with a relative step size of 'GSL_SQRT_DBL_EPSILON'. Note that this step size will not be suitable for all problems. -- Solver: gsl_multiroot_fsolver_hybrid This is a finite difference version of the Hybrid algorithm without internal scaling. -- Solver: gsl_multiroot_fsolver_dnewton The "discrete Newton algorithm" is the simplest method of solving a multidimensional system. It uses the Newton iteration x -> x - J^{-1} f(x) where the Jacobian matrix J is approximated by taking finite differences of the function F. The approximation scheme used by this implementation is, J_{ij} = (f_i(x + \delta_j) - f_i(x)) / \delta_j where \delta_j is a step of size \sqrt\epsilon |x_j| with \epsilon being the machine precision (\epsilon \approx 2.22 \times 10^-16). The order of convergence of Newton's algorithm is quadratic, but the finite differences require n^2 function evaluations on each iteration. The algorithm may become unstable if the finite differences are not a good approximation to the true derivatives. -- Solver: gsl_multiroot_fsolver_broyden The "Broyden algorithm" is a version of the discrete Newton algorithm which attempts to avoids the expensive update of the Jacobian matrix on each iteration. The changes to the Jacobian are also approximated, using a rank-1 update, J^{-1} \to J^{-1} - (J^{-1} df - dx) dx^T J^{-1} / dx^T J^{-1} df where the vectors dx and df are the changes in x and f. On the first iteration the inverse Jacobian is estimated using finite differences, as in the discrete Newton algorithm. This approximation gives a fast update but is unreliable if the changes are not small, and the estimate of the inverse Jacobian becomes worse as time passes. The algorithm has a tendency to become unstable unless it starts close to the root. The Jacobian is refreshed if this instability is detected (consult the source for details). This algorithm is included only for demonstration purposes, and is not recommended for serious use.  File: gsl-ref.info, Node: Example programs for Multidimensional Root finding, Next: References and Further Reading for Multidimensional Root Finding, Prev: Algorithms without Derivatives, Up: Multidimensional Root-Finding 35.8 Examples ============= The multidimensional solvers are used in a similar way to the one-dimensional root finding algorithms. This first example demonstrates the 'hybrids' scaled-hybrid algorithm, which does not require derivatives. The program solves the Rosenbrock system of equations, f_1 (x, y) = a (1 - x) f_2 (x, y) = b (y - x^2) with a = 1, b = 10. The solution of this system lies at (x,y) = (1,1) in a narrow valley. The first stage of the program is to define the system of equations, #include #include #include #include struct rparams { double a; double b; }; int rosenbrock_f (const gsl_vector * x, void *params, gsl_vector * f) { double a = ((struct rparams *) params)->a; double b = ((struct rparams *) params)->b; const double x0 = gsl_vector_get (x, 0); const double x1 = gsl_vector_get (x, 1); const double y0 = a * (1 - x0); const double y1 = b * (x1 - x0 * x0); gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); return GSL_SUCCESS; } The main program begins by creating the function object 'f', with the arguments '(x,y)' and parameters '(a,b)'. The solver 's' is initialized to use this function, with the 'hybrids' method. int main (void) { const gsl_multiroot_fsolver_type *T; gsl_multiroot_fsolver *s; int status; size_t i, iter = 0; const size_t n = 2; struct rparams p = {1.0, 10.0}; gsl_multiroot_function f = {&rosenbrock_f, n, &p}; double x_init[2] = {-10.0, -5.0}; gsl_vector *x = gsl_vector_alloc (n); gsl_vector_set (x, 0, x_init[0]); gsl_vector_set (x, 1, x_init[1]); T = gsl_multiroot_fsolver_hybrids; s = gsl_multiroot_fsolver_alloc (T, 2); gsl_multiroot_fsolver_set (s, &f, x); print_state (iter, s); do { iter++; status = gsl_multiroot_fsolver_iterate (s); print_state (iter, s); if (status) /* check if solver is stuck */ break; status = gsl_multiroot_test_residual (s->f, 1e-7); } while (status == GSL_CONTINUE && iter < 1000); printf ("status = %s\n", gsl_strerror (status)); gsl_multiroot_fsolver_free (s); gsl_vector_free (x); return 0; } Note that it is important to check the return status of each solver step, in case the algorithm becomes stuck. If an error condition is detected, indicating that the algorithm cannot proceed, then the error can be reported to the user, a new starting point chosen or a different algorithm used. The intermediate state of the solution is displayed by the following function. The solver state contains the vector 's->x' which is the current position, and the vector 's->f' with corresponding function values. int print_state (size_t iter, gsl_multiroot_fsolver * s) { printf ("iter = %3u x = % .3f % .3f " "f(x) = % .3e % .3e\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->f, 0), gsl_vector_get (s->f, 1)); } Here are the results of running the program. The algorithm is started at (-10,-5) far from the solution. Since the solution is hidden in a narrow valley the earliest steps follow the gradient of the function downhill, in an attempt to reduce the large value of the residual. Once the root has been approximately located, on iteration 8, the Newton behavior takes over and convergence is very rapid. iter = 0 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 1 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 2 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 3 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 4 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 5 x = -1.274 -5.680 f(x) = 2.274e+00 -7.302e+01 iter = 6 x = -1.274 -5.680 f(x) = 2.274e+00 -7.302e+01 iter = 7 x = 0.249 0.298 f(x) = 7.511e-01 2.359e+00 iter = 8 x = 0.249 0.298 f(x) = 7.511e-01 2.359e+00 iter = 9 x = 1.000 0.878 f(x) = 1.268e-10 -1.218e+00 iter = 10 x = 1.000 0.989 f(x) = 1.124e-11 -1.080e-01 iter = 11 x = 1.000 1.000 f(x) = 0.000e+00 0.000e+00 status = success Note that the algorithm does not update the location on every iteration. Some iterations are used to adjust the trust-region parameter, after trying a step which was found to be divergent, or to recompute the Jacobian, when poor convergence behavior is detected. The next example program adds derivative information, in order to accelerate the solution. There are two derivative functions 'rosenbrock_df' and 'rosenbrock_fdf'. The latter computes both the function and its derivative simultaneously. This allows the optimization of any common terms. For simplicity we substitute calls to the separate 'f' and 'df' functions at this point in the code below. int rosenbrock_df (const gsl_vector * x, void *params, gsl_matrix * J) { const double a = ((struct rparams *) params)->a; const double b = ((struct rparams *) params)->b; const double x0 = gsl_vector_get (x, 0); const double df00 = -a; const double df01 = 0; const double df10 = -2 * b * x0; const double df11 = b; gsl_matrix_set (J, 0, 0, df00); gsl_matrix_set (J, 0, 1, df01); gsl_matrix_set (J, 1, 0, df10); gsl_matrix_set (J, 1, 1, df11); return GSL_SUCCESS; } int rosenbrock_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * J) { rosenbrock_f (x, params, f); rosenbrock_df (x, params, J); return GSL_SUCCESS; } The main program now makes calls to the corresponding 'fdfsolver' versions of the functions, int main (void) { const gsl_multiroot_fdfsolver_type *T; gsl_multiroot_fdfsolver *s; int status; size_t i, iter = 0; const size_t n = 2; struct rparams p = {1.0, 10.0}; gsl_multiroot_function_fdf f = {&rosenbrock_f, &rosenbrock_df, &rosenbrock_fdf, n, &p}; double x_init[2] = {-10.0, -5.0}; gsl_vector *x = gsl_vector_alloc (n); gsl_vector_set (x, 0, x_init[0]); gsl_vector_set (x, 1, x_init[1]); T = gsl_multiroot_fdfsolver_gnewton; s = gsl_multiroot_fdfsolver_alloc (T, n); gsl_multiroot_fdfsolver_set (s, &f, x); print_state (iter, s); do { iter++; status = gsl_multiroot_fdfsolver_iterate (s); print_state (iter, s); if (status) break; status = gsl_multiroot_test_residual (s->f, 1e-7); } while (status == GSL_CONTINUE && iter < 1000); printf ("status = %s\n", gsl_strerror (status)); gsl_multiroot_fdfsolver_free (s); gsl_vector_free (x); return 0; } The addition of derivative information to the 'hybrids' solver does not make any significant difference to its behavior, since it able to approximate the Jacobian numerically with sufficient accuracy. To illustrate the behavior of a different derivative solver we switch to 'gnewton'. This is a traditional Newton solver with the constraint that it scales back its step if the full step would lead "uphill". Here is the output for the 'gnewton' algorithm, iter = 0 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 1 x = -4.231 -65.317 f(x) = 5.231e+00 -8.321e+02 iter = 2 x = 1.000 -26.358 f(x) = -8.882e-16 -2.736e+02 iter = 3 x = 1.000 1.000 f(x) = -2.220e-16 -4.441e-15 status = success The convergence is much more rapid, but takes a wide excursion out to the point (-4.23,-65.3). This could cause the algorithm to go astray in a realistic application. The hybrid algorithm follows the downhill path to the solution more reliably.  File: gsl-ref.info, Node: References and Further Reading for Multidimensional Root Finding, Prev: Example programs for Multidimensional Root finding, Up: Multidimensional Root-Finding 35.9 References and Further Reading =================================== The original version of the Hybrid method is described in the following articles by Powell, M.J.D. Powell, "A Hybrid Method for Nonlinear Equations" (Chap 6, p 87-114) and "A Fortran Subroutine for Solving systems of Nonlinear Algebraic Equations" (Chap 7, p 115-161), in 'Numerical Methods for Nonlinear Algebraic Equations', P. Rabinowitz, editor. Gordon and Breach, 1970. The following papers are also relevant to the algorithms described in this section, J.J. More', M.Y. Cosnard, "Numerical Solution of Nonlinear Equations", 'ACM Transactions on Mathematical Software', Vol 5, No 1, (1979), p 64-85 C.G. Broyden, "A Class of Methods for Solving Nonlinear Simultaneous Equations", 'Mathematics of Computation', Vol 19 (1965), p 577-593 J.J. More', B.S. Garbow, K.E. Hillstrom, "Testing Unconstrained Optimization Software", ACM Transactions on Mathematical Software, Vol 7, No 1 (1981), p 17-41  File: gsl-ref.info, Node: Multidimensional Minimization, Next: Least-Squares Fitting, Prev: Multidimensional Root-Finding, Up: Top 36 Multidimensional Minimization ******************************** This chapter describes routines for finding minima of arbitrary multidimensional functions. The library provides low level components for a variety of iterative minimizers and convergence tests. These can be combined by the user to achieve the desired solution, while providing full access to the intermediate steps of the algorithms. Each class of methods uses the same framework, so that you can switch between minimizers at runtime without needing to recompile your program. Each instance of a minimizer keeps track of its own state, allowing the minimizers to be used in multi-threaded programs. The minimization algorithms can be used to maximize a function by inverting its sign. The header file 'gsl_multimin.h' contains prototypes for the minimization functions and related declarations. * Menu: * Multimin Overview:: * Multimin Caveats:: * Initializing the Multidimensional Minimizer:: * Providing a function to minimize:: * Multimin Iteration:: * Multimin Stopping Criteria:: * Multimin Algorithms with Derivatives:: * Multimin Algorithms without Derivatives:: * Multimin Examples:: * Multimin References and Further Reading::  File: gsl-ref.info, Node: Multimin Overview, Next: Multimin Caveats, Up: Multidimensional Minimization 36.1 Overview ============= The problem of multidimensional minimization requires finding a point x such that the scalar function, f(x_1, ..., x_n) takes a value which is lower than at any neighboring point. For smooth functions the gradient g = \nabla f vanishes at the minimum. In general there are no bracketing methods available for the minimization of n-dimensional functions. The algorithms proceed from an initial guess using a search algorithm which attempts to move in a downhill direction. Algorithms making use of the gradient of the function perform a one-dimensional line minimisation along this direction until the lowest point is found to a suitable tolerance. The search direction is then updated with local information from the function and its derivatives, and the whole process repeated until the true n-dimensional minimum is found. Algorithms which do not require the gradient of the function use different strategies. For example, the Nelder-Mead Simplex algorithm maintains n+1 trial parameter vectors as the vertices of a n-dimensional simplex. On each iteration it tries to improve the worst vertex of the simplex by geometrical transformations. The iterations are continued until the overall size of the simplex has decreased sufficiently. Both types of algorithms use a standard framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, * initialize minimizer state, S, for algorithm T * update S using the iteration T * test S for convergence, and repeat iteration if necessary Each iteration step consists either of an improvement to the line-minimisation in the current direction or an update to the search direction itself. The state for the minimizers is held in a 'gsl_multimin_fdfminimizer' struct or a 'gsl_multimin_fminimizer' struct.  File: gsl-ref.info, Node: Multimin Caveats, Next: Initializing the Multidimensional Minimizer, Prev: Multimin Overview, Up: Multidimensional Minimization 36.2 Caveats ============ Note that the minimization algorithms can only search for one local minimum at a time. When there are several local minima in the search area, the first minimum to be found will be returned; however it is difficult to predict which of the minima this will be. In most cases, no error will be reported if you try to find a local minimum in an area where there is more than one. It is also important to note that the minimization algorithms find local minima; there is no way to determine whether a minimum is a global minimum of the function in question.  File: gsl-ref.info, Node: Initializing the Multidimensional Minimizer, Next: Providing a function to minimize, Prev: Multimin Caveats, Up: Multidimensional Minimization 36.3 Initializing the Multidimensional Minimizer ================================================ The following function initializes a multidimensional minimizer. The minimizer itself depends only on the dimension of the problem and the algorithm and can be reused for different problems. -- Function: gsl_multimin_fdfminimizer * gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type * T, size_t N) -- Function: gsl_multimin_fminimizer * gsl_multimin_fminimizer_alloc (const gsl_multimin_fminimizer_type * T, size_t N) This function returns a pointer to a newly allocated instance of a minimizer of type T for an N-dimension function. If there is insufficient memory to create the minimizer then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * S, gsl_multimin_function_fdf * FDF, const gsl_vector * X, double STEP_SIZE, double TOL) -- Function: int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer * S, gsl_multimin_function * F, const gsl_vector * X, const gsl_vector * STEP_SIZE) The function 'gsl_multimin_fdfminimizer_set' initializes the minimizer S to minimize the function FDF starting from the initial point X. The size of the first trial step is given by STEP_SIZE. The accuracy of the line minimization is specified by TOL. The precise meaning of this parameter depends on the method used. Typically the line minimization is considered successful if the gradient of the function g is orthogonal to the current search direction p to a relative accuracy of TOL, where dot(p,g) < tol |p| |g|. A TOL value of 0.1 is suitable for most purposes, since line minimization only needs to be carried out approximately. Note that setting TOL to zero will force the use of "exact" line-searches, which are extremely expensive. The function 'gsl_multimin_fminimizer_set' initializes the minimizer S to minimize the function F, starting from the initial point X. The size of the initial trial steps is given in vector STEP_SIZE. The precise meaning of this parameter depends on the method used. -- Function: void gsl_multimin_fdfminimizer_free (gsl_multimin_fdfminimizer * S) -- Function: void gsl_multimin_fminimizer_free (gsl_multimin_fminimizer * S) This function frees all the memory associated with the minimizer S. -- Function: const char * gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * S) -- Function: const char * gsl_multimin_fminimizer_name (const gsl_multimin_fminimizer * S) This function returns a pointer to the name of the minimizer. For example, printf ("s is a '%s' minimizer\n", gsl_multimin_fdfminimizer_name (s)); would print something like 's is a 'conjugate_pr' minimizer'.  File: gsl-ref.info, Node: Providing a function to minimize, Next: Multimin Iteration, Prev: Initializing the Multidimensional Minimizer, Up: Multidimensional Minimization 36.4 Providing a function to minimize ===================================== You must provide a parametric function of n variables for the minimizers to operate on. You may also need to provide a routine which calculates the gradient of the function and a third routine which calculates both the function value and the gradient together. In order to allow for general parameters the functions are defined by the following data types: -- Data Type: gsl_multimin_function_fdf This data type defines a general function of n variables with parameters and the corresponding gradient vector of derivatives, 'double (* f) (const gsl_vector * X, void * PARAMS)' this function should return the result f(x,params) for argument X and parameters PARAMS. If the function cannot be computed, an error value of 'GSL_NAN' should be returned. 'void (* df) (const gsl_vector * X, void * PARAMS, gsl_vector * G)' this function should store the N-dimensional gradient g_i = d f(x,params) / d x_i in the vector G for argument X and parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'void (* fdf) (const gsl_vector * X, void * PARAMS, double * f, gsl_vector * G)' This function should set the values of the F and G as above, for arguments X and parameters PARAMS. This function provides an optimization of the separate functions for f(x) and g(x)--it is always faster to compute the function and its derivative at the same time. 'size_t n' the dimension of the system, i.e. the number of components of the vectors X. 'void * params' a pointer to the parameters of the function. -- Data Type: gsl_multimin_function This data type defines a general function of n variables with parameters, 'double (* f) (const gsl_vector * X, void * PARAMS)' this function should return the result f(x,params) for argument X and parameters PARAMS. If the function cannot be computed, an error value of 'GSL_NAN' should be returned. 'size_t n' the dimension of the system, i.e. the number of components of the vectors X. 'void * params' a pointer to the parameters of the function. The following example function defines a simple two-dimensional paraboloid with five parameters, /* Paraboloid centered on (p[0],p[1]), with scale factors (p[2],p[3]) and minimum p[4] */ double my_f (const gsl_vector *v, void *params) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); return p[2] * (x - p[0]) * (x - p[0]) + p[3] * (y - p[1]) * (y - p[1]) + p[4]; } /* The gradient of f, df = (df/dx, df/dy). */ void my_df (const gsl_vector *v, void *params, gsl_vector *df) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); gsl_vector_set(df, 0, 2.0 * p[2] * (x - p[0])); gsl_vector_set(df, 1, 2.0 * p[3] * (y - p[1])); } /* Compute both f and df together. */ void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df) { *f = my_f(x, params); my_df(x, params, df); } The function can be initialized using the following code, gsl_multimin_function_fdf my_func; /* Paraboloid center at (1,2), scale factors (10, 20), minimum value 30 */ double p[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 }; my_func.n = 2; /* number of function components */ my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.params = (void *)p;  File: gsl-ref.info, Node: Multimin Iteration, Next: Multimin Stopping Criteria, Prev: Providing a function to minimize, Up: Multidimensional Minimization 36.5 Iteration ============== The following function drives the iteration of each algorithm. The function performs one iteration to update the state of the minimizer. The same function works for all minimizers so that different methods can be substituted at runtime without modifications to the code. -- Function: int gsl_multimin_fdfminimizer_iterate (gsl_multimin_fdfminimizer * S) -- Function: int gsl_multimin_fminimizer_iterate (gsl_multimin_fminimizer * S) These functions perform a single iteration of the minimizer S. If the iteration encounters an unexpected problem then an error code will be returned. The error code 'GSL_ENOPROG' signifies that the minimizer is unable to improve on its current estimate, either due to numerical difficulty or because a genuine local minimum has been reached. The minimizer maintains a current best estimate of the minimum at all times. This information can be accessed with the following auxiliary functions, -- Function: gsl_vector * gsl_multimin_fdfminimizer_x (const gsl_multimin_fdfminimizer * S) -- Function: gsl_vector * gsl_multimin_fminimizer_x (const gsl_multimin_fminimizer * S) -- Function: double gsl_multimin_fdfminimizer_minimum (const gsl_multimin_fdfminimizer * S) -- Function: double gsl_multimin_fminimizer_minimum (const gsl_multimin_fminimizer * S) -- Function: gsl_vector * gsl_multimin_fdfminimizer_gradient (const gsl_multimin_fdfminimizer * S) -- Function: double gsl_multimin_fminimizer_size (const gsl_multimin_fminimizer * S) These functions return the current best estimate of the location of the minimum, the value of the function at that point, its gradient, and minimizer specific characteristic size for the minimizer S. -- Function: int gsl_multimin_fdfminimizer_restart (gsl_multimin_fdfminimizer * S) This function resets the minimizer S to use the current point as a new starting point.  File: gsl-ref.info, Node: Multimin Stopping Criteria, Next: Multimin Algorithms with Derivatives, Prev: Multimin Iteration, Up: Multidimensional Minimization 36.6 Stopping Criteria ====================== A minimization procedure should stop when one of the following conditions is true: * A minimum has been found to within the user-specified precision. * A user-specified maximum number of iterations has been reached. * An error has occurred. The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result. -- Function: int gsl_multimin_test_gradient (const gsl_vector * G, double EPSABS) This function tests the norm of the gradient G against the absolute tolerance EPSABS. The gradient of a multidimensional function goes to zero at a minimum. The test returns 'GSL_SUCCESS' if the following condition is achieved, |g| < epsabs and returns 'GSL_CONTINUE' otherwise. A suitable choice of EPSABS can be made from the desired accuracy in the function for small variations in x. The relationship between these quantities is given by \delta f = g \delta x. -- Function: int gsl_multimin_test_size (const double SIZE, double EPSABS) This function tests the minimizer specific characteristic size (if applicable to the used minimizer) against absolute tolerance EPSABS. The test returns 'GSL_SUCCESS' if the size is smaller than tolerance, otherwise 'GSL_CONTINUE' is returned.  File: gsl-ref.info, Node: Multimin Algorithms with Derivatives, Next: Multimin Algorithms without Derivatives, Prev: Multimin Stopping Criteria, Up: Multidimensional Minimization 36.7 Algorithms with Derivatives ================================ There are several minimization methods available. The best choice of algorithm depends on the problem. The algorithms described in this section use the value of the function and its gradient at each evaluation point. -- Minimizer: gsl_multimin_fdfminimizer_conjugate_fr This is the Fletcher-Reeves conjugate gradient algorithm. The conjugate gradient algorithm proceeds as a succession of line minimizations. The sequence of search directions is used to build up an approximation to the curvature of the function in the neighborhood of the minimum. An initial search direction P is chosen using the gradient, and line minimization is carried out in that direction. The accuracy of the line minimization is specified by the parameter TOL. The minimum along this line occurs when the function gradient G and the search direction P are orthogonal. The line minimization terminates when dot(p,g) < tol |p| |g|. The search direction is updated using the Fletcher-Reeves formula p' = g' - \beta g where \beta=-|g'|^2/|g|^2, and the line minimization is then repeated for the new search direction. -- Minimizer: gsl_multimin_fdfminimizer_conjugate_pr This is the Polak-Ribiere conjugate gradient algorithm. It is similar to the Fletcher-Reeves method, differing only in the choice of the coefficient \beta. Both methods work well when the evaluation point is close enough to the minimum of the objective function that it is well approximated by a quadratic hypersurface. -- Minimizer: gsl_multimin_fdfminimizer_vector_bfgs2 -- Minimizer: gsl_multimin_fdfminimizer_vector_bfgs These methods use the vector Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This is a quasi-Newton method which builds up an approximation to the second derivatives of the function f using the difference between successive gradient vectors. By combining the first and second derivatives the algorithm is able to take Newton-type steps towards the function minimum, assuming quadratic behavior in that region. The 'bfgs2' version of this minimizer is the most efficient version available, and is a faithful implementation of the line minimization scheme described in Fletcher's 'Practical Methods of Optimization', Algorithms 2.6.2 and 2.6.4. It supersedes the original 'bfgs' routine and requires substantially fewer function and gradient evaluations. The user-supplied tolerance TOL corresponds to the parameter \sigma used by Fletcher. A value of 0.1 is recommended for typical use (larger values correspond to less accurate line searches). -- Minimizer: gsl_multimin_fdfminimizer_steepest_descent The steepest descent algorithm follows the downhill gradient of the function at each step. When a downhill step is successful the step-size is increased by a factor of two. If the downhill step leads to a higher function value then the algorithm backtracks and the step size is decreased using the parameter TOL. A suitable value of TOL for most applications is 0.1. The steepest descent method is inefficient and is included only for demonstration purposes.  File: gsl-ref.info, Node: Multimin Algorithms without Derivatives, Next: Multimin Examples, Prev: Multimin Algorithms with Derivatives, Up: Multidimensional Minimization 36.8 Algorithms without Derivatives =================================== The algorithms described in this section use only the value of the function at each evaluation point. -- Minimizer: gsl_multimin_fminimizer_nmsimplex2 -- Minimizer: gsl_multimin_fminimizer_nmsimplex These methods use the Simplex algorithm of Nelder and Mead. Starting from the initial vector X = p_0, the algorithm constructs an additional n vectors p_i using the step size vector s = STEP_SIZE as follows: p_0 = (x_0, x_1, ... , x_n) p_1 = (x_0 + s_0, x_1, ... , x_n) p_2 = (x_0, x_1 + s_1, ... , x_n) ... = ... p_n = (x_0, x_1, ... , x_n + s_n) These vectors form the n+1 vertices of a simplex in n dimensions. On each iteration the algorithm uses simple geometrical transformations to update the vector corresponding to the highest function value. The geometric transformations are reflection, reflection followed by expansion, contraction and multiple contraction. Using these transformations the simplex moves through the space towards the minimum, where it contracts itself. After each iteration, the best vertex is returned. Note, that due to the nature of the algorithm not every step improves the current best parameter vector. Usually several iterations are required. The minimizer-specific characteristic size is calculated as the average distance from the geometrical center of the simplex to all its vertices. This size can be used as a stopping criteria, as the simplex contracts itself near the minimum. The size is returned by the function 'gsl_multimin_fminimizer_size'. The 'nmsimplex2' version of this minimiser is a new O(N) operations implementation of the earlier O(N^2) operations 'nmsimplex' minimiser. It uses the same underlying algorithm, but the simplex updates are computed more efficiently for high-dimensional problems. In addition, the size of simplex is calculated as the RMS distance of each vertex from the center rather than the mean distance, allowing a linear update of this quantity on each step. The memory usage is O(N^2) for both algorithms. -- Minimizer: gsl_multimin_fminimizer_nmsimplex2rand This method is a variant of 'nmsimplex2' which initialises the simplex around the starting point X using a randomly-oriented set of basis vectors instead of the fixed coordinate axes. The final dimensions of the simplex are scaled along the coordinate axes by the vector STEP_SIZE. The randomisation uses a simple deterministic generator so that repeated calls to 'gsl_multimin_fminimizer_set' for a given solver object will vary the orientation in a well-defined way.  File: gsl-ref.info, Node: Multimin Examples, Next: Multimin References and Further Reading, Prev: Multimin Algorithms without Derivatives, Up: Multidimensional Minimization 36.9 Examples ============= This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in x and y, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter. int main (void) { size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2), scale factors 10,20, height 30. */ double par[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 }; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.n = 2; my_func.f = my_f; my_func.df = my_df; my_func.fdf = my_fdf; my_func.params = par; /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do { iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); } while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; } The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below, x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000 Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points. The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function. Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above. int main(void) { double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0}; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex2; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0; int status; double size; /* Starting point */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); /* Set initial step sizes to 1 */ ss = gsl_vector_alloc (2); gsl_vector_set_all (ss, 1.0); /* Initialize method and iterate */ minex_func.n = 2; minex_func.f = my_f; minex_func.params = par; s = gsl_multimin_fminimizer_alloc (T, 2); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { printf ("converged to minimum at\n"); } printf ("%5d %10.3e %10.3e f() = %7.3f size = %.3f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->fval, size); } while (status == GSL_CONTINUE && iter < 100); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); return status; } The minimum search stops when the Simplex size drops to 0.01. The output is shown below. 1 6.500e+00 5.000e+00 f() = 512.500 size = 1.130 2 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 3 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 4 5.500e+00 1.000e+00 f() = 252.500 size = 1.409 5 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 6 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 7 0.000e+00 3.000e+00 f() = 60.000 size = 1.847 8 2.094e+00 1.875e+00 f() = 42.275 size = 1.321 9 2.578e-01 1.906e+00 f() = 35.684 size = 1.069 10 5.879e-01 2.445e+00 f() = 35.664 size = 0.841 11 1.258e+00 2.025e+00 f() = 30.680 size = 0.476 12 1.258e+00 2.025e+00 f() = 30.680 size = 0.367 13 1.093e+00 1.849e+00 f() = 30.539 size = 0.300 14 8.830e-01 2.004e+00 f() = 30.137 size = 0.172 15 8.830e-01 2.004e+00 f() = 30.137 size = 0.126 16 9.582e-01 2.060e+00 f() = 30.090 size = 0.106 17 1.022e+00 2.004e+00 f() = 30.005 size = 0.063 18 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 19 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 20 1.022e+00 2.004e+00 f() = 30.005 size = 0.027 21 1.022e+00 2.004e+00 f() = 30.005 size = 0.022 22 9.920e-01 1.997e+00 f() = 30.001 size = 0.016 23 9.920e-01 1.997e+00 f() = 30.001 size = 0.013 converged to minimum at 24 9.920e-01 1.997e+00 f() = 30.001 size = 0.008 The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum.  File: gsl-ref.info, Node: Multimin References and Further Reading, Prev: Multimin Examples, Up: Multidimensional Minimization 36.10 References and Further Reading ==================================== The conjugate gradient and BFGS methods are described in detail in the following book, R. Fletcher, 'Practical Methods of Optimization (Second Edition)' Wiley (1987), ISBN 0471915475. A brief description of multidimensional minimization algorithms and more recent references can be found in, C.W. Ueberhuber, 'Numerical Computation (Volume 2)', Chapter 14, Section 4.4 "Minimization Methods", p. 325-335, Springer (1997), ISBN 3-540-62057-5. The simplex algorithm is described in the following paper, J.A. Nelder and R. Mead, 'A simplex method for function minimization', Computer Journal vol. 7 (1965), 308-313.  File: gsl-ref.info, Node: Least-Squares Fitting, Next: Nonlinear Least-Squares Fitting, Prev: Multidimensional Minimization, Up: Top 37 Least-Squares Fitting ************************ This chapter describes routines for performing least squares fits to experimental data using linear combinations of functions. The data may be weighted or unweighted, i.e. with known or unknown errors. For weighted data the functions compute the best fit parameters and their associated covariance matrix. For unweighted data the covariance matrix is estimated from the scatter of the points, giving a variance-covariance matrix. The functions are divided into separate versions for simple one- or two-parameter regression and multiple-parameter fits. The functions are declared in the header file 'gsl_fit.h'. * Menu: * Fitting Overview:: * Linear regression:: * Linear fitting without a constant term:: * Multi-parameter fitting:: * Robust linear regression:: * Troubleshooting:: * Fitting Examples:: * Fitting References and Further Reading::  File: gsl-ref.info, Node: Fitting Overview, Next: Linear regression, Up: Least-Squares Fitting 37.1 Overview ============= Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted sum of squared residuals over n experimental datapoints (x_i, y_i) for the model Y(c,x), \chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2 The p parameters of the model are c = {c_0, c_1, ...}. The weight factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the experimental error on the data-point y_i. The errors are assumed to be Gaussian and uncorrelated. For unweighted data the chi-squared sum is computed without any weight factors. The fitting routines return the best-fit parameters c and their p \times p covariance matrix. The covariance matrix measures the statistical errors on the best-fit parameters resulting from the errors on the data, \sigma_i, and is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average over the Gaussian error distributions of the underlying datapoints. The covariance matrix is calculated by error propagation from the data errors \sigma_i. The change in a fitted parameter \delta c_a caused by a small change in the data \delta y_i is given by \delta c_a = \sum_i (dc_a/dy_i) \delta y_i allowing the covariance matrix to be written in terms of the errors on the data, C_{ab} = \sum_{i,j} (dc_a/dy_i) (dc_b/dy_j) <\delta y_i \delta y_j> For uncorrelated data the fluctuations of the underlying datapoints satisfy <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding parameter covariance matrix of C_{ab} = \sum_i (1/w_i) (dc_a/dy_i) (dc_b/dy_i) When computing the covariance matrix for unweighted data, i.e. data with unknown errors, the weight factors w_i in this sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the computed variance of the residuals about the best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p). This is referred to as the "variance-covariance matrix". The standard deviations of the best-fit parameters are given by the square root of the corresponding diagonal elements of the covariance matrix, \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.  File: gsl-ref.info, Node: Linear regression, Next: Linear fitting without a constant term, Prev: Fitting Overview, Up: Least-Squares Fitting 37.2 Linear regression ====================== The functions described in this section can be used to perform least-squares fits to a straight line model, Y(c,x) = c_0 + c_1 x. -- Function: int gsl_fit_linear (const double * X, const size_t XSTRIDE, const double * Y, const size_t YSTRIDE, size_t N, double * C0, double * C1, double * COV00, double * COV01, double * COV11, double * SUMSQ) This function computes the best-fit linear regression coefficients (C0,C1) of the model Y = c_0 + c_1 X for the dataset (X, Y), two vectors of length N with strides XSTRIDE and YSTRIDE. The errors on Y are assumed unknown so the variance-covariance matrix for the parameters (C0, C1) is estimated from the scatter of the points around the best-fit line and returned via the parameters (COV00, COV01, COV11). The sum of squares of the residuals from the best-fit line is returned in SUMSQ. Note: the correlation coefficient of the data can be computed using 'gsl_stats_correlation' (*note Correlation::), it does not depend on the fit. -- Function: int gsl_fit_wlinear (const double * X, const size_t XSTRIDE, const double * W, const size_t WSTRIDE, const double * Y, const size_t YSTRIDE, size_t N, double * C0, double * C1, double * COV00, double * COV01, double * COV11, double * CHISQ) This function computes the best-fit linear regression coefficients (C0,C1) of the model Y = c_0 + c_1 X for the weighted dataset (X, Y), two vectors of length N with strides XSTRIDE and YSTRIDE. The vector W, of length N and stride WSTRIDE, specifies the weight of each datapoint. The weight is the reciprocal of the variance for each datapoint in Y. The covariance matrix for the parameters (C0, C1) is computed using the weights and returned via the parameters (COV00, COV01, COV11). The weighted sum of squares of the residuals from the best-fit line, \chi^2, is returned in CHISQ. -- Function: int gsl_fit_linear_est (double X, double C0, double C1, double COV00, double COV01, double COV11, double * Y, double * Y_ERR) This function uses the best-fit linear regression coefficients C0, C1 and their covariance COV00, COV01, COV11 to compute the fitted function Y and its standard deviation Y_ERR for the model Y = c_0 + c_1 X at the point X.  File: gsl-ref.info, Node: Linear fitting without a constant term, Next: Multi-parameter fitting, Prev: Linear regression, Up: Least-Squares Fitting 37.3 Linear fitting without a constant term =========================================== The functions described in this section can be used to perform least-squares fits to a straight line model without a constant term, Y = c_1 X. -- Function: int gsl_fit_mul (const double * X, const size_t XSTRIDE, const double * Y, const size_t YSTRIDE, size_t N, double * C1, double * COV11, double * SUMSQ) This function computes the best-fit linear regression coefficient C1 of the model Y = c_1 X for the datasets (X, Y), two vectors of length N with strides XSTRIDE and YSTRIDE. The errors on Y are assumed unknown so the variance of the parameter C1 is estimated from the scatter of the points around the best-fit line and returned via the parameter COV11. The sum of squares of the residuals from the best-fit line is returned in SUMSQ. -- Function: int gsl_fit_wmul (const double * X, const size_t XSTRIDE, const double * W, const size_t WSTRIDE, const double * Y, const size_t YSTRIDE, size_t N, double * C1, double * COV11, double * SUMSQ) This function computes the best-fit linear regression coefficient C1 of the model Y = c_1 X for the weighted datasets (X, Y), two vectors of length N with strides XSTRIDE and YSTRIDE. The vector W, of length N and stride WSTRIDE, specifies the weight of each datapoint. The weight is the reciprocal of the variance for each datapoint in Y. The variance of the parameter C1 is computed using the weights and returned via the parameter COV11. The weighted sum of squares of the residuals from the best-fit line, \chi^2, is returned in CHISQ. -- Function: int gsl_fit_mul_est (double X, double C1, double COV11, double * Y, double * Y_ERR) This function uses the best-fit linear regression coefficient C1 and its covariance COV11 to compute the fitted function Y and its standard deviation Y_ERR for the model Y = c_1 X at the point X.  File: gsl-ref.info, Node: Multi-parameter fitting, Next: Robust linear regression, Prev: Linear fitting without a constant term, Up: Least-Squares Fitting 37.4 Multi-parameter fitting ============================ The functions described in this section perform least-squares fits to a general linear model, y = X c where y is a vector of n observations, X is an n by p matrix of predictor variables, and the elements of the vector c are the p unknown best-fit parameters which are to be estimated. The chi-squared value is given by \chi^2 = \sum_i w_i (y_i - \sum_j X_{ij} c_j)^2. This formulation can be used for fits to any number of functions and/or variables by preparing the n-by-p matrix X appropriately. For example, to fit to a p-th order polynomial in X, use the following matrix, X_{ij} = x_i^j where the index i runs over the observations and the index j runs from 0 to p-1. To fit to a set of p sinusoidal functions with fixed frequencies \omega_1, \omega_2, ..., \omega_p, use, X_{ij} = sin(\omega_j x_i) To fit to p independent variables x_1, x_2, ..., x_p, use, X_{ij} = x_j(i) where x_j(i) is the i-th value of the predictor variable x_j. The functions described in this section are declared in the header file 'gsl_multifit.h'. The solution of the general linear least-squares system requires an additional working space for intermediate results, such as the singular value decomposition of the matrix X. -- Function: gsl_multifit_linear_workspace * gsl_multifit_linear_alloc (size_t N, size_t P) This function allocates a workspace for fitting a model to N observations using P parameters. -- Function: void gsl_multifit_linear_free (gsl_multifit_linear_workspace * WORK) This function frees the memory associated with the workspace W. -- Function: int gsl_multifit_linear (const gsl_matrix * X, const gsl_vector * Y, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) This function computes the best-fit parameters C of the model y = X c for the observations Y and the matrix of predictor variables X, using the preallocated workspace provided in WORK. The p-by-p variance-covariance matrix of the model parameters COV is set to \sigma^2 (X^T X)^{-1}, where \sigma is the standard deviation of the fit residuals. The sum of squares of the residuals from the best-fit, \chi^2, is returned in CHISQ. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / TSS, where the total sum of squares (TSS) of the observations Y may be computed from 'gsl_stats_tss'. The best-fit is found by singular value decomposition of the matrix X using the modified Golub-Reinsch SVD algorithm, with column scaling to improve the accuracy of the singular values. Any components which have zero singular value (to machine precision) are discarded from the fit. -- Function: int gsl_multifit_wlinear (const gsl_matrix * X, const gsl_vector * W, const gsl_vector * Y, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) This function computes the best-fit parameters C of the weighted model y = X c for the observations Y with weights W and the matrix of predictor variables X, using the preallocated workspace provided in WORK. The p-by-p covariance matrix of the model parameters COV is computed as (X^T W X)^{-1}. The weighted sum of squares of the residuals from the best-fit, \chi^2, is returned in CHISQ. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / WTSS, where the weighted total sum of squares (WTSS) of the observations Y may be computed from 'gsl_stats_wtss'. -- Function: int gsl_multifit_linear_svd (const gsl_matrix * X, const gsl_vector * Y, double TOL, size_t * RANK, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) -- Function: int gsl_multifit_wlinear_svd (const gsl_matrix * X, const gsl_vector * W, const gsl_vector * Y, double TOL, size_t * RANK, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) In these functions components of the fit are discarded if the ratio of singular values s_i/s_0 falls below the user-specified tolerance TOL, and the effective rank is returned in RANK. -- Function: int gsl_multifit_linear_usvd (const gsl_matrix * X, const gsl_vector * Y, double TOL, size_t * RANK, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) -- Function: int gsl_multifit_wlinear_usvd (const gsl_matrix * X, const gsl_vector * W, const gsl_vector * Y, double TOL, size_t * RANK, gsl_vector * C, gsl_matrix * COV, double * CHISQ, gsl_multifit_linear_workspace * WORK) These functions compute the fit using an SVD without column scaling. -- Function: int gsl_multifit_linear_est (const gsl_vector * X, const gsl_vector * C, const gsl_matrix * COV, double * Y, double * Y_ERR) This function uses the best-fit multilinear regression coefficients C and their covariance matrix COV to compute the fitted function value Y and its standard deviation Y_ERR for the model y = x.c at the point X. -- Function: int gsl_multifit_linear_residuals (const gsl_matrix * X, const gsl_vector * Y, const gsl_vector * C, gsl_vector * R) This function computes the vector of residuals r = y - X c for the observations Y, coefficients C and matrix of predictor variables X.  File: gsl-ref.info, Node: Robust linear regression, Next: Troubleshooting, Prev: Multi-parameter fitting, Up: Least-Squares Fitting 37.5 Robust linear regression ============================= Ordinary least squares (OLS) models are often heavily influenced by the presence of outliers. Outliers are data points which do not follow the general trend of the other observations, although there is strictly no precise definition of an outlier. Robust linear regression refers to regression algorithms which are robust to outliers. The most common type of robust regression is M-estimation. The general M-estimator minimizes the objective function \sum_i \rho(e_i) = \sum_i \rho (y_i - Y(c, x_i)) where e_i = y_i - Y(c, x_i) is the residual of the ith data point, and \rho(e_i) is a function which should have the following properties: \rho(e) \ge 0 \rho(0) = 0 \rho(-e) = \rho(e) \rho(e_1) > \rho(e_2) for |e_1| > |e_2| The special case of ordinary least squares is given by \rho(e_i) = e_i^2. Letting \psi = \rho' be the derivative of \rho, differentiating the objective function with respect to the coefficients c and setting the partial derivatives to zero produces the system of equations \sum_i \psi(e_i) X_i = 0 where X_i is a vector containing row i of the design matrix X. Next, we define a weight function w(e) = \psi(e)/e, and let w_i = w(e_i): \sum_i w_i e_i X_i = 0 This system of equations is equivalent to solving a weighted ordinary least squares problem, minimizing \chi^2 = \sum_i w_i e_i^2. The weights however, depend on the residuals e_i, which depend on the coefficients c, which depend on the weights. Therefore, an iterative solution is used, called Iteratively Reweighted Least Squares (IRLS). 1. Compute initial estimates of the coefficients c^{(0)} using ordinary least squares 2. For iteration k, form the residuals e_i^{(k)} = (y_i - X_i c^{(k-1)})/(t \sigma^{(k)} \sqrt{1 - h_i}), where t is a tuning constant depending on the choice of \psi, and h_i are the statistical leverages (diagonal elements of the matrix X (X^T X)^{-1} X^T). Including t and h_i in the residual calculation has been shown to improve the convergence of the method. The residual standard deviation is approximated as \sigma^{(k)} = MAD / 0.6745, where MAD is the Median-Absolute-Deviation of the n-p largest residuals from the previous iteration. 3. Compute new weights w_i^{(k)} = \psi(e_i^{(k)})/e_i^{(k)}. 4. Compute new coefficients c^{(k)} by solving the weighted least squares problem with weights w_i^{(k)}. 5. Steps 2 through 4 are iterated until the coefficients converge or until some maximum iteration limit is reached. Coefficients are tested for convergence using the critera: |c_i^(k) - c_i^(k-1)| \le \epsilon \times max(|c_i^(k)|, |c_i^(k-1)|) for all 0 \le i < p where \epsilon is a small tolerance factor. The key to this method lies in selecting the function \psi(e_i) to assign smaller weights to large residuals, and larger weights to smaller residuals. As the iteration proceeds, outliers are assigned smaller and smaller weights, eventually having very little or no effect on the fitted model. -- Function: gsl_multifit_robust_workspace * gsl_multifit_robust_alloc (const gsl_multifit_robust_type * T, const size_t N, const size_t P) This function allocates a workspace for fitting a model to N observations using P parameters. The type T specifies the function \psi and can be selected from the following choices. -- Robust type: gsl_multifit_robust_default This specifies the 'gsl_multifit_robust_bisquare' type (see below) and is a good general purpose choice for robust regression. -- Robust type: gsl_multifit_robust_bisquare This is Tukey's biweight (bisquare) function and is a good general purpose choice for robust regression. The weight function is given by w(e) = (1 - e^2)^2 and the default tuning constant is t = 4.685. -- Robust type: gsl_multifit_robust_cauchy This is Cauchy's function, also known as the Lorentzian function. This function does not guarantee a unique solution, meaning different choices of the coefficient vector C could minimize the objective function. Therefore this option should be used with care. The weight function is given by w(e) = 1 / (1 + e^2) and the default tuning constant is t = 2.385. -- Robust type: gsl_multifit_robust_fair This is the fair \rho function, which guarantees a unique solution and has continuous derivatives to three orders. The weight function is given by w(e) = 1 / (1 + |e|) and the default tuning constant is t = 1.400. -- Robust type: gsl_multifit_robust_huber This specifies Huber's \rho function, which is a parabola in the vicinity of zero and increases linearly for a given threshold |e| > t. This function is also considered an excellent general purpose robust estimator, however, occasional difficulties can be encountered due to the discontinuous first derivative of the \psi function. The weight function is given by w(e) = 1/max(1,|e|) and the default tuning constant is t = 1.345. -- Robust type: gsl_multifit_robust_ols This specifies the ordinary least squares solution, which can be useful for quickly checking the difference between the various robust and OLS solutions. The weight function is given by w(e) = 1 and the default tuning constant is t = 1. -- Robust type: gsl_multifit_robust_welsch This specifies the Welsch function which can perform well in cases where the residuals have an exponential distribution. The weight function is given by w(e) = \exp(-e^2) and the default tuning constant is t = 2.985. -- Function: void gsl_multifit_robust_free (gsl_multifit_robust_workspace * W) This function frees the memory associated with the workspace W. -- Function: const char * gsl_multifit_robust_name (const gsl_multifit_robust_workspace * W) This function returns the name of the robust type T specified to 'gsl_multifit_robust_alloc'. -- Function: int gsl_multifit_robust_tune (const double TUNE, gsl_multifit_robust_workspace * W) This function sets the tuning constant t used to adjust the residuals at each iteration to TUNE. Decreasing the tuning constant increases the downweight assigned to large residuals, while increasing the tuning constant decreases the downweight assigned to large residuals. -- Function: int gsl_multifit_robust (const gsl_matrix * X, const gsl_vector * Y, gsl_vector * C, gsl_matrix * COV, gsl_multifit_robust_workspace * W) This function computes the best-fit parameters C of the model y = X c for the observations Y and the matrix of predictor variables X, attemping to reduce the influence of outliers using the algorithm outlined above. The p-by-p variance-covariance matrix of the model parameters COV is estimated as \sigma^2 (X^T X)^{-1}, where \sigma is an approximation of the residual standard deviation using the theory of robust regression. Special care must be taken when estimating \sigma and other statistics such as R^2, and so these are computed internally and are available by calling the function 'gsl_multifit_robust_statistics'. -- Function: int gsl_multifit_robust_est (const gsl_vector * X, const gsl_vector * C, const gsl_matrix * COV, double * Y, double * Y_ERR) This function uses the best-fit robust regression coefficients C and their covariance matrix COV to compute the fitted function value Y and its standard deviation Y_ERR for the model y = x.c at the point X. -- Function: gsl_multifit_robust_stats gsl_multifit_robust_statistics (const gsl_multifit_robust_workspace * W) This function returns a structure containing relevant statistics from a robust regression. The function 'gsl_multifit_robust' must be called first to perform the regression and calculate these statistics. The returned 'gsl_multifit_robust_stats' structure contains the following fields. double 'sigma_ols' This contains the standard deviation of the residuals as computed from ordinary least squares (OLS). double 'sigma_mad' This contains an estimate of the standard deviation of the final residuals using the Median-Absolute-Deviation statistic double 'sigma_rob' This contains an estimate of the standard deviation of the final residuals from the theory of robust regression (see Street et al, 1988). double 'sigma' This contains an estimate of the standard deviation of the final residuals by attemping to reconcile 'sigma_rob' and 'sigma_ols' in a reasonable way. double 'Rsq' This contains the R^2 coefficient of determination statistic using the estimate 'sigma'. double 'adj_Rsq' This contains the adjusted R^2 coefficient of determination statistic using the estimate 'sigma'. double 'rmse' This contains the root mean squared error of the final residuals double 'sse' This contains the residual sum of squares taking into account the robust covariance matrix. size_t 'dof' This contains the number of degrees of freedom n - p size_t 'numit' Upon successful convergence, this contains the number of iterations performed gsl_vector * 'weights' This contains the final weight vector of length N gsl_vector * 'r' This contains the final residual vector of length N, r = y - X c  File: gsl-ref.info, Node: Troubleshooting, Next: Fitting Examples, Prev: Robust linear regression, Up: Least-Squares Fitting 37.6 Troubleshooting ==================== When using models based on polynomials, care should be taken when constructing the design matrix X. If the x values are large, then the matrix X could be ill-conditioned since its columns are powers of x, leading to unstable least-squares solutions. In this case it can often help to center and scale the x values using the mean and standard deviation: x' = (x - mu)/sigma and then construct the X matrix using the transformed values x'.  File: gsl-ref.info, Node: Fitting Examples, Next: Fitting References and Further Reading, Prev: Troubleshooting, Up: Least-Squares Fitting 37.7 Examples ============= The following program computes a least squares straight-line fit to a simple dataset, and outputs the best-fit line and its associated one standard-deviation error bars. #include #include int main (void) { int i, n = 4; double x[4] = { 1970, 1980, 1990, 2000 }; double y[4] = { 12, 11, 14, 13 }; double w[4] = { 0.1, 0.2, 0.3, 0.4 }; double c0, c1, cov00, cov01, cov11, chisq; gsl_fit_wlinear (x, 1, w, 1, y, 1, n, &c0, &c1, &cov00, &cov01, &cov11, &chisq); printf ("# best fit: Y = %g + %g X\n", c0, c1); printf ("# covariance matrix:\n"); printf ("# [ %g, %g\n# %g, %g]\n", cov00, cov01, cov01, cov11); printf ("# chisq = %g\n", chisq); for (i = 0; i < n; i++) printf ("data: %g %g %g\n", x[i], y[i], 1/sqrt(w[i])); printf ("\n"); for (i = -30; i < 130; i++) { double xf = x[0] + (i/100.0) * (x[n-1] - x[0]); double yf, yf_err; gsl_fit_linear_est (xf, c0, c1, cov00, cov01, cov11, &yf, &yf_err); printf ("fit: %g %g\n", xf, yf); printf ("hi : %g %g\n", xf, yf + yf_err); printf ("lo : %g %g\n", xf, yf - yf_err); } return 0; } The following commands extract the data from the output of the program and display it using the GNU plotutils 'graph' utility, $ ./demo > tmp $ more tmp # best fit: Y = -106.6 + 0.06 X # covariance matrix: # [ 39602, -19.9 # -19.9, 0.01] # chisq = 0.8 $ for n in data fit hi lo ; do grep "^$n" tmp | cut -d: -f2 > $n ; done $ graph -T X -X x -Y y -y 0 20 -m 0 -S 2 -Ie data -S 0 -I a -m 1 fit -m 2 hi -m 2 lo The next program performs a quadratic fit y = c_0 + c_1 x + c_2 x^2 to a weighted dataset using the generalised linear fitting function 'gsl_multifit_wlinear'. The model matrix X for a quadratic fit is given by, X = [ 1 , x_0 , x_0^2 ; 1 , x_1 , x_1^2 ; 1 , x_2 , x_2^2 ; ... , ... , ... ] where the column of ones corresponds to the constant term c_0. The two remaining columns corresponds to the terms c_1 x and c_2 x^2. The program reads N lines of data in the format (X, Y, ERR) where ERR is the error (standard deviation) in the value Y. #include #include int main (int argc, char **argv) { int i, n; double xi, yi, ei, chisq; gsl_matrix *X, *cov; gsl_vector *y, *w, *c; if (argc != 2) { fprintf (stderr,"usage: fit n < data\n"); exit (-1); } n = atoi (argv[1]); X = gsl_matrix_alloc (n, 3); y = gsl_vector_alloc (n); w = gsl_vector_alloc (n); c = gsl_vector_alloc (3); cov = gsl_matrix_alloc (3, 3); for (i = 0; i < n; i++) { int count = fscanf (stdin, "%lg %lg %lg", &xi, &yi, &ei); if (count != 3) { fprintf (stderr, "error reading file\n"); exit (-1); } printf ("%g %g +/- %g\n", xi, yi, ei); gsl_matrix_set (X, i, 0, 1.0); gsl_matrix_set (X, i, 1, xi); gsl_matrix_set (X, i, 2, xi*xi); gsl_vector_set (y, i, yi); gsl_vector_set (w, i, 1.0/(ei*ei)); } { gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (n, 3); gsl_multifit_wlinear (X, w, y, c, cov, &chisq, work); gsl_multifit_linear_free (work); } #define C(i) (gsl_vector_get(c,(i))) #define COV(i,j) (gsl_matrix_get(cov,(i),(j))) { printf ("# best fit: Y = %g + %g X + %g X^2\n", C(0), C(1), C(2)); printf ("# covariance matrix:\n"); printf ("[ %+.5e, %+.5e, %+.5e \n", COV(0,0), COV(0,1), COV(0,2)); printf (" %+.5e, %+.5e, %+.5e \n", COV(1,0), COV(1,1), COV(1,2)); printf (" %+.5e, %+.5e, %+.5e ]\n", COV(2,0), COV(2,1), COV(2,2)); printf ("# chisq = %g\n", chisq); } gsl_matrix_free (X); gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (c); gsl_matrix_free (cov); return 0; } A suitable set of data for fitting can be generated using the following program. It outputs a set of points with gaussian errors from the curve y = e^x in the region 0 < x < 2. #include #include #include int main (void) { double x; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); for (x = 0.1; x < 2; x+= 0.1) { double y0 = exp (x); double sigma = 0.1 * y0; double dy = gsl_ran_gaussian (r, sigma); printf ("%g %g %g\n", x, y0 + dy, sigma); } gsl_rng_free(r); return 0; } The data can be prepared by running the resulting executable program, $ GSL_RNG_TYPE=mt19937_1999 ./generate > exp.dat $ more exp.dat 0.1 0.97935 0.110517 0.2 1.3359 0.12214 0.3 1.52573 0.134986 0.4 1.60318 0.149182 0.5 1.81731 0.164872 0.6 1.92475 0.182212 .... To fit the data use the previous program, with the number of data points given as the first argument. In this case there are 19 data points. $ ./fit 19 < exp.dat 0.1 0.97935 +/- 0.110517 0.2 1.3359 +/- 0.12214 ... # best fit: Y = 1.02318 + 0.956201 X + 0.876796 X^2 # covariance matrix: [ +1.25612e-02, -3.64387e-02, +1.94389e-02 -3.64387e-02, +1.42339e-01, -8.48761e-02 +1.94389e-02, -8.48761e-02, +5.60243e-02 ] # chisq = 23.0987 The parameters of the quadratic fit match the coefficients of the expansion of e^x, taking into account the errors on the parameters and the O(x^3) difference between the exponential and quadratic functions for the larger values of x. The errors on the parameters are given by the square-root of the corresponding diagonal elements of the covariance matrix. The chi-squared per degree of freedom is 1.4, indicating a reasonable fit to the data. The next program demonstrates the advantage of robust least squares on a dataset with outliers. The program generates linear (x,y) data pairs on the line y = 1.45 x + 3.88, adds some random noise, and inserts 3 outliers into the dataset. Both the robust and ordinary least squares (OLS) coefficients are computed for comparison. #include #include #include int dofit(const gsl_multifit_robust_type *T, const gsl_matrix *X, const gsl_vector *y, gsl_vector *c, gsl_matrix *cov) { int s; gsl_multifit_robust_workspace * work = gsl_multifit_robust_alloc (T, X->size1, X->size2); s = gsl_multifit_robust (X, y, c, cov, work); gsl_multifit_robust_free (work); return s; } int main (int argc, char **argv) { int i; size_t n; const size_t p = 2; /* linear fit */ gsl_matrix *X, *cov; gsl_vector *x, *y, *c, *c_ols; const double a = 1.45; /* slope */ const double b = 3.88; /* intercept */ gsl_rng *r; if (argc != 2) { fprintf (stderr,"usage: robfit n\n"); exit (-1); } n = atoi (argv[1]); X = gsl_matrix_alloc (n, p); x = gsl_vector_alloc (n); y = gsl_vector_alloc (n); c = gsl_vector_alloc (p); c_ols = gsl_vector_alloc (p); cov = gsl_matrix_alloc (p, p); r = gsl_rng_alloc(gsl_rng_default); /* generate linear dataset */ for (i = 0; i < n - 3; i++) { double dx = 10.0 / (n - 1.0); double ei = gsl_rng_uniform(r); double xi = -5.0 + i * dx; double yi = a * xi + b; gsl_vector_set (x, i, xi); gsl_vector_set (y, i, yi + ei); } /* add a few outliers */ gsl_vector_set(x, n - 3, 4.7); gsl_vector_set(y, n - 3, -8.3); gsl_vector_set(x, n - 2, 3.5); gsl_vector_set(y, n - 2, -6.7); gsl_vector_set(x, n - 1, 4.1); gsl_vector_set(y, n - 1, -6.0); /* construct design matrix X for linear fit */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); gsl_matrix_set (X, i, 0, 1.0); gsl_matrix_set (X, i, 1, xi); } /* perform robust and OLS fit */ dofit(gsl_multifit_robust_ols, X, y, c_ols, cov); dofit(gsl_multifit_robust_bisquare, X, y, c, cov); /* output data and model */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); double yi = gsl_vector_get(y, i); gsl_vector_view v = gsl_matrix_row(X, i); double y_ols, y_rob, y_err; gsl_multifit_robust_est(&v.vector, c, cov, &y_rob, &y_err); gsl_multifit_robust_est(&v.vector, c_ols, cov, &y_ols, &y_err); printf("%g %g %g %g\n", xi, yi, y_rob, y_ols); } #define C(i) (gsl_vector_get(c,(i))) #define COV(i,j) (gsl_matrix_get(cov,(i),(j))) { printf ("# best fit: Y = %g + %g X\n", C(0), C(1)); printf ("# covariance matrix:\n"); printf ("# [ %+.5e, %+.5e\n", COV(0,0), COV(0,1)); printf ("# %+.5e, %+.5e\n", COV(1,0), COV(1,1)); } gsl_matrix_free (X); gsl_vector_free (x); gsl_vector_free (y); gsl_vector_free (c); gsl_vector_free (c_ols); gsl_matrix_free (cov); gsl_rng_free(r); return 0; } The output from the program is shown in the following plot.  File: gsl-ref.info, Node: Fitting References and Further Reading, Prev: Fitting Examples, Up: Least-Squares Fitting 37.8 References and Further Reading =================================== A summary of formulas and techniques for least squares fitting can be found in the "Statistics" chapter of the Annual Review of Particle Physics prepared by the Particle Data Group, 'Review of Particle Properties', R.M. Barnett et al., Physical Review D54, 1 (1996) The Review of Particle Physics is available online at the website given above. The tests used to prepare these routines are based on the NIST Statistical Reference Datasets. The datasets and their documentation are available from NIST at the following website, . The GSL implementation of robust linear regression closely follows the publications DuMouchel, W. and F. O'Brien (1989), "Integrating a robust option into a multiple regression computing environment," Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, American Statistical Association Street, J.O., R.J. Carroll, and D. Ruppert (1988), "A note on computing robust regression estimates via iteratively reweighted least squares," The American Statistician, v. 42, pp. 152-154.  File: gsl-ref.info, Node: Nonlinear Least-Squares Fitting, Next: Basis Splines, Prev: Least-Squares Fitting, Up: Top 38 Nonlinear Least-Squares Fitting ********************************** This chapter describes functions for multidimensional nonlinear least-squares fitting. The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The header file 'gsl_multifit_nlin.h' contains prototypes for the multidimensional nonlinear fitting functions and related declarations. * Menu: * Overview of Nonlinear Least-Squares Fitting:: * Initializing the Nonlinear Least-Squares Solver:: * Providing the Function to be Minimized:: * Finite Difference Jacobian:: * Iteration of the Minimization Algorithm:: * Search Stopping Parameters for Minimization Algorithms:: * High Level Driver:: * Minimization Algorithms using Derivatives:: * Minimization Algorithms without Derivatives:: * Computing the covariance matrix of best fit parameters:: * Example programs for Nonlinear Least-Squares Fitting:: * References and Further Reading for Nonlinear Least-Squares Fitting::  File: gsl-ref.info, Node: Overview of Nonlinear Least-Squares Fitting, Next: Initializing the Nonlinear Least-Squares Solver, Up: Nonlinear Least-Squares Fitting 38.1 Overview ============= The problem of multidimensional nonlinear least-squares fitting requires the minimization of the squared residuals of n functions, f_i, in p parameters, x_i, \Phi(x) = (1/2) || F(x) ||^2 = (1/2) \sum_{i=1}^{n} f_i(x_1, ..., x_p)^2 All algorithms proceed from an initial guess using the linearization, \psi(p) = || F(x+p) || ~=~ || F(x) + J p || where x is the initial point, p is the proposed step and J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the region of convergence. These include requiring a decrease in the norm ||F|| on each step or using a trust region to avoid steps which fall outside the linear regime. To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data (t_i, y_i) with independent Gaussian errors \sigma_i, use function components of the following form, f_i = (Y(x, t_i) - y_i) / \sigma_i Note that the model parameters are denoted by x in this chapter since the non-linear least-squares algorithms are described geometrically (i.e. finding the minimum of a surface). The independent variable of any data to be fitted is denoted by t. With the definition above the Jacobian is J_{ij} =(1 / \sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).  File: gsl-ref.info, Node: Initializing the Nonlinear Least-Squares Solver, Next: Providing the Function to be Minimized, Prev: Overview of Nonlinear Least-Squares Fitting, Up: Nonlinear Least-Squares Fitting 38.2 Initializing the Solver ============================ -- Function: gsl_multifit_fsolver * gsl_multifit_fsolver_alloc (const gsl_multifit_fsolver_type * T, size_t N, size_t P) This function returns a pointer to a newly allocated instance of a solver of type T for N observations and P parameters. The number of observations N must be greater than or equal to parameters P. If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: gsl_multifit_fdfsolver * gsl_multifit_fdfsolver_alloc (const gsl_multifit_fdfsolver_type * T, size_t N, size_t P) This function returns a pointer to a newly allocated instance of a derivative solver of type T for N observations and P parameters. For example, the following code creates an instance of a Levenberg-Marquardt solver for 100 data points and 3 parameters, const gsl_multifit_fdfsolver_type * T = gsl_multifit_fdfsolver_lmder; gsl_multifit_fdfsolver * s = gsl_multifit_fdfsolver_alloc (T, 100, 3); The number of observations N must be greater than or equal to parameters P. If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_multifit_fsolver_set (gsl_multifit_fsolver * S, gsl_multifit_function * F, const gsl_vector * X) This function initializes, or reinitializes, an existing solver S to use the function F and the initial guess X. -- Function: int gsl_multifit_fdfsolver_set (gsl_multifit_fdfsolver * S, gsl_multifit_function_fdf * FDF, const gsl_vector * X) This function initializes, or reinitializes, an existing solver S to use the function and derivative FDF and the initial guess X. -- Function: void gsl_multifit_fsolver_free (gsl_multifit_fsolver * S) -- Function: void gsl_multifit_fdfsolver_free (gsl_multifit_fdfsolver * S) These functions free all the memory associated with the solver S. -- Function: const char * gsl_multifit_fsolver_name (const gsl_multifit_fsolver * S) -- Function: const char * gsl_multifit_fdfsolver_name (const gsl_multifit_fdfsolver * S) These functions return a pointer to the name of the solver. For example, printf ("s is a '%s' solver\n", gsl_multifit_fdfsolver_name (s)); would print something like 's is a 'lmder' solver'.  File: gsl-ref.info, Node: Providing the Function to be Minimized, Next: Finite Difference Jacobian, Prev: Initializing the Nonlinear Least-Squares Solver, Up: Nonlinear Least-Squares Fitting 38.3 Providing the Function to be Minimized =========================================== You must provide n functions of p variables for the minimization algorithms to operate on. In order to allow for arbitrary parameters the functions are defined by the following data types: -- Data Type: gsl_multifit_function This data type defines a general system of functions with arbitrary parameters. 'int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)' this function should store the vector result f(x,params) in F for argument X and arbitrary parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'size_t n' the number of functions, i.e. the number of components of the vector F. 'size_t p' the number of independent variables, i.e. the number of components of the vector X. 'void * params' a pointer to the arbitrary parameters of the function. -- Data Type: gsl_multifit_function_fdf This data type defines a general system of functions with arbitrary parameters and the corresponding Jacobian matrix of derivatives, 'int (* f) (const gsl_vector * X, void * PARAMS, gsl_vector * F)' this function should store the vector result f(x,params) in F for argument X and arbitrary parameters PARAMS, returning an appropriate error code if the function cannot be computed. 'int (* df) (const gsl_vector * X, void * PARAMS, gsl_matrix * J)' this function should store the N-by-P matrix result J_ij = d f_i(x,params) / d x_j in J for argument X and arbitrary parameters PARAMS, returning an appropriate error code if the function cannot be computed. If an analytic Jacobian is unavailable, or too expensive to compute, this function pointer may be set to NULL, in which case the Jacobian will be internally computed using finite difference approximations of the function F. 'int (* fdf) (const gsl_vector * X, void * PARAMS, gsl_vector * F, gsl_matrix * J)' This function should set the values of the F and J as above, for arguments X and arbitrary parameters PARAMS. This function provides an optimization of the separate functions for f(x) and J(x)--it is always faster to compute the function and its derivative at the same time. If an analytic Jacobian is unavailable, or too expensive to compute, this function pointer may be set to NULL, in which case the Jacobian will be internally computed using finite difference approximations of the function F. 'size_t n' the number of functions, i.e. the number of components of the vector F. 'size_t p' the number of independent variables, i.e. the number of components of the vector X. 'void * params' a pointer to the arbitrary parameters of the function. Note that when fitting a non-linear model against experimental data, the data is passed to the functions above using the PARAMS argument and the trial best-fit parameters through the X argument.  File: gsl-ref.info, Node: Finite Difference Jacobian, Next: Iteration of the Minimization Algorithm, Prev: Providing the Function to be Minimized, Up: Nonlinear Least-Squares Fitting 38.4 Finite Difference Jacobian =============================== For the algorithms which require a Jacobian matrix of derivatives of the fit functions, there are times when an analytic Jacobian may be unavailable or too expensive to compute. Therefore GSL supports approximating the Jacobian numerically using finite differences of the fit functions. This is typically done by setting the relevant function pointers of the 'gsl_multifit_function_fdf' data type to NULL, however the following functions allow the user to access the approximate Jacobian directly if needed. -- Function: int gsl_multifit_fdfsolver_dif_df (const gsl_vector * X, gsl_multifit_function_fdf * FDF, const gsl_vector * F, gsl_matrix * J) This function takes as input the current position X with the function values computed at the current position F, along with FDF which specifies the fit function and parameters and approximates the N-by-P Jacobian J using forward finite differences: J_ij = d f_i(x,params) / d x_j = (f_i(x^*,params) - f_i(x,params)) / d x_j. where x^* has the jth element perturbed by \Delta x_j and \Delta x_j = \epsilon |x_j|, where \epsilon is the square root of the machine precision 'GSL_DBL_EPSILON'. -- Function: int gsl_multifit_fdfsolver_dif_fdf (const gsl_vector * X, gsl_multifit_function_fdf * FDF, gsl_vector * F, gsl_matrix * J) This function computes the vector of function values F and the approximate Jacobian J at the position vector X using the system described in FDF. See 'gsl_multifit_fdfsolver_dif_df' for a description of how the Jacobian is computed.  File: gsl-ref.info, Node: Iteration of the Minimization Algorithm, Next: Search Stopping Parameters for Minimization Algorithms, Prev: Finite Difference Jacobian, Up: Nonlinear Least-Squares Fitting 38.5 Iteration ============== The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. -- Function: int gsl_multifit_fsolver_iterate (gsl_multifit_fsolver * S) -- Function: int gsl_multifit_fdfsolver_iterate (gsl_multifit_fdfsolver * S) These functions perform a single iteration of the solver S. If the iteration encounters an unexpected problem then an error code will be returned. The solver maintains a current estimate of the best-fit parameters at all times. The solver struct S contains the following entries, which can be used to track the progress of the solution: 'gsl_vector * x' The current position. 'gsl_vector * f' The function value at the current position. 'gsl_vector * dx' The difference between the current position and the previous position, i.e. the last step, taken as a vector. 'gsl_matrix * J' The Jacobian matrix at the current position (for the 'gsl_multifit_fdfsolver' struct only) The best-fit information also can be accessed with the following auxiliary functions, -- Function: gsl_vector * gsl_multifit_fsolver_position (const gsl_multifit_fsolver * S) -- Function: gsl_vector * gsl_multifit_fdfsolver_position (const gsl_multifit_fdfsolver * S) These functions return the current position (i.e. best-fit parameters) 's->x' of the solver S.  File: gsl-ref.info, Node: Search Stopping Parameters for Minimization Algorithms, Next: High Level Driver, Prev: Iteration of the Minimization Algorithm, Up: Nonlinear Least-Squares Fitting 38.6 Search Stopping Parameters =============================== A minimization procedure should stop when one of the following conditions is true: * A minimum has been found to within the user-specified precision. * A user-specified maximum number of iterations has been reached. * An error has occurred. The handling of these conditions is under user control. The functions below allow the user to test the current estimate of the best-fit parameters in several standard ways. -- Function: int gsl_multifit_test_delta (const gsl_vector * DX, const gsl_vector * X, double EPSABS, double EPSREL) This function tests for the convergence of the sequence by comparing the last step DX with the absolute error EPSABS and relative error EPSREL to the current position X. The test returns 'GSL_SUCCESS' if the following condition is achieved, |dx_i| < epsabs + epsrel |x_i| for each component of X and returns 'GSL_CONTINUE' otherwise. -- Function: int gsl_multifit_test_gradient (const gsl_vector * G, double EPSABS) This function tests the residual gradient G against the absolute error bound EPSABS. Mathematically, the gradient should be exactly zero at the minimum. The test returns 'GSL_SUCCESS' if the following condition is achieved, \sum_i |g_i| < epsabs and returns 'GSL_CONTINUE' otherwise. This criterion is suitable for situations where the precise location of the minimum, x, is unimportant provided a value can be found where the gradient is small enough. -- Function: int gsl_multifit_gradient (const gsl_matrix * J, const gsl_vector * F, gsl_vector * G) This function computes the gradient G of \Phi(x) = (1/2) ||F(x)||^2 from the Jacobian matrix J and the function values F, using the formula g = J^T f.  File: gsl-ref.info, Node: High Level Driver, Next: Minimization Algorithms using Derivatives, Prev: Search Stopping Parameters for Minimization Algorithms, Up: Nonlinear Least-Squares Fitting 38.7 High Level Driver ====================== These routines provide a high level wrapper that combine the iteration and convergence testing for easy use. -- Function: int gsl_multifit_fsolver_driver (gsl_multifit_fsolver * S, const size_t MAXITER, const double EPSABS, const double EPSREL) -- Function: int gsl_multifit_fdfsolver_driver (gsl_multifit_fdfsolver * S, const size_t MAXITER, const double EPSABS, const double EPSREL) These functions iterate the solver S for a maximum of MAXITER iterations. After each iteration, the system is tested for convergence using 'gsl_multifit_test_delta' with the error tolerances EPSABS and EPSREL.  File: gsl-ref.info, Node: Minimization Algorithms using Derivatives, Next: Minimization Algorithms without Derivatives, Prev: High Level Driver, Up: Nonlinear Least-Squares Fitting 38.8 Minimization Algorithms using Derivatives ============================================== The minimization algorithms described in this section make use of both the function and its derivative. They require an initial guess for the location of the minimum. There is no absolute guarantee of convergence--the function must be suitable for this technique and the initial guess must be sufficiently close to the minimum for it to work. -- Derivative Solver: gsl_multifit_fdfsolver_lmsder This is a robust and efficient version of the Levenberg-Marquardt algorithm as implemented in the scaled LMDER routine in MINPACK. Minpack was written by Jorge J. More', Burton S. Garbow and Kenneth E. Hillstrom. The algorithm uses a generalized trust region to keep each step under control. In order to be accepted a proposed new position x' must satisfy the condition |D (x' - x)| < \delta, where D is a diagonal scaling matrix and \delta is the size of the trust region. The components of D are computed internally, using the column norms of the Jacobian to estimate the sensitivity of the residual to each component of x. This improves the behavior of the algorithm for badly scaled functions. On each iteration the algorithm attempts to minimize the linear system |F + J p| subject to the constraint |D p| < \Delta. The solution to this constrained linear system is found using the Levenberg-Marquardt method. The proposed step is now tested by evaluating the function at the resulting point, x'. If the step reduces the norm of the function sufficiently, and follows the predicted behavior of the function within the trust region, then it is accepted and the size of the trust region is increased. If the proposed step fails to improve the solution, or differs significantly from the expected behavior within the trust region, then the size of the trust region is decreased and another trial step is computed. The algorithm also monitors the progress of the solution and returns an error if the changes in the solution are smaller than the machine precision. The possible error codes are, 'GSL_ETOLF' the decrease in the function falls below machine precision 'GSL_ETOLX' the change in the position vector falls below machine precision 'GSL_ETOLG' the norm of the gradient, relative to the norm of the function, falls below machine precision 'GSL_ENOPROG' the routine has made 10 or more attempts to find a suitable trial step without success (but subsequent calls can be made to continue the search).(1) These error codes indicate that further iterations will be unlikely to change the solution from its current value. -- Derivative Solver: gsl_multifit_fdfsolver_lmder This is an unscaled version of the LMDER algorithm. The elements of the diagonal scaling matrix D are set to 1. This algorithm may be useful in circumstances where the scaled version of LMDER converges too slowly, or the function is already scaled appropriately. ---------- Footnotes ---------- (1) The return code 'GSL_CONTINUE' was used for this case in versions prior to 1.14.  File: gsl-ref.info, Node: Minimization Algorithms without Derivatives, Next: Computing the covariance matrix of best fit parameters, Prev: Minimization Algorithms using Derivatives, Up: Nonlinear Least-Squares Fitting 38.9 Minimization Algorithms without Derivatives ================================================ There are no algorithms implemented in this section at the moment.  File: gsl-ref.info, Node: Computing the covariance matrix of best fit parameters, Next: Example programs for Nonlinear Least-Squares Fitting, Prev: Minimization Algorithms without Derivatives, Up: Nonlinear Least-Squares Fitting 38.10 Computing the covariance matrix of best fit parameters ============================================================ -- Function: int gsl_multifit_covar (const gsl_matrix * J, double EPSREL, gsl_matrix * COVAR) This function uses the Jacobian matrix J to compute the covariance matrix of the best-fit parameters, COVAR. The parameter EPSREL is used to remove linear-dependent columns when J is rank deficient. The covariance matrix is given by, covar = (J^T J)^{-1} and is computed by QR decomposition of J with column-pivoting. Any columns of R which satisfy |R_{kk}| <= epsrel |R_{11}| are considered linearly-dependent and are excluded from the covariance matrix (the corresponding rows and columns of the covariance matrix are set to zero). If the minimisation uses the weighted least-squares function f_i = (Y(x, t_i) - y_i) / \sigma_i then the covariance matrix above gives the statistical error on the best-fit parameters resulting from the Gaussian errors \sigma_i on the underlying data y_i. This can be verified from the relation \delta f = J \delta c and the fact that the fluctuations in f from the data y_i are normalised by \sigma_i and so satisfy <\delta f \delta f^T> = I. For an unweighted least-squares function f_i = (Y(x, t_i) - y_i) the covariance matrix above should be multiplied by the variance of the residuals about the best-fit \sigma^2 = \sum (y_i - Y(x,t_i))^2 / (n-p) to give the variance-covariance matrix \sigma^2 C. This estimates the statistical error on the best-fit parameters from the scatter of the underlying data. For more information about covariance matrices see *note Fitting Overview::.  File: gsl-ref.info, Node: Example programs for Nonlinear Least-Squares Fitting, Next: References and Further Reading for Nonlinear Least-Squares Fitting, Prev: Computing the covariance matrix of best fit parameters, Up: Nonlinear Least-Squares Fitting 38.11 Examples ============== The following example program fits a weighted exponential model with background to experimental data, Y = A \exp(-\lambda t) + b. The first part of the program sets up the functions 'expb_f' and 'expb_df' to calculate the model and its Jacobian. The appropriate fitting function is given by, f_i = ((A \exp(-\lambda t_i) + b) - y_i)/\sigma_i where we have chosen t_i = i. The Jacobian matrix J is the derivative of these functions with respect to the three parameters (A, \lambda, b). It is given by, J_{ij} = d f_i / d x_j where x_0 = A, x_1 = \lambda and x_2 = b. /* expfit.c -- model functions for exponential + background */ struct data { size_t n; double * y; double * sigma; }; int expb_f (const gsl_vector * x, void *data, gsl_vector * f) { size_t n = ((struct data *)data)->n; double *y = ((struct data *)data)->y; double *sigma = ((struct data *) data)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); double b = gsl_vector_get (x, 2); size_t i; for (i = 0; i < n; i++) { /* Model Yi = A * exp(-lambda * i) + b */ double t = i; double Yi = A * exp (-lambda * t) + b; gsl_vector_set (f, i, (Yi - y[i])/sigma[i]); } return GSL_SUCCESS; } int expb_df (const gsl_vector * x, void *data, gsl_matrix * J) { size_t n = ((struct data *)data)->n; double *sigma = ((struct data *) data)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); size_t i; for (i = 0; i < n; i++) { /* Jacobian matrix J(i,j) = dfi / dxj, */ /* where fi = (Yi - yi)/sigma[i], */ /* Yi = A * exp(-lambda * i) + b */ /* and the xj are the parameters (A,lambda,b) */ double t = i; double s = sigma[i]; double e = exp(-lambda * t); gsl_matrix_set (J, i, 0, e/s); gsl_matrix_set (J, i, 1, -t * A * e/s); gsl_matrix_set (J, i, 2, 1/s); } return GSL_SUCCESS; } int expb_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J) { expb_f (x, data, f); expb_df (x, data, J); return GSL_SUCCESS; } The main part of the program sets up a Levenberg-Marquardt solver and some simulated random data. The data uses the known parameters (1.0,5.0,0.1) combined with Gaussian noise (standard deviation = 0.1) over a range of 40 timesteps. The initial guess for the parameters is chosen as (0.0, 1.0, 0.0). #include #include #include #include #include #include #include #include "expfit.c" #define N 40 void print_state (size_t iter, gsl_multifit_fdfsolver * s); int main (void) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; int status; unsigned int i, iter = 0; const size_t n = N; const size_t p = 3; gsl_matrix *covar = gsl_matrix_alloc (p, p); double y[N], sigma[N]; struct data d = { n, y, sigma}; gsl_multifit_function_fdf f; double x_init[3] = { 1.0, 0.0, 0.0 }; gsl_vector_view x = gsl_vector_view_array (x_init, p); const gsl_rng_type * type; gsl_rng * r; gsl_rng_env_setup(); type = gsl_rng_default; r = gsl_rng_alloc (type); f.f = &expb_f; f.df = &expb_df; f.fdf = &expb_fdf; f.n = n; f.p = p; f.params = &d; /* This is the data to be fitted */ for (i = 0; i < n; i++) { double t = i; y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian (r, 0.1); sigma[i] = 0.1; printf ("data: %u %g %g\n", i, y[i], sigma[i]); }; T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, &f, &x.vector); print_state (iter, s); do { iter++; status = gsl_multifit_fdfsolver_iterate (s); printf ("status = %s\n", gsl_strerror (status)); print_state (iter, s); if (status) break; status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4); } while (status == GSL_CONTINUE && iter < 500); gsl_multifit_covar (s->J, 0.0, covar); #define FIT(i) gsl_vector_get(s->x, i) #define ERR(i) sqrt(gsl_matrix_get(covar,i,i)) { double chi = gsl_blas_dnrm2(s->f); double dof = n - p; double c = GSL_MAX_DBL(1, chi / sqrt(dof)); printf("chisq/dof = %g\n", pow(chi, 2.0) / dof); printf ("A = %.5f +/- %.5f\n", FIT(0), c*ERR(0)); printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1)); printf ("b = %.5f +/- %.5f\n", FIT(2), c*ERR(2)); } printf ("status = %s\n", gsl_strerror (status)); gsl_multifit_fdfsolver_free (s); gsl_matrix_free (covar); gsl_rng_free (r); return 0; } void print_state (size_t iter, gsl_multifit_fdfsolver * s) { printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f " "|f(x)| = %g\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->x, 2), gsl_blas_dnrm2 (s->f)); } The iteration terminates when the change in x is smaller than 0.0001, as both an absolute and relative change. Here are the results of running the program: iter: 0 x=1.00000000 0.00000000 0.00000000 |f(x)|=117.349 status=success iter: 1 x=1.64659312 0.01814772 0.64659312 |f(x)|=76.4578 status=success iter: 2 x=2.85876037 0.08092095 1.44796363 |f(x)|=37.6838 status=success iter: 3 x=4.94899512 0.11942928 1.09457665 |f(x)|=9.58079 status=success iter: 4 x=5.02175572 0.10287787 1.03388354 |f(x)|=5.63049 status=success iter: 5 x=5.04520433 0.10405523 1.01941607 |f(x)|=5.44398 status=success iter: 6 x=5.04535782 0.10404906 1.01924871 |f(x)|=5.44397 chisq/dof = 0.800996 A = 5.04536 +/- 0.06028 lambda = 0.10405 +/- 0.00316 b = 1.01925 +/- 0.03782 status = success The approximate values of the parameters are found correctly, and the chi-squared value indicates a good fit (the chi-squared per degree of freedom is approximately 1). In this case the errors on the parameters can be estimated from the square roots of the diagonal elements of the covariance matrix. If the chi-squared value shows a poor fit (i.e. chi^2/dof >> 1) then the error estimates obtained from the covariance matrix will be too small. In the example program the error estimates are multiplied by \sqrt{\chi^2/dof} in this case, a common way of increasing the errors for a poor fit. Note that a poor fit will result from the use an inappropriate model, and the scaled error estimates may then be outside the range of validity for Gaussian errors.  File: gsl-ref.info, Node: References and Further Reading for Nonlinear Least-Squares Fitting, Prev: Example programs for Nonlinear Least-Squares Fitting, Up: Nonlinear Least-Squares Fitting 38.12 References and Further Reading ==================================== The MINPACK algorithm is described in the following article, J.J. More', 'The Levenberg-Marquardt Algorithm: Implementation and Theory', Lecture Notes in Mathematics, v630 (1978), ed G. Watson. The following paper is also relevant to the algorithms described in this section, J.J. More', B.S. Garbow, K.E. Hillstrom, "Testing Unconstrained Optimization Software", ACM Transactions on Mathematical Software, Vol 7, No 1 (1981), p 17-41.  File: gsl-ref.info, Node: Basis Splines, Next: Physical Constants, Prev: Nonlinear Least-Squares Fitting, Up: Top 39 Basis Splines **************** This chapter describes functions for the computation of smoothing basis splines (B-splines). A smoothing spline differs from an interpolating spline in that the resulting curve is not required to pass through each datapoint. *Note Interpolation::, for information about interpolating splines. The header file 'gsl_bspline.h' contains the prototypes for the bspline functions and related declarations. * Menu: * Overview of B-splines:: * Initializing the B-splines solver:: * Constructing the knots vector:: * Evaluation of B-spline basis functions:: * Evaluation of B-spline basis function derivatives:: * Working with the Greville abscissae:: * Example programs for B-splines:: * References and Further Reading::  File: gsl-ref.info, Node: Overview of B-splines, Next: Initializing the B-splines solver, Up: Basis Splines 39.1 Overview ============= B-splines are commonly used as basis functions to fit smoothing curves to large data sets. To do this, the abscissa axis is broken up into some number of intervals, where the endpoints of each interval are called "breakpoints". These breakpoints are then converted to "knots" by imposing various continuity and smoothness conditions at each interface. Given a nondecreasing knot vector t = {t_0, t_1, ..., t_{n+k-1}}, the n basis splines of order k are defined by B_(i,1)(x) = (1, t_i <= x < t_(i+1) (0, else B_(i,k)(x) = [(x - t_i)/(t_(i+k-1) - t_i)] B_(i,k-1)(x) + [(t_(i+k) - x)/(t_(i+k) - t_(i+1))] B_(i+1,k-1)(x) for i = 0, ..., n-1. The common case of cubic B-splines is given by k = 4. The above recurrence relation can be evaluated in a numerically stable way by the de Boor algorithm. If we define appropriate knots on an interval [a,b] then the B-spline basis functions form a complete set on that interval. Therefore we can expand a smoothing function as f(x) = \sum_i c_i B_(i,k)(x) given enough (x_j, f(x_j)) data pairs. The coefficients c_i can be readily obtained from a least-squares fit.  File: gsl-ref.info, Node: Initializing the B-splines solver, Next: Constructing the knots vector, Prev: Overview of B-splines, Up: Basis Splines 39.2 Initializing the B-splines solver ====================================== The computation of B-spline functions requires a preallocated workspace of type 'gsl_bspline_workspace'. If B-spline derivatives are also required, an additional 'gsl_bspline_deriv_workspace' is needed. -- Function: gsl_bspline_workspace * gsl_bspline_alloc (const size_t K, const size_t NBREAK) This function allocates a workspace for computing B-splines of order K. The number of breakpoints is given by NBREAK. This leads to n = nbreak + k - 2 basis functions. Cubic B-splines are specified by k = 4. The size of the workspace is O(5k + nbreak). -- Function: void gsl_bspline_free (gsl_bspline_workspace * W) This function frees the memory associated with the workspace W. -- Function: gsl_bspline_deriv_workspace * gsl_bspline_deriv_alloc (const size_t K) This function allocates a workspace for computing the derivatives of a B-spline basis function of order K. The size of the workspace is O(2k^2). -- Function: void gsl_bspline_deriv_free (gsl_bspline_deriv_workspace * W) This function frees the memory associated with the derivative workspace W.  File: gsl-ref.info, Node: Constructing the knots vector, Next: Evaluation of B-spline basis functions, Prev: Initializing the B-splines solver, Up: Basis Splines 39.3 Constructing the knots vector ================================== -- Function: int gsl_bspline_knots (const gsl_vector * BREAKPTS, gsl_bspline_workspace * W) This function computes the knots associated with the given breakpoints and stores them internally in 'w->knots'. -- Function: int gsl_bspline_knots_uniform (const double A, const double B, gsl_bspline_workspace * W) This function assumes uniformly spaced breakpoints on [a,b] and constructs the corresponding knot vector using the previously specified NBREAK parameter. The knots are stored in 'w->knots'.  File: gsl-ref.info, Node: Evaluation of B-spline basis functions, Next: Evaluation of B-spline basis function derivatives, Prev: Constructing the knots vector, Up: Basis Splines 39.4 Evaluation of B-splines ============================ -- Function: int gsl_bspline_eval (const double X, gsl_vector * B, gsl_bspline_workspace * W) This function evaluates all B-spline basis functions at the position X and stores them in the vector B, so that the i-th element is B_i(x). The vector B must be of length n = nbreak + k - 2. This value may also be obtained by calling 'gsl_bspline_ncoeffs'. Computing all the basis functions at once is more efficient than computing them individually, due to the nature of the defining recurrence relation. -- Function: int gsl_bspline_eval_nonzero (const double X, gsl_vector * BK, size_t * ISTART, size_t * IEND, gsl_bspline_workspace * W) This function evaluates all potentially nonzero B-spline basis functions at the position X and stores them in the vector BK, so that the i-th element is B_(istart+i)(x). The last element of BK is B_(iend)(x). The vector BK must be of length k. By returning only the nonzero basis functions, this function allows quantities involving linear combinations of the B_i(x) to be computed without unnecessary terms (such linear combinations occur, for example, when evaluating an interpolated function). -- Function: size_t gsl_bspline_ncoeffs (gsl_bspline_workspace * W) This function returns the number of B-spline coefficients given by n = nbreak + k - 2.  File: gsl-ref.info, Node: Evaluation of B-spline basis function derivatives, Next: Working with the Greville abscissae, Prev: Evaluation of B-spline basis functions, Up: Basis Splines 39.5 Evaluation of B-spline derivatives ======================================= -- Function: int gsl_bspline_deriv_eval (const double X, const size_t NDERIV, gsl_matrix * DB, gsl_bspline_workspace * W, gsl_bspline_deriv_workspace * DW) This function evaluates all B-spline basis function derivatives of orders 0 through nderiv (inclusive) at the position X and stores them in the matrix DB. The (i,j)-th element of DB is d^jB_i(x)/dx^j. The matrix DB must be of size n = nbreak + k - 2 by nderiv + 1. The value n may also be obtained by calling 'gsl_bspline_ncoeffs'. Note that function evaluations are included as the zeroth order derivatives in DB. Computing all the basis function derivatives at once is more efficient than computing them individually, due to the nature of the defining recurrence relation. -- Function: int gsl_bspline_deriv_eval_nonzero (const double X, const size_t NDERIV, gsl_matrix * DB, size_t * ISTART, size_t * IEND, gsl_bspline_workspace * W, gsl_bspline_deriv_workspace * DW) This function evaluates all potentially nonzero B-spline basis function derivatives of orders 0 through nderiv (inclusive) at the position X and stores them in the matrix DB. The (i,j)-th element of DB is d^j/dx^j B_(istart+i)(x). The last row of DB contains d^j/dx^j B_(iend)(x). The matrix DB must be of size k by at least nderiv + 1. Note that function evaluations are included as the zeroth order derivatives in DB. By returning only the nonzero basis functions, this function allows quantities involving linear combinations of the B_i(x) and their derivatives to be computed without unnecessary terms.  File: gsl-ref.info, Node: Working with the Greville abscissae, Next: Example programs for B-splines, Prev: Evaluation of B-spline basis function derivatives, Up: Basis Splines 39.6 Working with the Greville abscissae ======================================== The Greville abscissae are defined to be the mean location of k-1 consecutive knots in the knot vector for each basis spline function of order k. With the first and last knots in the 'gsl_bspline_workspace' knot vector excluded, there are 'gsl_bspline_ncoeffs' Greville abscissae for any given B-spline basis. These values are often used in B-spline collocation applications and may also be called Marsden-Schoenberg points. -- Function: double gsl_bspline_greville_abscissa (size_t I, gsl_bspline_workspace *W); Returns the location of the i-th Greville abscissa for the given B-spline basis. For the ill-defined case when k=1, the implementation chooses to return breakpoint interval midpoints.  File: gsl-ref.info, Node: Example programs for B-splines, Next: References and Further Reading, Prev: Working with the Greville abscissae, Up: Basis Splines 39.7 Examples ============= The following program computes a linear least squares fit to data using cubic B-spline basis functions with uniform breakpoints. The data is generated from the curve y(x) = \cos{(x)} \exp{(-x/10)} on the interval [0, 15] with Gaussian noise added. #include #include #include #include #include #include #include #include /* number of data points to fit */ #define N 200 /* number of fit coefficients */ #define NCOEFFS 12 /* nbreak = ncoeffs + 2 - k = ncoeffs - 2 since k = 4 */ #define NBREAK (NCOEFFS - 2) int main (void) { const size_t n = N; const size_t ncoeffs = NCOEFFS; const size_t nbreak = NBREAK; size_t i, j; gsl_bspline_workspace *bw; gsl_vector *B; double dy; gsl_rng *r; gsl_vector *c, *w; gsl_vector *x, *y; gsl_matrix *X, *cov; gsl_multifit_linear_workspace *mw; double chisq, Rsq, dof, tss; gsl_rng_env_setup(); r = gsl_rng_alloc(gsl_rng_default); /* allocate a cubic bspline workspace (k = 4) */ bw = gsl_bspline_alloc(4, nbreak); B = gsl_vector_alloc(ncoeffs); x = gsl_vector_alloc(n); y = gsl_vector_alloc(n); X = gsl_matrix_alloc(n, ncoeffs); c = gsl_vector_alloc(ncoeffs); w = gsl_vector_alloc(n); cov = gsl_matrix_alloc(ncoeffs, ncoeffs); mw = gsl_multifit_linear_alloc(n, ncoeffs); printf("#m=0,S=0\n"); /* this is the data to be fitted */ for (i = 0; i < n; ++i) { double sigma; double xi = (15.0 / (N - 1)) * i; double yi = cos(xi) * exp(-0.1 * xi); sigma = 0.1 * yi; dy = gsl_ran_gaussian(r, sigma); yi += dy; gsl_vector_set(x, i, xi); gsl_vector_set(y, i, yi); gsl_vector_set(w, i, 1.0 / (sigma * sigma)); printf("%f %f\n", xi, yi); } /* use uniform breakpoints on [0, 15] */ gsl_bspline_knots_uniform(0.0, 15.0, bw); /* construct the fit matrix X */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); /* compute B_j(xi) for all j */ gsl_bspline_eval(xi, B, bw); /* fill in row i of X */ for (j = 0; j < ncoeffs; ++j) { double Bj = gsl_vector_get(B, j); gsl_matrix_set(X, i, j, Bj); } } /* do the fit */ gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw); dof = n - ncoeffs; tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size); Rsq = 1.0 - chisq / tss; fprintf(stderr, "chisq/dof = %e, Rsq = %f\n", chisq / dof, Rsq); /* output the smoothed curve */ { double xi, yi, yerr; printf("#m=1,S=0\n"); for (xi = 0.0; xi < 15.0; xi += 0.1) { gsl_bspline_eval(xi, B, bw); gsl_multifit_linear_est(B, c, cov, &yi, &yerr); printf("%f %f\n", xi, yi); } } gsl_rng_free(r); gsl_bspline_free(bw); gsl_vector_free(B); gsl_vector_free(x); gsl_vector_free(y); gsl_matrix_free(X); gsl_vector_free(c); gsl_vector_free(w); gsl_matrix_free(cov); gsl_multifit_linear_free(mw); return 0; } /* main() */ The output can be plotted with GNU 'graph'. $ ./a.out > bspline.dat chisq/dof = 1.118217e+00, Rsq = 0.989771 $ graph -T ps -X x -Y y -x 0 15 -y -1 1.3 < bspline.dat > bspline.ps  File: gsl-ref.info, Node: References and Further Reading, Prev: Example programs for B-splines, Up: Basis Splines 39.8 References and Further Reading =================================== Further information on the algorithms described in this section can be found in the following book, C. de Boor, 'A Practical Guide to Splines' (1978), Springer-Verlag, ISBN 0-387-90356-9. Further information of Greville abscissae and B-spline collocation can be found in the following paper, Richard W. Johnson, Higher order B-spline collocation at the Greville abscissae. 'Applied Numerical Mathematics'. vol. 52, 2005, 63-75. A large collection of B-spline routines is available in the PPPACK library available at , which is also part of SLATEC.  File: gsl-ref.info, Node: Physical Constants, Next: IEEE floating-point arithmetic, Prev: Basis Splines, Up: Top 40 Physical Constants ********************* This chapter describes macros for the values of physical constants, such as the speed of light, c, and gravitational constant, G. The values are available in different unit systems, including the standard MKSA system (meters, kilograms, seconds, amperes) and the CGSM system (centimeters, grams, seconds, gauss), which is commonly used in Astronomy. The definitions of constants in the MKSA system are available in the file 'gsl_const_mksa.h'. The constants in the CGSM system are defined in 'gsl_const_cgsm.h'. Dimensionless constants, such as the fine structure constant, which are pure numbers are defined in 'gsl_const_num.h'. * Menu: * Fundamental Constants:: * Astronomy and Astrophysics:: * Atomic and Nuclear Physics:: * Measurement of Time:: * Imperial Units :: * Speed and Nautical Units:: * Printers Units:: * Volume Area and Length:: * Mass and Weight :: * Thermal Energy and Power:: * Pressure:: * Viscosity:: * Light and Illumination:: * Radioactivity:: * Force and Energy:: * Prefixes:: * Physical Constant Examples:: * Physical Constant References and Further Reading:: The full list of constants is described briefly below. Consult the header files themselves for the values of the constants used in the library.  File: gsl-ref.info, Node: Fundamental Constants, Next: Astronomy and Astrophysics, Up: Physical Constants 40.1 Fundamental Constants ========================== 'GSL_CONST_MKSA_SPEED_OF_LIGHT' The speed of light in vacuum, c. 'GSL_CONST_MKSA_VACUUM_PERMEABILITY' The permeability of free space, \mu_0. This constant is defined in the MKSA system only. 'GSL_CONST_MKSA_VACUUM_PERMITTIVITY' The permittivity of free space, \epsilon_0. This constant is defined in the MKSA system only. 'GSL_CONST_MKSA_PLANCKS_CONSTANT_H' Planck's constant, h. 'GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR' Planck's constant divided by 2\pi, \hbar. 'GSL_CONST_NUM_AVOGADRO' Avogadro's number, N_a. 'GSL_CONST_MKSA_FARADAY' The molar charge of 1 Faraday. 'GSL_CONST_MKSA_BOLTZMANN' The Boltzmann constant, k. 'GSL_CONST_MKSA_MOLAR_GAS' The molar gas constant, R_0. 'GSL_CONST_MKSA_STANDARD_GAS_VOLUME' The standard gas volume, V_0. 'GSL_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT' The Stefan-Boltzmann radiation constant, \sigma. 'GSL_CONST_MKSA_GAUSS' The magnetic field of 1 Gauss.  File: gsl-ref.info, Node: Astronomy and Astrophysics, Next: Atomic and Nuclear Physics, Prev: Fundamental Constants, Up: Physical Constants 40.2 Astronomy and Astrophysics =============================== 'GSL_CONST_MKSA_ASTRONOMICAL_UNIT' The length of 1 astronomical unit (mean earth-sun distance), au. 'GSL_CONST_MKSA_GRAVITATIONAL_CONSTANT' The gravitational constant, G. 'GSL_CONST_MKSA_LIGHT_YEAR' The distance of 1 light-year, ly. 'GSL_CONST_MKSA_PARSEC' The distance of 1 parsec, pc. 'GSL_CONST_MKSA_GRAV_ACCEL' The standard gravitational acceleration on Earth, g. 'GSL_CONST_MKSA_SOLAR_MASS' The mass of the Sun.  File: gsl-ref.info, Node: Atomic and Nuclear Physics, Next: Measurement of Time, Prev: Astronomy and Astrophysics, Up: Physical Constants 40.3 Atomic and Nuclear Physics =============================== 'GSL_CONST_MKSA_ELECTRON_CHARGE' The charge of the electron, e. 'GSL_CONST_MKSA_ELECTRON_VOLT' The energy of 1 electron volt, eV. 'GSL_CONST_MKSA_UNIFIED_ATOMIC_MASS' The unified atomic mass, amu. 'GSL_CONST_MKSA_MASS_ELECTRON' The mass of the electron, m_e. 'GSL_CONST_MKSA_MASS_MUON' The mass of the muon, m_\mu. 'GSL_CONST_MKSA_MASS_PROTON' The mass of the proton, m_p. 'GSL_CONST_MKSA_MASS_NEUTRON' The mass of the neutron, m_n. 'GSL_CONST_NUM_FINE_STRUCTURE' The electromagnetic fine structure constant \alpha. 'GSL_CONST_MKSA_RYDBERG' The Rydberg constant, Ry, in units of energy. This is related to the Rydberg inverse wavelength R_\infty by Ry = h c R_\infty. 'GSL_CONST_MKSA_BOHR_RADIUS' The Bohr radius, a_0. 'GSL_CONST_MKSA_ANGSTROM' The length of 1 angstrom. 'GSL_CONST_MKSA_BARN' The area of 1 barn. 'GSL_CONST_MKSA_BOHR_MAGNETON' The Bohr Magneton, \mu_B. 'GSL_CONST_MKSA_NUCLEAR_MAGNETON' The Nuclear Magneton, \mu_N. 'GSL_CONST_MKSA_ELECTRON_MAGNETIC_MOMENT' The absolute value of the magnetic moment of the electron, \mu_e. The physical magnetic moment of the electron is negative. 'GSL_CONST_MKSA_PROTON_MAGNETIC_MOMENT' The magnetic moment of the proton, \mu_p. 'GSL_CONST_MKSA_THOMSON_CROSS_SECTION' The Thomson cross section, \sigma_T. 'GSL_CONST_MKSA_DEBYE' The electric dipole moment of 1 Debye, D.  File: gsl-ref.info, Node: Measurement of Time, Next: Imperial Units, Prev: Atomic and Nuclear Physics, Up: Physical Constants 40.4 Measurement of Time ======================== 'GSL_CONST_MKSA_MINUTE' The number of seconds in 1 minute. 'GSL_CONST_MKSA_HOUR' The number of seconds in 1 hour. 'GSL_CONST_MKSA_DAY' The number of seconds in 1 day. 'GSL_CONST_MKSA_WEEK' The number of seconds in 1 week.  File: gsl-ref.info, Node: Imperial Units, Next: Speed and Nautical Units, Prev: Measurement of Time, Up: Physical Constants 40.5 Imperial Units =================== 'GSL_CONST_MKSA_INCH' The length of 1 inch. 'GSL_CONST_MKSA_FOOT' The length of 1 foot. 'GSL_CONST_MKSA_YARD' The length of 1 yard. 'GSL_CONST_MKSA_MILE' The length of 1 mile. 'GSL_CONST_MKSA_MIL' The length of 1 mil (1/1000th of an inch).  File: gsl-ref.info, Node: Speed and Nautical Units, Next: Printers Units, Prev: Imperial Units, Up: Physical Constants 40.6 Speed and Nautical Units ============================= 'GSL_CONST_MKSA_KILOMETERS_PER_HOUR' The speed of 1 kilometer per hour. 'GSL_CONST_MKSA_MILES_PER_HOUR' The speed of 1 mile per hour. 'GSL_CONST_MKSA_NAUTICAL_MILE' The length of 1 nautical mile. 'GSL_CONST_MKSA_FATHOM' The length of 1 fathom. 'GSL_CONST_MKSA_KNOT' The speed of 1 knot.  File: gsl-ref.info, Node: Printers Units, Next: Volume Area and Length, Prev: Speed and Nautical Units, Up: Physical Constants 40.7 Printers Units =================== 'GSL_CONST_MKSA_POINT' The length of 1 printer's point (1/72 inch). 'GSL_CONST_MKSA_TEXPOINT' The length of 1 TeX point (1/72.27 inch).  File: gsl-ref.info, Node: Volume Area and Length, Next: Mass and Weight, Prev: Printers Units, Up: Physical Constants 40.8 Volume, Area and Length ============================ 'GSL_CONST_MKSA_MICRON' The length of 1 micron. 'GSL_CONST_MKSA_HECTARE' The area of 1 hectare. 'GSL_CONST_MKSA_ACRE' The area of 1 acre. 'GSL_CONST_MKSA_LITER' The volume of 1 liter. 'GSL_CONST_MKSA_US_GALLON' The volume of 1 US gallon. 'GSL_CONST_MKSA_CANADIAN_GALLON' The volume of 1 Canadian gallon. 'GSL_CONST_MKSA_UK_GALLON' The volume of 1 UK gallon. 'GSL_CONST_MKSA_QUART' The volume of 1 quart. 'GSL_CONST_MKSA_PINT' The volume of 1 pint.  File: gsl-ref.info, Node: Mass and Weight, Next: Thermal Energy and Power, Prev: Volume Area and Length, Up: Physical Constants 40.9 Mass and Weight ==================== 'GSL_CONST_MKSA_POUND_MASS' The mass of 1 pound. 'GSL_CONST_MKSA_OUNCE_MASS' The mass of 1 ounce. 'GSL_CONST_MKSA_TON' The mass of 1 ton. 'GSL_CONST_MKSA_METRIC_TON' The mass of 1 metric ton (1000 kg). 'GSL_CONST_MKSA_UK_TON' The mass of 1 UK ton. 'GSL_CONST_MKSA_TROY_OUNCE' The mass of 1 troy ounce. 'GSL_CONST_MKSA_CARAT' The mass of 1 carat. 'GSL_CONST_MKSA_GRAM_FORCE' The force of 1 gram weight. 'GSL_CONST_MKSA_POUND_FORCE' The force of 1 pound weight. 'GSL_CONST_MKSA_KILOPOUND_FORCE' The force of 1 kilopound weight. 'GSL_CONST_MKSA_POUNDAL' The force of 1 poundal.  File: gsl-ref.info, Node: Thermal Energy and Power, Next: Pressure, Prev: Mass and Weight, Up: Physical Constants 40.10 Thermal Energy and Power ============================== 'GSL_CONST_MKSA_CALORIE' The energy of 1 calorie. 'GSL_CONST_MKSA_BTU' The energy of 1 British Thermal Unit, btu. 'GSL_CONST_MKSA_THERM' The energy of 1 Therm. 'GSL_CONST_MKSA_HORSEPOWER' The power of 1 horsepower.  File: gsl-ref.info, Node: Pressure, Next: Viscosity, Prev: Thermal Energy and Power, Up: Physical Constants 40.11 Pressure ============== 'GSL_CONST_MKSA_BAR' The pressure of 1 bar. 'GSL_CONST_MKSA_STD_ATMOSPHERE' The pressure of 1 standard atmosphere. 'GSL_CONST_MKSA_TORR' The pressure of 1 torr. 'GSL_CONST_MKSA_METER_OF_MERCURY' The pressure of 1 meter of mercury. 'GSL_CONST_MKSA_INCH_OF_MERCURY' The pressure of 1 inch of mercury. 'GSL_CONST_MKSA_INCH_OF_WATER' The pressure of 1 inch of water. 'GSL_CONST_MKSA_PSI' The pressure of 1 pound per square inch.  File: gsl-ref.info, Node: Viscosity, Next: Light and Illumination, Prev: Pressure, Up: Physical Constants 40.12 Viscosity =============== 'GSL_CONST_MKSA_POISE' The dynamic viscosity of 1 poise. 'GSL_CONST_MKSA_STOKES' The kinematic viscosity of 1 stokes.  File: gsl-ref.info, Node: Light and Illumination, Next: Radioactivity, Prev: Viscosity, Up: Physical Constants 40.13 Light and Illumination ============================ 'GSL_CONST_MKSA_STILB' The luminance of 1 stilb. 'GSL_CONST_MKSA_LUMEN' The luminous flux of 1 lumen. 'GSL_CONST_MKSA_LUX' The illuminance of 1 lux. 'GSL_CONST_MKSA_PHOT' The illuminance of 1 phot. 'GSL_CONST_MKSA_FOOTCANDLE' The illuminance of 1 footcandle. 'GSL_CONST_MKSA_LAMBERT' The luminance of 1 lambert. 'GSL_CONST_MKSA_FOOTLAMBERT' The luminance of 1 footlambert.  File: gsl-ref.info, Node: Radioactivity, Next: Force and Energy, Prev: Light and Illumination, Up: Physical Constants 40.14 Radioactivity =================== 'GSL_CONST_MKSA_CURIE' The activity of 1 curie. 'GSL_CONST_MKSA_ROENTGEN' The exposure of 1 roentgen. 'GSL_CONST_MKSA_RAD' The absorbed dose of 1 rad.  File: gsl-ref.info, Node: Force and Energy, Next: Prefixes, Prev: Radioactivity, Up: Physical Constants 40.15 Force and Energy ====================== 'GSL_CONST_MKSA_NEWTON' The SI unit of force, 1 Newton. 'GSL_CONST_MKSA_DYNE' The force of 1 Dyne = 10^-5 Newton. 'GSL_CONST_MKSA_JOULE' The SI unit of energy, 1 Joule. 'GSL_CONST_MKSA_ERG' The energy 1 erg = 10^-7 Joule.  File: gsl-ref.info, Node: Prefixes, Next: Physical Constant Examples, Prev: Force and Energy, Up: Physical Constants 40.16 Prefixes ============== These constants are dimensionless scaling factors. 'GSL_CONST_NUM_YOTTA' 10^24 'GSL_CONST_NUM_ZETTA' 10^21 'GSL_CONST_NUM_EXA' 10^18 'GSL_CONST_NUM_PETA' 10^15 'GSL_CONST_NUM_TERA' 10^12 'GSL_CONST_NUM_GIGA' 10^9 'GSL_CONST_NUM_MEGA' 10^6 'GSL_CONST_NUM_KILO' 10^3 'GSL_CONST_NUM_MILLI' 10^-3 'GSL_CONST_NUM_MICRO' 10^-6 'GSL_CONST_NUM_NANO' 10^-9 'GSL_CONST_NUM_PICO' 10^-12 'GSL_CONST_NUM_FEMTO' 10^-15 'GSL_CONST_NUM_ATTO' 10^-18 'GSL_CONST_NUM_ZEPTO' 10^-21 'GSL_CONST_NUM_YOCTO' 10^-24  File: gsl-ref.info, Node: Physical Constant Examples, Next: Physical Constant References and Further Reading, Prev: Prefixes, Up: Physical Constants 40.17 Examples ============== The following program demonstrates the use of the physical constants in a calculation. In this case, the goal is to calculate the range of light-travel times from Earth to Mars. The required data is the average distance of each planet from the Sun in astronomical units (the eccentricities and inclinations of the orbits will be neglected for the purposes of this calculation). The average radius of the orbit of Mars is 1.52 astronomical units, and for the orbit of Earth it is 1 astronomical unit (by definition). These values are combined with the MKSA values of the constants for the speed of light and the length of an astronomical unit to produce a result for the shortest and longest light-travel times in seconds. The figures are converted into minutes before being displayed. #include #include int main (void) { double c = GSL_CONST_MKSA_SPEED_OF_LIGHT; double au = GSL_CONST_MKSA_ASTRONOMICAL_UNIT; double minutes = GSL_CONST_MKSA_MINUTE; /* distance stored in meters */ double r_earth = 1.00 * au; double r_mars = 1.52 * au; double t_min, t_max; t_min = (r_mars - r_earth) / c; t_max = (r_mars + r_earth) / c; printf ("light travel time from Earth to Mars:\n"); printf ("minimum = %.1f minutes\n", t_min / minutes); printf ("maximum = %.1f minutes\n", t_max / minutes); return 0; } Here is the output from the program, light travel time from Earth to Mars: minimum = 4.3 minutes maximum = 21.0 minutes  File: gsl-ref.info, Node: Physical Constant References and Further Reading, Prev: Physical Constant Examples, Up: Physical Constants 40.18 References and Further Reading ==================================== The authoritative sources for physical constants are the 2006 CODATA recommended values, published in the article below. Further information on the values of physical constants is also available from the NIST website. P.J. Mohr, B.N. Taylor, D.B. Newell, "CODATA Recommended Values of the Fundamental Physical Constants: 2006", Reviews of Modern Physics, 80(2), pp. 633-730 (2008).  File: gsl-ref.info, Node: IEEE floating-point arithmetic, Next: Debugging Numerical Programs, Prev: Physical Constants, Up: Top 41 IEEE floating-point arithmetic ********************************* This chapter describes functions for examining the representation of floating point numbers and controlling the floating point environment of your program. The functions described in this chapter are declared in the header file 'gsl_ieee_utils.h'. * Menu: * Representation of floating point numbers:: * Setting up your IEEE environment:: * IEEE References and Further Reading::  File: gsl-ref.info, Node: Representation of floating point numbers, Next: Setting up your IEEE environment, Up: IEEE floating-point arithmetic 41.1 Representation of floating point numbers ============================================= The IEEE Standard for Binary Floating-Point Arithmetic defines binary formats for single and double precision numbers. Each number is composed of three parts: a "sign bit" (s), an "exponent" (E) and a "fraction" (f). The numerical value of the combination (s,E,f) is given by the following formula, (-1)^s (1.fffff...) 2^E The sign bit is either zero or one. The exponent ranges from a minimum value E_min to a maximum value E_max depending on the precision. The exponent is converted to an unsigned number e, known as the "biased exponent", for storage by adding a "bias" parameter, e = E + bias. The sequence fffff... represents the digits of the binary fraction f. The binary digits are stored in "normalized form", by adjusting the exponent to give a leading digit of 1. Since the leading digit is always 1 for normalized numbers it is assumed implicitly and does not have to be stored. Numbers smaller than 2^(E_min) are be stored in "denormalized form" with a leading zero, (-1)^s (0.fffff...) 2^(E_min) This allows gradual underflow down to 2^(E_min - p) for p bits of precision. A zero is encoded with the special exponent of 2^(E_min - 1) and infinities with the exponent of 2^(E_max + 1). The format for single precision numbers uses 32 bits divided in the following way, seeeeeeeefffffffffffffffffffffff s = sign bit, 1 bit e = exponent, 8 bits (E_min=-126, E_max=127, bias=127) f = fraction, 23 bits The format for double precision numbers uses 64 bits divided in the following way, seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff s = sign bit, 1 bit e = exponent, 11 bits (E_min=-1022, E_max=1023, bias=1023) f = fraction, 52 bits It is often useful to be able to investigate the behavior of a calculation at the bit-level and the library provides functions for printing the IEEE representations in a human-readable form. -- Function: void gsl_ieee_fprintf_float (FILE * STREAM, const float * X) -- Function: void gsl_ieee_fprintf_double (FILE * STREAM, const double * X) These functions output a formatted version of the IEEE floating-point number pointed to by X to the stream STREAM. A pointer is used to pass the number indirectly, to avoid any undesired promotion from 'float' to 'double'. The output takes one of the following forms, 'NaN' the Not-a-Number symbol 'Inf, -Inf' positive or negative infinity '1.fffff...*2^E, -1.fffff...*2^E' a normalized floating point number '0.fffff...*2^E, -0.fffff...*2^E' a denormalized floating point number '0, -0' positive or negative zero The output can be used directly in GNU Emacs Calc mode by preceding it with '2#' to indicate binary. -- Function: void gsl_ieee_printf_float (const float * X) -- Function: void gsl_ieee_printf_double (const double * X) These functions output a formatted version of the IEEE floating-point number pointed to by X to the stream 'stdout'. The following program demonstrates the use of the functions by printing the single and double precision representations of the fraction 1/3. For comparison the representation of the value promoted from single to double precision is also printed. #include #include int main (void) { float f = 1.0/3.0; double d = 1.0/3.0; double fd = f; /* promote from float to double */ printf (" f="); gsl_ieee_printf_float(&f); printf ("\n"); printf ("fd="); gsl_ieee_printf_double(&fd); printf ("\n"); printf (" d="); gsl_ieee_printf_double(&d); printf ("\n"); return 0; } The binary representation of 1/3 is 0.01010101... . The output below shows that the IEEE format normalizes this fraction to give a leading digit of 1, f= 1.01010101010101010101011*2^-2 fd= 1.0101010101010101010101100000000000000000000000000000*2^-2 d= 1.0101010101010101010101010101010101010101010101010101*2^-2 The output also shows that a single-precision number is promoted to double-precision by adding zeros in the binary representation.  File: gsl-ref.info, Node: Setting up your IEEE environment, Next: IEEE References and Further Reading, Prev: Representation of floating point numbers, Up: IEEE floating-point arithmetic 41.2 Setting up your IEEE environment ===================================== The IEEE standard defines several "modes" for controlling the behavior of floating point operations. These modes specify the important properties of computer arithmetic: the direction used for rounding (e.g. whether numbers should be rounded up, down or to the nearest number), the rounding precision and how the program should handle arithmetic exceptions, such as division by zero. Many of these features can now be controlled via standard functions such as 'fpsetround', which should be used whenever they are available. Unfortunately in the past there has been no universal API for controlling their behavior--each system has had its own low-level way of accessing them. To help you write portable programs GSL allows you to specify modes in a platform-independent way using the environment variable 'GSL_IEEE_MODE'. The library then takes care of all the necessary machine-specific initializations for you when you call the function 'gsl_ieee_env_setup'. -- Function: void gsl_ieee_env_setup () This function reads the environment variable 'GSL_IEEE_MODE' and attempts to set up the corresponding specified IEEE modes. The environment variable should be a list of keywords, separated by commas, like this, 'GSL_IEEE_MODE' = "KEYWORD,KEYWORD,..." where KEYWORD is one of the following mode-names, 'single-precision' 'double-precision' 'extended-precision' 'round-to-nearest' 'round-down' 'round-up' 'round-to-zero' 'mask-all' 'mask-invalid' 'mask-denormalized' 'mask-division-by-zero' 'mask-overflow' 'mask-underflow' 'trap-inexact' 'trap-common' If 'GSL_IEEE_MODE' is empty or undefined then the function returns immediately and no attempt is made to change the system's IEEE mode. When the modes from 'GSL_IEEE_MODE' are turned on the function prints a short message showing the new settings to remind you that the results of the program will be affected. If the requested modes are not supported by the platform being used then the function calls the error handler and returns an error code of 'GSL_EUNSUP'. When options are specified using this method, the resulting mode is based on a default setting of the highest available precision (double precision or extended precision, depending on the platform) in round-to-nearest mode, with all exceptions enabled apart from the INEXACT exception. The INEXACT exception is generated whenever rounding occurs, so it must generally be disabled in typical scientific calculations. All other floating-point exceptions are enabled by default, including underflows and the use of denormalized numbers, for safety. They can be disabled with the individual 'mask-' settings or together using 'mask-all'. The following adjusted combination of modes is convenient for many purposes, GSL_IEEE_MODE="double-precision,"\ "mask-underflow,"\ "mask-denormalized" This choice ignores any errors relating to small numbers (either denormalized, or underflowing to zero) but traps overflows, division by zero and invalid operations. Note that on the x86 series of processors this function sets both the original x87 mode and the newer MXCSR mode, which controls SSE floating-point operations. The SSE floating-point units do not have a precision-control bit, and always work in double-precision. The single-precision and extended-precision keywords have no effect in this case. To demonstrate the effects of different rounding modes consider the following program which computes e, the base of natural logarithms, by summing a rapidly-decreasing series, e = 1 + 1/2! + 1/3! + 1/4! + ... = 2.71828182846... #include #include #include int main (void) { double x = 1, oldsum = 0, sum = 0; int i = 0; gsl_ieee_env_setup (); /* read GSL_IEEE_MODE */ do { i++; oldsum = sum; sum += x; x = x / i; printf ("i=%2d sum=%.18f error=%g\n", i, sum, sum - M_E); if (i > 30) break; } while (sum != oldsum); return 0; } Here are the results of running the program in 'round-to-nearest' mode. This is the IEEE default so it isn't really necessary to specify it here, $ GSL_IEEE_MODE="round-to-nearest" ./a.out i= 1 sum=1.000000000000000000 error=-1.71828 i= 2 sum=2.000000000000000000 error=-0.718282 .... i=18 sum=2.718281828459045535 error=4.44089e-16 i=19 sum=2.718281828459045535 error=4.44089e-16 After nineteen terms the sum converges to within 4 \times 10^-16 of the correct value. If we now change the rounding mode to 'round-down' the final result is less accurate, $ GSL_IEEE_MODE="round-down" ./a.out i= 1 sum=1.000000000000000000 error=-1.71828 .... i=19 sum=2.718281828459041094 error=-3.9968e-15 The result is about 4 \times 10^-15 below the correct value, an order of magnitude worse than the result obtained in the 'round-to-nearest' mode. If we change to rounding mode to 'round-up' then the final result is higher than the correct value (when we add each term to the sum the final result is always rounded up, which increases the sum by at least one tick until the added term underflows to zero). To avoid this problem we would need to use a safer converge criterion, such as 'while (fabs(sum - oldsum) > epsilon)', with a suitably chosen value of epsilon. Finally we can see the effect of computing the sum using single-precision rounding, in the default 'round-to-nearest' mode. In this case the program thinks it is still using double precision numbers but the CPU rounds the result of each floating point operation to single-precision accuracy. This simulates the effect of writing the program using single-precision 'float' variables instead of 'double' variables. The iteration stops after about half the number of iterations and the final result is much less accurate, $ GSL_IEEE_MODE="single-precision" ./a.out .... i=12 sum=2.718281984329223633 error=1.5587e-07 with an error of O(10^-7), which corresponds to single precision accuracy (about 1 part in 10^7). Continuing the iterations further does not decrease the error because all the subsequent results are rounded to the same value.  File: gsl-ref.info, Node: IEEE References and Further Reading, Prev: Setting up your IEEE environment, Up: IEEE floating-point arithmetic 41.3 References and Further Reading =================================== The reference for the IEEE standard is, ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. A more pedagogical introduction to the standard can be found in the following paper, David Goldberg: What Every Computer Scientist Should Know About Floating-Point Arithmetic. 'ACM Computing Surveys', Vol. 23, No. 1 (March 1991), pages 5-48. Corrigendum: 'ACM Computing Surveys', Vol. 23, No. 3 (September 1991), page 413. and see also the sections by B. A. Wichmann and Charles B. Dunham in Surveyor's Forum: "What Every Computer Scientist Should Know About Floating-Point Arithmetic". 'ACM Computing Surveys', Vol. 24, No. 3 (September 1992), page 319. A detailed textbook on IEEE arithmetic and its practical use is available from SIAM Press, Michael L. Overton, 'Numerical Computing with IEEE Floating Point Arithmetic', SIAM Press, ISBN 0898715717.  File: gsl-ref.info, Node: Debugging Numerical Programs, Next: Contributors to GSL, Prev: IEEE floating-point arithmetic, Up: Top Appendix A Debugging Numerical Programs *************************************** This chapter describes some tips and tricks for debugging numerical programs which use GSL. * Menu: * Using gdb:: * Examining floating point registers:: * Handling floating point exceptions:: * GCC warning options for numerical programs:: * Debugging References::  File: gsl-ref.info, Node: Using gdb, Next: Examining floating point registers, Up: Debugging Numerical Programs A.1 Using gdb ============= Any errors reported by the library are passed to the function 'gsl_error'. By running your programs under gdb and setting a breakpoint in this function you can automatically catch any library errors. You can add a breakpoint for every session by putting break gsl_error into your '.gdbinit' file in the directory where your program is started. If the breakpoint catches an error then you can use a backtrace ('bt') to see the call-tree, and the arguments which possibly caused the error. By moving up into the calling function you can investigate the values of variables at that point. Here is an example from the program 'fft/test_trap', which contains the following line, status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable); The function 'gsl_fft_complex_wavetable_alloc' takes the length of an FFT as its first argument. When this line is executed an error will be generated because the length of an FFT is not allowed to be zero. To debug this problem we start 'gdb', using the file '.gdbinit' to define a breakpoint in 'gsl_error', $ gdb test_trap GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.16 (i586-debian-linux), Copyright 1996 Free Software Foundation, Inc. Breakpoint 1 at 0x8050b1e: file error.c, line 14. When we run the program this breakpoint catches the error and shows the reason for it. (gdb) run Starting program: test_trap Breakpoint 1, gsl_error (reason=0x8052b0d "length n must be positive integer", file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14 14 if (gsl_error_handler) The first argument of 'gsl_error' is always a string describing the error. Now we can look at the backtrace to see what caused the problem, (gdb) bt #0 gsl_error (reason=0x8052b0d "length n must be positive integer", file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14 #1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778) at c_init.c:108 #2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94 #3 0x80488be in ___crt_dummy__ () We can see that the error was generated in the function 'gsl_fft_complex_wavetable_alloc' when it was called with an argument of N=0. The original call came from line 94 in the file 'test_trap.c'. By moving up to the level of the original call we can find the line that caused the error, (gdb) up #1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778) at c_init.c:108 108 GSL_ERROR ("length n must be positive integer", GSL_EDOM); (gdb) up #2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94 94 status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable); Thus we have found the line that caused the problem. From this point we could also print out the values of other variables such as 'complex_wavetable'.  File: gsl-ref.info, Node: Examining floating point registers, Next: Handling floating point exceptions, Prev: Using gdb, Up: Debugging Numerical Programs A.2 Examining floating point registers ====================================== The contents of floating point registers can be examined using the command 'info float' (on supported platforms). (gdb) info float st0: 0xc4018b895aa17a945000 Valid Normal -7.838871e+308 st1: 0x3ff9ea3f50e4d7275000 Valid Normal 0.0285946 st2: 0x3fe790c64ce27dad4800 Valid Normal 6.7415931e-08 st3: 0x3ffaa3ef0df6607d7800 Spec Normal 0.0400229 st4: 0x3c028000000000000000 Valid Normal 4.4501477e-308 st5: 0x3ffef5412c22219d9000 Zero Normal 0.9580257 st6: 0x3fff8000000000000000 Valid Normal 1 st7: 0xc4028b65a1f6d243c800 Valid Normal -1.566206e+309 fctrl: 0x0272 53 bit; NEAR; mask DENOR UNDER LOS; fstat: 0xb9ba flags 0001; top 7; excep DENOR OVERF UNDER LOS ftag: 0x3fff fip: 0x08048b5c fcs: 0x051a0023 fopoff: 0x08086820 fopsel: 0x002b Individual registers can be examined using the variables $REG, where REG is the register name. (gdb) p $st1 $1 = 0.02859464454261210347719  File: gsl-ref.info, Node: Handling floating point exceptions, Next: GCC warning options for numerical programs, Prev: Examining floating point registers, Up: Debugging Numerical Programs A.3 Handling floating point exceptions ====================================== It is possible to stop the program whenever a 'SIGFPE' floating point exception occurs. This can be useful for finding the cause of an unexpected infinity or 'NaN'. The current handler settings can be shown with the command 'info signal SIGFPE'. (gdb) info signal SIGFPE Signal Stop Print Pass to program Description SIGFPE Yes Yes Yes Arithmetic exception Unless the program uses a signal handler the default setting should be changed so that SIGFPE is not passed to the program, as this would cause it to exit. The command 'handle SIGFPE stop nopass' prevents this. (gdb) handle SIGFPE stop nopass Signal Stop Print Pass to program Description SIGFPE Yes Yes No Arithmetic exception Depending on the platform it may be necessary to instruct the kernel to generate signals for floating point exceptions. For programs using GSL this can be achieved using the 'GSL_IEEE_MODE' environment variable in conjunction with the function 'gsl_ieee_env_setup' as described in *note IEEE floating-point arithmetic::. (gdb) set env GSL_IEEE_MODE=double-precision  File: gsl-ref.info, Node: GCC warning options for numerical programs, Next: Debugging References, Prev: Handling floating point exceptions, Up: Debugging Numerical Programs A.4 GCC warning options for numerical programs ============================================== Writing reliable numerical programs in C requires great care. The following GCC warning options are recommended when compiling numerical programs: gcc -ansi -pedantic -Werror -Wall -W -Wmissing-prototypes -Wstrict-prototypes -Wconversion -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings -Wnested-externs -fshort-enums -fno-common -Dinline= -g -O2 For details of each option consult the manual 'Using and Porting GCC'. The following table gives a brief explanation of what types of errors these options catch. '-ansi -pedantic' Use ANSI C, and reject any non-ANSI extensions. These flags help in writing portable programs that will compile on other systems. '-Werror' Consider warnings to be errors, so that compilation stops. This prevents warnings from scrolling off the top of the screen and being lost. You won't be able to compile the program until it is completely warning-free. '-Wall' This turns on a set of warnings for common programming problems. You need '-Wall', but it is not enough on its own. '-O2' Turn on optimization. The warnings for uninitialized variables in '-Wall' rely on the optimizer to analyze the code. If there is no optimization then these warnings aren't generated. '-W' This turns on some extra warnings not included in '-Wall', such as missing return values and comparisons between signed and unsigned integers. '-Wmissing-prototypes -Wstrict-prototypes' Warn if there are any missing or inconsistent prototypes. Without prototypes it is harder to detect problems with incorrect arguments. '-Wconversion' The main use of this option is to warn about conversions from signed to unsigned integers. For example, 'unsigned int x = -1'. If you need to perform such a conversion you can use an explicit cast. '-Wshadow' This warns whenever a local variable shadows another local variable. If two variables have the same name then it is a potential source of confusion. '-Wpointer-arith -Wcast-qual -Wcast-align' These options warn if you try to do pointer arithmetic for types which don't have a size, such as 'void', if you remove a 'const' cast from a pointer, or if you cast a pointer to a type which has a different size, causing an invalid alignment. '-Wwrite-strings' This option gives string constants a 'const' qualifier so that it will be a compile-time error to attempt to overwrite them. '-fshort-enums' This option makes the type of 'enum' as short as possible. Normally this makes an 'enum' different from an 'int'. Consequently any attempts to assign a pointer-to-int to a pointer-to-enum will generate a cast-alignment warning. '-fno-common' This option prevents global variables being simultaneously defined in different object files (you get an error at link time). Such a variable should be defined in one file and referred to in other files with an 'extern' declaration. '-Wnested-externs' This warns if an 'extern' declaration is encountered within a function. '-Dinline=' The 'inline' keyword is not part of ANSI C. Thus if you want to use '-ansi' with a program which uses inline functions you can use this preprocessor definition to remove the 'inline' keywords. '-g' It always makes sense to put debugging symbols in the executable so that you can debug it using 'gdb'. The only effect of debugging symbols is to increase the size of the file, and you can use the 'strip' command to remove them later if necessary.  File: gsl-ref.info, Node: Debugging References, Prev: GCC warning options for numerical programs, Up: Debugging Numerical Programs A.5 References and Further Reading ================================== The following books are essential reading for anyone writing and debugging numerical programs with GCC and GDB. R.M. Stallman, 'Using and Porting GNU CC', Free Software Foundation, ISBN 1882114388 R.M. Stallman, R.H. Pesch, 'Debugging with GDB: The GNU Source-Level Debugger', Free Software Foundation, ISBN 1882114779 For a tutorial introduction to the GNU C Compiler and related programs, see B.J. Gough, 'An Introduction to GCC', Network Theory Ltd, ISBN 0954161793  File: gsl-ref.info, Node: Contributors to GSL, Next: Autoconf Macros, Prev: Debugging Numerical Programs, Up: Top Appendix B Contributors to GSL ****************************** (See the AUTHORS file in the distribution for up-to-date information.) *Mark Galassi* Conceived GSL (with James Theiler) and wrote the design document. Wrote the simulated annealing package and the relevant chapter in the manual. *James Theiler* Conceived GSL (with Mark Galassi). Wrote the random number generators and the relevant chapter in this manual. *Jim Davies* Wrote the statistical routines and the relevant chapter in this manual. *Brian Gough* FFTs, numerical integration, random number generators and distributions, root finding, minimization and fitting, polynomial solvers, complex numbers, physical constants, permutations, vector and matrix functions, histograms, statistics, ieee-utils, revised CBLAS Level 2 & 3, matrix decompositions, eigensystems, cumulative distribution functions, testing, documentation and releases. *Reid Priedhorsky* Wrote and documented the initial version of the root finding routines while at Los Alamos National Laboratory, Mathematical Modeling and Analysis Group. *Gerard Jungman* Special Functions, Series acceleration, ODEs, BLAS, Linear Algebra, Eigensystems, Hankel Transforms. *Mike Booth* Wrote the Monte Carlo library. *Jorma Olavi Ta"htinen* Wrote the initial complex arithmetic functions. *Thomas Walter* Wrote the initial heapsort routines and Cholesky decomposition. *Fabrice Rossi* Multidimensional minimization. *Carlo Perassi* Implementation of the random number generators in Knuth's 'Seminumerical Algorithms', 3rd Ed. *Szymon Jaroszewicz* Wrote the routines for generating combinations. *Nicolas Darnis* Wrote the cyclic functions and the initial functions for canonical permutations. *Jason H. Stover* Wrote the major cumulative distribution functions. *Ivo Alxneit* Wrote the routines for wavelet transforms. *Tuomo Keskitalo* Improved the implementation of the ODE solvers and wrote the ode-initval2 routines. *Lowell Johnson* Implementation of the Mathieu functions. *Patrick Alken* Implementation of nonsymmetric and generalized eigensystems, B-splines, and robust linear regression. *Rhys Ulerich* Wrote the multiset routines. *Pavel Holoborodko* Wrote the fixed order Gauss-Legendre quadrature routines. *Pedro Gonnet* Wrote the CQUAD integration routines. Thanks to Nigel Lowry for help in proofreading the manual. The non-symmetric eigensystems routines contain code based on the LAPACK linear algebra library. LAPACK is distributed under the following license: Copyright (c) 1992-2006 The University of Tennessee. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  File: gsl-ref.info, Node: Autoconf Macros, Next: GSL CBLAS Library, Prev: Contributors to GSL, Up: Top Appendix C Autoconf Macros ************************** For applications using 'autoconf' the standard macro 'AC_CHECK_LIB' can be used to link with GSL automatically from a 'configure' script. The library itself depends on the presence of a CBLAS and math library as well, so these must also be located before linking with the main 'libgsl' file. The following commands should be placed in the 'configure.ac' file to perform these tests, AC_CHECK_LIB([m],[cos]) AC_CHECK_LIB([gslcblas],[cblas_dgemm]) AC_CHECK_LIB([gsl],[gsl_blas_dgemm]) It is important to check for 'libm' and 'libgslcblas' before 'libgsl', otherwise the tests will fail. Assuming the libraries are found the output during the configure stage looks like this, checking for cos in -lm... yes checking for cblas_dgemm in -lgslcblas... yes checking for gsl_blas_dgemm in -lgsl... yes If the library is found then the tests will define the macros 'HAVE_LIBGSL', 'HAVE_LIBGSLCBLAS', 'HAVE_LIBM' and add the options '-lgsl -lgslcblas -lm' to the variable 'LIBS'. The tests above will find any version of the library. They are suitable for general use, where the versions of the functions are not important. An alternative macro is available in the file 'gsl.m4' to test for a specific version of the library. To use this macro simply add the following line to your 'configure.in' file instead of the tests above: AX_PATH_GSL(GSL_VERSION, [action-if-found], [action-if-not-found]) The argument 'GSL_VERSION' should be the two or three digit MAJOR.MINOR or MAJOR.MINOR.MICRO version number of the release you require. A suitable choice for 'action-if-not-found' is, AC_MSG_ERROR(could not find required version of GSL) Then you can add the variables 'GSL_LIBS' and 'GSL_CFLAGS' to your Makefile.am files to obtain the correct compiler flags. 'GSL_LIBS' is equal to the output of the 'gsl-config --libs' command and 'GSL_CFLAGS' is equal to 'gsl-config --cflags' command. For example, libfoo_la_LDFLAGS = -lfoo $(GSL_LIBS) -lgslcblas Note that the macro 'AX_PATH_GSL' needs to use the C compiler so it should appear in the 'configure.in' file before the macro 'AC_LANG_CPLUSPLUS' for programs that use C++. To test for 'inline' the following test should be placed in your 'configure.in' file, AC_C_INLINE if test "$ac_cv_c_inline" != no ; then AC_DEFINE(HAVE_INLINE,1) AC_SUBST(HAVE_INLINE) fi and the macro will then be defined in the compilation flags or by including the file 'config.h' before any library headers. The following autoconf test will check for 'extern inline', dnl Check for "extern inline", using a modified version dnl of the test for AC_C_INLINE from acspecific.mt dnl AC_CACHE_CHECK([for extern inline], ac_cv_c_extern_inline, [ac_cv_c_extern_inline=no AC_TRY_COMPILE([extern $ac_cv_c_inline double foo(double x); extern $ac_cv_c_inline double foo(double x) { return x+1.0; }; double foo (double x) { return x + 1.0; };], [ foo(1.0) ], [ac_cv_c_extern_inline="yes"]) ]) if test "$ac_cv_c_extern_inline" != no ; then AC_DEFINE(HAVE_INLINE,1) AC_SUBST(HAVE_INLINE) fi The substitution of portability functions can be made automatically if you use 'autoconf'. For example, to test whether the BSD function 'hypot' is available you can include the following line in the configure file 'configure.in' for your application, AC_CHECK_FUNCS(hypot) and place the following macro definitions in the file 'config.h.in', /* Substitute gsl_hypot for missing system hypot */ #ifndef HAVE_HYPOT #define hypot gsl_hypot #endif The application source files can then use the include command '#include ' to substitute 'gsl_hypot' for each occurrence of 'hypot' when 'hypot' is not available.  File: gsl-ref.info, Node: GSL CBLAS Library, Next: GNU General Public License, Prev: Autoconf Macros, Up: Top Appendix D GSL CBLAS Library **************************** The prototypes for the low-level CBLAS functions are declared in the file 'gsl_cblas.h'. For the definition of the functions consult the documentation available from Netlib (*note BLAS References and Further Reading::). * Menu: * Level 1 CBLAS Functions:: * Level 2 CBLAS Functions:: * Level 3 CBLAS Functions:: * GSL CBLAS Examples::  File: gsl-ref.info, Node: Level 1 CBLAS Functions, Next: Level 2 CBLAS Functions, Up: GSL CBLAS Library D.1 Level 1 =========== -- Function: float cblas_sdsdot (const int N, const float ALPHA, const float * X, const int INCX, const float * Y, const int INCY) -- Function: double cblas_dsdot (const int N, const float * X, const int INCX, const float * Y, const int INCY) -- Function: float cblas_sdot (const int N, const float * X, const int INCX, const float * Y, const int INCY) -- Function: double cblas_ddot (const int N, const double * X, const int INCX, const double * Y, const int INCY) -- Function: void cblas_cdotu_sub (const int N, const void * X, const int INCX, const void * Y, const int INCY, void * DOTU) -- Function: void cblas_cdotc_sub (const int N, const void * X, const int INCX, const void * Y, const int INCY, void * DOTC) -- Function: void cblas_zdotu_sub (const int N, const void * X, const int INCX, const void * Y, const int INCY, void * DOTU) -- Function: void cblas_zdotc_sub (const int N, const void * X, const int INCX, const void * Y, const int INCY, void * DOTC) -- Function: float cblas_snrm2 (const int N, const float * X, const int INCX) -- Function: float cblas_sasum (const int N, const float * X, const int INCX) -- Function: double cblas_dnrm2 (const int N, const double * X, const int INCX) -- Function: double cblas_dasum (const int N, const double * X, const int INCX) -- Function: float cblas_scnrm2 (const int N, const void * X, const int INCX) -- Function: float cblas_scasum (const int N, const void * X, const int INCX) -- Function: double cblas_dznrm2 (const int N, const void * X, const int INCX) -- Function: double cblas_dzasum (const int N, const void * X, const int INCX) -- Function: CBLAS_INDEX cblas_isamax (const int N, const float * X, const int INCX) -- Function: CBLAS_INDEX cblas_idamax (const int N, const double * X, const int INCX) -- Function: CBLAS_INDEX cblas_icamax (const int N, const void * X, const int INCX) -- Function: CBLAS_INDEX cblas_izamax (const int N, const void * X, const int INCX) -- Function: void cblas_sswap (const int N, float * X, const int INCX, float * Y, const int INCY) -- Function: void cblas_scopy (const int N, const float * X, const int INCX, float * Y, const int INCY) -- Function: void cblas_saxpy (const int N, const float ALPHA, const float * X, const int INCX, float * Y, const int INCY) -- Function: void cblas_dswap (const int N, double * X, const int INCX, double * Y, const int INCY) -- Function: void cblas_dcopy (const int N, const double * X, const int INCX, double * Y, const int INCY) -- Function: void cblas_daxpy (const int N, const double ALPHA, const double * X, const int INCX, double * Y, const int INCY) -- Function: void cblas_cswap (const int N, void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_ccopy (const int N, const void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_caxpy (const int N, const void * ALPHA, const void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_zswap (const int N, void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_zcopy (const int N, const void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_zaxpy (const int N, const void * ALPHA, const void * X, const int INCX, void * Y, const int INCY) -- Function: void cblas_srotg (float * A, float * B, float * C, float * S) -- Function: void cblas_srotmg (float * D1, float * D2, float * B1, const float B2, float * P) -- Function: void cblas_srot (const int N, float * X, const int INCX, float * Y, const int INCY, const float C, const float S) -- Function: void cblas_srotm (const int N, float * X, const int INCX, float * Y, const int INCY, const float * P) -- Function: void cblas_drotg (double * A, double * B, double * C, double * S) -- Function: void cblas_drotmg (double * D1, double * D2, double * B1, const double B2, double * P) -- Function: void cblas_drot (const int N, double * X, const int INCX, double * Y, const int INCY, const double C, const double S) -- Function: void cblas_drotm (const int N, double * X, const int INCX, double * Y, const int INCY, const double * P) -- Function: void cblas_sscal (const int N, const float ALPHA, float * X, const int INCX) -- Function: void cblas_dscal (const int N, const double ALPHA, double * X, const int INCX) -- Function: void cblas_cscal (const int N, const void * ALPHA, void * X, const int INCX) -- Function: void cblas_zscal (const int N, const void * ALPHA, void * X, const int INCX) -- Function: void cblas_csscal (const int N, const float ALPHA, void * X, const int INCX) -- Function: void cblas_zdscal (const int N, const double ALPHA, void * X, const int INCX)  File: gsl-ref.info, Node: Level 2 CBLAS Functions, Next: Level 3 CBLAS Functions, Prev: Level 1 CBLAS Functions, Up: GSL CBLAS Library D.2 Level 2 =========== -- Function: void cblas_sgemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const float ALPHA, const float * A, const int LDA, const float * X, const int INCX, const float BETA, float * Y, const int INCY) -- Function: void cblas_sgbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const int KL, const int KU, const float ALPHA, const float * A, const int LDA, const float * X, const int INCX, const float BETA, float * Y, const int INCY) -- Function: void cblas_strmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const float * A, const int LDA, float * X, const int INCX) -- Function: void cblas_stbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const float * A, const int LDA, float * X, const int INCX) -- Function: void cblas_stpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const float * AP, float * X, const int INCX) -- Function: void cblas_strsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const float * A, const int LDA, float * X, const int INCX) -- Function: void cblas_stbsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const float * A, const int LDA, float * X, const int INCX) -- Function: void cblas_stpsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const float * AP, float * X, const int INCX) -- Function: void cblas_dgemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const double ALPHA, const double * A, const int LDA, const double * X, const int INCX, const double BETA, double * Y, const int INCY) -- Function: void cblas_dgbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const int KL, const int KU, const double ALPHA, const double * A, const int LDA, const double * X, const int INCX, const double BETA, double * Y, const int INCY) -- Function: void cblas_dtrmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const double * A, const int LDA, double * X, const int INCX) -- Function: void cblas_dtbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const double * A, const int LDA, double * X, const int INCX) -- Function: void cblas_dtpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const double * AP, double * X, const int INCX) -- Function: void cblas_dtrsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const double * A, const int LDA, double * X, const int INCX) -- Function: void cblas_dtbsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const double * A, const int LDA, double * X, const int INCX) -- Function: void cblas_dtpsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const double * AP, double * X, const int INCX) -- Function: void cblas_cgemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_cgbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const int KL, const int KU, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_ctrmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ctbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ctpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * AP, void * X, const int INCX) -- Function: void cblas_ctrsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ctbsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ctpsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * AP, void * X, const int INCX) -- Function: void cblas_zgemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_zgbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const int M, const int N, const int KL, const int KU, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_ztrmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ztbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ztpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * AP, void * X, const int INCX) -- Function: void cblas_ztrsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ztbsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const int K, const void * A, const int LDA, void * X, const int INCX) -- Function: void cblas_ztpsv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int N, const void * AP, void * X, const int INCX) -- Function: void cblas_ssymv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * A, const int LDA, const float * X, const int INCX, const float BETA, float * Y, const int INCY) -- Function: void cblas_ssbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const int K, const float ALPHA, const float * A, const int LDA, const float * X, const int INCX, const float BETA, float * Y, const int INCY) -- Function: void cblas_sspmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * AP, const float * X, const int INCX, const float BETA, float * Y, const int INCY) -- Function: void cblas_sger (const enum CBLAS_ORDER ORDER, const int M, const int N, const float ALPHA, const float * X, const int INCX, const float * Y, const int INCY, float * A, const int LDA) -- Function: void cblas_ssyr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * X, const int INCX, float * A, const int LDA) -- Function: void cblas_sspr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * X, const int INCX, float * AP) -- Function: void cblas_ssyr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * X, const int INCX, const float * Y, const int INCY, float * A, const int LDA) -- Function: void cblas_sspr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const float * X, const int INCX, const float * Y, const int INCY, float * A) -- Function: void cblas_dsymv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * A, const int LDA, const double * X, const int INCX, const double BETA, double * Y, const int INCY) -- Function: void cblas_dsbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const int K, const double ALPHA, const double * A, const int LDA, const double * X, const int INCX, const double BETA, double * Y, const int INCY) -- Function: void cblas_dspmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * AP, const double * X, const int INCX, const double BETA, double * Y, const int INCY) -- Function: void cblas_dger (const enum CBLAS_ORDER ORDER, const int M, const int N, const double ALPHA, const double * X, const int INCX, const double * Y, const int INCY, double * A, const int LDA) -- Function: void cblas_dsyr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * X, const int INCX, double * A, const int LDA) -- Function: void cblas_dspr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * X, const int INCX, double * AP) -- Function: void cblas_dsyr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * X, const int INCX, const double * Y, const int INCY, double * A, const int LDA) -- Function: void cblas_dspr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const double * X, const int INCX, const double * Y, const int INCY, double * A) -- Function: void cblas_chemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_chbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_chpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * AP, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_cgeru (const enum CBLAS_ORDER ORDER, const int M, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_cgerc (const enum CBLAS_ORDER ORDER, const int M, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_cher (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const void * X, const int INCX, void * A, const int LDA) -- Function: void cblas_chpr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const float ALPHA, const void * X, const int INCX, void * A) -- Function: void cblas_cher2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_chpr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * AP) -- Function: void cblas_zhemv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_zhbmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_zhpmv (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * AP, const void * X, const int INCX, const void * BETA, void * Y, const int INCY) -- Function: void cblas_zgeru (const enum CBLAS_ORDER ORDER, const int M, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_zgerc (const enum CBLAS_ORDER ORDER, const int M, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_zher (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const void * X, const int INCX, void * A, const int LDA) -- Function: void cblas_zhpr (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const double ALPHA, const void * X, const int INCX, void * A) -- Function: void cblas_zher2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * A, const int LDA) -- Function: void cblas_zhpr2 (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const int N, const void * ALPHA, const void * X, const int INCX, const void * Y, const int INCY, void * AP)  File: gsl-ref.info, Node: Level 3 CBLAS Functions, Next: GSL CBLAS Examples, Prev: Level 2 CBLAS Functions, Up: GSL CBLAS Library D.3 Level 3 =========== -- Function: void cblas_sgemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_TRANSPOSE TRANSB, const int M, const int N, const int K, const float ALPHA, const float * A, const int LDA, const float * B, const int LDB, const float BETA, float * C, const int LDC) -- Function: void cblas_ssymm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const float ALPHA, const float * A, const int LDA, const float * B, const int LDB, const float BETA, float * C, const int LDC) -- Function: void cblas_ssyrk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const float ALPHA, const float * A, const int LDA, const float BETA, float * C, const int LDC) -- Function: void cblas_ssyr2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const float ALPHA, const float * A, const int LDA, const float * B, const int LDB, const float BETA, float * C, const int LDC) -- Function: void cblas_strmm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const float ALPHA, const float * A, const int LDA, float * B, const int LDB) -- Function: void cblas_strsm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const float ALPHA, const float * A, const int LDA, float * B, const int LDB) -- Function: void cblas_dgemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_TRANSPOSE TRANSB, const int M, const int N, const int K, const double ALPHA, const double * A, const int LDA, const double * B, const int LDB, const double BETA, double * C, const int LDC) -- Function: void cblas_dsymm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const double ALPHA, const double * A, const int LDA, const double * B, const int LDB, const double BETA, double * C, const int LDC) -- Function: void cblas_dsyrk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const double ALPHA, const double * A, const int LDA, const double BETA, double * C, const int LDC) -- Function: void cblas_dsyr2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const double ALPHA, const double * A, const int LDA, const double * B, const int LDB, const double BETA, double * C, const int LDC) -- Function: void cblas_dtrmm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const double ALPHA, const double * A, const int LDA, double * B, const int LDB) -- Function: void cblas_dtrsm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const double ALPHA, const double * A, const int LDA, double * B, const int LDB) -- Function: void cblas_cgemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_TRANSPOSE TRANSB, const int M, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_csymm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_csyrk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * BETA, void * C, const int LDC) -- Function: void cblas_csyr2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_ctrmm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const void * ALPHA, const void * A, const int LDA, void * B, const int LDB) -- Function: void cblas_ctrsm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const void * ALPHA, const void * A, const int LDA, void * B, const int LDB) -- Function: void cblas_zgemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_TRANSPOSE TRANSB, const int M, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_zsymm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_zsyrk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * BETA, void * C, const int LDC) -- Function: void cblas_zsyr2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_ztrmm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const void * ALPHA, const void * A, const int LDA, void * B, const int LDB) -- Function: void cblas_ztrsm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANSA, const enum CBLAS_DIAG DIAG, const int M, const int N, const void * ALPHA, const void * A, const int LDA, void * B, const int LDB) -- Function: void cblas_chemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_cherk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const float ALPHA, const void * A, const int LDA, const float BETA, void * C, const int LDC) -- Function: void cblas_cher2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const float BETA, void * C, const int LDC) -- Function: void cblas_zhemm (const enum CBLAS_ORDER ORDER, const enum CBLAS_SIDE SIDE, const enum CBLAS_UPLO UPLO, const int M, const int N, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const void * BETA, void * C, const int LDC) -- Function: void cblas_zherk (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const double ALPHA, const void * A, const int LDA, const double BETA, void * C, const int LDC) -- Function: void cblas_zher2k (const enum CBLAS_ORDER ORDER, const enum CBLAS_UPLO UPLO, const enum CBLAS_TRANSPOSE TRANS, const int N, const int K, const void * ALPHA, const void * A, const int LDA, const void * B, const int LDB, const double BETA, void * C, const int LDC) -- Function: void cblas_xerbla (int P, const char * ROUT, const char * FORM, ...)  File: gsl-ref.info, Node: GSL CBLAS Examples, Prev: Level 3 CBLAS Functions, Up: GSL CBLAS Library D.4 Examples ============ The following program computes the product of two matrices using the Level-3 BLAS function SGEMM, [ 0.11 0.12 0.13 ] [ 1011 1012 ] [ 367.76 368.12 ] [ 0.21 0.22 0.23 ] [ 1021 1022 ] = [ 674.06 674.72 ] [ 1031 1032 ] The matrices are stored in row major order but could be stored in column major order if the first argument of the call to 'cblas_sgemm' was changed to 'CblasColMajor'. #include #include int main (void) { int lda = 3; float A[] = { 0.11, 0.12, 0.13, 0.21, 0.22, 0.23 }; int ldb = 2; float B[] = { 1011, 1012, 1021, 1022, 1031, 1032 }; int ldc = 2; float C[] = { 0.00, 0.00, 0.00, 0.00 }; /* Compute C = A B */ cblas_sgemm (CblasRowMajor, CblasNoTrans, CblasNoTrans, 2, 2, 3, 1.0, A, lda, B, ldb, 0.0, C, ldc); printf ("[ %g, %g\n", C[0], C[1]); printf (" %g, %g ]\n", C[2], C[3]); return 0; } To compile the program use the following command line, $ gcc -Wall demo.c -lgslcblas There is no need to link with the main library '-lgsl' in this case as the CBLAS library is an independent unit. Here is the output from the program, $ ./a.out [ 367.76, 368.12 674.06, 674.72 ]  File: gsl-ref.info, Node: GNU General Public License, Next: GNU Free Documentation License, Prev: GSL CBLAS Library, Up: Top GNU General Public License ************************** Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble ======== The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program-to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS ==================== 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a. The work must carry prominent notices stating that you modified it, and giving a relevant date. b. The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c. You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d. If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c. Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b. Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or e. Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f. Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS =========================== How to Apply These Terms to Your New Programs ============================================= If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. Copyright (C) YEAR NAME OF AUTHOR This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details. The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read .  File: gsl-ref.info, Node: GNU Free Documentation License, Next: Function Index, Prev: GNU General Public License, Up: Top GNU Free Documentation License ****************************** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 0. PREAMBLE The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. The "publisher" means any person or entity that distributes copies of the Document to the public. A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. 2. VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. 3. COPYING IN QUANTITY If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. C. State on the Title page the name of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. H. Include an unaltered copy of this License. I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section. O. Preserve any Warranty Disclaimers. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. 5. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements." 6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. 8. TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. 9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site. "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. "Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document. An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. ADDENDUM: How to use this License for your documents ==================================================== To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.  File: gsl-ref.info, Node: Function Index, Next: Variable Index, Prev: GNU Free Documentation License, Up: Top Function Index ************** [index] * Menu: * cblas_caxpy: Level 1 CBLAS Functions. (line 90) * cblas_ccopy: Level 1 CBLAS Functions. (line 87) * cblas_cdotc_sub: Level 1 CBLAS Functions. (line 21) * cblas_cdotu_sub: Level 1 CBLAS Functions. (line 18) * cblas_cgbmv: Level 2 CBLAS Functions. (line 93) * cblas_cgemm: Level 3 CBLAS Functions. (line 76) * cblas_cgemv: Level 2 CBLAS Functions. (line 88) * cblas_cgerc: Level 2 CBLAS Functions. (line 264) * cblas_cgeru: Level 2 CBLAS Functions. (line 260) * cblas_chbmv: Level 2 CBLAS Functions. (line 250) * cblas_chemm: Level 3 CBLAS Functions. (line 146) * cblas_chemv: Level 2 CBLAS Functions. (line 245) * cblas_cher: Level 2 CBLAS Functions. (line 268) * cblas_cher2: Level 2 CBLAS Functions. (line 276) * cblas_cher2k: Level 3 CBLAS Functions. (line 157) * cblas_cherk: Level 3 CBLAS Functions. (line 152) * cblas_chpmv: Level 2 CBLAS Functions. (line 255) * cblas_chpr: Level 2 CBLAS Functions. (line 272) * cblas_chpr2: Level 2 CBLAS Functions. (line 281) * cblas_cscal: Level 1 CBLAS Functions. (line 132) * cblas_csscal: Level 1 CBLAS Functions. (line 138) * cblas_cswap: Level 1 CBLAS Functions. (line 84) * cblas_csymm: Level 3 CBLAS Functions. (line 82) * cblas_csyr2k: Level 3 CBLAS Functions. (line 93) * cblas_csyrk: Level 3 CBLAS Functions. (line 88) * cblas_ctbmv: Level 2 CBLAS Functions. (line 104) * cblas_ctbsv: Level 2 CBLAS Functions. (line 119) * cblas_ctpmv: Level 2 CBLAS Functions. (line 109) * cblas_ctpsv: Level 2 CBLAS Functions. (line 124) * cblas_ctrmm: Level 3 CBLAS Functions. (line 99) * cblas_ctrmv: Level 2 CBLAS Functions. (line 99) * cblas_ctrsm: Level 3 CBLAS Functions. (line 105) * cblas_ctrsv: Level 2 CBLAS Functions. (line 114) * cblas_dasum: Level 1 CBLAS Functions. (line 39) * cblas_daxpy: Level 1 CBLAS Functions. (line 81) * cblas_dcopy: Level 1 CBLAS Functions. (line 78) * cblas_ddot: Level 1 CBLAS Functions. (line 15) * cblas_dgbmv: Level 2 CBLAS Functions. (line 52) * cblas_dgemm: Level 3 CBLAS Functions. (line 41) * cblas_dgemv: Level 2 CBLAS Functions. (line 47) * cblas_dger: Level 2 CBLAS Functions. (line 222) * cblas_dnrm2: Level 1 CBLAS Functions. (line 36) * cblas_drot: Level 1 CBLAS Functions. (line 120) * cblas_drotg: Level 1 CBLAS Functions. (line 114) * cblas_drotm: Level 1 CBLAS Functions. (line 123) * cblas_drotmg: Level 1 CBLAS Functions. (line 117) * cblas_dsbmv: Level 2 CBLAS Functions. (line 212) * cblas_dscal: Level 1 CBLAS Functions. (line 129) * cblas_dsdot: Level 1 CBLAS Functions. (line 9) * cblas_dspmv: Level 2 CBLAS Functions. (line 217) * cblas_dspr: Level 2 CBLAS Functions. (line 231) * cblas_dspr2: Level 2 CBLAS Functions. (line 240) * cblas_dswap: Level 1 CBLAS Functions. (line 75) * cblas_dsymm: Level 3 CBLAS Functions. (line 47) * cblas_dsymv: Level 2 CBLAS Functions. (line 207) * cblas_dsyr: Level 2 CBLAS Functions. (line 227) * cblas_dsyr2: Level 2 CBLAS Functions. (line 235) * cblas_dsyr2k: Level 3 CBLAS Functions. (line 58) * cblas_dsyrk: Level 3 CBLAS Functions. (line 53) * cblas_dtbmv: Level 2 CBLAS Functions. (line 63) * cblas_dtbsv: Level 2 CBLAS Functions. (line 78) * cblas_dtpmv: Level 2 CBLAS Functions. (line 68) * cblas_dtpsv: Level 2 CBLAS Functions. (line 83) * cblas_dtrmm: Level 3 CBLAS Functions. (line 64) * cblas_dtrmv: Level 2 CBLAS Functions. (line 58) * cblas_dtrsm: Level 3 CBLAS Functions. (line 70) * cblas_dtrsv: Level 2 CBLAS Functions. (line 73) * cblas_dzasum: Level 1 CBLAS Functions. (line 51) * cblas_dznrm2: Level 1 CBLAS Functions. (line 48) * cblas_icamax: Level 1 CBLAS Functions. (line 60) * cblas_idamax: Level 1 CBLAS Functions. (line 57) * cblas_isamax: Level 1 CBLAS Functions. (line 54) * cblas_izamax: Level 1 CBLAS Functions. (line 63) * cblas_sasum: Level 1 CBLAS Functions. (line 33) * cblas_saxpy: Level 1 CBLAS Functions. (line 72) * cblas_scasum: Level 1 CBLAS Functions. (line 45) * cblas_scnrm2: Level 1 CBLAS Functions. (line 42) * cblas_scopy: Level 1 CBLAS Functions. (line 69) * cblas_sdot: Level 1 CBLAS Functions. (line 12) * cblas_sdsdot: Level 1 CBLAS Functions. (line 6) * cblas_sgbmv: Level 2 CBLAS Functions. (line 11) * cblas_sgemm: Level 3 CBLAS Functions. (line 6) * cblas_sgemv: Level 2 CBLAS Functions. (line 6) * cblas_sger: Level 2 CBLAS Functions. (line 185) * cblas_snrm2: Level 1 CBLAS Functions. (line 30) * cblas_srot: Level 1 CBLAS Functions. (line 108) * cblas_srotg: Level 1 CBLAS Functions. (line 102) * cblas_srotm: Level 1 CBLAS Functions. (line 111) * cblas_srotmg: Level 1 CBLAS Functions. (line 105) * cblas_ssbmv: Level 2 CBLAS Functions. (line 175) * cblas_sscal: Level 1 CBLAS Functions. (line 126) * cblas_sspmv: Level 2 CBLAS Functions. (line 180) * cblas_sspr: Level 2 CBLAS Functions. (line 194) * cblas_sspr2: Level 2 CBLAS Functions. (line 203) * cblas_sswap: Level 1 CBLAS Functions. (line 66) * cblas_ssymm: Level 3 CBLAS Functions. (line 12) * cblas_ssymv: Level 2 CBLAS Functions. (line 170) * cblas_ssyr: Level 2 CBLAS Functions. (line 190) * cblas_ssyr2: Level 2 CBLAS Functions. (line 198) * cblas_ssyr2k: Level 3 CBLAS Functions. (line 23) * cblas_ssyrk: Level 3 CBLAS Functions. (line 18) * cblas_stbmv: Level 2 CBLAS Functions. (line 22) * cblas_stbsv: Level 2 CBLAS Functions. (line 37) * cblas_stpmv: Level 2 CBLAS Functions. (line 27) * cblas_stpsv: Level 2 CBLAS Functions. (line 42) * cblas_strmm: Level 3 CBLAS Functions. (line 29) * cblas_strmv: Level 2 CBLAS Functions. (line 17) * cblas_strsm: Level 3 CBLAS Functions. (line 35) * cblas_strsv: Level 2 CBLAS Functions. (line 32) * cblas_xerbla: Level 3 CBLAS Functions. (line 180) * cblas_zaxpy: Level 1 CBLAS Functions. (line 99) * cblas_zcopy: Level 1 CBLAS Functions. (line 96) * cblas_zdotc_sub: Level 1 CBLAS Functions. (line 27) * cblas_zdotu_sub: Level 1 CBLAS Functions. (line 24) * cblas_zdscal: Level 1 CBLAS Functions. (line 141) * cblas_zgbmv: Level 2 CBLAS Functions. (line 134) * cblas_zgemm: Level 3 CBLAS Functions. (line 111) * cblas_zgemv: Level 2 CBLAS Functions. (line 129) * cblas_zgerc: Level 2 CBLAS Functions. (line 304) * cblas_zgeru: Level 2 CBLAS Functions. (line 300) * cblas_zhbmv: Level 2 CBLAS Functions. (line 290) * cblas_zhemm: Level 3 CBLAS Functions. (line 163) * cblas_zhemv: Level 2 CBLAS Functions. (line 285) * cblas_zher: Level 2 CBLAS Functions. (line 308) * cblas_zher2: Level 2 CBLAS Functions. (line 316) * cblas_zher2k: Level 3 CBLAS Functions. (line 174) * cblas_zherk: Level 3 CBLAS Functions. (line 169) * cblas_zhpmv: Level 2 CBLAS Functions. (line 295) * cblas_zhpr: Level 2 CBLAS Functions. (line 312) * cblas_zhpr2: Level 2 CBLAS Functions. (line 321) * cblas_zscal: Level 1 CBLAS Functions. (line 135) * cblas_zswap: Level 1 CBLAS Functions. (line 93) * cblas_zsymm: Level 3 CBLAS Functions. (line 117) * cblas_zsyr2k: Level 3 CBLAS Functions. (line 128) * cblas_zsyrk: Level 3 CBLAS Functions. (line 123) * cblas_ztbmv: Level 2 CBLAS Functions. (line 145) * cblas_ztbsv: Level 2 CBLAS Functions. (line 160) * cblas_ztpmv: Level 2 CBLAS Functions. (line 150) * cblas_ztpsv: Level 2 CBLAS Functions. (line 165) * cblas_ztrmm: Level 3 CBLAS Functions. (line 134) * cblas_ztrmv: Level 2 CBLAS Functions. (line 140) * cblas_ztrsm: Level 3 CBLAS Functions. (line 140) * cblas_ztrsv: Level 2 CBLAS Functions. (line 155) * gsl_acosh: Elementary Functions. (line 32) * gsl_asinh: Elementary Functions. (line 36) * gsl_atanh: Elementary Functions. (line 40) * gsl_blas_caxpy: Level 1 GSL BLAS Interface. (line 92) * gsl_blas_ccopy: Level 1 GSL BLAS Interface. (line 81) * gsl_blas_cdotc: Level 1 GSL BLAS Interface. (line 27) * gsl_blas_cdotu: Level 1 GSL BLAS Interface. (line 20) * gsl_blas_cgemm: Level 3 GSL BLAS Interface. (line 13) * gsl_blas_cgemv: Level 2 GSL BLAS Interface. (line 12) * gsl_blas_cgerc: Level 2 GSL BLAS Interface. (line 106) * gsl_blas_cgeru: Level 2 GSL BLAS Interface. (line 97) * gsl_blas_chemm: Level 3 GSL BLAS Interface. (line 47) * gsl_blas_chemv: Level 2 GSL BLAS Interface. (line 78) * gsl_blas_cher: Level 2 GSL BLAS Interface. (line 126) * gsl_blas_cher2: Level 2 GSL BLAS Interface. (line 150) * gsl_blas_cher2k: Level 3 GSL BLAS Interface. (line 168) * gsl_blas_cherk: Level 3 GSL BLAS Interface. (line 130) * gsl_blas_cscal: Level 1 GSL BLAS Interface. (line 101) * gsl_blas_csscal: Level 1 GSL BLAS Interface. (line 105) * gsl_blas_cswap: Level 1 GSL BLAS Interface. (line 72) * gsl_blas_csymm: Level 3 GSL BLAS Interface. (line 32) * gsl_blas_csyr2k: Level 3 GSL BLAS Interface. (line 151) * gsl_blas_csyrk: Level 3 GSL BLAS Interface. (line 115) * gsl_blas_ctrmm: Level 3 GSL BLAS Interface. (line 69) * gsl_blas_ctrmv: Level 2 GSL BLAS Interface. (line 30) * gsl_blas_ctrsm: Level 3 GSL BLAS Interface. (line 92) * gsl_blas_ctrsv: Level 2 GSL BLAS Interface. (line 51) * gsl_blas_dasum: Level 1 GSL BLAS Interface. (line 46) * gsl_blas_daxpy: Level 1 GSL BLAS Interface. (line 90) * gsl_blas_dcopy: Level 1 GSL BLAS Interface. (line 80) * gsl_blas_ddot: Level 1 GSL BLAS Interface. (line 15) * gsl_blas_dgemm: Level 3 GSL BLAS Interface. (line 10) * gsl_blas_dgemv: Level 2 GSL BLAS Interface. (line 9) * gsl_blas_dger: Level 2 GSL BLAS Interface. (line 95) * gsl_blas_dnrm2: Level 1 GSL BLAS Interface. (line 35) * gsl_blas_drot: Level 1 GSL BLAS Interface. (line 126) * gsl_blas_drotg: Level 1 GSL BLAS Interface. (line 114) * gsl_blas_drotm: Level 1 GSL BLAS Interface. (line 141) * gsl_blas_drotmg: Level 1 GSL BLAS Interface. (line 133) * gsl_blas_dscal: Level 1 GSL BLAS Interface. (line 100) * gsl_blas_dsdot: Level 1 GSL BLAS Interface. (line 13) * gsl_blas_dswap: Level 1 GSL BLAS Interface. (line 71) * gsl_blas_dsymm: Level 3 GSL BLAS Interface. (line 29) * gsl_blas_dsymv: Level 2 GSL BLAS Interface. (line 68) * gsl_blas_dsyr: Level 2 GSL BLAS Interface. (line 117) * gsl_blas_dsyr2: Level 2 GSL BLAS Interface. (line 141) * gsl_blas_dsyr2k: Level 3 GSL BLAS Interface. (line 148) * gsl_blas_dsyrk: Level 3 GSL BLAS Interface. (line 112) * gsl_blas_dtrmm: Level 3 GSL BLAS Interface. (line 66) * gsl_blas_dtrmv: Level 2 GSL BLAS Interface. (line 27) * gsl_blas_dtrsm: Level 3 GSL BLAS Interface. (line 89) * gsl_blas_dtrsv: Level 2 GSL BLAS Interface. (line 48) * gsl_blas_dzasum: Level 1 GSL BLAS Interface. (line 51) * gsl_blas_dznrm2: Level 1 GSL BLAS Interface. (line 40) * gsl_blas_icamax: Level 1 GSL BLAS Interface. (line 58) * gsl_blas_idamax: Level 1 GSL BLAS Interface. (line 57) * gsl_blas_isamax: Level 1 GSL BLAS Interface. (line 56) * gsl_blas_izamax: Level 1 GSL BLAS Interface. (line 60) * gsl_blas_sasum: Level 1 GSL BLAS Interface. (line 45) * gsl_blas_saxpy: Level 1 GSL BLAS Interface. (line 88) * gsl_blas_scasum: Level 1 GSL BLAS Interface. (line 50) * gsl_blas_scnrm2: Level 1 GSL BLAS Interface. (line 39) * gsl_blas_scopy: Level 1 GSL BLAS Interface. (line 78) * gsl_blas_sdot: Level 1 GSL BLAS Interface. (line 11) * gsl_blas_sdsdot: Level 1 GSL BLAS Interface. (line 6) * gsl_blas_sgemm: Level 3 GSL BLAS Interface. (line 6) * gsl_blas_sgemv: Level 2 GSL BLAS Interface. (line 6) * gsl_blas_sger: Level 2 GSL BLAS Interface. (line 93) * gsl_blas_snrm2: Level 1 GSL BLAS Interface. (line 34) * gsl_blas_srot: Level 1 GSL BLAS Interface. (line 124) * gsl_blas_srotg: Level 1 GSL BLAS Interface. (line 112) * gsl_blas_srotm: Level 1 GSL BLAS Interface. (line 139) * gsl_blas_srotmg: Level 1 GSL BLAS Interface. (line 131) * gsl_blas_sscal: Level 1 GSL BLAS Interface. (line 99) * gsl_blas_sswap: Level 1 GSL BLAS Interface. (line 69) * gsl_blas_ssymm: Level 3 GSL BLAS Interface. (line 26) * gsl_blas_ssymv: Level 2 GSL BLAS Interface. (line 65) * gsl_blas_ssyr: Level 2 GSL BLAS Interface. (line 115) * gsl_blas_ssyr2: Level 2 GSL BLAS Interface. (line 138) * gsl_blas_ssyr2k: Level 3 GSL BLAS Interface. (line 145) * gsl_blas_ssyrk: Level 3 GSL BLAS Interface. (line 109) * gsl_blas_strmm: Level 3 GSL BLAS Interface. (line 63) * gsl_blas_strmv: Level 2 GSL BLAS Interface. (line 24) * gsl_blas_strsm: Level 3 GSL BLAS Interface. (line 86) * gsl_blas_strsv: Level 2 GSL BLAS Interface. (line 45) * gsl_blas_zaxpy: Level 1 GSL BLAS Interface. (line 94) * gsl_blas_zcopy: Level 1 GSL BLAS Interface. (line 83) * gsl_blas_zdotc: Level 1 GSL BLAS Interface. (line 29) * gsl_blas_zdotu: Level 1 GSL BLAS Interface. (line 22) * gsl_blas_zdscal: Level 1 GSL BLAS Interface. (line 107) * gsl_blas_zgemm: Level 3 GSL BLAS Interface. (line 17) * gsl_blas_zgemv: Level 2 GSL BLAS Interface. (line 16) * gsl_blas_zgerc: Level 2 GSL BLAS Interface. (line 109) * gsl_blas_zgeru: Level 2 GSL BLAS Interface. (line 100) * gsl_blas_zhemm: Level 3 GSL BLAS Interface. (line 51) * gsl_blas_zhemv: Level 2 GSL BLAS Interface. (line 82) * gsl_blas_zher: Level 2 GSL BLAS Interface. (line 128) * gsl_blas_zher2: Level 2 GSL BLAS Interface. (line 154) * gsl_blas_zher2k: Level 3 GSL BLAS Interface. (line 172) * gsl_blas_zherk: Level 3 GSL BLAS Interface. (line 133) * gsl_blas_zscal: Level 1 GSL BLAS Interface. (line 103) * gsl_blas_zswap: Level 1 GSL BLAS Interface. (line 74) * gsl_blas_zsymm: Level 3 GSL BLAS Interface. (line 36) * gsl_blas_zsyr2k: Level 3 GSL BLAS Interface. (line 155) * gsl_blas_zsyrk: Level 3 GSL BLAS Interface. (line 119) * gsl_blas_ztrmm: Level 3 GSL BLAS Interface. (line 73) * gsl_blas_ztrmv: Level 2 GSL BLAS Interface. (line 33) * gsl_blas_ztrsm: Level 3 GSL BLAS Interface. (line 96) * gsl_blas_ztrsv: Level 2 GSL BLAS Interface. (line 54) * gsl_block_alloc: Block allocation. (line 14) * gsl_block_calloc: Block allocation. (line 24) * gsl_block_fprintf: Reading and writing blocks. (line 25) * gsl_block_fread: Reading and writing blocks. (line 16) * gsl_block_free: Block allocation. (line 28) * gsl_block_fscanf: Reading and writing blocks. (line 33) * gsl_block_fwrite: Reading and writing blocks. (line 9) * gsl_bspline_alloc: Initializing the B-splines solver. (line 10) * gsl_bspline_deriv_alloc: Initializing the B-splines solver. (line 20) * gsl_bspline_deriv_eval: Evaluation of B-spline basis function derivatives. (line 6) * gsl_bspline_deriv_eval_nonzero: Evaluation of B-spline basis function derivatives. (line 20) * gsl_bspline_deriv_free: Initializing the B-splines solver. (line 26) * gsl_bspline_eval: Evaluation of B-spline basis functions. (line 6) * gsl_bspline_eval_nonzero: Evaluation of B-spline basis functions. (line 16) * gsl_bspline_free: Initializing the B-splines solver. (line 17) * gsl_bspline_greville_abscissa: Working with the Greville abscissae. (line 14) * gsl_bspline_knots: Constructing the knots vector. (line 6) * gsl_bspline_knots_uniform: Constructing the knots vector. (line 11) * gsl_bspline_ncoeffs: Evaluation of B-spline basis functions. (line 27) * gsl_cdf_beta_P: The Beta Distribution. (line 21) * gsl_cdf_beta_Pinv: The Beta Distribution. (line 23) * gsl_cdf_beta_Q: The Beta Distribution. (line 22) * gsl_cdf_beta_Qinv: The Beta Distribution. (line 24) * gsl_cdf_binomial_P: The Binomial Distribution. (line 24) * gsl_cdf_binomial_Q: The Binomial Distribution. (line 26) * gsl_cdf_cauchy_P: The Cauchy Distribution. (line 22) * gsl_cdf_cauchy_Pinv: The Cauchy Distribution. (line 24) * gsl_cdf_cauchy_Q: The Cauchy Distribution. (line 23) * gsl_cdf_cauchy_Qinv: The Cauchy Distribution. (line 25) * gsl_cdf_chisq_P: The Chi-squared Distribution. (line 29) * gsl_cdf_chisq_Pinv: The Chi-squared Distribution. (line 31) * gsl_cdf_chisq_Q: The Chi-squared Distribution. (line 30) * gsl_cdf_chisq_Qinv: The Chi-squared Distribution. (line 32) * gsl_cdf_exponential_P: The Exponential Distribution. (line 20) * gsl_cdf_exponential_Pinv: The Exponential Distribution. (line 22) * gsl_cdf_exponential_Q: The Exponential Distribution. (line 21) * gsl_cdf_exponential_Qinv: The Exponential Distribution. (line 23) * gsl_cdf_exppow_P: The Exponential Power Distribution. (line 24) * gsl_cdf_exppow_Q: The Exponential Power Distribution. (line 25) * gsl_cdf_fdist_P: The F-distribution. (line 33) * gsl_cdf_fdist_Pinv: The F-distribution. (line 35) * gsl_cdf_fdist_Q: The F-distribution. (line 34) * gsl_cdf_fdist_Qinv: The F-distribution. (line 37) * gsl_cdf_flat_P: The Flat (Uniform) Distribution. (line 20) * gsl_cdf_flat_Pinv: The Flat (Uniform) Distribution. (line 22) * gsl_cdf_flat_Q: The Flat (Uniform) Distribution. (line 21) * gsl_cdf_flat_Qinv: The Flat (Uniform) Distribution. (line 23) * gsl_cdf_gamma_P: The Gamma Distribution. (line 33) * gsl_cdf_gamma_Pinv: The Gamma Distribution. (line 35) * gsl_cdf_gamma_Q: The Gamma Distribution. (line 34) * gsl_cdf_gamma_Qinv: The Gamma Distribution. (line 36) * gsl_cdf_gaussian_P: The Gaussian Distribution. (line 41) * gsl_cdf_gaussian_Pinv: The Gaussian Distribution. (line 43) * gsl_cdf_gaussian_Q: The Gaussian Distribution. (line 42) * gsl_cdf_gaussian_Qinv: The Gaussian Distribution. (line 44) * gsl_cdf_geometric_P: The Geometric Distribution. (line 25) * gsl_cdf_geometric_Q: The Geometric Distribution. (line 26) * gsl_cdf_gumbel1_P: The Type-1 Gumbel Distribution. (line 21) * gsl_cdf_gumbel1_Pinv: The Type-1 Gumbel Distribution. (line 23) * gsl_cdf_gumbel1_Q: The Type-1 Gumbel Distribution. (line 22) * gsl_cdf_gumbel1_Qinv: The Type-1 Gumbel Distribution. (line 24) * gsl_cdf_gumbel2_P: The Type-2 Gumbel Distribution. (line 21) * gsl_cdf_gumbel2_Pinv: The Type-2 Gumbel Distribution. (line 23) * gsl_cdf_gumbel2_Q: The Type-2 Gumbel Distribution. (line 22) * gsl_cdf_gumbel2_Qinv: The Type-2 Gumbel Distribution. (line 24) * gsl_cdf_hypergeometric_P: The Hypergeometric Distribution. (line 29) * gsl_cdf_hypergeometric_Q: The Hypergeometric Distribution. (line 31) * gsl_cdf_laplace_P: The Laplace Distribution. (line 19) * gsl_cdf_laplace_Pinv: The Laplace Distribution. (line 21) * gsl_cdf_laplace_Q: The Laplace Distribution. (line 20) * gsl_cdf_laplace_Qinv: The Laplace Distribution. (line 22) * gsl_cdf_logistic_P: The Logistic Distribution. (line 20) * gsl_cdf_logistic_Pinv: The Logistic Distribution. (line 22) * gsl_cdf_logistic_Q: The Logistic Distribution. (line 21) * gsl_cdf_logistic_Qinv: The Logistic Distribution. (line 23) * gsl_cdf_lognormal_P: The Lognormal Distribution. (line 22) * gsl_cdf_lognormal_Pinv: The Lognormal Distribution. (line 26) * gsl_cdf_lognormal_Q: The Lognormal Distribution. (line 24) * gsl_cdf_lognormal_Qinv: The Lognormal Distribution. (line 28) * gsl_cdf_negative_binomial_P: The Negative Binomial Distribution. (line 24) * gsl_cdf_negative_binomial_Q: The Negative Binomial Distribution. (line 26) * gsl_cdf_pareto_P: The Pareto Distribution. (line 21) * gsl_cdf_pareto_Pinv: The Pareto Distribution. (line 23) * gsl_cdf_pareto_Q: The Pareto Distribution. (line 22) * gsl_cdf_pareto_Qinv: The Pareto Distribution. (line 24) * gsl_cdf_pascal_P: The Pascal Distribution. (line 23) * gsl_cdf_pascal_Q: The Pascal Distribution. (line 25) * gsl_cdf_poisson_P: The Poisson Distribution. (line 21) * gsl_cdf_poisson_Q: The Poisson Distribution. (line 22) * gsl_cdf_rayleigh_P: The Rayleigh Distribution. (line 20) * gsl_cdf_rayleigh_Pinv: The Rayleigh Distribution. (line 22) * gsl_cdf_rayleigh_Q: The Rayleigh Distribution. (line 21) * gsl_cdf_rayleigh_Qinv: The Rayleigh Distribution. (line 23) * gsl_cdf_tdist_P: The t-distribution. (line 29) * gsl_cdf_tdist_Pinv: The t-distribution. (line 31) * gsl_cdf_tdist_Q: The t-distribution. (line 30) * gsl_cdf_tdist_Qinv: The t-distribution. (line 32) * gsl_cdf_ugaussian_P: The Gaussian Distribution. (line 49) * gsl_cdf_ugaussian_Pinv: The Gaussian Distribution. (line 51) * gsl_cdf_ugaussian_Q: The Gaussian Distribution. (line 50) * gsl_cdf_ugaussian_Qinv: The Gaussian Distribution. (line 52) * gsl_cdf_weibull_P: The Weibull Distribution. (line 21) * gsl_cdf_weibull_Pinv: The Weibull Distribution. (line 23) * gsl_cdf_weibull_Q: The Weibull Distribution. (line 22) * gsl_cdf_weibull_Qinv: The Weibull Distribution. (line 24) * gsl_cheb_alloc: Creation and Calculation of Chebyshev Series. (line 6) * gsl_cheb_calc_deriv: Derivatives and Integrals. (line 12) * gsl_cheb_calc_integ: Derivatives and Integrals. (line 18) * gsl_cheb_coeffs: Auxiliary Functions for Chebyshev Series. (line 13) * gsl_cheb_eval: Chebyshev Series Evaluation. (line 6) * gsl_cheb_eval_err: Chebyshev Series Evaluation. (line 10) * gsl_cheb_eval_n: Chebyshev Series Evaluation. (line 17) * gsl_cheb_eval_n_err: Chebyshev Series Evaluation. (line 22) * gsl_cheb_free: Creation and Calculation of Chebyshev Series. (line 10) * gsl_cheb_init: Creation and Calculation of Chebyshev Series. (line 13) * gsl_cheb_order: Auxiliary Functions for Chebyshev Series. (line 9) * gsl_cheb_size: Auxiliary Functions for Chebyshev Series. (line 12) * gsl_combination_alloc: Combination allocation. (line 6) * gsl_combination_calloc: Combination allocation. (line 15) * gsl_combination_data: Combination properties. (line 13) * gsl_combination_fprintf: Reading and writing combinations. (line 27) * gsl_combination_fread: Reading and writing combinations. (line 17) * gsl_combination_free: Combination allocation. (line 30) * gsl_combination_fscanf: Reading and writing combinations. (line 36) * gsl_combination_fwrite: Reading and writing combinations. (line 9) * gsl_combination_get: Accessing combination elements. (line 9) * gsl_combination_init_first: Combination allocation. (line 22) * gsl_combination_init_last: Combination allocation. (line 26) * gsl_combination_k: Combination properties. (line 9) * gsl_combination_memcpy: Combination allocation. (line 33) * gsl_combination_n: Combination properties. (line 6) * gsl_combination_next: Combination functions. (line 6) * gsl_combination_prev: Combination functions. (line 14) * gsl_combination_valid: Combination properties. (line 17) * gsl_complex_abs: Properties of complex numbers. (line 10) * gsl_complex_abs2: Properties of complex numbers. (line 13) * gsl_complex_add: Complex arithmetic operators. (line 6) * gsl_complex_add_imag: Complex arithmetic operators. (line 38) * gsl_complex_add_real: Complex arithmetic operators. (line 22) * gsl_complex_arccos: Inverse Complex Trigonometric Functions. (line 19) * gsl_complex_arccosh: Inverse Complex Hyperbolic Functions. (line 11) * gsl_complex_arccosh_real: Inverse Complex Hyperbolic Functions. (line 18) * gsl_complex_arccos_real: Inverse Complex Trigonometric Functions. (line 24) * gsl_complex_arccot: Inverse Complex Trigonometric Functions. (line 52) * gsl_complex_arccoth: Inverse Complex Hyperbolic Functions. (line 39) * gsl_complex_arccsc: Inverse Complex Trigonometric Functions. (line 44) * gsl_complex_arccsch: Inverse Complex Hyperbolic Functions. (line 35) * gsl_complex_arccsc_real: Inverse Complex Trigonometric Functions. (line 48) * gsl_complex_arcsec: Inverse Complex Trigonometric Functions. (line 36) * gsl_complex_arcsech: Inverse Complex Hyperbolic Functions. (line 31) * gsl_complex_arcsec_real: Inverse Complex Trigonometric Functions. (line 40) * gsl_complex_arcsin: Inverse Complex Trigonometric Functions. (line 6) * gsl_complex_arcsinh: Inverse Complex Hyperbolic Functions. (line 6) * gsl_complex_arcsin_real: Inverse Complex Trigonometric Functions. (line 11) * gsl_complex_arctan: Inverse Complex Trigonometric Functions. (line 31) * gsl_complex_arctanh: Inverse Complex Hyperbolic Functions. (line 22) * gsl_complex_arctanh_real: Inverse Complex Hyperbolic Functions. (line 27) * gsl_complex_arg: Properties of complex numbers. (line 6) * gsl_complex_conjugate: Complex arithmetic operators. (line 54) * gsl_complex_cos: Complex Trigonometric Functions. (line 10) * gsl_complex_cosh: Complex Hyperbolic Functions. (line 10) * gsl_complex_cot: Complex Trigonometric Functions. (line 26) * gsl_complex_coth: Complex Hyperbolic Functions. (line 26) * gsl_complex_csc: Complex Trigonometric Functions. (line 22) * gsl_complex_csch: Complex Hyperbolic Functions. (line 22) * gsl_complex_div: Complex arithmetic operators. (line 18) * gsl_complex_div_imag: Complex arithmetic operators. (line 50) * gsl_complex_div_real: Complex arithmetic operators. (line 34) * gsl_complex_exp: Elementary Complex Functions. (line 24) * gsl_complex_inverse: Complex arithmetic operators. (line 58) * gsl_complex_log: Elementary Complex Functions. (line 28) * gsl_complex_log10: Elementary Complex Functions. (line 33) * gsl_complex_logabs: Properties of complex numbers. (line 17) * gsl_complex_log_b: Elementary Complex Functions. (line 37) * gsl_complex_mul: Complex arithmetic operators. (line 14) * gsl_complex_mul_imag: Complex arithmetic operators. (line 46) * gsl_complex_mul_real: Complex arithmetic operators. (line 30) * gsl_complex_negative: Complex arithmetic operators. (line 62) * gsl_complex_polar: Representation of complex numbers. (line 29) * gsl_complex_poly_complex_eval: Polynomial Evaluation. (line 21) * gsl_complex_pow: Elementary Complex Functions. (line 15) * gsl_complex_pow_real: Elementary Complex Functions. (line 20) * gsl_complex_rect: Representation of complex numbers. (line 24) * gsl_complex_sec: Complex Trigonometric Functions. (line 18) * gsl_complex_sech: Complex Hyperbolic Functions. (line 18) * gsl_complex_sin: Complex Trigonometric Functions. (line 6) * gsl_complex_sinh: Complex Hyperbolic Functions. (line 6) * gsl_complex_sqrt: Elementary Complex Functions. (line 6) * gsl_complex_sqrt_real: Elementary Complex Functions. (line 11) * gsl_complex_sub: Complex arithmetic operators. (line 10) * gsl_complex_sub_imag: Complex arithmetic operators. (line 42) * gsl_complex_sub_real: Complex arithmetic operators. (line 26) * gsl_complex_tan: Complex Trigonometric Functions. (line 14) * gsl_complex_tanh: Complex Hyperbolic Functions. (line 14) * gsl_deriv_backward: Numerical Differentiation functions. (line 40) * gsl_deriv_central: Numerical Differentiation functions. (line 6) * gsl_deriv_forward: Numerical Differentiation functions. (line 22) * gsl_dht_alloc: Discrete Hankel Transform Functions. (line 6) * gsl_dht_apply: Discrete Hankel Transform Functions. (line 22) * gsl_dht_free: Discrete Hankel Transform Functions. (line 19) * gsl_dht_init: Discrete Hankel Transform Functions. (line 10) * gsl_dht_k_sample: Discrete Hankel Transform Functions. (line 36) * gsl_dht_new: Discrete Hankel Transform Functions. (line 14) * gsl_dht_x_sample: Discrete Hankel Transform Functions. (line 31) * gsl_eigen_gen: Real Generalized Nonsymmetric Eigensystems. (line 72) * gsl_eigen_genherm: Complex Generalized Hermitian-Definite Eigensystems. (line 27) * gsl_eigen_genhermv: Complex Generalized Hermitian-Definite Eigensystems. (line 45) * gsl_eigen_genhermv_alloc: Complex Generalized Hermitian-Definite Eigensystems. (line 35) * gsl_eigen_genhermv_free: Complex Generalized Hermitian-Definite Eigensystems. (line 41) * gsl_eigen_genhermv_sort: Sorting Eigenvalues and Eigenvectors. (line 45) * gsl_eigen_genherm_alloc: Complex Generalized Hermitian-Definite Eigensystems. (line 17) * gsl_eigen_genherm_free: Complex Generalized Hermitian-Definite Eigensystems. (line 23) * gsl_eigen_gensymm: Real Generalized Symmetric-Definite Eigensystems. (line 32) * gsl_eigen_gensymmv: Real Generalized Symmetric-Definite Eigensystems. (line 49) * gsl_eigen_gensymmv_alloc: Real Generalized Symmetric-Definite Eigensystems. (line 39) * gsl_eigen_gensymmv_free: Real Generalized Symmetric-Definite Eigensystems. (line 45) * gsl_eigen_gensymmv_sort: Sorting Eigenvalues and Eigenvectors. (line 38) * gsl_eigen_gensymm_alloc: Real Generalized Symmetric-Definite Eigensystems. (line 22) * gsl_eigen_gensymm_free: Real Generalized Symmetric-Definite Eigensystems. (line 28) * gsl_eigen_genv: Real Generalized Nonsymmetric Eigensystems. (line 105) * gsl_eigen_genv_alloc: Real Generalized Nonsymmetric Eigensystems. (line 96) * gsl_eigen_genv_free: Real Generalized Nonsymmetric Eigensystems. (line 102) * gsl_eigen_genv_QZ: Real Generalized Nonsymmetric Eigensystems. (line 120) * gsl_eigen_genv_sort: Sorting Eigenvalues and Eigenvectors. (line 52) * gsl_eigen_gen_alloc: Real Generalized Nonsymmetric Eigensystems. (line 41) * gsl_eigen_gen_free: Real Generalized Nonsymmetric Eigensystems. (line 47) * gsl_eigen_gen_params: Real Generalized Nonsymmetric Eigensystems. (line 50) * gsl_eigen_gen_QZ: Real Generalized Nonsymmetric Eigensystems. (line 89) * gsl_eigen_herm: Complex Hermitian Matrices. (line 18) * gsl_eigen_hermv: Complex Hermitian Matrices. (line 37) * gsl_eigen_hermv_alloc: Complex Hermitian Matrices. (line 28) * gsl_eigen_hermv_free: Complex Hermitian Matrices. (line 34) * gsl_eigen_hermv_sort: Sorting Eigenvalues and Eigenvectors. (line 22) * gsl_eigen_herm_alloc: Complex Hermitian Matrices. (line 9) * gsl_eigen_herm_free: Complex Hermitian Matrices. (line 15) * gsl_eigen_nonsymm: Real Nonsymmetric Matrices. (line 60) * gsl_eigen_nonsymmv: Real Nonsymmetric Matrices. (line 97) * gsl_eigen_nonsymmv_alloc: Real Nonsymmetric Matrices. (line 78) * gsl_eigen_nonsymmv_free: Real Nonsymmetric Matrices. (line 84) * gsl_eigen_nonsymmv_params: Real Nonsymmetric Matrices. (line 88) * gsl_eigen_nonsymmv_sort: Sorting Eigenvalues and Eigenvectors. (line 29) * gsl_eigen_nonsymmv_Z: Real Nonsymmetric Matrices. (line 111) * gsl_eigen_nonsymm_alloc: Real Nonsymmetric Matrices. (line 17) * gsl_eigen_nonsymm_free: Real Nonsymmetric Matrices. (line 23) * gsl_eigen_nonsymm_params: Real Nonsymmetric Matrices. (line 27) * gsl_eigen_nonsymm_Z: Real Nonsymmetric Matrices. (line 72) * gsl_eigen_symm: Real Symmetric Matrices. (line 21) * gsl_eigen_symmv: Real Symmetric Matrices. (line 39) * gsl_eigen_symmv_alloc: Real Symmetric Matrices. (line 30) * gsl_eigen_symmv_free: Real Symmetric Matrices. (line 36) * gsl_eigen_symmv_sort: Sorting Eigenvalues and Eigenvectors. (line 6) * gsl_eigen_symm_alloc: Real Symmetric Matrices. (line 12) * gsl_eigen_symm_free: Real Symmetric Matrices. (line 18) * GSL_ERROR: Using GSL error reporting in your own functions. (line 15) * GSL_ERROR_VAL: Using GSL error reporting in your own functions. (line 36) * gsl_expm1: Elementary Functions. (line 17) * gsl_fcmp: Approximate Comparison of Floating Point Numbers. (line 12) * gsl_fft_complex_backward: Mixed-radix FFT routines for complex data. (line 124) * gsl_fft_complex_forward: Mixed-radix FFT routines for complex data. (line 117) * gsl_fft_complex_inverse: Mixed-radix FFT routines for complex data. (line 127) * gsl_fft_complex_radix2_backward: Radix-2 FFT routines for complex data. (line 23) * gsl_fft_complex_radix2_dif_backward: Radix-2 FFT routines for complex data. (line 47) * gsl_fft_complex_radix2_dif_forward: Radix-2 FFT routines for complex data. (line 40) * gsl_fft_complex_radix2_dif_inverse: Radix-2 FFT routines for complex data. (line 50) * gsl_fft_complex_radix2_dif_transform: Radix-2 FFT routines for complex data. (line 43) * gsl_fft_complex_radix2_forward: Radix-2 FFT routines for complex data. (line 16) * gsl_fft_complex_radix2_inverse: Radix-2 FFT routines for complex data. (line 26) * gsl_fft_complex_radix2_transform: Radix-2 FFT routines for complex data. (line 19) * gsl_fft_complex_transform: Mixed-radix FFT routines for complex data. (line 120) * gsl_fft_complex_wavetable_alloc: Mixed-radix FFT routines for complex data. (line 44) * gsl_fft_complex_wavetable_free: Mixed-radix FFT routines for complex data. (line 63) * gsl_fft_complex_workspace_alloc: Mixed-radix FFT routines for complex data. (line 104) * gsl_fft_complex_workspace_free: Mixed-radix FFT routines for complex data. (line 109) * gsl_fft_halfcomplex_radix2_backward: Radix-2 FFT routines for real data. (line 58) * gsl_fft_halfcomplex_radix2_inverse: Radix-2 FFT routines for real data. (line 56) * gsl_fft_halfcomplex_radix2_unpack: Radix-2 FFT routines for real data. (line 66) * gsl_fft_halfcomplex_transform: Mixed-radix FFT routines for real data. (line 122) * gsl_fft_halfcomplex_unpack: Mixed-radix FFT routines for real data. (line 153) * gsl_fft_halfcomplex_wavetable_alloc: Mixed-radix FFT routines for real data. (line 74) * gsl_fft_halfcomplex_wavetable_free: Mixed-radix FFT routines for real data. (line 95) * gsl_fft_real_radix2_transform: Radix-2 FFT routines for real data. (line 13) * gsl_fft_real_transform: Mixed-radix FFT routines for real data. (line 119) * gsl_fft_real_unpack: Mixed-radix FFT routines for real data. (line 136) * gsl_fft_real_wavetable_alloc: Mixed-radix FFT routines for real data. (line 72) * gsl_fft_real_wavetable_free: Mixed-radix FFT routines for real data. (line 93) * gsl_fft_real_workspace_alloc: Mixed-radix FFT routines for real data. (line 104) * gsl_fft_real_workspace_free: Mixed-radix FFT routines for real data. (line 110) * gsl_finite: Infinities and Not-a-number. (line 25) * gsl_fit_linear: Linear regression. (line 9) * gsl_fit_linear_est: Linear regression. (line 42) * gsl_fit_mul: Linear fitting without a constant term. (line 10) * gsl_fit_mul_est: Linear fitting without a constant term. (line 36) * gsl_fit_wlinear: Linear regression. (line 25) * gsl_fit_wmul: Linear fitting without a constant term. (line 21) * gsl_frexp: Elementary Functions. (line 48) * gsl_heapsort: Sorting objects. (line 16) * gsl_heapsort_index: Sorting objects. (line 58) * gsl_histogram2d_accumulate: Updating and accessing 2D histogram elements. (line 25) * gsl_histogram2d_add: 2D Histogram Operations. (line 11) * gsl_histogram2d_alloc: 2D Histogram allocation. (line 14) * gsl_histogram2d_clone: Copying 2D Histograms. (line 12) * gsl_histogram2d_cov: 2D Histogram Statistics. (line 52) * gsl_histogram2d_div: 2D Histogram Operations. (line 31) * gsl_histogram2d_equal_bins_p: 2D Histogram Operations. (line 6) * gsl_histogram2d_find: Searching 2D histogram ranges. (line 9) * gsl_histogram2d_fprintf: Reading and writing 2D histograms. (line 27) * gsl_histogram2d_fread: Reading and writing 2D histograms. (line 17) * gsl_histogram2d_free: 2D Histogram allocation. (line 37) * gsl_histogram2d_fscanf: Reading and writing 2D histograms. (line 64) * gsl_histogram2d_fwrite: Reading and writing 2D histograms. (line 9) * gsl_histogram2d_get: Updating and accessing 2D histogram elements. (line 31) * gsl_histogram2d_get_xrange: Updating and accessing 2D histogram elements. (line 38) * gsl_histogram2d_get_yrange: Updating and accessing 2D histogram elements. (line 40) * gsl_histogram2d_increment: Updating and accessing 2D histogram elements. (line 12) * gsl_histogram2d_max_bin: 2D Histogram Statistics. (line 10) * gsl_histogram2d_max_val: 2D Histogram Statistics. (line 6) * gsl_histogram2d_memcpy: Copying 2D Histograms. (line 6) * gsl_histogram2d_min_bin: 2D Histogram Statistics. (line 21) * gsl_histogram2d_min_val: 2D Histogram Statistics. (line 17) * gsl_histogram2d_mul: 2D Histogram Operations. (line 24) * gsl_histogram2d_nx: Updating and accessing 2D histogram elements. (line 55) * gsl_histogram2d_ny: Updating and accessing 2D histogram elements. (line 58) * gsl_histogram2d_pdf_alloc: Resampling from 2D histograms. (line 38) * gsl_histogram2d_pdf_free: Resampling from 2D histograms. (line 54) * gsl_histogram2d_pdf_init: Resampling from 2D histograms. (line 46) * gsl_histogram2d_pdf_sample: Resampling from 2D histograms. (line 58) * gsl_histogram2d_reset: Updating and accessing 2D histogram elements. (line 64) * gsl_histogram2d_scale: 2D Histogram Operations. (line 38) * gsl_histogram2d_set_ranges: 2D Histogram allocation. (line 24) * gsl_histogram2d_set_ranges_uniform: 2D Histogram allocation. (line 31) * gsl_histogram2d_shift: 2D Histogram Operations. (line 43) * gsl_histogram2d_sub: 2D Histogram Operations. (line 17) * gsl_histogram2d_sum: 2D Histogram Statistics. (line 58) * gsl_histogram2d_xmax: Updating and accessing 2D histogram elements. (line 53) * gsl_histogram2d_xmean: 2D Histogram Statistics. (line 28) * gsl_histogram2d_xmin: Updating and accessing 2D histogram elements. (line 54) * gsl_histogram2d_xsigma: 2D Histogram Statistics. (line 40) * gsl_histogram2d_ymax: Updating and accessing 2D histogram elements. (line 56) * gsl_histogram2d_ymean: 2D Histogram Statistics. (line 34) * gsl_histogram2d_ymin: Updating and accessing 2D histogram elements. (line 57) * gsl_histogram2d_ysigma: 2D Histogram Statistics. (line 46) * gsl_histogram_accumulate: Updating and accessing histogram elements. (line 25) * gsl_histogram_add: Histogram Operations. (line 11) * gsl_histogram_alloc: Histogram allocation. (line 14) * gsl_histogram_bins: Updating and accessing histogram elements. (line 53) * gsl_histogram_clone: Copying Histograms. (line 12) * gsl_histogram_div: Histogram Operations. (line 30) * gsl_histogram_equal_bins_p: Histogram Operations. (line 6) * gsl_histogram_find: Searching histogram ranges. (line 9) * gsl_histogram_fprintf: Reading and writing histograms. (line 26) * gsl_histogram_fread: Reading and writing histograms. (line 17) * gsl_histogram_free: Histogram allocation. (line 60) * gsl_histogram_fscanf: Reading and writing histograms. (line 51) * gsl_histogram_fwrite: Reading and writing histograms. (line 9) * gsl_histogram_get: Updating and accessing histogram elements. (line 31) * gsl_histogram_get_range: Updating and accessing histogram elements. (line 38) * gsl_histogram_increment: Updating and accessing histogram elements. (line 11) * gsl_histogram_max: Updating and accessing histogram elements. (line 51) * gsl_histogram_max_bin: Histogram Statistics. (line 10) * gsl_histogram_max_val: Histogram Statistics. (line 6) * gsl_histogram_mean: Histogram Statistics. (line 24) * gsl_histogram_memcpy: Copying Histograms. (line 6) * gsl_histogram_min: Updating and accessing histogram elements. (line 52) * gsl_histogram_min_bin: Histogram Statistics. (line 19) * gsl_histogram_min_val: Histogram Statistics. (line 15) * gsl_histogram_mul: Histogram Operations. (line 23) * gsl_histogram_pdf_alloc: The histogram probability distribution struct. (line 33) * gsl_histogram_pdf_free: The histogram probability distribution struct. (line 47) * gsl_histogram_pdf_init: The histogram probability distribution struct. (line 40) * gsl_histogram_pdf_sample: The histogram probability distribution struct. (line 51) * gsl_histogram_reset: Updating and accessing histogram elements. (line 59) * gsl_histogram_scale: Histogram Operations. (line 37) * gsl_histogram_set_ranges: Histogram allocation. (line 23) * gsl_histogram_set_ranges_uniform: Histogram allocation. (line 48) * gsl_histogram_shift: Histogram Operations. (line 41) * gsl_histogram_sigma: Histogram Statistics. (line 30) * gsl_histogram_sub: Histogram Operations. (line 17) * gsl_histogram_sum: Histogram Statistics. (line 37) * gsl_hypot: Elementary Functions. (line 22) * gsl_hypot3: Elementary Functions. (line 27) * gsl_ieee_env_setup: Setting up your IEEE environment. (line 23) * gsl_ieee_fprintf_double: Representation of floating point numbers. (line 55) * gsl_ieee_fprintf_float: Representation of floating point numbers. (line 53) * gsl_ieee_printf_double: Representation of floating point numbers. (line 82) * gsl_ieee_printf_float: Representation of floating point numbers. (line 81) * GSL_IMAG: Representation of complex numbers. (line 35) * gsl_integration_cquad: CQUAD doubly-adaptive integration. (line 33) * gsl_integration_cquad_workspace_alloc: CQUAD doubly-adaptive integration. (line 20) * gsl_integration_cquad_workspace_free: CQUAD doubly-adaptive integration. (line 29) * gsl_integration_glfixed: Fixed order Gauss-Legendre integration. (line 22) * gsl_integration_glfixed_point: Fixed order Gauss-Legendre integration. (line 27) * gsl_integration_glfixed_table_alloc: Fixed order Gauss-Legendre integration. (line 14) * gsl_integration_glfixed_table_free: Fixed order Gauss-Legendre integration. (line 35) * gsl_integration_qag: QAG adaptive integration. (line 27) * gsl_integration_qagi: QAGI adaptive integration on infinite intervals. (line 6) * gsl_integration_qagil: QAGI adaptive integration on infinite intervals. (line 37) * gsl_integration_qagiu: QAGI adaptive integration on infinite intervals. (line 22) * gsl_integration_qagp: QAGP adaptive integration with known singular points. (line 6) * gsl_integration_qags: QAGS adaptive integration with singularities. (line 15) * gsl_integration_qawc: QAWC adaptive integration for Cauchy principal values. (line 6) * gsl_integration_qawf: QAWF adaptive integration for Fourier integrals. (line 6) * gsl_integration_qawo: QAWO adaptive integration for oscillatory functions. (line 53) * gsl_integration_qawo_table_alloc: QAWO adaptive integration for oscillatory functions. (line 11) * gsl_integration_qawo_table_free: QAWO adaptive integration for oscillatory functions. (line 49) * gsl_integration_qawo_table_set: QAWO adaptive integration for oscillatory functions. (line 38) * gsl_integration_qawo_table_set_length: QAWO adaptive integration for oscillatory functions. (line 44) * gsl_integration_qaws: QAWS adaptive integration for singular functions. (line 48) * gsl_integration_qaws_table_alloc: QAWS adaptive integration for singular functions. (line 11) * gsl_integration_qaws_table_free: QAWS adaptive integration for singular functions. (line 43) * gsl_integration_qaws_table_set: QAWS adaptive integration for singular functions. (line 37) * gsl_integration_qng: QNG non-adaptive Gauss-Kronrod integration. (line 10) * gsl_integration_workspace_alloc: QAG adaptive integration. (line 15) * gsl_integration_workspace_free: QAG adaptive integration. (line 23) * gsl_interp_accel_alloc: Index Look-up and Acceleration. (line 19) * gsl_interp_accel_find: Index Look-up and Acceleration. (line 25) * gsl_interp_accel_free: Index Look-up and Acceleration. (line 39) * gsl_interp_accel_reset: Index Look-up and Acceleration. (line 34) * gsl_interp_akima: Interpolation Types. (line 34) * gsl_interp_akima_periodic: Interpolation Types. (line 38) * gsl_interp_alloc: Interpolation Functions. (line 9) * gsl_interp_bsearch: Index Look-up and Acceleration. (line 12) * gsl_interp_cspline: Interpolation Types. (line 19) * gsl_interp_cspline_periodic: Interpolation Types. (line 25) * gsl_interp_eval: Evaluation of Interpolating Functions. (line 6) * gsl_interp_eval_deriv: Evaluation of Interpolating Functions. (line 17) * gsl_interp_eval_deriv2: Evaluation of Interpolating Functions. (line 27) * gsl_interp_eval_deriv2_e: Evaluation of Interpolating Functions. (line 30) * gsl_interp_eval_deriv_e: Evaluation of Interpolating Functions. (line 20) * gsl_interp_eval_e: Evaluation of Interpolating Functions. (line 9) * gsl_interp_eval_integ: Evaluation of Interpolating Functions. (line 37) * gsl_interp_eval_integ_e: Evaluation of Interpolating Functions. (line 40) * gsl_interp_free: Interpolation Functions. (line 24) * gsl_interp_init: Interpolation Functions. (line 14) * gsl_interp_linear: Interpolation Types. (line 8) * gsl_interp_min_size: Interpolation Types. (line 55) * gsl_interp_name: Interpolation Types. (line 44) * gsl_interp_polynomial: Interpolation Types. (line 12) * gsl_interp_type_min_size: Interpolation Types. (line 57) * gsl_isinf: Infinities and Not-a-number. (line 21) * gsl_isnan: Infinities and Not-a-number. (line 18) * GSL_IS_EVEN: Testing for Odd and Even Numbers. (line 10) * GSL_IS_ODD: Testing for Odd and Even Numbers. (line 6) * gsl_ldexp: Elementary Functions. (line 44) * gsl_linalg_balance_matrix: Balancing. (line 17) * gsl_linalg_bidiag_decomp: Bidiagonalization. (line 15) * gsl_linalg_bidiag_unpack: Bidiagonalization. (line 26) * gsl_linalg_bidiag_unpack2: Bidiagonalization. (line 35) * gsl_linalg_bidiag_unpack_B: Bidiagonalization. (line 42) * gsl_linalg_cholesky_decomp: Cholesky Decomposition. (line 19) * gsl_linalg_cholesky_invert: Cholesky Decomposition. (line 56) * gsl_linalg_cholesky_solve: Cholesky Decomposition. (line 36) * gsl_linalg_cholesky_svx: Cholesky Decomposition. (line 46) * gsl_linalg_complex_cholesky_decomp: Cholesky Decomposition. (line 20) * gsl_linalg_complex_cholesky_invert: Cholesky Decomposition. (line 57) * gsl_linalg_complex_cholesky_solve: Cholesky Decomposition. (line 38) * gsl_linalg_complex_cholesky_svx: Cholesky Decomposition. (line 48) * gsl_linalg_complex_householder_hm: Householder Transformations. (line 27) * gsl_linalg_complex_householder_hv: Householder Transformations. (line 43) * gsl_linalg_complex_householder_mh: Householder Transformations. (line 35) * gsl_linalg_complex_householder_transform: Householder Transformations. (line 18) * gsl_linalg_complex_LU_decomp: LU Decomposition. (line 20) * gsl_linalg_complex_LU_det: LU Decomposition. (line 83) * gsl_linalg_complex_LU_invert: LU Decomposition. (line 71) * gsl_linalg_complex_LU_lndet: LU Decomposition. (line 91) * gsl_linalg_complex_LU_refine: LU Decomposition. (line 60) * gsl_linalg_complex_LU_sgndet: LU Decomposition. (line 99) * gsl_linalg_complex_LU_solve: LU Decomposition. (line 41) * gsl_linalg_complex_LU_svx: LU Decomposition. (line 50) * gsl_linalg_hermtd_decomp: Tridiagonal Decomposition of Hermitian Matrices. (line 14) * gsl_linalg_hermtd_unpack: Tridiagonal Decomposition of Hermitian Matrices. (line 26) * gsl_linalg_hermtd_unpack_T: Tridiagonal Decomposition of Hermitian Matrices. (line 34) * gsl_linalg_hessenberg_decomp: Hessenberg Decomposition of Real Matrices. (line 16) * gsl_linalg_hessenberg_set_zero: Hessenberg Decomposition of Real Matrices. (line 42) * gsl_linalg_hessenberg_unpack: Hessenberg Decomposition of Real Matrices. (line 27) * gsl_linalg_hessenberg_unpack_accum: Hessenberg Decomposition of Real Matrices. (line 33) * gsl_linalg_hesstri_decomp: Hessenberg-Triangular Decomposition of Real Matrices. (line 17) * gsl_linalg_HH_solve: Householder solver for linear systems. (line 6) * gsl_linalg_HH_svx: Householder solver for linear systems. (line 13) * gsl_linalg_householder_hm: Householder Transformations. (line 25) * gsl_linalg_householder_hv: Householder Transformations. (line 41) * gsl_linalg_householder_mh: Householder Transformations. (line 33) * gsl_linalg_householder_transform: Householder Transformations. (line 17) * gsl_linalg_LU_decomp: LU Decomposition. (line 18) * gsl_linalg_LU_det: LU Decomposition. (line 82) * gsl_linalg_LU_invert: LU Decomposition. (line 69) * gsl_linalg_LU_lndet: LU Decomposition. (line 90) * gsl_linalg_LU_refine: LU Decomposition. (line 57) * gsl_linalg_LU_sgndet: LU Decomposition. (line 98) * gsl_linalg_LU_solve: LU Decomposition. (line 39) * gsl_linalg_LU_svx: LU Decomposition. (line 48) * gsl_linalg_QRPT_decomp: QR Decomposition with Column Pivoting. (line 18) * gsl_linalg_QRPT_decomp2: QR Decomposition with Column Pivoting. (line 39) * gsl_linalg_QRPT_QRsolve: QR Decomposition with Column Pivoting. (line 60) * gsl_linalg_QRPT_Rsolve: QR Decomposition with Column Pivoting. (line 76) * gsl_linalg_QRPT_Rsvx: QR Decomposition with Column Pivoting. (line 81) * gsl_linalg_QRPT_solve: QR Decomposition with Column Pivoting. (line 46) * gsl_linalg_QRPT_svx: QR Decomposition with Column Pivoting. (line 53) * gsl_linalg_QRPT_update: QR Decomposition with Column Pivoting. (line 67) * gsl_linalg_QR_decomp: QR Decomposition. (line 19) * gsl_linalg_QR_lssolve: QR Decomposition. (line 50) * gsl_linalg_QR_QRsolve: QR Decomposition. (line 102) * gsl_linalg_QR_QTmat: QR Decomposition. (line 76) * gsl_linalg_QR_QTvec: QR Decomposition. (line 61) * gsl_linalg_QR_Qvec: QR Decomposition. (line 69) * gsl_linalg_QR_Rsolve: QR Decomposition. (line 84) * gsl_linalg_QR_Rsvx: QR Decomposition. (line 90) * gsl_linalg_QR_solve: QR Decomposition. (line 35) * gsl_linalg_QR_svx: QR Decomposition. (line 42) * gsl_linalg_QR_unpack: QR Decomposition. (line 97) * gsl_linalg_QR_update: QR Decomposition. (line 108) * gsl_linalg_R_solve: QR Decomposition. (line 115) * gsl_linalg_R_svx: QR Decomposition. (line 120) * gsl_linalg_solve_cyc_tridiag: Tridiagonal Systems. (line 39) * gsl_linalg_solve_symm_cyc_tridiag: Tridiagonal Systems. (line 53) * gsl_linalg_solve_symm_tridiag: Tridiagonal Systems. (line 26) * gsl_linalg_solve_tridiag: Tridiagonal Systems. (line 13) * gsl_linalg_SV_decomp: Singular Value Decomposition. (line 37) * gsl_linalg_SV_decomp_jacobi: Singular Value Decomposition. (line 56) * gsl_linalg_SV_decomp_mod: Singular Value Decomposition. (line 50) * gsl_linalg_SV_leverage: Singular Value Decomposition. (line 79) * gsl_linalg_SV_solve: Singular Value Decomposition. (line 63) * gsl_linalg_symmtd_decomp: Tridiagonal Decomposition of Real Symmetric Matrices. (line 13) * gsl_linalg_symmtd_unpack: Tridiagonal Decomposition of Real Symmetric Matrices. (line 24) * gsl_linalg_symmtd_unpack_T: Tridiagonal Decomposition of Real Symmetric Matrices. (line 32) * gsl_log1p: Elementary Functions. (line 12) * gsl_matrix_add: Matrix operations. (line 8) * gsl_matrix_add_constant: Matrix operations. (line 38) * gsl_matrix_alloc: Matrix allocation. (line 14) * gsl_matrix_calloc: Matrix allocation. (line 21) * gsl_matrix_column: Creating row and column views. (line 24) * gsl_matrix_const_column: Creating row and column views. (line 26) * gsl_matrix_const_diagonal: Creating row and column views. (line 63) * gsl_matrix_const_ptr: Accessing matrix elements. (line 36) * gsl_matrix_const_row: Creating row and column views. (line 14) * gsl_matrix_const_subcolumn: Creating row and column views. (line 51) * gsl_matrix_const_subdiagonal: Creating row and column views. (line 76) * gsl_matrix_const_submatrix: Matrix views. (line 20) * gsl_matrix_const_subrow: Creating row and column views. (line 38) * gsl_matrix_const_superdiagonal: Creating row and column views. (line 88) * gsl_matrix_const_view_array: Matrix views. (line 51) * gsl_matrix_const_view_array_with_tda: Matrix views. (line 75) * gsl_matrix_const_view_vector: Matrix views. (line 101) * gsl_matrix_const_view_vector_with_tda: Matrix views. (line 125) * gsl_matrix_diagonal: Creating row and column views. (line 62) * gsl_matrix_div_elements: Matrix operations. (line 27) * gsl_matrix_equal: Matrix properties. (line 20) * gsl_matrix_fprintf: Reading and writing matrices. (line 26) * gsl_matrix_fread: Reading and writing matrices. (line 17) * gsl_matrix_free: Matrix allocation. (line 25) * gsl_matrix_fscanf: Reading and writing matrices. (line 34) * gsl_matrix_fwrite: Reading and writing matrices. (line 9) * gsl_matrix_get: Accessing matrix elements. (line 20) * gsl_matrix_get_col: Copying rows and columns. (line 19) * gsl_matrix_get_row: Copying rows and columns. (line 13) * gsl_matrix_isneg: Matrix properties. (line 12) * gsl_matrix_isnonneg: Matrix properties. (line 13) * gsl_matrix_isnull: Matrix properties. (line 10) * gsl_matrix_ispos: Matrix properties. (line 11) * gsl_matrix_max: Finding maximum and minimum elements of matrices. (line 8) * gsl_matrix_max_index: Finding maximum and minimum elements of matrices. (line 19) * gsl_matrix_memcpy: Copying matrices. (line 6) * gsl_matrix_min: Finding maximum and minimum elements of matrices. (line 11) * gsl_matrix_minmax: Finding maximum and minimum elements of matrices. (line 14) * gsl_matrix_minmax_index: Finding maximum and minimum elements of matrices. (line 33) * gsl_matrix_min_index: Finding maximum and minimum elements of matrices. (line 26) * gsl_matrix_mul_elements: Matrix operations. (line 20) * gsl_matrix_ptr: Accessing matrix elements. (line 34) * gsl_matrix_row: Creating row and column views. (line 13) * gsl_matrix_scale: Matrix operations. (line 34) * gsl_matrix_set: Accessing matrix elements. (line 27) * gsl_matrix_set_all: Initializing matrix elements. (line 6) * gsl_matrix_set_col: Copying rows and columns. (line 31) * gsl_matrix_set_identity: Initializing matrix elements. (line 12) * gsl_matrix_set_row: Copying rows and columns. (line 25) * gsl_matrix_set_zero: Initializing matrix elements. (line 9) * gsl_matrix_sub: Matrix operations. (line 14) * gsl_matrix_subcolumn: Creating row and column views. (line 49) * gsl_matrix_subdiagonal: Creating row and column views. (line 74) * gsl_matrix_submatrix: Matrix views. (line 18) * gsl_matrix_subrow: Creating row and column views. (line 36) * gsl_matrix_superdiagonal: Creating row and column views. (line 86) * gsl_matrix_swap: Copying matrices. (line 11) * gsl_matrix_swap_columns: Exchanging rows and columns. (line 14) * gsl_matrix_swap_rowcol: Exchanging rows and columns. (line 19) * gsl_matrix_swap_rows: Exchanging rows and columns. (line 9) * gsl_matrix_transpose: Exchanging rows and columns. (line 32) * gsl_matrix_transpose_memcpy: Exchanging rows and columns. (line 25) * gsl_matrix_view_array: Matrix views. (line 49) * gsl_matrix_view_array_with_tda: Matrix views. (line 73) * gsl_matrix_view_vector: Matrix views. (line 99) * gsl_matrix_view_vector_with_tda: Matrix views. (line 123) * GSL_MAX: Maximum and Minimum functions. (line 10) * GSL_MAX_DBL: Maximum and Minimum functions. (line 18) * GSL_MAX_INT: Maximum and Minimum functions. (line 32) * GSL_MAX_LDBL: Maximum and Minimum functions. (line 39) * GSL_MIN: Maximum and Minimum functions. (line 14) * GSL_MIN_DBL: Maximum and Minimum functions. (line 25) * gsl_min_fminimizer_alloc: Initializing the Minimizer. (line 6) * gsl_min_fminimizer_brent: Minimization Algorithms. (line 30) * gsl_min_fminimizer_free: Initializing the Minimizer. (line 39) * gsl_min_fminimizer_f_lower: Minimization Iteration. (line 45) * gsl_min_fminimizer_f_minimum: Minimization Iteration. (line 41) * gsl_min_fminimizer_f_upper: Minimization Iteration. (line 43) * gsl_min_fminimizer_goldensection: Minimization Algorithms. (line 13) * gsl_min_fminimizer_iterate: Minimization Iteration. (line 12) * gsl_min_fminimizer_name: Initializing the Minimizer. (line 42) * gsl_min_fminimizer_quad_golden: Minimization Algorithms. (line 46) * gsl_min_fminimizer_set: Initializing the Minimizer. (line 21) * gsl_min_fminimizer_set_with_values: Initializing the Minimizer. (line 31) * gsl_min_fminimizer_x_lower: Minimization Iteration. (line 36) * gsl_min_fminimizer_x_minimum: Minimization Iteration. (line 29) * gsl_min_fminimizer_x_upper: Minimization Iteration. (line 34) * GSL_MIN_INT: Maximum and Minimum functions. (line 33) * GSL_MIN_LDBL: Maximum and Minimum functions. (line 41) * gsl_min_test_interval: Minimization Stopping Parameters. (line 18) * gsl_monte_miser_alloc: MISER. (line 45) * gsl_monte_miser_free: MISER. (line 68) * gsl_monte_miser_init: MISER. (line 50) * gsl_monte_miser_integrate: MISER. (line 55) * gsl_monte_miser_params_get: MISER. (line 75) * gsl_monte_miser_params_set: MISER. (line 80) * gsl_monte_plain_alloc: PLAIN Monte Carlo. (line 29) * gsl_monte_plain_free: PLAIN Monte Carlo. (line 51) * gsl_monte_plain_init: PLAIN Monte Carlo. (line 33) * gsl_monte_plain_integrate: PLAIN Monte Carlo. (line 38) * gsl_monte_vegas_alloc: VEGAS. (line 50) * gsl_monte_vegas_chisq: VEGAS. (line 113) * gsl_monte_vegas_free: VEGAS. (line 77) * gsl_monte_vegas_init: VEGAS. (line 55) * gsl_monte_vegas_integrate: VEGAS. (line 60) * gsl_monte_vegas_params_get: VEGAS. (line 131) * gsl_monte_vegas_params_set: VEGAS. (line 136) * gsl_monte_vegas_runval: VEGAS. (line 122) * gsl_multifit_covar: Computing the covariance matrix of best fit parameters. (line 6) * gsl_multifit_fdfsolver_alloc: Initializing the Nonlinear Least-Squares Solver. (line 16) * gsl_multifit_fdfsolver_dif_df: Finite Difference Jacobian. (line 15) * gsl_multifit_fdfsolver_dif_fdf: Finite Difference Jacobian. (line 27) * gsl_multifit_fdfsolver_driver: High Level Driver. (line 12) * gsl_multifit_fdfsolver_free: Initializing the Nonlinear Least-Squares Solver. (line 46) * gsl_multifit_fdfsolver_iterate: Iteration of the Minimization Algorithm. (line 14) * gsl_multifit_fdfsolver_lmder: Minimization Algorithms using Derivatives. (line 64) * gsl_multifit_fdfsolver_lmsder: Minimization Algorithms using Derivatives. (line 12) * gsl_multifit_fdfsolver_name: Initializing the Nonlinear Least-Squares Solver. (line 52) * gsl_multifit_fdfsolver_position: Iteration of the Minimization Algorithm. (line 43) * gsl_multifit_fdfsolver_set: Initializing the Nonlinear Least-Squares Solver. (line 40) * gsl_multifit_fsolver_alloc: Initializing the Nonlinear Least-Squares Solver. (line 6) * gsl_multifit_fsolver_driver: High Level Driver. (line 9) * gsl_multifit_fsolver_free: Initializing the Nonlinear Least-Squares Solver. (line 45) * gsl_multifit_fsolver_iterate: Iteration of the Minimization Algorithm. (line 12) * gsl_multifit_fsolver_name: Initializing the Nonlinear Least-Squares Solver. (line 50) * gsl_multifit_fsolver_position: Iteration of the Minimization Algorithm. (line 41) * gsl_multifit_fsolver_set: Initializing the Nonlinear Least-Squares Solver. (line 35) * gsl_multifit_gradient: Search Stopping Parameters for Minimization Algorithms. (line 45) * gsl_multifit_linear: Multi-parameter fitting. (line 50) * gsl_multifit_linear_alloc: Multi-parameter fitting. (line 41) * gsl_multifit_linear_est: Multi-parameter fitting. (line 108) * gsl_multifit_linear_free: Multi-parameter fitting. (line 46) * gsl_multifit_linear_residuals: Multi-parameter fitting. (line 116) * gsl_multifit_linear_svd: Multi-parameter fitting. (line 85) * gsl_multifit_linear_usvd: Multi-parameter fitting. (line 97) * gsl_multifit_robust: Robust linear regression. (line 159) * gsl_multifit_robust_alloc: Robust linear regression. (line 70) * gsl_multifit_robust_bisquare: Robust linear regression. (line 81) * gsl_multifit_robust_cauchy: Robust linear regression. (line 90) * gsl_multifit_robust_default: Robust linear regression. (line 76) * gsl_multifit_robust_est: Robust linear regression. (line 173) * gsl_multifit_robust_fair: Robust linear regression. (line 101) * gsl_multifit_robust_free: Robust linear regression. (line 142) * gsl_multifit_robust_huber: Robust linear regression. (line 110) * gsl_multifit_robust_name: Robust linear regression. (line 146) * gsl_multifit_robust_ols: Robust linear regression. (line 123) * gsl_multifit_robust_statistics: Robust linear regression. (line 181) * gsl_multifit_robust_tune: Robust linear regression. (line 151) * gsl_multifit_robust_welsch: Robust linear regression. (line 133) * gsl_multifit_test_delta: Search Stopping Parameters for Minimization Algorithms. (line 19) * gsl_multifit_test_gradient: Search Stopping Parameters for Minimization Algorithms. (line 31) * gsl_multifit_wlinear: Multi-parameter fitting. (line 70) * gsl_multifit_wlinear_svd: Multi-parameter fitting. (line 89) * gsl_multifit_wlinear_usvd: Multi-parameter fitting. (line 101) * gsl_multimin_fdfminimizer_alloc: Initializing the Multidimensional Minimizer. (line 10) * gsl_multimin_fdfminimizer_conjugate_fr: Multimin Algorithms with Derivatives. (line 11) * gsl_multimin_fdfminimizer_conjugate_pr: Multimin Algorithms with Derivatives. (line 28) * gsl_multimin_fdfminimizer_free: Initializing the Multidimensional Minimizer. (line 46) * gsl_multimin_fdfminimizer_gradient: Multimin Iteration. (line 34) * gsl_multimin_fdfminimizer_iterate: Multimin Iteration. (line 11) * gsl_multimin_fdfminimizer_minimum: Multimin Iteration. (line 30) * gsl_multimin_fdfminimizer_name: Initializing the Multidimensional Minimizer. (line 52) * gsl_multimin_fdfminimizer_restart: Multimin Iteration. (line 42) * gsl_multimin_fdfminimizer_set: Initializing the Multidimensional Minimizer. (line 21) * gsl_multimin_fdfminimizer_steepest_descent: Multimin Algorithms with Derivatives. (line 55) * gsl_multimin_fdfminimizer_vector_bfgs: Multimin Algorithms with Derivatives. (line 36) * gsl_multimin_fdfminimizer_vector_bfgs2: Multimin Algorithms with Derivatives. (line 35) * gsl_multimin_fdfminimizer_x: Multimin Iteration. (line 26) * gsl_multimin_fminimizer_alloc: Initializing the Multidimensional Minimizer. (line 13) * gsl_multimin_fminimizer_free: Initializing the Multidimensional Minimizer. (line 48) * gsl_multimin_fminimizer_iterate: Multimin Iteration. (line 13) * gsl_multimin_fminimizer_minimum: Multimin Iteration. (line 32) * gsl_multimin_fminimizer_name: Initializing the Multidimensional Minimizer. (line 54) * gsl_multimin_fminimizer_nmsimplex: Multimin Algorithms without Derivatives. (line 10) * gsl_multimin_fminimizer_nmsimplex2: Multimin Algorithms without Derivatives. (line 9) * gsl_multimin_fminimizer_nmsimplex2rand: Multimin Algorithms without Derivatives. (line 49) * gsl_multimin_fminimizer_set: Initializing the Multidimensional Minimizer. (line 24) * gsl_multimin_fminimizer_size: Multimin Iteration. (line 36) * gsl_multimin_fminimizer_x: Multimin Iteration. (line 28) * gsl_multimin_test_gradient: Multimin Stopping Criteria. (line 18) * gsl_multimin_test_size: Multimin Stopping Criteria. (line 32) * gsl_multiroot_fdfsolver_alloc: Initializing the Multidimensional Solver. (line 27) * gsl_multiroot_fdfsolver_dx: Iteration of the multidimensional solver. (line 48) * gsl_multiroot_fdfsolver_f: Iteration of the multidimensional solver. (line 41) * gsl_multiroot_fdfsolver_free: Initializing the Multidimensional Solver. (line 54) * gsl_multiroot_fdfsolver_gnewton: Algorithms using Derivatives. (line 90) * gsl_multiroot_fdfsolver_hybridj: Algorithms using Derivatives. (line 64) * gsl_multiroot_fdfsolver_hybridsj: Algorithms using Derivatives. (line 13) * gsl_multiroot_fdfsolver_iterate: Iteration of the multidimensional solver. (line 14) * gsl_multiroot_fdfsolver_name: Initializing the Multidimensional Solver. (line 60) * gsl_multiroot_fdfsolver_newton: Algorithms using Derivatives. (line 70) * gsl_multiroot_fdfsolver_root: Iteration of the multidimensional solver. (line 34) * gsl_multiroot_fdfsolver_set: Initializing the Multidimensional Solver. (line 45) * gsl_multiroot_fsolver_alloc: Initializing the Multidimensional Solver. (line 11) * gsl_multiroot_fsolver_broyden: Algorithms without Derivatives. (line 45) * gsl_multiroot_fsolver_dnewton: Algorithms without Derivatives. (line 25) * gsl_multiroot_fsolver_dx: Iteration of the multidimensional solver. (line 46) * gsl_multiroot_fsolver_f: Iteration of the multidimensional solver. (line 39) * gsl_multiroot_fsolver_free: Initializing the Multidimensional Solver. (line 52) * gsl_multiroot_fsolver_hybrid: Algorithms without Derivatives. (line 21) * gsl_multiroot_fsolver_hybrids: Algorithms without Derivatives. (line 13) * gsl_multiroot_fsolver_iterate: Iteration of the multidimensional solver. (line 12) * gsl_multiroot_fsolver_name: Initializing the Multidimensional Solver. (line 58) * gsl_multiroot_fsolver_root: Iteration of the multidimensional solver. (line 32) * gsl_multiroot_fsolver_set: Initializing the Multidimensional Solver. (line 43) * gsl_multiroot_test_delta: Search Stopping Parameters for the multidimensional solver. (line 20) * gsl_multiroot_test_residual: Search Stopping Parameters for the multidimensional solver. (line 32) * gsl_multiset_alloc: Multiset allocation. (line 6) * gsl_multiset_calloc: Multiset allocation. (line 14) * gsl_multiset_data: Multiset properties. (line 12) * gsl_multiset_fprintf: Reading and writing multisets. (line 26) * gsl_multiset_fread: Reading and writing multisets. (line 17) * gsl_multiset_free: Multiset allocation. (line 28) * gsl_multiset_fscanf: Reading and writing multisets. (line 35) * gsl_multiset_fwrite: Reading and writing multisets. (line 9) * gsl_multiset_get: Accessing multiset elements. (line 8) * gsl_multiset_init_first: Multiset allocation. (line 20) * gsl_multiset_init_last: Multiset allocation. (line 24) * gsl_multiset_k: Multiset properties. (line 9) * gsl_multiset_memcpy: Multiset allocation. (line 31) * gsl_multiset_n: Multiset properties. (line 6) * gsl_multiset_next: Multiset functions. (line 6) * gsl_multiset_prev: Multiset functions. (line 14) * gsl_multiset_valid: Multiset properties. (line 16) * gsl_ntuple_bookdata: Writing ntuples. (line 10) * gsl_ntuple_close: Closing an ntuple file. (line 6) * gsl_ntuple_create: Creating ntuples. (line 6) * gsl_ntuple_open: Opening an existing ntuple file. (line 6) * gsl_ntuple_project: Histogramming ntuple values. (line 35) * gsl_ntuple_read: Reading ntuples. (line 6) * gsl_ntuple_write: Writing ntuples. (line 6) * gsl_odeiv2_control_alloc: Adaptive Step-size Control. (line 73) * gsl_odeiv2_control_errlevel: Adaptive Step-size Control. (line 115) * gsl_odeiv2_control_free: Adaptive Step-size Control. (line 86) * gsl_odeiv2_control_hadjust: Adaptive Step-size Control. (line 90) * gsl_odeiv2_control_init: Adaptive Step-size Control. (line 80) * gsl_odeiv2_control_name: Adaptive Step-size Control. (line 105) * gsl_odeiv2_control_scaled_new: Adaptive Step-size Control. (line 60) * gsl_odeiv2_control_set_driver: Adaptive Step-size Control. (line 122) * gsl_odeiv2_control_standard_new: Adaptive Step-size Control. (line 10) * gsl_odeiv2_control_yp_new: Adaptive Step-size Control. (line 52) * gsl_odeiv2_control_y_new: Adaptive Step-size Control. (line 44) * gsl_odeiv2_driver_alloc_scaled_new: Driver. (line 19) * gsl_odeiv2_driver_alloc_standard_new: Driver. (line 15) * gsl_odeiv2_driver_alloc_yp_new: Driver. (line 12) * gsl_odeiv2_driver_alloc_y_new: Driver. (line 9) * gsl_odeiv2_driver_apply: Driver. (line 46) * gsl_odeiv2_driver_apply_fixed_step: Driver. (line 61) * gsl_odeiv2_driver_free: Driver. (line 78) * gsl_odeiv2_driver_reset: Driver. (line 69) * gsl_odeiv2_driver_reset_hstart: Driver. (line 72) * gsl_odeiv2_driver_set_hmax: Driver. (line 36) * gsl_odeiv2_driver_set_hmin: Driver. (line 31) * gsl_odeiv2_driver_set_nmax: Driver. (line 41) * gsl_odeiv2_evolve_alloc: Evolution. (line 10) * gsl_odeiv2_evolve_apply: Evolution. (line 14) * gsl_odeiv2_evolve_apply_fixed_step: Evolution. (line 52) * gsl_odeiv2_evolve_free: Evolution. (line 68) * gsl_odeiv2_evolve_reset: Evolution. (line 63) * gsl_odeiv2_evolve_set_driver: Evolution. (line 72) * gsl_odeiv2_step_alloc: Stepping Functions. (line 10) * gsl_odeiv2_step_apply: Stepping Functions. (line 51) * gsl_odeiv2_step_bsimp: Stepping Functions. (line 122) * gsl_odeiv2_step_free: Stepping Functions. (line 23) * gsl_odeiv2_step_msadams: Stepping Functions. (line 127) * gsl_odeiv2_step_msbdf: Stepping Functions. (line 135) * gsl_odeiv2_step_name: Stepping Functions. (line 27) * gsl_odeiv2_step_order: Stepping Functions. (line 37) * gsl_odeiv2_step_reset: Stepping Functions. (line 18) * gsl_odeiv2_step_rk1imp: Stepping Functions. (line 104) * gsl_odeiv2_step_rk2: Stepping Functions. (line 86) * gsl_odeiv2_step_rk2imp: Stepping Functions. (line 110) * gsl_odeiv2_step_rk4: Stepping Functions. (line 89) * gsl_odeiv2_step_rk4imp: Stepping Functions. (line 116) * gsl_odeiv2_step_rk8pd: Stepping Functions. (line 101) * gsl_odeiv2_step_rkck: Stepping Functions. (line 98) * gsl_odeiv2_step_rkf45: Stepping Functions. (line 94) * gsl_odeiv2_step_set_driver: Stepping Functions. (line 43) * gsl_permutation_alloc: Permutation allocation. (line 6) * gsl_permutation_calloc: Permutation allocation. (line 14) * gsl_permutation_canonical_cycles: Permutations in cyclic form. (line 67) * gsl_permutation_canonical_to_linear: Permutations in cyclic form. (line 49) * gsl_permutation_data: Permutation properties. (line 9) * gsl_permutation_fprintf: Reading and writing permutations. (line 27) * gsl_permutation_fread: Reading and writing permutations. (line 17) * gsl_permutation_free: Permutation allocation. (line 23) * gsl_permutation_fscanf: Reading and writing permutations. (line 36) * gsl_permutation_fwrite: Reading and writing permutations. (line 9) * gsl_permutation_get: Accessing permutation elements. (line 9) * gsl_permutation_init: Permutation allocation. (line 19) * gsl_permutation_inverse: Permutation functions. (line 9) * gsl_permutation_inversions: Permutations in cyclic form. (line 54) * gsl_permutation_linear_cycles: Permutations in cyclic form. (line 62) * gsl_permutation_linear_to_canonical: Permutations in cyclic form. (line 44) * gsl_permutation_memcpy: Permutation allocation. (line 26) * gsl_permutation_mul: Applying Permutations. (line 35) * gsl_permutation_next: Permutation functions. (line 14) * gsl_permutation_prev: Permutation functions. (line 22) * gsl_permutation_reverse: Permutation functions. (line 6) * gsl_permutation_size: Permutation properties. (line 6) * gsl_permutation_swap: Accessing permutation elements. (line 16) * gsl_permutation_valid: Permutation properties. (line 13) * gsl_permute: Applying Permutations. (line 6) * gsl_permute_inverse: Applying Permutations. (line 11) * gsl_permute_vector: Applying Permutations. (line 16) * gsl_permute_vector_inverse: Applying Permutations. (line 25) * gsl_poly_complex_eval: Polynomial Evaluation. (line 16) * gsl_poly_complex_solve: General Polynomial Equations. (line 25) * gsl_poly_complex_solve_cubic: Cubic Equations. (line 24) * gsl_poly_complex_solve_quadratic: Quadratic Equations. (line 28) * gsl_poly_complex_workspace_alloc: General Polynomial Equations. (line 11) * gsl_poly_complex_workspace_free: General Polynomial Equations. (line 21) * gsl_poly_dd_eval: Divided Difference Representation of Polynomials. (line 38) * gsl_poly_dd_hermite_init: Divided Difference Representation of Polynomials. (line 54) * gsl_poly_dd_init: Divided Difference Representation of Polynomials. (line 30) * gsl_poly_dd_taylor: Divided Difference Representation of Polynomials. (line 45) * gsl_poly_eval: Polynomial Evaluation. (line 11) * gsl_poly_eval_derivs: Polynomial Evaluation. (line 26) * gsl_poly_solve_cubic: Cubic Equations. (line 6) * gsl_poly_solve_quadratic: Quadratic Equations. (line 6) * gsl_pow_2: Small integer powers. (line 19) * gsl_pow_3: Small integer powers. (line 20) * gsl_pow_4: Small integer powers. (line 21) * gsl_pow_5: Small integer powers. (line 22) * gsl_pow_6: Small integer powers. (line 23) * gsl_pow_7: Small integer powers. (line 24) * gsl_pow_8: Small integer powers. (line 25) * gsl_pow_9: Small integer powers. (line 26) * gsl_pow_int: Small integer powers. (line 11) * gsl_pow_uint: Small integer powers. (line 12) * gsl_qrng_alloc: Quasi-random number generator initialization. (line 6) * gsl_qrng_clone: Saving and resorting quasi-random number generator state. (line 12) * gsl_qrng_free: Quasi-random number generator initialization. (line 14) * gsl_qrng_get: Sampling from a quasi-random number generator. (line 6) * gsl_qrng_halton: Quasi-random number generator algorithms. (line 18) * gsl_qrng_init: Quasi-random number generator initialization. (line 17) * gsl_qrng_memcpy: Saving and resorting quasi-random number generator state. (line 6) * gsl_qrng_name: Auxiliary quasi-random number generator functions. (line 6) * gsl_qrng_niederreiter_2: Quasi-random number generator algorithms. (line 8) * gsl_qrng_reversehalton: Quasi-random number generator algorithms. (line 19) * gsl_qrng_size: Auxiliary quasi-random number generator functions. (line 9) * gsl_qrng_sobol: Quasi-random number generator algorithms. (line 13) * gsl_qrng_state: Auxiliary quasi-random number generator functions. (line 10) * gsl_ran_bernoulli: The Bernoulli Distribution. (line 6) * gsl_ran_bernoulli_pdf: The Bernoulli Distribution. (line 15) * gsl_ran_beta: The Beta Distribution. (line 6) * gsl_ran_beta_pdf: The Beta Distribution. (line 15) * gsl_ran_binomial: The Binomial Distribution. (line 6) * gsl_ran_binomial_pdf: The Binomial Distribution. (line 17) * gsl_ran_bivariate_gaussian: The Bivariate Gaussian Distribution. (line 6) * gsl_ran_bivariate_gaussian_pdf: The Bivariate Gaussian Distribution. (line 18) * gsl_ran_cauchy: The Cauchy Distribution. (line 6) * gsl_ran_cauchy_pdf: The Cauchy Distribution. (line 16) * gsl_ran_chisq: The Chi-squared Distribution. (line 14) * gsl_ran_chisq_pdf: The Chi-squared Distribution. (line 23) * gsl_ran_choose: Shuffling and Sampling. (line 33) * gsl_ran_dirichlet: The Dirichlet Distribution. (line 6) * gsl_ran_dirichlet_lnpdf: The Dirichlet Distribution. (line 30) * gsl_ran_dirichlet_pdf: The Dirichlet Distribution. (line 24) * gsl_ran_dir_2d: Spherical Vector Distributions. (line 10) * gsl_ran_dir_2d_trig_method: Spherical Vector Distributions. (line 12) * gsl_ran_dir_3d: Spherical Vector Distributions. (line 31) * gsl_ran_dir_nd: Spherical Vector Distributions. (line 40) * gsl_ran_discrete: General Discrete Distributions. (line 59) * gsl_ran_discrete_free: General Discrete Distributions. (line 72) * gsl_ran_discrete_pdf: General Discrete Distributions. (line 64) * gsl_ran_discrete_preproc: General Discrete Distributions. (line 49) * gsl_ran_exponential: The Exponential Distribution. (line 6) * gsl_ran_exponential_pdf: The Exponential Distribution. (line 14) * gsl_ran_exppow: The Exponential Power Distribution. (line 6) * gsl_ran_exppow_pdf: The Exponential Power Distribution. (line 18) * gsl_ran_fdist: The F-distribution. (line 13) * gsl_ran_fdist_pdf: The F-distribution. (line 26) * gsl_ran_flat: The Flat (Uniform) Distribution. (line 6) * gsl_ran_flat_pdf: The Flat (Uniform) Distribution. (line 15) * gsl_ran_gamma: The Gamma Distribution. (line 6) * gsl_ran_gamma_knuth: The Gamma Distribution. (line 22) * gsl_ran_gamma_pdf: The Gamma Distribution. (line 27) * gsl_ran_gaussian: The Gaussian Distribution. (line 6) * gsl_ran_gaussian_pdf: The Gaussian Distribution. (line 19) * gsl_ran_gaussian_ratio_method: The Gaussian Distribution. (line 27) * gsl_ran_gaussian_tail: The Gaussian Tail Distribution. (line 6) * gsl_ran_gaussian_tail_pdf: The Gaussian Tail Distribution. (line 23) * gsl_ran_gaussian_ziggurat: The Gaussian Distribution. (line 25) * gsl_ran_geometric: The Geometric Distribution. (line 6) * gsl_ran_geometric_pdf: The Geometric Distribution. (line 19) * gsl_ran_gumbel1: The Type-1 Gumbel Distribution. (line 6) * gsl_ran_gumbel1_pdf: The Type-1 Gumbel Distribution. (line 15) * gsl_ran_gumbel2: The Type-2 Gumbel Distribution. (line 6) * gsl_ran_gumbel2_pdf: The Type-2 Gumbel Distribution. (line 15) * gsl_ran_hypergeometric: The Hypergeometric Distribution. (line 6) * gsl_ran_hypergeometric_pdf: The Hypergeometric Distribution. (line 22) * gsl_ran_landau: The Landau Distribution. (line 6) * gsl_ran_landau_pdf: The Landau Distribution. (line 17) * gsl_ran_laplace: The Laplace Distribution. (line 6) * gsl_ran_laplace_pdf: The Laplace Distribution. (line 14) * gsl_ran_levy: The Levy alpha-Stable Distributions. (line 6) * gsl_ran_levy_skew: The Levy skew alpha-Stable Distribution. (line 6) * gsl_ran_logarithmic: The Logarithmic Distribution. (line 6) * gsl_ran_logarithmic_pdf: The Logarithmic Distribution. (line 16) * gsl_ran_logistic: The Logistic Distribution. (line 6) * gsl_ran_logistic_pdf: The Logistic Distribution. (line 14) * gsl_ran_lognormal: The Lognormal Distribution. (line 6) * gsl_ran_lognormal_pdf: The Lognormal Distribution. (line 15) * gsl_ran_multinomial: The Multinomial Distribution. (line 6) * gsl_ran_multinomial_lnpdf: The Multinomial Distribution. (line 34) * gsl_ran_multinomial_pdf: The Multinomial Distribution. (line 28) * gsl_ran_negative_binomial: The Negative Binomial Distribution. (line 6) * gsl_ran_negative_binomial_pdf: The Negative Binomial Distribution. (line 17) * gsl_ran_pareto: The Pareto Distribution. (line 6) * gsl_ran_pareto_pdf: The Pareto Distribution. (line 15) * gsl_ran_pascal: The Pascal Distribution. (line 6) * gsl_ran_pascal_pdf: The Pascal Distribution. (line 16) * gsl_ran_poisson: The Poisson Distribution. (line 6) * gsl_ran_poisson_pdf: The Poisson Distribution. (line 16) * gsl_ran_rayleigh: The Rayleigh Distribution. (line 6) * gsl_ran_rayleigh_pdf: The Rayleigh Distribution. (line 14) * gsl_ran_rayleigh_tail: The Rayleigh Tail Distribution. (line 6) * gsl_ran_rayleigh_tail_pdf: The Rayleigh Tail Distribution. (line 16) * gsl_ran_sample: Shuffling and Sampling. (line 59) * gsl_ran_shuffle: Shuffling and Sampling. (line 13) * gsl_ran_tdist: The t-distribution. (line 14) * gsl_ran_tdist_pdf: The t-distribution. (line 23) * gsl_ran_ugaussian: The Gaussian Distribution. (line 34) * gsl_ran_ugaussian_pdf: The Gaussian Distribution. (line 35) * gsl_ran_ugaussian_ratio_method: The Gaussian Distribution. (line 36) * gsl_ran_ugaussian_tail: The Gaussian Tail Distribution. (line 30) * gsl_ran_ugaussian_tail_pdf: The Gaussian Tail Distribution. (line 32) * gsl_ran_weibull: The Weibull Distribution. (line 6) * gsl_ran_weibull_pdf: The Weibull Distribution. (line 15) * GSL_REAL: Representation of complex numbers. (line 34) * gsl_rng_alloc: Random number generator initialization. (line 6) * gsl_rng_borosh13: Other random number generators. (line 174) * gsl_rng_clone: Copying random number generator state. (line 16) * gsl_rng_cmrg: Random number generator algorithms. (line 98) * gsl_rng_coveyou: Other random number generators. (line 201) * gsl_rng_env_setup: Random number environment variables. (line 11) * gsl_rng_fishman18: Other random number generators. (line 175) * gsl_rng_fishman20: Other random number generators. (line 176) * gsl_rng_fishman2x: Other random number generators. (line 191) * gsl_rng_fread: Reading and writing random number generator state. (line 17) * gsl_rng_free: Random number generator initialization. (line 45) * gsl_rng_fwrite: Reading and writing random number generator state. (line 9) * gsl_rng_get: Sampling from a random number generator. (line 11) * gsl_rng_gfsr4: Random number generator algorithms. (line 173) * gsl_rng_knuthran: Other random number generators. (line 167) * gsl_rng_knuthran2: Other random number generators. (line 157) * gsl_rng_knuthran2002: Other random number generators. (line 166) * gsl_rng_lecuyer21: Other random number generators. (line 177) * gsl_rng_max: Auxiliary random number generator functions. (line 19) * gsl_rng_memcpy: Copying random number generator state. (line 11) * gsl_rng_min: Auxiliary random number generator functions. (line 23) * gsl_rng_minstd: Other random number generators. (line 113) * gsl_rng_mrg: Random number generator algorithms. (line 120) * gsl_rng_mt19937: Random number generator algorithms. (line 19) * gsl_rng_name: Auxiliary random number generator functions. (line 10) * gsl_rng_r250: Other random number generators. (line 59) * gsl_rng_rand: Unix random number generators. (line 17) * gsl_rng_rand48: Unix random number generators. (line 57) * gsl_rng_random_bsd: Unix random number generators. (line 26) * gsl_rng_random_glibc2: Unix random number generators. (line 28) * gsl_rng_random_libc5: Unix random number generators. (line 27) * gsl_rng_randu: Other random number generators. (line 104) * gsl_rng_ranf: Other random number generators. (line 22) * gsl_rng_ranlux: Random number generator algorithms. (line 71) * gsl_rng_ranlux389: Random number generator algorithms. (line 72) * gsl_rng_ranlxd1: Random number generator algorithms. (line 64) * gsl_rng_ranlxd2: Random number generator algorithms. (line 65) * gsl_rng_ranlxs0: Random number generator algorithms. (line 44) * gsl_rng_ranlxs1: Random number generator algorithms. (line 45) * gsl_rng_ranlxs2: Random number generator algorithms. (line 46) * gsl_rng_ranmar: Other random number generators. (line 53) * gsl_rng_set: Random number generator initialization. (line 25) * gsl_rng_size: Auxiliary random number generator functions. (line 30) * gsl_rng_slatec: Other random number generators. (line 140) * gsl_rng_state: Auxiliary random number generator functions. (line 29) * gsl_rng_taus: Random number generator algorithms. (line 137) * gsl_rng_taus2: Random number generator algorithms. (line 138) * gsl_rng_transputer: Other random number generators. (line 95) * gsl_rng_tt800: Other random number generators. (line 74) * gsl_rng_types_setup: Auxiliary random number generator functions. (line 40) * gsl_rng_uni: Other random number generators. (line 133) * gsl_rng_uni32: Other random number generators. (line 134) * gsl_rng_uniform: Sampling from a random number generator. (line 18) * gsl_rng_uniform_int: Sampling from a random number generator. (line 36) * gsl_rng_uniform_pos: Sampling from a random number generator. (line 28) * gsl_rng_vax: Other random number generators. (line 86) * gsl_rng_waterman14: Other random number generators. (line 178) * gsl_rng_zuf: Other random number generators. (line 144) * gsl_root_fdfsolver_alloc: Initializing the Solver. (line 21) * gsl_root_fdfsolver_free: Initializing the Solver. (line 48) * gsl_root_fdfsolver_iterate: Root Finding Iteration. (line 13) * gsl_root_fdfsolver_name: Initializing the Solver. (line 53) * gsl_root_fdfsolver_newton: Root Finding Algorithms using Derivatives. (line 15) * gsl_root_fdfsolver_root: Root Finding Iteration. (line 33) * gsl_root_fdfsolver_secant: Root Finding Algorithms using Derivatives. (line 29) * gsl_root_fdfsolver_set: Initializing the Solver. (line 42) * gsl_root_fdfsolver_steffenson: Root Finding Algorithms using Derivatives. (line 60) * gsl_root_fsolver_alloc: Initializing the Solver. (line 6) * gsl_root_fsolver_bisection: Root Bracketing Algorithms. (line 16) * gsl_root_fsolver_brent: Root Bracketing Algorithms. (line 49) * gsl_root_fsolver_falsepos: Root Bracketing Algorithms. (line 32) * gsl_root_fsolver_free: Initializing the Solver. (line 47) * gsl_root_fsolver_iterate: Root Finding Iteration. (line 12) * gsl_root_fsolver_name: Initializing the Solver. (line 51) * gsl_root_fsolver_root: Root Finding Iteration. (line 32) * gsl_root_fsolver_set: Initializing the Solver. (line 36) * gsl_root_fsolver_x_lower: Root Finding Iteration. (line 38) * gsl_root_fsolver_x_upper: Root Finding Iteration. (line 40) * gsl_root_test_delta: Search Stopping Parameters. (line 41) * gsl_root_test_interval: Search Stopping Parameters. (line 19) * gsl_root_test_residual: Search Stopping Parameters. (line 52) * GSL_SET_COMPLEX: Representation of complex numbers. (line 39) * gsl_set_error_handler: Error Handlers. (line 43) * gsl_set_error_handler_off: Error Handlers. (line 69) * GSL_SET_IMAG: Representation of complex numbers. (line 49) * GSL_SET_REAL: Representation of complex numbers. (line 48) * gsl_sf_airy_Ai: Airy Functions. (line 6) * gsl_sf_airy_Ai_deriv: Derivatives of Airy Functions. (line 6) * gsl_sf_airy_Ai_deriv_e: Derivatives of Airy Functions. (line 7) * gsl_sf_airy_Ai_deriv_scaled: Derivatives of Airy Functions. (line 18) * gsl_sf_airy_Ai_deriv_scaled_e: Derivatives of Airy Functions. (line 20) * gsl_sf_airy_Ai_e: Airy Functions. (line 7) * gsl_sf_airy_Ai_scaled: Airy Functions. (line 18) * gsl_sf_airy_Ai_scaled_e: Airy Functions. (line 19) * gsl_sf_airy_Bi: Airy Functions. (line 12) * gsl_sf_airy_Bi_deriv: Derivatives of Airy Functions. (line 12) * gsl_sf_airy_Bi_deriv_e: Derivatives of Airy Functions. (line 13) * gsl_sf_airy_Bi_deriv_scaled: Derivatives of Airy Functions. (line 26) * gsl_sf_airy_Bi_deriv_scaled_e: Derivatives of Airy Functions. (line 28) * gsl_sf_airy_Bi_e: Airy Functions. (line 13) * gsl_sf_airy_Bi_scaled: Airy Functions. (line 25) * gsl_sf_airy_Bi_scaled_e: Airy Functions. (line 26) * gsl_sf_airy_zero_Ai: Zeros of Airy Functions. (line 6) * gsl_sf_airy_zero_Ai_deriv: Zeros of Derivatives of Airy Functions. (line 6) * gsl_sf_airy_zero_Ai_deriv_e: Zeros of Derivatives of Airy Functions. (line 7) * gsl_sf_airy_zero_Ai_e: Zeros of Airy Functions. (line 7) * gsl_sf_airy_zero_Bi: Zeros of Airy Functions. (line 12) * gsl_sf_airy_zero_Bi_deriv: Zeros of Derivatives of Airy Functions. (line 12) * gsl_sf_airy_zero_Bi_deriv_e: Zeros of Derivatives of Airy Functions. (line 13) * gsl_sf_airy_zero_Bi_e: Zeros of Airy Functions. (line 13) * gsl_sf_angle_restrict_pos: Restriction Functions. (line 15) * gsl_sf_angle_restrict_pos_e: Restriction Functions. (line 16) * gsl_sf_angle_restrict_symm: Restriction Functions. (line 6) * gsl_sf_angle_restrict_symm_e: Restriction Functions. (line 7) * gsl_sf_atanint: Arctangent Integral. (line 6) * gsl_sf_atanint_e: Arctangent Integral. (line 7) * gsl_sf_bessel_I0: Regular Modified Cylindrical Bessel Functions. (line 6) * gsl_sf_bessel_I0_e: Regular Modified Cylindrical Bessel Functions. (line 7) * gsl_sf_bessel_I0_scaled: Regular Modified Cylindrical Bessel Functions. (line 31) * gsl_sf_bessel_i0_scaled: Regular Modified Spherical Bessel Functions. (line 10) * gsl_sf_bessel_I0_scaled_e: Regular Modified Cylindrical Bessel Functions. (line 32) * gsl_sf_bessel_i0_scaled_e: Regular Modified Spherical Bessel Functions. (line 11) * gsl_sf_bessel_I1: Regular Modified Cylindrical Bessel Functions. (line 11) * gsl_sf_bessel_I1_e: Regular Modified Cylindrical Bessel Functions. (line 12) * gsl_sf_bessel_I1_scaled: Regular Modified Cylindrical Bessel Functions. (line 37) * gsl_sf_bessel_i1_scaled: Regular Modified Spherical Bessel Functions. (line 16) * gsl_sf_bessel_I1_scaled_e: Regular Modified Cylindrical Bessel Functions. (line 38) * gsl_sf_bessel_i1_scaled_e: Regular Modified Spherical Bessel Functions. (line 17) * gsl_sf_bessel_i2_scaled: Regular Modified Spherical Bessel Functions. (line 22) * gsl_sf_bessel_i2_scaled_e: Regular Modified Spherical Bessel Functions. (line 23) * gsl_sf_bessel_il_scaled: Regular Modified Spherical Bessel Functions. (line 28) * gsl_sf_bessel_il_scaled_array: Regular Modified Spherical Bessel Functions. (line 34) * gsl_sf_bessel_il_scaled_e: Regular Modified Spherical Bessel Functions. (line 29) * gsl_sf_bessel_In: Regular Modified Cylindrical Bessel Functions. (line 16) * gsl_sf_bessel_Inu: Regular Modified Bessel Functions - Fractional Order. (line 6) * gsl_sf_bessel_Inu_e: Regular Modified Bessel Functions - Fractional Order. (line 7) * gsl_sf_bessel_Inu_scaled: Regular Modified Bessel Functions - Fractional Order. (line 12) * gsl_sf_bessel_Inu_scaled_e: Regular Modified Bessel Functions - Fractional Order. (line 13) * gsl_sf_bessel_In_array: Regular Modified Cylindrical Bessel Functions. (line 22) * gsl_sf_bessel_In_e: Regular Modified Cylindrical Bessel Functions. (line 17) * gsl_sf_bessel_In_scaled: Regular Modified Cylindrical Bessel Functions. (line 43) * gsl_sf_bessel_In_scaled_array: Regular Modified Cylindrical Bessel Functions. (line 49) * gsl_sf_bessel_In_scaled_e: Regular Modified Cylindrical Bessel Functions. (line 44) * gsl_sf_bessel_J0: Regular Cylindrical Bessel Functions. (line 6) * gsl_sf_bessel_j0: Regular Spherical Bessel Functions. (line 6) * gsl_sf_bessel_J0_e: Regular Cylindrical Bessel Functions. (line 7) * gsl_sf_bessel_j0_e: Regular Spherical Bessel Functions. (line 7) * gsl_sf_bessel_J1: Regular Cylindrical Bessel Functions. (line 11) * gsl_sf_bessel_j1: Regular Spherical Bessel Functions. (line 11) * gsl_sf_bessel_J1_e: Regular Cylindrical Bessel Functions. (line 12) * gsl_sf_bessel_j1_e: Regular Spherical Bessel Functions. (line 12) * gsl_sf_bessel_j2: Regular Spherical Bessel Functions. (line 16) * gsl_sf_bessel_j2_e: Regular Spherical Bessel Functions. (line 17) * gsl_sf_bessel_jl: Regular Spherical Bessel Functions. (line 21) * gsl_sf_bessel_jl_array: Regular Spherical Bessel Functions. (line 27) * gsl_sf_bessel_jl_e: Regular Spherical Bessel Functions. (line 22) * gsl_sf_bessel_jl_steed_array: Regular Spherical Bessel Functions. (line 35) * gsl_sf_bessel_Jn: Regular Cylindrical Bessel Functions. (line 16) * gsl_sf_bessel_Jnu: Regular Bessel Function - Fractional Order. (line 6) * gsl_sf_bessel_Jnu_e: Regular Bessel Function - Fractional Order. (line 7) * gsl_sf_bessel_Jn_array: Regular Cylindrical Bessel Functions. (line 22) * gsl_sf_bessel_Jn_e: Regular Cylindrical Bessel Functions. (line 17) * gsl_sf_bessel_K0: Irregular Modified Cylindrical Bessel Functions. (line 6) * gsl_sf_bessel_K0_e: Irregular Modified Cylindrical Bessel Functions. (line 7) * gsl_sf_bessel_K0_scaled: Irregular Modified Cylindrical Bessel Functions. (line 32) * gsl_sf_bessel_k0_scaled: Irregular Modified Spherical Bessel Functions. (line 10) * gsl_sf_bessel_K0_scaled_e: Irregular Modified Cylindrical Bessel Functions. (line 33) * gsl_sf_bessel_k0_scaled_e: Irregular Modified Spherical Bessel Functions. (line 11) * gsl_sf_bessel_K1: Irregular Modified Cylindrical Bessel Functions. (line 11) * gsl_sf_bessel_K1_e: Irregular Modified Cylindrical Bessel Functions. (line 12) * gsl_sf_bessel_K1_scaled: Irregular Modified Cylindrical Bessel Functions. (line 38) * gsl_sf_bessel_k1_scaled: Irregular Modified Spherical Bessel Functions. (line 16) * gsl_sf_bessel_K1_scaled_e: Irregular Modified Cylindrical Bessel Functions. (line 39) * gsl_sf_bessel_k1_scaled_e: Irregular Modified Spherical Bessel Functions. (line 17) * gsl_sf_bessel_k2_scaled: Irregular Modified Spherical Bessel Functions. (line 22) * gsl_sf_bessel_k2_scaled_e: Irregular Modified Spherical Bessel Functions. (line 23) * gsl_sf_bessel_kl_scaled: Irregular Modified Spherical Bessel Functions. (line 28) * gsl_sf_bessel_kl_scaled_array: Irregular Modified Spherical Bessel Functions. (line 34) * gsl_sf_bessel_kl_scaled_e: Irregular Modified Spherical Bessel Functions. (line 29) * gsl_sf_bessel_Kn: Irregular Modified Cylindrical Bessel Functions. (line 16) * gsl_sf_bessel_Knu: Irregular Modified Bessel Functions - Fractional Order. (line 6) * gsl_sf_bessel_Knu_e: Irregular Modified Bessel Functions - Fractional Order. (line 7) * gsl_sf_bessel_Knu_scaled: Irregular Modified Bessel Functions - Fractional Order. (line 19) * gsl_sf_bessel_Knu_scaled_e: Irregular Modified Bessel Functions - Fractional Order. (line 20) * gsl_sf_bessel_Kn_array: Irregular Modified Cylindrical Bessel Functions. (line 22) * gsl_sf_bessel_Kn_e: Irregular Modified Cylindrical Bessel Functions. (line 17) * gsl_sf_bessel_Kn_scaled: Irregular Modified Cylindrical Bessel Functions. (line 44) * gsl_sf_bessel_Kn_scaled_array: Irregular Modified Cylindrical Bessel Functions. (line 50) * gsl_sf_bessel_Kn_scaled_e: Irregular Modified Cylindrical Bessel Functions. (line 45) * gsl_sf_bessel_lnKnu: Irregular Modified Bessel Functions - Fractional Order. (line 12) * gsl_sf_bessel_lnKnu_e: Irregular Modified Bessel Functions - Fractional Order. (line 13) * gsl_sf_bessel_sequence_Jnu_e: Regular Bessel Function - Fractional Order. (line 12) * gsl_sf_bessel_Y0: Irregular Cylindrical Bessel Functions. (line 6) * gsl_sf_bessel_y0: Irregular Spherical Bessel Functions. (line 6) * gsl_sf_bessel_Y0_e: Irregular Cylindrical Bessel Functions. (line 7) * gsl_sf_bessel_y0_e: Irregular Spherical Bessel Functions. (line 7) * gsl_sf_bessel_Y1: Irregular Cylindrical Bessel Functions. (line 11) * gsl_sf_bessel_y1: Irregular Spherical Bessel Functions. (line 11) * gsl_sf_bessel_Y1_e: Irregular Cylindrical Bessel Functions. (line 12) * gsl_sf_bessel_y1_e: Irregular Spherical Bessel Functions. (line 12) * gsl_sf_bessel_y2: Irregular Spherical Bessel Functions. (line 16) * gsl_sf_bessel_y2_e: Irregular Spherical Bessel Functions. (line 17) * gsl_sf_bessel_yl: Irregular Spherical Bessel Functions. (line 21) * gsl_sf_bessel_yl_array: Irregular Spherical Bessel Functions. (line 27) * gsl_sf_bessel_yl_e: Irregular Spherical Bessel Functions. (line 22) * gsl_sf_bessel_Yn: Irregular Cylindrical Bessel Functions. (line 16) * gsl_sf_bessel_Ynu: Irregular Bessel Functions - Fractional Order. (line 6) * gsl_sf_bessel_Ynu_e: Irregular Bessel Functions - Fractional Order. (line 7) * gsl_sf_bessel_Yn_array: Irregular Cylindrical Bessel Functions. (line 22) * gsl_sf_bessel_Yn_e: Irregular Cylindrical Bessel Functions. (line 17) * gsl_sf_bessel_zero_J0: Zeros of Regular Bessel Functions. (line 6) * gsl_sf_bessel_zero_J0_e: Zeros of Regular Bessel Functions. (line 7) * gsl_sf_bessel_zero_J1: Zeros of Regular Bessel Functions. (line 12) * gsl_sf_bessel_zero_J1_e: Zeros of Regular Bessel Functions. (line 13) * gsl_sf_bessel_zero_Jnu: Zeros of Regular Bessel Functions. (line 18) * gsl_sf_bessel_zero_Jnu_e: Zeros of Regular Bessel Functions. (line 19) * gsl_sf_beta: Beta Functions. (line 6) * gsl_sf_beta_e: Beta Functions. (line 7) * gsl_sf_beta_inc: Incomplete Beta Function. (line 6) * gsl_sf_beta_inc_e: Incomplete Beta Function. (line 7) * gsl_sf_Chi: Hyperbolic Integrals. (line 11) * gsl_sf_Chi_e: Hyperbolic Integrals. (line 12) * gsl_sf_choose: Factorials. (line 38) * gsl_sf_choose_e: Factorials. (line 39) * gsl_sf_Ci: Trigonometric Integrals. (line 11) * gsl_sf_Ci_e: Trigonometric Integrals. (line 12) * gsl_sf_clausen: Clausen Functions. (line 14) * gsl_sf_clausen_e: Clausen Functions. (line 15) * gsl_sf_complex_cos_e: Trigonometric Functions for Complex Arguments. (line 11) * gsl_sf_complex_dilog_e: Complex Argument. (line 6) * gsl_sf_complex_logsin_e: Trigonometric Functions for Complex Arguments. (line 16) * gsl_sf_complex_log_e: Logarithm and Related Functions. (line 19) * gsl_sf_complex_sin_e: Trigonometric Functions for Complex Arguments. (line 6) * gsl_sf_conicalP_0: Conical Functions. (line 22) * gsl_sf_conicalP_0_e: Conical Functions. (line 23) * gsl_sf_conicalP_1: Conical Functions. (line 28) * gsl_sf_conicalP_1_e: Conical Functions. (line 29) * gsl_sf_conicalP_cyl_reg: Conical Functions. (line 41) * gsl_sf_conicalP_cyl_reg_e: Conical Functions. (line 43) * gsl_sf_conicalP_half: Conical Functions. (line 10) * gsl_sf_conicalP_half_e: Conical Functions. (line 11) * gsl_sf_conicalP_mhalf: Conical Functions. (line 16) * gsl_sf_conicalP_mhalf_e: Conical Functions. (line 17) * gsl_sf_conicalP_sph_reg: Conical Functions. (line 34) * gsl_sf_conicalP_sph_reg_e: Conical Functions. (line 36) * gsl_sf_cos: Circular Trigonometric Functions. (line 10) * gsl_sf_cos_e: Circular Trigonometric Functions. (line 11) * gsl_sf_cos_err_e: Trigonometric Functions With Error Estimates. (line 13) * gsl_sf_coulomb_CL_array: Coulomb Wave Function Normalization Constant. (line 14) * gsl_sf_coulomb_CL_e: Coulomb Wave Function Normalization Constant. (line 9) * gsl_sf_coulomb_wave_FGp_array: Coulomb Wave Functions. (line 47) * gsl_sf_coulomb_wave_FG_array: Coulomb Wave Functions. (line 39) * gsl_sf_coulomb_wave_FG_e: Coulomb Wave Functions. (line 19) * gsl_sf_coulomb_wave_F_array: Coulomb Wave Functions. (line 33) * gsl_sf_coulomb_wave_sphF_array: Coulomb Wave Functions. (line 57) * gsl_sf_coupling_3j: 3-j Symbols. (line 6) * gsl_sf_coupling_3j_e: 3-j Symbols. (line 8) * gsl_sf_coupling_6j: 6-j Symbols. (line 6) * gsl_sf_coupling_6j_e: 6-j Symbols. (line 8) * gsl_sf_coupling_9j: 9-j Symbols. (line 6) * gsl_sf_coupling_9j_e: 9-j Symbols. (line 9) * gsl_sf_dawson: Dawson Function. (line 11) * gsl_sf_dawson_e: Dawson Function. (line 12) * gsl_sf_debye_1: Debye Functions. (line 13) * gsl_sf_debye_1_e: Debye Functions. (line 14) * gsl_sf_debye_2: Debye Functions. (line 18) * gsl_sf_debye_2_e: Debye Functions. (line 19) * gsl_sf_debye_3: Debye Functions. (line 23) * gsl_sf_debye_3_e: Debye Functions. (line 24) * gsl_sf_debye_4: Debye Functions. (line 28) * gsl_sf_debye_4_e: Debye Functions. (line 29) * gsl_sf_debye_5: Debye Functions. (line 33) * gsl_sf_debye_5_e: Debye Functions. (line 34) * gsl_sf_debye_6: Debye Functions. (line 38) * gsl_sf_debye_6_e: Debye Functions. (line 39) * gsl_sf_dilog: Real Argument. (line 6) * gsl_sf_dilog_e: Real Argument. (line 7) * gsl_sf_doublefact: Factorials. (line 18) * gsl_sf_doublefact_e: Factorials. (line 19) * gsl_sf_ellint_D: Legendre Form of Incomplete Elliptic Integrals. (line 34) * gsl_sf_ellint_D_e: Legendre Form of Incomplete Elliptic Integrals. (line 36) * gsl_sf_ellint_E: Legendre Form of Incomplete Elliptic Integrals. (line 15) * gsl_sf_ellint_Ecomp: Legendre Form of Complete Elliptic Integrals. (line 13) * gsl_sf_ellint_Ecomp_e: Legendre Form of Complete Elliptic Integrals. (line 14) * gsl_sf_ellint_E_e: Legendre Form of Incomplete Elliptic Integrals. (line 17) * gsl_sf_ellint_F: Legendre Form of Incomplete Elliptic Integrals. (line 6) * gsl_sf_ellint_F_e: Legendre Form of Incomplete Elliptic Integrals. (line 8) * gsl_sf_ellint_Kcomp: Legendre Form of Complete Elliptic Integrals. (line 6) * gsl_sf_ellint_Kcomp_e: Legendre Form of Complete Elliptic Integrals. (line 7) * gsl_sf_ellint_P: Legendre Form of Incomplete Elliptic Integrals. (line 24) * gsl_sf_ellint_Pcomp: Legendre Form of Complete Elliptic Integrals. (line 20) * gsl_sf_ellint_Pcomp_e: Legendre Form of Complete Elliptic Integrals. (line 22) * gsl_sf_ellint_P_e: Legendre Form of Incomplete Elliptic Integrals. (line 26) * gsl_sf_ellint_RC: Carlson Forms. (line 6) * gsl_sf_ellint_RC_e: Carlson Forms. (line 8) * gsl_sf_ellint_RD: Carlson Forms. (line 13) * gsl_sf_ellint_RD_e: Carlson Forms. (line 15) * gsl_sf_ellint_RF: Carlson Forms. (line 20) * gsl_sf_ellint_RF_e: Carlson Forms. (line 22) * gsl_sf_ellint_RJ: Carlson Forms. (line 27) * gsl_sf_ellint_RJ_e: Carlson Forms. (line 29) * gsl_sf_elljac_e: Elliptic Functions (Jacobi). (line 10) * gsl_sf_erf: Error Function. (line 6) * gsl_sf_erfc: Complementary Error Function. (line 6) * gsl_sf_erfc_e: Complementary Error Function. (line 7) * gsl_sf_erf_e: Error Function. (line 7) * gsl_sf_erf_Q: Probability functions. (line 14) * gsl_sf_erf_Q_e: Probability functions. (line 15) * gsl_sf_erf_Z: Probability functions. (line 9) * gsl_sf_erf_Z_e: Probability functions. (line 10) * gsl_sf_eta: Eta Function. (line 12) * gsl_sf_eta_e: Eta Function. (line 13) * gsl_sf_eta_int: Eta Function. (line 8) * gsl_sf_eta_int_e: Eta Function. (line 9) * gsl_sf_exp: Exponential Function. (line 6) * gsl_sf_expint_3: Ei_3(x). (line 6) * gsl_sf_expint_3_e: Ei_3(x). (line 7) * gsl_sf_expint_E1: Exponential Integral. (line 6) * gsl_sf_expint_E1_e: Exponential Integral. (line 7) * gsl_sf_expint_E2: Exponential Integral. (line 12) * gsl_sf_expint_E2_e: Exponential Integral. (line 13) * gsl_sf_expint_Ei: Ei(x). (line 6) * gsl_sf_expint_Ei_e: Ei(x). (line 7) * gsl_sf_expint_En: Exponential Integral. (line 19) * gsl_sf_expint_En_e: Exponential Integral. (line 20) * gsl_sf_expm1: Relative Exponential Functions. (line 6) * gsl_sf_expm1_e: Relative Exponential Functions. (line 7) * gsl_sf_exprel: Relative Exponential Functions. (line 11) * gsl_sf_exprel_2: Relative Exponential Functions. (line 18) * gsl_sf_exprel_2_e: Relative Exponential Functions. (line 19) * gsl_sf_exprel_e: Relative Exponential Functions. (line 12) * gsl_sf_exprel_n: Relative Exponential Functions. (line 25) * gsl_sf_exprel_n_e: Relative Exponential Functions. (line 26) * gsl_sf_exp_e: Exponential Function. (line 7) * gsl_sf_exp_e10_e: Exponential Function. (line 11) * gsl_sf_exp_err_e: Exponentiation With Error Estimate. (line 6) * gsl_sf_exp_err_e10_e: Exponentiation With Error Estimate. (line 10) * gsl_sf_exp_mult: Exponential Function. (line 18) * gsl_sf_exp_mult_e: Exponential Function. (line 19) * gsl_sf_exp_mult_e10_e: Exponential Function. (line 24) * gsl_sf_exp_mult_err_e: Exponentiation With Error Estimate. (line 16) * gsl_sf_exp_mult_err_e10_e: Exponentiation With Error Estimate. (line 21) * gsl_sf_fact: Factorials. (line 11) * gsl_sf_fact_e: Factorials. (line 12) * gsl_sf_fermi_dirac_0: Complete Fermi-Dirac Integrals. (line 19) * gsl_sf_fermi_dirac_0_e: Complete Fermi-Dirac Integrals. (line 20) * gsl_sf_fermi_dirac_1: Complete Fermi-Dirac Integrals. (line 25) * gsl_sf_fermi_dirac_1_e: Complete Fermi-Dirac Integrals. (line 26) * gsl_sf_fermi_dirac_2: Complete Fermi-Dirac Integrals. (line 31) * gsl_sf_fermi_dirac_2_e: Complete Fermi-Dirac Integrals. (line 32) * gsl_sf_fermi_dirac_3half: Complete Fermi-Dirac Integrals. (line 56) * gsl_sf_fermi_dirac_3half_e: Complete Fermi-Dirac Integrals. (line 57) * gsl_sf_fermi_dirac_half: Complete Fermi-Dirac Integrals. (line 50) * gsl_sf_fermi_dirac_half_e: Complete Fermi-Dirac Integrals. (line 51) * gsl_sf_fermi_dirac_inc_0: Incomplete Fermi-Dirac Integrals. (line 10) * gsl_sf_fermi_dirac_inc_0_e: Incomplete Fermi-Dirac Integrals. (line 11) * gsl_sf_fermi_dirac_int: Complete Fermi-Dirac Integrals. (line 37) * gsl_sf_fermi_dirac_int_e: Complete Fermi-Dirac Integrals. (line 38) * gsl_sf_fermi_dirac_m1: Complete Fermi-Dirac Integrals. (line 12) * gsl_sf_fermi_dirac_m1_e: Complete Fermi-Dirac Integrals. (line 13) * gsl_sf_fermi_dirac_mhalf: Complete Fermi-Dirac Integrals. (line 44) * gsl_sf_fermi_dirac_mhalf_e: Complete Fermi-Dirac Integrals. (line 45) * gsl_sf_gamma: Gamma Functions. (line 14) * gsl_sf_gammainv: Gamma Functions. (line 49) * gsl_sf_gammainv_e: Gamma Functions. (line 50) * gsl_sf_gammastar: Gamma Functions. (line 40) * gsl_sf_gammastar_e: Gamma Functions. (line 41) * gsl_sf_gamma_e: Gamma Functions. (line 15) * gsl_sf_gamma_inc: Incomplete Gamma Functions. (line 6) * gsl_sf_gamma_inc_e: Incomplete Gamma Functions. (line 7) * gsl_sf_gamma_inc_P: Incomplete Gamma Functions. (line 20) * gsl_sf_gamma_inc_P_e: Incomplete Gamma Functions. (line 21) * gsl_sf_gamma_inc_Q: Incomplete Gamma Functions. (line 13) * gsl_sf_gamma_inc_Q_e: Incomplete Gamma Functions. (line 14) * gsl_sf_gegenpoly_1: Gegenbauer Functions. (line 11) * gsl_sf_gegenpoly_1_e: Gegenbauer Functions. (line 14) * gsl_sf_gegenpoly_2: Gegenbauer Functions. (line 12) * gsl_sf_gegenpoly_2_e: Gegenbauer Functions. (line 16) * gsl_sf_gegenpoly_3: Gegenbauer Functions. (line 13) * gsl_sf_gegenpoly_3_e: Gegenbauer Functions. (line 18) * gsl_sf_gegenpoly_array: Gegenbauer Functions. (line 30) * gsl_sf_gegenpoly_n: Gegenbauer Functions. (line 23) * gsl_sf_gegenpoly_n_e: Gegenbauer Functions. (line 24) * gsl_sf_hazard: Probability functions. (line 27) * gsl_sf_hazard_e: Probability functions. (line 28) * gsl_sf_hydrogenicR: Normalized Hydrogenic Bound States. (line 12) * gsl_sf_hydrogenicR_1: Normalized Hydrogenic Bound States. (line 6) * gsl_sf_hydrogenicR_1_e: Normalized Hydrogenic Bound States. (line 7) * gsl_sf_hydrogenicR_e: Normalized Hydrogenic Bound States. (line 14) * gsl_sf_hyperg_0F1: Hypergeometric Functions. (line 10) * gsl_sf_hyperg_0F1_e: Hypergeometric Functions. (line 11) * gsl_sf_hyperg_1F1: Hypergeometric Functions. (line 21) * gsl_sf_hyperg_1F1_e: Hypergeometric Functions. (line 22) * gsl_sf_hyperg_1F1_int: Hypergeometric Functions. (line 15) * gsl_sf_hyperg_1F1_int_e: Hypergeometric Functions. (line 16) * gsl_sf_hyperg_2F0: Hypergeometric Functions. (line 85) * gsl_sf_hyperg_2F0_e: Hypergeometric Functions. (line 86) * gsl_sf_hyperg_2F1: Hypergeometric Functions. (line 51) * gsl_sf_hyperg_2F1_conj: Hypergeometric Functions. (line 63) * gsl_sf_hyperg_2F1_conj_e: Hypergeometric Functions. (line 65) * gsl_sf_hyperg_2F1_conj_renorm: Hypergeometric Functions. (line 77) * gsl_sf_hyperg_2F1_conj_renorm_e: Hypergeometric Functions. (line 79) * gsl_sf_hyperg_2F1_e: Hypergeometric Functions. (line 53) * gsl_sf_hyperg_2F1_renorm: Hypergeometric Functions. (line 70) * gsl_sf_hyperg_2F1_renorm_e: Hypergeometric Functions. (line 72) * gsl_sf_hyperg_U: Hypergeometric Functions. (line 39) * gsl_sf_hyperg_U_e: Hypergeometric Functions. (line 40) * gsl_sf_hyperg_U_e10_e: Hypergeometric Functions. (line 45) * gsl_sf_hyperg_U_int: Hypergeometric Functions. (line 27) * gsl_sf_hyperg_U_int_e: Hypergeometric Functions. (line 28) * gsl_sf_hyperg_U_int_e10_e: Hypergeometric Functions. (line 33) * gsl_sf_hypot: Circular Trigonometric Functions. (line 14) * gsl_sf_hypot_e: Circular Trigonometric Functions. (line 15) * gsl_sf_hzeta: Hurwitz Zeta Function. (line 9) * gsl_sf_hzeta_e: Hurwitz Zeta Function. (line 10) * gsl_sf_laguerre_1: Laguerre Functions. (line 16) * gsl_sf_laguerre_1_e: Laguerre Functions. (line 19) * gsl_sf_laguerre_2: Laguerre Functions. (line 17) * gsl_sf_laguerre_2_e: Laguerre Functions. (line 21) * gsl_sf_laguerre_3: Laguerre Functions. (line 18) * gsl_sf_laguerre_3_e: Laguerre Functions. (line 23) * gsl_sf_laguerre_n: Laguerre Functions. (line 28) * gsl_sf_laguerre_n_e: Laguerre Functions. (line 30) * gsl_sf_lambert_W0: Lambert W Functions. (line 13) * gsl_sf_lambert_W0_e: Lambert W Functions. (line 14) * gsl_sf_lambert_Wm1: Lambert W Functions. (line 18) * gsl_sf_lambert_Wm1_e: Lambert W Functions. (line 19) * gsl_sf_legendre_array_size: Associated Legendre Polynomials and Spherical Harmonics. (line 47) * gsl_sf_legendre_H3d: Radial Functions for Hyperbolic Space. (line 30) * gsl_sf_legendre_H3d_0: Radial Functions for Hyperbolic Space. (line 11) * gsl_sf_legendre_H3d_0_e: Radial Functions for Hyperbolic Space. (line 12) * gsl_sf_legendre_H3d_1: Radial Functions for Hyperbolic Space. (line 20) * gsl_sf_legendre_H3d_1_e: Radial Functions for Hyperbolic Space. (line 21) * gsl_sf_legendre_H3d_array: Radial Functions for Hyperbolic Space. (line 39) * gsl_sf_legendre_H3d_e: Radial Functions for Hyperbolic Space. (line 32) * gsl_sf_legendre_P1: Legendre Polynomials. (line 6) * gsl_sf_legendre_P1_e: Legendre Polynomials. (line 9) * gsl_sf_legendre_P2: Legendre Polynomials. (line 7) * gsl_sf_legendre_P2_e: Legendre Polynomials. (line 11) * gsl_sf_legendre_P3: Legendre Polynomials. (line 8) * gsl_sf_legendre_P3_e: Legendre Polynomials. (line 13) * gsl_sf_legendre_Pl: Legendre Polynomials. (line 18) * gsl_sf_legendre_Plm: Associated Legendre Polynomials and Spherical Harmonics. (line 17) * gsl_sf_legendre_Plm_array: Associated Legendre Polynomials and Spherical Harmonics. (line 23) * gsl_sf_legendre_Plm_deriv_array: Associated Legendre Polynomials and Spherical Harmonics. (line 25) * gsl_sf_legendre_Plm_e: Associated Legendre Polynomials and Spherical Harmonics. (line 18) * gsl_sf_legendre_Pl_array: Legendre Polynomials. (line 24) * gsl_sf_legendre_Pl_deriv_array: Legendre Polynomials. (line 26) * gsl_sf_legendre_Pl_e: Legendre Polynomials. (line 19) * gsl_sf_legendre_Q0: Legendre Polynomials. (line 32) * gsl_sf_legendre_Q0_e: Legendre Polynomials. (line 33) * gsl_sf_legendre_Q1: Legendre Polynomials. (line 38) * gsl_sf_legendre_Q1_e: Legendre Polynomials. (line 39) * gsl_sf_legendre_Ql: Legendre Polynomials. (line 44) * gsl_sf_legendre_Ql_e: Legendre Polynomials. (line 45) * gsl_sf_legendre_sphPlm: Associated Legendre Polynomials and Spherical Harmonics. (line 30) * gsl_sf_legendre_sphPlm_array: Associated Legendre Polynomials and Spherical Harmonics. (line 39) * gsl_sf_legendre_sphPlm_deriv_array: Associated Legendre Polynomials and Spherical Harmonics. (line 41) * gsl_sf_legendre_sphPlm_e: Associated Legendre Polynomials and Spherical Harmonics. (line 31) * gsl_sf_lnbeta: Beta Functions. (line 13) * gsl_sf_lnbeta_e: Beta Functions. (line 14) * gsl_sf_lnchoose: Factorials. (line 44) * gsl_sf_lnchoose_e: Factorials. (line 45) * gsl_sf_lncosh: Hyperbolic Trigonometric Functions. (line 10) * gsl_sf_lncosh_e: Hyperbolic Trigonometric Functions. (line 11) * gsl_sf_lndoublefact: Factorials. (line 32) * gsl_sf_lndoublefact_e: Factorials. (line 33) * gsl_sf_lnfact: Factorials. (line 25) * gsl_sf_lnfact_e: Factorials. (line 26) * gsl_sf_lngamma: Gamma Functions. (line 22) * gsl_sf_lngamma_complex_e: Gamma Functions. (line 54) * gsl_sf_lngamma_e: Gamma Functions. (line 23) * gsl_sf_lngamma_sgn_e: Gamma Functions. (line 30) * gsl_sf_lnpoch: Pochhammer Symbol. (line 14) * gsl_sf_lnpoch_e: Pochhammer Symbol. (line 15) * gsl_sf_lnpoch_sgn_e: Pochhammer Symbol. (line 20) * gsl_sf_lnsinh: Hyperbolic Trigonometric Functions. (line 6) * gsl_sf_lnsinh_e: Hyperbolic Trigonometric Functions. (line 7) * gsl_sf_log: Logarithm and Related Functions. (line 10) * gsl_sf_log_1plusx: Logarithm and Related Functions. (line 25) * gsl_sf_log_1plusx_e: Logarithm and Related Functions. (line 26) * gsl_sf_log_1plusx_mx: Logarithm and Related Functions. (line 30) * gsl_sf_log_1plusx_mx_e: Logarithm and Related Functions. (line 31) * gsl_sf_log_abs: Logarithm and Related Functions. (line 14) * gsl_sf_log_abs_e: Logarithm and Related Functions. (line 15) * gsl_sf_log_e: Logarithm and Related Functions. (line 11) * gsl_sf_log_erfc: Log Complementary Error Function. (line 6) * gsl_sf_log_erfc_e: Log Complementary Error Function. (line 7) * gsl_sf_mathieu_a: Mathieu Function Characteristic Values. (line 6) * gsl_sf_mathieu_alloc: Mathieu Function Workspace. (line 10) * gsl_sf_mathieu_a_array: Mathieu Function Characteristic Values. (line 13) * gsl_sf_mathieu_b: Mathieu Function Characteristic Values. (line 8) * gsl_sf_mathieu_b_array: Mathieu Function Characteristic Values. (line 16) * gsl_sf_mathieu_ce: Angular Mathieu Functions. (line 6) * gsl_sf_mathieu_ce_array: Angular Mathieu Functions. (line 13) * gsl_sf_mathieu_free: Mathieu Function Workspace. (line 17) * gsl_sf_mathieu_Mc: Radial Mathieu Functions. (line 6) * gsl_sf_mathieu_Mc_array: Radial Mathieu Functions. (line 17) * gsl_sf_mathieu_Ms: Radial Mathieu Functions. (line 8) * gsl_sf_mathieu_Ms_array: Radial Mathieu Functions. (line 20) * gsl_sf_mathieu_se: Angular Mathieu Functions. (line 8) * gsl_sf_mathieu_se_array: Angular Mathieu Functions. (line 16) * gsl_sf_multiply_e: Elementary Operations. (line 10) * gsl_sf_multiply_err_e: Elementary Operations. (line 15) * gsl_sf_poch: Pochhammer Symbol. (line 6) * gsl_sf_pochrel: Pochhammer Symbol. (line 27) * gsl_sf_pochrel_e: Pochhammer Symbol. (line 28) * gsl_sf_poch_e: Pochhammer Symbol. (line 7) * gsl_sf_polar_to_rect: Conversion Functions. (line 6) * gsl_sf_pow_int: Power Function. (line 10) * gsl_sf_pow_int_e: Power Function. (line 11) * gsl_sf_psi: Digamma Function. (line 11) * gsl_sf_psi_1: Trigamma Function. (line 11) * gsl_sf_psi_1piy: Digamma Function. (line 16) * gsl_sf_psi_1piy_e: Digamma Function. (line 17) * gsl_sf_psi_1_e: Trigamma Function. (line 12) * gsl_sf_psi_1_int: Trigamma Function. (line 6) * gsl_sf_psi_1_int_e: Trigamma Function. (line 7) * gsl_sf_psi_e: Digamma Function. (line 12) * gsl_sf_psi_int: Digamma Function. (line 6) * gsl_sf_psi_int_e: Digamma Function. (line 7) * gsl_sf_psi_n: Polygamma Function. (line 6) * gsl_sf_psi_n_e: Polygamma Function. (line 7) * gsl_sf_rect_to_polar: Conversion Functions. (line 12) * gsl_sf_Shi: Hyperbolic Integrals. (line 6) * gsl_sf_Shi_e: Hyperbolic Integrals. (line 7) * gsl_sf_Si: Trigonometric Integrals. (line 6) * gsl_sf_sin: Circular Trigonometric Functions. (line 6) * gsl_sf_sinc: Circular Trigonometric Functions. (line 20) * gsl_sf_sinc_e: Circular Trigonometric Functions. (line 21) * gsl_sf_sin_e: Circular Trigonometric Functions. (line 7) * gsl_sf_sin_err_e: Trigonometric Functions With Error Estimates. (line 6) * gsl_sf_Si_e: Trigonometric Integrals. (line 7) * gsl_sf_synchrotron_1: Synchrotron Functions. (line 9) * gsl_sf_synchrotron_1_e: Synchrotron Functions. (line 10) * gsl_sf_synchrotron_2: Synchrotron Functions. (line 15) * gsl_sf_synchrotron_2_e: Synchrotron Functions. (line 16) * gsl_sf_taylorcoeff: Factorials. (line 50) * gsl_sf_taylorcoeff_e: Factorials. (line 51) * gsl_sf_transport_2: Transport Functions. (line 10) * gsl_sf_transport_2_e: Transport Functions. (line 11) * gsl_sf_transport_3: Transport Functions. (line 15) * gsl_sf_transport_3_e: Transport Functions. (line 16) * gsl_sf_transport_4: Transport Functions. (line 20) * gsl_sf_transport_4_e: Transport Functions. (line 21) * gsl_sf_transport_5: Transport Functions. (line 25) * gsl_sf_transport_5_e: Transport Functions. (line 26) * gsl_sf_zeta: Riemann Zeta Function. (line 14) * gsl_sf_zetam1: Riemann Zeta Function Minus One. (line 14) * gsl_sf_zetam1_e: Riemann Zeta Function Minus One. (line 15) * gsl_sf_zetam1_int: Riemann Zeta Function Minus One. (line 10) * gsl_sf_zetam1_int_e: Riemann Zeta Function Minus One. (line 11) * gsl_sf_zeta_e: Riemann Zeta Function. (line 15) * gsl_sf_zeta_int: Riemann Zeta Function. (line 9) * gsl_sf_zeta_int_e: Riemann Zeta Function. (line 10) * GSL_SIGN: Testing the Sign of Numbers. (line 6) * gsl_siman_solve: Simulated Annealing functions. (line 6) * gsl_sort: Sorting vectors. (line 23) * gsl_sort2: Sorting vectors. (line 28) * gsl_sort_index: Sorting vectors. (line 44) * gsl_sort_largest: Selecting the k smallest or largest elements. (line 23) * gsl_sort_largest_index: Selecting the k smallest or largest elements. (line 49) * gsl_sort_smallest: Selecting the k smallest or largest elements. (line 16) * gsl_sort_smallest_index: Selecting the k smallest or largest elements. (line 41) * gsl_sort_vector: Sorting vectors. (line 35) * gsl_sort_vector2: Sorting vectors. (line 39) * gsl_sort_vector_index: Sorting vectors. (line 54) * gsl_sort_vector_largest: Selecting the k smallest or largest elements. (line 32) * gsl_sort_vector_largest_index: Selecting the k smallest or largest elements. (line 59) * gsl_sort_vector_smallest: Selecting the k smallest or largest elements. (line 30) * gsl_sort_vector_smallest_index: Selecting the k smallest or largest elements. (line 57) * gsl_spline_alloc: Higher-level Interface. (line 13) * gsl_spline_eval: Higher-level Interface. (line 26) * gsl_spline_eval_deriv: Higher-level Interface. (line 31) * gsl_spline_eval_deriv2: Higher-level Interface. (line 36) * gsl_spline_eval_deriv2_e: Higher-level Interface. (line 38) * gsl_spline_eval_deriv_e: Higher-level Interface. (line 33) * gsl_spline_eval_e: Higher-level Interface. (line 28) * gsl_spline_eval_integ: Higher-level Interface. (line 41) * gsl_spline_eval_integ_e: Higher-level Interface. (line 43) * gsl_spline_free: Higher-level Interface. (line 19) * gsl_spline_init: Higher-level Interface. (line 16) * gsl_spline_min_size: Higher-level Interface. (line 23) * gsl_spline_name: Higher-level Interface. (line 21) * gsl_stats_absdev: Absolute deviation. (line 6) * gsl_stats_absdev_m: Absolute deviation. (line 19) * gsl_stats_correlation: Correlation. (line 6) * gsl_stats_covariance: Covariance. (line 6) * gsl_stats_covariance_m: Covariance. (line 14) * gsl_stats_kurtosis: Higher moments (skewness and kurtosis). (line 29) * gsl_stats_kurtosis_m_sd: Higher moments (skewness and kurtosis). (line 40) * gsl_stats_lag1_autocorrelation: Autocorrelation. (line 6) * gsl_stats_lag1_autocorrelation_m: Autocorrelation. (line 15) * gsl_stats_max: Maximum and Minimum values. (line 12) * gsl_stats_max_index: Maximum and Minimum values. (line 37) * gsl_stats_mean: Mean and standard deviation and variance. (line 6) * gsl_stats_median_from_sorted_data: Median and Percentiles. (line 10) * gsl_stats_min: Maximum and Minimum values. (line 22) * gsl_stats_minmax: Maximum and Minimum values. (line 32) * gsl_stats_minmax_index: Maximum and Minimum values. (line 53) * gsl_stats_min_index: Maximum and Minimum values. (line 45) * gsl_stats_quantile_from_sorted_data: Median and Percentiles. (line 25) * gsl_stats_sd: Mean and standard deviation and variance. (line 44) * gsl_stats_sd_m: Mean and standard deviation and variance. (line 46) * gsl_stats_sd_with_fixed_mean: Mean and standard deviation and variance. (line 73) * gsl_stats_skew: Higher moments (skewness and kurtosis). (line 6) * gsl_stats_skew_m_sd: Higher moments (skewness and kurtosis). (line 19) * gsl_stats_spearman: Correlation. (line 18) * gsl_stats_tss: Mean and standard deviation and variance. (line 52) * gsl_stats_tss_m: Mean and standard deviation and variance. (line 54) * gsl_stats_variance: Mean and standard deviation and variance. (line 18) * gsl_stats_variance_m: Mean and standard deviation and variance. (line 36) * gsl_stats_variance_with_fixed_mean: Mean and standard deviation and variance. (line 63) * gsl_stats_wabsdev: Weighted Samples. (line 83) * gsl_stats_wabsdev_m: Weighted Samples. (line 91) * gsl_stats_wkurtosis: Weighted Samples. (line 110) * gsl_stats_wkurtosis_m_sd: Weighted Samples. (line 116) * gsl_stats_wmean: Weighted Samples. (line 14) * gsl_stats_wsd: Weighted Samples. (line 42) * gsl_stats_wsd_m: Weighted Samples. (line 48) * gsl_stats_wsd_with_fixed_mean: Weighted Samples. (line 64) * gsl_stats_wskew: Weighted Samples. (line 97) * gsl_stats_wskew_m_sd: Weighted Samples. (line 103) * gsl_stats_wtss: Weighted Samples. (line 71) * gsl_stats_wtss_m: Weighted Samples. (line 73) * gsl_stats_wvariance: Weighted Samples. (line 22) * gsl_stats_wvariance_m: Weighted Samples. (line 36) * gsl_stats_wvariance_with_fixed_mean: Weighted Samples. (line 53) * gsl_strerror: Error Codes. (line 37) * gsl_sum_levin_utrunc_accel: Acceleration functions without error estimation. (line 32) * gsl_sum_levin_utrunc_alloc: Acceleration functions without error estimation. (line 22) * gsl_sum_levin_utrunc_free: Acceleration functions without error estimation. (line 28) * gsl_sum_levin_u_accel: Acceleration functions. (line 31) * gsl_sum_levin_u_alloc: Acceleration functions. (line 23) * gsl_sum_levin_u_free: Acceleration functions. (line 28) * gsl_vector_add: Vector operations. (line 6) * gsl_vector_add_constant: Vector operations. (line 32) * gsl_vector_alloc: Vector allocation. (line 14) * gsl_vector_calloc: Vector allocation. (line 21) * gsl_vector_complex_const_imag: Vector views. (line 108) * gsl_vector_complex_const_real: Vector views. (line 97) * gsl_vector_complex_imag: Vector views. (line 106) * gsl_vector_complex_real: Vector views. (line 95) * gsl_vector_const_ptr: Accessing vector elements. (line 52) * gsl_vector_const_subvector: Vector views. (line 29) * gsl_vector_const_subvector_with_stride: Vector views. (line 59) * gsl_vector_const_view_array: Vector views. (line 119) * gsl_vector_const_view_array_with_stride: Vector views. (line 142) * gsl_vector_div: Vector operations. (line 23) * gsl_vector_equal: Vector properties. (line 18) * gsl_vector_fprintf: Reading and writing vectors. (line 26) * gsl_vector_fread: Reading and writing vectors. (line 17) * gsl_vector_free: Vector allocation. (line 25) * gsl_vector_fscanf: Reading and writing vectors. (line 34) * gsl_vector_fwrite: Reading and writing vectors. (line 9) * gsl_vector_get: Accessing vector elements. (line 39) * gsl_vector_isneg: Vector properties. (line 12) * gsl_vector_isnonneg: Vector properties. (line 13) * gsl_vector_isnull: Vector properties. (line 10) * gsl_vector_ispos: Vector properties. (line 11) * gsl_vector_max: Finding maximum and minimum elements of vectors. (line 8) * gsl_vector_max_index: Finding maximum and minimum elements of vectors. (line 19) * gsl_vector_memcpy: Copying vectors. (line 12) * gsl_vector_min: Finding maximum and minimum elements of vectors. (line 11) * gsl_vector_minmax: Finding maximum and minimum elements of vectors. (line 14) * gsl_vector_minmax_index: Finding maximum and minimum elements of vectors. (line 29) * gsl_vector_min_index: Finding maximum and minimum elements of vectors. (line 24) * gsl_vector_mul: Vector operations. (line 17) * gsl_vector_ptr: Accessing vector elements. (line 51) * gsl_vector_reverse: Exchanging elements. (line 14) * gsl_vector_scale: Vector operations. (line 28) * gsl_vector_set: Accessing vector elements. (line 45) * gsl_vector_set_all: Initializing vector elements. (line 6) * gsl_vector_set_basis: Initializing vector elements. (line 12) * gsl_vector_set_zero: Initializing vector elements. (line 9) * gsl_vector_sub: Vector operations. (line 11) * gsl_vector_subvector: Vector views. (line 27) * gsl_vector_subvector_with_stride: Vector views. (line 57) * gsl_vector_swap: Copying vectors. (line 17) * gsl_vector_swap_elements: Exchanging elements. (line 9) * gsl_vector_view_array: Vector views. (line 117) * gsl_vector_view_array_with_stride: Vector views. (line 140) * gsl_wavelet2d_nstransform: DWT in two dimension. (line 64) * gsl_wavelet2d_nstransform_forward: DWT in two dimension. (line 67) * gsl_wavelet2d_nstransform_inverse: DWT in two dimension. (line 70) * gsl_wavelet2d_nstransform_matrix: DWT in two dimension. (line 76) * gsl_wavelet2d_nstransform_matrix_forward: DWT in two dimension. (line 79) * gsl_wavelet2d_nstransform_matrix_inverse: DWT in two dimension. (line 81) * gsl_wavelet2d_transform: DWT in two dimension. (line 29) * gsl_wavelet2d_transform_forward: DWT in two dimension. (line 32) * gsl_wavelet2d_transform_inverse: DWT in two dimension. (line 35) * gsl_wavelet2d_transform_matrix: DWT in two dimension. (line 54) * gsl_wavelet2d_transform_matrix_forward: DWT in two dimension. (line 57) * gsl_wavelet2d_transform_matrix_inverse: DWT in two dimension. (line 59) * gsl_wavelet_alloc: DWT Initialization. (line 9) * gsl_wavelet_bspline: DWT Initialization. (line 29) * gsl_wavelet_bspline_centered: DWT Initialization. (line 30) * gsl_wavelet_daubechies: DWT Initialization. (line 18) * gsl_wavelet_daubechies_centered: DWT Initialization. (line 19) * gsl_wavelet_free: DWT Initialization. (line 44) * gsl_wavelet_haar: DWT Initialization. (line 24) * gsl_wavelet_haar_centered: DWT Initialization. (line 25) * gsl_wavelet_name: DWT Initialization. (line 40) * gsl_wavelet_transform: DWT in one dimension. (line 6) * gsl_wavelet_transform_forward: DWT in one dimension. (line 9) * gsl_wavelet_transform_inverse: DWT in one dimension. (line 12) * gsl_wavelet_workspace_alloc: DWT Initialization. (line 51) * gsl_wavelet_workspace_free: DWT Initialization. (line 61) gsl-1.16/doc/specfunc-fermi-dirac.texi0000664000252300025230000001102612171574312014600 00000000000000@cindex Fermi-Dirac function The functions described in this section are declared in the header file @file{gsl_sf_fermi_dirac.h}. @menu * Complete Fermi-Dirac Integrals:: * Incomplete Fermi-Dirac Integrals:: @end menu @node Complete Fermi-Dirac Integrals @subsection Complete Fermi-Dirac Integrals @cindex complete Fermi-Dirac integrals @cindex Fj(x), Fermi-Dirac integral The complete Fermi-Dirac integral @math{F_j(x)} is given by, @tex \beforedisplay $$ F_j(x) := {1\over\Gamma(j+1)} \int_0^\infty dt {t^j \over (\exp(t-x) + 1)} $$ \afterdisplay @end tex @ifinfo @example F_j(x) := (1/\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1)) @end example @end ifinfo @noindent Note that the Fermi-Dirac integral is sometimes defined without the normalisation factor in other texts. @deftypefun double gsl_sf_fermi_dirac_m1 (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_m1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral with an index of @math{-1}. This integral is given by @c{$F_{-1}(x) = e^x / (1 + e^x)$} @math{F_@{-1@}(x) = e^x / (1 + e^x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_0 (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral with an index of @math{0}. This integral is given by @math{F_0(x) = \ln(1 + e^x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_1 (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral with an index of @math{1}, @math{F_1(x) = \int_0^\infty dt (t /(\exp(t-x)+1))}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_2 (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral with an index of @math{2}, @math{F_2(x) = (1/2) \int_0^\infty dt (t^2 /(\exp(t-x)+1))}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_int (int @var{j}, double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_int_e (int @var{j}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral with an integer index of @math{j}, @math{F_j(x) = (1/\Gamma(j+1)) \int_0^\infty dt (t^j /(\exp(t-x)+1))}. @comment Complete integral F_j(x) for integer j @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_mhalf (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_mhalf_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral @c{$F_{-1/2}(x)$} @math{F_@{-1/2@}(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_half (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_half_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral @c{$F_{1/2}(x)$} @math{F_@{1/2@}(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_fermi_dirac_3half (double @var{x}) @deftypefunx int gsl_sf_fermi_dirac_3half_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complete Fermi-Dirac integral @c{$F_{3/2}(x)$} @math{F_@{3/2@}(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @node Incomplete Fermi-Dirac Integrals @subsection Incomplete Fermi-Dirac Integrals @cindex incomplete Fermi-Dirac integral @cindex Fj(x,b), incomplete Fermi-Dirac integral The incomplete Fermi-Dirac integral @math{F_j(x,b)} is given by, @tex \beforedisplay $$ F_j(x,b) := {1\over\Gamma(j+1)} \int_b^\infty dt {t^j \over (\exp(t-x) + 1)} $$ \afterdisplay @end tex @ifinfo @example F_j(x,b) := (1/\Gamma(j+1)) \int_b^\infty dt (t^j / (\Exp(t-x) + 1)) @end example @end ifinfo @deftypefun double gsl_sf_fermi_dirac_inc_0 (double @var{x}, double @var{b}) @deftypefunx int gsl_sf_fermi_dirac_inc_0_e (double @var{x}, double @var{b}, gsl_sf_result * @var{result}) These routines compute the incomplete Fermi-Dirac integral with an index of zero, @c{$F_0(x,b) = \ln(1 + e^{b-x}) - (b-x)$} @math{F_0(x,b) = \ln(1 + e^@{b-x@}) - (b-x)}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EDOM @end deftypefun gsl-1.16/doc/specfunc.texi0000664000252300025230000002403112171574312012420 00000000000000@cindex special functions This chapter describes the GSL special function library. The library includes routines for calculating the values of Airy functions, Bessel functions, Clausen functions, Coulomb wave functions, Coupling coefficients, the Dawson function, Debye functions, Dilogarithms, Elliptic integrals, Jacobi elliptic functions, Error functions, Exponential integrals, Fermi-Dirac functions, Gamma functions, Gegenbauer functions, Hypergeometric functions, Laguerre functions, Legendre functions and Spherical Harmonics, the Psi (Digamma) Function, Synchrotron functions, Transport functions, Trigonometric functions and Zeta functions. Each routine also computes an estimate of the numerical error in the calculated value of the function. The functions in this chapter are declared in individual header files, such as @file{gsl_sf_airy.h}, @file{gsl_sf_bessel.h}, etc. The complete set of header files can be included using the file @file{gsl_sf.h}. @menu * Special Function Usage:: * The gsl_sf_result struct:: * Special Function Modes:: * Airy Functions and Derivatives:: * Bessel Functions:: * Clausen Functions:: * Coulomb Functions:: * Coupling Coefficients:: * Dawson Function:: * Debye Functions:: * Dilogarithm:: * Elementary Operations:: * Elliptic Integrals:: * Elliptic Functions (Jacobi):: * Error Functions:: * Exponential Functions:: * Exponential Integrals:: * Fermi-Dirac Function:: * Gamma and Beta Functions:: * Gegenbauer Functions:: * Hypergeometric Functions:: * Laguerre Functions:: * Lambert W Functions:: * Legendre Functions and Spherical Harmonics:: * Logarithm and Related Functions:: * Mathieu Functions:: * Power Function:: * Psi (Digamma) Function:: * Synchrotron Functions:: * Transport Functions:: * Trigonometric Functions:: * Zeta Functions:: * Special Functions Examples:: * Special Functions References and Further Reading:: @end menu @node Special Function Usage @section Usage The special functions are available in two calling conventions, a @dfn{natural form} which returns the numerical value of the function and an @dfn{error-handling form} which returns an error code. The two types of function provide alternative ways of accessing the same underlying code. The @dfn{natural form} returns only the value of the function and can be used directly in mathematical expressions. For example, the following function call will compute the value of the Bessel function @math{J_0(x)}, @example double y = gsl_sf_bessel_J0 (x); @end example @noindent There is no way to access an error code or to estimate the error using this method. To allow access to this information the alternative error-handling form stores the value and error in a modifiable argument, @example gsl_sf_result result; int status = gsl_sf_bessel_J0_e (x, &result); @end example @noindent The error-handling functions have the suffix @code{_e}. The returned status value indicates error conditions such as overflow, underflow or loss of precision. If there are no errors the error-handling functions return @code{GSL_SUCCESS}. @node The gsl_sf_result struct @section The gsl_sf_result struct @cindex gsl_sf_result @cindex gsl_sf_result_e10 @tpindex gsl_sf_result @tpindex gsl_sf_result_e10 The error handling form of the special functions always calculate an error estimate along with the value of the result. Therefore, structures are provided for amalgamating a value and error estimate. These structures are declared in the header file @file{gsl_sf_result.h}. The @code{gsl_sf_result} struct contains value and error fields. @example typedef struct @{ double val; double err; @} gsl_sf_result; @end example @noindent The field @var{val} contains the value and the field @var{err} contains an estimate of the absolute error in the value. In some cases, an overflow or underflow can be detected and handled by a function. In this case, it may be possible to return a scaling exponent as well as an error/value pair in order to save the result from exceeding the dynamic range of the built-in types. The @code{gsl_sf_result_e10} struct contains value and error fields as well as an exponent field such that the actual result is obtained as @code{result * 10^(e10)}. @example typedef struct @{ double val; double err; int e10; @} gsl_sf_result_e10; @end example @node Special Function Modes @section Modes The goal of the library is to achieve double precision accuracy wherever possible. However the cost of evaluating some special functions to double precision can be significant, particularly where very high order terms are required. In these cases a @code{mode} argument allows the accuracy of the function to be reduced in order to improve performance. The following precision levels are available for the mode argument, @table @code @item GSL_PREC_DOUBLE Double-precision, a relative accuracy of approximately @c{$2 \times 10^{-16}$} @math{2 * 10^-16}. @item GSL_PREC_SINGLE Single-precision, a relative accuracy of approximately @c{$1 \times 10^{-7}$} @math{10^-7}. @item GSL_PREC_APPROX Approximate values, a relative accuracy of approximately @c{$5 \times 10^{-4}$} @math{5 * 10^-4}. @end table @noindent The approximate mode provides the fastest evaluation at the lowest accuracy. @node Airy Functions and Derivatives @section Airy Functions and Derivatives @include specfunc-airy.texi @node Bessel Functions @section Bessel Functions @include specfunc-bessel.texi @node Clausen Functions @section Clausen Functions @include specfunc-clausen.texi @node Coulomb Functions @section Coulomb Functions @include specfunc-coulomb.texi @node Coupling Coefficients @section Coupling Coefficients @include specfunc-coupling.texi @node Dawson Function @section Dawson Function @include specfunc-dawson.texi @node Debye Functions @section Debye Functions @include specfunc-debye.texi @node Dilogarithm @section Dilogarithm @include specfunc-dilog.texi @node Elementary Operations @section Elementary Operations @include specfunc-elementary.texi @node Elliptic Integrals @section Elliptic Integrals @include specfunc-ellint.texi @node Elliptic Functions (Jacobi) @section Elliptic Functions (Jacobi) @include specfunc-elljac.texi @node Error Functions @section Error Functions @include specfunc-erf.texi @node Exponential Functions @section Exponential Functions @include specfunc-exp.texi @node Exponential Integrals @section Exponential Integrals @include specfunc-expint.texi @node Fermi-Dirac Function @section Fermi-Dirac Function @include specfunc-fermi-dirac.texi @node Gamma and Beta Functions @section Gamma and Beta Functions @include specfunc-gamma.texi @node Gegenbauer Functions @section Gegenbauer Functions @include specfunc-gegenbauer.texi @node Hypergeometric Functions @section Hypergeometric Functions @include specfunc-hyperg.texi @node Laguerre Functions @section Laguerre Functions @include specfunc-laguerre.texi @node Lambert W Functions @section Lambert W Functions @include specfunc-lambert.texi @node Legendre Functions and Spherical Harmonics @section Legendre Functions and Spherical Harmonics @include specfunc-legendre.texi @node Logarithm and Related Functions @section Logarithm and Related Functions @include specfunc-log.texi @node Mathieu Functions @section Mathieu Functions @include specfunc-mathieu.texi @node Power Function @section Power Function @include specfunc-pow-int.texi @node Psi (Digamma) Function @section Psi (Digamma) Function @include specfunc-psi.texi @node Synchrotron Functions @section Synchrotron Functions @include specfunc-synchrotron.texi @node Transport Functions @section Transport Functions @include specfunc-transport.texi @node Trigonometric Functions @section Trigonometric Functions @include specfunc-trig.texi @node Zeta Functions @section Zeta Functions @include specfunc-zeta.texi @node Special Functions Examples @section Examples The following example demonstrates the use of the error handling form of the special functions, in this case to compute the Bessel function @math{J_0(5.0)}, @example @verbatiminclude examples/specfun_e.c @end example @noindent Here are the results of running the program, @example $ ./a.out @verbatiminclude examples/specfun_e.out @end example @noindent The next program computes the same quantity using the natural form of the function. In this case the error term @var{result.err} and return status are not accessible. @example @verbatiminclude examples/specfun.c @end example @noindent The results of the function are the same, @example $ ./a.out @verbatiminclude examples/specfun.out @end example @node Special Functions References and Further Reading @section References and Further Reading The library follows the conventions of @cite{Abramowitz & Stegun} where possible, @itemize @w{} @item Abramowitz & Stegun (eds.), @cite{Handbook of Mathematical Functions} @end itemize @noindent The following papers contain information on the algorithms used to compute the special functions, @cindex MISCFUN @itemize @w{} @item Allan J. MacLeod, MISCFUN: A software package to compute uncommon special functions. @cite{ACM Trans.@: Math.@: Soft.}, vol.@: 22, 1996, 288--301 @item G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edition (Cambridge University Press, 1944). @item G. Nemeth, Mathematical Approximations of Special Functions, Nova Science Publishers, ISBN 1-56072-052-2 @item B.C. Carlson, Special Functions of Applied Mathematics (1977) @item N. M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics (1996), ISBN 978-0471113133. @item W.J. Thompson, Atlas for Computing Mathematical Functions, John Wiley & Sons, New York (1997). @item Y.Y. Luke, Algorithms for the Computation of Mathematical Functions, Academic Press, New York (1977). @comment @item @comment Fermi-Dirac functions of orders @math{-1/2}, @math{1/2}, @math{3/2}, and @comment @math{5/2}. @cite{ACM Trans. Math. Soft.}, vol. 24, 1998, 1-12. @end itemize gsl-1.16/doc/bspline.eps0000664000252300025230000033422712171574312012077 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.2 %%Title: PostScript plot %%CreationDate: Fri Nov 2 13:18:54 2007 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 60 174 480 570 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.1 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.1 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 60 174 480 570 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 128.156 214.1855 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 174.236 214.1855 ] concat %I [ (2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3226 9216 3226 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3226 2304 3226 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 220.316 214.1855 ] concat %I [ (4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4147 9216 4147 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4147 2304 4147 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 266.396 214.1855 ] concat %I [ (6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 312.476 214.1855 ] concat %I [ (8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5990 9216 5990 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5990 2304 5990 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 353.5119 214.1855 ] concat %I [ (10) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 399.5919 214.1855 ] concat %I [ (12) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 445.6719 214.1855 ] concat %I [ (14) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8755 9216 8755 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8755 2304 8755 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2765 9216 2765 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2765 2304 2765 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3226 9216 3226 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3226 2304 3226 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4147 9216 4147 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4147 2304 4147 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5530 9216 5530 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5530 2304 5530 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5990 9216 5990 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5990 2304 5990 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7373 9216 7373 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7373 2304 7373 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8294 9216 8294 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8294 2304 8294 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8755 9216 8755 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8755 2304 8755 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 92.19974 229.8568 ] concat %I [ (-1.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 92.19974 304.9872 ] concat %I [ (-0.5) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3807 9078 3807 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3807 2442 3807 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 380.1176 ] concat %I [ (0.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5309 9078 5309 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5309 2442 5309 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 455.2481 ] concat %I [ (0.5) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6812 9078 6812 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6812 2442 6812 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 530.3785 ] concat %I [ (1.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8314 9078 8314 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8314 2442 8314 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2605 9161 2605 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2605 2359 2605 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2905 9161 2905 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2905 2359 2905 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3206 9161 3206 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3206 2359 3206 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3506 9161 3506 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3506 2359 3506 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3807 9161 3807 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3807 2359 3807 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4107 9161 4107 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4107 2359 4107 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4408 9161 4408 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4408 2359 4408 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4708 9161 4708 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4708 2359 4708 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5009 9161 5009 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5009 2359 5009 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5309 9161 5309 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5309 2359 5309 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5610 9161 5610 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5610 2359 5610 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5910 9161 5910 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5910 2359 5910 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6211 9161 6211 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6211 2359 6211 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6511 9161 6511 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6511 2359 6511 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6812 9161 6812 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6812 2359 6812 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7112 9161 7112 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7112 2359 7112 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7413 9161 7413 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7413 2359 7413 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7713 9161 7713 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7713 2359 7713 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8014 9161 8014 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8014 2359 8014 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8314 9161 8314 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8314 2359 8314 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8615 9161 8615 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8615 2359 8615 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8915 9161 8915 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8915 2359 8915 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 34952 1 0 0 [ 1.48 4.43 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5309 9216 5309 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 301.464 191.5487 ] concat %I [ (x) ] Text End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 6.123234e-17 1 -1 6.123234e-17 64.69371 391.464 ] concat %I [ (y) ] Text End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 8355 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2339 8257 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2373 8726 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2408 8382 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2443 8371 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2478 7656 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2512 7274 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2547 7605 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2582 7630 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2617 7691 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2651 7338 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2686 6935 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2721 6893 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2756 6855 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2790 6753 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2825 6390 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2860 6199 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2894 6064 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2929 5829 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2964 5639 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2999 5483 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3033 5279 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3068 5093 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3103 4937 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3138 4752 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3172 4536 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3207 4368 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3242 4294 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3277 4077 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3311 3710 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3346 3814 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3381 3703 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3415 3573 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3450 3923 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3485 3250 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3520 3295 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3554 3272 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3589 3023 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3624 2796 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3659 3201 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3693 2843 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3728 2711 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3763 3280 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3798 3283 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3832 2745 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3867 3422 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3902 2947 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3936 3099 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3971 3519 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4006 3594 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4041 3431 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4075 3791 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4110 3869 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4145 3878 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4180 4047 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4214 4234 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4249 4254 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4284 4518 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4319 4612 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4353 4884 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4388 4957 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4423 5085 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4457 5236 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4492 5373 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4527 5488 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4562 5710 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4596 5803 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4631 6002 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4666 6082 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4701 6098 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4735 6382 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4770 6272 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4805 6543 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4840 6442 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4874 6608 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4909 6895 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4944 6807 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4978 7300 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5013 7121 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5048 7153 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5083 7007 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5117 6747 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5152 6974 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5187 6989 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5222 6529 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5256 6784 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5291 6517 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5326 6660 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5361 6696 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5395 6594 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5430 6672 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5465 6528 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5499 6304 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5534 6318 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5569 6338 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5604 6356 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5638 6312 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5673 6064 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5708 5967 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5743 5923 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5777 5774 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5812 5628 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5847 5549 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5882 5459 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5916 5334 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5951 5230 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5986 5140 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6021 5064 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6055 4985 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6090 4859 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6125 4671 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6159 4756 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6194 4667 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6229 4531 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6264 4437 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6298 4176 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6333 4301 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6368 4248 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6403 4321 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6437 4018 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6472 4221 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6507 3938 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6542 4095 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6576 4252 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6611 4099 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6646 4177 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6680 4045 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6715 4018 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6750 4104 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6785 4266 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6819 4199 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6854 4365 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6889 4399 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6924 4330 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6958 4439 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6993 4551 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7028 4543 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7063 4677 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7097 4713 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7132 4761 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7167 4734 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7201 4961 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7236 5032 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7271 5051 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7306 5145 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7340 5241 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7375 5319 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7410 5392 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7445 5428 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7479 5515 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7514 5605 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7549 5671 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7584 5729 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7618 5800 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7653 5888 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7688 5862 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7722 5946 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7757 5983 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7792 6033 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7827 6170 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7861 5989 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7896 6199 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7931 6052 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7966 6206 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8000 6191 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8035 6193 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8070 6229 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8105 6143 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8139 6168 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8174 6220 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8209 6082 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8243 6040 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8278 5967 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8313 6104 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8348 5976 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8382 5899 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8417 5996 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8452 5780 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8487 5888 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8521 5780 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8556 5743 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8591 5754 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8626 5663 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8660 5558 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8695 5498 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8730 5432 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8764 5389 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8799 5340 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8834 5287 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8869 5221 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8903 5180 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8938 5136 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8973 5095 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9008 5015 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9042 4917 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9077 4909 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9112 4914 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9147 4849 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9181 4839 10 Circ End Begin %I Circ [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9216 4819 10 Circ End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 151 2304 8375 2350 8317 2396 8230 2442 8114 2488 7974 2534 7812 2580 7629 2627 7429 2673 7213 2719 6985 2765 6747 2811 6500 2857 6249 2903 5994 2949 5739 2995 5486 3041 5237 3087 4996 3133 4763 3180 4539 3226 4327 3272 4127 3318 3940 3364 3768 3410 3611 3456 3470 3502 3347 3548 3242 3594 3158 3640 3094 3686 3052 3732 3033 3779 3038 3825 3069 3871 3125 3917 3207 3963 3311 4009 3436 4055 3579 4101 3737 4147 3909 4193 4091 4239 4283 4285 4480 4332 4682 4378 4884 4424 5087 4470 5285 4516 5479 4562 5664 4608 5839 4654 6002 4700 6152 4746 6289 4792 6413 4838 6523 4884 6620 4931 6704 4977 6773 5023 6828 5069 6869 5115 6896 5161 6908 5207 6905 5253 6887 5299 6854 5345 6805 5391 6742 5437 6663 5484 6570 5530 6466 5576 6351 5622 6227 5668 6097 5714 5960 5760 5820 5806 5677 5852 5533 5898 5390 5944 5249 5990 5113 6036 4981 6083 4857 6129 4741 6175 4636 6221 4541 6267 4457 6313 4384 6359 4321 6405 4268 6451 4226 6497 4195 6543 4174 6589 4163 6636 4162 6682 4172 6728 4191 6774 4221 6820 4261 6866 4310 6912 4370 6958 4439 7004 4517 7050 4603 7096 4694 7142 4791 7188 4892 7235 4996 7281 5102 7327 5208 7373 5313 7419 5416 7465 5517 7511 5613 7557 5704 7603 5789 7649 5865 7695 5933 7741 5992 7788 6041 7834 6081 7880 6112 7926 6135 7972 6150 8018 6156 8064 6155 8110 6146 8156 6130 8202 6108 8248 6078 8294 6042 8340 6000 8387 5952 8433 5898 8479 5839 8525 5775 8571 5707 8617 5636 8663 5563 8709 5488 8755 5413 8801 5337 8847 5263 8893 5190 8940 5121 8986 5054 9032 4992 9078 4935 9124 4884 9170 4840 9216 4803 151 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/specfunc-clausen.texi0000664000252300025230000000126312171574312014052 00000000000000@cindex Clausen functions The Clausen function is defined by the following integral, @tex \beforedisplay $$ Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2)) $$ \afterdisplay @end tex @ifinfo @example Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2)) @end example @end ifinfo @noindent It is related to the dilogarithm by @c{$Cl_2(\theta) = \Im(Li_2(e^{i\theta}))$} @math{Cl_2(\theta) = \Im Li_2(\exp(i\theta))}. The Clausen functions are declared in the header file @file{gsl_sf_clausen.h}. @deftypefun double gsl_sf_clausen (double @var{x}) @deftypefunx int gsl_sf_clausen_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Clausen integral @math{Cl_2(x)}. @end deftypefun gsl-1.16/doc/specfunc-hyperg.texi0000664000252300025230000001252412171574312013720 00000000000000@cindex hypergeometric functions @cindex confluent hypergeometric functions Hypergeometric functions are described in Abramowitz & Stegun, Chapters 13 and 15. These functions are declared in the header file @file{gsl_sf_hyperg.h}. @deftypefun double gsl_sf_hyperg_0F1 (double @var{c}, double @var{x}) @deftypefunx int gsl_sf_hyperg_0F1_e (double @var{c}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the hypergeometric function @c{${}_0F_1(c,x)$} @math{0F1(c,x)}. @comment It is related to Bessel functions @comment 0F1[c,x] = @comment Gamma[c] x^(1/2(1-c)) I_(c-1)(2 Sqrt[x]) @comment Gamma[c] (-x)^(1/2(1-c)) J_(c-1)(2 Sqrt[-x]) @comment exceptions: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_hyperg_1F1_int (int @var{m}, int @var{n}, double @var{x}) @deftypefunx int gsl_sf_hyperg_1F1_int_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the confluent hypergeometric function @c{${}_1F_1(m,n,x) = M(m,n,x)$} @math{1F1(m,n,x) = M(m,n,x)} for integer parameters @var{m}, @var{n}. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_1F1 (double @var{a}, double @var{b}, double @var{x}) @deftypefunx int gsl_sf_hyperg_1F1_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the confluent hypergeometric function @c{${}_1F_1(a,b,x) = M(a,b,x)$} @math{1F1(a,b,x) = M(a,b,x)} for general parameters @var{a}, @var{b}. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_U_int (int @var{m}, int @var{n}, double @var{x}) @deftypefunx int gsl_sf_hyperg_U_int_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the confluent hypergeometric function @math{U(m,n,x)} for integer parameters @var{m}, @var{n}. @comment exceptions: @end deftypefun @deftypefun int gsl_sf_hyperg_U_int_e10_e (int @var{m}, int @var{n}, double @var{x}, gsl_sf_result_e10 * @var{result}) This routine computes the confluent hypergeometric function @math{U(m,n,x)} for integer parameters @var{m}, @var{n} using the @code{gsl_sf_result_e10} type to return a result with extended range. @end deftypefun @deftypefun double gsl_sf_hyperg_U (double @var{a}, double @var{b}, double @var{x}) @deftypefunx int gsl_sf_hyperg_U_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the confluent hypergeometric function @math{U(a,b,x)}. @comment exceptions: @end deftypefun @deftypefun int gsl_sf_hyperg_U_e10_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result_e10 * @var{result}) This routine computes the confluent hypergeometric function @math{U(a,b,x)} using the @code{gsl_sf_result_e10} type to return a result with extended range. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_2F1 (double @var{a}, double @var{b}, double @var{c}, double @var{x}) @deftypefunx int gsl_sf_hyperg_2F1_e (double @var{a}, double @var{b}, double @var{c}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the Gauss hypergeometric function @c{${}_2F_1(a,b,c,x) = F(a,b,c,x)$} @math{2F1(a,b,c,x) = F(a,b,c,x)} for @math{|x| < 1}. If the arguments @math{(a,b,c,x)} are too close to a singularity then the function can return the error code @code{GSL_EMAXITER} when the series approximation converges too slowly. This occurs in the region of @math{x=1}, @math{c - a - b = m} for integer m. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_2F1_conj (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}) @deftypefunx int gsl_sf_hyperg_2F1_conj_e (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the Gauss hypergeometric function @c{${}_2F_1(a_R + i a_I, aR - i aI, c, x)$} @math{2F1(a_R + i a_I, a_R - i a_I, c, x)} with complex parameters for @math{|x| < 1}. @end deftypefun @deftypefun double gsl_sf_hyperg_2F1_renorm (double @var{a}, double @var{b}, double @var{c}, double @var{x}) @deftypefunx int gsl_sf_hyperg_2F1_renorm_e (double @var{a}, double @var{b}, double @var{c}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the renormalized Gauss hypergeometric function @c{${}_2F_1(a,b,c,x) / \Gamma(c)$} @math{2F1(a,b,c,x) / \Gamma(c)} for @math{|x| < 1}. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_2F1_conj_renorm (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}) @deftypefunx int gsl_sf_hyperg_2F1_conj_renorm_e (double @var{aR}, double @var{aI}, double @var{c}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the renormalized Gauss hypergeometric function @c{${}_2F_1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)$} @math{2F1(a_R + i a_I, a_R - i a_I, c, x) / \Gamma(c)} for @math{|x| < 1}. @comment exceptions: @end deftypefun @deftypefun double gsl_sf_hyperg_2F0 (double @var{a}, double @var{b}, double @var{x}) @deftypefunx int gsl_sf_hyperg_2F0_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the hypergeometric function @c{${}_2F_0(a,b,x)$} @math{2F0(a,b,x)}. The series representation is a divergent hypergeometric series. However, for @math{x < 0} we have @c{${}_2F_0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)$} @math{2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)} @comment exceptions: GSL_EDOM @end deftypefun gsl-1.16/doc/specfunc-mathieu.texi0000664000252300025230000002461712171574312014064 00000000000000@cindex Mathieu functions The routines described in this section compute the angular and radial Mathieu functions, and their characteristic values. Mathieu functions are the solutions of the following two differential equations: @tex \beforedisplay $$ \eqalign{ {{d^2 y}\over{d v^2}}& + (a - 2q\cos 2v)y = 0, \cr {{d^2 f}\over{d u^2}}& - (a - 2q\cosh 2u)f = 0. } $$ \afterdisplay @end tex @ifinfo @example d^2y/dv^2 + (a - 2q\cos 2v)y = 0 d^2f/du^2 - (a - 2q\cosh 2u)f = 0 @end example @end ifinfo @noindent The angular Mathieu functions @math{ce_r(x,q)}, @math{se_r(x,q)} are the even and odd periodic solutions of the first equation, which is known as Mathieu's equation. These exist only for the discrete sequence of characteristic values @math{a=a_r(q)} (even-periodic) and @math{a=b_r(q)} (odd-periodic). The radial Mathieu functions @c{$Mc^{(j)}_{r}(z,q)$} @math{Mc^@{(j)@}_@{r@}(z,q)}, @c{$Ms^{(j)}_{r}(z,q)$} @math{Ms^@{(j)@}_@{r@}(z,q)} are the solutions of the second equation, which is referred to as Mathieu's modified equation. The radial Mathieu functions of the first, second, third and fourth kind are denoted by the parameter @math{j}, which takes the value 1, 2, 3 or 4. @comment The angular Mathieu functions can be divided into four types as @comment @tex @comment \beforedisplay @comment $$ @comment \eqalign{ @comment x & = \sum_{m=0}^\infty A_{2m+p} \cos(2m+p)\phi, \quad p = 0, 1, \cr @comment x & = \sum_{m=0}^\infty B_{2m+p} \sin(2m+p)\phi, \quad p = 0, 1. @comment } @comment $$ @comment \afterdisplay @comment @end tex @comment @ifinfo @comment @example @comment x = \sum_(m=0)^\infty A_(2m+p) \cos(2m+p)\phi, p = 0, 1, @comment x = \sum_(m=0)^\infty B_(2m+p) \sin(2m+p)\phi, p = 0, 1. @comment @end example @comment @end ifinfo @comment @noindent @comment The nomenclature used for the angular Mathieu functions is @math{ce_n} @comment for the first solution and @math{se_n} for the second. @comment Similar solutions exist for the radial Mathieu functions by replacing @comment the trigonometric functions with their corresponding hyperbolic @comment functions as shown below. @comment @tex @comment \beforedisplay @comment $$ @comment \eqalign{ @comment x & = \sum_{m=0}^\infty A_{2m+p} \cosh(2m+p)u, \quad p = 0, 1, \cr @comment x & = \sum_{m=0}^\infty B_{2m+p} \sinh(2m+p)u, \quad p = 0, 1. @comment } @comment $$ @comment \afterdisplay @comment @end tex @comment @ifinfo @comment @example @comment x = \sum_(m=0)^\infty A_(2m+p) \cosh(2m+p)u, p = 0, 1, @comment x = \sum_(m=0)^\infty B_(2m+p) \sinh(2m+p)u, p = 0, 1. @comment @end example @comment @end ifinfo @comment @noindent @comment The nomenclature used for the radial Mathieu functions is @math{Mc_n} @comment for the first solution and @math{Ms_n} for the second. The hyperbolic @comment series do not always converge at an acceptable rate. Therefore most @comment texts on the subject suggest using the following equivalent equations @comment that are expanded in series of Bessel and Hankel functions. @comment @tex @comment \beforedisplay @comment $$ @comment \eqalign{ @comment Mc_{2n}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} @comment A_{2m}^{2n}(q)\left[J_m(u_1)Z_m^{(j)}(u_2) + @comment J_m(u_1)Z_m^{(j)}(u_2)\right]/A_2^{2n} \cr @comment Mc_{2n+1}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} @comment A_{2m+1}^{2n+1}(q)\left[J_m(u_1)Z_{m+1}^{(j)}(u_2) + @comment J_{m+1}(u_1)Z_m^{(j)}(u_2)\right]/A_1^{2n+1} \cr @comment Ms_{2n}^{(j)}(x,q) & = \sum_{m=1}^\infty (-1)^{r+k} @comment B_{2m}^{2n}(q)\left[J_{m-1}(u_1)Z_{m+1}^{(j)}(u_2) + @comment J_{m+1}(u_1)Z_{m-1}^{(j)}(u_2)\right]/B_2^{2n} \cr @comment Ms_{2n+1}^{(j)}(x,q) & = \sum_{m=0}^\infty (-1)^{r+k} @comment B_{2m+1}^{2n+1}(q)\left[J_m(u_1)Z_{m+1}^{(j)}(u_2) + @comment J_{m+1}(u_1)Z_m^{(j)}(u_2)\right]/B_1^{2n+1} @comment } @comment $$ @comment \afterdisplay @comment @end tex @comment @ifinfo @comment @example @comment Mc_(2n)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) A_(2m)^(2n)(q) @comment [J_m(u_1)Z_m^(j)(u_2) + J_m(u_1)Z_m^(j)(u_2)]/A_2^(2n) @comment Mc_(2n+1)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) A_(2m+1)^(2n+1)(q) @comment [J_m(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_m^(j)(u_2)]/A_1^(2n+1) @comment Ms_(2n)^(j)(x,q) = \sum_(m=1)^\infty (-1)^(r+k) B_(2m)^(2n)(q) @comment [J_(m-1)(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_(m-1)^(j)(u_2)]/B_2^(2n) @comment Ms_(2n+1)^(j)(x,q) = \sum_(m=0)^\infty (-1)^(r+k) B_(2m+1)^(2n+1)(q) @comment [J_m(u_1)Z_(m+1)^(j)(u_2) + J_(m+1)(u_1)Z_m^(j)(u_2)]/B_1^(2n+1) @comment @end example @comment @end ifinfo @comment @noindent @comment where @c{$u_1 = \sqrt{q} \exp(-x)$} @comment @math{u_1 = \sqrt@{q@} \exp(-x)} and @c{$u_2 = \sqrt@{q@} \exp(x)$} @comment @math{u_2 = \sqrt@{q@} \exp(x)} and @comment @tex @comment \beforedisplay @comment $$ @comment \eqalign{ @comment Z_m^{(1)}(u) & = J_m(u) \cr @comment Z_m^{(2)}(u) & = Y_m(u) \cr @comment Z_m^{(3)}(u) & = H_m^{(1)}(u) \cr @comment Z_m^{(4)}(u) & = H_m^{(2)}(u) @comment } @comment $$ @comment \afterdisplay @comment @end tex @comment @ifinfo @comment @example @comment Z_m^(1)(u) = J_m(u) @comment Z_m^(2)(u) = Y_m(u) @comment Z_m^(3)(u) = H_m^(1)(u) @comment Z_m^(4)(u) = H_m^(2)(u) @comment @end example @comment @end ifinfo @comment @noindent @comment where @math{J_m(u)}, @math{Y_m(u)}, @math{H_m^{(1)}(u)}, and @comment @math{H_m^{(2)}(u)} are the regular and irregular Bessel functions and @comment the Hankel functions, respectively. For more information on the Mathieu functions, see Abramowitz and Stegun, Chapter 20. These functions are defined in the header file @file{gsl_sf_mathieu.h}. @menu * Mathieu Function Workspace:: * Mathieu Function Characteristic Values:: * Angular Mathieu Functions:: * Radial Mathieu Functions:: @end menu @node Mathieu Function Workspace @subsection Mathieu Function Workspace The Mathieu functions can be computed for a single order or for multiple orders, using array-based routines. The array-based routines require a preallocated workspace. @deftypefun {gsl_sf_mathieu_workspace *} gsl_sf_mathieu_alloc (size_t @var{n}, double @var{qmax}) @tpindex gsl_sf_mathieu_workspace This function returns a workspace for the array versions of the Mathieu routines. The arguments @var{n} and @var{qmax} specify the maximum order and @math{q}-value of Mathieu functions which can be computed with this workspace. @comment This is required in order to properly @comment terminate the infinite eigenvalue matrix for high precision solutions. @comment The characteristic values for all orders @math{0 \to n} are stored in @comment the work structure array element @kbd{work->char_value}. @end deftypefun @deftypefun void gsl_sf_mathieu_free (gsl_sf_mathieu_workspace * @var{work}) This function frees the workspace @var{work}. @end deftypefun @node Mathieu Function Characteristic Values @subsection Mathieu Function Characteristic Values @cindex Mathieu Function Characteristic Values @deftypefun int gsl_sf_mathieu_a (int @var{n}, double @var{q}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_mathieu_b (int @var{n}, double @var{q}, gsl_sf_result * @var{result}) These routines compute the characteristic values @math{a_n(q)}, @math{b_n(q)} of the Mathieu functions @math{ce_n(q,x)} and @math{se_n(q,x)}, respectively. @end deftypefun @deftypefun int gsl_sf_mathieu_a_array (int @var{order_min}, int @var{order_max}, double @var{q}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) @deftypefunx int gsl_sf_mathieu_b_array (int @var{order_min}, int @var{order_max}, double @var{q}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) These routines compute a series of Mathieu characteristic values @math{a_n(q)}, @math{b_n(q)} for @math{n} from @var{order_min} to @var{order_max} inclusive, storing the results in the array @var{result_array}. @end deftypefun @node Angular Mathieu Functions @subsection Angular Mathieu Functions @cindex Angular Mathieu Functions @cindex @math{ce(q,x)}, Mathieu function @cindex @math{se(q,x)}, Mathieu function @deftypefun int gsl_sf_mathieu_ce (int @var{n}, double @var{q}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_mathieu_se (int @var{n}, double @var{q}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the angular Mathieu functions @math{ce_n(q,x)} and @math{se_n(q,x)}, respectively. @end deftypefun @deftypefun int gsl_sf_mathieu_ce_array (int @var{nmin}, int @var{nmax}, double @var{q}, double @var{x}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) @deftypefunx int gsl_sf_mathieu_se_array (int @var{nmin}, int @var{nmax}, double @var{q}, double @var{x}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) These routines compute a series of the angular Mathieu functions @math{ce_n(q,x)} and @math{se_n(q,x)} of order @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. @end deftypefun @node Radial Mathieu Functions @subsection Radial Mathieu Functions @cindex Radial Mathieu Functions @deftypefun int gsl_sf_mathieu_Mc (int @var{j}, int @var{n}, double @var{q}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_mathieu_Ms (int @var{j}, int @var{n}, double @var{q}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the radial @var{j}-th kind Mathieu functions @c{$Mc_n^{(j)}(q,x)$} @math{Mc_n^@{(j)@}(q,x)} and @c{$Ms_n^{(j)}(q,x)$} @math{Ms_n^@{(j)@}(q,x)} of order @var{n}. The allowed values of @var{j} are 1 and 2. The functions for @math{j = 3,4} can be computed as @c{$M_n^{(3)} = M_n^{(1)} + iM_n^{(2)}$} @math{M_n^@{(3)@} = M_n^@{(1)@} + iM_n^@{(2)@}} and @c{$M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}$} @math{M_n^@{(4)@} = M_n^@{(1)@} - iM_n^@{(2)@}}, where @c{$M_n^{(j)} = Mc_n^{(j)}$} @math{M_n^@{(j)@} = Mc_n^@{(j)@}} or @c{$Ms_n^{(j)}$} @math{Ms_n^@{(j)@}}. @end deftypefun @deftypefun int gsl_sf_mathieu_Mc_array (int @var{j}, int @var{nmin}, int @var{nmax}, double @var{q}, double @var{x}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) @deftypefunx int gsl_sf_mathieu_Ms_array (int @var{j}, int @var{nmin}, int @var{nmax}, double @var{q}, double @var{x}, gsl_sf_mathieu_workspace * @var{work}, double @var{result_array}[]) These routines compute a series of the radial Mathieu functions of kind @var{j}, with order from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. @end deftypefun gsl-1.16/doc/rand-bivariate-gaussian.tex0000664000252300025230000005664412171574312015160 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(5760,5760) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-bivariate-gaussian.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 288 288 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-bivariate-gaussian.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 0.500 UL LTb 1521 1521 M 0 2718 V 2718 0 R -2718 0 V 0 -2718 R 0 -31 V 680 31 R 0 -31 V 679 31 R 0 -31 V 679 31 R 0 -31 V 680 31 R 0 -31 V 0 31 R 31 0 V -31 680 R 31 0 V -31 679 R 31 0 V -31 679 R 31 0 V -31 680 R 31 0 V 1521 1521 M -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 31 0 R -31 0 V 1.000 UP stroke 1.000 UL LT0 LTb 1.000 UL LT0 4794 4896 M 543 0 V 2893 2926 M 9 4 V 9 2 V 9 2 V 9 0 V 10 -1 V 9 -4 V 2 -3 V -2 -1 V -9 -4 V -10 -3 V -9 -3 V -9 -1 V -9 1 V -9 11 V -81 -95 R -2 3 V 2 1 V 9 4 V 10 3 V 9 3 V 9 1 V 9 -1 V 9 -11 V -9 -4 V -9 -2 V -9 -2 V -9 0 V -10 1 V -9 4 V 2312 2266 M -9 1 V -9 3 V 845 601 R -10 -10 V -9 -10 V -9 -11 V -5 -6 V -4 -4 V -9 -9 V -9 -10 V -9 -9 V -9 -9 V -9 -10 V -9 -9 V -9 -9 V -10 -10 V -9 -9 V -5 -6 V -4 -4 V -9 -9 V -9 -8 V -9 -9 V -9 -9 V -9 -8 V -9 -9 V -9 -9 V -9 -8 V -10 -9 V -9 -9 V -2 -3 V -7 -6 V -9 -8 V -9 -8 V -9 -8 V -8 -8 V -9 -8 V -9 -8 V -9 -8 V -9 -8 V -9 -8 V -10 -8 V -8 -8 V -1 0 V -9 -8 V -9 -7 V -9 -8 V -9 -7 V -9 -8 V -9 -7 V -9 -7 V -9 -7 V -9 -7 V -10 -8 V -9 -7 V -9 -7 V -6 -5 V -3 -3 V -9 -6 V -9 -7 V -9 -7 V -9 -6 V -9 -6 V -9 -7 V -9 -6 V -10 -6 V -9 -6 V -9 -7 V -9 -6 V -9 -6 V -9 -7 V -9 -6 V -3 -2 V 2558 2361 L -9 -6 V -9 -5 V -9 -5 V -10 -5 V -9 -5 V -9 -5 V -9 -5 V -9 -4 V -9 -5 V -9 -4 V -9 -5 V -9 -4 V -9 -4 V -9 -4 V -10 -5 V -9 -4 V -9 -3 V -9 -4 V -9 -4 V -9 -3 V -1 -1 V -8 -2 V -9 -1 V -9 -2 V -9 -1 V -9 0 V -10 0 V -9 1 V 727 1016 R 9 7 V 9 7 V 6 5 V 3 3 V 9 6 V 9 7 V 9 7 V 9 6 V 9 6 V 9 7 V 9 6 V 10 6 V 9 6 V 9 7 V 9 6 V 9 6 V 9 7 V 9 6 V 3 2 V 6 4 V 9 6 V 9 5 V 9 5 V 10 5 V 9 5 V 9 5 V 9 5 V 9 4 V 9 5 V 9 4 V 9 5 V 9 4 V 9 4 V 9 4 V 10 5 V 9 4 V 9 3 V 9 4 V 9 4 V 9 3 V 1 1 V 8 2 V 9 1 V 9 2 V 9 1 V 9 0 V 10 0 V 9 -1 V 9 -1 V 9 -3 V 5 -1 V 4 -7 V 9 -28 V 7 -59 V -7 -15 V -9 -20 V -9 -24 V -9 -30 V -2 -5 V -7 -12 V -9 -14 V -10 -15 V -9 -16 V -9 -18 V -8 -18 V -1 -1 V -9 -12 V -9 -13 V -9 -12 V -9 -14 V -9 -13 V -9 -15 V -9 -14 V 0 -1 V -10 -11 V 3320 3090 L -9 -11 V -9 -12 V -9 -12 V -9 -12 V -9 -13 V -7 -10 V -2 -2 V -9 -11 V -9 -11 V -9 -10 V -10 -11 V -9 -11 V -9 -11 V -9 -11 V -9 -12 V -3 -4 V -6 -6 V -9 -10 V -9 -10 V -9 -10 V -9 -10 V -9 -9 V 2294 2270 M -5 1 V -4 7 V -9 28 V -7 59 V 7 15 V 9 20 V 9 24 V 9 30 V 2 5 V 7 12 V 9 14 V 10 15 V 9 16 V 9 18 V 8 18 V 1 1 V 9 12 V 9 13 V 9 12 V 9 14 V 9 13 V 9 15 V 9 14 V 0 1 V 10 11 V 9 12 V 9 11 V 9 12 V 9 12 V 9 12 V 9 13 V 7 10 V 2 2 V 9 11 V 9 11 V 9 10 V 10 11 V 9 11 V 9 11 V 9 11 V 9 12 V 3 4 V 6 6 V 9 10 V 9 10 V 9 10 V 9 10 V 9 9 V 10 10 V 9 10 V 9 11 V 5 6 V 4 4 V 9 9 V 9 10 V 9 9 V 9 9 V 9 10 V 9 9 V 9 9 V 10 10 V 9 9 V 5 6 V 4 4 V 9 9 V 9 8 V 9 9 V 9 9 V 9 8 V 9 9 V 9 9 V 9 8 V 10 9 V 9 9 V 2 3 V 7 6 V 9 8 V 9 8 V 9 8 V 8 8 V 9 8 V 2902 3168 L 9 8 V 9 8 V 9 8 V 10 8 V 8 8 V 1 0 V 9 8 V 9 7 V 9 8 V 9 7 V 9 8 V 9 7 V 9 7 V 9 7 V 9 7 V 10 8 V 2731 2307 M -10 -7 V -9 -7 V -9 -7 V -9 -7 V -9 -7 V -1 -1 V -8 -7 V -9 -8 V -9 -8 V -9 -7 V -9 -8 V -9 -7 V -10 -7 V -9 -7 V -9 -7 V -9 -6 V -9 -7 V -9 -6 V -9 -7 V -3 -1 V -6 -6 V -9 -7 V -9 -8 V -9 -7 V -10 -7 V -9 -6 V -9 -7 V -9 -6 V -9 -7 V -9 -6 V -9 -6 V -9 -6 V -9 -6 V -9 -6 V -6 -3 V -3 -3 V -10 -7 V -9 -7 V -9 -6 V -9 -6 V -9 -6 V -9 -6 V -9 -6 V -9 -6 V -9 -5 V -9 -6 V -9 -5 V -10 -5 V -9 -6 V -9 -5 V -9 -5 V -7 -4 V -2 -1 V -9 -6 V -9 -5 V -9 -6 V -9 -5 V -9 -5 V -9 -5 V -10 -4 V -9 -5 V -9 -5 V -9 -4 V -9 -4 V -9 -5 V -9 -4 V -9 -4 V -9 -4 V -9 -4 V -9 -3 V -10 -4 V -9 -4 V -9 -3 V -8 -4 V -1 0 V -9 -3 V -9 -3 V -9 -3 V -9 -2 V -9 -3 V -9 -2 V -9 -2 V -10 -2 V -9 -1 V -9 -1 V -9 -1 V -9 -1 V 1976 1872 L -9 0 V -9 1 V -9 1 V -9 2 V -9 2 V -10 4 V -9 4 V -9 5 V 3539 3138 M -10 -11 V -9 -11 V -1 -2 V -8 -10 V -9 -12 V -9 -12 V -9 -11 V -9 -11 V -9 -10 V -9 -11 V -9 -11 V -6 -6 V -3 -5 V -10 -11 V -9 -11 V -9 -11 V -9 -11 V -9 -10 V -9 -10 V -9 -10 V -9 -10 V -4 -5 V -5 -6 V -9 -11 V -9 -11 V -10 -10 V -9 -9 V -9 -10 V -9 -10 V -9 -9 V -9 -10 V -7 -6 V -2 -3 V -9 -11 V -9 -11 V -9 -10 V -9 -10 V -10 -9 V -9 -9 V -9 -10 V -9 -8 V -9 -9 V -4 -4 V -5 -6 V -9 -10 V -9 -10 V -9 -10 V -9 -10 V -9 -9 V -10 -9 V -9 -8 V -9 -9 V -9 -8 V -5 -5 V -4 -4 V -9 -10 V -9 -10 V -9 -9 V -9 -9 V -9 -9 V -9 -9 V -10 -8 V -9 -8 V -9 -8 V -9 -8 V -1 -2 V -8 -8 V -9 -9 V -9 -10 V -9 -9 V -9 -8 V -9 -9 V -9 -8 V -10 -8 V -9 -7 V -9 -8 V -9 -8 V -2 -1 V -7 -8 V -9 -9 V -8 -9 V -9 -8 V -9 -8 V -9 -8 V -9 -8 V -9 -8 V -10 -7 V -9 -8 V -9 -7 V -8 -6 V -1 -1 V -9 -9 V -9 -9 V -9 -8 V -9 -8 V 2749 2322 L -9 -7 V -9 -8 V 708 1443 R 9 6 V 9 5 V 9 5 V 7 4 V 2 1 V 9 6 V 9 5 V 9 6 V 9 5 V 9 5 V 9 5 V 10 4 V 9 5 V 9 5 V 9 4 V 9 4 V 9 5 V 9 4 V 9 4 V 9 4 V 9 4 V 9 3 V 10 4 V 9 4 V 9 3 V 8 4 V 1 0 V 9 3 V 9 3 V 9 3 V 9 2 V 9 3 V 9 2 V 9 2 V 10 2 V 9 1 V 9 1 V 9 1 V 9 1 V 9 0 V 9 0 V 9 -1 V 9 -1 V 9 -2 V 9 -2 V 10 -4 V 9 -4 V 9 -5 V 8 -5 V 1 -2 V 9 -23 V 9 -37 V 5 -32 V -5 -18 V -9 -37 V -8 -39 V -1 -3 V -9 -20 V -9 -21 V -9 -22 V -10 -25 V 0 -3 V -9 -14 V -9 -17 V -9 -17 V -9 -17 V -9 -18 V -5 -10 V -4 -7 V -9 -15 V -9 -15 V -9 -14 V -9 -15 V -10 -16 V -7 -12 V -2 -3 V -9 -14 V -9 -13 V -9 -14 V -9 -13 V -9 -13 V -9 -14 V -7 -10 V -2 -4 V -9 -12 V -9 -13 V -10 -13 V -9 -12 V -9 -13 V -9 -12 V -9 -12 V -2 -2 V -7 -11 V -9 -12 V -9 -12 V -9 -12 V -9 -11 V -9 -12 V -927 -72 R 9 9 V 10 9 V 2640 3092 L 9 9 V 9 8 V 5 5 V 4 4 V 9 10 V 9 10 V 9 9 V 9 9 V 9 9 V 9 9 V 10 8 V 9 8 V 9 8 V 9 8 V 1 2 V 8 8 V 9 9 V 9 10 V 9 9 V 9 8 V 9 9 V 9 8 V 10 8 V 9 7 V 9 8 V 9 8 V 2 1 V 7 8 V 9 9 V 8 9 V 9 8 V 9 8 V 9 8 V 9 8 V 9 8 V 10 7 V 9 8 V 9 7 V 8 6 V 1 1 V 9 9 V 9 9 V 9 8 V 9 8 V 9 8 V 9 7 V 9 8 V 10 7 V 9 7 V 9 7 V 9 7 V 9 7 V 1 1 V 8 7 V 9 8 V 9 8 V 9 7 V 9 8 V 9 7 V 10 7 V 9 7 V 9 7 V 9 6 V 9 7 V 9 6 V 9 7 V 3 1 V 6 6 V 9 7 V 9 8 V 9 7 V 10 7 V 9 6 V 9 7 V 9 6 V 9 7 V 9 6 V 9 6 V 9 6 V 9 6 V 9 6 V 6 3 V 3 3 V 10 7 V 9 7 V 9 6 V 9 6 V 9 6 V 9 6 V 9 6 V 9 6 V 9 5 V 9 6 V 9 5 V 10 5 V 1903 1891 M -8 5 V -1 2 V -9 23 V -9 37 V -5 32 V 5 18 V 9 37 V 8 39 V 1894 2087 L 9 20 V 9 21 V 9 22 V 10 25 V 0 3 V 9 14 V 9 17 V 9 17 V 9 17 V 9 18 V 5 10 V 4 7 V 9 15 V 9 15 V 9 14 V 9 15 V 10 16 V 7 12 V 2 3 V 9 14 V 9 13 V 9 14 V 9 13 V 9 13 V 9 14 V 7 10 V 2 4 V 9 12 V 9 13 V 10 13 V 9 12 V 9 13 V 9 12 V 9 12 V 2 2 V 7 11 V 9 12 V 9 12 V 9 12 V 9 11 V 9 12 V 10 11 V 9 11 V 1 2 V 8 10 V 9 12 V 9 12 V 9 11 V 9 11 V 9 10 V 9 11 V 9 11 V 6 6 V 3 5 V 10 11 V 9 11 V 9 11 V 9 11 V 9 10 V 9 10 V 9 10 V 9 10 V 4 5 V 5 6 V 9 11 V 9 11 V 10 10 V 9 9 V 9 10 V 9 10 V 9 9 V 9 10 V 7 6 V 2 3 V 9 11 V 9 11 V 9 10 V 9 10 V 10 9 V 9 9 V 9 10 V 9 8 V 9 9 V 4 4 V 5 6 V 9 10 V 9 10 V 9 10 V 9 10 V stroke 0.500 UL LTb 4239 4239 M 0 -2718 V -2718 0 R 2718 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP stroke grestore end showpage }}% \put(4950,2880){\cjust{\strut{}$y$}}% \put(2880,810){\cjust{\strut{}$x$}}% \put(4674,4896){\rjust{\strut{}$\sigma_x=1, \sigma_y=1, \rho=0.9$}}% \put(2880,5379){\cjust{\strut{}Bivariate Gaussian Distribution}}% \put(1363,1521){\rjust{\strut{} 0.7}}% \put(1363,1521){\rjust{\strut{} 0.6}}% \put(1363,1521){\rjust{\strut{} 0.5}}% \put(1363,1521){\rjust{\strut{} 0.4}}% \put(1363,1521){\rjust{\strut{} 0.3}}% \put(1363,1521){\rjust{\strut{} 0.2}}% \put(1363,1521){\rjust{\strut{} 0.1}}% \put(1363,1521){\rjust{\strut{} 0}}% \put(4390,4239){\ljust{\strut{} 2}}% \put(4390,3559){\ljust{\strut{} 1}}% \put(4390,2880){\ljust{\strut{} 0}}% \put(4390,2201){\ljust{\strut{}-1}}% \put(4390,1521){\ljust{\strut{}-2}}% \put(4239,1290){\cjust{\strut{}2}}% \put(3559,1290){\cjust{\strut{}1}}% \put(2880,1290){\cjust{\strut{}0}}% \put(2201,1290){\cjust{\strut{}-1}}% \put(1521,1290){\cjust{\strut{}-2}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/poly.texi0000664000252300025230000003441312171574312011602 00000000000000@cindex polynomials, roots of This chapter describes functions for evaluating and solving polynomials. There are routines for finding real and complex roots of quadratic and cubic equations using analytic methods. An iterative polynomial solver is also available for finding the roots of general polynomials with real coefficients (of any order). The functions are declared in the header file @file{gsl_poly.h}. @menu * Polynomial Evaluation:: * Divided Difference Representation of Polynomials:: * Quadratic Equations:: * Cubic Equations:: * General Polynomial Equations:: * Roots of Polynomials Examples:: * Roots of Polynomials References and Further Reading:: @end menu @node Polynomial Evaluation @section Polynomial Evaluation @cindex polynomial evaluation @cindex evaluation of polynomials The functions described here evaluate the polynomial @c{$P(x) = c[0] + c[1] x + c[2] x^2 + \dots + c[len-1] x^{len-1}$} @math{P(x) = c[0] + c[1] x + c[2] x^2 + \dots + c[len-1] x^@{len-1@}} using Horner's method for stability. @inlinefns{} @deftypefun double gsl_poly_eval (const double @var{c}[], const int @var{len}, const double @var{x}) This function evaluates a polynomial with real coefficients for the real variable @var{x}. @end deftypefun @deftypefun gsl_complex gsl_poly_complex_eval (const double @var{c}[], const int @var{len}, const gsl_complex @var{z}) This function evaluates a polynomial with real coefficients for the complex variable @var{z}. @end deftypefun @deftypefun gsl_complex gsl_complex_poly_complex_eval (const gsl_complex @var{c}[], const int @var{len}, const gsl_complex @var{z}) This function evaluates a polynomial with complex coefficients for the complex variable @var{z}. @end deftypefun @deftypefun int gsl_poly_eval_derivs (const double @var{c}[], const size_t @var{lenc}, const double @var{x}, double @var{res}[], const size_t @var{lenres}) This function evaluates a polynomial and its derivatives storing the results in the array @var{res} of size @var{lenres}. The output array contains the values of @math{d^k P/d x^k} for the specified value of @var{x} starting with @math{k = 0}. @end deftypefun @node Divided Difference Representation of Polynomials @section Divided Difference Representation of Polynomials @cindex divided differences, polynomials @cindex evaluation of polynomials, in divided difference form The functions described here manipulate polynomials stored in Newton's divided-difference representation. The use of divided-differences is described in Abramowitz & Stegun sections 25.1.4 and 25.2.26, and Burden and Faires, chapter 3, and discussed briefly below. @noindent Given a function @math{f(x)}, an @math{n}th degree interpolating polynomial @math{P_{n}(x)} can be constructed which agrees with @math{f} at @math{n+1} distinct points @math{x_0,x_1,...,x_{n}}. This polynomial can be written in a form known as Newton's divided-difference representation: @tex \beforedisplay $$ P_{n}(x) = f(x_0) + \sum_{k=1}^n [x_0,x_1,...,x_k] (x-x_0)(x-x_1) \cdots (x-x_{k-1}) $$ \afterdisplay @end tex @ifinfo @example P_n(x) = f(x_0) + \sum_(k=1)^n [x_0,x_1,...,x_k] (x-x_0)(x-x_1)...(x-x_(k-1)) @end example @end ifinfo where the divided differences @math{[x_0,x_1,...,x_k]} are defined in section 25.1.4 of Abramowitz and Stegun. Additionally, it is possible to construct an interpolating polynomial of degree @math{2n+1} which also matches the first derivatives of @math{f} at the points @math{x_0,x_1,...,x_n}. This is called the Hermite interpolating polynomial and is defined as @tex \beforedisplay $$ H_{2n+1}(x) = f(z_0) + \sum_{k=1}^{2n+1} [z_0,z_1,...,z_k] (x-z_0)(x-z_1) \cdots (x-z_{k-1}) $$ \afterdisplay @end tex @ifinfo @example H_(2n+1)(x) = f(z_0) + \sum_(k=1)^(2n+1) [z_0,z_1,...,z_k] (x-z_0)(x-z_1)...(x-z_(k-1)) @end example @end ifinfo where the elements of @math{z = \{x_0,x_0,x_1,x_1,...,x_n,x_n\}} are defined by @math{z_{2k} = z_{2k+1} = x_k}. The divided-differences @math{[z_0,z_1,...,z_k]} are discussed in Burden and Faires, section 3.4. @deftypefun int gsl_poly_dd_init (double @var{dd}[], const double @var{xa}[], const double @var{ya}[], size_t @var{size}) This function computes a divided-difference representation of the interpolating polynomial for the points (@var{x}, @var{y}) stored in the arrays @var{xa} and @var{ya} of length @var{size}. On output the divided-differences of (@var{xa},@var{ya}) are stored in the array @var{dd}, also of length @var{size}. Using the notation above, @math{dd[k] = [x_0,x_1,...,x_k]}. @end deftypefun @deftypefun double gsl_poly_dd_eval (const double @var{dd}[], const double @var{xa}[], const size_t @var{size}, const double @var{x}) This function evaluates the polynomial stored in divided-difference form in the arrays @var{dd} and @var{xa} of length @var{size} at the point @var{x}. @inlinefn{} @end deftypefun @deftypefun int gsl_poly_dd_taylor (double @var{c}[], double @var{xp}, const double @var{dd}[], const double @var{xa}[], size_t @var{size}, double @var{w}[]) This function converts the divided-difference representation of a polynomial to a Taylor expansion. The divided-difference representation is supplied in the arrays @var{dd} and @var{xa} of length @var{size}. On output the Taylor coefficients of the polynomial expanded about the point @var{xp} are stored in the array @var{c} also of length @var{size}. A workspace of length @var{size} must be provided in the array @var{w}. @end deftypefun @deftypefun int gsl_poly_dd_hermite_init (double @var{dd}[], double @var{za}[], const double @var{xa}[], const double @var{ya}[], const double @var{dya}[], const size_t @var{size}) This function computes a divided-difference representation of the interpolating Hermite polynomial for the points (@var{x}, @var{y}) stored in the arrays @var{xa} and @var{ya} of length @var{size}. Hermite interpolation constructs polynomials which also match first derivatives @math{dy/dx} which are provided in the array @var{dya} also of length @var{size}. The first derivatives can be incorported into the usual divided-difference algorithm by forming a new dataset @math{z = \{x_0,x_0,x_1,x_1,...\}}, which is stored in the array @var{za} of length 2*@var{size} on output. On output the divided-differences of the Hermite representation are stored in the array @var{dd}, also of length 2*@var{size}. Using the notation above, @math{dd[k] = [z_0,z_1,...,z_k]}. The resulting Hermite polynomial can be evaluated by calling @code{gsl_poly_dd_eval} and using @var{za} for the input argument @var{xa}. @end deftypefun @node Quadratic Equations @section Quadratic Equations @cindex quadratic equation, solving @deftypefun int gsl_poly_solve_quadratic (double @var{a}, double @var{b}, double @var{c}, double * @var{x0}, double * @var{x1}) This function finds the real roots of the quadratic equation, @tex \beforedisplay $$ a x^2 + b x + c = 0 $$ \afterdisplay @end tex @ifinfo @example a x^2 + b x + c = 0 @end example @end ifinfo @noindent The number of real roots (either zero, one or two) is returned, and their locations are stored in @var{x0} and @var{x1}. If no real roots are found then @var{x0} and @var{x1} are not modified. If one real root is found (i.e. if @math{a=0}) then it is stored in @var{x0}. When two real roots are found they are stored in @var{x0} and @var{x1} in ascending order. The case of coincident roots is not considered special. For example @math{(x-1)^2=0} will have two roots, which happen to have exactly equal values. The number of roots found depends on the sign of the discriminant @math{b^2 - 4 a c}. This will be subject to rounding and cancellation errors when computed in double precision, and will also be subject to errors if the coefficients of the polynomial are inexact. These errors may cause a discrete change in the number of roots. However, for polynomials with small integer coefficients the discriminant can always be computed exactly. @end deftypefun @deftypefun int gsl_poly_complex_solve_quadratic (double @var{a}, double @var{b}, double @var{c}, gsl_complex * @var{z0}, gsl_complex * @var{z1}) This function finds the complex roots of the quadratic equation, @tex \beforedisplay $$ a z^2 + b z + c = 0 $$ \afterdisplay @end tex @ifinfo @example a z^2 + b z + c = 0 @end example @end ifinfo @noindent The number of complex roots is returned (either one or two) and the locations of the roots are stored in @var{z0} and @var{z1}. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components. If only one real root is found (i.e. if @math{a=0}) then it is stored in @var{z0}. @end deftypefun @node Cubic Equations @section Cubic Equations @cindex cubic equation, solving @deftypefun int gsl_poly_solve_cubic (double @var{a}, double @var{b}, double @var{c}, double * @var{x0}, double * @var{x1}, double * @var{x2}) This function finds the real roots of the cubic equation, @tex \beforedisplay $$ x^3 + a x^2 + b x + c = 0 $$ \afterdisplay @end tex @ifinfo @example x^3 + a x^2 + b x + c = 0 @end example @end ifinfo @noindent with a leading coefficient of unity. The number of real roots (either one or three) is returned, and their locations are stored in @var{x0}, @var{x1} and @var{x2}. If one real root is found then only @var{x0} is modified. When three real roots are found they are stored in @var{x0}, @var{x1} and @var{x2} in ascending order. The case of coincident roots is not considered special. For example, the equation @math{(x-1)^3=0} will have three roots with exactly equal values. As in the quadratic case, finite precision may cause equal or closely-spaced real roots to move off the real axis into the complex plane, leading to a discrete change in the number of real roots. @end deftypefun @deftypefun int gsl_poly_complex_solve_cubic (double @var{a}, double @var{b}, double @var{c}, gsl_complex * @var{z0}, gsl_complex * @var{z1}, gsl_complex * @var{z2}) This function finds the complex roots of the cubic equation, @tex \beforedisplay $$ z^3 + a z^2 + b z + c = 0 $$ \afterdisplay @end tex @ifinfo @example z^3 + a z^2 + b z + c = 0 @end example @end ifinfo @noindent The number of complex roots is returned (always three) and the locations of the roots are stored in @var{z0}, @var{z1} and @var{z2}. The roots are returned in ascending order, sorted first by their real components and then by their imaginary components. @end deftypefun @node General Polynomial Equations @section General Polynomial Equations @cindex general polynomial equations, solving The roots of polynomial equations cannot be found analytically beyond the special cases of the quadratic, cubic and quartic equation. The algorithm described in this section uses an iterative method to find the approximate locations of roots of higher order polynomials. @deftypefun {gsl_poly_complex_workspace *} gsl_poly_complex_workspace_alloc (size_t @var{n}) @tpindex gsl_poly_complex_workspace This function allocates space for a @code{gsl_poly_complex_workspace} struct and a workspace suitable for solving a polynomial with @var{n} coefficients using the routine @code{gsl_poly_complex_solve}. The function returns a pointer to the newly allocated @code{gsl_poly_complex_workspace} if no errors were detected, and a null pointer in the case of error. @end deftypefun @deftypefun void gsl_poly_complex_workspace_free (gsl_poly_complex_workspace * @var{w}) This function frees all the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_poly_complex_solve (const double * @var{a}, size_t @var{n}, gsl_poly_complex_workspace * @var{w}, gsl_complex_packed_ptr @var{z}) This function computes the roots of the general polynomial @c{$P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$} @math{P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_@{n-1@} x^@{n-1@}} using balanced-QR reduction of the companion matrix. The parameter @var{n} specifies the length of the coefficient array. The coefficient of the highest order term must be non-zero. The function requires a workspace @var{w} of the appropriate size. The @math{n-1} roots are returned in the packed complex array @var{z} of length @math{2(n-1)}, alternating real and imaginary parts. The function returns @code{GSL_SUCCESS} if all the roots are found. If the QR reduction does not converge, the error handler is invoked with an error code of @code{GSL_EFAILED}. Note that due to finite precision, roots of higher multiplicity are returned as a cluster of simple roots with reduced accuracy. The solution of polynomials with higher-order roots requires specialized algorithms that take the multiplicity structure into account (see e.g. Z. Zeng, Algorithm 835, ACM Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp 218--236). @end deftypefun @node Roots of Polynomials Examples @section Examples To demonstrate the use of the general polynomial solver we will take the polynomial @math{P(x) = x^5 - 1} which has the following roots, @tex \beforedisplay $$ 1, e^{2\pi i /5}, e^{4\pi i /5}, e^{6\pi i /5}, e^{8\pi i /5} $$ \afterdisplay @end tex @ifinfo @example 1, e^@{2\pi i /5@}, e^@{4\pi i /5@}, e^@{6\pi i /5@}, e^@{8\pi i /5@} @end example @end ifinfo @noindent The following program will find these roots. @example @verbatiminclude examples/polyroots.c @end example @noindent The output of the program is, @example $ ./a.out @verbatiminclude examples/polyroots.out @end example @noindent which agrees with the analytic result, @math{z_n = \exp(2 \pi n i/5)}. @node Roots of Polynomials References and Further Reading @section References and Further Reading The balanced-QR method and its error analysis are described in the following papers, @itemize @w{} @item R.S. Martin, G. Peters and J.H. Wilkinson, ``The QR Algorithm for Real Hessenberg Matrices'', @cite{Numerische Mathematik}, 14 (1970), 219--231. @item B.N. Parlett and C. Reinsch, ``Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors'', @cite{Numerische Mathematik}, 13 (1969), 293--304. @item A. Edelman and H. Murakami, ``Polynomial roots from companion matrix eigenvalues'', @cite{Mathematics of Computation}, Vol.@: 64, No.@: 210 (1995), 763--776. @end itemize @noindent The formulas for divided differences are given in the following texts, @itemize @w{} @item Abramowitz and Stegun, @cite{Handbook of Mathematical Functions}, Sections 25.1.4 and 25.2.26. @item R. L. Burden and J. D. Faires, @cite{Numerical Analysis}, 9th edition, ISBN 0-538-73351-9, 2011. @end itemize gsl-1.16/doc/rand-hypergeometric.tex0000664000252300025230000004507112171574312014420 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-hypergeometric.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-hypergeometric.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 3685 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -509 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -2009 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -509 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 2994 658 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$n1=5, n2=20, t=3$}}% \put(3955,5244){\cjust{\strut{}Hypergeometric Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.7}}% \put(900,4328){\rjust{\strut{} 0.6}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,3096){\rjust{\strut{} 0.4}}% \put(900,2479){\rjust{\strut{} 0.3}}% \put(900,1863){\rjust{\strut{} 0.2}}% \put(900,1247){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/diff.texi0000664000252300025230000001067612171574312011534 00000000000000@cindex differentiation of functions, numeric @cindex functions, numerical differentiation @cindex derivatives, calculating numerically @cindex numerical derivatives @cindex slope, see numerical derivative The functions described in this chapter compute numerical derivatives by finite differencing. An adaptive algorithm is used to find the best choice of finite difference and to estimate the error in the derivative. These functions are declared in the header file @file{gsl_deriv.h}. @menu * Numerical Differentiation functions:: * Numerical Differentiation Examples:: * Numerical Differentiation References:: @end menu @node Numerical Differentiation functions @section Functions @deftypefun int gsl_deriv_central (const gsl_function * @var{f}, double @var{x}, double @var{h}, double * @var{result}, double * @var{abserr}) This function computes the numerical derivative of the function @var{f} at the point @var{x} using an adaptive central difference algorithm with a step-size of @var{h}. The derivative is returned in @var{result} and an estimate of its absolute error is returned in @var{abserr}. The initial value of @var{h} is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative is computed using a 5-point rule for equally spaced abscissae at @math{x-h}, @math{x-h/2}, @math{x}, @math{x+h/2}, @math{x+h}, with an error estimate taken from the difference between the 5-point rule and the corresponding 3-point rule @math{x-h}, @math{x}, @math{x+h}. Note that the value of the function at @math{x} does not contribute to the derivative calculation, so only 4-points are actually used. @end deftypefun @deftypefun int gsl_deriv_forward (const gsl_function * @var{f}, double @var{x}, double @var{h}, double * @var{result}, double * @var{abserr}) This function computes the numerical derivative of the function @var{f} at the point @var{x} using an adaptive forward difference algorithm with a step-size of @var{h}. The function is evaluated only at points greater than @var{x}, and never at @var{x} itself. The derivative is returned in @var{result} and an estimate of its absolute error is returned in @var{abserr}. This function should be used if @math{f(x)} has a discontinuity at @var{x}, or is undefined for values less than @var{x}. The initial value of @var{h} is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative at @math{x} is computed using an ``open'' 4-point rule for equally spaced abscissae at @math{x+h/4}, @math{x+h/2}, @math{x+3h/4}, @math{x+h}, with an error estimate taken from the difference between the 4-point rule and the corresponding 2-point rule @math{x+h/2}, @math{x+h}. @end deftypefun @deftypefun int gsl_deriv_backward (const gsl_function * @var{f}, double @var{x}, double @var{h}, double * @var{result}, double * @var{abserr}) This function computes the numerical derivative of the function @var{f} at the point @var{x} using an adaptive backward difference algorithm with a step-size of @var{h}. The function is evaluated only at points less than @var{x}, and never at @var{x} itself. The derivative is returned in @var{result} and an estimate of its absolute error is returned in @var{abserr}. This function should be used if @math{f(x)} has a discontinuity at @var{x}, or is undefined for values greater than @var{x}. This function is equivalent to calling @code{gsl_deriv_forward} with a negative step-size. @end deftypefun @node Numerical Differentiation Examples @section Examples The following code estimates the derivative of the function @c{$f(x) = x^{3/2}$} @math{f(x) = x^@{3/2@}} at @math{x=2} and at @math{x=0}. The function @math{f(x)} is undefined for @math{x<0} so the derivative at @math{x=0} is computed using @code{gsl_deriv_forward}. @example @verbatiminclude examples/diff.c @end example @noindent Here is the output of the program, @example $ ./a.out @verbatiminclude examples/diff.out @end example @node Numerical Differentiation References @section References and Further Reading The algorithms used by these functions are described in the following sources: @itemize @w{} @item Abramowitz and Stegun, @cite{Handbook of Mathematical Functions}, Section 25.3.4, and Table 25.5 (Coefficients for Differentiation). @item S.D. Conte and Carl de Boor, @cite{Elementary Numerical Analysis: An Algorithmic Approach}, McGraw-Hill, 1972. @end itemize gsl-1.16/doc/rand-cauchy.tex0000664000252300025230000005425012171574312012645 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-cauchy.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-cauchy.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1078 R -31 0 V 31 1079 R -31 0 V 31 1078 R -31 0 V 31 1078 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 763 M 19 2 V 20 1 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 19 3 V 20 2 V 19 2 V 20 3 V 19 2 V 20 3 V 19 2 V 19 3 V 20 3 V 19 2 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 3 V 20 4 V 19 3 V 19 4 V 20 3 V 19 4 V 20 4 V 19 4 V 20 4 V 19 4 V 19 5 V 20 4 V 19 5 V 20 4 V 19 5 V 20 5 V 19 5 V 19 5 V 20 6 V 19 5 V 20 6 V 19 5 V 20 6 V 19 6 V 19 7 V 20 6 V 19 7 V 20 7 V 19 7 V 20 7 V 19 7 V 19 8 V 20 8 V 19 8 V 20 8 V 19 9 V 20 9 V 19 9 V 19 10 V 20 10 V 19 10 V 20 10 V 19 11 V 20 11 V 19 12 V 19 12 V 20 12 V 19 13 V 20 13 V 19 14 V 20 14 V 19 15 V 19 15 V 20 16 V 19 16 V 20 17 V 19 18 V 20 18 V 19 19 V 19 20 V 20 20 V 19 21 V 20 22 V 19 23 V 20 24 V 19 24 V 19 26 V 20 27 V 19 27 V 20 29 V 3052 1635 L 20 31 V 19 33 V 19 33 V 20 35 V 19 37 V 20 38 V 19 39 V 20 41 V 19 43 V 19 44 V 20 46 V 19 48 V 20 50 V 19 51 V 20 54 V 19 55 V 19 57 V 20 59 V 19 61 V 20 63 V 19 65 V 20 66 V 19 69 V 19 69 V 20 71 V 19 73 V 20 73 V 19 74 V 20 74 V 19 75 V 19 74 V 20 74 V 19 72 V 20 71 V 19 68 V 20 65 V 19 62 V 19 59 V 20 53 V 19 48 V 20 43 V 19 36 V 20 30 V 19 22 V 19 16 V 20 7 V 19 0 V 20 -7 V 19 -16 V 19 -22 V 20 -30 V 19 -36 V 20 -43 V 19 -48 V 20 -53 V 19 -59 V 19 -62 V 20 -65 V 19 -68 V 20 -71 V 19 -72 V 20 -74 V 19 -74 V 19 -75 V 20 -74 V 19 -74 V 20 -73 V 19 -73 V 20 -71 V 19 -69 V 19 -69 V 20 -66 V 19 -65 V 20 -63 V 19 -61 V 20 -59 V 19 -57 V 19 -55 V 20 -54 V 19 -51 V 20 -50 V 19 -48 V 20 -46 V 19 -44 V 19 -43 V 20 -41 V 19 -39 V 20 -38 V 19 -37 V 20 -35 V 19 -33 V 19 -33 V 20 -31 V 19 -30 V 20 -29 V 19 -27 V 20 -27 V 19 -26 V 19 -24 V 20 -24 V 19 -23 V 20 -22 V 19 -21 V 20 -20 V 5092 1342 L 19 -19 V 20 -18 V 19 -18 V 20 -17 V 19 -16 V 20 -16 V 19 -15 V 19 -15 V 20 -14 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -12 V 20 -11 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 868 M 19 2 V 20 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 3 V 20 3 V 19 4 V 19 3 V 20 4 V 19 3 V 20 4 V 19 4 V 20 4 V 19 3 V 19 4 V 20 4 V 19 5 V 20 4 V 19 4 V 20 4 V 19 5 V 19 4 V 20 5 V 19 4 V 20 5 V 19 5 V 20 5 V 19 5 V 19 5 V 20 5 V 19 5 V 20 6 V 19 5 V 20 6 V 19 6 V 19 5 V 20 6 V 19 6 V 20 6 V 19 7 V 20 6 V 19 7 V 19 6 V 20 7 V 19 7 V 20 7 V 19 7 V 20 8 V 19 7 V 19 8 V 20 8 V 19 8 V 20 8 V 19 8 V 20 8 V 19 9 V 19 9 V 20 9 V 19 9 V 20 9 V 19 10 V 20 9 V 19 10 V 19 10 V 20 10 V 19 11 V 20 11 V 19 10 V 20 12 V 19 11 V 19 11 V 20 12 V 19 12 V 20 12 V 19 13 V 20 12 V 19 13 V 19 13 V 20 14 V 19 13 V 20 14 V 19 14 V 20 14 V 19 15 V 19 15 V 20 15 V 19 15 V 20 15 V 19 16 V 20 16 V 19 16 V 19 17 V 20 16 V 19 17 V 20 17 V 3052 1700 L 20 18 V 19 17 V 19 18 V 20 18 V 19 18 V 20 18 V 19 19 V 20 18 V 19 19 V 19 18 V 20 19 V 19 19 V 20 18 V 19 19 V 20 18 V 19 19 V 19 18 V 20 18 V 19 19 V 20 17 V 19 18 V 20 17 V 19 18 V 19 16 V 20 17 V 19 16 V 20 15 V 19 15 V 20 15 V 19 14 V 19 13 V 20 13 V 19 12 V 20 11 V 19 11 V 20 10 V 19 9 V 19 8 V 20 8 V 19 6 V 20 6 V 19 4 V 20 4 V 19 3 V 19 2 V 20 1 V 19 0 V 20 -1 V 19 -2 V 19 -3 V 20 -4 V 19 -4 V 20 -6 V 19 -6 V 20 -8 V 19 -8 V 19 -9 V 20 -10 V 19 -11 V 20 -11 V 19 -12 V 20 -13 V 19 -13 V 19 -14 V 20 -15 V 19 -15 V 20 -15 V 19 -16 V 20 -17 V 19 -16 V 19 -18 V 20 -17 V 19 -18 V 20 -17 V 19 -19 V 20 -18 V 19 -18 V 19 -19 V 20 -18 V 19 -19 V 20 -18 V 19 -19 V 20 -19 V 19 -18 V 19 -19 V 20 -18 V 19 -19 V 20 -18 V 19 -18 V 20 -18 V 19 -18 V 19 -17 V 20 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -17 V 19 -16 V 20 -16 V 19 -16 V 20 -15 V 19 -15 V 20 -15 V 5092 1508 L 19 -15 V 20 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 20 -12 V 19 -11 V 19 -11 V 20 -12 V 19 -10 V 20 -11 V 19 -11 V 20 -10 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=2$}}% \put(5957,4781){\rjust{\strut{}$a=1$}}% \put(3955,5244){\cjust{\strut{}Cauchy Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4944){\rjust{\strut{} 0.4}}% \put(900,3866){\rjust{\strut{} 0.3}}% \put(900,2788){\rjust{\strut{} 0.2}}% \put(900,1709){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/usage.texi0000664000252300025230000004775412171574312011737 00000000000000@cindex standards conformance, ANSI C @cindex ANSI C, use of @cindex C extensions, compatible use of @cindex compatibility This chapter describes how to compile programs that use GSL, and introduces its conventions. @menu * An Example Program:: * Compiling and Linking:: * Shared Libraries:: * ANSI C Compliance:: * Inline functions:: * Long double:: * Portability functions:: * Alternative optimized functions:: * Support for different numeric types:: * Compatibility with C++:: * Aliasing of arrays:: * Thread-safety:: * Deprecated Functions:: * Code Reuse:: @end menu @node An Example Program @section An Example Program The following short program demonstrates the use of the library by computing the value of the Bessel function @math{J_0(x)} for @math{x=5}, @example @verbatiminclude examples/intro.c @end example @noindent The output is shown below, and should be correct to double-precision accuracy,@footnote{The last few digits may vary slightly depending on the compiler and platform used---this is normal.} @example @verbatiminclude examples/intro.out @end example @noindent The steps needed to compile this program are described in the following sections. @node Compiling and Linking @section Compiling and Linking @cindex compiling programs, include paths @cindex including GSL header files @cindex header files, including The library header files are installed in their own @file{gsl} directory. You should write any preprocessor include statements with a @file{gsl/} directory prefix thus, @example #include @end example @noindent If the directory is not installed on the standard search path of your compiler you will also need to provide its location to the preprocessor as a command line flag. The default location of the @file{gsl} directory is @file{/usr/local/include/gsl}. A typical compilation command for a source file @file{example.c} with the GNU C compiler @code{gcc} is, @example $ gcc -Wall -I/usr/local/include -c example.c @end example @noindent This results in an object file @file{example.o}. The default include path for @code{gcc} searches @file{/usr/local/include} automatically so the @code{-I} option can actually be omitted when GSL is installed in its default location. @menu * Linking programs with the library:: * Linking with an alternative BLAS library:: @end menu @node Linking programs with the library @subsection Linking programs with the library @cindex compiling programs, library paths @cindex linking with GSL libraries @cindex libraries, linking with The library is installed as a single file, @file{libgsl.a}. A shared version of the library @file{libgsl.so} is also installed on systems that support shared libraries. The default location of these files is @file{/usr/local/lib}. If this directory is not on the standard search path of your linker you will also need to provide its location as a command line flag. To link against the library you need to specify both the main library and a supporting @sc{cblas} library, which provides standard basic linear algebra subroutines. A suitable @sc{cblas} implementation is provided in the library @file{libgslcblas.a} if your system does not provide one. The following example shows how to link an application with the library, @example $ gcc -L/usr/local/lib example.o -lgsl -lgslcblas -lm @end example @noindent The default library path for @code{gcc} searches @file{/usr/local/lib} automatically so the @code{-L} option can be omitted when GSL is installed in its default location. The option @code{-lm} links with the system math library. On some systems it is not needed.@footnote{It is not needed on MacOS X.} For a tutorial introduction to the GNU C Compiler and related programs, see @url{http://www.network-theory.co.uk/gcc/intro/,@cite{An Introduction to GCC},@cite{An Introduction to GCC}} (ISBN 0954161793).@footnote{@url{http://www.network-theory.co.uk/gcc/intro/}} @node Linking with an alternative BLAS library @subsection Linking with an alternative BLAS library The following command line shows how you would link the same application with an alternative @sc{cblas} library @file{libcblas.a}, @example $ gcc example.o -lgsl -lcblas -lm @end example @noindent For the best performance an optimized platform-specific @sc{cblas} library should be used for @code{-lcblas}. The library must conform to the @sc{cblas} standard. The @sc{atlas} package provides a portable high-performance @sc{blas} library with a @sc{cblas} interface. It is free software and should be installed for any work requiring fast vector and matrix operations. The following command line will link with the @sc{atlas} library and its @sc{cblas} interface, @example $ gcc example.o -lgsl -lcblas -latlas -lm @end example @noindent If the @sc{atlas} library is installed in a non-standard directory use the @code{-L} option to add it to the search path, as described above. For more information about @sc{blas} functions see @ref{BLAS Support}. @comment The program @code{gsl-config} provides information on the local version @comment of the library. For example, the following command shows that the @comment library has been installed under the directory @file{/usr/local}, @comment @example @comment $ gsl-config --prefix @comment /usr/local @comment @end example @comment @noindent @comment Further information is available using the command @code{gsl-config --help}. @node Shared Libraries @section Shared Libraries @cindex shared libraries @cindex libraries, shared @cindex LD_LIBRARY_PATH To run a program linked with the shared version of the library the operating system must be able to locate the corresponding @file{.so} file at runtime. If the library cannot be found, the following error will occur: @example $ ./a.out ./a.out: error while loading shared libraries: libgsl.so.0: cannot open shared object file: No such file or directory @end example @noindent To avoid this error, either modify the system dynamic linker configuration@footnote{@file{/etc/ld.so.conf} on GNU/Linux systems.} or define the shell variable @code{LD_LIBRARY_PATH} to include the directory where the library is installed. For example, in the Bourne shell (@code{/bin/sh} or @code{/bin/bash}), the library search path can be set with the following commands: @example $ LD_LIBRARY_PATH=/usr/local/lib $ export LD_LIBRARY_PATH $ ./example @end example @noindent In the C-shell (@code{/bin/csh} or @code{/bin/tcsh}) the equivalent command is, @example % setenv LD_LIBRARY_PATH /usr/local/lib @end example @noindent The standard prompt for the C-shell in the example above is the percent character @samp{%}, and should not be typed as part of the command. To save retyping these commands each session they can be placed in an individual or system-wide login file. To compile a statically linked version of the program, use the @code{-static} flag in @code{gcc}, @example $ gcc -static example.o -lgsl -lgslcblas -lm @end example @node ANSI C Compliance @section ANSI C Compliance The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). It should be portable to any system with a working ANSI C compiler. The library does not rely on any non-ANSI extensions in the interface it exports to the user. Programs you write using GSL can be ANSI compliant. Extensions which can be used in a way compatible with pure ANSI C are supported, however, via conditional compilation. This allows the library to take advantage of compiler extensions on those platforms which support them. When an ANSI C feature is known to be broken on a particular system the library will exclude any related functions at compile-time. This should make it impossible to link a program that would use these functions and give incorrect results. To avoid namespace conflicts all exported function names and variables have the prefix @code{gsl_}, while exported macros have the prefix @code{GSL_}. @node Inline functions @section Inline functions @vrindex @code{HAVE_INLINE} @vrindex @code{GSL_C99_INLINE} @cindex inline functions @cindex HAVE_INLINE @cindex GSL_C99_INLINE @cindex C99, inline keyword @cindex @code{extern inline} The @code{inline} keyword is not part of the original ANSI C standard (C89) so the library does not export any inline function definitions by default. Inline functions were introduced officially in the newer C99 standard but most C89 compilers have also included @code{inline} as an extension for a long time. To allow the use of inline functions, the library provides optional inline versions of performance-critical routines by conditional compilation in the exported header files. The inline versions of these functions can be included by defining the macro @code{HAVE_INLINE} when compiling an application, @example $ gcc -Wall -c -DHAVE_INLINE example.c @end example @noindent If you use @code{autoconf} this macro can be defined automatically. If you do not define the macro @code{HAVE_INLINE} then the slower non-inlined versions of the functions will be used instead. By default, the actual form of the inline keyword is @code{extern inline}, which is a @code{gcc} extension that eliminates unnecessary function definitions. If the form @code{extern inline} causes problems with other compilers a stricter autoconf test can be used, see @ref{Autoconf Macros}. When compiling with @code{gcc} in C99 mode (@code{gcc -std=c99}) the header files automatically switch to C99-compatible inline function declarations instead of @code{extern inline}. With other C99 compilers, define the macro @code{GSL_C99_INLINE} to use these declarations. @node Long double @section Long double @cindex long double In general, the algorithms in the library are written for double precision only. The @code{long double} type is not supported for actual computation. One reason for this choice is that the precision of @code{long double} is platform dependent. The IEEE standard only specifies the minimum precision of extended precision numbers, while the precision of @code{double} is the same on all platforms. However, it is sometimes necessary to interact with external data in long-double format, so the vector and matrix datatypes include long-double versions. It should be noted that in some system libraries the @code{stdio.h} formatted input/output functions @code{printf} and @code{scanf} are not implemented correctly for @code{long double}. Undefined or incorrect results are avoided by testing these functions during the @code{configure} stage of library compilation and eliminating certain GSL functions which depend on them if necessary. The corresponding line in the @code{configure} output looks like this, @example checking whether printf works with long double... no @end example @noindent Consequently when @code{long double} formatted input/output does not work on a given system it should be impossible to link a program which uses GSL functions dependent on this. If it is necessary to work on a system which does not support formatted @code{long double} input/output then the options are to use binary formats or to convert @code{long double} results into @code{double} for reading and writing. @node Portability functions @section Portability functions To help in writing portable applications GSL provides some implementations of functions that are found in other libraries, such as the BSD math library. You can write your application to use the native versions of these functions, and substitute the GSL versions via a preprocessor macro if they are unavailable on another platform. For example, after determining whether the BSD function @code{hypot} is available you can include the following macro definitions in a file @file{config.h} with your application, @example /* Substitute gsl_hypot for missing system hypot */ #ifndef HAVE_HYPOT #define hypot gsl_hypot #endif @end example @noindent The application source files can then use the include command @code{#include } to replace each occurrence of @code{hypot} by @code{gsl_hypot} when @code{hypot} is not available. This substitution can be made automatically if you use @code{autoconf}, see @ref{Autoconf Macros}. In most circumstances the best strategy is to use the native versions of these functions when available, and fall back to GSL versions otherwise, since this allows your application to take advantage of any platform-specific optimizations in the system library. This is the strategy used within GSL itself. @node Alternative optimized functions @section Alternative optimized functions @cindex alternative optimized functions @cindex optimized functions, alternatives The main implementation of some functions in the library will not be optimal on all architectures. For example, there are several ways to compute a Gaussian random variate and their relative speeds are platform-dependent. In cases like this the library provides alternative implementations of these functions with the same interface. If you write your application using calls to the standard implementation you can select an alternative version later via a preprocessor definition. It is also possible to introduce your own optimized functions this way while retaining portability. The following lines demonstrate the use of a platform-dependent choice of methods for sampling from the Gaussian distribution, @example #ifdef SPARC #define gsl_ran_gaussian gsl_ran_gaussian_ratio_method #endif #ifdef INTEL #define gsl_ran_gaussian my_gaussian #endif @end example @noindent These lines would be placed in the configuration header file @file{config.h} of the application, which should then be included by all the source files. Note that the alternative implementations will not produce bit-for-bit identical results, and in the case of random number distributions will produce an entirely different stream of random variates. @node Support for different numeric types @section Support for different numeric types Many functions in the library are defined for different numeric types. This feature is implemented by varying the name of the function with a type-related modifier---a primitive form of C++ templates. The modifier is inserted into the function name after the initial module prefix. The following table shows the function names defined for all the numeric types of an imaginary module @code{gsl_foo} with function @code{fn}, @example gsl_foo_fn double gsl_foo_long_double_fn long double gsl_foo_float_fn float gsl_foo_long_fn long gsl_foo_ulong_fn unsigned long gsl_foo_int_fn int gsl_foo_uint_fn unsigned int gsl_foo_short_fn short gsl_foo_ushort_fn unsigned short gsl_foo_char_fn char gsl_foo_uchar_fn unsigned char @end example @noindent The normal numeric precision @code{double} is considered the default and does not require a suffix. For example, the function @code{gsl_stats_mean} computes the mean of double precision numbers, while the function @code{gsl_stats_int_mean} computes the mean of integers. A corresponding scheme is used for library defined types, such as @code{gsl_vector} and @code{gsl_matrix}. In this case the modifier is appended to the type name. For example, if a module defines a new type-dependent struct or typedef @code{gsl_foo} it is modified for other types in the following way, @example gsl_foo double gsl_foo_long_double long double gsl_foo_float float gsl_foo_long long gsl_foo_ulong unsigned long gsl_foo_int int gsl_foo_uint unsigned int gsl_foo_short short gsl_foo_ushort unsigned short gsl_foo_char char gsl_foo_uchar unsigned char @end example @noindent When a module contains type-dependent definitions the library provides individual header files for each type. The filenames are modified as shown in the below. For convenience the default header includes the definitions for all the types. To include only the double precision header file, or any other specific type, use its individual filename. @example #include All types #include double #include long double #include float #include long #include unsigned long #include int #include unsigned int #include short #include unsigned short #include char #include unsigned char @end example @node Compatibility with C++ @section Compatibility with C++ @cindex C++, compatibility @cindex exceptions, C++ The library header files automatically define functions to have @code{extern "C"} linkage when included in C++ programs. This allows the functions to be called directly from C++. To use C++ exception handling within user-defined functions passed to the library as parameters, the library must be built with the additional @code{CFLAGS} compilation option @option{-fexceptions}. @node Aliasing of arrays @section Aliasing of arrays @cindex aliasing of arrays The library assumes that arrays, vectors and matrices passed as modifiable arguments are not aliased and do not overlap with each other. This removes the need for the library to handle overlapping memory regions as a special case, and allows additional optimizations to be used. If overlapping memory regions are passed as modifiable arguments then the results of such functions will be undefined. If the arguments will not be modified (for example, if a function prototype declares them as @code{const} arguments) then overlapping or aliased memory regions can be safely used. @node Thread-safety @section Thread-safety The library can be used in multi-threaded programs. All the functions are thread-safe, in the sense that they do not use static variables. Memory is always associated with objects and not with functions. For functions which use @dfn{workspace} objects as temporary storage the workspaces should be allocated on a per-thread basis. For functions which use @dfn{table} objects as read-only memory the tables can be used by multiple threads simultaneously. Table arguments are always declared @code{const} in function prototypes, to indicate that they may be safely accessed by different threads. There are a small number of static global variables which are used to control the overall behavior of the library (e.g. whether to use range-checking, the function to call on fatal error, etc). These variables are set directly by the user, so they should be initialized once at program startup and not modified by different threads. @node Deprecated Functions @section Deprecated Functions @cindex deprecated functions From time to time, it may be necessary for the definitions of some functions to be altered or removed from the library. In these circumstances the functions will first be declared @dfn{deprecated} and then removed from subsequent versions of the library. Functions that are deprecated can be disabled in the current release by setting the preprocessor definition @code{GSL_DISABLE_DEPRECATED}. This allows existing code to be tested for forwards compatibility. @node Code Reuse @section Code Reuse @cindex code reuse in applications @cindex source code, reuse in applications Where possible the routines in the library have been written to avoid dependencies between modules and files. This should make it possible to extract individual functions for use in your own applications, without needing to have the whole library installed. You may need to define certain macros such as @code{GSL_ERROR} and remove some @code{#include} statements in order to compile the files as standalone units. Reuse of the library code in this way is encouraged, subject to the terms of the GNU General Public License. gsl-1.16/doc/specfunc-gegenbauer.texi0000664000252300025230000000377512171574312014536 00000000000000@cindex Gegenbauer functions The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials. The functions described in this section are declared in the header file @file{gsl_sf_gegenbauer.h}. @deftypefun double gsl_sf_gegenpoly_1 (double @var{lambda}, double @var{x}) @deftypefunx double gsl_sf_gegenpoly_2 (double @var{lambda}, double @var{x}) @deftypefunx double gsl_sf_gegenpoly_3 (double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_gegenpoly_1_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_gegenpoly_2_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_gegenpoly_3_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These functions evaluate the Gegenbauer polynomials @c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} using explicit representations for @math{n =1, 2, 3}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_gegenpoly_n (int @var{n}, double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_gegenpoly_n_e (int @var{n}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These functions evaluate the Gegenbauer polynomial @c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} for a specific value of @var{n}, @var{lambda}, @var{x} subject to @math{\lambda > -1/2}, @c{$n \ge 0$} @math{n >= 0}. @comment Domain: lambda > -1/2, n >= 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_gegenpoly_array (int @var{nmax}, double @var{lambda}, double @var{x}, double @var{result_array}[]) This function computes an array of Gegenbauer polynomials @c{$C^{(\lambda)}_n(x)$} @math{C^@{(\lambda)@}_n(x)} for @math{n = 0, 1, 2, \dots, nmax}, subject to @math{\lambda > -1/2}, @c{$nmax \ge 0$} @math{nmax >= 0}. @comment Conditions: n = 0, 1, 2, ... nmax @comment Domain: lambda > -1/2, nmax >= 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/gsl-ref.texi0000664000252300025230000004733212171574312012162 00000000000000\input texinfo @c -*-texinfo-*- @c This will be for the printing version of the manual @c @input config-local.texi @c %**start of header @setfilename gsl-ref.info @settitle GNU Scientific Library -- Reference Manual @finalout @set frontcontents @ifset publish @setchapternewpage odd @end ifset @c %**end of header @dircategory Software libraries @direntry * gsl-ref: (gsl-ref). GNU Scientific Library -- Reference @end direntry @c How to use the math macros @c ========================== @c @c For simple expressions, simply use the @math{} command, e.g. @c @c @math{\exp(x)/(1+x^2)} @c @c but if the expression includes characters that need to be 'escaped' @c in texinfo, like '{' or '}', or needs different output for TeX and info, @c then use the following form, @c @c blah blah blah @c{$y^{1+b} \le \pi$} @c @math{y^@{1+b@} <= \pi} @c @c The first part using @c{} must appear at the end of a line (it reads @c up to the line end -- as far as texinfo is concerned it's actually @c a 'comment'). The comment command @c has been modified to capture @c a TeX expression which is output by the next @math. @c @c For ordinary comments use the @comment command. @tex % Mathematical macros taken from the GNU Calc Manual % ================================================== % % Some special kludges to make TeX formatting prettier. % Because makeinfo.c exists, we can't just define new commands. % So instead, we take over little-used existing commands. % \gdef\goodtex{\tex \let\rm\goodrm \let\t\ttfont \mathactive} \gdef\goodrm{\fam0\tenrm} \gdef\math{\goodtex$\mathxxx} \gdef\mathxxx#1{#1$\endgroup} % \global\let\oldxrefX=\xrefX \gdef\xrefX[#1]{\begingroup\let\math=\dfn\oldxrefX[#1]\endgroup} % % Redefine @c{tex-stuff} \n @whatever{info-stuff}. \gdef\c{\futurelet\next\mycxxx} \gdef\mycxxx{% \ifx\next\bgroup \goodtex\let\next\mycxxy \else\ifx\next\mindex \let\next\relax \else\ifx\next\kindex \let\next\relax \else\ifx\next\starindex \let\next\relax \else \let\next\comment \fi\fi\fi\fi \next } \gdef\mycxxy#1#2{#1\endgroup\mycxxz} \gdef\mycxxz#1{} % % Define \Hat to take over from \hat as an accent \gdef\Hat{\mathaccent "705E} % %\gdef\beforedisplay{\vskip-10pt} %\gdef\afterdisplay{\vskip-5pt} \gdef\beforedisplay{} \gdef\afterdisplay{} {\globaldefs = 1 \abovedisplayskip=7pt plus 2pt minus 1pt \belowdisplayskip=7pt plus 2pt minus 1pt \abovedisplayshortskip=7pt plus 2pt minus 1pt \belowdisplayshortskip=7pt plus 2pt minus 1pt} %\abovedisplayskip=12pt plus 3pt minus 3pt %\belowdisplayskip=12pt plus 3pt minus 3pt %\abovedisplayshortskip=7pt plus 1pt minus 1pt %\belowdisplayshortskip=7pt plus 1pt minus 1pt %\gdef\beforedisplayh{\vskip-25pt} %\gdef\afterdisplayh{\vskip-10pt} % \gdef\arcsec{\hbox{\rm arcsec}} \gdef\arccsc{\hbox{\rm arccsc}} \gdef\arccot{\hbox{\rm arccot}} \gdef\sech{\hbox{\rm sech}} \gdef\csch{\hbox{\rm csch}} \gdef\coth{\hbox{\rm coth}} \gdef\arcsinh{\hbox{\rm arcsinh}} \gdef\arccosh{\hbox{\rm arccosh}} \gdef\arctanh{\hbox{\rm arctanh}} \gdef\arcsech{\hbox{\rm arcsech}} \gdef\arccsch{\hbox{\rm arccsch}} \gdef\arccoth{\hbox{\rm arccoth}} % \gdef\Re{\hbox{\rm Re}} \gdef\Im{\hbox{\rm Im}} \gdef\Sin{\hbox{\rm Sin}} \gdef\Cos{\hbox{\rm Cos}} \gdef\Log{\hbox{\rm Log}} % \gdef\erf{\hbox{\rm erf}} \gdef\erfc{\hbox{\rm erfc}} \gdef\sinc{\hbox{\rm sinc}} \gdef\sgn{\hbox{\rm sgn}} \gdef\sign{\hbox{\rm sign}} \gdef\det{\hbox{\rm det}} \gdef\Var{\hbox{\rm Var}} \gdef\arg{\hbox{\rm arg}} % avoid temporary clobbering of arg in texinfo-4.8 @end tex @macro inlinefn An inline version of this function is used when @code{HAVE_INLINE} is defined. @end macro @macro inlinefns Inline versions of these functions are used when @code{HAVE_INLINE} is defined. @end macro @include version.texi @set GSL @i{GNU Scientific Library} @copying Copyright @copyright{} 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end copying @titlepage @title GNU Scientific Library @subtitle Reference Manual @subtitle Edition @value{EDITION}, for GSL Version @value{VERSION} @subtitle @value{UPDATED} @author Mark Galassi Los Alamos National Laboratory @comment @email{rosalia@@lanl.gov} @sp 1 @author Jim Davies Department of Computer Science, Georgia Institute of Technology @comment @email{jimmyd@@nis.lanl.gov} @sp 1 @author James Theiler Astrophysics and Radiation Measurements Group, Los Alamos National Laboratory @comment @email{jt@@nis.lanl.gov} @sp 1 @author Brian Gough Network Theory Limited @comment @email{bjg@@network-theory.co.uk} @sp 1 @comment Asked to be moved to 'contributors' appendix @comment @author Reid Priedhorsky @comment Mathematical Modeling and Analysis Group, Los Alamos National Laboratory @comment @email{rp@@lanl.gov} @comment @sp 1 @author Gerard Jungman Theoretical Astrophysics Group, Los Alamos National Laboratory @comment @email{jungman@@lanl.gov} @sp 1 @author Patrick Alken University of Colorado at Boulder @sp 1 @author Michael Booth Department of Physics and Astronomy, The Johns Hopkins University @comment @email{booth@@planck.pha.jhu.edu} or @email{booth@@debian.org} @sp 1 @author Fabrice Rossi University of Paris-Dauphine @comment @email{rossi@@ufrmd.dauphine.fr} @sp 1 @author Rhys Ulerich @comment @email{rhys.ulerich@gmail.com} @sp 1 @page @vskip 0pt plus 1filll @insertcopying @ifclear publish Printed copies of this manual can be purchased from Network Theory Ltd at @uref{http://www.network-theory.co.uk/gsl/manual/}. The money raised from sales of the manual helps support the development of GSL. @end ifclear @end titlepage @iftex @ifset frontcontents @contents @end ifset @end iftex @ifnottex @node Top, Introduction, (dir), (dir) @top GSL This file documents the @value{GSL} (GSL), a collection of numerical routines for scientific computing. It corresponds to release @value{VERSION} of the library. Please report any errors in this manual to @email{bug-gsl@@gnu.org}. More information about GSL can be found at the project homepage, @uref{http://www.gnu.org/software/gsl/}. Printed copies of this manual can be purchased from Network Theory Ltd at @uref{http://www.network-theory.co.uk/gsl/manual/}. The money raised from sales of the manual helps support the development of GSL. A Japanese translation of this manual is available from the GSL project homepage thanks to Daisuke Tominaga. @insertcopying @sp 1 @end ifnottex @menu * Introduction:: * Using the library:: * Error Handling:: * Mathematical Functions:: * Complex Numbers:: * Polynomials:: * Special Functions:: * Vectors and Matrices:: * Permutations:: * Combinations:: * Multisets:: * Sorting:: * BLAS Support:: * Linear Algebra:: * Eigensystems:: * Fast Fourier Transforms:: * Numerical Integration:: * Random Number Generation:: * Quasi-Random Sequences:: * Random Number Distributions:: * Statistics:: * Histograms:: * N-tuples:: * Monte Carlo Integration:: * Simulated Annealing:: * Ordinary Differential Equations:: * Interpolation:: * Numerical Differentiation:: * Chebyshev Approximations:: * Series Acceleration:: * Wavelet Transforms:: * Discrete Hankel Transforms:: * One dimensional Root-Finding:: * One dimensional Minimization:: * Multidimensional Root-Finding:: * Multidimensional Minimization:: * Least-Squares Fitting:: * Nonlinear Least-Squares Fitting:: * Basis Splines:: * Physical Constants:: * IEEE floating-point arithmetic:: * Debugging Numerical Programs:: * Contributors to GSL:: * Autoconf Macros:: * GSL CBLAS Library:: * GNU General Public License:: * GNU Free Documentation License:: * Function Index:: * Variable Index:: * Type Index:: * Concept Index:: @end menu @node Introduction, Using the library, Top, Top @chapter Introduction @include intro.texi @node Using the library, Error Handling, Introduction, Top @chapter Using the library @cindex usage, compiling application programs @include usage.texi @node Error Handling, Mathematical Functions, Using the library, Top @chapter Error Handling @cindex Errors @include err.texi @node Mathematical Functions, Complex Numbers, Error Handling, Top @chapter Mathematical Functions @include math.texi @node Complex Numbers, Polynomials, Mathematical Functions, Top @chapter Complex Numbers @include complex.texi @node Polynomials, Special Functions, Complex Numbers, Top @chapter Polynomials @include poly.texi @node Special Functions, Vectors and Matrices, Polynomials, Top @chapter Special Functions @include specfunc.texi @node Vectors and Matrices, Permutations, Special Functions, Top @chapter Vectors and Matrices @include vectors.texi @node Permutations, Combinations, Vectors and Matrices, Top @chapter Permutations @include permutation.texi @node Combinations, Multisets, Permutations, Top @chapter Combinations @include combination.texi @node Multisets, Sorting, Combinations, Top @chapter Multisets @include multiset.texi @node Sorting, BLAS Support, Multisets, Top @chapter Sorting @include sort.texi @node BLAS Support, Linear Algebra, Sorting, Top @chapter BLAS Support @include blas.texi @node Linear Algebra, Eigensystems, BLAS Support, Top @chapter Linear Algebra @include linalg.texi @node Eigensystems, Fast Fourier Transforms, Linear Algebra, Top @chapter Eigensystems @include eigen.texi @node Fast Fourier Transforms, Numerical Integration, Eigensystems, Top @chapter Fast Fourier Transforms (FFTs) @include fft.texi @node Numerical Integration, Random Number Generation, Fast Fourier Transforms, Top @chapter Numerical Integration @include integration.texi @node Random Number Generation, Quasi-Random Sequences, Numerical Integration, Top @chapter Random Number Generation @include rng.texi @node Quasi-Random Sequences, Random Number Distributions, Random Number Generation, Top @chapter Quasi-Random Sequences @include qrng.texi @node Random Number Distributions, Statistics, Quasi-Random Sequences, Top @chapter Random Number Distributions @include randist.texi @node Statistics, Histograms, Random Number Distributions, Top @chapter Statistics @include statistics.texi @node Histograms, N-tuples, Statistics, Top @chapter Histograms @include histogram.texi @node N-tuples, Monte Carlo Integration, Histograms, Top @chapter N-tuples @include ntuple.texi @node Monte Carlo Integration, Simulated Annealing, N-tuples, Top @chapter Monte Carlo Integration @include montecarlo.texi @node Simulated Annealing, Ordinary Differential Equations, Monte Carlo Integration, Top @chapter Simulated Annealing @include siman.texi @node Ordinary Differential Equations, Interpolation, Simulated Annealing, Top @chapter Ordinary Differential Equations @include ode-initval.texi @node Interpolation, Numerical Differentiation, Ordinary Differential Equations, Top @chapter Interpolation @include interp.texi @node Numerical Differentiation, Chebyshev Approximations, Interpolation, Top @chapter Numerical Differentiation @include diff.texi @node Chebyshev Approximations, Series Acceleration, Numerical Differentiation, Top @chapter Chebyshev Approximations @include cheb.texi @node Series Acceleration, Wavelet Transforms, Chebyshev Approximations, Top @chapter Series Acceleration @include sum.texi @node Wavelet Transforms, Discrete Hankel Transforms, Series Acceleration, Top @chapter Wavelet Transforms @include dwt.texi @node Discrete Hankel Transforms, One dimensional Root-Finding, Wavelet Transforms, Top @chapter Discrete Hankel Transforms @include dht.texi @node One dimensional Root-Finding, One dimensional Minimization, Discrete Hankel Transforms, Top @chapter One dimensional Root-Finding @include roots.texi @node One dimensional Minimization, Multidimensional Root-Finding, One dimensional Root-Finding, Top @chapter One dimensional Minimization @include min.texi @node Multidimensional Root-Finding, Multidimensional Minimization, One dimensional Minimization, Top @chapter Multidimensional Root-Finding @include multiroots.texi @node Multidimensional Minimization, Least-Squares Fitting, Multidimensional Root-Finding, Top @chapter Multidimensional Minimization @include multimin.texi @node Least-Squares Fitting, Nonlinear Least-Squares Fitting, Multidimensional Minimization, Top @chapter Least-Squares Fitting @include fitting.texi @node Nonlinear Least-Squares Fitting, Basis Splines, Least-Squares Fitting, Top @chapter Nonlinear Least-Squares Fitting @include multifit.texi @node Basis Splines, Physical Constants, Nonlinear Least-Squares Fitting, Top @chapter Basis Splines @include bspline.texi @node Physical Constants, IEEE floating-point arithmetic, Basis Splines, Top @chapter Physical Constants @include const.texi @node IEEE floating-point arithmetic, Debugging Numerical Programs, Physical Constants, Top @chapter IEEE floating-point arithmetic @include ieee754.texi @node Debugging Numerical Programs, Contributors to GSL, IEEE floating-point arithmetic, Top @appendix Debugging Numerical Programs @include debug.texi @node Contributors to GSL, Autoconf Macros, Debugging Numerical Programs, Top @appendix Contributors to GSL (See the AUTHORS file in the distribution for up-to-date information.) @table @strong @item Mark Galassi Conceived GSL (with James Theiler) and wrote the design document. Wrote the simulated annealing package and the relevant chapter in the manual. @item James Theiler Conceived GSL (with Mark Galassi). Wrote the random number generators and the relevant chapter in this manual. @item Jim Davies Wrote the statistical routines and the relevant chapter in this manual. @item Brian Gough FFTs, numerical integration, random number generators and distributions, root finding, minimization and fitting, polynomial solvers, complex numbers, physical constants, permutations, vector and matrix functions, histograms, statistics, ieee-utils, revised @sc{cblas} Level 2 & 3, matrix decompositions, eigensystems, cumulative distribution functions, testing, documentation and releases. @item Reid Priedhorsky Wrote and documented the initial version of the root finding routines while at Los Alamos National Laboratory, Mathematical Modeling and Analysis Group. @comment email: reid@reidster.net @item Gerard Jungman Special Functions, Series acceleration, ODEs, BLAS, Linear Algebra, Eigensystems, Hankel Transforms. @item Mike Booth Wrote the Monte Carlo library. @item Jorma Olavi T@"ahtinen Wrote the initial complex arithmetic functions. @item Thomas Walter Wrote the initial heapsort routines and Cholesky decomposition. @item Fabrice Rossi Multidimensional minimization. @item Carlo Perassi Implementation of the random number generators in Knuth's @cite{Seminumerical Algorithms}, 3rd Ed. @item Szymon Jaroszewicz @comment Wrote the routines for generating combinations. @item Nicolas Darnis Wrote the cyclic functions and the initial functions for canonical permutations. @item Jason H. Stover @comment (jason@sakla.net) Wrote the major cumulative distribution functions. @item Ivo Alxneit Wrote the routines for wavelet transforms. @item Tuomo Keskitalo Improved the implementation of the ODE solvers and wrote the ode-initval2 routines. @item Lowell Johnson Implementation of the Mathieu functions. @item Patrick Alken Implementation of nonsymmetric and generalized eigensystems, B-splines, and robust linear regression. @item Rhys Ulerich Wrote the multiset routines. @item Pavel Holoborodko Wrote the fixed order Gauss-Legendre quadrature routines. @item Pedro Gonnet Wrote the @sc{cquad} integration routines. @end table Thanks to Nigel Lowry for help in proofreading the manual. The non-symmetric eigensystems routines contain code based on the LAPACK linear algebra library. LAPACK is distributed under the following license: @iftex @smallerfonts @rm @end iftex @sp 1 @quotation Copyright (c) 1992-2006 The University of Tennessee. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: @bullet{} Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. @bullet{} Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer listed in this license in the documentation and/or other materials provided with the distribution. @bullet{} Neither the name of the copyright holders nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @end quotation @iftex @textfonts @rm @end iftex @node Autoconf Macros, GSL CBLAS Library, Contributors to GSL, Top @appendix Autoconf Macros @include autoconf.texi @node GSL CBLAS Library, GNU General Public License, Autoconf Macros, Top @appendix GSL CBLAS Library @include cblas.texi @comment @node Copyright, GNU General Public License, Contributors to GSL, Top @comment @unnumbered Copyright @comment @include science.texi @comment @node Free Software Needs Free Documentation, GNU General Public License, GSL CBLAS Library, Top @comment @unnumbered Free Software Needs Free Documentation @comment @include freemanuals.texi @node GNU General Public License, GNU Free Documentation License, GSL CBLAS Library, Top @unnumbered GNU General Public License @include gpl.texi @node GNU Free Documentation License, Function Index, GNU General Public License, Top @unnumbered GNU Free Documentation License @include fdl.texi @comment htmlhelp: @printindex fn @comment htmlhelp: @printindex vr @comment htmlhelp: @printindex tp @comment htmlhelp: @printindex cp @comment htmlhelp: @bye @iftex @normalbottom @end iftex @node Function Index, Variable Index, GNU Free Documentation License, Top @unnumbered Function Index @printindex fn @node Variable Index, Type Index, Function Index, Top @unnumbered Variable Index @printindex vr @node Type Index, Concept Index, Variable Index, Top @unnumbered Type Index @printindex tp @node Concept Index, , Type Index, Top @unnumbered Concept Index @printindex cp @ifclear frontcontents @comment Use @setchapternewpage odd to ensure that the contents starts @comment on an odd page so that it can always be moved to the front when @comment printing two-up. @setchapternewpage odd @contents @end ifclear @ifset extrablankpages @comment final page must be blank for printed version @page @headings off @* @page @* @comment @page @comment @* @comment @page @comment @* @end ifset @bye gsl-1.16/doc/randplots.gnp0000664000252300025230000002314112171574312012434 00000000000000#set term postscript eps enhanced set term pstex monochrome set samples 300 #set size 0.8,0.88 # paperback 6x9 #CHANGE THESE LATER IN FILE ALSO set size 1,1.1 # us letter #IF MODIFIED set border 31 lw 0.5 set tics out set ticscale 0.5 0.25 set xtics border nomirror norotate set ytics border nomirror norotate set format x "%g" # Continuous distributions set xlabel "$x$" set ylabel "$p(x)$" set xrange [-5:5] set yrange [0:0.5] set ytics 0.1 set xtics 1 set output "rand-gaussian.tex" set title "Gaussian Distribution" p(x)=1/sqrt(2*pi*sigma**2)*exp(-x**2/(2*sigma**2)) plot sigma=1.0, p(x) title "$\\sigma=1$", \ sigma=2.0, p(x) title "$\\sigma=2$" set xrange [0:5] set yrange [0:2] set ytics 0.5 set xtics 1 set output "rand-gaussian-tail.tex" set title "Gaussian Tail Distribution" p(x)= x > a ? 1/(0.5*erfc(a/sqrt(2*sigma**2))*sqrt(2*pi*sigma**2))*exp(-x**2/(2*sigma**2)) : 0 plot a=1.5, sigma=1.0, p(x) title "$\\sigma=1,a=1.5$" set xrange [0:5] set yrange [0:1.09] set ytics 0.5 set xtics 1 set output "rand-rayleigh-tail.tex" set title "Rayleigh Tail Distribution" p(x)= x > a ? (x/sigma**2)*exp((a**2 - x**2)/(2*sigma**2)) : 0 plot a=1.0, sigma=1.0, p(x) title "$a=1,\\sigma=1$", \ a=0.5, sigma=2.0, p(x) title "$a=0.5,\\sigma=2$" set size ratio -1 0.8,1.143 set xlabel "$x$" set ylabel "$y$" set xrange [-2:2] set yrange [-2:2] set ytics 1 set xtics 1 set output "rand-bivariate-gaussian.tex" set title "Bivariate Gaussian Distribution" set isosamples 30 p(x,y)=1/sqrt(2*pi*sqrt(1-rho**2))*exp(-(x**2 + y**2 - 2*rho*x*y)/(2*(1-rho**2))) #set cntrparam cspline set noclabel set contour set view map set nosurface splot rho=0.9, p(x,y) title "$\\sigma_x=1, \\sigma_y=1, \\rho=0.9$" set size noratio 1,1.1 # us letter set xlabel "$x$" set ylabel "$p(x)$" set ytics 0.1 set xrange [-5:5] set yrange [0:0.4] set output "rand-cauchy.tex" set title "Cauchy Distribution" p(x)=1/(pi*a*(1+(x/a)**2)) plot a=1.0, p(x) title "$a=1$", \ a=2.0, p(x) title "$a=2$" set ytics 0.5 set yrange [0:1] set xrange [0:3] set output "rand-exponential.tex" set title "Exponential Distribution" p(x)=exp(-x/mu)/mu plot mu=1.0, p(x) title "$\\mu=1$", \ mu=2.0, p(x) title "$\\mu=2$" set yrange [0:1] set xrange [0:3] set output "rand-chisq.tex" set title "Chi-squared Distribution" p(x)=(x/2)**(nu/2.0-1.0) *exp(-x/2)/ (2*gamma(nu/2.0)) plot nu=1.0, p(x) title "$\\nu=1$", \ nu=2.0, p(x) title "$\\nu=2$", \ nu=3.0, p(x) title "$\\nu=3$" set yrange [0:1] set xrange [0:5] set output "rand-erlang.tex" set title "Erlang Distribution" p(x)=x**(n-1) *exp(-x/a)/ (gamma(n)*a**n) plot n=1.0, a=1, p(x) title "$n=1$", \ n=2.0, a=1.0, p(x) title "$n=2$", \ n=3.0, a=1.0, p(x) title "$n=3$" set xrange [0:2] set xtics 1 set output "rand-fdist.tex" set title "F-Distribution" p(x)=gamma((v1+v2)/2.0)*v1**(v1/2.0)*v2**(v2/2.0)\ /gamma(v1/2.0)/gamma(v2/2.0) * \ x**(v1/2.0-1)*(v2+v1*x)**-(v1/2.0+v2/2.0) plot v1=1.0, v2=1.0, p(x) title "$\\nu_1=1, \\nu_2=1$", \ v1=3.0, v2=1.0, p(x) title "$\\nu_1=3, \\nu_2=2$" set xrange [0:5] set output "rand-flat.tex" set title "Flat Distribution" p(x)= (xa) ? 1/(b-a) : 0 plot a=0.5, b=2.5, p(x) title "$a=0.5,b=2.5$" with step, \ a=1.2, b=4.8, p(x) title "$a=1.2,b=4.8$" with step set xrange [0:5] set yrange [0:1] set ytics 0.5 set output "rand-gamma.tex" set title "Gamma Distribution" p(x)= x**(a-1)* exp(-x) / gamma(a) plot a=1.0, p(x) title "$a=1$", \ a=2.0, p(x) title "$a=2$", \ a=3.0, p(x) title "$a=3$" set xrange [0:1] set yrange [0:4] set xtics 0.25 set ytics 1 set output "rand-beta.tex" set title "Beta Distribution" p(x)= gamma(a+b)/(gamma(a)*gamma(b))*x**(a-1)*(1-x)**(b-1) plot a=2.0, b=2.0, p(x) title "$a=2,b=2$", \ a=4.0, b=1.0, p(x) title "$a=4,b=1$", \ a=1.0, b=4.0, p(x) title "$a=1,b=4$" set xrange [-5:5] set yrange [0:0.3] set ytics 0.1 set xtics 1 set output "rand-logistic.tex" set title "Logistic Distribution" p(x)= exp(-x/a)/a/(1+exp(-x/a))**2 plot a=1.0, p(x) title "$a=1$", \ a=2.0, p(x) title "$a=2$" set xrange [0:3] set yrange [0:0.7] set xtics 1 set ytics 0.5 set output "rand-lognormal.tex" set title "Lognormal Distribution" p(x)= exp(-(log(x)-zeta)**2/2/sigma**2)/sqrt(2*pi*sigma**2)/x plot zeta=0.0, sigma=1.0, p(x) title "$\\zeta=0, \\sigma=1$", \ zeta=1.0, sigma=1.0, p(x) title "$\\zeta=1, \\sigma=1$" set xrange [0:5] set yrange [0:2] set ytics 0.5 set xtics 1 set output "rand-pareto.tex" set title "Pareto Distribution" p(x)= x>b ? a*b**a/x**(a+1) : 0 plot a=1.0, b=1, p(x) title "$a=1, b=1$", \ a=3.0, b=2, p(x) title "$a=3, b=2 $" set xrange [0:5] set yrange [0:0.7] set ytics 0.1 set xtics 1 set output "rand-rayleigh.tex" set title "Rayleigh Distribution" p(x)= (x/sigma**2)*exp(-x**2/(2*sigma**2)) plot sigma=1.0, p(x) title "$\\sigma=1$", \ sigma=2.0, p(x) title "$\\sigma=2$" set xrange [0:5] set yrange [0:1.09] set ytics 0.5 set xtics 1 set output "rand-rayleigh-tail.tex" set title "Rayleigh Tail Distribution" p(x)= x > a ? (x/sigma**2)*exp((a**2 - x**2)/(2*sigma**2)) : 0 plot a=1.0, sigma=1.0, p(x) title "$a=1,\\sigma=1$", \ a=0.5, sigma=2.0, p(x) title "$a=0.5,\\sigma=2$" set xrange [-4:4] set yrange [0:0.5] set ytics 0.1 set output "rand-tdist.tex" set title "Student's t distribution" p(x)=gamma((v+1.0)/2)/sqrt(pi*v)/gamma(v/2)*(1+(x**2)/v)**-((v+1.0)/2) plot v=1.0, p(x) title "$\\nu_1=1$", \ v=5.0, p(x) title "$\\nu_1=5$" set xrange [-5:5] set yrange [0:0.55] set ytics 0.1 set output "rand-laplace.tex" set title "Laplace Distribution (Two-sided Exponential)" p(x)=exp(-abs(x)/a)/2/a plot a=1.0, p(x) title "$a=1$", \ a=2.0, p(x) title "$a=2$" set xrange [-5:5] set yrange [0:0.8] set ytics 0.2 set output "rand-exppow.tex" set title "Exponential Power Distribution" p(x)=exp(-(abs(x/a))**b)/2/a/gamma(1.0+1.0/b) plot a=1.0, b=2.5, p(x) title "$a=1, b=2.5$", \ a=1.0, b=0.5, p(x) title "$a=1, b=0.5$" set xrange [-5:10] set yrange [0:0.2] set ytics 0.1 set output "rand-landau.tex" set title "Landau Distribution" plot 'landau.dat' notitle w lines set xrange [-5:5] set yrange [0:0.45] set ytics 0.1 set output "rand-levy.tex" set title "Levy Distribution" p1(x)=1/(pi*mu*(1+(x/mu)**2)) p2(x)=1/sqrt(2*pi*2*mu**2)*exp(-x**2/(4*mu**2)) plot mu=1.0, a=1, p1(x) title "$c=1, \\alpha=1.0$", \ mu=1.0, a=2, p2(x) title "$c=1, \\alpha=2.0$" set xrange [-5:5] set yrange [0:0.35] set ytics 0.05 set output "rand-levyskew.tex" set title "Levy Skew Distribution" logp(x)= -1.34229+x*(-0.354314+x*(-0.322538+x*(0.205603+x*(-0.0518879+x*(0.00569502+x*-0.000224843))))) p1(x)=exp(logp(x)) plot mu=1.0, a=1, p1(x) title "$c=1, \\alpha=1.0, \\beta=1.0$" set xrange [0:2] set yrange [0:1.5] set ytics 0.5 set xtics 0.5 set output "rand-weibull.tex" set title "Weibull Distribution" p(x)=(b/a) * (x/a)**(b-1) * exp(-(x/a)**b) plot a=1.0, b=1.0, p(x) title "$a=1,b=1$", \ a=1.0, b=2.0, p(x) title "$a=1,b=2$", \ a=2.0, b=3.0, p(x) title "$a=2,b=3$" set xrange [-2:5] set yrange [0:0.5] set ytics 0.1 set xtics 1.0 set output "rand-gumbel1.tex" set title "Type 1 Gumbel Distribution" p1(x)=a*b*exp(-(b*exp(-a*x)+a*x)) plot a=1.0, b=1.0, p1(x) title "Type 1, $a=1,b=1$" set xrange [0:2] set yrange [0:0.7] set ytics 0.1 set xtics 0.5 set output "rand-gumbel2.tex" set title "Type 2 Gumbel Distribution" p2(x)=x > 0 ? a*b*x**(-a-1)*exp(-b*x**-a) : 0 plot a=1.0, b=1.0, p2(x) title "Type 2, $a=1,b=1$" # Discrete distributions set xlabel "$k$" set ylabel "$p(k)$" set ticscale 0.5 1 set mxtics 2 set xrange [-0.5:10.5] set yrange [0:0.3] set ytics 0.1 set xtics 1 set function style step set output "rand-poisson.tex" set title "Poisson Distribution" p(x)=mu**int(x)/(int(x)!) * exp(-mu) plot mu=2.5, p(x+0.5) title "$\\mu=2.5$" set xrange [:1.5] set yrange [0:1] set ytics 0.5 set xtics 1 set function style step set output "rand-bernoulli.tex" set title "Bernoulli Trial" p(x)= (int(x) == 0) ? 1-p : p plot p = 0.7, p(x+0.5) title "$p=0.7$" set xrange [:10.5] set yrange [0:0.3] set xtics 1 set ytics 0.1 set output "rand-binomial.tex" set title "Binomial Distribution" p(x)= P**int(x)*(1-P)**(n-int(x))*gamma(n+1.0)/gamma(int(x)+1.0)/gamma(n-int(x)+1.0) + 1e-5 plot P=0.5,n=9.99999999, p(x+0.5) title "$p=0.5,n=9$" set xrange [:5.5] set yrange [0:0.7] set ytics 0.1 set xtics 1 set output "rand-geometric.tex" set title "Geometric Distribution" p(x)=int(x) ? P*(1-P)**int(x-1) : 0 plot P=0.5, p(x+0.5) title "$p=0.5$" set xrange [:10.5] set yrange [0:0.7] set ytics 0.1 set xtics 1 set output "rand-logarithmic.tex" set title "Logarithmic Distribution" p(x)=int(x) ? (-1/log(1-P))*(P**int(x))/int(x) : 0 plot P=0.7, p(x+0.5) title "$p=0.7$" set xrange [:10.5] set yrange [0:0.7] set ytics 0.1 set xtics 1 set output "rand-hypergeometric.tex" set title "Hypergeometric Distribution" choose(a,b)=gamma(a+1)/(gamma(b+1)*gamma(a-b+1)) p(x)=choose(n1,int(x))*choose(n2,t-int(x))/choose(n1+n2,t) plot n1=5, n2=20, t=3, p(x+0.5) title "$n1=5, n2=20, t=3$" set xrange [:10.5] set yrange [0:0.3] set xtics 1 set ytics 0.1 set output "rand-nbinomial.tex" set title "Negative Binomial Distribution" p(x)= (P**n)*((1-P)**(int(x)))*gamma(n+int(x))/gamma(n)/gamma(int(x)+1.0) + 1e-5 plot P=0.5,n=3.5, p(x+0.5) title "$p=0.5,n=3.5$" set xrange [:10.5] set yrange [0:0.3] set xtics 1 set ytics 0.1 set output "rand-pascal.tex" set title "Pascal Distribution" p(x)= (P**n)*((1-P)**(int(x)))*gamma(n+int(x))/gamma(n)/gamma(int(x)+1.0) + 1e-5 plot P=0.5,n=3, p(x+0.5) title "$p=0.5,n=3$" ###################################################################### set ticscale 1 0 set xrange [-5:5] set yrange [-5:5] set xtics 1 set ytics 1 set size 0.8,1.143 set size square set output "random-walk.tex" set title "Random walks" set xzeroaxis set yzeroaxis set nokey set noxlabel set noylabel plot "rand-walk.dat" using 1:2 with linesp gsl-1.16/doc/qrng.texi0000664000252300025230000001361412171574312011566 00000000000000@cindex quasi-random sequences @cindex low discrepancy sequences @cindex Sobol sequence @cindex Niederreiter sequence This chapter describes functions for generating quasi-random sequences in arbitrary dimensions. A quasi-random sequence progressively covers a @math{d}-dimensional space with a set of points that are uniformly distributed. Quasi-random sequences are also known as low-discrepancy sequences. The quasi-random sequence generators use an interface that is similar to the interface for random number generators, except that seeding is not required---each generator produces a single sequence. The functions described in this section are declared in the header file @file{gsl_qrng.h}. @menu * Quasi-random number generator initialization:: * Sampling from a quasi-random number generator:: * Auxiliary quasi-random number generator functions:: * Saving and resorting quasi-random number generator state:: * Quasi-random number generator algorithms:: * Quasi-random number generator examples:: * Quasi-random number references:: @end menu @node Quasi-random number generator initialization @section Quasi-random number generator initialization @deftypefun {gsl_qrng *} gsl_qrng_alloc (const gsl_qrng_type * @var{T}, unsigned int @var{d}) @tpindex gsl_qrng @tpindex gsl_qrng_type This function returns a pointer to a newly-created instance of a quasi-random sequence generator of type @var{T} and dimension @var{d}. If there is insufficient memory to create the generator then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun void gsl_qrng_free (gsl_qrng * @var{q}) This function frees all the memory associated with the generator @var{q}. @end deftypefun @deftypefun void gsl_qrng_init (gsl_qrng * @var{q}) This function reinitializes the generator @var{q} to its starting point. Note that quasi-random sequences do not use a seed and always produce the same set of values. @end deftypefun @node Sampling from a quasi-random number generator @section Sampling from a quasi-random number generator @deftypefun int gsl_qrng_get (const gsl_qrng * @var{q}, double @var{x}[]) This function stores the next point from the sequence generator @var{q} in the array @var{x}. The space available for @var{x} must match the dimension of the generator. The point @var{x} will lie in the range @math{0 < x_i < 1} for each @math{x_i}. @inlinefn{} @end deftypefun @node Auxiliary quasi-random number generator functions @section Auxiliary quasi-random number generator functions @deftypefun {const char *} gsl_qrng_name (const gsl_qrng * @var{q}) This function returns a pointer to the name of the generator. @end deftypefun @deftypefun size_t gsl_qrng_size (const gsl_qrng * @var{q}) @deftypefunx {void *} gsl_qrng_state (const gsl_qrng * @var{q}) These functions return a pointer to the state of generator @var{r} and its size. You can use this information to access the state directly. For example, the following code will write the state of a generator to a stream, @example void * state = gsl_qrng_state (q); size_t n = gsl_qrng_size (q); fwrite (state, n, 1, stream); @end example @end deftypefun @node Saving and resorting quasi-random number generator state @section Saving and resorting quasi-random number generator state @deftypefun int gsl_qrng_memcpy (gsl_qrng * @var{dest}, const gsl_qrng * @var{src}) This function copies the quasi-random sequence generator @var{src} into the pre-existing generator @var{dest}, making @var{dest} into an exact copy of @var{src}. The two generators must be of the same type. @end deftypefun @deftypefun {gsl_qrng *} gsl_qrng_clone (const gsl_qrng * @var{q}) This function returns a pointer to a newly created generator which is an exact copy of the generator @var{q}. @end deftypefun @node Quasi-random number generator algorithms @section Quasi-random number generator algorithms The following quasi-random sequence algorithms are available, @deffn {Generator} gsl_qrng_niederreiter_2 This generator uses the algorithm described in Bratley, Fox, Niederreiter, @cite{ACM Trans. Model. Comp. Sim.} 2, 195 (1992). It is valid up to 12 dimensions. @end deffn @deffn {Generator} gsl_qrng_sobol This generator uses the Sobol sequence described in Antonov, Saleev, @cite{USSR Comput. Maths. Math. Phys.} 19, 252 (1980). It is valid up to 40 dimensions. @end deffn @deffn {Generator} gsl_qrng_halton @deffnx {Generator} gsl_qrng_reversehalton These generators use the Halton and reverse Halton sequences described in J.H. Halton, @cite{Numerische Mathematik} 2, 84-90 (1960) and B. Vandewoestyne and R. Cools @cite{Computational and Applied Mathematics} 189, 1&2, 341-361 (2006). They are valid up to 1229 dimensions. @end deffn @node Quasi-random number generator examples @section Examples The following program prints the first 1024 points of the 2-dimensional Sobol sequence. @example @verbatiminclude examples/qrng.c @end example @noindent Here is the output from the program, @example $ ./a.out 0.50000 0.50000 0.75000 0.25000 0.25000 0.75000 0.37500 0.37500 0.87500 0.87500 0.62500 0.12500 0.12500 0.62500 .... @end example @noindent It can be seen that successive points progressively fill-in the spaces between previous points. @iftex @need 4000 The following plot shows the distribution in the x-y plane of the first 1024 points from the Sobol sequence, @sp 1 @center @image{qrng,3.4in} @sp 1 @center Distribution of the first 1024 points @center from the quasi-random Sobol sequence @end iftex @node Quasi-random number references @section References The implementations of the quasi-random sequence routines are based on the algorithms described in the following paper, @itemize @w{} @item P. Bratley and B.L. Fox and H. Niederreiter, ``Algorithm 738: Programs to Generate Niederreiter's Low-discrepancy Sequences'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 20, No.@: 4, December, 1994, p.@: 494--495. @end itemize gsl-1.16/doc/montecarlo.texi0000664000252300025230000007010112171574312012754 00000000000000@cindex Monte Carlo integration @cindex stratified sampling in Monte Carlo integration @cindex multidimensional integration This chapter describes routines for multidimensional Monte Carlo integration. These include the traditional Monte Carlo method and adaptive algorithms such as @sc{vegas} and @sc{miser} which use importance sampling and stratified sampling techniques. Each algorithm computes an estimate of a multidimensional definite integral of the form, @tex \beforedisplay $$ I = \int_{x_l}^{x_u} dx\,\int_{y_l}^{y_u}dy\,... f(x,y,...) $$ \afterdisplay @end tex @ifinfo @example I = \int_xl^xu dx \int_yl^yu dy ... f(x, y, ...) @end example @end ifinfo @noindent over a hypercubic region @math{((x_l,x_u)}, @math{(y_l,y_u), ...)} using a fixed number of function calls. The routines also provide a statistical estimate of the error on the result. This error estimate should be taken as a guide rather than as a strict error bound---random sampling of the region may not uncover all the important features of the function, resulting in an underestimate of the error. The functions are defined in separate header files for each routine, @file{gsl_monte_plain.h}, @file{gsl_monte_miser.h} and @file{gsl_monte_vegas.h}. @menu * Monte Carlo Interface:: * PLAIN Monte Carlo:: * MISER:: * VEGAS:: * Monte Carlo Examples:: * Monte Carlo Integration References and Further Reading:: @end menu @node Monte Carlo Interface @section Interface All of the Monte Carlo integration routines use the same general form of interface. There is an allocator to allocate memory for control variables and workspace, a routine to initialize those control variables, the integrator itself, and a function to free the space when done. Each integration function requires a random number generator to be supplied, and returns an estimate of the integral and its standard deviation. The accuracy of the result is determined by the number of function calls specified by the user. If a known level of accuracy is required this can be achieved by calling the integrator several times and averaging the individual results until the desired accuracy is obtained. Random sample points used within the Monte Carlo routines are always chosen strictly within the integration region, so that endpoint singularities are automatically avoided. The function to be integrated has its own datatype, defined in the header file @file{gsl_monte.h}. @deftp {Data Type} gsl_monte_function This data type defines a general function with parameters for Monte Carlo integration. @table @code @item double (* f) (double * @var{x}, size_t @var{dim}, void * @var{params}) this function should return the value @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for the argument @var{x} and parameters @var{params}, where @var{x} is an array of size @var{dim} giving the coordinates of the point where the function is to be evaluated. @item size_t dim the number of dimensions for @var{x}. @item void * params a pointer to the parameters of the function. @end table @end deftp @noindent Here is an example for a quadratic function in two dimensions, @tex \beforedisplay $$ f(x,y) = a x^2 + b x y + c y^2 $$ \afterdisplay @end tex @ifinfo @example f(x,y) = a x^2 + b x y + c y^2 @end example @end ifinfo @noindent with @math{a = 3}, @math{b = 2}, @math{c = 1}. The following code defines a @code{gsl_monte_function} @code{F} which you could pass to an integrator: @example struct my_f_params @{ double a; double b; double c; @}; double my_f (double x[], size_t dim, void * p) @{ struct my_f_params * fp = (struct my_f_params *)p; if (dim != 2) @{ fprintf (stderr, "error: dim != 2"); abort (); @} return fp->a * x[0] * x[0] + fp->b * x[0] * x[1] + fp->c * x[1] * x[1]; @} gsl_monte_function F; struct my_f_params params = @{ 3.0, 2.0, 1.0 @}; F.f = &my_f; F.dim = 2; F.params = ¶ms; @end example @noindent The function @math{f(x)} can be evaluated using the following macro, @example #define GSL_MONTE_FN_EVAL(F,x) (*((F)->f))(x,(F)->dim,(F)->params) @end example @node PLAIN Monte Carlo @section PLAIN Monte Carlo @cindex plain Monte Carlo The plain Monte Carlo algorithm samples points randomly from the integration region to estimate the integral and its error. Using this algorithm the estimate of the integral @math{E(f; N)} for @math{N} randomly distributed points @math{x_i} is given by, @tex \beforedisplay $$ E(f; N) = V \langle f \rangle = {V \over N} \sum_i^N f(x_i) $$ \afterdisplay @end tex @ifinfo @example E(f; N) = = V = (V / N) \sum_i^N f(x_i) @end example @end ifinfo @noindent where @math{V} is the volume of the integration region. The error on this estimate @math{\sigma(E;N)} is calculated from the estimated variance of the mean, @tex \beforedisplay $$ \sigma^2 (E; N) = {V^2 \over N^2 } \sum_i^N (f(x_i) - \langle f \rangle)^2. $$ \afterdisplay @end tex @ifinfo @example \sigma^2 (E; N) = (V^2 / N^2) \sum_i^N (f(x_i) - )^2. @end example @end ifinfo @noindent For large @math{N} this variance decreases asymptotically as @math{\Var(f)/N}, where @math{\Var(f)} is the true variance of the function over the integration region. The error estimate itself should decrease as @c{$\sigma(f)/\sqrt{N}$} @math{\sigma(f)/\sqrt@{N@}}. The familiar law of errors decreasing as @c{$1/\sqrt{N}$} @math{1/\sqrt@{N@}} applies---to reduce the error by a factor of 10 requires a 100-fold increase in the number of sample points. The functions described in this section are declared in the header file @file{gsl_monte_plain.h}. @deftypefun {gsl_monte_plain_state *} gsl_monte_plain_alloc (size_t @var{dim}) @tpindex gsl_monte_plain_state This function allocates and initializes a workspace for Monte Carlo integration in @var{dim} dimensions. @end deftypefun @deftypefun int gsl_monte_plain_init (gsl_monte_plain_state* @var{s}) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. @end deftypefun @deftypefun int gsl_monte_plain_integrate (gsl_monte_function * @var{f}, const double @var{xl}[], const double @var{xu}[], size_t @var{dim}, size_t @var{calls}, gsl_rng * @var{r}, gsl_monte_plain_state * @var{s}, double * @var{result}, double * @var{abserr}) This routines uses the plain Monte Carlo algorithm to integrate the function @var{f} over the @var{dim}-dimensional hypercubic region defined by the lower and upper limits in the arrays @var{xl} and @var{xu}, each of size @var{dim}. The integration uses a fixed number of function calls @var{calls}, and obtains random sampling points using the random number generator @var{r}. A previously allocated workspace @var{s} must be supplied. The result of the integration is returned in @var{result}, with an estimated absolute error @var{abserr}. @end deftypefun @deftypefun void gsl_monte_plain_free (gsl_monte_plain_state * @var{s}) This function frees the memory associated with the integrator state @var{s}. @end deftypefun @node MISER @section MISER @cindex MISER monte carlo integration @cindex recursive stratified sampling, MISER The @sc{miser} algorithm of Press and Farrar is based on recursive stratified sampling. This technique aims to reduce the overall integration error by concentrating integration points in the regions of highest variance. The idea of stratified sampling begins with the observation that for two disjoint regions @math{a} and @math{b} with Monte Carlo estimates of the integral @math{E_a(f)} and @math{E_b(f)} and variances @math{\sigma_a^2(f)} and @math{\sigma_b^2(f)}, the variance @math{\Var(f)} of the combined estimate @c{$E(f) = {1\over 2} (E_a(f) + E_b(f))$} @math{E(f) = (1/2) (E_a(f) + E_b(f))} is given by, @tex \beforedisplay $$ \Var(f) = {\sigma_a^2(f) \over 4 N_a} + {\sigma_b^2(f) \over 4 N_b}. $$ \afterdisplay @end tex @ifinfo @example \Var(f) = (\sigma_a^2(f) / 4 N_a) + (\sigma_b^2(f) / 4 N_b). @end example @end ifinfo @noindent It can be shown that this variance is minimized by distributing the points such that, @tex \beforedisplay $$ {N_a \over N_a+N_b} = {\sigma_a \over \sigma_a + \sigma_b}. $$ \afterdisplay @end tex @ifinfo @example N_a / (N_a + N_b) = \sigma_a / (\sigma_a + \sigma_b). @end example @end ifinfo @noindent Hence the smallest error estimate is obtained by allocating sample points in proportion to the standard deviation of the function in each sub-region. The @sc{miser} algorithm proceeds by bisecting the integration region along one coordinate axis to give two sub-regions at each step. The direction is chosen by examining all @math{d} possible bisections and selecting the one which will minimize the combined variance of the two sub-regions. The variance in the sub-regions is estimated by sampling with a fraction of the total number of points available to the current step. The same procedure is then repeated recursively for each of the two half-spaces from the best bisection. The remaining sample points are allocated to the sub-regions using the formula for @math{N_a} and @math{N_b}. This recursive allocation of integration points continues down to a user-specified depth where each sub-region is integrated using a plain Monte Carlo estimate. These individual values and their error estimates are then combined upwards to give an overall result and an estimate of its error. The functions described in this section are declared in the header file @file{gsl_monte_miser.h}. @deftypefun {gsl_monte_miser_state *} gsl_monte_miser_alloc (size_t @var{dim}) @tpindex gsl_monte_miser_state This function allocates and initializes a workspace for Monte Carlo integration in @var{dim} dimensions. The workspace is used to maintain the state of the integration. @end deftypefun @deftypefun int gsl_monte_miser_init (gsl_monte_miser_state* @var{s}) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. @end deftypefun @deftypefun int gsl_monte_miser_integrate (gsl_monte_function * @var{f}, const double @var{xl}[], const double @var{xu}[], size_t @var{dim}, size_t @var{calls}, gsl_rng * @var{r}, gsl_monte_miser_state * @var{s}, double * @var{result}, double * @var{abserr}) This routines uses the @sc{miser} Monte Carlo algorithm to integrate the function @var{f} over the @var{dim}-dimensional hypercubic region defined by the lower and upper limits in the arrays @var{xl} and @var{xu}, each of size @var{dim}. The integration uses a fixed number of function calls @var{calls}, and obtains random sampling points using the random number generator @var{r}. A previously allocated workspace @var{s} must be supplied. The result of the integration is returned in @var{result}, with an estimated absolute error @var{abserr}. @end deftypefun @deftypefun void gsl_monte_miser_free (gsl_monte_miser_state * @var{s}) This function frees the memory associated with the integrator state @var{s}. @end deftypefun The @sc{miser} algorithm has several configurable parameters which can be changed using the following two functions.@footnote{The previous method of accessing these fields directly through the @code{gsl_monte_miser_state} struct is now deprecated.} @deftypefun void gsl_monte_miser_params_get (const gsl_monte_miser_state * @var{s}, gsl_monte_miser_params * @var{params}) This function copies the parameters of the integrator state into the user-supplied @var{params} structure. @end deftypefun @deftypefun void gsl_monte_miser_params_set (gsl_monte_miser_state * @var{s}, const gsl_monte_miser_params * @var{params}) This function sets the integrator parameters based on values provided in the @var{params} structure. @end deftypefun Typically the values of the parameters are first read using @code{gsl_monte_miser_params_get}, the necessary changes are made to the fields of the @var{params} structure, and the values are copied back into the integrator state using @code{gsl_monte_miser_params_set}. The functions use the @code{gsl_monte_miser_params} structure which contains the following fields: @deftypevar double estimate_frac This parameter specifies the fraction of the currently available number of function calls which are allocated to estimating the variance at each recursive step. The default value is 0.1. @end deftypevar @deftypevar size_t min_calls This parameter specifies the minimum number of function calls required for each estimate of the variance. If the number of function calls allocated to the estimate using @var{estimate_frac} falls below @var{min_calls} then @var{min_calls} are used instead. This ensures that each estimate maintains a reasonable level of accuracy. The default value of @var{min_calls} is @code{16 * dim}. @end deftypevar @deftypevar size_t min_calls_per_bisection This parameter specifies the minimum number of function calls required to proceed with a bisection step. When a recursive step has fewer calls available than @var{min_calls_per_bisection} it performs a plain Monte Carlo estimate of the current sub-region and terminates its branch of the recursion. The default value of this parameter is @code{32 * min_calls}. @end deftypevar @deftypevar double alpha This parameter controls how the estimated variances for the two sub-regions of a bisection are combined when allocating points. With recursive sampling the overall variance should scale better than @math{1/N}, since the values from the sub-regions will be obtained using a procedure which explicitly minimizes their variance. To accommodate this behavior the @sc{miser} algorithm allows the total variance to depend on a scaling parameter @math{\alpha}, @tex \beforedisplay $$ \Var(f) = {\sigma_a \over N_a^\alpha} + {\sigma_b \over N_b^\alpha}. $$ \afterdisplay @end tex @ifinfo @example \Var(f) = @{\sigma_a \over N_a^\alpha@} + @{\sigma_b \over N_b^\alpha@}. @end example @end ifinfo @noindent The authors of the original paper describing @sc{miser} recommend the value @math{\alpha = 2} as a good choice, obtained from numerical experiments, and this is used as the default value in this implementation. @end deftypevar @deftypevar double dither This parameter introduces a random fractional variation of size @var{dither} into each bisection, which can be used to break the symmetry of integrands which are concentrated near the exact center of the hypercubic integration region. The default value of dither is zero, so no variation is introduced. If needed, a typical value of @var{dither} is 0.1. @end deftypevar @node VEGAS @section VEGAS @cindex VEGAS Monte Carlo integration @cindex importance sampling, VEGAS The @sc{vegas} algorithm of Lepage is based on importance sampling. It samples points from the probability distribution described by the function @math{|f|}, so that the points are concentrated in the regions that make the largest contribution to the integral. In general, if the Monte Carlo integral of @math{f} is sampled with points distributed according to a probability distribution described by the function @math{g}, we obtain an estimate @math{E_g(f; N)}, @tex \beforedisplay $$ E_g(f; N) = E(f/g; N) $$ \afterdisplay @end tex @ifinfo @example E_g(f; N) = E(f/g; N) @end example @end ifinfo @noindent with a corresponding variance, @tex \beforedisplay $$ \Var_g(f; N) = \Var(f/g; N). $$ \afterdisplay @end tex @ifinfo @example \Var_g(f; N) = \Var(f/g; N). @end example @end ifinfo @noindent If the probability distribution is chosen as @math{g = |f|/I(|f|)} then it can be shown that the variance @math{V_g(f; N)} vanishes, and the error in the estimate will be zero. In practice it is not possible to sample from the exact distribution @math{g} for an arbitrary function, so importance sampling algorithms aim to produce efficient approximations to the desired distribution. The @sc{vegas} algorithm approximates the exact distribution by making a number of passes over the integration region while histogramming the function @math{f}. Each histogram is used to define a sampling distribution for the next pass. Asymptotically this procedure converges to the desired distribution. In order to avoid the number of histogram bins growing like @math{K^d} the probability distribution is approximated by a separable function: @c{$g(x_1, x_2,\ldots) = g_1(x_1) g_2(x_2)\ldots$} @math{g(x_1, x_2, ...) = g_1(x_1) g_2(x_2) ...} so that the number of bins required is only @math{Kd}. This is equivalent to locating the peaks of the function from the projections of the integrand onto the coordinate axes. The efficiency of @sc{vegas} depends on the validity of this assumption. It is most efficient when the peaks of the integrand are well-localized. If an integrand can be rewritten in a form which is approximately separable this will increase the efficiency of integration with @sc{vegas}. @sc{vegas} incorporates a number of additional features, and combines both stratified sampling and importance sampling. The integration region is divided into a number of ``boxes'', with each box getting a fixed number of points (the goal is 2). Each box can then have a fractional number of bins, but if the ratio of bins-per-box is less than two, Vegas switches to a kind variance reduction (rather than importance sampling). @deftypefun {gsl_monte_vegas_state *} gsl_monte_vegas_alloc (size_t @var{dim}) @tpindex gsl_monte_vegas_state This function allocates and initializes a workspace for Monte Carlo integration in @var{dim} dimensions. The workspace is used to maintain the state of the integration. @end deftypefun @deftypefun int gsl_monte_vegas_init (gsl_monte_vegas_state* @var{s}) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. @end deftypefun @deftypefun int gsl_monte_vegas_integrate (gsl_monte_function * @var{f}, double @var{xl}[], double @var{xu}[], size_t @var{dim}, size_t @var{calls}, gsl_rng * @var{r}, gsl_monte_vegas_state * @var{s}, double * @var{result}, double * @var{abserr}) This routines uses the @sc{vegas} Monte Carlo algorithm to integrate the function @var{f} over the @var{dim}-dimensional hypercubic region defined by the lower and upper limits in the arrays @var{xl} and @var{xu}, each of size @var{dim}. The integration uses a fixed number of function calls @var{calls}, and obtains random sampling points using the random number generator @var{r}. A previously allocated workspace @var{s} must be supplied. The result of the integration is returned in @var{result}, with an estimated absolute error @var{abserr}. The result and its error estimate are based on a weighted average of independent samples. The chi-squared per degree of freedom for the weighted average is returned via the state struct component, @var{s->chisq}, and must be consistent with 1 for the weighted average to be reliable. @end deftypefun @deftypefun void gsl_monte_vegas_free (gsl_monte_vegas_state * @var{s}) This function frees the memory associated with the integrator state @var{s}. @end deftypefun The @sc{vegas} algorithm computes a number of independent estimates of the integral internally, according to the @code{iterations} parameter described below, and returns their weighted average. Random sampling of the integrand can occasionally produce an estimate where the error is zero, particularly if the function is constant in some regions. An estimate with zero error causes the weighted average to break down and must be handled separately. In the original Fortran implementations of @sc{vegas} the error estimate is made non-zero by substituting a small value (typically @code{1e-30}). The implementation in GSL differs from this and avoids the use of an arbitrary constant---it either assigns the value a weight which is the average weight of the preceding estimates or discards it according to the following procedure, @table @asis @item current estimate has zero error, weighted average has finite error The current estimate is assigned a weight which is the average weight of the preceding estimates. @item current estimate has finite error, previous estimates had zero error The previous estimates are discarded and the weighted averaging procedure begins with the current estimate. @item current estimate has zero error, previous estimates had zero error The estimates are averaged using the arithmetic mean, but no error is computed. @end table The convergence of the algorithm can be tested using the overall chi-squared value of the results, which is available from the following function: @deftypefun double gsl_monte_vegas_chisq (const gsl_monte_vegas_state * @var{s}) This function returns the chi-squared per degree of freedom for the weighted estimate of the integral. The returned value should be close to 1. A value which differs significantly from 1 indicates that the values from different iterations are inconsistent. In this case the weighted error will be under-estimated, and further iterations of the algorithm are needed to obtain reliable results. @end deftypefun @deftypefun void gsl_monte_vegas_runval (const gsl_monte_vegas_state * @var{s}, double * @var{result}, double * @var{sigma}) This function returns the raw (unaveraged) values of the integral @var{result} and its error @var{sigma} from the most recent iteration of the algorithm. @end deftypefun The @sc{vegas} algorithm is highly configurable. Several parameters can be changed using the following two functions. @deftypefun void gsl_monte_vegas_params_get (const gsl_monte_vegas_state * @var{s}, gsl_monte_vegas_params * @var{params}) This function copies the parameters of the integrator state into the user-supplied @var{params} structure. @end deftypefun @deftypefun void gsl_monte_vegas_params_set (gsl_monte_vegas_state * @var{s}, const gsl_monte_vegas_params * @var{params}) This function sets the integrator parameters based on values provided in the @var{params} structure. @end deftypefun Typically the values of the parameters are first read using @code{gsl_monte_vegas_params_get}, the necessary changes are made to the fields of the @var{params} structure, and the values are copied back into the integrator state using @code{gsl_monte_vegas_params_set}. The functions use the @code{gsl_monte_vegas_params} structure which contains the following fields: @deftypevar double alpha The parameter @code{alpha} controls the stiffness of the rebinning algorithm. It is typically set between one and two. A value of zero prevents rebinning of the grid. The default value is 1.5. @end deftypevar @deftypevar size_t iterations The number of iterations to perform for each call to the routine. The default value is 5 iterations. @end deftypevar @deftypevar int stage Setting this determines the @dfn{stage} of the calculation. Normally, @code{stage = 0} which begins with a new uniform grid and empty weighted average. Calling @sc{vegas} with @code{stage = 1} retains the grid from the previous run but discards the weighted average, so that one can ``tune'' the grid using a relatively small number of points and then do a large run with @code{stage = 1} on the optimized grid. Setting @code{stage = 2} keeps the grid and the weighted average from the previous run, but may increase (or decrease) the number of histogram bins in the grid depending on the number of calls available. Choosing @code{stage = 3} enters at the main loop, so that nothing is changed, and is equivalent to performing additional iterations in a previous call. @end deftypevar @deftypevar int mode The possible choices are @code{GSL_VEGAS_MODE_IMPORTANCE}, @code{GSL_VEGAS_MODE_STRATIFIED}, @code{GSL_VEGAS_MODE_IMPORTANCE_ONLY}. This determines whether @sc{vegas} will use importance sampling or stratified sampling, or whether it can pick on its own. In low dimensions @sc{vegas} uses strict stratified sampling (more precisely, stratified sampling is chosen if there are fewer than 2 bins per box). @end deftypevar @deftypevar int verbose @deftypevarx {FILE *} ostream These parameters set the level of information printed by @sc{vegas}. All information is written to the stream @var{ostream}. The default setting of @var{verbose} is @code{-1}, which turns off all output. A @var{verbose} value of @code{0} prints summary information about the weighted average and final result, while a value of @code{1} also displays the grid coordinates. A value of @code{2} prints information from the rebinning procedure for each iteration. @end deftypevar The above fields and the @var{chisq} value can also be accessed directly in the @code{gsl_monte_vegas_state} but such use is deprecated. @node Monte Carlo Examples @section Examples The example program below uses the Monte Carlo routines to estimate the value of the following 3-dimensional integral from the theory of random walks, @tex \beforedisplay $$ I = \int_{-\pi}^{+\pi} {dk_x \over 2\pi} \int_{-\pi}^{+\pi} {dk_y \over 2\pi} \int_{-\pi}^{+\pi} {dk_z \over 2\pi} { 1 \over (1 - \cos(k_x)\cos(k_y)\cos(k_z))}. $$ \afterdisplay @end tex @ifinfo @example I = \int_@{-pi@}^@{+pi@} @{dk_x/(2 pi)@} \int_@{-pi@}^@{+pi@} @{dk_y/(2 pi)@} \int_@{-pi@}^@{+pi@} @{dk_z/(2 pi)@} 1 / (1 - cos(k_x)cos(k_y)cos(k_z)). @end example @end ifinfo @noindent The analytic value of this integral can be shown to be @math{I = \Gamma(1/4)^4/(4 \pi^3) = 1.393203929685676859...}. The integral gives the mean time spent at the origin by a random walk on a body-centered cubic lattice in three dimensions. For simplicity we will compute the integral over the region @math{(0,0,0)} to @math{(\pi,\pi,\pi)} and multiply by 8 to obtain the full result. The integral is slowly varying in the middle of the region but has integrable singularities at the corners @math{(0,0,0)}, @math{(0,\pi,\pi)}, @math{(\pi,0,\pi)} and @math{(\pi,\pi,0)}. The Monte Carlo routines only select points which are strictly within the integration region and so no special measures are needed to avoid these singularities. @smallexample @verbatiminclude examples/monte.c @end smallexample @noindent With 500,000 function calls the plain Monte Carlo algorithm achieves a fractional error of 1%. The estimated error @code{sigma} is roughly consistent with the actual error--the computed result differs from the true result by about 1.4 standard deviations, @example plain ================== result = 1.412209 sigma = 0.013436 exact = 1.393204 error = 0.019005 = 1.4 sigma @end example @noindent The @sc{miser} algorithm reduces the error by a factor of four, and also correctly estimates the error, @example miser ================== result = 1.391322 sigma = 0.003461 exact = 1.393204 error = -0.001882 = 0.54 sigma @end example @noindent In the case of the @sc{vegas} algorithm the program uses an initial warm-up run of 10,000 function calls to prepare, or ``warm up'', the grid. This is followed by a main run with five iterations of 100,000 function calls. The chi-squared per degree of freedom for the five iterations are checked for consistency with 1, and the run is repeated if the results have not converged. In this case the estimates are consistent on the first pass. @example vegas warm-up ================== result = 1.392673 sigma = 0.003410 exact = 1.393204 error = -0.000531 = 0.16 sigma converging... result = 1.393281 sigma = 0.000362 chisq/dof = 1.5 vegas final ================== result = 1.393281 sigma = 0.000362 exact = 1.393204 error = 0.000077 = 0.21 sigma @end example @noindent If the value of @code{chisq} had differed significantly from 1 it would indicate inconsistent results, with a correspondingly underestimated error. The final estimate from @sc{vegas} (using a similar number of function calls) is significantly more accurate than the other two algorithms. @node Monte Carlo Integration References and Further Reading @section References and Further Reading The @sc{miser} algorithm is described in the following article by Press and Farrar, @itemize @w{} @item W.H. Press, G.R. Farrar, @cite{Recursive Stratified Sampling for Multidimensional Monte Carlo Integration}, Computers in Physics, v4 (1990), pp190--195. @end itemize @noindent The @sc{vegas} algorithm is described in the following papers, @itemize @w{} @item G.P. Lepage, @cite{A New Algorithm for Adaptive Multidimensional Integration}, Journal of Computational Physics 27, 192--203, (1978) @item G.P. Lepage, @cite{VEGAS: An Adaptive Multi-dimensional Integration Program}, Cornell preprint CLNS 80-447, March 1980 @end itemize gsl-1.16/doc/specfunc-coupling.texi0000664000252300025230000000634312171574312014244 00000000000000@cindex coupling coefficients @cindex 3-j symbols @cindex 6-j symbols @cindex 9-j symbols @cindex Wigner coefficients @cindex Racah coefficients The Wigner 3-j, 6-j and 9-j symbols give the coupling coefficients for combined angular momentum vectors. Since the arguments of the standard coupling coefficient functions are integer or half-integer, the arguments of the following functions are, by convention, integers equal to twice the actual spin value. For information on the 3-j coefficients see Abramowitz & Stegun, Section 27.9. The functions described in this section are declared in the header file @file{gsl_sf_coupling.h}. @menu * 3-j Symbols:: * 6-j Symbols:: * 9-j Symbols:: @end menu @node 3-j Symbols @subsection 3-j Symbols @deftypefun double gsl_sf_coupling_3j (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_ma}, int @var{two_mb}, int @var{two_mc}) @deftypefunx int gsl_sf_coupling_3j_e (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_ma}, int @var{two_mb}, int @var{two_mc}, gsl_sf_result * @var{result}) These routines compute the Wigner 3-j coefficient, @tex \beforedisplay $$ \pmatrix{ja & jb & jc\cr ma & mb & mc\cr} $$ \afterdisplay @end tex @ifinfo @example (ja jb jc ma mb mc) @end example @end ifinfo @noindent where the arguments are given in half-integer units, @math{ja} = @var{two_ja}/2, @math{ma} = @var{two_ma}/2, etc. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node 6-j Symbols @subsection 6-j Symbols @deftypefun double gsl_sf_coupling_6j (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_jd}, int @var{two_je}, int @var{two_jf}) @deftypefunx int gsl_sf_coupling_6j_e (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_jd}, int @var{two_je}, int @var{two_jf}, gsl_sf_result * @var{result}) These routines compute the Wigner 6-j coefficient, @tex \beforedisplay $$ \left\{\matrix{ja & jb & jc\cr jd & je & jf\cr}\right\} $$ \afterdisplay @end tex @ifinfo @example @{ja jb jc jd je jf@} @end example @end ifinfo @noindent where the arguments are given in half-integer units, @math{ja} = @var{two_ja}/2, @math{ma} = @var{two_ma}/2, etc. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node 9-j Symbols @subsection 9-j Symbols @deftypefun double gsl_sf_coupling_9j (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_jd}, int @var{two_je}, int @var{two_jf}, int @var{two_jg}, int @var{two_jh}, int @var{two_ji}) @deftypefunx int gsl_sf_coupling_9j_e (int @var{two_ja}, int @var{two_jb}, int @var{two_jc}, int @var{two_jd}, int @var{two_je}, int @var{two_jf}, int @var{two_jg}, int @var{two_jh}, int @var{two_ji}, gsl_sf_result * @var{result}) These routines compute the Wigner 9-j coefficient, @tex \beforedisplay $$ \left\{\matrix{ja & jb & jc\cr jd & je & jf\cr jg & jh & ji\cr}\right\} $$ \afterdisplay @end tex @ifinfo @example @{ja jb jc jd je jf jg jh ji@} @end example @end ifinfo @noindent where the arguments are given in half-integer units, @math{ja} = @var{two_ja}/2, @math{ma} = @var{two_ma}/2, etc. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun gsl-1.16/doc/rand-weibull.tex0000664000252300025230000006041412171574312013033 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-weibull.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-weibull.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -31 V 1452 31 R 0 -31 V 1453 31 R 0 -31 V 1452 31 R 0 -31 V 1452 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 3506 M 19 -19 V 20 -19 V 19 -19 V 20 -19 V 19 -18 V 20 -19 V 19 -18 V 19 -18 V 20 -19 V 19 -18 V 20 -18 V 19 -17 V 20 -18 V 19 -18 V 19 -17 V 20 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -16 V 19 -17 V 20 -17 V 19 -16 V 20 -16 V 19 -17 V 20 -16 V 19 -16 V 19 -16 V 20 -15 V 19 -16 V 20 -16 V 19 -15 V 20 -16 V 19 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -14 V 19 -15 V 19 -14 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 20 -14 V 19 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -12 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 20 -13 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -12 V 19 -12 V 20 -12 V 19 -11 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -11 V 19 -10 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 3052 2075 L 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 19 -8 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -9 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 5092 1346 L 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 38 V 20 39 V 19 38 V 20 39 V 19 38 V 20 38 V 19 39 V 19 38 V 20 38 V 19 38 V 20 38 V 19 38 V 20 37 V 19 38 V 19 37 V 20 37 V 19 38 V 20 36 V 19 37 V 20 37 V 19 36 V 19 36 V 20 36 V 19 36 V 20 35 V 19 35 V 20 35 V 19 35 V 19 34 V 20 34 V 19 34 V 20 34 V 19 33 V 20 33 V 19 33 V 19 32 V 20 32 V 19 31 V 20 31 V 19 31 V 20 31 V 19 30 V 19 30 V 20 29 V 19 29 V 20 29 V 19 28 V 20 28 V 19 27 V 19 27 V 20 26 V 19 26 V 20 26 V 19 25 V 20 25 V 19 24 V 19 24 V 20 23 V 19 23 V 20 23 V 19 22 V 20 21 V 19 21 V 19 21 V 20 20 V 19 19 V 20 19 V 19 19 V 20 18 V 19 18 V 19 17 V 20 16 V 19 16 V 20 16 V 19 15 V 20 15 V 19 14 V 19 13 V 20 13 V 19 13 V 20 12 V 19 12 V 20 11 V 19 10 V 19 10 V 20 10 V 19 9 V 20 9 V 19 8 V 20 7 V 19 8 V 19 6 V 20 6 V 19 6 V 20 5 V 19 5 V 20 4 V 19 4 V 19 3 V 20 3 V 19 2 V 20 2 V 3052 3096 L 20 1 V 19 0 V 19 0 V 20 0 V 19 -1 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -3 V 19 -4 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -6 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -8 V 19 -8 V 20 -8 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -10 V 19 -11 V 20 -10 V 19 -11 V 20 -11 V 19 -12 V 20 -12 V 19 -11 V 19 -13 V 20 -12 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -14 V 19 -13 V 20 -14 V 19 -15 V 20 -14 V 19 -14 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -16 V 19 -16 V 19 -15 V 20 -16 V 19 -16 V 20 -16 V 19 -16 V 20 -17 V 19 -16 V 19 -17 V 20 -16 V 19 -17 V 20 -16 V 19 -17 V 20 -17 V 19 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 19 -17 V 20 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 19 -17 V 20 -16 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -17 V 19 -16 V 20 -17 V 19 -16 V 20 -16 V 19 -16 V 20 -16 V 5092 1786 L 19 -16 V 20 -16 V 19 -16 V 20 -15 V 19 -16 V 20 -15 V 19 -16 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -14 V 20 -15 V 19 -15 V 19 -14 V 20 -14 V 19 -14 V 20 -14 V 19 -14 V 20 -14 V 19 -14 V 19 -13 V 20 -14 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -13 V 19 -12 V 20 -13 V 19 -12 V 20 -12 V 19 -13 V 20 -11 V 19 -12 V 19 -12 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V stroke LT2 LTb LT2 6077 4381 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 1 V 19 0 V 20 1 V 19 0 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 2 V 20 1 V 19 2 V 20 2 V 19 1 V 20 2 V 19 2 V 19 2 V 20 3 V 19 2 V 20 2 V 19 3 V 20 2 V 19 3 V 19 3 V 20 2 V 19 3 V 20 3 V 19 3 V 20 4 V 19 3 V 19 3 V 20 4 V 19 4 V 20 3 V 19 4 V 20 4 V 19 4 V 19 4 V 20 4 V 19 4 V 20 5 V 19 4 V 20 5 V 19 4 V 19 5 V 20 5 V 19 5 V 20 5 V 19 5 V 20 5 V 19 5 V 19 6 V 20 5 V 19 6 V 20 5 V 19 6 V 20 6 V 19 6 V 19 6 V 20 6 V 19 6 V 20 6 V 19 6 V 20 7 V 19 6 V 19 7 V 20 7 V 19 6 V 20 7 V 19 7 V 20 7 V 19 7 V 19 7 V 20 8 V 19 7 V 20 7 V 19 8 V 20 7 V 19 8 V 19 8 V 20 7 V 19 8 V 20 8 V 19 8 V 20 8 V 19 8 V 19 9 V 20 8 V 19 8 V 20 9 V 19 8 V 20 9 V 19 8 V 19 9 V 20 9 V 19 9 V 20 8 V 3052 1122 L 20 9 V 19 9 V 19 9 V 20 10 V 19 9 V 20 9 V 19 9 V 20 10 V 19 9 V 19 10 V 20 9 V 19 10 V 20 9 V 19 10 V 20 10 V 19 9 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 19 11 V 20 10 V 19 10 V 20 10 V 19 11 V 20 10 V 19 10 V 19 11 V 20 10 V 19 10 V 20 11 V 19 10 V 20 10 V 19 11 V 19 10 V 20 10 V 19 11 V 20 10 V 19 10 V 19 11 V 20 10 V 19 10 V 20 11 V 19 10 V 20 10 V 19 10 V 19 11 V 20 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 19 9 V 20 10 V 19 10 V 20 9 V 19 10 V 20 9 V 19 10 V 19 9 V 20 9 V 19 10 V 20 9 V 19 9 V 20 9 V 19 9 V 19 9 V 20 9 V 19 8 V 20 9 V 19 9 V 20 8 V 19 9 V 19 8 V 20 8 V 19 9 V 20 8 V 19 8 V 20 8 V 19 7 V 19 8 V 20 8 V 19 7 V 20 8 V 19 7 V 20 7 V 5092 2122 L 19 7 V 20 7 V 19 6 V 20 7 V 19 7 V 20 6 V 19 7 V 19 6 V 20 6 V 19 6 V 20 6 V 19 6 V 20 5 V 19 6 V 19 5 V 20 6 V 19 5 V 20 5 V 19 5 V 20 5 V 19 4 V 19 5 V 20 4 V 19 5 V 20 4 V 19 4 V 20 4 V 19 3 V 19 4 V 20 3 V 19 4 V 20 3 V 19 3 V 20 3 V 19 2 V 19 3 V 20 2 V 19 3 V 20 2 V 19 2 V 20 2 V 19 2 V 19 1 V 20 2 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 0 V 20 1 V 19 0 V 20 0 V 19 0 V 20 0 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4381){\rjust{\strut{}$a=2,b=3$}}% \put(5957,4581){\rjust{\strut{}$a=1,b=2$}}% \put(5957,4781){\rjust{\strut{}$a=1,b=1$}}% \put(3955,5244){\cjust{\strut{}Weibull Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}2}}% \put(5408,400){\cjust{\strut{}1.5}}% \put(3956,400){\cjust{\strut{}1}}% \put(2503,400){\cjust{\strut{}0.5}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1.5}}% \put(900,3506){\rjust{\strut{} 1}}% \put(900,2069){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-ellint.texi0000664000252300025230000002050312171574312013705 00000000000000@cindex elliptic integrals The functions described in this section are declared in the header file @file{gsl_sf_ellint.h}. Further information about the elliptic integrals can be found in Abramowitz & Stegun, Chapter 17. @menu * Definition of Legendre Forms:: * Definition of Carlson Forms:: * Legendre Form of Complete Elliptic Integrals:: * Legendre Form of Incomplete Elliptic Integrals:: * Carlson Forms:: @end menu @node Definition of Legendre Forms @subsection Definition of Legendre Forms @cindex Legendre forms of elliptic integrals The Legendre forms of elliptic integrals @math{F(\phi,k)}, @math{E(\phi,k)} and @math{\Pi(\phi,k,n)} are defined by, @tex \beforedisplay $$ \eqalign{ F(\phi,k) &= \int_0^\phi dt {1 \over \sqrt{(1 - k^2 \sin^2(t))}}\cr E(\phi,k) &= \int_0^\phi dt \sqrt{(1 - k^2 \sin^2(t))}\cr \Pi(\phi,k,n) &= \int_0^\phi dt {1 \over (1 + n \sin^2(t)) \sqrt{1 - k^2 \sin^2(t)}} } $$ \afterdisplay @end tex @ifinfo @example F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t))) E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t))) Pi(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t))) @end example @end ifinfo @noindent The complete Legendre forms are denoted by @math{K(k) = F(\pi/2, k)} and @math{E(k) = E(\pi/2, k)}. The notation used here is based on Carlson, @cite{Numerische Mathematik} 33 (1979) 1 and differs slightly from that used by Abramowitz & Stegun, where the functions are given in terms of the parameter @math{m = k^2} and @math{n} is replaced by @math{-n}. @node Definition of Carlson Forms @subsection Definition of Carlson Forms @cindex Carlson forms of Elliptic integrals The Carlson symmetric forms of elliptical integrals @math{RC(x,y)}, @math{RD(x,y,z)}, @math{RF(x,y,z)} and @math{RJ(x,y,z,p)} are defined by, @tex \beforedisplay $$ \eqalign{ RC(x,y) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1}\cr RD(x,y,z) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-3/2}\cr RF(x,y,z) &= 1/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2}\cr RJ(x,y,z,p) &= 3/2 \int_0^\infty dt (t+x)^{-1/2} (t+y)^{-1/2} (t+z)^{-1/2} (t+p)^{-1} } $$ \afterdisplay @end tex @ifinfo @example RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1) RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2) RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) RJ(x,y,z,p) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1) @end example @end ifinfo @node Legendre Form of Complete Elliptic Integrals @subsection Legendre Form of Complete Elliptic Integrals @deftypefun double gsl_sf_ellint_Kcomp (double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Kcomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{K(k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_Ecomp (double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Ecomp_e (double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{E(k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_Pcomp (double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_Pcomp_e (double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the complete elliptic integral @math{\Pi(k,n)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the change of sign @math{n \to -n}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Legendre Form of Incomplete Elliptic Integrals @subsection Legendre Form of Incomplete Elliptic Integrals @deftypefun double gsl_sf_ellint_F (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_F_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{F(\phi,k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_E (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_E_e (double @var{phi}, double @var{k}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{E(\phi,k)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameter @math{m = k^2}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_P (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_P_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{\Pi(\phi,k,n)} to the accuracy specified by the mode variable @var{mode}. Note that Abramowitz & Stegun define this function in terms of the parameters @math{m = k^2} and @math{\sin^2(\alpha) = k^2}, with the change of sign @math{n \to -n}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_D (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_D_e (double @var{phi}, double @var{k}, double @var{n}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These functions compute the incomplete elliptic integral @math{D(\phi,k)} which is defined through the Carlson form @math{RD(x,y,z)} by the following relation, @tex \beforedisplay $$ D(\phi,k,n) = {1 \over 3} (\sin \phi)^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1). $$ \afterdisplay @end tex @ifinfo @example D(\phi,k,n) = (1/3)(\sin(\phi))^3 RD (1-\sin^2(\phi), 1-k^2 \sin^2(\phi), 1). @end example @end ifinfo The argument @var{n} is not used and will be removed in a future release. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Carlson Forms @subsection Carlson Forms @deftypefun double gsl_sf_ellint_RC (double @var{x}, double @var{y}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RC_e (double @var{x}, double @var{y}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RC(x,y)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RD (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RD_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RD(x,y,z)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RF (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RF_e (double @var{x}, double @var{y}, double @var{z}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RF(x,y,z)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_ellint_RJ (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_ellint_RJ_e (double @var{x}, double @var{y}, double @var{z}, double @var{p}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the incomplete elliptic integral @math{RJ(x,y,z,p)} to the accuracy specified by the mode variable @var{mode}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/gpl.texi0000664000252300025230000010440512171574312011400 00000000000000@center Version 3, 29 June 2007 @iftex @smallerfonts @rm @end iftex @c This file is intended to be included in another file. @display Copyright @copyright{} 2007 Free Software Foundation, Inc. @url{http://fsf.org/} Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. @end display @heading Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. @heading TERMS AND CONDITIONS @enumerate 0 @item Definitions. ``This License'' refers to version 3 of the GNU General Public License. ``Copyright'' also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. ``The Program'' refers to any copyrightable work licensed under this License. Each licensee is addressed as ``you''. ``Licensees'' and ``recipients'' may be individuals or organizations. To ``modify'' a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a ``modified version'' of the earlier work or a work ``based on'' the earlier work. A ``covered work'' means either the unmodified Program or a work based on the Program. To ``propagate'' a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To ``convey'' a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays ``Appropriate Legal Notices'' to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. @item Source Code. The ``source code'' for a work means the preferred form of the work for making modifications to it. ``Object code'' means any non-source form of a work. A ``Standard Interface'' means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The ``System Libraries'' of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A ``Major Component'', in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The ``Corresponding Source'' for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. @item Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. @item Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. @item Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. @item Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: @enumerate a @item The work must carry prominent notices stating that you modified it, and giving a relevant date. @item The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to ``keep intact all notices''. @item You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. @item If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. @end enumerate A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an ``aggregate'' if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. @item Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: @enumerate a @item Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. @item Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. @item Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. @item Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. @item Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. @end enumerate A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A ``User Product'' is either (1) a ``consumer product'', which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, ``normally used'' refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. ``Installation Information'' for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. @item Additional Terms. ``Additional permissions'' are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: @enumerate a @item Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or @item Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or @item Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or @item Limiting the use for publicity purposes of names of licensors or authors of the material; or @item Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or @item Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. @end enumerate All other non-permissive additional terms are considered ``further restrictions'' within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. @item Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. @item Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. @item Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An ``entity transaction'' is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. @item Patents. A ``contributor'' is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's ``contributor version''. A contributor's ``essential patent claims'' are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, ``control'' includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a ``patent license'' is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To ``grant'' such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. ``Knowingly relying'' means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is ``discriminatory'' if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. @item No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. @item Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. @item Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License ``or any later version'' applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. @item Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. @item Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. @item Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. @end enumerate @heading END OF TERMS AND CONDITIONS @heading How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the ``copyright'' line and a pointer to where the full notice is found. @smallexample @var{one line to give the program's name and a brief idea @*of what it does.} Copyright (C) @var{year} @var{name of author} This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see @url{http://www.gnu.org/licenses/}. @end smallexample Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: @smallexample @var{program} Copyright (C) @var{year} @var{name of author} This program comes with ABSOLUTELY NO WARRANTY; for details type @samp{show w}. This is free software, and you are welcome to redistribute it under certain conditions; type @samp{show c} for details. @end smallexample The hypothetical commands @samp{show w} and @samp{show c} should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an ``about box''. You should also get your employer (if you work as a programmer) or school, if any, to sign a ``copyright disclaimer'' for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see @url{http://www.gnu.org/licenses/}. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read @url{http://www.gnu.org/philosophy/why-not-lgpl.html}. @iftex @* @textfonts @rm @end iftex gsl-1.16/doc/rand-exponential.tex0000664000252300025230000005357712171574312013732 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-exponential.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-exponential.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 1936 31 R 0 -31 V 1937 31 R 0 -31 V 1936 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 4944 M 19 -43 V 20 -43 V 19 -42 V 20 -42 V 19 -41 V 20 -41 V 19 -41 V 19 -40 V 20 -39 V 19 -40 V 20 -39 V 19 -38 V 20 -38 V 19 -38 V 19 -38 V 20 -37 V 19 -36 V 20 -37 V 19 -36 V 20 -35 V 19 -35 V 19 -35 V 20 -35 V 19 -34 V 20 -34 V 19 -33 V 20 -34 V 19 -32 V 19 -33 V 20 -32 V 19 -32 V 20 -31 V 19 -32 V 20 -31 V 19 -30 V 19 -31 V 20 -30 V 19 -29 V 20 -30 V 19 -29 V 20 -29 V 19 -28 V 19 -28 V 20 -28 V 19 -28 V 20 -27 V 19 -28 V 20 -26 V 19 -27 V 19 -26 V 20 -26 V 19 -26 V 20 -26 V 19 -25 V 20 -25 V 19 -25 V 19 -25 V 20 -24 V 19 -24 V 20 -24 V 19 -23 V 20 -24 V 19 -23 V 19 -23 V 20 -22 V 19 -23 V 20 -22 V 19 -22 V 20 -22 V 19 -21 V 19 -22 V 20 -21 V 19 -21 V 20 -20 V 19 -21 V 20 -20 V 19 -20 V 19 -20 V 20 -20 V 19 -19 V 20 -20 V 19 -19 V 20 -19 V 19 -18 V 19 -19 V 20 -18 V 19 -18 V 20 -18 V 19 -18 V 20 -18 V 19 -17 V 19 -17 V 20 -18 V 19 -17 V 20 -16 V 19 -17 V 20 -16 V 19 -17 V 19 -16 V 20 -16 V 19 -15 V 20 -16 V 3052 2165 L 20 -15 V 19 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -14 V 19 -15 V 20 -14 V 19 -14 V 19 -14 V 20 -14 V 19 -14 V 20 -13 V 19 -14 V 20 -13 V 19 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -12 V 20 -12 V 19 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 5092 1166 L 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 2788 M 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -11 V 19 -10 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 3052 1917 L 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 5092 1391 L 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\mu=2$}}% \put(5957,4781){\rjust{\strut{}$\mu=1$}}% \put(3955,5244){\cjust{\strut{}Exponential Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}3}}% \put(4924,400){\cjust{\strut{}2}}% \put(2987,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/initial-route.eps0000664000252300025230000051561412171574312013231 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Jan 4 10:56:26 2007 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 101 194 489 610 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 101 194 489 610 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3399 10017 3399 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3414 10017 3414 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 3311 10017 3297 9930 3297 10017 3517 10017 3517 9930 3502 10017 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3355 9710 3458 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3781 9973 3795 10017 3795 9930 3781 9973 3751 10003 3707 10017 3663 10017 3619 10003 3590 9973 3590 9944 3605 9915 3619 9900 3649 9886 3737 9856 3766 9842 3795 9812 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3590 9944 3619 9915 3649 9900 3737 9871 3766 9856 3781 9842 3795 9812 3795 9754 3766 9724 3722 9710 3678 9710 3634 9724 3605 9754 3590 9798 3590 9710 3605 9754 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3913 10017 3913 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3927 10017 3927 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3869 10017 4045 10017 4089 10003 4103 9988 4118 9959 4118 9915 4103 9886 4089 9871 4045 9856 3927 9856 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4045 10017 4074 10003 4089 9988 4103 9959 4103 9915 4089 9886 4074 9871 4045 9856 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3869 9710 3971 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4455 9842 4719 9842 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5100 10003 5086 9988 5071 10003 5086 10017 4 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5086 9915 5086 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5100 9915 5100 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5042 9915 5100 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5042 9710 5144 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5247 9915 5247 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5261 9915 5261 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5261 9871 5291 9900 5335 9915 5364 9915 5408 9900 5423 9871 5423 9710 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5364 9915 5393 9900 5408 9871 5408 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5203 9915 5261 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5203 9710 5305 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5364 9710 5467 9710 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5584 10003 5569 9988 5555 10003 5569 10017 4 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5569 9915 5569 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5584 9915 5584 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5525 9915 5584 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5525 9710 5628 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5731 10017 5731 9768 5745 9724 5775 9710 5804 9710 5833 9724 5848 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5745 10017 5745 9768 5760 9724 5775 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5687 9915 5804 9915 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5965 10003 5951 9988 5936 10003 5951 10017 4 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5951 9915 5951 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5965 9915 5965 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5907 9915 5965 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5907 9710 6009 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 6112 9886 6112 9871 6097 9871 6097 9886 6112 9900 6141 9915 6200 9915 6229 9900 6244 9886 6259 9856 6259 9754 6273 9724 6288 9710 13 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 6244 9886 6244 9754 6259 9724 6288 9710 6302 9710 5 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 6244 9856 6229 9842 6141 9827 6097 9812 6083 9783 6083 9754 6097 9724 6141 9710 6185 9710 6215 9724 6244 9754 11 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6141 9827 6112 9812 6097 9783 6097 9754 6112 9724 6141 9710 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6405 10017 6405 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6420 10017 6420 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6361 10017 6420 10017 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6361 9710 6464 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 9842 6816 9842 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7036 9915 7080 9900 7109 9871 7124 9827 7124 9798 7109 9754 7080 9724 7036 9710 7006 9710 6962 9724 6933 9754 6918 9798 6918 9827 6933 9871 6962 9900 7006 9915 16 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7006 9915 6977 9900 6948 9871 6933 9827 6933 9798 6948 9754 6977 9724 7006 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7036 9710 7065 9724 7094 9754 7109 9798 7109 9827 7094 9871 7065 9900 7036 9915 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7241 9915 7241 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7256 9915 7256 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7256 9827 7270 9871 7299 9900 7329 9915 7373 9915 7387 9900 7387 9886 7373 9871 7358 9886 7373 9900 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7197 9915 7256 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7197 9710 7299 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7637 10017 7637 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7651 10017 7651 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 7637 9871 7607 9900 7578 9915 7549 9915 7505 9900 7475 9871 7461 9827 7461 9798 7475 9754 7505 9724 7549 9710 7578 9710 7607 9724 7637 9754 14 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7549 9915 7519 9900 7490 9871 7475 9827 7475 9798 7490 9754 7519 9724 7549 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7593 10017 7651 10017 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7637 9710 7695 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 7783 9827 7959 9827 7959 9856 7945 9886 7930 9900 7901 9915 7857 9915 7813 9900 7783 9871 7769 9827 7769 9798 7783 9754 7813 9724 7857 9710 7886 9710 7930 9724 7959 9754 17 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 7945 9827 7945 9871 7930 9900 3 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7857 9915 7827 9900 7798 9871 7783 9827 7783 9798 7798 9754 7827 9724 7857 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8077 9915 8077 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8091 9915 8091 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8091 9827 8106 9871 8135 9900 8165 9915 8209 9915 8223 9900 8223 9886 8209 9871 8194 9886 8209 9900 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8033 9915 8091 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8033 9710 8135 9710 2 MLine End Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2059 2097 2172 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2235 2147 2247 2153 2266 2172 2266 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2260 2166 2260 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2235 2040 2291 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2361 2147 2373 2153 2392 2172 2392 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2386 2166 2386 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2361 2040 2417 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2524 2159 2524 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2530 2172 2530 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2530 2172 2461 2078 2562 2078 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2505 2040 2549 2040 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2827 2097 2940 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3003 2147 3015 2153 3034 2172 3034 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3028 2166 3028 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3003 2040 3059 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3129 2147 3141 2153 3160 2172 3160 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3154 2166 3154 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3129 2040 3185 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 3242 2147 3248 2141 3242 2134 3235 2141 3235 2147 3242 2159 3248 2166 3267 2172 3292 2172 3311 2166 3317 2159 3323 2147 3323 2134 3317 2122 3298 2109 3267 2097 3254 2090 3242 2078 3235 2059 3235 2040 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3292 2172 3304 2166 3311 2159 3317 2147 3317 2134 3311 2122 3292 2109 3267 2097 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 3235 2053 3242 2059 3254 2059 3286 2046 3304 2046 3317 2053 3323 2059 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 3254 2059 3286 2040 3311 2040 3317 2046 3323 2059 3323 2072 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 9216 3072 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 2304 3072 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3595 2097 3708 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3771 2147 3783 2153 3802 2172 3802 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3796 2166 3796 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3771 2040 3827 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3897 2147 3909 2153 3928 2172 3928 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3922 2166 3922 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3897 2040 3953 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4054 2172 4072 2166 4085 2147 4091 2115 4091 2097 4085 2065 4072 2046 4054 2040 4041 2040 4022 2046 4010 2065 4003 2097 4003 2115 4010 2147 4022 2166 4041 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4041 2172 4029 2166 4022 2159 4016 2147 4010 2115 4010 2097 4016 2065 4022 2053 4029 2046 4041 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4054 2040 4066 2046 4072 2053 4079 2065 4085 2097 4085 2115 4079 2147 4072 2159 4066 2166 4054 2172 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 9216 3840 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 2304 3840 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4363 2097 4476 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4539 2147 4551 2153 4570 2172 4570 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4564 2166 4564 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4539 2040 4595 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4696 2172 4715 2166 4727 2147 4734 2115 4734 2097 4727 2065 4715 2046 4696 2040 4683 2040 4665 2046 4652 2065 4646 2097 4646 2115 4652 2147 4665 2166 4683 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4683 2172 4671 2166 4665 2159 4658 2147 4652 2115 4652 2097 4658 2065 4665 2053 4671 2046 4683 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4696 2040 4709 2046 4715 2053 4721 2065 4727 2097 4727 2115 4721 2147 4715 2159 4709 2166 4696 2172 10 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 4828 2172 4847 2166 4853 2153 4853 2134 4847 2122 4828 2115 4803 2115 4784 2122 4778 2134 4778 2153 4784 2166 4803 2172 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4803 2172 4790 2166 4784 2153 4784 2134 4790 2122 4803 2115 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4828 2115 4840 2122 4847 2134 4847 2153 4840 2166 4828 2172 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4803 2115 4784 2109 4778 2103 4771 2090 4771 2065 4778 2053 4784 2046 4803 2040 4828 2040 4847 2046 4853 2053 4859 2065 4859 2090 4853 2103 4847 2109 4828 2115 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4803 2115 4790 2109 4784 2103 4778 2090 4778 2065 4784 2053 4790 2046 4803 2040 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4828 2040 4840 2046 4847 2053 4853 2065 4853 2090 4847 2103 4840 2109 4828 2115 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5131 2097 5244 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5307 2147 5319 2153 5338 2172 5338 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5332 2166 5332 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5307 2040 5363 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5464 2172 5483 2166 5495 2147 5502 2115 5502 2097 5495 2065 5483 2046 5464 2040 5451 2040 5433 2046 5420 2065 5414 2097 5414 2115 5420 2147 5433 2166 5451 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5451 2172 5439 2166 5433 2159 5426 2147 5420 2115 5420 2097 5426 2065 5433 2053 5439 2046 5451 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5464 2040 5477 2046 5483 2053 5489 2065 5495 2097 5495 2115 5489 2147 5483 2159 5477 2166 5464 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 5615 2153 5608 2147 5615 2141 5621 2147 5621 2153 5615 2166 5602 2172 5583 2172 5565 2166 5552 2153 5546 2141 5539 2115 5539 2078 5546 2059 5558 2046 5577 2040 5590 2040 5608 2046 5621 2059 5627 2078 5627 2084 5621 2103 5608 2115 5590 2122 5583 2122 5565 2115 5552 2103 5546 2084 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 5583 2172 5571 2166 5558 2153 5552 2141 5546 2115 5546 2078 5552 2059 5565 2046 5577 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5590 2040 5602 2046 5615 2059 5621 2078 5621 2084 5615 2103 5602 2115 5590 2122 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 9216 5376 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 2304 5376 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5899 2097 6012 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6075 2147 6087 2153 6106 2172 6106 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6100 2166 6100 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6075 2040 6131 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6232 2172 6251 2166 6263 2147 6270 2115 6270 2097 6263 2065 6251 2046 6232 2040 6219 2040 6201 2046 6188 2065 6182 2097 6182 2115 6188 2147 6201 2166 6219 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6219 2172 6207 2166 6201 2159 6194 2147 6188 2115 6188 2097 6194 2065 6201 2053 6207 2046 6219 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6232 2040 6245 2046 6251 2053 6257 2065 6263 2097 6263 2115 6257 2147 6251 2159 6245 2166 6232 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6364 2159 6364 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6370 2172 6370 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6370 2172 6301 2078 6402 2078 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6345 2040 6389 2040 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 9216 6144 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 2304 6144 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6667 2097 6780 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6843 2147 6855 2153 6874 2172 6874 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6868 2166 6868 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6843 2040 6899 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7000 2172 7019 2166 7031 2147 7038 2115 7038 2097 7031 2065 7019 2046 7000 2040 6987 2040 6969 2046 6956 2065 6950 2097 6950 2115 6956 2147 6969 2166 6987 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6987 2172 6975 2166 6969 2159 6962 2147 6956 2115 6956 2097 6962 2065 6969 2053 6975 2046 6987 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7000 2040 7013 2046 7019 2053 7025 2065 7031 2097 7031 2115 7025 2147 7019 2159 7013 2166 7000 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 7082 2147 7088 2141 7082 2134 7075 2141 7075 2147 7082 2159 7088 2166 7107 2172 7132 2172 7151 2166 7157 2159 7163 2147 7163 2134 7157 2122 7138 2109 7107 2097 7094 2090 7082 2078 7075 2059 7075 2040 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7132 2172 7144 2166 7151 2159 7157 2147 7157 2134 7151 2122 7132 2109 7107 2097 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7075 2053 7082 2059 7094 2059 7126 2046 7144 2046 7157 2053 7163 2059 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 7094 2059 7126 2040 7151 2040 7157 2046 7163 2059 7163 2072 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7435 2097 7548 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 7611 2147 7623 2153 7642 2172 7642 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7636 2166 7636 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7611 2040 7667 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7768 2172 7787 2166 7799 2147 7806 2115 7806 2097 7799 2065 7787 2046 7768 2040 7755 2040 7737 2046 7724 2065 7718 2097 7718 2115 7724 2147 7737 2166 7755 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7755 2172 7743 2166 7737 2159 7730 2147 7724 2115 7724 2097 7730 2065 7737 2053 7743 2046 7755 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7768 2040 7781 2046 7787 2053 7793 2065 7799 2097 7799 2115 7793 2147 7787 2159 7781 2166 7768 2172 10 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7894 2172 7912 2166 7925 2147 7931 2115 7931 2097 7925 2065 7912 2046 7894 2040 7881 2040 7862 2046 7850 2065 7843 2097 7843 2115 7850 2147 7862 2166 7881 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7881 2172 7869 2166 7862 2159 7856 2147 7850 2115 7850 2097 7856 2065 7862 2053 7869 2046 7881 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7894 2040 7906 2046 7912 2053 7919 2065 7925 2097 7925 2115 7919 2147 7912 2159 7906 2166 7894 2172 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 9216 7680 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 2304 7680 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8266 2097 8379 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 8505 2128 8498 2109 8486 2097 8467 2090 8461 2090 8442 2097 8429 2109 8423 2128 8423 2134 8429 2153 8442 2166 8461 2172 8473 2172 8492 2166 8505 2153 8511 2134 8511 2097 8505 2072 8498 2059 8486 2046 8467 2040 8448 2040 8435 2046 8429 2059 8429 2065 8435 2072 8442 2065 8435 2059 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8461 2090 8448 2097 8435 2109 8429 2128 8429 2134 8435 2153 8448 2166 8461 2172 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 8473 2172 8486 2166 8498 2153 8505 2134 8505 2097 8498 2072 8492 2059 8479 2046 8467 2040 9 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 8605 2172 8624 2166 8630 2153 8630 2134 8624 2122 8605 2115 8580 2115 8561 2122 8555 2134 8555 2153 8561 2166 8580 2172 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8580 2172 8567 2166 8561 2153 8561 2134 8567 2122 8580 2115 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8605 2115 8618 2122 8624 2134 8624 2153 8618 2166 8605 2172 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8580 2115 8561 2109 8555 2103 8549 2090 8549 2065 8555 2053 8561 2046 8580 2040 8605 2040 8624 2046 8630 2053 8637 2065 8637 2090 8630 2103 8624 2109 8605 2115 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8580 2115 8567 2109 8561 2103 8555 2090 8555 2065 8561 2053 8567 2046 8580 2040 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8605 2040 8618 2046 8624 2053 8630 2065 8630 2090 8624 2103 8618 2109 8605 2115 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 9216 8448 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 2304 8448 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9034 2097 9147 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 9273 2128 9266 2109 9254 2097 9235 2090 9229 2090 9210 2097 9197 2109 9191 2128 9191 2134 9197 2153 9210 2166 9229 2172 9241 2172 9260 2166 9273 2153 9279 2134 9279 2097 9273 2072 9266 2059 9254 2046 9235 2040 9216 2040 9203 2046 9197 2059 9197 2065 9203 2072 9210 2065 9203 2059 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 9229 2090 9216 2097 9203 2109 9197 2128 9197 2134 9203 2153 9216 2166 9229 2172 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 9241 2172 9254 2166 9266 2153 9273 2134 9273 2097 9266 2072 9260 2059 9247 2046 9235 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 9392 2153 9386 2147 9392 2141 9398 2147 9398 2153 9392 2166 9379 2172 9361 2172 9342 2166 9329 2153 9323 2141 9317 2115 9317 2078 9323 2059 9335 2046 9354 2040 9367 2040 9386 2046 9398 2059 9405 2078 9405 2084 9398 2103 9386 2115 9367 2122 9361 2122 9342 2115 9329 2103 9323 2084 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 9361 2172 9348 2166 9335 2153 9329 2141 9323 2115 9323 2078 9329 2059 9342 2046 9354 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 9367 2040 9379 2046 9392 2059 9398 2078 9398 2084 9392 2103 9379 2115 9367 2122 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2688 9216 2688 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2688 2304 2688 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 9216 3072 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 2304 3072 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 9216 3456 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 2304 3456 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 9216 3840 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 2304 3840 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4224 9216 4224 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4224 2304 4224 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4992 9216 4992 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4992 2304 4992 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 9216 5376 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 2304 5376 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 9216 6144 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 2304 6144 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6528 9216 6528 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6528 2304 6528 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7296 9216 7296 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7296 2304 7296 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 9216 7680 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 2304 7680 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 9216 8064 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 2304 8064 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 9216 8448 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 2304 8448 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8832 9216 8832 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8832 2304 8832 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 2354 1980 2348 1974 2342 1968 2348 1968 2354 1974 2367 1980 2373 1999 2379 2024 2379 2043 2373 2050 2361 2050 2342 2043 2329 2024 2323 2006 2323 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 2379 2037 2373 2043 2361 2043 2342 2037 2329 2024 2323 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 2323 2037 2317 2050 2304 2056 2291 2056 2273 2050 2260 2043 2254 2024 2247 1999 2247 1980 2254 1974 2260 1968 2273 1968 2279 1974 2285 1980 2279 1974 2273 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 2310 2050 2291 2050 2273 2043 2260 2037 2254 2024 2247 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 2100 2354 2106 2348 2100 2342 2093 2348 2093 2354 2100 2367 2106 2373 2125 2379 2150 2379 2169 2373 2175 2367 2181 2354 2181 2342 2175 2329 2156 2317 2125 2304 2112 2298 2100 2285 2093 2266 2093 2247 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2150 2379 2163 2373 2169 2367 2175 2354 2175 2342 2169 2329 2150 2317 2125 2304 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2093 2260 2100 2266 2112 2266 2144 2254 2163 2254 2175 2260 2181 2266 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2112 2266 2144 2247 2169 2247 2175 2254 2181 2266 2181 2279 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 3506 1980 3500 1974 3494 1968 3500 1968 3506 1974 3519 1980 3525 1999 3531 2024 3531 2043 3525 2050 3513 2050 3494 2043 3481 2024 3475 2006 3475 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 3531 2037 3525 2043 3513 2043 3494 2037 3481 2024 3475 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 3475 2037 3469 2050 3456 2056 3443 2056 3425 2050 3412 2043 3406 2024 3399 1999 3399 1980 3406 1974 3412 1968 3425 1968 3431 1974 3437 1980 3431 1974 3425 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 3462 2050 3443 2050 3425 2043 3412 2037 3406 2024 3399 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 2100 3506 2106 3500 2100 3494 2093 3500 2093 3506 2100 3519 2106 3525 2125 3531 2150 3531 2169 3525 2175 3513 2175 3494 2169 3481 2150 3475 2131 3475 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2150 3531 2163 3525 2169 3513 2169 3494 2163 3481 2150 3475 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2150 3475 2163 3469 2175 3456 2181 3443 2181 3425 2175 3412 2169 3406 2150 3399 2125 3399 2106 3406 2100 3412 2093 3425 2093 3431 2100 3437 2106 3431 2100 3425 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2169 3462 2175 3443 2175 3425 2169 3412 2163 3406 2150 3399 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9078 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2442 3456 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 4658 1980 4652 1974 4646 1968 4652 1968 4658 1974 4671 1980 4677 1999 4683 2024 4683 2043 4677 2050 4665 2050 4646 2043 4633 2024 4627 2006 4627 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 4683 2037 4677 2043 4665 2043 4646 2037 4633 2024 4627 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 4627 2037 4621 2050 4608 2056 4595 2056 4577 2050 4564 2043 4558 2024 4551 1999 4551 1980 4558 1974 4564 1968 4577 1968 4583 1974 4589 1980 4583 1974 4577 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 4614 2050 4595 2050 4577 2043 4564 2037 4558 2024 4551 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2150 4671 2150 4551 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2156 4683 2156 4551 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2156 4683 2087 4589 2188 4589 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2131 4551 2175 4551 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9078 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2442 4608 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 5810 1980 5804 1974 5798 1968 5804 1968 5810 1974 5823 1980 5829 1999 5835 2024 5835 2043 5829 2050 5817 2050 5798 2043 5785 2024 5779 2006 5779 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 5835 2037 5829 2043 5817 2043 5798 2037 5785 2024 5779 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 5779 2037 5773 2050 5760 2056 5747 2056 5729 2050 5716 2043 5710 2024 5703 1999 5703 1980 5710 1974 5716 1968 5729 1968 5735 1974 5741 1980 5735 1974 5729 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 5766 2050 5747 2050 5729 2043 5716 2037 5710 2024 5703 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2106 5835 2093 5773 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2093 5773 2106 5785 2125 5791 2144 5791 2163 5785 2175 5773 2181 5754 2181 5741 2175 5722 2163 5710 2144 5703 2125 5703 2106 5710 2100 5716 2093 5729 2093 5735 2100 5741 2106 5735 2100 5729 19 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2144 5791 2156 5785 2169 5773 2175 5754 2175 5741 2169 5722 2156 5710 2144 5703 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2106 5835 2169 5835 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2106 5829 2137 5829 2169 5835 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9078 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2442 5760 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 6962 1980 6956 1974 6950 1968 6956 1968 6962 1974 6975 1980 6981 1999 6987 2024 6987 2043 6981 2050 6969 2050 6950 2043 6937 2024 6931 2006 6931 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 6987 2037 6981 2043 6969 2043 6950 2037 6937 2024 6931 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 6931 2037 6925 2050 6912 2056 6899 2056 6881 2050 6868 2043 6862 2024 6855 1999 6855 1980 6862 1974 6868 1968 6881 1968 6887 1974 6893 1980 6887 1974 6881 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 6918 2050 6899 2050 6881 2043 6868 2037 6862 2024 6855 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2169 6969 2163 6962 2169 6956 2175 6962 2175 6969 2169 6981 2156 6987 2137 6987 2119 6981 2106 6969 2100 6956 2093 6931 2093 6893 2100 6874 2112 6862 2131 6855 2144 6855 2163 6862 2175 6874 2181 6893 2181 6899 2175 6918 2163 6931 2144 6937 2137 6937 2119 6931 2106 6918 2100 6899 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2137 6987 2125 6981 2112 6969 2106 6956 2100 6931 2100 6893 2106 6874 2119 6862 2131 6855 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2144 6855 2156 6862 2169 6874 2175 6893 2175 6899 2169 6918 2156 6931 2144 6937 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9078 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2442 6912 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 8114 1980 8108 1974 8102 1968 8108 1968 8114 1974 8127 1980 8133 1999 8139 2024 8139 2043 8133 2050 8121 2050 8102 2043 8089 2024 8083 2006 8083 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 8139 2037 8133 2043 8121 2043 8102 2037 8089 2024 8083 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 8083 2037 8077 2050 8064 2056 8051 2056 8033 2050 8020 2043 8014 2024 8007 1999 8007 1980 8014 1974 8020 1968 8033 1968 8039 1974 8045 1980 8039 1974 8033 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 8070 2050 8051 2050 8033 2043 8020 2037 8014 2024 8007 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2093 8139 2093 8102 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2093 8114 2100 8127 2112 8139 2125 8139 2156 8121 2169 8121 2175 8127 2181 8139 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2100 8127 2112 8133 2125 8133 2156 8121 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2181 8139 2181 8121 2175 8102 2150 8070 2144 8058 2137 8039 2137 8007 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 2175 8102 2144 8070 2137 8058 2131 8039 2131 8007 5 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9078 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2442 8064 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 9266 1980 9260 1974 9254 1968 9260 1968 9266 1974 9279 1980 9285 1999 9291 2024 9291 2043 9285 2050 9273 2050 9254 2043 9241 2024 9235 2006 9235 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 9291 2037 9285 2043 9273 2043 9254 2037 9241 2024 9235 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 9235 2037 9229 2050 9216 2056 9203 2056 9185 2050 9172 2043 9166 2024 9159 1999 9159 1980 9166 1974 9172 1968 9185 1968 9191 1974 9197 1980 9191 1974 9185 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 9222 2050 9203 2050 9185 2043 9172 2037 9166 2024 9159 6 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 2150 9291 2169 9285 2175 9273 2175 9254 2169 9241 2150 9235 2125 9235 2106 9241 2100 9254 2100 9273 2106 9285 2125 9291 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2125 9291 2112 9285 2106 9273 2106 9254 2112 9241 2125 9235 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2150 9235 2163 9241 2169 9254 2169 9273 2163 9285 2150 9291 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2125 9235 2106 9229 2100 9222 2093 9210 2093 9185 2100 9172 2106 9166 2125 9159 2150 9159 2169 9166 2175 9172 2181 9185 2181 9210 2175 9222 2169 9229 2150 9235 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2125 9235 2112 9229 2106 9222 2100 9210 2100 9185 2106 9172 2112 9166 2125 9159 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2150 9159 2163 9166 2169 9172 2175 9185 2175 9210 2169 9222 2163 9229 2150 9235 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2880 9161 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2880 2359 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9161 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2359 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9161 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2359 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9161 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2359 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5184 9161 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5184 2359 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6336 9161 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6336 2359 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9161 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2359 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7488 9161 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7488 2359 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9161 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2359 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8640 9161 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8640 2359 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4384 1906 4384 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4390 1906 4390 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4365 1906 4390 1906 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4365 1774 4409 1774 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4491 1862 4510 1856 4522 1843 4528 1824 4528 1812 4522 1793 4510 1780 4491 1774 4478 1774 4459 1780 4447 1793 4440 1812 4440 1824 4447 1843 4459 1856 4478 1862 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4478 1862 4466 1856 4453 1843 4447 1824 4447 1812 4453 1793 4466 1780 4478 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4491 1774 4503 1780 4516 1793 4522 1812 4522 1824 4516 1843 4503 1856 4491 1862 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4579 1862 4579 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4585 1862 4585 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4585 1843 4598 1856 4616 1862 4629 1862 4648 1856 4654 1843 4654 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4629 1862 4642 1856 4648 1843 4648 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4560 1862 4585 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4560 1774 4604 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4629 1774 4673 1774 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4748 1862 4761 1856 4767 1849 4773 1837 4773 1824 4767 1812 4761 1805 4748 1799 4736 1799 4723 1805 4717 1812 4711 1824 4711 1837 4717 1849 4723 1856 4736 1862 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4723 1856 4717 1843 4717 1818 4723 1805 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4761 1805 4767 1818 4767 1843 4761 1856 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 4767 1849 4773 1856 4786 1862 4786 1856 4773 1856 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4717 1812 4711 1805 4704 1793 4704 1787 4711 1774 4729 1768 4761 1768 4780 1761 4786 1755 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 4704 1787 4711 1780 4729 1774 4761 1774 4780 1768 4786 1755 4786 1749 4780 1736 4761 1730 4723 1730 4704 1736 4698 1749 4698 1755 4704 1768 4723 1774 15 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4843 1900 4836 1893 4830 1900 4836 1906 4 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4836 1862 4836 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4843 1862 4843 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4817 1862 4843 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4817 1774 4861 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4905 1906 4905 1799 4912 1780 4924 1774 4937 1774 4949 1780 4956 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4912 1906 4912 1799 4918 1780 4924 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4887 1862 4937 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5000 1862 5000 1793 5006 1780 5025 1774 5037 1774 5056 1780 5069 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5006 1862 5006 1793 5012 1780 5025 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 1862 5069 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5075 1862 5075 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4981 1862 5006 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5050 1862 5075 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 1774 5094 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5201 1906 5201 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5207 1906 5207 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 5201 1843 5188 1856 5176 1862 5163 1862 5144 1856 5132 1843 5125 1824 5125 1812 5132 1793 5144 1780 5163 1774 5176 1774 5188 1780 5201 1793 14 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5163 1862 5150 1856 5138 1843 5132 1824 5132 1812 5138 1793 5150 1780 5163 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5182 1906 5207 1906 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5201 1774 5226 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5264 1824 5339 1824 5339 1837 5333 1849 5326 1856 5314 1862 5295 1862 5276 1856 5264 1843 5257 1824 5257 1812 5264 1793 5276 1780 5295 1774 5308 1774 5326 1780 5339 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5333 1824 5333 1843 5326 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5295 1862 5282 1856 5270 1843 5264 1824 5264 1812 5270 1793 5282 1780 5295 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5528 1931 5515 1918 5502 1900 5490 1875 5484 1843 5484 1818 5490 1787 5502 1761 5515 1743 5528 1730 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5515 1918 5502 1893 5496 1875 5490 1843 5490 1818 5496 1787 5502 1768 5515 1743 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5571 1831 5685 1831 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5842 1862 5842 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5848 1862 5848 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5848 1843 5861 1856 5879 1862 5892 1862 5911 1856 5917 1843 5917 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5892 1862 5905 1856 5911 1843 5911 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5917 1843 5930 1856 5949 1862 5961 1862 5980 1856 5986 1843 5986 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5961 1862 5974 1856 5980 1843 5980 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5823 1862 5848 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5823 1774 5867 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5892 1774 5936 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5961 1774 6005 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 6043 1824 6118 1824 6118 1837 6112 1849 6106 1856 6093 1862 6074 1862 6055 1856 6043 1843 6036 1824 6036 1812 6043 1793 6055 1780 6074 1774 6087 1774 6106 1780 6118 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6112 1824 6112 1843 6106 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6074 1862 6062 1856 6049 1843 6043 1824 6043 1812 6049 1793 6062 1780 6074 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 6168 1849 6168 1843 6162 1843 6162 1849 6168 1856 6181 1862 6206 1862 6219 1856 6225 1849 6231 1837 6231 1793 6238 1780 6244 1774 13 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 6225 1849 6225 1793 6231 1780 6244 1774 6250 1774 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 6225 1837 6219 1831 6181 1824 6162 1818 6156 1805 6156 1793 6162 1780 6181 1774 6200 1774 6212 1780 6225 1793 11 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6181 1824 6168 1818 6162 1805 6162 1793 6168 1780 6181 1774 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6294 1862 6294 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6300 1862 6300 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6300 1843 6313 1856 6332 1862 6344 1862 6363 1856 6370 1843 6370 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6344 1862 6357 1856 6363 1843 6363 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6275 1862 6300 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6275 1774 6319 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6344 1774 6388 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6483 1849 6489 1862 6489 1837 6483 1849 6476 1856 6464 1862 6439 1862 6426 1856 6420 1849 6420 1837 6426 1831 6439 1824 6470 1812 6483 1805 6489 1799 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6420 1843 6426 1837 6439 1831 6470 1818 6483 1812 6489 1805 6489 1787 6483 1780 6470 1774 6445 1774 6432 1780 6426 1787 6420 1799 6420 1774 6426 1787 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6633 1862 6659 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6640 1862 6659 1793 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6684 1862 6659 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6684 1862 6709 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6690 1862 6709 1793 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6734 1862 6709 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6615 1862 6659 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6715 1862 6753 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 6784 1824 6860 1824 6860 1837 6853 1849 6847 1856 6835 1862 6816 1862 6797 1856 6784 1843 6778 1824 6778 1812 6784 1793 6797 1780 6816 1774 6828 1774 6847 1780 6860 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6853 1824 6853 1843 6847 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6816 1862 6803 1856 6791 1843 6784 1824 6784 1812 6791 1793 6803 1780 6816 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6960 1849 6966 1862 6966 1837 6960 1849 6954 1856 6941 1862 6916 1862 6904 1856 6897 1849 6897 1837 6904 1831 6916 1824 6948 1812 6960 1805 6966 1799 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6897 1843 6904 1837 6916 1831 6948 1818 6960 1812 6966 1805 6966 1787 6960 1780 6948 1774 6922 1774 6910 1780 6904 1787 6897 1799 6897 1774 6904 1787 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7017 1906 7017 1799 7023 1780 7036 1774 7048 1774 7061 1780 7067 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 7023 1906 7023 1799 7029 1780 7036 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6998 1862 7048 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7098 1931 7111 1918 7124 1900 7136 1875 7142 1843 7142 1818 7136 1787 7124 1761 7111 1743 7098 1730 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7111 1918 7124 1893 7130 1875 7136 1843 7136 1818 7130 1787 7124 1768 7111 1743 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5370 1804 5370 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5377 1804 5377 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5352 1672 5377 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5352 1804 5396 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 1729 5440 1735 5440 1735 5433 1729 5433 1723 5440 1716 5452 1716 5477 1723 5490 1729 5496 1742 5502 1786 5502 1798 5509 1804 5515 13 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 1729 5496 1786 5496 1798 5502 1804 5515 1804 5521 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 1742 5496 1748 5490 1754 5452 1760 5433 1773 5427 1786 5427 1798 5433 1804 5452 1804 5471 1798 5484 1786 5496 11 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1754 5452 1760 5440 1773 5433 1786 5433 1798 5440 1804 5452 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1672 5565 1779 5565 1798 5571 1804 5584 1804 5597 1798 5609 1786 5615 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1672 5571 1779 5571 1798 5578 1804 5584 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5546 1716 5597 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1679 5666 1685 5659 1679 5653 1672 5659 4 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5659 1804 5659 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5666 1804 5666 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5641 1716 5666 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5641 1804 5685 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1672 5729 1779 5729 1798 5735 1804 5747 1804 5760 1798 5773 1786 5779 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1672 5735 1779 5735 1798 5741 1804 5747 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5710 1716 5760 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1716 5823 1786 5823 1798 5829 1804 5848 1804 5861 1798 5879 1786 5892 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 5829 1786 5829 1798 5835 1804 5848 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5892 1804 5892 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5898 1804 5898 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5804 1716 5829 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5873 1716 5898 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5892 1804 5917 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6024 1804 6024 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6030 1804 6030 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 1735 6024 1723 6011 1716 5999 1716 5986 1723 5967 1735 5955 1754 5949 1767 5949 1786 5955 1798 5967 1804 5986 1804 5999 1798 6011 1786 6024 14 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1716 5986 1723 5974 1735 5961 1754 5955 1767 5955 1786 5961 1798 5974 1804 5986 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6005 1672 6030 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 6024 1804 6049 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 1754 6087 1754 6162 1742 6162 1729 6156 1723 6150 1716 6137 1716 6118 1723 6099 1735 6087 1754 6080 1767 6080 1786 6087 1798 6099 1804 6118 1804 6131 1798 6150 1786 6162 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1754 6156 1735 6156 1723 6150 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1716 6118 1723 6106 1735 6093 1754 6087 1767 6087 1786 6093 1798 6106 1804 6118 8 MLine End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5395 6543 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3045 4078 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5138 5898 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6451 5080 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4658 8398 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8920 3214 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5407 6647 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4669 5933 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5268 6785 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5084 2696 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4385 8467 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4324 6359 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5395 6543 32 Circ End Begin %I Poly [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 4324 6359 4385 8467 5084 2696 5268 6785 4669 5933 5407 6647 8920 3214 4658 8398 6451 5080 5138 5898 3045 4078 5395 6543 12 Poly End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/rand-tdist.tex0000664000252300025230000005425112171574312012521 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-tdist.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-tdist.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 1051 631 M 0 -31 V 726 31 R 0 -31 V 726 31 R 0 -31 V 726 31 R 0 -31 V 727 31 R 0 -31 V 726 31 R 0 -31 V 726 31 R 0 -31 V 726 31 R 0 -31 V 726 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 793 M 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 3 V 19 2 V 20 2 V 19 3 V 20 2 V 19 3 V 20 2 V 19 3 V 19 3 V 20 3 V 19 2 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 4 V 20 3 V 19 3 V 20 4 V 19 3 V 19 4 V 20 4 V 19 3 V 20 4 V 19 4 V 20 4 V 19 4 V 19 5 V 20 4 V 19 4 V 20 5 V 19 5 V 20 4 V 19 5 V 19 5 V 20 5 V 19 5 V 20 6 V 19 5 V 20 6 V 19 6 V 19 6 V 20 6 V 19 6 V 20 6 V 19 7 V 20 6 V 19 7 V 19 7 V 20 8 V 19 7 V 20 8 V 19 8 V 20 8 V 19 8 V 19 9 V 20 8 V 19 9 V 20 10 V 19 9 V 20 10 V 19 10 V 19 10 V 20 11 V 19 11 V 20 11 V 19 12 V 20 12 V 19 12 V 19 13 V 20 13 V 19 14 V 20 14 V 19 14 V 20 15 V 19 15 V 19 16 V 20 16 V 19 17 V 20 18 V 19 17 V 20 19 V 19 19 V 19 20 V 20 20 V 19 21 V 20 21 V 19 23 V 20 23 V 19 23 V 19 25 V 20 25 V 19 26 V 20 27 V 3052 1709 L 20 28 V 19 30 V 19 30 V 20 31 V 19 33 V 20 33 V 19 34 V 20 35 V 19 36 V 19 37 V 20 38 V 19 40 V 20 40 V 19 41 V 20 41 V 19 43 V 19 44 V 20 44 V 19 45 V 20 46 V 19 47 V 20 46 V 19 48 V 19 47 V 20 48 V 19 48 V 20 47 V 19 47 V 20 47 V 19 46 V 19 45 V 20 44 V 19 42 V 20 41 V 19 38 V 20 37 V 19 34 V 19 32 V 20 28 V 19 26 V 20 23 V 19 19 V 20 15 V 19 12 V 19 7 V 20 4 V 19 0 V 20 -4 V 19 -7 V 19 -12 V 20 -15 V 19 -19 V 20 -23 V 19 -26 V 20 -28 V 19 -32 V 19 -34 V 20 -37 V 19 -38 V 20 -41 V 19 -42 V 20 -44 V 19 -45 V 19 -46 V 20 -47 V 19 -47 V 20 -47 V 19 -48 V 20 -48 V 19 -47 V 19 -48 V 20 -46 V 19 -47 V 20 -46 V 19 -45 V 20 -44 V 19 -44 V 19 -43 V 20 -41 V 19 -41 V 20 -40 V 19 -40 V 20 -38 V 19 -37 V 19 -36 V 20 -35 V 19 -34 V 20 -33 V 19 -33 V 20 -31 V 19 -30 V 19 -30 V 20 -28 V 19 -28 V 20 -27 V 19 -26 V 20 -25 V 19 -25 V 19 -23 V 20 -23 V 19 -23 V 20 -21 V 19 -21 V 20 -20 V 5092 1427 L 19 -19 V 20 -19 V 19 -17 V 20 -18 V 19 -17 V 20 -16 V 19 -16 V 19 -15 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 20 -13 V 19 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -8 V 19 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 675 M 19 2 V 20 1 V 19 1 V 20 2 V 19 2 V 20 1 V 19 2 V 19 2 V 20 1 V 19 2 V 20 2 V 19 2 V 20 2 V 19 3 V 19 2 V 20 2 V 19 2 V 20 3 V 19 3 V 20 2 V 19 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 3 V 19 4 V 20 4 V 19 4 V 20 4 V 19 4 V 20 5 V 19 4 V 19 5 V 20 5 V 19 5 V 20 6 V 19 5 V 20 6 V 19 6 V 19 6 V 20 7 V 19 6 V 20 7 V 19 8 V 20 7 V 19 8 V 19 8 V 20 8 V 19 9 V 20 9 V 19 9 V 20 10 V 19 10 V 19 10 V 20 11 V 19 11 V 20 12 V 19 12 V 20 13 V 19 12 V 19 14 V 20 14 V 19 14 V 20 15 V 19 16 V 20 16 V 19 17 V 19 17 V 20 18 V 19 18 V 20 20 V 19 19 V 20 21 V 19 21 V 19 22 V 20 23 V 19 24 V 20 24 V 19 25 V 20 26 V 19 26 V 19 28 V 20 28 V 19 30 V 20 30 V 19 31 V 20 32 V 19 33 V 19 34 V 20 35 V 19 35 V 20 37 V 19 38 V 20 38 V 19 40 V 19 40 V 20 41 V 19 43 V 20 43 V 3052 2089 L 20 45 V 19 46 V 19 46 V 20 47 V 19 48 V 20 49 V 19 49 V 20 50 V 19 51 V 19 50 V 20 52 V 19 51 V 20 52 V 19 52 V 20 52 V 19 52 V 19 52 V 20 52 V 19 51 V 20 52 V 19 50 V 20 50 V 19 49 V 19 48 V 20 48 V 19 46 V 20 45 V 19 44 V 20 42 V 19 41 V 19 39 V 20 37 V 19 35 V 20 33 V 19 31 V 20 29 V 19 27 V 19 24 V 20 22 V 19 19 V 20 16 V 19 14 V 20 11 V 19 9 V 19 5 V 20 3 V 19 0 V 20 -3 V 19 -5 V 19 -9 V 20 -11 V 19 -14 V 20 -16 V 19 -19 V 20 -22 V 19 -24 V 19 -27 V 20 -29 V 19 -31 V 20 -33 V 19 -35 V 20 -37 V 19 -39 V 19 -41 V 20 -42 V 19 -44 V 20 -45 V 19 -46 V 20 -48 V 19 -48 V 19 -49 V 20 -50 V 19 -50 V 20 -52 V 19 -51 V 20 -52 V 19 -52 V 19 -52 V 20 -52 V 19 -52 V 20 -52 V 19 -51 V 20 -52 V 19 -50 V 19 -51 V 20 -50 V 19 -49 V 20 -49 V 19 -48 V 20 -47 V 19 -46 V 19 -46 V 20 -45 V 19 -44 V 20 -43 V 19 -43 V 20 -41 V 19 -40 V 19 -40 V 20 -38 V 19 -38 V 20 -37 V 19 -35 V 20 -35 V 5092 1621 L 19 -33 V 20 -32 V 19 -31 V 20 -30 V 19 -30 V 20 -28 V 19 -28 V 19 -26 V 20 -26 V 19 -25 V 20 -24 V 19 -24 V 20 -23 V 19 -22 V 19 -21 V 20 -21 V 19 -19 V 20 -20 V 19 -18 V 20 -18 V 19 -17 V 19 -17 V 20 -16 V 19 -16 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 19 -12 V 20 -13 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\nu_1=5$}}% \put(5957,4781){\rjust{\strut{}$\nu_1=1$}}% \put(3955,5244){\cjust{\strut{}Student's t distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}4}}% \put(6134,400){\cjust{\strut{}3}}% \put(5408,400){\cjust{\strut{}2}}% \put(4682,400){\cjust{\strut{}1}}% \put(3956,400){\cjust{\strut{}0}}% \put(3229,400){\cjust{\strut{}-1}}% \put(2503,400){\cjust{\strut{}-2}}% \put(1777,400){\cjust{\strut{}-3}}% \put(1051,400){\cjust{\strut{}-4}}% \put(900,4944){\rjust{\strut{} 0.5}}% \put(900,4081){\rjust{\strut{} 0.4}}% \put(900,3219){\rjust{\strut{} 0.3}}% \put(900,2356){\rjust{\strut{} 0.2}}% \put(900,1494){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-elljac.texi0000664000252300025230000000104212171574312013645 00000000000000@cindex Jacobi elliptic functions @cindex elliptic functions (Jacobi) The Jacobian Elliptic functions are defined in Abramowitz & Stegun, Chapter 16. The functions are declared in the header file @file{gsl_sf_elljac.h}. @deftypefun int gsl_sf_elljac_e (double @var{u}, double @var{m}, double * @var{sn}, double * @var{cn}, double * @var{dn}) This function computes the Jacobian elliptic functions @math{sn(u|m)}, @math{cn(u|m)}, @math{dn(u|m)} by descending Landen transformations. @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/rand-nbinomial.tex0000664000252300025230000004731712171574312013347 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-nbinomial.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-nbinomial.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 1902 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 953 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 278 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -209 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 2994 2924 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -430 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -465 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -408 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -318 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 4956 1303 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -231 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -159 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 -106 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -68 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.5,n=3.5$}}% \put(3955,5244){\cjust{\strut{}Negative Binomial Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.3}}% \put(900,3506){\rjust{\strut{} 0.2}}% \put(900,2069){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/rng.texi0000664000252300025230000013670312171574312011412 00000000000000@cindex random number generators The library provides a large collection of random number generators which can be accessed through a uniform interface. Environment variables allow you to select different generators and seeds at runtime, so that you can easily switch between generators without needing to recompile your program. Each instance of a generator keeps track of its own state, allowing the generators to be used in multi-threaded programs. Additional functions are available for transforming uniform random numbers into samples from continuous or discrete probability distributions such as the Gaussian, log-normal or Poisson distributions. These functions are declared in the header file @file{gsl_rng.h}. @comment Need to explain the difference between SERIAL and PARALLEL random @comment number generators here @menu * General comments on random numbers:: * The Random Number Generator Interface:: * Random number generator initialization:: * Sampling from a random number generator:: * Auxiliary random number generator functions:: * Random number environment variables:: * Copying random number generator state:: * Reading and writing random number generator state:: * Random number generator algorithms:: * Unix random number generators:: * Other random number generators:: * Random Number Generator Performance:: * Random Number Generator Examples:: * Random Number References and Further Reading:: * Random Number Acknowledgements:: @end menu @node General comments on random numbers @section General comments on random numbers In 1988, Park and Miller wrote a paper entitled ``Random number generators: good ones are hard to find.'' [Commun.@: ACM, 31, 1192--1201]. Fortunately, some excellent random number generators are available, though poor ones are still in common use. You may be happy with the system-supplied random number generator on your computer, but you should be aware that as computers get faster, requirements on random number generators increase. Nowadays, a simulation that calls a random number generator millions of times can often finish before you can make it down the hall to the coffee machine and back. A very nice review of random number generators was written by Pierre L'Ecuyer, as Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The chapter is available in postscript from L'Ecuyer's ftp site (see references). Knuth's volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random number generators, and has recently been updated in its 3rd edition (1997). @comment is only now starting to show its age. @comment Nonetheless, It is brilliant, a classic. If you don't own it, you should stop reading right now, run to the nearest bookstore, and buy it. A good random number generator will satisfy both theoretical and statistical properties. Theoretical properties are often hard to obtain (they require real math!), but one prefers a random number generator with a long period, low serial correlation, and a tendency @emph{not} to ``fall mainly on the planes.'' Statistical tests are performed with numerical simulations. Generally, a random number generator is used to estimate some quantity for which the theory of probability provides an exact answer. Comparison to this exact answer provides a measure of ``randomness''. @node The Random Number Generator Interface @section The Random Number Generator Interface It is important to remember that a random number generator is not a ``real'' function like sine or cosine. Unlike real functions, successive calls to a random number generator yield different return values. Of course that is just what you want for a random number generator, but to achieve this effect, the generator must keep track of some kind of ``state'' variable. Sometimes this state is just an integer (sometimes just the value of the previously generated random number), but often it is more complicated than that and may involve a whole array of numbers, possibly with some indices thrown in. To use the random number generators, you do not need to know the details of what comprises the state, and besides that varies from algorithm to algorithm. @tpindex gsl_rng_type The random number generator library uses two special structs, @code{gsl_rng_type} which holds static information about each type of generator and @code{gsl_rng} which describes an instance of a generator created from a given @code{gsl_rng_type}. The functions described in this section are declared in the header file @file{gsl_rng.h}. @node Random number generator initialization @section Random number generator initialization @deftypefun {gsl_rng *} gsl_rng_alloc (const gsl_rng_type * @var{T}) @tpindex gsl_rng This function returns a pointer to a newly-created instance of a random number generator of type @var{T}. For example, the following code creates an instance of the Tausworthe generator, @example gsl_rng * r = gsl_rng_alloc (gsl_rng_taus); @end example If there is insufficient memory to create the generator then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @vrindex gsl_rng_default_seed @vrindex @env{GSL_RNG_SEED} @cindex @code{GSL_RNG_SEED} The generator is automatically initialized with the default seed, @code{gsl_rng_default_seed}. This is zero by default but can be changed either directly or by using the environment variable @code{GSL_RNG_SEED} (@pxref{Random number environment variables}). The details of the available generator types are described later in this chapter. @end deftypefun @deftypefun void gsl_rng_set (const gsl_rng * @var{r}, unsigned long int @var{s}) This function initializes (or `seeds') the random number generator. If the generator is seeded with the same value of @var{s} on two different runs, the same stream of random numbers will be generated by successive calls to the routines below. If different values of @c{$@var{s} \geq 1$} @math{@var{s} >= 1} are supplied, then the generated streams of random numbers should be completely different. If the seed @var{s} is zero then the standard seed from the original implementation is used instead. For example, the original Fortran source code for the @code{ranlux} generator used a seed of 314159265, and so choosing @var{s} equal to zero reproduces this when using @code{gsl_rng_ranlux}. When using multiple seeds with the same generator, choose seed values greater than zero to avoid collisions with the default setting. Note that the most generators only accept 32-bit seeds, with higher values being reduced modulo @c{$2^{32}$} @math{2^32}. For generators with smaller ranges the maximum seed value will typically be lower. @end deftypefun @deftypefun void gsl_rng_free (gsl_rng * @var{r}) This function frees all the memory associated with the generator @var{r}. @end deftypefun @node Sampling from a random number generator @section Sampling from a random number generator The following functions return uniformly distributed random numbers, either as integers or double precision floating point numbers. @inlinefns{} To obtain non-uniform distributions @pxref{Random Number Distributions}. @deftypefun {unsigned long int} gsl_rng_get (const gsl_rng * @var{r}) This function returns a random integer from the generator @var{r}. The minimum and maximum values depend on the algorithm used, but all integers in the range [@var{min},@var{max}] are equally likely. The values of @var{min} and @var{max} can be determined using the auxiliary functions @code{gsl_rng_max (r)} and @code{gsl_rng_min (r)}. @end deftypefun @deftypefun double gsl_rng_uniform (const gsl_rng * @var{r}) This function returns a double precision floating point number uniformly distributed in the range [0,1). The range includes 0.0 but excludes 1.0. The value is typically obtained by dividing the result of @code{gsl_rng_get(r)} by @code{gsl_rng_max(r) + 1.0} in double precision. Some generators compute this ratio internally so that they can provide floating point numbers with more than 32 bits of randomness (the maximum number of bits that can be portably represented in a single @code{unsigned long int}). @end deftypefun @deftypefun double gsl_rng_uniform_pos (const gsl_rng * @var{r}) This function returns a positive double precision floating point number uniformly distributed in the range (0,1), excluding both 0.0 and 1.0. The number is obtained by sampling the generator with the algorithm of @code{gsl_rng_uniform} until a non-zero value is obtained. You can use this function if you need to avoid a singularity at 0.0. @end deftypefun @deftypefun {unsigned long int} gsl_rng_uniform_int (const gsl_rng * @var{r}, unsigned long int @var{n}) This function returns a random integer from 0 to @math{n-1} inclusive by scaling down and/or discarding samples from the generator @var{r}. All integers in the range @math{[0,n-1]} are produced with equal probability. For generators with a non-zero minimum value an offset is applied so that zero is returned with the correct probability. Note that this function is designed for sampling from ranges smaller than the range of the underlying generator. The parameter @var{n} must be less than or equal to the range of the generator @var{r}. If @var{n} is larger than the range of the generator then the function calls the error handler with an error code of @code{GSL_EINVAL} and returns zero. In particular, this function is not intended for generating the full range of unsigned integer values @c{$[0,2^{32}-1]$} @math{[0,2^32-1]}. Instead choose a generator with the maximal integer range and zero minimum value, such as @code{gsl_rng_ranlxd1}, @code{gsl_rng_mt19937} or @code{gsl_rng_taus}, and sample it directly using @code{gsl_rng_get}. The range of each generator can be found using the auxiliary functions described in the next section. @end deftypefun @node Auxiliary random number generator functions @section Auxiliary random number generator functions The following functions provide information about an existing generator. You should use them in preference to hard-coding the generator parameters into your own code. @deftypefun {const char *} gsl_rng_name (const gsl_rng * @var{r}) This function returns a pointer to the name of the generator. For example, @example printf ("r is a '%s' generator\n", gsl_rng_name (r)); @end example @noindent would print something like @code{r is a 'taus' generator}. @end deftypefun @deftypefun {unsigned long int} gsl_rng_max (const gsl_rng * @var{r}) @code{gsl_rng_max} returns the largest value that @code{gsl_rng_get} can return. @end deftypefun @deftypefun {unsigned long int} gsl_rng_min (const gsl_rng * @var{r}) @code{gsl_rng_min} returns the smallest value that @code{gsl_rng_get} can return. Usually this value is zero. There are some generators with algorithms that cannot return zero, and for these generators the minimum value is 1. @end deftypefun @deftypefun {void *} gsl_rng_state (const gsl_rng * @var{r}) @deftypefunx size_t gsl_rng_size (const gsl_rng * @var{r}) These functions return a pointer to the state of generator @var{r} and its size. You can use this information to access the state directly. For example, the following code will write the state of a generator to a stream, @example void * state = gsl_rng_state (r); size_t n = gsl_rng_size (r); fwrite (state, n, 1, stream); @end example @end deftypefun @deftypefun {const gsl_rng_type **} gsl_rng_types_setup (void) This function returns a pointer to an array of all the available generator types, terminated by a null pointer. The function should be called once at the start of the program, if needed. The following code fragment shows how to iterate over the array of generator types to print the names of the available algorithms, @example const gsl_rng_type **t, **t0; t0 = gsl_rng_types_setup (); printf ("Available generators:\n"); for (t = t0; *t != 0; t++) @{ printf ("%s\n", (*t)->name); @} @end example @end deftypefun @node Random number environment variables @section Random number environment variables The library allows you to choose a default generator and seed from the environment variables @code{GSL_RNG_TYPE} and @code{GSL_RNG_SEED} and the function @code{gsl_rng_env_setup}. This makes it easy try out different generators and seeds without having to recompile your program. @deftypefun {const gsl_rng_type *} gsl_rng_env_setup (void) @vrindex @env{GSL_RNG_TYPE} @vrindex @env{GSL_RNG_SEED} @vrindex gsl_rng_default @vrindex gsl_rng_default_seed This function reads the environment variables @code{GSL_RNG_TYPE} and @code{GSL_RNG_SEED} and uses their values to set the corresponding library variables @code{gsl_rng_default} and @code{gsl_rng_default_seed}. These global variables are defined as follows, @example extern const gsl_rng_type *gsl_rng_default extern unsigned long int gsl_rng_default_seed @end example The environment variable @code{GSL_RNG_TYPE} should be the name of a generator, such as @code{taus} or @code{mt19937}. The environment variable @code{GSL_RNG_SEED} should contain the desired seed value. It is converted to an @code{unsigned long int} using the C library function @code{strtoul}. If you don't specify a generator for @code{GSL_RNG_TYPE} then @code{gsl_rng_mt19937} is used as the default. The initial value of @code{gsl_rng_default_seed} is zero. @end deftypefun @noindent @need 2000 Here is a short program which shows how to create a global generator using the environment variables @code{GSL_RNG_TYPE} and @code{GSL_RNG_SEED}, @example @verbatiminclude examples/rng.c @end example @noindent Running the program without any environment variables uses the initial defaults, an @code{mt19937} generator with a seed of 0, @example $ ./a.out @verbatiminclude examples/rng.out @end example @noindent By setting the two variables on the command line we can change the default generator and the seed, @example $ GSL_RNG_TYPE="taus" GSL_RNG_SEED=123 ./a.out GSL_RNG_TYPE=taus GSL_RNG_SEED=123 generator type: taus seed = 123 first value = 2720986350 @end example @node Copying random number generator state @section Copying random number generator state The above methods do not expose the random number `state' which changes from call to call. It is often useful to be able to save and restore the state. To permit these practices, a few somewhat more advanced functions are supplied. These include: @deftypefun int gsl_rng_memcpy (gsl_rng * @var{dest}, const gsl_rng * @var{src}) This function copies the random number generator @var{src} into the pre-existing generator @var{dest}, making @var{dest} into an exact copy of @var{src}. The two generators must be of the same type. @end deftypefun @deftypefun {gsl_rng *} gsl_rng_clone (const gsl_rng * @var{r}) This function returns a pointer to a newly created generator which is an exact copy of the generator @var{r}. @end deftypefun @node Reading and writing random number generator state @section Reading and writing random number generator state The library provides functions for reading and writing the random number state to a file as binary data. @deftypefun int gsl_rng_fwrite (FILE * @var{stream}, const gsl_rng * @var{r}) This function writes the random number state of the random number generator @var{r} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_rng_fread (FILE * @var{stream}, gsl_rng * @var{r}) This function reads the random number state into the random number generator @var{r} from the open stream @var{stream} in binary format. The random number generator @var{r} must be preinitialized with the correct random number generator type since type information is not saved. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @node Random number generator algorithms @section Random number generator algorithms The functions described above make no reference to the actual algorithm used. This is deliberate so that you can switch algorithms without having to change any of your application source code. The library provides a large number of generators of different types, including simulation quality generators, generators provided for compatibility with other libraries and historical generators from the past. The following generators are recommended for use in simulation. They have extremely long periods, low correlation and pass most statistical tests. For the most reliable source of uncorrelated numbers, the second-generation @sc{ranlux} generators have the strongest proof of randomness. @deffn {Generator} gsl_rng_mt19937 @cindex MT19937 random number generator The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant of the twisted generalized feedback shift-register algorithm, and is known as the ``Mersenne Twister'' generator. It has a Mersenne prime period of @comment @c{$2^{19937} - 1$} @math{2^19937 - 1} (about @c{$10^{6000}$} @math{10^6000}) and is equi-distributed in 623 dimensions. It has passed the @sc{diehard} statistical tests. It uses 624 words of state per generator and is comparable in speed to the other generators. The original generator used a default seed of 4357 and choosing @var{s} equal to zero in @code{gsl_rng_set} reproduces this. Later versions switched to 5489 as the default seed, you can choose this explicitly via @code{gsl_rng_set} instead if you require it. For more information see, @itemize @w{} @item Makoto Matsumoto and Takuji Nishimura, ``Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator''. @cite{ACM Transactions on Modeling and Computer Simulation}, Vol.@: 8, No.@: 1 (Jan. 1998), Pages 3--30 @end itemize @noindent The generator @code{gsl_rng_mt19937} uses the second revision of the seeding procedure published by the two authors above in 2002. The original seeding procedures could cause spurious artifacts for some seed values. They are still available through the alternative generators @code{gsl_rng_mt19937_1999} and @code{gsl_rng_mt19937_1998}. @end deffn @deffn {Generator} gsl_rng_ranlxs0 @deffnx {Generator} gsl_rng_ranlxs1 @deffnx {Generator} gsl_rng_ranlxs2 @cindex RANLXS random number generator The generator @code{ranlxs0} is a second-generation version of the @sc{ranlux} algorithm of L@"uscher, which produces ``luxury random numbers''. This generator provides single precision output (24 bits) at three luxury levels @code{ranlxs0}, @code{ranlxs1} and @code{ranlxs2}, in increasing order of strength. It uses double-precision floating point arithmetic internally and can be significantly faster than the integer version of @code{ranlux}, particularly on 64-bit architectures. The period of the generator is about @c{$10^{171}$} @math{10^171}. The algorithm has mathematically proven properties and can provide truly decorrelated numbers at a known level of randomness. The higher luxury levels provide increased decorrelation between samples as an additional safety margin. Note that the range of allowed seeds for this generator is @c{$[0,2^{31}-1]$} @math{[0,2^31-1]}. Higher seed values are wrapped modulo @c{$2^{31}$} @math{2^31}. @end deffn @deffn {Generator} gsl_rng_ranlxd1 @deffnx {Generator} gsl_rng_ranlxd2 @cindex RANLXD random number generator These generators produce double precision output (48 bits) from the @sc{ranlxs} generator. The library provides two luxury levels @code{ranlxd1} and @code{ranlxd2}, in increasing order of strength. @end deffn @deffn {Generator} gsl_rng_ranlux @deffnx {Generator} gsl_rng_ranlux389 @cindex RANLUX random number generator The @code{ranlux} generator is an implementation of the original algorithm developed by L@"uscher. It uses a lagged-fibonacci-with-skipping algorithm to produce ``luxury random numbers''. It is a 24-bit generator, originally designed for single-precision IEEE floating point numbers. This implementation is based on integer arithmetic, while the second-generation versions @sc{ranlxs} and @sc{ranlxd} described above provide floating-point implementations which will be faster on many platforms. The period of the generator is about @c{$10^{171}$} @math{10^171}. The algorithm has mathematically proven properties and it can provide truly decorrelated numbers at a known level of randomness. The default level of decorrelation recommended by L@"uscher is provided by @code{gsl_rng_ranlux}, while @code{gsl_rng_ranlux389} gives the highest level of randomness, with all 24 bits decorrelated. Both types of generator use 24 words of state per generator. For more information see, @itemize @w{} @item M. L@"uscher, ``A portable high-quality random number generator for lattice field theory calculations'', @cite{Computer Physics Communications}, 79 (1994) 100--110. @item F. James, ``RANLUX: A Fortran implementation of the high-quality pseudo-random number generator of L@"uscher'', @cite{Computer Physics Communications}, 79 (1994) 111--114 @end itemize @end deffn @deffn {Generator} gsl_rng_cmrg @cindex CMRG, combined multiple recursive random number generator This is a combined multiple recursive generator by L'Ecuyer. Its sequence is, @tex \beforedisplay $$ z_n = (x_n - y_n) \,\hbox{mod}\, m_1 $$ \afterdisplay @end tex @ifinfo @example z_n = (x_n - y_n) mod m_1 @end example @end ifinfo @noindent where the two underlying generators @math{x_n} and @math{y_n} are, @tex \beforedisplay $$ \eqalign{ x_n & = (a_1 x_{n-1} + a_2 x_{n-2} + a_3 x_{n-3}) \,\hbox{mod}\, m_1 \cr y_n & = (b_1 y_{n-1} + b_2 y_{n-2} + b_3 y_{n-3}) \,\hbox{mod}\, m_2 } $$ \afterdisplay @end tex @ifinfo @example x_n = (a_1 x_@{n-1@} + a_2 x_@{n-2@} + a_3 x_@{n-3@}) mod m_1 y_n = (b_1 y_@{n-1@} + b_2 y_@{n-2@} + b_3 y_@{n-3@}) mod m_2 @end example @end ifinfo @noindent with coefficients @math{a_1 = 0}, @math{a_2 = 63308}, @math{a_3 = -183326}, @math{b_1 = 86098}, @math{b_2 = 0}, @math{b_3 = -539608}, and moduli @c{$m_1 = 2^{31} - 1 = 2147483647$} @math{m_1 = 2^31 - 1 = 2147483647} and @c{$m_2 = 2145483479$} @math{m_2 = 2145483479}. The period of this generator is @c{$\hbox{lcm}(m_1^3-1, m_2^3-1)$} @math{lcm(m_1^3-1, m_2^3-1)}, which is approximately @c{$2^{185}$} @math{2^185} (about @c{$10^{56}$} @math{10^56}). It uses 6 words of state per generator. For more information see, @itemize @w{} @item P. L'Ecuyer, ``Combined Multiple Recursive Random Number Generators'', @cite{Operations Research}, 44, 5 (1996), 816--822. @end itemize @end deffn @deffn {Generator} gsl_rng_mrg @cindex MRG, multiple recursive random number generator This is a fifth-order multiple recursive generator by L'Ecuyer, Blouin and Coutre. Its sequence is, @tex \beforedisplay $$ x_n = (a_1 x_{n-1} + a_5 x_{n-5}) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_n = (a_1 x_@{n-1@} + a_5 x_@{n-5@}) mod m @end example @end ifinfo @noindent with @math{a_1 = 107374182}, @math{a_2 = a_3 = a_4 = 0}, @math{a_5 = 104480} and @c{$m = 2^{31}-1$} @math{m = 2^31 - 1}. The period of this generator is about @c{$10^{46}$} @math{10^46}. It uses 5 words of state per generator. More information can be found in the following paper, @itemize @w{} @item P. L'Ecuyer, F. Blouin, and R. Coutre, ``A search for good multiple recursive random number generators'', @cite{ACM Transactions on Modeling and Computer Simulation} 3, 87--98 (1993). @end itemize @end deffn @deffn {Generator} gsl_rng_taus @deffnx {Generator} gsl_rng_taus2 @cindex Tausworthe random number generator This is a maximally equidistributed combined Tausworthe generator by L'Ecuyer. The sequence is, @tex \beforedisplay $$ x_n = (s^1_n \oplus s^2_n \oplus s^3_n) $$ \afterdisplay @end tex @ifinfo @example x_n = (s1_n ^^ s2_n ^^ s3_n) @end example @end ifinfo @noindent where, @tex \beforedisplay $$ \eqalign{ s^1_{n+1} &= (((s^1_n \& 4294967294)\ll 12) \oplus (((s^1_n\ll 13) \oplus s^1_n)\gg 19)) \cr s^2_{n+1} &= (((s^2_n \& 4294967288)\ll 4) \oplus (((s^2_n\ll 2) \oplus s^2_n)\gg 25)) \cr s^3_{n+1} &= (((s^3_n \& 4294967280)\ll 17) \oplus (((s^3_n\ll 3) \oplus s^3_n)\gg 11)) } $$ \afterdisplay @end tex @ifinfo @example s1_@{n+1@} = (((s1_n&4294967294)<<12)^^(((s1_n<<13)^^s1_n)>>19)) s2_@{n+1@} = (((s2_n&4294967288)<< 4)^^(((s2_n<< 2)^^s2_n)>>25)) s3_@{n+1@} = (((s3_n&4294967280)<<17)^^(((s3_n<< 3)^^s3_n)>>11)) @end example @end ifinfo @noindent computed modulo @c{$2^{32}$} @math{2^32}. In the formulas above @c{$\oplus$} @math{^^} denotes ``exclusive-or''. Note that the algorithm relies on the properties of 32-bit unsigned integers and has been implemented using a bitmask of @code{0xFFFFFFFF} to make it work on 64 bit machines. The period of this generator is @c{$2^{88}$} @math{2^88} (about @c{$10^{26}$} @math{10^26}). It uses 3 words of state per generator. For more information see, @itemize @w{} @item P. L'Ecuyer, ``Maximally Equidistributed Combined Tausworthe Generators'', @cite{Mathematics of Computation}, 65, 213 (1996), 203--213. @end itemize @noindent The generator @code{gsl_rng_taus2} uses the same algorithm as @code{gsl_rng_taus} but with an improved seeding procedure described in the paper, @itemize @w{} @item P. L'Ecuyer, ``Tables of Maximally Equidistributed Combined LFSR Generators'', @cite{Mathematics of Computation}, 68, 225 (1999), 261--269 @end itemize @noindent The generator @code{gsl_rng_taus2} should now be used in preference to @code{gsl_rng_taus}. @end deffn @deffn {Generator} gsl_rng_gfsr4 @cindex Four-tap Generalized Feedback Shift Register The @code{gfsr4} generator is like a lagged-fibonacci generator, and produces each number as an @code{xor}'d sum of four previous values. @tex \beforedisplay $$ r_n = r_{n-A} \oplus r_{n-B} \oplus r_{n-C} \oplus r_{n-D} $$ \afterdisplay @end tex @ifinfo @example r_n = r_@{n-A@} ^^ r_@{n-B@} ^^ r_@{n-C@} ^^ r_@{n-D@} @end example @end ifinfo Ziff (ref below) notes that ``it is now widely known'' that two-tap registers (such as R250, which is described below) have serious flaws, the most obvious one being the three-point correlation that comes from the definition of the generator. Nice mathematical properties can be derived for GFSR's, and numerics bears out the claim that 4-tap GFSR's with appropriately chosen offsets are as random as can be measured, using the author's test. This implementation uses the values suggested the example on p392 of Ziff's article: @math{A=471}, @math{B=1586}, @math{C=6988}, @math{D=9689}. If the offsets are appropriately chosen (such as the one ones in this implementation), then the sequence is said to be maximal; that means that the period is @math{2^D - 1}, where @math{D} is the longest lag. (It is one less than @math{2^D} because it is not permitted to have all zeros in the @code{ra[]} array.) For this implementation with @math{D=9689} that works out to about @c{$10^{2917}$} @math{10^2917}. Note that the implementation of this generator using a 32-bit integer amounts to 32 parallel implementations of one-bit generators. One consequence of this is that the period of this 32-bit generator is the same as for the one-bit generator. Moreover, this independence means that all 32-bit patterns are equally likely, and in particular that 0 is an allowed random value. (We are grateful to Heiko Bauke for clarifying for us these properties of GFSR random number generators.) For more information see, @itemize @w{} @item Robert M. Ziff, ``Four-tap shift-register-sequence random-number generators'', @cite{Computers in Physics}, 12(4), Jul/Aug 1998, pp 385--392. @end itemize @end deffn @node Unix random number generators @section Unix random number generators The standard Unix random number generators @code{rand}, @code{random} and @code{rand48} are provided as part of GSL. Although these generators are widely available individually often they aren't all available on the same platform. This makes it difficult to write portable code using them and so we have included the complete set of Unix generators in GSL for convenience. Note that these generators don't produce high-quality randomness and aren't suitable for work requiring accurate statistics. However, if you won't be measuring statistical quantities and just want to introduce some variation into your program then these generators are quite acceptable. @cindex rand, BSD random number generator @cindex Unix random number generators, rand @cindex Unix random number generators, rand48 @deffn {Generator} gsl_rng_rand @cindex BSD random number generator This is the BSD @code{rand} generator. Its sequence is @tex \beforedisplay $$ x_{n+1} = (a x_n + c) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n + c) mod m @end example @end ifinfo @noindent with @math{a = 1103515245}, @math{c = 12345} and @c{$m = 2^{31}$} @math{m = 2^31}. The seed specifies the initial value, @math{x_1}. The period of this generator is @c{$2^{31}$} @math{2^31}, and it uses 1 word of storage per generator. @end deffn @deffn {Generator} gsl_rng_random_bsd @deffnx {Generator} gsl_rng_random_libc5 @deffnx {Generator} gsl_rng_random_glibc2 These generators implement the @code{random} family of functions, a set of linear feedback shift register generators originally used in BSD Unix. There are several versions of @code{random} in use today: the original BSD version (e.g. on SunOS4), a libc5 version (found on older GNU/Linux systems) and a glibc2 version. Each version uses a different seeding procedure, and thus produces different sequences. The original BSD routines accepted a variable length buffer for the generator state, with longer buffers providing higher-quality randomness. The @code{random} function implemented algorithms for buffer lengths of 8, 32, 64, 128 and 256 bytes, and the algorithm with the largest length that would fit into the user-supplied buffer was used. To support these algorithms additional generators are available with the following names, @example gsl_rng_random8_bsd gsl_rng_random32_bsd gsl_rng_random64_bsd gsl_rng_random128_bsd gsl_rng_random256_bsd @end example @noindent where the numeric suffix indicates the buffer length. The original BSD @code{random} function used a 128-byte default buffer and so @code{gsl_rng_random_bsd} has been made equivalent to @code{gsl_rng_random128_bsd}. Corresponding versions of the @code{libc5} and @code{glibc2} generators are also available, with the names @code{gsl_rng_random8_libc5}, @code{gsl_rng_random8_glibc2}, etc. @end deffn @deffn {Generator} gsl_rng_rand48 @cindex rand48 random number generator This is the Unix @code{rand48} generator. Its sequence is @tex \beforedisplay $$ x_{n+1} = (a x_n + c) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n + c) mod m @end example @end ifinfo @noindent defined on 48-bit unsigned integers with @math{a = 25214903917}, @math{c = 11} and @c{$m = 2^{48}$} @math{m = 2^48}. The seed specifies the upper 32 bits of the initial value, @math{x_1}, with the lower 16 bits set to @code{0x330E}. The function @code{gsl_rng_get} returns the upper 32 bits from each term of the sequence. This does not have a direct parallel in the original @code{rand48} functions, but forcing the result to type @code{long int} reproduces the output of @code{mrand48}. The function @code{gsl_rng_uniform} uses the full 48 bits of internal state to return the double precision number @math{x_n/m}, which is equivalent to the function @code{drand48}. Note that some versions of the GNU C Library contained a bug in @code{mrand48} function which caused it to produce different results (only the lower 16-bits of the return value were set). @end deffn @node Other random number generators @section Other random number generators The generators in this section are provided for compatibility with existing libraries. If you are converting an existing program to use GSL then you can select these generators to check your new implementation against the original one, using the same random number generator. After verifying that your new program reproduces the original results you can then switch to a higher-quality generator. Note that most of the generators in this section are based on single linear congruence relations, which are the least sophisticated type of generator. In particular, linear congruences have poor properties when used with a non-prime modulus, as several of these routines do (e.g. with a power of two modulus, @c{$2^{31}$} @math{2^31} or @c{$2^{32}$} @math{2^32}). This leads to periodicity in the least significant bits of each number, with only the higher bits having any randomness. Thus if you want to produce a random bitstream it is best to avoid using the least significant bits. @deffn {Generator} gsl_rng_ranf @cindex RANF random number generator @cindex CRAY random number generator, RANF This is the CRAY random number generator @code{RANF}. Its sequence is @tex \beforedisplay $$ x_{n+1} = (a x_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n) mod m @end example @end ifinfo @noindent defined on 48-bit unsigned integers with @math{a = 44485709377909} and @c{$m = 2^{48}$} @math{m = 2^48}. The seed specifies the lower 32 bits of the initial value, @math{x_1}, with the lowest bit set to prevent the seed taking an even value. The upper 16 bits of @math{x_1} are set to 0. A consequence of this procedure is that the pairs of seeds 2 and 3, 4 and 5, etc.@: produce the same sequences. The generator compatible with the CRAY MATHLIB routine RANF. It produces double precision floating point numbers which should be identical to those from the original RANF. There is a subtlety in the implementation of the seeding. The initial state is reversed through one step, by multiplying by the modular inverse of @math{a} mod @math{m}. This is done for compatibility with the original CRAY implementation. Note that you can only seed the generator with integers up to @c{$2^{32}$} @math{2^32}, while the original CRAY implementation uses non-portable wide integers which can cover all @c{$2^{48}$} @math{2^48} states of the generator. The function @code{gsl_rng_get} returns the upper 32 bits from each term of the sequence. The function @code{gsl_rng_uniform} uses the full 48 bits to return the double precision number @math{x_n/m}. The period of this generator is @c{$2^{46}$} @math{2^46}. @end deffn @deffn {Generator} gsl_rng_ranmar @cindex RANMAR random number generator This is the RANMAR lagged-fibonacci generator of Marsaglia, Zaman and Tsang. It is a 24-bit generator, originally designed for single-precision IEEE floating point numbers. It was included in the CERNLIB high-energy physics library. @end deffn @deffn {Generator} gsl_rng_r250 @cindex shift-register random number generator @cindex R250 shift-register random number generator This is the shift-register generator of Kirkpatrick and Stoll. The sequence is based on the recurrence @tex \beforedisplay $$ x_n = x_{n-103} \oplus x_{n-250} $$ \afterdisplay @end tex @ifinfo @example x_n = x_@{n-103@} ^^ x_@{n-250@} @end example @end ifinfo @noindent where @c{$\oplus$} @math{^^} denotes ``exclusive-or'', defined on 32-bit words. The period of this generator is about @c{$2^{250}$} @math{2^250} and it uses 250 words of state per generator. For more information see, @itemize @w{} @item S. Kirkpatrick and E. Stoll, ``A very fast shift-register sequence random number generator'', @cite{Journal of Computational Physics}, 40, 517--526 (1981) @end itemize @end deffn @deffn {Generator} gsl_rng_tt800 @cindex TT800 random number generator This is an earlier version of the twisted generalized feedback shift-register generator, and has been superseded by the development of MT19937. However, it is still an acceptable generator in its own right. It has a period of @c{$2^{800}$} @math{2^800} and uses 33 words of storage per generator. For more information see, @itemize @w{} @item Makoto Matsumoto and Yoshiharu Kurita, ``Twisted GFSR Generators II'', @cite{ACM Transactions on Modelling and Computer Simulation}, Vol.@: 4, No.@: 3, 1994, pages 254--266. @end itemize @end deffn @comment The following generators are included only for historical reasons, so @comment that you can reproduce results from old programs which might have used @comment them. These generators should not be used for real simulations since @comment they have poor statistical properties by modern standards. @deffn {Generator} gsl_rng_vax @cindex VAX random number generator This is the VAX generator @code{MTH$RANDOM}. Its sequence is, @tex \beforedisplay $$ x_{n+1} = (a x_n + c) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n + c) mod m @end example @end ifinfo @noindent with @math{a = 69069}, @math{c = 1} and @c{$m = 2^{32}$} @math{m = 2^32}. The seed specifies the initial value, @math{x_1}. The period of this generator is @c{$2^{32}$} @math{2^32} and it uses 1 word of storage per generator. @end deffn @deffn {Generator} gsl_rng_transputer This is the random number generator from the INMOS Transputer Development system. Its sequence is, @tex \beforedisplay $$ x_{n+1} = (a x_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n) mod m @end example @end ifinfo @noindent with @math{a = 1664525} and @c{$m = 2^{32}$} @math{m = 2^32}. The seed specifies the initial value, @c{$x_1$} @math{x_1}. @end deffn @deffn {Generator} gsl_rng_randu @cindex RANDU random number generator This is the IBM @code{RANDU} generator. Its sequence is @tex \beforedisplay $$ x_{n+1} = (a x_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n) mod m @end example @end ifinfo @noindent with @math{a = 65539} and @c{$m = 2^{31}$} @math{m = 2^31}. The seed specifies the initial value, @math{x_1}. The period of this generator was only @c{$2^{29}$} @math{2^29}. It has become a textbook example of a poor generator. @end deffn @deffn {Generator} gsl_rng_minstd @cindex RANMAR random number generator This is Park and Miller's ``minimal standard'' @sc{minstd} generator, a simple linear congruence which takes care to avoid the major pitfalls of such algorithms. Its sequence is, @tex \beforedisplay $$ x_{n+1} = (a x_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n) mod m @end example @end ifinfo @noindent with @math{a = 16807} and @c{$m = 2^{31} - 1 = 2147483647$} @math{m = 2^31 - 1 = 2147483647}. The seed specifies the initial value, @c{$x_1$} @math{x_1}. The period of this generator is about @c{$2^{31}$} @math{2^31}. This generator was used in the IMSL Library (subroutine RNUN) and in MATLAB (the RAND function) in the past. It is also sometimes known by the acronym ``GGL'' (I'm not sure what that stands for). For more information see, @itemize @w{} @item Park and Miller, ``Random Number Generators: Good ones are hard to find'', @cite{Communications of the ACM}, October 1988, Volume 31, No 10, pages 1192--1201. @end itemize @end deffn @deffn {Generator} gsl_rng_uni @deffnx {Generator} gsl_rng_uni32 This is a reimplementation of the 16-bit SLATEC random number generator RUNIF. A generalization of the generator to 32 bits is provided by @code{gsl_rng_uni32}. The original source code is available from NETLIB. @end deffn @deffn {Generator} gsl_rng_slatec This is the SLATEC random number generator RAND. It is ancient. The original source code is available from NETLIB. @end deffn @deffn {Generator} gsl_rng_zuf This is the ZUFALL lagged Fibonacci series generator of Peterson. Its sequence is, @tex \beforedisplay $$ \eqalign{ t &= u_{n-273} + u_{n-607} \cr u_n &= t - \hbox{floor}(t) } $$ \afterdisplay @end tex @ifinfo @example t = u_@{n-273@} + u_@{n-607@} u_n = t - floor(t) @end example @end ifinfo The original source code is available from NETLIB. For more information see, @itemize @w{} @item W. Petersen, ``Lagged Fibonacci Random Number Generators for the NEC SX-3'', @cite{International Journal of High Speed Computing} (1994). @end itemize @end deffn @deffn {Generator} gsl_rng_knuthran2 This is a second-order multiple recursive generator described by Knuth in @cite{Seminumerical Algorithms}, 3rd Ed., page 108. Its sequence is, @tex \beforedisplay $$ x_n = (a_1 x_{n-1} + a_2 x_{n-2}) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_n = (a_1 x_@{n-1@} + a_2 x_@{n-2@}) mod m @end example @end ifinfo @noindent with @math{a_1 = 271828183}, @math{a_2 = 314159269}, and @c{$m = 2^{31}-1$} @math{m = 2^31 - 1}. @end deffn @deffn {Generator} gsl_rng_knuthran2002 @deffnx {Generator} gsl_rng_knuthran This is a second-order multiple recursive generator described by Knuth in @cite{Seminumerical Algorithms}, 3rd Ed., Section 3.6. Knuth provides its C code. The updated routine @code{gsl_rng_knuthran2002} is from the revised 9th printing and corrects some weaknesses in the earlier version, which is implemented as @code{gsl_rng_knuthran}. @end deffn @deffn {Generator} gsl_rng_borosh13 @deffnx {Generator} gsl_rng_fishman18 @deffnx {Generator} gsl_rng_fishman20 @deffnx {Generator} gsl_rng_lecuyer21 @deffnx {Generator} gsl_rng_waterman14 These multiplicative generators are taken from Knuth's @cite{Seminumerical Algorithms}, 3rd Ed., pages 106--108. Their sequence is, @tex \beforedisplay $$ x_{n+1} = (a x_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (a x_n) mod m @end example @end ifinfo @noindent where the seed specifies the initial value, @c{$x_1$} @math{x_1}. The parameters @math{a} and @math{m} are as follows, Borosh-Niederreiter: @math{a = 1812433253}, @c{$m = 2^{32}$} @math{m = 2^32}, Fishman18: @math{a = 62089911}, @c{$m = 2^{31}-1$} @math{m = 2^31 - 1}, Fishman20: @math{a = 48271}, @c{$m = 2^{31}-1$} @math{m = 2^31 - 1}, L'Ecuyer: @math{a = 40692}, @c{$m = 2^{31}-249$} @math{m = 2^31 - 249}, Waterman: @math{a = 1566083941}, @c{$m = 2^{32}$} @math{m = 2^32}. @end deffn @deffn {Generator} gsl_rng_fishman2x This is the L'Ecuyer--Fishman random number generator. It is taken from Knuth's @cite{Seminumerical Algorithms}, 3rd Ed., page 108. Its sequence is, @tex \beforedisplay $$ z_{n+1} = (x_n - y_n) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example z_@{n+1@} = (x_n - y_n) mod m @end example @end ifinfo @noindent with @c{$m = 2^{31}-1$} @math{m = 2^31 - 1}. @math{x_n} and @math{y_n} are given by the @code{fishman20} and @code{lecuyer21} algorithms. The seed specifies the initial value, @c{$x_1$} @math{x_1}. @end deffn @deffn {Generator} gsl_rng_coveyou This is the Coveyou random number generator. It is taken from Knuth's @cite{Seminumerical Algorithms}, 3rd Ed., Section 3.2.2. Its sequence is, @tex \beforedisplay $$ x_{n+1} = (x_n (x_n + 1)) \,\hbox{mod}\, m $$ \afterdisplay @end tex @ifinfo @example x_@{n+1@} = (x_n (x_n + 1)) mod m @end example @end ifinfo @noindent with @c{$m = 2^{32}$} @math{m = 2^32}. The seed specifies the initial value, @c{$x_1$} @math{x_1}. @end deffn @node Random Number Generator Performance @section Performance @comment @comment I made the original plot like this @comment ./benchmark > tmp; cat tmp | perl -n -e '($n,$s) = split(" ",$_); printf("%17s ",$n); print "-" x ($s/1e5), "\n";' @comment The following table shows the relative performance of a selection the available random number generators. The fastest simulation quality generators are @code{taus}, @code{gfsr4} and @code{mt19937}. The generators which offer the best mathematically-proven quality are those based on the @sc{ranlux} algorithm. @comment The large number of generators based on single linear congruences are @comment represented by the @code{random} generator below. These generators are @comment fast but have the lowest statistical quality. @example 1754 k ints/sec, 870 k doubles/sec, taus 1613 k ints/sec, 855 k doubles/sec, gfsr4 1370 k ints/sec, 769 k doubles/sec, mt19937 565 k ints/sec, 571 k doubles/sec, ranlxs0 400 k ints/sec, 405 k doubles/sec, ranlxs1 490 k ints/sec, 389 k doubles/sec, mrg 407 k ints/sec, 297 k doubles/sec, ranlux 243 k ints/sec, 254 k doubles/sec, ranlxd1 251 k ints/sec, 253 k doubles/sec, ranlxs2 238 k ints/sec, 215 k doubles/sec, cmrg 247 k ints/sec, 198 k doubles/sec, ranlux389 141 k ints/sec, 140 k doubles/sec, ranlxd2 @end example @node Random Number Generator Examples @section Examples The following program demonstrates the use of a random number generator to produce uniform random numbers in the range [0.0, 1.0), @example @verbatiminclude examples/rngunif.c @end example @noindent Here is the output of the program, @example $ ./a.out @verbatiminclude examples/rngunif.out @end example @noindent The numbers depend on the seed used by the generator. The default seed can be changed with the @code{GSL_RNG_SEED} environment variable to produce a different stream of numbers. The generator itself can be changed using the environment variable @code{GSL_RNG_TYPE}. Here is the output of the program using a seed value of 123 and the multiple-recursive generator @code{mrg}, @example $ GSL_RNG_SEED=123 GSL_RNG_TYPE=mrg ./a.out @verbatiminclude examples/rngunif.2.out @end example @node Random Number References and Further Reading @section References and Further Reading The subject of random number generation and testing is reviewed extensively in Knuth's @cite{Seminumerical Algorithms}. @itemize @w{} @item Donald E. Knuth, @cite{The Art of Computer Programming: Seminumerical Algorithms} (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842. @end itemize @noindent Further information is available in the review paper written by Pierre L'Ecuyer, @itemize @w{} @item P. L'Ecuyer, ``Random Number Generation'', Chapter 4 of the Handbook on Simulation, Jerry Banks Ed., Wiley, 1998, 93--137. @uref{http://www.iro.umontreal.ca/~lecuyer/papers.html} in the file @file{handsim.ps}. @end itemize @noindent The source code for the @sc{diehard} random number generator tests is also available online, @itemize @w{} @item @cite{DIEHARD source code} G. Marsaglia, @item @uref{http://stat.fsu.edu/pub/diehard/} @end itemize @noindent A comprehensive set of random number generator tests is available from @sc{nist}, @itemize @w{} @item NIST Special Publication 800-22, ``A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications''. @item @uref{http://csrc.nist.gov/rng/} @end itemize @node Random Number Acknowledgements @section Acknowledgements Thanks to Makoto Matsumoto, Takuji Nishimura and Yoshiharu Kurita for making the source code to their generators (MT19937, MM&TN; TT800, MM&YK) available under the GNU General Public License. Thanks to Martin L@"uscher for providing notes and source code for the @sc{ranlxs} and @sc{ranlxd} generators. @comment lcg @comment [ LCG(n) := n * 69069 mod (2^32) ] @comment First 6: [69069, 475559465, 2801775573, 1790562961, 3104832285, 4238970681] @comment %2^31-1 69069, 475559465, 654291926, 1790562961, 957348638, 2091487034 @comment mrg @comment [q([x1, x2, x3, x4, x5]) := [107374182 mod 2147483647 * x1 + 104480 mod 2147483647 * x5, x1, x2, x3, x4]] @comment @comment cmrg @comment [q1([x1,x2,x3]) := [63308 mod 2147483647 * x2 -183326 mod 2147483647 * x3, x1, x2], @comment q2([x1,x2,x3]) := [86098 mod 2145483479 * x1 -539608 mod 2145483479 * x3, x1, x2] ] @comment initial for q1 is [69069, 475559465, 654291926] @comment initial for q2 is [1790562961, 959348806, 2093487202] @comment tausworthe @comment [ b1(x) := rsh(xor(lsh(x, 13), x), 19), @comment q1(x) := xor(lsh(and(x, 4294967294), 12), b1(x)), @comment b2(x) := rsh(xor(lsh(x, 2), x), 25), @comment q2(x) := xor(lsh(and(x, 4294967288), 4), b2(x)), @comment b3(x) := rsh(xor(lsh(x, 3), x), 11), @comment q3(x) := xor(lsh(and(x, 4294967280), 17), b3(x)) ] @comment [s1, s2, s3] = [600098857, 1131373026, 1223067536] @comment [2948905028, 441213979, 394017882] gsl-1.16/doc/random-walk.tex0000664000252300025230000004507312171574312012666 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(5760,5760) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: random-walk.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Jun 4 20:50:11 2009 %%DocumentFonts: %%BoundingBox: 0 0 288 288 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (random-walk.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Jun 4 20:50:11 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 682 463 M -63 0 V 63 470 R -63 0 V 63 470 R -63 0 V 63 469 R -63 0 V 63 470 R -63 0 V 63 470 R -63 0 V 63 470 R -63 0 V 63 470 R -63 0 V 63 469 R -63 0 V 63 470 R -63 0 V 63 470 R -63 0 V 682 463 M 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 234 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 234 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V 235 63 R 235 0 R 0 -63 V stroke 1.000 UL LTa 682 2812 M 4698 0 V 3031 463 M 0 4698 V stroke 0.500 UL LTb 682 5161 M 682 463 L 4698 0 V 0 4698 V -4698 0 V 1.000 UP 1.000 UP stroke 1.000 UL LT0 3031 2812 M -276 380 V 133 451 V 413 223 V 363 298 V -44 -468 V 3200 3486 L -458 104 V -321 342 V 453 122 V 437 174 V 3031 2812 M -433 183 V -458 103 V 420 210 V -315 349 V -287 371 V 177 -435 V 1749 3325 L 465 69 V 240 -404 V -351 312 V 928 -490 R 2574 2702 L -213 419 V -251 397 V -447 144 V 446 -147 V 70 465 V 1789 3718 L -39 468 V 1483 3800 L 185 432 V 3031 2812 M 2580 2679 L 278 379 V 286 373 V -108 458 V 2822 3470 L 2535 3098 L 419 -212 V 350 -313 V 428 193 V 382 274 V 3031 2812 Pls 2755 3192 Pls 2888 3643 Pls 3301 3866 Pls 3664 4164 Pls 3620 3696 Pls 3200 3486 Pls 2742 3590 Pls 2421 3932 Pls 2874 4054 Pls 3311 4228 Pls 3031 2812 Pls 2598 2995 Pls 2140 3098 Pls 2560 3308 Pls 2245 3657 Pls 1958 4028 Pls 2135 3593 Pls 1749 3325 Pls 2214 3394 Pls 2454 2990 Pls 2103 3302 Pls 3031 2812 Pls 2574 2702 Pls 2361 3121 Pls 2110 3518 Pls 1663 3662 Pls 2109 3515 Pls 2179 3980 Pls 1789 3718 Pls 1750 4186 Pls 1483 3800 Pls 1668 4232 Pls 3031 2812 Pls 2580 2679 Pls 2858 3058 Pls 3144 3431 Pls 3036 3889 Pls 2822 3470 Pls 2535 3098 Pls 2954 2886 Pls 3304 2573 Pls 3732 2766 Pls 4114 3040 Pls 0.500 UL LTb 682 5161 M 682 463 L 4698 0 V 0 4698 V -4698 0 V 1.000 UP stroke grestore end showpage }}% \put(3031,5461){\cjust{\strut{}Random walks}}% \put(5380,200){\cjust{\strut{}5}}% \put(4910,200){\cjust{\strut{}4}}% \put(4440,200){\cjust{\strut{}3}}% \put(3971,200){\cjust{\strut{}2}}% \put(3501,200){\cjust{\strut{}1}}% \put(3031,200){\cjust{\strut{}0}}% \put(2561,200){\cjust{\strut{}-1}}% \put(2091,200){\cjust{\strut{}-2}}% \put(1622,200){\cjust{\strut{}-3}}% \put(1152,200){\cjust{\strut{}-4}}% \put(682,200){\cjust{\strut{}-5}}% \put(499,5161){\rjust{\strut{} 5}}% \put(499,4691){\rjust{\strut{} 4}}% \put(499,4221){\rjust{\strut{} 3}}% \put(499,3752){\rjust{\strut{} 2}}% \put(499,3282){\rjust{\strut{} 1}}% \put(499,2812){\rjust{\strut{} 0}}% \put(499,2342){\rjust{\strut{}-1}}% \put(499,1872){\rjust{\strut{}-2}}% \put(499,1403){\rjust{\strut{}-3}}% \put(499,933){\rjust{\strut{}-4}}% \put(499,463){\rjust{\strut{}-5}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/dht.texi0000664000252300025230000001241012171574312011367 00000000000000@cindex discrete Hankel transforms @cindex Hankel transforms, discrete @cindex transforms, Hankel This chapter describes functions for performing Discrete Hankel Transforms (DHTs). The functions are declared in the header file @file{gsl_dht.h}. @menu * Discrete Hankel Transform Definition:: * Discrete Hankel Transform Functions:: * Discrete Hankel Transform References:: @end menu @node Discrete Hankel Transform Definition @section Definitions The discrete Hankel transform acts on a vector of sampled data, where the samples are assumed to have been taken at points related to the zeroes of a Bessel function of fixed order; compare this to the case of the discrete Fourier transform, where samples are taken at points related to the zeroes of the sine or cosine function. Specifically, let @math{f(t)} be a function on the unit interval and @c{$j_{\nu,m}$} @math{j_(\nu,m)} the @math{m}-th zero of the Bessel function @math{J_\nu(x)}. Then the finite @math{\nu}-Hankel transform of @math{f(t)} is defined to be the set of numbers @math{g_m} given by, @tex \beforedisplay $$ g_m = \int_0^1 t dt\, J_\nu(j_{\nu,m}t) f(t), $$ \afterdisplay @end tex @ifinfo @example g_m = \int_0^1 t dt J_\nu(j_(\nu,m)t) f(t), @end example @end ifinfo @noindent so that, @tex \beforedisplay $$ f(t) = \sum_{m=1}^\infty {{2 J_\nu(j_{\nu,m}t)}\over{J_{\nu+1}(j_{\nu,m})^2}} g_m. $$ \afterdisplay @end tex @ifinfo @example f(t) = \sum_@{m=1@}^\infty (2 J_\nu(j_(\nu,m)t) / J_(\nu+1)(j_(\nu,m))^2) g_m. @end example @end ifinfo @noindent Suppose that @math{f} is band-limited in the sense that @math{g_m=0} for @math{m > M}. Then we have the following fundamental sampling theorem. @tex \beforedisplay $$ g_m = {{2}\over{j_{\nu,M}^2}} \sum_{k=1}^{M-1} f\left({{j_{\nu,k}}\over{j_{\nu,M}}}\right) {{J_\nu(j_{\nu,m} j_{\nu,k} / j_{\nu,M})}\over{J_{\nu+1}(j_{\nu,k})^2}}. $$ \afterdisplay @end tex @ifinfo @example g_m = (2 / j_(\nu,M)^2) \sum_@{k=1@}^@{M-1@} f(j_(\nu,k)/j_(\nu,M)) (J_\nu(j_(\nu,m) j_(\nu,k) / j_(\nu,M)) / J_(\nu+1)(j_(\nu,k))^2). @end example @end ifinfo @noindent It is this discrete expression which defines the discrete Hankel transform. The kernel in the summation above defines the matrix of the @math{\nu}-Hankel transform of size @math{M-1}. The coefficients of this matrix, being dependent on @math{\nu} and @math{M}, must be precomputed and stored; the @code{gsl_dht} object encapsulates this data. The allocation function @code{gsl_dht_alloc} returns a @code{gsl_dht} object which must be properly initialized with @code{gsl_dht_init} before it can be used to perform transforms on data sample vectors, for fixed @math{\nu} and @math{M}, using the @code{gsl_dht_apply} function. The implementation allows a scaling of the fundamental interval, for convenience, so that one can assume the function is defined on the interval @math{[0,X]}, rather than the unit interval. Notice that by assumption @math{f(t)} vanishes at the endpoints of the interval, consistent with the inversion formula and the sampling formula given above. Therefore, this transform corresponds to an orthogonal expansion in eigenfunctions of the Dirichlet problem for the Bessel differential equation. @node Discrete Hankel Transform Functions @section Functions @deftypefun {gsl_dht *} gsl_dht_alloc (size_t @var{size}) @tpindex gsl_dht This function allocates a Discrete Hankel transform object of size @var{size}. @end deftypefun @deftypefun int gsl_dht_init (gsl_dht * @var{t}, double @var{nu}, double @var{xmax}) This function initializes the transform @var{t} for the given values of @var{nu} and @var{xmax}. @end deftypefun @deftypefun {gsl_dht *} gsl_dht_new (size_t @var{size}, double @var{nu}, double @var{xmax}) This function allocates a Discrete Hankel transform object of size @var{size} and initializes it for the given values of @var{nu} and @var{xmax}. @end deftypefun @deftypefun void gsl_dht_free (gsl_dht * @var{t}) This function frees the transform @var{t}. @end deftypefun @deftypefun int gsl_dht_apply (const gsl_dht * @var{t}, double * @var{f_in}, double * @var{f_out}) This function applies the transform @var{t} to the array @var{f_in} whose size is equal to the size of the transform. The result is stored in the array @var{f_out} which must be of the same length. Applying this function to its output gives the original data multiplied by @c{$(1/j_{\nu,M})^2$} @math{(1/j_(\nu,M))^2}, up to numerical errors. @end deftypefun @deftypefun double gsl_dht_x_sample (const gsl_dht * @var{t}, int @var{n}) This function returns the value of the @var{n}-th sample point in the unit interval, @c{${({j_{\nu,n+1}} / {j_{\nu,M}}}) X$} @math{(j_@{\nu,n+1@}/j_@{\nu,M@}) X}. These are the points where the function @math{f(t)} is assumed to be sampled. @end deftypefun @deftypefun double gsl_dht_k_sample (const gsl_dht * @var{t}, int @var{n}) This function returns the value of the @var{n}-th sample point in ``k-space'', @c{${{j_{\nu,n+1}} / X}$} @math{j_@{\nu,n+1@}/X}. @end deftypefun @node Discrete Hankel Transform References @section References and Further Reading The algorithms used by these functions are described in the following papers, @itemize @w{} @item H. Fisk Johnson, Comp.@: Phys.@: Comm.@: 43, 181 (1987). @end itemize @itemize @w{} @item D. Lemoine, J. Chem.@: Phys.@: 101, 3936 (1994). @end itemize gsl-1.16/doc/ode-initval.texi0000664000252300025230000007575012171574312013043 00000000000000@cindex differential equations, initial value problems @cindex initial value problems, differential equations @cindex ordinary differential equations, initial value problem @cindex ODEs, initial value problems This chapter describes functions for solving ordinary differential equation (ODE) initial value problems. The library provides a variety of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level components for adaptive step-size control. The components can be combined by the user to achieve the desired solution, with full access to any intermediate steps. A driver object can be used as a high level wrapper for easy use of low level functions. These functions are declared in the header file @file{gsl_odeiv2.h}. This is a new interface in version 1.15 and uses the prefix @code{gsl_odeiv2} for all functions. It is recommended over the previous @code{gsl_odeiv} implementation defined in @file{gsl_odeiv.h} The old interface has been retained under the original name for backwards compatibility. @menu * Defining the ODE System:: * Stepping Functions:: * Adaptive Step-size Control:: * Evolution:: * Driver:: * ODE Example programs:: * ODE References and Further Reading:: @end menu @node Defining the ODE System @section Defining the ODE System The routines solve the general @math{n}-dimensional first-order system, @tex \beforedisplay $$ {dy_i(t) \over dt} = f_i (t, y_1(t), \dots y_n(t)) $$ \afterdisplay @end tex @ifinfo @example dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t)) @end example @end ifinfo @noindent for @math{i = 1, \dots, n}. The stepping functions rely on the vector of derivatives @math{f_i} and the Jacobian matrix, @c{$J_{ij} = \partial f_i(t, y(t)) / \partial y_j$} @math{J_@{ij@} = df_i(t,y(t)) / dy_j}. A system of equations is defined using the @code{gsl_odeiv2_system} datatype. @deftp {Data Type} gsl_odeiv2_system This data type defines a general ODE system with arbitrary parameters. @table @code @item int (* function) (double t, const double y[], double dydt[], void * params) This function should store the vector elements @c{$f_i(t,y,\hbox{\it params})$} @math{f_i(t,y,params)} in the array @var{dydt}, for arguments (@var{t},@var{y}) and parameters @var{params}. The function should return @code{GSL_SUCCESS} if the calculation was completed successfully. Any other return value indicates an error. A special return value @code{GSL_EBADFUNC} causes @code{gsl_odeiv2} routines to immediately stop and return. The user must call an appropriate reset function (e.g. @code{gsl_odeiv2_driver_reset} or @code{gsl_odeiv2_step_reset}) before continuing. Use return values distinct from standard GSL error codes to distinguish your function as the source of the error. @item int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params); @cindex Jacobian matrix, ODEs This function should store the vector of derivative elements @c{$\partial f_i(t,y,params) / \partial t$} @math{df_i(t,y,params)/dt} in the array @var{dfdt} and the Jacobian matrix @c{$J_{ij}$} @math{J_@{ij@}} in the array @var{dfdy}, regarded as a row-ordered matrix @code{J(i,j) = dfdy[i * dimension + j]} where @code{dimension} is the dimension of the system. Not all of the stepper algorithms of @code{gsl_odeiv2} make use of the Jacobian matrix, so it may not be necessary to provide this function (the @code{jacobian} element of the struct can be replaced by a null pointer for those algorithms). The function should return @code{GSL_SUCCESS} if the calculation was completed successfully. Any other return value indicates an error. A special return value @code{GSL_EBADFUNC} causes @code{gsl_odeiv2} routines to immediately stop and return. The user must call an appropriate reset function (e.g. @code{gsl_odeiv2_driver_reset} or @code{gsl_odeiv2_step_reset}) before continuing. Use return values distinct from standard GSL error codes to distinguish your function as the source of the error. @item size_t dimension; This is the dimension of the system of equations. @item void * params This is a pointer to the arbitrary parameters of the system. @end table @end deftp @node Stepping Functions @section Stepping Functions The lowest level components are the @dfn{stepping functions} which advance a solution from time @math{t} to @math{t+h} for a fixed step-size @math{h} and estimate the resulting local error. @deftypefun {gsl_odeiv2_step *} gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * @var{T}, size_t @var{dim}) @tpindex gsl_odeiv2_step @tpindex gsl_odeiv2_step_type This function returns a pointer to a newly allocated instance of a stepping function of type @var{T} for a system of @var{dim} dimensions. Please note that if you use a stepper method that requires access to a driver object, it is advisable to use a driver allocation method, which automatically allocates a stepper, too. @end deftypefun @deftypefun int gsl_odeiv2_step_reset (gsl_odeiv2_step * @var{s}) This function resets the stepping function @var{s}. It should be used whenever the next use of @var{s} will not be a continuation of a previous step. @end deftypefun @deftypefun void gsl_odeiv2_step_free (gsl_odeiv2_step * @var{s}) This function frees all the memory associated with the stepping function @var{s}. @end deftypefun @deftypefun {const char *} gsl_odeiv2_step_name (const gsl_odeiv2_step * @var{s}) This function returns a pointer to the name of the stepping function. For example, @example printf ("step method is '%s'\n", gsl_odeiv2_step_name (s)); @end example @noindent would print something like @code{step method is 'rkf45'}. @end deftypefun @deftypefun {unsigned int} gsl_odeiv2_step_order (const gsl_odeiv2_step * @var{s}) This function returns the order of the stepping function on the previous step. The order can vary if the stepping function itself is adaptive. @end deftypefun @deftypefun int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * @var{s}, const gsl_odeiv2_driver * @var{d}) This function sets a pointer of the driver object @var{d} for stepper @var{s}, to allow the stepper to access control (and evolve) object through the driver object. This is a requirement for some steppers, to get the desired error level for internal iteration of stepper. Allocation of a driver object calls this function automatically. @end deftypefun @deftypefun int gsl_odeiv2_step_apply (gsl_odeiv2_step * @var{s}, double @var{t}, double @var{h}, double @var{y}[], double @var{yerr}[], const double @var{dydt_in}[], double @var{dydt_out}[], const gsl_odeiv2_system * @var{sys}) This function applies the stepping function @var{s} to the system of equations defined by @var{sys}, using the step-size @var{h} to advance the system from time @var{t} and state @var{y} to time @var{t}+@var{h}. The new state of the system is stored in @var{y} on output, with an estimate of the absolute error in each component stored in @var{yerr}. If the argument @var{dydt_in} is not null it should point an array containing the derivatives for the system at time @var{t} on input. This is optional as the derivatives will be computed internally if they are not provided, but allows the reuse of existing derivative information. On output the new derivatives of the system at time @var{t}+@var{h} will be stored in @var{dydt_out} if it is not null. The stepping function returns @code{GSL_FAILURE} if it is unable to compute the requested step. Also, if the user-supplied functions defined in the system @var{sys} return a status other than @code{GSL_SUCCESS} the step will be aborted. In that case, the elements of @var{y} will be restored to their pre-step values and the error code from the user-supplied function will be returned. Failure may be due to a singularity in the system or too large step-size @var{h}. In that case the step should be attempted again with a smaller step-size, e.g. @math{@var{h}/2}. If the driver object is not appropriately set via @code{gsl_odeiv2_step_set_driver} for those steppers that need it, the stepping function returns @code{GSL_EFAULT}. If the user-supplied functions defined in the system @var{sys} returns @code{GSL_EBADFUNC}, the function returns immediately with the same return code. In this case the user must call @code{gsl_odeiv2_step_reset} before calling this function again. @end deftypefun The following algorithms are available, @deffn {Step Type} gsl_odeiv2_step_rk2 @cindex RK2, Runge-Kutta method @cindex Runge-Kutta methods, ordinary differential equations Explicit embedded Runge-Kutta (2, 3) method. @end deffn @deffn {Step Type} gsl_odeiv2_step_rk4 @cindex RK4, Runge-Kutta method Explicit 4th order (classical) Runge-Kutta. Error estimation is carried out by the step doubling method. For more efficient estimate of the error, use the embedded methods described below. @end deffn @deffn {Step Type} gsl_odeiv2_step_rkf45 @cindex Fehlberg method, differential equations @cindex RKF45, Runge-Kutta-Fehlberg method Explicit embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator. @end deffn @deffn {Step Type} gsl_odeiv2_step_rkck @cindex Runge-Kutta Cash-Karp method @cindex Cash-Karp, Runge-Kutta method Explicit embedded Runge-Kutta Cash-Karp (4, 5) method. @end deffn @deffn {Step Type} gsl_odeiv2_step_rk8pd @cindex Runge-Kutta Prince-Dormand method @cindex Prince-Dormand, Runge-Kutta method Explicit embedded Runge-Kutta Prince-Dormand (8, 9) method. @end deffn @deffn {Step Type} gsl_odeiv2_step_rk1imp @cindex Implicit Euler method Implicit Gaussian first order Runge-Kutta. Also known as implicit Euler or backward Euler method. Error estimation is carried out by the step doubling method. This algorithm requires the Jacobian and access to the driver object via @code{gsl_odeiv2_step_set_driver}. @end deffn @deffn {Step Type} gsl_odeiv2_step_rk2imp @cindex Implicit Runge-Kutta method Implicit Gaussian second order Runge-Kutta. Also known as implicit mid-point rule. Error estimation is carried out by the step doubling method. This stepper requires the Jacobian and access to the driver object via @code{gsl_odeiv2_step_set_driver}. @end deffn @deffn {Step Type} gsl_odeiv2_step_rk4imp Implicit Gaussian 4th order Runge-Kutta. Error estimation is carried out by the step doubling method. This algorithm requires the Jacobian and access to the driver object via @code{gsl_odeiv2_step_set_driver}. @end deffn @deffn {Step Type} gsl_odeiv2_step_bsimp @cindex Bulirsch-Stoer method @cindex Bader and Deuflhard, Bulirsch-Stoer method. @cindex Deuflhard and Bader, Bulirsch-Stoer method. Implicit Bulirsch-Stoer method of Bader and Deuflhard. The method is generally suitable for stiff problems. This stepper requires the Jacobian. @end deffn @deffn {Step Type} gsl_odeiv2_step_msadams @cindex Adams method @cindex multistep methods, ODEs @cindex predictor-corrector method, ODEs @cindex Nordsieck form A variable-coefficient linear multistep Adams method in Nordsieck form. This stepper uses explicit Adams-Bashforth (predictor) and implicit Adams-Moulton (corrector) methods in @math{P(EC)^m} functional iteration mode. Method order varies dynamically between 1 and 12. This stepper requires the access to the driver object via @code{gsl_odeiv2_step_set_driver}. @end deffn @deffn {Step Type} gsl_odeiv2_step_msbdf @cindex BDF method A variable-coefficient linear multistep backward differentiation formula (BDF) method in Nordsieck form. This stepper uses the explicit BDF formula as predictor and implicit BDF formula as corrector. A modified Newton iteration method is used to solve the system of non-linear equations. Method order varies dynamically between 1 and 5. The method is generally suitable for stiff problems. This stepper requires the Jacobian and the access to the driver object via @code{gsl_odeiv2_step_set_driver}. @end deffn @node Adaptive Step-size Control @section Adaptive Step-size Control @cindex Adaptive step-size control, differential equations The control function examines the proposed change to the solution produced by a stepping function and attempts to determine the optimal step-size for a user-specified level of error. @deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_standard_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt}) @tpindex gsl_odeiv2_control @tpindex gsl_odeiv2_control_type The standard control object is a four parameter heuristic based on absolute and relative errors @var{eps_abs} and @var{eps_rel}, and scaling factors @var{a_y} and @var{a_dydt} for the system state @math{y(t)} and derivatives @math{y'(t)} respectively. The step-size adjustment procedure for this method begins by computing the desired error level @math{D_i} for each component, @tex \beforedisplay $$ D_i = \epsilon_{abs} + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y\prime_i|) $$ \afterdisplay @end tex @ifinfo @example D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|) @end example @end ifinfo @noindent and comparing it with the observed error @math{E_i = |yerr_i|}. If the observed error @var{E} exceeds the desired error level @var{D} by more than 10% for any component then the method reduces the step-size by an appropriate factor, @tex \beforedisplay $$ h_{new} = h_{old} * S * (E/D)^{-1/q} $$ \afterdisplay @end tex @ifinfo @example h_new = h_old * S * (E/D)^(-1/q) @end example @end ifinfo @noindent where @math{q} is the consistency order of the method (e.g. @math{q=4} for 4(5) embedded RK), and @math{S} is a safety factor of 0.9. The ratio @math{E/D} is taken to be the maximum of the ratios @math{E_i/D_i}. If the observed error @math{E} is less than 50% of the desired error level @var{D} for the maximum ratio @math{E_i/D_i} then the algorithm takes the opportunity to increase the step-size to bring the error in line with the desired level, @tex \beforedisplay $$ h_{new} = h_{old} * S * (E/D)^{-1/(q+1)} $$ \afterdisplay @end tex @ifinfo @example h_new = h_old * S * (E/D)^(-1/(q+1)) @end example @end ifinfo @noindent This encompasses all the standard error scaling methods. To avoid uncontrolled changes in the stepsize, the overall scaling factor is limited to the range @math{1/5} to 5. @end deftypefun @deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_y_new (double @var{eps_abs}, double @var{eps_rel}) This function creates a new control object which will keep the local error on each step within an absolute error of @var{eps_abs} and relative error of @var{eps_rel} with respect to the solution @math{y_i(t)}. This is equivalent to the standard control object with @var{a_y}=1 and @var{a_dydt}=0. @end deftypefun @deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_yp_new (double @var{eps_abs}, double @var{eps_rel}) This function creates a new control object which will keep the local error on each step within an absolute error of @var{eps_abs} and relative error of @var{eps_rel} with respect to the derivatives of the solution @math{y'_i(t)}. This is equivalent to the standard control object with @var{a_y}=0 and @var{a_dydt}=1. @end deftypefun @deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_scaled_new (double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt}, const double @var{scale_abs}[], size_t @var{dim}) This function creates a new control object which uses the same algorithm as @code{gsl_odeiv2_control_standard_new} but with an absolute error which is scaled for each component by the array @var{scale_abs}. The formula for @math{D_i} for this control object is, @tex \beforedisplay $$ D_i = \epsilon_{abs} s_i + \epsilon_{rel} * (a_{y} |y_i| + a_{dydt} h |y\prime_i|) $$ \afterdisplay @end tex @ifinfo @example D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|) @end example @end ifinfo @noindent where @math{s_i} is the @math{i}-th component of the array @var{scale_abs}. The same error control heuristic is used by the Matlab @sc{ode} suite. @end deftypefun @deftypefun {gsl_odeiv2_control *} gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * @var{T}) This function returns a pointer to a newly allocated instance of a control function of type @var{T}. This function is only needed for defining new types of control functions. For most purposes the standard control functions described above should be sufficient. @end deftypefun @deftypefun int gsl_odeiv2_control_init (gsl_odeiv2_control * @var{c}, double @var{eps_abs}, double @var{eps_rel}, double @var{a_y}, double @var{a_dydt}) This function initializes the control function @var{c} with the parameters @var{eps_abs} (absolute error), @var{eps_rel} (relative error), @var{a_y} (scaling factor for y) and @var{a_dydt} (scaling factor for derivatives). @end deftypefun @deftypefun void gsl_odeiv2_control_free (gsl_odeiv2_control * @var{c}) This function frees all the memory associated with the control function @var{c}. @end deftypefun @deftypefun int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * @var{c}, gsl_odeiv2_step * @var{s}, const double @var{y}[], const double @var{yerr}[], const double @var{dydt}[], double * @var{h}) This function adjusts the step-size @var{h} using the control function @var{c}, and the current values of @var{y}, @var{yerr} and @var{dydt}. The stepping function @var{step} is also needed to determine the order of the method. If the error in the y-values @var{yerr} is found to be too large then the step-size @var{h} is reduced and the function returns @code{GSL_ODEIV_HADJ_DEC}. If the error is sufficiently small then @var{h} may be increased and @code{GSL_ODEIV_HADJ_INC} is returned. The function returns @code{GSL_ODEIV_HADJ_NIL} if the step-size is unchanged. The goal of the function is to estimate the largest step-size which satisfies the user-specified accuracy requirements for the current point. @end deftypefun @deftypefun {const char *} gsl_odeiv2_control_name (const gsl_odeiv2_control * @var{c}) This function returns a pointer to the name of the control function. For example, @example printf ("control method is '%s'\n", gsl_odeiv2_control_name (c)); @end example @noindent would print something like @code{control method is 'standard'} @end deftypefun @deftypefun int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * @var{c}, const double @var{y}, const double @var{dydt}, const double @var{h}, const size_t @var{ind}, double * @var{errlev}) This function calculates the desired error level of the @var{ind}-th component to @var{errlev}. It requires the value (@var{y}) and value of the derivative (@var{dydt}) of the component, and the current step size @var{h}. @end deftypefun @deftypefun int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * @var{c}, const gsl_odeiv2_driver * @var{d}) This function sets a pointer of the driver object @var{d} for control object @var{c}. @end deftypefun @node Evolution @section Evolution The evolution function combines the results of a stepping function and control function to reliably advance the solution forward one step using an acceptable step-size. @deftypefun {gsl_odeiv2_evolve *} gsl_odeiv2_evolve_alloc (size_t @var{dim}) @tpindex gsl_odeiv2_evolve This function returns a pointer to a newly allocated instance of an evolution function for a system of @var{dim} dimensions. @end deftypefun @deftypefun int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * @var{e}, gsl_odeiv2_control * @var{con}, gsl_odeiv2_step * @var{step}, const gsl_odeiv2_system * @var{sys}, double * @var{t}, double @var{t1}, double * @var{h}, double @var{y}[]) This function advances the system (@var{e}, @var{sys}) from time @var{t} and position @var{y} using the stepping function @var{step}. The new time and position are stored in @var{t} and @var{y} on output. The initial step-size is taken as @var{h}. The control function @var{con} is applied to check whether the local error estimated by the stepping function @var{step} using step-size @var{h} exceeds the required error tolerance. If the error is too high, the step is retried by calling @var{step} with a decreased step-size. This process is continued until an acceptable step-size is found. An estimate of the local error for the step can be obtained from the components of the array @code{@var{e}->yerr[]}. If the user-supplied functions defined in the system @var{sys} returns @code{GSL_EBADFUNC}, the function returns immediately with the same return code. In this case the user must call @code{gsl_odeiv2_step_reset} and @code{gsl_odeiv2_evolve_reset} before calling this function again. Otherwise, if the user-supplied functions defined in the system @var{sys} or the stepping function @var{step} return a status other than @code{GSL_SUCCESS}, the step is retried with a decreased step-size. If the step-size decreases below machine precision, a status of @code{GSL_FAILURE} is returned if the user functions returned @code{GSL_SUCCESS}. Otherwise the value returned by user function is returned. If no acceptable step can be made, @var{t} and @var{y} will be restored to their pre-step values and @var{h} contains the final attempted step-size. If the step is successful the function returns a suggested step-size for the next step in @var{h}. The maximum time @var{t1} is guaranteed not to be exceeded by the time-step. On the final time-step the value of @var{t} will be set to @var{t1} exactly. @end deftypefun @deftypefun int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * @var{e}, gsl_odeiv2_control * @var{con}, gsl_odeiv2_step * @var{step}, const gsl_odeiv2_system * @var{sys}, double * @var{t}, const double @var{h}, double @var{y}[]) This function advances the ODE-system (@var{e}, @var{sys}, @var{con}) from time @var{t} and position @var{y} using the stepping function @var{step} by a specified step size @var{h}. If the local error estimated by the stepping function exceeds the desired error level, the step is not taken and the function returns @code{GSL_FAILURE}. Otherwise the value returned by user function is returned. @end deftypefun @deftypefun int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * @var{e}) This function resets the evolution function @var{e}. It should be used whenever the next use of @var{e} will not be a continuation of a previous step. @end deftypefun @deftypefun void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * @var{e}) This function frees all the memory associated with the evolution function @var{e}. @end deftypefun @deftypefun int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * @var{e}, const gsl_odeiv2_driver * @var{d}) This function sets a pointer of the driver object @var{d} for evolve object @var{e}. @end deftypefun @cindex discontinuities, in ODE systems If a system has discontinuous changes in the derivatives at known points, it is advisable to evolve the system between each discontinuity in sequence. For example, if a step-change in an external driving force occurs at times @math{t_a, t_b} and @math{t_c} then evolution should be carried out over the ranges @math{(t_0,t_a)}, @math{(t_a,t_b)}, @math{(t_b,t_c)}, and @math{(t_c,t_1)} separately and not directly over the range @math{(t_0,t_1)}. @node Driver @section Driver The driver object is a high level wrapper that combines the evolution, control and stepper objects for easy use. @deftypefun {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}) @deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}) @deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}, const double @var{a_y}, const double @var{a_dydt}) @deftypefunx {gsl_odeiv2_driver *} gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * @var{sys}, const gsl_odeiv2_step_type * @var{T}, const double @var{hstart}, const double @var{epsabs}, const double @var{epsrel}, const double @var{a_y}, const double @var{a_dydt}, const double @var{scale_abs}[]) These functions return a pointer to a newly allocated instance of a driver object. The functions automatically allocate and initialise the evolve, control and stepper objects for ODE system @var{sys} using stepper type @var{T}. The initial step size is given in @var{hstart}. The rest of the arguments follow the syntax and semantics of the control functions with same name (@code{gsl_odeiv2_control_*_new}). @end deftypefun @deftypefun {int} gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * @var{d}, const double @var{hmin}) The function sets a minimum for allowed step size @var{hmin} for driver @var{d}. Default value is 0. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * @var{d}, const double @var{hmax}) The function sets a maximum for allowed step size @var{hmax} for driver @var{d}. Default value is @code{GSL_DBL_MAX}. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * @var{d}, const unsigned long int @var{nmax}) The function sets a maximum for allowed number of steps @var{nmax} for driver @var{d}. Default value of 0 sets no limit for steps. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_apply (gsl_odeiv2_driver * @var{d}, double * @var{t}, const double @var{t1}, double @var{y}[]) This function evolves the driver system @var{d} from @var{t} to @var{t1}. Initially vector @var{y} should contain the values of dependent variables at point @var{t}. If the function is unable to complete the calculation, an error code from @code{gsl_odeiv2_evolve_apply} is returned, and @var{t} and @var{y} contain the values from last successful step. If maximum number of steps is reached, a value of @code{GSL_EMAXITER} is returned. If the step size drops below minimum value, the function returns with @code{GSL_ENOPROG}. If the user-supplied functions defined in the system @var{sys} returns @code{GSL_EBADFUNC}, the function returns immediately with the same return code. In this case the user must call @code{gsl_odeiv2_driver_reset} before calling this function again. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * @var{d}, double * @var{t}, const double @var{h}, const unsigned long int @var{n}, double @var{y}[]) This function evolves the driver system @var{d} from @var{t} with @var{n} steps of size @var{h}. If the function is unable to complete the calculation, an error code from @code{gsl_odeiv2_evolve_apply_fixed_step} is returned, and @var{t} and @var{y} contain the values from last successful step. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_reset (gsl_odeiv2_driver * @var{d}) This function resets the evolution and stepper objects. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_reset_hstart (gsl_odeiv2_driver * @var{d}, const double @var{hstart}) The routine resets the evolution and stepper objects and sets new initial step size to @var{hstart}. This function can be used e.g. to change the direction of integration. @end deftypefun @deftypefun {int} gsl_odeiv2_driver_free (gsl_odeiv2_driver * @var{d}) This function frees the driver object, and the related evolution, stepper and control objects. @end deftypefun @node ODE Example programs @section Examples @cindex Van der Pol oscillator, example The following program solves the second-order nonlinear Van der Pol oscillator equation, @tex \beforedisplay $$ u''(t) + \mu u'(t) (u(t)^2 - 1) + u(t) = 0 $$ \afterdisplay @end tex @ifinfo @example u''(t) + \mu u'(t) (u(t)^2 - 1) + u(t) = 0 @end example @end ifinfo @noindent This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, @math{v = u'(t)}, @tex \beforedisplay $$ \eqalign{ u' &= v\cr v' &= -u + \mu v (1-u^2) } $$ \afterdisplay @end tex @ifinfo @example u' = v v' = -u + \mu v (1-u^2) @end example @end ifinfo @noindent The program begins by defining functions for these derivatives and their Jacobian. The main function uses driver level functions to solve the problem. The program evolves the solution from @math{(u, v) = (1, 0)} at @math{t=0} to @math{t=100}. The step-size @math{h} is automatically adjusted by the controller to maintain an absolute accuracy of @c{$10^{-6}$} @math{10^@{-6@}} in the function values @math{(u, v)}. The loop in the example prints the solution at the points @math{t_i = 1, 2, \dots, 100}. @example @verbatiminclude examples/ode-initval.c @end example @noindent The user can work with the lower level functions directly, as in the following example. In this case an intermediate result is printed after each successful step instead of equidistant time points. @example @verbatiminclude examples/ode-initval-low-level.c @end example @noindent For functions with multiple parameters, the appropriate information can be passed in through the @var{params} argument in @code{gsl_odeiv2_system} definition (@var{mu} in this example) by using a pointer to a struct. @iftex @sp 1 @center @image{vdp,3.4in} @center Numerical solution of the Van der Pol oscillator equation @center using Prince-Dormand 8th order Runge-Kutta. @end iftex @noindent It is also possible to work with a non-adaptive integrator, using only the stepping function itself, @code{gsl_odeiv2_driver_apply_fixed_step} or @code{gsl_odeiv2_evolve_apply_fixed_step}. The following program uses the driver level function, with fourth-order Runge-Kutta stepping function with a fixed stepsize of 0.001. @example @verbatiminclude examples/odefixed.c @end example @node ODE References and Further Reading @section References and Further Reading @itemize @w{} @item Ascher, U.M., Petzold, L.R., @cite{Computer Methods for Ordinary Differential and Differential-Algebraic Equations}, SIAM, Philadelphia, 1998. @end itemize @itemize @w{} @item Hairer, E., Norsett, S. P., Wanner, G., @cite{Solving Ordinary Differential Equations I: Nonstiff Problems}, Springer, Berlin, 1993. @end itemize @itemize @w{} @item Hairer, E., Wanner, G., @cite{Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems}, Springer, Berlin, 1996. @end itemize Many of the basic Runge-Kutta formulas can be found in the Handbook of Mathematical Functions, @itemize @w{} @item Abramowitz & Stegun (eds.), @cite{Handbook of Mathematical Functions}, Section 25.5. @end itemize @noindent The implicit Bulirsch-Stoer algorithm @code{bsimp} is described in the following paper, @itemize @w{} @item G. Bader and P. Deuflhard, ``A Semi-Implicit Mid-Point Rule for Stiff Systems of Ordinary Differential Equations.'', Numer.@: Math.@: 41, 373--398, 1983. @end itemize @noindent The Adams and BDF multistep methods @code{msadams} and @code{msbdf} are based on the following articles, @itemize @w{} @item G. D. Byrne and A. C. Hindmarsh, ``A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations.'', ACM Trans. Math. Software, 1, 71--96, 1975. @item P. N. Brown, G. D. Byrne and A. C. Hindmarsh, ``VODE: A Variable-coefficient ODE Solver.'', SIAM J. Sci. Stat. Comput. 10, 1038--1051, 1989. @item A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker and C. S. Woodward, ``SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers.'', ACM Trans. Math. Software 31, 363--396, 2005. @end itemize gsl-1.16/doc/rand-logarithmic.tex0000664000252300025230000004764212171574312013702 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-logarithmic.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-logarithmic.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 3582 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -2328 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -669 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 2994 1216 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -278 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -135 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -72 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -40 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 4956 691 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -23 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -14 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 -9 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -5 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.7$}}% \put(3955,5244){\cjust{\strut{}Logarithmic Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.7}}% \put(900,4328){\rjust{\strut{} 0.6}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,3096){\rjust{\strut{} 0.4}}% \put(900,2479){\rjust{\strut{} 0.3}}% \put(900,1863){\rjust{\strut{} 0.2}}% \put(900,1247){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/rand-pascal.tex0000664000252300025230000004726312171574312012642 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-pascal.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-pascal.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 2428 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 899 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -450 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 3013 2877 L 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -561 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -506 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -393 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -280 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 4975 1137 L 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -190 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -123 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 -77 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -47 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.5,n=3$}}% \put(3955,5244){\cjust{\strut{}Pascal Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.3}}% \put(900,3506){\rjust{\strut{} 0.2}}% \put(900,2069){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/cblas.texi0000664000252300025230000011402212171574312011676 00000000000000@cindex Low-level CBLAS @cindex CBLAS, Low-level interface @cindex BLAS, Low-level C interface @cindex Basic Linear Algebra Subroutines (BLAS) The prototypes for the low-level @sc{cblas} functions are declared in the file @file{gsl_cblas.h}. For the definition of the functions consult the documentation available from Netlib (@pxref{BLAS References and Further Reading}). @menu * Level 1 CBLAS Functions:: * Level 2 CBLAS Functions:: * Level 3 CBLAS Functions:: * GSL CBLAS Examples:: @end menu @node Level 1 CBLAS Functions @section Level 1 @deftypefun float cblas_sdsdot (const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun double cblas_dsdot (const int @var{N}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun float cblas_sdot (const int @var{N}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun double cblas_ddot (const int @var{N}, const double * @var{x}, const int @var{incx}, const double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_cdotu_sub (const int @var{N}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{dotu}) @end deftypefun @deftypefun void cblas_cdotc_sub (const int @var{N}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{dotc}) @end deftypefun @deftypefun void cblas_zdotu_sub (const int @var{N}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{dotu}) @end deftypefun @deftypefun void cblas_zdotc_sub (const int @var{N}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{dotc}) @end deftypefun @deftypefun float cblas_snrm2 (const int @var{N}, const float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun float cblas_sasum (const int @var{N}, const float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun double cblas_dnrm2 (const int @var{N}, const double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun double cblas_dasum (const int @var{N}, const double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun float cblas_scnrm2 (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun float cblas_scasum (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun double cblas_dznrm2 (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun double cblas_dzasum (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun CBLAS_INDEX cblas_isamax (const int @var{N}, const float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun CBLAS_INDEX cblas_idamax (const int @var{N}, const double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun CBLAS_INDEX cblas_icamax (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun CBLAS_INDEX cblas_izamax (const int @var{N}, const void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_sswap (const int @var{N}, float * @var{x}, const int @var{incx}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_scopy (const int @var{N}, const float * @var{x}, const int @var{incx}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_saxpy (const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dswap (const int @var{N}, double * @var{x}, const int @var{incx}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dcopy (const int @var{N}, const double * @var{x}, const int @var{incx}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_daxpy (const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_cswap (const int @var{N}, void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_ccopy (const int @var{N}, const void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_caxpy (const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zswap (const int @var{N}, void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zcopy (const int @var{N}, const void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zaxpy (const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_srotg (float * @var{a}, float * @var{b}, float * @var{c}, float * @var{s}) @end deftypefun @deftypefun void cblas_srotmg (float * @var{d1}, float * @var{d2}, float * @var{b1}, const float @var{b2}, float * @var{P}) @end deftypefun @deftypefun void cblas_srot (const int @var{N}, float * @var{x}, const int @var{incx}, float * @var{y}, const int @var{incy}, const float @var{c}, const float @var{s}) @end deftypefun @deftypefun void cblas_srotm (const int @var{N}, float * @var{x}, const int @var{incx}, float * @var{y}, const int @var{incy}, const float * @var{P}) @end deftypefun @deftypefun void cblas_drotg (double * @var{a}, double * @var{b}, double * @var{c}, double * @var{s}) @end deftypefun @deftypefun void cblas_drotmg (double * @var{d1}, double * @var{d2}, double * @var{b1}, const double @var{b2}, double * @var{P}) @end deftypefun @deftypefun void cblas_drot (const int @var{N}, double * @var{x}, const int @var{incx}, double * @var{y}, const int @var{incy}, const double @var{c}, const double @var{s}) @end deftypefun @deftypefun void cblas_drotm (const int @var{N}, double * @var{x}, const int @var{incx}, double * @var{y}, const int @var{incy}, const double * @var{P}) @end deftypefun @deftypefun void cblas_sscal (const int @var{N}, const float @var{alpha}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dscal (const int @var{N}, const double @var{alpha}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_cscal (const int @var{N}, const void * @var{alpha}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_zscal (const int @var{N}, const void * @var{alpha}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_csscal (const int @var{N}, const float @var{alpha}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_zdscal (const int @var{N}, const double @var{alpha}, void * @var{x}, const int @var{incx}) @end deftypefun @node Level 2 CBLAS Functions @section Level 2 @deftypefun void cblas_sgemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{x}, const int @var{incx}, const float @var{beta}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_sgbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const int @var{KL}, const int @var{KU}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{x}, const int @var{incx}, const float @var{beta}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_strmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const float * @var{A}, const int @var{lda}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_stbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const float * @var{A}, const int @var{lda}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_stpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const float * @var{Ap}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_strsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const float * @var{A}, const int @var{lda}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_stbsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const float * @var{A}, const int @var{lda}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_stpsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const float * @var{Ap}, float * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dgemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{x}, const int @var{incx}, const double @var{beta}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dgbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const int @var{KL}, const int @var{KU}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{x}, const int @var{incx}, const double @var{beta}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dtrmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const double * @var{A}, const int @var{lda}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dtbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const double * @var{A}, const int @var{lda}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dtpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const double * @var{Ap}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dtrsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const double * @var{A}, const int @var{lda}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dtbsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const double * @var{A}, const int @var{lda}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_dtpsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const double * @var{Ap}, double * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_cgemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_cgbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const int @var{KL}, const int @var{KU}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_ctrmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ctbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ctpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{Ap}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ctrsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ctbsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ctpsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{Ap}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_zgemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zgbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_TRANSPOSE @var{TransA}, const int @var{M}, const int @var{N}, const int @var{KL}, const int @var{KU}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_ztrmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ztbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ztpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{Ap}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ztrsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ztbsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const int @var{K}, const void * @var{A}, const int @var{lda}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ztpsv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{N}, const void * @var{Ap}, void * @var{x}, const int @var{incx}) @end deftypefun @deftypefun void cblas_ssymv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{x}, const int @var{incx}, const float @var{beta}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_ssbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const int @var{K}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{x}, const int @var{incx}, const float @var{beta}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_sspmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{Ap}, const float * @var{x}, const int @var{incx}, const float @var{beta}, float * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_sger (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}, float * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_ssyr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, float * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_sspr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, float * @var{Ap}) @end deftypefun @deftypefun void cblas_ssyr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}, float * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_sspr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const float * @var{x}, const int @var{incx}, const float * @var{y}, const int @var{incy}, float * @var{A}) @end deftypefun @deftypefun void cblas_dsymv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{x}, const int @var{incx}, const double @var{beta}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dsbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const int @var{K}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{x}, const int @var{incx}, const double @var{beta}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dspmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{Ap}, const double * @var{x}, const int @var{incx}, const double @var{beta}, double * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_dger (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, const double * @var{y}, const int @var{incy}, double * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_dsyr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, double * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_dspr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, double * @var{Ap}) @end deftypefun @deftypefun void cblas_dsyr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, const double * @var{y}, const int @var{incy}, double * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_dspr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const double * @var{x}, const int @var{incx}, const double * @var{y}, const int @var{incy}, double * @var{A}) @end deftypefun @deftypefun void cblas_chemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_chbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_chpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{Ap}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_cgeru (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_cgerc (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_cher (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_chpr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const float @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{A}) @end deftypefun @deftypefun void cblas_cher2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_chpr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{Ap}) @end deftypefun @deftypefun void cblas_zhemv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zhbmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zhpmv (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{Ap}, const void * @var{x}, const int @var{incx}, const void * @var{beta}, void * @var{y}, const int @var{incy}) @end deftypefun @deftypefun void cblas_zgeru (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_zgerc (const enum CBLAS_ORDER @var{order}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_zher (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_zhpr (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const double @var{alpha}, const void * @var{x}, const int @var{incx}, void * @var{A}) @end deftypefun @deftypefun void cblas_zher2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{A}, const int @var{lda}) @end deftypefun @deftypefun void cblas_zhpr2 (const enum CBLAS_ORDER @var{order}, const enum CBLAS_UPLO @var{Uplo}, const int @var{N}, const void * @var{alpha}, const void * @var{x}, const int @var{incx}, const void * @var{y}, const int @var{incy}, void * @var{Ap}) @end deftypefun @node Level 3 CBLAS Functions @section Level 3 @deftypefun void cblas_sgemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_TRANSPOSE @var{TransB}, const int @var{M}, const int @var{N}, const int @var{K}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{B}, const int @var{ldb}, const float @var{beta}, float * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_ssymm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{B}, const int @var{ldb}, const float @var{beta}, float * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_ssyrk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float @var{beta}, float * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_ssyr2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, const float * @var{B}, const int @var{ldb}, const float @var{beta}, float * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_strmm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, float * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_strsm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const float @var{alpha}, const float * @var{A}, const int @var{lda}, float * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_dgemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_TRANSPOSE @var{TransB}, const int @var{M}, const int @var{N}, const int @var{K}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{B}, const int @var{ldb}, const double @var{beta}, double * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_dsymm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{B}, const int @var{ldb}, const double @var{beta}, double * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_dsyrk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double @var{beta}, double * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_dsyr2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, const double * @var{B}, const int @var{ldb}, const double @var{beta}, double * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_dtrmm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, double * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_dtrsm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const double @var{alpha}, const double * @var{A}, const int @var{lda}, double * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_cgemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_TRANSPOSE @var{TransB}, const int @var{M}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_csymm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_csyrk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_csyr2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_ctrmm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, void * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_ctrsm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, void * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_zgemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_TRANSPOSE @var{TransB}, const int @var{M}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zsymm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zsyrk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zsyr2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_ztrmm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, void * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_ztrsm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{TransA}, const enum CBLAS_DIAG @var{Diag}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, void * @var{B}, const int @var{ldb}) @end deftypefun @deftypefun void cblas_chemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_cherk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const float @var{alpha}, const void * @var{A}, const int @var{lda}, const float @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_cher2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const float @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zhemm (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_SIDE @var{Side}, const enum CBLAS_UPLO @var{Uplo}, const int @var{M}, const int @var{N}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const void * @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zherk (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const double @var{alpha}, const void * @var{A}, const int @var{lda}, const double @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_zher2k (const enum CBLAS_ORDER @var{Order}, const enum CBLAS_UPLO @var{Uplo}, const enum CBLAS_TRANSPOSE @var{Trans}, const int @var{N}, const int @var{K}, const void * @var{alpha}, const void * @var{A}, const int @var{lda}, const void * @var{B}, const int @var{ldb}, const double @var{beta}, void * @var{C}, const int @var{ldc}) @end deftypefun @deftypefun void cblas_xerbla (int @var{p}, const char * @var{rout}, const char * @var{form}, ...) @end deftypefun @node GSL CBLAS Examples @section Examples The following program computes the product of two matrices using the Level-3 @sc{blas} function @sc{sgemm}, @tex \beforedisplay $$ \left( \matrix{0.11&0.12&0.13\cr 0.21&0.22&0.23\cr} \right) \left( \matrix{1011&1012\cr 1021&1022\cr 1031&1032\cr} \right) = \left( \matrix{367.76&368.12\cr 674.06&674.72\cr} \right) $$ \afterdisplay @end tex @ifinfo @example [ 0.11 0.12 0.13 ] [ 1011 1012 ] [ 367.76 368.12 ] [ 0.21 0.22 0.23 ] [ 1021 1022 ] = [ 674.06 674.72 ] [ 1031 1032 ] @end example @end ifinfo @noindent The matrices are stored in row major order but could be stored in column major order if the first argument of the call to @code{cblas_sgemm} was changed to @code{CblasColMajor}. @example @verbatiminclude examples/cblas.c @end example @noindent To compile the program use the following command line, @example $ gcc -Wall demo.c -lgslcblas @end example @noindent There is no need to link with the main library @code{-lgsl} in this case as the @sc{cblas} library is an independent unit. Here is the output from the program, @example $ ./a.out @verbatiminclude examples/cblas.out @end example gsl-1.16/doc/fft.texi0000664000252300025230000011755612171574312011410 00000000000000@cindex FFT @cindex Fast Fourier Transforms, see FFT @cindex Fourier Transforms, see FFT @cindex Discrete Fourier Transforms, see FFT @cindex DFTs, see FFT This chapter describes functions for performing Fast Fourier Transforms (FFTs). The library includes radix-2 routines (for lengths which are a power of two) and mixed-radix routines (which work for any length). For efficiency there are separate versions of the routines for real data and for complex data. The mixed-radix routines are a reimplementation of the @sc{fftpack} library of Paul Swarztrauber. Fortran code for @sc{fftpack} is available on Netlib (@sc{fftpack} also includes some routines for sine and cosine transforms but these are currently not available in GSL). For details and derivations of the underlying algorithms consult the document @cite{GSL FFT Algorithms} (@pxref{FFT References and Further Reading}) @menu * Mathematical Definitions:: * Overview of complex data FFTs:: * Radix-2 FFT routines for complex data:: * Mixed-radix FFT routines for complex data:: * Overview of real data FFTs:: * Radix-2 FFT routines for real data:: * Mixed-radix FFT routines for real data:: * FFT References and Further Reading:: @end menu @node Mathematical Definitions @section Mathematical Definitions @cindex FFT mathematical definition Fast Fourier Transforms are efficient algorithms for calculating the discrete Fourier transform (DFT), @tex \beforedisplay $$ x_j = \sum_{k=0}^{n-1} z_k \exp(-2\pi i j k / n) $$ \afterdisplay @end tex @ifinfo @example x_j = \sum_@{k=0@}^@{n-1@} z_k \exp(-2\pi i j k / n) @end example @end ifinfo The DFT usually arises as an approximation to the continuous Fourier transform when functions are sampled at discrete intervals in space or time. The naive evaluation of the discrete Fourier transform is a matrix-vector multiplication @c{$W\vec{z}$} @math{W\vec@{z@}}. A general matrix-vector multiplication takes @math{O(n^2)} operations for @math{n} data-points. Fast Fourier transform algorithms use a divide-and-conquer strategy to factorize the matrix @math{W} into smaller sub-matrices, corresponding to the integer factors of the length @math{n}. If @math{n} can be factorized into a product of integers @c{$f_1 f_2 \ldots f_m$} @math{f_1 f_2 ... f_m} then the DFT can be computed in @math{O(n \sum f_i)} operations. For a radix-2 FFT this gives an operation count of @math{O(n \log_2 n)}. All the FFT functions offer three types of transform: forwards, inverse and backwards, based on the same mathematical definitions. The definition of the @dfn{forward Fourier transform}, @c{$x = \hbox{FFT}(z)$} @math{x = FFT(z)}, is, @tex \beforedisplay $$ x_j = \sum_{k=0}^{n-1} z_k \exp(-2\pi i j k / n) $$ \afterdisplay @end tex @ifinfo @example x_j = \sum_@{k=0@}^@{n-1@} z_k \exp(-2\pi i j k / n) @end example @end ifinfo @noindent and the definition of the @dfn{inverse Fourier transform}, @c{$x = \hbox{IFFT}(z)$} @math{x = IFFT(z)}, is, @tex \beforedisplay $$ z_j = {1 \over n} \sum_{k=0}^{n-1} x_k \exp(2\pi i j k / n). $$ \afterdisplay @end tex @ifinfo @example z_j = @{1 \over n@} \sum_@{k=0@}^@{n-1@} x_k \exp(2\pi i j k / n). @end example @end ifinfo @noindent The factor of @math{1/n} makes this a true inverse. For example, a call to @code{gsl_fft_complex_forward} followed by a call to @code{gsl_fft_complex_inverse} should return the original data (within numerical errors). In general there are two possible choices for the sign of the exponential in the transform/ inverse-transform pair. GSL follows the same convention as @sc{fftpack}, using a negative exponential for the forward transform. The advantage of this convention is that the inverse transform recreates the original function with simple Fourier synthesis. Numerical Recipes uses the opposite convention, a positive exponential in the forward transform. The @dfn{backwards FFT} is simply our terminology for an unscaled version of the inverse FFT, @tex \beforedisplay $$ z^{backwards}_j = \sum_{k=0}^{n-1} x_k \exp(2\pi i j k / n). $$ \afterdisplay @end tex @ifinfo @example z^@{backwards@}_j = \sum_@{k=0@}^@{n-1@} x_k \exp(2\pi i j k / n). @end example @end ifinfo @noindent When the overall scale of the result is unimportant it is often convenient to use the backwards FFT instead of the inverse to save unnecessary divisions. @node Overview of complex data FFTs @section Overview of complex data FFTs @cindex FFT, complex data The inputs and outputs for the complex FFT routines are @dfn{packed arrays} of floating point numbers. In a packed array the real and imaginary parts of each complex number are placed in alternate neighboring elements. For example, the following definition of a packed array of length 6, @example double x[3*2]; gsl_complex_packed_array data = x; @end example @noindent can be used to hold an array of three complex numbers, @code{z[3]}, in the following way, @example data[0] = Re(z[0]) data[1] = Im(z[0]) data[2] = Re(z[1]) data[3] = Im(z[1]) data[4] = Re(z[2]) data[5] = Im(z[2]) @end example @noindent The array indices for the data have the same ordering as those in the definition of the DFT---i.e. there are no index transformations or permutations of the data. A @dfn{stride} parameter allows the user to perform transforms on the elements @code{z[stride*i]} instead of @code{z[i]}. A stride greater than 1 can be used to take an in-place FFT of the column of a matrix. A stride of 1 accesses the array without any additional spacing between elements. To perform an FFT on a vector argument, such as @code{gsl_vector_complex * v}, use the following definitions (or their equivalents) when calling the functions described in this chapter: @example gsl_complex_packed_array data = v->data; size_t stride = v->stride; size_t n = v->size; @end example For physical applications it is important to remember that the index appearing in the DFT does not correspond directly to a physical frequency. If the time-step of the DFT is @math{\Delta} then the frequency-domain includes both positive and negative frequencies, ranging from @math{-1/(2\Delta)} through 0 to @math{+1/(2\Delta)}. The positive frequencies are stored from the beginning of the array up to the middle, and the negative frequencies are stored backwards from the end of the array. Here is a table which shows the layout of the array @var{data}, and the correspondence between the time-domain data @math{z}, and the frequency-domain data @math{x}. @example index z x = FFT(z) 0 z(t = 0) x(f = 0) 1 z(t = 1) x(f = 1/(n Delta)) 2 z(t = 2) x(f = 2/(n Delta)) . ........ .................. n/2 z(t = n/2) x(f = +1/(2 Delta), -1/(2 Delta)) . ........ .................. n-3 z(t = n-3) x(f = -3/(n Delta)) n-2 z(t = n-2) x(f = -2/(n Delta)) n-1 z(t = n-1) x(f = -1/(n Delta)) @end example @noindent When @math{n} is even the location @math{n/2} contains the most positive and negative frequencies (@math{+1/(2 \Delta)}, @math{-1/(2 \Delta)}) which are equivalent. If @math{n} is odd then general structure of the table above still applies, but @math{n/2} does not appear. @node Radix-2 FFT routines for complex data @section Radix-2 FFT routines for complex data @cindex FFT of complex data, radix-2 algorithm @cindex Radix-2 FFT, complex data The radix-2 algorithms described in this section are simple and compact, although not necessarily the most efficient. They use the Cooley-Tukey algorithm to compute in-place complex FFTs for lengths which are a power of 2---no additional storage is required. The corresponding self-sorting mixed-radix routines offer better performance at the expense of requiring additional working space. All the functions described in this section are declared in the header file @file{gsl_fft_complex.h}. @deftypefun int gsl_fft_complex_radix2_forward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) @deftypefunx int gsl_fft_complex_radix2_transform (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, gsl_fft_direction @var{sign}) @deftypefunx int gsl_fft_complex_radix2_backward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) @deftypefunx int gsl_fft_complex_radix2_inverse (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) These functions compute forward, backward and inverse FFTs of length @var{n} with stride @var{stride}, on the packed complex array @var{data} using an in-place radix-2 decimation-in-time algorithm. The length of the transform @var{n} is restricted to powers of two. For the @code{transform} version of the function the @var{sign} argument can be either @code{forward} (@math{-1}) or @code{backward} (@math{+1}). The functions return a value of @code{GSL_SUCCESS} if no errors were detected, or @code{GSL_EDOM} if the length of the data @var{n} is not a power of two. @end deftypefun @deftypefun int gsl_fft_complex_radix2_dif_forward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) @deftypefunx int gsl_fft_complex_radix2_dif_transform (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, gsl_fft_direction @var{sign}) @deftypefunx int gsl_fft_complex_radix2_dif_backward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) @deftypefunx int gsl_fft_complex_radix2_dif_inverse (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}) These are decimation-in-frequency versions of the radix-2 FFT functions. @end deftypefun @comment @node Example of using radix-2 FFT routines for complex data @comment @subsection Example of using radix-2 FFT routines for complex data Here is an example program which computes the FFT of a short pulse in a sample of length 128. To make the resulting Fourier transform real the pulse is defined for equal positive and negative times (@math{-10} @dots{} @math{10}), where the negative times wrap around the end of the array. @example @verbatiminclude examples/fft.c @end example @noindent Note that we have assumed that the program is using the default error handler (which calls @code{abort} for any errors). If you are not using a safe error handler you would need to check the return status of @code{gsl_fft_complex_radix2_forward}. The transformed data is rescaled by @math{1/\sqrt n} so that it fits on the same plot as the input. Only the real part is shown, by the choice of the input data the imaginary part is zero. Allowing for the wrap-around of negative times at @math{t=128}, and working in units of @math{k/n}, the DFT approximates the continuum Fourier transform, giving a modulated sine function. @iftex @tex \beforedisplay $$ \int_{-a}^{+a} e^{-2 \pi i k x} dx = {\sin(2\pi k a) \over\pi k} $$ \afterdisplay @end tex @sp 1 @center @image{fft-complex-radix2-t,2.8in} @center @image{fft-complex-radix2-f,2.8in} @quotation A pulse and its discrete Fourier transform, output from the example program. @end quotation @end iftex @node Mixed-radix FFT routines for complex data @section Mixed-radix FFT routines for complex data @cindex FFT of complex data, mixed-radix algorithm @cindex Mixed-radix FFT, complex data This section describes mixed-radix FFT algorithms for complex data. The mixed-radix functions work for FFTs of any length. They are a reimplementation of Paul Swarztrauber's Fortran @sc{fftpack} library. The theory is explained in the review article @cite{Self-sorting Mixed-radix FFTs} by Clive Temperton. The routines here use the same indexing scheme and basic algorithms as @sc{fftpack}. The mixed-radix algorithm is based on sub-transform modules---highly optimized small length FFTs which are combined to create larger FFTs. There are efficient modules for factors of 2, 3, 4, 5, 6 and 7. The modules for the composite factors of 4 and 6 are faster than combining the modules for @math{2*2} and @math{2*3}. For factors which are not implemented as modules there is a fall-back to a general length-@math{n} module which uses Singleton's method for efficiently computing a DFT. This module is @math{O(n^2)}, and slower than a dedicated module would be but works for any length @math{n}. Of course, lengths which use the general length-@math{n} module will still be factorized as much as possible. For example, a length of 143 will be factorized into @math{11*13}. Large prime factors are the worst case scenario, e.g. as found in @math{n=2*3*99991}, and should be avoided because their @math{O(n^2)} scaling will dominate the run-time (consult the document @cite{GSL FFT Algorithms} included in the GSL distribution if you encounter this problem). The mixed-radix initialization function @code{gsl_fft_complex_wavetable_alloc} returns the list of factors chosen by the library for a given length @math{n}. It can be used to check how well the length has been factorized, and estimate the run-time. To a first approximation the run-time scales as @math{n \sum f_i}, where the @math{f_i} are the factors of @math{n}. For programs under user control you may wish to issue a warning that the transform will be slow when the length is poorly factorized. If you frequently encounter data lengths which cannot be factorized using the existing small-prime modules consult @cite{GSL FFT Algorithms} for details on adding support for other factors. @comment First, the space for the trigonometric lookup tables and scratch area is @comment allocated by a call to one of the @code{alloc} functions. We @comment call the combination of factorization, scratch space and trigonometric @comment lookup arrays a @dfn{wavetable}. It contains the sine and cosine @comment waveforms for the all the frequencies that will be used in the FFT. @comment The wavetable is initialized by a call to the corresponding @code{init} @comment function. It factorizes the data length, using the implemented @comment subtransforms as preferred factors wherever possible. The trigonometric @comment lookup table for the chosen factorization is also computed. @comment An FFT is computed by a call to one of the @code{forward}, @comment @code{backward} or @code{inverse} functions, with the data, length and @comment wavetable as arguments. All the functions described in this section are declared in the header file @file{gsl_fft_complex.h}. @deftypefun {gsl_fft_complex_wavetable *} gsl_fft_complex_wavetable_alloc (size_t @var{n}) This function prepares a trigonometric lookup table for a complex FFT of length @var{n}. The function returns a pointer to the newly allocated @code{gsl_fft_complex_wavetable} if no errors were detected, and a null pointer in the case of error. The length @var{n} is factorized into a product of subtransforms, and the factors and their trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are computed using direct calls to @code{sin} and @code{cos}, for accuracy. Recursion relations could be used to compute the lookup table faster, but if an application performs many FFTs of the same length then this computation is a one-off overhead which does not affect the final throughput. The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified by calls to any of the other FFT functions. The same wavetable can be used for both forward and backward (or inverse) transforms of a given length. @end deftypefun @deftypefun void gsl_fft_complex_wavetable_free (gsl_fft_complex_wavetable * @var{wavetable}) This function frees the memory associated with the wavetable @var{wavetable}. The wavetable can be freed if no further FFTs of the same length will be needed. @end deftypefun @noindent These functions operate on a @code{gsl_fft_complex_wavetable} structure which contains internal parameters for the FFT. It is not necessary to set any of the components directly but it can sometimes be useful to examine them. For example, the chosen factorization of the FFT length is given and can be used to provide an estimate of the run-time or numerical error. The wavetable structure is declared in the header file @file{gsl_fft_complex.h}. @deftp {Data Type} gsl_fft_complex_wavetable This is a structure that holds the factorization and trigonometric lookup tables for the mixed radix fft algorithm. It has the following components: @table @code @item size_t n This is the number of complex data points @item size_t nf This is the number of factors that the length @code{n} was decomposed into. @item size_t factor[64] This is the array of factors. Only the first @code{nf} elements are used. @comment (FIXME: This is a fixed length array and therefore probably in @comment violation of the GNU Coding Standards). @item gsl_complex * trig This is a pointer to a preallocated trigonometric lookup table of @code{n} complex elements. @item gsl_complex * twiddle[64] This is an array of pointers into @code{trig}, giving the twiddle factors for each pass. @end table @end deftp @noindent The mixed radix algorithms require additional working space to hold the intermediate steps of the transform. @deftypefun {gsl_fft_complex_workspace *} gsl_fft_complex_workspace_alloc (size_t @var{n}) @tpindex gsl_fft_complex_workspace This function allocates a workspace for a complex transform of length @var{n}. @end deftypefun @deftypefun void gsl_fft_complex_workspace_free (gsl_fft_complex_workspace * @var{workspace}) This function frees the memory associated with the workspace @var{workspace}. The workspace can be freed if no further FFTs of the same length will be needed. @end deftypefun @comment @deftp {Data Type} gsl_fft_complex_workspace @comment This is a structure that holds the workspace for the mixed radix fft @comment algorithm. It has the following components: @comment @comment @table @code @comment @item gsl_complex * scratch @comment This is a pointer to a workspace of @code{n} complex elements, @comment capable of holding intermediate copies of the original data set. @comment @end table @comment @end deftp @noindent The following functions compute the transform, @deftypefun int gsl_fft_complex_forward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, const gsl_fft_complex_wavetable * @var{wavetable}, gsl_fft_complex_workspace * @var{work}) @deftypefunx int gsl_fft_complex_transform (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, const gsl_fft_complex_wavetable * @var{wavetable}, gsl_fft_complex_workspace * @var{work}, gsl_fft_direction @var{sign}) @deftypefunx int gsl_fft_complex_backward (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, const gsl_fft_complex_wavetable * @var{wavetable}, gsl_fft_complex_workspace * @var{work}) @deftypefunx int gsl_fft_complex_inverse (gsl_complex_packed_array @var{data}, size_t @var{stride}, size_t @var{n}, const gsl_fft_complex_wavetable * @var{wavetable}, gsl_fft_complex_workspace * @var{work}) These functions compute forward, backward and inverse FFTs of length @var{n} with stride @var{stride}, on the packed complex array @var{data}, using a mixed radix decimation-in-frequency algorithm. There is no restriction on the length @var{n}. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are computed with a slow, @math{O(n^2)}, general-@math{n} module. The caller must supply a @var{wavetable} containing the trigonometric lookup tables and a workspace @var{work}. For the @code{transform} version of the function the @var{sign} argument can be either @code{forward} (@math{-1}) or @code{backward} (@math{+1}). The functions return a value of @code{0} if no errors were detected. The following @code{gsl_errno} conditions are defined for these functions: @table @code @item GSL_EDOM The length of the data @var{n} is not a positive integer (i.e. @var{n} is zero). @item GSL_EINVAL The length of the data @var{n} and the length used to compute the given @var{wavetable} do not match. @end table @end deftypefun @comment @node Example of using mixed-radix FFT routines for complex data @comment @subsection Example of using mixed-radix FFT routines for complex data Here is an example program which computes the FFT of a short pulse in a sample of length 630 (@math{=2*3*3*5*7}) using the mixed-radix algorithm. @example @verbatiminclude examples/fftmr.c @end example @noindent Note that we have assumed that the program is using the default @code{gsl} error handler (which calls @code{abort} for any errors). If you are not using a safe error handler you would need to check the return status of all the @code{gsl} routines. @node Overview of real data FFTs @section Overview of real data FFTs @cindex FFT of real data The functions for real data are similar to those for complex data. However, there is an important difference between forward and inverse transforms. The Fourier transform of a real sequence is not real. It is a complex sequence with a special symmetry: @tex \beforedisplay $$ z_k = z_{n-k}^* $$ \afterdisplay @end tex @ifinfo @example z_k = z_@{n-k@}^* @end example @end ifinfo @noindent A sequence with this symmetry is called @dfn{conjugate-complex} or @dfn{half-complex}. This different structure requires different storage layouts for the forward transform (from real to half-complex) and inverse transform (from half-complex back to real). As a consequence the routines are divided into two sets: functions in @code{gsl_fft_real} which operate on real sequences and functions in @code{gsl_fft_halfcomplex} which operate on half-complex sequences. Functions in @code{gsl_fft_real} compute the frequency coefficients of a real sequence. The half-complex coefficients @math{c} of a real sequence @math{x} are given by Fourier analysis, @tex \beforedisplay $$ c_k = \sum_{j=0}^{n-1} x_j \exp(-2 \pi i j k /n) $$ \afterdisplay @end tex @ifinfo @example c_k = \sum_@{j=0@}^@{n-1@} x_j \exp(-2 \pi i j k /n) @end example @end ifinfo @noindent Functions in @code{gsl_fft_halfcomplex} compute inverse or backwards transforms. They reconstruct real sequences by Fourier synthesis from their half-complex frequency coefficients, @math{c}, @tex \beforedisplay $$ x_j = {1 \over n} \sum_{k=0}^{n-1} c_k \exp(2 \pi i j k /n) $$ \afterdisplay @end tex @ifinfo @example x_j = @{1 \over n@} \sum_@{k=0@}^@{n-1@} c_k \exp(2 \pi i j k /n) @end example @end ifinfo @noindent The symmetry of the half-complex sequence implies that only half of the complex numbers in the output need to be stored. The remaining half can be reconstructed using the half-complex symmetry condition. This works for all lengths, even and odd---when the length is even the middle value where @math{k=n/2} is also real. Thus only @var{n} real numbers are required to store the half-complex sequence, and the transform of a real sequence can be stored in the same size array as the original data. The precise storage arrangements depend on the algorithm, and are different for radix-2 and mixed-radix routines. The radix-2 function operates in-place, which constrains the locations where each element can be stored. The restriction forces real and imaginary parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and it stores the real and imaginary parts of a given term in neighboring locations (which is desirable for better locality of memory accesses). @node Radix-2 FFT routines for real data @section Radix-2 FFT routines for real data @cindex FFT of real data, radix-2 algorithm @cindex Radix-2 FFT for real data This section describes radix-2 FFT algorithms for real data. They use the Cooley-Tukey algorithm to compute in-place FFTs for lengths which are a power of 2. The radix-2 FFT functions for real data are declared in the header files @file{gsl_fft_real.h} @deftypefun int gsl_fft_real_radix2_transform (double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes an in-place radix-2 FFT of length @var{n} and stride @var{stride} on the real array @var{data}. The output is a half-complex sequence, which is stored in-place. The arrangement of the half-complex terms uses the following scheme: for @math{k < n/2} the real part of the @math{k}-th term is stored in location @math{k}, and the corresponding imaginary part is stored in location @math{n-k}. Terms with @math{k > n/2} can be reconstructed using the symmetry @c{$z_k = z^*_{n-k}$} @math{z_k = z^*_@{n-k@}}. The terms for @math{k=0} and @math{k=n/2} are both purely real, and count as a special case. Their real parts are stored in locations @math{0} and @math{n/2} respectively, while their imaginary parts which are zero are not stored. The following table shows the correspondence between the output @var{data} and the equivalent results obtained by considering the input data as a complex sequence with zero imaginary part (assuming @var{stride=1}), @example complex[0].real = data[0] complex[0].imag = 0 complex[1].real = data[1] complex[1].imag = data[n-1] ............... ................ complex[k].real = data[k] complex[k].imag = data[n-k] ............... ................ complex[n/2].real = data[n/2] complex[n/2].imag = 0 ............... ................ complex[k'].real = data[k] k' = n - k complex[k'].imag = -data[n-k] ............... ................ complex[n-1].real = data[1] complex[n-1].imag = -data[n-1] @end example @noindent Note that the output data can be converted into the full complex sequence using the function @code{gsl_fft_halfcomplex_radix2_unpack} described below. @end deftypefun The radix-2 FFT functions for halfcomplex data are declared in the header file @file{gsl_fft_halfcomplex.h}. @deftypefun int gsl_fft_halfcomplex_radix2_inverse (double @var{data}[], size_t @var{stride}, size_t @var{n}) @deftypefunx int gsl_fft_halfcomplex_radix2_backward (double @var{data}[], size_t @var{stride}, size_t @var{n}) These functions compute the inverse or backwards in-place radix-2 FFT of length @var{n} and stride @var{stride} on the half-complex sequence @var{data} stored according the output scheme used by @code{gsl_fft_real_radix2}. The result is a real array stored in natural order. @end deftypefun @deftypefun int gsl_fft_halfcomplex_radix2_unpack (const double @var{halfcomplex_coefficient}[], gsl_complex_packed_array @var{complex_coefficient}, size_t @var{stride}, size_t @var{n}) This function converts @var{halfcomplex_coefficient}, an array of half-complex coefficients as returned by @code{gsl_fft_real_radix2_transform}, into an ordinary complex array, @var{complex_coefficient}. It fills in the complex array using the symmetry @c{$z_k = z_{n-k}^*$} @math{z_k = z_@{n-k@}^*} to reconstruct the redundant elements. The algorithm for the conversion is, @example complex_coefficient[0].real = halfcomplex_coefficient[0]; complex_coefficient[0].imag = 0.0; for (i = 1; i < n - i; i++) @{ double hc_real = halfcomplex_coefficient[i*stride]; double hc_imag = halfcomplex_coefficient[(n-i)*stride]; complex_coefficient[i*stride].real = hc_real; complex_coefficient[i*stride].imag = hc_imag; complex_coefficient[(n - i)*stride].real = hc_real; complex_coefficient[(n - i)*stride].imag = -hc_imag; @} if (i == n - i) @{ complex_coefficient[i*stride].real = halfcomplex_coefficient[(n - 1)*stride]; complex_coefficient[i*stride].imag = 0.0; @} @end example @end deftypefun @node Mixed-radix FFT routines for real data @section Mixed-radix FFT routines for real data @cindex FFT of real data, mixed-radix algorithm @cindex Mixed-radix FFT, real data This section describes mixed-radix FFT algorithms for real data. The mixed-radix functions work for FFTs of any length. They are a reimplementation of the real-FFT routines in the Fortran @sc{fftpack} library by Paul Swarztrauber. The theory behind the algorithm is explained in the article @cite{Fast Mixed-Radix Real Fourier Transforms} by Clive Temperton. The routines here use the same indexing scheme and basic algorithms as @sc{fftpack}. The functions use the @sc{fftpack} storage convention for half-complex sequences. In this convention the half-complex transform of a real sequence is stored with frequencies in increasing order, starting at zero, with the real and imaginary parts of each frequency in neighboring locations. When a value is known to be real the imaginary part is not stored. The imaginary part of the zero-frequency component is never stored. It is known to be zero (since the zero frequency component is simply the sum of the input data (all real)). For a sequence of even length the imaginary part of the frequency @math{n/2} is not stored either, since the symmetry @c{$z_k = z_{n-k}^*$} @math{z_k = z_@{n-k@}^*} implies that this is purely real too. The storage scheme is best shown by some examples. The table below shows the output for an odd-length sequence, @math{n=5}. The two columns give the correspondence between the 5 values in the half-complex sequence returned by @code{gsl_fft_real_transform}, @var{halfcomplex}[] and the values @var{complex}[] that would be returned if the same real input sequence were passed to @code{gsl_fft_complex_backward} as a complex sequence (with imaginary parts set to @code{0}), @example complex[0].real = halfcomplex[0] complex[0].imag = 0 complex[1].real = halfcomplex[1] complex[1].imag = halfcomplex[2] complex[2].real = halfcomplex[3] complex[2].imag = halfcomplex[4] complex[3].real = halfcomplex[3] complex[3].imag = -halfcomplex[4] complex[4].real = halfcomplex[1] complex[4].imag = -halfcomplex[2] @end example @noindent The upper elements of the @var{complex} array, @code{complex[3]} and @code{complex[4]} are filled in using the symmetry condition. The imaginary part of the zero-frequency term @code{complex[0].imag} is known to be zero by the symmetry. The next table shows the output for an even-length sequence, @math{n=6}. In the even case there are two values which are purely real, @example complex[0].real = halfcomplex[0] complex[0].imag = 0 complex[1].real = halfcomplex[1] complex[1].imag = halfcomplex[2] complex[2].real = halfcomplex[3] complex[2].imag = halfcomplex[4] complex[3].real = halfcomplex[5] complex[3].imag = 0 complex[4].real = halfcomplex[3] complex[4].imag = -halfcomplex[4] complex[5].real = halfcomplex[1] complex[5].imag = -halfcomplex[2] @end example @noindent The upper elements of the @var{complex} array, @code{complex[4]} and @code{complex[5]} are filled in using the symmetry condition. Both @code{complex[0].imag} and @code{complex[3].imag} are known to be zero. All these functions are declared in the header files @file{gsl_fft_real.h} and @file{gsl_fft_halfcomplex.h}. @deftypefun {gsl_fft_real_wavetable *} gsl_fft_real_wavetable_alloc (size_t @var{n}) @deftypefunx {gsl_fft_halfcomplex_wavetable *} gsl_fft_halfcomplex_wavetable_alloc (size_t @var{n}) @tpindex gsl_fft_real_wavetable @tpindex gsl_fft_halfcomplex_wavetable These functions prepare trigonometric lookup tables for an FFT of size @math{n} real elements. The functions return a pointer to the newly allocated struct if no errors were detected, and a null pointer in the case of error. The length @var{n} is factorized into a product of subtransforms, and the factors and their trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are computed using direct calls to @code{sin} and @code{cos}, for accuracy. Recursion relations could be used to compute the lookup table faster, but if an application performs many FFTs of the same length then computing the wavetable is a one-off overhead which does not affect the final throughput. The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified by calls to any of the other FFT functions. The appropriate type of wavetable must be used for forward real or inverse half-complex transforms. @end deftypefun @deftypefun void gsl_fft_real_wavetable_free (gsl_fft_real_wavetable * @var{wavetable}) @deftypefunx void gsl_fft_halfcomplex_wavetable_free (gsl_fft_halfcomplex_wavetable * @var{wavetable}) These functions free the memory associated with the wavetable @var{wavetable}. The wavetable can be freed if no further FFTs of the same length will be needed. @end deftypefun @noindent The mixed radix algorithms require additional working space to hold the intermediate steps of the transform, @deftypefun {gsl_fft_real_workspace *} gsl_fft_real_workspace_alloc (size_t @var{n}) @tpindex gsl_fft_real_workspace This function allocates a workspace for a real transform of length @var{n}. The same workspace can be used for both forward real and inverse halfcomplex transforms. @end deftypefun @deftypefun void gsl_fft_real_workspace_free (gsl_fft_real_workspace * @var{workspace}) This function frees the memory associated with the workspace @var{workspace}. The workspace can be freed if no further FFTs of the same length will be needed. @end deftypefun @noindent The following functions compute the transforms of real and half-complex data, @deftypefun int gsl_fft_real_transform (double @var{data}[], size_t @var{stride}, size_t @var{n}, const gsl_fft_real_wavetable * @var{wavetable}, gsl_fft_real_workspace * @var{work}) @deftypefunx int gsl_fft_halfcomplex_transform (double @var{data}[], size_t @var{stride}, size_t @var{n}, const gsl_fft_halfcomplex_wavetable * @var{wavetable}, gsl_fft_real_workspace * @var{work}) These functions compute the FFT of @var{data}, a real or half-complex array of length @var{n}, using a mixed radix decimation-in-frequency algorithm. For @code{gsl_fft_real_transform} @var{data} is an array of time-ordered real data. For @code{gsl_fft_halfcomplex_transform} @var{data} contains Fourier coefficients in the half-complex ordering described above. There is no restriction on the length @var{n}. Efficient modules are provided for subtransforms of length 2, 3, 4 and 5. Any remaining factors are computed with a slow, @math{O(n^2)}, general-n module. The caller must supply a @var{wavetable} containing trigonometric lookup tables and a workspace @var{work}. @end deftypefun @deftypefun int gsl_fft_real_unpack (const double @var{real_coefficient}[], gsl_complex_packed_array @var{complex_coefficient}, size_t @var{stride}, size_t @var{n}) This function converts a single real array, @var{real_coefficient} into an equivalent complex array, @var{complex_coefficient}, (with imaginary part set to zero), suitable for @code{gsl_fft_complex} routines. The algorithm for the conversion is simply, @example for (i = 0; i < n; i++) @{ complex_coefficient[i*stride].real = real_coefficient[i*stride]; complex_coefficient[i*stride].imag = 0.0; @} @end example @end deftypefun @deftypefun int gsl_fft_halfcomplex_unpack (const double @var{halfcomplex_coefficient}[], gsl_complex_packed_array @var{complex_coefficient}, size_t @var{stride}, size_t @var{n}) This function converts @var{halfcomplex_coefficient}, an array of half-complex coefficients as returned by @code{gsl_fft_real_transform}, into an ordinary complex array, @var{complex_coefficient}. It fills in the complex array using the symmetry @c{$z_k = z_{n-k}^*$} @math{z_k = z_@{n-k@}^*} to reconstruct the redundant elements. The algorithm for the conversion is, @example complex_coefficient[0].real = halfcomplex_coefficient[0]; complex_coefficient[0].imag = 0.0; for (i = 1; i < n - i; i++) @{ double hc_real = halfcomplex_coefficient[(2 * i - 1)*stride]; double hc_imag = halfcomplex_coefficient[(2 * i)*stride]; complex_coefficient[i*stride].real = hc_real; complex_coefficient[i*stride].imag = hc_imag; complex_coefficient[(n - i)*stride].real = hc_real; complex_coefficient[(n - i)*stride].imag = -hc_imag; @} if (i == n - i) @{ complex_coefficient[i*stride].real = halfcomplex_coefficient[(n - 1)*stride]; complex_coefficient[i*stride].imag = 0.0; @} @end example @end deftypefun @comment @node Example of using mixed-radix FFT routines for real data @comment @subsection Example of using mixed-radix FFT routines for real data Here is an example program using @code{gsl_fft_real_transform} and @code{gsl_fft_halfcomplex_inverse}. It generates a real signal in the shape of a square pulse. The pulse is Fourier transformed to frequency space, and all but the lowest ten frequency components are removed from the array of Fourier coefficients returned by @code{gsl_fft_real_transform}. The remaining Fourier coefficients are transformed back to the time-domain, to give a filtered version of the square pulse. Since Fourier coefficients are stored using the half-complex symmetry both positive and negative frequencies are removed and the final filtered signal is also real. @example @verbatiminclude examples/fftreal.c @end example @iftex @sp 1 @center @image{fft-real-mixedradix,3.4in} @center Low-pass filtered version of a real pulse, @center output from the example program. @end iftex @node FFT References and Further Reading @section References and Further Reading A good starting point for learning more about the FFT is the review article @cite{Fast Fourier Transforms: A Tutorial Review and A State of the Art} by Duhamel and Vetterli, @itemize @w{} @item P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state of the art. @cite{Signal Processing}, 19:259--299, 1990. @end itemize @noindent To find out about the algorithms used in the GSL routines you may want to consult the document @cite{GSL FFT Algorithms} (it is included in GSL, as @file{doc/fftalgorithms.tex}). This has general information on FFTs and explicit derivations of the implementation for each routine. There are also references to the relevant literature. For convenience some of the more important references are reproduced below. @noindent There are several introductory books on the FFT with example programs, such as @cite{The Fast Fourier Transform} by Brigham and @cite{DFT/FFT and Convolution Algorithms} by Burrus and Parks, @itemize @w{} @item E. Oran Brigham. @cite{The Fast Fourier Transform}. Prentice Hall, 1974. @item C. S. Burrus and T. W. Parks. @cite{DFT/FFT and Convolution Algorithms}. Wiley, 1984. @end itemize @noindent Both these introductory books cover the radix-2 FFT in some detail. The mixed-radix algorithm at the heart of the @sc{fftpack} routines is reviewed in Clive Temperton's paper, @itemize @w{} @item Clive Temperton. Self-sorting mixed-radix fast Fourier transforms. @cite{Journal of Computational Physics}, 52(1):1--23, 1983. @end itemize @noindent The derivation of FFTs for real-valued data is explained in the following two articles, @itemize @w{} @item Henrik V. Sorenson, Douglas L. Jones, Michael T. Heideman, and C. Sidney Burrus. Real-valued fast Fourier transform algorithms. @cite{IEEE Transactions on Acoustics, Speech, and Signal Processing}, ASSP-35(6):849--863, 1987. @item Clive Temperton. Fast mixed-radix real Fourier transforms. @cite{Journal of Computational Physics}, 52:340--350, 1983. @end itemize @noindent In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in @cite{Programs for Digital Signal Processing}. It is a useful reference for implementations of many different FFT algorithms, @itemize @w{} @item Digital Signal Processing Committee and IEEE Acoustics, Speech, and Signal Processing Committee, editors. @cite{Programs for Digital Signal Processing}. IEEE Press, 1979. @end itemize @comment @noindent @comment There is also an annotated bibliography of papers on the FFT and related @comment topics by Burrus, @comment @itemize @w{} @comment @item C. S. Burrus. Notes on the FFT. @comment @end itemize @comment @noindent @comment The notes are available from @url{http://www-dsp.rice.edu/res/fft/fftnote.asc}. @noindent For large-scale FFT work we recommend the use of the dedicated FFTW library by Frigo and Johnson. The FFTW library is self-optimizing---it automatically tunes itself for each hardware platform in order to achieve maximum performance. It is available under the GNU GPL. @itemize @w{} @item FFTW Website, @uref{http://www.fftw.org/} @end itemize @noindent The source code for @sc{fftpack} is available from Netlib, @itemize @w{} @item FFTPACK, @uref{http://www.netlib.org/fftpack/} @end itemize gsl-1.16/doc/multifit.texi0000664000252300025230000006327412171574312012463 00000000000000@cindex nonlinear least squares fitting @cindex least squares fitting, nonlinear This chapter describes functions for multidimensional nonlinear least-squares fitting. The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The header file @file{gsl_multifit_nlin.h} contains prototypes for the multidimensional nonlinear fitting functions and related declarations. @menu * Overview of Nonlinear Least-Squares Fitting:: * Initializing the Nonlinear Least-Squares Solver:: * Providing the Function to be Minimized:: * Finite Difference Jacobian:: * Iteration of the Minimization Algorithm:: * Search Stopping Parameters for Minimization Algorithms:: * High Level Driver:: * Minimization Algorithms using Derivatives:: * Minimization Algorithms without Derivatives:: * Computing the covariance matrix of best fit parameters:: * Example programs for Nonlinear Least-Squares Fitting:: * References and Further Reading for Nonlinear Least-Squares Fitting:: @end menu @node Overview of Nonlinear Least-Squares Fitting @section Overview @cindex nonlinear least squares fitting, overview The problem of multidimensional nonlinear least-squares fitting requires the minimization of the squared residuals of @math{n} functions, @math{f_i}, in @math{p} parameters, @math{x_i}, @tex \beforedisplay $$ \Phi(x) = {1 \over 2} || F(x) ||^2 = {1 \over 2} \sum_{i=1}^{n} f_i (x_1, \dots, x_p)^2 $$ \afterdisplay @end tex @ifinfo @example \Phi(x) = (1/2) || F(x) ||^2 = (1/2) \sum_@{i=1@}^@{n@} f_i(x_1, ..., x_p)^2 @end example @end ifinfo @noindent All algorithms proceed from an initial guess using the linearization, @tex \beforedisplay $$ \psi(p) = || F(x+p) || \approx || F(x) + J p\, || $$ \afterdisplay @end tex @ifinfo @example \psi(p) = || F(x+p) || ~=~ || F(x) + J p || @end example @end ifinfo @noindent where @math{x} is the initial point, @math{p} is the proposed step and @math{J} is the Jacobian matrix @c{$J_{ij} = \partial f_i / \partial x_j$} @math{J_@{ij@} = d f_i / d x_j}. Additional strategies are used to enlarge the region of convergence. These include requiring a decrease in the norm @math{||F||} on each step or using a trust region to avoid steps which fall outside the linear regime. To perform a weighted least-squares fit of a nonlinear model @math{Y(x,t)} to data (@math{t_i}, @math{y_i}) with independent Gaussian errors @math{\sigma_i}, use function components of the following form, @tex \beforedisplay $$ f_i = {(Y(x, t_i) - y_i) \over \sigma_i} $$ \afterdisplay @end tex @ifinfo @example f_i = (Y(x, t_i) - y_i) / \sigma_i @end example @end ifinfo @noindent Note that the model parameters are denoted by @math{x} in this chapter since the non-linear least-squares algorithms are described geometrically (i.e. finding the minimum of a surface). The independent variable of any data to be fitted is denoted by @math{t}. @cindex Jacobian matrix, fitting With the definition above the Jacobian is @c{$J_{ij} = (1 / \sigma_i) \partial Y_i / \partial x_j$} @math{J_@{ij@} =(1 / \sigma_i) d Y_i / d x_j}, where @math{Y_i = Y(x,t_i)}. @node Initializing the Nonlinear Least-Squares Solver @section Initializing the Solver @deftypefun {gsl_multifit_fsolver *} gsl_multifit_fsolver_alloc (const gsl_multifit_fsolver_type * @var{T}, size_t @var{n}, size_t @var{p}) @tpindex gsl_multifit_fsolver @tpindex gsl_multifit_fsolver_type This function returns a pointer to a newly allocated instance of a solver of type @var{T} for @var{n} observations and @var{p} parameters. The number of observations @var{n} must be greater than or equal to parameters @var{p}. If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun {gsl_multifit_fdfsolver *} gsl_multifit_fdfsolver_alloc (const gsl_multifit_fdfsolver_type * @var{T}, size_t @var{n}, size_t @var{p}) @tpindex gsl_multifit_fdfsolver @tpindex gsl_multifit_fdfsolver_type This function returns a pointer to a newly allocated instance of a derivative solver of type @var{T} for @var{n} observations and @var{p} parameters. For example, the following code creates an instance of a Levenberg-Marquardt solver for 100 data points and 3 parameters, @example const gsl_multifit_fdfsolver_type * T = gsl_multifit_fdfsolver_lmder; gsl_multifit_fdfsolver * s = gsl_multifit_fdfsolver_alloc (T, 100, 3); @end example @noindent The number of observations @var{n} must be greater than or equal to parameters @var{p}. If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_multifit_fsolver_set (gsl_multifit_fsolver * @var{s}, gsl_multifit_function * @var{f}, const gsl_vector * @var{x}) This function initializes, or reinitializes, an existing solver @var{s} to use the function @var{f} and the initial guess @var{x}. @end deftypefun @deftypefun int gsl_multifit_fdfsolver_set (gsl_multifit_fdfsolver * @var{s}, gsl_multifit_function_fdf * @var{fdf}, const gsl_vector * @var{x}) This function initializes, or reinitializes, an existing solver @var{s} to use the function and derivative @var{fdf} and the initial guess @var{x}. @end deftypefun @deftypefun void gsl_multifit_fsolver_free (gsl_multifit_fsolver * @var{s}) @deftypefunx void gsl_multifit_fdfsolver_free (gsl_multifit_fdfsolver * @var{s}) These functions free all the memory associated with the solver @var{s}. @end deftypefun @deftypefun {const char *} gsl_multifit_fsolver_name (const gsl_multifit_fsolver * @var{s}) @deftypefunx {const char *} gsl_multifit_fdfsolver_name (const gsl_multifit_fdfsolver * @var{s}) These functions return a pointer to the name of the solver. For example, @example printf ("s is a '%s' solver\n", gsl_multifit_fdfsolver_name (s)); @end example @noindent would print something like @code{s is a 'lmder' solver}. @end deftypefun @node Providing the Function to be Minimized @section Providing the Function to be Minimized You must provide @math{n} functions of @math{p} variables for the minimization algorithms to operate on. In order to allow for arbitrary parameters the functions are defined by the following data types: @deftp {Data Type} gsl_multifit_function This data type defines a general system of functions with arbitrary parameters. @table @code @item int (* f) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}) this function should store the vector result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} in @var{f} for argument @var{x} and arbitrary parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item size_t n the number of functions, i.e. the number of components of the vector @var{f}. @item size_t p the number of independent variables, i.e. the number of components of the vector @var{x}. @item void * params a pointer to the arbitrary parameters of the function. @end table @end deftp @deftp {Data Type} gsl_multifit_function_fdf This data type defines a general system of functions with arbitrary parameters and the corresponding Jacobian matrix of derivatives, @table @code @item int (* f) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}) this function should store the vector result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} in @var{f} for argument @var{x} and arbitrary parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item int (* df) (const gsl_vector * @var{x}, void * @var{params}, gsl_matrix * @var{J}) this function should store the @var{n}-by-@var{p} matrix result @c{$J_{ij} = \partial f_i(x,\hbox{\it params}) / \partial x_j$} @math{J_ij = d f_i(x,params) / d x_j} in @var{J} for argument @var{x} and arbitrary parameters @var{params}, returning an appropriate error code if the function cannot be computed. If an analytic Jacobian is unavailable, or too expensive to compute, this function pointer may be set to NULL, in which case the Jacobian will be internally computed using finite difference approximations of the function @var{f}. @item int (* fdf) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}, gsl_matrix * @var{J}) This function should set the values of the @var{f} and @var{J} as above, for arguments @var{x} and arbitrary parameters @var{params}. This function provides an optimization of the separate functions for @math{f(x)} and @math{J(x)}---it is always faster to compute the function and its derivative at the same time. If an analytic Jacobian is unavailable, or too expensive to compute, this function pointer may be set to NULL, in which case the Jacobian will be internally computed using finite difference approximations of the function @var{f}. @item size_t n the number of functions, i.e. the number of components of the vector @var{f}. @item size_t p the number of independent variables, i.e. the number of components of the vector @var{x}. @item void * params a pointer to the arbitrary parameters of the function. @end table @end deftp Note that when fitting a non-linear model against experimental data, the data is passed to the functions above using the @var{params} argument and the trial best-fit parameters through the @var{x} argument. @node Finite Difference Jacobian @section Finite Difference Jacobian For the algorithms which require a Jacobian matrix of derivatives of the fit functions, there are times when an analytic Jacobian may be unavailable or too expensive to compute. Therefore GSL supports approximating the Jacobian numerically using finite differences of the fit functions. This is typically done by setting the relevant function pointers of the @code{gsl_multifit_function_fdf} data type to NULL, however the following functions allow the user to access the approximate Jacobian directly if needed. @deftypefun int gsl_multifit_fdfsolver_dif_df (const gsl_vector * @var{x}, gsl_multifit_function_fdf * @var{fdf}, const gsl_vector * @var{f}, gsl_matrix * @var{J}) This function takes as input the current position @var{x} with the function values computed at the current position @var{f}, along with @var{fdf} which specifies the fit function and parameters and approximates the @var{n}-by-@var{p} Jacobian @var{J} using forward finite differences: @c{$J_{ij} = \partial f_i(x,\hbox{\it params}) / \partial x_j \approx (f_i(x^{*}, \hbox{\it params}) - f_i(x, \hbox{\it params})) / \Delta x_j$} @math{J_ij = d f_i(x,params) / d x_j = (f_i(x^*,params) - f_i(x,params)) / d x_j}. where @math{x^*} has the @math{j}th element perturbed by @math{\Delta x_j} and @math{\Delta x_j = \epsilon |x_j|}, where @math{\epsilon} is the square root of the machine precision @code{GSL_DBL_EPSILON}. @end deftypefun @deftypefun int gsl_multifit_fdfsolver_dif_fdf (const gsl_vector * @var{x}, gsl_multifit_function_fdf * @var{fdf}, gsl_vector * @var{f}, gsl_matrix * @var{J}) This function computes the vector of function values @var{f} and the approximate Jacobian @var{J} at the position vector @var{x} using the system described in @var{fdf}. See @code{gsl_multifit_fdfsolver_dif_df} for a description of how the Jacobian is computed. @end deftypefun @node Iteration of the Minimization Algorithm @section Iteration The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_multifit_fsolver_iterate (gsl_multifit_fsolver * @var{s}) @deftypefunx int gsl_multifit_fdfsolver_iterate (gsl_multifit_fdfsolver * @var{s}) These functions perform a single iteration of the solver @var{s}. If the iteration encounters an unexpected problem then an error code will be returned. The solver maintains a current estimate of the best-fit parameters at all times. @end deftypefun The solver struct @var{s} contains the following entries, which can be used to track the progress of the solution: @table @code @item gsl_vector * x The current position. @item gsl_vector * f The function value at the current position. @item gsl_vector * dx The difference between the current position and the previous position, i.e. the last step, taken as a vector. @item gsl_matrix * J The Jacobian matrix at the current position (for the @code{gsl_multifit_fdfsolver} struct only) @end table The best-fit information also can be accessed with the following auxiliary functions, @deftypefun {gsl_vector *} gsl_multifit_fsolver_position (const gsl_multifit_fsolver * @var{s}) @deftypefunx {gsl_vector *} gsl_multifit_fdfsolver_position (const gsl_multifit_fdfsolver * @var{s}) These functions return the current position (i.e. best-fit parameters) @code{s->x} of the solver @var{s}. @end deftypefun @node Search Stopping Parameters for Minimization Algorithms @section Search Stopping Parameters @cindex nonlinear fitting, stopping parameters A minimization procedure should stop when one of the following conditions is true: @itemize @bullet @item A minimum has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The functions below allow the user to test the current estimate of the best-fit parameters in several standard ways. @deftypefun int gsl_multifit_test_delta (const gsl_vector * @var{dx}, const gsl_vector * @var{x}, double @var{epsabs}, double @var{epsrel}) This function tests for the convergence of the sequence by comparing the last step @var{dx} with the absolute error @var{epsabs} and relative error @var{epsrel} to the current position @var{x}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |dx_i| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, |x_i| $$ \afterdisplay @end tex @ifinfo @example |dx_i| < epsabs + epsrel |x_i| @end example @end ifinfo @noindent for each component of @var{x} and returns @code{GSL_CONTINUE} otherwise. @end deftypefun @cindex residual, in nonlinear systems of equations @deftypefun int gsl_multifit_test_gradient (const gsl_vector * @var{g}, double @var{epsabs}) This function tests the residual gradient @var{g} against the absolute error bound @var{epsabs}. Mathematically, the gradient should be exactly zero at the minimum. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ \sum_i |g_i| < \hbox{\it epsabs} $$ \afterdisplay @end tex @ifinfo @example \sum_i |g_i| < epsabs @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. This criterion is suitable for situations where the precise location of the minimum, @math{x}, is unimportant provided a value can be found where the gradient is small enough. @end deftypefun @deftypefun int gsl_multifit_gradient (const gsl_matrix * @var{J}, const gsl_vector * @var{f}, gsl_vector * @var{g}) This function computes the gradient @var{g} of @math{\Phi(x) = (1/2) ||F(x)||^2} from the Jacobian matrix @math{J} and the function values @var{f}, using the formula @math{g = J^T f}. @end deftypefun @node High Level Driver @section High Level Driver These routines provide a high level wrapper that combine the iteration and convergence testing for easy use. @deftypefun int gsl_multifit_fsolver_driver (gsl_multifit_fsolver * @var{s}, const size_t @var{maxiter}, const double @var{epsabs}, const double @var{epsrel}) @deftypefunx int gsl_multifit_fdfsolver_driver (gsl_multifit_fdfsolver * @var{s}, const size_t @var{maxiter}, const double @var{epsabs}, const double @var{epsrel}) These functions iterate the solver @var{s} for a maximum of @var{maxiter} iterations. After each iteration, the system is tested for convergence using @code{gsl_multifit_test_delta} with the error tolerances @var{epsabs} and @var{epsrel}. @end deftypefun @node Minimization Algorithms using Derivatives @section Minimization Algorithms using Derivatives The minimization algorithms described in this section make use of both the function and its derivative. They require an initial guess for the location of the minimum. There is no absolute guarantee of convergence---the function must be suitable for this technique and the initial guess must be sufficiently close to the minimum for it to work. @comment ============================================================ @cindex Levenberg-Marquardt algorithms @deffn {Derivative Solver} gsl_multifit_fdfsolver_lmsder @cindex LMDER algorithm @cindex MINPACK, minimization algorithms This is a robust and efficient version of the Levenberg-Marquardt algorithm as implemented in the scaled @sc{lmder} routine in @sc{minpack}. Minpack was written by Jorge J. Mor@'e, Burton S. Garbow and Kenneth E. Hillstrom. The algorithm uses a generalized trust region to keep each step under control. In order to be accepted a proposed new position @math{x'} must satisfy the condition @math{|D (x' - x)| < \delta}, where @math{D} is a diagonal scaling matrix and @math{\delta} is the size of the trust region. The components of @math{D} are computed internally, using the column norms of the Jacobian to estimate the sensitivity of the residual to each component of @math{x}. This improves the behavior of the algorithm for badly scaled functions. On each iteration the algorithm attempts to minimize the linear system @math{|F + J p|} subject to the constraint @math{|D p| < \Delta}. The solution to this constrained linear system is found using the Levenberg-Marquardt method. The proposed step is now tested by evaluating the function at the resulting point, @math{x'}. If the step reduces the norm of the function sufficiently, and follows the predicted behavior of the function within the trust region, then it is accepted and the size of the trust region is increased. If the proposed step fails to improve the solution, or differs significantly from the expected behavior within the trust region, then the size of the trust region is decreased and another trial step is computed. The algorithm also monitors the progress of the solution and returns an error if the changes in the solution are smaller than the machine precision. The possible error codes are, @table @code @item GSL_ETOLF the decrease in the function falls below machine precision @item GSL_ETOLX the change in the position vector falls below machine precision @item GSL_ETOLG the norm of the gradient, relative to the norm of the function, falls below machine precision @item GSL_ENOPROG the routine has made 10 or more attempts to find a suitable trial step without success (but subsequent calls can be made to continue the search).@footnote{The return code @code{GSL_CONTINUE} was used for this case in versions prior to 1.14.} @end table @noindent These error codes indicate that further iterations will be unlikely to change the solution from its current value. @end deffn @deffn {Derivative Solver} gsl_multifit_fdfsolver_lmder This is an unscaled version of the @sc{lmder} algorithm. The elements of the diagonal scaling matrix @math{D} are set to 1. This algorithm may be useful in circumstances where the scaled version of @sc{lmder} converges too slowly, or the function is already scaled appropriately. @end deffn @node Minimization Algorithms without Derivatives @section Minimization Algorithms without Derivatives There are no algorithms implemented in this section at the moment. @node Computing the covariance matrix of best fit parameters @section Computing the covariance matrix of best fit parameters @cindex best-fit parameters, covariance @cindex least squares, covariance of best-fit parameters @cindex covariance matrix, nonlinear fits @deftypefun int gsl_multifit_covar (const gsl_matrix * @var{J}, double @var{epsrel}, gsl_matrix * @var{covar}) This function uses the Jacobian matrix @var{J} to compute the covariance matrix of the best-fit parameters, @var{covar}. The parameter @var{epsrel} is used to remove linear-dependent columns when @var{J} is rank deficient. The covariance matrix is given by, @tex \beforedisplay $$ C = (J^T J)^{-1} $$ \afterdisplay @end tex @ifinfo @example covar = (J^T J)^@{-1@} @end example @end ifinfo @noindent and is computed by QR decomposition of J with column-pivoting. Any columns of @math{R} which satisfy @tex \beforedisplay $$ |R_{kk}| \leq epsrel |R_{11}| $$ \afterdisplay @end tex @ifinfo @example |R_@{kk@}| <= epsrel |R_@{11@}| @end example @end ifinfo @noindent are considered linearly-dependent and are excluded from the covariance matrix (the corresponding rows and columns of the covariance matrix are set to zero). If the minimisation uses the weighted least-squares function @math{f_i = (Y(x, t_i) - y_i) / \sigma_i} then the covariance matrix above gives the statistical error on the best-fit parameters resulting from the Gaussian errors @math{\sigma_i} on the underlying data @math{y_i}. This can be verified from the relation @math{\delta f = J \delta c} and the fact that the fluctuations in @math{f} from the data @math{y_i} are normalised by @math{\sigma_i} and so satisfy @c{$\langle \delta f \delta f^T \rangle = I$} @math{<\delta f \delta f^T> = I}. For an unweighted least-squares function @math{f_i = (Y(x, t_i) - y_i)} the covariance matrix above should be multiplied by the variance of the residuals about the best-fit @math{\sigma^2 = \sum (y_i - Y(x,t_i))^2 / (n-p)} to give the variance-covariance matrix @math{\sigma^2 C}. This estimates the statistical error on the best-fit parameters from the scatter of the underlying data. For more information about covariance matrices see @ref{Fitting Overview}. @end deftypefun @comment ============================================================ @node Example programs for Nonlinear Least-Squares Fitting @section Examples The following example program fits a weighted exponential model with background to experimental data, @math{Y = A \exp(-\lambda t) + b}. The first part of the program sets up the functions @code{expb_f} and @code{expb_df} to calculate the model and its Jacobian. The appropriate fitting function is given by, @tex \beforedisplay $$ f_i = ((A \exp(-\lambda t_i) + b) - y_i)/\sigma_i $$ \afterdisplay @end tex @ifinfo @example f_i = ((A \exp(-\lambda t_i) + b) - y_i)/\sigma_i @end example @end ifinfo @noindent where we have chosen @math{t_i = i}. The Jacobian matrix @math{J} is the derivative of these functions with respect to the three parameters (@math{A}, @math{\lambda}, @math{b}). It is given by, @tex \beforedisplay $$ J_{ij} = {\partial f_i \over \partial x_j} $$ \afterdisplay @end tex @ifinfo @example J_@{ij@} = d f_i / d x_j @end example @end ifinfo @noindent where @math{x_0 = A}, @math{x_1 = \lambda} and @math{x_2 = b}. @example @verbatiminclude examples/expfit.c @end example @noindent The main part of the program sets up a Levenberg-Marquardt solver and some simulated random data. The data uses the known parameters (1.0,5.0,0.1) combined with Gaussian noise (standard deviation = 0.1) over a range of 40 timesteps. The initial guess for the parameters is chosen as (0.0, 1.0, 0.0). @example @verbatiminclude examples/nlfit.c @end example @noindent The iteration terminates when the change in x is smaller than 0.0001, as both an absolute and relative change. Here are the results of running the program: @smallexample iter: 0 x=1.00000000 0.00000000 0.00000000 |f(x)|=117.349 status=success iter: 1 x=1.64659312 0.01814772 0.64659312 |f(x)|=76.4578 status=success iter: 2 x=2.85876037 0.08092095 1.44796363 |f(x)|=37.6838 status=success iter: 3 x=4.94899512 0.11942928 1.09457665 |f(x)|=9.58079 status=success iter: 4 x=5.02175572 0.10287787 1.03388354 |f(x)|=5.63049 status=success iter: 5 x=5.04520433 0.10405523 1.01941607 |f(x)|=5.44398 status=success iter: 6 x=5.04535782 0.10404906 1.01924871 |f(x)|=5.44397 chisq/dof = 0.800996 A = 5.04536 +/- 0.06028 lambda = 0.10405 +/- 0.00316 b = 1.01925 +/- 0.03782 status = success @end smallexample @noindent The approximate values of the parameters are found correctly, and the chi-squared value indicates a good fit (the chi-squared per degree of freedom is approximately 1). In this case the errors on the parameters can be estimated from the square roots of the diagonal elements of the covariance matrix. If the chi-squared value shows a poor fit (i.e. @c{$\chi^2/(n-p) \gg 1$} @math{chi^2/dof >> 1}) then the error estimates obtained from the covariance matrix will be too small. In the example program the error estimates are multiplied by @c{$\sqrt{\chi^2/(n-p)}$} @math{\sqrt@{\chi^2/dof@}} in this case, a common way of increasing the errors for a poor fit. Note that a poor fit will result from the use an inappropriate model, and the scaled error estimates may then be outside the range of validity for Gaussian errors. @iftex @sp 1 @center @image{fit-exp,3.4in} @end iftex @node References and Further Reading for Nonlinear Least-Squares Fitting @section References and Further Reading The @sc{minpack} algorithm is described in the following article, @itemize @w{} @item J.J. Mor@'e, @cite{The Levenberg-Marquardt Algorithm: Implementation and Theory}, Lecture Notes in Mathematics, v630 (1978), ed G. Watson. @end itemize @noindent The following paper is also relevant to the algorithms described in this section, @itemize @w{} @item J.J. Mor@'e, B.S. Garbow, K.E. Hillstrom, ``Testing Unconstrained Optimization Software'', ACM Transactions on Mathematical Software, Vol 7, No 1 (1981), p 17--41. @end itemize gsl-1.16/doc/min.texi0000664000252300025230000003473612171574312011412 00000000000000@cindex optimization, see minimization @cindex maximization, see minimization @cindex minimization, one-dimensional @cindex finding minima @cindex nonlinear functions, minimization This chapter describes routines for finding minima of arbitrary one-dimensional functions. The library provides low level components for a variety of iterative minimizers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the algorithms. Each class of methods uses the same framework, so that you can switch between minimizers at runtime without needing to recompile your program. Each instance of a minimizer keeps track of its own state, allowing the minimizers to be used in multi-threaded programs. The header file @file{gsl_min.h} contains prototypes for the minimization functions and related declarations. To use the minimization algorithms to find the maximum of a function simply invert its sign. @menu * Minimization Overview:: * Minimization Caveats:: * Initializing the Minimizer:: * Providing the function to minimize:: * Minimization Iteration:: * Minimization Stopping Parameters:: * Minimization Algorithms:: * Minimization Examples:: * Minimization References and Further Reading:: @end menu @node Minimization Overview @section Overview @cindex minimization, overview The minimization algorithms begin with a bounded region known to contain a minimum. The region is described by a lower bound @math{a} and an upper bound @math{b}, with an estimate of the location of the minimum @math{x}. @iftex @sp 1 @center @image{min-interval,3.4in} @end iftex @noindent The value of the function at @math{x} must be less than the value of the function at the ends of the interval, @tex $$f(a) > f(x) < f(b)$$ @end tex @ifinfo @example f(a) > f(x) < f(b) @end example @end ifinfo @noindent This condition guarantees that a minimum is contained somewhere within the interval. On each iteration a new point @math{x'} is selected using one of the available algorithms. If the new point is a better estimate of the minimum, i.e.@: where @math{f(x') < f(x)}, then the current estimate of the minimum @math{x} is updated. The new point also allows the size of the bounded interval to be reduced, by choosing the most compact set of points which satisfies the constraint @math{f(a) > f(x) < f(b)}. The interval is reduced until it encloses the true minimum to a desired tolerance. This provides a best estimate of the location of the minimum and a rigorous error estimate. Several bracketing algorithms are available within a single framework. The user provides a high-level driver for the algorithm, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, @itemize @bullet @item initialize minimizer state, @var{s}, for algorithm @var{T} @item update @var{s} using the iteration @var{T} @item test @var{s} for convergence, and repeat iteration if necessary @end itemize @noindent The state for the minimizers is held in a @code{gsl_min_fminimizer} struct. The updating procedure uses only function evaluations (not derivatives). @node Minimization Caveats @section Caveats @cindex minimization, caveats Note that minimization functions can only search for one minimum at a time. When there are several minima in the search area, the first minimum to be found will be returned; however it is difficult to predict which of the minima this will be. @emph{In most cases, no error will be reported if you try to find a minimum in an area where there is more than one.} With all minimization algorithms it can be difficult to determine the location of the minimum to full numerical precision. The behavior of the function in the region of the minimum @math{x^*} can be approximated by a Taylor expansion, @tex $$ y = f(x^*) + {1 \over 2} f''(x^*) (x - x^*)^2 $$ @end tex @ifinfo @example y = f(x^*) + (1/2) f''(x^*) (x - x^*)^2 @end example @end ifinfo @noindent and the second term of this expansion can be lost when added to the first term at finite precision. This magnifies the error in locating @math{x^*}, making it proportional to @math{\sqrt \epsilon} (where @math{\epsilon} is the relative accuracy of the floating point numbers). For functions with higher order minima, such as @math{x^4}, the magnification of the error is correspondingly worse. The best that can be achieved is to converge to the limit of numerical accuracy in the function values, rather than the location of the minimum itself. @node Initializing the Minimizer @section Initializing the Minimizer @deftypefun {gsl_min_fminimizer *} gsl_min_fminimizer_alloc (const gsl_min_fminimizer_type * @var{T}) @tpindex gsl_min_fminimizer @tpindex gsl_min_fminimizer_type This function returns a pointer to a newly allocated instance of a minimizer of type @var{T}. For example, the following code creates an instance of a golden section minimizer, @example const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T); @end example If there is insufficient memory to create the minimizer then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_min_fminimizer_set (gsl_min_fminimizer * @var{s}, gsl_function * @var{f}, double @var{x_minimum}, double @var{x_lower}, double @var{x_upper}) This function sets, or resets, an existing minimizer @var{s} to use the function @var{f} and the initial search interval [@var{x_lower}, @var{x_upper}], with a guess for the location of the minimum @var{x_minimum}. If the interval given does not contain a minimum, then the function returns an error code of @code{GSL_EINVAL}. @end deftypefun @deftypefun int gsl_min_fminimizer_set_with_values (gsl_min_fminimizer * @var{s}, gsl_function * @var{f}, double @var{x_minimum}, double @var{f_minimum}, double @var{x_lower}, double @var{f_lower}, double @var{x_upper}, double @var{f_upper}) This function is equivalent to @code{gsl_min_fminimizer_set} but uses the values @var{f_minimum}, @var{f_lower} and @var{f_upper} instead of computing @code{f(x_minimum)}, @code{f(x_lower)} and @code{f(x_upper)}. @end deftypefun @deftypefun void gsl_min_fminimizer_free (gsl_min_fminimizer * @var{s}) This function frees all the memory associated with the minimizer @var{s}. @end deftypefun @deftypefun {const char *} gsl_min_fminimizer_name (const gsl_min_fminimizer * @var{s}) This function returns a pointer to the name of the minimizer. For example, @example printf ("s is a '%s' minimizer\n", gsl_min_fminimizer_name (s)); @end example @noindent would print something like @code{s is a 'brent' minimizer}. @end deftypefun @node Providing the function to minimize @section Providing the function to minimize @cindex minimization, providing a function to minimize You must provide a continuous function of one variable for the minimizers to operate on. In order to allow for general parameters the functions are defined by a @code{gsl_function} data type (@pxref{Providing the function to solve}). @node Minimization Iteration @section Iteration The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any minimizer of the corresponding type. The same functions work for all minimizers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_min_fminimizer_iterate (gsl_min_fminimizer * @var{s}) This function performs a single iteration of the minimizer @var{s}. If the iteration encounters an unexpected problem then an error code will be returned, @table @code @item GSL_EBADFUNC the iteration encountered a singular point where the function evaluated to @code{Inf} or @code{NaN}. @item GSL_FAILURE the algorithm could not improve the current best approximation or bounding interval. @end table @end deftypefun The minimizer maintains a current best estimate of the position of the minimum at all times, and the current interval bounding the minimum. This information can be accessed with the following auxiliary functions, @deftypefun double gsl_min_fminimizer_x_minimum (const gsl_min_fminimizer * @var{s}) This function returns the current estimate of the position of the minimum for the minimizer @var{s}. @end deftypefun @deftypefun double gsl_min_fminimizer_x_upper (const gsl_min_fminimizer * @var{s}) @deftypefunx double gsl_min_fminimizer_x_lower (const gsl_min_fminimizer * @var{s}) These functions return the current upper and lower bound of the interval for the minimizer @var{s}. @end deftypefun @deftypefun double gsl_min_fminimizer_f_minimum (const gsl_min_fminimizer * @var{s}) @deftypefunx double gsl_min_fminimizer_f_upper (const gsl_min_fminimizer * @var{s}) @deftypefunx double gsl_min_fminimizer_f_lower (const gsl_min_fminimizer * @var{s}) These functions return the value of the function at the current estimate of the minimum and at the upper and lower bounds of the interval for the minimizer @var{s}. @end deftypefun @node Minimization Stopping Parameters @section Stopping Parameters @cindex minimization, stopping parameters A minimization procedure should stop when one of the following conditions is true: @itemize @bullet @item A minimum has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The function below allows the user to test the precision of the current result. @deftypefun int gsl_min_test_interval (double @var{x_lower}, double @var{x_upper}, double @var{epsabs}, double @var{epsrel}) This function tests for the convergence of the interval [@var{x_lower}, @var{x_upper}] with absolute error @var{epsabs} and relative error @var{epsrel}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |a - b| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, \min(|a|,|b|) $$ \afterdisplay @end tex @ifinfo @example |a - b| < epsabs + epsrel min(|a|,|b|) @end example @end ifinfo @noindent when the interval @math{x = [a,b]} does not include the origin. If the interval includes the origin then @math{\min(|a|,|b|)} is replaced by zero (which is the minimum value of @math{|x|} over the interval). This ensures that the relative error is accurately estimated for minima close to the origin. This condition on the interval also implies that any estimate of the minimum @math{x_m} in the interval satisfies the same condition with respect to the true minimum @math{x_m^*}, @tex \beforedisplay $$ |x_m - x_m^*| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, x_m^* $$ \afterdisplay @end tex @ifinfo @example |x_m - x_m^*| < epsabs + epsrel x_m^* @end example @end ifinfo @noindent assuming that the true minimum @math{x_m^*} is contained within the interval. @end deftypefun @comment ============================================================ @node Minimization Algorithms @section Minimization Algorithms The minimization algorithms described in this section require an initial interval which is guaranteed to contain a minimum---if @math{a} and @math{b} are the endpoints of the interval and @math{x} is an estimate of the minimum then @math{f(a) > f(x) < f(b)}. This ensures that the function has at least one minimum somewhere in the interval. If a valid initial interval is used then these algorithm cannot fail, provided the function is well-behaved. @deffn {Minimizer} gsl_min_fminimizer_goldensection @cindex golden section algorithm for finding minima @cindex minimum finding, golden section algorithm The @dfn{golden section algorithm} is the simplest method of bracketing the minimum of a function. It is the slowest algorithm provided by the library, with linear convergence. On each iteration, the algorithm first compares the subintervals from the endpoints to the current minimum. The larger subinterval is divided in a golden section (using the famous ratio @math{(3-\sqrt 5)/2 = 0.3189660}@dots{}) and the value of the function at this new point is calculated. The new value is used with the constraint @math{f(a') > f(x') < f(b')} to a select new interval containing the minimum, by discarding the least useful point. This procedure can be continued indefinitely until the interval is sufficiently small. Choosing the golden section as the bisection ratio can be shown to provide the fastest convergence for this type of algorithm. @end deffn @comment ============================================================ @deffn {Minimizer} gsl_min_fminimizer_brent @cindex Brent's method for finding minima @cindex minimum finding, Brent's method The @dfn{Brent minimization algorithm} combines a parabolic interpolation with the golden section algorithm. This produces a fast algorithm which is still robust. The outline of the algorithm can be summarized as follows: on each iteration Brent's method approximates the function using an interpolating parabola through three existing points. The minimum of the parabola is taken as a guess for the minimum. If it lies within the bounds of the current interval then the interpolating point is accepted, and used to generate a smaller interval. If the interpolating point is not accepted then the algorithm falls back to an ordinary golden section step. The full details of Brent's method include some additional checks to improve convergence. @end deffn @deffn {Minimizer} gsl_min_fminimizer_quad_golden @cindex safeguarded step-length algorithm This is a variant of Brent's algorithm which uses the safeguarded step-length algorithm of Gill and Murray. @end deffn @comment ============================================================ @node Minimization Examples @section Examples The following program uses the Brent algorithm to find the minimum of the function @math{f(x) = \cos(x) + 1}, which occurs at @math{x = \pi}. The starting interval is @math{(0,6)}, with an initial guess for the minimum of @math{2}. @example @verbatiminclude examples/min.c @end example @noindent Here are the results of the minimization procedure. @smallexample $ ./a.out @verbatiminclude examples/min.out @end smallexample @node Minimization References and Further Reading @section References and Further Reading Further information on Brent's algorithm is available in the following book, @itemize @w{} @item Richard Brent, @cite{Algorithms for minimization without derivatives}, Prentice-Hall (1973), republished by Dover in paperback (2002), ISBN 0-486-41998-3. @end itemize gsl-1.16/doc/gsl-design.texi0000664000252300025230000017077712171574312012671 00000000000000\input texinfo @c -*-texinfo-*- @c %**start of header @setfilename gsl-design.info @settitle GNU Scientific Library @finalout @c -@setchapternewpage odd @c %**end of header @dircategory Scientific software @direntry * GSL-design: (GSL-design). GNU Scientific Library -- Design @end direntry @comment @include version-design.texi @set GSL @i{GNU Scientific Library} @ifinfo This file documents the @value{GSL}. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2004 The GSL Project. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end ifinfo @titlepage @title GNU Scientific Library -- Design document @comment @subtitle Edition @value{EDITION}, for gsl Version @value{VERSION} @comment @subtitle @value{UPDATED} @author Mark Galassi Los Alamos National Laboratory @author James Theiler Astrophysics and Radiation Measurements Group, Los Alamos National Laboratory @author Brian Gough Network Theory Limited @page @vskip 0pt plus 1filll Copyright @copyright{} 1996,1997,1998,1999,2000,2001,2004 The GSL Project. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Foundation. @end titlepage @contents @node Top, Motivation, (dir), (dir) @top About GSL @ifinfo This file documents the design of @value{GSL}, a collection of numerical routines for scientific computing. More information about GSL can be found at the project homepage, @uref{http://www.gnu.org/software/gsl/}. @end ifinfo The @value{GSL} is a library of scientific subroutines. It aims to provide a convenient interface to routines that do standard (and not so standard) tasks that arise in scientific research. More than that, it also provides the source code. Users are welcome to alter, adjust, modify, and improve the interfaces and/or implementations of whichever routines might be needed for a particular purpose. GSL is intended to provide a free equivalent to existing proprietary numerical libraries written in C or Fortran, such as NAG, IMSL's CNL, IBM's ESSL, and SGI's SCSL. The target platform is a low-end desktop workstation. The goal is to provide something which is generally useful, and the library is aimed at general users rather than specialists. @menu * Motivation:: * Contributing:: * Design:: * Bibliography:: * Copying:: * GNU Free Documentation License:: @end menu @node Motivation, Contributing, Top, Top @chapter Motivation @cindex numerical analysis @cindex free software There is a need for scientists and engineers to have a numerical library that: @itemize @bullet @item is free (in the sense of freedom, not in the sense of gratis; see the GNU General Public License), so that people can use that library, redistribute it, modify it @dots{} @item is written in C using modern coding conventions, calling conventions, scoping @dots{} @item is clearly and pedagogically documented; preferably with TeXinfo, so as to allow online info, WWW and TeX output. @item uses top quality state-of-the-art algorithms. @item is portable and configurable using @emph{autoconf} and @emph{automake}. @item basically, is GNUlitically correct. @end itemize There are strengths and weaknesses with existing libraries: @emph{Netlib} (http://www.netlib.org/) is probably the most advanced set of numerical algorithms available on the net, maintained by AT&T. Unfortunately most of the software is written in Fortran, with strange calling conventions in many places. It is also not very well collected, so it is a lot of work to get started with netlib. @emph{GAMS} (http://gams.nist.gov/) is an extremely well organized set of pointers to scientific software, but like netlib, the individual routines vary in their quality and their level of documentation. @emph{Numerical Recipes} (http://www.nr.com, http://cfata2.harvard.edu/nr/) is an excellent book: it explains the algorithms in a very clear way. Unfortunately the authors released the source code under a license which allows you to use it, but prevents you from re-distributing it. Thus Numerical Recipes is not @emph{free} in the sense of @emph{freedom}. On top of that, the implementation suffers from @emph{fortranitis} and other limitations. [http://www.lysator.liu.se/c/num-recipes-in-c.html] @emph{SLATEC} is a large public domain collection of numerical routines in Fortran written under a Department of Energy program in the 1970's. The routines are well tested and have a reasonable overall design (given the limitations of that era). GSL should aim to be a modern version of SLATEC. @emph{NSWC} is the Naval Surface Warfare Center numerical library. It is a large public-domain Fortran library, containing a lot of high-quality code. Documentation for the library is hard to find, only a few photocopies of the printed manual are still in circulation. @emph{NAG} and @emph{IMSL} both sell high-quality libraries which are proprietary. The NAG library is more advanced and has wider scope than IMSL. The IMSL library leans more towards ease-of-use and makes extensive use of variable length argument lists to emulate "default arguments". @emph{ESSL} and @emph{SCSL} are proprietary libraries from IBM and SGI. @emph{Forth Scientific Library} [see the URL http://www.taygeta.com/fsl/sciforth.html]. Mainly of interest to Forth users. @emph{Numerical Algorithms with C} G. Engeln-Mullges, F. Uhlig. A nice numerical library written in ANSI C with an accompanying textbook. Source code is available but the library is not free software. @emph{NUMAL} A C version of the NUMAL library has been written by H.T. Lau and is published as a book and disk with the title "A Numerical Library in C for Scientists and Engineers". Source code is available but the library is not free software. @emph{C Mathematical Function Handbook} by Louis Baker. A library of function approximations and methods corresponding to those in the "Handbook of Mathematical Functions" by Abramowitz and Stegun. Source code is available but the library is not free software. @emph{CCMATH} by Daniel A. Atkinson. A C numerical library covering similar areas to GSL. The code is quite terse. Earlier versions were under the GPL but unfortunately it has changed to the LGPL in recent versions. @emph{CEPHES} A useful collection of high-quality special functions written in C. Not GPL'ed. @emph{WNLIB} A small collection of numerical routines written in C by Will Naylor. Public domain. @emph{MESHACH} A comprehensive matrix-vector linear algebra library written in C. Freely available but not GPL'ed (non-commercial license). @emph{CERNLIB} is a large high-quality Fortran library developed at CERN over many years. It was originally non-free software but has recently been released under the GPL. @emph{COLT} is a free numerical library in Java developed at CERN by Wolfgang Hoschek. It is under a BSD-style license. The long-term goal will be to provide a framework to which the real numerical experts (or their graduate students) will contribute. @node Contributing, Design, Motivation, Top @chapter Contributing This design document was originally written in 1996. As of 2004, GSL itself is essentially feature complete, the developers are not actively working on any major new functionality. The main emphasis is now on ensuring the stability of the existing functions, improving consistency, tidying up a few problem areas and fixing any bugs that are reported. Potential contributors are encouraged to gain familiarity with the library by investigating and fixing known problems listed in the @file{BUGS} file in the CVS repository. Adding large amounts of new code is difficult because it leads to differences in the maturity of different parts of the library. To maintain stability, any new functionality is encouraged as @dfn{packages}, built on top of GSL and maintained independently by the author, as in other free software projects (such as the Perl CPAN archive and TeX CTAN archive, etc). @menu * Packages:: @end menu @node Packages, , Contributing, Contributing @section Packages The design of GSL permits extensions to be used alongside the existing library easily by simple linking. For example, additional random number generators can be provided in a separate library: @example $ tar xvfz rngextra-0.1.tar.gz $ cd rngextra-0.1 $ ./configure; make; make check; make install $ ... $ gcc -Wall main.c -lrngextra -lgsl -lgslcblas -lm @end example The points below summarise the package design guidelines. These are intended to ensure that packages are consistent with GSL itself, to make life easier for the end-user and make it possible to distribute popular well-tested packages as part of the core GSL in future. @itemize @bullet @item Follow the GSL and GNU coding standards described in this document This means using the standard GNU packaging tools, such as Automake, providing documentation in Texinfo format, and a test suite. The test suite should run using @samp{make check}, and use the test functions provided in GSL to produce the output with @code{PASS:}/@code{FAIL:} lines. It is not essential to use libtool since packages are likely to be small, a static library is sufficient and simpler to build. @item Use a new unique prefix for the package (do not use @samp{gsl_} -- this is reserved for internal use). For example, a package of additional random number generators might use the prefix @code{rngextra}. @example #include gsl_rng * r = gsl_rng_alloc (rngextra_lsfr32); @end example @item Use a meaningful version number which reflects the state of development Generally, @code{0.x} are alpha versions, which provide no guarantees. Following that, @code{0.9.x} are beta versions, which should be essentially complete, subject only to minor changes and bug fixes. The first major release is @code{1.0}. Any version number of @code{1.0} or higher should be suitable for production use with a well-defined API. The API must not change in a major release and should be backwards-compatible in its behavior (excluding actual bug-fixes), so that existing code do not have to be modified. Note that the API includes all exported definitions, including data-structures defined with @code{struct}. If you need to change the API in a package, it requires a new major release (e.g. @code{2.0}). @item Use the GNU General Public License (GPL) Follow the normal procedures of obtaining a copyright disclaimer if you would like to have the package considered for inclusion in GSL itself in the future (@pxref{Legal issues}). @end itemize Post announcements of your package releases to @email{gsl-discuss@@sourceware.org} so that information about them can be added to the GSL webpages. For security, sign your package with GPG (@code{gpg --detach-sign @var{file}}). An example package @samp{rngextra} containing two additional random number generators can be found at @url{http://www.network-theory.co.uk/download/rngextra/}. @node Design, Bibliography, Contributing, Top @chapter Design @menu * Language for implementation:: * Interface to other languages:: * What routines are implemented:: * What routines are not implemented:: * Design of Numerical Libraries:: * Code Reuse:: * Standards and conventions:: * Background and Preparation:: * Choice of Algorithms:: * Documentation:: * Namespace:: * Header files:: * Target system:: * Function Names:: * Object-orientation:: * Comments:: * Minimal structs:: * Algorithm decomposition:: * Memory allocation and ownership:: * Memory layout:: * Linear Algebra Levels:: * Error estimates:: * Exceptions and Error handling:: * Persistence:: * Using Return Values:: * Variable Names:: * Datatype widths:: * size_t:: * Arrays vs Pointers:: * Pointers:: * Constness:: * Pseudo-templates:: * Arbitrary Constants:: * Test suites:: * Compilation:: * Thread-safety:: * Legal issues:: * Non-UNIX portability:: * Compatibility with other libraries:: * Parallelism:: * Precision:: * Miscellaneous:: @end menu @node Language for implementation, Interface to other languages, Design, Design @section Language for implementation @strong{One language only (C)} Advantages: simpler, compiler available and quite universal. @node Interface to other languages, What routines are implemented, Language for implementation, Design @section Interface to other languages Wrapper packages are supplied as "extra" packages; not as part of the "core". They are maintained separately by independent contributors. Use standard tools to make wrappers: swig, g-wrap @node What routines are implemented, What routines are not implemented, Interface to other languages, Design @section What routines are implemented Anything which is in any of the existing libraries. Obviously it makes sense to prioritize and write code for the most important areas first. @c @itemize @bullet @c @item Random number generators @c Includes both random number generators and routines to give various @c interesting distributions. @c @item Statistics @c @item Special Functions @c What I (jt) envision for this section is a collection of routines for @c reliable and accurate (but not necessarily fast or efficient) estimation @c of values for special functions, explicitly using Taylor series, asymptotic @c expansions, continued fraction expansions, etc. As well as these routines, @c fast approximations will also be provided, primarily based on Chebyshev @c polynomials and ratios of polynomials. In this vision, the approximations @c will be the "standard" routines for the users, and the exact (so-called) @c routines will be used for verification of the approximations. It may also @c be useful to provide various identity-checking routines as part of the @c verification suite. @c @item Curve fitting @c polynomial, special functions, spline @c @item Ordinary differential equations @c @item Partial differential equations @c @item Fourier Analysis @c @item Wavelets @c @item Matrix operations: linear equations @c @item Matrix operations: eigenvalues and spectral analysis @c @item Matrix operations: any others? @c @item Direct integration @c @item Monte Carlo methods @c @item Simulated annealing @c @item Genetic algorithms @c We need to think about what kinds of algorithms are basic generally @c useful numerical algorithms, and which ones are special purpose @c research projects. We should concentrate on supplying the former. @c @item Cellular automata @c @end itemize @node What routines are not implemented, Design of Numerical Libraries, What routines are implemented, Design @section What routines are not implemented @itemize @bullet @item anything which already exists as a high-quality GPL'ed package. @item anything which is too big -- i.e. an application in its own right rather than a subroutine For example, partial differential equation solvers are often huge and very specialized applications (since there are so many types of PDEs, types of solution, types of grid, etc). This sort of thing should remain separate. It is better to point people to the good applications which exist. @item anything which is independent and useful separately. Arguably functions for manipulating date and time, or financial functions might be included in a "scientific" library. However, these sorts of modules could equally well be used independently in other programs, so it makes sense for them to be separate libraries. @end itemize @node Design of Numerical Libraries, Code Reuse, What routines are not implemented, Design @section Design of Numerical Libraries In writing a numerical library there is a unavoidable conflict between completeness and simplicity. Completeness refers to the ability to perform operations on different objects so that the group is "closed". In mathematics objects can be combined and operated on in an infinite number of ways. For example, I can take the derivative of a scalar field with respect to a vector and the derivative of a vector field wrt.@: a scalar (along a path). There is a definite tendency to unconsciously try to reproduce all these possibilities in a numerical library, by adding new features one by one. After all, it is always easy enough to support just one more feature @dots{} so why not? Looking at the big picture, no-one would start out by saying "I want to be able to represent every possible mathematical object and operation using C structs" -- this is a strategy which is doomed to fail. There is a limited amount of complexity which can be represented in a programming language like C. Attempts to reproduce the complexity of mathematics within such a language would just lead to a morass of unmaintainable code. However, it's easy to go down that road if you don't think about it ahead of time. It is better to choose simplicity over completeness. In designing new parts of the library keep modules independent where possible. If interdependencies between modules are introduced be sure about where you are going to draw the line. @node Code Reuse, Standards and conventions, Design of Numerical Libraries, Design @section Code Reuse It is useful if people can grab a single source file and include it in their own programs without needing the whole library. Try to allow standalone files like this whenever it is reasonable. Obviously the user might need to define a few macros, such as GSL_ERROR, to compile the file but that is ok. Examples where this can be done: grabbing a single random number generator. @node Standards and conventions, Background and Preparation, Code Reuse, Design @section Standards and conventions The people who kick off this project should set the coding standards and conventions. In order of precedence the standards that we follow are, @itemize @bullet @item We follow the GNU Coding Standards. @item We follow the conventions of the ANSI Standard C Library. @item We follow the conventions of the GNU C Library. @item We follow the conventions of the glib GTK support Library. @end itemize The references for these standards are the @cite{GNU Coding Standards} document, Harbison and Steele @cite{C: A Reference Manual}, the @cite{GNU C Library Manual} (version 2), and the Glib source code. For mathematical formulas, always follow the conventions in Abramowitz & Stegun, the @cite{Handbook of Mathematical Functions}, since it is the definitive reference and also in the public domain. If the project has a philosophy it is to "Think in C". Since we are working in C we should only do what is natural in C, rather than trying to simulate features of other languages. If there is something which is unnatural in C and has to be simulated then we avoid using it. If this means leaving something out of the library, or only offering a limited version then so be it. It is not worthwhile making the library over-complicated. There are numerical libraries in other languages, and if people need the features of those languages it would be sensible for them to use the corresponding libraries, rather than coercing a C library into doing that job. It should be borne in mind at all time that C is a macro-assembler. If you are in doubt about something being too complicated ask yourself the question "Would I try to write this in macro-assembler?" If the answer is obviously "No" then do not try to include it in GSL. [BJG] It will be useful to read the following papers, @itemize @w{} @item Kiem-Phong Vo, ``The Discipline and Method Architecture for Reusable Libraries'', Software - Practice & Experience, v.30, pp.107-128, 2000. @end itemize @noindent It is available from @uref{http://www.research.att.com/sw/tools/sfio/dm-spe.ps} or the earlier technical report Kiem-Phong Vo, "An Architecture for Reusable Libraries" @uref{http://citeseer.nj.nec.com/48973.html}. There are associated papers on Vmalloc, SFIO, and CDT which are also relevant to the design of portable C libraries. @itemize @w{} @item Kiem-Phong Vo, ``Vmalloc: A General and Efficient Memory Allocator''. Software Practice & Experience, 26:1--18, 1996. @uref{http://www.research.att.com/sw/tools/vmalloc/vmalloc.ps} @item Kiem-Phong Vo. ``Cdt: A Container Data Type Library''. Soft. Prac. & Exp., 27:1177--1197, 1997 @uref{http://www.research.att.com/sw/tools/cdt/cdt.ps} @item David G. Korn and Kiem-Phong Vo, ``Sfio: Safe/Fast String/File IO'', Proceedings of the Summer '91 Usenix Conference, pp. 235-256, 1991. @uref{http://citeseer.nj.nec.com/korn91sfio.html} @end itemize Source code should be indented according to the GNU Coding Standards, with spaces not tabs. For example, by using the @code{indent} command: @example indent -gnu -nut *.c *.h @end example @noindent The @code{-nut} option converts tabs into spaces. @node Background and Preparation, Choice of Algorithms, Standards and conventions, Design @section Background and Preparation Before implementing something be sure to research the subject thoroughly! This will save a lot of time in the long-run. The two most important steps are, @enumerate @item to determine whether there is already a free library (GPL or GPL-compatible) which does the job. If so, there is no need to reimplement it. Carry out a search on Netlib, GAMs, na-net, sci.math.num-analysis and the web in general. This should also provide you with a list of existing proprietary libraries which are relevant, keep a note of these for future reference in step 2. @item make a comparative survey of existing implementations in the commercial/free libraries. Examine the typical APIs, methods of communication between program and subroutine, and classify them so that you are familiar with the key concepts or features that an implementation may or may not have, depending on the relevant tradeoffs chosen. Be sure to review the documentation of existing libraries for useful references. @item read up on the subject and determine the state-of-the-art. Find the latest review papers. A search of the following journals should be undertaken. @itemize @w{} @item ACM Transactions on Mathematical Software @item Numerische Mathematik @item Journal of Computation and Applied Mathematics @item Computer Physics Communications @item SIAM Journal of Numerical Analysis @item SIAM Journal of Scientific Computing @end itemize @end enumerate @noindent Keep in mind that GSL is not a research project. Making a good implementation is difficult enough, without also needing to invent new algorithms. We want to implement existing algorithms whenever possible. Making minor improvements is ok, but don't let it be a time-sink. @node Choice of Algorithms, Documentation, Background and Preparation, Design @section Choice of Algorithms Whenever possible choose algorithms which scale well and always remember to handle asymptotic cases. This is particularly relevant for functions with integer arguments. It is tempting to implement these using the simple @math{O(n)} algorithms used to define the functions, such as the many recurrence relations found in Abramowitz and Stegun. While such methods might be acceptable for @math{n=O(10-100)} they will not be satisfactory for a user who needs to compute the same function for @math{n=1000000}. Similarly, do not make the implicit assumption that multivariate data has been scaled to have components of the same size or O(1). Algorithms should take care of any necessary scaling or balancing internally, and use appropriate norms (e.g. |Dx| where D is a diagonal scaling matrix, rather than |x|). @node Documentation, Namespace, Choice of Algorithms, Design @section Documentation Documentation: the project leaders should give examples of how things are to be documented. High quality documentation is absolutely mandatory, so documentation should introduce the topic, and give careful reference for the provided functions. The priority is to provide reference documentation for each function. It is not necessary to provide tutorial documentation. Use free software, such as GNU Plotutils, to produce the graphs in the manual. Some of the graphs have been made with gnuplot which is not truly free (or GNU) software, and some have been made with proprietary programs. These should be replaced with output from GNU plotutils. When citing references be sure to use the standard, definitive and best reference books in the field, rather than lesser known text-books or introductory books which happen to be available (e.g. from undergraduate studies). For example, references concerning algorithms should be to Knuth, references concerning statistics should be to Kendall & Stuart, references concerning special functions should be to Abramowitz & Stegun (Handbook of Mathematical Functions AMS-55), etc. Wherever possible refer to Abramowitz & Stegun rather than other reference books because it is a public domain work, so it is inexpensive and freely redistributable. The standard references have a better chance of being available in an accessible library for the user. If they are not available and the user decides to buy a copy in order to look up the reference then this also gives them the best quality book which should also cover the largest number of other references in the GSL Manual. If many different books were to be referenced this would be an expensive and inefficient use of resources for a user who needs to look up the details of the algorithms. Reference books also stay in print much longer than text books, which are often out-of-print after a few years. Similarly, cite original papers wherever possible. Be sure to keep copies of these for your own reference (e.g. when dealing with bug reports) or to pass on to future maintainers. If you need help in tracking down references, ask on the @code{gsl-discuss} mailing list. There is a group of volunteers with access to good libraries who have offered to help GSL developers get copies of papers. @c [JT section: written by James Theiler @c And we furthermore promise to try as hard as possible to document @c the software: this will ideally involve discussion of why you might want @c to use it, what precisely it does, how precisely to invoke it, @c how more-or-less it works, and where we learned about the algorithm, @c and (unless we wrote it from scratch) where we got the code. @c We do not plan to write this entire package from scratch, but to cannibalize @c existing mathematical freeware, just as we expect our own software to @c be cannibalized.] To write mathematics in the texinfo file you can use the @code{@@math} command with @emph{simple} TeX commands. These are automatically surrounded by @code{$...$} for math mode. For example, @example to calculate the coefficient @@math@{\alpha@} use the function... @end example @noindent will be correctly formatted in both online and TeX versions of the documentation. Note that you cannot use the special characters @{ and @} inside the @code{@@math} command because these conflict between TeX and Texinfo. This is a problem if you want to write something like @code{\sqrt@{x+y@}}. To work around it you can precede the math command with a special macro @code{@@c} which contains the explicit TeX commands you want to use (no restrictions), and put an ASCII approximation into the @code{@@math} command (you can write @code{@@@{} and @code{@@@}} there for the left and right braces). The explicit TeX commands are used in the TeX output and the argument of @code{@@math} in the plain info output. Note that the @code{@@c@{@}} macro must go at the end of the preceding line, because everything else after it is ignored---as far as texinfo is concerned it's actually a 'comment'. The comment command @@c has been modified to capture a TeX expression which is output by the next @@math command. For ordinary comments use the @@comment command. For example, @example this is a test @@c@{$\sqrt@{x+y@}$@} @@math@{\sqrt@@@{x+y@@@}@} @end example @noindent is equivalent to @code{this is a test $\sqrt@{x+y@}$} in plain TeX and @code{this is a test @@math@{\sqrt@@@{x+y@@@}@}} in Info. It looks nicer if some of the more cryptic TeX commands are given a C-style ascii version, e.g. @example for @@c@{$x \ge y$@} @@math@{x >= y@} @end example @noindent will be appropriately displayed in both TeX and Info. @node Namespace, Header files, Documentation, Design @section Namespace Use @code{gsl_} as a prefix for all exported functions and variables. Use @code{GSL_} as a prefix for all exported macros. All exported header files should have a filename with the prefix @code{gsl_}. All installed libraries should have a name like libgslhistogram.a Any installed executables (utility programs etc) should have the prefix @code{gsl-} (with a hyphen, not an underscore). All function names, variables, etc.@: should be in lower case. Macros and preprocessor variables should be in upper case. Some common conventions in variable and function names: @table @code @item p1 plus 1, e.g. function @code{log1p(x)} or a variable like @code{kp1}, @math{=k+1}. @item m1 minus 1, e.g. function @code{expm1(x)} or a variable like @code{km1}, @math{=k-1}. @end table @node Header files, Target system, Namespace, Design @section Header files Installed header files should be idempotent, i.e. surround them by the preprocessor conditionals like the following, @example #ifndef __GSL_HISTOGRAM_H__ #define __GSL_HISTOGRAM_H__ ... #endif /* __GSL_HISTOGRAM_H__ */ @end example @node Target system, Function Names, Header files, Design @section Target system The target system is ANSI C, with a full Standard C Library, and IEEE arithmetic. @node Function Names, Object-orientation, Target system, Design @section Function Names Each module has a name, which prefixes any function names in that module, e.g. the module gsl_fft has function names like gsl_fft_init. The modules correspond to subdirectories of the library source tree. @node Object-orientation, Comments, Function Names, Design @section Object-orientation The algorithms should be object oriented, but only to the extent that is easy in portable ANSI C. The use of casting or other tricks to simulate inheritance is not desirable, and the user should not have to be aware of anything like that. This means many types of patterns are ruled out. However, this is not considered a problem -- they are too complicated for the library. Note: it is possible to define an abstract base class easily in C, using function pointers. See the rng directory for an example. When reimplementing public domain Fortran code, please try to introduce the appropriate object concepts as structs, rather than translating the code literally in terms of arrays. The structs can be useful just within the file, you don't need to export them to the user. For example, if a Fortran program repeatedly uses a subroutine like, @example SUBROUTINE RESIZE (X, K, ND, K1) @end example @noindent where X(K,D) represents a grid to be resized to X(K1,D) you can make this more readable by introducing a struct, @smallexample struct grid @{ int nd; /* number of dimensions */ int k; /* number of bins */ double * x; /* partition of axes, array of size x[k][nd] */ @} void resize_grid (struct grid * g, int k_new) @{ ... @} @end smallexample @noindent Similarly, if you have a frequently recurring code fragment within a single file you can define a static or static inline function for it. This is typesafe and saves writing out everything in full. @node Comments, Minimal structs, Object-orientation, Design @section Comments Follow the GNU Coding Standards. A relevant quote is, ``Please write complete sentences and capitalize the first word. If a lower-case identifier comes at the beginning of a sentence, don't capitalize it! Changing the spelling makes it a different identifier. If you don't like starting a sentence with a lower case letter, write the sentence differently (e.g., "The identifier lower-case is ...").'' @node Minimal structs, Algorithm decomposition, Comments, Design @section Minimal structs We prefer to make structs which are @dfn{minimal}. For example, if a certain type of problem can be solved by several classes of algorithm (e.g. with and without derivative information) it is better to make separate types of struct to handle those cases. i.e. run time type identification is not desirable. @node Algorithm decomposition, Memory allocation and ownership, Minimal structs, Design @section Algorithm decomposition Iterative algorithms should be decomposed into an INITIALIZE, ITERATE, TEST form, so that the user can control the progress of the iteration and print out intermediate results. This is better than using call-backs or using flags to control whether the function prints out intermediate results. In fact, call-backs should not be used -- if they seem necessary then it's a sign that the algorithm should be broken down further into individual components so that the user has complete control over them. For example, when solving a differential equation the user may need to be able to advance the solution by individual steps, while tracking a realtime process. This is only possible if the algorithm is broken down into step-level components. Higher level decompositions would not give sufficient flexibility. @node Memory allocation and ownership, Memory layout, Algorithm decomposition, Design @section Memory allocation and ownership Functions which allocate memory on the heap should end in _alloc (e.g. gsl_foo_alloc) and be deallocated by a corresponding _free function (gsl_foo_free). Be sure to free any memory allocated by your function if you have to return an error in a partially initialized object. Don't allocate memory 'temporarily' inside a function and then free it before the function returns. This prevents the user from controlling memory allocation. All memory should be allocated and freed through separate functions and passed around as a "workspace" argument. This allows memory allocation to be factored out of tight loops. To avoid confusion over ownership, workspaces should not own each other or contain other workspaces. For clarity and ease of use in different contexts, they should be allocated from integer arguments rather than derived from other structs. @node Memory layout, Linear Algebra Levels, Memory allocation and ownership, Design @section Memory layout We use flat blocks of memory to store matrices and vectors, not C-style pointer-to-pointer arrays. The matrices are stored in row-major order -- i.e. the column index (second index) moves continuously through memory. @node Linear Algebra Levels, Error estimates, Memory layout, Design @section Linear Algebra Levels Functions using linear algebra are divided into two levels: For purely "1d" functions we use the C-style arguments (double *, stride, size) so that it is simpler to use the functions in a normal C program, without needing to invoke all the gsl_vector machinery. The philosophy here is to minimize the learning curve. If someone only needs to use one function, like an fft, they can do so without having to learn about gsl_vector. This leads to the question of why we don't do the same for matrices. In that case the argument list gets too long and confusing, with (size1, size2, tda) for each matrix and potential ambiguities over row vs column ordering. In this case, it makes sense to use gsl_vector and gsl_matrix, which take care of this for the user. So really the library has two levels -- a lower level based on C types for 1d operations, and a higher level based on gsl_matrix and gsl_vector for general linear algebra. Of course, it would be possible to define a vector version of the lower level functions too. So far we have not done that because it was not essential -- it could be done but it is easy enough to get by using the C arguments, by typing v->data, v->stride, v->size instead. A gsl_vector version of low-level functions would mainly be a convenience. Please use BLAS routines internally within the library whenever possible for efficiency. @node Error estimates, Exceptions and Error handling, Linear Algebra Levels, Design @section Error estimates In the special functions error bounds are given as twice the expected ``Gaussian'' error, i.e.@: 2-sigma, so the result is inside the error 98% of the time. People expect the true value to be within +/- the quoted error (this wouldn't be the case 32% of the time for 1 sigma). Obviously the errors are not Gaussian but a factor of two works well in practice. @node Exceptions and Error handling, Persistence, Error estimates, Design @section Exceptions and Error handling The basic error handling procedure is the return code (see gsl_errno.h for a list of allowed values). Use the GSL_ERROR macro to mark an error. The current definition of this macro is not ideal but it can be changed at compile time. You should always use the GSL_ERROR macro to indicate an error, rather than just returning an error code. The macro allows the user to trap errors using the debugger (by setting a breakpoint on the function gsl_error). The only circumstances where GSL_ERROR should not be used are where the return value is "indicative" rather than an error -- for example, the iterative routines use the return code to indicate the success or failure of an iteration. By the nature of an iterative algorithm "failure" (a return code of GSL_CONTINUE) is a normal occurrence and there is no need to use GSL_ERROR there. Be sure to free any memory allocated by your function if you return an error (in particular for errors in partially initialized objects). @node Persistence, Using Return Values, Exceptions and Error handling, Design @section Persistence If you make an object foo which uses blocks of memory (e.g. vector, matrix, histogram) you can provide functions for reading and writing those blocks, @smallexample int gsl_foo_fread (FILE * stream, gsl_foo * v); int gsl_foo_fwrite (FILE * stream, const gsl_foo * v); int gsl_foo_fscanf (FILE * stream, gsl_foo * v); int gsl_foo_fprintf (FILE * stream, const gsl_foo * v, const char *format); @end smallexample @noindent Only dump out the blocks of memory, not any associated parameters such as lengths. The idea is for the user to build higher level input/output facilities using the functions the library provides. The fprintf/fscanf versions should be portable between architectures, while the binary versions should be the "raw" version of the data. Use the functions @smallexample int gsl_block_fread (FILE * stream, gsl_block * b); int gsl_block_fwrite (FILE * stream, const gsl_block * b); int gsl_block_fscanf (FILE * stream, gsl_block * b); int gsl_block_fprintf (FILE * stream, const gsl_block * b, const char *format); @end smallexample @noindent or @smallexample int gsl_block_raw_fread (FILE * stream, double * b, size_t n, size_t stride); int gsl_block_raw_fwrite (FILE * stream, const double * b, size_t n, size_t stri de); int gsl_block_raw_fscanf (FILE * stream, double * b, size_t n, size_t stride); int gsl_block_raw_fprintf (FILE * stream, const double * b, size_t n, size_t str ide, const char *format); @end smallexample @noindent to do the actual reading and writing. @node Using Return Values, Variable Names, Persistence, Design @section Using Return Values Always assign a return value to a variable before using it. This allows easier debugging of the function, and inspection and modification of the return value. If the variable is only needed temporarily then enclose it in a suitable scope. For example, instead of writing, @example a = f(g(h(x,y))) @end example @noindent use temporary variables to store the intermediate values, @example @{ double u = h(x,y); double v = g(u); a = f(v); @} @end example @noindent These can then be inspected more easily in the debugger, and breakpoints can be placed more precisely. The compiler will eliminate the temporary variables automatically when the program is compiled with optimization. @node Variable Names, Datatype widths, Using Return Values, Design @section Variable Names Try to follow existing conventions for variable names, @table @code @item dim number of dimensions @item w pointer to workspace @item state pointer to state variable (use @code{s} if you need to save characters) @item result pointer to result (output variable) @item abserr absolute error @item relerr relative error @item epsabs absolute tolerance @item epsrel relative tolerance @item size the size of an array or vector e.g. double array[size] @item stride the stride of a vector @item size1 the number of rows in a matrix @item size2 the number of columns in a matrix @item n general integer number, e.g. number of elements of array, in fft, etc @item r random number generator (gsl_rng) @end table @node Datatype widths, size_t, Variable Names, Design @section Datatype widths Be aware that in ANSI C the type @code{int} is only guaranteed to provide 16-bits. It may provide more, but is not guaranteed to. Therefore if you require 32 bits you must use @code{long int}, which will have 32 bits or more. Of course, on many platforms the type @code{int} does have 32 bits instead of 16 bits but we have to code to the ANSI standard rather than a specific platform. @node size_t, Arrays vs Pointers, Datatype widths, Design @section size_t All objects (blocks of memory, etc) should be measured in terms of a @code{size_t} type. Therefore any iterations (e.g. @code{for(i=0; i= 0; i--) @{ ... @} /* DOESN'T WORK */ @end example @noindent use something like @example for (i = N; i-- > 0;) @{ ... @} @end example @noindent to avoid problems with wrap-around at @code{i=0}. Note that the post-decrement ensures that the loop variable is tested before it reaches zero. Beware that @code{i} will wraparound on exit from the loop. (This could also be written as @code{for (i = N; i--;)} since the test for @code{i>0} is equivalent to @code{i!=0} for an unsigned integer) If you really want to avoid confusion use a separate variable to invert the loop order, @example for (i = 0; i < N; i++) @{ j = N - i; ... @} @end example Note (BJG). Originally, I suggested using @example for (i = N; i > 0 && i--;) @{ ... @} @end example which makes the test for @code{i>0} explicit and leaves @code{i=0} on exit from the loop. However, it is slower as there is an additional branch which prevents unrolling. Thanks to J. Seward for pointing this out. Note: As a matter of style, please use post-increment (@code{i++}) and post-decrement (@code{i--}) operators by default and only use pre-increment (@code{++i}) and pre-decrement (@code{--i}) operators where specifically needed. @node Arrays vs Pointers, Pointers, size_t, Design @section Arrays vs Pointers A function can be declared with either pointer arguments or array arguments. The C standard considers these to be equivalent. However, it is useful to distinguish between the case of a pointer, representing a single object which is being modified, and an array which represents a set of objects with unit stride (that are modified or not depending on the presence of @code{const}). For vectors, where the stride is not required to be unity, the pointer form is preferred. @smallexample /* real value, set on output */ int foo (double * x); /* real vector, modified */ int foo (double * x, size_t stride, size_t n); /* constant real vector */ int foo (const double * x, size_t stride, size_t n); /* real array, modified */ int bar (double x[], size_t n); /* real array, not modified */ int baz (const double x[], size_t n); @end smallexample @node Pointers, Constness, Arrays vs Pointers, Design @section Pointers Avoid dereferencing pointers on the right-hand side of an expression where possible. It's better to introduce a temporary variable. This is easier for the compiler to optimise and also more readable since it avoids confusion between the use of @code{*} for multiplication and dereferencing. @example while (fabs (f) < 0.5) @{ *e = *e - 1; f *= 2; @} @end example @noindent is better written as, @example @{ int p = *e; while (fabs(f) < 0.5) @{ p--; f *= 2; @} *e = p; @} @end example @node Constness, Pseudo-templates, Pointers, Design @section Constness Use @code{const} in function prototypes wherever an object pointed to by a pointer is constant (obviously). For variables which are meaningfully constant within a function/scope use @code{const} also. This prevents you from accidentally modifying a variable which should be constant (e.g. length of an array, etc). It can also help the compiler do optimization. These comments also apply to arguments passed by value which should be made @code{const} when that is meaningful. @node Pseudo-templates, Arbitrary Constants, Constness, Design @section Pseudo-templates There are some pseudo-template macros available in @file{templates_on.h} and @file{templates_off.h}. See a directory link @file{block} for details on how to use them. Use sparingly, they are a bit of a nightmare, but unavoidable in places. In particular, the convention is: templates are used for operations on "data" only (vectors, matrices, statistics, sorting). This is intended to cover the case where the program must interface with an external data-source which produces a fixed type. e.g. a big array of char's produced by an 8-bit counter. All other functions can use double, for floating point, or the appropriate integer type for integers (e.g. unsigned long int for random numbers). It is not the intention to provide a fully templated version of the library. That would be "putting a quart into a pint pot". To summarize, almost everything should be in a "natural type" which is appropriate for typical usage, and templates are there to handle a few cases where it is unavoidable that other data-types will be encountered. For floating point work "double" is considered a "natural type". This sort of idea is a part of the C language. @node Arbitrary Constants, Test suites, Pseudo-templates, Design @section Arbitrary Constants Avoid arbitrary constants. For example, don't hard code "small" values like '1e-30', '1e-100' or @code{10*GSL_DBL_EPSILON} into the routines. This is not appropriate for a general purpose library. Compute values accurately using IEEE arithmetic. If errors are potentially significant then error terms should be estimated reliably and returned to the user, by analytically deriving an error propagation formula, not using guesswork. A careful consideration of the algorithm usually shows that arbitrary constants are unnecessary, and represent an important parameter which should be accessible to the user. For example, consider the following code: @example if (residual < 1e-30) @{ return 0.0; /* residual is zero within round-off error */ @} @end example @noindent This should be rewritten as, @example return residual; @end example @noindent in order to allow the user to determine whether the residual is significant or not. The only place where it is acceptable to use constants like @code{GSL_DBL_EPSILON} is in function approximations, (e.g.@: Taylor series, asymptotic expansions, etc). In these cases it is not an arbitrary constant, but an inherent part of the algorithm. @node Test suites, Compilation, Arbitrary Constants, Design @section Test suites The implementor of each module should provide a reasonable test suite for the routines. The test suite should be a program that uses the library and checks the result against known results, or invokes the library several times and does a statistical analysis on the results (for example in the case of random number generators). Ideally the one test program per directory should aim for 100% path coverage of the code. Obviously it would be a lot of work to really achieve this, so prioritize testing on the critical parts and use inspection for the rest. Test all the error conditions by explicitly provoking them, because we consider it a serious defect if the function does not return an error for an invalid parameter. N.B. Don't bother to test for null pointers -- it's sufficient for the library to segfault if the user provides an invalid pointer. The tests should be deterministic. Use the @code{gsl_test} functions provided to perform separate tests for each feature with a separate output PASS/FAIL line, so that any failure can be uniquely identified. Use realistic test cases with 'high entropy'. Tests on simple values such as 1 or 0 may not reveal bugs. For example, a test using a value of @math{x=1} will not pick up a missing factor of @math{x} in the code. Similarly, a test using a value of @math{x=0} will not pick any missing terms involving @math{x} in the code. Use values like @math{2.385} to avoid silent failures. If your test uses multiple values make sure there are no simple relations between them that could allow bugs to be missed through silent cancellations. If you need some random floats to put in the test programs use @code{od -f /dev/random} as a source of inspiration. Don't use @code{sprintf} to create output strings in the tests. It can cause hard to find bugs in the test programs themselves. The functions @code{gsl_test_...} support format string arguments so use these instead. @node Compilation, Thread-safety, Test suites, Design @section Compilation Make sure everything compiles cleanly. Use the strict compilation options for extra checking. @smallexample make CFLAGS="-ansi -pedantic -Werror -W -Wall -Wtraditional -Wconversion -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings -Wstrict-prototypes -fshort-enums -fno-common -Wmissing-prototypes -Wnested-externs -Dinline= -g -O4" @end smallexample @noindent Also use @code{checkergcc} to check for memory problems on the stack and the heap. It's the best memory checking tool. If checkergcc isn't available then Electric Fence will check the heap, which is better than no checking. There is a new tool @code{valgrind} for checking memory access. Test the code with this as well. Make sure that the library will also compile with C++ compilers (g++). This should not be too much of a problem if you have been writing in ANSI C. @node Thread-safety, Legal issues, Compilation, Design @section Thread-safety The library should be usable in thread-safe programs. All the functions should be thread-safe, in the sense that they shouldn't use static variables. We don't require everything to be completely thread safe, but anything that isn't should be obvious. For example, some global variables are used to control the overall behavior of the library (range-checking on/off, function to call on fatal error, etc). Since these are accessed directly by the user it is obvious to the multi-threaded programmer that they shouldn't be modified by different threads. There is no need to provide any explicit support for threads (e.g. locking mechanisms etc), just to avoid anything which would make it impossible for someone to call a GSL routine from a multithreaded program. @node Legal issues, Non-UNIX portability, Thread-safety, Design @section Legal issues @itemize @bullet @item Each contributor must make sure her code is under the GNU General Public License (GPL). This means getting a disclaimer from your employer. @item We must clearly understand ownership of existing code and algorithms. @item Each contributor can retain ownership of their code, or sign it over to FSF as they prefer. There is a standard disclaimer in the GPL (take a look at it). The more specific you make your disclaimer the more likely it is that it will be accepted by an employer. For example, @smallexample Yoyodyne, Inc., hereby disclaims all copyright interest in the software `GNU Scientific Library - Legendre Functions' (routines for computing Legendre functions numerically in C) written by James Hacker. , 1 April 1989 Ty Coon, President of Vice @end smallexample @item Obviously: don't use or translate non-free code. In particular don't copy or translate code from @cite{Numerical Recipes} or @cite{ACM TOMS}. Numerical Recipes is under a strict license and is not free software. The publishers Cambridge University Press claim copyright on all aspects of the book and the code, including function names, variable names and ordering of mathematical subexpressions. Routines in GSL should not refer to Numerical Recipes or be based on it in any way. The ACM algorithms published in TOMS (Transactions on Mathematical Software) are not public domain, even though they are distributed on the internet -- the ACM uses a special non-commercial license which is not compatible with the GPL. The details of this license can be found on the cover page of ACM Transactions on Mathematical Software or on the ACM Website. Only use code which is explicitly under a free license: GPL or Public Domain. If there is no license on the code then this does not mean it is public domain -- an explicit statement is required. If in doubt check with the author. @item I @strong{think} one can reference algorithms from classic books on numerical analysis (BJG: yes, provided the code is an independent implementation and not copied from any existing software. For example, it would be ok to read the papers in ACM TOMS and make an independent implementation from their description). @end itemize @node Non-UNIX portability, Compatibility with other libraries, Legal issues, Design @section Non-UNIX portability There is good reason to make this library work on non-UNIX systems. It is probably safe to ignore DOS and only worry about windows95/windowsNT portability (so filenames can be long, I think). On the other hand, nobody should be forced to use non-UNIX systems for development. The best solution is probably to issue guidelines for portability, like saying "don't use XYZ unless you absolutely have to". Then the Windows people will be able to do their porting. @node Compatibility with other libraries, Parallelism, Non-UNIX portability, Design @section Compatibility with other libraries We do not regard compatibility with other numerical libraries as a priority. However, other libraries, such as Numerical Recipes, are widely used. If somebody writes the code to allow drop-in replacement of these libraries it would be useful to people. If it is done, it would be as a separate wrapper that can be maintained and shipped separately. There is a separate issue of system libraries, such as BSD math library and functions like @code{expm1}, @code{log1p}, @code{hypot}. The functions in this library are available on nearly every platform (but not all). In this case, it is best to write code in terms of these native functions to take advantage of the vendor-supplied system library (for example log1p is a machine instruction on the Intel x86). The library also provides portable implementations e.g. @code{gsl_hypot} which are used as an automatic fall back via autoconf when necessary. See the usage of @code{hypot} in @file{gsl/complex/math.c}, the implementation of @code{gsl_hypot} and the corresponding parts of files @file{configure.in} and @file{config.h.in} as an example. @node Parallelism, Precision, Compatibility with other libraries, Design @section Parallelism We don't intend to provide support for parallelism within the library itself. A parallel library would require a completely different design and would carry overhead that other applications do not need. @node Precision, Miscellaneous, Parallelism, Design @section Precision For algorithms which use cutoffs or other precision-related terms please express these in terms of @code{GSL_DBL_EPSILON} and @code{GSL_DBL_MIN}, or powers or combinations of these. This makes it easier to port the routines to different precisions. @node Miscellaneous, , Precision, Design @section Miscellaneous Don't use the letter @code{l} as a variable name --- it is difficult to distinguish from the number @code{1}. (This seems to be a favorite in old Fortran programs). Final tip: one perfect routine is better than any number of routines containing errors. @node Bibliography, Copying, Design, Top @chapter Bibliography @section General numerics @itemize @item @cite{Numerical Computation} (2 Volumes) by C.W. Ueberhuber, Springer 1997, ISBN 3540620583 (Vol 1) and ISBN 3540620575 (Vol 2). @item @cite{Accuracy and Stability of Numerical Algorithms} by N.J. Higham, SIAM, ISBN 0898715210. @item @cite{Sources and Development of Mathematical Software} edited by W.R. Cowell, Prentice Hall, ISBN 0138235015. @item @cite{A Survey of Numerical Mathematics (2 vols)} by D.M. Young and R.T. Gregory, ISBN 0486656918, ISBN 0486656926. @item @cite{Methods and Programs for Mathematical Functions} by Stephen L. Moshier, Hard to find (ISBN 13578980X or 0135789982, possibly others). @item @cite{Numerical Methods That Work} by Forman S. Acton, ISBN 0883854503. @item @cite{Real Computing Made Real: Preventing Errors in Scientific and Engineering Calculations} by Forman S. Acton, ISBN 0486442217. @end itemize @section Reference @itemize @item @cite{Handbook of Mathematical Functions} edited by Abramowitz & Stegun, Dover, ISBN 0486612724. @item @cite{The Art of Computer Programming} (3rd Edition, 3 Volumes) by D. Knuth, Addison Wesley, ISBN 0201485419. @end itemize @section Subject specific @itemize @item @cite{Matrix Computations} (3rd Ed) by G.H. Golub, C.F. Van Loan, Johns Hopkins University Press 1996, ISBN 0801854148. @item @cite{LAPACK Users' Guide} (3rd Edition), SIAM 1999, ISBN 0898714478. @item @cite{Treatise on the Theory of Bessel Functions 2ND Edition} by G N Watson, ISBN 0521483913. @item @cite{Higher Transcendental Functions satisfying nonhomogeneous linear differential equations} by A W Babister, ISBN 1114401773. @end itemize @node Copying, GNU Free Documentation License, Bibliography, Top @unnumbered Copying The subroutines and source code in the @value{GSL} package are "free"; this means that everyone is free to use them and free to redistribute them on a free basis. The @value{GSL}-related programs are not in the public domain; they are copyrighted and there are restrictions on their distribution, but these restrictions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of these programs that they might get from you. Specifically, we want to make sure that you have the right to give away copies of the programs that relate to @value{GSL}, that you receive source code or else can get it if you want it, that you can change these programs or use pieces of them in new free programs, and that you know you can do these things. To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of the @value{GSL}-related code, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must tell them their rights. Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the programs that relate to @value{GSL}. If these programs are modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation. The precise conditions of the licenses for the programs currently being distributed that relate to @value{GSL} are found in the General Public Licenses that accompany them. @node GNU Free Documentation License, , Copying, Top @unnumbered GNU Free Documentation License @include fdl.texi @c @printindex cp @c @node Function Index @c @unnumbered Function Index @c @printindex fn @c @node Variable Index @c @unnumbered Variable Index @c @printindex vr @c @node Type Index @c @unnumbered Type Index @c @printindex tp @bye gsl-1.16/doc/landau.dat0000664000252300025230000001305712171574312011663 00000000000000-5.0000000e+00 5.7299683e-24 -4.9000000e+00 9.8386598e-22 -4.8000000e+00 1.0303677e-19 -4.7000000e+00 6.8985179e-18 -4.6000000e+00 3.0811780e-16 -4.5000000e+00 9.5412629e-15 -4.4000000e+00 2.1211024e-13 -4.3000000e+00 3.4936723e-12 -4.2000000e+00 4.3869439e-11 -4.1000000e+00 4.3093980e-10 -4.0000000e+00 3.3899539e-09 -3.9000000e+00 2.1811027e-08 -3.8000000e+00 1.1699636e-07 -3.7000000e+00 5.3235423e-07 -3.6000000e+00 2.0872004e-06 -3.5000000e+00 7.1518499e-06 -3.4000000e+00 2.1693693e-05 -3.3000000e+00 5.8931800e-05 -3.2000000e+00 1.4488646e-04 -3.1000000e+00 3.2545783e-04 -3.0000000e+00 6.7372862e-04 -2.9000000e+00 1.2953225e-03 -2.8000000e+00 2.3293325e-03 -2.7000000e+00 3.9428747e-03 -2.6000000e+00 6.3186831e-03 -2.5000000e+00 9.6369248e-03 -2.4000000e+00 1.4053985e-02 -2.3000000e+00 1.9681837e-02 -2.2000000e+00 2.6571531e-02 -2.1000000e+00 3.4703439e-02 -2.0000000e+00 4.3985478e-02 -1.9000000e+00 5.4259062e-02 -1.8000000e+00 6.5311333e-02 -1.7000000e+00 7.6891507e-02 -1.6000000e+00 8.8728939e-02 -1.5000000e+00 1.0055075e-01 -1.4000000e+00 1.1209734e-01 -1.3000000e+00 1.2313470e-01 -1.2000000e+00 1.3346307e-01 -1.1000000e+00 1.4292196e-01 -1.0000000e+00 1.5139191e-01 -9.0000000e-01 1.5879352e-01 -8.0000000e-01 1.6508452e-01 -7.0000000e-01 1.7025552e-01 -6.0000000e-01 1.7432489e-01 -5.0000000e-01 1.7733355e-01 -4.0000000e-01 1.7933968e-01 -3.0000000e-01 1.8041398e-01 -2.0000000e-01 1.8063532e-01 -1.0000000e-01 1.8008710e-01 -1.0269563e-15 1.7885416e-01 1.0000000e-01 1.7702044e-01 2.0000000e-01 1.7466703e-01 3.0000000e-01 1.7187090e-01 4.0000000e-01 1.6870392e-01 5.0000000e-01 1.6523228e-01 6.0000000e-01 1.6151625e-01 7.0000000e-01 1.5761010e-01 8.0000000e-01 1.5356220e-01 9.0000000e-01 1.4941526e-01 1.0000000e-00 1.4520664e-01 1.1000000e+00 1.4096874e-01 1.2000000e+00 1.3672939e-01 1.3000000e+00 1.3251227e-01 1.4000000e+00 1.2833731e-01 1.5000000e+00 1.2422109e-01 1.6000000e+00 1.2017724e-01 1.7000000e+00 1.1621676e-01 1.8000000e+00 1.1234837e-01 1.9000000e+00 1.0857877e-01 2.0000000e+00 1.0491299e-01 2.1000000e+00 1.0135454e-01 2.2000000e+00 9.7905675e-02 2.3000000e+00 9.4567597e-02 2.4000000e+00 9.1340593e-02 2.5000000e+00 8.8224201e-02 2.6000000e+00 8.5217338e-02 2.7000000e+00 8.2318412e-02 2.8000000e+00 7.9525419e-02 2.9000000e+00 7.6836028e-02 3.0000000e+00 7.4247655e-02 3.1000000e+00 7.1757520e-02 3.2000000e+00 6.9362706e-02 3.3000000e+00 6.7060199e-02 3.4000000e+00 6.4846927e-02 3.5000000e+00 6.2719789e-02 3.6000000e+00 6.0675685e-02 3.7000000e+00 5.8711536e-02 3.8000000e+00 5.6824298e-02 3.9000000e+00 5.5010981e-02 4.0000000e+00 5.3268657e-02 4.1000000e+00 5.1594472e-02 4.2000000e+00 4.9985647e-02 4.3000000e+00 4.8439490e-02 4.4000000e+00 4.6953393e-02 4.5000000e+00 4.5524840e-02 4.6000000e+00 4.4151403e-02 4.7000000e+00 4.2830744e-02 4.8000000e+00 4.1560618e-02 4.9000000e+00 4.0338866e-02 5.0000000e+00 3.9163420e-02 5.1000000e+00 3.8032293e-02 5.2000000e+00 3.6943588e-02 5.3000000e+00 3.5895483e-02 5.4000000e+00 3.4886240e-02 5.5000000e+00 3.3914195e-02 5.6000000e+00 3.2977757e-02 5.7000000e+00 3.2075409e-02 5.8000000e+00 3.1205698e-02 5.9000000e+00 3.0367240e-02 6.0000000e+00 2.9558712e-02 6.1000000e+00 2.8778853e-02 6.2000000e+00 2.8026456e-02 6.3000000e+00 2.7300373e-02 6.4000000e+00 2.6599507e-02 6.5000000e+00 2.5922811e-02 6.6000000e+00 2.5269286e-02 6.7000000e+00 2.4637980e-02 6.8000000e+00 2.4027982e-02 6.9000000e+00 2.3438424e-02 7.0000000e+00 2.2868480e-02 7.1000000e+00 2.2317357e-02 7.2000000e+00 2.1784301e-02 7.3000000e+00 2.1268592e-02 7.4000000e+00 2.0769543e-02 7.5000000e+00 2.0286495e-02 7.6000000e+00 1.9818822e-02 7.7000000e+00 1.9365924e-02 7.8000000e+00 1.8927229e-02 7.9000000e+00 1.8502190e-02 8.0000000e+00 1.8090284e-02 8.1000000e+00 1.7691010e-02 8.2000000e+00 1.7303892e-02 8.3000000e+00 1.6928471e-02 8.4000000e+00 1.6564312e-02 8.5000000e+00 1.6210995e-02 8.6000000e+00 1.5868120e-02 8.7000000e+00 1.5535304e-02 8.8000000e+00 1.5212181e-02 8.9000000e+00 1.4898400e-02 9.0000000e+00 1.4593624e-02 9.1000000e+00 1.4297531e-02 9.2000000e+00 1.4009812e-02 9.3000000e+00 1.3730172e-02 9.4000000e+00 1.3458328e-02 9.5000000e+00 1.3194007e-02 9.6000000e+00 1.2936948e-02 9.7000000e+00 1.2686902e-02 9.8000000e+00 1.2443629e-02 9.9000000e+00 1.2206897e-02 1.0000000e+01 1.1976487e-02 1.0100000e+01 1.1752186e-02 1.0200000e+01 1.1533791e-02 1.0300000e+01 1.1321105e-02 1.0400000e+01 1.1113940e-02 1.0500000e+01 1.0912115e-02 1.0600000e+01 1.0715458e-02 1.0700000e+01 1.0523801e-02 1.0800000e+01 1.0336983e-02 1.0900000e+01 1.0154849e-02 1.1000000e+01 9.9772519e-03 1.1100000e+01 9.8040478e-03 1.1200000e+01 9.6350992e-03 1.1300000e+01 9.4702736e-03 1.1400000e+01 9.3094433e-03 1.1500000e+01 9.1524856e-03 1.1600000e+01 8.9992820e-03 1.1700000e+01 8.8497185e-03 1.1800000e+01 8.7036852e-03 1.1900000e+01 8.5610761e-03 1.2000000e+01 8.4217891e-03 1.2100000e+01 8.2857256e-03 1.2200000e+01 8.1527907e-03 1.2300000e+01 8.0228928e-03 1.2400000e+01 7.8959433e-03 1.2500000e+01 7.7718570e-03 1.2600000e+01 7.6505515e-03 1.2700000e+01 7.5319472e-03 1.2800000e+01 7.4159673e-03 1.2900000e+01 7.3025377e-03 1.3000000e+01 7.1915866e-03 1.3100000e+01 7.0830449e-03 1.3200000e+01 6.9768457e-03 1.3300000e+01 6.8729241e-03 1.3400000e+01 6.7712178e-03 1.3500000e+01 6.6716662e-03 1.3600000e+01 6.5742109e-03 1.3700000e+01 6.4787954e-03 1.3800000e+01 6.3853647e-03 1.3900000e+01 6.2938662e-03 1.4000000e+01 6.2042484e-03 1.4100000e+01 6.1164618e-03 1.4200000e+01 6.0304583e-03 1.4300000e+01 5.9461914e-03 1.4400000e+01 5.8636161e-03 1.4500000e+01 5.7826888e-03 1.4600000e+01 5.7033672e-03 1.4700000e+01 5.6256103e-03 1.4800000e+01 5.5493784e-03 1.4900000e+01 5.4746330e-03 1.5000000e+01 5.4013369e-03 gsl-1.16/doc/const.texi0000664000252300025230000003164612171574312011752 00000000000000@cindex physical constants @cindex constants, physical @cindex conversion of units @cindex units, conversion of This chapter describes macros for the values of physical constants, such as the speed of light, @math{c}, and gravitational constant, @math{G}. The values are available in different unit systems, including the standard MKSA system (meters, kilograms, seconds, amperes) and the CGSM system (centimeters, grams, seconds, gauss), which is commonly used in Astronomy. The definitions of constants in the MKSA system are available in the file @file{gsl_const_mksa.h}. The constants in the CGSM system are defined in @file{gsl_const_cgsm.h}. Dimensionless constants, such as the fine structure constant, which are pure numbers are defined in @file{gsl_const_num.h}. @menu * Fundamental Constants:: * Astronomy and Astrophysics:: * Atomic and Nuclear Physics:: * Measurement of Time:: * Imperial Units :: * Speed and Nautical Units:: * Printers Units:: * Volume Area and Length:: * Mass and Weight :: * Thermal Energy and Power:: * Pressure:: * Viscosity:: * Light and Illumination:: * Radioactivity:: * Force and Energy:: * Prefixes:: * Physical Constant Examples:: * Physical Constant References and Further Reading:: @end menu The full list of constants is described briefly below. Consult the header files themselves for the values of the constants used in the library. @node Fundamental Constants @section Fundamental Constants @cindex fundamental constants @cindex constants, fundamental @table @code @item GSL_CONST_MKSA_SPEED_OF_LIGHT The speed of light in vacuum, @math{c}. @item GSL_CONST_MKSA_VACUUM_PERMEABILITY The permeability of free space, @math{\mu_0}. This constant is defined in the MKSA system only. @item GSL_CONST_MKSA_VACUUM_PERMITTIVITY The permittivity of free space, @math{\epsilon_0}. This constant is defined in the MKSA system only. @item GSL_CONST_MKSA_PLANCKS_CONSTANT_H Planck's constant, @math{h}. @item GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR Planck's constant divided by @math{2\pi}, @math{\hbar}. @item GSL_CONST_NUM_AVOGADRO Avogadro's number, @math{N_a}. @item GSL_CONST_MKSA_FARADAY The molar charge of 1 Faraday. @item GSL_CONST_MKSA_BOLTZMANN The Boltzmann constant, @math{k}. @item GSL_CONST_MKSA_MOLAR_GAS The molar gas constant, @math{R_0}. @item GSL_CONST_MKSA_STANDARD_GAS_VOLUME The standard gas volume, @math{V_0}. @item GSL_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT The Stefan-Boltzmann radiation constant, @math{\sigma}. @item GSL_CONST_MKSA_GAUSS The magnetic field of 1 Gauss. @end table @node Astronomy and Astrophysics @section Astronomy and Astrophysics @cindex astronomical constants @table @code @item GSL_CONST_MKSA_ASTRONOMICAL_UNIT The length of 1 astronomical unit (mean earth-sun distance), @math{au}. @item GSL_CONST_MKSA_GRAVITATIONAL_CONSTANT The gravitational constant, @math{G}. @item GSL_CONST_MKSA_LIGHT_YEAR The distance of 1 light-year, @math{ly}. @item GSL_CONST_MKSA_PARSEC The distance of 1 parsec, @math{pc}. @item GSL_CONST_MKSA_GRAV_ACCEL The standard gravitational acceleration on Earth, @math{g}. @item GSL_CONST_MKSA_SOLAR_MASS The mass of the Sun. @end table @node Atomic and Nuclear Physics @section Atomic and Nuclear Physics @cindex atomic physics, constants @cindex nuclear physics, constants @table @code @item GSL_CONST_MKSA_ELECTRON_CHARGE The charge of the electron, @math{e}. @item GSL_CONST_MKSA_ELECTRON_VOLT The energy of 1 electron volt, @math{eV}. @item GSL_CONST_MKSA_UNIFIED_ATOMIC_MASS The unified atomic mass, @math{amu}. @item GSL_CONST_MKSA_MASS_ELECTRON The mass of the electron, @math{m_e}. @item GSL_CONST_MKSA_MASS_MUON The mass of the muon, @math{m_\mu}. @item GSL_CONST_MKSA_MASS_PROTON The mass of the proton, @math{m_p}. @item GSL_CONST_MKSA_MASS_NEUTRON The mass of the neutron, @math{m_n}. @item GSL_CONST_NUM_FINE_STRUCTURE The electromagnetic fine structure constant @math{\alpha}. @item GSL_CONST_MKSA_RYDBERG The Rydberg constant, @math{Ry}, in units of energy. This is related to the Rydberg inverse wavelength @math{R_\infty} by @math{Ry = h c R_\infty}. @item GSL_CONST_MKSA_BOHR_RADIUS The Bohr radius, @math{a_0}. @item GSL_CONST_MKSA_ANGSTROM The length of 1 angstrom. @item GSL_CONST_MKSA_BARN The area of 1 barn. @item GSL_CONST_MKSA_BOHR_MAGNETON The Bohr Magneton, @math{\mu_B}. @item GSL_CONST_MKSA_NUCLEAR_MAGNETON The Nuclear Magneton, @math{\mu_N}. @item GSL_CONST_MKSA_ELECTRON_MAGNETIC_MOMENT The absolute value of the magnetic moment of the electron, @math{\mu_e}. The physical magnetic moment of the electron is negative. @item GSL_CONST_MKSA_PROTON_MAGNETIC_MOMENT The magnetic moment of the proton, @math{\mu_p}. @item GSL_CONST_MKSA_THOMSON_CROSS_SECTION The Thomson cross section, @math{\sigma_T}. @item GSL_CONST_MKSA_DEBYE The electric dipole moment of 1 Debye, @math{D}. @end table @node Measurement of Time @section Measurement of Time @cindex time units @table @code @item GSL_CONST_MKSA_MINUTE The number of seconds in 1 minute. @item GSL_CONST_MKSA_HOUR The number of seconds in 1 hour. @item GSL_CONST_MKSA_DAY The number of seconds in 1 day. @item GSL_CONST_MKSA_WEEK The number of seconds in 1 week. @end table @node Imperial Units @section Imperial Units @cindex imperial units @cindex units, imperial @table @code @item GSL_CONST_MKSA_INCH The length of 1 inch. @item GSL_CONST_MKSA_FOOT The length of 1 foot. @item GSL_CONST_MKSA_YARD The length of 1 yard. @item GSL_CONST_MKSA_MILE The length of 1 mile. @item GSL_CONST_MKSA_MIL The length of 1 mil (1/1000th of an inch). @end table @node Speed and Nautical Units @section Speed and Nautical Units @cindex nautical units @table @code @item GSL_CONST_MKSA_KILOMETERS_PER_HOUR The speed of 1 kilometer per hour. @item GSL_CONST_MKSA_MILES_PER_HOUR The speed of 1 mile per hour. @item GSL_CONST_MKSA_NAUTICAL_MILE The length of 1 nautical mile. @item GSL_CONST_MKSA_FATHOM The length of 1 fathom. @item GSL_CONST_MKSA_KNOT The speed of 1 knot. @end table @node Printers Units @section Printers Units @cindex printers units @table @code @item GSL_CONST_MKSA_POINT The length of 1 printer's point (1/72 inch). @item GSL_CONST_MKSA_TEXPOINT The length of 1 TeX point (1/72.27 inch). @end table @node Volume Area and Length @section Volume, Area and Length @cindex volume units @table @code @item GSL_CONST_MKSA_MICRON The length of 1 micron. @item GSL_CONST_MKSA_HECTARE The area of 1 hectare. @item GSL_CONST_MKSA_ACRE The area of 1 acre. @item GSL_CONST_MKSA_LITER The volume of 1 liter. @item GSL_CONST_MKSA_US_GALLON The volume of 1 US gallon. @item GSL_CONST_MKSA_CANADIAN_GALLON The volume of 1 Canadian gallon. @item GSL_CONST_MKSA_UK_GALLON The volume of 1 UK gallon. @item GSL_CONST_MKSA_QUART The volume of 1 quart. @item GSL_CONST_MKSA_PINT The volume of 1 pint. @end table @comment @node Cookery @comment @section Cookery @comment @commentindex cookery units @comment @table @commentode @comment @item GSL_CONST_MKSA_CUP @comment The volume of 1 cup. @comment @item GSL_CONST_MKSA_FLUID_OUNCE @comment The volume of 1 fluid ounce. @comment @item GSL_CONST_MKSA_TABLESPOON @comment The volume of 1 tablespoon. @comment @item GSL_CONST_MKSA_TEASPOON @comment The volume of 1 teaspoon. @comment @end table @node Mass and Weight @section Mass and Weight @cindex mass, units of @cindex weight, units of @table @code @item GSL_CONST_MKSA_POUND_MASS The mass of 1 pound. @item GSL_CONST_MKSA_OUNCE_MASS The mass of 1 ounce. @item GSL_CONST_MKSA_TON The mass of 1 ton. @item GSL_CONST_MKSA_METRIC_TON The mass of 1 metric ton (1000 kg). @item GSL_CONST_MKSA_UK_TON The mass of 1 UK ton. @item GSL_CONST_MKSA_TROY_OUNCE The mass of 1 troy ounce. @item GSL_CONST_MKSA_CARAT The mass of 1 carat. @item GSL_CONST_MKSA_GRAM_FORCE The force of 1 gram weight. @item GSL_CONST_MKSA_POUND_FORCE The force of 1 pound weight. @item GSL_CONST_MKSA_KILOPOUND_FORCE The force of 1 kilopound weight. @item GSL_CONST_MKSA_POUNDAL The force of 1 poundal. @end table @node Thermal Energy and Power @section Thermal Energy and Power @cindex energy, units of @cindex power, units of @cindex thermal energy, units of @table @code @item GSL_CONST_MKSA_CALORIE The energy of 1 calorie. @item GSL_CONST_MKSA_BTU The energy of 1 British Thermal Unit, @math{btu}. @item GSL_CONST_MKSA_THERM The energy of 1 Therm. @item GSL_CONST_MKSA_HORSEPOWER The power of 1 horsepower. @end table @node Pressure @section Pressure @cindex pressure, units of @table @code @item GSL_CONST_MKSA_BAR The pressure of 1 bar. @item GSL_CONST_MKSA_STD_ATMOSPHERE The pressure of 1 standard atmosphere. @item GSL_CONST_MKSA_TORR The pressure of 1 torr. @item GSL_CONST_MKSA_METER_OF_MERCURY The pressure of 1 meter of mercury. @item GSL_CONST_MKSA_INCH_OF_MERCURY The pressure of 1 inch of mercury. @item GSL_CONST_MKSA_INCH_OF_WATER The pressure of 1 inch of water. @item GSL_CONST_MKSA_PSI The pressure of 1 pound per square inch. @end table @node Viscosity @section Viscosity @cindex viscosity, units of @table @code @item GSL_CONST_MKSA_POISE The dynamic viscosity of 1 poise. @item GSL_CONST_MKSA_STOKES The kinematic viscosity of 1 stokes. @end table @node Light and Illumination @section Light and Illumination @cindex light, units of @cindex illumination, units of @table @code @item GSL_CONST_MKSA_STILB The luminance of 1 stilb. @item GSL_CONST_MKSA_LUMEN The luminous flux of 1 lumen. @item GSL_CONST_MKSA_LUX The illuminance of 1 lux. @item GSL_CONST_MKSA_PHOT The illuminance of 1 phot. @item GSL_CONST_MKSA_FOOTCANDLE The illuminance of 1 footcandle. @item GSL_CONST_MKSA_LAMBERT The luminance of 1 lambert. @item GSL_CONST_MKSA_FOOTLAMBERT The luminance of 1 footlambert. @end table @node Radioactivity @section Radioactivity @cindex radioactivity, units of @table @code @item GSL_CONST_MKSA_CURIE The activity of 1 curie. @item GSL_CONST_MKSA_ROENTGEN The exposure of 1 roentgen. @item GSL_CONST_MKSA_RAD The absorbed dose of 1 rad. @end table @node Force and Energy @section Force and Energy @cindex force and energy, units of @table @code @item GSL_CONST_MKSA_NEWTON The SI unit of force, 1 Newton. @item GSL_CONST_MKSA_DYNE The force of 1 Dyne = @c{$10^{-5}$} @math{10^-5} Newton. @item GSL_CONST_MKSA_JOULE The SI unit of energy, 1 Joule. @item GSL_CONST_MKSA_ERG The energy 1 erg = @c{$10^{-7}$} @math{10^-7} Joule. @end table @node Prefixes @section Prefixes @cindex prefixes @cindex constants, prefixes These constants are dimensionless scaling factors. @table @code @item GSL_CONST_NUM_YOTTA @c{$10^{24}$} @math{10^24} @item GSL_CONST_NUM_ZETTA @c{$10^{21}$} @math{10^21} @item GSL_CONST_NUM_EXA @c{$10^{18}$} @math{10^18} @item GSL_CONST_NUM_PETA @c{$10^{15}$} @math{10^15} @item GSL_CONST_NUM_TERA @c{$10^{12}$} @math{10^12} @item GSL_CONST_NUM_GIGA @math{10^9} @item GSL_CONST_NUM_MEGA @math{10^6} @item GSL_CONST_NUM_KILO @math{10^3} @item GSL_CONST_NUM_MILLI @c{$10^{-3}$} @math{10^-3} @item GSL_CONST_NUM_MICRO @c{$10^{-6}$} @math{10^-6} @item GSL_CONST_NUM_NANO @c{$10^{-9}$} @math{10^-9} @item GSL_CONST_NUM_PICO @c{$10^{-12}$} @math{10^-12} @item GSL_CONST_NUM_FEMTO @c{$10^{-15}$} @math{10^-15} @item GSL_CONST_NUM_ATTO @c{$10^{-18}$} @math{10^-18} @item GSL_CONST_NUM_ZEPTO @c{$10^{-21}$} @math{10^-21} @item GSL_CONST_NUM_YOCTO @c{$10^{-24}$} @math{10^-24} @end table @node Physical Constant Examples @section Examples The following program demonstrates the use of the physical constants in a calculation. In this case, the goal is to calculate the range of light-travel times from Earth to Mars. The required data is the average distance of each planet from the Sun in astronomical units (the eccentricities and inclinations of the orbits will be neglected for the purposes of this calculation). The average radius of the orbit of Mars is 1.52 astronomical units, and for the orbit of Earth it is 1 astronomical unit (by definition). These values are combined with the MKSA values of the constants for the speed of light and the length of an astronomical unit to produce a result for the shortest and longest light-travel times in seconds. The figures are converted into minutes before being displayed. @example @verbatiminclude examples/const.c @end example @noindent Here is the output from the program, @example @verbatiminclude examples/const.out @end example @node Physical Constant References and Further Reading @section References and Further Reading The authoritative sources for physical constants are the 2006 CODATA recommended values, published in the article below. Further information on the values of physical constants is also available from the NIST website. @itemize @w{} @item P.J. Mohr, B.N. Taylor, D.B. Newell, ``CODATA Recommended Values of the Fundamental Physical Constants: 2006'', Reviews of Modern Physics, 80(2), pp. 633--730 (2008). @item @uref{http://www.physics.nist.gov/cuu/Constants/index.html} @item @uref{http://physics.nist.gov/Pubs/SP811/appenB9.html} @end itemize gsl-1.16/doc/Makefile.in0000664000252300025230000010260212172253755011773 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = doc DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(gsl_ref_TEXINFOS) mdate-sh \ $(srcdir)/version.texi $(srcdir)/stamp-vti texinfo.tex \ ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = SOURCES = DIST_SOURCES = AM_V_DVIPS = $(am__v_DVIPS_@AM_V@) am__v_DVIPS_ = $(am__v_DVIPS_@AM_DEFAULT_V@) am__v_DVIPS_0 = @echo " DVIPS " $@; am__v_DVIPS_1 = AM_V_MAKEINFO = $(am__v_MAKEINFO_@AM_V@) am__v_MAKEINFO_ = $(am__v_MAKEINFO_@AM_DEFAULT_V@) am__v_MAKEINFO_0 = @echo " MAKEINFO" $@; am__v_MAKEINFO_1 = AM_V_INFOHTML = $(am__v_INFOHTML_@AM_V@) am__v_INFOHTML_ = $(am__v_INFOHTML_@AM_DEFAULT_V@) am__v_INFOHTML_0 = @echo " INFOHTML" $@; am__v_INFOHTML_1 = AM_V_TEXI2DVI = $(am__v_TEXI2DVI_@AM_V@) am__v_TEXI2DVI_ = $(am__v_TEXI2DVI_@AM_DEFAULT_V@) am__v_TEXI2DVI_0 = @echo " TEXI2DVI" $@; am__v_TEXI2DVI_1 = AM_V_TEXI2PDF = $(am__v_TEXI2PDF_@AM_V@) am__v_TEXI2PDF_ = $(am__v_TEXI2PDF_@AM_DEFAULT_V@) am__v_TEXI2PDF_0 = @echo " TEXI2PDF" $@; am__v_TEXI2PDF_1 = AM_V_texinfo = $(am__v_texinfo_@AM_V@) am__v_texinfo_ = $(am__v_texinfo_@AM_DEFAULT_V@) am__v_texinfo_0 = -q am__v_texinfo_1 = AM_V_texidevnull = $(am__v_texidevnull_@AM_V@) am__v_texidevnull_ = $(am__v_texidevnull_@AM_DEFAULT_V@) am__v_texidevnull_0 = > /dev/null am__v_texidevnull_1 = INFO_DEPS = $(srcdir)/gsl-ref.info am__TEXINFO_TEX_DIR = $(srcdir) DVIS = gsl-ref.dvi PDFS = gsl-ref.pdf PSS = gsl-ref.ps HTMLS = gsl-ref.html TEXINFOS = gsl-ref.texi TEXI2DVI = texi2dvi TEXI2PDF = $(TEXI2DVI) --pdf --batch MAKEINFOHTML = $(MAKEINFO) --html AM_MAKEINFOHTMLFLAGS = $(AM_MAKEINFOFLAGS) DVIPS = dvips am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__installdirs = "$(DESTDIR)$(infodir)" "$(DESTDIR)$(man1dir)" \ "$(DESTDIR)$(man3dir)" am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } man1dir = $(mandir)/man1 man3dir = $(mandir)/man3 NROFF = nroff MANS = $(man_MANS) DATA = $(noinst_DATA) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ info_TEXINFOS = gsl-ref.texi noinst_TEXINFOS = gsl-design.texi gsl_ref_TEXINFOS = err.texi cblas.texi blas.texi min.texi fft.texi \ rng.texi randist.texi roots.texi statistics.texi specfunc.texi \ specfunc-airy.texi specfunc-bessel.texi specfunc-clausen.texi \ specfunc-coulomb.texi specfunc-coupling.texi \ specfunc-dawson.texi specfunc-debye.texi specfunc-dilog.texi \ specfunc-elementary.texi specfunc-ellint.texi \ specfunc-elljac.texi specfunc-erf.texi specfunc-exp.texi \ specfunc-expint.texi specfunc-fermi-dirac.texi \ specfunc-gamma.texi specfunc-gegenbauer.texi \ specfunc-hyperg.texi specfunc-lambert.texi \ specfunc-laguerre.texi specfunc-legendre.texi \ specfunc-log.texi specfunc-mathieu.texi specfunc-pow-int.texi \ specfunc-psi.texi specfunc-synchrotron.texi \ specfunc-transport.texi specfunc-trig.texi specfunc-zeta.texi \ siman.texi vectors.texi debug.texi histogram.texi \ ode-initval.texi integration.texi ieee754.texi montecarlo.texi \ sum.texi intro.texi usage.texi dwt.texi dht.texi interp.texi \ poly.texi linalg.texi eigen.texi multiroots.texi sort.texi \ permutation.texi combination.texi multiset.texi complex.texi \ math.texi fitting.texi multifit.texi const.texi ntuple.texi \ diff.texi qrng.texi cheb.texi multimin.texi gpl.texi fdl.texi \ autoconf.texi bspline.texi man_MANS = gsl.3 gsl-config.1 gsl-randist.1 gsl-histogram.1 figures = multimin.eps siman-test.eps siman-energy.eps 12-cities.eps \ initial-route.eps final-route.eps fft-complex-radix2-f.eps \ fft-complex-radix2-t.eps fft-complex-radix2.eps \ fft-real-mixedradix.eps roots-bisection.eps \ roots-false-position.eps roots-newtons-method.eps \ roots-secant-method.eps histogram.eps histogram2d.eps \ min-interval.eps fit-wlinear.eps fit-wlinear2.eps fit-exp.eps \ ntuple.eps qrng.eps cheb.eps vdp.eps interp2.eps rand-beta.tex \ rand-binomial.tex rand-cauchy.tex rand-chisq.tex \ rand-erlang.tex rand-exponential.tex rand-fdist.tex \ rand-flat.tex rand-gamma.tex rand-gaussian.tex \ rand-geometric.tex rand-laplace.tex rand-logarithmic.tex \ rand-logistic.tex rand-lognormal.tex rand-pareto.tex \ rand-poisson.tex rand-hypergeometric.tex rand-nbinomial.tex \ rand-pascal.tex rand-bivariate-gaussian.tex rand-rayleigh.tex \ rand-rayleigh-tail.tex rand-tdist.tex rand-weibull.tex \ random-walk.tex randplots.gnp rand-exppow.tex rand-levy.tex \ rand-levyskew.tex rand-gumbel.tex rand-bernoulli.tex \ rand-gaussian-tail.tex rand-gumbel1.tex rand-gumbel2.tex \ landau.dat rand-landau.tex dwt-orig.eps dwt-samp.eps \ interpp2.eps bspline.eps robust.eps examples_src = examples/blas.c examples/block.c examples/cblas.c \ examples/cdf.c examples/cheb.c examples/combination.c \ examples/multiset.c examples/const.c examples/demo_fn.c \ examples/diff.c examples/eigen.c examples/fft.c \ examples/fftmr.c examples/fftreal.c examples/fitting.c \ examples/fitting2.c examples/fitting3.c examples/histogram.c \ examples/histogram2d.c examples/ieee.c examples/ieeeround.c \ examples/integration.c examples/interp.c examples/intro.c \ examples/linalglu.c examples/matrix.c examples/matrixw.c \ examples/min.c examples/monte.c examples/ntupler.c \ examples/ntuplew.c examples/ode-initval.c examples/odefixed.c \ examples/permseq.c examples/permshuffle.c examples/polyroots.c \ examples/qrng.c examples/randpoisson.c examples/randwalk.c \ examples/rng.c examples/rngunif.c examples/robfit.c \ examples/rootnewt.c examples/roots.c examples/siman.c \ examples/sortsmall.c examples/specfun.c examples/specfun_e.c \ examples/stat.c examples/statsort.c examples/sum.c \ examples/vector.c examples/vectorr.c examples/vectorview.c \ examples/vectorw.c examples/demo_fn.h examples/dwt.c \ examples/expfit.c examples/nlfit.c examples/interpp.c \ examples/eigen_nonsymm.c examples/bspline.c \ examples/multimin.c examples/multiminfn.c examples/nmsimplex.c \ examples/ode-initval-low-level.c examples_out = examples/blas.out examples/block.out examples/cblas.out examples/cdf.out examples/combination.out examples/multiset.out examples/const.out examples/diff.out examples/integration.out examples/intro.out examples/linalglu.out examples/min.out examples/polyroots.out examples/randpoisson.2.out examples/randpoisson.out examples/rng.out examples/rngunif.2.out examples/rngunif.out examples/sortsmall.out examples/specfun.out examples/specfun_e.out examples/stat.out examples/statsort.out examples/sum.out examples/vectorview.out examples/ecg.dat examples/dwt.dat examples/multimin.out examples/nmsimplex.out noinst_DATA = $(examples_src) $(examples_out) $(figures) EXTRA_DIST = $(man_MANS) $(noinst_DATA) gsl-design.texi fftalgorithms.tex fftalgorithms.bib algorithm.sty algorithmic.sty calc.sty statnotes.tex all: all-am .SUFFIXES: .SUFFIXES: .dvi .html .info .pdf .ps .texi $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu doc/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu doc/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs .texi.info: $(AM_V_MAKEINFO)restore=: && backupdir="$(am__leading_dot)am$$$$" && \ am__cwd=`pwd` && $(am__cd) $(srcdir) && \ rm -rf $$backupdir && mkdir $$backupdir && \ if ($(MAKEINFO) --version) >/dev/null 2>&1; then \ for f in $@ $@-[0-9] $@-[0-9][0-9] $(@:.info=).i[0-9] $(@:.info=).i[0-9][0-9]; do \ if test -f $$f; then mv $$f $$backupdir; restore=mv; else :; fi; \ done; \ else :; fi && \ cd "$$am__cwd"; \ if $(MAKEINFO) $(AM_MAKEINFOFLAGS) $(MAKEINFOFLAGS) -I $(srcdir) \ -o $@ $<; \ then \ rc=0; \ $(am__cd) $(srcdir); \ else \ rc=$$?; \ $(am__cd) $(srcdir) && \ $$restore $$backupdir/* `echo "./$@" | sed 's|[^/]*$$||'`; \ fi; \ rm -rf $$backupdir; exit $$rc .texi.dvi: $(AM_V_TEXI2DVI)TEXINPUTS="$(am__TEXINFO_TEX_DIR)$(PATH_SEPARATOR)$$TEXINPUTS" \ MAKEINFO='$(MAKEINFO) $(AM_MAKEINFOFLAGS) $(MAKEINFOFLAGS) -I $(srcdir)' \ $(TEXI2DVI) $(AM_V_texinfo) --build-dir=$(@:.dvi=.t2d) -o $@ $(AM_V_texidevnull) \ $< .texi.pdf: $(AM_V_TEXI2PDF)TEXINPUTS="$(am__TEXINFO_TEX_DIR)$(PATH_SEPARATOR)$$TEXINPUTS" \ MAKEINFO='$(MAKEINFO) $(AM_MAKEINFOFLAGS) $(MAKEINFOFLAGS) -I $(srcdir)' \ $(TEXI2PDF) $(AM_V_texinfo) --build-dir=$(@:.pdf=.t2p) -o $@ $(AM_V_texidevnull) \ $< .texi.html: $(AM_V_MAKEINFO)rm -rf $(@:.html=.htp) $(AM_V_at)if $(MAKEINFOHTML) $(AM_MAKEINFOHTMLFLAGS) $(MAKEINFOFLAGS) -I $(srcdir) \ -o $(@:.html=.htp) $<; \ then \ rm -rf $@; \ if test ! -d $(@:.html=.htp) && test -d $(@:.html=); then \ mv $(@:.html=) $@; else mv $(@:.html=.htp) $@; fi; \ else \ if test ! -d $(@:.html=.htp) && test -d $(@:.html=); then \ rm -rf $(@:.html=); else rm -Rf $(@:.html=.htp) $@; fi; \ exit 1; \ fi $(srcdir)/gsl-ref.info: gsl-ref.texi $(srcdir)/version.texi $(gsl_ref_TEXINFOS) gsl-ref.dvi: gsl-ref.texi $(srcdir)/version.texi $(gsl_ref_TEXINFOS) gsl-ref.pdf: gsl-ref.texi $(srcdir)/version.texi $(gsl_ref_TEXINFOS) gsl-ref.html: gsl-ref.texi $(srcdir)/version.texi $(gsl_ref_TEXINFOS) $(srcdir)/version.texi: @MAINTAINER_MODE_TRUE@ $(srcdir)/stamp-vti $(srcdir)/stamp-vti: gsl-ref.texi $(top_srcdir)/configure @(dir=.; test -f ./gsl-ref.texi || dir=$(srcdir); \ set `$(SHELL) $(srcdir)/mdate-sh $$dir/gsl-ref.texi`; \ echo "@set UPDATED $$1 $$2 $$3"; \ echo "@set UPDATED-MONTH $$2 $$3"; \ echo "@set EDITION $(VERSION)"; \ echo "@set VERSION $(VERSION)") > vti.tmp @cmp -s vti.tmp $(srcdir)/version.texi \ || (echo "Updating $(srcdir)/version.texi"; \ cp vti.tmp $(srcdir)/version.texi) -@rm -f vti.tmp @cp $(srcdir)/version.texi $@ mostlyclean-vti: -rm -f vti.tmp maintainer-clean-vti: @MAINTAINER_MODE_TRUE@ -rm -f $(srcdir)/stamp-vti $(srcdir)/version.texi .dvi.ps: $(AM_V_DVIPS)TEXINPUTS="$(am__TEXINFO_TEX_DIR)$(PATH_SEPARATOR)$$TEXINPUTS" \ $(DVIPS) $(AM_V_texinfo) -o $@ $< uninstall-dvi-am: @$(NORMAL_UNINSTALL) @list='$(DVIS)'; test -n "$(dvidir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " rm -f '$(DESTDIR)$(dvidir)/$$f'"; \ rm -f "$(DESTDIR)$(dvidir)/$$f"; \ done uninstall-html-am: @$(NORMAL_UNINSTALL) @list='$(HTMLS)'; test -n "$(htmldir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " rm -rf '$(DESTDIR)$(htmldir)/$$f'"; \ rm -rf "$(DESTDIR)$(htmldir)/$$f"; \ done uninstall-info-am: @$(PRE_UNINSTALL) @if test -d '$(DESTDIR)$(infodir)' && $(am__can_run_installinfo); then \ list='$(INFO_DEPS)'; \ for file in $$list; do \ relfile=`echo "$$file" | sed 's|^.*/||'`; \ echo " install-info --info-dir='$(DESTDIR)$(infodir)' --remove '$(DESTDIR)$(infodir)/$$relfile'"; \ if install-info --info-dir="$(DESTDIR)$(infodir)" --remove "$(DESTDIR)$(infodir)/$$relfile"; \ then :; else test ! -f "$(DESTDIR)$(infodir)/$$relfile" || exit 1; fi; \ done; \ else :; fi @$(NORMAL_UNINSTALL) @list='$(INFO_DEPS)'; \ for file in $$list; do \ relfile=`echo "$$file" | sed 's|^.*/||'`; \ relfile_i=`echo "$$relfile" | sed 's|\.info$$||;s|$$|.i|'`; \ (if test -d "$(DESTDIR)$(infodir)" && cd "$(DESTDIR)$(infodir)"; then \ echo " cd '$(DESTDIR)$(infodir)' && rm -f $$relfile $$relfile-[0-9] $$relfile-[0-9][0-9] $$relfile_i[0-9] $$relfile_i[0-9][0-9]"; \ rm -f $$relfile $$relfile-[0-9] $$relfile-[0-9][0-9] $$relfile_i[0-9] $$relfile_i[0-9][0-9]; \ else :; fi); \ done uninstall-pdf-am: @$(NORMAL_UNINSTALL) @list='$(PDFS)'; test -n "$(pdfdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " rm -f '$(DESTDIR)$(pdfdir)/$$f'"; \ rm -f "$(DESTDIR)$(pdfdir)/$$f"; \ done uninstall-ps-am: @$(NORMAL_UNINSTALL) @list='$(PSS)'; test -n "$(psdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " rm -f '$(DESTDIR)$(psdir)/$$f'"; \ rm -f "$(DESTDIR)$(psdir)/$$f"; \ done dist-info: $(INFO_DEPS) @srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; \ list='$(INFO_DEPS)'; \ for base in $$list; do \ case $$base in \ $(srcdir)/*) base=`echo "$$base" | sed "s|^$$srcdirstrip/||"`;; \ esac; \ if test -f $$base; then d=.; else d=$(srcdir); fi; \ base_i=`echo "$$base" | sed 's|\.info$$||;s|$$|.i|'`; \ for file in $$d/$$base $$d/$$base-[0-9] $$d/$$base-[0-9][0-9] $$d/$$base_i[0-9] $$d/$$base_i[0-9][0-9]; do \ if test -f $$file; then \ relfile=`expr "$$file" : "$$d/\(.*\)"`; \ test -f "$(distdir)/$$relfile" || \ cp -p $$file "$(distdir)/$$relfile"; \ else :; fi; \ done; \ done mostlyclean-aminfo: -rm -rf gsl-ref.t2d gsl-ref.t2p clean-aminfo: -test -z "gsl-ref.dvi gsl-ref.pdf gsl-ref.ps gsl-ref.html" \ || rm -rf gsl-ref.dvi gsl-ref.pdf gsl-ref.ps gsl-ref.html maintainer-clean-aminfo: @list='$(INFO_DEPS)'; for i in $$list; do \ i_i=`echo "$$i" | sed 's|\.info$$||;s|$$|.i|'`; \ echo " rm -f $$i $$i-[0-9] $$i-[0-9][0-9] $$i_i[0-9] $$i_i[0-9][0-9]"; \ rm -f $$i $$i-[0-9] $$i-[0-9][0-9] $$i_i[0-9] $$i_i[0-9][0-9]; \ done install-man1: $(man_MANS) @$(NORMAL_INSTALL) @list1=''; \ list2='$(man_MANS)'; \ test -n "$(man1dir)" \ && test -n "`echo $$list1$$list2`" \ || exit 0; \ echo " $(MKDIR_P) '$(DESTDIR)$(man1dir)'"; \ $(MKDIR_P) "$(DESTDIR)$(man1dir)" || exit 1; \ { for i in $$list1; do echo "$$i"; done; \ if test -n "$$list2"; then \ for i in $$list2; do echo "$$i"; done \ | sed -n '/\.1[a-z]*$$/p'; \ fi; \ } | while read p; do \ if test -f $$p; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; echo "$$p"; \ done | \ sed -e 'n;s,.*/,,;p;h;s,.*\.,,;s,^[^1][0-9a-z]*$$,1,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,' | \ sed 'N;N;s,\n, ,g' | { \ list=; while read file base inst; do \ if test "$$base" = "$$inst"; then list="$$list $$file"; else \ echo " $(INSTALL_DATA) '$$file' '$(DESTDIR)$(man1dir)/$$inst'"; \ $(INSTALL_DATA) "$$file" "$(DESTDIR)$(man1dir)/$$inst" || exit $$?; \ fi; \ done; \ for i in $$list; do echo "$$i"; done | $(am__base_list) | \ while read files; do \ test -z "$$files" || { \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(man1dir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(man1dir)" || exit $$?; }; \ done; } uninstall-man1: @$(NORMAL_UNINSTALL) @list=''; test -n "$(man1dir)" || exit 0; \ files=`{ for i in $$list; do echo "$$i"; done; \ l2='$(man_MANS)'; for i in $$l2; do echo "$$i"; done | \ sed -n '/\.1[a-z]*$$/p'; \ } | sed -e 's,.*/,,;h;s,.*\.,,;s,^[^1][0-9a-z]*$$,1,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,'`; \ dir='$(DESTDIR)$(man1dir)'; $(am__uninstall_files_from_dir) install-man3: $(man_MANS) @$(NORMAL_INSTALL) @list1=''; \ list2='$(man_MANS)'; \ test -n "$(man3dir)" \ && test -n "`echo $$list1$$list2`" \ || exit 0; \ echo " $(MKDIR_P) '$(DESTDIR)$(man3dir)'"; \ $(MKDIR_P) "$(DESTDIR)$(man3dir)" || exit 1; \ { for i in $$list1; do echo "$$i"; done; \ if test -n "$$list2"; then \ for i in $$list2; do echo "$$i"; done \ | sed -n '/\.3[a-z]*$$/p'; \ fi; \ } | while read p; do \ if test -f $$p; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; echo "$$p"; \ done | \ sed -e 'n;s,.*/,,;p;h;s,.*\.,,;s,^[^3][0-9a-z]*$$,3,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,' | \ sed 'N;N;s,\n, ,g' | { \ list=; while read file base inst; do \ if test "$$base" = "$$inst"; then list="$$list $$file"; else \ echo " $(INSTALL_DATA) '$$file' '$(DESTDIR)$(man3dir)/$$inst'"; \ $(INSTALL_DATA) "$$file" "$(DESTDIR)$(man3dir)/$$inst" || exit $$?; \ fi; \ done; \ for i in $$list; do echo "$$i"; done | $(am__base_list) | \ while read files; do \ test -z "$$files" || { \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(man3dir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(man3dir)" || exit $$?; }; \ done; } uninstall-man3: @$(NORMAL_UNINSTALL) @list=''; test -n "$(man3dir)" || exit 0; \ files=`{ for i in $$list; do echo "$$i"; done; \ l2='$(man_MANS)'; for i in $$l2; do echo "$$i"; done | \ sed -n '/\.3[a-z]*$$/p'; \ } | sed -e 's,.*/,,;h;s,.*\.,,;s,^[^3][0-9a-z]*$$,3,;x' \ -e 's,\.[0-9a-z]*$$,,;$(transform);G;s,\n,.,'`; \ dir='$(DESTDIR)$(man3dir)'; $(am__uninstall_files_from_dir) tags TAGS: ctags CTAGS: cscope cscopelist: distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$(top_distdir)" distdir="$(distdir)" \ dist-info check-am: all-am check: check-am all-am: Makefile $(INFO_DEPS) $(MANS) $(DATA) installdirs: for dir in "$(DESTDIR)$(infodir)" "$(DESTDIR)$(man1dir)" "$(DESTDIR)$(man3dir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-aminfo clean-generic clean-libtool mostlyclean-am distclean: distclean-am -rm -f Makefile distclean-am: clean-am distclean-generic dvi: dvi-am dvi-am: $(DVIS) html: html-am html-am: $(HTMLS) info: info-am info-am: $(INFO_DEPS) install-data-am: install-info-am install-man install-dvi: install-dvi-am install-dvi-am: $(DVIS) @$(NORMAL_INSTALL) @list='$(DVIS)'; test -n "$(dvidir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(dvidir)'"; \ $(MKDIR_P) "$(DESTDIR)$(dvidir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(dvidir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(dvidir)" || exit $$?; \ done install-exec-am: install-html: install-html-am install-html-am: $(HTMLS) @$(NORMAL_INSTALL) @list='$(HTMLS)'; list2=; test -n "$(htmldir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(htmldir)'"; \ $(MKDIR_P) "$(DESTDIR)$(htmldir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p" || test -d "$$p"; then d=; else d="$(srcdir)/"; fi; \ $(am__strip_dir) \ d2=$$d$$p; \ if test -d "$$d2"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(htmldir)/$$f'"; \ $(MKDIR_P) "$(DESTDIR)$(htmldir)/$$f" || exit 1; \ echo " $(INSTALL_DATA) '$$d2'/* '$(DESTDIR)$(htmldir)/$$f'"; \ $(INSTALL_DATA) "$$d2"/* "$(DESTDIR)$(htmldir)/$$f" || exit $$?; \ else \ list2="$$list2 $$d2"; \ fi; \ done; \ test -z "$$list2" || { echo "$$list2" | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(htmldir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(htmldir)" || exit $$?; \ done; } install-info: install-info-am install-info-am: $(INFO_DEPS) @$(NORMAL_INSTALL) @srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; \ list='$(INFO_DEPS)'; test -n "$(infodir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(infodir)'"; \ $(MKDIR_P) "$(DESTDIR)$(infodir)" || exit 1; \ fi; \ for file in $$list; do \ case $$file in \ $(srcdir)/*) file=`echo "$$file" | sed "s|^$$srcdirstrip/||"`;; \ esac; \ if test -f $$file; then d=.; else d=$(srcdir); fi; \ file_i=`echo "$$file" | sed 's|\.info$$||;s|$$|.i|'`; \ for ifile in $$d/$$file $$d/$$file-[0-9] $$d/$$file-[0-9][0-9] \ $$d/$$file_i[0-9] $$d/$$file_i[0-9][0-9] ; do \ if test -f $$ifile; then \ echo "$$ifile"; \ else : ; fi; \ done; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(infodir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(infodir)" || exit $$?; done @$(POST_INSTALL) @if $(am__can_run_installinfo); then \ list='$(INFO_DEPS)'; test -n "$(infodir)" || list=; \ for file in $$list; do \ relfile=`echo "$$file" | sed 's|^.*/||'`; \ echo " install-info --info-dir='$(DESTDIR)$(infodir)' '$(DESTDIR)$(infodir)/$$relfile'";\ install-info --info-dir="$(DESTDIR)$(infodir)" "$(DESTDIR)$(infodir)/$$relfile" || :;\ done; \ else : ; fi install-man: install-man1 install-man3 install-pdf: install-pdf-am install-pdf-am: $(PDFS) @$(NORMAL_INSTALL) @list='$(PDFS)'; test -n "$(pdfdir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pdfdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pdfdir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(pdfdir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(pdfdir)" || exit $$?; done install-ps: install-ps-am install-ps-am: $(PSS) @$(NORMAL_INSTALL) @list='$(PSS)'; test -n "$(psdir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(psdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(psdir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(psdir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(psdir)" || exit $$?; done installcheck-am: maintainer-clean: maintainer-clean-am -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-aminfo \ maintainer-clean-generic maintainer-clean-vti mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-aminfo mostlyclean-generic \ mostlyclean-libtool mostlyclean-vti pdf-am: $(PDFS) ps: ps-am ps-am: $(PSS) uninstall-am: uninstall-dvi-am uninstall-html-am uninstall-info-am \ uninstall-man uninstall-pdf-am uninstall-ps-am uninstall-man: uninstall-man1 uninstall-man3 .MAKE: install-am install-strip .PHONY: all all-am check check-am clean clean-aminfo clean-generic \ clean-libtool cscopelist-am ctags-am dist-info distclean \ distclean-generic distclean-libtool distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-man1 install-man3 \ install-pdf install-pdf-am install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-aminfo \ maintainer-clean-generic maintainer-clean-vti mostlyclean \ mostlyclean-aminfo mostlyclean-generic mostlyclean-libtool \ mostlyclean-vti pdf pdf-am ps ps-am tags-am uninstall \ uninstall-am uninstall-dvi-am uninstall-html-am \ uninstall-info-am uninstall-man uninstall-man1 uninstall-man3 \ uninstall-pdf-am uninstall-ps-am # pdf disabled, use postscript and ps2pdf .PHONY: pdf pdf: # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/doc/12-cities.eps0000664000252300025230000061234012171574312012136 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Jan 4 06:48:42 2007 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 56 177 500 610 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 56 177 500 610 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2564 10017 2564 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2578 10017 2578 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2476 10017 2461 9930 2461 10017 2681 10017 2681 9930 2666 10017 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2520 9710 2622 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2945 9973 2960 10017 2960 9930 2945 9973 2916 10003 2872 10017 2828 10017 2784 10003 2754 9973 2754 9944 2769 9915 2784 9900 2813 9886 2901 9856 2930 9842 2960 9812 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2754 9944 2784 9915 2813 9900 2901 9871 2930 9856 2945 9842 2960 9812 2960 9754 2930 9724 2886 9710 2842 9710 2798 9724 2769 9754 2754 9798 2754 9710 2769 9754 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3077 10017 3077 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3092 10017 3092 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3033 10017 3209 10017 3253 10003 3267 9988 3282 9959 3282 9915 3267 9886 3253 9871 3209 9856 3092 9856 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3209 10017 3238 10003 3253 9988 3267 9959 3267 9915 3253 9886 3238 9871 3209 9856 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3033 9710 3136 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3619 9842 3883 9842 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4264 9959 4294 9973 4338 10017 4338 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4323 10003 4323 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4264 9710 4396 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 4528 9959 4543 9944 4528 9930 4514 9944 4514 9959 4528 9988 4543 10003 4587 10017 4646 10017 4690 10003 4704 9988 4719 9959 4719 9930 4704 9900 4660 9871 4587 9842 4558 9827 4528 9798 4514 9754 4514 9710 20 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4646 10017 4675 10003 4690 9988 4704 9959 4704 9930 4690 9900 4646 9871 4587 9842 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4514 9739 4528 9754 4558 9754 4631 9724 4675 9724 4704 9739 4719 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4558 9754 4631 9710 4690 9710 4704 9724 4719 9754 4719 9783 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 5188 9886 5203 9915 5203 9856 5188 9886 5174 9900 5144 9915 5086 9915 5056 9900 5042 9886 5042 9856 5056 9842 5086 9827 5159 9798 5188 9783 5203 9768 15 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 5042 9871 5056 9856 5086 9842 5159 9812 5188 9798 5203 9783 5203 9739 5188 9724 5159 9710 5100 9710 5071 9724 5056 9739 5042 9768 5042 9710 5056 9739 15 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5408 9915 5452 9900 5481 9871 5496 9827 5496 9798 5481 9754 5452 9724 5408 9710 5379 9710 5335 9724 5305 9754 5291 9798 5291 9827 5305 9871 5335 9900 5379 9915 16 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5379 9915 5349 9900 5320 9871 5305 9827 5305 9798 5320 9754 5349 9724 5379 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5408 9710 5437 9724 5467 9754 5481 9798 5481 9827 5467 9871 5437 9900 5408 9915 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5613 9915 5613 9754 5628 9724 5672 9710 5701 9710 5745 9724 5775 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5628 9915 5628 9754 5643 9724 5672 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5775 9915 5775 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5789 9915 5789 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5569 9915 5628 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5731 9915 5789 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5775 9710 5833 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5936 10017 5936 9768 5951 9724 5980 9710 6009 9710 6039 9724 6053 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5951 10017 5951 9768 5965 9724 5980 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5892 9915 6009 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6156 10017 6156 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6171 10017 6171 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6171 9871 6200 9900 6244 9915 6273 9915 6317 9900 6332 9871 6332 9710 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6273 9915 6302 9900 6317 9871 6317 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6112 10017 6171 10017 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6112 9710 6215 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6273 9710 6376 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6464 9915 6522 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6478 9915 6522 9754 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6581 9915 6522 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6581 9915 6640 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6596 9915 6640 9754 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6698 9915 6640 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6420 9915 6522 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6654 9915 6742 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 6816 9827 6992 9827 6992 9856 6977 9886 6962 9900 6933 9915 6889 9915 6845 9900 6816 9871 6801 9827 6801 9798 6816 9754 6845 9724 6889 9710 6918 9710 6962 9724 6992 9754 17 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6977 9827 6977 9871 6962 9900 3 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6889 9915 6860 9900 6830 9871 6816 9827 6816 9798 6830 9754 6860 9724 6889 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 7226 9886 7241 9915 7241 9856 7226 9886 7212 9900 7182 9915 7124 9915 7094 9900 7080 9886 7080 9856 7094 9842 7124 9827 7197 9798 7226 9783 7241 9768 15 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 7080 9871 7094 9856 7124 9842 7197 9812 7226 9798 7241 9783 7241 9739 7226 9724 7197 9710 7138 9710 7109 9724 7094 9739 7080 9768 7080 9710 7094 9739 15 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7358 10017 7358 9768 7373 9724 7402 9710 7431 9710 7461 9724 7475 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 7373 10017 7373 9768 7387 9724 7402 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7314 9915 7431 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 18 7959 9871 7945 9856 7959 9842 7974 9856 7974 9871 7945 9900 7915 9915 7871 9915 7827 9900 7798 9871 7783 9827 7783 9798 7798 9754 7827 9724 7871 9710 7901 9710 7945 9724 7974 9754 18 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7871 9915 7842 9900 7813 9871 7798 9827 7798 9798 7813 9754 7842 9724 7871 9710 8 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 8106 10003 8091 9988 8077 10003 8091 10017 4 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8091 9915 8091 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8106 9915 8106 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8047 9915 8106 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8047 9710 8150 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 8253 10017 8253 9768 8267 9724 8296 9710 8326 9710 8355 9724 8370 9754 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 8267 10017 8267 9768 8282 9724 8296 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8209 9915 8326 9915 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 8487 10003 8472 9988 8458 10003 8472 10017 4 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8472 9915 8472 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8487 9915 8487 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8428 9915 8487 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8428 9710 8531 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 8619 9827 8795 9827 8795 9856 8780 9886 8766 9900 8736 9915 8692 9915 8648 9900 8619 9871 8604 9827 8604 9798 8619 9754 8648 9724 8692 9710 8722 9710 8766 9724 8795 9754 17 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 8780 9827 8780 9871 8766 9900 3 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8692 9915 8663 9900 8634 9871 8619 9827 8619 9798 8634 9754 8663 9724 8692 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 9030 9886 9044 9915 9044 9856 9030 9886 9015 9900 8986 9915 8927 9915 8898 9900 8883 9886 8883 9856 8898 9842 8927 9827 9000 9798 9030 9783 9044 9768 15 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 8883 9871 8898 9856 8927 9842 9000 9812 9030 9798 9044 9783 9044 9739 9030 9724 9000 9710 8942 9710 8912 9724 8898 9739 8883 9768 8883 9710 8898 9739 15 MLine End Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2315 2151 2348 2140 2370 2107 2381 2052 2381 2019 2370 1964 2348 1931 2315 1920 2293 1920 2260 1931 2238 1964 2227 2019 2227 2052 2238 2107 2260 2140 2293 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2293 2151 2271 2140 2260 2129 2249 2107 2238 2052 2238 2019 2249 1964 2260 1942 2271 1931 2293 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2315 1920 2337 1931 2348 1942 2359 1964 2370 2019 2370 2052 2359 2107 2348 2129 2337 2140 2315 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3313 2107 3335 2118 3368 2151 3368 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3357 2140 3357 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3313 1920 3411 1920 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3587 2151 3620 2140 3642 2107 3653 2052 3653 2019 3642 1964 3620 1931 3587 1920 3565 1920 3532 1931 3510 1964 3499 2019 3499 2052 3510 2107 3532 2140 3565 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3565 2151 3543 2140 3532 2129 3521 2107 3510 2052 3510 2019 3521 1964 3532 1942 3543 1931 3565 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3587 1920 3609 1931 3620 1942 3631 1964 3642 2019 3642 2052 3631 2107 3620 2129 3609 2140 3587 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3807 2151 3840 2140 3862 2107 3873 2052 3873 2019 3862 1964 3840 1931 3807 1920 3785 1920 3752 1931 3730 1964 3719 2019 3719 2052 3730 2107 3752 2140 3785 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3785 2151 3763 2140 3752 2129 3741 2107 3730 2052 3730 2019 3741 1964 3752 1942 3763 1931 3785 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3807 1920 3829 1931 3840 1942 3851 1964 3862 2019 3862 2052 3851 2107 3840 2129 3829 2140 3807 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4027 2151 4060 2140 4082 2107 4093 2052 4093 2019 4082 1964 4060 1931 4027 1920 4005 1920 3972 1931 3950 1964 3939 2019 3939 2052 3950 2107 3972 2140 4005 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4005 2151 3983 2140 3972 2129 3961 2107 3950 2052 3950 2019 3961 1964 3972 1942 3983 1931 4005 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4027 1920 4049 1931 4060 1942 4071 1964 4082 2019 4082 2052 4071 2107 4060 2129 4049 2140 4027 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 4673 2107 4684 2096 4673 2085 4662 2096 4662 2107 4673 2129 4684 2140 4717 2151 4761 2151 4794 2140 4805 2129 4816 2107 4816 2085 4805 2063 4772 2041 4717 2019 4695 2008 4673 1986 4662 1953 4662 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4761 2151 4783 2140 4794 2129 4805 2107 4805 2085 4794 2063 4761 2041 4717 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4662 1942 4673 1953 4695 1953 4750 1931 4783 1931 4805 1942 4816 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4695 1953 4750 1920 4794 1920 4805 1931 4816 1953 4816 1975 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4970 2151 5003 2140 5025 2107 5036 2052 5036 2019 5025 1964 5003 1931 4970 1920 4948 1920 4915 1931 4893 1964 4882 2019 4882 2052 4893 2107 4915 2140 4948 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4948 2151 4926 2140 4915 2129 4904 2107 4893 2052 4893 2019 4904 1964 4915 1942 4926 1931 4948 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4970 1920 4992 1931 5003 1942 5014 1964 5025 2019 5025 2052 5014 2107 5003 2129 4992 2140 4970 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5190 2151 5223 2140 5245 2107 5256 2052 5256 2019 5245 1964 5223 1931 5190 1920 5168 1920 5135 1931 5113 1964 5102 2019 5102 2052 5113 2107 5135 2140 5168 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5168 2151 5146 2140 5135 2129 5124 2107 5113 2052 5113 2019 5124 1964 5135 1942 5146 1931 5168 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5190 1920 5212 1931 5223 1942 5234 1964 5245 2019 5245 2052 5234 2107 5223 2129 5212 2140 5190 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5410 2151 5443 2140 5465 2107 5476 2052 5476 2019 5465 1964 5443 1931 5410 1920 5388 1920 5355 1931 5333 1964 5322 2019 5322 2052 5333 2107 5355 2140 5388 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5388 2151 5366 2140 5355 2129 5344 2107 5333 2052 5333 2019 5344 1964 5355 1942 5366 1931 5388 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5410 1920 5432 1931 5443 1942 5454 1964 5465 2019 5465 2052 5454 2107 5443 2129 5432 2140 5410 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6055 2107 6066 2096 6055 2085 6044 2096 6044 2107 6055 2129 6066 2140 6099 2151 6143 2151 6176 2140 6187 2118 6187 2085 6176 2063 6143 2052 6110 2052 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6143 2151 6165 2140 6176 2118 6176 2085 6165 2063 6143 2052 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6143 2052 6165 2041 6187 2019 6198 1997 6198 1964 6187 1942 6176 1931 6143 1920 6099 1920 6066 1931 6055 1942 6044 1964 6044 1975 6055 1986 6066 1975 6055 1964 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6176 2030 6187 1997 6187 1964 6176 1942 6165 1931 6143 1920 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6352 2151 6385 2140 6407 2107 6418 2052 6418 2019 6407 1964 6385 1931 6352 1920 6330 1920 6297 1931 6275 1964 6264 2019 6264 2052 6275 2107 6297 2140 6330 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6330 2151 6308 2140 6297 2129 6286 2107 6275 2052 6275 2019 6286 1964 6297 1942 6308 1931 6330 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6352 1920 6374 1931 6385 1942 6396 1964 6407 2019 6407 2052 6396 2107 6385 2129 6374 2140 6352 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6572 2151 6605 2140 6627 2107 6638 2052 6638 2019 6627 1964 6605 1931 6572 1920 6550 1920 6517 1931 6495 1964 6484 2019 6484 2052 6495 2107 6517 2140 6550 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6550 2151 6528 2140 6517 2129 6506 2107 6495 2052 6495 2019 6506 1964 6517 1942 6528 1931 6550 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6572 1920 6594 1931 6605 1942 6616 1964 6627 2019 6627 2052 6616 2107 6605 2129 6594 2140 6572 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6792 2151 6825 2140 6847 2107 6858 2052 6858 2019 6847 1964 6825 1931 6792 1920 6770 1920 6737 1931 6715 1964 6704 2019 6704 2052 6715 2107 6737 2140 6770 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6770 2151 6748 2140 6737 2129 6726 2107 6715 2052 6715 2019 6726 1964 6737 1942 6748 1931 6770 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6792 1920 6814 1931 6825 1942 6836 1964 6847 2019 6847 2052 6836 2107 6825 2129 6814 2140 6792 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7526 2129 7526 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7537 2151 7537 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 7537 2151 7416 1986 7592 1986 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7493 1920 7570 1920 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7735 2151 7768 2140 7790 2107 7801 2052 7801 2019 7790 1964 7768 1931 7735 1920 7713 1920 7680 1931 7658 1964 7647 2019 7647 2052 7658 2107 7680 2140 7713 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7713 2151 7691 2140 7680 2129 7669 2107 7658 2052 7658 2019 7669 1964 7680 1942 7691 1931 7713 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7735 1920 7757 1931 7768 1942 7779 1964 7790 2019 7790 2052 7779 2107 7768 2129 7757 2140 7735 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7955 2151 7988 2140 8010 2107 8021 2052 8021 2019 8010 1964 7988 1931 7955 1920 7933 1920 7900 1931 7878 1964 7867 2019 7867 2052 7878 2107 7900 2140 7933 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7933 2151 7911 2140 7900 2129 7889 2107 7878 2052 7878 2019 7889 1964 7900 1942 7911 1931 7933 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7955 1920 7977 1931 7988 1942 7999 1964 8010 2019 8010 2052 7999 2107 7988 2129 7977 2140 7955 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8174 2151 8207 2140 8229 2107 8240 2052 8240 2019 8229 1964 8207 1931 8174 1920 8152 1920 8120 1931 8098 1964 8087 2019 8087 2052 8098 2107 8120 2140 8152 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8152 2151 8131 2140 8120 2129 8109 2107 8098 2052 8098 2019 8109 1964 8120 1942 8131 1931 8152 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8174 1920 8196 1931 8207 1942 8218 1964 8229 2019 8229 2052 8218 2107 8207 2129 8196 2140 8174 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8831 2151 8809 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 8809 2041 8831 2063 8864 2074 8897 2074 8930 2063 8952 2041 8963 2008 8963 1986 8952 1953 8930 1931 8897 1920 8864 1920 8831 1931 8820 1942 8809 1964 8809 1975 8820 1986 8831 1975 8820 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8897 2074 8919 2063 8941 2041 8952 2008 8952 1986 8941 1953 8919 1931 8897 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8831 2151 8941 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 8831 2140 8886 2140 8941 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9117 2151 9150 2140 9172 2107 9183 2052 9183 2019 9172 1964 9150 1931 9117 1920 9095 1920 9062 1931 9040 1964 9029 2019 9029 2052 9040 2107 9062 2140 9095 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9095 2151 9073 2140 9062 2129 9051 2107 9040 2052 9040 2019 9051 1964 9062 1942 9073 1931 9095 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9117 1920 9139 1931 9150 1942 9161 1964 9172 2019 9172 2052 9161 2107 9150 2129 9139 2140 9117 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9337 2151 9370 2140 9392 2107 9403 2052 9403 2019 9392 1964 9370 1931 9337 1920 9315 1920 9282 1931 9260 1964 9249 2019 9249 2052 9260 2107 9282 2140 9315 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9315 2151 9293 2140 9282 2129 9271 2107 9260 2052 9260 2019 9271 1964 9282 1942 9293 1931 9315 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9337 1920 9359 1931 9370 1942 9381 1964 9392 2019 9392 2052 9381 2107 9370 2129 9359 2140 9337 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9557 2151 9590 2140 9612 2107 9623 2052 9623 2019 9612 1964 9590 1931 9557 1920 9535 1920 9502 1931 9480 1964 9469 2019 9469 2052 9480 2107 9502 2140 9535 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9535 2151 9513 2140 9502 2129 9491 2107 9480 2052 9480 2019 9491 1964 9502 1942 9513 1931 9535 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9557 1920 9579 1931 9590 1942 9601 1964 9612 2019 9612 2052 9601 2107 9590 2129 9579 2140 9557 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2580 9216 2580 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2580 2304 2580 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2857 9216 2857 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2857 2304 2857 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3133 9216 3133 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3133 2304 3133 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3410 9216 3410 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3410 2304 3410 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3963 9216 3963 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3963 2304 3963 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4239 9216 4239 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4239 2304 4239 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4516 9216 4516 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4516 2304 4516 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4792 9216 4792 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4792 2304 4792 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5345 9216 5345 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5345 2304 5345 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5622 9216 5622 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5622 2304 5622 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5898 9216 5898 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5898 2304 5898 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6175 9216 6175 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6175 2304 6175 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6728 9216 6728 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6728 2304 6728 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7004 9216 7004 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7004 2304 7004 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7281 9216 7281 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7281 2304 7281 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7557 9216 7557 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7557 2304 7557 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8110 9216 8110 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8110 2304 8110 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8387 9216 8387 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8387 2304 8387 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8663 9216 8663 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8663 2304 8663 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8940 9216 8940 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8940 2304 8940 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1365 2824 1376 2813 1365 2802 1354 2813 1354 2824 1365 2846 1376 2857 1409 2868 1453 2868 1486 2857 1497 2835 1497 2802 1486 2780 1453 2769 1420 2769 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1453 2868 1475 2857 1486 2835 1486 2802 1475 2780 1453 2769 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1453 2769 1475 2758 1497 2736 1508 2714 1508 2681 1497 2659 1486 2648 1453 2637 1409 2637 1376 2648 1365 2659 1354 2681 1354 2692 1365 2703 1376 2692 1365 2681 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1486 2747 1497 2714 1497 2681 1486 2659 1475 2648 1453 2637 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 2868 1574 2758 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1574 2758 1596 2780 1629 2791 1661 2791 1694 2780 1716 2758 1727 2725 1727 2703 1716 2670 1694 2648 1661 2637 1629 2637 1596 2648 1585 2659 1574 2681 1574 2692 1585 2703 1596 2692 1585 2681 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1661 2791 1683 2780 1705 2758 1716 2725 1716 2703 1705 2670 1683 2648 1661 2637 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 2868 1705 2868 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1596 2857 1651 2857 1705 2868 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 2868 1914 2857 1936 2824 1947 2769 1947 2736 1936 2681 1914 2648 1881 2637 1859 2637 1826 2648 1804 2681 1793 2736 1793 2769 1804 2824 1826 2857 1859 2868 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 2868 1837 2857 1826 2846 1815 2824 1804 2769 1804 2736 1815 2681 1826 2659 1837 2648 1859 2637 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 2637 1903 2648 1914 2659 1925 2681 1936 2736 1936 2769 1925 2824 1914 2846 1903 2857 1881 2868 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 2868 2134 2857 2156 2824 2167 2769 2167 2736 2156 2681 2134 2648 2101 2637 2079 2637 2046 2648 2024 2681 2013 2736 2013 2769 2024 2824 2046 2857 2079 2868 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 2868 2057 2857 2046 2846 2035 2824 2024 2769 2024 2736 2035 2681 2046 2659 2057 2648 2079 2637 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 2637 2123 2648 2134 2659 2145 2681 2156 2736 2156 2769 2145 2824 2134 2846 2123 2857 2101 2868 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2736 9078 2736 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2736 2442 2736 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1453 3926 1453 3717 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1464 3948 1464 3717 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1464 3948 1343 3783 1519 3783 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1420 3717 1497 3717 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1661 3948 1694 3937 1716 3904 1727 3849 1727 3816 1716 3761 1694 3728 1661 3717 1640 3717 1607 3728 1585 3761 1574 3816 1574 3849 1585 3904 1607 3937 1640 3948 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1640 3948 1618 3937 1607 3926 1596 3904 1585 3849 1585 3816 1596 3761 1607 3739 1618 3728 1640 3717 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1661 3717 1683 3728 1694 3739 1705 3761 1716 3816 1716 3849 1705 3904 1694 3926 1683 3937 1661 3948 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 3948 1914 3937 1936 3904 1947 3849 1947 3816 1936 3761 1914 3728 1881 3717 1859 3717 1826 3728 1804 3761 1793 3816 1793 3849 1804 3904 1826 3937 1859 3948 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 3948 1837 3937 1826 3926 1815 3904 1804 3849 1804 3816 1815 3761 1826 3739 1837 3728 1859 3717 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 3717 1903 3728 1914 3739 1925 3761 1936 3816 1936 3849 1925 3904 1914 3926 1903 3937 1881 3948 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 3948 2134 3937 2156 3904 2167 3849 2167 3816 2156 3761 2134 3728 2101 3717 2079 3717 2046 3728 2024 3761 2013 3816 2013 3849 2024 3904 2046 3937 2079 3948 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 3948 2057 3937 2046 3926 2035 3904 2024 3849 2024 3816 2035 3761 2046 3739 2057 3728 2079 3717 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 3717 2123 3728 2134 3739 2145 3761 2156 3816 2156 3849 2145 3904 2134 3926 2123 3937 2101 3948 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3816 9078 3816 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3816 2442 3816 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1453 5006 1453 4797 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1464 5028 1464 4797 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1464 5028 1343 4863 1519 4863 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1420 4797 1497 4797 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 5028 1574 4918 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1574 4918 1596 4940 1629 4951 1661 4951 1694 4940 1716 4918 1727 4885 1727 4863 1716 4830 1694 4808 1661 4797 1629 4797 1596 4808 1585 4819 1574 4841 1574 4852 1585 4863 1596 4852 1585 4841 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1661 4951 1683 4940 1705 4918 1716 4885 1716 4863 1705 4830 1683 4808 1661 4797 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 5028 1705 5028 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1596 5017 1651 5017 1705 5028 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 5028 1914 5017 1936 4984 1947 4929 1947 4896 1936 4841 1914 4808 1881 4797 1859 4797 1826 4808 1804 4841 1793 4896 1793 4929 1804 4984 1826 5017 1859 5028 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 5028 1837 5017 1826 5006 1815 4984 1804 4929 1804 4896 1815 4841 1826 4819 1837 4808 1859 4797 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 4797 1903 4808 1914 4819 1925 4841 1936 4896 1936 4929 1925 4984 1914 5006 1903 5017 1881 5028 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 5028 2134 5017 2156 4984 2167 4929 2167 4896 2156 4841 2134 4808 2101 4797 2079 4797 2046 4808 2024 4841 2013 4896 2013 4929 2024 4984 2046 5017 2079 5028 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 5028 2057 5017 2046 5006 2035 4984 2024 4929 2024 4896 2035 4841 2046 4819 2057 4808 2079 4797 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 4797 2123 4808 2134 4819 2145 4841 2156 4896 2156 4929 2145 4984 2134 5006 2123 5017 2101 5028 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4896 9078 4896 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4896 2442 4896 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1376 6108 1354 5998 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1354 5998 1376 6020 1409 6031 1442 6031 1475 6020 1497 5998 1508 5965 1508 5943 1497 5910 1475 5888 1442 5877 1409 5877 1376 5888 1365 5899 1354 5921 1354 5932 1365 5943 1376 5932 1365 5921 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1442 6031 1464 6020 1486 5998 1497 5965 1497 5943 1486 5910 1464 5888 1442 5877 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1376 6108 1486 6108 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1376 6097 1431 6097 1486 6108 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1661 6108 1694 6097 1716 6064 1727 6009 1727 5976 1716 5921 1694 5888 1661 5877 1640 5877 1607 5888 1585 5921 1574 5976 1574 6009 1585 6064 1607 6097 1640 6108 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1640 6108 1618 6097 1607 6086 1596 6064 1585 6009 1585 5976 1596 5921 1607 5899 1618 5888 1640 5877 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1661 5877 1683 5888 1694 5899 1705 5921 1716 5976 1716 6009 1705 6064 1694 6086 1683 6097 1661 6108 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 6108 1914 6097 1936 6064 1947 6009 1947 5976 1936 5921 1914 5888 1881 5877 1859 5877 1826 5888 1804 5921 1793 5976 1793 6009 1804 6064 1826 6097 1859 6108 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 6108 1837 6097 1826 6086 1815 6064 1804 6009 1804 5976 1815 5921 1826 5899 1837 5888 1859 5877 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 5877 1903 5888 1914 5899 1925 5921 1936 5976 1936 6009 1925 6064 1914 6086 1903 6097 1881 6108 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 6108 2134 6097 2156 6064 2167 6009 2167 5976 2156 5921 2134 5888 2101 5877 2079 5877 2046 5888 2024 5921 2013 5976 2013 6009 2024 6064 2046 6097 2079 6108 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 6108 2057 6097 2046 6086 2035 6064 2024 6009 2024 5976 2035 5921 2046 5899 2057 5888 2079 5877 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 5877 2123 5888 2134 5899 2145 5921 2156 5976 2156 6009 2145 6064 2134 6086 2123 6097 2101 6108 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5976 9078 5976 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5976 2442 5976 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1376 7188 1354 7078 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1354 7078 1376 7100 1409 7111 1442 7111 1475 7100 1497 7078 1508 7045 1508 7023 1497 6990 1475 6968 1442 6957 1409 6957 1376 6968 1365 6979 1354 7001 1354 7012 1365 7023 1376 7012 1365 7001 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1442 7111 1464 7100 1486 7078 1497 7045 1497 7023 1486 6990 1464 6968 1442 6957 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1376 7188 1486 7188 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1376 7177 1431 7177 1486 7188 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 7188 1574 7078 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1574 7078 1596 7100 1629 7111 1661 7111 1694 7100 1716 7078 1727 7045 1727 7023 1716 6990 1694 6968 1661 6957 1629 6957 1596 6968 1585 6979 1574 7001 1574 7012 1585 7023 1596 7012 1585 7001 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1661 7111 1683 7100 1705 7078 1716 7045 1716 7023 1705 6990 1683 6968 1661 6957 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 7188 1705 7188 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1596 7177 1651 7177 1705 7188 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 7188 1914 7177 1936 7144 1947 7089 1947 7056 1936 7001 1914 6968 1881 6957 1859 6957 1826 6968 1804 7001 1793 7056 1793 7089 1804 7144 1826 7177 1859 7188 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 7188 1837 7177 1826 7166 1815 7144 1804 7089 1804 7056 1815 7001 1826 6979 1837 6968 1859 6957 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 6957 1903 6968 1914 6979 1925 7001 1936 7056 1936 7089 1925 7144 1914 7166 1903 7177 1881 7188 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 7188 2134 7177 2156 7144 2167 7089 2167 7056 2156 7001 2134 6968 2101 6957 2079 6957 2046 6968 2024 7001 2013 7056 2013 7089 2024 7144 2046 7177 2079 7188 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 7188 2057 7177 2046 7166 2035 7144 2024 7089 2024 7056 2035 7001 2046 6979 2057 6968 2079 6957 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 6957 2123 6968 2134 6979 2145 7001 2156 7056 2156 7089 2145 7144 2134 7166 2123 7177 2101 7188 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7056 9078 7056 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7056 2442 7056 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 1486 8235 1475 8224 1486 8213 1497 8224 1497 8235 1486 8257 1464 8268 1431 8268 1398 8257 1376 8235 1365 8213 1354 8169 1354 8103 1365 8070 1387 8048 1420 8037 1442 8037 1475 8048 1497 8070 1508 8103 1508 8114 1497 8147 1475 8169 1442 8180 1431 8180 1398 8169 1376 8147 1365 8114 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 1431 8268 1409 8257 1387 8235 1376 8213 1365 8169 1365 8103 1376 8070 1398 8048 1420 8037 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1442 8037 1464 8048 1486 8070 1497 8103 1497 8114 1486 8147 1464 8169 1442 8180 8 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1661 8268 1694 8257 1716 8224 1727 8169 1727 8136 1716 8081 1694 8048 1661 8037 1640 8037 1607 8048 1585 8081 1574 8136 1574 8169 1585 8224 1607 8257 1640 8268 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1640 8268 1618 8257 1607 8246 1596 8224 1585 8169 1585 8136 1596 8081 1607 8059 1618 8048 1640 8037 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1661 8037 1683 8048 1694 8059 1705 8081 1716 8136 1716 8169 1705 8224 1694 8246 1683 8257 1661 8268 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 8268 1914 8257 1936 8224 1947 8169 1947 8136 1936 8081 1914 8048 1881 8037 1859 8037 1826 8048 1804 8081 1793 8136 1793 8169 1804 8224 1826 8257 1859 8268 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 8268 1837 8257 1826 8246 1815 8224 1804 8169 1804 8136 1815 8081 1826 8059 1837 8048 1859 8037 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 8037 1903 8048 1914 8059 1925 8081 1936 8136 1936 8169 1925 8224 1914 8246 1903 8257 1881 8268 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 8268 2134 8257 2156 8224 2167 8169 2167 8136 2156 8081 2134 8048 2101 8037 2079 8037 2046 8048 2024 8081 2013 8136 2013 8169 2024 8224 2046 8257 2079 8268 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 8268 2057 8257 2046 8246 2035 8224 2024 8169 2024 8136 2035 8081 2046 8059 2057 8048 2079 8037 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 8037 2123 8048 2134 8059 2145 8081 2156 8136 2156 8169 2145 8224 2134 8246 2123 8257 2101 8268 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8136 9078 8136 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8136 2442 8136 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 1486 9315 1475 9304 1486 9293 1497 9304 1497 9315 1486 9337 1464 9348 1431 9348 1398 9337 1376 9315 1365 9293 1354 9249 1354 9183 1365 9150 1387 9128 1420 9117 1442 9117 1475 9128 1497 9150 1508 9183 1508 9194 1497 9227 1475 9249 1442 9260 1431 9260 1398 9249 1376 9227 1365 9194 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 1431 9348 1409 9337 1387 9315 1376 9293 1365 9249 1365 9183 1376 9150 1398 9128 1420 9117 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1442 9117 1464 9128 1486 9150 1497 9183 1497 9194 1486 9227 1464 9249 1442 9260 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 9348 1574 9238 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 1574 9238 1596 9260 1629 9271 1661 9271 1694 9260 1716 9238 1727 9205 1727 9183 1716 9150 1694 9128 1661 9117 1629 9117 1596 9128 1585 9139 1574 9161 1574 9172 1585 9183 1596 9172 1585 9161 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1661 9271 1683 9260 1705 9238 1716 9205 1716 9183 1705 9150 1683 9128 1661 9117 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1596 9348 1705 9348 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1596 9337 1651 9337 1705 9348 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1881 9348 1914 9337 1936 9304 1947 9249 1947 9216 1936 9161 1914 9128 1881 9117 1859 9117 1826 9128 1804 9161 1793 9216 1793 9249 1804 9304 1826 9337 1859 9348 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1859 9348 1837 9337 1826 9326 1815 9304 1804 9249 1804 9216 1815 9161 1826 9139 1837 9128 1859 9117 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1881 9117 1903 9128 1914 9139 1925 9161 1936 9216 1936 9249 1925 9304 1914 9326 1903 9337 1881 9348 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 9348 2134 9337 2156 9304 2167 9249 2167 9216 2156 9161 2134 9128 2101 9117 2079 9117 2046 9128 2024 9161 2013 9216 2013 9249 2024 9304 2046 9337 2079 9348 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 9348 2057 9337 2046 9326 2035 9304 2024 9249 2024 9216 2035 9161 2046 9139 2057 9128 2079 9117 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 9117 2123 9128 2134 9139 2145 9161 2156 9216 2156 9249 2145 9304 2134 9326 2123 9337 2101 9348 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4858 1621 4880 1610 4891 1599 4902 1577 4902 1555 4891 1533 4880 1522 4858 1511 4836 1511 4814 1522 4803 1533 4792 1555 4792 1577 4803 1599 4814 1610 4836 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4814 1610 4803 1588 4803 1544 4814 1522 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4880 1522 4891 1544 4891 1588 4880 1610 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 4891 1599 4902 1610 4924 1621 4924 1610 4902 1610 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4803 1533 4792 1522 4781 1500 4781 1489 4792 1467 4825 1456 4880 1456 4913 1445 4924 1434 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 4781 1489 4792 1478 4825 1467 4880 1467 4913 1456 4924 1434 4924 1423 4913 1401 4880 1390 4814 1390 4781 1401 4770 1423 4770 1434 4781 1456 4814 1467 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5001 1555 5133 1555 5133 1577 5122 1599 5111 1610 5089 1621 5056 1621 5023 1610 5001 1588 4990 1555 4990 1533 5001 1500 5023 1478 5056 1467 5078 1467 5111 1478 5133 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5122 1555 5122 1588 5111 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5056 1621 5034 1610 5012 1588 5001 1555 5001 1533 5012 1500 5034 1478 5056 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5221 1621 5221 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5232 1621 5232 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5232 1588 5254 1610 5287 1621 5309 1621 5342 1610 5353 1588 5353 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5309 1621 5331 1610 5342 1588 5342 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1621 5232 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1467 5265 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5309 1467 5386 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5452 1555 5584 1555 5584 1577 5573 1599 5562 1610 5540 1621 5507 1621 5474 1610 5452 1588 5441 1555 5441 1533 5452 1500 5474 1478 5507 1467 5529 1467 5562 1478 5584 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5573 1555 5573 1588 5562 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5507 1621 5485 1610 5463 1588 5452 1555 5452 1533 5463 1500 5485 1478 5507 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5672 1621 5672 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5683 1621 5683 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5683 1555 5694 1588 5716 1610 5738 1621 5771 1621 5782 1610 5782 1599 5771 1588 5760 1599 5771 1610 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1621 5683 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1467 5716 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 5859 1599 5859 1588 5848 1588 5848 1599 5859 1610 5881 1621 5925 1621 5947 1610 5958 1599 5969 1577 5969 1500 5980 1478 5991 1467 13 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 5958 1599 5958 1500 5969 1478 5991 1467 6002 1467 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 5958 1577 5947 1566 5881 1555 5848 1544 5837 1522 5837 1500 5848 1478 5881 1467 5914 1467 5936 1478 5958 1500 11 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5881 1555 5859 1544 5848 1522 5848 1500 5859 1478 5881 1467 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6079 1698 6079 1511 6090 1478 6112 1467 6134 1467 6156 1478 6167 1500 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6090 1698 6090 1511 6101 1478 6112 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6046 1621 6134 1621 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6255 1687 6244 1676 6233 1687 6244 1698 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6244 1621 6244 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6255 1621 6255 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1621 6255 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1467 6288 1467 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6431 1621 6464 1610 6486 1588 6497 1555 6497 1533 6486 1500 6464 1478 6431 1467 6409 1467 6376 1478 6354 1500 6343 1533 6343 1555 6354 1588 6376 1610 6409 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6409 1621 6387 1610 6365 1588 6354 1555 6354 1533 6365 1500 6387 1478 6409 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6431 1467 6453 1478 6475 1500 6486 1533 6486 1555 6475 1588 6453 1610 6431 1621 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6585 1621 6585 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6596 1621 6596 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6596 1588 6618 1610 6651 1621 6673 1621 6706 1610 6717 1588 6717 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6673 1621 6695 1610 6706 1588 6706 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1621 6596 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1467 6629 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6673 1467 6750 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 771 5133 1002 5133 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 771 5144 1002 5144 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 881 5133 859 5111 848 5089 848 5067 859 5034 881 5012 914 5001 936 5001 969 5012 991 5034 1002 5067 1002 5089 991 5111 969 5133 14 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 848 5067 859 5045 881 5023 914 5012 936 5012 969 5023 991 5045 1002 5067 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 771 5100 771 5144 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1002 5133 1002 5177 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 782 5265 793 5254 782 5243 771 5254 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5254 1002 5254 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5265 1002 5265 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5221 848 5265 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1002 5221 1002 5298 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 870 5463 848 5474 892 5474 870 5463 859 5452 848 5430 848 5386 859 5364 870 5353 892 5353 903 5364 914 5386 936 5441 947 5463 958 5474 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 881 5353 892 5364 903 5386 925 5441 936 5463 947 5474 980 5474 991 5463 1002 5441 1002 5397 991 5375 980 5364 958 5353 1002 5353 980 5364 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 771 5562 958 5562 991 5573 1002 5595 1002 5617 991 5639 969 5650 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 771 5573 958 5573 991 5584 1002 5595 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5529 848 5617 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 870 5727 881 5727 881 5716 870 5716 859 5727 848 5749 848 5793 859 5815 870 5826 892 5837 969 5837 991 5848 1002 5859 13 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 870 5826 969 5826 991 5837 1002 5859 1002 5870 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 892 5826 903 5815 914 5749 925 5716 947 5705 969 5705 991 5716 1002 5749 1002 5782 991 5804 969 5826 11 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 914 5749 925 5727 947 5716 969 5716 991 5727 1002 5749 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5947 1002 5947 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5958 1002 5958 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 881 5958 859 5980 848 6013 848 6035 859 6068 881 6079 1002 6079 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 848 6035 859 6057 881 6068 1002 6068 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 848 5914 848 5958 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1002 5914 1002 5991 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1002 6035 1002 6112 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 18 881 6299 892 6288 903 6299 892 6310 881 6310 859 6288 848 6266 848 6233 859 6200 881 6178 914 6167 936 6167 969 6178 991 6200 1002 6233 1002 6255 991 6288 969 6310 18 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 848 6233 859 6211 881 6189 914 6178 936 6178 969 6189 991 6211 1002 6233 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 914 6387 914 6519 892 6519 870 6508 859 6497 848 6475 848 6442 859 6409 881 6387 914 6376 936 6376 969 6387 991 6409 1002 6442 1002 6464 991 6497 969 6519 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 914 6508 881 6508 859 6497 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 848 6442 859 6420 881 6398 914 6387 936 6387 969 6398 991 6420 1002 6442 8 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 2304 5975 2305 7816 2307 4950 2308 6253 2310 6424 2311 7247 2312 7226 2314 7637 2315 5613 2316 5493 2318 6547 2319 6692 2321 5964 2322 7196 2323 5558 2325 5777 2326 5879 2328 6986 2329 6683 2330 6582 2332 7053 2333 6524 2334 7103 2336 6771 2337 6085 2339 6261 2340 7658 2341 6191 2343 5763 2344 5180 2345 6647 2347 6690 2348 6033 2350 5517 2351 6947 2352 6031 2354 7215 2355 5701 2357 6826 2358 4979 2359 7053 2361 7059 2362 6081 2363 5251 2365 6631 2366 7749 2368 7219 2369 7019 2370 5147 2372 6824 2373 7042 2375 5319 2376 6485 2377 6702 2379 7476 2380 6497 2381 5692 2383 7014 2384 6696 2386 7546 2387 6374 2388 7684 2390 5675 2391 6634 2392 5907 2394 6945 2395 4627 2397 5267 2398 7319 2399 6397 2401 6962 2402 6413 2404 5424 2405 4277 2406 7412 2408 5725 2409 5438 2410 7077 2412 7297 2413 6874 2415 5718 2416 7183 2417 6089 2419 6439 2420 5788 2422 7577 2423 7135 2424 4970 2426 4854 2427 7340 2428 6868 2430 7205 2431 4963 2433 5641 2434 6536 2435 4679 2437 6735 2438 4672 2439 8293 2441 6474 2442 7717 2444 7297 2445 5583 2446 7717 2448 6229 2449 7615 2451 5946 2452 7426 2453 7569 2455 7305 2456 7030 2457 5945 2459 6252 2460 6256 2462 5037 2463 7580 2464 6202 2466 6322 2467 7211 2469 6680 2470 7020 2471 7596 2473 6861 2474 6352 2475 6302 2477 6238 2478 5681 2480 7024 2481 7194 2482 7181 2484 5997 2485 7477 2486 6567 2488 5778 2489 7126 2491 7143 2492 4981 2493 7184 2495 6655 2496 6103 2498 7571 2499 7773 2500 4533 2502 7966 2503 6383 2504 5874 2506 6128 2507 7545 2509 7794 2510 5779 2511 6850 2513 6570 2514 6612 2516 6800 2517 7324 2518 6811 2520 6237 2521 5937 2522 7023 2524 5700 2525 6549 2527 5356 2528 4062 2529 5495 2531 7192 2532 7316 2533 6114 2535 7015 2536 6818 2538 6597 2539 7315 2540 6174 2542 5431 2543 4943 2545 7012 2546 6702 2547 7220 2549 6142 2550 7649 2551 6097 2553 7626 2554 5399 2556 6739 2557 5159 2558 6984 2560 6165 2561 6070 2563 7594 2564 6333 2565 6072 2567 6981 2568 6118 2569 8009 2571 6786 2572 3964 2574 7069 2575 6203 2576 7315 2578 6263 2579 6910 2580 7867 2582 7539 2583 6058 2585 7242 2586 7161 2587 4653 2589 5701 2590 5840 2592 7394 2593 6140 2594 6588 2596 7405 2597 7363 2598 6270 2600 6828 2601 6694 2603 6633 2604 5843 2605 6859 2607 7988 2608 8335 2610 6485 2611 6899 2612 6402 2614 6170 2615 6849 2616 6781 2618 5607 2619 7433 2621 6231 2622 6930 2623 6528 2625 5108 2626 5909 2627 6618 2629 6798 2630 7872 2632 6204 2633 5670 2634 6511 2636 7405 2637 7134 2639 6024 2640 5627 2641 7504 2643 6354 2644 6328 2645 6850 2647 6170 2648 5736 2650 5071 2651 7988 2652 5623 2654 7860 2655 8050 2657 6341 2658 6585 2659 7083 2661 6648 2662 6756 2663 5424 2665 6470 2666 7593 2668 5424 2669 6352 2670 6943 2672 6103 2673 5837 2674 7117 2676 6315 2677 5418 2679 6215 2680 6400 2681 6010 2683 7503 2684 7385 2686 6992 2687 6667 2688 6781 2690 5817 2691 5413 2692 5412 2694 5498 2695 4809 2697 6155 2698 6572 2699 5742 2701 6998 2702 7159 2704 5752 2705 6282 2706 7428 2708 6185 2709 5320 2710 5352 2712 7322 2713 6880 2715 5045 2716 8073 2717 6522 2719 6304 2720 6838 2721 7607 2723 6454 2724 4543 2726 5443 2727 4373 2728 6075 2730 4438 2731 6222 2733 6471 2734 6127 2735 4718 2737 6646 2738 7497 2739 6643 2741 6507 2742 7559 2744 5945 2745 6344 2746 5749 2748 3931 2749 5983 2751 5519 2752 7380 2753 6519 2755 6871 2756 6904 2757 4866 2759 6241 2760 6975 2762 6489 2763 6289 2764 7682 2766 6684 2767 7146 2768 4765 2770 6388 2771 5567 2773 6850 2774 7391 2775 6612 2777 6446 2778 6030 2780 4342 2781 4427 2782 6825 2784 5752 2785 6568 2786 7571 2788 6257 2789 6656 2791 6926 2792 6282 2793 6897 2795 6227 2796 5113 2798 7030 2799 7242 2800 5510 2802 7129 2803 6568 2804 6192 2806 6959 2807 5321 2809 4693 2810 6100 2811 6395 2813 6826 2814 5490 2815 6969 2817 6078 2818 7152 2820 6091 2821 7381 2822 6617 2824 7695 2825 5593 2827 6622 2828 6288 2829 6702 2831 6934 2832 6624 2833 5925 2835 7798 2836 4630 2838 6688 2839 7861 2840 6913 2842 6210 2843 6419 2845 6804 2846 7672 2847 7459 2849 7743 2850 6174 2851 7115 2853 7227 2854 6955 2856 4666 2857 5437 2858 7272 2860 7161 2861 6287 2862 6510 2864 7009 2865 6230 2867 8104 2868 5213 2869 7444 2871 5270 2872 6554 2874 8316 2875 6849 2876 7049 2878 7424 2879 5947 2880 7143 2882 4998 2883 6869 2885 6666 2886 5571 2887 4916 2889 7033 2890 7221 2892 6641 2893 5717 2894 5146 2896 5780 2897 6069 2898 5560 2900 6828 2901 6165 2903 5213 2904 7420 2905 5039 2907 6388 2908 7049 2909 6891 2911 6493 2912 7226 2914 7190 2915 6023 2916 7258 2918 7024 2919 7329 2921 5204 2922 6316 2923 7768 2925 5235 2926 3984 2927 4882 2929 5740 2930 6666 2932 5163 2933 6564 2934 7307 2936 5580 2937 7181 2939 6624 2940 7831 2941 7859 2943 5221 2944 7092 2945 7608 2947 5700 2948 6040 2950 7511 2951 5388 2952 7134 2954 6344 2955 7619 2956 5623 2958 5272 2959 5360 2961 6245 2962 6129 2963 6190 2965 6880 2966 6481 2968 6064 2969 5978 2970 5826 2972 6860 2973 7539 2974 5309 2976 5697 2977 6036 2979 5645 2980 7292 2981 7775 2983 5403 2984 7097 2986 6945 2987 6146 2988 5767 2990 6920 2991 6175 2992 6384 2994 6065 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 2994 6065 2995 6508 2997 6632 2998 5605 2999 7427 3001 6132 3002 6997 3003 5107 3005 8057 3006 5980 3008 6607 3009 5047 3010 7159 3012 6130 3013 6326 3015 5480 3016 7144 3017 6460 3019 6057 3020 5236 3021 7111 3023 6834 3024 7882 3026 6138 3027 6672 3028 4868 3030 5932 3031 6708 3033 5904 3034 6156 3035 7098 3037 6948 3038 7216 3039 5263 3041 4902 3042 5075 3044 6038 3045 5928 3046 6721 3048 6916 3049 6175 3050 6186 3052 5165 3053 6628 3055 4563 3056 6825 3057 6994 3059 5837 3060 6024 3062 4145 3063 6181 3064 7149 3066 6230 3067 7353 3068 5027 3070 6784 3071 5176 3073 4734 3074 6185 3075 7018 3077 6738 3078 7112 3080 5657 3081 6499 3082 6577 3084 5404 3085 6748 3086 7088 3088 6050 3089 4645 3091 7826 3092 4502 3093 3982 3095 6140 3096 6906 3097 5287 3099 6297 3100 7275 3102 7638 3103 6758 3104 6217 3106 6206 3107 6472 3109 7863 3110 5915 3111 6128 3113 7946 3114 6022 3115 6673 3117 7093 3118 7403 3120 5984 3121 7523 3122 5666 3124 5830 3125 7180 3127 7926 3128 5279 3129 7104 3131 6301 3132 7283 3133 6673 3135 5524 3136 4270 3138 7139 3139 5666 3140 6830 3142 6505 3143 4847 3144 7208 3146 5955 3147 6739 3149 4931 3150 6824 3151 6430 3153 6334 3154 6755 3156 6898 3157 7908 3158 7316 3160 4991 3161 5627 3162 6798 3164 7575 3165 4947 3167 5466 3168 7527 3169 6864 3171 5942 3172 6255 3174 6357 3175 6552 3176 8008 3178 5726 3179 5386 3180 7356 3182 7055 3183 7835 3185 5904 3186 7610 3187 6764 3189 6366 3190 7155 3192 6349 3193 6661 3194 6692 3196 7036 3197 6412 3198 6167 3200 5942 3201 6170 3203 6511 3204 6497 3205 5323 3207 5020 3208 6034 3209 7502 3211 7104 3212 6304 3214 4423 3215 5941 3216 6554 3218 5133 3219 5137 3221 4899 3222 5826 3223 7202 3225 5999 3226 5980 3227 7764 3229 5558 3230 5769 3232 6808 3233 6655 3234 7062 3236 4576 3237 7493 3239 5320 3240 6538 3241 6106 3243 6974 3244 6782 3245 5881 3247 5960 3248 6582 3250 3852 3251 7165 3252 5777 3254 4462 3255 6883 3256 5868 3258 6677 3259 7032 3261 7121 3262 6284 3263 4604 3265 6944 3266 5429 3268 5106 3269 4632 3270 5302 3272 7407 3273 6297 3274 4845 3276 5363 3277 5750 3279 6514 3280 6256 3281 6940 3283 5749 3284 5088 3286 5680 3287 6105 3288 5626 3290 7455 3291 6419 3292 7427 3294 6426 3295 6968 3297 7535 3298 6764 3299 7084 3301 6368 3302 7328 3303 6864 3305 7209 3306 5261 3308 6392 3309 4682 3310 5981 3312 6751 3313 6832 3315 5489 3316 6844 3317 6692 3319 6347 3320 7442 3321 5362 3323 5816 3324 6621 3326 6946 3327 7012 3328 5654 3330 5382 3331 7440 3333 4981 3334 6342 3335 6539 3337 5497 3338 7107 3339 6330 3341 7525 3342 6899 3344 5995 3345 5421 3346 6763 3348 6741 3349 5918 3350 6332 3352 6261 3353 5289 3355 6792 3356 4720 3357 6069 3359 5393 3360 7078 3362 6579 3363 5048 3364 6334 3366 4833 3367 5472 3368 7092 3370 5130 3371 8076 3373 5672 3374 5522 3375 5711 3377 7683 3378 6997 3380 6467 3381 6152 3382 6038 3384 6242 3385 4935 3386 7055 3388 6717 3389 7209 3391 6157 3392 7196 3393 5341 3395 7441 3396 7034 3397 6058 3399 7014 3400 6908 3402 7481 3403 6465 3404 6024 3406 5161 3407 7598 3409 4797 3410 6655 3411 6232 3413 7690 3414 4949 3415 7138 3417 5030 3418 4984 3420 6002 3421 5609 3422 6021 3424 6210 3425 6712 3427 5799 3428 4447 3429 5318 3431 6674 3432 6104 3433 5491 3435 5034 3436 5408 3438 5728 3439 5729 3440 7040 3442 6414 3443 6618 3444 4612 3446 5057 3447 5917 3449 5631 3450 7749 3451 5845 3453 4696 3454 6539 3456 5306 3457 6940 3458 6095 3460 5522 3461 7480 3462 7401 3464 6061 3465 4705 3467 7143 3468 6591 3469 6361 3471 6358 3472 6579 3474 5328 3475 5058 3476 5359 3478 7628 3479 4818 3480 6228 3482 6697 3483 5229 3485 7214 3486 6968 3487 6231 3489 7966 3490 6855 3491 5392 3493 6562 3494 4965 3496 5518 3497 4392 3498 6042 3500 5510 3501 5253 3503 7226 3504 5400 3505 5482 3507 5709 3508 6324 3509 5405 3511 5800 3512 6493 3514 5151 3515 5342 3516 5332 3518 6004 3519 6017 3521 6112 3522 4149 3523 6556 3525 6055 3526 4613 3527 6550 3529 7414 3530 5444 3532 5983 3533 5153 3534 6227 3536 6975 3537 6840 3538 6669 3540 5521 3541 7013 3543 6924 3544 6700 3545 6718 3547 6761 3548 6997 3550 4070 3551 5336 3552 5382 3554 7298 3555 6985 3556 5151 3558 7633 3559 5992 3561 4105 3562 7280 3563 6925 3565 5363 3566 6286 3568 6211 3569 4586 3570 5155 3572 4908 3573 6782 3574 6281 3576 4295 3577 6229 3579 6564 3580 3982 3581 6056 3583 4917 3584 6610 3585 7452 3587 6288 3588 6866 3590 6604 3591 5803 3592 5523 3594 7327 3595 6162 3597 5427 3598 4539 3599 4636 3601 6353 3602 6531 3603 6937 3605 6264 3606 5553 3608 7460 3609 6216 3610 5923 3612 7448 3613 6211 3615 5896 3616 7463 3617 7677 3619 7453 3620 6312 3621 6029 3623 6315 3624 5449 3626 5130 3627 5696 3628 6288 3630 5038 3631 6149 3632 5816 3634 5556 3635 6803 3637 6792 3638 6528 3639 4853 3641 6032 3642 5143 3644 5579 3645 5671 3646 7076 3648 6538 3649 4431 3650 5194 3652 6770 3653 6072 3655 4156 3656 4607 3657 7255 3659 5704 3660 6602 3662 6843 3663 6291 3664 5185 3666 7251 3667 6110 3668 5283 3670 6565 3671 6153 3673 6825 3674 5929 3675 4326 3677 5884 3678 6694 3679 4817 3681 5716 3682 7328 3684 6636 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 3684 6636 3685 6170 3686 5820 3688 5297 3689 5708 3691 4592 3692 4857 3693 6834 3695 7258 3696 6691 3697 6333 3699 7118 3700 5369 3702 6478 3703 6327 3704 6422 3706 5175 3707 6853 3709 6431 3710 5454 3711 5344 3713 6855 3714 5590 3715 7694 3717 6550 3718 7201 3720 6486 3721 4999 3722 7183 3724 5553 3725 6642 3726 4676 3728 6758 3729 4332 3731 5495 3732 5165 3733 5613 3735 5879 3736 4700 3738 4972 3739 4334 3740 6682 3742 7116 3743 5894 3744 6361 3746 5605 3747 6007 3749 5479 3750 5883 3751 5141 3753 7290 3754 6674 3756 4964 3757 5153 3758 7665 3760 4429 3761 4644 3762 4841 3764 6395 3765 5078 3767 4876 3768 6966 3769 5723 3771 7599 3772 7060 3773 5417 3775 3796 3776 5048 3778 6809 3779 5829 3780 6202 3782 5439 3783 7151 3785 5412 3786 6694 3787 4841 3789 7062 3790 5192 3791 4741 3793 4764 3794 4839 3796 6243 3797 5745 3798 5906 3800 7574 3801 4236 3803 6197 3804 7421 3805 3958 3807 6458 3808 7604 3809 5816 3811 4430 3812 5677 3814 5400 3815 5773 3816 6096 3818 3143 3819 5402 3820 7683 3822 5902 3823 6980 3825 4711 3826 4456 3827 6765 3829 6019 3830 5095 3832 4937 3833 5773 3834 5615 3836 6371 3837 6926 3838 6176 3840 6255 3841 6747 3843 7824 3844 6753 3845 6128 3847 5596 3848 3728 3850 5860 3851 5295 3852 5202 3854 5454 3855 5691 3856 5828 3858 6077 3859 4998 3861 7756 3862 6009 3863 5641 3865 4587 3866 5874 3867 5728 3869 5814 3870 6350 3872 6834 3873 5732 3874 5525 3876 5287 3877 5901 3879 6770 3880 5634 3881 6675 3883 5801 3884 6346 3885 6345 3887 3944 3888 6323 3890 7631 3891 5038 3892 5339 3894 5718 3895 6260 3897 4656 3898 5858 3899 5914 3901 5009 3902 6377 3903 6192 3905 3838 3906 5374 3908 6010 3909 6069 3910 4908 3912 6819 3913 5734 3914 5874 3916 3925 3917 6544 3919 7007 3920 4534 3921 4806 3923 6988 3924 4958 3926 4422 3927 6334 3928 4903 3930 7559 3931 6882 3932 7246 3934 7262 3935 6130 3937 3709 3938 5727 3939 6338 3941 4823 3942 6971 3944 6382 3945 5852 3946 5377 3948 6003 3949 6432 3950 5140 3952 5964 3953 6563 3955 4698 3956 7282 3957 5322 3959 6201 3960 5999 3961 7515 3963 7765 3964 6574 3966 6829 3967 5806 3968 6656 3970 6808 3971 6480 3973 4308 3974 5807 3975 4915 3977 5140 3978 5656 3979 6004 3981 7332 3982 6410 3984 5599 3985 5602 3986 5153 3988 4864 3989 5306 3991 5471 3992 5498 3993 5240 3995 6296 3996 5165 3997 7085 3999 4961 4000 4641 4002 6059 4003 5248 4004 6500 4006 5729 4007 6164 4008 4816 4010 4014 4011 5666 4013 4345 4014 4585 4015 5984 4017 4942 4018 4814 4020 5578 4021 4211 4022 7063 4024 4061 4025 4690 4026 5719 4028 6475 4029 7119 4031 4972 4032 5645 4033 7593 4035 5954 4036 6742 4038 4801 4039 6177 4040 7284 4042 6661 4043 5013 4044 4135 4046 4466 4047 4334 4049 3960 4050 4191 4051 5243 4053 7723 4054 6634 4056 5310 4057 5735 4058 7055 4060 6541 4061 7189 4062 5539 4064 6938 4065 4548 4067 4666 4068 6024 4069 5072 4071 5066 4072 4461 4073 5766 4075 4976 4076 4248 4078 6228 4079 6556 4080 6204 4082 4209 4083 7114 4085 6552 4086 6478 4087 6333 4089 5969 4090 5169 4091 7604 4093 6236 4094 6638 4096 5579 4097 6672 4098 6449 4100 5180 4101 6388 4103 4234 4104 4391 4105 4651 4107 6191 4108 6119 4109 5000 4111 5240 4112 6411 4114 5193 4115 7274 4116 4555 4118 5460 4119 3571 4120 6938 4122 6110 4123 4595 4125 5067 4126 5035 4127 7996 4129 4122 4130 6991 4132 4827 4133 4823 4134 5016 4136 5928 4137 4319 4138 5626 4140 5762 4141 5980 4143 5354 4144 7235 4145 5318 4147 6232 4148 5351 4150 5777 4151 5357 4152 5312 4154 4073 4155 5107 4156 6022 4158 3898 4159 5845 4161 4139 4162 7499 4163 6649 4165 5487 4166 6164 4167 5959 4169 5074 4170 5523 4172 5028 4173 6271 4174 5409 4176 7406 4177 5963 4179 5488 4180 4874 4181 5595 4183 4673 4184 4818 4185 4402 4187 5036 4188 5949 4190 5548 4191 4019 4192 4972 4194 4866 4195 6727 4197 5365 4198 4732 4199 6428 4201 3299 4202 4261 4203 5529 4205 5748 4206 3059 4208 5490 4209 4973 4210 6017 4212 4664 4213 3796 4214 4896 4216 4452 4217 6510 4219 4747 4220 5521 4221 4193 4223 4976 4224 4771 4226 4945 4227 4345 4228 5805 4230 5689 4231 4711 4232 6199 4234 4049 4235 5158 4237 3510 4238 5769 4239 5298 4241 5926 4242 4664 4244 6605 4245 5619 4246 4499 4248 5892 4249 5683 4250 5952 4252 6122 4253 4120 4255 6840 4256 4934 4257 5462 4259 3921 4260 6392 4261 3845 4263 4635 4264 5077 4266 5357 4267 5407 4268 4526 4270 5522 4271 5350 4273 6841 4274 5624 4275 6043 4277 6499 4278 6918 4279 7601 4281 5802 4282 4525 4284 5221 4285 6049 4286 4410 4288 4131 4289 3651 4291 6234 4292 5942 4293 5465 4295 3740 4296 4637 4297 5424 4299 5638 4300 5997 4302 5276 4303 5294 4304 5911 4306 5647 4307 3782 4308 5702 4310 6094 4311 6285 4313 5162 4314 6497 4315 5088 4317 5544 4318 4826 4320 4705 4321 5791 4322 3410 4324 5219 4325 5887 4326 7402 4328 4437 4329 4834 4331 3945 4332 5536 4333 4938 4335 4561 4336 4568 4338 4726 4339 4517 4340 4483 4342 4659 4343 5097 4344 4829 4346 6115 4347 4631 4349 4721 4350 6862 4351 6986 4353 4668 4354 6283 4355 3399 4357 4840 4358 4100 4360 3782 4361 5525 4362 5422 4364 5764 4365 4929 4367 4125 4368 4868 4369 6211 4371 5907 4372 4884 4373 4001 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 4373 4001 4375 6307 4376 5989 4378 4968 4379 5533 4380 4396 4382 5916 4383 5373 4385 5302 4386 5738 4387 4804 4389 4709 4390 6196 4391 4473 4393 7109 4394 5018 4396 4731 4397 5907 4398 4788 4400 6437 4401 5667 4402 5365 4404 3650 4405 4945 4407 3976 4408 4879 4409 4407 4411 6014 4412 4096 4414 5222 4415 6216 4416 5301 4418 5797 4419 4803 4420 4612 4422 4215 4423 4238 4425 6240 4426 4646 4427 4413 4429 5132 4430 4949 4432 5271 4433 5711 4434 4627 4436 5084 4437 5256 4438 5503 4440 4790 4441 5481 4443 5128 4444 4624 4445 4050 4447 4813 4448 5188 4449 4801 4451 5200 4452 4263 4454 5300 4455 4722 4456 5144 4458 4835 4459 4681 4461 4219 4462 3599 4463 5365 4465 6045 4466 5993 4467 3658 4469 4438 4470 4802 4472 4337 4473 5162 4474 4701 4476 5821 4477 5553 4479 6380 4480 4313 4481 4448 4483 5026 4484 5513 4485 4882 4487 4593 4488 6002 4490 4918 4491 5307 4492 4385 4494 5196 4495 4424 4496 5074 4498 5191 4499 2876 4501 5532 4502 4186 4503 5173 4505 4020 4506 5470 4508 6183 4509 5789 4510 5566 4512 7397 4513 4030 4514 4571 4516 5151 4517 4024 4519 4736 4520 5770 4521 5857 4523 3621 4524 3999 4526 4367 4527 4136 4528 4411 4530 6602 4531 5130 4532 4375 4534 4136 4535 4354 4537 4480 4538 5302 4539 5085 4541 5188 4542 4070 4543 5418 4545 3478 4546 4261 4548 4781 4549 4659 4550 5145 4552 4164 4553 4856 4555 6950 4556 4181 4557 4789 4559 5802 4560 6507 4561 6295 4563 2845 4564 3797 4566 4108 4567 5561 4568 5758 4570 5495 4571 6497 4573 4735 4574 3843 4575 5613 4577 4142 4578 4111 4579 4694 4581 4239 4582 4944 4584 5527 4585 4880 4586 4081 4588 5156 4589 4686 4590 5033 4592 4636 4593 4331 4595 4534 4596 4100 4597 5606 4599 5805 4600 5260 4602 5058 4603 3519 4604 5371 4606 4458 4607 5803 4608 6090 4610 3593 4611 6145 4613 5581 4614 3785 4615 3642 4617 5094 4618 4028 4620 6271 4621 4236 4622 4135 4624 5583 4625 3876 4626 5511 4628 4542 4629 3819 4631 3291 4632 4485 4633 5821 4635 2945 4636 4217 4637 4247 4639 5298 4640 5690 4642 4138 4643 4686 4644 6049 4646 5350 4647 3809 4649 4497 4650 4178 4651 5365 4653 4685 4654 4860 4655 3455 4657 3674 4658 4198 4660 4522 4661 5279 4662 4441 4664 4086 4665 3529 4667 4959 4668 4313 4669 4104 4671 4460 4672 5557 4673 4769 4675 4642 4676 5072 4678 4229 4679 4214 4680 4135 4682 3574 4683 5016 4684 3918 4686 3988 4687 4638 4689 3379 4690 3912 4691 3752 4693 4410 4694 3841 4696 3147 4697 5088 4698 4660 4700 4743 4701 4963 4702 3857 4704 4519 4705 4511 4707 6638 4708 3514 4709 3953 4711 4098 4712 4830 4714 4213 4715 4801 4716 4252 4718 4835 4719 4799 4720 4029 4722 4666 4723 5112 4725 4237 4726 3929 4727 5011 4729 5031 4730 4380 4731 5397 4733 4341 4734 4368 4736 3439 4737 5105 4738 4054 4740 4108 4741 3825 4743 3774 4744 4465 4745 4408 4747 3875 4748 3327 4749 4335 4751 5010 4752 3419 4754 3467 4755 5674 4756 3545 4758 4611 4759 5626 4761 4621 4762 4163 4763 4579 4765 4164 4766 3478 4767 4734 4769 4378 4770 4729 4772 4792 4773 2917 4774 4123 4776 4701 4777 3921 4778 4556 4780 4234 4781 3942 4783 3896 4784 4881 4785 3423 4787 4234 4788 3534 4790 3747 4791 3514 4792 3246 4794 5988 4795 4811 4796 3302 4798 3206 4799 4655 4801 4662 4802 3633 4803 3951 4805 3603 4806 3966 4808 3180 4809 3612 4810 3946 4812 5075 4813 4119 4814 4512 4816 4386 4817 3565 4819 4355 4820 3819 4821 4626 4823 4929 4824 3337 4825 5396 4827 3200 4828 4573 4830 4451 4831 3233 4832 4307 4834 2969 4835 4928 4837 4062 4838 4411 4839 4053 4841 4414 4842 3122 4843 3562 4845 3344 4846 5002 4848 3488 4849 3619 4850 5116 4852 4652 4853 3643 4855 3366 4856 3762 4857 3847 4859 3509 4860 3357 4861 3683 4863 3601 4864 4759 4866 3734 4867 4163 4868 3625 4870 3684 4871 3988 4872 3739 4874 3013 4875 3886 4877 4262 4878 4208 4879 3747 4881 3695 4882 3499 4884 4756 4885 4083 4886 3708 4888 4346 4889 4228 4890 4875 4892 4302 4893 3129 4895 3595 4896 3206 4897 3657 4899 3897 4900 3714 4902 4546 4903 3941 4904 3987 4906 3399 4907 3728 4908 4032 4910 4304 4911 3607 4913 4106 4914 3293 4915 4661 4917 4094 4918 3563 4920 3370 4921 3443 4922 3681 4924 3064 4925 3626 4926 3979 4928 5253 4929 3296 4931 5318 4932 3374 4933 4219 4935 3011 4936 4587 4937 5470 4939 3823 4940 3979 4942 2946 4943 3030 4944 4637 4946 3945 4947 3750 4949 4495 4950 6040 4951 3667 4953 4144 4954 3213 4955 4001 4957 3328 4958 3290 4960 4729 4961 3859 4962 2930 4964 3991 4965 4481 4967 3328 4968 4332 4969 3967 4971 3367 4972 3517 4973 4507 4975 3048 4976 4018 4978 3168 4979 3484 4980 3019 4982 3981 4983 3219 4984 3418 4986 4245 4987 2792 4989 4461 4990 4808 4991 3574 4993 3264 4994 4046 4996 4112 4997 3535 4998 3439 5000 3694 5001 2853 5002 3746 5004 3686 5005 2864 5007 4195 5008 3154 5009 3880 5011 3566 5012 3762 5014 4567 5015 3416 5016 3373 5018 4005 5019 3810 5020 4561 5022 4018 5023 3856 5025 3308 5026 3627 5027 3297 5029 3280 5030 3243 5031 3710 5033 4076 5034 3332 5036 5182 5037 2777 5038 5224 5040 2786 5041 2890 5043 4560 5044 3147 5045 4228 5047 4021 5048 2970 5049 4851 5051 4002 5052 3527 5054 3231 5055 3118 5056 3904 5058 3773 5059 3850 5061 3070 5062 3773 5063 3879 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 5063 3879 5065 3441 5066 4339 5067 3743 5069 4075 5070 3051 5072 4049 5073 4028 5074 3206 5076 3346 5077 3790 5078 3009 5080 3329 5081 3559 5083 4121 5084 3576 5085 3450 5087 2877 5088 3404 5090 3346 5091 3182 5092 2917 5094 3480 5095 2904 5096 3539 5098 4145 5099 3587 5101 4768 5102 2948 5103 3781 5105 2945 5106 3064 5108 4570 5109 3327 5110 4250 5112 2959 5113 3737 5114 3623 5116 3186 5117 3718 5119 2897 5120 2984 5121 4505 5123 3127 5124 3793 5125 4309 5127 3412 5128 3062 5130 3808 5131 2960 5132 3298 5134 3533 5135 3190 5137 3457 5138 2788 5139 3136 5141 3197 5142 3653 5143 3043 5145 3119 5146 3192 5148 3071 5149 3284 5150 3910 5152 3711 5153 3611 5155 3356 5156 3826 5157 2917 5159 3157 5160 3312 5161 4161 5163 3561 5164 3936 5166 3871 5167 3756 5168 3744 5170 3495 5171 3013 5172 3203 5174 4517 5175 3220 5177 3923 5178 3751 5179 3117 5181 4169 5182 3055 5184 3006 5185 3403 5186 2931 5188 3579 5189 3710 5190 3432 5192 3242 5193 4417 5195 3799 5196 3103 5197 2984 5199 4025 5200 4361 5202 3475 5203 3287 5204 3220 5206 4545 5207 3662 5208 3381 5210 3982 5211 2876 5213 3510 5214 3643 5215 4000 5217 2982 5218 3840 5219 3011 5221 3072 5222 2792 5224 3720 5225 2818 5226 3808 5228 3551 5229 3639 5231 2946 5232 3743 5233 3761 5235 3335 5236 3316 5237 2889 5239 3142 5240 2788 5242 3173 5243 2806 5244 3410 5246 3148 5247 3062 5249 3936 5250 2843 5251 4039 5253 3585 5254 3841 5255 2896 5257 3356 5258 3013 5260 4154 5261 3697 5262 2950 5264 3484 5265 3633 5266 3557 5268 3037 5269 3457 5271 3461 5272 3551 5273 4206 5275 3111 5276 3106 5278 3003 5279 3547 5280 3048 5282 3915 5283 2977 5284 3170 5286 3217 5287 3901 5289 3362 5290 2792 5291 3396 5293 3077 5294 3785 5296 3244 5297 3439 5298 3267 5300 3481 5301 3080 5302 3152 5304 3088 5305 3310 5307 3713 5308 3899 5309 3541 5311 3177 5312 3118 5313 3647 5315 2988 5316 2756 5318 2727 5319 2948 5320 3117 5322 3935 5323 2961 5325 3929 5326 3201 5327 3554 5329 3020 5330 3453 5331 3253 5333 3033 5334 4427 5336 2836 5337 2921 5338 4102 5340 2814 5341 3323 5343 2988 5344 3271 5345 3288 5347 2836 5348 3468 5349 2984 5351 2853 5352 2792 5354 3206 5355 2745 5356 3203 5358 3541 5359 3217 5360 2989 5362 3379 5363 3504 5365 3251 5366 3346 5367 3070 5369 3489 5370 2946 5372 3064 5373 3160 5374 2881 5376 3045 5377 3585 5378 2801 5380 3463 5381 3051 5383 3284 5384 3000 5385 3717 5387 2952 5388 3091 5390 3180 5391 3575 5392 3165 5394 3031 5395 2950 5396 2944 5398 3282 5399 3210 5401 3319 5402 3373 5403 2919 5405 2818 5406 2843 5407 3016 5409 2716 5410 2792 5412 2853 5413 2788 5414 2897 5416 3626 5417 3268 5419 2818 5420 3655 5421 3558 5423 3364 5424 3011 5425 2898 5427 2786 5428 2919 5430 3606 5431 3429 5432 2716 5434 2898 5435 2745 5437 3037 5438 2940 5439 3036 5441 2814 5442 3247 5443 2853 5445 2930 5446 2914 5448 2817 5449 2981 5450 2976 5452 2910 5453 2878 5454 2817 5456 2727 5457 3086 5459 2817 5460 2822 5461 3188 5463 3008 5464 2898 5466 2945 5467 2896 5468 2817 5470 2916 5471 2986 5472 3204 5474 2898 5475 2756 5477 3578 5478 2898 5479 3110 5481 2853 5482 2836 5484 3011 5485 3708 5486 3119 5488 3087 5489 3051 5490 3256 5492 2942 5493 3278 5495 2838 5496 2814 5497 3027 5499 3363 5500 2806 5501 2897 5503 3186 5504 2756 5506 2921 5507 3441 5508 2858 5510 2806 5511 2984 5513 3324 5514 2939 5515 3112 5517 2838 5518 2943 5519 2955 5521 3062 5522 3133 5524 3072 5525 2881 5526 2944 5528 2890 5529 3096 5531 3266 5532 3733 5533 2766 5535 2930 5536 2756 5537 3186 5539 2788 5540 2981 5542 2788 5543 3252 5544 2890 5546 3093 5547 3157 5548 3029 5550 3290 5551 2917 5553 2992 5554 2862 5555 2942 5557 3112 5558 2917 5560 2862 5561 3132 5562 2876 5564 2910 5565 2952 5566 2814 5568 2943 5569 2999 5571 2818 5572 2876 5573 3586 5575 3002 5576 3130 5578 3532 5579 3157 5580 2817 5582 2792 5583 3246 5584 2716 5586 3204 5587 2822 5589 3351 5590 3107 5591 3048 5593 3037 5594 3502 5595 3297 5597 3290 5598 3196 5600 3259 5601 2839 5602 3924 5604 2976 5605 2777 5607 3056 5608 2914 5609 2864 5611 2777 5612 2814 5613 3511 5615 2777 5616 3017 5618 3115 5619 2792 5620 3005 5622 2814 5623 2839 5625 2864 5626 2727 5627 3180 5629 2981 5630 2977 5631 3086 5633 2955 5634 2988 5636 2988 5637 2914 5638 2772 5640 3015 5641 3077 5642 2973 5644 3170 5645 3077 5647 2973 5648 2877 5649 3246 5651 2943 5652 2992 5654 2788 5655 3052 5656 2772 5658 2814 5659 2817 5660 2872 5662 2818 5663 2801 5665 3387 5666 2876 5667 3006 5669 2788 5670 2817 5672 2862 5673 2814 5674 2814 5676 2872 5677 2801 5678 3055 5680 2838 5681 2772 5683 2801 5684 2865 5685 2931 5687 3045 5688 2952 5689 2862 5691 2982 5692 2792 5694 2948 5695 2727 5696 2885 5698 3159 5699 3161 5701 3156 5702 2806 5703 2876 5705 2716 5706 2956 5707 2716 5709 2933 5710 3131 5712 2945 5713 2919 5714 2981 5716 2727 5717 2885 5719 3035 5720 2772 5721 2727 5723 2853 5724 2843 5725 2955 5727 2727 5728 2843 5730 2845 5731 2756 5732 2756 5734 2727 5735 3152 5736 3472 5738 2818 5739 2814 5741 3105 5742 3108 5743 2872 5745 3054 5746 2727 5748 2727 5749 2921 5750 2727 5752 2943 5753 2756 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 5753 2756 5754 2756 5756 2857 5757 3025 5759 2814 5760 2727 5761 2945 5763 2756 5764 2843 5766 2756 5767 3115 5768 2777 5770 3071 5771 2916 5772 2727 5774 2788 5775 2756 5777 2981 5778 2902 5779 2838 5781 2992 5782 2942 5784 2986 5785 2772 5786 2872 5788 3157 5789 2772 5790 3007 5792 2801 5793 2788 5795 2910 5796 2772 5797 3196 5799 2950 5800 2872 5801 2788 5803 3064 5804 2788 5806 2801 5807 3006 5808 3215 5810 2788 5811 2872 5813 2772 5814 3046 5815 2986 5817 2942 5818 2788 5819 3016 5821 2817 5822 2897 5824 2878 5825 2955 5826 2727 5828 2792 5829 2745 5831 2716 5832 2766 5833 3071 5835 2806 5836 2745 5837 2889 5839 3368 5840 2986 5842 2890 5843 2961 5844 2982 5846 2716 5847 2898 5848 2982 5850 2745 5851 2836 5853 2745 5854 2858 5855 2766 5857 2745 5858 2745 5860 2745 5861 3028 5862 2806 5864 2716 5865 2845 5866 2716 5868 2876 5869 2912 5871 2839 5872 2843 5873 2946 5875 2756 5876 2857 5878 2939 5879 2916 5880 2777 5882 2777 5883 2864 5884 2792 5886 2777 5887 2727 5889 2727 5890 2885 5891 2843 5893 2727 5894 2756 5895 2727 5897 2788 5898 2885 5900 2843 5901 2727 5902 2864 5904 2727 5905 2792 5907 2864 5908 2727 5909 2756 5911 2727 5912 2756 5913 2727 5915 2916 5916 2756 5918 2727 5919 2756 5920 2792 5922 2853 5923 2727 5925 2727 5926 2839 5927 2792 5929 2857 5930 2914 5931 2976 5933 3013 5934 2766 5936 2745 5937 3064 5938 2836 5940 2961 5941 2919 5942 3050 5944 2716 5945 2716 5947 2766 5948 2786 5949 2716 5951 2786 5952 2836 5954 2716 5955 2716 5956 2716 5958 3048 5959 2815 5960 2766 5962 2786 5963 2716 5965 2990 5966 2766 5967 2716 5969 2806 5970 3096 5972 2766 5973 2716 5974 2836 5976 2745 5977 2902 5978 2960 5980 2889 5981 2745 5983 2716 5984 2945 5985 2916 5987 2845 5988 2806 5989 2716 5991 2786 5992 2815 5994 2806 5995 2716 5996 2745 5998 2806 5999 2766 6001 2716 6002 2853 6003 2815 6005 2933 6006 2786 6007 2912 6009 2716 6010 2716 6012 2716 6013 2766 6014 3028 6016 2716 6017 2716 6019 2745 6020 2841 6021 2745 6023 2836 6024 2815 6025 2961 6027 2845 6028 2745 6030 2841 6031 2836 6032 2716 6034 2766 6035 2716 6036 2716 6038 2836 6039 2716 6041 2786 6042 2766 6043 2745 6045 2716 6046 2716 6048 2745 6049 2716 6050 2716 6052 2766 6053 2786 6054 2716 6056 2845 6057 2716 6059 2745 6060 2876 6061 2766 6063 2766 6064 2786 6066 2716 6067 2716 6068 2933 6070 2716 6071 2716 6072 2716 6074 2745 6075 2716 6077 2716 6078 2786 6079 2716 6081 2745 6082 2716 6083 2853 6085 2806 6086 2716 6088 2766 6089 2845 6090 2876 6092 2786 6093 2716 6095 2836 6096 2841 6097 2745 6099 2845 6100 2874 6101 2940 6103 2845 6104 2876 6106 2766 6107 2806 6108 2806 6110 2716 6111 2841 6113 2716 6114 2745 6115 2766 6117 2716 6118 2716 6119 2716 6121 2986 6122 2853 6124 2845 6125 2745 6126 3047 6128 3093 6129 2745 6130 2716 6132 2745 6133 2716 6135 2745 6136 2716 6137 2858 6139 2716 6140 2766 6142 2716 6143 2806 6144 2745 6146 2745 6147 2766 6148 2806 6150 3020 6151 2716 6153 2876 6154 2845 6155 2766 6157 2786 6158 2786 6160 2716 6161 2745 6162 2806 6164 2716 6165 2716 6166 2745 6168 2716 6169 2745 6171 2745 6172 2745 6173 2716 6175 2716 6176 2745 6177 2716 6179 2716 6180 2716 6182 2766 6183 2716 6184 2815 6186 2745 6187 2716 6189 2745 6190 2716 6191 2716 6193 2766 6194 2944 6195 2919 6197 2716 6198 2745 6200 2845 6201 2716 6202 2716 6204 2716 6205 2716 6207 2716 6208 2786 6209 2716 6211 2716 6212 2745 6213 2815 6215 2806 6216 2716 6218 2836 6219 2716 6220 2786 6222 2836 6223 2716 6224 2716 6226 2716 6227 2786 6229 2845 6230 2716 6231 2716 6233 2916 6234 2745 6236 2716 6237 2786 6238 2745 6240 2786 6241 2806 6242 2745 6244 2716 6245 2716 6247 2786 6248 2766 6249 2853 6251 2716 6252 2716 6254 2766 6255 2766 6256 2716 6258 2745 6259 2745 6260 2716 6262 2815 6263 2766 6265 2919 6266 3047 6267 2944 6269 2944 6270 2766 6271 2766 6273 2716 6274 2716 6276 2815 6277 2716 6278 2716 6280 2716 6281 2716 6283 2845 6284 2815 6285 2716 6287 2716 6288 2766 6289 2836 6291 2716 6292 2716 6294 2716 6295 2745 6296 2716 6298 2766 6299 2716 6301 2815 6302 2745 6303 2716 6305 2745 6306 2716 6307 2786 6309 2716 6310 2858 6312 2766 6313 2786 6314 2745 6316 2745 6317 2766 6318 2786 6320 2716 6321 2716 6323 2716 6324 2716 6325 2806 6327 2716 6328 2716 6330 2745 6331 2836 6332 2716 6334 2716 6335 2745 6336 2716 6338 2716 6339 2716 6341 2716 6342 2716 6343 2786 6345 2745 6346 2845 6348 2716 6349 2745 6350 2716 6352 2845 6353 2716 6354 2716 6356 2841 6357 2766 6359 2766 6360 2806 6361 2745 6363 2745 6364 2716 6365 2766 6367 2766 6368 2716 6370 2874 6371 2858 6372 2815 6374 2716 6375 2745 6377 2716 6378 2716 6379 2716 6381 2716 6382 2786 6383 2745 6385 2766 6386 2815 6388 2716 6389 2716 6390 2716 6392 2786 6393 2745 6395 2766 6396 2716 6397 2766 6399 2716 6400 2716 6401 2806 6403 2716 6404 2716 6406 2716 6407 2716 6408 2716 6410 2716 6411 2716 6412 2766 6414 2716 6415 2716 6417 2716 6418 2716 6419 2766 6421 2874 6422 2745 6424 2836 6425 2745 6426 2716 6428 2766 6429 2716 6430 2716 6432 2716 6433 2716 6435 2766 6436 2745 6437 2786 6439 2745 6440 2876 6442 2766 6443 2766 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 6443 2766 6444 2716 6446 2716 6447 2745 6448 2716 6450 2716 6451 2716 6453 2716 6454 2716 6455 2745 6457 2745 6458 2716 6459 2716 6461 2716 6462 2745 6464 2716 6465 2745 6466 2745 6468 2716 6469 2716 6471 2716 6472 2716 6473 2745 6475 2716 6476 2716 6477 2716 6479 2745 6480 2716 6482 2716 6483 2716 6484 2716 6486 2716 6487 2745 6489 2716 6490 2786 6491 2716 6493 2745 6494 2716 6495 2745 6497 2716 6498 2716 6500 2716 6501 2716 6502 2716 6504 2745 6505 2716 6506 2716 6508 2716 6509 2745 6511 2745 6512 2716 6513 2716 6515 2745 6516 2716 6518 2716 6519 2716 6520 2766 6522 2716 6523 2716 6524 2766 6526 2716 6527 2745 6529 2745 6530 2716 6531 2716 6533 2716 6534 2716 6536 2745 6537 2716 6538 2716 6540 2716 6541 2716 6542 2716 6544 2716 6545 2716 6547 2716 6548 2716 6549 2716 6551 2716 6552 2716 6553 2716 6555 2766 6556 2716 6558 2716 6559 2716 6560 2716 6562 2716 6563 2766 6565 2716 6566 2716 6567 2745 6569 2716 6570 2716 6571 2716 6573 2716 6574 2716 6576 2716 6577 2716 6578 2716 6580 2716 6581 2716 6583 2745 6584 2745 6585 2716 6587 2745 6588 2716 6589 2716 6591 2716 6592 2716 6594 2716 6595 2716 6596 2716 6598 2716 6599 2716 6600 2716 6602 2716 6603 2716 6605 2716 6606 2716 6607 2716 6609 2716 6610 2716 6612 2716 6613 2766 6614 2716 6616 2716 6617 2766 6618 2716 6620 2716 6621 2716 6623 2716 6624 2806 6625 2716 6627 2745 6628 2716 6630 2716 6631 2716 6632 2716 6634 2716 6635 2745 6636 2716 6638 2745 6639 2716 6641 2716 6642 2716 6643 2745 6645 2716 6646 2745 6648 2745 6649 2716 6650 2745 6652 2716 6653 2716 6654 2716 6656 2766 6657 2716 6659 2716 6660 2716 6661 2716 6663 2716 6664 2716 6665 2745 6667 2716 6668 2745 6670 2745 6671 2716 6672 2716 6674 2716 6675 2716 6677 2745 6678 2745 6679 2716 6681 2716 6682 2716 6683 2745 6685 2766 6686 2766 6688 2716 6689 2716 6690 2716 6692 2716 6693 2716 6695 2716 6696 2716 6697 2745 6699 2716 6700 2745 6701 2716 6703 2716 6704 2716 6706 2716 6707 2716 6708 2716 6710 2745 6711 2716 6712 2716 6714 2716 6715 2716 6717 2716 6718 2716 6719 2836 6721 2745 6722 2716 6724 2716 6725 2716 6726 2716 6728 2716 6729 2716 6730 2766 6732 2745 6733 2716 6735 2716 6736 2716 6737 2716 6739 2716 6740 2716 6742 2745 6743 2716 6744 2745 6746 2716 6747 2716 6748 2716 6750 2716 6751 2745 6753 2716 6754 2716 6755 2716 6757 2745 6758 2745 6759 2716 6761 2716 6762 2786 6764 2745 6765 2716 6766 2716 6768 2716 6769 2716 6771 2716 6772 2716 6773 2745 6775 2745 6776 2716 6777 2716 6779 2745 6780 2745 6782 2716 6783 2716 6784 2716 6786 2745 6787 2716 6789 2716 6790 2716 6791 2716 6793 2766 6794 2716 6795 2716 6797 2716 6798 2716 6800 2716 6801 2716 6802 2716 6804 2716 6805 2716 6806 2716 6808 2716 6809 2716 6811 2745 6812 2786 6813 2786 6815 2745 6816 2716 6818 2716 6819 2716 6820 2716 6822 2745 6823 2716 6824 2745 6826 2716 6827 2716 6829 2716 6830 2716 6831 2716 6833 2716 6834 2716 6836 2716 6837 2716 6838 2716 6840 2716 6841 2745 6842 2716 6844 2716 6845 2716 6847 2745 6848 2745 6849 2716 6851 2745 6852 2716 6853 2716 6855 2745 6856 2716 6858 2716 6859 2716 6860 2716 6862 2716 6863 2716 6865 2716 6866 2716 6867 2716 6869 2716 6870 2716 6871 2716 6873 2716 6874 2716 6876 2716 6877 2745 6878 2716 6880 2745 6881 2716 6883 2716 6884 2716 6885 2716 6887 2716 6888 2716 6889 2716 6891 2716 6892 2716 6894 2716 6895 2716 6896 2716 6898 2716 6899 2716 6900 2716 6902 2716 6903 2716 6905 2716 6906 2745 6907 2716 6909 2716 6910 2716 6912 2716 6913 2716 6914 2716 6916 2716 6917 2716 6918 2716 6920 2716 6921 2716 6923 2716 6924 2745 6925 2716 6927 2716 6928 2716 6930 2716 6931 2716 6932 2716 6934 2716 6935 2716 6936 2716 6938 2716 6939 2716 6941 2716 6942 2716 6943 2716 6945 2716 6946 2716 6947 2745 6949 2716 6950 2745 6952 2716 6953 2716 6954 2716 6956 2716 6957 2716 6959 2716 6960 2716 6961 2716 6963 2716 6964 2716 6965 2716 6967 2716 6968 2745 6970 2716 6971 2716 6972 2745 6974 2716 6975 2716 6977 2716 6978 2745 6979 2716 6981 2716 6982 2716 6983 2716 6985 2716 6986 2716 6988 2716 6989 2716 6990 2716 6992 2716 6993 2716 6994 2716 6996 2716 6997 2745 6999 2716 7000 2716 7001 2745 7003 2716 7004 2716 7006 2716 7007 2716 7008 2716 7010 2716 7011 2716 7012 2716 7014 2716 7015 2716 7017 2716 7018 2716 7019 2716 7021 2716 7022 2716 7024 2716 7025 2716 7026 2716 7028 2716 7029 2716 7030 2716 7032 2745 7033 2716 7035 2716 7036 2716 7037 2716 7039 2745 7040 2716 7041 2716 7043 2716 7044 2716 7046 2716 7047 2716 7048 2716 7050 2716 7051 2716 7053 2716 7054 2716 7055 2716 7057 2716 7058 2745 7059 2745 7061 2716 7062 2716 7064 2716 7065 2716 7066 2716 7068 2716 7069 2716 7071 2716 7072 2716 7073 2716 7075 2716 7076 2716 7077 2716 7079 2716 7080 2716 7082 2716 7083 2716 7084 2745 7086 2716 7087 2716 7088 2716 7090 2745 7091 2716 7093 2716 7094 2716 7095 2716 7097 2716 7098 2716 7100 2716 7101 2716 7102 2716 7104 2716 7105 2716 7106 2716 7108 2716 7109 2716 7111 2716 7112 2745 7113 2716 7115 2716 7116 2716 7118 2716 7119 2716 7120 2716 7122 2716 7123 2716 7124 2745 7126 2716 7127 2716 7129 2716 7130 2716 7131 2716 7133 2716 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 7133 2716 7134 2716 7135 2716 7137 2716 7138 2716 7140 2716 7141 2716 7142 2716 7144 2716 7145 2716 7147 2716 7148 2745 7149 2745 7151 2745 7152 2716 7153 2716 7155 2716 7156 2716 7158 2716 7159 2716 7160 2716 7162 2716 7163 2716 7165 2716 7166 2716 7167 2716 7169 2716 7170 2716 7171 2716 7173 2716 7174 2716 7176 2716 7177 2716 7178 2716 7180 2716 7181 2716 7182 2716 7184 2716 7185 2716 7187 2716 7188 2716 7189 2716 7191 2716 7192 2716 7194 2716 7195 2716 7196 2716 7198 2716 7199 2716 7200 2716 7202 2716 7203 2716 7205 2716 7206 2716 7207 2716 7209 2716 7210 2716 7212 2716 7213 2716 7214 2745 7216 2716 7217 2716 7218 2716 7220 2716 7221 2716 7223 2716 7224 2716 7225 2716 7227 2716 7228 2716 7229 2716 7231 2716 7232 2716 7234 2716 7235 2716 7236 2716 7238 2716 7239 2716 7241 2716 7242 2716 7243 2716 7245 2716 7246 2716 7247 2716 7249 2716 7250 2716 7252 2716 7253 2716 7254 2716 7256 2716 7257 2716 7259 2716 7260 2716 7261 2716 7263 2716 7264 2716 7265 2716 7267 2716 7268 2716 7270 2716 7271 2716 7272 2716 7274 2716 7275 2716 7276 2716 7278 2716 7279 2716 7281 2716 7282 2716 7283 2716 7285 2716 7286 2716 7288 2716 7289 2716 7290 2716 7292 2716 7293 2716 7294 2716 7296 2716 7297 2716 7299 2766 7300 2716 7301 2716 7303 2716 7304 2716 7306 2716 7307 2716 7308 2716 7310 2716 7311 2716 7312 2716 7314 2716 7315 2716 7317 2716 7318 2716 7319 2716 7321 2716 7322 2716 7323 2716 7325 2716 7326 2716 7328 2716 7329 2716 7330 2716 7332 2716 7333 2716 7335 2716 7336 2716 7337 2716 7339 2716 7340 2716 7341 2716 7343 2716 7344 2716 7346 2716 7347 2716 7348 2716 7350 2716 7351 2716 7353 2716 7354 2716 7355 2716 7357 2716 7358 2716 7359 2716 7361 2716 7362 2716 7364 2716 7365 2716 7366 2716 7368 2716 7369 2716 7370 2716 7372 2716 7373 2716 7375 2716 7376 2716 7377 2716 7379 2716 7380 2716 7382 2716 7383 2716 7384 2716 7386 2716 7387 2716 7388 2716 7390 2716 7391 2716 7393 2716 7394 2716 7395 2716 7397 2716 7398 2716 7400 2716 7401 2716 7402 2716 7404 2716 7405 2716 7406 2716 7408 2716 7409 2716 7411 2716 7412 2716 7413 2716 7415 2716 7416 2716 7417 2716 7419 2716 7420 2716 7422 2716 7423 2716 7424 2716 7426 2716 7427 2716 7429 2716 7430 2716 7431 2716 7433 2716 7434 2716 7435 2716 7437 2716 7438 2716 7440 2716 7441 2716 7442 2716 7444 2716 7445 2716 7447 2716 7448 2716 7449 2716 7451 2716 7452 2716 7453 2716 7455 2716 7456 2716 7458 2716 7459 2716 7460 2716 7462 2716 7463 2716 7464 2716 7466 2716 7467 2716 7469 2716 7470 2716 7471 2716 7473 2716 7474 2716 7476 2716 7477 2716 7478 2716 7480 2716 7481 2716 7482 2716 7484 2716 7485 2716 7487 2716 7488 2716 7489 2716 7491 2716 7492 2716 7494 2716 7495 2716 7496 2716 7498 2716 7499 2716 7500 2716 7502 2716 7503 2716 7505 2716 7506 2716 7507 2716 7509 2716 7510 2716 7512 2716 7513 2716 7514 2716 7516 2716 7517 2716 7518 2716 7520 2716 7521 2716 7523 2716 7524 2716 7525 2716 7527 2716 7528 2716 7529 2716 7531 2716 7532 2716 7534 2716 7535 2716 7536 2716 7538 2716 7539 2716 7541 2716 7542 2716 7543 2716 7545 2716 7546 2716 7547 2716 7549 2716 7550 2716 7552 2716 7553 2716 7554 2716 7556 2716 7557 2716 7559 2716 7560 2716 7561 2716 7563 2716 7564 2716 7565 2716 7567 2716 7568 2716 7570 2716 7571 2716 7572 2716 7574 2716 7575 2716 7576 2716 7578 2716 7579 2716 7581 2745 7582 2745 7583 2745 7585 2716 7586 2716 7588 2716 7589 2716 7590 2716 7592 2716 7593 2716 7594 2716 7596 2716 7597 2716 7599 2716 7600 2716 7601 2716 7603 2716 7604 2716 7606 2716 7607 2716 7608 2716 7610 2716 7611 2716 7612 2716 7614 2716 7615 2716 7617 2716 7618 2716 7619 2716 7621 2716 7622 2716 7623 2716 7625 2716 7626 2716 7628 2716 7629 2716 7630 2716 7632 2716 7633 2716 7635 2716 7636 2716 7637 2716 7639 2716 7640 2716 7641 2716 7643 2716 7644 2716 7646 2716 7647 2716 7648 2716 7650 2716 7651 2716 7653 2716 7654 2716 7655 2716 7657 2716 7658 2716 7659 2716 7661 2716 7662 2716 7664 2716 7665 2716 7666 2716 7668 2716 7669 2716 7670 2716 7672 2716 7673 2716 7675 2716 7676 2716 7677 2716 7679 2716 7680 2716 7682 2716 7683 2716 7684 2716 7686 2716 7687 2716 7688 2716 7690 2716 7691 2716 7693 2716 7694 2716 7695 2716 7697 2716 7698 2716 7700 2716 7701 2716 7702 2716 7704 2716 7705 2716 7706 2716 7708 2716 7709 2716 7711 2716 7712 2716 7713 2716 7715 2716 7716 2716 7717 2716 7719 2716 7720 2716 7722 2716 7723 2716 7724 2716 7726 2716 7727 2716 7729 2716 7730 2716 7731 2716 7733 2716 7734 2716 7735 2716 7737 2716 7738 2716 7740 2716 7741 2716 7742 2716 7744 2716 7745 2716 7747 2716 7748 2716 7749 2716 7751 2716 7752 2716 7753 2716 7755 2716 7756 2716 7758 2716 7759 2716 7760 2716 7762 2716 7763 2716 7764 2716 7766 2716 7767 2716 7769 2716 7770 2716 7771 2716 7773 2716 7774 2716 7776 2716 7777 2716 7778 2716 7780 2716 7781 2716 7782 2716 7784 2716 7785 2716 7787 2716 7788 2716 7789 2716 7791 2716 7792 2716 7794 2716 7795 2716 7796 2716 7798 2716 7799 2716 7800 2716 7802 2716 7803 2716 7805 2716 7806 2716 7807 2716 7809 2716 7810 2716 7811 2716 7813 2716 7814 2716 7816 2716 7817 2716 7818 2716 7820 2716 7821 2716 7823 2716 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 7823 2716 7824 2716 7825 2716 7827 2716 7828 2716 7829 2716 7831 2716 7832 2716 7834 2716 7835 2716 7836 2716 7838 2716 7839 2716 7841 2716 7842 2716 7843 2716 7845 2716 7846 2716 7847 2716 7849 2716 7850 2716 7852 2716 7853 2716 7854 2716 7856 2716 7857 2716 7858 2716 7860 2716 7861 2716 7863 2716 7864 2716 7865 2716 7867 2716 7868 2716 7870 2716 7871 2716 7872 2716 7874 2716 7875 2716 7876 2716 7878 2716 7879 2716 7881 2716 7882 2716 7883 2716 7885 2716 7886 2716 7888 2716 7889 2716 7890 2716 7892 2716 7893 2716 7894 2716 7896 2716 7897 2716 7899 2716 7900 2716 7901 2716 7903 2716 7904 2716 7905 2716 7907 2716 7908 2716 7910 2716 7911 2716 7912 2716 7914 2716 7915 2716 7917 2716 7918 2716 7919 2716 7921 2716 7922 2716 7923 2716 7925 2716 7926 2716 7928 2716 7929 2716 7930 2716 7932 2716 7933 2716 7935 2716 7936 2716 7937 2716 7939 2716 7940 2716 7941 2716 7943 2716 7944 2716 7946 2716 7947 2716 7948 2716 7950 2716 7951 2716 7952 2716 7954 2716 7955 2716 7957 2716 7958 2716 7959 2716 7961 2716 7962 2716 7964 2716 7965 2716 7966 2716 7968 2716 7969 2716 7970 2716 7972 2716 7973 2716 7975 2716 7976 2716 7977 2716 7979 2716 7980 2716 7982 2716 7983 2716 7984 2716 7986 2716 7987 2716 7988 2716 7990 2716 7991 2716 7993 2716 7994 2716 7995 2716 7997 2716 7998 2716 7999 2716 8001 2716 8002 2716 8004 2716 8005 2716 8006 2716 8008 2716 8009 2716 8011 2716 8012 2716 8013 2716 8015 2716 8016 2716 8017 2716 8019 2716 8020 2716 8022 2716 8023 2716 8024 2716 8026 2716 8027 2716 8029 2716 8030 2716 8031 2716 8033 2716 8034 2716 8035 2716 8037 2716 8038 2716 8040 2716 8041 2716 8042 2716 8044 2716 8045 2716 8046 2716 8048 2716 8049 2716 8051 2716 8052 2716 8053 2716 8055 2716 8056 2716 8058 2716 8059 2716 8060 2716 8062 2716 8063 2716 8064 2716 8066 2716 8067 2716 8069 2716 8070 2716 8071 2716 8073 2716 8074 2716 8076 2716 8077 2716 8078 2716 8080 2716 8081 2716 8082 2716 8084 2716 8085 2716 8087 2716 8088 2716 8089 2716 8091 2716 8092 2716 8093 2716 8095 2716 8096 2716 8098 2716 8099 2716 8100 2716 8102 2716 8103 2716 8105 2716 8106 2716 8107 2716 8109 2716 8110 2716 8111 2716 8113 2716 8114 2716 8116 2716 8117 2716 8118 2716 8120 2716 8121 2716 8123 2716 8124 2716 8125 2716 8127 2716 8128 2716 8129 2716 8131 2716 8132 2716 8134 2716 8135 2716 8136 2716 8138 2716 8139 2716 8140 2716 8142 2716 8143 2716 8145 2716 8146 2716 8147 2716 8149 2716 8150 2716 8152 2716 8153 2716 8154 2716 8156 2716 8157 2716 8158 2716 8160 2716 8161 2716 8163 2716 8164 2716 8165 2716 8167 2716 8168 2716 8170 2716 8171 2716 8172 2716 8174 2716 8175 2716 8176 2716 8178 2716 8179 2716 8181 2716 8182 2716 8183 2716 8185 2716 8186 2716 8187 2716 8189 2716 8190 2716 8192 2716 8193 2716 8194 2716 8196 2716 8197 2716 8199 2716 8200 2716 8201 2716 8203 2716 8204 2716 8205 2716 8207 2716 8208 2716 8210 2716 8211 2716 8212 2716 8214 2716 8215 2716 8217 2716 8218 2716 8219 2716 8221 2716 8222 2716 8223 2716 8225 2716 8226 2716 8228 2716 8229 2716 8230 2716 8232 2716 8233 2716 8234 2716 8236 2716 8237 2716 8239 2716 8240 2716 8241 2716 8243 2716 8244 2716 8246 2716 8247 2716 8248 2716 8250 2716 8251 2716 8252 2716 8254 2716 8255 2716 8257 2716 8258 2716 8259 2716 8261 2716 8262 2716 8264 2716 8265 2716 8266 2716 8268 2716 8269 2716 8270 2716 8272 2716 8273 2716 8275 2716 8276 2716 8277 2716 8279 2716 8280 2716 8281 2716 8283 2716 8284 2716 8286 2716 8287 2716 8288 2716 8290 2716 8291 2716 8293 2716 8294 2716 8295 2716 8297 2716 8298 2716 8299 2716 8301 2716 8302 2716 8304 2716 8305 2716 8306 2716 8308 2716 8309 2716 8311 2716 8312 2716 8313 2716 8315 2716 8316 2716 8317 2716 8319 2716 8320 2716 8322 2716 8323 2716 8324 2716 8326 2716 8327 2716 8328 2716 8330 2716 8331 2716 8333 2716 8334 2716 8335 2716 8337 2716 8338 2716 8340 2716 8341 2716 8342 2716 8344 2716 8345 2716 8346 2716 8348 2716 8349 2716 8351 2716 8352 2716 8353 2716 8355 2716 8356 2716 8358 2716 8359 2716 8360 2716 8362 2716 8363 2716 8364 2716 8366 2716 8367 2716 8369 2716 8370 2716 8371 2716 8373 2716 8374 2716 8376 2716 8377 2716 8378 2716 8380 2716 8381 2716 8382 2716 8384 2716 8385 2716 8387 2716 8388 2716 8389 2716 8391 2716 8392 2716 8393 2716 8395 2716 8396 2716 8398 2716 8399 2716 8400 2716 8402 2716 8403 2716 8405 2716 8406 2716 8407 2716 8409 2716 8410 2716 8411 2716 8413 2716 8414 2716 8416 2716 8417 2716 8418 2716 8420 2716 8421 2716 8423 2716 8424 2716 8425 2716 8427 2716 8428 2716 8429 2716 8431 2716 8432 2716 8434 2716 8435 2716 8436 2716 8438 2716 8439 2716 8440 2716 8442 2716 8443 2716 8445 2716 8446 2716 8447 2716 8449 2716 8450 2716 8452 2716 8453 2716 8454 2716 8456 2716 8457 2716 8458 2716 8460 2716 8461 2716 8463 2716 8464 2716 8465 2716 8467 2716 8468 2716 8470 2716 8471 2716 8472 2716 8474 2716 8475 2716 8476 2716 8478 2716 8479 2716 8481 2716 8482 2716 8483 2716 8485 2716 8486 2716 8487 2716 8489 2716 8490 2716 8492 2716 8493 2716 8494 2716 8496 2716 8497 2716 8499 2716 8500 2716 8501 2716 8503 2716 8504 2716 8505 2716 8507 2716 8508 2716 8510 2716 8511 2716 8512 2716 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 119 8512 2716 8514 2716 8515 2716 8517 2716 8518 2716 8519 2716 8521 2716 8522 2716 8523 2716 8525 2716 8526 2716 8528 2716 8529 2716 8530 2716 8532 2716 8533 2716 8534 2716 8536 2716 8537 2716 8539 2716 8540 2716 8541 2716 8543 2716 8544 2716 8546 2716 8547 2716 8548 2716 8550 2716 8551 2716 8552 2716 8554 2716 8555 2716 8557 2716 8558 2716 8559 2716 8561 2716 8562 2716 8564 2716 8565 2716 8566 2716 8568 2716 8569 2716 8570 2716 8572 2716 8573 2716 8575 2716 8576 2716 8577 2716 8579 2716 8580 2716 8581 2716 8583 2716 8584 2716 8586 2716 8587 2716 8588 2716 8590 2716 8591 2716 8593 2716 8594 2716 8595 2716 8597 2716 8598 2716 8599 2716 8601 2716 8602 2716 8604 2716 8605 2716 8606 2716 8608 2716 8609 2716 8611 2716 8612 2716 8613 2716 8615 2716 8616 2716 8617 2716 8619 2716 8620 2716 8622 2716 8623 2716 8624 2716 8626 2716 8627 2716 8628 2716 8630 2716 8631 2716 8633 2716 8634 2716 8635 2716 8637 2716 8638 2716 8640 2716 8641 2716 8642 2716 8644 2716 8645 2716 8646 2716 8648 2716 8649 2716 8651 2716 8652 2716 8653 2716 8655 2716 8656 2716 8658 2716 8659 2716 8660 2716 8662 2716 8663 2716 8664 2716 8666 2716 8667 2716 8669 2716 8670 2716 8671 2716 8673 2716 8674 2716 8675 2716 119 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/fft-real-mixedradix.eps0000664000252300025230000001623212171574312014270 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 410 302 %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 672 891 M 6297 0 V 672 211 M 0 4758 V LTb 672 211 M 63 0 V 6234 0 R -63 0 V 588 211 M (-0.2) Rshow 672 891 M 63 0 V 6234 0 R -63 0 V 588 891 M (0) Rshow 672 1570 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.2) Rshow 672 2250 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.4) Rshow 672 2930 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.6) Rshow 672 3610 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.8) Rshow 672 4289 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1) Rshow 672 4969 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1.2) Rshow 672 211 M 0 63 V 0 4695 R 0 -63 V 672 71 M (0) Cshow 1302 211 M 0 63 V 0 4695 R 0 -63 V 1302 71 M (10) Cshow 1931 211 M 0 63 V 0 4695 R 0 -63 V 1931 71 M (20) Cshow 2561 211 M 0 63 V 0 4695 R 0 -63 V 2561 71 M (30) Cshow 3191 211 M 0 63 V 0 4695 R 0 -63 V 3191 71 M (40) Cshow 3820 211 M 0 63 V 0 4695 R 0 -63 V 3820 71 M (50) Cshow 4450 211 M 0 63 V 0 4695 R 0 -63 V 4450 71 M (60) Cshow 5080 211 M 0 63 V 0 4695 R 0 -63 V 5080 71 M (70) Cshow 5710 211 M 0 63 V 0 4695 R 0 -63 V 5710 71 M (80) Cshow 6339 211 M 0 63 V 0 4695 R 0 -63 V 6339 71 M (90) Cshow 6969 211 M 0 63 V 0 4695 R 0 -63 V 6969 71 M (100) Cshow 672 211 M 6297 0 V 0 4758 V -6297 0 V 672 211 L LT0 672 891 M 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 62 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 3398 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 62 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 4828 891 L 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 62 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 63 0 V 672 997 M 63 -23 V 63 -35 V 63 -42 V 63 -44 V 63 -39 V 63 -30 V 63 -15 V 63 1 V 63 19 V 63 34 V 63 47 V 63 52 V 63 51 V 63 43 V 63 28 V 63 8 V 62 -16 V 63 -41 V 63 -62 V 63 -77 V 63 -83 V 63 -78 V 63 -60 V 63 -29 V 63 15 V 63 69 V 63 130 V 63 195 V 63 258 V 63 316 V 63 362 V 63 395 V 63 410 V 63 407 V 63 384 V 63 345 V 63 291 V 63 225 V 63 155 V 63 83 V 63 16 V 63 -41 V 63 -85 V 63 -113 V 63 -124 V 63 -117 V 63 -96 V 63 -63 V 63 -22 V 62 22 V 63 63 V 63 96 V 63 117 V 63 124 V 63 113 V 63 85 V 63 41 V 63 -16 V 63 -83 V 63 -155 V 63 -225 V 63 -291 V 63 -345 V 63 -384 V 63 -407 V 63 -410 V 63 -395 V 63 -362 V 63 -316 V 63 -258 V 63 -195 V 63 -130 V 63 -69 V 63 -15 V 63 29 V 63 60 V 63 78 V 63 83 V 63 77 V 63 62 V 63 41 V 63 16 V 63 -8 V 62 -28 V 63 -43 V 63 -51 V 63 -52 V 63 -47 V 63 -34 V 63 -19 V 63 -1 V 63 15 V 63 30 V 63 39 V 63 44 V 63 42 V 63 35 V 63 23 V 63 8 V 672 891 D 735 891 D 798 891 D 861 891 D 924 891 D 987 891 D 1050 891 D 1113 891 D 1176 891 D 1239 891 D 1302 891 D 1365 891 D 1428 891 D 1491 891 D 1554 891 D 1617 891 D 1680 891 D 1742 891 D 1805 891 D 1868 891 D 1931 891 D 1994 891 D 2057 891 D 2120 891 D 2183 891 D 2246 891 D 2309 891 D 2372 891 D 2435 891 D 2498 891 D 2561 891 D 2624 891 D 2687 891 D 2750 4289 D 2813 4289 D 2876 4289 D 2939 4289 D 3002 4289 D 3065 4289 D 3128 4289 D 3191 4289 D 3254 4289 D 3317 4289 D 3380 4289 D 3443 4289 D 3506 4289 D 3569 4289 D 3632 4289 D 3695 4289 D 3758 4289 D 3820 4289 D 3883 4289 D 3946 4289 D 4009 4289 D 4072 4289 D 4135 4289 D 4198 4289 D 4261 4289 D 4324 4289 D 4387 4289 D 4450 4289 D 4513 4289 D 4576 4289 D 4639 4289 D 4702 4289 D 4765 4289 D 4828 891 D 4891 891 D 4954 891 D 5017 891 D 5080 891 D 5143 891 D 5206 891 D 5269 891 D 5332 891 D 5395 891 D 5458 891 D 5521 891 D 5584 891 D 5647 891 D 5710 891 D 5773 891 D 5836 891 D 5899 891 D 5961 891 D 6024 891 D 6087 891 D 6150 891 D 6213 891 D 6276 891 D 6339 891 D 6402 891 D 6465 891 D 6528 891 D 6591 891 D 6654 891 D 6717 891 D 6780 891 D 6843 891 D 6906 891 D 672 997 D 735 974 D 798 939 D 861 897 D 924 853 D 987 814 D 1050 784 D 1113 769 D 1176 770 D 1239 789 D 1302 823 D 1365 870 D 1428 922 D 1491 973 D 1554 1016 D 1617 1044 D 1680 1052 D 1742 1036 D 1805 995 D 1868 933 D 1931 856 D 1994 773 D 2057 695 D 2120 635 D 2183 606 D 2246 621 D 2309 690 D 2372 820 D 2435 1015 D 2498 1273 D 2561 1589 D 2624 1951 D 2687 2346 D 2750 2756 D 2813 3163 D 2876 3547 D 2939 3892 D 3002 4183 D 3065 4408 D 3128 4563 D 3191 4646 D 3254 4662 D 3317 4621 D 3380 4536 D 3443 4423 D 3506 4299 D 3569 4182 D 3632 4086 D 3695 4023 D 3758 4001 D 3820 4023 D 3883 4086 D 3946 4182 D 4009 4299 D 4072 4423 D 4135 4536 D 4198 4621 D 4261 4662 D 4324 4646 D 4387 4563 D 4450 4408 D 4513 4183 D 4576 3892 D 4639 3547 D 4702 3163 D 4765 2756 D 4828 2346 D 4891 1951 D 4954 1589 D 5017 1273 D 5080 1015 D 5143 820 D 5206 690 D 5269 621 D 5332 606 D 5395 635 D 5458 695 D 5521 773 D 5584 856 D 5647 933 D 5710 995 D 5773 1036 D 5836 1052 D 5899 1044 D 5961 1016 D 6024 973 D 6087 922 D 6150 870 D 6213 823 D 6276 789 D 6339 770 D 6402 769 D 6465 784 D 6528 814 D 6591 853 D 6654 897 D 6717 939 D 6780 974 D 6843 997 D 6906 1005 D stroke grestore end showpage %%Trailer gsl-1.16/doc/fit-wlinear.eps0000664000252300025230000027336012171574312012664 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 1.6 %%Title: PostScript plot %%CreationDate: Sun Aug 6 11:26:34 2000 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 85 180 500 576 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /arrowWidth 4 def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eofill } { eoclip originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eofill fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 85 180 500 576 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Poly [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2304 2304 2304 9216 9216 9216 9216 2304 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1930 2107 1952 2118 1985 2151 1985 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1974 2140 1974 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1930 1920 2029 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2260 2074 2249 2041 2227 2019 2194 2008 2183 2008 2150 2019 2128 2041 2117 2074 2117 2085 2128 2118 2150 2140 2183 2151 2205 2151 2238 2140 2260 2118 2271 2085 2271 2019 2260 1975 2249 1953 2227 1931 2194 1920 2161 1920 2139 1931 2128 1953 2128 1964 2139 1975 2150 1964 2139 1953 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2183 2008 2161 2019 2139 2041 2128 2074 2128 2085 2139 2118 2161 2140 2183 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2205 2151 2227 2140 2249 2118 2260 2085 2260 2019 2249 1975 2238 1953 2216 1931 2194 1920 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2469 2118 2458 2107 2469 2096 2480 2107 2480 2118 2469 2140 2447 2151 2414 2151 2381 2140 2359 2118 2348 2096 2337 2052 2337 1986 2348 1953 2370 1931 2403 1920 2425 1920 2458 1931 2480 1953 2491 1986 2491 1997 2480 2030 2458 2052 2425 2063 2414 2063 2381 2052 2359 2030 2348 1997 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2414 2151 2392 2140 2370 2118 2359 2096 2348 2052 2348 1986 2359 1953 2381 1931 2403 1920 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2425 1920 2447 1931 2469 1953 2480 1986 2480 1997 2469 2030 2447 2052 2425 2063 8 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2623 2151 2590 2140 2568 2107 2557 2052 2557 2019 2568 1964 2590 1931 2623 1920 2645 1920 2678 1931 2700 1964 2711 2019 2711 2052 2700 2107 2678 2140 2645 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2623 2151 2601 2140 2590 2129 2579 2107 2568 2052 2568 2019 2579 1964 2590 1942 2601 1931 2623 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2645 1920 2667 1931 2678 1942 2689 1964 2700 2019 2700 2052 2689 2107 2678 2129 2667 2140 2645 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3313 2107 3335 2118 3368 2151 3368 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3357 2140 3357 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3313 1920 3411 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 3642 2074 3631 2041 3609 2019 3576 2008 3565 2008 3532 2019 3510 2041 3499 2074 3499 2085 3510 2118 3532 2140 3565 2151 3587 2151 3620 2140 3642 2118 3653 2085 3653 2019 3642 1975 3631 1953 3609 1931 3576 1920 3543 1920 3521 1931 3510 1953 3510 1964 3521 1975 3532 1964 3521 1953 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3565 2008 3543 2019 3521 2041 3510 2074 3510 2085 3521 2118 3543 2140 3565 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 3587 2151 3609 2140 3631 2118 3642 2085 3642 2019 3631 1975 3620 1953 3598 1931 3576 1920 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3719 2151 3719 2085 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3719 2107 3730 2129 3752 2151 3774 2151 3829 2118 3851 2118 3862 2129 3873 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3730 2129 3752 2140 3774 2140 3829 2118 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 3873 2151 3873 2118 3862 2085 3818 2030 3807 2008 3796 1975 3796 1920 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 3862 2085 3807 2030 3796 2008 3785 1975 3785 1920 5 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4005 2151 3972 2140 3950 2107 3939 2052 3939 2019 3950 1964 3972 1931 4005 1920 4027 1920 4060 1931 4082 1964 4093 2019 4093 2052 4082 2107 4060 2140 4027 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4005 2151 3983 2140 3972 2129 3961 2107 3950 2052 3950 2019 3961 1964 3972 1942 3983 1931 4005 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4027 1920 4049 1931 4060 1942 4071 1964 4082 2019 4082 2052 4071 2107 4060 2129 4049 2140 4027 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4695 2107 4717 2118 4750 2151 4750 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4739 2140 4739 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4695 1920 4794 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 5025 2074 5014 2041 4992 2019 4959 2008 4948 2008 4915 2019 4893 2041 4882 2074 4882 2085 4893 2118 4915 2140 4948 2151 4970 2151 5003 2140 5025 2118 5036 2085 5036 2019 5025 1975 5014 1953 4992 1931 4959 1920 4926 1920 4904 1931 4893 1953 4893 1964 4904 1975 4915 1964 4904 1953 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4948 2008 4926 2019 4904 2041 4893 2074 4893 2085 4904 2118 4926 2140 4948 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4970 2151 4992 2140 5014 2118 5025 2085 5025 2019 5014 1975 5003 1953 4981 1931 4959 1920 9 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 5157 2151 5124 2140 5113 2118 5113 2085 5124 2063 5157 2052 5201 2052 5234 2063 5245 2085 5245 2118 5234 2140 5201 2151 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5157 2151 5135 2140 5124 2118 5124 2085 5135 2063 5157 2052 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5201 2052 5223 2063 5234 2085 5234 2118 5223 2140 5201 2151 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5157 2052 5124 2041 5113 2030 5102 2008 5102 1964 5113 1942 5124 1931 5157 1920 5201 1920 5234 1931 5245 1942 5256 1964 5256 2008 5245 2030 5234 2041 5201 2052 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5157 2052 5135 2041 5124 2030 5113 2008 5113 1964 5124 1942 5135 1931 5157 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5201 1920 5223 1931 5234 1942 5245 1964 5245 2008 5234 2030 5223 2041 5201 2052 8 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5388 2151 5355 2140 5333 2107 5322 2052 5322 2019 5333 1964 5355 1931 5388 1920 5410 1920 5443 1931 5465 1964 5476 2019 5476 2052 5465 2107 5443 2140 5410 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5388 2151 5366 2140 5355 2129 5344 2107 5333 2052 5333 2019 5344 1964 5355 1942 5366 1931 5388 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5410 1920 5432 1931 5443 1942 5454 1964 5465 2019 5465 2052 5454 2107 5443 2129 5432 2140 5410 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6077 2107 6099 2118 6132 2151 6132 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6121 2140 6121 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6077 1920 6176 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 6407 2074 6396 2041 6374 2019 6341 2008 6330 2008 6297 2019 6275 2041 6264 2074 6264 2085 6275 2118 6297 2140 6330 2151 6352 2151 6385 2140 6407 2118 6418 2085 6418 2019 6407 1975 6396 1953 6374 1931 6341 1920 6308 1920 6286 1931 6275 1953 6275 1964 6286 1975 6297 1964 6286 1953 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6330 2008 6308 2019 6286 2041 6275 2074 6275 2085 6286 2118 6308 2140 6330 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 6352 2151 6374 2140 6396 2118 6407 2085 6407 2019 6396 1975 6385 1953 6363 1931 6341 1920 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 6627 2074 6616 2041 6594 2019 6561 2008 6550 2008 6517 2019 6495 2041 6484 2074 6484 2085 6495 2118 6517 2140 6550 2151 6572 2151 6605 2140 6627 2118 6638 2085 6638 2019 6627 1975 6616 1953 6594 1931 6561 1920 6528 1920 6506 1931 6495 1953 6495 1964 6506 1975 6517 1964 6506 1953 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6550 2008 6528 2019 6506 2041 6495 2074 6495 2085 6506 2118 6528 2140 6550 2151 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 6572 2151 6594 2140 6616 2118 6627 2085 6627 2019 6616 1975 6605 1953 6583 1931 6561 1920 9 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6770 2151 6737 2140 6715 2107 6704 2052 6704 2019 6715 1964 6737 1931 6770 1920 6792 1920 6825 1931 6847 1964 6858 2019 6858 2052 6847 2107 6825 2140 6792 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6770 2151 6748 2140 6737 2129 6726 2107 6715 2052 6715 2019 6726 1964 6737 1942 6748 1931 6770 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6792 1920 6814 1931 6825 1942 6836 1964 6847 2019 6847 2052 6836 2107 6825 2129 6814 2140 6792 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 7438 2107 7449 2096 7438 2085 7427 2096 7427 2107 7438 2129 7449 2140 7482 2151 7526 2151 7559 2140 7570 2129 7581 2107 7581 2085 7570 2063 7537 2041 7482 2019 7460 2008 7438 1986 7427 1953 7427 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7526 2151 7548 2140 7559 2129 7570 2107 7570 2085 7559 2063 7526 2041 7482 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7427 1942 7438 1953 7460 1953 7515 1931 7548 1931 7570 1942 7581 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 7460 1953 7515 1920 7559 1920 7570 1931 7581 1953 7581 1975 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7713 2151 7680 2140 7658 2107 7647 2052 7647 2019 7658 1964 7680 1931 7713 1920 7735 1920 7768 1931 7790 1964 7801 2019 7801 2052 7790 2107 7768 2140 7735 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7713 2151 7691 2140 7680 2129 7669 2107 7658 2052 7658 2019 7669 1964 7680 1942 7691 1931 7713 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7735 1920 7757 1931 7768 1942 7779 1964 7790 2019 7790 2052 7779 2107 7768 2129 7757 2140 7735 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7933 2151 7900 2140 7878 2107 7867 2052 7867 2019 7878 1964 7900 1931 7933 1920 7955 1920 7988 1931 8010 1964 8021 2019 8021 2052 8010 2107 7988 2140 7955 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7933 2151 7911 2140 7900 2129 7889 2107 7878 2052 7878 2019 7889 1964 7900 1942 7911 1931 7933 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7955 1920 7977 1931 7988 1942 7999 1964 8010 2019 8010 2052 7999 2107 7988 2129 7977 2140 7955 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8152 2151 8120 2140 8098 2107 8087 2052 8087 2019 8098 1964 8120 1931 8152 1920 8174 1920 8207 1931 8229 1964 8240 2019 8240 2052 8229 2107 8207 2140 8174 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8152 2151 8131 2140 8120 2129 8109 2107 8098 2052 8098 2019 8109 1964 8120 1942 8131 1931 8152 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8174 1920 8196 1931 8207 1942 8218 1964 8229 2019 8229 2052 8218 2107 8207 2129 8196 2140 8174 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 8820 2107 8831 2096 8820 2085 8809 2096 8809 2107 8820 2129 8831 2140 8864 2151 8908 2151 8941 2140 8952 2129 8963 2107 8963 2085 8952 2063 8919 2041 8864 2019 8842 2008 8820 1986 8809 1953 8809 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8908 2151 8930 2140 8941 2129 8952 2107 8952 2085 8941 2063 8908 2041 8864 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 8809 1942 8820 1953 8842 1953 8897 1931 8930 1931 8952 1942 8963 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8842 1953 8897 1920 8941 1920 8952 1931 8963 1953 8963 1975 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9095 2151 9062 2140 9040 2107 9029 2052 9029 2019 9040 1964 9062 1931 9095 1920 9117 1920 9150 1931 9172 1964 9183 2019 9183 2052 9172 2107 9150 2140 9117 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9095 2151 9073 2140 9062 2129 9051 2107 9040 2052 9040 2019 9051 1964 9062 1942 9073 1931 9095 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9117 1920 9139 1931 9150 1942 9161 1964 9172 2019 9172 2052 9161 2107 9150 2129 9139 2140 9117 2151 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 9282 2107 9304 2118 9337 2151 9337 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9326 2140 9326 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9282 1920 9381 1920 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9535 2151 9502 2140 9480 2107 9469 2052 9469 2019 9480 1964 9502 1931 9535 1920 9557 1920 9590 1931 9612 1964 9623 2019 9623 2052 9612 2107 9590 2140 9557 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9535 2151 9513 2140 9502 2129 9491 2107 9480 2052 9480 2019 9491 1964 9502 1942 9513 1931 9535 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9557 1920 9579 1931 9590 1942 9601 1964 9612 2019 9612 2052 9601 2107 9590 2129 9579 2140 9557 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2580 9216 2580 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2580 2304 2580 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2857 9216 2857 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2857 2304 2857 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3133 9216 3133 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3133 2304 3133 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3410 9216 3410 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3410 2304 3410 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3963 9216 3963 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3963 2304 3963 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4239 9216 4239 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4239 2304 4239 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4516 9216 4516 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4516 2304 4516 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4792 9216 4792 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4792 2304 4792 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5345 9216 5345 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5345 2304 5345 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5622 9216 5622 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5622 2304 5622 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5898 9216 5898 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5898 2304 5898 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6175 9216 6175 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6175 2304 6175 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6728 9216 6728 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6728 2304 6728 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7004 9216 7004 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7004 2304 7004 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7281 9216 7281 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7281 2304 7281 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7557 9216 7557 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7557 2304 7557 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8110 9216 8110 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8110 2304 8110 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8387 9216 8387 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8387 2304 8387 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8663 9216 8663 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8663 2304 8663 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8940 9216 8940 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8940 2304 8940 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2079 2436 2046 2425 2024 2392 2013 2337 2013 2304 2024 2249 2046 2216 2079 2205 2101 2205 2134 2216 2156 2249 2167 2304 2167 2337 2156 2392 2134 2425 2101 2436 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 2436 2057 2425 2046 2414 2035 2392 2024 2337 2024 2304 2035 2249 2046 2227 2057 2216 2079 2205 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 2205 2123 2216 2134 2227 2145 2249 2156 2304 2156 2337 2145 2392 2134 2414 2123 2425 2101 2436 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 4164 2013 4054 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2013 4054 2035 4076 2068 4087 2101 4087 2134 4076 2156 4054 2167 4021 2167 3999 2156 3966 2134 3944 2101 3933 2068 3933 2035 3944 2024 3955 2013 3977 2013 3988 2024 3999 2035 3988 2024 3977 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 4087 2123 4076 2145 4054 2156 4021 2156 3999 2145 3966 2123 3944 2101 3933 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 4164 2145 4164 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2035 4153 2090 4153 2145 4164 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9078 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2442 4032 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1826 5848 1848 5859 1881 5892 1881 5661 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1870 5881 1870 5661 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1826 5661 1925 5661 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2079 5892 2046 5881 2024 5848 2013 5793 2013 5760 2024 5705 2046 5672 2079 5661 2101 5661 2134 5672 2156 5705 2167 5760 2167 5793 2156 5848 2134 5881 2101 5892 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 5892 2057 5881 2046 5870 2035 5848 2024 5793 2024 5760 2035 5705 2046 5683 2057 5672 2079 5661 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 5661 2123 5672 2134 5683 2145 5705 2156 5760 2156 5793 2145 5848 2134 5870 2123 5881 2101 5892 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9078 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2442 5760 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1826 7576 1848 7587 1881 7620 1881 7389 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1870 7609 1870 7389 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1826 7389 1925 7389 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 7620 2013 7510 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2013 7510 2035 7532 2068 7543 2101 7543 2134 7532 2156 7510 2167 7477 2167 7455 2156 7422 2134 7400 2101 7389 2068 7389 2035 7400 2024 7411 2013 7433 2013 7444 2024 7455 2035 7444 2024 7433 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 7543 2123 7532 2145 7510 2156 7477 2156 7455 2145 7422 2123 7400 2101 7389 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 7620 2145 7620 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2035 7609 2090 7609 2145 7620 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7488 9078 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7488 2442 7488 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 1804 9304 1815 9293 1804 9282 1793 9293 1793 9304 1804 9326 1815 9337 1848 9348 1892 9348 1925 9337 1936 9326 1947 9304 1947 9282 1936 9260 1903 9238 1848 9216 1826 9205 1804 9183 1793 9150 1793 9117 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 9348 1914 9337 1925 9326 1936 9304 1936 9282 1925 9260 1892 9238 1848 9216 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1793 9139 1804 9150 1826 9150 1881 9128 1914 9128 1936 9139 1947 9150 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1826 9150 1881 9117 1925 9117 1936 9128 1947 9150 1947 9172 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2079 9348 2046 9337 2024 9304 2013 9249 2013 9216 2024 9161 2046 9128 2079 9117 2101 9117 2134 9128 2156 9161 2167 9216 2167 9249 2156 9304 2134 9337 2101 9348 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 9348 2057 9337 2046 9326 2035 9304 2024 9249 2024 9216 2035 9161 2046 9139 2057 9128 2079 9117 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 9117 2123 9128 2134 9139 2145 9161 2156 9216 2156 9249 2145 9304 2134 9326 2123 9337 2101 9348 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2650 9161 2650 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2650 2359 2650 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2995 9161 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2995 2359 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3341 9161 3341 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3341 2359 3341 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3686 9161 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2359 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9161 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2359 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4378 9161 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4378 2359 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4723 9161 4723 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4723 2359 4723 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5069 9161 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2359 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5414 9161 5414 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5414 2359 5414 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6106 9161 6106 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6106 2359 6106 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6451 9161 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2359 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6797 9161 6797 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6797 2359 6797 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7142 9161 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7142 2359 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7488 9161 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7488 2359 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7834 9161 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2359 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8179 9161 8179 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8179 2359 8179 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8525 9161 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8525 2359 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8870 9161 8870 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8870 2359 8870 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5694 1621 5815 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5705 1621 5826 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5826 1621 5694 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5672 1621 5738 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5782 1621 5848 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5672 1467 5738 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5782 1467 5848 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1354 5700 1508 5765 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1354 5711 1486 5765 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 1354 5831 1508 5765 1552 5744 1574 5722 1585 5700 1585 5689 1574 5678 1563 5689 1574 5700 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1354 5678 1354 5744 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1354 5787 1354 5853 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3583 5358 3790 5358 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 5358 3686 7544 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3583 7544 3790 7544 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3622 6451 3751 6451 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 6386 3686 6516 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4965 5333 5172 5333 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 5333 5069 6878 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4965 6878 5172 6878 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5004 6106 5134 6106 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 6041 5069 6170 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6348 6511 6555 6511 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6511 6451 7773 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6348 7773 6555 7773 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6386 7142 6516 7142 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 7078 6451 7207 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7730 6250 7937 6250 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6250 7834 7343 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7730 7343 7937 7343 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7769 6797 7898 6797 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6732 7834 6862 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 160 2442 6126 2484 6133 2525 6139 2567 6145 2608 6151 2650 6157 2691 6164 2733 6170 2774 6176 2815 6182 2857 6189 2898 6195 2940 6201 2981 6207 3023 6213 3064 6220 3106 6226 3147 6232 3189 6238 3230 6245 3272 6251 3313 6257 3355 6263 3396 6269 3438 6276 3479 6282 3521 6288 3562 6294 3603 6301 3645 6307 3686 6313 3728 6319 3769 6325 3811 6332 3852 6338 3894 6344 3935 6350 3977 6357 4018 6363 4060 6369 4101 6375 4143 6381 4184 6388 4226 6394 4267 6400 4308 6406 4350 6412 4391 6419 4433 6425 4474 6431 4516 6437 4557 6444 4599 6450 4640 6456 4682 6462 4723 6468 4765 6475 4806 6481 4848 6487 4889 6493 4931 6500 4972 6506 5014 6512 5055 6518 5096 6524 5138 6531 5179 6537 5221 6543 5262 6549 5304 6556 5345 6562 5387 6568 5428 6574 5470 6580 5511 6587 5553 6593 5594 6599 5636 6605 5677 6612 5719 6618 5760 6624 5801 6630 5843 6636 5884 6643 5926 6649 5967 6655 6009 6661 6050 6668 6092 6674 6133 6680 6175 6686 6216 6692 6258 6699 6299 6705 6341 6711 6382 6717 6424 6724 6465 6730 6506 6736 6548 6742 6589 6748 6631 6755 6672 6761 6714 6767 6755 6773 6797 6780 6838 6786 6880 6792 6921 6798 6963 6804 7004 6811 7046 6817 7087 6823 7129 6829 7170 6836 7212 6842 7253 6848 7294 6854 7336 6860 7377 6867 7419 6873 7460 6879 7502 6885 7543 6891 7585 6898 7626 6904 7668 6910 7709 6916 7751 6923 7792 6929 7834 6935 7875 6941 7917 6947 7958 6954 7999 6960 8041 6966 8082 6972 8124 6979 8165 6985 8207 6991 8248 6997 8290 7003 8331 7010 8373 7016 8414 7022 8456 7028 8497 7035 8539 7041 8580 7047 8622 7053 8663 7059 8705 7066 8746 7072 8787 7078 8829 7084 8870 7091 8912 7097 8953 7103 8995 7109 9036 7115 160 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 34952 1 0 0 [ 1 3 1 3 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 160 2442 7186 2484 7183 2525 7179 2567 7176 2608 7172 2650 7169 2691 7165 2733 7162 2774 7158 2815 7155 2857 7151 2898 7148 2940 7144 2981 7141 3023 7138 3064 7134 3106 7131 3147 7127 3189 7124 3230 7121 3272 7118 3313 7114 3355 7111 3396 7108 3438 7105 3479 7101 3521 7098 3562 7095 3603 7092 3645 7089 3686 7086 3728 7083 3769 7080 3811 7077 3852 7074 3894 7071 3935 7068 3977 7065 4018 7062 4060 7060 4101 7057 4143 7054 4184 7051 4226 7049 4267 7046 4308 7044 4350 7041 4391 7039 4433 7037 4474 7034 4516 7032 4557 7030 4599 7028 4640 7026 4682 7024 4723 7022 4765 7020 4806 7018 4848 7016 4889 7015 4931 7013 4972 7012 5014 7011 5055 7009 5096 7008 5138 7007 5179 7007 5221 7006 5262 7005 5304 7005 5345 7004 5387 7004 5428 7004 5470 7004 5511 7005 5553 7005 5594 7006 5636 7007 5677 7008 5719 7009 5760 7010 5801 7012 5843 7014 5884 7016 5926 7019 5967 7021 6009 7024 6050 7027 6092 7031 6133 7035 6175 7039 6216 7043 6258 7048 6299 7053 6341 7058 6382 7063 6424 7069 6465 7075 6506 7082 6548 7089 6589 7096 6631 7103 6672 7111 6714 7119 6755 7127 6797 7136 6838 7145 6880 7154 6921 7163 6963 7173 7004 7183 7046 7193 7087 7203 7129 7214 7170 7225 7212 7236 7253 7247 7294 7259 7336 7271 7377 7283 7419 7295 7460 7307 7502 7319 7543 7332 7585 7345 7626 7358 7668 7371 7709 7384 7751 7397 7792 7410 7834 7424 7875 7437 7917 7451 7958 7465 7999 7479 8041 7493 8082 7507 8124 7521 8165 7535 8207 7550 8248 7564 8290 7579 8331 7593 8373 7608 8414 7622 8456 7637 8497 7652 8539 7667 8580 7682 8622 7697 8663 7712 8705 7727 8746 7742 8787 7757 8829 7772 8870 7787 8912 7802 8953 7818 8995 7833 9036 7848 160 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 34952 1 0 0 [ 1 3 1 3 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 160 2442 5066 2484 5082 2525 5098 2567 5114 2608 5130 2650 5146 2691 5162 2733 5178 2774 5194 2815 5210 2857 5226 2898 5242 2940 5258 2981 5273 3023 5289 3064 5305 3106 5321 3147 5337 3189 5352 3230 5368 3272 5384 3313 5400 3355 5415 3396 5431 3438 5447 3479 5462 3521 5478 3562 5494 3603 5509 3645 5525 3686 5540 3728 5556 3769 5571 3811 5587 3852 5602 3894 5617 3935 5633 3977 5648 4018 5663 4060 5678 4101 5694 4143 5709 4184 5724 4226 5739 4267 5754 4308 5769 4350 5784 4391 5799 4433 5813 4474 5828 4516 5843 4557 5857 4599 5872 4640 5886 4682 5901 4723 5915 4765 5930 4806 5944 4848 5958 4889 5972 4931 5986 4972 6000 5014 6013 5055 6027 5096 6041 5138 6054 5179 6067 5221 6080 5262 6094 5304 6106 5345 6119 5387 6132 5428 6144 5470 6157 5511 6169 5553 6181 5594 6192 5636 6204 5677 6215 5719 6227 5760 6238 5801 6248 5843 6259 5884 6269 5926 6279 5967 6289 6009 6298 6050 6308 6092 6317 6133 6325 6175 6334 6216 6342 6258 6350 6299 6357 6341 6364 6382 6371 6424 6378 6465 6384 6506 6390 6548 6396 6589 6401 6631 6406 6672 6411 6714 6415 6755 6419 6797 6423 6838 6427 6880 6430 6921 6433 6963 6436 7004 6438 7046 6441 7087 6443 7129 6444 7170 6446 7212 6447 7253 6448 7294 6449 7336 6450 7377 6451 7419 6451 7460 6451 7502 6451 7543 6451 7585 6451 7626 6450 7668 6450 7709 6449 7751 6448 7792 6447 7834 6446 7875 6445 7917 6444 7958 6442 7999 6441 8041 6439 8082 6438 8124 6436 8165 6434 8207 6432 8248 6430 8290 6428 8331 6426 8373 6424 8414 6422 8456 6420 8497 6417 8539 6415 8580 6412 8622 6410 8663 6407 8705 6405 8746 6402 8787 6399 8829 6397 8870 6394 8912 6391 8953 6388 8995 6385 9036 6383 160 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/fftalgorithms.tex0000664000252300025230000031262712171574312013325 00000000000000\documentclass[fleqn,12pt]{article} % \setlength{\oddsidemargin}{-0.25in} \setlength{\textwidth}{7.0in} \setlength{\topmargin}{-0.25in} \setlength{\textheight}{9.5in} % \usepackage{algorithmic} \newenvironment{algorithm}{\begin{quote} %\vspace{1em} \begin{algorithmic}\samepage}{\end{algorithmic} %\vspace{1em} \end{quote}} \newcommand{\Real}{\mathop{\mathrm{Re}}} \newcommand{\Imag}{\mathop{\mathrm{Im}}} \begin{document} \title{FFT Algorithms} \author{Brian Gough, {\tt bjg@network-theory.co.uk}} \date{May 1997} \maketitle \section{Introduction} Fast Fourier Transforms (FFTs) are efficient algorithms for calculating the discrete Fourier transform (DFT), % \begin{eqnarray} h_a &=& \mathrm{DFT}(g_b) \\ &=& \sum_{b=0}^{N-1} g_b \exp(-2\pi i a b /N) \qquad 0 \leq a \leq N-1\\ &=& \sum_{b=0}^{N-1} g_b W_N^{ab} \qquad W_N= \exp(-2\pi i/N) \end{eqnarray} % The DFT usually arises as an approximation to the continuous Fourier transform when functions are sampled at discrete intervals in space or time. The naive evaluation of the discrete Fourier transform is a matrix-vector multiplication ${\mathbf W}\vec{g}$, and would take $O(N^2)$ operations for $N$ data-points. The general principle of the Fast Fourier Transform algorithms is to use a divide-and-conquer strategy to factorize the matrix $W$ into smaller sub-matrices, typically reducing the operation count to $O(N \sum f_i)$ if $N$ can be factorized into smaller integers, $N=f_1 f_2 \dots f_n$. This chapter explains the algorithms used in the GSL FFT routines and provides some information on how to extend them. To learn more about the FFT you should read the review article {\em Fast Fourier Transforms: A Tutorial Review and A State of the Art} by Duhamel and Vetterli~\cite{duhamel90}. There are several introductory books on the FFT with example programs, such as {\em The Fast Fourier Transform} by Brigham~\cite{brigham74} and {\em DFT/FFT and Convolution Algorithms} by Burrus and Parks~\cite{burrus84}. In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in {\em Programs for Digital Signal Processing}~\cite{committee79} which is a useful reference for implementations of many different FFT algorithms. If you are interested in using DSPs then the {\em Handbook of Real-Time Fast Fourier Transforms}~\cite{smith95} provides detailed information on the algorithms and hardware needed to design, build and test DSP applications. Many FFT algorithms rely on results from number theory. These results are covered in the books {\em Fast transforms: algorithms, analyses, applications}, by Elliott and Rao~\cite{elliott82}, {\em Fast Algorithms for Digital Signal Processing} by Blahut~\cite{blahut} and {\em Number Theory in Digital Signal Processing} by McClellan and Rader~\cite{mcclellan79}. There is also an annotated bibliography of papers on the FFT and related topics by Burrus~\cite{burrus-note}. \section{Families of FFT algorithms} % There are two main families of FFT algorithms: the Cooley-Tukey algorithm and the Prime Factor algorithm. These differ in the way they map the full FFT into smaller sub-transforms. Of the Cooley-Tukey algorithms there are two types of routine in common use: mixed-radix (general-$N$) algorithms and radix-2 (power of 2) algorithms. Each type of algorithm can be further classified by additional characteristics, such as whether it operates in-place or uses additional scratch space, whether its output is in a sorted or scrambled order, and whether it uses decimation-in-time or -frequency iterations. Mixed-radix algorithms work by factorizing the data vector into shorter lengths. These can then be transformed by small-$N$ FFTs. Typical programs include FFTs for small prime factors, such as 2, 3, 5, \dots which are highly optimized. The small-$N$ FFT modules act as building blocks and can be multiplied together to make longer transforms. By combining a reasonable set of modules it is possible to compute FFTs of many different lengths. If the small-$N$ modules are supplemented by an $O(N^2)$ general-$N$ module then an FFT of any length can be computed, in principle. Of course, any lengths which contain large prime factors would perform only as $O(N^2)$. Radix-2 algorithms, or ``power of two'' algorithms, are simplified versions of the mixed-radix algorithm. They are restricted to lengths which are a power of two. The basic radix-2 FFT module only involves addition and subtraction, so the algorithms are very simple. Radix-2 algorithms have been the subject of much research into optimizing the FFT. Many of the most efficient radix-2 routines are based on the ``split-radix'' algorithm. This is actually a hybrid which combines the best parts of both radix-2 and radix-4 (``power of 4'') algorithms~\cite{sorenson86,duhamel86}. The prime factor algorithm (PFA) is an alternative form of general-$N$ algorithm based on a different way of recombining small-$N$ FFT modules~\cite{temperton83pfa,temperton85}. It has a very simple indexing scheme which makes it attractive. However it only works in the case where all factors are mutually prime. This requirement makes it more suitable as a specialized algorithm for given lengths. \begin{subsection}{FFTs of prime lengths} % Large prime lengths cannot be handled efficiently by any of these algorithms. However it may still possible to compute a DFT, by using results from number theory. Rader showed that it is possible to convert a length-$p$ FFT (where $p$ is prime) into a convolution of length-($p-1$). There is a simple identity between the convolution of length $N$ and the FFT of the same length, so if $p-1$ is easily factorizable this allows the convolution to be computed efficiently via the FFT. The idea is presented in the original paper by Rader~\cite{raderprimes} (also reprinted in~\cite{mcclellan79}), but for more details see the theoretical books mentioned earlier. \end{subsection} %\subsection{In-place algorithms vs algorithms using scratch space} %% %For simple algorithms, such as the Radix-2 algorithms, the FFT can be %performed in-place, without additional memory. For this to be possible %the index calculations must be simple enough that the calculation of %the result to be stored in index $k$ can be carried out at the same %time as the data in $k$ is used, so that no temporary storage is %needed. %The mixed-radix algorithm is too complicated for this. It requires an %area of scratch space sufficient to hold intermediate copies of the %input data. %\subsection{Self-sorting algorithms vs scrambling algorithms} %% %A self-sorting algorithm At each iteration of the FFT internal permutations are included %which leave the final iteration in its natural order. %The mixed-radix algorithm can be made self-sorting. The additional %scratch space helps here, although it is in fact possible to design %self-sorting algorithms which do not require scratch %space. %The in-place radix-2 algorithm is not self-sorting. The data is %permuted, and transformed into bit-reversed order. Note that %bit-reversal only refers to the order of the array, not the values for %each index which are of course not changed. More precisely, the data %stored in location $[b_n \dots b_2 b_1 b_0]$ is moved to location %$[b_0 b_1 b_2 \dots b_n]$, where $b_0 \dots b_n$ are the raw bits of a %given index. Placing the data in bit reversed order is easily done, %using right shifts to extract the least significant bits of the index %and left-shifts to feed them into a register for the bit-reversed %location. Simple radix-2 FFT usually recompute the bit reverse %ordering in the naive way for every call. For repeated calls it might %be worthwhile to precompute the permutation and cache it. There are %also more sophisticated algorithms which reduce the number of %operations needed to perform bit-reversal~\cite{bit-reversal}. %\begin{subsection}{Decimation-in-time (DIT) vs Decimation-in-Frequency (DIF)} %\end{subsection} \subsection{Optimization} % There is no such thing as the single fastest FFT {\em algorithm}. FFT algorithms involve a mixture of floating point calculations, integer arithmetic and memory access. Each of these operations will have different relative speeds on different platforms. The performance of an algorithm is a function of the hardware it is implemented on. The goal of optimization is thus to choose the algorithm best suited to the characteristics of a given hardware platform. For example, the Winograd Fourier Transform (WFTA) is an algorithm which is designed to reduce the number of floating point multiplications in the FFT. However, it does this at the expense of using many more additions and data transfers than other algorithms. As a consequence the WFTA might be a good candidate algorithm for machines where data transfers occupy a negligible time relative to floating point arithmetic. However on most modern machines, where the speed of data transfers is comparable to or slower than floating point operations, it would be outperformed by an algorithm which used a better mix of operations (i.e. more floating point operations but fewer data transfers). For a study of this sort of effect in detail, comparing the different algorithms on different platforms consult the paper {\it Effects of Architecture Implementation on DFT Algorithm Performance} by Mehalic, Rustan and Route~\cite{mehalic85}. The paper was written in the early 1980's and has data for super- and mini-computers which you are unlikely to see today, except in a museum. However, the methodology is still valid and it would be interesting to see similar results for present day computers. \section{FFT Concepts} % Factorization is the key principle of the mixed-radix FFT divide-and-conquer strategy. If $N$ can be factorized into a product of $n_f$ integers, % \begin{equation} N = f_1 f_2 ... f_{n_f} , \end{equation} % then the FFT itself can be divided into smaller FFTs for each factor. More precisely, an FFT of length $N$ can be broken up into, % \begin{quote} \begin{tabular}{l} $(N/f_1)$ FFTs of length $f_1$, \\ $(N/f_2)$ FFTs of length $f_2$, \\ \dots \\ $(N/f_{n_f})$ FFTs of length $f_{n_f}$. \end{tabular} \end{quote} % The total number of operations for these sub-operations will be $O( N(f_1 + f_2 + ... + f_{n_f}))$. When the factors of $N$ are all small integers this will be substantially less than $O(N^2)$. For example, when $N$ is a power of 2 an FFT of length $N=2^m$ can be reduced to $m N/2$ FFTs of length 2, or $O(N\log_2 N)$ operations. Here is a demonstration which shows this: We start with the full DFT, % \begin{eqnarray} h_a &=& \sum_{b=0}^{N-1} g_b W_N^{ab} \qquad W_N=\exp(-2\pi i/N) \end{eqnarray} % and split the sum into even and odd terms, % \begin{eqnarray} \phantom{h_a} % &=& \left(\sum_{b=0,2,4,\dots} + \sum_{b=1,3,5,\dots}\right) g_b W_N^{ab}\\ &=& \sum_{b=0}^{N/2-1} g_{2b} W_N^{a(2b)} + \sum_{b=0}^{N/2-1} g_{2b+1} W_N^{a(2b+1)}. \end{eqnarray} % This converts the original DFT of length $N$ into two DFTs of length $N/2$, % \begin{equation} h_a = \sum_{b=0}^{N/2-1} g_{2b} W_{(N/2)}^{ab} + W_N^a \sum_{b=0}^{N/2-1} g_{2b+1} W_{(N/2)}^{ab} \end{equation} % The first term is a DFT of the even elements of $g$. The second term is a DFT of the odd elements of $g$, premultiplied by an exponential factor $W_N^k$ (known as a {\em twiddle factor}). % \begin{equation} \mathrm{DFT}(h) = \mathrm{DFT}(g_{even}) + W_N^k \mathrm{DFT}(g_{odd}) \end{equation} % By splitting the DFT into its even and odd parts we have reduced the operation count from $N^2$ (for a DFT of length $N$) to $2 (N/2)^2$ (for two DFTs of length $N/2$). The cost of the splitting is that we need an additional $O(N)$ operations to multiply by the twiddle factor $W_N^k$ and recombine the two sums. We can repeat the splitting procedure recursively $\log_2 N$ times until the full DFT is reduced to DFTs of single terms. The DFT of a single value is just the identity operation, which costs nothing. However since $O(N)$ operations were needed at each stage to recombine the even and odd parts the total number of operations to obtain the full DFT is $O(N \log_2 N)$. If we had used a length which was a product of factors $f_1$, $f_2$, $\dots$ we could have split the sum in a similar way. First we would split terms corresponding to the factor $f_1$, instead of the even and odd terms corresponding to a factor of two. Then we would repeat this procedure for the subsequent factors. This would lead to a final operation count of $O(N \sum f_i)$. This procedure gives some motivation for why the number of operations in a DFT can in principle be reduced from $O(N^2)$ to $O(N \sum f_i)$. It does not give a good explanation of how to implement the algorithm in practice which is what we shall do in the next section. \section{Radix-2 Algorithms} % For radix-2 FFTs it is natural to write array indices in binary form because the length of the data is a power of two. This is nicely explained in the article {\em The FFT: Fourier Transforming One Bit at a Time} by P.B. Visscher~\cite{visscher96}. A binary representation for indices is the key to deriving the simplest efficient radix-2 algorithms. We can write an index $b$ ($0 \leq b < 2^{n-1}$) in binary representation like this, % \begin{equation} b = [b_{n-1} \dots b_1 b_0] = 2^{n-1}b_{n-1} + \dots + 2 b_1 + b_0 . \end{equation} % Each of the $b_0, b_1, \dots, b_{n-1}$ are the bits (either 0 or 1) of $b$. Using this notation the original definition of the DFT can be rewritten as a sum over the bits of $b$, % \begin{equation} h(a) = \sum_{b=0}^{N-1} g_b \exp(-2\pi i a b /N) \end{equation} % to give an equivalent summation like this, % \begin{equation} h([a_{n-1} \dots a_1 a_0]) = \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \dots \sum_{b_{n-1}=0}^{1} g([b_{n-1} \dots b_1 b_0]) W_N^{ab} \end{equation} % where the bits of $a$ are $a=[a_{n-1} \dots a_1 a_0]$. To reduce the number of operations in the sum we will use the periodicity of the exponential term, % \begin{equation} W_N^{x+N} = W_N^{x}. \end{equation} % Most of the products $ab$ in $W_N^{ab}$ are greater than $N$. By making use of this periodicity they can all be collapsed down into the range $0\dots N-1$. This allows us to reduce the number of operations by combining common terms, modulo $N$. Using this idea we can derive decimation-in-time or decimation-in-frequency algorithms, depending on how we break the DFT summation down into common terms. We'll first consider the decimation-in-time algorithm. \subsection{Radix-2 Decimation-in-Time (DIT)} % To derive the decimation-in-time algorithm we start by separating out the most significant bit of the index $b$, % \begin{equation} [b_{n-1} \dots b_1 b_0] = 2^{n-1}b_{n-1} + [b_{n-2} \dots b_1 b_0] \end{equation} % Now we can evaluate the innermost sum of the DFT without any dependence on the remaining bits of $b$ in the exponential, % \begin{eqnarray} h([a_{n-1} \dots a_1 a_0]) &=& \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \dots \sum_{b_{n-1}=0}^{1} g(b) W_N^{a(2^{n-1}b_{n-1}+[b_{n-2} \dots b_1 b_0])} \\ &=& \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \dots \sum_{b_{n-2}=0}^{1} W_N^{a[b_{n-2} \dots b_1 b_0]} \sum_{b_{n-1}=0}^{1} g(b) W_N^{a(2^{n-1}b_{n-1})} \end{eqnarray} % Looking at the term $W_N^{a(2^{n-1}b_{n-1})}$ we see that we can also remove most of the dependence on $a$ as well, by using the periodicity of the exponential, % \begin{eqnarray} W_N^{a(2^{n-1}b_{n-1})} &=& \exp(-2\pi i [a_{n-1} \dots a_1 a_0] 2^{n-1} b_{n-1}/ 2^n )\\ &=& \exp(-2\pi i [a_{n-1} \dots a_1 a_0] b_{n-1}/ 2 )\\ &=& \exp(-2\pi i ( 2^{n-2}a_{n-1} + \dots + a_1 + (a_0/2)) b_{n-1} )\\ &=& \exp(-2\pi i a_0 b_{n-1}/2 ) \\ &=& W_2^{a_0 b_{n-1}} \end{eqnarray} % Thus the innermost exponential term simplifies so that it only involves the highest order bit of $b$ and the lowest order bit of $a$, and the sum can be reduced to, % \begin{equation} h([a_{n-1} \dots a_1 a_0]) = \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \dots \sum_{b_{n-2}=0}^{1} W_N^{a[b_{n-2} \dots b_1 b_0]} \sum_{b_{n-1}=0}^{1} g(b) W_2^{a_0 b_{n-1}}. \end{equation} % We can repeat this this procedure for the next most significant bit of $b$, $b_{n-2}$, using a similar identity, % \begin{eqnarray} W_N^{a(2^{n-2}b_{n-2})} &=& \exp(-2\pi i [a_{n-1} \dots a_1 a_0] 2^{n-2} b_{n-2}/ 2^n )\\ &=& W_4^{ [a_1 a_0] b_{n-2}}. \end{eqnarray} % to give a formula with even less dependence on the bits of $a$, % \begin{equation} h([a_{n-1} \dots a_1 a_0]) = \sum_{b_0=0}^{1} \sum_{b_1=0}^{1} \dots \sum_{b_{n-3}=0}^{1} W_N^{a[b_{n-3} \dots b_1 b_0]} \sum_{b_{n-2}=0}^{1} W_4^{[a_1 a_0] b_{n-2}} \sum_{b_{n-1}=0}^{1} g(b) W_2^{a_0 b_{n-1}}. \end{equation} % If we repeat the process for all the remaining bits we obtain a simplified DFT formula which is the basis of the radix-2 decimation-in-time algorithm, % \begin{eqnarray} h([a_{n-1} \dots a_1 a_0]) &=& \sum_{b_0=0}^{1} W_{N}^{[a_{n-1} \dots a_1 a_0]b_0} %\sum_{b_1=0}^{1} %W_{N/2}^{[a_{n-1} \dots a_1 a_0]b_1} \dots \sum_{b_{n-2}=0}^{1} W_4^{ [a_1 a_0] b_{n-2}} \sum_{b_{n-1}=0}^{1} W_2^{a_0 b_{n-1}} g(b) \end{eqnarray} % To convert the formula to an algorithm we expand out the sum recursively, evaluating each of the intermediate summations, which we denote by $g_1$, $g_2$, \dots, $g_n$, % \begin{eqnarray} g_1(a_0, b_{n-2}, b_{n-3}, \dots, b_1, b_0) &=& \sum_{b_{n-1}=0}^{1} W_2^{a_0 b_{n-1}} g([b_{n-1} b_{n-2} b_{n-3} \dots b_1 b_0]) \\ g_2(a_0, {}_{\phantom{-2}} a_{1}, b_{n-3}, \dots, b_1, b_0) &=& \sum_{b_{n-2}=0}^{1} W_4^{[a_1 a_0] b_{n-2}} g_1(a_0, b_{n-2}, b_{n-3}, \dots, b_1, b_0) \\ g_3(a_0, {}_{\phantom{-2}} a_{1}, {}_{\phantom{-3}} a_{2}, \dots, b_1, b_0) &=& \sum_{b_{n-3}=0}^{1} W_8^{[a_2 a_1 a_0] b_{n-2}} g_2(a_0, a_1, b_{n-3}, \dots, b_1, b_0) \\ \dots &=& \dots \\ g_n(a_0, a_{1}, a_{2}, \dots, a_{n-2}, a_{n-1}) &=& \sum_{b_{0}=0}^{1} W_N^{[a_{n-1} \dots a_1 a_0]b_0} g_{n-1}(a_0, a_1, a_2, \dots, a_{n-2}, b_0) \end{eqnarray} % After the final sum, we can obtain the transform $h$ from $g_n$, % \begin{equation} h([a_{n-1} \dots a_1 a_0]) = g_n(a_0, a_1, \dots, a_{n-1}) \end{equation} % Note that we left the storage arrangements of the intermediate sums unspecified by using the bits as function arguments and not as an index. The storage of intermediate sums is different for the decimation-in-time and decimation-in-frequency algorithms. Before deciding on the best storage scheme we'll show that the results of each stage, $g_1$, $g_2$, \dots, can be carried out {\em in-place}. For example, in the case of $g_1$, the inputs are, % \begin{equation} g([\underline{b_{n-1}} b_{n-2} b_{n-3} \dots b_1 b_0]) \end{equation} % for $b_{n-1}=(0,1)$, and the corresponding outputs are, % \begin{equation} g_1(\underline{a_0},b_{n-2}, b_{n-3}, \dots, b_1, b_0) \end{equation} % for $a_0=(0,1)$. It's clear that if we hold $b_{n-2}, b_{n-3}, \dots, b_1, b_0$ fixed and compute the sum over $b_{n-1}$ in memory for both values of $a_0 = 0,1$ then we can store the result for $a_0=0$ in the location which originally had $b_0=0$ and the result for $a_0=1$ in the location which originally had $b_0=1$. The two inputs and two outputs are known as {\em dual node pairs}. At each stage of the calculation the sums for each dual node pair are independent of the others. It is this property which allows an in-place calculation. So for an in-place pass our storage has to be arranged so that the two outputs $g_1(a_0,\dots)$ overwrite the two input terms $g([b_{n-1},\dots])$. Note that the order of $a$ is reversed from the natural order of $b$, i.e.@: the least significant bit of $a$ replaces the most significant bit of $b$. This is inconvenient because $a$ occurs in its natural order in all the exponentials, $W^{ab}$. We could keep track of both $a$ and its bit-reverse, $a^{\mathit bit-reversed}$ at all times but there is a neat trick which avoids this: if we bit-reverse the order of the input data $g$ before we start the calculation we can also bit-reverse the order of $a$ when storing intermediate results. Since the storage involving $a$ was originally in bit-reversed order the switch in the input $g$ now allows us to use normal ordered storage for $a$, the same ordering that occurs in the exponential factors. This is complicated to explain, so here is an example of the 4 passes needed for an $N=16$ decimation-in-time FFT, with the initial data stored in bit-reversed order, % \begin{eqnarray} g_1([b_0 b_1 b_2 a_0]) &=& \sum_{b_3=0}^{1} W_2^{a_0 b_3} g([b_0 b_1 b_2 b_3]) \\ g_2([b_0 b_1 a_1 a_0]) &=& \sum_{b_2=0}^{1} W_4^{[a_1 a_0] b_2} g_1([b_0 b_1 b_2 a_0]) \\ g_3([b_0 a_2 a_1 a_0]) &=& \sum_{b_1=0}^{1} W_8^{[a_2 a_1 a_0] b_1} g_2([b_0 b_1 a_1 a_0]) \\ h(a) = g_4([a_3 a_2 a_1 a_0]) &=& \sum_{b_0=0}^{1} W_{16}^{[a_3 a_2 a_1 a_0] b_0} g_3([b_0 a_2 a_1 a_0]) \end{eqnarray} % We compensate for the bit reversal of the input data by accessing $g$ with the bit-reversed form of $b$ in the first stage. This ensures that we are still carrying out the same calculation, using the same data, and not accessing different values. Only single bits of $b$ ever occur in the exponential so we never need the bit-reversed form of $b$. Let's examine the third pass in detail, % \begin{equation} g_3([b_0 a_2 a_1 a_0]) = \sum_{b_1=0}^{1} W_8^{[a_2 a_1 a_0] b_1} g_2([b_0 b_1 a_1 a_0]) \end{equation} % First note that only one bit, $b_1$, varies in each summation. The other bits of $b$ ($b_0$) and of $a$ ($a_1 a_0$) are essentially ``spectators'' -- we must loop over all combinations of these bits and carry out the same basic calculation for each, remembering to update the exponentials involving $W_8$ appropriately. If we are storing the results in-place (with $g_3$ overwriting $g_2$ we will need to compute the sums involving $b_1=0,1$ and $a_2=0,1$ simultaneously. % \begin{equation} \left( \begin{array}{c} g_3([b_0 0 a_1 a_0]) \vphantom{W_8^{[]}} \\ g_3([b_0 1 a_1 a_0]) \vphantom{W_8^{[]}} \end{array} \right) = \left( \begin{array}{c} g_2([b_0 0 a_1 a_0]) + W_8^{[0 a_1 a_0]} g_2([b_2 1 a_1 a_0]) \\ g_2([b_0 0 a_1 a_0]) + W_8^{[1 a_1 a_0]} g_2([b_2 1 a_1 a_0]) \end{array} \right) \end{equation} % We can write this in a more symmetric form by simplifying the exponential, % \begin{equation} W_8^{[a_2 a_1 a_0]} = W_8^{4 a_2 + [a_1 a_0]} = (-1)^{a_2} W_8^{[a_1 a_0]} \end{equation} % \begin{equation} \left( \begin{array}{c} g_3([b_0 0 a_1 a_0]) \vphantom{W_8^{[]}} \\ g_3([b_0 1 a_1 a_0]) \vphantom{W_8^{[]}} \end{array} \right) = \left( \begin{array}{c} g_2([b_0 0 a_1 a_0]) + W_8^{[a_1 a_0]} g_2([b_2 1 a_1 a_0]) \\ g_2([b_0 0 a_1 a_0]) - W_8^{[a_1 a_0]} g_2([b_2 1 a_1 a_0]) \end{array} \right) \end{equation} % The exponentials $W_8^{[a_1 a_0]}$ are referred to as {\em twiddle factors}. The form of this calculation, a symmetrical sum and difference involving a twiddle factor is called {\em a butterfly}. It is often shown diagrammatically, and in the case $b_0=a_0=a_1=0$ would be drawn like this, % \begin{center} \setlength{\unitlength}{1cm} \begin{picture}(9,4) % %\put(0,0){\line(1,0){8}} %\put(0,0){\line(0,1){4}} %\put(8,4){\line(0,-1){4}} %\put(8,4){\line(-1,0){8}} % \put(0,1){$g_2(4)$} \put(4.5,1){$g_3(4)=g_2(0) - W^a_8 g_2(4)$} \put(0,3){$g_2(0)$} \put(4.5,3){$g_3(0)=g_2(0) + W^a_8 g_2(4)$} \put(1,1){\vector(1,0){0.5}} \put(1.5,1){\line(1,0){0.5}} \put(1.5,0.5){$W^a_8$} \put(1,3){\vector(1,0){0.5}}\put(1.5,3){\line(1,0){0.5}} \put(2,1){\circle*{0.1}} \put(2,3){\circle*{0.1}} \put(2,1){\vector(1,1){2}} \put(2,1){\vector(1,0){1}} \put(3,1){\line(1,0){1}} \put(3,0.5){$-1$} \put(2,3){\vector(1,-1){2}} \put(2,3){\vector(1,0){1}} \put(3,3){\line(1,0){1}} \put(4,1){\circle*{0.1}} \put(4,3){\circle*{0.1}} \end{picture} \end{center} % The inputs are shown on the left and the outputs on the right. The outputs are computed by multiplying the incoming lines by their accompanying factors (shown next to the lines) and summing the results at each node. In general, denoting the bit for dual-node pairs by $\Delta$ and the remaining bits of $a$ and $b$ by ${\hat a}$ and ${\hat b}$, the butterfly is, % \begin{equation} \left( \begin{array}{c} g({\hat b} + {\hat a}) \\ g({\hat b} + \Delta + {\hat a}) \\ \end{array} \right) \leftarrow \left( \begin{array}{c} g({\hat b} + {\hat a}) + W_{2\Delta}^{\hat a} g({\hat b} + \Delta + {\hat a})\\ g({\hat b} + {\hat a}) - W_{2\Delta}^{\hat a} g({\hat b} + \Delta + {\hat a}) \end{array} \right) \end{equation} % where ${\hat a}$ runs from $0 \dots \Delta-1$ and ${\hat b}$ runs through $0 \times 2\Delta$, $1\times 2\Delta$, $\dots$, $(N/\Delta - 1)2\Delta$. The value of $\Delta$ is 1 on the first pass, 2 on the second pass and $2^{n-1}$ on the $n$-th pass. Each pass requires $N/2$ in-place computations, each involving two input locations and two output locations. In the example above $\Delta = [100] = 4$, ${\hat a} = [a_1 a_0]$ and ${\hat b} = [b_0 0 0 0]$. This leads to the canonical radix-2 decimation-in-time FFT algorithm for $2^n$ data points stored in the array $g(0) \dots g(2^n-1)$. % \begin{algorithm} \STATE bit-reverse ordering of $g$ \STATE {$\Delta \Leftarrow 1$} \FOR {$\mbox{pass} = 1 \dots n$} \STATE {$W \Leftarrow \exp(-2 \pi i / 2\Delta)$} \FOR {$(a = 0 ; a < \Delta ; a{++})$} \FOR{$(b = 0 ; b < N ; b {+=} 2*\Delta)$} \STATE{$t_0 \Leftarrow g(b+a) + W^a g(b+\Delta+a)$} \STATE{$t_1 \Leftarrow g(b+a) - W^a g(b+\Delta+a)$} \STATE{$g(b+a) \Leftarrow t_0$} \STATE{$g(b+\Delta+a) \Leftarrow t_1$} \ENDFOR \ENDFOR \STATE{$\Delta \Leftarrow 2\Delta$} \ENDFOR \end{algorithm} % %This algorithm appears in Numerical Recipes as the routine {\tt %four1}, where the implementation is attributed to N.M. Brenner. % \subsection{Details of the Implementation} It is straightforward to implement a simple radix-2 decimation-in-time routine from the algorithm above. Some optimizations can be made by pulling the special case of $a=0$ out of the loop over $a$, to avoid unnecessary multiplications when $W^a=1$, % \begin{algorithm} \FOR{$(b = 0 ; b < N ; b {+=} 2*\Delta)$} \STATE{$t_0 \Leftarrow g(b) + g(b+\Delta)$} \STATE{$t_1 \Leftarrow g(b) - g(b+\Delta)$} \STATE{$g(b) \Leftarrow t_0$} \STATE{$g(b+\Delta) \Leftarrow t_1$} \ENDFOR \end{algorithm} % There are several algorithms for doing fast bit-reversal. We use the Gold-Rader algorithm, which is simple and does not require any working space, % \begin{algorithm} \FOR{$i = 0 \dots n - 2$} \STATE {$ k = n / 2 $} \IF {$i < j$} \STATE {swap $g(i)$ and $g(j)$} \ENDIF \WHILE {$k \leq j$} \STATE{$j \Leftarrow j - k$} \STATE{$k \Leftarrow k / 2$} \ENDWHILE \STATE{$j \Leftarrow j + k$} \ENDFOR \end{algorithm} % The Gold-Rader algorithm is typically twice as fast as a naive bit-reversal algorithm (where the bit reversal is carried out by left-shifts and right-shifts on the index). The library also has a routine for the Rodriguez bit reversal algorithm, which also does not require any working space~\cite{rodriguez89}. There are faster bit reversal algorithms, but they all use additional scratch space~\cite{rosel89}. Within the loop for $a$ we can compute $W^a$ using a trigonometric recursion relation, % \begin{eqnarray} W^{a+1} &=& W W^a \\ &=& (\cos(2\pi/2\Delta) + i \sin(2\pi/2\Delta)) W^a \end{eqnarray} % This requires only $2 \log_2 N$ trigonometric calls, to compute the initial values of $\exp(2\pi i /2\Delta)$ for each pass. \subsection{Radix-2 Decimation-in-Frequency (DIF)} % To derive the decimation-in-frequency algorithm we start by separating out the lowest order bit of the index $a$. Here is an example for the decimation-in-frequency $N=16$ DFT. % \begin{eqnarray} W_{16}^{[a_3 a_2 a_1 a_0][b_3 b_2 b_1 b_0]} &=& W_{16}^{[a_3 a_2 a_1 a_0][b_2 b_1 b_0]} W_{16}^{[a_3 a_2 a_1 a_0] [b_3 0 0 0]} \\ &=& W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]} W_{16}^{a_0 [b_2 b_1 b_0]} W_2^{a_0 b_3} \\ &=& W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]} W_{16}^{a_0 [b_2 b_1 b_0]} (-1)^{a_0 b_3} \end{eqnarray} % By repeating the same type of the expansion on the term, % \begin{equation} W_8^{[a_3 a_2 a_1][b_2 b_1 b_0]} \end{equation} % we can reduce the transform to an alternative simple form, % \begin{equation} h(a) = \sum_{b_0=0}^1 (-1)^{a_3 b_0} W_4^{a_2 b_0} \sum_{b_1=0}^1 (-1)^{a_2 b_1} W_8^{a_1 [b_1 b_0]} \sum_{b_2=0}^1 (-1)^{a_1 b_2} W_{16}^{a_0 [b_2 b_1 b_0]} \sum_{b_3=0}^1 (-1)^{a_0 b_3} g(b) \end{equation} % To implement this we can again write the sum recursively. In this case we do not have the problem of the order of $a$ being bit reversed -- the calculation can be done in-place using the natural ordering of $a$ and $b$, % \begin{eqnarray} g_1([a_0 b_2 b_1 b_0]) &=& W_{16}^{a_0 [b_2 b_1 b_0]} \sum_{b_3=0}^1 (-1)^{a_0 b_3} g([b_3 b_2 b_1 b_0]) \\ g_2([a_0 a_1 b_1 b_0]) &=& W_{8}^{a_1 [b_1 b_0]} \sum_{b_2=0}^1 (-1)^{a_1 b_2} g_1([a_0 b_2 b_1 b_0]) \\ g_3([a_0 a_1 a_2 b_0]) &=& W_{4}^{a_2 b_0} \sum_{b_1=0}^1 (-1)^{a_2 b_1} g_2([a_0 a_1 b_1 b_0]) \\ h(a) = g_4([a_0 a_1 a_2 a_3]) &=& \sum_{b_0=0}^1 (-1)^{a_3 b_0} g_3([a_0 a_1 a_2 b_0]) \end{eqnarray} % The final pass leaves the data for $h(a)$ in bit-reversed order, but this is easily fixed by a final bit-reversal of the ordering. The basic in-place calculation or butterfly for each pass is slightly different from the decimation-in-time version, % \begin{equation} \left( \begin{array}{c} g({\hat a} + {\hat b}) \\ g({\hat a} + \Delta + {\hat b}) \\ \end{array} \right) \leftarrow \left( \begin{array}{c} g({\hat a} + {\hat b}) + g({\hat a} + \Delta + {\hat b})\\ W_{\Delta}^{\hat b} \left( g({\hat a} + {\hat b}) - g({\hat a} + \Delta + {\hat b}) \right) \end{array} \right) \end{equation} % In each pass ${\hat b}$ runs from $0 \dots \Delta-1$ and ${\hat a}$ runs from $0, 2\Delta, \dots, (N/\Delta -1) \Delta$. On the first pass we start with $\Delta=16$, and on subsequent passes $\Delta$ takes the values $8, 4, \dots, 1$. This leads to the canonical radix-2 decimation-in-frequency FFT algorithm for $2^n$ data points stored in the array $g(0) \dots g(2^n-1)$. % \begin{algorithm} \STATE {$\Delta \Leftarrow 2^{n-1}$} \FOR {$\mbox{pass} = 1 \dots n$} \STATE {$W \Leftarrow \exp(-2 \pi i / 2\Delta)$} \FOR {$(b = 0 ; b < \Delta ; b++)$} \FOR{$(a = 0 ; a < N ; a += 2*\Delta)$} \STATE{$t_0 \Leftarrow g(b+a) + g(a+\Delta+b)$} \STATE{$t_1 \Leftarrow W^b \left( g(a+b) - g(a+\Delta+b) \right)$} \STATE{$g(a+b) \Leftarrow t_0$} \STATE{$g(a+\Delta+b) \Leftarrow t_1$} \ENDFOR \ENDFOR \STATE{$\Delta \Leftarrow \Delta/2$} \ENDFOR \STATE bit-reverse ordering of $g$ \end{algorithm} % \section{Self-Sorting Mixed-Radix Complex FFTs} % This section is based on the review article {\em Self-sorting Mixed-Radix Fast Fourier Transforms} by Clive Temperton~\cite{temperton83}. You should consult his article for full details of all the possible algorithms (there are many variations). Here I have annotated the derivation of the simplest mixed-radix decimation-in-frequency algorithm. For general-$N$ FFT algorithms the simple binary-notation of radix-2 algorithms is no longer useful. The mixed-radix FFT has to be built up using products of matrices acting on a data vector. The aim is to take the full DFT matrix $W_N$ and factor it into a set of small, sparse matrices corresponding to each factor of $N$. We'll denote the components of matrices using either subscripts or function notation, % \begin{equation} M_{ij} = M(i,j) \end{equation} % with (C-like) indices running from 0 to $N-1$. Matrix products will be denoted using square brackets, % \begin{equation} [AB]_{ij} = \sum_{k} A_{ik} B_{kj} \end{equation} % % Three special matrices will be needed in the mixed-radix factorization of the DFT: the identity matrix, $I$, a permutation matrix, $P$ and a matrix of twiddle factors, $D$, as well as the normal DFT matrices $W_n$. We write the identity matrix of order $r$ as $I_r(n,m)$, % \begin{equation} I_r(n,m) = \delta_{nm} \end{equation} % for $0 \leq n,m \leq r-1$. We also need to define a permutation matrix $P^a_b$ that performs digit reversal of the ordering of a vector. If the index of a vector $j= 0\dots N-1$ is factorized into $j = la +m$, with $0 \leq l \leq b-1$ and $0 \leq m \leq a-1$ then the operation of the matrix $P$ will exchange positions $la+m$ and $mb+l$ in the vector (this sort of digit-reversal is the generalization of bit-reversal to a number system with exponents $a$ and $b$). In mathematical terms $P$ is a square matrix of size $ab \times ab$ with the property, % \begin{eqnarray} P^a_b(j,k) &=& 1 ~\mbox{if}~ j=ra+s ~\mbox{and}~ k=sb+r \\ &=& 0 ~\mbox{otherwise} \end{eqnarray} % Finally the FFT algorithm needs a matrix of twiddle factors, $D^a_b$, for the trigonometric sums. $D^a_b$ is a diagonal square matrix of size $ab \times ab$ with the definition, % \begin{eqnarray} D^a_b(j,k) &=& \omega^{sr}_{ab} ~\mbox{if}~ j=k=sb+r \\ &=& 0 ~\mbox{otherwise} \end{eqnarray} % where $\omega_{ab} = e^{-2\pi i/ab}$. \subsection{The Kronecker Product} The Kronecker matrix product plays an important role in all the algorithms for combining operations on different subspaces. The Kronecker product $A \otimes B$ of two square matrices $A$ and $B$, of sizes $a \times a$ and $b \times b$ respectively, is a square matrix of size $a b \times a b$, defined as, % \begin{equation} [A \otimes B] (tb+u, rb+s) = A(t,r) B(u,s) \end{equation} % where $0 \leq u,s < b$ and $0 \leq t,r < a$. Let's examine a specific example. If we take a $2 \times 2$ matrix and a $3 \times 3$ matrix, % \begin{equation} \begin{array}{ll} A = \left( \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) & B = \left( \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right) \end{array} \end{equation} % then the Kronecker product $A \otimes B$ is, % \begin{eqnarray} A \otimes B &= & \left( \begin{array}{cc} a_{11} B & a_{12} B \\ a_{12} B & a_{22} B \end{array} \right) \\ &=& \left( \begin{array}{cccccc} a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\ a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} & a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\ a_{11} b_{31} & a_{11} b_{32} & a_{11} b_{33} & a_{12} b_{31} & a_{12} b_{32} & a_{12} b_{33} \\ a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\ a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} & a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\ a_{21} b_{31} & a_{21} b_{32} & a_{21} b_{33} & a_{22} b_{31} & a_{22} b_{32} & a_{22} b_{33} \end{array} \right) \end{eqnarray} % When the Kronecker product $A \otimes B$ acts on a vector of length $ab$, each matrix operates on a different subspace of the vector. Writing the index $i$ as $i=t b + u$, with $0\leq u \leq b-1$ and $0\leq t\leq a$, we can see this explicitly by looking at components, % \begin{eqnarray} [(A \otimes B) v]_{(tb+u)} & = & \sum_{t'=0}^{a-1} \sum_{u'=0}^{b-1} [A \otimes B]_{(tb+u,t'b+u')} v_{t'b+u'} \\ & = & \sum_{t'u'} A_{tt'} B_{uu'} v_{t'b+u'} \end{eqnarray} % The matrix $B$ operates on the ``index'' $u'$, for all values of $t'$, and the matrix $A$ operates on the ``index'' $t'$, for all values of $u'$. % The most important property needed for deriving the FFT factorization is that the matrix product of two Kronecker products is the Kronecker product of the two matrix products, % \begin{equation} (A \otimes B)(C \otimes D) = (AC \otimes BD) \end{equation} % This follows straightforwardly from the original definition of the Kronecker product. \subsection{Two factor case, $N=ab$} % First consider the simplest possibility, where the data length $N$ can be divided into two factors, $N=ab$. The aim is to reduce the DFT matrix $W_N$ into simpler matrices corresponding to each factor. To make the derivation easier we will start from the known factorization and verify it (the initial factorization can be guessed by generalizing from simple cases). Here is the factorization we are going to prove, % \begin{equation} W_{ab} = (W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b). \end{equation} % We can check it by expanding the product into components, % \begin{eqnarray} \lefteqn{[(W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b)](la+m,rb+s)} \\ & = & \sum_{u=0}^{b-1} \sum_{t=0}^{a-1} [(W_b \otimes I_a)](la+m,ua+t) [P^a_b D^a_b (W_a \otimes I_b)](ua+t,rb+s) \end{eqnarray} % where we have split the indices to match the Kronecker product $0 \leq m, r \leq a$, $0 \leq l, s \leq b$. The first term in the sum can easily be reduced to its component form, % \begin{eqnarray} [(W_b \otimes I_a)](la+m,ua+t) &=& W_b(l,u) I_a(m,t) \\ &=& \omega_b^{lu} \delta_{mt} \end{eqnarray} % The second term is more complicated. We can expand the Kronecker product like this, \begin{eqnarray} (W_a \otimes I_b)(tb+u,rb+s) &=& W_a(t,r) I_a(u,s) \\ &=& \omega_a^{tr} \delta_{us} \end{eqnarray} % and use this term to build up the product, $P^a_b D^a_b (W_a \otimes I_b)$. We first multiply by $D^a_b$, % \begin{equation} [D^a_b (W_a \otimes I_b)](tb+u,rb+s) = \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su} \end{equation} % and then apply the permutation matrix, $P^a_b$, which digit-reverses the ordering of the first index, to obtain, % \begin{equation} [P^a_b D^a_b (W_a \otimes I_b)](ua+t,rb+s) = \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su} \end{equation} % Combining the two terms in the matrix product we can obtain the full expansion in terms of the exponential $\omega$, % \begin{eqnarray} [(W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b)](la+m,rb+s) &=& \sum_{u=0}^{b-1} \sum_{t=0}^{a-1} \omega_b^{lu} \delta_{mt} \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su} \end{eqnarray} % If we evaluate this sum explicitly we can make the connection between the product involving $W_a$ and $W_b$ (above) and the expansion of the full DFT matrix $W_{ab}$, % \begin{eqnarray} \sum_{u=0}^{b-1} \sum_{t=0}^{a-1} \omega_b^{lu} \delta_{mt} \omega^{tu}_{ab} \omega^{tr}_{a} \delta_{su} &=& \omega^{ls}_b \omega^{ms}_{ab} \omega^{mr}_a \\ &=& \omega^{als + ms +bmr}_{ab} \\ &=& \omega^{als + ms +bmr}_{ab} \omega^{lrab}_{ab} \quad\mbox{using~} \omega^{ab}_{ab} =1\\ &=& \omega^{(la+m)(rb+s)}_{ab} \\ &=& W_{ab}(la+m,rb+s) \end{eqnarray} % The final line shows that matrix product given above is identical to the full two-factor DFT matrix, $W_{ab}$. % Thus the full DFT matrix $W_{ab}$ for two factors $a$, $b$ can be broken down into a product of sub-transforms, $W_a$ and $W_b$, plus permutations, $P$, and twiddle factors, $D$, according to the formula, % \begin{equation} W_{ab} = (W_b \otimes I_a) P^a_b D^a_b (W_a \otimes I_b). \end{equation} % This relation is the foundation of the general-$N$ mixed-radix FFT algorithm. \subsection{Three factor case, $N=abc$} % The result for the two-factor expansion can easily be generalized to three factors. We first consider $abc$ as being a product of two factors $a$ and $(bc)$, and then further expand the product $(bc)$ into $b$ and $c$. The first step of the expansion looks like this, % \begin{eqnarray} W_{abc} &=& W_{a(bc)}\\ &=& (W_{bc} \otimes I_a) P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) . \end{eqnarray} % And after using the two-factor result to expand out $W_{bc}$ we obtain the factorization of $W_{abc}$, % \begin{eqnarray} W_{abc} &=& (((W_c \otimes I_b) P^b_c D^b_c (W_b \otimes I_c)) \otimes I_a ) P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) \\ &=& (W_c \otimes I_{ab}) (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) P^a_{bc} D^a_{bc} (W_a \otimes I_c) \end{eqnarray} % We can write this factorization in a product form, with one term for each factor, % \begin{equation} W_{abc} = T_3 T_2 T_1 \end{equation} % where we read off $T_1$, $T_2$ and $T_3$, % \begin{eqnarray} T_1 &=& P^a_{bc} D^a_{bc} (W_a \otimes I_{bc}) \\ T_2 &=& (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) \\ T_3 &=& (W_c \otimes I_{ab} ) \end{eqnarray} % \subsection{General case, $N=f_1 f_2 \dots f_{n_f}$} % If we continue the procedure that we have used for two- and three-factors then a general pattern begins to emerge in the factorization of $W_{f_1 f_2 \dots f_{n_f}}$. To see the beginning of the pattern we can rewrite the three factor case as, % \begin{eqnarray} T_1 &=& (P^a_{bc} D^a_{bc} \otimes I_1) (W_a \otimes I_{bc}) \\ T_2 &=& (P^b_c D^b_c \otimes I_a) (W_b \otimes I_{ac}) \\ T_3 &=& (P^c_1 D^c_1 \otimes I_{ab}) (W_c \otimes I_{ab} ) \end{eqnarray} % using the special cases $P^c_1 = D^c_1 = I_c$. % In general, we can write the factorization of $W_N$ for $N= f_1 f_2 \dots f_{n_f}$ as, % \begin{equation} W_N = T_{n_f} \dots T_2 T_1 \end{equation} % where the matrix factors $T_i$ are, % \begin{equation} T_i = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) ( W_{f_i} \otimes I_{m_i}) \end{equation} % We have defined the following three additional variables $p$, $q$ and $m$ to denote different partial products of the factors, % \begin{eqnarray} p_i &=& f_1 f_2 \dots f_i \quad (p_0 = 1) \\ q_i &=& N / p_i \\ m_i &=& N / f_i \end{eqnarray} % Note that the FFT modules $W$ are applied before the permutations $P$, which makes this a decimation-in-frequency algorithm. \subsection{Implementation} % Now to the implementation of the algorithm. We start with a vector of data, $z$, as input and want to apply the transform, % \begin{eqnarray} x &=& W_N z \\ &=& T_{n_f} \dots T_2 T_1 z \end{eqnarray} % where $T_i = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) ( W_{f_i} \otimes I_{m_i})$. The outer structure of the implementation will be a loop over the $n_f$ factors, applying each matrix $T_i$ to the vector in turn to build up the complete transform. % \begin{algorithm} \FOR{$(i = 1 \dots n_f)$} \STATE{$v \Leftarrow T_i v $} \ENDFOR \end{algorithm} % The order of the factors is not important. Now we examine the iteration $v \Leftarrow T_i v$, which we'll write as, % \begin{equation} v' = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) ~ ( W_{f_i} \otimes I_{m_i}) v \end{equation} % There are two Kronecker product matrices in this iteration. The rightmost matrix, which is the first to be applied, is a DFT of length $f_i$ applied to $N/f_i$ subsets of the data. We'll call this $t$, since it will be a temporary array, % \begin{equation} t = (W_{f_i} \otimes I_{m_i}) v \end{equation} % The second matrix applies a permutation and the exponential twiddle-factors. We'll call this $v'$, since it is the result of the full iteration on $v$, % \begin{equation} v' = (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) t \end{equation} The effect of the matrix $(W_{f_i} \otimes I_{m_i})$ is best seen by an example. Suppose the factor is $f_i = 3$, and the length of the FFT is $N=6$, then the relevant Kronecker product is, % \begin{equation} t = (W_3 \otimes I_2) v \end{equation} % which expands out to, % \begin{equation} \left( \begin{array}{c} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \end{array} \right) = \left( \begin{array}{cccccc} W_3(1,1) & 0 & W_3(1,2) & 0 & W_3(1,3) & 0 \\ 0 & W_3(1,1) & 0 & W_3(1,2) & 0 & W_3(1,3) \\ W_3(2,1) & 0 & W_3(2,2) & 0 & W_3(2,3) & 0 \\ 0 & W_3(2,1) & 0 & W_3(2,2) & 0 & W_3(2,3) \\ W_3(3,1) & 0 & W_3(3,2) & 0 & W_3(3,3) & 0 \\ 0 & W_3(3,1) & 0 & W_3(3,2) & 0 & W_3(3,3) \end{array} \right) \left( \begin{array}{c} v_0 \\ v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{array} \right) \end{equation} % We can rearrange the components in a computationally convenient form, \begin{equation} \left( \begin{array}{c} t_0 \\ t_2 \\ t_4 \\ t_1 \\ t_3 \\ t_5 \end{array} \right) = \left( \begin{array}{cccccc} W_3(1,1) & W_3(1,2) & W_3(1,3) & 0 & 0 & 0 \\ W_3(2,1) & W_3(2,2) & W_3(2,3) & 0 & 0 & 0 \\ W_3(3,1) & W_3(3,2) & W_3(3,3) & 0 & 0 & 0 \\ 0 & 0 & 0 & W_3(1,1) & W_3(1,2) & W_3(1,3) \\ 0 & 0 & 0 & W_3(2,1) & W_3(2,2) & W_3(2,3) \\ 0 & 0 & 0 & W_3(3,1) & W_3(3,2) & W_3(3,3) \end{array} \right) \left( \begin{array}{c} v_0 \\ v_2 \\ v_4 \\ v_1 \\ v_3 \\ v_5 \end{array} \right) \end{equation} % which clearly shows that we just need to apply the $3\times 3$ DFT matrix $W_3$ twice, once to the sub-vector of elements $(v_0, v_2, v_4)$, and independently to the remaining sub-vector $(v_1, v_3, v_5)$. In the general case, if we index $t$ as $t_k = t(\lambda,\mu) = t_{\lambda m + \mu}$ then $\lambda = 0 \dots f-1$ is an index within each transform of length $f$ and $\mu = 0 \dots m-1$ labels the independent subsets of data. We can see this by showing the calculation with all indices present, % \begin{equation} t = (W_f \otimes I_m) z \end{equation} % becomes, % \begin{eqnarray} t_{\lambda m + \mu} &=& \sum_{\lambda'=0}^{f-1} \sum_{\mu'=0}^{m-1} (W_f \otimes I_m)_{(\lambda m + \mu)(\lambda' m + \mu')} z_{\lambda'm + \mu} \\ &=& \sum_{\lambda'\mu'} (W_f)_{\lambda\lambda'} \delta_{\mu\mu'} z_{\lambda'm+\mu'} \\ &=& \sum_{\lambda'} (W_f)_{\lambda\lambda'} z_{\lambda'm+\mu} \end{eqnarray} % The DFTs on the index $\lambda$ will be computed using special optimized modules for each $f$. To calculate the next stage, % \begin{equation} v'=(P^f_q D^f_q \otimes I_{p_{i-1}}) t \end{equation} % we note that the Kronecker product has the property of performing $p_{i-1}$ independent multiplications of $PD$ on $q_{i-1}$ different subsets of $t$. The index $\mu$ of $t(\lambda,\mu)$ which runs from 0 to $m$ will include $q_i$ copies of each $PD$ operation because $m=p_{i-1}q$, i.e.@: we can split the index $\mu$ further into $\mu = a p_{i-1} + b$, where $a = 0 \dots q-1$ and $b=0 \dots p_{i-1}$, % \begin{eqnarray} \lambda m + \mu &=& \lambda m + a p_{i-1} + b \\ &=& (\lambda q + a) p_{i-1} + b. \end{eqnarray} % Now we can expand the second stage, % \begin{eqnarray} v'&=& (P^f_q D^f_q \otimes I_{p_{i-1}}) t \\ v'_{\lambda m + \mu} &=& \sum_{\lambda' \mu'} (P^f_q D^f_q \otimes I_{p_{i-1}})_{(\lambda m + \mu)(\lambda' m + \mu')} t_{\lambda' m + \mu'} \\ v'_{(\lambda q + a) p_{i-1} + b} &=& \sum_{\lambda' a' b'} ( P^f_q D^f_q \otimes I_{p_{i-1}} )_{((\lambda q+ a)p_{i-1} + b)((\lambda' q+ a')p_{i-1} + b')} t_{(\lambda' q + a')p_{i-1} +b'} \end{eqnarray} % The first step in removing redundant indices is to take advantage of the identity matrix $I$ and separate the subspaces of the Kronecker product, % \begin{equation} ( P^f_q D^f_q \otimes I_{p_{i-1}} )_{((\lambda q+ a)p_{i-1} + b)((\lambda' q+ a')p_{i-1} + b')} = (P^f_q D^f_q)_{(\lambda q + a)(\lambda' q + a')} \delta_{bb'} \end{equation} % This eliminates one sum, leaving us with, % \begin{equation} v'_{(\lambda q + a) p_{i-1} + b} = \sum_{\lambda' a' } (P^f_q D^f_q)_{(\lambda q + a)(\lambda' q + a')} t_{(\lambda'q+a')p_{i-1} + b} \end{equation} % We can insert the definition of $D^f_q$ to give, % \begin{equation} \phantom{v'_{(\lambda q + a) p_{i-1} + b}} = \sum_{\lambda'a'} (P^f_q)_{(\lambda q + a)(\lambda'q + a')} \omega^{\lambda'a'}_{q_{i-1}} t_{(\lambda'q+a')p_{i-1}+b} \end{equation} % Using the definition of $P^f_q$, which exchanges an index of $\lambda q + a$ with $a f + \lambda$, we get a final result with no matrix multiplication, % \begin{equation} v'_{(a f + \lambda) p_{i-1} + b} = \omega^{\lambda a}_{q_{i-1}} t_{(\lambda q + a)p_{i-1} + b} \end{equation} % All we have to do is premultiply each element of the temporary vector $t$ by an exponential twiddle factor and store the result in another index location, according to the digit reversal permutation of $P$. Here is the algorithm to implement the mixed-radix FFT, % \begin{algorithm} \FOR{$i = 1 \dots n_f$} \FOR{$a = 0 \dots q-1$} \FOR{$b = 0 \dots p_{i-1} - 1$} \FOR{$\lambda = 0 \dots f-1$} \STATE{$t_\lambda \Leftarrow \sum_{\lambda'=0}^{f-1} W_f(\lambda,\lambda') v_{b+\lambda'm+ap_{i-1}}$} \COMMENT{DFT matrix-multiply module} \ENDFOR \FOR{$\lambda = 0 \dots f-1$} \STATE{$v'_{(af+\lambda)p_{i-1}+b} \Leftarrow \omega^{\lambda a}_{q_{i-1}} t_\lambda$} \ENDFOR \ENDFOR \ENDFOR \STATE{$v \Leftarrow v'$} \ENDFOR \end{algorithm} % \subsection{Details of the implementation} % First the function {\tt gsl\_fft\_complex\_wavetable\_alloc} allocates $n$ elements of scratch space (to hold the vector $v'$ for each iteration) and $n$ elements for a trigonometric lookup table of twiddle factors. Then the length $n$ must be factorized. There is a general factorization function {\tt gsl\_fft\_factorize} which takes a list of preferred factors. It first factors out the preferred factors and then removes general remaining prime factors. The algorithm used to generate the trigonometric lookup table is % \begin{algorithm} \FOR {$a = 1 \dots n_f$} \FOR {$b = 1 \dots f_i - 1$} \FOR {$c = 1 \dots q_i$} \STATE $\mbox{trig[k++]} = \exp(- 2\pi i b c p_{a-1}/N)$ \ENDFOR \ENDFOR \ENDFOR \end{algorithm} % Note that $\sum_{1}^{n_f} \sum_{0}^{f_i-1} \sum_{1}^{q_i} = \sum_{1}^{n_f} (f_i-1)q_i = n - 1$ so $n$ elements are always sufficient to store the lookup table. This is chosen because we need to compute $\omega_{q_i-1}^{\lambda a} t_\lambda$ in the FFT. In terms of the lookup table we can write this as, % \begin{eqnarray} \omega_{q_{i-1}}^{\lambda a} t_\lambda &=& \exp(-2\pi i \lambda a/q_{i-1}) t_\lambda \\ &=& \exp(-2\pi i \lambda a p_{i-1}/N) t_\lambda \\ &=& \left\{ \begin{array}{ll} t_\lambda & a=0 \\ \mbox{trig}[\mbox{twiddle[i]}+\lambda q+(a-1)] t_\lambda & a\not=0 \end{array} \right. \end{eqnarray} % \begin{sloppypar} \noindent The array {\tt twiddle[i]} maintains a set of pointers into {\tt trig} for the starting points for the outer loop. The core of the implementation is {\tt gsl\_fft\_complex}. This function loops over the chosen factors of $N$, computing the iteration $v'=T_i v$ for each pass. When the DFT for a factor is implemented the iteration is handed-off to a dedicated small-$N$ module, such as {\tt gsl\_fft\_complex\_pass\_3} or {\tt gsl\_fft\_complex\_pass\_5}. Unimplemented factors are handled by the general-$N$ routine {\tt gsl\_fft\_complex\_pass\_n}. The structure of one of the small-$N$ modules is a simple transcription of the basic algorithm given above. Here is an example for {\tt gsl\_fft\_complex\_pass\_3}. For a pass with a factor of 3 we have to calculate the following expression, \end{sloppypar}% \begin{equation} v'_{(a f + \lambda) p_{i-1} + b} = \sum_{\lambda' = 0,1,2} \omega^{\lambda a}_{q_{i-1}} W^{\lambda \lambda'}_{3} v_{b + \lambda' m + a p_{i-1}} \end{equation} % for $b = 0 \dots p_{i-1} - 1$, $a = 0 \dots q_{i} - 1$ and $\lambda = 0, 1, 2$. This is implemented as, % \begin{algorithm} \FOR {$a = 0 \dots q-1$} \FOR {$b = 0 \dots p_{i-1} - 1$} \STATE {$ \left( \begin{array}{c} t_0 \\ t_1 \\ t_2 \end{array} \right) = \left( \begin{array}{ccc} W^{0}_3 & W^{0}_3 & W^{0}_3 \\ W^{0}_3 & W^{1}_3 & W^{2}_3 \\ W^{0}_3 & W^{2}_3 & W^{4}_3 \end{array} \right) \left( \begin{array}{l} v_{b + a p_{i-1}} \\ v_{b + a p_{i-1} + m} \\ v_{b + a p_{i-1} +2m} \end{array} \right)$} \STATE {$ v'_{a p_{i} + b} = t_0$} \STATE {$ v'_{a p_{i} + b + p_{i-1}} = \omega^{a}_{q_{i-1}} t_1$} \STATE {$ v'_{a p_{i} + b + 2 p_{i-1}} = \omega^{2a}_{q_{i-1}} t_2$} \ENDFOR \ENDFOR \end{algorithm} % In the code we use the variables {\tt from0}, {\tt from1}, {\tt from2} to index the input locations, % \begin{eqnarray} \mbox{\tt from0} &=& b + a p_{i-1} \\ \mbox{\tt from1} &=& b + a p_{i-1} + m \\ \mbox{\tt from2} &=& b + a p_{i-1} + 2m \end{eqnarray} % and the variables {\tt to0}, {\tt to1}, {\tt to2} to index the output locations in the scratch vector $v'$, % \begin{eqnarray} \mbox{\tt to0} &=& b + a p_{i} \\ \mbox{\tt to1} &=& b + a p_{i} + p_{i-1} \\ \mbox{\tt to2} &=& b + a p_{i} + 2 p_{i-1} \end{eqnarray} % The DFT matrix multiplication is computed using the optimized sub-transform modules given in the next section. The twiddle factors $\omega^a_{q_{i-1}}$ are taken out of the {\tt trig} array. To compute the inverse transform we go back to the definition of the Fourier transform and note that the inverse matrix is just the complex conjugate of the forward matrix (with a factor of $1/N$), % \begin{equation} W^{-1}_N = W^*_N / N \end{equation} % Therefore we can easily compute the inverse transform by conjugating all the complex elements of the DFT matrices and twiddle factors that we apply. (An alternative strategy is to conjugate the input data, take a forward transform, and then conjugate the output data). \section{Fast Sub-transform Modules} % To implement the mixed-radix FFT we still need to compute the small-$N$ DFTs for each factor. Fortunately many highly-optimized small-$N$ modules are available, following the work of Winograd who showed how to derive efficient small-$N$ sub-transforms by number theoretic techniques. The algorithms in this section all compute,\footnote{Erratum: due to a difference in sign convention, these transforms are actually for $x_a = \sum_{b=0}^{N-1} W_N^{-ab} z_b$. Thanks to Andrew Holme for the correction.} % \begin{equation} x_a = \sum_{b=0}^{N-1} W_N^{ab} z_b \end{equation} % The sub-transforms given here are the ones recommended by Temperton and differ slightly from the canonical Winograd modules. According to Temperton~\cite{temperton83} they are slightly more robust against rounding errors and trade off some additions for multiplications. % For the $N=2$ DFT, % \begin{equation} \begin{array}{ll} x_0 = z_0 + z_1, & x_1 = z_0 - z_1. \end{array} \end{equation} % For the $N=3$ DFT, % \begin{equation} \begin{array}{lll} t_1 = z_1 + z_2, & t_2 = z_0 - t_1/2, & t_3 = \sin(\pi/3) (z_1 - z_2), \end{array} \end{equation} \begin{equation} \begin{array}{lll} x_0 = z_0 + t_1, & x_1 = t_2 + i t_3, & x_2 = t_2 - i t_3. \end{array} \end{equation} % The $N=4$ transform involves only additions and subtractions, % \begin{equation} \begin{array}{llll} t_1 = z_0 + z_2, & t_2 = z_1 + z_3, & t_3 = z_0 - z_2, & t_4 = z_1 - z_3, \end{array} \end{equation} \begin{equation} \begin{array}{llll} x_0 = t_1 + t_2, & x_1 = t_3 + i t_4, & x_2 = t_1 - t_2, & x_3 = t_3 - i t_4. \end{array} \end{equation} % For the $N=5$ DFT, % \begin{equation} \begin{array}{llll} t_1 = z_1 + z_4, & t_2 = z_2 + z_3, & t_3 = z_1 - z_4, & t_4 = z_2 - z_3, \end{array} \end{equation} \begin{equation} \begin{array}{llll} t_5 = t_1 + t_2, & t_6 = (\sqrt{5}/4) (t_1 - t_2), & t_7 = z_0 - t_5/4, \\ \end{array} \end{equation} \begin{equation} \begin{array}{llll} t_8 = t_7 + t_6, & t_9 = t_7 - t_6, \\ \end{array} \end{equation} \begin{equation} \begin{array}{llll} t_{10} = \sin(2\pi/5) t_3 + \sin(2\pi/10) t_4, & t_{11} = \sin(2\pi/10) t_3 - \sin(2\pi/5) t_4, \end{array} \end{equation} \begin{equation} \begin{array}{llll} x_0 = z_0 + t_5, \end{array} \end{equation} \begin{equation} \begin{array}{llll} x_1 = t_8 + i t_{10}, & x_2 = t_9 + i t_{11}, \end{array} \end{equation} \begin{equation} \begin{array}{llll} x_3 = t_9 - i t_{11}, & x_4 = t_8 - i t_{10}. \end{array} \end{equation} % The DFT matrix for $N=6$ can be written as a combination of $N=3$ and $N=2$ transforms with index permutations, % \begin{equation} \left( \begin{array}{c} x_0 \\ x_4 \\ x_2 \\ \hline x_3 \\ x_1 \\ x_5 \end{array} \right) = \left( \begin{array}{ccc|ccc} & & & & & \\ &W_3& & &W_3& \\ & & & & & \\ \hline & & & & & \\ &W_3& & &-W_3& \\ & & & & & \end{array} \right) \left( \begin{array}{c} z_0 \\ z_2 \\ z_4 \\ \hline z_3 \\ z_5 \\ z_1 \end{array} \right) \end{equation} % This simplification is an example of the Prime Factor Algorithm, which can be used because the factors 2 and 3 are mutually prime. For more details consult one of the books on number theory for FFTs~\cite{elliott82,blahut}. We can take advantage of the simple indexing scheme of the PFA to write the $N=6$ DFT as, % \begin{equation} \begin{array}{lll} t_1 = z_2 + z_4, & t_2 = z_0 - t_1/2, & t_3 = \sin(\pi/3) (z_2 - z_4), \end{array} \end{equation} \begin{equation} \begin{array}{lll} t_4 = z_5 + z_1, & t_5 = z_3 - t_4/2, & t_6 = \sin(\pi/3) (z_5 - z_1), \end{array} \end{equation} \begin{equation} \begin{array}{lll} t_7 = z_0 + t_1, & t_8 = t_2 + i t_3, & t_9 = t_2 - i t_3, \end{array} \end{equation} \begin{equation} \begin{array}{lll} t_{10} = z_3 + t_4, & t_{11} = t_5 + i t_6, & t_{12} = t_5 - i t_6, \end{array} \end{equation} \begin{equation} \begin{array}{lll} x_0 = t_7 + t_{10}, & x_4 = t_8 + t_{11}, & x_2 = t_9 + t_{12}, \end{array} \end{equation} \begin{equation} \begin{array}{lll} x_3 = t_7 - t_{10}, & x_1 = t_8 - t_{11}, & x_5 = t_9 - t_{12}. \end{array} \end{equation} For any remaining general factors we use Singleton's efficient method for computing a DFT~\cite{singleton}. Although it is an $O(N^2)$ algorithm it does reduce the number of multiplications by a factor of 4 compared with a naive evaluation of the DFT. If we look at the general structure of a DFT matrix, shown schematically below, % \begin{equation} \left( \begin{array}{c} h_0 \\ h_1 \\ h_2 \\ \vdots \\ h_{N-2} \\ h_{N-1} \end{array} \right) = \left( \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & W & W & \cdots & W & W \\ 1 & W & W & \cdots & W & W \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & W & W & \cdots & W & W \\ 1 & W & W & \cdots & W & W \end{array} \right) \left( \begin{array}{c} g_0 \\ g_1 \\ g_2 \\ \vdots \\ g_{N-2} \\ g_{N-1} \end{array} \right) \end{equation} % we see that the outer elements of the DFT matrix are all unity. We can remove these trivial multiplications but we will still be left with an $(N-1) \times (N-1)$ sub-matrix of complex entries, which would appear to require $(N-1)^2$ complex multiplications. Singleton's method, uses symmetries of the DFT matrix to convert the complex multiplications to an equivalent number of real multiplications. We start with the definition of the DFT in component form, % \begin{equation} a_k + i b_k = \sum_{j=0} (x_j+iy_j)(\cos(2\pi jk/f) - i\sin(2\pi jk/f)) \end{equation} % The zeroth component can be computed using only additions, % \begin{equation} a_0 + i b_0 = \sum_{j=0}^{(f-1)} x_j + i y_j \end{equation} % We can rewrite the remaining components as, % \begin{eqnarray} a_k + i b_k & = x_0 + i y_0 & + \sum_{j=1}^{(f-1)/2} (x_j + x_{f-j}) \cos(2\pi jk/f) + (y_j - y_{f-j}) \sin(2\pi jk/f) \\ & & + i\sum_{j=1}^{(f-1)/2} (y_j + y_{f-j}) \cos(2\pi jk/f) - (x_j - x_{f-j}) \sin(2\pi jk/f) \end{eqnarray} % by using the following trigonometric identities, % \begin{eqnarray} \cos(2\pi(f-j)k/f) &=& \phantom{-}\cos(2\pi jk/f) \\ \sin(2\pi(f-j)k/f) &=& -\sin(2\pi jk/f) \end{eqnarray} % These remaining components can all be computed using four partial sums, % \begin{eqnarray} a_k + i b_k & = & (a^+_k - a^-_k) + i (b^+_k + b^-_k) \\ a_{f-k} + i b_{f-k} & = & (a^+_k + a^-_k) + i (b^+_k - b^-_k) \end{eqnarray} % for $k = 1, 2, \dots, (f-1)/2$, where, % \begin{eqnarray} a^+_k &=& x_0 + \sum_{j=1}^{(f-1)/2} (x_j + x_{f-j}) \cos(2\pi jk/f) \\ a^-_k &=& \phantom{x_0} - \sum_{j=1}^{(f-1)/2} (y_j - y_{f-j}) \sin(2\pi jk/f) \\ b^+_k &=& y_0 + \sum_{j=1}^{(f-1)/2} (y_j + y_{f-j}) \cos(2\pi jk/f) \\ b^-_k &=& \phantom{y_0} - \sum_{j=1}^{(f-1)/2} (x_j - x_{f-j}) \sin(2\pi jk/f) \end{eqnarray} % Note that the higher components $k'=f-k$ can be obtained directly without further computation once $a^+$, $a^-$, $b^+$ and $b^-$ are known. There are $4 \times (f-1)/2$ different sums, each involving $(f-1)/2$ real multiplications, giving a total of $(f-1)^2$ real multiplications instead of $(f-1)^2$ complex multiplications. To implement Singleton's method we make use of the input and output vectors $v$ and $v'$ as scratch space, copying data back and forth between them to obtain the final result. First we use $v'$ to store the terms of the symmetrized and anti-symmetrized vectors of the form $x_j + x_{f-j}$ and $x_j - y_{f-j}$. Then we multiply these by the appropriate trigonometric factors to compute the partial sums $a^+$, $a^-$, $b^+$ and $b^-$, storing the results $a_k + i b_k$ and $a_{f-k} + i b_{f-k}$ back in $v$. Finally we multiply the DFT output by any necessary twiddle factors and place the results in $v'$. \section{FFTs for real data} % This section is based on the articles {\em Fast Mixed-Radix Real Fourier Transforms} by Clive Temperton~\cite{temperton83real} and {\em Real-Valued Fast Fourier Transform Algorithms} by Sorensen, Jones, Heideman and Burrus~\cite{burrus87real}. The DFT of a real sequence has a special symmetry, called a {\em conjugate-complex} or {\em half-complex} symmetry, % \begin{equation} h(a) = h(N-a)^* \end{equation} % The element $h(0)$ is real, and when $N$ is even $h(N/2)$ is also real. It is straightforward to prove the symmetry, % \begin{eqnarray} h(a) &=& \sum W^{ab}_N g(b) \\ h(N-a)^* &=& \sum W^{-(N-a)b}_N g(b)^* \\ &=& \sum W^{-Nb}_N W^{ab}_N g(b) \qquad{(W^N_N=1)} \\ &=& \sum W^{ab}_N g(b) \end{eqnarray} % Real-valued data is very common in practice (perhaps more common that complex data) so it is worth having efficient FFT routines for real data. In principle an FFT for real data should need half the operations of an FFT on the equivalent complex data (where the imaginary parts are set to zero). There are two different strategies for computing FFTs of real-valued data: One strategy is to ``pack'' the real data (of length $N$) into a complex array (of length $N/2$) by index transformations. A complex FFT routine can then be used to compute the transform of that array. By further index transformations the result can actually by ``unpacked'' to the FFT of the original real data. It is also possible to do two real FFTs simultaneously by packing one in the real part and the other in the imaginary part of the complex array. These techniques have some disadvantages. The packing and unpacking procedures always add $O(N)$ operations, and packing a real array of length $N$ into a complex array of length $N/2$ is only possible if $N$ is even. In addition, if two unconnected datasets with very different magnitudes are packed together in the same FFT there could be ``cross-talk'' between them due to a loss of precision. A more straightforward strategy is to start with an FFT algorithm, such as the complex mixed-radix algorithm, and prune out all the operations involving the zero imaginary parts of the initial data. The FFT is linear so the imaginary part of the data can be decoupled from the real part. This procedure leads to a dedicated FFT for real-valued data which works for any length and does not perform any unnecessary operations. It also allows us to derive a corresponding inverse FFT routine which transforms a half-complex sequence back into real data. \subsection{Radix-2 FFTs for real data} % Before embarking on the full mixed-radix real FFT we'll start with the radix-2 case. It contains all the essential features of the general-$N$ algorithm. To make it easier to see the analogy between the two we will use the mixed-radix notation to describe the factors. The factors are all 2, % \begin{equation} f_1 = 2, f_2 = 2, \dots, f_{n_f} = 2 \end{equation} % and the products $p_i$ are powers of 2, % \begin{eqnarray} p_0 & = & 1 \\ p_1 & = & f_1 = 2 \\ p_2 & = & f_1 f_2 = 4 \\ \dots &=& \dots \\ p_i & = & f_1 f_2 \dots f_i = 2^i \end{eqnarray} % Using this notation we can rewrite the radix-2 decimation-in-time algorithm as, % \begin{algorithm} \STATE bit-reverse ordering of $g$ \FOR {$i = 1 \dots n$} \FOR {$a = 0 \dots p_{i-1} - 1$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$ \left( \begin{array}{c} g(b p_i + a) \\ g(b p_i + p_{i-1} + a) \end{array} \right) = \left( \begin{array}{c} g(b p_i + a) + W^a_{p_i} g(b p_i + p_{i-1} + a) \\ g(b p_i + a) - W^a_{p_i} g(b p_i + p_{i-1} + a) \end{array} \right) $} \ENDFOR \ENDFOR \ENDFOR \end{algorithm} % where we have used $p_i = 2 \Delta$, and factored $2 \Delta$ out of the original definition of $b$ ($b \to b p_i$). If we go back to the original recurrence relations we can see how to write the intermediate results in a way which make the real/half-complex symmetries explicit at each step. The first pass is just a set of FFTs of length-2 on real values, % \begin{equation} g_1([b_0 b_1 b_2 a_0]) = \sum_{b_3} W^{a_0 b_3}_2 g([b_0 b_1 b_2 b_3]) \end{equation} % Using the symmetry $FFT(x)_k = FFT(x)^*_{N-k}$ we have the reality condition, % \begin{eqnarray} g_1([b_0 b_1 b_2 0]) &=& \mbox{real} \\ g_1([b_0 b_1 b_2 1]) &=& \mbox{real'} \end{eqnarray} % In the next pass we have a set of length-4 FFTs on the original data, % \begin{eqnarray} g_2([b_0 b_1 b_1 a_0]) &=& \sum_{b_2}\sum_{b_3} W^{[a_1 a_0]b_2}_4 W^{a_0 b_3}_2 g([b_0 b_1 b_2 b_3]) \\ &=& \sum_{b_2}\sum_{b_3} W^{[a_1 a_0][b_3 b_2]}_4 g([b_0 b_1 b_2 b_3]) \end{eqnarray} % This time symmetry gives us the following conditions on the transformed data, % \begin{eqnarray} g_2([b_0 b_1 0 0]) &=& \mbox{real} \\ g_2([b_0 b_1 0 1]) &=& x + i y \\ g_2([b_0 b_1 1 0]) &=& \mbox{real'} \\ g_2([b_0 b_1 1 1]) &=& x - i y \end{eqnarray} % We can see a pattern emerging here: the $i$-th pass computes a set of independent length-$2^i$ FFTs on the original real data, % \begin{eqnarray} g_i ( b p_i + a ) = \sum_{a' = 0}^{p_i-1} W_{p_i}^{aa'} g(b p_i + a') \quad \mbox{for $b = 0 \dots q_i - 1$} \end{eqnarray} % As a consequence the we can apply the symmetry for an FFT of real data to all the intermediate results -- not just the final result. In general after the $i$-th pass we will have the symmetry, % \begin{eqnarray} g_i(b p_i) &=& \mbox{real} \\ g_i(b p_i + a) &=& g_i(b p_i + p_i - a)^* \qquad a = 1 \dots p_{i}/2 - 1 \\ g_i(b p_i + p_{i}/2) &=& \mbox{real'} \end{eqnarray} % In the next section we'll show that this is a general property of decimation-in-time algorithms. The same is not true for the decimation-in-frequency algorithm, which does not have any simple symmetries in the intermediate results. Since we can obtain the values of $g_i(b p_i + a)$ for $a > p_i/2$ from the values for $a < p_i/2$ we can cut our computation and storage in half compared with the full-complex case. % We can easily rewrite the algorithm to show how the computation can be halved, simply by limiting all terms to involve only values for $a \leq p_{i}/2$. Whenever we encounter a term $g_i(b p_i + a)$ with $a > p_{i}/2$ we rewrite it in terms of its complex symmetry partner, $g_i(b p_i + a')^*$, where $a' = p_i - a$. The butterfly computes two values for each value of $a$, $b p_i + a$ and $b p_i + p_{i-1} - a$, so we actually only need to compute from $a = 0$ to $p_{i-1}/2$. This gives the following algorithm, % \begin{algorithm} \FOR {$a = 0 \dots p_{i-1}/2$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$ \left( \begin{array}{c} g(b p_i + a) \\ g(b p_i + p_{i-1} - a)^* \end{array} \right) = \left( \begin{array}{c} g(b p_{i} + a) + W^a_{p_i} g(b p_i + p_{i-1} + a) \\ g(b p_{i} + a) - W^a_{p_i} g(b p_i + p_{i-1} + a) \end{array} \right) $} \ENDFOR \ENDFOR \end{algorithm} % Although we have halved the number of operations we also need a storage arrangement which will halve the memory requirement. The algorithm above is still formulated in terms of a complex array $g$, but the input to our routine will naturally be an array of $N$ real values which we want to use in-place. Therefore we need a storage scheme which lays out the real and imaginary parts within the real array, in a natural way so that there is no need for complicated index calculations. In the radix-2 algorithm we do not have any additional scratch space. The storage scheme has to be designed to accommodate the in-place calculation taking account of dual node pairs. Here is a scheme which takes these restrictions into account: On the $i$-th pass we store the real part of $g(b p_i + a)$ in location $b p_i + a$. We store the imaginary part in location $b p_i + p_i - a$. This is the redundant location which corresponds to the conjugate term $g(b p_i + a)^* = g(b p_i + p_i -a)$, so it is not needed. When the results are purely real (as in the case $a = 0$ and $a = p_i/2$ we store only the real part and drop the zero imaginary part). This storage scheme has to work in-place, because the radix-2 routines should not use any scratch space. We will now check the in-place property for each butterfly. A crucial point is that the scheme is pass-dependent. Namely, when we are computing the result for pass $i$ we are reading the results of pass $i-1$, and we must access them using the scheme from the previous pass, i.e. we have to remember that the results from the previous pass were stored using $b p_{i-1} + a$, not $b p_i + a$, and the symmetry for these results will be $g_{i-1}(b p_{i-1} + a) = g_{i-1}(b p_{i-1} + p_{i-1} - a)^*$. To take this into account we'll write the right hand side of the iteration, $g_{i-1}$, in terms of $p_{i-1}$. For example, instead of $b p_i$, which occurs naturally in $g_i(b p_i + a)$ we will use $2 b p_{i-1}$, since $p_i = 2 p_{i-1}$. Let's start with the butterfly for $a = 0$, % \begin{equation} \left( \begin{array}{c} g(b p_i) \\ g(b p_i + p_{i-1})^* \end{array} \right) = \left( \begin{array}{c} g(2 b p_{i-1}) + g((2 b + 1) p_{i-1}) \\ g(2 b p_{i-1}) - g((2 b + 1) p_{i-1}) \end{array} \right) \end{equation} % By the symmetry $g_{i-1}(b p_{i-1} + a) = g_{i-1}(b p_{i-1} + p_{i-1} - a)^*$ all the inputs are purely real. The input $g(2 b p_{i-1})$ is read from location $2 b p_{i-1}$ and $g((2 b + 1) p_{i-1})$ is read from the location $(2 b + 1) p_{i-1}$. Here is the full breakdown, % \begin{center} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|l|lll|} \hline Term & & Location & \\ \hline $g(2 b p_{i-1})$ & real part & $2 b p_{i-1} $ &$= b p_i$ \\ & imag part & --- & \\ $g((2 b+1) p_{i-1})$ & real part & $(2 b + 1) p_{i-1} $&$= b p_i + p_{i-1} $ \\ & imag part & --- & \\ \hline $g(b p_{i})$ & real part & $b p_i$ &\\ & imag part & --- & \\ $g(b p_{i} + p_{i-1})$ & real part & $b p_i + p_{i-1}$& \\ & imag part & --- & \\ \hline \end{tabular} \end{center} % The conjugation of the output term $g(b p_i + p_{i-1})^*$ is irrelevant here since the results are purely real. The real results are stored in locations $b p_i$ and $b p_i + p_{i-1}$, which overwrites the inputs in-place. The general butterfly for $a = 1 \dots p_{i-1}/2 - 1$ is, % \begin{equation} \left( \begin{array}{c} g(b p_i + a) \\ g(b p_i + p_{i-1} - a)^* \end{array} \right) = \left( \begin{array}{c} g(2 b p_{i-1} + a) + W^a_{p_i} g((2 b + 1) p_{i-1} + a) \\ g(2 b p_{i-1} + a) - W^a_{p_i} g((2 b + 1) p_{i-1} + a) \end{array} \right) \end{equation} % All the terms are complex. To store a conjugated term like $g(b' p_i + a')^*$ where $a > p_i/2$ we take the real part and store it in location $b' p_i + a'$ and then take imaginary part, negate it, and store the result in location $b' p_i + p_i - a'$. Here is the full breakdown of the inputs and outputs from the butterfly, % \begin{center} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|l|lll|} \hline Term & & Location & \\ \hline $g(2 b p_{i-1} + a)$ & real part & $2 b p_{i-1} + a $ &$= b p_i + a$ \\ & imag part & $2 b p_{i-1} + p_{i-1} - a$ &$= b p_i + p_{i-1} - a$ \\ $g((2 b+1) p_{i-1} + a)$ & real part & $(2 b+1) p_{i-1} + a $&$= b p_i + p_{i-1} + a $ \\ & imag part & $(2 b+1) p_{i-1} + p_{i-1} - a $&$= b p_i + p_i - a$\\ \hline $g(b p_{i} + a)$ & real part & $b p_i + a$ &\\ & imag part & $b p_i + p_i - a$& \\ $g(b p_{i} + p_{i-1} - a)$ & real part & $b p_i + p_{i-1} - a$& \\ & imag part & $b p_i + p_{i-1} + a$& \\ \hline \end{tabular} \end{center} % By comparing the input locations and output locations we can see that the calculation is done in place. The final butterfly for $a = p_{i-1}/2$ is, % \begin{equation} \left( \begin{array}{c} g(b p_i + p_{i-1}/2) \\ g(b p_i + p_{i-1} - p_{i-1}/2)^* \end{array} \right) = \left( \begin{array}{c} g(2 b p_{i-1} + p_{i-1}/2) - i g((2 b + 1) p_{i-1} + p_{i-1}/2) \\ g(2 b p_{i-1} + p_{i-1}/2) + i g((2 b + 1) p_{i-1} + p_{i-1}/2) \end{array} \right) \end{equation} % where we have substituted for the twiddle factor, $W^a_{p_i} = -i$, % \begin{eqnarray} W^{p_{i-1}/2}_{p_i} &=& \exp(-2\pi i p_{i-1}/2 p_i) \\ &=& \exp(-2\pi i /4) \\ &=& -i \end{eqnarray} % For this butterfly the second line is just the conjugate of the first, because $p_{i-1} - p_{i-1}/2 = p_{i-1}/2$. Therefore we only need to consider the first line. The breakdown of the inputs and outputs is, % \begin{center} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|l|lll|} \hline Term & & Location & \\ \hline $g(2 b p_{i-1} + p_{i-1}/2)$ & real part & $2 b p_{i-1} + p_{i-1}/2 $ &$= b p_i + p_{i-1}/2$ \\ & imag part & --- & \\ $g((2 b + 1) p_{i-1} + p_{i-1}/2)$ & real part & $(2 b + 1) p_{i-1} + p_{i-1}/2 $&$= b p_i + p_{i} - p_{i-1}/2 $ \\ & imag part & --- & \\ \hline $g(b p_{i} + p_{i-1}/2)$ & real part & $b p_i + p_{i-1}/2$ &\\ & imag part & $b p_i + p_i - p_{i-1}/2$& \\ \hline \end{tabular} \end{center} % By comparing the locations of the inputs and outputs with the operations in the butterfly we find that this computation is very simple: the effect of the butterfly is to negate the location $b p_i + p_i - p_{i-1}/2$ and leave other locations unchanged. This is clearly an in-place operation. Here is the radix-2 algorithm for real data, in full, with the cases of $a=0$, $a=1\dots p_{i-1}/2 - 1$ and $a = p_{i-1}/2$ in separate blocks, % \begin{algorithm} \STATE bit-reverse ordering of $g$ \FOR {$i = 1 \dots n$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$\left( \begin{array}{c} g(b p_i) \\ g(b p_i + p_{i-1}) \end{array} \right) \Leftarrow \left( \begin{array}{c} g(b p_{i}) + g(b p_{i} + p_{i-1}) \\ g(b p_{i}) - g(b p_{i} + p_{i-1}) \end{array} \right)$} \ENDFOR \FOR {$a = 1 \dots p_{i-1}/2 - 1$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$(\Real z_0, \Imag z_0) \Leftarrow (g(b p_i + a), g(b p_i + p_{i-1} - a))$} \STATE{$(\Real z_1, \Imag z_1) \Leftarrow (g(b p_i + p_{i-1} + a), g(b p_i + p_{i} - a))$} \STATE{$t_0 \Leftarrow z_0 + W^a_{p_i} z_1$} \STATE{$t_1 \Leftarrow z_0 - W^a_{p_i} z_1$} \STATE{$(g(b p_{i} + a),g(b p_{i} + p_i - a) \Leftarrow (\Real t_0, \Imag t_0)$} \STATE{$(g(b p_{i} + p_{i-1} - a), g(b p_{i} + p_{i-1} + a)) \Leftarrow (\Real t_1, -\Imag t_1)$} \ENDFOR \ENDFOR \FOR{$b = 0 \dots q_i - 1$} \STATE{$g(b p_{i} + p_{i} - p_{i-1}/2) \Leftarrow -g(b p_{i} + p_{i} - p_{i-1}/2)$} \ENDFOR \ENDFOR \end{algorithm} % We split the loop over $a$ into three parts, $a=0$, $a=1\dots p_{i-1}/2-1$ and $a = p_{i-1}/2$ for efficiency. When $a=0$ we have $W^a_{p_i}=1$ so we can eliminate a complex multiplication within the loop over $b$. When $a=p_{i-1}/2$ we have $W^a_{p_i} = -i$ which does not require a full complex multiplication either. \subsubsection{Calculating the Inverse} % The inverse FFT of complex data was easy to calculate, simply by taking the complex conjugate of the DFT matrix. The input data and output data were both complex and did not have any special symmetry. For real data the inverse FFT is more complicated because the half-complex symmetry of the transformed data is different from the purely real input data. We can compute an inverse by stepping backwards through the forward transform. To simplify the inversion it's convenient to write the forward algorithm with the butterfly in matrix form, % \begin{algorithm} \FOR {$i = 1 \dots n$} \FOR {$a = 0 \dots p_{i-1}/2$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$ \left( \begin{array}{c} g(b p_i + a) \\ g(b p_i + p_{i-1} + a) \end{array} \right) = \left( \begin{array}{cc} 1 & W^a_{p_{i}} \\ 1 & -W^a_{p_{i}} \end{array} \right) \left( \begin{array}{c} g(2 b p_{i-1} + a) \\ g((2 b + 1) p_{i-1} + a) \end{array} \right) $} \ENDFOR \ENDFOR \ENDFOR \end{algorithm} % To invert the algorithm we run the iterations backwards and invert the matrix multiplication in the innermost loop, % \begin{algorithm} \FOR {$i = n \dots 1$} \FOR {$a = 0 \dots p_{i-1}/2$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$ \left( \begin{array}{c} g(2 b p_{i-1} + a) \\ g((2 b + 1) p_{i-1} + a) \end{array} \right) = \left( \begin{array}{cc} 1 & W^a_{p_{i}} \\ 1 & -W^a_{p_{i}} \end{array} \right)^{-1} \left( \begin{array}{c} g(b p_i + a) \\ g(b p_i + p_{i-1} + a) \end{array} \right) $} \ENDFOR \ENDFOR \ENDFOR \end{algorithm} % There is no need to reverse the loops over $a$ and $b$ because the result is independent of their order. The inverse of the matrix that appears is, % \begin{equation} \left( \begin{array}{cc} 1 & W^a_{p_{i}} \\ 1 & -W^a_{p_{i}} \end{array} \right)^{-1} = {1 \over 2} \left( \begin{array}{cc} 1 & 1 \\ W^{-a}_{p_{i}} & -W^{-a}_{p_{i}} \end{array} \right) \end{equation} % To save divisions we remove the factor of $1/2$ inside the loop. This computes the unnormalized inverse, and the normalized inverse can be retrieved by dividing the final result by $N = 2^n$. Here is the radix-2 half-complex to real inverse FFT algorithm, taking into account the radix-2 storage scheme, % \begin{algorithm} \FOR {$i = n \dots 1$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$\left( \begin{array}{c} g(b p_i) \\ g(b p_i + p_{i-1}) \end{array} \right) \Leftarrow \left( \begin{array}{c} g(b p_{i}) + g(b p_{i} + p_{i-1}) \\ g(b p_{i}) - g(b p_{i} + p_{i-1}) \end{array} \right)$} \ENDFOR \FOR {$a = 1 \dots p_{i-1}/2 - 1$} \FOR{$b = 0 \dots q_i - 1$} \STATE{$(\Real z_0, \Imag z_0) \Leftarrow (g(b p_i + a), g(b p_i + p_{i} - a))$} \STATE{$(\Real z_1, \Imag z_1) \Leftarrow (g(b p_i + p_{i-1} - a), -g(b p_i + p_{i-1} + a))$} \STATE{$t_0 \Leftarrow z_0 + z_1$} \STATE{$t_1 \Leftarrow z_0 - z_1$} \STATE{$(g(b p_{i} + a), g(b p_{i} + p_{i-1} - a)) \Leftarrow (\Real t_0, \Imag t_0) $} \STATE{$(g(b p_{i} + p_{i-1} + a),g(b p_{i} + p_{i} - a)) \Leftarrow (\Real(W^a_{p_i}t_1), \Imag(W^a_{p_i}t_1))$} \ENDFOR \ENDFOR \FOR{$b = 0 \dots q_i - 1$} \STATE{$g(b p_{i} + p_{i-1}/2) \Leftarrow 2 g(b p_{i} + p_{i-1}/2)$} \STATE{$g(b p_{i} + p_{i-1} + p_{i-1}/2) \Leftarrow -2 g(b p_{i} + p_{i-1} + p_{i-1}/2)$} \ENDFOR \ENDFOR \STATE bit-reverse ordering of $g$ \end{algorithm} \subsection{Mixed-Radix FFTs for real data} % As discussed earlier the radix-2 decimation-in-time algorithm had the special property that its intermediate passes are interleaved Fourier transforms of the original data, and this generalizes to the mixed-radix algorithm. The complex mixed-radix algorithm that we derived earlier was a decimation-in-frequency algorithm, but we can obtain a decimation-in-time version by taking the transpose of the decimation-in-frequency DFT matrix like this, % \begin{eqnarray} W_N &=& W_N^T \\ &=& (T_{n_f} \dots T_2 T_1)^T \\ &=& T_1^T T_2^T \dots T_{n_f}^T \end{eqnarray} % with, % \begin{eqnarray} T_i^T &=& \left( (P^{f_i}_{q_i} D^{f_i}_{q_i} \otimes I_{p_{i-1}}) (W_{f_i} \otimes I_{m_i}) \right)^T \\ &=& (W_{f_i} \otimes I_{m_i}) ( D^{f_i}_{q_i} (P^{f_i}_{q_i})^T \otimes I_{p_{i-1}}). \end{eqnarray} % We have used the fact that $W$, $D$ and $I$ are symmetric and that the permutation matrix $P$ obeys, % \begin{equation} (P^a_b)^T = P^b_a. \end{equation} % From the definitions of $D$ and $P$ we can derive the following identity, % \begin{equation} D^a_b P^b_a = P^b_a D^b_a. \end{equation} % This allows us to put the transpose into a simple form, % \begin{equation} T_i^T = (W_{f_i} \otimes I_{m_i}) (P^{q_i}_{f_i} D^{q_i}_{f_i} \otimes I_{p_{i-1}}). \end{equation} % The transposed matrix, $T^T$ applies the digit-reversal $P$ before the DFT $W$, giving the required decimation-in-time algorithm. The transpose reverses the order of the factors --- $T_{n_f}$ is applied first and $T_1$ is applied last. For convenience we can reverse the order of the factors, $f_1 \leftrightarrow f_{n_f}$, $f_2 \leftrightarrow f_{n_f-1}$, \dots and make the corresponding substitution $p_{i-1} \leftrightarrow q_i$. These substitutions give us a decimation-in-time algorithm with the same ordering as the decimation-in-frequency algorithm, % \begin{equation} W_N = T_{n_f} \dots T_2 T_1 \end{equation} % \begin{equation} T_i = (W_{f_i} \otimes I_{m_i}) (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}) \end{equation} % where $p_i$, $q_i$ and $m_i$ now have the same meanings as before, namely, % \begin{eqnarray} p_i &=& f_1 f_2 \dots f_i \quad (p_0 = 1) \\ q_i &=& N / p_i \\ m_i &=& N / f_i \end{eqnarray} % Now we would like to prove that the iteration for computing $x = W z = T_{n_f} \dots T_2 T_1 z$ has the special property interleaving property. If we write the result of each intermediate pass as $v^{(i)}$, % \begin{eqnarray} v^{(0)} &=& z \\ v^{(1)} &=& T_1 v^{(0)} \\ v^{(2)} &=& T_2 v^{(1)} \\ \dots &=& \dots \\ v^{(i)} &=& T_i v^{(i-1)} \end{eqnarray} % then we will show that the intermediate results $v^{(i)}$ on any pass can be written as, % \begin{equation} v^{(i)} = (W_{p_i} \otimes I_{q_i}) z \end{equation} % Each intermediate stage will be a set of $q_i$ interleaved Fourier transforms, each of length $p_i$. We can prove this result by induction. First we assume that the result is true for $v^{(i-1)}$, % \begin{equation} v^{(i-1)} = (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \qquad \mbox{(assumption)} \end{equation} % And then we examine the next iteration using this assumption, % \begin{eqnarray} v^{(i)} &=& T_i v^{(i-1)} \\ &=& T_i (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \\ &=& (W_{f_i} \otimes I_{m_i}) (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}) (W_{p_{i-1}} \otimes I_{q_{i-1}}) z \label{dit-induction} \end{eqnarray} % Using the relation $m_i = p_{i-1} q_i$, we can write $I_{m_i}$ as $I_{p_{i-1} q_i}$ and $I_{q_{i-1}}$ as $I_{f_i q_i}$. By combining these with the basic matrix identity, % \begin{equation} I_{ab} = I_a \otimes I_b \end{equation} % we can rewrite $v^{(i)}$ in the following form, % \begin{equation} v^{(i)} = (((W_{f_i} \otimes I_{p_{i-1}}) (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i}) (W_{p_{i-1}} \otimes I_{f_i})) \otimes I_{q_i}) z . \end{equation} % The first part of this matrix product is the two-factor expansion of $W_{ab}$, for $a = p_{i-1}$ and $b = f_i$, % \begin{equation} W_{p_{i-1} f_i} = ((W_{f_i} \otimes I_{p_{i-1}}) (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i}) (W_{p_{i-1}} \otimes I_{f_i})). \end{equation} % If we substitute this result, remembering that $p_i = p_{i-1} f_i$, we obtain, % \begin{equation} v^{(i)} = (W_{p_i} \otimes I_{q_i}) z \end{equation} % which is the desired result. The case $i=1$ can be verified explicitly, and induction then shows that the result is true for all $i$. As discussed for the radix-2 algorithm this result is important because if the initial data $z$ is real then each intermediate pass is a set of interleaved Fourier transforms of $z$, having half-complex symmetries (appropriately applied in the subspaces of the Kronecker product). Consequently only $N$ real numbers are needed to store the intermediate and final results. \subsection{Implementation} % The implementation of the mixed-radix real FFT algorithm follows the same principles as the full complex transform. Some of the steps are applied in the opposite order because we are dealing with a decimation in time algorithm instead of a decimation in frequency algorithm, but the basic outer structure of the algorithm is the same. We want to apply the factorized version of the DFT matrix $W_N$ to the input vector $z$, % \begin{eqnarray} x &=& W_N z \\ &=& T_{n_f} \dots T_2 T_1 z \end{eqnarray} % We loop over the $n_f$ factors, applying each matrix $T_i$ to the vector in turn to build up the complete transform, % \begin{algorithm} \FOR{$(i = 1 \dots n_f)$} \STATE{$v \Leftarrow T_i v $} \ENDFOR \end{algorithm} % In this case the definition of $T_i$ is different because we have taken the transpose, % \begin{equation} T_i = (W_{f_i} \otimes I_{m_i}) (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}). \end{equation} % We'll define a temporary vector $t$ to denote the results of applying the rightmost matrix, % \begin{equation} t = (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i}) v \end{equation} % If we expand this out into individual components, as before, we find a similar simplification, % \begin{eqnarray} t_{aq+b} &=& \sum_{a'b'} (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i} \otimes I_{q_i})_{(aq+b)(a'q+b')} v_{a'q+b'} \\ &=& \sum_{a'} (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})_{a a'} v_{a'q+b} \end{eqnarray} % We have factorized the indices into the form $aq+b$, with $0 \leq a < p_{i}$ and $0 \leq b < q$. Just as in the decimation in frequency algorithm we can split the index $a$ to remove the matrix multiplication completely. We have to write $a$ as $\mu f + \lambda$, where $0 \leq \mu < p_{i-1}$ and $0 \leq \lambda < f$, % \begin{eqnarray} t_{(\mu f + \lambda)q+b} &=& \sum_{\mu'\lambda'} (P^{p_{i-1}}_{f_i} D^{p_{i-1}}_{f_i})_{(\mu f + \lambda)(\mu' f + \lambda')} v_{(\mu' f + \lambda')q+b} \\ &=& \sum_{\mu'\lambda'} (P^{p_{i-1}}_{f_i})_{(\mu f + \lambda)(\mu' f + \lambda')} \omega^{\mu'\lambda'}_{p_{i}} v_{(\mu' f + \lambda')q+b} \end{eqnarray} % The matrix $P^{p_{i-1}}_{f_i}$ exchanges an index of $(\mu f + \lambda) q + b$ with $(\lambda p_{i-1} + \mu) q + b$, giving a final result of, % \begin{eqnarray} t_{(\lambda p_{i-1} + \mu) q + b} = w^{\mu\lambda}_{p_i} v_{(\mu f + \lambda)q +b} \end{eqnarray} % To calculate the next stage, % \begin{equation} v' = (W_{f_i} \otimes I_{m_i}) t, \end{equation} % we temporarily rearrange the index of $t$ to separate the $m_{i}$ independent DFTs in the Kronecker product, % \begin{equation} v'_{(\lambda p_{i-1} + \mu) q + b} = \sum_{\lambda' \mu' b'} (W_{f_i} \otimes I_{m_i})_{ ((\lambda p_{i-1} + \mu) q + b) ((\lambda' p_{i-1} + \mu') q + b')} t_{(\lambda' p_{i-1} + \mu') q + b'} \end{equation} % If we use the identity $m = p_{i-1} q$ to rewrite the index of $t$ like this, % \begin{equation} t_{(\lambda p_{i-1} + \mu) q + b} = t_{\lambda m + (\mu q + b)} \end{equation} % we can split the Kronecker product, % \begin{eqnarray} v'_{(\lambda p_{i-1} + \mu) q + b} &=& \sum_{\lambda' \mu' b'} (W_{f_i} \otimes I_{m_i})_{ ((\lambda p_{i-1} + \mu) q + b) ((\lambda' p_{i-1} + \mu') q + b')} t_{(\lambda' p_{i-1} + \mu') q + b'}\\ &=& \sum_{\lambda'} (W_{f_i})_{\lambda \lambda'} t_{\lambda' m_i + (\mu q + b)} \end{eqnarray} % If we switch back to the original form of the index in the last line we obtain, % \begin{eqnarray} \phantom{v'_{(\lambda p_{i-1} + \mu) q + b}} &=& \sum_{\lambda'} (W_{f_i})_{\lambda \lambda'} t_{(\lambda p_{i-1} + \mu) q + b} \end{eqnarray} % which allows us to substitute our previous result for $t$, % \begin{equation} v'_{(\lambda p_{i-1} + \mu) q + b} = \sum_{\lambda'} (W_{f_i})_{\lambda \lambda'} w^{\mu\lambda'}_{p_i} v_{(\mu f + \lambda')q + b} \end{equation} % This gives us the basic decimation-in-time mixed-radix algorithm for complex data which we will be able to specialize to real data, % \begin{algorithm} \FOR{$i = 1 \dots n_f$} \FOR{$\mu = 0 \dots p_{i-1} - 1$} \FOR{$b = 0 \dots q-1$} \FOR{$\lambda = 0 \dots f-1$} \STATE{$t_\lambda \Leftarrow \omega^{\mu\lambda'}_{p_{i}} v_{(\mu f + \lambda')q + b}$} \ENDFOR \FOR{$\lambda = 0 \dots f-1$} \STATE{$v'_{(\lambda p_{i-1} + \mu)q + b} = \sum_{\lambda'=0}^{f-1} W_f(\lambda,\lambda') t_{\lambda'}$} \COMMENT{DFT matrix-multiply module} \ENDFOR \ENDFOR \ENDFOR \STATE{$v \Leftarrow v'$} \ENDFOR \end{algorithm} % We are now at the point where we can convert an algorithm formulated in terms of complex variables to one in terms of real variables by choosing a suitable storage scheme. We will adopt the FFTPACK storage convention. FFTPACK uses a scheme where individual FFTs are contiguous, not interleaved, and real-imaginary pairs are stored in neighboring locations. This has better locality than was possible for the radix-2 case. The interleaving of the intermediate FFTs results from the Kronecker product, $W_p \otimes I_q$. The FFTs can be made contiguous if we reorder the Kronecker product on the intermediate passes, % \begin{equation} W_p \otimes I_q \Rightarrow I_q \otimes W_p \end{equation} % This can be implemented by a simple change in indexing. On pass-$i$ we store element $v_{a q_i + b}$ in location $v_{b p_i+a}$. We compensate for this change by making the same transposition when reading the data. Note that this only affects the indices of the intermediate passes. On the zeroth iteration the transposition has no effect because $p_0 = 1$. Similarly there is no effect on the last iteration, which has $q_{n_f} = 1$. This is how the algorithm above looks after this index transformation, % \begin{algorithm} \FOR{$i = 1 \dots n_f$} \FOR{$\mu = 0 \dots p_{i-1} - 1$} \FOR{$b = 0 \dots q-1$} \FOR{$\lambda = 0 \dots f-1$} \STATE{$t_\lambda \Leftarrow \omega^{\mu\lambda'}_{p_{i}} v_{(\lambda'q + b)p_{i-1} + \mu}$} \ENDFOR \FOR{$\lambda = 0 \dots f-1$} \STATE{$v'_{b p + (\lambda p_{i-1} + \mu)} = \sum_{\lambda'=0}^{f-1} W_f(\lambda,\lambda') t_{\lambda'}$} \COMMENT{DFT matrix-multiply module} \ENDFOR \ENDFOR \ENDFOR \STATE{$v \Leftarrow v'$} \ENDFOR \end{algorithm} % We transpose the input terms by writing the index in the form $a q_{i-1} + b$, to take account of the pass-dependence of the scheme, % \begin{equation} v_{(\mu f + \lambda')q + b} = v_{\mu q_{i-1} + \lambda'q + b} \end{equation} % We used the identity $q_{i-1} = f q$ to split the index. Note that in this form $\lambda'q + b$ runs from 0 to $q_{i-1} - 1$ as $b$ runs from 0 to $q-1$ and $\lambda'$ runs from 0 to $f-1$. The transposition for the input terms then gives, % \begin{equation} v_{\mu q_{i-1} + \lambda'q + b} \Rightarrow v_{(\lambda'q + b) p_{i-1} + \mu} \end{equation} % In the FFTPACK scheme the intermediate output data have the same half-complex symmetry as the radix-2 example, namely, % \begin{equation} v^{(i)}_{b p + a} = v^{(i)*}_{b p + (p - a)} \end{equation} % and on the input data from the previous pass have the symmetry, % \begin{equation} v^{(i-1)}_{(\lambda' q + b) p_{i-1} + \mu} = v^{(i-1)*}_{(\lambda' q + b) p_{i-1} + (p_{i-1} - \mu)} \end{equation} % Using these symmetries we can halve the storage and computation requirements for each pass. Compared with the radix-2 algorithm we have more freedom because the computation does not have to be done in place. The storage scheme adopted by FFTPACK places elements sequentially with real and imaginary parts in neighboring locations. Imaginary parts which are known to be zero are not stored. Here are the full details of the scheme, % \begin{center} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|l|lll|} \hline Term & & Location & \\ \hline $g(b p_i)$ & real part & $b p_{i} $ & \\ & imag part & --- & \\ \hline $g(b p_i + a)$ & real part & $b p_{i} + 2a - 1 $& for $a = 1 \dots p_i/2 - 1$ \\ & imag part & $b p_{i} + 2a$ & \\ \hline $g(b p_{i} + p_{i}/2)$ & real part & $b p_i + p_{i} - 1$ & if $p_i$ is even\\ & imag part & --- & \\ \hline \end{tabular} \end{center} % The real element for $a=0$ is stored in location $bp$. The real parts for $a = 1 \dots p/2 - 1$ are stored in locations $bp + 2a -1$ and the imaginary parts are stored in locations $b p + 2 a$. When $p$ is even the term for $a = p/2$ is purely real and we store it in location $bp + p - 1$. The zero imaginary part is not stored. When we compute the basic iteration, % \begin{equation} v^{(i)}_{b p + (\lambda p_{i-1} + \mu)} = \sum_{\lambda'} W^{\lambda \lambda'}_f \omega^{\mu\lambda'}_{p_i} v^{(i-1)}_{(\lambda' q + b)p_{i-1} + \mu} \end{equation} % we eliminate the redundant conjugate terms with $a > p_{i}/2$ as we did in the radix-2 algorithm. Whenever we need to store a term with $a > p_{i}/2$ we consider instead the corresponding conjugate term with $a' = p - a$. Similarly when reading data we replace terms with $\mu > p_{i-1}/2$ with the corresponding conjugate term for $\mu' = p_{i-1} - \mu$. Since the input data on each stage has half-complex symmetry we only need to consider the range $\mu=0 \dots p_{i-1}/2$. We can consider the best ways to implement the basic iteration for each pass, $\mu = 0 \dots p_{i-1}/2$. On the first pass where $\mu=0$ we will be accessing elements which are the zeroth components of the independent transforms $W_{p_{i-1}} \otimes I_{q_{i-1}}$, and are purely real. % We can code the pass with $\mu=0$ as a special case for real input data, and conjugate-complex output. When $\mu=0$ the twiddle factors $\omega^{\mu\lambda'}_{p_i}$ are all unity, giving a further saving. We can obtain small-$N$ real-data DFT modules by removing the redundant operations from the complex modules. % For example the $N=3$ module was, % \begin{equation} \begin{array}{lll} t_1 = z_1 + z_2, & t_2 = z_0 - t_1/2, & t_3 = \sin(\pi/3) (z_1 - z_2), \end{array} \end{equation} \begin{equation} \begin{array}{lll} x_0 = z_0 + t_1, & x_1 = t_2 + i t_3, & x_2 = t_2 - i t_3. \end{array} \end{equation} % In the complex case all the operations were complex, for complex input data $z_0$, $z_1$, $z_2$. In the real case $z_0$, $z_1$ and $z_2$ are all real. Consequently $t_1$, $t_2$ and $t_3$ are also real, and the symmetry $x_1 = t_1 + i t_2 = x^*_2$ means that we do not have to compute $x_2$ once we have computed $x_1$. For subsequent passes $\mu = 1 \dots p_{i-1}/2 - 1$ the input data is complex and we have to compute full complex DFTs using the same modules as in the complex case. Note that the inputs are all of the form $v_{(\lambda q + b) p_{i-1} + \mu}$ with $\mu < p_{i-1}/2$ so we never need to use the symmetry to access the conjugate elements with $\mu > p_{i-1}/2$. If $p_{i-1}$ is even then we reach the halfway point $\mu=p_{i-1}/2$, which is another special case. The input data in this case is purely real because $\mu = p_{i-1} - \mu$ for $\mu = p_{i-1}/2$. We can code this as a special case, using real inputs and real-data DFT modules as we did for $\mu=0$. However, for $\mu = p_{i-1}/2$ the twiddle factors are not unity, % \begin{eqnarray} \omega^{\mu\lambda'}_{p_i} &=& \omega^{(p_{i-1}/2)\lambda'}_{p_i} \\ &=& \exp(-i\pi\lambda'/f_i) \end{eqnarray} % These twiddle factors introduce an additional phase which modifies the symmetry of the outputs. Instead of the conjugate-complex symmetry which applied for $\mu=0$ there is a shifted conjugate-complex symmetry, % \begin{equation} t_\lambda = t^*_{f-(\lambda+1)} \end{equation} % This is easily proved, % \begin{eqnarray} t_\lambda &=& \sum e^{-2\pi i \lambda\lambda'/f_i} e^{-i\pi \lambda'/f_i} r_{\lambda'} \\ t_{f - (\lambda + 1)} &=& \sum e^{-2\pi i (f-\lambda-1)\lambda'/f_i} e^{-i\pi \lambda'/f_i} r_{\lambda'} \\ &=& \sum e^{2\pi i \lambda\lambda'/f_i} e^{i\pi \lambda'/f_i} r_{\lambda'} \\ &=& t^*_\lambda \end{eqnarray} % The symmetry of the output means that we only need to compute half of the output terms, the remaining terms being conjugates or zero imaginary parts. For example, when $f=4$ the outputs are $(x_0 + i y_0, x_1 + i y_1, x_1 - i y_1, x_0 - i y_0)$. For $f=5$ the outputs are $(x_0 + i y_0, x_1 + i y_1, x_2, x_1 - i y_1, x_0 - i y_0)$. By combining the twiddle factors and DFT matrix we can make a combined module which applies both at the same time. By starting from the complex DFT modules and bringing in twiddle factors we can derive optimized modules. Here are the modules given by Temperton for $z = W \Omega x$ where $x$ is real and $z$ has the shifted conjugate-complex symmetry. The matrix of twiddle factors, $\Omega$, is given by, % \begin{equation} \Omega = \mathrm{diag}(1, e^{-i\pi/f}, e^{-2\pi i/f}, \dots, e^{-i\pi(f-1)/f}) \end{equation} % We write $z$ in terms of two real vectors $z = a + i b$. % For $N=2$, % \begin{equation} \begin{array}{ll} a_0 = x_0, & b_0 = - x_1. \end{array} \end{equation} % For $N=3$, % \begin{equation} \begin{array}{l} t_1 = x_1 - x_2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_0 = x_0 + t_1/2, & b_0 = x_0 - t_1, \end{array} \end{equation} \begin{equation} \begin{array}{l} a_1 = - \sin(\pi/3) (x_1 + x_2) \end{array} \end{equation} % For $N=4$, % \begin{equation} \begin{array}{ll} t_1 = (x_1 - x_3)/\sqrt{2}, & t_2 = (x_1 + x_3)/\sqrt{2}, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_0 = x_0 + t_1, & b_0 = -x_2 - t_2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_1 = x_0 - t_1, & b_1 = x_2 - t_2. \end{array} \end{equation} % For $N=5$, % \begin{equation} \begin{array}{ll} t_1 = x_1 - x_4, & t_2 = x_1 + x_4, \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_3 = x_2 - x_3, & t_4 = x_2 + x_3, \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_5 = t_1 - t_3, & t_6 = x_0 + t_5 / 4, \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_7 = (\sqrt{5}/4)(t_1 + t_3) & \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_0 = t_6 + t_7, & b_0 = -\sin(2\pi/10) t_2 - \sin(2\pi/5) t_4, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_1 = t_6 - t_7, & b_1 = -\sin(2\pi/5) t_2 + \sin(2\pi/10) t_4, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_2 = x_0 - t_5 & \end{array} \end{equation} % For $N=6$, % \begin{equation} \begin{array}{ll} t_1 = \sin(\pi/3)(x_5 - x_1), & t_2 = \sin(\pi/3) (x_2 + x_4), \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_3 = x_2 - x_4, & t_4 = x_1 + x_5, \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_5 = x_0 + t_3 / 2, & t_6 = -x_3 - t_4 / 2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_0 = t_5 - t_1, & b_0 = t_6 - t_2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_1 = x_0 - t_3, & b_1 = x_3 - t_4, \end{array} \end{equation} \begin{equation} \begin{array}{ll} a_2 = t_5 + t_1, & b_2 = t_6 + t_2 \end{array} \end{equation} \section{Computing the mixed-radix inverse for real data} % To compute the inverse of the mixed-radix FFT on real data we step through the algorithm in reverse and invert each operation. This gives the following algorithm using FFTPACK indexing, % \begin{algorithm} \FOR{$i = n_f \dots 1$} \FOR{$\mu = 0 \dots p_{i-1} - 1$} \FOR{$b = 0 \dots q-1$} \FOR{$\lambda = 0 \dots f-1$} \STATE{$t_{\lambda'} = \sum_{\lambda'=0}^{f-1} W_f(\lambda,\lambda') v_{b p + (\lambda p_{i-1} + \mu)}$} \COMMENT{DFT matrix-multiply module} \ENDFOR \FOR{$\lambda = 0 \dots f-1$} \STATE{$v'_{(\lambda'q + b)p_{i-1} + \mu} \Leftarrow \omega^{-\mu\lambda'}_{p_{i}} t_\lambda$} \ENDFOR \ENDFOR \ENDFOR \STATE{$v \Leftarrow v'$} \ENDFOR \end{algorithm} % When $\mu=0$ we are applying an inverse DFT to half-complex data, giving a real result. The twiddle factors are all unity. We can code this as a special case, just as we did for the forward routine. We start with complex module and eliminate the redundant terms. In this case it is the final result which has the zero imaginary part, and we eliminate redundant terms by using the half-complex symmetry of the input data. When $\mu=1 \dots p_{i-1}/2 - 1$ we have full complex transforms on complex data, so no simplification is possible. When $\mu = p_{i-1}/2$ (which occurs only when $p_{i-1}$ is even) we have a combination of twiddle factors and DFTs on data with the shifted half-complex symmetry which give a real result. We implement this as a special module, essentially by inverting the system of equations given for the forward case. We use the modules given by Temperton, appropriately modified for our version of the algorithm. He uses a slightly different convention which differs by factors of two for some terms (consult his paper for details~\cite{temperton83real}). For $N=2$, % \begin{equation} \begin{array}{ll} x_0 = 2 a_0, & x_1 = - 2 b_0 . \end{array} \end{equation} % For $N=3$, % \begin{equation} \begin{array}{ll} t_1 = a_0 - a_1, & t_2 = \sqrt{3} b_1, \\ \end{array} \end{equation} \begin{equation} \begin{array}{lll} x_0 = 2 a_0 + a_1, & x_1 = t_1 - t_2, & x_2 = - t_1 - t_2 \end{array} \end{equation} % For $N=4$, \begin{equation} \begin{array}{ll} t_1 = \sqrt{2} (b_0 + b_1), & t_2 = \sqrt{2} (a_0 - a_1), \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_0 = 2(a_0 + a_1), & x_1 = t_2 - t_1 , \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_2 = 2(b_1 - b_0), & x_3 = -(t_2 + t_1). \end{array} \end{equation} % For $N=5$, % \begin{equation} \begin{array}{ll} t_1 = 2 (a_0 + a_1), & t_2 = t_1 / 4 - a_2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_3 = (\sqrt{5}/2) (a_0 - a_1), \end{array} \end{equation} \begin{equation} \begin{array}{l} t_4 = 2(\sin(2\pi/10) b_0 + \sin(2\pi/5) b_1), \end{array} \end{equation} \begin{equation} \begin{array}{l} t_5 = 2(\sin(2\pi/10) b_0 - \sin(2\pi/5) b_1), \end{array} \end{equation} \begin{equation} \begin{array}{ll} t_6 = t_3 + t_2, & t_7 = t_3 - t_2, \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_0 = t_1 + a_2, & x_1 = t_6 - t_4 , \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_2 = t_7 - t_5, & x_3 = - t_7 - t_5, \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_4 = -t_6 - t_4. \end{array} \end{equation} \section{Conclusions} % We have described the basic algorithms for one-dimensional radix-2 and mixed-radix FFTs. It would be nice to have a pedagogical explanation of the split-radix FFT algorithm, which is faster than the simple radix-2 algorithm we used. We could also have a whole chapter on multidimensional FFTs. % %\section{Multidimensional FFTs} %\section{Testing FFTs, Numerical Analysis} %\nocite{*} \bibliographystyle{unsrt} \bibliography{fftalgorithms} \end{document} gsl-1.16/doc/specfunc-synchrotron.texi0000664000252300025230000000162612171574312015013 00000000000000@cindex synchrotron functions The functions described in this section are declared in the header file @file{gsl_sf_synchrotron.h}. @deftypefun double gsl_sf_synchrotron_1 (double @var{x}) @deftypefunx int gsl_sf_synchrotron_1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the first synchrotron function @c{$x \int_x^\infty dt K_{5/3}(t)$} @math{x \int_x^\infty dt K_@{5/3@}(t)} for @c{$x \ge 0$} @math{x >= 0}. @comment Domain: x >= 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_synchrotron_2 (double @var{x}) @deftypefunx int gsl_sf_synchrotron_2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the second synchrotron function @c{$x K_{2/3}(x)$} @math{x K_@{2/3@}(x)} for @c{$x \ge 0$} @math{x >= 0}. @comment Domain: x >= 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/gsl-histogram.10000664000252300025230000000270012171574312012560 00000000000000.\" Man page contributed by Dirk Eddelbuettel .\" and released under the GNU General Public License .TH GSL-HISTOGRAM 1 "" GNU .SH NAME gsl-histogram - compute histogram of data on stdin .SH SYNOPSYS .B gsl-histogram xmin xmax [n] .SH DESCRIPTION .B gsl-histogram is a demonstration program for the GNU Scientific Library. It takes three arguments, specifying the upper and lower bounds of the histogram and the number of bins. It then reads numbers from `stdin', one line at a time, and adds them to the histogram. When there is no more data to read it prints out the accumulated histogram using gsl_histogram_fprintf. If n is unspecified then bins of integer width are used. .SH EXAMPLE Here is an example. We generate 10000 random samples from a Cauchy distribution with a width of 30 and histogram them over the range -100 to 100, using 200 bins. gsl-randist 0 10000 cauchy 30 | gsl-histogram -100 100 200 > histogram.dat A plot of the resulting histogram will show the familiar shape of the Cauchy distribution with fluctuations caused by the finite sample size. awk '{print $1, $3 ; print $2, $3}' histogram.dat | graph -T X .SH SEE ALSO .BR gsl(3) , .BR gsl-randist(1) . .SH AUTHOR .B gsl-histogram was written by Brian Gough. Copyright 1996-2000; for copying conditions see the GNU General Public Licence. This manual page was added by the Dirk Eddelbuettel , the Debian GNU/Linux maintainer for .BR GSL . gsl-1.16/doc/rand-gumbel1.tex0000664000252300025230000004740112171574312012725 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gumbel1.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-gumbel1.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 1051 631 M 0 -31 V 830 31 R 0 -31 V 830 31 R 0 -31 V 830 31 R 0 -31 V 829 31 R 0 -31 V 830 31 R 0 -31 V 830 31 R 0 -31 V 830 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 670 M 19 7 V 20 7 V 19 8 V 20 8 V 19 10 V 20 11 V 19 12 V 19 13 V 20 15 V 19 16 V 20 17 V 19 19 V 20 20 V 19 22 V 19 23 V 20 25 V 19 27 V 20 29 V 19 30 V 20 33 V 19 34 V 19 36 V 20 37 V 19 40 V 20 41 V 19 44 V 20 44 V 19 47 V 19 48 V 20 50 V 19 51 V 20 53 V 19 54 V 20 56 V 19 56 V 19 58 V 20 59 V 19 59 V 20 61 V 19 60 V 20 62 V 19 62 V 19 62 V 20 62 V 19 63 V 20 62 V 19 62 V 20 62 V 19 61 V 19 61 V 20 60 V 19 59 V 20 59 V 19 57 V 20 56 V 19 56 V 19 53 V 20 53 V 19 51 V 20 49 V 19 48 V 20 46 V 19 44 V 19 43 V 20 41 V 19 38 V 20 37 V 19 35 V 20 33 V 19 31 V 19 29 V 20 27 V 19 25 V 20 23 V 19 21 V 20 19 V 19 17 V 19 15 V 20 13 V 19 11 V 20 9 V 19 7 V 20 5 V 19 4 V 19 1 V 20 0 V 19 -2 V 20 -3 V 19 -5 V 20 -7 V 19 -8 V 19 -10 V 20 -11 V 19 -13 V 20 -14 V 19 -15 V 20 -17 V 19 -17 V 19 -19 V 20 -20 V 19 -21 V 20 -22 V 3052 3578 L 20 -24 V 19 -25 V 19 -25 V 20 -26 V 19 -27 V 20 -27 V 19 -28 V 20 -29 V 19 -29 V 19 -29 V 20 -31 V 19 -30 V 20 -31 V 19 -31 V 20 -31 V 19 -32 V 19 -32 V 20 -32 V 19 -32 V 20 -32 V 19 -33 V 20 -32 V 19 -33 V 19 -32 V 20 -33 V 19 -32 V 20 -33 V 19 -32 V 20 -32 V 19 -32 V 19 -32 V 20 -32 V 19 -32 V 20 -31 V 19 -32 V 20 -31 V 19 -31 V 19 -30 V 20 -31 V 19 -30 V 20 -29 V 19 -30 V 20 -29 V 19 -29 V 19 -29 V 20 -28 V 19 -28 V 20 -28 V 19 -27 V 19 -27 V 20 -27 V 19 -26 V 20 -26 V 19 -26 V 20 -25 V 19 -25 V 19 -25 V 20 -24 V 19 -24 V 20 -23 V 19 -24 V 20 -23 V 19 -22 V 19 -22 V 20 -22 V 19 -21 V 20 -22 V 19 -20 V 20 -21 V 19 -20 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -18 V 20 -18 V 19 -18 V 19 -18 V 20 -17 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -16 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -14 V 20 -14 V 19 -13 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 5092 1093 L 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}Type 1, $a=1,b=1$}}% \put(3955,5244){\cjust{\strut{}Type 1 Gumbel Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6030,400){\cjust{\strut{}4}}% \put(5200,400){\cjust{\strut{}3}}% \put(4370,400){\cjust{\strut{}2}}% \put(3541,400){\cjust{\strut{}1}}% \put(2711,400){\cjust{\strut{}0}}% \put(1881,400){\cjust{\strut{}-1}}% \put(1051,400){\cjust{\strut{}-2}}% \put(900,4944){\rjust{\strut{} 0.5}}% \put(900,4081){\rjust{\strut{} 0.4}}% \put(900,3219){\rjust{\strut{} 0.3}}% \put(900,2356){\rjust{\strut{} 0.2}}% \put(900,1494){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/ChangeLog0000664000252300025230000000427012171574312011474 000000000000002012-07-12 Rhys Ulerich * randplots.gnp: Use "set view map" to fix orientation of Bivariate Gaussian as suggested by Jorge Barros de Abreu 2009-07-10 Brian Gough * gsl-ref.texi: use the dircategory "Software libraries" as used in the Free Software Directory 2006-02-09 Brian Gough * Makefile.am: disable pdf, as it would require maintaining a separate set of figure files. Mon Apr 7 12:54:30 MDT 2003 G. Jungman * specfunc-gamma.texi: added entry for gsl_sf_gamma_inc_(), gsl_sf_gamma_inc() 2000-10-26 Mark Galassi * gsl-ref.texi: small changes to update the author list. Mon Oct 23 21:49:25 2000 Brian Gough * usage.texi: added info on portability functions Sat Jul 15 23:52:59 2000 Brian Gough * Makefile.am (EXTRA_DIST): added gsl-design.texi to the distributed files Thu May 18 12:11:24 2000 Brian Gough * gsl-ref.texi (Preliminaries): changed the phrase "collection of routines for numerical analysis" to "... numerical computing", as on the web page. Wed Apr 26 17:46:48 2000 Brian Gough * math.texi: added a chapter on the elementary functions and constants in gsl_math.h Tue Apr 4 21:45:27 2000 Brian Gough * upgraded texinfo.tex to texinfo-4.0 2000-04-01 Mark Galassi * roots.texi (Providing the function to solve): fixed a typo, THANKS Dave Morrison. 1999-12-03 Mark Galassi * gsl-ref.texi, gsl-design.texi: updated my email address. * gsl-design.texi: minor changes. Tue Feb 16 11:36:03 1999 Brian Gough * statistics.texi: removed the multiple descriptions of double, int versions of the functions. Now we just describe the double versions and note the existence of the corresponding versions for other types. * ChangeLog: added a changelog file for the documentation, although it is not required by the GNU Coding standards. I use the Changelogs to keep track of pending changes that I need to commit to repository. gsl-1.16/doc/algorithmic.sty0000664000252300025230000001267412171574312012774 00000000000000% ALGORITHMIC STYLE -- Released 8 APRIL 1996 % for LaTeX version 2e % Copyright -- 1994 Peter Williams % E-mail PeterWilliams@dsto.defence.gov.au \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{algorithmic} \typeout{Document Style `algorithmic' - environment} % \RequirePackage{ifthen} \RequirePackage{calc} \newboolean{ALC@noend} \setboolean{ALC@noend}{false} \newcounter{ALC@line} \newcounter{ALC@rem} \newlength{\ALC@tlm} % \DeclareOption{noend}{\setboolean{ALC@noend}{true}} % \ProcessOptions % % ALGORITHMIC \newcommand{\algorithmicrequire}{\textbf{Require:}} \newcommand{\algorithmicensure}{\textbf{Ensure:}} \newcommand{\algorithmiccomment}[1]{\{#1\}} \newcommand{\algorithmicend}{\textbf{end}} \newcommand{\algorithmicif}{\textbf{if}} \newcommand{\algorithmicthen}{\textbf{then}} \newcommand{\algorithmicelse}{\textbf{else}} \newcommand{\algorithmicelsif}{\algorithmicelse\ \algorithmicif} \newcommand{\algorithmicendif}{\algorithmicend\ \algorithmicif} \newcommand{\algorithmicfor}{\textbf{for}} \newcommand{\algorithmicforall}{\textbf{for all}} \newcommand{\algorithmicdo}{\textbf{do}} \newcommand{\algorithmicendfor}{\algorithmicend\ \algorithmicfor} \newcommand{\algorithmicwhile}{\textbf{while}} \newcommand{\algorithmicendwhile}{\algorithmicend\ \algorithmicwhile} \newcommand{\algorithmicloop}{\textbf{loop}} \newcommand{\algorithmicendloop}{\algorithmicend\ \algorithmicloop} \newcommand{\algorithmicrepeat}{\textbf{repeat}} \newcommand{\algorithmicuntil}{\textbf{until}} \def\ALC@item[#1]{% \if@noparitem \@donoparitem \else \if@inlabel \indent \par \fi \ifhmode \unskip\unskip \par \fi \if@newlist \if@nobreak \@nbitem \else \addpenalty\@beginparpenalty \addvspace\@topsep \addvspace{-\parskip}\fi \else \addpenalty\@itempenalty \addvspace\itemsep \fi \global\@inlabeltrue \fi \everypar{\global\@minipagefalse\global\@newlistfalse \if@inlabel\global\@inlabelfalse \hskip -\parindent \box\@labels \penalty\z@ \fi \everypar{}}\global\@nobreakfalse \if@noitemarg \@noitemargfalse \if@nmbrlist \refstepcounter{\@listctr}\fi \fi \sbox\@tempboxa{\makelabel{#1}}% \global\setbox\@labels \hbox{\unhbox\@labels \hskip \itemindent \hskip -\labelwidth \hskip -\ALC@tlm \ifdim \wd\@tempboxa >\labelwidth \box\@tempboxa \else \hbox to\labelwidth {\unhbox\@tempboxa}\fi \hskip \ALC@tlm}\ignorespaces} % \newenvironment{algorithmic}[1][0]{ \let\@item\ALC@item \newcommand{\ALC@lno}{% \ifthenelse{\equal{\arabic{ALC@rem}}{0}} {{\footnotesize \arabic{ALC@line}:}}{}% } \let\@listii\@listi \let\@listiii\@listi \let\@listiv\@listi \let\@listv\@listi \let\@listvi\@listi \let\@listvii\@listi \newenvironment{ALC@g}{ \begin{list}{\ALC@lno}{ \itemsep\z@ \itemindent\z@ \listparindent\z@ \rightmargin\z@ \topsep\z@ \partopsep\z@ \parskip\z@\parsep\z@ \leftmargin 1em \addtolength{\ALC@tlm}{\leftmargin} } } {\end{list}} \newcommand{\ALC@it}{\addtocounter{ALC@line}{1}\addtocounter{ALC@rem}{1}\ifthenelse{\equal{\arabic{ALC@rem}}{#1}}{\setcounter{ALC@rem}{0}}{}\item} \newcommand{\ALC@com}[1]{\ifthenelse{\equal{##1}{default}}% {}{\ \algorithmiccomment{##1}}} \newcommand{\REQUIRE}{\item[\algorithmicrequire]} \newcommand{\ENSURE}{\item[\algorithmicensure]} \newcommand{\STATE}{\ALC@it} \newcommand{\COMMENT}[1]{\algorithmiccomment{##1}} \newenvironment{ALC@if}{\begin{ALC@g}}{\end{ALC@g}} \newenvironment{ALC@for}{\begin{ALC@g}}{\end{ALC@g}} \newenvironment{ALC@whl}{\begin{ALC@g}}{\end{ALC@g}} \newenvironment{ALC@loop}{\begin{ALC@g}}{\end{ALC@g}} \newenvironment{ALC@rpt}{\begin{ALC@g}}{\end{ALC@g}} \renewcommand{\\}{\@centercr} \newcommand{\IF}[2][default]{\ALC@it\algorithmicif\ ##2\ \algorithmicthen% \ALC@com{##1}\begin{ALC@if}} \newcommand{\ELSE}[1][default]{\end{ALC@if}\ALC@it\algorithmicelse% \ALC@com{##1}\begin{ALC@if}} \newcommand{\ELSIF}[2][default]% {\end{ALC@if}\ALC@it\algorithmicelsif\ ##2\ \algorithmicthen% \ALC@com{##1}\begin{ALC@if}} \newcommand{\FOR}[2][default]{\ALC@it\algorithmicfor\ ##2\ \algorithmicdo% \ALC@com{##1}\begin{ALC@for}} \newcommand{\FORALL}[2][default]{\ALC@it\algorithmicforall\ ##2\ % \algorithmicdo% \ALC@com{##1}\begin{ALC@for}} \newcommand{\WHILE}[2][default]{\ALC@it\algorithmicwhile\ ##2\ % \algorithmicdo% \ALC@com{##1}\begin{ALC@whl}} \newcommand{\LOOP}[1][default]{\ALC@it\algorithmicloop% \ALC@com{##1}\begin{ALC@loop}} \newcommand{\REPEAT}[1][default]{\ALC@it\algorithmicrepeat% \ALC@com{##1}\begin{ALC@rpt}} \newcommand{\UNTIL}[1]{\end{ALC@rpt}\ALC@it\algorithmicuntil\ ##1} \ifthenelse{\boolean{ALC@noend}}{ \newcommand{\ENDIF}{\end{ALC@if}} \newcommand{\ENDFOR}{\end{ALC@for}} \newcommand{\ENDWHILE}{\end{ALC@whl}} \newcommand{\ENDLOOP}{\end{ALC@loop}} }{ \newcommand{\ENDIF}{\end{ALC@if}\ALC@it\algorithmicendif} \newcommand{\ENDFOR}{\end{ALC@for}\ALC@it\algorithmicendfor} \newcommand{\ENDWHILE}{\end{ALC@whl}\ALC@it\algorithmicendwhile} \newcommand{\ENDLOOP}{\end{ALC@loop}\ALC@it\algorithmicendloop} } \renewcommand{\@toodeep}{} \begin{list}{\ALC@lno}{\setcounter{ALC@line}{0}\setcounter{ALC@rem}{0}% \itemsep\z@ \itemindent\z@ \listparindent\z@% \partopsep\z@ \parskip\z@ \parsep\z@% \labelsep 0.5em \topsep 0.2em% \ifthenelse{\equal{#1}{0}} {\labelwidth 0.5em } {\labelwidth 1.2em } \leftmargin\labelwidth \addtolength{\leftmargin}{\labelsep} \ALC@tlm\labelsep } } {\end{list}} gsl-1.16/doc/rand-levyskew.tex0000664000252300025230000004773412171574312013253 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-levyskew.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-levyskew.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1171 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1171 631 M 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 568 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 569 31 R 0 -31 V 1171 4944 M 0 -4313 V 5689 0 V 0 4313 V -5689 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1171 631 M 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 20 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 20 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 0 V 19 1 V 19 0 V 19 0 V 19 1 V 19 0 V 19 1 V 19 1 V 19 2 V 19 2 V 19 3 V 19 3 V 19 4 V 19 5 V 19 7 V 19 8 V 19 10 V 19 11 V 19 14 V 19 17 V 19 19 V 19 23 V 19 25 V 19 30 V 19 34 V 20 38 V 19 43 V 19 48 V 19 52 V 19 58 V 19 63 V 19 68 V 19 73 V 19 78 V 3131 1457 L 19 87 V 19 93 V 19 96 V 19 100 V 19 103 V 19 106 V 19 108 V 19 110 V 19 111 V 19 111 V 19 111 V 19 110 V 19 109 V 19 107 V 19 105 V 19 101 V 19 98 V 19 95 V 19 90 V 19 85 V 19 80 V 19 75 V 19 69 V 19 64 V 19 58 V 19 52 V 19 47 V 20 40 V 19 35 V 19 28 V 19 23 V 19 18 V 19 12 V 19 7 V 19 2 V 19 -2 V 19 -7 V 19 -12 V 19 -15 V 19 -19 V 19 -23 V 19 -26 V 19 -28 V 19 -32 V 19 -34 V 19 -36 V 19 -38 V 19 -40 V 19 -41 V 19 -43 V 19 -44 V 19 -45 V 19 -46 V 19 -46 V 19 -47 V 19 -47 V 19 -47 V 19 -47 V 19 -47 V 19 -47 V 19 -47 V 19 -47 V 19 -46 V 19 -46 V 19 -45 V 20 -44 V 19 -44 V 19 -43 V 19 -43 V 19 -41 V 19 -41 V 19 -41 V 19 -39 V 19 -38 V 19 -38 V 19 -37 V 19 -36 V 19 -35 V 19 -35 V 19 -33 V 19 -33 V 19 -32 V 19 -31 V 19 -30 V 19 -30 V 19 -29 V 19 -28 V 19 -27 V 19 -26 V 19 -26 V 19 -25 V 19 -25 V 19 -24 V 19 -23 V 19 -22 V 19 -22 V 19 -22 V 19 -21 V 19 -20 V 19 -20 V 19 -19 V 19 -19 V 20 -18 V 19 -18 V 5129 1818 L 19 -17 V 19 -16 V 19 -16 V 19 -16 V 19 -15 V 19 -15 V 19 -15 V 19 -14 V 19 -14 V 19 -14 V 19 -13 V 19 -14 V 19 -12 V 19 -13 V 19 -12 V 19 -13 V 19 -11 V 19 -12 V 19 -12 V 19 -11 V 19 -11 V 19 -11 V 19 -11 V 19 -10 V 19 -11 V 19 -10 V 19 -11 V 19 -10 V 19 -10 V 19 -9 V 19 -10 V 19 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -10 V 19 -9 V 19 -9 V 19 -9 V 19 -9 V 19 -9 V 19 -9 V 19 -8 V 19 -9 V 19 -9 V 19 -8 V 19 -9 V 19 -8 V 19 -9 V 19 -8 V 19 -9 V 19 -8 V 19 -8 V 19 -8 V 19 -9 V 19 -8 V 19 -8 V 19 -8 V 19 -8 V 19 -8 V 19 -8 V 19 -7 V 19 -8 V 19 -8 V 19 -8 V 19 -7 V 19 -8 V 19 -7 V 19 -8 V 19 -7 V 19 -7 V 20 -8 V 19 -7 V 19 -7 V 19 -7 V 19 -7 V 19 -7 V 19 -7 V 19 -6 V 19 -7 V 19 -7 V 19 -6 V 19 -7 V 19 -6 V 19 -6 V 19 -6 V 19 -6 V 19 -6 V 19 -6 V 19 -6 V stroke 0.500 UL LTb 1171 4944 M 0 -4313 V 5689 0 V 0 4313 V -5689 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$c=1, \alpha=1.0, \beta=1.0$}}% \put(4015,5244){\cjust{\strut{}Levy Skew Distribution}}% \put(4015,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6291,400){\cjust{\strut{}4}}% \put(5722,400){\cjust{\strut{}3}}% \put(5153,400){\cjust{\strut{}2}}% \put(4584,400){\cjust{\strut{}1}}% \put(4015,400){\cjust{\strut{}0}}% \put(3447,400){\cjust{\strut{}-1}}% \put(2878,400){\cjust{\strut{}-2}}% \put(2309,400){\cjust{\strut{}-3}}% \put(1740,400){\cjust{\strut{}-4}}% \put(1171,400){\cjust{\strut{}-5}}% \put(1020,4944){\rjust{\strut{} 0.35}}% \put(1020,4328){\rjust{\strut{} 0.3}}% \put(1020,3712){\rjust{\strut{} 0.25}}% \put(1020,3096){\rjust{\strut{} 0.2}}% \put(1020,2479){\rjust{\strut{} 0.15}}% \put(1020,1863){\rjust{\strut{} 0.1}}% \put(1020,1247){\rjust{\strut{} 0.05}}% \put(1020,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/complex.texi0000664000252300025230000004434212171574312012270 00000000000000@cindex complex numbers The functions described in this chapter provide support for complex numbers. The algorithms take care to avoid unnecessary intermediate underflows and overflows, allowing the functions to be evaluated over as much of the complex plane as possible. @comment FIXME: this still needs to be @comment done for the csc,sec,cot,csch,sech,coth functions For multiple-valued functions the branch cuts have been chosen to follow the conventions of Abramowitz and Stegun in the @cite{Handbook of Mathematical Functions}. The functions return principal values which are the same as those in GNU Calc, which in turn are the same as those in @cite{Common Lisp, The Language (Second Edition)}@footnote{Note that the first edition uses different definitions.} and the HP-28/48 series of calculators. The complex types are defined in the header file @file{gsl_complex.h}, while the corresponding complex functions and arithmetic operations are defined in @file{gsl_complex_math.h}. @menu * Representation of complex numbers:: * Properties of complex numbers:: * Complex arithmetic operators:: * Elementary Complex Functions:: * Complex Trigonometric Functions:: * Inverse Complex Trigonometric Functions:: * Complex Hyperbolic Functions:: * Inverse Complex Hyperbolic Functions:: * Complex Number References and Further Reading:: @end menu @node Representation of complex numbers @section Representation of complex numbers @cindex representations of complex numbers @cindex polar form of complex numbers @tindex gsl_complex Complex numbers are represented using the type @code{gsl_complex}. The internal representation of this type may vary across platforms and should not be accessed directly. The functions and macros described below allow complex numbers to be manipulated in a portable way. For reference, the default form of the @code{gsl_complex} type is given by the following struct, @example typedef struct @{ double dat[2]; @} gsl_complex; @end example @noindent The real and imaginary part are stored in contiguous elements of a two element array. This eliminates any padding between the real and imaginary parts, @code{dat[0]} and @code{dat[1]}, allowing the struct to be mapped correctly onto packed complex arrays. @deftypefun gsl_complex gsl_complex_rect (double @var{x}, double @var{y}) This function uses the rectangular Cartesian components (@var{x},@var{y}) to return the complex number @math{z = x + i y}. @inlinefn{} @end deftypefun @deftypefun gsl_complex gsl_complex_polar (double @var{r}, double @var{theta}) This function returns the complex number @math{z = r \exp(i \theta) = r (\cos(\theta) + i \sin(\theta))} from the polar representation (@var{r},@var{theta}). @end deftypefun @defmac GSL_REAL (@var{z}) @defmacx GSL_IMAG (@var{z}) These macros return the real and imaginary parts of the complex number @var{z}. @end defmac @defmac GSL_SET_COMPLEX (@var{zp}, @var{x}, @var{y}) This macro uses the Cartesian components (@var{x},@var{y}) to set the real and imaginary parts of the complex number pointed to by @var{zp}. For example, @example GSL_SET_COMPLEX(&z, 3, 4) @end example @noindent sets @var{z} to be @math{3 + 4i}. @end defmac @defmac GSL_SET_REAL (@var{zp},@var{x}) @defmacx GSL_SET_IMAG (@var{zp},@var{y}) These macros allow the real and imaginary parts of the complex number pointed to by @var{zp} to be set independently. @end defmac @node Properties of complex numbers @section Properties of complex numbers @deftypefun double gsl_complex_arg (gsl_complex @var{z}) @cindex argument of complex number This function returns the argument of the complex number @var{z}, @math{\arg(z)}, where @c{$-\pi < \arg(z) \leq \pi$} @math{-\pi < \arg(z) <= \pi}. @end deftypefun @deftypefun double gsl_complex_abs (gsl_complex @var{z}) @cindex magnitude of complex number This function returns the magnitude of the complex number @var{z}, @math{|z|}. @end deftypefun @deftypefun double gsl_complex_abs2 (gsl_complex @var{z}) This function returns the squared magnitude of the complex number @var{z}, @math{|z|^2}. @end deftypefun @deftypefun double gsl_complex_logabs (gsl_complex @var{z}) This function returns the natural logarithm of the magnitude of the complex number @var{z}, @math{\log|z|}. It allows an accurate evaluation of @math{\log|z|} when @math{|z|} is close to one. The direct evaluation of @code{log(gsl_complex_abs(z))} would lead to a loss of precision in this case. @end deftypefun @node Complex arithmetic operators @section Complex arithmetic operators @cindex complex arithmetic @deftypefun gsl_complex gsl_complex_add (gsl_complex @var{a}, gsl_complex @var{b}) This function returns the sum of the complex numbers @var{a} and @var{b}, @math{z=a+b}. @end deftypefun @deftypefun gsl_complex gsl_complex_sub (gsl_complex @var{a}, gsl_complex @var{b}) This function returns the difference of the complex numbers @var{a} and @var{b}, @math{z=a-b}. @end deftypefun @deftypefun gsl_complex gsl_complex_mul (gsl_complex @var{a}, gsl_complex @var{b}) This function returns the product of the complex numbers @var{a} and @var{b}, @math{z=ab}. @end deftypefun @deftypefun gsl_complex gsl_complex_div (gsl_complex @var{a}, gsl_complex @var{b}) This function returns the quotient of the complex numbers @var{a} and @var{b}, @math{z=a/b}. @end deftypefun @deftypefun gsl_complex gsl_complex_add_real (gsl_complex @var{a}, double @var{x}) This function returns the sum of the complex number @var{a} and the real number @var{x}, @math{z=a+x}. @end deftypefun @deftypefun gsl_complex gsl_complex_sub_real (gsl_complex @var{a}, double @var{x}) This function returns the difference of the complex number @var{a} and the real number @var{x}, @math{z=a-x}. @end deftypefun @deftypefun gsl_complex gsl_complex_mul_real (gsl_complex @var{a}, double @var{x}) This function returns the product of the complex number @var{a} and the real number @var{x}, @math{z=ax}. @end deftypefun @deftypefun gsl_complex gsl_complex_div_real (gsl_complex @var{a}, double @var{x}) This function returns the quotient of the complex number @var{a} and the real number @var{x}, @math{z=a/x}. @end deftypefun @deftypefun gsl_complex gsl_complex_add_imag (gsl_complex @var{a}, double @var{y}) This function returns the sum of the complex number @var{a} and the imaginary number @math{i}@var{y}, @math{z=a+iy}. @end deftypefun @deftypefun gsl_complex gsl_complex_sub_imag (gsl_complex @var{a}, double @var{y}) This function returns the difference of the complex number @var{a} and the imaginary number @math{i}@var{y}, @math{z=a-iy}. @end deftypefun @deftypefun gsl_complex gsl_complex_mul_imag (gsl_complex @var{a}, double @var{y}) This function returns the product of the complex number @var{a} and the imaginary number @math{i}@var{y}, @math{z=a*(iy)}. @end deftypefun @deftypefun gsl_complex gsl_complex_div_imag (gsl_complex @var{a}, double @var{y}) This function returns the quotient of the complex number @var{a} and the imaginary number @math{i}@var{y}, @math{z=a/(iy)}. @end deftypefun @deftypefun gsl_complex gsl_complex_conjugate (gsl_complex @var{z}) @cindex conjugate of complex number This function returns the complex conjugate of the complex number @var{z}, @math{z^* = x - i y}. @end deftypefun @deftypefun gsl_complex gsl_complex_inverse (gsl_complex @var{z}) This function returns the inverse, or reciprocal, of the complex number @var{z}, @math{1/z = (x - i y)/(x^2 + y^2)}. @end deftypefun @deftypefun gsl_complex gsl_complex_negative (gsl_complex @var{z}) This function returns the negative of the complex number @var{z}, @math{-z = (-x) + i(-y)}. @end deftypefun @node Elementary Complex Functions @section Elementary Complex Functions @deftypefun gsl_complex gsl_complex_sqrt (gsl_complex @var{z}) @cindex square root of complex number This function returns the square root of the complex number @var{z}, @math{\sqrt z}. The branch cut is the negative real axis. The result always lies in the right half of the complex plane. @end deftypefun @deftypefun gsl_complex gsl_complex_sqrt_real (double @var{x}) This function returns the complex square root of the real number @var{x}, where @var{x} may be negative. @end deftypefun @deftypefun gsl_complex gsl_complex_pow (gsl_complex @var{z}, gsl_complex @var{a}) @cindex power of complex number @cindex exponentiation of complex number The function returns the complex number @var{z} raised to the complex power @var{a}, @math{z^a}. This is computed as @math{\exp(\log(z)*a)} using complex logarithms and complex exponentials. @end deftypefun @deftypefun gsl_complex gsl_complex_pow_real (gsl_complex @var{z}, double @var{x}) This function returns the complex number @var{z} raised to the real power @var{x}, @math{z^x}. @end deftypefun @deftypefun gsl_complex gsl_complex_exp (gsl_complex @var{z}) This function returns the complex exponential of the complex number @var{z}, @math{\exp(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_log (gsl_complex @var{z}) @cindex logarithm of complex number This function returns the complex natural logarithm (base @math{e}) of the complex number @var{z}, @math{\log(z)}. The branch cut is the negative real axis. @end deftypefun @deftypefun gsl_complex gsl_complex_log10 (gsl_complex @var{z}) This function returns the complex base-10 logarithm of the complex number @var{z}, @c{$\log_{10}(z)$} @math{\log_10 (z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_log_b (gsl_complex @var{z}, gsl_complex @var{b}) This function returns the complex base-@var{b} logarithm of the complex number @var{z}, @math{\log_b(z)}. This quantity is computed as the ratio @math{\log(z)/\log(b)}. @end deftypefun @node Complex Trigonometric Functions @section Complex Trigonometric Functions @cindex trigonometric functions of complex numbers @deftypefun gsl_complex gsl_complex_sin (gsl_complex @var{z}) @cindex sin, of complex number This function returns the complex sine of the complex number @var{z}, @math{\sin(z) = (\exp(iz) - \exp(-iz))/(2i)}. @end deftypefun @deftypefun gsl_complex gsl_complex_cos (gsl_complex @var{z}) @cindex cosine of complex number This function returns the complex cosine of the complex number @var{z}, @math{\cos(z) = (\exp(iz) + \exp(-iz))/2}. @end deftypefun @deftypefun gsl_complex gsl_complex_tan (gsl_complex @var{z}) @cindex tangent of complex number This function returns the complex tangent of the complex number @var{z}, @math{\tan(z) = \sin(z)/\cos(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_sec (gsl_complex @var{z}) This function returns the complex secant of the complex number @var{z}, @math{\sec(z) = 1/\cos(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_csc (gsl_complex @var{z}) This function returns the complex cosecant of the complex number @var{z}, @math{\csc(z) = 1/\sin(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_cot (gsl_complex @var{z}) This function returns the complex cotangent of the complex number @var{z}, @math{\cot(z) = 1/\tan(z)}. @end deftypefun @node Inverse Complex Trigonometric Functions @section Inverse Complex Trigonometric Functions @cindex inverse complex trigonometric functions @deftypefun gsl_complex gsl_complex_arcsin (gsl_complex @var{z}) This function returns the complex arcsine of the complex number @var{z}, @math{\arcsin(z)}. The branch cuts are on the real axis, less than @math{-1} and greater than @math{1}. @end deftypefun @deftypefun gsl_complex gsl_complex_arcsin_real (double @var{z}) This function returns the complex arcsine of the real number @var{z}, @math{\arcsin(z)}. For @math{z} between @math{-1} and @math{1}, the function returns a real value in the range @math{[-\pi/2,\pi/2]}. For @math{z} less than @math{-1} the result has a real part of @math{-\pi/2} and a positive imaginary part. For @math{z} greater than @math{1} the result has a real part of @math{\pi/2} and a negative imaginary part. @end deftypefun @deftypefun gsl_complex gsl_complex_arccos (gsl_complex @var{z}) This function returns the complex arccosine of the complex number @var{z}, @math{\arccos(z)}. The branch cuts are on the real axis, less than @math{-1} and greater than @math{1}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccos_real (double @var{z}) This function returns the complex arccosine of the real number @var{z}, @math{\arccos(z)}. For @math{z} between @math{-1} and @math{1}, the function returns a real value in the range @math{[0,\pi]}. For @math{z} less than @math{-1} the result has a real part of @math{\pi} and a negative imaginary part. For @math{z} greater than @math{1} the result is purely imaginary and positive. @end deftypefun @deftypefun gsl_complex gsl_complex_arctan (gsl_complex @var{z}) This function returns the complex arctangent of the complex number @var{z}, @math{\arctan(z)}. The branch cuts are on the imaginary axis, below @math{-i} and above @math{i}. @end deftypefun @deftypefun gsl_complex gsl_complex_arcsec (gsl_complex @var{z}) This function returns the complex arcsecant of the complex number @var{z}, @math{\arcsec(z) = \arccos(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arcsec_real (double @var{z}) This function returns the complex arcsecant of the real number @var{z}, @math{\arcsec(z) = \arccos(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccsc (gsl_complex @var{z}) This function returns the complex arccosecant of the complex number @var{z}, @math{\arccsc(z) = \arcsin(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccsc_real (double @var{z}) This function returns the complex arccosecant of the real number @var{z}, @math{\arccsc(z) = \arcsin(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccot (gsl_complex @var{z}) This function returns the complex arccotangent of the complex number @var{z}, @math{\arccot(z) = \arctan(1/z)}. @end deftypefun @node Complex Hyperbolic Functions @section Complex Hyperbolic Functions @cindex hyperbolic functions, complex numbers @deftypefun gsl_complex gsl_complex_sinh (gsl_complex @var{z}) This function returns the complex hyperbolic sine of the complex number @var{z}, @math{\sinh(z) = (\exp(z) - \exp(-z))/2}. @end deftypefun @deftypefun gsl_complex gsl_complex_cosh (gsl_complex @var{z}) This function returns the complex hyperbolic cosine of the complex number @var{z}, @math{\cosh(z) = (\exp(z) + \exp(-z))/2}. @end deftypefun @deftypefun gsl_complex gsl_complex_tanh (gsl_complex @var{z}) This function returns the complex hyperbolic tangent of the complex number @var{z}, @math{\tanh(z) = \sinh(z)/\cosh(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_sech (gsl_complex @var{z}) This function returns the complex hyperbolic secant of the complex number @var{z}, @math{\sech(z) = 1/\cosh(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_csch (gsl_complex @var{z}) This function returns the complex hyperbolic cosecant of the complex number @var{z}, @math{\csch(z) = 1/\sinh(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_coth (gsl_complex @var{z}) This function returns the complex hyperbolic cotangent of the complex number @var{z}, @math{\coth(z) = 1/\tanh(z)}. @end deftypefun @node Inverse Complex Hyperbolic Functions @section Inverse Complex Hyperbolic Functions @cindex inverse hyperbolic functions, complex numbers @deftypefun gsl_complex gsl_complex_arcsinh (gsl_complex @var{z}) This function returns the complex hyperbolic arcsine of the complex number @var{z}, @math{\arcsinh(z)}. The branch cuts are on the imaginary axis, below @math{-i} and above @math{i}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccosh (gsl_complex @var{z}) This function returns the complex hyperbolic arccosine of the complex number @var{z}, @math{\arccosh(z)}. The branch cut is on the real axis, less than @math{1}. Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving @c{$\arccosh(z)=\log(z-\sqrt{z^2-1})$} @math{\arccosh(z)=\log(z-\sqrt@{z^2-1@})}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccosh_real (double @var{z}) This function returns the complex hyperbolic arccosine of the real number @var{z}, @math{\arccosh(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arctanh (gsl_complex @var{z}) This function returns the complex hyperbolic arctangent of the complex number @var{z}, @math{\arctanh(z)}. The branch cuts are on the real axis, less than @math{-1} and greater than @math{1}. @end deftypefun @deftypefun gsl_complex gsl_complex_arctanh_real (double @var{z}) This function returns the complex hyperbolic arctangent of the real number @var{z}, @math{\arctanh(z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arcsech (gsl_complex @var{z}) This function returns the complex hyperbolic arcsecant of the complex number @var{z}, @math{\arcsech(z) = \arccosh(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccsch (gsl_complex @var{z}) This function returns the complex hyperbolic arccosecant of the complex number @var{z}, @math{\arccsch(z) = \arcsin(1/z)}. @end deftypefun @deftypefun gsl_complex gsl_complex_arccoth (gsl_complex @var{z}) This function returns the complex hyperbolic arccotangent of the complex number @var{z}, @math{\arccoth(z) = \arctanh(1/z)}. @end deftypefun @node Complex Number References and Further Reading @section References and Further Reading The implementations of the elementary and trigonometric functions are based on the following papers, @itemize @w{} @item T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, ``Implementing Complex Elementary Functions Using Exception Handling'', @cite{ACM Transactions on Mathematical Software}, Volume 20 (1994), pp 215--244, Corrigenda, p553 @item T. E. Hull, Thomas F. Fairgrieve, Ping Tak Peter Tang, ``Implementing the complex arcsin and arccosine functions using exception handling'', @cite{ACM Transactions on Mathematical Software}, Volume 23 (1997) pp 299--335 @end itemize @noindent The general formulas and details of branch cuts can be found in the following books, @itemize @w{} @item Abramowitz and Stegun, @cite{Handbook of Mathematical Functions}, ``Circular Functions in Terms of Real and Imaginary Parts'', Formulas 4.3.55--58, ``Inverse Circular Functions in Terms of Real and Imaginary Parts'', Formulas 4.4.37--39, ``Hyperbolic Functions in Terms of Real and Imaginary Parts'', Formulas 4.5.49--52, ``Inverse Hyperbolic Functions---relation to Inverse Circular Functions'', Formulas 4.6.14--19. @item Dave Gillespie, @cite{Calc Manual}, Free Software Foundation, ISBN 1-882114-18-3 @end itemize gsl-1.16/doc/fit-exp.eps0000664000252300025230000003545112171574312012014 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: tmp.eps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Sun Sep 24 21:06:38 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 392 420 M 63 0 V 6577 0 R -63 0 V 308 420 M (0) Rshow 392 1056 M 63 0 V 6577 0 R -63 0 V -6661 0 R (1) Rshow 392 1692 M 63 0 V 6577 0 R -63 0 V -6661 0 R (2) Rshow 392 2328 M 63 0 V 6577 0 R -63 0 V -6661 0 R (3) Rshow 392 2964 M 63 0 V 6577 0 R -63 0 V -6661 0 R (4) Rshow 392 3600 M 63 0 V 6577 0 R -63 0 V -6661 0 R (5) Rshow 392 4236 M 63 0 V 6577 0 R -63 0 V -6661 0 R (6) Rshow 392 4872 M 63 0 V 6577 0 R -63 0 V -6661 0 R (7) Rshow 392 420 M 0 63 V 0 4389 R 0 -63 V 392 280 M (0) Cshow 1222 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (5) Cshow 2052 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 2882 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (15) Cshow 3712 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (20) Cshow 4542 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (25) Cshow 5372 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (30) Cshow 6202 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (35) Cshow 7032 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (40) Cshow 1.000 UL LTb 392 420 M 6640 0 V 0 4452 V -6640 0 V 392 420 L 0 2646 M currentpoint gsave translate 90 rotate 0 0 M (y) Cshow grestore 3712 140 M (t) Cshow 1.000 UP 1.000 UL LT0 6381 4739 M ('data' using 2:3:4) Rshow 6465 4739 M 399 0 V -399 31 R 0 -62 V 399 62 R 0 -62 V 392 4100 M 0 127 V 361 4100 M 62 0 V -62 127 R 62 0 V 558 3929 M 0 128 V 527 3929 M 62 0 V -62 128 R 62 0 V 724 3679 M 0 127 V 693 3679 M 62 0 V -62 127 R 62 0 V 890 3396 M 0 127 V 859 3396 M 62 0 V -62 127 R 62 0 V 135 -334 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -359 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -372 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -186 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -361 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -370 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -123 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -161 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -220 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -447 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -12 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -378 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -120 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -125 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -283 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -69 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -272 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -173 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -48 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -249 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -57 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -278 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -88 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -155 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -73 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -349 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 59 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -260 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -146 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -39 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -218 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -135 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -156 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -72 R 0 127 V -31 -127 R 62 0 V -62 127 R 62 0 V 135 -86 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 135 -159 R 0 128 V -31 -128 R 62 0 V -62 128 R 62 0 V 392 4164 Pls 558 3993 Pls 724 3742 Pls 890 3459 Pls 1056 3253 Pls 1222 3021 Pls 1388 2776 Pls 1554 2717 Pls 1720 2483 Pls 1886 2239 Pls 2052 2244 Pls 2218 2211 Pls 2384 2118 Pls 2550 1798 Pls 2716 1912 Pls 2882 1662 Pls 3048 1669 Pls 3214 1672 Pls 3380 1517 Pls 3546 1575 Pls 3712 1429 Pls 3878 1384 Pls 4044 1463 Pls 4210 1342 Pls 4376 1411 Pls 4542 1261 Pls 4708 1301 Pls 4874 1273 Pls 5040 1327 Pls 5206 1104 Pls 5372 1290 Pls 5538 1158 Pls 5704 1139 Pls 5870 1228 Pls 6036 1136 Pls 6202 1129 Pls 6368 1100 Pls 6534 1156 Pls 6700 1197 Pls 6866 1166 Pls 6664 4739 Pls 1.000 UL LT1 6381 4599 M (f\(x\)) Rshow 6465 4599 M 399 0 V 392 4251 M 67 -127 V 67 -122 V 67 -117 V 67 -112 V 67 -108 V 67 -104 V 67 -99 V 68 -96 V 67 -92 V 67 -88 V 67 -84 V 67 -81 V 67 -78 V 67 -75 V 67 -72 V 67 -69 V 67 -66 V 67 -64 V 67 -61 V 67 -59 V 67 -56 V 68 -54 V 67 -52 V 67 -50 V 67 -48 V 67 -46 V 67 -44 V 67 -42 V 67 -41 V 67 -39 V 67 -38 V 67 -36 V 67 -34 V 67 -33 V 67 -32 V 68 -31 V 67 -29 V 67 -29 V 67 -27 V 67 -26 V 67 -25 V 67 -24 V 67 -23 V 67 -22 V 67 -21 V 67 -20 V 67 -20 V 67 -19 V 67 -18 V 68 -17 V 67 -17 V 67 -16 V 67 -15 V 67 -15 V 67 -14 V 67 -14 V 67 -13 V 67 -12 V 67 -12 V 67 -12 V 67 -11 V 67 -11 V 67 -10 V 68 -10 V 67 -9 V 67 -9 V 67 -9 V 67 -8 V 67 -8 V 67 -8 V 67 -7 V 67 -7 V 67 -7 V 67 -7 V 67 -6 V 67 -6 V 67 -6 V 68 -5 V 67 -6 V 67 -5 V 67 -5 V 67 -4 V 67 -5 V 67 -4 V 67 -4 V 67 -4 V 67 -4 V 67 -4 V 67 -4 V 67 -3 V 67 -3 V 68 -3 V 67 -3 V 67 -3 V 67 -3 V 67 -3 V 67 -2 V 67 -3 V 67 -2 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/fft-complex-radix2-t.eps0000664000252300025230000001267012171574312014312 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 410 302 %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 672 1163 M 6297 0 V 672 211 M 0 4758 V LTb 672 211 M 63 0 V 6234 0 R -63 0 V 588 211 M (-0.5) Rshow 672 1163 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0) Rshow 672 2114 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.5) Rshow 672 3066 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1) Rshow 672 4017 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1.5) Rshow 672 4969 M 63 0 V 6234 0 R -63 0 V -6318 0 R (2) Rshow 672 211 M 0 63 V 0 4695 R 0 -63 V 672 71 M (0) Cshow 1664 211 M 0 63 V 0 4695 R 0 -63 V 1664 71 M (20) Cshow 2655 211 M 0 63 V 0 4695 R 0 -63 V 2655 71 M (40) Cshow 3647 211 M 0 63 V 0 4695 R 0 -63 V 3647 71 M (60) Cshow 4639 211 M 0 63 V 0 4695 R 0 -63 V 4639 71 M (80) Cshow 5630 211 M 0 63 V 0 4695 R 0 -63 V 5630 71 M (100) Cshow 6622 211 M 0 63 V 0 4695 R 0 -63 V 6622 71 M (120) Cshow 672 211 M 6297 0 V 0 4758 V -6297 0 V 672 211 L LT0 672 3066 M 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 -1903 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 50 0 V 49 0 V 50 1903 V 49 0 V 50 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 49 0 V 50 0 V 672 3066 D 722 3066 D 771 3066 D 821 3066 D 870 3066 D 920 3066 D 969 3066 D 1019 3066 D 1069 3066 D 1118 3066 D 1168 3066 D 1217 1163 D 1267 1163 D 1317 1163 D 1366 1163 D 1416 1163 D 1465 1163 D 1515 1163 D 1564 1163 D 1614 1163 D 1664 1163 D 1713 1163 D 1763 1163 D 1812 1163 D 1862 1163 D 1912 1163 D 1961 1163 D 2011 1163 D 2060 1163 D 2110 1163 D 2159 1163 D 2209 1163 D 2259 1163 D 2308 1163 D 2358 1163 D 2407 1163 D 2457 1163 D 2507 1163 D 2556 1163 D 2606 1163 D 2655 1163 D 2705 1163 D 2754 1163 D 2804 1163 D 2854 1163 D 2903 1163 D 2953 1163 D 3002 1163 D 3052 1163 D 3102 1163 D 3151 1163 D 3201 1163 D 3250 1163 D 3300 1163 D 3349 1163 D 3399 1163 D 3449 1163 D 3498 1163 D 3548 1163 D 3597 1163 D 3647 1163 D 3697 1163 D 3746 1163 D 3796 1163 D 3845 1163 D 3895 1163 D 3944 1163 D 3994 1163 D 4044 1163 D 4093 1163 D 4143 1163 D 4192 1163 D 4242 1163 D 4292 1163 D 4341 1163 D 4391 1163 D 4440 1163 D 4490 1163 D 4539 1163 D 4589 1163 D 4639 1163 D 4688 1163 D 4738 1163 D 4787 1163 D 4837 1163 D 4887 1163 D 4936 1163 D 4986 1163 D 5035 1163 D 5085 1163 D 5134 1163 D 5184 1163 D 5234 1163 D 5283 1163 D 5333 1163 D 5382 1163 D 5432 1163 D 5482 1163 D 5531 1163 D 5581 1163 D 5630 1163 D 5680 1163 D 5729 1163 D 5779 1163 D 5829 1163 D 5878 1163 D 5928 1163 D 5977 1163 D 6027 1163 D 6077 1163 D 6126 1163 D 6176 1163 D 6225 1163 D 6275 1163 D 6324 1163 D 6374 1163 D 6424 1163 D 6473 1163 D 6523 3066 D 6572 3066 D 6622 3066 D 6672 3066 D 6721 3066 D 6771 3066 D 6820 3066 D 6870 3066 D 6919 3066 D 6969 3066 D stroke grestore end showpage %%Trailer gsl-1.16/doc/rand-binomial.tex0000664000252300025230000004730212171574312013163 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-binomial.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-binomial.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 645 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 127 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 491 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 1053 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 2994 2316 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 1263 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 590 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -590 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -1263 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 4956 2316 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -1053 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -491 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 -127 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -14 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.5,n=9$}}% \put(3955,5244){\cjust{\strut{}Binomial Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.3}}% \put(900,3506){\rjust{\strut{} 0.2}}% \put(900,2069){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/gsl-ref.info-50000664000252300025230000036364612172254234012316 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  File: gsl-ref.info, Node: Variable Index, Next: Type Index, Prev: Function Index, Up: Top Variable Index ************** [index] * Menu: * alpha: MISER. (line 113) * alpha <1>: VEGAS. (line 148) * dither: MISER. (line 129) * estimate_frac: MISER. (line 92) * 'GSL_C99_INLINE': Inline functions. (line 6) * 'GSL_C99_INLINE' <1>: Accessing vector elements. (line 26) * gsl_check_range: Accessing vector elements. (line 31) * GSL_EDOM: Error Codes. (line 13) * GSL_EINVAL: Error Codes. (line 29) * GSL_ENOMEM: Error Codes. (line 23) * GSL_ERANGE: Error Codes. (line 18) * 'GSL_IEEE_MODE': Setting up your IEEE environment. (line 24) * GSL_NAN: Infinities and Not-a-number. (line 14) * GSL_NEGINF: Infinities and Not-a-number. (line 10) * GSL_POSINF: Infinities and Not-a-number. (line 6) * 'GSL_RANGE_CHECK_OFF': Accessing vector elements. (line 17) * gsl_rng_default: Random number environment variables. (line 12) * gsl_rng_default_seed: Random number generator initialization. (line 17) * gsl_rng_default_seed <1>: Random number environment variables. (line 12) * 'GSL_RNG_SEED': Random number generator initialization. (line 17) * 'GSL_RNG_SEED' <1>: Random number environment variables. (line 12) * 'GSL_RNG_TYPE': Random number environment variables. (line 12) * 'HAVE_INLINE': Inline functions. (line 6) * iterations: VEGAS. (line 153) * min_calls: MISER. (line 97) * min_calls_per_bisection: MISER. (line 105) * mode: VEGAS. (line 171) * ostream: VEGAS. (line 181) * stage: VEGAS. (line 157) * verbose: VEGAS. (line 180)  File: gsl-ref.info, Node: Type Index, Next: Concept Index, Prev: Variable Index, Up: Top Type Index ********** [index] * Menu: * gsl_block: Blocks. (line 6) * gsl_bspline_deriv_workspace: Initializing the B-splines solver. (line 22) * gsl_bspline_workspace: Initializing the B-splines solver. (line 12) * gsl_cheb_series: Chebyshev Definitions. (line 6) * gsl_combination: The Combination struct. (line 6) * gsl_complex: Representation of complex numbers. (line 6) * gsl_dht: Discrete Hankel Transform Functions. (line 7) * gsl_eigen_genhermv_workspace: Complex Generalized Hermitian-Definite Eigensystems. (line 37) * gsl_eigen_genherm_workspace: Complex Generalized Hermitian-Definite Eigensystems. (line 19) * gsl_eigen_gensymmv_workspace: Real Generalized Symmetric-Definite Eigensystems. (line 41) * gsl_eigen_gensymm_workspace: Real Generalized Symmetric-Definite Eigensystems. (line 24) * gsl_eigen_genv_workspace: Real Generalized Nonsymmetric Eigensystems. (line 98) * gsl_eigen_gen_workspace: Real Generalized Nonsymmetric Eigensystems. (line 43) * gsl_eigen_hermv_workspace: Complex Hermitian Matrices. (line 30) * gsl_eigen_herm_workspace: Complex Hermitian Matrices. (line 11) * gsl_eigen_nonsymmv_workspace: Real Nonsymmetric Matrices. (line 80) * gsl_eigen_nonsymm_workspace: Real Nonsymmetric Matrices. (line 19) * gsl_eigen_symmv_workspace: Real Symmetric Matrices. (line 32) * gsl_eigen_symm_workspace: Real Symmetric Matrices. (line 14) * gsl_error_handler_t: Error Handlers. (line 23) * gsl_fft_complex_wavetable: Mixed-radix FFT routines for complex data. (line 77) * gsl_fft_complex_workspace: Mixed-radix FFT routines for complex data. (line 106) * gsl_fft_halfcomplex_wavetable: Mixed-radix FFT routines for real data. (line 76) * gsl_fft_real_wavetable: Mixed-radix FFT routines for real data. (line 76) * gsl_fft_real_workspace: Mixed-radix FFT routines for real data. (line 106) * gsl_function: Providing the function to solve. (line 11) * gsl_function_fdf: Providing the function to solve. (line 50) * gsl_histogram: The histogram struct. (line 8) * gsl_histogram2d: The 2D histogram struct. (line 8) * gsl_histogram2d_pdf: Resampling from 2D histograms. (line 20) * gsl_histogram_pdf: The histogram probability distribution struct. (line 18) * gsl_integration_cquad_workspace: CQUAD doubly-adaptive integration. (line 22) * gsl_integration_glfixed_table: Fixed order Gauss-Legendre integration. (line 16) * gsl_integration_glfixed_table <1>: Fixed order Gauss-Legendre integration. (line 37) * gsl_integration_qawo_table: QAWO adaptive integration for oscillatory functions. (line 14) * gsl_integration_qaws_table: QAWS adaptive integration for singular functions. (line 14) * gsl_integration_workspace: QAG adaptive integration. (line 17) * gsl_interp: Interpolation Functions. (line 11) * gsl_interp_accel: Index Look-up and Acceleration. (line 20) * gsl_interp_type: Interpolation Types. (line 6) * gsl_matrix: Matrices. (line 10) * gsl_matrix_const_view: Matrix views. (line 6) * gsl_matrix_view: Matrix views. (line 6) * gsl_min_fminimizer: Initializing the Minimizer. (line 8) * gsl_min_fminimizer_type: Initializing the Minimizer. (line 8) * gsl_monte_function: Monte Carlo Interface. (line 27) * gsl_monte_miser_state: MISER. (line 46) * gsl_monte_plain_state: PLAIN Monte Carlo. (line 30) * gsl_monte_vegas_state: VEGAS. (line 51) * gsl_multifit_fdfsolver: Initializing the Nonlinear Least-Squares Solver. (line 18) * gsl_multifit_fdfsolver_type: Initializing the Nonlinear Least-Squares Solver. (line 18) * gsl_multifit_fsolver: Initializing the Nonlinear Least-Squares Solver. (line 8) * gsl_multifit_fsolver_type: Initializing the Nonlinear Least-Squares Solver. (line 8) * gsl_multifit_function: Providing the Function to be Minimized. (line 10) * gsl_multifit_function_fdf: Providing the Function to be Minimized. (line 30) * gsl_multifit_linear_workspace: Multi-parameter fitting. (line 43) * gsl_multifit_robust_workspace: Robust linear regression. (line 73) * gsl_multimin_fdfminimizer: Initializing the Multidimensional Minimizer. (line 15) * gsl_multimin_fdfminimizer_type: Initializing the Multidimensional Minimizer. (line 15) * gsl_multimin_fminimizer: Initializing the Multidimensional Minimizer. (line 15) * gsl_multimin_fminimizer_type: Initializing the Multidimensional Minimizer. (line 15) * gsl_multimin_function: Providing a function to minimize. (line 41) * gsl_multimin_function_fdf: Providing a function to minimize. (line 13) * gsl_multiroot_fdfsolver: Initializing the Multidimensional Solver. (line 29) * gsl_multiroot_fdfsolver_type: Initializing the Multidimensional Solver. (line 29) * gsl_multiroot_fsolver: Initializing the Multidimensional Solver. (line 13) * gsl_multiroot_fsolver_type: Initializing the Multidimensional Solver. (line 13) * gsl_multiroot_function: Providing the multidimensional system of equations to solve. (line 10) * gsl_multiroot_function_fdf: Providing the multidimensional system of equations to solve. (line 57) * gsl_multiset: The Multiset struct. (line 6) * gsl_ntuple: The ntuple struct. (line 6) * gsl_ntuple_select_fn: Histogramming ntuple values. (line 13) * gsl_ntuple_value_fn: Histogramming ntuple values. (line 24) * gsl_odeiv2_control: Adaptive Step-size Control. (line 12) * gsl_odeiv2_control_type: Adaptive Step-size Control. (line 12) * gsl_odeiv2_evolve: Evolution. (line 11) * gsl_odeiv2_step: Stepping Functions. (line 12) * gsl_odeiv2_step_type: Stepping Functions. (line 12) * gsl_odeiv2_system: Defining the ODE System. (line 14) * gsl_permutation: The Permutation struct. (line 6) * gsl_poly_complex_workspace: General Polynomial Equations. (line 13) * gsl_qrng: Quasi-random number generator initialization. (line 8) * gsl_qrng_type: Quasi-random number generator initialization. (line 8) * gsl_ran_discrete_t: General Discrete Distributions. (line 51) * gsl_rng: Random number generator initialization. (line 7) * gsl_rng_type: The Random Number Generator Interface. (line 18) * gsl_root_fdfsolver: Initializing the Solver. (line 23) * gsl_root_fdfsolver_type: Initializing the Solver. (line 23) * gsl_root_fsolver: Initializing the Solver. (line 8) * gsl_root_fsolver_type: Initializing the Solver. (line 8) * gsl_sf_mathieu_workspace: Mathieu Function Workspace. (line 12) * gsl_sf_result: The gsl_sf_result struct. (line 6) * gsl_sf_result_e10: The gsl_sf_result struct. (line 6) * gsl_siman_copy_construct_t: Simulated Annealing functions. (line 81) * gsl_siman_copy_t: Simulated Annealing functions. (line 76) * gsl_siman_destroy_t: Simulated Annealing functions. (line 87) * gsl_siman_Efunc_t: Simulated Annealing functions. (line 51) * gsl_siman_metric_t: Simulated Annealing functions. (line 64) * gsl_siman_params_t: Simulated Annealing functions. (line 93) * gsl_siman_print_t: Simulated Annealing functions. (line 70) * gsl_siman_step_t: Simulated Annealing functions. (line 56) * gsl_spline: Higher-level Interface. (line 15) * gsl_sum_levin_utrunc_workspace: Acceleration functions without error estimation. (line 24) * gsl_sum_levin_u_workspace: Acceleration functions. (line 25) * gsl_vector: Vectors. (line 11) * gsl_vector_const_view: Vector views. (line 12) * gsl_vector_view: Vector views. (line 12) * gsl_wavelet: DWT Initialization. (line 11) * gsl_wavelet_type: DWT Initialization. (line 6) * gsl_wavelet_workspace: DWT Initialization. (line 53)  File: gsl-ref.info, Node: Concept Index, Prev: Type Index, Up: Top Concept Index ************* [index] * Menu: * '$', shell prompt: Conventions used in this manual. (line 6) * 2D histograms: Two dimensional histograms. (line 6) * 2D random direction vector: Spherical Vector Distributions. (line 14) * 3-j symbols: Coupling Coefficients. (line 6) * 3D random direction vector: Spherical Vector Distributions. (line 33) * 6-j symbols: Coupling Coefficients. (line 6) * 9-j symbols: Coupling Coefficients. (line 6) * acceleration of series: Series Acceleration. (line 6) * acosh: Elementary Functions. (line 33) * Adams method: Stepping Functions. (line 128) * Adaptive step-size control, differential equations: Adaptive Step-size Control. (line 6) * Ai(x): Airy Functions and Derivatives. (line 6) * Airy functions: Airy Functions and Derivatives. (line 6) * Akima splines: Interpolation Types. (line 35) * aliasing of arrays: Aliasing of arrays. (line 6) * alternative optimized functions: Alternative optimized functions. (line 6) * AMAX, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 62) * Angular Mathieu Functions: Angular Mathieu Functions. (line 6) * angular reduction: Restriction Functions. (line 6) * ANSI C, use of: Using the library. (line 6) * Apell symbol, see Pochhammer symbol: Pochhammer Symbol. (line 9) * approximate comparison of floating point numbers: Approximate Comparison of Floating Point Numbers. (line 13) * arctangent integral: Arctangent Integral. (line 6) * argument of complex number: Properties of complex numbers. (line 7) * arithmetic exceptions: Setting up your IEEE environment. (line 6) * asinh: Elementary Functions. (line 37) * astronomical constants: Astronomy and Astrophysics. (line 6) * ASUM, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 47) * atanh: Elementary Functions. (line 41) * atomic physics, constants: Atomic and Nuclear Physics. (line 6) * autoconf, using with GSL: Autoconf Macros. (line 6) * AXPY, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 96) * B-spline wavelets: DWT Initialization. (line 31) * Bader and Deuflhard, Bulirsch-Stoer method.: Stepping Functions. (line 123) * balancing matrices: Balancing. (line 6) * Basic Linear Algebra Subroutines (BLAS): BLAS Support. (line 6) * Basic Linear Algebra Subroutines (BLAS) <1>: GSL CBLAS Library. (line 6) * basis splines, B-splines: Basis Splines. (line 6) * basis splines, derivatives: Evaluation of B-spline basis function derivatives. (line 6) * basis splines, evaluation: Evaluation of B-spline basis functions. (line 6) * basis splines, examples: Example programs for B-splines. (line 6) * basis splines, Greville abscissae: Working with the Greville abscissae. (line 6) * basis splines, initializing: Initializing the B-splines solver. (line 6) * basis splines, Marsden-Schoenberg points: Working with the Greville abscissae. (line 6) * basis splines, overview: Overview of B-splines. (line 6) * BDF method: Stepping Functions. (line 136) * Bernoulli trial, random variates: The Bernoulli Distribution. (line 8) * Bessel functions: Bessel Functions. (line 6) * Bessel Functions, Fractional Order: Regular Bessel Function - Fractional Order. (line 6) * best-fit parameters, covariance: Computing the covariance matrix of best fit parameters. (line 6) * Beta distribution: The Beta Distribution. (line 8) * Beta function: Beta Functions. (line 9) * Beta function, incomplete normalized: Incomplete Beta Function. (line 9) * BFGS algorithm, minimization: Multimin Algorithms with Derivatives. (line 37) * Bi(x): Airy Functions and Derivatives. (line 6) * bias, IEEE format: Representation of floating point numbers. (line 6) * bidiagonalization of real matrices: Bidiagonalization. (line 6) * binning data: Histograms. (line 6) * Binomial random variates: The Binomial Distribution. (line 8) * biorthogonal wavelets: DWT Initialization. (line 31) * bisection algorithm for finding roots: Root Bracketing Algorithms. (line 18) * Bivariate Gaussian distribution: The Bivariate Gaussian Distribution. (line 8) * BLAS: BLAS Support. (line 6) * BLAS, Low-level C interface: GSL CBLAS Library. (line 6) * blocks: Vectors and Matrices. (line 6) * bounds checking, extension to GCC: Accessing vector elements. (line 6) * breakpoints: Using gdb. (line 6) * Brent's method for finding minima: Minimization Algorithms. (line 31) * Brent's method for finding roots: Root Bracketing Algorithms. (line 50) * Broyden algorithm for multidimensional roots: Algorithms without Derivatives. (line 46) * BSD random number generator: Unix random number generators. (line 18) * bug-gsl mailing list: Reporting Bugs. (line 6) * bugs, how to report: Reporting Bugs. (line 6) * Bulirsch-Stoer method: Stepping Functions. (line 123) * C extensions, compatible use of: Using the library. (line 6) * C++, compatibility: Compatibility with C++. (line 6) * C99, inline keyword: Inline functions. (line 6) * Carlson forms of Elliptic integrals: Definition of Carlson Forms. (line 6) * Cash-Karp, Runge-Kutta method: Stepping Functions. (line 99) * Cauchy distribution: The Cauchy Distribution. (line 7) * Cauchy principal value, by numerical quadrature: QAWC adaptive integration for Cauchy principal values. (line 6) * CBLAS: BLAS Support. (line 6) * CBLAS, Low-level interface: GSL CBLAS Library. (line 6) * CDFs, cumulative distribution functions: Random Number Distributions. (line 6) * ce(q,x), Mathieu function: Angular Mathieu Functions. (line 6) * Chebyshev series: Chebyshev Approximations. (line 6) * checking combination for validity: Combination properties. (line 18) * checking multiset for validity: Multiset properties. (line 17) * checking permutation for validity: Permutation properties. (line 14) * Chi(x): Hyperbolic Integrals. (line 6) * Chi-squared distribution: The Chi-squared Distribution. (line 15) * Cholesky decomposition: Cholesky Decomposition. (line 6) * Ci(x): Trigonometric Integrals. (line 6) * Clausen functions: Clausen Functions. (line 6) * Clenshaw-Curtis quadrature: Integrands with weight functions. (line 6) * CMRG, combined multiple recursive random number generator: Random number generator algorithms. (line 99) * code reuse in applications: Code Reuse. (line 6) * combinations: Combinations. (line 6) * combinatorial factor C(m,n): Factorials. (line 41) * combinatorial optimization: Simulated Annealing. (line 6) * comparison functions, definition: Sorting objects. (line 16) * compatibility: Using the library. (line 6) * compiling programs, include paths: Compiling and Linking. (line 6) * compiling programs, library paths: Linking programs with the library. (line 6) * complementary incomplete Gamma function: Incomplete Gamma Functions. (line 23) * complete Fermi-Dirac integrals: Complete Fermi-Dirac Integrals. (line 6) * complex arithmetic: Complex arithmetic operators. (line 6) * complex cosine function, special functions: Trigonometric Functions for Complex Arguments. (line 13) * Complex Gamma function: Gamma Functions. (line 56) * complex hermitian matrix, eigensystem: Complex Hermitian Matrices. (line 9) * complex log sine function, special functions: Trigonometric Functions for Complex Arguments. (line 18) * complex numbers: Complex Numbers. (line 6) * complex sinc function, special functions: Circular Trigonometric Functions. (line 22) * complex sine function, special functions: Trigonometric Functions for Complex Arguments. (line 8) * confluent hypergeometric function: Laguerre Functions. (line 6) * confluent hypergeometric functions: Hypergeometric Functions. (line 6) * conical functions: Legendre Functions and Spherical Harmonics. (line 6) * Conjugate gradient algorithm, minimization: Multimin Algorithms with Derivatives. (line 12) * conjugate of complex number: Complex arithmetic operators. (line 55) * constant matrix: Initializing matrix elements. (line 6) * constants, fundamental: Fundamental Constants. (line 6) * constants, mathematical--defined as macros: Mathematical Constants. (line 6) * constants, physical: Physical Constants. (line 6) * constants, prefixes: Prefixes. (line 6) * contacting the GSL developers: Further Information. (line 6) * conventions, used in manual: Conventions used in this manual. (line 6) * convergence, accelerating a series: Series Acceleration. (line 6) * conversion of units: Physical Constants. (line 6) * cooling schedule: Simulated Annealing algorithm. (line 23) * COPY, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 85) * correlation, of two datasets: Correlation. (line 6) * cosine function, special functions: Circular Trigonometric Functions. (line 12) * cosine of complex number: Complex Trigonometric Functions. (line 11) * cost function: Simulated Annealing. (line 6) * Coulomb wave functions: Coulomb Functions. (line 6) * coupling coefficients: Coupling Coefficients. (line 6) * covariance matrix, from linear regression: Linear regression. (line 9) * covariance matrix, linear fits: Fitting Overview. (line 21) * covariance matrix, nonlinear fits: Computing the covariance matrix of best fit parameters. (line 6) * covariance, of two datasets: Covariance. (line 6) * cquad, doubly-adaptive integration: CQUAD doubly-adaptive integration. (line 6) * CRAY random number generator, RANF: Other random number generators. (line 23) * cubic equation, solving: Cubic Equations. (line 6) * cubic splines: Interpolation Types. (line 20) * cumulative distribution functions (CDFs): Random Number Distributions. (line 6) * Cylindrical Bessel Functions: Regular Cylindrical Bessel Functions. (line 6) * Daubechies wavelets: DWT Initialization. (line 20) * Dawson function: Dawson Function. (line 6) * DAXPY, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 96) * debugging numerical programs: Using gdb. (line 6) * Debye functions: Debye Functions. (line 6) * denormalized form, IEEE format: Representation of floating point numbers. (line 14) * deprecated functions: Deprecated Functions. (line 6) * derivatives, calculating numerically: Numerical Differentiation. (line 6) * determinant of a matrix, by LU decomposition: LU Decomposition. (line 82) * Deuflhard and Bader, Bulirsch-Stoer method.: Stepping Functions. (line 123) * DFTs, see FFT: Fast Fourier Transforms. (line 6) * diagonal, of a matrix: Creating row and column views. (line 62) * differential equations, initial value problems: Ordinary Differential Equations. (line 6) * differentiation of functions, numeric: Numerical Differentiation. (line 6) * digamma function: Psi (Digamma) Function. (line 6) * dilogarithm: Dilogarithm. (line 6) * direction vector, random 2D: Spherical Vector Distributions. (line 14) * direction vector, random 3D: Spherical Vector Distributions. (line 33) * direction vector, random N-dimensional: Spherical Vector Distributions. (line 42) * Dirichlet distribution: The Dirichlet Distribution. (line 8) * discontinuities, in ODE systems: Evolution. (line 77) * Discrete Fourier Transforms, see FFT: Fast Fourier Transforms. (line 6) * discrete Hankel transforms: Discrete Hankel Transforms. (line 6) * Discrete Newton algorithm for multidimensional roots: Algorithms without Derivatives. (line 27) * Discrete random numbers: General Discrete Distributions. (line 51) * Discrete random numbers <1>: General Discrete Distributions. (line 61) * Discrete random numbers <2>: General Discrete Distributions. (line 66) * Discrete random numbers <3>: General Discrete Distributions. (line 73) * Discrete random numbers, preprocessing: General Discrete Distributions. (line 51) * divided differences, polynomials: Divided Difference Representation of Polynomials. (line 6) * division by zero, IEEE exceptions: Setting up your IEEE environment. (line 6) * dollar sign '$', shell prompt: Conventions used in this manual. (line 11) * DOT, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 8) * double factorial: Factorials. (line 21) * double precision, IEEE format: Representation of floating point numbers. (line 40) * downloading GSL: Obtaining GSL. (line 6) * DWT initialization: DWT Initialization. (line 6) * DWT, mathematical definition: DWT Definitions. (line 6) * DWT, one dimensional: DWT in one dimension. (line 6) * DWT, see wavelet transforms: Wavelet Transforms. (line 6) * DWT, two dimensional: DWT in two dimension. (line 6) * e, defined as a macro: Mathematical Constants. (line 10) * E1(x), E2(x), Ei(x): Exponential Integral. (line 6) * eigenvalues and eigenvectors: Eigensystems. (line 6) * elementary functions: Mathematical Functions. (line 6) * elementary operations: Elementary Operations. (line 6) * elliptic functions (Jacobi): Elliptic Functions (Jacobi). (line 6) * elliptic integrals: Elliptic Integrals. (line 6) * energy function: Simulated Annealing. (line 6) * energy, units of: Thermal Energy and Power. (line 6) * erf(x): Error Functions. (line 6) * erfc(x): Error Functions. (line 6) * Erlang distribution: The Gamma Distribution. (line 15) * error codes: Error Codes. (line 13) * error codes, reserved: Error Codes. (line 6) * error function: Error Functions. (line 6) * Error handlers: Error Handlers. (line 6) * error handling: Error Handling. (line 6) * error handling macros: Using GSL error reporting in your own functions. (line 6) * Errors: Error Handling. (line 6) * estimated standard deviation: Statistics. (line 6) * estimated variance: Statistics. (line 6) * Eta Function: Eta Function. (line 6) * euclidean distance function, hypot: Elementary Functions. (line 23) * euclidean distance function, hypot <1>: Elementary Functions. (line 29) * Euler's constant, defined as a macro: Mathematical Constants. (line 58) * evaluation of polynomials: Polynomial Evaluation. (line 6) * evaluation of polynomials, in divided difference form: Divided Difference Representation of Polynomials. (line 6) * examples, conventions used in: Conventions used in this manual. (line 6) * exceptions, C++: Compatibility with C++. (line 6) * exceptions, floating point: Handling floating point exceptions. (line 6) * exceptions, IEEE arithmetic: Setting up your IEEE environment. (line 6) * exchanging permutation elements: Accessing permutation elements. (line 18) * exp: Exponential Functions. (line 6) * expm1: Elementary Functions. (line 18) * exponent, IEEE format: Representation of floating point numbers. (line 6) * Exponential distribution: The Exponential Distribution. (line 7) * exponential function: Exponential Functions. (line 6) * exponential integrals: Exponential Integrals. (line 6) * Exponential power distribution: The Exponential Power Distribution. (line 8) * exponential, difference from 1 computed accurately: Elementary Functions. (line 18) * exponentiation of complex number: Elementary Complex Functions. (line 16) * 'extern inline': Inline functions. (line 6) * F-distribution: The F-distribution. (line 15) * factorial: Factorials. (line 6) * factorial <1>: Factorials. (line 13) * factorization of matrices: Linear Algebra. (line 6) * false position algorithm for finding roots: Root Bracketing Algorithms. (line 33) * Fast Fourier Transforms, see FFT: Fast Fourier Transforms. (line 6) * Fehlberg method, differential equations: Stepping Functions. (line 95) * Fermi-Dirac function: Fermi-Dirac Function. (line 6) * FFT: Fast Fourier Transforms. (line 6) * FFT mathematical definition: Mathematical Definitions. (line 6) * FFT of complex data, mixed-radix algorithm: Mixed-radix FFT routines for complex data. (line 6) * FFT of complex data, radix-2 algorithm: Radix-2 FFT routines for complex data. (line 6) * FFT of real data: Overview of real data FFTs. (line 6) * FFT of real data, mixed-radix algorithm: Mixed-radix FFT routines for real data. (line 6) * FFT of real data, radix-2 algorithm: Radix-2 FFT routines for real data. (line 6) * FFT, complex data: Overview of complex data FFTs. (line 6) * finding minima: One dimensional Minimization. (line 6) * finding roots: One dimensional Root-Finding. (line 6) * finding zeros: One dimensional Root-Finding. (line 6) * fits, multi-parameter linear: Multi-parameter fitting. (line 6) * fitting: Least-Squares Fitting. (line 6) * fitting, using Chebyshev polynomials: Chebyshev Approximations. (line 6) * Fj(x), Fermi-Dirac integral: Complete Fermi-Dirac Integrals. (line 6) * Fj(x,b), incomplete Fermi-Dirac integral: Incomplete Fermi-Dirac Integrals. (line 6) * flat distribution: The Flat (Uniform) Distribution. (line 8) * Fletcher-Reeves conjugate gradient algorithm, minimization: Multimin Algorithms with Derivatives. (line 12) * floating point exceptions: Handling floating point exceptions. (line 6) * floating point numbers, approximate comparison: Approximate Comparison of Floating Point Numbers. (line 13) * floating point registers: Examining floating point registers. (line 6) * force and energy, units of: Force and Energy. (line 6) * Fortran range checking, equivalent in gcc: Accessing vector elements. (line 6) * Four-tap Generalized Feedback Shift Register: Random number generator algorithms. (line 174) * Fourier integrals, numerical: QAWF adaptive integration for Fourier integrals. (line 6) * Fourier Transforms, see FFT: Fast Fourier Transforms. (line 6) * Fractional Order Bessel Functions: Regular Bessel Function - Fractional Order. (line 6) * free software, explanation of: GSL is Free Software. (line 6) * frexp: Elementary Functions. (line 49) * functions, numerical differentiation: Numerical Differentiation. (line 6) * fundamental constants: Fundamental Constants. (line 6) * Gamma distribution: The Gamma Distribution. (line 8) * gamma functions: Gamma Functions. (line 6) * Gauss-Kronrod quadrature: Integrands without weight functions. (line 6) * Gaussian distribution: The Gaussian Distribution. (line 7) * Gaussian distribution, bivariate: The Bivariate Gaussian Distribution. (line 8) * Gaussian Tail distribution: The Gaussian Tail Distribution. (line 8) * gcc extensions, range-checking: Accessing vector elements. (line 6) * gcc warning options: GCC warning options for numerical programs. (line 6) * gdb: Using gdb. (line 6) * Gegenbauer functions: Gegenbauer Functions. (line 6) * GEMM, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 21) * GEMV, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 20) * general polynomial equations, solving: General Polynomial Equations. (line 6) * generalized eigensystems: Real Generalized Nonsymmetric Eigensystems. (line 6) * generalized hermitian definite eigensystems: Complex Generalized Hermitian-Definite Eigensystems. (line 6) * generalized symmetric eigensystems: Real Generalized Symmetric-Definite Eigensystems. (line 6) * Geometric random variates: The Geometric Distribution. (line 8) * Geometric random variates <1>: The Hypergeometric Distribution. (line 8) * GER, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 103) * GERC, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 112) * GERU, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 103) * Givens Rotation, BLAS: Level 1 GSL BLAS Interface. (line 116) * Givens Rotation, Modified, BLAS: Level 1 GSL BLAS Interface. (line 135) * GNU General Public License: Introduction. (line 6) * golden section algorithm for finding minima: Minimization Algorithms. (line 15) * GSL_C99_INLINE: Inline functions. (line 6) * 'GSL_RNG_SEED': Random number generator initialization. (line 17) * gsl_sf_result: The gsl_sf_result struct. (line 6) * gsl_sf_result_e10: The gsl_sf_result struct. (line 6) * Gumbel distribution (Type 1): The Type-1 Gumbel Distribution. (line 8) * Gumbel distribution (Type 2): The Type-2 Gumbel Distribution. (line 8) * Haar wavelets: DWT Initialization. (line 26) * Hankel transforms, discrete: Discrete Hankel Transforms. (line 6) * HAVE_INLINE: Inline functions. (line 6) * hazard function, normal distribution: Probability functions. (line 19) * HBOOK: Ntuple References and Further Reading. (line 6) * header files, including: Compiling and Linking. (line 6) * heapsort: Sorting. (line 6) * HEMM, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 55) * HEMV, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 85) * HER, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 130) * HER2, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 157) * HER2K, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 176) * HERK, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 136) * hermitian matrix, complex, eigensystem: Complex Hermitian Matrices. (line 9) * Hessenberg decomposition: Hessenberg Decomposition of Real Matrices. (line 6) * Hessenberg triangular decomposition: Hessenberg-Triangular Decomposition of Real Matrices. (line 6) * histogram statistics: Histogram Statistics. (line 6) * histogram, from ntuple: Histogramming ntuple values. (line 35) * histograms: Histograms. (line 6) * histograms, random sampling from: The histogram probability distribution struct. (line 6) * Householder linear solver: Householder solver for linear systems. (line 6) * Householder matrix: Householder Transformations. (line 6) * Householder transformation: Householder Transformations. (line 6) * Hurwitz Zeta Function: Hurwitz Zeta Function. (line 6) * HYBRID algorithm, unscaled without derivatives: Algorithms without Derivatives. (line 22) * HYBRID algorithms for nonlinear systems: Algorithms using Derivatives. (line 13) * HYBRIDJ algorithm: Algorithms using Derivatives. (line 65) * HYBRIDS algorithm, scaled without derivatives: Algorithms without Derivatives. (line 14) * HYBRIDSJ algorithm: Algorithms using Derivatives. (line 14) * hydrogen atom: Coulomb Functions. (line 6) * hyperbolic cosine, inverse: Elementary Functions. (line 33) * hyperbolic functions, complex numbers: Complex Hyperbolic Functions. (line 6) * hyperbolic integrals: Hyperbolic Integrals. (line 6) * hyperbolic sine, inverse: Elementary Functions. (line 37) * hyperbolic space: Legendre Functions and Spherical Harmonics. (line 6) * hyperbolic tangent, inverse: Elementary Functions. (line 41) * hypergeometric functions: Hypergeometric Functions. (line 6) * hypergeometric random variates: The Hypergeometric Distribution. (line 6) * hypot: Elementary Functions. (line 23) * hypot function, special functions: Circular Trigonometric Functions. (line 17) * I(x), Bessel Functions: Regular Modified Cylindrical Bessel Functions. (line 6) * i(x), Bessel Functions: Regular Modified Spherical Bessel Functions. (line 6) * identity matrix: Initializing matrix elements. (line 6) * identity permutation: Permutation allocation. (line 20) * IEEE exceptions: Setting up your IEEE environment. (line 6) * IEEE floating point: IEEE floating-point arithmetic. (line 6) * IEEE format for floating point numbers: Representation of floating point numbers. (line 6) * IEEE infinity, defined as a macro: Infinities and Not-a-number. (line 6) * IEEE NaN, defined as a macro: Infinities and Not-a-number. (line 6) * illumination, units of: Light and Illumination. (line 6) * imperial units: Imperial Units. (line 6) * Implicit Euler method: Stepping Functions. (line 105) * Implicit Runge-Kutta method: Stepping Functions. (line 111) * importance sampling, VEGAS: VEGAS. (line 6) * including GSL header files: Compiling and Linking. (line 6) * incomplete Beta function, normalized: Incomplete Beta Function. (line 9) * incomplete Fermi-Dirac integral: Incomplete Fermi-Dirac Integrals. (line 6) * incomplete Gamma function: Incomplete Gamma Functions. (line 16) * indirect sorting: Sorting objects. (line 58) * indirect sorting, of vector elements: Sorting vectors. (line 44) * infinity, defined as a macro: Infinities and Not-a-number. (line 6) * infinity, IEEE format: Representation of floating point numbers. (line 27) * info-gsl mailing list: Obtaining GSL. (line 6) * initial value problems, differential equations: Ordinary Differential Equations. (line 6) * initializing matrices: Initializing matrix elements. (line 6) * initializing vectors: Initializing vector elements. (line 6) * inline functions: Inline functions. (line 6) * integer powers: Power Function. (line 6) * integrals, exponential: Exponential Integrals. (line 6) * integration, numerical (quadrature): Numerical Integration. (line 6) * interpolation: Interpolation. (line 6) * interpolation, using Chebyshev polynomials: Chebyshev Approximations. (line 6) * inverse complex trigonometric functions: Inverse Complex Trigonometric Functions. (line 6) * inverse cumulative distribution functions: Random Number Distributions. (line 6) * inverse hyperbolic cosine: Elementary Functions. (line 33) * inverse hyperbolic functions, complex numbers: Inverse Complex Hyperbolic Functions. (line 6) * inverse hyperbolic sine: Elementary Functions. (line 37) * inverse hyperbolic tangent: Elementary Functions. (line 41) * inverse of a matrix, by LU decomposition: LU Decomposition. (line 69) * inverting a permutation: Permutation functions. (line 11) * Irregular Cylindrical Bessel Functions: Irregular Cylindrical Bessel Functions. (line 6) * Irregular Modified Bessel Functions, Fractional Order: Irregular Modified Bessel Functions - Fractional Order. (line 6) * Irregular Modified Cylindrical Bessel Functions: Irregular Modified Cylindrical Bessel Functions. (line 6) * Irregular Modified Spherical Bessel Functions: Irregular Modified Spherical Bessel Functions. (line 6) * Irregular Spherical Bessel Functions: Irregular Spherical Bessel Functions. (line 6) * iterating through combinations: Combination functions. (line 7) * iterating through multisets: Multiset functions. (line 7) * iterating through permutations: Permutation functions. (line 15) * iterative refinement of solutions in linear systems: LU Decomposition. (line 57) * J(x), Bessel Functions: Regular Cylindrical Bessel Functions. (line 6) * j(x), Bessel Functions: Regular Spherical Bessel Functions. (line 6) * Jacobi elliptic functions: Elliptic Functions (Jacobi). (line 6) * Jacobi orthogonalization: Singular Value Decomposition. (line 58) * Jacobian matrix, fitting: Overview of Nonlinear Least-Squares Fitting. (line 34) * Jacobian matrix, ODEs: Defining the ODE System. (line 33) * Jacobian matrix, root finding: Overview of Multidimensional Root Finding. (line 42) * K(x), Bessel Functions: Irregular Modified Cylindrical Bessel Functions. (line 6) * k(x), Bessel Functions: Irregular Modified Spherical Bessel Functions. (line 6) * knots, basis splines: Constructing the knots vector. (line 6) * kurtosis: Higher moments (skewness and kurtosis). (line 6) * Laguerre functions: Laguerre Functions. (line 6) * Lambert function: Lambert W Functions. (line 6) * Landau distribution: The Landau Distribution. (line 7) * LAPACK: Eigenvalue and Eigenvector References. (line 18) * Laplace distribution: The Laplace Distribution. (line 7) * ldexp: Elementary Functions. (line 45) * LD_LIBRARY_PATH: Shared Libraries. (line 6) * leading dimension, matrices: Matrices. (line 6) * least squares fit: Least-Squares Fitting. (line 6) * least squares fitting, nonlinear: Nonlinear Least-Squares Fitting. (line 6) * least squares troubleshooting: Troubleshooting. (line 6) * least squares, covariance of best-fit parameters: Computing the covariance matrix of best fit parameters. (line 6) * Legendre forms of elliptic integrals: Definition of Legendre Forms. (line 6) * Legendre functions: Legendre Functions and Spherical Harmonics. (line 6) * Legendre polynomials: Legendre Functions and Spherical Harmonics. (line 6) * length, computed accurately using hypot: Elementary Functions. (line 23) * length, computed accurately using hypot <1>: Elementary Functions. (line 29) * Levenberg-Marquardt algorithms: Minimization Algorithms using Derivatives. (line 12) * Levin u-transform: Series Acceleration. (line 6) * Levy distribution: The Levy alpha-Stable Distributions. (line 8) * Levy distribution, skew: The Levy skew alpha-Stable Distribution. (line 8) * libraries, linking with: Linking programs with the library. (line 6) * libraries, shared: Shared Libraries. (line 6) * license of GSL: Introduction. (line 6) * light, units of: Light and Illumination. (line 6) * linear algebra: Linear Algebra. (line 6) * linear algebra, BLAS: BLAS Support. (line 6) * linear interpolation: Interpolation Types. (line 9) * linear regression: Linear regression. (line 6) * linear systems, refinement of solutions: LU Decomposition. (line 57) * linear systems, solution of: LU Decomposition. (line 39) * linking with GSL libraries: Linking programs with the library. (line 6) * LMDER algorithm: Minimization Algorithms using Derivatives. (line 13) * log1p: Elementary Functions. (line 13) * logarithm and related functions: Logarithm and Related Functions. (line 6) * logarithm of Beta function: Beta Functions. (line 16) * logarithm of combinatorial factor C(m,n): Factorials. (line 47) * logarithm of complex number: Elementary Complex Functions. (line 29) * logarithm of cosh function, special functions: Hyperbolic Trigonometric Functions. (line 12) * logarithm of double factorial: Factorials. (line 35) * logarithm of factorial: Factorials. (line 28) * logarithm of Gamma function: Gamma Functions. (line 24) * logarithm of Pochhammer symbol: Pochhammer Symbol. (line 17) * logarithm of sinh function, special functions: Hyperbolic Trigonometric Functions. (line 8) * logarithm of the determinant of a matrix: LU Decomposition. (line 90) * logarithm, computed accurately near 1: Elementary Functions. (line 13) * Logarithmic random variates: The Logarithmic Distribution. (line 8) * Logistic distribution: The Logistic Distribution. (line 7) * Lognormal distribution: The Lognormal Distribution. (line 8) * long double: Long double. (line 6) * low discrepancy sequences: Quasi-Random Sequences. (line 6) * Low-level CBLAS: GSL CBLAS Library. (line 6) * LU decomposition: LU Decomposition. (line 6) * macros for mathematical constants: Mathematical Constants. (line 6) * magnitude of complex number: Properties of complex numbers. (line 11) * mailing list archives: Further Information. (line 6) * mailing list for GSL announcements: Obtaining GSL. (line 6) * mailing list, bug-gsl: Reporting Bugs. (line 6) * mantissa, IEEE format: Representation of floating point numbers. (line 6) * mass, units of: Mass and Weight. (line 6) * mathematical constants, defined as macros: Mathematical Constants. (line 6) * mathematical functions, elementary: Mathematical Functions. (line 6) * Mathieu Function Characteristic Values: Mathieu Function Characteristic Values. (line 6) * Mathieu functions: Mathieu Functions. (line 6) * matrices: Vectors and Matrices. (line 6) * matrices <1>: Matrices. (line 6) * matrices, initializing: Initializing matrix elements. (line 6) * matrices, range-checking: Accessing matrix elements. (line 6) * matrix determinant: LU Decomposition. (line 82) * matrix diagonal: Creating row and column views. (line 62) * matrix factorization: Linear Algebra. (line 6) * matrix inverse: LU Decomposition. (line 69) * matrix square root, Cholesky decomposition: Cholesky Decomposition. (line 6) * matrix subdiagonal: Creating row and column views. (line 74) * matrix superdiagonal: Creating row and column views. (line 86) * matrix, constant: Initializing matrix elements. (line 6) * matrix, identity: Initializing matrix elements. (line 6) * matrix, operations: BLAS Support. (line 6) * matrix, zero: Initializing matrix elements. (line 6) * max: Statistics. (line 6) * maximal phase, Daubechies wavelets: DWT Initialization. (line 20) * maximization, see minimization: One dimensional Minimization. (line 6) * maximum of two numbers: Maximum and Minimum functions. (line 11) * maximum value, from histogram: Histogram Statistics. (line 6) * mean: Statistics. (line 6) * mean value, from histogram: Histogram Statistics. (line 24) * Mills' ratio, inverse: Probability functions. (line 19) * min: Statistics. (line 6) * minimization, BFGS algorithm: Multimin Algorithms with Derivatives. (line 37) * minimization, caveats: Minimization Caveats. (line 6) * minimization, conjugate gradient algorithm: Multimin Algorithms with Derivatives. (line 12) * minimization, multidimensional: Multidimensional Minimization. (line 6) * minimization, one-dimensional: One dimensional Minimization. (line 6) * minimization, overview: Minimization Overview. (line 6) * minimization, Polak-Ribiere algorithm: Multimin Algorithms with Derivatives. (line 29) * minimization, providing a function to minimize: Providing the function to minimize. (line 6) * minimization, simplex algorithm: Multimin Algorithms without Derivatives. (line 11) * minimization, steepest descent algorithm: Multimin Algorithms with Derivatives. (line 56) * minimization, stopping parameters: Minimization Stopping Parameters. (line 6) * minimum finding, Brent's method: Minimization Algorithms. (line 31) * minimum finding, golden section algorithm: Minimization Algorithms. (line 15) * minimum of two numbers: Maximum and Minimum functions. (line 15) * minimum value, from histogram: Histogram Statistics. (line 6) * MINPACK, minimization algorithms: Algorithms using Derivatives. (line 14) * MINPACK, minimization algorithms <1>: Minimization Algorithms using Derivatives. (line 13) * MISCFUN: Special Functions References and Further Reading. (line 11) * MISER monte carlo integration: MISER. (line 6) * Mixed-radix FFT, complex data: Mixed-radix FFT routines for complex data. (line 6) * Mixed-radix FFT, real data: Mixed-radix FFT routines for real data. (line 6) * Modified Bessel Functions, Fractional Order: Regular Modified Bessel Functions - Fractional Order. (line 6) * Modified Clenshaw-Curtis quadrature: Integrands with weight functions. (line 6) * Modified Cylindrical Bessel Functions: Regular Modified Cylindrical Bessel Functions. (line 6) * Modified Givens Rotation, BLAS: Level 1 GSL BLAS Interface. (line 135) * Modified Newton's method for nonlinear systems: Algorithms using Derivatives. (line 91) * Modified Spherical Bessel Functions: Regular Modified Spherical Bessel Functions. (line 6) * Monte Carlo integration: Monte Carlo Integration. (line 6) * MRG, multiple recursive random number generator: Random number generator algorithms. (line 121) * MT19937 random number generator: Random number generator algorithms. (line 20) * multi-parameter regression: Multi-parameter fitting. (line 6) * multidimensional integration: Monte Carlo Integration. (line 6) * multidimensional root finding, Broyden algorithm: Algorithms without Derivatives. (line 46) * multidimensional root finding, overview: Overview of Multidimensional Root Finding. (line 6) * multidimensional root finding, providing a function to solve: Providing the multidimensional system of equations to solve. (line 6) * Multimin, caveats: Multimin Caveats. (line 6) * Multinomial distribution: The Multinomial Distribution. (line 8) * multiplication: Elementary Operations. (line 6) * multisets: Multisets. (line 6) * multistep methods, ODEs: Stepping Functions. (line 128) * N-dimensional random direction vector: Spherical Vector Distributions. (line 42) * NaN, defined as a macro: Infinities and Not-a-number. (line 6) * nautical units: Speed and Nautical Units. (line 6) * Negative Binomial distribution, random variates: The Negative Binomial Distribution. (line 8) * Nelder-Mead simplex algorithm for minimization: Multimin Algorithms without Derivatives. (line 11) * Newton algorithm, discrete: Algorithms without Derivatives. (line 27) * Newton algorithm, globally convergent: Algorithms using Derivatives. (line 91) * Newton's method for finding roots: Root Finding Algorithms using Derivatives. (line 16) * Newton's method for systems of nonlinear equations: Algorithms using Derivatives. (line 71) * Niederreiter sequence: Quasi-Random Sequences. (line 6) * NIST Statistical Reference Datasets: Fitting References and Further Reading. (line 16) * non-normalized incomplete Gamma function: Incomplete Gamma Functions. (line 9) * nonlinear equation, solutions of: One dimensional Root-Finding. (line 6) * nonlinear fitting, stopping parameters: Search Stopping Parameters for Minimization Algorithms. (line 6) * nonlinear functions, minimization: One dimensional Minimization. (line 6) * nonlinear least squares fitting: Nonlinear Least-Squares Fitting. (line 6) * nonlinear least squares fitting, overview: Overview of Nonlinear Least-Squares Fitting. (line 6) * nonlinear systems of equations, solution of: Multidimensional Root-Finding. (line 6) * nonsymmetric matrix, real, eigensystem: Real Nonsymmetric Matrices. (line 6) * Nordsieck form: Stepping Functions. (line 128) * normalized form, IEEE format: Representation of floating point numbers. (line 14) * normalized incomplete Beta function: Incomplete Beta Function. (line 9) * Not-a-number, defined as a macro: Infinities and Not-a-number. (line 6) * NRM2, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 36) * ntuples: N-tuples. (line 6) * nuclear physics, constants: Atomic and Nuclear Physics. (line 6) * numerical constants, defined as macros: Mathematical Constants. (line 6) * numerical derivatives: Numerical Differentiation. (line 6) * numerical integration (quadrature): Numerical Integration. (line 6) * obtaining GSL: Obtaining GSL. (line 6) * ODEs, initial value problems: Ordinary Differential Equations. (line 6) * optimization, combinatorial: Simulated Annealing. (line 6) * optimization, see minimization: One dimensional Minimization. (line 6) * optimized functions, alternatives: Alternative optimized functions. (line 6) * ordering, matrix elements: Matrices. (line 6) * ordinary differential equations, initial value problem: Ordinary Differential Equations. (line 6) * oscillatory functions, numerical integration of: QAWO adaptive integration for oscillatory functions. (line 6) * overflow, IEEE exceptions: Setting up your IEEE environment. (line 6) * Pareto distribution: The Pareto Distribution. (line 8) * PAW: Ntuple References and Further Reading. (line 6) * permutations: Permutations. (line 6) * physical constants: Physical Constants. (line 6) * physical dimension, matrices: Matrices. (line 6) * pi, defined as a macro: Mathematical Constants. (line 28) * plain Monte Carlo: PLAIN Monte Carlo. (line 6) * Pochhammer symbol: Pochhammer Symbol. (line 9) * Poisson random numbers: The Poisson Distribution. (line 8) * Polak-Ribiere algorithm, minimization: Multimin Algorithms with Derivatives. (line 29) * polar form of complex numbers: Representation of complex numbers. (line 6) * polar to rectangular conversion: Conversion Functions. (line 6) * polygamma functions: Psi (Digamma) Function. (line 6) * polynomial evaluation: Polynomial Evaluation. (line 6) * polynomial interpolation: Interpolation Types. (line 13) * polynomials, roots of: Polynomials. (line 6) * power function: Power Function. (line 6) * power of complex number: Elementary Complex Functions. (line 16) * power, units of: Thermal Energy and Power. (line 6) * precision, IEEE arithmetic: Setting up your IEEE environment. (line 6) * predictor-corrector method, ODEs: Stepping Functions. (line 128) * prefixes: Prefixes. (line 6) * pressure, units of: Pressure. (line 6) * Prince-Dormand, Runge-Kutta method: Stepping Functions. (line 102) * printers units: Printers Units. (line 6) * probability distribution, from histogram: The histogram probability distribution struct. (line 6) * probability distributions, from histograms: Resampling from histograms. (line 6) * projection of ntuples: Histogramming ntuple values. (line 35) * psi function: Psi (Digamma) Function. (line 6) * QAG quadrature algorithm: QAG adaptive integration. (line 6) * QAGI quadrature algorithm: QAGI adaptive integration on infinite intervals. (line 6) * QAGP quadrature algorithm: QAGP adaptive integration with known singular points. (line 6) * QAGS quadrature algorithm: QAGS adaptive integration with singularities. (line 6) * QAWC quadrature algorithm: QAWC adaptive integration for Cauchy principal values. (line 6) * QAWF quadrature algorithm: QAWF adaptive integration for Fourier integrals. (line 6) * QAWO quadrature algorithm: QAWO adaptive integration for oscillatory functions. (line 6) * QAWS quadrature algorithm: QAWS adaptive integration for singular functions. (line 6) * QNG quadrature algorithm: QNG non-adaptive Gauss-Kronrod integration. (line 6) * QR decomposition: QR Decomposition. (line 6) * QR decomposition with column pivoting: QR Decomposition with Column Pivoting. (line 6) * QUADPACK: Numerical Integration. (line 6) * quadratic equation, solving: Quadratic Equations. (line 6) * quadrature: Numerical Integration. (line 6) * quantile functions: Random Number Distributions. (line 6) * quasi-random sequences: Quasi-Random Sequences. (line 6) * R250 shift-register random number generator: Other random number generators. (line 60) * Racah coefficients: Coupling Coefficients. (line 6) * Radial Mathieu Functions: Radial Mathieu Functions. (line 6) * radioactivity, units of: Radioactivity. (line 6) * Radix-2 FFT for real data: Radix-2 FFT routines for real data. (line 6) * Radix-2 FFT, complex data: Radix-2 FFT routines for complex data. (line 6) * rand, BSD random number generator: Unix random number generators. (line 17) * rand48 random number generator: Unix random number generators. (line 58) * random number distributions: Random Number Distributions. (line 6) * random number generators: Random Number Generation. (line 6) * random sampling from histograms: The histogram probability distribution struct. (line 6) * RANDU random number generator: Other random number generators. (line 105) * RANF random number generator: Other random number generators. (line 23) * range: Statistics. (line 6) * range-checking for matrices: Accessing matrix elements. (line 6) * range-checking for vectors: Accessing vector elements. (line 6) * RANLUX random number generator: Random number generator algorithms. (line 74) * RANLXD random number generator: Random number generator algorithms. (line 66) * RANLXS random number generator: Random number generator algorithms. (line 47) * RANMAR random number generator: Other random number generators. (line 54) * RANMAR random number generator <1>: Other random number generators. (line 114) * Rayleigh distribution: The Rayleigh Distribution. (line 7) * Rayleigh Tail distribution: The Rayleigh Tail Distribution. (line 8) * real nonsymmetric matrix, eigensystem: Real Nonsymmetric Matrices. (line 6) * real symmetric matrix, eigensystem: Real Symmetric Matrices. (line 6) * Reciprocal Gamma function: Gamma Functions. (line 51) * rectangular to polar conversion: Conversion Functions. (line 6) * recursive stratified sampling, MISER: MISER. (line 6) * reduction of angular variables: Restriction Functions. (line 6) * refinement of solutions in linear systems: LU Decomposition. (line 57) * regression, least squares: Least-Squares Fitting. (line 6) * Regular Bessel Functions, Fractional Order: Regular Bessel Function - Fractional Order. (line 6) * Regular Bessel Functions, Zeros of: Zeros of Regular Bessel Functions. (line 6) * Regular Cylindrical Bessel Functions: Regular Cylindrical Bessel Functions. (line 6) * Regular Modified Bessel Functions, Fractional Order: Regular Modified Bessel Functions - Fractional Order. (line 6) * Regular Modified Cylindrical Bessel Functions: Regular Modified Cylindrical Bessel Functions. (line 6) * Regular Modified Spherical Bessel Functions: Regular Modified Spherical Bessel Functions. (line 6) * Regular Spherical Bessel Functions: Regular Spherical Bessel Functions. (line 6) * Regulated Gamma function: Gamma Functions. (line 42) * relative Pochhammer symbol: Pochhammer Symbol. (line 30) * reporting bugs in GSL: Reporting Bugs. (line 6) * representations of complex numbers: Representation of complex numbers. (line 6) * resampling from histograms: Resampling from histograms. (line 6) * residual, in nonlinear systems of equations: Search Stopping Parameters for the multidimensional solver. (line 32) * residual, in nonlinear systems of equations <1>: Search Stopping Parameters for Minimization Algorithms. (line 31) * reversing a permutation: Permutation functions. (line 7) * Riemann Zeta Function: Riemann Zeta Function. (line 6) * RK2, Runge-Kutta method: Stepping Functions. (line 87) * RK4, Runge-Kutta method: Stepping Functions. (line 90) * RKF45, Runge-Kutta-Fehlberg method: Stepping Functions. (line 95) * robust regression: Robust linear regression. (line 6) * root finding: One dimensional Root-Finding. (line 6) * root finding, bisection algorithm: Root Bracketing Algorithms. (line 18) * root finding, Brent's method: Root Bracketing Algorithms. (line 50) * root finding, caveats: Root Finding Caveats. (line 6) * root finding, false position algorithm: Root Bracketing Algorithms. (line 33) * root finding, initial guess: Search Bounds and Guesses. (line 6) * root finding, Newton's method: Root Finding Algorithms using Derivatives. (line 16) * root finding, overview: Root Finding Overview. (line 6) * root finding, providing a function to solve: Providing the function to solve. (line 6) * root finding, search bounds: Search Bounds and Guesses. (line 6) * root finding, secant method: Root Finding Algorithms using Derivatives. (line 30) * root finding, Steffenson's method: Root Finding Algorithms using Derivatives. (line 61) * root finding, stopping parameters: Search Stopping Parameters. (line 6) * root finding, stopping parameters <1>: Search Stopping Parameters for the multidimensional solver. (line 6) * roots: One dimensional Root-Finding. (line 6) * ROTG, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 116) * rounding mode: Setting up your IEEE environment. (line 6) * Runge-Kutta Cash-Karp method: Stepping Functions. (line 99) * Runge-Kutta methods, ordinary differential equations: Stepping Functions. (line 87) * Runge-Kutta Prince-Dormand method: Stepping Functions. (line 102) * safe comparison of floating point numbers: Approximate Comparison of Floating Point Numbers. (line 13) * safeguarded step-length algorithm: Minimization Algorithms. (line 47) * sampling from histograms: Resampling from histograms. (line 6) * sampling from histograms <1>: The histogram probability distribution struct. (line 6) * SAXPY, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 96) * SCAL, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 109) * schedule, cooling: Simulated Annealing algorithm. (line 23) * se(q,x), Mathieu function: Angular Mathieu Functions. (line 6) * secant method for finding roots: Root Finding Algorithms using Derivatives. (line 30) * selection function, ntuples: Histogramming ntuple values. (line 13) * series, acceleration: Series Acceleration. (line 6) * shared libraries: Shared Libraries. (line 6) * shell prompt: Conventions used in this manual. (line 6) * Shi(x): Hyperbolic Integrals. (line 6) * shift-register random number generator: Other random number generators. (line 60) * Si(x): Trigonometric Integrals. (line 6) * sign bit, IEEE format: Representation of floating point numbers. (line 6) * sign of the determinant of a matrix: LU Decomposition. (line 98) * simplex algorithm, minimization: Multimin Algorithms without Derivatives. (line 11) * simulated annealing: Simulated Annealing. (line 6) * sin, of complex number: Complex Trigonometric Functions. (line 7) * sine function, special functions: Circular Trigonometric Functions. (line 8) * single precision, IEEE format: Representation of floating point numbers. (line 31) * singular functions, numerical integration of: QAWS adaptive integration for singular functions. (line 6) * singular points, specifying positions in quadrature: QAGP adaptive integration with known singular points. (line 6) * singular value decomposition: Singular Value Decomposition. (line 6) * Skew Levy distribution: The Levy skew alpha-Stable Distribution. (line 8) * skewness: Higher moments (skewness and kurtosis). (line 6) * slope, see numerical derivative: Numerical Differentiation. (line 6) * Sobol sequence: Quasi-Random Sequences. (line 6) * solution of linear system by Householder transformations: Householder solver for linear systems. (line 6) * solution of linear systems, Ax=b: Linear Algebra. (line 6) * solving a nonlinear equation: One dimensional Root-Finding. (line 6) * solving nonlinear systems of equations: Multidimensional Root-Finding. (line 6) * sorting: Sorting. (line 6) * sorting eigenvalues and eigenvectors: Sorting Eigenvalues and Eigenvectors. (line 6) * sorting vector elements: Sorting vectors. (line 23) * source code, reuse in applications: Code Reuse. (line 6) * special functions: Special Functions. (line 6) * Spherical Bessel Functions: Regular Spherical Bessel Functions. (line 6) * spherical harmonics: Legendre Functions and Spherical Harmonics. (line 6) * spherical random variates, 2D: Spherical Vector Distributions. (line 14) * spherical random variates, 3D: Spherical Vector Distributions. (line 33) * spherical random variates, N-dimensional: Spherical Vector Distributions. (line 42) * spline: Interpolation. (line 6) * splines, basis: Basis Splines. (line 6) * square root of a matrix, Cholesky decomposition: Cholesky Decomposition. (line 6) * square root of complex number: Elementary Complex Functions. (line 7) * standard deviation: Statistics. (line 6) * standard deviation, from histogram: Histogram Statistics. (line 30) * standards conformance, ANSI C: Using the library. (line 6) * Statistical Reference Datasets (StRD): Fitting References and Further Reading. (line 16) * statistics: Statistics. (line 6) * statistics, from histogram: Histogram Statistics. (line 6) * steepest descent algorithm, minimization: Multimin Algorithms with Derivatives. (line 56) * Steffenson's method for finding roots: Root Finding Algorithms using Derivatives. (line 61) * stratified sampling in Monte Carlo integration: Monte Carlo Integration. (line 6) * stride, of vector index: Vectors. (line 6) * Student t-distribution: The t-distribution. (line 15) * subdiagonal, of a matrix: Creating row and column views. (line 74) * summation, acceleration: Series Acceleration. (line 6) * superdiagonal, matrix: Creating row and column views. (line 86) * SVD: Singular Value Decomposition. (line 6) * SWAP, Level-1 BLAS: Level 1 GSL BLAS Interface. (line 76) * swapping permutation elements: Accessing permutation elements. (line 18) * SYMM, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 40) * symmetric matrix, real, eigensystem: Real Symmetric Matrices. (line 6) * SYMV, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 71) * synchrotron functions: Synchrotron Functions. (line 6) * SYR, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 119) * SYR2, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 143) * SYR2K, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 159) * SYRK, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 122) * systems of equations, nonlinear: Multidimensional Root-Finding. (line 6) * t-distribution: The t-distribution. (line 15) * t-test: Statistics. (line 6) * tangent of complex number: Complex Trigonometric Functions. (line 15) * Tausworthe random number generator: Random number generator algorithms. (line 139) * Taylor coefficients, computation of: Factorials. (line 53) * testing combination for validity: Combination properties. (line 18) * testing multiset for validity: Multiset properties. (line 17) * testing permutation for validity: Permutation properties. (line 14) * thermal energy, units of: Thermal Energy and Power. (line 6) * time units: Measurement of Time. (line 6) * trailing dimension, matrices: Matrices. (line 6) * transformation, Householder: Householder Transformations. (line 6) * transforms, Hankel: Discrete Hankel Transforms. (line 6) * transforms, wavelet: Wavelet Transforms. (line 6) * transport functions: Transport Functions. (line 6) * traveling salesman problem: Traveling Salesman Problem. (line 6) * tridiagonal decomposition: Tridiagonal Decomposition of Real Symmetric Matrices. (line 6) * tridiagonal decomposition <1>: Tridiagonal Decomposition of Hermitian Matrices. (line 6) * tridiagonal systems: Tridiagonal Systems. (line 6) * trigonometric functions: Trigonometric Functions. (line 6) * trigonometric functions of complex numbers: Complex Trigonometric Functions. (line 6) * trigonometric integrals: Trigonometric Integrals. (line 6) * TRMM, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 76) * TRMV, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 36) * TRSM, Level-3 BLAS: Level 3 GSL BLAS Interface. (line 99) * TRSV, Level-2 BLAS: Level 2 GSL BLAS Interface. (line 57) * TSP: Traveling Salesman Problem. (line 6) * TT800 random number generator: Other random number generators. (line 75) * two dimensional Gaussian distribution: The Bivariate Gaussian Distribution. (line 8) * two dimensional histograms: Two dimensional histograms. (line 6) * two-sided exponential distribution: The Laplace Distribution. (line 7) * Type 1 Gumbel distribution, random variates: The Type-1 Gumbel Distribution. (line 8) * Type 2 Gumbel distribution: The Type-2 Gumbel Distribution. (line 8) * u-transform for series: Series Acceleration. (line 6) * underflow, IEEE exceptions: Setting up your IEEE environment. (line 6) * uniform distribution: The Flat (Uniform) Distribution. (line 8) * units, conversion of: Physical Constants. (line 6) * units, imperial: Imperial Units. (line 6) * Unix random number generators, rand: Unix random number generators. (line 17) * Unix random number generators, rand48: Unix random number generators. (line 17) * unnormalized incomplete Gamma function: Incomplete Gamma Functions. (line 9) * unweighted linear fits: Least-Squares Fitting. (line 6) * usage, compiling application programs: Using the library. (line 6) * value function, ntuples: Histogramming ntuple values. (line 24) * Van der Pol oscillator, example: ODE Example programs. (line 6) * variance: Statistics. (line 6) * variance, from histogram: Histogram Statistics. (line 30) * variance-covariance matrix, linear fits: Fitting Overview. (line 47) * VAX random number generator: Other random number generators. (line 87) * vector, operations: BLAS Support. (line 6) * vector, sorting elements of: Sorting vectors. (line 23) * vectors: Vectors and Matrices. (line 6) * vectors <1>: Vectors. (line 6) * vectors, initializing: Initializing vector elements. (line 6) * vectors, range-checking: Accessing vector elements. (line 6) * VEGAS Monte Carlo integration: VEGAS. (line 6) * viscosity, units of: Viscosity. (line 6) * volume units: Volume Area and Length. (line 6) * W function: Lambert W Functions. (line 6) * warning options: GCC warning options for numerical programs. (line 6) * warranty (none): No Warranty. (line 6) * wavelet transforms: Wavelet Transforms. (line 6) * website, developer information: Further Information. (line 6) * Weibull distribution: The Weibull Distribution. (line 8) * weight, units of: Mass and Weight. (line 6) * weighted linear fits: Least-Squares Fitting. (line 6) * Wigner coefficients: Coupling Coefficients. (line 6) * Y(x), Bessel Functions: Irregular Cylindrical Bessel Functions. (line 6) * y(x), Bessel Functions: Irregular Spherical Bessel Functions. (line 6) * zero finding: One dimensional Root-Finding. (line 6) * zero matrix: Initializing matrix elements. (line 6) * zero, IEEE format: Representation of floating point numbers. (line 27) * Zeros of Regular Bessel Functions: Zeros of Regular Bessel Functions. (line 6) * Zeta functions: Zeta Functions. (line 6) * Ziggurat method: The Gaussian Distribution. (line 29) gsl-1.16/doc/roots-newtons-method.eps0000664000252300025230000001732012171574312014552 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Mathematica-PSRender %%BoundingBox: 0 79 432 353 %%Pages: (atend) %%EndComments %%BeginProlog /setrgbcolor dup where { pop pop } { { .114 mul exch .587 mul add exch .299 mul add setgray } bind def } ifelse /C /curveto load def /f /fill load def /F { closepath fill } bind def /L /lineto load def /S /stroke load def /s { closepath stroke } bind def /d /setdash load def /g /setgray load def /m /moveto load def /r /setrgbcolor load def /w /setlinewidth load def /b { gsave gsave F grestore 0 g S grestore newpath } bind def /dot { newpath 0 360 arc fill } bind def %%EndProlog %%Page: 1 1 0 g 0.25 w [ ] 0 d 64.3977 99.4424 m 64.3977 102.003 L S 57.8977 83.3205 m /F1 /Times-Roman findfont def F1 10. scalefont setfont (-) show 64.5227 83.3205 m /F0 /Times-Roman findfont def F0 10. scalefont setfont (3) show 118.599 99.4424 m 118.599 102.003 L S 112.099 83.3205 m F1 10. scalefont setfont (-) show 118.724 83.3205 m F0 10. scalefont setfont (2) show 172.797 99.4424 m 172.797 102.003 L S 166.297 83.3205 m F1 10. scalefont setfont (-) show 172.922 83.3205 m F0 10. scalefont setfont (1) show 226.998 99.4424 m 226.998 102.003 L S 223.998 83.3205 m (0) show 281.2 99.4424 m 281.2 102.003 L S 278.2 83.3205 m (1) show 335.398 99.4424 m 335.398 102.003 L S 332.398 83.3205 m (2) show 389.599 99.4424 m 389.599 102.003 L S 386.599 83.3205 m (3) show 0.125 w 75.2397 99.4424 m 75.2397 100.979 L S 86.0776 99.4424 m 86.0776 100.979 L S 96.9195 99.4424 m 96.9195 100.979 L S 107.757 99.4424 m 107.757 100.979 L S 129.437 99.4424 m 129.437 100.979 L S 140.279 99.4424 m 140.279 100.979 L S 151.117 99.4424 m 151.117 100.979 L S 161.959 99.4424 m 161.959 100.979 L S 183.639 99.4424 m 183.639 100.979 L S 194.477 99.4424 m 194.477 100.979 L S 205.319 99.4424 m 205.319 100.979 L S 216.156 99.4424 m 216.156 100.979 L S 237.84 99.4424 m 237.84 100.979 L S 248.678 99.4424 m 248.678 100.979 L S 259.52 99.4424 m 259.52 100.979 L S 270.358 99.4424 m 270.358 100.979 L S 292.038 99.4424 m 292.038 100.979 L S 302.88 99.4424 m 302.88 100.979 L S 313.718 99.4424 m 313.718 100.979 L S 324.56 99.4424 m 324.56 100.979 L S 346.24 99.4424 m 346.24 100.979 L S 357.077 99.4424 m 357.077 100.979 L S 367.919 99.4424 m 367.919 100.979 L S 378.757 99.4424 m 378.757 100.979 L S 53.5599 99.4424 m 53.5599 100.979 L S 42.7179 99.4424 m 42.7179 100.979 L S 31.8801 99.4424 m 31.8801 100.979 L S 400.437 99.4424 m 400.437 100.979 L S 411.279 99.4424 m 411.279 100.979 L S 422.117 99.4424 m 422.117 100.979 L S 0.25 w 22.1239 99.4424 m 431.873 99.4424 L S 22.1239 121.122 m 24.6849 121.122 L S 2.00207 117.622 m F1 10. scalefont setfont (-) show 8.62707 117.622 m F0 10. scalefont setfont (4) show 22.1239 163.097 m 24.6849 163.097 L S 2.00207 159.597 m F1 10. scalefont setfont (-) show 8.62707 159.597 m F0 10. scalefont setfont (2) show 22.1239 205.072 m 24.6849 205.072 L S 9.00207 201.572 m (0) show 22.1239 247.05 m 24.6849 247.05 L S 9.00207 243.55 m (2) show 22.1239 289.025 m 24.6849 289.025 L S 9.00207 285.525 m (4) show 22.1239 331.004 m 24.6849 331.004 L S 9.00207 327.504 m (6) show 0.125 w 22.1239 131.616 m 23.6605 131.616 L S 22.1239 142.11 m 23.6605 142.11 L S 22.1239 152.603 m 23.6605 152.603 L S 22.1239 173.591 m 23.6605 173.591 L S 22.1239 184.084 m 23.6605 184.084 L S 22.1239 194.578 m 23.6605 194.578 L S 22.1239 215.569 m 23.6605 215.569 L S 22.1239 226.063 m 23.6605 226.063 L S 22.1239 236.557 m 23.6605 236.557 L S 22.1239 257.544 m 23.6605 257.544 L S 22.1239 268.038 m 23.6605 268.038 L S 22.1239 278.531 m 23.6605 278.531 L S 22.1239 299.519 m 23.6605 299.519 L S 22.1239 310.016 m 23.6605 310.016 L S 22.1239 320.51 m 23.6605 320.51 L S 22.1239 110.629 m 23.6605 110.629 L S 22.1239 100.131 m 23.6605 100.131 L S 22.1239 341.497 m 23.6605 341.497 L S 22.1239 351.991 m 23.6605 351.991 L S 0.25 w 22.1239 99.4424 m 22.1239 352.68 L S 64.3977 350.119 m 64.3977 352.68 L S 118.599 350.119 m 118.599 352.68 L S 172.797 350.119 m 172.797 352.68 L S 226.998 350.119 m 226.998 352.68 L S 281.2 350.119 m 281.2 352.68 L S 335.398 350.119 m 335.398 352.68 L S 389.599 350.119 m 389.599 352.68 L S 0.125 w 75.2397 351.143 m 75.2397 352.68 L S 86.0776 351.143 m 86.0776 352.68 L S 96.9195 351.143 m 96.9195 352.68 L S 107.757 351.143 m 107.757 352.68 L S 129.437 351.143 m 129.437 352.68 L S 140.279 351.143 m 140.279 352.68 L S 151.117 351.143 m 151.117 352.68 L S 161.959 351.143 m 161.959 352.68 L S 183.639 351.143 m 183.639 352.68 L S 194.477 351.143 m 194.477 352.68 L S 205.319 351.143 m 205.319 352.68 L S 216.156 351.143 m 216.156 352.68 L S 237.84 351.143 m 237.84 352.68 L S 248.678 351.143 m 248.678 352.68 L S 259.52 351.143 m 259.52 352.68 L S 270.358 351.143 m 270.358 352.68 L S 292.038 351.143 m 292.038 352.68 L S 302.88 351.143 m 302.88 352.68 L S 313.718 351.143 m 313.718 352.68 L S 324.56 351.143 m 324.56 352.68 L S 346.24 351.143 m 346.24 352.68 L S 357.077 351.143 m 357.077 352.68 L S 367.919 351.143 m 367.919 352.68 L S 378.757 351.143 m 378.757 352.68 L S 53.5599 351.143 m 53.5599 352.68 L S 42.7179 351.143 m 42.7179 352.68 L S 31.8801 351.143 m 31.8801 352.68 L S 400.437 351.143 m 400.437 352.68 L S 411.279 351.143 m 411.279 352.68 L S 422.117 351.143 m 422.117 352.68 L S 0.25 w 22.1239 352.68 m 431.873 352.68 L S 429.312 121.122 m 431.873 121.122 L S 429.312 163.097 m 431.873 163.097 L S 429.312 205.072 m 431.873 205.072 L S 429.312 247.05 m 431.873 247.05 L S 429.312 289.025 m 431.873 289.025 L S 429.312 331.004 m 431.873 331.004 L S 0.125 w 430.336 131.616 m 431.873 131.616 L S 430.336 142.11 m 431.873 142.11 L S 430.336 152.603 m 431.873 152.603 L S 430.336 173.591 m 431.873 173.591 L S 430.336 184.084 m 431.873 184.084 L S 430.336 194.578 m 431.873 194.578 L S 430.336 215.569 m 431.873 215.569 L S 430.336 226.063 m 431.873 226.063 L S 430.336 236.557 m 431.873 236.557 L S 430.336 257.544 m 431.873 257.544 L S 430.336 268.038 m 431.873 268.038 L S 430.336 278.531 m 431.873 278.531 L S 430.336 299.519 m 431.873 299.519 L S 430.336 310.016 m 431.873 310.016 L S 430.336 320.51 m 431.873 320.51 L S 430.336 110.629 m 431.873 110.629 L S 430.336 100.131 m 431.873 100.131 L S 430.336 341.497 m 431.873 341.497 L S 430.336 351.991 m 431.873 351.991 L S 0.25 w 431.873 99.4424 m 431.873 352.68 L S 22.1239 205.072 m 431.873 205.072 L S gsave 22.1239 99.4424 m 431.873 99.4424 L 431.873 352.68 L 22.1239 352.68 L 22.1239 99.4424 L closepath clip newpath 1.5 w 31.8801 105.474 m 47.7087 129.264 L 64.9755 151.169 L 81.1892 168.26 L 96.7843 181.831 L 113.383 193.529 L 129.359 202.449 L 146.343 209.775 L 162.705 215.09 L 178.443 218.913 L 195.19 221.941 L 211.313 224.19 L 226.814 226.038 L 243.323 228.017 L 259.209 230.242 L 276.103 233.328 L 292.37 237.339 L 308.022 242.486 L 324.674 249.693 L 340.708 258.654 L 357.745 270.717 L 374.164 285.173 L 389.96 302.043 L 406.759 323.522 L 422.117 346.652 L S 0.5 g 0.5 w 389.599 301.621 m 306.49 205.072 L 306.49 241.92 L 205.843 205.072 L 205.843 223.477 L 68.3559 205.072 L 68.3559 155. L 113.408 205.072 L 113.408 193.545 L 131.81 205.072 L 131.81 203.633 L S 0 g 389.599 301.621 2. dot 379.599 306.121 m (g) show 385.599 304.621 m F0 7.125 scalefont setfont (0) show 306.49 241.92 2. dot 298.49 247.42 m F0 10. scalefont setfont (g) show 304.49 245.92 m F0 7.125 scalefont setfont (1) show 205.843 223.477 2. dot 198.843 228.977 m F0 10. scalefont setfont (g) show 204.843 227.477 m F0 7.125 scalefont setfont (2) show 68.3559 155. 2. dot 68.3559 146.5 m F0 10. scalefont setfont (g) show 74.3559 145. m F0 7.125 scalefont setfont (3) show 113.408 193.545 2. dot 112.408 185.045 m F0 10. scalefont setfont (g) show 118.408 183.545 m F0 7.125 scalefont setfont (4) show 131.81 203.633 2. dot 130.81 195.133 m F0 10. scalefont setfont (g) show 136.81 193.633 m F0 7.125 scalefont setfont (5) show grestore showpage %%PageTrailer %%Trailer %%Pages: 1 %%EOF gsl-1.16/doc/rand-flat.tex0000664000252300025230000005240512171574312012317 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-flat.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-flat.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 2157 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 3033 2788 L 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -2157 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 5053 631 L 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 1198 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 3033 1829 L 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 5073 1829 L 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -1198 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=1.2,b=4.8$}}% \put(5957,4781){\rjust{\strut{}$a=0.5,b=2.5$}}% \put(3955,5244){\cjust{\strut{}Flat Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/interp.texi0000664000252300025230000003333212171574312012117 00000000000000@cindex interpolation @cindex spline This chapter describes functions for performing interpolation. The library provides a variety of interpolation methods, including Cubic splines and Akima splines. The interpolation types are interchangeable, allowing different methods to be used without recompiling. Interpolations can be defined for both normal and periodic boundary conditions. Additional functions are available for computing derivatives and integrals of interpolating functions. These interpolation methods produce curves that pass through each datapoint. To interpolate noisy data with a smoothing curve see @ref{Basis Splines}. The functions described in this section are declared in the header files @file{gsl_interp.h} and @file{gsl_spline.h}. @menu * Introduction to Interpolation:: * Interpolation Functions:: * Interpolation Types:: * Index Look-up and Acceleration:: * Evaluation of Interpolating Functions:: * Higher-level Interface:: * Interpolation Example programs:: * Interpolation References and Further Reading:: @end menu @node Introduction to Interpolation @section Introduction Given a set of data points @math{(x_1, y_1) \dots (x_n, y_n)} the routines described in this section compute a continuous interpolating function @math{y(x)} such that @math{y(x_i) = y_i}. The interpolation is piecewise smooth, and its behavior at the end-points is determined by the type of interpolation used. @node Interpolation Functions @section Interpolation Functions The interpolation function for a given dataset is stored in a @code{gsl_interp} object. These are created by the following functions. @deftypefun {gsl_interp *} gsl_interp_alloc (const gsl_interp_type * @var{T}, size_t @var{size}) @tpindex gsl_interp This function returns a pointer to a newly allocated interpolation object of type @var{T} for @var{size} data-points. @end deftypefun @deftypefun int gsl_interp_init (gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], size_t @var{size}) This function initializes the interpolation object @var{interp} for the data (@var{xa},@var{ya}) where @var{xa} and @var{ya} are arrays of size @var{size}. The interpolation object (@code{gsl_interp}) does not save the data arrays @var{xa} and @var{ya} and only stores the static state computed from the data. The @var{xa} data array is always assumed to be strictly ordered, with increasing @math{x} values; the behavior for other arrangements is not defined. @end deftypefun @deftypefun void gsl_interp_free (gsl_interp * @var{interp}) This function frees the interpolation object @var{interp}. @end deftypefun @node Interpolation Types @section Interpolation Types @tpindex gsl_interp_type The interpolation library provides six interpolation types: @deffn {Interpolation Type} gsl_interp_linear @cindex linear interpolation Linear interpolation. This interpolation method does not require any additional memory. @end deffn @deffn {Interpolation Type} gsl_interp_polynomial @cindex polynomial interpolation Polynomial interpolation. This method should only be used for interpolating small numbers of points because polynomial interpolation introduces large oscillations, even for well-behaved datasets. The number of terms in the interpolating polynomial is equal to the number of points. @end deffn @deffn {Interpolation Type} gsl_interp_cspline @cindex cubic splines Cubic spline with natural boundary conditions. The resulting curve is piecewise cubic on each interval, with matching first and second derivatives at the supplied data-points. The second derivative is chosen to be zero at the first point and last point. @end deffn @deffn {Interpolation Type} gsl_interp_cspline_periodic Cubic spline with periodic boundary conditions. The resulting curve is piecewise cubic on each interval, with matching first and second derivatives at the supplied data-points. The derivatives at the first and last points are also matched. Note that the last point in the data must have the same y-value as the first point, otherwise the resulting periodic interpolation will have a discontinuity at the boundary. @end deffn @deffn {Interpolation Type} gsl_interp_akima @cindex Akima splines Non-rounded Akima spline with natural boundary conditions. This method uses the non-rounded corner algorithm of Wodicka. @end deffn @deffn {Interpolation Type} gsl_interp_akima_periodic Non-rounded Akima spline with periodic boundary conditions. This method uses the non-rounded corner algorithm of Wodicka. @end deffn The following related functions are available: @deftypefun {const char *} gsl_interp_name (const gsl_interp * @var{interp}) This function returns the name of the interpolation type used by @var{interp}. For example, @example printf ("interp uses '%s' interpolation.\n", gsl_interp_name (interp)); @end example @noindent would print something like, @example interp uses 'cspline' interpolation. @end example @end deftypefun @deftypefun {unsigned int} gsl_interp_min_size (const gsl_interp * @var{interp}) @deftypefunx {unsigned int} gsl_interp_type_min_size (const gsl_interp_type * @var{T}) These functions return the minimum number of points required by the interpolation object @var{interp} or interpolation type @var{T}. For example, Akima spline interpolation requires a minimum of 5 points. @end deftypefun @node Index Look-up and Acceleration @section Index Look-up and Acceleration The state of searches can be stored in a @code{gsl_interp_accel} object, which is a kind of iterator for interpolation lookups. It caches the previous value of an index lookup. When the subsequent interpolation point falls in the same interval its index value can be returned immediately. @deftypefun size_t gsl_interp_bsearch (const double @var{x_array}[], double @var{x}, size_t @var{index_lo}, size_t @var{index_hi}) This function returns the index @math{i} of the array @var{x_array} such that @code{x_array[i] <= x < x_array[i+1]}. The index is searched for in the range [@var{index_lo},@var{index_hi}]. @inlinefn{} @end deftypefun @deftypefun {gsl_interp_accel *} gsl_interp_accel_alloc (void) @tpindex gsl_interp_accel This function returns a pointer to an accelerator object, which is a kind of iterator for interpolation lookups. It tracks the state of lookups, thus allowing for application of various acceleration strategies. @end deftypefun @deftypefun size_t gsl_interp_accel_find (gsl_interp_accel * @var{a}, const double @var{x_array}[], size_t @var{size}, double @var{x}) This function performs a lookup action on the data array @var{x_array} of size @var{size}, using the given accelerator @var{a}. This is how lookups are performed during evaluation of an interpolation. The function returns an index @math{i} such that @code{x_array[i] <= x < x_array[i+1]}. @inlinefn{} @end deftypefun @deftypefun int gsl_interp_accel_reset (gsl_interp_accel * @var{acc}); This function reinitializes the accelerator object @var{acc}. It should be used when the cached information is no longer applicable---for example, when switching to a new dataset. @end deftypefun @deftypefun void gsl_interp_accel_free (gsl_interp_accel* @var{acc}) This function frees the accelerator object @var{acc}. @end deftypefun @node Evaluation of Interpolating Functions @section Evaluation of Interpolating Functions @deftypefun double gsl_interp_eval (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_interp_eval_e (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}, double * @var{y}) These functions return the interpolated value of @var{y} for a given point @var{x}, using the interpolation object @var{interp}, data arrays @var{xa} and @var{ya} and the accelerator @var{acc}. When @var{x} is outside the range of @var{xa}, the error code @code{GSL_EDOM} is returned with a value of @code{GSL_NAN} for @var{y}. @end deftypefun @deftypefun double gsl_interp_eval_deriv (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_interp_eval_deriv_e (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}, double * @var{d}) These functions return the derivative @var{d} of an interpolated function for a given point @var{x}, using the interpolation object @var{interp}, data arrays @var{xa} and @var{ya} and the accelerator @var{acc}. @end deftypefun @deftypefun double gsl_interp_eval_deriv2 (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_interp_eval_deriv2_e (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{x}, gsl_interp_accel * @var{acc}, double * @var{d2}) These functions return the second derivative @var{d2} of an interpolated function for a given point @var{x}, using the interpolation object @var{interp}, data arrays @var{xa} and @var{ya} and the accelerator @var{acc}. @end deftypefun @deftypefun double gsl_interp_eval_integ (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{a}, double @var{b}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_interp_eval_integ_e (const gsl_interp * @var{interp}, const double @var{xa}[], const double @var{ya}[], double @var{a}, double @var{b}, gsl_interp_accel * @var{acc}, double * @var{result}) These functions return the numerical integral @var{result} of an interpolated function over the range [@var{a}, @var{b}], using the interpolation object @var{interp}, data arrays @var{xa} and @var{ya} and the accelerator @var{acc}. @end deftypefun @node Higher-level Interface @section Higher-level Interface The functions described in the previous sections required the user to supply pointers to the @math{x} and @math{y} arrays on each call. The following functions are equivalent to the corresponding @code{gsl_interp} functions but maintain a copy of this data in the @code{gsl_spline} object. This removes the need to pass both @var{xa} and @var{ya} as arguments on each evaluation. These functions are defined in the header file @file{gsl_spline.h}. @deftypefun {gsl_spline *} gsl_spline_alloc (const gsl_interp_type * @var{T}, size_t @var{size}) @tpindex gsl_spline @end deftypefun @deftypefun int gsl_spline_init (gsl_spline * @var{spline}, const double @var{xa}[], const double @var{ya}[], size_t @var{size}) @end deftypefun @deftypefun void gsl_spline_free (gsl_spline * @var{spline}) @end deftypefun @deftypefun {const char *} gsl_spline_name (const gsl_spline * @var{spline}) @end deftypefun @deftypefun {unsigned int} gsl_spline_min_size (const gsl_spline * @var{spline}) @end deftypefun @deftypefun double gsl_spline_eval (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_spline_eval_e (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}, double * @var{y}) @end deftypefun @deftypefun double gsl_spline_eval_deriv (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_spline_eval_deriv_e (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}, double * @var{d}) @end deftypefun @deftypefun double gsl_spline_eval_deriv2 (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_spline_eval_deriv2_e (const gsl_spline * @var{spline}, double @var{x}, gsl_interp_accel * @var{acc}, double * @var{d2}) @end deftypefun @deftypefun double gsl_spline_eval_integ (const gsl_spline * @var{spline}, double @var{a}, double @var{b}, gsl_interp_accel * @var{acc}) @deftypefunx int gsl_spline_eval_integ_e (const gsl_spline * @var{spline}, double @var{a}, double @var{b}, gsl_interp_accel * @var{acc}, double * @var{result}) @end deftypefun @node Interpolation Example programs @section Examples The following program demonstrates the use of the interpolation and spline functions. It computes a cubic spline interpolation of the 10-point dataset @math{(x_i, y_i)} where @math{x_i = i + \sin(i)/2} and @math{y_i = i + \cos(i^2)} for @math{i = 0 \dots 9}. @example @verbatiminclude examples/interp.c @end example @noindent The output is designed to be used with the @sc{gnu} plotutils @code{graph} program, @example $ ./a.out > interp.dat $ graph -T ps < interp.dat > interp.ps @end example @iftex @sp 1 @center @image{interp2,3.4in} @end iftex @noindent The result shows a smooth interpolation of the original points. The interpolation method can be changed simply by varying the first argument of @code{gsl_spline_alloc}. The next program demonstrates a periodic cubic spline with 4 data points. Note that the first and last points must be supplied with the same y-value for a periodic spline. @example @verbatiminclude examples/interpp.c @end example @noindent The output can be plotted with @sc{gnu} @code{graph}. @example $ ./a.out > interp.dat $ graph -T ps < interp.dat > interp.ps @end example @iftex @sp 1 @center @image{interpp2,3.4in} @end iftex @noindent The result shows a periodic interpolation of the original points. The slope of the fitted curve is the same at the beginning and end of the data, and the second derivative is also. @node Interpolation References and Further Reading @section References and Further Reading Descriptions of the interpolation algorithms and further references can be found in the following books: @itemize @w{} @item C.W. Ueberhuber, @cite{Numerical Computation (Volume 1), Chapter 9 ``Interpolation''}, Springer (1997), ISBN 3-540-62058-3. @item D.M. Young, R.T. Gregory @cite{A Survey of Numerical Mathematics (Volume 1), Chapter 6.8}, Dover (1988), ISBN 0-486-65691-8. @end itemize @noindent gsl-1.16/doc/Makefile.am0000664000252300025230000001110512171574312011751 00000000000000## Process this file with automake to produce Makefile.in info_TEXINFOS = gsl-ref.texi noinst_TEXINFOS = gsl-design.texi gsl_ref_TEXINFOS = err.texi cblas.texi blas.texi min.texi fft.texi rng.texi randist.texi roots.texi statistics.texi specfunc.texi specfunc-airy.texi specfunc-bessel.texi specfunc-clausen.texi specfunc-coulomb.texi specfunc-coupling.texi specfunc-dawson.texi specfunc-debye.texi specfunc-dilog.texi specfunc-elementary.texi specfunc-ellint.texi specfunc-elljac.texi specfunc-erf.texi specfunc-exp.texi specfunc-expint.texi specfunc-fermi-dirac.texi specfunc-gamma.texi specfunc-gegenbauer.texi specfunc-hyperg.texi specfunc-lambert.texi specfunc-laguerre.texi specfunc-legendre.texi specfunc-log.texi specfunc-mathieu.texi specfunc-pow-int.texi specfunc-psi.texi specfunc-synchrotron.texi specfunc-transport.texi specfunc-trig.texi specfunc-zeta.texi siman.texi vectors.texi debug.texi histogram.texi ode-initval.texi integration.texi ieee754.texi montecarlo.texi sum.texi intro.texi usage.texi dwt.texi dht.texi interp.texi poly.texi linalg.texi eigen.texi multiroots.texi sort.texi permutation.texi combination.texi multiset.texi complex.texi math.texi fitting.texi multifit.texi const.texi ntuple.texi diff.texi qrng.texi cheb.texi multimin.texi gpl.texi fdl.texi autoconf.texi bspline.texi man_MANS = gsl.3 gsl-config.1 gsl-randist.1 gsl-histogram.1 figures = multimin.eps siman-test.eps siman-energy.eps 12-cities.eps initial-route.eps final-route.eps fft-complex-radix2-f.eps fft-complex-radix2-t.eps fft-complex-radix2.eps fft-real-mixedradix.eps roots-bisection.eps roots-false-position.eps roots-newtons-method.eps roots-secant-method.eps histogram.eps histogram2d.eps min-interval.eps fit-wlinear.eps fit-wlinear2.eps fit-exp.eps ntuple.eps qrng.eps cheb.eps vdp.eps interp2.eps rand-beta.tex rand-binomial.tex rand-cauchy.tex rand-chisq.tex rand-erlang.tex rand-exponential.tex rand-fdist.tex rand-flat.tex rand-gamma.tex rand-gaussian.tex rand-geometric.tex rand-laplace.tex rand-logarithmic.tex rand-logistic.tex rand-lognormal.tex rand-pareto.tex rand-poisson.tex rand-hypergeometric.tex rand-nbinomial.tex rand-pascal.tex rand-bivariate-gaussian.tex rand-rayleigh.tex rand-rayleigh-tail.tex rand-tdist.tex rand-weibull.tex random-walk.tex randplots.gnp rand-exppow.tex rand-levy.tex rand-levyskew.tex rand-gumbel.tex rand-bernoulli.tex rand-gaussian-tail.tex rand-gumbel1.tex rand-gumbel2.tex landau.dat rand-landau.tex dwt-orig.eps dwt-samp.eps interpp2.eps bspline.eps robust.eps examples_src = examples/blas.c examples/block.c examples/cblas.c examples/cdf.c examples/cheb.c examples/combination.c examples/multiset.c examples/const.c examples/demo_fn.c examples/diff.c examples/eigen.c examples/fft.c examples/fftmr.c examples/fftreal.c examples/fitting.c examples/fitting2.c examples/fitting3.c examples/histogram.c examples/histogram2d.c examples/ieee.c examples/ieeeround.c examples/integration.c examples/interp.c examples/intro.c examples/linalglu.c examples/matrix.c examples/matrixw.c examples/min.c examples/monte.c examples/ntupler.c examples/ntuplew.c examples/ode-initval.c examples/odefixed.c examples/permseq.c examples/permshuffle.c examples/polyroots.c examples/qrng.c examples/randpoisson.c examples/randwalk.c examples/rng.c examples/rngunif.c examples/robfit.c examples/rootnewt.c examples/roots.c examples/siman.c examples/sortsmall.c examples/specfun.c examples/specfun_e.c examples/stat.c examples/statsort.c examples/sum.c examples/vector.c examples/vectorr.c examples/vectorview.c examples/vectorw.c examples/demo_fn.h examples/dwt.c examples/expfit.c examples/nlfit.c examples/interpp.c examples/eigen_nonsymm.c examples/bspline.c examples/multimin.c examples/multiminfn.c examples/nmsimplex.c examples/ode-initval-low-level.c examples_out = examples/blas.out examples/block.out examples/cblas.out examples/cdf.out examples/combination.out examples/multiset.out examples/const.out examples/diff.out examples/integration.out examples/intro.out examples/linalglu.out examples/min.out examples/polyroots.out examples/randpoisson.2.out examples/randpoisson.out examples/rng.out examples/rngunif.2.out examples/rngunif.out examples/sortsmall.out examples/specfun.out examples/specfun_e.out examples/stat.out examples/statsort.out examples/sum.out examples/vectorview.out examples/ecg.dat examples/dwt.dat examples/multimin.out examples/nmsimplex.out noinst_DATA = $(examples_src) $(examples_out) $(figures) EXTRA_DIST = $(man_MANS) $(noinst_DATA) gsl-design.texi fftalgorithms.tex fftalgorithms.bib algorithm.sty algorithmic.sty calc.sty statnotes.tex # pdf disabled, use postscript and ps2pdf .PHONY: pdf pdf: gsl-1.16/doc/rand-bernoulli.tex0000664000252300025230000004565312171574312013373 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-bernoulli.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-bernoulli.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -63 V 1452 63 R 0 -31 V 1453 31 R 0 -63 V 1452 63 R 0 -31 V 1452 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 1925 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 3052 1925 L 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 1725 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 5073 3650 L 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.7$}}% \put(3955,5244){\cjust{\strut{}Bernoulli Trial}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(5408,400){\cjust{\strut{}1}}% \put(2503,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/integration.texi0000664000252300025230000011026112171574312013136 00000000000000@cindex quadrature @cindex numerical integration (quadrature) @cindex integration, numerical (quadrature) @cindex QUADPACK This chapter describes routines for performing numerical integration (quadrature) of a function in one dimension. There are routines for adaptive and non-adaptive integration of general functions, with specialised routines for specific cases. These include integration over infinite and semi-infinite ranges, singular integrals, including logarithmic singularities, computation of Cauchy principal values and oscillatory integrals. The library reimplements the algorithms used in @sc{quadpack}, a numerical integration package written by Piessens, de Doncker-Kapenga, Ueberhuber and Kahaner. Fortran code for @sc{quadpack} is available on Netlib. Also included are non-adaptive, fixed-order Gauss-Legendre integration routines with high precision coefficients by Pavel Holoborodko. The functions described in this chapter are declared in the header file @file{gsl_integration.h}. @menu * Numerical Integration Introduction:: * QNG non-adaptive Gauss-Kronrod integration:: * QAG adaptive integration:: * QAGS adaptive integration with singularities:: * QAGP adaptive integration with known singular points:: * QAGI adaptive integration on infinite intervals:: * QAWC adaptive integration for Cauchy principal values:: * QAWS adaptive integration for singular functions:: * QAWO adaptive integration for oscillatory functions:: * QAWF adaptive integration for Fourier integrals:: * CQUAD doubly-adaptive integration:: * Fixed order Gauss-Legendre integration:: * Numerical integration error codes:: * Numerical integration examples:: * Numerical integration References and Further Reading:: @end menu @node Numerical Integration Introduction @section Introduction Each algorithm computes an approximation to a definite integral of the form, @tex \beforedisplay $$ I = \int_a^b f(x) w(x) \,dx $$ \afterdisplay @end tex @ifinfo @example I = \int_a^b f(x) w(x) dx @end example @end ifinfo @noindent where @math{w(x)} is a weight function (for general integrands @math{w(x)=1}). The user provides absolute and relative error bounds @c{$(\hbox{\it epsabs}, \hbox{\it epsrel}\,)$} @math{(epsabs, epsrel)} which specify the following accuracy requirement, @tex \beforedisplay $$ |\hbox{\it RESULT} - I| \leq \max(\hbox{\it epsabs}, \hbox{\it epsrel}\, |I|) $$ \afterdisplay @end tex @ifinfo @example |RESULT - I| <= max(epsabs, epsrel |I|) @end example @end ifinfo @noindent where @c{$\hbox{\it RESULT}$} @math{RESULT} is the numerical approximation obtained by the algorithm. The algorithms attempt to estimate the absolute error @c{$\hbox{\it ABSERR} = |\hbox{\it RESULT} - I|$} @math{ABSERR = |RESULT - I|} in such a way that the following inequality holds, @tex \beforedisplay $$ |\hbox{\it RESULT} - I| \leq \hbox{\it ABSERR} \leq \max(\hbox{\it epsabs}, \hbox{\it epsrel}\,|I|) $$ \afterdisplay @end tex @ifinfo @example |RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|) @end example @end ifinfo @noindent In short, the routines return the first approximation which has an absolute error smaller than @c{$\hbox{\it epsabs}$} @math{epsabs} or a relative error smaller than @c{$\hbox{\it epsrel}$} @math{epsrel}. Note that this is an @i{either-or} constraint, not simultaneous. To compute to a specified absolute error, set @c{$\hbox{\it epsrel}$} @math{epsrel} to zero. To compute to a specified relative error, set @c{$\hbox{\it epsabs}$} @math{epsabs} to zero. The routines will fail to converge if the error bounds are too stringent, but always return the best approximation obtained up to that stage. The algorithms in @sc{quadpack} use a naming convention based on the following letters, @display @code{Q} - quadrature routine @code{N} - non-adaptive integrator @code{A} - adaptive integrator @code{G} - general integrand (user-defined) @code{W} - weight function with integrand @code{S} - singularities can be more readily integrated @code{P} - points of special difficulty can be supplied @code{I} - infinite range of integration @code{O} - oscillatory weight function, cos or sin @code{F} - Fourier integral @code{C} - Cauchy principal value @end display @noindent The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order rule. The higher order rule is used to compute the best approximation to an integral over a small range. The difference between the results of the higher order rule and the lower order rule gives an estimate of the error in the approximation. @menu * Integrands without weight functions:: * Integrands with weight functions:: * Integrands with singular weight functions:: @end menu @node Integrands without weight functions @subsection Integrands without weight functions @cindex Gauss-Kronrod quadrature The algorithms for general functions (without a weight function) are based on Gauss-Kronrod rules. A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of order @math{m}. This is extended with additional points between each of the abscissae to give a higher order Kronrod rule of order @math{2m+1}. The Kronrod rule is efficient because it reuses existing function evaluations from the Gaussian rule. The higher order Kronrod rule is used as the best approximation to the integral, and the difference between the two rules is used as an estimate of the error in the approximation. @node Integrands with weight functions @subsection Integrands with weight functions @cindex Clenshaw-Curtis quadrature @cindex Modified Clenshaw-Curtis quadrature For integrands with weight functions the algorithms use Clenshaw-Curtis quadrature rules. A Clenshaw-Curtis rule begins with an @math{n}-th order Chebyshev polynomial approximation to the integrand. This polynomial can be integrated exactly to give an approximation to the integral of the original function. The Chebyshev expansion can be extended to higher orders to improve the approximation and provide an estimate of the error. @node Integrands with singular weight functions @subsection Integrands with singular weight functions The presence of singularities (or other behavior) in the integrand can cause slow convergence in the Chebyshev approximation. The modified Clenshaw-Curtis rules used in @sc{quadpack} separate out several common weight functions which cause slow convergence. These weight functions are integrated analytically against the Chebyshev polynomials to precompute @dfn{modified Chebyshev moments}. Combining the moments with the Chebyshev approximation to the function gives the desired integral. The use of analytic integration for the singular part of the function allows exact cancellations and substantially improves the overall convergence behavior of the integration. @node QNG non-adaptive Gauss-Kronrod integration @section QNG non-adaptive Gauss-Kronrod integration @cindex QNG quadrature algorithm The QNG algorithm is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the integrand at a maximum of 87 points. It is provided for fast integration of smooth functions. @deftypefun int gsl_integration_qng (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, double * @var{result}, double * @var{abserr}, size_t * @var{neval}) This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession until an estimate of the integral of @math{f} over @math{(a,b)} is achieved within the desired absolute and relative error limits, @var{epsabs} and @var{epsrel}. The function returns the final approximation, @var{result}, an estimate of the absolute error, @var{abserr} and the number of function evaluations used, @var{neval}. The Gauss-Kronrod rules are designed in such a way that each rule uses all the results of its predecessors, in order to minimize the total number of function evaluations. @end deftypefun @node QAG adaptive integration @section QAG adaptive integration @cindex QAG quadrature algorithm The QAG algorithm is a simple adaptive integration procedure. The integration region is divided into subintervals, and on each iteration the subinterval with the largest estimated error is bisected. This reduces the overall error rapidly, as the subintervals become concentrated around local difficulties in the integrand. These subintervals are managed by a @code{gsl_integration_workspace} struct, which handles the memory for the subinterval ranges, results and error estimates. @deftypefun {gsl_integration_workspace *} gsl_integration_workspace_alloc (size_t @var{n}) @tpindex gsl_integration_workspace This function allocates a workspace sufficient to hold @var{n} double precision intervals, their integration results and error estimates. One workspace may be used multiple times as all necessary reinitialization is performed automatically by the integration routines. @end deftypefun @deftypefun void gsl_integration_workspace_free (gsl_integration_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_integration_qag (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, int @var{key}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function applies an integration rule adaptively until an estimate of the integral of @math{f} over @math{(a,b)} is achieved within the desired absolute and relative error limits, @var{epsabs} and @var{epsrel}. The function returns the final approximation, @var{result}, and an estimate of the absolute error, @var{abserr}. The integration rule is determined by the value of @var{key}, which should be chosen from the following symbolic names, @example GSL_INTEG_GAUSS15 (key = 1) GSL_INTEG_GAUSS21 (key = 2) GSL_INTEG_GAUSS31 (key = 3) GSL_INTEG_GAUSS41 (key = 4) GSL_INTEG_GAUSS51 (key = 5) GSL_INTEG_GAUSS61 (key = 6) @end example @noindent corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules. The higher-order rules give better accuracy for smooth functions, while lower-order rules save time when the function contains local difficulties, such as discontinuities. On each iteration the adaptive integration strategy bisects the interval with the largest error estimate. The subintervals and their results are stored in the memory provided by @var{workspace}. The maximum number of subintervals is given by @var{limit}, which may not exceed the allocated size of the workspace. @end deftypefun @node QAGS adaptive integration with singularities @section QAGS adaptive integration with singularities @cindex QAGS quadrature algorithm The presence of an integrable singularity in the integration region causes an adaptive routine to concentrate new subintervals around the singularity. As the subintervals decrease in size the successive approximations to the integral converge in a limiting fashion. This approach to the limit can be accelerated using an extrapolation procedure. The QAGS algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed up the integration of many types of integrable singularities. @deftypefun int gsl_integration_qags (const gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate of the integral of @math{f} over @math{(a,b)} is achieved within the desired absolute and relative error limits, @var{epsabs} and @var{epsrel}. The results are extrapolated using the epsilon-algorithm, which accelerates the convergence of the integral in the presence of discontinuities and integrable singularities. The function returns the final approximation from the extrapolation, @var{result}, and an estimate of the absolute error, @var{abserr}. The subintervals and their results are stored in the memory provided by @var{workspace}. The maximum number of subintervals is given by @var{limit}, which may not exceed the allocated size of the workspace. @end deftypefun @node QAGP adaptive integration with known singular points @section QAGP adaptive integration with known singular points @cindex QAGP quadrature algorithm @cindex singular points, specifying positions in quadrature @deftypefun int gsl_integration_qagp (const gsl_function * @var{f}, double * @var{pts}, size_t @var{npts}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function applies the adaptive integration algorithm QAGS taking account of the user-supplied locations of singular points. The array @var{pts} of length @var{npts} should contain the endpoints of the integration ranges defined by the integration region and locations of the singularities. For example, to integrate over the region @math{(a,b)} with break-points at @math{x_1, x_2, x_3} (where @math{a < x_1 < x_2 < x_3 < b}) the following @var{pts} array should be used @example pts[0] = a pts[1] = x_1 pts[2] = x_2 pts[3] = x_3 pts[4] = b @end example @noindent with @var{npts} = 5. @noindent If you know the locations of the singular points in the integration region then this routine will be faster than @code{QAGS}. @end deftypefun @node QAGI adaptive integration on infinite intervals @section QAGI adaptive integration on infinite intervals @cindex QAGI quadrature algorithm @deftypefun int gsl_integration_qagi (gsl_function * @var{f}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function computes the integral of the function @var{f} over the infinite interval @math{(-\infty,+\infty)}. The integral is mapped onto the semi-open interval @math{(0,1]} using the transformation @math{x = (1-t)/t}, @tex \beforedisplay $$ \int_{-\infty}^{+\infty} dx \, f(x) = \int_0^1 dt \, (f((1-t)/t) + f(-(1-t)/t))/t^2. $$ \afterdisplay @end tex @ifinfo @example \int_@{-\infty@}^@{+\infty@} dx f(x) = \int_0^1 dt (f((1-t)/t) + f((-1+t)/t))/t^2. @end example @end ifinfo @noindent It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the transformation can generate an integrable singularity at the origin. In this case a lower-order rule is more efficient. @end deftypefun @deftypefun int gsl_integration_qagiu (gsl_function * @var{f}, double @var{a}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function computes the integral of the function @var{f} over the semi-infinite interval @math{(a,+\infty)}. The integral is mapped onto the semi-open interval @math{(0,1]} using the transformation @math{x = a + (1-t)/t}, @tex \beforedisplay $$ \int_{a}^{+\infty} dx \, f(x) = \int_0^1 dt \, f(a + (1-t)/t)/t^2 $$ \afterdisplay @end tex @ifinfo @example \int_@{a@}^@{+\infty@} dx f(x) = \int_0^1 dt f(a + (1-t)/t)/t^2 @end example @end ifinfo @noindent and then integrated using the QAGS algorithm. @end deftypefun @deftypefun int gsl_integration_qagil (gsl_function * @var{f}, double @var{b}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function computes the integral of the function @var{f} over the semi-infinite interval @math{(-\infty,b)}. The integral is mapped onto the semi-open interval @math{(0,1]} using the transformation @math{x = b - (1-t)/t}, @tex \beforedisplay $$ \int_{-\infty}^{b} dx \, f(x) = \int_0^1 dt \, f(b - (1-t)/t)/t^2 $$ \afterdisplay @end tex @ifinfo @example \int_@{-\infty@}^@{b@} dx f(x) = \int_0^1 dt f(b - (1-t)/t)/t^2 @end example @end ifinfo @noindent and then integrated using the QAGS algorithm. @end deftypefun @node QAWC adaptive integration for Cauchy principal values @section QAWC adaptive integration for Cauchy principal values @cindex QAWC quadrature algorithm @cindex Cauchy principal value, by numerical quadrature @deftypefun int gsl_integration_qawc (gsl_function * @var{f}, double @var{a}, double @var{b}, double @var{c}, double @var{epsabs}, double @var{epsrel}, size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function computes the Cauchy principal value of the integral of @math{f} over @math{(a,b)}, with a singularity at @var{c}, @tex \beforedisplay $$ I = \int_a^b dx\, {f(x) \over x - c} = \lim_{\epsilon \to 0} \left\{ \int_a^{c-\epsilon} dx\, {f(x) \over x - c} + \int_{c+\epsilon}^b dx\, {f(x) \over x - c} \right\} $$ \afterdisplay @end tex @ifinfo @example I = \int_a^b dx f(x) / (x - c) @end example @end ifinfo @noindent The adaptive bisection algorithm of QAG is used, with modifications to ensure that subdivisions do not occur at the singular point @math{x = c}. When a subinterval contains the point @math{x = c} or is close to it then a special 25-point modified Clenshaw-Curtis rule is used to control the singularity. Further away from the singularity the algorithm uses an ordinary 15-point Gauss-Kronrod integration rule. @end deftypefun @node QAWS adaptive integration for singular functions @section QAWS adaptive integration for singular functions @cindex QAWS quadrature algorithm @cindex singular functions, numerical integration of The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities at the end-points of an integration region. In order to work efficiently the algorithm requires a precomputed table of Chebyshev moments. @deftypefun {gsl_integration_qaws_table *} gsl_integration_qaws_table_alloc (double @var{alpha}, double @var{beta}, int @var{mu}, int @var{nu}) @tpindex gsl_integration_qaws_table This function allocates space for a @code{gsl_integration_qaws_table} struct describing a singular weight function @math{W(x)} with the parameters @math{(\alpha, \beta, \mu, \nu)}, @tex \beforedisplay $$ W(x) = (x - a)^\alpha (b - x)^\beta \log^\mu (x - a) \log^\nu (b - x) $$ \afterdisplay @end tex @ifinfo @example W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x) @end example @end ifinfo @noindent where @math{\alpha > -1}, @math{\beta > -1}, and @math{\mu = 0, 1}, @math{\nu = 0, 1}. The weight function can take four different forms depending on the values of @math{\mu} and @math{\nu}, @tex \beforedisplay $$ \matrix{ W(x) = (x - a)^\alpha (b - x)^\beta \hfill~ (\mu = 0, \nu = 0) \cr W(x) = (x - a)^\alpha (b - x)^\beta \log(x - a) \hfill~ (\mu = 1, \nu = 0) \cr W(x) = (x - a)^\alpha (b - x)^\beta \log(b - x) \hfill~ (\mu = 0, \nu = 1) \cr W(x) = (x - a)^\alpha (b - x)^\beta \log(x - a) \log(b - x) \hfill~ (\mu = 1, \nu = 1) } $$ \afterdisplay @end tex @ifinfo @example W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0) W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0) W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1) W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1) @end example @end ifinfo @noindent The singular points @math{(a,b)} do not have to be specified until the integral is computed, where they are the endpoints of the integration range. The function returns a pointer to the newly allocated table @code{gsl_integration_qaws_table} if no errors were detected, and 0 in the case of error. @end deftypefun @deftypefun int gsl_integration_qaws_table_set (gsl_integration_qaws_table * @var{t}, double @var{alpha}, double @var{beta}, int @var{mu}, int @var{nu}) This function modifies the parameters @math{(\alpha, \beta, \mu, \nu)} of an existing @code{gsl_integration_qaws_table} struct @var{t}. @end deftypefun @deftypefun void gsl_integration_qaws_table_free (gsl_integration_qaws_table * @var{t}) This function frees all the memory associated with the @code{gsl_integration_qaws_table} struct @var{t}. @end deftypefun @deftypefun int gsl_integration_qaws (gsl_function * @var{f}, const double @var{a}, const double @var{b}, gsl_integration_qaws_table * @var{t}, const double @var{epsabs}, const double @var{epsrel}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, double * @var{result}, double * @var{abserr}) This function computes the integral of the function @math{f(x)} over the interval @math{(a,b)} with the singular weight function @math{(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x)}. The parameters of the weight function @math{(\alpha, \beta, \mu, \nu)} are taken from the table @var{t}. The integral is, @tex \beforedisplay $$ I = \int_a^b dx\, f(x) (x - a)^\alpha (b - x)^\beta \log^\mu (x - a) \log^\nu (b - x). $$ \afterdisplay @end tex @ifinfo @example I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x). @end example @end ifinfo @noindent The adaptive bisection algorithm of QAG is used. When a subinterval contains one of the endpoints then a special 25-point modified Clenshaw-Curtis rule is used to control the singularities. For subintervals which do not include the endpoints an ordinary 15-point Gauss-Kronrod integration rule is used. @end deftypefun @node QAWO adaptive integration for oscillatory functions @section QAWO adaptive integration for oscillatory functions @cindex QAWO quadrature algorithm @cindex oscillatory functions, numerical integration of The QAWO algorithm is designed for integrands with an oscillatory factor, @math{\sin(\omega x)} or @math{\cos(\omega x)}. In order to work efficiently the algorithm requires a table of Chebyshev moments which must be pre-computed with calls to the functions below. @deftypefun {gsl_integration_qawo_table *} gsl_integration_qawo_table_alloc (double @var{omega}, double @var{L}, enum gsl_integration_qawo_enum @var{sine}, size_t @var{n}) @tpindex gsl_integration_qawo_table This function allocates space for a @code{gsl_integration_qawo_table} struct and its associated workspace describing a sine or cosine weight function @math{W(x)} with the parameters @math{(\omega, L)}, @tex \beforedisplay $$ \eqalign{ W(x) & = \left\{\matrix{\sin(\omega x) \cr \cos(\omega x)} \right\} } $$ \afterdisplay @end tex @ifinfo @example W(x) = sin(omega x) W(x) = cos(omega x) @end example @end ifinfo @noindent The parameter @var{L} must be the length of the interval over which the function will be integrated @math{L = b - a}. The choice of sine or cosine is made with the parameter @var{sine} which should be chosen from one of the two following symbolic values: @example GSL_INTEG_COSINE GSL_INTEG_SINE @end example @noindent The @code{gsl_integration_qawo_table} is a table of the trigonometric coefficients required in the integration process. The parameter @var{n} determines the number of levels of coefficients that are computed. Each level corresponds to one bisection of the interval @math{L}, so that @var{n} levels are sufficient for subintervals down to the length @math{L/2^n}. The integration routine @code{gsl_integration_qawo} returns the error @code{GSL_ETABLE} if the number of levels is insufficient for the requested accuracy. @end deftypefun @deftypefun int gsl_integration_qawo_table_set (gsl_integration_qawo_table * @var{t}, double @var{omega}, double @var{L}, enum gsl_integration_qawo_enum @var{sine}) This function changes the parameters @var{omega}, @var{L} and @var{sine} of the existing workspace @var{t}. @end deftypefun @deftypefun int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * @var{t}, double @var{L}) This function allows the length parameter @var{L} of the workspace @var{t} to be changed. @end deftypefun @deftypefun void gsl_integration_qawo_table_free (gsl_integration_qawo_table * @var{t}) This function frees all the memory associated with the workspace @var{t}. @end deftypefun @deftypefun int gsl_integration_qawo (gsl_function * @var{f}, const double @var{a}, const double @var{epsabs}, const double @var{epsrel}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, gsl_integration_qawo_table * @var{wf}, double * @var{result}, double * @var{abserr}) This function uses an adaptive algorithm to compute the integral of @math{f} over @math{(a,b)} with the weight function @math{\sin(\omega x)} or @math{\cos(\omega x)} defined by the table @var{wf}, @tex \beforedisplay $$ \eqalign{ I & = \int_a^b dx\, f(x) \left\{ \matrix{\sin(\omega x) \cr \cos(\omega x)}\right\} } $$ \afterdisplay @end tex @ifinfo @example I = \int_a^b dx f(x) sin(omega x) I = \int_a^b dx f(x) cos(omega x) @end example @end ifinfo @noindent The results are extrapolated using the epsilon-algorithm to accelerate the convergence of the integral. The function returns the final approximation from the extrapolation, @var{result}, and an estimate of the absolute error, @var{abserr}. The subintervals and their results are stored in the memory provided by @var{workspace}. The maximum number of subintervals is given by @var{limit}, which may not exceed the allocated size of the workspace. Those subintervals with ``large'' widths @math{d} where @math{d\omega > 4} are computed using a 25-point Clenshaw-Curtis integration rule, which handles the oscillatory behavior. Subintervals with a ``small'' widths where @math{d\omega < 4} are computed using a 15-point Gauss-Kronrod integration. @end deftypefun @node QAWF adaptive integration for Fourier integrals @section QAWF adaptive integration for Fourier integrals @cindex QAWF quadrature algorithm @cindex Fourier integrals, numerical @deftypefun int gsl_integration_qawf (gsl_function * @var{f}, const double @var{a}, const double @var{epsabs}, const size_t @var{limit}, gsl_integration_workspace * @var{workspace}, gsl_integration_workspace * @var{cycle_workspace}, gsl_integration_qawo_table * @var{wf}, double * @var{result}, double * @var{abserr}) This function attempts to compute a Fourier integral of the function @var{f} over the semi-infinite interval @math{[a,+\infty)}. @tex \beforedisplay $$ \eqalign{ I & = \int_a^{+\infty} dx\, f(x) \left\{ \matrix{ \sin(\omega x) \cr \cos(\omega x) } \right\} } $$ \afterdisplay @end tex @ifinfo @example I = \int_a^@{+\infty@} dx f(x) sin(omega x) I = \int_a^@{+\infty@} dx f(x) cos(omega x) @end example @end ifinfo The parameter @math{\omega} and choice of @math{\sin} or @math{\cos} is taken from the table @var{wf} (the length @var{L} can take any value, since it is overridden by this function to a value appropriate for the Fourier integration). The integral is computed using the QAWO algorithm over each of the subintervals, @tex \beforedisplay $$ \eqalign{ C_1 & = [a, a + c] \cr C_2 & = [a + c, a + 2c] \cr \dots & = \dots \cr C_k & = [a + (k-1) c, a + k c] } $$ \afterdisplay @end tex @ifinfo @example C_1 = [a, a + c] C_2 = [a + c, a + 2 c] ... = ... C_k = [a + (k-1) c, a + k c] @end example @end ifinfo @noindent where @c{$c = (2 \,\hbox{floor}(|\omega|) + 1) \pi/|\omega|$} @math{c = (2 floor(|\omega|) + 1) \pi/|\omega|}. The width @math{c} is chosen to cover an odd number of periods so that the contributions from the intervals alternate in sign and are monotonically decreasing when @var{f} is positive and monotonically decreasing. The sum of this sequence of contributions is accelerated using the epsilon-algorithm. This function works to an overall absolute tolerance of @var{abserr}. The following strategy is used: on each interval @math{C_k} the algorithm tries to achieve the tolerance @tex \beforedisplay $$ TOL_k = u_k \hbox{\it abserr} $$ \afterdisplay @end tex @ifinfo @example TOL_k = u_k abserr @end example @end ifinfo @noindent where @c{$u_k = (1 - p)p^{k-1}$} @math{u_k = (1 - p)p^@{k-1@}} and @math{p = 9/10}. The sum of the geometric series of contributions from each interval gives an overall tolerance of @var{abserr}. If the integration of a subinterval leads to difficulties then the accuracy requirement for subsequent intervals is relaxed, @tex \beforedisplay $$ TOL_k = u_k \max(\hbox{\it abserr}, \max_{in - 1]}, this function obtains the @var{i}-th Gauss-Legendre point @var{xi} and weight @var{wi} on the interval [@var{a},@var{b}]. The points and weights are ordered by increasing point value. A function @math{f} may be integrated on [@var{a},@var{b}] by summing @math{wi * f(xi)} over @var{i}. @end deftypefun @deftypefun void gsl_integration_glfixed_table_free ({gsl_integration_glfixed_table *} @var{t}) @tpindex gsl_integration_glfixed_table This function frees the memory associated with the table @var{t}. @end deftypefun @node Numerical integration error codes @section Error codes In addition to the standard error codes for invalid arguments the functions can return the following values, @table @code @item GSL_EMAXITER the maximum number of subdivisions was exceeded. @item GSL_EROUND cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapolation table. @item GSL_ESING a non-integrable singularity or other bad integrand behavior was found in the integration interval. @item GSL_EDIVERGE the integral is divergent, or too slowly convergent to be integrated numerically. @end table @node Numerical integration examples @section Examples The integrator @code{QAGS} will handle a large class of definite integrals. For example, consider the following integral, which has an algebraic-logarithmic singularity at the origin, @tex \beforedisplay $$ \int_0^1 x^{-1/2} \log(x) \,dx = -4 $$ \afterdisplay @end tex @ifinfo @example \int_0^1 x^@{-1/2@} log(x) dx = -4 @end example @end ifinfo @noindent The program below computes this integral to a relative accuracy bound of @code{1e-7}. @example @verbatiminclude examples/integration.c @end example @noindent The results below show that the desired accuracy is achieved after 8 subdivisions. @example $ ./a.out @verbatiminclude examples/integration.out @end example @noindent In fact, the extrapolation procedure used by @code{QAGS} produces an accuracy of almost twice as many digits. The error estimate returned by the extrapolation procedure is larger than the actual error, giving a margin of safety of one order of magnitude. @node Numerical integration References and Further Reading @section References and Further Reading The following book is the definitive reference for @sc{quadpack}, and was written by the original authors. It provides descriptions of the algorithms, program listings, test programs and examples. It also includes useful advice on numerical integration and many references to the numerical integration literature used in developing @sc{quadpack}. @itemize @w{} @item R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, D.K. Kahaner. @cite{@sc{quadpack} A subroutine package for automatic integration} Springer Verlag, 1983. @end itemize @noindent The @sc{cquad} integration algorithm is described in the following paper: @itemize @w{} @item P. Gonnet, ``Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants'', @cite{ACM Transactions on Mathematical Software}, Volume 37 (2010), Issue 3, Article 26. @end itemize gsl-1.16/doc/vdp.eps0000664000252300025230000005145012171574312011226 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: vdp.eps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Mon Jun 11 17:56:56 2001 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 336 739 M 63 0 V 6633 0 R -63 0 V 252 739 M (-4) Rshow 336 1658 M 63 0 V 6633 0 R -63 0 V -6717 0 R (-2) Rshow 336 2576 M 63 0 V 6633 0 R -63 0 V -6717 0 R (0) Rshow 336 3494 M 63 0 V 6633 0 R -63 0 V -6717 0 R (2) Rshow 336 4413 M 63 0 V 6633 0 R -63 0 V -6717 0 R (4) Rshow 336 280 M 0 63 V 0 4529 R 0 -63 V 336 140 M (0) Cshow 1006 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (10) Cshow 1675 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (20) Cshow 2345 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (30) Cshow 3014 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (40) Cshow 3684 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (50) Cshow 4354 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (60) Cshow 5023 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (70) Cshow 5693 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (80) Cshow 6362 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (90) Cshow 7032 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (100) Cshow 1.000 UL LTb 336 280 M 6696 0 V 0 4592 V -6696 0 V 336 280 L 1.000 UP 1.000 UL LT0 336 3035 Pls 336 3035 Pls 336 3035 Pls 336 3035 Pls 336 3035 Pls 336 3035 Pls 337 3035 Pls 343 3033 Pls 361 3002 Pls 371 2964 Pls 379 2914 Pls 385 2845 Pls 390 2743 Pls 393 2642 Pls 396 2508 Pls 399 2310 Pls 400 2140 Pls 402 1961 Pls 404 1832 Pls 406 1746 Pls 407 1698 Pls 409 1672 Pls 411 1660 Pls 413 1655 Pls 415 1654 Pls 418 1654 Pls 420 1655 Pls 424 1656 Pls 427 1658 Pls 432 1660 Pls 437 1662 Pls 444 1665 Pls 452 1669 Pls 463 1674 Pls 473 1679 Pls 483 1684 Pls 494 1689 Pls 504 1694 Pls 515 1699 Pls 525 1705 Pls 536 1710 Pls 546 1715 Pls 557 1721 Pls 568 1726 Pls 578 1732 Pls 589 1738 Pls 600 1744 Pls 611 1750 Pls 623 1756 Pls 634 1762 Pls 645 1769 Pls 657 1775 Pls 668 1782 Pls 680 1789 Pls 692 1796 Pls 704 1804 Pls 716 1811 Pls 728 1819 Pls 740 1827 Pls 753 1836 Pls 766 1845 Pls 779 1854 Pls 792 1864 Pls 805 1874 Pls 819 1885 Pls 833 1896 Pls 847 1908 Pls 862 1922 Pls 877 1936 Pls 892 1952 Pls 908 1969 Pls 925 1990 Pls 943 2015 Pls 962 2047 Pls 984 2095 Pls 998 2143 Pls 1007 2191 Pls 1014 2250 Pls 1020 2333 Pls 1024 2429 Pls 1027 2541 Pls 1029 2691 Pls 1032 2903 Pls 1034 3077 Pls 1036 3242 Pls 1037 3365 Pls 1039 3431 Pls 1041 3468 Pls 1042 3488 Pls 1044 3497 Pls 1046 3500 Pls 1049 3501 Pls 1051 3500 Pls 1054 3499 Pls 1057 3498 Pls 1061 3496 Pls 1066 3494 Pls 1072 3492 Pls 1079 3488 Pls 1089 3484 Pls 1099 3479 Pls 1109 3474 Pls 1119 3469 Pls 1130 3464 Pls 1140 3459 Pls 1150 3454 Pls 1161 3449 Pls 1171 3444 Pls 1182 3438 Pls 1193 3433 Pls 1203 3427 Pls 1214 3422 Pls 1225 3416 Pls 1236 3410 Pls 1247 3404 Pls 1258 3398 Pls 1269 3392 Pls 1281 3385 Pls 1292 3379 Pls 1304 3372 Pls 1315 3365 Pls 1327 3358 Pls 1339 3350 Pls 1351 3343 Pls 1363 3335 Pls 1376 3327 Pls 1388 3318 Pls 1401 3310 Pls 1414 3301 Pls 1427 3291 Pls 1440 3281 Pls 1454 3270 Pls 1468 3259 Pls 1482 3247 Pls 1496 3234 Pls 1511 3220 Pls 1526 3205 Pls 1542 3188 Pls 1559 3168 Pls 1576 3145 Pls 1595 3115 Pls 1616 3073 Pls 1634 3020 Pls 1643 2974 Pls 1651 2919 Pls 1657 2845 Pls 1662 2744 Pls 1665 2639 Pls 1667 2501 Pls 1670 2301 Pls 1672 2129 Pls 1674 1952 Pls 1675 1825 Pls 1677 1741 Pls 1679 1694 Pls 1681 1669 Pls 1682 1657 Pls 1684 1653 Pls 1687 1651 Pls 1689 1651 Pls 1692 1652 Pls 1695 1654 Pls 1699 1655 Pls 1703 1657 Pls 1708 1660 Pls 1715 1663 Pls 1724 1667 Pls 1734 1671 Pls 1744 1676 Pls 1755 1681 Pls 1765 1686 Pls 1775 1691 Pls 1786 1696 Pls 1796 1701 Pls 1807 1707 Pls 1817 1712 Pls 1828 1717 Pls 1838 1723 Pls 1849 1728 Pls 1860 1734 Pls 1871 1740 Pls 1882 1746 Pls 1893 1752 Pls 1904 1758 Pls 1916 1765 Pls 1927 1771 Pls 1938 1778 Pls 1950 1785 Pls 1962 1792 Pls 1974 1799 Pls 1986 1807 Pls 1998 1814 Pls 2010 1822 Pls 2023 1831 Pls 2035 1839 Pls 2048 1848 Pls 2061 1858 Pls 2074 1868 Pls 2088 1878 Pls 2101 1889 Pls 2116 1901 Pls 2130 1913 Pls 2145 1927 Pls 2160 1942 Pls 2176 1958 Pls 2192 1977 Pls 2209 1999 Pls 2227 2026 Pls 2247 2062 Pls 2270 2122 Pls 2279 2164 Pls 2288 2216 Pls 2294 2283 Pls 2301 2415 Pls 2304 2516 Pls 2306 2656 Pls 2309 2858 Pls 2311 3029 Pls 2313 3205 Pls 2314 3331 Pls 2316 3414 Pls 2318 3460 Pls 2319 3484 Pls 2321 3495 Pls 2323 3500 Pls 2325 3501 Pls 2328 3501 Pls 2331 3500 Pls 2334 3498 Pls 2338 3497 Pls 2342 3495 Pls 2347 3492 Pls 2354 3489 Pls 2363 3485 Pls 2373 3480 Pls 2383 3476 Pls 2394 3471 Pls 2404 3466 Pls 2414 3461 Pls 2425 3456 Pls 2435 3451 Pls 2446 3445 Pls 2456 3440 Pls 2467 3435 Pls 2477 3429 Pls 2488 3423 Pls 2499 3418 Pls 2510 3412 Pls 2521 3406 Pls 2532 3400 Pls 2543 3394 Pls 2555 3387 Pls 2566 3381 Pls 2577 3374 Pls 2589 3367 Pls 2601 3360 Pls 2613 3353 Pls 2625 3345 Pls 2637 3337 Pls 2649 3329 Pls 2662 3321 Pls 2674 3312 Pls 2687 3303 Pls 2700 3294 Pls 2713 3284 Pls 2727 3274 Pls 2741 3263 Pls 2755 3251 Pls 2769 3238 Pls 2784 3225 Pls 2799 3210 Pls 2815 3194 Pls 2831 3175 Pls 2848 3153 Pls 2867 3126 Pls 2887 3089 Pls 2909 3027 Pls 2919 2987 Pls 2927 2934 Pls 2933 2866 Pls 2940 2732 Pls 2942 2630 Pls 2945 2488 Pls 2948 2283 Pls 2950 2111 Pls 2951 1938 Pls 2953 1801 Pls 2955 1730 Pls 2957 1689 Pls 2958 1666 Pls 2960 1656 Pls 2962 1652 Pls 2965 1651 Pls 2967 1651 Pls 2970 1652 Pls 2973 1654 Pls 2977 1656 Pls 2982 1658 Pls 2987 1660 Pls 2994 1663 Pls 3004 1668 Pls 3014 1672 Pls 3024 1677 Pls 3034 1682 Pls 3044 1687 Pls 3055 1692 Pls 3065 1697 Pls 3075 1702 Pls 3086 1708 Pls 3096 1713 Pls 3107 1718 Pls 3118 1724 Pls 3129 1729 Pls 3139 1735 Pls 3150 1741 Pls 3161 1747 Pls 3173 1753 Pls 3184 1759 Pls 3195 1766 Pls 3206 1772 Pls 3218 1779 Pls 3230 1786 Pls 3241 1793 Pls 3253 1800 Pls 3265 1808 Pls 3277 1816 Pls 3290 1824 Pls 3302 1832 Pls 3315 1841 Pls 3328 1850 Pls 3341 1859 Pls 3354 1869 Pls 3368 1880 Pls 3381 1891 Pls 3396 1903 Pls 3410 1916 Pls 3425 1929 Pls 3440 1944 Pls 3456 1961 Pls 3472 1980 Pls 3490 2003 Pls 3508 2031 Pls 3529 2070 Pls 3548 2125 Pls 3558 2169 Pls 3566 2222 Pls 3572 2292 Pls 3578 2406 Pls 3581 2506 Pls 3583 2642 Pls 3586 2840 Pls 3588 3011 Pls 3590 3191 Pls 3592 3320 Pls 3593 3407 Pls 3595 3456 Pls 3597 3482 Pls 3599 3494 Pls 3600 3499 Pls 3603 3501 Pls 3605 3501 Pls 3608 3500 Pls 3611 3499 Pls 3615 3497 Pls 3619 3495 Pls 3624 3493 Pls 3630 3490 Pls 3639 3486 Pls 3649 3481 Pls 3660 3476 Pls 3670 3471 Pls 3681 3466 Pls 3691 3461 Pls 3702 3456 Pls 3712 3451 Pls 3723 3445 Pls 3733 3440 Pls 3744 3435 Pls 3755 3429 Pls 3765 3424 Pls 3776 3418 Pls 3787 3412 Pls 3798 3406 Pls 3809 3400 Pls 3821 3394 Pls 3832 3387 Pls 3843 3381 Pls 3855 3374 Pls 3866 3367 Pls 3878 3360 Pls 3890 3353 Pls 3902 3345 Pls 3914 3338 Pls 3926 3330 Pls 3939 3321 Pls 3951 3313 Pls 3964 3304 Pls 3977 3294 Pls 3991 3284 Pls 4004 3274 Pls 4018 3263 Pls 4032 3251 Pls 4046 3239 Pls 4061 3225 Pls 4076 3210 Pls 4092 3194 Pls 4108 3175 Pls 4125 3153 Pls 4144 3126 Pls 4164 3090 Pls 4186 3029 Pls 4196 2988 Pls 4204 2936 Pls 4210 2869 Pls 4217 2736 Pls 4220 2635 Pls 4222 2495 Pls 4225 2292 Pls 4227 2121 Pls 4229 1945 Pls 4231 1820 Pls 4232 1738 Pls 4234 1692 Pls 4236 1667 Pls 4238 1657 Pls 4240 1652 Pls 4242 1651 Pls 4244 1651 Pls 4247 1652 Pls 4250 1654 Pls 4254 1655 Pls 4258 1657 Pls 4264 1660 Pls 4270 1663 Pls 4279 1667 Pls 4290 1672 Pls 4300 1677 Pls 4310 1681 Pls 4320 1686 Pls 4331 1691 Pls 4341 1696 Pls 4351 1702 Pls 4362 1707 Pls 4373 1712 Pls 4383 1718 Pls 4394 1723 Pls 4405 1729 Pls 4415 1734 Pls 4426 1740 Pls 4437 1746 Pls 4448 1752 Pls 4460 1758 Pls 4471 1765 Pls 4482 1771 Pls 4494 1778 Pls 4506 1785 Pls 4517 1792 Pls 4529 1799 Pls 4541 1807 Pls 4553 1815 Pls 4566 1823 Pls 4578 1831 Pls 4591 1840 Pls 4604 1849 Pls 4617 1858 Pls 4630 1868 Pls 4643 1878 Pls 4657 1889 Pls 4671 1901 Pls 4685 1914 Pls 4700 1927 Pls 4715 1942 Pls 4731 1959 Pls 4748 1978 Pls 4765 2000 Pls 4783 2027 Pls 4803 2064 Pls 4826 2126 Pls 4835 2166 Pls 4843 2220 Pls 4849 2288 Pls 4856 2423 Pls 4859 2526 Pls 4861 2669 Pls 4864 2875 Pls 4866 3048 Pls 4868 3219 Pls 4870 3351 Pls 4871 3422 Pls 4873 3463 Pls 4875 3487 Pls 4877 3496 Pls 4879 3500 Pls 4881 3501 Pls 4883 3501 Pls 4886 3500 Pls 4890 3498 Pls 4893 3496 Pls 4898 3494 Pls 4903 3492 Pls 4910 3489 Pls 4920 3484 Pls 4930 3479 Pls 4940 3475 Pls 4950 3470 Pls 4961 3465 Pls 4971 3460 Pls 4981 3455 Pls 4992 3450 Pls 5002 3444 Pls 5013 3439 Pls 5024 3434 Pls 5034 3428 Pls 5045 3423 Pls 5056 3417 Pls 5067 3411 Pls 5078 3405 Pls 5089 3399 Pls 5100 3393 Pls 5111 3386 Pls 5123 3380 Pls 5134 3373 Pls 5146 3366 Pls 5158 3359 Pls 5170 3352 Pls 5182 3344 Pls 5194 3336 Pls 5206 3328 Pls 5219 3320 Pls 5231 3311 Pls 5244 3302 Pls 5257 3292 Pls 5271 3282 Pls 5284 3272 Pls 5298 3261 Pls 5312 3249 Pls 5326 3236 Pls 5341 3223 Pls 5357 3207 Pls 5372 3191 Pls 5389 3171 Pls 5406 3149 Pls 5425 3120 Pls 5445 3081 Pls 5464 3027 Pls 5474 2982 Pls 5482 2929 Pls 5488 2859 Pls 5494 2747 Pls 5497 2647 Pls 5500 2511 Pls 5502 2313 Pls 5504 2142 Pls 5506 1962 Pls 5508 1833 Pls 5509 1746 Pls 5511 1697 Pls 5513 1670 Pls 5515 1658 Pls 5517 1653 Pls 5519 1651 Pls 5521 1651 Pls 5524 1652 Pls 5527 1653 Pls 5531 1655 Pls 5535 1657 Pls 5540 1659 Pls 5547 1662 Pls 5555 1666 Pls 5566 1671 Pls 5576 1676 Pls 5587 1681 Pls 5597 1686 Pls 5608 1691 Pls 5618 1696 Pls 5629 1701 Pls 5639 1707 Pls 5650 1712 Pls 5660 1717 Pls 5671 1723 Pls 5682 1728 Pls 5693 1734 Pls 5704 1740 Pls 5715 1746 Pls 5726 1752 Pls 5737 1758 Pls 5748 1765 Pls 5760 1771 Pls 5771 1778 Pls 5783 1785 Pls 5794 1792 Pls 5806 1799 Pls 5818 1807 Pls 5830 1814 Pls 5843 1822 Pls 5855 1831 Pls 5868 1839 Pls 5881 1848 Pls 5894 1858 Pls 5907 1868 Pls 5920 1878 Pls 5934 1889 Pls 5948 1901 Pls 5963 1913 Pls 5977 1927 Pls 5993 1942 Pls 6008 1958 Pls 6025 1977 Pls 6042 1999 Pls 6060 2026 Pls 6080 2063 Pls 6103 2124 Pls 6112 2164 Pls 6120 2217 Pls 6127 2284 Pls 6133 2418 Pls 6136 2519 Pls 6139 2660 Pls 6141 2863 Pls 6143 3035 Pls 6145 3210 Pls 6147 3335 Pls 6148 3416 Pls 6150 3461 Pls 6152 3485 Pls 6154 3496 Pls 6156 3500 Pls 6158 3501 Pls 6161 3501 Pls 6163 3500 Pls 6167 3498 Pls 6170 3497 Pls 6175 3495 Pls 6180 3492 Pls 6187 3489 Pls 6196 3485 Pls 6206 3480 Pls 6217 3475 Pls 6227 3470 Pls 6237 3465 Pls 6247 3460 Pls 6258 3455 Pls 6268 3450 Pls 6279 3445 Pls 6289 3440 Pls 6300 3434 Pls 6310 3429 Pls 6321 3423 Pls 6332 3417 Pls 6343 3412 Pls 6354 3406 Pls 6365 3400 Pls 6376 3393 Pls 6388 3387 Pls 6399 3380 Pls 6411 3374 Pls 6422 3367 Pls 6434 3360 Pls 6446 3352 Pls 6458 3345 Pls 6470 3337 Pls 6482 3329 Pls 6495 3321 Pls 6507 3312 Pls 6520 3303 Pls 6533 3294 Pls 6547 3284 Pls 6560 3273 Pls 6574 3262 Pls 6588 3250 Pls 6602 3238 Pls 6617 3224 Pls 6632 3209 Pls 6648 3193 Pls 6664 3174 Pls 6682 3152 Pls 6700 3124 Pls 6720 3086 Pls 6743 3023 Pls 6752 2983 Pls 6760 2928 Pls 6766 2859 Pls 6772 2747 Pls 6775 2647 Pls 6777 2511 Pls 6780 2313 Pls 6782 2142 Pls 6784 1962 Pls 6785 1833 Pls 6787 1746 Pls 6789 1697 Pls 6790 1670 Pls 6792 1658 Pls 6794 1653 Pls 6796 1651 Pls 6799 1651 Pls 6801 1652 Pls 6805 1653 Pls 6808 1655 Pls 6812 1657 Pls 6818 1659 Pls 6824 1662 Pls 6833 1666 Pls 6843 1671 Pls 6854 1676 Pls 6864 1681 Pls 6875 1686 Pls 6885 1691 Pls 6896 1696 Pls 6906 1701 Pls 6917 1707 Pls 6927 1712 Pls 6938 1717 Pls 6949 1723 Pls 6959 1728 Pls 6970 1734 Pls 6981 1740 Pls 6992 1746 Pls 7003 1752 Pls 7014 1758 Pls 7026 1765 Pls 7032 1768 Pls stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/final-route.eps0000664000252300025230000050714012171574312012664 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Jan 4 10:56:46 2007 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 101 194 489 610 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 101 194 489 610 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3590 10017 3590 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3605 10017 3605 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 3502 10017 3487 9930 3487 10017 3707 10017 3707 9930 3693 10017 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3546 9710 3649 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3971 9973 3986 10017 3986 9930 3971 9973 3942 10003 3898 10017 3854 10017 3810 10003 3781 9973 3781 9944 3795 9915 3810 9900 3839 9886 3927 9856 3957 9842 3986 9812 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3781 9944 3810 9915 3839 9900 3927 9871 3957 9856 3971 9842 3986 9812 3986 9754 3957 9724 3913 9710 3869 9710 3825 9724 3795 9754 3781 9798 3781 9710 3795 9754 16 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4103 10017 4103 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4118 10017 4118 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4059 10017 4235 10017 4279 10003 4294 9988 4308 9959 4308 9915 4294 9886 4279 9871 4235 9856 4118 9856 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4235 10017 4264 10003 4279 9988 4294 9959 4294 9915 4279 9886 4264 9871 4235 9856 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4059 9710 4162 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4646 9842 4910 9842 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 5437 10003 5423 9988 5437 9973 5452 9988 5437 10003 5408 10017 5364 10017 5320 10003 5291 9973 5276 9930 5276 9710 11 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 5364 10017 5335 10003 5305 9973 5291 9930 5291 9710 5 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5437 9915 5437 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5452 9915 5452 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5232 9915 5452 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5232 9710 5335 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5393 9710 5496 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5599 9915 5599 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5613 9915 5613 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5613 9871 5643 9900 5687 9915 5716 9915 5760 9900 5775 9871 5775 9710 7 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5716 9915 5745 9900 5760 9871 5760 9710 4 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5555 9915 5613 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5555 9710 5657 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5716 9710 5819 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 5921 9886 5921 9871 5907 9871 5907 9886 5921 9900 5951 9915 6009 9915 6039 9900 6053 9886 6068 9856 6068 9754 6083 9724 6097 9710 13 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 6053 9886 6053 9754 6068 9724 6097 9710 6112 9710 5 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 6053 9856 6039 9842 5951 9827 5907 9812 5892 9783 5892 9754 5907 9724 5951 9710 5995 9710 6024 9724 6053 9754 11 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5951 9827 5921 9812 5907 9783 5907 9754 5921 9724 5951 9710 6 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6215 10017 6215 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6229 10017 6229 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6171 10017 6229 10017 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6171 9710 6273 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6361 9842 6625 9842 2 MLine End Begin %I Poly [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6845 9915 6889 9900 6918 9871 6933 9827 6933 9798 6918 9754 6889 9724 6845 9710 6816 9710 6772 9724 6742 9754 6728 9798 6728 9827 6742 9871 6772 9900 6816 9915 16 Poly End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6816 9915 6786 9900 6757 9871 6742 9827 6742 9798 6757 9754 6786 9724 6816 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6845 9710 6874 9724 6904 9754 6918 9798 6918 9827 6904 9871 6874 9900 6845 9915 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7050 9915 7050 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7065 9915 7065 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7065 9827 7080 9871 7109 9900 7138 9915 7182 9915 7197 9900 7197 9886 7182 9871 7168 9886 7182 9900 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7006 9915 7065 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7006 9710 7109 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7446 10017 7446 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7461 10017 7461 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 7446 9871 7417 9900 7387 9915 7358 9915 7314 9900 7285 9871 7270 9827 7270 9798 7285 9754 7314 9724 7358 9710 7387 9710 7417 9724 7446 9754 14 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7358 9915 7329 9900 7299 9871 7285 9827 7285 9798 7299 9754 7329 9724 7358 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7402 10017 7461 10017 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7446 9710 7505 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 7593 9827 7769 9827 7769 9856 7754 9886 7739 9900 7710 9915 7666 9915 7622 9900 7593 9871 7578 9827 7578 9798 7593 9754 7622 9724 7666 9710 7695 9710 7739 9724 7769 9754 17 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 7754 9827 7754 9871 7739 9900 3 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7666 9915 7637 9900 7607 9871 7593 9827 7593 9798 7607 9754 7637 9724 7666 9710 8 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7886 9915 7886 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7901 9915 7901 9710 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7901 9827 7915 9871 7945 9900 7974 9915 8018 9915 8033 9900 8033 9886 8018 9871 8003 9886 8018 9900 10 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7842 9915 7901 9915 2 MLine End Begin %I MLine [1.040989 0 0 1.040989 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7842 9710 7945 9710 2 MLine End Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2059 2097 2172 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2235 2147 2247 2153 2266 2172 2266 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2260 2166 2260 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2235 2040 2291 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2361 2147 2373 2153 2392 2172 2392 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2386 2166 2386 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2361 2040 2417 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2524 2159 2524 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2530 2172 2530 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2530 2172 2461 2078 2562 2078 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2505 2040 2549 2040 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2827 2097 2940 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3003 2147 3015 2153 3034 2172 3034 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3028 2166 3028 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3003 2040 3059 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3129 2147 3141 2153 3160 2172 3160 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3154 2166 3154 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3129 2040 3185 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 3242 2147 3248 2141 3242 2134 3235 2141 3235 2147 3242 2159 3248 2166 3267 2172 3292 2172 3311 2166 3317 2159 3323 2147 3323 2134 3317 2122 3298 2109 3267 2097 3254 2090 3242 2078 3235 2059 3235 2040 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3292 2172 3304 2166 3311 2159 3317 2147 3317 2134 3311 2122 3292 2109 3267 2097 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 3235 2053 3242 2059 3254 2059 3286 2046 3304 2046 3317 2053 3323 2059 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 3254 2059 3286 2040 3311 2040 3317 2046 3323 2059 3323 2072 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 9216 3072 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 2304 3072 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3595 2097 3708 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3771 2147 3783 2153 3802 2172 3802 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3796 2166 3796 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3771 2040 3827 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 3897 2147 3909 2153 3928 2172 3928 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3922 2166 3922 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3897 2040 3953 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4054 2172 4072 2166 4085 2147 4091 2115 4091 2097 4085 2065 4072 2046 4054 2040 4041 2040 4022 2046 4010 2065 4003 2097 4003 2115 4010 2147 4022 2166 4041 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4041 2172 4029 2166 4022 2159 4016 2147 4010 2115 4010 2097 4016 2065 4022 2053 4029 2046 4041 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4054 2040 4066 2046 4072 2053 4079 2065 4085 2097 4085 2115 4079 2147 4072 2159 4066 2166 4054 2172 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 9216 3840 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 2304 3840 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4363 2097 4476 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4539 2147 4551 2153 4570 2172 4570 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4564 2166 4564 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4539 2040 4595 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4696 2172 4715 2166 4727 2147 4734 2115 4734 2097 4727 2065 4715 2046 4696 2040 4683 2040 4665 2046 4652 2065 4646 2097 4646 2115 4652 2147 4665 2166 4683 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4683 2172 4671 2166 4665 2159 4658 2147 4652 2115 4652 2097 4658 2065 4665 2053 4671 2046 4683 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4696 2040 4709 2046 4715 2053 4721 2065 4727 2097 4727 2115 4721 2147 4715 2159 4709 2166 4696 2172 10 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 4828 2172 4847 2166 4853 2153 4853 2134 4847 2122 4828 2115 4803 2115 4784 2122 4778 2134 4778 2153 4784 2166 4803 2172 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4803 2172 4790 2166 4784 2153 4784 2134 4790 2122 4803 2115 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 4828 2115 4840 2122 4847 2134 4847 2153 4840 2166 4828 2172 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4803 2115 4784 2109 4778 2103 4771 2090 4771 2065 4778 2053 4784 2046 4803 2040 4828 2040 4847 2046 4853 2053 4859 2065 4859 2090 4853 2103 4847 2109 4828 2115 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4803 2115 4790 2109 4784 2103 4778 2090 4778 2065 4784 2053 4790 2046 4803 2040 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4828 2040 4840 2046 4847 2053 4853 2065 4853 2090 4847 2103 4840 2109 4828 2115 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5131 2097 5244 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5307 2147 5319 2153 5338 2172 5338 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5332 2166 5332 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5307 2040 5363 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5464 2172 5483 2166 5495 2147 5502 2115 5502 2097 5495 2065 5483 2046 5464 2040 5451 2040 5433 2046 5420 2065 5414 2097 5414 2115 5420 2147 5433 2166 5451 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5451 2172 5439 2166 5433 2159 5426 2147 5420 2115 5420 2097 5426 2065 5433 2053 5439 2046 5451 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5464 2040 5477 2046 5483 2053 5489 2065 5495 2097 5495 2115 5489 2147 5483 2159 5477 2166 5464 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 5615 2153 5608 2147 5615 2141 5621 2147 5621 2153 5615 2166 5602 2172 5583 2172 5565 2166 5552 2153 5546 2141 5539 2115 5539 2078 5546 2059 5558 2046 5577 2040 5590 2040 5608 2046 5621 2059 5627 2078 5627 2084 5621 2103 5608 2115 5590 2122 5583 2122 5565 2115 5552 2103 5546 2084 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 5583 2172 5571 2166 5558 2153 5552 2141 5546 2115 5546 2078 5552 2059 5565 2046 5577 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5590 2040 5602 2046 5615 2059 5621 2078 5621 2084 5615 2103 5602 2115 5590 2122 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 9216 5376 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 2304 5376 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5899 2097 6012 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6075 2147 6087 2153 6106 2172 6106 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6100 2166 6100 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6075 2040 6131 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6232 2172 6251 2166 6263 2147 6270 2115 6270 2097 6263 2065 6251 2046 6232 2040 6219 2040 6201 2046 6188 2065 6182 2097 6182 2115 6188 2147 6201 2166 6219 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6219 2172 6207 2166 6201 2159 6194 2147 6188 2115 6188 2097 6194 2065 6201 2053 6207 2046 6219 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6232 2040 6245 2046 6251 2053 6257 2065 6263 2097 6263 2115 6257 2147 6251 2159 6245 2166 6232 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6364 2159 6364 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6370 2172 6370 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6370 2172 6301 2078 6402 2078 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6345 2040 6389 2040 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 9216 6144 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 2304 6144 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6667 2097 6780 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6843 2147 6855 2153 6874 2172 6874 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6868 2166 6868 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6843 2040 6899 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7000 2172 7019 2166 7031 2147 7038 2115 7038 2097 7031 2065 7019 2046 7000 2040 6987 2040 6969 2046 6956 2065 6950 2097 6950 2115 6956 2147 6969 2166 6987 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6987 2172 6975 2166 6969 2159 6962 2147 6956 2115 6956 2097 6962 2065 6969 2053 6975 2046 6987 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7000 2040 7013 2046 7019 2053 7025 2065 7031 2097 7031 2115 7025 2147 7019 2159 7013 2166 7000 2172 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 7082 2147 7088 2141 7082 2134 7075 2141 7075 2147 7082 2159 7088 2166 7107 2172 7132 2172 7151 2166 7157 2159 7163 2147 7163 2134 7157 2122 7138 2109 7107 2097 7094 2090 7082 2078 7075 2059 7075 2040 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7132 2172 7144 2166 7151 2159 7157 2147 7157 2134 7151 2122 7132 2109 7107 2097 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7075 2053 7082 2059 7094 2059 7126 2046 7144 2046 7157 2053 7163 2059 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 7094 2059 7126 2040 7151 2040 7157 2046 7163 2059 7163 2072 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7435 2097 7548 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 7611 2147 7623 2153 7642 2172 7642 2040 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7636 2166 7636 2040 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7611 2040 7667 2040 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7768 2172 7787 2166 7799 2147 7806 2115 7806 2097 7799 2065 7787 2046 7768 2040 7755 2040 7737 2046 7724 2065 7718 2097 7718 2115 7724 2147 7737 2166 7755 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7755 2172 7743 2166 7737 2159 7730 2147 7724 2115 7724 2097 7730 2065 7737 2053 7743 2046 7755 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7768 2040 7781 2046 7787 2053 7793 2065 7799 2097 7799 2115 7793 2147 7787 2159 7781 2166 7768 2172 10 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7894 2172 7912 2166 7925 2147 7931 2115 7931 2097 7925 2065 7912 2046 7894 2040 7881 2040 7862 2046 7850 2065 7843 2097 7843 2115 7850 2147 7862 2166 7881 2172 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7881 2172 7869 2166 7862 2159 7856 2147 7850 2115 7850 2097 7856 2065 7862 2053 7869 2046 7881 2040 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7894 2040 7906 2046 7912 2053 7919 2065 7925 2097 7925 2115 7919 2147 7912 2159 7906 2166 7894 2172 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 9216 7680 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 2304 7680 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8266 2097 8379 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 8505 2128 8498 2109 8486 2097 8467 2090 8461 2090 8442 2097 8429 2109 8423 2128 8423 2134 8429 2153 8442 2166 8461 2172 8473 2172 8492 2166 8505 2153 8511 2134 8511 2097 8505 2072 8498 2059 8486 2046 8467 2040 8448 2040 8435 2046 8429 2059 8429 2065 8435 2072 8442 2065 8435 2059 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8461 2090 8448 2097 8435 2109 8429 2128 8429 2134 8435 2153 8448 2166 8461 2172 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 8473 2172 8486 2166 8498 2153 8505 2134 8505 2097 8498 2072 8492 2059 8479 2046 8467 2040 9 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 8605 2172 8624 2166 8630 2153 8630 2134 8624 2122 8605 2115 8580 2115 8561 2122 8555 2134 8555 2153 8561 2166 8580 2172 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8580 2172 8567 2166 8561 2153 8561 2134 8567 2122 8580 2115 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8605 2115 8618 2122 8624 2134 8624 2153 8618 2166 8605 2172 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8580 2115 8561 2109 8555 2103 8549 2090 8549 2065 8555 2053 8561 2046 8580 2040 8605 2040 8624 2046 8630 2053 8637 2065 8637 2090 8630 2103 8624 2109 8605 2115 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8580 2115 8567 2109 8561 2103 8555 2090 8555 2065 8561 2053 8567 2046 8580 2040 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 8605 2040 8618 2046 8624 2053 8630 2065 8630 2090 8624 2103 8618 2109 8605 2115 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 9216 8448 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 2304 8448 2442 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9034 2097 9147 2097 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 9273 2128 9266 2109 9254 2097 9235 2090 9229 2090 9210 2097 9197 2109 9191 2128 9191 2134 9197 2153 9210 2166 9229 2172 9241 2172 9260 2166 9273 2153 9279 2134 9279 2097 9273 2072 9266 2059 9254 2046 9235 2040 9216 2040 9203 2046 9197 2059 9197 2065 9203 2072 9210 2065 9203 2059 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 9229 2090 9216 2097 9203 2109 9197 2128 9197 2134 9203 2153 9216 2166 9229 2172 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 9241 2172 9254 2166 9266 2153 9273 2134 9273 2097 9266 2072 9260 2059 9247 2046 9235 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 9392 2153 9386 2147 9392 2141 9398 2147 9398 2153 9392 2166 9379 2172 9361 2172 9342 2166 9329 2153 9323 2141 9317 2115 9317 2078 9323 2059 9335 2046 9354 2040 9367 2040 9386 2046 9398 2059 9405 2078 9405 2084 9398 2103 9386 2115 9367 2122 9361 2122 9342 2115 9329 2103 9323 2084 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 9361 2172 9348 2166 9335 2153 9329 2141 9323 2115 9323 2078 9329 2059 9342 2046 9354 2040 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 9367 2040 9379 2046 9392 2059 9398 2078 9398 2084 9392 2103 9379 2115 9367 2122 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2688 9216 2688 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2688 2304 2688 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 9216 3072 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3072 2304 3072 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 9216 3456 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 2304 3456 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 9216 3840 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3840 2304 3840 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4224 9216 4224 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4224 2304 4224 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4992 9216 4992 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4992 2304 4992 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 9216 5376 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5376 2304 5376 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 9216 6144 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6144 2304 6144 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6528 9216 6528 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6528 2304 6528 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7296 9216 7296 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7296 2304 7296 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 9216 7680 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7680 2304 7680 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 9216 8064 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 2304 8064 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 9216 8448 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8448 2304 8448 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8832 9216 8832 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8832 2304 8832 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 2354 1980 2348 1974 2342 1968 2348 1968 2354 1974 2367 1980 2373 1999 2379 2024 2379 2043 2373 2050 2361 2050 2342 2043 2329 2024 2323 2006 2323 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 2379 2037 2373 2043 2361 2043 2342 2037 2329 2024 2323 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 2323 2037 2317 2050 2304 2056 2291 2056 2273 2050 2260 2043 2254 2024 2247 1999 2247 1980 2254 1974 2260 1968 2273 1968 2279 1974 2285 1980 2279 1974 2273 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 2310 2050 2291 2050 2273 2043 2260 2037 2254 2024 2247 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 2100 2354 2106 2348 2100 2342 2093 2348 2093 2354 2100 2367 2106 2373 2125 2379 2150 2379 2169 2373 2175 2367 2181 2354 2181 2342 2175 2329 2156 2317 2125 2304 2112 2298 2100 2285 2093 2266 2093 2247 20 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2150 2379 2163 2373 2169 2367 2175 2354 2175 2342 2169 2329 2150 2317 2125 2304 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2093 2260 2100 2266 2112 2266 2144 2254 2163 2254 2175 2260 2181 2266 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2112 2266 2144 2247 2169 2247 2175 2254 2181 2266 2181 2279 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 3506 1980 3500 1974 3494 1968 3500 1968 3506 1974 3519 1980 3525 1999 3531 2024 3531 2043 3525 2050 3513 2050 3494 2043 3481 2024 3475 2006 3475 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 3531 2037 3525 2043 3513 2043 3494 2037 3481 2024 3475 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 3475 2037 3469 2050 3456 2056 3443 2056 3425 2050 3412 2043 3406 2024 3399 1999 3399 1980 3406 1974 3412 1968 3425 1968 3431 1974 3437 1980 3431 1974 3425 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 3462 2050 3443 2050 3425 2043 3412 2037 3406 2024 3399 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 2100 3506 2106 3500 2100 3494 2093 3500 2093 3506 2100 3519 2106 3525 2125 3531 2150 3531 2169 3525 2175 3513 2175 3494 2169 3481 2150 3475 2131 3475 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2150 3531 2163 3525 2169 3513 2169 3494 2163 3481 2150 3475 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2150 3475 2163 3469 2175 3456 2181 3443 2181 3425 2175 3412 2169 3406 2150 3399 2125 3399 2106 3406 2100 3412 2093 3425 2093 3431 2100 3437 2106 3431 2100 3425 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2169 3462 2175 3443 2175 3425 2169 3412 2163 3406 2150 3399 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9078 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2442 3456 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 4658 1980 4652 1974 4646 1968 4652 1968 4658 1974 4671 1980 4677 1999 4683 2024 4683 2043 4677 2050 4665 2050 4646 2043 4633 2024 4627 2006 4627 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 4683 2037 4677 2043 4665 2043 4646 2037 4633 2024 4627 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 4627 2037 4621 2050 4608 2056 4595 2056 4577 2050 4564 2043 4558 2024 4551 1999 4551 1980 4558 1974 4564 1968 4577 1968 4583 1974 4589 1980 4583 1974 4577 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 4614 2050 4595 2050 4577 2043 4564 2037 4558 2024 4551 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2150 4671 2150 4551 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2156 4683 2156 4551 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2156 4683 2087 4589 2188 4589 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2131 4551 2175 4551 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9078 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2442 4608 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 5810 1980 5804 1974 5798 1968 5804 1968 5810 1974 5823 1980 5829 1999 5835 2024 5835 2043 5829 2050 5817 2050 5798 2043 5785 2024 5779 2006 5779 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 5835 2037 5829 2043 5817 2043 5798 2037 5785 2024 5779 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 5779 2037 5773 2050 5760 2056 5747 2056 5729 2050 5716 2043 5710 2024 5703 1999 5703 1980 5710 1974 5716 1968 5729 1968 5735 1974 5741 1980 5735 1974 5729 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 5766 2050 5747 2050 5729 2043 5716 2037 5710 2024 5703 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2106 5835 2093 5773 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2093 5773 2106 5785 2125 5791 2144 5791 2163 5785 2175 5773 2181 5754 2181 5741 2175 5722 2163 5710 2144 5703 2125 5703 2106 5710 2100 5716 2093 5729 2093 5735 2100 5741 2106 5735 2100 5729 19 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2144 5791 2156 5785 2169 5773 2175 5754 2175 5741 2169 5722 2156 5710 2144 5703 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2106 5835 2169 5835 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2106 5829 2137 5829 2169 5835 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9078 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2442 5760 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 6962 1980 6956 1974 6950 1968 6956 1968 6962 1974 6975 1980 6981 1999 6987 2024 6987 2043 6981 2050 6969 2050 6950 2043 6937 2024 6931 2006 6931 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 6987 2037 6981 2043 6969 2043 6950 2037 6937 2024 6931 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 6931 2037 6925 2050 6912 2056 6899 2056 6881 2050 6868 2043 6862 2024 6855 1999 6855 1980 6862 1974 6868 1968 6881 1968 6887 1974 6893 1980 6887 1974 6881 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 6918 2050 6899 2050 6881 2043 6868 2037 6862 2024 6855 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2169 6969 2163 6962 2169 6956 2175 6962 2175 6969 2169 6981 2156 6987 2137 6987 2119 6981 2106 6969 2100 6956 2093 6931 2093 6893 2100 6874 2112 6862 2131 6855 2144 6855 2163 6862 2175 6874 2181 6893 2181 6899 2175 6918 2163 6931 2144 6937 2137 6937 2119 6931 2106 6918 2100 6899 28 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2137 6987 2125 6981 2112 6969 2106 6956 2100 6931 2100 6893 2106 6874 2119 6862 2131 6855 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2144 6855 2156 6862 2169 6874 2175 6893 2175 6899 2169 6918 2156 6931 2144 6937 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9078 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2442 6912 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 8114 1980 8108 1974 8102 1968 8108 1968 8114 1974 8127 1980 8133 1999 8139 2024 8139 2043 8133 2050 8121 2050 8102 2043 8089 2024 8083 2006 8083 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 8139 2037 8133 2043 8121 2043 8102 2037 8089 2024 8083 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 8083 2037 8077 2050 8064 2056 8051 2056 8033 2050 8020 2043 8014 2024 8007 1999 8007 1980 8014 1974 8020 1968 8033 1968 8039 1974 8045 1980 8039 1974 8033 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 8070 2050 8051 2050 8033 2043 8020 2037 8014 2024 8007 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2093 8139 2093 8102 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2093 8114 2100 8127 2112 8139 2125 8139 2156 8121 2169 8121 2175 8127 2181 8139 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2100 8127 2112 8133 2125 8133 2156 8121 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2181 8139 2181 8121 2175 8102 2150 8070 2144 8058 2137 8039 2137 8007 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 2175 8102 2144 8070 2137 8058 2131 8039 2131 8007 5 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9078 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2442 8064 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1974 9266 1980 9260 1974 9254 1968 9260 1968 9266 1974 9279 1980 9285 1999 9291 2024 9291 2043 9285 2050 9273 2050 9254 2043 9241 2024 9235 2006 9235 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2024 9291 2037 9285 2043 9273 2043 9254 2037 9241 2024 9235 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2024 9235 2037 9229 2050 9216 2056 9203 2056 9185 2050 9172 2043 9166 2024 9159 1999 9159 1980 9166 1974 9172 1968 9185 1968 9191 1974 9197 1980 9191 1974 9185 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2043 9222 2050 9203 2050 9185 2043 9172 2037 9166 2024 9159 6 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 2150 9291 2169 9285 2175 9273 2175 9254 2169 9241 2150 9235 2125 9235 2106 9241 2100 9254 2100 9273 2106 9285 2125 9291 12 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2125 9291 2112 9285 2106 9273 2106 9254 2112 9241 2125 9235 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2150 9235 2163 9241 2169 9254 2169 9273 2163 9285 2150 9291 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2125 9235 2106 9229 2100 9222 2093 9210 2093 9185 2100 9172 2106 9166 2125 9159 2150 9159 2169 9166 2175 9172 2181 9185 2181 9210 2175 9222 2169 9229 2150 9235 16 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2125 9235 2112 9229 2106 9222 2100 9210 2100 9185 2106 9172 2112 9166 2125 9159 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2150 9159 2163 9166 2169 9172 2175 9185 2175 9210 2169 9222 2163 9229 2150 9235 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2880 9161 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2880 2359 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9161 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2359 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9161 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2359 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9161 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2359 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5184 9161 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5184 2359 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6336 9161 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6336 2359 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9161 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2359 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7488 9161 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7488 2359 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9161 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2359 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8640 9161 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8640 2359 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4384 1906 4384 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4390 1906 4390 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4365 1906 4390 1906 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4365 1774 4409 1774 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4491 1862 4510 1856 4522 1843 4528 1824 4528 1812 4522 1793 4510 1780 4491 1774 4478 1774 4459 1780 4447 1793 4440 1812 4440 1824 4447 1843 4459 1856 4478 1862 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4478 1862 4466 1856 4453 1843 4447 1824 4447 1812 4453 1793 4466 1780 4478 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 4491 1774 4503 1780 4516 1793 4522 1812 4522 1824 4516 1843 4503 1856 4491 1862 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4579 1862 4579 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4585 1862 4585 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4585 1843 4598 1856 4616 1862 4629 1862 4648 1856 4654 1843 4654 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4629 1862 4642 1856 4648 1843 4648 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4560 1862 4585 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4560 1774 4604 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4629 1774 4673 1774 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4748 1862 4761 1856 4767 1849 4773 1837 4773 1824 4767 1812 4761 1805 4748 1799 4736 1799 4723 1805 4717 1812 4711 1824 4711 1837 4717 1849 4723 1856 4736 1862 16 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4723 1856 4717 1843 4717 1818 4723 1805 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4761 1805 4767 1818 4767 1843 4761 1856 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 4767 1849 4773 1856 4786 1862 4786 1856 4773 1856 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4717 1812 4711 1805 4704 1793 4704 1787 4711 1774 4729 1768 4761 1768 4780 1761 4786 1755 9 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 4704 1787 4711 1780 4729 1774 4761 1774 4780 1768 4786 1755 4786 1749 4780 1736 4761 1730 4723 1730 4704 1736 4698 1749 4698 1755 4704 1768 4723 1774 15 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4843 1900 4836 1893 4830 1900 4836 1906 4 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4836 1862 4836 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4843 1862 4843 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4817 1862 4843 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4817 1774 4861 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 4905 1906 4905 1799 4912 1780 4924 1774 4937 1774 4949 1780 4956 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4912 1906 4912 1799 4918 1780 4924 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4887 1862 4937 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5000 1862 5000 1793 5006 1780 5025 1774 5037 1774 5056 1780 5069 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5006 1862 5006 1793 5012 1780 5025 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 1862 5069 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5075 1862 5075 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4981 1862 5006 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5050 1862 5075 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 1774 5094 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5201 1906 5201 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5207 1906 5207 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 5201 1843 5188 1856 5176 1862 5163 1862 5144 1856 5132 1843 5125 1824 5125 1812 5132 1793 5144 1780 5163 1774 5176 1774 5188 1780 5201 1793 14 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5163 1862 5150 1856 5138 1843 5132 1824 5132 1812 5138 1793 5150 1780 5163 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5182 1906 5207 1906 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5201 1774 5226 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5264 1824 5339 1824 5339 1837 5333 1849 5326 1856 5314 1862 5295 1862 5276 1856 5264 1843 5257 1824 5257 1812 5264 1793 5276 1780 5295 1774 5308 1774 5326 1780 5339 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5333 1824 5333 1843 5326 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5295 1862 5282 1856 5270 1843 5264 1824 5264 1812 5270 1793 5282 1780 5295 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5528 1931 5515 1918 5502 1900 5490 1875 5484 1843 5484 1818 5490 1787 5502 1761 5515 1743 5528 1730 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5515 1918 5502 1893 5496 1875 5490 1843 5490 1818 5496 1787 5502 1768 5515 1743 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5571 1831 5685 1831 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5842 1862 5842 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5848 1862 5848 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5848 1843 5861 1856 5879 1862 5892 1862 5911 1856 5917 1843 5917 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5892 1862 5905 1856 5911 1843 5911 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5917 1843 5930 1856 5949 1862 5961 1862 5980 1856 5986 1843 5986 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5961 1862 5974 1856 5980 1843 5980 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5823 1862 5848 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5823 1774 5867 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5892 1774 5936 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5961 1774 6005 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 6043 1824 6118 1824 6118 1837 6112 1849 6106 1856 6093 1862 6074 1862 6055 1856 6043 1843 6036 1824 6036 1812 6043 1793 6055 1780 6074 1774 6087 1774 6106 1780 6118 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6112 1824 6112 1843 6106 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6074 1862 6062 1856 6049 1843 6043 1824 6043 1812 6049 1793 6062 1780 6074 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 6168 1849 6168 1843 6162 1843 6162 1849 6168 1856 6181 1862 6206 1862 6219 1856 6225 1849 6231 1837 6231 1793 6238 1780 6244 1774 13 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 6225 1849 6225 1793 6231 1780 6244 1774 6250 1774 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 6225 1837 6219 1831 6181 1824 6162 1818 6156 1805 6156 1793 6162 1780 6181 1774 6200 1774 6212 1780 6225 1793 11 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6181 1824 6168 1818 6162 1805 6162 1793 6168 1780 6181 1774 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6294 1862 6294 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6300 1862 6300 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6300 1843 6313 1856 6332 1862 6344 1862 6363 1856 6370 1843 6370 1774 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6344 1862 6357 1856 6363 1843 6363 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6275 1862 6300 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6275 1774 6319 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6344 1774 6388 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6483 1849 6489 1862 6489 1837 6483 1849 6476 1856 6464 1862 6439 1862 6426 1856 6420 1849 6420 1837 6426 1831 6439 1824 6470 1812 6483 1805 6489 1799 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6420 1843 6426 1837 6439 1831 6470 1818 6483 1812 6489 1805 6489 1787 6483 1780 6470 1774 6445 1774 6432 1780 6426 1787 6420 1799 6420 1774 6426 1787 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6633 1862 6659 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6640 1862 6659 1793 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6684 1862 6659 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6684 1862 6709 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6690 1862 6709 1793 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6734 1862 6709 1774 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6615 1862 6659 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6715 1862 6753 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 6784 1824 6860 1824 6860 1837 6853 1849 6847 1856 6835 1862 6816 1862 6797 1856 6784 1843 6778 1824 6778 1812 6784 1793 6797 1780 6816 1774 6828 1774 6847 1780 6860 1793 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 6853 1824 6853 1843 6847 1856 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6816 1862 6803 1856 6791 1843 6784 1824 6784 1812 6791 1793 6803 1780 6816 1774 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6960 1849 6966 1862 6966 1837 6960 1849 6954 1856 6941 1862 6916 1862 6904 1856 6897 1849 6897 1837 6904 1831 6916 1824 6948 1812 6960 1805 6966 1799 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 6897 1843 6904 1837 6916 1831 6948 1818 6960 1812 6966 1805 6966 1787 6960 1780 6948 1774 6922 1774 6910 1780 6904 1787 6897 1799 6897 1774 6904 1787 15 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7017 1906 7017 1799 7023 1780 7036 1774 7048 1774 7061 1780 7067 1793 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 7023 1906 7023 1799 7029 1780 7036 1774 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6998 1862 7048 1862 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7098 1931 7111 1918 7124 1900 7136 1875 7142 1843 7142 1818 7136 1787 7124 1761 7111 1743 7098 1730 10 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7111 1918 7124 1893 7130 1875 7136 1843 7136 1818 7130 1787 7124 1768 7111 1743 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5370 1804 5370 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5377 1804 5377 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 5352 1672 5377 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5352 1804 5396 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 1729 5440 1735 5440 1735 5433 1729 5433 1723 5440 1716 5452 1716 5477 1723 5490 1729 5496 1742 5502 1786 5502 1798 5509 1804 5515 13 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 1729 5496 1786 5496 1798 5502 1804 5515 1804 5521 5 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 1742 5496 1748 5490 1754 5452 1760 5433 1773 5427 1786 5427 1798 5433 1804 5452 1804 5471 1798 5484 1786 5496 11 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1754 5452 1760 5440 1773 5433 1786 5433 1798 5440 1804 5452 6 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1672 5565 1779 5565 1798 5571 1804 5584 1804 5597 1798 5609 1786 5615 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1672 5571 1779 5571 1798 5578 1804 5584 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5546 1716 5597 2 MLine End Begin %I Poly [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1679 5666 1685 5659 1679 5653 1672 5659 4 Poly End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5659 1804 5659 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5666 1804 5666 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5641 1716 5666 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5641 1804 5685 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1672 5729 1779 5729 1798 5735 1804 5747 1804 5760 1798 5773 1786 5779 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1672 5735 1779 5735 1798 5741 1804 5747 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5710 1716 5760 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1716 5823 1786 5823 1798 5829 1804 5848 1804 5861 1798 5879 1786 5892 7 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 5829 1786 5829 1798 5835 1804 5848 4 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5892 1804 5892 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5898 1804 5898 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5804 1716 5829 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1716 5873 1716 5898 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 5892 1804 5917 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6024 1804 6024 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6030 1804 6030 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 1735 6024 1723 6011 1716 5999 1716 5986 1723 5967 1735 5955 1754 5949 1767 5949 1786 5955 1798 5967 1804 5986 1804 5999 1798 6011 1786 6024 14 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1716 5986 1723 5974 1735 5961 1754 5955 1767 5955 1786 5961 1798 5974 1804 5986 8 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1672 6005 1672 6030 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1804 6024 1804 6049 2 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 1754 6087 1754 6162 1742 6162 1729 6156 1723 6150 1716 6137 1716 6118 1723 6099 1735 6087 1754 6080 1767 6080 1786 6087 1798 6099 1804 6118 1804 6131 1798 6150 1786 6162 17 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1754 6156 1735 6156 1723 6150 3 MLine End Begin %I MLine [0.4461382 0 0 0.4461382 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1716 6118 1723 6106 1735 6093 1754 6087 1767 6087 1786 6093 1798 6106 1804 6118 8 MLine End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5395 6543 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6451 5080 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8920 3214 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5084 2696 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3045 4078 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4324 6359 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4385 8467 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4658 8398 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4669 5933 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5138 5898 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5268 6785 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5407 6647 32 Circ End Begin %I Circ [1.08 0 0 1.08 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5395 6543 32 Circ End Begin %I Poly [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 5407 6647 5268 6785 5138 5898 4669 5933 4658 8398 4385 8467 4324 6359 3045 4078 5084 2696 8920 3214 6451 5080 5395 6543 12 Poly End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/intro.texi0000664000252300025230000002225512171574312011753 00000000000000@cindex license of GSL @cindex GNU General Public License The GNU Scientific Library (GSL) is a collection of routines for numerical computing. The routines have been written from scratch in C, and present a modern Applications Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages. The source code is distributed under the GNU General Public License. @menu * Routines available in GSL:: * GSL is Free Software:: * Obtaining GSL:: * No Warranty:: * Reporting Bugs:: * Further Information:: * Conventions used in this manual:: @end menu @node Routines available in GSL @section Routines available in GSL The library covers a wide range of topics in numerical computing. Routines are available for the following areas, @iftex @sp 1 @end iftex @multitable @columnfractions 0.05 0.45 0.45 0.05 @item @tab Complex Numbers @tab Roots of Polynomials @item @tab Special Functions @tab Vectors and Matrices @item @tab Permutations @tab Combinations @item @tab Sorting @tab BLAS Support @item @tab Linear Algebra @tab CBLAS Library @item @tab Fast Fourier Transforms @tab Eigensystems @item @tab Random Numbers @tab Quadrature @item @tab Random Distributions @tab Quasi-Random Sequences @item @tab Histograms @tab Statistics @item @tab Monte Carlo Integration @tab N-Tuples @item @tab Differential Equations @tab Simulated Annealing @item @tab Numerical Differentiation @tab Interpolation @item @tab Series Acceleration @tab Chebyshev Approximations @item @tab Root-Finding @tab Discrete Hankel Transforms @item @tab Least-Squares Fitting @tab Minimization @item @tab IEEE Floating-Point @tab Physical Constants @item @tab Basis Splines @tab Wavelets @end multitable @iftex @sp 1 @end iftex @noindent The use of these routines is described in this manual. Each chapter provides detailed definitions of the functions, followed by example programs and references to the articles on which the algorithms are based. Where possible the routines have been based on reliable public-domain packages such as FFTPACK and QUADPACK, which the developers of GSL have reimplemented in C with modern coding conventions. @node GSL is Free Software @section GSL is Free Software @cindex free software, explanation of The subroutines in the GNU Scientific Library are ``free software''; this means that everyone is free to use them, and to redistribute them in other free programs. The library is not in the public domain; it is copyrighted and there are conditions on its distribution. These conditions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of the software that they might get from you. Specifically, we want to make sure that you have the right to share copies of programs that you are given which use the GNU Scientific Library, that you receive their source code or else can get it if you want it, that you can change these programs or use pieces of them in new free programs, and that you know you can do these things. To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of any code which uses the GNU Scientific Library, you must give the recipients all the rights that you have received. You must make sure that they, too, receive or can get the source code, both to the library and the code which uses it. And you must tell them their rights. This means that the library should not be redistributed in proprietary programs. Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the GNU Scientific Library. If these programs are modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation. The precise conditions for the distribution of software related to the GNU Scientific Library are found in the GNU General Public License (@pxref{GNU General Public License}). Further information about this license is available from the GNU Project webpage @cite{Frequently Asked Questions about the GNU GPL}, @itemize @w{} @item @uref{http://www.gnu.org/copyleft/gpl-faq.html} @end itemize @noindent The Free Software Foundation also operates a license consulting service for commercial users (contact details available from @uref{http://www.fsf.org/}). @node Obtaining GSL @section Obtaining GSL @cindex obtaining GSL @cindex downloading GSL @cindex mailing list for GSL announcements @cindex info-gsl mailing list The source code for the library can be obtained in different ways, by copying it from a friend, purchasing it on @sc{cdrom} or downloading it from the internet. A list of public ftp servers which carry the source code can be found on the GNU website, @itemize @w{} @item @uref{http://www.gnu.org/software/gsl/} @end itemize @noindent The preferred platform for the library is a GNU system, which allows it to take advantage of additional features in the GNU C compiler and GNU C library. However, the library is fully portable and should compile on most systems with a C compiler. Announcements of new releases, updates and other relevant events are made on the @code{info-gsl@@gnu.org} mailing list. To subscribe to this low-volume list, send an email of the following form: @example To: info-gsl-request@@gnu.org Subject: subscribe @end example @noindent You will receive a response asking you to reply in order to confirm your subscription. @node No Warranty @section No Warranty @cindex warranty (none) The software described in this manual has no warranty, it is provided ``as is''. It is your responsibility to validate the behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from commercial redistributors. Consult the GNU General Public license for further details (@pxref{GNU General Public License}). @node Reporting Bugs @section Reporting Bugs @cindex reporting bugs in GSL @cindex bugs, how to report @cindex bug-gsl mailing list @cindex mailing list, bug-gsl A list of known bugs can be found in the @file{BUGS} file included in the GSL distribution or online in the GSL bug tracker.@footnote{@url{http://savannah.gnu.org/bugs/?group=gsl}} Details of compilation problems can be found in the @file{INSTALL} file. If you find a bug which is not listed in these files, please report it to @email{bug-gsl@@gnu.org}. All bug reports should include: @itemize @bullet @item The version number of GSL @item The hardware and operating system @item The compiler used, including version number and compilation options @item A description of the bug behavior @item A short program which exercises the bug @end itemize @noindent It is useful if you can check whether the same problem occurs when the library is compiled without optimization. Thank you. Any errors or omissions in this manual can also be reported to the same address. @node Further Information @section Further Information @cindex mailing list archives @cindex website, developer information @cindex contacting the GSL developers Additional information, including online copies of this manual, links to related projects, and mailing list archives are available from the website mentioned above. Any questions about the use and installation of the library can be asked on the mailing list @code{help-gsl@@gnu.org}. To subscribe to this list, send an email of the following form: @example To: help-gsl-request@@gnu.org Subject: subscribe @end example @noindent This mailing list can be used to ask questions not covered by this manual, and to contact the developers of the library. If you would like to refer to the GNU Scientific Library in a journal article, the recommended way is to cite this reference manual, e.g. @cite{M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078}. If you want to give a url, use ``@uref{http://www.gnu.org/software/gsl/}''. @node Conventions used in this manual @section Conventions used in this manual @cindex conventions, used in manual @cindex examples, conventions used in @cindex shell prompt @cindex @code{$}, shell prompt This manual contains many examples which can be typed at the keyboard. A command entered at the terminal is shown like this, @example $ @i{command} @end example @noindent @cindex dollar sign @code{$}, shell prompt The first character on the line is the terminal prompt, and should not be typed. The dollar sign @samp{$} is used as the standard prompt in this manual, although some systems may use a different character. The examples assume the use of the GNU operating system. There may be minor differences in the output on other systems. The commands for setting environment variables use the Bourne shell syntax of the standard GNU shell (@code{bash}). gsl-1.16/doc/specfunc-dilog.texi0000664000252300025230000000242712171574312013521 00000000000000@cindex dilogarithm The functions described in this section are declared in the header file @file{gsl_sf_dilog.h}. @menu * Real Argument:: * Complex Argument:: @end menu @node Real Argument @subsection Real Argument @deftypefun double gsl_sf_dilog (double @var{x}) @deftypefunx int gsl_sf_dilog_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the dilogarithm for a real argument. In Lewin's notation this is @math{Li_2(x)}, the real part of the dilogarithm of a real @math{x}. It is defined by the integral representation @math{Li_2(x) = - \Re \int_0^x ds \log(1-s) / s}. Note that @math{\Im(Li_2(x)) = 0} for @c{$x \le 1$} @math{x <= 1}, and @math{-\pi\log(x)} for @math{x > 1}. Note that Abramowitz & Stegun refer to the Spence integral @math{S(x)=Li_2(1-x)} as the dilogarithm rather than @math{Li_2(x)}. @end deftypefun @node Complex Argument @subsection Complex Argument @deftypefun int gsl_sf_complex_dilog_e (double @var{r}, double @var{theta}, gsl_sf_result * @var{result_re}, gsl_sf_result * @var{result_im}) This function computes the full complex-valued dilogarithm for the complex argument @math{z = r \exp(i \theta)}. The real and imaginary parts of the result are returned in @var{result_re}, @var{result_im}. @end deftypefun gsl-1.16/doc/specfunc-trig.texi0000664000252300025230000001474512171574312013376 00000000000000@cindex trigonometric functions The library includes its own trigonometric functions in order to provide consistency across platforms and reliable error estimates. These functions are declared in the header file @file{gsl_sf_trig.h}. @menu * Circular Trigonometric Functions:: * Trigonometric Functions for Complex Arguments:: * Hyperbolic Trigonometric Functions:: * Conversion Functions:: * Restriction Functions:: * Trigonometric Functions With Error Estimates:: @end menu @node Circular Trigonometric Functions @subsection Circular Trigonometric Functions @deftypefun double gsl_sf_sin (double @var{x}) @deftypefunx int gsl_sf_sin_e (double @var{x}, gsl_sf_result * @var{result}) @cindex sine function, special functions These routines compute the sine function @math{\sin(x)}. @comment Exceptional Return Values: @end deftypefun @deftypefun double gsl_sf_cos (double @var{x}) @deftypefunx int gsl_sf_cos_e (double @var{x}, gsl_sf_result * @var{result}) @cindex cosine function, special functions These routines compute the cosine function @math{\cos(x)}. @comment Exceptional Return Values: @end deftypefun @deftypefun double gsl_sf_hypot (double @var{x}, double @var{y}) @deftypefunx int gsl_sf_hypot_e (double @var{x}, double @var{y}, gsl_sf_result * @var{result}) @cindex hypot function, special functions These routines compute the hypotenuse function @c{$\sqrt{x^2 + y^2}$} @math{\sqrt@{x^2 + y^2@}} avoiding overflow and underflow. @comment Exceptional Return Values: @end deftypefun @deftypefun double gsl_sf_sinc (double @var{x}) @deftypefunx int gsl_sf_sinc_e (double @var{x}, gsl_sf_result * @var{result}) @cindex complex sinc function, special functions These routines compute @math{\sinc(x) = \sin(\pi x) / (\pi x)} for any value of @var{x}. @comment Exceptional Return Values: none @end deftypefun @node Trigonometric Functions for Complex Arguments @subsection Trigonometric Functions for Complex Arguments @deftypefun int gsl_sf_complex_sin_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{szr}, gsl_sf_result * @var{szi}) @cindex complex sine function, special functions This function computes the complex sine, @math{\sin(z_r + i z_i)} storing the real and imaginary parts in @var{szr}, @var{szi}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun int gsl_sf_complex_cos_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{czr}, gsl_sf_result * @var{czi}) @cindex complex cosine function, special functions This function computes the complex cosine, @math{\cos(z_r + i z_i)} storing the real and imaginary parts in @var{czr}, @var{czi}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun int gsl_sf_complex_logsin_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{lszr}, gsl_sf_result * @var{lszi}) @cindex complex log sine function, special functions This function computes the logarithm of the complex sine, @math{\log(\sin(z_r + i z_i))} storing the real and imaginary parts in @var{lszr}, @var{lszi}. @comment Exceptional Return Values: GSL_EDOM, GSL_ELOSS @end deftypefun @node Hyperbolic Trigonometric Functions @subsection Hyperbolic Trigonometric Functions @deftypefun double gsl_sf_lnsinh (double @var{x}) @deftypefunx int gsl_sf_lnsinh_e (double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of sinh function, special functions These routines compute @math{\log(\sinh(x))} for @math{x > 0}. @comment Domain: x > 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_lncosh (double @var{x}) @deftypefunx int gsl_sf_lncosh_e (double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of cosh function, special functions These routines compute @math{\log(\cosh(x))} for any @var{x}. @comment Exceptional Return Values: none @end deftypefun @node Conversion Functions @subsection Conversion Functions @cindex polar to rectangular conversion @cindex rectangular to polar conversion @deftypefun int gsl_sf_polar_to_rect (double @var{r}, double @var{theta}, gsl_sf_result * @var{x}, gsl_sf_result * @var{y}); This function converts the polar coordinates (@var{r},@var{theta}) to rectilinear coordinates (@var{x},@var{y}), @math{x = r\cos(\theta)}, @math{y = r\sin(\theta)}. @comment Exceptional Return Values: GSL_ELOSS @end deftypefun @deftypefun int gsl_sf_rect_to_polar (double @var{x}, double @var{y}, gsl_sf_result * @var{r}, gsl_sf_result * @var{theta}) This function converts the rectilinear coordinates (@var{x},@var{y}) to polar coordinates (@var{r},@var{theta}), such that @math{x = r\cos(\theta)}, @math{y = r\sin(\theta)}. The argument @var{theta} lies in the range @math{[-\pi, \pi]}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Restriction Functions @subsection Restriction Functions @cindex angular reduction @cindex reduction of angular variables @deftypefun double gsl_sf_angle_restrict_symm (double @var{theta}) @deftypefunx int gsl_sf_angle_restrict_symm_e (double * @var{theta}) These routines force the angle @var{theta} to lie in the range @math{(-\pi,\pi]}. Note that the mathematical value of @math{\pi} is slightly greater than @code{M_PI}, so the machine numbers @code{M_PI} and @code{-M_PI} are included in the range. @comment Exceptional Return Values: GSL_ELOSS @end deftypefun @deftypefun double gsl_sf_angle_restrict_pos (double @var{theta}) @deftypefunx int gsl_sf_angle_restrict_pos_e (double * @var{theta}) These routines force the angle @var{theta} to lie in the range @math{[0, 2\pi)}. Note that the mathematical value of @math{2\pi} is slightly greater than @code{2*M_PI}, so the machine number @code{2*M_PI} is included in the range. @comment Exceptional Return Values: GSL_ELOSS @end deftypefun @node Trigonometric Functions With Error Estimates @subsection Trigonometric Functions With Error Estimates @deftypefun int gsl_sf_sin_err_e (double @var{x}, double @var{dx}, gsl_sf_result * @var{result}) This routine computes the sine of an angle @var{x} with an associated absolute error @var{dx}, @c{$\sin(x \pm dx)$} @math{\sin(x \pm dx)}. Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error. @end deftypefun @deftypefun int gsl_sf_cos_err_e (double @var{x}, double @var{dx}, gsl_sf_result * @var{result}) This routine computes the cosine of an angle @var{x} with an associated absolute error @var{dx}, @c{$\cos(x \pm dx)$} @math{\cos(x \pm dx)}. Note that this function is provided in the error-handling form only since its purpose is to compute the propagated error. @end deftypefun gsl-1.16/doc/rand-gaussian.tex0000664000252300025230000005435612171574312013212 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gaussian.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-gaussian.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 31 862 R -31 0 V 31 863 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 1 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 1 V 19 0 V 20 0 V 19 0 V 19 1 V 20 0 V 19 0 V 20 1 V 19 0 V 20 1 V 19 0 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 2 V 20 1 V 19 2 V 20 2 V 19 2 V 20 2 V 19 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 4 V 20 5 V 19 4 V 19 6 V 20 5 V 19 7 V 20 6 V 19 8 V 20 8 V 19 8 V 19 10 V 20 10 V 19 10 V 20 12 V 19 12 V 20 14 V 19 14 V 19 15 V 20 17 V 19 17 V 20 18 V 19 20 V 20 21 V 19 22 V 19 24 V 20 25 V 19 26 V 20 28 V 19 29 V 20 31 V 19 33 V 19 34 V 20 35 V 19 38 V 20 39 V 19 40 V 20 43 V 19 44 V 19 46 V 20 47 V 19 49 V 20 51 V 3052 1658 L 20 54 V 19 56 V 19 57 V 20 59 V 19 60 V 20 62 V 19 63 V 20 64 V 19 65 V 19 67 V 20 67 V 19 68 V 20 68 V 19 69 V 20 70 V 19 69 V 19 70 V 20 70 V 19 69 V 20 70 V 19 68 V 20 68 V 19 67 V 19 66 V 20 64 V 19 63 V 20 62 V 19 60 V 20 58 V 19 55 V 19 54 V 20 51 V 19 48 V 20 45 V 19 43 V 20 39 V 19 37 V 19 33 V 20 30 V 19 26 V 20 23 V 19 19 V 20 15 V 19 11 V 19 8 V 20 4 V 19 0 V 20 -4 V 19 -8 V 19 -11 V 20 -15 V 19 -19 V 20 -23 V 19 -26 V 20 -30 V 19 -33 V 19 -37 V 20 -39 V 19 -43 V 20 -45 V 19 -48 V 20 -51 V 19 -54 V 19 -55 V 20 -58 V 19 -60 V 20 -62 V 19 -63 V 20 -64 V 19 -66 V 19 -67 V 20 -68 V 19 -68 V 20 -70 V 19 -69 V 20 -70 V 19 -70 V 19 -69 V 20 -70 V 19 -69 V 20 -68 V 19 -68 V 20 -67 V 19 -67 V 19 -65 V 20 -64 V 19 -63 V 20 -62 V 19 -60 V 20 -59 V 19 -57 V 19 -56 V 20 -54 V 19 -53 V 20 -51 V 19 -49 V 20 -47 V 19 -46 V 19 -44 V 20 -43 V 19 -40 V 20 -39 V 19 -38 V 20 -35 V 5092 1139 L 19 -33 V 20 -31 V 19 -29 V 20 -28 V 19 -26 V 20 -25 V 19 -24 V 19 -22 V 20 -21 V 19 -20 V 20 -18 V 19 -17 V 20 -17 V 19 -15 V 19 -14 V 20 -14 V 19 -12 V 20 -12 V 19 -10 V 20 -10 V 19 -10 V 19 -8 V 20 -8 V 19 -8 V 20 -6 V 19 -7 V 20 -5 V 19 -6 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 -1 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 707 M 19 3 V 20 3 V 19 4 V 20 3 V 19 4 V 20 4 V 19 4 V 19 4 V 20 4 V 19 4 V 20 5 V 19 4 V 20 5 V 19 5 V 19 5 V 20 5 V 19 6 V 20 5 V 19 6 V 20 6 V 19 6 V 19 6 V 20 7 V 19 6 V 20 7 V 19 7 V 20 7 V 19 7 V 19 8 V 20 8 V 19 8 V 20 8 V 19 8 V 20 8 V 19 9 V 19 9 V 20 9 V 19 10 V 20 9 V 19 10 V 20 10 V 19 10 V 19 10 V 20 11 V 19 11 V 20 11 V 19 11 V 20 11 V 19 12 V 19 12 V 20 12 V 19 12 V 20 13 V 19 13 V 20 13 V 19 13 V 19 13 V 20 14 V 19 13 V 20 14 V 19 15 V 20 14 V 19 14 V 19 15 V 20 15 V 19 15 V 20 15 V 19 16 V 20 15 V 19 16 V 19 16 V 20 16 V 19 16 V 20 16 V 19 17 V 20 16 V 19 17 V 19 17 V 20 17 V 19 17 V 20 17 V 19 17 V 20 17 V 19 17 V 19 18 V 20 17 V 19 18 V 20 17 V 19 17 V 20 18 V 19 17 V 19 18 V 20 17 V 19 18 V 20 17 V 19 17 V 20 17 V 19 18 V 19 17 V 20 17 V 19 16 V 20 17 V 3052 1903 L 20 16 V 19 16 V 19 17 V 20 16 V 19 15 V 20 16 V 19 15 V 20 16 V 19 15 V 19 14 V 20 15 V 19 14 V 20 14 V 19 13 V 20 14 V 19 13 V 19 13 V 20 12 V 19 12 V 20 12 V 19 11 V 20 11 V 19 11 V 19 10 V 20 10 V 19 9 V 20 10 V 19 8 V 20 9 V 19 7 V 19 8 V 20 7 V 19 6 V 20 6 V 19 6 V 20 5 V 19 5 V 19 4 V 20 4 V 19 4 V 20 2 V 19 3 V 20 2 V 19 1 V 19 1 V 20 1 V 19 0 V 20 -1 V 19 -1 V 19 -1 V 20 -2 V 19 -3 V 20 -2 V 19 -4 V 20 -4 V 19 -4 V 19 -5 V 20 -5 V 19 -6 V 20 -6 V 19 -6 V 20 -7 V 19 -8 V 19 -7 V 20 -9 V 19 -8 V 20 -10 V 19 -9 V 20 -10 V 19 -10 V 19 -11 V 20 -11 V 19 -11 V 20 -12 V 19 -12 V 20 -12 V 19 -13 V 19 -13 V 20 -14 V 19 -13 V 20 -14 V 19 -14 V 20 -15 V 19 -14 V 19 -15 V 20 -16 V 19 -15 V 20 -16 V 19 -15 V 20 -16 V 19 -17 V 19 -16 V 20 -16 V 19 -17 V 20 -17 V 19 -16 V 20 -17 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -18 V 20 -17 V 5092 1697 L 19 -17 V 20 -18 V 19 -17 V 20 -17 V 19 -18 V 20 -17 V 19 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 19 -17 V 20 -16 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -16 V 19 -16 V 20 -15 V 19 -16 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 19 -14 V 20 -14 V 19 -15 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -12 V 20 -12 V 19 -12 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\sigma=2$}}% \put(5957,4781){\rjust{\strut{}$\sigma=1$}}% \put(3955,5244){\cjust{\strut{}Gaussian Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4944){\rjust{\strut{} 0.5}}% \put(900,4081){\rjust{\strut{} 0.4}}% \put(900,3219){\rjust{\strut{} 0.3}}% \put(900,2356){\rjust{\strut{} 0.2}}% \put(900,1494){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/fit-wlinear2.eps0000664000252300025230000025063112171574312012742 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 1.6 %%Title: PostScript plot %%CreationDate: Sun Jul 29 14:10:38 2001 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 117 195 492 580 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /arrowWidth 4 def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eofill } { eoclip originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eofill fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 117 195 492 580 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Poly [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2304 2304 2304 9216 9216 9216 9216 2304 4 Poly End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 120.5899 213.1332 ] concat %I [ (0.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 206.9899 213.1332 ] concat %I [ (0.5) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 9216 4032 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 293.3899 213.1332 ] concat %I [ (1.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 379.7899 213.1332 ] concat %I [ (1.5) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 9216 7488 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 466.1899 213.1332 ] concat %I [ (2.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 9216 2650 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 2304 2650 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 9216 2995 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 2304 2995 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 9216 3341 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 2304 3341 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 9216 4032 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 9216 4378 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 2304 4378 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 9216 4723 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 2304 4723 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 9216 5414 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 2304 5414 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 9216 6106 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 2304 6106 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 9216 6797 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 2304 6797 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 9216 7142 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 2304 7142 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 9216 7488 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 9216 8179 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 2304 8179 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 9216 8525 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 2304 8525 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 9216 8870 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 2304 8870 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 229.3306 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 278.702 ] concat %I [ (1) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3291 9078 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3291 2442 3291 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 328.0734 ] concat %I [ (2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4279 9078 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4279 2442 4279 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 377.4449 ] concat %I [ (3) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5266 9078 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5266 2442 5266 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 426.8163 ] concat %I [ (4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6254 9078 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6254 2442 6254 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 476.1877 ] concat %I [ (5) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7241 9078 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7241 2442 7241 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 525.5592 ] concat %I [ (6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8229 9078 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8229 2442 8229 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 574.9306 ] concat %I [ (7) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2798 9161 2798 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2798 2359 2798 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3291 9161 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3291 2359 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3785 9161 3785 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3785 2359 3785 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4279 9161 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4279 2359 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4773 9161 4773 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4773 2359 4773 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5266 9161 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5266 2359 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6254 9161 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6254 2359 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6747 9161 6747 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6747 2359 6747 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7241 9161 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7241 2359 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7735 9161 7735 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7735 2359 7735 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8229 9161 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8229 2359 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8722 9161 8722 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8722 2359 8722 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2546 3162 2753 3162 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3162 2650 3380 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2546 3380 2753 3380 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3206 2650 3336 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3271 2706 3303 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3271 2593 3239 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3271 2706 3239 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 3271 2593 3303 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2892 3503 3099 3503 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3503 2995 3744 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2892 3744 3099 3744 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3558 2995 3688 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3623 3051 3656 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3623 2939 3591 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3623 3051 3591 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 3623 2939 3656 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3237 3677 3444 3677 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3677 3341 3944 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3237 3944 3444 3944 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3746 3341 3875 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3811 3397 3843 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3811 3285 3778 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3811 3397 3778 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 3811 3285 3843 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3583 3740 3790 3740 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3740 3686 4034 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3583 4034 3790 4034 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3822 3686 3952 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3887 3743 3919 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3887 3630 3855 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3887 3743 3855 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 3887 3630 3919 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3928 3936 4136 3936 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 3936 4032 4261 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3928 4261 4136 4261 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 4034 4032 4163 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 4098 4088 4131 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 4098 3976 4066 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 4098 4088 4066 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 4098 3976 4131 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4274 4025 4481 4025 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4025 4378 4384 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4274 4384 4481 4384 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4140 4378 4269 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4205 4434 4237 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4205 4321 4172 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4205 4434 4172 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 4205 4321 4237 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4620 4013 4827 4013 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4013 4723 4411 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4620 4411 4827 4411 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4147 4723 4277 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4212 4779 4245 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4212 4667 4180 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4212 4779 4180 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 4212 4667 4245 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4965 4563 5172 4563 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4563 5069 5003 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4965 5003 5172 5003 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4718 5069 4848 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4783 5125 4816 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4783 5013 4751 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4783 5125 4751 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 4783 5013 4816 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5311 4481 5518 4481 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4481 5414 4967 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5311 4967 5518 4967 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4659 5414 4789 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4724 5471 4756 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4724 5358 4692 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4724 5471 4692 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 4724 5358 4756 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5656 4257 5864 4257 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4257 5760 4794 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5656 4794 5864 4794 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4460 5760 4590 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4525 5816 4558 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4525 5704 4493 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4525 5816 4493 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 4525 5704 4558 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6002 5058 6209 5058 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5058 6106 5651 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6002 5651 6209 5651 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5290 6106 5420 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5355 6162 5387 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5355 6049 5322 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5355 6162 5322 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 5355 6049 5387 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6348 5751 6555 5751 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 5751 6451 6407 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6348 6407 6555 6407 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6014 6451 6144 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6079 6507 6111 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6079 6395 6047 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6079 6507 6047 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 6079 6395 6111 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6693 6156 6900 6156 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6156 6797 6880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6693 6880 6900 6880 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6453 6797 6583 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6518 6853 6550 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6518 6741 6486 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6518 6853 6486 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 6518 6741 6550 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7039 5122 7246 5122 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5122 7142 5923 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7039 5923 7246 5923 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5458 7142 5588 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5523 7199 5555 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5523 7086 5490 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5523 7199 5490 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 5523 7086 5555 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7384 6788 7592 6788 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 6788 7488 7673 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7384 7673 7592 7673 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 7166 7488 7295 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 7230 7544 7263 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 7230 7432 7198 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 7230 7544 7198 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 7230 7432 7263 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7730 5908 7937 5908 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 5908 7834 6886 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7730 6886 7937 6886 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6332 7834 6462 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6397 7890 6430 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6397 7777 6365 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6397 7890 6365 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 6397 7777 6430 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8076 6922 8283 6922 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 6922 8179 8003 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8076 8003 8283 8003 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 7397 8179 7527 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 7462 8235 7495 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 7462 8123 7430 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 7462 8235 7430 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 7462 8123 7495 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8421 8010 8628 8010 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8010 8525 9205 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8421 9205 8628 9205 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8543 8525 8672 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8608 8581 8640 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8608 8469 8575 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8608 8581 8575 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 8608 8469 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8767 7571 8974 7571 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 7571 8870 8891 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8767 8891 8974 8891 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 8167 8870 8296 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 8231 8927 8264 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 8231 8814 8199 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 8231 8927 8199 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 8231 8814 8264 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 200 2304 3314 2339 3324 2373 3334 2408 3343 2442 3353 2477 3364 2511 3374 2546 3385 2580 3395 2615 3406 2650 3417 2684 3429 2719 3440 2753 3452 2788 3463 2822 3475 2857 3488 2892 3500 2926 3512 2961 3525 2995 3538 3030 3551 3064 3564 3099 3577 3133 3591 3168 3604 3203 3618 3237 3632 3272 3647 3306 3661 3341 3675 3375 3690 3410 3705 3444 3720 3479 3735 3514 3751 3548 3766 3583 3782 3617 3798 3652 3814 3686 3831 3721 3847 3756 3864 3790 3880 3825 3897 3859 3915 3894 3932 3928 3949 3963 3967 3997 3985 4032 4003 4067 4021 4101 4039 4136 4058 4170 4077 4205 4096 4239 4115 4274 4134 4308 4153 4343 4173 4378 4193 4412 4212 4447 4233 4481 4253 4516 4273 4550 4294 4585 4315 4620 4336 4654 4357 4689 4378 4723 4399 4758 4421 4792 4443 4827 4465 4861 4487 4896 4509 4931 4532 4965 4555 5000 4578 5034 4601 5069 4624 5103 4647 5138 4671 5172 4694 5207 4718 5242 4742 5276 4767 5311 4791 5345 4816 5380 4840 5414 4865 5449 4890 5484 4916 5518 4941 5553 4967 5587 4993 5622 5019 5656 5045 5691 5071 5725 5098 5760 5124 5795 5151 5829 5178 5864 5205 5898 5233 5933 5260 5967 5288 6002 5316 6036 5344 6071 5372 6106 5401 6140 5429 6175 5458 6209 5487 6244 5516 6278 5545 6313 5575 6348 5604 6382 5634 6417 5664 6451 5694 6486 5724 6520 5755 6555 5785 6589 5816 6624 5847 6659 5878 6693 5910 6728 5941 6762 5973 6797 6005 6831 6037 6866 6069 6900 6102 6935 6134 6970 6167 7004 6200 7039 6233 7073 6266 7108 6299 7142 6333 7177 6367 7212 6401 7246 6435 7281 6469 7315 6504 7350 6538 7384 6573 7419 6608 7453 6643 7488 6679 7523 6714 7557 6750 7592 6786 7626 6822 7661 6858 7695 6894 7730 6931 7764 6967 7799 7004 7834 7041 7868 7079 7903 7116 7937 7154 7972 7191 8006 7229 8041 7267 8076 7306 8110 7344 8145 7383 8179 7422 8214 7460 8248 7500 8283 7539 8317 7578 8352 7618 8387 7658 8421 7698 8456 7738 8490 7778 8525 7819 8559 7860 8594 7901 8628 7942 8663 7983 8698 8024 8732 8066 8767 8107 8801 8149 8836 8191 8870 8234 8905 8276 8940 8319 8974 8362 9009 8404 9043 8448 9078 8491 9112 8534 9147 8578 9181 8622 200 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/bspline.texi0000664000252300025230000002733212171574312012255 00000000000000@cindex basis splines, B-splines @cindex splines, basis This chapter describes functions for the computation of smoothing basis splines (B-splines). A smoothing spline differs from an interpolating spline in that the resulting curve is not required to pass through each datapoint. @xref{Interpolation}, for information about interpolating splines. The header file @file{gsl_bspline.h} contains the prototypes for the bspline functions and related declarations. @menu * Overview of B-splines:: * Initializing the B-splines solver:: * Constructing the knots vector:: * Evaluation of B-spline basis functions:: * Evaluation of B-spline basis function derivatives:: * Working with the Greville abscissae:: * Example programs for B-splines:: * References and Further Reading:: @end menu @node Overview of B-splines @section Overview @cindex basis splines, overview B-splines are commonly used as basis functions to fit smoothing curves to large data sets. To do this, the abscissa axis is broken up into some number of intervals, where the endpoints of each interval are called @dfn{breakpoints}. These breakpoints are then converted to @dfn{knots} by imposing various continuity and smoothness conditions at each interface. Given a nondecreasing knot vector @c{$t = \{t_0, t_1, \dots, t_{n+k-1}\}$} @math{t = @{t_0, t_1, @dots{}, t_@{n+k-1@}@}}, the @math{n} basis splines of order @math{k} are defined by @tex \beforedisplay $$ B_{i,1}(x) = \left\{\matrix{1, & t_i \le x < t_{i+1}\cr 0, & else}\right. $$ $$ B_{i,k}(x) = {(x - t_i) \over (t_{i+k-1} - t_i)} B_{i,k-1}(x) + {(t_{i+k} - x) \over (t_{i+k} - t_{i+1})} B_{i+1,k-1}(x) $$ \afterdisplay @end tex @ifinfo @example B_(i,1)(x) = (1, t_i <= x < t_(i+1) (0, else B_(i,k)(x) = [(x - t_i)/(t_(i+k-1) - t_i)] B_(i,k-1)(x) + [(t_(i+k) - x)/(t_(i+k) - t_(i+1))] B_(i+1,k-1)(x) @end example @end ifinfo @noindent for @math{i = 0, @dots{}, n-1}. The common case of cubic B-splines is given by @math{k = 4}. The above recurrence relation can be evaluated in a numerically stable way by the de Boor algorithm. If we define appropriate knots on an interval @math{[a,b]} then the B-spline basis functions form a complete set on that interval. Therefore we can expand a smoothing function as @tex \beforedisplay $$ f(x) = \sum_{i=0}^{n-1} c_i B_{i,k}(x) $$ \afterdisplay @end tex @ifinfo @example f(x) = \sum_i c_i B_(i,k)(x) @end example @end ifinfo @noindent given enough @math{(x_j, f(x_j))} data pairs. The coefficients @math{c_i} can be readily obtained from a least-squares fit. @node Initializing the B-splines solver @section Initializing the B-splines solver @cindex basis splines, initializing The computation of B-spline functions requires a preallocated workspace of type @code{gsl_bspline_workspace}. If B-spline derivatives are also required, an additional @code{gsl_bspline_deriv_workspace} is needed. @deftypefun {gsl_bspline_workspace *} gsl_bspline_alloc (const size_t @var{k}, const size_t @var{nbreak}) @tpindex gsl_bspline_workspace This function allocates a workspace for computing B-splines of order @var{k}. The number of breakpoints is given by @var{nbreak}. This leads to @math{n = nbreak + k - 2} basis functions. Cubic B-splines are specified by @math{k = 4}. The size of the workspace is @math{O(5k + nbreak)}. @end deftypefun @deftypefun void gsl_bspline_free (gsl_bspline_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun {gsl_bspline_deriv_workspace *} gsl_bspline_deriv_alloc (const size_t @var{k}) @tpindex gsl_bspline_deriv_workspace This function allocates a workspace for computing the derivatives of a B-spline basis function of order @var{k}. The size of the workspace is @math{O(2k^2)}. @end deftypefun @deftypefun void gsl_bspline_deriv_free (gsl_bspline_deriv_workspace * @var{w}) This function frees the memory associated with the derivative workspace @var{w}. @end deftypefun @node Constructing the knots vector @section Constructing the knots vector @cindex knots, basis splines @deftypefun int gsl_bspline_knots (const gsl_vector * @var{breakpts}, gsl_bspline_workspace * @var{w}) This function computes the knots associated with the given breakpoints and stores them internally in @code{w->knots}. @end deftypefun @deftypefun int gsl_bspline_knots_uniform (const double @var{a}, const double @var{b}, gsl_bspline_workspace * @var{w}) This function assumes uniformly spaced breakpoints on @math{[a,b]} and constructs the corresponding knot vector using the previously specified @var{nbreak} parameter. The knots are stored in @code{w->knots}. @end deftypefun @node Evaluation of B-spline basis functions @section Evaluation of B-splines @cindex basis splines, evaluation @deftypefun int gsl_bspline_eval (const double @var{x}, gsl_vector * @var{B}, gsl_bspline_workspace * @var{w}) This function evaluates all B-spline basis functions at the position @var{x} and stores them in the vector @var{B}, so that the @math{i}-th element is @math{B_i(x)}. The vector @var{B} must be of length @math{n = nbreak + k - 2}. This value may also be obtained by calling @code{gsl_bspline_ncoeffs}. Computing all the basis functions at once is more efficient than computing them individually, due to the nature of the defining recurrence relation. @end deftypefun @deftypefun int gsl_bspline_eval_nonzero (const double @var{x}, gsl_vector * @var{Bk}, size_t * @var{istart}, size_t * @var{iend}, gsl_bspline_workspace * @var{w}) This function evaluates all potentially nonzero B-spline basis functions at the position @var{x} and stores them in the vector @var{Bk}, so that the @math{i}-th element is @c{$B_{(istart+i)}(x)$} @math{B_(istart+i)(x)}. The last element of @var{Bk} is @c{$B_{iend}(x)$} @math{B_(iend)(x)}. The vector @var{Bk} must be of length @math{k}. By returning only the nonzero basis functions, this function allows quantities involving linear combinations of the @math{B_i(x)} to be computed without unnecessary terms (such linear combinations occur, for example, when evaluating an interpolated function). @end deftypefun @deftypefun size_t gsl_bspline_ncoeffs (gsl_bspline_workspace * @var{w}) This function returns the number of B-spline coefficients given by @math{n = nbreak + k - 2}. @end deftypefun @node Evaluation of B-spline basis function derivatives @section Evaluation of B-spline derivatives @cindex basis splines, derivatives @deftypefun int gsl_bspline_deriv_eval (const double @var{x}, const size_t @var{nderiv}, gsl_matrix * @var{dB}, gsl_bspline_workspace * @var{w}, gsl_bspline_deriv_workspace * @var{dw}) This function evaluates all B-spline basis function derivatives of orders @math{0} through @math{nderiv} (inclusive) at the position @var{x} and stores them in the matrix @var{dB}. The @math{(i,j)}-th element of @var{dB} is @math{d^jB_i(x)/dx^j}. The matrix @var{dB} must be of size @math{n = nbreak + k - 2} by @math{nderiv + 1}. The value @math{n} may also be obtained by calling @code{gsl_bspline_ncoeffs}. Note that function evaluations are included as the zeroth order derivatives in @var{dB}. Computing all the basis function derivatives at once is more efficient than computing them individually, due to the nature of the defining recurrence relation. @end deftypefun @deftypefun int gsl_bspline_deriv_eval_nonzero (const double @var{x}, const size_t @var{nderiv}, gsl_matrix * @var{dB}, size_t * @var{istart}, size_t * @var{iend}, gsl_bspline_workspace * @var{w}, gsl_bspline_deriv_workspace * @var{dw}) This function evaluates all potentially nonzero B-spline basis function derivatives of orders @math{0} through @math{nderiv} (inclusive) at the position @var{x} and stores them in the matrix @var{dB}. The @math{(i,j)}-th element of @var{dB} is @c{$d^jB_{(istart+i)}(x)/dx^j$} @math{d^j/dx^j B_(istart+i)(x)}. The last row of @var{dB} contains @c{$d^jB_{iend}(x)/dx^j$} @math{d^j/dx^j B_(iend)(x)}. The matrix @var{dB} must be of size @math{k} by at least @math{nderiv + 1}. Note that function evaluations are included as the zeroth order derivatives in @var{dB}. By returning only the nonzero basis functions, this function allows quantities involving linear combinations of the @math{B_i(x)} and their derivatives to be computed without unnecessary terms. @end deftypefun @node Working with the Greville abscissae @section Working with the Greville abscissae @cindex basis splines, Greville abscissae @cindex basis splines, Marsden-Schoenberg points The Greville abscissae are defined to be the mean location of @math{k-1} consecutive knots in the knot vector for each basis spline function of order @math{k}. With the first and last knots in the @code{gsl_bspline_workspace} knot vector excluded, there are @code{gsl_bspline_ncoeffs} Greville abscissae for any given B-spline basis. These values are often used in B-spline collocation applications and may also be called Marsden-Schoenberg points. @deftypefun double gsl_bspline_greville_abscissa (size_t @var{i}, gsl_bspline_workspace *@var{w}); Returns the location of the @math{i}-th Greville abscissa for the given B-spline basis. For the ill-defined case when @math{k=1}, the implementation chooses to return breakpoint interval midpoints. @end deftypefun @c See https://savannah.gnu.org/bugs/index.php?34361 @c @deftypefun int gsl_bspline_knots_greville (const gsl_vector * @var{abscissae}, gsl_bspline_workspace * @var{w}, double * @var{abserr}); @c Given target Greville abscissae values in @var{abscissae} and a workspace @c @var{w} where @code{abscissae->size == gsl_bspline_ncoeffs(w)}, this functions @c computes and stores the knots required for the workspace to best approximate @c the target abscissae. The approximation is optimal in that the first and last @c values in @var{abscissae} are preserved exactly while the 2-norm of the error @c in any other abscissae is minimized. If not-@code{NULL}, the sum of the @c absolute approximation errors over each abscissa is returned in @var{abserr}. @c @c The workspace order must satisfy @math{k > 1} and @var{abscissae} should be @c monotonically increasing. Beware that when @code{w->nbreak} is small relative @c to @code{w->k} the best approximation may still be of poor quality for @c non-uniformly spaced @var{abscissae}. This function has memory and runtime @c overhead that scales like a QR-based linear least squares solution on a @c @code{(abscissae->size - 2)} by @code{(w->nbreak - 2)} problem. @c @end deftypefun @node Example programs for B-splines @section Examples @cindex basis splines, examples The following program computes a linear least squares fit to data using cubic B-spline basis functions with uniform breakpoints. The data is generated from the curve @math{y(x) = \cos{(x)} \exp{(-x/10)}} on the interval @math{[0, 15]} with Gaussian noise added. @example @verbatiminclude examples/bspline.c @end example The output can be plotted with @sc{gnu} @code{graph}. @example $ ./a.out > bspline.dat chisq/dof = 1.118217e+00, Rsq = 0.989771 $ graph -T ps -X x -Y y -x 0 15 -y -1 1.3 < bspline.dat > bspline.ps @end example @iftex @sp 1 @center @image{bspline,3.4in} @end iftex @node References and Further Reading @section References and Further Reading Further information on the algorithms described in this section can be found in the following book, @itemize @w{} @item C. de Boor, @cite{A Practical Guide to Splines} (1978), Springer-Verlag, ISBN 0-387-90356-9. @end itemize Further information of Greville abscissae and B-spline collocation can be found in the following paper, @itemize @w{} @item Richard W. Johnson, Higher order B-spline collocation at the Greville abscissae. @cite{Applied Numerical Mathematics}. vol.@: 52, 2005, 63--75. @end itemize @noindent A large collection of B-spline routines is available in the @sc{pppack} library available at @uref{http://www.netlib.org/pppack}, which is also part of @sc{slatec}. gsl-1.16/doc/gsl-ref.info-20000664000252300025230000111060612172254223012274 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  File: gsl-ref.info, Node: Reading and writing combinations, Next: Combination Examples, Prev: Combination functions, Up: Combinations 10.6 Reading and writing combinations ===================================== The library provides functions for reading and writing combinations to a file as binary data or formatted text. -- Function: int gsl_combination_fwrite (FILE * STREAM, const gsl_combination * C) This function writes the elements of the combination C to the stream STREAM in binary format. The function returns 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_combination_fread (FILE * STREAM, gsl_combination * C) This function reads elements from the open stream STREAM into the combination C in binary format. The combination C must be preallocated with correct values of n and k since the function uses the size of C to determine how many bytes to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_combination_fprintf (FILE * STREAM, const gsl_combination * C, const char * FORMAT) This function writes the elements of the combination C line-by-line to the stream STREAM using the format specifier FORMAT, which should be suitable for a type of SIZE_T. In ISO C99 the type modifier 'z' represents 'size_t', so '"%zu\n"' is a suitable format.(1) The function returns 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_combination_fscanf (FILE * STREAM, gsl_combination * C) This function reads formatted data from the stream STREAM into the combination C. The combination C must be preallocated with correct values of n and k since the function uses the size of C to determine how many numbers to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. ---------- Footnotes ---------- (1) In versions of the GNU C library prior to the ISO C99 standard, the type modifier 'Z' was used instead.  File: gsl-ref.info, Node: Combination Examples, Next: Combination References and Further Reading, Prev: Reading and writing combinations, Up: Combinations 10.7 Examples ============= The example program below prints all subsets of the set {0,1,2,3} ordered by size. Subsets of the same size are ordered lexicographically. #include #include int main (void) { gsl_combination * c; size_t i; printf ("All subsets of {0,1,2,3} by size:\n") ; for (i = 0; i <= 4; i++) { c = gsl_combination_calloc (4, i); do { printf ("{"); gsl_combination_fprintf (stdout, c, " %u"); printf (" }\n"); } while (gsl_combination_next (c) == GSL_SUCCESS); gsl_combination_free (c); } return 0; } Here is the output from the program, $ ./a.out All subsets of {0,1,2,3} by size: { } { 0 } { 1 } { 2 } { 3 } { 0 1 } { 0 2 } { 0 3 } { 1 2 } { 1 3 } { 2 3 } { 0 1 2 } { 0 1 3 } { 0 2 3 } { 1 2 3 } { 0 1 2 3 } All 16 subsets are generated, and the subsets of each size are sorted lexicographically.  File: gsl-ref.info, Node: Combination References and Further Reading, Prev: Combination Examples, Up: Combinations 10.8 References and Further Reading =================================== Further information on combinations can be found in, Donald L. Kreher, Douglas R. Stinson, 'Combinatorial Algorithms: Generation, Enumeration and Search', 1998, CRC Press LLC, ISBN 084933988X  File: gsl-ref.info, Node: Multisets, Next: Sorting, Prev: Combinations, Up: Top 11 Multisets ************ This chapter describes functions for creating and manipulating multisets. A multiset c is represented by an array of k integers in the range 0 to n-1, where each value c_i may occur more than once. The multiset c corresponds to indices of k elements chosen from an n element vector with replacement. In mathematical terms, n is the cardinality of the multiset while k is the maximum multiplicity of any value. Multisets are useful, for example, when iterating over the indices of a k-th order symmetric tensor in n-space. The functions described in this chapter are defined in the header file 'gsl_multiset.h'. * Menu: * The Multiset struct:: * Multiset allocation:: * Accessing multiset elements:: * Multiset properties:: * Multiset functions:: * Reading and writing multisets:: * Multiset Examples::  File: gsl-ref.info, Node: The Multiset struct, Next: Multiset allocation, Up: Multisets 11.1 The Multiset struct ======================== A multiset is defined by a structure containing three components, the values of n and k, and a pointer to the multiset array. The elements of the multiset array are all of type 'size_t', and are stored in increasing order. The 'gsl_multiset' structure looks like this, typedef struct { size_t n; size_t k; size_t *data; } gsl_multiset;  File: gsl-ref.info, Node: Multiset allocation, Next: Accessing multiset elements, Prev: The Multiset struct, Up: Multisets 11.2 Multiset allocation ======================== -- Function: gsl_multiset * gsl_multiset_alloc (size_t N, size_t K) This function allocates memory for a new multiset with parameters N, K. The multiset is not initialized and its elements are undefined. Use the function 'gsl_multiset_calloc' if you want to create a multiset which is initialized to the lexicographically first multiset element. A null pointer is returned if insufficient memory is available to create the multiset. -- Function: gsl_multiset * gsl_multiset_calloc (size_t N, size_t K) This function allocates memory for a new multiset with parameters N, K and initializes it to the lexicographically first multiset element. A null pointer is returned if insufficient memory is available to create the multiset. -- Function: void gsl_multiset_init_first (gsl_multiset * C) This function initializes the multiset C to the lexicographically first multiset element, i.e. 0 repeated k times. -- Function: void gsl_multiset_init_last (gsl_multiset * C) This function initializes the multiset C to the lexicographically last multiset element, i.e. n-1 repeated k times. -- Function: void gsl_multiset_free (gsl_multiset * C) This function frees all the memory used by the multiset C. -- Function: int gsl_multiset_memcpy (gsl_multiset * DEST, const gsl_multiset * SRC) This function copies the elements of the multiset SRC into the multiset DEST. The two multisets must have the same size.  File: gsl-ref.info, Node: Accessing multiset elements, Next: Multiset properties, Prev: Multiset allocation, Up: Multisets 11.3 Accessing multiset elements ================================ The following function can be used to access the elements of a multiset. -- Function: size_t gsl_multiset_get (const gsl_multiset * C, const size_t I) This function returns the value of the I-th element of the multiset C. If I lies outside the allowed range of 0 to K-1 then the error handler is invoked and 0 is returned. An inline version of this function is used when 'HAVE_INLINE' is defined.  File: gsl-ref.info, Node: Multiset properties, Next: Multiset functions, Prev: Accessing multiset elements, Up: Multisets 11.4 Multiset properties ======================== -- Function: size_t gsl_multiset_n (const gsl_multiset * C) This function returns the range (n) of the multiset C. -- Function: size_t gsl_multiset_k (const gsl_multiset * C) This function returns the number of elements (k) in the multiset C. -- Function: size_t * gsl_multiset_data (const gsl_multiset * C) This function returns a pointer to the array of elements in the multiset C. -- Function: int gsl_multiset_valid (gsl_multiset * C) This function checks that the multiset C is valid. The K elements should lie in the range 0 to N-1, with each value occurring in nondecreasing order.  File: gsl-ref.info, Node: Multiset functions, Next: Reading and writing multisets, Prev: Multiset properties, Up: Multisets 11.5 Multiset functions ======================= -- Function: int gsl_multiset_next (gsl_multiset * C) This function advances the multiset C to the next multiset element in lexicographic order and returns 'GSL_SUCCESS'. If no further multisets elements are available it returns 'GSL_FAILURE' and leaves C unmodified. Starting with the first multiset and repeatedly applying this function will iterate through all possible multisets of a given order. -- Function: int gsl_multiset_prev (gsl_multiset * C) This function steps backwards from the multiset C to the previous multiset element in lexicographic order, returning 'GSL_SUCCESS'. If no previous multiset is available it returns 'GSL_FAILURE' and leaves C unmodified.  File: gsl-ref.info, Node: Reading and writing multisets, Next: Multiset Examples, Prev: Multiset functions, Up: Multisets 11.6 Reading and writing multisets ================================== The library provides functions for reading and writing multisets to a file as binary data or formatted text. -- Function: int gsl_multiset_fwrite (FILE * STREAM, const gsl_multiset * C) This function writes the elements of the multiset C to the stream STREAM in binary format. The function returns 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_multiset_fread (FILE * STREAM, gsl_multiset * C) This function reads elements from the open stream STREAM into the multiset C in binary format. The multiset C must be preallocated with correct values of n and k since the function uses the size of C to determine how many bytes to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_multiset_fprintf (FILE * STREAM, const gsl_multiset * C, const char * FORMAT) This function writes the elements of the multiset C line-by-line to the stream STREAM using the format specifier FORMAT, which should be suitable for a type of SIZE_T. In ISO C99 the type modifier 'z' represents 'size_t', so '"%zu\n"' is a suitable format.(1) The function returns 'GSL_EFAILED' if there was a problem writing to the file. -- Function: int gsl_multiset_fscanf (FILE * STREAM, gsl_multiset * C) This function reads formatted data from the stream STREAM into the multiset C. The multiset C must be preallocated with correct values of n and k since the function uses the size of C to determine how many numbers to read. The function returns 'GSL_EFAILED' if there was a problem reading from the file. ---------- Footnotes ---------- (1) In versions of the GNU C library prior to the ISO C99 standard, the type modifier 'Z' was used instead.  File: gsl-ref.info, Node: Multiset Examples, Prev: Reading and writing multisets, Up: Multisets 11.7 Examples ============= The example program below prints all multisets elements containing the values {0,1,2,3} ordered by size. Multiset elements of the same size are ordered lexicographically. #include #include int main (void) { gsl_multiset * c; size_t i; printf ("All multisets of {0,1,2,3} by size:\n") ; for (i = 0; i <= 4; i++) { c = gsl_multiset_calloc (4, i); do { printf ("{"); gsl_multiset_fprintf (stdout, c, " %u"); printf (" }\n"); } while (gsl_multiset_next (c) == GSL_SUCCESS); gsl_multiset_free (c); } return 0; } Here is the output from the program, $ ./a.out all multisets of {0,1,2,3} by size: { } { 0 } { 1 } { 2 } { 3 } { 0 0 } { 0 1 } { 0 2 } { 0 3 } { 1 1 } { 1 2 } { 1 3 } { 2 2 } { 2 3 } { 3 3 } { 0 0 0 } { 0 0 1 } { 0 0 2 } { 0 0 3 } { 0 1 1 } { 0 1 2 } { 0 1 3 } { 0 2 2 } { 0 2 3 } { 0 3 3 } { 1 1 1 } { 1 1 2 } { 1 1 3 } { 1 2 2 } { 1 2 3 } { 1 3 3 } { 2 2 2 } { 2 2 3 } { 2 3 3 } { 3 3 3 } { 0 0 0 0 } { 0 0 0 1 } { 0 0 0 2 } { 0 0 0 3 } { 0 0 1 1 } { 0 0 1 2 } { 0 0 1 3 } { 0 0 2 2 } { 0 0 2 3 } { 0 0 3 3 } { 0 1 1 1 } { 0 1 1 2 } { 0 1 1 3 } { 0 1 2 2 } { 0 1 2 3 } { 0 1 3 3 } { 0 2 2 2 } { 0 2 2 3 } { 0 2 3 3 } { 0 3 3 3 } { 1 1 1 1 } { 1 1 1 2 } { 1 1 1 3 } { 1 1 2 2 } { 1 1 2 3 } { 1 1 3 3 } { 1 2 2 2 } { 1 2 2 3 } { 1 2 3 3 } { 1 3 3 3 } { 2 2 2 2 } { 2 2 2 3 } { 2 2 3 3 } { 2 3 3 3 } { 3 3 3 3 } All 70 multisets are generated and sorted lexicographically.  File: gsl-ref.info, Node: Sorting, Next: BLAS Support, Prev: Multisets, Up: Top 12 Sorting ********** This chapter describes functions for sorting data, both directly and indirectly (using an index). All the functions use the "heapsort" algorithm. Heapsort is an O(N \log N) algorithm which operates in-place and does not require any additional storage. It also provides consistent performance, the running time for its worst-case (ordered data) being not significantly longer than the average and best cases. Note that the heapsort algorithm does not preserve the relative ordering of equal elements--it is an "unstable" sort. However the resulting order of equal elements will be consistent across different platforms when using these functions. * Menu: * Sorting objects:: * Sorting vectors:: * Selecting the k smallest or largest elements:: * Computing the rank:: * Sorting Examples:: * Sorting References and Further Reading::  File: gsl-ref.info, Node: Sorting objects, Next: Sorting vectors, Up: Sorting 12.1 Sorting objects ==================== The following function provides a simple alternative to the standard library function 'qsort'. It is intended for systems lacking 'qsort', not as a replacement for it. The function 'qsort' should be used whenever possible, as it will be faster and can provide stable ordering of equal elements. Documentation for 'qsort' is available in the 'GNU C Library Reference Manual'. The functions described in this section are defined in the header file 'gsl_heapsort.h'. -- Function: void gsl_heapsort (void * ARRAY, size_t COUNT, size_t SIZE, gsl_comparison_fn_t COMPARE) This function sorts the COUNT elements of the array ARRAY, each of size SIZE, into ascending order using the comparison function COMPARE. The type of the comparison function is defined by, int (*gsl_comparison_fn_t) (const void * a, const void * b) A comparison function should return a negative integer if the first argument is less than the second argument, '0' if the two arguments are equal and a positive integer if the first argument is greater than the second argument. For example, the following function can be used to sort doubles into ascending numerical order. int compare_doubles (const double * a, const double * b) { if (*a > *b) return 1; else if (*a < *b) return -1; else return 0; } The appropriate function call to perform the sort is, gsl_heapsort (array, count, sizeof(double), compare_doubles); Note that unlike 'qsort' the heapsort algorithm cannot be made into a stable sort by pointer arithmetic. The trick of comparing pointers for equal elements in the comparison function does not work for the heapsort algorithm. The heapsort algorithm performs an internal rearrangement of the data which destroys its initial ordering. -- Function: int gsl_heapsort_index (size_t * P, const void * ARRAY, size_t COUNT, size_t SIZE, gsl_comparison_fn_t COMPARE) This function indirectly sorts the COUNT elements of the array ARRAY, each of size SIZE, into ascending order using the comparison function COMPARE. The resulting permutation is stored in P, an array of length N. The elements of P give the index of the array element which would have been stored in that position if the array had been sorted in place. The first element of P gives the index of the least element in ARRAY, and the last element of P gives the index of the greatest element in ARRAY. The array itself is not changed.  File: gsl-ref.info, Node: Sorting vectors, Next: Selecting the k smallest or largest elements, Prev: Sorting objects, Up: Sorting 12.2 Sorting vectors ==================== The following functions will sort the elements of an array or vector, either directly or indirectly. They are defined for all real and integer types using the normal suffix rules. For example, the 'float' versions of the array functions are 'gsl_sort_float' and 'gsl_sort_float_index'. The corresponding vector functions are 'gsl_sort_vector_float' and 'gsl_sort_vector_float_index'. The prototypes are available in the header files 'gsl_sort_float.h' 'gsl_sort_vector_float.h'. The complete set of prototypes can be included using the header files 'gsl_sort.h' and 'gsl_sort_vector.h'. There are no functions for sorting complex arrays or vectors, since the ordering of complex numbers is not uniquely defined. To sort a complex vector by magnitude compute a real vector containing the magnitudes of the complex elements, and sort this vector indirectly. The resulting index gives the appropriate ordering of the original complex vector. -- Function: void gsl_sort (double * DATA, const size_t STRIDE, size_t N) This function sorts the N elements of the array DATA with stride STRIDE into ascending numerical order. -- Function: void gsl_sort2 (double * DATA1, const size_t STRIDE1, double * DATA2, const size_t STRIDE2, size_t N) This function sorts the N elements of the array DATA1 with stride STRIDE1 into ascending numerical order, while making the same rearrangement of the array DATA2 with stride STRIDE2, also of size N. -- Function: void gsl_sort_vector (gsl_vector * V) This function sorts the elements of the vector V into ascending numerical order. -- Function: void gsl_sort_vector2 (gsl_vector * V1, gsl_vector * V2) This function sorts the elements of the vector V1 into ascending numerical order, while making the same rearrangement of the vector V2. -- Function: void gsl_sort_index (size_t * P, const double * DATA, size_t STRIDE, size_t N) This function indirectly sorts the N elements of the array DATA with stride STRIDE into ascending order, storing the resulting permutation in P. The array P must be allocated with a sufficient length to store the N elements of the permutation. The elements of P give the index of the array element which would have been stored in that position if the array had been sorted in place. The array DATA is not changed. -- Function: int gsl_sort_vector_index (gsl_permutation * P, const gsl_vector * V) This function indirectly sorts the elements of the vector V into ascending order, storing the resulting permutation in P. The elements of P give the index of the vector element which would have been stored in that position if the vector had been sorted in place. The first element of P gives the index of the least element in V, and the last element of P gives the index of the greatest element in V. The vector V is not changed.  File: gsl-ref.info, Node: Selecting the k smallest or largest elements, Next: Computing the rank, Prev: Sorting vectors, Up: Sorting 12.3 Selecting the k smallest or largest elements ================================================= The functions described in this section select the k smallest or largest elements of a data set of size N. The routines use an O(kN) direct insertion algorithm which is suited to subsets that are small compared with the total size of the dataset. For example, the routines are useful for selecting the 10 largest values from one million data points, but not for selecting the largest 100,000 values. If the subset is a significant part of the total dataset it may be faster to sort all the elements of the dataset directly with an O(N \log N) algorithm and obtain the smallest or largest values that way. -- Function: int gsl_sort_smallest (double * DEST, size_t K, const double * SRC, size_t STRIDE, size_t N) This function copies the K smallest elements of the array SRC, of size N and stride STRIDE, in ascending numerical order into the array DEST. The size K of the subset must be less than or equal to N. The data SRC is not modified by this operation. -- Function: int gsl_sort_largest (double * DEST, size_t K, const double * SRC, size_t STRIDE, size_t N) This function copies the K largest elements of the array SRC, of size N and stride STRIDE, in descending numerical order into the array DEST. K must be less than or equal to N. The data SRC is not modified by this operation. -- Function: int gsl_sort_vector_smallest (double * DEST, size_t K, const gsl_vector * V) -- Function: int gsl_sort_vector_largest (double * DEST, size_t K, const gsl_vector * V) These functions copy the K smallest or largest elements of the vector V into the array DEST. K must be less than or equal to the length of the vector V. The following functions find the indices of the k smallest or largest elements of a dataset, -- Function: int gsl_sort_smallest_index (size_t * P, size_t K, const double * SRC, size_t STRIDE, size_t N) This function stores the indices of the K smallest elements of the array SRC, of size N and stride STRIDE, in the array P. The indices are chosen so that the corresponding data is in ascending numerical order. K must be less than or equal to N. The data SRC is not modified by this operation. -- Function: int gsl_sort_largest_index (size_t * P, size_t K, const double * SRC, size_t STRIDE, size_t N) This function stores the indices of the K largest elements of the array SRC, of size N and stride STRIDE, in the array P. The indices are chosen so that the corresponding data is in descending numerical order. K must be less than or equal to N. The data SRC is not modified by this operation. -- Function: int gsl_sort_vector_smallest_index (size_t * P, size_t K, const gsl_vector * V) -- Function: int gsl_sort_vector_largest_index (size_t * P, size_t K, const gsl_vector * V) These functions store the indices of the K smallest or largest elements of the vector V in the array P. K must be less than or equal to the length of the vector V.  File: gsl-ref.info, Node: Computing the rank, Next: Sorting Examples, Prev: Selecting the k smallest or largest elements, Up: Sorting 12.4 Computing the rank ======================= The "rank" of an element is its order in the sorted data. The rank is the inverse of the index permutation, P. It can be computed using the following algorithm, for (i = 0; i < p->size; i++) { size_t pi = p->data[i]; rank->data[pi] = i; } This can be computed directly from the function 'gsl_permutation_inverse(rank,p)'. The following function will print the rank of each element of the vector V, void print_rank (gsl_vector * v) { size_t i; size_t n = v->size; gsl_permutation * perm = gsl_permutation_alloc(n); gsl_permutation * rank = gsl_permutation_alloc(n); gsl_sort_vector_index (perm, v); gsl_permutation_inverse (rank, perm); for (i = 0; i < n; i++) { double vi = gsl_vector_get(v, i); printf ("element = %d, value = %g, rank = %d\n", i, vi, rank->data[i]); } gsl_permutation_free (perm); gsl_permutation_free (rank); }  File: gsl-ref.info, Node: Sorting Examples, Next: Sorting References and Further Reading, Prev: Computing the rank, Up: Sorting 12.5 Examples ============= The following example shows how to use the permutation P to print the elements of the vector V in ascending order, gsl_sort_vector_index (p, v); for (i = 0; i < v->size; i++) { double vpi = gsl_vector_get (v, p->data[i]); printf ("order = %d, value = %g\n", i, vpi); } The next example uses the function 'gsl_sort_smallest' to select the 5 smallest numbers from 100000 uniform random variates stored in an array, #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; size_t i, k = 5, N = 100000; double * x = malloc (N * sizeof(double)); double * small = malloc (k * sizeof(double)); gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < N; i++) { x[i] = gsl_rng_uniform(r); } gsl_sort_smallest (small, k, x, 1, N); printf ("%d smallest values from %d\n", k, N); for (i = 0; i < k; i++) { printf ("%d: %.18f\n", i, small[i]); } free (x); free (small); gsl_rng_free (r); return 0; } The output lists the 5 smallest values, in ascending order, $ ./a.out 5 smallest values from 100000 0: 0.000003489200025797 1: 0.000008199829608202 2: 0.000008953968062997 3: 0.000010712770745158 4: 0.000033531803637743  File: gsl-ref.info, Node: Sorting References and Further Reading, Prev: Sorting Examples, Up: Sorting 12.6 References and Further Reading =================================== The subject of sorting is covered extensively in Knuth's 'Sorting and Searching', Donald E. Knuth, 'The Art of Computer Programming: Sorting and Searching' (Vol 3, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. The Heapsort algorithm is described in the following book, Robert Sedgewick, 'Algorithms in C', Addison-Wesley, ISBN 0201514257.  File: gsl-ref.info, Node: BLAS Support, Next: Linear Algebra, Prev: Sorting, Up: Top 13 BLAS Support *************** The Basic Linear Algebra Subprograms (BLAS) define a set of fundamental operations on vectors and matrices which can be used to create optimized higher-level linear algebra functionality. The library provides a low-level layer which corresponds directly to the C-language BLAS standard, referred to here as "CBLAS", and a higher-level interface for operations on GSL vectors and matrices. Users who are interested in simple operations on GSL vector and matrix objects should use the high-level layer described in this chapter. The functions are declared in the file 'gsl_blas.h' and should satisfy the needs of most users. Note that GSL matrices are implemented using dense-storage so the interface only includes the corresponding dense-storage BLAS functions. The full BLAS functionality for band-format and packed-format matrices is available through the low-level CBLAS interface. Similarly, GSL vectors are restricted to positive strides, whereas the low-level CBLAS interface supports negative strides as specified in the BLAS standard.(1) The interface for the 'gsl_cblas' layer is specified in the file 'gsl_cblas.h'. This interface corresponds to the BLAS Technical Forum's standard for the C interface to legacy BLAS implementations. Users who have access to other conforming CBLAS implementations can use these in place of the version provided by the library. Note that users who have only a Fortran BLAS library can use a CBLAS conformant wrapper to convert it into a CBLAS library. A reference CBLAS wrapper for legacy Fortran implementations exists as part of the CBLAS standard and can be obtained from Netlib. The complete set of CBLAS functions is listed in an appendix (*note GSL CBLAS Library::). There are three levels of BLAS operations, Level 1 Vector operations, e.g. y = \alpha x + y Level 2 Matrix-vector operations, e.g. y = \alpha A x + \beta y Level 3 Matrix-matrix operations, e.g. C = \alpha A B + C Each routine has a name which specifies the operation, the type of matrices involved and their precisions. Some of the most common operations and their names are given below, DOT scalar product, x^T y AXPY vector sum, \alpha x + y MV matrix-vector product, A x SV matrix-vector solve, inv(A) x MM matrix-matrix product, A B SM matrix-matrix solve, inv(A) B The types of matrices are, GE general GB general band SY symmetric SB symmetric band SP symmetric packed HE hermitian HB hermitian band HP hermitian packed TR triangular TB triangular band TP triangular packed Each operation is defined for four precisions, S single real D double real C single complex Z double complex Thus, for example, the name SGEMM stands for "single-precision general matrix-matrix multiply" and ZGEMM stands for "double-precision complex matrix-matrix multiply". Note that the vector and matrix arguments to BLAS functions must not be aliased, as the results are undefined when the underlying arrays overlap (*note Aliasing of arrays::). * Menu: * GSL BLAS Interface:: * BLAS Examples:: * BLAS References and Further Reading:: ---------- Footnotes ---------- (1) In the low-level CBLAS interface, a negative stride accesses the vector elements in reverse order, i.e. the i-th element is given by (N-i)*|incx| for incx < 0.  File: gsl-ref.info, Node: GSL BLAS Interface, Next: BLAS Examples, Up: BLAS Support 13.1 GSL BLAS Interface ======================= GSL provides dense vector and matrix objects, based on the relevant built-in types. The library provides an interface to the BLAS operations which apply to these objects. The interface to this functionality is given in the file 'gsl_blas.h'. * Menu: * Level 1 GSL BLAS Interface:: * Level 2 GSL BLAS Interface:: * Level 3 GSL BLAS Interface::  File: gsl-ref.info, Node: Level 1 GSL BLAS Interface, Next: Level 2 GSL BLAS Interface, Up: GSL BLAS Interface 13.1.1 Level 1 -------------- -- Function: int gsl_blas_sdsdot (float ALPHA, const gsl_vector_float * X, const gsl_vector_float * Y, float * RESULT) This function computes the sum \alpha + x^T y for the vectors X and Y, returning the result in RESULT. -- Function: int gsl_blas_sdot (const gsl_vector_float * X, const gsl_vector_float * Y, float * RESULT) -- Function: int gsl_blas_dsdot (const gsl_vector_float * X, const gsl_vector_float * Y, double * RESULT) -- Function: int gsl_blas_ddot (const gsl_vector * X, const gsl_vector * Y, double * RESULT) These functions compute the scalar product x^T y for the vectors X and Y, returning the result in RESULT. -- Function: int gsl_blas_cdotu (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * DOTU) -- Function: int gsl_blas_zdotu (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * DOTU) These functions compute the complex scalar product x^T y for the vectors X and Y, returning the result in DOTU -- Function: int gsl_blas_cdotc (const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_complex_float * DOTC) -- Function: int gsl_blas_zdotc (const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_complex * DOTC) These functions compute the complex conjugate scalar product x^H y for the vectors X and Y, returning the result in DOTC -- Function: float gsl_blas_snrm2 (const gsl_vector_float * X) -- Function: double gsl_blas_dnrm2 (const gsl_vector * X) These functions compute the Euclidean norm ||x||_2 = \sqrt {\sum x_i^2} of the vector X. -- Function: float gsl_blas_scnrm2 (const gsl_vector_complex_float * X) -- Function: double gsl_blas_dznrm2 (const gsl_vector_complex * X) These functions compute the Euclidean norm of the complex vector X, ||x||_2 = \sqrt {\sum (\Re(x_i)^2 + \Im(x_i)^2)}. -- Function: float gsl_blas_sasum (const gsl_vector_float * X) -- Function: double gsl_blas_dasum (const gsl_vector * X) These functions compute the absolute sum \sum |x_i| of the elements of the vector X. -- Function: float gsl_blas_scasum (const gsl_vector_complex_float * X) -- Function: double gsl_blas_dzasum (const gsl_vector_complex * X) These functions compute the sum of the magnitudes of the real and imaginary parts of the complex vector X, \sum |\Re(x_i)| + |\Im(x_i)|. -- Function: CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * X) -- Function: CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * X) -- Function: CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * X) -- Function: CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * X) These functions return the index of the largest element of the vector X. The largest element is determined by its absolute magnitude for real vectors and by the sum of the magnitudes of the real and imaginary parts |\Re(x_i)| + |\Im(x_i)| for complex vectors. If the largest value occurs several times then the index of the first occurrence is returned. -- Function: int gsl_blas_sswap (gsl_vector_float * X, gsl_vector_float * Y) -- Function: int gsl_blas_dswap (gsl_vector * X, gsl_vector * Y) -- Function: int gsl_blas_cswap (gsl_vector_complex_float * X, gsl_vector_complex_float * Y) -- Function: int gsl_blas_zswap (gsl_vector_complex * X, gsl_vector_complex * Y) These functions exchange the elements of the vectors X and Y. -- Function: int gsl_blas_scopy (const gsl_vector_float * X, gsl_vector_float * Y) -- Function: int gsl_blas_dcopy (const gsl_vector * X, gsl_vector * Y) -- Function: int gsl_blas_ccopy (const gsl_vector_complex_float * X, gsl_vector_complex_float * Y) -- Function: int gsl_blas_zcopy (const gsl_vector_complex * X, gsl_vector_complex * Y) These functions copy the elements of the vector X into the vector Y. -- Function: int gsl_blas_saxpy (float ALPHA, const gsl_vector_float * X, gsl_vector_float * Y) -- Function: int gsl_blas_daxpy (double ALPHA, const gsl_vector * X, gsl_vector * Y) -- Function: int gsl_blas_caxpy (const gsl_complex_float ALPHA, const gsl_vector_complex_float * X, gsl_vector_complex_float * Y) -- Function: int gsl_blas_zaxpy (const gsl_complex ALPHA, const gsl_vector_complex * X, gsl_vector_complex * Y) These functions compute the sum y = \alpha x + y for the vectors X and Y. -- Function: void gsl_blas_sscal (float ALPHA, gsl_vector_float * X) -- Function: void gsl_blas_dscal (double ALPHA, gsl_vector * X) -- Function: void gsl_blas_cscal (const gsl_complex_float ALPHA, gsl_vector_complex_float * X) -- Function: void gsl_blas_zscal (const gsl_complex ALPHA, gsl_vector_complex * X) -- Function: void gsl_blas_csscal (float ALPHA, gsl_vector_complex_float * X) -- Function: void gsl_blas_zdscal (double ALPHA, gsl_vector_complex * X) These functions rescale the vector X by the multiplicative factor ALPHA. -- Function: int gsl_blas_srotg (float A[], float B[], float C[], float S[]) -- Function: int gsl_blas_drotg (double A[], double B[], double C[], double S[]) These functions compute a Givens rotation (c,s) which zeroes the vector (a,b), [ c s ] [ a ] = [ r ] [ -s c ] [ b ] [ 0 ] The variables A and B are overwritten by the routine. -- Function: int gsl_blas_srot (gsl_vector_float * X, gsl_vector_float * Y, float C, float S) -- Function: int gsl_blas_drot (gsl_vector * X, gsl_vector * Y, const double C, const double S) These functions apply a Givens rotation (x', y') = (c x + s y, -s x + c y) to the vectors X, Y. -- Function: int gsl_blas_srotmg (float D1[], float D2[], float B1[], float B2, float P[]) -- Function: int gsl_blas_drotmg (double D1[], double D2[], double B1[], double B2, double P[]) These functions compute a modified Givens transformation. The modified Givens transformation is defined in the original Level-1 BLAS specification, given in the references. -- Function: int gsl_blas_srotm (gsl_vector_float * X, gsl_vector_float * Y, const float P[]) -- Function: int gsl_blas_drotm (gsl_vector * X, gsl_vector * Y, const double P[]) These functions apply a modified Givens transformation.  File: gsl-ref.info, Node: Level 2 GSL BLAS Interface, Next: Level 3 GSL BLAS Interface, Prev: Level 1 GSL BLAS Interface, Up: GSL BLAS Interface 13.1.2 Level 2 -------------- -- Function: int gsl_blas_sgemv (CBLAS_TRANSPOSE_t TRANSA, float ALPHA, const gsl_matrix_float * A, const gsl_vector_float * X, float BETA, gsl_vector_float * Y) -- Function: int gsl_blas_dgemv (CBLAS_TRANSPOSE_t TRANSA, double ALPHA, const gsl_matrix * A, const gsl_vector * X, double BETA, gsl_vector * Y) -- Function: int gsl_blas_cgemv (CBLAS_TRANSPOSE_t TRANSA, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float BETA, gsl_vector_complex_float * Y) -- Function: int gsl_blas_zgemv (CBLAS_TRANSPOSE_t TRANSA, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex BETA, gsl_vector_complex * Y) These functions compute the matrix-vector product and sum y = \alpha op(A) x + \beta y, where op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans'. -- Function: int gsl_blas_strmv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_float * A, gsl_vector_float * X) -- Function: int gsl_blas_dtrmv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix * A, gsl_vector * X) -- Function: int gsl_blas_ctrmv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X) -- Function: int gsl_blas_ztrmv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_complex * A, gsl_vector_complex * X) These functions compute the matrix-vector product x = op(A) x for the triangular matrix A, where op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans'. When UPLO is 'CblasUpper' then the upper triangle of A is used, and when UPLO is 'CblasLower' then the lower triangle of A is used. If DIAG is 'CblasNonUnit' then the diagonal of the matrix is used, but if DIAG is 'CblasUnit' then the diagonal elements of the matrix A are taken as unity and are not referenced. -- Function: int gsl_blas_strsv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_float * A, gsl_vector_float * X) -- Function: int gsl_blas_dtrsv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix * A, gsl_vector * X) -- Function: int gsl_blas_ctrsv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_complex_float * A, gsl_vector_complex_float * X) -- Function: int gsl_blas_ztrsv (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_matrix_complex * A, gsl_vector_complex * X) These functions compute inv(op(A)) x for X, where op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans'. When UPLO is 'CblasUpper' then the upper triangle of A is used, and when UPLO is 'CblasLower' then the lower triangle of A is used. If DIAG is 'CblasNonUnit' then the diagonal of the matrix is used, but if DIAG is 'CblasUnit' then the diagonal elements of the matrix A are taken as unity and are not referenced. -- Function: int gsl_blas_ssymv (CBLAS_UPLO_t UPLO, float ALPHA, const gsl_matrix_float * A, const gsl_vector_float * X, float BETA, gsl_vector_float * Y) -- Function: int gsl_blas_dsymv (CBLAS_UPLO_t UPLO, double ALPHA, const gsl_matrix * A, const gsl_vector * X, double BETA, gsl_vector * Y) These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. -- Function: int gsl_blas_chemv (CBLAS_UPLO_t UPLO, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * X, const gsl_complex_float BETA, gsl_vector_complex_float * Y) -- Function: int gsl_blas_zhemv (CBLAS_UPLO_t UPLO, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_vector_complex * X, const gsl_complex BETA, gsl_vector_complex * Y) These functions compute the matrix-vector product and sum y = \alpha A x + \beta y for the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced. -- Function: int gsl_blas_sger (float ALPHA, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A) -- Function: int gsl_blas_dger (double ALPHA, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A) -- Function: int gsl_blas_cgeru (const gsl_complex_float ALPHA, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) -- Function: int gsl_blas_zgeru (const gsl_complex ALPHA, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) These functions compute the rank-1 update A = \alpha x y^T + A of the matrix A. -- Function: int gsl_blas_cgerc (const gsl_complex_float ALPHA, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) -- Function: int gsl_blas_zgerc (const gsl_complex ALPHA, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) These functions compute the conjugate rank-1 update A = \alpha x y^H + A of the matrix A. -- Function: int gsl_blas_ssyr (CBLAS_UPLO_t UPLO, float ALPHA, const gsl_vector_float * X, gsl_matrix_float * A) -- Function: int gsl_blas_dsyr (CBLAS_UPLO_t UPLO, double ALPHA, const gsl_vector * X, gsl_matrix * A) These functions compute the symmetric rank-1 update A = \alpha x x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. -- Function: int gsl_blas_cher (CBLAS_UPLO_t UPLO, float ALPHA, const gsl_vector_complex_float * X, gsl_matrix_complex_float * A) -- Function: int gsl_blas_zher (CBLAS_UPLO_t UPLO, double ALPHA, const gsl_vector_complex * X, gsl_matrix_complex * A) These functions compute the hermitian rank-1 update A = \alpha x x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero. -- Function: int gsl_blas_ssyr2 (CBLAS_UPLO_t UPLO, float ALPHA, const gsl_vector_float * X, const gsl_vector_float * Y, gsl_matrix_float * A) -- Function: int gsl_blas_dsyr2 (CBLAS_UPLO_t UPLO, double ALPHA, const gsl_vector * X, const gsl_vector * Y, gsl_matrix * A) These functions compute the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. -- Function: int gsl_blas_cher2 (CBLAS_UPLO_t UPLO, const gsl_complex_float ALPHA, const gsl_vector_complex_float * X, const gsl_vector_complex_float * Y, gsl_matrix_complex_float * A) -- Function: int gsl_blas_zher2 (CBLAS_UPLO_t UPLO, const gsl_complex ALPHA, const gsl_vector_complex * X, const gsl_vector_complex * Y, gsl_matrix_complex * A) These functions compute the hermitian rank-2 update A = \alpha x y^H + \alpha^* y x^H + A of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.  File: gsl-ref.info, Node: Level 3 GSL BLAS Interface, Prev: Level 2 GSL BLAS Interface, Up: GSL BLAS Interface 13.1.3 Level 3 -------------- -- Function: int gsl_blas_sgemm (CBLAS_TRANSPOSE_t TRANSA, CBLAS_TRANSPOSE_t TRANSB, float ALPHA, const gsl_matrix_float * A, const gsl_matrix_float * B, float BETA, gsl_matrix_float * C) -- Function: int gsl_blas_dgemm (CBLAS_TRANSPOSE_t TRANSA, CBLAS_TRANSPOSE_t TRANSB, double ALPHA, const gsl_matrix * A, const gsl_matrix * B, double BETA, gsl_matrix * C) -- Function: int gsl_blas_cgemm (CBLAS_TRANSPOSE_t TRANSA, CBLAS_TRANSPOSE_t TRANSB, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zgemm (CBLAS_TRANSPOSE_t TRANSA, CBLAS_TRANSPOSE_t TRANSB, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex BETA, gsl_matrix_complex * C) These functions compute the matrix-matrix product and sum C = \alpha op(A) op(B) + \beta C where op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans' and similarly for the parameter TRANSB. -- Function: int gsl_blas_ssymm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, float ALPHA, const gsl_matrix_float * A, const gsl_matrix_float * B, float BETA, gsl_matrix_float * C) -- Function: int gsl_blas_dsymm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, double ALPHA, const gsl_matrix * A, const gsl_matrix * B, double BETA, gsl_matrix * C) -- Function: int gsl_blas_csymm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zsymm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex BETA, gsl_matrix_complex * C) These functions compute the matrix-matrix product and sum C = \alpha A B + \beta C for SIDE is 'CblasLeft' and C = \alpha B A + \beta C for SIDE is 'CblasRight', where the matrix A is symmetric. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. -- Function: int gsl_blas_chemm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zhemm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex BETA, gsl_matrix_complex * C) These functions compute the matrix-matrix product and sum C = \alpha A B + \beta C for SIDE is 'CblasLeft' and C = \alpha B A + \beta C for SIDE is 'CblasRight', where the matrix A is hermitian. When UPLO is 'CblasUpper' then the upper triangle and diagonal of A are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero. -- Function: int gsl_blas_strmm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, float ALPHA, const gsl_matrix_float * A, gsl_matrix_float * B) -- Function: int gsl_blas_dtrmm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, double ALPHA, const gsl_matrix * A, gsl_matrix * B) -- Function: int gsl_blas_ctrmm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B) -- Function: int gsl_blas_ztrmm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_complex ALPHA, const gsl_matrix_complex * A, gsl_matrix_complex * B) These functions compute the matrix-matrix product B = \alpha op(A) B for SIDE is 'CblasLeft' and B = \alpha B op(A) for SIDE is 'CblasRight'. The matrix A is triangular and op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans'. When UPLO is 'CblasUpper' then the upper triangle of A is used, and when UPLO is 'CblasLower' then the lower triangle of A is used. If DIAG is 'CblasNonUnit' then the diagonal of A is used, but if DIAG is 'CblasUnit' then the diagonal elements of the matrix A are taken as unity and are not referenced. -- Function: int gsl_blas_strsm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, float ALPHA, const gsl_matrix_float * A, gsl_matrix_float * B) -- Function: int gsl_blas_dtrsm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, double ALPHA, const gsl_matrix * A, gsl_matrix * B) -- Function: int gsl_blas_ctrsm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, gsl_matrix_complex_float * B) -- Function: int gsl_blas_ztrsm (CBLAS_SIDE_t SIDE, CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANSA, CBLAS_DIAG_t DIAG, const gsl_complex ALPHA, const gsl_matrix_complex * A, gsl_matrix_complex * B) These functions compute the inverse-matrix matrix product B = \alpha op(inv(A))B for SIDE is 'CblasLeft' and B = \alpha B op(inv(A)) for SIDE is 'CblasRight'. The matrix A is triangular and op(A) = A, A^T, A^H for TRANSA = 'CblasNoTrans', 'CblasTrans', 'CblasConjTrans'. When UPLO is 'CblasUpper' then the upper triangle of A is used, and when UPLO is 'CblasLower' then the lower triangle of A is used. If DIAG is 'CblasNonUnit' then the diagonal of A is used, but if DIAG is 'CblasUnit' then the diagonal elements of the matrix A are taken as unity and are not referenced. -- Function: int gsl_blas_ssyrk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, float ALPHA, const gsl_matrix_float * A, float BETA, gsl_matrix_float * C) -- Function: int gsl_blas_dsyrk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, double ALPHA, const gsl_matrix * A, double BETA, gsl_matrix * C) -- Function: int gsl_blas_csyrk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_complex_float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zsyrk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_complex BETA, gsl_matrix_complex * C) These functions compute a rank-k update of the symmetric matrix C, C = \alpha A A^T + \beta C when TRANS is 'CblasNoTrans' and C = \alpha A^T A + \beta C when TRANS is 'CblasTrans'. Since the matrix C is symmetric only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of C are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of C are used. -- Function: int gsl_blas_cherk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, float ALPHA, const gsl_matrix_complex_float * A, float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zherk (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, double ALPHA, const gsl_matrix_complex * A, double BETA, gsl_matrix_complex * C) These functions compute a rank-k update of the hermitian matrix C, C = \alpha A A^H + \beta C when TRANS is 'CblasNoTrans' and C = \alpha A^H A + \beta C when TRANS is 'CblasConjTrans'. Since the matrix C is hermitian only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of C are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of C are used. The imaginary elements of the diagonal are automatically set to zero. -- Function: int gsl_blas_ssyr2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, float ALPHA, const gsl_matrix_float * A, const gsl_matrix_float * B, float BETA, gsl_matrix_float * C) -- Function: int gsl_blas_dsyr2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, double ALPHA, const gsl_matrix * A, const gsl_matrix * B, double BETA, gsl_matrix * C) -- Function: int gsl_blas_csyr2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, const gsl_complex_float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zsyr2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_matrix_complex * B, const gsl_complex BETA, gsl_matrix_complex * C) These functions compute a rank-2k update of the symmetric matrix C, C = \alpha A B^T + \alpha B A^T + \beta C when TRANS is 'CblasNoTrans' and C = \alpha A^T B + \alpha B^T A + \beta C when TRANS is 'CblasTrans'. Since the matrix C is symmetric only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of C are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of C are used. -- Function: int gsl_blas_cher2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex_float ALPHA, const gsl_matrix_complex_float * A, const gsl_matrix_complex_float * B, float BETA, gsl_matrix_complex_float * C) -- Function: int gsl_blas_zher2k (CBLAS_UPLO_t UPLO, CBLAS_TRANSPOSE_t TRANS, const gsl_complex ALPHA, const gsl_matrix_complex * A, const gsl_matrix_complex * B, double BETA, gsl_matrix_complex * C) These functions compute a rank-2k update of the hermitian matrix C, C = \alpha A B^H + \alpha^* B A^H + \beta C when TRANS is 'CblasNoTrans' and C = \alpha A^H B + \alpha^* B^H A + \beta C when TRANS is 'CblasConjTrans'. Since the matrix C is hermitian only its upper half or lower half need to be stored. When UPLO is 'CblasUpper' then the upper triangle and diagonal of C are used, and when UPLO is 'CblasLower' then the lower triangle and diagonal of C are used. The imaginary elements of the diagonal are automatically set to zero.  File: gsl-ref.info, Node: BLAS Examples, Next: BLAS References and Further Reading, Prev: GSL BLAS Interface, Up: BLAS Support 13.2 Examples ============= The following program computes the product of two matrices using the Level-3 BLAS function DGEMM, [ 0.11 0.12 0.13 ] [ 1011 1012 ] [ 367.76 368.12 ] [ 0.21 0.22 0.23 ] [ 1021 1022 ] = [ 674.06 674.72 ] [ 1031 1032 ] The matrices are stored in row major order, according to the C convention for arrays. #include #include int main (void) { double a[] = { 0.11, 0.12, 0.13, 0.21, 0.22, 0.23 }; double b[] = { 1011, 1012, 1021, 1022, 1031, 1032 }; double c[] = { 0.00, 0.00, 0.00, 0.00 }; gsl_matrix_view A = gsl_matrix_view_array(a, 2, 3); gsl_matrix_view B = gsl_matrix_view_array(b, 3, 2); gsl_matrix_view C = gsl_matrix_view_array(c, 2, 2); /* Compute C = A B */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, &A.matrix, &B.matrix, 0.0, &C.matrix); printf ("[ %g, %g\n", c[0], c[1]); printf (" %g, %g ]\n", c[2], c[3]); return 0; } Here is the output from the program, $ ./a.out [ 367.76, 368.12 674.06, 674.72 ]  File: gsl-ref.info, Node: BLAS References and Further Reading, Prev: BLAS Examples, Up: BLAS Support 13.3 References and Further Reading =================================== Information on the BLAS standards, including both the legacy and updated interface standards, is available online from the BLAS Homepage and BLAS Technical Forum web-site. 'BLAS Homepage' 'BLAS Technical Forum' The following papers contain the specifications for Level 1, Level 2 and Level 3 BLAS. C. Lawson, R. Hanson, D. Kincaid, F. Krogh, "Basic Linear Algebra Subprograms for Fortran Usage", 'ACM Transactions on Mathematical Software', Vol. 5 (1979), Pages 308-325. J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, "An Extended Set of Fortran Basic Linear Algebra Subprograms", 'ACM Transactions on Mathematical Software', Vol. 14, No. 1 (1988), Pages 1-32. J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, "A Set of Level 3 Basic Linear Algebra Subprograms", 'ACM Transactions on Mathematical Software', Vol. 16 (1990), Pages 1-28. Postscript versions of the latter two papers are available from . A CBLAS wrapper for Fortran BLAS libraries is available from the same location.  File: gsl-ref.info, Node: Linear Algebra, Next: Eigensystems, Prev: BLAS Support, Up: Top 14 Linear Algebra ***************** This chapter describes functions for solving linear systems. The library provides linear algebra operations which operate directly on the 'gsl_vector' and 'gsl_matrix' objects. These routines use the standard algorithms from Golub & Van Loan's 'Matrix Computations' with Level-1 and Level-2 BLAS calls for efficiency. The functions described in this chapter are declared in the header file 'gsl_linalg.h'. * Menu: * LU Decomposition:: * QR Decomposition:: * QR Decomposition with Column Pivoting:: * Singular Value Decomposition:: * Cholesky Decomposition:: * Tridiagonal Decomposition of Real Symmetric Matrices:: * Tridiagonal Decomposition of Hermitian Matrices:: * Hessenberg Decomposition of Real Matrices:: * Hessenberg-Triangular Decomposition of Real Matrices:: * Bidiagonalization:: * Householder Transformations:: * Householder solver for linear systems:: * Tridiagonal Systems:: * Balancing:: * Linear Algebra Examples:: * Linear Algebra References and Further Reading::  File: gsl-ref.info, Node: LU Decomposition, Next: QR Decomposition, Up: Linear Algebra 14.1 LU Decomposition ===================== A general square matrix A has an LU decomposition into upper and lower triangular matrices, P A = L U where P is a permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix. For square matrices this decomposition can be used to convert the linear system A x = b into a pair of triangular systems (L y = P b, U x = y), which can be solved by forward and back-substitution. Note that the LU decomposition is valid for singular matrices. -- Function: int gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * P, int * SIGNUM) -- Function: int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * P, int * SIGNUM) These functions factorize the square matrix A into the LU decomposition PA = LU. On output the diagonal and upper triangular part of the input matrix A contain the matrix U. The lower triangular part of the input matrix (excluding the diagonal) contains L. The diagonal elements of L are unity, and are not stored. The permutation matrix P is encoded in the permutation P. The j-th column of the matrix P is given by the k-th column of the identity matrix, where k = p_j the j-th element of the permutation vector. The sign of the permutation is given by SIGNUM. It has the value (-1)^n, where n is the number of interchanges in the permutation. The algorithm used in the decomposition is Gaussian Elimination with partial pivoting (Golub & Van Loan, 'Matrix Computations', Algorithm 3.4.1). -- Function: int gsl_linalg_LU_solve (const gsl_matrix * LU, const gsl_permutation * P, const gsl_vector * B, gsl_vector * X) -- Function: int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * P, const gsl_vector_complex * B, gsl_vector_complex * X) These functions solve the square system A x = b using the LU decomposition of A into (LU, P) given by 'gsl_linalg_LU_decomp' or 'gsl_linalg_complex_LU_decomp' as input. -- Function: int gsl_linalg_LU_svx (const gsl_matrix * LU, const gsl_permutation * P, gsl_vector * X) -- Function: int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * P, gsl_vector_complex * X) These functions solve the square system A x = b in-place using the precomputed LU decomposition of A into (LU,P). On input X should contain the right-hand side b, which is replaced by the solution on output. -- Function: int gsl_linalg_LU_refine (const gsl_matrix * A, const gsl_matrix * LU, const gsl_permutation * P, const gsl_vector * B, gsl_vector * X, gsl_vector * RESIDUAL) -- Function: int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * P, const gsl_vector_complex * B, gsl_vector_complex * X, gsl_vector_complex * RESIDUAL) These functions apply an iterative improvement to X, the solution of A x = b, from the precomputed LU decomposition of A into (LU,P). The initial residual r = A x - b is also computed and stored in RESIDUAL. -- Function: int gsl_linalg_LU_invert (const gsl_matrix * LU, const gsl_permutation * P, gsl_matrix * INVERSE) -- Function: int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * P, gsl_matrix_complex * INVERSE) These functions compute the inverse of a matrix A from its LU decomposition (LU,P), storing the result in the matrix INVERSE. The inverse is computed by solving the system A x = b for each column of the identity matrix. It is preferable to avoid direct use of the inverse whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory textbook on numerical linear algebra for details). -- Function: double gsl_linalg_LU_det (gsl_matrix * LU, int SIGNUM) -- Function: gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int SIGNUM) These functions compute the determinant of a matrix A from its LU decomposition, LU. The determinant is computed as the product of the diagonal elements of U and the sign of the row permutation SIGNUM. -- Function: double gsl_linalg_LU_lndet (gsl_matrix * LU) -- Function: double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU) These functions compute the logarithm of the absolute value of the determinant of a matrix A, \ln|\det(A)|, from its LU decomposition, LU. This function may be useful if the direct computation of the determinant would overflow or underflow. -- Function: int gsl_linalg_LU_sgndet (gsl_matrix * LU, int SIGNUM) -- Function: gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int SIGNUM) These functions compute the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.  File: gsl-ref.info, Node: QR Decomposition, Next: QR Decomposition with Column Pivoting, Prev: LU Decomposition, Up: Linear Algebra 14.2 QR Decomposition ===================== A general rectangular M-by-N matrix A has a QR decomposition into the product of an orthogonal M-by-M square matrix Q (where Q^T Q = I) and an M-by-N right-triangular matrix R, A = Q R This decomposition can be used to convert the linear system A x = b into the triangular system R x = Q^T b, which can be solved by back-substitution. Another use of the QR decomposition is to compute an orthonormal basis for a set of vectors. The first N columns of Q form an orthonormal basis for the range of A, ran(A), when A has full column rank. -- Function: int gsl_linalg_QR_decomp (gsl_matrix * A, gsl_vector * TAU) This function factorizes the M-by-N matrix A into the QR decomposition A = Q R. On output the diagonal and upper triangular part of the input matrix contain the matrix R. The vector TAU and the columns of the lower triangular part of the matrix A contain the Householder coefficients and Householder vectors which encode the orthogonal matrix Q. The vector TAU must be of length k=\min(M,N). The matrix Q is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the Householder vector v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK. The algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, 'Matrix Computations', Algorithm 5.2.1). -- Function: int gsl_linalg_QR_solve (const gsl_matrix * QR, const gsl_vector * TAU, const gsl_vector * B, gsl_vector * X) This function solves the square system A x = b using the QR decomposition of A held in (QR, TAU) which must have been computed previously with 'gsl_linalg_QR_decomp'. The least-squares solution for rectangular systems can be found using 'gsl_linalg_QR_lssolve'. -- Function: int gsl_linalg_QR_svx (const gsl_matrix * QR, const gsl_vector * TAU, gsl_vector * X) This function solves the square system A x = b in-place using the QR decomposition of A held in (QR,TAU) which must have been computed previously by 'gsl_linalg_QR_decomp'. On input X should contain the right-hand side b, which is replaced by the solution on output. -- Function: int gsl_linalg_QR_lssolve (const gsl_matrix * QR, const gsl_vector * TAU, const gsl_vector * B, gsl_vector * X, gsl_vector * RESIDUAL) This function finds the least squares solution to the overdetermined system A x = b where the matrix A has more rows than columns. The least squares solution minimizes the Euclidean norm of the residual, ||Ax - b||.The routine requires as input the QR decomposition of A into (QR, TAU) given by 'gsl_linalg_QR_decomp'. The solution is returned in X. The residual is computed as a by-product and stored in RESIDUAL. -- Function: int gsl_linalg_QR_QTvec (const gsl_matrix * QR, const gsl_vector * TAU, gsl_vector * V) This function applies the matrix Q^T encoded in the decomposition (QR,TAU) to the vector V, storing the result Q^T v in V. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T. -- Function: int gsl_linalg_QR_Qvec (const gsl_matrix * QR, const gsl_vector * TAU, gsl_vector * V) This function applies the matrix Q encoded in the decomposition (QR,TAU) to the vector V, storing the result Q v in V. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q. -- Function: int gsl_linalg_QR_QTmat (const gsl_matrix * QR, const gsl_vector * TAU, gsl_matrix * A) This function applies the matrix Q^T encoded in the decomposition (QR,TAU) to the matrix A, storing the result Q^T A in A. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T. -- Function: int gsl_linalg_QR_Rsolve (const gsl_matrix * QR, const gsl_vector * B, gsl_vector * X) This function solves the triangular system R x = b for X. It may be useful if the product b' = Q^T b has already been computed using 'gsl_linalg_QR_QTvec'. -- Function: int gsl_linalg_QR_Rsvx (const gsl_matrix * QR, gsl_vector * X) This function solves the triangular system R x = b for X in-place. On input X should contain the right-hand side b and is replaced by the solution on output. This function may be useful if the product b' = Q^T b has already been computed using 'gsl_linalg_QR_QTvec'. -- Function: int gsl_linalg_QR_unpack (const gsl_matrix * QR, const gsl_vector * TAU, gsl_matrix * Q, gsl_matrix * R) This function unpacks the encoded QR decomposition (QR,TAU) into the matrices Q and R, where Q is M-by-M and R is M-by-N. -- Function: int gsl_linalg_QR_QRsolve (gsl_matrix * Q, gsl_matrix * R, const gsl_vector * B, gsl_vector * X) This function solves the system R x = Q^T b for X. It can be used when the QR decomposition of a matrix is available in unpacked form as (Q, R). -- Function: int gsl_linalg_QR_update (gsl_matrix * Q, gsl_matrix * R, gsl_vector * W, const gsl_vector * V) This function performs a rank-1 update w v^T of the QR decomposition (Q, R). The update is given by Q'R' = Q (R + w v^T) where the output matrices Q' and R' are also orthogonal and right triangular. Note that W is destroyed by the update. -- Function: int gsl_linalg_R_solve (const gsl_matrix * R, const gsl_vector * B, gsl_vector * X) This function solves the triangular system R x = b for the N-by-N matrix R. -- Function: int gsl_linalg_R_svx (const gsl_matrix * R, gsl_vector * X) This function solves the triangular system R x = b in-place. On input X should contain the right-hand side b, which is replaced by the solution on output.  File: gsl-ref.info, Node: QR Decomposition with Column Pivoting, Next: Singular Value Decomposition, Prev: QR Decomposition, Up: Linear Algebra 14.3 QR Decomposition with Column Pivoting ========================================== The QR decomposition can be extended to the rank deficient case by introducing a column permutation P, A P = Q R The first r columns of Q form an orthonormal basis for the range of A for a matrix with column rank r. This decomposition can also be used to convert the linear system A x = b into the triangular system R y = Q^T b, x = P y, which can be solved by back-substitution and permutation. We denote the QR decomposition with column pivoting by QRP^T since A = Q R P^T. -- Function: int gsl_linalg_QRPT_decomp (gsl_matrix * A, gsl_vector * TAU, gsl_permutation * P, int * SIGNUM, gsl_vector * NORM) This function factorizes the M-by-N matrix A into the QRP^T decomposition A = Q R P^T. On output the diagonal and upper triangular part of the input matrix contain the matrix R. The permutation matrix P is stored in the permutation P. The sign of the permutation is given by SIGNUM. It has the value (-1)^n, where n is the number of interchanges in the permutation. The vector TAU and the columns of the lower triangular part of the matrix A contain the Householder coefficients and vectors which encode the orthogonal matrix Q. The vector TAU must be of length k=\min(M,N). The matrix Q is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the Householder vector v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK. The vector NORM is a workspace of length N used for column pivoting. The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan, 'Matrix Computations', Algorithm 5.4.1). -- Function: int gsl_linalg_QRPT_decomp2 (const gsl_matrix * A, gsl_matrix * Q, gsl_matrix * R, gsl_vector * TAU, gsl_permutation * P, int * SIGNUM, gsl_vector * NORM) This function factorizes the matrix A into the decomposition A = Q R P^T without modifying A itself and storing the output in the separate matrices Q and R. -- Function: int gsl_linalg_QRPT_solve (const gsl_matrix * QR, const gsl_vector * TAU, const gsl_permutation * P, const gsl_vector * B, gsl_vector * X) This function solves the square system A x = b using the QRP^T decomposition of A held in (QR, TAU, P) which must have been computed previously by 'gsl_linalg_QRPT_decomp'. -- Function: int gsl_linalg_QRPT_svx (const gsl_matrix * QR, const gsl_vector * TAU, const gsl_permutation * P, gsl_vector * X) This function solves the square system A x = b in-place using the QRP^T decomposition of A held in (QR,TAU,P). On input X should contain the right-hand side b, which is replaced by the solution on output. -- Function: int gsl_linalg_QRPT_QRsolve (const gsl_matrix * Q, const gsl_matrix * R, const gsl_permutation * P, const gsl_vector * B, gsl_vector * X) This function solves the square system R P^T x = Q^T b for X. It can be used when the QR decomposition of a matrix is available in unpacked form as (Q, R). -- Function: int gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R, const gsl_permutation * P, gsl_vector * W, const gsl_vector * V) This function performs a rank-1 update w v^T of the QRP^T decomposition (Q, R, P). The update is given by Q'R' = Q (R + w v^T P) where the output matrices Q' and R' are also orthogonal and right triangular. Note that W is destroyed by the update. The permutation P is not changed. -- Function: int gsl_linalg_QRPT_Rsolve (const gsl_matrix * QR, const gsl_permutation * P, const gsl_vector * B, gsl_vector * X) This function solves the triangular system R P^T x = b for the N-by-N matrix R contained in QR. -- Function: int gsl_linalg_QRPT_Rsvx (const gsl_matrix * QR, const gsl_permutation * P, gsl_vector * X) This function solves the triangular system R P^T x = b in-place for the N-by-N matrix R contained in QR. On input X should contain the right-hand side b, which is replaced by the solution on output.  File: gsl-ref.info, Node: Singular Value Decomposition, Next: Cholesky Decomposition, Prev: QR Decomposition with Column Pivoting, Up: Linear Algebra 14.4 Singular Value Decomposition ================================= A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the product of an M-by-N orthogonal matrix U, an N-by-N diagonal matrix of singular values S and the transpose of an N-by-N orthogonal square matrix V, A = U S V^T The singular values \sigma_i = S_{ii} are all non-negative and are generally chosen to form a non-increasing sequence \sigma_1 >= \sigma_2 >= ... >= \sigma_N >= 0. The singular value decomposition of a matrix has many practical uses. The condition number of the matrix is given by the ratio of the largest singular value to the smallest singular value. The presence of a zero singular value indicates that the matrix is singular. The number of non-zero singular values indicates the rank of the matrix. In practice singular value decomposition of a rank-deficient matrix will not produce exact zeroes for singular values, due to finite numerical precision. Small singular values should be edited by choosing a suitable tolerance. For a rank-deficient matrix, the null space of A is given by the columns of V corresponding to the zero singular values. Similarly, the range of A is given by columns of U corresponding to the non-zero singular values. Note that the routines here compute the "thin" version of the SVD with U as M-by-N orthogonal matrix. This allows in-place computation and is the most commonly-used form in practice. Mathematically, the "full" SVD is defined with U as an M-by-M orthogonal matrix and S as an M-by-N diagonal matrix (with additional rows of zeros). -- Function: int gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, gsl_vector * WORK) This function factorizes the M-by-N matrix A into the singular value decomposition A = U S V^T for M >= N. On output the matrix A is replaced by U. The diagonal elements of the singular value matrix S are stored in the vector S. The singular values are non-negative and form a non-increasing sequence from S_1 to S_N. The matrix V contains the elements of V in untransposed form. To form the product U S V^T it is necessary to take the transpose of V. A workspace of length N is required in WORK. This routine uses the Golub-Reinsch SVD algorithm. -- Function: int gsl_linalg_SV_decomp_mod (gsl_matrix * A, gsl_matrix * X, gsl_matrix * V, gsl_vector * S, gsl_vector * WORK) This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for M>>N. It requires the vector WORK of length N and the N-by-N matrix X as additional working space. -- Function: int gsl_linalg_SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * V, gsl_vector * S) This function computes the SVD of the M-by-N matrix A using one-sided Jacobi orthogonalization for M >= N. The Jacobi method can compute singular values to higher relative accuracy than Golub-Reinsch algorithms (see references for details). -- Function: int gsl_linalg_SV_solve (const gsl_matrix * U, const gsl_matrix * V, const gsl_vector * S, const gsl_vector * B, gsl_vector * X) This function solves the system A x = b using the singular value decomposition (U, S, V) of A which must have been computed previously with 'gsl_linalg_SV_decomp'. Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to singular values of zero are ignored. Other singular values can be edited out by setting them to zero before calling this function. In the over-determined case where A has more rows than columns the system is solved in the least squares sense, returning the solution X which minimizes ||A x - b||_2. -- Function: int gsl_linalg_SV_leverage (const gsl_matrix * U, gsl_vector * H) This function computes the statistical leverage values h_i of a matrix A using its singular value decomposition (U, S, V) previously computed with 'gsl_linalg_SV_decomp'. h_i are the diagonal values of the matrix A (A^T A)^{-1} A^T and depend only on the matrix U which is the input to this function.  File: gsl-ref.info, Node: Cholesky Decomposition, Next: Tridiagonal Decomposition of Real Symmetric Matrices, Prev: Singular Value Decomposition, Up: Linear Algebra 14.5 Cholesky Decomposition =========================== A symmetric, positive definite square matrix A has a Cholesky decomposition into a product of a lower triangular matrix L and its transpose L^T, A = L L^T This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried out when all the eigenvalues of the matrix are positive. This decomposition can be used to convert the linear system A x = b into a pair of triangular systems (L y = b, L^T x = y), which can be solved by forward and back-substitution. -- Function: int gsl_linalg_cholesky_decomp (gsl_matrix * A) -- Function: int gsl_linalg_complex_cholesky_decomp (gsl_matrix_complex * A) These functions factorize the symmetric, positive-definite square matrix A into the Cholesky decomposition A = L L^T (or A = L L^H for the complex case). On input, the values from the diagonal and lower-triangular part of the matrix A are used (the upper triangular part is ignored). On output the diagonal and lower triangular part of the input matrix A contain the matrix L, while the upper triangular part of the input matrix is overwritten with L^T (the diagonal terms being identical for both L and L^T). If the matrix is not positive-definite then the decomposition will fail, returning the error code 'GSL_EDOM'. When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error. -- Function: int gsl_linalg_cholesky_solve (const gsl_matrix * CHOLESKY, const gsl_vector * B, gsl_vector * X) -- Function: int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * CHOLESKY, const gsl_vector_complex * B, gsl_vector_complex * X) These functions solve the system A x = b using the Cholesky decomposition of A held in the matrix CHOLESKY which must have been previously computed by 'gsl_linalg_cholesky_decomp' or 'gsl_linalg_complex_cholesky_decomp'. -- Function: int gsl_linalg_cholesky_svx (const gsl_matrix * CHOLESKY, gsl_vector * X) -- Function: int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * CHOLESKY, gsl_vector_complex * X) These functions solve the system A x = b in-place using the Cholesky decomposition of A held in the matrix CHOLESKY which must have been previously computed by 'gsl_linalg_cholesky_decomp' or 'gsl_linalg_complex_cholesky_decomp'. On input X should contain the right-hand side b, which is replaced by the solution on output. -- Function: int gsl_linalg_cholesky_invert (gsl_matrix * CHOLESKY) -- Function: int gsl_linalg_complex_cholesky_invert (gsl_matrix_complex * CHOLESKY) These functions compute the inverse of a matrix from its Cholesky decomposition CHOLESKY, which must have been previously computed by 'gsl_linalg_cholesky_decomp' or 'gsl_linalg_complex_cholesky_decomp'. On output, the inverse is stored in-place in CHOLESKY.  File: gsl-ref.info, Node: Tridiagonal Decomposition of Real Symmetric Matrices, Next: Tridiagonal Decomposition of Hermitian Matrices, Prev: Cholesky Decomposition, Up: Linear Algebra 14.6 Tridiagonal Decomposition of Real Symmetric Matrices ========================================================= A symmetric matrix A can be factorized by similarity transformations into the form, A = Q T Q^T where Q is an orthogonal matrix and T is a symmetric tridiagonal matrix. -- Function: int gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * TAU) This function factorizes the symmetric square matrix A into the symmetric tridiagonal decomposition Q T Q^T. On output the diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients TAU, encode the orthogonal matrix Q. This storage scheme is the same as used by LAPACK. The upper triangular part of A is not referenced. -- Function: int gsl_linalg_symmtd_unpack (const gsl_matrix * A, const gsl_vector * TAU, gsl_matrix * Q, gsl_vector * DIAG, gsl_vector * SUBDIAG) This function unpacks the encoded symmetric tridiagonal decomposition (A, TAU) obtained from 'gsl_linalg_symmtd_decomp' into the orthogonal matrix Q, the vector of diagonal elements DIAG and the vector of subdiagonal elements SUBDIAG. -- Function: int gsl_linalg_symmtd_unpack_T (const gsl_matrix * A, gsl_vector * DIAG, gsl_vector * SUBDIAG) This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (A, TAU) obtained from 'gsl_linalg_symmtd_decomp' into the vectors DIAG and SUBDIAG.  File: gsl-ref.info, Node: Tridiagonal Decomposition of Hermitian Matrices, Next: Hessenberg Decomposition of Real Matrices, Prev: Tridiagonal Decomposition of Real Symmetric Matrices, Up: Linear Algebra 14.7 Tridiagonal Decomposition of Hermitian Matrices ==================================================== A hermitian matrix A can be factorized by similarity transformations into the form, A = U T U^T where U is a unitary matrix and T is a real symmetric tridiagonal matrix. -- Function: int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * TAU) This function factorizes the hermitian matrix A into the symmetric tridiagonal decomposition U T U^T. On output the real parts of the diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients TAU, encode the unitary matrix U. This storage scheme is the same as used by LAPACK. The upper triangular part of A and imaginary parts of the diagonal are not referenced. -- Function: int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, const gsl_vector_complex * TAU, gsl_matrix_complex * U, gsl_vector * DIAG, gsl_vector * SUBDIAG) This function unpacks the encoded tridiagonal decomposition (A, TAU) obtained from 'gsl_linalg_hermtd_decomp' into the unitary matrix U, the real vector of diagonal elements DIAG and the real vector of subdiagonal elements SUBDIAG. -- Function: int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A, gsl_vector * DIAG, gsl_vector * SUBDIAG) This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (A, TAU) obtained from the 'gsl_linalg_hermtd_decomp' into the real vectors DIAG and SUBDIAG.  File: gsl-ref.info, Node: Hessenberg Decomposition of Real Matrices, Next: Hessenberg-Triangular Decomposition of Real Matrices, Prev: Tridiagonal Decomposition of Hermitian Matrices, Up: Linear Algebra 14.8 Hessenberg Decomposition of Real Matrices ============================================== A general real matrix A can be decomposed by orthogonal similarity transformations into the form A = U H U^T where U is orthogonal and H is an upper Hessenberg matrix, meaning that it has zeros below the first subdiagonal. The Hessenberg reduction is the first step in the Schur decomposition for the nonsymmetric eigenvalue problem, but has applications in other areas as well. -- Function: int gsl_linalg_hessenberg_decomp (gsl_matrix * A, gsl_vector * TAU) This function computes the Hessenberg decomposition of the matrix A by applying the similarity transformation H = U^T A U. On output, H is stored in the upper portion of A. The information required to construct the matrix U is stored in the lower triangular portion of A. U is a product of N - 2 Householder matrices. The Householder vectors are stored in the lower portion of A (below the subdiagonal) and the Householder coefficients are stored in the vector TAU. TAU must be of length N. -- Function: int gsl_linalg_hessenberg_unpack (gsl_matrix * H, gsl_vector * TAU, gsl_matrix * U) This function constructs the orthogonal matrix U from the information stored in the Hessenberg matrix H along with the vector TAU. H and TAU are outputs from 'gsl_linalg_hessenberg_decomp'. -- Function: int gsl_linalg_hessenberg_unpack_accum (gsl_matrix * H, gsl_vector * TAU, gsl_matrix * V) This function is similar to 'gsl_linalg_hessenberg_unpack', except it accumulates the matrix U into V, so that V' = VU. The matrix V must be initialized prior to calling this function. Setting V to the identity matrix provides the same result as 'gsl_linalg_hessenberg_unpack'. If H is order N, then V must have N columns but may have any number of rows. -- Function: int gsl_linalg_hessenberg_set_zero (gsl_matrix * H) This function sets the lower triangular portion of H, below the subdiagonal, to zero. It is useful for clearing out the Householder vectors after calling 'gsl_linalg_hessenberg_decomp'.  File: gsl-ref.info, Node: Hessenberg-Triangular Decomposition of Real Matrices, Next: Bidiagonalization, Prev: Hessenberg Decomposition of Real Matrices, Up: Linear Algebra 14.9 Hessenberg-Triangular Decomposition of Real Matrices ========================================================= A general real matrix pair (A, B) can be decomposed by orthogonal similarity transformations into the form A = U H V^T B = U R V^T where U and V are orthogonal, H is an upper Hessenberg matrix, and R is upper triangular. The Hessenberg-Triangular reduction is the first step in the generalized Schur decomposition for the generalized eigenvalue problem. -- Function: int gsl_linalg_hesstri_decomp (gsl_matrix * A, gsl_matrix * B, gsl_matrix * U, gsl_matrix * V, gsl_vector * WORK) This function computes the Hessenberg-Triangular decomposition of the matrix pair (A, B). On output, H is stored in A, and R is stored in B. If U and V are provided (they may be null), the similarity transformations are stored in them. Additional workspace of length N is needed in WORK.  File: gsl-ref.info, Node: Bidiagonalization, Next: Householder Transformations, Prev: Hessenberg-Triangular Decomposition of Real Matrices, Up: Linear Algebra 14.10 Bidiagonalization ======================= A general matrix A can be factorized by similarity transformations into the form, A = U B V^T where U and V are orthogonal matrices and B is a N-by-N bidiagonal matrix with non-zero entries only on the diagonal and superdiagonal. The size of U is M-by-N and the size of V is N-by-N. -- Function: int gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * TAU_U, gsl_vector * TAU_V) This function factorizes the M-by-N matrix A into bidiagonal form U B V^T. The diagonal and superdiagonal of the matrix B are stored in the diagonal and superdiagonal of A. The orthogonal matrices U and V are stored as compressed Householder vectors in the remaining elements of A. The Householder coefficients are stored in the vectors TAU_U and TAU_V. The length of TAU_U must equal the number of elements in the diagonal of A and the length of TAU_V should be one element shorter. -- Function: int gsl_linalg_bidiag_unpack (const gsl_matrix * A, const gsl_vector * TAU_U, gsl_matrix * U, const gsl_vector * TAU_V, gsl_matrix * V, gsl_vector * DIAG, gsl_vector * SUPERDIAG) This function unpacks the bidiagonal decomposition of A produced by 'gsl_linalg_bidiag_decomp', (A, TAU_U, TAU_V) into the separate orthogonal matrices U, V and the diagonal vector DIAG and superdiagonal SUPERDIAG. Note that U is stored as a compact M-by-N orthogonal matrix satisfying U^T U = I for efficiency. -- Function: int gsl_linalg_bidiag_unpack2 (gsl_matrix * A, gsl_vector * TAU_U, gsl_vector * TAU_V, gsl_matrix * V) This function unpacks the bidiagonal decomposition of A produced by 'gsl_linalg_bidiag_decomp', (A, TAU_U, TAU_V) into the separate orthogonal matrices U, V and the diagonal vector DIAG and superdiagonal SUPERDIAG. The matrix U is stored in-place in A. -- Function: int gsl_linalg_bidiag_unpack_B (const gsl_matrix * A, gsl_vector * DIAG, gsl_vector * SUPERDIAG) This function unpacks the diagonal and superdiagonal of the bidiagonal decomposition of A from 'gsl_linalg_bidiag_decomp', into the diagonal vector DIAG and superdiagonal vector SUPERDIAG.  File: gsl-ref.info, Node: Householder Transformations, Next: Householder solver for linear systems, Prev: Bidiagonalization, Up: Linear Algebra 14.11 Householder Transformations ================================= A Householder transformation is a rank-1 modification of the identity matrix which can be used to zero out selected elements of a vector. A Householder matrix P takes the form, P = I - \tau v v^T where v is a vector (called the "Householder vector") and \tau = 2/(v^T v). The functions described in this section use the rank-1 structure of the Householder matrix to create and apply Householder transformations efficiently. -- Function: double gsl_linalg_householder_transform (gsl_vector * V) -- Function: gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * V) This function prepares a Householder transformation P = I - \tau v v^T which can be used to zero all the elements of the input vector except the first. On output the transformation is stored in the vector V and the scalar \tau is returned. -- Function: int gsl_linalg_householder_hm (double TAU, const gsl_vector * V, gsl_matrix * A) -- Function: int gsl_linalg_complex_householder_hm (gsl_complex TAU, const gsl_vector_complex * V, gsl_matrix_complex * A) This function applies the Householder matrix P defined by the scalar TAU and the vector V to the left-hand side of the matrix A. On output the result P A is stored in A. -- Function: int gsl_linalg_householder_mh (double TAU, const gsl_vector * V, gsl_matrix * A) -- Function: int gsl_linalg_complex_householder_mh (gsl_complex TAU, const gsl_vector_complex * V, gsl_matrix_complex * A) This function applies the Householder matrix P defined by the scalar TAU and the vector V to the right-hand side of the matrix A. On output the result A P is stored in A. -- Function: int gsl_linalg_householder_hv (double TAU, const gsl_vector * V, gsl_vector * W) -- Function: int gsl_linalg_complex_householder_hv (gsl_complex TAU, const gsl_vector_complex * V, gsl_vector_complex * W) This function applies the Householder transformation P defined by the scalar TAU and the vector V to the vector W. On output the result P w is stored in W.  File: gsl-ref.info, Node: Householder solver for linear systems, Next: Tridiagonal Systems, Prev: Householder Transformations, Up: Linear Algebra 14.12 Householder solver for linear systems =========================================== -- Function: int gsl_linalg_HH_solve (gsl_matrix * A, const gsl_vector * B, gsl_vector * X) This function solves the system A x = b directly using Householder transformations. On output the solution is stored in X and B is not modified. The matrix A is destroyed by the Householder transformations. -- Function: int gsl_linalg_HH_svx (gsl_matrix * A, gsl_vector * X) This function solves the system A x = b in-place using Householder transformations. On input X should contain the right-hand side b, which is replaced by the solution on output. The matrix A is destroyed by the Householder transformations.  File: gsl-ref.info, Node: Tridiagonal Systems, Next: Balancing, Prev: Householder solver for linear systems, Up: Linear Algebra 14.13 Tridiagonal Systems ========================= The functions described in this section efficiently solve symmetric, non-symmetric and cyclic tridiagonal systems with minimal storage. Note that the current implementations of these functions use a variant of Cholesky decomposition, so the tridiagonal matrix must be positive definite. For non-positive definite matrices, the functions return the error code 'GSL_ESING'. -- Function: int gsl_linalg_solve_tridiag (const gsl_vector * DIAG, const gsl_vector * E, const gsl_vector * F, const gsl_vector * B, gsl_vector * X) This function solves the general N-by-N system A x = b where A is tridiagonal (N >= 2). The super-diagonal and sub-diagonal vectors E and F must be one element shorter than the diagonal vector DIAG. The form of A for the 4-by-4 case is shown below, A = ( d_0 e_0 0 0 ) ( f_0 d_1 e_1 0 ) ( 0 f_1 d_2 e_2 ) ( 0 0 f_2 d_3 ) -- Function: int gsl_linalg_solve_symm_tridiag (const gsl_vector * DIAG, const gsl_vector * E, const gsl_vector * B, gsl_vector * X) This function solves the general N-by-N system A x = b where A is symmetric tridiagonal (N >= 2). The off-diagonal vector E must be one element shorter than the diagonal vector DIAG. The form of A for the 4-by-4 case is shown below, A = ( d_0 e_0 0 0 ) ( e_0 d_1 e_1 0 ) ( 0 e_1 d_2 e_2 ) ( 0 0 e_2 d_3 ) -- Function: int gsl_linalg_solve_cyc_tridiag (const gsl_vector * DIAG, const gsl_vector * E, const gsl_vector * F, const gsl_vector * B, gsl_vector * X) This function solves the general N-by-N system A x = b where A is cyclic tridiagonal (N >= 3). The cyclic super-diagonal and sub-diagonal vectors E and F must have the same number of elements as the diagonal vector DIAG. The form of A for the 4-by-4 case is shown below, A = ( d_0 e_0 0 f_3 ) ( f_0 d_1 e_1 0 ) ( 0 f_1 d_2 e_2 ) ( e_3 0 f_2 d_3 ) -- Function: int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * DIAG, const gsl_vector * E, const gsl_vector * B, gsl_vector * X) This function solves the general N-by-N system A x = b where A is symmetric cyclic tridiagonal (N >= 3). The cyclic off-diagonal vector E must have the same number of elements as the diagonal vector DIAG. The form of A for the 4-by-4 case is shown below, A = ( d_0 e_0 0 e_3 ) ( e_0 d_1 e_1 0 ) ( 0 e_1 d_2 e_2 ) ( e_3 0 e_2 d_3 )  File: gsl-ref.info, Node: Balancing, Next: Linear Algebra Examples, Prev: Tridiagonal Systems, Up: Linear Algebra 14.14 Balancing =============== The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable norms. This is useful, for example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix A consists of replacing A with a similar matrix A' = D^(-1) A D where D is a diagonal matrix whose entries are powers of the floating point radix. -- Function: int gsl_linalg_balance_matrix (gsl_matrix * A, gsl_vector * D) This function replaces the matrix A with its balanced counterpart and stores the diagonal elements of the similarity transformation into the vector D.  File: gsl-ref.info, Node: Linear Algebra Examples, Next: Linear Algebra References and Further Reading, Prev: Balancing, Up: Linear Algebra 14.15 Examples ============== The following program solves the linear system A x = b. The system to be solved is, [ 0.18 0.60 0.57 0.96 ] [x0] [1.0] [ 0.41 0.24 0.99 0.58 ] [x1] = [2.0] [ 0.14 0.30 0.97 0.66 ] [x2] [3.0] [ 0.51 0.13 0.19 0.85 ] [x3] [4.0] and the solution is found using LU decomposition of the matrix A. #include #include int main (void) { double a_data[] = { 0.18, 0.60, 0.57, 0.96, 0.41, 0.24, 0.99, 0.58, 0.14, 0.30, 0.97, 0.66, 0.51, 0.13, 0.19, 0.85 }; double b_data[] = { 1.0, 2.0, 3.0, 4.0 }; gsl_matrix_view m = gsl_matrix_view_array (a_data, 4, 4); gsl_vector_view b = gsl_vector_view_array (b_data, 4); gsl_vector *x = gsl_vector_alloc (4); int s; gsl_permutation * p = gsl_permutation_alloc (4); gsl_linalg_LU_decomp (&m.matrix, p, &s); gsl_linalg_LU_solve (&m.matrix, p, &b.vector, x); printf ("x = \n"); gsl_vector_fprintf (stdout, x, "%g"); gsl_permutation_free (p); gsl_vector_free (x); return 0; } Here is the output from the program, x = -4.05205 -12.6056 1.66091 8.69377 This can be verified by multiplying the solution x by the original matrix A using GNU OCTAVE, octave> A = [ 0.18, 0.60, 0.57, 0.96; 0.41, 0.24, 0.99, 0.58; 0.14, 0.30, 0.97, 0.66; 0.51, 0.13, 0.19, 0.85 ]; octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377]; octave> A * x ans = 1.0000 2.0000 3.0000 4.0000 This reproduces the original right-hand side vector, b, in accordance with the equation A x = b.  File: gsl-ref.info, Node: Linear Algebra References and Further Reading, Prev: Linear Algebra Examples, Up: Linear Algebra 14.16 References and Further Reading ==================================== Further information on the algorithms described in this section can be found in the following book, G. H. Golub, C. F. Van Loan, 'Matrix Computations' (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8. The LAPACK library is described in the following manual, 'LAPACK Users' Guide' (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8. The LAPACK source code can be found at the website above, along with an online copy of the users guide. The Modified Golub-Reinsch algorithm is described in the following paper, T.F. Chan, "An Improved Algorithm for Computing the Singular Value Decomposition", 'ACM Transactions on Mathematical Software', 8 (1982), pp 72-83. The Jacobi algorithm for singular value decomposition is described in the following papers, J.C. Nash, "A one-sided transformation method for the singular value decomposition and algebraic eigenproblem", 'Computer Journal', Volume 18, Number 1 (1975), p 74-76 J.C. Nash and S. Shlien "Simple algorithms for the partial singular value decomposition", 'Computer Journal', Volume 30 (1987), p 268-275. James Demmel, Kres in the 'lawns' or 'lawnspdf' directories.  File: gsl-ref.info, Node: Eigensystems, Next: Fast Fourier Transforms, Prev: Linear Algebra, Up: Top 15 Eigensystems *************** This chapter describes functions for computing eigenvalues and eigenvectors of matrices. There are routines for real symmetric, real nonsymmetric, complex hermitian, real generalized symmetric-definite, complex generalized hermitian-definite, and real generalized nonsymmetric eigensystems. Eigenvalues can be computed with or without eigenvectors. The hermitian and real symmetric matrix algorithms are symmetric bidiagonalization followed by QR reduction. The nonsymmetric algorithm is the Francis QR double-shift. The generalized nonsymmetric algorithm is the QZ method due to Moler and Stewart. The functions described in this chapter are declared in the header file 'gsl_eigen.h'. * Menu: * Real Symmetric Matrices:: * Complex Hermitian Matrices:: * Real Nonsymmetric Matrices:: * Real Generalized Symmetric-Definite Eigensystems:: * Complex Generalized Hermitian-Definite Eigensystems:: * Real Generalized Nonsymmetric Eigensystems:: * Sorting Eigenvalues and Eigenvectors:: * Eigenvalue and Eigenvector Examples:: * Eigenvalue and Eigenvector References::  File: gsl-ref.info, Node: Real Symmetric Matrices, Next: Complex Hermitian Matrices, Up: Eigensystems 15.1 Real Symmetric Matrices ============================ For real symmetric matrices, the library uses the symmetric bidiagonalization and QR reduction method. This is described in Golub & van Loan, section 8.3. The computed eigenvalues are accurate to an absolute accuracy of \epsilon ||A||_2, where \epsilon is the machine precision. -- Function: gsl_eigen_symm_workspace * gsl_eigen_symm_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N real symmetric matrices. The size of the workspace is O(2n). -- Function: void gsl_eigen_symm_free (gsl_eigen_symm_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_symm (gsl_matrix * A, gsl_vector * EVAL, gsl_eigen_symm_workspace * W) This function computes the eigenvalues of the real symmetric matrix A. Additional workspace of the appropriate size must be provided in W. The diagonal and lower triangular part of A are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector EVAL and are unordered. -- Function: gsl_eigen_symmv_workspace * gsl_eigen_symmv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N real symmetric matrices. The size of the workspace is O(4n). -- Function: void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_symmv (gsl_matrix * A, gsl_vector * EVAL, gsl_matrix * EVEC, gsl_eigen_symmv_workspace * W) This function computes the eigenvalues and eigenvectors of the real symmetric matrix A. Additional workspace of the appropriate size must be provided in W. The diagonal and lower triangular part of A are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector EVAL and are unordered. The corresponding eigenvectors are stored in the columns of the matrix EVEC. For example, the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit magnitude.  File: gsl-ref.info, Node: Complex Hermitian Matrices, Next: Real Nonsymmetric Matrices, Prev: Real Symmetric Matrices, Up: Eigensystems 15.2 Complex Hermitian Matrices =============================== For hermitian matrices, the library uses the complex form of the symmetric bidiagonalization and QR reduction method. -- Function: gsl_eigen_herm_workspace * gsl_eigen_herm_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N complex hermitian matrices. The size of the workspace is O(3n). -- Function: void gsl_eigen_herm_free (gsl_eigen_herm_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_herm (gsl_matrix_complex * A, gsl_vector * EVAL, gsl_eigen_herm_workspace * W) This function computes the eigenvalues of the complex hermitian matrix A. Additional workspace of the appropriate size must be provided in W. The diagonal and lower triangular part of A are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector EVAL and are unordered. -- Function: gsl_eigen_hermv_workspace * gsl_eigen_hermv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N complex hermitian matrices. The size of the workspace is O(5n). -- Function: void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_hermv (gsl_matrix_complex * A, gsl_vector * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_hermv_workspace * W) This function computes the eigenvalues and eigenvectors of the complex hermitian matrix A. Additional workspace of the appropriate size must be provided in W. The diagonal and lower triangular part of A are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector EVAL and are unordered. The corresponding complex eigenvectors are stored in the columns of the matrix EVEC. For example, the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit magnitude.  File: gsl-ref.info, Node: Real Nonsymmetric Matrices, Next: Real Generalized Symmetric-Definite Eigensystems, Prev: Complex Hermitian Matrices, Up: Eigensystems 15.3 Real Nonsymmetric Matrices =============================== The solution of the real nonsymmetric eigensystem problem for a matrix A involves computing the Schur decomposition A = Z T Z^T where Z is an orthogonal matrix of Schur vectors and T, the Schur form, is quasi upper triangular with diagonal 1-by-1 blocks which are real eigenvalues of A, and diagonal 2-by-2 blocks whose eigenvalues are complex conjugate eigenvalues of A. The algorithm used is the double-shift Francis method. -- Function: gsl_eigen_nonsymm_workspace * gsl_eigen_nonsymm_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N real nonsymmetric matrices. The size of the workspace is O(2n). -- Function: void gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * W) This function frees the memory associated with the workspace W. -- Function: void gsl_eigen_nonsymm_params (const int COMPUTE_T, const int BALANCE, gsl_eigen_nonsymm_workspace * W) This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to 'gsl_eigen_nonsymm'. If COMPUTE_T is set to 1, the full Schur form T will be computed by 'gsl_eigen_nonsymm'. If it is set to 0, T will not be computed (this is the default setting). Computing the full Schur form T requires approximately 1.5-2 times the number of flops. If BALANCE is set to 1, a balancing transformation is applied to the matrix prior to computing eigenvalues. This transformation is designed to make the rows and columns of the matrix have comparable norms, and can result in more accurate eigenvalues for matrices whose entries vary widely in magnitude. See *note Balancing:: for more information. Note that the balancing transformation does not preserve the orthogonality of the Schur vectors, so if you wish to compute the Schur vectors with 'gsl_eigen_nonsymm_Z' you will obtain the Schur vectors of the balanced matrix instead of the original matrix. The relationship will be T = Q^t D^(-1) A D Q where Q is the matrix of Schur vectors for the balanced matrix, and D is the balancing transformation. Then 'gsl_eigen_nonsymm_Z' will compute a matrix Z which satisfies T = Z^(-1) A Z with Z = D Q. Note that Z will not be orthogonal. For this reason, balancing is not performed by default. -- Function: int gsl_eigen_nonsymm (gsl_matrix * A, gsl_vector_complex * EVAL, gsl_eigen_nonsymm_workspace * W) This function computes the eigenvalues of the real nonsymmetric matrix A and stores them in the vector EVAL. If T is desired, it is stored in the upper portion of A on output. Otherwise, on output, the diagonal of A will contain the 1-by-1 real eigenvalues and 2-by-2 complex conjugate eigenvalue systems, and the rest of A is destroyed. In rare cases, this function may fail to find all eigenvalues. If this happens, an error code is returned and the number of converged eigenvalues is stored in 'w->n_evals'. The converged eigenvalues are stored in the beginning of EVAL. -- Function: int gsl_eigen_nonsymm_Z (gsl_matrix * A, gsl_vector_complex * EVAL, gsl_matrix * Z, gsl_eigen_nonsymm_workspace * W) This function is identical to 'gsl_eigen_nonsymm' except that it also computes the Schur vectors and stores them into Z. -- Function: gsl_eigen_nonsymmv_workspace * gsl_eigen_nonsymmv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N real nonsymmetric matrices. The size of the workspace is O(5n). -- Function: void gsl_eigen_nonsymmv_free (gsl_eigen_nonsymmv_workspace * W) This function frees the memory associated with the workspace W. -- Function: void gsl_eigen_nonsymmv_params (const int BALANCE, gsl_eigen_nonsymm_workspace * W) This function sets parameters which determine how the eigenvalue problem is solved in subsequent calls to 'gsl_eigen_nonsymmv'. If BALANCE is set to 1, a balancing transformation is applied to the matrix. See 'gsl_eigen_nonsymm_params' for more information. Balancing is turned off by default since it does not preserve the orthogonality of the Schur vectors. -- Function: int gsl_eigen_nonsymmv (gsl_matrix * A, gsl_vector_complex * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_nonsymmv_workspace * W) This function computes eigenvalues and right eigenvectors of the N-by-N real nonsymmetric matrix A. It first calls 'gsl_eigen_nonsymm' to compute the eigenvalues, Schur form T, and Schur vectors. Then it finds eigenvectors of T and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using 'gsl_eigen_nonsymmv_Z'. The computed eigenvectors are normalized to have unit magnitude. On output, the upper portion of A contains the Schur form T. If 'gsl_eigen_nonsymm' fails, no eigenvectors are computed, and an error code is returned. -- Function: int gsl_eigen_nonsymmv_Z (gsl_matrix * A, gsl_vector_complex * EVAL, gsl_matrix_complex * EVEC, gsl_matrix * Z, gsl_eigen_nonsymmv_workspace * W) This function is identical to 'gsl_eigen_nonsymmv' except that it also saves the Schur vectors into Z.  File: gsl-ref.info, Node: Real Generalized Symmetric-Definite Eigensystems, Next: Complex Generalized Hermitian-Definite Eigensystems, Prev: Real Nonsymmetric Matrices, Up: Eigensystems 15.4 Real Generalized Symmetric-Definite Eigensystems ===================================================== The real generalized symmetric-definite eigenvalue problem is to find eigenvalues \lambda and eigenvectors x such that A x = \lambda B x where A and B are symmetric matrices, and B is positive-definite. This problem reduces to the standard symmetric eigenvalue problem by applying the Cholesky decomposition to B: A x = \lambda B x A x = \lambda L L^t x ( L^{-1} A L^{-t} ) L^t x = \lambda L^t x Therefore, the problem becomes C y = \lambda y where C = L^{-1} A L^{-t} is symmetric, and y = L^t x. The standard symmetric eigensolver can be applied to the matrix C. The resulting eigenvectors are backtransformed to find the vectors of the original problem. The eigenvalues and eigenvectors of the generalized symmetric-definite eigenproblem are always real. -- Function: gsl_eigen_gensymm_workspace * gsl_eigen_gensymm_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N real generalized symmetric-definite eigensystems. The size of the workspace is O(2n). -- Function: void gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_gensymm (gsl_matrix * A, gsl_matrix * B, gsl_vector * EVAL, gsl_eigen_gensymm_workspace * W) This function computes the eigenvalues of the real generalized symmetric-definite matrix pair (A, B), and stores them in EVAL, using the method outlined above. On output, B contains its Cholesky decomposition and A is destroyed. -- Function: gsl_eigen_gensymmv_workspace * gsl_eigen_gensymmv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N real generalized symmetric-definite eigensystems. The size of the workspace is O(4n). -- Function: void gsl_eigen_gensymmv_free (gsl_eigen_gensymmv_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_gensymmv (gsl_matrix * A, gsl_matrix * B, gsl_vector * EVAL, gsl_matrix * EVEC, gsl_eigen_gensymmv_workspace * W) This function computes the eigenvalues and eigenvectors of the real generalized symmetric-definite matrix pair (A, B), and stores them in EVAL and EVEC respectively. The computed eigenvectors are normalized to have unit magnitude. On output, B contains its Cholesky decomposition and A is destroyed.  File: gsl-ref.info, Node: Complex Generalized Hermitian-Definite Eigensystems, Next: Real Generalized Nonsymmetric Eigensystems, Prev: Real Generalized Symmetric-Definite Eigensystems, Up: Eigensystems 15.5 Complex Generalized Hermitian-Definite Eigensystems ======================================================== The complex generalized hermitian-definite eigenvalue problem is to find eigenvalues \lambda and eigenvectors x such that A x = \lambda B x where A and B are hermitian matrices, and B is positive-definite. Similarly to the real case, this can be reduced to C y = \lambda y where C = L^{-1} A L^{-H} is hermitian, and y = L^H x. The standard hermitian eigensolver can be applied to the matrix C. The resulting eigenvectors are backtransformed to find the vectors of the original problem. The eigenvalues of the generalized hermitian-definite eigenproblem are always real. -- Function: gsl_eigen_genherm_workspace * gsl_eigen_genherm_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N complex generalized hermitian-definite eigensystems. The size of the workspace is O(3n). -- Function: void gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_genherm (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * EVAL, gsl_eigen_genherm_workspace * W) This function computes the eigenvalues of the complex generalized hermitian-definite matrix pair (A, B), and stores them in EVAL, using the method outlined above. On output, B contains its Cholesky decomposition and A is destroyed. -- Function: gsl_eigen_genhermv_workspace * gsl_eigen_genhermv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N complex generalized hermitian-definite eigensystems. The size of the workspace is O(5n). -- Function: void gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_genhermv (gsl_matrix_complex * A, gsl_matrix_complex * B, gsl_vector * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_genhermv_workspace * W) This function computes the eigenvalues and eigenvectors of the complex generalized hermitian-definite matrix pair (A, B), and stores them in EVAL and EVEC respectively. The computed eigenvectors are normalized to have unit magnitude. On output, B contains its Cholesky decomposition and A is destroyed.  File: gsl-ref.info, Node: Real Generalized Nonsymmetric Eigensystems, Next: Sorting Eigenvalues and Eigenvectors, Prev: Complex Generalized Hermitian-Definite Eigensystems, Up: Eigensystems 15.6 Real Generalized Nonsymmetric Eigensystems =============================================== Given two square matrices (A, B), the generalized nonsymmetric eigenvalue problem is to find eigenvalues \lambda and eigenvectors x such that A x = \lambda B x We may also define the problem as finding eigenvalues \mu and eigenvectors y such that \mu A y = B y Note that these two problems are equivalent (with \lambda = 1/\mu) if neither \lambda nor \mu is zero. If say, \lambda is zero, then it is still a well defined eigenproblem, but its alternate problem involving \mu is not. Therefore, to allow for zero (and infinite) eigenvalues, the problem which is actually solved is \beta A x = \alpha B x The eigensolver routines below will return two values \alpha and \beta and leave it to the user to perform the divisions \lambda = \alpha / \beta and \mu = \beta / \alpha. If the determinant of the matrix pencil A - \lambda B is zero for all \lambda, the problem is said to be singular; otherwise it is called regular. Singularity normally leads to some \alpha = \beta = 0 which means the eigenproblem is ill-conditioned and generally does not have well defined eigenvalue solutions. The routines below are intended for regular matrix pencils and could yield unpredictable results when applied to singular pencils. The solution of the real generalized nonsymmetric eigensystem problem for a matrix pair (A, B) involves computing the generalized Schur decomposition A = Q S Z^T B = Q T Z^T where Q and Z are orthogonal matrices of left and right Schur vectors respectively, and (S, T) is the generalized Schur form whose diagonal elements give the \alpha and \beta values. The algorithm used is the QZ method due to Moler and Stewart (see references). -- Function: gsl_eigen_gen_workspace * gsl_eigen_gen_alloc (const size_t N) This function allocates a workspace for computing eigenvalues of N-by-N real generalized nonsymmetric eigensystems. The size of the workspace is O(n). -- Function: void gsl_eigen_gen_free (gsl_eigen_gen_workspace * W) This function frees the memory associated with the workspace W. -- Function: void gsl_eigen_gen_params (const int COMPUTE_S, const int COMPUTE_T, const int BALANCE, gsl_eigen_gen_workspace * W) This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to 'gsl_eigen_gen'. If COMPUTE_S is set to 1, the full Schur form S will be computed by 'gsl_eigen_gen'. If it is set to 0, S will not be computed (this is the default setting). S is a quasi upper triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks correspond to complex eigenvalues. If COMPUTE_T is set to 1, the full Schur form T will be computed by 'gsl_eigen_gen'. If it is set to 0, T will not be computed (this is the default setting). T is an upper triangular matrix with non-negative elements on its diagonal. Any 2-by-2 blocks in S will correspond to a 2-by-2 diagonal block in T. The BALANCE parameter is currently ignored, since generalized balancing is not yet implemented. -- Function: int gsl_eigen_gen (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * ALPHA, gsl_vector * BETA, gsl_eigen_gen_workspace * W) This function computes the eigenvalues of the real generalized nonsymmetric matrix pair (A, B), and stores them as pairs in (ALPHA, BETA), where ALPHA is complex and BETA is real. If \beta_i is non-zero, then \lambda = \alpha_i / \beta_i is an eigenvalue. Likewise, if \alpha_i is non-zero, then \mu = \beta_i / \alpha_i is an eigenvalue of the alternate problem \mu A y = B y. The elements of BETA are normalized to be non-negative. If S is desired, it is stored in A on output. If T is desired, it is stored in B on output. The ordering of eigenvalues in (ALPHA, BETA) follows the ordering of the diagonal blocks in the Schur forms S and T. In rare cases, this function may fail to find all eigenvalues. If this occurs, an error code is returned. -- Function: int gsl_eigen_gen_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * ALPHA, gsl_vector * BETA, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_gen_workspace * W) This function is identical to 'gsl_eigen_gen' except that it also computes the left and right Schur vectors and stores them into Q and Z respectively. -- Function: gsl_eigen_genv_workspace * gsl_eigen_genv_alloc (const size_t N) This function allocates a workspace for computing eigenvalues and eigenvectors of N-by-N real generalized nonsymmetric eigensystems. The size of the workspace is O(7n). -- Function: void gsl_eigen_genv_free (gsl_eigen_genv_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_eigen_genv (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * ALPHA, gsl_vector * BETA, gsl_matrix_complex * EVEC, gsl_eigen_genv_workspace * W) This function computes eigenvalues and right eigenvectors of the N-by-N real generalized nonsymmetric matrix pair (A, B). The eigenvalues are stored in (ALPHA, BETA) and the eigenvectors are stored in EVEC. It first calls 'gsl_eigen_gen' to compute the eigenvalues, Schur forms, and Schur vectors. Then it finds eigenvectors of the Schur forms and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using 'gsl_eigen_genv_QZ'. The computed eigenvectors are normalized to have unit magnitude. On output, (A, B) contains the generalized Schur form (S, T). If 'gsl_eigen_gen' fails, no eigenvectors are computed, and an error code is returned. -- Function: int gsl_eigen_genv_QZ (gsl_matrix * A, gsl_matrix * B, gsl_vector_complex * ALPHA, gsl_vector * BETA, gsl_matrix_complex * EVEC, gsl_matrix * Q, gsl_matrix * Z, gsl_eigen_genv_workspace * W) This function is identical to 'gsl_eigen_genv' except that it also computes the left and right Schur vectors and stores them into Q and Z respectively.  File: gsl-ref.info, Node: Sorting Eigenvalues and Eigenvectors, Next: Eigenvalue and Eigenvector Examples, Prev: Real Generalized Nonsymmetric Eigensystems, Up: Eigensystems 15.7 Sorting Eigenvalues and Eigenvectors ========================================= -- Function: int gsl_eigen_symmv_sort (gsl_vector * EVAL, gsl_matrix * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vector EVAL and the corresponding real eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE, 'GSL_EIGEN_SORT_VAL_ASC' ascending order in numerical value 'GSL_EIGEN_SORT_VAL_DESC' descending order in numerical value 'GSL_EIGEN_SORT_ABS_ASC' ascending order in magnitude 'GSL_EIGEN_SORT_ABS_DESC' descending order in magnitude -- Function: int gsl_eigen_hermv_sort (gsl_vector * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vector EVAL and the corresponding complex eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE as shown above. -- Function: int gsl_eigen_nonsymmv_sort (gsl_vector_complex * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vector EVAL and the corresponding complex eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE as shown above. Only 'GSL_EIGEN_SORT_ABS_ASC' and 'GSL_EIGEN_SORT_ABS_DESC' are supported due to the eigenvalues being complex. -- Function: int gsl_eigen_gensymmv_sort (gsl_vector * EVAL, gsl_matrix * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vector EVAL and the corresponding real eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE as shown above. -- Function: int gsl_eigen_genhermv_sort (gsl_vector * EVAL, gsl_matrix_complex * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vector EVAL and the corresponding complex eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE as shown above. -- Function: int gsl_eigen_genv_sort (gsl_vector_complex * ALPHA, gsl_vector * BETA, gsl_matrix_complex * EVEC, gsl_eigen_sort_t SORT_TYPE) This function simultaneously sorts the eigenvalues stored in the vectors (ALPHA, BETA) and the corresponding complex eigenvectors stored in the columns of the matrix EVEC into ascending or descending order according to the value of the parameter SORT_TYPE as shown above. Only 'GSL_EIGEN_SORT_ABS_ASC' and 'GSL_EIGEN_SORT_ABS_DESC' are supported due to the eigenvalues being complex.  File: gsl-ref.info, Node: Eigenvalue and Eigenvector Examples, Next: Eigenvalue and Eigenvector References, Prev: Sorting Eigenvalues and Eigenvectors, Up: Eigensystems 15.8 Examples ============= The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, H(i,j) = 1/(i + j + 1). #include #include #include int main (void) { double data[] = { 1.0 , 1/2.0, 1/3.0, 1/4.0, 1/2.0, 1/3.0, 1/4.0, 1/5.0, 1/3.0, 1/4.0, 1/5.0, 1/6.0, 1/4.0, 1/5.0, 1/6.0, 1/7.0 }; gsl_matrix_view m = gsl_matrix_view_array (data, 4, 4); gsl_vector *eval = gsl_vector_alloc (4); gsl_matrix *evec = gsl_matrix_alloc (4, 4); gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc (4); gsl_eigen_symmv (&m.matrix, eval, evec, w); gsl_eigen_symmv_free (w); gsl_eigen_symmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_ASC); { int i; for (i = 0; i < 4; i++) { double eval_i = gsl_vector_get (eval, i); gsl_vector_view evec_i = gsl_matrix_column (evec, i); printf ("eigenvalue = %g\n", eval_i); printf ("eigenvector = \n"); gsl_vector_fprintf (stdout, &evec_i.vector, "%g"); } } gsl_vector_free (eval); gsl_matrix_free (evec); return 0; } Here is the beginning of the output from the program, $ ./a.out eigenvalue = 9.67023e-05 eigenvector = -0.0291933 0.328712 -0.791411 0.514553 ... This can be compared with the corresponding output from GNU OCTAVE, octave> [v,d] = eig(hilb(4)); octave> diag(d) ans = 9.6702e-05 6.7383e-03 1.6914e-01 1.5002e+00 octave> v v = 0.029193 0.179186 -0.582076 0.792608 -0.328712 -0.741918 0.370502 0.451923 0.791411 0.100228 0.509579 0.322416 -0.514553 0.638283 0.514048 0.252161 Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is arbitrary. The following program illustrates the use of the nonsymmetric eigensolver, by computing the eigenvalues and eigenvectors of the Vandermonde matrix V(x;i,j) = x_i^{n - j} with x = (-1,-2,3,4). #include #include #include int main (void) { double data[] = { -1.0, 1.0, -1.0, 1.0, -8.0, 4.0, -2.0, 1.0, 27.0, 9.0, 3.0, 1.0, 64.0, 16.0, 4.0, 1.0 }; gsl_matrix_view m = gsl_matrix_view_array (data, 4, 4); gsl_vector_complex *eval = gsl_vector_complex_alloc (4); gsl_matrix_complex *evec = gsl_matrix_complex_alloc (4, 4); gsl_eigen_nonsymmv_workspace * w = gsl_eigen_nonsymmv_alloc (4); gsl_eigen_nonsymmv (&m.matrix, eval, evec, w); gsl_eigen_nonsymmv_free (w); gsl_eigen_nonsymmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_DESC); { int i, j; for (i = 0; i < 4; i++) { gsl_complex eval_i = gsl_vector_complex_get (eval, i); gsl_vector_complex_view evec_i = gsl_matrix_complex_column (evec, i); printf ("eigenvalue = %g + %gi\n", GSL_REAL(eval_i), GSL_IMAG(eval_i)); printf ("eigenvector = \n"); for (j = 0; j < 4; ++j) { gsl_complex z = gsl_vector_complex_get(&evec_i.vector, j); printf("%g + %gi\n", GSL_REAL(z), GSL_IMAG(z)); } } } gsl_vector_complex_free(eval); gsl_matrix_complex_free(evec); return 0; } Here is the beginning of the output from the program, $ ./a.out eigenvalue = -6.41391 + 0i eigenvector = -0.0998822 + 0i -0.111251 + 0i 0.292501 + 0i 0.944505 + 0i eigenvalue = 5.54555 + 3.08545i eigenvector = -0.043487 + -0.0076308i 0.0642377 + -0.142127i -0.515253 + 0.0405118i -0.840592 + -0.00148565i ... This can be compared with the corresponding output from GNU OCTAVE, octave> [v,d] = eig(vander([-1 -2 3 4])); octave> diag(d) ans = -6.4139 + 0.0000i 5.5456 + 3.0854i 5.5456 - 3.0854i 2.3228 + 0.0000i octave> v v = Columns 1 through 3: -0.09988 + 0.00000i -0.04350 - 0.00755i -0.04350 + 0.00755i -0.11125 + 0.00000i 0.06399 - 0.14224i 0.06399 + 0.14224i 0.29250 + 0.00000i -0.51518 + 0.04142i -0.51518 - 0.04142i 0.94451 + 0.00000i -0.84059 + 0.00000i -0.84059 - 0.00000i Column 4: -0.14493 + 0.00000i 0.35660 + 0.00000i 0.91937 + 0.00000i 0.08118 + 0.00000i Note that the eigenvectors corresponding to the eigenvalue 5.54555 + 3.08545i differ by the multiplicative constant 0.9999984 + 0.0017674i which is an arbitrary phase factor of magnitude 1.  File: gsl-ref.info, Node: Eigenvalue and Eigenvector References, Prev: Eigenvalue and Eigenvector Examples, Up: Eigensystems 15.9 References and Further Reading =================================== Further information on the algorithms described in this section can be found in the following book, G. H. Golub, C. F. Van Loan, 'Matrix Computations' (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8. Further information on the generalized eigensystems QZ algorithm can be found in this paper, C. Moler, G. Stewart, "An Algorithm for Generalized Matrix Eigenvalue Problems", SIAM J. Numer. Anal., Vol 10, No 2, 1973. Eigensystem routines for very large matrices can be found in the Fortran library LAPACK. The LAPACK library is described in, 'LAPACK Users' Guide' (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8. The LAPACK source code can be found at the website above along with an online copy of the users guide.  File: gsl-ref.info, Node: Fast Fourier Transforms, Next: Numerical Integration, Prev: Eigensystems, Up: Top 16 Fast Fourier Transforms (FFTs) ********************************* This chapter describes functions for performing Fast Fourier Transforms (FFTs). The library includes radix-2 routines (for lengths which are a power of two) and mixed-radix routines (which work for any length). For efficiency there are separate versions of the routines for real data and for complex data. The mixed-radix routines are a reimplementation of the FFTPACK library of Paul Swarztrauber. Fortran code for FFTPACK is available on Netlib (FFTPACK also includes some routines for sine and cosine transforms but these are currently not available in GSL). For details and derivations of the underlying algorithms consult the document 'GSL FFT Algorithms' (*note FFT References and Further Reading::) * Menu: * Mathematical Definitions:: * Overview of complex data FFTs:: * Radix-2 FFT routines for complex data:: * Mixed-radix FFT routines for complex data:: * Overview of real data FFTs:: * Radix-2 FFT routines for real data:: * Mixed-radix FFT routines for real data:: * FFT References and Further Reading::  File: gsl-ref.info, Node: Mathematical Definitions, Next: Overview of complex data FFTs, Up: Fast Fourier Transforms 16.1 Mathematical Definitions ============================= Fast Fourier Transforms are efficient algorithms for calculating the discrete Fourier transform (DFT), x_j = \sum_{k=0}^{n-1} z_k \exp(-2\pi i j k / n) The DFT usually arises as an approximation to the continuous Fourier transform when functions are sampled at discrete intervals in space or time. The naive evaluation of the discrete Fourier transform is a matrix-vector multiplication W\vec{z}. A general matrix-vector multiplication takes O(n^2) operations for n data-points. Fast Fourier transform algorithms use a divide-and-conquer strategy to factorize the matrix W into smaller sub-matrices, corresponding to the integer factors of the length n. If n can be factorized into a product of integers f_1 f_2 ... f_m then the DFT can be computed in O(n \sum f_i) operations. For a radix-2 FFT this gives an operation count of O(n \log_2 n). All the FFT functions offer three types of transform: forwards, inverse and backwards, based on the same mathematical definitions. The definition of the "forward Fourier transform", x = FFT(z), is, x_j = \sum_{k=0}^{n-1} z_k \exp(-2\pi i j k / n) and the definition of the "inverse Fourier transform", x = IFFT(z), is, z_j = {1 \over n} \sum_{k=0}^{n-1} x_k \exp(2\pi i j k / n). The factor of 1/n makes this a true inverse. For example, a call to 'gsl_fft_complex_forward' followed by a call to 'gsl_fft_complex_inverse' should return the original data (within numerical errors). In general there are two possible choices for the sign of the exponential in the transform/ inverse-transform pair. GSL follows the same convention as FFTPACK, using a negative exponential for the forward transform. The advantage of this convention is that the inverse transform recreates the original function with simple Fourier synthesis. Numerical Recipes uses the opposite convention, a positive exponential in the forward transform. The "backwards FFT" is simply our terminology for an unscaled version of the inverse FFT, z^{backwards}_j = \sum_{k=0}^{n-1} x_k \exp(2\pi i j k / n). When the overall scale of the result is unimportant it is often convenient to use the backwards FFT instead of the inverse to save unnecessary divisions.  File: gsl-ref.info, Node: Overview of complex data FFTs, Next: Radix-2 FFT routines for complex data, Prev: Mathematical Definitions, Up: Fast Fourier Transforms 16.2 Overview of complex data FFTs ================================== The inputs and outputs for the complex FFT routines are "packed arrays" of floating point numbers. In a packed array the real and imaginary parts of each complex number are placed in alternate neighboring elements. For example, the following definition of a packed array of length 6, double x[3*2]; gsl_complex_packed_array data = x; can be used to hold an array of three complex numbers, 'z[3]', in the following way, data[0] = Re(z[0]) data[1] = Im(z[0]) data[2] = Re(z[1]) data[3] = Im(z[1]) data[4] = Re(z[2]) data[5] = Im(z[2]) The array indices for the data have the same ordering as those in the definition of the DFT--i.e. there are no index transformations or permutations of the data. A "stride" parameter allows the user to perform transforms on the elements 'z[stride*i]' instead of 'z[i]'. A stride greater than 1 can be used to take an in-place FFT of the column of a matrix. A stride of 1 accesses the array without any additional spacing between elements. To perform an FFT on a vector argument, such as 'gsl_vector_complex * v', use the following definitions (or their equivalents) when calling the functions described in this chapter: gsl_complex_packed_array data = v->data; size_t stride = v->stride; size_t n = v->size; For physical applications it is important to remember that the index appearing in the DFT does not correspond directly to a physical frequency. If the time-step of the DFT is \Delta then the frequency-domain includes both positive and negative frequencies, ranging from -1/(2\Delta) through 0 to +1/(2\Delta). The positive frequencies are stored from the beginning of the array up to the middle, and the negative frequencies are stored backwards from the end of the array. Here is a table which shows the layout of the array DATA, and the correspondence between the time-domain data z, and the frequency-domain data x. index z x = FFT(z) 0 z(t = 0) x(f = 0) 1 z(t = 1) x(f = 1/(n Delta)) 2 z(t = 2) x(f = 2/(n Delta)) . ........ .................. n/2 z(t = n/2) x(f = +1/(2 Delta), -1/(2 Delta)) . ........ .................. n-3 z(t = n-3) x(f = -3/(n Delta)) n-2 z(t = n-2) x(f = -2/(n Delta)) n-1 z(t = n-1) x(f = -1/(n Delta)) When n is even the location n/2 contains the most positive and negative frequencies (+1/(2 \Delta), -1/(2 \Delta)) which are equivalent. If n is odd then general structure of the table above still applies, but n/2 does not appear.  File: gsl-ref.info, Node: Radix-2 FFT routines for complex data, Next: Mixed-radix FFT routines for complex data, Prev: Overview of complex data FFTs, Up: Fast Fourier Transforms 16.3 Radix-2 FFT routines for complex data ========================================== The radix-2 algorithms described in this section are simple and compact, although not necessarily the most efficient. They use the Cooley-Tukey algorithm to compute in-place complex FFTs for lengths which are a power of 2--no additional storage is required. The corresponding self-sorting mixed-radix routines offer better performance at the expense of requiring additional working space. All the functions described in this section are declared in the header file 'gsl_fft_complex.h'. -- Function: int gsl_fft_complex_radix2_forward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) -- Function: int gsl_fft_complex_radix2_transform (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, gsl_fft_direction SIGN) -- Function: int gsl_fft_complex_radix2_backward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) -- Function: int gsl_fft_complex_radix2_inverse (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) These functions compute forward, backward and inverse FFTs of length N with stride STRIDE, on the packed complex array DATA using an in-place radix-2 decimation-in-time algorithm. The length of the transform N is restricted to powers of two. For the 'transform' version of the function the SIGN argument can be either 'forward' (-1) or 'backward' (+1). The functions return a value of 'GSL_SUCCESS' if no errors were detected, or 'GSL_EDOM' if the length of the data N is not a power of two. -- Function: int gsl_fft_complex_radix2_dif_forward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) -- Function: int gsl_fft_complex_radix2_dif_transform (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, gsl_fft_direction SIGN) -- Function: int gsl_fft_complex_radix2_dif_backward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) -- Function: int gsl_fft_complex_radix2_dif_inverse (gsl_complex_packed_array DATA, size_t STRIDE, size_t N) These are decimation-in-frequency versions of the radix-2 FFT functions. Here is an example program which computes the FFT of a short pulse in a sample of length 128. To make the resulting Fourier transform real the pulse is defined for equal positive and negative times (-10 ... 10), where the negative times wrap around the end of the array. #include #include #include #include #define REAL(z,i) ((z)[2*(i)]) #define IMAG(z,i) ((z)[2*(i)+1]) int main (void) { int i; double data[2*128]; for (i = 0; i < 128; i++) { REAL(data,i) = 0.0; IMAG(data,i) = 0.0; } REAL(data,0) = 1.0; for (i = 1; i <= 10; i++) { REAL(data,i) = REAL(data,128-i) = 1.0; } for (i = 0; i < 128; i++) { printf ("%d %e %e\n", i, REAL(data,i), IMAG(data,i)); } printf ("\n"); gsl_fft_complex_radix2_forward (data, 1, 128); for (i = 0; i < 128; i++) { printf ("%d %e %e\n", i, REAL(data,i)/sqrt(128), IMAG(data,i)/sqrt(128)); } return 0; } Note that we have assumed that the program is using the default error handler (which calls 'abort' for any errors). If you are not using a safe error handler you would need to check the return status of 'gsl_fft_complex_radix2_forward'. The transformed data is rescaled by 1/\sqrt n so that it fits on the same plot as the input. Only the real part is shown, by the choice of the input data the imaginary part is zero. Allowing for the wrap-around of negative times at t=128, and working in units of k/n, the DFT approximates the continuum Fourier transform, giving a modulated sine function.  File: gsl-ref.info, Node: Mixed-radix FFT routines for complex data, Next: Overview of real data FFTs, Prev: Radix-2 FFT routines for complex data, Up: Fast Fourier Transforms 16.4 Mixed-radix FFT routines for complex data ============================================== This section describes mixed-radix FFT algorithms for complex data. The mixed-radix functions work for FFTs of any length. They are a reimplementation of Paul Swarztrauber's Fortran FFTPACK library. The theory is explained in the review article 'Self-sorting Mixed-radix FFTs' by Clive Temperton. The routines here use the same indexing scheme and basic algorithms as FFTPACK. The mixed-radix algorithm is based on sub-transform modules--highly optimized small length FFTs which are combined to create larger FFTs. There are efficient modules for factors of 2, 3, 4, 5, 6 and 7. The modules for the composite factors of 4 and 6 are faster than combining the modules for 2*2 and 2*3. For factors which are not implemented as modules there is a fall-back to a general length-n module which uses Singleton's method for efficiently computing a DFT. This module is O(n^2), and slower than a dedicated module would be but works for any length n. Of course, lengths which use the general length-n module will still be factorized as much as possible. For example, a length of 143 will be factorized into 11*13. Large prime factors are the worst case scenario, e.g. as found in n=2*3*99991, and should be avoided because their O(n^2) scaling will dominate the run-time (consult the document 'GSL FFT Algorithms' included in the GSL distribution if you encounter this problem). The mixed-radix initialization function 'gsl_fft_complex_wavetable_alloc' returns the list of factors chosen by the library for a given length n. It can be used to check how well the length has been factorized, and estimate the run-time. To a first approximation the run-time scales as n \sum f_i, where the f_i are the factors of n. For programs under user control you may wish to issue a warning that the transform will be slow when the length is poorly factorized. If you frequently encounter data lengths which cannot be factorized using the existing small-prime modules consult 'GSL FFT Algorithms' for details on adding support for other factors. All the functions described in this section are declared in the header file 'gsl_fft_complex.h'. -- Function: gsl_fft_complex_wavetable * gsl_fft_complex_wavetable_alloc (size_t N) This function prepares a trigonometric lookup table for a complex FFT of length N. The function returns a pointer to the newly allocated 'gsl_fft_complex_wavetable' if no errors were detected, and a null pointer in the case of error. The length N is factorized into a product of subtransforms, and the factors and their trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are computed using direct calls to 'sin' and 'cos', for accuracy. Recursion relations could be used to compute the lookup table faster, but if an application performs many FFTs of the same length then this computation is a one-off overhead which does not affect the final throughput. The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified by calls to any of the other FFT functions. The same wavetable can be used for both forward and backward (or inverse) transforms of a given length. -- Function: void gsl_fft_complex_wavetable_free (gsl_fft_complex_wavetable * WAVETABLE) This function frees the memory associated with the wavetable WAVETABLE. The wavetable can be freed if no further FFTs of the same length will be needed. These functions operate on a 'gsl_fft_complex_wavetable' structure which contains internal parameters for the FFT. It is not necessary to set any of the components directly but it can sometimes be useful to examine them. For example, the chosen factorization of the FFT length is given and can be used to provide an estimate of the run-time or numerical error. The wavetable structure is declared in the header file 'gsl_fft_complex.h'. -- Data Type: gsl_fft_complex_wavetable This is a structure that holds the factorization and trigonometric lookup tables for the mixed radix fft algorithm. It has the following components: 'size_t n' This is the number of complex data points 'size_t nf' This is the number of factors that the length 'n' was decomposed into. 'size_t factor[64]' This is the array of factors. Only the first 'nf' elements are used. 'gsl_complex * trig' This is a pointer to a preallocated trigonometric lookup table of 'n' complex elements. 'gsl_complex * twiddle[64]' This is an array of pointers into 'trig', giving the twiddle factors for each pass. The mixed radix algorithms require additional working space to hold the intermediate steps of the transform. -- Function: gsl_fft_complex_workspace * gsl_fft_complex_workspace_alloc (size_t N) This function allocates a workspace for a complex transform of length N. -- Function: void gsl_fft_complex_workspace_free (gsl_fft_complex_workspace * WORKSPACE) This function frees the memory associated with the workspace WORKSPACE. The workspace can be freed if no further FFTs of the same length will be needed. The following functions compute the transform, -- Function: int gsl_fft_complex_forward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, const gsl_fft_complex_wavetable * WAVETABLE, gsl_fft_complex_workspace * WORK) -- Function: int gsl_fft_complex_transform (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, const gsl_fft_complex_wavetable * WAVETABLE, gsl_fft_complex_workspace * WORK, gsl_fft_direction SIGN) -- Function: int gsl_fft_complex_backward (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, const gsl_fft_complex_wavetable * WAVETABLE, gsl_fft_complex_workspace * WORK) -- Function: int gsl_fft_complex_inverse (gsl_complex_packed_array DATA, size_t STRIDE, size_t N, const gsl_fft_complex_wavetable * WAVETABLE, gsl_fft_complex_workspace * WORK) These functions compute forward, backward and inverse FFTs of length N with stride STRIDE, on the packed complex array DATA, using a mixed radix decimation-in-frequency algorithm. There is no restriction on the length N. Efficient modules are provided for subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are computed with a slow, O(n^2), general-n module. The caller must supply a WAVETABLE containing the trigonometric lookup tables and a workspace WORK. For the 'transform' version of the function the SIGN argument can be either 'forward' (-1) or 'backward' (+1). The functions return a value of '0' if no errors were detected. The following 'gsl_errno' conditions are defined for these functions: 'GSL_EDOM' The length of the data N is not a positive integer (i.e. N is zero). 'GSL_EINVAL' The length of the data N and the length used to compute the given WAVETABLE do not match. Here is an example program which computes the FFT of a short pulse in a sample of length 630 (=2*3*3*5*7) using the mixed-radix algorithm. #include #include #include #include #define REAL(z,i) ((z)[2*(i)]) #define IMAG(z,i) ((z)[2*(i)+1]) int main (void) { int i; const int n = 630; double data[2*n]; gsl_fft_complex_wavetable * wavetable; gsl_fft_complex_workspace * workspace; for (i = 0; i < n; i++) { REAL(data,i) = 0.0; IMAG(data,i) = 0.0; } data[0] = 1.0; for (i = 1; i <= 10; i++) { REAL(data,i) = REAL(data,n-i) = 1.0; } for (i = 0; i < n; i++) { printf ("%d: %e %e\n", i, REAL(data,i), IMAG(data,i)); } printf ("\n"); wavetable = gsl_fft_complex_wavetable_alloc (n); workspace = gsl_fft_complex_workspace_alloc (n); for (i = 0; i < wavetable->nf; i++) { printf ("# factor %d: %d\n", i, wavetable->factor[i]); } gsl_fft_complex_forward (data, 1, n, wavetable, workspace); for (i = 0; i < n; i++) { printf ("%d: %e %e\n", i, REAL(data,i), IMAG(data,i)); } gsl_fft_complex_wavetable_free (wavetable); gsl_fft_complex_workspace_free (workspace); return 0; } Note that we have assumed that the program is using the default 'gsl' error handler (which calls 'abort' for any errors). If you are not using a safe error handler you would need to check the return status of all the 'gsl' routines.  File: gsl-ref.info, Node: Overview of real data FFTs, Next: Radix-2 FFT routines for real data, Prev: Mixed-radix FFT routines for complex data, Up: Fast Fourier Transforms 16.5 Overview of real data FFTs =============================== The functions for real data are similar to those for complex data. However, there is an important difference between forward and inverse transforms. The Fourier transform of a real sequence is not real. It is a complex sequence with a special symmetry: z_k = z_{n-k}^* A sequence with this symmetry is called "conjugate-complex" or "half-complex". This different structure requires different storage layouts for the forward transform (from real to half-complex) and inverse transform (from half-complex back to real). As a consequence the routines are divided into two sets: functions in 'gsl_fft_real' which operate on real sequences and functions in 'gsl_fft_halfcomplex' which operate on half-complex sequences. Functions in 'gsl_fft_real' compute the frequency coefficients of a real sequence. The half-complex coefficients c of a real sequence x are given by Fourier analysis, c_k = \sum_{j=0}^{n-1} x_j \exp(-2 \pi i j k /n) Functions in 'gsl_fft_halfcomplex' compute inverse or backwards transforms. They reconstruct real sequences by Fourier synthesis from their half-complex frequency coefficients, c, x_j = {1 \over n} \sum_{k=0}^{n-1} c_k \exp(2 \pi i j k /n) The symmetry of the half-complex sequence implies that only half of the complex numbers in the output need to be stored. The remaining half can be reconstructed using the half-complex symmetry condition. This works for all lengths, even and odd--when the length is even the middle value where k=n/2 is also real. Thus only N real numbers are required to store the half-complex sequence, and the transform of a real sequence can be stored in the same size array as the original data. The precise storage arrangements depend on the algorithm, and are different for radix-2 and mixed-radix routines. The radix-2 function operates in-place, which constrains the locations where each element can be stored. The restriction forces real and imaginary parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and it stores the real and imaginary parts of a given term in neighboring locations (which is desirable for better locality of memory accesses).  File: gsl-ref.info, Node: Radix-2 FFT routines for real data, Next: Mixed-radix FFT routines for real data, Prev: Overview of real data FFTs, Up: Fast Fourier Transforms 16.6 Radix-2 FFT routines for real data ======================================= This section describes radix-2 FFT algorithms for real data. They use the Cooley-Tukey algorithm to compute in-place FFTs for lengths which are a power of 2. The radix-2 FFT functions for real data are declared in the header files 'gsl_fft_real.h' -- Function: int gsl_fft_real_radix2_transform (double DATA[], size_t STRIDE, size_t N) This function computes an in-place radix-2 FFT of length N and stride STRIDE on the real array DATA. The output is a half-complex sequence, which is stored in-place. The arrangement of the half-complex terms uses the following scheme: for k < n/2 the real part of the k-th term is stored in location k, and the corresponding imaginary part is stored in location n-k. Terms with k > n/2 can be reconstructed using the symmetry z_k = z^*_{n-k}. The terms for k=0 and k=n/2 are both purely real, and count as a special case. Their real parts are stored in locations 0 and n/2 respectively, while their imaginary parts which are zero are not stored. The following table shows the correspondence between the output DATA and the equivalent results obtained by considering the input data as a complex sequence with zero imaginary part (assuming STRIDE=1), complex[0].real = data[0] complex[0].imag = 0 complex[1].real = data[1] complex[1].imag = data[n-1] ............... ................ complex[k].real = data[k] complex[k].imag = data[n-k] ............... ................ complex[n/2].real = data[n/2] complex[n/2].imag = 0 ............... ................ complex[k'].real = data[k] k' = n - k complex[k'].imag = -data[n-k] ............... ................ complex[n-1].real = data[1] complex[n-1].imag = -data[n-1] Note that the output data can be converted into the full complex sequence using the function 'gsl_fft_halfcomplex_radix2_unpack' described below. The radix-2 FFT functions for halfcomplex data are declared in the header file 'gsl_fft_halfcomplex.h'. -- Function: int gsl_fft_halfcomplex_radix2_inverse (double DATA[], size_t STRIDE, size_t N) -- Function: int gsl_fft_halfcomplex_radix2_backward (double DATA[], size_t STRIDE, size_t N) These functions compute the inverse or backwards in-place radix-2 FFT of length N and stride STRIDE on the half-complex sequence DATA stored according the output scheme used by 'gsl_fft_real_radix2'. The result is a real array stored in natural order. -- Function: int gsl_fft_halfcomplex_radix2_unpack (const double HALFCOMPLEX_COEFFICIENT[], gsl_complex_packed_array COMPLEX_COEFFICIENT, size_t STRIDE, size_t N) This function converts HALFCOMPLEX_COEFFICIENT, an array of half-complex coefficients as returned by 'gsl_fft_real_radix2_transform', into an ordinary complex array, COMPLEX_COEFFICIENT. It fills in the complex array using the symmetry z_k = z_{n-k}^* to reconstruct the redundant elements. The algorithm for the conversion is, complex_coefficient[0].real = halfcomplex_coefficient[0]; complex_coefficient[0].imag = 0.0; for (i = 1; i < n - i; i++) { double hc_real = halfcomplex_coefficient[i*stride]; double hc_imag = halfcomplex_coefficient[(n-i)*stride]; complex_coefficient[i*stride].real = hc_real; complex_coefficient[i*stride].imag = hc_imag; complex_coefficient[(n - i)*stride].real = hc_real; complex_coefficient[(n - i)*stride].imag = -hc_imag; } if (i == n - i) { complex_coefficient[i*stride].real = halfcomplex_coefficient[(n - 1)*stride]; complex_coefficient[i*stride].imag = 0.0; }  File: gsl-ref.info, Node: Mixed-radix FFT routines for real data, Next: FFT References and Further Reading, Prev: Radix-2 FFT routines for real data, Up: Fast Fourier Transforms 16.7 Mixed-radix FFT routines for real data =========================================== This section describes mixed-radix FFT algorithms for real data. The mixed-radix functions work for FFTs of any length. They are a reimplementation of the real-FFT routines in the Fortran FFTPACK library by Paul Swarztrauber. The theory behind the algorithm is explained in the article 'Fast Mixed-Radix Real Fourier Transforms' by Clive Temperton. The routines here use the same indexing scheme and basic algorithms as FFTPACK. The functions use the FFTPACK storage convention for half-complex sequences. In this convention the half-complex transform of a real sequence is stored with frequencies in increasing order, starting at zero, with the real and imaginary parts of each frequency in neighboring locations. When a value is known to be real the imaginary part is not stored. The imaginary part of the zero-frequency component is never stored. It is known to be zero (since the zero frequency component is simply the sum of the input data (all real)). For a sequence of even length the imaginary part of the frequency n/2 is not stored either, since the symmetry z_k = z_{n-k}^* implies that this is purely real too. The storage scheme is best shown by some examples. The table below shows the output for an odd-length sequence, n=5. The two columns give the correspondence between the 5 values in the half-complex sequence returned by 'gsl_fft_real_transform', HALFCOMPLEX[] and the values COMPLEX[] that would be returned if the same real input sequence were passed to 'gsl_fft_complex_backward' as a complex sequence (with imaginary parts set to '0'), complex[0].real = halfcomplex[0] complex[0].imag = 0 complex[1].real = halfcomplex[1] complex[1].imag = halfcomplex[2] complex[2].real = halfcomplex[3] complex[2].imag = halfcomplex[4] complex[3].real = halfcomplex[3] complex[3].imag = -halfcomplex[4] complex[4].real = halfcomplex[1] complex[4].imag = -halfcomplex[2] The upper elements of the COMPLEX array, 'complex[3]' and 'complex[4]' are filled in using the symmetry condition. The imaginary part of the zero-frequency term 'complex[0].imag' is known to be zero by the symmetry. The next table shows the output for an even-length sequence, n=6. In the even case there are two values which are purely real, complex[0].real = halfcomplex[0] complex[0].imag = 0 complex[1].real = halfcomplex[1] complex[1].imag = halfcomplex[2] complex[2].real = halfcomplex[3] complex[2].imag = halfcomplex[4] complex[3].real = halfcomplex[5] complex[3].imag = 0 complex[4].real = halfcomplex[3] complex[4].imag = -halfcomplex[4] complex[5].real = halfcomplex[1] complex[5].imag = -halfcomplex[2] The upper elements of the COMPLEX array, 'complex[4]' and 'complex[5]' are filled in using the symmetry condition. Both 'complex[0].imag' and 'complex[3].imag' are known to be zero. All these functions are declared in the header files 'gsl_fft_real.h' and 'gsl_fft_halfcomplex.h'. -- Function: gsl_fft_real_wavetable * gsl_fft_real_wavetable_alloc (size_t N) -- Function: gsl_fft_halfcomplex_wavetable * gsl_fft_halfcomplex_wavetable_alloc (size_t N) These functions prepare trigonometric lookup tables for an FFT of size n real elements. The functions return a pointer to the newly allocated struct if no errors were detected, and a null pointer in the case of error. The length N is factorized into a product of subtransforms, and the factors and their trigonometric coefficients are stored in the wavetable. The trigonometric coefficients are computed using direct calls to 'sin' and 'cos', for accuracy. Recursion relations could be used to compute the lookup table faster, but if an application performs many FFTs of the same length then computing the wavetable is a one-off overhead which does not affect the final throughput. The wavetable structure can be used repeatedly for any transform of the same length. The table is not modified by calls to any of the other FFT functions. The appropriate type of wavetable must be used for forward real or inverse half-complex transforms. -- Function: void gsl_fft_real_wavetable_free (gsl_fft_real_wavetable * WAVETABLE) -- Function: void gsl_fft_halfcomplex_wavetable_free (gsl_fft_halfcomplex_wavetable * WAVETABLE) These functions free the memory associated with the wavetable WAVETABLE. The wavetable can be freed if no further FFTs of the same length will be needed. The mixed radix algorithms require additional working space to hold the intermediate steps of the transform, -- Function: gsl_fft_real_workspace * gsl_fft_real_workspace_alloc (size_t N) This function allocates a workspace for a real transform of length N. The same workspace can be used for both forward real and inverse halfcomplex transforms. -- Function: void gsl_fft_real_workspace_free (gsl_fft_real_workspace * WORKSPACE) This function frees the memory associated with the workspace WORKSPACE. The workspace can be freed if no further FFTs of the same length will be needed. The following functions compute the transforms of real and half-complex data, -- Function: int gsl_fft_real_transform (double DATA[], size_t STRIDE, size_t N, const gsl_fft_real_wavetable * WAVETABLE, gsl_fft_real_workspace * WORK) -- Function: int gsl_fft_halfcomplex_transform (double DATA[], size_t STRIDE, size_t N, const gsl_fft_halfcomplex_wavetable * WAVETABLE, gsl_fft_real_workspace * WORK) These functions compute the FFT of DATA, a real or half-complex array of length N, using a mixed radix decimation-in-frequency algorithm. For 'gsl_fft_real_transform' DATA is an array of time-ordered real data. For 'gsl_fft_halfcomplex_transform' DATA contains Fourier coefficients in the half-complex ordering described above. There is no restriction on the length N. Efficient modules are provided for subtransforms of length 2, 3, 4 and 5. Any remaining factors are computed with a slow, O(n^2), general-n module. The caller must supply a WAVETABLE containing trigonometric lookup tables and a workspace WORK. -- Function: int gsl_fft_real_unpack (const double REAL_COEFFICIENT[], gsl_complex_packed_array COMPLEX_COEFFICIENT, size_t STRIDE, size_t N) This function converts a single real array, REAL_COEFFICIENT into an equivalent complex array, COMPLEX_COEFFICIENT, (with imaginary part set to zero), suitable for 'gsl_fft_complex' routines. The algorithm for the conversion is simply, for (i = 0; i < n; i++) { complex_coefficient[i*stride].real = real_coefficient[i*stride]; complex_coefficient[i*stride].imag = 0.0; } -- Function: int gsl_fft_halfcomplex_unpack (const double HALFCOMPLEX_COEFFICIENT[], gsl_complex_packed_array COMPLEX_COEFFICIENT, size_t STRIDE, size_t N) This function converts HALFCOMPLEX_COEFFICIENT, an array of half-complex coefficients as returned by 'gsl_fft_real_transform', into an ordinary complex array, COMPLEX_COEFFICIENT. It fills in the complex array using the symmetry z_k = z_{n-k}^* to reconstruct the redundant elements. The algorithm for the conversion is, complex_coefficient[0].real = halfcomplex_coefficient[0]; complex_coefficient[0].imag = 0.0; for (i = 1; i < n - i; i++) { double hc_real = halfcomplex_coefficient[(2 * i - 1)*stride]; double hc_imag = halfcomplex_coefficient[(2 * i)*stride]; complex_coefficient[i*stride].real = hc_real; complex_coefficient[i*stride].imag = hc_imag; complex_coefficient[(n - i)*stride].real = hc_real; complex_coefficient[(n - i)*stride].imag = -hc_imag; } if (i == n - i) { complex_coefficient[i*stride].real = halfcomplex_coefficient[(n - 1)*stride]; complex_coefficient[i*stride].imag = 0.0; } Here is an example program using 'gsl_fft_real_transform' and 'gsl_fft_halfcomplex_inverse'. It generates a real signal in the shape of a square pulse. The pulse is Fourier transformed to frequency space, and all but the lowest ten frequency components are removed from the array of Fourier coefficients returned by 'gsl_fft_real_transform'. The remaining Fourier coefficients are transformed back to the time-domain, to give a filtered version of the square pulse. Since Fourier coefficients are stored using the half-complex symmetry both positive and negative frequencies are removed and the final filtered signal is also real. #include #include #include #include #include int main (void) { int i, n = 100; double data[n]; gsl_fft_real_wavetable * real; gsl_fft_halfcomplex_wavetable * hc; gsl_fft_real_workspace * work; for (i = 0; i < n; i++) { data[i] = 0.0; } for (i = n / 3; i < 2 * n / 3; i++) { data[i] = 1.0; } for (i = 0; i < n; i++) { printf ("%d: %e\n", i, data[i]); } printf ("\n"); work = gsl_fft_real_workspace_alloc (n); real = gsl_fft_real_wavetable_alloc (n); gsl_fft_real_transform (data, 1, n, real, work); gsl_fft_real_wavetable_free (real); for (i = 11; i < n; i++) { data[i] = 0; } hc = gsl_fft_halfcomplex_wavetable_alloc (n); gsl_fft_halfcomplex_inverse (data, 1, n, hc, work); gsl_fft_halfcomplex_wavetable_free (hc); for (i = 0; i < n; i++) { printf ("%d: %e\n", i, data[i]); } gsl_fft_real_workspace_free (work); return 0; }  File: gsl-ref.info, Node: FFT References and Further Reading, Prev: Mixed-radix FFT routines for real data, Up: Fast Fourier Transforms 16.8 References and Further Reading =================================== A good starting point for learning more about the FFT is the review article 'Fast Fourier Transforms: A Tutorial Review and A State of the Art' by Duhamel and Vetterli, P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state of the art. 'Signal Processing', 19:259-299, 1990. To find out about the algorithms used in the GSL routines you may want to consult the document 'GSL FFT Algorithms' (it is included in GSL, as 'doc/fftalgorithms.tex'). This has general information on FFTs and explicit derivations of the implementation for each routine. There are also references to the relevant literature. For convenience some of the more important references are reproduced below. There are several introductory books on the FFT with example programs, such as 'The Fast Fourier Transform' by Brigham and 'DFT/FFT and Convolution Algorithms' by Burrus and Parks, E. Oran Brigham. 'The Fast Fourier Transform'. Prentice Hall, 1974. C. S. Burrus and T. W. Parks. 'DFT/FFT and Convolution Algorithms'. Wiley, 1984. Both these introductory books cover the radix-2 FFT in some detail. The mixed-radix algorithm at the heart of the FFTPACK routines is reviewed in Clive Temperton's paper, Clive Temperton. Self-sorting mixed-radix fast Fourier transforms. 'Journal of Computational Physics', 52(1):1-23, 1983. The derivation of FFTs for real-valued data is explained in the following two articles, Henrik V. Sorenson, Douglas L. Jones, Michael T. Heideman, and C. Sidney Burrus. Real-valued fast Fourier transform algorithms. 'IEEE Transactions on Acoustics, Speech, and Signal Processing', ASSP-35(6):849-863, 1987. Clive Temperton. Fast mixed-radix real Fourier transforms. 'Journal of Computational Physics', 52:340-350, 1983. In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in 'Programs for Digital Signal Processing'. It is a useful reference for implementations of many different FFT algorithms, Digital Signal Processing Committee and IEEE Acoustics, Speech, and Signal Processing Committee, editors. 'Programs for Digital Signal Processing'. IEEE Press, 1979. For large-scale FFT work we recommend the use of the dedicated FFTW library by Frigo and Johnson. The FFTW library is self-optimizing--it automatically tunes itself for each hardware platform in order to achieve maximum performance. It is available under the GNU GPL. FFTW Website, The source code for FFTPACK is available from Netlib, FFTPACK,  File: gsl-ref.info, Node: Numerical Integration, Next: Random Number Generation, Prev: Fast Fourier Transforms, Up: Top 17 Numerical Integration ************************ This chapter describes routines for performing numerical integration (quadrature) of a function in one dimension. There are routines for adaptive and non-adaptive integration of general functions, with specialised routines for specific cases. These include integration over infinite and semi-infinite ranges, singular integrals, including logarithmic singularities, computation of Cauchy principal values and oscillatory integrals. The library reimplements the algorithms used in QUADPACK, a numerical integration package written by Piessens, de Doncker-Kapenga, Ueberhuber and Kahaner. Fortran code for QUADPACK is available on Netlib. Also included are non-adaptive, fixed-order Gauss-Legendre integration routines with high precision coefficients by Pavel Holoborodko. The functions described in this chapter are declared in the header file 'gsl_integration.h'. * Menu: * Numerical Integration Introduction:: * QNG non-adaptive Gauss-Kronrod integration:: * QAG adaptive integration:: * QAGS adaptive integration with singularities:: * QAGP adaptive integration with known singular points:: * QAGI adaptive integration on infinite intervals:: * QAWC adaptive integration for Cauchy principal values:: * QAWS adaptive integration for singular functions:: * QAWO adaptive integration for oscillatory functions:: * QAWF adaptive integration for Fourier integrals:: * CQUAD doubly-adaptive integration:: * Fixed order Gauss-Legendre integration:: * Numerical integration error codes:: * Numerical integration examples:: * Numerical integration References and Further Reading::  File: gsl-ref.info, Node: Numerical Integration Introduction, Next: QNG non-adaptive Gauss-Kronrod integration, Up: Numerical Integration 17.1 Introduction ================= Each algorithm computes an approximation to a definite integral of the form, I = \int_a^b f(x) w(x) dx where w(x) is a weight function (for general integrands w(x)=1). The user provides absolute and relative error bounds (epsabs, epsrel) which specify the following accuracy requirement, |RESULT - I| <= max(epsabs, epsrel |I|) where RESULT is the numerical approximation obtained by the algorithm. The algorithms attempt to estimate the absolute error ABSERR = |RESULT - I| in such a way that the following inequality holds, |RESULT - I| <= ABSERR <= max(epsabs, epsrel |I|) In short, the routines return the first approximation which has an absolute error smaller than epsabs or a relative error smaller than epsrel. Note that this is an either-or constraint, not simultaneous. To compute to a specified absolute error, set epsrel to zero. To compute to a specified relative error, set epsabs to zero. The routines will fail to converge if the error bounds are too stringent, but always return the best approximation obtained up to that stage. The algorithms in QUADPACK use a naming convention based on the following letters, 'Q' - quadrature routine 'N' - non-adaptive integrator 'A' - adaptive integrator 'G' - general integrand (user-defined) 'W' - weight function with integrand 'S' - singularities can be more readily integrated 'P' - points of special difficulty can be supplied 'I' - infinite range of integration 'O' - oscillatory weight function, cos or sin 'F' - Fourier integral 'C' - Cauchy principal value The algorithms are built on pairs of quadrature rules, a higher order rule and a lower order rule. The higher order rule is used to compute the best approximation to an integral over a small range. The difference between the results of the higher order rule and the lower order rule gives an estimate of the error in the approximation. * Menu: * Integrands without weight functions:: * Integrands with weight functions:: * Integrands with singular weight functions::  File: gsl-ref.info, Node: Integrands without weight functions, Next: Integrands with weight functions, Up: Numerical Integration Introduction 17.1.1 Integrands without weight functions ------------------------------------------ The algorithms for general functions (without a weight function) are based on Gauss-Kronrod rules. A Gauss-Kronrod rule begins with a classical Gaussian quadrature rule of order m. This is extended with additional points between each of the abscissae to give a higher order Kronrod rule of order 2m+1. The Kronrod rule is efficient because it reuses existing function evaluations from the Gaussian rule. The higher order Kronrod rule is used as the best approximation to the integral, and the difference between the two rules is used as an estimate of the error in the approximation.  File: gsl-ref.info, Node: Integrands with weight functions, Next: Integrands with singular weight functions, Prev: Integrands without weight functions, Up: Numerical Integration Introduction 17.1.2 Integrands with weight functions --------------------------------------- For integrands with weight functions the algorithms use Clenshaw-Curtis quadrature rules. A Clenshaw-Curtis rule begins with an n-th order Chebyshev polynomial approximation to the integrand. This polynomial can be integrated exactly to give an approximation to the integral of the original function. The Chebyshev expansion can be extended to higher orders to improve the approximation and provide an estimate of the error.  File: gsl-ref.info, Node: Integrands with singular weight functions, Prev: Integrands with weight functions, Up: Numerical Integration Introduction 17.1.3 Integrands with singular weight functions ------------------------------------------------ The presence of singularities (or other behavior) in the integrand can cause slow convergence in the Chebyshev approximation. The modified Clenshaw-Curtis rules used in QUADPACK separate out several common weight functions which cause slow convergence. These weight functions are integrated analytically against the Chebyshev polynomials to precompute "modified Chebyshev moments". Combining the moments with the Chebyshev approximation to the function gives the desired integral. The use of analytic integration for the singular part of the function allows exact cancellations and substantially improves the overall convergence behavior of the integration.  File: gsl-ref.info, Node: QNG non-adaptive Gauss-Kronrod integration, Next: QAG adaptive integration, Prev: Numerical Integration Introduction, Up: Numerical Integration 17.2 QNG non-adaptive Gauss-Kronrod integration =============================================== The QNG algorithm is a non-adaptive procedure which uses fixed Gauss-Kronrod-Patterson abscissae to sample the integrand at a maximum of 87 points. It is provided for fast integration of smooth functions. -- Function: int gsl_integration_qng (const gsl_function * F, double A, double B, double EPSABS, double EPSREL, double * RESULT, double * ABSERR, size_t * NEVAL) This function applies the Gauss-Kronrod 10-point, 21-point, 43-point and 87-point integration rules in succession until an estimate of the integral of f over (a,b) is achieved within the desired absolute and relative error limits, EPSABS and EPSREL. The function returns the final approximation, RESULT, an estimate of the absolute error, ABSERR and the number of function evaluations used, NEVAL. The Gauss-Kronrod rules are designed in such a way that each rule uses all the results of its predecessors, in order to minimize the total number of function evaluations.  File: gsl-ref.info, Node: QAG adaptive integration, Next: QAGS adaptive integration with singularities, Prev: QNG non-adaptive Gauss-Kronrod integration, Up: Numerical Integration 17.3 QAG adaptive integration ============================= The QAG algorithm is a simple adaptive integration procedure. The integration region is divided into subintervals, and on each iteration the subinterval with the largest estimated error is bisected. This reduces the overall error rapidly, as the subintervals become concentrated around local difficulties in the integrand. These subintervals are managed by a 'gsl_integration_workspace' struct, which handles the memory for the subinterval ranges, results and error estimates. -- Function: gsl_integration_workspace * gsl_integration_workspace_alloc (size_t N) This function allocates a workspace sufficient to hold N double precision intervals, their integration results and error estimates. One workspace may be used multiple times as all necessary reinitialization is performed automatically by the integration routines. -- Function: void gsl_integration_workspace_free (gsl_integration_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_integration_qag (const gsl_function * F, double A, double B, double EPSABS, double EPSREL, size_t LIMIT, int KEY, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function applies an integration rule adaptively until an estimate of the integral of f over (a,b) is achieved within the desired absolute and relative error limits, EPSABS and EPSREL. The function returns the final approximation, RESULT, and an estimate of the absolute error, ABSERR. The integration rule is determined by the value of KEY, which should be chosen from the following symbolic names, GSL_INTEG_GAUSS15 (key = 1) GSL_INTEG_GAUSS21 (key = 2) GSL_INTEG_GAUSS31 (key = 3) GSL_INTEG_GAUSS41 (key = 4) GSL_INTEG_GAUSS51 (key = 5) GSL_INTEG_GAUSS61 (key = 6) corresponding to the 15, 21, 31, 41, 51 and 61 point Gauss-Kronrod rules. The higher-order rules give better accuracy for smooth functions, while lower-order rules save time when the function contains local difficulties, such as discontinuities. On each iteration the adaptive integration strategy bisects the interval with the largest error estimate. The subintervals and their results are stored in the memory provided by WORKSPACE. The maximum number of subintervals is given by LIMIT, which may not exceed the allocated size of the workspace.  File: gsl-ref.info, Node: QAGS adaptive integration with singularities, Next: QAGP adaptive integration with known singular points, Prev: QAG adaptive integration, Up: Numerical Integration 17.4 QAGS adaptive integration with singularities ================================================= The presence of an integrable singularity in the integration region causes an adaptive routine to concentrate new subintervals around the singularity. As the subintervals decrease in size the successive approximations to the integral converge in a limiting fashion. This approach to the limit can be accelerated using an extrapolation procedure. The QAGS algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed up the integration of many types of integrable singularities. -- Function: int gsl_integration_qags (const gsl_function * F, double A, double B, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function applies the Gauss-Kronrod 21-point integration rule adaptively until an estimate of the integral of f over (a,b) is achieved within the desired absolute and relative error limits, EPSABS and EPSREL. The results are extrapolated using the epsilon-algorithm, which accelerates the convergence of the integral in the presence of discontinuities and integrable singularities. The function returns the final approximation from the extrapolation, RESULT, and an estimate of the absolute error, ABSERR. The subintervals and their results are stored in the memory provided by WORKSPACE. The maximum number of subintervals is given by LIMIT, which may not exceed the allocated size of the workspace.  File: gsl-ref.info, Node: QAGP adaptive integration with known singular points, Next: QAGI adaptive integration on infinite intervals, Prev: QAGS adaptive integration with singularities, Up: Numerical Integration 17.5 QAGP adaptive integration with known singular points ========================================================= -- Function: int gsl_integration_qagp (const gsl_function * F, double * PTS, size_t NPTS, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function applies the adaptive integration algorithm QAGS taking account of the user-supplied locations of singular points. The array PTS of length NPTS should contain the endpoints of the integration ranges defined by the integration region and locations of the singularities. For example, to integrate over the region (a,b) with break-points at x_1, x_2, x_3 (where a < x_1 < x_2 < x_3 < b) the following PTS array should be used pts[0] = a pts[1] = x_1 pts[2] = x_2 pts[3] = x_3 pts[4] = b with NPTS = 5. If you know the locations of the singular points in the integration region then this routine will be faster than 'QAGS'.  File: gsl-ref.info, Node: QAGI adaptive integration on infinite intervals, Next: QAWC adaptive integration for Cauchy principal values, Prev: QAGP adaptive integration with known singular points, Up: Numerical Integration 17.6 QAGI adaptive integration on infinite intervals ==================================================== -- Function: int gsl_integration_qagi (gsl_function * F, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function computes the integral of the function F over the infinite interval (-\infty,+\infty). The integral is mapped onto the semi-open interval (0,1] using the transformation x = (1-t)/t, \int_{-\infty}^{+\infty} dx f(x) = \int_0^1 dt (f((1-t)/t) + f((-1+t)/t))/t^2. It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of QAGS is replaced by a 15-point rule, because the transformation can generate an integrable singularity at the origin. In this case a lower-order rule is more efficient. -- Function: int gsl_integration_qagiu (gsl_function * F, double A, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function computes the integral of the function F over the semi-infinite interval (a,+\infty). The integral is mapped onto the semi-open interval (0,1] using the transformation x = a + (1-t)/t, \int_{a}^{+\infty} dx f(x) = \int_0^1 dt f(a + (1-t)/t)/t^2 and then integrated using the QAGS algorithm. -- Function: int gsl_integration_qagil (gsl_function * F, double B, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function computes the integral of the function F over the semi-infinite interval (-\infty,b). The integral is mapped onto the semi-open interval (0,1] using the transformation x = b - (1-t)/t, \int_{-\infty}^{b} dx f(x) = \int_0^1 dt f(b - (1-t)/t)/t^2 and then integrated using the QAGS algorithm.  File: gsl-ref.info, Node: QAWC adaptive integration for Cauchy principal values, Next: QAWS adaptive integration for singular functions, Prev: QAGI adaptive integration on infinite intervals, Up: Numerical Integration 17.7 QAWC adaptive integration for Cauchy principal values ========================================================== -- Function: int gsl_integration_qawc (gsl_function * F, double A, double B, double C, double EPSABS, double EPSREL, size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function computes the Cauchy principal value of the integral of f over (a,b), with a singularity at C, I = \int_a^b dx f(x) / (x - c) The adaptive bisection algorithm of QAG is used, with modifications to ensure that subdivisions do not occur at the singular point x = c. When a subinterval contains the point x = c or is close to it then a special 25-point modified Clenshaw-Curtis rule is used to control the singularity. Further away from the singularity the algorithm uses an ordinary 15-point Gauss-Kronrod integration rule.  File: gsl-ref.info, Node: QAWS adaptive integration for singular functions, Next: QAWO adaptive integration for oscillatory functions, Prev: QAWC adaptive integration for Cauchy principal values, Up: Numerical Integration 17.8 QAWS adaptive integration for singular functions ===================================================== The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities at the end-points of an integration region. In order to work efficiently the algorithm requires a precomputed table of Chebyshev moments. -- Function: gsl_integration_qaws_table * gsl_integration_qaws_table_alloc (double ALPHA, double BETA, int MU, int NU) This function allocates space for a 'gsl_integration_qaws_table' struct describing a singular weight function W(x) with the parameters (\alpha, \beta, \mu, \nu), W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x) where \alpha > -1, \beta > -1, and \mu = 0, 1, \nu = 0, 1. The weight function can take four different forms depending on the values of \mu and \nu, W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0) W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0) W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1) W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1) The singular points (a,b) do not have to be specified until the integral is computed, where they are the endpoints of the integration range. The function returns a pointer to the newly allocated table 'gsl_integration_qaws_table' if no errors were detected, and 0 in the case of error. -- Function: int gsl_integration_qaws_table_set (gsl_integration_qaws_table * T, double ALPHA, double BETA, int MU, int NU) This function modifies the parameters (\alpha, \beta, \mu, \nu) of an existing 'gsl_integration_qaws_table' struct T. -- Function: void gsl_integration_qaws_table_free (gsl_integration_qaws_table * T) This function frees all the memory associated with the 'gsl_integration_qaws_table' struct T. -- Function: int gsl_integration_qaws (gsl_function * F, const double A, const double B, gsl_integration_qaws_table * T, const double EPSABS, const double EPSREL, const size_t LIMIT, gsl_integration_workspace * WORKSPACE, double * RESULT, double * ABSERR) This function computes the integral of the function f(x) over the interval (a,b) with the singular weight function (x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x). The parameters of the weight function (\alpha, \beta, \mu, \nu) are taken from the table T. The integral is, I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x). The adaptive bisection algorithm of QAG is used. When a subinterval contains one of the endpoints then a special 25-point modified Clenshaw-Curtis rule is used to control the singularities. For subintervals which do not include the endpoints an ordinary 15-point Gauss-Kronrod integration rule is used.  File: gsl-ref.info, Node: QAWO adaptive integration for oscillatory functions, Next: QAWF adaptive integration for Fourier integrals, Prev: QAWS adaptive integration for singular functions, Up: Numerical Integration 17.9 QAWO adaptive integration for oscillatory functions ======================================================== The QAWO algorithm is designed for integrands with an oscillatory factor, \sin(\omega x) or \cos(\omega x). In order to work efficiently the algorithm requires a table of Chebyshev moments which must be pre-computed with calls to the functions below. -- Function: gsl_integration_qawo_table * gsl_integration_qawo_table_alloc (double OMEGA, double L, enum gsl_integration_qawo_enum SINE, size_t N) This function allocates space for a 'gsl_integration_qawo_table' struct and its associated workspace describing a sine or cosine weight function W(x) with the parameters (\omega, L), W(x) = sin(omega x) W(x) = cos(omega x) The parameter L must be the length of the interval over which the function will be integrated L = b - a. The choice of sine or cosine is made with the parameter SINE which should be chosen from one of the two following symbolic values: GSL_INTEG_COSINE GSL_INTEG_SINE The 'gsl_integration_qawo_table' is a table of the trigonometric coefficients required in the integration process. The parameter N determines the number of levels of coefficients that are computed. Each level corresponds to one bisection of the interval L, so that N levels are sufficient for subintervals down to the length L/2^n. The integration routine 'gsl_integration_qawo' returns the error 'GSL_ETABLE' if the number of levels is insufficient for the requested accuracy. -- Function: int gsl_integration_qawo_table_set (gsl_integration_qawo_table * T, double OMEGA, double L, enum gsl_integration_qawo_enum SINE) This function changes the parameters OMEGA, L and SINE of the existing workspace T. -- Function: int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * T, double L) This function allows the length parameter L of the workspace T to be changed. -- Function: void gsl_integration_qawo_table_free (gsl_integration_qawo_table * T) This function frees all the memory associated with the workspace T. -- Function: int gsl_integration_qawo (gsl_function * F, const double A, const double EPSABS, const double EPSREL, const size_t LIMIT, gsl_integration_workspace * WORKSPACE, gsl_integration_qawo_table * WF, double * RESULT, double * ABSERR) This function uses an adaptive algorithm to compute the integral of f over (a,b) with the weight function \sin(\omega x) or \cos(\omega x) defined by the table WF, I = \int_a^b dx f(x) sin(omega x) I = \int_a^b dx f(x) cos(omega x) The results are extrapolated using the epsilon-algorithm to accelerate the convergence of the integral. The function returns the final approximation from the extrapolation, RESULT, and an estimate of the absolute error, ABSERR. The subintervals and their results are stored in the memory provided by WORKSPACE. The maximum number of subintervals is given by LIMIT, which may not exceed the allocated size of the workspace. Those subintervals with "large" widths d where d\omega > 4 are computed using a 25-point Clenshaw-Curtis integration rule, which handles the oscillatory behavior. Subintervals with a "small" widths where d\omega < 4 are computed using a 15-point Gauss-Kronrod integration.  File: gsl-ref.info, Node: QAWF adaptive integration for Fourier integrals, Next: CQUAD doubly-adaptive integration, Prev: QAWO adaptive integration for oscillatory functions, Up: Numerical Integration 17.10 QAWF adaptive integration for Fourier integrals ===================================================== -- Function: int gsl_integration_qawf (gsl_function * F, const double A, const double EPSABS, const size_t LIMIT, gsl_integration_workspace * WORKSPACE, gsl_integration_workspace * CYCLE_WORKSPACE, gsl_integration_qawo_table * WF, double * RESULT, double * ABSERR) This function attempts to compute a Fourier integral of the function F over the semi-infinite interval [a,+\infty). I = \int_a^{+\infty} dx f(x) sin(omega x) I = \int_a^{+\infty} dx f(x) cos(omega x) The parameter \omega and choice of \sin or \cos is taken from the table WF (the length L can take any value, since it is overridden by this function to a value appropriate for the Fourier integration). The integral is computed using the QAWO algorithm over each of the subintervals, C_1 = [a, a + c] C_2 = [a + c, a + 2 c] ... = ... C_k = [a + (k-1) c, a + k c] where c = (2 floor(|\omega|) + 1) \pi/|\omega|. The width c is chosen to cover an odd number of periods so that the contributions from the intervals alternate in sign and are monotonically decreasing when F is positive and monotonically decreasing. The sum of this sequence of contributions is accelerated using the epsilon-algorithm. This function works to an overall absolute tolerance of ABSERR. The following strategy is used: on each interval C_k the algorithm tries to achieve the tolerance TOL_k = u_k abserr where u_k = (1 - p)p^{k-1} and p = 9/10. The sum of the geometric series of contributions from each interval gives an overall tolerance of ABSERR. If the integration of a subinterval leads to difficulties then the accuracy requirement for subsequent intervals is relaxed, TOL_k = u_k max(abserr, max_{in - 1], this function obtains the I-th Gauss-Legendre point XI and weight WI on the interval [A,B]. The points and weights are ordered by increasing point value. A function f may be integrated on [A,B] by summing wi * f(xi) over I. -- Function: void gsl_integration_glfixed_table_free (gsl_integration_glfixed_table * T) This function frees the memory associated with the table T.  File: gsl-ref.info, Node: Numerical integration error codes, Next: Numerical integration examples, Prev: Fixed order Gauss-Legendre integration, Up: Numerical Integration 17.13 Error codes ================= In addition to the standard error codes for invalid arguments the functions can return the following values, 'GSL_EMAXITER' the maximum number of subdivisions was exceeded. 'GSL_EROUND' cannot reach tolerance because of roundoff error, or roundoff error was detected in the extrapolation table. 'GSL_ESING' a non-integrable singularity or other bad integrand behavior was found in the integration interval. 'GSL_EDIVERGE' the integral is divergent, or too slowly convergent to be integrated numerically.  File: gsl-ref.info, Node: Numerical integration examples, Next: Numerical integration References and Further Reading, Prev: Numerical integration error codes, Up: Numerical Integration 17.14 Examples ============== The integrator 'QAGS' will handle a large class of definite integrals. For example, consider the following integral, which has an algebraic-logarithmic singularity at the origin, \int_0^1 x^{-1/2} log(x) dx = -4 The program below computes this integral to a relative accuracy bound of '1e-7'. #include #include #include double f (double x, void * params) { double alpha = *(double *) params; double f = log(alpha*x) / sqrt(x); return f; } int main (void) { gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); double result, error; double expected = -4.0; double alpha = 1.0; gsl_function F; F.function = &f; F.params = α gsl_integration_qags (&F, 0, 1, 0, 1e-7, 1000, w, &result, &error); printf ("result = % .18f\n", result); printf ("exact result = % .18f\n", expected); printf ("estimated error = % .18f\n", error); printf ("actual error = % .18f\n", result - expected); printf ("intervals = %d\n", w->size); gsl_integration_workspace_free (w); return 0; } The results below show that the desired accuracy is achieved after 8 subdivisions. $ ./a.out result = -3.999999999999973799 exact result = -4.000000000000000000 estimated error = 0.000000000000246025 actual error = 0.000000000000026201 intervals = 8 In fact, the extrapolation procedure used by 'QAGS' produces an accuracy of almost twice as many digits. The error estimate returned by the extrapolation procedure is larger than the actual error, giving a margin of safety of one order of magnitude.  File: gsl-ref.info, Node: Numerical integration References and Further Reading, Prev: Numerical integration examples, Up: Numerical Integration 17.15 References and Further Reading ==================================== The following book is the definitive reference for QUADPACK, and was written by the original authors. It provides descriptions of the algorithms, program listings, test programs and examples. It also includes useful advice on numerical integration and many references to the numerical integration literature used in developing QUADPACK. R. Piessens, E. de Doncker-Kapenga, C.W. Ueberhuber, D.K. Kahaner. 'QUADPACK A subroutine package for automatic integration' Springer Verlag, 1983. The CQUAD integration algorithm is described in the following paper: P. Gonnet, "Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants", 'ACM Transactions on Mathematical Software', Volume 37 (2010), Issue 3, Article 26.  File: gsl-ref.info, Node: Random Number Generation, Next: Quasi-Random Sequences, Prev: Numerical Integration, Up: Top 18 Random Number Generation *************************** The library provides a large collection of random number generators which can be accessed through a uniform interface. Environment variables allow you to select different generators and seeds at runtime, so that you can easily switch between generators without needing to recompile your program. Each instance of a generator keeps track of its own state, allowing the generators to be used in multi-threaded programs. Additional functions are available for transforming uniform random numbers into samples from continuous or discrete probability distributions such as the Gaussian, log-normal or Poisson distributions. These functions are declared in the header file 'gsl_rng.h'. * Menu: * General comments on random numbers:: * The Random Number Generator Interface:: * Random number generator initialization:: * Sampling from a random number generator:: * Auxiliary random number generator functions:: * Random number environment variables:: * Copying random number generator state:: * Reading and writing random number generator state:: * Random number generator algorithms:: * Unix random number generators:: * Other random number generators:: * Random Number Generator Performance:: * Random Number Generator Examples:: * Random Number References and Further Reading:: * Random Number Acknowledgements::  File: gsl-ref.info, Node: General comments on random numbers, Next: The Random Number Generator Interface, Up: Random Number Generation 18.1 General comments on random numbers ======================================= In 1988, Park and Miller wrote a paper entitled "Random number generators: good ones are hard to find." [Commun. ACM, 31, 1192-1201]. Fortunately, some excellent random number generators are available, though poor ones are still in common use. You may be happy with the system-supplied random number generator on your computer, but you should be aware that as computers get faster, requirements on random number generators increase. Nowadays, a simulation that calls a random number generator millions of times can often finish before you can make it down the hall to the coffee machine and back. A very nice review of random number generators was written by Pierre L'Ecuyer, as Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The chapter is available in postscript from L'Ecuyer's ftp site (see references). Knuth's volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random number generators, and has recently been updated in its 3rd edition (1997). It is brilliant, a classic. If you don't own it, you should stop reading right now, run to the nearest bookstore, and buy it. A good random number generator will satisfy both theoretical and statistical properties. Theoretical properties are often hard to obtain (they require real math!), but one prefers a random number generator with a long period, low serial correlation, and a tendency _not_ to "fall mainly on the planes." Statistical tests are performed with numerical simulations. Generally, a random number generator is used to estimate some quantity for which the theory of probability provides an exact answer. Comparison to this exact answer provides a measure of "randomness".  File: gsl-ref.info, Node: The Random Number Generator Interface, Next: Random number generator initialization, Prev: General comments on random numbers, Up: Random Number Generation 18.2 The Random Number Generator Interface ========================================== It is important to remember that a random number generator is not a "real" function like sine or cosine. Unlike real functions, successive calls to a random number generator yield different return values. Of course that is just what you want for a random number generator, but to achieve this effect, the generator must keep track of some kind of "state" variable. Sometimes this state is just an integer (sometimes just the value of the previously generated random number), but often it is more complicated than that and may involve a whole array of numbers, possibly with some indices thrown in. To use the random number generators, you do not need to know the details of what comprises the state, and besides that varies from algorithm to algorithm. The random number generator library uses two special structs, 'gsl_rng_type' which holds static information about each type of generator and 'gsl_rng' which describes an instance of a generator created from a given 'gsl_rng_type'. The functions described in this section are declared in the header file 'gsl_rng.h'.  File: gsl-ref.info, Node: Random number generator initialization, Next: Sampling from a random number generator, Prev: The Random Number Generator Interface, Up: Random Number Generation 18.3 Random number generator initialization =========================================== -- Function: gsl_rng * gsl_rng_alloc (const gsl_rng_type * T) This function returns a pointer to a newly-created instance of a random number generator of type T. For example, the following code creates an instance of the Tausworthe generator, gsl_rng * r = gsl_rng_alloc (gsl_rng_taus); If there is insufficient memory to create the generator then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. The generator is automatically initialized with the default seed, 'gsl_rng_default_seed'. This is zero by default but can be changed either directly or by using the environment variable 'GSL_RNG_SEED' (*note Random number environment variables::). The details of the available generator types are described later in this chapter. -- Function: void gsl_rng_set (const gsl_rng * R, unsigned long int S) This function initializes (or 'seeds') the random number generator. If the generator is seeded with the same value of S on two different runs, the same stream of random numbers will be generated by successive calls to the routines below. If different values of S >= 1 are supplied, then the generated streams of random numbers should be completely different. If the seed S is zero then the standard seed from the original implementation is used instead. For example, the original Fortran source code for the 'ranlux' generator used a seed of 314159265, and so choosing S equal to zero reproduces this when using 'gsl_rng_ranlux'. When using multiple seeds with the same generator, choose seed values greater than zero to avoid collisions with the default setting. Note that the most generators only accept 32-bit seeds, with higher values being reduced modulo 2^32. For generators with smaller ranges the maximum seed value will typically be lower. -- Function: void gsl_rng_free (gsl_rng * R) This function frees all the memory associated with the generator R.  File: gsl-ref.info, Node: Sampling from a random number generator, Next: Auxiliary random number generator functions, Prev: Random number generator initialization, Up: Random Number Generation 18.4 Sampling from a random number generator ============================================ The following functions return uniformly distributed random numbers, either as integers or double precision floating point numbers. Inline versions of these functions are used when 'HAVE_INLINE' is defined. To obtain non-uniform distributions *note Random Number Distributions::. -- Function: unsigned long int gsl_rng_get (const gsl_rng * R) This function returns a random integer from the generator R. The minimum and maximum values depend on the algorithm used, but all integers in the range [MIN,MAX] are equally likely. The values of MIN and MAX can be determined using the auxiliary functions 'gsl_rng_max (r)' and 'gsl_rng_min (r)'. -- Function: double gsl_rng_uniform (const gsl_rng * R) This function returns a double precision floating point number uniformly distributed in the range [0,1). The range includes 0.0 but excludes 1.0. The value is typically obtained by dividing the result of 'gsl_rng_get(r)' by 'gsl_rng_max(r) + 1.0' in double precision. Some generators compute this ratio internally so that they can provide floating point numbers with more than 32 bits of randomness (the maximum number of bits that can be portably represented in a single 'unsigned long int'). -- Function: double gsl_rng_uniform_pos (const gsl_rng * R) This function returns a positive double precision floating point number uniformly distributed in the range (0,1), excluding both 0.0 and 1.0. The number is obtained by sampling the generator with the algorithm of 'gsl_rng_uniform' until a non-zero value is obtained. You can use this function if you need to avoid a singularity at 0.0. -- Function: unsigned long int gsl_rng_uniform_int (const gsl_rng * R, unsigned long int N) This function returns a random integer from 0 to n-1 inclusive by scaling down and/or discarding samples from the generator R. All integers in the range [0,n-1] are produced with equal probability. For generators with a non-zero minimum value an offset is applied so that zero is returned with the correct probability. Note that this function is designed for sampling from ranges smaller than the range of the underlying generator. The parameter N must be less than or equal to the range of the generator R. If N is larger than the range of the generator then the function calls the error handler with an error code of 'GSL_EINVAL' and returns zero. In particular, this function is not intended for generating the full range of unsigned integer values [0,2^32-1]. Instead choose a generator with the maximal integer range and zero minimum value, such as 'gsl_rng_ranlxd1', 'gsl_rng_mt19937' or 'gsl_rng_taus', and sample it directly using 'gsl_rng_get'. The range of each generator can be found using the auxiliary functions described in the next section.  File: gsl-ref.info, Node: Auxiliary random number generator functions, Next: Random number environment variables, Prev: Sampling from a random number generator, Up: Random Number Generation 18.5 Auxiliary random number generator functions ================================================ The following functions provide information about an existing generator. You should use them in preference to hard-coding the generator parameters into your own code. -- Function: const char * gsl_rng_name (const gsl_rng * R) This function returns a pointer to the name of the generator. For example, printf ("r is a '%s' generator\n", gsl_rng_name (r)); would print something like 'r is a 'taus' generator'. -- Function: unsigned long int gsl_rng_max (const gsl_rng * R) 'gsl_rng_max' returns the largest value that 'gsl_rng_get' can return. -- Function: unsigned long int gsl_rng_min (const gsl_rng * R) 'gsl_rng_min' returns the smallest value that 'gsl_rng_get' can return. Usually this value is zero. There are some generators with algorithms that cannot return zero, and for these generators the minimum value is 1. -- Function: void * gsl_rng_state (const gsl_rng * R) -- Function: size_t gsl_rng_size (const gsl_rng * R) These functions return a pointer to the state of generator R and its size. You can use this information to access the state directly. For example, the following code will write the state of a generator to a stream, void * state = gsl_rng_state (r); size_t n = gsl_rng_size (r); fwrite (state, n, 1, stream); -- Function: const gsl_rng_type ** gsl_rng_types_setup (void) This function returns a pointer to an array of all the available generator types, terminated by a null pointer. The function should be called once at the start of the program, if needed. The following code fragment shows how to iterate over the array of generator types to print the names of the available algorithms, const gsl_rng_type **t, **t0; t0 = gsl_rng_types_setup (); printf ("Available generators:\n"); for (t = t0; *t != 0; t++) { printf ("%s\n", (*t)->name); }  File: gsl-ref.info, Node: Random number environment variables, Next: Copying random number generator state, Prev: Auxiliary random number generator functions, Up: Random Number Generation 18.6 Random number environment variables ======================================== The library allows you to choose a default generator and seed from the environment variables 'GSL_RNG_TYPE' and 'GSL_RNG_SEED' and the function 'gsl_rng_env_setup'. This makes it easy try out different generators and seeds without having to recompile your program. -- Function: const gsl_rng_type * gsl_rng_env_setup (void) This function reads the environment variables 'GSL_RNG_TYPE' and 'GSL_RNG_SEED' and uses their values to set the corresponding library variables 'gsl_rng_default' and 'gsl_rng_default_seed'. These global variables are defined as follows, extern const gsl_rng_type *gsl_rng_default extern unsigned long int gsl_rng_default_seed The environment variable 'GSL_RNG_TYPE' should be the name of a generator, such as 'taus' or 'mt19937'. The environment variable 'GSL_RNG_SEED' should contain the desired seed value. It is converted to an 'unsigned long int' using the C library function 'strtoul'. If you don't specify a generator for 'GSL_RNG_TYPE' then 'gsl_rng_mt19937' is used as the default. The initial value of 'gsl_rng_default_seed' is zero. Here is a short program which shows how to create a global generator using the environment variables 'GSL_RNG_TYPE' and 'GSL_RNG_SEED', #include #include gsl_rng * r; /* global generator */ int main (void) { const gsl_rng_type * T; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("generator type: %s\n", gsl_rng_name (r)); printf ("seed = %lu\n", gsl_rng_default_seed); printf ("first value = %lu\n", gsl_rng_get (r)); gsl_rng_free (r); return 0; } Running the program without any environment variables uses the initial defaults, an 'mt19937' generator with a seed of 0, $ ./a.out generator type: mt19937 seed = 0 first value = 4293858116 By setting the two variables on the command line we can change the default generator and the seed, $ GSL_RNG_TYPE="taus" GSL_RNG_SEED=123 ./a.out GSL_RNG_TYPE=taus GSL_RNG_SEED=123 generator type: taus seed = 123 first value = 2720986350  File: gsl-ref.info, Node: Copying random number generator state, Next: Reading and writing random number generator state, Prev: Random number environment variables, Up: Random Number Generation 18.7 Copying random number generator state ========================================== The above methods do not expose the random number 'state' which changes from call to call. It is often useful to be able to save and restore the state. To permit these practices, a few somewhat more advanced functions are supplied. These include: -- Function: int gsl_rng_memcpy (gsl_rng * DEST, const gsl_rng * SRC) This function copies the random number generator SRC into the pre-existing generator DEST, making DEST into an exact copy of SRC. The two generators must be of the same type. -- Function: gsl_rng * gsl_rng_clone (const gsl_rng * R) This function returns a pointer to a newly created generator which is an exact copy of the generator R.  File: gsl-ref.info, Node: Reading and writing random number generator state, Next: Random number generator algorithms, Prev: Copying random number generator state, Up: Random Number Generation 18.8 Reading and writing random number generator state ====================================================== The library provides functions for reading and writing the random number state to a file as binary data. -- Function: int gsl_rng_fwrite (FILE * STREAM, const gsl_rng * R) This function writes the random number state of the random number generator R to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_rng_fread (FILE * STREAM, gsl_rng * R) This function reads the random number state into the random number generator R from the open stream STREAM in binary format. The random number generator R must be preinitialized with the correct random number generator type since type information is not saved. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture.  File: gsl-ref.info, Node: Random number generator algorithms, Next: Unix random number generators, Prev: Reading and writing random number generator state, Up: Random Number Generation 18.9 Random number generator algorithms ======================================= The functions described above make no reference to the actual algorithm used. This is deliberate so that you can switch algorithms without having to change any of your application source code. The library provides a large number of generators of different types, including simulation quality generators, generators provided for compatibility with other libraries and historical generators from the past. The following generators are recommended for use in simulation. They have extremely long periods, low correlation and pass most statistical tests. For the most reliable source of uncorrelated numbers, the second-generation RANLUX generators have the strongest proof of randomness. -- Generator: gsl_rng_mt19937 The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a variant of the twisted generalized feedback shift-register algorithm, and is known as the "Mersenne Twister" generator. It has a Mersenne prime period of 2^19937 - 1 (about 10^6000) and is equi-distributed in 623 dimensions. It has passed the DIEHARD statistical tests. It uses 624 words of state per generator and is comparable in speed to the other generators. The original generator used a default seed of 4357 and choosing S equal to zero in 'gsl_rng_set' reproduces this. Later versions switched to 5489 as the default seed, you can choose this explicitly via 'gsl_rng_set' instead if you require it. For more information see, Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator". 'ACM Transactions on Modeling and Computer Simulation', Vol. 8, No. 1 (Jan. 1998), Pages 3-30 The generator 'gsl_rng_mt19937' uses the second revision of the seeding procedure published by the two authors above in 2002. The original seeding procedures could cause spurious artifacts for some seed values. They are still available through the alternative generators 'gsl_rng_mt19937_1999' and 'gsl_rng_mt19937_1998'. -- Generator: gsl_rng_ranlxs0 -- Generator: gsl_rng_ranlxs1 -- Generator: gsl_rng_ranlxs2 The generator 'ranlxs0' is a second-generation version of the RANLUX algorithm of Lu"scher, which produces "luxury random numbers". This generator provides single precision output (24 bits) at three luxury levels 'ranlxs0', 'ranlxs1' and 'ranlxs2', in increasing order of strength. It uses double-precision floating point arithmetic internally and can be significantly faster than the integer version of 'ranlux', particularly on 64-bit architectures. The period of the generator is about 10^171. The algorithm has mathematically proven properties and can provide truly decorrelated numbers at a known level of randomness. The higher luxury levels provide increased decorrelation between samples as an additional safety margin. Note that the range of allowed seeds for this generator is [0,2^31-1]. Higher seed values are wrapped modulo 2^31. -- Generator: gsl_rng_ranlxd1 -- Generator: gsl_rng_ranlxd2 These generators produce double precision output (48 bits) from the RANLXS generator. The library provides two luxury levels 'ranlxd1' and 'ranlxd2', in increasing order of strength. -- Generator: gsl_rng_ranlux -- Generator: gsl_rng_ranlux389 The 'ranlux' generator is an implementation of the original algorithm developed by Lu"scher. It uses a lagged-fibonacci-with-skipping algorithm to produce "luxury random numbers". It is a 24-bit generator, originally designed for single-precision IEEE floating point numbers. This implementation is based on integer arithmetic, while the second-generation versions RANLXS and RANLXD described above provide floating-point implementations which will be faster on many platforms. The period of the generator is about 10^171. The algorithm has mathematically proven properties and it can provide truly decorrelated numbers at a known level of randomness. The default level of decorrelation recommended by Lu"scher is provided by 'gsl_rng_ranlux', while 'gsl_rng_ranlux389' gives the highest level of randomness, with all 24 bits decorrelated. Both types of generator use 24 words of state per generator. For more information see, M. Lu"scher, "A portable high-quality random number generator for lattice field theory calculations", 'Computer Physics Communications', 79 (1994) 100-110. F. James, "RANLUX: A Fortran implementation of the high-quality pseudo-random number generator of Lu"scher", 'Computer Physics Communications', 79 (1994) 111-114 -- Generator: gsl_rng_cmrg This is a combined multiple recursive generator by L'Ecuyer. Its sequence is, z_n = (x_n - y_n) mod m_1 where the two underlying generators x_n and y_n are, x_n = (a_1 x_{n-1} + a_2 x_{n-2} + a_3 x_{n-3}) mod m_1 y_n = (b_1 y_{n-1} + b_2 y_{n-2} + b_3 y_{n-3}) mod m_2 with coefficients a_1 = 0, a_2 = 63308, a_3 = -183326, b_1 = 86098, b_2 = 0, b_3 = -539608, and moduli m_1 = 2^31 - 1 = 2147483647 and m_2 = 2145483479. The period of this generator is lcm(m_1^3-1, m_2^3-1), which is approximately 2^185 (about 10^56). It uses 6 words of state per generator. For more information see, P. L'Ecuyer, "Combined Multiple Recursive Random Number Generators", 'Operations Research', 44, 5 (1996), 816-822. -- Generator: gsl_rng_mrg This is a fifth-order multiple recursive generator by L'Ecuyer, Blouin and Coutre. Its sequence is, x_n = (a_1 x_{n-1} + a_5 x_{n-5}) mod m with a_1 = 107374182, a_2 = a_3 = a_4 = 0, a_5 = 104480 and m = 2^31 - 1. The period of this generator is about 10^46. It uses 5 words of state per generator. More information can be found in the following paper, P. L'Ecuyer, F. Blouin, and R. Coutre, "A search for good multiple recursive random number generators", 'ACM Transactions on Modeling and Computer Simulation' 3, 87-98 (1993). -- Generator: gsl_rng_taus -- Generator: gsl_rng_taus2 This is a maximally equidistributed combined Tausworthe generator by L'Ecuyer. The sequence is, x_n = (s1_n ^^ s2_n ^^ s3_n) where, s1_{n+1} = (((s1_n&4294967294)<<12)^^(((s1_n<<13)^^s1_n)>>19)) s2_{n+1} = (((s2_n&4294967288)<< 4)^^(((s2_n<< 2)^^s2_n)>>25)) s3_{n+1} = (((s3_n&4294967280)<<17)^^(((s3_n<< 3)^^s3_n)>>11)) computed modulo 2^32. In the formulas above ^^ denotes "exclusive-or". Note that the algorithm relies on the properties of 32-bit unsigned integers and has been implemented using a bitmask of '0xFFFFFFFF' to make it work on 64 bit machines. The period of this generator is 2^88 (about 10^26). It uses 3 words of state per generator. For more information see, P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators", 'Mathematics of Computation', 65, 213 (1996), 203-213. The generator 'gsl_rng_taus2' uses the same algorithm as 'gsl_rng_taus' but with an improved seeding procedure described in the paper, P. L'Ecuyer, "Tables of Maximally Equidistributed Combined LFSR Generators", 'Mathematics of Computation', 68, 225 (1999), 261-269 The generator 'gsl_rng_taus2' should now be used in preference to 'gsl_rng_taus'. -- Generator: gsl_rng_gfsr4 The 'gfsr4' generator is like a lagged-fibonacci generator, and produces each number as an 'xor''d sum of four previous values. r_n = r_{n-A} ^^ r_{n-B} ^^ r_{n-C} ^^ r_{n-D} Ziff (ref below) notes that "it is now widely known" that two-tap registers (such as R250, which is described below) have serious flaws, the most obvious one being the three-point correlation that comes from the definition of the generator. Nice mathematical properties can be derived for GFSR's, and numerics bears out the claim that 4-tap GFSR's with appropriately chosen offsets are as random as can be measured, using the author's test. This implementation uses the values suggested the example on p392 of Ziff's article: A=471, B=1586, C=6988, D=9689. If the offsets are appropriately chosen (such as the one ones in this implementation), then the sequence is said to be maximal; that means that the period is 2^D - 1, where D is the longest lag. (It is one less than 2^D because it is not permitted to have all zeros in the 'ra[]' array.) For this implementation with D=9689 that works out to about 10^2917. Note that the implementation of this generator using a 32-bit integer amounts to 32 parallel implementations of one-bit generators. One consequence of this is that the period of this 32-bit generator is the same as for the one-bit generator. Moreover, this independence means that all 32-bit patterns are equally likely, and in particular that 0 is an allowed random value. (We are grateful to Heiko Bauke for clarifying for us these properties of GFSR random number generators.) For more information see, Robert M. Ziff, "Four-tap shift-register-sequence random-number generators", 'Computers in Physics', 12(4), Jul/Aug 1998, pp 385-392.  File: gsl-ref.info, Node: Unix random number generators, Next: Other random number generators, Prev: Random number generator algorithms, Up: Random Number Generation 18.10 Unix random number generators =================================== The standard Unix random number generators 'rand', 'random' and 'rand48' are provided as part of GSL. Although these generators are widely available individually often they aren't all available on the same platform. This makes it difficult to write portable code using them and so we have included the complete set of Unix generators in GSL for convenience. Note that these generators don't produce high-quality randomness and aren't suitable for work requiring accurate statistics. However, if you won't be measuring statistical quantities and just want to introduce some variation into your program then these generators are quite acceptable. -- Generator: gsl_rng_rand This is the BSD 'rand' generator. Its sequence is x_{n+1} = (a x_n + c) mod m with a = 1103515245, c = 12345 and m = 2^31. The seed specifies the initial value, x_1. The period of this generator is 2^31, and it uses 1 word of storage per generator. -- Generator: gsl_rng_random_bsd -- Generator: gsl_rng_random_libc5 -- Generator: gsl_rng_random_glibc2 These generators implement the 'random' family of functions, a set of linear feedback shift register generators originally used in BSD Unix. There are several versions of 'random' in use today: the original BSD version (e.g. on SunOS4), a libc5 version (found on older GNU/Linux systems) and a glibc2 version. Each version uses a different seeding procedure, and thus produces different sequences. The original BSD routines accepted a variable length buffer for the generator state, with longer buffers providing higher-quality randomness. The 'random' function implemented algorithms for buffer lengths of 8, 32, 64, 128 and 256 bytes, and the algorithm with the largest length that would fit into the user-supplied buffer was used. To support these algorithms additional generators are available with the following names, gsl_rng_random8_bsd gsl_rng_random32_bsd gsl_rng_random64_bsd gsl_rng_random128_bsd gsl_rng_random256_bsd where the numeric suffix indicates the buffer length. The original BSD 'random' function used a 128-byte default buffer and so 'gsl_rng_random_bsd' has been made equivalent to 'gsl_rng_random128_bsd'. Corresponding versions of the 'libc5' and 'glibc2' generators are also available, with the names 'gsl_rng_random8_libc5', 'gsl_rng_random8_glibc2', etc. -- Generator: gsl_rng_rand48 This is the Unix 'rand48' generator. Its sequence is x_{n+1} = (a x_n + c) mod m defined on 48-bit unsigned integers with a = 25214903917, c = 11 and m = 2^48. The seed specifies the upper 32 bits of the initial value, x_1, with the lower 16 bits set to '0x330E'. The function 'gsl_rng_get' returns the upper 32 bits from each term of the sequence. This does not have a direct parallel in the original 'rand48' functions, but forcing the result to type 'long int' reproduces the output of 'mrand48'. The function 'gsl_rng_uniform' uses the full 48 bits of internal state to return the double precision number x_n/m, which is equivalent to the function 'drand48'. Note that some versions of the GNU C Library contained a bug in 'mrand48' function which caused it to produce different results (only the lower 16-bits of the return value were set).  File: gsl-ref.info, Node: Other random number generators, Next: Random Number Generator Performance, Prev: Unix random number generators, Up: Random Number Generation 18.11 Other random number generators ==================================== The generators in this section are provided for compatibility with existing libraries. If you are converting an existing program to use GSL then you can select these generators to check your new implementation against the original one, using the same random number generator. After verifying that your new program reproduces the original results you can then switch to a higher-quality generator. Note that most of the generators in this section are based on single linear congruence relations, which are the least sophisticated type of generator. In particular, linear congruences have poor properties when used with a non-prime modulus, as several of these routines do (e.g. with a power of two modulus, 2^31 or 2^32). This leads to periodicity in the least significant bits of each number, with only the higher bits having any randomness. Thus if you want to produce a random bitstream it is best to avoid using the least significant bits. -- Generator: gsl_rng_ranf This is the CRAY random number generator 'RANF'. Its sequence is x_{n+1} = (a x_n) mod m defined on 48-bit unsigned integers with a = 44485709377909 and m = 2^48. The seed specifies the lower 32 bits of the initial value, x_1, with the lowest bit set to prevent the seed taking an even value. The upper 16 bits of x_1 are set to 0. A consequence of this procedure is that the pairs of seeds 2 and 3, 4 and 5, etc. produce the same sequences. The generator compatible with the CRAY MATHLIB routine RANF. It produces double precision floating point numbers which should be identical to those from the original RANF. There is a subtlety in the implementation of the seeding. The initial state is reversed through one step, by multiplying by the modular inverse of a mod m. This is done for compatibility with the original CRAY implementation. Note that you can only seed the generator with integers up to 2^32, while the original CRAY implementation uses non-portable wide integers which can cover all 2^48 states of the generator. The function 'gsl_rng_get' returns the upper 32 bits from each term of the sequence. The function 'gsl_rng_uniform' uses the full 48 bits to return the double precision number x_n/m. The period of this generator is 2^46. -- Generator: gsl_rng_ranmar This is the RANMAR lagged-fibonacci generator of Marsaglia, Zaman and Tsang. It is a 24-bit generator, originally designed for single-precision IEEE floating point numbers. It was included in the CERNLIB high-energy physics library. -- Generator: gsl_rng_r250 This is the shift-register generator of Kirkpatrick and Stoll. The sequence is based on the recurrence x_n = x_{n-103} ^^ x_{n-250} where ^^ denotes "exclusive-or", defined on 32-bit words. The period of this generator is about 2^250 and it uses 250 words of state per generator. For more information see, S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence random number generator", 'Journal of Computational Physics', 40, 517-526 (1981) -- Generator: gsl_rng_tt800 This is an earlier version of the twisted generalized feedback shift-register generator, and has been superseded by the development of MT19937. However, it is still an acceptable generator in its own right. It has a period of 2^800 and uses 33 words of storage per generator. For more information see, Makoto Matsumoto and Yoshiharu Kurita, "Twisted GFSR Generators II", 'ACM Transactions on Modelling and Computer Simulation', Vol. 4, No. 3, 1994, pages 254-266. -- Generator: gsl_rng_vax This is the VAX generator 'MTH$RANDOM'. Its sequence is, x_{n+1} = (a x_n + c) mod m with a = 69069, c = 1 and m = 2^32. The seed specifies the initial value, x_1. The period of this generator is 2^32 and it uses 1 word of storage per generator. -- Generator: gsl_rng_transputer This is the random number generator from the INMOS Transputer Development system. Its sequence is, x_{n+1} = (a x_n) mod m with a = 1664525 and m = 2^32. The seed specifies the initial value, x_1. -- Generator: gsl_rng_randu This is the IBM 'RANDU' generator. Its sequence is x_{n+1} = (a x_n) mod m with a = 65539 and m = 2^31. The seed specifies the initial value, x_1. The period of this generator was only 2^29. It has become a textbook example of a poor generator. -- Generator: gsl_rng_minstd This is Park and Miller's "minimal standard" MINSTD generator, a simple linear congruence which takes care to avoid the major pitfalls of such algorithms. Its sequence is, x_{n+1} = (a x_n) mod m with a = 16807 and m = 2^31 - 1 = 2147483647. The seed specifies the initial value, x_1. The period of this generator is about 2^31. This generator was used in the IMSL Library (subroutine RNUN) and in MATLAB (the RAND function) in the past. It is also sometimes known by the acronym "GGL" (I'm not sure what that stands for). For more information see, Park and Miller, "Random Number Generators: Good ones are hard to find", 'Communications of the ACM', October 1988, Volume 31, No 10, pages 1192-1201. -- Generator: gsl_rng_uni -- Generator: gsl_rng_uni32 This is a reimplementation of the 16-bit SLATEC random number generator RUNIF. A generalization of the generator to 32 bits is provided by 'gsl_rng_uni32'. The original source code is available from NETLIB. -- Generator: gsl_rng_slatec This is the SLATEC random number generator RAND. It is ancient. The original source code is available from NETLIB. -- Generator: gsl_rng_zuf This is the ZUFALL lagged Fibonacci series generator of Peterson. Its sequence is, t = u_{n-273} + u_{n-607} u_n = t - floor(t) The original source code is available from NETLIB. For more information see, W. Petersen, "Lagged Fibonacci Random Number Generators for the NEC SX-3", 'International Journal of High Speed Computing' (1994). -- Generator: gsl_rng_knuthran2 This is a second-order multiple recursive generator described by Knuth in 'Seminumerical Algorithms', 3rd Ed., page 108. Its sequence is, x_n = (a_1 x_{n-1} + a_2 x_{n-2}) mod m with a_1 = 271828183, a_2 = 314159269, and m = 2^31 - 1. -- Generator: gsl_rng_knuthran2002 -- Generator: gsl_rng_knuthran This is a second-order multiple recursive generator described by Knuth in 'Seminumerical Algorithms', 3rd Ed., Section 3.6. Knuth provides its C code. The updated routine 'gsl_rng_knuthran2002' is from the revised 9th printing and corrects some weaknesses in the earlier version, which is implemented as 'gsl_rng_knuthran'. -- Generator: gsl_rng_borosh13 -- Generator: gsl_rng_fishman18 -- Generator: gsl_rng_fishman20 -- Generator: gsl_rng_lecuyer21 -- Generator: gsl_rng_waterman14 These multiplicative generators are taken from Knuth's 'Seminumerical Algorithms', 3rd Ed., pages 106-108. Their sequence is, x_{n+1} = (a x_n) mod m where the seed specifies the initial value, x_1. The parameters a and m are as follows, Borosh-Niederreiter: a = 1812433253, m = 2^32, Fishman18: a = 62089911, m = 2^31 - 1, Fishman20: a = 48271, m = 2^31 - 1, L'Ecuyer: a = 40692, m = 2^31 - 249, Waterman: a = 1566083941, m = 2^32. -- Generator: gsl_rng_fishman2x This is the L'Ecuyer-Fishman random number generator. It is taken from Knuth's 'Seminumerical Algorithms', 3rd Ed., page 108. Its sequence is, z_{n+1} = (x_n - y_n) mod m with m = 2^31 - 1. x_n and y_n are given by the 'fishman20' and 'lecuyer21' algorithms. The seed specifies the initial value, x_1. -- Generator: gsl_rng_coveyou This is the Coveyou random number generator. It is taken from Knuth's 'Seminumerical Algorithms', 3rd Ed., Section 3.2.2. Its sequence is, x_{n+1} = (x_n (x_n + 1)) mod m with m = 2^32. The seed specifies the initial value, x_1.  File: gsl-ref.info, Node: Random Number Generator Performance, Next: Random Number Generator Examples, Prev: Other random number generators, Up: Random Number Generation 18.12 Performance ================= The following table shows the relative performance of a selection the available random number generators. The fastest simulation quality generators are 'taus', 'gfsr4' and 'mt19937'. The generators which offer the best mathematically-proven quality are those based on the RANLUX algorithm. 1754 k ints/sec, 870 k doubles/sec, taus 1613 k ints/sec, 855 k doubles/sec, gfsr4 1370 k ints/sec, 769 k doubles/sec, mt19937 565 k ints/sec, 571 k doubles/sec, ranlxs0 400 k ints/sec, 405 k doubles/sec, ranlxs1 490 k ints/sec, 389 k doubles/sec, mrg 407 k ints/sec, 297 k doubles/sec, ranlux 243 k ints/sec, 254 k doubles/sec, ranlxd1 251 k ints/sec, 253 k doubles/sec, ranlxs2 238 k ints/sec, 215 k doubles/sec, cmrg 247 k ints/sec, 198 k doubles/sec, ranlux389 141 k ints/sec, 140 k doubles/sec, ranlxd2  File: gsl-ref.info, Node: Random Number Generator Examples, Next: Random Number References and Further Reading, Prev: Random Number Generator Performance, Up: Random Number Generation 18.13 Examples ============== The following program demonstrates the use of a random number generator to produce uniform random numbers in the range [0.0, 1.0), #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; int i, n = 10; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < n; i++) { double u = gsl_rng_uniform (r); printf ("%.5f\n", u); } gsl_rng_free (r); return 0; } Here is the output of the program, $ ./a.out 0.99974 0.16291 0.28262 0.94720 0.23166 0.48497 0.95748 0.74431 0.54004 0.73995 The numbers depend on the seed used by the generator. The default seed can be changed with the 'GSL_RNG_SEED' environment variable to produce a different stream of numbers. The generator itself can be changed using the environment variable 'GSL_RNG_TYPE'. Here is the output of the program using a seed value of 123 and the multiple-recursive generator 'mrg', $ GSL_RNG_SEED=123 GSL_RNG_TYPE=mrg ./a.out GSL_RNG_TYPE=mrg GSL_RNG_SEED=123 0.33050 0.86631 0.32982 0.67620 0.53391 0.06457 0.16847 0.70229 0.04371 0.86374  File: gsl-ref.info, Node: Random Number References and Further Reading, Next: Random Number Acknowledgements, Prev: Random Number Generator Examples, Up: Random Number Generation 18.14 References and Further Reading ==================================== The subject of random number generation and testing is reviewed extensively in Knuth's 'Seminumerical Algorithms'. Donald E. Knuth, 'The Art of Computer Programming: Seminumerical Algorithms' (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842. Further information is available in the review paper written by Pierre L'Ecuyer, P. L'Ecuyer, "Random Number Generation", Chapter 4 of the Handbook on Simulation, Jerry Banks Ed., Wiley, 1998, 93-137. in the file 'handsim.ps'. The source code for the DIEHARD random number generator tests is also available online, 'DIEHARD source code' G. Marsaglia, A comprehensive set of random number generator tests is available from NIST, NIST Special Publication 800-22, "A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications".  File: gsl-ref.info, Node: Random Number Acknowledgements, Prev: Random Number References and Further Reading, Up: Random Number Generation 18.15 Acknowledgements ====================== Thanks to Makoto Matsumoto, Takuji Nishimura and Yoshiharu Kurita for making the source code to their generators (MT19937, MM&TN; TT800, MM&YK) available under the GNU General Public License. Thanks to Martin Lu"scher for providing notes and source code for the RANLXS and RANLXD generators.  File: gsl-ref.info, Node: Quasi-Random Sequences, Next: Random Number Distributions, Prev: Random Number Generation, Up: Top 19 Quasi-Random Sequences ************************* This chapter describes functions for generating quasi-random sequences in arbitrary dimensions. A quasi-random sequence progressively covers a d-dimensional space with a set of points that are uniformly distributed. Quasi-random sequences are also known as low-discrepancy sequences. The quasi-random sequence generators use an interface that is similar to the interface for random number generators, except that seeding is not required--each generator produces a single sequence. The functions described in this section are declared in the header file 'gsl_qrng.h'. * Menu: * Quasi-random number generator initialization:: * Sampling from a quasi-random number generator:: * Auxiliary quasi-random number generator functions:: * Saving and resorting quasi-random number generator state:: * Quasi-random number generator algorithms:: * Quasi-random number generator examples:: * Quasi-random number references::  File: gsl-ref.info, Node: Quasi-random number generator initialization, Next: Sampling from a quasi-random number generator, Up: Quasi-Random Sequences 19.1 Quasi-random number generator initialization ================================================= -- Function: gsl_qrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned int D) This function returns a pointer to a newly-created instance of a quasi-random sequence generator of type T and dimension D. If there is insufficient memory to create the generator then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: void gsl_qrng_free (gsl_qrng * Q) This function frees all the memory associated with the generator Q. -- Function: void gsl_qrng_init (gsl_qrng * Q) This function reinitializes the generator Q to its starting point. Note that quasi-random sequences do not use a seed and always produce the same set of values.  File: gsl-ref.info, Node: Sampling from a quasi-random number generator, Next: Auxiliary quasi-random number generator functions, Prev: Quasi-random number generator initialization, Up: Quasi-Random Sequences 19.2 Sampling from a quasi-random number generator ================================================== -- Function: int gsl_qrng_get (const gsl_qrng * Q, double X[]) This function stores the next point from the sequence generator Q in the array X. The space available for X must match the dimension of the generator. The point X will lie in the range 0 < x_i < 1 for each x_i. An inline version of this function is used when 'HAVE_INLINE' is defined.  File: gsl-ref.info, Node: Auxiliary quasi-random number generator functions, Next: Saving and resorting quasi-random number generator state, Prev: Sampling from a quasi-random number generator, Up: Quasi-Random Sequences 19.3 Auxiliary quasi-random number generator functions ====================================================== -- Function: const char * gsl_qrng_name (const gsl_qrng * Q) This function returns a pointer to the name of the generator. -- Function: size_t gsl_qrng_size (const gsl_qrng * Q) -- Function: void * gsl_qrng_state (const gsl_qrng * Q) These functions return a pointer to the state of generator R and its size. You can use this information to access the state directly. For example, the following code will write the state of a generator to a stream, void * state = gsl_qrng_state (q); size_t n = gsl_qrng_size (q); fwrite (state, n, 1, stream);  File: gsl-ref.info, Node: Saving and resorting quasi-random number generator state, Next: Quasi-random number generator algorithms, Prev: Auxiliary quasi-random number generator functions, Up: Quasi-Random Sequences 19.4 Saving and resorting quasi-random number generator state ============================================================= -- Function: int gsl_qrng_memcpy (gsl_qrng * DEST, const gsl_qrng * SRC) This function copies the quasi-random sequence generator SRC into the pre-existing generator DEST, making DEST into an exact copy of SRC. The two generators must be of the same type. -- Function: gsl_qrng * gsl_qrng_clone (const gsl_qrng * Q) This function returns a pointer to a newly created generator which is an exact copy of the generator Q.  File: gsl-ref.info, Node: Quasi-random number generator algorithms, Next: Quasi-random number generator examples, Prev: Saving and resorting quasi-random number generator state, Up: Quasi-Random Sequences 19.5 Quasi-random number generator algorithms ============================================= The following quasi-random sequence algorithms are available, -- Generator: gsl_qrng_niederreiter_2 This generator uses the algorithm described in Bratley, Fox, Niederreiter, 'ACM Trans. Model. Comp. Sim.' 2, 195 (1992). It is valid up to 12 dimensions. -- Generator: gsl_qrng_sobol This generator uses the Sobol sequence described in Antonov, Saleev, 'USSR Comput. Maths. Math. Phys.' 19, 252 (1980). It is valid up to 40 dimensions. -- Generator: gsl_qrng_halton -- Generator: gsl_qrng_reversehalton These generators use the Halton and reverse Halton sequences described in J.H. Halton, 'Numerische Mathematik' 2, 84-90 (1960) and B. Vandewoestyne and R. Cools 'Computational and Applied Mathematics' 189, 1&2, 341-361 (2006). They are valid up to 1229 dimensions.  File: gsl-ref.info, Node: Quasi-random number generator examples, Next: Quasi-random number references, Prev: Quasi-random number generator algorithms, Up: Quasi-Random Sequences 19.6 Examples ============= The following program prints the first 1024 points of the 2-dimensional Sobol sequence. #include #include int main (void) { int i; gsl_qrng * q = gsl_qrng_alloc (gsl_qrng_sobol, 2); for (i = 0; i < 1024; i++) { double v[2]; gsl_qrng_get (q, v); printf ("%.5f %.5f\n", v[0], v[1]); } gsl_qrng_free (q); return 0; } Here is the output from the program, $ ./a.out 0.50000 0.50000 0.75000 0.25000 0.25000 0.75000 0.37500 0.37500 0.87500 0.87500 0.62500 0.12500 0.12500 0.62500 .... It can be seen that successive points progressively fill-in the spaces between previous points.  File: gsl-ref.info, Node: Quasi-random number references, Prev: Quasi-random number generator examples, Up: Quasi-Random Sequences 19.7 References =============== The implementations of the quasi-random sequence routines are based on the algorithms described in the following paper, P. Bratley and B.L. Fox and H. Niederreiter, "Algorithm 738: Programs to Generate Niederreiter's Low-discrepancy Sequences", 'ACM Transactions on Mathematical Software', Vol. 20, No. 4, December, 1994, p. 494-495.  File: gsl-ref.info, Node: Random Number Distributions, Next: Statistics, Prev: Quasi-Random Sequences, Up: Top 20 Random Number Distributions ****************************** This chapter describes functions for generating random variates and computing their probability distributions. Samples from the distributions described in this chapter can be obtained using any of the random number generators in the library as an underlying source of randomness. In the simplest cases a non-uniform distribution can be obtained analytically from the uniform distribution of a random number generator by applying an appropriate transformation. This method uses one call to the random number generator. More complicated distributions are created by the "acceptance-rejection" method, which compares the desired distribution against a distribution which is similar and known analytically. This usually requires several samples from the generator. The library also provides cumulative distribution functions and inverse cumulative distribution functions, sometimes referred to as quantile functions. The cumulative distribution functions and their inverses are computed separately for the upper and lower tails of the distribution, allowing full accuracy to be retained for small results. The functions for random variates and probability density functions described in this section are declared in 'gsl_randist.h'. The corresponding cumulative distribution functions are declared in 'gsl_cdf.h'. Note that the discrete random variate functions always return a value of type 'unsigned int', and on most platforms this has a maximum value of 2^32-1 ~=~ 4.29e9. They should only be called with a safe range of parameters (where there is a negligible probability of a variate exceeding this limit) to prevent incorrect results due to overflow. * Menu: * Random Number Distribution Introduction:: * The Gaussian Distribution:: * The Gaussian Tail Distribution:: * The Bivariate Gaussian Distribution:: * The Exponential Distribution:: * The Laplace Distribution:: * The Exponential Power Distribution:: * The Cauchy Distribution:: * The Rayleigh Distribution:: * The Rayleigh Tail Distribution:: * The Landau Distribution:: * The Levy alpha-Stable Distributions:: * The Levy skew alpha-Stable Distribution:: * The Gamma Distribution:: * The Flat (Uniform) Distribution:: * The Lognormal Distribution:: * The Chi-squared Distribution:: * The F-distribution:: * The t-distribution:: * The Beta Distribution:: * The Logistic Distribution:: * The Pareto Distribution:: * Spherical Vector Distributions:: * The Weibull Distribution:: * The Type-1 Gumbel Distribution:: * The Type-2 Gumbel Distribution:: * The Dirichlet Distribution:: * General Discrete Distributions:: * The Poisson Distribution:: * The Bernoulli Distribution:: * The Binomial Distribution:: * The Multinomial Distribution:: * The Negative Binomial Distribution:: * The Pascal Distribution:: * The Geometric Distribution:: * The Hypergeometric Distribution:: * The Logarithmic Distribution:: * Shuffling and Sampling:: * Random Number Distribution Examples:: * Random Number Distribution References and Further Reading::  File: gsl-ref.info, Node: Random Number Distribution Introduction, Next: The Gaussian Distribution, Up: Random Number Distributions 20.1 Introduction ================= Continuous random number distributions are defined by a probability density function, p(x), such that the probability of x occurring in the infinitesimal range x to x+dx is p dx. The cumulative distribution function for the lower tail P(x) is defined by the integral, P(x) = \int_{-\infty}^{x} dx' p(x') and gives the probability of a variate taking a value less than x. The cumulative distribution function for the upper tail Q(x) is defined by the integral, Q(x) = \int_{x}^{+\infty} dx' p(x') and gives the probability of a variate taking a value greater than x. The upper and lower cumulative distribution functions are related by P(x) + Q(x) = 1 and satisfy 0 <= P(x) <= 1, 0 <= Q(x) <= 1. The inverse cumulative distributions, x=P^{-1}(P) and x=Q^{-1}(Q) give the values of x which correspond to a specific value of P or Q. They can be used to find confidence limits from probability values. For discrete distributions the probability of sampling the integer value k is given by p(k), where \sum_k p(k) = 1. The cumulative distribution for the lower tail P(k) of a discrete distribution is defined as, P(k) = \sum_{i <= k} p(i) where the sum is over the allowed range of the distribution less than or equal to k. The cumulative distribution for the upper tail of a discrete distribution Q(k) is defined as Q(k) = \sum_{i > k} p(i) giving the sum of probabilities for all values greater than k. These two definitions satisfy the identity P(k)+Q(k)=1. If the range of the distribution is 1 to n inclusive then P(n)=1, Q(n)=0 while P(1) = p(1), Q(1)=1-p(1).  File: gsl-ref.info, Node: The Gaussian Distribution, Next: The Gaussian Tail Distribution, Prev: Random Number Distribution Introduction, Up: Random Number Distributions 20.2 The Gaussian Distribution ============================== -- Function: double gsl_ran_gaussian (const gsl_rng * R, double SIGMA) This function returns a Gaussian random variate, with mean zero and standard deviation SIGMA. The probability distribution for Gaussian random variates is, p(x) dx = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) dx for x in the range -\infty to +\infty. Use the transformation z = \mu + x on the numbers returned by 'gsl_ran_gaussian' to obtain a Gaussian distribution with mean \mu. This function uses the Box-Muller algorithm which requires two calls to the random number generator R. -- Function: double gsl_ran_gaussian_pdf (double X, double SIGMA) This function computes the probability density p(x) at X for a Gaussian distribution with standard deviation SIGMA, using the formula given above. -- Function: double gsl_ran_gaussian_ziggurat (const gsl_rng * R, double SIGMA) -- Function: double gsl_ran_gaussian_ratio_method (const gsl_rng * R, double SIGMA) This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The Ziggurat algorithm is the fastest available algorithm in most cases. -- Function: double gsl_ran_ugaussian (const gsl_rng * R) -- Function: double gsl_ran_ugaussian_pdf (double X) -- Function: double gsl_ran_ugaussian_ratio_method (const gsl_rng * R) These functions compute results for the unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, SIGMA = 1. -- Function: double gsl_cdf_gaussian_P (double X, double SIGMA) -- Function: double gsl_cdf_gaussian_Q (double X, double SIGMA) -- Function: double gsl_cdf_gaussian_Pinv (double P, double SIGMA) -- Function: double gsl_cdf_gaussian_Qinv (double Q, double SIGMA) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Gaussian distribution with standard deviation SIGMA. -- Function: double gsl_cdf_ugaussian_P (double X) -- Function: double gsl_cdf_ugaussian_Q (double X) -- Function: double gsl_cdf_ugaussian_Pinv (double P) -- Function: double gsl_cdf_ugaussian_Qinv (double Q) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the unit Gaussian distribution.  File: gsl-ref.info, Node: The Gaussian Tail Distribution, Next: The Bivariate Gaussian Distribution, Prev: The Gaussian Distribution, Up: Random Number Distributions 20.3 The Gaussian Tail Distribution =================================== -- Function: double gsl_ran_gaussian_tail (const gsl_rng * R, double A, double SIGMA) This function provides random variates from the upper tail of a Gaussian distribution with standard deviation SIGMA. The values returned are larger than the lower limit A, which must be positive. The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894-899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139,586 (exercise 11). The probability distribution for Gaussian tail random variates is, p(x) dx = {1 \over N(a;\sigma) \sqrt{2 \pi \sigma^2}} \exp (- x^2/(2 \sigma^2)) dx for x > a where N(a;\sigma) is the normalization constant, N(a;\sigma) = (1/2) erfc(a / sqrt(2 sigma^2)). -- Function: double gsl_ran_gaussian_tail_pdf (double X, double A, double SIGMA) This function computes the probability density p(x) at X for a Gaussian tail distribution with standard deviation SIGMA and lower limit A, using the formula given above. -- Function: double gsl_ran_ugaussian_tail (const gsl_rng * R, double A) -- Function: double gsl_ran_ugaussian_tail_pdf (double X, double A) These functions compute results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, SIGMA = 1.  File: gsl-ref.info, Node: The Bivariate Gaussian Distribution, Next: The Exponential Distribution, Prev: The Gaussian Tail Distribution, Up: Random Number Distributions 20.4 The Bivariate Gaussian Distribution ======================================== -- Function: void gsl_ran_bivariate_gaussian (const gsl_rng * R, double SIGMA_X, double SIGMA_Y, double RHO, double * X, double * Y) This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient RHO and standard deviations SIGMA_X and SIGMA_Y in the x and y directions. The probability distribution for bivariate Gaussian random variates is, p(x,y) dx dy = {1 \over 2 \pi \sigma_x \sigma_y \sqrt{1-\rho^2}} \exp (-(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y))/2(1-\rho^2)) dx dy for x,y in the range -\infty to +\infty. The correlation coefficient RHO should lie between 1 and -1. -- Function: double gsl_ran_bivariate_gaussian_pdf (double X, double Y, double SIGMA_X, double SIGMA_Y, double RHO) This function computes the probability density p(x,y) at (X,Y) for a bivariate Gaussian distribution with standard deviations SIGMA_X, SIGMA_Y and correlation coefficient RHO, using the formula given above.  File: gsl-ref.info, Node: The Exponential Distribution, Next: The Laplace Distribution, Prev: The Bivariate Gaussian Distribution, Up: Random Number Distributions 20.5 The Exponential Distribution ================================= -- Function: double gsl_ran_exponential (const gsl_rng * R, double MU) This function returns a random variate from the exponential distribution with mean MU. The distribution is, p(x) dx = {1 \over \mu} \exp(-x/\mu) dx for x >= 0. -- Function: double gsl_ran_exponential_pdf (double X, double MU) This function computes the probability density p(x) at X for an exponential distribution with mean MU, using the formula given above. -- Function: double gsl_cdf_exponential_P (double X, double MU) -- Function: double gsl_cdf_exponential_Q (double X, double MU) -- Function: double gsl_cdf_exponential_Pinv (double P, double MU) -- Function: double gsl_cdf_exponential_Qinv (double Q, double MU) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the exponential distribution with mean MU.  File: gsl-ref.info, Node: The Laplace Distribution, Next: The Exponential Power Distribution, Prev: The Exponential Distribution, Up: Random Number Distributions 20.6 The Laplace Distribution ============================= -- Function: double gsl_ran_laplace (const gsl_rng * R, double A) This function returns a random variate from the Laplace distribution with width A. The distribution is, p(x) dx = {1 \over 2 a} \exp(-|x/a|) dx for -\infty < x < \infty. -- Function: double gsl_ran_laplace_pdf (double X, double A) This function computes the probability density p(x) at X for a Laplace distribution with width A, using the formula given above. -- Function: double gsl_cdf_laplace_P (double X, double A) -- Function: double gsl_cdf_laplace_Q (double X, double A) -- Function: double gsl_cdf_laplace_Pinv (double P, double A) -- Function: double gsl_cdf_laplace_Qinv (double Q, double A) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Laplace distribution with width A.  File: gsl-ref.info, Node: The Exponential Power Distribution, Next: The Cauchy Distribution, Prev: The Laplace Distribution, Up: Random Number Distributions 20.7 The Exponential Power Distribution ======================================= -- Function: double gsl_ran_exppow (const gsl_rng * R, double A, double B) This function returns a random variate from the exponential power distribution with scale parameter A and exponent B. The distribution is, p(x) dx = {1 \over 2 a \Gamma(1+1/b)} \exp(-|x/a|^b) dx for x >= 0. For b = 1 this reduces to the Laplace distribution. For b = 2 it has the same form as a Gaussian distribution, but with a = \sqrt{2} \sigma. -- Function: double gsl_ran_exppow_pdf (double X, double A, double B) This function computes the probability density p(x) at X for an exponential power distribution with scale parameter A and exponent B, using the formula given above. -- Function: double gsl_cdf_exppow_P (double X, double A, double B) -- Function: double gsl_cdf_exppow_Q (double X, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) for the exponential power distribution with parameters A and B.  File: gsl-ref.info, Node: The Cauchy Distribution, Next: The Rayleigh Distribution, Prev: The Exponential Power Distribution, Up: Random Number Distributions 20.8 The Cauchy Distribution ============================ -- Function: double gsl_ran_cauchy (const gsl_rng * R, double A) This function returns a random variate from the Cauchy distribution with scale parameter A. The probability distribution for Cauchy random variates is, p(x) dx = {1 \over a\pi (1 + (x/a)^2) } dx for x in the range -\infty to +\infty. The Cauchy distribution is also known as the Lorentz distribution. -- Function: double gsl_ran_cauchy_pdf (double X, double A) This function computes the probability density p(x) at X for a Cauchy distribution with scale parameter A, using the formula given above. -- Function: double gsl_cdf_cauchy_P (double X, double A) -- Function: double gsl_cdf_cauchy_Q (double X, double A) -- Function: double gsl_cdf_cauchy_Pinv (double P, double A) -- Function: double gsl_cdf_cauchy_Qinv (double Q, double A) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Cauchy distribution with scale parameter A.  File: gsl-ref.info, Node: The Rayleigh Distribution, Next: The Rayleigh Tail Distribution, Prev: The Cauchy Distribution, Up: Random Number Distributions 20.9 The Rayleigh Distribution ============================== -- Function: double gsl_ran_rayleigh (const gsl_rng * R, double SIGMA) This function returns a random variate from the Rayleigh distribution with scale parameter SIGMA. The distribution is, p(x) dx = {x \over \sigma^2} \exp(- x^2/(2 \sigma^2)) dx for x > 0. -- Function: double gsl_ran_rayleigh_pdf (double X, double SIGMA) This function computes the probability density p(x) at X for a Rayleigh distribution with scale parameter SIGMA, using the formula given above. -- Function: double gsl_cdf_rayleigh_P (double X, double SIGMA) -- Function: double gsl_cdf_rayleigh_Q (double X, double SIGMA) -- Function: double gsl_cdf_rayleigh_Pinv (double P, double SIGMA) -- Function: double gsl_cdf_rayleigh_Qinv (double Q, double SIGMA) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Rayleigh distribution with scale parameter SIGMA.  File: gsl-ref.info, Node: The Rayleigh Tail Distribution, Next: The Landau Distribution, Prev: The Rayleigh Distribution, Up: Random Number Distributions 20.10 The Rayleigh Tail Distribution ==================================== -- Function: double gsl_ran_rayleigh_tail (const gsl_rng * R, double A, double SIGMA) This function returns a random variate from the tail of the Rayleigh distribution with scale parameter SIGMA and a lower limit of A. The distribution is, p(x) dx = {x \over \sigma^2} \exp ((a^2 - x^2) /(2 \sigma^2)) dx for x > a. -- Function: double gsl_ran_rayleigh_tail_pdf (double X, double A, double SIGMA) This function computes the probability density p(x) at X for a Rayleigh tail distribution with scale parameter SIGMA and lower limit A, using the formula given above.  File: gsl-ref.info, Node: The Landau Distribution, Next: The Levy alpha-Stable Distributions, Prev: The Rayleigh Tail Distribution, Up: Random Number Distributions 20.11 The Landau Distribution ============================= -- Function: double gsl_ran_landau (const gsl_rng * R) This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral, p(x) = (1/(2 \pi i)) \int_{c-i\infty}^{c+i\infty} ds exp(s log(s) + x s) For numerical purposes it is more convenient to use the following equivalent form of the integral, p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t). -- Function: double gsl_ran_landau_pdf (double X) This function computes the probability density p(x) at X for the Landau distribution using an approximation to the formula given above.  File: gsl-ref.info, Node: The Levy alpha-Stable Distributions, Next: The Levy skew alpha-Stable Distribution, Prev: The Landau Distribution, Up: Random Number Distributions 20.12 The Levy alpha-Stable Distributions ========================================= -- Function: double gsl_ran_levy (const gsl_rng * R, double C, double ALPHA) This function returns a random variate from the Levy symmetric stable distribution with scale C and exponent ALPHA. The symmetric stable probability distribution is defined by a Fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha) There is no explicit solution for the form of p(x) and the library does not define a corresponding 'pdf' function. For \alpha = 1 the distribution reduces to the Cauchy distribution. For \alpha = 2 it is a Gaussian distribution with \sigma = \sqrt{2} c. For \alpha < 1 the tails of the distribution become extremely wide. The algorithm only works for 0 < alpha <= 2.  File: gsl-ref.info, Node: The Levy skew alpha-Stable Distribution, Next: The Gamma Distribution, Prev: The Levy alpha-Stable Distributions, Up: Random Number Distributions 20.13 The Levy skew alpha-Stable Distribution ============================================= -- Function: double gsl_ran_levy_skew (const gsl_rng * R, double C, double ALPHA, double BETA) This function returns a random variate from the Levy skew stable distribution with scale C, exponent ALPHA and skewness parameter BETA. The skewness parameter must lie in the range [-1,1]. The Levy skew stable probability distribution is defined by a Fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2))) When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by -(2/\pi)\log|t|. There is no explicit solution for the form of p(x) and the library does not define a corresponding 'pdf' function. For \alpha = 2 the distribution reduces to a Gaussian distribution with \sigma = \sqrt{2} c and the skewness parameter has no effect. For \alpha < 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to \beta = 0. The algorithm only works for 0 < alpha <= 2. The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p(c, \alpha, \beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be distributed as an alpha-stable variate, p(N^(1/\alpha) c, \alpha, \beta).  File: gsl-ref.info, Node: The Gamma Distribution, Next: The Flat (Uniform) Distribution, Prev: The Levy skew alpha-Stable Distribution, Up: Random Number Distributions 20.14 The Gamma Distribution ============================ -- Function: double gsl_ran_gamma (const gsl_rng * R, double A, double B) This function returns a random variate from the gamma distribution. The distribution function is, p(x) dx = {1 \over \Gamma(a) b^a} x^{a-1} e^{-x/b} dx for x > 0. The gamma distribution with an integer parameter A is known as the Erlang distribution. The variates are computed using the Marsaglia-Tsang fast gamma method. This function for this method was previously called 'gsl_ran_gamma_mt' and can still be accessed using this name. -- Function: double gsl_ran_gamma_knuth (const gsl_rng * R, double A, double B) This function returns a gamma variate using the algorithms from Knuth (vol 2). -- Function: double gsl_ran_gamma_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a gamma distribution with parameters A and B, using the formula given above. -- Function: double gsl_cdf_gamma_P (double X, double A, double B) -- Function: double gsl_cdf_gamma_Q (double X, double A, double B) -- Function: double gsl_cdf_gamma_Pinv (double P, double A, double B) -- Function: double gsl_cdf_gamma_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the gamma distribution with parameters A and B.  File: gsl-ref.info, Node: The Flat (Uniform) Distribution, Next: The Lognormal Distribution, Prev: The Gamma Distribution, Up: Random Number Distributions 20.15 The Flat (Uniform) Distribution ===================================== -- Function: double gsl_ran_flat (const gsl_rng * R, double A, double B) This function returns a random variate from the flat (uniform) distribution from A to B. The distribution is, p(x) dx = {1 \over (b-a)} dx if a <= x < b and 0 otherwise. -- Function: double gsl_ran_flat_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a uniform distribution from A to B, using the formula given above. -- Function: double gsl_cdf_flat_P (double X, double A, double B) -- Function: double gsl_cdf_flat_Q (double X, double A, double B) -- Function: double gsl_cdf_flat_Pinv (double P, double A, double B) -- Function: double gsl_cdf_flat_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for a uniform distribution from A to B.  File: gsl-ref.info, Node: The Lognormal Distribution, Next: The Chi-squared Distribution, Prev: The Flat (Uniform) Distribution, Up: Random Number Distributions 20.16 The Lognormal Distribution ================================ -- Function: double gsl_ran_lognormal (const gsl_rng * R, double ZETA, double SIGMA) This function returns a random variate from the lognormal distribution. The distribution function is, p(x) dx = {1 \over x \sqrt{2 \pi \sigma^2} } \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx for x > 0. -- Function: double gsl_ran_lognormal_pdf (double X, double ZETA, double SIGMA) This function computes the probability density p(x) at X for a lognormal distribution with parameters ZETA and SIGMA, using the formula given above. -- Function: double gsl_cdf_lognormal_P (double X, double ZETA, double SIGMA) -- Function: double gsl_cdf_lognormal_Q (double X, double ZETA, double SIGMA) -- Function: double gsl_cdf_lognormal_Pinv (double P, double ZETA, double SIGMA) -- Function: double gsl_cdf_lognormal_Qinv (double Q, double ZETA, double SIGMA) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the lognormal distribution with parameters ZETA and SIGMA.  File: gsl-ref.info, Node: The Chi-squared Distribution, Next: The F-distribution, Prev: The Lognormal Distribution, Up: Random Number Distributions 20.17 The Chi-squared Distribution ================================== The chi-squared distribution arises in statistics. If Y_i are n independent Gaussian random variates with unit variance then the sum-of-squares, X_i = \sum_i Y_i^2 has a chi-squared distribution with n degrees of freedom. -- Function: double gsl_ran_chisq (const gsl_rng * R, double NU) This function returns a random variate from the chi-squared distribution with NU degrees of freedom. The distribution function is, p(x) dx = {1 \over 2 \Gamma(\nu/2) } (x/2)^{\nu/2 - 1} \exp(-x/2) dx for x >= 0. -- Function: double gsl_ran_chisq_pdf (double X, double NU) This function computes the probability density p(x) at X for a chi-squared distribution with NU degrees of freedom, using the formula given above. -- Function: double gsl_cdf_chisq_P (double X, double NU) -- Function: double gsl_cdf_chisq_Q (double X, double NU) -- Function: double gsl_cdf_chisq_Pinv (double P, double NU) -- Function: double gsl_cdf_chisq_Qinv (double Q, double NU) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the chi-squared distribution with NU degrees of freedom.  File: gsl-ref.info, Node: The F-distribution, Next: The t-distribution, Prev: The Chi-squared Distribution, Up: Random Number Distributions 20.18 The F-distribution ======================== The F-distribution arises in statistics. If Y_1 and Y_2 are chi-squared deviates with \nu_1 and \nu_2 degrees of freedom then the ratio, X = { (Y_1 / \nu_1) \over (Y_2 / \nu_2) } has an F-distribution F(x;\nu_1,\nu_2). -- Function: double gsl_ran_fdist (const gsl_rng * R, double NU1, double NU2) This function returns a random variate from the F-distribution with degrees of freedom NU1 and NU2. The distribution function is, p(x) dx = { \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) } \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-\nu_1/2 -\nu_2/2} for x >= 0. -- Function: double gsl_ran_fdist_pdf (double X, double NU1, double NU2) This function computes the probability density p(x) at X for an F-distribution with NU1 and NU2 degrees of freedom, using the formula given above. -- Function: double gsl_cdf_fdist_P (double X, double NU1, double NU2) -- Function: double gsl_cdf_fdist_Q (double X, double NU1, double NU2) -- Function: double gsl_cdf_fdist_Pinv (double P, double NU1, double NU2) -- Function: double gsl_cdf_fdist_Qinv (double Q, double NU1, double NU2) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the F-distribution with NU1 and NU2 degrees of freedom.  File: gsl-ref.info, Node: The t-distribution, Next: The Beta Distribution, Prev: The F-distribution, Up: Random Number Distributions 20.19 The t-distribution ======================== The t-distribution arises in statistics. If Y_1 has a normal distribution and Y_2 has a chi-squared distribution with \nu degrees of freedom then the ratio, X = { Y_1 \over \sqrt{Y_2 / \nu} } has a t-distribution t(x;\nu) with \nu degrees of freedom. -- Function: double gsl_ran_tdist (const gsl_rng * R, double NU) This function returns a random variate from the t-distribution. The distribution function is, p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu + 1)/2} dx for -\infty < x < +\infty. -- Function: double gsl_ran_tdist_pdf (double X, double NU) This function computes the probability density p(x) at X for a t-distribution with NU degrees of freedom, using the formula given above. -- Function: double gsl_cdf_tdist_P (double X, double NU) -- Function: double gsl_cdf_tdist_Q (double X, double NU) -- Function: double gsl_cdf_tdist_Pinv (double P, double NU) -- Function: double gsl_cdf_tdist_Qinv (double Q, double NU) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the t-distribution with NU degrees of freedom. gsl-1.16/doc/vectors.texi0000664000252300025230000021620612171574312012306 00000000000000@cindex blocks @cindex vectors @cindex matrices The functions described in this chapter provide a simple vector and matrix interface to ordinary C arrays. The memory management of these arrays is implemented using a single underlying type, known as a block. By writing your functions in terms of vectors and matrices you can pass a single structure containing both data and dimensions as an argument without needing additional function parameters. The structures are compatible with the vector and matrix formats used by @sc{blas} routines. @menu * Data types:: * Blocks:: * Vectors:: * Matrices:: * Vector and Matrix References and Further Reading:: @end menu @node Data types @section Data types All the functions are available for each of the standard data-types. The versions for @code{double} have the prefix @code{gsl_block}, @code{gsl_vector} and @code{gsl_matrix}. Similarly the versions for single-precision @code{float} arrays have the prefix @code{gsl_block_float}, @code{gsl_vector_float} and @code{gsl_matrix_float}. The full list of available types is given below, @example gsl_block double gsl_block_float float gsl_block_long_double long double gsl_block_int int gsl_block_uint unsigned int gsl_block_long long gsl_block_ulong unsigned long gsl_block_short short gsl_block_ushort unsigned short gsl_block_char char gsl_block_uchar unsigned char gsl_block_complex complex double gsl_block_complex_float complex float gsl_block_complex_long_double complex long double @end example @noindent Corresponding types exist for the @code{gsl_vector} and @code{gsl_matrix} functions. @node Blocks @section Blocks @tpindex gsl_block For consistency all memory is allocated through a @code{gsl_block} structure. The structure contains two components, the size of an area of memory and a pointer to the memory. The @code{gsl_block} structure looks like this, @example typedef struct @{ size_t size; double * data; @} gsl_block; @end example @comment @noindent Vectors and matrices are made by @dfn{slicing} an underlying block. A slice is a set of elements formed from an initial offset and a combination of indices and step-sizes. In the case of a matrix the step-size for the column index represents the row-length. The step-size for a vector is known as the @dfn{stride}. The functions for allocating and deallocating blocks are defined in @file{gsl_block.h} @menu * Block allocation:: * Reading and writing blocks:: * Example programs for blocks:: @end menu @node Block allocation @subsection Block allocation The functions for allocating memory to a block follow the style of @code{malloc} and @code{free}. In addition they also perform their own error checking. If there is insufficient memory available to allocate a block then the functions call the GSL error handler (with an error number of @code{GSL_ENOMEM}) in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every @code{alloc}. @deftypefun {gsl_block *} gsl_block_alloc (size_t @var{n}) This function allocates memory for a block of @var{n} double-precision elements, returning a pointer to the block struct. The block is not initialized and so the values of its elements are undefined. Use the function @code{gsl_block_calloc} if you want to ensure that all the elements are initialized to zero. A null pointer is returned if insufficient memory is available to create the block. @end deftypefun @deftypefun {gsl_block *} gsl_block_calloc (size_t @var{n}) This function allocates memory for a block and initializes all the elements of the block to zero. @end deftypefun @deftypefun void gsl_block_free (gsl_block * @var{b}) This function frees the memory used by a block @var{b} previously allocated with @code{gsl_block_alloc} or @code{gsl_block_calloc}. @end deftypefun @node Reading and writing blocks @subsection Reading and writing blocks The library provides functions for reading and writing blocks to a file as binary data or formatted text. @deftypefun int gsl_block_fwrite (FILE * @var{stream}, const gsl_block * @var{b}) This function writes the elements of the block @var{b} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_block_fread (FILE * @var{stream}, gsl_block * @var{b}) This function reads into the block @var{b} from the open stream @var{stream} in binary format. The block @var{b} must be preallocated with the correct length since the function uses the size of @var{b} to determine how many bytes to read. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_block_fprintf (FILE * @var{stream}, const gsl_block * @var{b}, const char * @var{format}) This function writes the elements of the block @var{b} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be one of the @code{%g}, @code{%e} or @code{%f} formats for floating point numbers and @code{%d} for integers. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_block_fscanf (FILE * @var{stream}, gsl_block * @var{b}) This function reads formatted data from the stream @var{stream} into the block @var{b}. The block @var{b} must be preallocated with the correct length since the function uses the size of @var{b} to determine how many numbers to read. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @comment @node Example programs for blocks @subsection Example programs for blocks The following program shows how to allocate a block, @example @verbatiminclude examples/block.c @end example @comment @noindent Here is the output from the program, @example @verbatiminclude examples/block.out @end example @comment @node Vectors @section Vectors @cindex vectors @cindex stride, of vector index Vectors are defined by a @code{gsl_vector} structure which describes a slice of a block. Different vectors can be created which point to the same block. A vector slice is a set of equally-spaced elements of an area of memory. @tpindex gsl_vector The @code{gsl_vector} structure contains five components, the @dfn{size}, the @dfn{stride}, a pointer to the memory where the elements are stored, @var{data}, a pointer to the block owned by the vector, @var{block}, if any, and an ownership flag, @var{owner}. The structure is very simple and looks like this, @example typedef struct @{ size_t size; size_t stride; double * data; gsl_block * block; int owner; @} gsl_vector; @end example @comment @noindent The @var{size} is simply the number of vector elements. The range of valid indices runs from 0 to @code{size-1}. The @var{stride} is the step-size from one element to the next in physical memory, measured in units of the appropriate datatype. The pointer @var{data} gives the location of the first element of the vector in memory. The pointer @var{block} stores the location of the memory block in which the vector elements are located (if any). If the vector owns this block then the @var{owner} field is set to one and the block will be deallocated when the vector is freed. If the vector points to a block owned by another object then the @var{owner} field is zero and any underlying block will not be deallocated with the vector. The functions for allocating and accessing vectors are defined in @file{gsl_vector.h} @menu * Vector allocation:: * Accessing vector elements:: * Initializing vector elements:: * Reading and writing vectors:: * Vector views:: * Copying vectors:: * Exchanging elements:: * Vector operations:: * Finding maximum and minimum elements of vectors:: * Vector properties:: * Example programs for vectors:: @end menu @node Vector allocation @subsection Vector allocation The functions for allocating memory to a vector follow the style of @code{malloc} and @code{free}. In addition they also perform their own error checking. If there is insufficient memory available to allocate a vector then the functions call the GSL error handler (with an error number of @code{GSL_ENOMEM}) in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every @code{alloc}. @deftypefun {gsl_vector *} gsl_vector_alloc (size_t @var{n}) This function creates a vector of length @var{n}, returning a pointer to a newly initialized vector struct. A new block is allocated for the elements of the vector, and stored in the @var{block} component of the vector struct. The block is ``owned'' by the vector, and will be deallocated when the vector is deallocated. @end deftypefun @deftypefun {gsl_vector *} gsl_vector_calloc (size_t @var{n}) This function allocates memory for a vector of length @var{n} and initializes all the elements of the vector to zero. @end deftypefun @deftypefun void gsl_vector_free (gsl_vector * @var{v}) This function frees a previously allocated vector @var{v}. If the vector was created using @code{gsl_vector_alloc} then the block underlying the vector will also be deallocated. If the vector has been created from another object then the memory is still owned by that object and will not be deallocated. @end deftypefun @node Accessing vector elements @subsection Accessing vector elements @cindex vectors, range-checking @cindex range-checking for vectors @cindex bounds checking, extension to GCC @cindex gcc extensions, range-checking @cindex Fortran range checking, equivalent in gcc Unlike @sc{fortran} compilers, C compilers do not usually provide support for range checking of vectors and matrices.@footnote{Range checking is available in the GNU C Compiler bounds-checking extension, but it is not part of the default installation of GCC. Memory accesses can also be checked with Valgrind or the @code{gcc -fmudflap} memory protection option.} The functions @code{gsl_vector_get} and @code{gsl_vector_set} can perform portable range checking for you and report an error if you attempt to access elements outside the allowed range. The functions for accessing the elements of a vector or matrix are defined in @file{gsl_vector.h} and declared @code{extern inline} to eliminate function-call overhead. You must compile your program with the preprocessor macro @code{HAVE_INLINE} defined to use these functions. @vrindex @code{GSL_RANGE_CHECK_OFF} If necessary you can turn off range checking completely without modifying any source files by recompiling your program with the preprocessor definition @code{GSL_RANGE_CHECK_OFF}. Provided your compiler supports inline functions the effect of turning off range checking is to replace calls to @code{gsl_vector_get(v,i)} by @code{v->data[i*v->stride]} and calls to @code{gsl_vector_set(v,i,x)} by @code{v->data[i*v->stride]=x}. Thus there should be no performance penalty for using the range checking functions when range checking is turned off. @vrindex @code{GSL_C99_INLINE} If you use a C99 compiler which requires inline functions in header files to be declared @code{inline} instead of @code{extern inline}, define the macro @code{GSL_C99_INLINE} (@pxref{Inline functions}). With GCC this is selected automatically when compiling in C99 mode (@code{-std=c99}). @vrindex gsl_check_range If inline functions are not used, calls to the functions @code{gsl_vector_get} and @code{gsl_vector_set} will link to the compiled versions of these functions in the library itself. The range checking in these functions is controlled by the global integer variable @code{gsl_check_range}. It is enabled by default---to disable it, set @code{gsl_check_range} to zero. Due to function-call overhead, there is less benefit in disabling range checking here than for inline functions. @deftypefun double gsl_vector_get (const gsl_vector * @var{v}, size_t @var{i}) This function returns the @var{i}-th element of a vector @var{v}. If @var{i} lies outside the allowed range of 0 to @math{@var{n}-1} then the error handler is invoked and 0 is returned. @inlinefn{} @end deftypefun @deftypefun void gsl_vector_set (gsl_vector * @var{v}, size_t @var{i}, double @var{x}) This function sets the value of the @var{i}-th element of a vector @var{v} to @var{x}. If @var{i} lies outside the allowed range of 0 to @math{@var{n}-1} then the error handler is invoked. @inlinefn{} @end deftypefun @deftypefun {double *} gsl_vector_ptr (gsl_vector * @var{v}, size_t @var{i}) @deftypefunx {const double *} gsl_vector_const_ptr (const gsl_vector * @var{v}, size_t @var{i}) These functions return a pointer to the @var{i}-th element of a vector @var{v}. If @var{i} lies outside the allowed range of 0 to @math{@var{n}-1} then the error handler is invoked and a null pointer is returned. @inlinefns{} @end deftypefun @node Initializing vector elements @subsection Initializing vector elements @cindex vectors, initializing @cindex initializing vectors @deftypefun void gsl_vector_set_all (gsl_vector * @var{v}, double @var{x}) This function sets all the elements of the vector @var{v} to the value @var{x}. @end deftypefun @deftypefun void gsl_vector_set_zero (gsl_vector * @var{v}) This function sets all the elements of the vector @var{v} to zero. @end deftypefun @deftypefun int gsl_vector_set_basis (gsl_vector * @var{v}, size_t @var{i}) This function makes a basis vector by setting all the elements of the vector @var{v} to zero except for the @var{i}-th element which is set to one. @end deftypefun @node Reading and writing vectors @subsection Reading and writing vectors The library provides functions for reading and writing vectors to a file as binary data or formatted text. @deftypefun int gsl_vector_fwrite (FILE * @var{stream}, const gsl_vector * @var{v}) This function writes the elements of the vector @var{v} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_vector_fread (FILE * @var{stream}, gsl_vector * @var{v}) This function reads into the vector @var{v} from the open stream @var{stream} in binary format. The vector @var{v} must be preallocated with the correct length since the function uses the size of @var{v} to determine how many bytes to read. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_vector_fprintf (FILE * @var{stream}, const gsl_vector * @var{v}, const char * @var{format}) This function writes the elements of the vector @var{v} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be one of the @code{%g}, @code{%e} or @code{%f} formats for floating point numbers and @code{%d} for integers. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_vector_fscanf (FILE * @var{stream}, gsl_vector * @var{v}) This function reads formatted data from the stream @var{stream} into the vector @var{v}. The vector @var{v} must be preallocated with the correct length since the function uses the size of @var{v} to determine how many numbers to read. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Vector views @subsection Vector views In addition to creating vectors from slices of blocks it is also possible to slice vectors and create vector views. For example, a subvector of another vector can be described with a view, or two views can be made which provide access to the even and odd elements of a vector. @tpindex gsl_vector_view @tpindex gsl_vector_const_view A vector view is a temporary object, stored on the stack, which can be used to operate on a subset of vector elements. Vector views can be defined for both constant and non-constant vectors, using separate types that preserve constness. A vector view has the type @code{gsl_vector_view} and a constant vector view has the type @code{gsl_vector_const_view}. In both cases the elements of the view can be accessed as a @code{gsl_vector} using the @code{vector} component of the view object. A pointer to a vector of type @code{gsl_vector *} or @code{const gsl_vector *} can be obtained by taking the address of this component with the @code{&} operator. When using this pointer it is important to ensure that the view itself remains in scope---the simplest way to do so is by always writing the pointer as @code{&}@var{view}@code{.vector}, and never storing this value in another variable. @deftypefun gsl_vector_view gsl_vector_subvector (gsl_vector * @var{v}, size_t @var{offset}, size_t @var{n}) @deftypefunx {gsl_vector_const_view} gsl_vector_const_subvector (const gsl_vector * @var{v}, size_t @var{offset}, size_t @var{n}) These functions return a vector view of a subvector of another vector @var{v}. The start of the new vector is offset by @var{offset} elements from the start of the original vector. The new vector has @var{n} elements. Mathematically, the @var{i}-th element of the new vector @var{v'} is given by, @example v'(i) = v->data[(offset + i)*v->stride] @end example @noindent where the index @var{i} runs from 0 to @code{n-1}. The @code{data} pointer of the returned vector struct is set to null if the combined parameters (@var{offset},@var{n}) overrun the end of the original vector. The new vector is only a view of the block underlying the original vector, @var{v}. The block containing the elements of @var{v} is not owned by the new vector. When the view goes out of scope the original vector @var{v} and its block will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function @code{gsl_vector_const_subvector} is equivalent to @code{gsl_vector_subvector} but can be used for vectors which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_vector_subvector_with_stride (gsl_vector * @var{v}, size_t @var{offset}, size_t @var{stride}, size_t @var{n}) @deftypefunx {gsl_vector_const_view} gsl_vector_const_subvector_with_stride (const gsl_vector * @var{v}, size_t @var{offset}, size_t @var{stride}, size_t @var{n}) These functions return a vector view of a subvector of another vector @var{v} with an additional stride argument. The subvector is formed in the same way as for @code{gsl_vector_subvector} but the new vector has @var{n} elements with a step-size of @var{stride} from one element to the next in the original vector. Mathematically, the @var{i}-th element of the new vector @var{v'} is given by, @example v'(i) = v->data[(offset + i*stride)*v->stride] @end example @noindent where the index @var{i} runs from 0 to @code{n-1}. Note that subvector views give direct access to the underlying elements of the original vector. For example, the following code will zero the even elements of the vector @code{v} of length @code{n}, while leaving the odd elements untouched, @example gsl_vector_view v_even = gsl_vector_subvector_with_stride (v, 0, 2, n/2); gsl_vector_set_zero (&v_even.vector); @end example @noindent A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using @code{&}@var{view}@code{.vector}. For example, the following code computes the norm of the odd elements of @code{v} using the @sc{blas} routine @sc{dnrm2}, @example gsl_vector_view v_odd = gsl_vector_subvector_with_stride (v, 1, 2, n/2); double r = gsl_blas_dnrm2 (&v_odd.vector); @end example The function @code{gsl_vector_const_subvector_with_stride} is equivalent to @code{gsl_vector_subvector_with_stride} but can be used for vectors which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_vector_complex_real (gsl_vector_complex * @var{v}) @deftypefunx {gsl_vector_const_view} gsl_vector_complex_const_real (const gsl_vector_complex * @var{v}) These functions return a vector view of the real parts of the complex vector @var{v}. The function @code{gsl_vector_complex_const_real} is equivalent to @code{gsl_vector_complex_real} but can be used for vectors which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_vector_complex_imag (gsl_vector_complex * @var{v}) @deftypefunx {gsl_vector_const_view} gsl_vector_complex_const_imag (const gsl_vector_complex * @var{v}) These functions return a vector view of the imaginary parts of the complex vector @var{v}. The function @code{gsl_vector_complex_const_imag} is equivalent to @code{gsl_vector_complex_imag} but can be used for vectors which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_vector_view_array (double * @var{base}, size_t @var{n}) @deftypefunx {gsl_vector_const_view} gsl_vector_const_view_array (const double * @var{base}, size_t @var{n}) These functions return a vector view of an array. The start of the new vector is given by @var{base} and has @var{n} elements. Mathematically, the @var{i}-th element of the new vector @var{v'} is given by, @example v'(i) = base[i] @end example @noindent where the index @var{i} runs from 0 to @code{n-1}. The array containing the elements of @var{v} is not owned by the new vector view. When the view goes out of scope the original array will continue to exist. The original memory can only be deallocated by freeing the original pointer @var{base}. Of course, the original array should not be deallocated while the view is still in use. The function @code{gsl_vector_const_view_array} is equivalent to @code{gsl_vector_view_array} but can be used for arrays which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_vector_view_array_with_stride (double * @var{base}, size_t @var{stride}, size_t @var{n}) @deftypefunx gsl_vector_const_view gsl_vector_const_view_array_with_stride (const double * @var{base}, size_t @var{stride}, size_t @var{n}) These functions return a vector view of an array @var{base} with an additional stride argument. The subvector is formed in the same way as for @code{gsl_vector_view_array} but the new vector has @var{n} elements with a step-size of @var{stride} from one element to the next in the original array. Mathematically, the @var{i}-th element of the new vector @var{v'} is given by, @example v'(i) = base[i*stride] @end example @noindent where the index @var{i} runs from 0 to @code{n-1}. Note that the view gives direct access to the underlying elements of the original array. A vector view can be passed to any subroutine which takes a vector argument just as a directly allocated vector would be, using @code{&}@var{view}@code{.vector}. The function @code{gsl_vector_const_view_array_with_stride} is equivalent to @code{gsl_vector_view_array_with_stride} but can be used for arrays which are declared @code{const}. @end deftypefun @comment @node Modifying subvector views @comment @subsection Modifying subvector views @comment @comment @deftypefun int gsl_vector_view_from_vector (gsl_vector * @var{v}, gsl_vector * @var{base}, size_t @var{offset}, size_t @var{n}, size_t @var{stride}) @comment This function modifies and existing vector view @var{v} to form a new @comment view of a vector @var{base}, starting from element @var{offset}. The @comment vector has @var{n} elements separated by stride @var{stride}. Any @comment existing view in @var{v} will be lost as a result of this function. @comment @end deftypefun @comment @comment @deftypefun int gsl_vector_view_from_array (gsl_vector * @var{v}, double * @var{base}, size_t @var{offset}, size_t @var{n}, size_t @var{stride}) @comment This function modifies and existing vector view @var{v} to form a new @comment view of an array @var{base}, starting from element @var{offset}. The @comment vector has @var{n} elements separated by stride @var{stride}. Any @comment existing view in @var{v} will be lost as a result of this function. @comment @end deftypefun @comment @deftypefun {gsl_vector *} gsl_vector_alloc_from_block (gsl_block * @var{b}, size_t @var{offset}, size_t @var{n}, size_t @var{stride}) @comment This function creates a vector as a slice of an existing block @var{b}, @comment returning a pointer to a newly initialized vector struct. The start of @comment the vector is offset by @var{offset} elements from the start of the @comment block. The vector has @var{n} elements, with a step-size of @var{stride} @comment from one element to the next. Mathematically, the @var{i}-th element of @comment the vector is given by, @comment @comment @example @comment v(i) = b->data[offset + i*stride] @comment @end example @comment @noindent @comment where the index @var{i} runs from 0 to @code{n-1}. @comment @comment A null pointer is returned if the combined parameters @comment (@var{offset},@var{n},@var{stride}) overrun the end of the block or if @comment insufficient memory is available to store the vector. @comment @comment The vector is only a view of the block @var{b}, and the block is not @comment owned by the vector. When the vector is deallocated the block @var{b} @comment will continue to exist. This memory can only be deallocated by freeing @comment the block itself. Of course, this block should not be deallocated while @comment the vector is still in use. @comment @end deftypefun @comment @comment @deftypefun {gsl_vector *} gsl_vector_alloc_from_vector (gsl_vector * @var{v}, size_t @var{offset}, size_t @var{n}, size_t @var{stride}) @comment This function creates a vector as a slice of another vector @var{v}, @comment returning a pointer to a newly initialized vector struct. The start of @comment the new vector is offset by @var{offset} elements from the start of the @comment original vector. The new vector has @var{n} elements, with a step-size @comment of @var{stride} from one element to the next in the original vector. @comment Mathematically, the @var{i}-th element of the new vector @var{v'} is @comment given by, @comment @comment @example @comment v'(i) = v->data[(offset + i*stride)*v->stride] @comment @end example @comment @noindent @comment where the index @var{i} runs from 0 to @code{n-1}. @comment @comment A null pointer is returned if the combined parameters @comment (@var{offset},@var{n},@var{stride}) overrun the end of the original @comment vector or if insufficient memory is available store the new vector. @comment @comment The new vector is only a view of the block underlying the original @comment vector, @var{v}. The block is not owned by the new vector. When the new @comment vector is deallocated the original vector @var{v} and its block will @comment continue to exist. The original memory can only be deallocated by @comment freeing the original vector. Of course, the original vector should not @comment be deallocated while the new vector is still in use. @comment @end deftypefun @node Copying vectors @subsection Copying vectors Common operations on vectors such as addition and multiplication are available in the @sc{blas} part of the library (@pxref{BLAS Support}). However, it is useful to have a small number of utility functions which do not require the full @sc{blas} code. The following functions fall into this category. @deftypefun int gsl_vector_memcpy (gsl_vector * @var{dest}, const gsl_vector * @var{src}) This function copies the elements of the vector @var{src} into the vector @var{dest}. The two vectors must have the same length. @end deftypefun @deftypefun int gsl_vector_swap (gsl_vector * @var{v}, gsl_vector * @var{w}) This function exchanges the elements of the vectors @var{v} and @var{w} by copying. The two vectors must have the same length. @end deftypefun @node Exchanging elements @subsection Exchanging elements The following function can be used to exchange, or permute, the elements of a vector. @deftypefun int gsl_vector_swap_elements (gsl_vector * @var{v}, size_t @var{i}, size_t @var{j}) This function exchanges the @var{i}-th and @var{j}-th elements of the vector @var{v} in-place. @end deftypefun @deftypefun int gsl_vector_reverse (gsl_vector * @var{v}) This function reverses the order of the elements of the vector @var{v}. @end deftypefun @node Vector operations @subsection Vector operations @deftypefun int gsl_vector_add (gsl_vector * @var{a}, const gsl_vector * @var{b}) This function adds the elements of vector @var{b} to the elements of vector @var{a}. The result @math{a_i \leftarrow a_i + b_i} is stored in @var{a} and @var{b} remains unchanged. The two vectors must have the same length. @end deftypefun @deftypefun int gsl_vector_sub (gsl_vector * @var{a}, const gsl_vector * @var{b}) This function subtracts the elements of vector @var{b} from the elements of vector @var{a}. The result @math{a_i \leftarrow a_i - b_i} is stored in @var{a} and @var{b} remains unchanged. The two vectors must have the same length. @end deftypefun @deftypefun int gsl_vector_mul (gsl_vector * @var{a}, const gsl_vector * @var{b}) This function multiplies the elements of vector @var{a} by the elements of vector @var{b}. The result @math{a_i \leftarrow a_i * b_i} is stored in @var{a} and @var{b} remains unchanged. The two vectors must have the same length. @end deftypefun @deftypefun int gsl_vector_div (gsl_vector * @var{a}, const gsl_vector * @var{b}) This function divides the elements of vector @var{a} by the elements of vector @var{b}. The result @math{a_i \leftarrow a_i / b_i} is stored in @var{a} and @var{b} remains unchanged. The two vectors must have the same length. @end deftypefun @deftypefun int gsl_vector_scale (gsl_vector * @var{a}, const double @var{x}) This function multiplies the elements of vector @var{a} by the constant factor @var{x}. The result @math{a_i \leftarrow x a_i} is stored in @var{a}. @end deftypefun @deftypefun int gsl_vector_add_constant (gsl_vector * @var{a}, const double @var{x}) This function adds the constant value @var{x} to the elements of the vector @var{a}. The result @math{a_i \leftarrow a_i + x} is stored in @var{a}. @end deftypefun @node Finding maximum and minimum elements of vectors @subsection Finding maximum and minimum elements of vectors The following operations are only defined for real vectors. @deftypefun double gsl_vector_max (const gsl_vector * @var{v}) This function returns the maximum value in the vector @var{v}. @end deftypefun @deftypefun double gsl_vector_min (const gsl_vector * @var{v}) This function returns the minimum value in the vector @var{v}. @end deftypefun @deftypefun void gsl_vector_minmax (const gsl_vector * @var{v}, double * @var{min_out}, double * @var{max_out}) This function returns the minimum and maximum values in the vector @var{v}, storing them in @var{min_out} and @var{max_out}. @end deftypefun @deftypefun size_t gsl_vector_max_index (const gsl_vector * @var{v}) This function returns the index of the maximum value in the vector @var{v}. When there are several equal maximum elements then the lowest index is returned. @end deftypefun @deftypefun size_t gsl_vector_min_index (const gsl_vector * @var{v}) This function returns the index of the minimum value in the vector @var{v}. When there are several equal minimum elements then the lowest index is returned. @end deftypefun @deftypefun void gsl_vector_minmax_index (const gsl_vector * @var{v}, size_t * @var{imin}, size_t * @var{imax}) This function returns the indices of the minimum and maximum values in the vector @var{v}, storing them in @var{imin} and @var{imax}. When there are several equal minimum or maximum elements then the lowest indices are returned. @end deftypefun @node Vector properties @subsection Vector properties The following functions are defined for real and complex vectors. For complex vectors both the real and imaginary parts must satisfy the conditions. @deftypefun int gsl_vector_isnull (const gsl_vector * @var{v}) @deftypefunx int gsl_vector_ispos (const gsl_vector * @var{v}) @deftypefunx int gsl_vector_isneg (const gsl_vector * @var{v}) @deftypefunx int gsl_vector_isnonneg (const gsl_vector * @var{v}) These functions return 1 if all the elements of the vector @var{v} are zero, strictly positive, strictly negative, or non-negative respectively, and 0 otherwise. @end deftypefun @deftypefun int gsl_vector_equal (const gsl_vector * @var{u}, const gsl_vector * @var{v}) This function returns 1 if the vectors @var{u} and @var{v} are equal (by comparison of element values) and 0 otherwise. @end deftypefun @node Example programs for vectors @subsection Example programs for vectors This program shows how to allocate, initialize and read from a vector using the functions @code{gsl_vector_alloc}, @code{gsl_vector_set} and @code{gsl_vector_get}. @example @verbatiminclude examples/vector.c @end example @comment @noindent Here is the output from the program. The final loop attempts to read outside the range of the vector @code{v}, and the error is trapped by the range-checking code in @code{gsl_vector_get}. @example $ ./a.out v_0 = 1.23 v_1 = 2.23 v_2 = 3.23 gsl: vector_source.c:12: ERROR: index out of range Default GSL error handler invoked. Aborted (core dumped) @end example @comment @noindent The next program shows how to write a vector to a file. @example @verbatiminclude examples/vectorw.c @end example @comment @noindent After running this program the file @file{test.dat} should contain the elements of @code{v}, written using the format specifier @code{%.5g}. The vector could then be read back in using the function @code{gsl_vector_fscanf (f, v)} as follows: @example @verbatiminclude examples/vectorr.c @end example @node Matrices @section Matrices @cindex matrices @cindex physical dimension, matrices @cindex trailing dimension, matrices @cindex leading dimension, matrices @cindex ordering, matrix elements Matrices are defined by a @code{gsl_matrix} structure which describes a generalized slice of a block. Like a vector it represents a set of elements in an area of memory, but uses two indices instead of one. @tpindex gsl_matrix The @code{gsl_matrix} structure contains six components, the two dimensions of the matrix, a physical dimension, a pointer to the memory where the elements of the matrix are stored, @var{data}, a pointer to the block owned by the matrix @var{block}, if any, and an ownership flag, @var{owner}. The physical dimension determines the memory layout and can differ from the matrix dimension to allow the use of submatrices. The @code{gsl_matrix} structure is very simple and looks like this, @example typedef struct @{ size_t size1; size_t size2; size_t tda; double * data; gsl_block * block; int owner; @} gsl_matrix; @end example @comment @noindent Matrices are stored in row-major order, meaning that each row of elements forms a contiguous block in memory. This is the standard ``C-language ordering'' of two-dimensional arrays. Note that @sc{fortran} stores arrays in column-major order. The number of rows is @var{size1}. The range of valid row indices runs from 0 to @code{size1-1}. Similarly @var{size2} is the number of columns. The range of valid column indices runs from 0 to @code{size2-1}. The physical row dimension @var{tda}, or @dfn{trailing dimension}, specifies the size of a row of the matrix as laid out in memory. For example, in the following matrix @var{size1} is 3, @var{size2} is 4, and @var{tda} is 8. The physical memory layout of the matrix begins in the top left hand-corner and proceeds from left to right along each row in turn. @example @group 00 01 02 03 XX XX XX XX 10 11 12 13 XX XX XX XX 20 21 22 23 XX XX XX XX @end group @end example @noindent Each unused memory location is represented by ``@code{XX}''. The pointer @var{data} gives the location of the first element of the matrix in memory. The pointer @var{block} stores the location of the memory block in which the elements of the matrix are located (if any). If the matrix owns this block then the @var{owner} field is set to one and the block will be deallocated when the matrix is freed. If the matrix is only a slice of a block owned by another object then the @var{owner} field is zero and any underlying block will not be freed. The functions for allocating and accessing matrices are defined in @file{gsl_matrix.h} @menu * Matrix allocation:: * Accessing matrix elements:: * Initializing matrix elements:: * Reading and writing matrices:: * Matrix views:: * Creating row and column views:: * Copying matrices:: * Copying rows and columns:: * Exchanging rows and columns:: * Matrix operations:: * Finding maximum and minimum elements of matrices:: * Matrix properties:: * Example programs for matrices:: @end menu @node Matrix allocation @subsection Matrix allocation The functions for allocating memory to a matrix follow the style of @code{malloc} and @code{free}. They also perform their own error checking. If there is insufficient memory available to allocate a matrix then the functions call the GSL error handler (with an error number of @code{GSL_ENOMEM}) in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every @code{alloc}. @deftypefun {gsl_matrix *} gsl_matrix_alloc (size_t @var{n1}, size_t @var{n2}) This function creates a matrix of size @var{n1} rows by @var{n2} columns, returning a pointer to a newly initialized matrix struct. A new block is allocated for the elements of the matrix, and stored in the @var{block} component of the matrix struct. The block is ``owned'' by the matrix, and will be deallocated when the matrix is deallocated. @end deftypefun @deftypefun {gsl_matrix *} gsl_matrix_calloc (size_t @var{n1}, size_t @var{n2}) This function allocates memory for a matrix of size @var{n1} rows by @var{n2} columns and initializes all the elements of the matrix to zero. @end deftypefun @deftypefun void gsl_matrix_free (gsl_matrix * @var{m}) This function frees a previously allocated matrix @var{m}. If the matrix was created using @code{gsl_matrix_alloc} then the block underlying the matrix will also be deallocated. If the matrix has been created from another object then the memory is still owned by that object and will not be deallocated. @end deftypefun @node Accessing matrix elements @subsection Accessing matrix elements @cindex matrices, range-checking @cindex range-checking for matrices The functions for accessing the elements of a matrix use the same range checking system as vectors. You can turn off range checking by recompiling your program with the preprocessor definition @code{GSL_RANGE_CHECK_OFF}. The elements of the matrix are stored in ``C-order'', where the second index moves continuously through memory. More precisely, the element accessed by the function @code{gsl_matrix_get(m,i,j)} and @code{gsl_matrix_set(m,i,j,x)} is @example m->data[i * m->tda + j] @end example @comment @noindent where @var{tda} is the physical row-length of the matrix. @deftypefun double gsl_matrix_get (const gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) This function returns the @math{(i,j)}-th element of a matrix @var{m}. If @var{i} or @var{j} lie outside the allowed range of 0 to @math{@var{n1}-1} and 0 to @math{@var{n2}-1} then the error handler is invoked and 0 is returned. @inlinefn{} @end deftypefun @deftypefun void gsl_matrix_set (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}, double @var{x}) This function sets the value of the @math{(i,j)}-th element of a matrix @var{m} to @var{x}. If @var{i} or @var{j} lies outside the allowed range of 0 to @math{@var{n1}-1} and 0 to @math{@var{n2}-1} then the error handler is invoked. @inlinefn{} @end deftypefun @deftypefun {double *} gsl_matrix_ptr (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) @deftypefunx {const double *} gsl_matrix_const_ptr (const gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) These functions return a pointer to the @math{(i,j)}-th element of a matrix @var{m}. If @var{i} or @var{j} lie outside the allowed range of 0 to @math{@var{n1}-1} and 0 to @math{@var{n2}-1} then the error handler is invoked and a null pointer is returned. @inlinefns{} @end deftypefun @node Initializing matrix elements @subsection Initializing matrix elements @cindex matrices, initializing @cindex initializing matrices @cindex identity matrix @cindex matrix, identity @cindex zero matrix @cindex matrix, zero @cindex constant matrix @cindex matrix, constant @deftypefun void gsl_matrix_set_all (gsl_matrix * @var{m}, double @var{x}) This function sets all the elements of the matrix @var{m} to the value @var{x}. @end deftypefun @deftypefun void gsl_matrix_set_zero (gsl_matrix * @var{m}) This function sets all the elements of the matrix @var{m} to zero. @end deftypefun @deftypefun void gsl_matrix_set_identity (gsl_matrix * @var{m}) This function sets the elements of the matrix @var{m} to the corresponding elements of the identity matrix, @math{m(i,j) = \delta(i,j)}, i.e. a unit diagonal with all off-diagonal elements zero. This applies to both square and rectangular matrices. @end deftypefun @node Reading and writing matrices @subsection Reading and writing matrices The library provides functions for reading and writing matrices to a file as binary data or formatted text. @deftypefun int gsl_matrix_fwrite (FILE * @var{stream}, const gsl_matrix * @var{m}) This function writes the elements of the matrix @var{m} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_matrix_fread (FILE * @var{stream}, gsl_matrix * @var{m}) This function reads into the matrix @var{m} from the open stream @var{stream} in binary format. The matrix @var{m} must be preallocated with the correct dimensions since the function uses the size of @var{m} to determine how many bytes to read. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_matrix_fprintf (FILE * @var{stream}, const gsl_matrix * @var{m}, const char * @var{format}) This function writes the elements of the matrix @var{m} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be one of the @code{%g}, @code{%e} or @code{%f} formats for floating point numbers and @code{%d} for integers. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_matrix_fscanf (FILE * @var{stream}, gsl_matrix * @var{m}) This function reads formatted data from the stream @var{stream} into the matrix @var{m}. The matrix @var{m} must be preallocated with the correct dimensions since the function uses the size of @var{m} to determine how many numbers to read. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Matrix views @subsection Matrix views @tpindex gsl_matrix_view @tpindex gsl_matrix_const_view A matrix view is a temporary object, stored on the stack, which can be used to operate on a subset of matrix elements. Matrix views can be defined for both constant and non-constant matrices using separate types that preserve constness. A matrix view has the type @code{gsl_matrix_view} and a constant matrix view has the type @code{gsl_matrix_const_view}. In both cases the elements of the view can by accessed using the @code{matrix} component of the view object. A pointer @code{gsl_matrix *} or @code{const gsl_matrix *} can be obtained by taking the address of the @code{matrix} component with the @code{&} operator. In addition to matrix views it is also possible to create vector views of a matrix, such as row or column views. @deftypefun gsl_matrix_view gsl_matrix_submatrix (gsl_matrix * @var{m}, size_t @var{k1}, size_t @var{k2}, size_t @var{n1}, size_t @var{n2}) @deftypefunx gsl_matrix_const_view gsl_matrix_const_submatrix (const gsl_matrix * @var{m}, size_t @var{k1}, size_t @var{k2}, size_t @var{n1}, size_t @var{n2}) These functions return a matrix view of a submatrix of the matrix @var{m}. The upper-left element of the submatrix is the element (@var{k1},@var{k2}) of the original matrix. The submatrix has @var{n1} rows and @var{n2} columns. The physical number of columns in memory given by @var{tda} is unchanged. Mathematically, the @math{(i,j)}-th element of the new matrix is given by, @example m'(i,j) = m->data[(k1*m->tda + k2) + i*m->tda + j] @end example @noindent where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} runs from 0 to @code{n2-1}. The @code{data} pointer of the returned matrix struct is set to null if the combined parameters (@var{i},@var{j},@var{n1},@var{n2},@var{tda}) overrun the ends of the original matrix. The new matrix view is only a view of the block underlying the existing matrix, @var{m}. The block containing the elements of @var{m} is not owned by the new matrix view. When the view goes out of scope the original matrix @var{m} and its block will continue to exist. The original memory can only be deallocated by freeing the original matrix. Of course, the original matrix should not be deallocated while the view is still in use. The function @code{gsl_matrix_const_submatrix} is equivalent to @code{gsl_matrix_submatrix} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_matrix_view gsl_matrix_view_array (double * @var{base}, size_t @var{n1}, size_t @var{n2}) @deftypefunx gsl_matrix_const_view gsl_matrix_const_view_array (const double * @var{base}, size_t @var{n1}, size_t @var{n2}) These functions return a matrix view of the array @var{base}. The matrix has @var{n1} rows and @var{n2} columns. The physical number of columns in memory is also given by @var{n2}. Mathematically, the @math{(i,j)}-th element of the new matrix is given by, @example m'(i,j) = base[i*n2 + j] @end example @noindent where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} runs from 0 to @code{n2-1}. The new matrix is only a view of the array @var{base}. When the view goes out of scope the original array @var{base} will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use. The function @code{gsl_matrix_const_view_array} is equivalent to @code{gsl_matrix_view_array} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_matrix_view gsl_matrix_view_array_with_tda (double * @var{base}, size_t @var{n1}, size_t @var{n2}, size_t @var{tda}) @deftypefunx gsl_matrix_const_view gsl_matrix_const_view_array_with_tda (const double * @var{base}, size_t @var{n1}, size_t @var{n2}, size_t @var{tda}) These functions return a matrix view of the array @var{base} with a physical number of columns @var{tda} which may differ from the corresponding dimension of the matrix. The matrix has @var{n1} rows and @var{n2} columns, and the physical number of columns in memory is given by @var{tda}. Mathematically, the @math{(i,j)}-th element of the new matrix is given by, @example m'(i,j) = base[i*tda + j] @end example @noindent where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} runs from 0 to @code{n2-1}. The new matrix is only a view of the array @var{base}. When the view goes out of scope the original array @var{base} will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use. The function @code{gsl_matrix_const_view_array_with_tda} is equivalent to @code{gsl_matrix_view_array_with_tda} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_matrix_view gsl_matrix_view_vector (gsl_vector * @var{v}, size_t @var{n1}, size_t @var{n2}) @deftypefunx gsl_matrix_const_view gsl_matrix_const_view_vector (const gsl_vector * @var{v}, size_t @var{n1}, size_t @var{n2}) These functions return a matrix view of the vector @var{v}. The matrix has @var{n1} rows and @var{n2} columns. The vector must have unit stride. The physical number of columns in memory is also given by @var{n2}. Mathematically, the @math{(i,j)}-th element of the new matrix is given by, @example m'(i,j) = v->data[i*n2 + j] @end example @noindent where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} runs from 0 to @code{n2-1}. The new matrix is only a view of the vector @var{v}. When the view goes out of scope the original vector @var{v} will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function @code{gsl_matrix_const_view_vector} is equivalent to @code{gsl_matrix_view_vector} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_matrix_view gsl_matrix_view_vector_with_tda (gsl_vector * @var{v}, size_t @var{n1}, size_t @var{n2}, size_t @var{tda}) @deftypefunx gsl_matrix_const_view gsl_matrix_const_view_vector_with_tda (const gsl_vector * @var{v}, size_t @var{n1}, size_t @var{n2}, size_t @var{tda}) These functions return a matrix view of the vector @var{v} with a physical number of columns @var{tda} which may differ from the corresponding matrix dimension. The vector must have unit stride. The matrix has @var{n1} rows and @var{n2} columns, and the physical number of columns in memory is given by @var{tda}. Mathematically, the @math{(i,j)}-th element of the new matrix is given by, @example m'(i,j) = v->data[i*tda + j] @end example @noindent where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} runs from 0 to @code{n2-1}. The new matrix is only a view of the vector @var{v}. When the view goes out of scope the original vector @var{v} will continue to exist. The original memory can only be deallocated by freeing the original vector. Of course, the original vector should not be deallocated while the view is still in use. The function @code{gsl_matrix_const_view_vector_with_tda} is equivalent to @code{gsl_matrix_view_vector_with_tda} but can be used for matrices which are declared @code{const}. @end deftypefun @comment @node Modifying matrix views @comment @subsection Modifying matrix views @comment @comment @deftypefun int gsl_matrix_view_from_matrix (gsl_matrix * @var{m}, gsl_matrix * @var{mm}, const size_t @var{k1}, const size_t @var{k2}, const size_t @var{n1}, const size_t @var{n2}) @comment This function modifies and existing matrix view @var{m} to form a new @comment view of a matrix @var{mm}, starting from element (@var{k1},@var{k2}). @comment The matrix view has @var{n1} rows and @var{n2} columns. Any existing @comment view in @var{m} will be lost as a result of this function. @comment @end deftypefun @comment @comment @deftypefun int gsl_matrix_view_from_vector (gsl_matrix * @var{m}, gsl_vector * @var{v}, const size_t @var{offset}, const size_t @var{n1}, const size_t @var{n2}) @comment This function modifies and existing matrix view @var{m} to form a new @comment view of a vector @var{v}, starting from element @var{offset}. The @comment vector has @var{n1} rows and @var{n2} columns. Any @comment existing view in @var{m} will be lost as a result of this function. @comment @end deftypefun @comment @comment @deftypefun int gsl_matrix_view_from_array (gsl_matrix * @var{m}, double * @var{base}, const size_t @var{offset}, const size_t @var{n1}, const size_t @var{n2}) @comment This function modifies and existing matrix view @var{m} to form a new @comment view of an array @var{base}, starting from element @var{offset}. The @comment matrix has @var{n1} rows and @var{n2} columns. Any @comment existing view in @var{m} will be lost as a result of this function. @comment @end deftypefun @comment @comment @deftypefun {gsl_matrix *} gsl_matrix_alloc_from_block (gsl_block * @var{b}, size_t @var{offset}, size_t @var{n1}, size_t @var{n2}, size_t @var{tda}) @comment This function creates a matrix as a slice of the block @var{b}, @comment returning a pointer to a newly initialized matrix struct. The start of @comment the matrix is offset by @var{offset} elements from the start of the @comment block. The matrix has @var{n1} rows and @var{n2} columns, with the @comment physical number of columns in memory given by @var{tda}. @comment Mathematically, the (@var{i},@var{j})-th element of the matrix is given by, @comment @comment @example @comment m(i,j) = b->data[offset + i*tda + j] @comment @end example @comment @noindent @comment where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} @comment runs from 0 to @code{n2-1}. @comment @comment A null pointer is returned if the combined parameters @comment (@var{offset},@var{n1},@var{n2},@var{tda}) overrun the end of the block @comment or if insufficient memory is available to store the matrix. @comment @comment The matrix is only a view of the block @var{b}, and the block is not @comment owned by the matrix. When the matrix is deallocated the block @var{b} @comment will continue to exist. This memory can only be deallocated by freeing @comment the block itself. Of course, this block should not be deallocated while @comment the matrix is still in use. @comment @end deftypefun @comment @comment @deftypefun {gsl_matrix *} gsl_matrix_alloc_from_matrix (gsl_matrix * @var{m}, size_t @var{k1}, size_t @var{k2}, size_t @var{n1}, size_t @var{n2}) @comment @comment This function creates a matrix as a submatrix of the matrix @var{m}, @comment returning a pointer to a newly initialized matrix struct. The upper-left @comment element of the submatrix is the element (@var{k1},@var{k2}) of the @comment original matrix. The submatrix has @var{n1} rows and @var{n2} columns. @comment The physical number of columns in memory given by @var{tda} is @comment unchanged. Mathematically, the (@var{i},@var{j})-th element of the @comment new matrix is given by, @comment @comment @example @comment m'(i,j) = m->data[(k1*m->tda + k2) + i*m->tda + j] @comment @end example @comment @noindent @comment where the index @var{i} runs from 0 to @code{n1-1} and the index @var{j} @comment runs from 0 to @code{n2-1}. @comment @comment A null pointer is returned if the combined parameters @comment (@var{k1},@var{k2},@var{n1},@var{n2},@var{tda}) overrun the end of the @comment original matrix or if insufficient memory is available to store the matrix. @comment @comment The new matrix is only a view of the block underlying the existing @comment matrix, @var{m}. The block is not owned by the new matrix. When the new @comment matrix is deallocated the original matrix @var{m} and its block will @comment continue to exist. The original memory can only be deallocated by @comment freeing the original matrix. Of course, the original matrix should not @comment be deallocated while the new matrix is still in use. @comment @end deftypefun @node Creating row and column views @subsection Creating row and column views In general there are two ways to access an object, by reference or by copying. The functions described in this section create vector views which allow access to a row or column of a matrix by reference. Modifying elements of the view is equivalent to modifying the matrix, since both the vector view and the matrix point to the same memory block. @deftypefun gsl_vector_view gsl_matrix_row (gsl_matrix * @var{m}, size_t @var{i}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_row (const gsl_matrix * @var{m}, size_t @var{i}) These functions return a vector view of the @var{i}-th row of the matrix @var{m}. The @code{data} pointer of the new vector is set to null if @var{i} is out of range. The function @code{gsl_vector_const_row} is equivalent to @code{gsl_matrix_row} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_matrix_column (gsl_matrix * @var{m}, size_t @var{j}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_column (const gsl_matrix * @var{m}, size_t @var{j}) These functions return a vector view of the @var{j}-th column of the matrix @var{m}. The @code{data} pointer of the new vector is set to null if @var{j} is out of range. The function @code{gsl_vector_const_column} is equivalent to @code{gsl_matrix_column} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_matrix_subrow (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{offset}, size_t @var{n}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_subrow (const gsl_matrix * @var{m}, size_t @var{i}, size_t @var{offset}, size_t @var{n}) These functions return a vector view of the @var{i}-th row of the matrix @var{m} beginning at @var{offset} elements past the first column and containing @var{n} elements. The @code{data} pointer of the new vector is set to null if @var{i}, @var{offset}, or @var{n} are out of range. The function @code{gsl_vector_const_subrow} is equivalent to @code{gsl_matrix_subrow} but can be used for matrices which are declared @code{const}. @end deftypefun @deftypefun gsl_vector_view gsl_matrix_subcolumn (gsl_matrix * @var{m}, size_t @var{j}, size_t @var{offset}, size_t @var{n}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_subcolumn (const gsl_matrix * @var{m}, size_t @var{j}, size_t @var{offset}, size_t @var{n}) These functions return a vector view of the @var{j}-th column of the matrix @var{m} beginning at @var{offset} elements past the first row and containing @var{n} elements. The @code{data} pointer of the new vector is set to null if @var{j}, @var{offset}, or @var{n} are out of range. The function @code{gsl_vector_const_subcolumn} is equivalent to @code{gsl_matrix_subcolumn} but can be used for matrices which are declared @code{const}. @end deftypefun @cindex matrix diagonal @cindex diagonal, of a matrix @deftypefun gsl_vector_view gsl_matrix_diagonal (gsl_matrix * @var{m}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_diagonal (const gsl_matrix * @var{m}) These functions return a vector view of the diagonal of the matrix @var{m}. The matrix @var{m} is not required to be square. For a rectangular matrix the length of the diagonal is the same as the smaller dimension of the matrix. The function @code{gsl_matrix_const_diagonal} is equivalent to @code{gsl_matrix_diagonal} but can be used for matrices which are declared @code{const}. @end deftypefun @cindex matrix subdiagonal @cindex subdiagonal, of a matrix @deftypefun gsl_vector_view gsl_matrix_subdiagonal (gsl_matrix * @var{m}, size_t @var{k}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_subdiagonal (const gsl_matrix * @var{m}, size_t @var{k}) These functions return a vector view of the @var{k}-th subdiagonal of the matrix @var{m}. The matrix @var{m} is not required to be square. The diagonal of the matrix corresponds to @math{k = 0}. The function @code{gsl_matrix_const_subdiagonal} is equivalent to @code{gsl_matrix_subdiagonal} but can be used for matrices which are declared @code{const}. @end deftypefun @cindex matrix superdiagonal @cindex superdiagonal, matrix @deftypefun gsl_vector_view gsl_matrix_superdiagonal (gsl_matrix * @var{m}, size_t @var{k}) @deftypefunx {gsl_vector_const_view} gsl_matrix_const_superdiagonal (const gsl_matrix * @var{m}, size_t @var{k}) These functions return a vector view of the @var{k}-th superdiagonal of the matrix @var{m}. The matrix @var{m} is not required to be square. The diagonal of the matrix corresponds to @math{k = 0}. The function @code{gsl_matrix_const_superdiagonal} is equivalent to @code{gsl_matrix_superdiagonal} but can be used for matrices which are declared @code{const}. @end deftypefun @comment @deftypefun {gsl_vector *} gsl_vector_alloc_row_from_matrix (gsl_matrix * @var{m}, size_t @var{i}) @comment This function allocates a new @code{gsl_vector} struct which points to @comment the @var{i}-th row of the matrix @var{m}. @comment @end deftypefun @comment @comment @deftypefun {gsl_vector *} gsl_vector_alloc_col_from_matrix (gsl_matrix * @var{m}, size_t @var{j}) @comment This function allocates a new @code{gsl_vector} struct which points to @comment the @var{j}-th column of the matrix @var{m}. @comment @end deftypefun @node Copying matrices @subsection Copying matrices @deftypefun int gsl_matrix_memcpy (gsl_matrix * @var{dest}, const gsl_matrix * @var{src}) This function copies the elements of the matrix @var{src} into the matrix @var{dest}. The two matrices must have the same size. @end deftypefun @deftypefun int gsl_matrix_swap (gsl_matrix * @var{m1}, gsl_matrix * @var{m2}) This function exchanges the elements of the matrices @var{m1} and @var{m2} by copying. The two matrices must have the same size. @end deftypefun @node Copying rows and columns @subsection Copying rows and columns The functions described in this section copy a row or column of a matrix into a vector. This allows the elements of the vector and the matrix to be modified independently. Note that if the matrix and the vector point to overlapping regions of memory then the result will be undefined. The same effect can be achieved with more generality using @code{gsl_vector_memcpy} with vector views of rows and columns. @deftypefun int gsl_matrix_get_row (gsl_vector * @var{v}, const gsl_matrix * @var{m}, size_t @var{i}) This function copies the elements of the @var{i}-th row of the matrix @var{m} into the vector @var{v}. The length of the vector must be the same as the length of the row. @end deftypefun @deftypefun int gsl_matrix_get_col (gsl_vector * @var{v}, const gsl_matrix * @var{m}, size_t @var{j}) This function copies the elements of the @var{j}-th column of the matrix @var{m} into the vector @var{v}. The length of the vector must be the same as the length of the column. @end deftypefun @deftypefun int gsl_matrix_set_row (gsl_matrix * @var{m}, size_t @var{i}, const gsl_vector * @var{v}) This function copies the elements of the vector @var{v} into the @var{i}-th row of the matrix @var{m}. The length of the vector must be the same as the length of the row. @end deftypefun @deftypefun int gsl_matrix_set_col (gsl_matrix * @var{m}, size_t @var{j}, const gsl_vector * @var{v}) This function copies the elements of the vector @var{v} into the @var{j}-th column of the matrix @var{m}. The length of the vector must be the same as the length of the column. @end deftypefun @node Exchanging rows and columns @subsection Exchanging rows and columns The following functions can be used to exchange the rows and columns of a matrix. @deftypefun int gsl_matrix_swap_rows (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) This function exchanges the @var{i}-th and @var{j}-th rows of the matrix @var{m} in-place. @end deftypefun @deftypefun int gsl_matrix_swap_columns (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) This function exchanges the @var{i}-th and @var{j}-th columns of the matrix @var{m} in-place. @end deftypefun @deftypefun int gsl_matrix_swap_rowcol (gsl_matrix * @var{m}, size_t @var{i}, size_t @var{j}) This function exchanges the @var{i}-th row and @var{j}-th column of the matrix @var{m} in-place. The matrix must be square for this operation to be possible. @end deftypefun @deftypefun int gsl_matrix_transpose_memcpy (gsl_matrix * @var{dest}, const gsl_matrix * @var{src}) This function makes the matrix @var{dest} the transpose of the matrix @var{src} by copying the elements of @var{src} into @var{dest}. This function works for all matrices provided that the dimensions of the matrix @var{dest} match the transposed dimensions of the matrix @var{src}. @end deftypefun @deftypefun int gsl_matrix_transpose (gsl_matrix * @var{m}) This function replaces the matrix @var{m} by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible. @end deftypefun @node Matrix operations @subsection Matrix operations The following operations are defined for real and complex matrices. @deftypefun int gsl_matrix_add (gsl_matrix * @var{a}, const gsl_matrix * @var{b}) This function adds the elements of matrix @var{b} to the elements of matrix @var{a}. The result @math{a(i,j) \leftarrow a(i,j) + b(i,j)} is stored in @var{a} and @var{b} remains unchanged. The two matrices must have the same dimensions. @end deftypefun @deftypefun int gsl_matrix_sub (gsl_matrix * @var{a}, const gsl_matrix * @var{b}) This function subtracts the elements of matrix @var{b} from the elements of matrix @var{a}. The result @math{a(i,j) \leftarrow a(i,j) - b(i,j)} is stored in @var{a} and @var{b} remains unchanged. The two matrices must have the same dimensions. @end deftypefun @deftypefun int gsl_matrix_mul_elements (gsl_matrix * @var{a}, const gsl_matrix * @var{b}) This function multiplies the elements of matrix @var{a} by the elements of matrix @var{b}. The result @math{a(i,j) \leftarrow a(i,j) * b(i,j)} is stored in @var{a} and @var{b} remains unchanged. The two matrices must have the same dimensions. @end deftypefun @deftypefun int gsl_matrix_div_elements (gsl_matrix * @var{a}, const gsl_matrix * @var{b}) This function divides the elements of matrix @var{a} by the elements of matrix @var{b}. The result @math{a(i,j) \leftarrow a(i,j) / b(i,j)} is stored in @var{a} and @var{b} remains unchanged. The two matrices must have the same dimensions. @end deftypefun @deftypefun int gsl_matrix_scale (gsl_matrix * @var{a}, const double @var{x}) This function multiplies the elements of matrix @var{a} by the constant factor @var{x}. The result @math{a(i,j) \leftarrow x a(i,j)} is stored in @var{a}. @end deftypefun @deftypefun int gsl_matrix_add_constant (gsl_matrix * @var{a}, const double @var{x}) This function adds the constant value @var{x} to the elements of the matrix @var{a}. The result @math{a(i,j) \leftarrow a(i,j) + x} is stored in @var{a}. @end deftypefun @node Finding maximum and minimum elements of matrices @subsection Finding maximum and minimum elements of matrices The following operations are only defined for real matrices. @deftypefun double gsl_matrix_max (const gsl_matrix * @var{m}) This function returns the maximum value in the matrix @var{m}. @end deftypefun @deftypefun double gsl_matrix_min (const gsl_matrix * @var{m}) This function returns the minimum value in the matrix @var{m}. @end deftypefun @deftypefun void gsl_matrix_minmax (const gsl_matrix * @var{m}, double * @var{min_out}, double * @var{max_out}) This function returns the minimum and maximum values in the matrix @var{m}, storing them in @var{min_out} and @var{max_out}. @end deftypefun @deftypefun void gsl_matrix_max_index (const gsl_matrix * @var{m}, size_t * @var{imax}, size_t * @var{jmax}) This function returns the indices of the maximum value in the matrix @var{m}, storing them in @var{imax} and @var{jmax}. When there are several equal maximum elements then the first element found is returned, searching in row-major order. @end deftypefun @deftypefun void gsl_matrix_min_index (const gsl_matrix * @var{m}, size_t * @var{imin}, size_t * @var{jmin}) This function returns the indices of the minimum value in the matrix @var{m}, storing them in @var{imin} and @var{jmin}. When there are several equal minimum elements then the first element found is returned, searching in row-major order. @end deftypefun @deftypefun void gsl_matrix_minmax_index (const gsl_matrix * @var{m}, size_t * @var{imin}, size_t * @var{jmin}, size_t * @var{imax}, size_t * @var{jmax}) This function returns the indices of the minimum and maximum values in the matrix @var{m}, storing them in (@var{imin},@var{jmin}) and (@var{imax},@var{jmax}). When there are several equal minimum or maximum elements then the first elements found are returned, searching in row-major order. @end deftypefun @node Matrix properties @subsection Matrix properties The following functions are defined for real and complex matrices. For complex matrices both the real and imaginary parts must satisfy the conditions. @deftypefun int gsl_matrix_isnull (const gsl_matrix * @var{m}) @deftypefunx int gsl_matrix_ispos (const gsl_matrix * @var{m}) @deftypefunx int gsl_matrix_isneg (const gsl_matrix * @var{m}) @deftypefunx int gsl_matrix_isnonneg (const gsl_matrix * @var{m}) These functions return 1 if all the elements of the matrix @var{m} are zero, strictly positive, strictly negative, or non-negative respectively, and 0 otherwise. To test whether a matrix is positive-definite, use the Cholesky decomposition (@pxref{Cholesky Decomposition}). @end deftypefun @deftypefun int gsl_matrix_equal (const gsl_matrix * @var{a}, const gsl_matrix * @var{b}) This function returns 1 if the matrices @var{a} and @var{b} are equal (by comparison of element values) and 0 otherwise. @end deftypefun @node Example programs for matrices @subsection Example programs for matrices The program below shows how to allocate, initialize and read from a matrix using the functions @code{gsl_matrix_alloc}, @code{gsl_matrix_set} and @code{gsl_matrix_get}. @example @verbatiminclude examples/matrix.c @end example @comment @noindent Here is the output from the program. The final loop attempts to read outside the range of the matrix @code{m}, and the error is trapped by the range-checking code in @code{gsl_matrix_get}. @example $ ./a.out m(0,0) = 0.23 m(0,1) = 1.23 m(0,2) = 2.23 m(1,0) = 100.23 m(1,1) = 101.23 m(1,2) = 102.23 ... m(9,2) = 902.23 gsl: matrix_source.c:13: ERROR: first index out of range Default GSL error handler invoked. Aborted (core dumped) @end example @comment @noindent The next program shows how to write a matrix to a file. @example @verbatiminclude examples/matrixw.c @end example @comment @noindent After running this program the file @file{test.dat} should contain the elements of @code{m}, written in binary format. The matrix which is read back in using the function @code{gsl_matrix_fread} should be exactly equal to the original matrix. The following program demonstrates the use of vector views. The program computes the column norms of a matrix. @example @verbatiminclude examples/vectorview.c @end example @noindent Here is the output of the program, @example $ ./a.out @verbatiminclude examples/vectorview.out @end example @noindent The results can be confirmed using @sc{gnu octave}, @example $ octave GNU Octave, version 2.0.16.92 octave> m = sin(0:9)' * ones(1,10) + ones(10,1) * cos(0:9); octave> sqrt(sum(m.^2)) ans = 4.3146 3.1205 2.1932 3.2611 2.5342 2.5728 4.2047 3.6520 2.0852 3.0731 @end example @node Vector and Matrix References and Further Reading @section References and Further Reading The block, vector and matrix objects in GSL follow the @code{valarray} model of C++. A description of this model can be found in the following reference, @itemize @w{} @item B. Stroustrup, @cite{The C++ Programming Language} (3rd Ed), Section 22.4 Vector Arithmetic. Addison-Wesley 1997, ISBN 0-201-88954-4. @end itemize gsl-1.16/doc/multiset.texi0000664000252300025230000001750512171574312012470 00000000000000@cindex multisets This chapter describes functions for creating and manipulating multisets. A multiset @math{c} is represented by an array of @math{k} integers in the range 0 to @math{n-1}, where each value @math{c_i} may occur more than once. The multiset @math{c} corresponds to indices of @math{k} elements chosen from an @math{n} element vector with replacement. In mathematical terms, @math{n} is the cardinality of the multiset while @math{k} is the maximum multiplicity of any value. Multisets are useful, for example, when iterating over the indices of a @math{k}-th order symmetric tensor in @math{n}-space. The functions described in this chapter are defined in the header file @file{gsl_multiset.h}. @menu * The Multiset struct:: * Multiset allocation:: * Accessing multiset elements:: * Multiset properties:: * Multiset functions:: * Reading and writing multisets:: * Multiset Examples:: @end menu @node The Multiset struct @section The Multiset struct @tpindex gsl_multiset A multiset is defined by a structure containing three components, the values of @math{n} and @math{k}, and a pointer to the multiset array. The elements of the multiset array are all of type @code{size_t}, and are stored in increasing order. The @code{gsl_multiset} structure looks like this, @example typedef struct @{ size_t n; size_t k; size_t *data; @} gsl_multiset; @end example @comment @noindent @node Multiset allocation @section Multiset allocation @deftypefun {gsl_multiset *} gsl_multiset_alloc (size_t @var{n}, size_t @var{k}) This function allocates memory for a new multiset with parameters @var{n}, @var{k}. The multiset is not initialized and its elements are undefined. Use the function @code{gsl_multiset_calloc} if you want to create a multiset which is initialized to the lexicographically first multiset element. A null pointer is returned if insufficient memory is available to create the multiset. @end deftypefun @deftypefun {gsl_multiset *} gsl_multiset_calloc (size_t @var{n}, size_t @var{k}) This function allocates memory for a new multiset with parameters @var{n}, @var{k} and initializes it to the lexicographically first multiset element. A null pointer is returned if insufficient memory is available to create the multiset. @end deftypefun @deftypefun void gsl_multiset_init_first (gsl_multiset * @var{c}) This function initializes the multiset @var{c} to the lexicographically first multiset element, i.e. @math{0} repeated @math{k} times. @end deftypefun @deftypefun void gsl_multiset_init_last (gsl_multiset * @var{c}) This function initializes the multiset @var{c} to the lexicographically last multiset element, i.e. @math{n-1} repeated @math{k} times. @end deftypefun @deftypefun void gsl_multiset_free (gsl_multiset * @var{c}) This function frees all the memory used by the multiset @var{c}. @end deftypefun @deftypefun int gsl_multiset_memcpy (gsl_multiset * @var{dest}, const gsl_multiset * @var{src}) This function copies the elements of the multiset @var{src} into the multiset @var{dest}. The two multisets must have the same size. @end deftypefun @node Accessing multiset elements @section Accessing multiset elements The following function can be used to access the elements of a multiset. @deftypefun size_t gsl_multiset_get (const gsl_multiset * @var{c}, const size_t @var{i}) This function returns the value of the @var{i}-th element of the multiset @var{c}. If @var{i} lies outside the allowed range of 0 to @math{@var{k}-1} then the error handler is invoked and 0 is returned. @inlinefn{} @end deftypefun @node Multiset properties @section Multiset properties @deftypefun size_t gsl_multiset_n (const gsl_multiset * @var{c}) This function returns the range (@math{n}) of the multiset @var{c}. @end deftypefun @deftypefun size_t gsl_multiset_k (const gsl_multiset * @var{c}) This function returns the number of elements (@math{k}) in the multiset @var{c}. @end deftypefun @deftypefun {size_t *} gsl_multiset_data (const gsl_multiset * @var{c}) This function returns a pointer to the array of elements in the multiset @var{c}. @end deftypefun @deftypefun int gsl_multiset_valid (gsl_multiset * @var{c}) @cindex checking multiset for validity @cindex testing multiset for validity This function checks that the multiset @var{c} is valid. The @var{k} elements should lie in the range 0 to @math{@var{n}-1}, with each value occurring in nondecreasing order. @end deftypefun @node Multiset functions @section Multiset functions @deftypefun int gsl_multiset_next (gsl_multiset * @var{c}) @cindex iterating through multisets This function advances the multiset @var{c} to the next multiset element in lexicographic order and returns @code{GSL_SUCCESS}. If no further multisets elements are available it returns @code{GSL_FAILURE} and leaves @var{c} unmodified. Starting with the first multiset and repeatedly applying this function will iterate through all possible multisets of a given order. @end deftypefun @deftypefun int gsl_multiset_prev (gsl_multiset * @var{c}) This function steps backwards from the multiset @var{c} to the previous multiset element in lexicographic order, returning @code{GSL_SUCCESS}. If no previous multiset is available it returns @code{GSL_FAILURE} and leaves @var{c} unmodified. @end deftypefun @node Reading and writing multisets @section Reading and writing multisets The library provides functions for reading and writing multisets to a file as binary data or formatted text. @deftypefun int gsl_multiset_fwrite (FILE * @var{stream}, const gsl_multiset * @var{c}) This function writes the elements of the multiset @var{c} to the stream @var{stream} in binary format. The function returns @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_multiset_fread (FILE * @var{stream}, gsl_multiset * @var{c}) This function reads elements from the open stream @var{stream} into the multiset @var{c} in binary format. The multiset @var{c} must be preallocated with correct values of @math{n} and @math{k} since the function uses the size of @var{c} to determine how many bytes to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_multiset_fprintf (FILE * @var{stream}, const gsl_multiset * @var{c}, const char * @var{format}) This function writes the elements of the multiset @var{c} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be suitable for a type of @var{size_t}. In ISO C99 the type modifier @code{z} represents @code{size_t}, so @code{"%zu\n"} is a suitable format.@footnote{In versions of the GNU C library prior to the ISO C99 standard, the type modifier @code{Z} was used instead.} The function returns @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_multiset_fscanf (FILE * @var{stream}, gsl_multiset * @var{c}) This function reads formatted data from the stream @var{stream} into the multiset @var{c}. The multiset @var{c} must be preallocated with correct values of @math{n} and @math{k} since the function uses the size of @var{c} to determine how many numbers to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Multiset Examples @section Examples The example program below prints all multisets elements containing the values @math{@{0,1,2,3@}} ordered by size. Multiset elements of the same size are ordered lexicographically. @example @verbatiminclude examples/multiset.c @end example @noindent Here is the output from the program, @example $ ./a.out @verbatiminclude examples/multiset.out @end example @noindent All 70 multisets are generated and sorted lexicographically. gsl-1.16/doc/rand-laplace.tex0000664000252300025230000005441612171574312012776 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-laplace.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-laplace.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 784 R -31 0 V 31 784 R -31 0 V 31 785 R -31 0 V 31 784 R -31 0 V 31 784 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 657 M 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 2 V 20 1 V 19 1 V 20 1 V 19 1 V 20 2 V 19 1 V 19 2 V 20 1 V 19 2 V 20 1 V 19 2 V 20 2 V 19 1 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 19 3 V 20 2 V 19 3 V 20 2 V 19 3 V 20 2 V 19 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 4 V 20 3 V 19 4 V 19 3 V 20 4 V 19 4 V 20 4 V 19 4 V 20 5 V 19 4 V 19 5 V 20 4 V 19 5 V 20 6 V 19 5 V 20 5 V 19 6 V 19 6 V 20 6 V 19 6 V 20 7 V 19 6 V 20 7 V 19 7 V 19 8 V 20 7 V 19 8 V 20 8 V 19 9 V 20 9 V 19 9 V 19 9 V 20 10 V 19 10 V 20 10 V 19 11 V 20 11 V 19 11 V 19 12 V 20 12 V 19 13 V 20 13 V 19 13 V 20 14 V 19 15 V 19 14 V 20 16 V 19 16 V 20 16 V 19 17 V 20 18 V 19 18 V 19 19 V 20 20 V 19 20 V 20 21 V 19 21 V 20 22 V 19 23 V 19 24 V 20 25 V 19 25 V 20 27 V 3052 1459 L 20 28 V 19 29 V 19 30 V 20 31 V 19 33 V 20 33 V 19 34 V 20 36 V 19 37 V 19 38 V 20 39 V 19 41 V 20 42 V 19 43 V 20 45 V 19 47 V 19 48 V 20 50 V 19 51 V 20 53 V 19 55 V 20 57 V 19 59 V 19 60 V 20 63 V 19 65 V 20 67 V 19 70 V 20 72 V 19 74 V 19 77 V 20 79 V 19 82 V 20 85 V 19 88 V 20 91 V 19 94 V 19 97 V 20 100 V 19 104 V 20 107 V 19 111 V 20 115 V 19 118 V 19 123 V 20 127 V 19 0 V 20 -127 V 19 -123 V 19 -118 V 20 -115 V 19 -111 V 20 -107 V 19 -104 V 20 -100 V 19 -97 V 19 -94 V 20 -91 V 19 -88 V 20 -85 V 19 -82 V 20 -79 V 19 -77 V 19 -74 V 20 -72 V 19 -70 V 20 -67 V 19 -65 V 20 -63 V 19 -60 V 19 -59 V 20 -57 V 19 -55 V 20 -53 V 19 -51 V 20 -50 V 19 -48 V 19 -47 V 20 -45 V 19 -43 V 20 -42 V 19 -41 V 20 -39 V 19 -38 V 19 -37 V 20 -36 V 19 -34 V 20 -33 V 19 -33 V 20 -31 V 19 -30 V 19 -29 V 20 -28 V 19 -27 V 20 -27 V 19 -25 V 20 -25 V 19 -24 V 19 -23 V 20 -22 V 19 -21 V 20 -21 V 19 -20 V 20 -20 V 5092 1185 L 19 -18 V 20 -18 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -14 V 19 -15 V 20 -14 V 19 -13 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 792 M 19 3 V 20 2 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 4 V 20 3 V 19 3 V 19 4 V 20 3 V 19 4 V 20 3 V 19 4 V 20 4 V 19 4 V 19 3 V 20 4 V 19 4 V 20 4 V 19 5 V 20 4 V 19 4 V 19 4 V 20 5 V 19 4 V 20 5 V 19 4 V 20 5 V 19 5 V 19 5 V 20 5 V 19 5 V 20 5 V 19 5 V 20 5 V 19 6 V 19 5 V 20 6 V 19 6 V 20 5 V 19 6 V 20 6 V 19 6 V 19 6 V 20 7 V 19 6 V 20 6 V 19 7 V 20 7 V 19 7 V 19 6 V 20 7 V 19 8 V 20 7 V 19 7 V 20 8 V 19 7 V 19 8 V 20 8 V 19 8 V 20 8 V 19 9 V 20 8 V 19 9 V 19 9 V 20 8 V 19 9 V 20 10 V 19 9 V 20 10 V 19 9 V 19 10 V 20 10 V 19 10 V 20 11 V 19 10 V 20 11 V 19 11 V 19 11 V 20 11 V 19 11 V 20 12 V 19 12 V 20 12 V 19 12 V 19 12 V 20 13 V 19 13 V 20 13 V 19 13 V 20 14 V 19 14 V 19 14 V 20 14 V 19 14 V 20 15 V 3052 1532 L 20 15 V 19 15 V 19 16 V 20 16 V 19 16 V 20 17 V 19 17 V 20 17 V 19 17 V 19 18 V 20 18 V 19 18 V 20 19 V 19 18 V 20 20 V 19 19 V 19 20 V 20 20 V 19 21 V 20 21 V 19 21 V 20 21 V 19 22 V 19 23 V 20 22 V 19 23 V 20 24 V 19 24 V 20 24 V 19 25 V 19 25 V 20 25 V 19 26 V 20 27 V 19 26 V 20 28 V 19 27 V 19 29 V 20 28 V 19 30 V 20 29 V 19 30 V 20 31 V 19 31 V 19 32 V 20 32 V 19 0 V 20 -32 V 19 -32 V 19 -31 V 20 -31 V 19 -30 V 20 -29 V 19 -30 V 20 -28 V 19 -29 V 19 -27 V 20 -28 V 19 -26 V 20 -27 V 19 -26 V 20 -25 V 19 -25 V 19 -25 V 20 -24 V 19 -24 V 20 -24 V 19 -23 V 20 -22 V 19 -23 V 19 -22 V 20 -21 V 19 -21 V 20 -21 V 19 -21 V 20 -20 V 19 -20 V 19 -19 V 20 -20 V 19 -18 V 20 -19 V 19 -18 V 20 -18 V 19 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -16 V 20 -16 V 19 -16 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 5092 1368 L 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -8 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -6 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=2$}}% \put(5957,4781){\rjust{\strut{}$a=1$}}% \put(3955,5244){\cjust{\strut{}Laplace Distribution (Two-sided Exponential)}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4552){\rjust{\strut{} 0.5}}% \put(900,3768){\rjust{\strut{} 0.4}}% \put(900,2984){\rjust{\strut{} 0.3}}% \put(900,2199){\rjust{\strut{} 0.2}}% \put(900,1415){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-pow-int.texi0000664000252300025230000000153612171574312014020 00000000000000@cindex power function @cindex integer powers The following functions are equivalent to the function @code{gsl_pow_int} (@pxref{Small integer powers}) with an error estimate. These functions are declared in the header file @file{gsl_sf_pow_int.h}. @deftypefun double gsl_sf_pow_int (double @var{x}, int @var{n}) @deftypefunx int gsl_sf_pow_int_e (double @var{x}, int @var{n}, gsl_sf_result * @var{result}) These routines compute the power @math{x^n} for integer @var{n}. The power is computed using the minimum number of multiplications. For example, @math{x^8} is computed as @math{((x^2)^2)^2}, requiring only 3 multiplications. For reasons of efficiency, these functions do not check for overflow or underflow conditions. @end deftypefun @example #include /* compute 3.0**12 */ double y = gsl_sf_pow_int(3.0, 12); @end example gsl-1.16/doc/math.texi0000664000252300025230000003171612171574312011553 00000000000000@cindex elementary functions @cindex mathematical functions, elementary This chapter describes basic mathematical functions. Some of these functions are present in system libraries, but the alternative versions given here can be used as a substitute when the system functions are not available. The functions and macros described in this chapter are defined in the header file @file{gsl_math.h}. @menu * Mathematical Constants:: * Infinities and Not-a-number:: * Elementary Functions:: * Small integer powers:: * Testing the Sign of Numbers:: * Testing for Odd and Even Numbers:: * Maximum and Minimum functions:: * Approximate Comparison of Floating Point Numbers:: @end menu @node Mathematical Constants @section Mathematical Constants @cindex mathematical constants, defined as macros @cindex numerical constants, defined as macros @cindex constants, mathematical---defined as macros @cindex macros for mathematical constants The library ensures that the standard @sc{bsd} mathematical constants are defined. For reference, here is a list of the constants: @table @code @item M_E @cindex e, defined as a macro The base of exponentials, @math{e} @item M_LOG2E The base-2 logarithm of @math{e}, @math{\log_2 (e)} @item M_LOG10E The base-10 logarithm of @math{e}, @c{$\log_{10}(e)$} @math{\log_10 (e)} @item M_SQRT2 The square root of two, @math{\sqrt 2} @item M_SQRT1_2 The square root of one-half, @c{$\sqrt{1/2}$} @math{\sqrt@{1/2@}} @item M_SQRT3 The square root of three, @math{\sqrt 3} @item M_PI @cindex pi, defined as a macro The constant pi, @math{\pi} @item M_PI_2 Pi divided by two, @math{\pi/2} @item M_PI_4 Pi divided by four, @math{\pi/4} @item M_SQRTPI The square root of pi, @math{\sqrt\pi} @item M_2_SQRTPI Two divided by the square root of pi, @math{2/\sqrt\pi} @item M_1_PI The reciprocal of pi, @math{1/\pi} @item M_2_PI Twice the reciprocal of pi, @math{2/\pi} @item M_LN10 The natural logarithm of ten, @math{\ln(10)} @item M_LN2 The natural logarithm of two, @math{\ln(2)} @item M_LNPI The natural logarithm of pi, @math{\ln(\pi)} @item M_EULER @cindex Euler's constant, defined as a macro Euler's constant, @math{\gamma} @end table @node Infinities and Not-a-number @section Infinities and Not-a-number @cindex infinity, defined as a macro @cindex IEEE infinity, defined as a macro @cindex NaN, defined as a macro @cindex Not-a-number, defined as a macro @cindex IEEE NaN, defined as a macro @defvr {Macro} GSL_POSINF This macro contains the IEEE representation of positive infinity, @math{+\infty}. It is computed from the expression @code{+1.0/0.0}. @end defvr @defvr {Macro} GSL_NEGINF This macro contains the IEEE representation of negative infinity, @math{-\infty}. It is computed from the expression @code{-1.0/0.0}. @end defvr @defvr {Macro} GSL_NAN This macro contains the IEEE representation of the Not-a-Number symbol, @code{NaN}. It is computed from the ratio @code{0.0/0.0}. @end defvr @deftypefun int gsl_isnan (const double @var{x}) This function returns 1 if @var{x} is not-a-number. @end deftypefun @deftypefun int gsl_isinf (const double @var{x}) This function returns @math{+1} if @var{x} is positive infinity, @math{-1} if @var{x} is negative infinity and 0 otherwise.@footnote{Note that the C99 standard only requires the system @code{isinf} function to return a non-zero value, without the sign of the infinity. The implementation in some earlier versions of GSL used the system @code{isinf} function and may have this behavior on some platforms. Therefore, it is advisable to test the sign of @var{x} separately, if needed, rather than relying the sign of the return value from @code{gsl_isinf()}.} @end deftypefun @deftypefun int gsl_finite (const double @var{x}) This function returns 1 if @var{x} is a real number, and 0 if it is infinite or not-a-number. @end deftypefun @node Elementary Functions @section Elementary Functions The following routines provide portable implementations of functions found in the BSD math library. When native versions are not available the functions described here can be used instead. The substitution can be made automatically if you use @code{autoconf} to compile your application (@pxref{Portability functions}). @deftypefun double gsl_log1p (const double @var{x}) @cindex log1p @cindex logarithm, computed accurately near 1 This function computes the value of @math{\log(1+x)} in a way that is accurate for small @var{x}. It provides an alternative to the BSD math function @code{log1p(x)}. @end deftypefun @deftypefun double gsl_expm1 (const double @var{x}) @cindex expm1 @cindex exponential, difference from 1 computed accurately This function computes the value of @math{\exp(x)-1} in a way that is accurate for small @var{x}. It provides an alternative to the BSD math function @code{expm1(x)}. @end deftypefun @deftypefun double gsl_hypot (const double @var{x}, const double @var{y}) @cindex hypot @cindex euclidean distance function, hypot @cindex length, computed accurately using hypot This function computes the value of @c{$\sqrt{x^2 + y^2}$} @math{\sqrt@{x^2 + y^2@}} in a way that avoids overflow. It provides an alternative to the BSD math function @code{hypot(x,y)}. @end deftypefun @deftypefun double gsl_hypot3 (const double @var{x}, const double @var{y}, const double @var{z}) @cindex euclidean distance function, hypot @cindex length, computed accurately using hypot This function computes the value of @c{$\sqrt{x^2 + y^2 + z^2}$} @math{\sqrt@{x^2 + y^2 + z^2@}} in a way that avoids overflow. @end deftypefun @deftypefun double gsl_acosh (const double @var{x}) @cindex acosh @cindex hyperbolic cosine, inverse @cindex inverse hyperbolic cosine This function computes the value of @math{\arccosh(x)}. It provides an alternative to the standard math function @code{acosh(x)}. @end deftypefun @deftypefun double gsl_asinh (const double @var{x}) @cindex asinh @cindex hyperbolic sine, inverse @cindex inverse hyperbolic sine This function computes the value of @math{\arcsinh(x)}. It provides an alternative to the standard math function @code{asinh(x)}. @end deftypefun @deftypefun double gsl_atanh (const double @var{x}) @cindex atanh @cindex hyperbolic tangent, inverse @cindex inverse hyperbolic tangent This function computes the value of @math{\arctanh(x)}. It provides an alternative to the standard math function @code{atanh(x)}. @end deftypefun @deftypefun double gsl_ldexp (double @var{x}, int @var{e}) @cindex ldexp This function computes the value of @math{x * 2^e}. It provides an alternative to the standard math function @code{ldexp(x,e)}. @end deftypefun @deftypefun double gsl_frexp (double @var{x}, int * @var{e}) @cindex frexp This function splits the number @math{x} into its normalized fraction @math{f} and exponent @math{e}, such that @math{x = f * 2^e} and @c{$0.5 \le f < 1$} @math{0.5 <= f < 1}. The function returns @math{f} and stores the exponent in @math{e}. If @math{x} is zero, both @math{f} and @math{e} are set to zero. This function provides an alternative to the standard math function @code{frexp(x, e)}. @end deftypefun @node Small integer powers @section Small integer powers A common complaint about the standard C library is its lack of a function for calculating (small) integer powers. GSL provides some simple functions to fill this gap. For reasons of efficiency, these functions do not check for overflow or underflow conditions. @deftypefun double gsl_pow_int (double @var{x}, int @var{n}) @deftypefunx double gsl_pow_uint (double @var{x}, unsigned int @var{n}) These routines computes the power @math{x^n} for integer @var{n}. The power is computed efficiently---for example, @math{x^8} is computed as @math{((x^2)^2)^2}, requiring only 3 multiplications. A version of this function which also computes the numerical error in the result is available as @code{gsl_sf_pow_int_e}. @end deftypefun @deftypefun double gsl_pow_2 (const double @var{x}) @deftypefunx double gsl_pow_3 (const double @var{x}) @deftypefunx double gsl_pow_4 (const double @var{x}) @deftypefunx double gsl_pow_5 (const double @var{x}) @deftypefunx double gsl_pow_6 (const double @var{x}) @deftypefunx double gsl_pow_7 (const double @var{x}) @deftypefunx double gsl_pow_8 (const double @var{x}) @deftypefunx double gsl_pow_9 (const double @var{x}) These functions can be used to compute small integer powers @math{x^2}, @math{x^3}, etc. efficiently. The functions will be inlined when @code{HAVE_INLINE} is defined, so that use of these functions should be as efficient as explicitly writing the corresponding product expression. @end deftypefun @example #include double y = gsl_pow_4 (3.141) /* compute 3.141**4 */ @end example @node Testing the Sign of Numbers @section Testing the Sign of Numbers @defmac GSL_SIGN (x) This macro returns the sign of @var{x}. It is defined as @code{((x) >= 0 ? 1 : -1)}. Note that with this definition the sign of zero is positive (regardless of its @sc{ieee} sign bit). @end defmac @node Testing for Odd and Even Numbers @section Testing for Odd and Even Numbers @defmac GSL_IS_ODD (n) This macro evaluates to 1 if @var{n} is odd and 0 if @var{n} is even. The argument @var{n} must be of integer type. @end defmac @defmac GSL_IS_EVEN (n) This macro is the opposite of @code{GSL_IS_ODD(n)}. It evaluates to 1 if @var{n} is even and 0 if @var{n} is odd. The argument @var{n} must be of integer type. @end defmac @node Maximum and Minimum functions @section Maximum and Minimum functions Note that the following macros perform multiple evaluations of their arguments, so they should not be used with arguments that have side effects (such as a call to a random number generator). @defmac GSL_MAX (a, b) @cindex maximum of two numbers This macro returns the maximum of @var{a} and @var{b}. It is defined as @code{((a) > (b) ? (a):(b))}. @end defmac @defmac GSL_MIN (a, b) @cindex minimum of two numbers This macro returns the minimum of @var{a} and @var{b}. It is defined as @code{((a) < (b) ? (a):(b))}. @end defmac @deftypefun {extern inline double} GSL_MAX_DBL (double @var{a}, double @var{b}) This function returns the maximum of the double precision numbers @var{a} and @var{b} using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro @code{GSL_MAX} will be automatically substituted. @end deftypefun @deftypefun {extern inline double} GSL_MIN_DBL (double @var{a}, double @var{b}) This function returns the minimum of the double precision numbers @var{a} and @var{b} using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro @code{GSL_MIN} will be automatically substituted. @end deftypefun @deftypefun {extern inline int} GSL_MAX_INT (int @var{a}, int @var{b}) @deftypefunx {extern inline int} GSL_MIN_INT (int @var{a}, int @var{b}) These functions return the maximum or minimum of the integers @var{a} and @var{b} using an inline function. On platforms where inline functions are not available the macros @code{GSL_MAX} or @code{GSL_MIN} will be automatically substituted. @end deftypefun @deftypefun {extern inline long double} GSL_MAX_LDBL (long double @var{a}, long double @var{b}) @deftypefunx {extern inline long double} GSL_MIN_LDBL (long double @var{a}, long double @var{b}) These functions return the maximum or minimum of the long doubles @var{a} and @var{b} using an inline function. On platforms where inline functions are not available the macros @code{GSL_MAX} or @code{GSL_MIN} will be automatically substituted. @end deftypefun @node Approximate Comparison of Floating Point Numbers @section Approximate Comparison of Floating Point Numbers It is sometimes useful to be able to compare two floating point numbers approximately, to allow for rounding and truncation errors. The following function implements the approximate floating-point comparison algorithm proposed by D.E. Knuth in Section 4.2.2 of @cite{Seminumerical Algorithms} (3rd edition). @deftypefun int gsl_fcmp (double @var{x}, double @var{y}, double @var{epsilon}) @cindex approximate comparison of floating point numbers @cindex safe comparison of floating point numbers @cindex floating point numbers, approximate comparison This function determines whether @math{x} and @math{y} are approximately equal to a relative accuracy @var{epsilon}. The relative accuracy is measured using an interval of size @math{2 \delta}, where @math{\delta = 2^k \epsilon} and @math{k} is the maximum base-2 exponent of @math{x} and @math{y} as computed by the function @code{frexp}. If @math{x} and @math{y} lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if @math{x < y}, the function returns @math{-1}, or if @math{x > y}, the function returns @math{+1}. Note that @math{x} and @math{y} are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero. The implementation is based on the package @code{fcmp} by T.C. Belding. @end deftypefun gsl-1.16/doc/statistics.texi0000664000252300025230000007062512171574312013016 00000000000000@cindex statistics @cindex mean @cindex standard deviation @cindex variance @cindex estimated standard deviation @cindex estimated variance @cindex t-test @cindex range @cindex min @cindex max This chapter describes the statistical functions in the library. The basic statistical functions include routines to compute the mean, variance and standard deviation. More advanced functions allow you to calculate absolute deviations, skewness, and kurtosis as well as the median and arbitrary percentiles. The algorithms use recurrence relations to compute average quantities in a stable way, without large intermediate values that might overflow. The functions are available in versions for datasets in the standard floating-point and integer types. The versions for double precision floating-point data have the prefix @code{gsl_stats} and are declared in the header file @file{gsl_statistics_double.h}. The versions for integer data have the prefix @code{gsl_stats_int} and are declared in the header file @file{gsl_statistics_int.h}. All the functions operate on C arrays with a @var{stride} parameter specifying the spacing between elements. @menu * Mean and standard deviation and variance:: * Absolute deviation:: * Higher moments (skewness and kurtosis):: * Autocorrelation:: * Covariance:: * Correlation:: * Weighted Samples:: * Maximum and Minimum values:: * Median and Percentiles:: * Example statistical programs:: * Statistics References and Further Reading:: @end menu @node Mean and standard deviation and variance @section Mean, Standard Deviation and Variance @deftypefun double gsl_stats_mean (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the arithmetic mean of @var{data}, a dataset of length @var{n} with stride @var{stride}. The arithmetic mean, or @dfn{sample mean}, is denoted by @math{\Hat\mu} and defined as, @tex \beforedisplay $$ {\Hat\mu} = {1 \over N} \sum x_i $$ \afterdisplay @end tex @ifinfo @example \Hat\mu = (1/N) \sum x_i @end example @end ifinfo @noindent where @math{x_i} are the elements of the dataset @var{data}. For samples drawn from a gaussian distribution the variance of @math{\Hat\mu} is @math{\sigma^2 / N}. @end deftypefun @deftypefun double gsl_stats_variance (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the estimated, or @dfn{sample}, variance of @var{data}, a dataset of length @var{n} with stride @var{stride}. The estimated variance is denoted by @math{\Hat\sigma^2} and is defined by, @tex \beforedisplay $$ {\Hat\sigma}^2 = {1 \over (N-1)} \sum (x_i - {\Hat\mu})^2 $$ \afterdisplay @end tex @ifinfo @example \Hat\sigma^2 = (1/(N-1)) \sum (x_i - \Hat\mu)^2 @end example @end ifinfo @noindent where @math{x_i} are the elements of the dataset @var{data}. Note that the normalization factor of @math{1/(N-1)} results from the derivation of @math{\Hat\sigma^2} as an unbiased estimator of the population variance @math{\sigma^2}. For samples drawn from a Gaussian distribution the variance of @math{\Hat\sigma^2} itself is @math{2 \sigma^4 / N}. This function computes the mean via a call to @code{gsl_stats_mean}. If you have already computed the mean then you can pass it directly to @code{gsl_stats_variance_m}. @end deftypefun @deftypefun double gsl_stats_variance_m (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) This function returns the sample variance of @var{data} relative to the given value of @var{mean}. The function is computed with @math{\Hat\mu} replaced by the value of @var{mean} that you supply, @tex \beforedisplay $$ {\Hat\sigma}^2 = {1 \over (N-1)} \sum (x_i - mean)^2 $$ \afterdisplay @end tex @ifinfo @example \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2 @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_sd (const double @var{data}[], size_t @var{stride}, size_t @var{n}) @deftypefunx double gsl_stats_sd_m (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) The standard deviation is defined as the square root of the variance. These functions return the square root of the corresponding variance functions above. @end deftypefun @deftypefun double gsl_stats_tss (const double @var{data}[], size_t @var{stride}, size_t @var{n}) @deftypefunx double gsl_stats_tss_m (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) These functions return the total sum of squares (TSS) of @var{data} about the mean. For @code{gsl_stats_tss_m} the user-supplied value of @var{mean} is used, and for @code{gsl_stats_tss} it is computed using @code{gsl_stats_mean}. @tex \beforedisplay $$ {\rm TSS} = \sum (x_i - mean)^2 $$ \afterdisplay @end tex @ifinfo @example TSS = \sum (x_i - mean)^2 @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_variance_with_fixed_mean (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) This function computes an unbiased estimate of the variance of @var{data} when the population mean @var{mean} of the underlying distribution is known @emph{a priori}. In this case the estimator for the variance uses the factor @math{1/N} and the sample mean @math{\Hat\mu} is replaced by the known population mean @math{\mu}, @tex \beforedisplay $$ {\Hat\sigma}^2 = {1 \over N} \sum (x_i - \mu)^2 $$ \afterdisplay @end tex @ifinfo @example \Hat\sigma^2 = (1/N) \sum (x_i - \mu)^2 @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_sd_with_fixed_mean (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) This function calculates the standard deviation of @var{data} for a fixed population mean @var{mean}. The result is the square root of the corresponding variance function. @end deftypefun @node Absolute deviation @section Absolute deviation @deftypefun double gsl_stats_absdev (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the absolute deviation from the mean of @var{data}, a dataset of length @var{n} with stride @var{stride}. The absolute deviation from the mean is defined as, @tex \beforedisplay $$ absdev = {1 \over N} \sum |x_i - {\Hat\mu}| $$ \afterdisplay @end tex @ifinfo @example absdev = (1/N) \sum |x_i - \Hat\mu| @end example @end ifinfo @noindent where @math{x_i} are the elements of the dataset @var{data}. The absolute deviation from the mean provides a more robust measure of the width of a distribution than the variance. This function computes the mean of @var{data} via a call to @code{gsl_stats_mean}. @end deftypefun @deftypefun double gsl_stats_absdev_m (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}) This function computes the absolute deviation of the dataset @var{data} relative to the given value of @var{mean}, @tex \beforedisplay $$ absdev = {1 \over N} \sum |x_i - mean| $$ \afterdisplay @end tex @ifinfo @example absdev = (1/N) \sum |x_i - mean| @end example @end ifinfo @noindent This function is useful if you have already computed the mean of @var{data} (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median). @end deftypefun @node Higher moments (skewness and kurtosis) @section Higher moments (skewness and kurtosis) @cindex skewness @cindex kurtosis @deftypefun double gsl_stats_skew (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the skewness of @var{data}, a dataset of length @var{n} with stride @var{stride}. The skewness is defined as, @tex \beforedisplay $$ skew = {1 \over N} \sum {\left( x_i - {\Hat\mu} \over {\Hat\sigma} \right)}^3 $$ \afterdisplay @end tex @ifinfo @example skew = (1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^3 @end example @end ifinfo @noindent where @math{x_i} are the elements of the dataset @var{data}. The skewness measures the asymmetry of the tails of a distribution. The function computes the mean and estimated standard deviation of @var{data} via calls to @code{gsl_stats_mean} and @code{gsl_stats_sd}. @end deftypefun @deftypefun double gsl_stats_skew_m_sd (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}, double @var{sd}) This function computes the skewness of the dataset @var{data} using the given values of the mean @var{mean} and standard deviation @var{sd}, @tex \beforedisplay $$ skew = {1 \over N} \sum {\left( x_i - mean \over sd \right)}^3 $$ \afterdisplay @end tex @ifinfo @example skew = (1/N) \sum ((x_i - mean)/sd)^3 @end example @end ifinfo @noindent These functions are useful if you have already computed the mean and standard deviation of @var{data} and want to avoid recomputing them. @end deftypefun @deftypefun double gsl_stats_kurtosis (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the kurtosis of @var{data}, a dataset of length @var{n} with stride @var{stride}. The kurtosis is defined as, @tex \beforedisplay $$ kurtosis = \left( {1 \over N} \sum {\left(x_i - {\Hat\mu} \over {\Hat\sigma} \right)}^4 \right) - 3 $$ \afterdisplay @end tex @ifinfo @example kurtosis = ((1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^4) - 3 @end example @end ifinfo @noindent The kurtosis measures how sharply peaked a distribution is, relative to its width. The kurtosis is normalized to zero for a Gaussian distribution. @end deftypefun @deftypefun double gsl_stats_kurtosis_m_sd (const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{mean}, double @var{sd}) This function computes the kurtosis of the dataset @var{data} using the given values of the mean @var{mean} and standard deviation @var{sd}, @tex \beforedisplay $$ kurtosis = {1 \over N} \left( \sum {\left(x_i - mean \over sd \right)}^4 \right) - 3 $$ \afterdisplay @end tex @ifinfo @example kurtosis = ((1/N) \sum ((x_i - mean)/sd)^4) - 3 @end example @end ifinfo @noindent This function is useful if you have already computed the mean and standard deviation of @var{data} and want to avoid recomputing them. @end deftypefun @node Autocorrelation @section Autocorrelation @deftypefun double gsl_stats_lag1_autocorrelation (const double @var{data}[], const size_t @var{stride}, const size_t @var{n}) This function computes the lag-1 autocorrelation of the dataset @var{data}. @tex \beforedisplay $$ a_1 = {\sum_{i = 1}^{n} (x_{i} - \Hat\mu) (x_{i-1} - \Hat\mu) \over \sum_{i = 1}^{n} (x_{i} - \Hat\mu) (x_{i} - \Hat\mu)} $$ \afterdisplay @end tex @ifinfo @example a_1 = @{\sum_@{i = 1@}^@{n@} (x_@{i@} - \Hat\mu) (x_@{i-1@} - \Hat\mu) \over \sum_@{i = 1@}^@{n@} (x_@{i@} - \Hat\mu) (x_@{i@} - \Hat\mu)@} @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_lag1_autocorrelation_m (const double @var{data}[], const size_t @var{stride}, const size_t @var{n}, const double @var{mean}) This function computes the lag-1 autocorrelation of the dataset @var{data} using the given value of the mean @var{mean}. @end deftypefun @node Covariance @section Covariance @cindex covariance, of two datasets @deftypefun double gsl_stats_covariance (const double @var{data1}[], const size_t @var{stride1}, const double @var{data2}[], const size_t @var{stride2}, const size_t @var{n}) This function computes the covariance of the datasets @var{data1} and @var{data2} which must both be of the same length @var{n}. @tex \beforedisplay $$ covar = {1 \over (n - 1)} \sum_{i = 1}^{n} (x_{i} - \Hat x) (y_{i} - \Hat y) $$ \afterdisplay @end tex @ifinfo @example covar = (1/(n - 1)) \sum_@{i = 1@}^@{n@} (x_i - \Hat x) (y_i - \Hat y) @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_covariance_m (const double @var{data1}[], const size_t @var{stride1}, const double @var{data2}[], const size_t @var{stride2}, const size_t @var{n}, const double @var{mean1}, const double @var{mean2}) This function computes the covariance of the datasets @var{data1} and @var{data2} using the given values of the means, @var{mean1} and @var{mean2}. This is useful if you have already computed the means of @var{data1} and @var{data2} and want to avoid recomputing them. @end deftypefun @node Correlation @section Correlation @cindex correlation, of two datasets @deftypefun double gsl_stats_correlation (const double @var{data1}[], const size_t @var{stride1}, const double @var{data2}[], const size_t @var{stride2}, const size_t @var{n}) This function efficiently computes the Pearson correlation coefficient between the datasets @var{data1} and @var{data2} which must both be of the same length @var{n}. @tex \beforedisplay $$ r = {cov(x, y) \over \Hat\sigma_x \Hat\sigma_y} = {{1 \over n-1} \sum (x_i - \Hat x) (y_i - \Hat y) \over \sqrt{{1 \over n-1} \sum (x_i - {\Hat x})^2} \sqrt{{1 \over n-1} \sum (y_i - {\Hat y})^2} } $$ \afterdisplay @end tex @ifinfo @example r = cov(x, y) / (\Hat\sigma_x \Hat\sigma_y) = @{1/(n-1) \sum (x_i - \Hat x) (y_i - \Hat y) \over \sqrt@{1/(n-1) \sum (x_i - \Hat x)^2@} \sqrt@{1/(n-1) \sum (y_i - \Hat y)^2@} @} @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_spearman (const double @var{data1}[], const size_t @var{stride1}, const double @var{data2}[], const size_t @var{stride2}, const size_t @var{n}, double @var{work}[]) This function computes the Spearman rank correlation coefficient between the datasets @var{data1} and @var{data2} which must both be of the same length @var{n}. Additional workspace of size 2*@var{n} is required in @var{work}. The Spearman rank correlation between vectors @math{x} and @math{y} is equivalent to the Pearson correlation between the ranked vectors @math{x_R} and @math{y_R}, where ranks are defined to be the average of the positions of an element in the ascending order of the values. @end deftypefun @node Weighted Samples @section Weighted Samples The functions described in this section allow the computation of statistics for weighted samples. The functions accept an array of samples, @math{x_i}, with associated weights, @math{w_i}. Each sample @math{x_i} is considered as having been drawn from a Gaussian distribution with variance @math{\sigma_i^2}. The sample weight @math{w_i} is defined as the reciprocal of this variance, @math{w_i = 1/\sigma_i^2}. Setting a weight to zero corresponds to removing a sample from a dataset. @deftypefun double gsl_stats_wmean (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the weighted mean of the dataset @var{data} with stride @var{stride} and length @var{n}, using the set of weights @var{w} with stride @var{wstride} and length @var{n}. The weighted mean is defined as, @tex \beforedisplay $$ {\Hat\mu} = {{\sum w_i x_i} \over {\sum w_i}} $$ \afterdisplay @end tex @ifinfo @example \Hat\mu = (\sum w_i x_i) / (\sum w_i) @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wvariance (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the estimated variance of the dataset @var{data} with stride @var{stride} and length @var{n}, using the set of weights @var{w} with stride @var{wstride} and length @var{n}. The estimated variance of a weighted dataset is calculated as, @tex \beforedisplay $$ \Hat\sigma^2 = {{\sum w_i} \over {(\sum w_i)^2 - \sum (w_i^2)}} \sum w_i (x_i - \Hat\mu)^2 $$ \afterdisplay @end tex @ifinfo @example \Hat\sigma^2 = ((\sum w_i)/((\sum w_i)^2 - \sum (w_i^2))) \sum w_i (x_i - \Hat\mu)^2 @end example @end ifinfo @noindent Note that this expression reduces to an unweighted variance with the familiar @math{1/(N-1)} factor when there are @math{N} equal non-zero weights. @end deftypefun @deftypefun double gsl_stats_wvariance_m (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}) This function returns the estimated variance of the weighted dataset @var{data} using the given weighted mean @var{wmean}. @end deftypefun @deftypefun double gsl_stats_wsd (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) The standard deviation is defined as the square root of the variance. This function returns the square root of the corresponding variance function @code{gsl_stats_wvariance} above. @end deftypefun @deftypefun double gsl_stats_wsd_m (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}) This function returns the square root of the corresponding variance function @code{gsl_stats_wvariance_m} above. @end deftypefun @deftypefun double gsl_stats_wvariance_with_fixed_mean (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, const double @var{mean}) This function computes an unbiased estimate of the variance of the weighted dataset @var{data} when the population mean @var{mean} of the underlying distribution is known @emph{a priori}. In this case the estimator for the variance replaces the sample mean @math{\Hat\mu} by the known population mean @math{\mu}, @tex \beforedisplay $$ \Hat\sigma^2 = {{\sum w_i (x_i - \mu)^2} \over {\sum w_i}} $$ \afterdisplay @end tex @ifinfo @example \Hat\sigma^2 = (\sum w_i (x_i - \mu)^2) / (\sum w_i) @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wsd_with_fixed_mean (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, const double @var{mean}) The standard deviation is defined as the square root of the variance. This function returns the square root of the corresponding variance function above. @end deftypefun @deftypefun double gsl_stats_wtss (const double @var{w}[], const size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) @deftypefunx double gsl_stats_wtss_m (const double @var{w}[], const size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}) These functions return the weighted total sum of squares (TSS) of @var{data} about the weighted mean. For @code{gsl_stats_wtss_m} the user-supplied value of @var{wmean} is used, and for @code{gsl_stats_wtss} it is computed using @code{gsl_stats_wmean}. @tex \beforedisplay $$ {\rm TSS} = \sum w_i (x_i - wmean)^2 $$ \afterdisplay @end tex @ifinfo @example TSS = \sum w_i (x_i - wmean)^2 @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wabsdev (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the weighted absolute deviation from the weighted mean of @var{data}. The absolute deviation from the mean is defined as, @tex \beforedisplay $$ absdev = {{\sum w_i |x_i - \Hat\mu|} \over {\sum w_i}} $$ \afterdisplay @end tex @ifinfo @example absdev = (\sum w_i |x_i - \Hat\mu|) / (\sum w_i) @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wabsdev_m (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}) This function computes the absolute deviation of the weighted dataset @var{data} about the given weighted mean @var{wmean}. @end deftypefun @deftypefun double gsl_stats_wskew (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the weighted skewness of the dataset @var{data}. @tex \beforedisplay $$ skew = {{\sum w_i ((x_i - {\Hat x})/{\Hat \sigma})^3} \over {\sum w_i}} $$ \afterdisplay @end tex @ifinfo @example skew = (\sum w_i ((x_i - \Hat x)/\Hat \sigma)^3) / (\sum w_i) @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wskew_m_sd (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}, double @var{wsd}) This function computes the weighted skewness of the dataset @var{data} using the given values of the weighted mean and weighted standard deviation, @var{wmean} and @var{wsd}. @end deftypefun @deftypefun double gsl_stats_wkurtosis (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function computes the weighted kurtosis of the dataset @var{data}. @tex \beforedisplay $$ kurtosis = {{\sum w_i ((x_i - {\Hat x})/{\Hat \sigma})^4} \over {\sum w_i}} - 3 $$ \afterdisplay @end tex @ifinfo @example kurtosis = ((\sum w_i ((x_i - \Hat x)/\Hat \sigma)^4) / (\sum w_i)) - 3 @end example @end ifinfo @end deftypefun @deftypefun double gsl_stats_wkurtosis_m_sd (const double @var{w}[], size_t @var{wstride}, const double @var{data}[], size_t @var{stride}, size_t @var{n}, double @var{wmean}, double @var{wsd}) This function computes the weighted kurtosis of the dataset @var{data} using the given values of the weighted mean and weighted standard deviation, @var{wmean} and @var{wsd}. @end deftypefun @node Maximum and Minimum values @section Maximum and Minimum values The following functions find the maximum and minimum values of a dataset (or their indices). If the data contains @code{NaN}s then a @code{NaN} will be returned, since the maximum or minimum value is undefined. For functions which return an index, the location of the first @code{NaN} in the array is returned. @deftypefun double gsl_stats_max (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the maximum value in @var{data}, a dataset of length @var{n} with stride @var{stride}. The maximum value is defined as the value of the element @math{x_i} which satisfies @c{$x_i \ge x_j$} @math{x_i >= x_j} for all @math{j}. If you want instead to find the element with the largest absolute magnitude you will need to apply @code{fabs} or @code{abs} to your data before calling this function. @end deftypefun @deftypefun double gsl_stats_min (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the minimum value in @var{data}, a dataset of length @var{n} with stride @var{stride}. The minimum value is defined as the value of the element @math{x_i} which satisfies @c{$x_i \le x_j$} @math{x_i <= x_j} for all @math{j}. If you want instead to find the element with the smallest absolute magnitude you will need to apply @code{fabs} or @code{abs} to your data before calling this function. @end deftypefun @deftypefun void gsl_stats_minmax (double * @var{min}, double * @var{max}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function finds both the minimum and maximum values @var{min}, @var{max} in @var{data} in a single pass. @end deftypefun @deftypefun size_t gsl_stats_max_index (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the index of the maximum value in @var{data}, a dataset of length @var{n} with stride @var{stride}. The maximum value is defined as the value of the element @math{x_i} which satisfies @c{$x_i \ge x_j$} @math{x_i >= x_j} for all @math{j}. When there are several equal maximum elements then the first one is chosen. @end deftypefun @deftypefun size_t gsl_stats_min_index (const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the index of the minimum value in @var{data}, a dataset of length @var{n} with stride @var{stride}. The minimum value is defined as the value of the element @math{x_i} which satisfies @c{$x_i \ge x_j$} @math{x_i >= x_j} for all @math{j}. When there are several equal minimum elements then the first one is chosen. @end deftypefun @deftypefun void gsl_stats_minmax_index (size_t * @var{min_index}, size_t * @var{max_index}, const double @var{data}[], size_t @var{stride}, size_t @var{n}) This function returns the indexes @var{min_index}, @var{max_index} of the minimum and maximum values in @var{data} in a single pass. @end deftypefun @node Median and Percentiles @section Median and Percentiles The median and percentile functions described in this section operate on sorted data. For convenience we use @dfn{quantiles}, measured on a scale of 0 to 1, instead of percentiles (which use a scale of 0 to 100). @deftypefun double gsl_stats_median_from_sorted_data (const double @var{sorted_data}[], size_t @var{stride}, size_t @var{n}) This function returns the median value of @var{sorted_data}, a dataset of length @var{n} with stride @var{stride}. The elements of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the function @code{gsl_sort} should always be used first. When the dataset has an odd number of elements the median is the value of element @math{(n-1)/2}. When the dataset has an even number of elements the median is the mean of the two nearest middle values, elements @math{(n-1)/2} and @math{n/2}. Since the algorithm for computing the median involves interpolation this function always returns a floating-point number, even for integer data types. @end deftypefun @deftypefun double gsl_stats_quantile_from_sorted_data (const double @var{sorted_data}[], size_t @var{stride}, size_t @var{n}, double @var{f}) This function returns a quantile value of @var{sorted_data}, a double-precision array of length @var{n} with stride @var{stride}. The elements of the array must be in ascending numerical order. The quantile is determined by the @var{f}, a fraction between 0 and 1. For example, to compute the value of the 75th percentile @var{f} should have the value 0.75. There are no checks to see whether the data are sorted, so the function @code{gsl_sort} should always be used first. The quantile is found by interpolation, using the formula @tex \beforedisplay $$ \hbox{quantile} = (1 - \delta) x_i + \delta x_{i+1} $$ \afterdisplay @end tex @ifinfo @example quantile = (1 - \delta) x_i + \delta x_@{i+1@} @end example @end ifinfo @noindent where @math{i} is @code{floor}(@math{(n - 1)f}) and @math{\delta} is @math{(n-1)f - i}. Thus the minimum value of the array (@code{data[0*stride]}) is given by @var{f} equal to zero, the maximum value (@code{data[(n-1)*stride]}) is given by @var{f} equal to one and the median value is given by @var{f} equal to 0.5. Since the algorithm for computing quantiles involves interpolation this function always returns a floating-point number, even for integer data types. @end deftypefun @comment @node Statistical tests @comment @section Statistical tests @comment FIXME, do more work on the statistical tests @comment -@deftypefun double gsl_stats_ttest (const double @var{data1}[], double @var{data2}[], size_t @var{n1}, size_t @var{n2}) @comment -@deftypefunx Statistics double gsl_stats_int_ttest (const double @var{data1}[], double @var{data2}[], size_t @var{n1}, size_t @var{n2}) @comment The function @code{gsl_stats_ttest} computes the t-test statistic for @comment the two arrays @var{data1}[] and @var{data2}[], of lengths @var{n1} and @comment -@var{n2} respectively. @comment The t-test statistic measures the difference between the means of two @comment datasets. @node Example statistical programs @section Examples Here is a basic example of how to use the statistical functions: @example @verbatiminclude examples/stat.c @end example The program should produce the following output, @example @verbatiminclude examples/stat.out @end example Here is an example using sorted data, @example @verbatiminclude examples/statsort.c @end example This program should produce the following output, @example @verbatiminclude examples/statsort.out @end example @node Statistics References and Further Reading @section References and Further Reading The standard reference for almost any topic in statistics is the multi-volume @cite{Advanced Theory of Statistics} by Kendall and Stuart. @itemize @w{} @item Maurice Kendall, Alan Stuart, and J. Keith Ord. @cite{The Advanced Theory of Statistics} (multiple volumes) reprinted as @cite{Kendall's Advanced Theory of Statistics}. Wiley, ISBN 047023380X. @end itemize @noindent Many statistical concepts can be more easily understood by a Bayesian approach. The following book by Gelman, Carlin, Stern and Rubin gives a comprehensive coverage of the subject. @itemize @w{} @item Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. @cite{Bayesian Data Analysis}. Chapman & Hall, ISBN 0412039915. @end itemize @noindent For physicists the Particle Data Group provides useful reviews of Probability and Statistics in the ``Mathematical Tools'' section of its Annual Review of Particle Physics. @itemize @w{} @item @cite{Review of Particle Properties} R.M. Barnett et al., Physical Review D54, 1 (1996) @end itemize @noindent The Review of Particle Physics is available online at the website @uref{http://pdg.lbl.gov/}. gsl-1.16/doc/blas.texi0000664000252300025230000011101112171574312011526 00000000000000@cindex linear algebra, BLAS @cindex matrix, operations @cindex vector, operations @cindex BLAS @cindex CBLAS @cindex Basic Linear Algebra Subroutines (BLAS) The Basic Linear Algebra Subprograms (@sc{blas}) define a set of fundamental operations on vectors and matrices which can be used to create optimized higher-level linear algebra functionality. The library provides a low-level layer which corresponds directly to the C-language @sc{blas} standard, referred to here as ``@sc{cblas}'', and a higher-level interface for operations on GSL vectors and matrices. Users who are interested in simple operations on GSL vector and matrix objects should use the high-level layer described in this chapter. The functions are declared in the file @file{gsl_blas.h} and should satisfy the needs of most users. Note that GSL matrices are implemented using dense-storage so the interface only includes the corresponding dense-storage @sc{blas} functions. The full @sc{blas} functionality for band-format and packed-format matrices is available through the low-level @sc{cblas} interface. Similarly, GSL vectors are restricted to positive strides, whereas the low-level @sc{cblas} interface supports negative strides as specified in the @sc{blas} standard.@footnote{In the low-level @sc{cblas} interface, a negative stride accesses the vector elements in reverse order, i.e. the @math{i}-th element is given by @math{(N-i)*|incx|} for @math{incx < 0}.} The interface for the @code{gsl_cblas} layer is specified in the file @file{gsl_cblas.h}. This interface corresponds to the @sc{blas} Technical Forum's standard for the C interface to legacy @sc{blas} implementations. Users who have access to other conforming @sc{cblas} implementations can use these in place of the version provided by the library. Note that users who have only a Fortran @sc{blas} library can use a @sc{cblas} conformant wrapper to convert it into a @sc{cblas} library. A reference @sc{cblas} wrapper for legacy Fortran implementations exists as part of the @sc{cblas} standard and can be obtained from Netlib. The complete set of @sc{cblas} functions is listed in an appendix (@pxref{GSL CBLAS Library}). There are three levels of @sc{blas} operations, @table @b @item Level 1 Vector operations, e.g. @math{y = \alpha x + y} @item Level 2 Matrix-vector operations, e.g. @math{y = \alpha A x + \beta y} @item Level 3 Matrix-matrix operations, e.g. @math{C = \alpha A B + C} @end table @noindent Each routine has a name which specifies the operation, the type of matrices involved and their precisions. Some of the most common operations and their names are given below, @table @b @item DOT scalar product, @math{x^T y} @item AXPY vector sum, @math{\alpha x + y} @item MV matrix-vector product, @math{A x} @item SV matrix-vector solve, @math{inv(A) x} @item MM matrix-matrix product, @math{A B} @item SM matrix-matrix solve, @math{inv(A) B} @end table @noindent The types of matrices are, @table @b @item GE general @item GB general band @item SY symmetric @item SB symmetric band @item SP symmetric packed @item HE hermitian @item HB hermitian band @item HP hermitian packed @item TR triangular @item TB triangular band @item TP triangular packed @end table @noindent Each operation is defined for four precisions, @table @b @item S single real @item D double real @item C single complex @item Z double complex @end table @noindent Thus, for example, the name @sc{sgemm} stands for ``single-precision general matrix-matrix multiply'' and @sc{zgemm} stands for ``double-precision complex matrix-matrix multiply''. Note that the vector and matrix arguments to BLAS functions must not be aliased, as the results are undefined when the underlying arrays overlap (@pxref{Aliasing of arrays}). @menu * GSL BLAS Interface:: * BLAS Examples:: * BLAS References and Further Reading:: @end menu @node GSL BLAS Interface @section GSL BLAS Interface GSL provides dense vector and matrix objects, based on the relevant built-in types. The library provides an interface to the @sc{blas} operations which apply to these objects. The interface to this functionality is given in the file @file{gsl_blas.h}. @comment CblasNoTrans, CblasTrans, CblasConjTrans @comment CblasUpper, CblasLower @comment CblasNonUnit, CblasUnit @comment CblasLeft, CblasRight @menu * Level 1 GSL BLAS Interface:: * Level 2 GSL BLAS Interface:: * Level 3 GSL BLAS Interface:: @end menu @node Level 1 GSL BLAS Interface @subsection Level 1 @deftypefun int gsl_blas_sdsdot (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result}) @cindex DOT, Level-1 BLAS This function computes the sum @math{\alpha + x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{result}. @end deftypefun @deftypefun int gsl_blas_sdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, float * @var{result}) @deftypefunx int gsl_blas_dsdot (const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, double * @var{result}) @deftypefunx int gsl_blas_ddot (const gsl_vector * @var{x}, const gsl_vector * @var{y}, double * @var{result}) These functions compute the scalar product @math{x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{result}. @end deftypefun @deftypefun int gsl_blas_cdotu (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotu}) @deftypefunx int gsl_blas_zdotu (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotu}) These functions compute the complex scalar product @math{x^T y} for the vectors @var{x} and @var{y}, returning the result in @var{dotu} @end deftypefun @deftypefun int gsl_blas_cdotc (const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_complex_float * @var{dotc}) @deftypefunx int gsl_blas_zdotc (const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_complex * @var{dotc}) These functions compute the complex conjugate scalar product @math{x^H y} for the vectors @var{x} and @var{y}, returning the result in @var{dotc} @end deftypefun @deftypefun float gsl_blas_snrm2 (const gsl_vector_float * @var{x}) @deftypefunx double gsl_blas_dnrm2 (const gsl_vector * @var{x}) @cindex NRM2, Level-1 BLAS These functions compute the Euclidean norm @c{$||x||_2 = \sqrt{\sum x_i^2}$} @math{||x||_2 = \sqrt @{\sum x_i^2@}} of the vector @var{x}. @end deftypefun @deftypefun float gsl_blas_scnrm2 (const gsl_vector_complex_float * @var{x}) @deftypefunx double gsl_blas_dznrm2 (const gsl_vector_complex * @var{x}) These functions compute the Euclidean norm of the complex vector @var{x}, @tex \beforedisplay $$ ||x||_2 = \sqrt{\sum (\Re(x_i)^2 + \Im(x_i)^2)}. $$ \afterdisplay @end tex @ifinfo @example ||x||_2 = \sqrt @{\sum (\Re(x_i)^2 + \Im(x_i)^2)@}. @end example @end ifinfo @end deftypefun @deftypefun float gsl_blas_sasum (const gsl_vector_float * @var{x}) @deftypefunx double gsl_blas_dasum (const gsl_vector * @var{x}) @cindex ASUM, Level-1 BLAS These functions compute the absolute sum @math{\sum |x_i|} of the elements of the vector @var{x}. @end deftypefun @deftypefun float gsl_blas_scasum (const gsl_vector_complex_float * @var{x}) @deftypefunx double gsl_blas_dzasum (const gsl_vector_complex * @var{x}) These functions compute the sum of the magnitudes of the real and imaginary parts of the complex vector @var{x}, @c{$\sum \left( |\Re(x_i)| + |\Im(x_i)| \right)$} @math{\sum |\Re(x_i)| + |\Im(x_i)|}. @end deftypefun @deftypefun CBLAS_INDEX_t gsl_blas_isamax (const gsl_vector_float * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_idamax (const gsl_vector * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_icamax (const gsl_vector_complex_float * @var{x}) @deftypefunx CBLAS_INDEX_t gsl_blas_izamax (const gsl_vector_complex * @var{x}) @cindex AMAX, Level-1 BLAS These functions return the index of the largest element of the vector @var{x}. The largest element is determined by its absolute magnitude for real vectors and by the sum of the magnitudes of the real and imaginary parts @math{|\Re(x_i)| + |\Im(x_i)|} for complex vectors. If the largest value occurs several times then the index of the first occurrence is returned. @end deftypefun @deftypefun int gsl_blas_sswap (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dswap (gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_cswap (gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zswap (gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex SWAP, Level-1 BLAS These functions exchange the elements of the vectors @var{x} and @var{y}. @end deftypefun @deftypefun int gsl_blas_scopy (const gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dcopy (const gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_ccopy (const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zcopy (const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex COPY, Level-1 BLAS These functions copy the elements of the vector @var{x} into the vector @var{y}. @end deftypefun @deftypefun int gsl_blas_saxpy (float @var{alpha}, const gsl_vector_float * @var{x}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_daxpy (double @var{alpha}, const gsl_vector * @var{x}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_caxpy (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zaxpy (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, gsl_vector_complex * @var{y}) @cindex AXPY, Level-1 BLAS @cindex DAXPY, Level-1 BLAS @cindex SAXPY, Level-1 BLAS These functions compute the sum @math{y = \alpha x + y} for the vectors @var{x} and @var{y}. @end deftypefun @deftypefun void gsl_blas_sscal (float @var{alpha}, gsl_vector_float * @var{x}) @deftypefunx void gsl_blas_dscal (double @var{alpha}, gsl_vector * @var{x}) @deftypefunx void gsl_blas_cscal (const gsl_complex_float @var{alpha}, gsl_vector_complex_float * @var{x}) @deftypefunx void gsl_blas_zscal (const gsl_complex @var{alpha}, gsl_vector_complex * @var{x}) @deftypefunx void gsl_blas_csscal (float @var{alpha}, gsl_vector_complex_float * @var{x}) @deftypefunx void gsl_blas_zdscal (double @var{alpha}, gsl_vector_complex * @var{x}) @cindex SCAL, Level-1 BLAS These functions rescale the vector @var{x} by the multiplicative factor @var{alpha}. @end deftypefun @deftypefun int gsl_blas_srotg (float @var{a}[], float @var{b}[], float @var{c}[], float @var{s}[]) @deftypefunx int gsl_blas_drotg (double @var{a}[], double @var{b}[], double @var{c}[], double @var{s}[]) @cindex ROTG, Level-1 BLAS @cindex Givens Rotation, BLAS These functions compute a Givens rotation @math{(c,s)} which zeroes the vector @math{(a,b)}, @tex \beforedisplay $$ \left( \matrix{c&s\cr -s&c\cr} \right) \left( \matrix{a\cr b\cr} \right) = \left( \matrix{r'\cr 0\cr} \right) $$ \afterdisplay @end tex @ifinfo @example [ c s ] [ a ] = [ r ] [ -s c ] [ b ] [ 0 ] @end example @end ifinfo @noindent The variables @var{a} and @var{b} are overwritten by the routine. @end deftypefun @deftypefun int gsl_blas_srot (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, float @var{c}, float @var{s}) @deftypefunx int gsl_blas_drot (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{c}, const double @var{s}) These functions apply a Givens rotation @math{(x', y') = (c x + s y, -s x + c y)} to the vectors @var{x}, @var{y}. @end deftypefun @deftypefun int gsl_blas_srotmg (float @var{d1}[], float @var{d2}[], float @var{b1}[], float @var{b2}, float @var{P}[]) @deftypefunx int gsl_blas_drotmg (double @var{d1}[], double @var{d2}[], double @var{b1}[], double @var{b2}, double @var{P}[]) @cindex Modified Givens Rotation, BLAS @cindex Givens Rotation, Modified, BLAS These functions compute a modified Givens transformation. The modified Givens transformation is defined in the original Level-1 @sc{blas} specification, given in the references. @end deftypefun @deftypefun int gsl_blas_srotm (gsl_vector_float * @var{x}, gsl_vector_float * @var{y}, const float @var{P}[]) @deftypefunx int gsl_blas_drotm (gsl_vector * @var{x}, gsl_vector * @var{y}, const double @var{P}[]) These functions apply a modified Givens transformation. @end deftypefun @node Level 2 GSL BLAS Interface @subsection Level 2 @deftypefun int gsl_blas_sgemv (CBLAS_TRANSPOSE_t @var{TransA}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dgemv (CBLAS_TRANSPOSE_t @var{TransA}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y}) @deftypefunx int gsl_blas_cgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zgemv (CBLAS_TRANSPOSE_t @var{TransA}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y}) @cindex GEMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha op(A) x + \beta y}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. @end deftypefun @deftypefun int gsl_blas_strmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x}) @deftypefunx int gsl_blas_dtrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x}) @deftypefunx int gsl_blas_ctrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x}) @deftypefunx int gsl_blas_ztrmv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x}) @cindex TRMV, Level-2 BLAS These functions compute the matrix-vector product @math{x = op(A) x} for the triangular matrix @var{A}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_strsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_float * @var{A}, gsl_vector_float * @var{x}) @deftypefunx int gsl_blas_dtrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix * @var{A}, gsl_vector * @var{x}) @deftypefunx int gsl_blas_ctrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex_float * @var{A}, gsl_vector_complex_float * @var{x}) @deftypefunx int gsl_blas_ztrsv (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{x}) @cindex TRSV, Level-2 BLAS These functions compute @math{inv(op(A)) x} for @var{x}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of the matrix is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_ssymv (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_vector_float * @var{x}, float @var{beta}, gsl_vector_float * @var{y}) @deftypefunx int gsl_blas_dsymv (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_vector * @var{x}, double @var{beta}, gsl_vector * @var{y}) @cindex SYMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_chemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_vector_complex_float * @var{x}, const gsl_complex_float @var{beta}, gsl_vector_complex_float * @var{y}) @deftypefunx int gsl_blas_zhemv (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{x}, const gsl_complex @var{beta}, gsl_vector_complex * @var{y}) @cindex HEMV, Level-2 BLAS These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced. @end deftypefun @deftypefun int gsl_blas_sger (float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dger (double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A}) @deftypefunx int gsl_blas_cgeru (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zgeru (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex GER, Level-2 BLAS @cindex GERU, Level-2 BLAS These functions compute the rank-1 update @math{A = \alpha x y^T + A} of the matrix @var{A}. @end deftypefun @deftypefun int gsl_blas_cgerc (const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zgerc (const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex GERC, Level-2 BLAS These functions compute the conjugate rank-1 update @math{A = \alpha x y^H + A} of the matrix @var{A}. @end deftypefun @deftypefun int gsl_blas_ssyr (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dsyr (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, gsl_matrix * @var{A}) @cindex SYR, Level-2 BLAS These functions compute the symmetric rank-1 update @math{A = \alpha x x^T + A} of the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_cher (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_complex_float * @var{x}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zher (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector_complex * @var{x}, gsl_matrix_complex * @var{A}) @cindex HER, Level-2 BLAS These functions compute the hermitian rank-1 update @math{A = \alpha x x^H + A} of the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_ssyr2 (CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_vector_float * @var{x}, const gsl_vector_float * @var{y}, gsl_matrix_float * @var{A}) @deftypefunx int gsl_blas_dsyr2 (CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_vector * @var{x}, const gsl_vector * @var{y}, gsl_matrix * @var{A}) @cindex SYR2, Level-2 BLAS These functions compute the symmetric rank-2 update @math{A = \alpha x y^T + \alpha y x^T + A} of the symmetric matrix @var{A}. Since the matrix @var{A} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_cher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_vector_complex_float * @var{x}, const gsl_vector_complex_float * @var{y}, gsl_matrix_complex_float * @var{A}) @deftypefunx int gsl_blas_zher2 (CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_vector_complex * @var{x}, const gsl_vector_complex * @var{y}, gsl_matrix_complex * @var{A}) @cindex HER2, Level-2 BLAS These functions compute the hermitian rank-2 update @math{A = \alpha x y^H + \alpha^* y x^H + A} of the hermitian matrix @var{A}. Since the matrix @var{A} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @node Level 3 GSL BLAS Interface @subsection Level 3 @deftypefun int gsl_blas_sgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_cgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zgemm (CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_TRANSPOSE_t @var{TransB}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex GEMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha op(A) op(B) + \beta C} where @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans} and similarly for the parameter @var{TransB}. @end deftypefun @deftypefun int gsl_blas_ssymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsymm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C = \alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the matrix @var{A} is symmetric. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. @end deftypefun @deftypefun int gsl_blas_chemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zhemm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex HEMM, Level-3 BLAS These functions compute the matrix-matrix product and sum @math{C = \alpha A B + \beta C} for @var{Side} is @code{CblasLeft} and @math{C = \alpha B A + \beta C} for @var{Side} is @code{CblasRight}, where the matrix @var{A} is hermitian. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{A} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{A} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_strmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B}) @deftypefunx int gsl_blas_dtrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B}) @deftypefunx int gsl_blas_ctrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B}) @deftypefunx int gsl_blas_ztrmm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}) @cindex TRMM, Level-3 BLAS These functions compute the matrix-matrix product @math{B = \alpha op(A) B} for @var{Side} is @code{CblasLeft} and @math{B = \alpha B op(A)} for @var{Side} is @code{CblasRight}. The matrix @var{A} is triangular and @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_strsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, float @var{alpha}, const gsl_matrix_float * @var{A}, gsl_matrix_float * @var{B}) @deftypefunx int gsl_blas_dtrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, double @var{alpha}, const gsl_matrix * @var{A}, gsl_matrix * @var{B}) @deftypefunx int gsl_blas_ctrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, gsl_matrix_complex_float * @var{B}) @deftypefunx int gsl_blas_ztrsm (CBLAS_SIDE_t @var{Side}, CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{TransA}, CBLAS_DIAG_t @var{Diag}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}) @cindex TRSM, Level-3 BLAS These functions compute the inverse-matrix matrix product @math{B = \alpha op(inv(A))B} for @var{Side} is @code{CblasLeft} and @math{B = \alpha B op(inv(A))} for @var{Side} is @code{CblasRight}. The matrix @var{A} is triangular and @math{op(A) = A}, @math{A^T}, @math{A^H} for @var{TransA} = @code{CblasNoTrans}, @code{CblasTrans}, @code{CblasConjTrans}. When @var{Uplo} is @code{CblasUpper} then the upper triangle of @var{A} is used, and when @var{Uplo} is @code{CblasLower} then the lower triangle of @var{A} is used. If @var{Diag} is @code{CblasNonUnit} then the diagonal of @var{A} is used, but if @var{Diag} is @code{CblasUnit} then the diagonal elements of the matrix @var{A} are taken as unity and are not referenced. @end deftypefun @deftypefun int gsl_blas_ssyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsyrk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYRK, Level-3 BLAS These functions compute a rank-k update of the symmetric matrix @var{C}, @math{C = \alpha A A^T + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^T A + \beta C} when @var{Trans} is @code{CblasTrans}. Since the matrix @var{C} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. @end deftypefun @deftypefun int gsl_blas_cherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_complex_float * @var{A}, float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zherk (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix_complex * @var{A}, double @var{beta}, gsl_matrix_complex * @var{C}) @cindex HERK, Level-3 BLAS These functions compute a rank-k update of the hermitian matrix @var{C}, @math{C = \alpha A A^H + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^H A + \beta C} when @var{Trans} is @code{CblasConjTrans}. Since the matrix @var{C} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @deftypefun int gsl_blas_ssyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, float @var{alpha}, const gsl_matrix_float * @var{A}, const gsl_matrix_float * @var{B}, float @var{beta}, gsl_matrix_float * @var{C}) @deftypefunx int gsl_blas_dsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, double @var{alpha}, const gsl_matrix * @var{A}, const gsl_matrix * @var{B}, double @var{beta}, gsl_matrix * @var{C}) @deftypefunx int gsl_blas_csyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, const gsl_complex_float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zsyr2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, const gsl_complex @var{beta}, gsl_matrix_complex * @var{C}) @cindex SYR2K, Level-3 BLAS These functions compute a rank-2k update of the symmetric matrix @var{C}, @math{C = \alpha A B^T + \alpha B A^T + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^T B + \alpha B^T A + \beta C} when @var{Trans} is @code{CblasTrans}. Since the matrix @var{C} is symmetric only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. @end deftypefun @deftypefun int gsl_blas_cher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex_float @var{alpha}, const gsl_matrix_complex_float * @var{A}, const gsl_matrix_complex_float * @var{B}, float @var{beta}, gsl_matrix_complex_float * @var{C}) @deftypefunx int gsl_blas_zher2k (CBLAS_UPLO_t @var{Uplo}, CBLAS_TRANSPOSE_t @var{Trans}, const gsl_complex @var{alpha}, const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{B}, double @var{beta}, gsl_matrix_complex * @var{C}) @cindex HER2K, Level-3 BLAS These functions compute a rank-2k update of the hermitian matrix @var{C}, @math{C = \alpha A B^H + \alpha^* B A^H + \beta C} when @var{Trans} is @code{CblasNoTrans} and @math{C = \alpha A^H B + \alpha^* B^H A + \beta C} when @var{Trans} is @code{CblasConjTrans}. Since the matrix @var{C} is hermitian only its upper half or lower half need to be stored. When @var{Uplo} is @code{CblasUpper} then the upper triangle and diagonal of @var{C} are used, and when @var{Uplo} is @code{CblasLower} then the lower triangle and diagonal of @var{C} are used. The imaginary elements of the diagonal are automatically set to zero. @end deftypefun @node BLAS Examples @section Examples The following program computes the product of two matrices using the Level-3 @sc{blas} function @sc{dgemm}, @tex \beforedisplay $$ \left( \matrix{0.11&0.12&0.13\cr 0.21&0.22&0.23\cr} \right) \left( \matrix{1011&1012\cr 1021&1022\cr 1031&1031\cr} \right) = \left( \matrix{367.76&368.12\cr 674.06&674.72\cr} \right) $$ \afterdisplay @end tex @ifinfo @example [ 0.11 0.12 0.13 ] [ 1011 1012 ] [ 367.76 368.12 ] [ 0.21 0.22 0.23 ] [ 1021 1022 ] = [ 674.06 674.72 ] [ 1031 1032 ] @end example @end ifinfo @noindent The matrices are stored in row major order, according to the C convention for arrays. @example @verbatiminclude examples/blas.c @end example @noindent Here is the output from the program, @example $ ./a.out @verbatiminclude examples/blas.out @end example @node BLAS References and Further Reading @section References and Further Reading Information on the @sc{blas} standards, including both the legacy and updated interface standards, is available online from the @sc{blas} Homepage and @sc{blas} Technical Forum web-site. @itemize @w{} @item @cite{BLAS Homepage} @* @uref{http://www.netlib.org/blas/} @item @cite{BLAS Technical Forum} @* @uref{http://www.netlib.org/blas/blast-forum/} @end itemize @noindent The following papers contain the specifications for Level 1, Level 2 and Level 3 @sc{blas}. @itemize @w{} @item C. Lawson, R. Hanson, D. Kincaid, F. Krogh, ``Basic Linear Algebra Subprograms for Fortran Usage'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 5 (1979), Pages 308--325. @item J.J. Dongarra, J. DuCroz, S. Hammarling, R. Hanson, ``An Extended Set of Fortran Basic Linear Algebra Subprograms'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 14, No.@: 1 (1988), Pages 1--32. @item J.J. Dongarra, I. Duff, J. DuCroz, S. Hammarling, ``A Set of Level 3 Basic Linear Algebra Subprograms'', @cite{ACM Transactions on Mathematical Software}, Vol.@: 16 (1990), Pages 1--28. @end itemize @noindent Postscript versions of the latter two papers are available from @uref{http://www.netlib.org/blas/}. A @sc{cblas} wrapper for Fortran @sc{blas} libraries is available from the same location. gsl-1.16/doc/specfunc-exp.texi0000664000252300025230000001226412171574312013217 00000000000000@cindex exponential function @cindex exp The functions described in this section are declared in the header file @file{gsl_sf_exp.h}. @menu * Exponential Function:: * Relative Exponential Functions:: * Exponentiation With Error Estimate:: @end menu @node Exponential Function @subsection Exponential Function @deftypefun double gsl_sf_exp (double @var{x}) @deftypefunx int gsl_sf_exp_e (double @var{x}, gsl_sf_result * @var{result}) These routines provide an exponential function @math{\exp(x)} using GSL semantics and error checking. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_exp_e10_e (double @var{x}, gsl_sf_result_e10 * @var{result}) This function computes the exponential @math{\exp(x)} using the @code{gsl_sf_result_e10} type to return a result with extended range. This function may be useful if the value of @math{\exp(x)} would overflow the numeric range of @code{double}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_exp_mult (double @var{x}, double @var{y}) @deftypefunx int gsl_sf_exp_mult_e (double @var{x}, double @var{y}, gsl_sf_result * @var{result}) These routines exponentiate @var{x} and multiply by the factor @var{y} to return the product @math{y \exp(x)}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_exp_mult_e10_e (const double @var{x}, const double @var{y}, gsl_sf_result_e10 * @var{result}) This function computes the product @math{y \exp(x)} using the @code{gsl_sf_result_e10} type to return a result with extended numeric range. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Relative Exponential Functions @subsection Relative Exponential Functions @deftypefun double gsl_sf_expm1 (double @var{x}) @deftypefunx int gsl_sf_expm1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the quantity @math{\exp(x)-1} using an algorithm that is accurate for small @math{x}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_exprel (double @var{x}) @deftypefunx int gsl_sf_exprel_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the quantity @math{(\exp(x)-1)/x} using an algorithm that is accurate for small @math{x}. For small @math{x} the algorithm is based on the expansion @math{(\exp(x)-1)/x = 1 + x/2 + x^2/(2*3) + x^3/(2*3*4) + \dots}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_exprel_2 (double @var{x}) @deftypefunx int gsl_sf_exprel_2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the quantity @math{2(\exp(x)-1-x)/x^2} using an algorithm that is accurate for small @math{x}. For small @math{x} the algorithm is based on the expansion @math{2(\exp(x)-1-x)/x^2 = 1 + x/3 + x^2/(3*4) + x^3/(3*4*5) + \dots}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_exprel_n (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_exprel_n_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the @math{N}-relative exponential, which is the @var{n}-th generalization of the functions @code{gsl_sf_exprel} and @code{gsl_sf_exprel_2}. The @math{N}-relative exponential is given by, @tex \beforedisplay $$ \eqalign{ \hbox{exprel}_N(x) &= N!/x^N \left(\exp(x) - \sum_{k=0}^{N-1} x^k/k!\right)\cr &= 1 + x/(N+1) + x^2/((N+1)(N+2)) + \dots\cr &= {}_1F_1(1,1+N,x)\cr } $$ \afterdisplay @end tex @ifinfo @example exprel_N(x) = N!/x^N (\exp(x) - \sum_@{k=0@}^@{N-1@} x^k/k!) = 1 + x/(N+1) + x^2/((N+1)(N+2)) + ... = 1F1 (1,1+N,x) @end example @end ifinfo @comment Exceptional Return Values: @end deftypefun @node Exponentiation With Error Estimate @subsection Exponentiation With Error Estimate @deftypefun int gsl_sf_exp_err_e (double @var{x}, double @var{dx}, gsl_sf_result * @var{result}) This function exponentiates @var{x} with an associated absolute error @var{dx}. @comment Exceptional Return Values: @end deftypefun @deftypefun int gsl_sf_exp_err_e10_e (double @var{x}, double @var{dx}, gsl_sf_result_e10 * @var{result}) This function exponentiates a quantity @var{x} with an associated absolute error @var{dx} using the @code{gsl_sf_result_e10} type to return a result with extended range. @comment Exceptional Return Values: @end deftypefun @deftypefun int gsl_sf_exp_mult_err_e (double @var{x}, double @var{dx}, double @var{y}, double @var{dy}, gsl_sf_result * @var{result}) This routine computes the product @math{y \exp(x)} for the quantities @var{x}, @var{y} with associated absolute errors @var{dx}, @var{dy}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_exp_mult_err_e10_e (double @var{x}, double @var{dx}, double @var{y}, double @var{dy}, gsl_sf_result_e10 * @var{result}) This routine computes the product @math{y \exp(x)} for the quantities @var{x}, @var{y} with associated absolute errors @var{dx}, @var{dy} using the @code{gsl_sf_result_e10} type to return a result with extended range. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/min-interval.eps0000664000252300025230000002700212171574312013036 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: tmp.xfig.eps %%Creator: fig2dev Version 3.2 Patchlevel 1 %%CreationDate: Mon Aug 16 15:21:28 1999 %%For: bjg@netsci (Brian Gough,,,,) %%Orientation: Portrait %%BoundingBox: 0 0 346 205 %%Pages: 0 %%BeginSetup %%EndSetup %%Magnification: 1.0000 %%EndComments /$F2psDict 200 dict def $F2psDict begin $F2psDict /mtrx matrix put /col-1 {0 setgray} bind def /col0 {0.000 0.000 0.000 srgb} bind def /col1 {0.000 0.000 1.000 srgb} bind def /col2 {0.000 1.000 0.000 srgb} bind def /col3 {0.000 1.000 1.000 srgb} bind def /col4 {1.000 0.000 0.000 srgb} bind def /col5 {1.000 0.000 1.000 srgb} bind def /col6 {1.000 1.000 0.000 srgb} bind def /col7 {1.000 1.000 1.000 srgb} bind def /col8 {0.000 0.000 0.560 srgb} bind def /col9 {0.000 0.000 0.690 srgb} bind def /col10 {0.000 0.000 0.820 srgb} bind def /col11 {0.530 0.810 1.000 srgb} bind def /col12 {0.000 0.560 0.000 srgb} bind def /col13 {0.000 0.690 0.000 srgb} bind def /col14 {0.000 0.820 0.000 srgb} bind def /col15 {0.000 0.560 0.560 srgb} bind def /col16 {0.000 0.690 0.690 srgb} bind def /col17 {0.000 0.820 0.820 srgb} bind def /col18 {0.560 0.000 0.000 srgb} bind def /col19 {0.690 0.000 0.000 srgb} bind def /col20 {0.820 0.000 0.000 srgb} bind def /col21 {0.560 0.000 0.560 srgb} bind def /col22 {0.690 0.000 0.690 srgb} bind def /col23 {0.820 0.000 0.820 srgb} bind def /col24 {0.500 0.190 0.000 srgb} bind def /col25 {0.630 0.250 0.000 srgb} bind def /col26 {0.750 0.380 0.000 srgb} bind def /col27 {1.000 0.500 0.500 srgb} bind def /col28 {1.000 0.630 0.630 srgb} bind def /col29 {1.000 0.750 0.750 srgb} bind def /col30 {1.000 0.880 0.880 srgb} bind def /col31 {1.000 0.840 0.000 srgb} bind def /col32 {0.557 0.557 0.557 srgb} bind def /col33 {0.255 0.271 0.255 srgb} bind def /col34 {0.557 0.557 0.557 srgb} bind def /col35 {0.255 0.271 0.255 srgb} bind def /col36 {0.557 0.557 0.557 srgb} bind def /col37 {0.255 0.271 0.255 srgb} bind def /col38 {0.557 0.557 0.557 srgb} bind def /col39 {0.255 0.271 0.255 srgb} bind def /col40 {0.557 0.557 0.557 srgb} bind def /col41 {0.255 0.271 0.255 srgb} bind def /col42 {0.557 0.557 0.557 srgb} bind def /col43 {0.255 0.271 0.255 srgb} bind def /col44 {0.557 0.557 0.557 srgb} bind def /col45 {0.557 0.557 0.557 srgb} bind def /col46 {0.557 0.557 0.557 srgb} bind def /col47 {0.557 0.557 0.557 srgb} bind def /col48 {0.557 0.557 0.557 srgb} bind def /col49 {0.557 0.557 0.557 srgb} bind def /col50 {0.557 0.557 0.557 srgb} bind def /col51 {0.557 0.557 0.557 srgb} bind def /col52 {0.557 0.557 0.557 srgb} bind def /col53 {0.557 0.557 0.557 srgb} bind def /col54 {0.557 0.557 0.557 srgb} bind def /col55 {0.255 0.271 0.255 srgb} bind def /col56 {0.557 0.557 0.557 srgb} bind def /col57 {0.255 0.271 0.255 srgb} bind def /col58 {0.557 0.557 0.557 srgb} bind def /col59 {0.255 0.271 0.255 srgb} bind def /col60 {0.557 0.557 0.557 srgb} bind def /col61 {0.255 0.271 0.255 srgb} bind def /col62 {0.557 0.557 0.557 srgb} bind def /col63 {0.255 0.271 0.255 srgb} bind def /col64 {0.557 0.557 0.557 srgb} bind def /col65 {0.255 0.271 0.255 srgb} bind def /col66 {0.557 0.557 0.557 srgb} bind def /col67 {0.255 0.271 0.255 srgb} bind def /col68 {0.557 0.557 0.557 srgb} bind def /col69 {0.255 0.271 0.255 srgb} bind def /col70 {0.557 0.557 0.557 srgb} bind def /col71 {0.255 0.271 0.255 srgb} bind def /col72 {0.557 0.557 0.557 srgb} bind def end save -30.0 227.0 translate 1 -1 scale /cp {closepath} bind def /ef {eofill} bind def /gr {grestore} bind def /gs {gsave} bind def /sa {save} bind def /rs {restore} bind def /l {lineto} bind def /m {moveto} bind def /rm {rmoveto} bind def /n {newpath} bind def /s {stroke} bind def /sh {show} bind def /slc {setlinecap} bind def /slj {setlinejoin} bind def /slw {setlinewidth} bind def /srgb {setrgbcolor} bind def /rot {rotate} bind def /sc {scale} bind def /sd {setdash} bind def /ff {findfont} bind def /sf {setfont} bind def /scf {scalefont} bind def /sw {stringwidth} bind def /tr {translate} bind def /tnt {dup dup currentrgbcolor 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add 4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb} bind def /shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul 4 -2 roll mul srgb} bind def /reencdict 12 dict def /ReEncode { reencdict begin /newcodesandnames exch def /newfontname exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict { exch dup /FID ne { dup /Encoding eq { exch dup length array copy newfont 3 1 roll put } { exch newfont 3 1 roll put } ifelse } { pop pop } ifelse } forall newfont /FontName newfontname put newcodesandnames aload pop 128 1 255 { newfont /Encoding get exch /.notdef put } for newcodesandnames length 2 idiv { newfont /Encoding get 3 1 roll put } repeat newfontname newfont definefont pop end } def /isovec [ 8#200 /grave 8#201 /acute 8#202 /circumflex 8#203 /tilde 8#204 /macron 8#205 /breve 8#206 /dotaccent 8#207 /dieresis 8#210 /ring 8#211 /cedilla 8#212 /hungarumlaut 8#213 /ogonek 8#214 /caron 8#220 /dotlessi 8#230 /oe 8#231 /OE 8#240 /space 8#241 /exclamdown 8#242 /cent 8#243 /sterling 8#244 /currency 8#245 /yen 8#246 /brokenbar 8#247 /section 8#250 /dieresis 8#251 /copyright 8#252 /ordfeminine 8#253 /guillemotleft 8#254 /logicalnot 8#255 /endash 8#256 /registered 8#257 /macron 8#260 /degree 8#261 /plusminus 8#262 /twosuperior 8#263 /threesuperior 8#264 /acute 8#265 /mu 8#266 /paragraph 8#267 /periodcentered 8#270 /cedilla 8#271 /onesuperior 8#272 /ordmasculine 8#273 /guillemotright 8#274 /onequarter 8#275 /onehalf 8#276 /threequarters 8#277 /questiondown 8#300 /Agrave 8#301 /Aacute 8#302 /Acircumflex 8#303 /Atilde 8#304 /Adieresis 8#305 /Aring 8#306 /AE 8#307 /Ccedilla 8#310 /Egrave 8#311 /Eacute 8#312 /Ecircumflex 8#313 /Edieresis 8#314 /Igrave 8#315 /Iacute 8#316 /Icircumflex 8#317 /Idieresis 8#320 /Eth 8#321 /Ntilde 8#322 /Ograve 8#323 /Oacute 8#324 /Ocircumflex 8#325 /Otilde 8#326 /Odieresis 8#327 /multiply 8#330 /Oslash 8#331 /Ugrave 8#332 /Uacute 8#333 /Ucircumflex 8#334 /Udieresis 8#335 /Yacute 8#336 /Thorn 8#337 /germandbls 8#340 /agrave 8#341 /aacute 8#342 /acircumflex 8#343 /atilde 8#344 /adieresis 8#345 /aring 8#346 /ae 8#347 /ccedilla 8#350 /egrave 8#351 /eacute 8#352 /ecircumflex 8#353 /edieresis 8#354 /igrave 8#355 /iacute 8#356 /icircumflex 8#357 /idieresis 8#360 /eth 8#361 /ntilde 8#362 /ograve 8#363 /oacute 8#364 /ocircumflex 8#365 /otilde 8#366 /odieresis 8#367 /divide 8#370 /oslash 8#371 /ugrave 8#372 /uacute 8#373 /ucircumflex 8#374 /udieresis 8#375 /yacute 8#376 /thorn 8#377 /ydieresis] def /Times-Roman /Times-Roman-iso isovec ReEncode /DrawEllipse { /endangle exch def /startangle exch def /yrad exch def /xrad exch def /y exch def /x exch def /savematrix mtrx currentmatrix def x y tr xrad yrad sc 0 0 1 startangle endangle arc closepath savematrix setmatrix } def /$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def /$F2psEnd {$F2psEnteredState restore end} def %%EndProlog $F2psBegin 10 setmiterlimit n -1000 4776 m -1000 -1000 l 7264 -1000 l 7264 4776 l cp clip 0.06000 0.06000 sc 7.500 slw % Ellipse n 2175 2250 25 25 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 4050 2700 25 25 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr % Ellipse n 5475 1555 25 25 0 360 DrawEllipse gs 0.00 setgray ef gr gs col0 s gr /Times-Roman-iso ff 180.00 scf sf 1950 2475 m gs 1 -1 sc (\(a\)) col0 sh gr /Times-Roman-iso ff 180.00 scf sf 5500 1800 m gs 1 -1 sc (\(b\)) col0 sh gr /Times-Roman-iso ff 180.00 scf sf 4200 2925 m gs 1 -1 sc (\(x\)) col0 sh gr % Polyline n 744 3590 m 819 3590 l gs col-1 s gr % Polyline n 6226 3590 m 6151 3590 l gs col-1 s gr % Polyline n 744 3062 m 819 3062 l gs col-1 s gr % Polyline n 6226 3062 m 6151 3062 l gs col-1 s gr % Polyline n 744 2535 m 819 2535 l gs col-1 s gr % Polyline n 6226 2535 m 6151 2535 l gs col-1 s gr % Polyline n 744 2007 m 819 2007 l gs col-1 s gr % Polyline n 6226 2007 m 6151 2007 l gs col-1 s gr % Polyline n 744 1479 m 819 1479 l gs col-1 s gr % Polyline n 6226 1479 m 6151 1479 l gs col-1 s gr % Polyline n 744 952 m 819 952 l gs col-1 s gr % Polyline n 6226 952 m 6151 952 l gs col-1 s gr % Polyline n 744 424 m 819 424 l gs col-1 s gr % Polyline n 6226 424 m 6151 424 l gs col-1 s gr % Polyline n 744 3590 m 744 3515 l gs col-1 s gr % Polyline n 744 424 m 744 499 l gs col-1 s gr % Polyline n 1658 3590 m 1658 3515 l gs col-1 s gr % Polyline n 1658 424 m 1658 499 l gs col-1 s gr % Polyline n 2571 3590 m 2571 3515 l gs col-1 s gr % Polyline n 2571 424 m 2571 499 l gs col-1 s gr % Polyline n 3485 3590 m 3485 3515 l gs col-1 s gr % Polyline n 3485 424 m 3485 499 l gs col-1 s gr % Polyline n 4399 3590 m 4399 3515 l gs col-1 s gr % Polyline n 4399 424 m 4399 499 l gs col-1 s gr % Polyline n 5312 3590 m 5312 3515 l gs col-1 s gr % Polyline n 5312 424 m 5312 499 l gs col-1 s gr % Polyline n 6226 3590 m 6226 3515 l gs col-1 s gr % Polyline n 6226 424 m 6226 499 l gs col-1 s gr % Polyline n 744 3590 m 6226 3590 l 6226 424 l 744 424 l 744 3590 l cp gs col-1 s gr % Polyline n 6074 561 m 6082 561 l gs col-1 s gr % Polyline n 744 424 m 799 519 l 855 612 l 910 703 l 965 792 l 1021 879 l 1076 965 l 1132 1048 l 1187 1129 l 1242 1209 l 1298 1286 l 1353 1362 l 1408 1436 l 1464 1507 l 1519 1577 l 1575 1645 l 1630 1711 l 1685 1775 l 1741 1837 l 1796 1897 l 1851 1955 l 1907 2011 l 1962 2066 l 2018 2118 l 2073 2168 l 2128 2217 l 2184 2263 l 2239 2308 l 2294 2351 l 2350 2391 l 2405 2430 l 2461 2467 l 2516 2502 l 2571 2535 l 2627 2566 l 2682 2595 l 2737 2622 l 2793 2647 l 2848 2670 l 2904 2692 l 2959 2711 l 3014 2728 l 3070 2744 l 3125 2758 l 3180 2769 l 3236 2779 l 3291 2787 l 3347 2792 l 3402 2796 l 3457 2798 l 3513 2798 l 3568 2796 l 3623 2792 l 3679 2787 l 3734 2779 l 3790 2769 l 3845 2758 l 3900 2744 l 3956 2728 l 4011 2711 l 4066 2692 l 4122 2670 l 4177 2647 l 4233 2622 l 4288 2595 l 4343 2566 l 4399 2535 l 4454 2502 l 4509 2467 l 4565 2430 l 4620 2391 l 4676 2351 l 4731 2308 l 4786 2263 l 4842 2217 l 4897 2168 l 4952 2118 l 5008 2066 l 5063 2011 l 5119 1955 l 5174 1897 l 5229 1837 l 5285 1775 l 5340 1711 l 5395 1645 l 5451 1577 l 5506 1507 l 5562 1436 l 5617 1362 l 5672 1286 l 5728 1209 l 5783 1129 l 5838 1048 l 5894 965 l 5949 879 l 6005 792 l 6060 703 l 6115 612 l 6171 519 l 6226 424 l gs col-1 s gr /Times-Roman-iso ff 150.00 scf sf 670 3652 m gs 1 -1 sc (0) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 3124 m gs 1 -1 sc (2) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 2597 m gs 1 -1 sc (4) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 2069 m gs 1 -1 sc (6) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 1541 m gs 1 -1 sc (8) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 1014 m gs 1 -1 sc (10) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 670 486 m gs 1 -1 sc (12) dup sw pop neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 744 3776 m gs 1 -1 sc (-3) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 1658 3776 m gs 1 -1 sc (-2) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 2571 3776 m gs 1 -1 sc (-1) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 3485 3776 m gs 1 -1 sc (0) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 4399 3776 m gs 1 -1 sc (1) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 5312 3776 m gs 1 -1 sc (2) dup sw pop 2 div neg 0 rm col-1 sh gr /Times-Roman-iso ff 150.00 scf sf 6226 3776 m gs 1 -1 sc (3) dup sw pop 2 div neg 0 rm col-1 sh gr $F2psEnd rs showpage gsl-1.16/doc/rand-rayleigh.tex0000664000252300025230000005430412171574312013175 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-rayleigh.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-rayleigh.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 103 V 20 103 V 19 103 V 20 102 V 19 102 V 20 102 V 19 101 V 19 101 V 20 100 V 19 99 V 20 98 V 19 98 V 20 96 V 19 95 V 19 95 V 20 93 V 19 91 V 20 90 V 19 89 V 20 88 V 19 85 V 19 84 V 20 83 V 19 80 V 20 79 V 19 77 V 20 75 V 19 73 V 19 72 V 20 69 V 19 66 V 20 65 V 19 63 V 20 60 V 19 59 V 19 55 V 20 54 V 19 51 V 20 50 V 19 46 V 20 45 V 19 42 V 19 39 V 20 37 V 19 35 V 20 33 V 19 30 V 20 28 V 19 25 V 19 23 V 20 21 V 19 18 V 20 16 V 19 14 V 20 11 V 19 10 V 19 7 V 20 5 V 19 2 V 20 1 V 19 -1 V 20 -4 V 19 -5 V 19 -8 V 20 -9 V 19 -12 V 20 -13 V 19 -15 V 20 -16 V 19 -19 V 19 -20 V 20 -21 V 19 -24 V 20 -24 V 19 -27 V 20 -27 V 19 -29 V 19 -30 V 20 -32 V 19 -32 V 20 -34 V 19 -35 V 20 -36 V 19 -37 V 19 -38 V 20 -39 V 19 -39 V 20 -40 V 19 -41 V 20 -42 V 19 -42 V 19 -43 V 20 -44 V 19 -43 V 20 -45 V 19 -44 V 20 -45 V 19 -46 V 19 -45 V 20 -46 V 19 -45 V 20 -46 V 3052 3039 L 20 -46 V 19 -46 V 19 -46 V 20 -46 V 19 -46 V 20 -45 V 19 -45 V 20 -46 V 19 -44 V 19 -45 V 20 -44 V 19 -44 V 20 -44 V 19 -43 V 20 -43 V 19 -42 V 19 -42 V 20 -41 V 19 -41 V 20 -41 V 19 -40 V 20 -39 V 19 -39 V 19 -38 V 20 -38 V 19 -37 V 20 -36 V 19 -36 V 20 -35 V 19 -35 V 19 -34 V 20 -33 V 19 -33 V 20 -32 V 19 -31 V 20 -31 V 19 -30 V 19 -29 V 20 -29 V 19 -29 V 20 -27 V 19 -27 V 20 -26 V 19 -26 V 19 -25 V 20 -24 V 19 -24 V 20 -23 V 19 -23 V 19 -22 V 20 -21 V 19 -21 V 20 -20 V 19 -20 V 20 -19 V 19 -18 V 19 -18 V 20 -18 V 19 -17 V 20 -16 V 19 -16 V 20 -15 V 19 -15 V 19 -15 V 20 -13 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -11 V 20 -11 V 19 -10 V 20 -11 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 5092 682 L 19 -3 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 0 V 20 -1 V 19 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 26 V 20 26 V 19 25 V 20 26 V 19 26 V 20 25 V 19 26 V 19 26 V 20 25 V 19 26 V 20 25 V 19 26 V 20 25 V 19 25 V 19 25 V 20 25 V 19 25 V 20 25 V 19 25 V 20 25 V 19 25 V 19 24 V 20 25 V 19 24 V 20 24 V 19 24 V 20 24 V 19 24 V 19 23 V 20 24 V 19 23 V 20 23 V 19 23 V 20 23 V 19 23 V 19 22 V 20 23 V 19 22 V 20 22 V 19 21 V 20 22 V 19 21 V 19 21 V 20 21 V 19 21 V 20 20 V 19 21 V 20 20 V 19 20 V 19 19 V 20 20 V 19 19 V 20 19 V 19 18 V 20 19 V 19 18 V 19 18 V 20 17 V 19 18 V 20 17 V 19 17 V 20 16 V 19 17 V 19 16 V 20 15 V 19 16 V 20 15 V 19 15 V 20 15 V 19 14 V 19 14 V 20 14 V 19 14 V 20 13 V 19 13 V 20 13 V 19 12 V 19 12 V 20 12 V 19 12 V 20 11 V 19 11 V 20 10 V 19 11 V 19 10 V 20 10 V 19 9 V 20 9 V 19 9 V 20 9 V 19 8 V 19 8 V 20 8 V 19 7 V 20 7 V 19 7 V 20 6 V 19 6 V 19 6 V 20 6 V 19 5 V 20 5 V 3052 2462 L 20 5 V 19 4 V 19 4 V 20 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 2 V 19 2 V 20 1 V 19 2 V 20 1 V 19 1 V 20 0 V 19 1 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -11 V 19 -10 V 19 -11 V 20 -10 V 19 -11 V 20 -11 V 19 -10 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -12 V 5092 1812 L 19 -12 V 20 -11 V 19 -12 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 19 -12 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 20 -12 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 19 -11 V 20 -11 V 19 -10 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 19 -8 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 20 -8 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\sigma=2$}}% \put(5957,4781){\rjust{\strut{}$\sigma=1$}}% \put(3955,5244){\cjust{\strut{}Rayleigh Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.7}}% \put(900,4328){\rjust{\strut{} 0.6}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,3096){\rjust{\strut{} 0.4}}% \put(900,2479){\rjust{\strut{} 0.3}}% \put(900,1863){\rjust{\strut{} 0.2}}% \put(900,1247){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-psi.texi0000664000252300025230000000552412171574312013217 00000000000000@cindex psi function @cindex digamma function @cindex polygamma functions The polygamma functions of order @math{n} are defined by @tex \beforedisplay $$ \psi^{(n)}(x) = \left(d \over dx\right)^n \psi(x) = \left(d \over dx\right)^{n+1} \log(\Gamma(x)) $$ \afterdisplay @end tex @ifinfo @example \psi^@{(n)@}(x) = (d/dx)^n \psi(x) = (d/dx)^@{n+1@} \log(\Gamma(x)) @end example @end ifinfo @noindent where @math{\psi(x) = \Gamma'(x)/\Gamma(x)} is known as the digamma function. These functions are declared in the header file @file{gsl_sf_psi.h}. @menu * Digamma Function:: * Trigamma Function:: * Polygamma Function:: @end menu @node Digamma Function @subsection Digamma Function @deftypefun double gsl_sf_psi_int (int @var{n}) @deftypefunx int gsl_sf_psi_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the digamma function @math{\psi(n)} for positive integer @var{n}. The digamma function is also called the Psi function. @comment Domain: n integer, n > 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_psi (double @var{x}) @deftypefunx int gsl_sf_psi_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the digamma function @math{\psi(x)} for general @math{x}, @math{x \ne 0}. @comment Domain: x != 0.0, -1.0, -2.0, ... @comment Exceptional Return Values: GSL_EDOM, GSL_ELOSS @end deftypefun @deftypefun double gsl_sf_psi_1piy (double @var{y}) @deftypefunx int gsl_sf_psi_1piy_e (double @var{y}, gsl_sf_result * @var{result}) These routines compute the real part of the digamma function on the line @math{1+i y}, @math{\Re[\psi(1 + i y)]}. @comment exceptions: none @comment Exceptional Return Values: none @end deftypefun @node Trigamma Function @subsection Trigamma Function @deftypefun double gsl_sf_psi_1_int (int @var{n}) @deftypefunx int gsl_sf_psi_1_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the Trigamma function @math{\psi'(n)} for positive integer @math{n}. @comment Domain: n integer, n > 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_psi_1 (double @var{x}) @deftypefunx int gsl_sf_psi_1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Trigamma function @math{\psi'(x)} for general @math{x}. @comment Domain: x != 0.0, -1.0, -2.0, ... @comment Exceptional Return Values: GSL_EDOM, GSL_ELOSS @end deftypefun @node Polygamma Function @subsection Polygamma Function @deftypefun double gsl_sf_psi_n (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_psi_n_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the polygamma function @c{$\psi^{(n)}(x)$} @math{\psi^@{(n)@}(x)} for @c{$n \ge 0$} @math{n >= 0}, @math{x > 0}. @comment Domain: n >= 0, x > 0.0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/specfunc-bessel.texi0000664000252300025230000006613412171574312013705 00000000000000@cindex Bessel functions The routines described in this section compute the Cylindrical Bessel functions @math{J_n(x)}, @math{Y_n(x)}, Modified cylindrical Bessel functions @math{I_n(x)}, @math{K_n(x)}, Spherical Bessel functions @math{j_l(x)}, @math{y_l(x)}, and Modified Spherical Bessel functions @math{i_l(x)}, @math{k_l(x)}. For more information see Abramowitz & Stegun, Chapters 9 and 10. The Bessel functions are defined in the header file @file{gsl_sf_bessel.h}. @menu * Regular Cylindrical Bessel Functions:: * Irregular Cylindrical Bessel Functions:: * Regular Modified Cylindrical Bessel Functions:: * Irregular Modified Cylindrical Bessel Functions:: * Regular Spherical Bessel Functions:: * Irregular Spherical Bessel Functions:: * Regular Modified Spherical Bessel Functions:: * Irregular Modified Spherical Bessel Functions:: * Regular Bessel Function - Fractional Order:: * Irregular Bessel Functions - Fractional Order:: * Regular Modified Bessel Functions - Fractional Order:: * Irregular Modified Bessel Functions - Fractional Order:: * Zeros of Regular Bessel Functions:: @end menu @node Regular Cylindrical Bessel Functions @subsection Regular Cylindrical Bessel Functions @cindex Cylindrical Bessel Functions @cindex Regular Cylindrical Bessel Functions @cindex J(x), Bessel Functions @deftypefun double gsl_sf_bessel_J0 (double @var{x}) @deftypefunx int gsl_sf_bessel_J0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular cylindrical Bessel function of zeroth order, @math{J_0(x)}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_bessel_J1 (double @var{x}) @deftypefunx int gsl_sf_bessel_J1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular cylindrical Bessel function of first order, @math{J_1(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Jn (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_Jn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular cylindrical Bessel function of order @var{n}, @math{J_n(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_Jn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the regular cylindrical Bessel functions @math{J_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @node Irregular Cylindrical Bessel Functions @subsection Irregular Cylindrical Bessel Functions @cindex Irregular Cylindrical Bessel Functions @cindex Y(x), Bessel Functions @deftypefun double gsl_sf_bessel_Y0 (double @var{x}) @deftypefunx int gsl_sf_bessel_Y0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular cylindrical Bessel function of zeroth order, @math{Y_0(x)}, for @math{x>0}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Y1 (double @var{x}) @deftypefunx int gsl_sf_bessel_Y1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular cylindrical Bessel function of first order, @math{Y_1(x)}, for @math{x>0}. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Yn (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_Yn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular cylindrical Bessel function of order @var{n}, @math{Y_n(x)}, for @math{x>0}. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_Yn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the irregular cylindrical Bessel functions @math{Y_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The domain of the function is @math{x>0}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Regular Modified Cylindrical Bessel Functions @subsection Regular Modified Cylindrical Bessel Functions @cindex Modified Cylindrical Bessel Functions @cindex Regular Modified Cylindrical Bessel Functions @cindex I(x), Bessel Functions @deftypefun double gsl_sf_bessel_I0 (double @var{x}) @deftypefunx int gsl_sf_bessel_I0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular modified cylindrical Bessel function of zeroth order, @math{I_0(x)}. @comment Exceptional Return Values: GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_bessel_I1 (double @var{x}) @deftypefunx int gsl_sf_bessel_I1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular modified cylindrical Bessel function of first order, @math{I_1(x)}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_In (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_In_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular modified cylindrical Bessel function of order @var{n}, @math{I_n(x)}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_In_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the regular modified cylindrical Bessel functions @math{I_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The start of the range @var{nmin} must be positive or zero. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: nmin >=0, nmax >= nmin @comment Conditions: n=nmin,...,nmax, nmin >=0, nmax >= nmin @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_I0_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_I0_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified cylindrical Bessel function of zeroth order @math{\exp(-|x|) I_0(x)}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_bessel_I1_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_I1_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified cylindrical Bessel function of first order @math{\exp(-|x|) I_1(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_In_scaled (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_In_scaled_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified cylindrical Bessel function of order @var{n}, @math{\exp(-|x|) I_n(x)} @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_In_scaled_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the scaled regular cylindrical Bessel functions @math{\exp(-|x|) I_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The start of the range @var{nmin} must be positive or zero. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: nmin >=0, nmax >= nmin @comment Conditions: n=nmin,...,nmax @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @node Irregular Modified Cylindrical Bessel Functions @subsection Irregular Modified Cylindrical Bessel Functions @cindex Irregular Modified Cylindrical Bessel Functions @cindex K(x), Bessel Functions @deftypefun double gsl_sf_bessel_K0 (double @var{x}) @deftypefunx int gsl_sf_bessel_K0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular modified cylindrical Bessel function of zeroth order, @math{K_0(x)}, for @math{x > 0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_K1 (double @var{x}) @deftypefunx int gsl_sf_bessel_K1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular modified cylindrical Bessel function of first order, @math{K_1(x)}, for @math{x > 0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Kn (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_Kn_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular modified cylindrical Bessel function of order @var{n}, @math{K_n(x)}, for @math{x > 0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_Kn_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the irregular modified cylindrical Bessel functions @math{K_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The start of the range @var{nmin} must be positive or zero. The domain of the function is @math{x>0}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Conditions: n=nmin,...,nmax @comment Domain: x > 0.0, nmin>=0, nmax >= nmin @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_K0_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_K0_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified cylindrical Bessel function of zeroth order @math{\exp(x) K_0(x)} for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_bessel_K1_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_K1_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified cylindrical Bessel function of first order @math{\exp(x) K_1(x)} for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Kn_scaled (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_bessel_Kn_scaled_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified cylindrical Bessel function of order @var{n}, @math{\exp(x) K_n(x)}, for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_Kn_scaled_array (int @var{nmin}, int @var{nmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the scaled irregular cylindrical Bessel functions @math{\exp(x) K_n(x)} for @math{n} from @var{nmin} to @var{nmax} inclusive, storing the results in the array @var{result_array}. The start of the range @var{nmin} must be positive or zero. The domain of the function is @math{x>0}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: x > 0.0, nmin >=0, nmax >= nmin @comment Conditions: n=nmin,...,nmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @node Regular Spherical Bessel Functions @subsection Regular Spherical Bessel Functions @cindex Spherical Bessel Functions @cindex Regular Spherical Bessel Functions @cindex j(x), Bessel Functions @deftypefun double gsl_sf_bessel_j0 (double @var{x}) @deftypefunx int gsl_sf_bessel_j0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular spherical Bessel function of zeroth order, @math{j_0(x) = \sin(x)/x}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_bessel_j1 (double @var{x}) @deftypefunx int gsl_sf_bessel_j1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular spherical Bessel function of first order, @math{j_1(x) = (\sin(x)/x - \cos(x))/x}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_j2 (double @var{x}) @deftypefunx int gsl_sf_bessel_j2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular spherical Bessel function of second order, @math{j_2(x) = ((3/x^2 - 1)\sin(x) - 3\cos(x)/x)/x}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_jl (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_bessel_jl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular spherical Bessel function of order @var{l}, @math{j_l(x)}, for @c{$l \geq 0$} @math{l >= 0} and @c{$x \geq 0$} @math{x >= 0}. @comment Domain: l >= 0, x >= 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_jl_array (int @var{lmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the regular spherical Bessel functions @math{j_l(x)} for @math{l} from 0 to @var{lmax} inclusive for @c{$lmax \geq 0$} @math{lmax >= 0} and @c{$x \geq 0$} @math{x >= 0}, storing the results in the array @var{result_array}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_jl_steed_array (int @var{lmax}, double @var{x}, double * @var{result_array}) This routine uses Steed's method to compute the values of the regular spherical Bessel functions @math{j_l(x)} for @math{l} from 0 to @var{lmax} inclusive for @c{$lmax \geq 0$} @math{lmax >= 0} and @c{$x \geq 0$} @math{x >= 0}, storing the results in the array @var{result_array}. The Steed/Barnett algorithm is described in @cite{Comp. Phys. Comm.} 21, 297 (1981). Steed's method is more stable than the recurrence used in the other functions but is also slower. @comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @node Irregular Spherical Bessel Functions @subsection Irregular Spherical Bessel Functions @cindex Irregular Spherical Bessel Functions @cindex y(x), Bessel Functions @deftypefun double gsl_sf_bessel_y0 (double @var{x}) @deftypefunx int gsl_sf_bessel_y0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular spherical Bessel function of zeroth order, @math{y_0(x) = -\cos(x)/x}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_bessel_y1 (double @var{x}) @deftypefunx int gsl_sf_bessel_y1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular spherical Bessel function of first order, @math{y_1(x) = -(\cos(x)/x + \sin(x))/x}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_y2 (double @var{x}) @deftypefunx int gsl_sf_bessel_y2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular spherical Bessel function of second order, @math{y_2(x) = (-3/x^3 + 1/x)\cos(x) - (3/x^2)\sin(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_yl (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_bessel_yl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular spherical Bessel function of order @var{l}, @math{y_l(x)}, for @c{$l \geq 0$} @math{l >= 0}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_yl_array (int @var{lmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the irregular spherical Bessel functions @math{y_l(x)} for @math{l} from 0 to @var{lmax} inclusive for @c{$lmax \geq 0$} @math{lmax >= 0}, storing the results in the array @var{result_array}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @node Regular Modified Spherical Bessel Functions @subsection Regular Modified Spherical Bessel Functions @cindex Modified Spherical Bessel Functions @cindex Regular Modified Spherical Bessel Functions @cindex i(x), Bessel Functions The regular modified spherical Bessel functions @math{i_l(x)} are related to the modified Bessel functions of fractional order, @c{$i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)$} @math{i_l(x) = \sqrt@{\pi/(2x)@} I_@{l+1/2@}(x)} @deftypefun double gsl_sf_bessel_i0_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_i0_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified spherical Bessel function of zeroth order, @math{\exp(-|x|) i_0(x)}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_bessel_i1_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_i1_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified spherical Bessel function of first order, @math{\exp(-|x|) i_1(x)}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_i2_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_i2_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified spherical Bessel function of second order, @math{ \exp(-|x|) i_2(x) } @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_il_scaled (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_bessel_il_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified spherical Bessel function of order @var{l}, @math{ \exp(-|x|) i_l(x) } @comment Domain: l >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_il_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the scaled regular modified cylindrical Bessel functions @math{\exp(-|x|) i_l(x)} for @math{l} from 0 to @var{lmax} inclusive for @c{$lmax \geq 0$} @math{lmax >= 0}, storing the results in the array @var{result_array}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun @node Irregular Modified Spherical Bessel Functions @subsection Irregular Modified Spherical Bessel Functions @cindex Irregular Modified Spherical Bessel Functions @cindex k(x), Bessel Functions The irregular modified spherical Bessel functions @math{k_l(x)} are related to the irregular modified Bessel functions of fractional order, @c{$k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x)$} @math{k_l(x) = \sqrt@{\pi/(2x)@} K_@{l+1/2@}(x)}. @deftypefun double gsl_sf_bessel_k0_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_k0_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified spherical Bessel function of zeroth order, @math{\exp(x) k_0(x)}, for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_k1_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_k1_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified spherical Bessel function of first order, @math{\exp(x) k_1(x)}, for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_bessel_k2_scaled (double @var{x}) @deftypefunx int gsl_sf_bessel_k2_scaled_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified spherical Bessel function of second order, @math{\exp(x) k_2(x)}, for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_bessel_kl_scaled (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_bessel_kl_scaled_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified spherical Bessel function of order @var{l}, @math{\exp(x) k_l(x)}, for @math{x>0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_kl_scaled_array (int @var{lmax}, double @var{x}, double @var{result_array}[]) This routine computes the values of the scaled irregular modified spherical Bessel functions @math{\exp(x) k_l(x)} for @math{l} from 0 to @var{lmax} inclusive for @c{$lmax \geq 0$} @math{lmax >= 0} and @math{x>0}, storing the results in the array @var{result_array}. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values. @comment Domain: lmax >= 0 @comment Conditions: l=0,1,...,lmax @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @node Regular Bessel Function - Fractional Order @subsection Regular Bessel Function---Fractional Order @cindex Fractional Order Bessel Functions @cindex Bessel Functions, Fractional Order @cindex Regular Bessel Functions, Fractional Order @deftypefun double gsl_sf_bessel_Jnu (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Jnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular cylindrical Bessel function of fractional order @math{\nu}, @math{J_\nu(x)}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_bessel_sequence_Jnu_e (double @var{nu}, gsl_mode_t @var{mode}, size_t @var{size}, double @var{v}[]) This function computes the regular cylindrical Bessel function of fractional order @math{\nu}, @math{J_\nu(x)}, evaluated at a series of @math{x} values. The array @var{v} of length @var{size} contains the @math{x} values. They are assumed to be strictly ordered and positive. The array is over-written with the values of @math{J_\nu(x_i)}. @comment Exceptional Return Values: GSL_EDOM, GSL_EINVAL @end deftypefun @node Irregular Bessel Functions - Fractional Order @subsection Irregular Bessel Functions---Fractional Order @deftypefun double gsl_sf_bessel_Ynu (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Ynu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular cylindrical Bessel function of fractional order @math{\nu}, @math{Y_\nu(x)}. @comment Exceptional Return Values: @end deftypefun @node Regular Modified Bessel Functions - Fractional Order @subsection Regular Modified Bessel Functions---Fractional Order @cindex Modified Bessel Functions, Fractional Order @cindex Regular Modified Bessel Functions, Fractional Order @deftypefun double gsl_sf_bessel_Inu (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Inu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular modified Bessel function of fractional order @math{\nu}, @math{I_\nu(x)} for @math{x>0}, @math{\nu>0}. @comment Domain: x >= 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_bessel_Inu_scaled (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Inu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled regular modified Bessel function of fractional order @math{\nu}, @math{\exp(-|x|)I_\nu(x)} for @math{x>0}, @math{\nu>0}. @comment @math{ \exp(-|x|) I_@{\nu@}(x) } @comment Domain: x >= 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Irregular Modified Bessel Functions - Fractional Order @subsection Irregular Modified Bessel Functions---Fractional Order @cindex Irregular Modified Bessel Functions, Fractional Order @deftypefun double gsl_sf_bessel_Knu (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Knu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular modified Bessel function of fractional order @math{\nu}, @math{K_\nu(x)} for @math{x>0}, @math{\nu>0}. @comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_bessel_lnKnu (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_lnKnu_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the logarithm of the irregular modified Bessel function of fractional order @math{\nu}, @math{\ln(K_\nu(x))} for @math{x>0}, @math{\nu>0}. @comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_bessel_Knu_scaled (double @var{nu}, double @var{x}) @deftypefunx int gsl_sf_bessel_Knu_scaled_e (double @var{nu}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the scaled irregular modified Bessel function of fractional order @math{\nu}, @math{\exp(+|x|) K_\nu(x)} for @math{x>0}, @math{\nu>0}. @comment Domain: x > 0, nu >= 0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Zeros of Regular Bessel Functions @subsection Zeros of Regular Bessel Functions @cindex Zeros of Regular Bessel Functions @cindex Regular Bessel Functions, Zeros of @deftypefun double gsl_sf_bessel_zero_J0 (unsigned int @var{s}) @deftypefunx int gsl_sf_bessel_zero_J0_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th positive zero of the Bessel function @math{J_0(x)}. @comment Exceptional Return Values: @end deftypefun @deftypefun double gsl_sf_bessel_zero_J1 (unsigned int @var{s}) @deftypefunx int gsl_sf_bessel_zero_J1_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th positive zero of the Bessel function @math{J_1(x)}. @comment Exceptional Return Values: @end deftypefun @deftypefun double gsl_sf_bessel_zero_Jnu (double @var{nu}, unsigned int @var{s}) @deftypefunx int gsl_sf_bessel_zero_Jnu_e (double @var{nu}, unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th positive zero of the Bessel function @math{J_\nu(x)}. The current implementation does not support negative values of @var{nu}. @comment Exceptional Return Values: @end deftypefun gsl-1.16/doc/interpp2.eps0000664000252300025230000010076012171574312012177 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Sat Dec 24 16:36:40 2005 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 92 197 497 580 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 92 197 497 580 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 115.5459 214.1855 ] concat %I [ (0.00) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 173.1459 214.1855 ] concat %I [ (0.05) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 9216 3456 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 2304 3456 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 230.7459 214.1855 ] concat %I [ (0.10) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 288.3459 214.1855 ] concat %I [ (0.15) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 345.9459 214.1855 ] concat %I [ (0.20) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 403.5459 214.1855 ] concat %I [ (0.25) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 9216 8064 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 2304 8064 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 461.1459 214.1855 ] concat %I [ (0.30) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 92.19974 229.8568 ] concat %I [ (-0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 298.9768 ] concat %I [ (0.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3686 9078 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2442 3686 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 368.0968 ] concat %I [ (0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5069 9078 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2442 5069 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 437.2168 ] concat %I [ (0.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6451 9078 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2442 6451 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 506.3368 ] concat %I [ (0.6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7834 9078 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2442 7834 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 102.7958 575.4568 ] concat %I [ (0.8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2995 9161 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2995 2359 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3686 9161 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2359 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4378 9161 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4378 2359 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5069 9161 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2359 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6451 9161 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2359 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7142 9161 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7142 2359 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7834 9161 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2359 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8525 9161 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8525 2359 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 34952 1 0 0 [ 1.48 4.43 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 9216 3686 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2239 4658 2369 4788 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2369 4658 2239 4788 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4543 8460 4673 8590 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4673 8460 4543 8590 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8460 2930 8590 3060 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8590 2930 8460 3060 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9151 4658 9281 4788 2 MLine End Begin %I MLine [0.324 0 0 0.324 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9281 4658 9151 4788 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 101 2304 4723 2373 4920 2442 5115 2511 5308 2580 5499 2650 5687 2719 5872 2788 6054 2857 6232 2926 6406 2995 6576 3064 6741 3133 6901 3203 7056 3272 7205 3341 7348 3410 7485 3479 7616 3548 7739 3617 7855 3686 7964 3756 8065 3825 8157 3894 8241 3963 8316 4032 8381 4101 8437 4170 8484 4239 8519 4308 8545 4378 8559 4447 8563 4516 8554 4585 8534 4654 8502 4723 8458 4792 8402 4861 8335 4931 8258 5000 8171 5069 8075 5138 7970 5207 7857 5276 7736 5345 7608 5414 7473 5484 7332 5553 7185 5622 7033 5691 6876 5760 6716 5829 6552 5898 6385 5967 6215 6036 6043 6106 5870 6175 5696 6244 5522 6313 5348 6382 5174 6451 5002 6520 4831 6589 4663 6659 4497 6728 4335 6797 4177 6866 4022 6935 3873 7004 3729 7073 3591 7142 3460 7212 3335 7281 3218 7350 3109 7419 3009 7488 2918 7557 2836 7626 2764 7695 2703 7764 2654 7834 2615 7903 2590 7972 2577 8041 2577 8110 2591 8179 2619 8248 2663 8317 2721 8387 2796 8456 2887 8525 2995 8594 3120 8663 3261 8732 3416 8801 3582 8870 3758 8940 3943 9009 4133 9078 4328 9147 4525 9216 4723 101 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/version.texi0000664000252300025230000000013312172254164012275 00000000000000@set UPDATED 17 July 2013 @set UPDATED-MONTH July 2013 @set EDITION 1.16 @set VERSION 1.16 gsl-1.16/doc/rand-erlang.tex0000664000252300025230000006044012171574312012637 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-erlang.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-erlang.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 4944 M 19 -72 V 20 -70 V 19 -69 V 20 -68 V 19 -67 V 20 -66 V 19 -64 V 19 -64 V 20 -63 V 19 -61 V 20 -61 V 19 -59 V 20 -59 V 19 -57 V 19 -57 V 20 -55 V 19 -55 V 20 -54 V 19 -53 V 20 -52 V 19 -51 V 19 -51 V 20 -49 V 19 -49 V 20 -48 V 19 -47 V 20 -46 V 19 -46 V 19 -44 V 20 -44 V 19 -44 V 20 -42 V 19 -42 V 20 -41 V 19 -41 V 19 -40 V 20 -39 V 19 -38 V 20 -38 V 19 -38 V 20 -36 V 19 -36 V 19 -36 V 20 -35 V 19 -34 V 20 -33 V 19 -34 V 20 -32 V 19 -32 V 19 -32 V 20 -31 V 19 -30 V 20 -30 V 19 -30 V 20 -29 V 19 -28 V 19 -28 V 20 -28 V 19 -27 V 20 -27 V 19 -26 V 20 -26 V 19 -25 V 19 -25 V 20 -24 V 19 -25 V 20 -23 V 19 -24 V 20 -23 V 19 -22 V 19 -22 V 20 -22 V 19 -22 V 20 -21 V 19 -20 V 20 -21 V 19 -20 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -18 V 20 -19 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -16 V 20 -16 V 19 -16 V 19 -16 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -14 V 19 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -14 V 3052 1401 L 20 -12 V 19 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -9 V 20 -8 V 19 -7 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 5092 764 L 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 71 V 20 69 V 19 66 V 20 64 V 19 62 V 20 59 V 19 58 V 19 56 V 20 53 V 19 52 V 20 50 V 19 48 V 20 46 V 19 45 V 19 43 V 20 41 V 19 40 V 20 38 V 19 36 V 20 35 V 19 34 V 19 32 V 20 31 V 19 30 V 20 28 V 19 27 V 20 26 V 19 24 V 19 24 V 20 22 V 19 21 V 20 21 V 19 19 V 20 18 V 19 17 V 19 16 V 20 15 V 19 15 V 20 13 V 19 13 V 20 12 V 19 11 V 19 10 V 20 9 V 19 9 V 20 8 V 19 8 V 20 6 V 19 6 V 19 6 V 20 5 V 19 4 V 20 4 V 19 3 V 20 2 V 19 2 V 19 2 V 20 1 V 19 1 V 20 0 V 19 -1 V 20 0 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 20 -8 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -10 V 3052 1958 L 20 -9 V 19 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -10 V 19 -9 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 5092 1094 L 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V stroke LT2 LTb LT2 6077 4381 M 543 0 V 1051 631 M 19 1 V 20 1 V 19 3 V 20 4 V 19 5 V 20 6 V 19 6 V 19 8 V 20 8 V 19 9 V 20 10 V 19 10 V 20 11 V 19 12 V 19 12 V 20 12 V 19 13 V 20 14 V 19 13 V 20 15 V 19 14 V 19 15 V 20 15 V 19 16 V 20 15 V 19 16 V 20 16 V 19 16 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 19 17 V 20 17 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 19 16 V 20 16 V 19 16 V 20 16 V 19 16 V 20 16 V 19 15 V 19 15 V 20 16 V 19 14 V 20 15 V 19 15 V 20 14 V 19 14 V 19 14 V 20 14 V 19 14 V 20 13 V 19 13 V 20 13 V 19 13 V 19 12 V 20 12 V 19 12 V 20 12 V 19 11 V 20 12 V 19 11 V 19 10 V 20 11 V 19 10 V 20 10 V 19 10 V 20 9 V 19 10 V 19 9 V 20 8 V 19 9 V 20 8 V 19 8 V 20 8 V 19 7 V 19 8 V 20 7 V 19 6 V 20 7 V 19 6 V 20 6 V 19 6 V 19 6 V 20 5 V 19 5 V 20 5 V 19 5 V 20 5 V 19 4 V 19 4 V 20 4 V 19 3 V 20 4 V 3052 1774 L 20 3 V 19 3 V 19 2 V 20 3 V 19 2 V 20 2 V 19 1 V 20 2 V 19 1 V 19 2 V 20 1 V 19 1 V 20 0 V 19 1 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 5092 1436 L 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4381){\rjust{\strut{}$n=3$}}% \put(5957,4581){\rjust{\strut{}$n=2$}}% \put(5957,4781){\rjust{\strut{}$n=1$}}% \put(3955,5244){\cjust{\strut{}Erlang Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/rand-gamma.tex0000664000252300025230000006043512171574312012455 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gamma.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-gamma.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 4944 M 19 -72 V 20 -70 V 19 -69 V 20 -68 V 19 -67 V 20 -66 V 19 -64 V 19 -64 V 20 -63 V 19 -61 V 20 -61 V 19 -59 V 20 -59 V 19 -57 V 19 -57 V 20 -55 V 19 -55 V 20 -54 V 19 -53 V 20 -52 V 19 -51 V 19 -51 V 20 -49 V 19 -49 V 20 -48 V 19 -47 V 20 -46 V 19 -46 V 19 -44 V 20 -44 V 19 -44 V 20 -42 V 19 -42 V 20 -41 V 19 -41 V 19 -40 V 20 -39 V 19 -38 V 20 -38 V 19 -38 V 20 -36 V 19 -36 V 19 -36 V 20 -35 V 19 -34 V 20 -33 V 19 -34 V 20 -32 V 19 -32 V 19 -32 V 20 -31 V 19 -30 V 20 -30 V 19 -30 V 20 -29 V 19 -28 V 19 -28 V 20 -28 V 19 -27 V 20 -27 V 19 -26 V 20 -26 V 19 -25 V 19 -25 V 20 -24 V 19 -25 V 20 -23 V 19 -24 V 20 -23 V 19 -22 V 19 -22 V 20 -22 V 19 -22 V 20 -21 V 19 -20 V 20 -21 V 19 -20 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -18 V 20 -19 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -16 V 20 -16 V 19 -16 V 19 -16 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 20 -14 V 19 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -14 V 3052 1401 L 20 -12 V 19 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -9 V 20 -8 V 19 -7 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 5092 764 L 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 71 V 20 69 V 19 66 V 20 64 V 19 62 V 20 59 V 19 58 V 19 56 V 20 53 V 19 52 V 20 50 V 19 48 V 20 46 V 19 45 V 19 43 V 20 41 V 19 40 V 20 38 V 19 36 V 20 35 V 19 34 V 19 32 V 20 31 V 19 30 V 20 28 V 19 27 V 20 26 V 19 24 V 19 24 V 20 22 V 19 21 V 20 21 V 19 19 V 20 18 V 19 17 V 19 16 V 20 15 V 19 15 V 20 13 V 19 13 V 20 12 V 19 11 V 19 10 V 20 9 V 19 9 V 20 8 V 19 8 V 20 6 V 19 6 V 19 6 V 20 5 V 19 4 V 20 4 V 19 3 V 20 2 V 19 2 V 19 2 V 20 1 V 19 1 V 20 0 V 19 -1 V 20 0 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 20 -8 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -10 V 3052 1958 L 20 -9 V 19 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -10 V 19 -9 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -9 V 19 -9 V 20 -8 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 5092 1094 L 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V stroke LT2 LTb LT2 6077 4381 M 543 0 V 1051 631 M 19 1 V 20 1 V 19 3 V 20 4 V 19 5 V 20 6 V 19 6 V 19 8 V 20 8 V 19 9 V 20 10 V 19 10 V 20 11 V 19 12 V 19 12 V 20 12 V 19 13 V 20 14 V 19 13 V 20 15 V 19 14 V 19 15 V 20 15 V 19 16 V 20 15 V 19 16 V 20 16 V 19 16 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 19 17 V 20 17 V 19 16 V 20 17 V 19 16 V 20 17 V 19 16 V 19 16 V 20 16 V 19 16 V 20 16 V 19 16 V 20 16 V 19 15 V 19 15 V 20 16 V 19 14 V 20 15 V 19 15 V 20 14 V 19 14 V 19 14 V 20 14 V 19 14 V 20 13 V 19 13 V 20 13 V 19 13 V 19 12 V 20 12 V 19 12 V 20 12 V 19 11 V 20 12 V 19 11 V 19 10 V 20 11 V 19 10 V 20 10 V 19 10 V 20 9 V 19 10 V 19 9 V 20 8 V 19 9 V 20 8 V 19 8 V 20 8 V 19 7 V 19 8 V 20 7 V 19 6 V 20 7 V 19 6 V 20 6 V 19 6 V 19 6 V 20 5 V 19 5 V 20 5 V 19 5 V 20 5 V 19 4 V 19 4 V 20 4 V 19 3 V 20 4 V 3052 1774 L 20 3 V 19 3 V 19 2 V 20 3 V 19 2 V 20 2 V 19 1 V 20 2 V 19 1 V 19 2 V 20 1 V 19 1 V 20 0 V 19 1 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 5092 1436 L 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4381){\rjust{\strut{}$a=3$}}% \put(5957,4581){\rjust{\strut{}$a=2$}}% \put(5957,4781){\rjust{\strut{}$a=1$}}% \put(3955,5244){\cjust{\strut{}Gamma Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/histogram.eps0000664000252300025230000013144512171574312012435 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 1.6 %%Title: PostScript plot %%CreationDate: Sat Aug 18 20:49:32 2001 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 97 195 494 580 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /arrowWidth 4 def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eofill } { eoclip originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eofill fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 97 195 494 580 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Poly [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2304 2304 2304 9216 9216 9216 9216 2304 4 Poly End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 112.7699 213.1332 ] concat %I [ (-100) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 204.2139 213.1332 ] concat %I [ (-50) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 9216 4032 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 300.956 213.1332 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 382.3119 213.1332 ] concat %I [ (50) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 9216 7488 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 463.6679 213.1332 ] concat %I [ (100) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 9216 2650 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2650 2304 2650 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 9216 2995 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2995 2304 2995 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 9216 3341 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3341 2304 3341 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 9216 4032 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 9216 4378 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4378 2304 4378 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 9216 4723 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4723 2304 4723 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 9216 5414 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5414 2304 5414 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 9216 6106 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6106 2304 6106 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 9216 6797 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6797 2304 6797 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 9216 7142 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7142 2304 7142 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 9216 7488 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 9216 8179 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8179 2304 8179 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 9216 8525 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8525 2304 8525 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 9216 8870 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8870 2304 8870 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 34952 1 0 0 [ 1 3 1 3 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 9216 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 229.3306 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 107.8399 278.702 ] concat %I [ (20) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3291 9078 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3291 2442 3291 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 107.8399 328.0734 ] concat %I [ (40) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4279 9078 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4279 2442 4279 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 107.8399 377.4449 ] concat %I [ (60) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5266 9078 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5266 2442 5266 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 107.8399 426.8163 ] concat %I [ (80) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6254 9078 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6254 2442 6254 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 97.75181 476.1877 ] concat %I [ (100) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7241 9078 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7241 2442 7241 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 97.75181 525.5592 ] concat %I [ (120) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8229 9078 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8229 2442 8229 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 97.75181 574.9306 ] concat %I [ (140) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2798 9161 2798 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2798 2359 2798 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3291 9161 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3291 2359 3291 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3785 9161 3785 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3785 2359 3785 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4279 9161 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4279 2359 4279 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4773 9161 4773 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4773 2359 4773 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5266 9161 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5266 2359 5266 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6254 9161 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6254 2359 6254 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6747 9161 6747 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6747 2359 6747 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7241 9161 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7241 2359 7241 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7735 9161 7735 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7735 2359 7735 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8229 9161 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8229 2359 8229 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8722 9161 8722 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8722 2359 8722 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 400 2304 2748 2339 2748 2339 2501 2373 2501 2373 2896 2408 2896 2408 2896 2442 2896 2442 2896 2477 2896 2477 2650 2511 2650 2511 2650 2546 2650 2546 2896 2580 2896 2580 2896 2615 2896 2615 2650 2650 2650 2650 2551 2684 2551 2684 2847 2719 2847 2719 2650 2753 2650 2753 2847 2788 2847 2788 2995 2822 2995 2822 2896 2857 2896 2857 3291 2892 3291 2892 2650 2926 2650 2926 3291 2961 3291 2961 3094 2995 3094 2995 2798 3030 2798 3030 3045 3064 3045 3064 2896 3099 2896 3099 2847 3133 2847 3133 3143 3168 3143 3168 3193 3203 3193 3203 2748 3237 2748 3237 3193 3272 3193 3272 2896 3306 2896 3306 3390 3341 3390 3341 2995 3375 2995 3375 3143 3410 3143 3410 3242 3444 3242 3444 3440 3479 3440 3479 3291 3514 3291 3514 2995 3548 2995 3548 2748 3583 2748 3583 3193 3617 3193 3617 3094 3652 3094 3652 3291 3686 3291 3686 3143 3721 3143 3721 3785 3756 3785 3756 3341 3790 3341 3790 3637 3825 3637 3825 3983 3859 3983 3859 3440 3894 3440 3894 3538 3928 3538 3928 3538 3963 3538 3963 3736 3997 3736 3997 3588 4032 3588 4032 3538 4067 3538 4067 3390 4101 3390 4101 4279 4136 4279 4136 3686 4170 3686 4170 4476 4205 4476 4205 4032 4239 4032 4239 4328 4274 4328 4274 4081 4308 4081 4308 4773 4343 4773 4343 5168 4378 5168 4378 4032 4412 4032 4412 4229 4447 4229 4447 4476 4481 4476 4481 4921 4516 4921 4516 4180 4550 4180 4550 4378 4585 4378 4585 4871 4620 4871 4620 4921 4654 4921 4654 4180 4689 4180 4689 4526 4723 4526 4723 5464 4758 5464 4758 5711 4792 5711 4792 5563 4827 5563 4827 5316 4861 5316 4861 5217 4896 5217 4896 5908 4931 5908 4931 4921 4965 4921 4965 6106 5000 6106 5000 5612 5034 5612 5034 6056 5069 6056 5069 5908 5103 5908 5103 6204 5138 6204 5138 6698 5172 6698 5172 6994 5207 6994 5207 7044 5242 7044 5242 6994 5276 6994 5276 6599 5311 6599 5311 6846 5345 6846 5345 7093 5380 7093 5380 7636 5414 7636 5414 6056 5449 6056 5449 7340 5484 7340 5484 6994 5518 6994 5518 7439 5553 7439 5553 7241 5587 7241 5587 7192 5622 7192 5622 7932 5656 7932 5656 7389 5691 7389 5691 7192 5725 7192 5725 7340 5760 7340 5760 6550 5795 6550 5795 8278 5829 8278 5829 6994 5864 6994 5864 7291 5898 7291 5898 7636 5933 7636 5933 7241 5967 7241 5967 6945 6002 6945 6002 7537 6036 7537 6036 7587 6071 7587 6071 7241 6106 7241 6106 6599 6140 6599 6140 7587 6175 7587 6175 7932 6209 7932 6209 5859 6244 5859 6244 7340 6278 7340 6278 5661 6313 5661 6313 6352 6348 6352 6348 6303 6382 6303 6382 6254 6417 6254 6417 5957 6451 5957 6451 6106 6486 6106 6486 5414 6520 5414 6520 4773 6555 4773 6555 5019 6589 5019 6589 5563 6624 5563 6624 5661 6659 5661 6659 4822 6693 4822 6693 5266 6728 5266 6728 5266 6762 5266 6762 5069 6797 5069 6797 5168 6831 5168 6831 4229 6866 4229 6866 4526 6900 4526 6900 4674 6935 4674 6935 4921 6970 4921 6970 3835 7004 3835 7004 4229 7039 4229 7039 3983 7073 3983 7073 3835 7108 3835 7108 4279 7142 4279 7142 4229 7177 4229 7177 3884 7212 3884 7212 4427 7246 4427 7246 3637 7281 3637 7281 3983 7315 3983 7315 3637 7350 3637 7350 3686 7384 3686 7384 3884 7419 3884 7419 3538 7453 3538 7453 3637 7488 3637 7488 3785 7523 3785 7523 3291 7557 3291 7557 3835 7592 3835 7592 3045 7626 3045 7626 3390 7661 3390 7661 3736 7695 3736 7695 3785 7730 3785 7730 3440 7764 3440 7764 2946 7799 2946 7799 3094 7834 3094 7834 3045 7868 3045 7868 3094 7903 3094 7903 3686 7937 3686 7937 3242 7972 3242 7972 3686 8006 3686 8006 3242 8041 3242 8041 3637 8076 3637 8076 3242 8110 3242 8110 3143 8145 3143 8145 3143 8179 3143 8179 3291 8214 3291 8214 3094 8248 3094 8248 3045 8283 3045 8283 2896 8317 2896 8317 2748 8352 2748 8352 3440 8387 3440 8387 3045 8421 3045 8421 2798 8456 2798 8456 3143 8490 3143 8490 2798 8525 2798 8525 3045 8559 3045 8559 2551 8594 2551 8594 2798 8628 2798 8628 2995 8663 2995 8663 2946 8698 2946 8698 2699 8732 2699 8732 3045 8767 3045 8767 3094 8801 3094 8801 2650 8836 2650 8836 2798 8870 2798 8870 3045 8905 3045 8905 3045 8940 3045 8940 2798 8974 2798 8974 2748 9009 2748 9009 2798 9043 2798 9043 2650 9078 2650 9078 2650 9112 2650 9112 2995 9147 2995 9147 2847 9181 2847 9181 2748 9216 2748 400 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/specfunc-legendre.texi0000664000252300025230000002773512171574312014221 00000000000000@cindex Legendre polynomials @cindex Legendre functions @cindex spherical harmonics @cindex conical functions @cindex hyperbolic space The Legendre Functions and Legendre Polynomials are described in Abramowitz & Stegun, Chapter 8. These functions are declared in the header file @file{gsl_sf_legendre.h}. @menu * Legendre Polynomials:: * Associated Legendre Polynomials and Spherical Harmonics:: * Conical Functions:: * Radial Functions for Hyperbolic Space:: @end menu @node Legendre Polynomials @subsection Legendre Polynomials @deftypefun double gsl_sf_legendre_P1 (double @var{x}) @deftypefunx double gsl_sf_legendre_P2 (double @var{x}) @deftypefunx double gsl_sf_legendre_P3 (double @var{x}) @deftypefunx int gsl_sf_legendre_P1_e (double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_legendre_P2_e (double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_legendre_P3_e (double @var{x}, gsl_sf_result * @var{result}) These functions evaluate the Legendre polynomials @c{$P_l(x)$} @math{P_l(x)} using explicit representations for @math{l=1, 2, 3}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_legendre_Pl (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_legendre_Pl_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These functions evaluate the Legendre polynomial @c{$P_l(x)$} @math{P_l(x)} for a specific value of @var{l}, @var{x} subject to @c{$l \ge 0$} @math{l >= 0}, @c{$|x| \le 1$} @math{|x| <= 1} @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_legendre_Pl_array (int @var{lmax}, double @var{x}, double @var{result_array}[]) @deftypefunx int gsl_sf_legendre_Pl_deriv_array (int @var{lmax}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[]) These functions compute arrays of Legendre polynomials @math{P_l(x)} and derivatives @math{dP_l(x)/dx}, for @math{l = 0, \dots, lmax}, @c{$|x| \le 1$} @math{|x| <= 1} @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_legendre_Q0 (double @var{x}) @deftypefunx int gsl_sf_legendre_Q0_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Legendre function @math{Q_0(x)} for @math{x > -1}, @c{$x \ne 1$} @math{x != 1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_legendre_Q1 (double @var{x}) @deftypefunx int gsl_sf_legendre_Q1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Legendre function @math{Q_1(x)} for @math{x > -1}, @c{$x \ne 1$} @math{x != 1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_legendre_Ql (int @var{l}, double @var{x}) @deftypefunx int gsl_sf_legendre_Ql_e (int @var{l}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the Legendre function @math{Q_l(x)} for @math{x > -1}, @c{$x \ne 1$} @math{x != 1} and @c{$l \ge 0$} @math{l >= 0}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Associated Legendre Polynomials and Spherical Harmonics @subsection Associated Legendre Polynomials and Spherical Harmonics The following functions compute the associated Legendre Polynomials @math{P_l^m(x)}. Note that this function grows combinatorially with @math{l} and can overflow for @math{l} larger than about 150. There is no trouble for small @math{m}, but overflow occurs when @math{m} and @math{l} are both large. Rather than allow overflows, these functions refuse to calculate @math{P_l^m(x)} and return @code{GSL_EOVRFLW} when they can sense that @math{l} and @math{m} are too big. If you want to calculate a spherical harmonic, then @emph{do not} use these functions. Instead use @code{gsl_sf_legendre_sphPlm} below, which uses a similar recursion, but with the normalized functions. @deftypefun double gsl_sf_legendre_Plm (int @var{l}, int @var{m}, double @var{x}) @deftypefunx int gsl_sf_legendre_Plm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the associated Legendre polynomial @math{P_l^m(x)} for @c{$m \ge 0$} @math{m >= 0}, @c{$l \ge m$} @math{l >= m}, @c{$|x| \le 1$} @math{|x| <= 1}. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun int gsl_sf_legendre_Plm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[]) @deftypefunx int gsl_sf_legendre_Plm_deriv_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[]) These functions compute arrays of Legendre polynomials @math{P_l^m(x)} and derivatives @math{dP_l^m(x)/dx}, for @c{$m \ge 0$} @math{m >= 0}, @c{$l = |m|, \dots, lmax$} @math{l = |m|, ..., lmax}, @c{$|x| \le 1$} @math{|x| <= 1}. @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_legendre_sphPlm (int @var{l}, int @var{m}, double @var{x}) @deftypefunx int gsl_sf_legendre_sphPlm_e (int @var{l}, int @var{m}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the normalized associated Legendre polynomial @c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$} @math{\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)} suitable for use in spherical harmonics. The parameters must satisfy @c{$m \ge 0$} @math{m >= 0}, @c{$l \ge m$} @math{l >= m}, @c{$|x| \le 1$} @math{|x| <= 1}. Theses routines avoid the overflows that occur for the standard normalization of @math{P_l^m(x)}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_legendre_sphPlm_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[]) @deftypefunx int gsl_sf_legendre_sphPlm_deriv_array (int @var{lmax}, int @var{m}, double @var{x}, double @var{result_array}[], double @var{result_deriv_array}[]) These functions compute arrays of normalized associated Legendre functions @c{$\sqrt{(2l+1)/(4\pi)} \sqrt{(l-m)!/(l+m)!} P_l^m(x)$} @math{\sqrt@{(2l+1)/(4\pi)@} \sqrt@{(l-m)!/(l+m)!@} P_l^m(x)}, and derivatives, for @c{$m \ge 0$} @math{m >= 0}, @c{$l = |m|, \dots, lmax$} @math{l = |m|, ..., lmax}, @c{$|x| \le 1$} @math{|x| <= 1.0} @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_legendre_array_size (const int @var{lmax}, const int @var{m}) This function returns the size of @var{result_array}[] needed for the array versions of @math{P_l^m(x)}, @math{@var{lmax} - @var{m} + 1}. @inlinefn{} @comment Exceptional Return Values: none @end deftypefun @node Conical Functions @subsection Conical Functions The Conical Functions @c{$P^\mu_{-(1/2)+i\lambda}(x)$} @math{P^\mu_@{-(1/2)+i\lambda@}(x)} and @c{$Q^\mu_{-(1/2)+i\lambda}$} @math{Q^\mu_@{-(1/2)+i\lambda@}} are described in Abramowitz & Stegun, Section 8.12. @deftypefun double gsl_sf_conicalP_half (double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_half_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the irregular Spherical Conical Function @c{$P^{1/2}_{-1/2 + i \lambda}(x)$} @math{P^@{1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_conicalP_mhalf (double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_mhalf_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the regular Spherical Conical Function @c{$P^{-1/2}_{-1/2 + i \lambda}(x)$} @math{P^@{-1/2@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_conicalP_0 (double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_0_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the conical function @c{$P^0_{-1/2 + i \lambda}(x)$} @math{P^0_@{-1/2 + i \lambda@}(x)} for @math{x > -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_conicalP_1 (double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_1_e (double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the conical function @c{$P^1_{-1/2 + i \lambda}(x)$} @math{P^1_@{-1/2 + i \lambda@}(x)} for @math{x > -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_conicalP_sph_reg (int @var{l}, double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_sph_reg_e (int @var{l}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the Regular Spherical Conical Function @c{$P^{-1/2-l}_{-1/2 + i \lambda}(x)$} @math{P^@{-1/2-l@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$l \ge -1$} @math{l >= -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_conicalP_cyl_reg (int @var{m}, double @var{lambda}, double @var{x}) @deftypefunx int gsl_sf_conicalP_cyl_reg_e (int @var{m}, double @var{lambda}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the Regular Cylindrical Conical Function @c{$P^{-m}_{-1/2 + i \lambda}(x)$} @math{P^@{-m@}_@{-1/2 + i \lambda@}(x)} for @math{x > -1}, @c{$m \ge -1$} @math{m >= -1}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Radial Functions for Hyperbolic Space @subsection Radial Functions for Hyperbolic Space The following spherical functions are specializations of Legendre functions which give the regular eigenfunctions of the Laplacian on a 3-dimensional hyperbolic space @math{H3d}. Of particular interest is the flat limit, @math{\lambda \to \infty}, @math{\eta \to 0}, @math{\lambda\eta} fixed. @deftypefun double gsl_sf_legendre_H3d_0 (double @var{lambda}, double @var{eta}) @deftypefunx int gsl_sf_legendre_H3d_0_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result}) These routines compute the zeroth radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, @c{$$L^{H3d}_0(\lambda,\eta) := {\sin(\lambda\eta) \over \lambda\sinh(\eta)}$$} @math{L^@{H3d@}_0(\lambda,\eta) := \sin(\lambda\eta)/(\lambda\sinh(\eta))} for @c{$\eta \ge 0$} @math{\eta >= 0}. In the flat limit this takes the form @c{$L^{H3d}_0(\lambda,\eta) = j_0(\lambda\eta)$} @math{L^@{H3d@}_0(\lambda,\eta) = j_0(\lambda\eta)}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_legendre_H3d_1 (double @var{lambda}, double @var{eta}) @deftypefunx int gsl_sf_legendre_H3d_1_e (double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result}) These routines compute the first radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space, @c{$$L^{H3d}_1(\lambda,\eta) := {1\over\sqrt{\lambda^2 + 1}} {\left(\sin(\lambda \eta)\over \lambda \sinh(\eta)\right)} \left(\coth(\eta) - \lambda \cot(\lambda\eta)\right)$$} @math{L^@{H3d@}_1(\lambda,\eta) := 1/\sqrt@{\lambda^2 + 1@} \sin(\lambda \eta)/(\lambda \sinh(\eta)) (\coth(\eta) - \lambda \cot(\lambda\eta))} for @c{$\eta \ge 0$} @math{\eta >= 0}. In the flat limit this takes the form @c{$L^{H3d}_1(\lambda,\eta) = j_1(\lambda\eta)$} @math{L^@{H3d@}_1(\lambda,\eta) = j_1(\lambda\eta)}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_legendre_H3d (int @var{l}, double @var{lambda}, double @var{eta}) @deftypefunx int gsl_sf_legendre_H3d_e (int @var{l}, double @var{lambda}, double @var{eta}, gsl_sf_result * @var{result}) These routines compute the @var{l}-th radial eigenfunction of the Laplacian on the 3-dimensional hyperbolic space @c{$\eta \ge 0$} @math{\eta >= 0}, @c{$l \ge 0$} @math{l >= 0}. In the flat limit this takes the form @c{$L^{H3d}_l(\lambda,\eta) = j_l(\lambda\eta)$} @math{L^@{H3d@}_l(\lambda,\eta) = j_l(\lambda\eta)}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_legendre_H3d_array (int @var{lmax}, double @var{lambda}, double @var{eta}, double @var{result_array}[]) This function computes an array of radial eigenfunctions @c{$L^{H3d}_l( \lambda, \eta)$} @math{L^@{H3d@}_l(\lambda, \eta)} for @c{$0 \le l \le lmax$} @math{0 <= l <= lmax}. @comment Exceptional Return Values: @end deftypefun gsl-1.16/doc/sum.texi0000664000252300025230000001670212171574312011424 00000000000000@cindex acceleration of series @cindex summation, acceleration @cindex series, acceleration @cindex u-transform for series @cindex Levin u-transform @cindex convergence, accelerating a series The functions described in this chapter accelerate the convergence of a series using the Levin @math{u}-transform. This method takes a small number of terms from the start of a series and uses a systematic approximation to compute an extrapolated value and an estimate of its error. The @math{u}-transform works for both convergent and divergent series, including asymptotic series. These functions are declared in the header file @file{gsl_sum.h}. @menu * Acceleration functions:: * Acceleration functions without error estimation:: * Example of accelerating a series:: * Series Acceleration References:: @end menu @node Acceleration functions @section Acceleration functions The following functions compute the full Levin @math{u}-transform of a series with its error estimate. The error estimate is computed by propagating rounding errors from each term through to the final extrapolation. These functions are intended for summing analytic series where each term is known to high accuracy, and the rounding errors are assumed to originate from finite precision. They are taken to be relative errors of order @code{GSL_DBL_EPSILON} for each term. The calculation of the error in the extrapolated value is an @math{O(N^2)} process, which is expensive in time and memory. A faster but less reliable method which estimates the error from the convergence of the extrapolated value is described in the next section. For the method described here a full table of intermediate values and derivatives through to @math{O(N)} must be computed and stored, but this does give a reliable error estimate. @deftypefun {gsl_sum_levin_u_workspace *} gsl_sum_levin_u_alloc (size_t @var{n}) @tpindex gsl_sum_levin_u_workspace This function allocates a workspace for a Levin @math{u}-transform of @var{n} terms. The size of the workspace is @math{O(2n^2 + 3n)}. @end deftypefun @deftypefun void gsl_sum_levin_u_free (gsl_sum_levin_u_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_sum_levin_u_accel (const double * @var{array}, size_t @var{array_size}, gsl_sum_levin_u_workspace * @var{w}, double * @var{sum_accel}, double * @var{abserr}) This function takes the terms of a series in @var{array} of size @var{array_size} and computes the extrapolated limit of the series using a Levin @math{u}-transform. Additional working space must be provided in @var{w}. The extrapolated sum is stored in @var{sum_accel}, with an estimate of the absolute error stored in @var{abserr}. The actual term-by-term sum is returned in @code{w->sum_plain}. The algorithm calculates the truncation error (the difference between two successive extrapolations) and round-off error (propagated from the individual terms) to choose an optimal number of terms for the extrapolation. All the terms of the series passed in through @var{array} should be non-zero. @end deftypefun @node Acceleration functions without error estimation @section Acceleration functions without error estimation The functions described in this section compute the Levin @math{u}-transform of series and attempt to estimate the error from the ``truncation error'' in the extrapolation, the difference between the final two approximations. Using this method avoids the need to compute an intermediate table of derivatives because the error is estimated from the behavior of the extrapolated value itself. Consequently this algorithm is an @math{O(N)} process and only requires @math{O(N)} terms of storage. If the series converges sufficiently fast then this procedure can be acceptable. It is appropriate to use this method when there is a need to compute many extrapolations of series with similar convergence properties at high-speed. For example, when numerically integrating a function defined by a parameterized series where the parameter varies only slightly. A reliable error estimate should be computed first using the full algorithm described above in order to verify the consistency of the results. @deftypefun {gsl_sum_levin_utrunc_workspace *} gsl_sum_levin_utrunc_alloc (size_t @var{n}) @tpindex gsl_sum_levin_utrunc_workspace This function allocates a workspace for a Levin @math{u}-transform of @var{n} terms, without error estimation. The size of the workspace is @math{O(3n)}. @end deftypefun @deftypefun void gsl_sum_levin_utrunc_free (gsl_sum_levin_utrunc_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_sum_levin_utrunc_accel (const double * @var{array}, size_t @var{array_size}, gsl_sum_levin_utrunc_workspace * @var{w}, double * @var{sum_accel}, double * @var{abserr_trunc}) This function takes the terms of a series in @var{array} of size @var{array_size} and computes the extrapolated limit of the series using a Levin @math{u}-transform. Additional working space must be provided in @var{w}. The extrapolated sum is stored in @var{sum_accel}. The actual term-by-term sum is returned in @code{w->sum_plain}. The algorithm terminates when the difference between two successive extrapolations reaches a minimum or is sufficiently small. The difference between these two values is used as estimate of the error and is stored in @var{abserr_trunc}. To improve the reliability of the algorithm the extrapolated values are replaced by moving averages when calculating the truncation error, smoothing out any fluctuations. @end deftypefun @node Example of accelerating a series @section Examples The following code calculates an estimate of @math{\zeta(2) = \pi^2 / 6} using the series, @tex \beforedisplay $$ \zeta(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + \dots $$ \afterdisplay @end tex @ifinfo @example \zeta(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... @end example @end ifinfo @noindent After @var{N} terms the error in the sum is @math{O(1/N)}, making direct summation of the series converge slowly. @example @verbatiminclude examples/sum.c @end example @noindent The output below shows that the Levin @math{u}-transform is able to obtain an estimate of the sum to 1 part in @c{$10^{10}$} @math{10^10} using the first eleven terms of the series. The error estimate returned by the function is also accurate, giving the correct number of significant digits. @example $ ./a.out @verbatiminclude examples/sum.out @end example @noindent Note that a direct summation of this series would require @c{$10^{10}$} @math{10^10} terms to achieve the same precision as the accelerated sum does in 13 terms. @node Series Acceleration References @section References and Further Reading The algorithms used by these functions are described in the following papers, @itemize @w{} @item T. Fessler, W.F. Ford, D.A. Smith, @sc{hurry}: An acceleration algorithm for scalar sequences and series @cite{ACM Transactions on Mathematical Software}, 9(3):346--354, 1983. and Algorithm 602 9(3):355--357, 1983. @end itemize @noindent The theory of the @math{u}-transform was presented by Levin, @itemize @w{} @item D. Levin, Development of Non-Linear Transformations for Improving Convergence of Sequences, @cite{Intern.@: J.@: Computer Math.} B3:371--388, 1973. @end itemize @noindent A review paper on the Levin Transform is available online, @itemize @w{} @item Herbert H. H. Homeier, Scalar Levin-Type Sequence Transformations, @uref{http://arxiv.org/abs/math/0005209}. @end itemize gsl-1.16/doc/err.texi0000664000252300025230000002526512171574312011414 00000000000000@cindex error handling This chapter describes the way that GSL functions report and handle errors. By examining the status information returned by every function you can determine whether it succeeded or failed, and if it failed you can find out what the precise cause of failure was. You can also define your own error handling functions to modify the default behavior of the library. The functions described in this section are declared in the header file @file{gsl_errno.h}. @menu * Error Reporting:: * Error Codes:: * Error Handlers:: * Using GSL error reporting in your own functions:: * Error Reporting Examples:: @end menu @node Error Reporting @section Error Reporting The library follows the thread-safe error reporting conventions of the @sc{posix} Threads library. Functions return a non-zero error code to indicate an error and @code{0} to indicate success. @example int status = gsl_function (...) if (status) @{ /* an error occurred */ ..... /* status value specifies the type of error */ @} @end example The routines report an error whenever they cannot perform the task requested of them. For example, a root-finding function would return a non-zero error code if could not converge to the requested accuracy, or exceeded a limit on the number of iterations. Situations like this are a normal occurrence when using any mathematical library and you should check the return status of the functions that you call. Whenever a routine reports an error the return value specifies the type of error. The return value is analogous to the value of the variable @code{errno} in the C library. The caller can examine the return code and decide what action to take, including ignoring the error if it is not considered serious. In addition to reporting errors by return codes the library also has an error handler function @code{gsl_error}. This function is called by other library functions when they report an error, just before they return to the caller. The default behavior of the error handler is to print a message and abort the program, @example gsl: file.c:67: ERROR: invalid argument supplied by user Default GSL error handler invoked. Aborted @end example The purpose of the @code{gsl_error} handler is to provide a function where a breakpoint can be set that will catch library errors when running under the debugger. It is not intended for use in production programs, which should handle any errors using the return codes. @node Error Codes @section Error Codes @cindex error codes, reserved The error code numbers returned by library functions are defined in the file @file{gsl_errno.h}. They all have the prefix @code{GSL_} and expand to non-zero constant integer values. Error codes above 1024 are reserved for applications, and are not used by the library. Many of the error codes use the same base name as the corresponding error code in the C library. Here are some of the most common error codes, @cindex error codes @deftypevr {Macro} int GSL_EDOM Domain error; used by mathematical functions when an argument value does not fall into the domain over which the function is defined (like EDOM in the C library) @end deftypevr @deftypevr {Macro} int GSL_ERANGE Range error; used by mathematical functions when the result value is not representable because of overflow or underflow (like ERANGE in the C library) @end deftypevr @deftypevr {Macro} int GSL_ENOMEM No memory available. The system cannot allocate more virtual memory because its capacity is full (like ENOMEM in the C library). This error is reported when a GSL routine encounters problems when trying to allocate memory with @code{malloc}. @end deftypevr @deftypevr {Macro} int GSL_EINVAL Invalid argument. This is used to indicate various kinds of problems with passing the wrong argument to a library function (like EINVAL in the C library). @end deftypevr The error codes can be converted into an error message using the function @code{gsl_strerror}. @deftypefun {const char *} gsl_strerror (const int @var{gsl_errno}) This function returns a pointer to a string describing the error code @var{gsl_errno}. For example, @example printf ("error: %s\n", gsl_strerror (status)); @end example @noindent would print an error message like @code{error: output range error} for a status value of @code{GSL_ERANGE}. @end deftypefun @node Error Handlers @section Error Handlers @cindex Error handlers The default behavior of the GSL error handler is to print a short message and call @code{abort}. When this default is in use programs will stop with a core-dump whenever a library routine reports an error. This is intended as a fail-safe default for programs which do not check the return status of library routines (we don't encourage you to write programs this way). If you turn off the default error handler it is your responsibility to check the return values of routines and handle them yourself. You can also customize the error behavior by providing a new error handler. For example, an alternative error handler could log all errors to a file, ignore certain error conditions (such as underflows), or start the debugger and attach it to the current process when an error occurs. All GSL error handlers have the type @code{gsl_error_handler_t}, which is defined in @file{gsl_errno.h}, @deftp {Data Type} gsl_error_handler_t This is the type of GSL error handler functions. An error handler will be passed four arguments which specify the reason for the error (a string), the name of the source file in which it occurred (also a string), the line number in that file (an integer) and the error number (an integer). The source file and line number are set at compile time using the @code{__FILE__} and @code{__LINE__} directives in the preprocessor. An error handler function returns type @code{void}. Error handler functions should be defined like this, @example void handler (const char * reason, const char * file, int line, int gsl_errno) @end example @end deftp @comment @noindent To request the use of your own error handler you need to call the function @code{gsl_set_error_handler} which is also declared in @file{gsl_errno.h}, @deftypefun {gsl_error_handler_t *} gsl_set_error_handler (gsl_error_handler_t * @var{new_handler}) This function sets a new error handler, @var{new_handler}, for the GSL library routines. The previous handler is returned (so that you can restore it later). Note that the pointer to a user defined error handler function is stored in a static variable, so there can be only one error handler per program. This function should be not be used in multi-threaded programs except to set up a program-wide error handler from a master thread. The following example shows how to set and restore a new error handler, @example /* save original handler, install new handler */ old_handler = gsl_set_error_handler (&my_handler); /* code uses new handler */ ..... /* restore original handler */ gsl_set_error_handler (old_handler); @end example @noindent To use the default behavior (@code{abort} on error) set the error handler to @code{NULL}, @example old_handler = gsl_set_error_handler (NULL); @end example @end deftypefun @deftypefun {gsl_error_handler_t *} gsl_set_error_handler_off () This function turns off the error handler by defining an error handler which does nothing. This will cause the program to continue after any error, so the return values from any library routines must be checked. This is the recommended behavior for production programs. The previous handler is returned (so that you can restore it later). @end deftypefun The error behavior can be changed for specific applications by recompiling the library with a customized definition of the @code{GSL_ERROR} macro in the file @file{gsl_errno.h}. @node Using GSL error reporting in your own functions @section Using GSL error reporting in your own functions @cindex error handling macros If you are writing numerical functions in a program which also uses GSL code you may find it convenient to adopt the same error reporting conventions as in the library. To report an error you need to call the function @code{gsl_error} with a string describing the error and then return an appropriate error code from @code{gsl_errno.h}, or a special value, such as @code{NaN}. For convenience the file @file{gsl_errno.h} defines two macros which carry out these steps: @deffn {Macro} GSL_ERROR (@var{reason}, @var{gsl_errno}) This macro reports an error using the GSL conventions and returns a status value of @code{gsl_errno}. It expands to the following code fragment, @example gsl_error (reason, __FILE__, __LINE__, gsl_errno); return gsl_errno; @end example @noindent The macro definition in @file{gsl_errno.h} actually wraps the code in a @code{do @{ ... @} while (0)} block to prevent possible parsing problems. @end deffn Here is an example of how the macro could be used to report that a routine did not achieve a requested tolerance. To report the error the routine needs to return the error code @code{GSL_ETOL}. @example if (residual > tolerance) @{ GSL_ERROR("residual exceeds tolerance", GSL_ETOL); @} @end example @deffn {Macro} GSL_ERROR_VAL (@var{reason}, @var{gsl_errno}, @var{value}) This macro is the same as @code{GSL_ERROR} but returns a user-defined value of @var{value} instead of an error code. It can be used for mathematical functions that return a floating point value. @end deffn The following example shows how to return a @code{NaN} at a mathematical singularity using the @code{GSL_ERROR_VAL} macro, @example if (x == 0) @{ GSL_ERROR_VAL("argument lies on singularity", GSL_ERANGE, GSL_NAN); @} @end example @node Error Reporting Examples @section Examples Here is an example of some code which checks the return value of a function where an error might be reported, @example #include #include #include ... int status; size_t n = 37; gsl_set_error_handler_off(); status = gsl_fft_complex_radix2_forward (data, stride, n); if (status) @{ if (status == GSL_EINVAL) @{ fprintf (stderr, "invalid argument, n=%d\n", n); @} else @{ fprintf (stderr, "failed, gsl_errno=%d\n", status); @} exit (-1); @} ... @end example @comment @noindent The function @code{gsl_fft_complex_radix2} only accepts integer lengths which are a power of two. If the variable @code{n} is not a power of two then the call to the library function will return @code{GSL_EINVAL}, indicating that the length argument is invalid. The function call to @code{gsl_set_error_handler_off} stops the default error handler from aborting the program. The @code{else} clause catches any other possible errors. gsl-1.16/doc/gsl-ref.info-30000664000252300025230000111456612172254230012304 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  File: gsl-ref.info, Node: The Beta Distribution, Next: The Logistic Distribution, Prev: The t-distribution, Up: Random Number Distributions 20.20 The Beta Distribution =========================== -- Function: double gsl_ran_beta (const gsl_rng * R, double A, double B) This function returns a random variate from the beta distribution. The distribution function is, p(x) dx = {\Gamma(a+b) \over \Gamma(a) \Gamma(b)} x^{a-1} (1-x)^{b-1} dx for 0 <= x <= 1. -- Function: double gsl_ran_beta_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a beta distribution with parameters A and B, using the formula given above. -- Function: double gsl_cdf_beta_P (double X, double A, double B) -- Function: double gsl_cdf_beta_Q (double X, double A, double B) -- Function: double gsl_cdf_beta_Pinv (double P, double A, double B) -- Function: double gsl_cdf_beta_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the beta distribution with parameters A and B.  File: gsl-ref.info, Node: The Logistic Distribution, Next: The Pareto Distribution, Prev: The Beta Distribution, Up: Random Number Distributions 20.21 The Logistic Distribution =============================== -- Function: double gsl_ran_logistic (const gsl_rng * R, double A) This function returns a random variate from the logistic distribution. The distribution function is, p(x) dx = { \exp(-x/a) \over a (1 + \exp(-x/a))^2 } dx for -\infty < x < +\infty. -- Function: double gsl_ran_logistic_pdf (double X, double A) This function computes the probability density p(x) at X for a logistic distribution with scale parameter A, using the formula given above. -- Function: double gsl_cdf_logistic_P (double X, double A) -- Function: double gsl_cdf_logistic_Q (double X, double A) -- Function: double gsl_cdf_logistic_Pinv (double P, double A) -- Function: double gsl_cdf_logistic_Qinv (double Q, double A) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the logistic distribution with scale parameter A.  File: gsl-ref.info, Node: The Pareto Distribution, Next: Spherical Vector Distributions, Prev: The Logistic Distribution, Up: Random Number Distributions 20.22 The Pareto Distribution ============================= -- Function: double gsl_ran_pareto (const gsl_rng * R, double A, double B) This function returns a random variate from the Pareto distribution of order A. The distribution function is, p(x) dx = (a/b) / (x/b)^{a+1} dx for x >= b. -- Function: double gsl_ran_pareto_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a Pareto distribution with exponent A and scale B, using the formula given above. -- Function: double gsl_cdf_pareto_P (double X, double A, double B) -- Function: double gsl_cdf_pareto_Q (double X, double A, double B) -- Function: double gsl_cdf_pareto_Pinv (double P, double A, double B) -- Function: double gsl_cdf_pareto_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Pareto distribution with exponent A and scale B.  File: gsl-ref.info, Node: Spherical Vector Distributions, Next: The Weibull Distribution, Prev: The Pareto Distribution, Up: Random Number Distributions 20.23 Spherical Vector Distributions ==================================== The spherical distributions generate random vectors, located on a spherical surface. They can be used as random directions, for example in the steps of a random walk. -- Function: void gsl_ran_dir_2d (const gsl_rng * R, double * X, double * Y) -- Function: void gsl_ran_dir_2d_trig_method (const gsl_rng * R, double * X, double * Y) This function returns a random direction vector v = (X,Y) in two dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 = 1. The obvious way to do this is to take a uniform random number between 0 and 2\pi and let X and Y be the sine and cosine respectively. Two trig functions would have been expensive in the old days, but with modern hardware implementations, this is sometimes the fastest way to go. This is the case for the Pentium (but not the case for the Sun Sparcstation). One can avoid the trig evaluations by choosing X and Y in the interior of a unit circle (choose them at random from the interior of the enclosing square, and then reject those that are outside the unit circle), and then dividing by \sqrt{x^2 + y^2}. A much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd ed, p140, exercise 23), requires neither trig nor a square root. In this approach, U and V are chosen at random from the interior of a unit circle, and then x=(u^2-v^2)/(u^2+v^2) and y=2uv/(u^2+v^2). -- Function: void gsl_ran_dir_3d (const gsl_rng * R, double * X, double * Y, double * Z) This function returns a random direction vector v = (X,Y,Z) in three dimensions. The vector is normalized such that |v|^2 = x^2 + y^2 + z^2 = 1. The method employed is due to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed, p136. It uses the surprising fact that the distribution projected along any axis is actually uniform (this is only true for 3 dimensions). -- Function: void gsl_ran_dir_nd (const gsl_rng * R, size_t N, double * X) This function returns a random direction vector v = (x_1,x_2,...,x_n) in N dimensions. The vector is normalized such that |v|^2 = x_1^2 + x_2^2 + ... + x_n^2 = 1. The method uses the fact that a multivariate Gaussian distribution is spherically symmetric. Each component is generated to have a Gaussian distribution, and then the components are normalized. The method is described by Knuth, v2, 3rd ed, p135-136, and attributed to G. W. Brown, Modern Mathematics for the Engineer (1956).  File: gsl-ref.info, Node: The Weibull Distribution, Next: The Type-1 Gumbel Distribution, Prev: Spherical Vector Distributions, Up: Random Number Distributions 20.24 The Weibull Distribution ============================== -- Function: double gsl_ran_weibull (const gsl_rng * R, double A, double B) This function returns a random variate from the Weibull distribution. The distribution function is, p(x) dx = {b \over a^b} x^{b-1} \exp(-(x/a)^b) dx for x >= 0. -- Function: double gsl_ran_weibull_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a Weibull distribution with scale A and exponent B, using the formula given above. -- Function: double gsl_cdf_weibull_P (double X, double A, double B) -- Function: double gsl_cdf_weibull_Q (double X, double A, double B) -- Function: double gsl_cdf_weibull_Pinv (double P, double A, double B) -- Function: double gsl_cdf_weibull_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Weibull distribution with scale A and exponent B.  File: gsl-ref.info, Node: The Type-1 Gumbel Distribution, Next: The Type-2 Gumbel Distribution, Prev: The Weibull Distribution, Up: Random Number Distributions 20.25 The Type-1 Gumbel Distribution ==================================== -- Function: double gsl_ran_gumbel1 (const gsl_rng * R, double A, double B) This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is, p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx for -\infty < x < \infty. -- Function: double gsl_ran_gumbel1_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a Type-1 Gumbel distribution with parameters A and B, using the formula given above. -- Function: double gsl_cdf_gumbel1_P (double X, double A, double B) -- Function: double gsl_cdf_gumbel1_Q (double X, double A, double B) -- Function: double gsl_cdf_gumbel1_Pinv (double P, double A, double B) -- Function: double gsl_cdf_gumbel1_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-1 Gumbel distribution with parameters A and B.  File: gsl-ref.info, Node: The Type-2 Gumbel Distribution, Next: The Dirichlet Distribution, Prev: The Type-1 Gumbel Distribution, Up: Random Number Distributions 20.26 The Type-2 Gumbel Distribution ==================================== -- Function: double gsl_ran_gumbel2 (const gsl_rng * R, double A, double B) This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is, p(x) dx = a b x^{-a-1} \exp(-b x^{-a}) dx for 0 < x < \infty. -- Function: double gsl_ran_gumbel2_pdf (double X, double A, double B) This function computes the probability density p(x) at X for a Type-2 Gumbel distribution with parameters A and B, using the formula given above. -- Function: double gsl_cdf_gumbel2_P (double X, double A, double B) -- Function: double gsl_cdf_gumbel2_Q (double X, double A, double B) -- Function: double gsl_cdf_gumbel2_Pinv (double P, double A, double B) -- Function: double gsl_cdf_gumbel2_Qinv (double Q, double A, double B) These functions compute the cumulative distribution functions P(x), Q(x) and their inverses for the Type-2 Gumbel distribution with parameters A and B.  File: gsl-ref.info, Node: The Dirichlet Distribution, Next: General Discrete Distributions, Prev: The Type-2 Gumbel Distribution, Up: Random Number Distributions 20.27 The Dirichlet Distribution ================================ -- Function: void gsl_ran_dirichlet (const gsl_rng * R, size_t K, const double ALPHA[], double THETA[]) This function returns an array of K random variates from a Dirichlet distribution of order K-1. The distribution function is p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K = (1/Z) \prod_{i=1}^K \theta_i^{\alpha_i - 1} \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 ... d\theta_K for theta_i >= 0 and alpha_i > 0. The delta function ensures that \sum \theta_i = 1. The normalization factor Z is Z = {\prod_{i=1}^K \Gamma(\alpha_i)} / {\Gamma( \sum_{i=1}^K \alpha_i)} The random variates are generated by sampling K values from gamma distributions with parameters a=alpha_i, b=1, and renormalizing. See A.M. Law, W.D. Kelton, 'Simulation Modeling and Analysis' (1991). -- Function: double gsl_ran_dirichlet_pdf (size_t K, const double ALPHA[], const double THETA[]) This function computes the probability density p(\theta_1, ... , \theta_K) at THETA[K] for a Dirichlet distribution with parameters ALPHA[K], using the formula given above. -- Function: double gsl_ran_dirichlet_lnpdf (size_t K, const double ALPHA[], const double THETA[]) This function computes the logarithm of the probability density p(\theta_1, ... , \theta_K) for a Dirichlet distribution with parameters ALPHA[K].  File: gsl-ref.info, Node: General Discrete Distributions, Next: The Poisson Distribution, Prev: The Dirichlet Distribution, Up: Random Number Distributions 20.28 General Discrete Distributions ==================================== Given K discrete events with different probabilities P[k], produce a random value k consistent with its probability. The obvious way to do this is to preprocess the probability list by generating a cumulative probability array with K+1 elements: C[0] = 0 C[k+1] = C[k]+P[k]. Note that this construction produces C[K]=1. Now choose a uniform deviate u between 0 and 1, and find the value of k such that C[k] <= u < C[k+1]. Although this in principle requires of order \log K steps per random number generation, they are fast steps, and if you use something like \lfloor uK \rfloor as a starting point, you can often do pretty well. But faster methods have been devised. Again, the idea is to preprocess the probability list, and save the result in some form of lookup table; then the individual calls for a random discrete event can go rapidly. An approach invented by G. Marsaglia (Generating discrete random variables in a computer, Comm ACM 6, 37-38 (1963)) is very clever, and readers interested in examples of good algorithm design are directed to this short and well-written paper. Unfortunately, for large K, Marsaglia's lookup table can be quite large. A much better approach is due to Alastair J. Walker (An efficient method for generating discrete random variables with general distributions, ACM Trans on Mathematical Software 3, 253-256 (1977); see also Knuth, v2, 3rd ed, p120-121,139). This requires two lookup tables, one floating point and one integer, but both only of size K. After preprocessing, the random numbers are generated in O(1) time, even for large K. The preprocessing suggested by Walker requires O(K^2) effort, but that is not actually necessary, and the implementation provided here only takes O(K) effort. In general, more preprocessing leads to faster generation of the individual random numbers, but a diminishing return is reached pretty early. Knuth points out that the optimal preprocessing is combinatorially difficult for large K. This method can be used to speed up some of the discrete random number generators below, such as the binomial distribution. To use it for something like the Poisson Distribution, a modification would have to be made, since it only takes a finite set of K outcomes. -- Function: gsl_ran_discrete_t * gsl_ran_discrete_preproc (size_t K, const double * P) This function returns a pointer to a structure that contains the lookup table for the discrete random number generator. The array P[] contains the probabilities of the discrete events; these array elements must all be positive, but they needn't add up to one (so you can think of them more generally as "weights")--the preprocessor will normalize appropriately. This return value is used as an argument for the 'gsl_ran_discrete' function below. -- Function: size_t gsl_ran_discrete (const gsl_rng * R, const gsl_ran_discrete_t * G) After the preprocessor, above, has been called, you use this function to get the discrete random numbers. -- Function: double gsl_ran_discrete_pdf (size_t K, const gsl_ran_discrete_t * G) Returns the probability P[k] of observing the variable K. Since P[k] is not stored as part of the lookup table, it must be recomputed; this computation takes O(K), so if K is large and you care about the original array P[k] used to create the lookup table, then you should just keep this original array P[k] around. -- Function: void gsl_ran_discrete_free (gsl_ran_discrete_t * G) De-allocates the lookup table pointed to by G.  File: gsl-ref.info, Node: The Poisson Distribution, Next: The Bernoulli Distribution, Prev: General Discrete Distributions, Up: Random Number Distributions 20.29 The Poisson Distribution ============================== -- Function: unsigned int gsl_ran_poisson (const gsl_rng * R, double MU) This function returns a random integer from the Poisson distribution with mean MU. The probability distribution for Poisson variates is, p(k) = {\mu^k \over k!} \exp(-\mu) for k >= 0. -- Function: double gsl_ran_poisson_pdf (unsigned int K, double MU) This function computes the probability p(k) of obtaining K from a Poisson distribution with mean MU, using the formula given above. -- Function: double gsl_cdf_poisson_P (unsigned int K, double MU) -- Function: double gsl_cdf_poisson_Q (unsigned int K, double MU) These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with parameter MU.  File: gsl-ref.info, Node: The Bernoulli Distribution, Next: The Binomial Distribution, Prev: The Poisson Distribution, Up: Random Number Distributions 20.30 The Bernoulli Distribution ================================ -- Function: unsigned int gsl_ran_bernoulli (const gsl_rng * R, double P) This function returns either 0 or 1, the result of a Bernoulli trial with probability P. The probability distribution for a Bernoulli trial is, p(0) = 1 - p p(1) = p -- Function: double gsl_ran_bernoulli_pdf (unsigned int K, double P) This function computes the probability p(k) of obtaining K from a Bernoulli distribution with probability parameter P, using the formula given above.  File: gsl-ref.info, Node: The Binomial Distribution, Next: The Multinomial Distribution, Prev: The Bernoulli Distribution, Up: Random Number Distributions 20.31 The Binomial Distribution =============================== -- Function: unsigned int gsl_ran_binomial (const gsl_rng * R, double P, unsigned int N) This function returns a random integer from the binomial distribution, the number of successes in N independent trials with probability P. The probability distribution for binomial variates is, p(k) = {n! \over k! (n-k)! } p^k (1-p)^{n-k} for 0 <= k <= n. -- Function: double gsl_ran_binomial_pdf (unsigned int K, double P, unsigned int N) This function computes the probability p(k) of obtaining K from a binomial distribution with parameters P and N, using the formula given above. -- Function: double gsl_cdf_binomial_P (unsigned int K, double P, unsigned int N) -- Function: double gsl_cdf_binomial_Q (unsigned int K, double P, unsigned int N) These functions compute the cumulative distribution functions P(k), Q(k) for the binomial distribution with parameters P and N.  File: gsl-ref.info, Node: The Multinomial Distribution, Next: The Negative Binomial Distribution, Prev: The Binomial Distribution, Up: Random Number Distributions 20.32 The Multinomial Distribution ================================== -- Function: void gsl_ran_multinomial (const gsl_rng * R, size_t K, unsigned int N, const double P[], unsigned int N[]) This function computes a random sample N[] from the multinomial distribution formed by N trials from an underlying distribution P[K]. The distribution function for N[] is, P(n_1, n_2, ..., n_K) = (N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_K where (n_1, n_2, ..., n_K) are nonnegative integers with sum_{k=1}^K n_k = N, and (p_1, p_2, ..., p_K) is a probability distribution with \sum p_i = 1. If the array P[K] is not normalized then its entries will be treated as weights and normalized appropriately. The arrays N[] and P[] must both be of length K. Random variates are generated using the conditional binomial method (see C.S. Davis, 'The computer generation of multinomial random variates', Comp. Stat. Data Anal. 16 (1993) 205-217 for details). -- Function: double gsl_ran_multinomial_pdf (size_t K, const double P[], const unsigned int N[]) This function computes the probability P(n_1, n_2, ..., n_K) of sampling N[K] from a multinomial distribution with parameters P[K], using the formula given above. -- Function: double gsl_ran_multinomial_lnpdf (size_t K, const double P[], const unsigned int N[]) This function returns the logarithm of the probability for the multinomial distribution P(n_1, n_2, ..., n_K) with parameters P[K].  File: gsl-ref.info, Node: The Negative Binomial Distribution, Next: The Pascal Distribution, Prev: The Multinomial Distribution, Up: Random Number Distributions 20.33 The Negative Binomial Distribution ======================================== -- Function: unsigned int gsl_ran_negative_binomial (const gsl_rng * R, double P, double N) This function returns a random integer from the negative binomial distribution, the number of failures occurring before N successes in independent trials with probability P of success. The probability distribution for negative binomial variates is, p(k) = {\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p^n (1-p)^k Note that n is not required to be an integer. -- Function: double gsl_ran_negative_binomial_pdf (unsigned int K, double P, double N) This function computes the probability p(k) of obtaining K from a negative binomial distribution with parameters P and N, using the formula given above. -- Function: double gsl_cdf_negative_binomial_P (unsigned int K, double P, double N) -- Function: double gsl_cdf_negative_binomial_Q (unsigned int K, double P, double N) These functions compute the cumulative distribution functions P(k), Q(k) for the negative binomial distribution with parameters P and N.  File: gsl-ref.info, Node: The Pascal Distribution, Next: The Geometric Distribution, Prev: The Negative Binomial Distribution, Up: Random Number Distributions 20.34 The Pascal Distribution ============================= -- Function: unsigned int gsl_ran_pascal (const gsl_rng * R, double P, unsigned int N) This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of n. p(k) = {(n + k - 1)! \over k! (n - 1)! } p^n (1-p)^k for k >= 0 -- Function: double gsl_ran_pascal_pdf (unsigned int K, double P, unsigned int N) This function computes the probability p(k) of obtaining K from a Pascal distribution with parameters P and N, using the formula given above. -- Function: double gsl_cdf_pascal_P (unsigned int K, double P, unsigned int N) -- Function: double gsl_cdf_pascal_Q (unsigned int K, double P, unsigned int N) These functions compute the cumulative distribution functions P(k), Q(k) for the Pascal distribution with parameters P and N.  File: gsl-ref.info, Node: The Geometric Distribution, Next: The Hypergeometric Distribution, Prev: The Pascal Distribution, Up: Random Number Distributions 20.35 The Geometric Distribution ================================ -- Function: unsigned int gsl_ran_geometric (const gsl_rng * R, double P) This function returns a random integer from the geometric distribution, the number of independent trials with probability P until the first success. The probability distribution for geometric variates is, p(k) = p (1-p)^(k-1) for k >= 1. Note that the distribution begins with k=1 with this definition. There is another convention in which the exponent k-1 is replaced by k. -- Function: double gsl_ran_geometric_pdf (unsigned int K, double P) This function computes the probability p(k) of obtaining K from a geometric distribution with probability parameter P, using the formula given above. -- Function: double gsl_cdf_geometric_P (unsigned int K, double P) -- Function: double gsl_cdf_geometric_Q (unsigned int K, double P) These functions compute the cumulative distribution functions P(k), Q(k) for the geometric distribution with parameter P.  File: gsl-ref.info, Node: The Hypergeometric Distribution, Next: The Logarithmic Distribution, Prev: The Geometric Distribution, Up: Random Number Distributions 20.36 The Hypergeometric Distribution ===================================== -- Function: unsigned int gsl_ran_hypergeometric (const gsl_rng * R, unsigned int N1, unsigned int N2, unsigned int T) This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is, p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t) where C(a,b) = a!/(b!(a-b)!) and t <= n_1 + n_2. The domain of k is max(0,t-n_2), ..., min(t,n_1). If a population contains n_1 elements of "type 1" and n_2 elements of "type 2" then the hypergeometric distribution gives the probability of obtaining k elements of "type 1" in t samples from the population without replacement. -- Function: double gsl_ran_hypergeometric_pdf (unsigned int K, unsigned int N1, unsigned int N2, unsigned int T) This function computes the probability p(k) of obtaining K from a hypergeometric distribution with parameters N1, N2, T, using the formula given above. -- Function: double gsl_cdf_hypergeometric_P (unsigned int K, unsigned int N1, unsigned int N2, unsigned int T) -- Function: double gsl_cdf_hypergeometric_Q (unsigned int K, unsigned int N1, unsigned int N2, unsigned int T) These functions compute the cumulative distribution functions P(k), Q(k) for the hypergeometric distribution with parameters N1, N2 and T.  File: gsl-ref.info, Node: The Logarithmic Distribution, Next: Shuffling and Sampling, Prev: The Hypergeometric Distribution, Up: Random Number Distributions 20.37 The Logarithmic Distribution ================================== -- Function: unsigned int gsl_ran_logarithmic (const gsl_rng * R, double P) This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is, p(k) = {-1 \over \log(1-p)} {(p^k \over k)} for k >= 1. -- Function: double gsl_ran_logarithmic_pdf (unsigned int K, double P) This function computes the probability p(k) of obtaining K from a logarithmic distribution with probability parameter P, using the formula given above.  File: gsl-ref.info, Node: Shuffling and Sampling, Next: Random Number Distribution Examples, Prev: The Logarithmic Distribution, Up: Random Number Distributions 20.38 Shuffling and Sampling ============================ The following functions allow the shuffling and sampling of a set of objects. The algorithms rely on a random number generator as a source of randomness and a poor quality generator can lead to correlations in the output. In particular it is important to avoid generators with a short period. For more information see Knuth, v2, 3rd ed, Section 3.4.2, "Random Sampling and Shuffling". -- Function: void gsl_ran_shuffle (const gsl_rng * R, void * BASE, size_t N, size_t SIZE) This function randomly shuffles the order of N objects, each of size SIZE, stored in the array BASE[0..N-1]. The output of the random number generator R is used to produce the permutation. The algorithm generates all possible n! permutations with equal probability, assuming a perfect source of random numbers. The following code shows how to shuffle the numbers from 0 to 51, int a[52]; for (i = 0; i < 52; i++) { a[i] = i; } gsl_ran_shuffle (r, a, 52, sizeof (int)); -- Function: int gsl_ran_choose (const gsl_rng * R, void * DEST, size_t K, void * SRC, size_t N, size_t SIZE) This function fills the array DEST[k] with K objects taken randomly from the N elements of the array SRC[0..N-1]. The objects are each of size SIZE. The output of the random number generator R is used to make the selection. The algorithm ensures all possible samples are equally likely, assuming a perfect source of randomness. The objects are sampled _without_ replacement, thus each object can only appear once in DEST[k]. It is required that K be less than or equal to 'n'. The objects in DEST will be in the same relative order as those in SRC. You will need to call 'gsl_ran_shuffle(r, dest, n, size)' if you want to randomize the order. The following code shows how to select a random sample of three unique numbers from the set 0 to 99, double a[3], b[100]; for (i = 0; i < 100; i++) { b[i] = (double) i; } gsl_ran_choose (r, a, 3, b, 100, sizeof (double)); -- Function: void gsl_ran_sample (const gsl_rng * R, void * DEST, size_t K, void * SRC, size_t N, size_t SIZE) This function is like 'gsl_ran_choose' but samples K items from the original array of N items SRC with replacement, so the same object can appear more than once in the output sequence DEST. There is no requirement that K be less than N in this case.  File: gsl-ref.info, Node: Random Number Distribution Examples, Next: Random Number Distribution References and Further Reading, Prev: Shuffling and Sampling, Up: Random Number Distributions 20.39 Examples ============== The following program demonstrates the use of a random number generator to produce variates from a distribution. It prints 10 samples from the Poisson distribution with a mean of 3. #include #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; int i, n = 10; double mu = 3.0; /* create a generator chosen by the environment variable GSL_RNG_TYPE */ gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); /* print n random variates chosen from the poisson distribution with mean parameter mu */ for (i = 0; i < n; i++) { unsigned int k = gsl_ran_poisson (r, mu); printf (" %u", k); } printf ("\n"); gsl_rng_free (r); return 0; } If the library and header files are installed under '/usr/local' (the default location) then the program can be compiled with these options, $ gcc -Wall demo.c -lgsl -lgslcblas -lm Here is the output of the program, $ ./a.out 2 5 5 2 1 0 3 4 1 1 The variates depend on the seed used by the generator. The seed for the default generator type 'gsl_rng_default' can be changed with the 'GSL_RNG_SEED' environment variable to produce a different stream of variates, $ GSL_RNG_SEED=123 ./a.out GSL_RNG_SEED=123 4 5 6 3 3 1 4 2 5 5 The following program generates a random walk in two dimensions. #include #include #include int main (void) { int i; double x = 0, y = 0, dx, dy; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("%g %g\n", x, y); for (i = 0; i < 10; i++) { gsl_ran_dir_2d (r, &dx, &dy); x += dx; y += dy; printf ("%g %g\n", x, y); } gsl_rng_free (r); return 0; } Here is some output from the program, four 10-step random walks from the origin, The following program computes the upper and lower cumulative distribution functions for the standard normal distribution at x=2. #include #include int main (void) { double P, Q; double x = 2.0; P = gsl_cdf_ugaussian_P (x); printf ("prob(x < %f) = %f\n", x, P); Q = gsl_cdf_ugaussian_Q (x); printf ("prob(x > %f) = %f\n", x, Q); x = gsl_cdf_ugaussian_Pinv (P); printf ("Pinv(%f) = %f\n", P, x); x = gsl_cdf_ugaussian_Qinv (Q); printf ("Qinv(%f) = %f\n", Q, x); return 0; } Here is the output of the program, prob(x < 2.000000) = 0.977250 prob(x > 2.000000) = 0.022750 Pinv(0.977250) = 2.000000 Qinv(0.022750) = 2.000000  File: gsl-ref.info, Node: Random Number Distribution References and Further Reading, Prev: Random Number Distribution Examples, Up: Random Number Distributions 20.40 References and Further Reading ==================================== For an encyclopaedic coverage of the subject readers are advised to consult the book 'Non-Uniform Random Variate Generation' by Luc Devroye. It covers every imaginable distribution and provides hundreds of algorithms. Luc Devroye, 'Non-Uniform Random Variate Generation', Springer-Verlag, ISBN 0-387-96305-7. Available online at . The subject of random variate generation is also reviewed by Knuth, who describes algorithms for all the major distributions. Donald E. Knuth, 'The Art of Computer Programming: Seminumerical Algorithms' (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842. The Particle Data Group provides a short review of techniques for generating distributions of random numbers in the "Monte Carlo" section of its Annual Review of Particle Physics. 'Review of Particle Properties' R.M. Barnett et al., Physical Review D54, 1 (1996) . The Review of Particle Physics is available online in postscript and pdf format. An overview of methods used to compute cumulative distribution functions can be found in 'Statistical Computing' by W.J. Kennedy and J.E. Gentle. Another general reference is 'Elements of Statistical Computing' by R.A. Thisted. William E. Kennedy and James E. Gentle, 'Statistical Computing' (1980), Marcel Dekker, ISBN 0-8247-6898-1. Ronald A. Thisted, 'Elements of Statistical Computing' (1988), Chapman & Hall, ISBN 0-412-01371-1. The cumulative distribution functions for the Gaussian distribution are based on the following papers, 'Rational Chebyshev Approximations Using Linear Equations', W.J. Cody, W. Fraser, J.F. Hart. Numerische Mathematik 12, 242-251 (1968). 'Rational Chebyshev Approximations for the Error Function', W.J. Cody. Mathematics of Computation 23, n107, 631-637 (July 1969).  File: gsl-ref.info, Node: Statistics, Next: Histograms, Prev: Random Number Distributions, Up: Top 21 Statistics ************* This chapter describes the statistical functions in the library. The basic statistical functions include routines to compute the mean, variance and standard deviation. More advanced functions allow you to calculate absolute deviations, skewness, and kurtosis as well as the median and arbitrary percentiles. The algorithms use recurrence relations to compute average quantities in a stable way, without large intermediate values that might overflow. The functions are available in versions for datasets in the standard floating-point and integer types. The versions for double precision floating-point data have the prefix 'gsl_stats' and are declared in the header file 'gsl_statistics_double.h'. The versions for integer data have the prefix 'gsl_stats_int' and are declared in the header file 'gsl_statistics_int.h'. All the functions operate on C arrays with a STRIDE parameter specifying the spacing between elements. * Menu: * Mean and standard deviation and variance:: * Absolute deviation:: * Higher moments (skewness and kurtosis):: * Autocorrelation:: * Covariance:: * Correlation:: * Weighted Samples:: * Maximum and Minimum values:: * Median and Percentiles:: * Example statistical programs:: * Statistics References and Further Reading::  File: gsl-ref.info, Node: Mean and standard deviation and variance, Next: Absolute deviation, Up: Statistics 21.1 Mean, Standard Deviation and Variance ========================================== -- Function: double gsl_stats_mean (const double DATA[], size_t STRIDE, size_t N) This function returns the arithmetic mean of DATA, a dataset of length N with stride STRIDE. The arithmetic mean, or "sample mean", is denoted by \Hat\mu and defined as, \Hat\mu = (1/N) \sum x_i where x_i are the elements of the dataset DATA. For samples drawn from a gaussian distribution the variance of \Hat\mu is \sigma^2 / N. -- Function: double gsl_stats_variance (const double DATA[], size_t STRIDE, size_t N) This function returns the estimated, or "sample", variance of DATA, a dataset of length N with stride STRIDE. The estimated variance is denoted by \Hat\sigma^2 and is defined by, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - \Hat\mu)^2 where x_i are the elements of the dataset DATA. Note that the normalization factor of 1/(N-1) results from the derivation of \Hat\sigma^2 as an unbiased estimator of the population variance \sigma^2. For samples drawn from a Gaussian distribution the variance of \Hat\sigma^2 itself is 2 \sigma^4 / N. This function computes the mean via a call to 'gsl_stats_mean'. If you have already computed the mean then you can pass it directly to 'gsl_stats_variance_m'. -- Function: double gsl_stats_variance_m (const double DATA[], size_t STRIDE, size_t N, double MEAN) This function returns the sample variance of DATA relative to the given value of MEAN. The function is computed with \Hat\mu replaced by the value of MEAN that you supply, \Hat\sigma^2 = (1/(N-1)) \sum (x_i - mean)^2 -- Function: double gsl_stats_sd (const double DATA[], size_t STRIDE, size_t N) -- Function: double gsl_stats_sd_m (const double DATA[], size_t STRIDE, size_t N, double MEAN) The standard deviation is defined as the square root of the variance. These functions return the square root of the corresponding variance functions above. -- Function: double gsl_stats_tss (const double DATA[], size_t STRIDE, size_t N) -- Function: double gsl_stats_tss_m (const double DATA[], size_t STRIDE, size_t N, double MEAN) These functions return the total sum of squares (TSS) of DATA about the mean. For 'gsl_stats_tss_m' the user-supplied value of MEAN is used, and for 'gsl_stats_tss' it is computed using 'gsl_stats_mean'. TSS = \sum (x_i - mean)^2 -- Function: double gsl_stats_variance_with_fixed_mean (const double DATA[], size_t STRIDE, size_t N, double MEAN) This function computes an unbiased estimate of the variance of DATA when the population mean MEAN of the underlying distribution is known _a priori_. In this case the estimator for the variance uses the factor 1/N and the sample mean \Hat\mu is replaced by the known population mean \mu, \Hat\sigma^2 = (1/N) \sum (x_i - \mu)^2 -- Function: double gsl_stats_sd_with_fixed_mean (const double DATA[], size_t STRIDE, size_t N, double MEAN) This function calculates the standard deviation of DATA for a fixed population mean MEAN. The result is the square root of the corresponding variance function.  File: gsl-ref.info, Node: Absolute deviation, Next: Higher moments (skewness and kurtosis), Prev: Mean and standard deviation and variance, Up: Statistics 21.2 Absolute deviation ======================= -- Function: double gsl_stats_absdev (const double DATA[], size_t STRIDE, size_t N) This function computes the absolute deviation from the mean of DATA, a dataset of length N with stride STRIDE. The absolute deviation from the mean is defined as, absdev = (1/N) \sum |x_i - \Hat\mu| where x_i are the elements of the dataset DATA. The absolute deviation from the mean provides a more robust measure of the width of a distribution than the variance. This function computes the mean of DATA via a call to 'gsl_stats_mean'. -- Function: double gsl_stats_absdev_m (const double DATA[], size_t STRIDE, size_t N, double MEAN) This function computes the absolute deviation of the dataset DATA relative to the given value of MEAN, absdev = (1/N) \sum |x_i - mean| This function is useful if you have already computed the mean of DATA (and want to avoid recomputing it), or wish to calculate the absolute deviation relative to another value (such as zero, or the median).  File: gsl-ref.info, Node: Higher moments (skewness and kurtosis), Next: Autocorrelation, Prev: Absolute deviation, Up: Statistics 21.3 Higher moments (skewness and kurtosis) =========================================== -- Function: double gsl_stats_skew (const double DATA[], size_t STRIDE, size_t N) This function computes the skewness of DATA, a dataset of length N with stride STRIDE. The skewness is defined as, skew = (1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^3 where x_i are the elements of the dataset DATA. The skewness measures the asymmetry of the tails of a distribution. The function computes the mean and estimated standard deviation of DATA via calls to 'gsl_stats_mean' and 'gsl_stats_sd'. -- Function: double gsl_stats_skew_m_sd (const double DATA[], size_t STRIDE, size_t N, double MEAN, double SD) This function computes the skewness of the dataset DATA using the given values of the mean MEAN and standard deviation SD, skew = (1/N) \sum ((x_i - mean)/sd)^3 These functions are useful if you have already computed the mean and standard deviation of DATA and want to avoid recomputing them. -- Function: double gsl_stats_kurtosis (const double DATA[], size_t STRIDE, size_t N) This function computes the kurtosis of DATA, a dataset of length N with stride STRIDE. The kurtosis is defined as, kurtosis = ((1/N) \sum ((x_i - \Hat\mu)/\Hat\sigma)^4) - 3 The kurtosis measures how sharply peaked a distribution is, relative to its width. The kurtosis is normalized to zero for a Gaussian distribution. -- Function: double gsl_stats_kurtosis_m_sd (const double DATA[], size_t STRIDE, size_t N, double MEAN, double SD) This function computes the kurtosis of the dataset DATA using the given values of the mean MEAN and standard deviation SD, kurtosis = ((1/N) \sum ((x_i - mean)/sd)^4) - 3 This function is useful if you have already computed the mean and standard deviation of DATA and want to avoid recomputing them.  File: gsl-ref.info, Node: Autocorrelation, Next: Covariance, Prev: Higher moments (skewness and kurtosis), Up: Statistics 21.4 Autocorrelation ==================== -- Function: double gsl_stats_lag1_autocorrelation (const double DATA[], const size_t STRIDE, const size_t N) This function computes the lag-1 autocorrelation of the dataset DATA. a_1 = {\sum_{i = 1}^{n} (x_{i} - \Hat\mu) (x_{i-1} - \Hat\mu) \over \sum_{i = 1}^{n} (x_{i} - \Hat\mu) (x_{i} - \Hat\mu)} -- Function: double gsl_stats_lag1_autocorrelation_m (const double DATA[], const size_t STRIDE, const size_t N, const double MEAN) This function computes the lag-1 autocorrelation of the dataset DATA using the given value of the mean MEAN.  File: gsl-ref.info, Node: Covariance, Next: Correlation, Prev: Autocorrelation, Up: Statistics 21.5 Covariance =============== -- Function: double gsl_stats_covariance (const double DATA1[], const size_t STRIDE1, const double DATA2[], const size_t STRIDE2, const size_t N) This function computes the covariance of the datasets DATA1 and DATA2 which must both be of the same length N. covar = (1/(n - 1)) \sum_{i = 1}^{n} (x_i - \Hat x) (y_i - \Hat y) -- Function: double gsl_stats_covariance_m (const double DATA1[], const size_t STRIDE1, const double DATA2[], const size_t STRIDE2, const size_t N, const double MEAN1, const double MEAN2) This function computes the covariance of the datasets DATA1 and DATA2 using the given values of the means, MEAN1 and MEAN2. This is useful if you have already computed the means of DATA1 and DATA2 and want to avoid recomputing them.  File: gsl-ref.info, Node: Correlation, Next: Weighted Samples, Prev: Covariance, Up: Statistics 21.6 Correlation ================ -- Function: double gsl_stats_correlation (const double DATA1[], const size_t STRIDE1, const double DATA2[], const size_t STRIDE2, const size_t N) This function efficiently computes the Pearson correlation coefficient between the datasets DATA1 and DATA2 which must both be of the same length N. r = cov(x, y) / (\Hat\sigma_x \Hat\sigma_y) = {1/(n-1) \sum (x_i - \Hat x) (y_i - \Hat y) \over \sqrt{1/(n-1) \sum (x_i - \Hat x)^2} \sqrt{1/(n-1) \sum (y_i - \Hat y)^2} } -- Function: double gsl_stats_spearman (const double DATA1[], const size_t STRIDE1, const double DATA2[], const size_t STRIDE2, const size_t N, double WORK[]) This function computes the Spearman rank correlation coefficient between the datasets DATA1 and DATA2 which must both be of the same length N. Additional workspace of size 2*N is required in WORK. The Spearman rank correlation between vectors x and y is equivalent to the Pearson correlation between the ranked vectors x_R and y_R, where ranks are defined to be the average of the positions of an element in the ascending order of the values.  File: gsl-ref.info, Node: Weighted Samples, Next: Maximum and Minimum values, Prev: Correlation, Up: Statistics 21.7 Weighted Samples ===================== The functions described in this section allow the computation of statistics for weighted samples. The functions accept an array of samples, x_i, with associated weights, w_i. Each sample x_i is considered as having been drawn from a Gaussian distribution with variance \sigma_i^2. The sample weight w_i is defined as the reciprocal of this variance, w_i = 1/\sigma_i^2. Setting a weight to zero corresponds to removing a sample from a dataset. -- Function: double gsl_stats_wmean (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) This function returns the weighted mean of the dataset DATA with stride STRIDE and length N, using the set of weights W with stride WSTRIDE and length N. The weighted mean is defined as, \Hat\mu = (\sum w_i x_i) / (\sum w_i) -- Function: double gsl_stats_wvariance (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) This function returns the estimated variance of the dataset DATA with stride STRIDE and length N, using the set of weights W with stride WSTRIDE and length N. The estimated variance of a weighted dataset is calculated as, \Hat\sigma^2 = ((\sum w_i)/((\sum w_i)^2 - \sum (w_i^2))) \sum w_i (x_i - \Hat\mu)^2 Note that this expression reduces to an unweighted variance with the familiar 1/(N-1) factor when there are N equal non-zero weights. -- Function: double gsl_stats_wvariance_m (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN) This function returns the estimated variance of the weighted dataset DATA using the given weighted mean WMEAN. -- Function: double gsl_stats_wsd (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) The standard deviation is defined as the square root of the variance. This function returns the square root of the corresponding variance function 'gsl_stats_wvariance' above. -- Function: double gsl_stats_wsd_m (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN) This function returns the square root of the corresponding variance function 'gsl_stats_wvariance_m' above. -- Function: double gsl_stats_wvariance_with_fixed_mean (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, const double MEAN) This function computes an unbiased estimate of the variance of the weighted dataset DATA when the population mean MEAN of the underlying distribution is known _a priori_. In this case the estimator for the variance replaces the sample mean \Hat\mu by the known population mean \mu, \Hat\sigma^2 = (\sum w_i (x_i - \mu)^2) / (\sum w_i) -- Function: double gsl_stats_wsd_with_fixed_mean (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, const double MEAN) The standard deviation is defined as the square root of the variance. This function returns the square root of the corresponding variance function above. -- Function: double gsl_stats_wtss (const double W[], const size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) -- Function: double gsl_stats_wtss_m (const double W[], const size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN) These functions return the weighted total sum of squares (TSS) of DATA about the weighted mean. For 'gsl_stats_wtss_m' the user-supplied value of WMEAN is used, and for 'gsl_stats_wtss' it is computed using 'gsl_stats_wmean'. TSS = \sum w_i (x_i - wmean)^2 -- Function: double gsl_stats_wabsdev (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) This function computes the weighted absolute deviation from the weighted mean of DATA. The absolute deviation from the mean is defined as, absdev = (\sum w_i |x_i - \Hat\mu|) / (\sum w_i) -- Function: double gsl_stats_wabsdev_m (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN) This function computes the absolute deviation of the weighted dataset DATA about the given weighted mean WMEAN. -- Function: double gsl_stats_wskew (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) This function computes the weighted skewness of the dataset DATA. skew = (\sum w_i ((x_i - \Hat x)/\Hat \sigma)^3) / (\sum w_i) -- Function: double gsl_stats_wskew_m_sd (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN, double WSD) This function computes the weighted skewness of the dataset DATA using the given values of the weighted mean and weighted standard deviation, WMEAN and WSD. -- Function: double gsl_stats_wkurtosis (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N) This function computes the weighted kurtosis of the dataset DATA. kurtosis = ((\sum w_i ((x_i - \Hat x)/\Hat \sigma)^4) / (\sum w_i)) - 3 -- Function: double gsl_stats_wkurtosis_m_sd (const double W[], size_t WSTRIDE, const double DATA[], size_t STRIDE, size_t N, double WMEAN, double WSD) This function computes the weighted kurtosis of the dataset DATA using the given values of the weighted mean and weighted standard deviation, WMEAN and WSD.  File: gsl-ref.info, Node: Maximum and Minimum values, Next: Median and Percentiles, Prev: Weighted Samples, Up: Statistics 21.8 Maximum and Minimum values =============================== The following functions find the maximum and minimum values of a dataset (or their indices). If the data contains 'NaN's then a 'NaN' will be returned, since the maximum or minimum value is undefined. For functions which return an index, the location of the first 'NaN' in the array is returned. -- Function: double gsl_stats_max (const double DATA[], size_t STRIDE, size_t N) This function returns the maximum value in DATA, a dataset of length N with stride STRIDE. The maximum value is defined as the value of the element x_i which satisfies x_i >= x_j for all j. If you want instead to find the element with the largest absolute magnitude you will need to apply 'fabs' or 'abs' to your data before calling this function. -- Function: double gsl_stats_min (const double DATA[], size_t STRIDE, size_t N) This function returns the minimum value in DATA, a dataset of length N with stride STRIDE. The minimum value is defined as the value of the element x_i which satisfies x_i <= x_j for all j. If you want instead to find the element with the smallest absolute magnitude you will need to apply 'fabs' or 'abs' to your data before calling this function. -- Function: void gsl_stats_minmax (double * MIN, double * MAX, const double DATA[], size_t STRIDE, size_t N) This function finds both the minimum and maximum values MIN, MAX in DATA in a single pass. -- Function: size_t gsl_stats_max_index (const double DATA[], size_t STRIDE, size_t N) This function returns the index of the maximum value in DATA, a dataset of length N with stride STRIDE. The maximum value is defined as the value of the element x_i which satisfies x_i >= x_j for all j. When there are several equal maximum elements then the first one is chosen. -- Function: size_t gsl_stats_min_index (const double DATA[], size_t STRIDE, size_t N) This function returns the index of the minimum value in DATA, a dataset of length N with stride STRIDE. The minimum value is defined as the value of the element x_i which satisfies x_i >= x_j for all j. When there are several equal minimum elements then the first one is chosen. -- Function: void gsl_stats_minmax_index (size_t * MIN_INDEX, size_t * MAX_INDEX, const double DATA[], size_t STRIDE, size_t N) This function returns the indexes MIN_INDEX, MAX_INDEX of the minimum and maximum values in DATA in a single pass.  File: gsl-ref.info, Node: Median and Percentiles, Next: Example statistical programs, Prev: Maximum and Minimum values, Up: Statistics 21.9 Median and Percentiles =========================== The median and percentile functions described in this section operate on sorted data. For convenience we use "quantiles", measured on a scale of 0 to 1, instead of percentiles (which use a scale of 0 to 100). -- Function: double gsl_stats_median_from_sorted_data (const double SORTED_DATA[], size_t STRIDE, size_t N) This function returns the median value of SORTED_DATA, a dataset of length N with stride STRIDE. The elements of the array must be in ascending numerical order. There are no checks to see whether the data are sorted, so the function 'gsl_sort' should always be used first. When the dataset has an odd number of elements the median is the value of element (n-1)/2. When the dataset has an even number of elements the median is the mean of the two nearest middle values, elements (n-1)/2 and n/2. Since the algorithm for computing the median involves interpolation this function always returns a floating-point number, even for integer data types. -- Function: double gsl_stats_quantile_from_sorted_data (const double SORTED_DATA[], size_t STRIDE, size_t N, double F) This function returns a quantile value of SORTED_DATA, a double-precision array of length N with stride STRIDE. The elements of the array must be in ascending numerical order. The quantile is determined by the F, a fraction between 0 and 1. For example, to compute the value of the 75th percentile F should have the value 0.75. There are no checks to see whether the data are sorted, so the function 'gsl_sort' should always be used first. The quantile is found by interpolation, using the formula quantile = (1 - \delta) x_i + \delta x_{i+1} where i is 'floor'((n - 1)f) and \delta is (n-1)f - i. Thus the minimum value of the array ('data[0*stride]') is given by F equal to zero, the maximum value ('data[(n-1)*stride]') is given by F equal to one and the median value is given by F equal to 0.5. Since the algorithm for computing quantiles involves interpolation this function always returns a floating-point number, even for integer data types.  File: gsl-ref.info, Node: Example statistical programs, Next: Statistics References and Further Reading, Prev: Median and Percentiles, Up: Statistics 21.10 Examples ============== Here is a basic example of how to use the statistical functions: #include #include int main(void) { double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6}; double mean, variance, largest, smallest; mean = gsl_stats_mean(data, 1, 5); variance = gsl_stats_variance(data, 1, 5); largest = gsl_stats_max(data, 1, 5); smallest = gsl_stats_min(data, 1, 5); printf ("The dataset is %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); printf ("The sample mean is %g\n", mean); printf ("The estimated variance is %g\n", variance); printf ("The largest value is %g\n", largest); printf ("The smallest value is %g\n", smallest); return 0; } The program should produce the following output, The dataset is 17.2, 18.1, 16.5, 18.3, 12.6 The sample mean is 16.54 The estimated variance is 5.373 The largest value is 18.3 The smallest value is 12.6 Here is an example using sorted data, #include #include #include int main(void) { double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6}; double median, upperq, lowerq; printf ("Original dataset: %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); gsl_sort (data, 1, 5); printf ("Sorted dataset: %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); median = gsl_stats_median_from_sorted_data (data, 1, 5); upperq = gsl_stats_quantile_from_sorted_data (data, 1, 5, 0.75); lowerq = gsl_stats_quantile_from_sorted_data (data, 1, 5, 0.25); printf ("The median is %g\n", median); printf ("The upper quartile is %g\n", upperq); printf ("The lower quartile is %g\n", lowerq); return 0; } This program should produce the following output, Original dataset: 17.2, 18.1, 16.5, 18.3, 12.6 Sorted dataset: 12.6, 16.5, 17.2, 18.1, 18.3 The median is 17.2 The upper quartile is 18.1 The lower quartile is 16.5  File: gsl-ref.info, Node: Statistics References and Further Reading, Prev: Example statistical programs, Up: Statistics 21.11 References and Further Reading ==================================== The standard reference for almost any topic in statistics is the multi-volume 'Advanced Theory of Statistics' by Kendall and Stuart. Maurice Kendall, Alan Stuart, and J. Keith Ord. 'The Advanced Theory of Statistics' (multiple volumes) reprinted as 'Kendall's Advanced Theory of Statistics'. Wiley, ISBN 047023380X. Many statistical concepts can be more easily understood by a Bayesian approach. The following book by Gelman, Carlin, Stern and Rubin gives a comprehensive coverage of the subject. Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. 'Bayesian Data Analysis'. Chapman & Hall, ISBN 0412039915. For physicists the Particle Data Group provides useful reviews of Probability and Statistics in the "Mathematical Tools" section of its Annual Review of Particle Physics. 'Review of Particle Properties' R.M. Barnett et al., Physical Review D54, 1 (1996) The Review of Particle Physics is available online at the website .  File: gsl-ref.info, Node: Histograms, Next: N-tuples, Prev: Statistics, Up: Top 22 Histograms ************* This chapter describes functions for creating histograms. Histograms provide a convenient way of summarizing the distribution of a set of data. A histogram consists of a set of "bins" which count the number of events falling into a given range of a continuous variable x. In GSL the bins of a histogram contain floating-point numbers, so they can be used to record both integer and non-integer distributions. The bins can use arbitrary sets of ranges (uniformly spaced bins are the default). Both one and two-dimensional histograms are supported. Once a histogram has been created it can also be converted into a probability distribution function. The library provides efficient routines for selecting random samples from probability distributions. This can be useful for generating simulations based on real data. The functions are declared in the header files 'gsl_histogram.h' and 'gsl_histogram2d.h'. * Menu: * The histogram struct:: * Histogram allocation:: * Copying Histograms:: * Updating and accessing histogram elements:: * Searching histogram ranges:: * Histogram Statistics:: * Histogram Operations:: * Reading and writing histograms:: * Resampling from histograms:: * The histogram probability distribution struct:: * Example programs for histograms:: * Two dimensional histograms:: * The 2D histogram struct:: * 2D Histogram allocation:: * Copying 2D Histograms:: * Updating and accessing 2D histogram elements:: * Searching 2D histogram ranges:: * 2D Histogram Statistics:: * 2D Histogram Operations:: * Reading and writing 2D histograms:: * Resampling from 2D histograms:: * Example programs for 2D histograms::  File: gsl-ref.info, Node: The histogram struct, Next: Histogram allocation, Up: Histograms 22.1 The histogram struct ========================= A histogram is defined by the following struct, -- Data Type: gsl_histogram 'size_t n' This is the number of histogram bins 'double * range' The ranges of the bins are stored in an array of N+1 elements pointed to by RANGE. 'double * bin' The counts for each bin are stored in an array of N elements pointed to by BIN. The bins are floating-point numbers, so you can increment them by non-integer values if necessary. The range for BIN[i] is given by RANGE[i] to RANGE[i+1]. For n bins there are n+1 entries in the array RANGE. Each bin is inclusive at the lower end and exclusive at the upper end. Mathematically this means that the bins are defined by the following inequality, bin[i] corresponds to range[i] <= x < range[i+1] Here is a diagram of the correspondence between ranges and bins on the number-line for x, [ bin[0] )[ bin[1] )[ bin[2] )[ bin[3] )[ bin[4] ) ---|---------|---------|---------|---------|---------|--- x r[0] r[1] r[2] r[3] r[4] r[5] In this picture the values of the RANGE array are denoted by r. On the left-hand side of each bin the square bracket '[' denotes an inclusive lower bound (r <= x), and the round parentheses ')' on the right-hand side denote an exclusive upper bound (x < r). Thus any samples which fall on the upper end of the histogram are excluded. If you want to include this value for the last bin you will need to add an extra bin to your histogram. The 'gsl_histogram' struct and its associated functions are defined in the header file 'gsl_histogram.h'.  File: gsl-ref.info, Node: Histogram allocation, Next: Copying Histograms, Prev: The histogram struct, Up: Histograms 22.2 Histogram allocation ========================= The functions for allocating memory to a histogram follow the style of 'malloc' and 'free'. In addition they also perform their own error checking. If there is insufficient memory available to allocate a histogram then the functions call the error handler (with an error number of 'GSL_ENOMEM') in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every histogram 'alloc'. -- Function: gsl_histogram * gsl_histogram_alloc (size_t N) This function allocates memory for a histogram with N bins, and returns a pointer to a newly created 'gsl_histogram' struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of 'GSL_ENOMEM'. The bins and ranges are not initialized, and should be prepared using one of the range-setting functions below in order to make the histogram ready for use. -- Function: int gsl_histogram_set_ranges (gsl_histogram * H, const double RANGE[], size_t SIZE) This function sets the ranges of the existing histogram H using the array RANGE of size SIZE. The values of the histogram bins are reset to zero. The 'range' array should contain the desired bin limits. The ranges can be arbitrary, subject to the restriction that they are monotonically increasing. The following example shows how to create a histogram with logarithmic bins with ranges [1,10), [10,100) and [100,1000). gsl_histogram * h = gsl_histogram_alloc (3); /* bin[0] covers the range 1 <= x < 10 */ /* bin[1] covers the range 10 <= x < 100 */ /* bin[2] covers the range 100 <= x < 1000 */ double range[4] = { 1.0, 10.0, 100.0, 1000.0 }; gsl_histogram_set_ranges (h, range, 4); Note that the size of the RANGE array should be defined to be one element bigger than the number of bins. The additional element is required for the upper value of the final bin. -- Function: int gsl_histogram_set_ranges_uniform (gsl_histogram * H, double XMIN, double XMAX) This function sets the ranges of the existing histogram H to cover the range XMIN to XMAX uniformly. The values of the histogram bins are reset to zero. The bin ranges are shown in the table below, bin[0] corresponds to xmin <= x < xmin + d bin[1] corresponds to xmin + d <= x < xmin + 2 d ...... bin[n-1] corresponds to xmin + (n-1)d <= x < xmax where d is the bin spacing, d = (xmax-xmin)/n. -- Function: void gsl_histogram_free (gsl_histogram * H) This function frees the histogram H and all of the memory associated with it.  File: gsl-ref.info, Node: Copying Histograms, Next: Updating and accessing histogram elements, Prev: Histogram allocation, Up: Histograms 22.3 Copying Histograms ======================= -- Function: int gsl_histogram_memcpy (gsl_histogram * DEST, const gsl_histogram * SRC) This function copies the histogram SRC into the pre-existing histogram DEST, making DEST into an exact copy of SRC. The two histograms must be of the same size. -- Function: gsl_histogram * gsl_histogram_clone (const gsl_histogram * SRC) This function returns a pointer to a newly created histogram which is an exact copy of the histogram SRC.  File: gsl-ref.info, Node: Updating and accessing histogram elements, Next: Searching histogram ranges, Prev: Copying Histograms, Up: Histograms 22.4 Updating and accessing histogram elements ============================================== There are two ways to access histogram bins, either by specifying an x coordinate or by using the bin-index directly. The functions for accessing the histogram through x coordinates use a binary search to identify the bin which covers the appropriate range. -- Function: int gsl_histogram_increment (gsl_histogram * H, double X) This function updates the histogram H by adding one (1.0) to the bin whose range contains the coordinate X. If X lies in the valid range of the histogram then the function returns zero to indicate success. If X is less than the lower limit of the histogram then the function returns 'GSL_EDOM', and none of bins are modified. Similarly, if the value of X is greater than or equal to the upper limit of the histogram then the function returns 'GSL_EDOM', and none of the bins are modified. The error handler is not called, however, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring the values outside the range of interest. -- Function: int gsl_histogram_accumulate (gsl_histogram * H, double X, double WEIGHT) This function is similar to 'gsl_histogram_increment' but increases the value of the appropriate bin in the histogram H by the floating-point number WEIGHT. -- Function: double gsl_histogram_get (const gsl_histogram * H, size_t I) This function returns the contents of the I-th bin of the histogram H. If I lies outside the valid range of indices for the histogram then the error handler is called with an error code of 'GSL_EDOM' and the function returns 0. -- Function: int gsl_histogram_get_range (const gsl_histogram * H, size_t I, double * LOWER, double * UPPER) This function finds the upper and lower range limits of the I-th bin of the histogram H. If the index I is valid then the corresponding range limits are stored in LOWER and UPPER. The lower limit is inclusive (i.e. events with this coordinate are included in the bin) and the upper limit is exclusive (i.e. events with the coordinate of the upper limit are excluded and fall in the neighboring higher bin, if it exists). The function returns 0 to indicate success. If I lies outside the valid range of indices for the histogram then the error handler is called and the function returns an error code of 'GSL_EDOM'. -- Function: double gsl_histogram_max (const gsl_histogram * H) -- Function: double gsl_histogram_min (const gsl_histogram * H) -- Function: size_t gsl_histogram_bins (const gsl_histogram * H) These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram H. They provide a way of determining these values without accessing the 'gsl_histogram' struct directly. -- Function: void gsl_histogram_reset (gsl_histogram * H) This function resets all the bins in the histogram H to zero.  File: gsl-ref.info, Node: Searching histogram ranges, Next: Histogram Statistics, Prev: Updating and accessing histogram elements, Up: Histograms 22.5 Searching histogram ranges =============================== The following functions are used by the access and update routines to locate the bin which corresponds to a given x coordinate. -- Function: int gsl_histogram_find (const gsl_histogram * H, double X, size_t * I) This function finds and sets the index I to the bin number which covers the coordinate X in the histogram H. The bin is located using a binary search. The search includes an optimization for histograms with uniform range, and will return the correct bin immediately in this case. If X is found in the range of the histogram then the function sets the index I and returns 'GSL_SUCCESS'. If X lies outside the valid range of the histogram then the function returns 'GSL_EDOM' and the error handler is invoked.  File: gsl-ref.info, Node: Histogram Statistics, Next: Histogram Operations, Prev: Searching histogram ranges, Up: Histograms 22.6 Histogram Statistics ========================= -- Function: double gsl_histogram_max_val (const gsl_histogram * H) This function returns the maximum value contained in the histogram bins. -- Function: size_t gsl_histogram_max_bin (const gsl_histogram * H) This function returns the index of the bin containing the maximum value. In the case where several bins contain the same maximum value the smallest index is returned. -- Function: double gsl_histogram_min_val (const gsl_histogram * H) This function returns the minimum value contained in the histogram bins. -- Function: size_t gsl_histogram_min_bin (const gsl_histogram * H) This function returns the index of the bin containing the minimum value. In the case where several bins contain the same maximum value the smallest index is returned. -- Function: double gsl_histogram_mean (const gsl_histogram * H) This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width. -- Function: double gsl_histogram_sigma (const gsl_histogram * H) This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width. -- Function: double gsl_histogram_sum (const gsl_histogram * H) This function returns the sum of all bin values. Negative bin values are included in the sum.  File: gsl-ref.info, Node: Histogram Operations, Next: Reading and writing histograms, Prev: Histogram Statistics, Up: Histograms 22.7 Histogram Operations ========================= -- Function: int gsl_histogram_equal_bins_p (const gsl_histogram * H1, const gsl_histogram * H2) This function returns 1 if the all of the individual bin ranges of the two histograms are identical, and 0 otherwise. -- Function: int gsl_histogram_add (gsl_histogram * H1, const gsl_histogram * H2) This function adds the contents of the bins in histogram H2 to the corresponding bins of histogram H1, i.e. h'_1(i) = h_1(i) + h_2(i). The two histograms must have identical bin ranges. -- Function: int gsl_histogram_sub (gsl_histogram * H1, const gsl_histogram * H2) This function subtracts the contents of the bins in histogram H2 from the corresponding bins of histogram H1, i.e. h'_1(i) = h_1(i) - h_2(i). The two histograms must have identical bin ranges. -- Function: int gsl_histogram_mul (gsl_histogram * H1, const gsl_histogram * H2) This function multiplies the contents of the bins of histogram H1 by the contents of the corresponding bins in histogram H2, i.e. h'_1(i) = h_1(i) * h_2(i). The two histograms must have identical bin ranges. -- Function: int gsl_histogram_div (gsl_histogram * H1, const gsl_histogram * H2) This function divides the contents of the bins of histogram H1 by the contents of the corresponding bins in histogram H2, i.e. h'_1(i) = h_1(i) / h_2(i). The two histograms must have identical bin ranges. -- Function: int gsl_histogram_scale (gsl_histogram * H, double SCALE) This function multiplies the contents of the bins of histogram H by the constant SCALE, i.e. h'_1(i) = h_1(i) * scale. -- Function: int gsl_histogram_shift (gsl_histogram * H, double OFFSET) This function shifts the contents of the bins of histogram H by the constant OFFSET, i.e. h'_1(i) = h_1(i) + offset.  File: gsl-ref.info, Node: Reading and writing histograms, Next: Resampling from histograms, Prev: Histogram Operations, Up: Histograms 22.8 Reading and writing histograms =================================== The library provides functions for reading and writing histograms to a file as binary data or formatted text. -- Function: int gsl_histogram_fwrite (FILE * STREAM, const gsl_histogram * H) This function writes the ranges and bins of the histogram H to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_histogram_fread (FILE * STREAM, gsl_histogram * H) This function reads into the histogram H from the open stream STREAM in binary format. The histogram H must be preallocated with the correct size since the function uses the number of bins in H to determine how many bytes to read. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_histogram_fprintf (FILE * STREAM, const gsl_histogram * H, const char * RANGE_FORMAT, const char * BIN_FORMAT) This function writes the ranges and bins of the histogram H line-by-line to the stream STREAM using the format specifiers RANGE_FORMAT and BIN_FORMAT. These should be one of the '%g', '%e' or '%f' formats for floating point numbers. The function returns 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. The histogram output is formatted in three columns, and the columns are separated by spaces, like this, range[0] range[1] bin[0] range[1] range[2] bin[1] range[2] range[3] bin[2] .... range[n-1] range[n] bin[n-1] The values of the ranges are formatted using RANGE_FORMAT and the value of the bins are formatted using BIN_FORMAT. Each line contains the lower and upper limit of the range of the bins and the value of the bin itself. Since the upper limit of one bin is the lower limit of the next there is duplication of these values between lines but this allows the histogram to be manipulated with line-oriented tools. -- Function: int gsl_histogram_fscanf (FILE * STREAM, gsl_histogram * H) This function reads formatted data from the stream STREAM into the histogram H. The data is assumed to be in the three-column format used by 'gsl_histogram_fprintf'. The histogram H must be preallocated with the correct length since the function uses the size of H to determine how many numbers to read. The function returns 0 for success and 'GSL_EFAILED' if there was a problem reading from the file.  File: gsl-ref.info, Node: Resampling from histograms, Next: The histogram probability distribution struct, Prev: Reading and writing histograms, Up: Histograms 22.9 Resampling from histograms =============================== A histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for statistical error, the height of each bin represents the probability of an event where the value of x falls in the range of that bin. The probability distribution function has the one-dimensional form p(x)dx where, p(x) = n_i/ (N w_i) In this equation n_i is the number of events in the bin which contains x, w_i is the width of the bin and N is the total number of events. The distribution of events within each bin is assumed to be uniform.  File: gsl-ref.info, Node: The histogram probability distribution struct, Next: Example programs for histograms, Prev: Resampling from histograms, Up: Histograms 22.10 The histogram probability distribution struct =================================================== The probability distribution function for a histogram consists of a set of "bins" which measure the probability of an event falling into a given range of a continuous variable x. A probability distribution function is defined by the following struct, which actually stores the cumulative probability distribution function. This is the natural quantity for generating samples via the inverse transform method, because there is a one-to-one mapping between the cumulative probability distribution and the range [0,1]. It can be shown that by taking a uniform random number in this range and finding its corresponding coordinate in the cumulative probability distribution we obtain samples with the desired probability distribution. -- Data Type: gsl_histogram_pdf 'size_t n' This is the number of bins used to approximate the probability distribution function. 'double * range' The ranges of the bins are stored in an array of N+1 elements pointed to by RANGE. 'double * sum' The cumulative probability for the bins is stored in an array of N elements pointed to by SUM. The following functions allow you to create a 'gsl_histogram_pdf' struct which represents this probability distribution and generate random samples from it. -- Function: gsl_histogram_pdf * gsl_histogram_pdf_alloc (size_t N) This function allocates memory for a probability distribution with N bins and returns a pointer to a newly initialized 'gsl_histogram_pdf' struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_histogram_pdf_init (gsl_histogram_pdf * P, const gsl_histogram * H) This function initializes the probability distribution P with the contents of the histogram H. If any of the bins of H are negative then the error handler is invoked with an error code of 'GSL_EDOM' because a probability distribution cannot contain negative values. -- Function: void gsl_histogram_pdf_free (gsl_histogram_pdf * P) This function frees the probability distribution function P and all of the memory associated with it. -- Function: double gsl_histogram_pdf_sample (const gsl_histogram_pdf * P, double R) This function uses R, a uniform random number between zero and one, to compute a single random sample from the probability distribution P. The algorithm used to compute the sample s is given by the following formula, s = range[i] + delta * (range[i+1] - range[i]) where i is the index which satisfies sum[i] <= r < sum[i+1] and delta is (r - sum[i])/(sum[i+1] - sum[i]).  File: gsl-ref.info, Node: Example programs for histograms, Next: Two dimensional histograms, Prev: The histogram probability distribution struct, Up: Histograms 22.11 Example programs for histograms ===================================== The following program shows how to make a simple histogram of a column of numerical data supplied on 'stdin'. The program takes three arguments, specifying the upper and lower bounds of the histogram and the number of bins. It then reads numbers from 'stdin', one line at a time, and adds them to the histogram. When there is no more data to read it prints out the accumulated histogram using 'gsl_histogram_fprintf'. #include #include #include int main (int argc, char **argv) { double a, b; size_t n; if (argc != 4) { printf ("Usage: gsl-histogram xmin xmax n\n" "Computes a histogram of the data " "on stdin using n bins from xmin " "to xmax\n"); exit (0); } a = atof (argv[1]); b = atof (argv[2]); n = atoi (argv[3]); { double x; gsl_histogram * h = gsl_histogram_alloc (n); gsl_histogram_set_ranges_uniform (h, a, b); while (fscanf (stdin, "%lg", &x) == 1) { gsl_histogram_increment (h, x); } gsl_histogram_fprintf (stdout, h, "%g", "%g"); gsl_histogram_free (h); } exit (0); } Here is an example of the program in use. We generate 10000 random samples from a Cauchy distribution with a width of 30 and histogram them over the range -100 to 100, using 200 bins. $ gsl-randist 0 10000 cauchy 30 | gsl-histogram -100 100 200 > histogram.dat A plot of the resulting histogram shows the familiar shape of the Cauchy distribution and the fluctuations caused by the finite sample size. $ awk '{print $1, $3 ; print $2, $3}' histogram.dat | graph -T X  File: gsl-ref.info, Node: Two dimensional histograms, Next: The 2D histogram struct, Prev: Example programs for histograms, Up: Histograms 22.12 Two dimensional histograms ================================ A two dimensional histogram consists of a set of "bins" which count the number of events falling in a given area of the (x,y) plane. The simplest way to use a two dimensional histogram is to record two-dimensional position information, n(x,y). Another possibility is to form a "joint distribution" by recording related variables. For example a detector might record both the position of an event (x) and the amount of energy it deposited E. These could be histogrammed as the joint distribution n(x,E).  File: gsl-ref.info, Node: The 2D histogram struct, Next: 2D Histogram allocation, Prev: Two dimensional histograms, Up: Histograms 22.13 The 2D histogram struct ============================= Two dimensional histograms are defined by the following struct, -- Data Type: gsl_histogram2d 'size_t nx, ny' This is the number of histogram bins in the x and y directions. 'double * xrange' The ranges of the bins in the x-direction are stored in an array of NX + 1 elements pointed to by XRANGE. 'double * yrange' The ranges of the bins in the y-direction are stored in an array of NY + 1 elements pointed to by YRANGE. 'double * bin' The counts for each bin are stored in an array pointed to by BIN. The bins are floating-point numbers, so you can increment them by non-integer values if necessary. The array BIN stores the two dimensional array of bins in a single block of memory according to the mapping 'bin(i,j)' = 'bin[i * ny + j]'. The range for 'bin(i,j)' is given by 'xrange[i]' to 'xrange[i+1]' in the x-direction and 'yrange[j]' to 'yrange[j+1]' in the y-direction. Each bin is inclusive at the lower end and exclusive at the upper end. Mathematically this means that the bins are defined by the following inequality, bin(i,j) corresponds to xrange[i] <= x < xrange[i+1] and yrange[j] <= y < yrange[j+1] Note that any samples which fall on the upper sides of the histogram are excluded. If you want to include these values for the side bins you will need to add an extra row or column to your histogram. The 'gsl_histogram2d' struct and its associated functions are defined in the header file 'gsl_histogram2d.h'.  File: gsl-ref.info, Node: 2D Histogram allocation, Next: Copying 2D Histograms, Prev: The 2D histogram struct, Up: Histograms 22.14 2D Histogram allocation ============================= The functions for allocating memory to a 2D histogram follow the style of 'malloc' and 'free'. In addition they also perform their own error checking. If there is insufficient memory available to allocate a histogram then the functions call the error handler (with an error number of 'GSL_ENOMEM') in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every 2D histogram 'alloc'. -- Function: gsl_histogram2d * gsl_histogram2d_alloc (size_t NX, size_t NY) This function allocates memory for a two-dimensional histogram with NX bins in the x direction and NY bins in the y direction. The function returns a pointer to a newly created 'gsl_histogram2d' struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of 'GSL_ENOMEM'. The bins and ranges must be initialized with one of the functions below before the histogram is ready for use. -- Function: int gsl_histogram2d_set_ranges (gsl_histogram2d * H, const double XRANGE[], size_t XSIZE, const double YRANGE[], size_t YSIZE) This function sets the ranges of the existing histogram H using the arrays XRANGE and YRANGE of size XSIZE and YSIZE respectively. The values of the histogram bins are reset to zero. -- Function: int gsl_histogram2d_set_ranges_uniform (gsl_histogram2d * H, double XMIN, double XMAX, double YMIN, double YMAX) This function sets the ranges of the existing histogram H to cover the ranges XMIN to XMAX and YMIN to YMAX uniformly. The values of the histogram bins are reset to zero. -- Function: void gsl_histogram2d_free (gsl_histogram2d * H) This function frees the 2D histogram H and all of the memory associated with it.  File: gsl-ref.info, Node: Copying 2D Histograms, Next: Updating and accessing 2D histogram elements, Prev: 2D Histogram allocation, Up: Histograms 22.15 Copying 2D Histograms =========================== -- Function: int gsl_histogram2d_memcpy (gsl_histogram2d * DEST, const gsl_histogram2d * SRC) This function copies the histogram SRC into the pre-existing histogram DEST, making DEST into an exact copy of SRC. The two histograms must be of the same size. -- Function: gsl_histogram2d * gsl_histogram2d_clone (const gsl_histogram2d * SRC) This function returns a pointer to a newly created histogram which is an exact copy of the histogram SRC.  File: gsl-ref.info, Node: Updating and accessing 2D histogram elements, Next: Searching 2D histogram ranges, Prev: Copying 2D Histograms, Up: Histograms 22.16 Updating and accessing 2D histogram elements ================================================== You can access the bins of a two-dimensional histogram either by specifying a pair of (x,y) coordinates or by using the bin indices (i,j) directly. The functions for accessing the histogram through (x,y) coordinates use binary searches in the x and y directions to identify the bin which covers the appropriate range. -- Function: int gsl_histogram2d_increment (gsl_histogram2d * H, double X, double Y) This function updates the histogram H by adding one (1.0) to the bin whose x and y ranges contain the coordinates (X,Y). If the point (x,y) lies inside the valid ranges of the histogram then the function returns zero to indicate success. If (x,y) lies outside the limits of the histogram then the function returns 'GSL_EDOM', and none of the bins are modified. The error handler is not called, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring any coordinates outside the range of interest. -- Function: int gsl_histogram2d_accumulate (gsl_histogram2d * H, double X, double Y, double WEIGHT) This function is similar to 'gsl_histogram2d_increment' but increases the value of the appropriate bin in the histogram H by the floating-point number WEIGHT. -- Function: double gsl_histogram2d_get (const gsl_histogram2d * H, size_t I, size_t J) This function returns the contents of the (I,J)-th bin of the histogram H. If (I,J) lies outside the valid range of indices for the histogram then the error handler is called with an error code of 'GSL_EDOM' and the function returns 0. -- Function: int gsl_histogram2d_get_xrange (const gsl_histogram2d * H, size_t I, double * XLOWER, double * XUPPER) -- Function: int gsl_histogram2d_get_yrange (const gsl_histogram2d * H, size_t J, double * YLOWER, double * YUPPER) These functions find the upper and lower range limits of the I-th and J-th bins in the x and y directions of the histogram H. The range limits are stored in XLOWER and XUPPER or YLOWER and YUPPER. The lower limits are inclusive (i.e. events with these coordinates are included in the bin) and the upper limits are exclusive (i.e. events with the value of the upper limit are not included and fall in the neighboring higher bin, if it exists). The functions return 0 to indicate success. If I or J lies outside the valid range of indices for the histogram then the error handler is called with an error code of 'GSL_EDOM'. -- Function: double gsl_histogram2d_xmax (const gsl_histogram2d * H) -- Function: double gsl_histogram2d_xmin (const gsl_histogram2d * H) -- Function: size_t gsl_histogram2d_nx (const gsl_histogram2d * H) -- Function: double gsl_histogram2d_ymax (const gsl_histogram2d * H) -- Function: double gsl_histogram2d_ymin (const gsl_histogram2d * H) -- Function: size_t gsl_histogram2d_ny (const gsl_histogram2d * H) These functions return the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram H. They provide a way of determining these values without accessing the 'gsl_histogram2d' struct directly. -- Function: void gsl_histogram2d_reset (gsl_histogram2d * H) This function resets all the bins of the histogram H to zero.  File: gsl-ref.info, Node: Searching 2D histogram ranges, Next: 2D Histogram Statistics, Prev: Updating and accessing 2D histogram elements, Up: Histograms 22.17 Searching 2D histogram ranges =================================== The following functions are used by the access and update routines to locate the bin which corresponds to a given (x,y) coordinate. -- Function: int gsl_histogram2d_find (const gsl_histogram2d * H, double X, double Y, size_t * I, size_t * J) This function finds and sets the indices I and J to the bin which covers the coordinates (X,Y). The bin is located using a binary search. The search includes an optimization for histograms with uniform ranges, and will return the correct bin immediately in this case. If (x,y) is found then the function sets the indices (I,J) and returns 'GSL_SUCCESS'. If (x,y) lies outside the valid range of the histogram then the function returns 'GSL_EDOM' and the error handler is invoked.  File: gsl-ref.info, Node: 2D Histogram Statistics, Next: 2D Histogram Operations, Prev: Searching 2D histogram ranges, Up: Histograms 22.18 2D Histogram Statistics ============================= -- Function: double gsl_histogram2d_max_val (const gsl_histogram2d * H) This function returns the maximum value contained in the histogram bins. -- Function: void gsl_histogram2d_max_bin (const gsl_histogram2d * H, size_t * I, size_t * J) This function finds the indices of the bin containing the maximum value in the histogram H and stores the result in (I,J). In the case where several bins contain the same maximum value the first bin found is returned. -- Function: double gsl_histogram2d_min_val (const gsl_histogram2d * H) This function returns the minimum value contained in the histogram bins. -- Function: void gsl_histogram2d_min_bin (const gsl_histogram2d * H, size_t * I, size_t * J) This function finds the indices of the bin containing the minimum value in the histogram H and stores the result in (I,J). In the case where several bins contain the same maximum value the first bin found is returned. -- Function: double gsl_histogram2d_xmean (const gsl_histogram2d * H) This function returns the mean of the histogrammed x variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. -- Function: double gsl_histogram2d_ymean (const gsl_histogram2d * H) This function returns the mean of the histogrammed y variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. -- Function: double gsl_histogram2d_xsigma (const gsl_histogram2d * H) This function returns the standard deviation of the histogrammed x variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. -- Function: double gsl_histogram2d_ysigma (const gsl_histogram2d * H) This function returns the standard deviation of the histogrammed y variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. -- Function: double gsl_histogram2d_cov (const gsl_histogram2d * H) This function returns the covariance of the histogrammed x and y variables, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. -- Function: double gsl_histogram2d_sum (const gsl_histogram2d * H) This function returns the sum of all bin values. Negative bin values are included in the sum.  File: gsl-ref.info, Node: 2D Histogram Operations, Next: Reading and writing 2D histograms, Prev: 2D Histogram Statistics, Up: Histograms 22.19 2D Histogram Operations ============================= -- Function: int gsl_histogram2d_equal_bins_p (const gsl_histogram2d * H1, const gsl_histogram2d * H2) This function returns 1 if all the individual bin ranges of the two histograms are identical, and 0 otherwise. -- Function: int gsl_histogram2d_add (gsl_histogram2d * H1, const gsl_histogram2d * H2) This function adds the contents of the bins in histogram H2 to the corresponding bins of histogram H1, i.e. h'_1(i,j) = h_1(i,j) + h_2(i,j). The two histograms must have identical bin ranges. -- Function: int gsl_histogram2d_sub (gsl_histogram2d * H1, const gsl_histogram2d * H2) This function subtracts the contents of the bins in histogram H2 from the corresponding bins of histogram H1, i.e. h'_1(i,j) = h_1(i,j) - h_2(i,j). The two histograms must have identical bin ranges. -- Function: int gsl_histogram2d_mul (gsl_histogram2d * H1, const gsl_histogram2d * H2) This function multiplies the contents of the bins of histogram H1 by the contents of the corresponding bins in histogram H2, i.e. h'_1(i,j) = h_1(i,j) * h_2(i,j). The two histograms must have identical bin ranges. -- Function: int gsl_histogram2d_div (gsl_histogram2d * H1, const gsl_histogram2d * H2) This function divides the contents of the bins of histogram H1 by the contents of the corresponding bins in histogram H2, i.e. h'_1(i,j) = h_1(i,j) / h_2(i,j). The two histograms must have identical bin ranges. -- Function: int gsl_histogram2d_scale (gsl_histogram2d * H, double SCALE) This function multiplies the contents of the bins of histogram H by the constant SCALE, i.e. h'_1(i,j) = h_1(i,j) scale. -- Function: int gsl_histogram2d_shift (gsl_histogram2d * H, double OFFSET) This function shifts the contents of the bins of histogram H by the constant OFFSET, i.e. h'_1(i,j) = h_1(i,j) + offset.  File: gsl-ref.info, Node: Reading and writing 2D histograms, Next: Resampling from 2D histograms, Prev: 2D Histogram Operations, Up: Histograms 22.20 Reading and writing 2D histograms ======================================= The library provides functions for reading and writing two dimensional histograms to a file as binary data or formatted text. -- Function: int gsl_histogram2d_fwrite (FILE * STREAM, const gsl_histogram2d * H) This function writes the ranges and bins of the histogram H to the stream STREAM in binary format. The return value is 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. -- Function: int gsl_histogram2d_fread (FILE * STREAM, gsl_histogram2d * H) This function reads into the histogram H from the stream STREAM in binary format. The histogram H must be preallocated with the correct size since the function uses the number of x and y bins in H to determine how many bytes to read. The return value is 0 for success and 'GSL_EFAILED' if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. -- Function: int gsl_histogram2d_fprintf (FILE * STREAM, const gsl_histogram2d * H, const char * RANGE_FORMAT, const char * BIN_FORMAT) This function writes the ranges and bins of the histogram H line-by-line to the stream STREAM using the format specifiers RANGE_FORMAT and BIN_FORMAT. These should be one of the '%g', '%e' or '%f' formats for floating point numbers. The function returns 0 for success and 'GSL_EFAILED' if there was a problem writing to the file. The histogram output is formatted in five columns, and the columns are separated by spaces, like this, xrange[0] xrange[1] yrange[0] yrange[1] bin(0,0) xrange[0] xrange[1] yrange[1] yrange[2] bin(0,1) xrange[0] xrange[1] yrange[2] yrange[3] bin(0,2) .... xrange[0] xrange[1] yrange[ny-1] yrange[ny] bin(0,ny-1) xrange[1] xrange[2] yrange[0] yrange[1] bin(1,0) xrange[1] xrange[2] yrange[1] yrange[2] bin(1,1) xrange[1] xrange[2] yrange[1] yrange[2] bin(1,2) .... xrange[1] xrange[2] yrange[ny-1] yrange[ny] bin(1,ny-1) .... xrange[nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0) xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1) xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,2) .... xrange[nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1) Each line contains the lower and upper limits of the bin and the contents of the bin. Since the upper limits of the each bin are the lower limits of the neighboring bins there is duplication of these values but this allows the histogram to be manipulated with line-oriented tools. -- Function: int gsl_histogram2d_fscanf (FILE * STREAM, gsl_histogram2d * H) This function reads formatted data from the stream STREAM into the histogram H. The data is assumed to be in the five-column format used by 'gsl_histogram2d_fprintf'. The histogram H must be preallocated with the correct lengths since the function uses the sizes of H to determine how many numbers to read. The function returns 0 for success and 'GSL_EFAILED' if there was a problem reading from the file.  File: gsl-ref.info, Node: Resampling from 2D histograms, Next: Example programs for 2D histograms, Prev: Reading and writing 2D histograms, Up: Histograms 22.21 Resampling from 2D histograms =================================== As in the one-dimensional case, a two-dimensional histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for statistical error, the height of each bin represents the probability of an event where (x,y) falls in the range of that bin. For a two-dimensional histogram the probability distribution takes the form p(x,y) dx dy where, p(x,y) = n_{ij}/ (N A_{ij}) In this equation n_{ij} is the number of events in the bin which contains (x,y), A_{ij} is the area of the bin and N is the total number of events. The distribution of events within each bin is assumed to be uniform. -- Data Type: gsl_histogram2d_pdf 'size_t nx, ny' This is the number of histogram bins used to approximate the probability distribution function in the x and y directions. 'double * xrange' The ranges of the bins in the x-direction are stored in an array of NX + 1 elements pointed to by XRANGE. 'double * yrange' The ranges of the bins in the y-direction are stored in an array of NY + 1 pointed to by YRANGE. 'double * sum' The cumulative probability for the bins is stored in an array of NX*NY elements pointed to by SUM. The following functions allow you to create a 'gsl_histogram2d_pdf' struct which represents a two dimensional probability distribution and generate random samples from it. -- Function: gsl_histogram2d_pdf * gsl_histogram2d_pdf_alloc (size_t NX, size_t NY) This function allocates memory for a two-dimensional probability distribution of size NX-by-NY and returns a pointer to a newly initialized 'gsl_histogram2d_pdf' struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_histogram2d_pdf_init (gsl_histogram2d_pdf * P, const gsl_histogram2d * H) This function initializes the two-dimensional probability distribution calculated P from the histogram H. If any of the bins of H are negative then the error handler is invoked with an error code of 'GSL_EDOM' because a probability distribution cannot contain negative values. -- Function: void gsl_histogram2d_pdf_free (gsl_histogram2d_pdf * P) This function frees the two-dimensional probability distribution function P and all of the memory associated with it. -- Function: int gsl_histogram2d_pdf_sample (const gsl_histogram2d_pdf * P, double R1, double R2, double * X, double * Y) This function uses two uniform random numbers between zero and one, R1 and R2, to compute a single random sample from the two-dimensional probability distribution P.  File: gsl-ref.info, Node: Example programs for 2D histograms, Prev: Resampling from 2D histograms, Up: Histograms 22.22 Example programs for 2D histograms ======================================== This program demonstrates two features of two-dimensional histograms. First a 10-by-10 two-dimensional histogram is created with x and y running from 0 to 1. Then a few sample points are added to the histogram, at (0.3,0.3) with a height of 1, at (0.8,0.1) with a height of 5 and at (0.7,0.9) with a height of 0.5. This histogram with three events is used to generate a random sample of 1000 simulated events, which are printed out. #include #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; gsl_histogram2d * h = gsl_histogram2d_alloc (10, 10); gsl_histogram2d_set_ranges_uniform (h, 0.0, 1.0, 0.0, 1.0); gsl_histogram2d_accumulate (h, 0.3, 0.3, 1); gsl_histogram2d_accumulate (h, 0.8, 0.1, 5); gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5); gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); { int i; gsl_histogram2d_pdf * p = gsl_histogram2d_pdf_alloc (h->nx, h->ny); gsl_histogram2d_pdf_init (p, h); for (i = 0; i < 1000; i++) { double x, y; double u = gsl_rng_uniform (r); double v = gsl_rng_uniform (r); gsl_histogram2d_pdf_sample (p, u, v, &x, &y); printf ("%g %g\n", x, y); } gsl_histogram2d_pdf_free (p); } gsl_histogram2d_free (h); gsl_rng_free (r); return 0; }  File: gsl-ref.info, Node: N-tuples, Next: Monte Carlo Integration, Prev: Histograms, Up: Top 23 N-tuples *********** This chapter describes functions for creating and manipulating "ntuples", sets of values associated with events. The ntuples are stored in files. Their values can be extracted in any combination and "booked" in a histogram using a selection function. The values to be stored are held in a user-defined data structure, and an ntuple is created associating this data structure with a file. The values are then written to the file (normally inside a loop) using the ntuple functions described below. A histogram can be created from ntuple data by providing a selection function and a value function. The selection function specifies whether an event should be included in the subset to be analyzed or not. The value function computes the entry to be added to the histogram for each event. All the ntuple functions are defined in the header file 'gsl_ntuple.h' * Menu: * The ntuple struct:: * Creating ntuples:: * Opening an existing ntuple file:: * Writing ntuples:: * Reading ntuples :: * Closing an ntuple file:: * Histogramming ntuple values:: * Example ntuple programs:: * Ntuple References and Further Reading::  File: gsl-ref.info, Node: The ntuple struct, Next: Creating ntuples, Up: N-tuples 23.1 The ntuple struct ====================== Ntuples are manipulated using the 'gsl_ntuple' struct. This struct contains information on the file where the ntuple data is stored, a pointer to the current ntuple data row and the size of the user-defined ntuple data struct. typedef struct { FILE * file; void * ntuple_data; size_t size; } gsl_ntuple;  File: gsl-ref.info, Node: Creating ntuples, Next: Opening an existing ntuple file, Prev: The ntuple struct, Up: N-tuples 23.2 Creating ntuples ===================== -- Function: gsl_ntuple * gsl_ntuple_create (char * FILENAME, void * NTUPLE_DATA, size_t SIZE) This function creates a new write-only ntuple file FILENAME for ntuples of size SIZE and returns a pointer to the newly created ntuple struct. Any existing file with the same name is truncated to zero length and overwritten. A pointer to memory for the current ntuple row NTUPLE_DATA must be supplied--this is used to copy ntuples in and out of the file.  File: gsl-ref.info, Node: Opening an existing ntuple file, Next: Writing ntuples, Prev: Creating ntuples, Up: N-tuples 23.3 Opening an existing ntuple file ==================================== -- Function: gsl_ntuple * gsl_ntuple_open (char * FILENAME, void * NTUPLE_DATA, size_t SIZE) This function opens an existing ntuple file FILENAME for reading and returns a pointer to a corresponding ntuple struct. The ntuples in the file must have size SIZE. A pointer to memory for the current ntuple row NTUPLE_DATA must be supplied--this is used to copy ntuples in and out of the file.  File: gsl-ref.info, Node: Writing ntuples, Next: Reading ntuples, Prev: Opening an existing ntuple file, Up: N-tuples 23.4 Writing ntuples ==================== -- Function: int gsl_ntuple_write (gsl_ntuple * NTUPLE) This function writes the current ntuple NTUPLE->NTUPLE_DATA of size NTUPLE->SIZE to the corresponding file. -- Function: int gsl_ntuple_bookdata (gsl_ntuple * NTUPLE) This function is a synonym for 'gsl_ntuple_write'.  File: gsl-ref.info, Node: Reading ntuples, Next: Closing an ntuple file, Prev: Writing ntuples, Up: N-tuples 23.5 Reading ntuples ==================== -- Function: int gsl_ntuple_read (gsl_ntuple * NTUPLE) This function reads the current row of the ntuple file for NTUPLE and stores the values in NTUPLE->DATA.  File: gsl-ref.info, Node: Closing an ntuple file, Next: Histogramming ntuple values, Prev: Reading ntuples, Up: N-tuples 23.6 Closing an ntuple file =========================== -- Function: int gsl_ntuple_close (gsl_ntuple * NTUPLE) This function closes the ntuple file NTUPLE and frees its associated allocated memory.  File: gsl-ref.info, Node: Histogramming ntuple values, Next: Example ntuple programs, Prev: Closing an ntuple file, Up: N-tuples 23.7 Histogramming ntuple values ================================ Once an ntuple has been created its contents can be histogrammed in various ways using the function 'gsl_ntuple_project'. Two user-defined functions must be provided, a function to select events and a function to compute scalar values. The selection function and the value function both accept the ntuple row as a first argument and other parameters as a second argument. The "selection function" determines which ntuple rows are selected for histogramming. It is defined by the following struct, typedef struct { int (* function) (void * ntuple_data, void * params); void * params; } gsl_ntuple_select_fn; The struct component FUNCTION should return a non-zero value for each ntuple row that is to be included in the histogram. The "value function" computes scalar values for those ntuple rows selected by the selection function, typedef struct { double (* function) (void * ntuple_data, void * params); void * params; } gsl_ntuple_value_fn; In this case the struct component FUNCTION should return the value to be added to the histogram for the ntuple row. -- Function: int gsl_ntuple_project (gsl_histogram * H, gsl_ntuple * NTUPLE, gsl_ntuple_value_fn * VALUE_FUNC, gsl_ntuple_select_fn * SELECT_FUNC) This function updates the histogram H from the ntuple NTUPLE using the functions VALUE_FUNC and SELECT_FUNC. For each ntuple row where the selection function SELECT_FUNC is non-zero the corresponding value of that row is computed using the function VALUE_FUNC and added to the histogram. Those ntuple rows where SELECT_FUNC returns zero are ignored. New entries are added to the histogram, so subsequent calls can be used to accumulate further data in the same histogram.  File: gsl-ref.info, Node: Example ntuple programs, Next: Ntuple References and Further Reading, Prev: Histogramming ntuple values, Up: N-tuples 23.8 Examples ============= The following example programs demonstrate the use of ntuples in managing a large dataset. The first program creates a set of 10,000 simulated "events", each with 3 associated values (x,y,z). These are generated from a Gaussian distribution with unit variance, for demonstration purposes, and written to the ntuple file 'test.dat'. #include #include #include struct data { double x; double y; double z; }; int main (void) { const gsl_rng_type * T; gsl_rng * r; struct data ntuple_row; int i; gsl_ntuple *ntuple = gsl_ntuple_create ("test.dat", &ntuple_row, sizeof (ntuple_row)); gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < 10000; i++) { ntuple_row.x = gsl_ran_ugaussian (r); ntuple_row.y = gsl_ran_ugaussian (r); ntuple_row.z = gsl_ran_ugaussian (r); gsl_ntuple_write (ntuple); } gsl_ntuple_close (ntuple); gsl_rng_free (r); return 0; } The next program analyses the ntuple data in the file 'test.dat'. The analysis procedure is to compute the squared-magnitude of each event, E^2=x^2+y^2+z^2, and select only those which exceed a lower limit of 1.5. The selected events are then histogrammed using their E^2 values. #include #include #include struct data { double x; double y; double z; }; int sel_func (void *ntuple_data, void *params); double val_func (void *ntuple_data, void *params); int main (void) { struct data ntuple_row; gsl_ntuple *ntuple = gsl_ntuple_open ("test.dat", &ntuple_row, sizeof (ntuple_row)); double lower = 1.5; gsl_ntuple_select_fn S; gsl_ntuple_value_fn V; gsl_histogram *h = gsl_histogram_alloc (100); gsl_histogram_set_ranges_uniform(h, 0.0, 10.0); S.function = &sel_func; S.params = &lower; V.function = &val_func; V.params = 0; gsl_ntuple_project (h, ntuple, &V, &S); gsl_histogram_fprintf (stdout, h, "%f", "%f"); gsl_histogram_free (h); gsl_ntuple_close (ntuple); return 0; } int sel_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z, E2, scale; scale = *(double *) params; x = data->x; y = data->y; z = data->z; E2 = x * x + y * y + z * z; return E2 > scale; } double val_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z; x = data->x; y = data->y; z = data->z; return x * x + y * y + z * z; } The following plot shows the distribution of the selected events. Note the cut-off at the lower bound.  File: gsl-ref.info, Node: Ntuple References and Further Reading, Prev: Example ntuple programs, Up: N-tuples 23.9 References and Further Reading =================================== Further information on the use of ntuples can be found in the documentation for the CERN packages PAW and HBOOK (available online).  File: gsl-ref.info, Node: Monte Carlo Integration, Next: Simulated Annealing, Prev: N-tuples, Up: Top 24 Monte Carlo Integration ************************** This chapter describes routines for multidimensional Monte Carlo integration. These include the traditional Monte Carlo method and adaptive algorithms such as VEGAS and MISER which use importance sampling and stratified sampling techniques. Each algorithm computes an estimate of a multidimensional definite integral of the form, I = \int_xl^xu dx \int_yl^yu dy ... f(x, y, ...) over a hypercubic region ((x_l,x_u), (y_l,y_u), ...) using a fixed number of function calls. The routines also provide a statistical estimate of the error on the result. This error estimate should be taken as a guide rather than as a strict error bound--random sampling of the region may not uncover all the important features of the function, resulting in an underestimate of the error. The functions are defined in separate header files for each routine, 'gsl_monte_plain.h', 'gsl_monte_miser.h' and 'gsl_monte_vegas.h'. * Menu: * Monte Carlo Interface:: * PLAIN Monte Carlo:: * MISER:: * VEGAS:: * Monte Carlo Examples:: * Monte Carlo Integration References and Further Reading::  File: gsl-ref.info, Node: Monte Carlo Interface, Next: PLAIN Monte Carlo, Up: Monte Carlo Integration 24.1 Interface ============== All of the Monte Carlo integration routines use the same general form of interface. There is an allocator to allocate memory for control variables and workspace, a routine to initialize those control variables, the integrator itself, and a function to free the space when done. Each integration function requires a random number generator to be supplied, and returns an estimate of the integral and its standard deviation. The accuracy of the result is determined by the number of function calls specified by the user. If a known level of accuracy is required this can be achieved by calling the integrator several times and averaging the individual results until the desired accuracy is obtained. Random sample points used within the Monte Carlo routines are always chosen strictly within the integration region, so that endpoint singularities are automatically avoided. The function to be integrated has its own datatype, defined in the header file 'gsl_monte.h'. -- Data Type: gsl_monte_function This data type defines a general function with parameters for Monte Carlo integration. 'double (* f) (double * X, size_t DIM, void * PARAMS)' this function should return the value f(x,params) for the argument X and parameters PARAMS, where X is an array of size DIM giving the coordinates of the point where the function is to be evaluated. 'size_t dim' the number of dimensions for X. 'void * params' a pointer to the parameters of the function. Here is an example for a quadratic function in two dimensions, f(x,y) = a x^2 + b x y + c y^2 with a = 3, b = 2, c = 1. The following code defines a 'gsl_monte_function' 'F' which you could pass to an integrator: struct my_f_params { double a; double b; double c; }; double my_f (double x[], size_t dim, void * p) { struct my_f_params * fp = (struct my_f_params *)p; if (dim != 2) { fprintf (stderr, "error: dim != 2"); abort (); } return fp->a * x[0] * x[0] + fp->b * x[0] * x[1] + fp->c * x[1] * x[1]; } gsl_monte_function F; struct my_f_params params = { 3.0, 2.0, 1.0 }; F.f = &my_f; F.dim = 2; F.params = ¶ms; The function f(x) can be evaluated using the following macro, #define GSL_MONTE_FN_EVAL(F,x) (*((F)->f))(x,(F)->dim,(F)->params)  File: gsl-ref.info, Node: PLAIN Monte Carlo, Next: MISER, Prev: Monte Carlo Interface, Up: Monte Carlo Integration 24.2 PLAIN Monte Carlo ====================== The plain Monte Carlo algorithm samples points randomly from the integration region to estimate the integral and its error. Using this algorithm the estimate of the integral E(f; N) for N randomly distributed points x_i is given by, E(f; N) = = V = (V / N) \sum_i^N f(x_i) where V is the volume of the integration region. The error on this estimate \sigma(E;N) is calculated from the estimated variance of the mean, \sigma^2 (E; N) = (V^2 / N^2) \sum_i^N (f(x_i) - )^2. For large N this variance decreases asymptotically as \Var(f)/N, where \Var(f) is the true variance of the function over the integration region. The error estimate itself should decrease as \sigma(f)/\sqrt{N}. The familiar law of errors decreasing as 1/\sqrt{N} applies--to reduce the error by a factor of 10 requires a 100-fold increase in the number of sample points. The functions described in this section are declared in the header file 'gsl_monte_plain.h'. -- Function: gsl_monte_plain_state * gsl_monte_plain_alloc (size_t DIM) This function allocates and initializes a workspace for Monte Carlo integration in DIM dimensions. -- Function: int gsl_monte_plain_init (gsl_monte_plain_state* S) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. -- Function: int gsl_monte_plain_integrate (gsl_monte_function * F, const double XL[], const double XU[], size_t DIM, size_t CALLS, gsl_rng * R, gsl_monte_plain_state * S, double * RESULT, double * ABSERR) This routines uses the plain Monte Carlo algorithm to integrate the function F over the DIM-dimensional hypercubic region defined by the lower and upper limits in the arrays XL and XU, each of size DIM. The integration uses a fixed number of function calls CALLS, and obtains random sampling points using the random number generator R. A previously allocated workspace S must be supplied. The result of the integration is returned in RESULT, with an estimated absolute error ABSERR. -- Function: void gsl_monte_plain_free (gsl_monte_plain_state * S) This function frees the memory associated with the integrator state S.  File: gsl-ref.info, Node: MISER, Next: VEGAS, Prev: PLAIN Monte Carlo, Up: Monte Carlo Integration 24.3 MISER ========== The MISER algorithm of Press and Farrar is based on recursive stratified sampling. This technique aims to reduce the overall integration error by concentrating integration points in the regions of highest variance. The idea of stratified sampling begins with the observation that for two disjoint regions a and b with Monte Carlo estimates of the integral E_a(f) and E_b(f) and variances \sigma_a^2(f) and \sigma_b^2(f), the variance \Var(f) of the combined estimate E(f) = (1/2) (E_a(f) + E_b(f)) is given by, \Var(f) = (\sigma_a^2(f) / 4 N_a) + (\sigma_b^2(f) / 4 N_b). It can be shown that this variance is minimized by distributing the points such that, N_a / (N_a + N_b) = \sigma_a / (\sigma_a + \sigma_b). Hence the smallest error estimate is obtained by allocating sample points in proportion to the standard deviation of the function in each sub-region. The MISER algorithm proceeds by bisecting the integration region along one coordinate axis to give two sub-regions at each step. The direction is chosen by examining all d possible bisections and selecting the one which will minimize the combined variance of the two sub-regions. The variance in the sub-regions is estimated by sampling with a fraction of the total number of points available to the current step. The same procedure is then repeated recursively for each of the two half-spaces from the best bisection. The remaining sample points are allocated to the sub-regions using the formula for N_a and N_b. This recursive allocation of integration points continues down to a user-specified depth where each sub-region is integrated using a plain Monte Carlo estimate. These individual values and their error estimates are then combined upwards to give an overall result and an estimate of its error. The functions described in this section are declared in the header file 'gsl_monte_miser.h'. -- Function: gsl_monte_miser_state * gsl_monte_miser_alloc (size_t DIM) This function allocates and initializes a workspace for Monte Carlo integration in DIM dimensions. The workspace is used to maintain the state of the integration. -- Function: int gsl_monte_miser_init (gsl_monte_miser_state* S) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. -- Function: int gsl_monte_miser_integrate (gsl_monte_function * F, const double XL[], const double XU[], size_t DIM, size_t CALLS, gsl_rng * R, gsl_monte_miser_state * S, double * RESULT, double * ABSERR) This routines uses the MISER Monte Carlo algorithm to integrate the function F over the DIM-dimensional hypercubic region defined by the lower and upper limits in the arrays XL and XU, each of size DIM. The integration uses a fixed number of function calls CALLS, and obtains random sampling points using the random number generator R. A previously allocated workspace S must be supplied. The result of the integration is returned in RESULT, with an estimated absolute error ABSERR. -- Function: void gsl_monte_miser_free (gsl_monte_miser_state * S) This function frees the memory associated with the integrator state S. The MISER algorithm has several configurable parameters which can be changed using the following two functions.(1) -- Function: void gsl_monte_miser_params_get (const gsl_monte_miser_state * S, gsl_monte_miser_params * PARAMS) This function copies the parameters of the integrator state into the user-supplied PARAMS structure. -- Function: void gsl_monte_miser_params_set (gsl_monte_miser_state * S, const gsl_monte_miser_params * PARAMS) This function sets the integrator parameters based on values provided in the PARAMS structure. Typically the values of the parameters are first read using 'gsl_monte_miser_params_get', the necessary changes are made to the fields of the PARAMS structure, and the values are copied back into the integrator state using 'gsl_monte_miser_params_set'. The functions use the 'gsl_monte_miser_params' structure which contains the following fields: -- Variable: double estimate_frac This parameter specifies the fraction of the currently available number of function calls which are allocated to estimating the variance at each recursive step. The default value is 0.1. -- Variable: size_t min_calls This parameter specifies the minimum number of function calls required for each estimate of the variance. If the number of function calls allocated to the estimate using ESTIMATE_FRAC falls below MIN_CALLS then MIN_CALLS are used instead. This ensures that each estimate maintains a reasonable level of accuracy. The default value of MIN_CALLS is '16 * dim'. -- Variable: size_t min_calls_per_bisection This parameter specifies the minimum number of function calls required to proceed with a bisection step. When a recursive step has fewer calls available than MIN_CALLS_PER_BISECTION it performs a plain Monte Carlo estimate of the current sub-region and terminates its branch of the recursion. The default value of this parameter is '32 * min_calls'. -- Variable: double alpha This parameter controls how the estimated variances for the two sub-regions of a bisection are combined when allocating points. With recursive sampling the overall variance should scale better than 1/N, since the values from the sub-regions will be obtained using a procedure which explicitly minimizes their variance. To accommodate this behavior the MISER algorithm allows the total variance to depend on a scaling parameter \alpha, \Var(f) = {\sigma_a \over N_a^\alpha} + {\sigma_b \over N_b^\alpha}. The authors of the original paper describing MISER recommend the value \alpha = 2 as a good choice, obtained from numerical experiments, and this is used as the default value in this implementation. -- Variable: double dither This parameter introduces a random fractional variation of size DITHER into each bisection, which can be used to break the symmetry of integrands which are concentrated near the exact center of the hypercubic integration region. The default value of dither is zero, so no variation is introduced. If needed, a typical value of DITHER is 0.1. ---------- Footnotes ---------- (1) The previous method of accessing these fields directly through the 'gsl_monte_miser_state' struct is now deprecated.  File: gsl-ref.info, Node: VEGAS, Next: Monte Carlo Examples, Prev: MISER, Up: Monte Carlo Integration 24.4 VEGAS ========== The VEGAS algorithm of Lepage is based on importance sampling. It samples points from the probability distribution described by the function |f|, so that the points are concentrated in the regions that make the largest contribution to the integral. In general, if the Monte Carlo integral of f is sampled with points distributed according to a probability distribution described by the function g, we obtain an estimate E_g(f; N), E_g(f; N) = E(f/g; N) with a corresponding variance, \Var_g(f; N) = \Var(f/g; N). If the probability distribution is chosen as g = |f|/I(|f|) then it can be shown that the variance V_g(f; N) vanishes, and the error in the estimate will be zero. In practice it is not possible to sample from the exact distribution g for an arbitrary function, so importance sampling algorithms aim to produce efficient approximations to the desired distribution. The VEGAS algorithm approximates the exact distribution by making a number of passes over the integration region while histogramming the function f. Each histogram is used to define a sampling distribution for the next pass. Asymptotically this procedure converges to the desired distribution. In order to avoid the number of histogram bins growing like K^d the probability distribution is approximated by a separable function: g(x_1, x_2, ...) = g_1(x_1) g_2(x_2) ... so that the number of bins required is only Kd. This is equivalent to locating the peaks of the function from the projections of the integrand onto the coordinate axes. The efficiency of VEGAS depends on the validity of this assumption. It is most efficient when the peaks of the integrand are well-localized. If an integrand can be rewritten in a form which is approximately separable this will increase the efficiency of integration with VEGAS. VEGAS incorporates a number of additional features, and combines both stratified sampling and importance sampling. The integration region is divided into a number of "boxes", with each box getting a fixed number of points (the goal is 2). Each box can then have a fractional number of bins, but if the ratio of bins-per-box is less than two, Vegas switches to a kind variance reduction (rather than importance sampling). -- Function: gsl_monte_vegas_state * gsl_monte_vegas_alloc (size_t DIM) This function allocates and initializes a workspace for Monte Carlo integration in DIM dimensions. The workspace is used to maintain the state of the integration. -- Function: int gsl_monte_vegas_init (gsl_monte_vegas_state* S) This function initializes a previously allocated integration state. This allows an existing workspace to be reused for different integrations. -- Function: int gsl_monte_vegas_integrate (gsl_monte_function * F, double XL[], double XU[], size_t DIM, size_t CALLS, gsl_rng * R, gsl_monte_vegas_state * S, double * RESULT, double * ABSERR) This routines uses the VEGAS Monte Carlo algorithm to integrate the function F over the DIM-dimensional hypercubic region defined by the lower and upper limits in the arrays XL and XU, each of size DIM. The integration uses a fixed number of function calls CALLS, and obtains random sampling points using the random number generator R. A previously allocated workspace S must be supplied. The result of the integration is returned in RESULT, with an estimated absolute error ABSERR. The result and its error estimate are based on a weighted average of independent samples. The chi-squared per degree of freedom for the weighted average is returned via the state struct component, S->CHISQ, and must be consistent with 1 for the weighted average to be reliable. -- Function: void gsl_monte_vegas_free (gsl_monte_vegas_state * S) This function frees the memory associated with the integrator state S. The VEGAS algorithm computes a number of independent estimates of the integral internally, according to the 'iterations' parameter described below, and returns their weighted average. Random sampling of the integrand can occasionally produce an estimate where the error is zero, particularly if the function is constant in some regions. An estimate with zero error causes the weighted average to break down and must be handled separately. In the original Fortran implementations of VEGAS the error estimate is made non-zero by substituting a small value (typically '1e-30'). The implementation in GSL differs from this and avoids the use of an arbitrary constant--it either assigns the value a weight which is the average weight of the preceding estimates or discards it according to the following procedure, current estimate has zero error, weighted average has finite error The current estimate is assigned a weight which is the average weight of the preceding estimates. current estimate has finite error, previous estimates had zero error The previous estimates are discarded and the weighted averaging procedure begins with the current estimate. current estimate has zero error, previous estimates had zero error The estimates are averaged using the arithmetic mean, but no error is computed. The convergence of the algorithm can be tested using the overall chi-squared value of the results, which is available from the following function: -- Function: double gsl_monte_vegas_chisq (const gsl_monte_vegas_state * S) This function returns the chi-squared per degree of freedom for the weighted estimate of the integral. The returned value should be close to 1. A value which differs significantly from 1 indicates that the values from different iterations are inconsistent. In this case the weighted error will be under-estimated, and further iterations of the algorithm are needed to obtain reliable results. -- Function: void gsl_monte_vegas_runval (const gsl_monte_vegas_state * S, double * RESULT, double * SIGMA) This function returns the raw (unaveraged) values of the integral RESULT and its error SIGMA from the most recent iteration of the algorithm. The VEGAS algorithm is highly configurable. Several parameters can be changed using the following two functions. -- Function: void gsl_monte_vegas_params_get (const gsl_monte_vegas_state * S, gsl_monte_vegas_params * PARAMS) This function copies the parameters of the integrator state into the user-supplied PARAMS structure. -- Function: void gsl_monte_vegas_params_set (gsl_monte_vegas_state * S, const gsl_monte_vegas_params * PARAMS) This function sets the integrator parameters based on values provided in the PARAMS structure. Typically the values of the parameters are first read using 'gsl_monte_vegas_params_get', the necessary changes are made to the fields of the PARAMS structure, and the values are copied back into the integrator state using 'gsl_monte_vegas_params_set'. The functions use the 'gsl_monte_vegas_params' structure which contains the following fields: -- Variable: double alpha The parameter 'alpha' controls the stiffness of the rebinning algorithm. It is typically set between one and two. A value of zero prevents rebinning of the grid. The default value is 1.5. -- Variable: size_t iterations The number of iterations to perform for each call to the routine. The default value is 5 iterations. -- Variable: int stage Setting this determines the "stage" of the calculation. Normally, 'stage = 0' which begins with a new uniform grid and empty weighted average. Calling VEGAS with 'stage = 1' retains the grid from the previous run but discards the weighted average, so that one can "tune" the grid using a relatively small number of points and then do a large run with 'stage = 1' on the optimized grid. Setting 'stage = 2' keeps the grid and the weighted average from the previous run, but may increase (or decrease) the number of histogram bins in the grid depending on the number of calls available. Choosing 'stage = 3' enters at the main loop, so that nothing is changed, and is equivalent to performing additional iterations in a previous call. -- Variable: int mode The possible choices are 'GSL_VEGAS_MODE_IMPORTANCE', 'GSL_VEGAS_MODE_STRATIFIED', 'GSL_VEGAS_MODE_IMPORTANCE_ONLY'. This determines whether VEGAS will use importance sampling or stratified sampling, or whether it can pick on its own. In low dimensions VEGAS uses strict stratified sampling (more precisely, stratified sampling is chosen if there are fewer than 2 bins per box). -- Variable: int verbose -- Variable: FILE * ostream These parameters set the level of information printed by VEGAS. All information is written to the stream OSTREAM. The default setting of VERBOSE is '-1', which turns off all output. A VERBOSE value of '0' prints summary information about the weighted average and final result, while a value of '1' also displays the grid coordinates. A value of '2' prints information from the rebinning procedure for each iteration. The above fields and the CHISQ value can also be accessed directly in the 'gsl_monte_vegas_state' but such use is deprecated.  File: gsl-ref.info, Node: Monte Carlo Examples, Next: Monte Carlo Integration References and Further Reading, Prev: VEGAS, Up: Monte Carlo Integration 24.5 Examples ============= The example program below uses the Monte Carlo routines to estimate the value of the following 3-dimensional integral from the theory of random walks, I = \int_{-pi}^{+pi} {dk_x/(2 pi)} \int_{-pi}^{+pi} {dk_y/(2 pi)} \int_{-pi}^{+pi} {dk_z/(2 pi)} 1 / (1 - cos(k_x)cos(k_y)cos(k_z)). The analytic value of this integral can be shown to be I = \Gamma(1/4)^4/(4 \pi^3) = 1.393203929685676859.... The integral gives the mean time spent at the origin by a random walk on a body-centered cubic lattice in three dimensions. For simplicity we will compute the integral over the region (0,0,0) to (\pi,\pi,\pi) and multiply by 8 to obtain the full result. The integral is slowly varying in the middle of the region but has integrable singularities at the corners (0,0,0), (0,\pi,\pi), (\pi,0,\pi) and (\pi,\pi,0). The Monte Carlo routines only select points which are strictly within the integration region and so no special measures are needed to avoid these singularities. #include #include #include #include #include #include /* Computation of the integral, I = int (dx dy dz)/(2pi)^3 1/(1-cos(x)cos(y)cos(z)) over (-pi,-pi,-pi) to (+pi, +pi, +pi). The exact answer is Gamma(1/4)^4/(4 pi^3). This example is taken from C.Itzykson, J.M.Drouffe, "Statistical Field Theory - Volume 1", Section 1.1, p21, which cites the original paper M.L.Glasser, I.J.Zucker, Proc.Natl.Acad.Sci.USA 74 1800 (1977) */ /* For simplicity we compute the integral over the region (0,0,0) -> (pi,pi,pi) and multiply by 8 */ double exact = 1.3932039296856768591842462603255; double g (double *k, size_t dim, void *params) { double A = 1.0 / (M_PI * M_PI * M_PI); return A / (1.0 - cos (k[0]) * cos (k[1]) * cos (k[2])); } void display_results (char *title, double result, double error) { printf ("%s ==================\n", title); printf ("result = % .6f\n", result); printf ("sigma = % .6f\n", error); printf ("exact = % .6f\n", exact); printf ("error = % .6f = %.2g sigma\n", result - exact, fabs (result - exact) / error); } int main (void) { double res, err; double xl[3] = { 0, 0, 0 }; double xu[3] = { M_PI, M_PI, M_PI }; const gsl_rng_type *T; gsl_rng *r; gsl_monte_function G = { &g, 3, 0 }; size_t calls = 500000; gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); { gsl_monte_plain_state *s = gsl_monte_plain_alloc (3); gsl_monte_plain_integrate (&G, xl, xu, 3, calls, r, s, &res, &err); gsl_monte_plain_free (s); display_results ("plain", res, err); } { gsl_monte_miser_state *s = gsl_monte_miser_alloc (3); gsl_monte_miser_integrate (&G, xl, xu, 3, calls, r, s, &res, &err); gsl_monte_miser_free (s); display_results ("miser", res, err); } { gsl_monte_vegas_state *s = gsl_monte_vegas_alloc (3); gsl_monte_vegas_integrate (&G, xl, xu, 3, 10000, r, s, &res, &err); display_results ("vegas warm-up", res, err); printf ("converging...\n"); do { gsl_monte_vegas_integrate (&G, xl, xu, 3, calls/5, r, s, &res, &err); printf ("result = % .6f sigma = % .6f " "chisq/dof = %.1f\n", res, err, gsl_monte_vegas_chisq (s)); } while (fabs (gsl_monte_vegas_chisq (s) - 1.0) > 0.5); display_results ("vegas final", res, err); gsl_monte_vegas_free (s); } gsl_rng_free (r); return 0; } With 500,000 function calls the plain Monte Carlo algorithm achieves a fractional error of 1%. The estimated error 'sigma' is roughly consistent with the actual error-the computed result differs from the true result by about 1.4 standard deviations, plain ================== result = 1.412209 sigma = 0.013436 exact = 1.393204 error = 0.019005 = 1.4 sigma The MISER algorithm reduces the error by a factor of four, and also correctly estimates the error, miser ================== result = 1.391322 sigma = 0.003461 exact = 1.393204 error = -0.001882 = 0.54 sigma In the case of the VEGAS algorithm the program uses an initial warm-up run of 10,000 function calls to prepare, or "warm up", the grid. This is followed by a main run with five iterations of 100,000 function calls. The chi-squared per degree of freedom for the five iterations are checked for consistency with 1, and the run is repeated if the results have not converged. In this case the estimates are consistent on the first pass. vegas warm-up ================== result = 1.392673 sigma = 0.003410 exact = 1.393204 error = -0.000531 = 0.16 sigma converging... result = 1.393281 sigma = 0.000362 chisq/dof = 1.5 vegas final ================== result = 1.393281 sigma = 0.000362 exact = 1.393204 error = 0.000077 = 0.21 sigma If the value of 'chisq' had differed significantly from 1 it would indicate inconsistent results, with a correspondingly underestimated error. The final estimate from VEGAS (using a similar number of function calls) is significantly more accurate than the other two algorithms.  File: gsl-ref.info, Node: Monte Carlo Integration References and Further Reading, Prev: Monte Carlo Examples, Up: Monte Carlo Integration 24.6 References and Further Reading =================================== The MISER algorithm is described in the following article by Press and Farrar, W.H. Press, G.R. Farrar, 'Recursive Stratified Sampling for Multidimensional Monte Carlo Integration', Computers in Physics, v4 (1990), pp190-195. The VEGAS algorithm is described in the following papers, G.P. Lepage, 'A New Algorithm for Adaptive Multidimensional Integration', Journal of Computational Physics 27, 192-203, (1978) G.P. Lepage, 'VEGAS: An Adaptive Multi-dimensional Integration Program', Cornell preprint CLNS 80-447, March 1980  File: gsl-ref.info, Node: Simulated Annealing, Next: Ordinary Differential Equations, Prev: Monte Carlo Integration, Up: Top 25 Simulated Annealing ********************** Stochastic search techniques are used when the structure of a space is not well understood or is not smooth, so that techniques like Newton's method (which requires calculating Jacobian derivative matrices) cannot be used. In particular, these techniques are frequently used to solve combinatorial optimization problems, such as the traveling salesman problem. The goal is to find a point in the space at which a real valued "energy function" (or "cost function") is minimized. Simulated annealing is a minimization technique which has given good results in avoiding local minima; it is based on the idea of taking a random walk through the space at successively lower temperatures, where the probability of taking a step is given by a Boltzmann distribution. The functions described in this chapter are declared in the header file 'gsl_siman.h'. * Menu: * Simulated Annealing algorithm:: * Simulated Annealing functions:: * Examples with Simulated Annealing:: * Simulated Annealing References and Further Reading::  File: gsl-ref.info, Node: Simulated Annealing algorithm, Next: Simulated Annealing functions, Up: Simulated Annealing 25.1 Simulated Annealing algorithm ================================== The simulated annealing algorithm takes random walks through the problem space, looking for points with low energies; in these random walks, the probability of taking a step is determined by the Boltzmann distribution, p = e^{-(E_{i+1} - E_i)/(kT)} if E_{i+1} > E_i, and p = 1 when E_{i+1} <= E_i. In other words, a step will occur if the new energy is lower. If the new energy is higher, the transition can still occur, and its likelihood is proportional to the temperature T and inversely proportional to the energy difference E_{i+1} - E_i. The temperature T is initially set to a high value, and a random walk is carried out at that temperature. Then the temperature is lowered very slightly according to a "cooling schedule", for example: T -> T/mu_T where \mu_T is slightly greater than 1. The slight probability of taking a step that gives higher energy is what allows simulated annealing to frequently get out of local minima.  File: gsl-ref.info, Node: Simulated Annealing functions, Next: Examples with Simulated Annealing, Prev: Simulated Annealing algorithm, Up: Simulated Annealing 25.2 Simulated Annealing functions ================================== -- Function: void gsl_siman_solve (const gsl_rng * R, void * X0_P, gsl_siman_Efunc_t EF, gsl_siman_step_t TAKE_STEP, gsl_siman_metric_t DISTANCE, gsl_siman_print_t PRINT_POSITION, gsl_siman_copy_t COPYFUNC, gsl_siman_copy_construct_t COPY_CONSTRUCTOR, gsl_siman_destroy_t DESTRUCTOR, size_t ELEMENT_SIZE, gsl_siman_params_t PARAMS) This function performs a simulated annealing search through a given space. The space is specified by providing the functions EF and DISTANCE. The simulated annealing steps are generated using the random number generator R and the function TAKE_STEP. The starting configuration of the system should be given by X0_P. The routine offers two modes for updating configurations, a fixed-size mode and a variable-size mode. In the fixed-size mode the configuration is stored as a single block of memory of size ELEMENT_SIZE. Copies of this configuration are created, copied and destroyed internally using the standard library functions 'malloc', 'memcpy' and 'free'. The function pointers COPYFUNC, COPY_CONSTRUCTOR and DESTRUCTOR should be null pointers in fixed-size mode. In the variable-size mode the functions COPYFUNC, COPY_CONSTRUCTOR and DESTRUCTOR are used to create, copy and destroy configurations internally. The variable ELEMENT_SIZE should be zero in the variable-size mode. The PARAMS structure (described below) controls the run by providing the temperature schedule and other tunable parameters to the algorithm. On exit the best result achieved during the search is placed in '*X0_P'. If the annealing process has been successful this should be a good approximation to the optimal point in the space. If the function pointer PRINT_POSITION is not null, a debugging log will be printed to 'stdout' with the following columns: #-iter #-evals temperature position energy best_energy and the output of the function PRINT_POSITION itself. If PRINT_POSITION is null then no information is printed. The simulated annealing routines require several user-specified functions to define the configuration space and energy function. The prototypes for these functions are given below. -- Data Type: gsl_siman_Efunc_t This function type should return the energy of a configuration XP. double (*gsl_siman_Efunc_t) (void *xp) -- Data Type: gsl_siman_step_t This function type should modify the configuration XP using a random step taken from the generator R, up to a maximum distance of STEP_SIZE. void (*gsl_siman_step_t) (const gsl_rng *r, void *xp, double step_size) -- Data Type: gsl_siman_metric_t This function type should return the distance between two configurations XP and YP. double (*gsl_siman_metric_t) (void *xp, void *yp) -- Data Type: gsl_siman_print_t This function type should print the contents of the configuration XP. void (*gsl_siman_print_t) (void *xp) -- Data Type: gsl_siman_copy_t This function type should copy the configuration SOURCE into DEST. void (*gsl_siman_copy_t) (void *source, void *dest) -- Data Type: gsl_siman_copy_construct_t This function type should create a new copy of the configuration XP. void * (*gsl_siman_copy_construct_t) (void *xp) -- Data Type: gsl_siman_destroy_t This function type should destroy the configuration XP, freeing its memory. void (*gsl_siman_destroy_t) (void *xp) -- Data Type: gsl_siman_params_t These are the parameters that control a run of 'gsl_siman_solve'. This structure contains all the information needed to control the search, beyond the energy function, the step function and the initial guess. 'int n_tries' The number of points to try for each step. 'int iters_fixed_T' The number of iterations at each temperature. 'double step_size' The maximum step size in the random walk. 'double k, t_initial, mu_t, t_min' The parameters of the Boltzmann distribution and cooling schedule.  File: gsl-ref.info, Node: Examples with Simulated Annealing, Next: Simulated Annealing References and Further Reading, Prev: Simulated Annealing functions, Up: Simulated Annealing 25.3 Examples ============= The simulated annealing package is clumsy, and it has to be because it is written in C, for C callers, and tries to be polymorphic at the same time. But here we provide some examples which can be pasted into your application with little change and should make things easier. * Menu: * Trivial example:: * Traveling Salesman Problem::  File: gsl-ref.info, Node: Trivial example, Next: Traveling Salesman Problem, Up: Examples with Simulated Annealing 25.3.1 Trivial example ---------------------- The first example, in one dimensional Cartesian space, sets up an energy function which is a damped sine wave; this has many local minima, but only one global minimum, somewhere between 1.0 and 1.5. The initial guess given is 15.5, which is several local minima away from the global minimum. #include #include #include #include /* set up parameters for this simulated annealing run */ /* how many points do we try before stepping */ #define N_TRIES 200 /* how many iterations for each T? */ #define ITERS_FIXED_T 1000 /* max step size in random walk */ #define STEP_SIZE 1.0 /* Boltzmann constant */ #define K 1.0 /* initial temperature */ #define T_INITIAL 0.008 /* damping factor for temperature */ #define MU_T 1.003 #define T_MIN 2.0e-6 gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE, K, T_INITIAL, MU_T, T_MIN}; /* now some functions to test in one dimension */ double E1(void *xp) { double x = * ((double *) xp); return exp(-pow((x-1.0),2.0))*sin(8*x); } double M1(void *xp, void *yp) { double x = *((double *) xp); double y = *((double *) yp); return fabs(x - y); } void S1(const gsl_rng * r, void *xp, double step_size) { double old_x = *((double *) xp); double new_x; double u = gsl_rng_uniform(r); new_x = u * 2 * step_size - step_size + old_x; memcpy(xp, &new_x, sizeof(new_x)); } void P1(void *xp) { printf ("%12g", *((double *) xp)); } int main(int argc, char *argv[]) { const gsl_rng_type * T; gsl_rng * r; double x_initial = 15.5; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc(T); gsl_siman_solve(r, &x_initial, E1, S1, M1, P1, NULL, NULL, NULL, sizeof(double), params); gsl_rng_free (r); return 0; } Here are a couple of plots that are generated by running 'siman_test' in the following way: $ ./siman_test | awk '!/^#/ {print $1, $4}' | graph -y 1.34 1.4 -W0 -X generation -Y position | plot -Tps > siman-test.eps $ ./siman_test | awk '!/^#/ {print $1, $5}' | graph -y -0.88 -0.83 -W0 -X generation -Y energy | plot -Tps > siman-energy.eps  File: gsl-ref.info, Node: Traveling Salesman Problem, Prev: Trivial example, Up: Examples with Simulated Annealing 25.3.2 Traveling Salesman Problem --------------------------------- The TSP ("Traveling Salesman Problem") is the classic combinatorial optimization problem. I have provided a very simple version of it, based on the coordinates of twelve cities in the southwestern United States. This should maybe be called the "Flying Salesman Problem", since I am using the great-circle distance between cities, rather than the driving distance. Also: I assume the earth is a sphere, so I don't use geoid distances. The 'gsl_siman_solve' routine finds a route which is 3490.62 Kilometers long; this is confirmed by an exhaustive search of all possible routes with the same initial city. The full code can be found in 'siman/siman_tsp.c', but I include here some plots generated in the following way: $ ./siman_tsp > tsp.output $ grep -v "^#" tsp.output | awk '{print $1, $NF}' | graph -y 3300 6500 -W0 -X generation -Y distance -L "TSP - 12 southwest cities" | plot -Tps > 12-cities.eps $ grep initial_city_coord tsp.output | awk '{print $2, $3}' | graph -X "longitude (- means west)" -Y "latitude" -L "TSP - initial-order" -f 0.03 -S 1 0.1 | plot -Tps > initial-route.eps $ grep final_city_coord tsp.output | awk '{print $2, $3}' | graph -X "longitude (- means west)" -Y "latitude" -L "TSP - final-order" -f 0.03 -S 1 0.1 | plot -Tps > final-route.eps This is the output showing the initial order of the cities; longitude is negative, since it is west and I want the plot to look like a map. # initial coordinates of cities (longitude and latitude) ###initial_city_coord: -105.95 35.68 Santa Fe ###initial_city_coord: -112.07 33.54 Phoenix ###initial_city_coord: -106.62 35.12 Albuquerque ###initial_city_coord: -103.2 34.41 Clovis ###initial_city_coord: -107.87 37.29 Durango ###initial_city_coord: -96.77 32.79 Dallas ###initial_city_coord: -105.92 35.77 Tesuque ###initial_city_coord: -107.84 35.15 Grants ###initial_city_coord: -106.28 35.89 Los Alamos ###initial_city_coord: -106.76 32.34 Las Cruces ###initial_city_coord: -108.58 37.35 Cortez ###initial_city_coord: -108.74 35.52 Gallup ###initial_city_coord: -105.95 35.68 Santa Fe The optimal route turns out to be: # final coordinates of cities (longitude and latitude) ###final_city_coord: -105.95 35.68 Santa Fe ###final_city_coord: -103.2 34.41 Clovis ###final_city_coord: -96.77 32.79 Dallas ###final_city_coord: -106.76 32.34 Las Cruces ###final_city_coord: -112.07 33.54 Phoenix ###final_city_coord: -108.74 35.52 Gallup ###final_city_coord: -108.58 37.35 Cortez ###final_city_coord: -107.87 37.29 Durango ###final_city_coord: -107.84 35.15 Grants ###final_city_coord: -106.62 35.12 Albuquerque ###final_city_coord: -106.28 35.89 Los Alamos ###final_city_coord: -105.92 35.77 Tesuque ###final_city_coord: -105.95 35.68 Santa Fe Here's a plot of the cost function (energy) versus generation (point in the calculation at which a new temperature is set) for this problem:  File: gsl-ref.info, Node: Simulated Annealing References and Further Reading, Prev: Examples with Simulated Annealing, Up: Simulated Annealing 25.4 References and Further Reading =================================== Further information is available in the following book, 'Modern Heuristic Techniques for Combinatorial Problems', Colin R. Reeves (ed.), McGraw-Hill, 1995 (ISBN 0-07-709239-2).  File: gsl-ref.info, Node: Ordinary Differential Equations, Next: Interpolation, Prev: Simulated Annealing, Up: Top 26 Ordinary Differential Equations ********************************** This chapter describes functions for solving ordinary differential equation (ODE) initial value problems. The library provides a variety of low-level methods, such as Runge-Kutta and Bulirsch-Stoer routines, and higher-level components for adaptive step-size control. The components can be combined by the user to achieve the desired solution, with full access to any intermediate steps. A driver object can be used as a high level wrapper for easy use of low level functions. These functions are declared in the header file 'gsl_odeiv2.h'. This is a new interface in version 1.15 and uses the prefix 'gsl_odeiv2' for all functions. It is recommended over the previous 'gsl_odeiv' implementation defined in 'gsl_odeiv.h' The old interface has been retained under the original name for backwards compatibility. * Menu: * Defining the ODE System:: * Stepping Functions:: * Adaptive Step-size Control:: * Evolution:: * Driver:: * ODE Example programs:: * ODE References and Further Reading::  File: gsl-ref.info, Node: Defining the ODE System, Next: Stepping Functions, Up: Ordinary Differential Equations 26.1 Defining the ODE System ============================ The routines solve the general n-dimensional first-order system, dy_i(t)/dt = f_i(t, y_1(t), ..., y_n(t)) for i = 1, \dots, n. The stepping functions rely on the vector of derivatives f_i and the Jacobian matrix, J_{ij} = df_i(t,y(t)) / dy_j. A system of equations is defined using the 'gsl_odeiv2_system' datatype. -- Data Type: gsl_odeiv2_system This data type defines a general ODE system with arbitrary parameters. 'int (* function) (double t, const double y[], double dydt[], void * params)' This function should store the vector elements f_i(t,y,params) in the array DYDT, for arguments (T,Y) and parameters PARAMS. The function should return 'GSL_SUCCESS' if the calculation was completed successfully. Any other return value indicates an error. A special return value 'GSL_EBADFUNC' causes 'gsl_odeiv2' routines to immediately stop and return. The user must call an appropriate reset function (e.g. 'gsl_odeiv2_driver_reset' or 'gsl_odeiv2_step_reset') before continuing. Use return values distinct from standard GSL error codes to distinguish your function as the source of the error. 'int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);' This function should store the vector of derivative elements in the array DFDT and the Jacobian matrix J_{ij} in the array DFDY, regarded as a row-ordered matrix 'J(i,j) = dfdy[i * dimension + j]' where 'dimension' is the dimension of the system. Not all of the stepper algorithms of 'gsl_odeiv2' make use of the Jacobian matrix, so it may not be necessary to provide this function (the 'jacobian' element of the struct can be replaced by a null pointer for those algorithms). The function should return 'GSL_SUCCESS' if the calculation was completed successfully. Any other return value indicates an error. A special return value 'GSL_EBADFUNC' causes 'gsl_odeiv2' routines to immediately stop and return. The user must call an appropriate reset function (e.g. 'gsl_odeiv2_driver_reset' or 'gsl_odeiv2_step_reset') before continuing. Use return values distinct from standard GSL error codes to distinguish your function as the source of the error. 'size_t dimension;' This is the dimension of the system of equations. 'void * params' This is a pointer to the arbitrary parameters of the system.  File: gsl-ref.info, Node: Stepping Functions, Next: Adaptive Step-size Control, Prev: Defining the ODE System, Up: Ordinary Differential Equations 26.2 Stepping Functions ======================= The lowest level components are the "stepping functions" which advance a solution from time t to t+h for a fixed step-size h and estimate the resulting local error. -- Function: gsl_odeiv2_step * gsl_odeiv2_step_alloc (const gsl_odeiv2_step_type * T, size_t DIM) This function returns a pointer to a newly allocated instance of a stepping function of type T for a system of DIM dimensions. Please note that if you use a stepper method that requires access to a driver object, it is advisable to use a driver allocation method, which automatically allocates a stepper, too. -- Function: int gsl_odeiv2_step_reset (gsl_odeiv2_step * S) This function resets the stepping function S. It should be used whenever the next use of S will not be a continuation of a previous step. -- Function: void gsl_odeiv2_step_free (gsl_odeiv2_step * S) This function frees all the memory associated with the stepping function S. -- Function: const char * gsl_odeiv2_step_name (const gsl_odeiv2_step * S) This function returns a pointer to the name of the stepping function. For example, printf ("step method is '%s'\n", gsl_odeiv2_step_name (s)); would print something like 'step method is 'rkf45''. -- Function: unsigned int gsl_odeiv2_step_order (const gsl_odeiv2_step * S) This function returns the order of the stepping function on the previous step. The order can vary if the stepping function itself is adaptive. -- Function: int gsl_odeiv2_step_set_driver (gsl_odeiv2_step * S, const gsl_odeiv2_driver * D) This function sets a pointer of the driver object D for stepper S, to allow the stepper to access control (and evolve) object through the driver object. This is a requirement for some steppers, to get the desired error level for internal iteration of stepper. Allocation of a driver object calls this function automatically. -- Function: int gsl_odeiv2_step_apply (gsl_odeiv2_step * S, double T, double H, double Y[], double YERR[], const double DYDT_IN[], double DYDT_OUT[], const gsl_odeiv2_system * SYS) This function applies the stepping function S to the system of equations defined by SYS, using the step-size H to advance the system from time T and state Y to time T+H. The new state of the system is stored in Y on output, with an estimate of the absolute error in each component stored in YERR. If the argument DYDT_IN is not null it should point an array containing the derivatives for the system at time T on input. This is optional as the derivatives will be computed internally if they are not provided, but allows the reuse of existing derivative information. On output the new derivatives of the system at time T+H will be stored in DYDT_OUT if it is not null. The stepping function returns 'GSL_FAILURE' if it is unable to compute the requested step. Also, if the user-supplied functions defined in the system SYS return a status other than 'GSL_SUCCESS' the step will be aborted. In that case, the elements of Y will be restored to their pre-step values and the error code from the user-supplied function will be returned. Failure may be due to a singularity in the system or too large step-size H. In that case the step should be attempted again with a smaller step-size, e.g. H/2. If the driver object is not appropriately set via 'gsl_odeiv2_step_set_driver' for those steppers that need it, the stepping function returns 'GSL_EFAULT'. If the user-supplied functions defined in the system SYS returns 'GSL_EBADFUNC', the function returns immediately with the same return code. In this case the user must call 'gsl_odeiv2_step_reset' before calling this function again. The following algorithms are available, -- Step Type: gsl_odeiv2_step_rk2 Explicit embedded Runge-Kutta (2, 3) method. -- Step Type: gsl_odeiv2_step_rk4 Explicit 4th order (classical) Runge-Kutta. Error estimation is carried out by the step doubling method. For more efficient estimate of the error, use the embedded methods described below. -- Step Type: gsl_odeiv2_step_rkf45 Explicit embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator. -- Step Type: gsl_odeiv2_step_rkck Explicit embedded Runge-Kutta Cash-Karp (4, 5) method. -- Step Type: gsl_odeiv2_step_rk8pd Explicit embedded Runge-Kutta Prince-Dormand (8, 9) method. -- Step Type: gsl_odeiv2_step_rk1imp Implicit Gaussian first order Runge-Kutta. Also known as implicit Euler or backward Euler method. Error estimation is carried out by the step doubling method. This algorithm requires the Jacobian and access to the driver object via 'gsl_odeiv2_step_set_driver'. -- Step Type: gsl_odeiv2_step_rk2imp Implicit Gaussian second order Runge-Kutta. Also known as implicit mid-point rule. Error estimation is carried out by the step doubling method. This stepper requires the Jacobian and access to the driver object via 'gsl_odeiv2_step_set_driver'. -- Step Type: gsl_odeiv2_step_rk4imp Implicit Gaussian 4th order Runge-Kutta. Error estimation is carried out by the step doubling method. This algorithm requires the Jacobian and access to the driver object via 'gsl_odeiv2_step_set_driver'. -- Step Type: gsl_odeiv2_step_bsimp Implicit Bulirsch-Stoer method of Bader and Deuflhard. The method is generally suitable for stiff problems. This stepper requires the Jacobian. -- Step Type: gsl_odeiv2_step_msadams A variable-coefficient linear multistep Adams method in Nordsieck form. This stepper uses explicit Adams-Bashforth (predictor) and implicit Adams-Moulton (corrector) methods in P(EC)^m functional iteration mode. Method order varies dynamically between 1 and 12. This stepper requires the access to the driver object via 'gsl_odeiv2_step_set_driver'. -- Step Type: gsl_odeiv2_step_msbdf A variable-coefficient linear multistep backward differentiation formula (BDF) method in Nordsieck form. This stepper uses the explicit BDF formula as predictor and implicit BDF formula as corrector. A modified Newton iteration method is used to solve the system of non-linear equations. Method order varies dynamically between 1 and 5. The method is generally suitable for stiff problems. This stepper requires the Jacobian and the access to the driver object via 'gsl_odeiv2_step_set_driver'.  File: gsl-ref.info, Node: Adaptive Step-size Control, Next: Evolution, Prev: Stepping Functions, Up: Ordinary Differential Equations 26.3 Adaptive Step-size Control =============================== The control function examines the proposed change to the solution produced by a stepping function and attempts to determine the optimal step-size for a user-specified level of error. -- Function: gsl_odeiv2_control * gsl_odeiv2_control_standard_new (double EPS_ABS, double EPS_REL, double A_Y, double A_DYDT) The standard control object is a four parameter heuristic based on absolute and relative errors EPS_ABS and EPS_REL, and scaling factors A_Y and A_DYDT for the system state y(t) and derivatives y'(t) respectively. The step-size adjustment procedure for this method begins by computing the desired error level D_i for each component, D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|) and comparing it with the observed error E_i = |yerr_i|. If the observed error E exceeds the desired error level D by more than 10% for any component then the method reduces the step-size by an appropriate factor, h_new = h_old * S * (E/D)^(-1/q) where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK), and S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the ratios E_i/D_i. If the observed error E is less than 50% of the desired error level D for the maximum ratio E_i/D_i then the algorithm takes the opportunity to increase the step-size to bring the error in line with the desired level, h_new = h_old * S * (E/D)^(-1/(q+1)) This encompasses all the standard error scaling methods. To avoid uncontrolled changes in the stepsize, the overall scaling factor is limited to the range 1/5 to 5. -- Function: gsl_odeiv2_control * gsl_odeiv2_control_y_new (double EPS_ABS, double EPS_REL) This function creates a new control object which will keep the local error on each step within an absolute error of EPS_ABS and relative error of EPS_REL with respect to the solution y_i(t). This is equivalent to the standard control object with A_Y=1 and A_DYDT=0. -- Function: gsl_odeiv2_control * gsl_odeiv2_control_yp_new (double EPS_ABS, double EPS_REL) This function creates a new control object which will keep the local error on each step within an absolute error of EPS_ABS and relative error of EPS_REL with respect to the derivatives of the solution y'_i(t). This is equivalent to the standard control object with A_Y=0 and A_DYDT=1. -- Function: gsl_odeiv2_control * gsl_odeiv2_control_scaled_new (double EPS_ABS, double EPS_REL, double A_Y, double A_DYDT, const double SCALE_ABS[], size_t DIM) This function creates a new control object which uses the same algorithm as 'gsl_odeiv2_control_standard_new' but with an absolute error which is scaled for each component by the array SCALE_ABS. The formula for D_i for this control object is, D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y\prime_i|) where s_i is the i-th component of the array SCALE_ABS. The same error control heuristic is used by the Matlab ODE suite. -- Function: gsl_odeiv2_control * gsl_odeiv2_control_alloc (const gsl_odeiv2_control_type * T) This function returns a pointer to a newly allocated instance of a control function of type T. This function is only needed for defining new types of control functions. For most purposes the standard control functions described above should be sufficient. -- Function: int gsl_odeiv2_control_init (gsl_odeiv2_control * C, double EPS_ABS, double EPS_REL, double A_Y, double A_DYDT) This function initializes the control function C with the parameters EPS_ABS (absolute error), EPS_REL (relative error), A_Y (scaling factor for y) and A_DYDT (scaling factor for derivatives). -- Function: void gsl_odeiv2_control_free (gsl_odeiv2_control * C) This function frees all the memory associated with the control function C. -- Function: int gsl_odeiv2_control_hadjust (gsl_odeiv2_control * C, gsl_odeiv2_step * S, const double Y[], const double YERR[], const double DYDT[], double * H) This function adjusts the step-size H using the control function C, and the current values of Y, YERR and DYDT. The stepping function STEP is also needed to determine the order of the method. If the error in the y-values YERR is found to be too large then the step-size H is reduced and the function returns 'GSL_ODEIV_HADJ_DEC'. If the error is sufficiently small then H may be increased and 'GSL_ODEIV_HADJ_INC' is returned. The function returns 'GSL_ODEIV_HADJ_NIL' if the step-size is unchanged. The goal of the function is to estimate the largest step-size which satisfies the user-specified accuracy requirements for the current point. -- Function: const char * gsl_odeiv2_control_name (const gsl_odeiv2_control * C) This function returns a pointer to the name of the control function. For example, printf ("control method is '%s'\n", gsl_odeiv2_control_name (c)); would print something like 'control method is 'standard'' -- Function: int gsl_odeiv2_control_errlevel (gsl_odeiv2_control * C, const double Y, const double DYDT, const double H, const size_t IND, double * ERRLEV) This function calculates the desired error level of the IND-th component to ERRLEV. It requires the value (Y) and value of the derivative (DYDT) of the component, and the current step size H. -- Function: int gsl_odeiv2_control_set_driver (gsl_odeiv2_control * C, const gsl_odeiv2_driver * D) This function sets a pointer of the driver object D for control object C.  File: gsl-ref.info, Node: Evolution, Next: Driver, Prev: Adaptive Step-size Control, Up: Ordinary Differential Equations 26.4 Evolution ============== The evolution function combines the results of a stepping function and control function to reliably advance the solution forward one step using an acceptable step-size. -- Function: gsl_odeiv2_evolve * gsl_odeiv2_evolve_alloc (size_t DIM) This function returns a pointer to a newly allocated instance of an evolution function for a system of DIM dimensions. -- Function: int gsl_odeiv2_evolve_apply (gsl_odeiv2_evolve * E, gsl_odeiv2_control * CON, gsl_odeiv2_step * STEP, const gsl_odeiv2_system * SYS, double * T, double T1, double * H, double Y[]) This function advances the system (E, SYS) from time T and position Y using the stepping function STEP. The new time and position are stored in T and Y on output. The initial step-size is taken as H. The control function CON is applied to check whether the local error estimated by the stepping function STEP using step-size H exceeds the required error tolerance. If the error is too high, the step is retried by calling STEP with a decreased step-size. This process is continued until an acceptable step-size is found. An estimate of the local error for the step can be obtained from the components of the array 'E->yerr[]'. If the user-supplied functions defined in the system SYS returns 'GSL_EBADFUNC', the function returns immediately with the same return code. In this case the user must call 'gsl_odeiv2_step_reset' and 'gsl_odeiv2_evolve_reset' before calling this function again. Otherwise, if the user-supplied functions defined in the system SYS or the stepping function STEP return a status other than 'GSL_SUCCESS', the step is retried with a decreased step-size. If the step-size decreases below machine precision, a status of 'GSL_FAILURE' is returned if the user functions returned 'GSL_SUCCESS'. Otherwise the value returned by user function is returned. If no acceptable step can be made, T and Y will be restored to their pre-step values and H contains the final attempted step-size. If the step is successful the function returns a suggested step-size for the next step in H. The maximum time T1 is guaranteed not to be exceeded by the time-step. On the final time-step the value of T will be set to T1 exactly. -- Function: int gsl_odeiv2_evolve_apply_fixed_step (gsl_odeiv2_evolve * E, gsl_odeiv2_control * CON, gsl_odeiv2_step * STEP, const gsl_odeiv2_system * SYS, double * T, const double H, double Y[]) This function advances the ODE-system (E, SYS, CON) from time T and position Y using the stepping function STEP by a specified step size H. If the local error estimated by the stepping function exceeds the desired error level, the step is not taken and the function returns 'GSL_FAILURE'. Otherwise the value returned by user function is returned. -- Function: int gsl_odeiv2_evolve_reset (gsl_odeiv2_evolve * E) This function resets the evolution function E. It should be used whenever the next use of E will not be a continuation of a previous step. -- Function: void gsl_odeiv2_evolve_free (gsl_odeiv2_evolve * E) This function frees all the memory associated with the evolution function E. -- Function: int gsl_odeiv2_evolve_set_driver (gsl_odeiv2_evolve * E, const gsl_odeiv2_driver * D) This function sets a pointer of the driver object D for evolve object E. If a system has discontinuous changes in the derivatives at known points, it is advisable to evolve the system between each discontinuity in sequence. For example, if a step-change in an external driving force occurs at times t_a, t_b and t_c then evolution should be carried out over the ranges (t_0,t_a), (t_a,t_b), (t_b,t_c), and (t_c,t_1) separately and not directly over the range (t_0,t_1).  File: gsl-ref.info, Node: Driver, Next: ODE Example programs, Prev: Evolution, Up: Ordinary Differential Equations 26.5 Driver =========== The driver object is a high level wrapper that combines the evolution, control and stepper objects for easy use. -- Function: gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_y_new (const gsl_odeiv2_system * SYS, const gsl_odeiv2_step_type * T, const double HSTART, const double EPSABS, const double EPSREL) -- Function: gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_yp_new (const gsl_odeiv2_system * SYS, const gsl_odeiv2_step_type * T, const double HSTART, const double EPSABS, const double EPSREL) -- Function: gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_standard_new (const gsl_odeiv2_system * SYS, const gsl_odeiv2_step_type * T, const double HSTART, const double EPSABS, const double EPSREL, const double A_Y, const double A_DYDT) -- Function: gsl_odeiv2_driver * gsl_odeiv2_driver_alloc_scaled_new (const gsl_odeiv2_system * SYS, const gsl_odeiv2_step_type * T, const double HSTART, const double EPSABS, const double EPSREL, const double A_Y, const double A_DYDT, const double SCALE_ABS[]) These functions return a pointer to a newly allocated instance of a driver object. The functions automatically allocate and initialise the evolve, control and stepper objects for ODE system SYS using stepper type T. The initial step size is given in HSTART. The rest of the arguments follow the syntax and semantics of the control functions with same name ('gsl_odeiv2_control_*_new'). -- Function: int gsl_odeiv2_driver_set_hmin (gsl_odeiv2_driver * D, const double HMIN) The function sets a minimum for allowed step size HMIN for driver D. Default value is 0. -- Function: int gsl_odeiv2_driver_set_hmax (gsl_odeiv2_driver * D, const double HMAX) The function sets a maximum for allowed step size HMAX for driver D. Default value is 'GSL_DBL_MAX'. -- Function: int gsl_odeiv2_driver_set_nmax (gsl_odeiv2_driver * D, const unsigned long int NMAX) The function sets a maximum for allowed number of steps NMAX for driver D. Default value of 0 sets no limit for steps. -- Function: int gsl_odeiv2_driver_apply (gsl_odeiv2_driver * D, double * T, const double T1, double Y[]) This function evolves the driver system D from T to T1. Initially vector Y should contain the values of dependent variables at point T. If the function is unable to complete the calculation, an error code from 'gsl_odeiv2_evolve_apply' is returned, and T and Y contain the values from last successful step. If maximum number of steps is reached, a value of 'GSL_EMAXITER' is returned. If the step size drops below minimum value, the function returns with 'GSL_ENOPROG'. If the user-supplied functions defined in the system SYS returns 'GSL_EBADFUNC', the function returns immediately with the same return code. In this case the user must call 'gsl_odeiv2_driver_reset' before calling this function again. -- Function: int gsl_odeiv2_driver_apply_fixed_step (gsl_odeiv2_driver * D, double * T, const double H, const unsigned long int N, double Y[]) This function evolves the driver system D from T with N steps of size H. If the function is unable to complete the calculation, an error code from 'gsl_odeiv2_evolve_apply_fixed_step' is returned, and T and Y contain the values from last successful step. -- Function: int gsl_odeiv2_driver_reset (gsl_odeiv2_driver * D) This function resets the evolution and stepper objects. -- Function: int gsl_odeiv2_driver_reset_hstart (gsl_odeiv2_driver * D, const double HSTART) The routine resets the evolution and stepper objects and sets new initial step size to HSTART. This function can be used e.g. to change the direction of integration. -- Function: int gsl_odeiv2_driver_free (gsl_odeiv2_driver * D) This function frees the driver object, and the related evolution, stepper and control objects.  File: gsl-ref.info, Node: ODE Example programs, Next: ODE References and Further Reading, Prev: Driver, Up: Ordinary Differential Equations 26.6 Examples ============= The following program solves the second-order nonlinear Van der Pol oscillator equation, u''(t) + \mu u'(t) (u(t)^2 - 1) + u(t) = 0 This can be converted into a first order system suitable for use with the routines described in this chapter by introducing a separate variable for the velocity, v = u'(t), u' = v v' = -u + \mu v (1-u^2) The program begins by defining functions for these derivatives and their Jacobian. The main function uses driver level functions to solve the problem. The program evolves the solution from (u, v) = (1, 0) at t=0 to t=100. The step-size h is automatically adjusted by the controller to maintain an absolute accuracy of 10^{-6} in the function values (u, v). The loop in the example prints the solution at the points t_i = 1, 2, \dots, 100. #include #include #include #include int func (double t, const double y[], double f[], void *params) { double mu = *(double *)params; f[0] = y[1]; f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1); return GSL_SUCCESS; } int jac (double t, const double y[], double *dfdy, double dfdt[], void *params) { double mu = *(double *)params; gsl_matrix_view dfdy_mat = gsl_matrix_view_array (dfdy, 2, 2); gsl_matrix * m = &dfdy_mat.matrix; gsl_matrix_set (m, 0, 0, 0.0); gsl_matrix_set (m, 0, 1, 1.0); gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0); gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0)); dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } int main (void) { double mu = 10; gsl_odeiv2_system sys = {func, jac, 2, &mu}; gsl_odeiv2_driver * d = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0); int i; double t = 0.0, t1 = 100.0; double y[2] = { 1.0, 0.0 }; for (i = 1; i <= 100; i++) { double ti = i * t1 / 100.0; int status = gsl_odeiv2_driver_apply (d, &t, ti, y); if (status != GSL_SUCCESS) { printf ("error, return value=%d\n", status); break; } printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_driver_free (d); return 0; } The user can work with the lower level functions directly, as in the following example. In this case an intermediate result is printed after each successful step instead of equidistant time points. int main (void) { const gsl_odeiv2_step_type * T = gsl_odeiv2_step_rk8pd; gsl_odeiv2_step * s = gsl_odeiv2_step_alloc (T, 2); gsl_odeiv2_control * c = gsl_odeiv2_control_y_new (1e-6, 0.0); gsl_odeiv2_evolve * e = gsl_odeiv2_evolve_alloc (2); double mu = 10; gsl_odeiv2_system sys = {func, jac, 2, &mu}; double t = 0.0, t1 = 100.0; double h = 1e-6; double y[2] = { 1.0, 0.0 }; while (t < t1) { int status = gsl_odeiv2_evolve_apply (e, c, s, &sys, &t, t1, &h, y); if (status != GSL_SUCCESS) break; printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_evolve_free (e); gsl_odeiv2_control_free (c); gsl_odeiv2_step_free (s); return 0; } For functions with multiple parameters, the appropriate information can be passed in through the PARAMS argument in 'gsl_odeiv2_system' definition (MU in this example) by using a pointer to a struct. It is also possible to work with a non-adaptive integrator, using only the stepping function itself, 'gsl_odeiv2_driver_apply_fixed_step' or 'gsl_odeiv2_evolve_apply_fixed_step'. The following program uses the driver level function, with fourth-order Runge-Kutta stepping function with a fixed stepsize of 0.001. int main (void) { double mu = 10; gsl_odeiv2_system sys = { func, jac, 2, &mu }; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk4, 1e-3, 1e-8, 1e-8); double t = 0.0; double y[2] = { 1.0, 0.0 }; int i, s; for (i = 0; i < 100; i++) { s = gsl_odeiv2_driver_apply_fixed_step (d, &t, 1e-3, 1000, y); if (s != GSL_SUCCESS) { printf ("error: driver returned %d\n", s); break; } printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_driver_free (d); return s; }  File: gsl-ref.info, Node: ODE References and Further Reading, Prev: ODE Example programs, Up: Ordinary Differential Equations 26.7 References and Further Reading =================================== Ascher, U.M., Petzold, L.R., 'Computer Methods for Ordinary Differential and Differential-Algebraic Equations', SIAM, Philadelphia, 1998. Hairer, E., Norsett, S. P., Wanner, G., 'Solving Ordinary Differential Equations I: Nonstiff Problems', Springer, Berlin, 1993. Hairer, E., Wanner, G., 'Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems', Springer, Berlin, 1996. Many of the basic Runge-Kutta formulas can be found in the Handbook of Mathematical Functions, Abramowitz & Stegun (eds.), 'Handbook of Mathematical Functions', Section 25.5. The implicit Bulirsch-Stoer algorithm 'bsimp' is described in the following paper, G. Bader and P. Deuflhard, "A Semi-Implicit Mid-Point Rule for Stiff Systems of Ordinary Differential Equations.", Numer. Math. 41, 373-398, 1983. The Adams and BDF multistep methods 'msadams' and 'msbdf' are based on the following articles, G. D. Byrne and A. C. Hindmarsh, "A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations.", ACM Trans. Math. Software, 1, 71-96, 1975. P. N. Brown, G. D. Byrne and A. C. Hindmarsh, "VODE: A Variable-coefficient ODE Solver.", SIAM J. Sci. Stat. Comput. 10, 1038-1051, 1989. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker and C. S. Woodward, "SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers.", ACM Trans. Math. Software 31, 363-396, 2005.  File: gsl-ref.info, Node: Interpolation, Next: Numerical Differentiation, Prev: Ordinary Differential Equations, Up: Top 27 Interpolation **************** This chapter describes functions for performing interpolation. The library provides a variety of interpolation methods, including Cubic splines and Akima splines. The interpolation types are interchangeable, allowing different methods to be used without recompiling. Interpolations can be defined for both normal and periodic boundary conditions. Additional functions are available for computing derivatives and integrals of interpolating functions. These interpolation methods produce curves that pass through each datapoint. To interpolate noisy data with a smoothing curve see *note Basis Splines::. The functions described in this section are declared in the header files 'gsl_interp.h' and 'gsl_spline.h'. * Menu: * Introduction to Interpolation:: * Interpolation Functions:: * Interpolation Types:: * Index Look-up and Acceleration:: * Evaluation of Interpolating Functions:: * Higher-level Interface:: * Interpolation Example programs:: * Interpolation References and Further Reading::  File: gsl-ref.info, Node: Introduction to Interpolation, Next: Interpolation Functions, Up: Interpolation 27.1 Introduction ================= Given a set of data points (x_1, y_1) \dots (x_n, y_n) the routines described in this section compute a continuous interpolating function y(x) such that y(x_i) = y_i. The interpolation is piecewise smooth, and its behavior at the end-points is determined by the type of interpolation used.  File: gsl-ref.info, Node: Interpolation Functions, Next: Interpolation Types, Prev: Introduction to Interpolation, Up: Interpolation 27.2 Interpolation Functions ============================ The interpolation function for a given dataset is stored in a 'gsl_interp' object. These are created by the following functions. -- Function: gsl_interp * gsl_interp_alloc (const gsl_interp_type * T, size_t SIZE) This function returns a pointer to a newly allocated interpolation object of type T for SIZE data-points. -- Function: int gsl_interp_init (gsl_interp * INTERP, const double XA[], const double YA[], size_t SIZE) This function initializes the interpolation object INTERP for the data (XA,YA) where XA and YA are arrays of size SIZE. The interpolation object ('gsl_interp') does not save the data arrays XA and YA and only stores the static state computed from the data. The XA data array is always assumed to be strictly ordered, with increasing x values; the behavior for other arrangements is not defined. -- Function: void gsl_interp_free (gsl_interp * INTERP) This function frees the interpolation object INTERP.  File: gsl-ref.info, Node: Interpolation Types, Next: Index Look-up and Acceleration, Prev: Interpolation Functions, Up: Interpolation 27.3 Interpolation Types ======================== The interpolation library provides six interpolation types: -- Interpolation Type: gsl_interp_linear Linear interpolation. This interpolation method does not require any additional memory. -- Interpolation Type: gsl_interp_polynomial Polynomial interpolation. This method should only be used for interpolating small numbers of points because polynomial interpolation introduces large oscillations, even for well-behaved datasets. The number of terms in the interpolating polynomial is equal to the number of points. -- Interpolation Type: gsl_interp_cspline Cubic spline with natural boundary conditions. The resulting curve is piecewise cubic on each interval, with matching first and second derivatives at the supplied data-points. The second derivative is chosen to be zero at the first point and last point. -- Interpolation Type: gsl_interp_cspline_periodic Cubic spline with periodic boundary conditions. The resulting curve is piecewise cubic on each interval, with matching first and second derivatives at the supplied data-points. The derivatives at the first and last points are also matched. Note that the last point in the data must have the same y-value as the first point, otherwise the resulting periodic interpolation will have a discontinuity at the boundary. -- Interpolation Type: gsl_interp_akima Non-rounded Akima spline with natural boundary conditions. This method uses the non-rounded corner algorithm of Wodicka. -- Interpolation Type: gsl_interp_akima_periodic Non-rounded Akima spline with periodic boundary conditions. This method uses the non-rounded corner algorithm of Wodicka. The following related functions are available: -- Function: const char * gsl_interp_name (const gsl_interp * INTERP) This function returns the name of the interpolation type used by INTERP. For example, printf ("interp uses '%s' interpolation.\n", gsl_interp_name (interp)); would print something like, interp uses 'cspline' interpolation. -- Function: unsigned int gsl_interp_min_size (const gsl_interp * INTERP) -- Function: unsigned int gsl_interp_type_min_size (const gsl_interp_type * T) These functions return the minimum number of points required by the interpolation object INTERP or interpolation type T. For example, Akima spline interpolation requires a minimum of 5 points.  File: gsl-ref.info, Node: Index Look-up and Acceleration, Next: Evaluation of Interpolating Functions, Prev: Interpolation Types, Up: Interpolation 27.4 Index Look-up and Acceleration =================================== The state of searches can be stored in a 'gsl_interp_accel' object, which is a kind of iterator for interpolation lookups. It caches the previous value of an index lookup. When the subsequent interpolation point falls in the same interval its index value can be returned immediately. -- Function: size_t gsl_interp_bsearch (const double X_ARRAY[], double X, size_t INDEX_LO, size_t INDEX_HI) This function returns the index i of the array X_ARRAY such that 'x_array[i] <= x < x_array[i+1]'. The index is searched for in the range [INDEX_LO,INDEX_HI]. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: gsl_interp_accel * gsl_interp_accel_alloc (void) This function returns a pointer to an accelerator object, which is a kind of iterator for interpolation lookups. It tracks the state of lookups, thus allowing for application of various acceleration strategies. -- Function: size_t gsl_interp_accel_find (gsl_interp_accel * A, const double X_ARRAY[], size_t SIZE, double X) This function performs a lookup action on the data array X_ARRAY of size SIZE, using the given accelerator A. This is how lookups are performed during evaluation of an interpolation. The function returns an index i such that 'x_array[i] <= x < x_array[i+1]'. An inline version of this function is used when 'HAVE_INLINE' is defined. -- Function: int gsl_interp_accel_reset (gsl_interp_accel * ACC); This function reinitializes the accelerator object ACC. It should be used when the cached information is no longer applicable--for example, when switching to a new dataset. -- Function: void gsl_interp_accel_free (gsl_interp_accel* ACC) This function frees the accelerator object ACC.  File: gsl-ref.info, Node: Evaluation of Interpolating Functions, Next: Higher-level Interface, Prev: Index Look-up and Acceleration, Up: Interpolation 27.5 Evaluation of Interpolating Functions ========================================== -- Function: double gsl_interp_eval (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC) -- Function: int gsl_interp_eval_e (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC, double * Y) These functions return the interpolated value of Y for a given point X, using the interpolation object INTERP, data arrays XA and YA and the accelerator ACC. When X is outside the range of XA, the error code 'GSL_EDOM' is returned with a value of 'GSL_NAN' for Y. -- Function: double gsl_interp_eval_deriv (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC) -- Function: int gsl_interp_eval_deriv_e (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC, double * D) These functions return the derivative D of an interpolated function for a given point X, using the interpolation object INTERP, data arrays XA and YA and the accelerator ACC. -- Function: double gsl_interp_eval_deriv2 (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC) -- Function: int gsl_interp_eval_deriv2_e (const gsl_interp * INTERP, const double XA[], const double YA[], double X, gsl_interp_accel * ACC, double * D2) These functions return the second derivative D2 of an interpolated function for a given point X, using the interpolation object INTERP, data arrays XA and YA and the accelerator ACC. -- Function: double gsl_interp_eval_integ (const gsl_interp * INTERP, const double XA[], const double YA[], double A, double B, gsl_interp_accel * ACC) -- Function: int gsl_interp_eval_integ_e (const gsl_interp * INTERP, const double XA[], const double YA[], double A, double B, gsl_interp_accel * ACC, double * RESULT) These functions return the numerical integral RESULT of an interpolated function over the range [A, B], using the interpolation object INTERP, data arrays XA and YA and the accelerator ACC.  File: gsl-ref.info, Node: Higher-level Interface, Next: Interpolation Example programs, Prev: Evaluation of Interpolating Functions, Up: Interpolation 27.6 Higher-level Interface =========================== The functions described in the previous sections required the user to supply pointers to the x and y arrays on each call. The following functions are equivalent to the corresponding 'gsl_interp' functions but maintain a copy of this data in the 'gsl_spline' object. This removes the need to pass both XA and YA as arguments on each evaluation. These functions are defined in the header file 'gsl_spline.h'. -- Function: gsl_spline * gsl_spline_alloc (const gsl_interp_type * T, size_t SIZE) -- Function: int gsl_spline_init (gsl_spline * SPLINE, const double XA[], const double YA[], size_t SIZE) -- Function: void gsl_spline_free (gsl_spline * SPLINE) -- Function: const char * gsl_spline_name (const gsl_spline * SPLINE) -- Function: unsigned int gsl_spline_min_size (const gsl_spline * SPLINE) -- Function: double gsl_spline_eval (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC) -- Function: int gsl_spline_eval_e (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC, double * Y) -- Function: double gsl_spline_eval_deriv (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC) -- Function: int gsl_spline_eval_deriv_e (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC, double * D) -- Function: double gsl_spline_eval_deriv2 (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC) -- Function: int gsl_spline_eval_deriv2_e (const gsl_spline * SPLINE, double X, gsl_interp_accel * ACC, double * D2) -- Function: double gsl_spline_eval_integ (const gsl_spline * SPLINE, double A, double B, gsl_interp_accel * ACC) -- Function: int gsl_spline_eval_integ_e (const gsl_spline * SPLINE, double A, double B, gsl_interp_accel * ACC, double * RESULT)  File: gsl-ref.info, Node: Interpolation Example programs, Next: Interpolation References and Further Reading, Prev: Higher-level Interface, Up: Interpolation 27.7 Examples ============= The following program demonstrates the use of the interpolation and spline functions. It computes a cubic spline interpolation of the 10-point dataset (x_i, y_i) where x_i = i + \sin(i)/2 and y_i = i + \cos(i^2) for i = 0 \dots 9. #include #include #include #include #include int main (void) { int i; double xi, yi, x[10], y[10]; printf ("#m=0,S=2\n"); for (i = 0; i < 10; i++) { x[i] = i + 0.5 * sin (i); y[i] = i + cos (i * i); printf ("%g %g\n", x[i], y[i]); } printf ("#m=1,S=0\n"); { gsl_interp_accel *acc = gsl_interp_accel_alloc (); gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, 10); gsl_spline_init (spline, x, y, 10); for (xi = x[0]; xi < x[9]; xi += 0.01) { yi = gsl_spline_eval (spline, xi, acc); printf ("%g %g\n", xi, yi); } gsl_spline_free (spline); gsl_interp_accel_free (acc); } return 0; } The output is designed to be used with the GNU plotutils 'graph' program, $ ./a.out > interp.dat $ graph -T ps < interp.dat > interp.ps The result shows a smooth interpolation of the original points. The interpolation method can be changed simply by varying the first argument of 'gsl_spline_alloc'. The next program demonstrates a periodic cubic spline with 4 data points. Note that the first and last points must be supplied with the same y-value for a periodic spline. #include #include #include #include #include int main (void) { int N = 4; double x[4] = {0.00, 0.10, 0.27, 0.30}; double y[4] = {0.15, 0.70, -0.10, 0.15}; /* Note: y[0] == y[3] for periodic data */ gsl_interp_accel *acc = gsl_interp_accel_alloc (); const gsl_interp_type *t = gsl_interp_cspline_periodic; gsl_spline *spline = gsl_spline_alloc (t, N); int i; double xi, yi; printf ("#m=0,S=5\n"); for (i = 0; i < N; i++) { printf ("%g %g\n", x[i], y[i]); } printf ("#m=1,S=0\n"); gsl_spline_init (spline, x, y, N); for (i = 0; i <= 100; i++) { xi = (1 - i / 100.0) * x[0] + (i / 100.0) * x[N-1]; yi = gsl_spline_eval (spline, xi, acc); printf ("%g %g\n", xi, yi); } gsl_spline_free (spline); gsl_interp_accel_free (acc); return 0; } The output can be plotted with GNU 'graph'. $ ./a.out > interp.dat $ graph -T ps < interp.dat > interp.ps The result shows a periodic interpolation of the original points. The slope of the fitted curve is the same at the beginning and end of the data, and the second derivative is also.  File: gsl-ref.info, Node: Interpolation References and Further Reading, Prev: Interpolation Example programs, Up: Interpolation 27.8 References and Further Reading =================================== Descriptions of the interpolation algorithms and further references can be found in the following books: C.W. Ueberhuber, 'Numerical Computation (Volume 1), Chapter 9 "Interpolation"', Springer (1997), ISBN 3-540-62058-3. D.M. Young, R.T. Gregory 'A Survey of Numerical Mathematics (Volume 1), Chapter 6.8', Dover (1988), ISBN 0-486-65691-8.  File: gsl-ref.info, Node: Numerical Differentiation, Next: Chebyshev Approximations, Prev: Interpolation, Up: Top 28 Numerical Differentiation **************************** The functions described in this chapter compute numerical derivatives by finite differencing. An adaptive algorithm is used to find the best choice of finite difference and to estimate the error in the derivative. These functions are declared in the header file 'gsl_deriv.h'. * Menu: * Numerical Differentiation functions:: * Numerical Differentiation Examples:: * Numerical Differentiation References::  File: gsl-ref.info, Node: Numerical Differentiation functions, Next: Numerical Differentiation Examples, Up: Numerical Differentiation 28.1 Functions ============== -- Function: int gsl_deriv_central (const gsl_function * F, double X, double H, double * RESULT, double * ABSERR) This function computes the numerical derivative of the function F at the point X using an adaptive central difference algorithm with a step-size of H. The derivative is returned in RESULT and an estimate of its absolute error is returned in ABSERR. The initial value of H is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative is computed using a 5-point rule for equally spaced abscissae at x-h, x-h/2, x, x+h/2, x+h, with an error estimate taken from the difference between the 5-point rule and the corresponding 3-point rule x-h, x, x+h. Note that the value of the function at x does not contribute to the derivative calculation, so only 4-points are actually used. -- Function: int gsl_deriv_forward (const gsl_function * F, double X, double H, double * RESULT, double * ABSERR) This function computes the numerical derivative of the function F at the point X using an adaptive forward difference algorithm with a step-size of H. The function is evaluated only at points greater than X, and never at X itself. The derivative is returned in RESULT and an estimate of its absolute error is returned in ABSERR. This function should be used if f(x) has a discontinuity at X, or is undefined for values less than X. The initial value of H is used to estimate an optimal step-size, based on the scaling of the truncation error and round-off error in the derivative calculation. The derivative at x is computed using an "open" 4-point rule for equally spaced abscissae at x+h/4, x+h/2, x+3h/4, x+h, with an error estimate taken from the difference between the 4-point rule and the corresponding 2-point rule x+h/2, x+h. -- Function: int gsl_deriv_backward (const gsl_function * F, double X, double H, double * RESULT, double * ABSERR) This function computes the numerical derivative of the function F at the point X using an adaptive backward difference algorithm with a step-size of H. The function is evaluated only at points less than X, and never at X itself. The derivative is returned in RESULT and an estimate of its absolute error is returned in ABSERR. This function should be used if f(x) has a discontinuity at X, or is undefined for values greater than X. This function is equivalent to calling 'gsl_deriv_forward' with a negative step-size.  File: gsl-ref.info, Node: Numerical Differentiation Examples, Next: Numerical Differentiation References, Prev: Numerical Differentiation functions, Up: Numerical Differentiation 28.2 Examples ============= The following code estimates the derivative of the function f(x) = x^{3/2} at x=2 and at x=0. The function f(x) is undefined for x<0 so the derivative at x=0 is computed using 'gsl_deriv_forward'. #include #include #include double f (double x, void * params) { return pow (x, 1.5); } int main (void) { gsl_function F; double result, abserr; F.function = &f; F.params = 0; printf ("f(x) = x^(3/2)\n"); gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr); printf ("x = 2.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0)); gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr); printf ("x = 0.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n", 0.0); return 0; } Here is the output of the program, $ ./a.out f(x) = x^(3/2) x = 2.0 f'(x) = 2.1213203120 +/- 0.0000004064 exact = 2.1213203436 x = 0.0 f'(x) = 0.0000000160 +/- 0.0000000339 exact = 0.0000000000  File: gsl-ref.info, Node: Numerical Differentiation References, Prev: Numerical Differentiation Examples, Up: Numerical Differentiation 28.3 References and Further Reading =================================== The algorithms used by these functions are described in the following sources: Abramowitz and Stegun, 'Handbook of Mathematical Functions', Section 25.3.4, and Table 25.5 (Coefficients for Differentiation). S.D. Conte and Carl de Boor, 'Elementary Numerical Analysis: An Algorithmic Approach', McGraw-Hill, 1972.  File: gsl-ref.info, Node: Chebyshev Approximations, Next: Series Acceleration, Prev: Numerical Differentiation, Up: Top 29 Chebyshev Approximations *************************** This chapter describes routines for computing Chebyshev approximations to univariate functions. A Chebyshev approximation is a truncation of the series f(x) = \sum c_n T_n(x), where the Chebyshev polynomials T_n(x) = \cos(n \arccos x) provide an orthogonal basis of polynomials on the interval [-1,1] with the weight function 1 / \sqrt{1-x^2}. The first few Chebyshev polynomials are, T_0(x) = 1, T_1(x) = x, T_2(x) = 2 x^2 - 1. For further information see Abramowitz & Stegun, Chapter 22. The functions described in this chapter are declared in the header file 'gsl_chebyshev.h'. * Menu: * Chebyshev Definitions:: * Creation and Calculation of Chebyshev Series:: * Auxiliary Functions for Chebyshev Series:: * Chebyshev Series Evaluation:: * Derivatives and Integrals:: * Chebyshev Approximation Examples:: * Chebyshev Approximation References and Further Reading::  File: gsl-ref.info, Node: Chebyshev Definitions, Next: Creation and Calculation of Chebyshev Series, Up: Chebyshev Approximations 29.1 Definitions ================ A Chebyshev series is stored using the following structure, typedef struct { double * c; /* coefficients c[0] .. c[order] */ int order; /* order of expansion */ double a; /* lower interval point */ double b; /* upper interval point */ ... } gsl_cheb_series The approximation is made over the range [a,b] using ORDER+1 terms, including the coefficient c[0]. The series is computed using the following convention, f(x) = (c_0 / 2) + \sum_{n=1} c_n T_n(x) which is needed when accessing the coefficients directly.  File: gsl-ref.info, Node: Creation and Calculation of Chebyshev Series, Next: Auxiliary Functions for Chebyshev Series, Prev: Chebyshev Definitions, Up: Chebyshev Approximations 29.2 Creation and Calculation of Chebyshev Series ================================================= -- Function: gsl_cheb_series * gsl_cheb_alloc (const size_t N) This function allocates space for a Chebyshev series of order N and returns a pointer to a new 'gsl_cheb_series' struct. -- Function: void gsl_cheb_free (gsl_cheb_series * CS) This function frees a previously allocated Chebyshev series CS. -- Function: int gsl_cheb_init (gsl_cheb_series * CS, const gsl_function * F, const double A, const double B) This function computes the Chebyshev approximation CS for the function F over the range (a,b) to the previously specified order. The computation of the Chebyshev approximation is an O(n^2) process, and requires n function evaluations.  File: gsl-ref.info, Node: Auxiliary Functions for Chebyshev Series, Next: Chebyshev Series Evaluation, Prev: Creation and Calculation of Chebyshev Series, Up: Chebyshev Approximations 29.3 Auxiliary Functions ======================== The following functions provide information about an existing Chebyshev series. -- Function: size_t gsl_cheb_order (const gsl_cheb_series * CS) This function returns the order of Chebyshev series CS. -- Function: size_t gsl_cheb_size (const gsl_cheb_series * CS) -- Function: double * gsl_cheb_coeffs (const gsl_cheb_series * CS) These functions return the size of the Chebyshev coefficient array 'c[]' and a pointer to its location in memory for the Chebyshev series CS.  File: gsl-ref.info, Node: Chebyshev Series Evaluation, Next: Derivatives and Integrals, Prev: Auxiliary Functions for Chebyshev Series, Up: Chebyshev Approximations 29.4 Chebyshev Series Evaluation ================================ -- Function: double gsl_cheb_eval (const gsl_cheb_series * CS, double X) This function evaluates the Chebyshev series CS at a given point X. -- Function: int gsl_cheb_eval_err (const gsl_cheb_series * CS, const double X, double * RESULT, double * ABSERR) This function computes the Chebyshev series CS at a given point X, estimating both the series RESULT and its absolute error ABSERR. The error estimate is made from the first neglected term in the series. -- Function: double gsl_cheb_eval_n (const gsl_cheb_series * CS, size_t ORDER, double X) This function evaluates the Chebyshev series CS at a given point X, to (at most) the given order ORDER. -- Function: int gsl_cheb_eval_n_err (const gsl_cheb_series * CS, const size_t ORDER, const double X, double * RESULT, double * ABSERR) This function evaluates a Chebyshev series CS at a given point X, estimating both the series RESULT and its absolute error ABSERR, to (at most) the given order ORDER. The error estimate is made from the first neglected term in the series.  File: gsl-ref.info, Node: Derivatives and Integrals, Next: Chebyshev Approximation Examples, Prev: Chebyshev Series Evaluation, Up: Chebyshev Approximations 29.5 Derivatives and Integrals ============================== The following functions allow a Chebyshev series to be differentiated or integrated, producing a new Chebyshev series. Note that the error estimate produced by evaluating the derivative series will be underestimated due to the contribution of higher order terms being neglected. -- Function: int gsl_cheb_calc_deriv (gsl_cheb_series * DERIV, const gsl_cheb_series * CS) This function computes the derivative of the series CS, storing the derivative coefficients in the previously allocated DERIV. The two series CS and DERIV must have been allocated with the same order. -- Function: int gsl_cheb_calc_integ (gsl_cheb_series * INTEG, const gsl_cheb_series * CS) This function computes the integral of the series CS, storing the integral coefficients in the previously allocated INTEG. The two series CS and INTEG must have been allocated with the same order. The lower limit of the integration is taken to be the left hand end of the range A.  File: gsl-ref.info, Node: Chebyshev Approximation Examples, Next: Chebyshev Approximation References and Further Reading, Prev: Derivatives and Integrals, Up: Chebyshev Approximations 29.6 Examples ============= The following example program computes Chebyshev approximations to a step function. This is an extremely difficult approximation to make, due to the discontinuity, and was chosen as an example where approximation error is visible. For smooth functions the Chebyshev approximation converges extremely rapidly and errors would not be visible. #include #include #include double f (double x, void *p) { if (x < 0.5) return 0.25; else return 0.75; } int main (void) { int i, n = 10000; gsl_cheb_series *cs = gsl_cheb_alloc (40); gsl_function F; F.function = f; F.params = 0; gsl_cheb_init (cs, &F, 0.0, 1.0); for (i = 0; i < n; i++) { double x = i / (double)n; double r10 = gsl_cheb_eval_n (cs, 10, x); double r40 = gsl_cheb_eval (cs, x); printf ("%g %g %g %g\n", x, GSL_FN_EVAL (&F, x), r10, r40); } gsl_cheb_free (cs); return 0; } The output from the program gives the original function, 10-th order approximation and 40-th order approximation, all sampled at intervals of 0.001 in x.  File: gsl-ref.info, Node: Chebyshev Approximation References and Further Reading, Prev: Chebyshev Approximation Examples, Up: Chebyshev Approximations 29.7 References and Further Reading =================================== The following paper describes the use of Chebyshev series, R. Broucke, "Ten Subroutines for the Manipulation of Chebyshev Series [C1] (Algorithm 446)". 'Communications of the ACM' 16(4), 254-256 (1973)  File: gsl-ref.info, Node: Series Acceleration, Next: Wavelet Transforms, Prev: Chebyshev Approximations, Up: Top 30 Series Acceleration ********************** The functions described in this chapter accelerate the convergence of a series using the Levin u-transform. This method takes a small number of terms from the start of a series and uses a systematic approximation to compute an extrapolated value and an estimate of its error. The u-transform works for both convergent and divergent series, including asymptotic series. These functions are declared in the header file 'gsl_sum.h'. * Menu: * Acceleration functions:: * Acceleration functions without error estimation:: * Example of accelerating a series:: * Series Acceleration References::  File: gsl-ref.info, Node: Acceleration functions, Next: Acceleration functions without error estimation, Up: Series Acceleration 30.1 Acceleration functions =========================== The following functions compute the full Levin u-transform of a series with its error estimate. The error estimate is computed by propagating rounding errors from each term through to the final extrapolation. These functions are intended for summing analytic series where each term is known to high accuracy, and the rounding errors are assumed to originate from finite precision. They are taken to be relative errors of order 'GSL_DBL_EPSILON' for each term. The calculation of the error in the extrapolated value is an O(N^2) process, which is expensive in time and memory. A faster but less reliable method which estimates the error from the convergence of the extrapolated value is described in the next section. For the method described here a full table of intermediate values and derivatives through to O(N) must be computed and stored, but this does give a reliable error estimate. -- Function: gsl_sum_levin_u_workspace * gsl_sum_levin_u_alloc (size_t N) This function allocates a workspace for a Levin u-transform of N terms. The size of the workspace is O(2n^2 + 3n). -- Function: void gsl_sum_levin_u_free (gsl_sum_levin_u_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_sum_levin_u_accel (const double * ARRAY, size_t ARRAY_SIZE, gsl_sum_levin_u_workspace * W, double * SUM_ACCEL, double * ABSERR) This function takes the terms of a series in ARRAY of size ARRAY_SIZE and computes the extrapolated limit of the series using a Levin u-transform. Additional working space must be provided in W. The extrapolated sum is stored in SUM_ACCEL, with an estimate of the absolute error stored in ABSERR. The actual term-by-term sum is returned in 'w->sum_plain'. The algorithm calculates the truncation error (the difference between two successive extrapolations) and round-off error (propagated from the individual terms) to choose an optimal number of terms for the extrapolation. All the terms of the series passed in through ARRAY should be non-zero.  File: gsl-ref.info, Node: Acceleration functions without error estimation, Next: Example of accelerating a series, Prev: Acceleration functions, Up: Series Acceleration 30.2 Acceleration functions without error estimation ==================================================== The functions described in this section compute the Levin u-transform of series and attempt to estimate the error from the "truncation error" in the extrapolation, the difference between the final two approximations. Using this method avoids the need to compute an intermediate table of derivatives because the error is estimated from the behavior of the extrapolated value itself. Consequently this algorithm is an O(N) process and only requires O(N) terms of storage. If the series converges sufficiently fast then this procedure can be acceptable. It is appropriate to use this method when there is a need to compute many extrapolations of series with similar convergence properties at high-speed. For example, when numerically integrating a function defined by a parameterized series where the parameter varies only slightly. A reliable error estimate should be computed first using the full algorithm described above in order to verify the consistency of the results. -- Function: gsl_sum_levin_utrunc_workspace * gsl_sum_levin_utrunc_alloc (size_t N) This function allocates a workspace for a Levin u-transform of N terms, without error estimation. The size of the workspace is O(3n). -- Function: void gsl_sum_levin_utrunc_free (gsl_sum_levin_utrunc_workspace * W) This function frees the memory associated with the workspace W. -- Function: int gsl_sum_levin_utrunc_accel (const double * ARRAY, size_t ARRAY_SIZE, gsl_sum_levin_utrunc_workspace * W, double * SUM_ACCEL, double * ABSERR_TRUNC) This function takes the terms of a series in ARRAY of size ARRAY_SIZE and computes the extrapolated limit of the series using a Levin u-transform. Additional working space must be provided in W. The extrapolated sum is stored in SUM_ACCEL. The actual term-by-term sum is returned in 'w->sum_plain'. The algorithm terminates when the difference between two successive extrapolations reaches a minimum or is sufficiently small. The difference between these two values is used as estimate of the error and is stored in ABSERR_TRUNC. To improve the reliability of the algorithm the extrapolated values are replaced by moving averages when calculating the truncation error, smoothing out any fluctuations.  File: gsl-ref.info, Node: Example of accelerating a series, Next: Series Acceleration References, Prev: Acceleration functions without error estimation, Up: Series Acceleration 30.3 Examples ============= The following code calculates an estimate of \zeta(2) = \pi^2 / 6 using the series, \zeta(2) = 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... After N terms the error in the sum is O(1/N), making direct summation of the series converge slowly. #include #include #include #define N 20 int main (void) { double t[N]; double sum_accel, err; double sum = 0; int n; gsl_sum_levin_u_workspace * w = gsl_sum_levin_u_alloc (N); const double zeta_2 = M_PI * M_PI / 6.0; /* terms for zeta(2) = \sum_{n=1}^{\infty} 1/n^2 */ for (n = 0; n < N; n++) { double np1 = n + 1.0; t[n] = 1.0 / (np1 * np1); sum += t[n]; } gsl_sum_levin_u_accel (t, N, w, &sum_accel, &err); printf ("term-by-term sum = % .16f using %d terms\n", sum, N); printf ("term-by-term sum = % .16f using %d terms\n", w->sum_plain, w->terms_used); printf ("exact value = % .16f\n", zeta_2); printf ("accelerated sum = % .16f using %d terms\n", sum_accel, w->terms_used); printf ("estimated error = % .16f\n", err); printf ("actual error = % .16f\n", sum_accel - zeta_2); gsl_sum_levin_u_free (w); return 0; } The output below shows that the Levin u-transform is able to obtain an estimate of the sum to 1 part in 10^10 using the first eleven terms of the series. The error estimate returned by the function is also accurate, giving the correct number of significant digits. $ ./a.out term-by-term sum = 1.5961632439130233 using 20 terms term-by-term sum = 1.5759958390005426 using 13 terms exact value = 1.6449340668482264 accelerated sum = 1.6449340668166479 using 13 terms estimated error = 0.0000000000508580 actual error = -0.0000000000315785 Note that a direct summation of this series would require 10^10 terms to achieve the same precision as the accelerated sum does in 13 terms.  File: gsl-ref.info, Node: Series Acceleration References, Prev: Example of accelerating a series, Up: Series Acceleration 30.4 References and Further Reading =================================== The algorithms used by these functions are described in the following papers, T. Fessler, W.F. Ford, D.A. Smith, HURRY: An acceleration algorithm for scalar sequences and series 'ACM Transactions on Mathematical Software', 9(3):346-354, 1983. and Algorithm 602 9(3):355-357, 1983. The theory of the u-transform was presented by Levin, D. Levin, Development of Non-Linear Transformations for Improving Convergence of Sequences, 'Intern. J. Computer Math.' B3:371-388, 1973. A review paper on the Levin Transform is available online, Herbert H. H. Homeier, Scalar Levin-Type Sequence Transformations, .  File: gsl-ref.info, Node: Wavelet Transforms, Next: Discrete Hankel Transforms, Prev: Series Acceleration, Up: Top 31 Wavelet Transforms ********************* This chapter describes functions for performing Discrete Wavelet Transforms (DWTs). The library includes wavelets for real data in both one and two dimensions. The wavelet functions are declared in the header files 'gsl_wavelet.h' and 'gsl_wavelet2d.h'. * Menu: * DWT Definitions:: * DWT Initialization:: * DWT Transform Functions:: * DWT Examples:: * DWT References::  File: gsl-ref.info, Node: DWT Definitions, Next: DWT Initialization, Up: Wavelet Transforms 31.1 Definitions ================ The continuous wavelet transform and its inverse are defined by the relations, w(s,\tau) = \int f(t) * \psi^*_{s,\tau}(t) dt and, f(t) = \int \int_{-\infty}^\infty w(s, \tau) * \psi_{s,\tau}(t) d\tau ds where the basis functions \psi_{s,\tau} are obtained by scaling and translation from a single function, referred to as the "mother wavelet". The discrete version of the wavelet transform acts on equally-spaced samples, with fixed scaling and translation steps (s, \tau). The frequency and time axes are sampled "dyadically" on scales of 2^j through a level parameter j. The resulting family of functions {\psi_{j,n}} constitutes an orthonormal basis for square-integrable signals. The discrete wavelet transform is an O(N) algorithm, and is also referred to as the "fast wavelet transform".  File: gsl-ref.info, Node: DWT Initialization, Next: DWT Transform Functions, Prev: DWT Definitions, Up: Wavelet Transforms 31.2 Initialization =================== The 'gsl_wavelet' structure contains the filter coefficients defining the wavelet and any associated offset parameters. -- Function: gsl_wavelet * gsl_wavelet_alloc (const gsl_wavelet_type * T, size_t K) This function allocates and initializes a wavelet object of type T. The parameter K selects the specific member of the wavelet family. A null pointer is returned if insufficient memory is available or if a unsupported member is selected. The following wavelet types are implemented: -- Wavelet: gsl_wavelet_daubechies -- Wavelet: gsl_wavelet_daubechies_centered This is the Daubechies wavelet family of maximum phase with k/2 vanishing moments. The implemented wavelets are k=4, 6, ..., 20, with K even. -- Wavelet: gsl_wavelet_haar -- Wavelet: gsl_wavelet_haar_centered This is the Haar wavelet. The only valid choice of k for the Haar wavelet is k=2. -- Wavelet: gsl_wavelet_bspline -- Wavelet: gsl_wavelet_bspline_centered This is the biorthogonal B-spline wavelet family of order (i,j). The implemented values of k = 100*i + j are 103, 105, 202, 204, 206, 208, 301, 303, 305 307, 309. The centered forms of the wavelets align the coefficients of the various sub-bands on edges. Thus the resulting visualization of the coefficients of the wavelet transform in the phase plane is easier to understand. -- Function: const char * gsl_wavelet_name (const gsl_wavelet * W) This function returns a pointer to the name of the wavelet family for W. -- Function: void gsl_wavelet_free (gsl_wavelet * W) This function frees the wavelet object W. The 'gsl_wavelet_workspace' structure contains scratch space of the same size as the input data and is used to hold intermediate results during the transform. -- Function: gsl_wavelet_workspace * gsl_wavelet_workspace_alloc (size_t N) This function allocates a workspace for the discrete wavelet transform. To perform a one-dimensional transform on N elements, a workspace of size N must be provided. For two-dimensional transforms of N-by-N matrices it is sufficient to allocate a workspace of size N, since the transform operates on individual rows and columns. A null pointer is returned if insufficient memory is available. -- Function: void gsl_wavelet_workspace_free (gsl_wavelet_workspace * WORK) This function frees the allocated workspace WORK.  File: gsl-ref.info, Node: DWT Transform Functions, Next: DWT Examples, Prev: DWT Initialization, Up: Wavelet Transforms 31.3 Transform Functions ======================== This sections describes the actual functions performing the discrete wavelet transform. Note that the transforms use periodic boundary conditions. If the signal is not periodic in the sample length then spurious coefficients will appear at the beginning and end of each level of the transform. * Menu: * DWT in one dimension:: * DWT in two dimension::  File: gsl-ref.info, Node: DWT in one dimension, Next: DWT in two dimension, Up: DWT Transform Functions 31.3.1 Wavelet transforms in one dimension ------------------------------------------ -- Function: int gsl_wavelet_transform (const gsl_wavelet * W, double * DATA, size_t STRIDE, size_t N, gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet_transform_forward (const gsl_wavelet * W, double * DATA, size_t STRIDE, size_t N, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet_transform_inverse (const gsl_wavelet * W, double * DATA, size_t STRIDE, size_t N, gsl_wavelet_workspace * WORK) These functions compute in-place forward and inverse discrete wavelet transforms of length N with stride STRIDE on the array DATA. The length of the transform N is restricted to powers of two. For the 'transform' version of the function the argument DIR can be either 'forward' (+1) or 'backward' (-1). A workspace WORK of length N must be provided. For the forward transform, the elements of the original array are replaced by the discrete wavelet transform f_i -> w_{j,k} in a packed triangular storage layout, where J is the index of the level j = 0 ... J-1 and K is the index of the coefficient within each level, k = 0 ... (2^j)-1. The total number of levels is J = \log_2(n). The output data has the following form, (s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0}, ..., d_{j,k}, ..., d_{J-1,2^{J-1}-1}) where the first element is the smoothing coefficient s_{-1,0}, followed by the detail coefficients d_{j,k} for each level j. The backward transform inverts these coefficients to obtain the original data. These functions return a status of 'GSL_SUCCESS' upon successful completion. 'GSL_EINVAL' is returned if N is not an integer power of 2 or if insufficient workspace is provided.  File: gsl-ref.info, Node: DWT in two dimension, Prev: DWT in one dimension, Up: DWT Transform Functions 31.3.2 Wavelet transforms in two dimension ------------------------------------------ The library provides functions to perform two-dimensional discrete wavelet transforms on square matrices. The matrix dimensions must be an integer power of two. There are two possible orderings of the rows and columns in the two-dimensional wavelet transform, referred to as the "standard" and "non-standard" forms. The "standard" transform performs a complete discrete wavelet transform on the rows of the matrix, followed by a separate complete discrete wavelet transform on the columns of the resulting row-transformed matrix. This procedure uses the same ordering as a two-dimensional Fourier transform. The "non-standard" transform is performed in interleaved passes on the rows and columns of the matrix for each level of the transform. The first level of the transform is applied to the matrix rows, and then to the matrix columns. This procedure is then repeated across the rows and columns of the data for the subsequent levels of the transform, until the full discrete wavelet transform is complete. The non-standard form of the discrete wavelet transform is typically used in image analysis. The functions described in this section are declared in the header file 'gsl_wavelet2d.h'. -- Function: int gsl_wavelet2d_transform (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_transform_forward (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_transform_inverse (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_workspace * WORK) These functions compute two-dimensional in-place forward and inverse discrete wavelet transforms in standard form on the array DATA stored in row-major form with dimensions SIZE1 and SIZE2 and physical row length TDA. The dimensions must be equal (square matrix) and are restricted to powers of two. For the 'transform' version of the function the argument DIR can be either 'forward' (+1) or 'backward' (-1). A workspace WORK of the appropriate size must be provided. On exit, the appropriate elements of the array DATA are replaced by their two-dimensional wavelet transform. The functions return a status of 'GSL_SUCCESS' upon successful completion. 'GSL_EINVAL' is returned if SIZE1 and SIZE2 are not equal and integer powers of 2, or if insufficient workspace is provided. -- Function: int gsl_wavelet2d_transform_matrix (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_transform_matrix_forward (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_transform_matrix_inverse (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK) These functions compute the two-dimensional in-place wavelet transform on a matrix A. -- Function: int gsl_wavelet2d_nstransform (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_nstransform_forward (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_nstransform_inverse (const gsl_wavelet * W, double * DATA, size_t TDA, size_t SIZE1, size_t SIZE2, gsl_wavelet_workspace * WORK) These functions compute the two-dimensional wavelet transform in non-standard form. -- Function: int gsl_wavelet2d_nstransform_matrix (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_direction DIR, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_nstransform_matrix_forward (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK) -- Function: int gsl_wavelet2d_nstransform_matrix_inverse (const gsl_wavelet * W, gsl_matrix * M, gsl_wavelet_workspace * WORK) These functions compute the non-standard form of the two-dimensional in-place wavelet transform on a matrix A.  File: gsl-ref.info, Node: DWT Examples, Next: DWT References, Prev: DWT Transform Functions, Up: Wavelet Transforms 31.4 Examples ============= The following program demonstrates the use of the one-dimensional wavelet transform functions. It computes an approximation to an input signal (of length 256) using the 20 largest components of the wavelet transform, while setting the others to zero. #include #include #include #include int main (int argc, char **argv) { int i, n = 256, nc = 20; double *data = malloc (n * sizeof (double)); double *abscoeff = malloc (n * sizeof (double)); size_t *p = malloc (n * sizeof (size_t)); FILE * f; gsl_wavelet *w; gsl_wavelet_workspace *work; w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4); work = gsl_wavelet_workspace_alloc (n); f = fopen (argv[1], "r"); for (i = 0; i < n; i++) { fscanf (f, "%lg", &data[i]); } fclose (f); gsl_wavelet_transform_forward (w, data, 1, n, work); for (i = 0; i < n; i++) { abscoeff[i] = fabs (data[i]); } gsl_sort_index (p, abscoeff, 1, n); for (i = 0; (i + nc) < n; i++) data[p[i]] = 0; gsl_wavelet_transform_inverse (w, data, 1, n, work); for (i = 0; i < n; i++) { printf ("%g\n", data[i]); } gsl_wavelet_free (w); gsl_wavelet_workspace_free (work); free (data); free (abscoeff); free (p); return 0; } The output can be used with the GNU plotutils 'graph' program, $ ./a.out ecg.dat > dwt.dat $ graph -T ps -x 0 256 32 -h 0.3 -a dwt.dat > dwt.ps  File: gsl-ref.info, Node: DWT References, Prev: DWT Examples, Up: Wavelet Transforms 31.5 References and Further Reading =================================== The mathematical background to wavelet transforms is covered in the original lectures by Daubechies, Ingrid Daubechies. Ten Lectures on Wavelets. 'CBMS-NSF Regional Conference Series in Applied Mathematics' (1992), SIAM, ISBN 0898712742. An easy to read introduction to the subject with an emphasis on the application of the wavelet transform in various branches of science is, Paul S. Addison. 'The Illustrated Wavelet Transform Handbook'. Institute of Physics Publishing (2002), ISBN 0750306920. For extensive coverage of signal analysis by wavelets, wavelet packets and local cosine bases see, S. G. Mallat. 'A wavelet tour of signal processing' (Second edition). Academic Press (1999), ISBN 012466606X. The concept of multiresolution analysis underlying the wavelet transform is described in, S. G. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases of L^2(R). 'Transactions of the American Mathematical Society', 315(1), 1989, 69-87. S. G. Mallat. A Theory for Multiresolution Signal Decomposition--The Wavelet Representation. 'IEEE Transactions on Pattern Analysis and Machine Intelligence', 11, 1989, 674-693. The coefficients for the individual wavelet families implemented by the library can be found in the following papers, I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. 'Communications on Pure and Applied Mathematics', 41 (1988) 909-996. A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal Bases of Compactly Supported Wavelets. 'Communications on Pure and Applied Mathematics', 45 (1992) 485-560. The PhysioNet archive of physiological datasets can be found online at and is described in the following paper, Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. 'Circulation' 101(23):e215-e220 2000.  File: gsl-ref.info, Node: Discrete Hankel Transforms, Next: One dimensional Root-Finding, Prev: Wavelet Transforms, Up: Top 32 Discrete Hankel Transforms ***************************** This chapter describes functions for performing Discrete Hankel Transforms (DHTs). The functions are declared in the header file 'gsl_dht.h'. * Menu: * Discrete Hankel Transform Definition:: * Discrete Hankel Transform Functions:: * Discrete Hankel Transform References::  File: gsl-ref.info, Node: Discrete Hankel Transform Definition, Next: Discrete Hankel Transform Functions, Up: Discrete Hankel Transforms 32.1 Definitions ================ The discrete Hankel transform acts on a vector of sampled data, where the samples are assumed to have been taken at points related to the zeroes of a Bessel function of fixed order; compare this to the case of the discrete Fourier transform, where samples are taken at points related to the zeroes of the sine or cosine function. Specifically, let f(t) be a function on the unit interval and j_(\nu,m) the m-th zero of the Bessel function J_\nu(x). Then the finite \nu-Hankel transform of f(t) is defined to be the set of numbers g_m given by, g_m = \int_0^1 t dt J_\nu(j_(\nu,m)t) f(t), so that, f(t) = \sum_{m=1}^\infty (2 J_\nu(j_(\nu,m)t) / J_(\nu+1)(j_(\nu,m))^2) g_m. Suppose that f is band-limited in the sense that g_m=0 for m > M. Then we have the following fundamental sampling theorem. g_m = (2 / j_(\nu,M)^2) \sum_{k=1}^{M-1} f(j_(\nu,k)/j_(\nu,M)) (J_\nu(j_(\nu,m) j_(\nu,k) / j_(\nu,M)) / J_(\nu+1)(j_(\nu,k))^2). It is this discrete expression which defines the discrete Hankel transform. The kernel in the summation above defines the matrix of the \nu-Hankel transform of size M-1. The coefficients of this matrix, being dependent on \nu and M, must be precomputed and stored; the 'gsl_dht' object encapsulates this data. The allocation function 'gsl_dht_alloc' returns a 'gsl_dht' object which must be properly initialized with 'gsl_dht_init' before it can be used to perform transforms on data sample vectors, for fixed \nu and M, using the 'gsl_dht_apply' function. The implementation allows a scaling of the fundamental interval, for convenience, so that one can assume the function is defined on the interval [0,X], rather than the unit interval. Notice that by assumption f(t) vanishes at the endpoints of the interval, consistent with the inversion formula and the sampling formula given above. Therefore, this transform corresponds to an orthogonal expansion in eigenfunctions of the Dirichlet problem for the Bessel differential equation.  File: gsl-ref.info, Node: Discrete Hankel Transform Functions, Next: Discrete Hankel Transform References, Prev: Discrete Hankel Transform Definition, Up: Discrete Hankel Transforms 32.2 Functions ============== -- Function: gsl_dht * gsl_dht_alloc (size_t SIZE) This function allocates a Discrete Hankel transform object of size SIZE. -- Function: int gsl_dht_init (gsl_dht * T, double NU, double XMAX) This function initializes the transform T for the given values of NU and XMAX. -- Function: gsl_dht * gsl_dht_new (size_t SIZE, double NU, double XMAX) This function allocates a Discrete Hankel transform object of size SIZE and initializes it for the given values of NU and XMAX. -- Function: void gsl_dht_free (gsl_dht * T) This function frees the transform T. -- Function: int gsl_dht_apply (const gsl_dht * T, double * F_IN, double * F_OUT) This function applies the transform T to the array F_IN whose size is equal to the size of the transform. The result is stored in the array F_OUT which must be of the same length. Applying this function to its output gives the original data multiplied by (1/j_(\nu,M))^2, up to numerical errors. -- Function: double gsl_dht_x_sample (const gsl_dht * T, int N) This function returns the value of the N-th sample point in the unit interval, (j_{\nu,n+1}/j_{\nu,M}) X. These are the points where the function f(t) is assumed to be sampled. -- Function: double gsl_dht_k_sample (const gsl_dht * T, int N) This function returns the value of the N-th sample point in "k-space", j_{\nu,n+1}/X.  File: gsl-ref.info, Node: Discrete Hankel Transform References, Prev: Discrete Hankel Transform Functions, Up: Discrete Hankel Transforms 32.3 References and Further Reading =================================== The algorithms used by these functions are described in the following papers, H. Fisk Johnson, Comp. Phys. Comm. 43, 181 (1987). D. Lemoine, J. Chem. Phys. 101, 3936 (1994).  File: gsl-ref.info, Node: One dimensional Root-Finding, Next: One dimensional Minimization, Prev: Discrete Hankel Transforms, Up: Top 33 One dimensional Root-Finding ******************************* This chapter describes routines for finding roots of arbitrary one-dimensional functions. The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The header file 'gsl_roots.h' contains prototypes for the root finding functions and related declarations. * Menu: * Root Finding Overview:: * Root Finding Caveats:: * Initializing the Solver:: * Providing the function to solve:: * Search Bounds and Guesses:: * Root Finding Iteration:: * Search Stopping Parameters:: * Root Bracketing Algorithms:: * Root Finding Algorithms using Derivatives:: * Root Finding Examples:: * Root Finding References and Further Reading::  File: gsl-ref.info, Node: Root Finding Overview, Next: Root Finding Caveats, Up: One dimensional Root-Finding 33.1 Overview ============= One-dimensional root finding algorithms can be divided into two classes, "root bracketing" and "root polishing". Algorithms which proceed by bracketing a root are guaranteed to converge. Bracketing algorithms begin with a bounded region known to contain a root. The size of this bounded region is reduced, iteratively, until it encloses the root to a desired tolerance. This provides a rigorous error estimate for the location of the root. The technique of "root polishing" attempts to improve an initial guess to the root. These algorithms converge only if started "close enough" to a root, and sacrifice a rigorous error bound for speed. By approximating the behavior of a function in the vicinity of a root they attempt to find a higher order improvement of an initial guess. When the behavior of the function is compatible with the algorithm and a good initial guess is available a polishing algorithm can provide rapid convergence. In GSL both types of algorithm are available in similar frameworks. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, * initialize solver state, S, for algorithm T * update S using the iteration T * test S for convergence, and repeat iteration if necessary The state for bracketing solvers is held in a 'gsl_root_fsolver' struct. The updating procedure uses only function evaluations (not derivatives). The state for root polishing solvers is held in a 'gsl_root_fdfsolver' struct. The updates require both the function and its derivative (hence the name 'fdf') to be supplied by the user.  File: gsl-ref.info, Node: Root Finding Caveats, Next: Initializing the Solver, Prev: Root Finding Overview, Up: One dimensional Root-Finding 33.2 Caveats ============ Note that root finding functions can only search for one root at a time. When there are several roots in the search area, the first root to be found will be returned; however it is difficult to predict which of the roots this will be. _In most cases, no error will be reported if you try to find a root in an area where there is more than one._ Care must be taken when a function may have a multiple root (such as f(x) = (x-x_0)^2 or f(x) = (x-x_0)^3). It is not possible to use root-bracketing algorithms on even-multiplicity roots. For these algorithms the initial interval must contain a zero-crossing, where the function is negative at one end of the interval and positive at the other end. Roots with even-multiplicity do not cross zero, but only touch it instantaneously. Algorithms based on root bracketing will still work for odd-multiplicity roots (e.g. cubic, quintic, ...). Root polishing algorithms generally work with higher multiplicity roots, but at a reduced rate of convergence. In these cases the "Steffenson algorithm" can be used to accelerate the convergence of multiple roots. While it is not absolutely required that f have a root within the search region, numerical root finding functions should not be used haphazardly to check for the _existence_ of roots. There are better ways to do this. Because it is easy to create situations where numerical root finders can fail, it is a bad idea to throw a root finder at a function you do not know much about. In general it is best to examine the function visually by plotting before searching for a root.  File: gsl-ref.info, Node: Initializing the Solver, Next: Providing the function to solve, Prev: Root Finding Caveats, Up: One dimensional Root-Finding 33.3 Initializing the Solver ============================ -- Function: gsl_root_fsolver * gsl_root_fsolver_alloc (const gsl_root_fsolver_type * T) This function returns a pointer to a newly allocated instance of a solver of type T. For example, the following code creates an instance of a bisection solver, const gsl_root_fsolver_type * T = gsl_root_fsolver_bisection; gsl_root_fsolver * s = gsl_root_fsolver_alloc (T); If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: gsl_root_fdfsolver * gsl_root_fdfsolver_alloc (const gsl_root_fdfsolver_type * T) This function returns a pointer to a newly allocated instance of a derivative-based solver of type T. For example, the following code creates an instance of a Newton-Raphson solver, const gsl_root_fdfsolver_type * T = gsl_root_fdfsolver_newton; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc (T); If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_root_fsolver_set (gsl_root_fsolver * S, gsl_function * F, double X_LOWER, double X_UPPER) This function initializes, or reinitializes, an existing solver S to use the function F and the initial search interval [X_LOWER, X_UPPER]. -- Function: int gsl_root_fdfsolver_set (gsl_root_fdfsolver * S, gsl_function_fdf * FDF, double ROOT) This function initializes, or reinitializes, an existing solver S to use the function and derivative FDF and the initial guess ROOT. -- Function: void gsl_root_fsolver_free (gsl_root_fsolver * S) -- Function: void gsl_root_fdfsolver_free (gsl_root_fdfsolver * S) These functions free all the memory associated with the solver S. -- Function: const char * gsl_root_fsolver_name (const gsl_root_fsolver * S) -- Function: const char * gsl_root_fdfsolver_name (const gsl_root_fdfsolver * S) These functions return a pointer to the name of the solver. For example, printf ("s is a '%s' solver\n", gsl_root_fsolver_name (s)); would print something like 's is a 'bisection' solver'.  File: gsl-ref.info, Node: Providing the function to solve, Next: Search Bounds and Guesses, Prev: Initializing the Solver, Up: One dimensional Root-Finding 33.4 Providing the function to solve ==================================== You must provide a continuous function of one variable for the root finders to operate on, and, sometimes, its first derivative. In order to allow for general parameters the functions are defined by the following data types: -- Data Type: gsl_function This data type defines a general function with parameters. 'double (* function) (double X, void * PARAMS)' this function should return the value f(x,params) for argument X and parameters PARAMS 'void * params' a pointer to the parameters of the function Here is an example for the general quadratic function, f(x) = a x^2 + b x + c with a = 3, b = 2, c = 1. The following code defines a 'gsl_function' 'F' which you could pass to a root finder as a function pointer: struct my_f_params { double a; double b; double c; }; double my_f (double x, void * p) { struct my_f_params * params = (struct my_f_params *)p; double a = (params->a); double b = (params->b); double c = (params->c); return (a * x + b) * x + c; } gsl_function F; struct my_f_params params = { 3.0, 2.0, 1.0 }; F.function = &my_f; F.params = ¶ms; The function f(x) can be evaluated using the macro 'GSL_FN_EVAL(&F,x)' defined in 'gsl_math.h'. -- Data Type: gsl_function_fdf This data type defines a general function with parameters and its first derivative. 'double (* f) (double X, void * PARAMS)' this function should return the value of f(x,params) for argument X and parameters PARAMS 'double (* df) (double X, void * PARAMS)' this function should return the value of the derivative of F with respect to X, f'(x,params), for argument X and parameters PARAMS 'void (* fdf) (double X, void * PARAMS, double * F, double * DF)' this function should set the values of the function F to f(x,params) and its derivative DF to f'(x,params) for argument X and parameters PARAMS. This function provides an optimization of the separate functions for f(x) and f'(x)--it is always faster to compute the function and its derivative at the same time. 'void * params' a pointer to the parameters of the function Here is an example where f(x) = 2\exp(2x): double my_f (double x, void * params) { return exp (2 * x); } double my_df (double x, void * params) { return 2 * exp (2 * x); } void my_fdf (double x, void * params, double * f, double * df) { double t = exp (2 * x); *f = t; *df = 2 * t; /* uses existing value */ } gsl_function_fdf FDF; FDF.f = &my_f; FDF.df = &my_df; FDF.fdf = &my_fdf; FDF.params = 0; The function f(x) can be evaluated using the macro 'GSL_FN_FDF_EVAL_F(&FDF,x)' and the derivative f'(x) can be evaluated using the macro 'GSL_FN_FDF_EVAL_DF(&FDF,x)'. Both the function y = f(x) and its derivative dy = f'(x) can be evaluated at the same time using the macro 'GSL_FN_FDF_EVAL_F_DF(&FDF,x,y,dy)'. The macro stores f(x) in its Y argument and f'(x) in its DY argument--both of these should be pointers to 'double'.  File: gsl-ref.info, Node: Search Bounds and Guesses, Next: Root Finding Iteration, Prev: Providing the function to solve, Up: One dimensional Root-Finding 33.5 Search Bounds and Guesses ============================== You provide either search bounds or an initial guess; this section explains how search bounds and guesses work and how function arguments control them. A guess is simply an x value which is iterated until it is within the desired precision of a root. It takes the form of a 'double'. Search bounds are the endpoints of an interval which is iterated until the length of the interval is smaller than the requested precision. The interval is defined by two values, the lower limit and the upper limit. Whether the endpoints are intended to be included in the interval or not depends on the context in which the interval is used.  File: gsl-ref.info, Node: Root Finding Iteration, Next: Search Stopping Parameters, Prev: Search Bounds and Guesses, Up: One dimensional Root-Finding 33.6 Iteration ============== The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. -- Function: int gsl_root_fsolver_iterate (gsl_root_fsolver * S) -- Function: int gsl_root_fdfsolver_iterate (gsl_root_fdfsolver * S) These functions perform a single iteration of the solver S. If the iteration encounters an unexpected problem then an error code will be returned, 'GSL_EBADFUNC' the iteration encountered a singular point where the function or its derivative evaluated to 'Inf' or 'NaN'. 'GSL_EZERODIV' the derivative of the function vanished at the iteration point, preventing the algorithm from continuing without a division by zero. The solver maintains a current best estimate of the root at all times. The bracketing solvers also keep track of the current best interval bounding the root. This information can be accessed with the following auxiliary functions, -- Function: double gsl_root_fsolver_root (const gsl_root_fsolver * S) -- Function: double gsl_root_fdfsolver_root (const gsl_root_fdfsolver * S) These functions return the current estimate of the root for the solver S. -- Function: double gsl_root_fsolver_x_lower (const gsl_root_fsolver * S) -- Function: double gsl_root_fsolver_x_upper (const gsl_root_fsolver * S) These functions return the current bracketing interval for the solver S.  File: gsl-ref.info, Node: Search Stopping Parameters, Next: Root Bracketing Algorithms, Prev: Root Finding Iteration, Up: One dimensional Root-Finding 33.7 Search Stopping Parameters =============================== A root finding procedure should stop when one of the following conditions is true: * A root has been found to within the user-specified precision. * A user-specified maximum number of iterations has been reached. * An error has occurred. The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result in several standard ways. -- Function: int gsl_root_test_interval (double X_LOWER, double X_UPPER, double EPSABS, double EPSREL) This function tests for the convergence of the interval [X_LOWER, X_UPPER] with absolute error EPSABS and relative error EPSREL. The test returns 'GSL_SUCCESS' if the following condition is achieved, |a - b| < epsabs + epsrel min(|a|,|b|) when the interval x = [a,b] does not include the origin. If the interval includes the origin then \min(|a|,|b|) is replaced by zero (which is the minimum value of |x| over the interval). This ensures that the relative error is accurately estimated for roots close to the origin. This condition on the interval also implies that any estimate of the root r in the interval satisfies the same condition with respect to the true root r^*, |r - r^*| < epsabs + epsrel r^* assuming that the true root r^* is contained within the interval. -- Function: int gsl_root_test_delta (double X1, double X0, double EPSABS, double EPSREL) This function tests for the convergence of the sequence ..., X0, X1 with absolute error EPSABS and relative error EPSREL. The test returns 'GSL_SUCCESS' if the following condition is achieved, |x_1 - x_0| < epsabs + epsrel |x_1| and returns 'GSL_CONTINUE' otherwise. -- Function: int gsl_root_test_residual (double F, double EPSABS) This function tests the residual value F against the absolute error bound EPSABS. The test returns 'GSL_SUCCESS' if the following condition is achieved, |f| < epsabs and returns 'GSL_CONTINUE' otherwise. This criterion is suitable for situations where the precise location of the root, x, is unimportant provided a value can be found where the residual, |f(x)|, is small enough.  File: gsl-ref.info, Node: Root Bracketing Algorithms, Next: Root Finding Algorithms using Derivatives, Prev: Search Stopping Parameters, Up: One dimensional Root-Finding 33.8 Root Bracketing Algorithms =============================== The root bracketing algorithms described in this section require an initial interval which is guaranteed to contain a root--if a and b are the endpoints of the interval then f(a) must differ in sign from f(b). This ensures that the function crosses zero at least once in the interval. If a valid initial interval is used then these algorithm cannot fail, provided the function is well-behaved. Note that a bracketing algorithm cannot find roots of even degree, since these do not cross the x-axis. -- Solver: gsl_root_fsolver_bisection The "bisection algorithm" is the simplest method of bracketing the roots of a function. It is the slowest algorithm provided by the library, with linear convergence. On each iteration, the interval is bisected and the value of the function at the midpoint is calculated. The sign of this value is used to determine which half of the interval does not contain a root. That half is discarded to give a new, smaller interval containing the root. This procedure can be continued indefinitely until the interval is sufficiently small. At any time the current estimate of the root is taken as the midpoint of the interval. -- Solver: gsl_root_fsolver_falsepos The "false position algorithm" is a method of finding roots based on linear interpolation. Its convergence is linear, but it is usually faster than bisection. On each iteration a line is drawn between the endpoints (a,f(a)) and (b,f(b)) and the point where this line crosses the x-axis taken as a "midpoint". The value of the function at this point is calculated and its sign is used to determine which side of the interval does not contain a root. That side is discarded to give a new, smaller interval containing the root. This procedure can be continued indefinitely until the interval is sufficiently small. The best estimate of the root is taken from the linear interpolation of the interval on the current iteration. -- Solver: gsl_root_fsolver_brent The "Brent-Dekker method" (referred to here as "Brent's method") combines an interpolation strategy with the bisection algorithm. This produces a fast algorithm which is still robust. On each iteration Brent's method approximates the function using an interpolating curve. On the first iteration this is a linear interpolation of the two endpoints. For subsequent iterations the algorithm uses an inverse quadratic fit to the last three points, for higher accuracy. The intercept of the interpolating curve with the x-axis is taken as a guess for the root. If it lies within the bounds of the current interval then the interpolating point is accepted, and used to generate a smaller interval. If the interpolating point is not accepted then the algorithm falls back to an ordinary bisection step. The best estimate of the root is taken from the most recent interpolation or bisection.  File: gsl-ref.info, Node: Root Finding Algorithms using Derivatives, Next: Root Finding Examples, Prev: Root Bracketing Algorithms, Up: One dimensional Root-Finding 33.9 Root Finding Algorithms using Derivatives ============================================== The root polishing algorithms described in this section require an initial guess for the location of the root. There is no absolute guarantee of convergence--the function must be suitable for this technique and the initial guess must be sufficiently close to the root for it to work. When these conditions are satisfied then convergence is quadratic. These algorithms make use of both the function and its derivative. -- Derivative Solver: gsl_root_fdfsolver_newton Newton's Method is the standard root-polishing algorithm. The algorithm begins with an initial guess for the location of the root. On each iteration, a line tangent to the function f is drawn at that position. The point where this line crosses the x-axis becomes the new guess. The iteration is defined by the following sequence, x_{i+1} = x_i - f(x_i)/f'(x_i) Newton's method converges quadratically for single roots, and linearly for multiple roots. -- Derivative Solver: gsl_root_fdfsolver_secant The "secant method" is a simplified version of Newton's method which does not require the computation of the derivative on every step. On its first iteration the algorithm begins with Newton's method, using the derivative to compute a first step, x_1 = x_0 - f(x_0)/f'(x_0) Subsequent iterations avoid the evaluation of the derivative by replacing it with a numerical estimate, the slope of the line through the previous two points, x_{i+1} = x_i f(x_i) / f'_{est} where f'_{est} = (f(x_i) - f(x_{i-1})/(x_i - x_{i-1}) When the derivative does not change significantly in the vicinity of the root the secant method gives a useful saving. Asymptotically the secant method is faster than Newton's method whenever the cost of evaluating the derivative is more than 0.44 times the cost of evaluating the function itself. As with all methods of computing a numerical derivative the estimate can suffer from cancellation errors if the separation of the points becomes too small. On single roots, the method has a convergence of order (1 + \sqrt 5)/2 (approximately 1.62). It converges linearly for multiple roots. -- Derivative Solver: gsl_root_fdfsolver_steffenson The "Steffenson Method"(1) provides the fastest convergence of all the routines. It combines the basic Newton algorithm with an Aitken "delta-squared" acceleration. If the Newton iterates are x_i then the acceleration procedure generates a new sequence R_i, R_i = x_i - (x_{i+1} - x_i)^2 / (x_{i+2} - 2 x_{i+1} + x_{i}) which converges faster than the original sequence under reasonable conditions. The new sequence requires three terms before it can produce its first value so the method returns accelerated values on the second and subsequent iterations. On the first iteration it returns the ordinary Newton estimate. The Newton iterate is also returned if the denominator of the acceleration term ever becomes zero. As with all acceleration procedures this method can become unstable if the function is not well-behaved. ---------- Footnotes ---------- (1) J.F. Steffensen (1873-1961). The spelling used in the name of the function is slightly incorrect, but has been preserved to avoid incompatibility.  File: gsl-ref.info, Node: Root Finding Examples, Next: Root Finding References and Further Reading, Prev: Root Finding Algorithms using Derivatives, Up: One dimensional Root-Finding 33.10 Examples ============== For any root finding algorithm we need to prepare the function to be solved. For this example we will use the general quadratic equation described earlier. We first need a header file ('demo_fn.h') to define the function parameters, struct quadratic_params { double a, b, c; }; double quadratic (double x, void *params); double quadratic_deriv (double x, void *params); void quadratic_fdf (double x, void *params, double *y, double *dy); We place the function definitions in a separate file ('demo_fn.c'), double quadratic (double x, void *params) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; return (a * x + b) * x + c; } double quadratic_deriv (double x, void *params) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; return 2.0 * a * x + b; } void quadratic_fdf (double x, void *params, double *y, double *dy) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; *y = (a * x + b) * x + c; *dy = 2.0 * a * x + b; } The first program uses the function solver 'gsl_root_fsolver_brent' for Brent's method and the general quadratic defined above to solve the following equation, x^2 - 5 = 0 with solution x = \sqrt 5 = 2.236068... #include #include #include #include #include "demo_fn.h" #include "demo_fn.c" int main (void) { int status; int iter = 0, max_iter = 100; const gsl_root_fsolver_type *T; gsl_root_fsolver *s; double r = 0, r_expected = sqrt (5.0); double x_lo = 0.0, x_hi = 5.0; gsl_function F; struct quadratic_params params = {1.0, 0.0, -5.0}; F.function = &quadratic; F.params = ¶ms; T = gsl_root_fsolver_brent; s = gsl_root_fsolver_alloc (T); gsl_root_fsolver_set (s, &F, x_lo, x_hi); printf ("using %s method\n", gsl_root_fsolver_name (s)); printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "root", "err", "err(est)"); do { iter++; status = gsl_root_fsolver_iterate (s); r = gsl_root_fsolver_root (s); x_lo = gsl_root_fsolver_x_lower (s); x_hi = gsl_root_fsolver_x_upper (s); status = gsl_root_test_interval (x_lo, x_hi, 0, 0.001); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, x_lo, x_hi, r, r - r_expected, x_hi - x_lo); } while (status == GSL_CONTINUE && iter < max_iter); gsl_root_fsolver_free (s); return status; } Here are the results of the iterations, $ ./a.out using brent method iter [ lower, upper] root err err(est) 1 [1.0000000, 5.0000000] 1.0000000 -1.2360680 4.0000000 2 [1.0000000, 3.0000000] 3.0000000 +0.7639320 2.0000000 3 [2.0000000, 3.0000000] 2.0000000 -0.2360680 1.0000000 4 [2.2000000, 3.0000000] 2.2000000 -0.0360680 0.8000000 5 [2.2000000, 2.2366300] 2.2366300 +0.0005621 0.0366300 Converged: 6 [2.2360634, 2.2366300] 2.2360634 -0.0000046 0.0005666 If the program is modified to use the bisection solver instead of Brent's method, by changing 'gsl_root_fsolver_brent' to 'gsl_root_fsolver_bisection' the slower convergence of the Bisection method can be observed, $ ./a.out using bisection method iter [ lower, upper] root err err(est) 1 [0.0000000, 2.5000000] 1.2500000 -0.9860680 2.5000000 2 [1.2500000, 2.5000000] 1.8750000 -0.3610680 1.2500000 3 [1.8750000, 2.5000000] 2.1875000 -0.0485680 0.6250000 4 [2.1875000, 2.5000000] 2.3437500 +0.1076820 0.3125000 5 [2.1875000, 2.3437500] 2.2656250 +0.0295570 0.1562500 6 [2.1875000, 2.2656250] 2.2265625 -0.0095055 0.0781250 7 [2.2265625, 2.2656250] 2.2460938 +0.0100258 0.0390625 8 [2.2265625, 2.2460938] 2.2363281 +0.0002601 0.0195312 9 [2.2265625, 2.2363281] 2.2314453 -0.0046227 0.0097656 10 [2.2314453, 2.2363281] 2.2338867 -0.0021813 0.0048828 11 [2.2338867, 2.2363281] 2.2351074 -0.0009606 0.0024414 Converged: 12 [2.2351074, 2.2363281] 2.2357178 -0.0003502 0.0012207 The next program solves the same function using a derivative solver instead. #include #include #include #include #include "demo_fn.h" #include "demo_fn.c" int main (void) { int status; int iter = 0, max_iter = 100; const gsl_root_fdfsolver_type *T; gsl_root_fdfsolver *s; double x0, x = 5.0, r_expected = sqrt (5.0); gsl_function_fdf FDF; struct quadratic_params params = {1.0, 0.0, -5.0}; FDF.f = &quadratic; FDF.df = &quadratic_deriv; FDF.fdf = &quadratic_fdf; FDF.params = ¶ms; T = gsl_root_fdfsolver_newton; s = gsl_root_fdfsolver_alloc (T); gsl_root_fdfsolver_set (s, &FDF, x); printf ("using %s method\n", gsl_root_fdfsolver_name (s)); printf ("%-5s %10s %10s %10s\n", "iter", "root", "err", "err(est)"); do { iter++; status = gsl_root_fdfsolver_iterate (s); x0 = x; x = gsl_root_fdfsolver_root (s); status = gsl_root_test_delta (x, x0, 0, 1e-3); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d %10.7f %+10.7f %10.7f\n", iter, x, x - r_expected, x - x0); } while (status == GSL_CONTINUE && iter < max_iter); gsl_root_fdfsolver_free (s); return status; } Here are the results for Newton's method, $ ./a.out using newton method iter root err err(est) 1 3.0000000 +0.7639320 -2.0000000 2 2.3333333 +0.0972654 -0.6666667 3 2.2380952 +0.0020273 -0.0952381 Converged: 4 2.2360689 +0.0000009 -0.0020263 Note that the error can be estimated more accurately by taking the difference between the current iterate and next iterate rather than the previous iterate. The other derivative solvers can be investigated by changing 'gsl_root_fdfsolver_newton' to 'gsl_root_fdfsolver_secant' or 'gsl_root_fdfsolver_steffenson'.  File: gsl-ref.info, Node: Root Finding References and Further Reading, Prev: Root Finding Examples, Up: One dimensional Root-Finding 33.11 References and Further Reading ==================================== For information on the Brent-Dekker algorithm see the following two papers, R. P. Brent, "An algorithm with guaranteed convergence for finding a zero of a function", 'Computer Journal', 14 (1971) 422-425 J. C. P. Bus and T. J. Dekker, "Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function", 'ACM Transactions of Mathematical Software', Vol. 1 No. 4 (1975) 330-345  File: gsl-ref.info, Node: One dimensional Minimization, Next: Multidimensional Root-Finding, Prev: One dimensional Root-Finding, Up: Top 34 One dimensional Minimization ******************************* This chapter describes routines for finding minima of arbitrary one-dimensional functions. The library provides low level components for a variety of iterative minimizers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the algorithms. Each class of methods uses the same framework, so that you can switch between minimizers at runtime without needing to recompile your program. Each instance of a minimizer keeps track of its own state, allowing the minimizers to be used in multi-threaded programs. The header file 'gsl_min.h' contains prototypes for the minimization functions and related declarations. To use the minimization algorithms to find the maximum of a function simply invert its sign. * Menu: * Minimization Overview:: * Minimization Caveats:: * Initializing the Minimizer:: * Providing the function to minimize:: * Minimization Iteration:: * Minimization Stopping Parameters:: * Minimization Algorithms:: * Minimization Examples:: * Minimization References and Further Reading::  File: gsl-ref.info, Node: Minimization Overview, Next: Minimization Caveats, Up: One dimensional Minimization 34.1 Overview ============= The minimization algorithms begin with a bounded region known to contain a minimum. The region is described by a lower bound a and an upper bound b, with an estimate of the location of the minimum x. The value of the function at x must be less than the value of the function at the ends of the interval, f(a) > f(x) < f(b) This condition guarantees that a minimum is contained somewhere within the interval. On each iteration a new point x' is selected using one of the available algorithms. If the new point is a better estimate of the minimum, i.e. where f(x') < f(x), then the current estimate of the minimum x is updated. The new point also allows the size of the bounded interval to be reduced, by choosing the most compact set of points which satisfies the constraint f(a) > f(x) < f(b). The interval is reduced until it encloses the true minimum to a desired tolerance. This provides a best estimate of the location of the minimum and a rigorous error estimate. Several bracketing algorithms are available within a single framework. The user provides a high-level driver for the algorithm, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, * initialize minimizer state, S, for algorithm T * update S using the iteration T * test S for convergence, and repeat iteration if necessary The state for the minimizers is held in a 'gsl_min_fminimizer' struct. The updating procedure uses only function evaluations (not derivatives).  File: gsl-ref.info, Node: Minimization Caveats, Next: Initializing the Minimizer, Prev: Minimization Overview, Up: One dimensional Minimization 34.2 Caveats ============ Note that minimization functions can only search for one minimum at a time. When there are several minima in the search area, the first minimum to be found will be returned; however it is difficult to predict which of the minima this will be. _In most cases, no error will be reported if you try to find a minimum in an area where there is more than one._ With all minimization algorithms it can be difficult to determine the location of the minimum to full numerical precision. The behavior of the function in the region of the minimum x^* can be approximated by a Taylor expansion, y = f(x^*) + (1/2) f''(x^*) (x - x^*)^2 and the second term of this expansion can be lost when added to the first term at finite precision. This magnifies the error in locating x^*, making it proportional to \sqrt \epsilon (where \epsilon is the relative accuracy of the floating point numbers). For functions with higher order minima, such as x^4, the magnification of the error is correspondingly worse. The best that can be achieved is to converge to the limit of numerical accuracy in the function values, rather than the location of the minimum itself.  File: gsl-ref.info, Node: Initializing the Minimizer, Next: Providing the function to minimize, Prev: Minimization Caveats, Up: One dimensional Minimization 34.3 Initializing the Minimizer =============================== -- Function: gsl_min_fminimizer * gsl_min_fminimizer_alloc (const gsl_min_fminimizer_type * T) This function returns a pointer to a newly allocated instance of a minimizer of type T. For example, the following code creates an instance of a golden section minimizer, const gsl_min_fminimizer_type * T = gsl_min_fminimizer_goldensection; gsl_min_fminimizer * s = gsl_min_fminimizer_alloc (T); If there is insufficient memory to create the minimizer then the function returns a null pointer and the error handler is invoked with an error code of 'GSL_ENOMEM'. -- Function: int gsl_min_fminimizer_set (gsl_min_fminimizer * S, gsl_function * F, double X_MINIMUM, double X_LOWER, double X_UPPER) This function sets, or resets, an existing minimizer S to use the function F and the initial search interval [X_LOWER, X_UPPER], with a guess for the location of the minimum X_MINIMUM. If the interval given does not contain a minimum, then the function returns an error code of 'GSL_EINVAL'. -- Function: int gsl_min_fminimizer_set_with_values (gsl_min_fminimizer * S, gsl_function * F, double X_MINIMUM, double F_MINIMUM, double X_LOWER, double F_LOWER, double X_UPPER, double F_UPPER) This function is equivalent to 'gsl_min_fminimizer_set' but uses the values F_MINIMUM, F_LOWER and F_UPPER instead of computing 'f(x_minimum)', 'f(x_lower)' and 'f(x_upper)'. -- Function: void gsl_min_fminimizer_free (gsl_min_fminimizer * S) This function frees all the memory associated with the minimizer S. -- Function: const char * gsl_min_fminimizer_name (const gsl_min_fminimizer * S) This function returns a pointer to the name of the minimizer. For example, printf ("s is a '%s' minimizer\n", gsl_min_fminimizer_name (s)); would print something like 's is a 'brent' minimizer'.  File: gsl-ref.info, Node: Providing the function to minimize, Next: Minimization Iteration, Prev: Initializing the Minimizer, Up: One dimensional Minimization 34.4 Providing the function to minimize ======================================= You must provide a continuous function of one variable for the minimizers to operate on. In order to allow for general parameters the functions are defined by a 'gsl_function' data type (*note Providing the function to solve::).  File: gsl-ref.info, Node: Minimization Iteration, Next: Minimization Stopping Parameters, Prev: Providing the function to minimize, Up: One dimensional Minimization 34.5 Iteration ============== The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any minimizer of the corresponding type. The same functions work for all minimizers so that different methods can be substituted at runtime without modifications to the code. -- Function: int gsl_min_fminimizer_iterate (gsl_min_fminimizer * S) This function performs a single iteration of the minimizer S. If the iteration encounters an unexpected problem then an error code will be returned, 'GSL_EBADFUNC' the iteration encountered a singular point where the function evaluated to 'Inf' or 'NaN'. 'GSL_FAILURE' the algorithm could not improve the current best approximation or bounding interval. The minimizer maintains a current best estimate of the position of the minimum at all times, and the current interval bounding the minimum. This information can be accessed with the following auxiliary functions, -- Function: double gsl_min_fminimizer_x_minimum (const gsl_min_fminimizer * S) This function returns the current estimate of the position of the minimum for the minimizer S. -- Function: double gsl_min_fminimizer_x_upper (const gsl_min_fminimizer * S) -- Function: double gsl_min_fminimizer_x_lower (const gsl_min_fminimizer * S) These functions return the current upper and lower bound of the interval for the minimizer S. -- Function: double gsl_min_fminimizer_f_minimum (const gsl_min_fminimizer * S) -- Function: double gsl_min_fminimizer_f_upper (const gsl_min_fminimizer * S) -- Function: double gsl_min_fminimizer_f_lower (const gsl_min_fminimizer * S) These functions return the value of the function at the current estimate of the minimum and at the upper and lower bounds of the interval for the minimizer S.  File: gsl-ref.info, Node: Minimization Stopping Parameters, Next: Minimization Algorithms, Prev: Minimization Iteration, Up: One dimensional Minimization 34.6 Stopping Parameters ======================== A minimization procedure should stop when one of the following conditions is true: * A minimum has been found to within the user-specified precision. * A user-specified maximum number of iterations has been reached. * An error has occurred. The handling of these conditions is under user control. The function below allows the user to test the precision of the current result. -- Function: int gsl_min_test_interval (double X_LOWER, double X_UPPER, double EPSABS, double EPSREL) This function tests for the convergence of the interval [X_LOWER, X_UPPER] with absolute error EPSABS and relative error EPSREL. The test returns 'GSL_SUCCESS' if the following condition is achieved, |a - b| < epsabs + epsrel min(|a|,|b|) when the interval x = [a,b] does not include the origin. If the interval includes the origin then \min(|a|,|b|) is replaced by zero (which is the minimum value of |x| over the interval). This ensures that the relative error is accurately estimated for minima close to the origin. This condition on the interval also implies that any estimate of the minimum x_m in the interval satisfies the same condition with respect to the true minimum x_m^*, |x_m - x_m^*| < epsabs + epsrel x_m^* assuming that the true minimum x_m^* is contained within the interval.  File: gsl-ref.info, Node: Minimization Algorithms, Next: Minimization Examples, Prev: Minimization Stopping Parameters, Up: One dimensional Minimization 34.7 Minimization Algorithms ============================ The minimization algorithms described in this section require an initial interval which is guaranteed to contain a minimum--if a and b are the endpoints of the interval and x is an estimate of the minimum then f(a) > f(x) < f(b). This ensures that the function has at least one minimum somewhere in the interval. If a valid initial interval is used then these algorithm cannot fail, provided the function is well-behaved. -- Minimizer: gsl_min_fminimizer_goldensection The "golden section algorithm" is the simplest method of bracketing the minimum of a function. It is the slowest algorithm provided by the library, with linear convergence. On each iteration, the algorithm first compares the subintervals from the endpoints to the current minimum. The larger subinterval is divided in a golden section (using the famous ratio (3-\sqrt 5)/2 = 0.3189660...) and the value of the function at this new point is calculated. The new value is used with the constraint f(a') > f(x') < f(b') to a select new interval containing the minimum, by discarding the least useful point. This procedure can be continued indefinitely until the interval is sufficiently small. Choosing the golden section as the bisection ratio can be shown to provide the fastest convergence for this type of algorithm. -- Minimizer: gsl_min_fminimizer_brent The "Brent minimization algorithm" combines a parabolic interpolation with the golden section algorithm. This produces a fast algorithm which is still robust. The outline of the algorithm can be summarized as follows: on each iteration Brent's method approximates the function using an interpolating parabola through three existing points. The minimum of the parabola is taken as a guess for the minimum. If it lies within the bounds of the current interval then the interpolating point is accepted, and used to generate a smaller interval. If the interpolating point is not accepted then the algorithm falls back to an ordinary golden section step. The full details of Brent's method include some additional checks to improve convergence. -- Minimizer: gsl_min_fminimizer_quad_golden This is a variant of Brent's algorithm which uses the safeguarded step-length algorithm of Gill and Murray.  File: gsl-ref.info, Node: Minimization Examples, Next: Minimization References and Further Reading, Prev: Minimization Algorithms, Up: One dimensional Minimization 34.8 Examples ============= The following program uses the Brent algorithm to find the minimum of the function f(x) = \cos(x) + 1, which occurs at x = \pi. The starting interval is (0,6), with an initial guess for the minimum of 2. #include #include #include #include double fn1 (double x, void * params) { return cos(x) + 1.0; } int main (void) { int status; int iter = 0, max_iter = 100; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = 2.0, m_expected = M_PI; double a = 0.0, b = 6.0; gsl_function F; F.function = &fn1; F.params = 0; T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc (T); gsl_min_fminimizer_set (s, &F, m, a, b); printf ("using %s method\n", gsl_min_fminimizer_name (s)); printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min", "err", "err(est)"); printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); do { iter++; status = gsl_min_fminimizer_iterate (s); m = gsl_min_fminimizer_x_minimum (s); a = gsl_min_fminimizer_x_lower (s); b = gsl_min_fminimizer_x_upper (s); status = gsl_min_test_interval (a, b, 0.001, 0.0); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d [%.7f, %.7f] " "%.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); } while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free (s); return status; } Here are the results of the minimization procedure. $ ./a.out 0 [0.0000000, 6.0000000] 2.0000000 -1.1415927 6.0000000 1 [2.0000000, 6.0000000] 3.2758640 +0.1342713 4.0000000 2 [2.0000000, 3.2831929] 3.2758640 +0.1342713 1.2831929 3 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862 4 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862 5 [2.8689068, 3.2758640] 3.1460585 +0.0044658 0.4069572 6 [3.1346075, 3.2758640] 3.1460585 +0.0044658 0.1412565 7 [3.1346075, 3.1874620] 3.1460585 +0.0044658 0.0528545 8 [3.1346075, 3.1460585] 3.1460585 +0.0044658 0.0114510 9 [3.1346075, 3.1460585] 3.1424060 +0.0008133 0.0114510 10 [3.1346075, 3.1424060] 3.1415885 -0.0000041 0.0077985 Converged: 11 [3.1415885, 3.1424060] 3.1415927 -0.0000000 0.0008175 gsl-1.16/doc/histogram2d.eps0000664000252300025230000016362212171574312012665 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%BoundingBox: 0 0 567 567 %%Title: paw.eps %%Creator: HIGZ Version 1.23/07 %%CreationDate: 98/05/04 19.25 %%EndComments %%BeginProlog 80 dict begin /s {stroke} def /l {lineto} def /m {moveto} def /t {translate} def /sw {stringwidth} def /r {rotate} def /rl {roll} def /R {repeat} def /d {rlineto} def /rm {rmoveto} def /gr {grestore} def /f {eofill} def /c {setrgbcolor} def /lw {setlinewidth} def /sd {setdash} def /cl {closepath} def /sf {scalefont setfont} def /black {0 setgray} def /box {m dup 0 exch d exch 0 d 0 exch neg d cl} def /NC{systemdict begin initclip end}def/C{NC box clip newpath}def /bl {box s} def /bf {box f} def /Y { 0 exch d} def /X { 0 d} def /mp {newpath /y exch def /x exch def} def /side {[w .77 mul w .23 mul] .385 w mul sd w 0 l currentpoint t -144 r} def /mr {mp x y w2 0 360 arc} def /m24 {mr s} def /m20 {mr f} def /mb {mp x y w2 add m w2 neg 0 d 0 w neg d w 0 d 0 w d cl} def /mt {mp x y w2 add m w2 neg w neg d w 0 d cl} def /m21 {mb f} def /m25 {mb s} def /m22 {mt f} def /m26 {mt s} def /m23 {mp x y w2 sub m w2 w d w neg 0 d cl f} def /m27 {mp x y w2 add m w3 neg w2 neg d w3 w2 neg d w3 w2 d cl s} def /m28 {mp x w2 sub y w2 sub w3 add m w3 0 d 0 w3 neg d w3 0 d 0 w3 d w3 0 d 0 w3 d w3 neg 0 d 0 w3 d w3 neg 0 d 0 w3 neg d w3 neg 0 d cl s } def /m29 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 4 {side} repeat cl fill gr} def /m30 {mp gsave x w2 sub y w2 add w3 sub m currentpoint t 5 {side} repeat s gr} def /m31 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d x w2 sub y w2 add m w w neg d x w2 sub y w2 sub m w w d s} def /m2 {mp x y w2 sub m 0 w d x w2 sub y m w 0 d s} def /m5 {mp x w2 sub y w2 sub m w w d x w2 sub y w2 add m w w neg d s} def /DP {/PT exch def gsave 47.2 47.2 scale PT 1 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 AA AA 55 55 > } image } if PT 2 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE BB BB EE EE > } image } if PT 3 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE FF FF BB BB FF FF EE EE > } image } if PT 4 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF DF DF BF BF 7F 7F FE FE FD FD FB FB F7 F7 EF EF > } image } if PT 5 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 7F 7F BF B F DF DF EF EF F7 F7 FB FB FD FD FE FE 7F 7F BF BF DF DF EF EF F7 F7 FB FB FD FD FE FE > } image } if PT 6 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB BB > } image } if PT 7 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 FF FF FF FF FF FF 00 00 > } image } if PT 8 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 EE EE 47 47 83 83 C5 C5 EE EE 5C 5C 38 38 74 74 > } image } if PT 9 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 EF EF EF EF D7 D7 38 38 FE FE FE FE 7D 7D 83 83 > } image } if PT 10 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 EF EF EF EF EF EF 00 00 FE FE FE FE FE FE 00 00 > } image } if PT 11 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F7 F7 B6 B6 D5 D5 E3 E3 D5 D5 B6 B6 F7 F7 FF FF 7F 7F 6B 6B 5D 5D 3E 3E 5D 5D 6B 6B 7F 7F FF FF > } image } if PT 12 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < E3 E3 DD DD BE BE BE BE BE BE DD DD E3 E3 FF FF 3E 3E DD DD EB EB EB EB EB EB DD DD 3E 3E FF FF > } image } if PT 13 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D FE FE 7D 7D BB BB D7 D7 EF EF D7 D7 BB BB 7D 7D > } image } if PT 14 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 00 00 EE EF EE EF EE EF 0E E0 EE EE EE EE EE EE 00 EE FE EE FE EE FE EE 00 00 FE EF FE EF FE EF > } image } if PT 15 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF DD DD AA AA DD DD FF FF 77 77 AA AA 77 77 FF FF > } image } if PT 16 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF F1 F1 EE EE 1F 1F FF FF > } image } if PT 17 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF EE EE DD DD BB BB FF FF > } image } if PT 18 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF BB BB DD DD EE EE FF FF > } image } if PT 19 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 1F FC 67 F3 7B EF BD DE BD DE DE BD E6 B3 F8 0F E6 B3 DE BD BD DE BD DE 7B EF 67 F3 1F FC 7F FF > } image } if PT 20 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB DD DD EE EE EE EE EE EE DD DD BB BB BB BB BB BB > } image } if PT 21 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE 0E 0E EF EF EF EF EF EF E0 E0 FE FE FE FE FE FE > } image } if PT 22 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F 70 70 F7 F7 F7 F7 F7 F7 07 07 7F 7F 7F 7F 7F 7F > } image } if PT 23 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 AA AA 55 55 A9 A9 D1 D1 E1 E1 D1 D1 A9 A9 55 55 > } image } if PT 24 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC EA A8 D5 54 EA A8 D5 54 E8 28 D4 54 E8 E8 D4 D4 E8 EA 54 D5 A8 EA 54 D5 00 C0 00 80 > } image } if PT 25 eq { 16 16 1 [ 16 0 0 16 neg 0 16 ] { < FF FE FF FC FF F8 FF F0 F0 00 F0 00 F0 20 F0 60 F0 E0 F1 E0 F3 E0 F0 00 E0 00 C0 00 80 00 00 00 > } image } if gr } def /FA { /PT exch def gsave clip 0 0 translate 1 1 54 { 1 sub 47.2 mul /Xcurr exch def 1 1 74 { 1 sub 47.2 mul /Ycurr exch def gsave Xcurr Ycurr translate PT DP gr } for } for gr newpath } def /reencdict 24 dict def /ReEncode {reencdict begin /nco&na exch def /nfnam exch def /basefontname exch def /basefontdict basefontname findfont def /newfont basefontdict maxlength dict def basefontdict {exch dup /FID ne {dup /Encoding eq {exch dup length array copy newfont 3 1 roll put} {exch newfont 3 1 roll put} ifelse} {pop pop} ifelse } forall newfont /FontName nfnam put nco&na aload pop nco&na length 2 idiv {newfont /Encoding get 3 1 roll put} repeat nfnam newfont definefont pop end } def /accvec [ 176 /agrave 181 /Agrave 190 /acircumflex 192 /Acircumflex 201 /adieresis 204 /Adieresis 209 /ccedilla 210 /Ccedilla 211 /eacute 212 /Eacute 213 /egrave 214 /Egrave 215 /ecircumflex 216 /Ecircumflex 217 /edieresis 218 /Edieresis 219 /icircumflex 220 /Icircumflex 221 /idieresis 222 /Idieresis 223 /ntilde 224 /Ntilde 226 /ocircumflex 228 /Ocircumflex 229 /odieresis 230 /Odieresis 231 /ucircumflex 236 /Ucircumflex 237 /udieresis 238 /Udieresis 239 /aring 242 /Aring 243 /ydieresis 244 /Ydieresis 246 /aacute 247 /Aacute 252 /ugrave 253 /Ugrave] def /Times-Roman /Times-Roman accvec ReEncode /Times-Italic /Times-Italic accvec ReEncode /Times-Bold /Times-Bold accvec ReEncode /Times-BoldItalic /Times-BoldItalic accvec ReEncode /Helvetica /Helvetica accvec ReEncode /Helvetica-Oblique /Helvetica-Oblique accvec ReEncode /Helvetica-Bold /Helvetica-Bold accvec ReEncode /Helvetica-BoldOblique /Helvetica-BoldOblique accvec ReEncode /Courier /Courier accvec ReEncode /Courier-Oblique /Courier-Oblique accvec ReEncode /Courier-Bold /Courier-Bold accvec ReEncode /Courier-BoldOblique /Courier-BoldOblique accvec ReEncode /oshow {gsave [] 0 sd true charpath stroke gr} def /stwn { /fs exch def /fn exch def /text exch def fn findfont fs sf text sw pop xs add /xs exch def} def /stwb { /fs exch def /fn exch def /nbas exch def /textf exch def textf length /tlen exch def nbas tlen gt {/nbas tlen def} if fn findfont fs sf textf dup length nbas sub nbas getinterval sw pop neg xs add /xs exch def} def /accspe [ 65 /plusminus 66 /bar 67 /existential 68 /universal 69 /exclam 70 /numbersign 71 /greater 72 /question 73 /integral 74 /colon 75 /semicolon 76 /less 77 /bracketleft 78 /bracketright 79 /greaterequal 80 /braceleft 81 /braceright 82 /radical 83 /spade 84 /heart 85 /diamond 86 /club 87 /lessequal 88 /multiply 89 /percent 90 /infinity 48 /circlemultiply 49 /circleplus 50 /emptyset 51 /lozenge 52 /bullet 53 /arrowright 54 /arrowup 55 /arrowleft 56 /arrowdown 57 /arrowboth 48 /degree 44 /comma 43 /plus 45 /angle 42 /angleleft 47 /divide 61 /notequal 40 /equivalence 41 /second 97 /approxequal 98 /congruent 99 /perpendicular 100 /partialdiff 101 /florin 102 /intersection 103 /union 104 /propersuperset 105 /reflexsuperset 106 /notsubset 107 /propersubset 108 /reflexsubset 109 /element 110 /notelement 111 /gradient 112 /logicaland 113 /logicalor 114 /arrowdblboth 115 /arrowdblleft 116 /arrowdblup 117 /arrowdblright 118 /arrowdbldown 119 /ampersand 120 /omega1 121 /similar 122 /aleph ] def /Symbol /Special accspe ReEncode %%EndProlog gsave .25 .25 scale gsave 0 0 t black [] 0 sd 1 lw 2268 2268 0 0 bl 2268 2268 0 0 C 1814 1814 227 227 C NC 891 227 m 38 10 d s 907 253 m 22 -16 d s 869 244 m 38 9 d s 869 244 m 22 -17 d s 929 237 m 39 9 d s 945 263 m 23 -17 d s 907 253 m 38 10 d s 968 246 m 38 10 d s 984 273 m 22 -17 d s 945 263 m 39 10 d s 1006 256 m 38 10 d s 1022 283 m 22 -17 d s 984 273 m 38 10 d s 1044 266 m 39 10 d s 1060 293 m 23 -17 d s 1022 283 m 38 10 d s 1083 276 m 38 9 d s 1099 302 m 22 -17 d s 1060 293 m 39 9 d s 1121 285 m 38 10 d s 1137 312 m 22 -17 d s 1099 302 m 38 10 d s 1159 295 m 39 10 d s 1176 322 m 22 -17 d s 1137 312 m 39 10 d s 1198 305 m 38 10 d s 1214 332 m 22 -17 d s 1176 322 m 38 10 d s 1236 315 m 38 9 d s 1252 341 m 22 -17 d s 1214 332 m 38 9 d s 1274 324 m 39 10 d s 1291 351 m 22 -17 d s 1252 341 m 39 10 d s 1313 334 m 38 10 d s 1329 361 m 22 -17 d s 1291 351 m 38 10 d s 1351 344 m 38 10 d s 1367 371 m 22 -17 d s 1329 361 m 38 10 d s 1329 361 m 12 -10 d s 1389 354 m 39 9 d s 1406 380 m 22 -17 d s 1367 371 m 39 9 d s 1428 363 m 38 10 d s 1444 390 m 22 -17 d s 1406 380 m 38 10 d s 1466 373 m 38 10 d s 1482 400 m 22 -17 d s 1444 390 m 38 10 d s 1504 383 m 39 10 d s 1521 410 m 22 -17 d s 1482 400 m 39 10 d s 1543 393 m 38 9 d s 1559 419 m 22 -17 d s 1521 410 m 38 9 d s 1581 402 m 38 10 d s 1597 429 m 22 -17 d s 1559 419 m 38 10 d s 1619 412 m 39 10 d s 1636 439 m 22 -17 d s 1597 429 m 39 10 d s 1658 422 m 38 10 d s 1674 449 m 22 -17 d s 1636 439 m 38 10 d s 1696 432 m 38 10 d s 1712 458 m 22 -16 d s 1674 449 m 38 9 d s 1734 442 m 39 9 d s 1751 468 m 22 -17 d s 1712 458 m 39 10 d s 1773 451 m 38 10 d s 1789 478 m 22 -17 d s 1751 468 m 38 10 d s 1811 461 m 38 10 d s 1827 488 m 22 -17 d s 1789 478 m 38 10 d s 1849 471 m 39 10 d s 1866 497 m 22 -16 d s 1827 488 m 39 9 d s 1888 481 m 38 9 d s 1904 507 m 22 -17 d s 1866 497 m 38 10 d s 1926 490 m 39 10 d s 1942 517 m 23 -17 d s 1904 507 m 38 10 d s 1965 500 m 38 10 d s 1981 527 m 22 -17 d s 1942 517 m 39 10 d s 2003 510 m 38 10 d s 2019 537 m 22 -17 d s 1981 527 m 38 10 d s 885 270 m 22 -17 d s 847 261 m 38 9 d s 847 261 m 22 -17 d s 923 280 m 22 -17 d s 885 270 m 38 10 d s 962 290 m 22 -17 d s 923 280 m 39 10 d s 1000 300 m 22 -17 d s 962 290 m 38 10 d s 1038 309 m 22 -16 d s 1000 300 m 38 9 d s 1077 319 m 22 -17 d s 1038 309 m 39 10 d s 1115 329 m 22 -17 d s 1077 319 m 38 10 d s 1153 339 m 23 -17 d s 1115 329 m 38 10 d s 1192 348 m 22 -16 d s 1153 339 m 39 9 d s 1230 358 m 22 -17 d s 1192 348 m 38 10 d s 1268 368 m 23 -17 d s 1230 358 m 38 10 d s 1307 378 m 22 -17 d s 1268 368 m 39 10 d s 1345 388 m 22 -17 d s 1307 378 m 38 10 d s 1319 368 m 10 -7 d s 1383 397 m 23 -17 d s 1345 388 m 38 9 d s 1422 407 m 22 -17 d s 1383 397 m 39 10 d s 1460 417 m 22 -17 d s 1422 407 m 38 10 d s 1498 427 m 23 -17 d s 1460 417 m 38 10 d s 1537 436 m 22 -17 d s 1498 427 m 39 9 d s 1575 446 m 22 -17 d s 1537 436 m 38 10 d s 1613 456 m 23 -17 d s 1575 446 m 38 10 d s 1652 466 m 22 -17 d s 1613 456 m 39 10 d s 1690 475 m 22 -17 d s 1652 466 m 38 9 d s 1729 485 m 22 -17 d s 1690 475 m 39 10 d s 1767 495 m 22 -17 d s 1729 485 m 38 10 d s 1805 505 m 22 -17 d s 1767 495 m 38 10 d s 1844 514 m 22 -17 d s 1805 505 m 39 9 d s 1882 524 m 22 -17 d s 1844 514 m 38 10 d s 1920 534 m 22 -17 d s 1882 524 m 38 10 d s 1959 544 m 22 -17 d s 1920 534 m 39 10 d s 1997 553 m 22 -16 d s 1959 544 m 38 9 d s 863 287 m 22 -17 d s 825 278 m 38 9 d s 825 278 m 22 -17 d s 901 297 m 22 -17 d s 863 287 m 38 10 d s 940 307 m 22 -17 d s 901 297 m 39 10 d s 978 317 m 22 -17 d s 940 307 m 38 10 d s 1016 326 m 22 -17 d s 978 317 m 38 9 d s 1055 336 m 22 -17 d s 1016 326 m 39 10 d s 1093 346 m 22 -17 d s 1055 336 m 38 10 d s 1131 356 m 22 -17 d s 1093 346 m 38 10 d s 1170 365 m 22 -17 d s 1131 356 m 39 9 d s 1208 375 m 22 -17 d s 1170 365 m 38 10 d s 1246 385 m 22 -17 d s 1208 375 m 38 10 d s 1285 395 m 22 -17 d s 1246 385 m 39 10 d s 1323 404 m 22 -16 d s 1285 395 m 38 9 d s 1361 414 m 22 -17 d s 1323 404 m 38 10 d s 1400 424 m 22 -17 d s 1361 414 m 39 10 d s 1438 434 m 22 -17 d s 1400 424 m 38 10 d s 1476 443 m 22 -16 d s 1438 434 m 38 9 d s 1515 453 m 22 -17 d s 1476 443 m 39 10 d s 1553 463 m 22 -17 d s 1515 453 m 38 10 d s 1591 473 m 22 -17 d s 1553 463 m 38 10 d s 1630 482 m 22 -16 d s 1591 473 m 39 9 d s 1594 471 m 3 -2 d s 1602 464 m 3 -2 d s 1605 462 m 3 -2 d s 1668 492 m 22 -17 d s 1630 482 m 38 10 d s 1706 502 m 23 -17 d s 1668 492 m 38 10 d s 1745 512 m 22 -17 d s 1706 502 m 39 10 d s 1783 522 m 22 -17 d s 1745 512 m 38 10 d s 1821 531 m 23 -17 d s 1783 522 m 38 9 d s 1860 541 m 22 -17 d s 1821 531 m 39 10 d s 1898 551 m 22 -17 d s 1860 541 m 38 10 d s 1936 561 m 23 -17 d s 1898 551 m 38 10 d s 1975 570 m 22 -17 d s 1936 561 m 39 9 d s 841 304 m 22 -17 d s 802 294 m 39 10 d s 802 294 m 23 -16 d s 879 314 m 22 -17 d s 841 304 m 38 10 d s 917 324 m 23 -17 d s 879 314 m 38 10 d s 956 333 m 22 -16 d s 917 324 m 39 9 d s 994 343 m 22 -17 d s 956 333 m 38 10 d s 1032 353 m 23 -17 d s 994 343 m 38 10 d s 1071 363 m 22 -17 d s 1032 353 m 39 10 d s 1109 373 m 22 -17 d s 1071 363 m 38 10 d s 1147 382 m 23 -17 d s 1109 373 m 38 9 d s 1186 392 m 22 -17 d s 1147 382 m 39 10 d s 1224 402 m 22 -17 d s 1186 392 m 38 10 d s 1262 412 m 23 -17 d s 1224 402 m 38 10 d s 1301 421 m 22 -17 d s 1262 412 m 39 9 d s 1339 431 m 22 -17 d s 1301 421 m 38 10 d s 1378 441 m 22 -17 d s 1339 431 m 39 10 d s 1416 451 m 22 -17 d s 1378 441 m 38 10 d s 1454 460 m 22 -17 d s 1416 451 m 38 9 d s 1493 470 m 22 -17 d s 1454 460 m 39 10 d s 1531 480 m 22 -17 d s 1493 470 m 38 10 d s 1501 464 m 3 -2 d s 1509 457 m 3 -2 d s 1512 455 m 3 -2 d s 1569 490 m 22 -17 d s 1531 480 m 38 10 d s 1608 499 m 22 -17 d s 1569 490 m 39 9 d s 1646 509 m 22 -17 d s 1608 499 m 38 10 d s 1684 519 m 22 -17 d s 1646 509 m 38 10 d s 1723 529 m 22 -17 d s 1684 519 m 39 10 d s 1761 538 m 22 -16 d s 1723 529 m 38 9 d s 1799 548 m 22 -17 d s 1761 538 m 38 10 d s 1838 558 m 22 -17 d s 1799 548 m 39 10 d s 1876 568 m 22 -17 d s 1838 558 m 38 10 d s 1914 577 m 22 -16 d s 1876 568 m 38 9 d s 1953 587 m 22 -17 d s 1914 577 m 39 10 d s 819 321 m 22 -17 d s 780 311 m 39 10 d s 780 311 m 22 -17 d s 857 331 m 22 -17 d s 819 321 m 38 10 d s 895 341 m 22 -17 d s 857 331 m 38 10 d s 934 350 m 22 -17 d s 895 341 m 39 9 d s 972 360 m 22 -17 d s 934 350 m 38 10 d s 1010 370 m 22 -17 d s 972 360 m 38 10 d s 1049 380 m 22 -17 d s 1010 370 m 39 10 d s 1087 389 m 22 -16 d s 1049 380 m 38 9 d s 1125 399 m 22 -17 d s 1087 389 m 38 10 d s 1164 409 m 22 -17 d s 1125 399 m 39 10 d s 1202 419 m 22 -17 d s 1164 409 m 38 10 d s 1240 428 m 22 -16 d s 1202 419 m 38 9 d s 1279 438 m 22 -17 d s 1240 428 m 39 10 d s 1317 448 m 22 -17 d s 1279 438 m 38 10 d s 1355 458 m 23 -17 d s 1317 448 m 38 10 d s 1394 468 m 22 -17 d s 1355 458 m 39 10 d s 1432 477 m 22 -17 d s 1394 468 m 38 9 d s 1470 487 m 23 -17 d s 1432 477 m 38 10 d s 1509 497 m 22 -17 d s 1470 487 m 39 10 d s 1547 507 m 22 -17 d s 1509 497 m 38 10 d s 1585 516 m 23 -17 d s 1547 507 m 38 9 d s 1624 526 m 22 -17 d s 1585 516 m 39 10 d s 1662 536 m 22 -17 d s 1624 526 m 38 10 d s 1700 546 m 23 -17 d s 1662 536 m 38 10 d s 1739 555 m 22 -17 d s 1700 546 m 39 9 d s 1777 565 m 22 -17 d s 1739 555 m 38 10 d s 1815 575 m 23 -17 d s 1777 565 m 38 10 d s 1854 585 m 22 -17 d s 1815 575 m 39 10 d s 1892 594 m 22 -17 d s 1854 585 m 38 9 d s 1931 604 m 22 -17 d s 1892 594 m 39 10 d s 796 338 m 23 -17 d s 758 328 m 38 10 d s 758 328 m 22 -17 d s 835 348 m 22 -17 d s 796 338 m 39 10 d s 873 358 m 22 -17 d s 835 348 m 38 10 d s 911 367 m 23 -17 d s 873 358 m 38 9 d s 950 377 m 22 -17 d s 911 367 m 39 10 d s 988 387 m 22 -17 d s 950 377 m 38 10 d s 1026 397 m 23 -17 d s 988 387 m 38 10 d s 1065 406 m 22 -17 d s 1026 397 m 39 9 d s 1103 416 m 22 -17 d s 1065 406 m 38 10 d s 1142 426 m 22 -17 d s 1103 416 m 39 10 d s 1180 436 m 22 -17 d s 1142 426 m 38 10 d s 1218 445 m 22 -17 d s 1180 436 m 38 9 d s 1257 455 m 22 -17 d s 1218 445 m 39 10 d s 1295 465 m 22 -17 d s 1257 455 m 38 10 d s 1333 475 m 22 -17 d s 1295 465 m 38 10 d s 1372 484 m 22 -16 d s 1333 475 m 39 9 d s 1410 494 m 22 -17 d s 1372 484 m 38 10 d s 1448 504 m 22 -17 d s 1410 494 m 38 10 d s 1487 514 m 22 -17 d s 1448 504 m 39 10 d s 1525 523 m 22 -16 d s 1487 514 m 38 9 d s 1563 533 m 22 -17 d s 1525 523 m 38 10 d s 1602 543 m 22 -17 d s 1563 533 m 39 10 d s 1640 553 m 22 -17 d s 1602 543 m 38 10 d s 1678 562 m 22 -16 d s 1640 553 m 38 9 d s 1717 572 m 22 -17 d s 1678 562 m 39 10 d s 1755 582 m 22 -17 d s 1717 572 m 38 10 d s 1793 592 m 22 -17 d s 1755 582 m 38 10 d s 1832 602 m 22 -17 d s 1793 592 m 39 10 d s 1870 611 m 22 -17 d s 1832 602 m 38 9 d s 1908 621 m 23 -17 d s 1870 611 m 38 10 d s 774 355 m 22 -17 d s 736 345 m 38 10 d s 736 345 m 22 -17 d s 813 365 m 22 -17 d s 774 355 m 39 10 d s 851 374 m 22 -16 d s 813 365 m 38 9 d s 889 384 m 22 -17 d s 851 374 m 38 10 d s 927 371 m 2 1 d s 932 372 m 2 1 d s 937 374 m 13 3 d s 928 394 m 22 -17 d s 889 384 m 39 10 d s 950 377 m 10 3 d s 963 380 m 5 2 d s 970 382 m 3 1 d s 978 384 m 2 1 d s 966 404 m 22 -17 d s 928 394 m 38 10 d s 1004 413 m 22 -16 d s 966 404 m 38 9 d s 1043 423 m 22 -17 d s 1004 413 m 39 10 d s 1081 433 m 22 -17 d s 1043 423 m 38 10 d s 1119 443 m 23 -17 d s 1081 433 m 38 10 d s 1158 453 m 22 -17 d s 1119 443 m 39 10 d s 1196 462 m 22 -17 d s 1158 453 m 38 9 d s 1228 448 m 3 1 d s 1236 450 m 3 1 d s 1241 451 m 5 2 d s 1249 453 m 8 2 d s 1234 472 m 23 -17 d s 1196 462 m 38 10 d s 1257 455 m 12 3 d s 1276 460 m 9 2 d s 1273 482 m 22 -17 d s 1234 472 m 39 10 d s 1311 492 m 22 -17 d s 1273 482 m 38 10 d s 1349 501 m 23 -17 d s 1311 492 m 38 9 d s 1388 511 m 22 -17 d s 1349 501 m 39 10 d s 1426 521 m 22 -17 d s 1388 511 m 38 10 d s 1448 504 m 16 4 d s 1466 508 m 3 1 d s 1471 510 m 3 X s 1464 531 m 23 -17 d s 1426 521 m 38 10 d s 1497 516 m 2 1 d s 1504 518 m 3 1 d s 1510 520 m 5 1 d s 1517 522 m 8 1 d s 1503 540 m 22 -17 d s 1464 531 m 39 9 d s 1541 550 m 22 -17 d s 1503 540 m 38 10 d s 1579 560 m 23 -17 d s 1541 550 m 38 10 d s 1618 570 m 22 -17 d s 1579 560 m 39 10 d s 1656 579 m 22 -17 d s 1618 570 m 38 9 d s 1695 589 m 22 -17 d s 1656 579 m 39 10 d s 1717 572 m 15 4 d s 1735 577 m 2 X s 1740 578 m 2 1 d s 1733 599 m 22 -17 d s 1695 589 m 38 10 d s 1771 609 m 22 -17 d s 1733 599 m 38 10 d s 1810 618 m 22 -16 d s 1771 609 m 39 9 d s 1848 628 m 22 -17 d s 1810 618 m 38 10 d s 1886 638 m 22 -17 d s 1848 628 m 38 10 d s 752 372 m 22 -17 d s 714 362 m 38 10 d s 714 362 m 22 -17 d s 791 382 m 22 -17 d s 752 372 m 39 10 d s 829 391 m 22 -17 d s 791 382 m 38 9 d s 867 401 m 22 -17 d s 829 391 m 38 10 d s 906 411 m 22 -17 d s 867 401 m 39 10 d s 944 421 m 22 -17 d s 906 411 m 38 10 d s 982 430 m 22 -17 d s 944 421 m 38 9 d s 1021 440 m 22 -17 d s 982 430 m 39 10 d s 1059 450 m 22 -17 d s 1021 440 m 38 10 d s 1097 460 m 22 -17 d s 1059 450 m 38 10 d s 1136 469 m 22 -16 d s 1097 460 m 39 9 d s 1174 479 m 22 -17 d s 1136 469 m 38 10 d s 1212 489 m 22 -17 d s 1174 479 m 38 10 d s 1251 499 m 22 -17 d s 1212 489 m 39 10 d s 1289 508 m 22 -16 d s 1251 499 m 38 9 d s 1327 518 m 22 -17 d s 1289 508 m 38 10 d s 1366 528 m 22 -17 d s 1327 518 m 39 10 d s 1404 538 m 22 -17 d s 1366 528 m 38 10 d s 1442 548 m 22 -17 d s 1404 538 m 38 10 d s 1481 557 m 22 -17 d s 1442 548 m 39 9 d s 1519 567 m 22 -17 d s 1481 557 m 38 10 d s 1557 577 m 22 -17 d s 1519 567 m 38 10 d s 1596 587 m 22 -17 d s 1557 577 m 39 10 d s 1634 596 m 22 -17 d s 1596 587 m 38 9 d s 1672 606 m 23 -17 d s 1634 596 m 38 10 d s 1711 616 m 22 -17 d s 1672 606 m 39 10 d s 1749 626 m 22 -17 d s 1711 616 m 38 10 d s 1787 635 m 23 -17 d s 1749 626 m 38 9 d s 1826 645 m 22 -17 d s 1787 635 m 39 10 d s 1864 655 m 22 -17 d s 1826 645 m 38 10 d s 730 389 m 22 -17 d s 692 379 m 38 10 d s 692 379 m 22 -17 d s 768 398 m 23 -16 d s 730 389 m 38 9 d s 807 408 m 22 -17 d s 768 398 m 39 10 d s 845 418 m 22 -17 d s 807 408 m 38 10 d s 883 428 m 23 -17 d s 845 418 m 38 10 d s 922 438 m 22 -17 d s 883 428 m 39 10 d s 960 447 m 22 -17 d s 922 438 m 38 9 d s 998 457 m 23 -17 d s 960 447 m 38 10 d s 1037 467 m 22 -17 d s 998 457 m 39 10 d s 1075 477 m 22 -17 d s 1037 467 m 38 10 d s 1113 486 m 23 -17 d s 1075 477 m 38 9 d s 1152 496 m 22 -17 d s 1113 486 m 39 10 d s 1190 506 m 22 -17 d s 1152 496 m 38 10 d s 1228 516 m 23 -17 d s 1190 506 m 38 10 d s 1267 525 m 22 -17 d s 1228 516 m 39 9 d s 1305 535 m 22 -17 d s 1267 525 m 38 10 d s 1344 545 m 22 -17 d s 1305 535 m 39 10 d s 1382 555 m 22 -17 d s 1344 545 m 38 10 d s 1420 564 m 22 -16 d s 1382 555 m 38 9 d s 1459 574 m 22 -17 d s 1420 564 m 39 10 d s 1497 584 m 22 -17 d s 1459 574 m 38 10 d s 1535 594 m 22 -17 d s 1497 584 m 38 10 d s 1574 603 m 22 -16 d s 1535 594 m 39 9 d s 1612 613 m 22 -17 d s 1574 603 m 38 10 d s 1650 623 m 22 -17 d s 1612 613 m 38 10 d s 1689 633 m 22 -17 d s 1650 623 m 39 10 d s 1727 643 m 22 -17 d s 1689 633 m 38 10 d s 1765 652 m 22 -17 d s 1727 643 m 38 9 d s 1804 662 m 22 -17 d s 1765 652 m 39 10 d s 1842 672 m 22 -17 d s 1804 662 m 38 10 d s 708 406 m 22 -17 d s 670 396 m 38 10 d s 670 396 m 22 -17 d s 746 415 m 22 -17 d s 708 406 m 38 9 d s 785 425 m 22 -17 d s 746 415 m 39 10 d s 823 435 m 22 -17 d s 785 425 m 38 10 d s 861 445 m 22 -17 d s 823 435 m 38 10 d s 900 454 m 22 -16 d s 861 445 m 39 9 d s 938 464 m 22 -17 d s 900 454 m 38 10 d s 976 474 m 22 -17 d s 938 464 m 38 10 d s 1015 484 m 22 -17 d s 976 474 m 39 10 d s 1075 477 m 206 Y s 1037 674 m 38 9 d s 1037 467 m 207 Y s 1015 691 m 22 -17 d s 1015 484 m 207 Y s 1053 700 m 22 -17 d s 1015 691 m 38 9 d s 1113 486 m 148 Y s 1075 624 m 38 10 d s 1091 651 m 22 -17 d s 1076 647 m 15 4 d s 1152 496 m 187 Y s 1113 673 m 39 10 d s 1113 634 m 39 Y s 1091 690 m 22 -17 d s 1091 651 m 39 Y s 1130 700 m 22 -17 d s 1091 690 m 39 10 d s 1168 523 m 22 -17 d s 1153 519 m 15 4 d s 1206 533 m 22 -17 d s 1168 523 m 38 10 d s 1245 542 m 22 -17 d s 1206 533 m 39 9 d s 1283 552 m 22 -17 d s 1245 542 m 38 10 d s 1321 562 m 23 -17 d s 1283 552 m 38 10 d s 1360 572 m 22 -17 d s 1321 562 m 39 10 d s 1398 581 m 22 -17 d s 1360 572 m 38 9 d s 1436 591 m 23 -17 d s 1398 581 m 38 10 d s 1475 601 m 22 -17 d s 1436 591 m 39 10 d s 1513 611 m 22 -17 d s 1475 601 m 38 10 d s 1551 620 m 23 -17 d s 1513 611 m 38 9 d s 1590 630 m 22 -17 d s 1551 620 m 39 10 d s 1628 640 m 22 -17 d s 1590 630 m 38 10 d s 1666 650 m 23 -17 d s 1628 640 m 38 10 d s 1705 659 m 22 -16 d s 1666 650 m 39 9 d s 1743 669 m 22 -17 d s 1705 659 m 38 10 d s 1781 679 m 23 -17 d s 1743 669 m 38 10 d s 1820 689 m 22 -17 d s 1781 679 m 39 10 d s 686 423 m 22 -17 d s 647 413 m 39 10 d s 647 413 m 23 -17 d s 724 432 m 22 -17 d s 686 423 m 38 9 d s 762 442 m 23 -17 d s 724 432 m 38 10 d s 801 452 m 22 -17 d s 762 442 m 39 10 d s 839 462 m 22 -17 d s 801 452 m 38 10 d s 877 471 m 23 -17 d s 839 462 m 38 9 d s 916 481 m 22 -17 d s 877 471 m 39 10 d s 954 491 m 22 -17 d s 916 481 m 38 10 d s 992 501 m 23 -17 d s 954 491 m 38 10 d s 992 629 m 23 -17 d s 992 501 m 128 Y s 992 629 m 23 6 d s 1076 657 m 15 4 d s 1077 672 m 14 -11 d s 1151 535 m 17 -12 d s 1184 549 m 22 -16 d s 1151 541 m 33 8 d s 1223 559 m 22 -17 d s 1184 549 m 39 10 d s 1261 569 m 22 -17 d s 1223 559 m 38 10 d s 1299 579 m 22 -17 d s 1261 569 m 38 10 d s 1338 588 m 22 -16 d s 1299 579 m 39 9 d s 1376 598 m 22 -17 d s 1338 588 m 38 10 d s 1414 608 m 22 -17 d s 1376 598 m 38 10 d s 1453 618 m 22 -17 d s 1414 608 m 39 10 d s 1491 628 m 22 -17 d s 1453 618 m 38 10 d s 1529 637 m 22 -17 d s 1491 628 m 38 9 d s 1568 647 m 22 -17 d s 1529 637 m 39 10 d s 1606 657 m 22 -17 d s 1568 647 m 38 10 d s 1644 667 m 22 -17 d s 1606 657 m 38 10 d s 1683 676 m 22 -17 d s 1644 667 m 39 9 d s 1721 686 m 22 -17 d s 1683 676 m 38 10 d s 1759 696 m 22 -17 d s 1721 686 m 38 10 d s 1798 706 m 22 -17 d s 1759 696 m 39 10 d s 664 439 m 22 -16 d s 625 430 m 39 9 d s 625 430 m 22 -17 d s 702 449 m 22 -17 d s 664 439 m 38 10 d s 740 459 m 22 -17 d s 702 449 m 38 10 d s 779 469 m 22 -17 d s 740 459 m 39 10 d s 817 478 m 22 -16 d s 779 469 m 38 9 d s 855 488 m 22 -17 d s 817 478 m 38 10 d s 894 498 m 22 -17 d s 855 488 m 39 10 d s 932 508 m 22 -17 d s 894 498 m 38 10 d s 970 518 m 22 -17 d s 932 508 m 38 10 d s 1031 694 m 23 Y s 992 707 m 39 10 d s 992 629 m 78 Y s 970 724 m 22 -17 d s 970 518 m 206 Y s 1009 734 m 22 -17 d s 970 724 m 39 10 d s 1069 689 m 18 Y s 1031 697 m 38 10 d s 1047 724 m 22 -17 d s 1028 719 m 19 5 d s 1162 566 m 22 -17 d s 1152 564 m 10 2 d s 1200 576 m 23 -17 d s 1162 566 m 38 10 d s 1239 586 m 22 -17 d s 1200 576 m 39 10 d s 1277 596 m 22 -17 d s 1239 586 m 38 10 d s 1315 605 m 23 -17 d s 1277 596 m 38 9 d s 1354 615 m 22 -17 d s 1315 605 m 39 10 d s 1392 625 m 22 -17 d s 1354 615 m 38 10 d s 1430 635 m 23 -17 d s 1392 625 m 38 10 d s 1469 644 m 22 -16 d s 1430 635 m 39 9 d s 1507 654 m 22 -17 d s 1469 644 m 38 10 d s 1545 664 m 23 -17 d s 1507 654 m 38 10 d s 1584 674 m 22 -17 d s 1545 664 m 39 10 d s 1622 683 m 22 -16 d s 1584 674 m 38 9 d s 1661 693 m 22 -17 d s 1622 683 m 39 10 d s 1699 703 m 22 -17 d s 1661 693 m 38 10 d s 1737 713 m 22 -17 d s 1699 703 m 38 10 d s 1776 723 m 22 -17 d s 1737 713 m 39 10 d s 641 434 m 2 X s 646 435 m 2 1 d s 651 436 m 13 3 d s 641 456 m 23 -17 d s 603 447 m 38 9 d s 603 447 m 22 -17 d s 664 439 m 38 10 d s 680 466 m 22 -17 d s 641 456 m 39 10 d s 702 449 m 15 4 d s 720 454 m 2 X s 725 455 m 3 1 d s 718 476 m 22 -17 d s 680 466 m 38 10 d s 757 486 m 22 -17 d s 718 476 m 39 10 d s 795 495 m 22 -17 d s 757 486 m 38 9 d s 833 505 m 22 -17 d s 795 495 m 38 10 d s 872 515 m 22 -17 d s 833 505 m 39 10 d s 909 502 m 3 1 d s 914 503 m 3 1 d s 919 505 m 13 3 d s 910 525 m 22 -17 d s 872 515 m 38 10 d s 932 508 m 38 10 d s 948 534 m 22 -16 d s 910 525 m 38 9 d s 948 534 m 21 6 d s 1152 574 m 10 -8 d s 1177 570 m 3 1 d s 1183 572 m 2 X s 1188 573 m 12 3 d s 1178 593 m 22 -17 d s 1153 586 m 25 7 d s 1211 579 m 2 X s 1218 581 m 3 X s 1223 582 m 6 1 d s 1231 584 m 8 2 d s 1217 603 m 22 -17 d s 1178 593 m 39 10 d s 1239 586 m 12 3 d s 1258 591 m 10 2 d s 1255 613 m 22 -17 d s 1217 603 m 38 10 d s 1293 622 m 22 -17 d s 1255 613 m 38 9 d s 1332 632 m 22 -17 d s 1293 622 m 39 10 d s 1370 642 m 22 -17 d s 1332 632 m 38 10 d s 1392 625 m 38 10 d s 1408 652 m 22 -17 d s 1370 642 m 38 10 d s 1430 635 m 39 9 d s 1447 661 m 22 -17 d s 1408 652 m 39 9 d s 1485 671 m 22 -17 d s 1447 661 m 38 10 d s 1523 681 m 22 -17 d s 1485 671 m 38 10 d s 1562 691 m 22 -17 d s 1523 681 m 39 10 d s 1592 676 m 2 X s 1604 679 m 11 3 d s 1617 682 m 5 1 d s 1600 700 m 22 -17 d s 1562 691 m 38 9 d s 1622 683 m 39 10 d s 1638 710 m 23 -17 d s 1600 700 m 38 10 d s 1661 693 m 38 10 d s 1677 720 m 22 -17 d s 1638 710 m 39 10 d s 1699 703 m 38 10 d s 1715 730 m 22 -17 d s 1677 720 m 38 10 d s 1744 715 m 5 1 d s 1756 718 m 10 2 d s 1771 721 m 5 2 d s 1753 739 m 23 -16 d s 1715 730 m 38 9 d s 619 473 m 22 -17 d s 581 463 m 38 10 d s 581 463 m 22 -16 d s 658 483 m 22 -17 d s 619 473 m 39 10 d s 696 493 m 22 -17 d s 658 483 m 38 10 d s 734 503 m 23 -17 d s 696 493 m 38 10 d s 773 512 m 22 -17 d s 734 503 m 39 9 d s 811 522 m 22 -17 d s 773 512 m 38 10 d s 849 532 m 23 -17 d s 811 522 m 38 10 d s 888 542 m 22 -17 d s 849 532 m 39 10 d s 926 551 m 22 -17 d s 888 542 m 38 9 d s 964 561 m 5 -4 d s 926 551 m 38 10 d s 964 561 m 6 1 d s 1156 610 m 22 -17 d s 1151 609 m 5 1 d s 1194 620 m 23 -17 d s 1156 610 m 38 10 d s 1233 629 m 22 -16 d s 1194 620 m 39 9 d s 1271 639 m 22 -17 d s 1233 629 m 38 10 d s 1310 649 m 22 -17 d s 1271 639 m 39 10 d s 1348 659 m 22 -17 d s 1310 649 m 38 10 d s 1386 668 m 22 -16 d s 1348 659 m 38 9 d s 1425 678 m 22 -17 d s 1386 668 m 39 10 d s 1463 688 m 22 -17 d s 1425 678 m 38 10 d s 1501 698 m 22 -17 d s 1463 688 m 38 10 d s 1540 708 m 22 -17 d s 1501 698 m 39 10 d s 1578 717 m 22 -17 d s 1540 708 m 38 9 d s 1616 727 m 22 -17 d s 1578 717 m 38 10 d s 1655 737 m 22 -17 d s 1616 727 m 39 10 d s 1693 747 m 22 -17 d s 1655 737 m 38 10 d s 1731 756 m 22 -17 d s 1693 747 m 38 9 d s 597 490 m 22 -17 d s 559 480 m 38 10 d s 559 480 m 22 -17 d s 636 500 m 22 -17 d s 597 490 m 39 10 d s 674 510 m 22 -17 d s 636 500 m 38 10 d s 712 519 m 22 -16 d s 674 510 m 38 9 d s 751 529 m 22 -17 d s 712 519 m 39 10 d s 789 539 m 22 -17 d s 751 529 m 38 10 d s 827 549 m 22 -17 d s 789 539 m 38 10 d s 866 558 m 22 -16 d s 827 549 m 39 9 d s 904 568 m 22 -17 d s 866 558 m 38 10 d s 942 578 m 22 -17 d s 904 568 m 38 10 d s 942 578 m 28 7 d s 1151 614 m 5 -4 d s 1172 637 m 22 -17 d s 1152 631 m 20 6 d s 1211 646 m 22 -17 d s 1172 637 m 39 9 d s 1249 656 m 22 -17 d s 1211 646 m 38 10 d s 1287 666 m 23 -17 d s 1249 656 m 38 10 d s 1326 676 m 22 -17 d s 1287 666 m 39 10 d s 1364 685 m 22 -17 d s 1326 676 m 38 9 d s 1402 695 m 23 -17 d s 1364 685 m 38 10 d s 1441 705 m 22 -17 d s 1402 695 m 39 10 d s 1479 715 m 22 -17 d s 1441 705 m 38 10 d s 1517 724 m 23 -16 d s 1479 715 m 38 9 d s 1556 734 m 22 -17 d s 1517 724 m 39 10 d s 1594 744 m 22 -17 d s 1556 734 m 38 10 d s 1632 754 m 23 -17 d s 1594 744 m 38 10 d s 1671 763 m 22 -16 d s 1632 754 m 39 9 d s 1709 773 m 22 -17 d s 1671 763 m 38 10 d s 575 507 m 22 -17 d s 537 497 m 38 10 d s 537 497 m 22 -17 d s 613 517 m 23 -17 d s 575 507 m 38 10 d s 652 527 m 22 -17 d s 613 517 m 39 10 d s 690 536 m 22 -17 d s 652 527 m 38 9 d s 728 546 m 23 -17 d s 690 536 m 38 10 d s 767 556 m 22 -17 d s 728 546 m 39 10 d s 805 566 m 22 -17 d s 767 556 m 38 10 d s 843 575 m 23 -17 d s 805 566 m 38 9 d s 882 585 m 22 -17 d s 843 575 m 39 10 d s 920 595 m 22 -17 d s 882 585 m 38 10 d s 958 605 m 12 -9 d s 920 595 m 38 10 d s 958 605 m 11 2 d s 1153 652 m 19 -15 d s 1189 663 m 22 -17 d s 1153 654 m 36 9 d s 1227 673 m 22 -17 d s 1189 663 m 38 10 d s 1265 683 m 22 -17 d s 1227 673 m 38 10 d s 1304 693 m 22 -17 d s 1265 683 m 39 10 d s 1342 702 m 22 -17 d s 1304 693 m 38 9 d s 1380 712 m 22 -17 d s 1342 702 m 38 10 d s 1419 722 m 22 -17 d s 1380 712 m 39 10 d s 1457 732 m 22 -17 d s 1419 722 m 38 10 d s 1495 741 m 22 -17 d s 1457 732 m 38 9 d s 1534 751 m 22 -17 d s 1495 741 m 39 10 d s 1572 761 m 22 -17 d s 1534 751 m 38 10 d s 1610 771 m 22 -17 d s 1572 761 m 38 10 d s 1649 780 m 22 -17 d s 1610 771 m 39 9 d s 1687 790 m 22 -17 d s 1649 780 m 38 10 d s 553 524 m 22 -17 d s 515 514 m 38 10 d s 515 514 m 22 -17 d s 591 534 m 22 -17 d s 553 524 m 38 10 d s 630 543 m 22 -16 d s 591 534 m 39 9 d s 668 553 m 22 -17 d s 630 543 m 38 10 d s 706 563 m 22 -17 d s 668 553 m 38 10 d s 745 573 m 22 -17 d s 706 563 m 39 10 d s 783 583 m 22 -17 d s 745 573 m 38 10 d s 821 592 m 22 -17 d s 783 583 m 38 9 d s 860 602 m 22 -17 d s 821 592 m 39 10 d s 898 612 m 22 -17 d s 860 602 m 38 10 d s 936 622 m 22 -17 d s 898 612 m 38 10 d s 936 622 m 34 8 d s 1166 680 m 23 -17 d s 1151 676 m 15 4 d s 1205 690 m 22 -17 d s 1166 680 m 39 10 d s 1243 700 m 22 -17 d s 1205 690 m 38 10 d s 1281 709 m 23 -16 d s 1243 700 m 38 9 d s 1320 719 m 22 -17 d s 1281 709 m 39 10 d s 1358 729 m 22 -17 d s 1320 719 m 38 10 d s 1396 739 m 23 -17 d s 1358 729 m 38 10 d s 1435 748 m 22 -16 d s 1396 739 m 39 9 d s 1473 758 m 22 -17 d s 1435 748 m 38 10 d s 1511 768 m 23 -17 d s 1473 758 m 38 10 d s 1550 778 m 22 -17 d s 1511 768 m 39 10 d s 1588 788 m 22 -17 d s 1550 778 m 38 10 d s 1627 797 m 22 -17 d s 1588 788 m 39 9 d s 1665 807 m 22 -17 d s 1627 797 m 38 10 d s 531 541 m 22 -17 d s 492 531 m 39 10 d s 492 531 m 23 -17 d s 569 551 m 22 -17 d s 531 541 m 38 10 d s 607 560 m 23 -17 d s 569 551 m 38 9 d s 646 570 m 22 -17 d s 607 560 m 39 10 d s 684 580 m 22 -17 d s 646 570 m 38 10 d s 723 590 m 22 -17 d s 684 580 m 39 10 d s 761 599 m 22 -16 d s 723 590 m 38 9 d s 799 609 m 22 -17 d s 761 599 m 38 10 d s 838 619 m 22 -17 d s 799 609 m 39 10 d s 876 629 m 22 -17 d s 838 619 m 38 10 d s 914 638 m 22 -16 d s 876 629 m 38 9 d s 953 648 m 17 -13 d s 914 638 m 39 10 d s 953 648 m 17 5 d s 953 648 m 12 -9 d s 1075 679 m 16 4 d s 1144 697 m 22 -17 d s 1136 695 m 8 2 d s 1183 707 m 22 -17 d s 1144 697 m 39 10 d s 1221 717 m 22 -17 d s 1183 707 m 38 10 d s 1259 726 m 22 -17 d s 1221 717 m 38 9 d s 1298 736 m 22 -17 d s 1259 726 m 39 10 d s 1336 746 m 22 -17 d s 1298 736 m 38 10 d s 1374 756 m 22 -17 d s 1336 746 m 38 10 d s 1413 765 m 22 -17 d s 1374 756 m 39 9 d s 1451 775 m 22 -17 d s 1413 765 m 38 10 d s 1489 785 m 22 -17 d s 1451 775 m 38 10 d s 1528 795 m 22 -17 d s 1489 785 m 39 10 d s 1566 804 m 22 -16 d s 1528 795 m 38 9 d s 1604 814 m 23 -17 d s 1566 804 m 38 10 d s 1643 824 m 22 -17 d s 1604 814 m 39 10 d s 492 531 m s 509 558 m 22 -17 d s 470 548 m 39 10 d s 470 548 m 22 -17 d s 547 568 m 22 -17 d s 509 558 m 38 10 d s 585 577 m 22 -17 d s 547 568 m 38 9 d s 624 587 m 22 -17 d s 585 577 m 39 10 d s 662 597 m 22 -17 d s 624 587 m 38 10 d s 700 607 m 23 -17 d s 662 597 m 38 10 d s 739 616 m 22 -17 d s 700 607 m 39 9 d s 777 626 m 22 -17 d s 739 616 m 38 10 d s 815 636 m 23 -17 d s 777 626 m 38 10 d s 854 646 m 22 -17 d s 815 636 m 39 10 d s 892 655 m 22 -17 d s 854 646 m 38 9 d s 930 665 m 23 -17 d s 892 655 m 38 10 d s 930 665 m 39 10 d s 930 665 m 9 -6 d s 941 657 m 6 -5 d s 1084 704 m 15 -12 d s 1068 700 m 16 4 d s 1122 714 m 22 -17 d s 1084 704 m 38 10 d s 1160 724 m 23 -17 d s 1122 714 m 38 10 d s 1199 733 m 22 -16 d s 1160 724 m 39 9 d s 1237 743 m 22 -17 d s 1199 733 m 38 10 d s 1276 753 m 22 -17 d s 1237 743 m 39 10 d s 1314 763 m 22 -17 d s 1276 753 m 38 10 d s 1352 773 m 22 -17 d s 1314 763 m 38 10 d s 1391 782 m 22 -17 d s 1352 773 m 39 9 d s 1429 792 m 22 -17 d s 1391 782 m 38 10 d s 1467 802 m 22 -17 d s 1429 792 m 38 10 d s 1506 812 m 22 -17 d s 1467 802 m 39 10 d s 1544 821 m 22 -17 d s 1506 812 m 38 9 d s 1582 831 m 22 -17 d s 1544 821 m 38 10 d s 1621 841 m 22 -17 d s 1582 831 m 39 10 d s 487 575 m 22 -17 d s 448 565 m 39 10 d s 448 565 m 22 -17 d s 525 584 m 22 -16 d s 487 575 m 38 9 d s 563 594 m 22 -17 d s 525 584 m 38 10 d s 602 604 m 22 -17 d s 563 594 m 39 10 d s 640 614 m 22 -17 d s 602 604 m 38 10 d s 678 623 m 22 -16 d s 640 614 m 38 9 d s 717 633 m 22 -17 d s 678 623 m 39 10 d s 755 643 m 22 -17 d s 717 633 m 38 10 d s 793 653 m 22 -17 d s 755 643 m 38 10 d s 832 663 m 22 -17 d s 793 653 m 39 10 d s 870 672 m 22 -17 d s 832 663 m 38 9 d s 908 682 m 22 -17 d s 870 672 m 38 10 d s 947 692 m 22 -17 d s 908 682 m 39 10 d s 916 676 m 5 -3 d s 926 669 m 4 -4 d s 947 692 m 23 6 d s 1062 721 m 22 -17 d s 1055 719 m 7 2 d s 1100 731 m 22 -17 d s 1062 721 m 38 10 d s 1138 741 m 22 -17 d s 1100 731 m 38 10 d s 1177 750 m 22 -17 d s 1138 741 m 39 9 d s 1215 760 m 22 -17 d s 1177 750 m 38 10 d s 1253 770 m 23 -17 d s 1215 760 m 38 10 d s 1292 780 m 22 -17 d s 1253 770 m 39 10 d s 1330 789 m 22 -16 d s 1292 780 m 38 9 d s 1368 799 m 23 -17 d s 1330 789 m 38 10 d s 1407 809 m 22 -17 d s 1368 799 m 39 10 d s 1445 819 m 22 -17 d s 1407 809 m 38 10 d s 1483 828 m 23 -16 d s 1445 819 m 38 9 d s 1522 838 m 22 -17 d s 1483 828 m 39 10 d s 1560 848 m 22 -17 d s 1522 838 m 38 10 d s 1598 858 m 23 -17 d s 1560 848 m 38 10 d s 464 592 m 23 -17 d s 426 582 m 38 10 d s 426 582 m 22 -17 d s 503 601 m 22 -17 d s 464 592 m 39 9 d s 541 611 m 22 -17 d s 503 601 m 38 10 d s 579 621 m 23 -17 d s 541 611 m 38 10 d s 618 631 m 22 -17 d s 579 621 m 39 10 d s 656 640 m 22 -17 d s 618 631 m 38 9 d s 694 650 m 23 -17 d s 656 640 m 38 10 d s 733 660 m 22 -17 d s 694 650 m 39 10 d s 771 670 m 22 -17 d s 733 660 m 38 10 d s 809 679 m 23 -16 d s 771 670 m 38 9 d s 848 689 m 22 -17 d s 809 679 m 39 10 d s 886 699 m 22 -17 d s 848 689 m 38 10 d s 924 709 m 23 -17 d s 886 699 m 38 10 d s 963 718 m 7 -5 d s 924 709 m 39 9 d s 963 718 m 7 2 d s 1040 738 m 22 -17 d s 1011 731 m 29 7 d s 1078 748 m 22 -17 d s 1040 738 m 38 10 d s 1116 758 m 22 -17 d s 1078 748 m 38 10 d s 1155 767 m 22 -17 d s 1116 758 m 39 9 d s 1193 777 m 22 -17 d s 1155 767 m 38 10 d s 1231 787 m 22 -17 d s 1193 777 m 38 10 d s 1270 797 m 22 -17 d s 1231 787 m 39 10 d s 1308 806 m 22 -17 d s 1270 797 m 38 9 d s 1346 816 m 22 -17 d s 1308 806 m 38 10 d s 1385 826 m 22 -17 d s 1346 816 m 39 10 d s 1423 836 m 22 -17 d s 1385 826 m 38 10 d s 1461 845 m 22 -17 d s 1423 836 m 38 9 d s 1500 855 m 22 -17 d s 1461 845 m 39 10 d s 1538 865 m 22 -17 d s 1500 855 m 38 10 d s 1576 875 m 22 -17 d s 1538 865 m 38 10 d s 442 609 m 22 -17 d s 404 599 m 38 10 d s 404 599 m 22 -17 d s 481 618 m 22 -17 d s 442 609 m 39 9 d s 519 628 m 22 -17 d s 481 618 m 38 10 d s 557 638 m 22 -17 d s 519 628 m 38 10 d s 596 648 m 22 -17 d s 557 638 m 39 10 d s 634 657 m 22 -17 d s 596 648 m 38 9 d s 672 667 m 22 -17 d s 634 657 m 38 10 d s 711 677 m 22 -17 d s 672 667 m 39 10 d s 749 687 m 22 -17 d s 711 677 m 38 10 d s 787 696 m 22 -17 d s 749 687 m 38 9 d s 826 706 m 22 -17 d s 787 696 m 39 10 d s 864 716 m 22 -17 d s 826 706 m 38 10 d s 902 726 m 22 -17 d s 864 716 m 38 10 d s 941 735 m 22 -17 d s 902 726 m 39 9 d s 979 745 m 18 -13 d s 941 735 m 38 10 d s 1017 755 m 23 -17 d s 979 745 m 38 10 d s 1056 765 m 22 -17 d s 1017 755 m 39 10 d s 1094 774 m 22 -16 d s 1056 765 m 38 9 d s 1132 784 m 23 -17 d s 1094 774 m 38 10 d s 1171 794 m 22 -17 d s 1132 784 m 39 10 d s 1209 804 m 22 -17 d s 1171 794 m 38 10 d s 1247 813 m 23 -16 d s 1209 804 m 38 9 d s 1286 823 m 22 -17 d s 1247 813 m 39 10 d s 1324 833 m 22 -17 d s 1286 823 m 38 10 d s 1362 843 m 23 -17 d s 1324 833 m 38 10 d s 1401 853 m 22 -17 d s 1362 843 m 39 10 d s 1439 862 m 22 -17 d s 1401 853 m 38 9 d s 1500 855 m 158 Y s 1461 1003 m 39 10 d s 1461 845 m 158 Y s 1439 1020 m 22 -17 d s 1439 862 m 158 Y s 1477 1030 m 23 -17 d s 1439 1020 m 38 10 d s 1538 865 m 79 Y s 1500 934 m 38 10 d s 1516 961 m 22 -17 d s 1498 956 m 18 5 d s 1576 875 m 108 Y s 1538 973 m 38 10 d s 1538 944 m 29 Y s 1516 990 m 22 -17 d s 1516 961 m 29 Y s 1554 1000 m 22 -17 d s 1516 990 m 38 10 d s 420 625 m 22 -16 d s 382 616 m 38 9 d s 382 616 m 22 -17 d s 458 635 m 23 -17 d s 420 625 m 38 10 d s 497 645 m 22 -17 d s 458 635 m 39 10 d s 535 655 m 22 -17 d s 497 645 m 38 10 d s 573 664 m 23 -16 d s 535 655 m 38 9 d s 612 674 m 22 -17 d s 573 664 m 39 10 d s 650 684 m 22 -17 d s 612 674 m 38 10 d s 689 694 m 22 -17 d s 650 684 m 39 10 d s 727 703 m 22 -16 d s 689 694 m 38 9 d s 765 713 m 22 -17 d s 727 703 m 38 10 d s 804 723 m 22 -17 d s 765 713 m 39 10 d s 842 733 m 22 -17 d s 804 723 m 38 10 d s 880 743 m 22 -17 d s 842 733 m 38 10 d s 919 752 m 22 -17 d s 880 743 m 39 9 d s 957 762 m 22 -17 d s 919 752 m 38 10 d s 995 772 m 22 -17 d s 957 762 m 38 10 d s 1034 782 m 22 -17 d s 995 772 m 39 10 d s 1072 791 m 22 -17 d s 1034 782 m 38 9 d s 1110 801 m 22 -17 d s 1072 791 m 38 10 d s 1149 811 m 22 -17 d s 1110 801 m 39 10 d s 1187 821 m 22 -17 d s 1149 811 m 38 10 d s 1225 830 m 22 -17 d s 1187 821 m 38 9 d s 1264 840 m 22 -17 d s 1225 830 m 39 10 d s 1302 850 m 22 -17 d s 1264 840 m 38 10 d s 1340 860 m 22 -17 d s 1302 850 m 38 10 d s 1379 869 m 22 -16 d s 1340 860 m 39 9 d s 1417 879 m 22 -17 d s 1379 869 m 38 10 d s 1417 958 m 22 -17 d s 1417 879 m 79 Y s 1417 958 m 23 6 d s 1498 966 m 18 4 d s 1499 984 m 17 -14 d s 1554 1000 m 20 Y s 1516 1010 m 38 10 d s 1516 990 m 20 Y s 1494 1027 m 22 -17 d s 1494 1017 m 10 Y s 1532 1037 m 22 -17 d s 1494 1027 m 38 10 d s 398 642 m 22 -17 d s 360 633 m 38 9 d s 360 633 m 22 -17 d s 436 652 m 22 -17 d s 398 642 m 38 10 d s 475 662 m 22 -17 d s 436 652 m 39 10 d s 513 672 m 22 -17 d s 475 662 m 38 10 d s 551 681 m 22 -17 d s 513 672 m 38 9 d s 590 691 m 22 -17 d s 551 681 m 39 10 d s 628 701 m 22 -17 d s 590 691 m 38 10 d s 666 711 m 23 -17 d s 628 701 m 38 10 d s 705 720 m 22 -17 d s 666 711 m 39 9 d s 743 730 m 22 -17 d s 705 720 m 38 10 d s 781 740 m 23 -17 d s 743 730 m 38 10 d s 820 750 m 22 -17 d s 781 740 m 39 10 d s 858 759 m 22 -16 d s 820 750 m 38 9 d s 896 769 m 23 -17 d s 858 759 m 38 10 d s 935 779 m 22 -17 d s 896 769 m 39 10 d s 973 789 m 22 -17 d s 935 779 m 38 10 d s 1011 798 m 23 -16 d s 973 789 m 38 9 d s 1050 808 m 22 -17 d s 1011 798 m 39 10 d s 1088 818 m 22 -17 d s 1050 808 m 38 10 d s 1126 828 m 23 -17 d s 1088 818 m 38 10 d s 1165 838 m 22 -17 d s 1126 828 m 39 10 d s 1203 847 m 22 -17 d s 1165 838 m 38 9 d s 1242 857 m 22 -17 d s 1203 847 m 39 10 d s 1280 867 m 22 -17 d s 1242 857 m 38 10 d s 1318 877 m 22 -17 d s 1280 867 m 38 10 d s 1357 886 m 22 -17 d s 1318 877 m 39 9 d s 1395 896 m 22 -17 d s 1357 886 m 38 10 d s 1395 955 m 22 -17 d s 1395 896 m 59 Y s 1433 965 m 3 -2 d s 1395 955 m 38 10 d s 376 659 m 22 -17 d s 337 649 m 39 10 d s 337 649 m 23 -16 d s 414 669 m 22 -17 d s 376 659 m 38 10 d s 453 679 m 22 -17 d s 414 669 m 39 10 d s 513 672 m 787 Y s 475 1450 m 38 9 d s 475 662 m 788 Y s 453 1467 m 22 -17 d s 453 679 m 788 Y s 491 1476 m 22 -17 d s 453 1467 m 38 9 d s 551 681 m 867 Y s 513 1538 m 38 10 d s 513 1459 m 79 Y s 491 1555 m 22 -17 d s 491 1476 m 79 Y s 529 1565 m 22 -17 d s 491 1555 m 38 10 d s 590 691 m 788 Y s 551 1469 m 39 10 d s 568 1496 m 22 -17 d s 552 1492 m 16 4 d s 606 718 m 22 -17 d s 591 714 m 15 4 d s 644 728 m 22 -17 d s 606 718 m 38 10 d s 683 737 m 22 -17 d s 644 728 m 39 9 d s 721 747 m 22 -17 d s 683 737 m 38 10 d s 759 757 m 22 -17 d s 721 747 m 38 10 d s 798 767 m 22 -17 d s 759 757 m 39 10 d s 836 776 m 22 -17 d s 798 767 m 38 9 d s 874 786 m 22 -17 d s 836 776 m 38 10 d s 913 796 m 22 -17 d s 874 786 m 39 10 d s 951 806 m 22 -17 d s 913 796 m 38 10 d s 989 815 m 22 -17 d s 951 806 m 38 9 d s 1028 825 m 22 -17 d s 989 815 m 39 10 d s 1066 835 m 22 -17 d s 1028 825 m 38 10 d s 1104 845 m 22 -17 d s 1066 835 m 38 10 d s 1143 854 m 22 -16 d s 1104 845 m 39 9 d s 1181 864 m 22 -17 d s 1143 854 m 38 10 d s 1219 874 m 23 -17 d s 1181 864 m 38 10 d s 1258 884 m 22 -17 d s 1219 874 m 39 10 d s 1296 893 m 22 -16 d s 1258 884 m 38 9 d s 1334 903 m 23 -17 d s 1296 893 m 38 10 d s 1373 913 m 22 -17 d s 1334 903 m 39 10 d s 1373 913 m 23 6 d s 337 649 m cl s 354 676 m 22 -17 d s 315 666 m 39 10 d s 315 666 m 22 -17 d s 392 686 m 22 -17 d s 354 676 m 38 10 d s 430 696 m 23 -17 d s 392 686 m 38 10 d s 453 1536 m 38 9 d s 453 1467 m 69 Y s 430 1552 m 23 -16 d s 430 696 m 856 Y s 469 1562 m 22 -17 d s 430 1552 m 39 10 d s 568 1496 m 226 Y s 529 1713 m 39 9 d s 529 1565 m 148 Y s 507 1730 m 22 -17 d s 507 1559 m 171 Y s 545 1739 m 23 -17 d s 507 1730 m 38 9 d s 589 730 m 17 -12 d s 622 744 m 22 -16 d s 589 736 m 33 8 d s 660 754 m 23 -17 d s 622 744 m 38 10 d s 699 764 m 22 -17 d s 660 754 m 39 10 d s 737 774 m 22 -17 d s 699 764 m 38 10 d s 775 783 m 23 -16 d s 737 774 m 38 9 d s 814 793 m 22 -17 d s 775 783 m 39 10 d s 852 803 m 22 -17 d s 814 793 m 38 10 d s 890 813 m 23 -17 d s 852 803 m 38 10 d s 929 823 m 22 -17 d s 890 813 m 39 10 d s 967 832 m 22 -17 d s 929 823 m 38 9 d s 1006 842 m 22 -17 d s 967 832 m 39 10 d s 1044 852 m 22 -17 d s 1006 842 m 38 10 d s 1082 862 m 22 -17 d s 1044 852 m 38 10 d s 1121 871 m 22 -17 d s 1082 862 m 39 9 d s 1159 881 m 22 -17 d s 1121 871 m 38 10 d s 1197 891 m 22 -17 d s 1159 881 m 38 10 d s 1236 901 m 22 -17 d s 1197 891 m 39 10 d s 1274 910 m 22 -17 d s 1236 901 m 38 9 d s 1312 920 m 22 -17 d s 1274 910 m 38 10 d s 1351 930 m 22 -17 d s 1312 920 m 39 10 d s 1389 940 m 5 -5 d s 1351 930 m 38 10 d s 1389 940 m 5 1 d s 332 693 m 22 -17 d s 293 683 m 39 10 d s 293 683 m 22 -17 d s 370 703 m 22 -17 d s 332 693 m 38 10 d s 408 713 m 22 -17 d s 370 703 m 38 10 d s 408 1530 m 22 -17 d s 408 713 m 817 Y s 408 1530 m 23 6 d s 485 1658 m 22 -17 d s 485 1549 m 109 Y s 485 1658 m 20 5 d s 600 761 m 22 -17 d s 590 759 m 10 2 d s 638 771 m 22 -17 d s 600 761 m 38 10 d s 677 781 m 22 -17 d s 638 771 m 39 10 d s 715 791 m 22 -17 d s 677 781 m 38 10 d s 753 800 m 22 -17 d s 715 791 m 38 9 d s 792 810 m 22 -17 d s 753 800 m 39 10 d s 830 820 m 22 -17 d s 792 810 m 38 10 d s 868 830 m 22 -17 d s 830 820 m 38 10 d s 907 839 m 22 -16 d s 868 830 m 39 9 d s 945 849 m 22 -17 d s 907 839 m 38 10 d s 983 859 m 23 -17 d s 945 849 m 38 10 d s 1022 869 m 22 -17 d s 983 859 m 39 10 d s 1060 878 m 22 -16 d s 1022 869 m 38 9 d s 1098 888 m 23 -17 d s 1060 878 m 38 10 d s 1137 898 m 22 -17 d s 1098 888 m 39 10 d s 1175 908 m 22 -17 d s 1137 898 m 38 10 d s 1213 918 m 23 -17 d s 1175 908 m 38 10 d s 1252 927 m 22 -17 d s 1213 918 m 39 9 d s 1290 937 m 22 -17 d s 1252 927 m 38 10 d s 1328 947 m 23 -17 d s 1290 937 m 38 10 d s 1367 957 m 22 -17 d s 1328 947 m 39 10 d s 1405 966 m 8 -6 d s 1367 957 m 38 9 d s 1405 966 m 36 9 d s 293 683 m cl s 309 710 m 23 -17 d s 271 700 m 38 10 d s 271 700 m 22 -17 d s 348 720 m 22 -17 d s 309 710 m 39 10 d s 386 729 m 22 -16 d s 348 720 m 38 9 d s 386 729 m 22 6 d s 590 769 m 10 -8 d s 616 788 m 22 -17 d s 591 782 m 25 6 d s 655 798 m 22 -17 d s 616 788 m 39 10 d s 693 808 m 22 -17 d s 655 798 m 38 10 d s 731 817 m 22 -17 d s 693 808 m 38 9 d s 770 827 m 22 -17 d s 731 817 m 39 10 d s 808 837 m 22 -17 d s 770 827 m 38 10 d s 846 847 m 22 -17 d s 808 837 m 38 10 d s 885 856 m 22 -17 d s 846 847 m 39 9 d s 923 866 m 22 -17 d s 885 856 m 38 10 d s 961 876 m 22 -17 d s 923 866 m 38 10 d s 1000 886 m 22 -17 d s 961 876 m 39 10 d s 1038 895 m 22 -17 d s 1000 886 m 38 9 d s 1076 905 m 22 -17 d s 1038 895 m 38 10 d s 1115 915 m 22 -17 d s 1076 905 m 39 10 d s 1153 925 m 22 -17 d s 1115 915 m 38 10 d s 1191 934 m 22 -16 d s 1153 925 m 38 9 d s 1230 944 m 22 -17 d s 1191 934 m 39 10 d s 1268 954 m 22 -17 d s 1230 944 m 38 10 d s 1323 946 m 3 X s 1306 964 m 22 -17 d s 1268 954 m 38 10 d s 1345 973 m 22 -16 d s 1306 964 m 39 9 d s 1383 983 m 22 -17 d s 1345 973 m 38 10 d s 1438 975 m 3 X s 1421 993 m 20 -15 d s 1383 983 m 38 10 d s 287 727 m 22 -17 d s 249 717 m 38 10 d s 249 717 m 22 -17 d s 326 737 m 22 -17 d s 287 727 m 39 10 d s 364 746 m 22 -17 d s 326 737 m 38 9 d s 402 756 m 5 -4 d s 364 746 m 38 10 d s 402 756 m 5 1 d s 594 805 m 22 -17 d s 589 804 m 5 1 d s 632 815 m 23 -17 d s 594 805 m 38 10 d s 671 824 m 22 -16 d s 632 815 m 39 9 d s 709 834 m 22 -17 d s 671 824 m 38 10 d s 747 844 m 23 -17 d s 709 834 m 38 10 d s 709 834 m 17 -13 d s 786 854 m 22 -17 d s 747 844 m 39 10 d s 824 863 m 22 -16 d s 786 854 m 38 9 d s 862 873 m 23 -17 d s 824 863 m 38 10 d s 901 883 m 22 -17 d s 862 873 m 39 10 d s 939 893 m 22 -17 d s 901 883 m 38 10 d s 977 903 m 23 -17 d s 939 893 m 38 10 d s 1016 912 m 22 -17 d s 977 903 m 39 9 d s 1054 922 m 22 -17 d s 1016 912 m 38 10 d s 1092 932 m 23 -17 d s 1054 922 m 38 10 d s 1131 942 m 22 -17 d s 1092 932 m 39 10 d s 1169 951 m 22 -17 d s 1131 942 m 38 9 d s 1208 961 m 22 -17 d s 1169 951 m 39 10 d s 1246 971 m 22 -17 d s 1208 961 m 38 10 d s 1284 981 m 22 -17 d s 1246 971 m 38 10 d s 1323 990 m 22 -17 d s 1284 981 m 39 9 d s 1361 1000 m 22 -17 d s 1323 990 m 38 10 d s 1399 1010 m 22 -17 d s 1361 1000 m 38 10 d s 249 717 m cl s 265 744 m 22 -17 d s 227 734 m 38 10 d s 227 734 m 22 -17 d s 303 754 m 23 -17 d s 265 744 m 38 10 d s 342 763 m 22 -17 d s 303 754 m 39 9 d s 380 773 m 22 -17 d s 342 763 m 38 10 d s 380 773 m 28 7 d s 589 809 m 5 -4 d s 610 832 m 22 -17 d s 590 826 m 20 6 d s 649 841 m 22 -17 d s 610 832 m 39 9 d s 687 851 m 22 -17 d s 649 841 m 38 10 d s 725 861 m 22 -17 d s 687 851 m 38 10 d s 764 871 m 22 -17 d s 725 861 m 39 10 d s 802 880 m 22 -17 d s 764 871 m 38 9 d s 840 890 m 22 -17 d s 802 880 m 38 10 d s 879 900 m 22 -17 d s 840 890 m 39 10 d s 917 910 m 22 -17 d s 879 900 m 38 10 d s 955 919 m 22 -16 d s 917 910 m 38 9 d s 994 929 m 22 -17 d s 955 919 m 39 10 d s 1032 939 m 22 -17 d s 994 929 m 38 10 d s 1070 949 m 22 -17 d s 1032 939 m 38 10 d s 1109 958 m 22 -16 d s 1070 949 m 39 9 d s 1147 968 m 22 -17 d s 1109 958 m 38 10 d s 1185 978 m 23 -17 d s 1147 968 m 38 10 d s 1224 988 m 22 -17 d s 1185 978 m 39 10 d s 1279 979 m 3 1 d s 1262 998 m 22 -17 d s 1224 988 m 38 10 d s 1300 1007 m 23 -17 d s 1262 998 m 38 9 d s 1339 1017 m 22 -17 d s 1300 1007 m 39 10 d s 1377 1027 m 22 -17 d s 1339 1017 m 38 10 d s [4 8] 0 sd 227 931 m 180 46 d s 589 1023 m 788 201 d s 227 1128 m 180 46 d s 589 1220 m 788 201 d s 227 1325 m 180 46 d s 589 1417 m 788 201 d s 227 1522 m 258 66 d s 566 1608 m 811 207 d s 227 1719 m 1150 293 d s [] 0 sd 227 734 m s 758 869 m 44 11 d s 979 925 m 111 29 d s 1244 993 m 133 34 d s 1377 1027 m 1014 Y s 227 1748 m 1150 293 d s 227 734 m 1014 Y s [4 8] 0 sd 1377 1224 m 664 -507 d s 1377 1421 m 664 -507 d s 1377 1618 m 664 -507 d s 1377 1815 m 664 -508 d s 1377 2012 m 664 -508 d s [] 0 sd 1377 1027 m s 1437 981 m 3 -3 d s 1619 842 m 7 -5 d s 1709 773 m s 1951 589 m 7 -6 d s 2041 520 m 1014 Y s 1377 2041 m 664 -507 d s 227 734 m 664 -507 d s 891 227 m 1014 Y s 227 1748 m 664 -507 d s 227 734 m 1014 Y s 891 227 m 1150 293 d s 2041 520 m 1014 Y s 891 1241 m 1150 293 d s 891 1241 m cl s 891 227 m 1150 293 d s 891 193 m 34 Y s 914 216 m 17 Y s 937 222 m 17 Y s 960 227 m 17 Y s 983 233 m 17 Y s 1006 222 m 34 Y s 1029 245 m 17 Y s 1052 251 m 17 Y s 1075 257 m 17 Y s 1098 262 m 18 Y s 1121 251 m 34 Y s 1144 274 m 17 Y s 1167 280 m 17 Y s 1190 286 m 17 Y s 1213 292 m 17 Y s 1236 281 m 34 Y s 1259 303 m 18 Y s 1282 309 m 17 Y s 1305 315 m 17 Y s 1328 321 m 17 Y s 1351 310 m 34 Y s 1374 333 m 17 Y s 1397 339 m 17 Y s 1420 344 m 18 Y s 1443 350 m 17 Y s 1466 339 m 34 Y s 1489 362 m 17 Y s 1512 368 m 17 Y s 1535 374 m 17 Y s 1558 380 m 17 Y s 1581 368 m 34 Y s 1604 391 m 17 Y s 1627 397 m 17 Y s 1650 403 m 17 Y s 1673 409 m 17 Y s 1696 398 m 34 Y s 1719 421 m 17 Y s 1742 426 m 17 Y s 1765 432 m 17 Y s 1788 438 m 17 Y s 1811 427 m 34 Y s 1834 450 m 17 Y s 1857 456 m 17 Y s 1880 462 m 17 Y s 1903 467 m 17 Y s 1926 456 m 34 Y s 1949 479 m 17 Y s 1972 485 m 17 Y s 1995 491 m 17 Y s 2018 497 m 17 Y s 2041 486 m 34 Y s 893 174 m -4 -2 d -3 -5 d -2 -7 d -5 Y 2 -7 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 1 7 d 5 Y -1 7 d -3 5 d -5 2 d -3 X cl s 994 203 m -5 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -4 2 d -3 X cl s 1018 174 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1034 197 m 3 1 d 5 5 d -32 Y s 1109 232 m -5 -1 d -3 -5 d -2 -8 d -4 Y 2 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 5 d -4 1 d -3 X cl s 1133 203 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1146 225 m 1 Y 2 3 d 1 2 d 3 1 d 6 X 3 -1 d 2 -2 d 1 -3 d -3 Y -1 -3 d -3 -5 d -15 -15 d 21 X s 1224 261 m -5 -1 d -3 -5 d -2 -7 d -5 Y 2 -7 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 7 d 5 Y -2 7 d -3 5 d -4 1 d -3 X cl s 1248 233 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 1263 261 m 17 X -10 -12 d 5 X 3 -1 d 2 -2 d 1 -4 d -3 Y -1 -5 d -4 -3 d -4 -1 d -5 X -4 1 d -2 2 d -1 3 d s 1339 291 m -5 -2 d -3 -4 d -1 -8 d -5 Y 1 -7 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 7 d 5 Y -2 8 d -3 4 d -4 2 d -3 X cl s 1363 262 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 1390 291 m -15 -22 d 23 X s 1390 291 m -32 Y s 1454 320 m -5 -2 d -3 -4 d -1 -8 d -4 Y 1 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -4 2 d -3 X cl s 1478 291 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1508 320 m -15 X -2 -14 d 2 2 d 4 1 d 5 X 5 -1 d 3 -3 d 1 -5 d -3 Y -1 -4 d -3 -3 d -5 -2 d -5 X -4 2 d -2 1 d -1 3 d s 1569 349 m -5 -1 d -3 -5 d -1 -7 d -5 Y 1 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 5 Y -2 7 d -3 5 d -4 1 d -3 X cl s 1593 320 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1625 345 m -2 3 d -4 1 d -3 X -5 -1 d -3 -5 d -2 -7 d -8 Y 2 -6 d 3 -3 d 5 -2 d 1 X 5 2 d 3 3 d 1 5 d 1 Y -1 5 d -3 3 d -5 1 d -1 X -5 -1 d -3 -3 d -2 -5 d s 1684 378 m -5 -1 d -3 -5 d -1 -7 d -5 Y 1 -7 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 7 d 5 Y -2 7 d -3 5 d -4 1 d -3 X cl s 1708 350 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 1741 378 m -15 -31 d s 1720 378 m 21 X s 1799 408 m -5 -2 d -3 -4 d -1 -8 d -4 Y 1 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -4 2 d -3 X cl s 1823 379 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1843 408 m -5 -2 d -1 -3 d -3 Y 1 -3 d 3 -1 d 6 -2 d 5 -1 d 3 -3 d 1 -3 d -5 Y -1 -3 d -2 -1 d -4 -2 d -6 X -5 2 d -1 1 d -2 3 d 5 Y 2 3 d 3 3 d 4 1 d 6 2 d 3 1 d 2 3 d 3 Y -2 3 d -4 2 d -6 X cl s 1914 437 m -5 -1 d -3 -5 d -1 -8 d -4 Y 1 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 5 d -4 1 d -3 X cl s 1938 408 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 1970 426 m -2 -4 d -3 -3 d -4 -2 d -2 X -4 2 d -3 3 d -2 4 d 2 Y 2 5 d 3 3 d 4 1 d 2 X 4 -1 d 3 -3 d 2 -7 d -7 Y -2 -8 d -3 -4 d -4 -2 d -3 X -5 2 d -1 3 d s 2039 460 m 3 2 d 5 4 d -31 Y s 891 227 m -664 507 d s 891 193 m 34 Y s 878 220 m 17 Y s 864 230 m 17 Y s 851 240 m 17 Y s 838 250 m 17 Y s 825 243 m 35 Y s 811 271 m 17 Y s 798 281 m 17 Y s 785 291 m 17 Y s 771 301 m 17 Y s 758 294 m 34 Y s 745 321 m 17 Y s 732 332 m 17 Y s 718 342 m 17 Y s 705 352 m 17 Y s 692 345 m 34 Y s 678 372 m 17 Y s 665 382 m 17 Y s 652 392 m 17 Y s 639 403 m 17 Y s 625 396 m 34 Y s 612 423 m 17 Y s 599 433 m 17 Y s 585 443 m 17 Y s 572 453 m 17 Y s 559 446 m 34 Y s 546 474 m 17 Y s 532 484 m 17 Y s 519 494 m 17 Y s 506 504 m 17 Y s 492 497 m 34 Y s 479 524 m 17 Y s 466 534 m 17 Y s 453 545 m 17 Y s 439 555 m 17 Y s 426 548 m 34 Y s 413 575 m 17 Y s 399 585 m 17 Y s 386 595 m 17 Y s 373 605 m 17 Y s 360 599 m 34 Y s 346 626 m 17 Y s 333 636 m 17 Y s 320 646 m 17 Y s 306 656 m 17 Y s 293 649 m 34 Y s 280 676 m 17 Y s 267 687 m 17 Y s 253 697 m 17 Y s 240 707 m 17 Y s 227 700 m 34 Y s 891 193 m 34 Y s 880 133 m -5 -2 d -3 -4 d -1 -8 d -4 Y 1 -8 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 8 d 4 Y -2 8 d -3 4 d -4 2 d -3 X cl s 771 183 m -4 -1 d -3 -5 d -2 -7 d -5 Y 2 -7 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 2 7 d 5 Y -2 7 d -3 5 d -5 1 d -3 X cl s 796 155 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 812 177 m 3 2 d 5 4 d -31 Y s 705 234 m -5 -1 d -3 -5 d -1 -7 d -5 Y 1 -8 d 3 -4 d 5 -2 d 3 X 5 2 d 3 4 d 1 8 d 5 Y -1 7 d -3 5 d -5 1 d -3 X cl s 729 205 m -1 -1 d 1 -2 d 2 2 d -2 1 d cl s 743 227 m 1 Y 1 3 d 2 2 d 3 1 d 6 X 3 -1 d 1 -2 d 2 -3 d -3 Y -2 -3 d -3 -5 d -15 -15 d 21 X s 639 285 m -5 -2 d -3 -4 d -1 -8 d -4 Y 1 -8 d 3 -4 d 5 -2 d 3 X 4 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -4 2 d -3 X cl s 663 256 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 678 285 m 17 X -10 -12 d 5 X 3 -2 d 2 -1 d 1 -5 d -3 Y -1 -4 d -3 -3 d -5 -2 d -5 X -4 2 d -2 1 d -1 3 d s 572 336 m -4 -2 d -3 -4 d -2 -8 d -5 Y 2 -7 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 1 7 d 5 Y -1 8 d -3 4 d -5 2 d -3 X cl s 596 307 m -1 -2 d 1 -1 d 2 1 d -2 2 d cl s 624 336 m -16 -22 d 23 X s 624 336 m -32 Y s 506 386 m -5 -1 d -3 -5 d -1 -7 d -5 Y 1 -7 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 7 d 5 Y -2 7 d -3 5 d -4 1 d -3 X cl s 530 358 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 560 386 m -15 X -1 -13 d 1 1 d 5 2 d 4 X 5 -2 d 3 -3 d 1 -4 d -3 Y -1 -5 d -3 -3 d -5 -1 d -4 X -5 1 d -1 2 d -2 3 d s 439 437 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 1 8 d 4 Y -1 8 d -3 4 d -5 2 d -3 X cl s 464 408 m -2 -1 d 2 -2 d 1 2 d -1 1 d cl s 495 432 m -1 3 d -5 2 d -3 X -4 -2 d -3 -4 d -2 -8 d -7 Y 2 -6 d 3 -3 d 4 -2 d 2 X 4 2 d 3 3 d 2 4 d 2 Y -2 4 d -3 3 d -4 2 d -2 X -4 -2 d -3 -3 d -2 -4 d s 373 488 m -5 -2 d -3 -4 d -1 -8 d -4 Y 1 -8 d 3 -5 d 5 -1 d 3 X 4 1 d 4 5 d 1 8 d 4 Y -1 8 d -4 4 d -4 2 d -3 X cl s 397 459 m -1 -2 d 1 -1 d 2 1 d -2 2 d cl s 430 488 m -15 -32 d s 409 488 m 21 X s 307 538 m -5 -1 d -3 -5 d -2 -7 d -5 Y 2 -7 d 3 -5 d 5 -1 d 3 X 4 1 d 3 5 d 2 7 d 5 Y -2 7 d -3 5 d -4 1 d -3 X cl s 331 510 m -2 -2 d 2 -1 d 1 1 d -1 2 d cl s 350 538 m -4 -1 d -2 -3 d -3 Y 2 -3 d 3 -2 d 6 -1 d 4 -2 d 3 -3 d 2 -3 d -4 Y -2 -3 d -1 -2 d -5 -1 d -6 X -4 1 d -2 2 d -1 3 d 4 Y 1 3 d 3 3 d 5 2 d 6 1 d 3 2 d 1 3 d 3 Y -1 3 d -5 1 d -6 X cl s 240 589 m -4 -1 d -3 -5 d -2 -7 d -5 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 1 8 d 5 Y -1 7 d -3 5 d -5 1 d -3 X cl s 264 560 m -1 -1 d 1 -2 d 2 2 d -2 1 d cl s 296 579 m -1 -5 d -3 -3 d -5 -2 d -2 X -4 2 d -3 3 d -2 5 d 1 Y 2 5 d 3 3 d 4 1 d 2 X 5 -1 d 3 -3 d 1 -6 d -8 Y -1 -8 d -3 -4 d -5 -2 d -3 X -5 2 d -1 3 d s 211 634 m 3 1 d 5 5 d -32 Y s 227 734 m 1014 Y s 193 734 m 34 X s 210 783 m 17 X s 210 832 m 17 X s 210 882 m 17 X s 193 931 m 34 X s 210 980 m 17 X s 210 1029 m 17 X s 210 1079 m 17 X s 193 1128 m 34 X s 210 1177 m 17 X s 210 1226 m 17 X s 210 1276 m 17 X s 193 1325 m 34 X s 210 1374 m 17 X s 210 1423 m 17 X s 210 1473 m 17 X s 193 1522 m 34 X s 210 1571 m 17 X s 210 1620 m 17 X s 210 1670 m 17 X s 193 1719 m 34 X s 193 1719 m 34 X s 153 750 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 116 939 m 2 Y 1 3 d 2 1 d 3 2 d 6 X 3 -2 d 1 -1 d 2 -3 d -3 Y -2 -3 d -3 -5 d -15 -15 d 21 X s 153 947 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 129 1144 m -15 -21 d 23 X s 129 1144 m -32 Y s 153 1144 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 134 1336 m -2 3 d -4 2 d -3 X -5 -2 d -3 -4 d -1 -8 d -7 Y 1 -6 d 3 -3 d 5 -2 d 1 X 5 2 d 3 3 d 1 4 d 2 Y -1 4 d -3 3 d -5 2 d -1 X -5 -2 d -3 -3 d -1 -4 d s 153 1341 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -4 d 4 -2 d 3 X 5 2 d 3 4 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 122 1538 m -5 -2 d -1 -3 d -3 Y 1 -3 d 3 -1 d 6 -2 d 5 -1 d 3 -3 d 1 -3 d -5 Y -1 -3 d -2 -2 d -4 -1 d -6 X -5 1 d -1 2 d -2 3 d 5 Y 2 3 d 3 3 d 4 1 d 6 2 d 3 1 d 2 3 d 3 Y -2 3 d -4 2 d -6 X cl s 153 1538 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 88 1729 m 3 1 d 5 5 d -32 Y s 123 1735 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 1 8 d 4 Y -1 8 d -3 4 d -5 2 d -3 X cl s 153 1735 m -4 -2 d -3 -4 d -2 -8 d -4 Y 2 -8 d 3 -5 d 4 -1 d 3 X 5 1 d 3 5 d 2 8 d 4 Y -2 8 d -3 4 d -5 2 d -3 X cl s 1041 71 m 18 X 3 Y -1 3 d -2 2 d -3 1 d -4 X -3 -1 d -3 -3 d -2 -5 d -3 Y 2 -4 d 3 -4 d 3 -1 d 4 X 3 1 d 3 4 d s 1068 80 m 17 -21 d s 1085 80 m -17 -21 d s 1112 80 m -21 Y s 1112 76 m -3 3 d -3 1 d -5 X -3 -1 d -3 -3 d -1 -5 d -3 Y 1 -4 d 3 -4 d 3 -1 d 5 X 3 1 d 3 4 d s 1124 80 m -21 Y s 1124 74 m 5 5 d 3 1 d 4 X 3 -1 d 2 -5 d -15 Y s 1141 74 m 4 5 d 3 1 d 5 X 3 -1 d 1 -5 d -15 Y s 1170 80 m -32 Y s 1170 76 m 3 3 d 3 1 d 4 X 3 -1 d 3 -3 d 2 -5 d -3 Y -2 -4 d -3 -4 d -3 -1 d -4 X -3 1 d -3 4 d s 1198 91 m -32 Y s 1209 71 m 18 X 3 Y -2 3 d -1 2 d -3 1 d -5 X -3 -1 d -3 -3 d -1 -5 d -3 Y 1 -4 d 3 -4 d 3 -1 d 5 X 3 1 d 3 4 d s gr gr showpage end %%EOF gsl-1.16/doc/multimin.texi0000664000252300025230000005627212171574312012464 00000000000000@cindex minimization, multidimensional This chapter describes routines for finding minima of arbitrary multidimensional functions. The library provides low level components for a variety of iterative minimizers and convergence tests. These can be combined by the user to achieve the desired solution, while providing full access to the intermediate steps of the algorithms. Each class of methods uses the same framework, so that you can switch between minimizers at runtime without needing to recompile your program. Each instance of a minimizer keeps track of its own state, allowing the minimizers to be used in multi-threaded programs. The minimization algorithms can be used to maximize a function by inverting its sign. The header file @file{gsl_multimin.h} contains prototypes for the minimization functions and related declarations. @menu * Multimin Overview:: * Multimin Caveats:: * Initializing the Multidimensional Minimizer:: * Providing a function to minimize:: * Multimin Iteration:: * Multimin Stopping Criteria:: * Multimin Algorithms with Derivatives:: * Multimin Algorithms without Derivatives:: * Multimin Examples:: * Multimin References and Further Reading:: @end menu @node Multimin Overview @section Overview The problem of multidimensional minimization requires finding a point @math{x} such that the scalar function, @tex \beforedisplay $$ f(x_1, \dots, x_n) $$ \afterdisplay @end tex @ifinfo @example f(x_1, @dots{}, x_n) @end example @end ifinfo @noindent takes a value which is lower than at any neighboring point. For smooth functions the gradient @math{g = \nabla f} vanishes at the minimum. In general there are no bracketing methods available for the minimization of @math{n}-dimensional functions. The algorithms proceed from an initial guess using a search algorithm which attempts to move in a downhill direction. Algorithms making use of the gradient of the function perform a one-dimensional line minimisation along this direction until the lowest point is found to a suitable tolerance. The search direction is then updated with local information from the function and its derivatives, and the whole process repeated until the true @math{n}-dimensional minimum is found. Algorithms which do not require the gradient of the function use different strategies. For example, the Nelder-Mead Simplex algorithm maintains @math{n+1} trial parameter vectors as the vertices of a @math{n}-dimensional simplex. On each iteration it tries to improve the worst vertex of the simplex by geometrical transformations. The iterations are continued until the overall size of the simplex has decreased sufficiently. Both types of algorithms use a standard framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, @itemize @bullet @item initialize minimizer state, @var{s}, for algorithm @var{T} @item update @var{s} using the iteration @var{T} @item test @var{s} for convergence, and repeat iteration if necessary @end itemize @noindent Each iteration step consists either of an improvement to the line-minimisation in the current direction or an update to the search direction itself. The state for the minimizers is held in a @code{gsl_multimin_fdfminimizer} struct or a @code{gsl_multimin_fminimizer} struct. @node Multimin Caveats @section Caveats @cindex Multimin, caveats Note that the minimization algorithms can only search for one local minimum at a time. When there are several local minima in the search area, the first minimum to be found will be returned; however it is difficult to predict which of the minima this will be. In most cases, no error will be reported if you try to find a local minimum in an area where there is more than one. It is also important to note that the minimization algorithms find local minima; there is no way to determine whether a minimum is a global minimum of the function in question. @node Initializing the Multidimensional Minimizer @section Initializing the Multidimensional Minimizer The following function initializes a multidimensional minimizer. The minimizer itself depends only on the dimension of the problem and the algorithm and can be reused for different problems. @deftypefun {gsl_multimin_fdfminimizer *} gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type * @var{T}, size_t @var{n}) @deftypefunx {gsl_multimin_fminimizer *} gsl_multimin_fminimizer_alloc (const gsl_multimin_fminimizer_type * @var{T}, size_t @var{n}) @tpindex gsl_multimin_fdfminimizer @tpindex gsl_multimin_fminimizer @tpindex gsl_multimin_fdfminimizer_type @tpindex gsl_multimin_fminimizer_type This function returns a pointer to a newly allocated instance of a minimizer of type @var{T} for an @var{n}-dimension function. If there is insufficient memory to create the minimizer then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * @var{s}, gsl_multimin_function_fdf * @var{fdf}, const gsl_vector * @var{x}, double @var{step_size}, double @var{tol}) @deftypefunx int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer * @var{s}, gsl_multimin_function * @var{f}, const gsl_vector * @var{x}, const gsl_vector * @var{step_size}) The function @code{gsl_multimin_fdfminimizer_set} initializes the minimizer @var{s} to minimize the function @var{fdf} starting from the initial point @var{x}. The size of the first trial step is given by @var{step_size}. The accuracy of the line minimization is specified by @var{tol}. The precise meaning of this parameter depends on the method used. Typically the line minimization is considered successful if the gradient of the function @math{g} is orthogonal to the current search direction @math{p} to a relative accuracy of @var{tol}, where @c{$p\cdot g < tol |p| |g|$} @math{dot(p,g) < tol |p| |g|}. A @var{tol} value of 0.1 is suitable for most purposes, since line minimization only needs to be carried out approximately. Note that setting @var{tol} to zero will force the use of ``exact'' line-searches, which are extremely expensive. The function @code{gsl_multimin_fminimizer_set} initializes the minimizer @var{s} to minimize the function @var{f}, starting from the initial point @var{x}. The size of the initial trial steps is given in vector @var{step_size}. The precise meaning of this parameter depends on the method used. @end deftypefun @deftypefun void gsl_multimin_fdfminimizer_free (gsl_multimin_fdfminimizer * @var{s}) @deftypefunx void gsl_multimin_fminimizer_free (gsl_multimin_fminimizer * @var{s}) This function frees all the memory associated with the minimizer @var{s}. @end deftypefun @deftypefun {const char *} gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx {const char *} gsl_multimin_fminimizer_name (const gsl_multimin_fminimizer * @var{s}) This function returns a pointer to the name of the minimizer. For example, @example printf ("s is a '%s' minimizer\n", gsl_multimin_fdfminimizer_name (s)); @end example @noindent would print something like @code{s is a 'conjugate_pr' minimizer}. @end deftypefun @node Providing a function to minimize @section Providing a function to minimize You must provide a parametric function of @math{n} variables for the minimizers to operate on. You may also need to provide a routine which calculates the gradient of the function and a third routine which calculates both the function value and the gradient together. In order to allow for general parameters the functions are defined by the following data types: @deftp {Data Type} gsl_multimin_function_fdf This data type defines a general function of @math{n} variables with parameters and the corresponding gradient vector of derivatives, @table @code @item double (* f) (const gsl_vector * @var{x}, void * @var{params}) this function should return the result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params}. If the function cannot be computed, an error value of @code{GSL_NAN} should be returned. @item void (* df) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{g}) this function should store the @var{n}-dimensional gradient @c{$g_i = \partial f(x,\hbox{\it params}) / \partial x_i$} @math{g_i = d f(x,params) / d x_i} in the vector @var{g} for argument @var{x} and parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item void (* fdf) (const gsl_vector * @var{x}, void * @var{params}, double * f, gsl_vector * @var{g}) This function should set the values of the @var{f} and @var{g} as above, for arguments @var{x} and parameters @var{params}. This function provides an optimization of the separate functions for @math{f(x)} and @math{g(x)}---it is always faster to compute the function and its derivative at the same time. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x}. @item void * params a pointer to the parameters of the function. @end table @end deftp @deftp {Data Type} gsl_multimin_function This data type defines a general function of @math{n} variables with parameters, @table @code @item double (* f) (const gsl_vector * @var{x}, void * @var{params}) this function should return the result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params}. If the function cannot be computed, an error value of @code{GSL_NAN} should be returned. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x}. @item void * params a pointer to the parameters of the function. @end table @end deftp @noindent The following example function defines a simple two-dimensional paraboloid with five parameters, @example @verbatiminclude examples/multiminfn.c @end example @noindent The function can be initialized using the following code, @example gsl_multimin_function_fdf my_func; /* Paraboloid center at (1,2), scale factors (10, 20), minimum value 30 */ double p[5] = @{ 1.0, 2.0, 10.0, 20.0, 30.0 @}; my_func.n = 2; /* number of function components */ my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.params = (void *)p; @end example @node Multimin Iteration @section Iteration The following function drives the iteration of each algorithm. The function performs one iteration to update the state of the minimizer. The same function works for all minimizers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_multimin_fdfminimizer_iterate (gsl_multimin_fdfminimizer * @var{s}) @deftypefunx int gsl_multimin_fminimizer_iterate (gsl_multimin_fminimizer * @var{s}) These functions perform a single iteration of the minimizer @var{s}. If the iteration encounters an unexpected problem then an error code will be returned. The error code @code{GSL_ENOPROG} signifies that the minimizer is unable to improve on its current estimate, either due to numerical difficulty or because a genuine local minimum has been reached. @end deftypefun @noindent The minimizer maintains a current best estimate of the minimum at all times. This information can be accessed with the following auxiliary functions, @deftypefun {gsl_vector *} gsl_multimin_fdfminimizer_x (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx {gsl_vector *} gsl_multimin_fminimizer_x (const gsl_multimin_fminimizer * @var{s}) @deftypefunx double gsl_multimin_fdfminimizer_minimum (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx double gsl_multimin_fminimizer_minimum (const gsl_multimin_fminimizer * @var{s}) @deftypefunx {gsl_vector *} gsl_multimin_fdfminimizer_gradient (const gsl_multimin_fdfminimizer * @var{s}) @deftypefunx double gsl_multimin_fminimizer_size (const gsl_multimin_fminimizer * @var{s}) These functions return the current best estimate of the location of the minimum, the value of the function at that point, its gradient, and minimizer specific characteristic size for the minimizer @var{s}. @end deftypefun @deftypefun int gsl_multimin_fdfminimizer_restart (gsl_multimin_fdfminimizer * @var{s}) This function resets the minimizer @var{s} to use the current point as a new starting point. @end deftypefun @node Multimin Stopping Criteria @section Stopping Criteria A minimization procedure should stop when one of the following conditions is true: @itemize @bullet @item A minimum has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result. @deftypefun int gsl_multimin_test_gradient (const gsl_vector * @var{g}, double @var{epsabs}) This function tests the norm of the gradient @var{g} against the absolute tolerance @var{epsabs}. The gradient of a multidimensional function goes to zero at a minimum. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |g| < \hbox{\it epsabs} $$ \afterdisplay @end tex @ifinfo @example |g| < epsabs @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. A suitable choice of @var{epsabs} can be made from the desired accuracy in the function for small variations in @math{x}. The relationship between these quantities is given by @c{$\delta{f} = g\,\delta{x}$} @math{\delta f = g \delta x}. @end deftypefun @deftypefun int gsl_multimin_test_size (const double @var{size}, double @var{epsabs}) This function tests the minimizer specific characteristic size (if applicable to the used minimizer) against absolute tolerance @var{epsabs}. The test returns @code{GSL_SUCCESS} if the size is smaller than tolerance, otherwise @code{GSL_CONTINUE} is returned. @end deftypefun @node Multimin Algorithms with Derivatives @section Algorithms with Derivatives There are several minimization methods available. The best choice of algorithm depends on the problem. The algorithms described in this section use the value of the function and its gradient at each evaluation point. @deffn {Minimizer} gsl_multimin_fdfminimizer_conjugate_fr @cindex Fletcher-Reeves conjugate gradient algorithm, minimization @cindex Conjugate gradient algorithm, minimization @cindex minimization, conjugate gradient algorithm This is the Fletcher-Reeves conjugate gradient algorithm. The conjugate gradient algorithm proceeds as a succession of line minimizations. The sequence of search directions is used to build up an approximation to the curvature of the function in the neighborhood of the minimum. An initial search direction @var{p} is chosen using the gradient, and line minimization is carried out in that direction. The accuracy of the line minimization is specified by the parameter @var{tol}. The minimum along this line occurs when the function gradient @var{g} and the search direction @var{p} are orthogonal. The line minimization terminates when @c{$p\cdot g < tol |p| |g|$} @math{dot(p,g) < tol |p| |g|}. The search direction is updated using the Fletcher-Reeves formula @math{p' = g' - \beta g} where @math{\beta=-|g'|^2/|g|^2}, and the line minimization is then repeated for the new search direction. @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_conjugate_pr @cindex Polak-Ribiere algorithm, minimization @cindex minimization, Polak-Ribiere algorithm This is the Polak-Ribiere conjugate gradient algorithm. It is similar to the Fletcher-Reeves method, differing only in the choice of the coefficient @math{\beta}. Both methods work well when the evaluation point is close enough to the minimum of the objective function that it is well approximated by a quadratic hypersurface. @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_vector_bfgs2 @deffnx {Minimizer} gsl_multimin_fdfminimizer_vector_bfgs @cindex BFGS algorithm, minimization @cindex minimization, BFGS algorithm These methods use the vector Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This is a quasi-Newton method which builds up an approximation to the second derivatives of the function @math{f} using the difference between successive gradient vectors. By combining the first and second derivatives the algorithm is able to take Newton-type steps towards the function minimum, assuming quadratic behavior in that region. The @code{bfgs2} version of this minimizer is the most efficient version available, and is a faithful implementation of the line minimization scheme described in Fletcher's @cite{Practical Methods of Optimization}, Algorithms 2.6.2 and 2.6.4. It supersedes the original @code{bfgs} routine and requires substantially fewer function and gradient evaluations. The user-supplied tolerance @var{tol} corresponds to the parameter @math{\sigma} used by Fletcher. A value of 0.1 is recommended for typical use (larger values correspond to less accurate line searches). @end deffn @deffn {Minimizer} gsl_multimin_fdfminimizer_steepest_descent @cindex steepest descent algorithm, minimization @cindex minimization, steepest descent algorithm The steepest descent algorithm follows the downhill gradient of the function at each step. When a downhill step is successful the step-size is increased by a factor of two. If the downhill step leads to a higher function value then the algorithm backtracks and the step size is decreased using the parameter @var{tol}. A suitable value of @var{tol} for most applications is 0.1. The steepest descent method is inefficient and is included only for demonstration purposes. @end deffn @node Multimin Algorithms without Derivatives @section Algorithms without Derivatives The algorithms described in this section use only the value of the function at each evaluation point. @deffn {Minimizer} gsl_multimin_fminimizer_nmsimplex2 @deffnx {Minimizer} gsl_multimin_fminimizer_nmsimplex @cindex Nelder-Mead simplex algorithm for minimization @cindex simplex algorithm, minimization @cindex minimization, simplex algorithm These methods use the Simplex algorithm of Nelder and Mead. Starting from the initial vector @math{@var{x} = p_0}, the algorithm constructs an additional @math{n} vectors @math{p_i} using the step size vector @c{$s = \var{step\_size}$} @math{s = @var{step_size}} as follows: @tex \beforedisplay $$ \eqalign{ p_0 & = (x_0, x_1, \cdots , x_n) \cr p_1 & = (x_0 + s_0, x_1, \cdots , x_n) \cr p_2 & = (x_0, x_1 + s_1, \cdots , x_n) \cr \dots &= \dots \cr p_n & = (x_0, x_1, \cdots , x_n + s_n) \cr } $$ \afterdisplay @end tex @ifinfo @example p_0 = (x_0, x_1, ... , x_n) p_1 = (x_0 + s_0, x_1, ... , x_n) p_2 = (x_0, x_1 + s_1, ... , x_n) ... = ... p_n = (x_0, x_1, ... , x_n + s_n) @end example @end ifinfo @noindent These vectors form the @math{n+1} vertices of a simplex in @math{n} dimensions. On each iteration the algorithm uses simple geometrical transformations to update the vector corresponding to the highest function value. The geometric transformations are reflection, reflection followed by expansion, contraction and multiple contraction. Using these transformations the simplex moves through the space towards the minimum, where it contracts itself. After each iteration, the best vertex is returned. Note, that due to the nature of the algorithm not every step improves the current best parameter vector. Usually several iterations are required. The minimizer-specific characteristic size is calculated as the average distance from the geometrical center of the simplex to all its vertices. This size can be used as a stopping criteria, as the simplex contracts itself near the minimum. The size is returned by the function @code{gsl_multimin_fminimizer_size}. The @code{nmsimplex2} version of this minimiser is a new @math{O(N)} operations implementation of the earlier @math{O(N^2)} operations @code{nmsimplex} minimiser. It uses the same underlying algorithm, but the simplex updates are computed more efficiently for high-dimensional problems. In addition, the size of simplex is calculated as the @sc{rms} distance of each vertex from the center rather than the mean distance, allowing a linear update of this quantity on each step. The memory usage is @math{O(N^2)} for both algorithms. @end deffn @deffn {Minimizer} gsl_multimin_fminimizer_nmsimplex2rand This method is a variant of @code{nmsimplex2} which initialises the simplex around the starting point @var{x} using a randomly-oriented set of basis vectors instead of the fixed coordinate axes. The final dimensions of the simplex are scaled along the coordinate axes by the vector @var{step_size}. The randomisation uses a simple deterministic generator so that repeated calls to @code{gsl_multimin_fminimizer_set} for a given solver object will vary the orientation in a well-defined way. @end deffn @node Multimin Examples @section Examples This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in @math{x} and @math{y}, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter. @smallexample @verbatiminclude examples/multimin.c @end smallexample @noindent The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below, @example @verbatiminclude examples/multimin.out @end example @noindent Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points. @iftex @sp 1 @center @image{multimin,3.4in} @end iftex @noindent The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function. Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above. @smallexample @verbatiminclude examples/nmsimplex.c @end smallexample @noindent The minimum search stops when the Simplex size drops to 0.01. The output is shown below. @example @verbatiminclude examples/nmsimplex.out @end example @noindent The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum. @node Multimin References and Further Reading @section References and Further Reading The conjugate gradient and BFGS methods are described in detail in the following book, @itemize @w{} @item R. Fletcher, @cite{Practical Methods of Optimization (Second Edition)} Wiley (1987), ISBN 0471915475. @end itemize A brief description of multidimensional minimization algorithms and more recent references can be found in, @itemize @w{} @item C.W. Ueberhuber, @cite{Numerical Computation (Volume 2)}, Chapter 14, Section 4.4 ``Minimization Methods'', p.@: 325--335, Springer (1997), ISBN 3-540-62057-5. @end itemize @noindent The simplex algorithm is described in the following paper, @itemize @w{} @item J.A. Nelder and R. Mead, @cite{A simplex method for function minimization}, Computer Journal vol.@: 7 (1965), 308--313. @end itemize @noindent gsl-1.16/doc/specfunc-lambert.texi0000664000252300025230000000214112171574312014042 00000000000000@cindex W function @cindex Lambert function Lambert's W functions, @math{W(x)}, are defined to be solutions of the equation @math{W(x) \exp(W(x)) = x}. This function has multiple branches for @math{x < 0}; however, it has only two real-valued branches. We define @math{W_0(x)} to be the principal branch, where @math{W > -1} for @math{x < 0}, and @c{$W_{-1}(x)$} @math{W_@{-1@}(x)} to be the other real branch, where @math{W < -1} for @math{x < 0}. The Lambert functions are declared in the header file @file{gsl_sf_lambert.h}. @deftypefun double gsl_sf_lambert_W0 (double @var{x}) @deftypefunx int gsl_sf_lambert_W0_e (double @var{x}, gsl_sf_result * @var{result}) These compute the principal branch of the Lambert W function, @math{W_0(x)}. @comment exceptions: GSL_EDOM, GSL_EMAXITER @end deftypefun @deftypefun double gsl_sf_lambert_Wm1 (double @var{x}) @deftypefunx int gsl_sf_lambert_Wm1_e (double @var{x}, gsl_sf_result * @var{result}) These compute the secondary real-valued branch of the Lambert W function, @c{$W_{-1}(x)$} @math{W_@{-1@}(x)}. @comment exceptions: GSL_EDOM, GSL_EMAXITER @end deftypefun gsl-1.16/doc/siman-test.eps0000664000252300025230000044324612171574312012531 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Wed Dec 20 22:05:02 2006 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 62 177 500 576 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 62 177 500 576 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2315 2151 2348 2140 2370 2107 2381 2052 2381 2019 2370 1964 2348 1931 2315 1920 2293 1920 2260 1931 2238 1964 2227 2019 2227 2052 2238 2107 2260 2140 2293 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2293 2151 2271 2140 2260 2129 2249 2107 2238 2052 2238 2019 2249 1964 2260 1942 2271 1931 2293 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2315 1920 2337 1931 2348 1942 2359 1964 2370 2019 2370 2052 2359 2107 2348 2129 2337 2140 2315 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3181 2151 3159 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 3159 2041 3181 2063 3214 2074 3247 2074 3280 2063 3302 2041 3313 2008 3313 1986 3302 1953 3280 1931 3247 1920 3214 1920 3181 1931 3170 1942 3159 1964 3159 1975 3170 1986 3181 1975 3170 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3247 2074 3269 2063 3291 2041 3302 2008 3302 1986 3291 1953 3269 1931 3247 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3181 2151 3291 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 3181 2140 3236 2140 3291 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3467 2151 3500 2140 3522 2107 3533 2052 3533 2019 3522 1964 3500 1931 3467 1920 3445 1920 3412 1931 3390 1964 3379 2019 3379 2052 3390 2107 3412 2140 3445 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3445 2151 3423 2140 3412 2129 3401 2107 3390 2052 3390 2019 3401 1964 3412 1942 3423 1931 3445 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3467 1920 3489 1931 3500 1942 3511 1964 3522 2019 3522 2052 3511 2107 3500 2129 3489 2140 3467 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3687 2151 3720 2140 3742 2107 3753 2052 3753 2019 3742 1964 3720 1931 3687 1920 3665 1920 3632 1931 3610 1964 3599 2019 3599 2052 3610 2107 3632 2140 3665 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3665 2151 3643 2140 3632 2129 3621 2107 3610 2052 3610 2019 3621 1964 3632 1942 3643 1931 3665 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3687 1920 3709 1931 3720 1942 3731 1964 3742 2019 3742 2052 3731 2107 3720 2129 3709 2140 3687 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 9216 3456 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 2304 3456 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4234 2107 4256 2118 4289 2151 4289 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4278 2140 4278 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4234 1920 4333 1920 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4509 2151 4542 2140 4564 2107 4575 2052 4575 2019 4564 1964 4542 1931 4509 1920 4487 1920 4454 1931 4432 1964 4421 2019 4421 2052 4432 2107 4454 2140 4487 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4487 2151 4465 2140 4454 2129 4443 2107 4432 2052 4432 2019 4443 1964 4454 1942 4465 1931 4487 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4509 1920 4531 1931 4542 1942 4553 1964 4564 2019 4564 2052 4553 2107 4542 2129 4531 2140 4509 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4729 2151 4762 2140 4784 2107 4795 2052 4795 2019 4784 1964 4762 1931 4729 1920 4707 1920 4674 1931 4652 1964 4641 2019 4641 2052 4652 2107 4674 2140 4707 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4707 2151 4685 2140 4674 2129 4663 2107 4652 2052 4652 2019 4663 1964 4674 1942 4685 1931 4707 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4729 1920 4751 1931 4762 1942 4773 1964 4784 2019 4784 2052 4773 2107 4762 2129 4751 2140 4729 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4949 2151 4982 2140 5004 2107 5015 2052 5015 2019 5004 1964 4982 1931 4949 1920 4927 1920 4894 1931 4872 1964 4861 2019 4861 2052 4872 2107 4894 2140 4927 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4927 2151 4905 2140 4894 2129 4883 2107 4872 2052 4872 2019 4883 1964 4894 1942 4905 1931 4927 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4949 1920 4971 1931 4982 1942 4993 1964 5004 2019 5004 2052 4993 2107 4982 2129 4971 2140 4949 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5386 2107 5408 2118 5441 2151 5441 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5430 2140 5430 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5386 1920 5485 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5595 2151 5573 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 5573 2041 5595 2063 5628 2074 5661 2074 5694 2063 5716 2041 5727 2008 5727 1986 5716 1953 5694 1931 5661 1920 5628 1920 5595 1931 5584 1942 5573 1964 5573 1975 5584 1986 5595 1975 5584 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5661 2074 5683 2063 5705 2041 5716 2008 5716 1986 5705 1953 5683 1931 5661 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5595 2151 5705 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5595 2140 5650 2140 5705 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5881 2151 5914 2140 5936 2107 5947 2052 5947 2019 5936 1964 5914 1931 5881 1920 5859 1920 5826 1931 5804 1964 5793 2019 5793 2052 5804 2107 5826 2140 5859 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5859 2151 5837 2140 5826 2129 5815 2107 5804 2052 5804 2019 5815 1964 5826 1942 5837 1931 5859 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5881 1920 5903 1931 5914 1942 5925 1964 5936 2019 5936 2052 5925 2107 5914 2129 5903 2140 5881 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6101 2151 6134 2140 6156 2107 6167 2052 6167 2019 6156 1964 6134 1931 6101 1920 6079 1920 6046 1931 6024 1964 6013 2019 6013 2052 6024 2107 6046 2140 6079 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6079 2151 6057 2140 6046 2129 6035 2107 6024 2052 6024 2019 6035 1964 6046 1942 6057 1931 6079 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6101 1920 6123 1931 6134 1942 6145 1964 6156 2019 6156 2052 6145 2107 6134 2129 6123 2140 6101 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 6516 2107 6527 2096 6516 2085 6505 2096 6505 2107 6516 2129 6527 2140 6560 2151 6604 2151 6637 2140 6648 2129 6659 2107 6659 2085 6648 2063 6615 2041 6560 2019 6538 2008 6516 1986 6505 1953 6505 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6604 2151 6626 2140 6637 2129 6648 2107 6648 2085 6637 2063 6604 2041 6560 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6505 1942 6516 1953 6538 1953 6593 1931 6626 1931 6648 1942 6659 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6538 1953 6593 1920 6637 1920 6648 1931 6659 1953 6659 1975 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6813 2151 6846 2140 6868 2107 6879 2052 6879 2019 6868 1964 6846 1931 6813 1920 6791 1920 6758 1931 6736 1964 6725 2019 6725 2052 6736 2107 6758 2140 6791 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6791 2151 6769 2140 6758 2129 6747 2107 6736 2052 6736 2019 6747 1964 6758 1942 6769 1931 6791 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6813 1920 6835 1931 6846 1942 6857 1964 6868 2019 6868 2052 6857 2107 6846 2129 6835 2140 6813 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7033 2151 7066 2140 7088 2107 7099 2052 7099 2019 7088 1964 7066 1931 7033 1920 7011 1920 6978 1931 6956 1964 6945 2019 6945 2052 6956 2107 6978 2140 7011 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7011 2151 6989 2140 6978 2129 6967 2107 6956 2052 6956 2019 6967 1964 6978 1942 6989 1931 7011 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7033 1920 7055 1931 7066 1942 7077 1964 7088 2019 7088 2052 7077 2107 7066 2129 7055 2140 7033 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7253 2151 7286 2140 7308 2107 7319 2052 7319 2019 7308 1964 7286 1931 7253 1920 7231 1920 7198 1931 7176 1964 7165 2019 7165 2052 7176 2107 7198 2140 7231 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7231 2151 7209 2140 7198 2129 7187 2107 7176 2052 7176 2019 7187 1964 7198 1942 7209 1931 7231 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7253 1920 7275 1931 7286 1942 7297 1964 7308 2019 7308 2052 7297 2107 7286 2129 7275 2140 7253 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 7668 2107 7679 2096 7668 2085 7657 2096 7657 2107 7668 2129 7679 2140 7712 2151 7756 2151 7789 2140 7800 2129 7811 2107 7811 2085 7800 2063 7767 2041 7712 2019 7690 2008 7668 1986 7657 1953 7657 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7756 2151 7778 2140 7789 2129 7800 2107 7800 2085 7789 2063 7756 2041 7712 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7657 1942 7668 1953 7690 1953 7745 1931 7778 1931 7800 1942 7811 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 7690 1953 7745 1920 7789 1920 7800 1931 7811 1953 7811 1975 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7899 2151 7877 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 7877 2041 7899 2063 7932 2074 7965 2074 7998 2063 8020 2041 8031 2008 8031 1986 8020 1953 7998 1931 7965 1920 7932 1920 7899 1931 7888 1942 7877 1964 7877 1975 7888 1986 7899 1975 7888 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7965 2074 7987 2063 8009 2041 8020 2008 8020 1986 8009 1953 7987 1931 7965 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7899 2151 8009 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 7899 2140 7954 2140 8009 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8185 2151 8218 2140 8240 2107 8251 2052 8251 2019 8240 1964 8218 1931 8185 1920 8163 1920 8130 1931 8108 1964 8097 2019 8097 2052 8108 2107 8130 2140 8163 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8163 2151 8141 2140 8130 2129 8119 2107 8108 2052 8108 2019 8119 1964 8130 1942 8141 1931 8163 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8185 1920 8207 1931 8218 1942 8229 1964 8240 2019 8240 2052 8229 2107 8218 2129 8207 2140 8185 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8405 2151 8438 2140 8460 2107 8471 2052 8471 2019 8460 1964 8438 1931 8405 1920 8383 1920 8350 1931 8328 1964 8317 2019 8317 2052 8328 2107 8350 2140 8383 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8383 2151 8361 2140 8350 2129 8339 2107 8328 2052 8328 2019 8339 1964 8350 1942 8361 1931 8383 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8405 1920 8427 1931 8438 1942 8449 1964 8460 2019 8460 2052 8449 2107 8438 2129 8427 2140 8405 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 9216 8064 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 2304 8064 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 8820 2107 8831 2096 8820 2085 8809 2096 8809 2107 8820 2129 8831 2140 8864 2151 8908 2151 8941 2140 8952 2118 8952 2085 8941 2063 8908 2052 8875 2052 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8908 2151 8930 2140 8941 2118 8941 2085 8930 2063 8908 2052 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8908 2052 8930 2041 8952 2019 8963 1997 8963 1964 8952 1942 8941 1931 8908 1920 8864 1920 8831 1931 8820 1942 8809 1964 8809 1975 8820 1986 8831 1975 8820 1964 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8941 2030 8952 1997 8952 1964 8941 1942 8930 1931 8908 1920 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9117 2151 9150 2140 9172 2107 9183 2052 9183 2019 9172 1964 9150 1931 9117 1920 9095 1920 9062 1931 9040 1964 9029 2019 9029 2052 9040 2107 9062 2140 9095 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9095 2151 9073 2140 9062 2129 9051 2107 9040 2052 9040 2019 9051 1964 9062 1942 9073 1931 9095 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9117 1920 9139 1931 9150 1942 9161 1964 9172 2019 9172 2052 9161 2107 9150 2129 9139 2140 9117 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9337 2151 9370 2140 9392 2107 9403 2052 9403 2019 9392 1964 9370 1931 9337 1920 9315 1920 9282 1931 9260 1964 9249 2019 9249 2052 9260 2107 9282 2140 9315 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9315 2151 9293 2140 9282 2129 9271 2107 9260 2052 9260 2019 9271 1964 9282 1942 9293 1931 9315 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9337 1920 9359 1931 9370 1942 9381 1964 9392 2019 9392 2052 9381 2107 9370 2129 9359 2140 9337 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9557 2151 9590 2140 9612 2107 9623 2052 9623 2019 9612 1964 9590 1931 9557 1920 9535 1920 9502 1931 9480 1964 9469 2019 9469 2052 9480 2107 9502 2140 9535 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9535 2151 9513 2140 9502 2129 9491 2107 9480 2052 9480 2019 9491 1964 9502 1942 9513 1931 9535 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9557 1920 9579 1931 9590 1942 9601 1964 9612 2019 9612 2052 9601 2107 9590 2129 9579 2140 9557 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 2392 1519 2403 1552 2436 1552 2205 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 2425 1541 2205 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 2205 1596 2205 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 2216 1705 2205 1694 2216 1705 2227 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 2392 1815 2381 1804 2370 1793 2381 1793 2392 1804 2414 1815 2425 1848 2436 1892 2436 1925 2425 1936 2403 1936 2370 1925 2348 1892 2337 1859 2337 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 2436 1914 2425 1925 2403 1925 2370 1914 2348 1892 2337 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 2337 1914 2326 1936 2304 1947 2282 1947 2249 1936 2227 1925 2216 1892 2205 1848 2205 1815 2216 1804 2227 1793 2249 1793 2260 1804 2271 1815 2260 1804 2249 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 2315 1936 2282 1936 2249 1925 2227 1914 2216 1892 2205 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2112 2414 2112 2205 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2123 2436 2123 2205 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2123 2436 2002 2271 2178 2271 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2079 2205 2156 2205 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 3544 1519 3555 1552 3588 1552 3357 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 3577 1541 3357 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 3357 1596 3357 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 3368 1705 3357 1694 3368 1705 3379 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 3544 1815 3533 1804 3522 1793 3533 1793 3544 1804 3566 1815 3577 1848 3588 1892 3588 1925 3577 1936 3555 1936 3522 1925 3500 1892 3489 1859 3489 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 3588 1914 3577 1925 3555 1925 3522 1914 3500 1892 3489 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 3489 1914 3478 1936 3456 1947 3434 1947 3401 1936 3379 1925 3368 1892 3357 1848 3357 1815 3368 1804 3379 1793 3401 1793 3412 1804 3423 1815 3412 1804 3401 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 3467 1936 3434 1936 3401 1925 3379 1914 3368 1892 3357 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 3588 2013 3478 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2013 3478 2035 3500 2068 3511 2101 3511 2134 3500 2156 3478 2167 3445 2167 3423 2156 3390 2134 3368 2101 3357 2068 3357 2035 3368 2024 3379 2013 3401 2013 3412 2024 3423 2035 3412 2024 3401 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 3511 2123 3500 2145 3478 2156 3445 2156 3423 2145 3390 2123 3368 2101 3357 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 3588 2145 3588 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2035 3577 2090 3577 2145 3588 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9078 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2442 3456 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 4696 1519 4707 1552 4740 1552 4509 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 4729 1541 4509 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 4509 1596 4509 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 4520 1705 4509 1694 4520 1705 4531 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 4696 1815 4685 1804 4674 1793 4685 1793 4696 1804 4718 1815 4729 1848 4740 1892 4740 1925 4729 1936 4707 1936 4674 1925 4652 1892 4641 1859 4641 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 4740 1914 4729 1925 4707 1925 4674 1914 4652 1892 4641 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 4641 1914 4630 1936 4608 1947 4586 1947 4553 1936 4531 1925 4520 1892 4509 1848 4509 1815 4520 1804 4531 1793 4553 1793 4564 1804 4575 1815 4564 1804 4553 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 4619 1936 4586 1936 4553 1925 4531 1914 4520 1892 4509 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2145 4707 2134 4696 2145 4685 2156 4696 2156 4707 2145 4729 2123 4740 2090 4740 2057 4729 2035 4707 2024 4685 2013 4641 2013 4575 2024 4542 2046 4520 2079 4509 2101 4509 2134 4520 2156 4542 2167 4575 2167 4586 2156 4619 2134 4641 2101 4652 2090 4652 2057 4641 2035 4619 2024 4586 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2090 4740 2068 4729 2046 4707 2035 4685 2024 4641 2024 4575 2035 4542 2057 4520 2079 4509 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 4509 2123 4520 2145 4542 2156 4575 2156 4586 2145 4619 2123 4641 2101 4652 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9078 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2442 4608 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 5848 1519 5859 1552 5892 1552 5661 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 5881 1541 5661 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 5661 1596 5661 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 5672 1705 5661 1694 5672 1705 5683 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 5848 1815 5837 1804 5826 1793 5837 1793 5848 1804 5870 1815 5881 1848 5892 1892 5892 1925 5881 1936 5859 1936 5826 1925 5804 1892 5793 1859 5793 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 5892 1914 5881 1925 5859 1925 5826 1914 5804 1892 5793 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 5793 1914 5782 1936 5760 1947 5738 1947 5705 1936 5683 1925 5672 1892 5661 1848 5661 1815 5672 1804 5683 1793 5705 1793 5716 1804 5727 1815 5716 1804 5705 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 5771 1936 5738 1936 5705 1925 5683 1914 5672 1892 5661 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2013 5892 2013 5826 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2013 5848 2024 5870 2046 5892 2068 5892 2123 5859 2145 5859 2156 5870 2167 5892 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2024 5870 2046 5881 2068 5881 2123 5859 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2167 5892 2167 5859 2156 5826 2112 5771 2101 5749 2090 5716 2090 5661 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 2156 5826 2101 5771 2090 5749 2079 5716 2079 5661 5 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9078 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2442 5760 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 7000 1519 7011 1552 7044 1552 6813 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 7033 1541 6813 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 6813 1596 6813 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 6824 1705 6813 1694 6824 1705 6835 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 7000 1815 6989 1804 6978 1793 6989 1793 7000 1804 7022 1815 7033 1848 7044 1892 7044 1925 7033 1936 7011 1936 6978 1925 6956 1892 6945 1859 6945 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 7044 1914 7033 1925 7011 1925 6978 1914 6956 1892 6945 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 6945 1914 6934 1936 6912 1947 6890 1947 6857 1936 6835 1925 6824 1892 6813 1848 6813 1815 6824 1804 6835 1793 6857 1793 6868 1804 6879 1815 6868 1804 6857 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 6923 1936 6890 1936 6857 1925 6835 1914 6824 1892 6813 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 2112 7044 2145 7033 2156 7011 2156 6978 2145 6956 2112 6945 2068 6945 2035 6956 2024 6978 2024 7011 2035 7033 2068 7044 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2068 7044 2046 7033 2035 7011 2035 6978 2046 6956 2068 6945 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2112 6945 2134 6956 2145 6978 2145 7011 2134 7033 2112 7044 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2068 6945 2035 6934 2024 6923 2013 6901 2013 6857 2024 6835 2035 6824 2068 6813 2112 6813 2145 6824 2156 6835 2167 6857 2167 6901 2156 6923 2145 6934 2112 6945 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2068 6945 2046 6934 2035 6923 2024 6901 2024 6857 2035 6835 2046 6824 2068 6813 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2112 6813 2134 6824 2145 6835 2156 6857 2156 6901 2145 6923 2134 6934 2112 6945 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9078 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2442 6912 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 8152 1519 8163 1552 8196 1552 7965 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 8185 1541 7965 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 7965 1596 7965 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 7976 1705 7965 1694 7976 1705 7987 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1804 8152 1815 8141 1804 8130 1793 8141 1793 8152 1804 8174 1815 8185 1848 8196 1892 8196 1925 8185 1936 8163 1936 8130 1925 8108 1892 8097 1859 8097 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 8196 1914 8185 1925 8163 1925 8130 1914 8108 1892 8097 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1892 8097 1914 8086 1936 8064 1947 8042 1947 8009 1936 7987 1925 7976 1892 7965 1848 7965 1815 7976 1804 7987 1793 8009 1793 8020 1804 8031 1815 8020 1804 8009 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1925 8075 1936 8042 1936 8009 1925 7987 1914 7976 1892 7965 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2156 8119 2145 8086 2123 8064 2090 8053 2079 8053 2046 8064 2024 8086 2013 8119 2013 8130 2024 8163 2046 8185 2079 8196 2101 8196 2134 8185 2156 8163 2167 8130 2167 8064 2156 8020 2145 7998 2123 7976 2090 7965 2057 7965 2035 7976 2024 7998 2024 8009 2035 8020 2046 8009 2035 7998 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2079 8053 2057 8064 2035 8086 2024 8119 2024 8130 2035 8163 2057 8185 2079 8196 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2101 8196 2123 8185 2145 8163 2156 8130 2156 8064 2145 8020 2134 7998 2112 7976 2090 7965 9 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9078 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2442 8064 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1497 9304 1519 9315 1552 9348 1552 9117 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1541 9337 1541 9117 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1497 9117 1596 9117 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 9128 1705 9117 1694 9128 1705 9139 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1892 9326 1892 9117 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1903 9348 1903 9117 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 1903 9348 1782 9183 1958 9183 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1859 9117 1936 9117 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2101 9348 2134 9337 2156 9304 2167 9249 2167 9216 2156 9161 2134 9128 2101 9117 2079 9117 2046 9128 2024 9161 2013 9216 2013 9249 2024 9304 2046 9337 2079 9348 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2079 9348 2057 9337 2046 9326 2035 9304 2024 9249 2024 9216 2035 9161 2046 9139 2057 9128 2079 9117 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2101 9117 2123 9128 2134 9139 2145 9161 2156 9216 2156 9249 2145 9304 2134 9326 2123 9337 2101 9348 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2880 9161 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2880 2359 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9161 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2359 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9161 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2359 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9161 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2359 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5184 9161 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5184 2359 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9161 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6336 9161 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6336 2359 6336 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6912 9161 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6912 2359 6912 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7488 9161 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7488 2359 7488 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8064 9161 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8064 2359 8064 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8640 9161 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8640 2359 8640 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4858 1621 4880 1610 4891 1599 4902 1577 4902 1555 4891 1533 4880 1522 4858 1511 4836 1511 4814 1522 4803 1533 4792 1555 4792 1577 4803 1599 4814 1610 4836 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4814 1610 4803 1588 4803 1544 4814 1522 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4880 1522 4891 1544 4891 1588 4880 1610 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 4891 1599 4902 1610 4924 1621 4924 1610 4902 1610 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4803 1533 4792 1522 4781 1500 4781 1489 4792 1467 4825 1456 4880 1456 4913 1445 4924 1434 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 4781 1489 4792 1478 4825 1467 4880 1467 4913 1456 4924 1434 4924 1423 4913 1401 4880 1390 4814 1390 4781 1401 4770 1423 4770 1434 4781 1456 4814 1467 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5001 1555 5133 1555 5133 1577 5122 1599 5111 1610 5089 1621 5056 1621 5023 1610 5001 1588 4990 1555 4990 1533 5001 1500 5023 1478 5056 1467 5078 1467 5111 1478 5133 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5122 1555 5122 1588 5111 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5056 1621 5034 1610 5012 1588 5001 1555 5001 1533 5012 1500 5034 1478 5056 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5221 1621 5221 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5232 1621 5232 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5232 1588 5254 1610 5287 1621 5309 1621 5342 1610 5353 1588 5353 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5309 1621 5331 1610 5342 1588 5342 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1621 5232 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1467 5265 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5309 1467 5386 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5452 1555 5584 1555 5584 1577 5573 1599 5562 1610 5540 1621 5507 1621 5474 1610 5452 1588 5441 1555 5441 1533 5452 1500 5474 1478 5507 1467 5529 1467 5562 1478 5584 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5573 1555 5573 1588 5562 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5507 1621 5485 1610 5463 1588 5452 1555 5452 1533 5463 1500 5485 1478 5507 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5672 1621 5672 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5683 1621 5683 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5683 1555 5694 1588 5716 1610 5738 1621 5771 1621 5782 1610 5782 1599 5771 1588 5760 1599 5771 1610 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1621 5683 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1467 5716 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 5859 1599 5859 1588 5848 1588 5848 1599 5859 1610 5881 1621 5925 1621 5947 1610 5958 1599 5969 1577 5969 1500 5980 1478 5991 1467 13 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 5958 1599 5958 1500 5969 1478 5991 1467 6002 1467 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 5958 1577 5947 1566 5881 1555 5848 1544 5837 1522 5837 1500 5848 1478 5881 1467 5914 1467 5936 1478 5958 1500 11 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5881 1555 5859 1544 5848 1522 5848 1500 5859 1478 5881 1467 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6079 1698 6079 1511 6090 1478 6112 1467 6134 1467 6156 1478 6167 1500 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6090 1698 6090 1511 6101 1478 6112 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6046 1621 6134 1621 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6255 1687 6244 1676 6233 1687 6244 1698 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6244 1621 6244 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6255 1621 6255 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1621 6255 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1467 6288 1467 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6431 1621 6464 1610 6486 1588 6497 1555 6497 1533 6486 1500 6464 1478 6431 1467 6409 1467 6376 1478 6354 1500 6343 1533 6343 1555 6354 1588 6376 1610 6409 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6409 1621 6387 1610 6365 1588 6354 1555 6354 1533 6365 1500 6387 1478 6409 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6431 1467 6453 1478 6475 1500 6486 1533 6486 1555 6475 1588 6453 1610 6431 1621 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6585 1621 6585 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6596 1621 6596 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6596 1588 6618 1610 6651 1621 6673 1621 6706 1610 6717 1588 6717 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6673 1621 6695 1610 6706 1588 6706 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1621 6596 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1467 6629 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6673 1467 6750 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5062 1205 5062 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5073 1205 5073 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 1007 5073 985 5095 974 5117 974 5139 985 5172 1007 5194 1040 5205 1062 5205 1095 5194 1117 5172 1128 5139 1128 5117 1117 5095 1095 5073 14 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 974 5139 985 5161 1007 5183 1040 5194 1062 5194 1095 5183 1117 5161 1128 5139 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5029 974 5073 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1205 5029 1205 5106 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 974 5359 985 5392 1007 5414 1040 5425 1062 5425 1095 5414 1117 5392 1128 5359 1128 5337 1117 5304 1095 5282 1062 5271 1040 5271 1007 5282 985 5304 974 5337 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 974 5337 985 5315 1007 5293 1040 5282 1062 5282 1095 5293 1117 5315 1128 5337 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1128 5359 1117 5381 1095 5403 1062 5414 1040 5414 1007 5403 985 5381 974 5359 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 996 5601 974 5612 1018 5612 996 5601 985 5590 974 5568 974 5524 985 5502 996 5491 1018 5491 1029 5502 1040 5524 1062 5579 1073 5601 1084 5612 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 1007 5491 1018 5502 1029 5524 1051 5579 1062 5601 1073 5612 1106 5612 1117 5601 1128 5579 1128 5535 1117 5513 1106 5502 1084 5491 1128 5491 1106 5502 15 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 908 5711 919 5700 908 5689 897 5700 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5700 1128 5700 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5711 1128 5711 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5667 974 5711 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1128 5667 1128 5744 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 897 5820 1084 5820 1117 5831 1128 5853 1128 5875 1117 5897 1095 5908 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 897 5831 1084 5831 1117 5842 1128 5853 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5787 974 5875 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 908 5996 919 5985 908 5974 897 5985 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5985 1128 5985 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5996 1128 5996 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 5952 974 5996 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1128 5952 1128 6029 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 974 6172 985 6205 1007 6227 1040 6238 1062 6238 1095 6227 1117 6205 1128 6172 1128 6150 1117 6117 1095 6095 1062 6084 1040 6084 1007 6095 985 6117 974 6150 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 974 6150 985 6128 1007 6106 1040 6095 1062 6095 1095 6106 1117 6128 1128 6150 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1128 6172 1117 6194 1095 6216 1062 6227 1040 6227 1007 6216 985 6194 974 6172 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 6326 1128 6326 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 6337 1128 6337 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 1007 6337 985 6359 974 6392 974 6414 985 6447 1007 6458 1128 6458 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 974 6414 985 6436 1007 6447 1128 6447 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 974 6293 974 6337 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1128 6293 1128 6370 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1128 6414 1128 6491 2 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 2304 3537 2306 5851 2309 6957 2311 5040 2311 2304 5 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2316 9216 2318 3782 2320 5046 2322 5694 2325 7425 2327 2809 2327 2304 7 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2332 2304 2332 6545 2334 3779 2336 2701 2339 2863 2341 4038 2343 4677 2343 2304 8 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2348 2304 2348 6745 2350 5723 2352 4676 2355 3001 2357 5031 2359 4958 2359 2304 8 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 2364 2304 2364 5593 2366 6131 2369 5183 2371 4312 2373 4047 2375 6887 2378 3572 2380 2957 2382 6623 2385 5578 2387 5196 2389 3144 2392 5409 2394 5349 2396 3938 2396 2304 17 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 23 2401 2304 2401 3893 2403 5522 2405 4905 2408 5492 2410 8222 2412 7351 2415 5980 2417 5113 2419 5349 2422 2946 2424 3768 2426 3987 2428 3116 2431 2943 2433 3963 2435 6127 2438 6093 2440 5254 2442 5632 2445 5956 2447 7000 2449 2304 23 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14 2449 2304 2451 5820 2454 7758 2456 5967 2458 3336 2461 4018 2463 5883 2465 5444 2468 5422 2470 3213 2472 5818 2474 6579 2477 3669 2477 2304 14 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 52 2481 2304 2481 3929 2484 5008 2486 5156 2488 9181 2491 7231 2493 6319 2495 3796 2498 4272 2500 5322 2502 6001 2504 4344 2507 3939 2509 4495 2511 6707 2514 6862 2516 4186 2518 6898 2521 5929 2523 2683 2525 6786 2527 5745 2530 7087 2532 6073 2534 7508 2537 5712 2539 3585 2541 4588 2544 3257 2546 5062 2548 4287 2551 6107 2553 4268 2555 5516 2557 3495 2560 7006 2562 5126 2564 4795 2567 6427 2569 6482 2571 6155 2574 5672 2576 5571 2578 5941 2580 4184 2583 4580 2585 6938 2587 7021 2590 5638 2592 6728 2594 6274 2597 2304 52 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 30 2597 2304 2599 5625 2601 4085 2604 3972 2606 7103 2608 4874 2610 3563 2613 5008 2615 5237 2617 4205 2620 5002 2622 6644 2624 4303 2627 3993 2629 5486 2631 3143 2633 5398 2636 2961 2638 5134 2640 4828 2643 3800 2645 5856 2647 4655 2650 5632 2652 4448 2654 6759 2657 4162 2659 5417 2661 5031 2663 2304 30 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 2664 2304 2666 5439 2668 6260 2670 5887 2673 6677 2675 3635 2677 5685 2680 6228 2682 5760 2684 5455 2686 6136 2689 2304 12 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 50 2689 2304 2691 5024 2693 6701 2696 5156 2698 2972 2700 5454 2703 3338 2705 4169 2707 7335 2710 5755 2712 3025 2714 3250 2716 7785 2719 3138 2721 3858 2723 5572 2726 6626 2728 3509 2730 5704 2733 4358 2735 6663 2737 2585 2739 4067 2742 5996 2744 4279 2746 4831 2749 5393 2751 3457 2753 4996 2756 5329 2758 4711 2760 5613 2762 4766 2765 6331 2767 6019 2769 3948 2772 5539 2774 3994 2776 6042 2779 5830 2781 4390 2783 3784 2786 4605 2788 4911 2790 6647 2792 4684 2795 5122 2797 4924 2799 4768 2799 2304 50 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2804 2304 2804 5242 2806 4333 2809 3694 2811 6115 2811 2304 6 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 2815 2304 2815 4467 2818 4577 2820 2438 2822 5659 2825 4704 2827 4326 2829 5129 2832 3356 2834 5948 2836 5731 2839 5003 2841 6929 2843 5010 2845 6503 2848 5508 2850 4844 2852 4207 2855 4908 2857 5596 2859 5035 2862 4658 2864 3556 2866 3631 2868 5071 2871 5299 2873 5722 2875 4846 2878 5313 2880 5105 2882 4724 2885 4666 2887 5480 2889 4429 2892 5102 2894 3208 2896 5477 2898 4912 2901 5978 2903 6812 2905 4435 2908 4117 2910 3539 2912 5100 2915 5103 2917 4579 2919 4502 2921 5469 2924 4849 2926 5587 2928 5009 2931 4724 2933 5662 2935 5433 2938 5155 2940 5584 2942 4712 2945 4849 2947 5169 2949 4890 2951 2614 2954 5378 2956 3964 2958 2365 2961 4798 2963 6236 2965 5300 2968 4452 2970 4730 2972 6526 2974 4494 2977 3588 2979 5140 2981 4810 2984 4655 2986 5072 2988 3927 2991 5600 2993 4667 2995 5611 2998 4792 3000 5403 3002 5353 3004 5246 3007 4527 3009 7247 3011 5939 3014 4158 3016 4188 3018 5535 3021 6841 3023 3405 3025 5342 3027 4717 3030 4895 3032 5026 3034 4201 3037 2962 3039 3987 3041 5061 3044 4744 3046 3880 3048 5879 3050 6122 3053 5621 3055 2487 3057 5431 3060 5492 3062 4565 3064 5669 3067 4395 3069 4125 3071 4975 3074 4476 3076 6096 3078 5557 3080 5672 3083 4699 3085 3673 3087 4429 3090 3668 3092 5839 3094 5223 3097 4999 3099 3406 3101 5109 3103 5254 3106 3251 3108 4486 3110 5880 3113 4431 3115 5721 3117 4393 3120 4941 3122 4302 3124 4320 3127 4424 3129 4504 3131 5623 3133 3928 3136 6113 3138 5371 3140 5003 3143 6304 3145 4655 3147 5484 3150 4500 3152 3724 3154 4679 3156 4937 3159 4296 3161 4444 3163 5901 3166 4381 3168 5522 3170 5929 3173 4851 3175 4986 3177 3870 3180 5414 3182 3886 3184 4957 3186 4988 3189 5250 3191 5554 3193 4910 3196 4632 3198 5334 3200 4401 3203 5663 3205 5207 3207 4188 3209 5253 3212 5965 3214 5414 3216 5223 3219 5346 3221 5186 3223 5702 3226 4887 3228 4813 3230 4958 3233 5399 3235 4439 3237 4607 3239 5723 3242 4556 3244 5758 3246 5238 3249 3989 3251 5187 3253 5354 3256 5395 3258 5384 3260 4405 3262 5695 3265 5284 3267 4783 3269 6017 3272 4313 3274 5041 3276 4289 3279 4922 3281 2568 3283 5001 3286 4472 3288 6198 3290 4679 3292 4732 3295 4601 3297 5628 3299 4872 3302 4235 3304 4272 3306 5159 3309 5456 3311 4979 3313 3544 3315 5845 3318 4297 3320 4715 3322 4241 3325 4155 3327 6127 3329 4949 3332 5663 3334 7135 3336 6070 3338 4776 3341 3711 3343 4841 3345 4666 3348 4580 3350 5700 3352 4175 3355 4755 3357 5891 3359 4288 3362 4761 3364 4206 3366 6330 3368 5722 3371 5133 3373 5191 3375 4366 3378 4523 3380 5576 3382 4902 3385 4596 3387 6145 3389 4578 3391 4242 3394 5414 3396 4061 3398 5454 3401 3813 3403 4829 3405 4015 3408 3936 3410 4625 3412 4686 3415 5942 3417 5630 3419 4603 3421 5883 3424 5757 3426 5687 3428 5088 3431 5724 3433 5345 3435 4432 3438 4290 3440 5754 3442 5237 3444 4678 3447 5493 3449 5110 3451 5526 3454 4421 3456 3996 3458 4873 3461 6145 3463 4156 3465 4670 3468 4872 3470 4465 3472 4470 3474 4697 3477 4071 3479 5492 3481 5191 3484 6397 3486 4783 3488 5121 3491 5867 3493 4828 3495 4516 3497 5792 3500 5033 3502 4759 3504 5772 3507 4804 3509 5069 3511 4818 3514 4310 3516 5510 3518 6439 3521 4828 3523 5190 3525 4826 3527 6038 3530 4626 3532 4145 3534 4726 3537 4729 3539 5912 3541 4813 3544 4724 3546 3617 3548 3524 3550 4776 3553 5115 3555 5425 3557 5289 3560 4423 3562 5103 3564 4669 3567 5011 3569 4038 3571 5312 3574 4374 3576 4433 3578 5816 3580 5225 3583 4792 3585 4320 3587 5230 3590 5429 3592 5146 3594 6043 3597 4608 3599 4724 3601 4995 3603 5955 3606 4970 3608 5198 3610 5223 3613 5098 3615 5289 3617 5018 3620 4799 3622 5859 3624 5077 3626 4886 3629 5030 3631 4722 3633 4902 3636 5249 3638 5146 3640 4894 3643 5205 3645 5113 3647 4019 3650 6192 3652 4959 3654 4908 3656 4151 3659 5368 3661 5460 3663 5533 3666 4432 3668 5306 3670 4747 3673 5517 3675 4903 3677 5888 3679 5045 3682 3707 3684 4496 3686 5224 3689 3817 3691 5335 3693 4246 3696 3908 3698 3978 3700 4389 3703 5548 3705 4863 3707 4990 3709 5449 3712 4750 3714 4948 3716 4503 3719 5024 3721 5842 3723 4975 3726 4969 3728 5672 3730 4207 3732 5094 3735 5487 3737 5905 3739 4975 3742 5292 3744 4716 3746 4578 3749 4806 3751 5140 3753 4651 3756 4398 3758 4084 3760 3932 3762 4535 3765 4530 3767 5463 3769 4177 3772 5480 3774 5624 3776 4472 3779 4549 3781 5584 3783 5168 3785 5452 3788 3898 3790 5100 3792 5481 3795 4696 3797 5129 3799 4514 3802 5556 3804 5008 3806 5725 3809 4827 3811 5357 3813 4856 3815 5141 3818 4934 3820 4390 3822 5634 3825 4602 3827 4882 3829 4937 3832 5407 3834 4768 3836 4654 3838 4381 3841 5030 3843 5045 3845 4798 3848 4707 3850 5390 3852 4503 3855 5255 3857 6042 3859 4896 3862 4401 3864 5028 3866 4492 3868 4866 3871 4663 3873 5255 3875 5130 3878 4599 3880 5406 3882 4901 3885 5557 3887 4326 3889 5076 3891 5056 3894 5139 3896 4070 3898 5221 3901 4788 3903 5081 3905 4399 3908 4964 3910 5117 3912 4909 3914 4777 3917 4040 3919 4724 3921 5427 3924 5186 3926 4993 3928 5212 3931 4986 3933 3864 3935 4739 3938 5034 3940 4072 3942 5754 3944 5316 3947 5252 3949 5204 3951 5875 3954 4977 3956 4313 3958 4613 3961 5136 3963 5681 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 3963 5681 3965 4624 3967 4461 3970 5042 3972 4438 3974 5657 3977 5399 3979 3812 3981 5833 3984 5350 3986 5458 3988 4868 3991 4783 3993 5525 3995 5588 3997 5269 4000 4408 4002 4393 4004 4922 4007 5568 4009 4510 4011 4548 4014 4411 4016 4941 4018 4841 4020 4787 4023 5808 4025 4826 4027 5128 4030 4730 4032 5017 4034 5048 4037 4799 4039 4785 4041 4375 4044 5213 4046 5568 4048 4951 4050 4989 4053 4776 4055 3940 4057 4609 4060 4454 4062 4359 4064 4590 4067 4768 4069 5576 4071 5372 4073 5167 4076 5030 4078 5282 4080 5159 4083 5125 4085 4896 4087 4279 4090 4118 4092 5246 4094 4829 4097 4675 4099 4790 4101 4279 4103 4508 4106 5837 4108 5020 4110 6001 4113 5002 4115 5008 4117 4610 4120 4644 4122 4988 4124 4288 4126 5505 4129 4759 4131 4503 4133 5020 4136 5694 4138 4314 4140 5493 4143 4564 4145 5661 4147 5420 4150 5234 4152 5288 4154 4500 4156 5004 4159 5302 4161 5500 4163 4977 4166 5156 4168 5086 4170 4999 4173 4981 4175 4772 4177 4580 4179 5139 4182 5207 4184 4276 4186 4922 4189 4906 4191 5479 4193 4975 4196 5382 4198 5500 4200 5328 4202 4469 4205 4588 4207 5326 4209 4851 4212 4663 4214 5724 4216 5431 4219 4599 4221 4955 4223 5454 4226 5015 4228 4924 4230 5393 4232 5306 4235 4856 4237 4893 4239 4664 4242 5474 4244 4599 4246 5019 4249 4673 4251 4318 4253 5647 4255 5041 4258 5775 4260 5480 4262 4783 4265 4759 4267 4643 4269 4279 4272 5278 4274 5538 4276 4722 4279 5910 4281 4905 4283 4317 4285 4774 4288 4561 4290 4561 4292 4850 4295 5098 4297 4554 4299 4532 4302 5041 4304 4924 4306 4701 4308 5099 4311 5253 4313 5298 4315 5776 4318 5030 4320 4716 4322 5266 4325 4609 4327 4966 4329 4568 4332 5418 4334 4973 4336 5141 4338 4958 4341 5121 4343 5460 4345 5672 4348 4749 4350 5100 4352 4724 4355 4232 4357 5027 4359 5046 4361 5168 4364 5320 4366 5105 4368 4777 4371 5116 4373 5775 4375 4421 4378 5031 4380 4978 4382 4845 4385 5488 4387 4590 4389 4833 4391 4965 4394 4366 4396 5320 4398 4346 4401 5449 4403 4965 4405 4866 4408 5194 4410 5116 4412 5283 4414 5371 4417 5008 4419 4760 4421 4975 4424 4994 4426 5518 4428 5115 4431 4922 4433 5072 4435 5072 4438 5072 4440 5504 4442 4922 4444 4890 4447 4962 4449 4517 4451 4768 4454 5186 4456 4646 4458 5284 4461 4966 4463 5038 4465 4969 4467 4645 4470 5660 4472 4947 4474 5178 4477 5404 4479 5398 4481 5401 4484 4963 4486 5163 4488 4833 4490 5232 4493 5383 4495 5109 4497 5093 4500 4753 4502 4643 4504 4767 4507 5108 4509 4911 4511 5149 4514 4571 4516 4375 4518 4975 4520 5094 4523 4842 4525 4658 4527 5448 4530 5934 4532 5224 4534 5224 4537 4954 4539 5292 4541 4966 4543 5091 4546 4905 4548 4974 4550 4297 4553 4940 4555 4925 4557 4921 4560 4742 4562 4752 4564 5144 4567 4895 4569 5405 4571 4855 4573 4757 4576 5108 4578 5306 4580 4644 4583 5336 4585 4894 4587 4848 4590 4655 4592 5337 4594 5515 4596 4901 4599 5022 4601 5022 4603 5548 4606 4988 4608 4623 4610 4469 4613 4490 4615 4659 4617 4980 4620 5075 4622 5099 4624 4922 4626 5054 4629 5236 4631 5052 4633 5531 4636 5225 4638 5275 4640 4977 4643 4743 4645 4717 4647 5345 4649 5088 4652 4813 4654 5338 4656 5287 4659 5098 4661 4788 4663 5424 4666 4585 4668 4910 4670 5043 4673 5206 4675 5201 4677 4620 4679 5045 4682 4696 4684 4673 4686 5296 4689 4573 4691 5206 4693 5055 4696 4435 4698 4443 4700 4889 4702 5561 4705 4966 4707 4320 4709 4736 4712 4464 4714 5158 4716 4813 4719 5148 4721 5102 4723 5191 4726 5054 4728 5194 4730 4852 4732 5080 4735 5019 4737 4851 4739 4744 4742 4957 4744 4917 4746 4926 4749 5063 4751 4728 4753 4751 4755 4911 4758 4911 4760 5027 4762 5015 4765 5015 4767 5004 4769 5004 4772 4696 4774 4820 4776 4875 4778 4522 4781 5230 4783 4775 4785 5186 4788 5368 4790 5194 4792 5205 4795 4593 4797 4913 4799 5297 4802 4835 4804 4865 4806 5045 4808 4749 4811 4941 4813 4895 4815 5172 4818 4664 4820 5231 4822 4223 4825 5269 4827 4988 4829 4988 4831 5265 4834 5192 4836 4702 4838 4962 4841 5098 4843 5098 4845 5093 4848 4871 4850 4969 4852 4969 4855 4978 4857 4868 4859 5379 4861 5102 4864 5102 4866 4823 4868 5200 4871 5394 4873 5161 4875 4883 4878 5314 4880 4925 4882 4571 4884 4774 4887 5374 4889 4838 4891 4704 4894 4783 4896 5002 4898 5002 4901 4956 4903 5232 4905 4857 4908 4670 4910 4833 4912 4762 4914 5050 4917 5168 4919 4682 4921 5204 4924 4893 4926 5064 4928 4985 4931 5071 4933 4713 4935 4922 4937 5297 4940 5261 4942 4830 4944 4959 4947 4852 4949 5581 4951 4954 4954 5296 4956 4887 4958 5213 4961 4970 4963 4837 4965 5252 4967 4464 4970 5034 4972 4849 4974 5002 4977 4985 4979 4985 4981 5084 4984 5084 4986 4684 4988 4783 4990 5093 4993 4739 4995 4795 4997 5103 5000 5384 5002 5222 5004 4611 5007 5069 5009 4831 5011 4709 5014 4707 5016 4958 5018 4943 5020 4629 5023 4886 5025 5015 5027 5035 5030 4843 5032 4694 5034 5041 5037 5073 5039 5269 5041 5017 5043 4911 5046 4843 5048 4751 5050 5015 5053 4939 5055 4967 5057 4967 5060 4985 5062 4398 5064 4722 5066 4740 5069 4921 5071 5025 5073 4880 5076 4880 5078 4927 5080 5003 5083 4812 5085 5053 5087 4348 5090 4729 5092 4669 5094 5221 5096 4690 5099 4910 5101 4959 5103 4653 5106 5057 5108 4969 5110 5184 5113 4616 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 5113 4616 5115 4936 5117 4540 5119 4891 5122 5043 5124 4992 5126 4778 5129 5068 5131 5131 5133 5131 5136 5045 5138 5231 5140 4833 5143 5131 5145 4709 5147 5427 5149 4974 5152 4730 5154 4888 5156 5125 5159 5035 5161 5109 5163 4732 5166 5046 5168 5046 5170 4913 5172 4913 5175 4757 5177 4984 5179 4897 5182 4825 5184 5268 5186 5224 5189 5204 5191 4592 5193 5284 5196 5072 5198 5063 5200 5062 5202 5110 5205 4821 5207 5222 5209 4620 5212 4789 5214 5325 5216 4757 5219 5111 5221 5252 5223 4927 5225 5057 5228 5170 5230 5213 5232 5114 5235 4661 5237 5304 5239 4687 5242 5291 5244 4886 5246 5107 5249 4927 5251 4770 5253 4770 5255 4834 5258 5052 5260 5234 5262 4922 5265 5106 5267 4969 5269 4969 5272 5047 5274 5101 5276 4732 5278 4789 5281 4984 5283 4820 5285 4762 5288 4758 5290 5325 5292 5300 5295 5152 5297 5128 5299 4924 5302 4948 5304 4948 5306 4948 5308 4993 5311 4662 5313 5063 5315 5118 5318 4630 5320 5277 5322 4788 5325 5040 5327 4895 5329 4819 5331 4819 5334 4972 5336 5243 5338 4697 5341 4708 5343 4735 5345 4944 5348 5163 5350 5094 5352 4961 5354 4702 5357 4737 5359 5242 5361 4990 5364 4830 5366 5019 5368 4972 5371 4972 5373 5282 5375 5063 5378 5126 5380 5103 5382 5103 5384 4722 5387 5052 5389 5354 5391 4988 5394 4971 5396 4941 5398 4941 5401 4961 5403 4670 5405 4846 5407 4982 5410 4975 5412 5088 5414 4652 5417 5151 5419 5213 5421 4920 5424 5019 5426 5019 5428 4846 5431 5164 5433 4990 5435 4942 5437 4957 5440 5141 5442 5118 5444 4895 5447 5205 5449 5178 5451 5178 5454 4697 5456 4697 5458 4591 5460 5278 5463 5107 5465 4720 5467 4883 5470 5075 5472 5075 5474 5060 5477 5473 5479 4735 5481 4941 5484 5004 5486 5054 5488 4836 5490 5050 5493 5047 5495 4856 5497 5001 5500 4828 5502 4963 5504 5065 5507 4942 5509 4840 5511 5395 5513 4773 5516 4962 5518 4972 5520 5125 5523 5100 5525 5015 5527 5017 5530 4844 5532 5343 5534 5009 5537 5065 5539 5384 5541 5182 5543 5004 5546 5109 5548 4874 5550 4995 5553 4971 5555 5002 5557 5002 5560 4792 5562 4593 5564 4773 5566 4773 5569 5186 5571 5155 5573 4967 5576 4978 5578 4731 5580 5171 5583 4789 5585 4789 5587 4789 5590 4996 5592 4996 5594 5008 5596 4823 5599 4823 5601 4875 5603 5014 5606 5230 5608 4985 5610 4865 5613 4880 5615 5204 5617 5122 5619 4957 5622 4826 5624 4835 5626 4881 5629 5042 5631 5197 5633 5026 5636 4863 5638 5049 5640 4837 5642 4870 5645 5100 5647 5098 5649 5138 5652 4545 5654 4803 5656 4999 5659 4950 5661 4913 5663 4995 5666 5133 5668 4899 5670 4799 5672 4887 5675 4798 5677 5091 5679 4990 5682 4853 5684 5096 5686 5096 5689 5032 5691 5032 5693 5032 5695 4999 5698 4791 5700 4800 5702 4800 5705 4874 5707 4856 5709 4943 5712 4808 5714 5105 5716 5032 5719 4985 5721 4745 5723 4780 5725 5016 5728 5016 5730 5063 5732 4903 5735 5186 5737 4701 5739 5222 5742 5039 5744 5016 5746 5016 5748 4882 5751 5087 5753 5087 5755 5115 5758 5402 5760 4911 5762 5054 5765 5054 5767 4908 5769 4908 5772 4973 5774 4989 5776 4989 5778 5011 5781 4889 5783 5015 5785 5077 5788 5139 5790 5245 5792 4767 5795 5118 5797 4922 5799 5041 5801 5007 5804 5073 5806 5039 5808 4969 5811 5111 5813 5111 5815 4875 5818 5111 5820 4901 5822 4912 5825 5042 5827 4773 5829 4886 5831 5244 5834 4826 5836 4982 5838 4996 5841 4996 5843 4996 5845 5085 5848 5017 5850 5017 5852 5037 5854 4850 5857 5118 5859 4948 5861 4755 5864 5069 5866 5172 5868 4966 5871 4717 5873 5193 5875 5160 5878 4758 5880 4785 5882 5106 5884 4889 5887 4898 5889 4921 5891 4921 5894 4709 5896 5255 5898 4906 5901 4906 5903 4799 5905 4860 5907 4912 5910 5085 5912 4821 5914 5015 5917 4876 5919 4908 5921 4996 5924 4996 5926 4870 5928 5102 5930 4948 5933 4804 5935 4804 5937 4899 5940 4973 5942 4973 5944 4973 5947 5193 5949 5193 5951 5197 5954 5084 5956 4980 5958 4844 5960 5138 5963 5081 5965 4743 5967 5055 5970 5055 5972 4734 5974 4863 5977 5062 5979 5103 5981 4989 5983 4952 5986 5019 5988 4744 5990 4856 5993 5131 5995 5131 5997 4985 6000 4926 6002 5111 6004 5012 6007 5207 6009 5159 6011 5159 6013 5026 6016 5159 6018 4791 6020 5094 6023 5122 6025 4870 6027 5126 6030 5008 6032 4911 6034 4772 6036 5192 6039 4828 6041 4813 6043 4813 6046 4811 6048 4961 6050 5075 6053 5075 6055 4982 6057 4882 6060 5048 6062 4684 6064 5190 6066 4956 6069 4956 6071 5168 6073 4899 6076 4891 6078 4754 6080 4754 6083 4910 6085 5053 6087 5057 6089 4921 6092 4921 6094 4899 6096 4899 6099 5004 6101 5009 6103 5009 6106 4985 6108 4934 6110 4934 6113 5063 6115 5063 6117 5040 6119 5040 6122 4826 6124 4802 6126 4729 6129 4729 6131 4903 6133 4951 6136 5091 6138 5091 6140 5009 6142 4810 6145 5070 6147 4822 6149 5028 6152 5028 6154 4874 6156 4985 6159 4952 6161 4918 6163 4790 6166 4972 6168 4944 6170 4873 6172 4924 6175 4723 6177 4942 6179 4994 6182 4958 6184 4958 6186 4958 6189 4975 6191 5000 6193 5267 6195 5080 6198 4910 6200 4838 6202 4838 6205 5128 6207 5136 6209 4845 6212 4840 6214 4840 6216 4840 6218 4840 6221 4897 6223 5000 6225 4893 6228 5148 6230 4831 6232 4994 6235 4908 6237 5023 6239 5014 6242 5032 6244 5032 6246 5060 6248 4918 6251 4918 6253 4999 6255 4919 6258 4925 6260 4957 6262 5204 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 6262 5204 6265 4829 6267 4977 6269 4803 6271 5030 6274 5015 6276 4984 6278 4984 6281 4919 6283 4890 6285 4928 6288 4928 6290 4928 6292 4928 6295 4966 6297 5039 6299 5039 6301 5163 6304 4981 6306 4823 6308 4979 6311 4943 6313 4856 6315 4856 6318 4856 6320 4849 6322 4961 6324 4948 6327 4948 6329 4973 6331 4926 6334 4926 6336 4967 6338 4952 6341 5017 6343 5017 6345 4924 6348 4851 6350 4971 6352 4965 6354 4965 6357 5061 6359 4912 6361 4949 6364 4949 6366 4949 6368 5015 6371 4796 6373 4853 6375 4857 6377 4863 6380 4835 6382 4835 6384 4929 6387 4929 6389 5048 6391 4861 6394 4954 6396 4954 6398 4721 6401 4981 6403 4883 6405 4883 6407 4883 6410 5004 6412 5062 6414 5053 6417 5053 6419 5053 6421 4855 6424 4965 6426 4965 6428 4867 6430 4867 6433 5011 6435 4928 6437 5022 6440 5022 6442 5022 6444 4956 6447 4811 6449 4995 6451 4969 6454 4850 6456 5041 6458 5007 6460 5079 6463 4849 6465 4990 6467 4990 6470 5034 6472 4899 6474 4899 6477 4840 6479 4936 6481 5032 6483 5005 6486 4909 6488 5033 6490 5033 6493 5121 6495 5043 6497 5062 6500 5062 6502 5008 6504 4966 6506 4891 6509 4914 6511 4884 6513 4884 6516 4990 6518 4990 6520 4990 6523 4990 6525 5066 6527 5022 6530 4993 6532 4889 6534 5020 6536 5020 6539 5076 6541 4916 6543 5141 6546 5098 6548 5081 6550 4851 6553 5033 6555 4977 6557 4977 6559 5003 6562 4821 6564 5113 6566 4972 6569 5022 6571 4912 6573 5009 6576 5009 6578 5034 6580 4985 6583 5099 6585 4979 6587 4942 6589 4942 6592 4978 6594 4898 6596 4999 6599 4999 6601 4999 6603 4999 6606 4773 6608 5153 6610 5153 6612 4942 6615 4932 6617 4969 6619 5016 6622 5016 6624 5057 6626 4999 6629 4802 6631 4967 6633 5076 6636 4861 6638 4861 6640 4861 6642 4911 6645 5018 6647 5018 6649 5050 6652 5050 6654 5007 6656 5007 6659 4989 6661 4989 6663 4989 6665 4919 6668 5017 6670 5017 6672 4934 6675 4808 6677 4878 6679 4878 6682 4873 6684 4952 6686 4911 6689 4901 6691 4901 6693 4831 6695 4831 6698 5011 6700 4972 6702 4972 6705 4972 6707 4972 6709 4954 6712 5140 6714 5034 6716 4957 6718 4952 6721 4952 6723 4952 6725 4989 6728 4992 6730 5035 6732 5042 6735 5042 6737 5042 6739 4941 6742 4941 6744 4941 6746 5009 6748 5009 6751 4980 6753 5004 6755 4971 6758 5020 6760 5020 6762 4901 6765 4952 6767 4994 6769 4924 6771 4924 6774 4924 6776 4924 6778 4924 6781 4939 6783 5005 6785 4866 6788 4866 6790 5088 6792 4807 6794 4807 6797 5005 6799 4937 6801 4937 6804 4937 6806 4937 6808 5052 6811 4903 6813 4903 6815 4903 6818 4903 6820 5019 6822 4933 6824 4933 6827 5038 6829 5048 6831 4959 6834 5007 6836 4936 6838 4973 6841 4943 6843 4963 6845 4835 6847 4980 6850 4980 6852 4981 6854 4980 6857 4980 6859 5043 6861 4970 6864 4985 6866 4965 6868 4965 6871 4993 6873 4993 6875 4993 6877 4905 6880 4905 6882 4905 6884 4905 6887 5031 6889 4873 6891 4963 6894 4878 6896 4921 6898 4921 6900 4921 6903 4921 6905 4921 6907 4868 6910 4971 6912 4971 6914 4971 6917 5008 6919 4925 6921 4925 6924 4902 6926 4926 6928 4926 6930 4990 6933 4990 6935 4990 6937 5024 6940 5024 6942 5024 6944 4917 6947 4917 6949 5052 6951 5052 6953 5008 6956 4971 6958 4971 6960 4971 6963 4925 6965 4936 6967 4829 6970 4920 6972 4884 6974 4901 6977 4861 6979 4890 6981 5026 6983 5008 6986 4901 6988 4881 6990 4881 6993 4894 6995 4904 6997 5007 7000 5007 7002 5007 7004 5007 7006 5007 7009 5007 7011 4993 7013 4993 7016 5034 7018 5034 7020 5034 7023 5034 7025 4883 7027 5040 7030 4933 7032 4933 7034 4933 7036 4933 7039 4933 7041 4933 7043 4933 7046 4933 7048 4933 7050 4933 7053 4933 7055 4964 7057 4893 7059 4876 7062 4919 7064 4919 7066 4919 7069 4919 7071 4896 7073 5002 7076 4855 7078 4955 7080 5032 7082 4996 7085 4996 7087 4996 7089 4973 7092 5095 7094 4850 7096 4901 7099 4904 7101 4904 7103 4904 7106 4904 7108 4904 7110 4996 7112 4886 7115 4886 7117 4919 7119 4919 7122 4919 7124 5023 7126 4913 7129 4913 7131 4913 7133 4913 7135 4913 7138 5032 7140 4971 7142 4971 7145 4971 7147 4971 7149 4971 7152 4971 7154 4971 7156 4971 7159 4971 7161 4926 7163 5022 7165 5005 7168 5005 7170 4882 7172 4922 7175 4924 7177 4924 7179 4924 7182 4924 7184 5028 7186 4879 7188 4879 7191 4879 7193 4879 7195 4965 7198 4965 7200 4939 7202 4875 7205 4909 7207 4973 7209 4973 7212 4987 7214 4903 7216 4903 7218 4903 7221 4903 7223 4903 7225 4965 7228 4965 7230 4944 7232 4989 7235 4883 7237 4883 7239 4973 7241 4952 7244 4952 7246 4994 7248 4994 7251 4993 7253 4957 7255 4996 7258 4924 7260 4985 7262 4985 7265 4943 7267 4943 7269 4943 7271 4943 7274 4943 7276 4880 7278 4875 7281 4899 7283 4822 7285 4883 7288 4883 7290 4883 7292 4883 7294 4922 7297 4922 7299 5007 7301 5007 7304 5001 7306 5001 7308 5001 7311 4969 7313 4882 7315 4956 7318 4956 7320 4920 7322 4920 7324 4920 7327 4911 7329 4911 7331 4944 7334 4924 7336 4924 7338 5050 7341 5050 7343 5063 7345 4922 7347 4922 7350 4922 7352 4922 7354 4979 7357 4979 7359 4932 7361 4970 7364 5004 7366 4972 7368 4972 7370 4972 7373 4972 7375 4972 7377 4939 7380 4939 7382 4939 7384 4939 7387 4939 7389 4859 7391 4842 7394 4999 7396 4999 7398 4999 7400 4929 7403 4929 7405 4929 7407 4958 7410 4996 7412 4996 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 7412 4996 7414 5039 7417 5039 7419 5035 7421 4922 7423 4952 7426 5009 7428 4898 7430 4898 7433 4898 7435 4868 7437 5033 7440 5033 7442 5033 7444 5033 7447 5033 7449 4988 7451 4988 7453 4941 7456 5012 7458 4980 7460 4980 7463 4980 7465 5018 7467 4935 7470 4935 7472 4962 7474 4962 7476 4962 7479 4996 7481 4996 7483 4959 7486 4959 7488 4973 7490 4973 7493 4973 7495 4999 7497 5052 7500 5102 7502 5066 7504 5066 7506 5066 7509 4905 7511 4905 7513 4905 7516 4965 7518 4961 7520 4961 7523 4961 7525 4961 7527 4994 7529 4994 7532 5001 7534 4928 7536 5045 7539 5045 7541 5045 7543 5023 7546 4995 7548 4974 7550 4974 7553 5037 7555 4990 7557 4990 7559 4990 7562 4990 7564 4990 7566 4990 7569 4990 7571 4990 7573 4905 7576 4905 7578 4905 7580 4905 7582 5017 7585 5017 7587 4984 7589 5049 7592 4999 7594 4999 7596 4999 7599 4931 7601 4981 7603 4981 7606 4981 7608 5007 7610 5007 7612 5007 7615 5007 7617 4948 7619 4950 7622 4950 7624 4979 7626 4935 7629 4935 7631 4935 7633 4936 7635 4956 7638 4956 7640 5011 7642 5011 7645 5011 7647 5011 7649 5011 7652 5011 7654 4984 7656 5012 7658 5012 7661 4975 7663 4975 7665 4975 7668 4975 7670 4916 7672 4916 7675 4903 7677 4903 7679 4903 7682 4979 7684 4979 7686 4949 7688 4871 7691 4852 7693 4852 7695 5010 7698 5010 7700 5010 7702 5010 7705 4982 7707 4911 7709 5007 7711 4901 7714 4924 7716 4954 7718 4954 7721 4954 7723 4956 7725 4967 7728 4967 7730 4967 7732 4947 7735 4947 7737 4948 7739 4948 7741 4948 7744 4948 7746 4948 7748 4948 7751 4919 7753 5012 7755 4956 7758 4956 7760 4956 7762 4956 7764 4956 7767 4961 7769 4961 7771 4980 7774 4980 7776 4980 7778 4980 7781 4980 7783 4980 7785 4980 7788 4959 7790 4959 7792 4959 7794 4959 7797 4959 7799 4959 7801 4959 7804 5049 7806 5049 7808 4919 7811 5015 7813 5015 7815 5015 7817 5015 7820 5015 7822 5010 7824 4959 7827 4959 7829 4959 7831 4980 7834 4980 7836 4980 7838 4966 7841 4966 7843 4966 7845 4966 7847 4974 7850 4974 7852 5012 7854 4913 7857 4913 7859 4952 7861 4952 7864 4952 7866 4952 7868 4952 7870 4986 7873 4942 7875 4942 7877 4919 7880 5031 7882 5031 7884 5031 7887 4927 7889 4927 7891 4966 7894 4966 7896 5030 7898 4948 7900 4948 7903 4948 7905 4975 7907 4975 7910 4967 7912 4888 7914 4917 7917 4987 7919 4944 7921 4909 7923 4909 7926 4909 7928 4975 7930 4975 7933 4975 7935 4916 7937 4921 7940 4950 7942 4950 7944 4979 7946 4979 7949 4979 7951 4979 7953 4979 7956 4972 7958 4947 7960 4980 7963 4946 7965 4946 7967 4940 7970 4940 7972 4940 7974 4940 7976 4975 7979 4989 7981 4989 7983 4989 7986 4936 7988 5001 7990 5001 7993 5001 7995 4965 7997 4933 7999 4933 8002 4948 8004 4971 8006 4971 8009 4971 8011 4971 8013 4971 8016 4979 8018 4979 8020 4979 8023 4969 8025 5017 8027 5017 8029 5017 8032 4928 8034 4966 8036 4940 8039 4940 8041 4940 8043 4940 8046 4940 8048 4940 8050 5024 8052 5024 8055 5024 8057 4995 8059 4996 8062 4996 8064 4996 8066 4996 8069 4996 8071 4996 8073 4996 8076 4996 8078 4996 8080 4996 8082 4940 8085 4940 8087 4940 8089 4940 8092 4980 8094 4980 8096 4980 8099 4996 8101 4996 8103 4979 8105 4990 8108 4990 8110 5019 8112 5019 8115 5019 8117 5019 8119 4944 8122 4966 8124 5002 8126 5002 8129 5002 8131 5002 8133 5002 8135 5002 8138 5009 8140 4946 8142 4946 8145 4946 8147 4946 8149 5002 8152 5002 8154 5002 8156 5002 8158 5002 8161 5002 8163 5002 8165 5012 8168 5012 8170 5012 8172 5012 8175 5012 8177 4919 8179 4919 8182 4980 8184 4985 8186 4985 8188 4985 8191 4985 8193 4985 8195 4985 8198 4979 8200 4979 8202 4937 8205 4937 8207 4937 8209 4937 8211 4937 8214 4937 8216 4937 8218 4937 8221 4937 8223 4937 8225 4937 8228 4937 8230 4937 8232 4937 8234 4961 8237 4966 8239 4966 8241 4966 8244 4966 8246 4966 8248 4966 8251 4966 8253 4966 8255 4966 8258 5002 8260 5002 8262 5002 8264 4995 8267 4965 8269 4965 8271 4965 8274 4965 8276 4965 8278 4933 8281 4933 8283 4933 8285 4933 8287 4933 8290 4933 8292 4933 8294 4996 8297 4996 8299 4996 8301 4996 8304 4996 8306 4996 8308 4996 8311 4996 8313 4996 8315 4996 8317 4929 8320 4988 8322 4988 8324 4988 8327 4939 8329 4979 8331 4964 8334 4964 8336 4964 8338 4964 8340 4964 8343 4964 8345 4964 8347 4964 8350 4964 8352 4964 8354 4964 8357 4964 8359 4964 8361 4964 8364 4964 8366 4964 8368 4964 8370 4964 8373 4964 8375 4964 8377 4964 8380 4964 8382 4964 8384 4966 8387 4966 8389 4966 8391 4952 8393 4952 8396 4952 8398 4952 8400 4952 8403 4986 8405 4986 8407 4986 8410 5018 8412 5018 8414 5018 8417 5018 8419 5005 8421 5005 8423 5005 8426 5005 8428 5005 8430 4949 8433 4949 8435 4941 8437 4941 8440 4941 8442 4941 8444 4941 8446 4961 8449 4954 8451 4957 8453 4957 8456 4971 8458 4971 8460 4970 8463 4970 8465 4946 8467 5009 8470 5009 8472 4959 8474 4959 8476 4959 8479 4959 8481 4984 8483 5020 8486 5020 8488 4914 8490 4914 8493 4914 8495 4973 8497 4973 8499 4973 8502 4973 8504 4973 8506 4973 8509 4973 8511 4973 8513 4973 8516 4973 8518 4947 8520 4979 8522 4979 8525 4979 8527 4979 8529 4979 8532 4979 8534 4979 8536 4955 8539 4955 8541 4955 8543 4955 8546 4986 8548 4951 8550 4951 8552 4951 8555 4951 8557 4951 8559 4951 8562 4951 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 53 8562 4951 8564 4943 8566 4963 8569 4985 8571 4985 8573 4985 8575 4995 8578 4996 8580 4964 8582 4964 8585 4981 8587 4981 8589 4917 8592 4959 8594 4959 8596 4959 8599 4959 8601 4959 8603 4959 8605 4959 8608 4980 8610 4980 8612 4980 8615 4947 8617 4947 8619 4947 8622 4947 8624 4942 8626 4929 8628 4929 8631 4932 8633 4932 8635 4932 8638 4932 8640 4932 8642 4932 8645 4937 8647 4937 8649 4937 8652 4964 8654 4964 8656 4997 8658 5004 8661 4973 8663 4973 8665 4984 8668 4984 8670 4973 8672 4973 8675 4973 8677 4986 8679 4980 8681 4980 53 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/specfunc-airy.texi0000664000252300025230000001206212171574312013363 00000000000000@cindex Airy functions @cindex Ai(x) @cindex Bi(x) The Airy functions @math{Ai(x)} and @math{Bi(x)} are defined by the integral representations, @tex \beforedisplay $$ \eqalign{ Ai(x) & = {1\over\pi} \int_0^\infty \cos(t^3/3 + xt ) \,dt, \cr Bi(x) & = {1\over\pi} \int_0^\infty (e^{-t^3/3 + xt} + \sin(t^3/3 + xt)) \,dt. } $$ \afterdisplay @end tex @ifinfo @example Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3 + xt) + \sin((1/3) t^3 + xt)) dt @end example @end ifinfo @noindent For further information see Abramowitz & Stegun, Section 10.4. The Airy functions are defined in the header file @file{gsl_sf_airy.h}. @menu * Airy Functions:: * Derivatives of Airy Functions:: * Zeros of Airy Functions:: * Zeros of Derivatives of Airy Functions:: @end menu @node Airy Functions @subsection Airy Functions @deftypefun double gsl_sf_airy_Ai (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Ai_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the Airy function @math{Ai(x)} with an accuracy specified by @var{mode}. @end deftypefun @deftypefun double gsl_sf_airy_Bi (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Bi_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the Airy function @math{Bi(x)} with an accuracy specified by @var{mode}. @end deftypefun @deftypefun double gsl_sf_airy_Ai_scaled (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Ai_scaled_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute a scaled version of the Airy function @math{S_A(x) Ai(x)}. For @math{x>0} the scaling factor @math{S_A(x)} is @c{$\exp(+(2/3) x^{3/2})$} @math{\exp(+(2/3) x^(3/2))}, and is 1 for @math{x<0}. @end deftypefun @deftypefun double gsl_sf_airy_Bi_scaled (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Bi_scaled_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute a scaled version of the Airy function @math{S_B(x) Bi(x)}. For @math{x>0} the scaling factor @math{S_B(x)} is @c{$\exp(-(2/3) x^{3/2})$} @math{exp(-(2/3) x^(3/2))}, and is 1 for @math{x<0}. @end deftypefun @node Derivatives of Airy Functions @subsection Derivatives of Airy Functions @deftypefun double gsl_sf_airy_Ai_deriv (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Ai_deriv_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the Airy function derivative @math{Ai'(x)} with an accuracy specified by @var{mode}. @end deftypefun @deftypefun double gsl_sf_airy_Bi_deriv (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Bi_deriv_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the Airy function derivative @math{Bi'(x)} with an accuracy specified by @var{mode}. @end deftypefun @deftypefun double gsl_sf_airy_Ai_deriv_scaled (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Ai_deriv_scaled_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the scaled Airy function derivative @math{S_A(x) Ai'(x)}. For @math{x>0} the scaling factor @math{S_A(x)} is @c{$\exp(+(2/3) x^{3/2})$} @math{\exp(+(2/3) x^(3/2))}, and is 1 for @math{x<0}. @end deftypefun @deftypefun double gsl_sf_airy_Bi_deriv_scaled (double @var{x}, gsl_mode_t @var{mode}) @deftypefunx int gsl_sf_airy_Bi_deriv_scaled_e (double @var{x}, gsl_mode_t @var{mode}, gsl_sf_result * @var{result}) These routines compute the scaled Airy function derivative @math{S_B(x) Bi'(x)}. For @math{x>0} the scaling factor @math{S_B(x)} is @c{$\exp(-(2/3) x^{3/2})$} @math{exp(-(2/3) x^(3/2))}, and is 1 for @math{x<0}. @end deftypefun @node Zeros of Airy Functions @subsection Zeros of Airy Functions @deftypefun double gsl_sf_airy_zero_Ai (unsigned int @var{s}) @deftypefunx int gsl_sf_airy_zero_Ai_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th zero of the Airy function @math{Ai(x)}. @end deftypefun @deftypefun double gsl_sf_airy_zero_Bi (unsigned int @var{s}) @deftypefunx int gsl_sf_airy_zero_Bi_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th zero of the Airy function @math{Bi(x)}. @end deftypefun @node Zeros of Derivatives of Airy Functions @subsection Zeros of Derivatives of Airy Functions @deftypefun double gsl_sf_airy_zero_Ai_deriv (unsigned int @var{s}) @deftypefunx int gsl_sf_airy_zero_Ai_deriv_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th zero of the Airy function derivative @math{Ai'(x)}. @end deftypefun @deftypefun double gsl_sf_airy_zero_Bi_deriv (unsigned int @var{s}) @deftypefunx int gsl_sf_airy_zero_Bi_deriv_e (unsigned int @var{s}, gsl_sf_result * @var{result}) These routines compute the location of the @var{s}-th zero of the Airy function derivative @math{Bi'(x)}. @end deftypefun gsl-1.16/doc/rand-beta.tex0000664000252300025230000006044512171574312012307 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-beta.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-beta.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 811 631 M -31 0 V 31 1078 R -31 0 V 31 1079 R -31 0 V 31 1078 R -31 0 V 31 1078 R -31 0 V 811 631 M 0 -31 V 1512 31 R 0 -31 V 1513 31 R 0 -31 V 1512 31 R 0 -31 V 1512 31 R 0 -31 V 811 4944 M 811 631 L 6049 0 V 0 4313 V -6049 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 811 631 M 20 22 V 20 21 V 21 21 V 20 21 V 20 21 V 20 21 V 21 21 V 20 20 V 20 21 V 20 20 V 21 20 V 20 20 V 20 20 V 20 20 V 20 19 V 21 20 V 20 19 V 20 19 V 20 19 V 21 19 V 20 18 V 20 19 V 20 18 V 21 19 V 20 18 V 20 18 V 20 17 V 20 18 V 21 18 V 20 17 V 20 17 V 20 17 V 21 17 V 20 17 V 20 17 V 20 16 V 21 17 V 20 16 V 20 16 V 20 16 V 20 15 V 21 16 V 20 16 V 20 15 V 20 15 V 21 15 V 20 15 V 20 15 V 20 14 V 21 15 V 20 14 V 20 14 V 20 14 V 20 14 V 21 14 V 20 14 V 20 13 V 20 14 V 21 13 V 20 13 V 20 13 V 20 12 V 21 13 V 20 12 V 20 13 V 20 12 V 20 12 V 21 12 V 20 11 V 20 12 V 20 11 V 21 12 V 20 11 V 20 11 V 20 11 V 21 10 V 20 11 V 20 10 V 20 11 V 20 10 V 21 10 V 20 10 V 20 9 V 20 10 V 21 9 V 20 10 V 20 9 V 20 9 V 21 9 V 20 8 V 20 9 V 20 8 V 20 8 V 21 8 V 20 8 V 20 8 V 20 8 V 21 7 V 20 8 V 20 7 V 20 7 V 21 7 V 2895 2092 L 20 7 V 20 6 V 20 6 V 21 7 V 20 6 V 20 6 V 20 5 V 21 6 V 20 6 V 20 5 V 20 5 V 21 5 V 20 5 V 20 5 V 20 5 V 20 4 V 21 4 V 20 5 V 20 4 V 20 4 V 21 3 V 20 4 V 20 3 V 20 4 V 21 3 V 20 3 V 20 3 V 20 3 V 20 2 V 21 3 V 20 2 V 20 2 V 20 2 V 21 2 V 20 2 V 20 1 V 20 2 V 21 1 V 20 1 V 20 1 V 20 1 V 20 1 V 21 0 V 20 1 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 -1 V 21 0 V 20 -1 V 20 -1 V 20 -1 V 20 -1 V 21 -1 V 20 -2 V 20 -1 V 20 -2 V 21 -2 V 20 -2 V 20 -2 V 20 -2 V 21 -3 V 20 -2 V 20 -3 V 20 -3 V 20 -3 V 21 -3 V 20 -4 V 20 -3 V 20 -4 V 21 -3 V 20 -4 V 20 -4 V 20 -5 V 21 -4 V 20 -4 V 20 -5 V 20 -5 V 20 -5 V 21 -5 V 20 -5 V 20 -5 V 20 -6 V 21 -6 V 20 -5 V 20 -6 V 20 -6 V 21 -7 V 20 -6 V 20 -6 V 20 -7 V 20 -7 V 21 -7 V 20 -7 V 20 -7 V 20 -8 V 21 -7 V 20 -8 V 20 -8 V 20 -8 V 21 -8 V 20 -8 V 5019 2001 L 20 -9 V 20 -8 V 21 -9 V 20 -9 V 20 -9 V 20 -10 V 21 -9 V 20 -10 V 20 -9 V 20 -10 V 21 -10 V 20 -10 V 20 -11 V 20 -10 V 20 -11 V 21 -10 V 20 -11 V 20 -11 V 20 -11 V 21 -12 V 20 -11 V 20 -12 V 20 -11 V 21 -12 V 20 -12 V 20 -12 V 20 -13 V 20 -12 V 21 -13 V 20 -12 V 20 -13 V 20 -13 V 21 -13 V 20 -14 V 20 -13 V 20 -14 V 21 -14 V 20 -14 V 20 -14 V 20 -14 V 20 -14 V 21 -15 V 20 -14 V 20 -15 V 20 -15 V 21 -15 V 20 -15 V 20 -15 V 20 -16 V 21 -16 V 20 -15 V 20 -16 V 20 -16 V 20 -16 V 21 -17 V 20 -16 V 20 -17 V 20 -17 V 21 -17 V 20 -17 V 20 -17 V 20 -17 V 21 -18 V 20 -18 V 20 -17 V 20 -18 V 20 -18 V 21 -19 V 20 -18 V 20 -19 V 20 -18 V 21 -19 V 20 -19 V 20 -19 V 20 -19 V 21 -20 V 20 -19 V 20 -20 V 20 -20 V 20 -20 V 21 -20 V 20 -20 V 20 -21 V 20 -20 V 21 -21 V 20 -21 V 20 -21 V 20 -21 V 21 -21 V 20 -21 V 20 -22 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 811 631 M 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 20 1 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 1 V 20 0 V 21 0 V 20 1 V 20 0 V 20 0 V 20 1 V 21 0 V 20 0 V 20 1 V 20 0 V 21 1 V 20 0 V 20 1 V 20 1 V 21 0 V 20 1 V 20 1 V 20 0 V 20 1 V 21 1 V 20 1 V 20 1 V 20 1 V 21 1 V 20 1 V 20 1 V 20 1 V 21 1 V 20 1 V 20 2 V 20 1 V 20 1 V 21 2 V 20 1 V 20 2 V 20 1 V 21 2 V 20 2 V 20 2 V 20 1 V 21 2 V 20 2 V 20 2 V 20 2 V 20 3 V 21 2 V 20 2 V 20 2 V 20 3 V 21 2 V 20 3 V 20 2 V 20 3 V 21 3 V 20 3 V 20 3 V 20 3 V 20 3 V 21 3 V 20 3 V 20 3 V 20 4 V 21 3 V 20 4 V 20 3 V 20 4 V 21 4 V 20 4 V 20 4 V 20 4 V 20 4 V 21 4 V 20 4 V 20 5 V 20 4 V 21 5 V 20 5 V 20 4 V 20 5 V 21 5 V 2895 807 L 20 5 V 20 6 V 20 5 V 21 6 V 20 5 V 20 6 V 20 6 V 21 6 V 20 6 V 20 6 V 20 6 V 21 6 V 20 7 V 20 6 V 20 7 V 20 7 V 21 7 V 20 7 V 20 7 V 20 7 V 21 8 V 20 7 V 20 8 V 20 8 V 21 7 V 20 8 V 20 8 V 20 9 V 20 8 V 21 9 V 20 8 V 20 9 V 20 9 V 21 9 V 20 9 V 20 9 V 20 10 V 21 9 V 20 10 V 20 10 V 20 10 V 20 10 V 21 10 V 20 11 V 20 10 V 20 11 V 21 11 V 20 11 V 20 11 V 20 11 V 21 11 V 20 12 V 20 12 V 20 11 V 20 12 V 21 13 V 20 12 V 20 12 V 20 13 V 21 13 V 20 13 V 20 13 V 20 13 V 21 13 V 20 14 V 20 14 V 20 14 V 20 14 V 21 14 V 20 14 V 20 15 V 20 15 V 21 15 V 20 15 V 20 15 V 20 15 V 21 16 V 20 16 V 20 16 V 20 16 V 20 16 V 21 17 V 20 16 V 20 17 V 20 17 V 21 17 V 20 18 V 20 17 V 20 18 V 21 18 V 20 18 V 20 18 V 20 19 V 20 19 V 21 18 V 20 20 V 20 19 V 20 19 V 21 20 V 20 20 V 20 20 V 20 20 V 21 20 V 20 21 V 5019 2083 L 20 21 V 20 21 V 21 22 V 20 21 V 20 22 V 20 22 V 21 23 V 20 22 V 20 23 V 20 23 V 21 23 V 20 23 V 20 24 V 20 23 V 20 24 V 21 24 V 20 25 V 20 24 V 20 25 V 21 25 V 20 26 V 20 25 V 20 26 V 21 26 V 20 26 V 20 26 V 20 27 V 20 27 V 21 27 V 20 27 V 20 28 V 20 27 V 21 28 V 20 29 V 20 28 V 20 29 V 21 29 V 20 29 V 20 29 V 20 30 V 20 30 V 21 30 V 20 30 V 20 31 V 20 31 V 21 31 V 20 31 V 20 32 V 20 32 V 21 32 V 20 32 V 20 33 V 20 33 V 20 33 V 21 33 V 20 34 V 20 34 V 20 34 V 21 34 V 20 35 V 20 35 V 20 35 V 21 35 V 20 36 V 20 36 V 20 36 V 20 37 V 21 36 V 20 37 V 20 38 V 20 37 V 21 38 V 20 38 V 20 38 V 20 39 V 21 39 V 20 39 V 20 40 V 20 39 V 20 40 V 21 41 V 20 40 V 20 41 V 20 41 V 21 42 V 20 41 V 20 42 V 20 42 V 21 43 V 20 43 V 20 43 V stroke LT2 LTb LT2 6077 4381 M 543 0 V 811 4944 M 20 -43 V 20 -43 V 21 -43 V 20 -42 V 20 -42 V 20 -41 V 21 -42 V 20 -41 V 20 -41 V 20 -40 V 21 -41 V 20 -40 V 20 -39 V 20 -40 V 20 -39 V 21 -39 V 20 -39 V 20 -38 V 20 -38 V 21 -38 V 20 -37 V 20 -38 V 20 -37 V 21 -36 V 20 -37 V 20 -36 V 20 -36 V 20 -36 V 21 -35 V 20 -35 V 20 -35 V 20 -35 V 21 -34 V 20 -34 V 20 -34 V 20 -34 V 21 -33 V 20 -33 V 20 -33 V 20 -33 V 20 -32 V 21 -32 V 20 -32 V 20 -32 V 20 -31 V 21 -31 V 20 -31 V 20 -31 V 20 -30 V 21 -30 V 20 -30 V 20 -30 V 20 -29 V 20 -29 V 21 -29 V 20 -29 V 20 -28 V 20 -29 V 21 -28 V 20 -27 V 20 -28 V 20 -27 V 21 -27 V 20 -27 V 20 -27 V 20 -26 V 20 -26 V 21 -26 V 20 -26 V 20 -25 V 20 -26 V 21 -25 V 20 -25 V 20 -24 V 20 -25 V 21 -24 V 20 -24 V 20 -23 V 20 -24 V 20 -23 V 21 -23 V 20 -23 V 20 -23 V 20 -22 V 21 -23 V 20 -22 V 20 -22 V 20 -21 V 21 -22 V 20 -21 V 20 -21 V 20 -21 V 20 -21 V 21 -20 V 20 -20 V 20 -20 V 20 -20 V 21 -20 V 20 -19 V 20 -19 V 20 -20 V 21 -18 V 2895 1846 L 20 -19 V 20 -18 V 20 -18 V 21 -18 V 20 -18 V 20 -17 V 20 -18 V 21 -17 V 20 -17 V 20 -17 V 20 -16 V 21 -17 V 20 -16 V 20 -16 V 20 -16 V 20 -16 V 21 -16 V 20 -15 V 20 -15 V 20 -15 V 21 -15 V 20 -15 V 20 -15 V 20 -14 V 21 -14 V 20 -14 V 20 -14 V 20 -14 V 20 -14 V 21 -13 V 20 -13 V 20 -13 V 20 -13 V 21 -13 V 20 -13 V 20 -12 V 20 -12 V 21 -13 V 20 -12 V 20 -11 V 20 -12 V 20 -12 V 21 -11 V 20 -11 V 20 -11 V 20 -11 V 21 -11 V 20 -11 V 20 -10 V 20 -11 V 21 -10 V 20 -10 V 20 -10 V 20 -10 V 20 -10 V 21 -9 V 20 -10 V 20 -9 V 20 -9 V 21 -9 V 20 -9 V 20 -9 V 20 -8 V 21 -9 V 20 -8 V 20 -9 V 20 -8 V 20 -8 V 21 -7 V 20 -8 V 20 -8 V 20 -7 V 21 -8 V 20 -7 V 20 -7 V 20 -7 V 21 -7 V 20 -7 V 20 -7 V 20 -6 V 20 -7 V 21 -6 V 20 -6 V 20 -6 V 20 -6 V 21 -6 V 20 -6 V 20 -6 V 20 -5 V 21 -6 V 20 -5 V 20 -6 V 20 -5 V 20 -5 V 21 -5 V 20 -5 V 20 -4 V 20 -5 V 21 -5 V 20 -4 V 20 -5 V 20 -4 V 21 -4 V 20 -4 V 5019 753 L 20 -4 V 20 -4 V 21 -4 V 20 -4 V 20 -3 V 20 -4 V 21 -3 V 20 -4 V 20 -3 V 20 -3 V 21 -3 V 20 -3 V 20 -3 V 20 -3 V 20 -3 V 21 -3 V 20 -3 V 20 -2 V 20 -3 V 21 -2 V 20 -3 V 20 -2 V 20 -2 V 21 -2 V 20 -3 V 20 -2 V 20 -2 V 20 -2 V 21 -2 V 20 -1 V 20 -2 V 20 -2 V 21 -2 V 20 -1 V 20 -2 V 20 -1 V 21 -2 V 20 -1 V 20 -1 V 20 -2 V 20 -1 V 21 -1 V 20 -1 V 20 -1 V 20 -1 V 21 -1 V 20 -1 V 20 -1 V 20 -1 V 21 -1 V 20 -1 V 20 0 V 20 -1 V 20 -1 V 21 0 V 20 -1 V 20 -1 V 20 0 V 21 -1 V 20 0 V 20 -1 V 20 0 V 21 0 V 20 -1 V 20 0 V 20 0 V 20 -1 V 21 0 V 20 0 V 20 -1 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 -1 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V 20 0 V 21 0 V 20 0 V 20 0 V stroke 0.500 UL LTb 811 4944 M 811 631 L 6049 0 V 0 4313 V -6049 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4381){\rjust{\strut{}$a=1,b=4$}}% \put(5957,4581){\rjust{\strut{}$a=4,b=1$}}% \put(5957,4781){\rjust{\strut{}$a=2,b=2$}}% \put(3835,5244){\cjust{\strut{}Beta Distribution}}% \put(3835,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}1}}% \put(5348,400){\cjust{\strut{}0.75}}% \put(3836,400){\cjust{\strut{}0.5}}% \put(2323,400){\cjust{\strut{}0.25}}% \put(811,400){\cjust{\strut{}0}}% \put(660,4944){\rjust{\strut{} 4}}% \put(660,3866){\rjust{\strut{} 3}}% \put(660,2788){\rjust{\strut{} 2}}% \put(660,1709){\rjust{\strut{} 1}}% \put(660,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-zeta.texi0000664000252300025230000000663312171574312013371 00000000000000@cindex Zeta functions The Riemann zeta function is defined in Abramowitz & Stegun, Section 23.2. The functions described in this section are declared in the header file @file{gsl_sf_zeta.h}. @menu * Riemann Zeta Function:: * Riemann Zeta Function Minus One:: * Hurwitz Zeta Function:: * Eta Function:: @end menu @node Riemann Zeta Function @subsection Riemann Zeta Function @cindex Riemann Zeta Function The Riemann zeta function is defined by the infinite sum @c{$\zeta(s) = \sum_{k=1}^\infty k^{-s}$} @math{\zeta(s) = \sum_@{k=1@}^\infty k^@{-s@}}. @deftypefun double gsl_sf_zeta_int (int @var{n}) @deftypefunx int gsl_sf_zeta_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the Riemann zeta function @math{\zeta(n)} for integer @var{n}, @math{n \ne 1}. @comment Domain: n integer, n != 1 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_zeta (double @var{s}) @deftypefunx int gsl_sf_zeta_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute the Riemann zeta function @math{\zeta(s)} for arbitrary @var{s}, @math{s \ne 1}. @comment Domain: s != 1.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node Riemann Zeta Function Minus One @subsection Riemann Zeta Function Minus One For large positive argument, the Riemann zeta function approaches one. In this region the fractional part is interesting, and therefore we need a function to evaluate it explicitly. @deftypefun double gsl_sf_zetam1_int (int @var{n}) @deftypefunx int gsl_sf_zetam1_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute @math{\zeta(n) - 1} for integer @var{n}, @math{n \ne 1}. @comment Domain: n integer, n != 1 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_zetam1 (double @var{s}) @deftypefunx int gsl_sf_zetam1_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute @math{\zeta(s) - 1} for arbitrary @var{s}, @math{s \ne 1}. @comment Domain: s != 1.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW @end deftypefun @node Hurwitz Zeta Function @subsection Hurwitz Zeta Function @cindex Hurwitz Zeta Function The Hurwitz zeta function is defined by @c{$\zeta(s,q) = \sum_0^\infty (k+q)^{-s}$} @math{\zeta(s,q) = \sum_0^\infty (k+q)^@{-s@}}. @deftypefun double gsl_sf_hzeta (double @var{s}, double @var{q}) @deftypefunx int gsl_sf_hzeta_e (double @var{s}, double @var{q}, gsl_sf_result * @var{result}) These routines compute the Hurwitz zeta function @math{\zeta(s,q)} for @math{s > 1}, @math{q > 0}. @comment Domain: s > 1.0, q > 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @node Eta Function @subsection Eta Function @cindex Eta Function The eta function is defined by @c{$\eta(s) = (1-2^{1-s}) \zeta(s)$} @math{\eta(s) = (1-2^@{1-s@}) \zeta(s)}. @deftypefun double gsl_sf_eta_int (int @var{n}) @deftypefunx int gsl_sf_eta_int_e (int @var{n}, gsl_sf_result * @var{result}) These routines compute the eta function @math{\eta(n)} for integer @var{n}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_eta (double @var{s}) @deftypefunx int gsl_sf_eta_e (double @var{s}, gsl_sf_result * @var{result}) These routines compute the eta function @math{\eta(s)} for arbitrary @var{s}. @comment Exceptional Return Values: GSL_EUNDRFLW, GSL_EOVRFLW @end deftypefun gsl-1.16/doc/specfunc-debye.texi0000664000252300025230000000441612171574312013513 00000000000000@cindex Debye functions The Debye functions @math{D_n(x)} are defined by the following integral, @tex \beforedisplay $$ D_n(x) = {n \over x^n} \int_0^x dt {t^n \over e^t - 1} $$ \afterdisplay @end tex @ifinfo @example D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1)) @end example @end ifinfo @noindent For further information see Abramowitz & Stegun, Section 27.1. The Debye functions are declared in the header file @file{gsl_sf_debye.h}. @deftypefun double gsl_sf_debye_1 (double @var{x}) @deftypefunx int gsl_sf_debye_1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the first-order Debye function @math{D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_debye_2 (double @var{x}) @deftypefunx int gsl_sf_debye_2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the second-order Debye function @math{D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_debye_3 (double @var{x}) @deftypefunx int gsl_sf_debye_3_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the third-order Debye function @math{D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_debye_4 (double @var{x}) @deftypefunx int gsl_sf_debye_4_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the fourth-order Debye function @math{D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_debye_5 (double @var{x}) @deftypefunx int gsl_sf_debye_5_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the fifth-order Debye function @math{D_5(x) = (5/x^5) \int_0^x dt (t^5/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_debye_6 (double @var{x}) @deftypefunx int gsl_sf_debye_6_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the sixth-order Debye function @math{D_6(x) = (6/x^6) \int_0^x dt (t^6/(e^t - 1))}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/cheb.texi0000664000252300025230000001645712171574312011530 00000000000000@cindex Chebyshev series @cindex fitting, using Chebyshev polynomials @cindex interpolation, using Chebyshev polynomials This chapter describes routines for computing Chebyshev approximations to univariate functions. A Chebyshev approximation is a truncation of the series @math{f(x) = \sum c_n T_n(x)}, where the Chebyshev polynomials @math{T_n(x) = \cos(n \arccos x)} provide an orthogonal basis of polynomials on the interval @math{[-1,1]} with the weight function @c{$1 / \sqrt{1-x^2}$} @math{1 / \sqrt@{1-x^2@}}. The first few Chebyshev polynomials are, @math{T_0(x) = 1}, @math{T_1(x) = x}, @math{T_2(x) = 2 x^2 - 1}. For further information see Abramowitz & Stegun, Chapter 22. The functions described in this chapter are declared in the header file @file{gsl_chebyshev.h}. @menu * Chebyshev Definitions:: * Creation and Calculation of Chebyshev Series:: * Auxiliary Functions for Chebyshev Series:: * Chebyshev Series Evaluation:: * Derivatives and Integrals:: * Chebyshev Approximation Examples:: * Chebyshev Approximation References and Further Reading:: @end menu @node Chebyshev Definitions @section Definitions @tpindex gsl_cheb_series A Chebyshev series is stored using the following structure, @example typedef struct @{ double * c; /* coefficients c[0] .. c[order] */ int order; /* order of expansion */ double a; /* lower interval point */ double b; /* upper interval point */ ... @} gsl_cheb_series @end example @noindent The approximation is made over the range @math{[a,b]} using @var{order}+1 terms, including the coefficient @math{c[0]}. The series is computed using the following convention, @tex \beforedisplay $$ f(x) = {c_0 \over 2} + \sum_{n=1} c_n T_n(x) $$ \afterdisplay @end tex @ifinfo @example f(x) = (c_0 / 2) + \sum_@{n=1@} c_n T_n(x) @end example @end ifinfo @noindent which is needed when accessing the coefficients directly. @node Creation and Calculation of Chebyshev Series @section Creation and Calculation of Chebyshev Series @deftypefun {gsl_cheb_series *} gsl_cheb_alloc (const size_t @var{n}) This function allocates space for a Chebyshev series of order @var{n} and returns a pointer to a new @code{gsl_cheb_series} struct. @end deftypefun @deftypefun void gsl_cheb_free (gsl_cheb_series * @var{cs}) This function frees a previously allocated Chebyshev series @var{cs}. @end deftypefun @deftypefun int gsl_cheb_init (gsl_cheb_series * @var{cs}, const gsl_function * @var{f}, const double @var{a}, const double @var{b}) This function computes the Chebyshev approximation @var{cs} for the function @var{f} over the range @math{(a,b)} to the previously specified order. The computation of the Chebyshev approximation is an @math{O(n^2)} process, and requires @math{n} function evaluations. @end deftypefun @node Auxiliary Functions for Chebyshev Series @section Auxiliary Functions The following functions provide information about an existing Chebyshev series. @deftypefun size_t gsl_cheb_order (const gsl_cheb_series * @var{cs}) This function returns the order of Chebyshev series @var{cs}. @end deftypefun @deftypefun size_t gsl_cheb_size (const gsl_cheb_series * @var{cs}) @deftypefunx {double *} gsl_cheb_coeffs (const gsl_cheb_series * @var{cs}) These functions return the size of the Chebyshev coefficient array @code{c[]} and a pointer to its location in memory for the Chebyshev series @var{cs}. @end deftypefun @node Chebyshev Series Evaluation @section Chebyshev Series Evaluation @deftypefun double gsl_cheb_eval (const gsl_cheb_series * @var{cs}, double @var{x}) This function evaluates the Chebyshev series @var{cs} at a given point @var{x}. @end deftypefun @deftypefun int gsl_cheb_eval_err (const gsl_cheb_series * @var{cs}, const double @var{x}, double * @var{result}, double * @var{abserr}) This function computes the Chebyshev series @var{cs} at a given point @var{x}, estimating both the series @var{result} and its absolute error @var{abserr}. The error estimate is made from the first neglected term in the series. @end deftypefun @deftypefun double gsl_cheb_eval_n (const gsl_cheb_series * @var{cs}, size_t @var{order}, double @var{x}) This function evaluates the Chebyshev series @var{cs} at a given point @var{x}, to (at most) the given order @var{order}. @end deftypefun @deftypefun int gsl_cheb_eval_n_err (const gsl_cheb_series * @var{cs}, const size_t @var{order}, const double @var{x}, double * @var{result}, double * @var{abserr}) This function evaluates a Chebyshev series @var{cs} at a given point @var{x}, estimating both the series @var{result} and its absolute error @var{abserr}, to (at most) the given order @var{order}. The error estimate is made from the first neglected term in the series. @end deftypefun @comment @deftypefun double gsl_cheb_eval_mode (const gsl_cheb_series * @var{cs}, double @var{x}, gsl_mode_t @var{mode}) @comment @end deftypefun @comment @deftypefun int gsl_cheb_eval_mode_err (const gsl_cheb_series * @var{cs}, const double @var{x}, gsl_mode_t @var{mode}, double * @var{result}, double * @var{abserr}) @comment Evaluate a Chebyshev series at a given point, using the default @comment order for double precision mode(s) and the single precision @comment order for other modes. @comment @end deftypefun @node Derivatives and Integrals @section Derivatives and Integrals The following functions allow a Chebyshev series to be differentiated or integrated, producing a new Chebyshev series. Note that the error estimate produced by evaluating the derivative series will be underestimated due to the contribution of higher order terms being neglected. @deftypefun int gsl_cheb_calc_deriv (gsl_cheb_series * @var{deriv}, const gsl_cheb_series * @var{cs}) This function computes the derivative of the series @var{cs}, storing the derivative coefficients in the previously allocated @var{deriv}. The two series @var{cs} and @var{deriv} must have been allocated with the same order. @end deftypefun @deftypefun int gsl_cheb_calc_integ (gsl_cheb_series * @var{integ}, const gsl_cheb_series * @var{cs}) This function computes the integral of the series @var{cs}, storing the integral coefficients in the previously allocated @var{integ}. The two series @var{cs} and @var{integ} must have been allocated with the same order. The lower limit of the integration is taken to be the left hand end of the range @var{a}. @end deftypefun @node Chebyshev Approximation Examples @section Examples The following example program computes Chebyshev approximations to a step function. This is an extremely difficult approximation to make, due to the discontinuity, and was chosen as an example where approximation error is visible. For smooth functions the Chebyshev approximation converges extremely rapidly and errors would not be visible. @example @verbatiminclude examples/cheb.c @end example @noindent The output from the program gives the original function, 10-th order approximation and 40-th order approximation, all sampled at intervals of 0.001 in @math{x}. @iftex @sp 1 @center @image{cheb,3.4in} @end iftex @node Chebyshev Approximation References and Further Reading @section References and Further Reading The following paper describes the use of Chebyshev series, @itemize @w{} @item R. Broucke, ``Ten Subroutines for the Manipulation of Chebyshev Series [C1] (Algorithm 446)''. @cite{Communications of the ACM} 16(4), 254--256 (1973) @end itemize gsl-1.16/doc/specfunc-transport.texi0000664000252300025230000000254012171574312014453 00000000000000@cindex transport functions The transport functions @math{J(n,x)} are defined by the integral representations @c{$J(n,x) := \int_0^x dt \, t^n e^t /(e^t - 1)^2$} @math{J(n,x) := \int_0^x dt t^n e^t /(e^t - 1)^2}. They are declared in the header file @file{gsl_sf_transport.h}. @deftypefun double gsl_sf_transport_2 (double @var{x}) @deftypefunx int gsl_sf_transport_2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the transport function @math{J(2,x)}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_transport_3 (double @var{x}) @deftypefunx int gsl_sf_transport_3_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the transport function @math{J(3,x)}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_transport_4 (double @var{x}) @deftypefunx int gsl_sf_transport_4_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the transport function @math{J(4,x)}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_transport_5 (double @var{x}) @deftypefunx int gsl_sf_transport_5_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the transport function @math{J(5,x)}. @comment Exceptional Return Values: GSL_EDOM, GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/rand-gumbel2.tex0000664000252300025230000004732712171574312012735 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gumbel2.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-gumbel2.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1051 631 M 0 -31 V 1452 31 R 0 -31 V 1453 31 R 0 -31 V 1452 31 R 0 -31 V 1452 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 1 V 19 3 V 20 4 V 19 8 V 19 13 V 20 18 V 19 25 V 20 33 V 19 41 V 20 49 V 19 58 V 19 65 V 20 73 V 19 80 V 20 86 V 19 91 V 20 96 V 19 99 V 19 102 V 20 103 V 19 105 V 20 105 V 19 105 V 20 104 V 19 103 V 19 100 V 20 99 V 19 96 V 20 94 V 19 91 V 20 87 V 19 84 V 19 81 V 20 77 V 19 74 V 20 70 V 19 67 V 20 64 V 19 60 V 19 56 V 20 53 V 19 50 V 20 47 V 19 44 V 20 40 V 19 38 V 19 35 V 20 32 V 19 30 V 20 27 V 19 25 V 20 22 V 19 21 V 19 18 V 20 16 V 19 14 V 20 12 V 19 11 V 20 9 V 19 7 V 19 5 V 20 5 V 19 3 V 20 1 V 19 0 V 20 0 V 19 -2 V 19 -4 V 20 -4 V 19 -5 V 20 -5 V 19 -7 V 20 -8 V 19 -8 V 19 -9 V 20 -10 V 19 -10 V 20 -11 V 19 -11 V 20 -12 V 19 -12 V 19 -13 V 20 -14 V 19 -13 V 20 -14 V 19 -15 V 20 -14 V 19 -15 V 19 -15 V 20 -16 V 19 -16 V 20 -16 V 3052 3671 L 20 -16 V 19 -16 V 19 -17 V 20 -17 V 19 -16 V 20 -17 V 19 -17 V 20 -17 V 19 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -18 V 20 -17 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -18 V 20 -17 V 19 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -17 V 19 -17 V 20 -16 V 19 -17 V 20 -16 V 19 -17 V 20 -16 V 19 -16 V 19 -16 V 20 -16 V 19 -16 V 20 -15 V 19 -16 V 20 -16 V 19 -15 V 19 -15 V 20 -16 V 19 -15 V 20 -15 V 19 -15 V 19 -15 V 20 -15 V 19 -14 V 20 -15 V 19 -14 V 20 -14 V 19 -15 V 19 -14 V 20 -14 V 19 -14 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 19 -14 V 20 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -13 V 19 -13 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 20 -13 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -12 V 19 -12 V 20 -11 V 19 -12 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 5092 2182 L 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}Type 2, $a=1,b=1$}}% \put(3955,5244){\cjust{\strut{}Type 2 Gumbel Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}2}}% \put(5408,400){\cjust{\strut{}1.5}}% \put(3956,400){\cjust{\strut{}1}}% \put(2503,400){\cjust{\strut{}0.5}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.7}}% \put(900,4328){\rjust{\strut{} 0.6}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,3096){\rjust{\strut{} 0.4}}% \put(900,2479){\rjust{\strut{} 0.3}}% \put(900,1863){\rjust{\strut{} 0.2}}% \put(900,1247){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/gsl-randist.10000664000252300025230000000236512171574312012236 00000000000000.\" Man page contributed by Dirk Eddelbuettel .\" and released under the GNU General Public License .TH GSL-RANDIST 1 "" GNU .SH NAME gsl-randist - generate random samples from various distributions .SH SYNOPSYS .B gsl-randist seed n DIST param1 param2 [..] .SH DESCRIPTION .B gsl-randist is a demonstration program for the GNU Scientific Library. It generates n random samples from the distribution DIST using the distribution parameters param1, param2, ... .SH EXAMPLE Here is an example. We generate 10000 random samples from a Cauchy distribution with a width of 30 and histogram them over the range -100 to 100, using 200 bins. gsl-randist 0 10000 cauchy 30 | gsl-histogram -100 100 200 > histogram.dat A plot of the resulting histogram will show the familiar shape of the Cauchy distribution with fluctuations caused by the finite sample size. awk '{print $1, $3 ; print $2, $3}' histogram.dat | graph -T X .SH SEE ALSO .BR gsl(3) , .BR gsl-histogram(1) . .SH AUTHOR .B gsl-randist was written by James Theiler and Brian Gough. Copyright 1996-2000; for copying conditions see the GNU General Public Licence. This manual page was added by the Dirk Eddelbuettel , the Debian GNU/Linux maintainer for .BR GSL . gsl-1.16/doc/texinfo.tex0000644000252300025230000116703612172014011012113 00000000000000% texinfo.tex -- TeX macros to handle Texinfo files. % % Load plain if necessary, i.e., if running under initex. \expandafter\ifx\csname fmtname\endcsname\relax\input plain\fi % \def\texinfoversion{2013-02-01.11} % % Copyright 1985, 1986, 1988, 1990, 1991, 1992, 1993, 1994, 1995, % 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, % 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. % % This texinfo.tex file is free software: you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation, either version 3 of the % License, or (at your option) any later version. % % This texinfo.tex file is distributed in the hope that it will be % useful, but WITHOUT ANY WARRANTY; without even the implied warranty % of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see . % % As a special exception, when this file is read by TeX when processing % a Texinfo source document, you may use the result without % restriction. This Exception is an additional permission under section 7 % of the GNU General Public License, version 3 ("GPLv3"). % % Please try the latest version of texinfo.tex before submitting bug % reports; you can get the latest version from: % http://ftp.gnu.org/gnu/texinfo/ (the Texinfo release area), or % http://ftpmirror.gnu.org/texinfo/ (same, via a mirror), or % http://www.gnu.org/software/texinfo/ (the Texinfo home page) % The texinfo.tex in any given distribution could well be out % of date, so if that's what you're using, please check. % % Send bug reports to bug-texinfo@gnu.org. Please include including a % complete document in each bug report with which we can reproduce the % problem. Patches are, of course, greatly appreciated. % % To process a Texinfo manual with TeX, it's most reliable to use the % texi2dvi shell script that comes with the distribution. For a simple % manual foo.texi, however, you can get away with this: % tex foo.texi % texindex foo.?? % tex foo.texi % tex foo.texi % dvips foo.dvi -o # or whatever; this makes foo.ps. % The extra TeX runs get the cross-reference information correct. % Sometimes one run after texindex suffices, and sometimes you need more % than two; texi2dvi does it as many times as necessary. % % It is possible to adapt texinfo.tex for other languages, to some % extent. You can get the existing language-specific files from the % full Texinfo distribution. % % The GNU Texinfo home page is http://www.gnu.org/software/texinfo. \message{Loading texinfo [version \texinfoversion]:} % If in a .fmt file, print the version number % and turn on active characters that we couldn't do earlier because % they might have appeared in the input file name. \everyjob{\message{[Texinfo version \texinfoversion]}% \catcode`+=\active \catcode`\_=\active} \chardef\other=12 % We never want plain's \outer definition of \+ in Texinfo. % For @tex, we can use \tabalign. \let\+ = \relax % Save some plain tex macros whose names we will redefine. \let\ptexb=\b \let\ptexbullet=\bullet \let\ptexc=\c \let\ptexcomma=\, \let\ptexdot=\. \let\ptexdots=\dots \let\ptexend=\end \let\ptexequiv=\equiv \let\ptexexclam=\! \let\ptexfootnote=\footnote \let\ptexgtr=> \let\ptexhat=^ \let\ptexi=\i \let\ptexindent=\indent \let\ptexinsert=\insert \let\ptexlbrace=\{ \let\ptexless=< \let\ptexnewwrite\newwrite \let\ptexnoindent=\noindent \let\ptexplus=+ \let\ptexraggedright=\raggedright \let\ptexrbrace=\} \let\ptexslash=\/ \let\ptexstar=\* \let\ptext=\t \let\ptextop=\top {\catcode`\'=\active \global\let\ptexquoteright'}% active in plain's math mode % If this character appears in an error message or help string, it % starts a new line in the output. \newlinechar = `^^J % Use TeX 3.0's \inputlineno to get the line number, for better error % messages, but if we're using an old version of TeX, don't do anything. % \ifx\inputlineno\thisisundefined \let\linenumber = \empty % Pre-3.0. \else \def\linenumber{l.\the\inputlineno:\space} \fi % Set up fixed words for English if not already set. \ifx\putwordAppendix\undefined \gdef\putwordAppendix{Appendix}\fi \ifx\putwordChapter\undefined \gdef\putwordChapter{Chapter}\fi \ifx\putworderror\undefined \gdef\putworderror{error}\fi \ifx\putwordfile\undefined \gdef\putwordfile{file}\fi \ifx\putwordin\undefined \gdef\putwordin{in}\fi \ifx\putwordIndexIsEmpty\undefined \gdef\putwordIndexIsEmpty{(Index is empty)}\fi \ifx\putwordIndexNonexistent\undefined \gdef\putwordIndexNonexistent{(Index is nonexistent)}\fi \ifx\putwordInfo\undefined \gdef\putwordInfo{Info}\fi \ifx\putwordInstanceVariableof\undefined \gdef\putwordInstanceVariableof{Instance Variable of}\fi \ifx\putwordMethodon\undefined \gdef\putwordMethodon{Method on}\fi \ifx\putwordNoTitle\undefined \gdef\putwordNoTitle{No Title}\fi \ifx\putwordof\undefined \gdef\putwordof{of}\fi \ifx\putwordon\undefined \gdef\putwordon{on}\fi \ifx\putwordpage\undefined \gdef\putwordpage{page}\fi \ifx\putwordsection\undefined \gdef\putwordsection{section}\fi \ifx\putwordSection\undefined \gdef\putwordSection{Section}\fi \ifx\putwordsee\undefined \gdef\putwordsee{see}\fi \ifx\putwordSee\undefined \gdef\putwordSee{See}\fi \ifx\putwordShortTOC\undefined \gdef\putwordShortTOC{Short Contents}\fi \ifx\putwordTOC\undefined \gdef\putwordTOC{Table of Contents}\fi % \ifx\putwordMJan\undefined \gdef\putwordMJan{January}\fi \ifx\putwordMFeb\undefined \gdef\putwordMFeb{February}\fi \ifx\putwordMMar\undefined \gdef\putwordMMar{March}\fi \ifx\putwordMApr\undefined \gdef\putwordMApr{April}\fi \ifx\putwordMMay\undefined \gdef\putwordMMay{May}\fi \ifx\putwordMJun\undefined \gdef\putwordMJun{June}\fi \ifx\putwordMJul\undefined \gdef\putwordMJul{July}\fi \ifx\putwordMAug\undefined \gdef\putwordMAug{August}\fi \ifx\putwordMSep\undefined \gdef\putwordMSep{September}\fi \ifx\putwordMOct\undefined \gdef\putwordMOct{October}\fi \ifx\putwordMNov\undefined \gdef\putwordMNov{November}\fi \ifx\putwordMDec\undefined \gdef\putwordMDec{December}\fi % \ifx\putwordDefmac\undefined \gdef\putwordDefmac{Macro}\fi \ifx\putwordDefspec\undefined \gdef\putwordDefspec{Special Form}\fi \ifx\putwordDefvar\undefined \gdef\putwordDefvar{Variable}\fi \ifx\putwordDefopt\undefined \gdef\putwordDefopt{User Option}\fi \ifx\putwordDeffunc\undefined \gdef\putwordDeffunc{Function}\fi % Since the category of space is not known, we have to be careful. \chardef\spacecat = 10 \def\spaceisspace{\catcode`\ =\spacecat} % sometimes characters are active, so we need control sequences. \chardef\ampChar = `\& \chardef\colonChar = `\: \chardef\commaChar = `\, \chardef\dashChar = `\- \chardef\dotChar = `\. \chardef\exclamChar= `\! \chardef\hashChar = `\# \chardef\lquoteChar= `\` \chardef\questChar = `\? \chardef\rquoteChar= `\' \chardef\semiChar = `\; \chardef\slashChar = `\/ \chardef\underChar = `\_ % Ignore a token. % \def\gobble#1{} % The following is used inside several \edef's. \def\makecsname#1{\expandafter\noexpand\csname#1\endcsname} % Hyphenation fixes. \hyphenation{ Flor-i-da Ghost-script Ghost-view Mac-OS Post-Script ap-pen-dix bit-map bit-maps data-base data-bases eshell fall-ing half-way long-est man-u-script man-u-scripts mini-buf-fer mini-buf-fers over-view par-a-digm par-a-digms rath-er rec-tan-gu-lar ro-bot-ics se-vere-ly set-up spa-ces spell-ing spell-ings stand-alone strong-est time-stamp time-stamps which-ever white-space wide-spread wrap-around } % Margin to add to right of even pages, to left of odd pages. \newdimen\bindingoffset \newdimen\normaloffset \newdimen\pagewidth \newdimen\pageheight % For a final copy, take out the rectangles % that mark overfull boxes (in case you have decided % that the text looks ok even though it passes the margin). % \def\finalout{\overfullrule=0pt } % Sometimes it is convenient to have everything in the transcript file % and nothing on the terminal. We don't just call \tracingall here, % since that produces some useless output on the terminal. We also make % some effort to order the tracing commands to reduce output in the log % file; cf. trace.sty in LaTeX. % \def\gloggingall{\begingroup \globaldefs = 1 \loggingall \endgroup}% \def\loggingall{% \tracingstats2 \tracingpages1 \tracinglostchars2 % 2 gives us more in etex \tracingparagraphs1 \tracingoutput1 \tracingmacros2 \tracingrestores1 \showboxbreadth\maxdimen \showboxdepth\maxdimen \ifx\eTeXversion\thisisundefined\else % etex gives us more logging \tracingscantokens1 \tracingifs1 \tracinggroups1 \tracingnesting2 \tracingassigns1 \fi \tracingcommands3 % 3 gives us more in etex \errorcontextlines16 }% % @errormsg{MSG}. Do the index-like expansions on MSG, but if things % aren't perfect, it's not the end of the world, being an error message, % after all. % \def\errormsg{\begingroup \indexnofonts \doerrormsg} \def\doerrormsg#1{\errmessage{#1}} % add check for \lastpenalty to plain's definitions. If the last thing % we did was a \nobreak, we don't want to insert more space. % \def\smallbreak{\ifnum\lastpenalty<10000\par\ifdim\lastskip<\smallskipamount \removelastskip\penalty-50\smallskip\fi\fi} \def\medbreak{\ifnum\lastpenalty<10000\par\ifdim\lastskip<\medskipamount \removelastskip\penalty-100\medskip\fi\fi} \def\bigbreak{\ifnum\lastpenalty<10000\par\ifdim\lastskip<\bigskipamount \removelastskip\penalty-200\bigskip\fi\fi} % Do @cropmarks to get crop marks. % \newif\ifcropmarks \let\cropmarks = \cropmarkstrue % % Dimensions to add cropmarks at corners. % Added by P. A. MacKay, 12 Nov. 1986 % \newdimen\outerhsize \newdimen\outervsize % set by the paper size routines \newdimen\cornerlong \cornerlong=1pc \newdimen\cornerthick \cornerthick=.3pt \newdimen\topandbottommargin \topandbottommargin=.75in % Output a mark which sets \thischapter, \thissection and \thiscolor. % We dump everything together because we only have one kind of mark. % This works because we only use \botmark / \topmark, not \firstmark. % % A mark contains a subexpression of the \ifcase ... \fi construct. % \get*marks macros below extract the needed part using \ifcase. % % Another complication is to let the user choose whether \thischapter % (\thissection) refers to the chapter (section) in effect at the top % of a page, or that at the bottom of a page. The solution is % described on page 260 of The TeXbook. It involves outputting two % marks for the sectioning macros, one before the section break, and % one after. I won't pretend I can describe this better than DEK... \def\domark{% \toks0=\expandafter{\lastchapterdefs}% \toks2=\expandafter{\lastsectiondefs}% \toks4=\expandafter{\prevchapterdefs}% \toks6=\expandafter{\prevsectiondefs}% \toks8=\expandafter{\lastcolordefs}% \mark{% \the\toks0 \the\toks2 \noexpand\or \the\toks4 \the\toks6 \noexpand\else \the\toks8 }% } % \topmark doesn't work for the very first chapter (after the title % page or the contents), so we use \firstmark there -- this gets us % the mark with the chapter defs, unless the user sneaks in, e.g., % @setcolor (or @url, or @link, etc.) between @contents and the very % first @chapter. \def\gettopheadingmarks{% \ifcase0\topmark\fi \ifx\thischapter\empty \ifcase0\firstmark\fi \fi } \def\getbottomheadingmarks{\ifcase1\botmark\fi} \def\getcolormarks{\ifcase2\topmark\fi} % Avoid "undefined control sequence" errors. \def\lastchapterdefs{} \def\lastsectiondefs{} \def\prevchapterdefs{} \def\prevsectiondefs{} \def\lastcolordefs{} % Main output routine. \chardef\PAGE = 255 \output = {\onepageout{\pagecontents\PAGE}} \newbox\headlinebox \newbox\footlinebox % \onepageout takes a vbox as an argument. Note that \pagecontents % does insertions, but you have to call it yourself. \def\onepageout#1{% \ifcropmarks \hoffset=0pt \else \hoffset=\normaloffset \fi % \ifodd\pageno \advance\hoffset by \bindingoffset \else \advance\hoffset by -\bindingoffset\fi % % Do this outside of the \shipout so @code etc. will be expanded in % the headline as they should be, not taken literally (outputting ''code). \ifodd\pageno \getoddheadingmarks \else \getevenheadingmarks \fi \setbox\headlinebox = \vbox{\let\hsize=\pagewidth \makeheadline}% \ifodd\pageno \getoddfootingmarks \else \getevenfootingmarks \fi \setbox\footlinebox = \vbox{\let\hsize=\pagewidth \makefootline}% % {% % Have to do this stuff outside the \shipout because we want it to % take effect in \write's, yet the group defined by the \vbox ends % before the \shipout runs. % \indexdummies % don't expand commands in the output. \normalturnoffactive % \ in index entries must not stay \, e.g., if % the page break happens to be in the middle of an example. % We don't want .vr (or whatever) entries like this: % \entry{{\tt \indexbackslash }acronym}{32}{\code {\acronym}} % "\acronym" won't work when it's read back in; % it needs to be % {\code {{\tt \backslashcurfont }acronym} \shipout\vbox{% % Do this early so pdf references go to the beginning of the page. \ifpdfmakepagedest \pdfdest name{\the\pageno} xyz\fi % \ifcropmarks \vbox to \outervsize\bgroup \hsize = \outerhsize \vskip-\topandbottommargin \vtop to0pt{% \line{\ewtop\hfil\ewtop}% \nointerlineskip \line{% \vbox{\moveleft\cornerthick\nstop}% \hfill \vbox{\moveright\cornerthick\nstop}% }% \vss}% \vskip\topandbottommargin \line\bgroup \hfil % center the page within the outer (page) hsize. \ifodd\pageno\hskip\bindingoffset\fi \vbox\bgroup \fi % \unvbox\headlinebox \pagebody{#1}% \ifdim\ht\footlinebox > 0pt % Only leave this space if the footline is nonempty. % (We lessened \vsize for it in \oddfootingyyy.) % The \baselineskip=24pt in plain's \makefootline has no effect. \vskip 24pt \unvbox\footlinebox \fi % \ifcropmarks \egroup % end of \vbox\bgroup \hfil\egroup % end of (centering) \line\bgroup \vskip\topandbottommargin plus1fill minus1fill \boxmaxdepth = \cornerthick \vbox to0pt{\vss \line{% \vbox{\moveleft\cornerthick\nsbot}% \hfill \vbox{\moveright\cornerthick\nsbot}% }% \nointerlineskip \line{\ewbot\hfil\ewbot}% }% \egroup % \vbox from first cropmarks clause \fi }% end of \shipout\vbox }% end of group with \indexdummies \advancepageno \ifnum\outputpenalty>-20000 \else\dosupereject\fi } \newinsert\margin \dimen\margin=\maxdimen \def\pagebody#1{\vbox to\pageheight{\boxmaxdepth=\maxdepth #1}} {\catcode`\@ =11 \gdef\pagecontents#1{\ifvoid\topins\else\unvbox\topins\fi % marginal hacks, juha@viisa.uucp (Juha Takala) \ifvoid\margin\else % marginal info is present \rlap{\kern\hsize\vbox to\z@{\kern1pt\box\margin \vss}}\fi \dimen@=\dp#1\relax \unvbox#1\relax \ifvoid\footins\else\vskip\skip\footins\footnoterule \unvbox\footins\fi \ifr@ggedbottom \kern-\dimen@ \vfil \fi} } % Here are the rules for the cropmarks. Note that they are % offset so that the space between them is truly \outerhsize or \outervsize % (P. A. MacKay, 12 November, 1986) % \def\ewtop{\vrule height\cornerthick depth0pt width\cornerlong} \def\nstop{\vbox {\hrule height\cornerthick depth\cornerlong width\cornerthick}} \def\ewbot{\vrule height0pt depth\cornerthick width\cornerlong} \def\nsbot{\vbox {\hrule height\cornerlong depth\cornerthick width\cornerthick}} % Parse an argument, then pass it to #1. The argument is the rest of % the input line (except we remove a trailing comment). #1 should be a % macro which expects an ordinary undelimited TeX argument. % \def\parsearg{\parseargusing{}} \def\parseargusing#1#2{% \def\argtorun{#2}% \begingroup \obeylines \spaceisspace #1% \parseargline\empty% Insert the \empty token, see \finishparsearg below. } {\obeylines % \gdef\parseargline#1^^M{% \endgroup % End of the group started in \parsearg. \argremovecomment #1\comment\ArgTerm% }% } % First remove any @comment, then any @c comment. \def\argremovecomment#1\comment#2\ArgTerm{\argremovec #1\c\ArgTerm} \def\argremovec#1\c#2\ArgTerm{\argcheckspaces#1\^^M\ArgTerm} % Each occurrence of `\^^M' or `\^^M' is replaced by a single space. % % \argremovec might leave us with trailing space, e.g., % @end itemize @c foo % This space token undergoes the same procedure and is eventually removed % by \finishparsearg. % \def\argcheckspaces#1\^^M{\argcheckspacesX#1\^^M \^^M} \def\argcheckspacesX#1 \^^M{\argcheckspacesY#1\^^M} \def\argcheckspacesY#1\^^M#2\^^M#3\ArgTerm{% \def\temp{#3}% \ifx\temp\empty % Do not use \next, perhaps the caller of \parsearg uses it; reuse \temp: \let\temp\finishparsearg \else \let\temp\argcheckspaces \fi % Put the space token in: \temp#1 #3\ArgTerm } % If a _delimited_ argument is enclosed in braces, they get stripped; so % to get _exactly_ the rest of the line, we had to prevent such situation. % We prepended an \empty token at the very beginning and we expand it now, % just before passing the control to \argtorun. % (Similarly, we have to think about #3 of \argcheckspacesY above: it is % either the null string, or it ends with \^^M---thus there is no danger % that a pair of braces would be stripped. % % But first, we have to remove the trailing space token. % \def\finishparsearg#1 \ArgTerm{\expandafter\argtorun\expandafter{#1}} % \parseargdef\foo{...} % is roughly equivalent to % \def\foo{\parsearg\Xfoo} % \def\Xfoo#1{...} % % Actually, I use \csname\string\foo\endcsname, ie. \\foo, as it is my % favourite TeX trick. --kasal, 16nov03 \def\parseargdef#1{% \expandafter \doparseargdef \csname\string#1\endcsname #1% } \def\doparseargdef#1#2{% \def#2{\parsearg#1}% \def#1##1% } % Several utility definitions with active space: { \obeyspaces \gdef\obeyedspace{ } % Make each space character in the input produce a normal interword % space in the output. Don't allow a line break at this space, as this % is used only in environments like @example, where each line of input % should produce a line of output anyway. % \gdef\sepspaces{\obeyspaces\let =\tie} % If an index command is used in an @example environment, any spaces % therein should become regular spaces in the raw index file, not the % expansion of \tie (\leavevmode \penalty \@M \ ). \gdef\unsepspaces{\let =\space} } \def\flushcr{\ifx\par\lisppar \def\next##1{}\else \let\next=\relax \fi \next} % Define the framework for environments in texinfo.tex. It's used like this: % % \envdef\foo{...} % \def\Efoo{...} % % It's the responsibility of \envdef to insert \begingroup before the % actual body; @end closes the group after calling \Efoo. \envdef also % defines \thisenv, so the current environment is known; @end checks % whether the environment name matches. The \checkenv macro can also be % used to check whether the current environment is the one expected. % % Non-false conditionals (@iftex, @ifset) don't fit into this, so they % are not treated as environments; they don't open a group. (The % implementation of @end takes care not to call \endgroup in this % special case.) % At run-time, environments start with this: \def\startenvironment#1{\begingroup\def\thisenv{#1}} % initialize \let\thisenv\empty % ... but they get defined via ``\envdef\foo{...}'': \long\def\envdef#1#2{\def#1{\startenvironment#1#2}} \def\envparseargdef#1#2{\parseargdef#1{\startenvironment#1#2}} % Check whether we're in the right environment: \def\checkenv#1{% \def\temp{#1}% \ifx\thisenv\temp \else \badenverr \fi } % Environment mismatch, #1 expected: \def\badenverr{% \errhelp = \EMsimple \errmessage{This command can appear only \inenvironment\temp, not \inenvironment\thisenv}% } \def\inenvironment#1{% \ifx#1\empty outside of any environment% \else in environment \expandafter\string#1% \fi } % @end foo executes the definition of \Efoo. % But first, it executes a specialized version of \checkenv % \parseargdef\end{% \if 1\csname iscond.#1\endcsname \else % The general wording of \badenverr may not be ideal. \expandafter\checkenv\csname#1\endcsname \csname E#1\endcsname \endgroup \fi } \newhelp\EMsimple{Press RETURN to continue.} % Be sure we're in horizontal mode when doing a tie, since we make space % equivalent to this in @example-like environments. Otherwise, a space % at the beginning of a line will start with \penalty -- and % since \penalty is valid in vertical mode, we'd end up putting the % penalty on the vertical list instead of in the new paragraph. {\catcode`@ = 11 % Avoid using \@M directly, because that causes trouble % if the definition is written into an index file. \global\let\tiepenalty = \@M \gdef\tie{\leavevmode\penalty\tiepenalty\ } } % @: forces normal size whitespace following. \def\:{\spacefactor=1000 } % @* forces a line break. \def\*{\unskip\hfil\break\hbox{}\ignorespaces} % @/ allows a line break. \let\/=\allowbreak % @. is an end-of-sentence period. \def\.{.\spacefactor=\endofsentencespacefactor\space} % @! is an end-of-sentence bang. \def\!{!\spacefactor=\endofsentencespacefactor\space} % @? is an end-of-sentence query. \def\?{?\spacefactor=\endofsentencespacefactor\space} % @frenchspacing on|off says whether to put extra space after punctuation. % \def\onword{on} \def\offword{off} % \parseargdef\frenchspacing{% \def\temp{#1}% \ifx\temp\onword \plainfrenchspacing \else\ifx\temp\offword \plainnonfrenchspacing \else \errhelp = \EMsimple \errmessage{Unknown @frenchspacing option `\temp', must be on|off}% \fi\fi } % @w prevents a word break. Without the \leavevmode, @w at the % beginning of a paragraph, when TeX is still in vertical mode, would % produce a whole line of output instead of starting the paragraph. \def\w#1{\leavevmode\hbox{#1}} % @group ... @end group forces ... to be all on one page, by enclosing % it in a TeX vbox. We use \vtop instead of \vbox to construct the box % to keep its height that of a normal line. According to the rules for % \topskip (p.114 of the TeXbook), the glue inserted is % max (\topskip - \ht (first item), 0). If that height is large, % therefore, no glue is inserted, and the space between the headline and % the text is small, which looks bad. % % Another complication is that the group might be very large. This can % cause the glue on the previous page to be unduly stretched, because it % does not have much material. In this case, it's better to add an % explicit \vfill so that the extra space is at the bottom. The % threshold for doing this is if the group is more than \vfilllimit % percent of a page (\vfilllimit can be changed inside of @tex). % \newbox\groupbox \def\vfilllimit{0.7} % \envdef\group{% \ifnum\catcode`\^^M=\active \else \errhelp = \groupinvalidhelp \errmessage{@group invalid in context where filling is enabled}% \fi \startsavinginserts % \setbox\groupbox = \vtop\bgroup % Do @comment since we are called inside an environment such as % @example, where each end-of-line in the input causes an % end-of-line in the output. We don't want the end-of-line after % the `@group' to put extra space in the output. Since @group % should appear on a line by itself (according to the Texinfo % manual), we don't worry about eating any user text. \comment } % % The \vtop produces a box with normal height and large depth; thus, TeX puts % \baselineskip glue before it, and (when the next line of text is done) % \lineskip glue after it. Thus, space below is not quite equal to space % above. But it's pretty close. \def\Egroup{% % To get correct interline space between the last line of the group % and the first line afterwards, we have to propagate \prevdepth. \endgraf % Not \par, as it may have been set to \lisppar. \global\dimen1 = \prevdepth \egroup % End the \vtop. % \dimen0 is the vertical size of the group's box. \dimen0 = \ht\groupbox \advance\dimen0 by \dp\groupbox % \dimen2 is how much space is left on the page (more or less). \dimen2 = \pageheight \advance\dimen2 by -\pagetotal % if the group doesn't fit on the current page, and it's a big big % group, force a page break. \ifdim \dimen0 > \dimen2 \ifdim \pagetotal < \vfilllimit\pageheight \page \fi \fi \box\groupbox \prevdepth = \dimen1 \checkinserts } % % TeX puts in an \escapechar (i.e., `@') at the beginning of the help % message, so this ends up printing `@group can only ...'. % \newhelp\groupinvalidhelp{% group can only be used in environments such as @example,^^J% where each line of input produces a line of output.} % @need space-in-mils % forces a page break if there is not space-in-mils remaining. \newdimen\mil \mil=0.001in \parseargdef\need{% % Ensure vertical mode, so we don't make a big box in the middle of a % paragraph. \par % % If the @need value is less than one line space, it's useless. \dimen0 = #1\mil \dimen2 = \ht\strutbox \advance\dimen2 by \dp\strutbox \ifdim\dimen0 > \dimen2 % % Do a \strut just to make the height of this box be normal, so the % normal leading is inserted relative to the preceding line. % And a page break here is fine. \vtop to #1\mil{\strut\vfil}% % % TeX does not even consider page breaks if a penalty added to the % main vertical list is 10000 or more. But in order to see if the % empty box we just added fits on the page, we must make it consider % page breaks. On the other hand, we don't want to actually break the % page after the empty box. So we use a penalty of 9999. % % There is an extremely small chance that TeX will actually break the % page at this \penalty, if there are no other feasible breakpoints in % sight. (If the user is using lots of big @group commands, which % almost-but-not-quite fill up a page, TeX will have a hard time doing % good page breaking, for example.) However, I could not construct an % example where a page broke at this \penalty; if it happens in a real % document, then we can reconsider our strategy. \penalty9999 % % Back up by the size of the box, whether we did a page break or not. \kern -#1\mil % % Do not allow a page break right after this kern. \nobreak \fi } % @br forces paragraph break (and is undocumented). \let\br = \par % @page forces the start of a new page. % \def\page{\par\vfill\supereject} % @exdent text.... % outputs text on separate line in roman font, starting at standard page margin % This records the amount of indent in the innermost environment. % That's how much \exdent should take out. \newskip\exdentamount % This defn is used inside fill environments such as @defun. \parseargdef\exdent{\hfil\break\hbox{\kern -\exdentamount{\rm#1}}\hfil\break} % This defn is used inside nofill environments such as @example. \parseargdef\nofillexdent{{\advance \leftskip by -\exdentamount \leftline{\hskip\leftskip{\rm#1}}}} % @inmargin{WHICH}{TEXT} puts TEXT in the WHICH margin next to the current % paragraph. For more general purposes, use the \margin insertion % class. WHICH is `l' or `r'. Not documented, written for gawk manual. % \newskip\inmarginspacing \inmarginspacing=1cm \def\strutdepth{\dp\strutbox} % \def\doinmargin#1#2{\strut\vadjust{% \nobreak \kern-\strutdepth \vtop to \strutdepth{% \baselineskip=\strutdepth \vss % if you have multiple lines of stuff to put here, you'll need to % make the vbox yourself of the appropriate size. \ifx#1l% \llap{\ignorespaces #2\hskip\inmarginspacing}% \else \rlap{\hskip\hsize \hskip\inmarginspacing \ignorespaces #2}% \fi \null }% }} \def\inleftmargin{\doinmargin l} \def\inrightmargin{\doinmargin r} % % @inmargin{TEXT [, RIGHT-TEXT]} % (if RIGHT-TEXT is given, use TEXT for left page, RIGHT-TEXT for right; % else use TEXT for both). % \def\inmargin#1{\parseinmargin #1,,\finish} \def\parseinmargin#1,#2,#3\finish{% not perfect, but better than nothing. \setbox0 = \hbox{\ignorespaces #2}% \ifdim\wd0 > 0pt \def\lefttext{#1}% have both texts \def\righttext{#2}% \else \def\lefttext{#1}% have only one text \def\righttext{#1}% \fi % \ifodd\pageno \def\temp{\inrightmargin\righttext}% odd page -> outside is right margin \else \def\temp{\inleftmargin\lefttext}% \fi \temp } % @| inserts a changebar to the left of the current line. It should % surround any changed text. This approach does *not* work if the % change spans more than two lines of output. To handle that, we would % have adopt a much more difficult approach (putting marks into the main % vertical list for the beginning and end of each change). This command % is not documented, not supported, and doesn't work. % \def\|{% % \vadjust can only be used in horizontal mode. \leavevmode % % Append this vertical mode material after the current line in the output. \vadjust{% % We want to insert a rule with the height and depth of the current % leading; that is exactly what \strutbox is supposed to record. \vskip-\baselineskip % % \vadjust-items are inserted at the left edge of the type. So % the \llap here moves out into the left-hand margin. \llap{% % % For a thicker or thinner bar, change the `1pt'. \vrule height\baselineskip width1pt % % This is the space between the bar and the text. \hskip 12pt }% }% } % @include FILE -- \input text of FILE. % \def\include{\parseargusing\filenamecatcodes\includezzz} \def\includezzz#1{% \pushthisfilestack \def\thisfile{#1}% {% \makevalueexpandable % we want to expand any @value in FILE. \turnoffactive % and allow special characters in the expansion \indexnofonts % Allow `@@' and other weird things in file names. \wlog{texinfo.tex: doing @include of #1^^J}% \edef\temp{\noexpand\input #1 }% % % This trickery is to read FILE outside of a group, in case it makes % definitions, etc. \expandafter }\temp \popthisfilestack } \def\filenamecatcodes{% \catcode`\\=\other \catcode`~=\other \catcode`^=\other \catcode`_=\other \catcode`|=\other \catcode`<=\other \catcode`>=\other \catcode`+=\other \catcode`-=\other \catcode`\`=\other \catcode`\'=\other } \def\pushthisfilestack{% \expandafter\pushthisfilestackX\popthisfilestack\StackTerm } \def\pushthisfilestackX{% \expandafter\pushthisfilestackY\thisfile\StackTerm } \def\pushthisfilestackY #1\StackTerm #2\StackTerm {% \gdef\popthisfilestack{\gdef\thisfile{#1}\gdef\popthisfilestack{#2}}% } \def\popthisfilestack{\errthisfilestackempty} \def\errthisfilestackempty{\errmessage{Internal error: the stack of filenames is empty.}} % \def\thisfile{} % @center line % outputs that line, centered. % \parseargdef\center{% \ifhmode \let\centersub\centerH \else \let\centersub\centerV \fi \centersub{\hfil \ignorespaces#1\unskip \hfil}% \let\centersub\relax % don't let the definition persist, just in case } \def\centerH#1{{% \hfil\break \advance\hsize by -\leftskip \advance\hsize by -\rightskip \line{#1}% \break }} % \newcount\centerpenalty \def\centerV#1{% % The idea here is the same as in \startdefun, \cartouche, etc.: if % @center is the first thing after a section heading, we need to wipe % out the negative parskip inserted by \sectionheading, but still % prevent a page break here. \centerpenalty = \lastpenalty \ifnum\centerpenalty>10000 \vskip\parskip \fi \ifnum\centerpenalty>9999 \penalty\centerpenalty \fi \line{\kern\leftskip #1\kern\rightskip}% } % @sp n outputs n lines of vertical space % \parseargdef\sp{\vskip #1\baselineskip} % @comment ...line which is ignored... % @c is the same as @comment % @ignore ... @end ignore is another way to write a comment % \def\comment{\begingroup \catcode`\^^M=\other% \catcode`\@=\other \catcode`\{=\other \catcode`\}=\other% \commentxxx} {\catcode`\^^M=\other \gdef\commentxxx#1^^M{\endgroup}} % \let\c=\comment % @paragraphindent NCHARS % We'll use ems for NCHARS, close enough. % NCHARS can also be the word `asis' or `none'. % We cannot feasibly implement @paragraphindent asis, though. % \def\asisword{asis} % no translation, these are keywords \def\noneword{none} % \parseargdef\paragraphindent{% \def\temp{#1}% \ifx\temp\asisword \else \ifx\temp\noneword \defaultparindent = 0pt \else \defaultparindent = #1em \fi \fi \parindent = \defaultparindent } % @exampleindent NCHARS % We'll use ems for NCHARS like @paragraphindent. % It seems @exampleindent asis isn't necessary, but % I preserve it to make it similar to @paragraphindent. \parseargdef\exampleindent{% \def\temp{#1}% \ifx\temp\asisword \else \ifx\temp\noneword \lispnarrowing = 0pt \else \lispnarrowing = #1em \fi \fi } % @firstparagraphindent WORD % If WORD is `none', then suppress indentation of the first paragraph % after a section heading. If WORD is `insert', then do indent at such % paragraphs. % % The paragraph indentation is suppressed or not by calling % \suppressfirstparagraphindent, which the sectioning commands do. % We switch the definition of this back and forth according to WORD. % By default, we suppress indentation. % \def\suppressfirstparagraphindent{\dosuppressfirstparagraphindent} \def\insertword{insert} % \parseargdef\firstparagraphindent{% \def\temp{#1}% \ifx\temp\noneword \let\suppressfirstparagraphindent = \dosuppressfirstparagraphindent \else\ifx\temp\insertword \let\suppressfirstparagraphindent = \relax \else \errhelp = \EMsimple \errmessage{Unknown @firstparagraphindent option `\temp'}% \fi\fi } % Here is how we actually suppress indentation. Redefine \everypar to % \kern backwards by \parindent, and then reset itself to empty. % % We also make \indent itself not actually do anything until the next % paragraph. % \gdef\dosuppressfirstparagraphindent{% \gdef\indent{% \restorefirstparagraphindent \indent }% \gdef\noindent{% \restorefirstparagraphindent \noindent }% \global\everypar = {% \kern -\parindent \restorefirstparagraphindent }% } \gdef\restorefirstparagraphindent{% \global \let \indent = \ptexindent \global \let \noindent = \ptexnoindent \global \everypar = {}% } % @refill is a no-op. \let\refill=\relax % If working on a large document in chapters, it is convenient to % be able to disable indexing, cross-referencing, and contents, for test runs. % This is done with @novalidate (before @setfilename). % \newif\iflinks \linkstrue % by default we want the aux files. \let\novalidate = \linksfalse % @setfilename is done at the beginning of every texinfo file. % So open here the files we need to have open while reading the input. % This makes it possible to make a .fmt file for texinfo. \def\setfilename{% \fixbackslash % Turn off hack to swallow `\input texinfo'. \iflinks \tryauxfile % Open the new aux file. TeX will close it automatically at exit. \immediate\openout\auxfile=\jobname.aux \fi % \openindices needs to do some work in any case. \openindices \let\setfilename=\comment % Ignore extra @setfilename cmds. % % If texinfo.cnf is present on the system, read it. % Useful for site-wide @afourpaper, etc. \openin 1 texinfo.cnf \ifeof 1 \else \input texinfo.cnf \fi \closein 1 % \comment % Ignore the actual filename. } % Called from \setfilename. % \def\openindices{% \newindex{cp}% \newcodeindex{fn}% \newcodeindex{vr}% \newcodeindex{tp}% \newcodeindex{ky}% \newcodeindex{pg}% } % @bye. \outer\def\bye{\pagealignmacro\tracingstats=1\ptexend} \message{pdf,} % adobe `portable' document format \newcount\tempnum \newcount\lnkcount \newtoks\filename \newcount\filenamelength \newcount\pgn \newtoks\toksA \newtoks\toksB \newtoks\toksC \newtoks\toksD \newbox\boxA \newcount\countA \newif\ifpdf \newif\ifpdfmakepagedest % when pdftex is run in dvi mode, \pdfoutput is defined (so \pdfoutput=1 % can be set). So we test for \relax and 0 as well as being undefined. \ifx\pdfoutput\thisisundefined \else \ifx\pdfoutput\relax \else \ifcase\pdfoutput \else \pdftrue \fi \fi \fi % PDF uses PostScript string constants for the names of xref targets, % for display in the outlines, and in other places. Thus, we have to % double any backslashes. Otherwise, a name like "\node" will be % interpreted as a newline (\n), followed by o, d, e. Not good. % % See http://www.ntg.nl/pipermail/ntg-pdftex/2004-July/000654.html and % related messages. The final outcome is that it is up to the TeX user % to double the backslashes and otherwise make the string valid, so % that's what we do. pdftex 1.30.0 (ca.2005) introduced a primitive to % do this reliably, so we use it. % #1 is a control sequence in which to do the replacements, % which we \xdef. \def\txiescapepdf#1{% \ifx\pdfescapestring\thisisundefined % No primitive available; should we give a warning or log? % Many times it won't matter. \else % The expandable \pdfescapestring primitive escapes parentheses, % backslashes, and other special chars. \xdef#1{\pdfescapestring{#1}}% \fi } \newhelp\nopdfimagehelp{Texinfo supports .png, .jpg, .jpeg, and .pdf images with PDF output, and none of those formats could be found. (.eps cannot be supported due to the design of the PDF format; use regular TeX (DVI output) for that.)} \ifpdf % % Color manipulation macros based on pdfcolor.tex, % except using rgb instead of cmyk; the latter is said to render as a % very dark gray on-screen and a very dark halftone in print, instead % of actual black. \def\rgbDarkRed{0.50 0.09 0.12} \def\rgbBlack{0 0 0} % % k sets the color for filling (usual text, etc.); % K sets the color for stroking (thin rules, e.g., normal _'s). \def\pdfsetcolor#1{\pdfliteral{#1 rg #1 RG}} % % Set color, and create a mark which defines \thiscolor accordingly, % so that \makeheadline knows which color to restore. \def\setcolor#1{% \xdef\lastcolordefs{\gdef\noexpand\thiscolor{#1}}% \domark \pdfsetcolor{#1}% } % \def\maincolor{\rgbBlack} \pdfsetcolor{\maincolor} \edef\thiscolor{\maincolor} \def\lastcolordefs{} % \def\makefootline{% \baselineskip24pt \line{\pdfsetcolor{\maincolor}\the\footline}% } % \def\makeheadline{% \vbox to 0pt{% \vskip-22.5pt \line{% \vbox to8.5pt{}% % Extract \thiscolor definition from the marks. \getcolormarks % Typeset the headline with \maincolor, then restore the color. \pdfsetcolor{\maincolor}\the\headline\pdfsetcolor{\thiscolor}% }% \vss }% \nointerlineskip } % % \pdfcatalog{/PageMode /UseOutlines} % % #1 is image name, #2 width (might be empty/whitespace), #3 height (ditto). \def\dopdfimage#1#2#3{% \def\pdfimagewidth{#2}\setbox0 = \hbox{\ignorespaces #2}% \def\pdfimageheight{#3}\setbox2 = \hbox{\ignorespaces #3}% % % pdftex (and the PDF format) support .pdf, .png, .jpg (among % others). Let's try in that order, PDF first since if % someone has a scalable image, presumably better to use that than a % bitmap. \let\pdfimgext=\empty \begingroup \openin 1 #1.pdf \ifeof 1 \openin 1 #1.PDF \ifeof 1 \openin 1 #1.png \ifeof 1 \openin 1 #1.jpg \ifeof 1 \openin 1 #1.jpeg \ifeof 1 \openin 1 #1.JPG \ifeof 1 \errhelp = \nopdfimagehelp \errmessage{Could not find image file #1 for pdf}% \else \gdef\pdfimgext{JPG}% \fi \else \gdef\pdfimgext{jpeg}% \fi \else \gdef\pdfimgext{jpg}% \fi \else \gdef\pdfimgext{png}% \fi \else \gdef\pdfimgext{PDF}% \fi \else \gdef\pdfimgext{pdf}% \fi \closein 1 \endgroup % % without \immediate, ancient pdftex seg faults when the same image is % included twice. (Version 3.14159-pre-1.0-unofficial-20010704.) \ifnum\pdftexversion < 14 \immediate\pdfimage \else \immediate\pdfximage \fi \ifdim \wd0 >0pt width \pdfimagewidth \fi \ifdim \wd2 >0pt height \pdfimageheight \fi \ifnum\pdftexversion<13 #1.\pdfimgext \else {#1.\pdfimgext}% \fi \ifnum\pdftexversion < 14 \else \pdfrefximage \pdflastximage \fi} % \def\pdfmkdest#1{{% % We have to set dummies so commands such as @code, and characters % such as \, aren't expanded when present in a section title. \indexnofonts \turnoffactive \makevalueexpandable \def\pdfdestname{#1}% \txiescapepdf\pdfdestname \safewhatsit{\pdfdest name{\pdfdestname} xyz}% }} % % used to mark target names; must be expandable. \def\pdfmkpgn#1{#1} % % by default, use a color that is dark enough to print on paper as % nearly black, but still distinguishable for online viewing. \def\urlcolor{\rgbDarkRed} \def\linkcolor{\rgbDarkRed} \def\endlink{\setcolor{\maincolor}\pdfendlink} % % Adding outlines to PDF; macros for calculating structure of outlines % come from Petr Olsak \def\expnumber#1{\expandafter\ifx\csname#1\endcsname\relax 0% \else \csname#1\endcsname \fi} \def\advancenumber#1{\tempnum=\expnumber{#1}\relax \advance\tempnum by 1 \expandafter\xdef\csname#1\endcsname{\the\tempnum}} % % #1 is the section text, which is what will be displayed in the % outline by the pdf viewer. #2 is the pdf expression for the number % of subentries (or empty, for subsubsections). #3 is the node text, % which might be empty if this toc entry had no corresponding node. % #4 is the page number % \def\dopdfoutline#1#2#3#4{% % Generate a link to the node text if that exists; else, use the % page number. We could generate a destination for the section % text in the case where a section has no node, but it doesn't % seem worth the trouble, since most documents are normally structured. \edef\pdfoutlinedest{#3}% \ifx\pdfoutlinedest\empty \def\pdfoutlinedest{#4}% \else \txiescapepdf\pdfoutlinedest \fi % % Also escape PDF chars in the display string. \edef\pdfoutlinetext{#1}% \txiescapepdf\pdfoutlinetext % \pdfoutline goto name{\pdfmkpgn{\pdfoutlinedest}}#2{\pdfoutlinetext}% } % \def\pdfmakeoutlines{% \begingroup % Read toc silently, to get counts of subentries for \pdfoutline. \def\partentry##1##2##3##4{}% ignore parts in the outlines \def\numchapentry##1##2##3##4{% \def\thischapnum{##2}% \def\thissecnum{0}% \def\thissubsecnum{0}% }% \def\numsecentry##1##2##3##4{% \advancenumber{chap\thischapnum}% \def\thissecnum{##2}% \def\thissubsecnum{0}% }% \def\numsubsecentry##1##2##3##4{% \advancenumber{sec\thissecnum}% \def\thissubsecnum{##2}% }% \def\numsubsubsecentry##1##2##3##4{% \advancenumber{subsec\thissubsecnum}% }% \def\thischapnum{0}% \def\thissecnum{0}% \def\thissubsecnum{0}% % % use \def rather than \let here because we redefine \chapentry et % al. a second time, below. \def\appentry{\numchapentry}% \def\appsecentry{\numsecentry}% \def\appsubsecentry{\numsubsecentry}% \def\appsubsubsecentry{\numsubsubsecentry}% \def\unnchapentry{\numchapentry}% \def\unnsecentry{\numsecentry}% \def\unnsubsecentry{\numsubsecentry}% \def\unnsubsubsecentry{\numsubsubsecentry}% \readdatafile{toc}% % % Read toc second time, this time actually producing the outlines. % The `-' means take the \expnumber as the absolute number of % subentries, which we calculated on our first read of the .toc above. % % We use the node names as the destinations. \def\numchapentry##1##2##3##4{% \dopdfoutline{##1}{count-\expnumber{chap##2}}{##3}{##4}}% \def\numsecentry##1##2##3##4{% \dopdfoutline{##1}{count-\expnumber{sec##2}}{##3}{##4}}% \def\numsubsecentry##1##2##3##4{% \dopdfoutline{##1}{count-\expnumber{subsec##2}}{##3}{##4}}% \def\numsubsubsecentry##1##2##3##4{% count is always zero \dopdfoutline{##1}{}{##3}{##4}}% % % PDF outlines are displayed using system fonts, instead of % document fonts. Therefore we cannot use special characters, % since the encoding is unknown. For example, the eogonek from % Latin 2 (0xea) gets translated to a | character. Info from % Staszek Wawrykiewicz, 19 Jan 2004 04:09:24 +0100. % % TODO this right, we have to translate 8-bit characters to % their "best" equivalent, based on the @documentencoding. Too % much work for too little return. Just use the ASCII equivalents % we use for the index sort strings. % \indexnofonts \setupdatafile % We can have normal brace characters in the PDF outlines, unlike % Texinfo index files. So set that up. \def\{{\lbracecharliteral}% \def\}{\rbracecharliteral}% \catcode`\\=\active \otherbackslash \input \tocreadfilename \endgroup } {\catcode`[=1 \catcode`]=2 \catcode`{=\other \catcode`}=\other \gdef\lbracecharliteral[{]% \gdef\rbracecharliteral[}]% ] % \def\skipspaces#1{\def\PP{#1}\def\D{|}% \ifx\PP\D\let\nextsp\relax \else\let\nextsp\skipspaces \addtokens{\filename}{\PP}% \advance\filenamelength by 1 \fi \nextsp} \def\getfilename#1{% \filenamelength=0 % If we don't expand the argument now, \skipspaces will get % snagged on things like "@value{foo}". \edef\temp{#1}% \expandafter\skipspaces\temp|\relax } \ifnum\pdftexversion < 14 \let \startlink \pdfannotlink \else \let \startlink \pdfstartlink \fi % make a live url in pdf output. \def\pdfurl#1{% \begingroup % it seems we really need yet another set of dummies; have not % tried to figure out what each command should do in the context % of @url. for now, just make @/ a no-op, that's the only one % people have actually reported a problem with. % \normalturnoffactive \def\@{@}% \let\/=\empty \makevalueexpandable % do we want to go so far as to use \indexnofonts instead of just % special-casing \var here? \def\var##1{##1}% % \leavevmode\setcolor{\urlcolor}% \startlink attr{/Border [0 0 0]}% user{/Subtype /Link /A << /S /URI /URI (#1) >>}% \endgroup} \def\pdfgettoks#1.{\setbox\boxA=\hbox{\toksA={#1.}\toksB={}\maketoks}} \def\addtokens#1#2{\edef\addtoks{\noexpand#1={\the#1#2}}\addtoks} \def\adn#1{\addtokens{\toksC}{#1}\global\countA=1\let\next=\maketoks} \def\poptoks#1#2|ENDTOKS|{\let\first=#1\toksD={#1}\toksA={#2}} \def\maketoks{% \expandafter\poptoks\the\toksA|ENDTOKS|\relax \ifx\first0\adn0 \else\ifx\first1\adn1 \else\ifx\first2\adn2 \else\ifx\first3\adn3 \else\ifx\first4\adn4 \else\ifx\first5\adn5 \else\ifx\first6\adn6 \else\ifx\first7\adn7 \else\ifx\first8\adn8 \else\ifx\first9\adn9 \else \ifnum0=\countA\else\makelink\fi \ifx\first.\let\next=\done\else \let\next=\maketoks \addtokens{\toksB}{\the\toksD} \ifx\first,\addtokens{\toksB}{\space}\fi \fi \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi \next} \def\makelink{\addtokens{\toksB}% {\noexpand\pdflink{\the\toksC}}\toksC={}\global\countA=0} \def\pdflink#1{% \startlink attr{/Border [0 0 0]} goto name{\pdfmkpgn{#1}} \setcolor{\linkcolor}#1\endlink} \def\done{\edef\st{\global\noexpand\toksA={\the\toksB}}\st} \else % non-pdf mode \let\pdfmkdest = \gobble \let\pdfurl = \gobble \let\endlink = \relax \let\setcolor = \gobble \let\pdfsetcolor = \gobble \let\pdfmakeoutlines = \relax \fi % \ifx\pdfoutput \message{fonts,} % Change the current font style to #1, remembering it in \curfontstyle. % For now, we do not accumulate font styles: @b{@i{foo}} prints foo in % italics, not bold italics. % \def\setfontstyle#1{% \def\curfontstyle{#1}% not as a control sequence, because we are \edef'd. \csname ten#1\endcsname % change the current font } % Select #1 fonts with the current style. % \def\selectfonts#1{\csname #1fonts\endcsname \csname\curfontstyle\endcsname} \def\rm{\fam=0 \setfontstyle{rm}} \def\it{\fam=\itfam \setfontstyle{it}} \def\sl{\fam=\slfam \setfontstyle{sl}} \def\bf{\fam=\bffam \setfontstyle{bf}}\def\bfstylename{bf} \def\tt{\fam=\ttfam \setfontstyle{tt}} % Unfortunately, we have to override this for titles and the like, since % in those cases "rm" is bold. Sigh. \def\rmisbold{\rm\def\curfontstyle{bf}} % Texinfo sort of supports the sans serif font style, which plain TeX does not. % So we set up a \sf. \newfam\sffam \def\sf{\fam=\sffam \setfontstyle{sf}} \let\li = \sf % Sometimes we call it \li, not \sf. % We don't need math for this font style. \def\ttsl{\setfontstyle{ttsl}} % Set the baselineskip to #1, and the lineskip and strut size % correspondingly. There is no deep meaning behind these magic numbers % used as factors; they just match (closely enough) what Knuth defined. % \def\lineskipfactor{.08333} \def\strutheightpercent{.70833} \def\strutdepthpercent {.29167} % % can get a sort of poor man's double spacing by redefining this. \def\baselinefactor{1} % \newdimen\textleading \def\setleading#1{% \dimen0 = #1\relax \normalbaselineskip = \baselinefactor\dimen0 \normallineskip = \lineskipfactor\normalbaselineskip \normalbaselines \setbox\strutbox =\hbox{% \vrule width0pt height\strutheightpercent\baselineskip depth \strutdepthpercent \baselineskip }% } % PDF CMaps. See also LaTeX's t1.cmap. % % do nothing with this by default. \expandafter\let\csname cmapOT1\endcsname\gobble \expandafter\let\csname cmapOT1IT\endcsname\gobble \expandafter\let\csname cmapOT1TT\endcsname\gobble % if we are producing pdf, and we have \pdffontattr, then define cmaps. % (\pdffontattr was introduced many years ago, but people still run % older pdftex's; it's easy to conditionalize, so we do.) \ifpdf \ifx\pdffontattr\thisisundefined \else \begingroup \catcode`\^^M=\active \def^^M{^^J}% Output line endings as the ^^J char. \catcode`\%=12 \immediate\pdfobj stream {%!PS-Adobe-3.0 Resource-CMap %%DocumentNeededResources: ProcSet (CIDInit) %%IncludeResource: ProcSet (CIDInit) %%BeginResource: CMap (TeX-OT1-0) %%Title: (TeX-OT1-0 TeX OT1 0) %%Version: 1.000 %%EndComments /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TeX) /Ordering (OT1) /Supplement 0 >> def /CMapName /TeX-OT1-0 def /CMapType 2 def 1 begincodespacerange <00> <7F> endcodespacerange 8 beginbfrange <00> <01> <0393> <09> <0A> <03A8> <23> <26> <0023> <28> <3B> <0028> <3F> <5B> <003F> <5D> <5E> <005D> <61> <7A> <0061> <7B> <7C> <2013> endbfrange 40 beginbfchar <02> <0398> <03> <039B> <04> <039E> <05> <03A0> <06> <03A3> <07> <03D2> <08> <03A6> <0B> <00660066> <0C> <00660069> <0D> <0066006C> <0E> <006600660069> <0F> <00660066006C> <10> <0131> <11> <0237> <12> <0060> <13> <00B4> <14> <02C7> <15> <02D8> <16> <00AF> <17> <02DA> <18> <00B8> <19> <00DF> <1A> <00E6> <1B> <0153> <1C> <00F8> <1D> <00C6> <1E> <0152> <1F> <00D8> <21> <0021> <22> <201D> <27> <2019> <3C> <00A1> <3D> <003D> <3E> <00BF> <5C> <201C> <5F> <02D9> <60> <2018> <7D> <02DD> <7E> <007E> <7F> <00A8> endbfchar endcmap CMapName currentdict /CMap defineresource pop end end %%EndResource %%EOF }\endgroup \expandafter\edef\csname cmapOT1\endcsname#1{% \pdffontattr#1{/ToUnicode \the\pdflastobj\space 0 R}% }% % % \cmapOT1IT \begingroup \catcode`\^^M=\active \def^^M{^^J}% Output line endings as the ^^J char. \catcode`\%=12 \immediate\pdfobj stream {%!PS-Adobe-3.0 Resource-CMap %%DocumentNeededResources: ProcSet (CIDInit) %%IncludeResource: ProcSet (CIDInit) %%BeginResource: CMap (TeX-OT1IT-0) %%Title: (TeX-OT1IT-0 TeX OT1IT 0) %%Version: 1.000 %%EndComments /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TeX) /Ordering (OT1IT) /Supplement 0 >> def /CMapName /TeX-OT1IT-0 def /CMapType 2 def 1 begincodespacerange <00> <7F> endcodespacerange 8 beginbfrange <00> <01> <0393> <09> <0A> <03A8> <25> <26> <0025> <28> <3B> <0028> <3F> <5B> <003F> <5D> <5E> <005D> <61> <7A> <0061> <7B> <7C> <2013> endbfrange 42 beginbfchar <02> <0398> <03> <039B> <04> <039E> <05> <03A0> <06> <03A3> <07> <03D2> <08> <03A6> <0B> <00660066> <0C> <00660069> <0D> <0066006C> <0E> <006600660069> <0F> <00660066006C> <10> <0131> <11> <0237> <12> <0060> <13> <00B4> <14> <02C7> <15> <02D8> <16> <00AF> <17> <02DA> <18> <00B8> <19> <00DF> <1A> <00E6> <1B> <0153> <1C> <00F8> <1D> <00C6> <1E> <0152> <1F> <00D8> <21> <0021> <22> <201D> <23> <0023> <24> <00A3> <27> <2019> <3C> <00A1> <3D> <003D> <3E> <00BF> <5C> <201C> <5F> <02D9> <60> <2018> <7D> <02DD> <7E> <007E> <7F> <00A8> endbfchar endcmap CMapName currentdict /CMap defineresource pop end end %%EndResource %%EOF }\endgroup \expandafter\edef\csname cmapOT1IT\endcsname#1{% \pdffontattr#1{/ToUnicode \the\pdflastobj\space 0 R}% }% % % \cmapOT1TT \begingroup \catcode`\^^M=\active \def^^M{^^J}% Output line endings as the ^^J char. \catcode`\%=12 \immediate\pdfobj stream {%!PS-Adobe-3.0 Resource-CMap %%DocumentNeededResources: ProcSet (CIDInit) %%IncludeResource: ProcSet (CIDInit) %%BeginResource: CMap (TeX-OT1TT-0) %%Title: (TeX-OT1TT-0 TeX OT1TT 0) %%Version: 1.000 %%EndComments /CIDInit /ProcSet findresource begin 12 dict begin begincmap /CIDSystemInfo << /Registry (TeX) /Ordering (OT1TT) /Supplement 0 >> def /CMapName /TeX-OT1TT-0 def /CMapType 2 def 1 begincodespacerange <00> <7F> endcodespacerange 5 beginbfrange <00> <01> <0393> <09> <0A> <03A8> <21> <26> <0021> <28> <5F> <0028> <61> <7E> <0061> endbfrange 32 beginbfchar <02> <0398> <03> <039B> <04> <039E> <05> <03A0> <06> <03A3> <07> <03D2> <08> <03A6> <0B> <2191> <0C> <2193> <0D> <0027> <0E> <00A1> <0F> <00BF> <10> <0131> <11> <0237> <12> <0060> <13> <00B4> <14> <02C7> <15> <02D8> <16> <00AF> <17> <02DA> <18> <00B8> <19> <00DF> <1A> <00E6> <1B> <0153> <1C> <00F8> <1D> <00C6> <1E> <0152> <1F> <00D8> <20> <2423> <27> <2019> <60> <2018> <7F> <00A8> endbfchar endcmap CMapName currentdict /CMap defineresource pop end end %%EndResource %%EOF }\endgroup \expandafter\edef\csname cmapOT1TT\endcsname#1{% \pdffontattr#1{/ToUnicode \the\pdflastobj\space 0 R}% }% \fi\fi % Set the font macro #1 to the font named \fontprefix#2. % #3 is the font's design size, #4 is a scale factor, #5 is the CMap % encoding (only OT1, OT1IT and OT1TT are allowed, or empty to omit). % Example: % #1 = \textrm % #2 = \rmshape % #3 = 10 % #4 = \mainmagstep % #5 = OT1 % \def\setfont#1#2#3#4#5{% \font#1=\fontprefix#2#3 scaled #4 \csname cmap#5\endcsname#1% } % This is what gets called when #5 of \setfont is empty. \let\cmap\gobble % % (end of cmaps) % Use cm as the default font prefix. % To specify the font prefix, you must define \fontprefix % before you read in texinfo.tex. \ifx\fontprefix\thisisundefined \def\fontprefix{cm} \fi % Support font families that don't use the same naming scheme as CM. \def\rmshape{r} \def\rmbshape{bx} % where the normal face is bold \def\bfshape{b} \def\bxshape{bx} \def\ttshape{tt} \def\ttbshape{tt} \def\ttslshape{sltt} \def\itshape{ti} \def\itbshape{bxti} \def\slshape{sl} \def\slbshape{bxsl} \def\sfshape{ss} \def\sfbshape{ss} \def\scshape{csc} \def\scbshape{csc} % Definitions for a main text size of 11pt. (The default in Texinfo.) % \def\definetextfontsizexi{% % Text fonts (11.2pt, magstep1). \def\textnominalsize{11pt} \edef\mainmagstep{\magstephalf} \setfont\textrm\rmshape{10}{\mainmagstep}{OT1} \setfont\texttt\ttshape{10}{\mainmagstep}{OT1TT} \setfont\textbf\bfshape{10}{\mainmagstep}{OT1} \setfont\textit\itshape{10}{\mainmagstep}{OT1IT} \setfont\textsl\slshape{10}{\mainmagstep}{OT1} \setfont\textsf\sfshape{10}{\mainmagstep}{OT1} \setfont\textsc\scshape{10}{\mainmagstep}{OT1} \setfont\textttsl\ttslshape{10}{\mainmagstep}{OT1TT} \font\texti=cmmi10 scaled \mainmagstep \font\textsy=cmsy10 scaled \mainmagstep \def\textecsize{1095} % A few fonts for @defun names and args. \setfont\defbf\bfshape{10}{\magstep1}{OT1} \setfont\deftt\ttshape{10}{\magstep1}{OT1TT} \setfont\defttsl\ttslshape{10}{\magstep1}{OT1TT} \def\df{\let\tentt=\deftt \let\tenbf = \defbf \let\tenttsl=\defttsl \bf} % Fonts for indices, footnotes, small examples (9pt). \def\smallnominalsize{9pt} \setfont\smallrm\rmshape{9}{1000}{OT1} \setfont\smalltt\ttshape{9}{1000}{OT1TT} \setfont\smallbf\bfshape{10}{900}{OT1} \setfont\smallit\itshape{9}{1000}{OT1IT} \setfont\smallsl\slshape{9}{1000}{OT1} \setfont\smallsf\sfshape{9}{1000}{OT1} \setfont\smallsc\scshape{10}{900}{OT1} \setfont\smallttsl\ttslshape{10}{900}{OT1TT} \font\smalli=cmmi9 \font\smallsy=cmsy9 \def\smallecsize{0900} % Fonts for small examples (8pt). \def\smallernominalsize{8pt} \setfont\smallerrm\rmshape{8}{1000}{OT1} \setfont\smallertt\ttshape{8}{1000}{OT1TT} \setfont\smallerbf\bfshape{10}{800}{OT1} \setfont\smallerit\itshape{8}{1000}{OT1IT} \setfont\smallersl\slshape{8}{1000}{OT1} \setfont\smallersf\sfshape{8}{1000}{OT1} \setfont\smallersc\scshape{10}{800}{OT1} \setfont\smallerttsl\ttslshape{10}{800}{OT1TT} \font\smalleri=cmmi8 \font\smallersy=cmsy8 \def\smallerecsize{0800} % Fonts for title page (20.4pt): \def\titlenominalsize{20pt} \setfont\titlerm\rmbshape{12}{\magstep3}{OT1} \setfont\titleit\itbshape{10}{\magstep4}{OT1IT} \setfont\titlesl\slbshape{10}{\magstep4}{OT1} \setfont\titlett\ttbshape{12}{\magstep3}{OT1TT} \setfont\titlettsl\ttslshape{10}{\magstep4}{OT1TT} \setfont\titlesf\sfbshape{17}{\magstep1}{OT1} \let\titlebf=\titlerm \setfont\titlesc\scbshape{10}{\magstep4}{OT1} \font\titlei=cmmi12 scaled \magstep3 \font\titlesy=cmsy10 scaled \magstep4 \def\titleecsize{2074} % Chapter (and unnumbered) fonts (17.28pt). \def\chapnominalsize{17pt} \setfont\chaprm\rmbshape{12}{\magstep2}{OT1} \setfont\chapit\itbshape{10}{\magstep3}{OT1IT} \setfont\chapsl\slbshape{10}{\magstep3}{OT1} \setfont\chaptt\ttbshape{12}{\magstep2}{OT1TT} \setfont\chapttsl\ttslshape{10}{\magstep3}{OT1TT} \setfont\chapsf\sfbshape{17}{1000}{OT1} \let\chapbf=\chaprm \setfont\chapsc\scbshape{10}{\magstep3}{OT1} \font\chapi=cmmi12 scaled \magstep2 \font\chapsy=cmsy10 scaled \magstep3 \def\chapecsize{1728} % Section fonts (14.4pt). \def\secnominalsize{14pt} \setfont\secrm\rmbshape{12}{\magstep1}{OT1} \setfont\secit\itbshape{10}{\magstep2}{OT1IT} \setfont\secsl\slbshape{10}{\magstep2}{OT1} \setfont\sectt\ttbshape{12}{\magstep1}{OT1TT} \setfont\secttsl\ttslshape{10}{\magstep2}{OT1TT} \setfont\secsf\sfbshape{12}{\magstep1}{OT1} \let\secbf\secrm \setfont\secsc\scbshape{10}{\magstep2}{OT1} \font\seci=cmmi12 scaled \magstep1 \font\secsy=cmsy10 scaled \magstep2 \def\sececsize{1440} % Subsection fonts (13.15pt). \def\ssecnominalsize{13pt} \setfont\ssecrm\rmbshape{12}{\magstephalf}{OT1} \setfont\ssecit\itbshape{10}{1315}{OT1IT} \setfont\ssecsl\slbshape{10}{1315}{OT1} \setfont\ssectt\ttbshape{12}{\magstephalf}{OT1TT} \setfont\ssecttsl\ttslshape{10}{1315}{OT1TT} \setfont\ssecsf\sfbshape{12}{\magstephalf}{OT1} \let\ssecbf\ssecrm \setfont\ssecsc\scbshape{10}{1315}{OT1} \font\sseci=cmmi12 scaled \magstephalf \font\ssecsy=cmsy10 scaled 1315 \def\ssececsize{1200} % Reduced fonts for @acro in text (10pt). \def\reducednominalsize{10pt} \setfont\reducedrm\rmshape{10}{1000}{OT1} \setfont\reducedtt\ttshape{10}{1000}{OT1TT} \setfont\reducedbf\bfshape{10}{1000}{OT1} \setfont\reducedit\itshape{10}{1000}{OT1IT} \setfont\reducedsl\slshape{10}{1000}{OT1} \setfont\reducedsf\sfshape{10}{1000}{OT1} \setfont\reducedsc\scshape{10}{1000}{OT1} \setfont\reducedttsl\ttslshape{10}{1000}{OT1TT} \font\reducedi=cmmi10 \font\reducedsy=cmsy10 \def\reducedecsize{1000} \textleading = 13.2pt % line spacing for 11pt CM \textfonts % reset the current fonts \rm } % end of 11pt text font size definitions, \definetextfontsizexi % Definitions to make the main text be 10pt Computer Modern, with % section, chapter, etc., sizes following suit. This is for the GNU % Press printing of the Emacs 22 manual. Maybe other manuals in the % future. Used with @smallbook, which sets the leading to 12pt. % \def\definetextfontsizex{% % Text fonts (10pt). \def\textnominalsize{10pt} \edef\mainmagstep{1000} \setfont\textrm\rmshape{10}{\mainmagstep}{OT1} \setfont\texttt\ttshape{10}{\mainmagstep}{OT1TT} \setfont\textbf\bfshape{10}{\mainmagstep}{OT1} \setfont\textit\itshape{10}{\mainmagstep}{OT1IT} \setfont\textsl\slshape{10}{\mainmagstep}{OT1} \setfont\textsf\sfshape{10}{\mainmagstep}{OT1} \setfont\textsc\scshape{10}{\mainmagstep}{OT1} \setfont\textttsl\ttslshape{10}{\mainmagstep}{OT1TT} \font\texti=cmmi10 scaled \mainmagstep \font\textsy=cmsy10 scaled \mainmagstep \def\textecsize{1000} % A few fonts for @defun names and args. \setfont\defbf\bfshape{10}{\magstephalf}{OT1} \setfont\deftt\ttshape{10}{\magstephalf}{OT1TT} \setfont\defttsl\ttslshape{10}{\magstephalf}{OT1TT} \def\df{\let\tentt=\deftt \let\tenbf = \defbf \let\tenttsl=\defttsl \bf} % Fonts for indices, footnotes, small examples (9pt). \def\smallnominalsize{9pt} \setfont\smallrm\rmshape{9}{1000}{OT1} \setfont\smalltt\ttshape{9}{1000}{OT1TT} \setfont\smallbf\bfshape{10}{900}{OT1} \setfont\smallit\itshape{9}{1000}{OT1IT} \setfont\smallsl\slshape{9}{1000}{OT1} \setfont\smallsf\sfshape{9}{1000}{OT1} \setfont\smallsc\scshape{10}{900}{OT1} \setfont\smallttsl\ttslshape{10}{900}{OT1TT} \font\smalli=cmmi9 \font\smallsy=cmsy9 \def\smallecsize{0900} % Fonts for small examples (8pt). \def\smallernominalsize{8pt} \setfont\smallerrm\rmshape{8}{1000}{OT1} \setfont\smallertt\ttshape{8}{1000}{OT1TT} \setfont\smallerbf\bfshape{10}{800}{OT1} \setfont\smallerit\itshape{8}{1000}{OT1IT} \setfont\smallersl\slshape{8}{1000}{OT1} \setfont\smallersf\sfshape{8}{1000}{OT1} \setfont\smallersc\scshape{10}{800}{OT1} \setfont\smallerttsl\ttslshape{10}{800}{OT1TT} \font\smalleri=cmmi8 \font\smallersy=cmsy8 \def\smallerecsize{0800} % Fonts for title page (20.4pt): \def\titlenominalsize{20pt} \setfont\titlerm\rmbshape{12}{\magstep3}{OT1} \setfont\titleit\itbshape{10}{\magstep4}{OT1IT} \setfont\titlesl\slbshape{10}{\magstep4}{OT1} \setfont\titlett\ttbshape{12}{\magstep3}{OT1TT} \setfont\titlettsl\ttslshape{10}{\magstep4}{OT1TT} \setfont\titlesf\sfbshape{17}{\magstep1}{OT1} \let\titlebf=\titlerm \setfont\titlesc\scbshape{10}{\magstep4}{OT1} \font\titlei=cmmi12 scaled \magstep3 \font\titlesy=cmsy10 scaled \magstep4 \def\titleecsize{2074} % Chapter fonts (14.4pt). \def\chapnominalsize{14pt} \setfont\chaprm\rmbshape{12}{\magstep1}{OT1} \setfont\chapit\itbshape{10}{\magstep2}{OT1IT} \setfont\chapsl\slbshape{10}{\magstep2}{OT1} \setfont\chaptt\ttbshape{12}{\magstep1}{OT1TT} \setfont\chapttsl\ttslshape{10}{\magstep2}{OT1TT} \setfont\chapsf\sfbshape{12}{\magstep1}{OT1} \let\chapbf\chaprm \setfont\chapsc\scbshape{10}{\magstep2}{OT1} \font\chapi=cmmi12 scaled \magstep1 \font\chapsy=cmsy10 scaled \magstep2 \def\chapecsize{1440} % Section fonts (12pt). \def\secnominalsize{12pt} \setfont\secrm\rmbshape{12}{1000}{OT1} \setfont\secit\itbshape{10}{\magstep1}{OT1IT} \setfont\secsl\slbshape{10}{\magstep1}{OT1} \setfont\sectt\ttbshape{12}{1000}{OT1TT} \setfont\secttsl\ttslshape{10}{\magstep1}{OT1TT} \setfont\secsf\sfbshape{12}{1000}{OT1} \let\secbf\secrm \setfont\secsc\scbshape{10}{\magstep1}{OT1} \font\seci=cmmi12 \font\secsy=cmsy10 scaled \magstep1 \def\sececsize{1200} % Subsection fonts (10pt). \def\ssecnominalsize{10pt} \setfont\ssecrm\rmbshape{10}{1000}{OT1} \setfont\ssecit\itbshape{10}{1000}{OT1IT} \setfont\ssecsl\slbshape{10}{1000}{OT1} \setfont\ssectt\ttbshape{10}{1000}{OT1TT} \setfont\ssecttsl\ttslshape{10}{1000}{OT1TT} \setfont\ssecsf\sfbshape{10}{1000}{OT1} \let\ssecbf\ssecrm \setfont\ssecsc\scbshape{10}{1000}{OT1} \font\sseci=cmmi10 \font\ssecsy=cmsy10 \def\ssececsize{1000} % Reduced fonts for @acro in text (9pt). \def\reducednominalsize{9pt} \setfont\reducedrm\rmshape{9}{1000}{OT1} \setfont\reducedtt\ttshape{9}{1000}{OT1TT} \setfont\reducedbf\bfshape{10}{900}{OT1} \setfont\reducedit\itshape{9}{1000}{OT1IT} \setfont\reducedsl\slshape{9}{1000}{OT1} \setfont\reducedsf\sfshape{9}{1000}{OT1} \setfont\reducedsc\scshape{10}{900}{OT1} \setfont\reducedttsl\ttslshape{10}{900}{OT1TT} \font\reducedi=cmmi9 \font\reducedsy=cmsy9 \def\reducedecsize{0900} \divide\parskip by 2 % reduce space between paragraphs \textleading = 12pt % line spacing for 10pt CM \textfonts % reset the current fonts \rm } % end of 10pt text font size definitions, \definetextfontsizex % We provide the user-level command % @fonttextsize 10 % (or 11) to redefine the text font size. pt is assumed. % \def\xiword{11} \def\xword{10} \def\xwordpt{10pt} % \parseargdef\fonttextsize{% \def\textsizearg{#1}% %\wlog{doing @fonttextsize \textsizearg}% % % Set \globaldefs so that documents can use this inside @tex, since % makeinfo 4.8 does not support it, but we need it nonetheless. % \begingroup \globaldefs=1 \ifx\textsizearg\xword \definetextfontsizex \else \ifx\textsizearg\xiword \definetextfontsizexi \else \errhelp=\EMsimple \errmessage{@fonttextsize only supports `10' or `11', not `\textsizearg'} \fi\fi \endgroup } % In order for the font changes to affect most math symbols and letters, % we have to define the \textfont of the standard families. Since % texinfo doesn't allow for producing subscripts and superscripts except % in the main text, we don't bother to reset \scriptfont and % \scriptscriptfont (which would also require loading a lot more fonts). % \def\resetmathfonts{% \textfont0=\tenrm \textfont1=\teni \textfont2=\tensy \textfont\itfam=\tenit \textfont\slfam=\tensl \textfont\bffam=\tenbf \textfont\ttfam=\tentt \textfont\sffam=\tensf } % The font-changing commands redefine the meanings of \tenSTYLE, instead % of just \STYLE. We do this because \STYLE needs to also set the % current \fam for math mode. Our \STYLE (e.g., \rm) commands hardwire % \tenSTYLE to set the current font. % % Each font-changing command also sets the names \lsize (one size lower) % and \lllsize (three sizes lower). These relative commands are used in % the LaTeX logo and acronyms. % % This all needs generalizing, badly. % \def\textfonts{% \let\tenrm=\textrm \let\tenit=\textit \let\tensl=\textsl \let\tenbf=\textbf \let\tentt=\texttt \let\smallcaps=\textsc \let\tensf=\textsf \let\teni=\texti \let\tensy=\textsy \let\tenttsl=\textttsl \def\curfontsize{text}% \def\lsize{reduced}\def\lllsize{smaller}% \resetmathfonts \setleading{\textleading}} \def\titlefonts{% \let\tenrm=\titlerm \let\tenit=\titleit \let\tensl=\titlesl \let\tenbf=\titlebf \let\tentt=\titlett \let\smallcaps=\titlesc \let\tensf=\titlesf \let\teni=\titlei \let\tensy=\titlesy \let\tenttsl=\titlettsl \def\curfontsize{title}% \def\lsize{chap}\def\lllsize{subsec}% \resetmathfonts \setleading{27pt}} \def\titlefont#1{{\titlefonts\rmisbold #1}} \def\chapfonts{% \let\tenrm=\chaprm \let\tenit=\chapit \let\tensl=\chapsl \let\tenbf=\chapbf \let\tentt=\chaptt \let\smallcaps=\chapsc \let\tensf=\chapsf \let\teni=\chapi \let\tensy=\chapsy \let\tenttsl=\chapttsl \def\curfontsize{chap}% \def\lsize{sec}\def\lllsize{text}% \resetmathfonts \setleading{19pt}} \def\secfonts{% \let\tenrm=\secrm \let\tenit=\secit \let\tensl=\secsl \let\tenbf=\secbf \let\tentt=\sectt \let\smallcaps=\secsc \let\tensf=\secsf \let\teni=\seci \let\tensy=\secsy \let\tenttsl=\secttsl \def\curfontsize{sec}% \def\lsize{subsec}\def\lllsize{reduced}% \resetmathfonts \setleading{16pt}} \def\subsecfonts{% \let\tenrm=\ssecrm \let\tenit=\ssecit \let\tensl=\ssecsl \let\tenbf=\ssecbf \let\tentt=\ssectt \let\smallcaps=\ssecsc \let\tensf=\ssecsf \let\teni=\sseci \let\tensy=\ssecsy \let\tenttsl=\ssecttsl \def\curfontsize{ssec}% \def\lsize{text}\def\lllsize{small}% \resetmathfonts \setleading{15pt}} \let\subsubsecfonts = \subsecfonts \def\reducedfonts{% \let\tenrm=\reducedrm \let\tenit=\reducedit \let\tensl=\reducedsl \let\tenbf=\reducedbf \let\tentt=\reducedtt \let\reducedcaps=\reducedsc \let\tensf=\reducedsf \let\teni=\reducedi \let\tensy=\reducedsy \let\tenttsl=\reducedttsl \def\curfontsize{reduced}% \def\lsize{small}\def\lllsize{smaller}% \resetmathfonts \setleading{10.5pt}} \def\smallfonts{% \let\tenrm=\smallrm \let\tenit=\smallit \let\tensl=\smallsl \let\tenbf=\smallbf \let\tentt=\smalltt \let\smallcaps=\smallsc \let\tensf=\smallsf \let\teni=\smalli \let\tensy=\smallsy \let\tenttsl=\smallttsl \def\curfontsize{small}% \def\lsize{smaller}\def\lllsize{smaller}% \resetmathfonts \setleading{10.5pt}} \def\smallerfonts{% \let\tenrm=\smallerrm \let\tenit=\smallerit \let\tensl=\smallersl \let\tenbf=\smallerbf \let\tentt=\smallertt \let\smallcaps=\smallersc \let\tensf=\smallersf \let\teni=\smalleri \let\tensy=\smallersy \let\tenttsl=\smallerttsl \def\curfontsize{smaller}% \def\lsize{smaller}\def\lllsize{smaller}% \resetmathfonts \setleading{9.5pt}} % Fonts for short table of contents. \setfont\shortcontrm\rmshape{12}{1000}{OT1} \setfont\shortcontbf\bfshape{10}{\magstep1}{OT1} % no cmb12 \setfont\shortcontsl\slshape{12}{1000}{OT1} \setfont\shortconttt\ttshape{12}{1000}{OT1TT} % Define these just so they can be easily changed for other fonts. \def\angleleft{$\langle$} \def\angleright{$\rangle$} % Set the fonts to use with the @small... environments. \let\smallexamplefonts = \smallfonts % About \smallexamplefonts. If we use \smallfonts (9pt), @smallexample % can fit this many characters: % 8.5x11=86 smallbook=72 a4=90 a5=69 % If we use \scriptfonts (8pt), then we can fit this many characters: % 8.5x11=90+ smallbook=80 a4=90+ a5=77 % For me, subjectively, the few extra characters that fit aren't worth % the additional smallness of 8pt. So I'm making the default 9pt. % % By the way, for comparison, here's what fits with @example (10pt): % 8.5x11=71 smallbook=60 a4=75 a5=58 % --karl, 24jan03. % Set up the default fonts, so we can use them for creating boxes. % \definetextfontsizexi \message{markup,} % Check if we are currently using a typewriter font. Since all the % Computer Modern typewriter fonts have zero interword stretch (and % shrink), and it is reasonable to expect all typewriter fonts to have % this property, we can check that font parameter. % \def\ifmonospace{\ifdim\fontdimen3\font=0pt } % Markup style infrastructure. \defmarkupstylesetup\INITMACRO will % define and register \INITMACRO to be called on markup style changes. % \INITMACRO can check \currentmarkupstyle for the innermost % style and the set of \ifmarkupSTYLE switches for all styles % currently in effect. \newif\ifmarkupvar \newif\ifmarkupsamp \newif\ifmarkupkey %\newif\ifmarkupfile % @file == @samp. %\newif\ifmarkupoption % @option == @samp. \newif\ifmarkupcode \newif\ifmarkupkbd %\newif\ifmarkupenv % @env == @code. %\newif\ifmarkupcommand % @command == @code. \newif\ifmarkuptex % @tex (and part of @math, for now). \newif\ifmarkupexample \newif\ifmarkupverb \newif\ifmarkupverbatim \let\currentmarkupstyle\empty \def\setupmarkupstyle#1{% \csname markup#1true\endcsname \def\currentmarkupstyle{#1}% \markupstylesetup } \let\markupstylesetup\empty \def\defmarkupstylesetup#1{% \expandafter\def\expandafter\markupstylesetup \expandafter{\markupstylesetup #1}% \def#1% } % Markup style setup for left and right quotes. \defmarkupstylesetup\markupsetuplq{% \expandafter\let\expandafter \temp \csname markupsetuplq\currentmarkupstyle\endcsname \ifx\temp\relax \markupsetuplqdefault \else \temp \fi } \defmarkupstylesetup\markupsetuprq{% \expandafter\let\expandafter \temp \csname markupsetuprq\currentmarkupstyle\endcsname \ifx\temp\relax \markupsetuprqdefault \else \temp \fi } { \catcode`\'=\active \catcode`\`=\active \gdef\markupsetuplqdefault{\let`\lq} \gdef\markupsetuprqdefault{\let'\rq} \gdef\markupsetcodequoteleft{\let`\codequoteleft} \gdef\markupsetcodequoteright{\let'\codequoteright} } \let\markupsetuplqcode \markupsetcodequoteleft \let\markupsetuprqcode \markupsetcodequoteright % \let\markupsetuplqexample \markupsetcodequoteleft \let\markupsetuprqexample \markupsetcodequoteright % \let\markupsetuplqkbd \markupsetcodequoteleft \let\markupsetuprqkbd \markupsetcodequoteright % \let\markupsetuplqsamp \markupsetcodequoteleft \let\markupsetuprqsamp \markupsetcodequoteright % \let\markupsetuplqverb \markupsetcodequoteleft \let\markupsetuprqverb \markupsetcodequoteright % \let\markupsetuplqverbatim \markupsetcodequoteleft \let\markupsetuprqverbatim \markupsetcodequoteright % Allow an option to not use regular directed right quote/apostrophe % (char 0x27), but instead the undirected quote from cmtt (char 0x0d). % The undirected quote is ugly, so don't make it the default, but it % works for pasting with more pdf viewers (at least evince), the % lilypond developers report. xpdf does work with the regular 0x27. % \def\codequoteright{% \expandafter\ifx\csname SETtxicodequoteundirected\endcsname\relax \expandafter\ifx\csname SETcodequoteundirected\endcsname\relax '% \else \char'15 \fi \else \char'15 \fi } % % and a similar option for the left quote char vs. a grave accent. % Modern fonts display ASCII 0x60 as a grave accent, so some people like % the code environments to do likewise. % \def\codequoteleft{% \expandafter\ifx\csname SETtxicodequotebacktick\endcsname\relax \expandafter\ifx\csname SETcodequotebacktick\endcsname\relax % [Knuth] pp. 380,381,391 % \relax disables Spanish ligatures ?` and !` of \tt font. \relax`% \else \char'22 \fi \else \char'22 \fi } % Commands to set the quote options. % \parseargdef\codequoteundirected{% \def\temp{#1}% \ifx\temp\onword \expandafter\let\csname SETtxicodequoteundirected\endcsname = t% \else\ifx\temp\offword \expandafter\let\csname SETtxicodequoteundirected\endcsname = \relax \else \errhelp = \EMsimple \errmessage{Unknown @codequoteundirected value `\temp', must be on|off}% \fi\fi } % \parseargdef\codequotebacktick{% \def\temp{#1}% \ifx\temp\onword \expandafter\let\csname SETtxicodequotebacktick\endcsname = t% \else\ifx\temp\offword \expandafter\let\csname SETtxicodequotebacktick\endcsname = \relax \else \errhelp = \EMsimple \errmessage{Unknown @codequotebacktick value `\temp', must be on|off}% \fi\fi } % [Knuth] pp. 380,381,391, disable Spanish ligatures ?` and !` of \tt font. \def\noligaturesquoteleft{\relax\lq} % Count depth in font-changes, for error checks \newcount\fontdepth \fontdepth=0 % Font commands. % #1 is the font command (\sl or \it), #2 is the text to slant. % If we are in a monospaced environment, however, 1) always use \ttsl, % and 2) do not add an italic correction. \def\dosmartslant#1#2{% \ifusingtt {{\ttsl #2}\let\next=\relax}% {\def\next{{#1#2}\futurelet\next\smartitaliccorrection}}% \next } \def\smartslanted{\dosmartslant\sl} \def\smartitalic{\dosmartslant\it} % Output an italic correction unless \next (presumed to be the following % character) is such as not to need one. \def\smartitaliccorrection{% \ifx\next,% \else\ifx\next-% \else\ifx\next.% \else\ptexslash \fi\fi\fi \aftersmartic } % Unconditional use \ttsl, and no ic. @var is set to this for defuns. \def\ttslanted#1{{\ttsl #1}} % @cite is like \smartslanted except unconditionally use \sl. We never want % ttsl for book titles, do we? \def\cite#1{{\sl #1}\futurelet\next\smartitaliccorrection} \def\aftersmartic{} \def\var#1{% \let\saveaftersmartic = \aftersmartic \def\aftersmartic{\null\let\aftersmartic=\saveaftersmartic}% \smartslanted{#1}% } \let\i=\smartitalic \let\slanted=\smartslanted \let\dfn=\smartslanted \let\emph=\smartitalic % Explicit font changes: @r, @sc, undocumented @ii. \def\r#1{{\rm #1}} % roman font \def\sc#1{{\smallcaps#1}} % smallcaps font \def\ii#1{{\it #1}} % italic font % @b, explicit bold. Also @strong. \def\b#1{{\bf #1}} \let\strong=\b % @sansserif, explicit sans. \def\sansserif#1{{\sf #1}} % We can't just use \exhyphenpenalty, because that only has effect at % the end of a paragraph. Restore normal hyphenation at the end of the % group within which \nohyphenation is presumably called. % \def\nohyphenation{\hyphenchar\font = -1 \aftergroup\restorehyphenation} \def\restorehyphenation{\hyphenchar\font = `- } % Set sfcode to normal for the chars that usually have another value. % Can't use plain's \frenchspacing because it uses the `\x notation, and % sometimes \x has an active definition that messes things up. % \catcode`@=11 \def\plainfrenchspacing{% \sfcode\dotChar =\@m \sfcode\questChar=\@m \sfcode\exclamChar=\@m \sfcode\colonChar=\@m \sfcode\semiChar =\@m \sfcode\commaChar =\@m \def\endofsentencespacefactor{1000}% for @. and friends } \def\plainnonfrenchspacing{% \sfcode`\.3000\sfcode`\?3000\sfcode`\!3000 \sfcode`\:2000\sfcode`\;1500\sfcode`\,1250 \def\endofsentencespacefactor{3000}% for @. and friends } \catcode`@=\other \def\endofsentencespacefactor{3000}% default % @t, explicit typewriter. \def\t#1{% {\tt \rawbackslash \plainfrenchspacing #1}% \null } % @samp. \def\samp#1{{\setupmarkupstyle{samp}\lq\tclose{#1}\rq\null}} % @indicateurl is \samp, that is, with quotes. \let\indicateurl=\samp % @code (and similar) prints in typewriter, but with spaces the same % size as normal in the surrounding text, without hyphenation, etc. % This is a subroutine for that. \def\tclose#1{% {% % Change normal interword space to be same as for the current font. \spaceskip = \fontdimen2\font % % Switch to typewriter. \tt % % But `\ ' produces the large typewriter interword space. \def\ {{\spaceskip = 0pt{} }}% % % Turn off hyphenation. \nohyphenation % \rawbackslash \plainfrenchspacing #1% }% \null % reset spacefactor to 1000 } % We *must* turn on hyphenation at `-' and `_' in @code. % Otherwise, it is too hard to avoid overfull hboxes % in the Emacs manual, the Library manual, etc. % % Unfortunately, TeX uses one parameter (\hyphenchar) to control % both hyphenation at - and hyphenation within words. % We must therefore turn them both off (\tclose does that) % and arrange explicitly to hyphenate at a dash. % -- rms. { \catcode`\-=\active \catcode`\_=\active \catcode`\'=\active \catcode`\`=\active \global\let'=\rq \global\let`=\lq % default definitions % \global\def\code{\begingroup \setupmarkupstyle{code}% % The following should really be moved into \setupmarkupstyle handlers. \catcode\dashChar=\active \catcode\underChar=\active \ifallowcodebreaks \let-\codedash \let_\codeunder \else \let-\normaldash \let_\realunder \fi \codex } } \def\codex #1{\tclose{#1}\endgroup} \def\normaldash{-} \def\codedash{-\discretionary{}{}{}} \def\codeunder{% % this is all so @math{@code{var_name}+1} can work. In math mode, _ % is "active" (mathcode"8000) and \normalunderscore (or \char95, etc.) % will therefore expand the active definition of _, which is us % (inside @code that is), therefore an endless loop. \ifusingtt{\ifmmode \mathchar"075F % class 0=ordinary, family 7=ttfam, pos 0x5F=_. \else\normalunderscore \fi \discretionary{}{}{}}% {\_}% } % An additional complication: the above will allow breaks after, e.g., % each of the four underscores in __typeof__. This is bad. % @allowcodebreaks provides a document-level way to turn breaking at - % and _ on and off. % \newif\ifallowcodebreaks \allowcodebreakstrue \def\keywordtrue{true} \def\keywordfalse{false} \parseargdef\allowcodebreaks{% \def\txiarg{#1}% \ifx\txiarg\keywordtrue \allowcodebreakstrue \else\ifx\txiarg\keywordfalse \allowcodebreaksfalse \else \errhelp = \EMsimple \errmessage{Unknown @allowcodebreaks option `\txiarg', must be true|false}% \fi\fi } % For @command, @env, @file, @option quotes seem unnecessary, % so use \code rather than \samp. \let\command=\code \let\env=\code \let\file=\code \let\option=\code % @uref (abbreviation for `urlref') takes an optional (comma-separated) % second argument specifying the text to display and an optional third % arg as text to display instead of (rather than in addition to) the url % itself. First (mandatory) arg is the url. % (This \urefnobreak definition isn't used now, leaving it for a while % for comparison.) \def\urefnobreak#1{\dourefnobreak #1,,,\finish} \def\dourefnobreak#1,#2,#3,#4\finish{\begingroup \unsepspaces \pdfurl{#1}% \setbox0 = \hbox{\ignorespaces #3}% \ifdim\wd0 > 0pt \unhbox0 % third arg given, show only that \else \setbox0 = \hbox{\ignorespaces #2}% \ifdim\wd0 > 0pt \ifpdf \unhbox0 % PDF: 2nd arg given, show only it \else \unhbox0\ (\code{#1})% DVI: 2nd arg given, show both it and url \fi \else \code{#1}% only url given, so show it \fi \fi \endlink \endgroup} % This \urefbreak definition is the active one. \def\urefbreak{\begingroup \urefcatcodes \dourefbreak} \let\uref=\urefbreak \def\dourefbreak#1{\urefbreakfinish #1,,,\finish} \def\urefbreakfinish#1,#2,#3,#4\finish{% doesn't work in @example \unsepspaces \pdfurl{#1}% \setbox0 = \hbox{\ignorespaces #3}% \ifdim\wd0 > 0pt \unhbox0 % third arg given, show only that \else \setbox0 = \hbox{\ignorespaces #2}% \ifdim\wd0 > 0pt \ifpdf \unhbox0 % PDF: 2nd arg given, show only it \else \unhbox0\ (\urefcode{#1})% DVI: 2nd arg given, show both it and url \fi \else \urefcode{#1}% only url given, so show it \fi \fi \endlink \endgroup} % Allow line breaks around only a few characters (only). \def\urefcatcodes{% \catcode\ampChar=\active \catcode\dotChar=\active \catcode\hashChar=\active \catcode\questChar=\active \catcode\slashChar=\active } { \urefcatcodes % \global\def\urefcode{\begingroup \setupmarkupstyle{code}% \urefcatcodes \let&\urefcodeamp \let.\urefcodedot \let#\urefcodehash \let?\urefcodequest \let/\urefcodeslash \codex } % % By default, they are just regular characters. \global\def&{\normalamp} \global\def.{\normaldot} \global\def#{\normalhash} \global\def?{\normalquest} \global\def/{\normalslash} } % we put a little stretch before and after the breakable chars, to help % line breaking of long url's. The unequal skips make look better in % cmtt at least, especially for dots. \def\urefprestretch{\urefprebreak \hskip0pt plus.13em } \def\urefpoststretch{\urefpostbreak \hskip0pt plus.1em } % \def\urefcodeamp{\urefprestretch \&\urefpoststretch} \def\urefcodedot{\urefprestretch .\urefpoststretch} \def\urefcodehash{\urefprestretch \#\urefpoststretch} \def\urefcodequest{\urefprestretch ?\urefpoststretch} \def\urefcodeslash{\futurelet\next\urefcodeslashfinish} { \catcode`\/=\active \global\def\urefcodeslashfinish{% \urefprestretch \slashChar % Allow line break only after the final / in a sequence of % slashes, to avoid line break between the slashes in http://. \ifx\next/\else \urefpoststretch \fi } } % One more complication: by default we'll break after the special % characters, but some people like to break before the special chars, so % allow that. Also allow no breaking at all, for manual control. % \parseargdef\urefbreakstyle{% \def\txiarg{#1}% \ifx\txiarg\wordnone \def\urefprebreak{\nobreak}\def\urefpostbreak{\nobreak} \else\ifx\txiarg\wordbefore \def\urefprebreak{\allowbreak}\def\urefpostbreak{\nobreak} \else\ifx\txiarg\wordafter \def\urefprebreak{\nobreak}\def\urefpostbreak{\allowbreak} \else \errhelp = \EMsimple \errmessage{Unknown @urefbreakstyle setting `\txiarg'}% \fi\fi\fi } \def\wordafter{after} \def\wordbefore{before} \def\wordnone{none} \urefbreakstyle after % @url synonym for @uref, since that's how everyone uses it. % \let\url=\uref % rms does not like angle brackets --karl, 17may97. % So now @email is just like @uref, unless we are pdf. % %\def\email#1{\angleleft{\tt #1}\angleright} \ifpdf \def\email#1{\doemail#1,,\finish} \def\doemail#1,#2,#3\finish{\begingroup \unsepspaces \pdfurl{mailto:#1}% \setbox0 = \hbox{\ignorespaces #2}% \ifdim\wd0>0pt\unhbox0\else\code{#1}\fi \endlink \endgroup} \else \let\email=\uref \fi % @kbdinputstyle -- arg is `distinct' (@kbd uses slanted tty font always), % `example' (@kbd uses ttsl only inside of @example and friends), % or `code' (@kbd uses normal tty font always). \parseargdef\kbdinputstyle{% \def\txiarg{#1}% \ifx\txiarg\worddistinct \gdef\kbdexamplefont{\ttsl}\gdef\kbdfont{\ttsl}% \else\ifx\txiarg\wordexample \gdef\kbdexamplefont{\ttsl}\gdef\kbdfont{\tt}% \else\ifx\txiarg\wordcode \gdef\kbdexamplefont{\tt}\gdef\kbdfont{\tt}% \else \errhelp = \EMsimple \errmessage{Unknown @kbdinputstyle setting `\txiarg'}% \fi\fi\fi } \def\worddistinct{distinct} \def\wordexample{example} \def\wordcode{code} % Default is `distinct'. \kbdinputstyle distinct % @kbd is like @code, except that if the argument is just one @key command, % then @kbd has no effect. \def\kbd#1{{\def\look{#1}\expandafter\kbdsub\look??\par}} \def\xkey{\key} \def\kbdsub#1#2#3\par{% \def\one{#1}\def\three{#3}\def\threex{??}% \ifx\one\xkey\ifx\threex\three \key{#2}% \else{\tclose{\kbdfont\setupmarkupstyle{kbd}\look}}\fi \else{\tclose{\kbdfont\setupmarkupstyle{kbd}\look}}\fi } % definition of @key that produces a lozenge. Doesn't adjust to text size. %\setfont\keyrm\rmshape{8}{1000}{OT1} %\font\keysy=cmsy9 %\def\key#1{{\keyrm\textfont2=\keysy \leavevmode\hbox{% % \raise0.4pt\hbox{\angleleft}\kern-.08em\vtop{% % \vbox{\hrule\kern-0.4pt % \hbox{\raise0.4pt\hbox{\vphantom{\angleleft}}#1}}% % \kern-0.4pt\hrule}% % \kern-.06em\raise0.4pt\hbox{\angleright}}}} % definition of @key with no lozenge. If the current font is already % monospace, don't change it; that way, we respect @kbdinputstyle. But % if it isn't monospace, then use \tt. % \def\key#1{{\setupmarkupstyle{key}% \nohyphenation \ifmonospace\else\tt\fi #1}\null} % @clicksequence{File @click{} Open ...} \def\clicksequence#1{\begingroup #1\endgroup} % @clickstyle @arrow (by default) \parseargdef\clickstyle{\def\click{#1}} \def\click{\arrow} % Typeset a dimension, e.g., `in' or `pt'. The only reason for the % argument is to make the input look right: @dmn{pt} instead of @dmn{}pt. % \def\dmn#1{\thinspace #1} % @l was never documented to mean ``switch to the Lisp font'', % and it is not used as such in any manual I can find. We need it for % Polish suppressed-l. --karl, 22sep96. %\def\l#1{{\li #1}\null} % @acronym for "FBI", "NATO", and the like. % We print this one point size smaller, since it's intended for % all-uppercase. % \def\acronym#1{\doacronym #1,,\finish} \def\doacronym#1,#2,#3\finish{% {\selectfonts\lsize #1}% \def\temp{#2}% \ifx\temp\empty \else \space ({\unsepspaces \ignorespaces \temp \unskip})% \fi \null % reset \spacefactor=1000 } % @abbr for "Comput. J." and the like. % No font change, but don't do end-of-sentence spacing. % \def\abbr#1{\doabbr #1,,\finish} \def\doabbr#1,#2,#3\finish{% {\plainfrenchspacing #1}% \def\temp{#2}% \ifx\temp\empty \else \space ({\unsepspaces \ignorespaces \temp \unskip})% \fi \null % reset \spacefactor=1000 } % @asis just yields its argument. Used with @table, for example. % \def\asis#1{#1} % @math outputs its argument in math mode. % % One complication: _ usually means subscripts, but it could also mean % an actual _ character, as in @math{@var{some_variable} + 1}. So make % _ active, and distinguish by seeing if the current family is \slfam, % which is what @var uses. { \catcode`\_ = \active \gdef\mathunderscore{% \catcode`\_=\active \def_{\ifnum\fam=\slfam \_\else\sb\fi}% } } % Another complication: we want \\ (and @\) to output a math (or tt) \. % FYI, plain.tex uses \\ as a temporary control sequence (for no % particular reason), but this is not advertised and we don't care. % % The \mathchar is class=0=ordinary, family=7=ttfam, position=5C=\. \def\mathbackslash{\ifnum\fam=\ttfam \mathchar"075C \else\backslash \fi} % \def\math{% \tex \mathunderscore \let\\ = \mathbackslash \mathactive % make the texinfo accent commands work in math mode \let\"=\ddot \let\'=\acute \let\==\bar \let\^=\hat \let\`=\grave \let\u=\breve \let\v=\check \let\~=\tilde \let\dotaccent=\dot $\finishmath } \def\finishmath#1{#1$\endgroup} % Close the group opened by \tex. % Some active characters (such as <) are spaced differently in math. % We have to reset their definitions in case the @math was an argument % to a command which sets the catcodes (such as @item or @section). % { \catcode`^ = \active \catcode`< = \active \catcode`> = \active \catcode`+ = \active \catcode`' = \active \gdef\mathactive{% \let^ = \ptexhat \let< = \ptexless \let> = \ptexgtr \let+ = \ptexplus \let' = \ptexquoteright } } % ctrl is no longer a Texinfo command, but leave this definition for fun. \def\ctrl #1{{\tt \rawbackslash \hat}#1} % @inlinefmt{FMTNAME,PROCESSED-TEXT} and @inlineraw{FMTNAME,RAW-TEXT}. % Ignore unless FMTNAME == tex; then it is like @iftex and @tex, % except specified as a normal braced arg, so no newlines to worry about. % \def\outfmtnametex{tex} % \long\def\inlinefmt#1{\doinlinefmt #1,\finish} \long\def\doinlinefmt#1,#2,\finish{% \def\inlinefmtname{#1}% \ifx\inlinefmtname\outfmtnametex \ignorespaces #2\fi } % For raw, must switch into @tex before parsing the argument, to avoid % setting catcodes prematurely. Doing it this way means that, for % example, @inlineraw{html, foo{bar} gets a parse error instead of being % ignored. But this isn't important because if people want a literal % *right* brace they would have to use a command anyway, so they may as % well use a command to get a left brace too. We could re-use the % delimiter character idea from \verb, but it seems like overkill. % \long\def\inlineraw{\tex \doinlineraw} \long\def\doinlineraw#1{\doinlinerawtwo #1,\finish} \def\doinlinerawtwo#1,#2,\finish{% \def\inlinerawname{#1}% \ifx\inlinerawname\outfmtnametex \ignorespaces #2\fi \endgroup % close group opened by \tex. } \message{glyphs,} % and logos. % @@ prints an @, as does @atchar{}. \def\@{\char64 } \let\atchar=\@ % @{ @} @lbracechar{} @rbracechar{} all generate brace characters. % Unless we're in typewriter, use \ecfont because the CM text fonts do % not have braces, and we don't want to switch into math. \def\mylbrace{{\ifmonospace\else\ecfont\fi \char123}} \def\myrbrace{{\ifmonospace\else\ecfont\fi \char125}} \let\{=\mylbrace \let\lbracechar=\{ \let\}=\myrbrace \let\rbracechar=\} \begingroup % Definitions to produce \{ and \} commands for indices, % and @{ and @} for the aux/toc files. \catcode`\{ = \other \catcode`\} = \other \catcode`\[ = 1 \catcode`\] = 2 \catcode`\! = 0 \catcode`\\ = \other !gdef!lbracecmd[\{]% !gdef!rbracecmd[\}]% !gdef!lbraceatcmd[@{]% !gdef!rbraceatcmd[@}]% !endgroup % @comma{} to avoid , parsing problems. \let\comma = , % Accents: @, @dotaccent @ringaccent @ubaraccent @udotaccent % Others are defined by plain TeX: @` @' @" @^ @~ @= @u @v @H. \let\, = \ptexc \let\dotaccent = \ptexdot \def\ringaccent#1{{\accent23 #1}} \let\tieaccent = \ptext \let\ubaraccent = \ptexb \let\udotaccent = \d % Other special characters: @questiondown @exclamdown @ordf @ordm % Plain TeX defines: @AA @AE @O @OE @L (plus lowercase versions) @ss. \def\questiondown{?`} \def\exclamdown{!`} \def\ordf{\leavevmode\raise1ex\hbox{\selectfonts\lllsize \underbar{a}}} \def\ordm{\leavevmode\raise1ex\hbox{\selectfonts\lllsize \underbar{o}}} % Dotless i and dotless j, used for accents. \def\imacro{i} \def\jmacro{j} \def\dotless#1{% \def\temp{#1}% \ifx\temp\imacro \ifmmode\imath \else\ptexi \fi \else\ifx\temp\jmacro \ifmmode\jmath \else\j \fi \else \errmessage{@dotless can be used only with i or j}% \fi\fi } % The \TeX{} logo, as in plain, but resetting the spacing so that a % period following counts as ending a sentence. (Idea found in latex.) % \edef\TeX{\TeX \spacefactor=1000 } % @LaTeX{} logo. Not quite the same results as the definition in % latex.ltx, since we use a different font for the raised A; it's most % convenient for us to use an explicitly smaller font, rather than using % the \scriptstyle font (since we don't reset \scriptstyle and % \scriptscriptstyle). % \def\LaTeX{% L\kern-.36em {\setbox0=\hbox{T}% \vbox to \ht0{\hbox{% \ifx\textnominalsize\xwordpt % for 10pt running text, \lllsize (8pt) is too small for the A in LaTeX. % Revert to plain's \scriptsize, which is 7pt. \count255=\the\fam $\fam\count255 \scriptstyle A$% \else % For 11pt, we can use our lllsize. \selectfonts\lllsize A% \fi }% \vss }}% \kern-.15em \TeX } % Some math mode symbols. \def\bullet{$\ptexbullet$} \def\geq{\ifmmode \ge\else $\ge$\fi} \def\leq{\ifmmode \le\else $\le$\fi} \def\minus{\ifmmode -\else $-$\fi} % @dots{} outputs an ellipsis using the current font. % We do .5em per period so that it has the same spacing in the cm % typewriter fonts as three actual period characters; on the other hand, % in other typewriter fonts three periods are wider than 1.5em. So do % whichever is larger. % \def\dots{% \leavevmode \setbox0=\hbox{...}% get width of three periods \ifdim\wd0 > 1.5em \dimen0 = \wd0 \else \dimen0 = 1.5em \fi \hbox to \dimen0{% \hskip 0pt plus.25fil .\hskip 0pt plus1fil .\hskip 0pt plus1fil .\hskip 0pt plus.5fil }% } % @enddots{} is an end-of-sentence ellipsis. % \def\enddots{% \dots \spacefactor=\endofsentencespacefactor } % @point{}, @result{}, @expansion{}, @print{}, @equiv{}. % % Since these characters are used in examples, they should be an even number of % \tt widths. Each \tt character is 1en, so two makes it 1em. % \def\point{$\star$} \def\arrow{\leavevmode\raise.05ex\hbox to 1em{\hfil$\rightarrow$\hfil}} \def\result{\leavevmode\raise.05ex\hbox to 1em{\hfil$\Rightarrow$\hfil}} \def\expansion{\leavevmode\hbox to 1em{\hfil$\mapsto$\hfil}} \def\print{\leavevmode\lower.1ex\hbox to 1em{\hfil$\dashv$\hfil}} \def\equiv{\leavevmode\hbox to 1em{\hfil$\ptexequiv$\hfil}} % The @error{} command. % Adapted from the TeXbook's \boxit. % \newbox\errorbox % {\tentt \global\dimen0 = 3em}% Width of the box. \dimen2 = .55pt % Thickness of rules % The text. (`r' is open on the right, `e' somewhat less so on the left.) \setbox0 = \hbox{\kern-.75pt \reducedsf \putworderror\kern-1.5pt} % \setbox\errorbox=\hbox to \dimen0{\hfil \hsize = \dimen0 \advance\hsize by -5.8pt % Space to left+right. \advance\hsize by -2\dimen2 % Rules. \vbox{% \hrule height\dimen2 \hbox{\vrule width\dimen2 \kern3pt % Space to left of text. \vtop{\kern2.4pt \box0 \kern2.4pt}% Space above/below. \kern3pt\vrule width\dimen2}% Space to right. \hrule height\dimen2} \hfil} % \def\error{\leavevmode\lower.7ex\copy\errorbox} % @pounds{} is a sterling sign, which Knuth put in the CM italic font. % \def\pounds{{\it\$}} % @euro{} comes from a separate font, depending on the current style. % We use the free feym* fonts from the eurosym package by Henrik % Theiling, which support regular, slanted, bold and bold slanted (and % "outlined" (blackboard board, sort of) versions, which we don't need). % It is available from http://www.ctan.org/tex-archive/fonts/eurosym. % % Although only regular is the truly official Euro symbol, we ignore % that. The Euro is designed to be slightly taller than the regular % font height. % % feymr - regular % feymo - slanted % feybr - bold % feybo - bold slanted % % There is no good (free) typewriter version, to my knowledge. % A feymr10 euro is ~7.3pt wide, while a normal cmtt10 char is ~5.25pt wide. % Hmm. % % Also doesn't work in math. Do we need to do math with euro symbols? % Hope not. % % \def\euro{{\eurofont e}} \def\eurofont{% % We set the font at each command, rather than predefining it in % \textfonts and the other font-switching commands, so that % installations which never need the symbol don't have to have the % font installed. % % There is only one designed size (nominal 10pt), so we always scale % that to the current nominal size. % % By the way, simply using "at 1em" works for cmr10 and the like, but % does not work for cmbx10 and other extended/shrunken fonts. % \def\eurosize{\csname\curfontsize nominalsize\endcsname}% % \ifx\curfontstyle\bfstylename % bold: \font\thiseurofont = \ifusingit{feybo10}{feybr10} at \eurosize \else % regular: \font\thiseurofont = \ifusingit{feymo10}{feymr10} at \eurosize \fi \thiseurofont } % Glyphs from the EC fonts. We don't use \let for the aliases, because % sometimes we redefine the original macro, and the alias should reflect % the redefinition. % % Use LaTeX names for the Icelandic letters. \def\DH{{\ecfont \char"D0}} % Eth \def\dh{{\ecfont \char"F0}} % eth \def\TH{{\ecfont \char"DE}} % Thorn \def\th{{\ecfont \char"FE}} % thorn % \def\guillemetleft{{\ecfont \char"13}} \def\guillemotleft{\guillemetleft} \def\guillemetright{{\ecfont \char"14}} \def\guillemotright{\guillemetright} \def\guilsinglleft{{\ecfont \char"0E}} \def\guilsinglright{{\ecfont \char"0F}} \def\quotedblbase{{\ecfont \char"12}} \def\quotesinglbase{{\ecfont \char"0D}} % % This positioning is not perfect (see the ogonek LaTeX package), but % we have the precomposed glyphs for the most common cases. We put the % tests to use those glyphs in the single \ogonek macro so we have fewer % dummy definitions to worry about for index entries, etc. % % ogonek is also used with other letters in Lithuanian (IOU), but using % the precomposed glyphs for those is not so easy since they aren't in % the same EC font. \def\ogonek#1{{% \def\temp{#1}% \ifx\temp\macrocharA\Aogonek \else\ifx\temp\macrochara\aogonek \else\ifx\temp\macrocharE\Eogonek \else\ifx\temp\macrochare\eogonek \else \ecfont \setbox0=\hbox{#1}% \ifdim\ht0=1ex\accent"0C #1% \else\ooalign{\unhbox0\crcr\hidewidth\char"0C \hidewidth}% \fi \fi\fi\fi\fi }% } \def\Aogonek{{\ecfont \char"81}}\def\macrocharA{A} \def\aogonek{{\ecfont \char"A1}}\def\macrochara{a} \def\Eogonek{{\ecfont \char"86}}\def\macrocharE{E} \def\eogonek{{\ecfont \char"A6}}\def\macrochare{e} % % Use the ec* fonts (cm-super in outline format) for non-CM glyphs. \def\ecfont{% % We can't distinguish serif/sans and italic/slanted, but this % is used for crude hacks anyway (like adding French and German % quotes to documents typeset with CM, where we lose kerning), so % hopefully nobody will notice/care. \edef\ecsize{\csname\curfontsize ecsize\endcsname}% \edef\nominalsize{\csname\curfontsize nominalsize\endcsname}% \ifmonospace % typewriter: \font\thisecfont = ectt\ecsize \space at \nominalsize \else \ifx\curfontstyle\bfstylename % bold: \font\thisecfont = ecb\ifusingit{i}{x}\ecsize \space at \nominalsize \else % regular: \font\thisecfont = ec\ifusingit{ti}{rm}\ecsize \space at \nominalsize \fi \fi \thisecfont } % @registeredsymbol - R in a circle. The font for the R should really % be smaller yet, but lllsize is the best we can do for now. % Adapted from the plain.tex definition of \copyright. % \def\registeredsymbol{% $^{{\ooalign{\hfil\raise.07ex\hbox{\selectfonts\lllsize R}% \hfil\crcr\Orb}}% }$% } % @textdegree - the normal degrees sign. % \def\textdegree{$^\circ$} % Laurent Siebenmann reports \Orb undefined with: % Textures 1.7.7 (preloaded format=plain 93.10.14) (68K) 16 APR 2004 02:38 % so we'll define it if necessary. % \ifx\Orb\thisisundefined \def\Orb{\mathhexbox20D} \fi % Quotes. \chardef\quotedblleft="5C \chardef\quotedblright=`\" \chardef\quoteleft=`\` \chardef\quoteright=`\' \message{page headings,} \newskip\titlepagetopglue \titlepagetopglue = 1.5in \newskip\titlepagebottomglue \titlepagebottomglue = 2pc % First the title page. Must do @settitle before @titlepage. \newif\ifseenauthor \newif\iffinishedtitlepage % Do an implicit @contents or @shortcontents after @end titlepage if the % user says @setcontentsaftertitlepage or @setshortcontentsaftertitlepage. % \newif\ifsetcontentsaftertitlepage \let\setcontentsaftertitlepage = \setcontentsaftertitlepagetrue \newif\ifsetshortcontentsaftertitlepage \let\setshortcontentsaftertitlepage = \setshortcontentsaftertitlepagetrue \parseargdef\shorttitlepage{% \begingroup \hbox{}\vskip 1.5in \chaprm \centerline{#1}% \endgroup\page\hbox{}\page} \envdef\titlepage{% % Open one extra group, as we want to close it in the middle of \Etitlepage. \begingroup \parindent=0pt \textfonts % Leave some space at the very top of the page. \vglue\titlepagetopglue % No rule at page bottom unless we print one at the top with @title. \finishedtitlepagetrue % % Most title ``pages'' are actually two pages long, with space % at the top of the second. We don't want the ragged left on the second. \let\oldpage = \page \def\page{% \iffinishedtitlepage\else \finishtitlepage \fi \let\page = \oldpage \page \null }% } \def\Etitlepage{% \iffinishedtitlepage\else \finishtitlepage \fi % It is important to do the page break before ending the group, % because the headline and footline are only empty inside the group. % If we use the new definition of \page, we always get a blank page % after the title page, which we certainly don't want. \oldpage \endgroup % % Need this before the \...aftertitlepage checks so that if they are % in effect the toc pages will come out with page numbers. \HEADINGSon % % If they want short, they certainly want long too. \ifsetshortcontentsaftertitlepage \shortcontents \contents \global\let\shortcontents = \relax \global\let\contents = \relax \fi % \ifsetcontentsaftertitlepage \contents \global\let\contents = \relax \global\let\shortcontents = \relax \fi } \def\finishtitlepage{% \vskip4pt \hrule height 2pt width \hsize \vskip\titlepagebottomglue \finishedtitlepagetrue } % Settings used for typesetting titles: no hyphenation, no indentation, % don't worry much about spacing, ragged right. This should be used % inside a \vbox, and fonts need to be set appropriately first. Because % it is always used for titles, nothing else, we call \rmisbold. \par % should be specified before the end of the \vbox, since a vbox is a group. % \def\raggedtitlesettings{% \rmisbold \hyphenpenalty=10000 \parindent=0pt \tolerance=5000 \ptexraggedright } % Macros to be used within @titlepage: \let\subtitlerm=\tenrm \def\subtitlefont{\subtitlerm \normalbaselineskip = 13pt \normalbaselines} \parseargdef\title{% \checkenv\titlepage \vbox{\titlefonts \raggedtitlesettings #1\par}% % print a rule at the page bottom also. \finishedtitlepagefalse \vskip4pt \hrule height 4pt width \hsize \vskip4pt } \parseargdef\subtitle{% \checkenv\titlepage {\subtitlefont \rightline{#1}}% } % @author should come last, but may come many times. % It can also be used inside @quotation. % \parseargdef\author{% \def\temp{\quotation}% \ifx\thisenv\temp \def\quotationauthor{#1}% printed in \Equotation. \else \checkenv\titlepage \ifseenauthor\else \vskip 0pt plus 1filll \seenauthortrue \fi {\secfonts\rmisbold \leftline{#1}}% \fi } % Set up page headings and footings. \let\thispage=\folio \newtoks\evenheadline % headline on even pages \newtoks\oddheadline % headline on odd pages \newtoks\evenfootline % footline on even pages \newtoks\oddfootline % footline on odd pages % Now make TeX use those variables \headline={{\textfonts\rm \ifodd\pageno \the\oddheadline \else \the\evenheadline \fi}} \footline={{\textfonts\rm \ifodd\pageno \the\oddfootline \else \the\evenfootline \fi}\HEADINGShook} \let\HEADINGShook=\relax % Commands to set those variables. % For example, this is what @headings on does % @evenheading @thistitle|@thispage|@thischapter % @oddheading @thischapter|@thispage|@thistitle % @evenfooting @thisfile|| % @oddfooting ||@thisfile \def\evenheading{\parsearg\evenheadingxxx} \def\evenheadingxxx #1{\evenheadingyyy #1\|\|\|\|\finish} \def\evenheadingyyy #1\|#2\|#3\|#4\finish{% \global\evenheadline={\rlap{\centerline{#2}}\line{#1\hfil#3}}} \def\oddheading{\parsearg\oddheadingxxx} \def\oddheadingxxx #1{\oddheadingyyy #1\|\|\|\|\finish} \def\oddheadingyyy #1\|#2\|#3\|#4\finish{% \global\oddheadline={\rlap{\centerline{#2}}\line{#1\hfil#3}}} \parseargdef\everyheading{\oddheadingxxx{#1}\evenheadingxxx{#1}}% \def\evenfooting{\parsearg\evenfootingxxx} \def\evenfootingxxx #1{\evenfootingyyy #1\|\|\|\|\finish} \def\evenfootingyyy #1\|#2\|#3\|#4\finish{% \global\evenfootline={\rlap{\centerline{#2}}\line{#1\hfil#3}}} \def\oddfooting{\parsearg\oddfootingxxx} \def\oddfootingxxx #1{\oddfootingyyy #1\|\|\|\|\finish} \def\oddfootingyyy #1\|#2\|#3\|#4\finish{% \global\oddfootline = {\rlap{\centerline{#2}}\line{#1\hfil#3}}% % % Leave some space for the footline. Hopefully ok to assume % @evenfooting will not be used by itself. \global\advance\pageheight by -12pt \global\advance\vsize by -12pt } \parseargdef\everyfooting{\oddfootingxxx{#1}\evenfootingxxx{#1}} % @evenheadingmarks top \thischapter <- chapter at the top of a page % @evenheadingmarks bottom \thischapter <- chapter at the bottom of a page % % The same set of arguments for: % % @oddheadingmarks % @evenfootingmarks % @oddfootingmarks % @everyheadingmarks % @everyfootingmarks \def\evenheadingmarks{\headingmarks{even}{heading}} \def\oddheadingmarks{\headingmarks{odd}{heading}} \def\evenfootingmarks{\headingmarks{even}{footing}} \def\oddfootingmarks{\headingmarks{odd}{footing}} \def\everyheadingmarks#1 {\headingmarks{even}{heading}{#1} \headingmarks{odd}{heading}{#1} } \def\everyfootingmarks#1 {\headingmarks{even}{footing}{#1} \headingmarks{odd}{footing}{#1} } % #1 = even/odd, #2 = heading/footing, #3 = top/bottom. \def\headingmarks#1#2#3 {% \expandafter\let\expandafter\temp \csname get#3headingmarks\endcsname \global\expandafter\let\csname get#1#2marks\endcsname \temp } \everyheadingmarks bottom \everyfootingmarks bottom % @headings double turns headings on for double-sided printing. % @headings single turns headings on for single-sided printing. % @headings off turns them off. % @headings on same as @headings double, retained for compatibility. % @headings after turns on double-sided headings after this page. % @headings doubleafter turns on double-sided headings after this page. % @headings singleafter turns on single-sided headings after this page. % By default, they are off at the start of a document, % and turned `on' after @end titlepage. \def\headings #1 {\csname HEADINGS#1\endcsname} \def\headingsoff{% non-global headings elimination \evenheadline={\hfil}\evenfootline={\hfil}% \oddheadline={\hfil}\oddfootline={\hfil}% } \def\HEADINGSoff{{\globaldefs=1 \headingsoff}} % global setting \HEADINGSoff % it's the default % When we turn headings on, set the page number to 1. % For double-sided printing, put current file name in lower left corner, % chapter name on inside top of right hand pages, document % title on inside top of left hand pages, and page numbers on outside top % edge of all pages. \def\HEADINGSdouble{% \global\pageno=1 \global\evenfootline={\hfil} \global\oddfootline={\hfil} \global\evenheadline={\line{\folio\hfil\thistitle}} \global\oddheadline={\line{\thischapter\hfil\folio}} \global\let\contentsalignmacro = \chapoddpage } \let\contentsalignmacro = \chappager % For single-sided printing, chapter title goes across top left of page, % page number on top right. \def\HEADINGSsingle{% \global\pageno=1 \global\evenfootline={\hfil} \global\oddfootline={\hfil} \global\evenheadline={\line{\thischapter\hfil\folio}} \global\oddheadline={\line{\thischapter\hfil\folio}} \global\let\contentsalignmacro = \chappager } \def\HEADINGSon{\HEADINGSdouble} \def\HEADINGSafter{\let\HEADINGShook=\HEADINGSdoublex} \let\HEADINGSdoubleafter=\HEADINGSafter \def\HEADINGSdoublex{% \global\evenfootline={\hfil} \global\oddfootline={\hfil} \global\evenheadline={\line{\folio\hfil\thistitle}} \global\oddheadline={\line{\thischapter\hfil\folio}} \global\let\contentsalignmacro = \chapoddpage } \def\HEADINGSsingleafter{\let\HEADINGShook=\HEADINGSsinglex} \def\HEADINGSsinglex{% \global\evenfootline={\hfil} \global\oddfootline={\hfil} \global\evenheadline={\line{\thischapter\hfil\folio}} \global\oddheadline={\line{\thischapter\hfil\folio}} \global\let\contentsalignmacro = \chappager } % Subroutines used in generating headings % This produces Day Month Year style of output. % Only define if not already defined, in case a txi-??.tex file has set % up a different format (e.g., txi-cs.tex does this). \ifx\today\thisisundefined \def\today{% \number\day\space \ifcase\month \or\putwordMJan\or\putwordMFeb\or\putwordMMar\or\putwordMApr \or\putwordMMay\or\putwordMJun\or\putwordMJul\or\putwordMAug \or\putwordMSep\or\putwordMOct\or\putwordMNov\or\putwordMDec \fi \space\number\year} \fi % @settitle line... specifies the title of the document, for headings. % It generates no output of its own. \def\thistitle{\putwordNoTitle} \def\settitle{\parsearg{\gdef\thistitle}} \message{tables,} % Tables -- @table, @ftable, @vtable, @item(x). % default indentation of table text \newdimen\tableindent \tableindent=.8in % default indentation of @itemize and @enumerate text \newdimen\itemindent \itemindent=.3in % margin between end of table item and start of table text. \newdimen\itemmargin \itemmargin=.1in % used internally for \itemindent minus \itemmargin \newdimen\itemmax % Note @table, @ftable, and @vtable define @item, @itemx, etc., with % these defs. % They also define \itemindex % to index the item name in whatever manner is desired (perhaps none). \newif\ifitemxneedsnegativevskip \def\itemxpar{\par\ifitemxneedsnegativevskip\nobreak\vskip-\parskip\nobreak\fi} \def\internalBitem{\smallbreak \parsearg\itemzzz} \def\internalBitemx{\itemxpar \parsearg\itemzzz} \def\itemzzz #1{\begingroup % \advance\hsize by -\rightskip \advance\hsize by -\tableindent \setbox0=\hbox{\itemindicate{#1}}% \itemindex{#1}% \nobreak % This prevents a break before @itemx. % % If the item text does not fit in the space we have, put it on a line % by itself, and do not allow a page break either before or after that % line. We do not start a paragraph here because then if the next % command is, e.g., @kindex, the whatsit would get put into the % horizontal list on a line by itself, resulting in extra blank space. \ifdim \wd0>\itemmax % % Make this a paragraph so we get the \parskip glue and wrapping, % but leave it ragged-right. \begingroup \advance\leftskip by-\tableindent \advance\hsize by\tableindent \advance\rightskip by0pt plus1fil\relax \leavevmode\unhbox0\par \endgroup % % We're going to be starting a paragraph, but we don't want the % \parskip glue -- logically it's part of the @item we just started. \nobreak \vskip-\parskip % % Stop a page break at the \parskip glue coming up. However, if % what follows is an environment such as @example, there will be no % \parskip glue; then the negative vskip we just inserted would % cause the example and the item to crash together. So we use this % bizarre value of 10001 as a signal to \aboveenvbreak to insert % \parskip glue after all. Section titles are handled this way also. % \penalty 10001 \endgroup \itemxneedsnegativevskipfalse \else % The item text fits into the space. Start a paragraph, so that the % following text (if any) will end up on the same line. \noindent % Do this with kerns and \unhbox so that if there is a footnote in % the item text, it can migrate to the main vertical list and % eventually be printed. \nobreak\kern-\tableindent \dimen0 = \itemmax \advance\dimen0 by \itemmargin \advance\dimen0 by -\wd0 \unhbox0 \nobreak\kern\dimen0 \endgroup \itemxneedsnegativevskiptrue \fi } \def\item{\errmessage{@item while not in a list environment}} \def\itemx{\errmessage{@itemx while not in a list environment}} % @table, @ftable, @vtable. \envdef\table{% \let\itemindex\gobble \tablecheck{table}% } \envdef\ftable{% \def\itemindex ##1{\doind {fn}{\code{##1}}}% \tablecheck{ftable}% } \envdef\vtable{% \def\itemindex ##1{\doind {vr}{\code{##1}}}% \tablecheck{vtable}% } \def\tablecheck#1{% \ifnum \the\catcode`\^^M=\active \endgroup \errmessage{This command won't work in this context; perhaps the problem is that we are \inenvironment\thisenv}% \def\next{\doignore{#1}}% \else \let\next\tablex \fi \next } \def\tablex#1{% \def\itemindicate{#1}% \parsearg\tabley } \def\tabley#1{% {% \makevalueexpandable \edef\temp{\noexpand\tablez #1\space\space\space}% \expandafter }\temp \endtablez } \def\tablez #1 #2 #3 #4\endtablez{% \aboveenvbreak \ifnum 0#1>0 \advance \leftskip by #1\mil \fi \ifnum 0#2>0 \tableindent=#2\mil \fi \ifnum 0#3>0 \advance \rightskip by #3\mil \fi \itemmax=\tableindent \advance \itemmax by -\itemmargin \advance \leftskip by \tableindent \exdentamount=\tableindent \parindent = 0pt \parskip = \smallskipamount \ifdim \parskip=0pt \parskip=2pt \fi \let\item = \internalBitem \let\itemx = \internalBitemx } \def\Etable{\endgraf\afterenvbreak} \let\Eftable\Etable \let\Evtable\Etable \let\Eitemize\Etable \let\Eenumerate\Etable % This is the counter used by @enumerate, which is really @itemize \newcount \itemno \envdef\itemize{\parsearg\doitemize} \def\doitemize#1{% \aboveenvbreak \itemmax=\itemindent \advance\itemmax by -\itemmargin \advance\leftskip by \itemindent \exdentamount=\itemindent \parindent=0pt \parskip=\smallskipamount \ifdim\parskip=0pt \parskip=2pt \fi % % Try typesetting the item mark that if the document erroneously says % something like @itemize @samp (intending @table), there's an error % right away at the @itemize. It's not the best error message in the % world, but it's better than leaving it to the @item. This means if % the user wants an empty mark, they have to say @w{} not just @w. \def\itemcontents{#1}% \setbox0 = \hbox{\itemcontents}% % % @itemize with no arg is equivalent to @itemize @bullet. \ifx\itemcontents\empty\def\itemcontents{\bullet}\fi % \let\item=\itemizeitem } % Definition of @item while inside @itemize and @enumerate. % \def\itemizeitem{% \advance\itemno by 1 % for enumerations {\let\par=\endgraf \smallbreak}% reasonable place to break {% % If the document has an @itemize directly after a section title, a % \nobreak will be last on the list, and \sectionheading will have % done a \vskip-\parskip. In that case, we don't want to zero % parskip, or the item text will crash with the heading. On the % other hand, when there is normal text preceding the item (as there % usually is), we do want to zero parskip, or there would be too much % space. In that case, we won't have a \nobreak before. At least % that's the theory. \ifnum\lastpenalty<10000 \parskip=0in \fi \noindent \hbox to 0pt{\hss \itemcontents \kern\itemmargin}% % \vadjust{\penalty 1200}}% not good to break after first line of item. \flushcr } % \splitoff TOKENS\endmark defines \first to be the first token in % TOKENS, and \rest to be the remainder. % \def\splitoff#1#2\endmark{\def\first{#1}\def\rest{#2}}% % Allow an optional argument of an uppercase letter, lowercase letter, % or number, to specify the first label in the enumerated list. No % argument is the same as `1'. % \envparseargdef\enumerate{\enumeratey #1 \endenumeratey} \def\enumeratey #1 #2\endenumeratey{% % If we were given no argument, pretend we were given `1'. \def\thearg{#1}% \ifx\thearg\empty \def\thearg{1}\fi % % Detect if the argument is a single token. If so, it might be a % letter. Otherwise, the only valid thing it can be is a number. % (We will always have one token, because of the test we just made. % This is a good thing, since \splitoff doesn't work given nothing at % all -- the first parameter is undelimited.) \expandafter\splitoff\thearg\endmark \ifx\rest\empty % Only one token in the argument. It could still be anything. % A ``lowercase letter'' is one whose \lccode is nonzero. % An ``uppercase letter'' is one whose \lccode is both nonzero, and % not equal to itself. % Otherwise, we assume it's a number. % % We need the \relax at the end of the \ifnum lines to stop TeX from % continuing to look for a . % \ifnum\lccode\expandafter`\thearg=0\relax \numericenumerate % a number (we hope) \else % It's a letter. \ifnum\lccode\expandafter`\thearg=\expandafter`\thearg\relax \lowercaseenumerate % lowercase letter \else \uppercaseenumerate % uppercase letter \fi \fi \else % Multiple tokens in the argument. We hope it's a number. \numericenumerate \fi } % An @enumerate whose labels are integers. The starting integer is % given in \thearg. % \def\numericenumerate{% \itemno = \thearg \startenumeration{\the\itemno}% } % The starting (lowercase) letter is in \thearg. \def\lowercaseenumerate{% \itemno = \expandafter`\thearg \startenumeration{% % Be sure we're not beyond the end of the alphabet. \ifnum\itemno=0 \errmessage{No more lowercase letters in @enumerate; get a bigger alphabet}% \fi \char\lccode\itemno }% } % The starting (uppercase) letter is in \thearg. \def\uppercaseenumerate{% \itemno = \expandafter`\thearg \startenumeration{% % Be sure we're not beyond the end of the alphabet. \ifnum\itemno=0 \errmessage{No more uppercase letters in @enumerate; get a bigger alphabet} \fi \char\uccode\itemno }% } % Call \doitemize, adding a period to the first argument and supplying the % common last two arguments. Also subtract one from the initial value in % \itemno, since @item increments \itemno. % \def\startenumeration#1{% \advance\itemno by -1 \doitemize{#1.}\flushcr } % @alphaenumerate and @capsenumerate are abbreviations for giving an arg % to @enumerate. % \def\alphaenumerate{\enumerate{a}} \def\capsenumerate{\enumerate{A}} \def\Ealphaenumerate{\Eenumerate} \def\Ecapsenumerate{\Eenumerate} % @multitable macros % Amy Hendrickson, 8/18/94, 3/6/96 % % @multitable ... @end multitable will make as many columns as desired. % Contents of each column will wrap at width given in preamble. Width % can be specified either with sample text given in a template line, % or in percent of \hsize, the current width of text on page. % Table can continue over pages but will only break between lines. % To make preamble: % % Either define widths of columns in terms of percent of \hsize: % @multitable @columnfractions .25 .3 .45 % @item ... % % Numbers following @columnfractions are the percent of the total % current hsize to be used for each column. You may use as many % columns as desired. % Or use a template: % @multitable {Column 1 template} {Column 2 template} {Column 3 template} % @item ... % using the widest term desired in each column. % Each new table line starts with @item, each subsequent new column % starts with @tab. Empty columns may be produced by supplying @tab's % with nothing between them for as many times as empty columns are needed, % ie, @tab@tab@tab will produce two empty columns. % @item, @tab do not need to be on their own lines, but it will not hurt % if they are. % Sample multitable: % @multitable {Column 1 template} {Column 2 template} {Column 3 template} % @item first col stuff @tab second col stuff @tab third col % @item % first col stuff % @tab % second col stuff % @tab % third col % @item first col stuff @tab second col stuff % @tab Many paragraphs of text may be used in any column. % % They will wrap at the width determined by the template. % @item@tab@tab This will be in third column. % @end multitable % Default dimensions may be reset by user. % @multitableparskip is vertical space between paragraphs in table. % @multitableparindent is paragraph indent in table. % @multitablecolmargin is horizontal space to be left between columns. % @multitablelinespace is space to leave between table items, baseline % to baseline. % 0pt means it depends on current normal line spacing. % \newskip\multitableparskip \newskip\multitableparindent \newdimen\multitablecolspace \newskip\multitablelinespace \multitableparskip=0pt \multitableparindent=6pt \multitablecolspace=12pt \multitablelinespace=0pt % Macros used to set up halign preamble: % \let\endsetuptable\relax \def\xendsetuptable{\endsetuptable} \let\columnfractions\relax \def\xcolumnfractions{\columnfractions} \newif\ifsetpercent % #1 is the @columnfraction, usually a decimal number like .5, but might % be just 1. We just use it, whatever it is. % \def\pickupwholefraction#1 {% \global\advance\colcount by 1 \expandafter\xdef\csname col\the\colcount\endcsname{#1\hsize}% \setuptable } \newcount\colcount \def\setuptable#1{% \def\firstarg{#1}% \ifx\firstarg\xendsetuptable \let\go = \relax \else \ifx\firstarg\xcolumnfractions \global\setpercenttrue \else \ifsetpercent \let\go\pickupwholefraction \else \global\advance\colcount by 1 \setbox0=\hbox{#1\unskip\space}% Add a normal word space as a % separator; typically that is always in the input, anyway. \expandafter\xdef\csname col\the\colcount\endcsname{\the\wd0}% \fi \fi \ifx\go\pickupwholefraction % Put the argument back for the \pickupwholefraction call, so % we'll always have a period there to be parsed. \def\go{\pickupwholefraction#1}% \else \let\go = \setuptable \fi% \fi \go } % multitable-only commands. % % @headitem starts a heading row, which we typeset in bold. % Assignments have to be global since we are inside the implicit group % of an alignment entry. \everycr resets \everytab so we don't have to % undo it ourselves. \def\headitemfont{\b}% for people to use in the template row; not changeable \def\headitem{% \checkenv\multitable \crcr \global\everytab={\bf}% can't use \headitemfont since the parsing differs \the\everytab % for the first item }% % % A \tab used to include \hskip1sp. But then the space in a template % line is not enough. That is bad. So let's go back to just `&' until % we again encounter the problem the 1sp was intended to solve. % --karl, nathan@acm.org, 20apr99. \def\tab{\checkenv\multitable &\the\everytab}% % @multitable ... @end multitable definitions: % \newtoks\everytab % insert after every tab. % \envdef\multitable{% \vskip\parskip \startsavinginserts % % @item within a multitable starts a normal row. % We use \def instead of \let so that if one of the multitable entries % contains an @itemize, we don't choke on the \item (seen as \crcr aka % \endtemplate) expanding \doitemize. \def\item{\crcr}% % \tolerance=9500 \hbadness=9500 \setmultitablespacing \parskip=\multitableparskip \parindent=\multitableparindent \overfullrule=0pt \global\colcount=0 % \everycr = {% \noalign{% \global\everytab={}% \global\colcount=0 % Reset the column counter. % Check for saved footnotes, etc. \checkinserts % Keeps underfull box messages off when table breaks over pages. %\filbreak % Maybe so, but it also creates really weird page breaks when the % table breaks over pages. Wouldn't \vfil be better? Wait until the % problem manifests itself, so it can be fixed for real --karl. }% }% % \parsearg\domultitable } \def\domultitable#1{% % To parse everything between @multitable and @item: \setuptable#1 \endsetuptable % % This preamble sets up a generic column definition, which will % be used as many times as user calls for columns. % \vtop will set a single line and will also let text wrap and % continue for many paragraphs if desired. \halign\bgroup &% \global\advance\colcount by 1 \multistrut \vtop{% % Use the current \colcount to find the correct column width: \hsize=\expandafter\csname col\the\colcount\endcsname % % In order to keep entries from bumping into each other % we will add a \leftskip of \multitablecolspace to all columns after % the first one. % % If a template has been used, we will add \multitablecolspace % to the width of each template entry. % % If the user has set preamble in terms of percent of \hsize we will % use that dimension as the width of the column, and the \leftskip % will keep entries from bumping into each other. Table will start at % left margin and final column will justify at right margin. % % Make sure we don't inherit \rightskip from the outer environment. \rightskip=0pt \ifnum\colcount=1 % The first column will be indented with the surrounding text. \advance\hsize by\leftskip \else \ifsetpercent \else % If user has not set preamble in terms of percent of \hsize % we will advance \hsize by \multitablecolspace. \advance\hsize by \multitablecolspace \fi % In either case we will make \leftskip=\multitablecolspace: \leftskip=\multitablecolspace \fi % Ignoring space at the beginning and end avoids an occasional spurious % blank line, when TeX decides to break the line at the space before the % box from the multistrut, so the strut ends up on a line by itself. % For example: % @multitable @columnfractions .11 .89 % @item @code{#} % @tab Legal holiday which is valid in major parts of the whole country. % Is automatically provided with highlighting sequences respectively % marking characters. \noindent\ignorespaces##\unskip\multistrut }\cr } \def\Emultitable{% \crcr \egroup % end the \halign \global\setpercentfalse } \def\setmultitablespacing{% \def\multistrut{\strut}% just use the standard line spacing % % Compute \multitablelinespace (if not defined by user) for use in % \multitableparskip calculation. We used define \multistrut based on % this, but (ironically) that caused the spacing to be off. % See bug-texinfo report from Werner Lemberg, 31 Oct 2004 12:52:20 +0100. \ifdim\multitablelinespace=0pt \setbox0=\vbox{X}\global\multitablelinespace=\the\baselineskip \global\advance\multitablelinespace by-\ht0 \fi % Test to see if parskip is larger than space between lines of % table. If not, do nothing. % If so, set to same dimension as multitablelinespace. \ifdim\multitableparskip>\multitablelinespace \global\multitableparskip=\multitablelinespace \global\advance\multitableparskip-7pt % to keep parskip somewhat smaller % than skip between lines in the table. \fi% \ifdim\multitableparskip=0pt \global\multitableparskip=\multitablelinespace \global\advance\multitableparskip-7pt % to keep parskip somewhat smaller % than skip between lines in the table. \fi} \message{conditionals,} % @iftex, @ifnotdocbook, @ifnothtml, @ifnotinfo, @ifnotplaintext, % @ifnotxml always succeed. They currently do nothing; we don't % attempt to check whether the conditionals are properly nested. But we % have to remember that they are conditionals, so that @end doesn't % attempt to close an environment group. % \def\makecond#1{% \expandafter\let\csname #1\endcsname = \relax \expandafter\let\csname iscond.#1\endcsname = 1 } \makecond{iftex} \makecond{ifnotdocbook} \makecond{ifnothtml} \makecond{ifnotinfo} \makecond{ifnotplaintext} \makecond{ifnotxml} % Ignore @ignore, @ifhtml, @ifinfo, and the like. % \def\direntry{\doignore{direntry}} \def\documentdescription{\doignore{documentdescription}} \def\docbook{\doignore{docbook}} \def\html{\doignore{html}} \def\ifdocbook{\doignore{ifdocbook}} \def\ifhtml{\doignore{ifhtml}} \def\ifinfo{\doignore{ifinfo}} \def\ifnottex{\doignore{ifnottex}} \def\ifplaintext{\doignore{ifplaintext}} \def\ifxml{\doignore{ifxml}} \def\ignore{\doignore{ignore}} \def\menu{\doignore{menu}} \def\xml{\doignore{xml}} % Ignore text until a line `@end #1', keeping track of nested conditionals. % % A count to remember the depth of nesting. \newcount\doignorecount \def\doignore#1{\begingroup % Scan in ``verbatim'' mode: \obeylines \catcode`\@ = \other \catcode`\{ = \other \catcode`\} = \other % % Make sure that spaces turn into tokens that match what \doignoretext wants. \spaceisspace % % Count number of #1's that we've seen. \doignorecount = 0 % % Swallow text until we reach the matching `@end #1'. \dodoignore{#1}% } { \catcode`_=11 % We want to use \_STOP_ which cannot appear in texinfo source. \obeylines % % \gdef\dodoignore#1{% % #1 contains the command name as a string, e.g., `ifinfo'. % % Define a command to find the next `@end #1'. \long\def\doignoretext##1^^M@end #1{% \doignoretextyyy##1^^M@#1\_STOP_}% % % And this command to find another #1 command, at the beginning of a % line. (Otherwise, we would consider a line `@c @ifset', for % example, to count as an @ifset for nesting.) \long\def\doignoretextyyy##1^^M@#1##2\_STOP_{\doignoreyyy{##2}\_STOP_}% % % And now expand that command. \doignoretext ^^M% }% } \def\doignoreyyy#1{% \def\temp{#1}% \ifx\temp\empty % Nothing found. \let\next\doignoretextzzz \else % Found a nested condition, ... \advance\doignorecount by 1 \let\next\doignoretextyyy % ..., look for another. % If we're here, #1 ends with ^^M\ifinfo (for example). \fi \next #1% the token \_STOP_ is present just after this macro. } % We have to swallow the remaining "\_STOP_". % \def\doignoretextzzz#1{% \ifnum\doignorecount = 0 % We have just found the outermost @end. \let\next\enddoignore \else % Still inside a nested condition. \advance\doignorecount by -1 \let\next\doignoretext % Look for the next @end. \fi \next } % Finish off ignored text. { \obeylines% % Ignore anything after the last `@end #1'; this matters in verbatim % environments, where otherwise the newline after an ignored conditional % would result in a blank line in the output. \gdef\enddoignore#1^^M{\endgroup\ignorespaces}% } % @set VAR sets the variable VAR to an empty value. % @set VAR REST-OF-LINE sets VAR to the value REST-OF-LINE. % % Since we want to separate VAR from REST-OF-LINE (which might be % empty), we can't just use \parsearg; we have to insert a space of our % own to delimit the rest of the line, and then take it out again if we % didn't need it. % We rely on the fact that \parsearg sets \catcode`\ =10. % \parseargdef\set{\setyyy#1 \endsetyyy} \def\setyyy#1 #2\endsetyyy{% {% \makevalueexpandable \def\temp{#2}% \edef\next{\gdef\makecsname{SET#1}}% \ifx\temp\empty \next{}% \else \setzzz#2\endsetzzz \fi }% } % Remove the trailing space \setxxx inserted. \def\setzzz#1 \endsetzzz{\next{#1}} % @clear VAR clears (i.e., unsets) the variable VAR. % \parseargdef\clear{% {% \makevalueexpandable \global\expandafter\let\csname SET#1\endcsname=\relax }% } % @value{foo} gets the text saved in variable foo. \def\value{\begingroup\makevalueexpandable\valuexxx} \def\valuexxx#1{\expandablevalue{#1}\endgroup} { \catcode`\- = \active \catcode`\_ = \active % \gdef\makevalueexpandable{% \let\value = \expandablevalue % We don't want these characters active, ... \catcode`\-=\other \catcode`\_=\other % ..., but we might end up with active ones in the argument if % we're called from @code, as @code{@value{foo-bar_}}, though. % So \let them to their normal equivalents. \let-\normaldash \let_\normalunderscore } } % We have this subroutine so that we can handle at least some @value's % properly in indexes (we call \makevalueexpandable in \indexdummies). % The command has to be fully expandable (if the variable is set), since % the result winds up in the index file. This means that if the % variable's value contains other Texinfo commands, it's almost certain % it will fail (although perhaps we could fix that with sufficient work % to do a one-level expansion on the result, instead of complete). % \def\expandablevalue#1{% \expandafter\ifx\csname SET#1\endcsname\relax {[No value for ``#1'']}% \message{Variable `#1', used in @value, is not set.}% \else \csname SET#1\endcsname \fi } % @ifset VAR ... @end ifset reads the `...' iff VAR has been defined % with @set. % % To get special treatment of `@end ifset,' call \makeond and the redefine. % \makecond{ifset} \def\ifset{\parsearg{\doifset{\let\next=\ifsetfail}}} \def\doifset#1#2{% {% \makevalueexpandable \let\next=\empty \expandafter\ifx\csname SET#2\endcsname\relax #1% If not set, redefine \next. \fi \expandafter }\next } \def\ifsetfail{\doignore{ifset}} % @ifclear VAR ... @end executes the `...' iff VAR has never been % defined with @set, or has been undefined with @clear. % % The `\else' inside the `\doifset' parameter is a trick to reuse the % above code: if the variable is not set, do nothing, if it is set, % then redefine \next to \ifclearfail. % \makecond{ifclear} \def\ifclear{\parsearg{\doifset{\else \let\next=\ifclearfail}}} \def\ifclearfail{\doignore{ifclear}} % @ifcommandisdefined CMD ... @end executes the `...' if CMD (written % without the @) is in fact defined. We can only feasibly check at the % TeX level, so something like `mathcode' is going to considered % defined even though it is not a Texinfo command. % \makecond{ifcommanddefined} \def\ifcommanddefined{\parsearg{\doifcmddefined{\let\next=\ifcmddefinedfail}}} % \def\doifcmddefined#1#2{{% \makevalueexpandable \let\next=\empty \expandafter\ifx\csname #2\endcsname\relax #1% If not defined, \let\next as above. \fi \expandafter }\next } \def\ifcmddefinedfail{\doignore{ifcommanddefined}} % @ifcommandnotdefined CMD ... handled similar to @ifclear above. \makecond{ifcommandnotdefined} \def\ifcommandnotdefined{% \parsearg{\doifcmddefined{\else \let\next=\ifcmdnotdefinedfail}}} \def\ifcmdnotdefinedfail{\doignore{ifcommandnotdefined}} % Set the `txicommandconditionals' variable, so documents have a way to % test if the @ifcommand...defined conditionals are available. \set txicommandconditionals % @dircategory CATEGORY -- specify a category of the dir file % which this file should belong to. Ignore this in TeX. \let\dircategory=\comment % @defininfoenclose. \let\definfoenclose=\comment \message{indexing,} % Index generation facilities % Define \newwrite to be identical to plain tex's \newwrite % except not \outer, so it can be used within macros and \if's. \edef\newwrite{\makecsname{ptexnewwrite}} % \newindex {foo} defines an index named foo. % It automatically defines \fooindex such that % \fooindex ...rest of line... puts an entry in the index foo. % It also defines \fooindfile to be the number of the output channel for % the file that accumulates this index. The file's extension is foo. % The name of an index should be no more than 2 characters long % for the sake of vms. % \def\newindex#1{% \iflinks \expandafter\newwrite \csname#1indfile\endcsname \openout \csname#1indfile\endcsname \jobname.#1 % Open the file \fi \expandafter\xdef\csname#1index\endcsname{% % Define @#1index \noexpand\doindex{#1}} } % @defindex foo == \newindex{foo} % \def\defindex{\parsearg\newindex} % Define @defcodeindex, like @defindex except put all entries in @code. % \def\defcodeindex{\parsearg\newcodeindex} % \def\newcodeindex#1{% \iflinks \expandafter\newwrite \csname#1indfile\endcsname \openout \csname#1indfile\endcsname \jobname.#1 \fi \expandafter\xdef\csname#1index\endcsname{% \noexpand\docodeindex{#1}}% } % @synindex foo bar makes index foo feed into index bar. % Do this instead of @defindex foo if you don't want it as a separate index. % % @syncodeindex foo bar similar, but put all entries made for index foo % inside @code. % \def\synindex#1 #2 {\dosynindex\doindex{#1}{#2}} \def\syncodeindex#1 #2 {\dosynindex\docodeindex{#1}{#2}} % #1 is \doindex or \docodeindex, #2 the index getting redefined (foo), % #3 the target index (bar). \def\dosynindex#1#2#3{% % Only do \closeout if we haven't already done it, else we'll end up % closing the target index. \expandafter \ifx\csname donesynindex#2\endcsname \relax % The \closeout helps reduce unnecessary open files; the limit on the % Acorn RISC OS is a mere 16 files. \expandafter\closeout\csname#2indfile\endcsname \expandafter\let\csname donesynindex#2\endcsname = 1 \fi % redefine \fooindfile: \expandafter\let\expandafter\temp\expandafter=\csname#3indfile\endcsname \expandafter\let\csname#2indfile\endcsname=\temp % redefine \fooindex: \expandafter\xdef\csname#2index\endcsname{\noexpand#1{#3}}% } % Define \doindex, the driver for all \fooindex macros. % Argument #1 is generated by the calling \fooindex macro, % and it is "foo", the name of the index. % \doindex just uses \parsearg; it calls \doind for the actual work. % This is because \doind is more useful to call from other macros. % There is also \dosubind {index}{topic}{subtopic} % which makes an entry in a two-level index such as the operation index. \def\doindex#1{\edef\indexname{#1}\parsearg\singleindexer} \def\singleindexer #1{\doind{\indexname}{#1}} % like the previous two, but they put @code around the argument. \def\docodeindex#1{\edef\indexname{#1}\parsearg\singlecodeindexer} \def\singlecodeindexer #1{\doind{\indexname}{\code{#1}}} % Take care of Texinfo commands that can appear in an index entry. % Since there are some commands we want to expand, and others we don't, % we have to laboriously prevent expansion for those that we don't. % \def\indexdummies{% \escapechar = `\\ % use backslash in output files. \def\@{@}% change to @@ when we switch to @ as escape char in index files. \def\ {\realbackslash\space }% % % Need these unexpandable (because we define \tt as a dummy) % definitions when @{ or @} appear in index entry text. Also, more % complicated, when \tex is in effect and \{ is a \delimiter again. % We can't use \lbracecmd and \rbracecmd because texindex assumes % braces and backslashes are used only as delimiters. Perhaps we % should define @lbrace and @rbrace commands a la @comma. \def\{{{\tt\char123}}% \def\}{{\tt\char125}}% % % I don't entirely understand this, but when an index entry is % generated from a macro call, the \endinput which \scanmacro inserts % causes processing to be prematurely terminated. This is, % apparently, because \indexsorttmp is fully expanded, and \endinput % is an expandable command. The redefinition below makes \endinput % disappear altogether for that purpose -- although logging shows that % processing continues to some further point. On the other hand, it % seems \endinput does not hurt in the printed index arg, since that % is still getting written without apparent harm. % % Sample source (mac-idx3.tex, reported by Graham Percival to % help-texinfo, 22may06): % @macro funindex {WORD} % @findex xyz % @end macro % ... % @funindex commtest % % The above is not enough to reproduce the bug, but it gives the flavor. % % Sample whatsit resulting: % .@write3{\entry{xyz}{@folio }{@code {xyz@endinput }}} % % So: \let\endinput = \empty % % Do the redefinitions. \commondummies } % For the aux and toc files, @ is the escape character. So we want to % redefine everything using @ as the escape character (instead of % \realbackslash, still used for index files). When everything uses @, % this will be simpler. % \def\atdummies{% \def\@{@@}% \def\ {@ }% \let\{ = \lbraceatcmd \let\} = \rbraceatcmd % % Do the redefinitions. \commondummies \otherbackslash } % Called from \indexdummies and \atdummies. % \def\commondummies{% % % \definedummyword defines \#1 as \string\#1\space, thus effectively % preventing its expansion. This is used only for control words, % not control letters, because the \space would be incorrect for % control characters, but is needed to separate the control word % from whatever follows. % % For control letters, we have \definedummyletter, which omits the % space. % % These can be used both for control words that take an argument and % those that do not. If it is followed by {arg} in the input, then % that will dutifully get written to the index (or wherever). % \def\definedummyword ##1{\def##1{\string##1\space}}% \def\definedummyletter##1{\def##1{\string##1}}% \let\definedummyaccent\definedummyletter % \commondummiesnofonts % \definedummyletter\_% \definedummyletter\-% % % Non-English letters. \definedummyword\AA \definedummyword\AE \definedummyword\DH \definedummyword\L \definedummyword\O \definedummyword\OE \definedummyword\TH \definedummyword\aa \definedummyword\ae \definedummyword\dh \definedummyword\exclamdown \definedummyword\l \definedummyword\o \definedummyword\oe \definedummyword\ordf \definedummyword\ordm \definedummyword\questiondown \definedummyword\ss \definedummyword\th % % Although these internal commands shouldn't show up, sometimes they do. \definedummyword\bf \definedummyword\gtr \definedummyword\hat \definedummyword\less \definedummyword\sf \definedummyword\sl \definedummyword\tclose \definedummyword\tt % \definedummyword\LaTeX \definedummyword\TeX % % Assorted special characters. \definedummyword\arrow \definedummyword\bullet \definedummyword\comma \definedummyword\copyright \definedummyword\registeredsymbol \definedummyword\dots \definedummyword\enddots \definedummyword\entrybreak \definedummyword\equiv \definedummyword\error \definedummyword\euro \definedummyword\expansion \definedummyword\geq \definedummyword\guillemetleft \definedummyword\guillemetright \definedummyword\guilsinglleft \definedummyword\guilsinglright \definedummyword\lbracechar \definedummyword\leq \definedummyword\minus \definedummyword\ogonek \definedummyword\pounds \definedummyword\point \definedummyword\print \definedummyword\quotedblbase \definedummyword\quotedblleft \definedummyword\quotedblright \definedummyword\quoteleft \definedummyword\quoteright \definedummyword\quotesinglbase \definedummyword\rbracechar \definedummyword\result \definedummyword\textdegree % % We want to disable all macros so that they are not expanded by \write. \macrolist % \normalturnoffactive % % Handle some cases of @value -- where it does not contain any % (non-fully-expandable) commands. \makevalueexpandable } % \commondummiesnofonts: common to \commondummies and \indexnofonts. % \def\commondummiesnofonts{% % Control letters and accents. \definedummyletter\!% \definedummyaccent\"% \definedummyaccent\'% \definedummyletter\*% \definedummyaccent\,% \definedummyletter\.% \definedummyletter\/% \definedummyletter\:% \definedummyaccent\=% \definedummyletter\?% \definedummyaccent\^% \definedummyaccent\`% \definedummyaccent\~% \definedummyword\u \definedummyword\v \definedummyword\H \definedummyword\dotaccent \definedummyword\ogonek \definedummyword\ringaccent \definedummyword\tieaccent \definedummyword\ubaraccent \definedummyword\udotaccent \definedummyword\dotless % % Texinfo font commands. \definedummyword\b \definedummyword\i \definedummyword\r \definedummyword\sansserif \definedummyword\sc \definedummyword\slanted \definedummyword\t % % Commands that take arguments. \definedummyword\abbr \definedummyword\acronym \definedummyword\anchor \definedummyword\cite \definedummyword\code \definedummyword\command \definedummyword\dfn \definedummyword\dmn \definedummyword\email \definedummyword\emph \definedummyword\env \definedummyword\file \definedummyword\image \definedummyword\indicateurl \definedummyword\inforef \definedummyword\kbd \definedummyword\key \definedummyword\math \definedummyword\option \definedummyword\pxref \definedummyword\ref \definedummyword\samp \definedummyword\strong \definedummyword\tie \definedummyword\uref \definedummyword\url \definedummyword\var \definedummyword\verb \definedummyword\w \definedummyword\xref } % \indexnofonts is used when outputting the strings to sort the index % by, and when constructing control sequence names. It eliminates all % control sequences and just writes whatever the best ASCII sort string % would be for a given command (usually its argument). % \def\indexnofonts{% % Accent commands should become @asis. \def\definedummyaccent##1{\let##1\asis}% % We can just ignore other control letters. \def\definedummyletter##1{\let##1\empty}% % All control words become @asis by default; overrides below. \let\definedummyword\definedummyaccent % \commondummiesnofonts % % Don't no-op \tt, since it isn't a user-level command % and is used in the definitions of the active chars like <, >, |, etc. % Likewise with the other plain tex font commands. %\let\tt=\asis % \def\ { }% \def\@{@}% \def\_{\normalunderscore}% \def\-{}% @- shouldn't affect sorting % % Unfortunately, texindex is not prepared to handle braces in the % content at all. So for index sorting, we map @{ and @} to strings % starting with |, since that ASCII character is between ASCII { and }. \def\{{|a}% \def\lbracechar{|a}% % \def\}{|b}% \def\rbracechar{|b}% % % Non-English letters. \def\AA{AA}% \def\AE{AE}% \def\DH{DZZ}% \def\L{L}% \def\OE{OE}% \def\O{O}% \def\TH{ZZZ}% \def\aa{aa}% \def\ae{ae}% \def\dh{dzz}% \def\exclamdown{!}% \def\l{l}% \def\oe{oe}% \def\ordf{a}% \def\ordm{o}% \def\o{o}% \def\questiondown{?}% \def\ss{ss}% \def\th{zzz}% % \def\LaTeX{LaTeX}% \def\TeX{TeX}% % % Assorted special characters. % (The following {} will end up in the sort string, but that's ok.) \def\arrow{->}% \def\bullet{bullet}% \def\comma{,}% \def\copyright{copyright}% \def\dots{...}% \def\enddots{...}% \def\equiv{==}% \def\error{error}% \def\euro{euro}% \def\expansion{==>}% \def\geq{>=}% \def\guillemetleft{<<}% \def\guillemetright{>>}% \def\guilsinglleft{<}% \def\guilsinglright{>}% \def\leq{<=}% \def\minus{-}% \def\point{.}% \def\pounds{pounds}% \def\print{-|}% \def\quotedblbase{"}% \def\quotedblleft{"}% \def\quotedblright{"}% \def\quoteleft{`}% \def\quoteright{'}% \def\quotesinglbase{,}% \def\registeredsymbol{R}% \def\result{=>}% \def\textdegree{o}% % \expandafter\ifx\csname SETtxiindexlquoteignore\endcsname\relax \else \indexlquoteignore \fi % % We need to get rid of all macros, leaving only the arguments (if present). % Of course this is not nearly correct, but it is the best we can do for now. % makeinfo does not expand macros in the argument to @deffn, which ends up % writing an index entry, and texindex isn't prepared for an index sort entry % that starts with \. % % Since macro invocations are followed by braces, we can just redefine them % to take a single TeX argument. The case of a macro invocation that % goes to end-of-line is not handled. % \macrolist } % Undocumented (for FSFS 2nd ed.): @set txiindexlquoteignore makes us % ignore left quotes in the sort term. {\catcode`\`=\active \gdef\indexlquoteignore{\let`=\empty}} \let\indexbackslash=0 %overridden during \printindex. \let\SETmarginindex=\relax % put index entries in margin (undocumented)? % Most index entries go through here, but \dosubind is the general case. % #1 is the index name, #2 is the entry text. \def\doind#1#2{\dosubind{#1}{#2}{}} % Workhorse for all \fooindexes. % #1 is name of index, #2 is stuff to put there, #3 is subentry -- % empty if called from \doind, as we usually are (the main exception % is with most defuns, which call us directly). % \def\dosubind#1#2#3{% \iflinks {% % Store the main index entry text (including the third arg). \toks0 = {#2}% % If third arg is present, precede it with a space. \def\thirdarg{#3}% \ifx\thirdarg\empty \else \toks0 = \expandafter{\the\toks0 \space #3}% \fi % \edef\writeto{\csname#1indfile\endcsname}% % \safewhatsit\dosubindwrite }% \fi } % Write the entry in \toks0 to the index file: % \def\dosubindwrite{% % Put the index entry in the margin if desired. \ifx\SETmarginindex\relax\else \insert\margin{\hbox{\vrule height8pt depth3pt width0pt \the\toks0}}% \fi % % Remember, we are within a group. \indexdummies % Must do this here, since \bf, etc expand at this stage \def\backslashcurfont{\indexbackslash}% \indexbackslash isn't defined now % so it will be output as is; and it will print as backslash. % % Process the index entry with all font commands turned off, to % get the string to sort by. {\indexnofonts \edef\temp{\the\toks0}% need full expansion \xdef\indexsorttmp{\temp}% }% % % Set up the complete index entry, with both the sort key and % the original text, including any font commands. We write % three arguments to \entry to the .?? file (four in the % subentry case), texindex reduces to two when writing the .??s % sorted result. \edef\temp{% \write\writeto{% \string\entry{\indexsorttmp}{\noexpand\folio}{\the\toks0}}% }% \temp } % Take care of unwanted page breaks/skips around a whatsit: % % If a skip is the last thing on the list now, preserve it % by backing up by \lastskip, doing the \write, then inserting % the skip again. Otherwise, the whatsit generated by the % \write or \pdfdest will make \lastskip zero. The result is that % sequences like this: % @end defun % @tindex whatever % @defun ... % will have extra space inserted, because the \medbreak in the % start of the @defun won't see the skip inserted by the @end of % the previous defun. % % But don't do any of this if we're not in vertical mode. We % don't want to do a \vskip and prematurely end a paragraph. % % Avoid page breaks due to these extra skips, too. % % But wait, there is a catch there: % We'll have to check whether \lastskip is zero skip. \ifdim is not % sufficient for this purpose, as it ignores stretch and shrink parts % of the skip. The only way seems to be to check the textual % representation of the skip. % % The following is almost like \def\zeroskipmacro{0.0pt} except that % the ``p'' and ``t'' characters have catcode \other, not 11 (letter). % \edef\zeroskipmacro{\expandafter\the\csname z@skip\endcsname} % \newskip\whatsitskip \newcount\whatsitpenalty % % ..., ready, GO: % \def\safewhatsit#1{\ifhmode #1% \else % \lastskip and \lastpenalty cannot both be nonzero simultaneously. \whatsitskip = \lastskip \edef\lastskipmacro{\the\lastskip}% \whatsitpenalty = \lastpenalty % % If \lastskip is nonzero, that means the last item was a % skip. And since a skip is discardable, that means this % -\whatsitskip glue we're inserting is preceded by a % non-discardable item, therefore it is not a potential % breakpoint, therefore no \nobreak needed. \ifx\lastskipmacro\zeroskipmacro \else \vskip-\whatsitskip \fi % #1% % \ifx\lastskipmacro\zeroskipmacro % If \lastskip was zero, perhaps the last item was a penalty, and % perhaps it was >=10000, e.g., a \nobreak. In that case, we want % to re-insert the same penalty (values >10000 are used for various % signals); since we just inserted a non-discardable item, any % following glue (such as a \parskip) would be a breakpoint. For example: % @deffn deffn-whatever % @vindex index-whatever % Description. % would allow a break between the index-whatever whatsit % and the "Description." paragraph. \ifnum\whatsitpenalty>9999 \penalty\whatsitpenalty \fi \else % On the other hand, if we had a nonzero \lastskip, % this make-up glue would be preceded by a non-discardable item % (the whatsit from the \write), so we must insert a \nobreak. \nobreak\vskip\whatsitskip \fi \fi} % The index entry written in the file actually looks like % \entry {sortstring}{page}{topic} % or % \entry {sortstring}{page}{topic}{subtopic} % The texindex program reads in these files and writes files % containing these kinds of lines: % \initial {c} % before the first topic whose initial is c % \entry {topic}{pagelist} % for a topic that is used without subtopics % \primary {topic} % for the beginning of a topic that is used with subtopics % \secondary {subtopic}{pagelist} % for each subtopic. % Define the user-accessible indexing commands % @findex, @vindex, @kindex, @cindex. \def\findex {\fnindex} \def\kindex {\kyindex} \def\cindex {\cpindex} \def\vindex {\vrindex} \def\tindex {\tpindex} \def\pindex {\pgindex} \def\cindexsub {\begingroup\obeylines\cindexsub} {\obeylines % \gdef\cindexsub "#1" #2^^M{\endgroup % \dosubind{cp}{#2}{#1}}} % Define the macros used in formatting output of the sorted index material. % @printindex causes a particular index (the ??s file) to get printed. % It does not print any chapter heading (usually an @unnumbered). % \parseargdef\printindex{\begingroup \dobreak \chapheadingskip{10000}% % \smallfonts \rm \tolerance = 9500 \plainfrenchspacing \everypar = {}% don't want the \kern\-parindent from indentation suppression. % % See if the index file exists and is nonempty. % Change catcode of @ here so that if the index file contains % \initial {@} % as its first line, TeX doesn't complain about mismatched braces % (because it thinks @} is a control sequence). \catcode`\@ = 11 \openin 1 \jobname.#1s \ifeof 1 % \enddoublecolumns gets confused if there is no text in the index, % and it loses the chapter title and the aux file entries for the % index. The easiest way to prevent this problem is to make sure % there is some text. \putwordIndexNonexistent \else % % If the index file exists but is empty, then \openin leaves \ifeof % false. We have to make TeX try to read something from the file, so % it can discover if there is anything in it. \read 1 to \temp \ifeof 1 \putwordIndexIsEmpty \else % Index files are almost Texinfo source, but we use \ as the escape % character. It would be better to use @, but that's too big a change % to make right now. \def\indexbackslash{\backslashcurfont}% \catcode`\\ = 0 \escapechar = `\\ \begindoublecolumns \input \jobname.#1s \enddoublecolumns \fi \fi \closein 1 \endgroup} % These macros are used by the sorted index file itself. % Change them to control the appearance of the index. \def\initial#1{{% % Some minor font changes for the special characters. \let\tentt=\sectt \let\tt=\sectt \let\sf=\sectt % % Remove any glue we may have, we'll be inserting our own. \removelastskip % % We like breaks before the index initials, so insert a bonus. \nobreak \vskip 0pt plus 3\baselineskip \penalty 0 \vskip 0pt plus -3\baselineskip % % Typeset the initial. Making this add up to a whole number of % baselineskips increases the chance of the dots lining up from column % to column. It still won't often be perfect, because of the stretch % we need before each entry, but it's better. % % No shrink because it confuses \balancecolumns. \vskip 1.67\baselineskip plus .5\baselineskip \leftline{\secbf #1}% % Do our best not to break after the initial. \nobreak \vskip .33\baselineskip plus .1\baselineskip }} % \entry typesets a paragraph consisting of the text (#1), dot leaders, and % then page number (#2) flushed to the right margin. It is used for index % and table of contents entries. The paragraph is indented by \leftskip. % % A straightforward implementation would start like this: % \def\entry#1#2{... % But this freezes the catcodes in the argument, and can cause problems to % @code, which sets - active. This problem was fixed by a kludge--- % ``-'' was active throughout whole index, but this isn't really right. % The right solution is to prevent \entry from swallowing the whole text. % --kasal, 21nov03 \def\entry{% \begingroup % % Start a new paragraph if necessary, so our assignments below can't % affect previous text. \par % % Do not fill out the last line with white space. \parfillskip = 0in % % No extra space above this paragraph. \parskip = 0in % % Do not prefer a separate line ending with a hyphen to fewer lines. \finalhyphendemerits = 0 % % \hangindent is only relevant when the entry text and page number % don't both fit on one line. In that case, bob suggests starting the % dots pretty far over on the line. Unfortunately, a large % indentation looks wrong when the entry text itself is broken across % lines. So we use a small indentation and put up with long leaders. % % \hangafter is reset to 1 (which is the value we want) at the start % of each paragraph, so we need not do anything with that. \hangindent = 2em % % When the entry text needs to be broken, just fill out the first line % with blank space. \rightskip = 0pt plus1fil % % A bit of stretch before each entry for the benefit of balancing % columns. \vskip 0pt plus1pt % % When reading the text of entry, convert explicit line breaks % from @* into spaces. The user might give these in long section % titles, for instance. \def\*{\unskip\space\ignorespaces}% \def\entrybreak{\hfil\break}% % % Swallow the left brace of the text (first parameter): \afterassignment\doentry \let\temp = } \def\entrybreak{\unskip\space\ignorespaces}% \def\doentry{% \bgroup % Instead of the swallowed brace. \noindent \aftergroup\finishentry % And now comes the text of the entry. } \def\finishentry#1{% % #1 is the page number. % % The following is kludged to not output a line of dots in the index if % there are no page numbers. The next person who breaks this will be % cursed by a Unix daemon. \setbox\boxA = \hbox{#1}% \ifdim\wd\boxA = 0pt \ % \else % % If we must, put the page number on a line of its own, and fill out % this line with blank space. (The \hfil is overwhelmed with the % fill leaders glue in \indexdotfill if the page number does fit.) \hfil\penalty50 \null\nobreak\indexdotfill % Have leaders before the page number. % % The `\ ' here is removed by the implicit \unskip that TeX does as % part of (the primitive) \par. Without it, a spurious underfull % \hbox ensues. \ifpdf \pdfgettoks#1.% \ \the\toksA \else \ #1% \fi \fi \par \endgroup } % Like plain.tex's \dotfill, except uses up at least 1 em. \def\indexdotfill{\cleaders \hbox{$\mathsurround=0pt \mkern1.5mu.\mkern1.5mu$}\hskip 1em plus 1fill} \def\primary #1{\line{#1\hfil}} \newskip\secondaryindent \secondaryindent=0.5cm \def\secondary#1#2{{% \parfillskip=0in \parskip=0in \hangindent=1in \hangafter=1 \noindent\hskip\secondaryindent\hbox{#1}\indexdotfill \ifpdf \pdfgettoks#2.\ \the\toksA % The page number ends the paragraph. \else #2 \fi \par }} % Define two-column mode, which we use to typeset indexes. % Adapted from the TeXbook, page 416, which is to say, % the manmac.tex format used to print the TeXbook itself. \catcode`\@=11 \newbox\partialpage \newdimen\doublecolumnhsize \def\begindoublecolumns{\begingroup % ended by \enddoublecolumns % Grab any single-column material above us. \output = {% % % Here is a possibility not foreseen in manmac: if we accumulate a % whole lot of material, we might end up calling this \output % routine twice in a row (see the doublecol-lose test, which is % essentially a couple of indexes with @setchapternewpage off). In % that case we just ship out what is in \partialpage with the normal % output routine. Generally, \partialpage will be empty when this % runs and this will be a no-op. See the indexspread.tex test case. \ifvoid\partialpage \else \onepageout{\pagecontents\partialpage}% \fi % \global\setbox\partialpage = \vbox{% % Unvbox the main output page. \unvbox\PAGE \kern-\topskip \kern\baselineskip }% }% \eject % run that output routine to set \partialpage % % Use the double-column output routine for subsequent pages. \output = {\doublecolumnout}% % % Change the page size parameters. We could do this once outside this % routine, in each of @smallbook, @afourpaper, and the default 8.5x11 % format, but then we repeat the same computation. Repeating a couple % of assignments once per index is clearly meaningless for the % execution time, so we may as well do it in one place. % % First we halve the line length, less a little for the gutter between % the columns. We compute the gutter based on the line length, so it % changes automatically with the paper format. The magic constant % below is chosen so that the gutter has the same value (well, +-<1pt) % as it did when we hard-coded it. % % We put the result in a separate register, \doublecolumhsize, so we % can restore it in \pagesofar, after \hsize itself has (potentially) % been clobbered. % \doublecolumnhsize = \hsize \advance\doublecolumnhsize by -.04154\hsize \divide\doublecolumnhsize by 2 \hsize = \doublecolumnhsize % % Double the \vsize as well. (We don't need a separate register here, % since nobody clobbers \vsize.) \vsize = 2\vsize } % The double-column output routine for all double-column pages except % the last. % \def\doublecolumnout{% \splittopskip=\topskip \splitmaxdepth=\maxdepth % Get the available space for the double columns -- the normal % (undoubled) page height minus any material left over from the % previous page. \dimen@ = \vsize \divide\dimen@ by 2 \advance\dimen@ by -\ht\partialpage % % box0 will be the left-hand column, box2 the right. \setbox0=\vsplit255 to\dimen@ \setbox2=\vsplit255 to\dimen@ \onepageout\pagesofar \unvbox255 \penalty\outputpenalty } % % Re-output the contents of the output page -- any previous material, % followed by the two boxes we just split, in box0 and box2. \def\pagesofar{% \unvbox\partialpage % \hsize = \doublecolumnhsize \wd0=\hsize \wd2=\hsize \hbox to\pagewidth{\box0\hfil\box2}% } % % All done with double columns. \def\enddoublecolumns{% % The following penalty ensures that the page builder is exercised % _before_ we change the output routine. This is necessary in the % following situation: % % The last section of the index consists only of a single entry. % Before this section, \pagetotal is less than \pagegoal, so no % break occurs before the last section starts. However, the last % section, consisting of \initial and the single \entry, does not % fit on the page and has to be broken off. Without the following % penalty the page builder will not be exercised until \eject % below, and by that time we'll already have changed the output % routine to the \balancecolumns version, so the next-to-last % double-column page will be processed with \balancecolumns, which % is wrong: The two columns will go to the main vertical list, with % the broken-off section in the recent contributions. As soon as % the output routine finishes, TeX starts reconsidering the page % break. The two columns and the broken-off section both fit on the % page, because the two columns now take up only half of the page % goal. When TeX sees \eject from below which follows the final % section, it invokes the new output routine that we've set after % \balancecolumns below; \onepageout will try to fit the two columns % and the final section into the vbox of \pageheight (see % \pagebody), causing an overfull box. % % Note that glue won't work here, because glue does not exercise the % page builder, unlike penalties (see The TeXbook, pp. 280-281). \penalty0 % \output = {% % Split the last of the double-column material. Leave it on the % current page, no automatic page break. \balancecolumns % % If we end up splitting too much material for the current page, % though, there will be another page break right after this \output % invocation ends. Having called \balancecolumns once, we do not % want to call it again. Therefore, reset \output to its normal % definition right away. (We hope \balancecolumns will never be % called on to balance too much material, but if it is, this makes % the output somewhat more palatable.) \global\output = {\onepageout{\pagecontents\PAGE}}% }% \eject \endgroup % started in \begindoublecolumns % % \pagegoal was set to the doubled \vsize above, since we restarted % the current page. We're now back to normal single-column % typesetting, so reset \pagegoal to the normal \vsize (after the % \endgroup where \vsize got restored). \pagegoal = \vsize } % % Called at the end of the double column material. \def\balancecolumns{% \setbox0 = \vbox{\unvbox255}% like \box255 but more efficient, see p.120. \dimen@ = \ht0 \advance\dimen@ by \topskip \advance\dimen@ by-\baselineskip \divide\dimen@ by 2 % target to split to %debug\message{final 2-column material height=\the\ht0, target=\the\dimen@.}% \splittopskip = \topskip % Loop until we get a decent breakpoint. {% \vbadness = 10000 \loop \global\setbox3 = \copy0 \global\setbox1 = \vsplit3 to \dimen@ \ifdim\ht3>\dimen@ \global\advance\dimen@ by 1pt \repeat }% %debug\message{split to \the\dimen@, column heights: \the\ht1, \the\ht3.}% \setbox0=\vbox to\dimen@{\unvbox1}% \setbox2=\vbox to\dimen@{\unvbox3}% % \pagesofar } \catcode`\@ = \other \message{sectioning,} % Chapters, sections, etc. % Let's start with @part. \outer\parseargdef\part{\partzzz{#1}} \def\partzzz#1{% \chapoddpage \null \vskip.3\vsize % move it down on the page a bit \begingroup \noindent \titlefonts\rmisbold #1\par % the text \let\lastnode=\empty % no node to associate with \writetocentry{part}{#1}{}% but put it in the toc \headingsoff % no headline or footline on the part page \chapoddpage \endgroup } % \unnumberedno is an oxymoron. But we count the unnumbered % sections so that we can refer to them unambiguously in the pdf % outlines by their "section number". We avoid collisions with chapter % numbers by starting them at 10000. (If a document ever has 10000 % chapters, we're in trouble anyway, I'm sure.) \newcount\unnumberedno \unnumberedno = 10000 \newcount\chapno \newcount\secno \secno=0 \newcount\subsecno \subsecno=0 \newcount\subsubsecno \subsubsecno=0 % This counter is funny since it counts through charcodes of letters A, B, ... \newcount\appendixno \appendixno = `\@ % % \def\appendixletter{\char\the\appendixno} % We do the following ugly conditional instead of the above simple % construct for the sake of pdftex, which needs the actual % letter in the expansion, not just typeset. % \def\appendixletter{% \ifnum\appendixno=`A A% \else\ifnum\appendixno=`B B% \else\ifnum\appendixno=`C C% \else\ifnum\appendixno=`D D% \else\ifnum\appendixno=`E E% \else\ifnum\appendixno=`F F% \else\ifnum\appendixno=`G G% \else\ifnum\appendixno=`H H% \else\ifnum\appendixno=`I I% \else\ifnum\appendixno=`J J% \else\ifnum\appendixno=`K K% \else\ifnum\appendixno=`L L% \else\ifnum\appendixno=`M M% \else\ifnum\appendixno=`N N% \else\ifnum\appendixno=`O O% \else\ifnum\appendixno=`P P% \else\ifnum\appendixno=`Q Q% \else\ifnum\appendixno=`R R% \else\ifnum\appendixno=`S S% \else\ifnum\appendixno=`T T% \else\ifnum\appendixno=`U U% \else\ifnum\appendixno=`V V% \else\ifnum\appendixno=`W W% \else\ifnum\appendixno=`X X% \else\ifnum\appendixno=`Y Y% \else\ifnum\appendixno=`Z Z% % The \the is necessary, despite appearances, because \appendixletter is % expanded while writing the .toc file. \char\appendixno is not % expandable, thus it is written literally, thus all appendixes come out % with the same letter (or @) in the toc without it. \else\char\the\appendixno \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi} % Each @chapter defines these (using marks) as the number+name, number % and name of the chapter. Page headings and footings can use % these. @section does likewise. \def\thischapter{} \def\thischapternum{} \def\thischaptername{} \def\thissection{} \def\thissectionnum{} \def\thissectionname{} \newcount\absseclevel % used to calculate proper heading level \newcount\secbase\secbase=0 % @raisesections/@lowersections modify this count % @raisesections: treat @section as chapter, @subsection as section, etc. \def\raisesections{\global\advance\secbase by -1} \let\up=\raisesections % original BFox name % @lowersections: treat @chapter as section, @section as subsection, etc. \def\lowersections{\global\advance\secbase by 1} \let\down=\lowersections % original BFox name % we only have subsub. \chardef\maxseclevel = 3 % % A numbered section within an unnumbered changes to unnumbered too. % To achieve this, remember the "biggest" unnum. sec. we are currently in: \chardef\unnlevel = \maxseclevel % % Trace whether the current chapter is an appendix or not: % \chapheadtype is "N" or "A", unnumbered chapters are ignored. \def\chapheadtype{N} % Choose a heading macro % #1 is heading type % #2 is heading level % #3 is text for heading \def\genhead#1#2#3{% % Compute the abs. sec. level: \absseclevel=#2 \advance\absseclevel by \secbase % Make sure \absseclevel doesn't fall outside the range: \ifnum \absseclevel < 0 \absseclevel = 0 \else \ifnum \absseclevel > 3 \absseclevel = 3 \fi \fi % The heading type: \def\headtype{#1}% \if \headtype U% \ifnum \absseclevel < \unnlevel \chardef\unnlevel = \absseclevel \fi \else % Check for appendix sections: \ifnum \absseclevel = 0 \edef\chapheadtype{\headtype}% \else \if \headtype A\if \chapheadtype N% \errmessage{@appendix... within a non-appendix chapter}% \fi\fi \fi % Check for numbered within unnumbered: \ifnum \absseclevel > \unnlevel \def\headtype{U}% \else \chardef\unnlevel = 3 \fi \fi % Now print the heading: \if \headtype U% \ifcase\absseclevel \unnumberedzzz{#3}% \or \unnumberedseczzz{#3}% \or \unnumberedsubseczzz{#3}% \or \unnumberedsubsubseczzz{#3}% \fi \else \if \headtype A% \ifcase\absseclevel \appendixzzz{#3}% \or \appendixsectionzzz{#3}% \or \appendixsubseczzz{#3}% \or \appendixsubsubseczzz{#3}% \fi \else \ifcase\absseclevel \chapterzzz{#3}% \or \seczzz{#3}% \or \numberedsubseczzz{#3}% \or \numberedsubsubseczzz{#3}% \fi \fi \fi \suppressfirstparagraphindent } % an interface: \def\numhead{\genhead N} \def\apphead{\genhead A} \def\unnmhead{\genhead U} % @chapter, @appendix, @unnumbered. Increment top-level counter, reset % all lower-level sectioning counters to zero. % % Also set \chaplevelprefix, which we prepend to @float sequence numbers % (e.g., figures), q.v. By default (before any chapter), that is empty. \let\chaplevelprefix = \empty % \outer\parseargdef\chapter{\numhead0{#1}} % normally numhead0 calls chapterzzz \def\chapterzzz#1{% % section resetting is \global in case the chapter is in a group, such % as an @include file. \global\secno=0 \global\subsecno=0 \global\subsubsecno=0 \global\advance\chapno by 1 % % Used for \float. \gdef\chaplevelprefix{\the\chapno.}% \resetallfloatnos % % \putwordChapter can contain complex things in translations. \toks0=\expandafter{\putwordChapter}% \message{\the\toks0 \space \the\chapno}% % % Write the actual heading. \chapmacro{#1}{Ynumbered}{\the\chapno}% % % So @section and the like are numbered underneath this chapter. \global\let\section = \numberedsec \global\let\subsection = \numberedsubsec \global\let\subsubsection = \numberedsubsubsec } \outer\parseargdef\appendix{\apphead0{#1}} % normally calls appendixzzz % \def\appendixzzz#1{% \global\secno=0 \global\subsecno=0 \global\subsubsecno=0 \global\advance\appendixno by 1 \gdef\chaplevelprefix{\appendixletter.}% \resetallfloatnos % % \putwordAppendix can contain complex things in translations. \toks0=\expandafter{\putwordAppendix}% \message{\the\toks0 \space \appendixletter}% % \chapmacro{#1}{Yappendix}{\appendixletter}% % \global\let\section = \appendixsec \global\let\subsection = \appendixsubsec \global\let\subsubsection = \appendixsubsubsec } % normally unnmhead0 calls unnumberedzzz: \outer\parseargdef\unnumbered{\unnmhead0{#1}} \def\unnumberedzzz#1{% \global\secno=0 \global\subsecno=0 \global\subsubsecno=0 \global\advance\unnumberedno by 1 % % Since an unnumbered has no number, no prefix for figures. \global\let\chaplevelprefix = \empty \resetallfloatnos % % This used to be simply \message{#1}, but TeX fully expands the % argument to \message. Therefore, if #1 contained @-commands, TeX % expanded them. For example, in `@unnumbered The @cite{Book}', TeX % expanded @cite (which turns out to cause errors because \cite is meant % to be executed, not expanded). % % Anyway, we don't want the fully-expanded definition of @cite to appear % as a result of the \message, we just want `@cite' itself. We use % \the to achieve this: TeX expands \the only once, % simply yielding the contents of . (We also do this for % the toc entries.) \toks0 = {#1}% \message{(\the\toks0)}% % \chapmacro{#1}{Ynothing}{\the\unnumberedno}% % \global\let\section = \unnumberedsec \global\let\subsection = \unnumberedsubsec \global\let\subsubsection = \unnumberedsubsubsec } % @centerchap is like @unnumbered, but the heading is centered. \outer\parseargdef\centerchap{% % Well, we could do the following in a group, but that would break % an assumption that \chapmacro is called at the outermost level. % Thus we are safer this way: --kasal, 24feb04 \let\centerparametersmaybe = \centerparameters \unnmhead0{#1}% \let\centerparametersmaybe = \relax } % @top is like @unnumbered. \let\top\unnumbered % Sections. % \outer\parseargdef\numberedsec{\numhead1{#1}} % normally calls seczzz \def\seczzz#1{% \global\subsecno=0 \global\subsubsecno=0 \global\advance\secno by 1 \sectionheading{#1}{sec}{Ynumbered}{\the\chapno.\the\secno}% } % normally calls appendixsectionzzz: \outer\parseargdef\appendixsection{\apphead1{#1}} \def\appendixsectionzzz#1{% \global\subsecno=0 \global\subsubsecno=0 \global\advance\secno by 1 \sectionheading{#1}{sec}{Yappendix}{\appendixletter.\the\secno}% } \let\appendixsec\appendixsection % normally calls unnumberedseczzz: \outer\parseargdef\unnumberedsec{\unnmhead1{#1}} \def\unnumberedseczzz#1{% \global\subsecno=0 \global\subsubsecno=0 \global\advance\secno by 1 \sectionheading{#1}{sec}{Ynothing}{\the\unnumberedno.\the\secno}% } % Subsections. % % normally calls numberedsubseczzz: \outer\parseargdef\numberedsubsec{\numhead2{#1}} \def\numberedsubseczzz#1{% \global\subsubsecno=0 \global\advance\subsecno by 1 \sectionheading{#1}{subsec}{Ynumbered}{\the\chapno.\the\secno.\the\subsecno}% } % normally calls appendixsubseczzz: \outer\parseargdef\appendixsubsec{\apphead2{#1}} \def\appendixsubseczzz#1{% \global\subsubsecno=0 \global\advance\subsecno by 1 \sectionheading{#1}{subsec}{Yappendix}% {\appendixletter.\the\secno.\the\subsecno}% } % normally calls unnumberedsubseczzz: \outer\parseargdef\unnumberedsubsec{\unnmhead2{#1}} \def\unnumberedsubseczzz#1{% \global\subsubsecno=0 \global\advance\subsecno by 1 \sectionheading{#1}{subsec}{Ynothing}% {\the\unnumberedno.\the\secno.\the\subsecno}% } % Subsubsections. % % normally numberedsubsubseczzz: \outer\parseargdef\numberedsubsubsec{\numhead3{#1}} \def\numberedsubsubseczzz#1{% \global\advance\subsubsecno by 1 \sectionheading{#1}{subsubsec}{Ynumbered}% {\the\chapno.\the\secno.\the\subsecno.\the\subsubsecno}% } % normally appendixsubsubseczzz: \outer\parseargdef\appendixsubsubsec{\apphead3{#1}} \def\appendixsubsubseczzz#1{% \global\advance\subsubsecno by 1 \sectionheading{#1}{subsubsec}{Yappendix}% {\appendixletter.\the\secno.\the\subsecno.\the\subsubsecno}% } % normally unnumberedsubsubseczzz: \outer\parseargdef\unnumberedsubsubsec{\unnmhead3{#1}} \def\unnumberedsubsubseczzz#1{% \global\advance\subsubsecno by 1 \sectionheading{#1}{subsubsec}{Ynothing}% {\the\unnumberedno.\the\secno.\the\subsecno.\the\subsubsecno}% } % These macros control what the section commands do, according % to what kind of chapter we are in (ordinary, appendix, or unnumbered). % Define them by default for a numbered chapter. \let\section = \numberedsec \let\subsection = \numberedsubsec \let\subsubsection = \numberedsubsubsec % Define @majorheading, @heading and @subheading \def\majorheading{% {\advance\chapheadingskip by 10pt \chapbreak }% \parsearg\chapheadingzzz } \def\chapheading{\chapbreak \parsearg\chapheadingzzz} \def\chapheadingzzz#1{% \vbox{\chapfonts \raggedtitlesettings #1\par}% \nobreak\bigskip \nobreak \suppressfirstparagraphindent } % @heading, @subheading, @subsubheading. \parseargdef\heading{\sectionheading{#1}{sec}{Yomitfromtoc}{} \suppressfirstparagraphindent} \parseargdef\subheading{\sectionheading{#1}{subsec}{Yomitfromtoc}{} \suppressfirstparagraphindent} \parseargdef\subsubheading{\sectionheading{#1}{subsubsec}{Yomitfromtoc}{} \suppressfirstparagraphindent} % These macros generate a chapter, section, etc. heading only % (including whitespace, linebreaking, etc. around it), % given all the information in convenient, parsed form. % Args are the skip and penalty (usually negative) \def\dobreak#1#2{\par\ifdim\lastskip<#1\removelastskip\penalty#2\vskip#1\fi} % Parameter controlling skip before chapter headings (if needed) \newskip\chapheadingskip % Define plain chapter starts, and page on/off switching for it. \def\chapbreak{\dobreak \chapheadingskip {-4000}} \def\chappager{\par\vfill\supereject} % Because \domark is called before \chapoddpage, the filler page will % get the headings for the next chapter, which is wrong. But we don't % care -- we just disable all headings on the filler page. \def\chapoddpage{% \chappager \ifodd\pageno \else \begingroup \headingsoff \null \chappager \endgroup \fi } \def\setchapternewpage #1 {\csname CHAPPAG#1\endcsname} \def\CHAPPAGoff{% \global\let\contentsalignmacro = \chappager \global\let\pchapsepmacro=\chapbreak \global\let\pagealignmacro=\chappager} \def\CHAPPAGon{% \global\let\contentsalignmacro = \chappager \global\let\pchapsepmacro=\chappager \global\let\pagealignmacro=\chappager \global\def\HEADINGSon{\HEADINGSsingle}} \def\CHAPPAGodd{% \global\let\contentsalignmacro = \chapoddpage \global\let\pchapsepmacro=\chapoddpage \global\let\pagealignmacro=\chapoddpage \global\def\HEADINGSon{\HEADINGSdouble}} \CHAPPAGon % Chapter opening. % % #1 is the text, #2 is the section type (Ynumbered, Ynothing, % Yappendix, Yomitfromtoc), #3 the chapter number. % % To test against our argument. \def\Ynothingkeyword{Ynothing} \def\Yomitfromtockeyword{Yomitfromtoc} \def\Yappendixkeyword{Yappendix} % \def\chapmacro#1#2#3{% % Insert the first mark before the heading break (see notes for \domark). \let\prevchapterdefs=\lastchapterdefs \let\prevsectiondefs=\lastsectiondefs \gdef\lastsectiondefs{\gdef\thissectionname{}\gdef\thissectionnum{}% \gdef\thissection{}}% % \def\temptype{#2}% \ifx\temptype\Ynothingkeyword \gdef\lastchapterdefs{\gdef\thischaptername{#1}\gdef\thischapternum{}% \gdef\thischapter{\thischaptername}}% \else\ifx\temptype\Yomitfromtockeyword \gdef\lastchapterdefs{\gdef\thischaptername{#1}\gdef\thischapternum{}% \gdef\thischapter{}}% \else\ifx\temptype\Yappendixkeyword \toks0={#1}% \xdef\lastchapterdefs{% \gdef\noexpand\thischaptername{\the\toks0}% \gdef\noexpand\thischapternum{\appendixletter}% % \noexpand\putwordAppendix avoids expanding indigestible % commands in some of the translations. \gdef\noexpand\thischapter{\noexpand\putwordAppendix{} \noexpand\thischapternum: \noexpand\thischaptername}% }% \else \toks0={#1}% \xdef\lastchapterdefs{% \gdef\noexpand\thischaptername{\the\toks0}% \gdef\noexpand\thischapternum{\the\chapno}% % \noexpand\putwordChapter avoids expanding indigestible % commands in some of the translations. \gdef\noexpand\thischapter{\noexpand\putwordChapter{} \noexpand\thischapternum: \noexpand\thischaptername}% }% \fi\fi\fi % % Output the mark. Pass it through \safewhatsit, to take care of % the preceding space. \safewhatsit\domark % % Insert the chapter heading break. \pchapsepmacro % % Now the second mark, after the heading break. No break points % between here and the heading. \let\prevchapterdefs=\lastchapterdefs \let\prevsectiondefs=\lastsectiondefs \domark % {% \chapfonts \rmisbold % % Have to define \lastsection before calling \donoderef, because the % xref code eventually uses it. On the other hand, it has to be called % after \pchapsepmacro, or the headline will change too soon. \gdef\lastsection{#1}% % % Only insert the separating space if we have a chapter/appendix % number, and don't print the unnumbered ``number''. \ifx\temptype\Ynothingkeyword \setbox0 = \hbox{}% \def\toctype{unnchap}% \else\ifx\temptype\Yomitfromtockeyword \setbox0 = \hbox{}% contents like unnumbered, but no toc entry \def\toctype{omit}% \else\ifx\temptype\Yappendixkeyword \setbox0 = \hbox{\putwordAppendix{} #3\enspace}% \def\toctype{app}% \else \setbox0 = \hbox{#3\enspace}% \def\toctype{numchap}% \fi\fi\fi % % Write the toc entry for this chapter. Must come before the % \donoderef, because we include the current node name in the toc % entry, and \donoderef resets it to empty. \writetocentry{\toctype}{#1}{#3}% % % For pdftex, we have to write out the node definition (aka, make % the pdfdest) after any page break, but before the actual text has % been typeset. If the destination for the pdf outline is after the % text, then jumping from the outline may wind up with the text not % being visible, for instance under high magnification. \donoderef{#2}% % % Typeset the actual heading. \nobreak % Avoid page breaks at the interline glue. \vbox{\raggedtitlesettings \hangindent=\wd0 \centerparametersmaybe \unhbox0 #1\par}% }% \nobreak\bigskip % no page break after a chapter title \nobreak } % @centerchap -- centered and unnumbered. \let\centerparametersmaybe = \relax \def\centerparameters{% \advance\rightskip by 3\rightskip \leftskip = \rightskip \parfillskip = 0pt } % I don't think this chapter style is supported any more, so I'm not % updating it with the new noderef stuff. We'll see. --karl, 11aug03. % \def\setchapterstyle #1 {\csname CHAPF#1\endcsname} % \def\unnchfopen #1{% \chapoddpage \vbox{\chapfonts \raggedtitlesettings #1\par}% \nobreak\bigskip\nobreak } \def\chfopen #1#2{\chapoddpage {\chapfonts \vbox to 3in{\vfil \hbox to\hsize{\hfil #2} \hbox to\hsize{\hfil #1} \vfil}}% \par\penalty 5000 % } \def\centerchfopen #1{% \chapoddpage \vbox{\chapfonts \raggedtitlesettings \hfill #1\hfill}% \nobreak\bigskip \nobreak } \def\CHAPFopen{% \global\let\chapmacro=\chfopen \global\let\centerchapmacro=\centerchfopen} % Section titles. These macros combine the section number parts and % call the generic \sectionheading to do the printing. % \newskip\secheadingskip \def\secheadingbreak{\dobreak \secheadingskip{-1000}} % Subsection titles. \newskip\subsecheadingskip \def\subsecheadingbreak{\dobreak \subsecheadingskip{-500}} % Subsubsection titles. \def\subsubsecheadingskip{\subsecheadingskip} \def\subsubsecheadingbreak{\subsecheadingbreak} % Print any size, any type, section title. % % #1 is the text, #2 is the section level (sec/subsec/subsubsec), #3 is % the section type for xrefs (Ynumbered, Ynothing, Yappendix), #4 is the % section number. % \def\seckeyword{sec} % \def\sectionheading#1#2#3#4{% {% \checkenv{}% should not be in an environment. % % Switch to the right set of fonts. \csname #2fonts\endcsname \rmisbold % \def\sectionlevel{#2}% \def\temptype{#3}% % % Insert first mark before the heading break (see notes for \domark). \let\prevsectiondefs=\lastsectiondefs \ifx\temptype\Ynothingkeyword \ifx\sectionlevel\seckeyword \gdef\lastsectiondefs{\gdef\thissectionname{#1}\gdef\thissectionnum{}% \gdef\thissection{\thissectionname}}% \fi \else\ifx\temptype\Yomitfromtockeyword % Don't redefine \thissection. \else\ifx\temptype\Yappendixkeyword \ifx\sectionlevel\seckeyword \toks0={#1}% \xdef\lastsectiondefs{% \gdef\noexpand\thissectionname{\the\toks0}% \gdef\noexpand\thissectionnum{#4}% % \noexpand\putwordSection avoids expanding indigestible % commands in some of the translations. \gdef\noexpand\thissection{\noexpand\putwordSection{} \noexpand\thissectionnum: \noexpand\thissectionname}% }% \fi \else \ifx\sectionlevel\seckeyword \toks0={#1}% \xdef\lastsectiondefs{% \gdef\noexpand\thissectionname{\the\toks0}% \gdef\noexpand\thissectionnum{#4}% % \noexpand\putwordSection avoids expanding indigestible % commands in some of the translations. \gdef\noexpand\thissection{\noexpand\putwordSection{} \noexpand\thissectionnum: \noexpand\thissectionname}% }% \fi \fi\fi\fi % % Go into vertical mode. Usually we'll already be there, but we % don't want the following whatsit to end up in a preceding paragraph % if the document didn't happen to have a blank line. \par % % Output the mark. Pass it through \safewhatsit, to take care of % the preceding space. \safewhatsit\domark % % Insert space above the heading. \csname #2headingbreak\endcsname % % Now the second mark, after the heading break. No break points % between here and the heading. \let\prevsectiondefs=\lastsectiondefs \domark % % Only insert the space after the number if we have a section number. \ifx\temptype\Ynothingkeyword \setbox0 = \hbox{}% \def\toctype{unn}% \gdef\lastsection{#1}% \else\ifx\temptype\Yomitfromtockeyword % for @headings -- no section number, don't include in toc, % and don't redefine \lastsection. \setbox0 = \hbox{}% \def\toctype{omit}% \let\sectionlevel=\empty \else\ifx\temptype\Yappendixkeyword \setbox0 = \hbox{#4\enspace}% \def\toctype{app}% \gdef\lastsection{#1}% \else \setbox0 = \hbox{#4\enspace}% \def\toctype{num}% \gdef\lastsection{#1}% \fi\fi\fi % % Write the toc entry (before \donoderef). See comments in \chapmacro. \writetocentry{\toctype\sectionlevel}{#1}{#4}% % % Write the node reference (= pdf destination for pdftex). % Again, see comments in \chapmacro. \donoderef{#3}% % % Interline glue will be inserted when the vbox is completed. % That glue will be a valid breakpoint for the page, since it'll be % preceded by a whatsit (usually from the \donoderef, or from the % \writetocentry if there was no node). We don't want to allow that % break, since then the whatsits could end up on page n while the % section is on page n+1, thus toc/etc. are wrong. Debian bug 276000. \nobreak % % Output the actual section heading. \vbox{\hyphenpenalty=10000 \tolerance=5000 \parindent=0pt \ptexraggedright \hangindent=\wd0 % zero if no section number \unhbox0 #1}% }% % Add extra space after the heading -- half of whatever came above it. % Don't allow stretch, though. \kern .5 \csname #2headingskip\endcsname % % Do not let the kern be a potential breakpoint, as it would be if it % was followed by glue. \nobreak % % We'll almost certainly start a paragraph next, so don't let that % glue accumulate. (Not a breakpoint because it's preceded by a % discardable item.) However, when a paragraph is not started next % (\startdefun, \cartouche, \center, etc.), this needs to be wiped out % or the negative glue will cause weirdly wrong output, typically % obscuring the section heading with something else. \vskip-\parskip % % This is so the last item on the main vertical list is a known % \penalty > 10000, so \startdefun, etc., can recognize the situation % and do the needful. \penalty 10001 } \message{toc,} % Table of contents. \newwrite\tocfile % Write an entry to the toc file, opening it if necessary. % Called from @chapter, etc. % % Example usage: \writetocentry{sec}{Section Name}{\the\chapno.\the\secno} % We append the current node name (if any) and page number as additional % arguments for the \{chap,sec,...}entry macros which will eventually % read this. The node name is used in the pdf outlines as the % destination to jump to. % % We open the .toc file for writing here instead of at @setfilename (or % any other fixed time) so that @contents can be anywhere in the document. % But if #1 is `omit', then we don't do anything. This is used for the % table of contents chapter openings themselves. % \newif\iftocfileopened \def\omitkeyword{omit}% % \def\writetocentry#1#2#3{% \edef\writetoctype{#1}% \ifx\writetoctype\omitkeyword \else \iftocfileopened\else \immediate\openout\tocfile = \jobname.toc \global\tocfileopenedtrue \fi % \iflinks {\atdummies \edef\temp{% \write\tocfile{@#1entry{#2}{#3}{\lastnode}{\noexpand\folio}}}% \temp }% \fi \fi % % Tell \shipout to create a pdf destination on each page, if we're % writing pdf. These are used in the table of contents. We can't % just write one on every page because the title pages are numbered % 1 and 2 (the page numbers aren't printed), and so are the first % two pages of the document. Thus, we'd have two destinations named % `1', and two named `2'. \ifpdf \global\pdfmakepagedesttrue \fi } % These characters do not print properly in the Computer Modern roman % fonts, so we must take special care. This is more or less redundant % with the Texinfo input format setup at the end of this file. % \def\activecatcodes{% \catcode`\"=\active \catcode`\$=\active \catcode`\<=\active \catcode`\>=\active \catcode`\\=\active \catcode`\^=\active \catcode`\_=\active \catcode`\|=\active \catcode`\~=\active } % Read the toc file, which is essentially Texinfo input. \def\readtocfile{% \setupdatafile \activecatcodes \input \tocreadfilename } \newskip\contentsrightmargin \contentsrightmargin=1in \newcount\savepageno \newcount\lastnegativepageno \lastnegativepageno = -1 % Prepare to read what we've written to \tocfile. % \def\startcontents#1{% % If @setchapternewpage on, and @headings double, the contents should % start on an odd page, unlike chapters. Thus, we maintain % \contentsalignmacro in parallel with \pagealignmacro. % From: Torbjorn Granlund \contentsalignmacro \immediate\closeout\tocfile % % Don't need to put `Contents' or `Short Contents' in the headline. % It is abundantly clear what they are. \chapmacro{#1}{Yomitfromtoc}{}% % \savepageno = \pageno \begingroup % Set up to handle contents files properly. \raggedbottom % Worry more about breakpoints than the bottom. \advance\hsize by -\contentsrightmargin % Don't use the full line length. % % Roman numerals for page numbers. \ifnum \pageno>0 \global\pageno = \lastnegativepageno \fi } % redefined for the two-volume lispref. We always output on % \jobname.toc even if this is redefined. % \def\tocreadfilename{\jobname.toc} % Normal (long) toc. % \def\contents{% \startcontents{\putwordTOC}% \openin 1 \tocreadfilename\space \ifeof 1 \else \readtocfile \fi \vfill \eject \contentsalignmacro % in case @setchapternewpage odd is in effect \ifeof 1 \else \pdfmakeoutlines \fi \closein 1 \endgroup \lastnegativepageno = \pageno \global\pageno = \savepageno } % And just the chapters. \def\summarycontents{% \startcontents{\putwordShortTOC}% % \let\partentry = \shortpartentry \let\numchapentry = \shortchapentry \let\appentry = \shortchapentry \let\unnchapentry = \shortunnchapentry % We want a true roman here for the page numbers. \secfonts \let\rm=\shortcontrm \let\bf=\shortcontbf \let\sl=\shortcontsl \let\tt=\shortconttt \rm \hyphenpenalty = 10000 \advance\baselineskip by 1pt % Open it up a little. \def\numsecentry##1##2##3##4{} \let\appsecentry = \numsecentry \let\unnsecentry = \numsecentry \let\numsubsecentry = \numsecentry \let\appsubsecentry = \numsecentry \let\unnsubsecentry = \numsecentry \let\numsubsubsecentry = \numsecentry \let\appsubsubsecentry = \numsecentry \let\unnsubsubsecentry = \numsecentry \openin 1 \tocreadfilename\space \ifeof 1 \else \readtocfile \fi \closein 1 \vfill \eject \contentsalignmacro % in case @setchapternewpage odd is in effect \endgroup \lastnegativepageno = \pageno \global\pageno = \savepageno } \let\shortcontents = \summarycontents % Typeset the label for a chapter or appendix for the short contents. % The arg is, e.g., `A' for an appendix, or `3' for a chapter. % \def\shortchaplabel#1{% % This space should be enough, since a single number is .5em, and the % widest letter (M) is 1em, at least in the Computer Modern fonts. % But use \hss just in case. % (This space doesn't include the extra space that gets added after % the label; that gets put in by \shortchapentry above.) % % We'd like to right-justify chapter numbers, but that looks strange % with appendix letters. And right-justifying numbers and % left-justifying letters looks strange when there is less than 10 % chapters. Have to read the whole toc once to know how many chapters % there are before deciding ... \hbox to 1em{#1\hss}% } % These macros generate individual entries in the table of contents. % The first argument is the chapter or section name. % The last argument is the page number. % The arguments in between are the chapter number, section number, ... % Parts, in the main contents. Replace the part number, which doesn't % exist, with an empty box. Let's hope all the numbers have the same width. % Also ignore the page number, which is conventionally not printed. \def\numeralbox{\setbox0=\hbox{8}\hbox to \wd0{\hfil}} \def\partentry#1#2#3#4{\dochapentry{\numeralbox\labelspace#1}{}} % % Parts, in the short toc. \def\shortpartentry#1#2#3#4{% \penalty-300 \vskip.5\baselineskip plus.15\baselineskip minus.1\baselineskip \shortchapentry{{\bf #1}}{\numeralbox}{}{}% } % Chapters, in the main contents. \def\numchapentry#1#2#3#4{\dochapentry{#2\labelspace#1}{#4}} % % Chapters, in the short toc. % See comments in \dochapentry re vbox and related settings. \def\shortchapentry#1#2#3#4{% \tocentry{\shortchaplabel{#2}\labelspace #1}{\doshortpageno\bgroup#4\egroup}% } % Appendices, in the main contents. % Need the word Appendix, and a fixed-size box. % \def\appendixbox#1{% % We use M since it's probably the widest letter. \setbox0 = \hbox{\putwordAppendix{} M}% \hbox to \wd0{\putwordAppendix{} #1\hss}} % \def\appentry#1#2#3#4{\dochapentry{\appendixbox{#2}\labelspace#1}{#4}} % Unnumbered chapters. \def\unnchapentry#1#2#3#4{\dochapentry{#1}{#4}} \def\shortunnchapentry#1#2#3#4{\tocentry{#1}{\doshortpageno\bgroup#4\egroup}} % Sections. \def\numsecentry#1#2#3#4{\dosecentry{#2\labelspace#1}{#4}} \let\appsecentry=\numsecentry \def\unnsecentry#1#2#3#4{\dosecentry{#1}{#4}} % Subsections. \def\numsubsecentry#1#2#3#4{\dosubsecentry{#2\labelspace#1}{#4}} \let\appsubsecentry=\numsubsecentry \def\unnsubsecentry#1#2#3#4{\dosubsecentry{#1}{#4}} % And subsubsections. \def\numsubsubsecentry#1#2#3#4{\dosubsubsecentry{#2\labelspace#1}{#4}} \let\appsubsubsecentry=\numsubsubsecentry \def\unnsubsubsecentry#1#2#3#4{\dosubsubsecentry{#1}{#4}} % This parameter controls the indentation of the various levels. % Same as \defaultparindent. \newdimen\tocindent \tocindent = 15pt % Now for the actual typesetting. In all these, #1 is the text and #2 is the % page number. % % If the toc has to be broken over pages, we want it to be at chapters % if at all possible; hence the \penalty. \def\dochapentry#1#2{% \penalty-300 \vskip1\baselineskip plus.33\baselineskip minus.25\baselineskip \begingroup \chapentryfonts \tocentry{#1}{\dopageno\bgroup#2\egroup}% \endgroup \nobreak\vskip .25\baselineskip plus.1\baselineskip } \def\dosecentry#1#2{\begingroup \secentryfonts \leftskip=\tocindent \tocentry{#1}{\dopageno\bgroup#2\egroup}% \endgroup} \def\dosubsecentry#1#2{\begingroup \subsecentryfonts \leftskip=2\tocindent \tocentry{#1}{\dopageno\bgroup#2\egroup}% \endgroup} \def\dosubsubsecentry#1#2{\begingroup \subsubsecentryfonts \leftskip=3\tocindent \tocentry{#1}{\dopageno\bgroup#2\egroup}% \endgroup} % We use the same \entry macro as for the index entries. \let\tocentry = \entry % Space between chapter (or whatever) number and the title. \def\labelspace{\hskip1em \relax} \def\dopageno#1{{\rm #1}} \def\doshortpageno#1{{\rm #1}} \def\chapentryfonts{\secfonts \rm} \def\secentryfonts{\textfonts} \def\subsecentryfonts{\textfonts} \def\subsubsecentryfonts{\textfonts} \message{environments,} % @foo ... @end foo. % @tex ... @end tex escapes into raw TeX temporarily. % One exception: @ is still an escape character, so that @end tex works. % But \@ or @@ will get a plain @ character. \envdef\tex{% \setupmarkupstyle{tex}% \catcode `\\=0 \catcode `\{=1 \catcode `\}=2 \catcode `\$=3 \catcode `\&=4 \catcode `\#=6 \catcode `\^=7 \catcode `\_=8 \catcode `\~=\active \let~=\tie \catcode `\%=14 \catcode `\+=\other \catcode `\"=\other \catcode `\|=\other \catcode `\<=\other \catcode `\>=\other \catcode`\`=\other \catcode`\'=\other \escapechar=`\\ % % ' is active in math mode (mathcode"8000). So reset it, and all our % other math active characters (just in case), to plain's definitions. \mathactive % \let\b=\ptexb \let\bullet=\ptexbullet \let\c=\ptexc \let\,=\ptexcomma \let\.=\ptexdot \let\dots=\ptexdots \let\equiv=\ptexequiv \let\!=\ptexexclam \let\i=\ptexi \let\indent=\ptexindent \let\noindent=\ptexnoindent \let\{=\ptexlbrace \let\+=\tabalign \let\}=\ptexrbrace \let\/=\ptexslash \let\*=\ptexstar \let\t=\ptext \expandafter \let\csname top\endcsname=\ptextop % outer \let\frenchspacing=\plainfrenchspacing % \def\endldots{\mathinner{\ldots\ldots\ldots\ldots}}% \def\enddots{\relax\ifmmode\endldots\else$\mathsurround=0pt \endldots\,$\fi}% \def\@{@}% } % There is no need to define \Etex. % Define @lisp ... @end lisp. % @lisp environment forms a group so it can rebind things, % including the definition of @end lisp (which normally is erroneous). % Amount to narrow the margins by for @lisp. \newskip\lispnarrowing \lispnarrowing=0.4in % This is the definition that ^^M gets inside @lisp, @example, and other % such environments. \null is better than a space, since it doesn't % have any width. \def\lisppar{\null\endgraf} % This space is always present above and below environments. \newskip\envskipamount \envskipamount = 0pt % Make spacing and below environment symmetrical. We use \parskip here % to help in doing that, since in @example-like environments \parskip % is reset to zero; thus the \afterenvbreak inserts no space -- but the % start of the next paragraph will insert \parskip. % \def\aboveenvbreak{{% % =10000 instead of <10000 because of a special case in \itemzzz and % \sectionheading, q.v. \ifnum \lastpenalty=10000 \else \advance\envskipamount by \parskip \endgraf \ifdim\lastskip<\envskipamount \removelastskip % it's not a good place to break if the last penalty was \nobreak % or better ... \ifnum\lastpenalty<10000 \penalty-50 \fi \vskip\envskipamount \fi \fi }} \let\afterenvbreak = \aboveenvbreak % \nonarrowing is a flag. If "set", @lisp etc don't narrow margins; it will % also clear it, so that its embedded environments do the narrowing again. \let\nonarrowing=\relax % @cartouche ... @end cartouche: draw rectangle w/rounded corners around % environment contents. \font\circle=lcircle10 \newdimen\circthick \newdimen\cartouter\newdimen\cartinner \newskip\normbskip\newskip\normpskip\newskip\normlskip \circthick=\fontdimen8\circle % \def\ctl{{\circle\char'013\hskip -6pt}}% 6pt from pl file: 1/2charwidth \def\ctr{{\hskip 6pt\circle\char'010}} \def\cbl{{\circle\char'012\hskip -6pt}} \def\cbr{{\hskip 6pt\circle\char'011}} \def\carttop{\hbox to \cartouter{\hskip\lskip \ctl\leaders\hrule height\circthick\hfil\ctr \hskip\rskip}} \def\cartbot{\hbox to \cartouter{\hskip\lskip \cbl\leaders\hrule height\circthick\hfil\cbr \hskip\rskip}} % \newskip\lskip\newskip\rskip \envdef\cartouche{% \ifhmode\par\fi % can't be in the midst of a paragraph. \startsavinginserts \lskip=\leftskip \rskip=\rightskip \leftskip=0pt\rightskip=0pt % we want these *outside*. \cartinner=\hsize \advance\cartinner by-\lskip \advance\cartinner by-\rskip \cartouter=\hsize \advance\cartouter by 18.4pt % allow for 3pt kerns on either % side, and for 6pt waste from % each corner char, and rule thickness \normbskip=\baselineskip \normpskip=\parskip \normlskip=\lineskip % Flag to tell @lisp, etc., not to narrow margin. \let\nonarrowing = t% % % If this cartouche directly follows a sectioning command, we need the % \parskip glue (backspaced over by default) or the cartouche can % collide with the section heading. \ifnum\lastpenalty>10000 \vskip\parskip \penalty\lastpenalty \fi % \vbox\bgroup \baselineskip=0pt\parskip=0pt\lineskip=0pt \carttop \hbox\bgroup \hskip\lskip \vrule\kern3pt \vbox\bgroup \kern3pt \hsize=\cartinner \baselineskip=\normbskip \lineskip=\normlskip \parskip=\normpskip \vskip -\parskip \comment % For explanation, see the end of def\group. } \def\Ecartouche{% \ifhmode\par\fi \kern3pt \egroup \kern3pt\vrule \hskip\rskip \egroup \cartbot \egroup \checkinserts } % This macro is called at the beginning of all the @example variants, % inside a group. \newdimen\nonfillparindent \def\nonfillstart{% \aboveenvbreak \hfuzz = 12pt % Don't be fussy \sepspaces % Make spaces be word-separators rather than space tokens. \let\par = \lisppar % don't ignore blank lines \obeylines % each line of input is a line of output \parskip = 0pt % Turn off paragraph indentation but redefine \indent to emulate % the normal \indent. \nonfillparindent=\parindent \parindent = 0pt \let\indent\nonfillindent % \emergencystretch = 0pt % don't try to avoid overfull boxes \ifx\nonarrowing\relax \advance \leftskip by \lispnarrowing \exdentamount=\lispnarrowing \else \let\nonarrowing = \relax \fi \let\exdent=\nofillexdent } \begingroup \obeyspaces % We want to swallow spaces (but not other tokens) after the fake % @indent in our nonfill-environments, where spaces are normally % active and set to @tie, resulting in them not being ignored after % @indent. \gdef\nonfillindent{\futurelet\temp\nonfillindentcheck}% \gdef\nonfillindentcheck{% \ifx\temp % \expandafter\nonfillindentgobble% \else% \leavevmode\nonfillindentbox% \fi% }% \endgroup \def\nonfillindentgobble#1{\nonfillindent} \def\nonfillindentbox{\hbox to \nonfillparindent{\hss}} % If you want all examples etc. small: @set dispenvsize small. % If you want even small examples the full size: @set dispenvsize nosmall. % This affects the following displayed environments: % @example, @display, @format, @lisp % \def\smallword{small} \def\nosmallword{nosmall} \let\SETdispenvsize\relax \def\setnormaldispenv{% \ifx\SETdispenvsize\smallword % end paragraph for sake of leading, in case document has no blank % line. This is redundant with what happens in \aboveenvbreak, but % we need to do it before changing the fonts, and it's inconvenient % to change the fonts afterward. \ifnum \lastpenalty=10000 \else \endgraf \fi \smallexamplefonts \rm \fi } \def\setsmalldispenv{% \ifx\SETdispenvsize\nosmallword \else \ifnum \lastpenalty=10000 \else \endgraf \fi \smallexamplefonts \rm \fi } % We often define two environments, @foo and @smallfoo. % Let's do it in one command. #1 is the env name, #2 the definition. \def\makedispenvdef#1#2{% \expandafter\envdef\csname#1\endcsname {\setnormaldispenv #2}% \expandafter\envdef\csname small#1\endcsname {\setsmalldispenv #2}% \expandafter\let\csname E#1\endcsname \afterenvbreak \expandafter\let\csname Esmall#1\endcsname \afterenvbreak } % Define two environment synonyms (#1 and #2) for an environment. \def\maketwodispenvdef#1#2#3{% \makedispenvdef{#1}{#3}% \makedispenvdef{#2}{#3}% } % % @lisp: indented, narrowed, typewriter font; % @example: same as @lisp. % % @smallexample and @smalllisp: use smaller fonts. % Originally contributed by Pavel@xerox. % \maketwodispenvdef{lisp}{example}{% \nonfillstart \tt\setupmarkupstyle{example}% \let\kbdfont = \kbdexamplefont % Allow @kbd to do something special. \gobble % eat return } % @display/@smalldisplay: same as @lisp except keep current font. % \makedispenvdef{display}{% \nonfillstart \gobble } % @format/@smallformat: same as @display except don't narrow margins. % \makedispenvdef{format}{% \let\nonarrowing = t% \nonfillstart \gobble } % @flushleft: same as @format, but doesn't obey \SETdispenvsize. \envdef\flushleft{% \let\nonarrowing = t% \nonfillstart \gobble } \let\Eflushleft = \afterenvbreak % @flushright. % \envdef\flushright{% \let\nonarrowing = t% \nonfillstart \advance\leftskip by 0pt plus 1fill\relax \gobble } \let\Eflushright = \afterenvbreak % @raggedright does more-or-less normal line breaking but no right % justification. From plain.tex. \envdef\raggedright{% \rightskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax } \let\Eraggedright\par \envdef\raggedleft{% \parindent=0pt \leftskip0pt plus2em \spaceskip.3333em \xspaceskip.5em \parfillskip=0pt \hbadness=10000 % Last line will usually be underfull, so turn off % badness reporting. } \let\Eraggedleft\par \envdef\raggedcenter{% \parindent=0pt \rightskip0pt plus1em \leftskip0pt plus1em \spaceskip.3333em \xspaceskip.5em \parfillskip=0pt \hbadness=10000 % Last line will usually be underfull, so turn off % badness reporting. } \let\Eraggedcenter\par % @quotation does normal linebreaking (hence we can't use \nonfillstart) % and narrows the margins. We keep \parskip nonzero in general, since % we're doing normal filling. So, when using \aboveenvbreak and % \afterenvbreak, temporarily make \parskip 0. % \makedispenvdef{quotation}{\quotationstart} % \def\quotationstart{% \indentedblockstart % same as \indentedblock, but increase right margin too. \ifx\nonarrowing\relax \advance\rightskip by \lispnarrowing \fi \parsearg\quotationlabel } % We have retained a nonzero parskip for the environment, since we're % doing normal filling. % \def\Equotation{% \par \ifx\quotationauthor\thisisundefined\else % indent a bit. \leftline{\kern 2\leftskip \sl ---\quotationauthor}% \fi {\parskip=0pt \afterenvbreak}% } \def\Esmallquotation{\Equotation} % If we're given an argument, typeset it in bold with a colon after. \def\quotationlabel#1{% \def\temp{#1}% \ifx\temp\empty \else {\bf #1: }% \fi } % @indentedblock is like @quotation, but indents only on the left and % has no optional argument. % \makedispenvdef{indentedblock}{\indentedblockstart} % \def\indentedblockstart{% {\parskip=0pt \aboveenvbreak}% because \aboveenvbreak inserts \parskip \parindent=0pt % % @cartouche defines \nonarrowing to inhibit narrowing at next level down. \ifx\nonarrowing\relax \advance\leftskip by \lispnarrowing \exdentamount = \lispnarrowing \else \let\nonarrowing = \relax \fi } % Keep a nonzero parskip for the environment, since we're doing normal filling. % \def\Eindentedblock{% \par {\parskip=0pt \afterenvbreak}% } \def\Esmallindentedblock{\Eindentedblock} % LaTeX-like @verbatim...@end verbatim and @verb{...} % If we want to allow any as delimiter, % we need the curly braces so that makeinfo sees the @verb command, eg: % `@verbx...x' would look like the '@verbx' command. --janneke@gnu.org % % [Knuth]: Donald Ervin Knuth, 1996. The TeXbook. % % [Knuth] p.344; only we need to do the other characters Texinfo sets % active too. Otherwise, they get lost as the first character on a % verbatim line. \def\dospecials{% \do\ \do\\\do\{\do\}\do\$\do\&% \do\#\do\^\do\^^K\do\_\do\^^A\do\%\do\~% \do\<\do\>\do\|\do\@\do+\do\"% % Don't do the quotes -- if we do, @set txicodequoteundirected and % @set txicodequotebacktick will not have effect on @verb and % @verbatim, and ?` and !` ligatures won't get disabled. %\do\`\do\'% } % % [Knuth] p. 380 \def\uncatcodespecials{% \def\do##1{\catcode`##1=\other}\dospecials} % % Setup for the @verb command. % % Eight spaces for a tab \begingroup \catcode`\^^I=\active \gdef\tabeightspaces{\catcode`\^^I=\active\def^^I{\ \ \ \ \ \ \ \ }} \endgroup % \def\setupverb{% \tt % easiest (and conventionally used) font for verbatim \def\par{\leavevmode\endgraf}% \setupmarkupstyle{verb}% \tabeightspaces % Respect line breaks, % print special symbols as themselves, and % make each space count % must do in this order: \obeylines \uncatcodespecials \sepspaces } % Setup for the @verbatim environment % % Real tab expansion. \newdimen\tabw \setbox0=\hbox{\tt\space} \tabw=8\wd0 % tab amount % % We typeset each line of the verbatim in an \hbox, so we can handle % tabs. The \global is in case the verbatim line starts with an accent, % or some other command that starts with a begin-group. Otherwise, the % entire \verbbox would disappear at the corresponding end-group, before % it is typeset. Meanwhile, we can't have nested verbatim commands % (can we?), so the \global won't be overwriting itself. \newbox\verbbox \def\starttabbox{\global\setbox\verbbox=\hbox\bgroup} % \begingroup \catcode`\^^I=\active \gdef\tabexpand{% \catcode`\^^I=\active \def^^I{\leavevmode\egroup \dimen\verbbox=\wd\verbbox % the width so far, or since the previous tab \divide\dimen\verbbox by\tabw \multiply\dimen\verbbox by\tabw % compute previous multiple of \tabw \advance\dimen\verbbox by\tabw % advance to next multiple of \tabw \wd\verbbox=\dimen\verbbox \box\verbbox \starttabbox }% } \endgroup % start the verbatim environment. \def\setupverbatim{% \let\nonarrowing = t% \nonfillstart \tt % easiest (and conventionally used) font for verbatim % The \leavevmode here is for blank lines. Otherwise, we would % never \starttabox and the \egroup would end verbatim mode. \def\par{\leavevmode\egroup\box\verbbox\endgraf}% \tabexpand \setupmarkupstyle{verbatim}% % Respect line breaks, % print special symbols as themselves, and % make each space count. % Must do in this order: \obeylines \uncatcodespecials \sepspaces \everypar{\starttabbox}% } % Do the @verb magic: verbatim text is quoted by unique % delimiter characters. Before first delimiter expect a % right brace, after last delimiter expect closing brace: % % \def\doverb'{'#1'}'{#1} % % [Knuth] p. 382; only eat outer {} \begingroup \catcode`[=1\catcode`]=2\catcode`\{=\other\catcode`\}=\other \gdef\doverb{#1[\def\next##1#1}[##1\endgroup]\next] \endgroup % \def\verb{\begingroup\setupverb\doverb} % % % Do the @verbatim magic: define the macro \doverbatim so that % the (first) argument ends when '@end verbatim' is reached, ie: % % \def\doverbatim#1@end verbatim{#1} % % For Texinfo it's a lot easier than for LaTeX, % because texinfo's \verbatim doesn't stop at '\end{verbatim}': % we need not redefine '\', '{' and '}'. % % Inspired by LaTeX's verbatim command set [latex.ltx] % \begingroup \catcode`\ =\active \obeylines % % ignore everything up to the first ^^M, that's the newline at the end % of the @verbatim input line itself. Otherwise we get an extra blank % line in the output. \xdef\doverbatim#1^^M#2@end verbatim{#2\noexpand\end\gobble verbatim}% % We really want {...\end verbatim} in the body of the macro, but % without the active space; thus we have to use \xdef and \gobble. \endgroup % \envdef\verbatim{% \setupverbatim\doverbatim } \let\Everbatim = \afterenvbreak % @verbatiminclude FILE - insert text of file in verbatim environment. % \def\verbatiminclude{\parseargusing\filenamecatcodes\doverbatiminclude} % \def\doverbatiminclude#1{% {% \makevalueexpandable \setupverbatim \indexnofonts % Allow `@@' and other weird things in file names. \wlog{texinfo.tex: doing @verbatiminclude of #1^^J}% \input #1 \afterenvbreak }% } % @copying ... @end copying. % Save the text away for @insertcopying later. % % We save the uninterpreted tokens, rather than creating a box. % Saving the text in a box would be much easier, but then all the % typesetting commands (@smallbook, font changes, etc.) have to be done % beforehand -- and a) we want @copying to be done first in the source % file; b) letting users define the frontmatter in as flexible order as % possible is very desirable. % \def\copying{\checkenv{}\begingroup\scanargctxt\docopying} \def\docopying#1@end copying{\endgroup\def\copyingtext{#1}} % \def\insertcopying{% \begingroup \parindent = 0pt % paragraph indentation looks wrong on title page \scanexp\copyingtext \endgroup } \message{defuns,} % @defun etc. \newskip\defbodyindent \defbodyindent=.4in \newskip\defargsindent \defargsindent=50pt \newskip\deflastargmargin \deflastargmargin=18pt \newcount\defunpenalty % Start the processing of @deffn: \def\startdefun{% \ifnum\lastpenalty<10000 \medbreak \defunpenalty=10003 % Will keep this @deffn together with the % following @def command, see below. \else % If there are two @def commands in a row, we'll have a \nobreak, % which is there to keep the function description together with its % header. But if there's nothing but headers, we need to allow a % break somewhere. Check specifically for penalty 10002, inserted % by \printdefunline, instead of 10000, since the sectioning % commands also insert a nobreak penalty, and we don't want to allow % a break between a section heading and a defun. % % As a further refinement, we avoid "club" headers by signalling % with penalty of 10003 after the very first @deffn in the % sequence (see above), and penalty of 10002 after any following % @def command. \ifnum\lastpenalty=10002 \penalty2000 \else \defunpenalty=10002 \fi % % Similarly, after a section heading, do not allow a break. % But do insert the glue. \medskip % preceded by discardable penalty, so not a breakpoint \fi % \parindent=0in \advance\leftskip by \defbodyindent \exdentamount=\defbodyindent } \def\dodefunx#1{% % First, check whether we are in the right environment: \checkenv#1% % % As above, allow line break if we have multiple x headers in a row. % It's not a great place, though. \ifnum\lastpenalty=10002 \penalty3000 \else \defunpenalty=10002 \fi % % And now, it's time to reuse the body of the original defun: \expandafter\gobbledefun#1% } \def\gobbledefun#1\startdefun{} % \printdefunline \deffnheader{text} % \def\printdefunline#1#2{% \begingroup % call \deffnheader: #1#2 \endheader % common ending: \interlinepenalty = 10000 \advance\rightskip by 0pt plus 1fil\relax \endgraf \nobreak\vskip -\parskip \penalty\defunpenalty % signal to \startdefun and \dodefunx % Some of the @defun-type tags do not enable magic parentheses, % rendering the following check redundant. But we don't optimize. \checkparencounts \endgroup } \def\Edefun{\endgraf\medbreak} % \makedefun{deffn} creates \deffn, \deffnx and \Edeffn; % the only thing remaining is to define \deffnheader. % \def\makedefun#1{% \expandafter\let\csname E#1\endcsname = \Edefun \edef\temp{\noexpand\domakedefun \makecsname{#1}\makecsname{#1x}\makecsname{#1header}}% \temp } % \domakedefun \deffn \deffnx \deffnheader % % Define \deffn and \deffnx, without parameters. % \deffnheader has to be defined explicitly. % \def\domakedefun#1#2#3{% \envdef#1{% \startdefun \doingtypefnfalse % distinguish typed functions from all else \parseargusing\activeparens{\printdefunline#3}% }% \def#2{\dodefunx#1}% \def#3% } \newif\ifdoingtypefn % doing typed function? \newif\ifrettypeownline % typeset return type on its own line? % @deftypefnnewline on|off says whether the return type of typed functions % are printed on their own line. This affects @deftypefn, @deftypefun, % @deftypeop, and @deftypemethod. % \parseargdef\deftypefnnewline{% \def\temp{#1}% \ifx\temp\onword \expandafter\let\csname SETtxideftypefnnl\endcsname = \empty \else\ifx\temp\offword \expandafter\let\csname SETtxideftypefnnl\endcsname = \relax \else \errhelp = \EMsimple \errmessage{Unknown @txideftypefnnl value `\temp', must be on|off}% \fi\fi } % Untyped functions: % @deffn category name args \makedefun{deffn}{\deffngeneral{}} % @deffn category class name args \makedefun{defop}#1 {\defopon{#1\ \putwordon}} % \defopon {category on}class name args \def\defopon#1#2 {\deffngeneral{\putwordon\ \code{#2}}{#1\ \code{#2}} } % \deffngeneral {subind}category name args % \def\deffngeneral#1#2 #3 #4\endheader{% % Remember that \dosubind{fn}{foo}{} is equivalent to \doind{fn}{foo}. \dosubind{fn}{\code{#3}}{#1}% \defname{#2}{}{#3}\magicamp\defunargs{#4\unskip}% } % Typed functions: % @deftypefn category type name args \makedefun{deftypefn}{\deftypefngeneral{}} % @deftypeop category class type name args \makedefun{deftypeop}#1 {\deftypeopon{#1\ \putwordon}} % \deftypeopon {category on}class type name args \def\deftypeopon#1#2 {\deftypefngeneral{\putwordon\ \code{#2}}{#1\ \code{#2}} } % \deftypefngeneral {subind}category type name args % \def\deftypefngeneral#1#2 #3 #4 #5\endheader{% \dosubind{fn}{\code{#4}}{#1}% \doingtypefntrue \defname{#2}{#3}{#4}\defunargs{#5\unskip}% } % Typed variables: % @deftypevr category type var args \makedefun{deftypevr}{\deftypecvgeneral{}} % @deftypecv category class type var args \makedefun{deftypecv}#1 {\deftypecvof{#1\ \putwordof}} % \deftypecvof {category of}class type var args \def\deftypecvof#1#2 {\deftypecvgeneral{\putwordof\ \code{#2}}{#1\ \code{#2}} } % \deftypecvgeneral {subind}category type var args % \def\deftypecvgeneral#1#2 #3 #4 #5\endheader{% \dosubind{vr}{\code{#4}}{#1}% \defname{#2}{#3}{#4}\defunargs{#5\unskip}% } % Untyped variables: % @defvr category var args \makedefun{defvr}#1 {\deftypevrheader{#1} {} } % @defcv category class var args \makedefun{defcv}#1 {\defcvof{#1\ \putwordof}} % \defcvof {category of}class var args \def\defcvof#1#2 {\deftypecvof{#1}#2 {} } % Types: % @deftp category name args \makedefun{deftp}#1 #2 #3\endheader{% \doind{tp}{\code{#2}}% \defname{#1}{}{#2}\defunargs{#3\unskip}% } % Remaining @defun-like shortcuts: \makedefun{defun}{\deffnheader{\putwordDeffunc} } \makedefun{defmac}{\deffnheader{\putwordDefmac} } \makedefun{defspec}{\deffnheader{\putwordDefspec} } \makedefun{deftypefun}{\deftypefnheader{\putwordDeffunc} } \makedefun{defvar}{\defvrheader{\putwordDefvar} } \makedefun{defopt}{\defvrheader{\putwordDefopt} } \makedefun{deftypevar}{\deftypevrheader{\putwordDefvar} } \makedefun{defmethod}{\defopon\putwordMethodon} \makedefun{deftypemethod}{\deftypeopon\putwordMethodon} \makedefun{defivar}{\defcvof\putwordInstanceVariableof} \makedefun{deftypeivar}{\deftypecvof\putwordInstanceVariableof} % \defname, which formats the name of the @def (not the args). % #1 is the category, such as "Function". % #2 is the return type, if any. % #3 is the function name. % % We are followed by (but not passed) the arguments, if any. % \def\defname#1#2#3{% \par % Get the values of \leftskip and \rightskip as they were outside the @def... \advance\leftskip by -\defbodyindent % % Determine if we are typesetting the return type of a typed function % on a line by itself. \rettypeownlinefalse \ifdoingtypefn % doing a typed function specifically? % then check user option for putting return type on its own line: \expandafter\ifx\csname SETtxideftypefnnl\endcsname\relax \else \rettypeownlinetrue \fi \fi % % How we'll format the category name. Putting it in brackets helps % distinguish it from the body text that may end up on the next line % just below it. \def\temp{#1}% \setbox0=\hbox{\kern\deflastargmargin \ifx\temp\empty\else [\rm\temp]\fi} % % Figure out line sizes for the paragraph shape. We'll always have at % least two. \tempnum = 2 % % The first line needs space for \box0; but if \rightskip is nonzero, % we need only space for the part of \box0 which exceeds it: \dimen0=\hsize \advance\dimen0 by -\wd0 \advance\dimen0 by \rightskip % % If doing a return type on its own line, we'll have another line. \ifrettypeownline \advance\tempnum by 1 \def\maybeshapeline{0in \hsize}% \else \def\maybeshapeline{}% \fi % % The continuations: \dimen2=\hsize \advance\dimen2 by -\defargsindent % % The final paragraph shape: \parshape \tempnum 0in \dimen0 \maybeshapeline \defargsindent \dimen2 % % Put the category name at the right margin. \noindent \hbox to 0pt{% \hfil\box0 \kern-\hsize % \hsize has to be shortened this way: \kern\leftskip % Intentionally do not respect \rightskip, since we need the space. }% % % Allow all lines to be underfull without complaint: \tolerance=10000 \hbadness=10000 \exdentamount=\defbodyindent {% % defun fonts. We use typewriter by default (used to be bold) because: % . we're printing identifiers, they should be in tt in principle. % . in languages with many accents, such as Czech or French, it's % common to leave accents off identifiers. The result looks ok in % tt, but exceedingly strange in rm. % . we don't want -- and --- to be treated as ligatures. % . this still does not fix the ?` and !` ligatures, but so far no % one has made identifiers using them :). \df \tt \def\temp{#2}% text of the return type \ifx\temp\empty\else \tclose{\temp}% typeset the return type \ifrettypeownline % put return type on its own line; prohibit line break following: \hfil\vadjust{\nobreak}\break \else \space % type on same line, so just followed by a space \fi \fi % no return type #3% output function name }% {\rm\enskip}% hskip 0.5 em of \tenrm % \boldbrax % arguments will be output next, if any. } % Print arguments in slanted roman (not ttsl), inconsistently with using % tt for the name. This is because literal text is sometimes needed in % the argument list (groff manual), and ttsl and tt are not very % distinguishable. Prevent hyphenation at `-' chars. % \def\defunargs#1{% % use sl by default (not ttsl), % tt for the names. \df \sl \hyphenchar\font=0 % % On the other hand, if an argument has two dashes (for instance), we % want a way to get ttsl. We used to recommend @var for that, so % leave the code in, but it's strange for @var to lead to typewriter. % Nowadays we recommend @code, since the difference between a ttsl hyphen % and a tt hyphen is pretty tiny. @code also disables ?` !`. \def\var##1{{\setupmarkupstyle{var}\ttslanted{##1}}}% #1% \sl\hyphenchar\font=45 } % We want ()&[] to print specially on the defun line. % \def\activeparens{% \catcode`\(=\active \catcode`\)=\active \catcode`\[=\active \catcode`\]=\active \catcode`\&=\active } % Make control sequences which act like normal parenthesis chars. \let\lparen = ( \let\rparen = ) % Be sure that we always have a definition for `(', etc. For example, % if the fn name has parens in it, \boldbrax will not be in effect yet, % so TeX would otherwise complain about undefined control sequence. { \activeparens \global\let(=\lparen \global\let)=\rparen \global\let[=\lbrack \global\let]=\rbrack \global\let& = \& \gdef\boldbrax{\let(=\opnr\let)=\clnr\let[=\lbrb\let]=\rbrb} \gdef\magicamp{\let&=\amprm} } \newcount\parencount % If we encounter &foo, then turn on ()-hacking afterwards \newif\ifampseen \def\amprm#1 {\ampseentrue{\bf\ }} \def\parenfont{% \ifampseen % At the first level, print parens in roman, % otherwise use the default font. \ifnum \parencount=1 \rm \fi \else % The \sf parens (in \boldbrax) actually are a little bolder than % the contained text. This is especially needed for [ and ] . \sf \fi } \def\infirstlevel#1{% \ifampseen \ifnum\parencount=1 #1% \fi \fi } \def\bfafterword#1 {#1 \bf} \def\opnr{% \global\advance\parencount by 1 {\parenfont(}% \infirstlevel \bfafterword } \def\clnr{% {\parenfont)}% \infirstlevel \sl \global\advance\parencount by -1 } \newcount\brackcount \def\lbrb{% \global\advance\brackcount by 1 {\bf[}% } \def\rbrb{% {\bf]}% \global\advance\brackcount by -1 } \def\checkparencounts{% \ifnum\parencount=0 \else \badparencount \fi \ifnum\brackcount=0 \else \badbrackcount \fi } % these should not use \errmessage; the glibc manual, at least, actually % has such constructs (when documenting function pointers). \def\badparencount{% \message{Warning: unbalanced parentheses in @def...}% \global\parencount=0 } \def\badbrackcount{% \message{Warning: unbalanced square brackets in @def...}% \global\brackcount=0 } \message{macros,} % @macro. % To do this right we need a feature of e-TeX, \scantokens, % which we arrange to emulate with a temporary file in ordinary TeX. \ifx\eTeXversion\thisisundefined \newwrite\macscribble \def\scantokens#1{% \toks0={#1}% \immediate\openout\macscribble=\jobname.tmp \immediate\write\macscribble{\the\toks0}% \immediate\closeout\macscribble \input \jobname.tmp } \fi \def\scanmacro#1{\begingroup \newlinechar`\^^M \let\xeatspaces\eatspaces % % Undo catcode changes of \startcontents and \doprintindex % When called from @insertcopying or (short)caption, we need active % backslash to get it printed correctly. Previously, we had % \catcode`\\=\other instead. We'll see whether a problem appears % with macro expansion. --kasal, 19aug04 \catcode`\@=0 \catcode`\\=\active \escapechar=`\@ % % ... and for \example: \spaceisspace % % The \empty here causes a following catcode 5 newline to be eaten as % part of reading whitespace after a control sequence. It does not % eat a catcode 13 newline. There's no good way to handle the two % cases (untried: maybe e-TeX's \everyeof could help, though plain TeX % would then have different behavior). See the Macro Details node in % the manual for the workaround we recommend for macros and % line-oriented commands. % \scantokens{#1\empty}% \endgroup} \def\scanexp#1{% \edef\temp{\noexpand\scanmacro{#1}}% \temp } \newcount\paramno % Count of parameters \newtoks\macname % Macro name \newif\ifrecursive % Is it recursive? % List of all defined macros in the form % \definedummyword\macro1\definedummyword\macro2... % Currently is also contains all @aliases; the list can be split % if there is a need. \def\macrolist{} % Add the macro to \macrolist \def\addtomacrolist#1{\expandafter \addtomacrolistxxx \csname#1\endcsname} \def\addtomacrolistxxx#1{% \toks0 = \expandafter{\macrolist\definedummyword#1}% \xdef\macrolist{\the\toks0}% } % Utility routines. % This does \let #1 = #2, with \csnames; that is, % \let \csname#1\endcsname = \csname#2\endcsname % (except of course we have to play expansion games). % \def\cslet#1#2{% \expandafter\let \csname#1\expandafter\endcsname \csname#2\endcsname } % Trim leading and trailing spaces off a string. % Concepts from aro-bend problem 15 (see CTAN). {\catcode`\@=11 \gdef\eatspaces #1{\expandafter\trim@\expandafter{#1 }} \gdef\trim@ #1{\trim@@ @#1 @ #1 @ @@} \gdef\trim@@ #1@ #2@ #3@@{\trim@@@\empty #2 @} \def\unbrace#1{#1} \unbrace{\gdef\trim@@@ #1 } #2@{#1} } % Trim a single trailing ^^M off a string. {\catcode`\^^M=\other \catcode`\Q=3% \gdef\eatcr #1{\eatcra #1Q^^MQ}% \gdef\eatcra#1^^MQ{\eatcrb#1Q}% \gdef\eatcrb#1Q#2Q{#1}% } % Macro bodies are absorbed as an argument in a context where % all characters are catcode 10, 11 or 12, except \ which is active % (as in normal texinfo). It is necessary to change the definition of \ % to recognize macro arguments; this is the job of \mbodybackslash. % % Non-ASCII encodings make 8-bit characters active, so un-activate % them to avoid their expansion. Must do this non-globally, to % confine the change to the current group. % % It's necessary to have hard CRs when the macro is executed. This is % done by making ^^M (\endlinechar) catcode 12 when reading the macro % body, and then making it the \newlinechar in \scanmacro. % \def\scanctxt{% used as subroutine \catcode`\"=\other \catcode`\+=\other \catcode`\<=\other \catcode`\>=\other \catcode`\@=\other \catcode`\^=\other \catcode`\_=\other \catcode`\|=\other \catcode`\~=\other \ifx\declaredencoding\ascii \else \setnonasciicharscatcodenonglobal\other \fi } \def\scanargctxt{% used for copying and captions, not macros. \scanctxt \catcode`\\=\other \catcode`\^^M=\other } \def\macrobodyctxt{% used for @macro definitions \scanctxt \catcode`\{=\other \catcode`\}=\other \catcode`\^^M=\other \usembodybackslash } \def\macroargctxt{% used when scanning invocations \scanctxt \catcode`\\=0 } % why catcode 0 for \ in the above? To recognize \\ \{ \} as "escapes" % for the single characters \ { }. Thus, we end up with the "commands" % that would be written @\ @{ @} in a Texinfo document. % % We already have @{ and @}. For @\, we define it here, and only for % this purpose, to produce a typewriter backslash (so, the @\ that we % define for @math can't be used with @macro calls): % \def\\{\normalbackslash}% % % We would like to do this for \, too, since that is what makeinfo does. % But it is not possible, because Texinfo already has a command @, for a % cedilla accent. Documents must use @comma{} instead. % % \anythingelse will almost certainly be an error of some kind. % \mbodybackslash is the definition of \ in @macro bodies. % It maps \foo\ => \csname macarg.foo\endcsname => #N % where N is the macro parameter number. % We define \csname macarg.\endcsname to be \realbackslash, so % \\ in macro replacement text gets you a backslash. % {\catcode`@=0 @catcode`@\=@active @gdef@usembodybackslash{@let\=@mbodybackslash} @gdef@mbodybackslash#1\{@csname macarg.#1@endcsname} } \expandafter\def\csname macarg.\endcsname{\realbackslash} \def\margbackslash#1{\char`\#1 } \def\macro{\recursivefalse\parsearg\macroxxx} \def\rmacro{\recursivetrue\parsearg\macroxxx} \def\macroxxx#1{% \getargs{#1}% now \macname is the macname and \argl the arglist \ifx\argl\empty % no arguments \paramno=0\relax \else \expandafter\parsemargdef \argl;% \if\paramno>256\relax \ifx\eTeXversion\thisisundefined \errhelp = \EMsimple \errmessage{You need eTeX to compile a file with macros with more than 256 arguments} \fi \fi \fi \if1\csname ismacro.\the\macname\endcsname \message{Warning: redefining \the\macname}% \else \expandafter\ifx\csname \the\macname\endcsname \relax \else \errmessage{Macro name \the\macname\space already defined}\fi \global\cslet{macsave.\the\macname}{\the\macname}% \global\expandafter\let\csname ismacro.\the\macname\endcsname=1% \addtomacrolist{\the\macname}% \fi \begingroup \macrobodyctxt \ifrecursive \expandafter\parsermacbody \else \expandafter\parsemacbody \fi} \parseargdef\unmacro{% \if1\csname ismacro.#1\endcsname \global\cslet{#1}{macsave.#1}% \global\expandafter\let \csname ismacro.#1\endcsname=0% % Remove the macro name from \macrolist: \begingroup \expandafter\let\csname#1\endcsname \relax \let\definedummyword\unmacrodo \xdef\macrolist{\macrolist}% \endgroup \else \errmessage{Macro #1 not defined}% \fi } % Called by \do from \dounmacro on each macro. The idea is to omit any % macro definitions that have been changed to \relax. % \def\unmacrodo#1{% \ifx #1\relax % remove this \else \noexpand\definedummyword \noexpand#1% \fi } % This makes use of the obscure feature that if the last token of a % is #, then the preceding argument is delimited by % an opening brace, and that opening brace is not consumed. \def\getargs#1{\getargsxxx#1{}} \def\getargsxxx#1#{\getmacname #1 \relax\getmacargs} \def\getmacname#1 #2\relax{\macname={#1}} \def\getmacargs#1{\def\argl{#1}} % For macro processing make @ a letter so that we can make Texinfo private macro names. \edef\texiatcatcode{\the\catcode`\@} \catcode `@=11\relax % Parse the optional {params} list. Set up \paramno and \paramlist % so \defmacro knows what to do. Define \macarg.BLAH for each BLAH % in the params list to some hook where the argument si to be expanded. If % there are less than 10 arguments that hook is to be replaced by ##N where N % is the position in that list, that is to say the macro arguments are to be % defined `a la TeX in the macro body. % % That gets used by \mbodybackslash (above). % % We need to get `macro parameter char #' into several definitions. % The technique used is stolen from LaTeX: let \hash be something % unexpandable, insert that wherever you need a #, and then redefine % it to # just before using the token list produced. % % The same technique is used to protect \eatspaces till just before % the macro is used. % % If there are 10 or more arguments, a different technique is used, where the % hook remains in the body, and when macro is to be expanded the body is % processed again to replace the arguments. % % In that case, the hook is \the\toks N-1, and we simply set \toks N-1 to the % argument N value and then \edef the body (nothing else will expand because of % the catcode regime underwhich the body was input). % % If you compile with TeX (not eTeX), and you have macros with 10 or more % arguments, you need that no macro has more than 256 arguments, otherwise an % error is produced. \def\parsemargdef#1;{% \paramno=0\def\paramlist{}% \let\hash\relax \let\xeatspaces\relax \parsemargdefxxx#1,;,% % In case that there are 10 or more arguments we parse again the arguments % list to set new definitions for the \macarg.BLAH macros corresponding to % each BLAH argument. It was anyhow needed to parse already once this list % in order to count the arguments, and as macros with at most 9 arguments % are by far more frequent than macro with 10 or more arguments, defining % twice the \macarg.BLAH macros does not cost too much processing power. \ifnum\paramno<10\relax\else \paramno0\relax \parsemmanyargdef@@#1,;,% 10 or more arguments \fi } \def\parsemargdefxxx#1,{% \if#1;\let\next=\relax \else \let\next=\parsemargdefxxx \advance\paramno by 1 \expandafter\edef\csname macarg.\eatspaces{#1}\endcsname {\xeatspaces{\hash\the\paramno}}% \edef\paramlist{\paramlist\hash\the\paramno,}% \fi\next} \def\parsemmanyargdef@@#1,{% \if#1;\let\next=\relax \else \let\next=\parsemmanyargdef@@ \edef\tempb{\eatspaces{#1}}% \expandafter\def\expandafter\tempa \expandafter{\csname macarg.\tempb\endcsname}% % Note that we need some extra \noexpand\noexpand, this is because we % don't want \the to be expanded in the \parsermacbody as it uses an % \xdef . \expandafter\edef\tempa {\noexpand\noexpand\noexpand\the\toks\the\paramno}% \advance\paramno by 1\relax \fi\next} % These two commands read recursive and nonrecursive macro bodies. % (They're different since rec and nonrec macros end differently.) % \catcode `\@\texiatcatcode \long\def\parsemacbody#1@end macro% {\xdef\temp{\eatcr{#1}}\endgroup\defmacro}% \long\def\parsermacbody#1@end rmacro% {\xdef\temp{\eatcr{#1}}\endgroup\defmacro}% \catcode `\@=11\relax \let\endargs@\relax \let\nil@\relax \def\nilm@{\nil@}% \long\def\nillm@{\nil@}% % This macro is expanded during the Texinfo macro expansion, not during its % definition. It gets all the arguments values and assigns them to macros % macarg.ARGNAME % % #1 is the macro name % #2 is the list of argument names % #3 is the list of argument values \def\getargvals@#1#2#3{% \def\macargdeflist@{}% \def\saveparamlist@{#2}% Need to keep a copy for parameter expansion. \def\paramlist{#2,\nil@}% \def\macroname{#1}% \begingroup \macroargctxt \def\argvaluelist{#3,\nil@}% \def\@tempa{#3}% \ifx\@tempa\empty \setemptyargvalues@ \else \getargvals@@ \fi } % \def\getargvals@@{% \ifx\paramlist\nilm@ % Some sanity check needed here that \argvaluelist is also empty. \ifx\argvaluelist\nillm@ \else \errhelp = \EMsimple \errmessage{Too many arguments in macro `\macroname'!}% \fi \let\next\macargexpandinbody@ \else \ifx\argvaluelist\nillm@ % No more arguments values passed to macro. Set remaining named-arg % macros to empty. \let\next\setemptyargvalues@ \else % pop current arg name into \@tempb \def\@tempa##1{\pop@{\@tempb}{\paramlist}##1\endargs@}% \expandafter\@tempa\expandafter{\paramlist}% % pop current argument value into \@tempc \def\@tempa##1{\longpop@{\@tempc}{\argvaluelist}##1\endargs@}% \expandafter\@tempa\expandafter{\argvaluelist}% % Here \@tempb is the current arg name and \@tempc is the current arg value. % First place the new argument macro definition into \@tempd \expandafter\macname\expandafter{\@tempc}% \expandafter\let\csname macarg.\@tempb\endcsname\relax \expandafter\def\expandafter\@tempe\expandafter{% \csname macarg.\@tempb\endcsname}% \edef\@tempd{\long\def\@tempe{\the\macname}}% \push@\@tempd\macargdeflist@ \let\next\getargvals@@ \fi \fi \next } \def\push@#1#2{% \expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter#2% \expandafter\expandafter\expandafter{% \expandafter#1#2}% } % Replace arguments by their values in the macro body, and place the result % in macro \@tempa \def\macvalstoargs@{% % To do this we use the property that token registers that are \the'ed % within an \edef expand only once. So we are going to place all argument % values into respective token registers. % % First we save the token context, and initialize argument numbering. \begingroup \paramno0\relax % Then, for each argument number #N, we place the corresponding argument % value into a new token list register \toks#N \expandafter\putargsintokens@\saveparamlist@,;,% % Then, we expand the body so that argument are replaced by their % values. The trick for values not to be expanded themselves is that they % are within tokens and that tokens expand only once in an \edef . \edef\@tempc{\csname mac.\macroname .body\endcsname}% % Now we restore the token stack pointer to free the token list registers % which we have used, but we make sure that expanded body is saved after % group. \expandafter \endgroup \expandafter\def\expandafter\@tempa\expandafter{\@tempc}% } \def\macargexpandinbody@{% %% Define the named-macro outside of this group and then close this group. \expandafter \endgroup \macargdeflist@ % First the replace in body the macro arguments by their values, the result % is in \@tempa . \macvalstoargs@ % Then we point at the \norecurse or \gobble (for recursive) macro value % with \@tempb . \expandafter\let\expandafter\@tempb\csname mac.\macroname .recurse\endcsname % Depending on whether it is recursive or not, we need some tailing % \egroup . \ifx\@tempb\gobble \let\@tempc\relax \else \let\@tempc\egroup \fi % And now we do the real job: \edef\@tempd{\noexpand\@tempb{\macroname}\noexpand\scanmacro{\@tempa}\@tempc}% \@tempd } \def\putargsintokens@#1,{% \if#1;\let\next\relax \else \let\next\putargsintokens@ % First we allocate the new token list register, and give it a temporary % alias \@tempb . \toksdef\@tempb\the\paramno % Then we place the argument value into that token list register. \expandafter\let\expandafter\@tempa\csname macarg.#1\endcsname \expandafter\@tempb\expandafter{\@tempa}% \advance\paramno by 1\relax \fi \next } % Save the token stack pointer into macro #1 \def\texisavetoksstackpoint#1{\edef#1{\the\@cclvi}} % Restore the token stack pointer from number in macro #1 \def\texirestoretoksstackpoint#1{\expandafter\mathchardef\expandafter\@cclvi#1\relax} % newtoks that can be used non \outer . \def\texinonouternewtoks{\alloc@ 5\toks \toksdef \@cclvi} % Tailing missing arguments are set to empty \def\setemptyargvalues@{% \ifx\paramlist\nilm@ \let\next\macargexpandinbody@ \else \expandafter\setemptyargvaluesparser@\paramlist\endargs@ \let\next\setemptyargvalues@ \fi \next } \def\setemptyargvaluesparser@#1,#2\endargs@{% \expandafter\def\expandafter\@tempa\expandafter{% \expandafter\def\csname macarg.#1\endcsname{}}% \push@\@tempa\macargdeflist@ \def\paramlist{#2}% } % #1 is the element target macro % #2 is the list macro % #3,#4\endargs@ is the list value \def\pop@#1#2#3,#4\endargs@{% \def#1{#3}% \def#2{#4}% } \long\def\longpop@#1#2#3,#4\endargs@{% \long\def#1{#3}% \long\def#2{#4}% } % This defines a Texinfo @macro. There are eight cases: recursive and % nonrecursive macros of zero, one, up to nine, and many arguments. % Much magic with \expandafter here. % \xdef is used so that macro definitions will survive the file % they're defined in; @include reads the file inside a group. % \def\defmacro{% \let\hash=##% convert placeholders to macro parameter chars \ifrecursive \ifcase\paramno % 0 \expandafter\xdef\csname\the\macname\endcsname{% \noexpand\scanmacro{\temp}}% \or % 1 \expandafter\xdef\csname\the\macname\endcsname{% \bgroup\noexpand\macroargctxt \noexpand\braceorline \expandafter\noexpand\csname\the\macname xxx\endcsname}% \expandafter\xdef\csname\the\macname xxx\endcsname##1{% \egroup\noexpand\scanmacro{\temp}}% \else \ifnum\paramno<10\relax % at most 9 \expandafter\xdef\csname\the\macname\endcsname{% \bgroup\noexpand\macroargctxt \noexpand\csname\the\macname xx\endcsname}% \expandafter\xdef\csname\the\macname xx\endcsname##1{% \expandafter\noexpand\csname\the\macname xxx\endcsname ##1,}% \expandafter\expandafter \expandafter\xdef \expandafter\expandafter \csname\the\macname xxx\endcsname \paramlist{\egroup\noexpand\scanmacro{\temp}}% \else % 10 or more \expandafter\xdef\csname\the\macname\endcsname{% \noexpand\getargvals@{\the\macname}{\argl}% }% \global\expandafter\let\csname mac.\the\macname .body\endcsname\temp \global\expandafter\let\csname mac.\the\macname .recurse\endcsname\gobble \fi \fi \else \ifcase\paramno % 0 \expandafter\xdef\csname\the\macname\endcsname{% \noexpand\norecurse{\the\macname}% \noexpand\scanmacro{\temp}\egroup}% \or % 1 \expandafter\xdef\csname\the\macname\endcsname{% \bgroup\noexpand\macroargctxt \noexpand\braceorline \expandafter\noexpand\csname\the\macname xxx\endcsname}% \expandafter\xdef\csname\the\macname xxx\endcsname##1{% \egroup \noexpand\norecurse{\the\macname}% \noexpand\scanmacro{\temp}\egroup}% \else % at most 9 \ifnum\paramno<10\relax \expandafter\xdef\csname\the\macname\endcsname{% \bgroup\noexpand\macroargctxt \expandafter\noexpand\csname\the\macname xx\endcsname}% \expandafter\xdef\csname\the\macname xx\endcsname##1{% \expandafter\noexpand\csname\the\macname xxx\endcsname ##1,}% \expandafter\expandafter \expandafter\xdef \expandafter\expandafter \csname\the\macname xxx\endcsname \paramlist{% \egroup \noexpand\norecurse{\the\macname}% \noexpand\scanmacro{\temp}\egroup}% \else % 10 or more: \expandafter\xdef\csname\the\macname\endcsname{% \noexpand\getargvals@{\the\macname}{\argl}% }% \global\expandafter\let\csname mac.\the\macname .body\endcsname\temp \global\expandafter\let\csname mac.\the\macname .recurse\endcsname\norecurse \fi \fi \fi} \catcode `\@\texiatcatcode\relax \def\norecurse#1{\bgroup\cslet{#1}{macsave.#1}} % \braceorline decides whether the next nonwhitespace character is a % {. If so it reads up to the closing }, if not, it reads the whole % line. Whatever was read is then fed to the next control sequence % as an argument (by \parsebrace or \parsearg). % \def\braceorline#1{\let\macnamexxx=#1\futurelet\nchar\braceorlinexxx} \def\braceorlinexxx{% \ifx\nchar\bgroup\else \expandafter\parsearg \fi \macnamexxx} % @alias. % We need some trickery to remove the optional spaces around the equal % sign. Make them active and then expand them all to nothing. % \def\alias{\parseargusing\obeyspaces\aliasxxx} \def\aliasxxx #1{\aliasyyy#1\relax} \def\aliasyyy #1=#2\relax{% {% \expandafter\let\obeyedspace=\empty \addtomacrolist{#1}% \xdef\next{\global\let\makecsname{#1}=\makecsname{#2}}% }% \next } \message{cross references,} \newwrite\auxfile \newif\ifhavexrefs % True if xref values are known. \newif\ifwarnedxrefs % True if we warned once that they aren't known. % @inforef is relatively simple. \def\inforef #1{\inforefzzz #1,,,,**} \def\inforefzzz #1,#2,#3,#4**{% \putwordSee{} \putwordInfo{} \putwordfile{} \file{\ignorespaces #3{}}, node \samp{\ignorespaces#1{}}} % @node's only job in TeX is to define \lastnode, which is used in % cross-references. The @node line might or might not have commas, and % might or might not have spaces before the first comma, like: % @node foo , bar , ... % We don't want such trailing spaces in the node name. % \parseargdef\node{\checkenv{}\donode #1 ,\finishnodeparse} % % also remove a trailing comma, in case of something like this: % @node Help-Cross, , , Cross-refs \def\donode#1 ,#2\finishnodeparse{\dodonode #1,\finishnodeparse} \def\dodonode#1,#2\finishnodeparse{\gdef\lastnode{#1}} \let\nwnode=\node \let\lastnode=\empty % Write a cross-reference definition for the current node. #1 is the % type (Ynumbered, Yappendix, Ynothing). % \def\donoderef#1{% \ifx\lastnode\empty\else \setref{\lastnode}{#1}% \global\let\lastnode=\empty \fi } % @anchor{NAME} -- define xref target at arbitrary point. % \newcount\savesfregister % \def\savesf{\relax \ifhmode \savesfregister=\spacefactor \fi} \def\restoresf{\relax \ifhmode \spacefactor=\savesfregister \fi} \def\anchor#1{\savesf \setref{#1}{Ynothing}\restoresf \ignorespaces} % \setref{NAME}{SNT} defines a cross-reference point NAME (a node or an % anchor), which consists of three parts: % 1) NAME-title - the current sectioning name taken from \lastsection, % or the anchor name. % 2) NAME-snt - section number and type, passed as the SNT arg, or % empty for anchors. % 3) NAME-pg - the page number. % % This is called from \donoderef, \anchor, and \dofloat. In the case of % floats, there is an additional part, which is not written here: % 4) NAME-lof - the text as it should appear in a @listoffloats. % \def\setref#1#2{% \pdfmkdest{#1}% \iflinks {% \atdummies % preserve commands, but don't expand them \edef\writexrdef##1##2{% \write\auxfile{@xrdef{#1-% #1 of \setref, expanded by the \edef ##1}{##2}}% these are parameters of \writexrdef }% \toks0 = \expandafter{\lastsection}% \immediate \writexrdef{title}{\the\toks0 }% \immediate \writexrdef{snt}{\csname #2\endcsname}% \Ynumbered etc. \safewhatsit{\writexrdef{pg}{\folio}}% will be written later, at \shipout }% \fi } % @xrefautosectiontitle on|off says whether @section(ing) names are used % automatically in xrefs, if the third arg is not explicitly specified. % This was provided as a "secret" @set xref-automatic-section-title % variable, now it's official. % \parseargdef\xrefautomaticsectiontitle{% \def\temp{#1}% \ifx\temp\onword \expandafter\let\csname SETxref-automatic-section-title\endcsname = \empty \else\ifx\temp\offword \expandafter\let\csname SETxref-automatic-section-title\endcsname = \relax \else \errhelp = \EMsimple \errmessage{Unknown @xrefautomaticsectiontitle value `\temp', must be on|off}% \fi\fi } % % @xref, @pxref, and @ref generate cross-references. For \xrefX, #1 is % the node name, #2 the name of the Info cross-reference, #3 the printed % node name, #4 the name of the Info file, #5 the name of the printed % manual. All but the node name can be omitted. % \def\pxref#1{\putwordsee{} \xrefX[#1,,,,,,,]} \def\xref#1{\putwordSee{} \xrefX[#1,,,,,,,]} \def\ref#1{\xrefX[#1,,,,,,,]} % \newbox\toprefbox \newbox\printedrefnamebox \newbox\infofilenamebox \newbox\printedmanualbox % \def\xrefX[#1,#2,#3,#4,#5,#6]{\begingroup \unsepspaces % % Get args without leading/trailing spaces. \def\printedrefname{\ignorespaces #3}% \setbox\printedrefnamebox = \hbox{\printedrefname\unskip}% % \def\infofilename{\ignorespaces #4}% \setbox\infofilenamebox = \hbox{\infofilename\unskip}% % \def\printedmanual{\ignorespaces #5}% \setbox\printedmanualbox = \hbox{\printedmanual\unskip}% % % If the printed reference name (arg #3) was not explicitly given in % the @xref, figure out what we want to use. \ifdim \wd\printedrefnamebox = 0pt % No printed node name was explicitly given. \expandafter\ifx\csname SETxref-automatic-section-title\endcsname \relax % Not auto section-title: use node name inside the square brackets. \def\printedrefname{\ignorespaces #1}% \else % Auto section-title: use chapter/section title inside % the square brackets if we have it. \ifdim \wd\printedmanualbox > 0pt % It is in another manual, so we don't have it; use node name. \def\printedrefname{\ignorespaces #1}% \else \ifhavexrefs % We (should) know the real title if we have the xref values. \def\printedrefname{\refx{#1-title}{}}% \else % Otherwise just copy the Info node name. \def\printedrefname{\ignorespaces #1}% \fi% \fi \fi \fi % % Make link in pdf output. \ifpdf {\indexnofonts \turnoffactive \makevalueexpandable % This expands tokens, so do it after making catcode changes, so _ % etc. don't get their TeX definitions. This ignores all spaces in % #4, including (wrongly) those in the middle of the filename. \getfilename{#4}% % % This (wrongly) does not take account of leading or trailing % spaces in #1, which should be ignored. \edef\pdfxrefdest{#1}% \ifx\pdfxrefdest\empty \def\pdfxrefdest{Top}% no empty targets \else \txiescapepdf\pdfxrefdest % escape PDF special chars \fi % \leavevmode \startlink attr{/Border [0 0 0]}% \ifnum\filenamelength>0 goto file{\the\filename.pdf} name{\pdfxrefdest}% \else goto name{\pdfmkpgn{\pdfxrefdest}}% \fi }% \setcolor{\linkcolor}% \fi % % Float references are printed completely differently: "Figure 1.2" % instead of "[somenode], p.3". We distinguish them by the % LABEL-title being set to a magic string. {% % Have to otherify everything special to allow the \csname to % include an _ in the xref name, etc. \indexnofonts \turnoffactive \expandafter\global\expandafter\let\expandafter\Xthisreftitle \csname XR#1-title\endcsname }% \iffloat\Xthisreftitle % If the user specified the print name (third arg) to the ref, % print it instead of our usual "Figure 1.2". \ifdim\wd\printedrefnamebox = 0pt \refx{#1-snt}{}% \else \printedrefname \fi % % If the user also gave the printed manual name (fifth arg), append % "in MANUALNAME". \ifdim \wd\printedmanualbox > 0pt \space \putwordin{} \cite{\printedmanual}% \fi \else % node/anchor (non-float) references. % % If we use \unhbox to print the node names, TeX does not insert % empty discretionaries after hyphens, which means that it will not % find a line break at a hyphen in a node names. Since some manuals % are best written with fairly long node names, containing hyphens, % this is a loss. Therefore, we give the text of the node name % again, so it is as if TeX is seeing it for the first time. % \ifdim \wd\printedmanualbox > 0pt % Cross-manual reference with a printed manual name. % \crossmanualxref{\cite{\printedmanual\unskip}}% % \else\ifdim \wd\infofilenamebox > 0pt % Cross-manual reference with only an info filename (arg 4), no % printed manual name (arg 5). This is essentially the same as % the case above; we output the filename, since we have nothing else. % \crossmanualxref{\code{\infofilename\unskip}}% % \else % Reference within this manual. % % _ (for example) has to be the character _ for the purposes of the % control sequence corresponding to the node, but it has to expand % into the usual \leavevmode...\vrule stuff for purposes of % printing. So we \turnoffactive for the \refx-snt, back on for the % printing, back off for the \refx-pg. {\turnoffactive % Only output a following space if the -snt ref is nonempty; for % @unnumbered and @anchor, it won't be. \setbox2 = \hbox{\ignorespaces \refx{#1-snt}{}}% \ifdim \wd2 > 0pt \refx{#1-snt}\space\fi }% % output the `[mynode]' via the macro below so it can be overridden. \xrefprintnodename\printedrefname % % But we always want a comma and a space: ,\space % % output the `page 3'. \turnoffactive \putwordpage\tie\refx{#1-pg}{}% \fi\fi \fi \endlink \endgroup} % Output a cross-manual xref to #1. Used just above (twice). % % Only include the text "Section ``foo'' in" if the foo is neither % missing or Top. Thus, @xref{,,,foo,The Foo Manual} outputs simply % "see The Foo Manual", the idea being to refer to the whole manual. % % But, this being TeX, we can't easily compare our node name against the % string "Top" while ignoring the possible spaces before and after in % the input. By adding the arbitrary 7sp below, we make it much less % likely that a real node name would have the same width as "Top" (e.g., % in a monospaced font). Hopefully it will never happen in practice. % % For the same basic reason, we retypeset the "Top" at every % reference, since the current font is indeterminate. % \def\crossmanualxref#1{% \setbox\toprefbox = \hbox{Top\kern7sp}% \setbox2 = \hbox{\ignorespaces \printedrefname \unskip \kern7sp}% \ifdim \wd2 > 7sp % nonempty? \ifdim \wd2 = \wd\toprefbox \else % same as Top? \putwordSection{} ``\printedrefname'' \putwordin{}\space \fi \fi #1% } % This macro is called from \xrefX for the `[nodename]' part of xref % output. It's a separate macro only so it can be changed more easily, % since square brackets don't work well in some documents. Particularly % one that Bob is working on :). % \def\xrefprintnodename#1{[#1]} % Things referred to by \setref. % \def\Ynothing{} \def\Yomitfromtoc{} \def\Ynumbered{% \ifnum\secno=0 \putwordChapter@tie \the\chapno \else \ifnum\subsecno=0 \putwordSection@tie \the\chapno.\the\secno \else \ifnum\subsubsecno=0 \putwordSection@tie \the\chapno.\the\secno.\the\subsecno \else \putwordSection@tie \the\chapno.\the\secno.\the\subsecno.\the\subsubsecno \fi\fi\fi } \def\Yappendix{% \ifnum\secno=0 \putwordAppendix@tie @char\the\appendixno{}% \else \ifnum\subsecno=0 \putwordSection@tie @char\the\appendixno.\the\secno \else \ifnum\subsubsecno=0 \putwordSection@tie @char\the\appendixno.\the\secno.\the\subsecno \else \putwordSection@tie @char\the\appendixno.\the\secno.\the\subsecno.\the\subsubsecno \fi\fi\fi } % Define \refx{NAME}{SUFFIX} to reference a cross-reference string named NAME. % If its value is nonempty, SUFFIX is output afterward. % \def\refx#1#2{% {% \indexnofonts \otherbackslash \expandafter\global\expandafter\let\expandafter\thisrefX \csname XR#1\endcsname }% \ifx\thisrefX\relax % If not defined, say something at least. \angleleft un\-de\-fined\angleright \iflinks \ifhavexrefs {\toks0 = {#1}% avoid expansion of possibly-complex value \message{\linenumber Undefined cross reference `\the\toks0'.}}% \else \ifwarnedxrefs\else \global\warnedxrefstrue \message{Cross reference values unknown; you must run TeX again.}% \fi \fi \fi \else % It's defined, so just use it. \thisrefX \fi #2% Output the suffix in any case. } % This is the macro invoked by entries in the aux file. Usually it's % just a \def (we prepend XR to the control sequence name to avoid % collisions). But if this is a float type, we have more work to do. % \def\xrdef#1#2{% {% The node name might contain 8-bit characters, which in our current % implementation are changed to commands like @'e. Don't let these % mess up the control sequence name. \indexnofonts \turnoffactive \xdef\safexrefname{#1}% }% % \expandafter\gdef\csname XR\safexrefname\endcsname{#2}% remember this xref % % Was that xref control sequence that we just defined for a float? \expandafter\iffloat\csname XR\safexrefname\endcsname % it was a float, and we have the (safe) float type in \iffloattype. \expandafter\let\expandafter\floatlist \csname floatlist\iffloattype\endcsname % % Is this the first time we've seen this float type? \expandafter\ifx\floatlist\relax \toks0 = {\do}% yes, so just \do \else % had it before, so preserve previous elements in list. \toks0 = \expandafter{\floatlist\do}% \fi % % Remember this xref in the control sequence \floatlistFLOATTYPE, % for later use in \listoffloats. \expandafter\xdef\csname floatlist\iffloattype\endcsname{\the\toks0 {\safexrefname}}% \fi } % Read the last existing aux file, if any. No error if none exists. % \def\tryauxfile{% \openin 1 \jobname.aux \ifeof 1 \else \readdatafile{aux}% \global\havexrefstrue \fi \closein 1 } \def\setupdatafile{% \catcode`\^^@=\other \catcode`\^^A=\other \catcode`\^^B=\other \catcode`\^^C=\other \catcode`\^^D=\other \catcode`\^^E=\other \catcode`\^^F=\other \catcode`\^^G=\other \catcode`\^^H=\other \catcode`\^^K=\other \catcode`\^^L=\other \catcode`\^^N=\other \catcode`\^^P=\other \catcode`\^^Q=\other \catcode`\^^R=\other \catcode`\^^S=\other \catcode`\^^T=\other \catcode`\^^U=\other \catcode`\^^V=\other \catcode`\^^W=\other \catcode`\^^X=\other \catcode`\^^Z=\other \catcode`\^^[=\other \catcode`\^^\=\other \catcode`\^^]=\other \catcode`\^^^=\other \catcode`\^^_=\other % It was suggested to set the catcode of ^ to 7, which would allow ^^e4 etc. % in xref tags, i.e., node names. But since ^^e4 notation isn't % supported in the main text, it doesn't seem desirable. Furthermore, % that is not enough: for node names that actually contain a ^ % character, we would end up writing a line like this: 'xrdef {'hat % b-title}{'hat b} and \xrdef does a \csname...\endcsname on the first % argument, and \hat is not an expandable control sequence. It could % all be worked out, but why? Either we support ^^ or we don't. % % The other change necessary for this was to define \auxhat: % \def\auxhat{\def^{'hat }}% extra space so ok if followed by letter % and then to call \auxhat in \setq. % \catcode`\^=\other % % Special characters. Should be turned off anyway, but... \catcode`\~=\other \catcode`\[=\other \catcode`\]=\other \catcode`\"=\other \catcode`\_=\other \catcode`\|=\other \catcode`\<=\other \catcode`\>=\other \catcode`\$=\other \catcode`\#=\other \catcode`\&=\other \catcode`\%=\other \catcode`+=\other % avoid \+ for paranoia even though we've turned it off % % This is to support \ in node names and titles, since the \ % characters end up in a \csname. It's easier than % leaving it active and making its active definition an actual \ % character. What I don't understand is why it works in the *value* % of the xrdef. Seems like it should be a catcode12 \, and that % should not typeset properly. But it works, so I'm moving on for % now. --karl, 15jan04. \catcode`\\=\other % % Make the characters 128-255 be printing characters. {% \count1=128 \def\loop{% \catcode\count1=\other \advance\count1 by 1 \ifnum \count1<256 \loop \fi }% }% % % @ is our escape character in .aux files, and we need braces. \catcode`\{=1 \catcode`\}=2 \catcode`\@=0 } \def\readdatafile#1{% \begingroup \setupdatafile \input\jobname.#1 \endgroup} \message{insertions,} % including footnotes. \newcount \footnoteno % The trailing space in the following definition for supereject is % vital for proper filling; pages come out unaligned when you do a % pagealignmacro call if that space before the closing brace is % removed. (Generally, numeric constants should always be followed by a % space to prevent strange expansion errors.) \def\supereject{\par\penalty -20000\footnoteno =0 } % @footnotestyle is meaningful for Info output only. \let\footnotestyle=\comment {\catcode `\@=11 % % Auto-number footnotes. Otherwise like plain. \gdef\footnote{% \let\indent=\ptexindent \let\noindent=\ptexnoindent \global\advance\footnoteno by \@ne \edef\thisfootno{$^{\the\footnoteno}$}% % % In case the footnote comes at the end of a sentence, preserve the % extra spacing after we do the footnote number. \let\@sf\empty \ifhmode\edef\@sf{\spacefactor\the\spacefactor}\ptexslash\fi % % Remove inadvertent blank space before typesetting the footnote number. \unskip \thisfootno\@sf \dofootnote }% % Don't bother with the trickery in plain.tex to not require the % footnote text as a parameter. Our footnotes don't need to be so general. % % Oh yes, they do; otherwise, @ifset (and anything else that uses % \parseargline) fails inside footnotes because the tokens are fixed when % the footnote is read. --karl, 16nov96. % \gdef\dofootnote{% \insert\footins\bgroup % We want to typeset this text as a normal paragraph, even if the % footnote reference occurs in (for example) a display environment. % So reset some parameters. \hsize=\pagewidth \interlinepenalty\interfootnotelinepenalty \splittopskip\ht\strutbox % top baseline for broken footnotes \splitmaxdepth\dp\strutbox \floatingpenalty\@MM \leftskip\z@skip \rightskip\z@skip \spaceskip\z@skip \xspaceskip\z@skip \parindent\defaultparindent % \smallfonts \rm % % Because we use hanging indentation in footnotes, a @noindent appears % to exdent this text, so make it be a no-op. makeinfo does not use % hanging indentation so @noindent can still be needed within footnote % text after an @example or the like (not that this is good style). \let\noindent = \relax % % Hang the footnote text off the number. Use \everypar in case the % footnote extends for more than one paragraph. \everypar = {\hang}% \textindent{\thisfootno}% % % Don't crash into the line above the footnote text. Since this % expands into a box, it must come within the paragraph, lest it % provide a place where TeX can split the footnote. \footstrut % % Invoke rest of plain TeX footnote routine. \futurelet\next\fo@t } }%end \catcode `\@=11 % In case a @footnote appears in a vbox, save the footnote text and create % the real \insert just after the vbox finished. Otherwise, the insertion % would be lost. % Similarly, if a @footnote appears inside an alignment, save the footnote % text to a box and make the \insert when a row of the table is finished. % And the same can be done for other insert classes. --kasal, 16nov03. % Replace the \insert primitive by a cheating macro. % Deeper inside, just make sure that the saved insertions are not spilled % out prematurely. % \def\startsavinginserts{% \ifx \insert\ptexinsert \let\insert\saveinsert \else \let\checkinserts\relax \fi } % This \insert replacement works for both \insert\footins{foo} and % \insert\footins\bgroup foo\egroup, but it doesn't work for \insert27{foo}. % \def\saveinsert#1{% \edef\next{\noexpand\savetobox \makeSAVEname#1}% \afterassignment\next % swallow the left brace \let\temp = } \def\makeSAVEname#1{\makecsname{SAVE\expandafter\gobble\string#1}} \def\savetobox#1{\global\setbox#1 = \vbox\bgroup \unvbox#1} \def\checksaveins#1{\ifvoid#1\else \placesaveins#1\fi} \def\placesaveins#1{% \ptexinsert \csname\expandafter\gobblesave\string#1\endcsname {\box#1}% } % eat @SAVE -- beware, all of them have catcode \other: { \def\dospecials{\do S\do A\do V\do E} \uncatcodespecials % ;-) \gdef\gobblesave @SAVE{} } % initialization: \def\newsaveins #1{% \edef\next{\noexpand\newsaveinsX \makeSAVEname#1}% \next } \def\newsaveinsX #1{% \csname newbox\endcsname #1% \expandafter\def\expandafter\checkinserts\expandafter{\checkinserts \checksaveins #1}% } % initialize: \let\checkinserts\empty \newsaveins\footins \newsaveins\margin % @image. We use the macros from epsf.tex to support this. % If epsf.tex is not installed and @image is used, we complain. % % Check for and read epsf.tex up front. If we read it only at @image % time, we might be inside a group, and then its definitions would get % undone and the next image would fail. \openin 1 = epsf.tex \ifeof 1 \else % Do not bother showing banner with epsf.tex v2.7k (available in % doc/epsf.tex and on ctan). \def\epsfannounce{\toks0 = }% \input epsf.tex \fi \closein 1 % % We will only complain once about lack of epsf.tex. \newif\ifwarnednoepsf \newhelp\noepsfhelp{epsf.tex must be installed for images to work. It is also included in the Texinfo distribution, or you can get it from ftp://tug.org/tex/epsf.tex.} % \def\image#1{% \ifx\epsfbox\thisisundefined \ifwarnednoepsf \else \errhelp = \noepsfhelp \errmessage{epsf.tex not found, images will be ignored}% \global\warnednoepsftrue \fi \else \imagexxx #1,,,,,\finish \fi } % % Arguments to @image: % #1 is (mandatory) image filename; we tack on .eps extension. % #2 is (optional) width, #3 is (optional) height. % #4 is (ignored optional) html alt text. % #5 is (ignored optional) extension. % #6 is just the usual extra ignored arg for parsing stuff. \newif\ifimagevmode \def\imagexxx#1,#2,#3,#4,#5,#6\finish{\begingroup \catcode`\^^M = 5 % in case we're inside an example \normalturnoffactive % allow _ et al. in names % If the image is by itself, center it. \ifvmode \imagevmodetrue \else \ifx\centersub\centerV % for @center @image, we need a vbox so we can have our vertical space \imagevmodetrue \vbox\bgroup % vbox has better behavior than vtop herev \fi\fi % \ifimagevmode \nobreak\medskip % Usually we'll have text after the image which will insert % \parskip glue, so insert it here too to equalize the space % above and below. \nobreak\vskip\parskip \nobreak \fi % % Leave vertical mode so that indentation from an enclosing % environment such as @quotation is respected. % However, if we're at the top level, we don't want the % normal paragraph indentation. % On the other hand, if we are in the case of @center @image, we don't % want to start a paragraph, which will create a hsize-width box and % eradicate the centering. \ifx\centersub\centerV\else \noindent \fi % % Output the image. \ifpdf \dopdfimage{#1}{#2}{#3}% \else % \epsfbox itself resets \epsf?size at each figure. \setbox0 = \hbox{\ignorespaces #2}\ifdim\wd0 > 0pt \epsfxsize=#2\relax \fi \setbox0 = \hbox{\ignorespaces #3}\ifdim\wd0 > 0pt \epsfysize=#3\relax \fi \epsfbox{#1.eps}% \fi % \ifimagevmode \medskip % space after a standalone image \fi \ifx\centersub\centerV \egroup \fi \endgroup} % @float FLOATTYPE,LABEL,LOC ... @end float for displayed figures, tables, % etc. We don't actually implement floating yet, we always include the % float "here". But it seemed the best name for the future. % \envparseargdef\float{\eatcommaspace\eatcommaspace\dofloat#1, , ,\finish} % There may be a space before second and/or third parameter; delete it. \def\eatcommaspace#1, {#1,} % #1 is the optional FLOATTYPE, the text label for this float, typically % "Figure", "Table", "Example", etc. Can't contain commas. If omitted, % this float will not be numbered and cannot be referred to. % % #2 is the optional xref label. Also must be present for the float to % be referable. % % #3 is the optional positioning argument; for now, it is ignored. It % will somehow specify the positions allowed to float to (here, top, bottom). % % We keep a separate counter for each FLOATTYPE, which we reset at each % chapter-level command. \let\resetallfloatnos=\empty % \def\dofloat#1,#2,#3,#4\finish{% \let\thiscaption=\empty \let\thisshortcaption=\empty % % don't lose footnotes inside @float. % % BEWARE: when the floats start float, we have to issue warning whenever an % insert appears inside a float which could possibly float. --kasal, 26may04 % \startsavinginserts % % We can't be used inside a paragraph. \par % \vtop\bgroup \def\floattype{#1}% \def\floatlabel{#2}% \def\floatloc{#3}% we do nothing with this yet. % \ifx\floattype\empty \let\safefloattype=\empty \else {% % the floattype might have accents or other special characters, % but we need to use it in a control sequence name. \indexnofonts \turnoffactive \xdef\safefloattype{\floattype}% }% \fi % % If label is given but no type, we handle that as the empty type. \ifx\floatlabel\empty \else % We want each FLOATTYPE to be numbered separately (Figure 1, % Table 1, Figure 2, ...). (And if no label, no number.) % \expandafter\getfloatno\csname\safefloattype floatno\endcsname \global\advance\floatno by 1 % {% % This magic value for \lastsection is output by \setref as the % XREFLABEL-title value. \xrefX uses it to distinguish float % labels (which have a completely different output format) from % node and anchor labels. And \xrdef uses it to construct the % lists of floats. % \edef\lastsection{\floatmagic=\safefloattype}% \setref{\floatlabel}{Yfloat}% }% \fi % % start with \parskip glue, I guess. \vskip\parskip % % Don't suppress indentation if a float happens to start a section. \restorefirstparagraphindent } % we have these possibilities: % @float Foo,lbl & @caption{Cap}: Foo 1.1: Cap % @float Foo,lbl & no caption: Foo 1.1 % @float Foo & @caption{Cap}: Foo: Cap % @float Foo & no caption: Foo % @float ,lbl & Caption{Cap}: 1.1: Cap % @float ,lbl & no caption: 1.1 % @float & @caption{Cap}: Cap % @float & no caption: % \def\Efloat{% \let\floatident = \empty % % In all cases, if we have a float type, it comes first. \ifx\floattype\empty \else \def\floatident{\floattype}\fi % % If we have an xref label, the number comes next. \ifx\floatlabel\empty \else \ifx\floattype\empty \else % if also had float type, need tie first. \appendtomacro\floatident{\tie}% \fi % the number. \appendtomacro\floatident{\chaplevelprefix\the\floatno}% \fi % % Start the printed caption with what we've constructed in % \floatident, but keep it separate; we need \floatident again. \let\captionline = \floatident % \ifx\thiscaption\empty \else \ifx\floatident\empty \else \appendtomacro\captionline{: }% had ident, so need a colon between \fi % % caption text. \appendtomacro\captionline{\scanexp\thiscaption}% \fi % % If we have anything to print, print it, with space before. % Eventually this needs to become an \insert. \ifx\captionline\empty \else \vskip.5\parskip \captionline % % Space below caption. \vskip\parskip \fi % % If have an xref label, write the list of floats info. Do this % after the caption, to avoid chance of it being a breakpoint. \ifx\floatlabel\empty \else % Write the text that goes in the lof to the aux file as % \floatlabel-lof. Besides \floatident, we include the short % caption if specified, else the full caption if specified, else nothing. {% \atdummies % % since we read the caption text in the macro world, where ^^M % is turned into a normal character, we have to scan it back, so % we don't write the literal three characters "^^M" into the aux file. \scanexp{% \xdef\noexpand\gtemp{% \ifx\thisshortcaption\empty \thiscaption \else \thisshortcaption \fi }% }% \immediate\write\auxfile{@xrdef{\floatlabel-lof}{\floatident \ifx\gtemp\empty \else : \gtemp \fi}}% }% \fi \egroup % end of \vtop % % place the captured inserts % % BEWARE: when the floats start floating, we have to issue warning % whenever an insert appears inside a float which could possibly % float. --kasal, 26may04 % \checkinserts } % Append the tokens #2 to the definition of macro #1, not expanding either. % \def\appendtomacro#1#2{% \expandafter\def\expandafter#1\expandafter{#1#2}% } % @caption, @shortcaption % \def\caption{\docaption\thiscaption} \def\shortcaption{\docaption\thisshortcaption} \def\docaption{\checkenv\float \bgroup\scanargctxt\defcaption} \def\defcaption#1#2{\egroup \def#1{#2}} % The parameter is the control sequence identifying the counter we are % going to use. Create it if it doesn't exist and assign it to \floatno. \def\getfloatno#1{% \ifx#1\relax % Haven't seen this figure type before. \csname newcount\endcsname #1% % % Remember to reset this floatno at the next chap. \expandafter\gdef\expandafter\resetallfloatnos \expandafter{\resetallfloatnos #1=0 }% \fi \let\floatno#1% } % \setref calls this to get the XREFLABEL-snt value. We want an @xref % to the FLOATLABEL to expand to "Figure 3.1". We call \setref when we % first read the @float command. % \def\Yfloat{\floattype@tie \chaplevelprefix\the\floatno}% % Magic string used for the XREFLABEL-title value, so \xrefX can % distinguish floats from other xref types. \def\floatmagic{!!float!!} % #1 is the control sequence we are passed; we expand into a conditional % which is true if #1 represents a float ref. That is, the magic % \lastsection value which we \setref above. % \def\iffloat#1{\expandafter\doiffloat#1==\finish} % % #1 is (maybe) the \floatmagic string. If so, #2 will be the % (safe) float type for this float. We set \iffloattype to #2. % \def\doiffloat#1=#2=#3\finish{% \def\temp{#1}% \def\iffloattype{#2}% \ifx\temp\floatmagic } % @listoffloats FLOATTYPE - print a list of floats like a table of contents. % \parseargdef\listoffloats{% \def\floattype{#1}% floattype {% % the floattype might have accents or other special characters, % but we need to use it in a control sequence name. \indexnofonts \turnoffactive \xdef\safefloattype{\floattype}% }% % % \xrdef saves the floats as a \do-list in \floatlistSAFEFLOATTYPE. \expandafter\ifx\csname floatlist\safefloattype\endcsname \relax \ifhavexrefs % if the user said @listoffloats foo but never @float foo. \message{\linenumber No `\safefloattype' floats to list.}% \fi \else \begingroup \leftskip=\tocindent % indent these entries like a toc \let\do=\listoffloatsdo \csname floatlist\safefloattype\endcsname \endgroup \fi } % This is called on each entry in a list of floats. We're passed the % xref label, in the form LABEL-title, which is how we save it in the % aux file. We strip off the -title and look up \XRLABEL-lof, which % has the text we're supposed to typeset here. % % Figures without xref labels will not be included in the list (since % they won't appear in the aux file). % \def\listoffloatsdo#1{\listoffloatsdoentry#1\finish} \def\listoffloatsdoentry#1-title\finish{{% % Can't fully expand XR#1-lof because it can contain anything. Just % pass the control sequence. On the other hand, XR#1-pg is just the % page number, and we want to fully expand that so we can get a link % in pdf output. \toksA = \expandafter{\csname XR#1-lof\endcsname}% % % use the same \entry macro we use to generate the TOC and index. \edef\writeentry{\noexpand\entry{\the\toksA}{\csname XR#1-pg\endcsname}}% \writeentry }} \message{localization,} % For single-language documents, @documentlanguage is usually given very % early, just after @documentencoding. Single argument is the language % (de) or locale (de_DE) abbreviation. % { \catcode`\_ = \active \globaldefs=1 \parseargdef\documentlanguage{\begingroup \let_=\normalunderscore % normal _ character for filenames \tex % read txi-??.tex file in plain TeX. % Read the file by the name they passed if it exists. \openin 1 txi-#1.tex \ifeof 1 \documentlanguagetrywithoutunderscore{#1_\finish}% \else \globaldefs = 1 % everything in the txi-LL files needs to persist \input txi-#1.tex \fi \closein 1 \endgroup % end raw TeX \endgroup} % % If they passed de_DE, and txi-de_DE.tex doesn't exist, % try txi-de.tex. % \gdef\documentlanguagetrywithoutunderscore#1_#2\finish{% \openin 1 txi-#1.tex \ifeof 1 \errhelp = \nolanghelp \errmessage{Cannot read language file txi-#1.tex}% \else \globaldefs = 1 % everything in the txi-LL files needs to persist \input txi-#1.tex \fi \closein 1 } }% end of special _ catcode % \newhelp\nolanghelp{The given language definition file cannot be found or is empty. Maybe you need to install it? Putting it in the current directory should work if nowhere else does.} % This macro is called from txi-??.tex files; the first argument is the % \language name to set (without the "\lang@" prefix), the second and % third args are \{left,right}hyphenmin. % % The language names to pass are determined when the format is built. % See the etex.log file created at that time, e.g., % /usr/local/texlive/2008/texmf-var/web2c/pdftex/etex.log. % % With TeX Live 2008, etex now includes hyphenation patterns for all % available languages. This means we can support hyphenation in % Texinfo, at least to some extent. (This still doesn't solve the % accented characters problem.) % \catcode`@=11 \def\txisetlanguage#1#2#3{% % do not set the language if the name is undefined in the current TeX. \expandafter\ifx\csname lang@#1\endcsname \relax \message{no patterns for #1}% \else \global\language = \csname lang@#1\endcsname \fi % but there is no harm in adjusting the hyphenmin values regardless. \global\lefthyphenmin = #2\relax \global\righthyphenmin = #3\relax } % Helpers for encodings. % Set the catcode of characters 128 through 255 to the specified number. % \def\setnonasciicharscatcode#1{% \count255=128 \loop\ifnum\count255<256 \global\catcode\count255=#1\relax \advance\count255 by 1 \repeat } \def\setnonasciicharscatcodenonglobal#1{% \count255=128 \loop\ifnum\count255<256 \catcode\count255=#1\relax \advance\count255 by 1 \repeat } % @documentencoding sets the definition of non-ASCII characters % according to the specified encoding. % \parseargdef\documentencoding{% % Encoding being declared for the document. \def\declaredencoding{\csname #1.enc\endcsname}% % % Supported encodings: names converted to tokens in order to be able % to compare them with \ifx. \def\ascii{\csname US-ASCII.enc\endcsname}% \def\latnine{\csname ISO-8859-15.enc\endcsname}% \def\latone{\csname ISO-8859-1.enc\endcsname}% \def\lattwo{\csname ISO-8859-2.enc\endcsname}% \def\utfeight{\csname UTF-8.enc\endcsname}% % \ifx \declaredencoding \ascii \asciichardefs % \else \ifx \declaredencoding \lattwo \setnonasciicharscatcode\active \lattwochardefs % \else \ifx \declaredencoding \latone \setnonasciicharscatcode\active \latonechardefs % \else \ifx \declaredencoding \latnine \setnonasciicharscatcode\active \latninechardefs % \else \ifx \declaredencoding \utfeight \setnonasciicharscatcode\active \utfeightchardefs % \else \message{Unknown document encoding #1, ignoring.}% % \fi % utfeight \fi % latnine \fi % latone \fi % lattwo \fi % ascii } % A message to be logged when using a character that isn't available % the default font encoding (OT1). % \def\missingcharmsg#1{\message{Character missing in OT1 encoding: #1.}} % Take account of \c (plain) vs. \, (Texinfo) difference. \def\cedilla#1{\ifx\c\ptexc\c{#1}\else\,{#1}\fi} % First, make active non-ASCII characters in order for them to be % correctly categorized when TeX reads the replacement text of % macros containing the character definitions. \setnonasciicharscatcode\active % % Latin1 (ISO-8859-1) character definitions. \def\latonechardefs{% \gdef^^a0{\tie} \gdef^^a1{\exclamdown} \gdef^^a2{\missingcharmsg{CENT SIGN}} \gdef^^a3{{\pounds}} \gdef^^a4{\missingcharmsg{CURRENCY SIGN}} \gdef^^a5{\missingcharmsg{YEN SIGN}} \gdef^^a6{\missingcharmsg{BROKEN BAR}} \gdef^^a7{\S} \gdef^^a8{\"{}} \gdef^^a9{\copyright} \gdef^^aa{\ordf} \gdef^^ab{\guillemetleft} \gdef^^ac{$\lnot$} \gdef^^ad{\-} \gdef^^ae{\registeredsymbol} \gdef^^af{\={}} % \gdef^^b0{\textdegree} \gdef^^b1{$\pm$} \gdef^^b2{$^2$} \gdef^^b3{$^3$} \gdef^^b4{\'{}} \gdef^^b5{$\mu$} \gdef^^b6{\P} % \gdef^^b7{$^.$} \gdef^^b8{\cedilla\ } \gdef^^b9{$^1$} \gdef^^ba{\ordm} % \gdef^^bb{\guillemetright} \gdef^^bc{$1\over4$} \gdef^^bd{$1\over2$} \gdef^^be{$3\over4$} \gdef^^bf{\questiondown} % \gdef^^c0{\`A} \gdef^^c1{\'A} \gdef^^c2{\^A} \gdef^^c3{\~A} \gdef^^c4{\"A} \gdef^^c5{\ringaccent A} \gdef^^c6{\AE} \gdef^^c7{\cedilla C} \gdef^^c8{\`E} \gdef^^c9{\'E} \gdef^^ca{\^E} \gdef^^cb{\"E} \gdef^^cc{\`I} \gdef^^cd{\'I} \gdef^^ce{\^I} \gdef^^cf{\"I} % \gdef^^d0{\DH} \gdef^^d1{\~N} \gdef^^d2{\`O} \gdef^^d3{\'O} \gdef^^d4{\^O} \gdef^^d5{\~O} \gdef^^d6{\"O} \gdef^^d7{$\times$} \gdef^^d8{\O} \gdef^^d9{\`U} \gdef^^da{\'U} \gdef^^db{\^U} \gdef^^dc{\"U} \gdef^^dd{\'Y} \gdef^^de{\TH} \gdef^^df{\ss} % \gdef^^e0{\`a} \gdef^^e1{\'a} \gdef^^e2{\^a} \gdef^^e3{\~a} \gdef^^e4{\"a} \gdef^^e5{\ringaccent a} \gdef^^e6{\ae} \gdef^^e7{\cedilla c} \gdef^^e8{\`e} \gdef^^e9{\'e} \gdef^^ea{\^e} \gdef^^eb{\"e} \gdef^^ec{\`{\dotless i}} \gdef^^ed{\'{\dotless i}} \gdef^^ee{\^{\dotless i}} \gdef^^ef{\"{\dotless i}} % \gdef^^f0{\dh} \gdef^^f1{\~n} \gdef^^f2{\`o} \gdef^^f3{\'o} \gdef^^f4{\^o} \gdef^^f5{\~o} \gdef^^f6{\"o} \gdef^^f7{$\div$} \gdef^^f8{\o} \gdef^^f9{\`u} \gdef^^fa{\'u} \gdef^^fb{\^u} \gdef^^fc{\"u} \gdef^^fd{\'y} \gdef^^fe{\th} \gdef^^ff{\"y} } % Latin9 (ISO-8859-15) encoding character definitions. \def\latninechardefs{% % Encoding is almost identical to Latin1. \latonechardefs % \gdef^^a4{\euro} \gdef^^a6{\v S} \gdef^^a8{\v s} \gdef^^b4{\v Z} \gdef^^b8{\v z} \gdef^^bc{\OE} \gdef^^bd{\oe} \gdef^^be{\"Y} } % Latin2 (ISO-8859-2) character definitions. \def\lattwochardefs{% \gdef^^a0{\tie} \gdef^^a1{\ogonek{A}} \gdef^^a2{\u{}} \gdef^^a3{\L} \gdef^^a4{\missingcharmsg{CURRENCY SIGN}} \gdef^^a5{\v L} \gdef^^a6{\'S} \gdef^^a7{\S} \gdef^^a8{\"{}} \gdef^^a9{\v S} \gdef^^aa{\cedilla S} \gdef^^ab{\v T} \gdef^^ac{\'Z} \gdef^^ad{\-} \gdef^^ae{\v Z} \gdef^^af{\dotaccent Z} % \gdef^^b0{\textdegree} \gdef^^b1{\ogonek{a}} \gdef^^b2{\ogonek{ }} \gdef^^b3{\l} \gdef^^b4{\'{}} \gdef^^b5{\v l} \gdef^^b6{\'s} \gdef^^b7{\v{}} \gdef^^b8{\cedilla\ } \gdef^^b9{\v s} \gdef^^ba{\cedilla s} \gdef^^bb{\v t} \gdef^^bc{\'z} \gdef^^bd{\H{}} \gdef^^be{\v z} \gdef^^bf{\dotaccent z} % \gdef^^c0{\'R} \gdef^^c1{\'A} \gdef^^c2{\^A} \gdef^^c3{\u A} \gdef^^c4{\"A} \gdef^^c5{\'L} \gdef^^c6{\'C} \gdef^^c7{\cedilla C} \gdef^^c8{\v C} \gdef^^c9{\'E} \gdef^^ca{\ogonek{E}} \gdef^^cb{\"E} \gdef^^cc{\v E} \gdef^^cd{\'I} \gdef^^ce{\^I} \gdef^^cf{\v D} % \gdef^^d0{\DH} \gdef^^d1{\'N} \gdef^^d2{\v N} \gdef^^d3{\'O} \gdef^^d4{\^O} \gdef^^d5{\H O} \gdef^^d6{\"O} \gdef^^d7{$\times$} \gdef^^d8{\v R} \gdef^^d9{\ringaccent U} \gdef^^da{\'U} \gdef^^db{\H U} \gdef^^dc{\"U} \gdef^^dd{\'Y} \gdef^^de{\cedilla T} \gdef^^df{\ss} % \gdef^^e0{\'r} \gdef^^e1{\'a} \gdef^^e2{\^a} \gdef^^e3{\u a} \gdef^^e4{\"a} \gdef^^e5{\'l} \gdef^^e6{\'c} \gdef^^e7{\cedilla c} \gdef^^e8{\v c} \gdef^^e9{\'e} \gdef^^ea{\ogonek{e}} \gdef^^eb{\"e} \gdef^^ec{\v e} \gdef^^ed{\'{\dotless{i}}} \gdef^^ee{\^{\dotless{i}}} \gdef^^ef{\v d} % \gdef^^f0{\dh} \gdef^^f1{\'n} \gdef^^f2{\v n} \gdef^^f3{\'o} \gdef^^f4{\^o} \gdef^^f5{\H o} \gdef^^f6{\"o} \gdef^^f7{$\div$} \gdef^^f8{\v r} \gdef^^f9{\ringaccent u} \gdef^^fa{\'u} \gdef^^fb{\H u} \gdef^^fc{\"u} \gdef^^fd{\'y} \gdef^^fe{\cedilla t} \gdef^^ff{\dotaccent{}} } % UTF-8 character definitions. % % This code to support UTF-8 is based on LaTeX's utf8.def, with some % changes for Texinfo conventions. It is included here under the GPL by % permission from Frank Mittelbach and the LaTeX team. % \newcount\countUTFx \newcount\countUTFy \newcount\countUTFz \gdef\UTFviiiTwoOctets#1#2{\expandafter \UTFviiiDefined\csname u8:#1\string #2\endcsname} % \gdef\UTFviiiThreeOctets#1#2#3{\expandafter \UTFviiiDefined\csname u8:#1\string #2\string #3\endcsname} % \gdef\UTFviiiFourOctets#1#2#3#4{\expandafter \UTFviiiDefined\csname u8:#1\string #2\string #3\string #4\endcsname} \gdef\UTFviiiDefined#1{% \ifx #1\relax \message{\linenumber Unicode char \string #1 not defined for Texinfo}% \else \expandafter #1% \fi } \begingroup \catcode`\~13 \catcode`\"12 \def\UTFviiiLoop{% \global\catcode\countUTFx\active \uccode`\~\countUTFx \uppercase\expandafter{\UTFviiiTmp}% \advance\countUTFx by 1 \ifnum\countUTFx < \countUTFy \expandafter\UTFviiiLoop \fi} \countUTFx = "C2 \countUTFy = "E0 \def\UTFviiiTmp{% \xdef~{\noexpand\UTFviiiTwoOctets\string~}} \UTFviiiLoop \countUTFx = "E0 \countUTFy = "F0 \def\UTFviiiTmp{% \xdef~{\noexpand\UTFviiiThreeOctets\string~}} \UTFviiiLoop \countUTFx = "F0 \countUTFy = "F4 \def\UTFviiiTmp{% \xdef~{\noexpand\UTFviiiFourOctets\string~}} \UTFviiiLoop \endgroup \begingroup \catcode`\"=12 \catcode`\<=12 \catcode`\.=12 \catcode`\,=12 \catcode`\;=12 \catcode`\!=12 \catcode`\~=13 \gdef\DeclareUnicodeCharacter#1#2{% \countUTFz = "#1\relax %\wlog{\space\space defining Unicode char U+#1 (decimal \the\countUTFz)}% \begingroup \parseXMLCharref \def\UTFviiiTwoOctets##1##2{% \csname u8:##1\string ##2\endcsname}% \def\UTFviiiThreeOctets##1##2##3{% \csname u8:##1\string ##2\string ##3\endcsname}% \def\UTFviiiFourOctets##1##2##3##4{% \csname u8:##1\string ##2\string ##3\string ##4\endcsname}% \expandafter\expandafter\expandafter\expandafter \expandafter\expandafter\expandafter \gdef\UTFviiiTmp{#2}% \endgroup} \gdef\parseXMLCharref{% \ifnum\countUTFz < "A0\relax \errhelp = \EMsimple \errmessage{Cannot define Unicode char value < 00A0}% \else\ifnum\countUTFz < "800\relax \parseUTFviiiA,% \parseUTFviiiB C\UTFviiiTwoOctets.,% \else\ifnum\countUTFz < "10000\relax \parseUTFviiiA;% \parseUTFviiiA,% \parseUTFviiiB E\UTFviiiThreeOctets.{,;}% \else \parseUTFviiiA;% \parseUTFviiiA,% \parseUTFviiiA!% \parseUTFviiiB F\UTFviiiFourOctets.{!,;}% \fi\fi\fi } \gdef\parseUTFviiiA#1{% \countUTFx = \countUTFz \divide\countUTFz by 64 \countUTFy = \countUTFz \multiply\countUTFz by 64 \advance\countUTFx by -\countUTFz \advance\countUTFx by 128 \uccode `#1\countUTFx \countUTFz = \countUTFy} \gdef\parseUTFviiiB#1#2#3#4{% \advance\countUTFz by "#10\relax \uccode `#3\countUTFz \uppercase{\gdef\UTFviiiTmp{#2#3#4}}} \endgroup \def\utfeightchardefs{% \DeclareUnicodeCharacter{00A0}{\tie} \DeclareUnicodeCharacter{00A1}{\exclamdown} \DeclareUnicodeCharacter{00A3}{\pounds} \DeclareUnicodeCharacter{00A8}{\"{ }} \DeclareUnicodeCharacter{00A9}{\copyright} \DeclareUnicodeCharacter{00AA}{\ordf} \DeclareUnicodeCharacter{00AB}{\guillemetleft} \DeclareUnicodeCharacter{00AD}{\-} \DeclareUnicodeCharacter{00AE}{\registeredsymbol} \DeclareUnicodeCharacter{00AF}{\={ }} \DeclareUnicodeCharacter{00B0}{\ringaccent{ }} \DeclareUnicodeCharacter{00B4}{\'{ }} \DeclareUnicodeCharacter{00B8}{\cedilla{ }} \DeclareUnicodeCharacter{00BA}{\ordm} \DeclareUnicodeCharacter{00BB}{\guillemetright} \DeclareUnicodeCharacter{00BF}{\questiondown} \DeclareUnicodeCharacter{00C0}{\`A} \DeclareUnicodeCharacter{00C1}{\'A} \DeclareUnicodeCharacter{00C2}{\^A} \DeclareUnicodeCharacter{00C3}{\~A} \DeclareUnicodeCharacter{00C4}{\"A} \DeclareUnicodeCharacter{00C5}{\AA} \DeclareUnicodeCharacter{00C6}{\AE} \DeclareUnicodeCharacter{00C7}{\cedilla{C}} \DeclareUnicodeCharacter{00C8}{\`E} \DeclareUnicodeCharacter{00C9}{\'E} \DeclareUnicodeCharacter{00CA}{\^E} \DeclareUnicodeCharacter{00CB}{\"E} \DeclareUnicodeCharacter{00CC}{\`I} \DeclareUnicodeCharacter{00CD}{\'I} \DeclareUnicodeCharacter{00CE}{\^I} \DeclareUnicodeCharacter{00CF}{\"I} \DeclareUnicodeCharacter{00D0}{\DH} \DeclareUnicodeCharacter{00D1}{\~N} \DeclareUnicodeCharacter{00D2}{\`O} \DeclareUnicodeCharacter{00D3}{\'O} \DeclareUnicodeCharacter{00D4}{\^O} \DeclareUnicodeCharacter{00D5}{\~O} \DeclareUnicodeCharacter{00D6}{\"O} \DeclareUnicodeCharacter{00D8}{\O} \DeclareUnicodeCharacter{00D9}{\`U} \DeclareUnicodeCharacter{00DA}{\'U} \DeclareUnicodeCharacter{00DB}{\^U} \DeclareUnicodeCharacter{00DC}{\"U} \DeclareUnicodeCharacter{00DD}{\'Y} \DeclareUnicodeCharacter{00DE}{\TH} \DeclareUnicodeCharacter{00DF}{\ss} \DeclareUnicodeCharacter{00E0}{\`a} \DeclareUnicodeCharacter{00E1}{\'a} \DeclareUnicodeCharacter{00E2}{\^a} \DeclareUnicodeCharacter{00E3}{\~a} \DeclareUnicodeCharacter{00E4}{\"a} \DeclareUnicodeCharacter{00E5}{\aa} \DeclareUnicodeCharacter{00E6}{\ae} \DeclareUnicodeCharacter{00E7}{\cedilla{c}} \DeclareUnicodeCharacter{00E8}{\`e} \DeclareUnicodeCharacter{00E9}{\'e} \DeclareUnicodeCharacter{00EA}{\^e} \DeclareUnicodeCharacter{00EB}{\"e} \DeclareUnicodeCharacter{00EC}{\`{\dotless{i}}} \DeclareUnicodeCharacter{00ED}{\'{\dotless{i}}} \DeclareUnicodeCharacter{00EE}{\^{\dotless{i}}} \DeclareUnicodeCharacter{00EF}{\"{\dotless{i}}} \DeclareUnicodeCharacter{00F0}{\dh} \DeclareUnicodeCharacter{00F1}{\~n} \DeclareUnicodeCharacter{00F2}{\`o} \DeclareUnicodeCharacter{00F3}{\'o} \DeclareUnicodeCharacter{00F4}{\^o} \DeclareUnicodeCharacter{00F5}{\~o} \DeclareUnicodeCharacter{00F6}{\"o} \DeclareUnicodeCharacter{00F8}{\o} \DeclareUnicodeCharacter{00F9}{\`u} \DeclareUnicodeCharacter{00FA}{\'u} \DeclareUnicodeCharacter{00FB}{\^u} \DeclareUnicodeCharacter{00FC}{\"u} \DeclareUnicodeCharacter{00FD}{\'y} \DeclareUnicodeCharacter{00FE}{\th} \DeclareUnicodeCharacter{00FF}{\"y} \DeclareUnicodeCharacter{0100}{\=A} \DeclareUnicodeCharacter{0101}{\=a} \DeclareUnicodeCharacter{0102}{\u{A}} \DeclareUnicodeCharacter{0103}{\u{a}} \DeclareUnicodeCharacter{0104}{\ogonek{A}} \DeclareUnicodeCharacter{0105}{\ogonek{a}} \DeclareUnicodeCharacter{0106}{\'C} \DeclareUnicodeCharacter{0107}{\'c} \DeclareUnicodeCharacter{0108}{\^C} \DeclareUnicodeCharacter{0109}{\^c} \DeclareUnicodeCharacter{0118}{\ogonek{E}} \DeclareUnicodeCharacter{0119}{\ogonek{e}} \DeclareUnicodeCharacter{010A}{\dotaccent{C}} \DeclareUnicodeCharacter{010B}{\dotaccent{c}} \DeclareUnicodeCharacter{010C}{\v{C}} \DeclareUnicodeCharacter{010D}{\v{c}} \DeclareUnicodeCharacter{010E}{\v{D}} \DeclareUnicodeCharacter{0112}{\=E} \DeclareUnicodeCharacter{0113}{\=e} \DeclareUnicodeCharacter{0114}{\u{E}} \DeclareUnicodeCharacter{0115}{\u{e}} \DeclareUnicodeCharacter{0116}{\dotaccent{E}} \DeclareUnicodeCharacter{0117}{\dotaccent{e}} \DeclareUnicodeCharacter{011A}{\v{E}} \DeclareUnicodeCharacter{011B}{\v{e}} \DeclareUnicodeCharacter{011C}{\^G} \DeclareUnicodeCharacter{011D}{\^g} \DeclareUnicodeCharacter{011E}{\u{G}} \DeclareUnicodeCharacter{011F}{\u{g}} \DeclareUnicodeCharacter{0120}{\dotaccent{G}} \DeclareUnicodeCharacter{0121}{\dotaccent{g}} \DeclareUnicodeCharacter{0124}{\^H} \DeclareUnicodeCharacter{0125}{\^h} \DeclareUnicodeCharacter{0128}{\~I} \DeclareUnicodeCharacter{0129}{\~{\dotless{i}}} \DeclareUnicodeCharacter{012A}{\=I} \DeclareUnicodeCharacter{012B}{\={\dotless{i}}} \DeclareUnicodeCharacter{012C}{\u{I}} \DeclareUnicodeCharacter{012D}{\u{\dotless{i}}} \DeclareUnicodeCharacter{0130}{\dotaccent{I}} \DeclareUnicodeCharacter{0131}{\dotless{i}} \DeclareUnicodeCharacter{0132}{IJ} \DeclareUnicodeCharacter{0133}{ij} \DeclareUnicodeCharacter{0134}{\^J} \DeclareUnicodeCharacter{0135}{\^{\dotless{j}}} \DeclareUnicodeCharacter{0139}{\'L} \DeclareUnicodeCharacter{013A}{\'l} \DeclareUnicodeCharacter{0141}{\L} \DeclareUnicodeCharacter{0142}{\l} \DeclareUnicodeCharacter{0143}{\'N} \DeclareUnicodeCharacter{0144}{\'n} \DeclareUnicodeCharacter{0147}{\v{N}} \DeclareUnicodeCharacter{0148}{\v{n}} \DeclareUnicodeCharacter{014C}{\=O} \DeclareUnicodeCharacter{014D}{\=o} \DeclareUnicodeCharacter{014E}{\u{O}} \DeclareUnicodeCharacter{014F}{\u{o}} \DeclareUnicodeCharacter{0150}{\H{O}} \DeclareUnicodeCharacter{0151}{\H{o}} \DeclareUnicodeCharacter{0152}{\OE} \DeclareUnicodeCharacter{0153}{\oe} \DeclareUnicodeCharacter{0154}{\'R} \DeclareUnicodeCharacter{0155}{\'r} \DeclareUnicodeCharacter{0158}{\v{R}} \DeclareUnicodeCharacter{0159}{\v{r}} \DeclareUnicodeCharacter{015A}{\'S} \DeclareUnicodeCharacter{015B}{\'s} \DeclareUnicodeCharacter{015C}{\^S} \DeclareUnicodeCharacter{015D}{\^s} \DeclareUnicodeCharacter{015E}{\cedilla{S}} \DeclareUnicodeCharacter{015F}{\cedilla{s}} \DeclareUnicodeCharacter{0160}{\v{S}} \DeclareUnicodeCharacter{0161}{\v{s}} \DeclareUnicodeCharacter{0162}{\cedilla{t}} \DeclareUnicodeCharacter{0163}{\cedilla{T}} \DeclareUnicodeCharacter{0164}{\v{T}} \DeclareUnicodeCharacter{0168}{\~U} \DeclareUnicodeCharacter{0169}{\~u} \DeclareUnicodeCharacter{016A}{\=U} \DeclareUnicodeCharacter{016B}{\=u} \DeclareUnicodeCharacter{016C}{\u{U}} \DeclareUnicodeCharacter{016D}{\u{u}} \DeclareUnicodeCharacter{016E}{\ringaccent{U}} \DeclareUnicodeCharacter{016F}{\ringaccent{u}} \DeclareUnicodeCharacter{0170}{\H{U}} \DeclareUnicodeCharacter{0171}{\H{u}} \DeclareUnicodeCharacter{0174}{\^W} \DeclareUnicodeCharacter{0175}{\^w} \DeclareUnicodeCharacter{0176}{\^Y} \DeclareUnicodeCharacter{0177}{\^y} \DeclareUnicodeCharacter{0178}{\"Y} \DeclareUnicodeCharacter{0179}{\'Z} \DeclareUnicodeCharacter{017A}{\'z} \DeclareUnicodeCharacter{017B}{\dotaccent{Z}} \DeclareUnicodeCharacter{017C}{\dotaccent{z}} \DeclareUnicodeCharacter{017D}{\v{Z}} \DeclareUnicodeCharacter{017E}{\v{z}} \DeclareUnicodeCharacter{01C4}{D\v{Z}} \DeclareUnicodeCharacter{01C5}{D\v{z}} \DeclareUnicodeCharacter{01C6}{d\v{z}} \DeclareUnicodeCharacter{01C7}{LJ} \DeclareUnicodeCharacter{01C8}{Lj} \DeclareUnicodeCharacter{01C9}{lj} \DeclareUnicodeCharacter{01CA}{NJ} \DeclareUnicodeCharacter{01CB}{Nj} \DeclareUnicodeCharacter{01CC}{nj} \DeclareUnicodeCharacter{01CD}{\v{A}} \DeclareUnicodeCharacter{01CE}{\v{a}} \DeclareUnicodeCharacter{01CF}{\v{I}} \DeclareUnicodeCharacter{01D0}{\v{\dotless{i}}} \DeclareUnicodeCharacter{01D1}{\v{O}} \DeclareUnicodeCharacter{01D2}{\v{o}} \DeclareUnicodeCharacter{01D3}{\v{U}} \DeclareUnicodeCharacter{01D4}{\v{u}} \DeclareUnicodeCharacter{01E2}{\={\AE}} \DeclareUnicodeCharacter{01E3}{\={\ae}} \DeclareUnicodeCharacter{01E6}{\v{G}} \DeclareUnicodeCharacter{01E7}{\v{g}} \DeclareUnicodeCharacter{01E8}{\v{K}} \DeclareUnicodeCharacter{01E9}{\v{k}} \DeclareUnicodeCharacter{01F0}{\v{\dotless{j}}} \DeclareUnicodeCharacter{01F1}{DZ} \DeclareUnicodeCharacter{01F2}{Dz} \DeclareUnicodeCharacter{01F3}{dz} \DeclareUnicodeCharacter{01F4}{\'G} \DeclareUnicodeCharacter{01F5}{\'g} \DeclareUnicodeCharacter{01F8}{\`N} \DeclareUnicodeCharacter{01F9}{\`n} \DeclareUnicodeCharacter{01FC}{\'{\AE}} \DeclareUnicodeCharacter{01FD}{\'{\ae}} \DeclareUnicodeCharacter{01FE}{\'{\O}} \DeclareUnicodeCharacter{01FF}{\'{\o}} \DeclareUnicodeCharacter{021E}{\v{H}} \DeclareUnicodeCharacter{021F}{\v{h}} \DeclareUnicodeCharacter{0226}{\dotaccent{A}} \DeclareUnicodeCharacter{0227}{\dotaccent{a}} \DeclareUnicodeCharacter{0228}{\cedilla{E}} \DeclareUnicodeCharacter{0229}{\cedilla{e}} \DeclareUnicodeCharacter{022E}{\dotaccent{O}} \DeclareUnicodeCharacter{022F}{\dotaccent{o}} \DeclareUnicodeCharacter{0232}{\=Y} \DeclareUnicodeCharacter{0233}{\=y} \DeclareUnicodeCharacter{0237}{\dotless{j}} \DeclareUnicodeCharacter{02DB}{\ogonek{ }} \DeclareUnicodeCharacter{1E02}{\dotaccent{B}} \DeclareUnicodeCharacter{1E03}{\dotaccent{b}} \DeclareUnicodeCharacter{1E04}{\udotaccent{B}} \DeclareUnicodeCharacter{1E05}{\udotaccent{b}} \DeclareUnicodeCharacter{1E06}{\ubaraccent{B}} \DeclareUnicodeCharacter{1E07}{\ubaraccent{b}} \DeclareUnicodeCharacter{1E0A}{\dotaccent{D}} \DeclareUnicodeCharacter{1E0B}{\dotaccent{d}} \DeclareUnicodeCharacter{1E0C}{\udotaccent{D}} \DeclareUnicodeCharacter{1E0D}{\udotaccent{d}} \DeclareUnicodeCharacter{1E0E}{\ubaraccent{D}} \DeclareUnicodeCharacter{1E0F}{\ubaraccent{d}} \DeclareUnicodeCharacter{1E1E}{\dotaccent{F}} \DeclareUnicodeCharacter{1E1F}{\dotaccent{f}} \DeclareUnicodeCharacter{1E20}{\=G} \DeclareUnicodeCharacter{1E21}{\=g} \DeclareUnicodeCharacter{1E22}{\dotaccent{H}} \DeclareUnicodeCharacter{1E23}{\dotaccent{h}} \DeclareUnicodeCharacter{1E24}{\udotaccent{H}} \DeclareUnicodeCharacter{1E25}{\udotaccent{h}} \DeclareUnicodeCharacter{1E26}{\"H} \DeclareUnicodeCharacter{1E27}{\"h} \DeclareUnicodeCharacter{1E30}{\'K} \DeclareUnicodeCharacter{1E31}{\'k} \DeclareUnicodeCharacter{1E32}{\udotaccent{K}} \DeclareUnicodeCharacter{1E33}{\udotaccent{k}} \DeclareUnicodeCharacter{1E34}{\ubaraccent{K}} \DeclareUnicodeCharacter{1E35}{\ubaraccent{k}} \DeclareUnicodeCharacter{1E36}{\udotaccent{L}} \DeclareUnicodeCharacter{1E37}{\udotaccent{l}} \DeclareUnicodeCharacter{1E3A}{\ubaraccent{L}} \DeclareUnicodeCharacter{1E3B}{\ubaraccent{l}} \DeclareUnicodeCharacter{1E3E}{\'M} \DeclareUnicodeCharacter{1E3F}{\'m} \DeclareUnicodeCharacter{1E40}{\dotaccent{M}} \DeclareUnicodeCharacter{1E41}{\dotaccent{m}} \DeclareUnicodeCharacter{1E42}{\udotaccent{M}} \DeclareUnicodeCharacter{1E43}{\udotaccent{m}} \DeclareUnicodeCharacter{1E44}{\dotaccent{N}} \DeclareUnicodeCharacter{1E45}{\dotaccent{n}} \DeclareUnicodeCharacter{1E46}{\udotaccent{N}} \DeclareUnicodeCharacter{1E47}{\udotaccent{n}} \DeclareUnicodeCharacter{1E48}{\ubaraccent{N}} \DeclareUnicodeCharacter{1E49}{\ubaraccent{n}} \DeclareUnicodeCharacter{1E54}{\'P} \DeclareUnicodeCharacter{1E55}{\'p} \DeclareUnicodeCharacter{1E56}{\dotaccent{P}} \DeclareUnicodeCharacter{1E57}{\dotaccent{p}} \DeclareUnicodeCharacter{1E58}{\dotaccent{R}} \DeclareUnicodeCharacter{1E59}{\dotaccent{r}} \DeclareUnicodeCharacter{1E5A}{\udotaccent{R}} \DeclareUnicodeCharacter{1E5B}{\udotaccent{r}} \DeclareUnicodeCharacter{1E5E}{\ubaraccent{R}} \DeclareUnicodeCharacter{1E5F}{\ubaraccent{r}} \DeclareUnicodeCharacter{1E60}{\dotaccent{S}} \DeclareUnicodeCharacter{1E61}{\dotaccent{s}} \DeclareUnicodeCharacter{1E62}{\udotaccent{S}} \DeclareUnicodeCharacter{1E63}{\udotaccent{s}} \DeclareUnicodeCharacter{1E6A}{\dotaccent{T}} \DeclareUnicodeCharacter{1E6B}{\dotaccent{t}} \DeclareUnicodeCharacter{1E6C}{\udotaccent{T}} \DeclareUnicodeCharacter{1E6D}{\udotaccent{t}} \DeclareUnicodeCharacter{1E6E}{\ubaraccent{T}} \DeclareUnicodeCharacter{1E6F}{\ubaraccent{t}} \DeclareUnicodeCharacter{1E7C}{\~V} \DeclareUnicodeCharacter{1E7D}{\~v} \DeclareUnicodeCharacter{1E7E}{\udotaccent{V}} \DeclareUnicodeCharacter{1E7F}{\udotaccent{v}} \DeclareUnicodeCharacter{1E80}{\`W} \DeclareUnicodeCharacter{1E81}{\`w} \DeclareUnicodeCharacter{1E82}{\'W} \DeclareUnicodeCharacter{1E83}{\'w} \DeclareUnicodeCharacter{1E84}{\"W} \DeclareUnicodeCharacter{1E85}{\"w} \DeclareUnicodeCharacter{1E86}{\dotaccent{W}} \DeclareUnicodeCharacter{1E87}{\dotaccent{w}} \DeclareUnicodeCharacter{1E88}{\udotaccent{W}} \DeclareUnicodeCharacter{1E89}{\udotaccent{w}} \DeclareUnicodeCharacter{1E8A}{\dotaccent{X}} \DeclareUnicodeCharacter{1E8B}{\dotaccent{x}} \DeclareUnicodeCharacter{1E8C}{\"X} \DeclareUnicodeCharacter{1E8D}{\"x} \DeclareUnicodeCharacter{1E8E}{\dotaccent{Y}} \DeclareUnicodeCharacter{1E8F}{\dotaccent{y}} \DeclareUnicodeCharacter{1E90}{\^Z} \DeclareUnicodeCharacter{1E91}{\^z} \DeclareUnicodeCharacter{1E92}{\udotaccent{Z}} \DeclareUnicodeCharacter{1E93}{\udotaccent{z}} \DeclareUnicodeCharacter{1E94}{\ubaraccent{Z}} \DeclareUnicodeCharacter{1E95}{\ubaraccent{z}} \DeclareUnicodeCharacter{1E96}{\ubaraccent{h}} \DeclareUnicodeCharacter{1E97}{\"t} \DeclareUnicodeCharacter{1E98}{\ringaccent{w}} \DeclareUnicodeCharacter{1E99}{\ringaccent{y}} \DeclareUnicodeCharacter{1EA0}{\udotaccent{A}} \DeclareUnicodeCharacter{1EA1}{\udotaccent{a}} \DeclareUnicodeCharacter{1EB8}{\udotaccent{E}} \DeclareUnicodeCharacter{1EB9}{\udotaccent{e}} \DeclareUnicodeCharacter{1EBC}{\~E} \DeclareUnicodeCharacter{1EBD}{\~e} \DeclareUnicodeCharacter{1ECA}{\udotaccent{I}} \DeclareUnicodeCharacter{1ECB}{\udotaccent{i}} \DeclareUnicodeCharacter{1ECC}{\udotaccent{O}} \DeclareUnicodeCharacter{1ECD}{\udotaccent{o}} \DeclareUnicodeCharacter{1EE4}{\udotaccent{U}} \DeclareUnicodeCharacter{1EE5}{\udotaccent{u}} \DeclareUnicodeCharacter{1EF2}{\`Y} \DeclareUnicodeCharacter{1EF3}{\`y} \DeclareUnicodeCharacter{1EF4}{\udotaccent{Y}} \DeclareUnicodeCharacter{1EF8}{\~Y} \DeclareUnicodeCharacter{1EF9}{\~y} \DeclareUnicodeCharacter{2013}{--} \DeclareUnicodeCharacter{2014}{---} \DeclareUnicodeCharacter{2018}{\quoteleft} \DeclareUnicodeCharacter{2019}{\quoteright} \DeclareUnicodeCharacter{201A}{\quotesinglbase} \DeclareUnicodeCharacter{201C}{\quotedblleft} \DeclareUnicodeCharacter{201D}{\quotedblright} \DeclareUnicodeCharacter{201E}{\quotedblbase} \DeclareUnicodeCharacter{2022}{\bullet} \DeclareUnicodeCharacter{2026}{\dots} \DeclareUnicodeCharacter{2039}{\guilsinglleft} \DeclareUnicodeCharacter{203A}{\guilsinglright} \DeclareUnicodeCharacter{20AC}{\euro} \DeclareUnicodeCharacter{2192}{\expansion} \DeclareUnicodeCharacter{21D2}{\result} \DeclareUnicodeCharacter{2212}{\minus} \DeclareUnicodeCharacter{2217}{\point} \DeclareUnicodeCharacter{2261}{\equiv} }% end of \utfeightchardefs % US-ASCII character definitions. \def\asciichardefs{% nothing need be done \relax } % Make non-ASCII characters printable again for compatibility with % existing Texinfo documents that may use them, even without declaring a % document encoding. % \setnonasciicharscatcode \other \message{formatting,} \newdimen\defaultparindent \defaultparindent = 15pt \chapheadingskip = 15pt plus 4pt minus 2pt \secheadingskip = 12pt plus 3pt minus 2pt \subsecheadingskip = 9pt plus 2pt minus 2pt % Prevent underfull vbox error messages. \vbadness = 10000 % Don't be very finicky about underfull hboxes, either. \hbadness = 6666 % Following George Bush, get rid of widows and orphans. \widowpenalty=10000 \clubpenalty=10000 % Use TeX 3.0's \emergencystretch to help line breaking, but if we're % using an old version of TeX, don't do anything. We want the amount of % stretch added to depend on the line length, hence the dependence on % \hsize. We call this whenever the paper size is set. % \def\setemergencystretch{% \ifx\emergencystretch\thisisundefined % Allow us to assign to \emergencystretch anyway. \def\emergencystretch{\dimen0}% \else \emergencystretch = .15\hsize \fi } % Parameters in order: 1) textheight; 2) textwidth; % 3) voffset; 4) hoffset; 5) binding offset; 6) topskip; % 7) physical page height; 8) physical page width. % % We also call \setleading{\textleading}, so the caller should define % \textleading. The caller should also set \parskip. % \def\internalpagesizes#1#2#3#4#5#6#7#8{% \voffset = #3\relax \topskip = #6\relax \splittopskip = \topskip % \vsize = #1\relax \advance\vsize by \topskip \outervsize = \vsize \advance\outervsize by 2\topandbottommargin \pageheight = \vsize % \hsize = #2\relax \outerhsize = \hsize \advance\outerhsize by 0.5in \pagewidth = \hsize % \normaloffset = #4\relax \bindingoffset = #5\relax % \ifpdf \pdfpageheight #7\relax \pdfpagewidth #8\relax % if we don't reset these, they will remain at "1 true in" of % whatever layout pdftex was dumped with. \pdfhorigin = 1 true in \pdfvorigin = 1 true in \fi % \setleading{\textleading} % \parindent = \defaultparindent \setemergencystretch } % @letterpaper (the default). \def\letterpaper{{\globaldefs = 1 \parskip = 3pt plus 2pt minus 1pt \textleading = 13.2pt % % If page is nothing but text, make it come out even. \internalpagesizes{607.2pt}{6in}% that's 46 lines {\voffset}{.25in}% {\bindingoffset}{36pt}% {11in}{8.5in}% }} % Use @smallbook to reset parameters for 7x9.25 trim size. \def\smallbook{{\globaldefs = 1 \parskip = 2pt plus 1pt \textleading = 12pt % \internalpagesizes{7.5in}{5in}% {-.2in}{0in}% {\bindingoffset}{16pt}% {9.25in}{7in}% % \lispnarrowing = 0.3in \tolerance = 700 \hfuzz = 1pt \contentsrightmargin = 0pt \defbodyindent = .5cm }} % Use @smallerbook to reset parameters for 6x9 trim size. % (Just testing, parameters still in flux.) \def\smallerbook{{\globaldefs = 1 \parskip = 1.5pt plus 1pt \textleading = 12pt % \internalpagesizes{7.4in}{4.8in}% {-.2in}{-.4in}% {0pt}{14pt}% {9in}{6in}% % \lispnarrowing = 0.25in \tolerance = 700 \hfuzz = 1pt \contentsrightmargin = 0pt \defbodyindent = .4cm }} % Use @afourpaper to print on European A4 paper. \def\afourpaper{{\globaldefs = 1 \parskip = 3pt plus 2pt minus 1pt \textleading = 13.2pt % % Double-side printing via postscript on Laserjet 4050 % prints double-sided nicely when \bindingoffset=10mm and \hoffset=-6mm. % To change the settings for a different printer or situation, adjust % \normaloffset until the front-side and back-side texts align. Then % do the same for \bindingoffset. You can set these for testing in % your texinfo source file like this: % @tex % \global\normaloffset = -6mm % \global\bindingoffset = 10mm % @end tex \internalpagesizes{673.2pt}{160mm}% that's 51 lines {\voffset}{\hoffset}% {\bindingoffset}{44pt}% {297mm}{210mm}% % \tolerance = 700 \hfuzz = 1pt \contentsrightmargin = 0pt \defbodyindent = 5mm }} % Use @afivepaper to print on European A5 paper. % From romildo@urano.iceb.ufop.br, 2 July 2000. % He also recommends making @example and @lisp be small. \def\afivepaper{{\globaldefs = 1 \parskip = 2pt plus 1pt minus 0.1pt \textleading = 12.5pt % \internalpagesizes{160mm}{120mm}% {\voffset}{\hoffset}% {\bindingoffset}{8pt}% {210mm}{148mm}% % \lispnarrowing = 0.2in \tolerance = 800 \hfuzz = 1.2pt \contentsrightmargin = 0pt \defbodyindent = 2mm \tableindent = 12mm }} % A specific text layout, 24x15cm overall, intended for A4 paper. \def\afourlatex{{\globaldefs = 1 \afourpaper \internalpagesizes{237mm}{150mm}% {\voffset}{4.6mm}% {\bindingoffset}{7mm}% {297mm}{210mm}% % % Must explicitly reset to 0 because we call \afourpaper. \globaldefs = 0 }} % Use @afourwide to print on A4 paper in landscape format. \def\afourwide{{\globaldefs = 1 \afourpaper \internalpagesizes{241mm}{165mm}% {\voffset}{-2.95mm}% {\bindingoffset}{7mm}% {297mm}{210mm}% \globaldefs = 0 }} % @pagesizes TEXTHEIGHT[,TEXTWIDTH] % Perhaps we should allow setting the margins, \topskip, \parskip, % and/or leading, also. Or perhaps we should compute them somehow. % \parseargdef\pagesizes{\pagesizesyyy #1,,\finish} \def\pagesizesyyy#1,#2,#3\finish{{% \setbox0 = \hbox{\ignorespaces #2}\ifdim\wd0 > 0pt \hsize=#2\relax \fi \globaldefs = 1 % \parskip = 3pt plus 2pt minus 1pt \setleading{\textleading}% % \dimen0 = #1\relax \advance\dimen0 by \voffset % \dimen2 = \hsize \advance\dimen2 by \normaloffset % \internalpagesizes{#1}{\hsize}% {\voffset}{\normaloffset}% {\bindingoffset}{44pt}% {\dimen0}{\dimen2}% }} % Set default to letter. % \letterpaper \message{and turning on texinfo input format.} \def^^L{\par} % remove \outer, so ^L can appear in an @comment % DEL is a comment character, in case @c does not suffice. \catcode`\^^? = 14 % Define macros to output various characters with catcode for normal text. \catcode`\"=\other \def\normaldoublequote{"} \catcode`\$=\other \def\normaldollar{$}%$ font-lock fix \catcode`\+=\other \def\normalplus{+} \catcode`\<=\other \def\normalless{<} \catcode`\>=\other \def\normalgreater{>} \catcode`\^=\other \def\normalcaret{^} \catcode`\_=\other \def\normalunderscore{_} \catcode`\|=\other \def\normalverticalbar{|} \catcode`\~=\other \def\normaltilde{~} % This macro is used to make a character print one way in \tt % (where it can probably be output as-is), and another way in other fonts, % where something hairier probably needs to be done. % % #1 is what to print if we are indeed using \tt; #2 is what to print % otherwise. Since all the Computer Modern typewriter fonts have zero % interword stretch (and shrink), and it is reasonable to expect all % typewriter fonts to have this, we can check that font parameter. % \def\ifusingtt#1#2{\ifdim \fontdimen3\font=0pt #1\else #2\fi} % Same as above, but check for italic font. Actually this also catches % non-italic slanted fonts since it is impossible to distinguish them from % italic fonts. But since this is only used by $ and it uses \sl anyway % this is not a problem. \def\ifusingit#1#2{\ifdim \fontdimen1\font>0pt #1\else #2\fi} % Turn off all special characters except @ % (and those which the user can use as if they were ordinary). % Most of these we simply print from the \tt font, but for some, we can % use math or other variants that look better in normal text. \catcode`\"=\active \def\activedoublequote{{\tt\char34}} \let"=\activedoublequote \catcode`\~=\active \def~{{\tt\char126}} \chardef\hat=`\^ \catcode`\^=\active \def^{{\tt \hat}} \catcode`\_=\active \def_{\ifusingtt\normalunderscore\_} \let\realunder=_ % Subroutine for the previous macro. \def\_{\leavevmode \kern.07em \vbox{\hrule width.3em height.1ex}\kern .07em } \catcode`\|=\active \def|{{\tt\char124}} \chardef \less=`\< \catcode`\<=\active \def<{{\tt \less}} \chardef \gtr=`\> \catcode`\>=\active \def>{{\tt \gtr}} \catcode`\+=\active \def+{{\tt \char 43}} \catcode`\$=\active \def${\ifusingit{{\sl\$}}\normaldollar}%$ font-lock fix % If a .fmt file is being used, characters that might appear in a file % name cannot be active until we have parsed the command line. % So turn them off again, and have \everyjob (or @setfilename) turn them on. % \otherifyactive is called near the end of this file. \def\otherifyactive{\catcode`+=\other \catcode`\_=\other} % Used sometimes to turn off (effectively) the active characters even after % parsing them. \def\turnoffactive{% \normalturnoffactive \otherbackslash } \catcode`\@=0 % \backslashcurfont outputs one backslash character in current font, % as in \char`\\. \global\chardef\backslashcurfont=`\\ \global\let\rawbackslashxx=\backslashcurfont % let existing .??s files work % \realbackslash is an actual character `\' with catcode other, and % \doublebackslash is two of them (for the pdf outlines). {\catcode`\\=\other @gdef@realbackslash{\} @gdef@doublebackslash{\\}} % In texinfo, backslash is an active character; it prints the backslash % in fixed width font. \catcode`\\=\active % @ for escape char from now on. % The story here is that in math mode, the \char of \backslashcurfont % ends up printing the roman \ from the math symbol font (because \char % in math mode uses the \mathcode, and plain.tex sets % \mathcode`\\="026E). It seems better for @backslashchar{} to always % print a typewriter backslash, hence we use an explicit \mathchar, % which is the decimal equivalent of "715c (class 7, e.g., use \fam; % ignored family value; char position "5C). We can't use " for the % usual hex value because it has already been made active. @def@normalbackslash{{@tt @ifmmode @mathchar29020 @else @backslashcurfont @fi}} @let@backslashchar = @normalbackslash % @backslashchar{} is for user documents. % On startup, @fixbackslash assigns: % @let \ = @normalbackslash % \rawbackslash defines an active \ to do \backslashcurfont. % \otherbackslash defines an active \ to be a literal `\' character with % catcode other. We switch back and forth between these. @gdef@rawbackslash{@let\=@backslashcurfont} @gdef@otherbackslash{@let\=@realbackslash} % Same as @turnoffactive except outputs \ as {\tt\char`\\} instead of % the literal character `\'. Also revert - to its normal character, in % case the active - from code has slipped in. % {@catcode`- = @active @gdef@normalturnoffactive{% @let-=@normaldash @let"=@normaldoublequote @let$=@normaldollar %$ font-lock fix @let+=@normalplus @let<=@normalless @let>=@normalgreater @let\=@normalbackslash @let^=@normalcaret @let_=@normalunderscore @let|=@normalverticalbar @let~=@normaltilde @markupsetuplqdefault @markupsetuprqdefault @unsepspaces } } % Make _ and + \other characters, temporarily. % This is canceled by @fixbackslash. @otherifyactive % If a .fmt file is being used, we don't want the `\input texinfo' to show up. % That is what \eatinput is for; after that, the `\' should revert to printing % a backslash. % @gdef@eatinput input texinfo{@fixbackslash} @global@let\ = @eatinput % On the other hand, perhaps the file did not have a `\input texinfo'. Then % the first `\' in the file would cause an error. This macro tries to fix % that, assuming it is called before the first `\' could plausibly occur. % Also turn back on active characters that might appear in the input % file name, in case not using a pre-dumped format. % @gdef@fixbackslash{% @ifx\@eatinput @let\ = @normalbackslash @fi @catcode`+=@active @catcode`@_=@active } % Say @foo, not \foo, in error messages. @escapechar = `@@ % These (along with & and #) are made active for url-breaking, so need % active definitions as the normal characters. @def@normaldot{.} @def@normalquest{?} @def@normalslash{/} % These look ok in all fonts, so just make them not special. % @hashchar{} gets its own user-level command, because of #line. @catcode`@& = @other @def@normalamp{&} @catcode`@# = @other @def@normalhash{#} @catcode`@% = @other @def@normalpercent{%} @let @hashchar = @normalhash @c Finally, make ` and ' active, so that txicodequoteundirected and @c txicodequotebacktick work right in, e.g., @w{@code{`foo'}}. If we @c don't make ` and ' active, @code will not get them as active chars. @c Do this last of all since we use ` in the previous @catcode assignments. @catcode`@'=@active @catcode`@`=@active @markupsetuplqdefault @markupsetuprqdefault @c Local variables: @c eval: (add-hook 'write-file-hooks 'time-stamp) @c page-delimiter: "^\\\\message" @c time-stamp-start: "def\\\\texinfoversion{" @c time-stamp-format: "%:y-%02m-%02d.%02H" @c time-stamp-end: "}" @c End: @c vim:sw=2: @ignore arch-tag: e1b36e32-c96e-4135-a41a-0b2efa2ea115 @end ignore gsl-1.16/doc/siman-energy.eps0000664000252300025230000046054512171574312013044 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Wed Dec 20 22:05:31 2006 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 49 177 500 576 %%DocumentNeededResources: %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup /DrawDict 50 dict def DrawDict begin %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: %%PageBoundingBox: 49 177 500 576 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 9216 Rect End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2315 2151 2348 2140 2370 2107 2381 2052 2381 2019 2370 1964 2348 1931 2315 1920 2293 1920 2260 1931 2238 1964 2227 2019 2227 2052 2238 2107 2260 2140 2293 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2293 2151 2271 2140 2260 2129 2249 2107 2238 2052 2238 2019 2249 1964 2260 1942 2271 1931 2293 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 2315 1920 2337 1931 2348 1942 2359 1964 2370 2019 2370 2052 2359 2107 2348 2129 2337 2140 2315 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3181 2151 3159 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 3159 2041 3181 2063 3214 2074 3247 2074 3280 2063 3302 2041 3313 2008 3313 1986 3302 1953 3280 1931 3247 1920 3214 1920 3181 1931 3170 1942 3159 1964 3159 1975 3170 1986 3181 1975 3170 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 3247 2074 3269 2063 3291 2041 3302 2008 3302 1986 3291 1953 3269 1931 3247 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3181 2151 3291 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 3181 2140 3236 2140 3291 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3467 2151 3500 2140 3522 2107 3533 2052 3533 2019 3522 1964 3500 1931 3467 1920 3445 1920 3412 1931 3390 1964 3379 2019 3379 2052 3390 2107 3412 2140 3445 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3445 2151 3423 2140 3412 2129 3401 2107 3390 2052 3390 2019 3401 1964 3412 1942 3423 1931 3445 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3467 1920 3489 1931 3500 1942 3511 1964 3522 2019 3522 2052 3511 2107 3500 2129 3489 2140 3467 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 3687 2151 3720 2140 3742 2107 3753 2052 3753 2019 3742 1964 3720 1931 3687 1920 3665 1920 3632 1931 3610 1964 3599 2019 3599 2052 3610 2107 3632 2140 3665 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3665 2151 3643 2140 3632 2129 3621 2107 3610 2052 3610 2019 3621 1964 3632 1942 3643 1931 3665 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 3687 1920 3709 1931 3720 1942 3731 1964 3742 2019 3742 2052 3731 2107 3720 2129 3709 2140 3687 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 9216 3456 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3456 2304 3456 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4234 2107 4256 2118 4289 2151 4289 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4278 2140 4278 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4234 1920 4333 1920 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4509 2151 4542 2140 4564 2107 4575 2052 4575 2019 4564 1964 4542 1931 4509 1920 4487 1920 4454 1931 4432 1964 4421 2019 4421 2052 4432 2107 4454 2140 4487 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4487 2151 4465 2140 4454 2129 4443 2107 4432 2052 4432 2019 4443 1964 4454 1942 4465 1931 4487 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4509 1920 4531 1931 4542 1942 4553 1964 4564 2019 4564 2052 4553 2107 4542 2129 4531 2140 4509 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4729 2151 4762 2140 4784 2107 4795 2052 4795 2019 4784 1964 4762 1931 4729 1920 4707 1920 4674 1931 4652 1964 4641 2019 4641 2052 4652 2107 4674 2140 4707 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4707 2151 4685 2140 4674 2129 4663 2107 4652 2052 4652 2019 4663 1964 4674 1942 4685 1931 4707 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4729 1920 4751 1931 4762 1942 4773 1964 4784 2019 4784 2052 4773 2107 4762 2129 4751 2140 4729 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4949 2151 4982 2140 5004 2107 5015 2052 5015 2019 5004 1964 4982 1931 4949 1920 4927 1920 4894 1931 4872 1964 4861 2019 4861 2052 4872 2107 4894 2140 4927 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4927 2151 4905 2140 4894 2129 4883 2107 4872 2052 4872 2019 4883 1964 4894 1942 4905 1931 4927 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 4949 1920 4971 1931 4982 1942 4993 1964 5004 2019 5004 2052 4993 2107 4982 2129 4971 2140 4949 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 9216 4608 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4608 2304 4608 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5386 2107 5408 2118 5441 2151 5441 1920 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5430 2140 5430 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5386 1920 5485 1920 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5595 2151 5573 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 5573 2041 5595 2063 5628 2074 5661 2074 5694 2063 5716 2041 5727 2008 5727 1986 5716 1953 5694 1931 5661 1920 5628 1920 5595 1931 5584 1942 5573 1964 5573 1975 5584 1986 5595 1975 5584 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5661 2074 5683 2063 5705 2041 5716 2008 5716 1986 5705 1953 5683 1931 5661 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5595 2151 5705 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5595 2140 5650 2140 5705 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 5881 2151 5914 2140 5936 2107 5947 2052 5947 2019 5936 1964 5914 1931 5881 1920 5859 1920 5826 1931 5804 1964 5793 2019 5793 2052 5804 2107 5826 2140 5859 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5859 2151 5837 2140 5826 2129 5815 2107 5804 2052 5804 2019 5815 1964 5826 1942 5837 1931 5859 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5881 1920 5903 1931 5914 1942 5925 1964 5936 2019 5936 2052 5925 2107 5914 2129 5903 2140 5881 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6101 2151 6134 2140 6156 2107 6167 2052 6167 2019 6156 1964 6134 1931 6101 1920 6079 1920 6046 1931 6024 1964 6013 2019 6013 2052 6024 2107 6046 2140 6079 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6079 2151 6057 2140 6046 2129 6035 2107 6024 2052 6024 2019 6035 1964 6046 1942 6057 1931 6079 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6101 1920 6123 1931 6134 1942 6145 1964 6156 2019 6156 2052 6145 2107 6134 2129 6123 2140 6101 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 9216 5760 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 6516 2107 6527 2096 6516 2085 6505 2096 6505 2107 6516 2129 6527 2140 6560 2151 6604 2151 6637 2140 6648 2129 6659 2107 6659 2085 6648 2063 6615 2041 6560 2019 6538 2008 6516 1986 6505 1953 6505 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6604 2151 6626 2140 6637 2129 6648 2107 6648 2085 6637 2063 6604 2041 6560 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6505 1942 6516 1953 6538 1953 6593 1931 6626 1931 6648 1942 6659 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 6538 1953 6593 1920 6637 1920 6648 1931 6659 1953 6659 1975 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6813 2151 6846 2140 6868 2107 6879 2052 6879 2019 6868 1964 6846 1931 6813 1920 6791 1920 6758 1931 6736 1964 6725 2019 6725 2052 6736 2107 6758 2140 6791 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6791 2151 6769 2140 6758 2129 6747 2107 6736 2052 6736 2019 6747 1964 6758 1942 6769 1931 6791 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 6813 1920 6835 1931 6846 1942 6857 1964 6868 2019 6868 2052 6857 2107 6846 2129 6835 2140 6813 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7033 2151 7066 2140 7088 2107 7099 2052 7099 2019 7088 1964 7066 1931 7033 1920 7011 1920 6978 1931 6956 1964 6945 2019 6945 2052 6956 2107 6978 2140 7011 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7011 2151 6989 2140 6978 2129 6967 2107 6956 2052 6956 2019 6967 1964 6978 1942 6989 1931 7011 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7033 1920 7055 1931 7066 1942 7077 1964 7088 2019 7088 2052 7077 2107 7066 2129 7055 2140 7033 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 7253 2151 7286 2140 7308 2107 7319 2052 7319 2019 7308 1964 7286 1931 7253 1920 7231 1920 7198 1931 7176 1964 7165 2019 7165 2052 7176 2107 7198 2140 7231 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7231 2151 7209 2140 7198 2129 7187 2107 7176 2052 7176 2019 7187 1964 7198 1942 7209 1931 7231 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 7253 1920 7275 1931 7286 1942 7297 1964 7308 2019 7308 2052 7297 2107 7286 2129 7275 2140 7253 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 9216 6912 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6912 2304 6912 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 20 7668 2107 7679 2096 7668 2085 7657 2096 7657 2107 7668 2129 7679 2140 7712 2151 7756 2151 7789 2140 7800 2129 7811 2107 7811 2085 7800 2063 7767 2041 7712 2019 7690 2008 7668 1986 7657 1953 7657 1920 20 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7756 2151 7778 2140 7789 2129 7800 2107 7800 2085 7789 2063 7756 2041 7712 2019 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 7657 1942 7668 1953 7690 1953 7745 1931 7778 1931 7800 1942 7811 1953 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 7690 1953 7745 1920 7789 1920 7800 1931 7811 1953 7811 1975 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7899 2151 7877 2041 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 7877 2041 7899 2063 7932 2074 7965 2074 7998 2063 8020 2041 8031 2008 8031 1986 8020 1953 7998 1931 7965 1920 7932 1920 7899 1931 7888 1942 7877 1964 7877 1975 7888 1986 7899 1975 7888 1964 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 7965 2074 7987 2063 8009 2041 8020 2008 8020 1986 8009 1953 7987 1931 7965 1920 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7899 2151 8009 2151 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 7899 2140 7954 2140 8009 2151 3 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8185 2151 8218 2140 8240 2107 8251 2052 8251 2019 8240 1964 8218 1931 8185 1920 8163 1920 8130 1931 8108 1964 8097 2019 8097 2052 8108 2107 8130 2140 8163 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8163 2151 8141 2140 8130 2129 8119 2107 8108 2052 8108 2019 8119 1964 8130 1942 8141 1931 8163 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8185 1920 8207 1931 8218 1942 8229 1964 8240 2019 8240 2052 8229 2107 8218 2129 8207 2140 8185 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8405 2151 8438 2140 8460 2107 8471 2052 8471 2019 8460 1964 8438 1931 8405 1920 8383 1920 8350 1931 8328 1964 8317 2019 8317 2052 8328 2107 8350 2140 8383 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8383 2151 8361 2140 8350 2129 8339 2107 8328 2052 8328 2019 8339 1964 8350 1942 8361 1931 8383 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 8405 1920 8427 1931 8438 1942 8449 1964 8460 2019 8460 2052 8449 2107 8438 2129 8427 2140 8405 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 9216 8064 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8064 2304 8064 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 8820 2107 8831 2096 8820 2085 8809 2096 8809 2107 8820 2129 8831 2140 8864 2151 8908 2151 8941 2140 8952 2118 8952 2085 8941 2063 8908 2052 8875 2052 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8908 2151 8930 2140 8941 2118 8941 2085 8930 2063 8908 2052 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 8908 2052 8930 2041 8952 2019 8963 1997 8963 1964 8952 1942 8941 1931 8908 1920 8864 1920 8831 1931 8820 1942 8809 1964 8809 1975 8820 1986 8831 1975 8820 1964 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 8941 2030 8952 1997 8952 1964 8941 1942 8930 1931 8908 1920 6 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9117 2151 9150 2140 9172 2107 9183 2052 9183 2019 9172 1964 9150 1931 9117 1920 9095 1920 9062 1931 9040 1964 9029 2019 9029 2052 9040 2107 9062 2140 9095 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9095 2151 9073 2140 9062 2129 9051 2107 9040 2052 9040 2019 9051 1964 9062 1942 9073 1931 9095 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9117 1920 9139 1931 9150 1942 9161 1964 9172 2019 9172 2052 9161 2107 9150 2129 9139 2140 9117 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9337 2151 9370 2140 9392 2107 9403 2052 9403 2019 9392 1964 9370 1931 9337 1920 9315 1920 9282 1931 9260 1964 9249 2019 9249 2052 9260 2107 9282 2140 9315 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9315 2151 9293 2140 9282 2129 9271 2107 9260 2052 9260 2019 9271 1964 9282 1942 9293 1931 9315 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9337 1920 9359 1931 9370 1942 9381 1964 9392 2019 9392 2052 9381 2107 9370 2129 9359 2140 9337 2151 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 9557 2151 9590 2140 9612 2107 9623 2052 9623 2019 9612 1964 9590 1931 9557 1920 9535 1920 9502 1931 9480 1964 9469 2019 9469 2052 9480 2107 9502 2140 9535 2151 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9535 2151 9513 2140 9502 2129 9491 2107 9480 2052 9480 2019 9491 1964 9502 1942 9513 1931 9535 1920 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 9557 1920 9579 1931 9590 1942 9601 1964 9612 2019 9612 2052 9601 2107 9590 2129 9579 2140 9557 2151 10 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2442 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 2304 1387 2304 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 2436 1585 2425 1607 2392 1618 2337 1618 2304 1607 2249 1585 2216 1552 2205 1530 2205 1497 2216 1475 2249 1464 2304 1464 2337 1475 2392 1497 2425 1530 2436 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 2436 1508 2425 1497 2414 1486 2392 1475 2337 1475 2304 1486 2249 1497 2227 1508 2216 1530 2205 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 2205 1574 2216 1585 2227 1596 2249 1607 2304 1607 2337 1596 2392 1585 2414 1574 2425 1552 2436 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 2216 1705 2205 1694 2216 1705 2227 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 2436 1925 2425 1936 2403 1936 2370 1925 2348 1892 2337 1848 2337 1815 2348 1804 2370 1804 2403 1815 2425 1848 2436 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 2436 1826 2425 1815 2403 1815 2370 1826 2348 1848 2337 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 2337 1914 2348 1925 2370 1925 2403 1914 2425 1892 2436 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 2337 1815 2326 1804 2315 1793 2293 1793 2249 1804 2227 1815 2216 1848 2205 1892 2205 1925 2216 1936 2227 1947 2249 1947 2293 1936 2315 1925 2326 1892 2337 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 2337 1826 2326 1815 2315 1804 2293 1804 2249 1815 2227 1826 2216 1848 2205 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 2205 1914 2216 1925 2227 1936 2249 1936 2293 1925 2315 1914 2326 1892 2337 8 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 2112 2436 2145 2425 2156 2403 2156 2370 2145 2348 2112 2337 2068 2337 2035 2348 2024 2370 2024 2403 2035 2425 2068 2436 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2068 2436 2046 2425 2035 2403 2035 2370 2046 2348 2068 2337 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2112 2337 2134 2348 2145 2370 2145 2403 2134 2425 2112 2436 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2068 2337 2035 2326 2024 2315 2013 2293 2013 2249 2024 2227 2035 2216 2068 2205 2112 2205 2145 2216 2156 2227 2167 2249 2167 2293 2156 2315 2145 2326 2112 2337 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2068 2337 2046 2326 2035 2315 2024 2293 2024 2249 2035 2227 2046 2216 2068 2205 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2112 2205 2134 2216 2145 2227 2156 2249 2156 2293 2145 2315 2134 2326 2112 2337 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9078 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 3686 1387 3686 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 3818 1585 3807 1607 3774 1618 3719 1618 3686 1607 3631 1585 3598 1552 3587 1530 3587 1497 3598 1475 3631 1464 3686 1464 3719 1475 3774 1497 3807 1530 3818 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 3818 1508 3807 1497 3796 1486 3774 1475 3719 1475 3686 1486 3631 1497 3609 1508 3598 1530 3587 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 3587 1574 3598 1585 3609 1596 3631 1607 3686 1607 3719 1596 3774 1585 3796 1574 3807 1552 3818 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 3598 1705 3587 1694 3598 1705 3609 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 3818 1925 3807 1936 3785 1936 3752 1925 3730 1892 3719 1848 3719 1815 3730 1804 3752 1804 3785 1815 3807 1848 3818 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 3818 1826 3807 1815 3785 1815 3752 1826 3730 1848 3719 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 3719 1914 3730 1925 3752 1925 3785 1914 3807 1892 3818 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 3719 1815 3708 1804 3697 1793 3675 1793 3631 1804 3609 1815 3598 1848 3587 1892 3587 1925 3598 1936 3609 1947 3631 1947 3675 1936 3697 1925 3708 1892 3719 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 3719 1826 3708 1815 3697 1804 3675 1804 3631 1815 3609 1826 3598 1848 3587 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 3587 1914 3598 1925 3609 1936 3631 1936 3675 1925 3697 1914 3708 1892 3719 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2013 3818 2013 3752 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2013 3774 2024 3796 2046 3818 2068 3818 2123 3785 2145 3785 2156 3796 2167 3818 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 2024 3796 2046 3807 2068 3807 2123 3785 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 2167 3818 2167 3785 2156 3752 2112 3697 2101 3675 2090 3642 2090 3587 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 2156 3752 2101 3697 2090 3675 2079 3642 2079 3587 5 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3686 9078 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2442 3686 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 5069 1387 5069 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 5201 1585 5190 1607 5157 1618 5102 1618 5069 1607 5014 1585 4981 1552 4970 1530 4970 1497 4981 1475 5014 1464 5069 1464 5102 1475 5157 1497 5190 1530 5201 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 5201 1508 5190 1497 5179 1486 5157 1475 5102 1475 5069 1486 5014 1497 4992 1508 4981 1530 4970 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 4970 1574 4981 1585 4992 1596 5014 1607 5069 1607 5102 1596 5157 1585 5179 1574 5190 1552 5201 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 4981 1705 4970 1694 4981 1705 4992 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 5201 1925 5190 1936 5168 1936 5135 1925 5113 1892 5102 1848 5102 1815 5113 1804 5135 1804 5168 1815 5190 1848 5201 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 5201 1826 5190 1815 5168 1815 5135 1826 5113 1848 5102 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 5102 1914 5113 1925 5135 1925 5168 1914 5190 1892 5201 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 5102 1815 5091 1804 5080 1793 5058 1793 5014 1804 4992 1815 4981 1848 4970 1892 4970 1925 4981 1936 4992 1947 5014 1947 5058 1936 5080 1925 5091 1892 5102 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 5102 1826 5091 1815 5080 1804 5058 1804 5014 1815 4992 1826 4981 1848 4970 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 4970 1914 4981 1925 4992 1936 5014 1936 5058 1925 5080 1914 5091 1892 5102 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 28 2145 5168 2134 5157 2145 5146 2156 5157 2156 5168 2145 5190 2123 5201 2090 5201 2057 5190 2035 5168 2024 5146 2013 5102 2013 5036 2024 5003 2046 4981 2079 4970 2101 4970 2134 4981 2156 5003 2167 5036 2167 5047 2156 5080 2134 5102 2101 5113 2090 5113 2057 5102 2035 5080 2024 5047 28 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 2090 5201 2068 5190 2046 5168 2035 5146 2024 5102 2024 5036 2035 5003 2057 4981 2079 4970 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 4970 2123 4981 2145 5003 2156 5036 2156 5047 2145 5080 2123 5102 2101 5113 8 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5069 9078 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2442 5069 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 6451 1387 6451 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 6583 1585 6572 1607 6539 1618 6484 1618 6451 1607 6396 1585 6363 1552 6352 1530 6352 1497 6363 1475 6396 1464 6451 1464 6484 1475 6539 1497 6572 1530 6583 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 6583 1508 6572 1497 6561 1486 6539 1475 6484 1475 6451 1486 6396 1497 6374 1508 6363 1530 6352 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 6352 1574 6363 1585 6374 1596 6396 1607 6451 1607 6484 1596 6539 1585 6561 1574 6572 1552 6583 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 6363 1705 6352 1694 6363 1705 6374 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 6583 1925 6572 1936 6550 1936 6517 1925 6495 1892 6484 1848 6484 1815 6495 1804 6517 1804 6550 1815 6572 1848 6583 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 6583 1826 6572 1815 6550 1815 6517 1826 6495 1848 6484 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 6484 1914 6495 1925 6517 1925 6550 1914 6572 1892 6583 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 6484 1815 6473 1804 6462 1793 6440 1793 6396 1804 6374 1815 6363 1848 6352 1892 6352 1925 6363 1936 6374 1947 6396 1947 6440 1936 6462 1925 6473 1892 6484 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 6484 1826 6473 1815 6462 1804 6440 1804 6396 1815 6374 1826 6363 1848 6352 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 6352 1914 6363 1925 6374 1936 6396 1936 6440 1925 6462 1914 6473 1892 6484 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 6583 2013 6473 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 19 2013 6473 2035 6495 2068 6506 2101 6506 2134 6495 2156 6473 2167 6440 2167 6418 2156 6385 2134 6363 2101 6352 2068 6352 2035 6363 2024 6374 2013 6396 2013 6407 2024 6418 2035 6407 2024 6396 19 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 2101 6506 2123 6495 2145 6473 2156 6440 2156 6418 2145 6385 2123 6363 2101 6352 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2035 6583 2145 6583 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2035 6572 2090 6572 2145 6583 3 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6451 9078 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2442 6451 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 7834 1387 7834 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 7966 1585 7955 1607 7922 1618 7867 1618 7834 1607 7779 1585 7746 1552 7735 1530 7735 1497 7746 1475 7779 1464 7834 1464 7867 1475 7922 1497 7955 1530 7966 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 7966 1508 7955 1497 7944 1486 7922 1475 7867 1475 7834 1486 7779 1497 7757 1508 7746 1530 7735 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 7735 1574 7746 1585 7757 1596 7779 1607 7834 1607 7867 1596 7922 1585 7944 1574 7955 1552 7966 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 7746 1705 7735 1694 7746 1705 7757 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 7966 1925 7955 1936 7933 1936 7900 1925 7878 1892 7867 1848 7867 1815 7878 1804 7900 1804 7933 1815 7955 1848 7966 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 7966 1826 7955 1815 7933 1815 7900 1826 7878 1848 7867 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 7867 1914 7878 1925 7900 1925 7933 1914 7955 1892 7966 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 7867 1815 7856 1804 7845 1793 7823 1793 7779 1804 7757 1815 7746 1848 7735 1892 7735 1925 7746 1936 7757 1947 7779 1947 7823 1936 7845 1925 7856 1892 7867 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 7867 1826 7856 1815 7845 1804 7823 1804 7779 1815 7757 1826 7746 1848 7735 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 7735 1914 7746 1925 7757 1936 7779 1936 7823 1925 7845 1914 7856 1892 7867 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2112 7944 2112 7735 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2123 7966 2123 7735 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 2123 7966 2002 7801 2178 7801 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2079 7735 2156 7735 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7834 9078 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2442 7834 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 1189 9216 1387 9216 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1552 9348 1585 9337 1607 9304 1618 9249 1618 9216 1607 9161 1585 9128 1552 9117 1530 9117 1497 9128 1475 9161 1464 9216 1464 9249 1475 9304 1497 9337 1530 9348 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1530 9348 1508 9337 1497 9326 1486 9304 1475 9249 1475 9216 1486 9161 1497 9139 1508 9128 1530 9117 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 1552 9117 1574 9128 1585 9139 1596 9161 1607 9216 1607 9249 1596 9304 1585 9326 1574 9337 1552 9348 10 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 1716 9128 1705 9117 1694 9128 1705 9139 4 Poly End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12 1892 9348 1925 9337 1936 9315 1936 9282 1925 9260 1892 9249 1848 9249 1815 9260 1804 9282 1804 9315 1815 9337 1848 9348 12 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1848 9348 1826 9337 1815 9315 1815 9282 1826 9260 1848 9249 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 1892 9249 1914 9260 1925 9282 1925 9315 1914 9337 1892 9348 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 1848 9249 1815 9238 1804 9227 1793 9205 1793 9161 1804 9139 1815 9128 1848 9117 1892 9117 1925 9128 1936 9139 1947 9161 1947 9205 1936 9227 1925 9238 1892 9249 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1848 9249 1826 9238 1815 9227 1804 9205 1804 9161 1815 9139 1826 9128 1848 9117 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 1892 9117 1914 9128 1925 9139 1936 9161 1936 9205 1925 9227 1914 9238 1892 9249 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 2024 9304 2035 9293 2024 9282 2013 9293 2013 9304 2024 9326 2035 9337 2068 9348 2112 9348 2145 9337 2156 9315 2156 9282 2145 9260 2112 9249 2079 9249 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2112 9348 2134 9337 2145 9315 2145 9282 2134 9260 2112 9249 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 2112 9249 2134 9238 2156 9216 2167 9194 2167 9161 2156 9139 2145 9128 2112 9117 2068 9117 2035 9128 2024 9139 2013 9161 2013 9172 2024 9183 2035 9172 2024 9161 16 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 2145 9227 2156 9194 2156 9161 2145 9139 2134 9128 2112 9117 6 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9078 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9161 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2580 9161 2580 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2580 2359 2580 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2857 9161 2857 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2857 2359 2857 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3133 9161 3133 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3133 2359 3133 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3410 9161 3410 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3410 2359 3410 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3686 9161 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2359 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3963 9161 3963 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3963 2359 3963 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4239 9161 4239 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4239 2359 4239 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4516 9161 4516 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4516 2359 4516 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4792 9161 4792 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4792 2359 4792 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5069 9161 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2359 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5345 9161 5345 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5345 2359 5345 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5622 9161 5622 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5622 2359 5622 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5898 9161 5898 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5898 2359 5898 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6175 9161 6175 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6175 2359 6175 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6451 9161 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2359 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 6728 9161 6728 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6728 2359 6728 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7004 9161 7004 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7004 2359 7004 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7281 9161 7281 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7281 2359 7281 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7557 9161 7557 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7557 2359 7557 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 7834 9161 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2359 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8110 9161 8110 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8110 2359 8110 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8387 9161 8387 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8387 2359 8387 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8663 9161 8663 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8663 2359 8663 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 8940 9161 8940 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8940 2359 8940 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9161 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 4858 1621 4880 1610 4891 1599 4902 1577 4902 1555 4891 1533 4880 1522 4858 1511 4836 1511 4814 1522 4803 1533 4792 1555 4792 1577 4803 1599 4814 1610 4836 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4814 1610 4803 1588 4803 1544 4814 1522 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 4880 1522 4891 1544 4891 1588 4880 1610 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 4891 1599 4902 1610 4924 1621 4924 1610 4902 1610 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 4803 1533 4792 1522 4781 1500 4781 1489 4792 1467 4825 1456 4880 1456 4913 1445 4924 1434 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 4781 1489 4792 1478 4825 1467 4880 1467 4913 1456 4924 1434 4924 1423 4913 1401 4880 1390 4814 1390 4781 1401 4770 1423 4770 1434 4781 1456 4814 1467 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5001 1555 5133 1555 5133 1577 5122 1599 5111 1610 5089 1621 5056 1621 5023 1610 5001 1588 4990 1555 4990 1533 5001 1500 5023 1478 5056 1467 5078 1467 5111 1478 5133 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5122 1555 5122 1588 5111 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5056 1621 5034 1610 5012 1588 5001 1555 5001 1533 5012 1500 5034 1478 5056 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5221 1621 5221 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5232 1621 5232 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 5232 1588 5254 1610 5287 1621 5309 1621 5342 1610 5353 1588 5353 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 5309 1621 5331 1610 5342 1588 5342 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1621 5232 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5188 1467 5265 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5309 1467 5386 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 5452 1555 5584 1555 5584 1577 5573 1599 5562 1610 5540 1621 5507 1621 5474 1610 5452 1588 5441 1555 5441 1533 5452 1500 5474 1478 5507 1467 5529 1467 5562 1478 5584 1500 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 5573 1555 5573 1588 5562 1610 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 5507 1621 5485 1610 5463 1588 5452 1555 5452 1533 5463 1500 5485 1478 5507 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5672 1621 5672 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5683 1621 5683 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 5683 1555 5694 1588 5716 1610 5738 1621 5771 1621 5782 1610 5782 1599 5771 1588 5760 1599 5771 1610 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1621 5683 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5639 1467 5716 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13 5859 1599 5859 1588 5848 1588 5848 1599 5859 1610 5881 1621 5925 1621 5947 1610 5958 1599 5969 1577 5969 1500 5980 1478 5991 1467 13 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 5958 1599 5958 1500 5969 1478 5991 1467 6002 1467 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 11 5958 1577 5947 1566 5881 1555 5848 1544 5837 1522 5837 1500 5848 1478 5881 1467 5914 1467 5936 1478 5958 1500 11 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6 5881 1555 5859 1544 5848 1522 5848 1500 5859 1478 5881 1467 6 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6079 1698 6079 1511 6090 1478 6112 1467 6134 1467 6156 1478 6167 1500 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6090 1698 6090 1511 6101 1478 6112 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6046 1621 6134 1621 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6255 1687 6244 1676 6233 1687 6244 1698 4 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6244 1621 6244 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6255 1621 6255 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1621 6255 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6211 1467 6288 1467 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 6431 1621 6464 1610 6486 1588 6497 1555 6497 1533 6486 1500 6464 1478 6431 1467 6409 1467 6376 1478 6354 1500 6343 1533 6343 1555 6354 1588 6376 1610 6409 1621 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6409 1621 6387 1610 6365 1588 6354 1555 6354 1533 6365 1500 6387 1478 6409 1467 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 6431 1467 6453 1478 6475 1500 6486 1533 6486 1555 6475 1588 6453 1610 6431 1621 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6585 1621 6585 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6596 1621 6596 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 6596 1588 6618 1610 6651 1621 6673 1621 6706 1610 6717 1588 6717 1467 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 6673 1621 6695 1610 6706 1588 6706 1467 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1621 6596 1621 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6552 1467 6629 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6673 1467 6750 1467 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 711 5172 711 5304 689 5304 667 5293 656 5282 645 5260 645 5227 656 5194 678 5172 711 5161 733 5161 766 5172 788 5194 799 5227 799 5249 788 5282 766 5304 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 711 5293 678 5293 656 5282 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 645 5227 656 5205 678 5183 711 5172 733 5172 766 5183 788 5205 799 5227 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5392 799 5392 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5403 799 5403 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7 678 5403 656 5425 645 5458 645 5480 656 5513 678 5524 799 5524 7 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 645 5480 656 5502 678 5513 799 5513 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5359 645 5403 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 799 5359 799 5436 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 799 5480 799 5557 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 17 711 5623 711 5755 689 5755 667 5744 656 5733 645 5711 645 5678 656 5645 678 5623 711 5612 733 5612 766 5623 788 5645 799 5678 799 5700 788 5733 766 5755 17 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 3 711 5744 678 5744 656 5733 3 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8 645 5678 656 5656 678 5634 711 5623 733 5623 766 5634 788 5656 799 5678 8 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5842 799 5842 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5853 799 5853 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10 711 5853 678 5864 656 5886 645 5908 645 5941 656 5952 667 5952 678 5941 667 5930 656 5941 10 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 5809 645 5853 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 799 5809 799 5886 2 MLine End Begin %I Poly [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 16 645 6084 656 6106 667 6117 689 6128 711 6128 733 6117 744 6106 755 6084 755 6062 744 6040 733 6029 711 6018 689 6018 667 6029 656 6040 645 6062 16 Poly End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 656 6040 678 6029 722 6029 744 6040 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4 744 6106 722 6117 678 6117 656 6106 4 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5 667 6117 656 6128 645 6150 656 6150 656 6128 5 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 733 6029 744 6018 766 6007 777 6007 799 6018 810 6051 810 6106 821 6139 832 6150 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 15 777 6007 788 6018 799 6051 799 6106 810 6139 832 6150 843 6150 865 6139 876 6106 876 6040 865 6007 843 5996 832 5996 810 6007 799 6040 15 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 6227 799 6293 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 6238 777 6293 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 9 645 6359 799 6293 843 6271 865 6249 876 6227 876 6216 865 6205 854 6216 865 6227 9 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 6205 645 6271 2 MLine End Begin %I MLine [0.7807418 0 0 0.7807418 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 1 setlinecap 1 setlinejoin /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 645 6315 645 6381 2 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 2304 3913 2306 3524 2309 4474 2311 3291 2313 7013 2316 9033 2318 3717 2320 3291 2322 3448 2325 5091 2327 4710 2329 6599 2332 4035 2334 3719 2336 4855 2339 4639 2341 3552 2343 3315 2345 6618 2348 4236 2350 3461 2352 3315 2355 4468 2357 3291 2359 3290 2362 7133 2364 3407 2366 3696 2369 3303 2371 3420 2373 3547 2375 4392 2378 3882 2380 4522 2382 4110 2385 3401 2387 3305 2389 4302 2392 3348 2394 3333 2396 3612 2398 6772 2401 3641 2403 3382 2405 3291 2408 3372 2410 6432 2412 4985 2415 3597 2417 3296 2419 3333 2422 4535 2424 3727 2426 3582 2428 4334 2431 4537 2433 3596 2435 3694 2438 3670 2440 3314 2442 3422 2445 3583 2447 4524 2449 6042 2451 3508 2454 5608 2456 3589 2458 4100 2461 3564 2463 3542 2465 3358 2468 3352 2470 4227 2472 3507 2474 4068 2477 3803 2479 7461 2481 3617 2484 3290 2486 3300 2488 8524 2491 4820 2493 3837 2495 3707 2498 3437 2500 3327 2502 3611 2504 3408 2507 3612 2509 3358 2511 4195 2514 4363 2516 3475 2518 4405 2521 3567 2523 4881 2525 4280 2527 3471 2530 4632 2532 3657 2534 5213 2537 3456 2539 3871 2541 3333 2544 4181 2546 3292 2548 3431 2551 3679 2553 3438 2555 3380 2557 3949 2560 4532 2562 3297 2564 3299 2567 3928 2569 3977 2571 3713 2574 3439 2576 3399 2578 3574 2580 3476 2583 3335 2585 4452 2587 4551 2590 3425 2592 4218 2594 3802 2597 5543 2599 3419 2601 3527 2604 3591 2606 4652 2608 3292 2610 3889 2613 3290 2615 3311 2617 3466 2620 3290 2622 4131 2624 3424 2627 3579 2629 3370 2631 4303 2633 3345 2636 4516 2638 3298 2640 3295 2643 3704 2645 3527 2647 3319 2650 3422 2652 3371 2654 4250 2657 3487 2659 3350 2661 3291 2663 5719 2666 3356 2668 3791 2670 3543 2673 4164 2675 3830 2677 3444 2680 3766 2682 3478 2684 3361 2686 3699 2689 6142 2691 3290 2693 4189 2696 3300 2698 4503 2700 3360 2703 4097 2705 3483 2707 4962 2710 3476 2712 4439 2714 4188 2716 5653 2719 4309 2721 3664 2723 3400 2726 4114 2728 3937 2730 3452 2733 3402 2735 4150 2737 5020 2739 3536 2742 3608 2744 3434 2746 3295 2749 3344 2751 3983 2753 3290 2756 3329 2758 3310 2760 3415 2762 3302 2765 3848 2767 3622 2769 3606 2772 3388 2774 3577 2776 3636 2779 3513 2781 3391 2783 3715 2786 3329 2788 3290 2790 4134 2792 3314 2795 3297 2797 3290 2799 3302 2802 6602 2804 3312 2806 3412 2809 3783 2811 3685 2813 6632 2815 3365 2818 3336 2820 5241 2822 3433 2825 3311 2827 3415 2829 3297 2832 4080 2834 3578 2836 3465 2839 3290 2841 4441 2843 3290 2845 3996 2848 3377 2850 3294 2852 3465 2855 3291 2857 3408 2859 3291 2862 3319 2864 3895 2866 3833 2868 3293 2871 3323 2873 3461 2875 3294 2878 3325 2880 3295 2882 3307 2885 3317 2887 3368 2889 3378 2892 3295 2894 4232 2896 3367 2898 3290 2901 3596 2903 4308 2905 3376 2908 3510 2910 3910 2912 3295 2915 3295 2917 3335 2919 3355 2921 3365 2924 3294 2926 3405 2928 3290 2931 3308 2933 3435 2935 3355 2938 3300 2940 3404 2942 3310 2945 3294 2947 3302 2949 3291 2951 4978 2954 3340 2956 3596 2958 5354 2961 3298 2963 3772 2965 3323 2968 3370 2970 3307 2972 4018 2974 3358 2977 3868 2979 3298 2981 3297 2984 3319 2986 3293 2988 3619 2991 3410 2993 3317 2995 3414 2998 3299 3000 3347 3002 3334 3004 3313 3007 3348 3009 4841 3011 3572 3014 3489 3016 3474 3018 3386 3021 4339 3023 4032 3025 3332 3027 3309 3030 3291 3032 3290 3034 3468 3037 4515 3039 3582 3041 3292 3044 3305 3046 3649 3048 3539 3050 3689 3053 3418 3055 5165 3057 3354 3060 3372 3062 3339 3064 3438 3067 3389 3069 3505 3071 3290 3074 3363 3076 3672 3078 3394 3080 3439 3083 3311 3085 3800 3087 3378 3090 3803 3092 3518 3094 3309 3097 3290 3099 4032 3101 3295 3103 3314 3106 4187 3108 3360 3110 3539 3113 3377 3115 3460 3117 3390 3120 3290 3122 3424 3124 3417 3127 3379 3129 3355 3131 3419 3133 3618 3136 3683 3138 3338 3140 3290 3143 3825 3145 3319 3147 3369 3150 3356 3152 3760 3154 3315 3156 3290 3159 3427 3161 3373 3163 3551 3166 3394 3168 3382 3170 3567 3173 3294 3175 3290 3177 3656 3180 3349 3182 3645 3184 3290 3186 3290 3189 3313 3191 3393 3193 3290 3196 3324 3198 3330 3200 3387 3203 3435 3205 3307 3207 3475 3209 3314 3212 3589 3214 3350 3216 3309 3219 3333 3221 3304 3223 3452 3226 3291 3228 3297 3230 3290 3233 3345 3235 3375 3237 3329 3239 3461 3242 3341 3244 3477 3246 3311 3249 3580 3251 3304 3253 3334 3256 3344 3258 3342 3260 3386 3262 3449 3265 3320 3267 3300 3269 3620 3272 3420 3274 3291 3276 3430 3279 3290 3281 5045 3283 3290 3286 3364 3288 3744 3290 3315 3292 3306 3295 3330 3297 3420 3299 3292 3302 3453 3304 3437 3306 3300 3309 3361 3311 3290 3313 3906 3315 3521 3318 3426 3320 3309 3322 3450 3325 3490 3327 3693 3329 3290 3332 3435 3334 4694 3336 3654 3338 3301 3341 3770 3343 3294 3345 3317 3348 3335 3350 3451 3352 3481 3355 3303 3357 3546 3359 3430 3362 3303 3364 3466 3366 3846 3368 3461 3371 3298 3373 3304 3375 3399 3378 3350 3380 3401 3382 3291 3385 3331 3387 3706 3389 3336 3391 3450 3394 3350 3396 3539 3398 3361 3401 3695 3403 3295 3405 3565 3408 3613 3410 3325 3412 3314 3415 3575 3417 3421 3419 3330 3421 3541 3424 3477 3426 3445 3428 3294 3431 3461 3433 3332 3435 3377 3438 3429 3440 3476 3442 3311 3444 3315 3447 3372 3449 3296 3451 3383 3454 3380 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 3454 3380 3456 3576 3458 3292 3461 3706 3463 3489 3465 3316 3468 3292 3470 3366 3472 3365 3474 3312 3477 3534 3479 3372 3481 3304 3484 3903 3486 3300 3488 3296 3491 3533 3493 3295 3495 3352 3497 3494 3500 3291 3502 3303 3504 3484 3507 3298 3509 3293 3511 3296 3514 3421 3516 3378 3518 3939 3521 3295 3523 3304 3525 3296 3527 3633 3530 3325 3532 3495 3534 3307 3537 3307 3539 3558 3541 3297 3544 3307 3546 3844 3548 3924 3550 3301 3553 3296 3555 3352 3557 3320 3560 3380 3562 3295 3564 3317 3567 3290 3569 3553 3571 3325 3574 3397 3576 3377 3578 3506 3580 3309 3583 3299 3585 3417 3587 3310 3590 3354 3592 3299 3594 3637 3597 3329 3599 3308 3601 3290 3603 3582 3606 3290 3608 3305 3610 3309 3613 3294 3615 3320 3617 3290 3620 3298 3622 3529 3624 3293 3626 3292 3629 3291 3631 3308 3633 3291 3636 3313 3638 3299 3640 3291 3643 3306 3645 3296 3647 3563 3650 3740 3652 3290 3654 3291 3656 3493 3659 3338 3661 3362 3663 3386 3666 3377 3668 3324 3670 3304 3673 3380 3675 3291 3677 3544 3679 3291 3682 3773 3684 3357 3686 3309 3689 3693 3691 3330 3693 3448 3696 3631 3698 3587 3700 3391 3703 3391 3705 3293 3707 3290 3709 3359 3712 3304 3714 3290 3716 3355 3719 3290 3721 3519 3723 3290 3726 3290 3728 3439 3730 3465 3732 3294 3735 3371 3737 3553 3739 3290 3742 3321 3744 3309 3746 3336 3749 3298 3751 3298 3753 3320 3756 3388 3758 3527 3760 3616 3762 3346 3765 3348 3767 3363 3769 3479 3772 3369 3774 3419 3776 3364 3779 3343 3781 3404 3783 3302 3785 3360 3788 3637 3790 3295 3792 3369 3795 3312 3797 3297 3799 3352 3802 3393 3804 3290 3806 3462 3809 3296 3811 3335 3813 3293 3815 3298 3818 3290 3820 3391 3822 3423 3825 3330 3827 3292 3829 3290 3832 3348 3834 3302 3836 3319 3838 3394 3841 3291 3843 3291 3845 3298 3848 3310 3850 3343 3852 3355 3855 3314 3857 3637 3859 3291 3862 3387 3864 3290 3866 3358 3868 3293 3871 3318 3873 3314 3875 3297 3878 3331 3880 3347 3882 3291 3885 3394 3887 3415 3889 3293 3891 3292 3894 3298 3896 3534 3898 3309 3901 3299 3903 3293 3905 3388 3908 3290 3910 3296 3912 3291 3914 3301 3917 3551 3919 3307 3921 3353 3924 3304 3926 3290 3928 3307 3931 3290 3933 3660 3935 3305 3938 3291 3940 3533 3942 3476 3944 3326 3947 3314 3949 3306 3951 3537 3954 3290 3956 3420 3958 3328 3961 3298 3963 3442 3965 3325 3967 3368 3970 3291 3972 3375 3974 3432 3977 3345 3979 3696 3981 3515 3984 3333 3986 3362 3988 3293 3991 3300 3993 3383 3995 3405 3997 3317 4000 3385 4002 3390 4004 3290 4007 3398 4009 3353 4011 3343 4014 3384 4016 3290 4018 3294 4020 3300 4023 3502 4025 3296 4027 3297 4030 3307 4032 3290 4034 3291 4037 3298 4039 3300 4041 3396 4044 3307 4046 3398 4048 3290 4050 3290 4053 3301 4055 3611 4057 3329 4060 3370 4062 3402 4064 3333 4067 3302 4069 3401 4071 3339 4073 3301 4076 3291 4078 3319 4080 3300 4083 3297 4085 3291 4087 3434 4090 3508 4092 3313 4094 3295 4097 3316 4099 3299 4101 3434 4103 3354 4106 3517 4108 3290 4110 3610 4113 3290 4115 3290 4117 3328 4120 3321 4122 3290 4124 3430 4126 3376 4129 3303 4131 3355 4133 3290 4136 3448 4138 3419 4140 3372 4143 3339 4145 3434 4147 3351 4150 3311 4152 3320 4154 3356 4156 3290 4159 3323 4161 3375 4163 3290 4166 3300 4168 3294 4170 3290 4173 3290 4175 3301 4177 3335 4179 3298 4182 3307 4184 3435 4186 3290 4189 3291 4191 3368 4193 3290 4196 3341 4198 3374 4200 3329 4202 3365 4205 3333 4207 3328 4209 3294 4212 3318 4214 3461 4216 3354 4219 3331 4221 3290 4223 3360 4226 3290 4228 3290 4230 3344 4232 3324 4235 3293 4237 3291 4239 3318 4242 3367 4244 3331 4246 3290 4249 3316 4251 3418 4253 3428 4255 3291 4258 3485 4260 3368 4262 3300 4265 3303 4267 3322 4269 3434 4272 3319 4274 3387 4276 3308 4279 3556 4281 3291 4283 3418 4285 3301 4288 3340 4290 3340 4292 3294 4295 3294 4297 3342 4299 3347 4302 3291 4304 3290 4306 3311 4308 3295 4311 3314 4313 3322 4315 3486 4318 3291 4320 3309 4322 3316 4325 3329 4327 3290 4329 3338 4332 3350 4334 3290 4336 3298 4338 3290 4341 3297 4343 3363 4345 3439 4348 3304 4350 3295 4352 3307 4355 3454 4357 3290 4359 3291 4361 3301 4364 3327 4366 3295 4368 3301 4371 3296 4373 3485 4375 3380 4378 3291 4380 3290 4382 3294 4385 3371 4387 3333 4389 3295 4391 3290 4394 3399 4396 3327 4398 3407 4401 3359 4403 3290 4405 3293 4408 3305 4410 3296 4412 3319 4414 3338 4417 3290 4419 3303 4421 3290 4424 3290 4426 3381 4428 3296 4431 3290 4433 3293 4435 3293 4438 3293 4440 3376 4442 3290 4444 3291 4447 3290 4449 3351 4451 3302 4454 3304 4456 3321 4458 3320 4461 3290 4463 3291 4465 3290 4467 3321 4470 3433 4472 3290 4474 3303 4477 3347 4479 3345 4481 3346 4484 3290 4486 3301 4488 3295 4490 3311 4493 3341 4495 3295 4497 3294 4500 3303 4502 3322 4504 3302 4507 3295 4509 3290 4511 3299 4514 3337 4516 3396 4518 3290 4520 3294 4523 3294 4525 3319 4527 3359 4530 3570 4532 3309 4534 3309 4537 3290 4539 3321 4541 3290 4543 3294 4546 3291 4548 3290 4550 3426 4553 3290 4555 3290 4557 3290 4560 3305 4562 3304 4564 3299 4567 3291 4569 3347 4571 3293 4573 3303 4576 3295 4578 3324 4580 3321 4583 3330 4585 3291 4587 3294 4590 3319 4592 3331 4594 3380 4596 3291 4599 3290 4601 3290 4603 3391 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 4603 3391 4606 3290 4608 3326 4610 3365 4613 3359 4615 3319 4617 3290 4620 3293 4622 3295 4624 3290 4626 3292 4629 3311 4631 3292 4633 3385 4636 3309 4638 3318 4640 3290 4643 3305 4645 3309 4647 3332 4649 3294 4652 3297 4654 3331 4656 3320 4659 3294 4661 3299 4663 3352 4666 3334 4668 3290 4670 3291 4673 3307 4675 3306 4677 3326 4679 3291 4682 3312 4684 3316 4686 3322 4689 3337 4691 3307 4693 3292 4696 3376 4698 3373 4700 3291 4702 3395 4705 3290 4707 3417 4709 3306 4712 3367 4714 3300 4716 3297 4719 3299 4721 3295 4723 3304 4726 3292 4728 3305 4730 3294 4732 3293 4735 3290 4737 3294 4739 3305 4742 3290 4744 3290 4746 3290 4749 3292 4751 3307 4753 3304 4755 3290 4758 3290 4760 3290 4762 3290 4765 3290 4767 3290 4769 3290 4772 3312 4774 3296 4776 3292 4778 3350 4781 3310 4783 3301 4785 3304 4788 3338 4790 3305 4792 3306 4795 3332 4797 3290 4799 3322 4802 3295 4804 3293 4806 3291 4808 3304 4811 3290 4813 3291 4815 3302 4818 3318 4820 3310 4822 3458 4825 3317 4827 3290 4829 3290 4831 3316 4834 3305 4836 3311 4838 3290 4841 3294 4843 3294 4845 3294 4848 3292 4850 3290 4852 3290 4855 3290 4857 3293 4859 3340 4861 3295 4864 3295 4866 3296 4868 3306 4871 3344 4873 3301 4875 3292 4878 3326 4880 3290 4882 3337 4884 3301 4887 3339 4889 3295 4891 3311 4894 3300 4896 3290 4898 3290 4901 3290 4903 3311 4905 3293 4908 3316 4910 3295 4912 3302 4914 3291 4917 3301 4919 3314 4921 3306 4924 3291 4926 3292 4928 3290 4931 3293 4933 3309 4935 3290 4937 3322 4940 3316 4942 3295 4944 3290 4947 3294 4949 3403 4951 3290 4954 3322 4956 3291 4958 3307 4961 3290 4963 3295 4965 3314 4967 3367 4970 3291 4972 3294 4974 3290 4977 3290 4979 3290 4981 3294 4984 3294 4986 3314 4988 3300 4990 3294 4993 3305 4995 3299 4997 3295 5000 3342 5002 3309 5004 3328 5007 3293 5009 3295 5011 3310 5014 3310 5016 3290 5018 3290 5020 3325 5023 3292 5025 3290 5027 3291 5030 3294 5032 3312 5034 3291 5037 3293 5039 3317 5041 3290 5043 3290 5046 3294 5048 3304 5050 3290 5053 3290 5055 3290 5057 3290 5060 3290 5062 3388 5064 3308 5066 3305 5069 3290 5071 3290 5073 3292 5076 3292 5078 3290 5080 3290 5083 3297 5085 3292 5087 3406 5090 3307 5092 3317 5094 3309 5096 3313 5099 3290 5101 3290 5103 3320 5106 3292 5108 3290 5110 3304 5113 3327 5115 3290 5117 3345 5119 3291 5122 3291 5124 3290 5126 3300 5129 3292 5131 3298 5133 3298 5136 3291 5138 3310 5140 3295 5143 3297 5145 3310 5147 3353 5149 3290 5152 3307 5154 3291 5156 3297 5159 3291 5161 3295 5163 3306 5166 3291 5168 3291 5170 3290 5172 3290 5175 3303 5177 3290 5179 3291 5182 3296 5184 3317 5186 3309 5189 3306 5191 3332 5193 3320 5196 3293 5198 3292 5200 3292 5202 3296 5205 3296 5207 3309 5209 3326 5212 3299 5214 3328 5216 3303 5219 3296 5221 3314 5223 3290 5225 3292 5228 3302 5230 3307 5232 3296 5235 3318 5237 3323 5239 3313 5242 3321 5244 3292 5246 3295 5249 3290 5251 3301 5253 3301 5255 3295 5258 3292 5260 3311 5262 3290 5265 3295 5267 3290 5269 3290 5272 3291 5274 3295 5276 3306 5278 3299 5281 3290 5283 3296 5285 3302 5288 3303 5290 3328 5292 3323 5295 3300 5297 3297 5299 3290 5302 3290 5304 3290 5306 3290 5308 3290 5311 3318 5313 3292 5315 3296 5318 3324 5320 3318 5322 3299 5325 3291 5327 3291 5329 3296 5331 3296 5334 3290 5336 3312 5338 3312 5341 3310 5343 3306 5345 3290 5348 3301 5350 3294 5352 3290 5354 3311 5357 3306 5359 3312 5361 3290 5364 3295 5366 3290 5368 3290 5371 3290 5373 3319 5375 3292 5378 3297 5380 3295 5382 3295 5384 3308 5387 3292 5389 3335 5391 3290 5394 3290 5396 3290 5398 3290 5401 3290 5403 3316 5405 3294 5407 3290 5410 3290 5412 3294 5414 3320 5417 3299 5419 3307 5421 3290 5424 3290 5426 3290 5428 3294 5431 3301 5433 3290 5435 3290 5437 3290 5440 3298 5442 3296 5444 3291 5447 3306 5449 3303 5451 3303 5454 3312 5456 3312 5458 3333 5460 3318 5463 3295 5465 3308 5467 3292 5470 3293 5472 3293 5474 3292 5477 3367 5479 3306 5481 3290 5484 3290 5486 3292 5488 3295 5490 3291 5493 3291 5495 3293 5497 3290 5500 3295 5502 3290 5504 3292 5507 3290 5509 3294 5511 3344 5513 3301 5516 3290 5518 3290 5520 3297 5523 3295 5525 3290 5527 3290 5530 3294 5532 3332 5534 3290 5537 3292 5539 3342 5541 3303 5543 3290 5546 3295 5548 3292 5550 3290 5553 3290 5555 3290 5557 3290 5560 3299 5562 3332 5564 3301 5566 3301 5569 3304 5571 3300 5573 3290 5576 3290 5578 3307 5580 3302 5583 3299 5585 3299 5587 3299 5590 3290 5592 3290 5594 3290 5596 3296 5599 3296 5601 3292 5603 3290 5606 3310 5608 3290 5610 3293 5613 3292 5615 3306 5617 3297 5619 3290 5622 3296 5624 3295 5626 3292 5629 3291 5631 3305 5633 3290 5636 3293 5638 3291 5640 3295 5642 3292 5645 3295 5647 3294 5649 3298 5652 3344 5654 3298 5656 3290 5659 3290 5661 3290 5663 3290 5666 3298 5668 3291 5670 3298 5672 3292 5675 3298 5677 3294 5679 3290 5682 3294 5684 3294 5686 3294 5689 3291 5691 3291 5693 3291 5695 3290 5698 3299 5700 3298 5702 3298 5705 3292 5707 3293 5709 3290 5712 3297 5714 3295 5716 3291 5719 3290 5721 3305 5723 3300 5725 3290 5728 3290 5730 3292 5732 3291 5735 3304 5737 3311 5739 3309 5742 3291 5744 3290 5746 3290 5748 3292 5751 3294 5753 3294 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 5753 3294 5755 3296 5758 3346 5760 3290 5762 3292 5765 3292 5767 3291 5769 3291 5772 3290 5774 3290 5776 3290 5778 3290 5781 3291 5783 3290 5785 3293 5788 3298 5790 3312 5792 3302 5795 3296 5797 3290 5799 3291 5801 3290 5804 3293 5806 3291 5808 3290 5811 3296 5813 3296 5815 3292 5818 3296 5820 3291 5822 3290 5825 3291 5827 3301 5829 3292 5831 3312 5834 3296 5836 3290 5838 3290 5841 3290 5843 3290 5845 3294 5848 3290 5850 3290 5852 3291 5854 3294 5857 3296 5859 3290 5861 3303 5864 3293 5866 3302 5868 3290 5871 3309 5873 3305 5875 3300 5878 3303 5880 3300 5882 3295 5884 3291 5887 3291 5889 3290 5891 3290 5894 3310 5896 3314 5898 3291 5901 3291 5903 3298 5905 3293 5907 3290 5910 3294 5912 3296 5914 3290 5917 3292 5919 3291 5921 3290 5924 3290 5926 3292 5928 3295 5930 3290 5933 3298 5935 3298 5937 3291 5940 3290 5942 3290 5944 3290 5947 3305 5949 3305 5951 3305 5954 3294 5956 3290 5958 3294 5960 3298 5963 3293 5965 3305 5967 3292 5970 3292 5972 3306 5974 3293 5977 3292 5979 3295 5981 3290 5983 3290 5986 3290 5988 3305 5990 3293 5993 3298 5995 3298 5997 3290 6000 3290 6002 3296 6004 3290 6007 3307 6009 3300 6011 3300 6013 3290 6016 3300 6018 3299 6020 3294 6023 3297 6025 3292 6027 3297 6030 3290 6032 3290 6034 3301 6036 3305 6039 3295 6041 3297 6043 3297 6046 3297 6048 3290 6050 3293 6053 3293 6055 3290 6057 3292 6060 3291 6062 3314 6064 3304 6066 3290 6069 3290 6071 3302 6073 3291 6076 3291 6078 3303 6080 3303 6083 3290 6085 3292 6087 3292 6089 3290 6092 3290 6094 3291 6096 3291 6099 3290 6101 3290 6103 3290 6106 3290 6108 3290 6110 3290 6113 3292 6115 3292 6117 3291 6119 3291 6122 3296 6124 3298 6126 3307 6129 3307 6131 3291 6133 3290 6136 3294 6138 3294 6140 3290 6142 3297 6145 3293 6147 3296 6149 3290 6152 3290 6154 3292 6156 3290 6159 3290 6161 3290 6163 3299 6166 3290 6168 3290 6170 3292 6172 3290 6175 3308 6177 3290 6179 3290 6182 3290 6184 3290 6186 3290 6189 3290 6191 3290 6193 3316 6195 3293 6198 3290 6200 3295 6202 3295 6205 3297 6207 3298 6209 3294 6212 3294 6214 3294 6216 3294 6218 3294 6221 3291 6223 3290 6225 3291 6228 3299 6230 3295 6232 3290 6235 3291 6237 3290 6239 3290 6242 3291 6244 3291 6246 3292 6248 3290 6251 3290 6253 3290 6255 3290 6258 3290 6260 3290 6262 3306 6265 3295 6267 3290 6269 3298 6271 3291 6274 3290 6276 3290 6278 3290 6281 3290 6283 3291 6285 3290 6288 3290 6290 3290 6292 3290 6295 3290 6297 3291 6299 3291 6301 3301 6304 3290 6306 3296 6308 3290 6311 3290 6313 3293 6315 3293 6318 3293 6320 3294 6322 3290 6324 3290 6327 3290 6329 3290 6331 3290 6334 3290 6336 3290 6338 3290 6341 3290 6343 3290 6345 3290 6348 3294 6350 3290 6352 3290 6354 3290 6357 3292 6359 3290 6361 3290 6364 3290 6366 3290 6368 3290 6371 3298 6373 3294 6375 3293 6377 3293 6380 3295 6382 3295 6384 3290 6387 3290 6389 3291 6391 3293 6394 3290 6396 3290 6398 3308 6401 3290 6403 3292 6405 3292 6407 3292 6410 3290 6412 3292 6414 3292 6417 3292 6419 3292 6421 3293 6424 3290 6426 3290 6428 3293 6430 3293 6433 3290 6435 3290 6437 3290 6440 3290 6442 3290 6444 3290 6447 3297 6449 3290 6451 3290 6454 3294 6456 3291 6458 3290 6460 3293 6463 3294 6465 3290 6467 3290 6470 3291 6472 3291 6474 3291 6477 3294 6479 3290 6481 3291 6483 3290 6486 3291 6488 3291 6490 3291 6493 3297 6495 3291 6497 3292 6500 3292 6502 3290 6504 3290 6506 3291 6509 3290 6511 3292 6513 3292 6516 3290 6518 3290 6520 3290 6523 3290 6525 3292 6527 3290 6530 3290 6532 3291 6534 3290 6536 3290 6539 3293 6541 3290 6543 3298 6546 3294 6548 3293 6550 3294 6553 3291 6555 3290 6557 3290 6559 3290 6562 3296 6564 3296 6566 3290 6569 3290 6571 3290 6573 3290 6576 3290 6578 3291 6580 3290 6583 3295 6585 3290 6587 3290 6589 3290 6592 3290 6594 3291 6596 3290 6599 3290 6601 3290 6603 3290 6606 3301 6608 3300 6610 3300 6612 3290 6615 3290 6617 3290 6619 3290 6622 3290 6624 3292 6626 3290 6629 3298 6631 3290 6633 3293 6636 3293 6638 3293 6640 3293 6642 3290 6645 3290 6647 3290 6649 3291 6652 3291 6654 3290 6656 3290 6659 3290 6661 3290 6663 3290 6665 3290 6668 3290 6670 3290 6672 3290 6675 3297 6677 3292 6679 3292 6682 3292 6684 3290 6686 3290 6689 3291 6691 3291 6693 3295 6695 3295 6698 3290 6700 3290 6702 3290 6705 3290 6707 3290 6709 3290 6712 3298 6714 3291 6716 3290 6718 3290 6721 3290 6723 3290 6725 3290 6728 3290 6730 3291 6732 3291 6735 3291 6737 3291 6739 3290 6742 3290 6744 3290 6746 3290 6748 3290 6751 3290 6753 3290 6755 3290 6758 3290 6760 3290 6762 3291 6765 3290 6767 3290 6769 3290 6771 3290 6774 3290 6776 3290 6778 3290 6781 3290 6783 3290 6785 3293 6788 3293 6790 3294 6792 3297 6794 3297 6797 3290 6799 3290 6801 3290 6804 3290 6806 3290 6808 3292 6811 3291 6813 3291 6815 3291 6818 3291 6820 3290 6822 3290 6824 3290 6827 3291 6829 3291 6831 3290 6834 3290 6836 3290 6838 3290 6841 3290 6843 3290 6845 3295 6847 3290 6850 3290 6852 3290 6854 3290 6857 3290 6859 3291 6861 3290 6864 3290 6866 3290 6868 3290 6871 3290 6873 3290 6875 3290 6877 3291 6880 3291 6882 3291 6884 3291 6887 3291 6889 3292 6891 3290 6894 3292 6896 3290 6898 3290 6900 3290 6903 3290 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 6903 3290 6905 3290 6907 3293 6910 3290 6912 3290 6914 3290 6917 3290 6919 3290 6921 3290 6924 3291 6926 3290 6928 3290 6930 3290 6933 3290 6935 3290 6937 3290 6940 3290 6942 3290 6944 3290 6947 3290 6949 3292 6951 3292 6953 3290 6956 3290 6958 3290 6960 3290 6963 3290 6965 3290 6967 3295 6970 3290 6972 3292 6974 3291 6977 3293 6979 3291 6981 3290 6983 3290 6986 3291 6988 3292 6990 3292 6993 3291 6995 3291 6997 3290 7000 3290 7002 3290 7004 3290 7006 3290 7009 3290 7011 3290 7013 3290 7016 3291 7018 3291 7020 3291 7023 3291 7025 3292 7027 3291 7030 3290 7032 3290 7034 3290 7036 3290 7039 3290 7041 3290 7043 3290 7046 3290 7048 3290 7050 3290 7053 3290 7055 3290 7057 3291 7059 3292 7062 3290 7064 3290 7066 3290 7069 3290 7071 3291 7073 3290 7076 3293 7078 3290 7080 3291 7082 3290 7085 3290 7087 3290 7089 3290 7092 3294 7094 3294 7096 3291 7099 3291 7101 3291 7103 3291 7106 3291 7108 3291 7110 3290 7112 3292 7115 3292 7117 3290 7119 3290 7122 3290 7124 3290 7126 3290 7129 3290 7131 3290 7133 3290 7135 3290 7138 3291 7140 3290 7142 3290 7145 3290 7147 3290 7149 3290 7152 3290 7154 3290 7156 3290 7159 3290 7161 3290 7163 3290 7165 3290 7168 3290 7170 3292 7172 3290 7175 3290 7177 3290 7179 3290 7182 3290 7184 3291 7186 3292 7188 3292 7191 3292 7193 3292 7195 3290 7198 3290 7200 3290 7202 3292 7205 3291 7207 3290 7209 3290 7212 3290 7214 3291 7216 3291 7218 3291 7221 3291 7223 3291 7225 3290 7228 3290 7230 3290 7232 3290 7235 3292 7237 3292 7239 3290 7241 3290 7244 3290 7246 3290 7248 3290 7251 3290 7253 3290 7255 3290 7258 3290 7260 3290 7262 3290 7265 3290 7267 3290 7269 3290 7271 3290 7274 3290 7276 3292 7278 3292 7281 3291 7283 3296 7285 3292 7288 3292 7290 3292 7292 3292 7294 3290 7297 3290 7299 3290 7301 3290 7304 3290 7306 3290 7308 3290 7311 3290 7313 3292 7315 3290 7318 3290 7320 3290 7322 3290 7324 3290 7327 3290 7329 3290 7331 3290 7334 3290 7336 3290 7338 3291 7341 3291 7343 3292 7345 3290 7347 3290 7350 3290 7352 3290 7354 3290 7357 3290 7359 3290 7361 3290 7364 3290 7366 3290 7368 3290 7370 3290 7373 3290 7375 3290 7377 3290 7380 3290 7382 3290 7384 3290 7387 3290 7389 3293 7391 3294 7394 3290 7396 3290 7398 3290 7400 3290 7403 3290 7405 3290 7407 3290 7410 3290 7412 3290 7414 3291 7417 3291 7419 3291 7421 3290 7423 3290 7426 3290 7428 3291 7430 3291 7433 3291 7435 3293 7437 3291 7440 3291 7442 3291 7444 3291 7447 3291 7449 3290 7451 3290 7453 3290 7456 3290 7458 3290 7460 3290 7463 3290 7465 3290 7467 3290 7470 3290 7472 3290 7474 3290 7476 3290 7479 3290 7481 3290 7483 3290 7486 3290 7488 3290 7490 3290 7493 3290 7495 3290 7497 3292 7500 3295 7502 3292 7504 3292 7506 3292 7509 3291 7511 3291 7513 3291 7516 3290 7518 3290 7520 3290 7523 3290 7525 3290 7527 3290 7529 3290 7532 3290 7534 3290 7536 3291 7539 3291 7541 3291 7543 3290 7546 3290 7548 3290 7550 3290 7553 3291 7555 3290 7557 3290 7559 3290 7562 3290 7564 3290 7566 3290 7569 3290 7571 3290 7573 3291 7576 3291 7578 3291 7580 3291 7582 3290 7585 3290 7587 3290 7589 3291 7592 3290 7594 3290 7596 3290 7599 3290 7601 3290 7603 3290 7606 3290 7608 3290 7610 3290 7612 3290 7615 3290 7617 3290 7619 3290 7622 3290 7624 3290 7626 3290 7629 3290 7631 3290 7633 3290 7635 3290 7638 3290 7640 3290 7642 3290 7645 3290 7647 3290 7649 3290 7652 3290 7654 3290 7656 3290 7658 3290 7661 3290 7663 3290 7665 3290 7668 3290 7670 3290 7672 3290 7675 3291 7677 3291 7679 3291 7682 3290 7684 3290 7686 3290 7688 3292 7691 3294 7693 3294 7695 3290 7698 3290 7700 3290 7702 3290 7705 3290 7707 3290 7709 3290 7711 3291 7714 3290 7716 3290 7718 3290 7721 3290 7723 3290 7725 3290 7728 3290 7730 3290 7732 3290 7735 3290 7737 3290 7739 3290 7741 3290 7744 3290 7746 3290 7748 3290 7751 3290 7753 3290 7755 3290 7758 3290 7760 3290 7762 3290 7764 3290 7767 3290 7769 3290 7771 3290 7774 3290 7776 3290 7778 3290 7781 3290 7783 3290 7785 3290 7788 3290 7790 3290 7792 3290 7794 3290 7797 3290 7799 3290 7801 3290 7804 3291 7806 3291 7808 3290 7811 3290 7813 3290 7815 3290 7817 3290 7820 3290 7822 3290 7824 3290 7827 3290 7829 3290 7831 3290 7834 3290 7836 3290 7838 3290 7841 3290 7843 3290 7845 3290 7847 3290 7850 3290 7852 3290 7854 3290 7857 3290 7859 3290 7861 3290 7864 3290 7866 3290 7868 3290 7870 3290 7873 3290 7875 3290 7877 3290 7880 3291 7882 3291 7884 3291 7887 3290 7889 3290 7891 3290 7894 3290 7896 3291 7898 3290 7900 3290 7903 3290 7905 3290 7907 3290 7910 3290 7912 3291 7914 3290 7917 3290 7919 3290 7921 3291 7923 3291 7926 3291 7928 3290 7930 3290 7933 3290 7935 3290 7937 3290 7940 3290 7942 3290 7944 3290 7946 3290 7949 3290 7951 3290 7953 3290 7956 3290 7958 3290 7960 3290 7963 3290 7965 3290 7967 3290 7970 3290 7972 3290 7974 3290 7976 3290 7979 3290 7981 3290 7983 3290 7986 3290 7988 3290 7990 3290 7993 3290 7995 3290 7997 3290 7999 3290 8002 3290 8004 3290 8006 3290 8009 3290 8011 3290 8013 3290 8016 3290 8018 3290 8020 3290 8023 3290 8025 3290 8027 3290 8029 3290 8032 3290 8034 3290 8036 3290 8039 3290 8041 3290 8043 3290 8046 3290 8048 3290 8050 3290 8052 3290 500 MLine End Begin %I MLine [1 0 0 1 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 0 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 274 8052 3290 8055 3290 8057 3290 8059 3290 8062 3290 8064 3290 8066 3290 8069 3290 8071 3290 8073 3290 8076 3290 8078 3290 8080 3290 8082 3290 8085 3290 8087 3290 8089 3290 8092 3290 8094 3290 8096 3290 8099 3290 8101 3290 8103 3290 8105 3290 8108 3290 8110 3290 8112 3290 8115 3290 8117 3290 8119 3290 8122 3290 8124 3290 8126 3290 8129 3290 8131 3290 8133 3290 8135 3290 8138 3290 8140 3290 8142 3290 8145 3290 8147 3290 8149 3290 8152 3290 8154 3290 8156 3290 8158 3290 8161 3290 8163 3290 8165 3290 8168 3290 8170 3290 8172 3290 8175 3290 8177 3290 8179 3290 8182 3290 8184 3290 8186 3290 8188 3290 8191 3290 8193 3290 8195 3290 8198 3290 8200 3290 8202 3290 8205 3290 8207 3290 8209 3290 8211 3290 8214 3290 8216 3290 8218 3290 8221 3290 8223 3290 8225 3290 8228 3290 8230 3290 8232 3290 8234 3290 8237 3290 8239 3290 8241 3290 8244 3290 8246 3290 8248 3290 8251 3290 8253 3290 8255 3290 8258 3290 8260 3290 8262 3290 8264 3290 8267 3290 8269 3290 8271 3290 8274 3290 8276 3290 8278 3290 8281 3290 8283 3290 8285 3290 8287 3290 8290 3290 8292 3290 8294 3290 8297 3290 8299 3290 8301 3290 8304 3290 8306 3290 8308 3290 8311 3290 8313 3290 8315 3290 8317 3290 8320 3290 8322 3290 8324 3290 8327 3290 8329 3290 8331 3290 8334 3290 8336 3290 8338 3290 8340 3290 8343 3290 8345 3290 8347 3290 8350 3290 8352 3290 8354 3290 8357 3290 8359 3290 8361 3290 8364 3290 8366 3290 8368 3290 8370 3290 8373 3290 8375 3290 8377 3290 8380 3290 8382 3290 8384 3290 8387 3290 8389 3290 8391 3290 8393 3290 8396 3290 8398 3290 8400 3290 8403 3290 8405 3290 8407 3290 8410 3290 8412 3290 8414 3290 8417 3290 8419 3290 8421 3290 8423 3290 8426 3290 8428 3290 8430 3290 8433 3290 8435 3290 8437 3290 8440 3290 8442 3290 8444 3290 8446 3290 8449 3290 8451 3290 8453 3290 8456 3290 8458 3290 8460 3290 8463 3290 8465 3290 8467 3290 8470 3290 8472 3290 8474 3290 8476 3290 8479 3290 8481 3290 8483 3290 8486 3290 8488 3290 8490 3290 8493 3290 8495 3290 8497 3290 8499 3290 8502 3290 8504 3290 8506 3290 8509 3290 8511 3290 8513 3290 8516 3290 8518 3290 8520 3290 8522 3290 8525 3290 8527 3290 8529 3290 8532 3290 8534 3290 8536 3290 8539 3290 8541 3290 8543 3290 8546 3290 8548 3290 8550 3290 8552 3290 8555 3290 8557 3290 8559 3290 8562 3290 8564 3290 8566 3290 8569 3290 8571 3290 8573 3290 8575 3290 8578 3290 8580 3290 8582 3290 8585 3290 8587 3290 8589 3290 8592 3290 8594 3290 8596 3290 8599 3290 8601 3290 8603 3290 8605 3290 8608 3290 8610 3290 8612 3290 8615 3290 8617 3290 8619 3290 8622 3290 8624 3290 8626 3290 8628 3290 8631 3290 8633 3290 8635 3290 8638 3290 8640 3290 8642 3290 8645 3290 8647 3290 8649 3290 8652 3290 8654 3290 8656 3290 8658 3290 8661 3290 8663 3290 8665 3290 8668 3290 8670 3290 8672 3290 8675 3290 8677 3290 8679 3290 8681 3290 274 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/stamp-vti0000664000252300025230000000013312172254164011564 00000000000000@set UPDATED 17 July 2013 @set UPDATED-MONTH July 2013 @set EDITION 1.16 @set VERSION 1.16 gsl-1.16/doc/gsl-ref.info0000664000252300025230000006164312172254234012144 00000000000000This is gsl-ref.info, produced by makeinfo version 5.1 from gsl-ref.texi. Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The GSL Team. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections and no cover texts. A copy of the license is included in the section entitled "GNU Free Documentation License". INFO-DIR-SECTION Software libraries START-INFO-DIR-ENTRY * gsl-ref: (gsl-ref). GNU Scientific Library - Reference END-INFO-DIR-ENTRY  Indirect: gsl-ref.info-1: 707 gsl-ref.info-2: 301602 gsl-ref.info-3: 601000 gsl-ref.info-4: 902430 gsl-ref.info-5: 1443412  Tag Table: (Indirect) Node: Top707 Node: Introduction3656 Node: Routines available in GSL4376 Node: GSL is Free Software5989 Node: Obtaining GSL8381 Node: No Warranty9409 Node: Reporting Bugs9915 Ref: Reporting Bugs-Footnote-110867 Node: Further Information10917 Node: Conventions used in this manual11931 Node: Using the library12695 Node: An Example Program13418 Ref: An Example Program-Footnote-114161 Node: Compiling and Linking14268 Node: Linking programs with the library15341 Ref: Linking programs with the library-Footnote-116744 Ref: Linking programs with the library-Footnote-216781 Node: Linking with an alternative BLAS library16834 Node: Shared Libraries17917 Ref: Shared Libraries-Footnote-119392 Node: ANSI C Compliance19440 Node: Inline functions20533 Node: Long double22071 Node: Portability functions23659 Node: Alternative optimized functions25057 Node: Support for different numeric types26515 Node: Compatibility with C++29579 Node: Aliasing of arrays30151 Node: Thread-safety30902 Node: Deprecated Functions31990 Node: Code Reuse32615 Node: Error Handling33260 Node: Error Reporting34060 Node: Error Codes35952 Node: Error Handlers37809 Node: Using GSL error reporting in your own functions41449 Node: Error Reporting Examples43409 Node: Mathematical Functions44621 Node: Mathematical Constants45414 Node: Infinities and Not-a-number46544 Ref: Infinities and Not-a-number-Footnote-147654 Node: Elementary Functions48064 Node: Small integer powers50521 Node: Testing the Sign of Numbers52170 Node: Testing for Odd and Even Numbers52603 Node: Maximum and Minimum functions53162 Node: Approximate Comparison of Floating Point Numbers55443 Node: Complex Numbers56803 Ref: Complex Numbers-Footnote-158148 Node: Representation of complex numbers58212 Node: Properties of complex numbers60152 Node: Complex arithmetic operators61158 Node: Elementary Complex Functions63904 Node: Complex Trigonometric Functions65728 Node: Inverse Complex Trigonometric Functions66949 Node: Complex Hyperbolic Functions69562 Node: Inverse Complex Hyperbolic Functions70858 Node: Complex Number References and Further Reading72846 Node: Polynomials74242 Node: Polynomial Evaluation75046 Node: Divided Difference Representation of Polynomials76457 Node: Quadratic Equations80319 Node: Cubic Equations82256 Node: General Polynomial Equations83839 Node: Roots of Polynomials Examples86196 Node: Roots of Polynomials References and Further Reading87585 Node: Special Functions88631 Node: Special Function Usage90879 Node: The gsl_sf_result struct92063 Node: Special Function Modes93327 Node: Airy Functions and Derivatives94261 Node: Airy Functions94986 Node: Derivatives of Airy Functions96346 Node: Zeros of Airy Functions97858 Node: Zeros of Derivatives of Airy Functions98577 Node: Bessel Functions99336 Node: Regular Cylindrical Bessel Functions100554 Node: Irregular Cylindrical Bessel Functions101878 Node: Regular Modified Cylindrical Bessel Functions103336 Node: Irregular Modified Cylindrical Bessel Functions106164 Node: Regular Spherical Bessel Functions109137 Node: Irregular Spherical Bessel Functions111350 Node: Regular Modified Spherical Bessel Functions113036 Node: Irregular Modified Spherical Bessel Functions115037 Node: Regular Bessel Function - Fractional Order117100 Node: Irregular Bessel Functions - Fractional Order118098 Node: Regular Modified Bessel Functions - Fractional Order118680 Node: Irregular Modified Bessel Functions - Fractional Order119605 Node: Zeros of Regular Bessel Functions120841 Node: Clausen Functions121944 Node: Coulomb Functions122548 Node: Normalized Hydrogenic Bound States123007 Node: Coulomb Wave Functions124120 Node: Coulomb Wave Function Normalization Constant127532 Node: Coupling Coefficients128285 Node: 3-j Symbols129059 Node: 6-j Symbols129663 Node: 9-j Symbols130287 Node: Dawson Function130993 Node: Debye Functions131560 Node: Dilogarithm133334 Node: Real Argument133656 Node: Complex Argument134350 Node: Elementary Operations134820 Node: Elliptic Integrals135644 Node: Definition of Legendre Forms136239 Node: Definition of Carlson Forms137059 Node: Legendre Form of Complete Elliptic Integrals137756 Node: Legendre Form of Incomplete Elliptic Integrals139309 Node: Carlson Forms141496 Node: Elliptic Functions (Jacobi)143043 Node: Error Functions143624 Node: Error Function144100 Node: Complementary Error Function144473 Node: Log Complementary Error Function144933 Node: Probability functions145385 Node: Exponential Functions146638 Node: Exponential Function147033 Node: Relative Exponential Functions148255 Node: Exponentiation With Error Estimate149927 Node: Exponential Integrals151136 Node: Exponential Integral151692 Node: Ei(x)152613 Node: Hyperbolic Integrals153061 Node: Ei_3(x)153716 Node: Trigonometric Integrals154108 Node: Arctangent Integral154707 Node: Fermi-Dirac Function155107 Node: Complete Fermi-Dirac Integrals155481 Node: Incomplete Fermi-Dirac Integrals158046 Node: Gamma and Beta Functions158689 Node: Gamma Functions159324 Node: Factorials162432 Node: Pochhammer Symbol164985 Node: Incomplete Gamma Functions166486 Node: Beta Functions167735 Node: Incomplete Beta Function168487 Node: Gegenbauer Functions169197 Node: Hypergeometric Functions170847 Node: Laguerre Functions175111 Node: Lambert W Functions176674 Node: Legendre Functions and Spherical Harmonics177714 Node: Legendre Polynomials178326 Node: Associated Legendre Polynomials and Spherical Harmonics180382 Node: Conical Functions183211 Node: Radial Functions for Hyperbolic Space185334 Node: Logarithm and Related Functions187511 Node: Mathieu Functions189135 Node: Mathieu Function Workspace190495 Node: Mathieu Function Characteristic Values191308 Node: Angular Mathieu Functions192380 Node: Radial Mathieu Functions193416 Node: Power Function194653 Node: Psi (Digamma) Function195581 Node: Digamma Function196134 Node: Trigamma Function196964 Node: Polygamma Function197541 Node: Synchrotron Functions197925 Node: Transport Functions198688 Node: Trigonometric Functions199835 Node: Circular Trigonometric Functions200481 Node: Trigonometric Functions for Complex Arguments201490 Node: Hyperbolic Trigonometric Functions202526 Node: Conversion Functions203129 Node: Restriction Functions203912 Node: Trigonometric Functions With Error Estimates204843 Node: Zeta Functions205753 Node: Riemann Zeta Function206211 Node: Riemann Zeta Function Minus One206890 Node: Hurwitz Zeta Function207661 Node: Eta Function208166 Node: Special Functions Examples208725 Node: Special Functions References and Further Reading210420 Node: Vectors and Matrices211688 Node: Data types212531 Node: Blocks213734 Node: Block allocation214667 Node: Reading and writing blocks216071 Node: Example programs for blocks218135 Node: Vectors218762 Node: Vector allocation220730 Node: Accessing vector elements222267 Ref: Accessing vector elements-Footnote-1225408 Node: Initializing vector elements225647 Node: Reading and writing vectors226341 Node: Vector views228431 Node: Copying vectors235897 Node: Exchanging elements236757 Node: Vector operations237315 Node: Finding maximum and minimum elements of vectors239088 Node: Vector properties240675 Node: Example programs for vectors241649 Node: Matrices243938 Node: Matrix allocation246878 Node: Accessing matrix elements248464 Node: Initializing matrix elements250413 Node: Reading and writing matrices251210 Node: Matrix views253313 Node: Creating row and column views260449 Node: Copying matrices264926 Node: Copying rows and columns265522 Node: Exchanging rows and columns267199 Node: Matrix operations268677 Node: Finding maximum and minimum elements of matrices270647 Node: Matrix properties272547 Node: Example programs for matrices273650 Node: Vector and Matrix References and Further Reading277721 Node: Permutations278207 Node: The Permutation struct279544 Node: Permutation allocation280047 Node: Accessing permutation elements281483 Node: Permutation properties282326 Node: Permutation functions283031 Node: Applying Permutations284288 Node: Reading and writing permutations286215 Ref: Reading and writing permutations-Footnote-1288431 Node: Permutations in cyclic form288543 Node: Permutation Examples291970 Node: Permutation References and Further Reading294513 Node: Combinations295187 Node: The Combination struct296072 Node: Combination allocation296623 Node: Accessing combination elements298410 Node: Combination properties299069 Node: Combination functions299955 Node: Reading and writing combinations301602 Ref: Reading and writing combinations-Footnote-1303835 Node: Combination Examples303947 Node: Combination References and Further Reading305255 Node: Multisets305658 Node: The Multiset struct306584 Node: Multiset allocation307105 Node: Accessing multiset elements308800 Node: Multiset properties309429 Node: Multiset functions310242 Node: Reading and writing multisets311152 Ref: Reading and writing multisets-Footnote-1313303 Node: Multiset Examples313415 Node: Sorting315523 Node: Sorting objects316522 Node: Sorting vectors319435 Node: Selecting the k smallest or largest elements322596 Node: Computing the rank325937 Node: Sorting Examples327138 Node: Sorting References and Further Reading328782 Node: BLAS Support329328 Ref: BLAS Support-Footnote-1332714 Node: GSL BLAS Interface332883 Node: Level 1 GSL BLAS Interface333376 Node: Level 2 GSL BLAS Interface340116 Node: Level 3 GSL BLAS Interface349406 Node: BLAS Examples360504 Node: BLAS References and Further Reading361925 Node: Linear Algebra363267 Node: LU Decomposition364461 Node: QR Decomposition369697 Node: QR Decomposition with Column Pivoting376006 Node: Singular Value Decomposition380470 Node: Cholesky Decomposition384890 Node: Tridiagonal Decomposition of Real Symmetric Matrices388132 Node: Tridiagonal Decomposition of Hermitian Matrices389980 Node: Hessenberg Decomposition of Real Matrices391932 Node: Hessenberg-Triangular Decomposition of Real Matrices394344 Node: Bidiagonalization395467 Node: Householder Transformations397892 Node: Householder solver for linear systems400244 Node: Tridiagonal Systems401151 Node: Balancing404024 Node: Linear Algebra Examples404827 Node: Linear Algebra References and Further Reading406816 Node: Eigensystems408463 Node: Real Symmetric Matrices409692 Node: Complex Hermitian Matrices412206 Node: Real Nonsymmetric Matrices414835 Node: Real Generalized Symmetric-Definite Eigensystems420570 Node: Complex Generalized Hermitian-Definite Eigensystems423449 Node: Real Generalized Nonsymmetric Eigensystems426163 Node: Sorting Eigenvalues and Eigenvectors432770 Node: Eigenvalue and Eigenvector Examples436048 Node: Eigenvalue and Eigenvector References441439 Node: Fast Fourier Transforms442466 Node: Mathematical Definitions443692 Node: Overview of complex data FFTs446097 Node: Radix-2 FFT routines for complex data449042 Node: Mixed-radix FFT routines for complex data453261 Node: Overview of real data FFTs462594 Node: Radix-2 FFT routines for real data465029 Node: Mixed-radix FFT routines for real data469453 Node: FFT References and Further Reading480138 Node: Numerical Integration483008 Node: Numerical Integration Introduction484806 Node: Integrands without weight functions487081 Node: Integrands with weight functions487911 Node: Integrands with singular weight functions488622 Node: QNG non-adaptive Gauss-Kronrod integration489540 Node: QAG adaptive integration490822 Node: QAGS adaptive integration with singularities493611 Node: QAGP adaptive integration with known singular points495411 Node: QAGI adaptive integration on infinite intervals496725 Node: QAWC adaptive integration for Cauchy principal values499005 Node: QAWS adaptive integration for singular functions500175 Node: QAWO adaptive integration for oscillatory functions503401 Node: QAWF adaptive integration for Fourier integrals507189 Node: CQUAD doubly-adaptive integration509813 Node: Fixed order Gauss-Legendre integration513071 Node: Numerical integration error codes515059 Node: Numerical integration examples515815 Node: Numerical integration References and Further Reading517861 Node: Random Number Generation518852 Node: General comments on random numbers520386 Node: The Random Number Generator Interface522338 Node: Random number generator initialization523696 Node: Sampling from a random number generator526067 Node: Auxiliary random number generator functions529311 Node: Random number environment variables531631 Node: Copying random number generator state534156 Node: Reading and writing random number generator state535130 Node: Random number generator algorithms536524 Node: Unix random number generators546466 Node: Other random number generators550180 Node: Random Number Generator Performance558831 Node: Random Number Generator Examples559952 Node: Random Number References and Further Reading561508 Node: Random Number Acknowledgements562803 Node: Quasi-Random Sequences563289 Node: Quasi-random number generator initialization564409 Node: Sampling from a quasi-random number generator565424 Node: Auxiliary quasi-random number generator functions566121 Node: Saving and resorting quasi-random number generator state567067 Node: Quasi-random number generator algorithms567875 Node: Quasi-random number generator examples569013 Node: Quasi-random number references569998 Node: Random Number Distributions570524 Node: Random Number Distribution Introduction573855 Node: The Gaussian Distribution575650 Node: The Gaussian Tail Distribution578310 Node: The Bivariate Gaussian Distribution579974 Node: The Exponential Distribution581288 Node: The Laplace Distribution582427 Node: The Exponential Power Distribution583519 Node: The Cauchy Distribution584787 Node: The Rayleigh Distribution586036 Node: The Rayleigh Tail Distribution587208 Node: The Landau Distribution588081 Node: The Levy alpha-Stable Distributions589036 Node: The Levy skew alpha-Stable Distribution590094 Node: The Gamma Distribution591706 Node: The Flat (Uniform) Distribution593361 Node: The Lognormal Distribution594509 Node: The Chi-squared Distribution595857 Node: The F-distribution597262 Node: The t-distribution598899 Node: The Beta Distribution601000 Node: The Logistic Distribution602159 Node: The Pareto Distribution603288 Node: Spherical Vector Distributions604458 Node: The Weibull Distribution607294 Node: The Type-1 Gumbel Distribution608488 Node: The Type-2 Gumbel Distribution609724 Node: The Dirichlet Distribution610955 Node: General Discrete Distributions612623 Node: The Poisson Distribution616491 Node: The Bernoulli Distribution617498 Node: The Binomial Distribution618249 Node: The Multinomial Distribution619452 Node: The Negative Binomial Distribution621226 Node: The Pascal Distribution622591 Node: The Geometric Distribution623749 Node: The Hypergeometric Distribution624997 Node: The Logarithmic Distribution626650 Node: Shuffling and Sampling627442 Node: Random Number Distribution Examples630254 Node: Random Number Distribution References and Further Reading633450 Node: Statistics635594 Node: Mean and standard deviation and variance637080 Node: Absolute deviation640588 Node: Higher moments (skewness and kurtosis)641880 Node: Autocorrelation644013 Node: Covariance644826 Node: Correlation645792 Node: Weighted Samples647161 Node: Maximum and Minimum values653011 Node: Median and Percentiles655750 Node: Example statistical programs658165 Node: Statistics References and Further Reading660825 Node: Histograms662033 Node: The histogram struct663886 Node: Histogram allocation665690 Node: Copying Histograms668647 Node: Updating and accessing histogram elements669323 Node: Searching histogram ranges672592 Node: Histogram Statistics673592 Node: Histogram Operations675458 Node: Reading and writing histograms677533 Node: Resampling from histograms680575 Node: The histogram probability distribution struct681374 Node: Example programs for histograms684408 Node: Two dimensional histograms686471 Node: The 2D histogram struct687192 Node: 2D Histogram allocation689002 Node: Copying 2D Histograms691076 Node: Updating and accessing 2D histogram elements691781 Node: Searching 2D histogram ranges695438 Node: 2D Histogram Statistics696452 Node: 2D Histogram Operations699317 Node: Reading and writing 2D histograms701495 Node: Resampling from 2D histograms705124 Node: Example programs for 2D histograms708145 Node: N-tuples709972 Node: The ntuple struct711295 Node: Creating ntuples711774 Node: Opening an existing ntuple file712441 Node: Writing ntuples713070 Node: Reading ntuples713531 Node: Closing an ntuple file713862 Node: Histogramming ntuple values714202 Node: Example ntuple programs716212 Node: Ntuple References and Further Reading719541 Node: Monte Carlo Integration719862 Node: Monte Carlo Interface721173 Node: PLAIN Monte Carlo723800 Node: MISER726255 Ref: MISER-Footnote-1732935 Node: VEGAS733060 Node: Monte Carlo Examples742621 Node: Monte Carlo Integration References and Further Reading748608 Node: Simulated Annealing749390 Node: Simulated Annealing algorithm750606 Node: Simulated Annealing functions751758 Node: Examples with Simulated Annealing756288 Node: Trivial example756857 Node: Traveling Salesman Problem759508 Node: Simulated Annealing References and Further Reading762821 Node: Ordinary Differential Equations763232 Node: Defining the ODE System764472 Node: Stepping Functions767300 Node: Adaptive Step-size Control774270 Node: Evolution780347 Node: Driver784476 Node: ODE Example programs788710 Node: ODE References and Further Reading793756 Node: Interpolation795520 Node: Introduction to Interpolation796721 Node: Interpolation Functions797162 Node: Interpolation Types798369 Node: Index Look-up and Acceleration801091 Node: Evaluation of Interpolating Functions803143 Node: Higher-level Interface805639 Node: Interpolation Example programs807679 Node: Interpolation References and Further Reading810899 Node: Numerical Differentiation811471 Node: Numerical Differentiation functions812066 Node: Numerical Differentiation Examples814923 Node: Numerical Differentiation References816336 Node: Chebyshev Approximations816887 Node: Chebyshev Definitions817968 Node: Creation and Calculation of Chebyshev Series818757 Node: Auxiliary Functions for Chebyshev Series819742 Node: Chebyshev Series Evaluation820482 Node: Derivatives and Integrals821862 Node: Chebyshev Approximation Examples823100 Node: Chebyshev Approximation References and Further Reading824596 Node: Series Acceleration825046 Node: Acceleration functions825823 Node: Acceleration functions without error estimation828150 Node: Example of accelerating a series830774 Node: Series Acceleration References833120 Node: Wavelet Transforms834008 Node: DWT Definitions834607 Node: DWT Initialization835559 Node: DWT Transform Functions838207 Node: DWT in one dimension838758 Node: DWT in two dimension840779 Node: DWT Examples845358 Node: DWT References847175 Node: Discrete Hankel Transforms849339 Node: Discrete Hankel Transform Definition849813 Node: Discrete Hankel Transform Functions852016 Node: Discrete Hankel Transform References853681 Node: One dimensional Root-Finding854085 Node: Root Finding Overview855391 Node: Root Finding Caveats857247 Node: Initializing the Solver859016 Node: Providing the function to solve861649 Node: Search Bounds and Guesses865203 Node: Root Finding Iteration866066 Node: Search Stopping Parameters867917 Node: Root Bracketing Algorithms870428 Node: Root Finding Algorithms using Derivatives873726 Ref: Root Finding Algorithms using Derivatives-Footnote-1877269 Node: Root Finding Examples877425 Node: Root Finding References and Further Reading884713 Node: One dimensional Minimization885352 Node: Minimization Overview886695 Node: Minimization Caveats888402 Node: Initializing the Minimizer889740 Node: Providing the function to minimize891981 Node: Minimization Iteration892459 Node: Minimization Stopping Parameters894597 Node: Minimization Algorithms896202 Node: Minimization Examples898796 Node: Minimization References and Further Reading902430 Node: Multidimensional Root-Finding902886 Node: Overview of Multidimensional Root Finding904394 Node: Initializing the Multidimensional Solver906581 Node: Providing the multidimensional system of equations to solve909811 Node: Iteration of the multidimensional solver914723 Node: Search Stopping Parameters for the multidimensional solver917004 Node: Algorithms using Derivatives918742 Node: Algorithms without Derivatives923567 Node: Example programs for Multidimensional Root finding926657 Node: References and Further Reading for Multidimensional Root Finding935281 Node: Multidimensional Minimization936520 Node: Multimin Overview937930 Node: Multimin Caveats940010 Node: Initializing the Multidimensional Minimizer940759 Node: Providing a function to minimize943993 Node: Multimin Iteration948054 Node: Multimin Stopping Criteria950248 Node: Multimin Algorithms with Derivatives951819 Node: Multimin Algorithms without Derivatives955350 Node: Multimin Examples958352 Node: Multimin References and Further Reading964922 Node: Least-Squares Fitting965786 Node: Fitting Overview966872 Node: Linear regression969205 Node: Linear fitting without a constant term971807 Node: Multi-parameter fitting974001 Node: Robust linear regression979860 Node: Troubleshooting990108 Node: Fitting Examples990731 Node: Fitting References and Further Reading1001255 Node: Nonlinear Least-Squares Fitting1002627 Node: Overview of Nonlinear Least-Squares Fitting1004151 Node: Initializing the Nonlinear Least-Squares Solver1005618 Node: Providing the Function to be Minimized1008483 Node: Finite Difference Jacobian1011946 Node: Iteration of the Minimization Algorithm1013817 Node: Search Stopping Parameters for Minimization Algorithms1015657 Node: High Level Driver1017730 Node: Minimization Algorithms using Derivatives1018636 Ref: Minimization Algorithms using Derivatives-Footnote-11022084 Node: Minimization Algorithms without Derivatives1022173 Node: Computing the covariance matrix of best fit parameters1022565 Node: Example programs for Nonlinear Least-Squares Fitting1024602 Node: References and Further Reading for Nonlinear Least-Squares Fitting1032335 Node: Basis Splines1033071 Node: Overview of B-splines1033950 Node: Initializing the B-splines solver1035266 Node: Constructing the knots vector1036647 Node: Evaluation of B-spline basis functions1037435 Node: Evaluation of B-spline basis function derivatives1039083 Node: Working with the Greville abscissae1041053 Node: Example programs for B-splines1042047 Node: References and Further Reading1046042 Node: Physical Constants1046848 Node: Fundamental Constants1048427 Node: Astronomy and Astrophysics1049567 Node: Atomic and Nuclear Physics1050232 Node: Measurement of Time1051883 Node: Imperial Units1052313 Node: Speed and Nautical Units1052755 Node: Printers Units1053259 Node: Volume Area and Length1053582 Node: Mass and Weight1054268 Node: Thermal Energy and Power1055087 Node: Pressure1055510 Node: Viscosity1056123 Node: Light and Illumination1056399 Node: Radioactivity1056991 Node: Force and Energy1057326 Node: Prefixes1057730 Node: Physical Constant Examples1058473 Node: Physical Constant References and Further Reading1060262 Node: IEEE floating-point arithmetic1060992 Node: Representation of floating point numbers1061584 Node: Setting up your IEEE environment1066070 Node: IEEE References and Further Reading1073043 Node: Debugging Numerical Programs1074203 Node: Using gdb1074720 Node: Examining floating point registers1078063 Node: Handling floating point exceptions1079348 Node: GCC warning options for numerical programs1080760 Node: Debugging References1084708 Node: Contributors to GSL1085420 Node: Autoconf Macros1089914 Node: GSL CBLAS Library1093946 Node: Level 1 CBLAS Functions1094486 Node: Level 2 CBLAS Functions1099788 Node: Level 3 CBLAS Functions1116418 Node: GSL CBLAS Examples1126080 Node: GNU General Public License1127643 Node: GNU Free Documentation License1165217 Node: Function Index1190366 Node: Variable Index1443412 Node: Type Index1446715 Node: Concept Index1461784  End Tag Table gsl-1.16/doc/sort.texi0000664000252300025230000003136512171574312011611 00000000000000@cindex sorting @cindex heapsort This chapter describes functions for sorting data, both directly and indirectly (using an index). All the functions use the @dfn{heapsort} algorithm. Heapsort is an @math{O(N \log N)} algorithm which operates in-place and does not require any additional storage. It also provides consistent performance, the running time for its worst-case (ordered data) being not significantly longer than the average and best cases. Note that the heapsort algorithm does not preserve the relative ordering of equal elements---it is an @dfn{unstable} sort. However the resulting order of equal elements will be consistent across different platforms when using these functions. @menu * Sorting objects:: * Sorting vectors:: * Selecting the k smallest or largest elements:: * Computing the rank:: * Sorting Examples:: * Sorting References and Further Reading:: @end menu @node Sorting objects @section Sorting objects The following function provides a simple alternative to the standard library function @code{qsort}. It is intended for systems lacking @code{qsort}, not as a replacement for it. The function @code{qsort} should be used whenever possible, as it will be faster and can provide stable ordering of equal elements. Documentation for @code{qsort} is available in the @cite{GNU C Library Reference Manual}. The functions described in this section are defined in the header file @file{gsl_heapsort.h}. @cindex comparison functions, definition @deftypefun void gsl_heapsort (void * @var{array}, size_t @var{count}, size_t @var{size}, gsl_comparison_fn_t @var{compare}) This function sorts the @var{count} elements of the array @var{array}, each of size @var{size}, into ascending order using the comparison function @var{compare}. The type of the comparison function is defined by, @example int (*gsl_comparison_fn_t) (const void * a, const void * b) @end example @noindent A comparison function should return a negative integer if the first argument is less than the second argument, @code{0} if the two arguments are equal and a positive integer if the first argument is greater than the second argument. For example, the following function can be used to sort doubles into ascending numerical order. @example int compare_doubles (const double * a, const double * b) @{ if (*a > *b) return 1; else if (*a < *b) return -1; else return 0; @} @end example @noindent The appropriate function call to perform the sort is, @example gsl_heapsort (array, count, sizeof(double), compare_doubles); @end example Note that unlike @code{qsort} the heapsort algorithm cannot be made into a stable sort by pointer arithmetic. The trick of comparing pointers for equal elements in the comparison function does not work for the heapsort algorithm. The heapsort algorithm performs an internal rearrangement of the data which destroys its initial ordering. @end deftypefun @cindex indirect sorting @deftypefun int gsl_heapsort_index (size_t * @var{p}, const void * @var{array}, size_t @var{count}, size_t @var{size}, gsl_comparison_fn_t @var{compare}) This function indirectly sorts the @var{count} elements of the array @var{array}, each of size @var{size}, into ascending order using the comparison function @var{compare}. The resulting permutation is stored in @var{p}, an array of length @var{n}. The elements of @var{p} give the index of the array element which would have been stored in that position if the array had been sorted in place. The first element of @var{p} gives the index of the least element in @var{array}, and the last element of @var{p} gives the index of the greatest element in @var{array}. The array itself is not changed. @end deftypefun @node Sorting vectors @section Sorting vectors The following functions will sort the elements of an array or vector, either directly or indirectly. They are defined for all real and integer types using the normal suffix rules. For example, the @code{float} versions of the array functions are @code{gsl_sort_float} and @code{gsl_sort_float_index}. The corresponding vector functions are @code{gsl_sort_vector_float} and @code{gsl_sort_vector_float_index}. The prototypes are available in the header files @file{gsl_sort_float.h} @file{gsl_sort_vector_float.h}. The complete set of prototypes can be included using the header files @file{gsl_sort.h} and @file{gsl_sort_vector.h}. There are no functions for sorting complex arrays or vectors, since the ordering of complex numbers is not uniquely defined. To sort a complex vector by magnitude compute a real vector containing the magnitudes of the complex elements, and sort this vector indirectly. The resulting index gives the appropriate ordering of the original complex vector. @cindex sorting vector elements @cindex vector, sorting elements of @deftypefun void gsl_sort (double * @var{data}, const size_t @var{stride}, size_t @var{n}) This function sorts the @var{n} elements of the array @var{data} with stride @var{stride} into ascending numerical order. @end deftypefun @deftypefun void gsl_sort2 (double * @var{data1}, const size_t @var{stride1}, double * @var{data2}, const size_t @var{stride2}, size_t @var{n}) This function sorts the @var{n} elements of the array @var{data1} with stride @var{stride1} into ascending numerical order, while making the same rearrangement of the array @var{data2} with stride @var{stride2}, also of size @var{n}. @end deftypefun @deftypefun void gsl_sort_vector (gsl_vector * @var{v}) This function sorts the elements of the vector @var{v} into ascending numerical order. @end deftypefun @deftypefun void gsl_sort_vector2 (gsl_vector * @var{v1}, gsl_vector * @var{v2}) This function sorts the elements of the vector @var{v1} into ascending numerical order, while making the same rearrangement of the vector @var{v2}. @end deftypefun @cindex indirect sorting, of vector elements @deftypefun void gsl_sort_index (size_t * @var{p}, const double * @var{data}, size_t @var{stride}, size_t @var{n}) This function indirectly sorts the @var{n} elements of the array @var{data} with stride @var{stride} into ascending order, storing the resulting permutation in @var{p}. The array @var{p} must be allocated with a sufficient length to store the @var{n} elements of the permutation. The elements of @var{p} give the index of the array element which would have been stored in that position if the array had been sorted in place. The array @var{data} is not changed. @end deftypefun @deftypefun int gsl_sort_vector_index (gsl_permutation * @var{p}, const gsl_vector * @var{v}) This function indirectly sorts the elements of the vector @var{v} into ascending order, storing the resulting permutation in @var{p}. The elements of @var{p} give the index of the vector element which would have been stored in that position if the vector had been sorted in place. The first element of @var{p} gives the index of the least element in @var{v}, and the last element of @var{p} gives the index of the greatest element in @var{v}. The vector @var{v} is not changed. @end deftypefun @node Selecting the k smallest or largest elements @section Selecting the k smallest or largest elements The functions described in this section select the @math{k} smallest or largest elements of a data set of size @math{N}. The routines use an @math{O(kN)} direct insertion algorithm which is suited to subsets that are small compared with the total size of the dataset. For example, the routines are useful for selecting the 10 largest values from one million data points, but not for selecting the largest 100,000 values. If the subset is a significant part of the total dataset it may be faster to sort all the elements of the dataset directly with an @math{O(N \log N)} algorithm and obtain the smallest or largest values that way. @deftypefun int gsl_sort_smallest (double * @var{dest}, size_t @var{k}, const double * @var{src}, size_t @var{stride}, size_t @var{n}) This function copies the @var{k} smallest elements of the array @var{src}, of size @var{n} and stride @var{stride}, in ascending numerical order into the array @var{dest}. The size @var{k} of the subset must be less than or equal to @var{n}. The data @var{src} is not modified by this operation. @end deftypefun @deftypefun int gsl_sort_largest (double * @var{dest}, size_t @var{k}, const double * @var{src}, size_t @var{stride}, size_t @var{n}) This function copies the @var{k} largest elements of the array @var{src}, of size @var{n} and stride @var{stride}, in descending numerical order into the array @var{dest}. @var{k} must be less than or equal to @var{n}. The data @var{src} is not modified by this operation. @end deftypefun @deftypefun int gsl_sort_vector_smallest (double * @var{dest}, size_t @var{k}, const gsl_vector * @var{v}) @deftypefunx int gsl_sort_vector_largest (double * @var{dest}, size_t @var{k}, const gsl_vector * @var{v}) These functions copy the @var{k} smallest or largest elements of the vector @var{v} into the array @var{dest}. @var{k} must be less than or equal to the length of the vector @var{v}. @end deftypefun The following functions find the indices of the @math{k} smallest or largest elements of a dataset, @deftypefun int gsl_sort_smallest_index (size_t * @var{p}, size_t @var{k}, const double * @var{src}, size_t @var{stride}, size_t @var{n}) This function stores the indices of the @var{k} smallest elements of the array @var{src}, of size @var{n} and stride @var{stride}, in the array @var{p}. The indices are chosen so that the corresponding data is in ascending numerical order. @var{k} must be less than or equal to @var{n}. The data @var{src} is not modified by this operation. @end deftypefun @deftypefun int gsl_sort_largest_index (size_t * @var{p}, size_t @var{k}, const double * @var{src}, size_t @var{stride}, size_t @var{n}) This function stores the indices of the @var{k} largest elements of the array @var{src}, of size @var{n} and stride @var{stride}, in the array @var{p}. The indices are chosen so that the corresponding data is in descending numerical order. @var{k} must be less than or equal to @var{n}. The data @var{src} is not modified by this operation. @end deftypefun @deftypefun int gsl_sort_vector_smallest_index (size_t * @var{p}, size_t @var{k}, const gsl_vector * @var{v}) @deftypefunx int gsl_sort_vector_largest_index (size_t * @var{p}, size_t @var{k}, const gsl_vector * @var{v}) These functions store the indices of the @var{k} smallest or largest elements of the vector @var{v} in the array @var{p}. @var{k} must be less than or equal to the length of the vector @var{v}. @end deftypefun @node Computing the rank @section Computing the rank The @dfn{rank} of an element is its order in the sorted data. The rank is the inverse of the index permutation, @var{p}. It can be computed using the following algorithm, @example for (i = 0; i < p->size; i++) @{ size_t pi = p->data[i]; rank->data[pi] = i; @} @end example @noindent This can be computed directly from the function @code{gsl_permutation_inverse(rank,p)}. The following function will print the rank of each element of the vector @var{v}, @example void print_rank (gsl_vector * v) @{ size_t i; size_t n = v->size; gsl_permutation * perm = gsl_permutation_alloc(n); gsl_permutation * rank = gsl_permutation_alloc(n); gsl_sort_vector_index (perm, v); gsl_permutation_inverse (rank, perm); for (i = 0; i < n; i++) @{ double vi = gsl_vector_get(v, i); printf ("element = %d, value = %g, rank = %d\n", i, vi, rank->data[i]); @} gsl_permutation_free (perm); gsl_permutation_free (rank); @} @end example @node Sorting Examples @section Examples The following example shows how to use the permutation @var{p} to print the elements of the vector @var{v} in ascending order, @example gsl_sort_vector_index (p, v); for (i = 0; i < v->size; i++) @{ double vpi = gsl_vector_get (v, p->data[i]); printf ("order = %d, value = %g\n", i, vpi); @} @end example @noindent The next example uses the function @code{gsl_sort_smallest} to select the 5 smallest numbers from 100000 uniform random variates stored in an array, @example @verbatiminclude examples/sortsmall.c @end example The output lists the 5 smallest values, in ascending order, @example $ ./a.out @verbatiminclude examples/sortsmall.out @end example @node Sorting References and Further Reading @section References and Further Reading The subject of sorting is covered extensively in Knuth's @cite{Sorting and Searching}, @itemize @w{} @item Donald E. Knuth, @cite{The Art of Computer Programming: Sorting and Searching} (Vol 3, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. @end itemize @noindent The Heapsort algorithm is described in the following book, @itemize @w{} @item Robert Sedgewick, @cite{Algorithms in C}, Addison-Wesley, ISBN 0201514257. @end itemize gsl-1.16/doc/rand-poisson.tex0000664000252300025230000004727112171574312013070 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-poisson.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-poisson.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1438 R -31 0 V 31 1437 R -31 0 V 31 1438 R -31 0 V 1051 631 M 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 265 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 264 63 R 0 -31 V 264 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 1811 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 1770 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 738 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -615 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 2994 3704 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -1152 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -961 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -560 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -257 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 4956 774 L 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -98 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -33 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 -9 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -2 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$\mu=2.5$}}% \put(3955,5244){\cjust{\strut{}Poisson Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6596,400){\cjust{\strut{}10}}% \put(6068,400){\cjust{\strut{}9}}% \put(5540,400){\cjust{\strut{}8}}% \put(5012,400){\cjust{\strut{}7}}% \put(4484,400){\cjust{\strut{}6}}% \put(3956,400){\cjust{\strut{}5}}% \put(3427,400){\cjust{\strut{}4}}% \put(2899,400){\cjust{\strut{}3}}% \put(2371,400){\cjust{\strut{}2}}% \put(1843,400){\cjust{\strut{}1}}% \put(1315,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.3}}% \put(900,3506){\rjust{\strut{} 0.2}}% \put(900,2069){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-elementary.texi0000664000252300025230000000201512171574312014561 00000000000000@cindex elementary operations @cindex multiplication The following functions allow for the propagation of errors when combining quantities by multiplication. The functions are declared in the header file @file{gsl_sf_elementary.h}. @comment @deftypefun double gsl_sf_multiply (double @var{x}, double @var{y}) @deftypefun int gsl_sf_multiply_e (double @var{x}, double @var{y}, gsl_sf_result * @var{result}) This function multiplies @var{x} and @var{y} storing the product and its associated error in @var{result}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun int gsl_sf_multiply_err_e (double @var{x}, double @var{dx}, double @var{y}, double @var{dy}, gsl_sf_result * @var{result}) This function multiplies @var{x} and @var{y} with associated absolute errors @var{dx} and @var{dy}. The product @c{$xy \pm xy \sqrt{(dx/x)^2 +(dy/y)^2}$} @math{xy +/- xy \sqrt((dx/x)^2 +(dy/y)^2)} is stored in @var{result}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/ieee754.texi0000664000252300025230000003470612171574312011773 00000000000000@cindex IEEE floating point This chapter describes functions for examining the representation of floating point numbers and controlling the floating point environment of your program. The functions described in this chapter are declared in the header file @file{gsl_ieee_utils.h}. @menu * Representation of floating point numbers:: * Setting up your IEEE environment:: * IEEE References and Further Reading:: @end menu @node Representation of floating point numbers @section Representation of floating point numbers @cindex IEEE format for floating point numbers @cindex bias, IEEE format @cindex exponent, IEEE format @cindex sign bit, IEEE format @cindex mantissa, IEEE format The IEEE Standard for Binary Floating-Point Arithmetic defines binary formats for single and double precision numbers. Each number is composed of three parts: a @dfn{sign bit} (@math{s}), an @dfn{exponent} (@math{E}) and a @dfn{fraction} (@math{f}). The numerical value of the combination @math{(s,E,f)} is given by the following formula, @tex \beforedisplay $$ (-1)^s (1 \cdot fffff\dots) 2^E $$ \afterdisplay @end tex @ifinfo @example (-1)^s (1.fffff...) 2^E @end example @end ifinfo @noindent @cindex normalized form, IEEE format @cindex denormalized form, IEEE format The sign bit is either zero or one. The exponent ranges from a minimum value @c{$E_{min}$} @math{E_min} to a maximum value @c{$E_{max}$} @math{E_max} depending on the precision. The exponent is converted to an unsigned number @math{e}, known as the @dfn{biased exponent}, for storage by adding a @dfn{bias} parameter, @c{$e = E + \hbox{\it bias}$} @math{e = E + bias}. The sequence @math{fffff...} represents the digits of the binary fraction @math{f}. The binary digits are stored in @dfn{normalized form}, by adjusting the exponent to give a leading digit of @math{1}. Since the leading digit is always 1 for normalized numbers it is assumed implicitly and does not have to be stored. Numbers smaller than @c{$2^{E_{min}}$} @math{2^(E_min)} are be stored in @dfn{denormalized form} with a leading zero, @tex \beforedisplay $$ (-1)^s (0 \cdot fffff\dots) 2^{E_{min}} $$ \afterdisplay @end tex @ifinfo @example (-1)^s (0.fffff...) 2^(E_min) @end example @end ifinfo @noindent @cindex zero, IEEE format @cindex infinity, IEEE format This allows gradual underflow down to @c{$2^{E_{min} - p}$} @math{2^(E_min - p)} for @math{p} bits of precision. A zero is encoded with the special exponent of @c{$2^{E_{min}-1}$} @math{2^(E_min - 1)} and infinities with the exponent of @c{$2^{E_{max}+1}$} @math{2^(E_max + 1)}. @noindent @cindex single precision, IEEE format The format for single precision numbers uses 32 bits divided in the following way, @smallexample seeeeeeeefffffffffffffffffffffff s = sign bit, 1 bit e = exponent, 8 bits (E_min=-126, E_max=127, bias=127) f = fraction, 23 bits @end smallexample @noindent @cindex double precision, IEEE format The format for double precision numbers uses 64 bits divided in the following way, @smallexample seeeeeeeeeeeffffffffffffffffffffffffffffffffffffffffffffffffffff s = sign bit, 1 bit e = exponent, 11 bits (E_min=-1022, E_max=1023, bias=1023) f = fraction, 52 bits @end smallexample @noindent It is often useful to be able to investigate the behavior of a calculation at the bit-level and the library provides functions for printing the IEEE representations in a human-readable form. @comment float vs double vs long double @comment (how many digits are available for each) @deftypefun void gsl_ieee_fprintf_float (FILE * @var{stream}, const float * @var{x}) @deftypefunx void gsl_ieee_fprintf_double (FILE * @var{stream}, const double * @var{x}) These functions output a formatted version of the IEEE floating-point number pointed to by @var{x} to the stream @var{stream}. A pointer is used to pass the number indirectly, to avoid any undesired promotion from @code{float} to @code{double}. The output takes one of the following forms, @table @code @item NaN the Not-a-Number symbol @item Inf, -Inf positive or negative infinity @item 1.fffff...*2^E, -1.fffff...*2^E a normalized floating point number @item 0.fffff...*2^E, -0.fffff...*2^E a denormalized floating point number @item 0, -0 positive or negative zero @comment @item [non-standard IEEE float], [non-standard IEEE double] @comment an unrecognized encoding @end table The output can be used directly in GNU Emacs Calc mode by preceding it with @code{2#} to indicate binary. @end deftypefun @deftypefun void gsl_ieee_printf_float (const float * @var{x}) @deftypefunx void gsl_ieee_printf_double (const double * @var{x}) These functions output a formatted version of the IEEE floating-point number pointed to by @var{x} to the stream @code{stdout}. @end deftypefun @noindent The following program demonstrates the use of the functions by printing the single and double precision representations of the fraction @math{1/3}. For comparison the representation of the value promoted from single to double precision is also printed. @example @verbatiminclude examples/ieee.c @end example @noindent The binary representation of @math{1/3} is @math{0.01010101... }. The output below shows that the IEEE format normalizes this fraction to give a leading digit of 1, @smallexample f= 1.01010101010101010101011*2^-2 fd= 1.0101010101010101010101100000000000000000000000000000*2^-2 d= 1.0101010101010101010101010101010101010101010101010101*2^-2 @end smallexample @noindent The output also shows that a single-precision number is promoted to double-precision by adding zeros in the binary representation. @comment importance of using 1.234L in long double calculations @comment @example @comment int main (void) @comment @{ @comment long double x = 1.0, y = 1.0; @comment x = x + 0.2; @comment y = y + 0.2L; @comment printf(" d %.20Lf\n",x); @comment printf("ld %.20Lf\n",y); @comment return 1; @comment @} @comment d 1.20000000000000001110 @comment ld 1.20000000000000000004 @comment @end example @node Setting up your IEEE environment @section Setting up your IEEE environment @cindex IEEE exceptions @cindex precision, IEEE arithmetic @cindex rounding mode @cindex arithmetic exceptions @cindex exceptions, IEEE arithmetic @cindex division by zero, IEEE exceptions @cindex underflow, IEEE exceptions @cindex overflow, IEEE exceptions The IEEE standard defines several @dfn{modes} for controlling the behavior of floating point operations. These modes specify the important properties of computer arithmetic: the direction used for rounding (e.g. whether numbers should be rounded up, down or to the nearest number), the rounding precision and how the program should handle arithmetic exceptions, such as division by zero. Many of these features can now be controlled via standard functions such as @code{fpsetround}, which should be used whenever they are available. Unfortunately in the past there has been no universal API for controlling their behavior---each system has had its own low-level way of accessing them. To help you write portable programs GSL allows you to specify modes in a platform-independent way using the environment variable @code{GSL_IEEE_MODE}. The library then takes care of all the necessary machine-specific initializations for you when you call the function @code{gsl_ieee_env_setup}. @deftypefun void gsl_ieee_env_setup () @vrindex @env{GSL_IEEE_MODE} This function reads the environment variable @code{GSL_IEEE_MODE} and attempts to set up the corresponding specified IEEE modes. The environment variable should be a list of keywords, separated by commas, like this, @display @code{GSL_IEEE_MODE} = "@var{keyword},@var{keyword},..." @end display @noindent where @var{keyword} is one of the following mode-names, @itemize @w{} @item @code{single-precision} @item @code{double-precision} @item @code{extended-precision} @item @code{round-to-nearest} @item @code{round-down} @item @code{round-up} @item @code{round-to-zero} @item @code{mask-all} @item @code{mask-invalid} @item @code{mask-denormalized} @item @code{mask-division-by-zero} @item @code{mask-overflow} @item @code{mask-underflow} @item @code{trap-inexact} @item @code{trap-common} @end itemize If @code{GSL_IEEE_MODE} is empty or undefined then the function returns immediately and no attempt is made to change the system's IEEE mode. When the modes from @code{GSL_IEEE_MODE} are turned on the function prints a short message showing the new settings to remind you that the results of the program will be affected. If the requested modes are not supported by the platform being used then the function calls the error handler and returns an error code of @code{GSL_EUNSUP}. When options are specified using this method, the resulting mode is based on a default setting of the highest available precision (double precision or extended precision, depending on the platform) in round-to-nearest mode, with all exceptions enabled apart from the @sc{inexact} exception. The @sc{inexact} exception is generated whenever rounding occurs, so it must generally be disabled in typical scientific calculations. All other floating-point exceptions are enabled by default, including underflows and the use of denormalized numbers, for safety. They can be disabled with the individual @code{mask-} settings or together using @code{mask-all}. The following adjusted combination of modes is convenient for many purposes, @example GSL_IEEE_MODE="double-precision,"\ "mask-underflow,"\ "mask-denormalized" @end example @noindent This choice ignores any errors relating to small numbers (either denormalized, or underflowing to zero) but traps overflows, division by zero and invalid operations. Note that on the x86 series of processors this function sets both the original x87 mode and the newer @sc{mxcsr} mode, which controls SSE floating-point operations. The SSE floating-point units do not have a precision-control bit, and always work in double-precision. The single-precision and extended-precision keywords have no effect in this case. @end deftypefun @noindent To demonstrate the effects of different rounding modes consider the following program which computes @math{e}, the base of natural logarithms, by summing a rapidly-decreasing series, @tex \beforedisplay $$ e = 1 + {1 \over 2!} + {1 \over 3!} + {1 \over 4!} + \dots = 2.71828182846... $$ \afterdisplay @end tex @ifinfo @example e = 1 + 1/2! + 1/3! + 1/4! + ... = 2.71828182846... @end example @end ifinfo @example @verbatiminclude examples/ieeeround.c @end example @noindent Here are the results of running the program in @code{round-to-nearest} mode. This is the IEEE default so it isn't really necessary to specify it here, @example $ GSL_IEEE_MODE="round-to-nearest" ./a.out i= 1 sum=1.000000000000000000 error=-1.71828 i= 2 sum=2.000000000000000000 error=-0.718282 .... i=18 sum=2.718281828459045535 error=4.44089e-16 i=19 sum=2.718281828459045535 error=4.44089e-16 @end example @noindent After nineteen terms the sum converges to within @c{$4 \times 10^{-16}$} @math{4 \times 10^-16} of the correct value. If we now change the rounding mode to @code{round-down} the final result is less accurate, @example $ GSL_IEEE_MODE="round-down" ./a.out i= 1 sum=1.000000000000000000 error=-1.71828 .... i=19 sum=2.718281828459041094 error=-3.9968e-15 @end example @noindent The result is about @c{$4 \times 10^{-15}$} @math{4 \times 10^-15} below the correct value, an order of magnitude worse than the result obtained in the @code{round-to-nearest} mode. If we change to rounding mode to @code{round-up} then the final result is higher than the correct value (when we add each term to the sum the final result is always rounded up, which increases the sum by at least one tick until the added term underflows to zero). To avoid this problem we would need to use a safer converge criterion, such as @code{while (fabs(sum - oldsum) > epsilon)}, with a suitably chosen value of epsilon. Finally we can see the effect of computing the sum using single-precision rounding, in the default @code{round-to-nearest} mode. In this case the program thinks it is still using double precision numbers but the CPU rounds the result of each floating point operation to single-precision accuracy. This simulates the effect of writing the program using single-precision @code{float} variables instead of @code{double} variables. The iteration stops after about half the number of iterations and the final result is much less accurate, @example $ GSL_IEEE_MODE="single-precision" ./a.out .... i=12 sum=2.718281984329223633 error=1.5587e-07 @end example @noindent with an error of @c{$O(10^{-7})$} @math{O(10^-7)}, which corresponds to single precision accuracy (about 1 part in @math{10^7}). Continuing the iterations further does not decrease the error because all the subsequent results are rounded to the same value. @node IEEE References and Further Reading @section References and Further Reading The reference for the IEEE standard is, @itemize @w{} @item ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. @end itemize @noindent A more pedagogical introduction to the standard can be found in the following paper, @itemize @w{} @item David Goldberg: What Every Computer Scientist Should Know About Floating-Point Arithmetic. @cite{ACM Computing Surveys}, Vol.@: 23, No.@: 1 (March 1991), pages 5--48. Corrigendum: @cite{ACM Computing Surveys}, Vol.@: 23, No.@: 3 (September 1991), page 413. and see also the sections by B. A. Wichmann and Charles B. Dunham in Surveyor's Forum: ``What Every Computer Scientist Should Know About Floating-Point Arithmetic''. @cite{ACM Computing Surveys}, Vol.@: 24, No.@: 3 (September 1992), page 319. @end itemize @noindent A detailed textbook on IEEE arithmetic and its practical use is available from SIAM Press, @itemize @w{} @item Michael L. Overton, @cite{Numerical Computing with IEEE Floating Point Arithmetic}, SIAM Press, ISBN 0898715717. @end itemize @noindent @comment to turn on math exception handling use __setfpucw, see @comment /usr/include/i386/fpu_control.h @comment e.g. @comment #include @comment #include @comment #include @comment double f (double x); @comment int main () @comment { @comment double a = 0; @comment double y, z; @comment __setfpucw(0x1372); @comment mention extended vs double precision on Pentium, and how to get around @comment it (-ffloat-store, or selective use of volatile) @comment On the alpha the option -mieee is needed with gcc @comment In Digital's compiler the equivalent is -ieee, -ieee-with-no-inexact @comment and -ieee-with-inexact, or -fpe1 or -fpe2 gsl-1.16/doc/randist.texi0000664000252300025230000022036012171574312012261 00000000000000@cindex random number distributions @cindex cumulative distribution functions (CDFs) @cindex CDFs, cumulative distribution functions @cindex inverse cumulative distribution functions @cindex quantile functions This chapter describes functions for generating random variates and computing their probability distributions. Samples from the distributions described in this chapter can be obtained using any of the random number generators in the library as an underlying source of randomness. In the simplest cases a non-uniform distribution can be obtained analytically from the uniform distribution of a random number generator by applying an appropriate transformation. This method uses one call to the random number generator. More complicated distributions are created by the @dfn{acceptance-rejection} method, which compares the desired distribution against a distribution which is similar and known analytically. This usually requires several samples from the generator. The library also provides cumulative distribution functions and inverse cumulative distribution functions, sometimes referred to as quantile functions. The cumulative distribution functions and their inverses are computed separately for the upper and lower tails of the distribution, allowing full accuracy to be retained for small results. The functions for random variates and probability density functions described in this section are declared in @file{gsl_randist.h}. The corresponding cumulative distribution functions are declared in @file{gsl_cdf.h}. Note that the discrete random variate functions always return a value of type @code{unsigned int}, and on most platforms this has a maximum value of @c{$2^{32}-1 \approx 4.29\times10^9$} @math{2^32-1 ~=~ 4.29e9}. They should only be called with a safe range of parameters (where there is a negligible probability of a variate exceeding this limit) to prevent incorrect results due to overflow. @menu * Random Number Distribution Introduction:: * The Gaussian Distribution:: * The Gaussian Tail Distribution:: * The Bivariate Gaussian Distribution:: * The Exponential Distribution:: * The Laplace Distribution:: * The Exponential Power Distribution:: * The Cauchy Distribution:: * The Rayleigh Distribution:: * The Rayleigh Tail Distribution:: * The Landau Distribution:: * The Levy alpha-Stable Distributions:: * The Levy skew alpha-Stable Distribution:: * The Gamma Distribution:: * The Flat (Uniform) Distribution:: * The Lognormal Distribution:: * The Chi-squared Distribution:: * The F-distribution:: * The t-distribution:: * The Beta Distribution:: * The Logistic Distribution:: * The Pareto Distribution:: * Spherical Vector Distributions:: * The Weibull Distribution:: * The Type-1 Gumbel Distribution:: * The Type-2 Gumbel Distribution:: * The Dirichlet Distribution:: * General Discrete Distributions:: * The Poisson Distribution:: * The Bernoulli Distribution:: * The Binomial Distribution:: * The Multinomial Distribution:: * The Negative Binomial Distribution:: * The Pascal Distribution:: * The Geometric Distribution:: * The Hypergeometric Distribution:: * The Logarithmic Distribution:: * Shuffling and Sampling:: * Random Number Distribution Examples:: * Random Number Distribution References and Further Reading:: @end menu @node Random Number Distribution Introduction @section Introduction Continuous random number distributions are defined by a probability density function, @math{p(x)}, such that the probability of @math{x} occurring in the infinitesimal range @math{x} to @math{x+dx} is @c{$p\,dx$} @math{p dx}. The cumulative distribution function for the lower tail @math{P(x)} is defined by the integral, @tex \beforedisplay $$ P(x) = \int_{-\infty}^{x} dx' p(x') $$ \afterdisplay @end tex @ifinfo @example P(x) = \int_@{-\infty@}^@{x@} dx' p(x') @end example @end ifinfo @noindent and gives the probability of a variate taking a value less than @math{x}. The cumulative distribution function for the upper tail @math{Q(x)} is defined by the integral, @tex \beforedisplay $$ Q(x) = \int_{x}^{+\infty} dx' p(x') $$ \afterdisplay @end tex @ifinfo @example Q(x) = \int_@{x@}^@{+\infty@} dx' p(x') @end example @end ifinfo @noindent and gives the probability of a variate taking a value greater than @math{x}. The upper and lower cumulative distribution functions are related by @math{P(x) + Q(x) = 1} and satisfy @c{$0 \le P(x) \le 1$} @math{0 <= P(x) <= 1}, @c{$0 \le Q(x) \le 1$} @math{0 <= Q(x) <= 1}. The inverse cumulative distributions, @c{$x=P^{-1}(P)$} @math{x=P^@{-1@}(P)} and @c{$x=Q^{-1}(Q)$} @math{x=Q^@{-1@}(Q)} give the values of @math{x} which correspond to a specific value of @math{P} or @math{Q}. They can be used to find confidence limits from probability values. For discrete distributions the probability of sampling the integer value @math{k} is given by @math{p(k)}, where @math{\sum_k p(k) = 1}. The cumulative distribution for the lower tail @math{P(k)} of a discrete distribution is defined as, @tex \beforedisplay $$ P(k) = \sum_{i \le k} p(i) $$ \afterdisplay @end tex @ifinfo @example P(k) = \sum_@{i <= k@} p(i) @end example @end ifinfo @noindent where the sum is over the allowed range of the distribution less than or equal to @math{k}. The cumulative distribution for the upper tail of a discrete distribution @math{Q(k)} is defined as @tex \beforedisplay $$ Q(k) = \sum_{i > k} p(i) $$ \afterdisplay @end tex @ifinfo @example Q(k) = \sum_@{i > k@} p(i) @end example @end ifinfo @noindent giving the sum of probabilities for all values greater than @math{k}. These two definitions satisfy the identity @math{P(k)+Q(k)=1}. If the range of the distribution is 1 to @math{n} inclusive then @math{P(n)=1}, @math{Q(n)=0} while @math{P(1) = p(1)}, @math{Q(1)=1-p(1)}. @page @node The Gaussian Distribution @section The Gaussian Distribution @deftypefun double gsl_ran_gaussian (const gsl_rng * @var{r}, double @var{sigma}) @cindex Gaussian distribution This function returns a Gaussian random variate, with mean zero and standard deviation @var{sigma}. The probability distribution for Gaussian random variates is, @tex \beforedisplay $$ p(x) dx = {1 \over \sqrt{2 \pi \sigma^2}} \exp (-x^2 / 2\sigma^2) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over \sqrt@{2 \pi \sigma^2@}@} \exp (-x^2 / 2\sigma^2) dx @end example @end ifinfo @noindent for @math{x} in the range @math{-\infty} to @math{+\infty}. Use the transformation @math{z = \mu + x} on the numbers returned by @code{gsl_ran_gaussian} to obtain a Gaussian distribution with mean @math{\mu}. This function uses the Box-Muller algorithm which requires two calls to the random number generator @var{r}. @end deftypefun @deftypefun double gsl_ran_gaussian_pdf (double @var{x}, double @var{sigma}) This function computes the probability density @math{p(x)} at @var{x} for a Gaussian distribution with standard deviation @var{sigma}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-gaussian.tex} @end tex @deftypefun double gsl_ran_gaussian_ziggurat (const gsl_rng * @var{r}, double @var{sigma}) @deftypefunx double gsl_ran_gaussian_ratio_method (const gsl_rng * @var{r}, double @var{sigma}) @cindex Ziggurat method This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat and Kinderman-Monahan-Leva ratio methods. The Ziggurat algorithm is the fastest available algorithm in most cases. @end deftypefun @deftypefun double gsl_ran_ugaussian (const gsl_rng * @var{r}) @deftypefunx double gsl_ran_ugaussian_pdf (double @var{x}) @deftypefunx double gsl_ran_ugaussian_ratio_method (const gsl_rng * @var{r}) These functions compute results for the unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, @var{sigma} = 1. @end deftypefun @deftypefun double gsl_cdf_gaussian_P (double @var{x}, double @var{sigma}) @deftypefunx double gsl_cdf_gaussian_Q (double @var{x}, double @var{sigma}) @deftypefunx double gsl_cdf_gaussian_Pinv (double @var{P}, double @var{sigma}) @deftypefunx double gsl_cdf_gaussian_Qinv (double @var{Q}, double @var{sigma}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Gaussian distribution with standard deviation @var{sigma}. @end deftypefun @deftypefun double gsl_cdf_ugaussian_P (double @var{x}) @deftypefunx double gsl_cdf_ugaussian_Q (double @var{x}) @deftypefunx double gsl_cdf_ugaussian_Pinv (double @var{P}) @deftypefunx double gsl_cdf_ugaussian_Qinv (double @var{Q}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the unit Gaussian distribution. @end deftypefun @page @node The Gaussian Tail Distribution @section The Gaussian Tail Distribution @deftypefun double gsl_ran_gaussian_tail (const gsl_rng * @var{r}, double @var{a}, double @var{sigma}) @cindex Gaussian Tail distribution This function provides random variates from the upper tail of a Gaussian distribution with standard deviation @var{sigma}. The values returned are larger than the lower limit @var{a}, which must be positive. The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann. Math. Stat. 32, 894--899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139,586 (exercise 11). The probability distribution for Gaussian tail random variates is, @tex \beforedisplay $$ p(x) dx = {1 \over N(a;\sigma) \sqrt{2 \pi \sigma^2}} \exp (- x^2 / 2\sigma^2) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over N(a;\sigma) \sqrt@{2 \pi \sigma^2@}@} \exp (- x^2/(2 \sigma^2)) dx @end example @end ifinfo @noindent for @math{x > a} where @math{N(a;\sigma)} is the normalization constant, @tex \beforedisplay $$ N(a;\sigma) = {1 \over 2} \hbox{erfc}\left({a \over \sqrt{2 \sigma^2}}\right). $$ \afterdisplay @end tex @ifinfo @example N(a;\sigma) = (1/2) erfc(a / sqrt(2 sigma^2)). @end example @end ifinfo @end deftypefun @deftypefun double gsl_ran_gaussian_tail_pdf (double @var{x}, double @var{a}, double @var{sigma}) This function computes the probability density @math{p(x)} at @var{x} for a Gaussian tail distribution with standard deviation @var{sigma} and lower limit @var{a}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-gaussian-tail.tex} @end tex @deftypefun double gsl_ran_ugaussian_tail (const gsl_rng * @var{r}, double @var{a}) @deftypefunx double gsl_ran_ugaussian_tail_pdf (double @var{x}, double @var{a}) These functions compute results for the tail of a unit Gaussian distribution. They are equivalent to the functions above with a standard deviation of one, @var{sigma} = 1. @end deftypefun @page @node The Bivariate Gaussian Distribution @section The Bivariate Gaussian Distribution @deftypefun void gsl_ran_bivariate_gaussian (const gsl_rng * @var{r}, double @var{sigma_x}, double @var{sigma_y}, double @var{rho}, double * @var{x}, double * @var{y}) @cindex Bivariate Gaussian distribution @cindex two dimensional Gaussian distribution @cindex Gaussian distribution, bivariate This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient @var{rho} and standard deviations @var{sigma_x} and @var{sigma_y} in the @math{x} and @math{y} directions. The probability distribution for bivariate Gaussian random variates is, @tex \beforedisplay $$ p(x,y) dx dy = {1 \over 2 \pi \sigma_x \sigma_y \sqrt{1-\rho^2}} \exp \left(-{(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y)) \over 2(1-\rho^2)}\right) dx dy $$ \afterdisplay @end tex @ifinfo @example p(x,y) dx dy = @{1 \over 2 \pi \sigma_x \sigma_y \sqrt@{1-\rho^2@}@} \exp (-(x^2/\sigma_x^2 + y^2/\sigma_y^2 - 2 \rho x y/(\sigma_x\sigma_y))/2(1-\rho^2)) dx dy @end example @end ifinfo @noindent for @math{x,y} in the range @math{-\infty} to @math{+\infty}. The correlation coefficient @var{rho} should lie between @math{1} and @math{-1}. @end deftypefun @deftypefun double gsl_ran_bivariate_gaussian_pdf (double @var{x}, double @var{y}, double @var{sigma_x}, double @var{sigma_y}, double @var{rho}) This function computes the probability density @math{p(x,y)} at (@var{x},@var{y}) for a bivariate Gaussian distribution with standard deviations @var{sigma_x}, @var{sigma_y} and correlation coefficient @var{rho}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-bivariate-gaussian.tex} @end tex @page @node The Exponential Distribution @section The Exponential Distribution @deftypefun double gsl_ran_exponential (const gsl_rng * @var{r}, double @var{mu}) @cindex Exponential distribution This function returns a random variate from the exponential distribution with mean @var{mu}. The distribution is, @tex \beforedisplay $$ p(x) dx = {1 \over \mu} \exp(-x/\mu) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over \mu@} \exp(-x/\mu) dx @end example @end ifinfo @noindent for @c{$x \ge 0$} @math{x >= 0}. @end deftypefun @deftypefun double gsl_ran_exponential_pdf (double @var{x}, double @var{mu}) This function computes the probability density @math{p(x)} at @var{x} for an exponential distribution with mean @var{mu}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-exponential.tex} @end tex @deftypefun double gsl_cdf_exponential_P (double @var{x}, double @var{mu}) @deftypefunx double gsl_cdf_exponential_Q (double @var{x}, double @var{mu}) @deftypefunx double gsl_cdf_exponential_Pinv (double @var{P}, double @var{mu}) @deftypefunx double gsl_cdf_exponential_Qinv (double @var{Q}, double @var{mu}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the exponential distribution with mean @var{mu}. @end deftypefun @page @node The Laplace Distribution @section The Laplace Distribution @deftypefun double gsl_ran_laplace (const gsl_rng * @var{r}, double @var{a}) @cindex two-sided exponential distribution @cindex Laplace distribution This function returns a random variate from the Laplace distribution with width @var{a}. The distribution is, @tex \beforedisplay $$ p(x) dx = {1 \over 2 a} \exp(-|x/a|) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over 2 a@} \exp(-|x/a|) dx @end example @end ifinfo @noindent for @math{-\infty < x < \infty}. @end deftypefun @deftypefun double gsl_ran_laplace_pdf (double @var{x}, double @var{a}) This function computes the probability density @math{p(x)} at @var{x} for a Laplace distribution with width @var{a}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-laplace.tex} @end tex @deftypefun double gsl_cdf_laplace_P (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_laplace_Q (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_laplace_Pinv (double @var{P}, double @var{a}) @deftypefunx double gsl_cdf_laplace_Qinv (double @var{Q}, double @var{a}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Laplace distribution with width @var{a}. @end deftypefun @page @node The Exponential Power Distribution @section The Exponential Power Distribution @deftypefun double gsl_ran_exppow (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Exponential power distribution This function returns a random variate from the exponential power distribution with scale parameter @var{a} and exponent @var{b}. The distribution is, @tex \beforedisplay $$ p(x) dx = {1 \over 2 a \Gamma(1+1/b)} \exp(-|x/a|^b) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over 2 a \Gamma(1+1/b)@} \exp(-|x/a|^b) dx @end example @end ifinfo @noindent for @c{$x \ge 0$} @math{x >= 0}. For @math{b = 1} this reduces to the Laplace distribution. For @math{b = 2} it has the same form as a Gaussian distribution, but with @c{$a = \sqrt{2} \sigma$} @math{a = \sqrt@{2@} \sigma}. @end deftypefun @deftypefun double gsl_ran_exppow_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for an exponential power distribution with scale parameter @var{a} and exponent @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-exppow.tex} @end tex @deftypefun double gsl_cdf_exppow_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_exppow_Q (double @var{x}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} for the exponential power distribution with parameters @var{a} and @var{b}. @end deftypefun @page @node The Cauchy Distribution @section The Cauchy Distribution @deftypefun double gsl_ran_cauchy (const gsl_rng * @var{r}, double @var{a}) @cindex Cauchy distribution This function returns a random variate from the Cauchy distribution with scale parameter @var{a}. The probability distribution for Cauchy random variates is, @tex \beforedisplay $$ p(x) dx = {1 \over a\pi (1 + (x/a)^2) } dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over a\pi (1 + (x/a)^2) @} dx @end example @end ifinfo @noindent for @math{x} in the range @math{-\infty} to @math{+\infty}. The Cauchy distribution is also known as the Lorentz distribution. @end deftypefun @deftypefun double gsl_ran_cauchy_pdf (double @var{x}, double @var{a}) This function computes the probability density @math{p(x)} at @var{x} for a Cauchy distribution with scale parameter @var{a}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-cauchy.tex} @end tex @deftypefun double gsl_cdf_cauchy_P (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_cauchy_Q (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_cauchy_Pinv (double @var{P}, double @var{a}) @deftypefunx double gsl_cdf_cauchy_Qinv (double @var{Q}, double @var{a}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Cauchy distribution with scale parameter @var{a}. @end deftypefun @page @node The Rayleigh Distribution @section The Rayleigh Distribution @deftypefun double gsl_ran_rayleigh (const gsl_rng * @var{r}, double @var{sigma}) @cindex Rayleigh distribution This function returns a random variate from the Rayleigh distribution with scale parameter @var{sigma}. The distribution is, @tex \beforedisplay $$ p(x) dx = {x \over \sigma^2} \exp(- x^2/(2 \sigma^2)) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{x \over \sigma^2@} \exp(- x^2/(2 \sigma^2)) dx @end example @end ifinfo @noindent for @math{x > 0}. @end deftypefun @deftypefun double gsl_ran_rayleigh_pdf (double @var{x}, double @var{sigma}) This function computes the probability density @math{p(x)} at @var{x} for a Rayleigh distribution with scale parameter @var{sigma}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-rayleigh.tex} @end tex @deftypefun double gsl_cdf_rayleigh_P (double @var{x}, double @var{sigma}) @deftypefunx double gsl_cdf_rayleigh_Q (double @var{x}, double @var{sigma}) @deftypefunx double gsl_cdf_rayleigh_Pinv (double @var{P}, double @var{sigma}) @deftypefunx double gsl_cdf_rayleigh_Qinv (double @var{Q}, double @var{sigma}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Rayleigh distribution with scale parameter @var{sigma}. @end deftypefun @page @node The Rayleigh Tail Distribution @section The Rayleigh Tail Distribution @deftypefun double gsl_ran_rayleigh_tail (const gsl_rng * @var{r}, double @var{a}, double @var{sigma}) @cindex Rayleigh Tail distribution This function returns a random variate from the tail of the Rayleigh distribution with scale parameter @var{sigma} and a lower limit of @var{a}. The distribution is, @tex \beforedisplay $$ p(x) dx = {x \over \sigma^2} \exp ((a^2 - x^2) /(2 \sigma^2)) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{x \over \sigma^2@} \exp ((a^2 - x^2) /(2 \sigma^2)) dx @end example @end ifinfo @noindent for @math{x > a}. @end deftypefun @deftypefun double gsl_ran_rayleigh_tail_pdf (double @var{x}, double @var{a}, double @var{sigma}) This function computes the probability density @math{p(x)} at @var{x} for a Rayleigh tail distribution with scale parameter @var{sigma} and lower limit @var{a}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-rayleigh-tail.tex} @end tex @page @node The Landau Distribution @section The Landau Distribution @deftypefun double gsl_ran_landau (const gsl_rng * @var{r}) @cindex Landau distribution This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral, @tex \beforedisplay $$ p(x) = {1 \over {2 \pi i}} \int_{c-i\infty}^{c+i\infty} ds\, \exp(s \log(s) + x s) $$ \afterdisplay @end tex @ifinfo @example p(x) = (1/(2 \pi i)) \int_@{c-i\infty@}^@{c+i\infty@} ds exp(s log(s) + x s) @end example @end ifinfo For numerical purposes it is more convenient to use the following equivalent form of the integral, @tex \beforedisplay $$ p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t). $$ \afterdisplay @end tex @ifinfo @example p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t). @end example @end ifinfo @end deftypefun @deftypefun double gsl_ran_landau_pdf (double @var{x}) This function computes the probability density @math{p(x)} at @var{x} for the Landau distribution using an approximation to the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-landau.tex} @end tex @page @node The Levy alpha-Stable Distributions @section The Levy alpha-Stable Distributions @deftypefun double gsl_ran_levy (const gsl_rng * @var{r}, double @var{c}, double @var{alpha}) @cindex Levy distribution This function returns a random variate from the Levy symmetric stable distribution with scale @var{c} and exponent @var{alpha}. The symmetric stable probability distribution is defined by a Fourier transform, @tex \beforedisplay $$ p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^\alpha) $$ \afterdisplay @end tex @ifinfo @example p(x) = @{1 \over 2 \pi@} \int_@{-\infty@}^@{+\infty@} dt \exp(-it x - |c t|^alpha) @end example @end ifinfo @noindent There is no explicit solution for the form of @math{p(x)} and the library does not define a corresponding @code{pdf} function. For @math{\alpha = 1} the distribution reduces to the Cauchy distribution. For @math{\alpha = 2} it is a Gaussian distribution with @c{$\sigma = \sqrt{2} c$} @math{\sigma = \sqrt@{2@} c}. For @math{\alpha < 1} the tails of the distribution become extremely wide. The algorithm only works for @c{$0 < \alpha \le 2$} @math{0 < alpha <= 2}. @end deftypefun @sp 1 @tex \centerline{\input rand-levy.tex} @end tex @page @node The Levy skew alpha-Stable Distribution @section The Levy skew alpha-Stable Distribution @deftypefun double gsl_ran_levy_skew (const gsl_rng * @var{r}, double @var{c}, double @var{alpha}, double @var{beta}) @cindex Levy distribution, skew @cindex Skew Levy distribution This function returns a random variate from the Levy skew stable distribution with scale @var{c}, exponent @var{alpha} and skewness parameter @var{beta}. The skewness parameter must lie in the range @math{[-1,1]}. The Levy skew stable probability distribution is defined by a Fourier transform, @tex \beforedisplay $$ p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^\alpha (1-i \beta \sign(t) \tan(\pi\alpha/2))) $$ \afterdisplay @end tex @ifinfo @example p(x) = @{1 \over 2 \pi@} \int_@{-\infty@}^@{+\infty@} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2))) @end example @end ifinfo @noindent When @math{\alpha = 1} the term @math{\tan(\pi \alpha/2)} is replaced by @math{-(2/\pi)\log|t|}. There is no explicit solution for the form of @math{p(x)} and the library does not define a corresponding @code{pdf} function. For @math{\alpha = 2} the distribution reduces to a Gaussian distribution with @c{$\sigma = \sqrt{2} c$} @math{\sigma = \sqrt@{2@} c} and the skewness parameter has no effect. For @math{\alpha < 1} the tails of the distribution become extremely wide. The symmetric distribution corresponds to @math{\beta = 0}. The algorithm only works for @c{$0 < \alpha \le 2$} @math{0 < alpha <= 2}. @end deftypefun The Levy alpha-stable distributions have the property that if @math{N} alpha-stable variates are drawn from the distribution @math{p(c, \alpha, \beta)} then the sum @math{Y = X_1 + X_2 + \dots + X_N} will also be distributed as an alpha-stable variate, @c{$p(N^{1/\alpha} c, \alpha, \beta)$} @math{p(N^(1/\alpha) c, \alpha, \beta)}. @comment PDF not available because there is no analytic expression for it @comment @comment @deftypefun double gsl_ran_levy_pdf (double @var{x}, double @var{mu}) @comment This function computes the probability density @math{p(x)} at @var{x} @comment for a symmetric Levy distribution with scale parameter @var{mu} and @comment exponent @var{a}, using the formula given above. @comment @end deftypefun @sp 1 @tex \centerline{\input rand-levyskew.tex} @end tex @page @node The Gamma Distribution @section The Gamma Distribution @deftypefun double gsl_ran_gamma (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Gamma distribution This function returns a random variate from the gamma distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = {1 \over \Gamma(a) b^a} x^{a-1} e^{-x/b} dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over \Gamma(a) b^a@} x^@{a-1@} e^@{-x/b@} dx @end example @end ifinfo @noindent for @math{x > 0}. @comment If @xmath{X} and @xmath{Y} are independent gamma-distributed random @comment variables of order @xmath{a} and @xmath{b}, then @xmath{X+Y} has a gamma @comment distribution of order @xmath{a+b}. @cindex Erlang distribution The gamma distribution with an integer parameter @var{a} is known as the Erlang distribution. The variates are computed using the Marsaglia-Tsang fast gamma method. This function for this method was previously called @code{gsl_ran_gamma_mt} and can still be accessed using this name. @end deftypefun @deftypefun double gsl_ran_gamma_knuth (const gsl_rng * @var{r}, double @var{a}, double @var{b}) This function returns a gamma variate using the algorithms from Knuth (vol 2). @end deftypefun @deftypefun double gsl_ran_gamma_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a gamma distribution with parameters @var{a} and @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-gamma.tex} @end tex @deftypefun double gsl_cdf_gamma_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gamma_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gamma_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gamma_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the gamma distribution with parameters @var{a} and @var{b}. @end deftypefun @page @node The Flat (Uniform) Distribution @section The Flat (Uniform) Distribution @deftypefun double gsl_ran_flat (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex flat distribution @cindex uniform distribution This function returns a random variate from the flat (uniform) distribution from @var{a} to @var{b}. The distribution is, @tex \beforedisplay $$ p(x) dx = {1 \over (b-a)} dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over (b-a)@} dx @end example @end ifinfo @noindent if @c{$a \le x < b$} @math{a <= x < b} and 0 otherwise. @end deftypefun @deftypefun double gsl_ran_flat_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a uniform distribution from @var{a} to @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-flat.tex} @end tex @deftypefun double gsl_cdf_flat_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_flat_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_flat_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_flat_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for a uniform distribution from @var{a} to @var{b}. @end deftypefun @page @node The Lognormal Distribution @section The Lognormal Distribution @deftypefun double gsl_ran_lognormal (const gsl_rng * @var{r}, double @var{zeta}, double @var{sigma}) @cindex Lognormal distribution This function returns a random variate from the lognormal distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = {1 \over x \sqrt{2 \pi \sigma^2}} \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over x \sqrt@{2 \pi \sigma^2@} @} \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx @end example @end ifinfo @noindent for @math{x > 0}. @end deftypefun @deftypefun double gsl_ran_lognormal_pdf (double @var{x}, double @var{zeta}, double @var{sigma}) This function computes the probability density @math{p(x)} at @var{x} for a lognormal distribution with parameters @var{zeta} and @var{sigma}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-lognormal.tex} @end tex @deftypefun double gsl_cdf_lognormal_P (double @var{x}, double @var{zeta}, double @var{sigma}) @deftypefunx double gsl_cdf_lognormal_Q (double @var{x}, double @var{zeta}, double @var{sigma}) @deftypefunx double gsl_cdf_lognormal_Pinv (double @var{P}, double @var{zeta}, double @var{sigma}) @deftypefunx double gsl_cdf_lognormal_Qinv (double @var{Q}, double @var{zeta}, double @var{sigma}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the lognormal distribution with parameters @var{zeta} and @var{sigma}. @end deftypefun @page @node The Chi-squared Distribution @section The Chi-squared Distribution The chi-squared distribution arises in statistics. If @math{Y_i} are @math{n} independent Gaussian random variates with unit variance then the sum-of-squares, @tex \beforedisplay $$ X_i = \sum_i Y_i^2 $$ \afterdisplay @end tex @ifinfo @example X_i = \sum_i Y_i^2 @end example @end ifinfo @noindent has a chi-squared distribution with @math{n} degrees of freedom. @deftypefun double gsl_ran_chisq (const gsl_rng * @var{r}, double @var{nu}) @cindex Chi-squared distribution This function returns a random variate from the chi-squared distribution with @var{nu} degrees of freedom. The distribution function is, @tex \beforedisplay $$ p(x) dx = {1 \over 2 \Gamma(\nu/2) } (x/2)^{\nu/2 - 1} \exp(-x/2) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{1 \over 2 \Gamma(\nu/2) @} (x/2)^@{\nu/2 - 1@} \exp(-x/2) dx @end example @end ifinfo @noindent for @c{$x \ge 0$} @math{x >= 0}. @end deftypefun @deftypefun double gsl_ran_chisq_pdf (double @var{x}, double @var{nu}) This function computes the probability density @math{p(x)} at @var{x} for a chi-squared distribution with @var{nu} degrees of freedom, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-chisq.tex} @end tex @deftypefun double gsl_cdf_chisq_P (double @var{x}, double @var{nu}) @deftypefunx double gsl_cdf_chisq_Q (double @var{x}, double @var{nu}) @deftypefunx double gsl_cdf_chisq_Pinv (double @var{P}, double @var{nu}) @deftypefunx double gsl_cdf_chisq_Qinv (double @var{Q}, double @var{nu}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the chi-squared distribution with @var{nu} degrees of freedom. @end deftypefun @page @node The F-distribution @section The F-distribution The F-distribution arises in statistics. If @math{Y_1} and @math{Y_2} are chi-squared deviates with @math{\nu_1} and @math{\nu_2} degrees of freedom then the ratio, @tex \beforedisplay $$ X = { (Y_1 / \nu_1) \over (Y_2 / \nu_2) } $$ \afterdisplay @end tex @ifinfo @example X = @{ (Y_1 / \nu_1) \over (Y_2 / \nu_2) @} @end example @end ifinfo @noindent has an F-distribution @math{F(x;\nu_1,\nu_2)}. @deftypefun double gsl_ran_fdist (const gsl_rng * @var{r}, double @var{nu1}, double @var{nu2}) @cindex F-distribution This function returns a random variate from the F-distribution with degrees of freedom @var{nu1} and @var{nu2}. The distribution function is, @tex \beforedisplay $$ p(x) dx = { \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) } \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} x^{\nu_1/2 - 1} (\nu_2 + \nu_1 x)^{-\nu_1/2 -\nu_2/2} $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{ \Gamma((\nu_1 + \nu_2)/2) \over \Gamma(\nu_1/2) \Gamma(\nu_2/2) @} \nu_1^@{\nu_1/2@} \nu_2^@{\nu_2/2@} x^@{\nu_1/2 - 1@} (\nu_2 + \nu_1 x)^@{-\nu_1/2 -\nu_2/2@} @end example @end ifinfo @noindent for @c{$x \ge 0$} @math{x >= 0}. @end deftypefun @deftypefun double gsl_ran_fdist_pdf (double @var{x}, double @var{nu1}, double @var{nu2}) This function computes the probability density @math{p(x)} at @var{x} for an F-distribution with @var{nu1} and @var{nu2} degrees of freedom, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-fdist.tex} @end tex @deftypefun double gsl_cdf_fdist_P (double @var{x}, double @var{nu1}, double @var{nu2}) @deftypefunx double gsl_cdf_fdist_Q (double @var{x}, double @var{nu1}, double @var{nu2}) @deftypefunx double gsl_cdf_fdist_Pinv (double @var{P}, double @var{nu1}, double @var{nu2}) @deftypefunx double gsl_cdf_fdist_Qinv (double @var{Q}, double @var{nu1}, double @var{nu2}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the F-distribution with @var{nu1} and @var{nu2} degrees of freedom. @end deftypefun @page @node The t-distribution @section The t-distribution The t-distribution arises in statistics. If @math{Y_1} has a normal distribution and @math{Y_2} has a chi-squared distribution with @math{\nu} degrees of freedom then the ratio, @tex \beforedisplay $$ X = { Y_1 \over \sqrt{Y_2 / \nu} } $$ \afterdisplay @end tex @ifinfo @example X = @{ Y_1 \over \sqrt@{Y_2 / \nu@} @} @end example @end ifinfo @noindent has a t-distribution @math{t(x;\nu)} with @math{\nu} degrees of freedom. @deftypefun double gsl_ran_tdist (const gsl_rng * @var{r}, double @var{nu}) @cindex t-distribution @cindex Student t-distribution This function returns a random variate from the t-distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu + 1)/2} dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{\Gamma((\nu + 1)/2) \over \sqrt@{\pi \nu@} \Gamma(\nu/2)@} (1 + x^2/\nu)^@{-(\nu + 1)/2@} dx @end example @end ifinfo @noindent for @math{-\infty < x < +\infty}. @end deftypefun @deftypefun double gsl_ran_tdist_pdf (double @var{x}, double @var{nu}) This function computes the probability density @math{p(x)} at @var{x} for a t-distribution with @var{nu} degrees of freedom, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-tdist.tex} @end tex @deftypefun double gsl_cdf_tdist_P (double @var{x}, double @var{nu}) @deftypefunx double gsl_cdf_tdist_Q (double @var{x}, double @var{nu}) @deftypefunx double gsl_cdf_tdist_Pinv (double @var{P}, double @var{nu}) @deftypefunx double gsl_cdf_tdist_Qinv (double @var{Q}, double @var{nu}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the t-distribution with @var{nu} degrees of freedom. @end deftypefun @page @node The Beta Distribution @section The Beta Distribution @deftypefun double gsl_ran_beta (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Beta distribution This function returns a random variate from the beta distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = {\Gamma(a+b) \over \Gamma(a) \Gamma(b)} x^{a-1} (1-x)^{b-1} dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{\Gamma(a+b) \over \Gamma(a) \Gamma(b)@} x^@{a-1@} (1-x)^@{b-1@} dx @end example @end ifinfo @noindent for @c{$0 \le x \le 1$} @math{0 <= x <= 1}. @end deftypefun @deftypefun double gsl_ran_beta_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a beta distribution with parameters @var{a} and @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-beta.tex} @end tex @deftypefun double gsl_cdf_beta_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_beta_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_beta_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_beta_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the beta distribution with parameters @var{a} and @var{b}. @end deftypefun @page @node The Logistic Distribution @section The Logistic Distribution @deftypefun double gsl_ran_logistic (const gsl_rng * @var{r}, double @var{a}) @cindex Logistic distribution This function returns a random variate from the logistic distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = { \exp(-x/a) \over a (1 + \exp(-x/a))^2 } dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{ \exp(-x/a) \over a (1 + \exp(-x/a))^2 @} dx @end example @end ifinfo @noindent for @math{-\infty < x < +\infty}. @end deftypefun @deftypefun double gsl_ran_logistic_pdf (double @var{x}, double @var{a}) This function computes the probability density @math{p(x)} at @var{x} for a logistic distribution with scale parameter @var{a}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-logistic.tex} @end tex @deftypefun double gsl_cdf_logistic_P (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_logistic_Q (double @var{x}, double @var{a}) @deftypefunx double gsl_cdf_logistic_Pinv (double @var{P}, double @var{a}) @deftypefunx double gsl_cdf_logistic_Qinv (double @var{Q}, double @var{a}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the logistic distribution with scale parameter @var{a}. @end deftypefun @page @node The Pareto Distribution @section The Pareto Distribution @deftypefun double gsl_ran_pareto (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Pareto distribution This function returns a random variate from the Pareto distribution of order @var{a}. The distribution function is, @tex \beforedisplay $$ p(x) dx = (a/b) / (x/b)^{a+1} dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = (a/b) / (x/b)^@{a+1@} dx @end example @end ifinfo @noindent for @c{$x \ge b$} @math{x >= b}. @end deftypefun @deftypefun double gsl_ran_pareto_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a Pareto distribution with exponent @var{a} and scale @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-pareto.tex} @end tex @deftypefun double gsl_cdf_pareto_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_pareto_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_pareto_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_pareto_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Pareto distribution with exponent @var{a} and scale @var{b}. @end deftypefun @page @node Spherical Vector Distributions @section Spherical Vector Distributions The spherical distributions generate random vectors, located on a spherical surface. They can be used as random directions, for example in the steps of a random walk. @deftypefun void gsl_ran_dir_2d (const gsl_rng * @var{r}, double * @var{x}, double * @var{y}) @deftypefunx void gsl_ran_dir_2d_trig_method (const gsl_rng * @var{r}, double * @var{x}, double * @var{y}) @cindex 2D random direction vector @cindex direction vector, random 2D @cindex spherical random variates, 2D This function returns a random direction vector @math{v} = (@var{x},@var{y}) in two dimensions. The vector is normalized such that @math{|v|^2 = x^2 + y^2 = 1}. The obvious way to do this is to take a uniform random number between 0 and @math{2\pi} and let @var{x} and @var{y} be the sine and cosine respectively. Two trig functions would have been expensive in the old days, but with modern hardware implementations, this is sometimes the fastest way to go. This is the case for the Pentium (but not the case for the Sun Sparcstation). One can avoid the trig evaluations by choosing @var{x} and @var{y} in the interior of a unit circle (choose them at random from the interior of the enclosing square, and then reject those that are outside the unit circle), and then dividing by @c{$\sqrt{x^2 + y^2}$} @math{\sqrt@{x^2 + y^2@}}. A much cleverer approach, attributed to von Neumann (See Knuth, v2, 3rd ed, p140, exercise 23), requires neither trig nor a square root. In this approach, @var{u} and @var{v} are chosen at random from the interior of a unit circle, and then @math{x=(u^2-v^2)/(u^2+v^2)} and @math{y=2uv/(u^2+v^2)}. @end deftypefun @deftypefun void gsl_ran_dir_3d (const gsl_rng * @var{r}, double * @var{x}, double * @var{y}, double * @var{z}) @cindex 3D random direction vector @cindex direction vector, random 3D @cindex spherical random variates, 3D This function returns a random direction vector @math{v} = (@var{x},@var{y},@var{z}) in three dimensions. The vector is normalized such that @math{|v|^2 = x^2 + y^2 + z^2 = 1}. The method employed is due to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed, p136. It uses the surprising fact that the distribution projected along any axis is actually uniform (this is only true for 3 dimensions). @end deftypefun @deftypefun void gsl_ran_dir_nd (const gsl_rng * @var{r}, size_t @var{n}, double * @var{x}) @cindex N-dimensional random direction vector @cindex direction vector, random N-dimensional @cindex spherical random variates, N-dimensional This function returns a random direction vector @c{$v = (x_1,x_2,\ldots,x_n)$} @math{v = (x_1,x_2,...,x_n)} in @var{n} dimensions. The vector is normalized such that @c{$|v|^2 = x_1^2 + x_2^2 + \cdots + x_n^2 = 1$} @math{|v|^2 = x_1^2 + x_2^2 + ... + x_n^2 = 1}. The method uses the fact that a multivariate Gaussian distribution is spherically symmetric. Each component is generated to have a Gaussian distribution, and then the components are normalized. The method is described by Knuth, v2, 3rd ed, p135--136, and attributed to G. W. Brown, Modern Mathematics for the Engineer (1956). @end deftypefun @page @node The Weibull Distribution @section The Weibull Distribution @deftypefun double gsl_ran_weibull (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Weibull distribution This function returns a random variate from the Weibull distribution. The distribution function is, @tex \beforedisplay $$ p(x) dx = {b \over a^b} x^{b-1} \exp(-(x/a)^b) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = @{b \over a^b@} x^@{b-1@} \exp(-(x/a)^b) dx @end example @end ifinfo @noindent for @c{$x \ge 0$} @math{x >= 0}. @end deftypefun @deftypefun double gsl_ran_weibull_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a Weibull distribution with scale @var{a} and exponent @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-weibull.tex} @end tex @deftypefun double gsl_cdf_weibull_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_weibull_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_weibull_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_weibull_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Weibull distribution with scale @var{a} and exponent @var{b}. @end deftypefun @page @node The Type-1 Gumbel Distribution @section The Type-1 Gumbel Distribution @deftypefun double gsl_ran_gumbel1 (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Gumbel distribution (Type 1) @cindex Type 1 Gumbel distribution, random variates This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is, @tex \beforedisplay $$ p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx @end example @end ifinfo @noindent for @math{-\infty < x < \infty}. @end deftypefun @deftypefun double gsl_ran_gumbel1_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a Type-1 Gumbel distribution with parameters @var{a} and @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-gumbel1.tex} @end tex @deftypefun double gsl_cdf_gumbel1_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel1_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel1_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel1_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Type-1 Gumbel distribution with parameters @var{a} and @var{b}. @end deftypefun @page @node The Type-2 Gumbel Distribution @section The Type-2 Gumbel Distribution @deftypefun double gsl_ran_gumbel2 (const gsl_rng * @var{r}, double @var{a}, double @var{b}) @cindex Gumbel distribution (Type 2) @cindex Type 2 Gumbel distribution This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is, @tex \beforedisplay $$ p(x) dx = a b x^{-a-1} \exp(-b x^{-a}) dx $$ \afterdisplay @end tex @ifinfo @example p(x) dx = a b x^@{-a-1@} \exp(-b x^@{-a@}) dx @end example @end ifinfo @noindent for @math{0 < x < \infty}. @end deftypefun @deftypefun double gsl_ran_gumbel2_pdf (double @var{x}, double @var{a}, double @var{b}) This function computes the probability density @math{p(x)} at @var{x} for a Type-2 Gumbel distribution with parameters @var{a} and @var{b}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-gumbel2.tex} @end tex @deftypefun double gsl_cdf_gumbel2_P (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel2_Q (double @var{x}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel2_Pinv (double @var{P}, double @var{a}, double @var{b}) @deftypefunx double gsl_cdf_gumbel2_Qinv (double @var{Q}, double @var{a}, double @var{b}) These functions compute the cumulative distribution functions @math{P(x)}, @math{Q(x)} and their inverses for the Type-2 Gumbel distribution with parameters @var{a} and @var{b}. @end deftypefun @page @node The Dirichlet Distribution @section The Dirichlet Distribution @deftypefun void gsl_ran_dirichlet (const gsl_rng * @var{r}, size_t @var{K}, const double @var{alpha}[], double @var{theta}[]) @cindex Dirichlet distribution This function returns an array of @var{K} random variates from a Dirichlet distribution of order @var{K}-1. The distribution function is @tex \beforedisplay $$ p(\theta_1,\ldots,\theta_K) \, d\theta_1 \cdots d\theta_K = {1 \over Z} \prod_{i=1}^{K} \theta_i^{\alpha_i - 1} \; \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 \cdots d\theta_K $$ \afterdisplay @end tex @ifinfo @example p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K = (1/Z) \prod_@{i=1@}^K \theta_i^@{\alpha_i - 1@} \delta(1 -\sum_@{i=1@}^K \theta_i) d\theta_1 ... d\theta_K @end example @end ifinfo @noindent for @c{$\theta_i \ge 0$} @math{theta_i >= 0} and @c{$\alpha_i > 0$} @math{alpha_i > 0}. The delta function ensures that @math{\sum \theta_i = 1}. The normalization factor @math{Z} is @tex \beforedisplay $$ Z = {\prod_{i=1}^K \Gamma(\alpha_i) \over \Gamma( \sum_{i=1}^K \alpha_i)} $$ \afterdisplay @end tex @ifinfo @example Z = @{\prod_@{i=1@}^K \Gamma(\alpha_i)@} / @{\Gamma( \sum_@{i=1@}^K \alpha_i)@} @end example @end ifinfo The random variates are generated by sampling @var{K} values from gamma distributions with parameters @c{$a=\alpha_i$, $b=1$} @math{a=alpha_i, b=1}, and renormalizing. See A.M. Law, W.D. Kelton, @cite{Simulation Modeling and Analysis} (1991). @end deftypefun @deftypefun double gsl_ran_dirichlet_pdf (size_t @var{K}, const double @var{alpha}[], const double @var{theta}[]) This function computes the probability density @c{$p(\theta_1, \ldots , \theta_K)$} @math{p(\theta_1, ... , \theta_K)} at @var{theta}[@var{K}] for a Dirichlet distribution with parameters @var{alpha}[@var{K}], using the formula given above. @end deftypefun @deftypefun double gsl_ran_dirichlet_lnpdf (size_t @var{K}, const double @var{alpha}[], const double @var{theta}[]) This function computes the logarithm of the probability density @c{$p(\theta_1, \ldots , \theta_K)$} @math{p(\theta_1, ... , \theta_K)} for a Dirichlet distribution with parameters @var{alpha}[@var{K}]. @end deftypefun @page @node General Discrete Distributions @section General Discrete Distributions Given @math{K} discrete events with different probabilities @math{P[k]}, produce a random value @math{k} consistent with its probability. The obvious way to do this is to preprocess the probability list by generating a cumulative probability array with @math{K+1} elements: @tex \beforedisplay $$ \eqalign{ C[0] & = 0 \cr C[k+1] &= C[k]+P[k]. } $$ \afterdisplay @end tex @ifinfo @example C[0] = 0 C[k+1] = C[k]+P[k]. @end example @end ifinfo @noindent Note that this construction produces @math{C[K]=1}. Now choose a uniform deviate @math{u} between 0 and 1, and find the value of @math{k} such that @c{$C[k] \le u < C[k+1]$} @math{C[k] <= u < C[k+1]}. Although this in principle requires of order @math{\log K} steps per random number generation, they are fast steps, and if you use something like @math{\lfloor uK \rfloor} as a starting point, you can often do pretty well. But faster methods have been devised. Again, the idea is to preprocess the probability list, and save the result in some form of lookup table; then the individual calls for a random discrete event can go rapidly. An approach invented by G. Marsaglia (Generating discrete random variables in a computer, Comm ACM 6, 37--38 (1963)) is very clever, and readers interested in examples of good algorithm design are directed to this short and well-written paper. Unfortunately, for large @math{K}, Marsaglia's lookup table can be quite large. A much better approach is due to Alastair J. Walker (An efficient method for generating discrete random variables with general distributions, ACM Trans on Mathematical Software 3, 253--256 (1977); see also Knuth, v2, 3rd ed, p120--121,139). This requires two lookup tables, one floating point and one integer, but both only of size @math{K}. After preprocessing, the random numbers are generated in O(1) time, even for large @math{K}. The preprocessing suggested by Walker requires @math{O(K^2)} effort, but that is not actually necessary, and the implementation provided here only takes @math{O(K)} effort. In general, more preprocessing leads to faster generation of the individual random numbers, but a diminishing return is reached pretty early. Knuth points out that the optimal preprocessing is combinatorially difficult for large @math{K}. This method can be used to speed up some of the discrete random number generators below, such as the binomial distribution. To use it for something like the Poisson Distribution, a modification would have to be made, since it only takes a finite set of @math{K} outcomes. @deftypefun {gsl_ran_discrete_t *} gsl_ran_discrete_preproc (size_t @var{K}, const double * @var{P}) @tpindex gsl_ran_discrete_t @cindex Discrete random numbers @cindex Discrete random numbers, preprocessing This function returns a pointer to a structure that contains the lookup table for the discrete random number generator. The array @var{P}[] contains the probabilities of the discrete events; these array elements must all be positive, but they needn't add up to one (so you can think of them more generally as ``weights'')---the preprocessor will normalize appropriately. This return value is used as an argument for the @code{gsl_ran_discrete} function below. @end deftypefun @deftypefun {size_t} gsl_ran_discrete (const gsl_rng * @var{r}, const gsl_ran_discrete_t * @var{g}) @cindex Discrete random numbers After the preprocessor, above, has been called, you use this function to get the discrete random numbers. @end deftypefun @deftypefun {double} gsl_ran_discrete_pdf (size_t @var{k}, const gsl_ran_discrete_t * @var{g}) @cindex Discrete random numbers Returns the probability @math{P[k]} of observing the variable @var{k}. Since @math{P[k]} is not stored as part of the lookup table, it must be recomputed; this computation takes @math{O(K)}, so if @var{K} is large and you care about the original array @math{P[k]} used to create the lookup table, then you should just keep this original array @math{P[k]} around. @end deftypefun @deftypefun {void} gsl_ran_discrete_free (gsl_ran_discrete_t * @var{g}) @cindex Discrete random numbers De-allocates the lookup table pointed to by @var{g}. @end deftypefun @page @node The Poisson Distribution @section The Poisson Distribution @deftypefun {unsigned int} gsl_ran_poisson (const gsl_rng * @var{r}, double @var{mu}) @cindex Poisson random numbers This function returns a random integer from the Poisson distribution with mean @var{mu}. The probability distribution for Poisson variates is, @tex \beforedisplay $$ p(k) = {\mu^k \over k!} \exp(-\mu) $$ \afterdisplay @end tex @ifinfo @example p(k) = @{\mu^k \over k!@} \exp(-\mu) @end example @end ifinfo @noindent for @c{$k \ge 0$} @math{k >= 0}. @end deftypefun @deftypefun double gsl_ran_poisson_pdf (unsigned int @var{k}, double @var{mu}) This function computes the probability @math{p(k)} of obtaining @var{k} from a Poisson distribution with mean @var{mu}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-poisson.tex} @end tex @deftypefun double gsl_cdf_poisson_P (unsigned int @var{k}, double @var{mu}) @deftypefunx double gsl_cdf_poisson_Q (unsigned int @var{k}, double @var{mu}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the Poisson distribution with parameter @var{mu}. @end deftypefun @page @node The Bernoulli Distribution @section The Bernoulli Distribution @deftypefun {unsigned int} gsl_ran_bernoulli (const gsl_rng * @var{r}, double @var{p}) @cindex Bernoulli trial, random variates This function returns either 0 or 1, the result of a Bernoulli trial with probability @var{p}. The probability distribution for a Bernoulli trial is, @tex \beforedisplay $$ \eqalign{ p(0) & = 1 - p \cr p(1) & = p } $$ \afterdisplay @end tex @ifinfo @example p(0) = 1 - p p(1) = p @end example @end ifinfo @end deftypefun @deftypefun double gsl_ran_bernoulli_pdf (unsigned int @var{k}, double @var{p}) This function computes the probability @math{p(k)} of obtaining @var{k} from a Bernoulli distribution with probability parameter @var{p}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-bernoulli.tex} @end tex @page @node The Binomial Distribution @section The Binomial Distribution @deftypefun {unsigned int} gsl_ran_binomial (const gsl_rng * @var{r}, double @var{p}, unsigned int @var{n}) @cindex Binomial random variates This function returns a random integer from the binomial distribution, the number of successes in @var{n} independent trials with probability @var{p}. The probability distribution for binomial variates is, @tex \beforedisplay $$ p(k) = {n! \over k! (n-k)!} p^k (1-p)^{n-k} $$ \afterdisplay @end tex @ifinfo @example p(k) = @{n! \over k! (n-k)! @} p^k (1-p)^@{n-k@} @end example @end ifinfo @noindent for @c{$0 \le k \le n$} @math{0 <= k <= n}. @end deftypefun @deftypefun double gsl_ran_binomial_pdf (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) This function computes the probability @math{p(k)} of obtaining @var{k} from a binomial distribution with parameters @var{p} and @var{n}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-binomial.tex} @end tex @deftypefun double gsl_cdf_binomial_P (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) @deftypefunx double gsl_cdf_binomial_Q (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the binomial distribution with parameters @var{p} and @var{n}. @end deftypefun @page @node The Multinomial Distribution @section The Multinomial Distribution @deftypefun void gsl_ran_multinomial (const gsl_rng * @var{r}, size_t @var{K}, unsigned int @var{N}, const double @var{p}[], unsigned int @var{n}[]) @cindex Multinomial distribution This function computes a random sample @var{n}[] from the multinomial distribution formed by @var{N} trials from an underlying distribution @var{p}[@var{K}]. The distribution function for @var{n}[] is, @tex \beforedisplay $$ P(n_1, n_2,\cdots, n_K) = {{ N!}\over{n_1 ! n_2 ! \cdots n_K !}} \, p_1^{n_1} p_2^{n_2} \cdots p_K^{n_K} $$ \afterdisplay @end tex @ifinfo @example P(n_1, n_2, ..., n_K) = (N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_K @end example @end ifinfo @noindent where @c{($n_1$, $n_2$, $\ldots$, $n_K$)} @math{(n_1, n_2, ..., n_K)} are nonnegative integers with @c{$\sum_{k=1}^{K} n_k =N$} @math{sum_@{k=1@}^K n_k = N}, and @c{$(p_1, p_2, \ldots, p_K)$} @math{(p_1, p_2, ..., p_K)} is a probability distribution with @math{\sum p_i = 1}. If the array @var{p}[@var{K}] is not normalized then its entries will be treated as weights and normalized appropriately. The arrays @var{n}[] and @var{p}[] must both be of length @var{K}. Random variates are generated using the conditional binomial method (see C.S. Davis, @cite{The computer generation of multinomial random variates}, Comp. Stat. Data Anal. 16 (1993) 205--217 for details). @end deftypefun @deftypefun double gsl_ran_multinomial_pdf (size_t @var{K}, const double @var{p}[], const unsigned int @var{n}[]) This function computes the probability @c{$P(n_1, n_2, \ldots, n_K)$} @math{P(n_1, n_2, ..., n_K)} of sampling @var{n}[@var{K}] from a multinomial distribution with parameters @var{p}[@var{K}], using the formula given above. @end deftypefun @deftypefun double gsl_ran_multinomial_lnpdf (size_t @var{K}, const double @var{p}[], const unsigned int @var{n}[]) This function returns the logarithm of the probability for the multinomial distribution @c{$P(n_1, n_2, \ldots, n_K)$} @math{P(n_1, n_2, ..., n_K)} with parameters @var{p}[@var{K}]. @end deftypefun @page @node The Negative Binomial Distribution @section The Negative Binomial Distribution @deftypefun {unsigned int} gsl_ran_negative_binomial (const gsl_rng * @var{r}, double @var{p}, double @var{n}) @cindex Negative Binomial distribution, random variates This function returns a random integer from the negative binomial distribution, the number of failures occurring before @var{n} successes in independent trials with probability @var{p} of success. The probability distribution for negative binomial variates is, @tex \beforedisplay $$ p(k) = {\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p^n (1-p)^k $$ \afterdisplay @end tex @ifinfo @example p(k) = @{\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) @} p^n (1-p)^k @end example @end ifinfo @noindent Note that @math{n} is not required to be an integer. @end deftypefun @deftypefun double gsl_ran_negative_binomial_pdf (unsigned int @var{k}, double @var{p}, double @var{n}) This function computes the probability @math{p(k)} of obtaining @var{k} from a negative binomial distribution with parameters @var{p} and @var{n}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-nbinomial.tex} @end tex @deftypefun double gsl_cdf_negative_binomial_P (unsigned int @var{k}, double @var{p}, double @var{n}) @deftypefunx double gsl_cdf_negative_binomial_Q (unsigned int @var{k}, double @var{p}, double @var{n}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the negative binomial distribution with parameters @var{p} and @var{n}. @end deftypefun @page @node The Pascal Distribution @section The Pascal Distribution @deftypefun {unsigned int} gsl_ran_pascal (const gsl_rng * @var{r}, double @var{p}, unsigned int @var{n}) This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of @math{n}. @tex \beforedisplay $$ p(k) = {(n + k - 1)! \over k! (n - 1)! } p^n (1-p)^k $$ \afterdisplay @end tex @ifinfo @example p(k) = @{(n + k - 1)! \over k! (n - 1)! @} p^n (1-p)^k @end example @end ifinfo @noindent for @c{$k \ge 0$} @math{k >= 0} @end deftypefun @deftypefun double gsl_ran_pascal_pdf (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) This function computes the probability @math{p(k)} of obtaining @var{k} from a Pascal distribution with parameters @var{p} and @var{n}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-pascal.tex} @end tex @deftypefun double gsl_cdf_pascal_P (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) @deftypefunx double gsl_cdf_pascal_Q (unsigned int @var{k}, double @var{p}, unsigned int @var{n}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the Pascal distribution with parameters @var{p} and @var{n}. @end deftypefun @page @node The Geometric Distribution @section The Geometric Distribution @deftypefun {unsigned int} gsl_ran_geometric (const gsl_rng * @var{r}, double @var{p}) @cindex Geometric random variates This function returns a random integer from the geometric distribution, the number of independent trials with probability @var{p} until the first success. The probability distribution for geometric variates is, @tex \beforedisplay $$ p(k) = p (1-p)^{k-1} $$ \afterdisplay @end tex @ifinfo @example p(k) = p (1-p)^(k-1) @end example @end ifinfo @noindent for @c{$k \ge 1$} @math{k >= 1}. Note that the distribution begins with @math{k=1} with this definition. There is another convention in which the exponent @math{k-1} is replaced by @math{k}. @end deftypefun @deftypefun double gsl_ran_geometric_pdf (unsigned int @var{k}, double @var{p}) This function computes the probability @math{p(k)} of obtaining @var{k} from a geometric distribution with probability parameter @var{p}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-geometric.tex} @end tex @deftypefun double gsl_cdf_geometric_P (unsigned int @var{k}, double @var{p}) @deftypefunx double gsl_cdf_geometric_Q (unsigned int @var{k}, double @var{p}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the geometric distribution with parameter @var{p}. @end deftypefun @page @node The Hypergeometric Distribution @section The Hypergeometric Distribution @cindex hypergeometric random variates @deftypefun {unsigned int} gsl_ran_hypergeometric (const gsl_rng * @var{r}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t}) @cindex Geometric random variates This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is, @tex \beforedisplay $$ p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t) $$ \afterdisplay @end tex @ifinfo @example p(k) = C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t) @end example @end ifinfo @noindent where @math{C(a,b) = a!/(b!(a-b)!)} and @c{$t \leq n_1 + n_2$} @math{t <= n_1 + n_2}. The domain of @math{k} is @c{$\hbox{max}(0,t-n_2), \ldots, \hbox{min}(t,n_1)$} @math{max(0,t-n_2), ..., min(t,n_1)}. If a population contains @math{n_1} elements of ``type 1'' and @math{n_2} elements of ``type 2'' then the hypergeometric distribution gives the probability of obtaining @math{k} elements of ``type 1'' in @math{t} samples from the population without replacement. @end deftypefun @deftypefun double gsl_ran_hypergeometric_pdf (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t}) This function computes the probability @math{p(k)} of obtaining @var{k} from a hypergeometric distribution with parameters @var{n1}, @var{n2}, @var{t}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-hypergeometric.tex} @end tex @deftypefun double gsl_cdf_hypergeometric_P (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t}) @deftypefunx double gsl_cdf_hypergeometric_Q (unsigned int @var{k}, unsigned int @var{n1}, unsigned int @var{n2}, unsigned int @var{t}) These functions compute the cumulative distribution functions @math{P(k)}, @math{Q(k)} for the hypergeometric distribution with parameters @var{n1}, @var{n2} and @var{t}. @end deftypefun @page @node The Logarithmic Distribution @section The Logarithmic Distribution @deftypefun {unsigned int} gsl_ran_logarithmic (const gsl_rng * @var{r}, double @var{p}) @cindex Logarithmic random variates This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is, @tex \beforedisplay $$ p(k) = {-1 \over \log(1-p)} {\left( p^k \over k \right)} $$ \afterdisplay @end tex @ifinfo @example p(k) = @{-1 \over \log(1-p)@} @{(p^k \over k)@} @end example @end ifinfo @noindent for @c{$k \ge 1$} @math{k >= 1}. @end deftypefun @deftypefun double gsl_ran_logarithmic_pdf (unsigned int @var{k}, double @var{p}) This function computes the probability @math{p(k)} of obtaining @var{k} from a logarithmic distribution with probability parameter @var{p}, using the formula given above. @end deftypefun @sp 1 @tex \centerline{\input rand-logarithmic.tex} @end tex @page @node Shuffling and Sampling @section Shuffling and Sampling The following functions allow the shuffling and sampling of a set of objects. The algorithms rely on a random number generator as a source of randomness and a poor quality generator can lead to correlations in the output. In particular it is important to avoid generators with a short period. For more information see Knuth, v2, 3rd ed, Section 3.4.2, ``Random Sampling and Shuffling''. @deftypefun void gsl_ran_shuffle (const gsl_rng * @var{r}, void * @var{base}, size_t @var{n}, size_t @var{size}) This function randomly shuffles the order of @var{n} objects, each of size @var{size}, stored in the array @var{base}[0..@var{n}-1]. The output of the random number generator @var{r} is used to produce the permutation. The algorithm generates all possible @math{n!} permutations with equal probability, assuming a perfect source of random numbers. The following code shows how to shuffle the numbers from 0 to 51, @example int a[52]; for (i = 0; i < 52; i++) @{ a[i] = i; @} gsl_ran_shuffle (r, a, 52, sizeof (int)); @end example @end deftypefun @deftypefun int gsl_ran_choose (const gsl_rng * @var{r}, void * @var{dest}, size_t @var{k}, void * @var{src}, size_t @var{n}, size_t @var{size}) This function fills the array @var{dest}[k] with @var{k} objects taken randomly from the @var{n} elements of the array @var{src}[0..@var{n}-1]. The objects are each of size @var{size}. The output of the random number generator @var{r} is used to make the selection. The algorithm ensures all possible samples are equally likely, assuming a perfect source of randomness. The objects are sampled @emph{without} replacement, thus each object can only appear once in @var{dest}[k]. It is required that @var{k} be less than or equal to @code{n}. The objects in @var{dest} will be in the same relative order as those in @var{src}. You will need to call @code{gsl_ran_shuffle(r, dest, n, size)} if you want to randomize the order. The following code shows how to select a random sample of three unique numbers from the set 0 to 99, @example double a[3], b[100]; for (i = 0; i < 100; i++) @{ b[i] = (double) i; @} gsl_ran_choose (r, a, 3, b, 100, sizeof (double)); @end example @end deftypefun @deftypefun void gsl_ran_sample (const gsl_rng * @var{r}, void * @var{dest}, size_t @var{k}, void * @var{src}, size_t @var{n}, size_t @var{size}) This function is like @code{gsl_ran_choose} but samples @var{k} items from the original array of @var{n} items @var{src} with replacement, so the same object can appear more than once in the output sequence @var{dest}. There is no requirement that @var{k} be less than @var{n} in this case. @end deftypefun @node Random Number Distribution Examples @section Examples The following program demonstrates the use of a random number generator to produce variates from a distribution. It prints 10 samples from the Poisson distribution with a mean of 3. @example @verbatiminclude examples/randpoisson.c @end example @noindent If the library and header files are installed under @file{/usr/local} (the default location) then the program can be compiled with these options, @example $ gcc -Wall demo.c -lgsl -lgslcblas -lm @end example @noindent Here is the output of the program, @example $ ./a.out @verbatiminclude examples/randpoisson.out @end example @noindent The variates depend on the seed used by the generator. The seed for the default generator type @code{gsl_rng_default} can be changed with the @code{GSL_RNG_SEED} environment variable to produce a different stream of variates, @example $ GSL_RNG_SEED=123 ./a.out @verbatiminclude examples/randpoisson.2.out @end example @noindent The following program generates a random walk in two dimensions. @example @verbatiminclude examples/randwalk.c @end example @noindent Here is some output from the program, four 10-step random walks from the origin, @tex \centerline{\input random-walk.tex} @end tex The following program computes the upper and lower cumulative distribution functions for the standard normal distribution at @math{x=2}. @example @verbatiminclude examples/cdf.c @end example @noindent Here is the output of the program, @example @verbatiminclude examples/cdf.out @end example @node Random Number Distribution References and Further Reading @section References and Further Reading For an encyclopaedic coverage of the subject readers are advised to consult the book @cite{Non-Uniform Random Variate Generation} by Luc Devroye. It covers every imaginable distribution and provides hundreds of algorithms. @itemize @w{} @item Luc Devroye, @cite{Non-Uniform Random Variate Generation}, Springer-Verlag, ISBN 0-387-96305-7. Available online at @uref{http://cg.scs.carleton.ca/~luc/rnbookindex.html}. @end itemize @noindent The subject of random variate generation is also reviewed by Knuth, who describes algorithms for all the major distributions. @itemize @w{} @item Donald E. Knuth, @cite{The Art of Computer Programming: Seminumerical Algorithms} (Vol 2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842. @end itemize @noindent The Particle Data Group provides a short review of techniques for generating distributions of random numbers in the ``Monte Carlo'' section of its Annual Review of Particle Physics. @itemize @w{} @item @cite{Review of Particle Properties} R.M. Barnett et al., Physical Review D54, 1 (1996) @uref{http://pdg.lbl.gov/}. @end itemize @noindent The Review of Particle Physics is available online in postscript and pdf format. @noindent An overview of methods used to compute cumulative distribution functions can be found in @cite{Statistical Computing} by W.J. Kennedy and J.E. Gentle. Another general reference is @cite{Elements of Statistical Computing} by R.A. Thisted. @itemize @w{} @item William E. Kennedy and James E. Gentle, @cite{Statistical Computing} (1980), Marcel Dekker, ISBN 0-8247-6898-1. @end itemize @itemize @w{} @item Ronald A. Thisted, @cite{Elements of Statistical Computing} (1988), Chapman & Hall, ISBN 0-412-01371-1. @end itemize @noindent The cumulative distribution functions for the Gaussian distribution are based on the following papers, @itemize @w{} @item @cite{Rational Chebyshev Approximations Using Linear Equations}, W.J. Cody, W. Fraser, J.F. Hart. Numerische Mathematik 12, 242--251 (1968). @end itemize @itemize @w{} @item @cite{Rational Chebyshev Approximations for the Error Function}, W.J. Cody. Mathematics of Computation 23, n107, 631--637 (July 1969). @end itemize gsl-1.16/doc/cheb.eps0000664000252300025230000007327712171574312011351 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: cheb.eps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Wed Apr 25 18:48:58 2001 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 420 280 M 63 0 V 6549 0 R -63 0 V 336 280 M (0) Rshow 420 1198 M 63 0 V 6549 0 R -63 0 V -6633 0 R (0.2) Rshow 420 2117 M 63 0 V 6549 0 R -63 0 V -6633 0 R (0.4) Rshow 420 3035 M 63 0 V 6549 0 R -63 0 V -6633 0 R (0.6) Rshow 420 3954 M 63 0 V 6549 0 R -63 0 V -6633 0 R (0.8) Rshow 420 4872 M 63 0 V 6549 0 R -63 0 V -6633 0 R (1) Rshow 420 280 M 0 63 V 0 4529 R 0 -63 V 420 140 M (0) Cshow 1742 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.2) Cshow 3065 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.4) Cshow 4387 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.6) Cshow 5710 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.8) Cshow 7032 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (1) Cshow 1.000 UL LTb 420 280 M 6612 0 V 0 4592 V -6612 0 V 420 280 L 1.000 UL LT0 420 1428 M 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V currentpoint stroke M 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 2296 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V currentpoint stroke M 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 1.000 UL LT1 420 1331 M 7 20 V 6 19 V 7 17 V 6 16 V 7 15 V 7 14 V 6 12 V 7 12 V 7 10 V 6 10 V 7 8 V 6 8 V 7 7 V 7 6 V 6 5 V 7 5 V 6 3 V 7 4 V 7 2 V 6 2 V 7 1 V 6 1 V 7 1 V 7 -1 V 6 0 V 7 -1 V 7 -2 V 6 -1 V 7 -3 V 6 -2 V 7 -3 V 7 -3 V 6 -3 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 6 -5 V 7 -5 V 7 -4 V 6 -5 V 7 -5 V 7 -5 V 6 -5 V 7 -5 V 6 -5 V 7 -5 V 7 -5 V 6 -5 V 7 -5 V 6 -5 V 7 -5 V 7 -5 V 6 -5 V 7 -4 V 6 -5 V 7 -4 V 7 -5 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 6 -4 V 7 -4 V 7 -3 V 6 -4 V 7 -3 V 6 -3 V 7 -3 V 7 -2 V 6 -3 V 7 -3 V 7 -2 V 6 -2 V 7 -2 V 6 -2 V 7 -2 V 7 -1 V 6 -1 V 7 -2 V 6 -1 V 7 -1 V 7 0 V 6 -1 V 7 -1 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 7 1 V 6 0 V 7 1 V 6 1 V 7 1 V 7 1 V 6 1 V 7 2 V 6 1 V 7 2 V 7 2 V 6 2 V 7 1 V 6 3 V 7 2 V 7 2 V 6 2 V 7 3 V 7 3 V 6 2 V 7 3 V 6 3 V 7 3 V 7 3 V 6 3 V 7 3 V 6 3 V 7 4 V 7 3 V 6 3 V 7 4 V 7 3 V 6 4 V 7 3 V 6 4 V 7 4 V 7 3 V 6 4 V 7 4 V 6 4 V 7 4 V 7 3 V 6 4 V 7 4 V 6 4 V 7 4 V 7 4 V 6 3 V 7 4 V 7 4 V 6 4 V 7 4 V 6 3 V 7 4 V 7 4 V 6 3 V 7 4 V 6 4 V 7 3 V 7 4 V 6 3 V 7 4 V 6 3 V 7 3 V 7 4 V 6 3 V 7 3 V 7 3 V 6 3 V 7 3 V 6 3 V 7 3 V 7 3 V 6 3 V 7 2 V 6 3 V 7 2 V 7 3 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 1 V 7 2 V 6 1 V 7 2 V 7 1 V 6 1 V 7 1 V 6 1 V 7 1 V 7 1 V 6 0 V 7 1 V 7 1 V 6 0 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 -1 V 7 0 V 6 -1 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 -2 V 7 -1 V 6 -2 V 7 -1 V 7 -2 V 6 -2 V 7 -2 V 6 -2 V 7 -2 V 7 -3 V 6 -2 V 7 -2 V 6 -3 V 7 -2 V 7 -3 V 6 -3 V 7 -3 V 7 -2 V 6 -3 V 7 -3 V 6 -4 V 7 -3 V 7 -3 V 6 -3 V 7 -4 V 6 -3 V 7 -4 V 7 -3 V 6 -4 V 7 -4 V 6 -3 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -5 V 7 -4 V 6 -4 V 7 -4 V 7 -5 V 6 -4 V 7 -4 V 7 -5 V 6 -4 V 7 -5 V 6 -4 V 7 -4 V 7 -5 V 6 -4 V 7 -5 V 6 -4 V 7 -5 V 7 -4 V 6 -4 V 7 -5 V 6 -4 V 7 -5 V 7 -4 V 6 -4 V 7 -5 V 7 -4 V 6 -4 V 7 -5 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -4 V 6 -4 V 7 -4 V 7 -3 V 6 -4 V 7 -4 V 7 -3 V 6 -4 V 7 -3 V 6 -3 V 7 -4 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -2 V 6 -3 V 7 -3 V 6 -2 V 7 -3 V 7 -2 V 6 -2 V 7 -2 V 7 -3 V 6 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -1 V 6 -2 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 0 V 7 0 V 6 -1 V 7 0 V 7 0 V 6 0 V 7 0 V 6 1 V 7 0 V 7 1 V 6 1 V 7 0 V 6 1 V 7 2 V 7 1 V 6 1 V 7 2 V 7 2 V 6 1 V 7 2 V 6 2 V 7 3 V 7 2 V 6 3 V 7 2 V 6 3 V 7 3 V 7 3 V 6 3 V 7 4 V 6 3 V 7 4 V 7 4 V 6 4 V 7 4 V 7 4 V 6 5 V 7 4 V 6 5 V 7 5 V 7 5 V 6 5 V 7 5 V 6 6 V 7 5 V 7 6 V 6 6 V 7 6 V 7 6 V 6 6 V 7 7 V 6 6 V 7 7 V 7 7 V 6 7 V 7 7 V 6 8 V 7 7 V 7 8 V 6 8 V 7 7 V 6 8 V 7 9 V 7 8 V 6 8 V 7 9 V 7 9 V 6 9 V 7 9 V 6 9 V 7 9 V 7 9 V 6 10 V currentpoint stroke M 7 10 V 6 9 V 7 10 V 7 10 V 6 11 V 7 10 V 6 10 V 7 11 V 7 11 V 6 10 V 7 11 V 7 11 V 6 11 V 7 12 V 6 11 V 7 12 V 7 11 V 6 12 V 7 12 V 6 12 V 7 12 V 7 12 V 6 12 V 7 12 V 6 13 V 7 12 V 7 13 V 6 13 V 7 12 V 7 13 V 6 13 V 7 13 V 6 13 V 7 14 V 7 13 V 6 13 V 7 14 V 6 13 V 7 14 V 7 14 V 6 14 V 7 13 V 7 14 V 6 14 V 7 14 V 6 14 V 7 15 V 7 14 V 6 14 V 7 14 V 6 15 V 7 14 V 7 15 V 6 14 V 7 15 V 6 14 V 7 15 V 7 15 V 6 14 V 7 15 V 7 15 V 6 15 V 7 15 V 6 14 V 7 15 V 7 15 V 6 15 V 7 15 V 6 15 V 7 15 V 7 15 V 6 15 V 7 15 V 6 15 V 7 15 V 7 15 V 6 15 V 7 15 V 7 15 V 6 15 V 7 15 V 6 15 V 7 15 V 7 15 V 6 15 V 7 15 V 6 15 V 7 15 V 7 14 V 6 15 V 7 15 V 6 15 V 7 15 V 7 14 V 6 15 V 7 15 V 7 14 V 6 15 V 7 14 V 6 15 V 7 14 V 7 14 V 6 15 V 7 14 V 6 14 V 7 14 V 7 14 V 6 14 V 7 14 V 7 14 V 6 14 V 7 14 V 6 13 V 7 14 V 7 14 V 6 13 V 7 14 V 6 13 V 7 13 V 7 13 V 6 13 V 7 13 V 6 13 V 7 13 V 7 13 V 6 13 V 7 12 V 7 13 V 6 12 V 7 12 V 6 13 V 7 12 V 7 12 V 6 12 V 7 11 V 6 12 V 7 12 V 7 11 V 6 12 V 7 11 V 6 11 V 7 11 V 7 11 V 6 11 V 7 11 V 7 10 V 6 11 V 7 10 V 6 11 V 7 10 V 7 10 V 6 10 V 7 10 V 6 9 V 7 10 V 7 9 V 6 10 V 7 9 V 6 9 V 7 9 V 7 9 V 6 9 V 7 8 V 7 9 V 6 8 V 7 8 V 6 8 V 7 8 V 7 8 V 6 8 V 7 8 V 6 7 V 7 7 V 7 8 V 6 7 V 7 7 V 7 7 V 6 6 V 7 7 V 6 6 V 7 7 V 7 6 V 6 6 V 7 6 V 6 6 V 7 5 V 7 6 V 6 5 V 7 6 V 6 5 V 7 5 V 7 5 V 6 4 V 7 5 V 7 5 V 6 4 V 7 4 V 6 5 V 7 4 V 7 3 V 6 4 V 7 4 V 6 3 V 7 4 V 7 3 V 6 3 V 7 3 V 6 3 V 7 3 V 7 3 V 6 2 V 7 3 V 7 2 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 1 V 6 2 V 7 1 V 7 1 V 6 1 V 7 1 V 7 1 V 6 1 V 7 1 V 6 0 V 7 1 V 7 0 V 6 1 V 7 0 V 6 0 V 7 0 V 7 0 V 6 0 V 7 0 V 6 -1 V 7 0 V 7 -1 V 6 0 V 7 -1 V 7 -1 V 6 -1 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 -2 V 6 -1 V 7 -1 V 7 -2 V 6 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -1 V 6 -2 V 7 -2 V 7 -2 V 6 -2 V 7 -3 V 6 -2 V 7 -2 V 7 -2 V 6 -3 V 7 -2 V 6 -2 V 7 -3 V 7 -2 V 6 -3 V 7 -3 V 6 -2 V 7 -3 V 7 -3 V 6 -2 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 6 -2 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -4 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -3 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -2 V 6 -3 V 7 -3 V 7 -3 V 6 -3 V 7 -2 V 6 -3 V 7 -3 V 7 -2 V 6 -3 V 7 -2 V 7 -3 V 6 -2 V 7 -3 V 6 -2 V 7 -2 V 7 -3 V 6 -2 V 7 -2 V 6 -2 V 7 -2 V 7 -3 V 6 -2 V 7 -2 V 6 -2 V 7 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -1 V 7 -2 V 6 -1 V 7 -2 V 7 -1 V 6 -2 V 7 -1 V 6 -1 V 7 -2 V 7 -1 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 -1 V 6 -1 V 7 0 V 7 -1 V 6 -1 V 7 0 V 6 -1 V 7 -1 V 7 0 V 6 0 V 7 -1 V 6 0 V 7 0 V 7 0 V 6 0 V 7 -1 V 7 0 V 6 1 V 7 0 V 6 0 V 7 0 V 7 0 V 6 1 V 7 0 V 6 0 V 7 1 V 7 1 V 6 0 V 7 1 V 6 0 V 7 1 V 7 1 V 6 1 V 7 1 V 7 1 V 6 1 V 7 1 V 6 1 V 7 1 V currentpoint stroke M 7 1 V 6 1 V 7 1 V 6 2 V 7 1 V 7 1 V 6 2 V 7 1 V 6 2 V 7 1 V 7 2 V 6 1 V 7 2 V 7 2 V 6 1 V 7 2 V 6 2 V 7 2 V 7 1 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 2 V 7 1 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 2 V 6 2 V 7 2 V 7 3 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 2 V 6 2 V 7 2 V 7 1 V 6 2 V 7 2 V 6 2 V 7 2 V 7 2 V 6 2 V 7 1 V 6 2 V 7 2 V 7 2 V 6 1 V 7 2 V 7 2 V 6 1 V 7 2 V 6 1 V 7 2 V 7 1 V 6 1 V 7 2 V 6 1 V 7 1 V 7 2 V 6 1 V 7 1 V 7 1 V 6 1 V 7 1 V 6 1 V 7 1 V 7 0 V 6 1 V 7 1 V 6 1 V 7 0 V 7 1 V 6 0 V 7 1 V 6 0 V 7 0 V 7 0 V 6 1 V 7 0 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 -1 V 6 0 V 7 0 V 6 -1 V 7 0 V 7 -1 V 6 0 V 7 -1 V 6 -1 V 7 -1 V 7 0 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 -2 V 6 -1 V 7 -1 V 7 -1 V 6 -2 V 7 -1 V 6 -2 V 7 -1 V 7 -2 V 6 -1 V 7 -2 V 6 -2 V 7 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -2 V 7 -2 V 6 -2 V 7 -3 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -2 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -2 V 7 -2 V 6 -2 V 7 -2 V 7 -2 V 6 -2 V 7 -2 V 6 -1 V 7 -2 V 7 -2 V 6 -1 V 7 -2 V 7 -1 V 6 -1 V 7 -2 V 6 -1 V 7 -1 V 7 -1 V 6 -1 V 7 0 V 6 -1 V 7 -1 V 7 0 V 6 0 V 7 0 V 6 0 V 7 0 V 7 1 V 6 0 V 7 1 V 7 1 V 6 1 V 7 1 V 6 2 V 7 2 V 7 1 V 6 3 V 7 2 V 6 3 V 7 3 V 7 3 V 6 3 V 7 4 V 6 4 V 7 4 V 7 5 V 6 5 V 7 5 V 7 6 V 6 6 V 7 6 V 6 7 V 7 7 V 1.000 UL LT2 420 1457 M 7 -54 V 6 0 V 7 19 V 6 19 V 7 13 V 7 3 V 6 -4 V 7 -11 V 7 -12 V 6 -12 V 7 -11 V 6 -6 V 7 -3 V 7 1 V 6 5 V 7 7 V 6 9 V 7 9 V 7 9 V 6 8 V 7 6 V 6 5 V 7 1 V 7 0 V 6 -2 V 7 -5 V 7 -6 V 6 -6 V 7 -8 V 6 -7 V 7 -7 V 7 -7 V 6 -5 V 7 -4 V 6 -3 V 7 -1 V 7 0 V 6 2 V 7 3 V 6 4 V 7 5 V 7 6 V 6 6 V 7 7 V 7 6 V 6 6 V 7 5 V 6 5 V 7 4 V 7 2 V 6 2 V 7 1 V 6 -1 V 7 -2 V 7 -2 V 6 -4 V 7 -4 V 6 -5 V 7 -5 V 7 -6 V 6 -5 V 7 -6 V 7 -6 V 6 -5 V 7 -4 V 6 -4 V 7 -3 V 7 -3 V 6 -1 V 7 -1 V 6 0 V 7 1 V 7 2 V 6 3 V 7 3 V 7 4 V 6 4 V 7 5 V 6 5 V 7 5 V 7 6 V 6 5 V 7 5 V 6 4 V 7 5 V 7 3 V 6 4 V 7 2 V 6 2 V 7 1 V 7 1 V 6 0 V 7 -1 V 7 -2 V 6 -2 V 7 -3 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -5 V 6 -5 V 7 -5 V 7 -5 V 6 -5 V 7 -5 V 6 -4 V 7 -4 V 7 -3 V 6 -3 V 7 -2 V 7 -2 V 6 -1 V 7 -1 V 6 0 V 7 1 V 7 1 V 6 2 V 7 2 V 6 3 V 7 4 V 7 3 V 6 5 V 7 4 V 7 5 V 6 4 V 7 5 V 6 5 V 7 5 V 7 5 V 6 4 V 7 4 V 6 4 V 7 3 V 7 3 V 6 3 V 7 1 V 6 2 V 7 1 V 7 0 V 6 0 V 7 -1 V 7 -2 V 6 -2 V 7 -2 V 6 -3 V 7 -3 V 7 -4 V 6 -4 V 7 -5 V 6 -4 V 7 -5 V 7 -5 V 6 -4 V 7 -5 V 6 -5 V 7 -5 V 7 -4 V 6 -4 V 7 -4 V 7 -3 V 6 -3 V 7 -3 V 6 -2 V 7 -2 V 7 -1 V 6 0 V 7 0 V 6 0 V 7 1 V 7 2 V 6 2 V 7 2 V 6 3 V 7 3 V 7 4 V 6 4 V 7 4 V 7 5 V 6 5 V 7 5 V 6 5 V 7 5 V 7 4 V 6 5 V 7 5 V 6 4 V 7 5 V 7 4 V 6 3 V 7 3 V 7 3 V 6 3 V 7 1 V 6 2 V 7 1 V 7 0 V 6 0 V 7 -1 V 6 -1 V 7 -2 V 7 -2 V 6 -2 V 7 -3 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -5 V 7 -5 V 6 -5 V 7 -5 V 6 -5 V 7 -6 V 7 -5 V 6 -5 V 7 -5 V 6 -4 V 7 -5 V 7 -4 V 6 -4 V 7 -3 V 6 -3 V 7 -3 V 7 -2 V 6 -1 V 7 -1 V 7 -1 V 6 0 V 7 0 V 6 1 V 7 2 V 7 2 V 6 2 V 7 3 V 6 4 V 7 3 V 7 5 V 6 4 V 7 5 V 6 5 V 7 5 V 7 6 V 6 5 V 7 6 V 7 5 V 6 6 V 7 6 V 6 5 V 7 5 V 7 5 V 6 5 V 7 4 V 6 4 V 7 4 V 7 3 V 6 3 V 7 2 V 7 1 V 6 2 V 7 0 V 6 0 V 7 0 V 7 -1 V 6 -2 V 7 -2 V 6 -2 V 7 -4 V 7 -3 V 6 -4 V 7 -5 V 6 -4 V 7 -6 V 7 -5 V 6 -6 V 7 -6 V 7 -6 V 6 -6 V 7 -6 V 6 -7 V 7 -6 V 7 -6 V 6 -6 V 7 -6 V 6 -5 V 7 -6 V 7 -5 V 6 -4 V 7 -4 V 6 -4 V 7 -3 V 7 -3 V 6 -2 V 7 -2 V 7 -1 V 6 0 V 7 0 V 6 1 V 7 2 V 7 2 V 6 2 V 7 3 V 6 4 V 7 4 V 7 5 V 6 5 V 7 6 V 6 6 V 7 6 V 7 7 V 6 7 V 7 7 V 7 7 V 6 8 V 7 7 V 6 7 V 7 8 V 7 7 V 6 6 V 7 7 V 6 6 V 7 6 V 7 6 V 6 5 V 7 5 V 7 4 V 6 3 V 7 3 V 6 2 V 7 2 V 7 1 V 6 0 V 7 0 V 6 -1 V 7 -2 V 7 -3 V 6 -3 V 7 -4 V 6 -4 V 7 -6 V 7 -5 V 6 -7 V 7 -7 V 7 -7 V 6 -8 V 7 -8 V 6 -8 V 7 -9 V 7 -9 V 6 -9 V 7 -9 V 6 -9 V 7 -9 V 7 -9 V 6 -9 V 7 -8 V 6 -8 V 7 -8 V 7 -7 V 6 -7 V 7 -6 V 7 -6 V 6 -5 V 7 -4 V 6 -3 V 7 -3 V 7 -2 V 6 -1 V 7 0 V 6 1 V 7 1 V 7 3 V 6 3 V 7 4 V 7 6 V 6 6 V 7 6 V 6 8 V 7 8 V 7 9 V 6 10 V 7 10 V 6 11 V 7 11 V 7 11 V 6 12 V 7 12 V 6 12 V 7 13 V 7 12 V 6 12 V 7 12 V 7 12 V 6 12 V 7 11 V 6 10 V 7 10 V 7 9 V 6 9 V currentpoint stroke M 7 7 V 6 7 V 7 5 V 7 5 V 6 4 V 7 2 V 6 1 V 7 1 V 7 -2 V 6 -2 V 7 -4 V 7 -5 V 6 -6 V 7 -8 V 6 -9 V 7 -10 V 7 -11 V 6 -12 V 7 -14 V 6 -14 V 7 -16 V 7 -16 V 6 -18 V 7 -18 V 6 -18 V 7 -19 V 7 -20 V 6 -20 V 7 -20 V 7 -20 V 6 -20 V 7 -20 V 6 -19 V 7 -19 V 7 -18 V 6 -18 V 7 -17 V 6 -15 V 7 -15 V 7 -13 V 6 -12 V 7 -10 V 7 -9 V 6 -7 V 7 -4 V 6 -3 V 7 -1 V 7 2 V 6 4 V 7 6 V 6 9 V 7 12 V 7 14 V 6 16 V 7 20 V 6 22 V 7 25 V 7 28 V 6 30 V 7 33 V 7 36 V 6 38 V 7 42 V 6 43 V 7 46 V 7 49 V 6 51 V 7 53 V 6 55 V 7 58 V 7 59 V 6 61 V 7 62 V 6 64 V 7 66 V 7 66 V 6 68 V 7 68 V 7 69 V 6 69 V 7 70 V 6 70 V 7 70 V 7 70 V 6 69 V 7 69 V 6 68 V 7 67 V 7 66 V 6 65 V 7 63 V 6 62 V 7 60 V 7 59 V 6 56 V 7 55 V 7 52 V 6 50 V 7 48 V 6 45 V 7 43 V 7 40 V 6 38 V 7 35 V 6 32 V 7 29 V 7 27 V 6 24 V 7 22 V 7 18 V 6 16 V 7 14 V 6 10 V 7 9 V 7 5 V 6 4 V 7 1 V 6 -1 V 7 -3 V 7 -6 V 6 -7 V 7 -8 V 6 -11 V 7 -12 V 7 -13 V 6 -15 V 7 -16 V 7 -16 V 6 -18 V 7 -18 V 6 -19 V 7 -19 V 7 -20 V 6 -20 V 7 -19 V 6 -20 V 7 -20 V 7 -19 V 6 -19 V 7 -18 V 6 -18 V 7 -17 V 7 -16 V 6 -15 V 7 -15 V 7 -13 V 6 -12 V 7 -11 V 6 -10 V 7 -9 V 7 -7 V 6 -7 V 7 -5 V 6 -4 V 7 -2 V 7 -1 V 6 0 V 7 1 V 6 2 V 7 3 V 7 5 V 6 5 V 7 6 V 7 8 V 6 8 V 7 9 V 6 9 V 7 10 V 7 11 V 6 11 V 7 11 V 6 12 V 7 12 V 7 12 V 6 12 V 7 12 V 7 12 V 6 12 V 7 11 V 6 11 V 7 11 V 7 10 V 6 10 V 7 9 V 6 8 V 7 8 V 7 7 V 6 6 V 7 6 V 6 4 V 7 4 V 7 3 V 6 2 V 7 2 V 7 0 V 6 0 V 7 -2 V 6 -2 V 7 -3 V 7 -3 V 6 -4 V 7 -5 V 6 -6 V 7 -6 V 7 -7 V 6 -7 V 7 -7 V 6 -8 V 7 -8 V 7 -9 V 6 -9 V 7 -8 V 7 -9 V 6 -9 V 7 -9 V 6 -8 V 7 -9 V 7 -8 V 6 -8 V 7 -7 V 6 -7 V 7 -7 V 7 -6 V 6 -6 V 7 -5 V 7 -5 V 6 -4 V 7 -3 V 6 -3 V 7 -2 V 7 -1 V 6 -1 V 7 0 V 6 0 V 7 2 V 7 2 V 6 2 V 7 3 V 6 4 V 7 4 V 7 4 V 6 5 V 7 6 V 7 6 V 6 6 V 7 6 V 6 7 V 7 7 V 7 7 V 6 7 V 7 7 V 6 7 V 7 7 V 7 7 V 6 6 V 7 7 V 6 6 V 7 6 V 7 5 V 6 5 V 7 5 V 7 4 V 6 4 V 7 3 V 6 3 V 7 2 V 7 1 V 6 1 V 7 1 V 6 0 V 7 -1 V 7 -1 V 6 -2 V 7 -2 V 6 -3 V 7 -3 V 7 -4 V 6 -4 V 7 -4 V 7 -5 V 6 -5 V 7 -5 V 6 -6 V 7 -6 V 7 -6 V 6 -6 V 7 -6 V 6 -6 V 7 -5 V 7 -6 V 6 -6 V 7 -5 V 7 -6 V 6 -5 V 7 -4 V 6 -5 V 7 -4 V 7 -3 V 6 -3 V 7 -3 V 6 -2 V 7 -2 V 7 -1 V 6 -1 V 7 0 V 6 0 V 7 1 V 7 1 V 6 2 V 7 2 V 7 3 V 6 3 V 7 3 V 6 4 V 7 4 V 7 4 V 6 5 V 7 5 V 6 5 V 7 5 V 7 5 V 6 5 V 7 6 V 6 5 V 7 5 V 7 5 V 6 5 V 7 5 V 7 4 V 6 4 V 7 4 V 6 3 V 7 4 V 7 2 V 6 2 V 7 2 V 6 2 V 7 1 V 7 0 V 6 0 V 7 -1 V 6 -1 V 7 -1 V 7 -2 V 6 -2 V 7 -3 V 7 -3 V 6 -3 V 7 -4 V 6 -4 V 7 -4 V 7 -5 V 6 -4 V 7 -5 V 6 -5 V 7 -5 V 7 -4 V 6 -5 V 7 -5 V 7 -4 V 6 -5 V 7 -4 V 6 -4 V 7 -4 V 7 -3 V 6 -3 V 7 -2 V 6 -3 V 7 -1 V 7 -2 V 6 0 V 7 -1 V 6 0 V 7 1 V 7 1 V 6 1 V 7 2 V 7 2 V 6 3 V 7 3 V 6 3 V 7 3 V 7 4 V 6 4 V 7 5 V 6 4 V 7 4 V 7 5 V 6 5 V 7 4 V 6 5 V 7 4 V 7 4 V 6 4 V 7 4 V 7 3 V 6 3 V 7 3 V 6 2 V 7 2 V currentpoint stroke M 7 1 V 6 2 V 7 0 V 6 0 V 7 0 V 7 -1 V 6 -1 V 7 -2 V 6 -2 V 7 -2 V 7 -3 V 6 -3 V 7 -4 V 7 -3 V 6 -4 V 7 -4 V 6 -5 V 7 -4 V 7 -4 V 6 -5 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -4 V 7 -3 V 7 -3 V 6 -3 V 7 -2 V 6 -2 V 7 -1 V 7 -1 V 6 -1 V 7 0 V 6 1 V 7 1 V 7 1 V 6 2 V 7 3 V 6 2 V 7 3 V 7 4 V 6 3 V 7 4 V 7 4 V 6 5 V 7 4 V 6 4 V 7 5 V 7 4 V 6 4 V 7 4 V 6 3 V 7 4 V 7 3 V 6 2 V 7 3 V 6 1 V 7 2 V 7 1 V 6 0 V 7 0 V 7 -1 V 6 -1 V 7 -2 V 6 -2 V 7 -3 V 7 -3 V 6 -3 V 7 -4 V 6 -4 V 7 -4 V 7 -4 V 6 -5 V 7 -4 V 7 -4 V 6 -5 V 7 -4 V 6 -3 V 7 -4 V 7 -3 V 6 -3 V 7 -2 V 6 -2 V 7 -1 V 7 0 V 6 0 V 7 0 V 6 1 V 7 2 V 7 2 V 6 3 V 7 3 V 7 3 V 6 4 V 7 4 V 6 5 V 7 4 V 7 5 V 6 4 V 7 4 V 6 5 V 7 4 V 7 3 V 6 3 V 7 3 V 6 2 V 7 2 V 7 0 V 6 1 V 7 -1 V 7 -1 V 6 -2 V 7 -2 V 6 -3 V 7 -3 V 7 -4 V 6 -4 V 7 -5 V 6 -5 V 7 -5 V 7 -4 V 6 -5 V 7 -4 V 6 -4 V 7 -4 V 7 -3 V 6 -2 V 7 -2 V 7 -1 V 6 0 V 7 1 V 6 1 V 7 2 V 7 3 V 6 4 V 7 4 V 6 5 V 7 4 V 7 6 V 6 5 V 7 5 V 7 5 V 6 4 V 7 4 V 6 3 V 7 3 V 7 1 V 6 1 V 7 -1 V 6 -1 V 7 -3 V 7 -3 V 6 -4 V 7 -5 V 6 -6 V 7 -6 V 7 -5 V 6 -6 V 7 -6 V 7 -4 V 6 -4 V 7 -3 V 6 -2 V 7 0 V 7 1 V 6 3 V 7 4 V 6 5 V 7 5 V 7 7 V 6 7 V 7 7 V 6 6 V 7 5 V 7 4 V 6 3 V 7 0 V 7 -2 V 6 -4 V 7 -5 V 6 -8 V 7 -8 V 7 -9 V 6 -8 V 7 -6 V 6 -4 V 7 -2 V 7 3 V 6 6 V 7 9 V 6 12 V 7 11 V 7 10 V 6 4 V 7 -3 V 7 -12 V 6 -18 V 7 -17 V 6 0 V 7 50 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/rand-exppow.tex0000664000252300025230000005374712171574312012725 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-exppow.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-exppow.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1078 R -31 0 V 31 1079 R -31 0 V 31 1078 R -31 0 V 31 1078 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 1 V 19 0 V 20 0 V 19 0 V 20 1 V 19 0 V 19 1 V 20 1 V 19 1 V 20 2 V 19 2 V 20 2 V 19 3 V 19 4 V 20 4 V 19 6 V 20 6 V 19 8 V 20 9 V 19 11 V 19 13 V 20 14 V 19 17 V 20 20 V 3052 780 L 20 26 V 19 29 V 19 33 V 20 36 V 19 41 V 20 45 V 19 50 V 20 54 V 19 59 V 19 64 V 20 68 V 19 73 V 20 78 V 19 81 V 20 86 V 19 90 V 19 93 V 20 96 V 19 99 V 20 100 V 19 102 V 20 102 V 19 103 V 19 102 V 20 101 V 19 99 V 20 96 V 19 93 V 20 90 V 19 85 V 19 81 V 20 75 V 19 70 V 20 64 V 19 59 V 20 52 V 19 46 V 19 40 V 20 34 V 19 28 V 20 22 V 19 18 V 20 12 V 19 8 V 19 4 V 20 2 V 19 0 V 20 -2 V 19 -4 V 19 -8 V 20 -12 V 19 -18 V 20 -22 V 19 -28 V 20 -34 V 19 -40 V 19 -46 V 20 -52 V 19 -59 V 20 -64 V 19 -70 V 20 -75 V 19 -81 V 19 -85 V 20 -90 V 19 -93 V 20 -96 V 19 -99 V 20 -101 V 19 -102 V 19 -103 V 20 -102 V 19 -102 V 20 -100 V 19 -99 V 20 -96 V 19 -93 V 19 -90 V 20 -86 V 19 -81 V 20 -78 V 19 -73 V 20 -68 V 19 -64 V 19 -59 V 20 -54 V 19 -50 V 20 -45 V 19 -41 V 20 -36 V 19 -33 V 19 -29 V 20 -26 V 19 -23 V 20 -20 V 19 -17 V 20 -14 V 19 -13 V 19 -11 V 20 -9 V 19 -8 V 20 -6 V 19 -6 V 20 -4 V 5092 645 L 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 775 M 19 1 V 20 1 V 19 1 V 20 1 V 19 2 V 20 1 V 19 1 V 19 1 V 20 1 V 19 1 V 20 2 V 19 1 V 20 1 V 19 1 V 19 2 V 20 1 V 19 1 V 20 2 V 19 1 V 20 1 V 19 2 V 19 1 V 20 1 V 19 2 V 20 1 V 19 2 V 20 1 V 19 2 V 19 1 V 20 2 V 19 1 V 20 2 V 19 1 V 20 2 V 19 1 V 19 2 V 20 2 V 19 1 V 20 2 V 19 2 V 20 2 V 19 1 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 1 V 19 2 V 20 2 V 19 3 V 20 2 V 19 2 V 20 2 V 19 2 V 19 2 V 20 2 V 19 3 V 20 2 V 19 2 V 20 3 V 19 2 V 19 2 V 20 3 V 19 2 V 20 3 V 19 3 V 20 2 V 19 3 V 19 3 V 20 2 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 3 V 20 3 V 19 4 V 19 3 V 20 4 V 19 3 V 20 4 V 19 4 V 20 4 V 19 4 V 19 4 V 20 4 V 19 4 V 20 4 V 19 5 V 20 4 V 19 5 V 19 4 V 20 5 V 19 5 V 20 5 V 3052 1018 L 20 6 V 19 5 V 19 5 V 20 6 V 19 6 V 20 6 V 19 6 V 20 6 V 19 7 V 19 6 V 20 7 V 19 7 V 20 8 V 19 7 V 20 8 V 19 8 V 19 8 V 20 9 V 19 9 V 20 9 V 19 9 V 20 10 V 19 10 V 19 11 V 20 11 V 19 12 V 20 12 V 19 13 V 20 13 V 19 14 V 19 15 V 20 16 V 19 16 V 20 18 V 19 19 V 20 20 V 19 22 V 19 24 V 20 26 V 19 29 V 20 32 V 19 36 V 20 43 V 19 52 V 19 68 V 20 107 V 19 0 V 20 -107 V 19 -68 V 19 -52 V 20 -43 V 19 -36 V 20 -32 V 19 -29 V 20 -26 V 19 -24 V 19 -22 V 20 -20 V 19 -19 V 20 -18 V 19 -16 V 20 -16 V 19 -15 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 20 -11 V 19 -11 V 19 -10 V 20 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 5092 964 L 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=1, b=0.5$}}% \put(5957,4781){\rjust{\strut{}$a=1, b=2.5$}}% \put(3955,5244){\cjust{\strut{}Exponential Power Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4944){\rjust{\strut{} 0.8}}% \put(900,3866){\rjust{\strut{} 0.6}}% \put(900,2788){\rjust{\strut{} 0.4}}% \put(900,1709){\rjust{\strut{} 0.2}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/fft-complex-radix2.eps0000664000252300025230000002000112171574312014034 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 410 302 %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 672 1163 M 6297 0 V 672 211 M 0 4758 V LTb 672 211 M 63 0 V 6234 0 R -63 0 V 588 211 M (-0.5) Rshow 672 1163 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0) Rshow 672 2114 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.5) Rshow 672 3066 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1) Rshow 672 4017 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1.5) Rshow 672 4969 M 63 0 V 6234 0 R -63 0 V -6318 0 R (2) Rshow 672 211 M 0 63 V 0 4695 R 0 -63 V 672 71 M (0) Cshow 1656 211 M 0 63 V 0 4695 R 0 -63 V 1656 71 M (20) Cshow 2640 211 M 0 63 V 0 4695 R 0 -63 V 2640 71 M (40) Cshow 3624 211 M 0 63 V 0 4695 R 0 -63 V 3624 71 M (60) Cshow 4608 211 M 0 63 V 0 4695 R 0 -63 V 4608 71 M (80) Cshow 5592 211 M 0 63 V 0 4695 R 0 -63 V 5592 71 M (100) Cshow 6575 211 M 0 63 V 0 4695 R 0 -63 V 6575 71 M (120) Cshow 672 211 M 6297 0 V 0 4758 V -6297 0 V 672 211 L LT0 672 3066 M 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 -1903 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 49 1903 V 49 0 V 49 0 V 50 0 V 49 0 V 49 0 V 49 0 V 49 0 V 50 0 V 49 0 V 672 4695 M 49 -154 V 49 -438 V 50 -654 V 49 -773 V 49 -778 V 49 -679 V 49 -499 V 50 -274 V 49 -49 V 49 140 V 49 262 V 49 307 V 50 274 V 49 184 V 49 63 V 49 -58 V 49 -151 V 50 -198 V 49 -192 V 49 -141 V 49 -61 V 49 29 V 49 102 V 50 147 V 49 150 V 49 118 V 49 57 V 49 -13 V 50 -76 V 49 -117 V 49 -125 V 49 -104 V 49 -55 V 50 3 V 49 60 V 49 97 V 49 110 V 49 94 V 50 55 V 49 3 V 49 -48 V 49 -84 V 49 -99 V 50 -88 V 49 -55 V 49 -8 V 49 39 V 49 75 V 50 92 V 49 84 V 49 56 V 49 13 V 49 -33 V 50 -68 V 49 -87 V 49 -83 V 49 -57 V 49 -17 V 50 26 V 49 64 V 49 84 V 49 82 V 49 60 V 50 22 V 49 -22 V 49 -60 V 49 -82 V 49 -84 V 49 -64 V 50 -26 V 49 17 V 49 57 V 49 83 V 49 87 V 50 68 V 49 33 V 49 -13 V 49 -56 V 49 -84 V 50 -92 V 49 -75 V 49 -39 V 49 8 V 49 55 V 50 88 V 49 99 V 49 84 V 49 48 V 49 -3 V 50 -55 V 49 -94 V 49 -110 V 49 -97 V 49 -60 V 50 -3 V 49 55 V 49 104 V 49 125 V 49 117 V 50 76 V 49 13 V 49 -57 V 49 -118 V 49 -150 V 50 -147 V 49 -102 V 49 -29 V 49 61 V 49 141 V 49 192 V 50 198 V 49 151 V 49 58 V 49 -63 V 49 -184 V 50 -274 V 49 -307 V 49 -262 V 49 -140 V 49 49 V 50 274 V 49 499 V 49 679 V 49 778 V 49 773 V 50 654 V 49 438 V 672 3066 D 721 3066 D 770 3066 D 820 3066 D 869 3066 D 918 3066 D 967 3066 D 1016 3066 D 1066 3066 D 1115 3066 D 1164 3066 D 1213 1163 D 1262 1163 D 1312 1163 D 1361 1163 D 1410 1163 D 1459 1163 D 1508 1163 D 1558 1163 D 1607 1163 D 1656 1163 D 1705 1163 D 1754 1163 D 1803 1163 D 1853 1163 D 1902 1163 D 1951 1163 D 2000 1163 D 2049 1163 D 2099 1163 D 2148 1163 D 2197 1163 D 2246 1163 D 2295 1163 D 2345 1163 D 2394 1163 D 2443 1163 D 2492 1163 D 2541 1163 D 2591 1163 D 2640 1163 D 2689 1163 D 2738 1163 D 2787 1163 D 2837 1163 D 2886 1163 D 2935 1163 D 2984 1163 D 3033 1163 D 3083 1163 D 3132 1163 D 3181 1163 D 3230 1163 D 3279 1163 D 3329 1163 D 3378 1163 D 3427 1163 D 3476 1163 D 3525 1163 D 3575 1163 D 3624 1163 D 3673 1163 D 3722 1163 D 3771 1163 D 3821 1163 D 3870 1163 D 3919 1163 D 3968 1163 D 4017 1163 D 4066 1163 D 4116 1163 D 4165 1163 D 4214 1163 D 4263 1163 D 4312 1163 D 4362 1163 D 4411 1163 D 4460 1163 D 4509 1163 D 4558 1163 D 4608 1163 D 4657 1163 D 4706 1163 D 4755 1163 D 4804 1163 D 4854 1163 D 4903 1163 D 4952 1163 D 5001 1163 D 5050 1163 D 5100 1163 D 5149 1163 D 5198 1163 D 5247 1163 D 5296 1163 D 5346 1163 D 5395 1163 D 5444 1163 D 5493 1163 D 5542 1163 D 5592 1163 D 5641 1163 D 5690 1163 D 5739 1163 D 5788 1163 D 5838 1163 D 5887 1163 D 5936 1163 D 5985 1163 D 6034 1163 D 6083 1163 D 6133 1163 D 6182 1163 D 6231 1163 D 6280 1163 D 6329 1163 D 6379 1163 D 6428 1163 D 6477 3066 D 6526 3066 D 6575 3066 D 6625 3066 D 6674 3066 D 6723 3066 D 6772 3066 D 6821 3066 D 6871 3066 D 6920 3066 D 672 4695 D 721 4541 D 770 4103 D 820 3449 D 869 2676 D 918 1898 D 967 1219 D 1016 720 D 1066 446 D 1115 397 D 1164 537 D 1213 799 D 1262 1106 D 1312 1380 D 1361 1564 D 1410 1627 D 1459 1569 D 1508 1418 D 1558 1220 D 1607 1028 D 1656 887 D 1705 826 D 1754 855 D 1803 957 D 1853 1104 D 1902 1254 D 1951 1372 D 2000 1429 D 2049 1416 D 2099 1340 D 2148 1223 D 2197 1098 D 2246 994 D 2295 939 D 2345 942 D 2394 1002 D 2443 1099 D 2492 1209 D 2541 1303 D 2591 1358 D 2640 1361 D 2689 1313 D 2738 1229 D 2787 1130 D 2837 1042 D 2886 987 D 2935 979 D 2984 1018 D 3033 1093 D 3083 1185 D 3132 1269 D 3181 1325 D 3230 1338 D 3279 1305 D 3329 1237 D 3378 1150 D 3427 1067 D 3476 1010 D 3525 993 D 3575 1019 D 3624 1083 D 3673 1167 D 3722 1249 D 3771 1309 D 3821 1331 D 3870 1309 D 3919 1249 D 3968 1167 D 4017 1083 D 4066 1019 D 4116 993 D 4165 1010 D 4214 1067 D 4263 1150 D 4312 1237 D 4362 1305 D 4411 1338 D 4460 1325 D 4509 1269 D 4558 1185 D 4608 1093 D 4657 1018 D 4706 979 D 4755 987 D 4804 1042 D 4854 1130 D 4903 1229 D 4952 1313 D 5001 1361 D 5050 1358 D 5100 1303 D 5149 1209 D 5198 1099 D 5247 1002 D 5296 942 D 5346 939 D 5395 994 D 5444 1098 D 5493 1223 D 5542 1340 D 5592 1416 D 5641 1429 D 5690 1372 D 5739 1254 D 5788 1104 D 5838 957 D 5887 855 D 5936 826 D 5985 887 D 6034 1028 D 6083 1220 D 6133 1418 D 6182 1569 D 6231 1627 D 6280 1564 D 6329 1380 D 6379 1106 D 6428 799 D 6477 537 D 6526 397 D 6575 446 D 6625 720 D 6674 1219 D 6723 1898 D 6772 2676 D 6821 3449 D 6871 4103 D 6920 4541 D stroke grestore end showpage %%Trailer gsl-1.16/doc/autoconf.texi0000664000252300025230000001015312171574312012430 00000000000000@cindex autoconf, using with GSL For applications using @code{autoconf} the standard macro @code{AC_CHECK_LIB} can be used to link with GSL automatically from a @code{configure} script. The library itself depends on the presence of a @sc{cblas} and math library as well, so these must also be located before linking with the main @code{libgsl} file. The following commands should be placed in the @file{configure.ac} file to perform these tests, @example AC_CHECK_LIB([m],[cos]) AC_CHECK_LIB([gslcblas],[cblas_dgemm]) AC_CHECK_LIB([gsl],[gsl_blas_dgemm]) @end example @noindent It is important to check for @code{libm} and @code{libgslcblas} before @code{libgsl}, otherwise the tests will fail. Assuming the libraries are found the output during the configure stage looks like this, @example checking for cos in -lm... yes checking for cblas_dgemm in -lgslcblas... yes checking for gsl_blas_dgemm in -lgsl... yes @end example @noindent If the library is found then the tests will define the macros @code{HAVE_LIBGSL}, @code{HAVE_LIBGSLCBLAS}, @code{HAVE_LIBM} and add the options @code{-lgsl -lgslcblas -lm} to the variable @code{LIBS}. The tests above will find any version of the library. They are suitable for general use, where the versions of the functions are not important. An alternative macro is available in the file @file{gsl.m4} to test for a specific version of the library. To use this macro simply add the following line to your @file{configure.in} file instead of the tests above: @example AX_PATH_GSL(GSL_VERSION, [action-if-found], [action-if-not-found]) @end example @noindent The argument @code{GSL_VERSION} should be the two or three digit @sc{major.minor} or @sc{major.minor.micro} version number of the release you require. A suitable choice for @code{action-if-not-found} is, @example AC_MSG_ERROR(could not find required version of GSL) @end example @noindent Then you can add the variables @code{GSL_LIBS} and @code{GSL_CFLAGS} to your Makefile.am files to obtain the correct compiler flags. @code{GSL_LIBS} is equal to the output of the @code{gsl-config --libs} command and @code{GSL_CFLAGS} is equal to @code{gsl-config --cflags} command. For example, @example libfoo_la_LDFLAGS = -lfoo $(GSL_LIBS) -lgslcblas @end example @noindent Note that the macro @code{AX_PATH_GSL} needs to use the C compiler so it should appear in the @file{configure.in} file before the macro @code{AC_LANG_CPLUSPLUS} for programs that use C++. To test for @code{inline} the following test should be placed in your @file{configure.in} file, @example AC_C_INLINE if test "$ac_cv_c_inline" != no ; then AC_DEFINE(HAVE_INLINE,1) AC_SUBST(HAVE_INLINE) fi @end example @noindent and the macro will then be defined in the compilation flags or by including the file @file{config.h} before any library headers. The following autoconf test will check for @code{extern inline}, @smallexample dnl Check for "extern inline", using a modified version dnl of the test for AC_C_INLINE from acspecific.mt dnl AC_CACHE_CHECK([for extern inline], ac_cv_c_extern_inline, [ac_cv_c_extern_inline=no AC_TRY_COMPILE([extern $ac_cv_c_inline double foo(double x); extern $ac_cv_c_inline double foo(double x) @{ return x+1.0; @}; double foo (double x) @{ return x + 1.0; @};], [ foo(1.0) ], [ac_cv_c_extern_inline="yes"]) ]) if test "$ac_cv_c_extern_inline" != no ; then AC_DEFINE(HAVE_INLINE,1) AC_SUBST(HAVE_INLINE) fi @end smallexample The substitution of portability functions can be made automatically if you use @code{autoconf}. For example, to test whether the BSD function @code{hypot} is available you can include the following line in the configure file @file{configure.in} for your application, @example AC_CHECK_FUNCS(hypot) @end example @noindent and place the following macro definitions in the file @file{config.h.in}, @example /* Substitute gsl_hypot for missing system hypot */ #ifndef HAVE_HYPOT #define hypot gsl_hypot #endif @end example @noindent The application source files can then use the include command @code{#include } to substitute @code{gsl_hypot} for each occurrence of @code{hypot} when @code{hypot} is not available. gsl-1.16/doc/roots-secant-method.eps0000664000252300025230000001566312171574312014342 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Mathematica-PSRender %%BoundingBox: 0 82 432 350 %%Pages: (atend) %%EndComments %%BeginProlog /setrgbcolor dup where { pop pop } { { .114 mul exch .587 mul add exch .299 mul add setgray } bind def } ifelse /C /curveto load def /f /fill load def /F { closepath fill } bind def /L /lineto load def /S /stroke load def /s { closepath stroke } bind def /d /setdash load def /g /setgray load def /m /moveto load def /r /setrgbcolor load def /w /setlinewidth load def /b { gsave gsave F grestore 0 g S grestore newpath } bind def /dot { newpath 0 360 arc fill } bind def %%EndProlog %%Page: 1 1 0 g 0.25 w [ ] 0 d 32.8442 96.7414 m 32.8442 99.2961 L S 29.9067 85.6943 m /F0 /Times-Roman findfont def F0 10. scalefont setfont (0) show 88.4562 96.7414 m 88.4562 99.2961 L S 79.5187 85.6943 m (0.2) show 144.072 96.7414 m 144.072 99.2961 L S 135.322 85.6943 m (0.4) show 199.684 96.7414 m 199.684 99.2961 L S 190.747 85.6943 m (0.6) show 255.3 96.7414 m 255.3 99.2961 L S 246.363 85.6943 m (0.8) show 310.912 96.7414 m 310.912 99.2961 L S 307.537 85.6943 m (1) show 366.528 96.7414 m 366.528 99.2961 L S 357.372 85.6943 m (1.2) show 422.14 96.7414 m 422.14 99.2961 L S 413.172 85.6943 m (1.4) show 0.125 w 46.7462 96.7414 m 46.7462 98.2742 L S 60.6522 96.7414 m 60.6522 98.2742 L S 74.5542 96.7414 m 74.5542 98.2742 L S 102.362 96.7414 m 102.362 98.2742 L S 116.264 96.7414 m 116.264 98.2742 L S 130.166 96.7414 m 130.166 98.2742 L S 157.974 96.7414 m 157.974 98.2742 L S 171.88 96.7414 m 171.88 98.2742 L S 185.782 96.7414 m 185.782 98.2742 L S 213.59 96.7414 m 213.59 98.2742 L S 227.492 96.7414 m 227.492 98.2742 L S 241.394 96.7414 m 241.394 98.2742 L S 269.202 96.7414 m 269.202 98.2742 L S 283.104 96.7414 m 283.104 98.2742 L S 297.01 96.7414 m 297.01 98.2742 L S 324.818 96.7414 m 324.818 98.2742 L S 338.72 96.7414 m 338.72 98.2742 L S 352.622 96.7414 m 352.622 98.2742 L S 380.43 96.7414 m 380.43 98.2742 L S 394.332 96.7414 m 394.332 98.2742 L S 408.238 96.7414 m 408.238 98.2742 L S 0.25 w 23.1116 96.7414 m 431.873 96.7414 L S 23.1116 137.389 m 25.6663 137.389 L S 1.18957 134.389 m (-10) show 23.1116 188.88 m 25.6663 188.88 L S 13.1896 185.88 m (0) show 23.1116 240.376 m 25.6663 240.376 L S 7.18957 237.376 m (10) show 23.1116 291.868 m 25.6663 291.868 L S 7.18957 288.868 m (20) show 23.1116 343.359 m 25.6663 343.359 L S 7.18957 340.359 m (30) show 0.125 w 23.1116 147.689 m 24.6444 147.689 L S 23.1116 157.986 m 24.6444 157.986 L S 23.1116 168.287 m 24.6444 168.287 L S 23.1116 178.584 m 24.6444 178.584 L S 23.1116 199.181 m 24.6444 199.181 L S 23.1116 209.478 m 24.6444 209.478 L S 23.1116 219.779 m 24.6444 219.779 L S 23.1116 230.075 m 24.6444 230.075 L S 23.1116 250.673 m 24.6444 250.673 L S 23.1116 260.974 m 24.6444 260.974 L S 23.1116 271.27 m 24.6444 271.27 L S 23.1116 281.571 m 24.6444 281.571 L S 23.1116 302.168 m 24.6444 302.168 L S 23.1116 312.465 m 24.6444 312.465 L S 23.1116 322.766 m 24.6444 322.766 L S 23.1116 333.063 m 24.6444 333.063 L S 23.1116 127.092 m 24.6444 127.092 L S 23.1116 116.791 m 24.6444 116.791 L S 23.1116 106.494 m 24.6444 106.494 L S 0.25 w 23.1116 96.7414 m 23.1116 349.368 L S 32.8442 346.813 m 32.8442 349.368 L S 88.4562 346.813 m 88.4562 349.368 L S 144.072 346.813 m 144.072 349.368 L S 199.684 346.813 m 199.684 349.368 L S 255.3 346.813 m 255.3 349.368 L S 310.912 346.813 m 310.912 349.368 L S 366.528 346.813 m 366.528 349.368 L S 422.14 346.813 m 422.14 349.368 L S 0.125 w 46.7462 347.835 m 46.7462 349.368 L S 60.6522 347.835 m 60.6522 349.368 L S 74.5542 347.835 m 74.5542 349.368 L S 102.362 347.835 m 102.362 349.368 L S 116.264 347.835 m 116.264 349.368 L S 130.166 347.835 m 130.166 349.368 L S 157.974 347.835 m 157.974 349.368 L S 171.88 347.835 m 171.88 349.368 L S 185.782 347.835 m 185.782 349.368 L S 213.59 347.835 m 213.59 349.368 L S 227.492 347.835 m 227.492 349.368 L S 241.394 347.835 m 241.394 349.368 L S 269.202 347.835 m 269.202 349.368 L S 283.104 347.835 m 283.104 349.368 L S 297.01 347.835 m 297.01 349.368 L S 324.818 347.835 m 324.818 349.368 L S 338.72 347.835 m 338.72 349.368 L S 352.622 347.835 m 352.622 349.368 L S 380.43 347.835 m 380.43 349.368 L S 394.332 347.835 m 394.332 349.368 L S 408.238 347.835 m 408.238 349.368 L S 0.25 w 23.1116 349.368 m 431.873 349.368 L S 429.318 137.389 m 431.873 137.389 L S 429.318 188.88 m 431.873 188.88 L S 429.318 240.376 m 431.873 240.376 L S 429.318 291.868 m 431.873 291.868 L S 429.318 343.359 m 431.873 343.359 L S 0.125 w 430.34 147.689 m 431.873 147.689 L S 430.34 157.986 m 431.873 157.986 L S 430.34 168.287 m 431.873 168.287 L S 430.34 178.584 m 431.873 178.584 L S 430.34 199.181 m 431.873 199.181 L S 430.34 209.478 m 431.873 209.478 L S 430.34 219.779 m 431.873 219.779 L S 430.34 230.075 m 431.873 230.075 L S 430.34 250.673 m 431.873 250.673 L S 430.34 260.974 m 431.873 260.974 L S 430.34 271.27 m 431.873 271.27 L S 430.34 281.571 m 431.873 281.571 L S 430.34 302.168 m 431.873 302.168 L S 430.34 312.465 m 431.873 312.465 L S 430.34 322.766 m 431.873 322.766 L S 430.34 333.063 m 431.873 333.063 L S 430.34 127.092 m 431.873 127.092 L S 430.34 116.791 m 431.873 116.791 L S 430.34 106.494 m 431.873 106.494 L S 0.25 w 431.873 96.7414 m 431.873 349.368 L S 23.1116 188.88 m 431.873 188.88 L S gsave 23.1116 96.7414 m 431.873 96.7414 L 431.873 349.368 L 23.1116 349.368 L 23.1116 96.7414 L closepath clip newpath 1.5 w 46.7462 343.355 m 48.5774 331.362 L 50.286 322.459 L 52.3135 313.896 L 54.1611 307.523 L 57.938 297.398 L 61.9766 289.468 L 66.0683 283.382 L 70.5116 278.26 L 78.5846 271.45 L 86.4042 266.741 L 94.6939 262.96 L 109.605 257.945 L 125.486 253.926 L 140.769 250.632 L 157.018 247.321 L 172.669 244.067 L 187.724 240.723 L 203.743 236.799 L 219.166 232.569 L 235.557 227.488 L 251.352 221.945 L 266.545 215.932 L 282.708 208.746 L 298.273 200.984 L 313.238 192.686 L 329.172 182.888 L 344.508 172.468 L 360.81 160.255 L 376.518 147.33 L 391.626 133.759 L 407.699 118.046 L 422.14 102.758 L S 0.5 g 0.5 w 60.6522 291.819 m 170.286 188.88 L 170.286 244.574 L S 88.4562 265.711 m 385.916 188.88 L 385.916 139.02 L S 170.286 244.574 m 385.916 139.02 L S 284.057 188.88 m 284.057 208.108 L S 385.916 139.02 m 284.057 208.108 L S 312.4 188.88 m 312.4 193.172 L S 0 g 60.6522 291.819 2. dot 62.6522 293.319 m F0 10. scalefont setfont (g) show 68.6522 291.819 m F0 7.125 scalefont setfont (0) show 88.4562 265.711 2. dot 87.4562 270.211 m F0 10. scalefont setfont (g) show 93.4562 268.711 m F0 7.125 scalefont setfont (1) show 170.286 244.574 2. dot 167.286 249.074 m F0 10. scalefont setfont (g) show 173.286 247.574 m F0 7.125 scalefont setfont (2) show 385.916 139.02 2. dot 376.916 131.52 m F0 10. scalefont setfont (g) show 382.916 130.02 m F0 7.125 scalefont setfont (3) show 284.057 208.108 2. dot 283.057 212.608 m F0 10. scalefont setfont (g) show 289.057 211.108 m F0 7.125 scalefont setfont (4) show 312.4 193.172 2. dot 312.4 197.672 m F0 10. scalefont setfont (g) show 318.4 196.172 m F0 7.125 scalefont setfont (5) show grestore showpage %%PageTrailer %%Trailer %%Pages: 1 %%EOF gsl-1.16/doc/gsl.30000664000252300025230000000241512171574312010572 00000000000000.TH GSL 3 "GNU Scientific Library" "GSL Team" \" -*- nroff -*- .SH NAME gsl - GNU Scientific Library .SH SYNOPSIS #include .SH DESCRIPTION The GNU Scientific Library (GSL) is a collection of routines for numerical computing. The routines are written from scratch by the GSL team in C, and present a modern Applications Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages. .PP The library covers the following areas, .TP .nf .BR Complex Numbers Roots of Polynomials Special Functions Vectors and Matrices Permutations Combinations Sorting BLAS Support Linear Algebra Eigensystems Fast Fourier Transforms Quadrature Random Numbers Quasi-Random Sequences Random Distributions Statistics Histograms N-Tuples Monte Carlo Integration Simulated Annealing Differential Equations Interpolation Numerical Differentiation Chebyshev Approximations Series Acceleration Discrete Hankel Transforms Root-Finding Minimization Least-Squares Fitting Physical Constants IEEE Floating-Point .fi .PP For more information please consult the GSL Reference Manual, which is available as an info file. You can read it online using the shell command .B info gsl-ref (if the library is installed). .PP Please report any bugs to .B bug-gsl@gnu.org. gsl-1.16/doc/fft-complex-radix2-f.eps0000664000252300025230000001101712171574312014266 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Creator: gnuplot %%DocumentFonts: Helvetica %%BoundingBox: 50 50 410 302 %%EndComments /gnudict 40 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /vshift -46 def /dl {10 mul} def /hpt 31.5 def /vpt 31.5 def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /PL { stroke gnulinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /P { stroke [] 0 setdash currentlinewidth 2 div sub M 0 currentlinewidth V stroke } def /D { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke P } def /A { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /B { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke P } def /C { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /T { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke P } def /S { 2 copy A C} def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray /Helvetica findfont 140 scalefont setfont newpath LTa 672 1163 M 6297 0 V 672 211 M 0 4758 V LTb 672 211 M 63 0 V 6234 0 R -63 0 V 588 211 M (-0.5) Rshow 672 1163 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0) Rshow 672 2114 M 63 0 V 6234 0 R -63 0 V -6318 0 R (0.5) Rshow 672 3066 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1) Rshow 672 4017 M 63 0 V 6234 0 R -63 0 V -6318 0 R (1.5) Rshow 672 4969 M 63 0 V 6234 0 R -63 0 V -6318 0 R (2) Rshow 672 211 M 0 63 V 0 4695 R 0 -63 V 672 71 M (0) Cshow 1664 211 M 0 63 V 0 4695 R 0 -63 V 1664 71 M (20) Cshow 2655 211 M 0 63 V 0 4695 R 0 -63 V 2655 71 M (40) Cshow 3647 211 M 0 63 V 0 4695 R 0 -63 V 3647 71 M (60) Cshow 4639 211 M 0 63 V 0 4695 R 0 -63 V 4639 71 M (80) Cshow 5630 211 M 0 63 V 0 4695 R 0 -63 V 5630 71 M (100) Cshow 6622 211 M 0 63 V 0 4695 R 0 -63 V 6622 71 M (120) Cshow 672 211 M 6297 0 V 0 4758 V -6297 0 V 672 211 L LT0 672 4695 D 722 4541 D 771 4103 D 821 3449 D 870 2676 D 920 1898 D 969 1219 D 1019 720 D 1069 446 D 1118 397 D 1168 537 D 1217 799 D 1267 1106 D 1317 1380 D 1366 1564 D 1416 1627 D 1465 1569 D 1515 1418 D 1564 1220 D 1614 1028 D 1664 887 D 1713 826 D 1763 855 D 1812 957 D 1862 1104 D 1912 1254 D 1961 1372 D 2011 1429 D 2060 1416 D 2110 1340 D 2159 1223 D 2209 1098 D 2259 994 D 2308 939 D 2358 942 D 2407 1002 D 2457 1099 D 2507 1209 D 2556 1303 D 2606 1358 D 2655 1361 D 2705 1313 D 2754 1229 D 2804 1130 D 2854 1042 D 2903 987 D 2953 979 D 3002 1018 D 3052 1093 D 3102 1185 D 3151 1269 D 3201 1325 D 3250 1338 D 3300 1305 D 3349 1237 D 3399 1150 D 3449 1067 D 3498 1010 D 3548 993 D 3597 1019 D 3647 1083 D 3697 1167 D 3746 1249 D 3796 1309 D 3845 1331 D 3895 1309 D 3944 1249 D 3994 1167 D 4044 1083 D 4093 1019 D 4143 993 D 4192 1010 D 4242 1067 D 4292 1150 D 4341 1237 D 4391 1305 D 4440 1338 D 4490 1325 D 4539 1269 D 4589 1185 D 4639 1093 D 4688 1018 D 4738 979 D 4787 987 D 4837 1042 D 4887 1130 D 4936 1229 D 4986 1313 D 5035 1361 D 5085 1358 D 5134 1303 D 5184 1209 D 5234 1099 D 5283 1002 D 5333 942 D 5382 939 D 5432 994 D 5482 1098 D 5531 1223 D 5581 1340 D 5630 1416 D 5680 1429 D 5729 1372 D 5779 1254 D 5829 1104 D 5878 957 D 5928 855 D 5977 826 D 6027 887 D 6077 1028 D 6126 1220 D 6176 1418 D 6225 1569 D 6275 1627 D 6324 1564 D 6374 1380 D 6424 1106 D 6473 799 D 6523 537 D 6572 397 D 6622 446 D 6672 720 D 6721 1219 D 6771 1898 D 6820 2676 D 6870 3449 D 6919 4103 D 6969 4541 D stroke grestore end showpage %%Trailer gsl-1.16/doc/eigen.texi0000664000252300025230000010273312171574312011707 00000000000000@cindex eigenvalues and eigenvectors This chapter describes functions for computing eigenvalues and eigenvectors of matrices. There are routines for real symmetric, real nonsymmetric, complex hermitian, real generalized symmetric-definite, complex generalized hermitian-definite, and real generalized nonsymmetric eigensystems. Eigenvalues can be computed with or without eigenvectors. The hermitian and real symmetric matrix algorithms are symmetric bidiagonalization followed by QR reduction. The nonsymmetric algorithm is the Francis QR double-shift. The generalized nonsymmetric algorithm is the QZ method due to Moler and Stewart. The functions described in this chapter are declared in the header file @file{gsl_eigen.h}. @menu * Real Symmetric Matrices:: * Complex Hermitian Matrices:: * Real Nonsymmetric Matrices:: * Real Generalized Symmetric-Definite Eigensystems:: * Complex Generalized Hermitian-Definite Eigensystems:: * Real Generalized Nonsymmetric Eigensystems:: * Sorting Eigenvalues and Eigenvectors:: * Eigenvalue and Eigenvector Examples:: * Eigenvalue and Eigenvector References:: @end menu @node Real Symmetric Matrices @section Real Symmetric Matrices @cindex symmetric matrix, real, eigensystem @cindex real symmetric matrix, eigensystem For real symmetric matrices, the library uses the symmetric bidiagonalization and QR reduction method. This is described in Golub & van Loan, section 8.3. The computed eigenvalues are accurate to an absolute accuracy of @math{\epsilon ||A||_2}, where @math{\epsilon} is the machine precision. @deftypefun {gsl_eigen_symm_workspace *} gsl_eigen_symm_alloc (const size_t @var{n}) @tpindex gsl_eigen_symm_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} real symmetric matrices. The size of the workspace is @math{O(2n)}. @end deftypefun @deftypefun void gsl_eigen_symm_free (gsl_eigen_symm_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_symm (gsl_matrix * @var{A}, gsl_vector * @var{eval}, gsl_eigen_symm_workspace * @var{w}) This function computes the eigenvalues of the real symmetric matrix @var{A}. Additional workspace of the appropriate size must be provided in @var{w}. The diagonal and lower triangular part of @var{A} are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector @var{eval} and are unordered. @end deftypefun @deftypefun {gsl_eigen_symmv_workspace *} gsl_eigen_symmv_alloc (const size_t @var{n}) @tpindex gsl_eigen_symmv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} real symmetric matrices. The size of the workspace is @math{O(4n)}. @end deftypefun @deftypefun void gsl_eigen_symmv_free (gsl_eigen_symmv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_symmv (gsl_matrix * @var{A}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_symmv_workspace * @var{w}) This function computes the eigenvalues and eigenvectors of the real symmetric matrix @var{A}. Additional workspace of the appropriate size must be provided in @var{w}. The diagonal and lower triangular part of @var{A} are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector @var{eval} and are unordered. The corresponding eigenvectors are stored in the columns of the matrix @var{evec}. For example, the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit magnitude. @end deftypefun @node Complex Hermitian Matrices @section Complex Hermitian Matrices For hermitian matrices, the library uses the complex form of the symmetric bidiagonalization and QR reduction method. @cindex hermitian matrix, complex, eigensystem @cindex complex hermitian matrix, eigensystem @deftypefun {gsl_eigen_herm_workspace *} gsl_eigen_herm_alloc (const size_t @var{n}) @tpindex gsl_eigen_herm_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} complex hermitian matrices. The size of the workspace is @math{O(3n)}. @end deftypefun @deftypefun void gsl_eigen_herm_free (gsl_eigen_herm_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_herm (gsl_matrix_complex * @var{A}, gsl_vector * @var{eval}, gsl_eigen_herm_workspace * @var{w}) This function computes the eigenvalues of the complex hermitian matrix @var{A}. Additional workspace of the appropriate size must be provided in @var{w}. The diagonal and lower triangular part of @var{A} are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector @var{eval} and are unordered. @end deftypefun @deftypefun {gsl_eigen_hermv_workspace *} gsl_eigen_hermv_alloc (const size_t @var{n}) @tpindex gsl_eigen_hermv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} complex hermitian matrices. The size of the workspace is @math{O(5n)}. @end deftypefun @deftypefun void gsl_eigen_hermv_free (gsl_eigen_hermv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_hermv (gsl_matrix_complex * @var{A}, gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_hermv_workspace * @var{w}) This function computes the eigenvalues and eigenvectors of the complex hermitian matrix @var{A}. Additional workspace of the appropriate size must be provided in @var{w}. The diagonal and lower triangular part of @var{A} are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector @var{eval} and are unordered. The corresponding complex eigenvectors are stored in the columns of the matrix @var{evec}. For example, the eigenvector in the first column corresponds to the first eigenvalue. The eigenvectors are guaranteed to be mutually orthogonal and normalised to unit magnitude. @end deftypefun @node Real Nonsymmetric Matrices @section Real Nonsymmetric Matrices @cindex nonsymmetric matrix, real, eigensystem @cindex real nonsymmetric matrix, eigensystem The solution of the real nonsymmetric eigensystem problem for a matrix @math{A} involves computing the Schur decomposition @tex \beforedisplay $$ A = Z T Z^T $$ \afterdisplay @end tex @ifinfo @example A = Z T Z^T @end example @end ifinfo where @math{Z} is an orthogonal matrix of Schur vectors and @math{T}, the Schur form, is quasi upper triangular with diagonal @math{1}-by-@math{1} blocks which are real eigenvalues of @math{A}, and diagonal @math{2}-by-@math{2} blocks whose eigenvalues are complex conjugate eigenvalues of @math{A}. The algorithm used is the double-shift Francis method. @deftypefun {gsl_eigen_nonsymm_workspace *} gsl_eigen_nonsymm_alloc (const size_t @var{n}) @tpindex gsl_eigen_nonsymm_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} real nonsymmetric matrices. The size of the workspace is @math{O(2n)}. @end deftypefun @deftypefun void gsl_eigen_nonsymm_free (gsl_eigen_nonsymm_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun void gsl_eigen_nonsymm_params (const int @var{compute_t}, const int @var{balance}, gsl_eigen_nonsymm_workspace * @var{w}) This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to @code{gsl_eigen_nonsymm}. If @var{compute_t} is set to 1, the full Schur form @math{T} will be computed by @code{gsl_eigen_nonsymm}. If it is set to 0, @math{T} will not be computed (this is the default setting). Computing the full Schur form @math{T} requires approximately 1.5--2 times the number of flops. If @var{balance} is set to 1, a balancing transformation is applied to the matrix prior to computing eigenvalues. This transformation is designed to make the rows and columns of the matrix have comparable norms, and can result in more accurate eigenvalues for matrices whose entries vary widely in magnitude. See @ref{Balancing} for more information. Note that the balancing transformation does not preserve the orthogonality of the Schur vectors, so if you wish to compute the Schur vectors with @code{gsl_eigen_nonsymm_Z} you will obtain the Schur vectors of the balanced matrix instead of the original matrix. The relationship will be @tex \beforedisplay $$ T = Q^t D^{-1} A D Q $$ \afterdisplay @end tex @ifinfo @example T = Q^t D^(-1) A D Q @end example @end ifinfo @noindent where @var{Q} is the matrix of Schur vectors for the balanced matrix, and @var{D} is the balancing transformation. Then @code{gsl_eigen_nonsymm_Z} will compute a matrix @var{Z} which satisfies @tex \beforedisplay $$ T = Z^{-1} A Z $$ \afterdisplay @end tex @ifinfo @example T = Z^(-1) A Z @end example @end ifinfo @noindent with @math{Z = D Q}. Note that @var{Z} will not be orthogonal. For this reason, balancing is not performed by default. @end deftypefun @deftypefun int gsl_eigen_nonsymm (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_eigen_nonsymm_workspace * @var{w}) This function computes the eigenvalues of the real nonsymmetric matrix @var{A} and stores them in the vector @var{eval}. If @math{T} is desired, it is stored in the upper portion of @var{A} on output. Otherwise, on output, the diagonal of @var{A} will contain the @math{1}-by-@math{1} real eigenvalues and @math{2}-by-@math{2} complex conjugate eigenvalue systems, and the rest of @var{A} is destroyed. In rare cases, this function may fail to find all eigenvalues. If this happens, an error code is returned and the number of converged eigenvalues is stored in @code{w->n_evals}. The converged eigenvalues are stored in the beginning of @var{eval}. @end deftypefun @deftypefun int gsl_eigen_nonsymm_Z (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix * @var{Z}, gsl_eigen_nonsymm_workspace * @var{w}) This function is identical to @code{gsl_eigen_nonsymm} except that it also computes the Schur vectors and stores them into @var{Z}. @end deftypefun @deftypefun {gsl_eigen_nonsymmv_workspace *} gsl_eigen_nonsymmv_alloc (const size_t @var{n}) @tpindex gsl_eigen_nonsymmv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} real nonsymmetric matrices. The size of the workspace is @math{O(5n)}. @end deftypefun @deftypefun void gsl_eigen_nonsymmv_free (gsl_eigen_nonsymmv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun void gsl_eigen_nonsymmv_params (const int @var{balance}, gsl_eigen_nonsymm_workspace * @var{w}) This function sets parameters which determine how the eigenvalue problem is solved in subsequent calls to @code{gsl_eigen_nonsymmv}. If @var{balance} is set to 1, a balancing transformation is applied to the matrix. See @code{gsl_eigen_nonsymm_params} for more information. Balancing is turned off by default since it does not preserve the orthogonality of the Schur vectors. @end deftypefun @deftypefun int gsl_eigen_nonsymmv (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_nonsymmv_workspace * @var{w}) This function computes eigenvalues and right eigenvectors of the @var{n}-by-@var{n} real nonsymmetric matrix @var{A}. It first calls @code{gsl_eigen_nonsymm} to compute the eigenvalues, Schur form @math{T}, and Schur vectors. Then it finds eigenvectors of @math{T} and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using @code{gsl_eigen_nonsymmv_Z}. The computed eigenvectors are normalized to have unit magnitude. On output, the upper portion of @var{A} contains the Schur form @math{T}. If @code{gsl_eigen_nonsymm} fails, no eigenvectors are computed, and an error code is returned. @end deftypefun @deftypefun int gsl_eigen_nonsymmv_Z (gsl_matrix * @var{A}, gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_matrix * @var{Z}, gsl_eigen_nonsymmv_workspace * @var{w}) This function is identical to @code{gsl_eigen_nonsymmv} except that it also saves the Schur vectors into @var{Z}. @end deftypefun @node Real Generalized Symmetric-Definite Eigensystems @section Real Generalized Symmetric-Definite Eigensystems @cindex generalized symmetric eigensystems The real generalized symmetric-definite eigenvalue problem is to find eigenvalues @math{\lambda} and eigenvectors @math{x} such that @tex \beforedisplay $$ A x = \lambda B x $$ \afterdisplay @end tex @ifinfo @example A x = \lambda B x @end example @end ifinfo where @math{A} and @math{B} are symmetric matrices, and @math{B} is positive-definite. This problem reduces to the standard symmetric eigenvalue problem by applying the Cholesky decomposition to @math{B}: @tex \beforedisplay $$ \eqalign{ A x & = \lambda B x \cr A x & = \lambda L L^t x \cr \left( L^{-1} A L^{-t} \right) L^t x & = \lambda L^t x } $$ \afterdisplay @end tex @ifinfo @example A x = \lambda B x A x = \lambda L L^t x ( L^@{-1@} A L^@{-t@} ) L^t x = \lambda L^t x @end example @end ifinfo Therefore, the problem becomes @math{C y = \lambda y} where @c{$C = L^{-1} A L^{-t}$} @math{C = L^@{-1@} A L^@{-t@}} is symmetric, and @math{y = L^t x}. The standard symmetric eigensolver can be applied to the matrix @math{C}. The resulting eigenvectors are backtransformed to find the vectors of the original problem. The eigenvalues and eigenvectors of the generalized symmetric-definite eigenproblem are always real. @deftypefun {gsl_eigen_gensymm_workspace *} gsl_eigen_gensymm_alloc (const size_t @var{n}) @tpindex gsl_eigen_gensymm_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} real generalized symmetric-definite eigensystems. The size of the workspace is @math{O(2n)}. @end deftypefun @deftypefun void gsl_eigen_gensymm_free (gsl_eigen_gensymm_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_gensymm (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector * @var{eval}, gsl_eigen_gensymm_workspace * @var{w}) This function computes the eigenvalues of the real generalized symmetric-definite matrix pair (@var{A}, @var{B}), and stores them in @var{eval}, using the method outlined above. On output, @var{B} contains its Cholesky decomposition and @var{A} is destroyed. @end deftypefun @deftypefun {gsl_eigen_gensymmv_workspace *} gsl_eigen_gensymmv_alloc (const size_t @var{n}) @tpindex gsl_eigen_gensymmv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} real generalized symmetric-definite eigensystems. The size of the workspace is @math{O(4n)}. @end deftypefun @deftypefun void gsl_eigen_gensymmv_free (gsl_eigen_gensymmv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_gensymmv (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_gensymmv_workspace * @var{w}) This function computes the eigenvalues and eigenvectors of the real generalized symmetric-definite matrix pair (@var{A}, @var{B}), and stores them in @var{eval} and @var{evec} respectively. The computed eigenvectors are normalized to have unit magnitude. On output, @var{B} contains its Cholesky decomposition and @var{A} is destroyed. @end deftypefun @node Complex Generalized Hermitian-Definite Eigensystems @section Complex Generalized Hermitian-Definite Eigensystems @cindex generalized hermitian definite eigensystems The complex generalized hermitian-definite eigenvalue problem is to find eigenvalues @math{\lambda} and eigenvectors @math{x} such that @tex \beforedisplay $$ A x = \lambda B x $$ \afterdisplay @end tex @ifinfo @example A x = \lambda B x @end example @end ifinfo where @math{A} and @math{B} are hermitian matrices, and @math{B} is positive-definite. Similarly to the real case, this can be reduced to @math{C y = \lambda y} where @c{$C = L^{-1} A L^{-\dagger}$} @math{C = L^@{-1@} A L^@{-H@}} is hermitian, and @c{$y = L^{\dagger} x$} @math{y = L^H x}. The standard hermitian eigensolver can be applied to the matrix @math{C}. The resulting eigenvectors are backtransformed to find the vectors of the original problem. The eigenvalues of the generalized hermitian-definite eigenproblem are always real. @deftypefun {gsl_eigen_genherm_workspace *} gsl_eigen_genherm_alloc (const size_t @var{n}) @tpindex gsl_eigen_genherm_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} complex generalized hermitian-definite eigensystems. The size of the workspace is @math{O(3n)}. @end deftypefun @deftypefun void gsl_eigen_genherm_free (gsl_eigen_genherm_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_genherm (gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}, gsl_vector * @var{eval}, gsl_eigen_genherm_workspace * @var{w}) This function computes the eigenvalues of the complex generalized hermitian-definite matrix pair (@var{A}, @var{B}), and stores them in @var{eval}, using the method outlined above. On output, @var{B} contains its Cholesky decomposition and @var{A} is destroyed. @end deftypefun @deftypefun {gsl_eigen_genhermv_workspace *} gsl_eigen_genhermv_alloc (const size_t @var{n}) @tpindex gsl_eigen_genhermv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} complex generalized hermitian-definite eigensystems. The size of the workspace is @math{O(5n)}. @end deftypefun @deftypefun void gsl_eigen_genhermv_free (gsl_eigen_genhermv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_genhermv (gsl_matrix_complex * @var{A}, gsl_matrix_complex * @var{B}, gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_genhermv_workspace * @var{w}) This function computes the eigenvalues and eigenvectors of the complex generalized hermitian-definite matrix pair (@var{A}, @var{B}), and stores them in @var{eval} and @var{evec} respectively. The computed eigenvectors are normalized to have unit magnitude. On output, @var{B} contains its Cholesky decomposition and @var{A} is destroyed. @end deftypefun @node Real Generalized Nonsymmetric Eigensystems @section Real Generalized Nonsymmetric Eigensystems @cindex generalized eigensystems Given two square matrices (@math{A}, @math{B}), the generalized nonsymmetric eigenvalue problem is to find eigenvalues @math{\lambda} and eigenvectors @math{x} such that @tex \beforedisplay $$ A x = \lambda B x $$ \afterdisplay @end tex @ifinfo @example A x = \lambda B x @end example @end ifinfo We may also define the problem as finding eigenvalues @math{\mu} and eigenvectors @math{y} such that @tex \beforedisplay $$ \mu A y = B y $$ \afterdisplay @end tex @ifinfo @example \mu A y = B y @end example @end ifinfo Note that these two problems are equivalent (with @math{\lambda = 1/\mu}) if neither @math{\lambda} nor @math{\mu} is zero. If say, @math{\lambda} is zero, then it is still a well defined eigenproblem, but its alternate problem involving @math{\mu} is not. Therefore, to allow for zero (and infinite) eigenvalues, the problem which is actually solved is @tex \beforedisplay $$ \beta A x = \alpha B x $$ \afterdisplay @end tex @ifinfo @example \beta A x = \alpha B x @end example @end ifinfo The eigensolver routines below will return two values @math{\alpha} and @math{\beta} and leave it to the user to perform the divisions @math{\lambda = \alpha / \beta} and @math{\mu = \beta / \alpha}. If the determinant of the matrix pencil @math{A - \lambda B} is zero for all @math{\lambda}, the problem is said to be singular; otherwise it is called regular. Singularity normally leads to some @math{\alpha = \beta = 0} which means the eigenproblem is ill-conditioned and generally does not have well defined eigenvalue solutions. The routines below are intended for regular matrix pencils and could yield unpredictable results when applied to singular pencils. The solution of the real generalized nonsymmetric eigensystem problem for a matrix pair @math{(A, B)} involves computing the generalized Schur decomposition @tex \beforedisplay $$ A = Q S Z^T $$ $$ B = Q T Z^T $$ \afterdisplay @end tex @ifinfo @example A = Q S Z^T B = Q T Z^T @end example @end ifinfo where @math{Q} and @math{Z} are orthogonal matrices of left and right Schur vectors respectively, and @math{(S, T)} is the generalized Schur form whose diagonal elements give the @math{\alpha} and @math{\beta} values. The algorithm used is the QZ method due to Moler and Stewart (see references). @deftypefun {gsl_eigen_gen_workspace *} gsl_eigen_gen_alloc (const size_t @var{n}) @tpindex gsl_eigen_gen_workspace This function allocates a workspace for computing eigenvalues of @var{n}-by-@var{n} real generalized nonsymmetric eigensystems. The size of the workspace is @math{O(n)}. @end deftypefun @deftypefun void gsl_eigen_gen_free (gsl_eigen_gen_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun void gsl_eigen_gen_params (const int @var{compute_s}, const int @var{compute_t}, const int @var{balance}, gsl_eigen_gen_workspace * @var{w}) This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to @code{gsl_eigen_gen}. If @var{compute_s} is set to 1, the full Schur form @math{S} will be computed by @code{gsl_eigen_gen}. If it is set to 0, @math{S} will not be computed (this is the default setting). @math{S} is a quasi upper triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks correspond to complex eigenvalues. If @var{compute_t} is set to 1, the full Schur form @math{T} will be computed by @code{gsl_eigen_gen}. If it is set to 0, @math{T} will not be computed (this is the default setting). @math{T} is an upper triangular matrix with non-negative elements on its diagonal. Any 2-by-2 blocks in @math{S} will correspond to a 2-by-2 diagonal block in @math{T}. The @var{balance} parameter is currently ignored, since generalized balancing is not yet implemented. @end deftypefun @deftypefun int gsl_eigen_gen (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_eigen_gen_workspace * @var{w}) This function computes the eigenvalues of the real generalized nonsymmetric matrix pair (@var{A}, @var{B}), and stores them as pairs in (@var{alpha}, @var{beta}), where @var{alpha} is complex and @var{beta} is real. If @math{\beta_i} is non-zero, then @math{\lambda = \alpha_i / \beta_i} is an eigenvalue. Likewise, if @math{\alpha_i} is non-zero, then @math{\mu = \beta_i / \alpha_i} is an eigenvalue of the alternate problem @math{\mu A y = B y}. The elements of @var{beta} are normalized to be non-negative. If @math{S} is desired, it is stored in @var{A} on output. If @math{T} is desired, it is stored in @var{B} on output. The ordering of eigenvalues in (@var{alpha}, @var{beta}) follows the ordering of the diagonal blocks in the Schur forms @math{S} and @math{T}. In rare cases, this function may fail to find all eigenvalues. If this occurs, an error code is returned. @end deftypefun @deftypefun int gsl_eigen_gen_QZ (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix * @var{Q}, gsl_matrix * @var{Z}, gsl_eigen_gen_workspace * @var{w}) This function is identical to @code{gsl_eigen_gen} except that it also computes the left and right Schur vectors and stores them into @var{Q} and @var{Z} respectively. @end deftypefun @deftypefun {gsl_eigen_genv_workspace *} gsl_eigen_genv_alloc (const size_t @var{n}) @tpindex gsl_eigen_genv_workspace This function allocates a workspace for computing eigenvalues and eigenvectors of @var{n}-by-@var{n} real generalized nonsymmetric eigensystems. The size of the workspace is @math{O(7n)}. @end deftypefun @deftypefun void gsl_eigen_genv_free (gsl_eigen_genv_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_eigen_genv (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_eigen_genv_workspace * @var{w}) This function computes eigenvalues and right eigenvectors of the @var{n}-by-@var{n} real generalized nonsymmetric matrix pair (@var{A}, @var{B}). The eigenvalues are stored in (@var{alpha}, @var{beta}) and the eigenvectors are stored in @var{evec}. It first calls @code{gsl_eigen_gen} to compute the eigenvalues, Schur forms, and Schur vectors. Then it finds eigenvectors of the Schur forms and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using @code{gsl_eigen_genv_QZ}. The computed eigenvectors are normalized to have unit magnitude. On output, (@var{A}, @var{B}) contains the generalized Schur form (@math{S}, @math{T}). If @code{gsl_eigen_gen} fails, no eigenvectors are computed, and an error code is returned. @end deftypefun @deftypefun int gsl_eigen_genv_QZ (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_matrix * @var{Q}, gsl_matrix * @var{Z}, gsl_eigen_genv_workspace * @var{w}) This function is identical to @code{gsl_eigen_genv} except that it also computes the left and right Schur vectors and stores them into @var{Q} and @var{Z} respectively. @end deftypefun @node Sorting Eigenvalues and Eigenvectors @section Sorting Eigenvalues and Eigenvectors @cindex sorting eigenvalues and eigenvectors @deftypefun int gsl_eigen_symmv_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vector @var{eval} and the corresponding real eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type}, @table @code @item GSL_EIGEN_SORT_VAL_ASC ascending order in numerical value @item GSL_EIGEN_SORT_VAL_DESC descending order in numerical value @item GSL_EIGEN_SORT_ABS_ASC ascending order in magnitude @item GSL_EIGEN_SORT_ABS_DESC descending order in magnitude @end table @end deftypefun @deftypefun int gsl_eigen_hermv_sort (gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vector @var{eval} and the corresponding complex eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type} as shown above. @end deftypefun @deftypefun int gsl_eigen_nonsymmv_sort (gsl_vector_complex * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vector @var{eval} and the corresponding complex eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type} as shown above. Only @code{GSL_EIGEN_SORT_ABS_ASC} and @code{GSL_EIGEN_SORT_ABS_DESC} are supported due to the eigenvalues being complex. @end deftypefun @deftypefun int gsl_eigen_gensymmv_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vector @var{eval} and the corresponding real eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type} as shown above. @end deftypefun @deftypefun int gsl_eigen_genhermv_sort (gsl_vector * @var{eval}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vector @var{eval} and the corresponding complex eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type} as shown above. @end deftypefun @deftypefun int gsl_eigen_genv_sort (gsl_vector_complex * @var{alpha}, gsl_vector * @var{beta}, gsl_matrix_complex * @var{evec}, gsl_eigen_sort_t @var{sort_type}) This function simultaneously sorts the eigenvalues stored in the vectors (@var{alpha}, @var{beta}) and the corresponding complex eigenvectors stored in the columns of the matrix @var{evec} into ascending or descending order according to the value of the parameter @var{sort_type} as shown above. Only @code{GSL_EIGEN_SORT_ABS_ASC} and @code{GSL_EIGEN_SORT_ABS_DESC} are supported due to the eigenvalues being complex. @end deftypefun @comment @deftypefun int gsl_eigen_jacobi (gsl_matrix * @var{matrix}, gsl_vector * @var{eval}, gsl_matrix * @var{evec}, unsigned int @var{max_rot}, unsigned int * @var{nrot}) @comment This function finds the eigenvectors and eigenvalues of a real symmetric @comment matrix by Jacobi iteration. The data in the input matrix is destroyed. @comment @end deftypefun @comment @deftypefun int gsl_la_invert_jacobi (const gsl_matrix * @var{matrix}, gsl_matrix * @var{ainv}, unsigned int @var{max_rot}) @comment Invert a matrix by Jacobi iteration. @comment @end deftypefun @comment @deftypefun int gsl_eigen_sort (gsl_vector * @var{eval}, gsl_matrix * @var{evec}, gsl_eigen_sort_t @var{sort_type}) @comment This functions sorts the eigensystem results based on eigenvalues. @comment Sorts in order of increasing value or increasing @comment absolute value, depending on the value of @comment @var{sort_type}, which can be @code{GSL_EIGEN_SORT_VALUE} @comment or @code{GSL_EIGEN_SORT_ABSVALUE}. @comment @end deftypefun @node Eigenvalue and Eigenvector Examples @section Examples The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, @math{H(i,j) = 1/(i + j + 1)}. @example @verbatiminclude examples/eigen.c @end example @noindent Here is the beginning of the output from the program, @example $ ./a.out eigenvalue = 9.67023e-05 eigenvector = -0.0291933 0.328712 -0.791411 0.514553 ... @end example @noindent This can be compared with the corresponding output from @sc{gnu octave}, @example octave> [v,d] = eig(hilb(4)); octave> diag(d) ans = 9.6702e-05 6.7383e-03 1.6914e-01 1.5002e+00 octave> v v = 0.029193 0.179186 -0.582076 0.792608 -0.328712 -0.741918 0.370502 0.451923 0.791411 0.100228 0.509579 0.322416 -0.514553 0.638283 0.514048 0.252161 @end example @noindent Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is arbitrary. The following program illustrates the use of the nonsymmetric eigensolver, by computing the eigenvalues and eigenvectors of the Vandermonde matrix @c{$V(x;i,j) = x_i^{n - j}$} @math{V(x;i,j) = x_i^@{n - j@}} with @math{x = (-1,-2,3,4)}. @example @verbatiminclude examples/eigen_nonsymm.c @end example @noindent Here is the beginning of the output from the program, @example $ ./a.out eigenvalue = -6.41391 + 0i eigenvector = -0.0998822 + 0i -0.111251 + 0i 0.292501 + 0i 0.944505 + 0i eigenvalue = 5.54555 + 3.08545i eigenvector = -0.043487 + -0.0076308i 0.0642377 + -0.142127i -0.515253 + 0.0405118i -0.840592 + -0.00148565i ... @end example @noindent This can be compared with the corresponding output from @sc{gnu octave}, @example octave> [v,d] = eig(vander([-1 -2 3 4])); octave> diag(d) ans = -6.4139 + 0.0000i 5.5456 + 3.0854i 5.5456 - 3.0854i 2.3228 + 0.0000i octave> v v = Columns 1 through 3: -0.09988 + 0.00000i -0.04350 - 0.00755i -0.04350 + 0.00755i -0.11125 + 0.00000i 0.06399 - 0.14224i 0.06399 + 0.14224i 0.29250 + 0.00000i -0.51518 + 0.04142i -0.51518 - 0.04142i 0.94451 + 0.00000i -0.84059 + 0.00000i -0.84059 - 0.00000i Column 4: -0.14493 + 0.00000i 0.35660 + 0.00000i 0.91937 + 0.00000i 0.08118 + 0.00000i @end example Note that the eigenvectors corresponding to the eigenvalue @math{5.54555 + 3.08545i} differ by the multiplicative constant @math{0.9999984 + 0.0017674i} which is an arbitrary phase factor of magnitude 1. @node Eigenvalue and Eigenvector References @section References and Further Reading Further information on the algorithms described in this section can be found in the following book, @itemize @w{} @item G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8. @end itemize @noindent Further information on the generalized eigensystems QZ algorithm can be found in this paper, @itemize @w{} @item C. Moler, G. Stewart, ``An Algorithm for Generalized Matrix Eigenvalue Problems'', SIAM J. Numer. Anal., Vol 10, No 2, 1973. @end itemize @noindent @cindex LAPACK Eigensystem routines for very large matrices can be found in the Fortran library @sc{lapack}. The @sc{lapack} library is described in, @itemize @w{} @item @cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8. @uref{http://www.netlib.org/lapack} @end itemize @noindent The @sc{lapack} source code can be found at the website above along with an online copy of the users guide. gsl-1.16/doc/robust.eps0000664000252300025230000005473112171574312011760 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: robust.eps %%Creator: gnuplot 4.6 patchlevel 3 %%CreationDate: Fri May 10 14:35:06 2013 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following true/false flags may be edited by hand if desired. % The unit line width and grayscale image gamma correction may also be changed. % /Color true def /Blacktext false def /Solid true def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /ClipToBoundingBox false def /SuppressPDFMark false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /Gamma 1.0 def /BackgroundColor {-1.000 -1.000 -1.000} def % /vshift -80 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /doclip { ClipToBoundingBox { newpath 50 50 moveto 410 50 lineto 410 302 lineto 50 302 lineto closepath clip } if } def % % Gnuplot Prolog Version 4.6 (September 2012) % %/SuppressPDFMark true def % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /g {setgray} bind def /Gshow {show} def % May be redefined later in the file to support UTF-8 /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def 3.8 setmiterlimit % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave closepath fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop /MFshow { { dup 5 get 3 ge { 5 get 3 eq {gsave} {grestore} ifelse } {dup dup 0 get findfont exch 1 get scalefont setfont [ currentpoint ] exch dup 2 get 0 exch R dup 5 get 2 ne {dup dup 6 get exch 4 get {Gshow} {stringwidth pop 0 R} ifelse }if dup 5 get 0 eq {dup 3 get {2 get neg 0 exch R pop} {pop aload pop M} ifelse} {dup 5 get 1 eq {dup 2 get exch dup 3 get exch 6 get stringwidth pop -2 div dup 0 R} {dup 6 get stringwidth pop -2 div 0 R 6 get show 2 index {aload pop M neg 3 -1 roll neg R pop pop} {pop pop pop pop aload pop M} ifelse }ifelse }ifelse } ifelse } forall} def /Gswidth {dup type /stringtype eq {stringwidth} {pop (n) stringwidth} ifelse} def /MFwidth {0 exch { dup 5 get 3 ge { 5 get 3 eq { 0 } { pop } ifelse } {dup 3 get{dup dup 0 get findfont exch 1 get scalefont setfont 6 get Gswidth pop add} {pop} ifelse} ifelse} forall} def /MLshow { currentpoint stroke M 0 exch R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MRshow { currentpoint stroke M exch dup MFwidth neg 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /MCshow { currentpoint stroke M exch dup MFwidth -2 div 3 -1 roll R Blacktext {gsave 0 setgray MFshow grestore} {MFshow} ifelse } bind def /XYsave { [( ) 1 2 true false 3 ()] } bind def /XYrestore { [( ) 1 2 true false 4 ()] } bind def Level1 SuppressPDFMark or {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (robust.eps) /Subject (gnuplot plot) /Creator (gnuplot 4.6 patchlevel 3) /Author (palken) % /Producer (gnuplot) % /Keywords () /CreationDate (Fri May 10 14:35:06 2013) /DOCINFO pdfmark end } ifelse end %%EndProlog %%Page: 1 1 gnudict begin gsave doclip 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 240 scalefont setfont BackgroundColor 0 lt 3 1 roll 0 lt exch 0 lt or or not {BackgroundColor C 1.000 0 0 7200.00 5040.00 BoxColFill} if 1.000 UL LTb LCb setrgbcolor 792 480 M 63 0 V 5912 0 R -63 0 V stroke 648 480 M [ [(Helvetica) 240.0 0.0 true true 0 (-10)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 868 M 63 0 V 5912 0 R -63 0 V stroke 648 868 M [ [(Helvetica) 240.0 0.0 true true 0 (-8)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 1257 M 63 0 V 5912 0 R -63 0 V stroke 648 1257 M [ [(Helvetica) 240.0 0.0 true true 0 (-6)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 1645 M 63 0 V 5912 0 R -63 0 V stroke 648 1645 M [ [(Helvetica) 240.0 0.0 true true 0 (-4)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 2033 M 63 0 V 5912 0 R -63 0 V stroke 648 2033 M [ [(Helvetica) 240.0 0.0 true true 0 (-2)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 2421 M 63 0 V 5912 0 R -63 0 V stroke 648 2421 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 2810 M 63 0 V 5912 0 R -63 0 V stroke 648 2810 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 3198 M 63 0 V 5912 0 R -63 0 V stroke 648 3198 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 3586 M 63 0 V 5912 0 R -63 0 V stroke 648 3586 M [ [(Helvetica) 240.0 0.0 true true 0 ( 6)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 3974 M 63 0 V 5912 0 R -63 0 V stroke 648 3974 M [ [(Helvetica) 240.0 0.0 true true 0 ( 8)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 4363 M 63 0 V 5912 0 R -63 0 V stroke 648 4363 M [ [(Helvetica) 240.0 0.0 true true 0 ( 10)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 4751 M 63 0 V 5912 0 R -63 0 V stroke 648 4751 M [ [(Helvetica) 240.0 0.0 true true 0 ( 12)] ] -80.0 MRshow 1.000 UL LTb LCb setrgbcolor 792 480 M 0 63 V 0 4208 R 0 -63 V stroke 792 240 M [ [(Helvetica) 240.0 0.0 true true 0 (-5)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 1390 480 M 0 63 V 0 4208 R 0 -63 V stroke 1390 240 M [ [(Helvetica) 240.0 0.0 true true 0 (-4)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 1987 480 M 0 63 V 0 4208 R 0 -63 V stroke 1987 240 M [ [(Helvetica) 240.0 0.0 true true 0 (-3)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 2585 480 M 0 63 V 0 4208 R 0 -63 V stroke 2585 240 M [ [(Helvetica) 240.0 0.0 true true 0 (-2)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 3182 480 M 0 63 V 0 4208 R 0 -63 V stroke 3182 240 M [ [(Helvetica) 240.0 0.0 true true 0 (-1)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 3780 480 M 0 63 V 0 4208 R 0 -63 V stroke 3780 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 0)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 4377 480 M 0 63 V 0 4208 R 0 -63 V stroke 4377 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 1)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 4975 480 M 0 63 V 0 4208 R 0 -63 V stroke 4975 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 2)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 5572 480 M 0 63 V 0 4208 R 0 -63 V stroke 5572 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 3)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 6170 480 M 0 63 V 0 4208 R 0 -63 V stroke 6170 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 4)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 6767 480 M 0 63 V 0 4208 R 0 -63 V stroke 6767 240 M [ [(Helvetica) 240.0 0.0 true true 0 ( 5)] ] -80.0 MCshow 1.000 UL LTb LCb setrgbcolor 1.000 UL LTb LCb setrgbcolor 792 4751 N 792 480 L 5975 0 V 0 4271 V -5975 0 V Z stroke 1.000 UP 1.000 UL LTb LCb setrgbcolor % Begin plot #1 4.000 UL LT0 LC0 setrgbcolor LCb setrgbcolor 1800 4568 M [ [(Helvetica) 240.0 0.0 true true 0 (Robust)] ] -80.0 MRshow LT0 1944 4568 M 639 0 V 792 1886 M 122 56 V 122 56 V 122 57 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 121 56 V 122 56 V 122 57 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 57 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 121 56 V 122 56 V 122 56 V 122 57 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 56 V 122 57 V 122 56 V 122 56 V 122 56 V 122 56 V 121 56 V 122 56 V 122 56 V 122 56 V 122 57 V 122 56 V 187 86 V 5871 4224 L 358 165 V % End plot #1 % Begin plot #2 stroke LT1 LC1 setrgbcolor LCb setrgbcolor 1800 4328 M [ [(Helvetica) 240.0 0.0 true true 0 (OLS)] ] -80.0 MRshow LT1 1944 4328 M 639 0 V 792 2184 M 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 121 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 121 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 121 36 V 122 36 V 122 35 V 122 36 V 122 36 V 122 35 V 187 55 V 5871 3669 L 358 105 V % End plot #2 % Begin plot #3 2.000 UP stroke 1.000 UL LT2 LC2 setrgbcolor LCb setrgbcolor 1800 4088 M [ [(Helvetica) 240.0 0.0 true true 0 (Data)] ] -80.0 MRshow LT2 792 1961 TriUF 914 1856 TriUF 1036 1937 TriUF 1158 2123 TriUF 1280 2042 TriUF 1402 2149 TriUF 1524 2298 TriUF 1646 2314 TriUF 1768 2332 TriUF 1889 2428 TriUF 2011 2489 TriUF 2133 2527 TriUF 2255 2518 TriUF 2377 2670 TriUF 2499 2672 TriUF 2621 2662 TriUF 2743 2779 TriUF 2865 2820 TriUF 2987 2844 TriUF 3109 2900 TriUF 3231 2922 TriUF 3353 3038 TriUF 3475 3069 TriUF 3597 3272 TriUF 3719 3258 TriUF 3840 3378 TriUF 3962 3390 TriUF 4084 3415 TriUF 4206 3485 TriUF 4328 3469 TriUF 4450 3548 TriUF 4572 3571 TriUF 4694 3618 TriUF 4816 3789 TriUF 4938 3861 TriUF 5060 3902 TriUF 5182 3974 TriUF 5304 3912 TriUF 5426 4086 TriUF 5548 4029 TriUF 5670 4090 TriUF 5791 4220 TriUF 5913 4220 TriUF 6035 4293 TriUF 6157 4311 TriUF 6279 4377 TriUF 6401 4516 TriUF 6588 810 TriUF 5871 1121 TriUF 6229 1257 TriUF 2263 4088 TriUF % End plot #3 1.000 UL LTb LCb setrgbcolor 792 4751 N 792 480 L 5975 0 V 0 4271 V -5975 0 V Z stroke 1.000 UP 1.000 UL LTb LCb setrgbcolor stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/fitting.texi0000664000252300025230000010225412171574312012262 00000000000000@cindex fitting @cindex least squares fit @cindex regression, least squares @cindex weighted linear fits @cindex unweighted linear fits This chapter describes routines for performing least squares fits to experimental data using linear combinations of functions. The data may be weighted or unweighted, i.e. with known or unknown errors. For weighted data the functions compute the best fit parameters and their associated covariance matrix. For unweighted data the covariance matrix is estimated from the scatter of the points, giving a variance-covariance matrix. The functions are divided into separate versions for simple one- or two-parameter regression and multiple-parameter fits. The functions are declared in the header file @file{gsl_fit.h}. @menu * Fitting Overview:: * Linear regression:: * Linear fitting without a constant term:: * Multi-parameter fitting:: * Robust linear regression:: * Troubleshooting:: * Fitting Examples:: * Fitting References and Further Reading:: @end menu @node Fitting Overview @section Overview Least-squares fits are found by minimizing @math{\chi^2} (chi-squared), the weighted sum of squared residuals over @math{n} experimental datapoints @math{(x_i, y_i)} for the model @math{Y(c,x)}, @tex \beforedisplay $$ \chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2 $$ \afterdisplay @end tex @ifinfo @example \chi^2 = \sum_i w_i (y_i - Y(c, x_i))^2 @end example @end ifinfo @noindent The @math{p} parameters of the model are @c{$c = \{c_0, c_1, \dots\}$} @math{c = @{c_0, c_1, @dots{}@}}. The weight factors @math{w_i} are given by @math{w_i = 1/\sigma_i^2}, where @math{\sigma_i} is the experimental error on the data-point @math{y_i}. The errors are assumed to be Gaussian and uncorrelated. For unweighted data the chi-squared sum is computed without any weight factors. The fitting routines return the best-fit parameters @math{c} and their @math{p \times p} covariance matrix. The covariance matrix measures the statistical errors on the best-fit parameters resulting from the errors on the data, @math{\sigma_i}, and is defined @cindex covariance matrix, linear fits as @c{$C_{ab} = \langle \delta c_a \delta c_b \rangle$} @math{C_@{ab@} = <\delta c_a \delta c_b>} where @c{$\langle \, \rangle$} @math{< >} denotes an average over the Gaussian error distributions of the underlying datapoints. The covariance matrix is calculated by error propagation from the data errors @math{\sigma_i}. The change in a fitted parameter @math{\delta c_a} caused by a small change in the data @math{\delta y_i} is given by @tex \beforedisplay $$ \delta c_a = \sum_i {\partial c_a \over \partial y_i} \delta y_i $$ \afterdisplay @end tex @ifinfo @example \delta c_a = \sum_i (dc_a/dy_i) \delta y_i @end example @end ifinfo @noindent allowing the covariance matrix to be written in terms of the errors on the data, @tex \beforedisplay $$ C_{ab} = \sum_{i,j} {\partial c_a \over \partial y_i} {\partial c_b \over \partial y_j} \langle \delta y_i \delta y_j \rangle $$ \afterdisplay @end tex @ifinfo @example C_@{ab@} = \sum_@{i,j@} (dc_a/dy_i) (dc_b/dy_j) <\delta y_i \delta y_j> @end example @end ifinfo @noindent For uncorrelated data the fluctuations of the underlying datapoints satisfy @c{$\langle \delta y_i \delta y_j \rangle = \sigma_i^2 \delta_{ij}$} @math{<\delta y_i \delta y_j> = \sigma_i^2 \delta_@{ij@}}, giving a corresponding parameter covariance matrix of @tex \beforedisplay $$ C_{ab} = \sum_{i} {1 \over w_i} {\partial c_a \over \partial y_i} {\partial c_b \over \partial y_i} $$ \afterdisplay @end tex @ifinfo @example C_@{ab@} = \sum_i (1/w_i) (dc_a/dy_i) (dc_b/dy_i) @end example @end ifinfo @noindent When computing the covariance matrix for unweighted data, i.e. data with unknown errors, the weight factors @math{w_i} in this sum are replaced by the single estimate @math{w = 1/\sigma^2}, where @math{\sigma^2} is the computed variance of the residuals about the best-fit model, @math{\sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p)}. This is referred to as the @dfn{variance-covariance matrix}. @cindex variance-covariance matrix, linear fits The standard deviations of the best-fit parameters are given by the square root of the corresponding diagonal elements of the covariance matrix, @c{$\sigma_{c_a} = \sqrt{C_{aa}}$} @math{\sigma_@{c_a@} = \sqrt@{C_@{aa@}@}}. The correlation coefficient of the fit parameters @math{c_a} and @math{c_b} is given by @c{$\rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}$} @math{\rho_@{ab@} = C_@{ab@} / \sqrt@{C_@{aa@} C_@{bb@}@}}. @node Linear regression @section Linear regression @cindex linear regression The functions described in this section can be used to perform least-squares fits to a straight line model, @math{Y(c,x) = c_0 + c_1 x}. @cindex covariance matrix, from linear regression @deftypefun int gsl_fit_linear (const double * @var{x}, const size_t @var{xstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c0}, double * @var{c1}, double * @var{cov00}, double * @var{cov01}, double * @var{cov11}, double * @var{sumsq}) This function computes the best-fit linear regression coefficients (@var{c0},@var{c1}) of the model @math{Y = c_0 + c_1 X} for the dataset (@var{x}, @var{y}), two vectors of length @var{n} with strides @var{xstride} and @var{ystride}. The errors on @var{y} are assumed unknown so the variance-covariance matrix for the parameters (@var{c0}, @var{c1}) is estimated from the scatter of the points around the best-fit line and returned via the parameters (@var{cov00}, @var{cov01}, @var{cov11}). The sum of squares of the residuals from the best-fit line is returned in @var{sumsq}. Note: the correlation coefficient of the data can be computed using @code{gsl_stats_correlation} (@pxref{Correlation}), it does not depend on the fit. @end deftypefun @deftypefun int gsl_fit_wlinear (const double * @var{x}, const size_t @var{xstride}, const double * @var{w}, const size_t @var{wstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c0}, double * @var{c1}, double * @var{cov00}, double * @var{cov01}, double * @var{cov11}, double * @var{chisq}) This function computes the best-fit linear regression coefficients (@var{c0},@var{c1}) of the model @math{Y = c_0 + c_1 X} for the weighted dataset (@var{x}, @var{y}), two vectors of length @var{n} with strides @var{xstride} and @var{ystride}. The vector @var{w}, of length @var{n} and stride @var{wstride}, specifies the weight of each datapoint. The weight is the reciprocal of the variance for each datapoint in @var{y}. The covariance matrix for the parameters (@var{c0}, @var{c1}) is computed using the weights and returned via the parameters (@var{cov00}, @var{cov01}, @var{cov11}). The weighted sum of squares of the residuals from the best-fit line, @math{\chi^2}, is returned in @var{chisq}. @end deftypefun @deftypefun int gsl_fit_linear_est (double @var{x}, double @var{c0}, double @var{c1}, double @var{cov00}, double @var{cov01}, double @var{cov11}, double * @var{y}, double * @var{y_err}) This function uses the best-fit linear regression coefficients @var{c0}, @var{c1} and their covariance @var{cov00}, @var{cov01}, @var{cov11} to compute the fitted function @var{y} and its standard deviation @var{y_err} for the model @math{Y = c_0 + c_1 X} at the point @var{x}. @end deftypefun @node Linear fitting without a constant term @section Linear fitting without a constant term The functions described in this section can be used to perform least-squares fits to a straight line model without a constant term, @math{Y = c_1 X}. @deftypefun int gsl_fit_mul (const double * @var{x}, const size_t @var{xstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c1}, double * @var{cov11}, double * @var{sumsq}) This function computes the best-fit linear regression coefficient @var{c1} of the model @math{Y = c_1 X} for the datasets (@var{x}, @var{y}), two vectors of length @var{n} with strides @var{xstride} and @var{ystride}. The errors on @var{y} are assumed unknown so the variance of the parameter @var{c1} is estimated from the scatter of the points around the best-fit line and returned via the parameter @var{cov11}. The sum of squares of the residuals from the best-fit line is returned in @var{sumsq}. @end deftypefun @deftypefun int gsl_fit_wmul (const double * @var{x}, const size_t @var{xstride}, const double * @var{w}, const size_t @var{wstride}, const double * @var{y}, const size_t @var{ystride}, size_t @var{n}, double * @var{c1}, double * @var{cov11}, double * @var{sumsq}) This function computes the best-fit linear regression coefficient @var{c1} of the model @math{Y = c_1 X} for the weighted datasets (@var{x}, @var{y}), two vectors of length @var{n} with strides @var{xstride} and @var{ystride}. The vector @var{w}, of length @var{n} and stride @var{wstride}, specifies the weight of each datapoint. The weight is the reciprocal of the variance for each datapoint in @var{y}. The variance of the parameter @var{c1} is computed using the weights and returned via the parameter @var{cov11}. The weighted sum of squares of the residuals from the best-fit line, @math{\chi^2}, is returned in @var{chisq}. @end deftypefun @deftypefun int gsl_fit_mul_est (double @var{x}, double @var{c1}, double @var{cov11}, double * @var{y}, double * @var{y_err}) This function uses the best-fit linear regression coefficient @var{c1} and its covariance @var{cov11} to compute the fitted function @var{y} and its standard deviation @var{y_err} for the model @math{Y = c_1 X} at the point @var{x}. @end deftypefun @node Multi-parameter fitting @section Multi-parameter fitting @cindex multi-parameter regression @cindex fits, multi-parameter linear The functions described in this section perform least-squares fits to a general linear model, @math{y = X c} where @math{y} is a vector of @math{n} observations, @math{X} is an @math{n} by @math{p} matrix of predictor variables, and the elements of the vector @math{c} are the @math{p} unknown best-fit parameters which are to be estimated. The chi-squared value is given by @c{$\chi^2 = \sum_i w_i (y_i - \sum_j X_{ij} c_j)^2$} @math{\chi^2 = \sum_i w_i (y_i - \sum_j X_@{ij@} c_j)^2}. This formulation can be used for fits to any number of functions and/or variables by preparing the @math{n}-by-@math{p} matrix @math{X} appropriately. For example, to fit to a @math{p}-th order polynomial in @var{x}, use the following matrix, @tex \beforedisplay $$ X_{ij} = x_i^j $$ \afterdisplay @end tex @ifinfo @example X_@{ij@} = x_i^j @end example @end ifinfo @noindent where the index @math{i} runs over the observations and the index @math{j} runs from 0 to @math{p-1}. To fit to a set of @math{p} sinusoidal functions with fixed frequencies @math{\omega_1}, @math{\omega_2}, @dots{}, @math{\omega_p}, use, @tex \beforedisplay $$ X_{ij} = \sin(\omega_j x_i) $$ \afterdisplay @end tex @ifinfo @example X_@{ij@} = sin(\omega_j x_i) @end example @end ifinfo @noindent To fit to @math{p} independent variables @math{x_1}, @math{x_2}, @dots{}, @math{x_p}, use, @tex \beforedisplay $$ X_{ij} = x_j(i) $$ \afterdisplay @end tex @ifinfo @example X_@{ij@} = x_j(i) @end example @end ifinfo @noindent where @math{x_j(i)} is the @math{i}-th value of the predictor variable @math{x_j}. The functions described in this section are declared in the header file @file{gsl_multifit.h}. The solution of the general linear least-squares system requires an additional working space for intermediate results, such as the singular value decomposition of the matrix @math{X}. @deftypefun {gsl_multifit_linear_workspace *} gsl_multifit_linear_alloc (size_t @var{n}, size_t @var{p}) @tpindex gsl_multifit_linear_workspace This function allocates a workspace for fitting a model to @var{n} observations using @var{p} parameters. @end deftypefun @deftypefun void gsl_multifit_linear_free (gsl_multifit_linear_workspace * @var{work}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun int gsl_multifit_linear (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) This function computes the best-fit parameters @var{c} of the model @math{y = X c} for the observations @var{y} and the matrix of predictor variables @var{X}, using the preallocated workspace provided in @var{work}. The @math{p}-by-@math{p} variance-covariance matrix of the model parameters @var{cov} is set to @math{\sigma^2 (X^T X)^{-1}}, where @math{\sigma} is the standard deviation of the fit residuals. The sum of squares of the residuals from the best-fit, @math{\chi^2}, is returned in @var{chisq}. If the coefficient of determination is desired, it can be computed from the expression @math{R^2 = 1 - \chi^2 / TSS}, where the total sum of squares (TSS) of the observations @var{y} may be computed from @code{gsl_stats_tss}. The best-fit is found by singular value decomposition of the matrix @var{X} using the modified Golub-Reinsch SVD algorithm, with column scaling to improve the accuracy of the singular values. Any components which have zero singular value (to machine precision) are discarded from the fit. @end deftypefun @deftypefun int gsl_multifit_wlinear (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) This function computes the best-fit parameters @var{c} of the weighted model @math{y = X c} for the observations @var{y} with weights @var{w} and the matrix of predictor variables @var{X}, using the preallocated workspace provided in @var{work}. The @math{p}-by-@math{p} covariance matrix of the model parameters @var{cov} is computed as @math{(X^T W X)^{-1}}. The weighted sum of squares of the residuals from the best-fit, @math{\chi^2}, is returned in @var{chisq}. If the coefficient of determination is desired, it can be computed from the expression @math{R^2 = 1 - \chi^2 / WTSS}, where the weighted total sum of squares (WTSS) of the observations @var{y} may be computed from @code{gsl_stats_wtss}. @end deftypefun @deftypefun int gsl_multifit_linear_svd (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, double @var{tol}, size_t * @var{rank}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) @deftypefunx int gsl_multifit_wlinear_svd (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, double @var{tol}, size_t * @var{rank}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) In these functions components of the fit are discarded if the ratio of singular values @math{s_i/s_0} falls below the user-specified tolerance @var{tol}, and the effective rank is returned in @var{rank}. @end deftypefun @deftypefun int gsl_multifit_linear_usvd (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, double @var{tol}, size_t * @var{rank}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) @deftypefunx int gsl_multifit_wlinear_usvd (const gsl_matrix * @var{X}, const gsl_vector * @var{w}, const gsl_vector * @var{y}, double @var{tol}, size_t * @var{rank}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, double * @var{chisq}, gsl_multifit_linear_workspace * @var{work}) These functions compute the fit using an SVD without column scaling. @end deftypefun @deftypefun int gsl_multifit_linear_est (const gsl_vector * @var{x}, const gsl_vector * @var{c}, const gsl_matrix * @var{cov}, double * @var{y}, double * @var{y_err}) This function uses the best-fit multilinear regression coefficients @var{c} and their covariance matrix @var{cov} to compute the fitted function value @var{y} and its standard deviation @var{y_err} for the model @math{y = x.c} at the point @var{x}. @end deftypefun @deftypefun int gsl_multifit_linear_residuals (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, const gsl_vector * @var{c}, gsl_vector * @var{r}) This function computes the vector of residuals @math{r = y - X c} for the observations @var{y}, coefficients @var{c} and matrix of predictor variables @var{X}. @end deftypefun @node Robust linear regression @section Robust linear regression @cindex robust regression Ordinary least squares (OLS) models are often heavily influenced by the presence of outliers. Outliers are data points which do not follow the general trend of the other observations, although there is strictly no precise definition of an outlier. Robust linear regression refers to regression algorithms which are robust to outliers. The most common type of robust regression is M-estimation. The general M-estimator minimizes the objective function @tex \beforedisplay $$ \sum_i \rho(e_i) = \sum_i \rho (y_i - Y(c, x_i)) $$ \afterdisplay @end tex @ifinfo @example \sum_i \rho(e_i) = \sum_i \rho (y_i - Y(c, x_i)) @end example @end ifinfo where @math{e_i = y_i - Y(c, x_i)} is the residual of the ith data point, and @math{\rho(e_i)} is a function which should have the following properties: @itemize @w{} @item @math{\rho(e) \ge 0} @item @math{\rho(0) = 0} @item @math{\rho(-e) = \rho(e)} @item @math{\rho(e_1) > \rho(e_2)} for @math{|e_1| > |e_2|} @end itemize @noindent The special case of ordinary least squares is given by @math{\rho(e_i) = e_i^2}. Letting @math{\psi = \rho'} be the derivative of @math{\rho}, differentiating the objective function with respect to the coefficients @math{c} and setting the partial derivatives to zero produces the system of equations @tex \beforedisplay $$ \sum_i \psi(e_i) X_i = 0 $$ \afterdisplay @end tex @ifinfo @example \sum_i \psi(e_i) X_i = 0 @end example @end ifinfo where @math{X_i} is a vector containing row @math{i} of the design matrix @math{X}. Next, we define a weight function @math{w(e) = \psi(e)/e}, and let @math{w_i = w(e_i)}: @tex \beforedisplay $$ \sum_i w_i e_i X_i = 0 $$ \afterdisplay @end tex @ifinfo @example \sum_i w_i e_i X_i = 0 @end example @end ifinfo This system of equations is equivalent to solving a weighted ordinary least squares problem, minimizing @math{\chi^2 = \sum_i w_i e_i^2}. The weights however, depend on the residuals @math{e_i}, which depend on the coefficients @math{c}, which depend on the weights. Therefore, an iterative solution is used, called Iteratively Reweighted Least Squares (IRLS). @enumerate @item Compute initial estimates of the coefficients @math{c^{(0)}} using ordinary least squares @item For iteration @math{k}, form the residuals @math{e_i^{(k)} = (y_i - X_i c^{(k-1)})/(t \sigma^{(k)} \sqrt{1 - h_i})}, where @math{t} is a tuning constant depending on the choice of @math{\psi}, and @math{h_i} are the statistical leverages (diagonal elements of the matrix @math{X (X^T X)^{-1} X^T}). Including @math{t} and @math{h_i} in the residual calculation has been shown to improve the convergence of the method. The residual standard deviation is approximated as @math{\sigma^{(k)} = MAD / 0.6745}, where MAD is the Median-Absolute-Deviation of the @math{n-p} largest residuals from the previous iteration. @item Compute new weights @math{w_i^{(k)} = \psi(e_i^{(k)})/e_i^{(k)}}. @item Compute new coefficients @math{c^{(k)}} by solving the weighted least squares problem with weights @math{w_i^{(k)}}. @item Steps 2 through 4 are iterated until the coefficients converge or until some maximum iteration limit is reached. Coefficients are tested for convergence using the critera: @tex \beforedisplay $$ |c_i^{(k)} - c_i^{(k-1)}| \le \epsilon \times \hbox{max}(|c_i^{(k)}|, |c_i^{(k-1)}|) $$ \afterdisplay @end tex @ifinfo @example |c_i^(k) - c_i^(k-1)| \le \epsilon \times max(|c_i^(k)|, |c_i^(k-1)|) @end example @end ifinfo for all @math{0 \le i < p} where @math{\epsilon} is a small tolerance factor. @end enumerate @noindent The key to this method lies in selecting the function @math{\psi(e_i)} to assign smaller weights to large residuals, and larger weights to smaller residuals. As the iteration proceeds, outliers are assigned smaller and smaller weights, eventually having very little or no effect on the fitted model. @deftypefun {gsl_multifit_robust_workspace *} gsl_multifit_robust_alloc (const gsl_multifit_robust_type * @var{T}, const size_t @var{n}, const size_t @var{p}) @tpindex gsl_multifit_robust_workspace This function allocates a workspace for fitting a model to @var{n} observations using @var{p} parameters. The type @var{T} specifies the function @math{\psi} and can be selected from the following choices. @deffn {Robust type} gsl_multifit_robust_default This specifies the @code{gsl_multifit_robust_bisquare} type (see below) and is a good general purpose choice for robust regression. @end deffn @deffn {Robust type} gsl_multifit_robust_bisquare This is Tukey's biweight (bisquare) function and is a good general purpose choice for robust regression. The weight function is given by @tex \beforedisplay $$ w(e) = \left\{ \matrix{ (1 - e^2)^2, & |e| \le 1\cr 0, & |e| > 1} \right. $$ \afterdisplay @end tex @ifinfo @example w(e) = (1 - e^2)^2 @end example @end ifinfo and the default tuning constant is @math{t = 4.685}. @end deffn @deffn {Robust type} gsl_multifit_robust_cauchy This is Cauchy's function, also known as the Lorentzian function. This function does not guarantee a unique solution, meaning different choices of the coefficient vector @var{c} could minimize the objective function. Therefore this option should be used with care. The weight function is given by @tex \beforedisplay $$ w(e) = {1 \over 1 + e^2} $$ \afterdisplay @end tex @ifinfo @example w(e) = 1 / (1 + e^2) @end example @end ifinfo and the default tuning constant is @math{t = 2.385}. @end deffn @deffn {Robust type} gsl_multifit_robust_fair This is the fair @math{\rho} function, which guarantees a unique solution and has continuous derivatives to three orders. The weight function is given by @tex \beforedisplay $$ w(e) = {1 \over 1 + |e|} $$ \afterdisplay @end tex @ifinfo @example w(e) = 1 / (1 + |e|) @end example @end ifinfo and the default tuning constant is @math{t = 1.400}. @end deffn @deffn {Robust type} gsl_multifit_robust_huber This specifies Huber's @math{\rho} function, which is a parabola in the vicinity of zero and increases linearly for a given threshold @math{|e| > t}. This function is also considered an excellent general purpose robust estimator, however, occasional difficulties can be encountered due to the discontinuous first derivative of the @math{\psi} function. The weight function is given by @tex \beforedisplay $$ w(e) = \left\{ \matrix{ 1, & |e| \le 1\cr {1 \over |e|}, & |e| > 1} \right. $$ \afterdisplay @end tex @ifinfo @example w(e) = 1/max(1,|e|) @end example @end ifinfo and the default tuning constant is @math{t = 1.345}. @end deffn @deffn {Robust type} gsl_multifit_robust_ols This specifies the ordinary least squares solution, which can be useful for quickly checking the difference between the various robust and OLS solutions. The weight function is given by @tex \beforedisplay $$ w(e) = 1 $$ \afterdisplay @end tex @ifinfo @example w(e) = 1 @end example @end ifinfo and the default tuning constant is @math{t = 1}. @end deffn @deffn {Robust type} gsl_multifit_robust_welsch This specifies the Welsch function which can perform well in cases where the residuals have an exponential distribution. The weight function is given by @tex \beforedisplay $$ w(e) = \exp{(-e^2)} $$ \afterdisplay @end tex @ifinfo @example w(e) = \exp(-e^2) @end example @end ifinfo and the default tuning constant is @math{t = 2.985}. @end deffn @end deftypefun @deftypefun void gsl_multifit_robust_free (gsl_multifit_robust_workspace * @var{w}) This function frees the memory associated with the workspace @var{w}. @end deftypefun @deftypefun {const char *} gsl_multifit_robust_name (const gsl_multifit_robust_workspace * @var{w}) This function returns the name of the robust type @var{T} specified to @code{gsl_multifit_robust_alloc}. @end deftypefun @deftypefun int gsl_multifit_robust_tune (const double @var{tune}, gsl_multifit_robust_workspace * @var{w}) This function sets the tuning constant @math{t} used to adjust the residuals at each iteration to @var{tune}. Decreasing the tuning constant increases the downweight assigned to large residuals, while increasing the tuning constant decreases the downweight assigned to large residuals. @end deftypefun @deftypefun int gsl_multifit_robust (const gsl_matrix * @var{X}, const gsl_vector * @var{y}, gsl_vector * @var{c}, gsl_matrix * @var{cov}, gsl_multifit_robust_workspace * @var{w}) This function computes the best-fit parameters @var{c} of the model @math{y = X c} for the observations @var{y} and the matrix of predictor variables @var{X}, attemping to reduce the influence of outliers using the algorithm outlined above. The @math{p}-by-@math{p} variance-covariance matrix of the model parameters @var{cov} is estimated as @math{\sigma^2 (X^T X)^{-1}}, where @math{\sigma} is an approximation of the residual standard deviation using the theory of robust regression. Special care must be taken when estimating @math{\sigma} and other statistics such as @math{R^2}, and so these are computed internally and are available by calling the function @code{gsl_multifit_robust_statistics}. @end deftypefun @deftypefun int gsl_multifit_robust_est (const gsl_vector * @var{x}, const gsl_vector * @var{c}, const gsl_matrix * @var{cov}, double * @var{y}, double * @var{y_err}) This function uses the best-fit robust regression coefficients @var{c} and their covariance matrix @var{cov} to compute the fitted function value @var{y} and its standard deviation @var{y_err} for the model @math{y = x.c} at the point @var{x}. @end deftypefun @deftypefun gsl_multifit_robust_stats gsl_multifit_robust_statistics (const gsl_multifit_robust_workspace * @var{w}) This function returns a structure containing relevant statistics from a robust regression. The function @code{gsl_multifit_robust} must be called first to perform the regression and calculate these statistics. The returned @code{gsl_multifit_robust_stats} structure contains the following fields. @itemize @w{} @item double @code{sigma_ols} This contains the standard deviation of the residuals as computed from ordinary least squares (OLS). @item double @code{sigma_mad} This contains an estimate of the standard deviation of the final residuals using the Median-Absolute-Deviation statistic @item double @code{sigma_rob} This contains an estimate of the standard deviation of the final residuals from the theory of robust regression (see Street et al, 1988). @item double @code{sigma} This contains an estimate of the standard deviation of the final residuals by attemping to reconcile @code{sigma_rob} and @code{sigma_ols} in a reasonable way. @item double @code{Rsq} This contains the @math{R^2} coefficient of determination statistic using the estimate @code{sigma}. @item double @code{adj_Rsq} This contains the adjusted @math{R^2} coefficient of determination statistic using the estimate @code{sigma}. @item double @code{rmse} This contains the root mean squared error of the final residuals @item double @code{sse} This contains the residual sum of squares taking into account the robust covariance matrix. @item size_t @code{dof} This contains the number of degrees of freedom @math{n - p} @item size_t @code{numit} Upon successful convergence, this contains the number of iterations performed @item gsl_vector * @code{weights} This contains the final weight vector of length @var{n} @item gsl_vector * @code{r} This contains the final residual vector of length @var{n}, @math{r = y - X c} @end itemize @end deftypefun @node Troubleshooting @section Troubleshooting @cindex least squares troubleshooting When using models based on polynomials, care should be taken when constructing the design matrix @math{X}. If the @math{x} values are large, then the matrix @math{X} could be ill-conditioned since its columns are powers of @math{x}, leading to unstable least-squares solutions. In this case it can often help to center and scale the @math{x} values using the mean and standard deviation: @tex \beforedisplay $$ x' = {x - \mu(x) \over \sigma(x)} $$ \afterdisplay @end tex @ifinfo @example x' = (x - mu)/sigma @end example @end ifinfo @noindent and then construct the @math{X} matrix using the transformed values @math{x'}. @node Fitting Examples @section Examples The following program computes a least squares straight-line fit to a simple dataset, and outputs the best-fit line and its associated one standard-deviation error bars. @example @verbatiminclude examples/fitting.c @end example @noindent The following commands extract the data from the output of the program and display it using the @sc{gnu} plotutils @code{graph} utility, @example $ ./demo > tmp $ more tmp # best fit: Y = -106.6 + 0.06 X # covariance matrix: # [ 39602, -19.9 # -19.9, 0.01] # chisq = 0.8 $ for n in data fit hi lo ; do grep "^$n" tmp | cut -d: -f2 > $n ; done $ graph -T X -X x -Y y -y 0 20 -m 0 -S 2 -Ie data -S 0 -I a -m 1 fit -m 2 hi -m 2 lo @end example @iftex @sp 1 @center @image{fit-wlinear,3.0in} @end iftex The next program performs a quadratic fit @math{y = c_0 + c_1 x + c_2 x^2} to a weighted dataset using the generalised linear fitting function @code{gsl_multifit_wlinear}. The model matrix @math{X} for a quadratic fit is given by, @tex \beforedisplay $$ X=\pmatrix{1&x_0&x_0^2\cr 1&x_1&x_1^2\cr 1&x_2&x_2^2\cr \dots&\dots&\dots\cr} $$ \afterdisplay @end tex @ifinfo @example X = [ 1 , x_0 , x_0^2 ; 1 , x_1 , x_1^2 ; 1 , x_2 , x_2^2 ; ... , ... , ... ] @end example @end ifinfo @noindent where the column of ones corresponds to the constant term @math{c_0}. The two remaining columns corresponds to the terms @math{c_1 x} and @math{c_2 x^2}. The program reads @var{n} lines of data in the format (@var{x}, @var{y}, @var{err}) where @var{err} is the error (standard deviation) in the value @var{y}. @example @verbatiminclude examples/fitting2.c @end example @noindent A suitable set of data for fitting can be generated using the following program. It outputs a set of points with gaussian errors from the curve @math{y = e^x} in the region @math{0 < x < 2}. @example @verbatiminclude examples/fitting3.c @end example @noindent The data can be prepared by running the resulting executable program, @example $ GSL_RNG_TYPE=mt19937_1999 ./generate > exp.dat $ more exp.dat 0.1 0.97935 0.110517 0.2 1.3359 0.12214 0.3 1.52573 0.134986 0.4 1.60318 0.149182 0.5 1.81731 0.164872 0.6 1.92475 0.182212 .... @end example @noindent To fit the data use the previous program, with the number of data points given as the first argument. In this case there are 19 data points. @example $ ./fit 19 < exp.dat 0.1 0.97935 +/- 0.110517 0.2 1.3359 +/- 0.12214 ... # best fit: Y = 1.02318 + 0.956201 X + 0.876796 X^2 # covariance matrix: [ +1.25612e-02, -3.64387e-02, +1.94389e-02 -3.64387e-02, +1.42339e-01, -8.48761e-02 +1.94389e-02, -8.48761e-02, +5.60243e-02 ] # chisq = 23.0987 @end example @noindent The parameters of the quadratic fit match the coefficients of the expansion of @math{e^x}, taking into account the errors on the parameters and the @math{O(x^3)} difference between the exponential and quadratic functions for the larger values of @math{x}. The errors on the parameters are given by the square-root of the corresponding diagonal elements of the covariance matrix. The chi-squared per degree of freedom is 1.4, indicating a reasonable fit to the data. @iftex @sp 1 @center @image{fit-wlinear2,3.0in} @end iftex The next program demonstrates the advantage of robust least squares on a dataset with outliers. The program generates linear @math{(x,y)} data pairs on the line @math{y = 1.45 x + 3.88}, adds some random noise, and inserts 3 outliers into the dataset. Both the robust and ordinary least squares (OLS) coefficients are computed for comparison. @example @verbatiminclude examples/robfit.c @end example The output from the program is shown in the following plot. @iftex @sp 1 @center @image{robust,3.0in} @end iftex @node Fitting References and Further Reading @section References and Further Reading A summary of formulas and techniques for least squares fitting can be found in the ``Statistics'' chapter of the Annual Review of Particle Physics prepared by the Particle Data Group, @itemize @w{} @item @cite{Review of Particle Properties}, R.M. Barnett et al., Physical Review D54, 1 (1996) @uref{http://pdg.lbl.gov/} @end itemize @noindent The Review of Particle Physics is available online at the website given above. @cindex NIST Statistical Reference Datasets @cindex Statistical Reference Datasets (StRD) The tests used to prepare these routines are based on the NIST Statistical Reference Datasets. The datasets and their documentation are available from NIST at the following website, @center @uref{http://www.nist.gov/itl/div898/strd/index.html}. @noindent The GSL implementation of robust linear regression closely follows the publications @itemize @w{} @item DuMouchel, W. and F. O'Brien (1989), "Integrating a robust option into a multiple regression computing environment," Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, American Statistical Association @item Street, J.O., R.J. Carroll, and D. Ruppert (1988), "A note on computing robust regression estimates via iteratively reweighted least squares," The American Statistician, v. 42, pp. 152-154. @end itemize gsl-1.16/doc/specfunc-dawson.texi0000664000252300025230000000100712171574312013707 00000000000000@cindex Dawson function The Dawson integral is defined by @math{\exp(-x^2) \int_0^x dt \exp(t^2)}. A table of Dawson's integral can be found in Abramowitz & Stegun, Table 7.5. The Dawson functions are declared in the header file @file{gsl_sf_dawson.h}. @deftypefun double gsl_sf_dawson (double @var{x}) @deftypefunx int gsl_sf_dawson_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the value of Dawson's integral for @var{x}. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/specfunc-gamma.texi0000664000252300025230000003141312171574312013502 00000000000000This following routines compute the gamma and beta functions in their full and incomplete forms, as well as various kinds of factorials. The functions described in this section are declared in the header file @file{gsl_sf_gamma.h}. @menu * Gamma Functions:: * Factorials:: * Pochhammer Symbol:: * Incomplete Gamma Functions:: * Beta Functions:: * Incomplete Beta Function:: @end menu @node Gamma Functions @subsection Gamma Functions @cindex gamma functions The Gamma function is defined by the following integral, @tex \beforedisplay $$ \Gamma(x) = \int_0^{\infty} dt \, t^{x-1} \exp(-t) $$ \afterdisplay @end tex @ifinfo @example \Gamma(x) = \int_0^\infty dt t^@{x-1@} \exp(-t) @end example @end ifinfo @noindent It is related to the factorial function by @math{\Gamma(n)=(n-1)!} for positive integer @math{n}. Further information on the Gamma function can be found in Abramowitz & Stegun, Chapter 6. @deftypefun double gsl_sf_gamma (double @var{x}) @deftypefunx int gsl_sf_gamma_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Gamma function @math{\Gamma(x)}, subject to @math{x} not being a negative integer or zero. The function is computed using the real Lanczos method. The maximum value of @math{x} such that @math{\Gamma(x)} is not considered an overflow is given by the macro @code{GSL_SF_GAMMA_XMAX} and is 171.0. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EROUND @end deftypefun @deftypefun double gsl_sf_lngamma (double @var{x}) @deftypefunx int gsl_sf_lngamma_e (double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of Gamma function These routines compute the logarithm of the Gamma function, @math{\log(\Gamma(x))}, subject to @math{x} not being a negative integer or zero. For @math{x<0} the real part of @math{\log(\Gamma(x))} is returned, which is equivalent to @math{\log(|\Gamma(x)|)}. The function is computed using the real Lanczos method. @comment exceptions: GSL_EDOM, GSL_EROUND @end deftypefun @deftypefun int gsl_sf_lngamma_sgn_e (double @var{x}, gsl_sf_result * @var{result_lg}, double * @var{sgn}) This routine computes the sign of the gamma function and the logarithm of its magnitude, subject to @math{x} not being a negative integer or zero. The function is computed using the real Lanczos method. The value of the gamma function and its error can be reconstructed using the relation @math{\Gamma(x) = sgn * \exp(result\_lg)}, taking into account the two components of @var{result_lg}. @comment exceptions: GSL_EDOM, GSL_EROUND @end deftypefun @deftypefun double gsl_sf_gammastar (double @var{x}) @deftypefunx int gsl_sf_gammastar_e (double @var{x}, gsl_sf_result * @var{result}) @cindex Regulated Gamma function These routines compute the regulated Gamma Function @math{\Gamma^*(x)} for @math{x > 0}. The regulated gamma function is given by, @tex \beforedisplay $$ \eqalign{ \Gamma^*(x) &= \Gamma(x)/(\sqrt{2\pi} x^{(x-1/2)} \exp(-x))\cr &= \left(1 + {1 \over 12x} + ...\right) \quad\hbox{for~} x\to \infty\cr } $$ \afterdisplay @end tex @ifinfo @example \Gamma^*(x) = \Gamma(x)/(\sqrt@{2\pi@} x^@{(x-1/2)@} \exp(-x)) = (1 + (1/12x) + ...) for x \to \infty @end example @end ifinfo and is a useful suggestion of Temme. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gammainv (double @var{x}) @deftypefunx int gsl_sf_gammainv_e (double @var{x}, gsl_sf_result * @var{result}) @cindex Reciprocal Gamma function These routines compute the reciprocal of the gamma function, @math{1/\Gamma(x)} using the real Lanczos method. @comment exceptions: GSL_EUNDRFLW, GSL_EROUND @end deftypefun @deftypefun int gsl_sf_lngamma_complex_e (double @var{zr}, double @var{zi}, gsl_sf_result * @var{lnr}, gsl_sf_result * @var{arg}) @cindex Complex Gamma function This routine computes @math{\log(\Gamma(z))} for complex @math{z=z_r+i z_i} and @math{z} not a negative integer or zero, using the complex Lanczos method. The returned parameters are @math{lnr = \log|\Gamma(z)|} and @math{arg = \arg(\Gamma(z))} in @math{(-\pi,\pi]}. Note that the phase part (@var{arg}) is not well-determined when @math{|z|} is very large, due to inevitable roundoff in restricting to @math{(-\pi,\pi]}. This will result in a @code{GSL_ELOSS} error when it occurs. The absolute value part (@var{lnr}), however, never suffers from loss of precision. @comment exceptions: GSL_EDOM, GSL_ELOSS @end deftypefun @node Factorials @subsection Factorials @cindex factorial Although factorials can be computed from the Gamma function, using the relation @math{n! = \Gamma(n+1)} for non-negative integer @math{n}, it is usually more efficient to call the functions in this section, particularly for small values of @math{n}, whose factorial values are maintained in hardcoded tables. @deftypefun double gsl_sf_fact (unsigned int @var{n}) @deftypefunx int gsl_sf_fact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex factorial These routines compute the factorial @math{n!}. The factorial is related to the Gamma function by @math{n! = \Gamma(n+1)}. The maximum value of @math{n} such that @math{n!} is not considered an overflow is given by the macro @code{GSL_SF_FACT_NMAX} and is 170. @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_doublefact (unsigned int @var{n}) @deftypefunx int gsl_sf_doublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex double factorial These routines compute the double factorial @math{n!! = n(n-2)(n-4) \dots}. The maximum value of @math{n} such that @math{n!!} is not considered an overflow is given by the macro @code{GSL_SF_DOUBLEFACT_NMAX} and is 297. @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnfact (unsigned int @var{n}) @deftypefunx int gsl_sf_lnfact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex logarithm of factorial These routines compute the logarithm of the factorial of @var{n}, @math{\log(n!)}. The algorithm is faster than computing @math{\ln(\Gamma(n+1))} via @code{gsl_sf_lngamma} for @math{n < 170}, but defers for larger @var{n}. @comment exceptions: none @end deftypefun @deftypefun double gsl_sf_lndoublefact (unsigned int @var{n}) @deftypefunx int gsl_sf_lndoublefact_e (unsigned int @var{n}, gsl_sf_result * @var{result}) @cindex logarithm of double factorial These routines compute the logarithm of the double factorial of @var{n}, @math{\log(n!!)}. @comment exceptions: none @end deftypefun @deftypefun double gsl_sf_choose (unsigned int @var{n}, unsigned int @var{m}) @deftypefunx int gsl_sf_choose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result}) @cindex combinatorial factor C(m,n) These routines compute the combinatorial factor @code{n choose m} @math{= n!/(m!(n-m)!)} @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnchoose (unsigned int @var{n}, unsigned int @var{m}) @deftypefunx int gsl_sf_lnchoose_e (unsigned int @var{n}, unsigned int @var{m}, gsl_sf_result * @var{result}) @cindex logarithm of combinatorial factor C(m,n) These routines compute the logarithm of @code{n choose m}. This is equivalent to the sum @math{\log(n!) - \log(m!) - \log((n-m)!)}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_taylorcoeff (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_taylorcoeff_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) @cindex Taylor coefficients, computation of These routines compute the Taylor coefficient @math{x^n / n!} for @c{$x \ge 0$} @math{x >= 0}, @c{$n \ge 0$} @math{n >= 0}. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Pochhammer Symbol @subsection Pochhammer Symbol @deftypefun double gsl_sf_poch (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_poch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex Pochhammer symbol @cindex Apell symbol, see Pochhammer symbol These routines compute the Pochhammer symbol @math{(a)_x = \Gamma(a + x)/\Gamma(a)}. The Pochhammer symbol is also known as the Apell symbol and sometimes written as @math{(a,x)}. When @math{a} and @math{a+x} are negative integers or zero, the limiting value of the ratio is returned. @comment exceptions: GSL_EDOM, GSL_EOVRFLW @end deftypefun @deftypefun double gsl_sf_lnpoch (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_lnpoch_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex logarithm of Pochhammer symbol These routines compute the logarithm of the Pochhammer symbol, @math{\log((a)_x) = \log(\Gamma(a + x)/\Gamma(a))}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun int gsl_sf_lnpoch_sgn_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}, double * @var{sgn}) These routines compute the sign of the Pochhammer symbol and the logarithm of its magnitude. The computed parameters are @math{result = \log(|(a)_x|)} with a corresponding error term, and @math{sgn = \sgn((a)_x)} where @math{(a)_x = \Gamma(a + x)/\Gamma(a)}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_pochrel (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_pochrel_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex relative Pochhammer symbol These routines compute the relative Pochhammer symbol @math{((a)_x - 1)/x} where @math{(a)_x = \Gamma(a + x)/\Gamma(a)}. @comment exceptions: GSL_EDOM @end deftypefun @node Incomplete Gamma Functions @subsection Incomplete Gamma Functions @deftypefun double gsl_sf_gamma_inc (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex non-normalized incomplete Gamma function @cindex unnormalized incomplete Gamma function These functions compute the unnormalized incomplete Gamma Function @c{$\Gamma(a,x) = \int_x^\infty dt\, t^{(a-1)} \exp(-t)$} @math{\Gamma(a,x) = \int_x^\infty dt t^@{a-1@} \exp(-t)} for @math{a} real and @c{$x \ge 0$} @math{x >= 0}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gamma_inc_Q (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_Q_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex incomplete Gamma function These routines compute the normalized incomplete Gamma Function @c{$Q(a,x) = 1/\Gamma(a) \int_x^\infty dt\, t^{(a-1)} \exp(-t)$} @math{Q(a,x) = 1/\Gamma(a) \int_x^\infty dt t^@{a-1@} \exp(-t)} for @math{a > 0}, @c{$x \ge 0$} @math{x >= 0}. @comment exceptions: GSL_EDOM @end deftypefun @deftypefun double gsl_sf_gamma_inc_P (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_gamma_inc_P_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @cindex complementary incomplete Gamma function These routines compute the complementary normalized incomplete Gamma Function @c{$P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt\, t^{(a-1)} \exp(-t)$} @math{P(a,x) = 1 - Q(a,x) = 1/\Gamma(a) \int_0^x dt t^@{a-1@} \exp(-t)} for @math{a > 0}, @c{$x \ge 0$} @math{x >= 0}. Note that Abramowitz & Stegun call @math{P(a,x)} the incomplete gamma function (section 6.5). @comment exceptions: GSL_EDOM @end deftypefun @node Beta Functions @subsection Beta Functions @deftypefun double gsl_sf_beta (double @var{a}, double @var{b}) @deftypefunx int gsl_sf_beta_e (double @var{a}, double @var{b}, gsl_sf_result * @var{result}) @cindex Beta function These routines compute the Beta Function, @math{B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)} subject to @math{a} and @math{b} not being negative integers. @comment exceptions: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_lnbeta (double @var{a}, double @var{b}) @deftypefunx int gsl_sf_lnbeta_e (double @var{a}, double @var{b}, gsl_sf_result * @var{result}) @cindex logarithm of Beta function These routines compute the logarithm of the Beta Function, @math{\log(B(a,b))} subject to @math{a} and @math{b} not being negative integers. @comment exceptions: GSL_EDOM @end deftypefun @node Incomplete Beta Function @subsection Incomplete Beta Function @deftypefun double gsl_sf_beta_inc (double @var{a}, double @var{b}, double @var{x}) @deftypefunx int gsl_sf_beta_inc_e (double @var{a}, double @var{b}, double @var{x}, gsl_sf_result * @var{result}) @cindex incomplete Beta function, normalized @cindex normalized incomplete Beta function @cindex Beta function, incomplete normalized These routines compute the normalized incomplete Beta function @math{I_x(a,b)=B_x(a,b)/B(a,b)} where @c{$B_x(a,b) = \int_0^x t^{a-1} (1-t)^{b-1} dt$} @math{B_x(a,b) = \int_0^x t^@{a-1@} (1-t)^@{b-1@} dt} for @c{$0 \le x \le 1$} @math{0 <= x <= 1}. For @math{a > 0}, @math{b > 0} the value is computed using a continued fraction expansion. For all other values it is computed using the relation @c{$I_x(a,b,x) = (1/a) x^a {}_2F_1(a,1-b,a+1,x)/B(a,b)$} @math{I_x(a,b,x) = (1/a) x^a 2F1(a,1-b,a+1,x)/B(a,b)}. @end deftypefun gsl-1.16/doc/debug.texi0000664000252300025230000003342412171574312011706 00000000000000This chapter describes some tips and tricks for debugging numerical programs which use GSL. @menu * Using gdb:: * Examining floating point registers:: * Handling floating point exceptions:: * GCC warning options for numerical programs:: * Debugging References:: @end menu @node Using gdb @section Using gdb @cindex gdb @cindex debugging numerical programs @cindex breakpoints Any errors reported by the library are passed to the function @code{gsl_error}. By running your programs under gdb and setting a breakpoint in this function you can automatically catch any library errors. You can add a breakpoint for every session by putting @example break gsl_error @end example @comment @noindent into your @file{.gdbinit} file in the directory where your program is started. If the breakpoint catches an error then you can use a backtrace (@code{bt}) to see the call-tree, and the arguments which possibly caused the error. By moving up into the calling function you can investigate the values of variables at that point. Here is an example from the program @code{fft/test_trap}, which contains the following line, @smallexample status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable); @end smallexample @noindent The function @code{gsl_fft_complex_wavetable_alloc} takes the length of an FFT as its first argument. When this line is executed an error will be generated because the length of an FFT is not allowed to be zero. To debug this problem we start @code{gdb}, using the file @file{.gdbinit} to define a breakpoint in @code{gsl_error}, @smallexample $ gdb test_trap GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.16 (i586-debian-linux), Copyright 1996 Free Software Foundation, Inc. Breakpoint 1 at 0x8050b1e: file error.c, line 14. @end smallexample @noindent When we run the program this breakpoint catches the error and shows the reason for it. @smallexample (gdb) run Starting program: test_trap Breakpoint 1, gsl_error (reason=0x8052b0d "length n must be positive integer", file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14 14 if (gsl_error_handler) @end smallexample @comment @noindent The first argument of @code{gsl_error} is always a string describing the error. Now we can look at the backtrace to see what caused the problem, @smallexample (gdb) bt #0 gsl_error (reason=0x8052b0d "length n must be positive integer", file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14 #1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778) at c_init.c:108 #2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94 #3 0x80488be in ___crt_dummy__ () @end smallexample @comment @noindent We can see that the error was generated in the function @code{gsl_fft_complex_wavetable_alloc} when it was called with an argument of @var{n=0}. The original call came from line 94 in the file @file{test_trap.c}. By moving up to the level of the original call we can find the line that caused the error, @smallexample (gdb) up #1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778) at c_init.c:108 108 GSL_ERROR ("length n must be positive integer", GSL_EDOM); (gdb) up #2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94 94 status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable); @end smallexample @comment @noindent Thus we have found the line that caused the problem. From this point we could also print out the values of other variables such as @code{complex_wavetable}. @node Examining floating point registers @section Examining floating point registers @cindex floating point registers The contents of floating point registers can be examined using the command @code{info float} (on supported platforms). @smallexample (gdb) info float st0: 0xc4018b895aa17a945000 Valid Normal -7.838871e+308 st1: 0x3ff9ea3f50e4d7275000 Valid Normal 0.0285946 st2: 0x3fe790c64ce27dad4800 Valid Normal 6.7415931e-08 st3: 0x3ffaa3ef0df6607d7800 Spec Normal 0.0400229 st4: 0x3c028000000000000000 Valid Normal 4.4501477e-308 st5: 0x3ffef5412c22219d9000 Zero Normal 0.9580257 st6: 0x3fff8000000000000000 Valid Normal 1 st7: 0xc4028b65a1f6d243c800 Valid Normal -1.566206e+309 fctrl: 0x0272 53 bit; NEAR; mask DENOR UNDER LOS; fstat: 0xb9ba flags 0001; top 7; excep DENOR OVERF UNDER LOS ftag: 0x3fff fip: 0x08048b5c fcs: 0x051a0023 fopoff: 0x08086820 fopsel: 0x002b @end smallexample @noindent Individual registers can be examined using the variables @var{$reg}, where @var{reg} is the register name. @smallexample (gdb) p $st1 $1 = 0.02859464454261210347719 @end smallexample @node Handling floating point exceptions @section Handling floating point exceptions @cindex exceptions, floating point @cindex floating point exceptions It is possible to stop the program whenever a @code{SIGFPE} floating point exception occurs. This can be useful for finding the cause of an unexpected infinity or @code{NaN}. The current handler settings can be shown with the command @code{info signal SIGFPE}. @smallexample (gdb) info signal SIGFPE Signal Stop Print Pass to program Description SIGFPE Yes Yes Yes Arithmetic exception @end smallexample @noindent Unless the program uses a signal handler the default setting should be changed so that SIGFPE is not passed to the program, as this would cause it to exit. The command @code{handle SIGFPE stop nopass} prevents this. @smallexample (gdb) handle SIGFPE stop nopass Signal Stop Print Pass to program Description SIGFPE Yes Yes No Arithmetic exception @end smallexample @noindent Depending on the platform it may be necessary to instruct the kernel to generate signals for floating point exceptions. For programs using GSL this can be achieved using the @code{GSL_IEEE_MODE} environment variable in conjunction with the function @code{gsl_ieee_env_setup} as described in @pxref{IEEE floating-point arithmetic}. @example (gdb) set env GSL_IEEE_MODE=double-precision @end example @node GCC warning options for numerical programs @section GCC warning options for numerical programs @cindex warning options @cindex gcc warning options Writing reliable numerical programs in C requires great care. The following GCC warning options are recommended when compiling numerical programs: @comment Uninitialized variables, conversions to and from integers or from @comment signed to unsigned integers can all cause hard-to-find problems. For @comment many non-numerical programs compiling with @code{gcc}'s warning option @comment @code{-Wall} provides a good check against common errors. However, for @comment numerical programs @code{-Wall} is not enough. @comment If you are unconvinced take a look at this program which contains an @comment error that can occur in numerical code, @comment @example @comment #include @comment #include @comment double f (int x); @comment int main () @comment @{ @comment double a = 1.5; @comment double y = f(a); @comment printf("a = %g, sqrt(a) = %g\n", a, y); @comment return 0; @comment @} @comment double f(x) @{ @comment return sqrt(x); @comment @} @comment @end example @comment @noindent @comment This code compiles cleanly with @code{-Wall} but produces some strange @comment output, @comment @example @comment bash$ gcc -Wall tmp.c -lm @comment bash$ ./a.out @comment a = 1.5, sqrt(a) = 1 @comment @end example @comment @noindent @comment Note that adding @code{-ansi} does not help here, since the program does @comment not contain any invalid constructs. What is happening is that the @comment prototype for the function @code{f(int x)} is not consistent with the @comment function call @code{f(y)}, where @code{y} is a floating point @comment number. This results in the argument being silently converted to an @comment integer. This is valid C, but in a numerical program it also likely to @comment be a programming error so we would like to be warned about it. (If we @comment genuinely wanted to convert @code{y} to an integer then we could use an @comment explicit cast, @code{(int)y}). @comment Fortunately GCC provides many additional warnings which can alert you to @comment problems such as this. You just have to remember to use them. Here is a @comment set of recommended warning options for numerical programs. @example gcc -ansi -pedantic -Werror -Wall -W -Wmissing-prototypes -Wstrict-prototypes -Wconversion -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings -Wnested-externs -fshort-enums -fno-common -Dinline= -g -O2 @end example @noindent For details of each option consult the manual @cite{Using and Porting GCC}. The following table gives a brief explanation of what types of errors these options catch. @table @code @item -ansi -pedantic Use ANSI C, and reject any non-ANSI extensions. These flags help in writing portable programs that will compile on other systems. @item -Werror Consider warnings to be errors, so that compilation stops. This prevents warnings from scrolling off the top of the screen and being lost. You won't be able to compile the program until it is completely warning-free. @item -Wall This turns on a set of warnings for common programming problems. You need @code{-Wall}, but it is not enough on its own. @item -O2 Turn on optimization. The warnings for uninitialized variables in @code{-Wall} rely on the optimizer to analyze the code. If there is no optimization then these warnings aren't generated. @item -W This turns on some extra warnings not included in @code{-Wall}, such as missing return values and comparisons between signed and unsigned integers. @item -Wmissing-prototypes -Wstrict-prototypes Warn if there are any missing or inconsistent prototypes. Without prototypes it is harder to detect problems with incorrect arguments. @item -Wconversion The main use of this option is to warn about conversions from signed to unsigned integers. For example, @code{unsigned int x = -1}. If you need to perform such a conversion you can use an explicit cast. @item -Wshadow This warns whenever a local variable shadows another local variable. If two variables have the same name then it is a potential source of confusion. @item -Wpointer-arith -Wcast-qual -Wcast-align These options warn if you try to do pointer arithmetic for types which don't have a size, such as @code{void}, if you remove a @code{const} cast from a pointer, or if you cast a pointer to a type which has a different size, causing an invalid alignment. @item -Wwrite-strings This option gives string constants a @code{const} qualifier so that it will be a compile-time error to attempt to overwrite them. @item -fshort-enums This option makes the type of @code{enum} as short as possible. Normally this makes an @code{enum} different from an @code{int}. Consequently any attempts to assign a pointer-to-int to a pointer-to-enum will generate a cast-alignment warning. @item -fno-common This option prevents global variables being simultaneously defined in different object files (you get an error at link time). Such a variable should be defined in one file and referred to in other files with an @code{extern} declaration. @item -Wnested-externs This warns if an @code{extern} declaration is encountered within a function. @item -Dinline= The @code{inline} keyword is not part of ANSI C. Thus if you want to use @code{-ansi} with a program which uses inline functions you can use this preprocessor definition to remove the @code{inline} keywords. @item -g It always makes sense to put debugging symbols in the executable so that you can debug it using @code{gdb}. The only effect of debugging symbols is to increase the size of the file, and you can use the @code{strip} command to remove them later if necessary. @end table @comment For comparison, this is what happens when the test program above is @comment compiled with these options. @comment @example @comment bash$ gcc -ansi -pedantic -Werror -W -Wall -Wtraditional @comment -Wconversion -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align @comment -Wwrite-strings -Waggregate-return -Wstrict-prototypes -fshort-enums @comment -fno-common -Wmissing-prototypes -Wnested-externs -Dinline= @comment -g -O4 tmp.c @comment cc1: warnings being treated as errors @comment tmp.c:7: warning: function declaration isn't a prototype @comment tmp.c: In function `main': @comment tmp.c:9: warning: passing arg 1 of `f' as integer rather than floating @comment due to prototype @comment tmp.c: In function `f': @comment tmp.c:14: warning: type of `x' defaults to `int' @comment tmp.c:15: warning: passing arg 1 of `sqrt' as floating rather than integer @comment due to prototype @comment make: *** [tmp] Error 1 @comment @end example @comment @noindent @comment The error in the prototype is flagged, plus the fact that we should have @comment defined main as @code{int main (void)} in ANSI C. Clearly there is some @comment work to do before this program is ready to run. @node Debugging References @section References and Further Reading The following books are essential reading for anyone writing and debugging numerical programs with @sc{gcc} and @sc{gdb}. @itemize @w{} @item R.M. Stallman, @cite{Using and Porting GNU CC}, Free Software Foundation, ISBN 1882114388 @item R.M. Stallman, R.H. Pesch, @cite{Debugging with GDB: The GNU Source-Level Debugger}, Free Software Foundation, ISBN 1882114779 @end itemize @noindent For a tutorial introduction to the GNU C Compiler and related programs, see @itemize @w{} @item B.J. Gough, @url{http://www.network-theory.co.uk/gcc/intro/,@cite{An Introduction to GCC},@cite{An Introduction to GCC}}, Network Theory Ltd, ISBN 0954161793 @end itemize gsl-1.16/doc/specfunc-coulomb.texi0000664000252300025230000001435012171574312014061 00000000000000@cindex Coulomb wave functions @cindex hydrogen atom The prototypes of the Coulomb functions are declared in the header file @file{gsl_sf_coulomb.h}. Both bound state and scattering solutions are available. @menu * Normalized Hydrogenic Bound States:: * Coulomb Wave Functions:: * Coulomb Wave Function Normalization Constant:: @end menu @node Normalized Hydrogenic Bound States @subsection Normalized Hydrogenic Bound States @deftypefun double gsl_sf_hydrogenicR_1 (double @var{Z}, double @var{r}) @deftypefunx int gsl_sf_hydrogenicR_1_e (double @var{Z}, double @var{r}, gsl_sf_result * @var{result}) These routines compute the lowest-order normalized hydrogenic bound state radial wavefunction @c{$R_1 := 2Z \sqrt{Z} \exp(-Z r)$} @math{R_1 := 2Z \sqrt@{Z@} \exp(-Z r)}. @end deftypefun @deftypefun double gsl_sf_hydrogenicR (int @var{n}, int @var{l}, double @var{Z}, double @var{r}) @deftypefunx int gsl_sf_hydrogenicR_e (int @var{n}, int @var{l}, double @var{Z}, double @var{r}, gsl_sf_result * @var{result}) These routines compute the @var{n}-th normalized hydrogenic bound state radial wavefunction, @comment @tex \beforedisplay $$ R_n := {2 Z^{3/2} \over n^2} \left({2Z r \over n}\right)^l \sqrt{(n-l-1)! \over (n+l)!} \exp(-Z r/n) L^{2l+1}_{n-l-1}(2Z r / n). $$ \afterdisplay @end tex @ifinfo @example R_n := 2 (Z^@{3/2@}/n^2) \sqrt@{(n-l-1)!/(n+l)!@} \exp(-Z r/n) (2Zr/n)^l L^@{2l+1@}_@{n-l-1@}(2Zr/n). @end example @end ifinfo @noindent where @math{L^a_b(x)} is the generalized Laguerre polynomial (@pxref{Laguerre Functions}). The normalization is chosen such that the wavefunction @math{\psi} is given by @c{$\psi(n,l,r) = R_n Y_{lm}$} @math{\psi(n,l,r) = R_n Y_@{lm@}}. @end deftypefun @node Coulomb Wave Functions @subsection Coulomb Wave Functions The Coulomb wave functions @math{F_L(\eta,x)}, @math{G_L(\eta,x)} are described in Abramowitz & Stegun, Chapter 14. Because there can be a large dynamic range of values for these functions, overflows are handled gracefully. If an overflow occurs, @code{GSL_EOVRFLW} is signalled and exponent(s) are returned through the modifiable parameters @var{exp_F}, @var{exp_G}. The full solution can be reconstructed from the following relations, @tex \beforedisplay $$ \eqalign{ F_L(\eta,x) &= fc[k_L] * \exp(exp_F)\cr G_L(\eta,x) &= gc[k_L] * \exp(exp_G)\cr \cr F_L'(\eta,x) &= fcp[k_L] * \exp(exp_F)\cr G_L'(\eta,x) &= gcp[k_L] * \exp(exp_G) } $$ \afterdisplay @end tex @ifinfo @example F_L(eta,x) = fc[k_L] * exp(exp_F) G_L(eta,x) = gc[k_L] * exp(exp_G) F_L'(eta,x) = fcp[k_L] * exp(exp_F) G_L'(eta,x) = gcp[k_L] * exp(exp_G) @end example @end ifinfo @noindent @deftypefun int gsl_sf_coulomb_wave_FG_e (double @var{eta}, double @var{x}, double @var{L_F}, int @var{k}, gsl_sf_result * @var{F}, gsl_sf_result * @var{Fp}, gsl_sf_result * @var{G}, gsl_sf_result * @var{Gp}, double * @var{exp_F}, double * @var{exp_G}) This function computes the Coulomb wave functions @math{F_L(\eta,x)}, @c{$G_{L-k}(\eta,x)$} @math{G_@{L-k@}(\eta,x)} and their derivatives @math{F'_L(\eta,x)}, @c{$G'_{L-k}(\eta,x)$} @math{G'_@{L-k@}(\eta,x)} with respect to @math{x}. The parameters are restricted to @math{L, L-k > -1/2}, @math{x > 0} and integer @math{k}. Note that @math{L} itself is not restricted to being an integer. The results are stored in the parameters @var{F}, @var{G} for the function values and @var{Fp}, @var{Gp} for the derivative values. If an overflow occurs, @code{GSL_EOVRFLW} is returned and scaling exponents are stored in the modifiable parameters @var{exp_F}, @var{exp_G}. @end deftypefun @deftypefun int gsl_sf_coulomb_wave_F_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double * @var{F_exponent}) This function computes the Coulomb wave function @math{F_L(\eta,x)} for @math{L = Lmin \dots Lmin + kmax}, storing the results in @var{fc_array}. In the case of overflow the exponent is stored in @var{F_exponent}. @end deftypefun @deftypefun int gsl_sf_coulomb_wave_FG_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{gc_array}[], double * @var{F_exponent}, double * @var{G_exponent}) This function computes the functions @math{F_L(\eta,x)}, @math{G_L(\eta,x)} for @math{L = Lmin \dots Lmin + kmax} storing the results in @var{fc_array} and @var{gc_array}. In the case of overflow the exponents are stored in @var{F_exponent} and @var{G_exponent}. @end deftypefun @deftypefun int gsl_sf_coulomb_wave_FGp_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{fcp_array}[], double @var{gc_array}[], double @var{gcp_array}[], double * @var{F_exponent}, double * @var{G_exponent}) This function computes the functions @math{F_L(\eta,x)}, @math{G_L(\eta,x)} and their derivatives @math{F'_L(\eta,x)}, @math{G'_L(\eta,x)} for @math{L = Lmin \dots Lmin + kmax} storing the results in @var{fc_array}, @var{gc_array}, @var{fcp_array} and @var{gcp_array}. In the case of overflow the exponents are stored in @var{F_exponent} and @var{G_exponent}. @end deftypefun @deftypefun int gsl_sf_coulomb_wave_sphF_array (double @var{L_min}, int @var{kmax}, double @var{eta}, double @var{x}, double @var{fc_array}[], double @var{F_exponent}[]) This function computes the Coulomb wave function divided by the argument @math{F_L(\eta, x)/x} for @math{L = Lmin \dots Lmin + kmax}, storing the results in @var{fc_array}. In the case of overflow the exponent is stored in @var{F_exponent}. This function reduces to spherical Bessel functions in the limit @math{\eta \to 0}. @end deftypefun @node Coulomb Wave Function Normalization Constant @subsection Coulomb Wave Function Normalization Constant The Coulomb wave function normalization constant is defined in Abramowitz 14.1.7. @deftypefun int gsl_sf_coulomb_CL_e (double @var{L}, double @var{eta}, gsl_sf_result * @var{result}) This function computes the Coulomb wave function normalization constant @math{C_L(\eta)} for @math{L > -1}. @end deftypefun @deftypefun int gsl_sf_coulomb_CL_array (double @var{Lmin}, int @var{kmax}, double @var{eta}, double @var{cl}[]) This function computes the Coulomb wave function normalization constant @math{C_L(\eta)} for @math{L = Lmin \dots Lmin + kmax}, @math{Lmin > -1}. @end deftypefun gsl-1.16/doc/dwt-orig.eps0000664000252300025230000012277412171574312012201 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Jul 22 17:12:05 2004 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 112 210 487 402 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 112 210 487 402 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 9216 5760 Rect End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 130.678 218.1928 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2304 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 171.356 218.1928 ] concat %I [ (32) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3168 5760 3168 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3168 2304 3168 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 214.556 218.1928 ] concat %I [ (64) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 5760 4032 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4032 2304 4032 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 257.756 218.1928 ] concat %I [ (96) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4896 5760 4896 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 4896 2304 4896 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 298.434 218.1928 ] concat %I [ (128) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 5760 5760 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5760 2304 5760 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 341.634 218.1928 ] concat %I [ (160) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6624 5760 6624 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6624 2304 6624 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 384.834 218.1928 ] concat %I [ (192) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 5760 7488 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7488 2304 7488 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 428.034 218.1928 ] concat %I [ (224) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8352 5760 8352 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 8352 2304 8352 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 471.234 218.1928 ] concat %I [ (256) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9216 5691 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2373 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 112.6999 226.0284 ] concat %I [ (-0.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9147 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2373 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 112.6999 245.2284 ] concat %I [ (-0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2688 9147 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2688 2373 2688 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 264.4284 ] concat %I [ (0.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3072 9147 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 2373 3072 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 283.6284 ] concat %I [ (0.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9147 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2373 3456 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 302.8284 ] concat %I [ (0.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3840 9147 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3840 2373 3840 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 322.0284 ] concat %I [ (0.6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4224 9147 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4224 2373 4224 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 341.2284 ] concat %I [ (0.8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9147 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2373 4608 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 360.4284 ] concat %I [ (1.0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4992 9147 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4992 2373 4992 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 379.6284 ] concat %I [ (1.2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5376 9147 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5376 2373 5376 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-9-*-*-*-*-*-*-* /Helvetica 9.072000 SetF %I t [ 1 0 0 1 117.9979 398.8284 ] concat %I [ (1.4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9147 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2373 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9188 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2332 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2496 9188 2496 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2496 2332 2496 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2688 9188 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2688 2332 2688 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2880 9188 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2880 2332 2880 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3072 9188 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 2332 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3264 9188 3264 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3264 2332 3264 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3456 9188 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3456 2332 3456 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3648 9188 3648 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3648 2332 3648 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 3840 9188 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3840 2332 3840 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4032 9188 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4032 2332 4032 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4224 9188 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4224 2332 4224 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4416 9188 4416 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4416 2332 4416 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4608 9188 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4608 2332 4608 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4800 9188 4800 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4800 2332 4800 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 4992 9188 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4992 2332 4992 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5184 9188 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5184 2332 5184 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5376 9188 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5376 2332 5376 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5568 9188 5568 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5568 2332 5568 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 5760 9188 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2332 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 34952 1 0 0 [ 1.48 4.43 ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3072 9216 3072 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 256 2304 3161 2331 3161 2358 3170 2385 3209 2412 3209 2439 3199 2466 3257 2493 3266 2520 3295 2547 3305 2574 3295 2601 3276 2628 3247 2655 3266 2682 3257 2709 3257 2736 3257 2763 3247 2790 3238 2817 3228 2844 3238 2871 3266 2898 3286 2925 3295 2952 3218 2979 3142 3006 3142 3033 3113 3060 3094 3087 3055 3114 3055 3141 3065 3168 3084 3195 3074 3222 3084 3249 3065 3276 3036 3303 3026 3330 3036 3357 3036 3384 3017 3411 3026 3438 3007 3465 3055 3492 3046 3519 3055 3546 3074 3573 3026 3600 3007 3627 3036 3654 3055 3681 3065 3708 3055 3735 3017 3762 2988 3789 2998 3816 2959 3843 2873 3870 2834 3897 2777 3924 2710 3951 2662 3978 2719 4005 2892 4032 3113 4059 3382 4086 3660 4113 4140 4140 4630 4167 5071 4194 5369 4221 5494 4248 5426 4275 5138 4302 4630 4329 4006 4356 3478 4383 3170 4410 2940 4437 2825 4464 2777 4491 2815 4518 2873 4545 2940 4572 2940 4599 2950 4626 2940 4653 2959 4680 2959 4707 2959 4734 2930 4761 2950 4788 2950 4815 2950 4842 2969 4869 2930 4896 2902 4923 2902 4950 2921 4977 2930 5004 2940 5031 2911 5058 2930 5085 2950 5112 2969 5139 2940 5166 2940 5193 2911 5220 2902 5247 2902 5274 2940 5301 2940 5328 2930 5355 2911 5382 2892 5409 2921 5436 2902 5463 2911 5490 2902 5517 2892 5544 2902 5571 2921 5598 2921 5625 2930 5652 2940 5679 2911 5706 2902 5733 2940 5760 2940 5787 2950 5814 2950 5841 2902 5868 2911 5895 2930 5922 2940 5949 2969 5976 2940 6003 2930 6030 2902 6057 2921 6084 2940 6111 2940 6138 2950 6165 2911 6192 2892 6219 2892 6246 2921 6273 2930 6300 2911 6327 2892 6354 2882 6381 2882 6408 2902 6435 2892 6462 2873 6489 2882 6516 2854 6543 2863 6570 2863 6597 2882 6624 2863 6651 2825 6678 2815 6705 2825 6732 2854 6759 2834 6786 2825 6813 2815 6840 2786 6867 2806 6894 2815 6921 2825 6948 2815 6975 2786 7002 2777 7029 2806 7056 2825 7083 2834 7110 2844 7137 2854 7164 2844 7191 2902 7218 2930 7245 2978 7272 2988 7299 2998 7326 2988 7353 3036 7380 3065 7407 3084 7434 3074 7461 3055 7488 3055 7515 3074 7542 3094 7569 3113 7596 3113 7623 3074 7650 3074 7677 3084 7704 3103 7731 3103 7758 3122 7785 3074 7812 3055 7839 3103 7866 3094 7893 3113 7920 3113 7947 3074 7974 3065 8001 3094 8028 3103 8055 3084 8082 3103 8109 3084 8136 3084 8163 3094 8190 3122 8217 3132 8244 3103 8271 3094 8298 3074 8325 3084 8352 3113 8379 3084 8406 3084 8433 3084 8460 3055 8487 3084 8514 3074 8541 3084 8568 3065 8595 3046 8622 3036 8649 3046 8676 3046 8703 3055 8730 3065 8757 3026 8784 3017 8811 3026 8838 3046 8865 3055 8892 3055 8919 3026 8946 3026 8973 3026 9000 3074 9027 3055 9054 3046 9081 3036 9108 3007 9135 3046 9162 3055 9189 3055 256 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/interp2.eps0000664000252300025230000013730312171574312012022 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: GNU libplot drawing library 4.1 %%Title: PostScript plot %%CreationDate: Thu Mar 17 17:03:59 2005 %%DocumentData: Clean7Bit %%LanguageLevel: 1 %%Pages: 1 %%PageOrder: Ascend %%Orientation: Portrait %%BoundingBox: 107 197 835 580 %%DocumentNeededResources: font Helvetica %%DocumentSuppliedResources: procset GNU_libplot 1.0 0 %%EndComments %%BeginDefaults %%PageResources: font Helvetica %%EndDefaults %%BeginProlog %%EndProlog %%BeginSetup %%IncludeResource: font Helvetica /DrawDict 50 dict def DrawDict begin /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/minus/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/dotlessi/grave/acute/circumflex/tilde/macron/breve /dotaccent/dieresis/.notdef/ring/cedilla/.notdef/hungarumlaut /ogonek/caron/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] def /reencodeISO { dup dup findfont dup length dict begin { 1 index /FID ne { def }{ pop pop } ifelse } forall /Encoding ISOLatin1Encoding def currentdict end definefont } def /Helvetica reencodeISO def %%BeginResource procset GNU_libplot 1.0 0 /none null def /numGraphicParameters 17 def /stringLimit 65535 def /arrowHeight 8 def /eoFillRule true def /Begin { save numGraphicParameters dict begin } def /End { end restore } def /SetB { dup type /nulltype eq { pop false /brushRightArrow idef false /brushLeftArrow idef true /brushNone idef } { /brushDashOffset idef /brushDashArray idef 0 ne /brushRightArrow idef 0 ne /brushLeftArrow idef /brushWidth idef false /brushNone idef } ifelse } def /SetCFg { /fgblue idef /fggreen idef /fgred idef } def /SetCBg { /bgblue idef /bggreen idef /bgred idef } def /SetF { /printSize idef /printFont idef } def /SetP { dup type /nulltype eq { pop true /patternNone idef } { /patternGrayLevel idef patternGrayLevel -1 eq { /patternString idef } if false /patternNone idef } ifelse } def /BSpl { 0 begin storexyn newpath n 1 gt { 0 0 0 0 0 0 1 1 true subspline n 2 gt { 0 0 0 0 1 1 2 2 false subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 2 copy false subspline } if n 2 sub dup n 1 sub dup 2 copy 2 copy false subspline patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup 1 sub dup rightarrow } if end } dup 0 4 dict put def /Circ { newpath 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if } def /CBSpl { 0 begin dup 2 gt { storexyn newpath n 1 sub dup 0 0 1 1 2 2 true subspline 1 1 n 3 sub { /i exch def i 1 sub dup i dup i 1 add dup i 2 add dup false subspline } for n 3 sub dup n 2 sub dup n 1 sub dup 0 0 false subspline n 2 sub dup n 1 sub dup 0 0 1 1 false subspline patternNone not { ifill } if brushNone not { istroke } if } { Poly } ifelse end } dup 0 4 dict put def /Elli { 0 begin newpath 4 2 roll translate scale 0 0 1 0 360 arc closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 1 dict put def /Line { 0 begin 2 storexyn newpath x 0 get y 0 get moveto x 1 get y 1 get lineto brushNone not { istroke } if 0 0 1 1 leftarrow 0 0 1 1 rightarrow end } dup 0 4 dict put def /MLine { 0 begin storexyn newpath n 1 gt { x 0 get y 0 get moveto 1 1 n 1 sub { /i exch def x i get y i get lineto } for patternNone not brushLeftArrow not brushRightArrow not and and { ifill } if brushNone not { istroke } if 0 0 1 1 leftarrow n 2 sub dup n 1 sub dup rightarrow } if end } dup 0 4 dict put def /Poly { 3 1 roll newpath moveto -1 add { lineto } repeat closepath patternNone not { ifill } if brushNone not { istroke } if } def /Rect { 0 begin /t exch def /r exch def /b exch def /l exch def newpath l b moveto l t lineto r t lineto r b lineto closepath patternNone not { ifill } if brushNone not { istroke } if end } dup 0 4 dict put def /Text { ishow } def /idef { dup where { pop pop pop } { exch def } ifelse } def /ifill { 0 begin gsave patternGrayLevel -1 ne { fgred bgred fgred sub patternGrayLevel mul add fggreen bggreen fggreen sub patternGrayLevel mul add fgblue bgblue fgblue sub patternGrayLevel mul add setrgbcolor eoFillRule { eofill } { fill } ifelse } { eoFillRule { eoclip } { clip } ifelse originalCTM setmatrix pathbbox /t exch def /r exch def /b exch def /l exch def /w r l sub ceiling cvi def /h t b sub ceiling cvi def /imageByteWidth w 8 div ceiling cvi def /imageHeight h def bgred bggreen bgblue setrgbcolor eoFillRule { eofill } { fill } ifelse fgred fggreen fgblue setrgbcolor w 0 gt h 0 gt and { l b translate w h scale w h true [w 0 0 h neg 0 h] { patternproc } imagemask } if } ifelse grestore end } dup 0 8 dict put def /istroke { gsave brushDashOffset -1 eq { [] 0 setdash 1 setgray } { brushDashArray brushDashOffset setdash fgred fggreen fgblue setrgbcolor } ifelse brushWidth 2 mul setlinewidth originalCTM setmatrix stroke grestore } def /ishow { 0 begin gsave fgred fggreen fgblue setrgbcolor /fontDict printFont findfont printSize scalefont dup setfont def /descender fontDict begin 0 /FontBBox load 1 get FontMatrix end transform exch pop def /vertoffset 1 printSize sub descender sub def { 0 vertoffset moveto show /vertoffset vertoffset printSize sub def } forall grestore end } dup 0 3 dict put def /patternproc { 0 begin /patternByteLength patternString length def /patternHeight patternByteLength 8 mul sqrt cvi def /patternWidth patternHeight def /patternByteWidth patternWidth 8 idiv def /imageByteMaxLength imageByteWidth imageHeight mul stringLimit patternByteWidth sub min def /imageMaxHeight imageByteMaxLength imageByteWidth idiv patternHeight idiv patternHeight mul patternHeight max def /imageHeight imageHeight imageMaxHeight sub store /imageString imageByteWidth imageMaxHeight mul patternByteWidth add string def 0 1 imageMaxHeight 1 sub { /y exch def /patternRow y patternByteWidth mul patternByteLength mod def /patternRowString patternString patternRow patternByteWidth getinterval def /imageRow y imageByteWidth mul def 0 patternByteWidth imageByteWidth 1 sub { /x exch def imageString imageRow x add patternRowString putinterval } for } for imageString end } dup 0 12 dict put def /min { dup 3 2 roll dup 4 3 roll lt { exch } if pop } def /max { dup 3 2 roll dup 4 3 roll gt { exch } if pop } def /midpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 x1 add 2 div y0 y1 add 2 div end } dup 0 4 dict put def /thirdpoint { 0 begin /y1 exch def /x1 exch def /y0 exch def /x0 exch def x0 2 mul x1 add 3 div y0 2 mul y1 add 3 div end } dup 0 4 dict put def /subspline { 0 begin /movetoNeeded exch def y exch get /y3 exch def x exch get /x3 exch def y exch get /y2 exch def x exch get /x2 exch def y exch get /y1 exch def x exch get /x1 exch def y exch get /y0 exch def x exch get /x0 exch def x1 y1 x2 y2 thirdpoint /p1y exch def /p1x exch def x2 y2 x1 y1 thirdpoint /p2y exch def /p2x exch def x1 y1 x0 y0 thirdpoint p1x p1y midpoint /p0y exch def /p0x exch def x2 y2 x3 y3 thirdpoint p2x p2y midpoint /p3y exch def /p3x exch def movetoNeeded { p0x p0y moveto } if p1x p1y p2x p2y p3x p3y curveto end } dup 0 17 dict put def /storexyn { /n exch def /y n array def /x n array def n 1 sub -1 0 { /i exch def y i 3 2 roll put x i 3 2 roll put } for } def /arrowhead { 0 begin transform originalCTM itransform /taily exch def /tailx exch def transform originalCTM itransform /tipy exch def /tipx exch def /dy tipy taily sub def /dx tipx tailx sub def /angle dx 0 ne dy 0 ne or { dy dx atan } { 90 } ifelse def gsave originalCTM setmatrix tipx tipy translate angle rotate newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto patternNone not { originalCTM setmatrix /padtip arrowHeight 2 exp 0.25 arrowWidth 2 exp mul add sqrt brushWidth mul arrowWidth div def /padtail brushWidth 2 div def tipx tipy translate angle rotate padtip 0 translate arrowHeight padtip add padtail add arrowHeight div dup scale arrowheadpath ifill } if brushNone not { originalCTM setmatrix tipx tipy translate angle rotate arrowheadpath istroke } if grestore end } dup 0 9 dict put def /arrowheadpath { newpath arrowHeight neg arrowWidth 2 div moveto 0 0 lineto arrowHeight neg arrowWidth 2 div neg lineto } def /leftarrow { 0 begin y exch get /taily exch def x exch get /tailx exch def y exch get /tipy exch def x exch get /tipx exch def brushLeftArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def /rightarrow { 0 begin y exch get /tipy exch def x exch get /tipx exch def y exch get /taily exch def x exch get /tailx exch def brushRightArrow { tipx tipy tailx taily arrowhead } if end } dup 0 4 dict put def %%EndResource %%EndSetup %%Page: 1 1 %%PageResources: font Helvetica %%PageBoundingBox: 107 197 835 580 %%BeginPageSetup %I Idraw 8 Begin %I b u %I cfg u %I cbg u %I f u %I p u %I t [ 1 0 0 1 0 0 ] concat /originalCTM matrix currentmatrix def /trueoriginalCTM matrix currentmatrix def %%EndPageSetup Begin %I Rect [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2304 2304 16128 9216 Rect End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 128.156 214.1855 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 266.396 214.1855 ] concat %I [ (2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 404.636 214.1855 ] concat %I [ (4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 542.876 214.1855 ] concat %I [ (6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 10598 9216 10598 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 10598 2304 10598 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 681.116 214.1855 ] concat %I [ (8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 13363 9216 13363 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 13363 2304 13363 2442 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 814.3119 214.1855 ] concat %I [ (10) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 9216 16128 9078 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 2304 16128 2442 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2304 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2304 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 9216 3686 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 3686 2304 3686 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 9216 5069 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 5069 2304 5069 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 9216 6451 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 6451 2304 6451 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 9216 7834 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 7834 2304 7834 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 9216 9216 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 9216 2304 9216 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 10598 9216 10598 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 10598 2304 10598 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 11981 9216 11981 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 11981 2304 11981 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 13363 9216 13363 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 13363 2304 13363 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 14746 9216 14746 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 14746 2304 14746 2359 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 9216 16128 9161 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 2304 16128 2359 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 229.8568 ] concat %I [ (0) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 2304 15990 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2442 2304 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 298.9768 ] concat %I [ (2) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 3686 15990 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2442 3686 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 368.0968 ] concat %I [ (4) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 5069 15990 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2442 5069 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 437.2168 ] concat %I [ (6) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 6451 15990 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2442 6451 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 117.9279 506.3368 ] concat %I [ (8) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 7834 15990 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2442 7834 2 MLine End Begin %I Text %I cfg Black 0 0 0 SetCFg %I f -*-helvetica-medium-r-normal-*-18-*-*-*-*-*-*-* /Helvetica 18.144000 SetF %I t [ 1 0 0 1 107.8399 575.4568 ] concat %I [ (10) ] Text End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 9216 15990 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2442 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 2304 16073 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2304 2359 2304 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 2995 16073 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 2995 2359 2995 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 3686 16073 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 3686 2359 3686 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 4378 16073 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 4378 2359 4378 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 5069 16073 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5069 2359 5069 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 5760 16073 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 5760 2359 5760 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 6451 16073 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 6451 2359 6451 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 7142 16073 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7142 2359 7142 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 7834 16073 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 7834 2359 7834 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 8525 16073 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 8525 2359 8525 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 16128 9216 16073 9216 2 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2 2304 9216 2359 9216 2 MLine End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 2196 2887 2412 3103 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 4160 3261 4376 3477 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 5589 3127 5805 3343 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 6441 3640 6657 3856 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 7202 4299 7418 4515 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 8445 6337 8661 6553 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 10297 6255 10513 6471 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 12327 7242 12543 7458 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 13939 7996 14155 8212 Rect End Begin %I Rect [0.54 0 0 0.54 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg Black 0 0 0 SetCBg %I p 0.000000 SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 14922 8954 15138 9170 Rect End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 500 2304 2995 2318 3000 2332 3005 2345 3010 2359 3015 2373 3019 2387 3024 2401 3029 2415 3034 2428 3039 2442 3043 2456 3048 2470 3053 2484 3058 2498 3063 2511 3067 2525 3072 2539 3077 2553 3082 2567 3086 2580 3091 2594 3096 2608 3100 2622 3105 2636 3110 2650 3114 2663 3119 2677 3123 2691 3128 2705 3133 2719 3137 2733 3142 2746 3146 2760 3151 2774 3155 2788 3160 2802 3164 2815 3168 2829 3173 2843 3177 2857 3181 2871 3186 2885 3190 2898 3194 2912 3198 2926 3203 2940 3207 2954 3211 2968 3215 2981 3219 2995 3223 3009 3227 3023 3231 3037 3235 3050 3239 3064 3243 3078 3247 3092 3250 3106 3254 3120 3258 3133 3261 3147 3265 3161 3269 3175 3272 3189 3276 3203 3279 3216 3283 3230 3286 3244 3289 3258 3293 3272 3296 3286 3299 3299 3302 3313 3305 3327 3308 3341 3311 3355 3314 3368 3317 3382 3320 3396 3323 3410 3326 3424 3328 3438 3331 3451 3334 3465 3336 3479 3339 3493 3341 3507 3344 3521 3346 3534 3348 3548 3350 3562 3353 3576 3355 3590 3357 3603 3359 3617 3361 3631 3362 3645 3364 3659 3366 3673 3368 3686 3369 3700 3371 3714 3372 3728 3374 3742 3375 3756 3376 3769 3377 3783 3378 3797 3379 3811 3380 3825 3381 3838 3382 3852 3383 3866 3384 3880 3384 3894 3385 3908 3385 3921 3386 3935 3386 3949 3386 3963 3386 3977 3386 3991 3386 4004 3386 4018 3386 4032 3386 4046 3386 4060 3385 4073 3385 4087 3384 4101 3383 4115 3383 4129 3382 4143 3381 4156 3380 4170 3379 4184 3378 4198 3376 4212 3375 4226 3374 4239 3372 4253 3371 4267 3369 4281 3367 4295 3365 4308 3363 4322 3361 4336 3359 4350 3357 4364 3354 4378 3352 4391 3349 4405 3347 4419 3344 4433 3342 4447 3339 4461 3336 4474 3333 4488 3331 4502 3328 4516 3325 4530 3322 4543 3319 4557 3316 4571 3313 4585 3309 4599 3306 4613 3303 4626 3300 4640 3297 4654 3294 4668 3290 4682 3287 4696 3284 4709 3281 4723 3277 4737 3274 4751 3271 4765 3268 4778 3265 4792 3261 4806 3258 4820 3255 4834 3252 4848 3249 4861 3246 4875 3243 4889 3240 4903 3237 4917 3234 4931 3231 4944 3228 4958 3226 4972 3223 4986 3220 5000 3218 5014 3215 5027 3213 5041 3210 5055 3208 5069 3206 5083 3204 5096 3202 5110 3200 5124 3198 5138 3196 5152 3194 5166 3193 5179 3191 5193 3190 5207 3189 5221 3187 5235 3186 5249 3185 5262 3184 5276 3184 5290 3183 5304 3183 5318 3182 5331 3182 5345 3182 5359 3182 5373 3182 5387 3183 5401 3183 5414 3184 5428 3185 5442 3185 5456 3187 5470 3188 5484 3189 5497 3191 5511 3193 5525 3195 5539 3197 5553 3199 5566 3201 5580 3204 5594 3207 5608 3210 5622 3213 5636 3217 5649 3220 5663 3224 5677 3228 5691 3233 5705 3237 5719 3242 5732 3247 5746 3252 5760 3257 5774 3262 5788 3268 5801 3274 5815 3280 5829 3286 5843 3293 5857 3299 5871 3306 5884 3313 5898 3320 5912 3327 5926 3334 5940 3342 5954 3350 5967 3357 5981 3365 5995 3373 6009 3381 6023 3390 6036 3398 6050 3406 6064 3415 6078 3424 6092 3432 6106 3441 6119 3450 6133 3459 6147 3468 6161 3478 6175 3487 6189 3496 6202 3505 6216 3515 6230 3524 6244 3534 6258 3544 6271 3553 6285 3563 6299 3572 6313 3582 6327 3592 6341 3602 6354 3611 6368 3621 6382 3631 6396 3641 6410 3651 6424 3660 6437 3670 6451 3680 6465 3690 6479 3699 6493 3709 6506 3719 6520 3728 6534 3738 6548 3747 6562 3757 6576 3766 6589 3776 6603 3785 6617 3794 6631 3804 6645 3813 6659 3822 6672 3832 6686 3841 6700 3850 6714 3860 6728 3869 6742 3879 6755 3888 6769 3898 6783 3908 6797 3917 6811 3927 6824 3937 6838 3947 6852 3957 6866 3968 6880 3978 6894 3988 6907 3999 6921 4010 6935 4021 6949 4032 6963 4043 6977 4055 6990 4067 7004 4078 7018 4091 7032 4103 7046 4115 7059 4128 7073 4141 7087 4154 7101 4168 7115 4181 7129 4195 7142 4209 7156 4224 7170 4239 7184 4254 7198 4269 7212 4285 7225 4301 7239 4317 7253 4334 7267 4351 7281 4368 7294 4386 7308 4404 7322 4422 7336 4441 7350 4460 7364 4480 7377 4500 7391 4520 7405 4540 7419 4561 7433 4582 7447 4603 7460 4625 7474 4647 7488 4669 7502 4692 7516 4714 7529 4737 7543 4760 7557 4784 7571 4807 7585 4831 7599 4855 7612 4879 7626 4903 7640 4928 7654 4952 7668 4977 7682 5002 7695 5027 7709 5052 7723 5078 7737 5103 7751 5128 7764 5154 7778 5179 7792 5205 7806 5231 7820 5257 7834 5282 7847 5308 7861 5334 7875 5360 7889 5386 7903 5411 7917 5437 7930 5463 7944 5489 7958 5514 7972 5540 7986 5566 7999 5591 8013 5616 8027 5642 8041 5667 8055 5692 8069 5717 8082 5742 8096 5767 8110 5791 8124 5816 8138 5840 8152 5864 8165 5888 8179 5911 8193 5935 8207 5958 8221 5981 8234 6004 8248 6027 8262 6049 8276 6071 8290 6093 8304 6114 8317 6136 8331 6156 8345 6177 8359 6197 8373 6217 8387 6237 8400 6257 8414 6276 8428 6294 8442 6312 8456 6330 8470 6348 8483 6365 8497 6382 8511 6398 8525 6414 8539 6429 8552 6444 8566 6459 8580 6473 8594 6487 8608 6500 8622 6513 8635 6525 8649 6537 8663 6549 8677 6560 8691 6571 8705 6581 8718 6591 8732 6600 8746 6610 8760 6618 8774 6627 8787 6635 8801 6642 8815 6650 8829 6657 8843 6663 8857 6670 8870 6676 8884 6681 8898 6686 8912 6691 8926 6696 8940 6700 8953 6704 8967 6708 8981 6711 8995 6714 9009 6717 9022 6720 9036 6722 9050 6724 9064 6725 9078 6727 9092 6728 9105 6729 9119 6729 9133 6730 9147 6730 9161 6730 9175 6729 9188 6729 9202 6728 500 MLine End Begin %I MLine [0.6776471 0 0 0.6776471 0 0 ] trueoriginalCTM originalCTM concatmatrix pop 0 setlinecap 0 setlinejoin 10.43 setmiterlimit /eoFillRule true def %I b 65535 1 0 0 [ ] 0 SetB %I cfg Black 0 0 0 SetCFg %I cbg White 1 1 1 SetCBg %I p none SetP %I t [0.05 0 0 0.05 18 108 ] concat %I 422 9202 6728 9216 6727 9230 6726 9244 6724 9257 6723 9271 6721 9285 6719 9299 6717 9313 6714 9327 6712 9340 6709 9354 6706 9368 6703 9382 6700 9396 6696 9410 6693 9423 6689 9437 6685 9451 6681 9465 6677 9479 6673 9492 6668 9506 6664 9520 6659 9534 6655 9548 6650 9562 6645 9575 6640 9589 6635 9603 6630 9617 6625 9631 6619 9645 6614 9658 6609 9672 6603 9686 6598 9700 6592 9714 6587 9727 6581 9741 6575 9755 6570 9769 6564 9783 6558 9797 6552 9810 6547 9824 6541 9838 6535 9852 6529 9866 6524 9880 6518 9893 6512 9907 6507 9921 6501 9935 6495 9949 6490 9962 6484 9976 6479 9990 6474 10004 6468 10018 6463 10032 6458 10045 6453 10059 6448 10073 6443 10087 6438 10101 6433 10115 6428 10128 6424 10142 6419 10156 6415 10170 6411 10184 6407 10198 6403 10211 6399 10225 6395 10239 6392 10253 6389 10267 6385 10280 6382 10294 6379 10308 6377 10322 6374 10336 6372 10350 6370 10363 6368 10377 6366 10391 6364 10405 6363 10419 6362 10433 6361 10446 6360 10460 6359 10474 6359 10488 6359 10502 6359 10515 6359 10529 6359 10543 6360 10557 6361 10571 6362 10585 6363 10598 6364 10612 6366 10626 6368 10640 6370 10654 6372 10668 6374 10681 6376 10695 6379 10709 6382 10723 6385 10737 6388 10750 6391 10764 6394 10778 6398 10792 6402 10806 6405 10820 6409 10833 6414 10847 6418 10861 6422 10875 6427 10889 6432 10903 6437 10916 6442 10930 6447 10944 6452 10958 6457 10972 6463 10985 6468 10999 6474 11013 6480 11027 6486 11041 6492 11055 6499 11068 6505 11082 6511 11096 6518 11110 6525 11124 6531 11138 6538 11151 6545 11165 6552 11179 6560 11193 6567 11207 6574 11220 6582 11234 6589 11248 6597 11262 6605 11276 6612 11290 6620 11303 6628 11317 6636 11331 6645 11345 6653 11359 6661 11373 6669 11386 6678 11400 6686 11414 6695 11428 6703 11442 6712 11455 6721 11469 6729 11483 6738 11497 6747 11511 6756 11525 6765 11538 6774 11552 6783 11566 6792 11580 6801 11594 6810 11608 6819 11621 6828 11635 6838 11649 6847 11663 6856 11677 6865 11690 6875 11704 6884 11718 6893 11732 6903 11746 6912 11760 6922 11773 6931 11787 6940 11801 6950 11815 6959 11829 6969 11843 6978 11856 6987 11870 6997 11884 7006 11898 7016 11912 7025 11926 7034 11939 7044 11953 7053 11967 7062 11981 7072 11995 7081 12008 7090 12022 7099 12036 7108 12050 7117 12064 7127 12078 7136 12091 7145 12105 7154 12119 7163 12133 7171 12147 7180 12161 7189 12174 7198 12188 7206 12202 7215 12216 7224 12230 7232 12243 7241 12257 7249 12271 7257 12285 7266 12299 7274 12313 7282 12326 7290 12340 7298 12354 7306 12368 7314 12382 7321 12396 7329 12409 7336 12423 7344 12437 7351 12451 7359 12465 7366 12478 7373 12492 7380 12506 7387 12520 7394 12534 7400 12548 7407 12561 7414 12575 7420 12589 7427 12603 7433 12617 7439 12631 7446 12644 7452 12658 7458 12672 7464 12686 7470 12700 7476 12713 7482 12727 7488 12741 7494 12755 7499 12769 7505 12783 7511 12796 7516 12810 7522 12824 7527 12838 7533 12852 7538 12866 7544 12879 7549 12893 7555 12907 7560 12921 7565 12935 7571 12948 7576 12962 7581 12976 7586 12990 7592 13004 7597 13018 7602 13031 7607 13045 7612 13059 7618 13073 7623 13087 7628 13101 7633 13114 7638 13128 7644 13142 7649 13156 7654 13170 7659 13183 7665 13197 7670 13211 7675 13225 7680 13239 7686 13253 7691 13266 7696 13280 7702 13294 7707 13308 7713 13322 7718 13336 7724 13349 7729 13363 7735 13377 7741 13391 7746 13405 7752 13418 7758 13432 7764 13446 7770 13460 7775 13474 7781 13488 7788 13501 7794 13515 7800 13529 7806 13543 7812 13557 7819 13571 7825 13584 7832 13598 7838 13612 7845 13626 7852 13640 7858 13654 7865 13667 7872 13681 7879 13695 7887 13709 7894 13723 7901 13736 7909 13750 7916 13764 7924 13778 7931 13792 7939 13806 7947 13819 7955 13833 7963 13847 7972 13861 7980 13875 7988 13889 7997 13902 8006 13916 8015 13930 8024 13944 8033 13958 8042 13971 8051 13985 8061 13999 8070 14013 8080 14027 8090 14041 8100 14054 8110 14068 8120 14082 8131 14096 8141 14110 8152 14124 8163 14137 8174 14151 8185 14165 8196 14179 8207 14193 8219 14206 8230 14220 8242 14234 8254 14248 8265 14262 8277 14276 8290 14289 8302 14303 8314 14317 8327 14331 8339 14345 8352 14359 8365 14372 8377 14386 8390 14400 8403 14414 8416 14428 8430 14441 8443 14455 8456 14469 8470 14483 8483 14497 8497 14511 8511 14524 8524 14538 8538 14552 8552 14566 8566 14580 8580 14594 8594 14607 8608 14621 8623 14635 8637 14649 8651 14663 8666 14676 8680 14690 8695 14704 8709 14718 8724 14732 8738 14746 8753 14759 8768 14773 8782 14787 8797 14801 8812 14815 8827 14829 8842 14842 8857 14856 8872 14870 8887 14884 8902 14898 8917 14911 8932 14925 8947 14939 8962 14953 8977 14967 8992 14981 9007 14994 9022 15008 9037 15022 9052 422 MLine End %%PageTrailer End %I eop showpage %%Trailer end %%EOF gsl-1.16/doc/rand-gumbel.tex0000664000252300025230000004034612171574312012645 00000000000000% GNUPLOT: plain TeX with Postscript \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \begingroup % Inner version of \newdimen from btxmac.tex \edef\innernewdimen{\expandafter\noexpand\csname newdimen\endcsname}% \innernewdimen\GNUPLOTunit \endgroup \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.1bp \special{! %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-gumbel.tex %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 340 %%CreationDate: Wed Sep 16 16:35:38 1998 %%DocumentFonts: %%BoundingBox: 0 0 360 237 %%Orientation: Landscape %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -33 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 0 1 0 DL } def /LT1 { PL [4 dl 2 dl] 0 0 1 DL } def /LT2 { PL [2 dl 3 dl] 1 0 0 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog } \GNUPLOTpicture(3600,2376) \special{" gnudict begin gsave 0 0 translate 0.100 0.100 scale 0 setgray newpath LTb 450 400 M 63 0 V 3037 0 R -63 0 V 450 647 M 63 0 V 3037 0 R -63 0 V 450 893 M 63 0 V 3037 0 R -63 0 V 450 1140 M 63 0 V 3037 0 R -63 0 V 450 1386 M 63 0 V 3037 0 R -63 0 V 450 1633 M 63 0 V 3037 0 R -63 0 V 450 1879 M 63 0 V 3037 0 R -63 0 V 450 2126 M 63 0 V 3037 0 R -63 0 V 450 400 M 0 63 V 0 1663 R 0 -63 V 838 400 M 0 63 V 0 1663 R 0 -63 V 1225 400 M 0 63 V 0 1663 R 0 -63 V 1613 400 M 0 63 V 0 1663 R 0 -63 V 2000 400 M 0 63 V 0 1663 R 0 -63 V 2388 400 M 0 63 V 0 1663 R 0 -63 V 2775 400 M 0 63 V 0 1663 R 0 -63 V 3163 400 M 0 63 V 0 1663 R 0 -63 V 3550 400 M 0 63 V 0 1663 R 0 -63 V LTb 450 400 M 3100 0 V 0 1726 V -3100 0 V 450 400 L 1.000 UL LT0 3187 2013 M 263 0 V 450 411 M 10 1 V 11 1 V 10 1 V 10 2 V 11 1 V 10 1 V 11 2 V 10 1 V 10 2 V 11 2 V 10 2 V 10 2 V 11 2 V 10 2 V 11 2 V 10 3 V 10 2 V 11 3 V 10 3 V 10 3 V 11 3 V 10 3 V 10 4 V 11 3 V 10 4 V 11 4 V 10 4 V 10 4 V 11 4 V 10 5 V 10 4 V 11 5 V 10 5 V 11 5 V 10 6 V 10 5 V 11 6 V 10 6 V 10 6 V 11 6 V 10 6 V 10 7 V 11 6 V 10 7 V 11 7 V 10 8 V 10 7 V 11 7 V 10 8 V 10 8 V 11 8 V 10 8 V 10 8 V 11 9 V 10 8 V 11 9 V 10 9 V 10 9 V 11 9 V 10 9 V 10 9 V 11 9 V 10 10 V 11 9 V 10 10 V 10 10 V 11 10 V 10 9 V 10 10 V 11 10 V 10 10 V 10 10 V 11 11 V 10 10 V 11 10 V 10 10 V 10 10 V 11 10 V 10 11 V 10 10 V 11 10 V 10 10 V 11 10 V 10 10 V 10 10 V 11 10 V 10 10 V 10 10 V 11 10 V 10 10 V 10 9 V 11 10 V 10 9 V 11 10 V 10 9 V 10 9 V 11 9 V 10 9 V 10 9 V 11 9 V 10 8 V 11 9 V 10 8 V 10 8 V 11 8 V 10 8 V 10 8 V 11 7 V 10 8 V 10 7 V 11 7 V 10 7 V 11 7 V 10 6 V 10 7 V 11 6 V 10 6 V 10 6 V 11 5 V 10 6 V 11 5 V 10 5 V 10 5 V 11 5 V 10 4 V 10 5 V 11 4 V 10 4 V 10 3 V 11 4 V 10 3 V 11 4 V 10 3 V 10 2 V 11 3 V 10 2 V 10 3 V 11 2 V 10 2 V 11 1 V 10 2 V 10 1 V 11 2 V 10 1 V 10 0 V 11 1 V 10 1 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 -1 V 11 -1 V 10 0 V 10 -1 V 11 -1 V 10 -2 V 10 -1 V 11 -1 V 10 -2 V 11 -2 V 10 -2 V 10 -2 V 11 -2 V 10 -2 V 10 -3 V 11 -2 V 10 -3 V 11 -3 V 10 -2 V 10 -3 V 11 -4 V 10 -3 V 10 -3 V 11 -3 V 10 -4 V 10 -3 V 11 -4 V 10 -4 V 11 -4 V 10 -3 V 10 -4 V 11 -5 V 10 -4 V 10 -4 V 11 -4 V 10 -4 V 11 -5 V 10 -4 V 10 -5 V 11 -4 V 10 -5 V 10 -5 V 11 -4 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 11 -5 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 11 -5 V 10 -6 V 10 -5 V 11 -5 V 10 -5 V 10 -5 V 11 -6 V 10 -5 V 10 -5 V 11 -6 V 10 -5 V 11 -5 V 10 -6 V 10 -5 V 11 -5 V 10 -5 V 10 -6 V 11 -5 V 10 -5 V 11 -6 V 10 -5 V 10 -5 V 11 -6 V 10 -5 V 10 -5 V 11 -5 V 10 -6 V 10 -5 V 11 -5 V 10 -5 V 11 -5 V 10 -5 V 10 -6 V 11 -5 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 11 -5 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 10 -5 V 11 -4 V 10 -5 V 10 -5 V 11 -5 V 10 -5 V 11 -4 V 10 -5 V 10 -5 V 11 -4 V 10 -5 V 10 -5 V 11 -4 V 10 -5 V 10 -4 V 11 -5 V 10 -4 V 11 -4 V 10 -5 V 10 -4 V 11 -4 V 10 -5 V 10 -4 V 11 -4 V 10 -4 V 11 -4 V 10 -5 V 10 -4 V 11 -4 V 10 -4 V 10 -4 V 11 -4 V 10 -3 V 10 -4 V 11 -4 V 10 -4 V 11 -4 V 10 -4 V 10 -3 V 11 -4 V 10 -4 V 10 -3 V 11 -4 V 10 -3 V 11 -4 V 10 -3 V 10 -4 V 11 -3 V 10 -4 V 1.000 UL LT1 3187 1913 M 263 0 V 450 400 M 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 0 V 11 0 V 10 0 V 10 0 V 11 0 V 10 1 V 10 2 V 11 8 V 10 18 V 10 29 V 11 43 V 10 56 V 11 66 V 10 75 V 10 80 V 11 83 V 10 84 V 10 83 V 11 80 V 10 76 V 11 71 V 10 66 V 10 61 V 11 55 V 10 49 V 10 44 V 11 39 V 10 33 V 10 29 V 11 25 V 10 21 V 11 17 V 10 14 V 10 10 V 11 8 V 10 5 V 10 3 V 11 1 V 10 -1 V 11 -3 V 10 -5 V 10 -5 V 11 -7 V 10 -8 V 10 -9 V 11 -10 V 10 -10 V 10 -11 V 11 -12 V 10 -12 V 11 -12 V 10 -13 V 10 -13 V 11 -14 V 10 -13 V 10 -14 V 11 -14 V 10 -13 V 11 -14 V 10 -14 V 10 -14 V 11 -14 V 10 -13 V 10 -14 V 11 -14 V 10 -13 V 10 -14 V 11 -13 V 10 -13 V 11 -13 V 10 -13 V 10 -13 V 11 -12 V 10 -13 V 10 -12 V 11 -12 V 10 -12 V 11 -12 V 10 -11 V 10 -12 V 11 -11 V 10 -11 V 10 -11 V 11 -11 V 10 -10 V 10 -11 V 11 -10 V 10 -10 V 11 -10 V 10 -10 V 10 -10 V 11 -9 V 10 -9 V 10 -10 V 11 -9 V 10 -8 V 11 -9 V 10 -9 V 10 -8 V 11 -8 V 10 -9 V 10 -8 V 11 -8 V 10 -7 V 10 -8 V 11 -8 V 10 -7 V 11 -7 V 10 -7 V 10 -7 V 11 -7 V 10 -7 V 10 -7 V 11 -6 V 10 -7 V 10 -6 V 11 -7 V 10 -6 V 11 -6 V 10 -6 V 10 -6 V 11 -6 V 10 -5 V 10 -6 V 11 -5 V 10 -6 V 11 -5 V 10 -5 V 10 -6 V 11 -5 V 10 -5 V 10 -5 V 11 -5 V 10 -4 V 10 -5 V 11 -5 V 10 -4 V 11 -5 V 10 -4 V 10 -5 V 11 -4 V 10 -4 V 10 -4 V 11 -5 V 10 -4 V 11 -4 V 10 -4 V 10 -4 V 11 -3 V 10 -4 V stroke grestore end showpage } \put(3137,1913){\rjust{Type 2, $a=1,b=1$}} \put(3137,2013){\rjust{Type 1, $a=1,b=1$}} \put(2000,2276){\cjust{Gumbel Distributions}} \put(2000,150){\cjust{$x$}} \put(100,1263){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cstack{$p(x)$}% \special{ps: currentpoint grestore moveto}% } \put(3550,300){\cjust{2}} \put(3163,300){\cjust{1.5}} \put(2775,300){\cjust{1}} \put(2388,300){\cjust{0.5}} \put(2000,300){\cjust{0}} \put(1613,300){\cjust{-0.5}} \put(1225,300){\cjust{-1}} \put(838,300){\cjust{-1.5}} \put(450,300){\cjust{-2}} \put(400,2126){\rjust{0.7}} \put(400,1879){\rjust{0.6}} \put(400,1633){\rjust{0.5}} \put(400,1386){\rjust{0.4}} \put(400,1140){\rjust{0.3}} \put(400,893){\rjust{0.2}} \put(400,647){\rjust{0.1}} \put(400,400){\rjust{0}} \endGNUPLOTpicture gsl-1.16/doc/qrng.eps0000664000252300025230000006206412171574312011407 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: tmp.ps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Tue Apr 17 17:18:33 2001 %%DocumentFonts: (atend) %%BoundingBox: 50 50 302 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 420 280 M 63 0 V 4529 0 R -63 0 V 336 280 M (0) Rshow 420 739 M 63 0 V 4529 0 R -63 0 V 336 739 M (0.1) Rshow 420 1198 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.2) Rshow 420 1658 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.3) Rshow 420 2117 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.4) Rshow 420 2576 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.5) Rshow 420 3035 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.6) Rshow 420 3494 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.7) Rshow 420 3954 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.8) Rshow 420 4413 M 63 0 V 4529 0 R -63 0 V -4613 0 R (0.9) Rshow 420 4872 M 63 0 V 4529 0 R -63 0 V -4613 0 R (1) Rshow 420 280 M 0 63 V 0 4529 R 0 -63 V 420 140 M (0) Cshow 879 280 M 0 63 V 0 4529 R 0 -63 V 879 140 M (0.1) Cshow 1338 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.2) Cshow 1798 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.3) Cshow 2257 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.4) Cshow 2716 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.5) Cshow 3175 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.6) Cshow 3634 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.7) Cshow 4094 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.8) Cshow 4553 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (0.9) Cshow 5012 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (1) Cshow 1.000 UL LTb 420 280 M 4592 0 V 0 4592 V -4592 0 V 420 280 L 1.000 UP 1.000 UL LT0 2716 2576 Pls 3864 1428 Pls 1568 3724 Pls 2142 2002 Pls 4438 4298 Pls 3290 854 Pls 994 3150 Pls 1281 1715 Pls 3577 4011 Pls 4725 567 Pls 2429 2863 Pls 1855 1141 Pls 4151 3437 Pls 3003 2289 Pls 707 4585 Pls 851 2433 Pls 3147 4729 Pls 4295 1285 Pls 1999 3581 Pls 2573 711 Pls 4869 3007 Pls 3721 1859 Pls 1425 4155 Pls 1138 998 Pls 3434 3294 Pls 4582 2146 Pls 2286 4442 Pls 1712 1572 Pls 4008 3868 Pls 2860 424 Pls 564 2720 Pls 635 1500 Pls 2931 3796 Pls 4079 352 Pls 1783 2648 Pls 2357 926 Pls 4653 3222 Pls 3505 2074 Pls 1209 4370 Pls 1496 639 Pls 3792 2935 Pls 4940 1787 Pls 2644 4083 Pls 2070 2361 Pls 4366 4657 Pls 3218 1213 Pls 922 3509 Pls 779 1356 Pls 3075 3652 Pls 4223 2504 Pls 1927 4800 Pls 2501 1930 Pls 4797 4226 Pls 3649 782 Pls 1353 3078 Pls 1066 2217 Pls 3362 4513 Pls 4510 1069 Pls 2214 3365 Pls 1640 495 Pls 3936 2791 Pls 2788 1643 Pls 492 3939 Pls 528 2110 Pls 2824 4406 Pls 3972 962 Pls 1676 3258 Pls 2250 388 Pls 4546 2684 Pls 3398 1536 Pls 1102 3832 Pls 1389 1249 Pls 3685 3545 Pls 4833 2397 Pls 2537 4693 Pls 1963 1823 Pls 4259 4119 Pls 3111 675 Pls 815 2971 Pls 958 818 Pls 3254 3114 Pls 4402 1966 Pls 2106 4262 Pls 2680 2540 Pls 4976 4836 Pls 3828 1392 Pls 1532 3688 Pls 1245 1679 Pls 3541 3975 Pls 4689 531 Pls 2393 2827 Pls 1819 1105 Pls 4115 3401 Pls 2967 2253 Pls 671 4549 Pls 599 890 Pls 2895 3186 Pls 4043 2038 Pls 1747 4334 Pls 2321 1464 Pls 4617 3760 Pls 3469 316 Pls 1173 2612 Pls 1460 2325 Pls 3756 4621 Pls 4904 1177 Pls 2608 3473 Pls 2034 603 Pls 4330 2899 Pls 3182 1751 Pls 886 4047 Pls 743 1894 Pls 3039 4190 Pls 4187 746 Pls 1891 3042 Pls 2465 1320 Pls 4761 3616 Pls 3613 2468 Pls 1317 4764 Pls 1030 459 Pls 3326 2755 Pls 4474 1607 Pls 2178 3903 Pls 1604 2181 Pls 3900 4477 Pls 2752 1033 Pls 456 3329 Pls 474 1805 Pls 2770 4101 Pls 3918 657 Pls 1622 2953 Pls 2196 1231 Pls 4492 3527 Pls 3344 2379 Pls 1048 4675 Pls 1335 370 Pls 3631 2666 Pls 4779 1518 Pls 2483 3814 Pls 1909 2092 Pls 4205 4388 Pls 3057 944 Pls 761 3240 Pls 904 1087 Pls 3200 3383 Pls 4348 2235 Pls 2052 4531 Pls 2626 1661 Pls 4922 3957 Pls 3774 513 Pls 1478 2809 Pls 1191 2522 Pls 3487 4818 Pls 4635 1374 Pls 2339 3670 Pls 1765 800 Pls 4061 3096 Pls 2913 1948 Pls 617 4244 Pls 689 585 Pls 2985 2881 Pls 4133 1733 Pls 1837 4029 Pls 2411 2307 Pls 4707 4603 Pls 3559 1159 Pls 1263 3455 Pls 1550 1446 Pls 3846 3742 Pls 4994 298 Pls 2698 2594 Pls 2124 872 Pls 4420 3168 Pls 3272 2020 Pls 976 4316 Pls 833 2163 Pls 3129 4459 Pls 4277 1015 Pls 1981 3311 Pls 2555 441 Pls 4851 2737 Pls 3703 1589 Pls 1407 3885 Pls 1120 1302 Pls 3416 3598 Pls 4564 2450 Pls 2268 4746 Pls 1694 1876 Pls 3990 4172 Pls 2842 728 Pls 546 3024 Pls 510 1195 Pls 2806 3491 Pls 3954 2343 Pls 1658 4639 Pls 2232 1769 Pls 4528 4065 Pls 3380 621 Pls 1084 2917 Pls 1371 2056 Pls 3667 4352 Pls 4815 908 Pls 2519 3204 Pls 1945 334 Pls 4241 2630 Pls 3093 1482 Pls 797 3778 Pls 940 1625 Pls 3236 3921 Pls 4384 477 Pls 2088 2773 Pls 2662 1051 Pls 4958 3347 Pls 3810 2199 Pls 1514 4495 Pls 1227 764 Pls 3523 3060 Pls 4671 1912 Pls 2375 4208 Pls 1801 2486 Pls 4097 4782 Pls 2949 1338 Pls 653 3634 Pls 581 2415 Pls 2877 4711 Pls 4025 1267 Pls 1729 3563 Pls 2303 693 Pls 4599 2989 Pls 3451 1841 Pls 1155 4137 Pls 1442 980 Pls 3738 3276 Pls 4886 2128 Pls 2590 4424 Pls 2016 1554 Pls 4312 3850 Pls 3164 406 Pls 868 2702 Pls 725 549 Pls 3021 2845 Pls 4169 1697 Pls 1873 3993 Pls 2447 2271 Pls 4743 4567 Pls 3595 1123 Pls 1299 3419 Pls 1012 1984 Pls 3308 4280 Pls 4456 836 Pls 2160 3132 Pls 1586 1410 Pls 3882 3706 Pls 2734 2558 Pls 438 4854 Pls 447 2567 Pls 2743 4863 Pls 3891 1419 Pls 1595 3715 Pls 2169 845 Pls 4465 3141 Pls 3317 1993 Pls 1021 4289 Pls 1308 1132 Pls 3604 3428 Pls 4752 2280 Pls 2456 4576 Pls 1882 1706 Pls 4178 4002 Pls 3030 558 Pls 734 2854 Pls 877 415 Pls 3173 2711 Pls 4321 1563 Pls 2025 3859 Pls 2599 2137 Pls 4895 4433 Pls 3747 989 Pls 1451 3285 Pls 1164 1850 Pls 3460 4146 Pls 4608 702 Pls 2312 2998 Pls 1738 1276 Pls 4034 3572 Pls 2886 2424 Pls 590 4720 Pls 662 1347 Pls 2958 3643 Pls 4106 2495 Pls 1810 4791 Pls 2384 1921 Pls 4680 4217 Pls 3532 773 Pls 1236 3069 Pls 1523 2208 Pls 3819 4504 Pls 4967 1060 Pls 2671 3356 Pls 2097 486 Pls 4393 2782 Pls 3245 1634 Pls 949 3930 Pls 806 1491 Pls 3102 3787 Pls 4250 343 Pls 1954 2639 Pls 2528 917 Pls 4824 3213 Pls 3676 2065 Pls 1380 4361 Pls 1093 630 Pls 3389 2926 Pls 4537 1778 Pls 2241 4074 Pls 1667 2352 Pls 3963 4648 Pls 2815 1204 Pls 519 3500 Pls 555 737 Pls 2851 3033 Pls 3999 1885 Pls 1703 4181 Pls 2277 2459 Pls 4573 4755 Pls 3425 1311 Pls 1129 3607 Pls 1416 1598 Pls 3712 3894 Pls 4860 450 Pls 2564 2746 Pls 1990 1024 Pls 4286 3320 Pls 3138 2172 Pls 842 4468 Pls 985 2029 Pls 3281 4325 Pls 4429 881 Pls 2133 3177 Pls 2707 307 Pls 5003 2603 Pls 3855 1455 Pls 1559 3751 Pls 1272 1168 Pls 3568 3464 Pls 4716 2316 Pls 2420 4612 Pls 1846 1742 Pls 4142 4038 Pls 2994 594 Pls 698 2890 Pls 626 1957 Pls 2922 4253 Pls 4070 809 Pls 1774 3105 Pls 2348 1383 Pls 4644 3679 Pls 3496 2531 Pls 1200 4827 Pls 1487 522 Pls 3783 2818 Pls 4931 1670 Pls 2635 3966 Pls 2061 2244 Pls 4357 4540 Pls 3209 1096 Pls 913 3392 Pls 770 953 Pls 3066 3249 Pls 4214 2101 Pls 1918 4397 Pls 2492 1527 Pls 4788 3823 Pls 3640 379 Pls 1344 2675 Pls 1057 2388 Pls 3353 4684 Pls 4501 1240 Pls 2205 3536 Pls 1631 666 Pls 3927 2962 Pls 2779 1814 Pls 483 4110 Pls 465 1042 Pls 2761 3338 Pls 3909 2190 Pls 1613 4486 Pls 2187 1616 Pls 4483 3912 Pls 3335 468 Pls 1039 2764 Pls 1326 2477 Pls 3622 4773 Pls 4770 1329 Pls 2474 3625 Pls 1900 755 Pls 4196 3051 Pls 3048 1903 Pls 752 4199 Pls 895 1760 Pls 3191 4056 Pls 4339 612 Pls 2043 2908 Pls 2617 1186 Pls 4913 3482 Pls 3765 2334 Pls 1469 4630 Pls 1182 325 Pls 3478 2621 Pls 4626 1473 Pls 2330 3769 Pls 1756 2047 Pls 4052 4343 Pls 2904 899 Pls 608 3195 Pls 680 2262 Pls 2976 4558 Pls 4124 1114 Pls 1828 3410 Pls 2402 540 Pls 4698 2836 Pls 3550 1688 Pls 1254 3984 Pls 1541 1401 Pls 3837 3697 Pls 4985 2549 Pls 2689 4845 Pls 2115 1975 Pls 4411 4271 Pls 3263 827 Pls 967 3123 Pls 824 684 Pls 3120 2980 Pls 4268 1832 Pls 1972 4128 Pls 2546 2406 Pls 4842 4702 Pls 3694 1258 Pls 1398 3554 Pls 1111 1545 Pls 3407 3841 Pls 4555 397 Pls 2259 2693 Pls 1685 971 Pls 3981 3267 Pls 2833 2119 Pls 537 4415 Pls 501 1652 Pls 2797 3948 Pls 3945 504 Pls 1649 2800 Pls 2223 1078 Pls 4519 3374 Pls 3371 2226 Pls 1075 4522 Pls 1362 791 Pls 3658 3087 Pls 4806 1939 Pls 2510 4235 Pls 1936 2513 Pls 4232 4809 Pls 3084 1365 Pls 788 3661 Pls 931 1222 Pls 3227 3518 Pls 4375 2370 Pls 2079 4666 Pls 2653 1796 Pls 4949 4092 Pls 3801 648 Pls 1505 2944 Pls 1218 2083 Pls 3514 4379 Pls 4662 935 Pls 2366 3231 Pls 1792 361 Pls 4088 2657 Pls 2940 1509 Pls 644 3805 Pls 572 432 Pls 2868 2728 Pls 4016 1580 Pls 1720 3876 Pls 2294 2154 Pls 4590 4450 Pls 3442 1006 Pls 1146 3302 Pls 1433 1867 Pls 3729 4163 Pls 4877 719 Pls 2581 3015 Pls 2007 1293 Pls 4303 3589 Pls 3155 2441 Pls 859 4737 Pls 716 2298 Pls 3012 4594 Pls 4160 1150 Pls 1864 3446 Pls 2438 576 Pls 4734 2872 Pls 3586 1724 Pls 1290 4020 Pls 1003 863 Pls 3299 3159 Pls 4447 2011 Pls 2151 4307 Pls 1577 1437 Pls 3873 3733 Pls 2725 289 Pls 429 2585 Pls 433 1433 Pls 2729 3729 Pls 3877 285 Pls 1581 2581 Pls 2155 859 Pls 4451 3155 Pls 3303 2007 Pls 1007 4303 Pls 1294 572 Pls 3590 2868 Pls 4738 1720 Pls 2442 4016 Pls 1868 2294 Pls 4164 4590 Pls 3016 1146 Pls 720 3442 Pls 864 1289 Pls 3160 3585 Pls 4308 2437 Pls 2012 4733 Pls 2586 1863 Pls 4882 4159 Pls 3734 715 Pls 1438 3011 Pls 1151 2150 Pls 3447 4446 Pls 4595 1002 Pls 2299 3298 Pls 1725 428 Pls 4021 2724 Pls 2873 1576 Pls 577 3872 Pls 649 356 Pls 2945 2652 Pls 4093 1504 Pls 1797 3800 Pls 2371 2078 Pls 4667 4374 Pls 3519 930 Pls 1223 3226 Pls 1510 1791 Pls 3806 4087 Pls 4954 643 Pls 2658 2939 Pls 2084 1217 Pls 4380 3513 Pls 3232 2365 Pls 936 4661 Pls 792 2509 Pls 3088 4805 Pls 4236 1361 Pls 1940 3657 Pls 2514 787 Pls 4810 3083 Pls 3662 1935 Pls 1366 4231 Pls 1079 1074 Pls 3375 3370 Pls 4523 2222 Pls 2227 4518 Pls 1653 1648 Pls 3949 3944 Pls 2801 500 Pls 505 2796 Pls 541 966 Pls 2837 3262 Pls 3985 2114 Pls 1689 4410 Pls 2263 1540 Pls 4559 3836 Pls 3411 392 Pls 1115 2688 Pls 1402 2401 Pls 3698 4697 Pls 4846 1253 Pls 2550 3549 Pls 1976 679 Pls 4272 2975 Pls 3124 1827 Pls 828 4123 Pls 972 1971 Pls 3268 4267 Pls 4416 823 Pls 2120 3119 Pls 2694 1397 Pls 4990 3693 Pls 3842 2545 Pls 1546 4841 Pls 1259 536 Pls 3555 2832 Pls 4703 1684 Pls 2407 3980 Pls 1833 2258 Pls 4129 4554 Pls 2981 1110 Pls 685 3406 Pls 613 2042 Pls 2909 4338 Pls 4057 894 Pls 1761 3190 Pls 2335 320 Pls 4631 2616 Pls 3483 1468 Pls 1187 3764 Pls 1474 1181 Pls 3770 3477 Pls 4918 2329 Pls 2622 4625 Pls 2048 1755 Pls 4344 4051 Pls 3196 607 Pls 900 2903 Pls 756 751 Pls 3052 3047 Pls 4200 1899 Pls 1904 4195 Pls 2478 2473 Pls 4774 4769 Pls 3626 1325 Pls 1330 3621 Pls 1043 1612 Pls 3339 3908 Pls 4487 464 Pls 2191 2760 Pls 1617 1038 Pls 3913 3334 Pls 2765 2186 Pls 469 4482 Pls 487 661 Pls 2783 2957 Pls 3931 1809 Pls 1635 4105 Pls 2209 2383 Pls 4505 4679 Pls 3357 1235 Pls 1061 3531 Pls 1348 1522 Pls 3644 3818 Pls 4792 374 Pls 2496 2670 Pls 1922 948 Pls 4218 3244 Pls 3070 2096 Pls 774 4392 Pls 918 2240 Pls 3214 4536 Pls 4362 1092 Pls 2066 3388 Pls 2640 518 Pls 4936 2814 Pls 3788 1666 Pls 1492 3962 Pls 1205 1379 Pls 3501 3675 Pls 4649 2527 Pls 2353 4823 Pls 1779 1953 Pls 4075 4249 Pls 2927 805 Pls 631 3101 Pls 702 1737 Pls 2998 4033 Pls 4146 589 Pls 1850 2885 Pls 2424 1163 Pls 4720 3459 Pls 3572 2311 Pls 1276 4607 Pls 1563 302 Pls 3859 2598 Pls 5007 1450 Pls 2711 3746 Pls 2137 2024 Pls 4433 4320 Pls 3285 876 Pls 989 3172 Pls 846 1020 Pls 3142 3316 Pls 4290 2168 Pls 1994 4464 Pls 2568 1594 Pls 4864 3890 Pls 3716 446 Pls 1420 2742 Pls 1133 2455 Pls 3429 4751 Pls 4577 1307 Pls 2281 3603 Pls 1707 733 Pls 4003 3029 Pls 2855 1881 Pls 559 4177 Pls 523 2347 Pls 2819 4643 Pls 3967 1199 Pls 1671 3495 Pls 2245 625 Pls 4541 2921 Pls 3393 1773 Pls 1097 4069 Pls 1384 912 Pls 3680 3208 Pls 4828 2060 Pls 2532 4356 Pls 1958 1486 Pls 4254 3782 Pls 3106 338 Pls 810 2634 Pls 954 482 Pls 3250 2778 Pls 4398 1630 Pls 2102 3926 Pls 2676 2204 Pls 4972 4500 Pls 3824 1056 Pls 1528 3352 Pls 1241 1917 Pls 3537 4213 Pls 4685 769 Pls 2389 3065 Pls 1815 1343 Pls 4111 3639 Pls 2963 2491 Pls 667 4787 Pls 595 1271 Pls 2891 3567 Pls 4039 2419 Pls 1743 4715 Pls 2317 1845 Pls 4613 4141 Pls 3465 697 Pls 1169 2993 Pls 1456 2132 Pls 3752 4428 Pls 4900 984 Pls 2604 3280 Pls 2030 410 Pls 4326 2706 Pls 3178 1558 Pls 882 3854 Pls 738 1702 Pls 3034 3998 Pls 4182 554 Pls 1886 2850 Pls 2460 1128 Pls 4756 3424 Pls 3608 2276 Pls 1312 4572 Pls 1025 841 Pls 3321 3137 Pls 4469 1989 Pls 2173 4285 Pls 1599 2563 Pls 3895 4859 Pls 2747 1415 Pls 451 3711 Pls 442 1423 Pls 2738 3719 Pls 3886 2571 Pls 1590 4867 Pls 2164 1997 Pls 4460 4293 Pls 3312 849 Pls 1016 3145 Pls 1303 2284 Pls 3599 4580 Pls 4747 1136 Pls 2451 3432 Pls 1877 562 Pls 4173 2858 Pls 3025 1710 Pls 729 4006 Pls 873 1567 Pls 3169 3863 Pls 4317 419 Pls 2021 2715 Pls 2595 993 Pls 4891 3289 Pls 3743 2141 Pls 1447 4437 Pls 1160 706 Pls 3456 3002 Pls 4604 1854 Pls 2308 4150 Pls 1734 2428 Pls 4030 4724 Pls 2882 1280 Pls 586 3576 Pls 658 2500 Pls 2954 4796 Pls 4102 1352 Pls 1806 3648 Pls 2380 778 Pls 4676 3074 Pls 3528 1926 Pls 1232 4222 Pls 1519 1065 Pls 3815 3361 Pls 4963 2213 Pls 2667 4509 Pls 2093 1639 Pls 4389 3935 Pls 3241 491 Pls 945 2787 Pls 801 347 Pls 3097 2643 Pls 4245 1495 Pls 1949 3791 Pls 2523 2069 Pls 4819 4365 Pls 3671 921 Pls 1375 3217 Pls 1088 1782 Pls 3384 4078 Pls 4532 634 Pls 2236 2930 Pls 1662 1208 Pls 3958 3504 Pls 2810 2356 Pls 514 4652 Pls 550 1890 Pls 2846 4186 Pls 3994 742 Pls 1698 3038 Pls 2272 1316 Pls 4568 3612 Pls 3420 2464 Pls 1124 4760 Pls 1411 455 Pls 3707 2751 Pls 4855 1603 Pls 2559 3899 Pls 1985 2177 Pls 4281 4473 Pls 3133 1029 Pls 837 3325 Pls 981 885 Pls 3277 3181 Pls 4425 2033 Pls 2129 4329 Pls 2703 1459 Pls 4999 3755 Pls 3851 311 Pls 1555 2607 Pls 1268 2320 Pls 3564 4616 Pls 4712 1172 Pls 2416 3468 Pls 1842 598 Pls 4138 2894 Pls 2990 1746 Pls 694 4042 Pls 622 814 Pls 2918 3110 Pls 4066 1962 Pls 1770 4258 Pls 2344 2536 Pls 4640 4832 Pls 3492 1388 Pls 1196 3684 Pls 1483 1675 Pls 3779 3971 Pls 4927 527 Pls 2631 2823 Pls 2057 1101 Pls 4353 3397 Pls 3205 2249 Pls 909 4545 Pls 765 2105 Pls 3061 4401 Pls 4209 957 Pls 1913 3253 Pls 2487 383 Pls 4783 2679 Pls 3635 1531 Pls 1339 3827 Pls 1052 1244 Pls 3348 3540 Pls 4496 2392 Pls 2200 4688 Pls 1626 1818 Pls 3922 4114 Pls 2774 670 Pls 478 2966 Pls 460 2195 Pls 2756 4491 Pls 3904 1047 Pls 1608 3343 Pls 2182 473 Pls 4478 2769 Pls 3330 1621 Pls 1034 3917 Pls 1321 1334 Pls 3617 3630 Pls 4765 2482 Pls 2469 4778 Pls 1895 1908 Pls 4191 4204 Pls 3043 760 Pls 747 3056 Pls 891 616 Pls 3187 2912 Pls 4335 1764 Pls 2039 4060 Pls 2613 2338 Pls 4909 4634 Pls 3761 1190 Pls 1465 3486 Pls 1178 1477 Pls 3474 3773 Pls 4622 329 Pls 2326 2625 Pls 1752 903 Pls 4048 3199 Pls 2900 2051 Pls 604 4347 Pls 676 1119 Pls 2972 3415 Pls 4120 2267 Pls 1824 4563 Pls 2398 1693 Pls 4694 3989 Pls 3546 545 Pls 1250 2841 Pls 1537 2554 Pls 3833 4850 Pls 4981 1406 Pls 2685 3702 Pls 2111 832 Pls 4407 3128 Pls 3259 1980 Pls 963 4276 Pls 819 1836 Pls 3115 4132 Pls 4263 688 Pls 1967 2984 Pls 2541 1262 Pls 4837 3558 Pls 3689 2410 Pls 1393 4706 Pls 1106 401 Pls 3402 2697 Pls 4550 1549 Pls 2254 3845 Pls 1680 2123 Pls 3976 4419 Pls 2828 975 Pls 532 3271 Pls 496 509 Pls 2792 2805 Pls 3940 1657 Pls 1644 3953 Pls 2218 2231 Pls 4514 4527 Pls 3366 1083 Pls 1070 3379 Pls 1357 1944 Pls 3653 4240 Pls 4801 796 Pls 2505 3092 Pls 1931 1370 Pls 4227 3666 Pls 3079 2518 Pls 783 4814 Pls 927 2374 Pls 3223 4670 Pls 4371 1226 Pls 2075 3522 Pls 2649 652 Pls 4945 2948 Pls 3797 1800 Pls 1501 4096 Pls 1214 939 Pls 3510 3235 Pls 4658 2087 Pls 2362 4383 Pls 1788 1513 Pls 4084 3809 Pls 2936 365 Pls 640 2661 Pls 568 1585 Pls 2864 3881 Pls 4012 437 Pls 1716 2733 Pls 2290 1011 Pls 4586 3307 Pls 3438 2159 Pls 1142 4455 Pls 1429 724 Pls 3725 3020 Pls 4873 1872 Pls 2577 4168 Pls 2003 2446 Pls 4299 4742 Pls 3151 1298 Pls 855 3594 Pls 712 1154 Pls 3008 3450 Pls 4156 2302 Pls 1860 4598 Pls 2434 1728 Pls 4730 4024 Pls 3582 580 Pls 1286 2876 Pls 999 2015 Pls 3295 4311 Pls 4443 867 Pls 2147 3163 Pls 1573 293 Pls 3869 2589 Pls 2721 1441 Pls 425 3737 Pls 427 2009 Pls stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/multimin.eps0000664000252300025230000003553112171574312012275 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: minplot.eps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Thu Oct 25 17:40:53 2001 %%DocumentFonts: (atend) %%BoundingBox: 50 50 301 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 252 280 M 63 0 V 4724 0 R -63 0 V 168 280 M (0) Rshow 252 854 M 63 0 V 4724 0 R -63 0 V 168 854 M (1) Rshow 252 1428 M 63 0 V 4724 0 R -63 0 V -4808 0 R (2) Rshow 252 2002 M 63 0 V 4724 0 R -63 0 V -4808 0 R (3) Rshow 252 2576 M 63 0 V 4724 0 R -63 0 V -4808 0 R (4) Rshow 252 3150 M 63 0 V 4724 0 R -63 0 V -4808 0 R (5) Rshow 252 3724 M 63 0 V 4724 0 R -63 0 V -4808 0 R (6) Rshow 252 4298 M 63 0 V 4724 0 R -63 0 V -4808 0 R (7) Rshow 252 4872 M 63 0 V 4724 0 R -63 0 V -4808 0 R (8) Rshow 252 280 M 0 63 V 0 4529 R 0 -63 V 252 140 M (0) Cshow 850 280 M 0 63 V 0 4529 R 0 -63 V 850 140 M (1) Cshow 1449 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (2) Cshow 2047 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (3) Cshow 2646 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (4) Cshow 3244 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (5) Cshow 3842 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (6) Cshow 4441 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (7) Cshow 5039 280 M 0 63 V 0 4529 R 0 -63 V 0 -4669 R (8) Cshow 1.000 UL LTb 252 280 M 4787 0 V 0 4592 V -4787 0 V 252 280 L 1.000 UP 1.000 UL LT0 3242 4293 M -5 -11 V -9 -21 V -17 -43 V -36 -85 V -71 -171 V 2962 3621 L 2677 2939 L 2108 1575 L 1958 1215 L -395 76 V 772 1443 L 78 -15 V 3242 4293 Pls 3237 4282 Pls 3228 4261 Pls 3211 4218 Pls 3175 4133 Pls 3104 3962 Pls 2962 3621 Pls 2677 2939 Pls 2108 1575 Pls 1958 1215 Pls 1563 1291 Pls 772 1443 Pls 850 1428 Pls 1.000 UL LT1 1020 1817 M -59 10 V -59 5 V -61 2 V -60 -3 V -60 -7 V -58 -11 V -56 -14 V -54 -19 V -51 -22 V -47 -26 V -44 -28 V -38 -32 V -34 -33 V -29 -37 V -23 -37 V -18 -40 V -11 -40 V -6 -41 V 1 -41 V 7 -40 V 13 -40 V 18 -39 V 24 -38 V 30 -36 V 35 -33 V 40 -31 V 44 -28 V 48 -25 V 52 -21 V 54 -18 V 57 -14 V 58 -10 V 60 -6 V 60 -2 V 61 2 V 59 7 V 59 10 V 56 15 V 55 18 V 51 22 V 47 25 V 44 28 V 39 31 V 35 34 V 29 36 V 24 37 V 18 40 V 12 40 V 6 41 V 0 40 V -6 41 V -12 40 V -18 40 V -24 37 V -29 36 V -35 34 V -39 31 V -44 28 V -47 25 V -51 22 V -55 18 V -56 15 V -59 10 V -59 7 V -61 2 V -60 -2 V -60 -6 V -58 -10 V -57 -14 V -54 -18 V -52 -21 V -48 -25 V -44 -28 V -40 -31 V -35 -33 V -30 -36 V -24 -38 V -18 -39 V -13 -40 V -7 -40 V -1 -41 V 6 -41 V 11 -40 V 18 -40 V 23 -37 V 29 -37 V 34 -33 V 38 -32 V 44 -28 V 47 -26 V 51 -22 V 54 -19 V 56 -14 V 58 -11 V 60 -7 V 60 -3 V 61 2 V 59 5 V 59 10 V 1.000 UL LT2 1096 1992 M -85 14 V -86 8 V -88 2 V -87 -4 V -87 -10 V -84 -15 V -82 -22 V -78 -27 V -74 -32 V -68 -37 V -25 -16 V 0 -850 R 38 -24 V 70 -36 V 75 -31 V 79 -26 V 82 -20 V 85 -15 V 86 -8 V 88 -3 V 87 3 V 87 9 V 84 16 V 82 20 V 79 27 V 74 31 V 69 37 V 63 41 V 57 45 V 50 49 V 42 52 V 35 54 V 26 57 V 18 58 V 8 59 V 0 60 V -8 59 V -18 58 V -26 57 V -35 54 V -42 52 V -50 49 V -57 45 V -63 41 V -69 37 V -74 31 V -79 27 V -82 20 V -84 16 V -87 9 V -87 3 V -88 -3 V -86 -8 V -85 -15 V -82 -20 V -79 -26 V -75 -31 V -70 -36 V -38 -24 V 0 -850 R 25 -16 V 68 -37 V 74 -32 V 78 -27 V 82 -22 V 84 -15 V 87 -10 V 87 -4 V 88 2 V 86 8 V 85 14 V 1.000 UL LT3 1202 2235 M -121 20 V -125 12 V -125 3 V -125 -6 V 583 2250 L 462 2227 L 345 2197 L -93 -32 V 252 691 M 4 -2 V 368 652 L 486 623 L 608 603 L 732 590 L 125 -4 V 125 5 V 124 13 V 121 22 V 117 30 V 112 38 V 106 45 V 99 52 V 91 59 V 81 64 V 72 70 V 60 74 V 49 79 V 38 81 V 25 83 V 13 85 V 0 84 V -13 85 V -25 83 V -38 81 V -49 79 V -60 74 V -72 70 V -81 64 V -91 59 V -99 52 V -106 45 V -112 38 V -117 30 V -121 22 V -124 13 V -125 5 V -125 -4 V 608 2253 L 486 2233 L 368 2204 L 256 2167 L -4 -2 V 252 691 M 93 -32 V 462 629 L 583 606 L 706 592 L 125 -6 V 125 3 V 125 12 V 121 20 V 1.000 UL LT4 1351 2576 M -173 28 V -177 17 V -178 4 V -178 -8 V 470 2597 L 298 2565 L -46 -12 V 252 303 M 80 -19 V 21 -4 V 992 0 R 41 7 V 167 43 V 159 53 V 151 65 V 141 74 V 129 83 V 115 92 V 102 100 V 86 105 V 70 112 V 53 115 V 36 118 V 18 121 V 0 120 V -18 121 V -36 118 V -53 115 V -70 112 V -86 105 V -102 100 V -115 92 V -129 83 V -141 74 V -151 65 V -159 53 V -167 43 V -173 31 V -176 18 V -178 7 V -178 -5 V 505 2602 L 332 2572 L -80 -19 V 252 303 M 46 -12 V 59 -11 V 994 0 R 1.000 UL LT5 1560 3056 M -245 40 V -251 24 V -252 6 V 560 3114 L 310 3086 L -58 -11 V 2693 280 M 140 112 V 144 140 V 122 151 V 100 157 V 75 164 V 51 168 V 25 170 V 0 172 V -25 170 V -51 168 V -75 164 V -100 157 V -122 151 V -144 140 V -164 131 V -183 118 V -199 106 V -214 91 V -227 76 V -236 60 V -245 44 V -249 26 V -253 10 V -252 -8 V 361 3093 L 252 3074 L 1.000 UL LT6 1855 3731 M -348 57 V -354 32 V -357 9 V 439 3813 L 252 3792 L 3955 280 M 76 94 V 140 223 V 107 231 V 72 238 V 36 241 V 0 242 V -36 241 V -72 238 V -107 231 V -140 223 V -173 212 V -204 200 V -232 184 V -258 168 V -282 148 V -303 129 V -320 108 V -335 85 V -346 62 V -353 38 V -356 13 V 512 3818 L 252 3792 L 1.000 UL LT7 2270 4684 M -491 81 V -501 46 V -505 12 V 269 4801 L -17 -2 V 5039 3282 M -223 219 V -328 260 V -366 237 V -399 211 V -428 182 V -453 152 V -473 121 V -489 87 V -499 54 V -505 19 V 371 4808 L 252 4796 L stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/examples/0000775000252300025230000000000012172254164011616 500000000000000gsl-1.16/doc/examples/bspline.c0000664000252300025230000000543412171574312013343 00000000000000#include #include #include #include #include #include #include #include /* number of data points to fit */ #define N 200 /* number of fit coefficients */ #define NCOEFFS 12 /* nbreak = ncoeffs + 2 - k = ncoeffs - 2 since k = 4 */ #define NBREAK (NCOEFFS - 2) int main (void) { const size_t n = N; const size_t ncoeffs = NCOEFFS; const size_t nbreak = NBREAK; size_t i, j; gsl_bspline_workspace *bw; gsl_vector *B; double dy; gsl_rng *r; gsl_vector *c, *w; gsl_vector *x, *y; gsl_matrix *X, *cov; gsl_multifit_linear_workspace *mw; double chisq, Rsq, dof, tss; gsl_rng_env_setup(); r = gsl_rng_alloc(gsl_rng_default); /* allocate a cubic bspline workspace (k = 4) */ bw = gsl_bspline_alloc(4, nbreak); B = gsl_vector_alloc(ncoeffs); x = gsl_vector_alloc(n); y = gsl_vector_alloc(n); X = gsl_matrix_alloc(n, ncoeffs); c = gsl_vector_alloc(ncoeffs); w = gsl_vector_alloc(n); cov = gsl_matrix_alloc(ncoeffs, ncoeffs); mw = gsl_multifit_linear_alloc(n, ncoeffs); printf("#m=0,S=0\n"); /* this is the data to be fitted */ for (i = 0; i < n; ++i) { double sigma; double xi = (15.0 / (N - 1)) * i; double yi = cos(xi) * exp(-0.1 * xi); sigma = 0.1 * yi; dy = gsl_ran_gaussian(r, sigma); yi += dy; gsl_vector_set(x, i, xi); gsl_vector_set(y, i, yi); gsl_vector_set(w, i, 1.0 / (sigma * sigma)); printf("%f %f\n", xi, yi); } /* use uniform breakpoints on [0, 15] */ gsl_bspline_knots_uniform(0.0, 15.0, bw); /* construct the fit matrix X */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); /* compute B_j(xi) for all j */ gsl_bspline_eval(xi, B, bw); /* fill in row i of X */ for (j = 0; j < ncoeffs; ++j) { double Bj = gsl_vector_get(B, j); gsl_matrix_set(X, i, j, Bj); } } /* do the fit */ gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw); dof = n - ncoeffs; tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size); Rsq = 1.0 - chisq / tss; fprintf(stderr, "chisq/dof = %e, Rsq = %f\n", chisq / dof, Rsq); /* output the smoothed curve */ { double xi, yi, yerr; printf("#m=1,S=0\n"); for (xi = 0.0; xi < 15.0; xi += 0.1) { gsl_bspline_eval(xi, B, bw); gsl_multifit_linear_est(B, c, cov, &yi, &yerr); printf("%f %f\n", xi, yi); } } gsl_rng_free(r); gsl_bspline_free(bw); gsl_vector_free(B); gsl_vector_free(x); gsl_vector_free(y); gsl_matrix_free(X); gsl_vector_free(c); gsl_vector_free(w); gsl_matrix_free(cov); gsl_multifit_linear_free(mw); return 0; } /* main() */ gsl-1.16/doc/examples/integration.out0000664000252300025230000000025712171574312014615 00000000000000result = -3.999999999999973799 exact result = -4.000000000000000000 estimated error = 0.000000000000246025 actual error = 0.000000000000026201 intervals = 8 gsl-1.16/doc/examples/min.c0000664000252300025230000000257112171574312012471 00000000000000#include #include #include #include double fn1 (double x, void * params) { return cos(x) + 1.0; } int main (void) { int status; int iter = 0, max_iter = 100; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = 2.0, m_expected = M_PI; double a = 0.0, b = 6.0; gsl_function F; F.function = &fn1; F.params = 0; T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc (T); gsl_min_fminimizer_set (s, &F, m, a, b); printf ("using %s method\n", gsl_min_fminimizer_name (s)); printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min", "err", "err(est)"); printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); do { iter++; status = gsl_min_fminimizer_iterate (s); m = gsl_min_fminimizer_x_minimum (s); a = gsl_min_fminimizer_x_lower (s); b = gsl_min_fminimizer_x_upper (s); status = gsl_min_test_interval (a, b, 0.001, 0.0); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d [%.7f, %.7f] " "%.7f %+.7f %.7f\n", iter, a, b, m, m - m_expected, b - a); } while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free (s); return status; } gsl-1.16/doc/examples/specfun.c0000664000252300025230000000041412171574312013343 00000000000000#include #include int main (void) { double x = 5.0; double expected = -0.17759677131433830434739701; double y = gsl_sf_bessel_J0 (x); printf ("J0(5.0) = %.18f\n", y); printf ("exact = %.18f\n", expected); return 0; } gsl-1.16/doc/examples/ntuplew.c0000664000252300025230000000130612171574312013377 00000000000000#include #include #include struct data { double x; double y; double z; }; int main (void) { const gsl_rng_type * T; gsl_rng * r; struct data ntuple_row; int i; gsl_ntuple *ntuple = gsl_ntuple_create ("test.dat", &ntuple_row, sizeof (ntuple_row)); gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < 10000; i++) { ntuple_row.x = gsl_ran_ugaussian (r); ntuple_row.y = gsl_ran_ugaussian (r); ntuple_row.z = gsl_ran_ugaussian (r); gsl_ntuple_write (ntuple); } gsl_ntuple_close (ntuple); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/permseq.c0000664000252300025230000000051612171574312013357 00000000000000#include #include int main (void) { gsl_permutation * p = gsl_permutation_alloc (3); gsl_permutation_init (p); do { gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); } while (gsl_permutation_next(p) == GSL_SUCCESS); gsl_permutation_free (p); return 0; } gsl-1.16/doc/examples/polyroots.c0000664000252300025230000000072112171574312013753 00000000000000#include #include int main (void) { int i; /* coefficients of P(x) = -1 + x^5 */ double a[6] = { -1, 0, 0, 0, 0, 1 }; double z[10]; gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (6); gsl_poly_complex_solve (a, 6, w, z); gsl_poly_complex_workspace_free (w); for (i = 0; i < 5; i++) { printf ("z%d = %+.18f %+.18f\n", i, z[2*i], z[2*i+1]); } return 0; } gsl-1.16/doc/examples/integration.c0000664000252300025230000000147412171574312014232 00000000000000#include #include #include double f (double x, void * params) { double alpha = *(double *) params; double f = log(alpha*x) / sqrt(x); return f; } int main (void) { gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000); double result, error; double expected = -4.0; double alpha = 1.0; gsl_function F; F.function = &f; F.params = α gsl_integration_qags (&F, 0, 1, 0, 1e-7, 1000, w, &result, &error); printf ("result = % .18f\n", result); printf ("exact result = % .18f\n", expected); printf ("estimated error = % .18f\n", error); printf ("actual error = % .18f\n", result - expected); printf ("intervals = %d\n", w->size); gsl_integration_workspace_free (w); return 0; } gsl-1.16/doc/examples/min.out0000664000252300025230000000136712171574312013060 00000000000000 0 [0.0000000, 6.0000000] 2.0000000 -1.1415927 6.0000000 1 [2.0000000, 6.0000000] 3.2758640 +0.1342713 4.0000000 2 [2.0000000, 3.2831929] 3.2758640 +0.1342713 1.2831929 3 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862 4 [2.8689068, 3.2831929] 3.2758640 +0.1342713 0.4142862 5 [2.8689068, 3.2758640] 3.1460585 +0.0044658 0.4069572 6 [3.1346075, 3.2758640] 3.1460585 +0.0044658 0.1412565 7 [3.1346075, 3.1874620] 3.1460585 +0.0044658 0.0528545 8 [3.1346075, 3.1460585] 3.1460585 +0.0044658 0.0114510 9 [3.1346075, 3.1460585] 3.1424060 +0.0008133 0.0114510 10 [3.1346075, 3.1424060] 3.1415885 -0.0000041 0.0077985 Converged: 11 [3.1415885, 3.1424060] 3.1415927 -0.0000000 0.0008175 gsl-1.16/doc/examples/randpoisson.out0000664000252300025230000000002512171574312014622 00000000000000 2 5 5 2 1 0 3 4 1 1 gsl-1.16/doc/examples/blas.c0000664000252300025230000000127012171574312012622 00000000000000#include #include int main (void) { double a[] = { 0.11, 0.12, 0.13, 0.21, 0.22, 0.23 }; double b[] = { 1011, 1012, 1021, 1022, 1031, 1032 }; double c[] = { 0.00, 0.00, 0.00, 0.00 }; gsl_matrix_view A = gsl_matrix_view_array(a, 2, 3); gsl_matrix_view B = gsl_matrix_view_array(b, 3, 2); gsl_matrix_view C = gsl_matrix_view_array(c, 2, 2); /* Compute C = A B */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, &A.matrix, &B.matrix, 0.0, &C.matrix); printf ("[ %g, %g\n", c[0], c[1]); printf (" %g, %g ]\n", c[2], c[3]); return 0; } gsl-1.16/doc/examples/cblas.out0000664000252300025230000000004412171574312013350 00000000000000[ 367.76, 368.12 674.06, 674.72 ] gsl-1.16/doc/examples/fftreal.c0000664000252300025230000000210412171574312013321 00000000000000#include #include #include #include #include int main (void) { int i, n = 100; double data[n]; gsl_fft_real_wavetable * real; gsl_fft_halfcomplex_wavetable * hc; gsl_fft_real_workspace * work; for (i = 0; i < n; i++) { data[i] = 0.0; } for (i = n / 3; i < 2 * n / 3; i++) { data[i] = 1.0; } for (i = 0; i < n; i++) { printf ("%d: %e\n", i, data[i]); } printf ("\n"); work = gsl_fft_real_workspace_alloc (n); real = gsl_fft_real_wavetable_alloc (n); gsl_fft_real_transform (data, 1, n, real, work); gsl_fft_real_wavetable_free (real); for (i = 11; i < n; i++) { data[i] = 0; } hc = gsl_fft_halfcomplex_wavetable_alloc (n); gsl_fft_halfcomplex_inverse (data, 1, n, hc, work); gsl_fft_halfcomplex_wavetable_free (hc); for (i = 0; i < n; i++) { printf ("%d: %e\n", i, data[i]); } gsl_fft_real_workspace_free (work); return 0; } gsl-1.16/doc/examples/interp.c0000664000252300025230000000140312171574312013200 00000000000000#include #include #include #include #include int main (void) { int i; double xi, yi, x[10], y[10]; printf ("#m=0,S=2\n"); for (i = 0; i < 10; i++) { x[i] = i + 0.5 * sin (i); y[i] = i + cos (i * i); printf ("%g %g\n", x[i], y[i]); } printf ("#m=1,S=0\n"); { gsl_interp_accel *acc = gsl_interp_accel_alloc (); gsl_spline *spline = gsl_spline_alloc (gsl_interp_cspline, 10); gsl_spline_init (spline, x, y, 10); for (xi = x[0]; xi < x[9]; xi += 0.01) { yi = gsl_spline_eval (spline, xi, acc); printf ("%g %g\n", xi, yi); } gsl_spline_free (spline); gsl_interp_accel_free (acc); } return 0; } gsl-1.16/doc/examples/fftmr.c0000664000252300025230000000230412171574312013016 00000000000000#include #include #include #include #define REAL(z,i) ((z)[2*(i)]) #define IMAG(z,i) ((z)[2*(i)+1]) int main (void) { int i; const int n = 630; double data[2*n]; gsl_fft_complex_wavetable * wavetable; gsl_fft_complex_workspace * workspace; for (i = 0; i < n; i++) { REAL(data,i) = 0.0; IMAG(data,i) = 0.0; } data[0] = 1.0; for (i = 1; i <= 10; i++) { REAL(data,i) = REAL(data,n-i) = 1.0; } for (i = 0; i < n; i++) { printf ("%d: %e %e\n", i, REAL(data,i), IMAG(data,i)); } printf ("\n"); wavetable = gsl_fft_complex_wavetable_alloc (n); workspace = gsl_fft_complex_workspace_alloc (n); for (i = 0; i < wavetable->nf; i++) { printf ("# factor %d: %d\n", i, wavetable->factor[i]); } gsl_fft_complex_forward (data, 1, n, wavetable, workspace); for (i = 0; i < n; i++) { printf ("%d: %e %e\n", i, REAL(data,i), IMAG(data,i)); } gsl_fft_complex_wavetable_free (wavetable); gsl_fft_complex_workspace_free (workspace); return 0; } gsl-1.16/doc/examples/block.c0000664000252300025230000000036212171574312012774 00000000000000#include #include int main (void) { gsl_block * b = gsl_block_alloc (100); printf ("length of block = %u\n", b->size); printf ("block data address = %#x\n", b->data); gsl_block_free (b); return 0; } gsl-1.16/doc/examples/sum.out0000664000252300025230000000042712171574312013075 00000000000000term-by-term sum = 1.5961632439130233 using 20 terms term-by-term sum = 1.5759958390005426 using 13 terms exact value = 1.6449340668482264 accelerated sum = 1.6449340668166479 using 13 terms estimated error = 0.0000000000508580 actual error = -0.0000000000315785 gsl-1.16/doc/examples/qrng.c0000664000252300025230000000044412171574312012652 00000000000000#include #include int main (void) { int i; gsl_qrng * q = gsl_qrng_alloc (gsl_qrng_sobol, 2); for (i = 0; i < 1024; i++) { double v[2]; gsl_qrng_get (q, v); printf ("%.5f %.5f\n", v[0], v[1]); } gsl_qrng_free (q); return 0; } gsl-1.16/doc/examples/intro.c0000664000252300025230000000025512171574312013036 00000000000000#include #include int main (void) { double x = 5.0; double y = gsl_sf_bessel_J0 (x); printf ("J0(%g) = %.18e\n", x, y); return 0; } gsl-1.16/doc/examples/roots.c0000664000252300025230000000254012171574312013050 00000000000000#include #include #include #include #include "demo_fn.h" #include "demo_fn.c" int main (void) { int status; int iter = 0, max_iter = 100; const gsl_root_fsolver_type *T; gsl_root_fsolver *s; double r = 0, r_expected = sqrt (5.0); double x_lo = 0.0, x_hi = 5.0; gsl_function F; struct quadratic_params params = {1.0, 0.0, -5.0}; F.function = &quadratic; F.params = ¶ms; T = gsl_root_fsolver_brent; s = gsl_root_fsolver_alloc (T); gsl_root_fsolver_set (s, &F, x_lo, x_hi); printf ("using %s method\n", gsl_root_fsolver_name (s)); printf ("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "root", "err", "err(est)"); do { iter++; status = gsl_root_fsolver_iterate (s); r = gsl_root_fsolver_root (s); x_lo = gsl_root_fsolver_x_lower (s); x_hi = gsl_root_fsolver_x_upper (s); status = gsl_root_test_interval (x_lo, x_hi, 0, 0.001); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", iter, x_lo, x_hi, r, r - r_expected, x_hi - x_lo); } while (status == GSL_CONTINUE && iter < max_iter); gsl_root_fsolver_free (s); return status; } gsl-1.16/doc/examples/block.out0000664000252300025230000000006512171574312013361 00000000000000length of block = 100 block data address = 0x804b0d8 gsl-1.16/doc/examples/diff.c0000664000252300025230000000117412171574312012614 00000000000000#include #include #include double f (double x, void * params) { return pow (x, 1.5); } int main (void) { gsl_function F; double result, abserr; F.function = &f; F.params = 0; printf ("f(x) = x^(3/2)\n"); gsl_deriv_central (&F, 2.0, 1e-8, &result, &abserr); printf ("x = 2.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n\n", 1.5 * sqrt(2.0)); gsl_deriv_forward (&F, 0.0, 1e-8, &result, &abserr); printf ("x = 0.0\n"); printf ("f'(x) = %.10f +/- %.10f\n", result, abserr); printf ("exact = %.10f\n", 0.0); return 0; } gsl-1.16/doc/examples/intro.out0000664000252300025230000000004212171574312013415 00000000000000J0(5) = -1.775967713143382920e-01 gsl-1.16/doc/examples/combination.c0000664000252300025230000000073412171574312014207 00000000000000#include #include int main (void) { gsl_combination * c; size_t i; printf ("All subsets of {0,1,2,3} by size:\n") ; for (i = 0; i <= 4; i++) { c = gsl_combination_calloc (4, i); do { printf ("{"); gsl_combination_fprintf (stdout, c, " %u"); printf (" }\n"); } while (gsl_combination_next (c) == GSL_SUCCESS); gsl_combination_free (c); } return 0; } gsl-1.16/doc/examples/expfit.c0000664000252300025230000000304012171574312013175 00000000000000/* expfit.c -- model functions for exponential + background */ struct data { size_t n; double * y; double * sigma; }; int expb_f (const gsl_vector * x, void *data, gsl_vector * f) { size_t n = ((struct data *)data)->n; double *y = ((struct data *)data)->y; double *sigma = ((struct data *) data)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); double b = gsl_vector_get (x, 2); size_t i; for (i = 0; i < n; i++) { /* Model Yi = A * exp(-lambda * i) + b */ double t = i; double Yi = A * exp (-lambda * t) + b; gsl_vector_set (f, i, (Yi - y[i])/sigma[i]); } return GSL_SUCCESS; } int expb_df (const gsl_vector * x, void *data, gsl_matrix * J) { size_t n = ((struct data *)data)->n; double *sigma = ((struct data *) data)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); size_t i; for (i = 0; i < n; i++) { /* Jacobian matrix J(i,j) = dfi / dxj, */ /* where fi = (Yi - yi)/sigma[i], */ /* Yi = A * exp(-lambda * i) + b */ /* and the xj are the parameters (A,lambda,b) */ double t = i; double s = sigma[i]; double e = exp(-lambda * t); gsl_matrix_set (J, i, 0, e/s); gsl_matrix_set (J, i, 1, -t * A * e/s); gsl_matrix_set (J, i, 2, 1/s); } return GSL_SUCCESS; } int expb_fdf (const gsl_vector * x, void *data, gsl_vector * f, gsl_matrix * J) { expb_f (x, data, f); expb_df (x, data, J); return GSL_SUCCESS; } gsl-1.16/doc/examples/demo_fn.c0000664000252300025230000000126112171574312013310 00000000000000double quadratic (double x, void *params) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; return (a * x + b) * x + c; } double quadratic_deriv (double x, void *params) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; return 2.0 * a * x + b; } void quadratic_fdf (double x, void *params, double *y, double *dy) { struct quadratic_params *p = (struct quadratic_params *) params; double a = p->a; double b = p->b; double c = p->c; *y = (a * x + b) * x + c; *dy = 2.0 * a * x + b; } gsl-1.16/doc/examples/ieee.c0000664000252300025230000000057312171574312012615 00000000000000#include #include int main (void) { float f = 1.0/3.0; double d = 1.0/3.0; double fd = f; /* promote from float to double */ printf (" f="); gsl_ieee_printf_float(&f); printf ("\n"); printf ("fd="); gsl_ieee_printf_double(&fd); printf ("\n"); printf (" d="); gsl_ieee_printf_double(&d); printf ("\n"); return 0; } gsl-1.16/doc/examples/multiset.out0000664000252300025230000000137412171574312014141 00000000000000all multisets of {0,1,2,3} by size: { } { 0 } { 1 } { 2 } { 3 } { 0 0 } { 0 1 } { 0 2 } { 0 3 } { 1 1 } { 1 2 } { 1 3 } { 2 2 } { 2 3 } { 3 3 } { 0 0 0 } { 0 0 1 } { 0 0 2 } { 0 0 3 } { 0 1 1 } { 0 1 2 } { 0 1 3 } { 0 2 2 } { 0 2 3 } { 0 3 3 } { 1 1 1 } { 1 1 2 } { 1 1 3 } { 1 2 2 } { 1 2 3 } { 1 3 3 } { 2 2 2 } { 2 2 3 } { 2 3 3 } { 3 3 3 } { 0 0 0 0 } { 0 0 0 1 } { 0 0 0 2 } { 0 0 0 3 } { 0 0 1 1 } { 0 0 1 2 } { 0 0 1 3 } { 0 0 2 2 } { 0 0 2 3 } { 0 0 3 3 } { 0 1 1 1 } { 0 1 1 2 } { 0 1 1 3 } { 0 1 2 2 } { 0 1 2 3 } { 0 1 3 3 } { 0 2 2 2 } { 0 2 2 3 } { 0 2 3 3 } { 0 3 3 3 } { 1 1 1 1 } { 1 1 1 2 } { 1 1 1 3 } { 1 1 2 2 } { 1 1 2 3 } { 1 1 3 3 } { 1 2 2 2 } { 1 2 2 3 } { 1 2 3 3 } { 1 3 3 3 } { 2 2 2 2 } { 2 2 2 3 } { 2 2 3 3 } { 2 3 3 3 } { 3 3 3 3 } gsl-1.16/doc/examples/randpoisson.2.out0000664000252300025230000000004612171574312014765 00000000000000GSL_RNG_SEED=123 4 5 6 3 3 1 4 2 5 5 gsl-1.16/doc/examples/siman.c0000664000252300025230000000305112171574312013007 00000000000000#include #include #include #include /* set up parameters for this simulated annealing run */ /* how many points do we try before stepping */ #define N_TRIES 200 /* how many iterations for each T? */ #define ITERS_FIXED_T 1000 /* max step size in random walk */ #define STEP_SIZE 1.0 /* Boltzmann constant */ #define K 1.0 /* initial temperature */ #define T_INITIAL 0.008 /* damping factor for temperature */ #define MU_T 1.003 #define T_MIN 2.0e-6 gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE, K, T_INITIAL, MU_T, T_MIN}; /* now some functions to test in one dimension */ double E1(void *xp) { double x = * ((double *) xp); return exp(-pow((x-1.0),2.0))*sin(8*x); } double M1(void *xp, void *yp) { double x = *((double *) xp); double y = *((double *) yp); return fabs(x - y); } void S1(const gsl_rng * r, void *xp, double step_size) { double old_x = *((double *) xp); double new_x; double u = gsl_rng_uniform(r); new_x = u * 2 * step_size - step_size + old_x; memcpy(xp, &new_x, sizeof(new_x)); } void P1(void *xp) { printf ("%12g", *((double *) xp)); } int main(int argc, char *argv[]) { const gsl_rng_type * T; gsl_rng * r; double x_initial = 15.5; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc(T); gsl_siman_solve(r, &x_initial, E1, S1, M1, P1, NULL, NULL, NULL, sizeof(double), params); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/fitting2.c0000664000252300025230000000340712171574312013433 00000000000000#include #include int main (int argc, char **argv) { int i, n; double xi, yi, ei, chisq; gsl_matrix *X, *cov; gsl_vector *y, *w, *c; if (argc != 2) { fprintf (stderr,"usage: fit n < data\n"); exit (-1); } n = atoi (argv[1]); X = gsl_matrix_alloc (n, 3); y = gsl_vector_alloc (n); w = gsl_vector_alloc (n); c = gsl_vector_alloc (3); cov = gsl_matrix_alloc (3, 3); for (i = 0; i < n; i++) { int count = fscanf (stdin, "%lg %lg %lg", &xi, &yi, &ei); if (count != 3) { fprintf (stderr, "error reading file\n"); exit (-1); } printf ("%g %g +/- %g\n", xi, yi, ei); gsl_matrix_set (X, i, 0, 1.0); gsl_matrix_set (X, i, 1, xi); gsl_matrix_set (X, i, 2, xi*xi); gsl_vector_set (y, i, yi); gsl_vector_set (w, i, 1.0/(ei*ei)); } { gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (n, 3); gsl_multifit_wlinear (X, w, y, c, cov, &chisq, work); gsl_multifit_linear_free (work); } #define C(i) (gsl_vector_get(c,(i))) #define COV(i,j) (gsl_matrix_get(cov,(i),(j))) { printf ("# best fit: Y = %g + %g X + %g X^2\n", C(0), C(1), C(2)); printf ("# covariance matrix:\n"); printf ("[ %+.5e, %+.5e, %+.5e \n", COV(0,0), COV(0,1), COV(0,2)); printf (" %+.5e, %+.5e, %+.5e \n", COV(1,0), COV(1,1), COV(1,2)); printf (" %+.5e, %+.5e, %+.5e ]\n", COV(2,0), COV(2,1), COV(2,2)); printf ("# chisq = %g\n", chisq); } gsl_matrix_free (X); gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (c); gsl_matrix_free (cov); return 0; } gsl-1.16/doc/examples/ieeeround.c0000664000252300025230000000070212171574312013657 00000000000000#include #include #include int main (void) { double x = 1, oldsum = 0, sum = 0; int i = 0; gsl_ieee_env_setup (); /* read GSL_IEEE_MODE */ do { i++; oldsum = sum; sum += x; x = x / i; printf ("i=%2d sum=%.18f error=%g\n", i, sum, sum - M_E); if (i > 30) break; } while (sum != oldsum); return 0; } gsl-1.16/doc/examples/matrixw.c0000664000252300025230000000145112171574312013375 00000000000000#include #include int main (void) { int i, j, k = 0; gsl_matrix * m = gsl_matrix_alloc (100, 100); gsl_matrix * a = gsl_matrix_alloc (100, 100); for (i = 0; i < 100; i++) for (j = 0; j < 100; j++) gsl_matrix_set (m, i, j, 0.23 + i + j); { FILE * f = fopen ("test.dat", "wb"); gsl_matrix_fwrite (f, m); fclose (f); } { FILE * f = fopen ("test.dat", "rb"); gsl_matrix_fread (f, a); fclose (f); } for (i = 0; i < 100; i++) for (j = 0; j < 100; j++) { double mij = gsl_matrix_get (m, i, j); double aij = gsl_matrix_get (a, i, j); if (mij != aij) k++; } gsl_matrix_free (m); gsl_matrix_free (a); printf ("differences = %d (should be zero)\n", k); return (k > 0); } gsl-1.16/doc/examples/sortsmall.out0000664000252300025230000000022612171574312014306 000000000000005 smallest values from 100000 0: 0.000003489200025797 1: 0.000008199829608202 2: 0.000008953968062997 3: 0.000010712770745158 4: 0.000033531803637743 gsl-1.16/doc/examples/combination.out0000664000252300025230000000024212171574312014566 00000000000000All subsets of {0,1,2,3} by size: { } { 0 } { 1 } { 2 } { 3 } { 0 1 } { 0 2 } { 0 3 } { 1 2 } { 1 3 } { 2 3 } { 0 1 2 } { 0 1 3 } { 0 2 3 } { 1 2 3 } { 0 1 2 3 } gsl-1.16/doc/examples/cheb.c0000664000252300025230000000115712171574312012606 00000000000000#include #include #include double f (double x, void *p) { if (x < 0.5) return 0.25; else return 0.75; } int main (void) { int i, n = 10000; gsl_cheb_series *cs = gsl_cheb_alloc (40); gsl_function F; F.function = f; F.params = 0; gsl_cheb_init (cs, &F, 0.0, 1.0); for (i = 0; i < n; i++) { double x = i / (double)n; double r10 = gsl_cheb_eval_n (cs, 10, x); double r40 = gsl_cheb_eval (cs, x); printf ("%g %g %g %g\n", x, GSL_FN_EVAL (&F, x), r10, r40); } gsl_cheb_free (cs); return 0; } gsl-1.16/doc/examples/nmsimplex.out0000664000252300025230000000250012171574312014277 00000000000000 1 6.500e+00 5.000e+00 f() = 512.500 size = 1.130 2 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 3 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 4 5.500e+00 1.000e+00 f() = 252.500 size = 1.409 5 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 6 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 7 0.000e+00 3.000e+00 f() = 60.000 size = 1.847 8 2.094e+00 1.875e+00 f() = 42.275 size = 1.321 9 2.578e-01 1.906e+00 f() = 35.684 size = 1.069 10 5.879e-01 2.445e+00 f() = 35.664 size = 0.841 11 1.258e+00 2.025e+00 f() = 30.680 size = 0.476 12 1.258e+00 2.025e+00 f() = 30.680 size = 0.367 13 1.093e+00 1.849e+00 f() = 30.539 size = 0.300 14 8.830e-01 2.004e+00 f() = 30.137 size = 0.172 15 8.830e-01 2.004e+00 f() = 30.137 size = 0.126 16 9.582e-01 2.060e+00 f() = 30.090 size = 0.106 17 1.022e+00 2.004e+00 f() = 30.005 size = 0.063 18 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 19 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 20 1.022e+00 2.004e+00 f() = 30.005 size = 0.027 21 1.022e+00 2.004e+00 f() = 30.005 size = 0.022 22 9.920e-01 1.997e+00 f() = 30.001 size = 0.016 23 9.920e-01 1.997e+00 f() = 30.001 size = 0.013 converged to minimum at 24 9.920e-01 1.997e+00 f() = 30.001 size = 0.008 gsl-1.16/doc/examples/vectorr.c0000664000252300025230000000052512171574312013367 00000000000000#include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (10); { FILE * f = fopen ("test.dat", "r"); gsl_vector_fscanf (f, v); fclose (f); } for (i = 0; i < 10; i++) { printf ("%g\n", gsl_vector_get(v, i)); } gsl_vector_free (v); return 0; } gsl-1.16/doc/examples/randpoisson.c0000664000252300025230000000112312171574312014235 00000000000000#include #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; int i, n = 10; double mu = 3.0; /* create a generator chosen by the environment variable GSL_RNG_TYPE */ gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); /* print n random variates chosen from the poisson distribution with mean parameter mu */ for (i = 0; i < n; i++) { unsigned int k = gsl_ran_poisson (r, mu); printf (" %u", k); } printf ("\n"); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/fitting3.c0000664000252300025230000000070212171574312013427 00000000000000#include #include #include int main (void) { double x; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); for (x = 0.1; x < 2; x+= 0.1) { double y0 = exp (x); double sigma = 0.1 * y0; double dy = gsl_ran_gaussian (r, sigma); printf ("%g %g %g\n", x, y0 + dy, sigma); } gsl_rng_free(r); return 0; } gsl-1.16/doc/examples/stat.out0000664000252300025230000000023212171574312013236 00000000000000The dataset is 17.2, 18.1, 16.5, 18.3, 12.6 The sample mean is 16.54 The estimated variance is 5.373 The largest value is 18.3 The smallest value is 12.6 gsl-1.16/doc/examples/rngunif.out0000664000252300025230000000012012171574312013727 000000000000000.99974 0.16291 0.28262 0.94720 0.23166 0.48497 0.95748 0.74431 0.54004 0.73995 gsl-1.16/doc/examples/const.c0000664000252300025230000000110112171574312013020 00000000000000#include #include int main (void) { double c = GSL_CONST_MKSA_SPEED_OF_LIGHT; double au = GSL_CONST_MKSA_ASTRONOMICAL_UNIT; double minutes = GSL_CONST_MKSA_MINUTE; /* distance stored in meters */ double r_earth = 1.00 * au; double r_mars = 1.52 * au; double t_min, t_max; t_min = (r_mars - r_earth) / c; t_max = (r_mars + r_earth) / c; printf ("light travel time from Earth to Mars:\n"); printf ("minimum = %.1f minutes\n", t_min / minutes); printf ("maximum = %.1f minutes\n", t_max / minutes); return 0; } gsl-1.16/doc/examples/dwt.dat0000664000252300025230000000523112171574312013026 000000000000000.0167729 0.031888 0.0412921 0.0522264 0.0574496 0.0642031 0.0724869 0.0803607 0.0825233 0.0862162 0.0914394 0.0962525 0.102596 0.108529 0.114053 0.119686 0.104007 0.094039 0.0897813 0.0839935 0.0839162 0.0823088 0.0791713 0.0764437 0.0509741 0.0315983 0.0183161 0.00340114 -0.00542012 -0.0158742 -0.0279611 -0.0396104 -0.0160286 -0.00188697 0.00281451 0.0100455 0.00783627 0.00815656 0.0110063 0.0131783 0.00591016 0.00117148 -0.00103772 -0.00392469 -0.00428218 -0.00531744 -0.00703047 -0.0085619 -0.014332 -0.0189663 -0.0224649 -0.0262678 -0.0289349 -0.0319064 -0.0351822 -0.0383765 -0.0801973 -0.111668 -0.132789 -0.156683 -0.162696 -0.1735 -0.189095 -0.203407 -0.00510083 0.136235 0.341101 0.528945 0.801527 1.0514 1.15485 1.29754 1.16912 1.11335 0.760921 0.487984 0.24772 -0.00129903 -0.0610099 -0.171446 -0.102442 -0.081519 -0.108677 -0.122951 -0.0931296 -0.0751235 -0.0689329 -0.0595764 -0.0723311 -0.0791611 -0.0800665 -0.0825593 -0.0791275 -0.0772832 -0.0770263 -0.0763442 -0.078946 -0.080668 -0.0815099 -0.0825877 -0.0827855 -0.083219 -0.0838884 -0.0844945 -0.0842208 -0.0841828 -0.0843805 -0.0845151 -0.0848855 -0.0851927 -0.0854368 -0.0856977 -0.0858204 -0.0859801 -0.0861769 -0.0863638 -0.0865877 -0.0868017 -0.0870057 -0.0872124 -0.0874562 -0.08769 -0.0879139 -0.0881405 -0.0883571 -0.0885764 -0.0887984 -0.0890196 -0.0890797 -0.0891829 -0.0893293 -0.0894642 -0.0896423 -0.0898087 -0.0899636 -0.0901216 -0.0903228 -0.0905125 -0.0906905 -0.0908717 -0.0910413 -0.0912139 -0.0913897 -0.0915647 -0.0917828 -0.0919894 -0.0921844 -0.0923825 -0.092569 -0.0927586 -0.0929514 -0.0931433 -0.0933236 -0.093507 -0.0936935 -0.0938792 -0.094068 -0.094256 -0.0944431 -0.0946305 -0.103627 -0.110264 -0.11454 -0.119448 -0.121996 -0.125177 -0.12899 -0.132633 -0.133916 -0.135831 -0.138379 -0.140758 -0.143768 -0.14661 -0.149282 -0.151999 -0.121242 -0.0994544 -0.0866362 -0.0714146 -0.0651625 -0.056507 -0.0454482 -0.0350333 -0.033588 -0.0297392 -0.0234871 -0.017879 -0.00986753 -0.00250002 0.00422351 0.0111196 -0.00226639 -0.0102178 -0.0127347 -0.0167077 -0.0152462 -0.0152409 -0.0166917 -0.0177524 -0.0133785 -0.0104608 -0.00899926 -0.00714755 -0.00675204 -0.00596633 -0.00479045 -0.00371911 0.00278678 0.00783649 0.01143 0.0154137 0.0179412 0.0208589 0.0241668 0.0273702 0.0291173 0.0312547 0.0337822 0.0362052 0.0390183 0.0417269 0.044331 0.0469631 0.0347545 0.0265225 0.0222671 0.0169461 0.0156016 0.0131917 0.00971622 0.00652626 0.00731282 0.00703387 0.00568942 0.00463047 0.00250601 0.000667052 -0.000886403 -0.00251636 -0.000169788 0.00111128 0.00132683 0.00182789 0.00126344 0.000984496 0.000991051 0.000921107 -0.000214344 -0.00106429 -0.00162874 -0.00226969 -0.00262514 -0.00305708 -0.00356553 -0.00405348 gsl-1.16/doc/examples/ode-initval.c0000664000252300025230000000250112171574312014112 00000000000000#include #include #include #include int func (double t, const double y[], double f[], void *params) { double mu = *(double *)params; f[0] = y[1]; f[1] = -y[0] - mu*y[1]*(y[0]*y[0] - 1); return GSL_SUCCESS; } int jac (double t, const double y[], double *dfdy, double dfdt[], void *params) { double mu = *(double *)params; gsl_matrix_view dfdy_mat = gsl_matrix_view_array (dfdy, 2, 2); gsl_matrix * m = &dfdy_mat.matrix; gsl_matrix_set (m, 0, 0, 0.0); gsl_matrix_set (m, 0, 1, 1.0); gsl_matrix_set (m, 1, 0, -2.0*mu*y[0]*y[1] - 1.0); gsl_matrix_set (m, 1, 1, -mu*(y[0]*y[0] - 1.0)); dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } int main (void) { double mu = 10; gsl_odeiv2_system sys = {func, jac, 2, &mu}; gsl_odeiv2_driver * d = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk8pd, 1e-6, 1e-6, 0.0); int i; double t = 0.0, t1 = 100.0; double y[2] = { 1.0, 0.0 }; for (i = 1; i <= 100; i++) { double ti = i * t1 / 100.0; int status = gsl_odeiv2_driver_apply (d, &t, ti, y); if (status != GSL_SUCCESS) { printf ("error, return value=%d\n", status); break; } printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_driver_free (d); return 0; } gsl-1.16/doc/examples/rngunif.2.out0000664000252300025230000000016212171574312014075 00000000000000GSL_RNG_TYPE=mrg GSL_RNG_SEED=123 0.33050 0.86631 0.32982 0.67620 0.53391 0.06457 0.16847 0.70229 0.04371 0.86374 gsl-1.16/doc/examples/ode-initval-low-level.c0000664000252300025230000000153212171574312016021 00000000000000int main (void) { const gsl_odeiv2_step_type * T = gsl_odeiv2_step_rk8pd; gsl_odeiv2_step * s = gsl_odeiv2_step_alloc (T, 2); gsl_odeiv2_control * c = gsl_odeiv2_control_y_new (1e-6, 0.0); gsl_odeiv2_evolve * e = gsl_odeiv2_evolve_alloc (2); double mu = 10; gsl_odeiv2_system sys = {func, jac, 2, &mu}; double t = 0.0, t1 = 100.0; double h = 1e-6; double y[2] = { 1.0, 0.0 }; while (t < t1) { int status = gsl_odeiv2_evolve_apply (e, c, s, &sys, &t, t1, &h, y); if (status != GSL_SUCCESS) break; printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_evolve_free (e); gsl_odeiv2_control_free (c); gsl_odeiv2_step_free (s); return 0; } gsl-1.16/doc/examples/blas.out0000664000252300025230000000004312171574312013204 00000000000000[ 367.76, 368.12 674.06, 674.72 ]gsl-1.16/doc/examples/linalglu.c0000664000252300025230000000136312171574312013513 00000000000000#include #include int main (void) { double a_data[] = { 0.18, 0.60, 0.57, 0.96, 0.41, 0.24, 0.99, 0.58, 0.14, 0.30, 0.97, 0.66, 0.51, 0.13, 0.19, 0.85 }; double b_data[] = { 1.0, 2.0, 3.0, 4.0 }; gsl_matrix_view m = gsl_matrix_view_array (a_data, 4, 4); gsl_vector_view b = gsl_vector_view_array (b_data, 4); gsl_vector *x = gsl_vector_alloc (4); int s; gsl_permutation * p = gsl_permutation_alloc (4); gsl_linalg_LU_decomp (&m.matrix, p, &s); gsl_linalg_LU_solve (&m.matrix, p, &b.vector, x); printf ("x = \n"); gsl_vector_fprintf (stdout, x, "%g"); gsl_permutation_free (p); gsl_vector_free (x); return 0; } gsl-1.16/doc/examples/multiset.c0000664000252300025230000000071212171574312013547 00000000000000#include #include int main (void) { gsl_multiset * c; size_t i; printf ("All multisets of {0,1,2,3} by size:\n") ; for (i = 0; i <= 4; i++) { c = gsl_multiset_calloc (4, i); do { printf ("{"); gsl_multiset_fprintf (stdout, c, " %u"); printf (" }\n"); } while (gsl_multiset_next (c) == GSL_SUCCESS); gsl_multiset_free (c); } return 0; } gsl-1.16/doc/examples/interpp.c0000664000252300025230000000160012171574312013357 00000000000000#include #include #include #include #include int main (void) { int N = 4; double x[4] = {0.00, 0.10, 0.27, 0.30}; double y[4] = {0.15, 0.70, -0.10, 0.15}; /* Note: y[0] == y[3] for periodic data */ gsl_interp_accel *acc = gsl_interp_accel_alloc (); const gsl_interp_type *t = gsl_interp_cspline_periodic; gsl_spline *spline = gsl_spline_alloc (t, N); int i; double xi, yi; printf ("#m=0,S=5\n"); for (i = 0; i < N; i++) { printf ("%g %g\n", x[i], y[i]); } printf ("#m=1,S=0\n"); gsl_spline_init (spline, x, y, N); for (i = 0; i <= 100; i++) { xi = (1 - i / 100.0) * x[0] + (i / 100.0) * x[N-1]; yi = gsl_spline_eval (spline, xi, acc); printf ("%g %g\n", xi, yi); } gsl_spline_free (spline); gsl_interp_accel_free (acc); return 0; } gsl-1.16/doc/examples/fft.c0000664000252300025230000000136512171574312012465 00000000000000#include #include #include #include #define REAL(z,i) ((z)[2*(i)]) #define IMAG(z,i) ((z)[2*(i)+1]) int main (void) { int i; double data[2*128]; for (i = 0; i < 128; i++) { REAL(data,i) = 0.0; IMAG(data,i) = 0.0; } REAL(data,0) = 1.0; for (i = 1; i <= 10; i++) { REAL(data,i) = REAL(data,128-i) = 1.0; } for (i = 0; i < 128; i++) { printf ("%d %e %e\n", i, REAL(data,i), IMAG(data,i)); } printf ("\n"); gsl_fft_complex_radix2_forward (data, 1, 128); for (i = 0; i < 128; i++) { printf ("%d %e %e\n", i, REAL(data,i)/sqrt(128), IMAG(data,i)/sqrt(128)); } return 0; } gsl-1.16/doc/examples/specfun.out0000664000252300025230000000010012171574312013720 00000000000000J0(5.0) = -0.177596771314338292 exact = -0.177596771314338292 gsl-1.16/doc/examples/stat.c0000664000252300025230000000121212171574312012650 00000000000000#include #include int main(void) { double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6}; double mean, variance, largest, smallest; mean = gsl_stats_mean(data, 1, 5); variance = gsl_stats_variance(data, 1, 5); largest = gsl_stats_max(data, 1, 5); smallest = gsl_stats_min(data, 1, 5); printf ("The dataset is %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); printf ("The sample mean is %g\n", mean); printf ("The estimated variance is %g\n", variance); printf ("The largest value is %g\n", largest); printf ("The smallest value is %g\n", smallest); return 0; } gsl-1.16/doc/examples/diff.out0000664000252300025230000000022612171574312013176 00000000000000f(x) = x^(3/2) x = 2.0 f'(x) = 2.1213203120 +/- 0.0000004064 exact = 2.1213203436 x = 0.0 f'(x) = 0.0000000160 +/- 0.0000000339 exact = 0.0000000000 gsl-1.16/doc/examples/monte.c0000664000252300025230000000516112171574312013026 00000000000000#include #include #include #include #include #include /* Computation of the integral, I = int (dx dy dz)/(2pi)^3 1/(1-cos(x)cos(y)cos(z)) over (-pi,-pi,-pi) to (+pi, +pi, +pi). The exact answer is Gamma(1/4)^4/(4 pi^3). This example is taken from C.Itzykson, J.M.Drouffe, "Statistical Field Theory - Volume 1", Section 1.1, p21, which cites the original paper M.L.Glasser, I.J.Zucker, Proc.Natl.Acad.Sci.USA 74 1800 (1977) */ /* For simplicity we compute the integral over the region (0,0,0) -> (pi,pi,pi) and multiply by 8 */ double exact = 1.3932039296856768591842462603255; double g (double *k, size_t dim, void *params) { double A = 1.0 / (M_PI * M_PI * M_PI); return A / (1.0 - cos (k[0]) * cos (k[1]) * cos (k[2])); } void display_results (char *title, double result, double error) { printf ("%s ==================\n", title); printf ("result = % .6f\n", result); printf ("sigma = % .6f\n", error); printf ("exact = % .6f\n", exact); printf ("error = % .6f = %.2g sigma\n", result - exact, fabs (result - exact) / error); } int main (void) { double res, err; double xl[3] = { 0, 0, 0 }; double xu[3] = { M_PI, M_PI, M_PI }; const gsl_rng_type *T; gsl_rng *r; gsl_monte_function G = { &g, 3, 0 }; size_t calls = 500000; gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); { gsl_monte_plain_state *s = gsl_monte_plain_alloc (3); gsl_monte_plain_integrate (&G, xl, xu, 3, calls, r, s, &res, &err); gsl_monte_plain_free (s); display_results ("plain", res, err); } { gsl_monte_miser_state *s = gsl_monte_miser_alloc (3); gsl_monte_miser_integrate (&G, xl, xu, 3, calls, r, s, &res, &err); gsl_monte_miser_free (s); display_results ("miser", res, err); } { gsl_monte_vegas_state *s = gsl_monte_vegas_alloc (3); gsl_monte_vegas_integrate (&G, xl, xu, 3, 10000, r, s, &res, &err); display_results ("vegas warm-up", res, err); printf ("converging...\n"); do { gsl_monte_vegas_integrate (&G, xl, xu, 3, calls/5, r, s, &res, &err); printf ("result = % .6f sigma = % .6f " "chisq/dof = %.1f\n", res, err, gsl_monte_vegas_chisq (s)); } while (fabs (gsl_monte_vegas_chisq (s) - 1.0) > 0.5); display_results ("vegas final", res, err); gsl_monte_vegas_free (s); } gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/rng.c0000664000252300025230000000060712171574312012472 00000000000000#include #include gsl_rng * r; /* global generator */ int main (void) { const gsl_rng_type * T; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("generator type: %s\n", gsl_rng_name (r)); printf ("seed = %lu\n", gsl_rng_default_seed); printf ("first value = %lu\n", gsl_rng_get (r)); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/statsort.out0000664000252300025230000000024512171574312014152 00000000000000Original dataset: 17.2, 18.1, 16.5, 18.3, 12.6 Sorted dataset: 12.6, 16.5, 17.2, 18.1, 18.3 The median is 17.2 The upper quartile is 18.1 The lower quartile is 16.5 gsl-1.16/doc/examples/cdf.out0000664000252300025230000000016012171574312013017 00000000000000prob(x < 2.000000) = 0.977250 prob(x > 2.000000) = 0.022750 Pinv(0.977250) = 2.000000 Qinv(0.022750) = 2.000000 gsl-1.16/doc/examples/specfun_e.out0000664000252300025230000000016312171574312014235 00000000000000status = success J0(5.0) = -0.177596771314338292 +/- 0.000000000000000193 exact = -0.177596771314338292 gsl-1.16/doc/examples/odefixed.c0000664000252300025230000000114512171574312013471 00000000000000int main (void) { double mu = 10; gsl_odeiv2_system sys = { func, jac, 2, &mu }; gsl_odeiv2_driver *d = gsl_odeiv2_driver_alloc_y_new (&sys, gsl_odeiv2_step_rk4, 1e-3, 1e-8, 1e-8); double t = 0.0; double y[2] = { 1.0, 0.0 }; int i, s; for (i = 0; i < 100; i++) { s = gsl_odeiv2_driver_apply_fixed_step (d, &t, 1e-3, 1000, y); if (s != GSL_SUCCESS) { printf ("error: driver returned %d\n", s); break; } printf ("%.5e %.5e %.5e\n", t, y[0], y[1]); } gsl_odeiv2_driver_free (d); return s; } gsl-1.16/doc/examples/linalglu.out0000664000252300025230000000004612171574312014075 00000000000000x = -4.05205 -12.6056 1.66091 8.69377 gsl-1.16/doc/examples/multimin.c0000664000252300025230000000231712171574312013542 00000000000000int main (void) { size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2), scale factors 10,20, height 30. */ double par[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 }; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.n = 2; my_func.f = my_f; my_func.df = my_df; my_func.fdf = my_fdf; my_func.params = par; /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do { iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); } while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; } gsl-1.16/doc/examples/sum.c0000664000252300025230000000174612171574312012515 00000000000000#include #include #include #define N 20 int main (void) { double t[N]; double sum_accel, err; double sum = 0; int n; gsl_sum_levin_u_workspace * w = gsl_sum_levin_u_alloc (N); const double zeta_2 = M_PI * M_PI / 6.0; /* terms for zeta(2) = \sum_{n=1}^{\infty} 1/n^2 */ for (n = 0; n < N; n++) { double np1 = n + 1.0; t[n] = 1.0 / (np1 * np1); sum += t[n]; } gsl_sum_levin_u_accel (t, N, w, &sum_accel, &err); printf ("term-by-term sum = % .16f using %d terms\n", sum, N); printf ("term-by-term sum = % .16f using %d terms\n", w->sum_plain, w->terms_used); printf ("exact value = % .16f\n", zeta_2); printf ("accelerated sum = % .16f using %d terms\n", sum_accel, w->terms_used); printf ("estimated error = % .16f\n", err); printf ("actual error = % .16f\n", sum_accel - zeta_2); gsl_sum_levin_u_free (w); return 0; } gsl-1.16/doc/examples/vectorw.c0000664000252300025230000000053412171574312013374 00000000000000#include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (100); for (i = 0; i < 100; i++) { gsl_vector_set (v, i, 1.23 + i); } { FILE * f = fopen ("test.dat", "w"); gsl_vector_fprintf (f, v, "%.5g"); fclose (f); } gsl_vector_free (v); return 0; } gsl-1.16/doc/examples/dwt.c0000664000252300025230000000203712171574312012501 00000000000000#include #include #include #include int main (int argc, char **argv) { int i, n = 256, nc = 20; double *data = malloc (n * sizeof (double)); double *abscoeff = malloc (n * sizeof (double)); size_t *p = malloc (n * sizeof (size_t)); FILE * f; gsl_wavelet *w; gsl_wavelet_workspace *work; w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4); work = gsl_wavelet_workspace_alloc (n); f = fopen (argv[1], "r"); for (i = 0; i < n; i++) { fscanf (f, "%lg", &data[i]); } fclose (f); gsl_wavelet_transform_forward (w, data, 1, n, work); for (i = 0; i < n; i++) { abscoeff[i] = fabs (data[i]); } gsl_sort_index (p, abscoeff, 1, n); for (i = 0; (i + nc) < n; i++) data[p[i]] = 0; gsl_wavelet_transform_inverse (w, data, 1, n, work); for (i = 0; i < n; i++) { printf ("%g\n", data[i]); } gsl_wavelet_free (w); gsl_wavelet_workspace_free (work); free (data); free (abscoeff); free (p); return 0; } gsl-1.16/doc/examples/permshuffle.c0000664000252300025230000000155112171574312014223 00000000000000#include #include #include #include int main (void) { const size_t N = 10; const gsl_rng_type * T; gsl_rng * r; gsl_permutation * p = gsl_permutation_alloc (N); gsl_permutation * q = gsl_permutation_alloc (N); gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("initial permutation:"); gsl_permutation_init (p); gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); printf (" random permutation:"); gsl_ran_shuffle (r, p->data, N, sizeof(size_t)); gsl_permutation_fprintf (stdout, p, " %u"); printf ("\n"); printf ("inverse permutation:"); gsl_permutation_inverse (q, p); gsl_permutation_fprintf (stdout, q, " %u"); printf ("\n"); gsl_permutation_free (p); gsl_permutation_free (q); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/multiminfn.c0000664000252300025230000000153212171574312014064 00000000000000/* Paraboloid centered on (p[0],p[1]), with scale factors (p[2],p[3]) and minimum p[4] */ double my_f (const gsl_vector *v, void *params) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); return p[2] * (x - p[0]) * (x - p[0]) + p[3] * (y - p[1]) * (y - p[1]) + p[4]; } /* The gradient of f, df = (df/dx, df/dy). */ void my_df (const gsl_vector *v, void *params, gsl_vector *df) { double x, y; double *p = (double *)params; x = gsl_vector_get(v, 0); y = gsl_vector_get(v, 1); gsl_vector_set(df, 0, 2.0 * p[2] * (x - p[0])); gsl_vector_set(df, 1, 2.0 * p[3] * (y - p[1])); } /* Compute both f and df together. */ void my_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df) { *f = my_f(x, params); my_df(x, params, df); } gsl-1.16/doc/examples/histogram.c0000664000252300025230000000134112171574312013675 00000000000000#include #include #include int main (int argc, char **argv) { double a, b; size_t n; if (argc != 4) { printf ("Usage: gsl-histogram xmin xmax n\n" "Computes a histogram of the data " "on stdin using n bins from xmin " "to xmax\n"); exit (0); } a = atof (argv[1]); b = atof (argv[2]); n = atoi (argv[3]); { double x; gsl_histogram * h = gsl_histogram_alloc (n); gsl_histogram_set_ranges_uniform (h, a, b); while (fscanf (stdin, "%lg", &x) == 1) { gsl_histogram_increment (h, x); } gsl_histogram_fprintf (stdout, h, "%g", "%g"); gsl_histogram_free (h); } exit (0); } gsl-1.16/doc/examples/multimin.out0000664000252300025230000000073412171574312014130 00000000000000 x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000 gsl-1.16/doc/examples/robfit.c0000664000252300025230000000535712171574312013200 00000000000000#include #include #include int dofit(const gsl_multifit_robust_type *T, const gsl_matrix *X, const gsl_vector *y, gsl_vector *c, gsl_matrix *cov) { int s; gsl_multifit_robust_workspace * work = gsl_multifit_robust_alloc (T, X->size1, X->size2); s = gsl_multifit_robust (X, y, c, cov, work); gsl_multifit_robust_free (work); return s; } int main (int argc, char **argv) { int i; size_t n; const size_t p = 2; /* linear fit */ gsl_matrix *X, *cov; gsl_vector *x, *y, *c, *c_ols; const double a = 1.45; /* slope */ const double b = 3.88; /* intercept */ gsl_rng *r; if (argc != 2) { fprintf (stderr,"usage: robfit n\n"); exit (-1); } n = atoi (argv[1]); X = gsl_matrix_alloc (n, p); x = gsl_vector_alloc (n); y = gsl_vector_alloc (n); c = gsl_vector_alloc (p); c_ols = gsl_vector_alloc (p); cov = gsl_matrix_alloc (p, p); r = gsl_rng_alloc(gsl_rng_default); /* generate linear dataset */ for (i = 0; i < n - 3; i++) { double dx = 10.0 / (n - 1.0); double ei = gsl_rng_uniform(r); double xi = -5.0 + i * dx; double yi = a * xi + b; gsl_vector_set (x, i, xi); gsl_vector_set (y, i, yi + ei); } /* add a few outliers */ gsl_vector_set(x, n - 3, 4.7); gsl_vector_set(y, n - 3, -8.3); gsl_vector_set(x, n - 2, 3.5); gsl_vector_set(y, n - 2, -6.7); gsl_vector_set(x, n - 1, 4.1); gsl_vector_set(y, n - 1, -6.0); /* construct design matrix X for linear fit */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); gsl_matrix_set (X, i, 0, 1.0); gsl_matrix_set (X, i, 1, xi); } /* perform robust and OLS fit */ dofit(gsl_multifit_robust_ols, X, y, c_ols, cov); dofit(gsl_multifit_robust_bisquare, X, y, c, cov); /* output data and model */ for (i = 0; i < n; ++i) { double xi = gsl_vector_get(x, i); double yi = gsl_vector_get(y, i); gsl_vector_view v = gsl_matrix_row(X, i); double y_ols, y_rob, y_err; gsl_multifit_robust_est(&v.vector, c, cov, &y_rob, &y_err); gsl_multifit_robust_est(&v.vector, c_ols, cov, &y_ols, &y_err); printf("%g %g %g %g\n", xi, yi, y_rob, y_ols); } #define C(i) (gsl_vector_get(c,(i))) #define COV(i,j) (gsl_matrix_get(cov,(i),(j))) { printf ("# best fit: Y = %g + %g X\n", C(0), C(1)); printf ("# covariance matrix:\n"); printf ("# [ %+.5e, %+.5e\n", COV(0,0), COV(0,1)); printf ("# %+.5e, %+.5e\n", COV(1,0), COV(1,1)); } gsl_matrix_free (X); gsl_vector_free (x); gsl_vector_free (y); gsl_vector_free (c); gsl_vector_free (c_ols); gsl_matrix_free (cov); gsl_rng_free(r); return 0; } gsl-1.16/doc/examples/const.out0000664000252300025230000000012312171574312013410 00000000000000light travel time from Earth to Mars: minimum = 4.3 minutes maximum = 21.0 minutes gsl-1.16/doc/examples/eigen.c0000664000252300025230000000213212171574312012766 00000000000000#include #include #include int main (void) { double data[] = { 1.0 , 1/2.0, 1/3.0, 1/4.0, 1/2.0, 1/3.0, 1/4.0, 1/5.0, 1/3.0, 1/4.0, 1/5.0, 1/6.0, 1/4.0, 1/5.0, 1/6.0, 1/7.0 }; gsl_matrix_view m = gsl_matrix_view_array (data, 4, 4); gsl_vector *eval = gsl_vector_alloc (4); gsl_matrix *evec = gsl_matrix_alloc (4, 4); gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc (4); gsl_eigen_symmv (&m.matrix, eval, evec, w); gsl_eigen_symmv_free (w); gsl_eigen_symmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_ASC); { int i; for (i = 0; i < 4; i++) { double eval_i = gsl_vector_get (eval, i); gsl_vector_view evec_i = gsl_matrix_column (evec, i); printf ("eigenvalue = %g\n", eval_i); printf ("eigenvector = \n"); gsl_vector_fprintf (stdout, &evec_i.vector, "%g"); } } gsl_vector_free (eval); gsl_matrix_free (evec); return 0; } gsl-1.16/doc/examples/rngunif.c0000664000252300025230000000052112171574312013347 00000000000000#include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; int i, n = 10; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < n; i++) { double u = gsl_rng_uniform (r); printf ("%.5f\n", u); } gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/ntupler.c0000664000252300025230000000241212171574312013371 00000000000000#include #include #include struct data { double x; double y; double z; }; int sel_func (void *ntuple_data, void *params); double val_func (void *ntuple_data, void *params); int main (void) { struct data ntuple_row; gsl_ntuple *ntuple = gsl_ntuple_open ("test.dat", &ntuple_row, sizeof (ntuple_row)); double lower = 1.5; gsl_ntuple_select_fn S; gsl_ntuple_value_fn V; gsl_histogram *h = gsl_histogram_alloc (100); gsl_histogram_set_ranges_uniform(h, 0.0, 10.0); S.function = &sel_func; S.params = &lower; V.function = &val_func; V.params = 0; gsl_ntuple_project (h, ntuple, &V, &S); gsl_histogram_fprintf (stdout, h, "%f", "%f"); gsl_histogram_free (h); gsl_ntuple_close (ntuple); return 0; } int sel_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z, E2, scale; scale = *(double *) params; x = data->x; y = data->y; z = data->z; E2 = x * x + y * y + z * z; return E2 > scale; } double val_func (void *ntuple_data, void *params) { struct data * data = (struct data *) ntuple_data; double x, y, z; x = data->x; y = data->y; z = data->z; return x * x + y * y + z * z; } gsl-1.16/doc/examples/statsort.c0000664000252300025230000000175012171574312013567 00000000000000#include #include #include int main(void) { double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6}; double median, upperq, lowerq; printf ("Original dataset: %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); gsl_sort (data, 1, 5); printf ("Sorted dataset: %g, %g, %g, %g, %g\n", data[0], data[1], data[2], data[3], data[4]); median = gsl_stats_median_from_sorted_data (data, 1, 5); upperq = gsl_stats_quantile_from_sorted_data (data, 1, 5, 0.75); lowerq = gsl_stats_quantile_from_sorted_data (data, 1, 5, 0.25); printf ("The median is %g\n", median); printf ("The upper quartile is %g\n", upperq); printf ("The lower quartile is %g\n", lowerq); return 0; } gsl-1.16/doc/examples/vectorview.out0000664000252300025230000000047712171574312014473 00000000000000matrix column 0, norm = 4.31461 matrix column 1, norm = 3.1205 matrix column 2, norm = 2.19316 matrix column 3, norm = 3.26114 matrix column 4, norm = 2.53416 matrix column 5, norm = 2.57281 matrix column 6, norm = 4.20469 matrix column 7, norm = 3.65202 matrix column 8, norm = 2.08524 matrix column 9, norm = 3.07313 gsl-1.16/doc/examples/eigen_nonsymm.c0000664000252300025230000000250612171574312014553 00000000000000#include #include #include int main (void) { double data[] = { -1.0, 1.0, -1.0, 1.0, -8.0, 4.0, -2.0, 1.0, 27.0, 9.0, 3.0, 1.0, 64.0, 16.0, 4.0, 1.0 }; gsl_matrix_view m = gsl_matrix_view_array (data, 4, 4); gsl_vector_complex *eval = gsl_vector_complex_alloc (4); gsl_matrix_complex *evec = gsl_matrix_complex_alloc (4, 4); gsl_eigen_nonsymmv_workspace * w = gsl_eigen_nonsymmv_alloc (4); gsl_eigen_nonsymmv (&m.matrix, eval, evec, w); gsl_eigen_nonsymmv_free (w); gsl_eigen_nonsymmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_DESC); { int i, j; for (i = 0; i < 4; i++) { gsl_complex eval_i = gsl_vector_complex_get (eval, i); gsl_vector_complex_view evec_i = gsl_matrix_complex_column (evec, i); printf ("eigenvalue = %g + %gi\n", GSL_REAL(eval_i), GSL_IMAG(eval_i)); printf ("eigenvector = \n"); for (j = 0; j < 4; ++j) { gsl_complex z = gsl_vector_complex_get(&evec_i.vector, j); printf("%g + %gi\n", GSL_REAL(z), GSL_IMAG(z)); } } } gsl_vector_complex_free(eval); gsl_matrix_complex_free(evec); return 0; } gsl-1.16/doc/examples/matrix.c0000664000252300025230000000066512171574312013214 00000000000000#include #include int main (void) { int i, j; gsl_matrix * m = gsl_matrix_alloc (10, 3); for (i = 0; i < 10; i++) for (j = 0; j < 3; j++) gsl_matrix_set (m, i, j, 0.23 + 100*i + j); for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */ for (j = 0; j < 3; j++) printf ("m(%d,%d) = %g\n", i, j, gsl_matrix_get (m, i, j)); gsl_matrix_free (m); return 0; } gsl-1.16/doc/examples/sortsmall.c0000664000252300025230000000116112171574312013720 00000000000000#include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; size_t i, k = 5, N = 100000; double * x = malloc (N * sizeof(double)); double * small = malloc (k * sizeof(double)); gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); for (i = 0; i < N; i++) { x[i] = gsl_rng_uniform(r); } gsl_sort_smallest (small, k, x, 1, N); printf ("%d smallest values from %d\n", k, N); for (i = 0; i < k; i++) { printf ("%d: %.18f\n", i, small[i]); } free (x); free (small); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/nmsimplex.c0000664000252300025230000000255212171574312013721 00000000000000int main(void) { double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0}; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex2; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0; int status; double size; /* Starting point */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); /* Set initial step sizes to 1 */ ss = gsl_vector_alloc (2); gsl_vector_set_all (ss, 1.0); /* Initialize method and iterate */ minex_func.n = 2; minex_func.f = my_f; minex_func.params = par; s = gsl_multimin_fminimizer_alloc (T, 2); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { printf ("converged to minimum at\n"); } printf ("%5d %10.3e %10.3e f() = %7.3f size = %.3f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->fval, size); } while (status == GSL_CONTINUE && iter < 100); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); return status; } gsl-1.16/doc/examples/rng.out0000664000252300025230000000007212171574312013053 00000000000000generator type: mt19937 seed = 0 first value = 4293858116 gsl-1.16/doc/examples/polyroots.out0000664000252300025230000000036512171574312014344 00000000000000z0 = -0.809016994374947451 +0.587785252292473137 z1 = -0.809016994374947451 -0.587785252292473137 z2 = +0.309016994374947451 +0.951056516295153642 z3 = +0.309016994374947451 -0.951056516295153642 z4 = +1.000000000000000000 +0.000000000000000000 gsl-1.16/doc/examples/demo_fn.h0000664000252300025230000000035312171574312013316 00000000000000struct quadratic_params { double a, b, c; }; double quadratic (double x, void *params); double quadratic_deriv (double x, void *params); void quadratic_fdf (double x, void *params, double *y, double *dy); gsl-1.16/doc/examples/histogram2d.c0000664000252300025230000000200412171574312014120 00000000000000#include #include #include int main (void) { const gsl_rng_type * T; gsl_rng * r; gsl_histogram2d * h = gsl_histogram2d_alloc (10, 10); gsl_histogram2d_set_ranges_uniform (h, 0.0, 1.0, 0.0, 1.0); gsl_histogram2d_accumulate (h, 0.3, 0.3, 1); gsl_histogram2d_accumulate (h, 0.8, 0.1, 5); gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5); gsl_rng_env_setup (); T = gsl_rng_default; r = gsl_rng_alloc (T); { int i; gsl_histogram2d_pdf * p = gsl_histogram2d_pdf_alloc (h->nx, h->ny); gsl_histogram2d_pdf_init (p, h); for (i = 0; i < 1000; i++) { double x, y; double u = gsl_rng_uniform (r); double v = gsl_rng_uniform (r); gsl_histogram2d_pdf_sample (p, u, v, &x, &y); printf ("%g %g\n", x, y); } gsl_histogram2d_pdf_free (p); } gsl_histogram2d_free (h); gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/fitting.c0000664000252300025230000000216012171574312013344 00000000000000#include #include int main (void) { int i, n = 4; double x[4] = { 1970, 1980, 1990, 2000 }; double y[4] = { 12, 11, 14, 13 }; double w[4] = { 0.1, 0.2, 0.3, 0.4 }; double c0, c1, cov00, cov01, cov11, chisq; gsl_fit_wlinear (x, 1, w, 1, y, 1, n, &c0, &c1, &cov00, &cov01, &cov11, &chisq); printf ("# best fit: Y = %g + %g X\n", c0, c1); printf ("# covariance matrix:\n"); printf ("# [ %g, %g\n# %g, %g]\n", cov00, cov01, cov01, cov11); printf ("# chisq = %g\n", chisq); for (i = 0; i < n; i++) printf ("data: %g %g %g\n", x[i], y[i], 1/sqrt(w[i])); printf ("\n"); for (i = -30; i < 130; i++) { double xf = x[0] + (i/100.0) * (x[n-1] - x[0]); double yf, yf_err; gsl_fit_linear_est (xf, c0, c1, cov00, cov01, cov11, &yf, &yf_err); printf ("fit: %g %g\n", xf, yf); printf ("hi : %g %g\n", xf, yf + yf_err); printf ("lo : %g %g\n", xf, yf - yf_err); } return 0; } gsl-1.16/doc/examples/ecg.dat0000664000252300025230000001223212171574312012765 00000000000000 0.0462458471760794 0.0462458471760794 0.0512458471760794 0.0712458471760795 0.0712458471760795 0.0662458471760795 0.0962458471760795 0.101245847176079 0.116245847176079 0.121245847176079 0.116245847176079 0.106245847176079 0.0912458471760794 0.101245847176079 0.0962458471760795 0.0962458471760795 0.0962458471760795 0.0912458471760794 0.0862458471760795 0.0812458471760795 0.0862458471760795 0.101245847176079 0.111245847176079 0.116245847176079 0.0762458471760795 0.0362458471760795 0.0362458471760795 0.0212458471760795 0.0112458471760795 -0.00875415282392056 -0.00875415282392056 -0.00375415282392055 0.00624584717607946 0.00124584717607945 0.00624584717607946 -0.00375415282392055 -0.0187541528239206 -0.0237541528239205 -0.0187541528239206 -0.0187541528239206 -0.0287541528239205 -0.0237541528239205 -0.0337541528239205 -0.00875415282392056 -0.0137541528239206 -0.00875415282392056 0.00124584717607945 -0.0237541528239205 -0.0337541528239205 -0.0187541528239206 -0.00875415282392056 -0.00375415282392055 -0.00875415282392056 -0.0287541528239205 -0.0437541528239205 -0.0387541528239205 -0.0587541528239205 -0.103754152823921 -0.123754152823921 -0.153754152823921 -0.188754152823921 -0.213754152823921 -0.183754152823921 -0.0937541528239205 0.0212458471760795 0.161245847176079 0.306245847176079 0.556245847176079 0.81124584717608 1.04124584717608 1.19624584717608 1.26124584717608 1.22624584717608 1.07624584717608 0.81124584717608 0.486245847176079 0.211245847176079 0.0512458471760794 -0.0687541528239206 -0.128754152823921 -0.153754152823921 -0.133754152823921 -0.103754152823921 -0.0687541528239206 -0.0687541528239206 -0.0637541528239206 -0.0687541528239206 -0.0587541528239205 -0.0587541528239205 -0.0587541528239205 -0.0737541528239206 -0.0637541528239206 -0.0637541528239206 -0.0637541528239206 -0.0537541528239205 -0.0737541528239206 -0.0887541528239205 -0.0887541528239205 -0.0787541528239206 -0.0737541528239206 -0.0687541528239206 -0.0837541528239206 -0.0737541528239206 -0.0637541528239206 -0.0537541528239205 -0.0687541528239206 -0.0687541528239206 -0.0837541528239206 -0.0887541528239205 -0.0887541528239205 -0.0687541528239206 -0.0687541528239206 -0.0737541528239206 -0.0837541528239206 -0.0937541528239205 -0.0787541528239206 -0.0887541528239205 -0.0837541528239206 -0.0887541528239205 -0.0937541528239205 -0.0887541528239205 -0.0787541528239206 -0.0787541528239206 -0.0737541528239206 -0.0687541528239206 -0.0837541528239206 -0.0887541528239205 -0.0687541528239206 -0.0687541528239206 -0.0637541528239206 -0.0637541528239206 -0.0887541528239205 -0.0837541528239206 -0.0737541528239206 -0.0687541528239206 -0.0537541528239205 -0.0687541528239206 -0.0737541528239206 -0.0887541528239205 -0.0787541528239206 -0.0687541528239206 -0.0687541528239206 -0.0637541528239206 -0.0837541528239206 -0.0937541528239205 -0.0937541528239205 -0.0787541528239206 -0.0737541528239206 -0.0837541528239206 -0.0937541528239205 -0.0987541528239205 -0.0987541528239205 -0.0887541528239205 -0.0937541528239205 -0.103754152823921 -0.0987541528239205 -0.113754152823921 -0.108754152823921 -0.108754152823921 -0.0987541528239205 -0.108754152823921 -0.128754152823921 -0.133754152823921 -0.128754152823921 -0.113754152823921 -0.123754152823921 -0.128754152823921 -0.133754152823921 -0.148754152823921 -0.138754152823921 -0.133754152823921 -0.128754152823921 -0.133754152823921 -0.148754152823921 -0.153754152823921 -0.138754152823921 -0.128754152823921 -0.123754152823921 -0.118754152823921 -0.113754152823921 -0.118754152823921 -0.0887541528239205 -0.0737541528239206 -0.0487541528239205 -0.0437541528239205 -0.0387541528239205 -0.0437541528239205 -0.0187541528239206 -0.00375415282392055 0.00624584717607946 0.00124584717607945 -0.00875415282392056 -0.00875415282392056 0.00124584717607945 0.0112458471760795 0.0212458471760795 0.0212458471760795 0.00124584717607945 0.00124584717607945 0.00624584717607946 0.0162458471760795 0.0162458471760795 0.0262458471760795 0.00124584717607945 -0.00875415282392056 0.0162458471760795 0.0112458471760795 0.0212458471760795 0.0212458471760795 0.00124584717607945 -0.00375415282392055 0.0112458471760795 0.0162458471760795 0.00624584717607946 0.0162458471760795 0.00624584717607946 0.00624584717607946 0.0112458471760795 0.0262458471760795 0.0312458471760795 0.0162458471760795 0.0112458471760795 0.00124584717607945 0.00624584717607946 0.0212458471760795 0.00624584717607946 0.00624584717607946 0.00624584717607946 -0.00875415282392056 0.00624584717607946 0.00124584717607945 0.00624584717607946 -0.00375415282392055 -0.0137541528239206 -0.0187541528239206 -0.0137541528239206 -0.0137541528239206 -0.00875415282392056 -0.00375415282392055 -0.0237541528239205 -0.0287541528239205 -0.0237541528239205 -0.0137541528239206 -0.00875415282392056 -0.00875415282392056 -0.0237541528239205 -0.0237541528239205 -0.0237541528239205 0.00124584717607945 -0.00875415282392056 -0.0137541528239206 -0.0187541528239206 -0.0337541528239205 -0.0137541528239206 -0.00875415282392056 -0.00875415282392056 gsl-1.16/doc/examples/randwalk.c0000664000252300025230000000067312171574312013512 00000000000000#include #include #include int main (void) { int i; double x = 0, y = 0, dx, dy; const gsl_rng_type * T; gsl_rng * r; gsl_rng_env_setup(); T = gsl_rng_default; r = gsl_rng_alloc (T); printf ("%g %g\n", x, y); for (i = 0; i < 10; i++) { gsl_ran_dir_2d (r, &dx, &dy); x += dx; y += dy; printf ("%g %g\n", x, y); } gsl_rng_free (r); return 0; } gsl-1.16/doc/examples/specfun_e.c0000664000252300025230000000070412171574312013651 00000000000000#include #include #include int main (void) { double x = 5.0; gsl_sf_result result; double expected = -0.17759677131433830434739701; int status = gsl_sf_bessel_J0_e (x, &result); printf ("status = %s\n", gsl_strerror(status)); printf ("J0(5.0) = %.18f\n" " +/- % .18f\n", result.val, result.err); printf ("exact = %.18f\n", expected); return status; } gsl-1.16/doc/examples/nlfit.c0000664000252300025230000000507312171574312013022 00000000000000#include #include #include #include #include #include #include #include "expfit.c" #define N 40 void print_state (size_t iter, gsl_multifit_fdfsolver * s); int main (void) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; int status; unsigned int i, iter = 0; const size_t n = N; const size_t p = 3; gsl_matrix *covar = gsl_matrix_alloc (p, p); double y[N], sigma[N]; struct data d = { n, y, sigma}; gsl_multifit_function_fdf f; double x_init[3] = { 1.0, 0.0, 0.0 }; gsl_vector_view x = gsl_vector_view_array (x_init, p); const gsl_rng_type * type; gsl_rng * r; gsl_rng_env_setup(); type = gsl_rng_default; r = gsl_rng_alloc (type); f.f = &expb_f; f.df = &expb_df; f.fdf = &expb_fdf; f.n = n; f.p = p; f.params = &d; /* This is the data to be fitted */ for (i = 0; i < n; i++) { double t = i; y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian (r, 0.1); sigma[i] = 0.1; printf ("data: %u %g %g\n", i, y[i], sigma[i]); }; T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, &f, &x.vector); print_state (iter, s); do { iter++; status = gsl_multifit_fdfsolver_iterate (s); printf ("status = %s\n", gsl_strerror (status)); print_state (iter, s); if (status) break; status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4); } while (status == GSL_CONTINUE && iter < 500); gsl_multifit_covar (s->J, 0.0, covar); #define FIT(i) gsl_vector_get(s->x, i) #define ERR(i) sqrt(gsl_matrix_get(covar,i,i)) { double chi = gsl_blas_dnrm2(s->f); double dof = n - p; double c = GSL_MAX_DBL(1, chi / sqrt(dof)); printf("chisq/dof = %g\n", pow(chi, 2.0) / dof); printf ("A = %.5f +/- %.5f\n", FIT(0), c*ERR(0)); printf ("lambda = %.5f +/- %.5f\n", FIT(1), c*ERR(1)); printf ("b = %.5f +/- %.5f\n", FIT(2), c*ERR(2)); } printf ("status = %s\n", gsl_strerror (status)); gsl_multifit_fdfsolver_free (s); gsl_matrix_free (covar); gsl_rng_free (r); return 0; } void print_state (size_t iter, gsl_multifit_fdfsolver * s) { printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f " "|f(x)| = %g\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->x, 2), gsl_blas_dnrm2 (s->f)); } gsl-1.16/doc/examples/rootnewt.c0000664000252300025230000000227112171574312013564 00000000000000#include #include #include #include #include "demo_fn.h" #include "demo_fn.c" int main (void) { int status; int iter = 0, max_iter = 100; const gsl_root_fdfsolver_type *T; gsl_root_fdfsolver *s; double x0, x = 5.0, r_expected = sqrt (5.0); gsl_function_fdf FDF; struct quadratic_params params = {1.0, 0.0, -5.0}; FDF.f = &quadratic; FDF.df = &quadratic_deriv; FDF.fdf = &quadratic_fdf; FDF.params = ¶ms; T = gsl_root_fdfsolver_newton; s = gsl_root_fdfsolver_alloc (T); gsl_root_fdfsolver_set (s, &FDF, x); printf ("using %s method\n", gsl_root_fdfsolver_name (s)); printf ("%-5s %10s %10s %10s\n", "iter", "root", "err", "err(est)"); do { iter++; status = gsl_root_fdfsolver_iterate (s); x0 = x; x = gsl_root_fdfsolver_root (s); status = gsl_root_test_delta (x, x0, 0, 1e-3); if (status == GSL_SUCCESS) printf ("Converged:\n"); printf ("%5d %10.7f %+10.7f %10.7f\n", iter, x, x - r_expected, x - x0); } while (status == GSL_CONTINUE && iter < max_iter); gsl_root_fdfsolver_free (s); return status; } gsl-1.16/doc/examples/vector.c0000664000252300025230000000054612171574312013210 00000000000000#include #include int main (void) { int i; gsl_vector * v = gsl_vector_alloc (3); for (i = 0; i < 3; i++) { gsl_vector_set (v, i, 1.23 + i); } for (i = 0; i < 100; i++) /* OUT OF RANGE ERROR */ { printf ("v_%d = %g\n", i, gsl_vector_get (v, i)); } gsl_vector_free (v); return 0; } gsl-1.16/doc/examples/vectorview.c0000664000252300025230000000102112171574312014070 00000000000000#include #include #include #include int main (void) { size_t i,j; gsl_matrix *m = gsl_matrix_alloc (10, 10); for (i = 0; i < 10; i++) for (j = 0; j < 10; j++) gsl_matrix_set (m, i, j, sin (i) + cos (j)); for (j = 0; j < 10; j++) { gsl_vector_view column = gsl_matrix_column (m, j); double d; d = gsl_blas_dnrm2 (&column.vector); printf ("matrix column %d, norm = %g\n", j, d); } gsl_matrix_free (m); return 0; } gsl-1.16/doc/examples/cblas.c0000664000252300025230000000111012171574312012756 00000000000000#include #include int main (void) { int lda = 3; float A[] = { 0.11, 0.12, 0.13, 0.21, 0.22, 0.23 }; int ldb = 2; float B[] = { 1011, 1012, 1021, 1022, 1031, 1032 }; int ldc = 2; float C[] = { 0.00, 0.00, 0.00, 0.00 }; /* Compute C = A B */ cblas_sgemm (CblasRowMajor, CblasNoTrans, CblasNoTrans, 2, 2, 3, 1.0, A, lda, B, ldb, 0.0, C, ldc); printf ("[ %g, %g\n", C[0], C[1]); printf (" %g, %g ]\n", C[2], C[3]); return 0; } gsl-1.16/doc/examples/cdf.c0000664000252300025230000000061512171574312012437 00000000000000#include #include int main (void) { double P, Q; double x = 2.0; P = gsl_cdf_ugaussian_P (x); printf ("prob(x < %f) = %f\n", x, P); Q = gsl_cdf_ugaussian_Q (x); printf ("prob(x > %f) = %f\n", x, Q); x = gsl_cdf_ugaussian_Pinv (P); printf ("Pinv(%f) = %f\n", P, x); x = gsl_cdf_ugaussian_Qinv (Q); printf ("Qinv(%f) = %f\n", Q, x); return 0; } gsl-1.16/doc/rand-geometric.tex0000664000252300025230000004702312171574312013347 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-geometric.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-geometric.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 617 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 31 616 R -31 0 V 1051 631 M 0 -63 V 484 63 R 0 -31 V 484 31 R 0 -63 V 484 63 R 0 -31 V 484 31 R 0 -63 V 484 63 R 0 -31 V 484 31 R 0 -63 V 485 63 R 0 -31 V 484 31 R 0 -63 V 484 63 R 0 -31 V 484 31 R 0 -63 V 484 63 R 0 -31 V 484 31 R 0 -63 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 0 3081 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 0 -1541 V 3013 2171 L 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 0 -770 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 0 -385 V 19 0 V 19 0 V 20 0 V 5014 1016 L 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -192 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 0 -97 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4781){\rjust{\strut{}$p=0.5$}}% \put(3955,5244){\cjust{\strut{}Geometric Distribution}}% \put(3955,100){\cjust{\strut{}$k$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(k)$}% \special{ps: currentpoint grestore moveto}% }% \put(6376,400){\cjust{\strut{}5}}% \put(5408,400){\cjust{\strut{}4}}% \put(4440,400){\cjust{\strut{}3}}% \put(3471,400){\cjust{\strut{}2}}% \put(2503,400){\cjust{\strut{}1}}% \put(1535,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 0.7}}% \put(900,4328){\rjust{\strut{} 0.6}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,3096){\rjust{\strut{} 0.4}}% \put(900,2479){\rjust{\strut{} 0.3}}% \put(900,1863){\rjust{\strut{} 0.2}}% \put(900,1247){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/rand-fdist.tex0000664000252300025230000005335712171574312012511 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-fdist.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-fdist.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 2905 31 R 0 -31 V 2904 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1301 4944 M 3 -30 V 19 -181 V 19 -163 V 20 -148 V 19 -135 V 20 -125 V 19 -114 V 20 -106 V 19 -99 V 19 -92 V 20 -87 V 19 -81 V 20 -76 V 19 -72 V 20 -68 V 19 -64 V 19 -61 V 20 -58 V 19 -56 V 20 -53 V 19 -50 V 20 -49 V 19 -46 V 19 -44 V 20 -43 V 19 -41 V 20 -39 V 19 -38 V 20 -37 V 19 -35 V 19 -34 V 20 -33 V 19 -32 V 20 -30 V 19 -30 V 20 -29 V 19 -28 V 19 -27 V 20 -26 V 19 -26 V 20 -25 V 19 -24 V 20 -23 V 19 -23 V 19 -22 V 20 -22 V 19 -21 V 20 -21 V 19 -20 V 20 -19 V 19 -19 V 19 -19 V 20 -18 V 19 -18 V 20 -17 V 19 -17 V 20 -16 V 19 -17 V 19 -15 V 20 -16 V 19 -15 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 19 -14 V 20 -13 V 19 -13 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -10 V 19 -11 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 19 -8 V 20 -7 V 3285 1516 L 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 5325 1089 L 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 1121 V 20 404 V 19 273 V 20 202 V 19 155 V 20 122 V 19 97 V 19 76 V 20 62 V 19 48 V 20 37 V 19 28 V 20 21 V 19 15 V 19 9 V 20 4 V 19 1 V 20 -3 V 19 -6 V 20 -9 V 19 -10 V 19 -13 V 20 -14 V 19 -16 V 20 -17 V 19 -18 V 20 -18 V 19 -20 V 19 -20 V 20 -21 V 19 -21 V 20 -21 V 19 -22 V 20 -22 V 19 -22 V 19 -22 V 20 -22 V 19 -23 V 20 -22 V 19 -22 V 20 -22 V 19 -22 V 19 -22 V 20 -22 V 19 -22 V 20 -21 V 19 -21 V 20 -21 V 19 -21 V 19 -21 V 20 -21 V 19 -20 V 20 -20 V 19 -20 V 20 -20 V 19 -19 V 19 -19 V 20 -19 V 19 -19 V 20 -18 V 19 -19 V 20 -18 V 19 -17 V 19 -18 V 20 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -17 V 19 -16 V 20 -15 V 19 -16 V 20 -15 V 19 -16 V 20 -15 V 19 -14 V 19 -15 V 20 -14 V 19 -14 V 20 -14 V 19 -14 V 20 -14 V 19 -13 V 19 -13 V 20 -14 V 19 -12 V 20 -13 V 19 -13 V 20 -12 V 19 -12 V 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 3052 1890 L 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 19 -8 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 5092 1260 L 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\nu_1=3, \nu_2=2$}}% \put(5957,4781){\rjust{\strut{}$\nu_1=1, \nu_2=1$}}% \put(3955,5244){\cjust{\strut{}F-Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}2}}% \put(3956,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/roots-bisection.eps0000664000252300025230000006033312171574312013560 00000000000000%!PS-Adobe-3.0 EPSF-3.0 %%Creator: Mathematica-PSRender %%BoundingBox: 0 82 432 350 %%Pages: (atend) %%EndComments %%BeginProlog /setrgbcolor dup where { pop pop } { { .114 mul exch .587 mul add exch .299 mul add setgray } bind def } ifelse /C /curveto load def /f /fill load def /F { closepath fill } bind def /L /lineto load def /S /stroke load def /s { closepath stroke } bind def /d /setdash load def /g /setgray load def /m /moveto load def /r /setrgbcolor load def /w /setlinewidth load def /b { gsave gsave F grestore 0 g S grestore newpath } bind def /dot { newpath 0 360 arc fill } bind def %%EndProlog %%Page: 1 1 gsave 0 82.5055 m 432. 82.5055 L 432. 349.495 L 0 349.495 L 0 82.5055 L closepath clip newpath 0 g 0.25 w [ ] 0 d 51.0828 105.864 m 51.0828 106.865 L S 48.0828 92.8629 m /F0 /Times-Roman findfont def F0 10. scalefont setfont (1) show 87.3821 105.864 m 87.3821 106.865 L S 84.3821 92.8629 m (2) show 123.683 105.864 m 123.683 106.865 L S 120.683 92.8629 m (3) show 159.984 105.864 m 159.984 106.865 L S 156.984 92.8629 m (4) show 196.283 105.864 m 196.283 106.865 L S 193.283 92.8629 m (5) show 0.125 w 58.3427 105.864 m 58.3427 106.464 L S 65.6025 105.864 m 65.6025 106.464 L S 72.8624 105.864 m 72.8624 106.464 L S 80.1222 105.864 m 80.1222 106.464 L S 94.6419 105.864 m 94.6419 106.464 L S 101.903 105.864 m 101.903 106.464 L S 109.163 105.864 m 109.163 106.464 L S 116.423 105.864 m 116.423 106.464 L S 130.943 105.864 m 130.943 106.464 L S 138.203 105.864 m 138.203 106.464 L S 145.462 105.864 m 145.462 106.464 L S 152.724 105.864 m 152.724 106.464 L S 167.244 105.864 m 167.244 106.464 L S 174.503 105.864 m 174.503 106.464 L S 181.763 105.864 m 181.763 106.464 L S 189.023 105.864 m 189.023 106.464 L S 43.8214 105.864 m 43.8214 106.464 L S 203.544 105.864 m 203.544 106.464 L S 0.25 w 43.6405 105.864 m 203.725 105.864 L S 43.6405 108.22 m 44.641 108.22 L S 26.6394 104.72 m /F1 /Times-Roman findfont def F1 10. scalefont setfont (-) show 33.2644 104.72 m F0 10. scalefont setfont (1) show 43.6405 131.777 m 44.641 131.777 L S 14.6395 128.277 m F1 10. scalefont setfont (-) show 21.2645 128.277 m F0 10. scalefont setfont (0.5) show 43.6405 155.333 m 44.641 155.333 L S 33.6395 151.833 m (0) show 43.6405 178.89 m 44.641 178.89 L S 21.6395 175.39 m (0.5) show 43.6405 202.446 m 44.641 202.446 L S 33.6395 198.946 m (1) show 0.125 w 43.6405 112.932 m 44.2408 112.932 L S 43.6405 117.643 m 44.2408 117.643 L S 43.6405 122.354 m 44.2408 122.354 L S 43.6405 127.066 m 44.2408 127.066 L S 43.6405 136.488 m 44.2408 136.488 L S 43.6405 141.2 m 44.2408 141.2 L S 43.6405 145.911 m 44.2408 145.911 L S 43.6405 150.622 m 44.2408 150.622 L S 43.6405 160.045 m 44.2408 160.045 L S 43.6405 164.756 m 44.2408 164.756 L S 43.6405 169.467 m 44.2408 169.467 L S 43.6405 174.179 m 44.2408 174.179 L S 43.6405 183.601 m 44.2408 183.601 L S 43.6405 188.312 m 44.2408 188.312 L S 43.6405 193.024 m 44.2408 193.024 L S 43.6405 197.735 m 44.2408 197.735 L S 0.25 w 43.6405 105.864 m 43.6405 204.801 L S 51.0828 203.801 m 51.0828 204.801 L S 87.3821 203.801 m 87.3821 204.801 L S 123.683 203.801 m 123.683 204.801 L S 159.984 203.801 m 159.984 204.801 L S 196.283 203.801 m 196.283 204.801 L S 0.125 w 58.3427 204.201 m 58.3427 204.801 L S 65.6025 204.201 m 65.6025 204.801 L S 72.8624 204.201 m 72.8624 204.801 L S 80.1222 204.201 m 80.1222 204.801 L S 94.6419 204.201 m 94.6419 204.801 L S 101.903 204.201 m 101.903 204.801 L S 109.163 204.201 m 109.163 204.801 L S 116.423 204.201 m 116.423 204.801 L S 130.943 204.201 m 130.943 204.801 L S 138.203 204.201 m 138.203 204.801 L S 145.462 204.201 m 145.462 204.801 L S 152.724 204.201 m 152.724 204.801 L S 167.244 204.201 m 167.244 204.801 L S 174.503 204.201 m 174.503 204.801 L S 181.763 204.201 m 181.763 204.801 L S 189.023 204.201 m 189.023 204.801 L S 43.8214 204.201 m 43.8214 204.801 L S 203.544 204.201 m 203.544 204.801 L S 0.25 w 43.6405 204.801 m 203.725 204.801 L S 202.725 108.22 m 203.725 108.22 L S 202.725 131.777 m 203.725 131.777 L S 202.725 155.333 m 203.725 155.333 L S 202.725 178.89 m 203.725 178.89 L S 202.725 202.446 m 203.725 202.446 L S 0.125 w 203.125 112.932 m 203.725 112.932 L S 203.125 117.643 m 203.725 117.643 L S 203.125 122.354 m 203.725 122.354 L S 203.125 127.066 m 203.725 127.066 L S 203.125 136.488 m 203.725 136.488 L S 203.125 141.2 m 203.725 141.2 L S 203.125 145.911 m 203.725 145.911 L S 203.125 150.622 m 203.725 150.622 L S 203.125 160.045 m 203.725 160.045 L S 203.125 164.756 m 203.725 164.756 L S 203.125 169.467 m 203.725 169.467 L S 203.125 174.179 m 203.725 174.179 L S 203.125 183.601 m 203.725 183.601 L S 203.125 188.312 m 203.725 188.312 L S 203.125 193.024 m 203.725 193.024 L S 203.125 197.735 m 203.725 197.735 L S 0.25 w 203.725 105.864 m 203.725 204.801 L S 43.6405 155.333 m 203.725 155.333 L S gsave 43.6405 105.864 m 203.725 105.864 L 203.725 204.801 L 43.6405 204.801 L 43.6405 105.864 L closepath clip newpath 1.5 w 47.4521 192.238 m 53.6362 196.669 L 56.8555 198.508 L 60.3822 200.133 L 61.967 200.727 L 63.6623 201.267 L 65.2503 201.681 L 66.7167 201.985 L 68.3528 202.233 L 69.214 202.326 L 69.6543 202.363 L 70.1281 202.397 L 70.5411 202.418 L 70.9205 202.432 L 71.1014 202.437 L 71.2999 202.442 L 71.4872 202.445 L 71.6617 202.446 L 71.7674 202.446 L 71.8827 202.446 L 72.0908 202.445 L 72.2941 202.442 L 72.4798 202.438 L 72.6815 202.432 L 72.904 202.424 L 73.3522 202.403 L 73.754 202.378 L 74.1911 202.344 L 74.9851 202.265 L 76.4755 202.056 L 78.214 201.713 L 79.8229 201.3 L 82.8116 200.296 L 86.1094 198.835 L 92.5448 194.961 L 98.7385 190.061 L 105.324 183.745 L 111.667 176.778 L 117.768 169.459 L 124.261 161.237 L 130.512 153.142 L 137.154 144.614 L 143.556 136.733 L 149.713 129.693 L 156.263 123.014 L 162.571 117.574 L 168.636 113.414 L 172.011 111.598 L 175.094 110.27 L 176.62 109.732 L S 176.62 109.732 m 178.283 109.239 L 179.842 108.862 L 181.31 108.587 L 182.106 108.469 L 182.965 108.368 L 183.346 108.331 L 183.747 108.299 L 184.123 108.273 L 184.465 108.254 L 184.866 108.236 L 185.087 108.23 L 185.295 108.225 L 185.487 108.222 L 185.664 108.22 L 185.86 108.22 L 186.068 108.22 L 186.276 108.224 L 186.393 108.225 L 186.499 108.227 L 186.695 108.233 L 186.904 108.24 L 187.344 108.26 L 187.824 108.289 L 188.674 108.363 L 189.474 108.456 L 190.97 108.69 L 192.582 109.029 L 194.327 109.5 L 197.042 110.444 L 199.914 111.715 L S 0.5 g 0.5 w 123.683 155.333 m 123.683 161.982 L S 159.984 155.333 m 159.984 119.678 L S 141.833 155.333 m 141.833 138.806 L S 0 g 123.683 161.982 2. dot 159.984 119.678 2. dot 126.683 163.482 m (a) show 132.683 161.982 m F0 7.125 scalefont setfont (2) show 162.984 121.178 m F0 10. scalefont setfont (b) show 168.984 119.678 m F0 7.125 scalefont setfont (2) show grestore 0 g 0.25 w [ ] 0 d 266.593 105.864 m 266.593 106.865 L S 263.593 92.8629 m F0 10. scalefont setfont (1) show 302.892 105.864 m 302.892 106.865 L S 299.892 92.8629 m (2) show 339.193 105.864 m 339.193 106.865 L S 336.193 92.8629 m (3) show 375.494 105.864 m 375.494 106.865 L S 372.494 92.8629 m (4) show 411.793 105.864 m 411.793 106.865 L S 408.793 92.8629 m (5) show 0.125 w 273.853 105.864 m 273.853 106.464 L S 281.113 105.864 m 281.113 106.464 L S 288.373 105.864 m 288.373 106.464 L S 295.632 105.864 m 295.632 106.464 L S 310.152 105.864 m 310.152 106.464 L S 317.414 105.864 m 317.414 106.464 L S 324.673 105.864 m 324.673 106.464 L S 331.933 105.864 m 331.933 106.464 L S 346.453 105.864 m 346.453 106.464 L S 353.713 105.864 m 353.713 106.464 L S 360.973 105.864 m 360.973 106.464 L S 368.234 105.864 m 368.234 106.464 L S 382.754 105.864 m 382.754 106.464 L S 390.014 105.864 m 390.014 106.464 L S 397.273 105.864 m 397.273 106.464 L S 404.533 105.864 m 404.533 106.464 L S 259.332 105.864 m 259.332 106.464 L S 419.055 105.864 m 419.055 106.464 L S 0.25 w 259.151 105.864 m 419.235 105.864 L S 259.151 108.22 m 260.151 108.22 L S 242.15 104.72 m F1 10. scalefont setfont (-) show 248.775 104.72 m F0 10. scalefont setfont (1) show 259.151 131.777 m 260.151 131.777 L S 230.15 128.277 m F1 10. scalefont setfont (-) show 236.775 128.277 m F0 10. scalefont setfont (0.5) show 259.151 155.333 m 260.151 155.333 L S 249.15 151.833 m (0) show 259.151 178.89 m 260.151 178.89 L S 237.15 175.39 m (0.5) show 259.151 202.446 m 260.151 202.446 L S 249.15 198.946 m (1) show 0.125 w 259.151 112.932 m 259.751 112.932 L S 259.151 117.643 m 259.751 117.643 L S 259.151 122.354 m 259.751 122.354 L S 259.151 127.066 m 259.751 127.066 L S 259.151 136.488 m 259.751 136.488 L S 259.151 141.2 m 259.751 141.2 L S 259.151 145.911 m 259.751 145.911 L S 259.151 150.622 m 259.751 150.622 L S 259.151 160.045 m 259.751 160.045 L S 259.151 164.756 m 259.751 164.756 L S 259.151 169.467 m 259.751 169.467 L S 259.151 174.179 m 259.751 174.179 L S 259.151 183.601 m 259.751 183.601 L S 259.151 188.312 m 259.751 188.312 L S 259.151 193.024 m 259.751 193.024 L S 259.151 197.735 m 259.751 197.735 L S 0.25 w 259.151 105.864 m 259.151 204.801 L S 266.593 203.801 m 266.593 204.801 L S 302.892 203.801 m 302.892 204.801 L S 339.193 203.801 m 339.193 204.801 L S 375.494 203.801 m 375.494 204.801 L S 411.793 203.801 m 411.793 204.801 L S 0.125 w 273.853 204.201 m 273.853 204.801 L S 281.113 204.201 m 281.113 204.801 L S 288.373 204.201 m 288.373 204.801 L S 295.632 204.201 m 295.632 204.801 L S 310.152 204.201 m 310.152 204.801 L S 317.414 204.201 m 317.414 204.801 L S 324.673 204.201 m 324.673 204.801 L S 331.933 204.201 m 331.933 204.801 L S 346.453 204.201 m 346.453 204.801 L S 353.713 204.201 m 353.713 204.801 L S 360.973 204.201 m 360.973 204.801 L S 368.234 204.201 m 368.234 204.801 L S 382.754 204.201 m 382.754 204.801 L S 390.014 204.201 m 390.014 204.801 L S 397.273 204.201 m 397.273 204.801 L S 404.533 204.201 m 404.533 204.801 L S 259.332 204.201 m 259.332 204.801 L S 419.055 204.201 m 419.055 204.801 L S 0.25 w 259.151 204.801 m 419.235 204.801 L S 418.235 108.22 m 419.235 108.22 L S 418.235 131.777 m 419.235 131.777 L S 418.235 155.333 m 419.235 155.333 L S 418.235 178.89 m 419.235 178.89 L S 418.235 202.446 m 419.235 202.446 L S 0.125 w 418.635 112.932 m 419.235 112.932 L S 418.635 117.643 m 419.235 117.643 L S 418.635 122.354 m 419.235 122.354 L S 418.635 127.066 m 419.235 127.066 L S 418.635 136.488 m 419.235 136.488 L S 418.635 141.2 m 419.235 141.2 L S 418.635 145.911 m 419.235 145.911 L S 418.635 150.622 m 419.235 150.622 L S 418.635 160.045 m 419.235 160.045 L S 418.635 164.756 m 419.235 164.756 L S 418.635 169.467 m 419.235 169.467 L S 418.635 174.179 m 419.235 174.179 L S 418.635 183.601 m 419.235 183.601 L S 418.635 188.312 m 419.235 188.312 L S 418.635 193.024 m 419.235 193.024 L S 418.635 197.735 m 419.235 197.735 L S 0.25 w 419.235 105.864 m 419.235 204.801 L S 259.151 155.333 m 419.235 155.333 L S gsave 259.151 105.864 m 419.235 105.864 L 419.235 204.801 L 259.151 204.801 L 259.151 105.864 L closepath clip newpath 1.5 w 262.962 192.238 m 269.146 196.669 L 272.366 198.508 L 275.892 200.133 L 277.477 200.727 L 279.172 201.267 L 280.761 201.681 L 282.227 201.985 L 283.863 202.233 L 284.724 202.326 L 285.164 202.363 L 285.638 202.397 L 286.051 202.418 L 286.431 202.432 L 286.612 202.437 L 286.81 202.442 L 286.997 202.445 L 287.172 202.446 L 287.278 202.446 L 287.393 202.446 L 287.601 202.445 L 287.804 202.442 L 287.99 202.438 L 288.192 202.432 L 288.414 202.424 L 288.862 202.403 L 289.264 202.378 L 289.701 202.344 L 290.495 202.265 L 291.986 202.056 L 293.724 201.713 L 295.333 201.3 L 298.322 200.296 L 301.62 198.835 L 308.055 194.961 L 314.249 190.061 L 320.835 183.745 L 327.177 176.778 L 333.278 169.459 L 339.771 161.237 L 346.022 153.142 L 352.664 144.614 L 359.066 136.733 L 365.223 129.693 L 371.773 123.014 L 378.081 117.574 L 384.146 113.414 L 387.521 111.598 L 390.604 110.27 L 392.13 109.732 L S 392.13 109.732 m 393.793 109.239 L 395.352 108.862 L 396.82 108.587 L 397.616 108.469 L 398.476 108.368 L 398.857 108.331 L 399.257 108.299 L 399.633 108.273 L 399.976 108.254 L 400.376 108.236 L 400.597 108.23 L 400.805 108.225 L 400.997 108.222 L 401.175 108.22 L 401.37 108.22 L 401.578 108.22 L 401.786 108.224 L 401.903 108.225 L 402.009 108.227 L 402.206 108.233 L 402.414 108.24 L 402.854 108.26 L 403.334 108.289 L 404.184 108.363 L 404.985 108.456 L 406.48 108.69 L 408.092 109.029 L 409.837 109.5 L 412.552 110.444 L 415.424 111.715 L S 0.5 g 0.5 w 339.193 155.333 m 339.193 161.982 L S 357.343 155.333 m 357.343 138.806 L S 348.268 155.333 m 348.268 150.236 L S 0 g 339.193 161.982 2. dot 357.343 138.806 2. dot 342.193 163.482 m (a) show 348.193 161.982 m F0 7.125 scalefont setfont (3) show 360.343 140.306 m F0 10. scalefont setfont (b) show 366.343 138.806 m F0 7.125 scalefont setfont (3) show grestore 0 g 0.25 w [ ] 0 d 51.0828 239.056 m 51.0828 240.057 L S 48.0828 226.055 m F0 10. scalefont setfont (1) show 87.382 239.056 m 87.382 240.057 L S 84.382 226.055 m (2) show 123.683 239.056 m 123.683 240.057 L S 120.683 226.055 m (3) show 159.984 239.056 m 159.984 240.057 L S 156.984 226.055 m (4) show 196.283 239.056 m 196.283 240.057 L S 193.283 226.055 m (5) show 0.125 w 58.3426 239.056 m 58.3426 239.657 L S 65.6025 239.056 m 65.6025 239.657 L S 72.8623 239.056 m 72.8623 239.657 L S 80.1222 239.056 m 80.1222 239.657 L S 94.6419 239.056 m 94.6419 239.657 L S 101.903 239.056 m 101.903 239.657 L S 109.163 239.056 m 109.163 239.657 L S 116.423 239.056 m 116.423 239.657 L S 130.943 239.056 m 130.943 239.657 L S 138.203 239.056 m 138.203 239.657 L S 145.462 239.056 m 145.462 239.657 L S 152.724 239.056 m 152.724 239.657 L S 167.244 239.056 m 167.244 239.657 L S 174.503 239.056 m 174.503 239.657 L S 181.763 239.056 m 181.763 239.657 L S 189.023 239.056 m 189.023 239.657 L S 43.8213 239.056 m 43.8213 239.657 L S 203.544 239.056 m 203.544 239.657 L S 0.25 w 43.6404 239.056 m 203.725 239.056 L S 43.6404 241.413 m 44.641 241.413 L S 26.6394 237.913 m F1 10. scalefont setfont (-) show 33.2644 237.913 m F0 10. scalefont setfont (1) show 43.6404 264.969 m 44.641 264.969 L S 14.6394 261.469 m F1 10. scalefont setfont (-) show 21.2644 261.469 m F0 10. scalefont setfont (0.5) show 43.6404 288.526 m 44.641 288.526 L S 33.6394 285.026 m (0) show 43.6404 312.082 m 44.641 312.082 L S 21.6394 308.582 m (0.5) show 43.6404 335.639 m 44.641 335.639 L S 33.6394 332.139 m (1) show 0.125 w 43.6404 246.124 m 44.2408 246.124 L S 43.6404 250.835 m 44.2408 250.835 L S 43.6404 255.547 m 44.2408 255.547 L S 43.6404 260.258 m 44.2408 260.258 L S 43.6404 269.681 m 44.2408 269.681 L S 43.6404 274.392 m 44.2408 274.392 L S 43.6404 279.103 m 44.2408 279.103 L S 43.6404 283.815 m 44.2408 283.815 L S 43.6404 293.237 m 44.2408 293.237 L S 43.6404 297.948 m 44.2408 297.948 L S 43.6404 302.66 m 44.2408 302.66 L S 43.6404 307.371 m 44.2408 307.371 L S 43.6404 316.794 m 44.2408 316.794 L S 43.6404 321.505 m 44.2408 321.505 L S 43.6404 326.216 m 44.2408 326.216 L S 43.6404 330.928 m 44.2408 330.928 L S 0.25 w 43.6404 239.056 m 43.6404 337.994 L S 51.0828 336.993 m 51.0828 337.994 L S 87.382 336.993 m 87.382 337.994 L S 123.683 336.993 m 123.683 337.994 L S 159.984 336.993 m 159.984 337.994 L S 196.283 336.993 m 196.283 337.994 L S 0.125 w 58.3426 337.393 m 58.3426 337.994 L S 65.6025 337.393 m 65.6025 337.994 L S 72.8623 337.393 m 72.8623 337.994 L S 80.1222 337.393 m 80.1222 337.994 L S 94.6419 337.393 m 94.6419 337.994 L S 101.903 337.393 m 101.903 337.994 L S 109.163 337.393 m 109.163 337.994 L S 116.423 337.393 m 116.423 337.994 L S 130.943 337.393 m 130.943 337.994 L S 138.203 337.393 m 138.203 337.994 L S 145.462 337.393 m 145.462 337.994 L S 152.724 337.393 m 152.724 337.994 L S 167.244 337.393 m 167.244 337.994 L S 174.503 337.393 m 174.503 337.994 L S 181.763 337.393 m 181.763 337.994 L S 189.023 337.393 m 189.023 337.994 L S 43.8213 337.393 m 43.8213 337.994 L S 203.544 337.393 m 203.544 337.994 L S 0.25 w 43.6404 337.994 m 203.725 337.994 L S 202.725 241.413 m 203.725 241.413 L S 202.725 264.969 m 203.725 264.969 L S 202.725 288.526 m 203.725 288.526 L S 202.725 312.082 m 203.725 312.082 L S 202.725 335.639 m 203.725 335.639 L S 0.125 w 203.125 246.124 m 203.725 246.124 L S 203.125 250.835 m 203.725 250.835 L S 203.125 255.547 m 203.725 255.547 L S 203.125 260.258 m 203.725 260.258 L S 203.125 269.681 m 203.725 269.681 L S 203.125 274.392 m 203.725 274.392 L S 203.125 279.103 m 203.725 279.103 L S 203.125 283.815 m 203.725 283.815 L S 203.125 293.237 m 203.725 293.237 L S 203.125 297.948 m 203.725 297.948 L S 203.125 302.66 m 203.725 302.66 L S 203.125 307.371 m 203.725 307.371 L S 203.125 316.794 m 203.725 316.794 L S 203.125 321.505 m 203.725 321.505 L S 203.125 326.216 m 203.725 326.216 L S 203.125 330.928 m 203.725 330.928 L S 0.25 w 203.725 239.056 m 203.725 337.994 L S 43.6404 288.526 m 203.725 288.526 L S gsave 43.6404 239.056 m 203.725 239.056 L 203.725 337.994 L 43.6404 337.994 L 43.6404 239.056 L closepath clip newpath 1.5 w 47.4521 325.43 m 53.6361 329.861 L 56.8555 331.701 L 60.3821 333.326 L 61.967 333.92 L 63.6623 334.459 L 65.2503 334.874 L 66.7167 335.178 L 68.3527 335.426 L 69.214 335.519 L 69.6542 335.556 L 70.1281 335.589 L 70.5411 335.61 L 70.9205 335.624 L 71.1014 335.629 L 71.2999 335.634 L 71.4872 335.637 L 71.6617 335.639 L 71.7674 335.639 L 71.8826 335.639 L 72.0907 335.637 L 72.294 335.634 L 72.4797 335.631 L 72.6814 335.624 L 72.904 335.616 L 73.3522 335.596 L 73.754 335.57 L 74.191 335.536 L 74.9851 335.458 L 76.4754 335.248 L 78.214 334.906 L 79.8228 334.493 L 82.8116 333.489 L 86.1094 332.027 L 92.5448 328.153 L 98.7384 323.253 L 105.324 316.938 L 111.667 309.971 L 117.768 302.652 L 124.261 294.43 L 130.512 286.334 L 137.154 277.807 L 143.556 269.926 L 149.713 262.885 L 156.263 256.206 L 162.571 250.767 L 168.636 246.606 L 172.011 244.791 L 175.094 243.462 L 176.62 242.924 L S 176.62 242.924 m 178.283 242.431 L 179.842 242.055 L 181.31 241.779 L 182.106 241.661 L 182.965 241.56 L 183.346 241.523 L 183.747 241.491 L 184.123 241.466 L 184.465 241.447 L 184.866 241.429 L 185.087 241.423 L 185.295 241.418 L 185.487 241.415 L 185.665 241.413 L 185.86 241.413 L 186.068 241.413 L 186.276 241.416 L 186.393 241.418 L 186.499 241.419 L 186.695 241.426 L 186.904 241.432 L 187.344 241.453 L 187.824 241.482 L 188.674 241.555 L 189.475 241.648 L 190.97 241.882 L 192.582 242.221 L 194.327 242.692 L 197.042 243.636 L 199.914 244.908 L S 0.5 g 0.5 w 51.0828 288.526 m 51.0828 328.169 L S 196.283 288.526 m 196.283 243.347 L S 123.683 288.526 m 123.683 295.174 L S 0 g 196.283 243.347 2. dot 51.0828 328.169 2. dot 53.0828 319.669 m (a) show 59.0828 318.169 m F0 7.125 scalefont setfont (0) show 184.283 245.847 m F0 10. scalefont setfont (b) show 190.283 244.347 m F0 7.125 scalefont setfont (0) show grestore 0 g 0.25 w [ ] 0 d 266.593 239.056 m 266.593 240.057 L S 263.593 226.055 m F0 10. scalefont setfont (1) show 302.892 239.056 m 302.892 240.057 L S 299.892 226.055 m (2) show 339.193 239.056 m 339.193 240.057 L S 336.193 226.055 m (3) show 375.494 239.056 m 375.494 240.057 L S 372.494 226.055 m (4) show 411.793 239.056 m 411.793 240.057 L S 408.793 226.055 m (5) show 0.125 w 273.853 239.056 m 273.853 239.657 L S 281.113 239.056 m 281.113 239.657 L S 288.373 239.056 m 288.373 239.657 L S 295.632 239.056 m 295.632 239.657 L S 310.152 239.056 m 310.152 239.657 L S 317.414 239.056 m 317.414 239.657 L S 324.673 239.056 m 324.673 239.657 L S 331.933 239.056 m 331.933 239.657 L S 346.453 239.056 m 346.453 239.657 L S 353.713 239.056 m 353.713 239.657 L S 360.973 239.056 m 360.973 239.657 L S 368.234 239.056 m 368.234 239.657 L S 382.754 239.056 m 382.754 239.657 L S 390.014 239.056 m 390.014 239.657 L S 397.273 239.056 m 397.273 239.657 L S 404.533 239.056 m 404.533 239.657 L S 259.332 239.056 m 259.332 239.657 L S 419.055 239.056 m 419.055 239.657 L S 0.25 w 259.151 239.056 m 419.236 239.056 L S 259.151 241.413 m 260.151 241.413 L S 242.15 237.913 m F1 10. scalefont setfont (-) show 248.775 237.913 m F0 10. scalefont setfont (1) show 259.151 264.969 m 260.151 264.969 L S 230.15 261.469 m F1 10. scalefont setfont (-) show 236.775 261.469 m F0 10. scalefont setfont (0.5) show 259.151 288.526 m 260.151 288.526 L S 249.15 285.026 m (0) show 259.151 312.082 m 260.151 312.082 L S 237.15 308.582 m (0.5) show 259.151 335.639 m 260.151 335.639 L S 249.15 332.139 m (1) show 0.125 w 259.151 246.124 m 259.751 246.124 L S 259.151 250.835 m 259.751 250.835 L S 259.151 255.547 m 259.751 255.547 L S 259.151 260.258 m 259.751 260.258 L S 259.151 269.681 m 259.751 269.681 L S 259.151 274.392 m 259.751 274.392 L S 259.151 279.103 m 259.751 279.103 L S 259.151 283.815 m 259.751 283.815 L S 259.151 293.237 m 259.751 293.237 L S 259.151 297.948 m 259.751 297.948 L S 259.151 302.66 m 259.751 302.66 L S 259.151 307.371 m 259.751 307.371 L S 259.151 316.794 m 259.751 316.794 L S 259.151 321.505 m 259.751 321.505 L S 259.151 326.216 m 259.751 326.216 L S 259.151 330.928 m 259.751 330.928 L S 0.25 w 259.151 239.056 m 259.151 337.994 L S 266.593 336.993 m 266.593 337.994 L S 302.892 336.993 m 302.892 337.994 L S 339.193 336.993 m 339.193 337.994 L S 375.494 336.993 m 375.494 337.994 L S 411.793 336.993 m 411.793 337.994 L S 0.125 w 273.853 337.393 m 273.853 337.994 L S 281.113 337.393 m 281.113 337.994 L S 288.373 337.393 m 288.373 337.994 L S 295.632 337.393 m 295.632 337.994 L S 310.152 337.393 m 310.152 337.994 L S 317.414 337.393 m 317.414 337.994 L S 324.673 337.393 m 324.673 337.994 L S 331.933 337.393 m 331.933 337.994 L S 346.453 337.393 m 346.453 337.994 L S 353.713 337.393 m 353.713 337.994 L S 360.973 337.393 m 360.973 337.994 L S 368.234 337.393 m 368.234 337.994 L S 382.754 337.393 m 382.754 337.994 L S 390.014 337.393 m 390.014 337.994 L S 397.273 337.393 m 397.273 337.994 L S 404.533 337.393 m 404.533 337.994 L S 259.332 337.393 m 259.332 337.994 L S 419.055 337.393 m 419.055 337.994 L S 0.25 w 259.151 337.994 m 419.236 337.994 L S 418.235 241.413 m 419.236 241.413 L S 418.235 264.969 m 419.236 264.969 L S 418.235 288.526 m 419.236 288.526 L S 418.235 312.082 m 419.236 312.082 L S 418.235 335.639 m 419.236 335.639 L S 0.125 w 418.635 246.124 m 419.236 246.124 L S 418.635 250.835 m 419.236 250.835 L S 418.635 255.547 m 419.236 255.547 L S 418.635 260.258 m 419.236 260.258 L S 418.635 269.681 m 419.236 269.681 L S 418.635 274.392 m 419.236 274.392 L S 418.635 279.103 m 419.236 279.103 L S 418.635 283.815 m 419.236 283.815 L S 418.635 293.237 m 419.236 293.237 L S 418.635 297.948 m 419.236 297.948 L S 418.635 302.66 m 419.236 302.66 L S 418.635 307.371 m 419.236 307.371 L S 418.635 316.794 m 419.236 316.794 L S 418.635 321.505 m 419.236 321.505 L S 418.635 326.216 m 419.236 326.216 L S 418.635 330.928 m 419.236 330.928 L S 0.25 w 419.236 239.056 m 419.236 337.994 L S 259.151 288.526 m 419.236 288.526 L S gsave 259.151 239.056 m 419.236 239.056 L 419.236 337.994 L 259.151 337.994 L 259.151 239.056 L closepath clip newpath 1.5 w 262.962 325.43 m 269.146 329.861 L 272.366 331.701 L 275.892 333.326 L 277.477 333.92 L 279.172 334.459 L 280.761 334.874 L 282.227 335.178 L 283.863 335.426 L 284.724 335.519 L 285.164 335.556 L 285.638 335.589 L 286.051 335.61 L 286.431 335.624 L 286.612 335.629 L 286.81 335.634 L 286.997 335.637 L 287.172 335.639 L 287.278 335.639 L 287.393 335.639 L 287.601 335.637 L 287.804 335.634 L 287.99 335.631 L 288.192 335.624 L 288.414 335.616 L 288.862 335.596 L 289.264 335.57 L 289.701 335.536 L 290.495 335.458 L 291.986 335.248 L 293.724 334.906 L 295.333 334.493 L 298.322 333.489 L 301.62 332.027 L 308.055 328.153 L 314.249 323.253 L 320.835 316.938 L 327.177 309.971 L 333.278 302.652 L 339.771 294.43 L 346.022 286.334 L 352.664 277.807 L 359.066 269.926 L 365.223 262.885 L 371.774 256.206 L 378.081 250.767 L 384.147 246.606 L 387.521 244.791 L 390.604 243.462 L 392.13 242.924 L S 392.13 242.924 m 393.793 242.431 L 395.352 242.055 L 396.82 241.779 L 397.616 241.661 L 398.476 241.56 L 398.857 241.523 L 399.257 241.491 L 399.633 241.466 L 399.976 241.447 L 400.376 241.429 L 400.597 241.423 L 400.805 241.418 L 400.997 241.415 L 401.175 241.413 L 401.37 241.413 L 401.578 241.413 L 401.786 241.416 L 401.903 241.418 L 402.009 241.419 L 402.206 241.426 L 402.414 241.432 L 402.854 241.453 L 403.334 241.482 L 404.184 241.555 L 404.985 241.648 L 406.48 241.882 L 408.092 242.221 L 409.837 242.692 L 412.552 243.636 L 415.424 244.908 L S 0.5 g 0.5 w 411.793 288.526 m 411.793 243.347 L S 339.193 288.526 m 339.193 295.174 L S 375.494 288.526 m 375.494 252.87 L S 0 g 339.193 295.174 2. dot 411.793 243.347 2. dot 342.193 296.674 m (a) show 348.193 295.174 m F0 7.125 scalefont setfont (1) show 399.793 245.847 m F0 10. scalefont setfont (b) show 405.793 244.347 m F0 7.125 scalefont setfont (1) show grestore grestore showpage %%PageTrailer %%Trailer %%Pages: 1 %%EOF gsl-1.16/doc/rand-lognormal.tex0000664000252300025230000005341512171574312013365 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-lognormal.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-lognormal.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 3081 R -31 0 V 1051 631 M 0 -31 V 1936 31 R 0 -31 V 1937 31 R 0 -31 V 1936 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1070 637 M 20 53 V 19 118 V 20 171 V 19 209 V 20 231 V 19 241 V 19 243 V 20 239 V 19 232 V 20 220 V 19 209 V 20 195 V 19 183 V 19 168 V 20 156 V 19 142 V 20 130 V 19 119 V 20 108 V 19 97 V 19 87 V 20 78 V 19 70 V 20 61 V 19 54 V 20 47 V 19 41 V 19 35 V 20 29 V 19 24 V 20 19 V 19 15 V 20 11 V 19 7 V 19 4 V 20 0 V 19 -2 V 20 -5 V 19 -8 V 20 -10 V 19 -12 V 19 -13 V 20 -16 V 19 -17 V 20 -19 V 19 -20 V 20 -22 V 19 -22 V 19 -24 V 20 -24 V 19 -25 V 20 -26 V 19 -27 V 20 -27 V 19 -28 V 19 -28 V 20 -29 V 19 -29 V 20 -29 V 19 -30 V 20 -30 V 19 -30 V 19 -30 V 20 -30 V 19 -30 V 20 -31 V 19 -30 V 20 -31 V 19 -30 V 19 -30 V 20 -31 V 19 -30 V 20 -30 V 19 -30 V 20 -30 V 19 -30 V 19 -29 V 20 -30 V 19 -29 V 20 -29 V 19 -29 V 20 -28 V 19 -29 V 19 -28 V 20 -28 V 19 -28 V 20 -28 V 19 -27 V 20 -27 V 19 -27 V 19 -27 V 20 -26 V 19 -26 V 20 -26 V 19 -26 V 20 -25 V 19 -25 V 19 -25 V 20 -25 V 19 -25 V 20 -24 V 19 -24 V 3072 2985 L 19 -24 V 19 -23 V 20 -23 V 19 -23 V 20 -22 V 19 -23 V 20 -22 V 19 -21 V 19 -22 V 20 -21 V 19 -21 V 20 -21 V 19 -21 V 20 -20 V 19 -20 V 19 -20 V 20 -20 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -18 V 19 -19 V 20 -18 V 19 -18 V 20 -18 V 19 -17 V 20 -18 V 19 -17 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -16 V 19 -16 V 20 -16 V 19 -15 V 20 -15 V 19 -15 V 20 -15 V 19 -15 V 19 -14 V 20 -14 V 19 -15 V 20 -14 V 19 -14 V 19 -13 V 20 -14 V 19 -13 V 20 -14 V 19 -13 V 20 -13 V 19 -12 V 19 -13 V 20 -13 V 19 -12 V 20 -12 V 19 -12 V 20 -12 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -12 V 20 -11 V 19 -11 V 19 -10 V 20 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -8 V 19 -9 V 20 -9 V 19 -8 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 5111 1522 L 20 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -7 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1070 631 M 20 1 V 19 2 V 20 5 V 19 9 V 20 12 V 19 15 V 19 18 V 20 21 V 19 23 V 20 25 V 19 28 V 20 28 V 19 30 V 19 31 V 20 32 V 19 32 V 20 33 V 19 33 V 20 32 V 19 33 V 19 33 V 20 33 V 19 32 V 20 32 V 19 31 V 20 31 V 19 31 V 19 30 V 20 29 V 19 29 V 20 28 V 19 27 V 20 27 V 19 26 V 19 26 V 20 24 V 19 25 V 20 23 V 19 23 V 20 22 V 19 21 V 19 21 V 20 20 V 19 20 V 20 19 V 19 18 V 20 18 V 19 17 V 19 16 V 20 16 V 19 16 V 20 14 V 19 15 V 20 13 V 19 14 V 19 12 V 20 13 V 19 11 V 20 12 V 19 11 V 20 10 V 19 10 V 19 10 V 20 9 V 19 8 V 20 9 V 19 8 V 20 7 V 19 8 V 19 7 V 20 6 V 19 6 V 20 6 V 19 6 V 20 5 V 19 5 V 19 5 V 20 4 V 19 4 V 20 4 V 19 4 V 20 3 V 19 3 V 19 3 V 20 3 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 20 0 V 19 1 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 3072 2121 L 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 5111 1764 L 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$\zeta=1, \sigma=1$}}% \put(5957,4781){\rjust{\strut{}$\zeta=0, \sigma=1$}}% \put(3955,5244){\cjust{\strut{}Lognormal Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}3}}% \put(4924,400){\cjust{\strut{}2}}% \put(2987,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,3712){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/ntuple.eps0000664000252300025230000003076012171574312011745 00000000000000%!PS-Adobe-2.0 EPSF-2.0 %%Title: tmp2.eps %%Creator: gnuplot 3.5 (pre 3.6) patchlevel beta 347 %%CreationDate: Mon Jan 22 20:12:36 2001 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 302 %%Orientation: Portrait %%EndComments /gnudict 120 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -46 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 140 scalefont setfont 1.000 UL LTb 560 420 M 63 0 V 6409 0 R -63 0 V 476 420 M (0) Rshow 560 1310 M 63 0 V 6409 0 R -63 0 V -6493 0 R (50) Rshow 560 2201 M 63 0 V 6409 0 R -63 0 V -6493 0 R (100) Rshow 560 3091 M 63 0 V 6409 0 R -63 0 V -6493 0 R (150) Rshow 560 3982 M 63 0 V 6409 0 R -63 0 V -6493 0 R (200) Rshow 560 4872 M 63 0 V 6409 0 R -63 0 V -6493 0 R (250) Rshow 560 420 M 0 63 V 0 4389 R 0 -63 V 560 280 M (0) Cshow 1207 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (1) Cshow 1854 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (2) Cshow 2502 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (3) Cshow 3149 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (4) Cshow 3796 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (5) Cshow 4443 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (6) Cshow 5090 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (7) Cshow 5738 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (8) Cshow 6385 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (9) Cshow 7032 420 M 0 63 V 0 4389 R 0 -63 V 0 -4529 R (10) Cshow 1.000 UL LTb 560 420 M 6472 0 V 0 4452 V -6472 0 V 560 420 L 0 2646 M currentpoint gsave translate 90 rotate 0 0 M (n) Cshow grestore 3796 140 M (E2) Cshow 1.000 UL LT0 560 420 M 65 0 V 64 0 V 65 0 V 65 0 V 65 0 V 64 0 V 65 0 V 65 0 V 64 0 V 65 0 V 65 0 V 65 0 V 64 0 V 65 0 V 65 0 V 0 4149 V 65 0 V 0 36 V 64 0 V 0 -766 V 65 0 V 0 623 V 65 0 V 0 -552 V 64 0 V 0 54 V 65 0 V 0 -143 V 65 0 V 0 -302 V 65 0 V 0 35 V 64 0 V 0 160 V 65 0 V 0 -195 V 65 0 V 0 -89 V 64 0 V 0 -161 V 65 0 V 0 -142 V 65 0 V 0 160 V 65 0 V 0 -516 V 64 0 V 0 71 V 65 0 V 0 214 V 65 0 V 0 -250 V 64 0 V 0 107 V 65 0 V 0 -267 V 65 0 V 0 -196 V 65 0 V 0 196 V 64 0 V 0 -374 V 65 0 V 0 516 V 65 0 V 0 -356 V 65 0 V 0 -463 V 64 0 V 0 -53 V 65 0 V 0 320 V 65 0 V 0 -231 V 64 0 V 0 36 V 65 0 V 0 -72 V 65 0 V 0 339 V 65 0 V 0 -196 V 64 0 V 65 0 V 0 -303 V 65 0 V 0 -267 V 64 0 V 0 214 V 65 0 V 0 -178 V 65 0 V 0 -36 V 65 0 V 0 -54 V 64 0 V 0 -142 V 65 0 V 0 249 V 65 0 V 0 -374 V 64 0 V 0 -35 V 65 0 V 0 35 V 65 0 V 0 -17 V 65 0 V 0 17 V 64 0 V 0 -178 V 65 0 V 0 -35 V 65 0 V 0 89 V 65 0 V 0 35 V 64 0 V 0 -213 V 65 0 V 0 106 V 65 0 V 0 143 V 64 0 V 0 -249 V 65 0 V 0 142 V 65 0 V 0 -107 V 65 0 V 0 -142 V 64 0 V 0 142 V 65 0 V 0 -142 V 65 0 V 0 89 V 64 0 V 0 -71 V 65 0 V 0 89 V 65 0 V 0 -72 V 65 0 V 0 54 V 64 0 V 0 -160 V 65 0 V 0 71 V 65 0 V 0 -71 V 64 0 V 0 -143 V 65 0 V 0 125 V 65 0 V 0 89 V 65 0 V 0 -214 V 64 0 V 0 125 V 65 0 V 0 18 V 65 0 V 0 -214 V 65 0 V 0 160 V 64 0 V 0 36 V 65 0 V 0 -178 V 65 0 V 0 71 V 64 0 V 0 -18 V 65 0 V 0 -18 V 65 0 V 0 72 V 65 0 V 0 -54 V 64 0 V 0 54 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica gsl-1.16/doc/ntuple.texi0000664000252300025230000001552212171574312012126 00000000000000@cindex ntuples This chapter describes functions for creating and manipulating @dfn{ntuples}, sets of values associated with events. The ntuples are stored in files. Their values can be extracted in any combination and @dfn{booked} in a histogram using a selection function. The values to be stored are held in a user-defined data structure, and an ntuple is created associating this data structure with a file. The values are then written to the file (normally inside a loop) using the ntuple functions described below. A histogram can be created from ntuple data by providing a selection function and a value function. The selection function specifies whether an event should be included in the subset to be analyzed or not. The value function computes the entry to be added to the histogram for each event. All the ntuple functions are defined in the header file @file{gsl_ntuple.h} @menu * The ntuple struct:: * Creating ntuples:: * Opening an existing ntuple file:: * Writing ntuples:: * Reading ntuples :: * Closing an ntuple file:: * Histogramming ntuple values:: * Example ntuple programs:: * Ntuple References and Further Reading:: @end menu @node The ntuple struct @section The ntuple struct @tpindex gsl_ntuple Ntuples are manipulated using the @code{gsl_ntuple} struct. This struct contains information on the file where the ntuple data is stored, a pointer to the current ntuple data row and the size of the user-defined ntuple data struct. @example typedef struct @{ FILE * file; void * ntuple_data; size_t size; @} gsl_ntuple; @end example @node Creating ntuples @section Creating ntuples @deftypefun {gsl_ntuple *} gsl_ntuple_create (char * @var{filename}, void * @var{ntuple_data}, size_t @var{size}) This function creates a new write-only ntuple file @var{filename} for ntuples of size @var{size} and returns a pointer to the newly created ntuple struct. Any existing file with the same name is truncated to zero length and overwritten. A pointer to memory for the current ntuple row @var{ntuple_data} must be supplied---this is used to copy ntuples in and out of the file. @end deftypefun @node Opening an existing ntuple file @section Opening an existing ntuple file @deftypefun {gsl_ntuple *} gsl_ntuple_open (char * @var{filename}, void * @var{ntuple_data}, size_t @var{size}) This function opens an existing ntuple file @var{filename} for reading and returns a pointer to a corresponding ntuple struct. The ntuples in the file must have size @var{size}. A pointer to memory for the current ntuple row @var{ntuple_data} must be supplied---this is used to copy ntuples in and out of the file. @end deftypefun @node Writing ntuples @section Writing ntuples @deftypefun int gsl_ntuple_write (gsl_ntuple * @var{ntuple}) This function writes the current ntuple @var{ntuple->ntuple_data} of size @var{ntuple->size} to the corresponding file. @end deftypefun @deftypefun int gsl_ntuple_bookdata (gsl_ntuple * @var{ntuple}) This function is a synonym for @code{gsl_ntuple_write}. @end deftypefun @node Reading ntuples @section Reading ntuples @deftypefun int gsl_ntuple_read (gsl_ntuple * @var{ntuple}) This function reads the current row of the ntuple file for @var{ntuple} and stores the values in @var{ntuple->data}. @end deftypefun @node Closing an ntuple file @section Closing an ntuple file @deftypefun int gsl_ntuple_close (gsl_ntuple * @var{ntuple}) This function closes the ntuple file @var{ntuple} and frees its associated allocated memory. @end deftypefun @node Histogramming ntuple values @section Histogramming ntuple values Once an ntuple has been created its contents can be histogrammed in various ways using the function @code{gsl_ntuple_project}. Two user-defined functions must be provided, a function to select events and a function to compute scalar values. The selection function and the value function both accept the ntuple row as a first argument and other parameters as a second argument. @cindex selection function, ntuples @tpindex gsl_ntuple_select_fn The @dfn{selection function} determines which ntuple rows are selected for histogramming. It is defined by the following struct, @smallexample typedef struct @{ int (* function) (void * ntuple_data, void * params); void * params; @} gsl_ntuple_select_fn; @end smallexample @noindent The struct component @var{function} should return a non-zero value for each ntuple row that is to be included in the histogram. @cindex value function, ntuples @tpindex gsl_ntuple_value_fn The @dfn{value function} computes scalar values for those ntuple rows selected by the selection function, @smallexample typedef struct @{ double (* function) (void * ntuple_data, void * params); void * params; @} gsl_ntuple_value_fn; @end smallexample @noindent In this case the struct component @var{function} should return the value to be added to the histogram for the ntuple row. @cindex histogram, from ntuple @cindex projection of ntuples @deftypefun int gsl_ntuple_project (gsl_histogram * @var{h}, gsl_ntuple * @var{ntuple}, gsl_ntuple_value_fn * @var{value_func}, gsl_ntuple_select_fn * @var{select_func}) This function updates the histogram @var{h} from the ntuple @var{ntuple} using the functions @var{value_func} and @var{select_func}. For each ntuple row where the selection function @var{select_func} is non-zero the corresponding value of that row is computed using the function @var{value_func} and added to the histogram. Those ntuple rows where @var{select_func} returns zero are ignored. New entries are added to the histogram, so subsequent calls can be used to accumulate further data in the same histogram. @end deftypefun @node Example ntuple programs @section Examples The following example programs demonstrate the use of ntuples in managing a large dataset. The first program creates a set of 10,000 simulated ``events'', each with 3 associated values @math{(x,y,z)}. These are generated from a Gaussian distribution with unit variance, for demonstration purposes, and written to the ntuple file @file{test.dat}. @example @verbatiminclude examples/ntuplew.c @end example @noindent The next program analyses the ntuple data in the file @file{test.dat}. The analysis procedure is to compute the squared-magnitude of each event, @math{E^2=x^2+y^2+z^2}, and select only those which exceed a lower limit of 1.5. The selected events are then histogrammed using their @math{E^2} values. @example @verbatiminclude examples/ntupler.c @end example @need 3000 The following plot shows the distribution of the selected events. Note the cut-off at the lower bound. @iftex @sp 1 @center @image{ntuple,3.4in} @end iftex @node Ntuple References and Further Reading @section References and Further Reading @cindex PAW @cindex HBOOK Further information on the use of ntuples can be found in the documentation for the @sc{cern} packages @sc{paw} and @sc{hbook} (available online). gsl-1.16/doc/specfunc-laguerre.texi0000664000252300025230000000354712171574312014235 00000000000000@cindex Laguerre functions @cindex confluent hypergeometric function The generalized Laguerre polynomials are defined in terms of confluent hypergeometric functions as @c{$L^a_n(x) = ((a+1)_n / n!) {}_1F_1(-n,a+1,x)$} @math{L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x)}, and are sometimes referred to as the associated Laguerre polynomials. They are related to the plain Laguerre polynomials @math{L_n(x)} by @math{L^0_n(x) = L_n(x)} and @c{$L^k_n(x) = (-1)^k (d^k/dx^k) L_{(n+k)}(x)$} @math{L^k_n(x) = (-1)^k (d^k/dx^k) L_(n+k)(x)}. For more information see Abramowitz & Stegun, Chapter 22. The functions described in this section are declared in the header file @file{gsl_sf_laguerre.h}. @deftypefun double gsl_sf_laguerre_1 (double @var{a}, double @var{x}) @deftypefunx double gsl_sf_laguerre_2 (double @var{a}, double @var{x}) @deftypefunx double gsl_sf_laguerre_3 (double @var{a}, double @var{x}) @deftypefunx int gsl_sf_laguerre_1_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_laguerre_2_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) @deftypefunx int gsl_sf_laguerre_3_e (double @var{a}, double @var{x}, gsl_sf_result * @var{result}) These routines evaluate the generalized Laguerre polynomials @math{L^a_1(x)}, @math{L^a_2(x)}, @math{L^a_3(x)} using explicit representations. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_laguerre_n (const int @var{n}, const double @var{a}, const double @var{x}) @deftypefunx int gsl_sf_laguerre_n_e (int @var{n}, double @var{a}, double @var{x}, gsl_sf_result * @var{result}) These routines evaluate the generalized Laguerre polynomials @math{L^a_n(x)} for @math{a > -1}, @c{$n \ge 0$} @math{n >= 0}. @comment Domain: a > -1.0, n >= 0 @comment Evaluate generalized Laguerre polynomials. @comment Exceptional Return Values: GSL_EDOM @end deftypefun gsl-1.16/doc/roots.texi0000664000252300025230000007336612171574312011777 00000000000000@cindex root finding @cindex zero finding @cindex finding roots @cindex finding zeros @cindex roots @cindex solving a nonlinear equation @cindex nonlinear equation, solutions of This chapter describes routines for finding roots of arbitrary one-dimensional functions. The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The header file @file{gsl_roots.h} contains prototypes for the root finding functions and related declarations. @menu * Root Finding Overview:: * Root Finding Caveats:: * Initializing the Solver:: * Providing the function to solve:: * Search Bounds and Guesses:: * Root Finding Iteration:: * Search Stopping Parameters:: * Root Bracketing Algorithms:: * Root Finding Algorithms using Derivatives:: * Root Finding Examples:: * Root Finding References and Further Reading:: @end menu @node Root Finding Overview @section Overview @cindex root finding, overview One-dimensional root finding algorithms can be divided into two classes, @dfn{root bracketing} and @dfn{root polishing}. Algorithms which proceed by bracketing a root are guaranteed to converge. Bracketing algorithms begin with a bounded region known to contain a root. The size of this bounded region is reduced, iteratively, until it encloses the root to a desired tolerance. This provides a rigorous error estimate for the location of the root. The technique of @dfn{root polishing} attempts to improve an initial guess to the root. These algorithms converge only if started ``close enough'' to a root, and sacrifice a rigorous error bound for speed. By approximating the behavior of a function in the vicinity of a root they attempt to find a higher order improvement of an initial guess. When the behavior of the function is compatible with the algorithm and a good initial guess is available a polishing algorithm can provide rapid convergence. In GSL both types of algorithm are available in similar frameworks. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, @itemize @bullet @item initialize solver state, @var{s}, for algorithm @var{T} @item update @var{s} using the iteration @var{T} @item test @var{s} for convergence, and repeat iteration if necessary @end itemize @noindent The state for bracketing solvers is held in a @code{gsl_root_fsolver} struct. The updating procedure uses only function evaluations (not derivatives). The state for root polishing solvers is held in a @code{gsl_root_fdfsolver} struct. The updates require both the function and its derivative (hence the name @code{fdf}) to be supplied by the user. @node Root Finding Caveats @section Caveats @cindex root finding, caveats Note that root finding functions can only search for one root at a time. When there are several roots in the search area, the first root to be found will be returned; however it is difficult to predict which of the roots this will be. @emph{In most cases, no error will be reported if you try to find a root in an area where there is more than one.} Care must be taken when a function may have a multiple root (such as @c{$f(x) = (x-x_0)^2$} @math{f(x) = (x-x_0)^2} or @c{$f(x) = (x-x_0)^3$} @math{f(x) = (x-x_0)^3}). It is not possible to use root-bracketing algorithms on even-multiplicity roots. For these algorithms the initial interval must contain a zero-crossing, where the function is negative at one end of the interval and positive at the other end. Roots with even-multiplicity do not cross zero, but only touch it instantaneously. Algorithms based on root bracketing will still work for odd-multiplicity roots (e.g. cubic, quintic, @dots{}). Root polishing algorithms generally work with higher multiplicity roots, but at a reduced rate of convergence. In these cases the @dfn{Steffenson algorithm} can be used to accelerate the convergence of multiple roots. While it is not absolutely required that @math{f} have a root within the search region, numerical root finding functions should not be used haphazardly to check for the @emph{existence} of roots. There are better ways to do this. Because it is easy to create situations where numerical root finders can fail, it is a bad idea to throw a root finder at a function you do not know much about. In general it is best to examine the function visually by plotting before searching for a root. @node Initializing the Solver @section Initializing the Solver @deftypefun {gsl_root_fsolver *} gsl_root_fsolver_alloc (const gsl_root_fsolver_type * @var{T}) @tpindex gsl_root_fsolver @tpindex gsl_root_fsolver_type This function returns a pointer to a newly allocated instance of a solver of type @var{T}. For example, the following code creates an instance of a bisection solver, @example const gsl_root_fsolver_type * T = gsl_root_fsolver_bisection; gsl_root_fsolver * s = gsl_root_fsolver_alloc (T); @end example If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun {gsl_root_fdfsolver *} gsl_root_fdfsolver_alloc (const gsl_root_fdfsolver_type * @var{T}) @tpindex gsl_root_fdfsolver @tpindex gsl_root_fdfsolver_type This function returns a pointer to a newly allocated instance of a derivative-based solver of type @var{T}. For example, the following code creates an instance of a Newton-Raphson solver, @example const gsl_root_fdfsolver_type * T = gsl_root_fdfsolver_newton; gsl_root_fdfsolver * s = gsl_root_fdfsolver_alloc (T); @end example If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_root_fsolver_set (gsl_root_fsolver * @var{s}, gsl_function * @var{f}, double @var{x_lower}, double @var{x_upper}) This function initializes, or reinitializes, an existing solver @var{s} to use the function @var{f} and the initial search interval [@var{x_lower}, @var{x_upper}]. @end deftypefun @deftypefun int gsl_root_fdfsolver_set (gsl_root_fdfsolver * @var{s}, gsl_function_fdf * @var{fdf}, double @var{root}) This function initializes, or reinitializes, an existing solver @var{s} to use the function and derivative @var{fdf} and the initial guess @var{root}. @end deftypefun @deftypefun void gsl_root_fsolver_free (gsl_root_fsolver * @var{s}) @deftypefunx void gsl_root_fdfsolver_free (gsl_root_fdfsolver * @var{s}) These functions free all the memory associated with the solver @var{s}. @end deftypefun @deftypefun {const char *} gsl_root_fsolver_name (const gsl_root_fsolver * @var{s}) @deftypefunx {const char *} gsl_root_fdfsolver_name (const gsl_root_fdfsolver * @var{s}) These functions return a pointer to the name of the solver. For example, @example printf ("s is a '%s' solver\n", gsl_root_fsolver_name (s)); @end example @noindent would print something like @code{s is a 'bisection' solver}. @end deftypefun @node Providing the function to solve @section Providing the function to solve @cindex root finding, providing a function to solve You must provide a continuous function of one variable for the root finders to operate on, and, sometimes, its first derivative. In order to allow for general parameters the functions are defined by the following data types: @deftp {Data Type} gsl_function This data type defines a general function with parameters. @table @code @item double (* function) (double @var{x}, void * @var{params}) this function should return the value @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params} @item void * params a pointer to the parameters of the function @end table @end deftp Here is an example for the general quadratic function, @tex \beforedisplay $$ f(x) = a x^2 + b x + c $$ \afterdisplay @end tex @ifinfo @example f(x) = a x^2 + b x + c @end example @end ifinfo @noindent with @math{a = 3}, @math{b = 2}, @math{c = 1}. The following code defines a @code{gsl_function} @code{F} which you could pass to a root finder as a function pointer: @example struct my_f_params @{ double a; double b; double c; @}; double my_f (double x, void * p) @{ struct my_f_params * params = (struct my_f_params *)p; double a = (params->a); double b = (params->b); double c = (params->c); return (a * x + b) * x + c; @} gsl_function F; struct my_f_params params = @{ 3.0, 2.0, 1.0 @}; F.function = &my_f; F.params = ¶ms; @end example @noindent The function @math{f(x)} can be evaluated using the macro @code{GSL_FN_EVAL(&F,x)} defined in @file{gsl_math.h}. @deftp {Data Type} gsl_function_fdf This data type defines a general function with parameters and its first derivative. @table @code @item double (* f) (double @var{x}, void * @var{params}) this function should return the value of @c{$f(x,\hbox{\it params})$} @math{f(x,params)} for argument @var{x} and parameters @var{params} @item double (* df) (double @var{x}, void * @var{params}) this function should return the value of the derivative of @var{f} with respect to @var{x}, @c{$f'(x,\hbox{\it params})$} @math{f'(x,params)}, for argument @var{x} and parameters @var{params} @item void (* fdf) (double @var{x}, void * @var{params}, double * @var{f}, double * @var{df}) this function should set the values of the function @var{f} to @c{$f(x,\hbox{\it params})$} @math{f(x,params)} and its derivative @var{df} to @c{$f'(x,\hbox{\it params})$} @math{f'(x,params)} for argument @var{x} and parameters @var{params}. This function provides an optimization of the separate functions for @math{f(x)} and @math{f'(x)}---it is always faster to compute the function and its derivative at the same time. @item void * params a pointer to the parameters of the function @end table @end deftp Here is an example where @c{$f(x) = \exp(2x)$} @math{f(x) = 2\exp(2x)}: @example double my_f (double x, void * params) @{ return exp (2 * x); @} double my_df (double x, void * params) @{ return 2 * exp (2 * x); @} void my_fdf (double x, void * params, double * f, double * df) @{ double t = exp (2 * x); *f = t; *df = 2 * t; /* uses existing value */ @} gsl_function_fdf FDF; FDF.f = &my_f; FDF.df = &my_df; FDF.fdf = &my_fdf; FDF.params = 0; @end example @noindent The function @math{f(x)} can be evaluated using the macro @code{GSL_FN_FDF_EVAL_F(&FDF,x)} and the derivative @math{f'(x)} can be evaluated using the macro @code{GSL_FN_FDF_EVAL_DF(&FDF,x)}. Both the function @math{y = f(x)} and its derivative @math{dy = f'(x)} can be evaluated at the same time using the macro @code{GSL_FN_FDF_EVAL_F_DF(&FDF,x,y,dy)}. The macro stores @math{f(x)} in its @var{y} argument and @math{f'(x)} in its @var{dy} argument---both of these should be pointers to @code{double}. @node Search Bounds and Guesses @section Search Bounds and Guesses @cindex root finding, search bounds @cindex root finding, initial guess You provide either search bounds or an initial guess; this section explains how search bounds and guesses work and how function arguments control them. A guess is simply an @math{x} value which is iterated until it is within the desired precision of a root. It takes the form of a @code{double}. Search bounds are the endpoints of an interval which is iterated until the length of the interval is smaller than the requested precision. The interval is defined by two values, the lower limit and the upper limit. Whether the endpoints are intended to be included in the interval or not depends on the context in which the interval is used. @node Root Finding Iteration @section Iteration The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_root_fsolver_iterate (gsl_root_fsolver * @var{s}) @deftypefunx int gsl_root_fdfsolver_iterate (gsl_root_fdfsolver * @var{s}) These functions perform a single iteration of the solver @var{s}. If the iteration encounters an unexpected problem then an error code will be returned, @table @code @item GSL_EBADFUNC the iteration encountered a singular point where the function or its derivative evaluated to @code{Inf} or @code{NaN}. @item GSL_EZERODIV the derivative of the function vanished at the iteration point, preventing the algorithm from continuing without a division by zero. @end table @end deftypefun The solver maintains a current best estimate of the root at all times. The bracketing solvers also keep track of the current best interval bounding the root. This information can be accessed with the following auxiliary functions, @deftypefun double gsl_root_fsolver_root (const gsl_root_fsolver * @var{s}) @deftypefunx double gsl_root_fdfsolver_root (const gsl_root_fdfsolver * @var{s}) These functions return the current estimate of the root for the solver @var{s}. @end deftypefun @deftypefun double gsl_root_fsolver_x_lower (const gsl_root_fsolver * @var{s}) @deftypefunx double gsl_root_fsolver_x_upper (const gsl_root_fsolver * @var{s}) These functions return the current bracketing interval for the solver @var{s}. @end deftypefun @node Search Stopping Parameters @section Search Stopping Parameters @cindex root finding, stopping parameters A root finding procedure should stop when one of the following conditions is true: @itemize @bullet @item A root has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result in several standard ways. @deftypefun int gsl_root_test_interval (double @var{x_lower}, double @var{x_upper}, double @var{epsabs}, double @var{epsrel}) This function tests for the convergence of the interval [@var{x_lower}, @var{x_upper}] with absolute error @var{epsabs} and relative error @var{epsrel}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |a - b| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, \min(|a|,|b|) $$ \afterdisplay @end tex @ifinfo @example |a - b| < epsabs + epsrel min(|a|,|b|) @end example @end ifinfo @noindent when the interval @math{x = [a,b]} does not include the origin. If the interval includes the origin then @math{\min(|a|,|b|)} is replaced by zero (which is the minimum value of @math{|x|} over the interval). This ensures that the relative error is accurately estimated for roots close to the origin. This condition on the interval also implies that any estimate of the root @math{r} in the interval satisfies the same condition with respect to the true root @math{r^*}, @tex \beforedisplay $$ |r - r^*| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, r^* $$ \afterdisplay @end tex @ifinfo @example |r - r^*| < epsabs + epsrel r^* @end example @end ifinfo @noindent assuming that the true root @math{r^*} is contained within the interval. @end deftypefun @deftypefun int gsl_root_test_delta (double @var{x1}, double @var{x0}, double @var{epsabs}, double @var{epsrel}) This function tests for the convergence of the sequence @dots{}, @var{x0}, @var{x1} with absolute error @var{epsabs} and relative error @var{epsrel}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |x_1 - x_0| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, |x_1| $$ \afterdisplay @end tex @ifinfo @example |x_1 - x_0| < epsabs + epsrel |x_1| @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. @end deftypefun @deftypefun int gsl_root_test_residual (double @var{f}, double @var{epsabs}) This function tests the residual value @var{f} against the absolute error bound @var{epsabs}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |f| < \hbox{\it epsabs} $$ \afterdisplay @end tex @ifinfo @example |f| < epsabs @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. This criterion is suitable for situations where the precise location of the root, @math{x}, is unimportant provided a value can be found where the residual, @math{|f(x)|}, is small enough. @end deftypefun @comment ============================================================ @node Root Bracketing Algorithms @section Root Bracketing Algorithms The root bracketing algorithms described in this section require an initial interval which is guaranteed to contain a root---if @math{a} and @math{b} are the endpoints of the interval then @math{f(a)} must differ in sign from @math{f(b)}. This ensures that the function crosses zero at least once in the interval. If a valid initial interval is used then these algorithm cannot fail, provided the function is well-behaved. Note that a bracketing algorithm cannot find roots of even degree, since these do not cross the @math{x}-axis. @deffn {Solver} gsl_root_fsolver_bisection @cindex bisection algorithm for finding roots @cindex root finding, bisection algorithm The @dfn{bisection algorithm} is the simplest method of bracketing the roots of a function. It is the slowest algorithm provided by the library, with linear convergence. On each iteration, the interval is bisected and the value of the function at the midpoint is calculated. The sign of this value is used to determine which half of the interval does not contain a root. That half is discarded to give a new, smaller interval containing the root. This procedure can be continued indefinitely until the interval is sufficiently small. At any time the current estimate of the root is taken as the midpoint of the interval. @comment eps file "roots-bisection.eps" @comment @iftex @comment @sp 1 @comment @center @image{roots-bisection,3.4in} @comment @quotation @comment Four iterations of bisection, where @math{a_n} is @math{n}th position of @comment the beginning of the interval and @math{b_n} is the @math{n}th position @comment of the end. The midpoint of each interval is also indicated. @comment @end quotation @comment @end iftex @end deffn @comment ============================================================ @deffn {Solver} gsl_root_fsolver_falsepos @cindex false position algorithm for finding roots @cindex root finding, false position algorithm The @dfn{false position algorithm} is a method of finding roots based on linear interpolation. Its convergence is linear, but it is usually faster than bisection. On each iteration a line is drawn between the endpoints @math{(a,f(a))} and @math{(b,f(b))} and the point where this line crosses the @math{x}-axis taken as a ``midpoint''. The value of the function at this point is calculated and its sign is used to determine which side of the interval does not contain a root. That side is discarded to give a new, smaller interval containing the root. This procedure can be continued indefinitely until the interval is sufficiently small. The best estimate of the root is taken from the linear interpolation of the interval on the current iteration. @comment eps file "roots-false-position.eps" @comment @iftex @comment @image{roots-false-position,4in} @comment @quotation @comment Several iterations of false position, where @math{a_n} is @math{n}th @comment position of the beginning of the interval and @math{b_n} is the @comment @math{n}th position of the end. @comment @end quotation @comment @end iftex @end deffn @comment ============================================================ @deffn {Solver} gsl_root_fsolver_brent @cindex Brent's method for finding roots @cindex root finding, Brent's method The @dfn{Brent-Dekker method} (referred to here as @dfn{Brent's method}) combines an interpolation strategy with the bisection algorithm. This produces a fast algorithm which is still robust. On each iteration Brent's method approximates the function using an interpolating curve. On the first iteration this is a linear interpolation of the two endpoints. For subsequent iterations the algorithm uses an inverse quadratic fit to the last three points, for higher accuracy. The intercept of the interpolating curve with the @math{x}-axis is taken as a guess for the root. If it lies within the bounds of the current interval then the interpolating point is accepted, and used to generate a smaller interval. If the interpolating point is not accepted then the algorithm falls back to an ordinary bisection step. The best estimate of the root is taken from the most recent interpolation or bisection. @end deffn @comment ============================================================ @node Root Finding Algorithms using Derivatives @section Root Finding Algorithms using Derivatives The root polishing algorithms described in this section require an initial guess for the location of the root. There is no absolute guarantee of convergence---the function must be suitable for this technique and the initial guess must be sufficiently close to the root for it to work. When these conditions are satisfied then convergence is quadratic. These algorithms make use of both the function and its derivative. @deffn {Derivative Solver} gsl_root_fdfsolver_newton @cindex Newton's method for finding roots @cindex root finding, Newton's method Newton's Method is the standard root-polishing algorithm. The algorithm begins with an initial guess for the location of the root. On each iteration, a line tangent to the function @math{f} is drawn at that position. The point where this line crosses the @math{x}-axis becomes the new guess. The iteration is defined by the following sequence, @tex \beforedisplay $$ x_{i+1} = x_i - {f(x_i) \over f'(x_i)} $$ \afterdisplay @end tex @ifinfo @example x_@{i+1@} = x_i - f(x_i)/f'(x_i) @end example @end ifinfo @noindent Newton's method converges quadratically for single roots, and linearly for multiple roots. @comment eps file "roots-newtons-method.eps" @comment @iftex @comment @sp 1 @comment @center @image{roots-newtons-method,3.4in} @comment @quotation @comment Several iterations of Newton's Method, where @math{g_n} is the @comment @math{n}th guess. @comment @end quotation @comment @end iftex @end deffn @comment ============================================================ @deffn {Derivative Solver} gsl_root_fdfsolver_secant @cindex secant method for finding roots @cindex root finding, secant method The @dfn{secant method} is a simplified version of Newton's method which does not require the computation of the derivative on every step. On its first iteration the algorithm begins with Newton's method, using the derivative to compute a first step, @tex \beforedisplay $$ x_1 = x_0 - {f(x_0) \over f'(x_0)} $$ \afterdisplay @end tex @ifinfo @example x_1 = x_0 - f(x_0)/f'(x_0) @end example @end ifinfo @noindent Subsequent iterations avoid the evaluation of the derivative by replacing it with a numerical estimate, the slope of the line through the previous two points, @tex \beforedisplay $$ x_{i+1} = x_i - {f(x_i) \over f'_{est}} ~\hbox{where}~ f'_{est} = {f(x_{i}) - f(x_{i-1}) \over x_i - x_{i-1}} $$ \afterdisplay @end tex @ifinfo @example x_@{i+1@} = x_i f(x_i) / f'_@{est@} where f'_@{est@} = (f(x_i) - f(x_@{i-1@})/(x_i - x_@{i-1@}) @end example @end ifinfo @noindent When the derivative does not change significantly in the vicinity of the root the secant method gives a useful saving. Asymptotically the secant method is faster than Newton's method whenever the cost of evaluating the derivative is more than 0.44 times the cost of evaluating the function itself. As with all methods of computing a numerical derivative the estimate can suffer from cancellation errors if the separation of the points becomes too small. On single roots, the method has a convergence of order @math{(1 + \sqrt 5)/2} (approximately @math{1.62}). It converges linearly for multiple roots. @comment eps file "roots-secant-method.eps" @comment @iftex @comment @tex @comment \input epsf @comment \medskip @comment \centerline{\epsfxsize=5in\epsfbox{roots-secant-method.eps}} @comment @end tex @comment @quotation @comment Several iterations of Secant Method, where @math{g_n} is the @math{n}th @comment guess. @comment @end quotation @comment @end iftex @end deffn @comment ============================================================ @deffn {Derivative Solver} gsl_root_fdfsolver_steffenson @cindex Steffenson's method for finding roots @cindex root finding, Steffenson's method The @dfn{Steffenson Method}@footnote{J.F. Steffensen (1873--1961). The spelling used in the name of the function is slightly incorrect, but has been preserved to avoid incompatibility.} provides the fastest convergence of all the routines. It combines the basic Newton algorithm with an Aitken ``delta-squared'' acceleration. If the Newton iterates are @math{x_i} then the acceleration procedure generates a new sequence @math{R_i}, @tex \beforedisplay $$ R_i = x_i - {(x_{i+1} - x_i)^2 \over (x_{i+2} - 2 x_{i+1} + x_i)} $$ \afterdisplay @end tex @ifinfo @example R_i = x_i - (x_@{i+1@} - x_i)^2 / (x_@{i+2@} - 2 x_@{i+1@} + x_@{i@}) @end example @end ifinfo @noindent which converges faster than the original sequence under reasonable conditions. The new sequence requires three terms before it can produce its first value so the method returns accelerated values on the second and subsequent iterations. On the first iteration it returns the ordinary Newton estimate. The Newton iterate is also returned if the denominator of the acceleration term ever becomes zero. As with all acceleration procedures this method can become unstable if the function is not well-behaved. @end deffn @node Root Finding Examples @section Examples For any root finding algorithm we need to prepare the function to be solved. For this example we will use the general quadratic equation described earlier. We first need a header file (@file{demo_fn.h}) to define the function parameters, @example @verbatiminclude examples/demo_fn.h @end example @noindent We place the function definitions in a separate file (@file{demo_fn.c}), @example @verbatiminclude examples/demo_fn.c @end example @noindent The first program uses the function solver @code{gsl_root_fsolver_brent} for Brent's method and the general quadratic defined above to solve the following equation, @tex \beforedisplay $$ x^2 - 5 = 0 $$ \afterdisplay @end tex @ifinfo @example x^2 - 5 = 0 @end example @end ifinfo @noindent with solution @math{x = \sqrt 5 = 2.236068...} @example @verbatiminclude examples/roots.c @end example @noindent Here are the results of the iterations, @smallexample $ ./a.out using brent method iter [ lower, upper] root err err(est) 1 [1.0000000, 5.0000000] 1.0000000 -1.2360680 4.0000000 2 [1.0000000, 3.0000000] 3.0000000 +0.7639320 2.0000000 3 [2.0000000, 3.0000000] 2.0000000 -0.2360680 1.0000000 4 [2.2000000, 3.0000000] 2.2000000 -0.0360680 0.8000000 5 [2.2000000, 2.2366300] 2.2366300 +0.0005621 0.0366300 Converged: 6 [2.2360634, 2.2366300] 2.2360634 -0.0000046 0.0005666 @end smallexample @noindent If the program is modified to use the bisection solver instead of Brent's method, by changing @code{gsl_root_fsolver_brent} to @code{gsl_root_fsolver_bisection} the slower convergence of the Bisection method can be observed, @smallexample $ ./a.out using bisection method iter [ lower, upper] root err err(est) 1 [0.0000000, 2.5000000] 1.2500000 -0.9860680 2.5000000 2 [1.2500000, 2.5000000] 1.8750000 -0.3610680 1.2500000 3 [1.8750000, 2.5000000] 2.1875000 -0.0485680 0.6250000 4 [2.1875000, 2.5000000] 2.3437500 +0.1076820 0.3125000 5 [2.1875000, 2.3437500] 2.2656250 +0.0295570 0.1562500 6 [2.1875000, 2.2656250] 2.2265625 -0.0095055 0.0781250 7 [2.2265625, 2.2656250] 2.2460938 +0.0100258 0.0390625 8 [2.2265625, 2.2460938] 2.2363281 +0.0002601 0.0195312 9 [2.2265625, 2.2363281] 2.2314453 -0.0046227 0.0097656 10 [2.2314453, 2.2363281] 2.2338867 -0.0021813 0.0048828 11 [2.2338867, 2.2363281] 2.2351074 -0.0009606 0.0024414 Converged: 12 [2.2351074, 2.2363281] 2.2357178 -0.0003502 0.0012207 @end smallexample The next program solves the same function using a derivative solver instead. @example @verbatiminclude examples/rootnewt.c @end example @noindent Here are the results for Newton's method, @example $ ./a.out using newton method iter root err err(est) 1 3.0000000 +0.7639320 -2.0000000 2 2.3333333 +0.0972654 -0.6666667 3 2.2380952 +0.0020273 -0.0952381 Converged: 4 2.2360689 +0.0000009 -0.0020263 @end example @noindent Note that the error can be estimated more accurately by taking the difference between the current iterate and next iterate rather than the previous iterate. The other derivative solvers can be investigated by changing @code{gsl_root_fdfsolver_newton} to @code{gsl_root_fdfsolver_secant} or @code{gsl_root_fdfsolver_steffenson}. @node Root Finding References and Further Reading @section References and Further Reading For information on the Brent-Dekker algorithm see the following two papers, @itemize @w{} @item R. P. Brent, ``An algorithm with guaranteed convergence for finding a zero of a function'', @cite{Computer Journal}, 14 (1971) 422--425 @item J. C. P. Bus and T. J. Dekker, ``Two Efficient Algorithms with Guaranteed Convergence for Finding a Zero of a Function'', @cite{ACM Transactions of Mathematical Software}, Vol.@: 1 No.@: 4 (1975) 330--345 @end itemize gsl-1.16/doc/specfunc-expint.texi0000664000252300025230000001240212171574312013724 00000000000000@cindex exponential integrals @cindex integrals, exponential Information on the exponential integrals can be found in Abramowitz & Stegun, Chapter 5. These functions are declared in the header file @file{gsl_sf_expint.h}. @menu * Exponential Integral:: * Ei(x):: * Hyperbolic Integrals:: * Ei_3(x):: * Trigonometric Integrals:: * Arctangent Integral:: @end menu @node Exponential Integral @subsection Exponential Integral @cindex E1(x), E2(x), Ei(x) @deftypefun double gsl_sf_expint_E1 (double @var{x}) @deftypefunx int gsl_sf_expint_E1_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the exponential integral @math{E_1(x)}, @tex \beforedisplay $$ E_1(x) := \Re \int_1^\infty dt \exp(-xt)/t. $$ \afterdisplay @end tex @ifinfo @example E_1(x) := \Re \int_1^\infty dt \exp(-xt)/t. @end example @end ifinfo @noindent @comment Domain: x != 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_expint_E2 (double @var{x}) @deftypefunx int gsl_sf_expint_E2_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the second-order exponential integral @math{E_2(x)}, @tex \beforedisplay $$ E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2. $$ \afterdisplay @end tex @ifinfo @example E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2. @end example @end ifinfo @noindent @comment Domain: x != 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_expint_En (int @var{n}, double @var{x}) @deftypefunx int gsl_sf_expint_En_e (int @var{n}, double @var{x}, gsl_sf_result * @var{result}) These routines compute the exponential integral @math{E_n(x)} of order @math{n}, @tex \beforedisplay $$ E_n(x) := \Re \int_1^\infty dt \exp(-xt)/t^n. $$ \afterdisplay @end tex @ifinfo @example E_n(x) := \Re \int_1^\infty dt \exp(-xt)/t^n. @end example @end ifinfo @noindent @comment Domain: x != 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Ei(x) @subsection Ei(x) @deftypefun double gsl_sf_expint_Ei (double @var{x}) @deftypefunx int gsl_sf_expint_Ei_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the exponential integral @c{$\hbox{Ei}(x)$} @math{Ei(x)}, @tex \beforedisplay $$ \hbox{Ei}(x) := - PV\left(\int_{-x}^\infty dt \exp(-t)/t\right) $$ \afterdisplay @end tex @ifinfo @example Ei(x) := - PV(\int_@{-x@}^\infty dt \exp(-t)/t) @end example @end ifinfo @noindent where @math{PV} denotes the principal value of the integral. @comment Domain: x != 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Hyperbolic Integrals @subsection Hyperbolic Integrals @cindex hyperbolic integrals @cindex Shi(x) @cindex Chi(x) @deftypefun double gsl_sf_Shi (double @var{x}) @deftypefunx int gsl_sf_Shi_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the integral @c{$\hbox{Shi}(x) = \int_0^x dt \sinh(t)/t$} @math{Shi(x) = \int_0^x dt \sinh(t)/t}. @comment Exceptional Return Values: GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @deftypefun double gsl_sf_Chi (double @var{x}) @deftypefunx int gsl_sf_Chi_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the integral @c{$\hbox{Chi}(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t]$} @math{ Chi(x) := \Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh(t)-1)/t] }, where @math{\gamma_E} is the Euler constant (available as the macro @code{M_EULER}). @comment Domain: x != 0.0 @comment Exceptional Return Values: GSL_EDOM, GSL_EOVRFLW, GSL_EUNDRFLW @end deftypefun @node Ei_3(x) @subsection Ei_3(x) @deftypefun double gsl_sf_expint_3 (double @var{x}) @deftypefunx int gsl_sf_expint_3_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the third-order exponential integral @c{${\rm Ei}_3(x) = \int_0^xdt \exp(-t^3)$} @math{Ei_3(x) = \int_0^xdt \exp(-t^3)} for @c{$x \ge 0$} @math{x >= 0}. @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Trigonometric Integrals @subsection Trigonometric Integrals @cindex trigonometric integrals @cindex Si(x) @cindex Ci(x) @deftypefun double gsl_sf_Si (const double @var{x}) @deftypefunx int gsl_sf_Si_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Sine integral @c{$\hbox{Si}(x) = \int_0^x dt \sin(t)/t$} @math{Si(x) = \int_0^x dt \sin(t)/t}. @comment Exceptional Return Values: none @end deftypefun @deftypefun double gsl_sf_Ci (const double @var{x}) @deftypefunx int gsl_sf_Ci_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Cosine integral @c{$\hbox{Ci}(x) = -\int_x^\infty dt \cos(t)/t$} @math{Ci(x) = -\int_x^\infty dt \cos(t)/t} for @math{x > 0}. @comment Domain: x > 0.0 @comment Exceptional Return Values: GSL_EDOM @end deftypefun @node Arctangent Integral @subsection Arctangent Integral @cindex arctangent integral @deftypefun double gsl_sf_atanint (double @var{x}) @deftypefunx int gsl_sf_atanint_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Arctangent integral, which is defined as @c{$\hbox{AtanInt}(x) = \int_0^x dt \arctan(t)/t$} @math{AtanInt(x) = \int_0^x dt \arctan(t)/t}. @comment Domain: @comment Exceptional Return Values: @end deftypefun gsl-1.16/doc/calc.sty0000664000252300025230000001345612171574312011373 00000000000000%% %% This is file `calc.sty', %% generated with the docstrip utility. %% %% The original source files were: %% %% calc.dtx (with options: `package') %% File `calc.dtx'. %% Copyright (C) 1992--1995 Kresten Krab Thorup and Frank Jensen. %% All rights reserved. \def\fileversion{v4.0c (TEST)} \def\filedate{1995/04/10} %% \CharacterTable %% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z %% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z %% Digits \0\1\2\3\4\5\6\7\8\9 %% Exclamation \! Double quote \" Hash (number) \# %% Dollar \$ Percent \% Ampersand \& %% Acute accent \' Left paren \( Right paren \) %% Asterisk \* Plus \+ Comma \, %% Minus \- Point \. Solidus \/ %% Colon \: Semicolon \; Less than \< %% Equals \= Greater than \> Question mark \? %% Commercial at \@ Left bracket \[ Backslash \\ %% Right bracket \] Circumflex \^ Underscore \_ %% Grave accent \` Left brace \{ Vertical bar \| %% Right brace \} Tilde \~} \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{calc}[\filedate\space\fileversion] \typeout{Package: `calc' \fileversion\space <\filedate> (KKT and FJ)} \def\calc@assign@generic#1#2#3#4{\let\calc@A#1\let\calc@B#2% \expandafter\calc@open\expandafter(#4!% \global\calc@A\calc@B\endgroup#3\calc@B} \def\calc@assign@count{\calc@assign@generic\calc@Acount\calc@Bcount} \def\calc@assign@dimen{\calc@assign@generic\calc@Adimen\calc@Bdimen} \def\calc@assign@skip{\calc@assign@generic\calc@Askip\calc@Bskip} \newcount\calc@Acount \newcount\calc@Bcount \newdimen\calc@Adimen \newdimen\calc@Bdimen \newskip\calc@Askip \newskip\calc@Bskip \def\setcounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}% {\calc@assign@count{\global\csname c@#1\endcsname}{#2}}} \def\addtocounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}% {\calc@assign@count{\global\advance\csname c@#1\endcsname}{#2}}} \DeclareRobustCommand\setlength{\calc@assign@skip} \DeclareRobustCommand\addtolength[1]{\calc@assign@skip{\advance#1}} \def\calc@pre@scan#1{% \ifx(#1% \let\calc@next\calc@open \else \let\calc@next\calc@numeric \fi \calc@next#1} \def\calc@open({\begingroup\aftergroup\calc@initB \begingroup\aftergroup\calc@initB \calc@pre@scan} \def\calc@initB{\calc@B\calc@A} \def\calc@numeric{\afterassignment\calc@post@scan \global\calc@A} \def\calc@post@scan#1{% \ifx#1!\let\calc@next\endgroup \else \ifx#1+\let\calc@next\calc@add \else \ifx#1-\let\calc@next\calc@subtract \else \ifx#1*\let\calc@next\calc@multiplyx \else \ifx#1/\let\calc@next\calc@dividex \else \ifx#1)\let\calc@next\calc@close \else \calc@error#1% \fi \fi \fi \fi \fi \fi \calc@next} \def\calc@add{\calc@generic@add\calc@addAtoB} \def\calc@subtract{\calc@generic@add\calc@subtractAfromB} \def\calc@generic@add#1{\endgroup\global\calc@A\calc@B\endgroup \begingroup\aftergroup#1\begingroup\aftergroup\calc@initB \calc@pre@scan} \def\calc@addAtoB{\advance\calc@B\calc@A} \def\calc@subtractAfromB{\advance\calc@B-\calc@A} \def\calc@multiplyx#1{\def\calc@tmp{#1}% \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@multiply \else \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@multiply \else \let\calc@next\calc@multiply \fi \fi \calc@next#1} \def\calc@dividex#1{\def\calc@tmp{#1}% \ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@divide \else \ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@divide \else \let\calc@next\calc@divide \fi \fi \calc@next#1} \def\calc@ratio@x{\ratio} \def\calc@real@x{\real} \def\calc@multiply{\calc@generic@multiply\calc@multiplyBbyA} \def\calc@divide{\calc@generic@multiply\calc@divideBbyA} \def\calc@generic@multiply#1{\endgroup\begingroup \let\calc@A\calc@Acount \let\calc@B\calc@Bcount \aftergroup#1\calc@pre@scan} \def\calc@multiplyBbyA{\multiply\calc@B\calc@Acount} \def\calc@divideBbyA{\divide\calc@B\calc@Acount} \def\calc@close {\endgroup\global\calc@A\calc@B \endgroup\global\calc@A\calc@B \calc@post@scan} \def\calc@ratio@multiply\ratio{\calc@ratio@evaluate} \def\calc@ratio@divide\ratio#1#2{\calc@ratio@evaluate{#2}{#1}} \let\calc@numerator=\calc@Bcount \newcount\calc@denominator \def\calc@ratio@evaluate#1#2{% \endgroup\begingroup \calc@assign@dimen\calc@numerator{#1}% \calc@assign@dimen\calc@denominator{#2}% \gdef\calc@the@ratio{}% \ifnum\calc@numerator<0 \calc@numerator-\calc@numerator \gdef\calc@the@ratio{-}% \fi \ifnum\calc@denominator<0 \calc@denominator-\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio-}% \fi \calc@Acount\calc@numerator \divide\calc@Acount\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount.}% \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \calc@next@digit \endgroup \calc@multiply@by@real\calc@the@ratio \begingroup \calc@post@scan} \def\calc@next@digit{% \multiply\calc@Acount\calc@denominator \advance\calc@numerator -\calc@Acount \multiply\calc@numerator 10 \calc@Acount\calc@numerator \divide\calc@Acount\calc@denominator \xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount}} \def\calc@multiply@by@real#1{\calc@Bdimen #1\calc@B \calc@B\calc@Bdimen} \def\calc@real@multiply\real#1{\endgroup \calc@multiply@by@real{#1}\begingroup \calc@post@scan} \def\calc@real@divide\real#1{\calc@ratio@evaluate{1pt}{#1pt}} \def\calc@error#1{% \errhelp{Calc error: I expected to see one of: + - * / )}% \errmessage{Invalid character `#1' in arithmetic expression}} \endinput %% %% End of file `calc.sty'. gsl-1.16/doc/fdl.texi0000664000252300025230000005611712171574312011371 00000000000000@c The GNU Free Documentation License. @center Version 1.3, 3 November 2008 @iftex @smallerfonts @rm @end iftex @c This file is intended to be included within another document, @c hence no sectioning command or @node. @display Copyright @copyright{} 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. @uref{http://fsf.org/} Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. @end display @enumerate 0 @item PREAMBLE The purpose of this License is to make a manual, textbook, or other functional and useful document @dfn{free} in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of ``copyleft'', which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. @item APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The ``Document'', below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as ``you''. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. A ``Modified Version'' of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A ``Secondary Section'' is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The ``Invariant Sections'' are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. The ``Cover Texts'' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A ``Transparent'' copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not ``Transparent'' is called ``Opaque''. Examples of suitable formats for Transparent copies include plain @sc{ascii} without markup, Texinfo input format, La@TeX{} input format, @acronym{SGML} or @acronym{XML} using a publicly available @acronym{DTD}, and standard-conforming simple @acronym{HTML}, PostScript or @acronym{PDF} designed for human modification. Examples of transparent image formats include @acronym{PNG}, @acronym{XCF} and @acronym{JPG}. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, @acronym{SGML} or @acronym{XML} for which the @acronym{DTD} and/or processing tools are not generally available, and the machine-generated @acronym{HTML}, PostScript or @acronym{PDF} produced by some word processors for output purposes only. The ``Title Page'' means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, ``Title Page'' means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. The ``publisher'' means any person or entity that distributes copies of the Document to the public. A section ``Entitled XYZ'' means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as ``Acknowledgements'', ``Dedications'', ``Endorsements'', or ``History''.) To ``Preserve the Title'' of such a section when you modify the Document means that it remains a section ``Entitled XYZ'' according to this definition. The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. @item VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. @item COPYING IN QUANTITY If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. @item MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: @enumerate A @item Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. @item List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. @item State on the Title page the name of the publisher of the Modified Version, as the publisher. @item Preserve all the copyright notices of the Document. @item Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. @item Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. @item Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. @item Include an unaltered copy of this License. @item Preserve the section Entitled ``History'', Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled ``History'' in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. @item Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the ``History'' section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. @item For any section Entitled ``Acknowledgements'' or ``Dedications'', Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. @item Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. @item Delete any section Entitled ``Endorsements''. Such a section may not be included in the Modified Version. @item Do not retitle any existing section to be Entitled ``Endorsements'' or to conflict in title with any Invariant Section. @item Preserve any Warranty Disclaimers. @end enumerate If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section Entitled ``Endorsements'', provided it contains nothing but endorsements of your Modified Version by various parties---for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. @item COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections Entitled ``History'' in the various original documents, forming one section Entitled ``History''; likewise combine any sections Entitled ``Acknowledgements'', and any sections Entitled ``Dedications''. You must delete all sections Entitled ``Endorsements.'' @item COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. @item AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an ``aggregate'' if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. @item TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. If a section in the Document is Entitled ``Acknowledgements'', ``Dedications'', or ``History'', the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. @item TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. @item FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See @uref{http://www.gnu.org/copyleft/}. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License ``or any later version'' applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. @item RELICENSING ``Massive Multiauthor Collaboration Site'' (or ``MMC Site'') means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A ``Massive Multiauthor Collaboration'' (or ``MMC'') contained in the site means any set of copyrightable works thus published on the MMC site. ``CC-BY-SA'' means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. ``Incorporate'' means to publish or republish a Document, in whole or in part, as part of another Document. An MMC is ``eligible for relicensing'' if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. @end enumerate @page @heading ADDENDUM: How to use this License for your documents To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: @smallexample @group Copyright (C) @var{year} @var{your name}. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ``GNU Free Documentation License''. @end group @end smallexample If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ``with@dots{}Texts.'' line with this: @smallexample @group with the Invariant Sections being @var{list their titles}, with the Front-Cover Texts being @var{list}, and with the Back-Cover Texts being @var{list}. @end group @end smallexample If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. @iftex @textfonts @rm @end iftex @c Local Variables: @c ispell-local-pdict: "ispell-dict" @c End: gsl-1.16/doc/linalg.texi0000664000252300025230000014160212171574312012064 00000000000000@cindex linear algebra @cindex solution of linear systems, Ax=b @cindex matrix factorization @cindex factorization of matrices This chapter describes functions for solving linear systems. The library provides linear algebra operations which operate directly on the @code{gsl_vector} and @code{gsl_matrix} objects. These routines use the standard algorithms from Golub & Van Loan's @cite{Matrix Computations} with Level-1 and Level-2 BLAS calls for efficiency. The functions described in this chapter are declared in the header file @file{gsl_linalg.h}. @menu * LU Decomposition:: * QR Decomposition:: * QR Decomposition with Column Pivoting:: * Singular Value Decomposition:: * Cholesky Decomposition:: * Tridiagonal Decomposition of Real Symmetric Matrices:: * Tridiagonal Decomposition of Hermitian Matrices:: * Hessenberg Decomposition of Real Matrices:: * Hessenberg-Triangular Decomposition of Real Matrices:: * Bidiagonalization:: * Householder Transformations:: * Householder solver for linear systems:: * Tridiagonal Systems:: * Balancing:: * Linear Algebra Examples:: * Linear Algebra References and Further Reading:: @end menu @node LU Decomposition @section LU Decomposition @cindex LU decomposition A general square matrix @math{A} has an @math{LU} decomposition into upper and lower triangular matrices, @tex \beforedisplay $$ P A = L U $$ \afterdisplay @end tex @ifinfo @example P A = L U @end example @end ifinfo @noindent where @math{P} is a permutation matrix, @math{L} is unit lower triangular matrix and @math{U} is upper triangular matrix. For square matrices this decomposition can be used to convert the linear system @math{A x = b} into a pair of triangular systems (@math{L y = P b}, @math{U x = y}), which can be solved by forward and back-substitution. Note that the @math{LU} decomposition is valid for singular matrices. @deftypefun int gsl_linalg_LU_decomp (gsl_matrix * @var{A}, gsl_permutation * @var{p}, int * @var{signum}) @deftypefunx int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * @var{A}, gsl_permutation * @var{p}, int * @var{signum}) These functions factorize the square matrix @var{A} into the @math{LU} decomposition @math{PA = LU}. On output the diagonal and upper triangular part of the input matrix @var{A} contain the matrix @math{U}. The lower triangular part of the input matrix (excluding the diagonal) contains @math{L}. The diagonal elements of @math{L} are unity, and are not stored. The permutation matrix @math{P} is encoded in the permutation @var{p}. The @math{j}-th column of the matrix @math{P} is given by the @math{k}-th column of the identity matrix, where @math{k = p_j} the @math{j}-th element of the permutation vector. The sign of the permutation is given by @var{signum}. It has the value @math{(-1)^n}, where @math{n} is the number of interchanges in the permutation. The algorithm used in the decomposition is Gaussian Elimination with partial pivoting (Golub & Van Loan, @cite{Matrix Computations}, Algorithm 3.4.1). @end deftypefun @cindex linear systems, solution of @deftypefun int gsl_linalg_LU_solve (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}) @deftypefunx int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}) These functions solve the square system @math{A x = b} using the @math{LU} decomposition of @math{A} into (@var{LU}, @var{p}) given by @code{gsl_linalg_LU_decomp} or @code{gsl_linalg_complex_LU_decomp} as input. @end deftypefun @deftypefun int gsl_linalg_LU_svx (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_vector * @var{x}) @deftypefunx int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_vector_complex * @var{x}) These functions solve the square system @math{A x = b} in-place using the precomputed @math{LU} decomposition of @math{A} into (@var{LU},@var{p}). On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @cindex refinement of solutions in linear systems @cindex iterative refinement of solutions in linear systems @cindex linear systems, refinement of solutions @deftypefun int gsl_linalg_LU_refine (const gsl_matrix * @var{A}, const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual}) @deftypefunx int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * @var{A}, const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}, gsl_vector_complex * @var{residual}) These functions apply an iterative improvement to @var{x}, the solution of @math{A x = b}, from the precomputed @math{LU} decomposition of @math{A} into (@var{LU},@var{p}). The initial residual @math{r = A x - b} is also computed and stored in @var{residual}. @end deftypefun @cindex inverse of a matrix, by LU decomposition @cindex matrix inverse @deftypefun int gsl_linalg_LU_invert (const gsl_matrix * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix * @var{inverse}) @deftypefunx int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * @var{LU}, const gsl_permutation * @var{p}, gsl_matrix_complex * @var{inverse}) These functions compute the inverse of a matrix @math{A} from its @math{LU} decomposition (@var{LU},@var{p}), storing the result in the matrix @var{inverse}. The inverse is computed by solving the system @math{A x = b} for each column of the identity matrix. It is preferable to avoid direct use of the inverse whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory textbook on numerical linear algebra for details). @end deftypefun @cindex determinant of a matrix, by LU decomposition @cindex matrix determinant @deftypefun double gsl_linalg_LU_det (gsl_matrix * @var{LU}, int @var{signum}) @deftypefunx gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * @var{LU}, int @var{signum}) These functions compute the determinant of a matrix @math{A} from its @math{LU} decomposition, @var{LU}. The determinant is computed as the product of the diagonal elements of @math{U} and the sign of the row permutation @var{signum}. @end deftypefun @cindex logarithm of the determinant of a matrix @deftypefun double gsl_linalg_LU_lndet (gsl_matrix * @var{LU}) @deftypefunx double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * @var{LU}) These functions compute the logarithm of the absolute value of the determinant of a matrix @math{A}, @math{\ln|\det(A)|}, from its @math{LU} decomposition, @var{LU}. This function may be useful if the direct computation of the determinant would overflow or underflow. @end deftypefun @cindex sign of the determinant of a matrix @deftypefun int gsl_linalg_LU_sgndet (gsl_matrix * @var{LU}, int @var{signum}) @deftypefunx gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * @var{LU}, int @var{signum}) These functions compute the sign or phase factor of the determinant of a matrix @math{A}, @math{\det(A)/|\det(A)|}, from its @math{LU} decomposition, @var{LU}. @end deftypefun @node QR Decomposition @section QR Decomposition @cindex QR decomposition A general rectangular @math{M}-by-@math{N} matrix @math{A} has a @math{QR} decomposition into the product of an orthogonal @math{M}-by-@math{M} square matrix @math{Q} (where @math{Q^T Q = I}) and an @math{M}-by-@math{N} right-triangular matrix @math{R}, @tex \beforedisplay $$ A = Q R $$ \afterdisplay @end tex @ifinfo @example A = Q R @end example @end ifinfo @noindent This decomposition can be used to convert the linear system @math{A x = b} into the triangular system @math{R x = Q^T b}, which can be solved by back-substitution. Another use of the @math{QR} decomposition is to compute an orthonormal basis for a set of vectors. The first @math{N} columns of @math{Q} form an orthonormal basis for the range of @math{A}, @math{ran(A)}, when @math{A} has full column rank. @deftypefun int gsl_linalg_QR_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}) This function factorizes the @math{M}-by-@math{N} matrix @var{A} into the @math{QR} decomposition @math{A = Q R}. On output the diagonal and upper triangular part of the input matrix contain the matrix @math{R}. The vector @var{tau} and the columns of the lower triangular part of the matrix @var{A} contain the Householder coefficients and Householder vectors which encode the orthogonal matrix @var{Q}. The vector @var{tau} must be of length @math{k=\min(M,N)}. The matrix @math{Q} is related to these components by, @math{Q = Q_k ... Q_2 Q_1} where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the Householder vector @math{v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme as used by @sc{lapack}. The algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, @cite{Matrix Computations}, Algorithm 5.2.1). @end deftypefun @deftypefun int gsl_linalg_QR_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the square system @math{A x = b} using the @math{QR} decomposition of @math{A} held in (@var{QR}, @var{tau}) which must have been computed previously with @code{gsl_linalg_QR_decomp}. The least-squares solution for rectangular systems can be found using @code{gsl_linalg_QR_lssolve}. @end deftypefun @deftypefun int gsl_linalg_QR_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{x}) This function solves the square system @math{A x = b} in-place using the @math{QR} decomposition of @math{A} held in (@var{QR},@var{tau}) which must have been computed previously by @code{gsl_linalg_QR_decomp}. On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @deftypefun int gsl_linalg_QR_lssolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_vector * @var{b}, gsl_vector * @var{x}, gsl_vector * @var{residual}) This function finds the least squares solution to the overdetermined system @math{A x = b} where the matrix @var{A} has more rows than columns. The least squares solution minimizes the Euclidean norm of the residual, @math{||Ax - b||}.The routine requires as input the @math{QR} decomposition of @math{A} into (@var{QR}, @var{tau}) given by @code{gsl_linalg_QR_decomp}. The solution is returned in @var{x}. The residual is computed as a by-product and stored in @var{residual}. @end deftypefun @deftypefun int gsl_linalg_QR_QTvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v}) This function applies the matrix @math{Q^T} encoded in the decomposition (@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q^T v} in @var{v}. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix @math{Q^T}. @end deftypefun @deftypefun int gsl_linalg_QR_Qvec (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_vector * @var{v}) This function applies the matrix @math{Q} encoded in the decomposition (@var{QR},@var{tau}) to the vector @var{v}, storing the result @math{Q v} in @var{v}. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix @math{Q}. @end deftypefun @deftypefun int gsl_linalg_QR_QTmat (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{A}) This function applies the matrix @math{Q^T} encoded in the decomposition (@var{QR},@var{tau}) to the matrix @var{A}, storing the result @math{Q^T A} in @var{A}. The matrix multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix @math{Q^T}. @end deftypefun @deftypefun int gsl_linalg_QR_Rsolve (const gsl_matrix * @var{QR}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the triangular system @math{R x = b} for @var{x}. It may be useful if the product @math{b' = Q^T b} has already been computed using @code{gsl_linalg_QR_QTvec}. @end deftypefun @deftypefun int gsl_linalg_QR_Rsvx (const gsl_matrix * @var{QR}, gsl_vector * @var{x}) This function solves the triangular system @math{R x = b} for @var{x} in-place. On input @var{x} should contain the right-hand side @math{b} and is replaced by the solution on output. This function may be useful if the product @math{b' = Q^T b} has already been computed using @code{gsl_linalg_QR_QTvec}. @end deftypefun @deftypefun int gsl_linalg_QR_unpack (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_matrix * @var{R}) This function unpacks the encoded @math{QR} decomposition (@var{QR},@var{tau}) into the matrices @var{Q} and @var{R}, where @var{Q} is @math{M}-by-@math{M} and @var{R} is @math{M}-by-@math{N}. @end deftypefun @deftypefun int gsl_linalg_QR_QRsolve (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the system @math{R x = Q^T b} for @var{x}. It can be used when the @math{QR} decomposition of a matrix is available in unpacked form as (@var{Q}, @var{R}). @end deftypefun @deftypefun int gsl_linalg_QR_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, gsl_vector * @var{w}, const gsl_vector * @var{v}) This function performs a rank-1 update @math{w v^T} of the @math{QR} decomposition (@var{Q}, @var{R}). The update is given by @math{Q'R' = Q (R + w v^T)} where the output matrices @math{Q'} and @math{R'} are also orthogonal and right triangular. Note that @var{w} is destroyed by the update. @end deftypefun @deftypefun int gsl_linalg_R_solve (const gsl_matrix * @var{R}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the triangular system @math{R x = b} for the @math{N}-by-@math{N} matrix @var{R}. @end deftypefun @deftypefun int gsl_linalg_R_svx (const gsl_matrix * @var{R}, gsl_vector * @var{x}) This function solves the triangular system @math{R x = b} in-place. On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @node QR Decomposition with Column Pivoting @section QR Decomposition with Column Pivoting @cindex QR decomposition with column pivoting The @math{QR} decomposition can be extended to the rank deficient case by introducing a column permutation @math{P}, @tex \beforedisplay $$ A P = Q R $$ \afterdisplay @end tex @ifinfo @example A P = Q R @end example @end ifinfo @noindent The first @math{r} columns of @math{Q} form an orthonormal basis for the range of @math{A} for a matrix with column rank @math{r}. This decomposition can also be used to convert the linear system @math{A x = b} into the triangular system @math{R y = Q^T b, x = P y}, which can be solved by back-substitution and permutation. We denote the @math{QR} decomposition with column pivoting by @math{QRP^T} since @math{A = Q R P^T}. @deftypefun int gsl_linalg_QRPT_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm}) This function factorizes the @math{M}-by-@math{N} matrix @var{A} into the @math{QRP^T} decomposition @math{A = Q R P^T}. On output the diagonal and upper triangular part of the input matrix contain the matrix @math{R}. The permutation matrix @math{P} is stored in the permutation @var{p}. The sign of the permutation is given by @var{signum}. It has the value @math{(-1)^n}, where @math{n} is the number of interchanges in the permutation. The vector @var{tau} and the columns of the lower triangular part of the matrix @var{A} contain the Householder coefficients and vectors which encode the orthogonal matrix @var{Q}. The vector @var{tau} must be of length @math{k=\min(M,N)}. The matrix @math{Q} is related to these components by, @math{Q = Q_k ... Q_2 Q_1} where @math{Q_i = I - \tau_i v_i v_i^T} and @math{v_i} is the Householder vector @math{v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i))}. This is the same storage scheme as used by @sc{lapack}. The vector @var{norm} is a workspace of length @var{N} used for column pivoting. The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan, @cite{Matrix Computations}, Algorithm 5.4.1). @end deftypefun @deftypefun int gsl_linalg_QRPT_decomp2 (const gsl_matrix * @var{A}, gsl_matrix * @var{q}, gsl_matrix * @var{r}, gsl_vector * @var{tau}, gsl_permutation * @var{p}, int * @var{signum}, gsl_vector * @var{norm}) This function factorizes the matrix @var{A} into the decomposition @math{A = Q R P^T} without modifying @var{A} itself and storing the output in the separate matrices @var{q} and @var{r}. @end deftypefun @deftypefun int gsl_linalg_QRPT_solve (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the square system @math{A x = b} using the @math{QRP^T} decomposition of @math{A} held in (@var{QR}, @var{tau}, @var{p}) which must have been computed previously by @code{gsl_linalg_QRPT_decomp}. @end deftypefun @deftypefun int gsl_linalg_QRPT_svx (const gsl_matrix * @var{QR}, const gsl_vector * @var{tau}, const gsl_permutation * @var{p}, gsl_vector * @var{x}) This function solves the square system @math{A x = b} in-place using the @math{QRP^T} decomposition of @math{A} held in (@var{QR},@var{tau},@var{p}). On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @deftypefun int gsl_linalg_QRPT_QRsolve (const gsl_matrix * @var{Q}, const gsl_matrix * @var{R}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the square system @math{R P^T x = Q^T b} for @var{x}. It can be used when the @math{QR} decomposition of a matrix is available in unpacked form as (@var{Q}, @var{R}). @end deftypefun @deftypefun int gsl_linalg_QRPT_update (gsl_matrix * @var{Q}, gsl_matrix * @var{R}, const gsl_permutation * @var{p}, gsl_vector * @var{w}, const gsl_vector * @var{v}) This function performs a rank-1 update @math{w v^T} of the @math{QRP^T} decomposition (@var{Q}, @var{R}, @var{p}). The update is given by @math{Q'R' = Q (R + w v^T P)} where the output matrices @math{Q'} and @math{R'} are also orthogonal and right triangular. Note that @var{w} is destroyed by the update. The permutation @var{p} is not changed. @end deftypefun @deftypefun int gsl_linalg_QRPT_Rsolve (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the triangular system @math{R P^T x = b} for the @math{N}-by-@math{N} matrix @math{R} contained in @var{QR}. @end deftypefun @deftypefun int gsl_linalg_QRPT_Rsvx (const gsl_matrix * @var{QR}, const gsl_permutation * @var{p}, gsl_vector * @var{x}) This function solves the triangular system @math{R P^T x = b} in-place for the @math{N}-by-@math{N} matrix @math{R} contained in @var{QR}. On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @node Singular Value Decomposition @section Singular Value Decomposition @cindex SVD @cindex singular value decomposition A general rectangular @math{M}-by-@math{N} matrix @math{A} has a singular value decomposition (@sc{svd}) into the product of an @math{M}-by-@math{N} orthogonal matrix @math{U}, an @math{N}-by-@math{N} diagonal matrix of singular values @math{S} and the transpose of an @math{N}-by-@math{N} orthogonal square matrix @math{V}, @tex \beforedisplay $$ A = U S V^T $$ \afterdisplay @end tex @ifinfo @example A = U S V^T @end example @end ifinfo @noindent The singular values @c{$\sigma_i = S_{ii}$} @math{\sigma_i = S_@{ii@}} are all non-negative and are generally chosen to form a non-increasing sequence @c{$\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_N \ge 0$} @math{\sigma_1 >= \sigma_2 >= ... >= \sigma_N >= 0}. The singular value decomposition of a matrix has many practical uses. The condition number of the matrix is given by the ratio of the largest singular value to the smallest singular value. The presence of a zero singular value indicates that the matrix is singular. The number of non-zero singular values indicates the rank of the matrix. In practice singular value decomposition of a rank-deficient matrix will not produce exact zeroes for singular values, due to finite numerical precision. Small singular values should be edited by choosing a suitable tolerance. For a rank-deficient matrix, the null space of @math{A} is given by the columns of @math{V} corresponding to the zero singular values. Similarly, the range of @math{A} is given by columns of @math{U} corresponding to the non-zero singular values. Note that the routines here compute the ``thin'' version of the SVD with @math{U} as @math{M}-by-@math{N} orthogonal matrix. This allows in-place computation and is the most commonly-used form in practice. Mathematically, the ``full'' SVD is defined with @math{U} as an @math{M}-by-@math{M} orthogonal matrix and @math{S} as an @math{M}-by-@math{N} diagonal matrix (with additional rows of zeros). @deftypefun int gsl_linalg_SV_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work}) This function factorizes the @math{M}-by-@math{N} matrix @var{A} into the singular value decomposition @math{A = U S V^T} for @c{$M \ge N$} @math{M >= N}. On output the matrix @var{A} is replaced by @math{U}. The diagonal elements of the singular value matrix @math{S} are stored in the vector @var{S}. The singular values are non-negative and form a non-increasing sequence from @math{S_1} to @math{S_N}. The matrix @var{V} contains the elements of @math{V} in untransposed form. To form the product @math{U S V^T} it is necessary to take the transpose of @var{V}. A workspace of length @var{N} is required in @var{work}. This routine uses the Golub-Reinsch SVD algorithm. @end deftypefun @deftypefun int gsl_linalg_SV_decomp_mod (gsl_matrix * @var{A}, gsl_matrix * @var{X}, gsl_matrix * @var{V}, gsl_vector * @var{S}, gsl_vector * @var{work}) This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for @c{$M \gg N$} @math{M>>N}. It requires the vector @var{work} of length @var{N} and the @math{N}-by-@math{N} matrix @var{X} as additional working space. @end deftypefun @deftypefun int gsl_linalg_SV_decomp_jacobi (gsl_matrix * @var{A}, gsl_matrix * @var{V}, gsl_vector * @var{S}) @cindex Jacobi orthogonalization This function computes the SVD of the @math{M}-by-@math{N} matrix @var{A} using one-sided Jacobi orthogonalization for @c{$M \ge N$} @math{M >= N}. The Jacobi method can compute singular values to higher relative accuracy than Golub-Reinsch algorithms (see references for details). @end deftypefun @deftypefun int gsl_linalg_SV_solve (const gsl_matrix * @var{U}, const gsl_matrix * @var{V}, const gsl_vector * @var{S}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the system @math{A x = b} using the singular value decomposition (@var{U}, @var{S}, @var{V}) of @math{A} which must have been computed previously with @code{gsl_linalg_SV_decomp}. Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to singular values of zero are ignored. Other singular values can be edited out by setting them to zero before calling this function. In the over-determined case where @var{A} has more rows than columns the system is solved in the least squares sense, returning the solution @var{x} which minimizes @math{||A x - b||_2}. @end deftypefun @deftypefun int gsl_linalg_SV_leverage (const gsl_matrix * @var{U}, gsl_vector * @var{h}) This function computes the statistical leverage values @math{h_i} of a matrix @math{A} using its singular value decomposition (@var{U}, @var{S}, @var{V}) previously computed with @code{gsl_linalg_SV_decomp}. @math{h_i} are the diagonal values of the matrix @math{A (A^T A)^{-1} A^T} and depend only on the matrix @var{U} which is the input to this function. @end deftypefun @node Cholesky Decomposition @section Cholesky Decomposition @cindex Cholesky decomposition @cindex square root of a matrix, Cholesky decomposition @cindex matrix square root, Cholesky decomposition A symmetric, positive definite square matrix @math{A} has a Cholesky decomposition into a product of a lower triangular matrix @math{L} and its transpose @math{L^T}, @tex \beforedisplay $$ A = L L^T $$ \afterdisplay @end tex @ifinfo @example A = L L^T @end example @end ifinfo @noindent This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried out when all the eigenvalues of the matrix are positive. This decomposition can be used to convert the linear system @math{A x = b} into a pair of triangular systems (@math{L y = b}, @math{L^T x = y}), which can be solved by forward and back-substitution. @deftypefun int gsl_linalg_cholesky_decomp (gsl_matrix * @var{A}) @deftypefunx int gsl_linalg_complex_cholesky_decomp (gsl_matrix_complex * @var{A}) These functions factorize the symmetric, positive-definite square matrix @var{A} into the Cholesky decomposition @math{A = L L^T} (or @c{$A = L L^{\dagger}$} @math{A = L L^H} for the complex case). On input, the values from the diagonal and lower-triangular part of the matrix @var{A} are used (the upper triangular part is ignored). On output the diagonal and lower triangular part of the input matrix @var{A} contain the matrix @math{L}, while the upper triangular part of the input matrix is overwritten with @math{L^T} (the diagonal terms being identical for both @math{L} and @math{L^T}). If the matrix is not positive-definite then the decomposition will fail, returning the error code @code{GSL_EDOM}. When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error. @end deftypefun @deftypefun int gsl_linalg_cholesky_solve (const gsl_matrix * @var{cholesky}, const gsl_vector * @var{b}, gsl_vector * @var{x}) @deftypefunx int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * @var{cholesky}, const gsl_vector_complex * @var{b}, gsl_vector_complex * @var{x}) These functions solve the system @math{A x = b} using the Cholesky decomposition of @math{A} held in the matrix @var{cholesky} which must have been previously computed by @code{gsl_linalg_cholesky_decomp} or @code{gsl_linalg_complex_cholesky_decomp}. @end deftypefun @deftypefun int gsl_linalg_cholesky_svx (const gsl_matrix * @var{cholesky}, gsl_vector * @var{x}) @deftypefunx int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * @var{cholesky}, gsl_vector_complex * @var{x}) These functions solve the system @math{A x = b} in-place using the Cholesky decomposition of @math{A} held in the matrix @var{cholesky} which must have been previously computed by @code{gsl_linalg_cholesky_decomp} or @code{gsl_linalg_complex_cholesky_decomp}. On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. @end deftypefun @deftypefun int gsl_linalg_cholesky_invert (gsl_matrix * @var{cholesky}) @deftypefunx int gsl_linalg_complex_cholesky_invert (gsl_matrix_complex * @var{cholesky}) These functions compute the inverse of a matrix from its Cholesky decomposition @var{cholesky}, which must have been previously computed by @code{gsl_linalg_cholesky_decomp} or @code{gsl_linalg_complex_cholesky_decomp}. On output, the inverse is stored in-place in @var{cholesky}. @end deftypefun @node Tridiagonal Decomposition of Real Symmetric Matrices @section Tridiagonal Decomposition of Real Symmetric Matrices @cindex tridiagonal decomposition A symmetric matrix @math{A} can be factorized by similarity transformations into the form, @tex \beforedisplay $$ A = Q T Q^T $$ \afterdisplay @end tex @ifinfo @example A = Q T Q^T @end example @end ifinfo @noindent where @math{Q} is an orthogonal matrix and @math{T} is a symmetric tridiagonal matrix. @deftypefun int gsl_linalg_symmtd_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}) This function factorizes the symmetric square matrix @var{A} into the symmetric tridiagonal decomposition @math{Q T Q^T}. On output the diagonal and subdiagonal part of the input matrix @var{A} contain the tridiagonal matrix @math{T}. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients @var{tau}, encode the orthogonal matrix @math{Q}. This storage scheme is the same as used by @sc{lapack}. The upper triangular part of @var{A} is not referenced. @end deftypefun @deftypefun int gsl_linalg_symmtd_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau}, gsl_matrix * @var{Q}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag}) This function unpacks the encoded symmetric tridiagonal decomposition (@var{A}, @var{tau}) obtained from @code{gsl_linalg_symmtd_decomp} into the orthogonal matrix @var{Q}, the vector of diagonal elements @var{diag} and the vector of subdiagonal elements @var{subdiag}. @end deftypefun @deftypefun int gsl_linalg_symmtd_unpack_T (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag}) This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (@var{A}, @var{tau}) obtained from @code{gsl_linalg_symmtd_decomp} into the vectors @var{diag} and @var{subdiag}. @end deftypefun @node Tridiagonal Decomposition of Hermitian Matrices @section Tridiagonal Decomposition of Hermitian Matrices @cindex tridiagonal decomposition A hermitian matrix @math{A} can be factorized by similarity transformations into the form, @tex \beforedisplay $$ A = U T U^T $$ \afterdisplay @end tex @ifinfo @example A = U T U^T @end example @end ifinfo @noindent where @math{U} is a unitary matrix and @math{T} is a real symmetric tridiagonal matrix. @deftypefun int gsl_linalg_hermtd_decomp (gsl_matrix_complex * @var{A}, gsl_vector_complex * @var{tau}) This function factorizes the hermitian matrix @var{A} into the symmetric tridiagonal decomposition @math{U T U^T}. On output the real parts of the diagonal and subdiagonal part of the input matrix @var{A} contain the tridiagonal matrix @math{T}. The remaining lower triangular part of the input matrix contains the Householder vectors which, together with the Householder coefficients @var{tau}, encode the unitary matrix @math{U}. This storage scheme is the same as used by @sc{lapack}. The upper triangular part of @var{A} and imaginary parts of the diagonal are not referenced. @end deftypefun @deftypefun int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * @var{A}, const gsl_vector_complex * @var{tau}, gsl_matrix_complex * @var{U}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag}) This function unpacks the encoded tridiagonal decomposition (@var{A}, @var{tau}) obtained from @code{gsl_linalg_hermtd_decomp} into the unitary matrix @var{U}, the real vector of diagonal elements @var{diag} and the real vector of subdiagonal elements @var{subdiag}. @end deftypefun @deftypefun int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{subdiag}) This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (@var{A}, @var{tau}) obtained from the @code{gsl_linalg_hermtd_decomp} into the real vectors @var{diag} and @var{subdiag}. @end deftypefun @node Hessenberg Decomposition of Real Matrices @section Hessenberg Decomposition of Real Matrices @cindex Hessenberg decomposition A general real matrix @math{A} can be decomposed by orthogonal similarity transformations into the form @tex \beforedisplay $$ A = U H U^T $$ \afterdisplay @end tex @ifinfo @example A = U H U^T @end example @end ifinfo where @math{U} is orthogonal and @math{H} is an upper Hessenberg matrix, meaning that it has zeros below the first subdiagonal. The Hessenberg reduction is the first step in the Schur decomposition for the nonsymmetric eigenvalue problem, but has applications in other areas as well. @deftypefun int gsl_linalg_hessenberg_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau}) This function computes the Hessenberg decomposition of the matrix @var{A} by applying the similarity transformation @math{H = U^T A U}. On output, @math{H} is stored in the upper portion of @var{A}. The information required to construct the matrix @math{U} is stored in the lower triangular portion of @var{A}. @math{U} is a product of @math{N - 2} Householder matrices. The Householder vectors are stored in the lower portion of @var{A} (below the subdiagonal) and the Householder coefficients are stored in the vector @var{tau}. @var{tau} must be of length @var{N}. @end deftypefun @deftypefun int gsl_linalg_hessenberg_unpack (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{U}) This function constructs the orthogonal matrix @math{U} from the information stored in the Hessenberg matrix @var{H} along with the vector @var{tau}. @var{H} and @var{tau} are outputs from @code{gsl_linalg_hessenberg_decomp}. @end deftypefun @deftypefun int gsl_linalg_hessenberg_unpack_accum (gsl_matrix * @var{H}, gsl_vector * @var{tau}, gsl_matrix * @var{V}) This function is similar to @code{gsl_linalg_hessenberg_unpack}, except it accumulates the matrix @var{U} into @var{V}, so that @math{V' = VU}. The matrix @var{V} must be initialized prior to calling this function. Setting @var{V} to the identity matrix provides the same result as @code{gsl_linalg_hessenberg_unpack}. If @var{H} is order @var{N}, then @var{V} must have @var{N} columns but may have any number of rows. @end deftypefun @deftypefun int gsl_linalg_hessenberg_set_zero (gsl_matrix * @var{H}) This function sets the lower triangular portion of @var{H}, below the subdiagonal, to zero. It is useful for clearing out the Householder vectors after calling @code{gsl_linalg_hessenberg_decomp}. @end deftypefun @node Hessenberg-Triangular Decomposition of Real Matrices @section Hessenberg-Triangular Decomposition of Real Matrices @cindex Hessenberg triangular decomposition A general real matrix pair (@math{A}, @math{B}) can be decomposed by orthogonal similarity transformations into the form @tex \beforedisplay $$ A = U H V^T $$ $$ B = U R V^T $$ \afterdisplay @end tex @ifinfo @example A = U H V^T B = U R V^T @end example @end ifinfo where @math{U} and @math{V} are orthogonal, @math{H} is an upper Hessenberg matrix, and @math{R} is upper triangular. The Hessenberg-Triangular reduction is the first step in the generalized Schur decomposition for the generalized eigenvalue problem. @deftypefun int gsl_linalg_hesstri_decomp (gsl_matrix * @var{A}, gsl_matrix * @var{B}, gsl_matrix * @var{U}, gsl_matrix * @var{V}, gsl_vector * @var{work}) This function computes the Hessenberg-Triangular decomposition of the matrix pair (@var{A}, @var{B}). On output, @math{H} is stored in @var{A}, and @math{R} is stored in @var{B}. If @var{U} and @var{V} are provided (they may be null), the similarity transformations are stored in them. Additional workspace of length @math{N} is needed in @var{work}. @end deftypefun @node Bidiagonalization @section Bidiagonalization @cindex bidiagonalization of real matrices A general matrix @math{A} can be factorized by similarity transformations into the form, @tex \beforedisplay $$ A = U B V^T $$ \afterdisplay @end tex @ifinfo @example A = U B V^T @end example @end ifinfo @noindent where @math{U} and @math{V} are orthogonal matrices and @math{B} is a @math{N}-by-@math{N} bidiagonal matrix with non-zero entries only on the diagonal and superdiagonal. The size of @var{U} is @math{M}-by-@math{N} and the size of @var{V} is @math{N}-by-@math{N}. @deftypefun int gsl_linalg_bidiag_decomp (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V}) This function factorizes the @math{M}-by-@math{N} matrix @var{A} into bidiagonal form @math{U B V^T}. The diagonal and superdiagonal of the matrix @math{B} are stored in the diagonal and superdiagonal of @var{A}. The orthogonal matrices @math{U} and @var{V} are stored as compressed Householder vectors in the remaining elements of @var{A}. The Householder coefficients are stored in the vectors @var{tau_U} and @var{tau_V}. The length of @var{tau_U} must equal the number of elements in the diagonal of @var{A} and the length of @var{tau_V} should be one element shorter. @end deftypefun @deftypefun int gsl_linalg_bidiag_unpack (const gsl_matrix * @var{A}, const gsl_vector * @var{tau_U}, gsl_matrix * @var{U}, const gsl_vector * @var{tau_V}, gsl_matrix * @var{V}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag}) This function unpacks the bidiagonal decomposition of @var{A} produced by @code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V}) into the separate orthogonal matrices @var{U}, @var{V} and the diagonal vector @var{diag} and superdiagonal @var{superdiag}. Note that @var{U} is stored as a compact @math{M}-by-@math{N} orthogonal matrix satisfying @math{U^T U = I} for efficiency. @end deftypefun @deftypefun int gsl_linalg_bidiag_unpack2 (gsl_matrix * @var{A}, gsl_vector * @var{tau_U}, gsl_vector * @var{tau_V}, gsl_matrix * @var{V}) This function unpacks the bidiagonal decomposition of @var{A} produced by @code{gsl_linalg_bidiag_decomp}, (@var{A}, @var{tau_U}, @var{tau_V}) into the separate orthogonal matrices @var{U}, @var{V} and the diagonal vector @var{diag} and superdiagonal @var{superdiag}. The matrix @var{U} is stored in-place in @var{A}. @end deftypefun @deftypefun int gsl_linalg_bidiag_unpack_B (const gsl_matrix * @var{A}, gsl_vector * @var{diag}, gsl_vector * @var{superdiag}) This function unpacks the diagonal and superdiagonal of the bidiagonal decomposition of @var{A} from @code{gsl_linalg_bidiag_decomp}, into the diagonal vector @var{diag} and superdiagonal vector @var{superdiag}. @end deftypefun @node Householder Transformations @section Householder Transformations @cindex Householder matrix @cindex Householder transformation @cindex transformation, Householder A Householder transformation is a rank-1 modification of the identity matrix which can be used to zero out selected elements of a vector. A Householder matrix @math{P} takes the form, @tex \beforedisplay $$ P = I - \tau v v^T $$ \afterdisplay @end tex @ifinfo @example P = I - \tau v v^T @end example @end ifinfo @noindent where @math{v} is a vector (called the @dfn{Householder vector}) and @math{\tau = 2/(v^T v)}. The functions described in this section use the rank-1 structure of the Householder matrix to create and apply Householder transformations efficiently. @deftypefun double gsl_linalg_householder_transform (gsl_vector * @var{v}) @deftypefunx gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * @var{v}) This function prepares a Householder transformation @math{P = I - \tau v v^T} which can be used to zero all the elements of the input vector except the first. On output the transformation is stored in the vector @var{v} and the scalar @math{\tau} is returned. @end deftypefun @deftypefun int gsl_linalg_householder_hm (double @var{tau}, const gsl_vector * @var{v}, gsl_matrix * @var{A}) @deftypefunx int gsl_linalg_complex_householder_hm (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_matrix_complex * @var{A}) This function applies the Householder matrix @math{P} defined by the scalar @var{tau} and the vector @var{v} to the left-hand side of the matrix @var{A}. On output the result @math{P A} is stored in @var{A}. @end deftypefun @deftypefun int gsl_linalg_householder_mh (double @var{tau}, const gsl_vector * @var{v}, gsl_matrix * @var{A}) @deftypefunx int gsl_linalg_complex_householder_mh (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_matrix_complex * @var{A}) This function applies the Householder matrix @math{P} defined by the scalar @var{tau} and the vector @var{v} to the right-hand side of the matrix @var{A}. On output the result @math{A P} is stored in @var{A}. @end deftypefun @deftypefun int gsl_linalg_householder_hv (double @var{tau}, const gsl_vector * @var{v}, gsl_vector * @var{w}) @deftypefunx int gsl_linalg_complex_householder_hv (gsl_complex @var{tau}, const gsl_vector_complex * @var{v}, gsl_vector_complex * @var{w}) This function applies the Householder transformation @math{P} defined by the scalar @var{tau} and the vector @var{v} to the vector @var{w}. On output the result @math{P w} is stored in @var{w}. @end deftypefun @comment @deftypefun int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A) @comment This function applies the Householder transform, defined by the scalar @comment @var{tau} and the vector @var{v}, to a matrix being build up from the @comment identity matrix, using the first column of @var{A} as a householder vector. @comment @end deftypefun @node Householder solver for linear systems @section Householder solver for linear systems @cindex solution of linear system by Householder transformations @cindex Householder linear solver @deftypefun int gsl_linalg_HH_solve (gsl_matrix * @var{A}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the system @math{A x = b} directly using Householder transformations. On output the solution is stored in @var{x} and @var{b} is not modified. The matrix @var{A} is destroyed by the Householder transformations. @end deftypefun @deftypefun int gsl_linalg_HH_svx (gsl_matrix * @var{A}, gsl_vector * @var{x}) This function solves the system @math{A x = b} in-place using Householder transformations. On input @var{x} should contain the right-hand side @math{b}, which is replaced by the solution on output. The matrix @var{A} is destroyed by the Householder transformations. @end deftypefun @node Tridiagonal Systems @section Tridiagonal Systems @cindex tridiagonal systems The functions described in this section efficiently solve symmetric, non-symmetric and cyclic tridiagonal systems with minimal storage. Note that the current implementations of these functions use a variant of Cholesky decomposition, so the tridiagonal matrix must be positive definite. For non-positive definite matrices, the functions return the error code @code{GSL_ESING}. @deftypefun int gsl_linalg_solve_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the general @math{N}-by-@math{N} system @math{A x = b} where @var{A} is tridiagonal (@c{$N\geq 2$} @math{N >= 2}). The super-diagonal and sub-diagonal vectors @var{e} and @var{f} must be one element shorter than the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is shown below, @tex \beforedisplay $$ A = \pmatrix{d_0&e_0& 0& 0\cr f_0&d_1&e_1& 0\cr 0 &f_1&d_2&e_2\cr 0 &0 &f_2&d_3\cr} $$ \afterdisplay @end tex @ifinfo @example A = ( d_0 e_0 0 0 ) ( f_0 d_1 e_1 0 ) ( 0 f_1 d_2 e_2 ) ( 0 0 f_2 d_3 ) @end example @end ifinfo @noindent @end deftypefun @deftypefun int gsl_linalg_solve_symm_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the general @math{N}-by-@math{N} system @math{A x = b} where @var{A} is symmetric tridiagonal (@c{$N\geq 2$} @math{N >= 2}). The off-diagonal vector @var{e} must be one element shorter than the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is shown below, @tex \beforedisplay $$ A = \pmatrix{d_0&e_0& 0& 0\cr e_0&d_1&e_1& 0\cr 0 &e_1&d_2&e_2\cr 0 &0 &e_2&d_3\cr} $$ \afterdisplay @end tex @ifinfo @example A = ( d_0 e_0 0 0 ) ( e_0 d_1 e_1 0 ) ( 0 e_1 d_2 e_2 ) ( 0 0 e_2 d_3 ) @end example @end ifinfo @end deftypefun @deftypefun int gsl_linalg_solve_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{f}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the general @math{N}-by-@math{N} system @math{A x = b} where @var{A} is cyclic tridiagonal (@c{$N\geq 3$} @math{N >= 3}). The cyclic super-diagonal and sub-diagonal vectors @var{e} and @var{f} must have the same number of elements as the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is shown below, @tex \beforedisplay $$ A = \pmatrix{d_0&e_0& 0 &f_3\cr f_0&d_1&e_1& 0 \cr 0 &f_1&d_2&e_2\cr e_3& 0 &f_2&d_3\cr} $$ \afterdisplay @end tex @ifinfo @example A = ( d_0 e_0 0 f_3 ) ( f_0 d_1 e_1 0 ) ( 0 f_1 d_2 e_2 ) ( e_3 0 f_2 d_3 ) @end example @end ifinfo @end deftypefun @deftypefun int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * @var{diag}, const gsl_vector * @var{e}, const gsl_vector * @var{b}, gsl_vector * @var{x}) This function solves the general @math{N}-by-@math{N} system @math{A x = b} where @var{A} is symmetric cyclic tridiagonal (@c{$N\geq 3$} @math{N >= 3}). The cyclic off-diagonal vector @var{e} must have the same number of elements as the diagonal vector @var{diag}. The form of @var{A} for the 4-by-4 case is shown below, @tex \beforedisplay $$ A = \pmatrix{d_0&e_0& 0 &e_3\cr e_0&d_1&e_1& 0 \cr 0 &e_1&d_2&e_2\cr e_3& 0 &e_2&d_3\cr} $$ \afterdisplay @end tex @ifinfo @example A = ( d_0 e_0 0 e_3 ) ( e_0 d_1 e_1 0 ) ( 0 e_1 d_2 e_2 ) ( e_3 0 e_2 d_3 ) @end example @end ifinfo @end deftypefun @node Balancing @section Balancing @cindex balancing matrices The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable norms. This is useful, for example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix @math{A} consists of replacing @math{A} with a similar matrix @tex \beforedisplay $$ A' = D^{-1} A D $$ \afterdisplay @end tex @ifinfo @example A' = D^(-1) A D @end example @end ifinfo where @math{D} is a diagonal matrix whose entries are powers of the floating point radix. @deftypefun int gsl_linalg_balance_matrix (gsl_matrix * @var{A}, gsl_vector * @var{D}) This function replaces the matrix @var{A} with its balanced counterpart and stores the diagonal elements of the similarity transformation into the vector @var{D}. @end deftypefun @node Linear Algebra Examples @section Examples The following program solves the linear system @math{A x = b}. The system to be solved is, @tex \beforedisplay $$ \left( \matrix{0.18& 0.60& 0.57& 0.96\cr 0.41& 0.24& 0.99& 0.58\cr 0.14& 0.30& 0.97& 0.66\cr 0.51& 0.13& 0.19& 0.85} \right) \left( \matrix{x_0\cr x_1\cr x_2\cr x_3} \right) = \left( \matrix{1.0\cr 2.0\cr 3.0\cr 4.0} \right) $$ \afterdisplay @end tex @ifinfo @example [ 0.18 0.60 0.57 0.96 ] [x0] [1.0] [ 0.41 0.24 0.99 0.58 ] [x1] = [2.0] [ 0.14 0.30 0.97 0.66 ] [x2] [3.0] [ 0.51 0.13 0.19 0.85 ] [x3] [4.0] @end example @end ifinfo @noindent and the solution is found using LU decomposition of the matrix @math{A}. @example @verbatiminclude examples/linalglu.c @end example @noindent Here is the output from the program, @example @verbatiminclude examples/linalglu.out @end example @noindent This can be verified by multiplying the solution @math{x} by the original matrix @math{A} using @sc{gnu octave}, @example octave> A = [ 0.18, 0.60, 0.57, 0.96; 0.41, 0.24, 0.99, 0.58; 0.14, 0.30, 0.97, 0.66; 0.51, 0.13, 0.19, 0.85 ]; octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377]; octave> A * x ans = 1.0000 2.0000 3.0000 4.0000 @end example @noindent This reproduces the original right-hand side vector, @math{b}, in accordance with the equation @math{A x = b}. @node Linear Algebra References and Further Reading @section References and Further Reading Further information on the algorithms described in this section can be found in the following book, @itemize @w{} @item G. H. Golub, C. F. Van Loan, @cite{Matrix Computations} (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8. @end itemize @noindent The @sc{lapack} library is described in the following manual, @itemize @w{} @item @cite{LAPACK Users' Guide} (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8. @uref{http://www.netlib.org/lapack} @end itemize @noindent The @sc{lapack} source code can be found at the website above, along with an online copy of the users guide. @noindent The Modified Golub-Reinsch algorithm is described in the following paper, @itemize @w{} @item T.F. Chan, ``An Improved Algorithm for Computing the Singular Value Decomposition'', @cite{ACM Transactions on Mathematical Software}, 8 (1982), pp 72--83. @end itemize @noindent The Jacobi algorithm for singular value decomposition is described in the following papers, @itemize @w{} @item J.C. Nash, ``A one-sided transformation method for the singular value decomposition and algebraic eigenproblem'', @cite{Computer Journal}, Volume 18, Number 1 (1975), p 74--76 @item J.C. Nash and S. Shlien ``Simple algorithms for the partial singular value decomposition'', @cite{Computer Journal}, Volume 30 (1987), p 268--275. @item James Demmel, Kre@v{s}imir Veseli@'c, ``Jacobi's Method is more accurate than QR'', @cite{Lapack Working Note 15} (LAWN-15), October 1989. Available from netlib, @uref{http://www.netlib.org/lapack/} in the @code{lawns} or @code{lawnspdf} directories. @end itemize gsl-1.16/doc/rand-rayleigh-tail.tex0000664000252300025230000005340412171574312014124 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-rayleigh-tail.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-rayleigh-tail.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1978 R -31 0 V 31 1979 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 3957 V 19 -2 V 20 -3 V 19 -6 V 19 -8 V 20 -10 V 19 -12 V 20 -14 V 19 -16 V 20 -17 V 19 -20 V 19 -21 V 20 -23 V 19 -25 V 20 -26 V 19 -28 V 20 -29 V 19 -30 V 19 -32 V 20 -34 V 19 -34 V 20 -36 V 19 -37 V 20 -38 V 19 -39 V 19 -40 V 20 -41 V 19 -42 V 20 -43 V 19 -43 V 20 -44 V 19 -45 V 19 -46 V 20 -45 V 19 -47 V 20 -47 V 19 -47 V 20 -48 V 19 -47 V 19 -49 V 20 -48 V 19 -48 V 20 -49 V 3052 3180 L 20 -48 V 19 -49 V 19 -49 V 20 -48 V 19 -49 V 20 -48 V 19 -48 V 20 -48 V 19 -47 V 19 -47 V 20 -47 V 19 -47 V 20 -46 V 19 -45 V 20 -46 V 19 -45 V 19 -44 V 20 -44 V 19 -43 V 20 -43 V 19 -42 V 20 -42 V 19 -41 V 19 -40 V 20 -40 V 19 -39 V 20 -39 V 19 -38 V 20 -37 V 19 -37 V 19 -36 V 20 -35 V 19 -35 V 20 -34 V 19 -33 V 20 -32 V 19 -32 V 19 -31 V 20 -31 V 19 -30 V 20 -29 V 19 -28 V 20 -28 V 19 -27 V 19 -27 V 20 -26 V 19 -25 V 20 -24 V 19 -24 V 19 -24 V 20 -22 V 19 -22 V 20 -22 V 19 -20 V 20 -21 V 19 -19 V 19 -19 V 20 -19 V 19 -17 V 20 -18 V 19 -17 V 20 -16 V 19 -16 V 19 -15 V 20 -15 V 19 -14 V 20 -14 V 19 -13 V 20 -13 V 19 -13 V 19 -12 V 20 -11 V 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -9 V 19 -10 V 20 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -7 V 19 -8 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 5092 685 L 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 -1 V 19 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 -1 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 0 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 -1 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 -1 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 496 V 19 16 V 20 15 V 19 15 V 20 15 V 19 15 V 19 15 V 20 15 V 19 15 V 20 14 V 19 15 V 20 14 V 19 14 V 19 14 V 20 14 V 19 14 V 20 13 V 19 14 V 20 13 V 19 13 V 19 13 V 20 13 V 19 12 V 20 13 V 19 12 V 20 13 V 19 12 V 19 11 V 20 12 V 19 12 V 20 11 V 19 11 V 20 11 V 19 11 V 19 11 V 20 10 V 19 10 V 20 10 V 19 10 V 20 10 V 19 10 V 19 9 V 20 9 V 19 9 V 20 9 V 19 9 V 20 8 V 19 8 V 19 8 V 20 8 V 19 8 V 20 7 V 19 7 V 20 7 V 19 7 V 19 7 V 20 6 V 19 7 V 20 6 V 19 6 V 20 5 V 19 6 V 19 5 V 20 5 V 19 5 V 20 5 V 19 4 V 20 5 V 19 4 V 19 4 V 20 3 V 19 4 V 20 3 V 3052 1844 L 20 3 V 19 3 V 19 3 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 0 V 20 1 V 19 0 V 19 0 V 20 0 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 5092 1413 L 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 20 -8 V 19 -7 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -8 V 19 -7 V 19 -7 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=0.5,\sigma=2$}}% \put(5957,4781){\rjust{\strut{}$a=1,\sigma=1$}}% \put(3955,5244){\cjust{\strut{}Rayleigh Tail Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4588){\rjust{\strut{} 1}}% \put(900,2609){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/rand-chisq.tex0000664000252300025230000006011112171574312012471 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-chisq.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-chisq.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 2157 R -31 0 V 31 2156 R -31 0 V 1051 631 M 0 -31 V 1936 31 R 0 -31 V 1937 31 R 0 -31 V 1936 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1319 4944 M 4 -33 V 19 -166 V 20 -151 V 19 -137 V 20 -127 V 19 -116 V 20 -109 V 19 -100 V 19 -94 V 20 -89 V 19 -82 V 20 -78 V 19 -74 V 20 -70 V 19 -66 V 19 -63 V 20 -60 V 19 -57 V 20 -55 V 19 -52 V 20 -50 V 19 -48 V 19 -46 V 20 -44 V 19 -43 V 20 -41 V 19 -40 V 20 -38 V 19 -37 V 19 -36 V 20 -34 V 19 -34 V 20 -32 V 19 -32 V 20 -30 V 19 -30 V 19 -29 V 20 -28 V 19 -27 V 20 -26 V 19 -26 V 20 -25 V 19 -25 V 19 -24 V 20 -23 V 19 -23 V 20 -22 V 19 -21 V 20 -22 V 19 -20 V 19 -20 V 20 -20 V 19 -20 V 20 -18 V 19 -19 V 20 -18 V 19 -18 V 19 -17 V 20 -17 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -16 V 19 -15 V 20 -15 V 19 -14 V 20 -15 V 19 -14 V 20 -14 V 19 -13 V 19 -14 V 20 -13 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -10 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 19 -10 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 19 -8 V 20 -9 V 19 -8 V 3305 1522 L 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 19 -4 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -3 V 5345 1012 L 19 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 2788 M 19 -11 V 20 -11 V 19 -11 V 20 -10 V 19 -11 V 20 -10 V 19 -11 V 19 -10 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 20 -11 V 19 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -10 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 19 -9 V 20 -10 V 19 -9 V 20 -9 V 19 -10 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -9 V 19 -9 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 20 -9 V 19 -8 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -8 V 19 -7 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -8 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 20 -7 V 19 -7 V 19 -7 V 20 -7 V 19 -6 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 3052 1917 L 20 -6 V 19 -7 V 19 -6 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -6 V 19 -6 V 20 -5 V 19 -6 V 20 -6 V 19 -5 V 20 -6 V 19 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 20 -5 V 19 -6 V 19 -5 V 20 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -4 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 5092 1391 L 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 19 -3 V 20 -4 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -3 V 19 -2 V 19 -3 V 20 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V stroke LT2 LTb LT2 6077 4381 M 543 0 V 1051 631 M 19 171 V 20 70 V 19 53 V 20 44 V 19 38 V 20 34 V 19 30 V 19 28 V 20 26 V 19 24 V 20 23 V 19 21 V 20 20 V 19 19 V 19 18 V 20 17 V 19 17 V 20 15 V 19 15 V 20 14 V 19 14 V 19 13 V 20 12 V 19 13 V 20 11 V 19 11 V 20 11 V 19 10 V 19 10 V 20 10 V 19 9 V 20 9 V 19 9 V 20 8 V 19 8 V 19 8 V 20 8 V 19 7 V 20 7 V 19 7 V 20 6 V 19 7 V 19 6 V 20 6 V 19 6 V 20 5 V 19 5 V 20 6 V 19 5 V 19 4 V 20 5 V 19 4 V 20 5 V 19 4 V 20 4 V 19 4 V 19 4 V 20 3 V 19 4 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 2 V 19 2 V 20 3 V 19 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 1 V 19 2 V 19 1 V 20 2 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 0 V 20 1 V 19 1 V 19 0 V 20 0 V 19 1 V 20 0 V 19 0 V 20 0 V 19 1 V 19 0 V 20 0 V 19 0 V 20 -1 V 3052 1674 L 20 0 V 19 0 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 0 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 5092 1507 L 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -3 V 19 -2 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4381){\rjust{\strut{}$\nu=3$}}% \put(5957,4581){\rjust{\strut{}$\nu=2$}}% \put(5957,4781){\rjust{\strut{}$\nu=1$}}% \put(3955,5244){\cjust{\strut{}Chi-squared Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}3}}% \put(4924,400){\cjust{\strut{}2}}% \put(2987,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 1}}% \put(900,2788){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/permutation.texi0000664000252300025230000003615112171574312013167 00000000000000@cindex permutations This chapter describes functions for creating and manipulating permutations. A permutation @math{p} is represented by an array of @math{n} integers in the range 0 to @math{n-1}, where each value @math{p_i} occurs once and only once. The application of a permutation @math{p} to a vector @math{v} yields a new vector @math{v'} where @c{$v'_i = v_{p_i}$} @math{v'_i = v_@{p_i@}}. For example, the array @math{(0,1,3,2)} represents a permutation which exchanges the last two elements of a four element vector. The corresponding identity permutation is @math{(0,1,2,3)}. Note that the permutations produced by the linear algebra routines correspond to the exchange of matrix columns, and so should be considered as applying to row-vectors in the form @math{v' = v P} rather than column-vectors, when permuting the elements of a vector. The functions described in this chapter are defined in the header file @file{gsl_permutation.h}. @menu * The Permutation struct:: * Permutation allocation:: * Accessing permutation elements:: * Permutation properties:: * Permutation functions:: * Applying Permutations:: * Reading and writing permutations:: * Permutations in cyclic form:: * Permutation Examples:: * Permutation References and Further Reading:: @end menu @node The Permutation struct @section The Permutation struct @tpindex gsl_permutation A permutation is defined by a structure containing two components, the size of the permutation and a pointer to the permutation array. The elements of the permutation array are all of type @code{size_t}. The @code{gsl_permutation} structure looks like this, @example typedef struct @{ size_t size; size_t * data; @} gsl_permutation; @end example @comment @noindent @node Permutation allocation @section Permutation allocation @deftypefun {gsl_permutation *} gsl_permutation_alloc (size_t @var{n}) This function allocates memory for a new permutation of size @var{n}. The permutation is not initialized and its elements are undefined. Use the function @code{gsl_permutation_calloc} if you want to create a permutation which is initialized to the identity. A null pointer is returned if insufficient memory is available to create the permutation. @end deftypefun @deftypefun {gsl_permutation *} gsl_permutation_calloc (size_t @var{n}) This function allocates memory for a new permutation of size @var{n} and initializes it to the identity. A null pointer is returned if insufficient memory is available to create the permutation. @end deftypefun @deftypefun void gsl_permutation_init (gsl_permutation * @var{p}) @cindex identity permutation This function initializes the permutation @var{p} to the identity, i.e. @math{(0,1,2,@dots{},n-1)}. @end deftypefun @deftypefun void gsl_permutation_free (gsl_permutation * @var{p}) This function frees all the memory used by the permutation @var{p}. @end deftypefun @deftypefun int gsl_permutation_memcpy (gsl_permutation * @var{dest}, const gsl_permutation * @var{src}) This function copies the elements of the permutation @var{src} into the permutation @var{dest}. The two permutations must have the same size. @end deftypefun @node Accessing permutation elements @section Accessing permutation elements The following functions can be used to access and manipulate permutations. @deftypefun size_t gsl_permutation_get (const gsl_permutation * @var{p}, const size_t @var{i}) This function returns the value of the @var{i}-th element of the permutation @var{p}. If @var{i} lies outside the allowed range of 0 to @math{@var{n}-1} then the error handler is invoked and 0 is returned. @inlinefn{} @end deftypefun @deftypefun int gsl_permutation_swap (gsl_permutation * @var{p}, const size_t @var{i}, const size_t @var{j}) @cindex exchanging permutation elements @cindex swapping permutation elements This function exchanges the @var{i}-th and @var{j}-th elements of the permutation @var{p}. @end deftypefun @node Permutation properties @section Permutation properties @deftypefun size_t gsl_permutation_size (const gsl_permutation * @var{p}) This function returns the size of the permutation @var{p}. @end deftypefun @deftypefun {size_t *} gsl_permutation_data (const gsl_permutation * @var{p}) This function returns a pointer to the array of elements in the permutation @var{p}. @end deftypefun @deftypefun int gsl_permutation_valid (const gsl_permutation * @var{p}) @cindex checking permutation for validity @cindex testing permutation for validity This function checks that the permutation @var{p} is valid. The @var{n} elements should contain each of the numbers 0 to @math{@var{n}-1} once and only once. @end deftypefun @node Permutation functions @section Permutation functions @deftypefun void gsl_permutation_reverse (gsl_permutation * @var{p}) @cindex reversing a permutation This function reverses the elements of the permutation @var{p}. @end deftypefun @deftypefun int gsl_permutation_inverse (gsl_permutation * @var{inv}, const gsl_permutation * @var{p}) @cindex inverting a permutation This function computes the inverse of the permutation @var{p}, storing the result in @var{inv}. @end deftypefun @deftypefun int gsl_permutation_next (gsl_permutation * @var{p}) @cindex iterating through permutations This function advances the permutation @var{p} to the next permutation in lexicographic order and returns @code{GSL_SUCCESS}. If no further permutations are available it returns @code{GSL_FAILURE} and leaves @var{p} unmodified. Starting with the identity permutation and repeatedly applying this function will iterate through all possible permutations of a given order. @end deftypefun @deftypefun int gsl_permutation_prev (gsl_permutation * @var{p}) This function steps backwards from the permutation @var{p} to the previous permutation in lexicographic order, returning @code{GSL_SUCCESS}. If no previous permutation is available it returns @code{GSL_FAILURE} and leaves @var{p} unmodified. @end deftypefun @node Applying Permutations @section Applying Permutations @deftypefun int gsl_permute (const size_t * @var{p}, double * @var{data}, size_t @var{stride}, size_t @var{n}) This function applies the permutation @var{p} to the array @var{data} of size @var{n} with stride @var{stride}. @end deftypefun @deftypefun int gsl_permute_inverse (const size_t * @var{p}, double * @var{data}, size_t @var{stride}, size_t @var{n}) This function applies the inverse of the permutation @var{p} to the array @var{data} of size @var{n} with stride @var{stride}. @end deftypefun @deftypefun int gsl_permute_vector (const gsl_permutation * @var{p}, gsl_vector * @var{v}) This function applies the permutation @var{p} to the elements of the vector @var{v}, considered as a row-vector acted on by a permutation matrix from the right, @math{v' = v P}. The @math{j}-th column of the permutation matrix @math{P} is given by the @math{@var{p}_j}-th column of the identity matrix. The permutation @var{p} and the vector @var{v} must have the same length. @end deftypefun @deftypefun int gsl_permute_vector_inverse (const gsl_permutation * @var{p}, gsl_vector * @var{v}) This function applies the inverse of the permutation @var{p} to the elements of the vector @var{v}, considered as a row-vector acted on by an inverse permutation matrix from the right, @math{v' = v P^T}. Note that for permutation matrices the inverse is the same as the transpose. The @math{j}-th column of the permutation matrix @math{P} is given by the @math{@var{p}_j}-th column of the identity matrix. The permutation @var{p} and the vector @var{v} must have the same length. @end deftypefun @deftypefun int gsl_permutation_mul (gsl_permutation * @var{p}, const gsl_permutation * @var{pa}, const gsl_permutation * @var{pb}) This function combines the two permutations @var{pa} and @var{pb} into a single permutation @var{p}, where @c{$@var{p} = @var{pa} \ast @var{pb}$} @math{@var{p} = @var{pa} * @var{pb}}. The permutation @var{p} is equivalent to applying @var{pb} first and then @var{pa}. @end deftypefun @node Reading and writing permutations @section Reading and writing permutations The library provides functions for reading and writing permutations to a file as binary data or formatted text. @deftypefun int gsl_permutation_fwrite (FILE * @var{stream}, const gsl_permutation * @var{p}) This function writes the elements of the permutation @var{p} to the stream @var{stream} in binary format. The function returns @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_permutation_fread (FILE * @var{stream}, gsl_permutation * @var{p}) This function reads into the permutation @var{p} from the open stream @var{stream} in binary format. The permutation @var{p} must be preallocated with the correct length since the function uses the size of @var{p} to determine how many bytes to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_permutation_fprintf (FILE * @var{stream}, const gsl_permutation * @var{p}, const char * @var{format}) This function writes the elements of the permutation @var{p} line-by-line to the stream @var{stream} using the format specifier @var{format}, which should be suitable for a type of @var{size_t}. In ISO C99 the type modifier @code{z} represents @code{size_t}, so @code{"%zu\n"} is a suitable format.@footnote{In versions of the GNU C library prior to the ISO C99 standard, the type modifier @code{Z} was used instead.} The function returns @code{GSL_EFAILED} if there was a problem writing to the file. @end deftypefun @deftypefun int gsl_permutation_fscanf (FILE * @var{stream}, gsl_permutation * @var{p}) This function reads formatted data from the stream @var{stream} into the permutation @var{p}. The permutation @var{p} must be preallocated with the correct length since the function uses the size of @var{p} to determine how many numbers to read. The function returns @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Permutations in cyclic form @section Permutations in cyclic form A permutation can be represented in both @dfn{linear} and @dfn{cyclic} notations. The functions described in this section convert between the two forms. The linear notation is an index mapping, and has already been described above. The cyclic notation expresses a permutation as a series of circular rearrangements of groups of elements, or @dfn{cycles}. For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different sets of elements can be combined independently, for example (1 2 3) (4 5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of elements 4 and 5. A cycle of length one represents an element which is unchanged by the permutation and is referred to as a @dfn{singleton}. It can be shown that every permutation can be decomposed into combinations of cycles. The decomposition is not unique, but can always be rearranged into a standard @dfn{canonical form} by a reordering of elements. The library uses the canonical form defined in Knuth's @cite{Art of Computer Programming} (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178. The procedure for obtaining the canonical form given by Knuth is, @enumerate @item Write all singleton cycles explicitly @item Within each cycle, put the smallest number first @item Order the cycles in decreasing order of the first number in the cycle. @end enumerate @noindent For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation corresponds to an exchange of elements 1 and 4, and rotation of elements 0, 2 and 3. The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the brackets. In addition, by removing the brackets it can be considered as a linear representation of a different permutation. In the example given above the permutation (2 4 3 0 1) would become (1 4 0 2 3). This mapping has many applications in the theory of permutations. @deftypefun int gsl_permutation_linear_to_canonical (gsl_permutation * @var{q}, const gsl_permutation * @var{p}) This function computes the canonical form of the permutation @var{p} and stores it in the output argument @var{q}. @end deftypefun @deftypefun int gsl_permutation_canonical_to_linear (gsl_permutation * @var{p}, const gsl_permutation * @var{q}) This function converts a permutation @var{q} in canonical form back into linear form storing it in the output argument @var{p}. @end deftypefun @deftypefun size_t gsl_permutation_inversions (const gsl_permutation * @var{p}) This function counts the number of inversions in the permutation @var{p}. An inversion is any pair of elements that are not in order. For example, the permutation 2031 has three inversions, corresponding to the pairs (2,0) (2,1) and (3,1). The identity permutation has no inversions. @end deftypefun @deftypefun size_t gsl_permutation_linear_cycles (const gsl_permutation * @var{p}) This function counts the number of cycles in the permutation @var{p}, given in linear form. @end deftypefun @deftypefun size_t gsl_permutation_canonical_cycles (const gsl_permutation * @var{q}) This function counts the number of cycles in the permutation @var{q}, given in canonical form. @end deftypefun @node Permutation Examples @section Examples The example program below creates a random permutation (by shuffling the elements of the identity) and finds its inverse. @example @verbatiminclude examples/permshuffle.c @end example @noindent Here is the output from the program, @example $ ./a.out initial permutation: 0 1 2 3 4 5 6 7 8 9 random permutation: 1 3 5 2 7 6 0 4 9 8 inverse permutation: 6 0 3 1 7 2 5 4 9 8 @end example @noindent The random permutation @code{p[i]} and its inverse @code{q[i]} are related through the identity @code{p[q[i]] = i}, which can be verified from the output. The next example program steps forwards through all possible third order permutations, starting from the identity, @example @verbatiminclude examples/permseq.c @end example @noindent Here is the output from the program, @example $ ./a.out 0 1 2 0 2 1 1 0 2 1 2 0 2 0 1 2 1 0 @end example @noindent The permutations are generated in lexicographic order. To reverse the sequence, begin with the final permutation (which is the reverse of the identity) and replace @code{gsl_permutation_next} with @code{gsl_permutation_prev}. @node Permutation References and Further Reading @section References and Further Reading The subject of permutations is covered extensively in Knuth's @cite{Sorting and Searching}, @itemize @w{} @item Donald E. Knuth, @cite{The Art of Computer Programming: Sorting and Searching} (Vol 3, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. @end itemize @noindent For the definition of the @dfn{canonical form} see, @itemize @w{} @item Donald E. Knuth, @cite{The Art of Computer Programming: Fundamental Algorithms} (Vol 1, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896850. Section 1.3.3, @cite{An Unusual Correspondence}, p.178--179. @end itemize gsl-1.16/doc/histogram.texi0000664000252300025230000014256312171574312012622 00000000000000@cindex histograms @cindex binning data This chapter describes functions for creating histograms. Histograms provide a convenient way of summarizing the distribution of a set of data. A histogram consists of a set of @dfn{bins} which count the number of events falling into a given range of a continuous variable @math{x}. In GSL the bins of a histogram contain floating-point numbers, so they can be used to record both integer and non-integer distributions. The bins can use arbitrary sets of ranges (uniformly spaced bins are the default). Both one and two-dimensional histograms are supported. Once a histogram has been created it can also be converted into a probability distribution function. The library provides efficient routines for selecting random samples from probability distributions. This can be useful for generating simulations based on real data. The functions are declared in the header files @file{gsl_histogram.h} and @file{gsl_histogram2d.h}. @menu * The histogram struct:: * Histogram allocation:: * Copying Histograms:: * Updating and accessing histogram elements:: * Searching histogram ranges:: * Histogram Statistics:: * Histogram Operations:: * Reading and writing histograms:: * Resampling from histograms:: * The histogram probability distribution struct:: * Example programs for histograms:: * Two dimensional histograms:: * The 2D histogram struct:: * 2D Histogram allocation:: * Copying 2D Histograms:: * Updating and accessing 2D histogram elements:: * Searching 2D histogram ranges:: * 2D Histogram Statistics:: * 2D Histogram Operations:: * Reading and writing 2D histograms:: * Resampling from 2D histograms:: * Example programs for 2D histograms:: @end menu @node The histogram struct @section The histogram struct A histogram is defined by the following struct, @deftp {Data Type} {gsl_histogram} @table @code @item size_t n This is the number of histogram bins @item double * range The ranges of the bins are stored in an array of @math{@var{n}+1} elements pointed to by @var{range}. @item double * bin The counts for each bin are stored in an array of @var{n} elements pointed to by @var{bin}. The bins are floating-point numbers, so you can increment them by non-integer values if necessary. @end table @end deftp @comment @noindent The range for @var{bin}[i] is given by @var{range}[i] to @var{range}[i+1]. For @math{n} bins there are @math{n+1} entries in the array @var{range}. Each bin is inclusive at the lower end and exclusive at the upper end. Mathematically this means that the bins are defined by the following inequality, @tex \beforedisplay $$ \hbox{bin[i] corresponds to range[i]} \le x < \hbox{range[i+1]} $$ \afterdisplay @end tex @ifinfo @display bin[i] corresponds to range[i] <= x < range[i+1] @end display @end ifinfo @noindent Here is a diagram of the correspondence between ranges and bins on the number-line for @math{x}, @smallexample [ bin[0] )[ bin[1] )[ bin[2] )[ bin[3] )[ bin[4] ) ---|---------|---------|---------|---------|---------|--- x r[0] r[1] r[2] r[3] r[4] r[5] @end smallexample @noindent In this picture the values of the @var{range} array are denoted by @math{r}. On the left-hand side of each bin the square bracket @samp{[} denotes an inclusive lower bound (@c{$r \le x$} @math{r <= x}), and the round parentheses @samp{)} on the right-hand side denote an exclusive upper bound (@math{x < r}). Thus any samples which fall on the upper end of the histogram are excluded. If you want to include this value for the last bin you will need to add an extra bin to your histogram. The @code{gsl_histogram} struct and its associated functions are defined in the header file @file{gsl_histogram.h}. @node Histogram allocation @section Histogram allocation The functions for allocating memory to a histogram follow the style of @code{malloc} and @code{free}. In addition they also perform their own error checking. If there is insufficient memory available to allocate a histogram then the functions call the error handler (with an error number of @code{GSL_ENOMEM}) in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every histogram @code{alloc}. @deftypefun {gsl_histogram *} gsl_histogram_alloc (size_t @var{n}) This function allocates memory for a histogram with @var{n} bins, and returns a pointer to a newly created @code{gsl_histogram} struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of @code{GSL_ENOMEM}. The bins and ranges are not initialized, and should be prepared using one of the range-setting functions below in order to make the histogram ready for use. @end deftypefun @comment @deftypefun {gsl_histogram *} gsl_histogram_calloc (size_t @var{n}) @comment This function allocates memory for a histogram with @var{n} bins, and @comment returns a pointer to its newly initialized @code{gsl_histogram} struct. @comment The bins are uniformly spaced with a total range of @comment @c{$0 \le x < n$} @comment @math{0 <= x < n}, @comment as shown in the table below. @comment @tex @comment \beforedisplay @comment $$ @comment \matrix{ @comment \hbox{bin[0]}&\hbox{corresponds to}& 0 \le x < 1\cr @comment \hbox{bin[1]}&\hbox{corresponds to}& 1 \le x < 2\cr @comment \dots&\dots&\dots\cr @comment \hbox{bin[n-1]}&\hbox{corresponds to}&n-1 \le x < n} @comment $$ @comment \afterdisplay @comment @end tex @comment @ifinfo @comment @display @comment bin[0] corresponds to 0 <= x < 1 @comment bin[1] corresponds to 1 <= x < 2 @comment @dots{} @comment bin[n-1] corresponds to n-1 <= x < n @comment @end display @comment @end ifinfo @comment @noindent @comment The bins are initialized to zero so the histogram is ready for use. @comment If insufficient memory is available a null pointer is returned and the @comment error handler is invoked with an error code of @code{GSL_ENOMEM}. @comment @end deftypefun @comment @deftypefun {gsl_histogram *} gsl_histogram_calloc_uniform (size_t @var{n}, double @var{xmin}, double @var{xmax}) @comment This function allocates memory for a histogram with @var{n} uniformly @comment spaced bins from @var{xmin} to @var{xmax}, and returns a pointer to the @comment newly initialized @code{gsl_histogram} struct. @comment If insufficient memory is available a null pointer is returned and the @comment error handler is invoked with an error code of @code{GSL_ENOMEM}. @comment @end deftypefun @comment @deftypefun {gsl_histogram *} gsl_histogram_calloc_range (size_t @var{n}, double * @var{range}) @comment This function allocates a histogram of size @var{n} using the @math{n+1} @comment bin ranges specified by the array @var{range}. @comment @end deftypefun @deftypefun int gsl_histogram_set_ranges (gsl_histogram * @var{h}, const double @var{range}[], size_t @var{size}) This function sets the ranges of the existing histogram @var{h} using the array @var{range} of size @var{size}. The values of the histogram bins are reset to zero. The @code{range} array should contain the desired bin limits. The ranges can be arbitrary, subject to the restriction that they are monotonically increasing. The following example shows how to create a histogram with logarithmic bins with ranges [1,10), [10,100) and [100,1000). @example gsl_histogram * h = gsl_histogram_alloc (3); /* bin[0] covers the range 1 <= x < 10 */ /* bin[1] covers the range 10 <= x < 100 */ /* bin[2] covers the range 100 <= x < 1000 */ double range[4] = @{ 1.0, 10.0, 100.0, 1000.0 @}; gsl_histogram_set_ranges (h, range, 4); @end example @noindent Note that the size of the @var{range} array should be defined to be one element bigger than the number of bins. The additional element is required for the upper value of the final bin. @end deftypefun @deftypefun int gsl_histogram_set_ranges_uniform (gsl_histogram * @var{h}, double @var{xmin}, double @var{xmax}) This function sets the ranges of the existing histogram @var{h} to cover the range @var{xmin} to @var{xmax} uniformly. The values of the histogram bins are reset to zero. The bin ranges are shown in the table below, @tex \beforedisplay $$ \matrix{\hbox{bin[0]}&\hbox{corresponds to}& xmin \le x < xmin + d\cr \hbox{bin[1]} &\hbox{corresponds to}& xmin + d \le x < xmin + 2 d\cr \dots&\dots&\dots\cr \hbox{bin[n-1]} & \hbox{corresponds to}& xmin + (n-1)d \le x < xmax} $$ \afterdisplay @end tex @ifinfo @display bin[0] corresponds to xmin <= x < xmin + d bin[1] corresponds to xmin + d <= x < xmin + 2 d ...... bin[n-1] corresponds to xmin + (n-1)d <= x < xmax @end display @end ifinfo @noindent where @math{d} is the bin spacing, @math{d = (xmax-xmin)/n}. @end deftypefun @deftypefun void gsl_histogram_free (gsl_histogram * @var{h}) This function frees the histogram @var{h} and all of the memory associated with it. @end deftypefun @node Copying Histograms @section Copying Histograms @deftypefun int gsl_histogram_memcpy (gsl_histogram * @var{dest}, const gsl_histogram * @var{src}) This function copies the histogram @var{src} into the pre-existing histogram @var{dest}, making @var{dest} into an exact copy of @var{src}. The two histograms must be of the same size. @end deftypefun @deftypefun {gsl_histogram *} gsl_histogram_clone (const gsl_histogram * @var{src}) This function returns a pointer to a newly created histogram which is an exact copy of the histogram @var{src}. @end deftypefun @node Updating and accessing histogram elements @section Updating and accessing histogram elements There are two ways to access histogram bins, either by specifying an @math{x} coordinate or by using the bin-index directly. The functions for accessing the histogram through @math{x} coordinates use a binary search to identify the bin which covers the appropriate range. @deftypefun int gsl_histogram_increment (gsl_histogram * @var{h}, double @var{x}) This function updates the histogram @var{h} by adding one (1.0) to the bin whose range contains the coordinate @var{x}. If @var{x} lies in the valid range of the histogram then the function returns zero to indicate success. If @var{x} is less than the lower limit of the histogram then the function returns @code{GSL_EDOM}, and none of bins are modified. Similarly, if the value of @var{x} is greater than or equal to the upper limit of the histogram then the function returns @code{GSL_EDOM}, and none of the bins are modified. The error handler is not called, however, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring the values outside the range of interest. @end deftypefun @deftypefun int gsl_histogram_accumulate (gsl_histogram * @var{h}, double @var{x}, double @var{weight}) This function is similar to @code{gsl_histogram_increment} but increases the value of the appropriate bin in the histogram @var{h} by the floating-point number @var{weight}. @end deftypefun @deftypefun double gsl_histogram_get (const gsl_histogram * @var{h}, size_t @var{i}) This function returns the contents of the @var{i}-th bin of the histogram @var{h}. If @var{i} lies outside the valid range of indices for the histogram then the error handler is called with an error code of @code{GSL_EDOM} and the function returns 0. @end deftypefun @deftypefun int gsl_histogram_get_range (const gsl_histogram * @var{h}, size_t @var{i}, double * @var{lower}, double * @var{upper}) This function finds the upper and lower range limits of the @var{i}-th bin of the histogram @var{h}. If the index @var{i} is valid then the corresponding range limits are stored in @var{lower} and @var{upper}. The lower limit is inclusive (i.e. events with this coordinate are included in the bin) and the upper limit is exclusive (i.e. events with the coordinate of the upper limit are excluded and fall in the neighboring higher bin, if it exists). The function returns 0 to indicate success. If @var{i} lies outside the valid range of indices for the histogram then the error handler is called and the function returns an error code of @code{GSL_EDOM}. @end deftypefun @deftypefun double gsl_histogram_max (const gsl_histogram * @var{h}) @deftypefunx double gsl_histogram_min (const gsl_histogram * @var{h}) @deftypefunx size_t gsl_histogram_bins (const gsl_histogram * @var{h}) These functions return the maximum upper and minimum lower range limits and the number of bins of the histogram @var{h}. They provide a way of determining these values without accessing the @code{gsl_histogram} struct directly. @end deftypefun @deftypefun void gsl_histogram_reset (gsl_histogram * @var{h}) This function resets all the bins in the histogram @var{h} to zero. @end deftypefun @node Searching histogram ranges @section Searching histogram ranges The following functions are used by the access and update routines to locate the bin which corresponds to a given @math{x} coordinate. @deftypefun int gsl_histogram_find (const gsl_histogram * @var{h}, double @var{x}, size_t * @var{i}) This function finds and sets the index @var{i} to the bin number which covers the coordinate @var{x} in the histogram @var{h}. The bin is located using a binary search. The search includes an optimization for histograms with uniform range, and will return the correct bin immediately in this case. If @var{x} is found in the range of the histogram then the function sets the index @var{i} and returns @code{GSL_SUCCESS}. If @var{x} lies outside the valid range of the histogram then the function returns @code{GSL_EDOM} and the error handler is invoked. @end deftypefun @node Histogram Statistics @section Histogram Statistics @cindex histogram statistics @cindex statistics, from histogram @cindex maximum value, from histogram @cindex minimum value, from histogram @deftypefun double gsl_histogram_max_val (const gsl_histogram * @var{h}) This function returns the maximum value contained in the histogram bins. @end deftypefun @deftypefun size_t gsl_histogram_max_bin (const gsl_histogram * @var{h}) This function returns the index of the bin containing the maximum value. In the case where several bins contain the same maximum value the smallest index is returned. @end deftypefun @deftypefun double gsl_histogram_min_val (const gsl_histogram * @var{h}) This function returns the minimum value contained in the histogram bins. @end deftypefun @deftypefun size_t gsl_histogram_min_bin (const gsl_histogram * @var{h}) This function returns the index of the bin containing the minimum value. In the case where several bins contain the same maximum value the smallest index is returned. @end deftypefun @cindex mean value, from histogram @deftypefun double gsl_histogram_mean (const gsl_histogram * @var{h}) This function returns the mean of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width. @end deftypefun @cindex standard deviation, from histogram @cindex variance, from histogram @deftypefun double gsl_histogram_sigma (const gsl_histogram * @var{h}) This function returns the standard deviation of the histogrammed variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. The accuracy of the result is limited by the bin width. @end deftypefun @deftypefun double gsl_histogram_sum (const gsl_histogram * @var{h}) This function returns the sum of all bin values. Negative bin values are included in the sum. @end deftypefun @node Histogram Operations @section Histogram Operations @deftypefun int gsl_histogram_equal_bins_p (const gsl_histogram * @var{h1}, const gsl_histogram * @var{h2}) This function returns 1 if the all of the individual bin ranges of the two histograms are identical, and 0 otherwise. @end deftypefun @deftypefun int gsl_histogram_add (gsl_histogram * @var{h1}, const gsl_histogram * @var{h2}) This function adds the contents of the bins in histogram @var{h2} to the corresponding bins of histogram @var{h1}, i.e. @math{h'_1(i) = h_1(i) + h_2(i)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram_sub (gsl_histogram * @var{h1}, const gsl_histogram * @var{h2}) This function subtracts the contents of the bins in histogram @var{h2} from the corresponding bins of histogram @var{h1}, i.e. @math{h'_1(i) = h_1(i) - h_2(i)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram_mul (gsl_histogram * @var{h1}, const gsl_histogram * @var{h2}) This function multiplies the contents of the bins of histogram @var{h1} by the contents of the corresponding bins in histogram @var{h2}, i.e. @math{h'_1(i) = h_1(i) * h_2(i)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram_div (gsl_histogram * @var{h1}, const gsl_histogram * @var{h2}) This function divides the contents of the bins of histogram @var{h1} by the contents of the corresponding bins in histogram @var{h2}, i.e. @math{h'_1(i) = h_1(i) / h_2(i)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram_scale (gsl_histogram * @var{h}, double @var{scale}) This function multiplies the contents of the bins of histogram @var{h} by the constant @var{scale}, i.e. @c{$h'_1(i) = h_1(i) * \hbox{\it scale}$} @math{h'_1(i) = h_1(i) * scale}. @end deftypefun @deftypefun int gsl_histogram_shift (gsl_histogram * @var{h}, double @var{offset}) This function shifts the contents of the bins of histogram @var{h} by the constant @var{offset}, i.e. @c{$h'_1(i) = h_1(i) + \hbox{\it offset}$} @math{h'_1(i) = h_1(i) + offset}. @end deftypefun @node Reading and writing histograms @section Reading and writing histograms The library provides functions for reading and writing histograms to a file as binary data or formatted text. @deftypefun int gsl_histogram_fwrite (FILE * @var{stream}, const gsl_histogram * @var{h}) This function writes the ranges and bins of the histogram @var{h} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_histogram_fread (FILE * @var{stream}, gsl_histogram * @var{h}) This function reads into the histogram @var{h} from the open stream @var{stream} in binary format. The histogram @var{h} must be preallocated with the correct size since the function uses the number of bins in @var{h} to determine how many bytes to read. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_histogram_fprintf (FILE * @var{stream}, const gsl_histogram * @var{h}, const char * @var{range_format}, const char * @var{bin_format}) This function writes the ranges and bins of the histogram @var{h} line-by-line to the stream @var{stream} using the format specifiers @var{range_format} and @var{bin_format}. These should be one of the @code{%g}, @code{%e} or @code{%f} formats for floating point numbers. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. The histogram output is formatted in three columns, and the columns are separated by spaces, like this, @example range[0] range[1] bin[0] range[1] range[2] bin[1] range[2] range[3] bin[2] .... range[n-1] range[n] bin[n-1] @end example @noindent The values of the ranges are formatted using @var{range_format} and the value of the bins are formatted using @var{bin_format}. Each line contains the lower and upper limit of the range of the bins and the value of the bin itself. Since the upper limit of one bin is the lower limit of the next there is duplication of these values between lines but this allows the histogram to be manipulated with line-oriented tools. @end deftypefun @deftypefun int gsl_histogram_fscanf (FILE * @var{stream}, gsl_histogram * @var{h}) This function reads formatted data from the stream @var{stream} into the histogram @var{h}. The data is assumed to be in the three-column format used by @code{gsl_histogram_fprintf}. The histogram @var{h} must be preallocated with the correct length since the function uses the size of @var{h} to determine how many numbers to read. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Resampling from histograms @section Resampling from histograms @cindex resampling from histograms @cindex sampling from histograms @cindex probability distributions, from histograms A histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for statistical error, the height of each bin represents the probability of an event where the value of @math{x} falls in the range of that bin. The probability distribution function has the one-dimensional form @math{p(x)dx} where, @tex \beforedisplay $$ p(x) = n_i/ (N w_i) $$ \afterdisplay @end tex @ifinfo @example p(x) = n_i/ (N w_i) @end example @end ifinfo @noindent In this equation @math{n_i} is the number of events in the bin which contains @math{x}, @math{w_i} is the width of the bin and @math{N} is the total number of events. The distribution of events within each bin is assumed to be uniform. @node The histogram probability distribution struct @section The histogram probability distribution struct @cindex probability distribution, from histogram @cindex sampling from histograms @cindex random sampling from histograms @cindex histograms, random sampling from The probability distribution function for a histogram consists of a set of @dfn{bins} which measure the probability of an event falling into a given range of a continuous variable @math{x}. A probability distribution function is defined by the following struct, which actually stores the cumulative probability distribution function. This is the natural quantity for generating samples via the inverse transform method, because there is a one-to-one mapping between the cumulative probability distribution and the range [0,1]. It can be shown that by taking a uniform random number in this range and finding its corresponding coordinate in the cumulative probability distribution we obtain samples with the desired probability distribution. @deftp {Data Type} {gsl_histogram_pdf} @table @code @item size_t n This is the number of bins used to approximate the probability distribution function. @item double * range The ranges of the bins are stored in an array of @math{@var{n}+1} elements pointed to by @var{range}. @item double * sum The cumulative probability for the bins is stored in an array of @var{n} elements pointed to by @var{sum}. @end table @end deftp @comment @noindent The following functions allow you to create a @code{gsl_histogram_pdf} struct which represents this probability distribution and generate random samples from it. @deftypefun {gsl_histogram_pdf *} gsl_histogram_pdf_alloc (size_t @var{n}) This function allocates memory for a probability distribution with @var{n} bins and returns a pointer to a newly initialized @code{gsl_histogram_pdf} struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_histogram_pdf_init (gsl_histogram_pdf * @var{p}, const gsl_histogram * @var{h}) This function initializes the probability distribution @var{p} with the contents of the histogram @var{h}. If any of the bins of @var{h} are negative then the error handler is invoked with an error code of @code{GSL_EDOM} because a probability distribution cannot contain negative values. @end deftypefun @deftypefun void gsl_histogram_pdf_free (gsl_histogram_pdf * @var{p}) This function frees the probability distribution function @var{p} and all of the memory associated with it. @end deftypefun @deftypefun double gsl_histogram_pdf_sample (const gsl_histogram_pdf * @var{p}, double @var{r}) This function uses @var{r}, a uniform random number between zero and one, to compute a single random sample from the probability distribution @var{p}. The algorithm used to compute the sample @math{s} is given by the following formula, @tex \beforedisplay $$ s = \hbox{range}[i] + \delta * (\hbox{range}[i+1] - \hbox{range}[i]) $$ \afterdisplay @end tex @ifinfo @example s = range[i] + delta * (range[i+1] - range[i]) @end example @end ifinfo @noindent where @math{i} is the index which satisfies @c{$sum[i] \le r < sum[i+1]$} @math{sum[i] <= r < sum[i+1]} and @math{delta} is @c{$(r - sum[i])/(sum[i+1] - sum[i])$} @math{(r - sum[i])/(sum[i+1] - sum[i])}. @end deftypefun @node Example programs for histograms @section Example programs for histograms The following program shows how to make a simple histogram of a column of numerical data supplied on @code{stdin}. The program takes three arguments, specifying the upper and lower bounds of the histogram and the number of bins. It then reads numbers from @code{stdin}, one line at a time, and adds them to the histogram. When there is no more data to read it prints out the accumulated histogram using @code{gsl_histogram_fprintf}. @example @verbatiminclude examples/histogram.c @end example @noindent Here is an example of the program in use. We generate 10000 random samples from a Cauchy distribution with a width of 30 and histogram them over the range -100 to 100, using 200 bins. @example $ gsl-randist 0 10000 cauchy 30 | gsl-histogram -100 100 200 > histogram.dat @end example @noindent A plot of the resulting histogram shows the familiar shape of the Cauchy distribution and the fluctuations caused by the finite sample size. @example $ awk '@{print $1, $3 ; print $2, $3@}' histogram.dat | graph -T X @end example @iftex @sp 1 @center @image{histogram,3.0in,2.8in} @end iftex @node Two dimensional histograms @section Two dimensional histograms @cindex two dimensional histograms @cindex 2D histograms A two dimensional histogram consists of a set of @dfn{bins} which count the number of events falling in a given area of the @math{(x,y)} plane. The simplest way to use a two dimensional histogram is to record two-dimensional position information, @math{n(x,y)}. Another possibility is to form a @dfn{joint distribution} by recording related variables. For example a detector might record both the position of an event (@math{x}) and the amount of energy it deposited @math{E}. These could be histogrammed as the joint distribution @math{n(x,E)}. @node The 2D histogram struct @section The 2D histogram struct Two dimensional histograms are defined by the following struct, @deftp {Data Type} {gsl_histogram2d} @table @code @item size_t nx, ny This is the number of histogram bins in the x and y directions. @item double * xrange The ranges of the bins in the x-direction are stored in an array of @math{@var{nx} + 1} elements pointed to by @var{xrange}. @item double * yrange The ranges of the bins in the y-direction are stored in an array of @math{@var{ny} + 1} elements pointed to by @var{yrange}. @item double * bin The counts for each bin are stored in an array pointed to by @var{bin}. The bins are floating-point numbers, so you can increment them by non-integer values if necessary. The array @var{bin} stores the two dimensional array of bins in a single block of memory according to the mapping @code{bin(i,j)} = @code{bin[i * ny + j]}. @end table @end deftp @comment @noindent The range for @code{bin(i,j)} is given by @code{xrange[i]} to @code{xrange[i+1]} in the x-direction and @code{yrange[j]} to @code{yrange[j+1]} in the y-direction. Each bin is inclusive at the lower end and exclusive at the upper end. Mathematically this means that the bins are defined by the following inequality, @tex \beforedisplay $$ \matrix{ \hbox{bin(i,j) corresponds to} & \hbox{\it xrange}[i] \le x < \hbox{\it xrange}[i+1] \cr \hbox{and} & \hbox{\it yrange}[j] \le y < \hbox{\it yrange}[j+1]} $$ \afterdisplay @end tex @ifinfo @display bin(i,j) corresponds to xrange[i] <= x < xrange[i+1] and yrange[j] <= y < yrange[j+1] @end display @end ifinfo @noindent Note that any samples which fall on the upper sides of the histogram are excluded. If you want to include these values for the side bins you will need to add an extra row or column to your histogram. The @code{gsl_histogram2d} struct and its associated functions are defined in the header file @file{gsl_histogram2d.h}. @node 2D Histogram allocation @section 2D Histogram allocation The functions for allocating memory to a 2D histogram follow the style of @code{malloc} and @code{free}. In addition they also perform their own error checking. If there is insufficient memory available to allocate a histogram then the functions call the error handler (with an error number of @code{GSL_ENOMEM}) in addition to returning a null pointer. Thus if you use the library error handler to abort your program then it isn't necessary to check every 2D histogram @code{alloc}. @deftypefun {gsl_histogram2d *} gsl_histogram2d_alloc (size_t @var{nx}, size_t @var{ny}) This function allocates memory for a two-dimensional histogram with @var{nx} bins in the x direction and @var{ny} bins in the y direction. The function returns a pointer to a newly created @code{gsl_histogram2d} struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of @code{GSL_ENOMEM}. The bins and ranges must be initialized with one of the functions below before the histogram is ready for use. @end deftypefun @comment @deftypefun {gsl_histogram2d *} gsl_histogram2d_calloc (size_t @var{nx}, size_t @var{ny}) @comment This function allocates memory for a two-dimensional histogram with @comment @var{nx} bins in the x direction and @var{ny} bins in the y @comment direction. The function returns a pointer to a newly initialized @comment @code{gsl_histogram2d} struct. The bins are uniformly spaced with a @comment total range of @comment @c{$0 \le x < nx$} @comment @math{0 <= x < nx} in the x-direction and @comment @c{$0 \le y < ny$} @comment @math{0 <= y < ny} in the y-direction, as shown in the table below. @comment @comment The bins are initialized to zero so the histogram is ready for use. @comment @comment If insufficient memory is available a null pointer is returned and the @comment error handler is invoked with an error code of @code{GSL_ENOMEM}. @comment @end deftypefun @comment @comment @deftypefun {gsl_histogram2d *} gsl_histogram2d_calloc_uniform (size_t @var{nx}, size_t @var{ny}, double @var{xmin}, double @var{xmax}, double @var{ymin}, double @var{ymax}) @comment This function allocates a histogram of size @var{nx}-by-@var{ny} which @comment uniformly covers the ranges @var{xmin} to @var{xmax} and @var{ymin} to @comment @var{ymax} in the @math{x} and @math{y} directions respectively. @comment @end deftypefun @comment @comment @deftypefun {gsl_histogram2d *} gsl_histogram2d_calloc_range (size_t @var{nx}, size_t @var{ny}, double * @var{xrange}, double * @var{yrange}) @comment This function allocates a histogram of size @var{nx}-by-@var{ny} using @comment the @math{nx+1} and @math{ny+1} bin ranges specified by the arrays @comment @var{xrange} and @var{yrange}. @comment @end deftypefun @deftypefun int gsl_histogram2d_set_ranges (gsl_histogram2d * @var{h}, const double @var{xrange}[], size_t @var{xsize}, const double @var{yrange}[], size_t @var{ysize}) This function sets the ranges of the existing histogram @var{h} using the arrays @var{xrange} and @var{yrange} of size @var{xsize} and @var{ysize} respectively. The values of the histogram bins are reset to zero. @end deftypefun @deftypefun int gsl_histogram2d_set_ranges_uniform (gsl_histogram2d * @var{h}, double @var{xmin}, double @var{xmax}, double @var{ymin}, double @var{ymax}) This function sets the ranges of the existing histogram @var{h} to cover the ranges @var{xmin} to @var{xmax} and @var{ymin} to @var{ymax} uniformly. The values of the histogram bins are reset to zero. @end deftypefun @deftypefun void gsl_histogram2d_free (gsl_histogram2d * @var{h}) This function frees the 2D histogram @var{h} and all of the memory associated with it. @end deftypefun @node Copying 2D Histograms @section Copying 2D Histograms @deftypefun int gsl_histogram2d_memcpy (gsl_histogram2d * @var{dest}, const gsl_histogram2d * @var{src}) This function copies the histogram @var{src} into the pre-existing histogram @var{dest}, making @var{dest} into an exact copy of @var{src}. The two histograms must be of the same size. @end deftypefun @deftypefun {gsl_histogram2d *} gsl_histogram2d_clone (const gsl_histogram2d * @var{src}) This function returns a pointer to a newly created histogram which is an exact copy of the histogram @var{src}. @end deftypefun @node Updating and accessing 2D histogram elements @section Updating and accessing 2D histogram elements You can access the bins of a two-dimensional histogram either by specifying a pair of @math{(x,y)} coordinates or by using the bin indices @math{(i,j)} directly. The functions for accessing the histogram through @math{(x,y)} coordinates use binary searches in the x and y directions to identify the bin which covers the appropriate range. @deftypefun int gsl_histogram2d_increment (gsl_histogram2d * @var{h}, double @var{x}, double @var{y}) This function updates the histogram @var{h} by adding one (1.0) to the bin whose x and y ranges contain the coordinates (@var{x},@var{y}). If the point @math{(x,y)} lies inside the valid ranges of the histogram then the function returns zero to indicate success. If @math{(x,y)} lies outside the limits of the histogram then the function returns @code{GSL_EDOM}, and none of the bins are modified. The error handler is not called, since it is often necessary to compute histograms for a small range of a larger dataset, ignoring any coordinates outside the range of interest. @end deftypefun @deftypefun int gsl_histogram2d_accumulate (gsl_histogram2d * @var{h}, double @var{x}, double @var{y}, double @var{weight}) This function is similar to @code{gsl_histogram2d_increment} but increases the value of the appropriate bin in the histogram @var{h} by the floating-point number @var{weight}. @end deftypefun @deftypefun double gsl_histogram2d_get (const gsl_histogram2d * @var{h}, size_t @var{i}, size_t @var{j}) This function returns the contents of the (@var{i},@var{j})-th bin of the histogram @var{h}. If (@var{i},@var{j}) lies outside the valid range of indices for the histogram then the error handler is called with an error code of @code{GSL_EDOM} and the function returns 0. @end deftypefun @deftypefun int gsl_histogram2d_get_xrange (const gsl_histogram2d * @var{h}, size_t @var{i}, double * @var{xlower}, double * @var{xupper}) @deftypefunx int gsl_histogram2d_get_yrange (const gsl_histogram2d * @var{h}, size_t @var{j}, double * @var{ylower}, double * @var{yupper}) These functions find the upper and lower range limits of the @var{i}-th and @var{j}-th bins in the x and y directions of the histogram @var{h}. The range limits are stored in @var{xlower} and @var{xupper} or @var{ylower} and @var{yupper}. The lower limits are inclusive (i.e. events with these coordinates are included in the bin) and the upper limits are exclusive (i.e. events with the value of the upper limit are not included and fall in the neighboring higher bin, if it exists). The functions return 0 to indicate success. If @var{i} or @var{j} lies outside the valid range of indices for the histogram then the error handler is called with an error code of @code{GSL_EDOM}. @end deftypefun @deftypefun double gsl_histogram2d_xmax (const gsl_histogram2d * @var{h}) @deftypefunx double gsl_histogram2d_xmin (const gsl_histogram2d * @var{h}) @deftypefunx size_t gsl_histogram2d_nx (const gsl_histogram2d * @var{h}) @deftypefunx double gsl_histogram2d_ymax (const gsl_histogram2d * @var{h}) @deftypefunx double gsl_histogram2d_ymin (const gsl_histogram2d * @var{h}) @deftypefunx size_t gsl_histogram2d_ny (const gsl_histogram2d * @var{h}) These functions return the maximum upper and minimum lower range limits and the number of bins for the x and y directions of the histogram @var{h}. They provide a way of determining these values without accessing the @code{gsl_histogram2d} struct directly. @end deftypefun @deftypefun void gsl_histogram2d_reset (gsl_histogram2d * @var{h}) This function resets all the bins of the histogram @var{h} to zero. @end deftypefun @node Searching 2D histogram ranges @section Searching 2D histogram ranges The following functions are used by the access and update routines to locate the bin which corresponds to a given @math{(x,y)} coordinate. @deftypefun int gsl_histogram2d_find (const gsl_histogram2d * @var{h}, double @var{x}, double @var{y}, size_t * @var{i}, size_t * @var{j}) This function finds and sets the indices @var{i} and @var{j} to the bin which covers the coordinates (@var{x},@var{y}). The bin is located using a binary search. The search includes an optimization for histograms with uniform ranges, and will return the correct bin immediately in this case. If @math{(x,y)} is found then the function sets the indices (@var{i},@var{j}) and returns @code{GSL_SUCCESS}. If @math{(x,y)} lies outside the valid range of the histogram then the function returns @code{GSL_EDOM} and the error handler is invoked. @end deftypefun @node 2D Histogram Statistics @section 2D Histogram Statistics @deftypefun double gsl_histogram2d_max_val (const gsl_histogram2d * @var{h}) This function returns the maximum value contained in the histogram bins. @end deftypefun @deftypefun void gsl_histogram2d_max_bin (const gsl_histogram2d * @var{h}, size_t * @var{i}, size_t * @var{j}) This function finds the indices of the bin containing the maximum value in the histogram @var{h} and stores the result in (@var{i},@var{j}). In the case where several bins contain the same maximum value the first bin found is returned. @end deftypefun @deftypefun double gsl_histogram2d_min_val (const gsl_histogram2d * @var{h}) This function returns the minimum value contained in the histogram bins. @end deftypefun @deftypefun void gsl_histogram2d_min_bin (const gsl_histogram2d * @var{h}, size_t * @var{i}, size_t * @var{j}) This function finds the indices of the bin containing the minimum value in the histogram @var{h} and stores the result in (@var{i},@var{j}). In the case where several bins contain the same maximum value the first bin found is returned. @end deftypefun @deftypefun double gsl_histogram2d_xmean (const gsl_histogram2d * @var{h}) This function returns the mean of the histogrammed x variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. @end deftypefun @deftypefun double gsl_histogram2d_ymean (const gsl_histogram2d * @var{h}) This function returns the mean of the histogrammed y variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. @end deftypefun @deftypefun double gsl_histogram2d_xsigma (const gsl_histogram2d * @var{h}) This function returns the standard deviation of the histogrammed x variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. @end deftypefun @deftypefun double gsl_histogram2d_ysigma (const gsl_histogram2d * @var{h}) This function returns the standard deviation of the histogrammed y variable, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. @end deftypefun @deftypefun double gsl_histogram2d_cov (const gsl_histogram2d * @var{h}) This function returns the covariance of the histogrammed x and y variables, where the histogram is regarded as a probability distribution. Negative bin values are ignored for the purposes of this calculation. @end deftypefun @deftypefun double gsl_histogram2d_sum (const gsl_histogram2d * @var{h}) This function returns the sum of all bin values. Negative bin values are included in the sum. @end deftypefun @node 2D Histogram Operations @section 2D Histogram Operations @deftypefun int gsl_histogram2d_equal_bins_p (const gsl_histogram2d * @var{h1}, const gsl_histogram2d * @var{h2}) This function returns 1 if all the individual bin ranges of the two histograms are identical, and 0 otherwise. @end deftypefun @deftypefun int gsl_histogram2d_add (gsl_histogram2d * @var{h1}, const gsl_histogram2d * @var{h2}) This function adds the contents of the bins in histogram @var{h2} to the corresponding bins of histogram @var{h1}, i.e. @math{h'_1(i,j) = h_1(i,j) + h_2(i,j)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram2d_sub (gsl_histogram2d * @var{h1}, const gsl_histogram2d * @var{h2}) This function subtracts the contents of the bins in histogram @var{h2} from the corresponding bins of histogram @var{h1}, i.e. @math{h'_1(i,j) = h_1(i,j) - h_2(i,j)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram2d_mul (gsl_histogram2d * @var{h1}, const gsl_histogram2d * @var{h2}) This function multiplies the contents of the bins of histogram @var{h1} by the contents of the corresponding bins in histogram @var{h2}, i.e. @math{h'_1(i,j) = h_1(i,j) * h_2(i,j)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram2d_div (gsl_histogram2d * @var{h1}, const gsl_histogram2d * @var{h2}) This function divides the contents of the bins of histogram @var{h1} by the contents of the corresponding bins in histogram @var{h2}, i.e. @math{h'_1(i,j) = h_1(i,j) / h_2(i,j)}. The two histograms must have identical bin ranges. @end deftypefun @deftypefun int gsl_histogram2d_scale (gsl_histogram2d * @var{h}, double @var{scale}) This function multiplies the contents of the bins of histogram @var{h} by the constant @var{scale}, i.e. @c{$h'_1(i,j) = h_1(i,j) * \hbox{\it scale}$} @math{h'_1(i,j) = h_1(i,j) scale}. @end deftypefun @deftypefun int gsl_histogram2d_shift (gsl_histogram2d * @var{h}, double @var{offset}) This function shifts the contents of the bins of histogram @var{h} by the constant @var{offset}, i.e. @c{$h'_1(i,j) = h_1(i,j) + \hbox{\it offset}$} @math{h'_1(i,j) = h_1(i,j) + offset}. @end deftypefun @node Reading and writing 2D histograms @section Reading and writing 2D histograms The library provides functions for reading and writing two dimensional histograms to a file as binary data or formatted text. @deftypefun int gsl_histogram2d_fwrite (FILE * @var{stream}, const gsl_histogram2d * @var{h}) This function writes the ranges and bins of the histogram @var{h} to the stream @var{stream} in binary format. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. Since the data is written in the native binary format it may not be portable between different architectures. @end deftypefun @deftypefun int gsl_histogram2d_fread (FILE * @var{stream}, gsl_histogram2d * @var{h}) This function reads into the histogram @var{h} from the stream @var{stream} in binary format. The histogram @var{h} must be preallocated with the correct size since the function uses the number of x and y bins in @var{h} to determine how many bytes to read. The return value is 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. The data is assumed to have been written in the native binary format on the same architecture. @end deftypefun @deftypefun int gsl_histogram2d_fprintf (FILE * @var{stream}, const gsl_histogram2d * @var{h}, const char * @var{range_format}, const char * @var{bin_format}) This function writes the ranges and bins of the histogram @var{h} line-by-line to the stream @var{stream} using the format specifiers @var{range_format} and @var{bin_format}. These should be one of the @code{%g}, @code{%e} or @code{%f} formats for floating point numbers. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem writing to the file. The histogram output is formatted in five columns, and the columns are separated by spaces, like this, @smallexample xrange[0] xrange[1] yrange[0] yrange[1] bin(0,0) xrange[0] xrange[1] yrange[1] yrange[2] bin(0,1) xrange[0] xrange[1] yrange[2] yrange[3] bin(0,2) .... xrange[0] xrange[1] yrange[ny-1] yrange[ny] bin(0,ny-1) xrange[1] xrange[2] yrange[0] yrange[1] bin(1,0) xrange[1] xrange[2] yrange[1] yrange[2] bin(1,1) xrange[1] xrange[2] yrange[1] yrange[2] bin(1,2) .... xrange[1] xrange[2] yrange[ny-1] yrange[ny] bin(1,ny-1) .... xrange[nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0) xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1) xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,2) .... xrange[nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1) @end smallexample @noindent Each line contains the lower and upper limits of the bin and the contents of the bin. Since the upper limits of the each bin are the lower limits of the neighboring bins there is duplication of these values but this allows the histogram to be manipulated with line-oriented tools. @end deftypefun @deftypefun int gsl_histogram2d_fscanf (FILE * @var{stream}, gsl_histogram2d * @var{h}) This function reads formatted data from the stream @var{stream} into the histogram @var{h}. The data is assumed to be in the five-column format used by @code{gsl_histogram2d_fprintf}. The histogram @var{h} must be preallocated with the correct lengths since the function uses the sizes of @var{h} to determine how many numbers to read. The function returns 0 for success and @code{GSL_EFAILED} if there was a problem reading from the file. @end deftypefun @node Resampling from 2D histograms @section Resampling from 2D histograms As in the one-dimensional case, a two-dimensional histogram made by counting events can be regarded as a measurement of a probability distribution. Allowing for statistical error, the height of each bin represents the probability of an event where (@math{x},@math{y}) falls in the range of that bin. For a two-dimensional histogram the probability distribution takes the form @math{p(x,y) dx dy} where, @tex \beforedisplay $$ p(x,y) = n_{ij}/ (N A_{ij}) $$ \afterdisplay @end tex @ifinfo @example p(x,y) = n_@{ij@}/ (N A_@{ij@}) @end example @end ifinfo @noindent In this equation @c{$n_{ij}$} @math{n_@{ij@}} is the number of events in the bin which contains @math{(x,y)}, @c{$A_{ij}$} @math{A_@{ij@}} is the area of the bin and @math{N} is the total number of events. The distribution of events within each bin is assumed to be uniform. @deftp {Data Type} {gsl_histogram2d_pdf} @table @code @item size_t nx, ny This is the number of histogram bins used to approximate the probability distribution function in the x and y directions. @item double * xrange The ranges of the bins in the x-direction are stored in an array of @math{@var{nx} + 1} elements pointed to by @var{xrange}. @item double * yrange The ranges of the bins in the y-direction are stored in an array of @math{@var{ny} + 1} pointed to by @var{yrange}. @item double * sum The cumulative probability for the bins is stored in an array of @var{nx}*@var{ny} elements pointed to by @var{sum}. @end table @end deftp @comment @noindent The following functions allow you to create a @code{gsl_histogram2d_pdf} struct which represents a two dimensional probability distribution and generate random samples from it. @deftypefun {gsl_histogram2d_pdf *} gsl_histogram2d_pdf_alloc (size_t @var{nx}, size_t @var{ny}) This function allocates memory for a two-dimensional probability distribution of size @var{nx}-by-@var{ny} and returns a pointer to a newly initialized @code{gsl_histogram2d_pdf} struct. If insufficient memory is available a null pointer is returned and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_histogram2d_pdf_init (gsl_histogram2d_pdf * @var{p}, const gsl_histogram2d * @var{h}) This function initializes the two-dimensional probability distribution calculated @var{p} from the histogram @var{h}. If any of the bins of @var{h} are negative then the error handler is invoked with an error code of @code{GSL_EDOM} because a probability distribution cannot contain negative values. @end deftypefun @deftypefun void gsl_histogram2d_pdf_free (gsl_histogram2d_pdf * @var{p}) This function frees the two-dimensional probability distribution function @var{p} and all of the memory associated with it. @end deftypefun @deftypefun int gsl_histogram2d_pdf_sample (const gsl_histogram2d_pdf * @var{p}, double @var{r1}, double @var{r2}, double * @var{x}, double * @var{y}) This function uses two uniform random numbers between zero and one, @var{r1} and @var{r2}, to compute a single random sample from the two-dimensional probability distribution @var{p}. @end deftypefun @page @node Example programs for 2D histograms @section Example programs for 2D histograms This program demonstrates two features of two-dimensional histograms. First a 10-by-10 two-dimensional histogram is created with x and y running from 0 to 1. Then a few sample points are added to the histogram, at (0.3,0.3) with a height of 1, at (0.8,0.1) with a height of 5 and at (0.7,0.9) with a height of 0.5. This histogram with three events is used to generate a random sample of 1000 simulated events, which are printed out. @example @verbatiminclude examples/histogram2d.c @end example @noindent @iftex The following plot shows the distribution of the simulated events. Using a higher resolution grid we can see the original underlying histogram and also the statistical fluctuations caused by the events being uniformly distributed over the area of the original bins. @sp 1 @center @image{histogram2d,3.4in} @end iftex gsl-1.16/doc/rand-pareto.tex0000664000252300025230000005355612171574312012673 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-pareto.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-pareto.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 1078 R -31 0 V 31 1079 R -31 0 V 31 1078 R -31 0 V 31 1078 R -31 0 V 1051 631 M 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1161 31 R 0 -31 V 1162 31 R 0 -31 V 1162 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 2142 V 19 -70 V 20 -66 V 19 -63 V 19 -60 V 20 -58 V 19 -55 V 20 -52 V 19 -50 V 20 -48 V 19 -46 V 19 -44 V 20 -42 V 19 -41 V 20 -39 V 19 -37 V 20 -36 V 19 -34 V 19 -33 V 20 -32 V 19 -31 V 20 -30 V 19 -28 V 20 -28 V 19 -26 V 19 -26 V 20 -24 V 19 -24 V 20 -23 V 19 -22 V 20 -22 V 19 -21 V 19 -20 V 20 -19 V 19 -19 V 20 -19 V 19 -17 V 20 -17 V 19 -17 V 19 -16 V 20 -16 V 19 -15 V 20 -15 V 3052 1358 L 20 -14 V 19 -14 V 19 -13 V 20 -12 V 19 -13 V 20 -12 V 19 -12 V 20 -11 V 19 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 20 -9 V 19 -9 V 19 -9 V 20 -9 V 19 -9 V 20 -8 V 19 -8 V 20 -8 V 19 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -7 V 20 -6 V 19 -7 V 19 -7 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -5 V 20 -5 V 19 -4 V 20 -5 V 19 -4 V 19 -5 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -3 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 5092 809 L 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -2 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 0 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 19 -1 V 20 0 V 19 -1 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 631 M 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 3052 631 L 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 20 0 V 19 0 V 19 3192 V 20 -104 V 19 -100 V 20 -96 V 19 -93 V 20 -88 V 19 -85 V 19 -82 V 20 -78 V 19 -76 V 20 -73 V 19 -70 V 20 -67 V 19 -65 V 19 -62 V 20 -60 V 19 -58 V 20 -56 V 19 -54 V 20 -52 V 19 -50 V 19 -48 V 20 -47 V 19 -45 V 20 -44 V 19 -42 V 20 -40 V 19 -40 V 19 -38 V 20 -36 V 19 -36 V 20 -34 V 19 -33 V 19 -32 V 20 -31 V 19 -30 V 20 -29 V 19 -29 V 20 -27 V 19 -26 V 19 -26 V 20 -25 V 19 -24 V 20 -23 V 19 -23 V 20 -22 V 19 -21 V 19 -21 V 20 -20 V 19 -20 V 20 -19 V 19 -18 V 20 -18 V 19 -17 V 19 -17 V 20 -16 V 19 -16 V 20 -16 V 19 -15 V 20 -14 V 19 -15 V 19 -13 V 20 -14 V 19 -13 V 20 -13 V 19 -12 V 20 -12 V 19 -12 V 19 -11 V 20 -11 V 19 -11 V 20 -11 V 19 -10 V 20 -10 V 19 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -8 V 19 -9 V 20 -8 V 19 -9 V 19 -7 V 20 -8 V 19 -8 V 20 -7 V 19 -7 V 20 -8 V 5092 985 L 19 -7 V 20 -7 V 19 -6 V 20 -6 V 19 -6 V 20 -6 V 19 -6 V 19 -6 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -6 V 19 -5 V 19 -4 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 20 -4 V 19 -4 V 19 -4 V 20 -5 V 19 -4 V 20 -3 V 19 -4 V 20 -4 V 19 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 20 -3 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 20 -1 V 19 -2 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -2 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$a=3, b=2 $}}% \put(5957,4781){\rjust{\strut{}$a=1, b=1$}}% \put(3955,5244){\cjust{\strut{}Pareto Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(5698,400){\cjust{\strut{}4}}% \put(4536,400){\cjust{\strut{}3}}% \put(3375,400){\cjust{\strut{}2}}% \put(2213,400){\cjust{\strut{}1}}% \put(1051,400){\cjust{\strut{}0}}% \put(900,4944){\rjust{\strut{} 2}}% \put(900,3866){\rjust{\strut{} 1.5}}% \put(900,2788){\rjust{\strut{} 1}}% \put(900,1709){\rjust{\strut{} 0.5}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/specfunc-erf.texi0000664000252300025230000000640112171574312013173 00000000000000@cindex error function @cindex erf(x) @cindex erfc(x) The error function is described in Abramowitz & Stegun, Chapter 7. The functions in this section are declared in the header file @file{gsl_sf_erf.h}. @menu * Error Function:: * Complementary Error Function:: * Log Complementary Error Function:: * Probability functions:: @end menu @node Error Function @subsection Error Function @deftypefun double gsl_sf_erf (double @var{x}) @deftypefunx int gsl_sf_erf_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the error function @c{$\erf(x)$} @math{erf(x)}, where @c{$\erf(x) = (2/\sqrt{\pi}) \int_0^x dt \exp(-t^2)$} @math{erf(x) = (2/\sqrt(\pi)) \int_0^x dt \exp(-t^2)}. @comment Exceptional Return Values: none @end deftypefun @node Complementary Error Function @subsection Complementary Error Function @deftypefun double gsl_sf_erfc (double @var{x}) @deftypefunx int gsl_sf_erfc_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the complementary error function @c{$\erfc(x) = 1 - \erf(x) = (2/\sqrt{\pi}) \int_x^\infty \exp(-t^2)$} @math{erfc(x) = 1 - erf(x) = (2/\sqrt(\pi)) \int_x^\infty \exp(-t^2)}. @comment Exceptional Return Values: none @end deftypefun @node Log Complementary Error Function @subsection Log Complementary Error Function @deftypefun double gsl_sf_log_erfc (double @var{x}) @deftypefunx int gsl_sf_log_erfc_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the logarithm of the complementary error function @math{\log(\erfc(x))}. @comment Exceptional Return Values: none @end deftypefun @node Probability functions @subsection Probability functions The probability functions for the Normal or Gaussian distribution are described in Abramowitz & Stegun, Section 26.2. @deftypefun double gsl_sf_erf_Z (double @var{x}) @deftypefunx int gsl_sf_erf_Z_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the Gaussian probability density function @c{$Z(x) = (1/\sqrt{2\pi}) \exp(-x^2/2)$} @math{Z(x) = (1/\sqrt@{2\pi@}) \exp(-x^2/2)}. @end deftypefun @deftypefun double gsl_sf_erf_Q (double @var{x}) @deftypefunx int gsl_sf_erf_Q_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the upper tail of the Gaussian probability function @c{$Q(x) = (1/\sqrt{2\pi}) \int_x^\infty dt \exp(-t^2/2)$} @math{Q(x) = (1/\sqrt@{2\pi@}) \int_x^\infty dt \exp(-t^2/2)}. @comment Exceptional Return Values: none @end deftypefun @cindex hazard function, normal distribution @cindex Mills' ratio, inverse The @dfn{hazard function} for the normal distribution, also known as the inverse Mills' ratio, is defined as, @tex \beforedisplay $$ h(x) = {Z(x)\over Q(x)} = \sqrt{2 \over \pi} {\exp(-x^2 / 2) \over \erfc(x/\sqrt 2)} $$ \afterdisplay @end tex @ifinfo @example h(x) = Z(x)/Q(x) = \sqrt@{2/\pi@} \exp(-x^2 / 2) / \erfc(x/\sqrt 2) @end example @end ifinfo @noindent It decreases rapidly as @math{x} approaches @math{-\infty} and asymptotes to @math{h(x) \sim x} as @math{x} approaches @math{+\infty}. @deftypefun double gsl_sf_hazard (double @var{x}) @deftypefunx int gsl_sf_hazard_e (double @var{x}, gsl_sf_result * @var{result}) These routines compute the hazard function for the normal distribution. @comment Exceptional Return Values: GSL_EUNDRFLW @end deftypefun gsl-1.16/doc/rand-levy.tex0000664000252300025230000005432712171574312012355 00000000000000% GNUPLOT: plain TeX with Postscript \begingroup \catcode`\@=11\relax \def\GNUPLOTspecial{% \def\do##1{\catcode`##1=12\relax}\dospecials \catcode`\{=1\catcode`\}=2\catcode\%=14\relax\special}% % \expandafter\ifx\csname GNUPLOTpicture\endcsname\relax \csname newdimen\endcsname\GNUPLOTunit \gdef\GNUPLOTpicture(#1,#2){\vbox to#2\GNUPLOTunit\bgroup \def\put(##1,##2)##3{\unskip\raise##2\GNUPLOTunit \hbox to0pt{\kern##1\GNUPLOTunit ##3\hss}\ignorespaces}% \def\ljust##1{\vbox to0pt{\vss\hbox to0pt{##1\hss}\vss}}% \def\cjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1\hss}\vss}}% \def\rjust##1{\vbox to0pt{\vss\hbox to0pt{\hss ##1}\vss}}% \def\stack##1{\let\\=\cr\tabskip=0pt\halign{\hfil ####\hfil\cr ##1\crcr}}% \def\lstack##1{\hbox to0pt{\vbox to0pt{\vss\stack{##1}}\hss}}% \def\cstack##1{\hbox to0pt{\hss\vbox to0pt{\vss\stack{##1}}\hss}}% \def\rstack##1{\hbox to0pt{\vbox to0pt{\stack{##1}\vss}\hss}}% \vss\hbox to#1\GNUPLOTunit\bgroup\ignorespaces}% \gdef\endGNUPLOTpicture{\hss\egroup\egroup}% \fi \GNUPLOTunit=0.0500bp \GNUPLOTpicture(7200,5544) {\GNUPLOTspecial{" %!PS-Adobe-2.0 EPSF-2.0 %%Title: rand-levy.tex %%Creator: gnuplot 4.2 patchlevel 2 %%CreationDate: Thu Feb 5 16:32:53 2009 %%DocumentFonts: %%BoundingBox: 0 0 360 277 %%EndComments %%BeginProlog /gnudict 256 dict def gnudict begin % % The following 6 true/false flags may be edited by hand if required % The unit line width may also be changed % /Color false def /Blacktext true def /Solid false def /Dashlength 1 def /Landscape false def /Level1 false def /Rounded false def /TransparentPatterns false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def % /vshift -66 def /dl1 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul sub dup 0 le { pop 0.01 } if } if } def /dl2 { 10.0 Dashlength mul mul Rounded { currentlinewidth 0.75 mul add } if } def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def Level1 {} { /SDict 10 dict def systemdict /pdfmark known not { userdict /pdfmark systemdict /cleartomark get put } if SDict begin [ /Title (rand-levy.tex) /Subject (gnuplot plot) /Creator (gnuplot 4.2 patchlevel 2 ) /Author (Brian Gough) % /Producer (gnuplot) % /Keywords () /CreationDate (Thu Feb 5 16:32:53 2009) /DOCINFO pdfmark end } ifelse % % Gnuplot Prolog Version 4.2 (August 2006) % /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /N {newpath moveto} bind def /Z {closepath} bind def /C {setrgbcolor} bind def /f {rlineto fill} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow {currentpoint stroke M 0 vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Rshow {currentpoint stroke M dup stringwidth pop neg vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /Cshow {currentpoint stroke M dup stringwidth pop -2 div vshift R Blacktext {gsave 0 setgray show grestore} {show} ifelse} def /UP {dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def} def /DL {Color {setrgbcolor Solid {pop []} if 0 setdash} {pop pop pop 0 setgray Solid {pop []} if 0 setdash} ifelse} def /BL {stroke userlinewidth 2 mul setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /AL {stroke userlinewidth 2 div setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def /UL {dup gnulinewidth mul /userlinewidth exch def dup 1 lt {pop 1} if 10 mul /udl exch def} def /PL {stroke userlinewidth setlinewidth Rounded {1 setlinejoin 1 setlinecap} if} def % Default Line colors /LCw {1 1 1} def /LCb {0 0 0} def /LCa {0 0 0} def /LC0 {1 0 0} def /LC1 {0 1 0} def /LC2 {0 0 1} def /LC3 {1 0 1} def /LC4 {0 1 1} def /LC5 {1 1 0} def /LC6 {0 0 0} def /LC7 {1 0.3 0} def /LC8 {0.5 0.5 0.5} def % Default Line Types /LTw {PL [] 1 setgray} def /LTb {BL [] LCb DL} def /LTa {AL [1 udl mul 2 udl mul] 0 setdash LCa setrgbcolor} def /LT0 {PL [] LC0 DL} def /LT1 {PL [4 dl1 2 dl2] LC1 DL} def /LT2 {PL [2 dl1 3 dl2] LC2 DL} def /LT3 {PL [1 dl1 1.5 dl2] LC3 DL} def /LT4 {PL [6 dl1 2 dl2 1 dl1 2 dl2] LC4 DL} def /LT5 {PL [3 dl1 3 dl2 1 dl1 3 dl2] LC5 DL} def /LT6 {PL [2 dl1 2 dl2 2 dl1 6 dl2] LC6 DL} def /LT7 {PL [1 dl1 2 dl2 6 dl1 2 dl2 1 dl1 2 dl2] LC7 DL} def /LT8 {PL [2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 2 dl2 2 dl1 4 dl2] LC8 DL} def /Pnt {stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore} def /Dia {stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt} def /Pls {stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box {stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt} def /Crs {stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke} def /TriU {stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt} def /Star {2 copy Pls Crs} def /BoxF {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill} def /TriUF {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill} def /TriD {stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt} def /TriDF {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill} def /Pent {stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt} def /PentF {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore} def /Circle {stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt} def /CircleF {stroke [] 0 setdash hpt 0 360 arc fill} def /C0 {BL [] 0 setdash 2 copy moveto vpt 90 450 arc} bind def /C1 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath} bind def /C2 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C3 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath} bind def /C4 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath} bind def /C5 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc} bind def /C6 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath} bind def /C7 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath} bind def /C8 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C9 {BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath} bind def /C10 {BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath} bind def /C11 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath} bind def /C12 {BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C13 {BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath} bind def /C14 {BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc} bind def /C15 {BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath} bind def /Rec {newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath} bind def /Square {dup Rec} bind def /Bsquare {vpt sub exch vpt sub exch vpt2 Square} bind def /S0 {BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare} bind def /S1 {BL [] 0 setdash 2 copy vpt Square fill Bsquare} bind def /S2 {BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S3 {BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S4 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S5 {BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare} bind def /S6 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare} bind def /S7 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare} bind def /S8 {BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare} bind def /S9 {BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare} bind def /S10 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S11 {BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare} bind def /S12 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare} bind def /S13 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare} bind def /S14 {BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare} bind def /S15 {BL [] 0 setdash 2 copy Bsquare fill Bsquare} bind def /D0 {gsave translate 45 rotate 0 0 S0 stroke grestore} bind def /D1 {gsave translate 45 rotate 0 0 S1 stroke grestore} bind def /D2 {gsave translate 45 rotate 0 0 S2 stroke grestore} bind def /D3 {gsave translate 45 rotate 0 0 S3 stroke grestore} bind def /D4 {gsave translate 45 rotate 0 0 S4 stroke grestore} bind def /D5 {gsave translate 45 rotate 0 0 S5 stroke grestore} bind def /D6 {gsave translate 45 rotate 0 0 S6 stroke grestore} bind def /D7 {gsave translate 45 rotate 0 0 S7 stroke grestore} bind def /D8 {gsave translate 45 rotate 0 0 S8 stroke grestore} bind def /D9 {gsave translate 45 rotate 0 0 S9 stroke grestore} bind def /D10 {gsave translate 45 rotate 0 0 S10 stroke grestore} bind def /D11 {gsave translate 45 rotate 0 0 S11 stroke grestore} bind def /D12 {gsave translate 45 rotate 0 0 S12 stroke grestore} bind def /D13 {gsave translate 45 rotate 0 0 S13 stroke grestore} bind def /D14 {gsave translate 45 rotate 0 0 S14 stroke grestore} bind def /D15 {gsave translate 45 rotate 0 0 S15 stroke grestore} bind def /DiaE {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke} def /BoxE {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke} def /TriUE {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke} def /TriDE {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke} def /PentE {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore} def /CircE {stroke [] 0 setdash hpt 0 360 arc stroke} def /Opaque {gsave closepath 1 setgray fill grestore 0 setgray closepath} def /DiaW {stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke} def /BoxW {stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke} def /TriUW {stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke} def /TriDW {stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke} def /PentW {stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore} def /CircW {stroke [] 0 setdash hpt 0 360 arc Opaque stroke} def /BoxFill {gsave Rec 1 setgray fill grestore} def /Density { /Fillden exch def currentrgbcolor /ColB exch def /ColG exch def /ColR exch def /ColR ColR Fillden mul Fillden sub 1 add def /ColG ColG Fillden mul Fillden sub 1 add def /ColB ColB Fillden mul Fillden sub 1 add def ColR ColG ColB setrgbcolor} def /BoxColFill {gsave Rec PolyFill} def /PolyFill {gsave Density fill grestore grestore} def /h {rlineto rlineto rlineto gsave fill grestore} bind def % % PostScript Level 1 Pattern Fill routine for rectangles % Usage: x y w h s a XX PatternFill % x,y = lower left corner of box to be filled % w,h = width and height of box % a = angle in degrees between lines and x-axis % XX = 0/1 for no/yes cross-hatch % /PatternFill {gsave /PFa [ 9 2 roll ] def PFa 0 get PFa 2 get 2 div add PFa 1 get PFa 3 get 2 div add translate PFa 2 get -2 div PFa 3 get -2 div PFa 2 get PFa 3 get Rec gsave 1 setgray fill grestore clip currentlinewidth 0.5 mul setlinewidth /PFs PFa 2 get dup mul PFa 3 get dup mul add sqrt def 0 0 M PFa 5 get rotate PFs -2 div dup translate 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 M 0 PFs V} for 0 PFa 6 get ne { 0 1 PFs PFa 4 get div 1 add floor cvi {PFa 4 get mul 0 2 1 roll M PFs 0 V} for } if stroke grestore} def % /languagelevel where {pop languagelevel} {1} ifelse 2 lt {/InterpretLevel1 true def} {/InterpretLevel1 Level1 def} ifelse % % PostScript level 2 pattern fill definitions % /Level2PatternFill { /Tile8x8 {/PaintType 2 /PatternType 1 /TilingType 1 /BBox [0 0 8 8] /XStep 8 /YStep 8} bind def /KeepColor {currentrgbcolor [/Pattern /DeviceRGB] setcolorspace} bind def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke} >> matrix makepattern /Pat1 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 8 8 L 0 8 M 8 0 L stroke 0 4 M 4 8 L 8 4 L 4 0 L 0 4 L stroke} >> matrix makepattern /Pat2 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 0 M 0 8 L 8 8 L 8 0 L 0 0 L fill} >> matrix makepattern /Pat3 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 8 M 8 -4 L 0 12 M 12 0 L stroke} >> matrix makepattern /Pat4 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -4 0 M 8 12 L 0 -4 M 12 8 L stroke} >> matrix makepattern /Pat5 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 8 M 4 -4 L 0 12 M 8 -4 L 4 12 M 10 0 L stroke} >> matrix makepattern /Pat6 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop -2 0 M 4 12 L 0 -4 M 8 12 L 4 -4 M 10 8 L stroke} >> matrix makepattern /Pat7 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 8 -2 M -4 4 L 12 0 M -4 8 L 12 4 M 0 10 L stroke} >> matrix makepattern /Pat8 exch def << Tile8x8 /PaintProc {0.5 setlinewidth pop 0 -2 M 12 4 L -4 0 M 12 8 L -4 4 M 8 10 L stroke} >> matrix makepattern /Pat9 exch def /Pattern1 {PatternBgnd KeepColor Pat1 setpattern} bind def /Pattern2 {PatternBgnd KeepColor Pat2 setpattern} bind def /Pattern3 {PatternBgnd KeepColor Pat3 setpattern} bind def /Pattern4 {PatternBgnd KeepColor Landscape {Pat5} {Pat4} ifelse setpattern} bind def /Pattern5 {PatternBgnd KeepColor Landscape {Pat4} {Pat5} ifelse setpattern} bind def /Pattern6 {PatternBgnd KeepColor Landscape {Pat9} {Pat6} ifelse setpattern} bind def /Pattern7 {PatternBgnd KeepColor Landscape {Pat8} {Pat7} ifelse setpattern} bind def } def % % %End of PostScript Level 2 code % /PatternBgnd { TransparentPatterns {} {gsave 1 setgray fill grestore} ifelse } def % % Substitute for Level 2 pattern fill codes with % grayscale if Level 2 support is not selected. % /Level1PatternFill { /Pattern1 {0.250 Density} bind def /Pattern2 {0.500 Density} bind def /Pattern3 {0.750 Density} bind def /Pattern4 {0.125 Density} bind def /Pattern5 {0.375 Density} bind def /Pattern6 {0.625 Density} bind def /Pattern7 {0.875 Density} bind def } def % % Now test for support of Level 2 code % Level1 {Level1PatternFill} {Level2PatternFill} ifelse % /Symbol-Oblique /Symbol findfont [1 0 .167 1 0 0] makefont dup length dict begin {1 index /FID eq {pop pop} {def} ifelse} forall currentdict end definefont pop end %%EndProlog gnudict begin gsave 0 0 translate 0.050 0.050 scale 0 setgray newpath 0.500 UL LTb 1051 631 M -31 0 V 31 958 R -31 0 V 31 959 R -31 0 V 31 958 R -31 0 V 31 959 R -31 0 V 1051 631 M 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 580 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 581 31 R 0 -31 V 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V stroke LCb setrgbcolor LTb LCb setrgbcolor LTb 1.000 UP 0.500 UL LTb 1.000 UL LT0 LTb LT0 6077 4781 M 543 0 V 1051 748 M 19 2 V 20 1 V 19 2 V 20 2 V 19 1 V 20 2 V 19 2 V 19 1 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 3 V 19 2 V 20 2 V 19 3 V 20 2 V 19 3 V 20 3 V 19 2 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 4 V 20 3 V 19 4 V 20 3 V 19 4 V 19 4 V 20 4 V 19 4 V 20 4 V 19 4 V 20 5 V 19 4 V 19 5 V 20 4 V 19 5 V 20 5 V 19 5 V 20 6 V 19 5 V 19 6 V 20 5 V 19 6 V 20 6 V 19 7 V 20 6 V 19 7 V 19 6 V 20 7 V 19 8 V 20 7 V 19 8 V 20 8 V 19 8 V 19 9 V 20 8 V 19 9 V 20 10 V 19 9 V 20 10 V 19 10 V 19 11 V 20 11 V 19 11 V 20 12 V 19 12 V 20 13 V 19 13 V 19 14 V 20 14 V 19 14 V 20 15 V 19 16 V 20 16 V 19 17 V 19 17 V 20 18 V 19 19 V 20 20 V 19 20 V 20 21 V 19 22 V 19 23 V 20 24 V 19 24 V 20 26 V 3052 1523 L 20 28 V 19 29 V 19 30 V 20 31 V 19 33 V 20 33 V 19 35 V 20 37 V 19 38 V 19 39 V 20 41 V 19 43 V 20 44 V 19 46 V 20 47 V 19 49 V 19 51 V 20 53 V 19 54 V 20 56 V 19 57 V 20 59 V 19 61 V 19 62 V 20 63 V 19 64 V 20 65 V 19 66 V 20 66 V 19 67 V 19 66 V 20 65 V 19 64 V 20 63 V 19 61 V 20 58 V 19 55 V 19 52 V 20 47 V 19 43 V 20 38 V 19 32 V 20 27 V 19 20 V 19 13 V 20 7 V 19 0 V 20 -7 V 19 -13 V 19 -20 V 20 -27 V 19 -32 V 20 -38 V 19 -43 V 20 -47 V 19 -52 V 19 -55 V 20 -58 V 19 -61 V 20 -63 V 19 -64 V 20 -65 V 19 -66 V 19 -67 V 20 -66 V 19 -66 V 20 -65 V 19 -64 V 20 -63 V 19 -62 V 19 -61 V 20 -59 V 19 -57 V 20 -56 V 19 -54 V 20 -53 V 19 -51 V 19 -49 V 20 -47 V 19 -46 V 20 -44 V 19 -43 V 20 -41 V 19 -39 V 19 -38 V 20 -37 V 19 -35 V 20 -33 V 19 -33 V 20 -31 V 19 -30 V 19 -29 V 20 -28 V 19 -26 V 20 -26 V 19 -24 V 20 -24 V 19 -23 V 19 -22 V 20 -21 V 19 -20 V 20 -20 V 19 -19 V 20 -18 V 5092 1263 L 19 -17 V 20 -16 V 19 -16 V 20 -15 V 19 -14 V 20 -14 V 19 -14 V 19 -13 V 20 -13 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -11 V 19 -10 V 20 -10 V 19 -9 V 20 -10 V 19 -9 V 20 -8 V 19 -9 V 19 -8 V 20 -8 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -6 V 19 -7 V 20 -6 V 19 -7 V 20 -6 V 19 -6 V 20 -5 V 19 -6 V 19 -5 V 20 -6 V 19 -5 V 20 -5 V 19 -5 V 20 -4 V 19 -5 V 19 -4 V 20 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -4 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -4 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -3 V 19 -3 V 19 -2 V 20 -3 V 19 -3 V 20 -2 V 19 -3 V 20 -2 V 19 -2 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -2 V 19 -1 V 19 -2 V 20 -2 V 19 -1 V 20 -2 V 19 -2 V 20 -1 V 19 -2 V stroke LT1 LTb LT1 6077 4581 M 543 0 V 1051 636 M 19 1 V 20 0 V 19 1 V 20 0 V 19 1 V 20 1 V 19 0 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 20 1 V 19 1 V 19 1 V 20 2 V 19 1 V 20 1 V 19 2 V 20 2 V 19 2 V 19 2 V 20 2 V 19 2 V 20 2 V 19 3 V 20 3 V 19 3 V 19 3 V 20 3 V 19 3 V 20 4 V 19 4 V 20 4 V 19 4 V 19 5 V 20 5 V 19 5 V 20 5 V 19 6 V 20 6 V 19 6 V 19 6 V 20 7 V 19 8 V 20 7 V 19 8 V 20 9 V 19 8 V 19 10 V 20 9 V 19 10 V 20 11 V 19 11 V 20 12 V 19 12 V 19 12 V 20 13 V 19 14 V 20 14 V 19 15 V 20 15 V 19 16 V 19 16 V 20 17 V 19 18 V 20 18 V 19 19 V 20 20 V 19 20 V 19 21 V 20 21 V 19 22 V 20 23 V 19 24 V 20 24 V 19 25 V 19 25 V 20 27 V 19 26 V 20 28 V 19 28 V 20 29 V 19 30 V 19 30 V 20 31 V 19 31 V 20 32 V 19 32 V 20 34 V 19 33 V 19 35 V 20 34 V 19 36 V 20 35 V 19 36 V 20 37 V 19 37 V 19 37 V 20 38 V 19 38 V 20 38 V 3052 2108 L 20 38 V 19 39 V 19 39 V 20 39 V 19 38 V 20 39 V 19 39 V 20 38 V 19 39 V 19 38 V 20 38 V 19 37 V 20 37 V 19 37 V 20 37 V 19 35 V 19 36 V 20 34 V 19 34 V 20 34 V 19 32 V 20 32 V 19 31 V 19 30 V 20 29 V 19 28 V 20 27 V 19 26 V 20 25 V 19 24 V 19 22 V 20 21 V 19 20 V 20 19 V 19 18 V 20 16 V 19 14 V 19 14 V 20 12 V 19 10 V 20 9 V 19 7 V 20 6 V 19 5 V 19 3 V 20 2 V 19 0 V 20 -2 V 19 -3 V 19 -5 V 20 -6 V 19 -7 V 20 -9 V 19 -10 V 20 -12 V 19 -14 V 19 -14 V 20 -16 V 19 -18 V 20 -19 V 19 -20 V 20 -21 V 19 -22 V 19 -24 V 20 -25 V 19 -26 V 20 -27 V 19 -28 V 20 -29 V 19 -30 V 19 -31 V 20 -32 V 19 -32 V 20 -34 V 19 -34 V 20 -34 V 19 -36 V 19 -35 V 20 -37 V 19 -37 V 20 -37 V 19 -37 V 20 -38 V 19 -38 V 19 -39 V 20 -38 V 19 -39 V 20 -39 V 19 -38 V 20 -39 V 19 -39 V 19 -39 V 20 -38 V 19 -38 V 20 -38 V 19 -38 V 20 -38 V 19 -37 V 19 -37 V 20 -37 V 19 -36 V 20 -35 V 19 -36 V 20 -34 V 5092 1669 L 19 -33 V 20 -34 V 19 -32 V 20 -32 V 19 -31 V 20 -31 V 19 -30 V 19 -30 V 20 -29 V 19 -28 V 20 -28 V 19 -26 V 20 -27 V 19 -25 V 19 -25 V 20 -24 V 19 -24 V 20 -23 V 19 -22 V 20 -21 V 19 -21 V 19 -20 V 20 -20 V 19 -19 V 20 -18 V 19 -18 V 20 -17 V 19 -16 V 19 -16 V 20 -15 V 19 -15 V 20 -14 V 19 -14 V 20 -13 V 19 -12 V 19 -12 V 20 -12 V 19 -11 V 20 -11 V 19 -10 V 20 -9 V 19 -10 V 19 -8 V 20 -9 V 19 -8 V 20 -7 V 19 -8 V 20 -7 V 19 -6 V 19 -6 V 20 -6 V 19 -6 V 20 -5 V 19 -5 V 20 -5 V 19 -5 V 19 -4 V 20 -4 V 19 -4 V 20 -4 V 19 -3 V 20 -3 V 19 -3 V 19 -3 V 20 -3 V 19 -3 V 20 -2 V 19 -2 V 20 -2 V 19 -2 V 19 -2 V 20 -2 V 19 -2 V 20 -1 V 19 -1 V 20 -2 V 19 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 20 -1 V 19 -1 V 19 0 V 20 -1 V 19 -1 V 20 0 V 19 -1 V 20 0 V 19 -1 V stroke 0.500 UL LTb 1051 4944 M 0 -4313 V 5809 0 V 0 4313 V -5809 0 V 1.000 UP stroke grestore end showpage }}% \put(5957,4581){\rjust{\strut{}$c=1, \alpha=2.0$}}% \put(5957,4781){\rjust{\strut{}$c=1, \alpha=1.0$}}% \put(3955,5244){\cjust{\strut{}Levy Distribution}}% \put(3955,100){\cjust{\strut{}$x$}}% \put(200,2787){% \special{ps: gsave currentpoint currentpoint translate 270 rotate neg exch neg exch translate}% \cjust{\strut{}$p(x)$}% \special{ps: currentpoint grestore moveto}% }% \put(6860,400){\cjust{\strut{}5}}% \put(6279,400){\cjust{\strut{}4}}% \put(5698,400){\cjust{\strut{}3}}% \put(5117,400){\cjust{\strut{}2}}% \put(4536,400){\cjust{\strut{}1}}% \put(3955,400){\cjust{\strut{}0}}% \put(3375,400){\cjust{\strut{}-1}}% \put(2794,400){\cjust{\strut{}-2}}% \put(2213,400){\cjust{\strut{}-3}}% \put(1632,400){\cjust{\strut{}-4}}% \put(1051,400){\cjust{\strut{}-5}}% \put(900,4465){\rjust{\strut{} 0.4}}% \put(900,3506){\rjust{\strut{} 0.3}}% \put(900,2548){\rjust{\strut{} 0.2}}% \put(900,1589){\rjust{\strut{} 0.1}}% \put(900,631){\rjust{\strut{} 0}}% \endGNUPLOTpicture \endgroup \endinput gsl-1.16/doc/dwt.texi0000664000252300025230000004113512171574312011414 00000000000000@cindex DWT, see wavelet transforms @cindex wavelet transforms @cindex transforms, wavelet This chapter describes functions for performing Discrete Wavelet Transforms (DWTs). The library includes wavelets for real data in both one and two dimensions. The wavelet functions are declared in the header files @file{gsl_wavelet.h} and @file{gsl_wavelet2d.h}. @menu * DWT Definitions:: * DWT Initialization:: * DWT Transform Functions:: * DWT Examples:: * DWT References:: @end menu @node DWT Definitions @section Definitions @cindex DWT, mathematical definition The continuous wavelet transform and its inverse are defined by the relations, @iftex @tex \beforedisplay $$ w(s, \tau) = \int_{-\infty}^\infty f(t) * \psi^*_{s,\tau}(t) dt $$ \afterdisplay @end tex @end iftex @ifinfo @example w(s,\tau) = \int f(t) * \psi^*_@{s,\tau@}(t) dt @end example @end ifinfo @noindent and, @tex \beforedisplay $$ f(t) = \int_0^\infty ds \int_{-\infty}^\infty w(s, \tau) * \psi_{s,\tau}(t) d\tau $$ \afterdisplay @end tex @ifinfo @example f(t) = \int \int_@{-\infty@}^\infty w(s, \tau) * \psi_@{s,\tau@}(t) d\tau ds @end example @end ifinfo @noindent where the basis functions @c{$\psi_{s,\tau}$} @math{\psi_@{s,\tau@}} are obtained by scaling and translation from a single function, referred to as the @dfn{mother wavelet}. The discrete version of the wavelet transform acts on equally-spaced samples, with fixed scaling and translation steps (@math{s}, @math{\tau}). The frequency and time axes are sampled @dfn{dyadically} on scales of @math{2^j} through a level parameter @math{j}. @c The wavelet @math{\psi} @c can be expressed in terms of a scaling function @math{\varphi}, @c @c @tex @c \beforedisplay @c $$ @c \psi(2^{j-1},t) = \sum_{k=0}^{2^j-1} g_j(k) * \bar{\varphi}(2^j t-k) @c $$ @c \afterdisplay @c @end tex @c @ifinfo @c @example @c \psi(2^@{j-1@},t) = \sum_@{k=0@}^@{2^j-1@} g_j(k) * \bar@{\varphi@}(2^j t-k) @c @end example @c @end ifinfo @c @noindent @c and @c @c @tex @c \beforedisplay @c $$ @c \varphi(2^{j-1},t) = \sum_{k=0}^{2^j-1} h_j(k) * \bar{\varphi}(2^j t-k) @c $$ @c \afterdisplay @c @end tex @c @ifinfo @c @example @c \varphi(2^@{j-1@},t) = \sum_@{k=0@}^@{2^j-1@} h_j(k) * \bar@{\varphi@}(2^j t-k) @c @end example @c @end ifinfo @c @noindent @c The functions @math{\psi} and @math{\varphi} are related through the @c coefficients @c @c{$g_{n} = (-1)^n h_{L-1-n}$} @c @math{g_@{n@} = (-1)^n h_@{L-1-n@}} @c for @c{$n=0 \dots L-1$} @c @math{n=0 ... L-1}, @c where @math{L} is the total number of coefficients. The two sets of @c coefficients @math{h_j} and @math{g_i} define the scaling function and @c the wavelet. The resulting family of functions @c{$\{\psi_{j,n}\}$} @math{@{\psi_@{j,n@}@}} constitutes an orthonormal basis for square-integrable signals. The discrete wavelet transform is an @math{O(N)} algorithm, and is also referred to as the @dfn{fast wavelet transform}. @node DWT Initialization @section Initialization @cindex DWT initialization @tpindex gsl_wavelet_type The @code{gsl_wavelet} structure contains the filter coefficients defining the wavelet and any associated offset parameters. @deftypefun {gsl_wavelet *} gsl_wavelet_alloc (const gsl_wavelet_type * @var{T}, size_t @var{k}) @tpindex gsl_wavelet This function allocates and initializes a wavelet object of type @var{T}. The parameter @var{k} selects the specific member of the wavelet family. A null pointer is returned if insufficient memory is available or if a unsupported member is selected. @end deftypefun The following wavelet types are implemented: @deffn {Wavelet} gsl_wavelet_daubechies @deffnx {Wavelet} gsl_wavelet_daubechies_centered @cindex Daubechies wavelets @cindex maximal phase, Daubechies wavelets This is the Daubechies wavelet family of maximum phase with @math{k/2} vanishing moments. The implemented wavelets are @c{$k=4, 6, \dots, 20$} @math{k=4, 6, @dots{}, 20}, with @var{k} even. @end deffn @deffn {Wavelet} gsl_wavelet_haar @deffnx {Wavelet} gsl_wavelet_haar_centered @cindex Haar wavelets This is the Haar wavelet. The only valid choice of @math{k} for the Haar wavelet is @math{k=2}. @end deffn @deffn {Wavelet} gsl_wavelet_bspline @deffnx {Wavelet} gsl_wavelet_bspline_centered @cindex biorthogonal wavelets @cindex B-spline wavelets This is the biorthogonal B-spline wavelet family of order @math{(i,j)}. The implemented values of @math{k = 100*i + j} are 103, 105, 202, 204, 206, 208, 301, 303, 305 307, 309. @end deffn @noindent The centered forms of the wavelets align the coefficients of the various sub-bands on edges. Thus the resulting visualization of the coefficients of the wavelet transform in the phase plane is easier to understand. @deftypefun {const char *} gsl_wavelet_name (const gsl_wavelet * @var{w}) This function returns a pointer to the name of the wavelet family for @var{w}. @end deftypefun @c @deftypefun {void} gsl_wavelet_print (const gsl_wavelet * @var{w}) @c This function prints the filter coefficients (@code{**h1}, @code{**g1}, @code{**h2}, @code{**g2}) of the wavelet object @var{w}. @c @end deftypefun @deftypefun {void} gsl_wavelet_free (gsl_wavelet * @var{w}) This function frees the wavelet object @var{w}. @end deftypefun The @code{gsl_wavelet_workspace} structure contains scratch space of the same size as the input data and is used to hold intermediate results during the transform. @deftypefun {gsl_wavelet_workspace *} gsl_wavelet_workspace_alloc (size_t @var{n}) @tpindex gsl_wavelet_workspace This function allocates a workspace for the discrete wavelet transform. To perform a one-dimensional transform on @var{n} elements, a workspace of size @var{n} must be provided. For two-dimensional transforms of @var{n}-by-@var{n} matrices it is sufficient to allocate a workspace of size @var{n}, since the transform operates on individual rows and columns. A null pointer is returned if insufficient memory is available. @end deftypefun @deftypefun {void} gsl_wavelet_workspace_free (gsl_wavelet_workspace * @var{work}) This function frees the allocated workspace @var{work}. @end deftypefun @node DWT Transform Functions @section Transform Functions This sections describes the actual functions performing the discrete wavelet transform. Note that the transforms use periodic boundary conditions. If the signal is not periodic in the sample length then spurious coefficients will appear at the beginning and end of each level of the transform. @menu * DWT in one dimension:: * DWT in two dimension:: @end menu @node DWT in one dimension @subsection Wavelet transforms in one dimension @cindex DWT, one dimensional @deftypefun int gsl_wavelet_transform (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{stride}, size_t @var{n}, gsl_wavelet_direction @var{dir}, gsl_wavelet_workspace * @var{work}) @deftypefunx int gsl_wavelet_transform_forward (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{stride}, size_t @var{n}, gsl_wavelet_workspace * @var{work}) @deftypefunx int gsl_wavelet_transform_inverse (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{stride}, size_t @var{n}, gsl_wavelet_workspace * @var{work}) These functions compute in-place forward and inverse discrete wavelet transforms of length @var{n} with stride @var{stride} on the array @var{data}. The length of the transform @var{n} is restricted to powers of two. For the @code{transform} version of the function the argument @var{dir} can be either @code{forward} (@math{+1}) or @code{backward} (@math{-1}). A workspace @var{work} of length @var{n} must be provided. For the forward transform, the elements of the original array are replaced by the discrete wavelet transform @c{$f_i \rightarrow w_{j,k}$} @math{f_i -> w_@{j,k@}} in a packed triangular storage layout, where @var{j} is the index of the level @c{$j = 0 \dots J-1$} @math{j = 0 ... J-1} and @var{k} is the index of the coefficient within each level, @c{$k = 0 \dots 2^j - 1$} @math{k = 0 ... (2^j)-1}. The total number of levels is @math{J = \log_2(n)}. The output data has the following form, @tex \beforedisplay $$ (s_{-1,0}, d_{0,0}, d_{1,0}, d_{1,1}, d_{2,0},\cdots, d_{j,k},\cdots, d_{J-1,2^{J-1} - 1}) $$ \afterdisplay @end tex @ifinfo @example (s_@{-1,0@}, d_@{0,0@}, d_@{1,0@}, d_@{1,1@}, d_@{2,0@}, ..., d_@{j,k@}, ..., d_@{J-1,2^@{J-1@}-1@}) @end example @end ifinfo @noindent where the first element is the smoothing coefficient @c{$s_{-1,0}$} @math{s_@{-1,0@}}, followed by the detail coefficients @c{$d_{j,k}$} @math{d_@{j,k@}} for each level @math{j}. The backward transform inverts these coefficients to obtain the original data. These functions return a status of @code{GSL_SUCCESS} upon successful completion. @code{GSL_EINVAL} is returned if @var{n} is not an integer power of 2 or if insufficient workspace is provided. @end deftypefun @node DWT in two dimension @subsection Wavelet transforms in two dimension @cindex DWT, two dimensional The library provides functions to perform two-dimensional discrete wavelet transforms on square matrices. The matrix dimensions must be an integer power of two. There are two possible orderings of the rows and columns in the two-dimensional wavelet transform, referred to as the ``standard'' and ``non-standard'' forms. The ``standard'' transform performs a complete discrete wavelet transform on the rows of the matrix, followed by a separate complete discrete wavelet transform on the columns of the resulting row-transformed matrix. This procedure uses the same ordering as a two-dimensional Fourier transform. The ``non-standard'' transform is performed in interleaved passes on the rows and columns of the matrix for each level of the transform. The first level of the transform is applied to the matrix rows, and then to the matrix columns. This procedure is then repeated across the rows and columns of the data for the subsequent levels of the transform, until the full discrete wavelet transform is complete. The non-standard form of the discrete wavelet transform is typically used in image analysis. The functions described in this section are declared in the header file @file{gsl_wavelet2d.h}. @deftypefun {int} gsl_wavelet2d_transform (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_direction @var{dir}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_transform_forward (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_transform_inverse (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_workspace * @var{work}) These functions compute two-dimensional in-place forward and inverse discrete wavelet transforms in standard form on the array @var{data} stored in row-major form with dimensions @var{size1} and @var{size2} and physical row length @var{tda}. The dimensions must be equal (square matrix) and are restricted to powers of two. For the @code{transform} version of the function the argument @var{dir} can be either @code{forward} (@math{+1}) or @code{backward} (@math{-1}). A workspace @var{work} of the appropriate size must be provided. On exit, the appropriate elements of the array @var{data} are replaced by their two-dimensional wavelet transform. The functions return a status of @code{GSL_SUCCESS} upon successful completion. @code{GSL_EINVAL} is returned if @var{size1} and @var{size2} are not equal and integer powers of 2, or if insufficient workspace is provided. @end deftypefun @deftypefun {int} gsl_wavelet2d_transform_matrix (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_direction @var{dir}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_transform_matrix_forward (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_transform_matrix_inverse (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_workspace * @var{work}) These functions compute the two-dimensional in-place wavelet transform on a matrix @var{a}. @end deftypefun @deftypefun {int} gsl_wavelet2d_nstransform (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_direction @var{dir}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_nstransform_forward (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_nstransform_inverse (const gsl_wavelet * @var{w}, double * @var{data}, size_t @var{tda}, size_t @var{size1}, size_t @var{size2}, gsl_wavelet_workspace * @var{work}) These functions compute the two-dimensional wavelet transform in non-standard form. @end deftypefun @deftypefun {int} gsl_wavelet2d_nstransform_matrix (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_direction @var{dir}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_nstransform_matrix_forward (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_workspace * @var{work}) @deftypefunx {int} gsl_wavelet2d_nstransform_matrix_inverse (const gsl_wavelet * @var{w}, gsl_matrix * @var{m}, gsl_wavelet_workspace * @var{work}) These functions compute the non-standard form of the two-dimensional in-place wavelet transform on a matrix @var{a}. @end deftypefun @node DWT Examples @section Examples The following program demonstrates the use of the one-dimensional wavelet transform functions. It computes an approximation to an input signal (of length 256) using the 20 largest components of the wavelet transform, while setting the others to zero. @example @verbatiminclude examples/dwt.c @end example @noindent The output can be used with the @sc{gnu} plotutils @code{graph} program, @example $ ./a.out ecg.dat > dwt.dat $ graph -T ps -x 0 256 32 -h 0.3 -a dwt.dat > dwt.ps @end example @iftex The graphs below show an original and compressed version of a sample ECG recording from the MIT-BIH Arrhythmia Database, part of the PhysioNet archive of public-domain of medical datasets. @sp 1 @center @image{dwt-orig,3.4in} @center @image{dwt-samp,3.4in} @quotation Original (upper) and wavelet-compressed (lower) ECG signals, using the 20 largest components of the Daubechies(4) discrete wavelet transform. @end quotation @end iftex @node DWT References @section References and Further Reading The mathematical background to wavelet transforms is covered in the original lectures by Daubechies, @itemize @w{} @item Ingrid Daubechies. Ten Lectures on Wavelets. @cite{CBMS-NSF Regional Conference Series in Applied Mathematics} (1992), SIAM, ISBN 0898712742. @end itemize @noindent An easy to read introduction to the subject with an emphasis on the application of the wavelet transform in various branches of science is, @itemize @w{} @item Paul S. Addison. @cite{The Illustrated Wavelet Transform Handbook}. Institute of Physics Publishing (2002), ISBN 0750306920. @end itemize @noindent For extensive coverage of signal analysis by wavelets, wavelet packets and local cosine bases see, @itemize @w{} @item S. G. Mallat. @cite{A wavelet tour of signal processing} (Second edition). Academic Press (1999), ISBN 012466606X. @end itemize @noindent The concept of multiresolution analysis underlying the wavelet transform is described in, @itemize @w{} @item S. G. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases of L@math{^2}(R). @cite{Transactions of the American Mathematical Society}, 315(1), 1989, 69--87. @end itemize @itemize @w{} @item S. G. Mallat. A Theory for Multiresolution Signal Decomposition---The Wavelet Representation. @cite{IEEE Transactions on Pattern Analysis and Machine Intelligence}, 11, 1989, 674--693. @end itemize @noindent The coefficients for the individual wavelet families implemented by the library can be found in the following papers, @itemize @w{} @item I. Daubechies. Orthonormal Bases of Compactly Supported Wavelets. @cite{Communications on Pure and Applied Mathematics}, 41 (1988) 909--996. @end itemize @itemize @w{} @item A. Cohen, I. Daubechies, and J.-C. Feauveau. Biorthogonal Bases of Compactly Supported Wavelets. @cite{Communications on Pure and Applied Mathematics}, 45 (1992) 485--560. @end itemize @noindent The PhysioNet archive of physiological datasets can be found online at @uref{http://www.physionet.org/} and is described in the following paper, @itemize @w{} @item Goldberger et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. @cite{Circulation} 101(23):e215-e220 2000. @end itemize gsl-1.16/doc/algorithm.sty0000664000252300025230000000425712171574312012456 00000000000000% ALGORITHM STYLE -- Released 8 April 1996 % for LaTeX-2e % Copyright -- 1994 Peter Williams % E-mail Peter.Williams@dsto.defence.gov.au \NeedsTeXFormat{LaTeX2e} \ProvidesPackage{algorithm} \typeout{Document Style `algorithm' - floating environment} \RequirePackage{float} \RequirePackage{ifthen} \newcommand{\ALG@within}{nothing} \newboolean{ALG@within} \setboolean{ALG@within}{false} \newcommand{\ALG@floatstyle}{ruled} \newcommand{\ALG@name}{Algorithm} \newcommand{\listalgorithmname}{List of \ALG@name s} % Declare Options % first appearance \DeclareOption{plain}{ \renewcommand{\ALG@floatstyle}{plain} } \DeclareOption{ruled}{ \renewcommand{\ALG@floatstyle}{ruled} } \DeclareOption{boxed}{ \renewcommand{\ALG@floatstyle}{boxed} } % then numbering convention \DeclareOption{part}{ \renewcommand{\ALG@within}{part} \setboolean{ALG@within}{true} } \DeclareOption{chapter}{ \renewcommand{\ALG@within}{chapter} \setboolean{ALG@within}{true} } \DeclareOption{section}{ \renewcommand{\ALG@within}{section} \setboolean{ALG@within}{true} } \DeclareOption{subsection}{ \renewcommand{\ALG@within}{subsection} \setboolean{ALG@within}{true} } \DeclareOption{subsubsection}{ \renewcommand{\ALG@within}{subsubsection} \setboolean{ALG@within}{true} } \DeclareOption{nothing}{ \renewcommand{\ALG@within}{nothing} \setboolean{ALG@within}{true} } \DeclareOption*{\edef\ALG@name{\CurrentOption}} % ALGORITHM % \ProcessOptions \floatstyle{\ALG@floatstyle} \ifthenelse{\boolean{ALG@within}}{ \ifthenelse{\equal{\ALG@within}{part}} {\newfloat{algorithm}{htbp}{loa}[part]}{} \ifthenelse{\equal{\ALG@within}{chapter}} {\newfloat{algorithm}{htbp}{loa}[chapter]}{} \ifthenelse{\equal{\ALG@within}{section}} {\newfloat{algorithm}{htbp}{loa}[section]}{} \ifthenelse{\equal{\ALG@within}{subsection}} {\newfloat{algorithm}{htbp}{loa}[subsection]}{} \ifthenelse{\equal{\ALG@within}{subsubsection}} {\newfloat{algorithm}{htbp}{loa}[subsubsection]}{} \ifthenelse{\equal{\ALG@within}{nothing}} {\newfloat{algorithm}{htbp}{loa}}{} }{ \newfloat{algorithm}{htbp}{loa} } \floatname{algorithm}{\ALG@name} \newcommand{\listofalgorithms}{\listof{algorithm}{\listalgorithmname}} gsl-1.16/doc/multiroots.texi0000664000252300025230000010477512171574312013051 00000000000000@cindex solving nonlinear systems of equations @cindex nonlinear systems of equations, solution of @cindex systems of equations, nonlinear This chapter describes functions for multidimensional root-finding (solving nonlinear systems with @math{n} equations in @math{n} unknowns). The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs. The solvers are based on the original Fortran library @sc{minpack}. The header file @file{gsl_multiroots.h} contains prototypes for the multidimensional root finding functions and related declarations. @menu * Overview of Multidimensional Root Finding:: * Initializing the Multidimensional Solver:: * Providing the multidimensional system of equations to solve:: * Iteration of the multidimensional solver:: * Search Stopping Parameters for the multidimensional solver:: * Algorithms using Derivatives:: * Algorithms without Derivatives:: * Example programs for Multidimensional Root finding:: * References and Further Reading for Multidimensional Root Finding:: @end menu @node Overview of Multidimensional Root Finding @section Overview @cindex multidimensional root finding, overview The problem of multidimensional root finding requires the simultaneous solution of @math{n} equations, @math{f_i}, in @math{n} variables, @math{x_i}, @tex \beforedisplay $$ f_i (x_1, \dots, x_n) = 0 \qquad\hbox{for}~i = 1 \dots n. $$ \afterdisplay @end tex @ifinfo @example f_i (x_1, ..., x_n) = 0 for i = 1 ... n. @end example @end ifinfo @noindent In general there are no bracketing methods available for @math{n} dimensional systems, and no way of knowing whether any solutions exist. All algorithms proceed from an initial guess using a variant of the Newton iteration, @tex \beforedisplay $$ x \to x' = x - J^{-1} f(x) $$ \afterdisplay @end tex @ifinfo @example x -> x' = x - J^@{-1@} f(x) @end example @end ifinfo @noindent where @math{x}, @math{f} are vector quantities and @math{J} is the Jacobian matrix @c{$J_{ij} = \partial f_i / \partial x_j$} @math{J_@{ij@} = d f_i / d x_j}. Additional strategies can be used to enlarge the region of convergence. These include requiring a decrease in the norm @math{|f|} on each step proposed by Newton's method, or taking steepest-descent steps in the direction of the negative gradient of @math{|f|}. Several root-finding algorithms are available within a single framework. The user provides a high-level driver for the algorithms, and the library provides the individual functions necessary for each of the steps. There are three main phases of the iteration. The steps are, @itemize @bullet @item initialize solver state, @var{s}, for algorithm @var{T} @item update @var{s} using the iteration @var{T} @item test @var{s} for convergence, and repeat iteration if necessary @end itemize @noindent The evaluation of the Jacobian matrix can be problematic, either because programming the derivatives is intractable or because computation of the @math{n^2} terms of the matrix becomes too expensive. For these reasons the algorithms provided by the library are divided into two classes according to whether the derivatives are available or not. @cindex Jacobian matrix, root finding The state for solvers with an analytic Jacobian matrix is held in a @code{gsl_multiroot_fdfsolver} struct. The updating procedure requires both the function and its derivatives to be supplied by the user. The state for solvers which do not use an analytic Jacobian matrix is held in a @code{gsl_multiroot_fsolver} struct. The updating procedure uses only function evaluations (not derivatives). The algorithms estimate the matrix @math{J} or @c{$J^{-1}$} @math{J^@{-1@}} by approximate methods. @node Initializing the Multidimensional Solver @section Initializing the Solver The following functions initialize a multidimensional solver, either with or without derivatives. The solver itself depends only on the dimension of the problem and the algorithm and can be reused for different problems. @deftypefun {gsl_multiroot_fsolver *} gsl_multiroot_fsolver_alloc (const gsl_multiroot_fsolver_type * @var{T}, size_t @var{n}) @tpindex gsl_multiroot_fsolver @tpindex gsl_multiroot_fsolver_type This function returns a pointer to a newly allocated instance of a solver of type @var{T} for a system of @var{n} dimensions. For example, the following code creates an instance of a hybrid solver, to solve a 3-dimensional system of equations. @example const gsl_multiroot_fsolver_type * T = gsl_multiroot_fsolver_hybrid; gsl_multiroot_fsolver * s = gsl_multiroot_fsolver_alloc (T, 3); @end example @noindent If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun {gsl_multiroot_fdfsolver *} gsl_multiroot_fdfsolver_alloc (const gsl_multiroot_fdfsolver_type * @var{T}, size_t @var{n}) @tpindex gsl_multiroot_fdfsolver @tpindex gsl_multiroot_fdfsolver_type This function returns a pointer to a newly allocated instance of a derivative solver of type @var{T} for a system of @var{n} dimensions. For example, the following code creates an instance of a Newton-Raphson solver, for a 2-dimensional system of equations. @example const gsl_multiroot_fdfsolver_type * T = gsl_multiroot_fdfsolver_newton; gsl_multiroot_fdfsolver * s = gsl_multiroot_fdfsolver_alloc (T, 2); @end example @noindent If there is insufficient memory to create the solver then the function returns a null pointer and the error handler is invoked with an error code of @code{GSL_ENOMEM}. @end deftypefun @deftypefun int gsl_multiroot_fsolver_set (gsl_multiroot_fsolver * @var{s}, gsl_multiroot_function * @var{f}, const gsl_vector * @var{x}) @deftypefunx int gsl_multiroot_fdfsolver_set (gsl_multiroot_fdfsolver * @var{s}, gsl_multiroot_function_fdf * @var{fdf}, const gsl_vector * @var{x}) These functions set, or reset, an existing solver @var{s} to use the function @var{f} or function and derivative @var{fdf}, and the initial guess @var{x}. Note that the initial position is copied from @var{x}, this argument is not modified by subsequent iterations. @end deftypefun @deftypefun void gsl_multiroot_fsolver_free (gsl_multiroot_fsolver * @var{s}) @deftypefunx void gsl_multiroot_fdfsolver_free (gsl_multiroot_fdfsolver * @var{s}) These functions free all the memory associated with the solver @var{s}. @end deftypefun @deftypefun {const char *} gsl_multiroot_fsolver_name (const gsl_multiroot_fsolver * @var{s}) @deftypefunx {const char *} gsl_multiroot_fdfsolver_name (const gsl_multiroot_fdfsolver * @var{s}) These functions return a pointer to the name of the solver. For example, @example printf ("s is a '%s' solver\n", gsl_multiroot_fdfsolver_name (s)); @end example @noindent would print something like @code{s is a 'newton' solver}. @end deftypefun @node Providing the multidimensional system of equations to solve @section Providing the function to solve @cindex multidimensional root finding, providing a function to solve You must provide @math{n} functions of @math{n} variables for the root finders to operate on. In order to allow for general parameters the functions are defined by the following data types: @deftp {Data Type} gsl_multiroot_function This data type defines a general system of functions with parameters. @table @code @item int (* f) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}) this function should store the vector result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} in @var{f} for argument @var{x} and parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x} and @var{f}. @item void * params a pointer to the parameters of the function. @end table @end deftp @noindent Here is an example using Powell's test function, @tex \beforedisplay $$ f_1(x) = A x_0 x_1 - 1, f_2(x) = \exp(-x_0) + \exp(-x_1) - (1 + 1/A) $$ \afterdisplay @end tex @ifinfo @example f_1(x) = A x_0 x_1 - 1, f_2(x) = exp(-x_0) + exp(-x_1) - (1 + 1/A) @end example @end ifinfo @noindent with @math{A = 10^4}. The following code defines a @code{gsl_multiroot_function} system @code{F} which you could pass to a solver: @example struct powell_params @{ double A; @}; int powell (gsl_vector * x, void * p, gsl_vector * f) @{ struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); gsl_vector_set (f, 0, A * x0 * x1 - 1); gsl_vector_set (f, 1, (exp(-x0) + exp(-x1) - (1.0 + 1.0/A))); return GSL_SUCCESS @} gsl_multiroot_function F; struct powell_params params = @{ 10000.0 @}; F.f = &powell; F.n = 2; F.params = ¶ms; @end example @deftp {Data Type} gsl_multiroot_function_fdf This data type defines a general system of functions with parameters and the corresponding Jacobian matrix of derivatives, @table @code @item int (* f) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}) this function should store the vector result @c{$f(x,\hbox{\it params})$} @math{f(x,params)} in @var{f} for argument @var{x} and parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item int (* df) (const gsl_vector * @var{x}, void * @var{params}, gsl_matrix * @var{J}) this function should store the @var{n}-by-@var{n} matrix result @c{$J_{ij} = \partial f_i(x,\hbox{\it params}) / \partial x_j$} @math{J_ij = d f_i(x,params) / d x_j} in @var{J} for argument @var{x} and parameters @var{params}, returning an appropriate error code if the function cannot be computed. @item int (* fdf) (const gsl_vector * @var{x}, void * @var{params}, gsl_vector * @var{f}, gsl_matrix * @var{J}) This function should set the values of the @var{f} and @var{J} as above, for arguments @var{x} and parameters @var{params}. This function provides an optimization of the separate functions for @math{f(x)} and @math{J(x)}---it is always faster to compute the function and its derivative at the same time. @item size_t n the dimension of the system, i.e. the number of components of the vectors @var{x} and @var{f}. @item void * params a pointer to the parameters of the function. @end table @end deftp @noindent The example of Powell's test function defined above can be extended to include analytic derivatives using the following code, @example int powell_df (gsl_vector * x, void * p, gsl_matrix * J) @{ struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); gsl_matrix_set (J, 0, 0, A * x1); gsl_matrix_set (J, 0, 1, A * x0); gsl_matrix_set (J, 1, 0, -exp(-x0)); gsl_matrix_set (J, 1, 1, -exp(-x1)); return GSL_SUCCESS @} int powell_fdf (gsl_vector * x, void * p, gsl_matrix * f, gsl_matrix * J) @{ struct powell_params * params = (struct powell_params *)p; const double A = (params->A); const double x0 = gsl_vector_get(x,0); const double x1 = gsl_vector_get(x,1); const double u0 = exp(-x0); const double u1 = exp(-x1); gsl_vector_set (f, 0, A * x0 * x1 - 1); gsl_vector_set (f, 1, u0 + u1 - (1 + 1/A)); gsl_matrix_set (J, 0, 0, A * x1); gsl_matrix_set (J, 0, 1, A * x0); gsl_matrix_set (J, 1, 0, -u0); gsl_matrix_set (J, 1, 1, -u1); return GSL_SUCCESS @} gsl_multiroot_function_fdf FDF; FDF.f = &powell_f; FDF.df = &powell_df; FDF.fdf = &powell_fdf; FDF.n = 2; FDF.params = 0; @end example @noindent Note that the function @code{powell_fdf} is able to reuse existing terms from the function when calculating the Jacobian, thus saving time. @node Iteration of the multidimensional solver @section Iteration The following functions drive the iteration of each algorithm. Each function performs one iteration to update the state of any solver of the corresponding type. The same functions work for all solvers so that different methods can be substituted at runtime without modifications to the code. @deftypefun int gsl_multiroot_fsolver_iterate (gsl_multiroot_fsolver * @var{s}) @deftypefunx int gsl_multiroot_fdfsolver_iterate (gsl_multiroot_fdfsolver * @var{s}) These functions perform a single iteration of the solver @var{s}. If the iteration encounters an unexpected problem then an error code will be returned, @table @code @item GSL_EBADFUNC the iteration encountered a singular point where the function or its derivative evaluated to @code{Inf} or @code{NaN}. @item GSL_ENOPROG the iteration is not making any progress, preventing the algorithm from continuing. @end table @end deftypefun The solver maintains a current best estimate of the root @code{s->x} and its function value @code{s->f} at all times. This information can be accessed with the following auxiliary functions, @deftypefun {gsl_vector *} gsl_multiroot_fsolver_root (const gsl_multiroot_fsolver * @var{s}) @deftypefunx {gsl_vector *} gsl_multiroot_fdfsolver_root (const gsl_multiroot_fdfsolver * @var{s}) These functions return the current estimate of the root for the solver @var{s}, given by @code{s->x}. @end deftypefun @deftypefun {gsl_vector *} gsl_multiroot_fsolver_f (const gsl_multiroot_fsolver * @var{s}) @deftypefunx {gsl_vector *} gsl_multiroot_fdfsolver_f (const gsl_multiroot_fdfsolver * @var{s}) These functions return the function value @math{f(x)} at the current estimate of the root for the solver @var{s}, given by @code{s->f}. @end deftypefun @deftypefun {gsl_vector *} gsl_multiroot_fsolver_dx (const gsl_multiroot_fsolver * @var{s}) @deftypefunx {gsl_vector *} gsl_multiroot_fdfsolver_dx (const gsl_multiroot_fdfsolver * @var{s}) These functions return the last step @math{dx} taken by the solver @var{s}, given by @code{s->dx}. @end deftypefun @node Search Stopping Parameters for the multidimensional solver @section Search Stopping Parameters @cindex root finding, stopping parameters A root finding procedure should stop when one of the following conditions is true: @itemize @bullet @item A multidimensional root has been found to within the user-specified precision. @item A user-specified maximum number of iterations has been reached. @item An error has occurred. @end itemize @noindent The handling of these conditions is under user control. The functions below allow the user to test the precision of the current result in several standard ways. @deftypefun int gsl_multiroot_test_delta (const gsl_vector * @var{dx}, const gsl_vector * @var{x}, double @var{epsabs}, double @var{epsrel}) This function tests for the convergence of the sequence by comparing the last step @var{dx} with the absolute error @var{epsabs} and relative error @var{epsrel} to the current position @var{x}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ |dx_i| < \hbox{\it epsabs} + \hbox{\it epsrel\/}\, |x_i| $$ \afterdisplay @end tex @ifinfo @example |dx_i| < epsabs + epsrel |x_i| @end example @end ifinfo @noindent for each component of @var{x} and returns @code{GSL_CONTINUE} otherwise. @end deftypefun @cindex residual, in nonlinear systems of equations @deftypefun int gsl_multiroot_test_residual (const gsl_vector * @var{f}, double @var{epsabs}) This function tests the residual value @var{f} against the absolute error bound @var{epsabs}. The test returns @code{GSL_SUCCESS} if the following condition is achieved, @tex \beforedisplay $$ \sum_i |f_i| < \hbox{\it epsabs} $$ \afterdisplay @end tex @ifinfo @example \sum_i |f_i| < epsabs @end example @end ifinfo @noindent and returns @code{GSL_CONTINUE} otherwise. This criterion is suitable for situations where the precise location of the root, @math{x}, is unimportant provided a value can be found where the residual is small enough. @end deftypefun @comment ============================================================ @node Algorithms using Derivatives @section Algorithms using Derivatives The root finding algorithms described in this section make use of both the function and its derivative. They require an initial guess for the location of the root, but there is no absolute guarantee of convergence---the function must be suitable for this technique and the initial guess must be sufficiently close to the root for it to work. When the conditions are satisfied then convergence is quadratic. @comment ============================================================ @cindex HYBRID algorithms for nonlinear systems @deffn {Derivative Solver} gsl_multiroot_fdfsolver_hybridsj @cindex HYBRIDSJ algorithm @cindex MINPACK, minimization algorithms This is a modified version of Powell's Hybrid method as implemented in the @sc{hybrj} algorithm in @sc{minpack}. Minpack was written by Jorge J. Mor@'e, Burton S. Garbow and Kenneth E. Hillstrom. The Hybrid algorithm retains the fast convergence of Newton's method but will also reduce the residual when Newton's method is unreliable. The algorithm uses a generalized trust region to keep each step under control. In order to be accepted a proposed new position @math{x'} must satisfy the condition @math{|D (x' - x)| < \delta}, where @math{D} is a diagonal scaling matrix and @math{\delta} is the size of the trust region. The components of @math{D} are computed internally, using the column norms of the Jacobian to estimate the sensitivity of the residual to each component of @math{x}. This improves the behavior of the algorithm for badly scaled functions. On each iteration the algorithm first determines the standard Newton step by solving the system @math{J dx = - f}. If this step falls inside the trust region it is used as a trial step in the next stage. If not, the algorithm uses the linear combination of the Newton and gradient directions which is predicted to minimize the norm of the function while staying inside the trust region, @tex \beforedisplay $$ dx = - \alpha J^{-1} f(x) - \beta \nabla |f(x)|^2. $$ \afterdisplay @end tex @ifinfo @example dx = - \alpha J^@{-1@} f(x) - \beta \nabla |f(x)|^2. @end example @end ifinfo @noindent This combination of Newton and gradient directions is referred to as a @dfn{dogleg step}. The proposed step is now tested by evaluating the function at the resulting point, @math{x'}. If the step reduces the norm of the function sufficiently then it is accepted and size of the trust region is increased. If the proposed step fails to improve the solution then the size of the trust region is decreased and another trial step is computed. The speed of the algorithm is increased by computing the changes to the Jacobian approximately, using a rank-1 update. If two successive attempts fail to reduce the residual then the full Jacobian is recomputed. The algorithm also monitors the progress of the solution and returns an error if several steps fail to make any improvement, @table @code @item GSL_ENOPROG the iteration is not making any progress, preventing the algorithm from continuing. @item GSL_ENOPROGJ re-evaluations of the Jacobian indicate that the iteration is not making any progress, preventing the algorithm from continuing. @end table @end deffn @deffn {Derivative Solver} gsl_multiroot_fdfsolver_hybridj @cindex HYBRIDJ algorithm This algorithm is an unscaled version of @code{hybridsj}. The steps are controlled by a spherical trust region @math{|x' - x| < \delta}, instead of a generalized region. This can be useful if the generalized region estimated by @code{hybridsj} is inappropriate. @end deffn @deffn {Derivative Solver} gsl_multiroot_fdfsolver_newton @cindex Newton's method for systems of nonlinear equations Newton's Method is the standard root-polishing algorithm. The algorithm begins with an initial guess for the location of the solution. On each iteration a linear approximation to the function @math{F} is used to estimate the step which will zero all the components of the residual. The iteration is defined by the following sequence, @tex \beforedisplay $$ x \to x' = x - J^{-1} f(x) $$ \afterdisplay @end tex @ifinfo @example x -> x' = x - J^@{-1@} f(x) @end example @end ifinfo @noindent where the Jacobian matrix @math{J} is computed from the derivative functions provided by @var{f}. The step @math{dx} is obtained by solving the linear system, @tex \beforedisplay $$ J \,dx = - f(x) $$ \afterdisplay @end tex @ifinfo @example J dx = - f(x) @end example @end ifinfo @noindent using LU decomposition. If the Jacobian matrix is singular, an error code of @code{GSL_EDOM} is returned. @end deffn @comment ============================================================ @deffn {Derivative Solver} gsl_multiroot_fdfsolver_gnewton @cindex Modified Newton's method for nonlinear systems @cindex Newton algorithm, globally convergent This is a modified version of Newton's method which attempts to improve global convergence by requiring every step to reduce the Euclidean norm of the residual, @math{|f(x)|}. If the Newton step leads to an increase in the norm then a reduced step of relative size, @tex \beforedisplay $$ t = (\sqrt{1 + 6 r} - 1) / (3 r) $$ \afterdisplay @end tex @ifinfo @example t = (\sqrt(1 + 6 r) - 1) / (3 r) @end example @end ifinfo @noindent is proposed, with @math{r} being the ratio of norms @math{|f(x')|^2/|f(x)|^2}. This procedure is repeated until a suitable step size is found. @end deffn @comment ============================================================ @node Algorithms without Derivatives @section Algorithms without Derivatives The algorithms described in this section do not require any derivative information to be supplied by the user. Any derivatives needed are approximated by finite differences. Note that if the finite-differencing step size chosen by these routines is inappropriate, an explicit user-supplied numerical derivative can always be used with the algorithms described in the previous section. @deffn {Solver} gsl_multiroot_fsolver_hybrids @cindex HYBRIDS algorithm, scaled without derivatives This is a version of the Hybrid algorithm which replaces calls to the Jacobian function by its finite difference approximation. The finite difference approximation is computed using @code{gsl_multiroots_fdjac} with a relative step size of @code{GSL_SQRT_DBL_EPSILON}. Note that this step size will not be suitable for all problems. @end deffn @deffn {Solver} gsl_multiroot_fsolver_hybrid @cindex HYBRID algorithm, unscaled without derivatives This is a finite difference version of the Hybrid algorithm without internal scaling. @end deffn @comment ============================================================ @deffn {Solver} gsl_multiroot_fsolver_dnewton @cindex Discrete Newton algorithm for multidimensional roots @cindex Newton algorithm, discrete The @dfn{discrete Newton algorithm} is the simplest method of solving a multidimensional system. It uses the Newton iteration @tex \beforedisplay $$ x \to x - J^{-1} f(x) $$ \afterdisplay @end tex @ifinfo @example x -> x - J^@{-1@} f(x) @end example @end ifinfo @noindent where the Jacobian matrix @math{J} is approximated by taking finite differences of the function @var{f}. The approximation scheme used by this implementation is, @tex \beforedisplay $$ J_{ij} = (f_i(x + \delta_j) - f_i(x)) / \delta_j $$ \afterdisplay @end tex @ifinfo @example J_@{ij@} = (f_i(x + \delta_j) - f_i(x)) / \delta_j @end example @end ifinfo @noindent where @math{\delta_j} is a step of size @math{\sqrt\epsilon |x_j|} with @math{\epsilon} being the machine precision (@c{$\epsilon \approx 2.22 \times 10^{-16}$} @math{\epsilon \approx 2.22 \times 10^-16}). The order of convergence of Newton's algorithm is quadratic, but the finite differences require @math{n^2} function evaluations on each iteration. The algorithm may become unstable if the finite differences are not a good approximation to the true derivatives. @end deffn @comment ============================================================ @deffn {Solver} gsl_multiroot_fsolver_broyden @cindex Broyden algorithm for multidimensional roots @cindex multidimensional root finding, Broyden algorithm The @dfn{Broyden algorithm} is a version of the discrete Newton algorithm which attempts to avoids the expensive update of the Jacobian matrix on each iteration. The changes to the Jacobian are also approximated, using a rank-1 update, @tex \beforedisplay $$ J^{-1} \to J^{-1} - (J^{-1} df - dx) dx^T J^{-1} / dx^T J^{-1} df $$ \afterdisplay @end tex @ifinfo @example J^@{-1@} \to J^@{-1@} - (J^@{-1@} df - dx) dx^T J^@{-1@} / dx^T J^@{-1@} df @end example @end ifinfo @noindent where the vectors @math{dx} and @math{df} are the changes in @math{x} and @math{f}. On the first iteration the inverse Jacobian is estimated using finite differences, as in the discrete Newton algorithm. This approximation gives a fast update but is unreliable if the changes are not small, and the estimate of the inverse Jacobian becomes worse as time passes. The algorithm has a tendency to become unstable unless it starts close to the root. The Jacobian is refreshed if this instability is detected (consult the source for details). This algorithm is included only for demonstration purposes, and is not recommended for serious use. @end deffn @comment ============================================================ @node Example programs for Multidimensional Root finding @section Examples The multidimensional solvers are used in a similar way to the one-dimensional root finding algorithms. This first example demonstrates the @code{hybrids} scaled-hybrid algorithm, which does not require derivatives. The program solves the Rosenbrock system of equations, @tex \beforedisplay $$ f_1 (x, y) = a (1 - x),~ f_2 (x, y) = b (y - x^2) $$ \afterdisplay @end tex @ifinfo @example f_1 (x, y) = a (1 - x) f_2 (x, y) = b (y - x^2) @end example @end ifinfo @noindent with @math{a = 1, b = 10}. The solution of this system lies at @math{(x,y) = (1,1)} in a narrow valley. The first stage of the program is to define the system of equations, @example #include #include #include #include struct rparams @{ double a; double b; @}; int rosenbrock_f (const gsl_vector * x, void *params, gsl_vector * f) @{ double a = ((struct rparams *) params)->a; double b = ((struct rparams *) params)->b; const double x0 = gsl_vector_get (x, 0); const double x1 = gsl_vector_get (x, 1); const double y0 = a * (1 - x0); const double y1 = b * (x1 - x0 * x0); gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); return GSL_SUCCESS; @} @end example @noindent The main program begins by creating the function object @code{f}, with the arguments @code{(x,y)} and parameters @code{(a,b)}. The solver @code{s} is initialized to use this function, with the @code{hybrids} method. @example int main (void) @{ const gsl_multiroot_fsolver_type *T; gsl_multiroot_fsolver *s; int status; size_t i, iter = 0; const size_t n = 2; struct rparams p = @{1.0, 10.0@}; gsl_multiroot_function f = @{&rosenbrock_f, n, &p@}; double x_init[2] = @{-10.0, -5.0@}; gsl_vector *x = gsl_vector_alloc (n); gsl_vector_set (x, 0, x_init[0]); gsl_vector_set (x, 1, x_init[1]); T = gsl_multiroot_fsolver_hybrids; s = gsl_multiroot_fsolver_alloc (T, 2); gsl_multiroot_fsolver_set (s, &f, x); print_state (iter, s); do @{ iter++; status = gsl_multiroot_fsolver_iterate (s); print_state (iter, s); if (status) /* check if solver is stuck */ break; status = gsl_multiroot_test_residual (s->f, 1e-7); @} while (status == GSL_CONTINUE && iter < 1000); printf ("status = %s\n", gsl_strerror (status)); gsl_multiroot_fsolver_free (s); gsl_vector_free (x); return 0; @} @end example @noindent Note that it is important to check the return status of each solver step, in case the algorithm becomes stuck. If an error condition is detected, indicating that the algorithm cannot proceed, then the error can be reported to the user, a new starting point chosen or a different algorithm used. The intermediate state of the solution is displayed by the following function. The solver state contains the vector @code{s->x} which is the current position, and the vector @code{s->f} with corresponding function values. @example int print_state (size_t iter, gsl_multiroot_fsolver * s) @{ printf ("iter = %3u x = % .3f % .3f " "f(x) = % .3e % .3e\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->f, 0), gsl_vector_get (s->f, 1)); @} @end example @noindent Here are the results of running the program. The algorithm is started at @math{(-10,-5)} far from the solution. Since the solution is hidden in a narrow valley the earliest steps follow the gradient of the function downhill, in an attempt to reduce the large value of the residual. Once the root has been approximately located, on iteration 8, the Newton behavior takes over and convergence is very rapid. @smallexample iter = 0 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 1 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 2 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 3 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 4 x = -3.976 24.827 f(x) = 4.976e+00 9.020e+01 iter = 5 x = -1.274 -5.680 f(x) = 2.274e+00 -7.302e+01 iter = 6 x = -1.274 -5.680 f(x) = 2.274e+00 -7.302e+01 iter = 7 x = 0.249 0.298 f(x) = 7.511e-01 2.359e+00 iter = 8 x = 0.249 0.298 f(x) = 7.511e-01 2.359e+00 iter = 9 x = 1.000 0.878 f(x) = 1.268e-10 -1.218e+00 iter = 10 x = 1.000 0.989 f(x) = 1.124e-11 -1.080e-01 iter = 11 x = 1.000 1.000 f(x) = 0.000e+00 0.000e+00 status = success @end smallexample @noindent Note that the algorithm does not update the location on every iteration. Some iterations are used to adjust the trust-region parameter, after trying a step which was found to be divergent, or to recompute the Jacobian, when poor convergence behavior is detected. The next example program adds derivative information, in order to accelerate the solution. There are two derivative functions @code{rosenbrock_df} and @code{rosenbrock_fdf}. The latter computes both the function and its derivative simultaneously. This allows the optimization of any common terms. For simplicity we substitute calls to the separate @code{f} and @code{df} functions at this point in the code below. @example int rosenbrock_df (const gsl_vector * x, void *params, gsl_matrix * J) @{ const double a = ((struct rparams *) params)->a; const double b = ((struct rparams *) params)->b; const double x0 = gsl_vector_get (x, 0); const double df00 = -a; const double df01 = 0; const double df10 = -2 * b * x0; const double df11 = b; gsl_matrix_set (J, 0, 0, df00); gsl_matrix_set (J, 0, 1, df01); gsl_matrix_set (J, 1, 0, df10); gsl_matrix_set (J, 1, 1, df11); return GSL_SUCCESS; @} int rosenbrock_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * J) @{ rosenbrock_f (x, params, f); rosenbrock_df (x, params, J); return GSL_SUCCESS; @} @end example @noindent The main program now makes calls to the corresponding @code{fdfsolver} versions of the functions, @example int main (void) @{ const gsl_multiroot_fdfsolver_type *T; gsl_multiroot_fdfsolver *s; int status; size_t i, iter = 0; const size_t n = 2; struct rparams p = @{1.0, 10.0@}; gsl_multiroot_function_fdf f = @{&rosenbrock_f, &rosenbrock_df, &rosenbrock_fdf, n, &p@}; double x_init[2] = @{-10.0, -5.0@}; gsl_vector *x = gsl_vector_alloc (n); gsl_vector_set (x, 0, x_init[0]); gsl_vector_set (x, 1, x_init[1]); T = gsl_multiroot_fdfsolver_gnewton; s = gsl_multiroot_fdfsolver_alloc (T, n); gsl_multiroot_fdfsolver_set (s, &f, x); print_state (iter, s); do @{ iter++; status = gsl_multiroot_fdfsolver_iterate (s); print_state (iter, s); if (status) break; status = gsl_multiroot_test_residual (s->f, 1e-7); @} while (status == GSL_CONTINUE && iter < 1000); printf ("status = %s\n", gsl_strerror (status)); gsl_multiroot_fdfsolver_free (s); gsl_vector_free (x); return 0; @} @end example @noindent The addition of derivative information to the @code{hybrids} solver does not make any significant difference to its behavior, since it able to approximate the Jacobian numerically with sufficient accuracy. To illustrate the behavior of a different derivative solver we switch to @code{gnewton}. This is a traditional Newton solver with the constraint that it scales back its step if the full step would lead ``uphill''. Here is the output for the @code{gnewton} algorithm, @smallexample iter = 0 x = -10.000 -5.000 f(x) = 1.100e+01 -1.050e+03 iter = 1 x = -4.231 -65.317 f(x) = 5.231e+00 -8.321e+02 iter = 2 x = 1.000 -26.358 f(x) = -8.882e-16 -2.736e+02 iter = 3 x = 1.000 1.000 f(x) = -2.220e-16 -4.441e-15 status = success @end smallexample @noindent The convergence is much more rapid, but takes a wide excursion out to the point @math{(-4.23,-65.3)}. This could cause the algorithm to go astray in a realistic application. The hybrid algorithm follows the downhill path to the solution more reliably. @node References and Further Reading for Multidimensional Root Finding @section References and Further Reading The original version of the Hybrid method is described in the following articles by Powell, @itemize @w{} @item M.J.D. Powell, ``A Hybrid Method for Nonlinear Equations'' (Chap 6, p 87--114) and ``A Fortran Subroutine for Solving systems of Nonlinear Algebraic Equations'' (Chap 7, p 115--161), in @cite{Numerical Methods for Nonlinear Algebraic Equations}, P. Rabinowitz, editor. Gordon and Breach, 1970. @end itemize @noindent The following papers are also relevant to the algorithms described in this section, @itemize @w{} @item J.J. Mor@'e, M.Y. Cosnard, ``Numerical Solution of Nonlinear Equations'', @cite{ACM Transactions on Mathematical Software}, Vol 5, No 1, (1979), p 64--85 @item C.G. Broyden, ``A Class of Methods for Solving Nonlinear Simultaneous Equations'', @cite{Mathematics of Computation}, Vol 19 (1965), p 577--593 @item J.J. Mor@'e, B.S. Garbow, K.E. Hillstrom, ``Testing Unconstrained Optimization Software'', ACM Transactions on Mathematical Software, Vol 7, No 1 (1981), p 17--41 @end itemize gsl-1.16/test_gsl_histogram.sh0000775000252300025230000000034512171574312013414 00000000000000#! /bin/sh cat > test.exp.1.tmp < test.obs.1.tmp cmp test.exp.1.tmp test.obs.1.tmp STATUS=$? rm test.exp.1.tmp test.obs.1.tmp exit $STATUS gsl-1.16/Makefile.in0000664000252300025230000015517512172253754011242 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ # AUTOMAKE_OPTIONS = readme-alpha VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ @MINGW32_HOST_TRUE@am__append_1 = cblas/libgslcblas.la @MINGW32_HOST_TRUE@am__append_2 = -no-undefined bin_PROGRAMS = gsl-randist$(EXEEXT) gsl-histogram$(EXEEXT) subdir = . DIST_COMMON = INSTALL NEWS README AUTHORS ChangeLog \ $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/configure $(am__configure_deps) \ $(srcdir)/config.h.in mkinstalldirs $(srcdir)/gsl_version.h.in \ $(srcdir)/gsl.spec.in depcomp $(noinst_HEADERS) \ $(pkginclude_HEADERS) test-driver COPYING THANKS TODO \ config.guess config.sub install-sh mdate-sh missing ltmain.sh ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) am__CONFIG_DISTCLEAN_FILES = config.status config.cache config.log \ configure.lineno config.status.lineno mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = config.h CONFIG_CLEAN_FILES = gsl_version.h gsl.spec CONFIG_CLEAN_VPATH_FILES = am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(libdir)" "$(DESTDIR)$(bindir)" \ "$(DESTDIR)$(bindir)" "$(DESTDIR)$(m4datadir)" \ "$(DESTDIR)$(pkgconfigdir)" "$(DESTDIR)$(pkgincludedir)" LTLIBRARIES = $(lib_LTLIBRARIES) libgsl_la_DEPENDENCIES = $(SUBLIBS) $(am__append_1) am_libgsl_la_OBJECTS = version.lo libgsl_la_OBJECTS = $(am_libgsl_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = libgsl_la_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(libgsl_la_LDFLAGS) $(LDFLAGS) -o $@ PROGRAMS = $(bin_PROGRAMS) am_gsl_histogram_OBJECTS = gsl-histogram.$(OBJEXT) gsl_histogram_OBJECTS = $(am_gsl_histogram_OBJECTS) gsl_histogram_DEPENDENCIES = libgsl.la cblas/libgslcblas.la am_gsl_randist_OBJECTS = gsl-randist.$(OBJEXT) gsl_randist_OBJECTS = $(am_gsl_randist_OBJECTS) gsl_randist_DEPENDENCIES = libgsl.la cblas/libgslcblas.la SCRIPTS = $(bin_SCRIPTS) AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsl_la_SOURCES) $(gsl_histogram_SOURCES) \ $(gsl_randist_SOURCES) DIST_SOURCES = $(libgsl_la_SOURCES) $(gsl_histogram_SOURCES) \ $(gsl_randist_SOURCES) RECURSIVE_TARGETS = all-recursive check-recursive cscopelist-recursive \ ctags-recursive dvi-recursive html-recursive info-recursive \ install-data-recursive install-dvi-recursive \ install-exec-recursive install-html-recursive \ install-info-recursive install-pdf-recursive \ install-ps-recursive install-recursive installcheck-recursive \ installdirs-recursive pdf-recursive ps-recursive \ tags-recursive uninstall-recursive am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac DATA = $(m4data_DATA) $(pkgconfig_DATA) HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) RECURSIVE_CLEAN_TARGETS = mostlyclean-recursive clean-recursive \ distclean-recursive maintainer-clean-recursive am__recursive_targets = \ $(RECURSIVE_TARGETS) \ $(RECURSIVE_CLEAN_TARGETS) \ $(am__extra_recursive_targets) AM_RECURSIVE_TARGETS = $(am__recursive_targets:-recursive=) TAGS CTAGS \ cscope check recheck distdir dist dist-all distcheck am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) \ $(LISP)config.h.in # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags CSCOPE = cscope am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DIST_SUBDIRS = $(SUBDIRS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) distdir = $(PACKAGE)-$(VERSION) top_distdir = $(distdir) am__remove_distdir = \ if test -d "$(distdir)"; then \ find "$(distdir)" -type d ! -perm -200 -exec chmod u+w {} ';' \ && rm -rf "$(distdir)" \ || { sleep 5 && rm -rf "$(distdir)"; }; \ else :; fi am__post_remove_distdir = $(am__remove_distdir) am__relativize = \ dir0=`pwd`; \ sed_first='s,^\([^/]*\)/.*$$,\1,'; \ sed_rest='s,^[^/]*/*,,'; \ sed_last='s,^.*/\([^/]*\)$$,\1,'; \ sed_butlast='s,/*[^/]*$$,,'; \ while test -n "$$dir1"; do \ first=`echo "$$dir1" | sed -e "$$sed_first"`; \ if test "$$first" != "."; then \ if test "$$first" = ".."; then \ dir2=`echo "$$dir0" | sed -e "$$sed_last"`/"$$dir2"; \ dir0=`echo "$$dir0" | sed -e "$$sed_butlast"`; \ else \ first2=`echo "$$dir2" | sed -e "$$sed_first"`; \ if test "$$first2" = "$$first"; then \ dir2=`echo "$$dir2" | sed -e "$$sed_rest"`; \ else \ dir2="../$$dir2"; \ fi; \ dir0="$$dir0"/"$$first"; \ fi; \ fi; \ dir1=`echo "$$dir1" | sed -e "$$sed_rest"`; \ done; \ reldir="$$dir2" DIST_ARCHIVES = $(distdir).tar.gz GZIP_ENV = --best DIST_TARGETS = dist-gzip distuninstallcheck_listfiles = find . -type f -print am__distuninstallcheck_listfiles = $(distuninstallcheck_listfiles) \ | sed 's|^\./|$(prefix)/|' | grep -v '$(infodir)/dir$$' distcleancheck_listfiles = find . -type f -print ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ SUBDIRS = gsl utils sys test err const complex cheb block vector matrix permutation combination multiset sort ieee-utils cblas blas linalg eigen specfunc dht qrng rng randist fft poly fit multifit statistics siman sum integration interpolation histogram ode-initval ode-initval2 roots multiroots min multimin monte ntuple diff deriv cdf wavelet bspline doc SUBLIBS = block/libgslblock.la blas/libgslblas.la \ bspline/libgslbspline.la complex/libgslcomplex.la \ cheb/libgslcheb.la dht/libgsldht.la diff/libgsldiff.la \ deriv/libgslderiv.la eigen/libgsleigen.la err/libgslerr.la \ fft/libgslfft.la fit/libgslfit.la histogram/libgslhistogram.la \ ieee-utils/libgslieeeutils.la integration/libgslintegration.la \ interpolation/libgslinterpolation.la linalg/libgsllinalg.la \ matrix/libgslmatrix.la min/libgslmin.la monte/libgslmonte.la \ multifit/libgslmultifit.la multimin/libgslmultimin.la \ multiroots/libgslmultiroots.la ntuple/libgslntuple.la \ ode-initval/libgslodeiv.la ode-initval2/libgslodeiv2.la \ permutation/libgslpermutation.la \ combination/libgslcombination.la multiset/libgslmultiset.la \ poly/libgslpoly.la qrng/libgslqrng.la randist/libgslrandist.la \ rng/libgslrng.la roots/libgslroots.la siman/libgslsiman.la \ sort/libgslsort.la specfunc/libgslspecfunc.la \ statistics/libgslstatistics.la sum/libgslsum.la \ sys/libgslsys.la test/libgsltest.la utils/libutils.la \ vector/libgslvector.la cdf/libgslcdf.la \ wavelet/libgslwavelet.la pkginclude_HEADERS = gsl_math.h gsl_pow_int.h gsl_nan.h gsl_machine.h gsl_mode.h gsl_precision.h gsl_types.h gsl_version.h gsl_minmax.h gsl_inline.h bin_SCRIPTS = gsl-config pkgconfigdir = $(libdir)/pkgconfig pkgconfig_DATA = gsl.pc CLEANFILES = gsl.pc gsl-config EXTRA_DIST = autogen.sh gsl-config.in gsl.pc.in configure.ac THANKS BUGS gsl.spec.in gsl.m4 test_gsl_histogram.sh pkgconfig.test lib_LTLIBRARIES = libgsl.la libgsl_la_SOURCES = version.c libgsl_la_LIBADD = $(SUBLIBS) $(am__append_1) libgsl_la_LDFLAGS = -version-info $(GSL_LT_VERSION) $(am__append_2) noinst_HEADERS = templates_on.h templates_off.h build.h MINGW32_HOST = @MINGW32_HOST@ m4datadir = $(datadir)/aclocal m4data_DATA = gsl.m4 gsl_randist_SOURCES = gsl-randist.c gsl_randist_LDADD = libgsl.la cblas/libgslcblas.la gsl_histogram_SOURCES = gsl-histogram.c gsl_histogram_LDADD = libgsl.la cblas/libgslcblas.la check_SCRIPTS = test_gsl_histogram.sh pkgconfig.test TESTS = test_gsl_histogram.sh pkgconfig.test #bin_PROGRAMS = main dummy #dummy_SOURCES = version.c #dummy_LDADD = $(SUBLIBS) #main_SOURCES = version.c env.c #main_LDADD = libgsl.la edit = $(SED) \ -e 's|@prefix[@]|$(prefix)|g' \ -e 's|@exec_prefix[@]|$(exec_prefix)|g' \ -e 's|@libdir[@]|$(libdir)|g' \ -e 's|@includedir[@]|$(includedir)|g' \ -e 's|@GSL_CFLAGS[@]|$(GSL_CFLAGS)|g' \ -e 's|@GSL_LIBM[@]|$(GSL_LIBM)|g' \ -e 's|@GSL_LIBS[@]|$(GSL_LIBS)|g' \ -e 's|@LIBS[@]|$(LIBS)|g' \ -e 's|@VERSION[@]|$(VERSION)|g' all: config.h $(MAKE) $(AM_MAKEFLAGS) all-recursive .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs am--refresh: Makefile @: $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ echo ' cd $(srcdir) && $(AUTOMAKE) --gnu'; \ $(am__cd) $(srcdir) && $(AUTOMAKE) --gnu \ && exit 0; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ echo ' $(SHELL) ./config.status'; \ $(SHELL) ./config.status;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) $(SHELL) ./config.status --recheck $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) $(am__cd) $(srcdir) && $(AUTOCONF) $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) $(am__cd) $(srcdir) && $(ACLOCAL) $(ACLOCAL_AMFLAGS) $(am__aclocal_m4_deps): config.h: stamp-h1 @if test ! -f $@; then rm -f stamp-h1; else :; fi @if test ! -f $@; then $(MAKE) $(AM_MAKEFLAGS) stamp-h1; else :; fi stamp-h1: $(srcdir)/config.h.in $(top_builddir)/config.status @rm -f stamp-h1 cd $(top_builddir) && $(SHELL) ./config.status config.h $(srcdir)/config.h.in: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) ($(am__cd) $(top_srcdir) && $(AUTOHEADER)) rm -f stamp-h1 touch $@ distclean-hdr: -rm -f config.h stamp-h1 gsl_version.h: $(top_builddir)/config.status $(srcdir)/gsl_version.h.in cd $(top_builddir) && $(SHELL) ./config.status $@ gsl.spec: $(top_builddir)/config.status $(srcdir)/gsl.spec.in cd $(top_builddir) && $(SHELL) ./config.status $@ install-libLTLIBRARIES: $(lib_LTLIBRARIES) @$(NORMAL_INSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ list2=; for p in $$list; do \ if test -f $$p; then \ list2="$$list2 $$p"; \ else :; fi; \ done; \ test -z "$$list2" || { \ echo " $(MKDIR_P) '$(DESTDIR)$(libdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(libdir)" || exit 1; \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 '$(DESTDIR)$(libdir)'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 "$(DESTDIR)$(libdir)"; \ } uninstall-libLTLIBRARIES: @$(NORMAL_UNINSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f '$(DESTDIR)$(libdir)/$$f'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f "$(DESTDIR)$(libdir)/$$f"; \ done clean-libLTLIBRARIES: -test -z "$(lib_LTLIBRARIES)" || rm -f $(lib_LTLIBRARIES) @list='$(lib_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsl.la: $(libgsl_la_OBJECTS) $(libgsl_la_DEPENDENCIES) $(EXTRA_libgsl_la_DEPENDENCIES) $(AM_V_CCLD)$(libgsl_la_LINK) -rpath $(libdir) $(libgsl_la_OBJECTS) $(libgsl_la_LIBADD) $(LIBS) install-binPROGRAMS: $(bin_PROGRAMS) @$(NORMAL_INSTALL) @list='$(bin_PROGRAMS)'; test -n "$(bindir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(bindir)'"; \ $(MKDIR_P) "$(DESTDIR)$(bindir)" || exit 1; \ fi; \ for p in $$list; do echo "$$p $$p"; done | \ sed 's/$(EXEEXT)$$//' | \ while read p p1; do if test -f $$p \ || test -f $$p1 \ ; then echo "$$p"; echo "$$p"; else :; fi; \ done | \ sed -e 'p;s,.*/,,;n;h' \ -e 's|.*|.|' \ -e 'p;x;s,.*/,,;s/$(EXEEXT)$$//;$(transform);s/$$/$(EXEEXT)/' | \ sed 'N;N;N;s,\n, ,g' | \ $(AWK) 'BEGIN { files["."] = ""; dirs["."] = 1 } \ { d=$$3; if (dirs[d] != 1) { print "d", d; dirs[d] = 1 } \ if ($$2 == $$4) files[d] = files[d] " " $$1; \ else { print "f", $$3 "/" $$4, $$1; } } \ END { for (d in files) print "f", d, files[d] }' | \ while read type dir files; do \ if test "$$dir" = .; then dir=; else dir=/$$dir; fi; \ test -z "$$files" || { \ echo " $(INSTALL_PROGRAM_ENV) $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL_PROGRAM) $$files '$(DESTDIR)$(bindir)$$dir'"; \ $(INSTALL_PROGRAM_ENV) $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL_PROGRAM) $$files "$(DESTDIR)$(bindir)$$dir" || exit $$?; \ } \ ; done uninstall-binPROGRAMS: @$(NORMAL_UNINSTALL) @list='$(bin_PROGRAMS)'; test -n "$(bindir)" || list=; \ files=`for p in $$list; do echo "$$p"; done | \ sed -e 'h;s,^.*/,,;s/$(EXEEXT)$$//;$(transform)' \ -e 's/$$/$(EXEEXT)/' \ `; \ test -n "$$list" || exit 0; \ echo " ( cd '$(DESTDIR)$(bindir)' && rm -f" $$files ")"; \ cd "$(DESTDIR)$(bindir)" && rm -f $$files clean-binPROGRAMS: @list='$(bin_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list gsl-histogram$(EXEEXT): $(gsl_histogram_OBJECTS) $(gsl_histogram_DEPENDENCIES) $(EXTRA_gsl_histogram_DEPENDENCIES) @rm -f gsl-histogram$(EXEEXT) $(AM_V_CCLD)$(LINK) $(gsl_histogram_OBJECTS) $(gsl_histogram_LDADD) $(LIBS) gsl-randist$(EXEEXT): $(gsl_randist_OBJECTS) $(gsl_randist_DEPENDENCIES) $(EXTRA_gsl_randist_DEPENDENCIES) @rm -f gsl-randist$(EXEEXT) $(AM_V_CCLD)$(LINK) $(gsl_randist_OBJECTS) $(gsl_randist_LDADD) $(LIBS) install-binSCRIPTS: $(bin_SCRIPTS) @$(NORMAL_INSTALL) @list='$(bin_SCRIPTS)'; test -n "$(bindir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(bindir)'"; \ $(MKDIR_P) "$(DESTDIR)$(bindir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ if test -f "$$d$$p"; then echo "$$d$$p"; echo "$$p"; else :; fi; \ done | \ sed -e 'p;s,.*/,,;n' \ -e 'h;s|.*|.|' \ -e 'p;x;s,.*/,,;$(transform)' | sed 'N;N;N;s,\n, ,g' | \ $(AWK) 'BEGIN { files["."] = ""; dirs["."] = 1; } \ { d=$$3; if (dirs[d] != 1) { print "d", d; dirs[d] = 1 } \ if ($$2 == $$4) { files[d] = files[d] " " $$1; \ if (++n[d] == $(am__install_max)) { \ print "f", d, files[d]; n[d] = 0; files[d] = "" } } \ else { print "f", d "/" $$4, $$1 } } \ END { for (d in files) print "f", d, files[d] }' | \ while read type dir files; do \ if test "$$dir" = .; then dir=; else dir=/$$dir; fi; \ test -z "$$files" || { \ echo " $(INSTALL_SCRIPT) $$files '$(DESTDIR)$(bindir)$$dir'"; \ $(INSTALL_SCRIPT) $$files "$(DESTDIR)$(bindir)$$dir" || exit $$?; \ } \ ; done uninstall-binSCRIPTS: @$(NORMAL_UNINSTALL) @list='$(bin_SCRIPTS)'; test -n "$(bindir)" || exit 0; \ files=`for p in $$list; do echo "$$p"; done | \ sed -e 's,.*/,,;$(transform)'`; \ dir='$(DESTDIR)$(bindir)'; $(am__uninstall_files_from_dir) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gsl-histogram.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gsl-randist.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/version.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs distclean-libtool: -rm -f libtool config.lt install-m4dataDATA: $(m4data_DATA) @$(NORMAL_INSTALL) @list='$(m4data_DATA)'; test -n "$(m4datadir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(m4datadir)'"; \ $(MKDIR_P) "$(DESTDIR)$(m4datadir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(m4datadir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(m4datadir)" || exit $$?; \ done uninstall-m4dataDATA: @$(NORMAL_UNINSTALL) @list='$(m4data_DATA)'; test -n "$(m4datadir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(m4datadir)'; $(am__uninstall_files_from_dir) install-pkgconfigDATA: $(pkgconfig_DATA) @$(NORMAL_INSTALL) @list='$(pkgconfig_DATA)'; test -n "$(pkgconfigdir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgconfigdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgconfigdir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(pkgconfigdir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(pkgconfigdir)" || exit $$?; \ done uninstall-pkgconfigDATA: @$(NORMAL_UNINSTALL) @list='$(pkgconfig_DATA)'; test -n "$(pkgconfigdir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgconfigdir)'; $(am__uninstall_files_from_dir) install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) # This directory's subdirectories are mostly independent; you can cd # into them and run 'make' without going through this Makefile. # To change the values of 'make' variables: instead of editing Makefiles, # (1) if the variable is set in 'config.status', edit 'config.status' # (which will cause the Makefiles to be regenerated when you run 'make'); # (2) otherwise, pass the desired values on the 'make' command line. $(am__recursive_targets): @fail=; \ if $(am__make_keepgoing); then \ failcom='fail=yes'; \ else \ failcom='exit 1'; \ fi; \ dot_seen=no; \ target=`echo $@ | sed s/-recursive//`; \ case "$@" in \ distclean-* | maintainer-clean-*) list='$(DIST_SUBDIRS)' ;; \ *) list='$(SUBDIRS)' ;; \ esac; \ for subdir in $$list; do \ echo "Making $$target in $$subdir"; \ if test "$$subdir" = "."; then \ dot_seen=yes; \ local_target="$$target-am"; \ else \ local_target="$$target"; \ fi; \ ($(am__cd) $$subdir && $(MAKE) $(AM_MAKEFLAGS) $$local_target) \ || eval $$failcom; \ done; \ if test "$$dot_seen" = "no"; then \ $(MAKE) $(AM_MAKEFLAGS) "$$target-am" || exit 1; \ fi; test -z "$$fail" ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-recursive TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ if ($(ETAGS) --etags-include --version) >/dev/null 2>&1; then \ include_option=--etags-include; \ empty_fix=.; \ else \ include_option=--include; \ empty_fix=; \ fi; \ list='$(SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ test ! -f $$subdir/TAGS || \ set "$$@" "$$include_option=$$here/$$subdir/TAGS"; \ fi; \ done; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-recursive CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscope: cscope.files test ! -s cscope.files \ || $(CSCOPE) -b -q $(AM_CSCOPEFLAGS) $(CSCOPEFLAGS) -i cscope.files $(CSCOPE_ARGS) clean-cscope: -rm -f cscope.files cscope.files: clean-cscope cscopelist cscopelist: cscopelist-recursive cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags -rm -f cscope.out cscope.in.out cscope.po.out cscope.files # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_SCRIPTS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test_gsl_histogram.sh.log: test_gsl_histogram.sh @p='test_gsl_histogram.sh'; \ b='test_gsl_histogram.sh'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) $(am__remove_distdir) test -d "$(distdir)" || mkdir "$(distdir)" @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done @list='$(DIST_SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ $(am__make_dryrun) \ || test -d "$(distdir)/$$subdir" \ || $(MKDIR_P) "$(distdir)/$$subdir" \ || exit 1; \ dir1=$$subdir; dir2="$(distdir)/$$subdir"; \ $(am__relativize); \ new_distdir=$$reldir; \ dir1=$$subdir; dir2="$(top_distdir)"; \ $(am__relativize); \ new_top_distdir=$$reldir; \ echo " (cd $$subdir && $(MAKE) $(AM_MAKEFLAGS) top_distdir="$$new_top_distdir" distdir="$$new_distdir" \\"; \ echo " am__remove_distdir=: am__skip_length_check=: am__skip_mode_fix=: distdir)"; \ ($(am__cd) $$subdir && \ $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$$new_top_distdir" \ distdir="$$new_distdir" \ am__remove_distdir=: \ am__skip_length_check=: \ am__skip_mode_fix=: \ distdir) \ || exit 1; \ fi; \ done -test -n "$(am__skip_mode_fix)" \ || find "$(distdir)" -type d ! -perm -755 \ -exec chmod u+rwx,go+rx {} \; -o \ ! -type d ! -perm -444 -links 1 -exec chmod a+r {} \; -o \ ! -type d ! -perm -400 -exec chmod a+r {} \; -o \ ! -type d ! -perm -444 -exec $(install_sh) -c -m a+r {} {} \; \ || chmod -R a+r "$(distdir)" dist-gzip: distdir tardir=$(distdir) && $(am__tar) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).tar.gz $(am__post_remove_distdir) dist-bzip2: distdir tardir=$(distdir) && $(am__tar) | BZIP2=$${BZIP2--9} bzip2 -c >$(distdir).tar.bz2 $(am__post_remove_distdir) dist-lzip: distdir tardir=$(distdir) && $(am__tar) | lzip -c $${LZIP_OPT--9} >$(distdir).tar.lz $(am__post_remove_distdir) dist-xz: distdir tardir=$(distdir) && $(am__tar) | XZ_OPT=$${XZ_OPT--e} xz -c >$(distdir).tar.xz $(am__post_remove_distdir) dist-tarZ: distdir tardir=$(distdir) && $(am__tar) | compress -c >$(distdir).tar.Z $(am__post_remove_distdir) dist-shar: distdir shar $(distdir) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).shar.gz $(am__post_remove_distdir) dist-zip: distdir -rm -f $(distdir).zip zip -rq $(distdir).zip $(distdir) $(am__post_remove_distdir) dist dist-all: $(MAKE) $(AM_MAKEFLAGS) $(DIST_TARGETS) am__post_remove_distdir='@:' $(am__post_remove_distdir) # This target untars the dist file and tries a VPATH configuration. Then # it guarantees that the distribution is self-contained by making another # tarfile. distcheck: dist case '$(DIST_ARCHIVES)' in \ *.tar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).tar.gz | $(am__untar) ;;\ *.tar.bz2*) \ bzip2 -dc $(distdir).tar.bz2 | $(am__untar) ;;\ *.tar.lz*) \ lzip -dc $(distdir).tar.lz | $(am__untar) ;;\ *.tar.xz*) \ xz -dc $(distdir).tar.xz | $(am__untar) ;;\ *.tar.Z*) \ uncompress -c $(distdir).tar.Z | $(am__untar) ;;\ *.shar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).shar.gz | unshar ;;\ *.zip*) \ unzip $(distdir).zip ;;\ esac chmod -R a-w $(distdir) chmod u+w $(distdir) mkdir $(distdir)/_build $(distdir)/_inst chmod a-w $(distdir) test -d $(distdir)/_build || exit 0; \ dc_install_base=`$(am__cd) $(distdir)/_inst && pwd | sed -e 's,^[^:\\/]:[\\/],/,'` \ && dc_destdir="$${TMPDIR-/tmp}/am-dc-$$$$/" \ && am__cwd=`pwd` \ && $(am__cd) $(distdir)/_build \ && ../configure --srcdir=.. --prefix="$$dc_install_base" \ $(AM_DISTCHECK_CONFIGURE_FLAGS) \ $(DISTCHECK_CONFIGURE_FLAGS) \ && $(MAKE) $(AM_MAKEFLAGS) \ && $(MAKE) $(AM_MAKEFLAGS) dvi \ && $(MAKE) $(AM_MAKEFLAGS) check \ && $(MAKE) $(AM_MAKEFLAGS) install \ && $(MAKE) $(AM_MAKEFLAGS) installcheck \ && $(MAKE) $(AM_MAKEFLAGS) uninstall \ && $(MAKE) $(AM_MAKEFLAGS) distuninstallcheck_dir="$$dc_install_base" \ distuninstallcheck \ && chmod -R a-w "$$dc_install_base" \ && ({ \ (cd ../.. && umask 077 && mkdir "$$dc_destdir") \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" install \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" uninstall \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" \ distuninstallcheck_dir="$$dc_destdir" distuninstallcheck; \ } || { rm -rf "$$dc_destdir"; exit 1; }) \ && rm -rf "$$dc_destdir" \ && $(MAKE) $(AM_MAKEFLAGS) dist \ && rm -rf $(DIST_ARCHIVES) \ && $(MAKE) $(AM_MAKEFLAGS) distcleancheck \ && cd "$$am__cwd" \ || exit 1 $(am__post_remove_distdir) @(echo "$(distdir) archives ready for distribution: "; \ list='$(DIST_ARCHIVES)'; for i in $$list; do echo $$i; done) | \ sed -e 1h -e 1s/./=/g -e 1p -e 1x -e '$$p' -e '$$x' distuninstallcheck: @test -n '$(distuninstallcheck_dir)' || { \ echo 'ERROR: trying to run $@ with an empty' \ '$$(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ $(am__cd) '$(distuninstallcheck_dir)' || { \ echo 'ERROR: cannot chdir into $(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ test `$(am__distuninstallcheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left after uninstall:" ; \ if test -n "$(DESTDIR)"; then \ echo " (check DESTDIR support)"; \ fi ; \ $(distuninstallcheck_listfiles) ; \ exit 1; } >&2 distcleancheck: distclean @if test '$(srcdir)' = . ; then \ echo "ERROR: distcleancheck can only run from a VPATH build" ; \ exit 1 ; \ fi @test `$(distcleancheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left in build directory after distclean:" ; \ $(distcleancheck_listfiles) ; \ exit 1; } >&2 check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_SCRIPTS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-recursive all-am: Makefile $(LTLIBRARIES) $(PROGRAMS) $(SCRIPTS) $(DATA) \ $(HEADERS) config.h install-binPROGRAMS: install-libLTLIBRARIES installdirs: installdirs-recursive installdirs-am: for dir in "$(DESTDIR)$(libdir)" "$(DESTDIR)$(bindir)" "$(DESTDIR)$(bindir)" "$(DESTDIR)$(m4datadir)" "$(DESTDIR)$(pkgconfigdir)" "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-recursive install-exec: install-exec-recursive install-data: install-data-recursive uninstall: uninstall-recursive install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-recursive install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-recursive clean-am: clean-binPROGRAMS clean-generic clean-libLTLIBRARIES \ clean-libtool mostlyclean-am distclean: distclean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-hdr distclean-libtool distclean-tags dvi: dvi-recursive dvi-am: html: html-recursive html-am: info: info-recursive info-am: install-data-am: install-m4dataDATA install-pkgconfigDATA \ install-pkgincludeHEADERS install-dvi: install-dvi-recursive install-dvi-am: install-exec-am: install-binPROGRAMS install-binSCRIPTS \ install-libLTLIBRARIES install-html: install-html-recursive install-html-am: install-info: install-info-recursive install-info-am: install-man: install-pdf: install-pdf-recursive install-pdf-am: install-ps: install-ps-recursive install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf $(top_srcdir)/autom4te.cache -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-recursive mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-recursive pdf-am: ps: ps-recursive ps-am: uninstall-am: uninstall-binPROGRAMS uninstall-binSCRIPTS \ uninstall-libLTLIBRARIES uninstall-m4dataDATA \ uninstall-pkgconfigDATA uninstall-pkgincludeHEADERS .MAKE: $(am__recursive_targets) all check-am install-am install-strip .PHONY: $(am__recursive_targets) CTAGS GTAGS TAGS all all-am \ am--refresh check check-TESTS check-am clean clean-binPROGRAMS \ clean-cscope clean-generic clean-libLTLIBRARIES clean-libtool \ cscope cscopelist-am ctags ctags-am dist dist-all dist-bzip2 \ dist-gzip dist-lzip dist-shar dist-tarZ dist-xz dist-zip \ distcheck distclean distclean-compile distclean-generic \ distclean-hdr distclean-libtool distclean-tags distcleancheck \ distdir distuninstallcheck dvi dvi-am html html-am info \ info-am install install-am install-binPROGRAMS \ install-binSCRIPTS install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am \ install-libLTLIBRARIES install-m4dataDATA install-man \ install-pdf install-pdf-am install-pkgconfigDATA \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ installdirs-am maintainer-clean maintainer-clean-generic \ mostlyclean mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf pdf-am ps ps-am recheck tags tags-am \ uninstall uninstall-am uninstall-binPROGRAMS \ uninstall-binSCRIPTS uninstall-libLTLIBRARIES \ uninstall-m4dataDATA uninstall-pkgconfigDATA \ uninstall-pkgincludeHEADERS gsl-config gsl.pc: Makefile @rm -f $@ $@.tmp @$(edit) '$(srcdir)/$@.in' >>$@.tmp @chmod a-w $@.tmp @mv $@.tmp $@ @echo creating $@ gsl-config: $(srcdir)/gsl-config.in gsl.pc: $(srcdir)/gsl.pc.in # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/gsl.spec.in0000664000252300025230000000510612171574312011222 00000000000000Name: gsl Summary: GNU Scientific Library (GSL) Packager: jungman@lanl.gov, rosalia@lanl.gov %define version @VERSION@ %define release 0 Version: %{version} Release: %{release} License: GPL Vendor: The GSL Team Distribution: research software Source: gsl-%{version}.tar.gz Group: Libraries/Research %define mybuildroot /var/tmp/%{name}-build BuildRoot: %{mybuildroot} %description The GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. It contains over 1000 mathematical routines written in ANSI C. The library follows modern coding conventions, and lends itself to being used in very high level languages (VHLLs). The library covers the following subject areas: Complex Numbers Roots of Polynomials Special Functions Vectors and Matrices Permutations Sorting BLAS Support Linear Algebra Eigensystems Fast Fourier Transforms Quadrature Random Numbers Quasi-Random Sequences Random Distributions Statistics Histograms N-Tuples Monte Carlo Integration Simulated Annealing Differential Equations Interpolation Numerical Differentiation Chebyshev Approximation Series Acceleration Discrete Hankel Transforms Root-Finding Minimization Least-Squares Fitting Physical Constants IEEE Floating-Point Further information can be found in the GSL Reference Manual. Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The GSL Team. Install the gsl package if you need a library for high-level scientific numerical analysis. %prep %setup -q -n gsl-%{version} %build CFLAGS="$RPM_OPT_FLAGS" ./configure --prefix=%{_prefix} \ --bindir=%{_bindir} --mandir=%{_mandir} \ --localstatedir=%{_localstatedir} --libdir=%{_libdir} \ --datadir=%{_datadir} --includedir=%{_includedir} \ --sysconfdir=%{_sysconfdir} make %install rm -rf $RPM_BUILD_ROOT make prefix=$RPM_BUILD_ROOT%{_prefix} bindir=$RPM_BUILD_ROOT%{_bindir} \ mandir=$RPM_BUILD_ROOT%{_mandir} libdir=$RPM_BUILD_ROOT%{_libdir} \ localstatedir=$RPM_BUILD_ROOT%{_localstatedir} \ datadir=$RPM_BUILD_ROOT%{_datadir} \ includedir=$RPM_BUILD_ROOT%{_includedir} \ sysconfdir=$RPM_BUILD_ROOT%{_sysconfdir} install %clean rm -rf $RPM_BUILD_ROOT %post -p /sbin/ldconfig %postun -p /sbin/ldconfig %files %doc {NEWS,ChangeLog,INSTALL,README,AUTHORS,THANKS,SUPPORT,BUGS} %doc /usr/info/* /usr/bin/gsl-config /usr/bin/gsl-histogram /usr/bin/gsl-randist /usr/lib /usr/include/gsl /usr/share/aclocal/gsl.m4 /usr/share/man gsl-1.16/ChangeLog0000664000252300025230000007432612171574312010740 000000000000002012-10-25 Rhys Ulerich * templates_on.h: undef complex for MSVC Thank you to Victor Zverovich for reporting the problem and providing the patch 2012-06-04 Rhys Ulerich * cdf/beta.c: Update FSF address * cdf/betainv.c: Update FSF address * cdf/chisq.c: Update FSF address * cdf/chisqinv.c: Update FSF address * cdf/fdist.c: Update FSF address * cdf/fdistinv.c: Update FSF address * cdf/gamma.c: Update FSF address * cdf/gammainv.c: Update FSF address * cdf/gauss.c: Update FSF address * cdf/gaussinv.c: Update FSF address * cdf/geometric.c: Update FSF address * cdf/gsl_cdf.h: Update FSF address * cdf/hypergeometric.c: Update FSF address * cdf/nbinomial.c: Update FSF address * cdf/poisson.c: Update FSF address * cdf/tdist.c: Update FSF address * cdf/tdistinv.c: Update FSF address * cdf/test.c: Update FSF address * contrib/wigner.c: Update FSF address * contrib/wigner.h: Update FSF address * histogram/calloc_range.c: Update FSF address * histogram/calloc_range2d.c: Update FSF address * histogram/copy.c: Update FSF address * histogram/copy2d.c: Update FSF address * histogram/maxval.c: Update FSF address * histogram/maxval2d.c: Update FSF address * histogram/oper.c: Update FSF address * histogram/oper2d.c: Update FSF address * histogram/stat.c: Update FSF address * histogram/stat2d.c: Update FSF address * mdate-sh: Update FSF address * randist/discrete.c: Update FSF address * randist/gausszig.c: Update FSF address * rng/gfsr4.c: Update FSF address * rng/mt.c: Update FSF address * utils/getopt.c: Update FSF address * utils/getopt.h: Update FSF address * utils/getopt1.c: Update FSF address * utils/strerror.c: Update FSF address * utils/system.h: Update FSF address * utils/xmalloc.c: Update FSF address * utils/xstrdup.c: Update FSF address 2011-12-01 Rhys Ulerich * doc/integration.texi: Clarify that integration workspaces may be reused multiple times following discussion on gsl-help mailing list. Documentation ambiguity raised by Denes Molnar. 2011-04-13 Brian Gough * gsl_nan.h (GSL_NEGZERO): define negative zero as explicitly floating point, same for positive zero. 2011-04-01 Rhys Ulerich * doc/bspline.texi: Correct valid index range for Greville abscissae 2011-01-31 Peter Johansson * gsl.pc.in (GSL_CBLAS_LIB): allow user to choose cblas via pkg-config 2010-08-06 Brian Gough * ode-initval2: added Tuomo Keskitalo's new ode branch with a gsl_odeiv2 prefix which is intended to be the new default. Will retain gsl_odeiv for binary compatibility but old interface will be deprecated. 2010-05-25 Peter Johansson * configure.ac: added variable GSL_LIBM from macro AC_CHECK_LIBM * Makefile.am: added GSL_LIBM in edit substitution * gsl-config.in: using variable $GSL_LIBM rather than hard-coded -libm * gsl.pc.in: using variable $GSL_LIBM rather than hard-coded -libm 2010-04-24 Brian Gough * configure.ac: added macro for substituting isfinite by gsl_finite when needed. 2010-04-10 Giuseppe Scrivano * utils/memcpy.c (memcpy): Use the standand method signature. * utils/memmove.c (memmove): Likewise. 2010-01-18 Brian Gough * gsl_version.h.in, configure.ac: added GSL_MAJOR_VERSION and GSL_MINOR_VERSION macros 2009-07-09 Brian Gough * configure.ac: added RETURN_IF_NULL macro to handle null argument in free() type functions. 2009-05-09 Brian Gough * configure.ac: improve tests for C99 inline, and don't test when inline is not available * gsl_inline.h: added test for HAVE_C99_INLINE 2009-04-10 Brian Gough * Makefile.am: generate gsl-config gsl.pc from Makefile instead of configure, to allow make install prefix=... 2008-09-26 Brian Gough * configure.ac: handle test for SSE in cross-compilation (fall back to checking if the ldmxcsr instruction compiles) 2008-07-03 Brian Gough * Makefile.am: added gsl_inline.h and build.h * gsl_mode.h gsl_pow_int.h: use new inline declarations * gsl_minmax.h: new header file for minmax functions, use new inline declarations * gsl_math.h: moved minmax functions to separate header file * configure.ac: test for C99 inline as well * build.h gsl_inline.h: added new header to handle GNU-style and C99 inlines 2008-03-17 Brian Gough * configure.ac: remove hack to disable search for Fortran, Java, C++ required with earlier versions of autoconf 2007-09-01 Brian Gough * gsl.m4: changed default name to AX_PATH_GSL 2007-08-22 Brian Gough * configure.ac: started moving definitions out of acconfig.h (deprecated) 2007-07-30 Brian Gough * configure.ac: check ieeefp.h for isfinite 2007-04-23 Brian Gough * acconfig.h (finite): don't redefine finite in terms of isfinite, which causes problems with system headers, use gsl_finite instead. 2007-04-17 Brian Gough * configure.ac: use an actual floating point number instead of an integer for testing long double I/O. 2007-01-09 Brian Gough * gsl_math.h (M_PI_4): corrected typo in higher digits of M_PI_4 (at ~1e-20) 2006-11-02 Brian Gough * templates_on.h templates_off.h: added UNSIGNED definition for detecting types without negative values 2006-02-15 Brian Gough * configure.ac: restrict darwin IEEE detection to powerpc, because new x86 macs are different. * removed automatic addition of compilation flags on alpha, these should be specified on the command-line through CFLAGS. 2006-01-07 Brian Gough * templates_on.h: added an FP=1 definition for the floating point types, FP is undefined for integer types. 2005-08-05 Brian Gough * gsl/Makefile.am: need to remove makefile with later versions of automake 2005-04-05 Brian Gough * configure.ac: added ieeefp.h test for solaris 2005-01-13 Brian Gough * configure.ac: added case for 86_64 in IEEE arithmetic interface detection 2004-10-26 Brian Gough * test_gsl_histogram.sh: trim \r from test output for compatibility with Cygwin. 2004-07-29 Brian Gough * modified all makefiles to use TESTS=$(check_programs) to get correct EXEEXT behavior 2004-07-23 Brian Gough * added wavelet/ directory 2004-05-28 Brian Gough * configure.ac: ran configure script through Autoconf's autoupdate to use latest macro names 2004-05-17 Brian Gough * gsl.m4: fix m4 quoting of first argument to AC_DEFUN 2004-03-17 Brian Gough * gsl/Makefile.am (header-links): use test -r instead of test -e (to avoid problem on Solaris as described in autoconf documentation) 2003-12-20 Brian Gough * configure.ac: define _GNU_SOURCE when looking for fenv.h 2003-06-17 Brian Gough * configure.ac: converted configure.in to autoconf 2.5x, involved extensive renaming macros of HAVE_... to HAVE_DECL_.. and changing usage from #ifdef HAVE to #if HAVE 2003-06-16 Brian Gough * gsl/Makefile.am (header-links): added a test for the existing file to avoid spurious error messages when making the symlinks 2003-06-12 Brian Gough * configure.in: Tidying up, removed old test for bug in gcc 2.95 on PPC, removed OS/2 warning, removed references to clock function since benchmark programs are not shipped 2003-03-06 Brian Gough * gsl_types.h: changed from internal macro _DLL to GSL_DLL 2003-02-09 Brian Gough * configure.in: added [] quotes in AC_TRY_COMPILE to protect nested macros 2002-11-24 Brian Gough * configure.in: check for presence of non-ansi functions in header files before running AC_CHECK_FUNCS to look in libraries, to support compilation with -ansi. Fri Sep 6 15:00:40 2002 Brian Gough * acconfig.h (GSL_RANGE_CHECK_OFF): turned range checking off in acconfig.h as it overwrites config.h.in Wed Aug 7 22:34:36 2002 Brian Gough * config.h.in: fixed RANGE_CHECK_ON to GSL_RANGE_CHECK_ON Sun Jul 14 12:48:50 2002 Brian Gough * INSTALL: merged the MACHINES file into the installation notes. Fri Jun 14 22:09:52 2002 Brian Gough * gsl_types.h: define GSL_VAR macro as ANSI C 'export' or '__declspec(dllexport/dllimport)' depending on platform * changed 'export' to GSL_VAR macro throughout to make it easier to build nonstandard shared libraries such as DLLs Sun May 19 22:24:00 2002 Brian Gough * configure.in: changed AM_PROG_LIBTOOL to AC_PROG_LIBTOOL, use AC_SEARCH_LIBS to find math library Sat May 11 22:27:52 2002 Brian Gough * configure.in (ac_cv_func_printf_longdouble): fixed ieee comparisons test so it actually works (ac_cv_c_ieee_comparisons): added a test for denormalized values Fri Apr 26 19:53:31 2002 Brian Gough * Makefile.am (EXTRA_DIST): removed KNOWN-PROBLEMS Sun Feb 10 21:28:29 2002 Brian Gough * BUGS: added a list of known but unfixed bugs. 2002-02-07 Mark Galassi * THANKS: added Karsten Howes . Wed Jan 16 16:55:25 2002 Brian Gough * configure.in acconfig.h: check whether IEEE comparisons work for Inf, NaN and define HAVE_IEEE_COMPARISONS Tue Jan 8 21:38:23 2002 Brian Gough * config.h (GSL_RANGE_CHECK_OFF): turn off range checking when building the library, still on by default when compiling user applications Mon Nov 19 21:40:30 2001 Brian Gough * standardised all files to #include for exported header files rather than having some as #include "...", to simplify build procedure Fri Oct 19 15:19:45 2001 Brian Gough * gsl-histogram.c (main): use gsl_histogram_alloc instead of calloc Wed Oct 3 11:06:51 2001 Brian Gough * removed auto-expanding RCS tokens from comments as they interfere with making patches * configure.in: check for isinf(), finite(), isnan() as macros. Also check for isfinite() as an alternative to finite(). Sat Sep 29 18:04:35 2001 Brian Gough * gsl.m4: cleaned up arguments to GSL_CONFIG Wed Sep 19 17:41:13 2001 Brian Gough * gsl-histogram.c (main): turn off the display of mean and standard deviation it is too confusing because it is not the mean of the data itself. Tue Sep 18 20:08:39 2001 Brian Gough * test_gsl_histogram.sh: modified the expected test output to account for the mean,sigma lines now produced Wed Sep 12 13:39:55 2001 Brian Gough * gsl-histogram.c (main): print out the mean and standard deviation as comments Sun Sep 9 22:57:11 2001 Brian Gough * configure.in: print out a warning for OS/2 telling the user to run an extra script Fri Sep 7 14:32:01 2001 Brian Gough * gsl.pc.in: added pkg-config file * configure.in: avoid clobbering any LIBS specified, by not putting -lm in front of them. This allows the user to specify an alternate math library for the configure script. (ac_cv_func_printf_longdouble): added generation of gsl.pc for pkg-config Thu Sep 6 21:08:10 2001 Brian Gough * configure.in: added an option to specify an alternative math library Tue Sep 4 09:41:37 2001 Brian Gough * gsl.spec.in: autogenerate gsl.spec from gsl.spec.in Sun Aug 26 17:19:24 2001 Brian Gough * acconfig.h: fixed incorrect #ifdef for HAVE_FINITE (Henry Sobotka) Sat Aug 25 10:25:41 2001 Brian Gough * gsl_math.h: moved includes to beginning of file to avoid redefinition errors on OS/2 Tue Aug 21 23:54:45 2001 Brian Gough * gsl_nan.h (GSL_POSINF): removed incorrect use of _FPCLASS.. for MSVC, these are flags not numerical values. Thu Aug 9 22:51:00 2001 Brian Gough * config.h.in: added a macro for discarding a pointer, used to suppress warnings from gcc about unused parameters Sun Aug 5 20:35:09 2001 Brian Gough * configure.in: move PPC bug test to beginning of configure script, to save waiting for it to appear at the end Sat Jul 14 21:13:55 2001 Brian Gough * gsl_nan.h: use C99X macro INFINITY where available Fri Jul 13 21:31:01 2001 Brian Gough * templates_on.h: added macros for unqualified views, needed for initialization of views Mon Jul 9 11:22:16 2001 Brian Gough * configure.in: made check for extended precision registers independent of test for os ieee interface type Sun Jul 1 22:44:00 2001 Brian Gough * templates_on.h templates_off.h: modified to support views Wed Jun 27 12:15:19 2001 Brian Gough * configure.in: work around case of broken log1p in OpenBSD Mon Jun 25 10:21:17 2001 Brian Gough * configure.in: catch case of openbsd, which is not supported yet in ieee directory Mon Jun 18 22:31:26 2001 Brian Gough * configure.in (GSL_CFLAGS): now just uses includedir for gsl-config.in Wed Jun 6 18:10:18 2001 Brian Gough * removed explicit dependencies from Makefile.am's since automake now handles these automatically Tue May 29 12:40:08 2001 Brian Gough * configure.in: added missing wildcard to end of hpux11* to match different versions of hpux11, e.g. hpux11.2. Tue May 22 10:38:59 2001 Brian Gough * gsl.m4: try to make C-code compatible with C++, also changed return() to exit() as mentioned in the autoconf documentation. 2001-05-21 Mark Galassi * config.guess, config.sub: removed these auto-generated files from CVS since they are built for developers by autogen.sh. Tue May 15 10:59:43 2001 Brian Gough * autogen.sh: upgraded to latest libtool and automake Tue May 1 12:19:01 2001 Brian Gough * gsl_nan.h (GSL_NAN): added definitions for Microsoft Visual C++ Mon Apr 30 13:46:39 2001 Brian Gough * gsl_math.h: split out gsl_pow_int.h and gsl_nan.h Wed Mar 21 14:16:29 2001 Brian Gough * gsl-config.in (Usage): allow user to specify an external blas library through an environment variable 2000-12-14 Mark Galassi * gsl.spec, configure.in: upped the version to 0.7+ since the release has been made. 2000-10-26 Mark Galassi * ltconfig, ltmain.sh: removed these auto-generated files. 2000-10-26 Mark Galassi * stamp-h.in: removed this file because it is auto-generated. * scripts/mkknownproblems.sh: fixed it so it's slightly better, but it still assumes that you run it out of $(srcdir)/scripts. * scripts/knownproblems.pl: put in a more standard path for perl. * AUTHORS: some changes and additions. * KNOWN-PROBLEMS: updated the list of known problems. 2000-10-04 Mark Galassi * NEWS, configure.in, gsl.spec: upped the version to 0.7 as we are about to release. Thu Jul 20 20:20:04 2000 Brian Gough * gsl.m4: changed \? to \{0,1\} in the sed commands to allow for SGI sed (from Steve ROBBINS ) Sun Jul 9 19:34:03 2000 Brian Gough * gsl.m4: modified to accept x.y version numbers as the first argument in addition to x.y.z version numbers Mon Jun 12 22:18:27 2000 Brian Gough * Makefile.am (SUBLIBS): added missing complex lib to top-level SUBLIBS Sun Jun 11 17:39:18 2000 Brian Gough * gsl.spec (BuildRoot): fixed directory for install, it is now /usr/lib/ instead of /usr/lib/gsl/ Tue Jun 6 20:02:02 2000 Brian Gough * acconfig.h, configure.in: use HAVE_X86LINUX_IEEE_INTEFACE for x86 instead of generic HAVE_LINUX_IEEE_INTEFACE 2000-06-02 Mark Galassi * gsl.spec: added gsl.m4 to the list of files. * NEWS: added a mention of gsl.m4. * gsl.spec: small changes to fix the installation of doc files. * Makefile.am: added some files (like MACHINES, KNOWN-PROBLEMS, ...) to the distribution. * gsl.spec, configure.in, KNOWN-PROBLEMS: upped the version number to 0.6. Also: gsl.spec now installes files like MACHINES, KNOWN-PROBLEMS, NEWS,... into the package's %doc file list. Sun May 28 12:03:36 2000 Brian Gough * gsl/Makefile.am (header-links): use configurable macro variable $(LN_S) instead of explicit "ln -s" Mon May 15 19:16:31 2000 Brian Gough * added ieee mode setting to all tests, so that they can be run in double-precision even on extended precision architectures 2000-05-14 Steve Robbins * acconfig.h: * configure.in: look in both and /usr/include/float.h, to find FP_RND_RN, as some versions of GCC don't copy these symbols into the `fixed' header. Thu May 11 12:47:19 2000 Brian Gough * gsl_math.h (GSL_POSZERO): added macros for IEEE signed zeros, +0 and -0. They don't do anything useful yet, but use the macro so that will be possible to work around compilers that don't understand the difference between the constants -0 and +0. Wed May 10 11:30:15 2000 Brian Gough * gsl_math.h (GSL_POSINF): make use of HUGE_VAL which is actually +Inf when IEEE is available, and can be detected by the NAN being defined (it is only defined on IEEE machines) (GSL_NEGINF): as for GSL_POSINF Fri May 5 11:20:50 2000 Brian Gough * split out gsl_test code from err/ directory into test/ directory Thu May 4 12:14:42 2000 Brian Gough * added GPL headers throughout Mon May 1 22:11:32 2000 Brian Gough * modified all the makefiles to compile test programs as "test", for simpler automated builds Tue Apr 11 14:51:59 2000 Brian Gough * eigen/eigen_sort.c (gsl_eigen_sort_impl): updated occurrence of gsl_matrix_swap_cols to gsl_matrix_swap_columns * gsl.m4, Makefile.am: added gsl.m4 macros for autoconf support 2000-04-03 Mark Galassi * gsl-config.in, configure.in (GSL_CFLAGS): replaced my gsl-config script with Christopher Gabriel's, which is simpler. * autogen.sh: changed this into a no-brainer which does not invoke configure. Mon Apr 3 15:43:25 2000 Brian Gough * applied patch from C M Murphy to fix up missing consts in header files. Sat Apr 1 20:12:34 2000 Brian Gough * gsl_math.h: added some missing extra constants from BSD (e.g. M_PI_2) Wed Mar 15 11:16:14 2000 Brian Gough * added a directory for complex number support, complex/ Tue Mar 14 10:28:43 2000 Brian Gough * added support for including headers in C++ programs using __BEGIN_DECLS and __END_DECLS macros Sat Mar 11 11:18:33 2000 Brian Gough * templates_on.h: added a definition for ONE, to match ZERO * Changed matrix struct element dim2 to tda throughout Mon Mar 6 19:48:27 2000 Brian Gough * gsl_version.h: added simple release-number based support for accessing the version number at compile-time and run-time. This is not a complete solution but it will do for now, as libtool interface numbers are too complicated to worry about at the moment due to other problems with libtool. Thu Mar 2 20:52:50 2000 Brian Gough * templates_on.h (ATOMIC_IO): added an internal type for IO, for the cases where it isn't possible to read and write a type directly as text (e.g. char) 2000-02-23 Mark Galassi * Makefile.am, gsl.spec: added a gsl.spec. Seems to work. * gsl-config.in: overhauled gsl-config.in; should work better now. Tue Feb 15 18:55:05 2000 Brian Gough * added directory for permutation objects, permutation/ Sun Dec 5 14:20:43 1999 Brian Gough * added multidimensional minimisation directory, multimin/ 1999-12-03 Mark Galassi * configure.in: upped the version to 0.5+, so that snaphots built out of CVS will not be confused with the 0.5 release. * AUTHORS, README, HACKING: changed my email address. * README: updated with some of Brian's suggestions. * configure.in, NEWS: fixed the new version to 0.5. Tue Oct 19 11:15:16 1999 Brian Gough * added the eigen value directory, eigen/ 1999-08-30 Mark Galassi * gsl-config.in: started adding this script, for now cannibalized from gnome-config. Fri Aug 20 11:10:54 1999 Brian Gough * support for IEEE on Tru64 from Tim Mooney Mon Aug 16 21:10:23 1999 Brian Gough * added the minimization directory, min/ Fri Aug 6 11:15:58 1999 Brian Gough * configure.in: removed need to configure for rand() and RAND_MAX by providing a simple random number generator in the directories that used rand(). 1999-08-05 Mark Galassi * Makefile.am: put the THANKS file into the distribution. * autogen.sh: added the --add-missing option to automake. I'm surprised it was not already there. * configure.in: added a + to the version, indicating that any snapshots made from anonymous CVS in this state should be interpreted as "after 0.4.1 and before the next version", and no other promises. * THANKS: added this THANKS file. We appreciate all patches from people on the net, even those which are too small to warrant adding the author to the AUTHORS file. The THANKS file should include everyone who sent in patches. They should also be mentioned in the ChangeLog entry. Sat May 8 21:06:31 1999 Brian Gough * configure.in: now check for "extern inline" using a modified version of AC_C_INLINE, since we use "extern inline" but only checked for "inline", and some compilers only support the latter. Sun Apr 11 20:40:35 1999 Brian Gough * libraries and include files are now installed in pkglibdir and pkgincludedir (e.g. /usr/local/lib/gsl/ and /usr/local/include/gsl/ by default) * libraries are now built and installed separately Mon Mar 1 15:41:25 1999 Brian Gough * gsl_math.h: renamed gsl_fdf to gsl_function_fdf, so that it will be more obvious what it is Sun Feb 28 20:37:31 1999 Brian Gough * gsl_mode.h: added prototype for GSL_MODE_PREC(mt) Tue Feb 23 14:18:39 1999 Brian Gough * gsl_math.h (GSL_FDF_EVAL_F): improved names of macros Sat Feb 20 12:14:07 1999 Brian Gough * split out polynomial root finding algorithms into a new poly/ directory 1999-02-25 Mark Galassi * configure.in: upped the version to 0.4.1; this is ready for tagging. 1999-02-06 Mark Galassi * NEWS: udpated in occasion of the imminent 0.4.1 release. Sun Feb 14 20:47:07 1999 Brian Gough * Makefile.am: added gsl_mode.h to include_HEADERS Mon Feb 8 18:39:35 1999 Brian Gough * added new type gsl_function for arbitrary functions with parameters, and gsl_fdf for functions and their derivatives Mon Feb 8 18:39:35 1999 Brian Gough * gsl_complex.h: added GSL_SET_REAL(&z,x) and GSL_SET_IMAG(&z,y), changed GSL_COMPLEX_SET(z,x,y) to GSL_SET_COMPLEX(&z,x,y) to match. 1999-01-03 Mark Galassi * Makefile.am, autogen.sh: improved autogen.sh, based on the gtk+ autogen.sh. Added it to Makefile.am's EXTRA_DIST list. 1999-01-02 Mark Galassi * configure.in: introduced a test for hypot(), in case a system does not have it. 1999-01-03 Mark Galassi * autogen.sh: added this simple script which calls aclocal, automake --add-missind and autoconf, followed by ./configure with all the arguments. * configure, Makefile.in, */Makefile.in: removed these auto-generated files. Fri Dec 11 16:50:27 1998 Brian Gough * AUTHORS: corrected the spelling of Gerard Jungman's name (it's either Gerard or Jerry, but not Gerry) 1998-12-05 Mark Galassi * configure.in: made the version be 0.4after so it's clear that snapshots will be post-0.4. * HACKING: updated a bit to work with the new CVS repository. Mon Nov 23 16:09:21 1998 Brian Gough * gsl_config.h: removed, it was an unnecessary hack just for defining macros. Autoconf's config.h should be used by the programmer instead. Sat Nov 21 20:39:14 1998 Brian Gough * texinfo.tex: removed, this is a duplicate and shouldn't be needed in the top-level directory (it is in docs) * move any included headers in _source.c files into the master file that includes the _source.c, since this saves time when compiling * config.h.in: standardized on HAVE_PRINTF_LONGDOUBLE Fri Nov 20 15:14:53 1998 Brian Gough * replaced DBL_EPSILON, DBL_MAX, ... by GSL_DBL_EPSILON, GSL_DBL_MAX, ... * added sys directory for miscellaneous gsl system functions like max and min Thu Nov 19 22:46:43 1998 Brian Gough * config.h.in: removed MAX and MIN Wed Nov 18 10:40:18 1998 Brian Gough * gsl_math.h: added prototypes for inline functions GSL_MAX_INT etc Tue Nov 10 20:05:27 1998 Brian Gough * gsl_math.h: moved the MAX(a,b) and MIN(a,b) to gsl_math.h and renamed them GSL_MAX(a,b) and GSL_MIN(a,b) to avoid inevitable conflicts with system macros. Mon Nov 9 21:08:10 1998 Brian Gough * config.h: added MAX(a,b) and MIN(a,b) macros since we use these everywhere. We assume that if they are defined by the system then they do actually work. 1998-11-06 * configure.in: add -mieee on alpha platforms, also check for both scanf and printf working with long double 1998-08-31 James Theiler * Makefile.am (SUBDIRS): added utils directory * configure.in (AC_OUTPUT): added utils/Makefile * configure.in (AC_REPLACE_FUNCS): added strtol, strtoul; removed strerror since it's already hardcoded into the err/ directory 1998-08-30 Mark Galassi * configure.in: upped release number to 0.4; about to tag and make the release. 1998-08-20 Mark Galassi * configure.in: upped version to 0.4-interim as we prepare for a 0.4 snapshot. * NEWS: now refers to 0.4 instead of 0.3g. Also "commented out" (smile) the note that says "we need to do a better job with the news file", since it looks quite good now! 1998-08-19 Mark Galassi * doc/Makefile.am (EXTRA_DIST): added ran-exppow.tex, rand-levy.tex, rand-gumbel.tex and rand-bernoulli.tex to EXTRA_DIST. Now they are included in the distribution and a "make distcheck" goes further. Thu Jul 30 16:12:05 1998 Brian Gough * Makefile.am: now using a script to write the AR commands explicitly, this should be more portable Tue Jul 28 23:07:04 1998 Brian Gough * Makefile.am: new style single build of libgsl.a Fri Jul 10 19:57:49 1998 Brian Gough * configure.in: removed AC_FUNC_ALLOCA since we don't use alloca (it is not ansi) Sun Jun 28 14:31:31 1998 Brian Gough * replaced the random/ directory by the rng/ directory and made minor changes in randist/, siman/ to accommodate it Tue Jun 23 19:49:22 1998 Brian Gough * added a top-level file gsl_config.h for detecting features when users include the library headers. Currently it just turns on HAVE_INLINE if you are using GCC or C++. 1998-05-16 Mark Galassi * configure.in: Brian fixed the error where libgslerr.a was not being installed in the 0.3e release, so I just bumped it up to 0.3f to make a new release. 1998-05-14 Mark Galassi * configure.in: upped the version to 0.3e, and this time I might actually make the public snapshot! Wed Apr 8 18:30:48 1998 Brian Gough * Now using the automake variable check_PROGRAMS everywhere for the testing programs (no need to build them unless we do make check) Mon Apr 6 15:09:08 1998 Brian Gough * added matrix and vector subdirectories Wed Mar 18 10:27:27 1998 Brian Gough * gsl_complex.h: the typedef for 'complex' has been renamed to gsl_complex, to avoid conflicts with C++ bindings and libstdc++ 1998-02-09 Mark Galassi * configure.in: 0.3b is now released, so I upped the version number to 0.3c-interim. 1998-02-09 Mark Galassi * configure.in: upped version number to 0.3b 1998-01-30 Mark Galassi * AUTHORS: added Gerry Jungman to the authors list. gsl-1.16/sort/0000775000252300025230000000000012172254156010223 500000000000000gsl-1.16/sort/subset_source.c0000664000252300025230000000563012171574312013176 00000000000000/* sort/subset_source.c * * Copyright (C) 1999,2000,2001 Thomas Walter, Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* find the k-th smallest elements of the vector data, in ascending order */ int FUNCTION (gsl_sort, smallest) (BASE * dest, const size_t k, const BASE * src, const size_t stride, const size_t n) { size_t i, j; BASE xbound; if (k > n) { GSL_ERROR ("subset length k exceeds vector length n", GSL_EINVAL); } if (k == 0 || n == 0) { return GSL_SUCCESS; } /* take the first element */ j = 1; xbound = src[0 * stride]; dest[0] = xbound; /* examine the remaining elements */ for (i = 1; i < n; i++) { size_t i1; BASE xi = src[i * stride]; if (j < k) { j++; } else if (xi >= xbound) { continue; } for (i1 = j - 1; i1 > 0 ; i1--) { if (xi > dest[i1 - 1]) break; dest[i1] = dest[i1 - 1]; } dest[i1] = xi; xbound = dest[j-1]; } return GSL_SUCCESS; } int FUNCTION (gsl_sort_vector,smallest) (BASE * dest, const size_t k, const TYPE (gsl_vector) * v) { return FUNCTION (gsl_sort, smallest) (dest, k, v->data, v->stride, v->size); } int FUNCTION (gsl_sort, largest) (BASE * dest, const size_t k, const BASE * src, const size_t stride, const size_t n) { size_t i, j; BASE xbound; if (k > n) { GSL_ERROR ("subset length k exceeds vector length n", GSL_EINVAL); } if (k == 0 || n == 0) { return GSL_SUCCESS; } /* take the first element */ j = 1; xbound = src[0 * stride]; dest[0] = xbound; /* examine the remaining elements */ for (i = 1; i < n; i++) { size_t i1; BASE xi = src[i * stride]; if (j < k) { j++; } else if (xi <= xbound) { continue; } for (i1 = j - 1; i1 > 0 ; i1--) { if (xi < dest[i1 - 1]) break; dest[i1] = dest[i1 - 1]; } dest[i1] = xi; xbound = dest[j-1]; } return GSL_SUCCESS; } int FUNCTION (gsl_sort_vector,largest) (BASE * dest, const size_t k, const TYPE (gsl_vector) * v) { return FUNCTION (gsl_sort, largest) (dest, k, v->data, v->stride, v->size); } gsl-1.16/sort/gsl_heapsort.h0000664000252300025230000000265612171574312013015 00000000000000/* sort/gsl_heapsort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_HEAPSORT_H__ #define __GSL_HEAPSORT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef int (*gsl_comparison_fn_t) (const void *, const void *); void gsl_heapsort (void * array, size_t count, size_t size, gsl_comparison_fn_t compare); int gsl_heapsort_index (size_t * p, const void * array, size_t count, size_t size, gsl_comparison_fn_t compare); __END_DECLS #endif /* __GSL_HEAPSORT_H__ */ gsl-1.16/sort/sort.c0000664000252300025230000000523712171574312011303 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include static inline void swap (void *base, size_t size, size_t i, size_t j); static inline void downheap (void *data, const size_t size, const size_t N, size_t k, gsl_comparison_fn_t compare); /* Inline swap function for moving objects around */ static inline void swap (void *base, size_t size, size_t i, size_t j) { register char *a = size * i + (char *) base; register char *b = size * j + (char *) base; register size_t s = size; if (i == j) return; do { char tmp = *a; *a++ = *b; *b++ = tmp; } while (--s > 0); } #define CMP(data,size,j,k) (compare((char *)(data) + (size) * (j), (char *)(data) + (size) * (k))) static inline void downheap (void *data, const size_t size, const size_t N, size_t k, gsl_comparison_fn_t compare) { while (k <= N / 2) { size_t j = 2 * k; if (j < N && CMP (data, size, j, j + 1) < 0) { j++; } if (CMP (data, size, k, j) < 0) { swap (data, size, j, k); } else { break; } k = j; } } void gsl_heapsort (void *data, size_t count, size_t size, gsl_comparison_fn_t compare) { /* Sort the array in ascending order. This is a true inplace algorithm with N log N operations. Worst case (an already sorted array) is something like 20% slower */ size_t N; size_t k; if (count == 0) { return; /* No data to sort */ } /* We have n_data elements, last element is at 'n_data-1', first at '0' Set N to the last element number. */ N = count - 1; k = N / 2; k++; /* Compensate the first use of 'k--' */ do { k--; downheap (data, size, N, k, compare); } while (k > 0); while (N > 0) { /* first swap the elements */ swap (data, size, 0, N); /* then process the heap */ N--; downheap (data, size, N, 0, compare); } } gsl-1.16/sort/TODO0000664000252300025230000000225712171574312010637 00000000000000# -*- org -*- #+CATEGORY: sort * Routines for selecting the k largest or smallest values could use heapsort for speed O(N log k) rather than insertion O(N k). * Sorting of complex arrarys without using additional memory. We try to avoid allocating memory internally in GSL, so internally computing the magnitudes and storing them in a temporary array is undesirable. Obviously a complex array can be sorted using sqrt(x*x + y*y) <=> sqrt(u*u + v*v) (written in a numerically stable way) for every comparison, but this may be unacceptably slow. Maybe not? It is just a constant factor. The square roots could sometimes be avoided by optimization, (x,y) = (MAX(|x|,|y|), MIN(|x|,|y|)) (u,v) = (MAX(|u|,|v|), MIN(|u|,|v|)) if (x < u/sqrt(2)) /* This part is optional optimization */ return -1 if (x > u*sqrt(2)) return +1 if (x == 0 && u == 0) ... if (x == 0) ... if (u == 0) ... t = u*sqrt((1+(v/u)^2)/(1+(y/x)^2)) if (x < t) return -1 if (x > t) return +1 else return 0 but this does depend on the data having sufficient range for the optimization to be worthwhile, otherwise it is an extra cost. gsl-1.16/sort/gsl_sort_vector_ulong.h0000664000252300025230000000357412171574312014745 00000000000000/* sort/gsl_sort_vector_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_ULONG_H__ #define __GSL_SORT_VECTOR_ULONG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_ulong (gsl_vector_ulong * v); void gsl_sort_vector2_ulong (gsl_vector_ulong * v1, gsl_vector_ulong * v2); int gsl_sort_vector_ulong_index (gsl_permutation * p, const gsl_vector_ulong * v); int gsl_sort_vector_ulong_smallest (unsigned long * dest, const size_t k, const gsl_vector_ulong * v); int gsl_sort_vector_ulong_largest (unsigned long * dest, const size_t k, const gsl_vector_ulong * v); int gsl_sort_vector_ulong_smallest_index (size_t * p, const size_t k, const gsl_vector_ulong * v); int gsl_sort_vector_ulong_largest_index (size_t * p, const size_t k, const gsl_vector_ulong * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_ULONG_H__ */ gsl-1.16/sort/sortvec.c0000664000252300025230000000415212171574312011774 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "sortvec_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/sort/gsl_sort_vector_double.h0000664000252300025230000000343112171574312015063 00000000000000/* sort/gsl_sort_vector_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_DOUBLE_H__ #define __GSL_SORT_VECTOR_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector (gsl_vector * v); void gsl_sort_vector2 (gsl_vector * v1, gsl_vector * v2); int gsl_sort_vector_index (gsl_permutation * p, const gsl_vector * v); int gsl_sort_vector_smallest (double * dest, const size_t k, const gsl_vector * v); int gsl_sort_vector_largest (double * dest, const size_t k, const gsl_vector * v); int gsl_sort_vector_smallest_index (size_t * p, const size_t k, const gsl_vector * v); int gsl_sort_vector_largest_index (size_t * p, const size_t k, const gsl_vector * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_DOUBLE_H__ */ gsl-1.16/sort/test.c0000664000252300025230000000647312171574312011276 00000000000000/* sort/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include size_t urand (size_t); #include "test_heapsort.c" #define BASE_LONG_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_CHAR int main (void) { size_t i, s; gsl_ieee_env_setup (); /* Test for lengths of 1 ... 31, then 32, 64, 128, 256, ... */ for (i = 1; i < 1024; i = (i < 32) ? i + 1 : 2 * i) test_heapsort (i); for (i = 1; i < 1024; i = (i < 32) ? i + 1 : 2 * i) { for (s = 1; s < 4; s++) { test_sort_vector (i, s); test_sort_vector_float (i, s); test_sort_vector_long_double (i, s); test_sort_vector_ulong (i, s); test_sort_vector_long (i, s); test_sort_vector_uint (i, s); test_sort_vector_int (i, s); test_sort_vector_ushort (i, s); test_sort_vector_short (i, s); test_sort_vector_uchar (i, s); test_sort_vector_char (i, s); } } exit (gsl_test_summary ()); } size_t urand (size_t N) { static unsigned long int x = 1; x = (1103515245 * x + 12345) & 0x7fffffffUL; return (size_t) ((x / 2147483648.0) * N); } gsl-1.16/sort/gsl_sort_vector_uchar.h0000664000252300025230000000357412171574312014723 00000000000000/* sort/gsl_sort_vector_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_UCHAR_H__ #define __GSL_SORT_VECTOR_UCHAR_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_uchar (gsl_vector_uchar * v); void gsl_sort_vector2_uchar (gsl_vector_uchar * v1, gsl_vector_uchar * v2); int gsl_sort_vector_uchar_index (gsl_permutation * p, const gsl_vector_uchar * v); int gsl_sort_vector_uchar_smallest (unsigned char * dest, const size_t k, const gsl_vector_uchar * v); int gsl_sort_vector_uchar_largest (unsigned char * dest, const size_t k, const gsl_vector_uchar * v); int gsl_sort_vector_uchar_smallest_index (size_t * p, const size_t k, const gsl_vector_uchar * v); int gsl_sort_vector_uchar_largest_index (size_t * p, const size_t k, const gsl_vector_uchar * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_UCHAR_H__ */ gsl-1.16/sort/gsl_sort_float.h0000664000252300025230000000371312171574312013337 00000000000000/* sort/gsl_sort_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_FLOAT_H__ #define __GSL_SORT_FLOAT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_float (float * data, const size_t stride, const size_t n); void gsl_sort2_float (float * data1, const size_t stride1, float * data2, const size_t stride2, const size_t n); void gsl_sort_float_index (size_t * p, const float * data, const size_t stride, const size_t n); int gsl_sort_float_smallest (float * dest, const size_t k, const float * src, const size_t stride, const size_t n); int gsl_sort_float_smallest_index (size_t * p, const size_t k, const float * src, const size_t stride, const size_t n); int gsl_sort_float_largest (float * dest, const size_t k, const float * src, const size_t stride, const size_t n); int gsl_sort_float_largest_index (size_t * p, const size_t k, const float * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_FLOAT_H__ */ gsl-1.16/sort/Makefile.in0000664000252300025230000010547512172253757012232 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = sort DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslsort_la_LIBADD = am_libgslsort_la_OBJECTS = sort.lo sortind.lo sortvec.lo sortvecind.lo \ subset.lo subsetind.lo libgslsort_la_OBJECTS = $(am_libgslsort_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslsort.la ../permutation/libgslpermutation.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslsort_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslsort_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslsort.la pkginclude_HEADERS = gsl_heapsort.h gsl_sort.h gsl_sort_char.h gsl_sort_double.h gsl_sort_float.h gsl_sort_int.h gsl_sort_long.h gsl_sort_long_double.h gsl_sort_short.h gsl_sort_uchar.h gsl_sort_uint.h gsl_sort_ulong.h gsl_sort_ushort.h gsl_sort_vector.h gsl_sort_vector_char.h gsl_sort_vector_double.h gsl_sort_vector_float.h gsl_sort_vector_int.h gsl_sort_vector_long.h gsl_sort_vector_long_double.h gsl_sort_vector_short.h gsl_sort_vector_uchar.h gsl_sort_vector_uint.h gsl_sort_vector_ulong.h gsl_sort_vector_ushort.h INCLUDES = -I$(top_srcdir) libgslsort_la_SOURCES = sort.c sortind.c sortvec.c sortvecind.c subset.c subsetind.c noinst_HEADERS = sortvec_source.c sortvecind_source.c subset_source.c subsetind_source.c test_source.c test_heapsort.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslsort.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu sort/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu sort/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslsort.la: $(libgslsort_la_OBJECTS) $(libgslsort_la_DEPENDENCIES) $(EXTRA_libgslsort_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslsort_la_OBJECTS) $(libgslsort_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sort.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sortind.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sortvec.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sortvecind.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/subset.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/subsetind.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/sort/gsl_sort_char.h0000664000252300025230000000366612171574312013156 00000000000000/* sort/gsl_sort_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_CHAR_H__ #define __GSL_SORT_CHAR_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_char (char * data, const size_t stride, const size_t n); void gsl_sort2_char (char * data1, const size_t stride1, char * data2, const size_t stride2, const size_t n); void gsl_sort_char_index (size_t * p, const char * data, const size_t stride, const size_t n); int gsl_sort_char_smallest (char * dest, const size_t k, const char * src, const size_t stride, const size_t n); int gsl_sort_char_smallest_index (size_t * p, const size_t k, const char * src, const size_t stride, const size_t n); int gsl_sort_char_largest (char * dest, const size_t k, const char * src, const size_t stride, const size_t n); int gsl_sort_char_largest_index (size_t * p, const size_t k, const char * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_CHAR_H__ */ gsl-1.16/sort/subset.c0000664000252300025230000000371412171574312011617 00000000000000/* sort/subset.c * * Copyright (C) 2001, 2007 Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "subset_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/sort/sortind.c0000664000252300025230000000472512171574312011777 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include static inline void downheap (size_t * p, const void *data, const size_t size, const size_t N, size_t k, gsl_comparison_fn_t compare); #define CMP(data,size,j,k) (compare((const char *)(data) + (size) * (j), (const char *)(data) + (size) * (k))) static inline void downheap (size_t * p, const void *data, const size_t size, const size_t N, size_t k, gsl_comparison_fn_t compare) { const size_t pki = p[k]; while (k <= N / 2) { size_t j = 2 * k; if (j < N && CMP (data, size, p[j], p[j + 1]) < 0) { j++; } if (CMP (data, size, pki, p[j]) >= 0) { break; } p[k] = p[j]; k = j; } p[k] = pki; } int gsl_heapsort_index (size_t * p, const void *data, size_t count, size_t size, gsl_comparison_fn_t compare) { /* Sort the array in ascending order. This is a true inplace algorithm with N log N operations. Worst case (an already sorted array) is something like 20% slower */ size_t i, k, N; if (count == 0) { return GSL_SUCCESS; /* No data to sort */ } for (i = 0; i < count; i++) { p[i] = i ; /* set permutation to identity */ } /* We have n_data elements, last element is at 'n_data-1', first at '0' Set N to the last element number. */ N = count - 1; k = N / 2; k++; /* Compensate the first use of 'k--' */ do { k--; downheap (p, data, size, N, k, compare); } while (k > 0); while (N > 0) { /* first swap the elements */ size_t tmp = p[0]; p[0] = p[N]; p[N] = tmp; /* then process the heap */ N--; downheap (p, data, size, N, 0, compare); } return GSL_SUCCESS; } gsl-1.16/sort/ChangeLog0000664000252300025230000000412612171574312011716 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-02-09 Brian Gough * test_source.c: prevent signed overflow in tests 2005-08-31 Brian Gough * test_source.c: free index memory as well 2005-04-08 Brian Gough * sortvecind_source.c sortvec_source.c: write tests in such a way as to avoid an infinite loop if nan, by always comparing in the same direction (note that nan < x and nan > x are both false) Tue Jun 26 12:06:58 2001 Brian Gough * subset_source. subsetind_source.c: make prototypes match header file Sun Jan 21 18:36:04 2001 Brian Gough * subset.c, subsetind.c: added functions for selecting subsets (k-th smallest or largest values) Mon Mar 13 13:57:33 2000 Brian Gough * sortind.c (gsl_heapsort_index): changed to use an array of size_t's directly instead of gsl_permutation Mon Feb 28 20:30:06 2000 Brian Gough * renamed gsl_sort to gsl_heapsort, since this is more meaningful and gsl_sort, gsl_sort_float, ... is now used for sorting of arrays. * added support for sorting of arrays, without going through a gsl_vector object (gsl_sort_vector is now implemented in terms of these functions) Sat Feb 26 14:47:36 2000 Brian Gough * added support for indirect sorting of objects * fixed bug in indirect sorting from use of BASE type instead of size_t for index. * reorganized directory Fri Feb 25 19:30:08 2000 Brian Gough * sortind_source.c: changed return type of indirect sort to int, to allow error return code in case where permutation and vector sizes do not match Sat Feb 19 12:18:28 2000 Brian Gough * sortind_source.c: added indirect sorting Fri Feb 18 10:48:24 2000 Brian Gough * initial GPL sources from Thomas Walter gsl-1.16/sort/gsl_sort_vector_long_double.h0000664000252300025230000000376012171574312016107 00000000000000/* sort/gsl_sort_vector_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_LONG_DOUBLE_H__ #define __GSL_SORT_VECTOR_LONG_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_long_double (gsl_vector_long_double * v); void gsl_sort_vector2_long_double (gsl_vector_long_double * v1, gsl_vector_long_double * v2); int gsl_sort_vector_long_double_index (gsl_permutation * p, const gsl_vector_long_double * v); int gsl_sort_vector_long_double_smallest (long double * dest, const size_t k, const gsl_vector_long_double * v); int gsl_sort_vector_long_double_largest (long double * dest, const size_t k, const gsl_vector_long_double * v); int gsl_sort_vector_long_double_smallest_index (size_t * p, const size_t k, const gsl_vector_long_double * v); int gsl_sort_vector_long_double_largest_index (size_t * p, const size_t k, const gsl_vector_long_double * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_LONG_DOUBLE_H__ */ gsl-1.16/sort/subsetind_source.c0000664000252300025230000000574112171574312013674 00000000000000/* sort/subsetind_source.c * * Copyright (C) 1999,2000,2001 Thomas Walter, Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* find the k-th smallest elements of the vector data, in ascending order */ int FUNCTION (gsl_sort, smallest_index) (size_t * p, const size_t k, const BASE * src, const size_t stride, const size_t n) { size_t i, j; BASE xbound; if (k > n) { GSL_ERROR ("subset length k exceeds vector length n", GSL_EINVAL); } if (k == 0 || n == 0) { return GSL_SUCCESS; } /* take the first element */ j = 1; xbound = src[0 * stride]; p[0] = 0; /* examine the remaining elements */ for (i = 1; i < n; i++) { size_t i1; BASE xi = src[i * stride]; if (j < k) { j++; } else if (xi >= xbound) { continue; } for (i1 = j - 1; i1 > 0 ; i1--) { if (xi > src[p[i1 - 1] * stride]) break; p[i1] = p[i1 - 1]; } p[i1] = i; xbound = src[p[j-1] * stride]; } return GSL_SUCCESS; } int FUNCTION (gsl_sort_vector,smallest_index) (size_t * p, const size_t k, const TYPE (gsl_vector) * v) { return FUNCTION (gsl_sort, smallest_index) (p, k, v->data, v->stride, v->size); } int FUNCTION (gsl_sort, largest_index) (size_t * p, const size_t k, const BASE * src, const size_t stride, const size_t n) { size_t i, j; BASE xbound; if (k > n) { GSL_ERROR ("subset length k exceeds vector length n", GSL_EINVAL); } if (k == 0 || n == 0) { return GSL_SUCCESS; } /* take the first element */ j = 1; xbound = src[0 * stride]; p[0] = 0; /* examine the remaining elements */ for (i = 1; i < n; i++) { size_t i1; BASE xi = src[i * stride]; if (j < k) { j++; } else if (xi <= xbound) { continue; } for (i1 = j - 1; i1 > 0 ; i1--) { if (xi < src[stride * p[i1 - 1]]) break; p[i1] = p[i1 - 1]; } p[i1] = i; xbound = src[stride * p[j-1]]; } return GSL_SUCCESS; } int FUNCTION (gsl_sort_vector,largest_index) (size_t * p, const size_t k, const TYPE (gsl_vector) * v) { return FUNCTION (gsl_sort, largest_index) (p, k, v->data, v->stride, v->size); } gsl-1.16/sort/gsl_sort_short.h0000664000252300025230000000371312171574312013371 00000000000000/* sort/gsl_sort_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_SHORT_H__ #define __GSL_SORT_SHORT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_short (short * data, const size_t stride, const size_t n); void gsl_sort2_short (short * data1, const size_t stride1, short * data2, const size_t stride2, const size_t n); void gsl_sort_short_index (size_t * p, const short * data, const size_t stride, const size_t n); int gsl_sort_short_smallest (short * dest, const size_t k, const short * src, const size_t stride, const size_t n); int gsl_sort_short_smallest_index (size_t * p, const size_t k, const short * src, const size_t stride, const size_t n); int gsl_sort_short_largest (short * dest, const size_t k, const short * src, const size_t stride, const size_t n); int gsl_sort_short_largest_index (size_t * p, const size_t k, const short * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_SHORT_H__ */ gsl-1.16/sort/Makefile.am0000664000252300025230000000206212171574312012175 00000000000000noinst_LTLIBRARIES = libgslsort.la pkginclude_HEADERS = gsl_heapsort.h gsl_sort.h gsl_sort_char.h gsl_sort_double.h gsl_sort_float.h gsl_sort_int.h gsl_sort_long.h gsl_sort_long_double.h gsl_sort_short.h gsl_sort_uchar.h gsl_sort_uint.h gsl_sort_ulong.h gsl_sort_ushort.h gsl_sort_vector.h gsl_sort_vector_char.h gsl_sort_vector_double.h gsl_sort_vector_float.h gsl_sort_vector_int.h gsl_sort_vector_long.h gsl_sort_vector_long_double.h gsl_sort_vector_short.h gsl_sort_vector_uchar.h gsl_sort_vector_uint.h gsl_sort_vector_ulong.h gsl_sort_vector_ushort.h INCLUDES = -I$(top_srcdir) libgslsort_la_SOURCES = sort.c sortind.c sortvec.c sortvecind.c subset.c subsetind.c noinst_HEADERS = sortvec_source.c sortvecind_source.c subset_source.c subsetind_source.c test_source.c test_heapsort.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslsort.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la gsl-1.16/sort/gsl_sort_uint.h0000664000252300025230000000400612171574312013205 00000000000000/* sort/gsl_sort_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_UINT_H__ #define __GSL_SORT_UINT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_uint (unsigned int * data, const size_t stride, const size_t n); void gsl_sort2_uint (unsigned int * data1, const size_t stride1, unsigned int * data2, const size_t stride2, const size_t n); void gsl_sort_uint_index (size_t * p, const unsigned int * data, const size_t stride, const size_t n); int gsl_sort_uint_smallest (unsigned int * dest, const size_t k, const unsigned int * src, const size_t stride, const size_t n); int gsl_sort_uint_smallest_index (size_t * p, const size_t k, const unsigned int * src, const size_t stride, const size_t n); int gsl_sort_uint_largest (unsigned int * dest, const size_t k, const unsigned int * src, const size_t stride, const size_t n); int gsl_sort_uint_largest_index (size_t * p, const size_t k, const unsigned int * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_UINT_H__ */ gsl-1.16/sort/gsl_sort_vector_int.h0000664000252300025230000000350012171574312014400 00000000000000/* sort/gsl_sort_vector_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_INT_H__ #define __GSL_SORT_VECTOR_INT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_int (gsl_vector_int * v); void gsl_sort_vector2_int (gsl_vector_int * v1, gsl_vector_int * v2); int gsl_sort_vector_int_index (gsl_permutation * p, const gsl_vector_int * v); int gsl_sort_vector_int_smallest (int * dest, const size_t k, const gsl_vector_int * v); int gsl_sort_vector_int_largest (int * dest, const size_t k, const gsl_vector_int * v); int gsl_sort_vector_int_smallest_index (size_t * p, const size_t k, const gsl_vector_int * v); int gsl_sort_vector_int_largest_index (size_t * p, const size_t k, const gsl_vector_int * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_INT_H__ */ gsl-1.16/sort/test_source.c0000664000252300025230000002454312171574312012654 00000000000000/* sort/test_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void TYPE (test_sort_vector) (size_t N, size_t stride); void FUNCTION (my, initialize) (TYPE (gsl_vector) * v); void FUNCTION (my, randomize) (TYPE (gsl_vector) * v); int FUNCTION (my, check) (TYPE (gsl_vector) * data, TYPE (gsl_vector) * orig); int FUNCTION (my, pcheck) (gsl_permutation * p, TYPE (gsl_vector) * data, TYPE (gsl_vector) * orig); int FUNCTION (my, scheck) (BASE * x, size_t k, TYPE (gsl_vector) * data); int FUNCTION (my, lcheck) (BASE * x, size_t k, TYPE (gsl_vector) * data); int FUNCTION (my, sicheck) (size_t * p, size_t k, gsl_permutation * perm, TYPE (gsl_vector) * data); int FUNCTION (my, licheck) (size_t * p, size_t k, gsl_permutation * perm, TYPE (gsl_vector) * data); void TYPE (test_sort_vector) (size_t N, size_t stride) { int status; size_t k = N/2; TYPE (gsl_block) * b1 = FUNCTION (gsl_block, calloc) (N * stride); TYPE (gsl_block) * b2 = FUNCTION (gsl_block, calloc) (N * stride); TYPE (gsl_block) * b3 = FUNCTION (gsl_block, calloc) (N * stride); TYPE (gsl_vector) * orig = FUNCTION (gsl_vector, alloc_from_block) (b1, 0, N, stride); TYPE (gsl_vector) * data = FUNCTION (gsl_vector, alloc_from_block) (b2, 0, N, stride); TYPE (gsl_vector) * data2 = FUNCTION (gsl_vector, alloc_from_block) (b3, 0, N, stride); BASE * small = (BASE *)malloc(k * sizeof(BASE)); BASE * large = (BASE *)malloc(k * sizeof(BASE)); size_t * index = (size_t *)malloc(k * sizeof(size_t)); gsl_permutation *p = gsl_permutation_alloc (N); FUNCTION (my, initialize) (orig); /* Already sorted */ FUNCTION (gsl_vector, memcpy) (data, orig); status = FUNCTION (gsl_sort_vector, index) (p, data); status |= FUNCTION (my, pcheck) (p, data, orig); gsl_test (status, "indexing " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); TYPE (gsl_sort_vector) (data); status = FUNCTION (my, check) (data, orig); gsl_test (status, "sorting, " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); FUNCTION (gsl_sort_vector, smallest) (small, k, data); status = FUNCTION (my, scheck) (small, k, orig); gsl_test (status, "smallest, " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); FUNCTION (gsl_sort_vector, largest) (large, k, data); status = FUNCTION (my, lcheck) (large, k, orig); gsl_test (status, "largest, " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); FUNCTION (gsl_sort_vector, smallest_index) (index, k, data); status = FUNCTION (my, sicheck) (index, k, p, data); gsl_test (status, "smallest index, " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); FUNCTION (gsl_sort_vector, largest_index) (index, k, data); status = FUNCTION (my, licheck) (index, k, p, data); gsl_test (status, "largest index, " NAME (gsl_vector) ", n = %u, stride = %u, ordered", N, stride); /* Reverse the data */ FUNCTION (gsl_vector, memcpy) (data, orig); FUNCTION (gsl_vector, reverse) (data); status = FUNCTION (gsl_sort_vector, index) (p, data); status |= FUNCTION (my, pcheck) (p, data, orig); gsl_test (status, "indexing " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); TYPE (gsl_sort_vector) (data); status = FUNCTION (my, check) (data, orig); gsl_test (status, "sorting, " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); FUNCTION (gsl_vector, memcpy) (data, orig); FUNCTION (gsl_vector, reverse) (data); FUNCTION (gsl_vector, memcpy) (data2, data); TYPE (gsl_sort_vector2) (data, data2); status = FUNCTION (my, check) (data, orig); gsl_test (status, "sorting2, " NAME (gsl_vector) ", n = %u, stride = %u, reversed data", N, stride); status = FUNCTION (my, check) (data2, orig); gsl_test (status, "sorting2, " NAME (gsl_vector) ", n = %u, stride = %u, reversed data2", N, stride); FUNCTION (gsl_vector, memcpy) (data, orig); FUNCTION (gsl_vector, reverse) (data); FUNCTION (gsl_sort_vector, smallest) (small, k, data); status = FUNCTION (my, scheck) (small, k, orig); gsl_test (status, "smallest, " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); FUNCTION (gsl_sort_vector, largest) (large, k, data); status = FUNCTION (my, lcheck) (large, k, orig); gsl_test (status, "largest, " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); FUNCTION (gsl_sort_vector, smallest_index) (index, k, data); status = FUNCTION (my, sicheck) (index, k, p, data); gsl_test (status, "smallest index, " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); FUNCTION (gsl_sort_vector, largest_index) (index, k, data); status = FUNCTION (my, licheck) (index, k, p, data); gsl_test (status, "largest index, " NAME (gsl_vector) ", n = %u, stride = %u, reversed", N, stride); /* Perform some shuffling */ FUNCTION (gsl_vector, memcpy) (data, orig); FUNCTION (my, randomize) (data); FUNCTION (gsl_vector, memcpy) (data2, data); TYPE (gsl_sort_vector2) (data, data2); status = FUNCTION (my, check) (data, orig); gsl_test (status, "sorting2, " NAME (gsl_vector) ", n = %u, stride = %u, randomized data", N, stride); status = FUNCTION (my, check) (data2, orig); gsl_test (status, "sorting2, " NAME (gsl_vector) ", n = %u, stride = %u, randomized data2", N, stride); FUNCTION (gsl_vector, memcpy) (data, orig); FUNCTION (my, randomize) (data); FUNCTION (gsl_vector, memcpy) (data2, data); status = FUNCTION (gsl_sort_vector, index) (p, data); status |= FUNCTION (my, pcheck) (p, data, orig); gsl_test (status, "indexing " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); TYPE (gsl_sort_vector) (data); status = FUNCTION (my, check) (data, orig); gsl_test (status, "sorting, " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); FUNCTION (gsl_vector, memcpy) (data, data2); FUNCTION (gsl_sort_vector, smallest) (small, k, data); status = FUNCTION (my, scheck) (small, k, orig); gsl_test (status, "smallest, " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); FUNCTION (gsl_sort_vector, largest) (large, k, data); status = FUNCTION (my, lcheck) (large, k, orig); gsl_test (status, "largest, " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); FUNCTION (gsl_sort_vector, smallest_index) (index, k, data); status = FUNCTION (my, sicheck) (index, k, p, data); gsl_test (status, "smallest index, " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); FUNCTION (gsl_sort_vector, largest_index) (index, k, data); status = FUNCTION (my, licheck) (index, k, p, data); gsl_test (status, "largest index, " NAME (gsl_vector) ", n = %u, stride = %u, randomized", N, stride); FUNCTION (gsl_vector, free) (orig); FUNCTION (gsl_vector, free) (data); FUNCTION (gsl_vector, free) (data2); FUNCTION (gsl_block, free) (b1); FUNCTION (gsl_block, free) (b2); FUNCTION (gsl_block, free) (b3); gsl_permutation_free (p); free (small); free (large); free (index); } void FUNCTION (my, initialize) (TYPE (gsl_vector) * v) { size_t i; ATOMIC k = 0; volatile ATOMIC kk; /* Must be sorted initially */ for (i = 0; i < v->size; i++) { kk = k; k++; /* Prevent overflow */ if (k < kk) k = kk; FUNCTION (gsl_vector, set) (v, i, k); } } void FUNCTION (my, randomize) (TYPE (gsl_vector) * v) { size_t i; for (i = 0; i < v->size; i++) { size_t j = urand (v->size); FUNCTION (gsl_vector, swap_elements) (v, i, j); } } int FUNCTION (my, check) (TYPE (gsl_vector) * data, TYPE (gsl_vector) * orig) { size_t i; for (i = 0; i < data->size; i++) { if (FUNCTION (gsl_vector, get) (data, i) != FUNCTION (gsl_vector, get) (orig, i)) { #if DUMP_ERROR size_t j; for (j = 0 ; j < data->size; j++) { printf("%u: " OUT_FORMAT " " OUT_FORMAT " %c\n", j, FUNCTION (gsl_vector, get) (data, j), FUNCTION (gsl_vector, get) (orig, j), (i == j) ? '*' : ' '); } #endif return GSL_FAILURE; } } return GSL_SUCCESS; } int FUNCTION (my, pcheck) (gsl_permutation * p, TYPE (gsl_vector) * data, TYPE (gsl_vector) * orig) { size_t i; for (i = 0; i < p->size; i++) { if (FUNCTION (gsl_vector, get) (data, p->data[i]) != FUNCTION (gsl_vector, get) (orig, i)) { return GSL_FAILURE; } } return GSL_SUCCESS; } int FUNCTION (my, scheck) (BASE * x, size_t k, TYPE (gsl_vector) * data) { size_t i; for (i = 0; i < k; i++) { if (x[i] != FUNCTION (gsl_vector, get) (data, i)) { return GSL_FAILURE; } } return GSL_SUCCESS; } int FUNCTION (my, lcheck) (BASE * x, size_t k, TYPE (gsl_vector) * data) { size_t i; for (i = 0; i < k; i++) { if (x[i] != FUNCTION (gsl_vector, get) (data, data->size - i - 1)) { return GSL_FAILURE; } } return GSL_SUCCESS; } int FUNCTION (my, sicheck) (size_t * p1, size_t k, gsl_permutation * p, TYPE (gsl_vector) * data) { size_t i; for (i = 0; i < k; i++) { if (FUNCTION(gsl_vector,get)(data,p1[i]) != FUNCTION(gsl_vector,get)(data, p->data[i])) { return GSL_FAILURE; } } return GSL_SUCCESS; } int FUNCTION (my, licheck) (size_t * p1, size_t k, gsl_permutation * p, TYPE (gsl_vector) * data) { size_t i; for (i = 0; i < k; i++) { if (FUNCTION(gsl_vector,get)(data,p1[i]) != FUNCTION(gsl_vector,get)(data, p->data[p->size - i - 1])) { return GSL_FAILURE; } } return GSL_SUCCESS; } gsl-1.16/sort/gsl_sort_long_double.h0000664000252300025230000000411112171574312014514 00000000000000/* sort/gsl_sort_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_LONG_DOUBLE_H__ #define __GSL_SORT_LONG_DOUBLE_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_long_double (long double * data, const size_t stride, const size_t n); void gsl_sort2_long_double (long double * data1, const size_t stride1, long double * data2, const size_t stride2, const size_t n); void gsl_sort_long_double_index (size_t * p, const long double * data, const size_t stride, const size_t n); int gsl_sort_long_double_smallest (long double * dest, const size_t k, const long double * src, const size_t stride, const size_t n); int gsl_sort_long_double_smallest_index (size_t * p, const size_t k, const long double * src, const size_t stride, const size_t n); int gsl_sort_long_double_largest (long double * dest, const size_t k, const long double * src, const size_t stride, const size_t n); int gsl_sort_long_double_largest_index (size_t * p, const size_t k, const long double * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_LONG_DOUBLE_H__ */ gsl-1.16/sort/gsl_sort.h0000664000252300025230000000066312171574312012153 00000000000000#ifndef __GSL_SORT_H__ #define __GSL_SORT_H__ #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_SORT_H__ */ gsl-1.16/sort/gsl_sort_vector_long.h0000664000252300025230000000352612171574312014555 00000000000000/* sort/gsl_sort_vector_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_LONG_H__ #define __GSL_SORT_VECTOR_LONG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_long (gsl_vector_long * v); void gsl_sort_vector2_long (gsl_vector_long * v1, gsl_vector_long * v2); int gsl_sort_vector_long_index (gsl_permutation * p, const gsl_vector_long * v); int gsl_sort_vector_long_smallest (long * dest, const size_t k, const gsl_vector_long * v); int gsl_sort_vector_long_largest (long * dest, const size_t k, const gsl_vector_long * v); int gsl_sort_vector_long_smallest_index (size_t * p, const size_t k, const gsl_vector_long * v); int gsl_sort_vector_long_largest_index (size_t * p, const size_t k, const gsl_vector_long * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_LONG_H__ */ gsl-1.16/sort/gsl_sort_vector.h0000664000252300025230000000102512171574312013526 00000000000000#ifndef __GSL_SORT_VECTOR_H__ #define __GSL_SORT_VECTOR_H__ #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_SORT_VECTOR_H__ */ gsl-1.16/sort/sortvecind_source.c0000664000252300025230000000467712171574312014063 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ static inline void FUNCTION (index, downheap) (size_t * p, const BASE * data, const size_t stride, const size_t N, size_t k); static inline void FUNCTION (index, downheap) (size_t * p, const BASE * data, const size_t stride, const size_t N, size_t k) { const size_t pki = p[k]; while (k <= N / 2) { size_t j = 2 * k; if (j < N && data[p[j] * stride] < data[p[j + 1] * stride]) { j++; } if (!(data[pki * stride] < data[p[j] * stride])) /* avoid infinite loop if nan */ { break; } p[k] = p[j]; k = j; } p[k] = pki; } void FUNCTION (gsl_sort, index) (size_t * p, const BASE * data, const size_t stride, const size_t n) { size_t N; size_t i, k; if (n == 0) { return; /* No data to sort */ } /* set permutation to identity */ for (i = 0 ; i < n ; i++) { p[i] = i ; } /* We have n_data elements, last element is at 'n_data-1', first at '0' Set N to the last element number. */ N = n - 1; k = N / 2; k++; /* Compensate the first use of 'k--' */ do { k--; FUNCTION (index, downheap) (p, data, stride, N, k); } while (k > 0); while (N > 0) { /* first swap the elements */ size_t tmp = p[0]; p[0] = p[N]; p[N] = tmp; /* then process the heap */ N--; FUNCTION (index, downheap) (p, data, stride, N, 0); } } int FUNCTION (gsl_sort_vector, index) (gsl_permutation * permutation, const TYPE (gsl_vector) * v) { if (permutation->size != v->size) { GSL_ERROR ("permutation and vector lengths are not equal", GSL_EBADLEN); } FUNCTION (gsl_sort, index) (permutation->data, v->data, v->stride, v->size) ; return GSL_SUCCESS ; } gsl-1.16/sort/gsl_sort_vector_ushort.h0000664000252300025230000000362212171574312015137 00000000000000/* sort/gsl_sort_vector_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_USHORT_H__ #define __GSL_SORT_VECTOR_USHORT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_ushort (gsl_vector_ushort * v); void gsl_sort_vector2_ushort (gsl_vector_ushort * v1, gsl_vector_ushort * v2); int gsl_sort_vector_ushort_index (gsl_permutation * p, const gsl_vector_ushort * v); int gsl_sort_vector_ushort_smallest (unsigned short * dest, const size_t k, const gsl_vector_ushort * v); int gsl_sort_vector_ushort_largest (unsigned short * dest, const size_t k, const gsl_vector_ushort * v); int gsl_sort_vector_ushort_smallest_index (size_t * p, const size_t k, const gsl_vector_ushort * v); int gsl_sort_vector_ushort_largest_index (size_t * p, const size_t k, const gsl_vector_ushort * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_USHORT_H__ */ gsl-1.16/sort/gsl_sort_uchar.h0000664000252300025230000000403312171574312013330 00000000000000/* sort/gsl_sort_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_UCHAR_H__ #define __GSL_SORT_UCHAR_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_uchar (unsigned char * data, const size_t stride, const size_t n); void gsl_sort2_uchar (unsigned char * data1, const size_t stride1, unsigned char * data2, const size_t stride2, const size_t n); void gsl_sort_uchar_index (size_t * p, const unsigned char * data, const size_t stride, const size_t n); int gsl_sort_uchar_smallest (unsigned char * dest, const size_t k, const unsigned char * src, const size_t stride, const size_t n); int gsl_sort_uchar_smallest_index (size_t * p, const size_t k, const unsigned char * src, const size_t stride, const size_t n); int gsl_sort_uchar_largest (unsigned char * dest, const size_t k, const unsigned char * src, const size_t stride, const size_t n); int gsl_sort_uchar_largest_index (size_t * p, const size_t k, const unsigned char * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_UCHAR_H__ */ gsl-1.16/sort/sortvecind.c0000664000252300025230000000421312171574312012465 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "sortvecind_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/sort/subsetind.c0000664000252300025230000000376012171574312012313 00000000000000/* sort/subsetind.c * * Copyright (C) 2001, 2007 Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ #include #include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "subsetind_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/sort/gsl_sort_vector_short.h0000664000252300025230000000355412171574312014756 00000000000000/* sort/gsl_sort_vector_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_SHORT_H__ #define __GSL_SORT_VECTOR_SHORT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_short (gsl_vector_short * v); void gsl_sort_vector2_short (gsl_vector_short * v1, gsl_vector_short * v2); int gsl_sort_vector_short_index (gsl_permutation * p, const gsl_vector_short * v); int gsl_sort_vector_short_smallest (short * dest, const size_t k, const gsl_vector_short * v); int gsl_sort_vector_short_largest (short * dest, const size_t k, const gsl_vector_short * v); int gsl_sort_vector_short_smallest_index (size_t * p, const size_t k, const gsl_vector_short * v); int gsl_sort_vector_short_largest_index (size_t * p, const size_t k, const gsl_vector_short * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_SHORT_H__ */ gsl-1.16/sort/gsl_sort_int.h0000664000252300025230000000364112171574312013024 00000000000000/* sort/gsl_sort_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_INT_H__ #define __GSL_SORT_INT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_int (int * data, const size_t stride, const size_t n); void gsl_sort2_int (int * data1, const size_t stride1, int * data2, const size_t stride2, const size_t n); void gsl_sort_int_index (size_t * p, const int * data, const size_t stride, const size_t n); int gsl_sort_int_smallest (int * dest, const size_t k, const int * src, const size_t stride, const size_t n); int gsl_sort_int_smallest_index (size_t * p, const size_t k, const int * src, const size_t stride, const size_t n); int gsl_sort_int_largest (int * dest, const size_t k, const int * src, const size_t stride, const size_t n); int gsl_sort_int_largest_index (size_t * p, const size_t k, const int * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_INT_H__ */ gsl-1.16/sort/test_heapsort.c0000664000252300025230000000776312171574312013206 00000000000000/* sort/test_heapsort.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int cmp_dbl (const void *a, const void *b); void test_heapsort (size_t N); void initialize (double *data, size_t N); void cpy (double *dest, double *src, size_t N); void randomize (double *data, size_t n); void reverse (double *data, size_t N); int check (double *data, double *orig, size_t N); int pcheck (size_t * p, double *data, double *orig, size_t N); void test_heapsort (size_t N) { int status; double *orig = (double *) malloc (N * sizeof (double)); double *data = (double *) malloc (N * sizeof (double)); size_t *p = (size_t *) malloc (N * sizeof(size_t)); initialize (orig, N); /* Already sorted */ cpy (data, orig, N); status = gsl_heapsort_index (p, data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status |= pcheck (p, data, orig, N); gsl_test (status, "indexing array, n = %u, ordered", N); gsl_heapsort (data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status = check (data, orig, N); gsl_test (status, "sorting, array, n = %u, ordered", N); /* Reverse the data */ cpy (data, orig, N); reverse (data, N); status = gsl_heapsort_index (p, data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status |= pcheck (p, data, orig, N); gsl_test (status, "indexing array, n = %u, reversed", N); gsl_heapsort (data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status = check (data, orig, N); gsl_test (status, "sorting, array, n = %u, reversed", N); /* Perform some shuffling */ cpy (data, orig, N); randomize (data, N); status = gsl_heapsort_index (p, data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status |= pcheck (p, data, orig, N); gsl_test (status, "indexing array, n = %u, randomized", N); gsl_heapsort (data, N, sizeof (double), (gsl_comparison_fn_t) & cmp_dbl); status = check (data, orig, N); gsl_test (status, "sorting, array, n = %u, randomized", N); free (orig); free (data); free (p); } void initialize (double *data, size_t N) { size_t i; for (i = 0; i < N; i++) { data[i] = i; } } void cpy (double *dest, double *src, size_t N) { size_t i; for (i = 0; i < N; i++) { dest[i] = src[i]; } } void randomize (double *data, size_t N) { size_t i; for (i = 0; i < N; i++) { size_t j = urand (N); double tmp = data[i]; data[i] = data[j]; data[j] = tmp; } } void reverse (double *data, size_t N) { size_t i; for (i = 0; i < N / 2; i++) { size_t j = N - i - 1; { double tmp = data[i]; data[i] = data[j]; data[j] = tmp; } } } int check (double *data, double *orig, size_t N) { size_t i; for (i = 0; i < N; i++) { if (data[i] != orig[i]) { return GSL_FAILURE; } } return GSL_SUCCESS; } int pcheck (size_t * p, double *data, double *orig, size_t N) { size_t i; for (i = 0; i < N; i++) { if (data[p[i]] != orig[i]) { return GSL_FAILURE; } } return GSL_SUCCESS; } int cmp_dbl (const void *a, const void *b) { const double x = *(const double *) a; const double y = *(const double *) b; if (x > y) return 1; if (x == y) return 0; else return -1; } gsl-1.16/sort/gsl_sort_ulong.h0000664000252300025230000000403312171574312013352 00000000000000/* sort/gsl_sort_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_ULONG_H__ #define __GSL_SORT_ULONG_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_ulong (unsigned long * data, const size_t stride, const size_t n); void gsl_sort2_ulong (unsigned long * data1, const size_t stride1, unsigned long * data2, const size_t stride2, const size_t n); void gsl_sort_ulong_index (size_t * p, const unsigned long * data, const size_t stride, const size_t n); int gsl_sort_ulong_smallest (unsigned long * dest, const size_t k, const unsigned long * src, const size_t stride, const size_t n); int gsl_sort_ulong_smallest_index (size_t * p, const size_t k, const unsigned long * src, const size_t stride, const size_t n); int gsl_sort_ulong_largest (unsigned long * dest, const size_t k, const unsigned long * src, const size_t stride, const size_t n); int gsl_sort_ulong_largest_index (size_t * p, const size_t k, const unsigned long * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_ULONG_H__ */ gsl-1.16/sort/gsl_sort_vector_uint.h0000664000252300025230000000354612171574312014577 00000000000000/* sort/gsl_sort_vector_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_UINT_H__ #define __GSL_SORT_VECTOR_UINT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_uint (gsl_vector_uint * v); void gsl_sort_vector2_uint (gsl_vector_uint * v1, gsl_vector_uint * v2); int gsl_sort_vector_uint_index (gsl_permutation * p, const gsl_vector_uint * v); int gsl_sort_vector_uint_smallest (unsigned int * dest, const size_t k, const gsl_vector_uint * v); int gsl_sort_vector_uint_largest (unsigned int * dest, const size_t k, const gsl_vector_uint * v); int gsl_sort_vector_uint_smallest_index (size_t * p, const size_t k, const gsl_vector_uint * v); int gsl_sort_vector_uint_largest_index (size_t * p, const size_t k, const gsl_vector_uint * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_UINT_H__ */ gsl-1.16/sort/gsl_sort_double.h0000664000252300025230000000365712171574312013513 00000000000000/* sort/gsl_sort_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_DOUBLE_H__ #define __GSL_SORT_DOUBLE_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort (double * data, const size_t stride, const size_t n); void gsl_sort2 (double * data1, const size_t stride1, double * data2, const size_t stride2, const size_t n); void gsl_sort_index (size_t * p, const double * data, const size_t stride, const size_t n); int gsl_sort_smallest (double * dest, const size_t k, const double * src, const size_t stride, const size_t n); int gsl_sort_smallest_index (size_t * p, const size_t k, const double * src, const size_t stride, const size_t n); int gsl_sort_largest (double * dest, const size_t k, const double * src, const size_t stride, const size_t n); int gsl_sort_largest_index (size_t * p, const size_t k, const double * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_DOUBLE_H__ */ gsl-1.16/sort/gsl_sort_vector_float.h0000664000252300025230000000355412171574312014724 00000000000000/* sort/gsl_sort_vector_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_FLOAT_H__ #define __GSL_SORT_VECTOR_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_float (gsl_vector_float * v); void gsl_sort_vector2_float (gsl_vector_float * v1, gsl_vector_float * v2); int gsl_sort_vector_float_index (gsl_permutation * p, const gsl_vector_float * v); int gsl_sort_vector_float_smallest (float * dest, const size_t k, const gsl_vector_float * v); int gsl_sort_vector_float_largest (float * dest, const size_t k, const gsl_vector_float * v); int gsl_sort_vector_float_smallest_index (size_t * p, const size_t k, const gsl_vector_float * v); int gsl_sort_vector_float_largest_index (size_t * p, const size_t k, const gsl_vector_float * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_FLOAT_H__ */ gsl-1.16/sort/gsl_sort_ushort.h0000664000252300025230000000406012171574312013552 00000000000000/* sort/gsl_sort_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_USHORT_H__ #define __GSL_SORT_USHORT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_ushort (unsigned short * data, const size_t stride, const size_t n); void gsl_sort2_ushort (unsigned short * data1, const size_t stride1, unsigned short * data2, const size_t stride2, const size_t n); void gsl_sort_ushort_index (size_t * p, const unsigned short * data, const size_t stride, const size_t n); int gsl_sort_ushort_smallest (unsigned short * dest, const size_t k, const unsigned short * src, const size_t stride, const size_t n); int gsl_sort_ushort_smallest_index (size_t * p, const size_t k, const unsigned short * src, const size_t stride, const size_t n); int gsl_sort_ushort_largest (unsigned short * dest, const size_t k, const unsigned short * src, const size_t stride, const size_t n); int gsl_sort_ushort_largest_index (size_t * p, const size_t k, const unsigned short * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_USHORT_H__ */ gsl-1.16/sort/sortvec_source.c0000664000252300025230000000777212171574312013367 00000000000000/* * Implement Heap sort -- direct and indirect sorting * Based on descriptions in Sedgewick "Algorithms in C" * * Copyright (C) 1999 Thomas Walter * * 18 February 2000: Modified for GSL by Brian Gough * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ static inline void FUNCTION (my, downheap) (BASE * data, const size_t stride, const size_t N, size_t k); static inline void FUNCTION (my, downheap2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t N, size_t k); static inline void FUNCTION (my, downheap) (BASE * data, const size_t stride, const size_t N, size_t k) { BASE v = data[k * stride]; while (k <= N / 2) { size_t j = 2 * k; if (j < N && data[j * stride] < data[(j + 1) * stride]) { j++; } if (!(v < data[j * stride])) /* avoid infinite loop if nan */ { break; } data[k * stride] = data[j * stride]; k = j; } data[k * stride] = v; } static inline void FUNCTION (my, downheap2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t N, size_t k) { BASE v1 = data1[k * stride1]; BASE v2 = data2[k * stride2]; while (k <= N / 2) { size_t j = 2 * k; if (j < N && data1[j * stride1] < data1[(j + 1) * stride1]) { j++; } if (!(v1 < data1[j * stride1])) /* avoid infinite loop if nan */ { break; } data1[k * stride1] = data1[j * stride1]; data2[k * stride2] = data2[j * stride2]; k = j; } data1[k * stride1] = v1; data2[k * stride2] = v2; } void TYPE (gsl_sort) (BASE * data, const size_t stride, const size_t n) { size_t N; size_t k; if (n == 0) { return; /* No data to sort */ } /* We have n_data elements, last element is at 'n_data-1', first at '0' Set N to the last element number. */ N = n - 1; k = N / 2; k++; /* Compensate the first use of 'k--' */ do { k--; FUNCTION (my, downheap) (data, stride, N, k); } while (k > 0); while (N > 0) { /* first swap the elements */ BASE tmp = data[0 * stride]; data[0 * stride] = data[N * stride]; data[N * stride] = tmp; /* then process the heap */ N--; FUNCTION (my, downheap) (data, stride, N, 0); } } void TYPE (gsl_sort_vector) (TYPE (gsl_vector) * v) { TYPE (gsl_sort) (v->data, v->stride, v->size) ; } void TYPE (gsl_sort2) (BASE * data1, const size_t stride1, BASE * data2, const size_t stride2, const size_t n) { size_t N; size_t k; if (n == 0) { return; /* No data to sort */ } /* We have n_data elements, last element is at 'n_data-1', first at '0' Set N to the last element number. */ N = n - 1; k = N / 2; k++; /* Compensate the first use of 'k--' */ do { k--; FUNCTION (my, downheap2) (data1, stride1, data2, stride2, N, k); } while (k > 0); while (N > 0) { /* first swap the elements */ BASE tmp; tmp = data1[0 * stride1]; data1[0 * stride1] = data1[N * stride1]; data1[N * stride1] = tmp; tmp = data2[0 * stride2]; data2[0 * stride2] = data2[N * stride2]; data2[N * stride2] = tmp; /* then process the heap */ N--; FUNCTION (my, downheap2) (data1, stride1, data2, stride2, N, 0); } } void TYPE (gsl_sort_vector2) (TYPE (gsl_vector) * v1, TYPE (gsl_vector) * v2) { TYPE (gsl_sort2) (v1->data, v1->stride, v2->data, v2->stride, v1->size) ; } gsl-1.16/sort/gsl_sort_long.h0000664000252300025230000000366612171574312013200 00000000000000/* sort/gsl_sort_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_LONG_H__ #define __GSL_SORT_LONG_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_long (long * data, const size_t stride, const size_t n); void gsl_sort2_long (long * data1, const size_t stride1, long * data2, const size_t stride2, const size_t n); void gsl_sort_long_index (size_t * p, const long * data, const size_t stride, const size_t n); int gsl_sort_long_smallest (long * dest, const size_t k, const long * src, const size_t stride, const size_t n); int gsl_sort_long_smallest_index (size_t * p, const size_t k, const long * src, const size_t stride, const size_t n); int gsl_sort_long_largest (long * dest, const size_t k, const long * src, const size_t stride, const size_t n); int gsl_sort_long_largest_index (size_t * p, const size_t k, const long * src, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_SORT_LONG_H__ */ gsl-1.16/sort/gsl_sort_vector_char.h0000664000252300025230000000352612171574312014533 00000000000000/* sort/gsl_sort_vector_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Thomas Walter, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SORT_VECTOR_CHAR_H__ #define __GSL_SORT_VECTOR_CHAR_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_sort_vector_char (gsl_vector_char * v); void gsl_sort_vector2_char (gsl_vector_char * v1, gsl_vector_char * v2); int gsl_sort_vector_char_index (gsl_permutation * p, const gsl_vector_char * v); int gsl_sort_vector_char_smallest (char * dest, const size_t k, const gsl_vector_char * v); int gsl_sort_vector_char_largest (char * dest, const size_t k, const gsl_vector_char * v); int gsl_sort_vector_char_smallest_index (size_t * p, const size_t k, const gsl_vector_char * v); int gsl_sort_vector_char_largest_index (size_t * p, const size_t k, const gsl_vector_char * v); __END_DECLS #endif /* __GSL_SORT_VECTOR_CHAR_H__ */ gsl-1.16/multiroots/0000775000252300025230000000000012172254163011453 500000000000000gsl-1.16/multiroots/fsolver.c0000664000252300025230000000754112171574312013226 00000000000000/* multiroots/fsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_multiroot_fsolver * gsl_multiroot_fsolver_alloc (const gsl_multiroot_fsolver_type * T, size_t n) { int status; gsl_multiroot_fsolver * s; s = (gsl_multiroot_fsolver *) malloc (sizeof (gsl_multiroot_fsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for multiroot solver struct", GSL_ENOMEM, 0); } s->x = gsl_vector_calloc (n); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->f = gsl_vector_calloc (n); if (s->f == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0); } s->dx = gsl_vector_calloc (n); if (s->dx == 0) { gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for multiroot solver state", GSL_ENOMEM, 0); } s->type = T ; status = (s->type->alloc)(s->state, n); if (status != GSL_SUCCESS) { (s->type->free)(s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to set solver", status, 0); } s->function = NULL; return s; } int gsl_multiroot_fsolver_set (gsl_multiroot_fsolver * s, gsl_multiroot_function * f, const gsl_vector * x) { if (s->x->size != f->n) { GSL_ERROR ("function incompatible with solver size", GSL_EBADLEN); } if (x->size != f->n) { GSL_ERROR ("vector length not compatible with function", GSL_EBADLEN); } s->function = f; gsl_vector_memcpy(s->x,x); return (s->type->set) (s->state, s->function, s->x, s->f, s->dx); } int gsl_multiroot_fsolver_iterate (gsl_multiroot_fsolver * s) { return (s->type->iterate) (s->state, s->function, s->x, s->f, s->dx); } void gsl_multiroot_fsolver_free (gsl_multiroot_fsolver * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); } const char * gsl_multiroot_fsolver_name (const gsl_multiroot_fsolver * s) { return s->type->name; } gsl_vector * gsl_multiroot_fsolver_root (const gsl_multiroot_fsolver * s) { return s->x; } gsl_vector * gsl_multiroot_fsolver_dx (const gsl_multiroot_fsolver * s) { return s->dx; } gsl_vector * gsl_multiroot_fsolver_f (const gsl_multiroot_fsolver * s) { return s->f; } gsl-1.16/multiroots/broyden.c0000664000252300025230000002331512171574312013205 00000000000000/* multiroots/broyden.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include "enorm.c" /* Broyden's method. It is not an efficient or modern algorithm but gives an example of a rank-1 update. C.G. Broyden, "A Class of Methods for Solving Nonlinear Simultaneous Equations", Mathematics of Computation, vol 19 (1965), p 577-593 */ typedef struct { gsl_matrix *H; gsl_matrix *lu; gsl_permutation *permutation; gsl_vector *v; gsl_vector *w; gsl_vector *y; gsl_vector *p; gsl_vector *fnew; gsl_vector *x_trial; double phi; } broyden_state_t; static int broyden_alloc (void *vstate, size_t n); static int broyden_set (void *vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static int broyden_iterate (void *vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static void broyden_free (void *vstate); static int broyden_alloc (void *vstate, size_t n) { broyden_state_t *state = (broyden_state_t *) vstate; gsl_vector *v, *w, *y, *fnew, *x_trial, *p; gsl_permutation *perm; gsl_matrix *m, *H; m = gsl_matrix_calloc (n, n); if (m == 0) { GSL_ERROR ("failed to allocate space for lu", GSL_ENOMEM); } state->lu = m; perm = gsl_permutation_calloc (n); if (perm == 0) { gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for permutation", GSL_ENOMEM); } state->permutation = perm; H = gsl_matrix_calloc (n, n); if (H == 0) { gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for d", GSL_ENOMEM); } state->H = H; v = gsl_vector_calloc (n); if (v == 0) { gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for v", GSL_ENOMEM); } state->v = v; w = gsl_vector_calloc (n); if (w == 0) { gsl_vector_free (v); gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for w", GSL_ENOMEM); } state->w = w; y = gsl_vector_calloc (n); if (y == 0) { gsl_vector_free (w); gsl_vector_free (v); gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for y", GSL_ENOMEM); } state->y = y; fnew = gsl_vector_calloc (n); if (fnew == 0) { gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (v); gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for fnew", GSL_ENOMEM); } state->fnew = fnew; x_trial = gsl_vector_calloc (n); if (x_trial == 0) { gsl_vector_free (fnew); gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (v); gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->x_trial = x_trial; p = gsl_vector_calloc (n); if (p == 0) { gsl_vector_free (x_trial); gsl_vector_free (fnew); gsl_vector_free (y); gsl_vector_free (w); gsl_vector_free (v); gsl_matrix_free (H); gsl_permutation_free (perm); gsl_matrix_free (m); GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->p = p; return GSL_SUCCESS; } static int broyden_set (void *vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { broyden_state_t *state = (broyden_state_t *) vstate; size_t i, j, n = function->n; int signum = 0; GSL_MULTIROOT_FN_EVAL (function, x, f); gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, state->lu); gsl_linalg_LU_decomp (state->lu, state->permutation, &signum); gsl_linalg_LU_invert (state->lu, state->permutation, state->H); for (i = 0; i < n; i++) for (j = 0; j < n; j++) gsl_matrix_set(state->H,i,j,-gsl_matrix_get(state->H,i,j)); for (i = 0; i < n; i++) { gsl_vector_set (dx, i, 0.0); } state->phi = enorm (f); return GSL_SUCCESS; } static int broyden_iterate (void *vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { broyden_state_t *state = (broyden_state_t *) vstate; double phi0, phi1, t, lambda; gsl_matrix *H = state->H; gsl_vector *p = state->p; gsl_vector *y = state->y; gsl_vector *v = state->v; gsl_vector *w = state->w; gsl_vector *fnew = state->fnew; gsl_vector *x_trial = state->x_trial; gsl_matrix *lu = state->lu; gsl_permutation *perm = state->permutation; size_t i, j, iter; size_t n = function->n; /* p = H f */ for (i = 0; i < n; i++) { double sum = 0; for (j = 0; j < n; j++) { sum += gsl_matrix_get (H, i, j) * gsl_vector_get (f, j); } gsl_vector_set (p, i, sum); } t = 1; iter = 0; phi0 = state->phi; new_step: for (i = 0; i < n; i++) { double pi = gsl_vector_get (p, i); double xi = gsl_vector_get (x, i); gsl_vector_set (x_trial, i, xi + t * pi); } { int status = GSL_MULTIROOT_FN_EVAL (function, x_trial, fnew); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } phi1 = enorm (fnew); iter++ ; if (phi1 > phi0 && iter < 10 && t > 0.1) { /* full step goes uphill, take a reduced step instead */ double theta = phi1 / phi0; t *= (sqrt (1.0 + 6.0 * theta) - 1.0) / (3.0 * theta); goto new_step; } if (phi1 > phi0) { /* need to recompute Jacobian */ int signum = 0; gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, lu); for (i = 0; i < n; i++) for (j = 0; j < n; j++) gsl_matrix_set(lu,i,j,-gsl_matrix_get(lu,i,j)); gsl_linalg_LU_decomp (lu, perm, &signum); gsl_linalg_LU_invert (lu, perm, H); gsl_linalg_LU_solve (lu, perm, f, p); t = 1; for (i = 0; i < n; i++) { double pi = gsl_vector_get (p, i); double xi = gsl_vector_get (x, i); gsl_vector_set (x_trial, i, xi + t * pi); } { int status = GSL_MULTIROOT_FN_EVAL (function, x_trial, fnew); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } phi1 = enorm (fnew); } /* y = f' - f */ for (i = 0; i < n; i++) { double yi = gsl_vector_get (fnew, i) - gsl_vector_get (f, i); gsl_vector_set (y, i, yi); } /* v = H y */ for (i = 0; i < n; i++) { double sum = 0; for (j = 0; j < n; j++) { sum += gsl_matrix_get (H, i, j) * gsl_vector_get (y, j); } gsl_vector_set (v, i, sum); } /* lambda = p . v */ lambda = 0; for (i = 0; i < n; i++) { lambda += gsl_vector_get (p, i) * gsl_vector_get (v, i); } if (lambda == 0) { GSL_ERROR ("approximation to Jacobian has collapsed", GSL_EZERODIV) ; } /* v' = v + t * p */ for (i = 0; i < n; i++) { double vi = gsl_vector_get (v, i) + t * gsl_vector_get (p, i); gsl_vector_set (v, i, vi); } /* w^T = p^T H */ for (i = 0; i < n; i++) { double sum = 0; for (j = 0; j < n; j++) { sum += gsl_matrix_get (H, j, i) * gsl_vector_get (p, j); } gsl_vector_set (w, i, sum); } /* Hij -> Hij - (vi wj / lambda) */ for (i = 0; i < n; i++) { double vi = gsl_vector_get (v, i); for (j = 0; j < n; j++) { double wj = gsl_vector_get (w, j); double Hij = gsl_matrix_get (H, i, j) - vi * wj / lambda; gsl_matrix_set (H, i, j, Hij); } } /* copy fnew into f */ gsl_vector_memcpy (f, fnew); /* copy x_trial into x */ gsl_vector_memcpy (x, x_trial); for (i = 0; i < n; i++) { double pi = gsl_vector_get (p, i); gsl_vector_set (dx, i, t * pi); } state->phi = phi1; return GSL_SUCCESS; } static void broyden_free (void *vstate) { broyden_state_t *state = (broyden_state_t *) vstate; gsl_matrix_free (state->H); gsl_matrix_free (state->lu); gsl_permutation_free (state->permutation); gsl_vector_free (state->v); gsl_vector_free (state->w); gsl_vector_free (state->y); gsl_vector_free (state->p); gsl_vector_free (state->fnew); gsl_vector_free (state->x_trial); } static const gsl_multiroot_fsolver_type broyden_type = {"broyden", /* name */ sizeof (broyden_state_t), &broyden_alloc, &broyden_set, &broyden_iterate, &broyden_free}; const gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_broyden = &broyden_type; gsl-1.16/multiroots/test.c0000664000252300025230000001560612171574312012526 00000000000000/* multiroots/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "test_funcs.h" int test_fdf (const char * desc, gsl_multiroot_function_fdf * function, initpt_function initpt, double factor, const gsl_multiroot_fdfsolver_type * T); int test_f (const char * desc, gsl_multiroot_function_fdf * fdf, initpt_function initpt, double factor, const gsl_multiroot_fsolver_type * T); int main (void) { const gsl_multiroot_fsolver_type * fsolvers[5] ; const gsl_multiroot_fsolver_type ** T1 ; const gsl_multiroot_fdfsolver_type * fdfsolvers[5] ; const gsl_multiroot_fdfsolver_type ** T2 ; double f; fsolvers[0] = gsl_multiroot_fsolver_dnewton; fsolvers[1] = gsl_multiroot_fsolver_broyden; fsolvers[2] = gsl_multiroot_fsolver_hybrid; fsolvers[3] = gsl_multiroot_fsolver_hybrids; fsolvers[4] = 0; fdfsolvers[0] = gsl_multiroot_fdfsolver_newton; fdfsolvers[1] = gsl_multiroot_fdfsolver_gnewton; fdfsolvers[2] = gsl_multiroot_fdfsolver_hybridj; fdfsolvers[3] = gsl_multiroot_fdfsolver_hybridsj; fdfsolvers[4] = 0; gsl_ieee_env_setup(); f = 1.0 ; T1 = fsolvers ; while (*T1 != 0) { test_f ("Rosenbrock", &rosenbrock, rosenbrock_initpt, f, *T1); test_f ("Roth", &roth, roth_initpt, f, *T1); test_f ("Powell badly scaled", &powellscal, powellscal_initpt, f, *T1); test_f ("Brown badly scaled", &brownscal, brownscal_initpt, f, *T1); test_f ("Powell singular", &powellsing, powellsing_initpt, f, *T1); test_f ("Wood", &wood, wood_initpt, f, *T1); test_f ("Helical", &helical, helical_initpt, f, *T1); test_f ("Discrete BVP", &dbv, dbv_initpt, f, *T1); test_f ("Trig", &trig, trig_initpt, f, *T1); T1++; } T2 = fdfsolvers ; while (*T2 != 0) { test_fdf ("Rosenbrock", &rosenbrock, rosenbrock_initpt, f, *T2); test_fdf ("Roth", &roth, roth_initpt, f, *T2); test_fdf ("Powell badly scaled", &powellscal, powellscal_initpt, f, *T2); test_fdf ("Brown badly scaled", &brownscal, brownscal_initpt, f, *T2); test_fdf ("Powell singular", &powellsing, powellsing_initpt, f, *T2); test_fdf ("Wood", &wood, wood_initpt, f, *T2); test_fdf ("Helical", &helical, helical_initpt, f, *T2); test_fdf ("Discrete BVP", &dbv, dbv_initpt, f, *T2); test_fdf ("Trig", &trig, trig_initpt, f, *T2); T2++; } exit (gsl_test_summary ()); } void scale (gsl_vector * x, double factor); void scale (gsl_vector * x, double factor) { size_t i, n = x->size; if (gsl_vector_isnull(x)) { for (i = 0; i < n; i++) { gsl_vector_set (x, i, factor); } } else { for (i = 0; i < n; i++) { double xi = gsl_vector_get(x, i); gsl_vector_set(x, i, factor * xi); } } } int test_fdf (const char * desc, gsl_multiroot_function_fdf * function, initpt_function initpt, double factor, const gsl_multiroot_fdfsolver_type * T) { int status; double residual = 0; size_t i, n = function->n, iter = 0; gsl_vector *x = gsl_vector_alloc (n); gsl_matrix *J = gsl_matrix_alloc (n, n); gsl_multiroot_fdfsolver *s; (*initpt) (x); if (factor != 1.0) scale(x, factor); s = gsl_multiroot_fdfsolver_alloc (T, n); gsl_multiroot_fdfsolver_set (s, function, x); do { iter++; status = gsl_multiroot_fdfsolver_iterate (s); if (status) break ; status = gsl_multiroot_test_residual (s->f, 0.0000001); } while (status == GSL_CONTINUE && iter < 1000); #ifdef DEBUG printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n"); printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n"); #endif #ifdef TEST_JACOBIAN { double r,sum; size_t j; gsl_multiroot_function f1 ; f1.f = function->f ; f1.n = function->n ; f1.params = function->params ; gsl_multiroot_fdjacobian (&f1, s->x, s->f, GSL_SQRT_DBL_EPSILON, J); /* compare J and s->J */ r=0;sum=0; for (i = 0; i < n; i++) for (j = 0; j< n ; j++) { double u = gsl_matrix_get(J,i,j); double su = gsl_matrix_get(s->J, i, j); r = fabs(u - su)/(1e-6 + 1e-6 * fabs(u)); sum+=r; if (fabs(u - su) > 1e-6 + 1e-6 * fabs(u)) printf("broken jacobian %g\n", r); } printf("avg r = %g\n", sum/(n*n)); } #endif for (i = 0; i < n ; i++) { residual += fabs(gsl_vector_get(s->f, i)); } gsl_multiroot_fdfsolver_free (s); gsl_matrix_free(J); gsl_vector_free(x); gsl_test(status, "%s on %s (%g), %u iterations, residual = %.2g", T->name, desc, factor, iter, residual); return status; } int test_f (const char * desc, gsl_multiroot_function_fdf * fdf, initpt_function initpt, double factor, const gsl_multiroot_fsolver_type * T) { int status; size_t i, n = fdf->n, iter = 0; double residual = 0; gsl_vector *x; gsl_multiroot_fsolver *s; gsl_multiroot_function function; function.f = fdf->f; function.params = fdf->params; function.n = n ; x = gsl_vector_alloc (n); (*initpt) (x); if (factor != 1.0) scale(x, factor); s = gsl_multiroot_fsolver_alloc (T, n); gsl_multiroot_fsolver_set (s, &function, x); /* printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n"); */ /* printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n"); */ do { iter++; status = gsl_multiroot_fsolver_iterate (s); if (status) break ; status = gsl_multiroot_test_residual (s->f, 0.0000001); } while (status == GSL_CONTINUE && iter < 1000); #ifdef DEBUG printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("\n"); printf("f "); gsl_vector_fprintf (stdout, s->f, "%g"); printf("\n"); #endif for (i = 0; i < n ; i++) { residual += fabs(gsl_vector_get(s->f, i)); } gsl_multiroot_fsolver_free (s); gsl_vector_free(x); gsl_test(status, "%s on %s (%g), %u iterations, residual = %.2g", T->name, desc, factor, iter, residual); return status; } gsl-1.16/multiroots/hybrid.c0000664000252300025230000003512412171574312013025 00000000000000/* multiroots/hybrid.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include "dogleg.c" typedef struct { size_t iter; size_t ncfail; size_t ncsuc; size_t nslow1; size_t nslow2; double fnorm; double delta; gsl_matrix *J; gsl_matrix *q; gsl_matrix *r; gsl_vector *tau; gsl_vector *diag; gsl_vector *qtf; gsl_vector *newton; gsl_vector *gradient; gsl_vector *x_trial; gsl_vector *f_trial; gsl_vector *df; gsl_vector *qtdf; gsl_vector *rdx; gsl_vector *w; gsl_vector *v; } hybrid_state_t; static int hybrid_alloc (void *vstate, size_t n); static int hybrid_set (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static int hybrids_set (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static int hybrid_set_impl (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale); static int hybrid_iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static void hybrid_free (void *vstate); static int hybrid_iterate_impl (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale); static int hybrid_alloc (void *vstate, size_t n) { hybrid_state_t *state = (hybrid_state_t *) vstate; gsl_matrix *J, *q, *r; gsl_vector *tau, *diag, *qtf, *newton, *gradient, *x_trial, *f_trial, *df, *qtdf, *rdx, *w, *v; J = gsl_matrix_calloc (n, n); if (J == 0) { GSL_ERROR ("failed to allocate space for J", GSL_ENOMEM); } state->J = J; q = gsl_matrix_calloc (n, n); if (q == 0) { gsl_matrix_free (J); GSL_ERROR ("failed to allocate space for q", GSL_ENOMEM); } state->q = q; r = gsl_matrix_calloc (n, n); if (r == 0) { gsl_matrix_free (J); gsl_matrix_free (q); GSL_ERROR ("failed to allocate space for r", GSL_ENOMEM); } state->r = r; tau = gsl_vector_calloc (n); if (tau == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); GSL_ERROR ("failed to allocate space for tau", GSL_ENOMEM); } state->tau = tau; diag = gsl_vector_calloc (n); if (diag == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); GSL_ERROR ("failed to allocate space for diag", GSL_ENOMEM); } state->diag = diag; qtf = gsl_vector_calloc (n); if (qtf == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); GSL_ERROR ("failed to allocate space for qtf", GSL_ENOMEM); } state->qtf = qtf; newton = gsl_vector_calloc (n); if (newton == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); GSL_ERROR ("failed to allocate space for newton", GSL_ENOMEM); } state->newton = newton; gradient = gsl_vector_calloc (n); if (gradient == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); GSL_ERROR ("failed to allocate space for gradient", GSL_ENOMEM); } state->gradient = gradient; x_trial = gsl_vector_calloc (n); if (x_trial == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->x_trial = x_trial; f_trial = gsl_vector_calloc (n); if (f_trial == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); GSL_ERROR ("failed to allocate space for f_trial", GSL_ENOMEM); } state->f_trial = f_trial; df = gsl_vector_calloc (n); if (df == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); GSL_ERROR ("failed to allocate space for df", GSL_ENOMEM); } state->df = df; qtdf = gsl_vector_calloc (n); if (qtdf == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); GSL_ERROR ("failed to allocate space for qtdf", GSL_ENOMEM); } state->qtdf = qtdf; rdx = gsl_vector_calloc (n); if (rdx == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); GSL_ERROR ("failed to allocate space for rdx", GSL_ENOMEM); } state->rdx = rdx; w = gsl_vector_calloc (n); if (w == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); gsl_vector_free (rdx); GSL_ERROR ("failed to allocate space for w", GSL_ENOMEM); } state->w = w; v = gsl_vector_calloc (n); if (v == 0) { gsl_matrix_free (J); gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); gsl_vector_free (rdx); gsl_vector_free (w); GSL_ERROR ("failed to allocate space for v", GSL_ENOMEM); } state->v = v; return GSL_SUCCESS; } static int hybrid_set (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { int status = hybrid_set_impl (vstate, func, x, f, dx, 0); return status; } static int hybrids_set (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { int status = hybrid_set_impl (vstate, func, x, f, dx, 1); return status; } static int hybrid_set_impl (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale) { hybrid_state_t *state = (hybrid_state_t *) vstate; gsl_matrix *J = state->J; gsl_matrix *q = state->q; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; int status; status = GSL_MULTIROOT_FN_EVAL (func, x, f); if (status) { return status; } status = gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J); if (status) { return status; } state->iter = 1; state->fnorm = enorm (f); state->ncfail = 0; state->ncsuc = 0; state->nslow1 = 0; state->nslow2 = 0; gsl_vector_set_all (dx, 0.0); /* Store column norms in diag */ if (scale) compute_diag (J, diag); else gsl_vector_set_all (diag, 1.0); /* Set delta to factor |D x| or to factor if |D x| is zero */ state->delta = compute_delta (diag, x); /* Factorize J into QR decomposition */ status = gsl_linalg_QR_decomp (J, tau); if (status) { return status; } status = gsl_linalg_QR_unpack (J, tau, q, r); return status; } static int hybrid_iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { int status = hybrid_iterate_impl (vstate, func, x, f, dx, 0); return status; } static int hybrids_iterate (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { int status = hybrid_iterate_impl (vstate, func, x, f, dx, 1); return status; } static int hybrid_iterate_impl (void *vstate, gsl_multiroot_function * func, gsl_vector * x, gsl_vector * f, gsl_vector * dx, int scale) { hybrid_state_t *state = (hybrid_state_t *) vstate; const double fnorm = state->fnorm; gsl_matrix *J = state->J; gsl_matrix *q = state->q; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *qtf = state->qtf; gsl_vector *x_trial = state->x_trial; gsl_vector *f_trial = state->f_trial; gsl_vector *df = state->df; gsl_vector *qtdf = state->qtdf; gsl_vector *rdx = state->rdx; gsl_vector *w = state->w; gsl_vector *v = state->v; double prered, actred; double pnorm, fnorm1, fnorm1p; double ratio; double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001; /* Compute qtf = Q^T f */ compute_qtf (q, f, qtf); /* Compute dogleg step */ dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx); /* Take a trial step */ compute_trial_step (x, dx, state->x_trial); pnorm = scaled_enorm (diag, dx); if (state->iter == 1) { if (pnorm < state->delta) { state->delta = pnorm; } } /* Evaluate function at x + p */ { int status = GSL_MULTIROOT_FN_EVAL (func, x_trial, f_trial); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } /* Set df = f_trial - f */ compute_df (f_trial, f, df); /* Compute the scaled actual reduction */ fnorm1 = enorm (f_trial); actred = compute_actual_reduction (fnorm, fnorm1); /* Compute rdx = R dx */ compute_rdx (r, dx, rdx); /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */ fnorm1p = enorm_sum (qtf, rdx); prered = compute_predicted_reduction (fnorm, fnorm1p); /* Compute the ratio of the actual to predicted reduction */ if (prered > 0) { ratio = actred / prered; } else { ratio = 0; } /* Update the step bound */ if (ratio < p1) { state->ncsuc = 0; state->ncfail++; state->delta *= p5; } else { state->ncfail = 0; state->ncsuc++; if (ratio >= p5 || state->ncsuc > 1) state->delta = GSL_MAX (state->delta, pnorm / p5); if (fabs (ratio - 1) <= p1) state->delta = pnorm / p5; } /* Test for successful iteration */ if (ratio >= p0001) { gsl_vector_memcpy (x, x_trial); gsl_vector_memcpy (f, f_trial); state->fnorm = fnorm1; state->iter++; } /* Determine the progress of the iteration */ state->nslow1++; if (actred >= p001) state->nslow1 = 0; if (actred >= p1) state->nslow2 = 0; if (state->ncfail == 2) { gsl_multiroot_fdjacobian (func, x, f, GSL_SQRT_DBL_EPSILON, J); state->nslow2++; if (state->iter == 1) { if (scale) compute_diag (J, diag); state->delta = compute_delta (diag, x); } else { if (scale) update_diag (J, diag); } /* Factorize J into QR decomposition */ gsl_linalg_QR_decomp (J, tau); gsl_linalg_QR_unpack (J, tau, q, r); return GSL_SUCCESS; } /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|, v = D^2 dx/|dx| */ compute_qtf (q, df, qtdf); compute_wv (qtdf, rdx, dx, diag, pnorm, w, v); /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */ gsl_linalg_QR_update (q, r, w, v); /* No progress as measured by jacobian evaluations */ if (state->nslow2 == 5) { return GSL_ENOPROGJ; } /* No progress as measured by function evaluations */ if (state->nslow1 == 10) { return GSL_ENOPROG; } return GSL_SUCCESS; } static void hybrid_free (void *vstate) { hybrid_state_t *state = (hybrid_state_t *) vstate; gsl_vector_free (state->v); gsl_vector_free (state->w); gsl_vector_free (state->rdx); gsl_vector_free (state->qtdf); gsl_vector_free (state->df); gsl_vector_free (state->f_trial); gsl_vector_free (state->x_trial); gsl_vector_free (state->gradient); gsl_vector_free (state->newton); gsl_vector_free (state->qtf); gsl_vector_free (state->diag); gsl_vector_free (state->tau); gsl_matrix_free (state->r); gsl_matrix_free (state->q); gsl_matrix_free (state->J); } static const gsl_multiroot_fsolver_type hybrid_type = { "hybrid", /* name */ sizeof (hybrid_state_t), &hybrid_alloc, &hybrid_set, &hybrid_iterate, &hybrid_free }; static const gsl_multiroot_fsolver_type hybrids_type = { "hybrids", /* name */ sizeof (hybrid_state_t), &hybrid_alloc, &hybrids_set, &hybrids_iterate, &hybrid_free }; const gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_hybrid = &hybrid_type; const gsl_multiroot_fsolver_type *gsl_multiroot_fsolver_hybrids = &hybrids_type; gsl-1.16/multiroots/fdjac.c0000664000252300025230000000561212171574312012612 00000000000000/* multiroots/fdjac.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include int gsl_multiroot_fdjacobian (gsl_multiroot_function * F, const gsl_vector * x, const gsl_vector * f, double epsrel, gsl_matrix * jacobian) { const size_t n = x->size; const size_t m = f->size; const size_t n1 = jacobian->size1; const size_t n2 = jacobian->size2; int status = 0; if (m != n1 || n != n2) { GSL_ERROR ("function and jacobian are not conformant", GSL_EBADLEN); } { size_t i,j; gsl_vector *x1, *f1; x1 = gsl_vector_alloc (n); if (x1 == 0) { GSL_ERROR ("failed to allocate space for x1 workspace", GSL_ENOMEM); } f1 = gsl_vector_alloc (m); if (f1 == 0) { gsl_vector_free (x1); GSL_ERROR ("failed to allocate space for f1 workspace", GSL_ENOMEM); } gsl_vector_memcpy (x1, x); /* copy x into x1 */ for (j = 0; j < n; j++) { double xj = gsl_vector_get (x, j); double dx = epsrel * fabs (xj); if (dx == 0) { dx = epsrel; } gsl_vector_set (x1, j, xj + dx); { int f_stat = GSL_MULTIROOT_FN_EVAL (F, x1, f1); if (f_stat != GSL_SUCCESS) { status = GSL_EBADFUNC; break; /* n.b. avoid memory leak for x1,f1 */ } } gsl_vector_set (x1, j, xj); for (i = 0; i < m; i++) { double g1 = gsl_vector_get (f1, i); double g0 = gsl_vector_get (f, i); gsl_matrix_set (jacobian, i, j, (g1 - g0) / dx); } { gsl_vector_view col = gsl_matrix_column (jacobian, j); int null_col = gsl_vector_isnull (&col.vector); /* if column is null, return an error - this may be due to dx being too small. Try increasing epsrel */ if (null_col) { status = GSL_ESING; } } } gsl_vector_free (x1); gsl_vector_free (f1); } if (status) return status; else return GSL_SUCCESS; } gsl-1.16/multiroots/convergence.c0000664000252300025230000000400112171574312014030 00000000000000/* multiroots/convergence.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_multiroot_test_delta (const gsl_vector * dx, const gsl_vector * x, double epsabs, double epsrel) { size_t i; int ok = 1; const size_t n = x->size ; if (epsrel < 0.0) { GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL); } for (i = 0 ; i < n ; i++) { double xi = gsl_vector_get(x,i); double dxi = gsl_vector_get(dx,i); double tolerance = epsabs + epsrel * fabs(xi) ; if (fabs(dxi) < tolerance || dxi == 0) { ok = 1; } else { ok = 0; break; } } if (ok) return GSL_SUCCESS ; return GSL_CONTINUE; } int gsl_multiroot_test_residual (const gsl_vector * f, double epsabs) { size_t i; double residual = 0; const size_t n = f->size; if (epsabs < 0.0) { GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); } for (i = 0 ; i < n ; i++) { double fi = gsl_vector_get(f, i); residual += fabs(fi); } if (residual < epsabs) { return GSL_SUCCESS; } return GSL_CONTINUE ; } gsl-1.16/multiroots/Makefile.in0000664000252300025230000010624712172253756013461 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ # -*-makefile-*- VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = multiroots DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmultiroots_la_LIBADD = am_libgslmultiroots_la_OBJECTS = fdjac.lo fsolver.lo fdfsolver.lo \ convergence.lo newton.lo gnewton.lo dnewton.lo broyden.lo \ hybrid.lo hybridj.lo libgslmultiroots_la_OBJECTS = $(am_libgslmultiroots_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_funcs.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmultiroots.la ../linalg/libgsllinalg.la \ ../blas/libgslblas.la ../cblas/libgslcblas.la \ ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmultiroots_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmultiroots_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmultiroots.la pkginclude_HEADERS = gsl_multiroots.h noinst_HEADERS = enorm.c dogleg.c INCLUDES = -I$(top_srcdir) libgslmultiroots_la_SOURCES = fdjac.c fsolver.c fdfsolver.c convergence.c newton.c gnewton.c dnewton.c broyden.c hybrid.c hybridj.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test_funcs.h test_LDADD = libgslmultiroots.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu multiroots/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu multiroots/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmultiroots.la: $(libgslmultiroots_la_OBJECTS) $(libgslmultiroots_la_DEPENDENCIES) $(EXTRA_libgslmultiroots_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmultiroots_la_OBJECTS) $(libgslmultiroots_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/broyden.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/convergence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dnewton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdfsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdjac.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gnewton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hybrid.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hybridj.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/newton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_funcs.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/multiroots/test_funcs.c0000664000252300025230000003755712171574312013735 00000000000000/* multiroots/test_funcs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "test_funcs.h" /* For information on testing see the following paper, J.J More, B.S. Garbow, K.E. Hillstrom, "Testing Unconstrained Optimization Software", ACM Transactions on Mathematical Software, Vol 7, No 1, (1981) p 17-41 */ /* Rosenbrock Function */ gsl_multiroot_function_fdf rosenbrock = {&rosenbrock_f, &rosenbrock_df, &rosenbrock_fdf, 2, 0}; void rosenbrock_initpt (gsl_vector * x) { gsl_vector_set (x, 0, -1.2); gsl_vector_set (x, 1, 1.0); } int rosenbrock_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double y0 = 1 - x0; double y1 = 10 * (x1 - x0 * x0); gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int rosenbrock_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double df00 = -1; double df01 = 0; double df10 = -20 * x0; double df11 = 10; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int rosenbrock_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { rosenbrock_f (x, params, f); rosenbrock_df (x, params, df); return GSL_SUCCESS; } /* Freudenstein and Roth function */ gsl_multiroot_function_fdf roth = {&roth_f, &roth_df, &roth_fdf, 2, 0}; void roth_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 4.5); /* changed from the value in the paper */ gsl_vector_set (x, 1, 3.5); /* otherwise the problem is too hard */ } int roth_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double y0 = -13.0 + x0 + ((5.0 - x1)*x1 - 2.0)*x1; double y1 = -29.0 + x0 + ((x1 + 1.0)*x1 - 14.0)*x1; gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int roth_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x1 = gsl_vector_get (x, 1); double df00 = 1; double df01 = -3 * x1 * x1 + 10 * x1 - 2; double df10 = 1; double df11 = 3 * x1 * x1 + 2 * x1 - 14; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int roth_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { roth_f (x, params, f); roth_df (x, params, df); return GSL_SUCCESS; } /* Powell badly scaled function */ gsl_multiroot_function_fdf powellscal = {&powellscal_f, &powellscal_df, &powellscal_fdf, 2, 0}; void powellscal_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 0.0); gsl_vector_set (x, 1, 1.0); } int powellscal_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double y0 = 10000.0 * x0 * x1 - 1.0; double y1 = exp (-x0) + exp (-x1) - 1.0001; gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int powellscal_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double df00 = 10000.0 * x1, df01 = 10000.0 * x0; double df10 = -exp (-x0), df11 = -exp (-x1); gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int powellscal_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { powellscal_f (x, params, f); powellscal_df (x, params, df); return GSL_SUCCESS; } /* Brown badly scaled function */ gsl_multiroot_function_fdf brownscal = {&brownscal_f, &brownscal_df, &brownscal_fdf, 2, 0}; void brownscal_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 1.0); gsl_vector_set (x, 1, 1.0); } int brownscal_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double y0 = x0 - 1e6; double y1 = x0 * x1 - 2; gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int brownscal_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double df00 = 1.0, df01 = 0.0; double df10 = x1, df11 = x0; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int brownscal_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { brownscal_f (x, params, f); brownscal_df (x, params, df); return GSL_SUCCESS; } /* Powell Singular Function */ gsl_multiroot_function_fdf powellsing = {&powellsing_f, &powellsing_df, &powellsing_fdf, 4, 0}; void powellsing_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 3.0); gsl_vector_set (x, 1, -1.0); gsl_vector_set (x, 2, 0.0); gsl_vector_set (x, 3, 1.0); } int powellsing_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); double y0 = x0 + 10 * x1; double y1 = sqrt (5.0) * (x2 - x3); double y2 = pow (x1 - 2 * x2, 2.0); double y3 = sqrt (10.0) * pow (x0 - x3, 2.0); gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); gsl_vector_set (f, 2, y2); gsl_vector_set (f, 3, y3); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int powellsing_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); double df00 = 1, df01 = 10, df02 = 0, df03 = 0; double df10 = 0, df11 = 0, df12 = sqrt (5.0), df13 = -df12; double df20 = 0, df21 = 2 * (x1 - 2 * x2), df22 = -2 * df21, df23 = 0; double df30 = 2 * sqrt (10.0) * (x0 - x3), df31 = 0, df32 = 0, df33 = -df30; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 0, 2, df02); gsl_matrix_set (df, 0, 3, df03); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); gsl_matrix_set (df, 1, 2, df12); gsl_matrix_set (df, 1, 3, df13); gsl_matrix_set (df, 2, 0, df20); gsl_matrix_set (df, 2, 1, df21); gsl_matrix_set (df, 2, 2, df22); gsl_matrix_set (df, 2, 3, df23); gsl_matrix_set (df, 3, 0, df30); gsl_matrix_set (df, 3, 1, df31); gsl_matrix_set (df, 3, 2, df32); gsl_matrix_set (df, 3, 3, df33); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int powellsing_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { powellsing_f (x, params, f); powellsing_df (x, params, df); return GSL_SUCCESS; } /* Wood function */ gsl_multiroot_function_fdf wood = {&wood_f, &wood_df, &wood_fdf, 4, 0}; void wood_initpt (gsl_vector * x) { gsl_vector_set (x, 0, -3.0); gsl_vector_set (x, 1, -1.0); gsl_vector_set (x, 2, -3.0); gsl_vector_set (x, 3, -1.0); } int wood_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); double t1 = x1 - x0 * x0; double t2 = x3 - x2 * x2; double y0 = -200.0 * x0 * t1 - (1 - x0); double y1 = 200.0 * t1 + 20.2 * (x1 - 1) + 19.8 * (x3 - 1); double y2 = -180.0 * x2 * t2 - (1 - x2); double y3 = 180.0 * t2 + 20.2 * (x3 - 1) + 19.8 * (x1 - 1); gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); gsl_vector_set (f, 2, y2); gsl_vector_set (f, 3, y3); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int wood_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); double t1 = x1 - 3 * x0 * x0; double t2 = x3 - 3 * x2 * x2; double df00 = -200.0 * t1 + 1, df01 = -200.0 * x0, df02 = 0, df03 = 0; double df10 = -400.0*x0, df11 = 200.0 + 20.2, df12 = 0, df13 = 19.8; double df20 = 0, df21 = 0, df22 = -180.0 * t2 + 1, df23 = -180.0 * x2; double df30 = 0, df31 = 19.8, df32 = -2 * 180 * x2, df33 = 180.0 + 20.2; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 0, 2, df02); gsl_matrix_set (df, 0, 3, df03); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); gsl_matrix_set (df, 1, 2, df12); gsl_matrix_set (df, 1, 3, df13); gsl_matrix_set (df, 2, 0, df20); gsl_matrix_set (df, 2, 1, df21); gsl_matrix_set (df, 2, 2, df22); gsl_matrix_set (df, 2, 3, df23); gsl_matrix_set (df, 3, 0, df30); gsl_matrix_set (df, 3, 1, df31); gsl_matrix_set (df, 3, 2, df32); gsl_matrix_set (df, 3, 3, df33); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int wood_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { wood_f (x, params, f); wood_df (x, params, df); return GSL_SUCCESS; } /* Helical Valley Function */ gsl_multiroot_function_fdf helical = {&helical_f, &helical_df, &helical_fdf, 3, 0}; void helical_initpt (gsl_vector * x) { gsl_vector_set (x, 0, -1.0); gsl_vector_set (x, 1, 0.0); gsl_vector_set (x, 2, 0.0); } int helical_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double t1, t2; double y0, y1, y2; if (x0 > 0) { t1 = atan(x1/x0) / (2.0 * M_PI); } else if (x0 < 0) { t1 = 0.5 + atan(x1/x0) / (2.0 * M_PI); } else { t1 = 0.25 * (x1 > 0 ? +1 : -1); } t2 = sqrt(x0*x0 + x1*x1) ; y0 = 10 * (x2 - 10 * t1); y1 = 10 * (t2 - 1); y2 = x2 ; gsl_vector_set (f, 0, y0); gsl_vector_set (f, 1, y1); gsl_vector_set (f, 2, y2); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int helical_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double t = x0 * x0 + x1 * x1 ; double t1 = 2 * M_PI * t ; double t2 = sqrt(t) ; double df00 = 100*x1/t1, df01 = -100.0 * x0/t1, df02 = 10.0; double df10 = 10*x0/t2, df11 = 10*x1/t2, df12 = 0; double df20 = 0, df21 = 0, df22 = 1.0; gsl_matrix_set (df, 0, 0, df00); gsl_matrix_set (df, 0, 1, df01); gsl_matrix_set (df, 0, 2, df02); gsl_matrix_set (df, 1, 0, df10); gsl_matrix_set (df, 1, 1, df11); gsl_matrix_set (df, 1, 2, df12); gsl_matrix_set (df, 2, 0, df20); gsl_matrix_set (df, 2, 1, df21); gsl_matrix_set (df, 2, 2, df22); params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int helical_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { helical_f (x, params, f); helical_df (x, params, df); return GSL_SUCCESS; } /* Discrete Boundary Value Function */ #define N 10 gsl_multiroot_function_fdf dbv = {&dbv_f, &dbv_df, &dbv_fdf, N, 0}; void dbv_initpt (gsl_vector * x) { size_t i; double h = 1.0 / (N + 1.0); for (i = 0; i < N; i++) { double t = (i + 1) * h; double z = t * (t - 1); gsl_vector_set (x, i, z); } } int dbv_f (const gsl_vector * x, void *params, gsl_vector * f) { size_t i; double h = 1.0 / (N + 1.0); for (i = 0; i < N; i++) { double z, ti = (i + 1) * h; double xi = 0, xim1 = 0, xip1 = 0; xi = gsl_vector_get (x, i); if (i > 0) xim1 = gsl_vector_get (x, i - 1); if (i < N - 1) xip1 = gsl_vector_get (x, i + 1); z = 2 * xi - xim1 - xip1 + h * h * pow(xi + ti + 1, 3.0) / 2.0; gsl_vector_set (f, i, z); } params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int dbv_df (const gsl_vector * x, void *params, gsl_matrix * df) { size_t i, j; double h = 1.0 / (N + 1.0); for (i = 0; i < N; i++) for (j = 0; j < N; j++) gsl_matrix_set (df, i, j, 0.0); for (i = 0; i < N; i++) { double dz_dxi, ti = (i + 1) * h; double xi = gsl_vector_get (x, i); dz_dxi = 2.0 + (3.0 / 2.0) * h * h * pow(xi + ti + 1, 2.0) ; gsl_matrix_set (df, i, i, dz_dxi); if (i > 0) gsl_matrix_set (df, i, i-1, -1.0); if (i < N - 1) gsl_matrix_set (df, i, i+1, -1.0); } params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int dbv_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { dbv_f (x, params, f); dbv_df (x, params, df); return GSL_SUCCESS; } /* Trigonometric Function */ gsl_multiroot_function_fdf trig = {&trig_f, &trig_df, &trig_fdf, N, 0}; void trig_initpt (gsl_vector * x) { size_t i; for (i = 0; i < N; i++) /* choose an initial point which converges */ { gsl_vector_set (x, i, 0.05); } } int trig_f (const gsl_vector * x, void *params, gsl_vector * f) { size_t i; double sum = 0; for (i = 0; i < N; i++) { sum += cos(gsl_vector_get(x,i)); } for (i = 0; i < N; i++) { double xi = gsl_vector_get (x,i); double z = N - sum + (i + 1) * (1 - cos(xi)) - sin(xi); gsl_vector_set (f, i, z); } params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int trig_df (const gsl_vector * x, void *params, gsl_matrix * df) { size_t i, j; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { double dz; double xi = gsl_vector_get(x, i); double xj = gsl_vector_get(x, j); if (j == i) dz = sin(xi) + (i + 1) * sin(xi) - cos(xi); else dz = sin(xj); gsl_matrix_set(df, i, j, dz); } } params = 0; /* avoid warning about unused parameters */ return GSL_SUCCESS; } int trig_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { trig_f (x, params, f); trig_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multiroots/gsl_multiroots.h0000664000252300025230000001401012171574312014626 00000000000000/* multiroots/gsl_multiroots.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MULTIROOTS_H__ #define __GSL_MULTIROOTS_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Definition of vector-valued functions with parameters based on gsl_vector */ struct gsl_multiroot_function_struct { int (* f) (const gsl_vector * x, void * params, gsl_vector * f); size_t n; void * params; }; typedef struct gsl_multiroot_function_struct gsl_multiroot_function ; #define GSL_MULTIROOT_FN_EVAL(F,x,y) (*((F)->f))(x,(F)->params,(y)) int gsl_multiroot_fdjacobian (gsl_multiroot_function * F, const gsl_vector * x, const gsl_vector * f, double epsrel, gsl_matrix * jacobian); typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n); int (*set) (void *state, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); int (*iterate) (void *state, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); void (*free) (void *state); } gsl_multiroot_fsolver_type; typedef struct { const gsl_multiroot_fsolver_type * type; gsl_multiroot_function * function ; gsl_vector * x ; gsl_vector * f ; gsl_vector * dx ; void *state; } gsl_multiroot_fsolver; gsl_multiroot_fsolver * gsl_multiroot_fsolver_alloc (const gsl_multiroot_fsolver_type * T, size_t n); void gsl_multiroot_fsolver_free (gsl_multiroot_fsolver * s); int gsl_multiroot_fsolver_set (gsl_multiroot_fsolver * s, gsl_multiroot_function * f, const gsl_vector * x); int gsl_multiroot_fsolver_iterate (gsl_multiroot_fsolver * s); const char * gsl_multiroot_fsolver_name (const gsl_multiroot_fsolver * s); gsl_vector * gsl_multiroot_fsolver_root (const gsl_multiroot_fsolver * s); gsl_vector * gsl_multiroot_fsolver_dx (const gsl_multiroot_fsolver * s); gsl_vector * gsl_multiroot_fsolver_f (const gsl_multiroot_fsolver * s); /* Definition of vector-valued functions and gradient with parameters based on gsl_vector */ struct gsl_multiroot_function_fdf_struct { int (* f) (const gsl_vector * x, void * params, gsl_vector * f); int (* df) (const gsl_vector * x, void * params, gsl_matrix * df); int (* fdf) (const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix *df); size_t n; void * params; }; typedef struct gsl_multiroot_function_fdf_struct gsl_multiroot_function_fdf ; #define GSL_MULTIROOT_FN_EVAL_F(F,x,y) ((*((F)->f))(x,(F)->params,(y))) #define GSL_MULTIROOT_FN_EVAL_DF(F,x,dy) ((*((F)->df))(x,(F)->params,(dy))) #define GSL_MULTIROOT_FN_EVAL_F_DF(F,x,y,dy) ((*((F)->fdf))(x,(F)->params,(y),(dy))) typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n); int (*set) (void *state, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); int (*iterate) (void *state, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); void (*free) (void *state); } gsl_multiroot_fdfsolver_type; typedef struct { const gsl_multiroot_fdfsolver_type * type; gsl_multiroot_function_fdf * fdf ; gsl_vector * x; gsl_vector * f; gsl_matrix * J; gsl_vector * dx; void *state; } gsl_multiroot_fdfsolver; gsl_multiroot_fdfsolver * gsl_multiroot_fdfsolver_alloc (const gsl_multiroot_fdfsolver_type * T, size_t n); int gsl_multiroot_fdfsolver_set (gsl_multiroot_fdfsolver * s, gsl_multiroot_function_fdf * fdf, const gsl_vector * x); int gsl_multiroot_fdfsolver_iterate (gsl_multiroot_fdfsolver * s); void gsl_multiroot_fdfsolver_free (gsl_multiroot_fdfsolver * s); const char * gsl_multiroot_fdfsolver_name (const gsl_multiroot_fdfsolver * s); gsl_vector * gsl_multiroot_fdfsolver_root (const gsl_multiroot_fdfsolver * s); gsl_vector * gsl_multiroot_fdfsolver_dx (const gsl_multiroot_fdfsolver * s); gsl_vector * gsl_multiroot_fdfsolver_f (const gsl_multiroot_fdfsolver * s); int gsl_multiroot_test_delta (const gsl_vector * dx, const gsl_vector * x, double epsabs, double epsrel); int gsl_multiroot_test_residual (const gsl_vector * f, double epsabs); GSL_VAR const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_dnewton; GSL_VAR const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_broyden; GSL_VAR const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_hybrid; GSL_VAR const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_hybrids; GSL_VAR const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_newton; GSL_VAR const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_gnewton; GSL_VAR const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_hybridj; GSL_VAR const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_hybridsj; __END_DECLS #endif /* __GSL_MULTIROOTS_H__ */ gsl-1.16/multiroots/fdfsolver.c0000664000252300025230000001027212171574312013533 00000000000000/* multiroots/fdfsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_multiroot_fdfsolver * gsl_multiroot_fdfsolver_alloc (const gsl_multiroot_fdfsolver_type * T, size_t n) { int status; gsl_multiroot_fdfsolver * s; s = (gsl_multiroot_fdfsolver *) malloc (sizeof (gsl_multiroot_fdfsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for multiroot solver struct", GSL_ENOMEM, 0); } s->x = gsl_vector_calloc (n); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->f = gsl_vector_calloc (n); if (s->f == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0); } s->J = gsl_matrix_calloc (n,n); if (s->J == 0) { gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for g", GSL_ENOMEM, 0); } s->dx = gsl_vector_calloc (n); if (s->dx == 0) { gsl_matrix_free (s->J); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for multiroot solver state", GSL_ENOMEM, 0); } s->type = T ; status = (s->type->alloc)(s->state, n); if (status != GSL_SUCCESS) { free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to set solver", status, 0); } s->fdf = NULL; return s; } int gsl_multiroot_fdfsolver_set (gsl_multiroot_fdfsolver * s, gsl_multiroot_function_fdf * f, const gsl_vector * x) { if (s->x->size != f->n) { GSL_ERROR ("function incompatible with solver size", GSL_EBADLEN); } if (x->size != f->n) { GSL_ERROR ("vector length not compatible with function", GSL_EBADLEN); } s->fdf = f; gsl_vector_memcpy(s->x,x); return (s->type->set) (s->state, s->fdf, s->x, s->f, s->J, s->dx); } int gsl_multiroot_fdfsolver_iterate (gsl_multiroot_fdfsolver * s) { return (s->type->iterate) (s->state, s->fdf, s->x, s->f, s->J, s->dx); } void gsl_multiroot_fdfsolver_free (gsl_multiroot_fdfsolver * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); } const char * gsl_multiroot_fdfsolver_name (const gsl_multiroot_fdfsolver * s) { return s->type->name; } gsl_vector * gsl_multiroot_fdfsolver_root (const gsl_multiroot_fdfsolver * s) { return s->x; } gsl_vector * gsl_multiroot_fdfsolver_dx (const gsl_multiroot_fdfsolver * s) { return s->dx; } gsl_vector * gsl_multiroot_fdfsolver_f (const gsl_multiroot_fdfsolver * s) { return s->f; } gsl-1.16/multiroots/ChangeLog0000664000252300025230000001034212171574312013145 000000000000002011-01-24 Brian Gough * gnewton.c (gnewton_iterate): check for singular jacobian * newton.c (newton_iterate): check for singular jacobian 2009-07-09 Brian Gough * fsolver.c (gsl_multiroot_fsolver_free): handle NULL argument in free * fdfsolver.c (gsl_multiroot_fdfsolver_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-11-09 Brian Gough * convergence.c (gsl_multiroot_test_delta): accept dxi = 0 2007-08-27 Brian Gough * fdjac.c (gsl_multiroot_fdjacobian): detect null columns (dx too small) (gsl_multiroot_fdjacobian): avoid memory leak for x1,f1 2007-01-26 Brian Gough * fsolver.c (gsl_multiroot_fsolver_set): made vector argument x const * fdfsolver.c (gsl_multiroot_fdfsolver_set): made vector argument x const Tue Nov 12 22:26:40 2002 Brian Gough * newton.c (newton_alloc): return error code, not null * hybridj.c (hybridj_alloc): return error code, not null * hybrid.c (hybrid_alloc): return error code, not null * gnewton.c (gnewton_alloc): return error code, not null * dnewton.c (dnewton_alloc): return error code, not null * broyden.c (broyden_alloc): return error code, not null Wed May 1 21:40:55 2002 Brian Gough * fdfsolver.c (gsl_multiroot_fdfsolver_dx): new function to return dx (gsl_multiroot_fdfsolver_f): new function to return f * fsolver.c (gsl_multiroot_fsolver_dx): new function to return dx (gsl_multiroot_fsolver_f): new function to return f Sat Jan 26 17:11:34 2002 Brian Gough * hybrid.c (set): fix broken 'if' statement Thu Jan 10 19:26:55 2002 Brian Gough * hybrid.c dnewton.c: return status values for user-function (Theis Peter Hansen) Tue Jun 19 23:40:18 2001 Brian Gough * hybrid.c: removed workspace for linalg calls, no longer needed * hybridj.c: removed workspace for linalg calls, no longer needed Wed Jun 6 13:31:18 2001 Brian Gough * hybridj.c: updated to use new QR calling convention (now passes workspace) * hybrid.c: updated to use new QR calling convention (now passes workspace) Mon Apr 23 12:55:39 2001 Brian Gough * Makefile.am (test_LDADD): added cblas lib Mon Apr 16 20:18:08 2001 Brian Gough * dnewton.c (dnewton_iterate): removed unnecessary status variable Sun Feb 18 11:26:45 2001 Brian Gough * fdfsolver.c fsolver.c: changed so that the solver _alloc function no longer calls _set, the user must do that separately. Thu Nov 30 21:48:39 2000 Brian Gough * newton.c (newton_iterate): return GSL_EBADFUNC if error in function evaluation * hybridj.c (iterate): return GSL_EBADFUNC if error in function evaluation * hybrid.c (iterate): return GSL_EBADFUNC if error in function evaluation * gnewton.c (gnewton_iterate): return GSL_EBADFUNC if error in function evaluation * fdjac.c (gsl_multiroot_fdjacobian): return GSL_EBADFUNC if error in function evaluation * dnewton.c (dnewton_iterate): return GSL_EBADFUNC if error in function evaluation * broyden.c (broyden_iterate): return GSL_EBADFUNC if error in function evaluation Sun Aug 27 13:43:13 2000 Brian Gough * hybridj.c hybrid.c dogleg.c: begin comments with a capital letter to improve readability Sat Aug 26 16:12:19 2000 Brian Gough * hybridj.c hybrid.c: renamed rdiag to tau, since it plays that role here and is not the diagonal of R (see qr.c documentation for more details) Wed Feb 23 15:36:39 2000 Brian Gough * changed gsl_vector_copy to gsl_vector_cpy Fri Feb 18 18:45:02 2000 Brian Gough * fixed various .c files to use permutation Wed Feb 16 21:13:24 2000 Brian Gough * fixed Makefiles that include gsl_linalg.h to add -I$(srcdir)/../permutation to their include path gsl-1.16/multiroots/Makefile.am0000664000252300025230000000136612171574312013435 00000000000000# -*-makefile-*- noinst_LTLIBRARIES = libgslmultiroots.la pkginclude_HEADERS = gsl_multiroots.h noinst_HEADERS = enorm.c dogleg.c INCLUDES = -I$(top_srcdir) libgslmultiroots_la_SOURCES = fdjac.c fsolver.c fdfsolver.c convergence.c newton.c gnewton.c dnewton.c broyden.c hybrid.c hybridj.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test_funcs.h test_LDADD = libgslmultiroots.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/multiroots/test_funcs.h0000664000252300025230000000705512171574312013730 00000000000000/* multiroots/test_funcs.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ typedef void (*initpt_function) (gsl_vector * x); extern gsl_multiroot_function_fdf rosenbrock; void rosenbrock_initpt (gsl_vector * x); int rosenbrock_f (const gsl_vector * x, void *params, gsl_vector * f); int rosenbrock_df (const gsl_vector * x, void *params, gsl_matrix * df); int rosenbrock_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf roth; void roth_initpt (gsl_vector * x); int roth_f (const gsl_vector * x, void *params, gsl_vector * f); int roth_df (const gsl_vector * x, void *params, gsl_matrix * df); int roth_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf brownscal; void brownscal_initpt (gsl_vector * x); int brownscal_f (const gsl_vector * x, void *params, gsl_vector * f); int brownscal_df (const gsl_vector * x, void *params, gsl_matrix * df); int brownscal_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf powellscal; void powellscal_initpt (gsl_vector * x); int powellscal_f (const gsl_vector * x, void *params, gsl_vector * f); int powellscal_df (const gsl_vector * x, void *params, gsl_matrix * df); int powellscal_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf powellsing; void powellsing_initpt (gsl_vector * x); int powellsing_f (const gsl_vector * x, void *params, gsl_vector * f); int powellsing_df (const gsl_vector * x, void *params, gsl_matrix * df); int powellsing_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf wood; void wood_initpt (gsl_vector * x); int wood_f (const gsl_vector * x, void *params, gsl_vector * f); int wood_df (const gsl_vector * x, void *params, gsl_matrix * df); int wood_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf helical; void helical_initpt (gsl_vector * x); int helical_f (const gsl_vector * x, void *params, gsl_vector * f); int helical_df (const gsl_vector * x, void *params, gsl_matrix * df); int helical_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf dbv; void dbv_initpt (gsl_vector * x); int dbv_f (const gsl_vector * x, void *params, gsl_vector * f); int dbv_df (const gsl_vector * x, void *params, gsl_matrix * df); int dbv_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); extern gsl_multiroot_function_fdf trig; void trig_initpt (gsl_vector * x); int trig_f (const gsl_vector * x, void *params, gsl_vector * f); int trig_df (const gsl_vector * x, void *params, gsl_matrix * df); int trig_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df); gsl-1.16/multiroots/newton.c0000664000252300025230000000727212171574312013061 00000000000000/* multiroots/newton.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include typedef struct { gsl_matrix * lu; gsl_permutation * permutation; } newton_state_t; static int newton_alloc (void * vstate, size_t n); static int newton_set (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int newton_iterate (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static void newton_free (void * vstate); static int newton_alloc (void * vstate, size_t n) { newton_state_t * state = (newton_state_t *) vstate; gsl_permutation * p; gsl_matrix * m; m = gsl_matrix_calloc (n,n); if (m == 0) { GSL_ERROR ("failed to allocate space for lu", GSL_ENOMEM); } state->lu = m ; p = gsl_permutation_calloc (n); if (p == 0) { gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for permutation", GSL_ENOMEM); } state->permutation = p ; return GSL_SUCCESS; } static int newton_set (void * vstate, gsl_multiroot_function_fdf * FDF, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { newton_state_t * state = (newton_state_t *) vstate; size_t i, n = FDF->n ; state = 0 ; /* avoid warnings about unused parameters */ GSL_MULTIROOT_FN_EVAL_F_DF (FDF, x, f, J); for (i = 0; i < n; i++) { gsl_vector_set (dx, i, 0.0); } return GSL_SUCCESS; } static int newton_iterate (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { newton_state_t * state = (newton_state_t *) vstate; int signum; size_t i; size_t n = fdf->n ; gsl_matrix_memcpy (state->lu, J); gsl_linalg_LU_decomp (state->lu, state->permutation, &signum); { int status = gsl_linalg_LU_solve (state->lu, state->permutation, f, dx); if (status) return status; } for (i = 0; i < n; i++) { double e = gsl_vector_get (dx, i); double y = gsl_vector_get (x, i); gsl_vector_set (dx, i, -e); gsl_vector_set (x, i, y - e); } { int status = GSL_MULTIROOT_FN_EVAL_F_DF (fdf, x, f, J); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } return GSL_SUCCESS; } static void newton_free (void * vstate) { newton_state_t * state = (newton_state_t *) vstate; gsl_matrix_free(state->lu); gsl_permutation_free(state->permutation); } static const gsl_multiroot_fdfsolver_type newton_type = {"newton", /* name */ sizeof (newton_state_t), &newton_alloc, &newton_set, &newton_iterate, &newton_free}; const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_newton = &newton_type; gsl-1.16/multiroots/dogleg.c0000664000252300025230000002255212171574312013006 00000000000000/* multiroots/dogleg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "enorm.c" static void compute_diag (const gsl_matrix * J, gsl_vector * diag); static void update_diag (const gsl_matrix * J, gsl_vector * diag); static double compute_delta (gsl_vector * diag, gsl_vector * x); static void compute_df (const gsl_vector * f_trial, const gsl_vector * f, gsl_vector * df); static void compute_wv (const gsl_vector * qtdf, const gsl_vector *rdx, const gsl_vector *dx, const gsl_vector *diag, double pnorm, gsl_vector * w, gsl_vector * v); static double scaled_enorm (const gsl_vector * d, const gsl_vector * f); static double scaled_enorm (const gsl_vector * d, const gsl_vector * f) { double e2 = 0 ; size_t i, n = f->size ; for (i = 0; i < n ; i++) { double fi= gsl_vector_get(f, i); double di= gsl_vector_get(d, i); double u = di * fi; e2 += u * u ; } return sqrt(e2); } static double enorm_sum (const gsl_vector * a, const gsl_vector * b); static double enorm_sum (const gsl_vector * a, const gsl_vector * b) { double e2 = 0 ; size_t i, n = a->size ; for (i = 0; i < n ; i++) { double ai= gsl_vector_get(a, i); double bi= gsl_vector_get(b, i); double u = ai + bi; e2 += u * u ; } return sqrt(e2); } static void compute_wv (const gsl_vector * qtdf, const gsl_vector *rdx, const gsl_vector *dx, const gsl_vector *diag, double pnorm, gsl_vector * w, gsl_vector * v) { size_t i, n = qtdf->size; for (i = 0; i < n; i++) { double qtdfi = gsl_vector_get (qtdf, i); double rdxi = gsl_vector_get (rdx, i); double dxi = gsl_vector_get (dx, i); double diagi = gsl_vector_get (diag, i); gsl_vector_set (w, i, (qtdfi - rdxi) / pnorm); gsl_vector_set (v, i, diagi * diagi * dxi / pnorm); } } static void compute_df (const gsl_vector * f_trial, const gsl_vector * f, gsl_vector * df) { size_t i, n = f->size; for (i = 0; i < n; i++) { double dfi = gsl_vector_get (f_trial, i) - gsl_vector_get (f, i); gsl_vector_set (df, i, dfi); } } static void compute_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = diag->size; for (j = 0; j < n; j++) { double sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; gsl_vector_set (diag, j, sqrt (sum)); } } static void update_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = diag->size; for (j = 0; j < n; j++) { double cnorm, diagj, sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; cnorm = sqrt (sum); diagj = gsl_vector_get (diag, j); if (cnorm > diagj) gsl_vector_set (diag, j, cnorm); } } static double compute_delta (gsl_vector * diag, gsl_vector * x) { double Dx = scaled_enorm (diag, x); double factor = 100; return (Dx > 0) ? factor * Dx : factor; } static double compute_actual_reduction (double fnorm, double fnorm1) { double actred; if (fnorm1 < fnorm) { double u = fnorm1 / fnorm; actred = 1 - u * u; } else { actred = -1; } return actred; } static double compute_predicted_reduction (double fnorm, double fnorm1) { double prered; if (fnorm1 < fnorm) { double u = fnorm1 / fnorm; prered = 1 - u * u; } else { prered = 0; } return prered; } static void compute_qtf (const gsl_matrix * q, const gsl_vector * f, gsl_vector * qtf) { size_t i, j, N = f->size ; for (j = 0; j < N; j++) { double sum = 0; for (i = 0; i < N; i++) sum += gsl_matrix_get (q, i, j) * gsl_vector_get (f, i); gsl_vector_set (qtf, j, sum); } } static void compute_rdx (const gsl_matrix * r, const gsl_vector * dx, gsl_vector * rdx) { size_t i, j, N = dx->size ; for (i = 0; i < N; i++) { double sum = 0; for (j = i; j < N; j++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (dx, j); } gsl_vector_set (rdx, i, sum); } } static void compute_trial_step (gsl_vector *x, gsl_vector * dx, gsl_vector * x_trial) { size_t i, N = x->size; for (i = 0; i < N; i++) { double pi = gsl_vector_get (dx, i); double xi = gsl_vector_get (x, i); gsl_vector_set (x_trial, i, xi + pi); } } static int newton_direction (const gsl_matrix * r, const gsl_vector * qtf, gsl_vector * p) { const size_t N = r->size2; size_t i; int status; status = gsl_linalg_R_solve (r, qtf, p); #ifdef DEBUG printf("rsolve status = %d\n", status); #endif for (i = 0; i < N; i++) { double pi = gsl_vector_get (p, i); gsl_vector_set (p, i, -pi); } return status; } static void gradient_direction (const gsl_matrix * r, const gsl_vector * qtf, const gsl_vector * diag, gsl_vector * g) { const size_t M = r->size1; const size_t N = r->size2; size_t i, j; for (j = 0; j < M; j++) { double sum = 0; double dj; for (i = 0; i < N; i++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (qtf, i); } dj = gsl_vector_get (diag, j); gsl_vector_set (g, j, -sum / dj); } } static void minimum_step (double gnorm, const gsl_vector * diag, gsl_vector * g) { const size_t N = g->size; size_t i; for (i = 0; i < N; i++) { double gi = gsl_vector_get (g, i); double di = gsl_vector_get (diag, i); gsl_vector_set (g, i, (gi / gnorm) / di); } } static void compute_Rg (const gsl_matrix * r, const gsl_vector * gradient, gsl_vector * Rg) { const size_t N = r->size2; size_t i, j; for (i = 0; i < N; i++) { double sum = 0; for (j = i; j < N; j++) { double gj = gsl_vector_get (gradient, j); double rij = gsl_matrix_get (r, i, j); sum += rij * gj; } gsl_vector_set (Rg, i, sum); } } static void scaled_addition (double alpha, gsl_vector * newton, double beta, gsl_vector * gradient, gsl_vector * p) { const size_t N = p->size; size_t i; for (i = 0; i < N; i++) { double ni = gsl_vector_get (newton, i); double gi = gsl_vector_get (gradient, i); gsl_vector_set (p, i, alpha * ni + beta * gi); } } static int dogleg (const gsl_matrix * r, const gsl_vector * qtf, const gsl_vector * diag, double delta, gsl_vector * newton, gsl_vector * gradient, gsl_vector * p) { double qnorm, gnorm, sgnorm, bnorm, temp; newton_direction (r, qtf, newton); #ifdef DEBUG printf("newton = "); gsl_vector_fprintf(stdout, newton, "%g"); printf("\n"); #endif qnorm = scaled_enorm (diag, newton); if (qnorm <= delta) { gsl_vector_memcpy (p, newton); #ifdef DEBUG printf("took newton (qnorm = %g <= delta = %g)\n", qnorm, delta); #endif return GSL_SUCCESS; } gradient_direction (r, qtf, diag, gradient); #ifdef DEBUG printf("grad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); #endif gnorm = enorm (gradient); if (gnorm == 0) { double alpha = delta / qnorm; double beta = 0; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took scaled newton because gnorm = 0\n"); #endif return GSL_SUCCESS; } minimum_step (gnorm, diag, gradient); compute_Rg (r, gradient, p); /* Use p as temporary space to compute Rg */ #ifdef DEBUG printf("mingrad = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); printf("Rg = "); gsl_vector_fprintf(stdout, p, "%g"); printf("\n"); #endif temp = enorm (p); sgnorm = (gnorm / temp) / temp; if (sgnorm > delta) { double alpha = 0; double beta = delta; scaled_addition (alpha, newton, beta, gradient, p); #ifdef DEBUG printf("took gradient\n"); #endif return GSL_SUCCESS; } bnorm = enorm (qtf); { double bg = bnorm / gnorm; double bq = bnorm / qnorm; double dq = delta / qnorm; double dq2 = dq * dq; double sd = sgnorm / delta; double sd2 = sd * sd; double t1 = bg * bq * sd; double u = t1 - dq; double t2 = t1 - dq * sd2 + sqrt (u * u + (1-dq2) * (1 - sd2)); double alpha = dq * (1 - sd2) / t2; double beta = (1 - alpha) * sgnorm; #ifdef DEBUG printf("bnorm = %g\n", bnorm); printf("gnorm = %g\n", gnorm); printf("qnorm = %g\n", qnorm); printf("delta = %g\n", delta); printf("alpha = %g beta = %g\n", alpha, beta); printf("took scaled combination of newton and gradient\n"); #endif scaled_addition (alpha, newton, beta, gradient, p); } return GSL_SUCCESS; } gsl-1.16/multiroots/dnewton.c0000664000252300025230000001047612171574312013225 00000000000000/* multiroots/dnewton.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include /* Newton method using a finite difference approximation to the jacobian. The derivatives are estimated using a step size of h_i = sqrt(DBL_EPSILON) * x_i */ typedef struct { gsl_matrix * J; gsl_matrix * lu; gsl_permutation * permutation; } dnewton_state_t; static int dnewton_alloc (void * vstate, size_t n); static int dnewton_set (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static int dnewton_iterate (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); static void dnewton_free (void * vstate); static int dnewton_alloc (void * vstate, size_t n) { dnewton_state_t * state = (dnewton_state_t *) vstate; gsl_permutation * p; gsl_matrix * m, * J; m = gsl_matrix_calloc (n,n); if (m == 0) { GSL_ERROR ("failed to allocate space for lu", GSL_ENOMEM); } state->lu = m ; p = gsl_permutation_calloc (n); if (p == 0) { gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for permutation", GSL_ENOMEM); } state->permutation = p ; J = gsl_matrix_calloc (n,n); if (J == 0) { gsl_permutation_free(p); gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for d", GSL_ENOMEM); } state->J = J; return GSL_SUCCESS; } static int dnewton_set (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { dnewton_state_t * state = (dnewton_state_t *) vstate; size_t i, n = function->n ; int status; status = GSL_MULTIROOT_FN_EVAL (function, x, f); if (status) return status; status = gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, state->J); if (status) return status; for (i = 0; i < n; i++) { gsl_vector_set (dx, i, 0.0); } return GSL_SUCCESS; } static int dnewton_iterate (void * vstate, gsl_multiroot_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx) { dnewton_state_t * state = (dnewton_state_t *) vstate; int signum ; size_t i; size_t n = function->n ; gsl_matrix_memcpy (state->lu, state->J); { int status = gsl_linalg_LU_decomp (state->lu, state->permutation, &signum); if (status) return status; } { int status = gsl_linalg_LU_solve (state->lu, state->permutation, f, dx); if (status) return status; } for (i = 0; i < n; i++) { double e = gsl_vector_get (dx, i); double y = gsl_vector_get (x, i); gsl_vector_set (dx, i, -e); gsl_vector_set (x, i, y - e); } { int status = GSL_MULTIROOT_FN_EVAL (function, x, f); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } gsl_multiroot_fdjacobian (function, x, f, GSL_SQRT_DBL_EPSILON, state->J); return GSL_SUCCESS; } static void dnewton_free (void * vstate) { dnewton_state_t * state = (dnewton_state_t *) vstate; gsl_matrix_free(state->J); gsl_matrix_free(state->lu); gsl_permutation_free(state->permutation); } static const gsl_multiroot_fsolver_type dnewton_type = {"dnewton", /* name */ sizeof (dnewton_state_t), &dnewton_alloc, &dnewton_set, &dnewton_iterate, &dnewton_free}; const gsl_multiroot_fsolver_type * gsl_multiroot_fsolver_dnewton = &dnewton_type; gsl-1.16/multiroots/hybridj.c0000664000252300025230000003364512171574312013205 00000000000000/* multiroots/hybridj.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include "dogleg.c" typedef struct { size_t iter; size_t ncfail; size_t ncsuc; size_t nslow1; size_t nslow2; double fnorm; double delta; gsl_matrix *q; gsl_matrix *r; gsl_vector *tau; gsl_vector *diag; gsl_vector *qtf; gsl_vector *newton; gsl_vector *gradient; gsl_vector *x_trial; gsl_vector *f_trial; gsl_vector *df; gsl_vector *qtdf; gsl_vector *rdx; gsl_vector *w; gsl_vector *v; } hybridj_state_t; static int hybridj_alloc (void *vstate, size_t n); static int hybridj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int hybridsj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int hybridj_set_impl (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale); static int hybridj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static void hybridj_free (void *vstate); static int hybridj_iterate_impl (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale); static int hybridj_alloc (void *vstate, size_t n) { hybridj_state_t *state = (hybridj_state_t *) vstate; gsl_matrix *q, *r; gsl_vector *tau, *diag, *qtf, *newton, *gradient, *x_trial, *f_trial, *df, *qtdf, *rdx, *w, *v; q = gsl_matrix_calloc (n, n); if (q == 0) { GSL_ERROR ("failed to allocate space for q", GSL_ENOMEM); } state->q = q; r = gsl_matrix_calloc (n, n); if (r == 0) { gsl_matrix_free (q); GSL_ERROR ("failed to allocate space for r", GSL_ENOMEM); } state->r = r; tau = gsl_vector_calloc (n); if (tau == 0) { gsl_matrix_free (q); gsl_matrix_free (r); GSL_ERROR ("failed to allocate space for tau", GSL_ENOMEM); } state->tau = tau; diag = gsl_vector_calloc (n); if (diag == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); GSL_ERROR ("failed to allocate space for diag", GSL_ENOMEM); } state->diag = diag; qtf = gsl_vector_calloc (n); if (qtf == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); GSL_ERROR ("failed to allocate space for qtf", GSL_ENOMEM); } state->qtf = qtf; newton = gsl_vector_calloc (n); if (newton == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); GSL_ERROR ("failed to allocate space for newton", GSL_ENOMEM); } state->newton = newton; gradient = gsl_vector_calloc (n); if (gradient == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); GSL_ERROR ("failed to allocate space for gradient", GSL_ENOMEM); } state->gradient = gradient; x_trial = gsl_vector_calloc (n); if (x_trial == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->x_trial = x_trial; f_trial = gsl_vector_calloc (n); if (f_trial == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); GSL_ERROR ("failed to allocate space for f_trial", GSL_ENOMEM); } state->f_trial = f_trial; df = gsl_vector_calloc (n); if (df == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); GSL_ERROR ("failed to allocate space for df", GSL_ENOMEM); } state->df = df; qtdf = gsl_vector_calloc (n); if (qtdf == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); GSL_ERROR ("failed to allocate space for qtdf", GSL_ENOMEM); } state->qtdf = qtdf; rdx = gsl_vector_calloc (n); if (rdx == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); GSL_ERROR ("failed to allocate space for rdx", GSL_ENOMEM); } state->rdx = rdx; w = gsl_vector_calloc (n); if (w == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); gsl_vector_free (rdx); GSL_ERROR ("failed to allocate space for w", GSL_ENOMEM); } state->w = w; v = gsl_vector_calloc (n); if (v == 0) { gsl_matrix_free (q); gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (qtdf); gsl_vector_free (rdx); gsl_vector_free (w); GSL_ERROR ("failed to allocate space for v", GSL_ENOMEM); } state->v = v; return GSL_SUCCESS; } static int hybridj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = hybridj_set_impl (vstate, fdf, x, f, J, dx, 0); return status ; } static int hybridsj_set (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = hybridj_set_impl (vstate, fdf, x, f, J, dx, 1); return status ; } static int hybridj_set_impl (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { hybridj_state_t *state = (hybridj_state_t *) vstate; gsl_matrix *q = state->q; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; GSL_MULTIROOT_FN_EVAL_F_DF (fdf, x, f, J); state->iter = 1; state->fnorm = enorm (f); state->ncfail = 0; state->ncsuc = 0; state->nslow1 = 0; state->nslow2 = 0; gsl_vector_set_all (dx, 0.0); /* Store column norms in diag */ if (scale) compute_diag (J, diag); else gsl_vector_set_all (diag, 1.0); /* Set delta to factor |D x| or to factor if |D x| is zero */ state->delta = compute_delta (diag, x); /* Factorize J into QR decomposition */ gsl_linalg_QR_decomp (J, tau); gsl_linalg_QR_unpack (J, tau, q, r); return GSL_SUCCESS; } static int hybridj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = hybridj_iterate_impl (vstate, fdf, x, f, J, dx, 0); return status; } static int hybridsj_iterate (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = hybridj_iterate_impl (vstate, fdf, x, f, J, dx, 1); return status; } static int hybridj_iterate_impl (void *vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { hybridj_state_t *state = (hybridj_state_t *) vstate; const double fnorm = state->fnorm; gsl_matrix *q = state->q; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *qtf = state->qtf; gsl_vector *x_trial = state->x_trial; gsl_vector *f_trial = state->f_trial; gsl_vector *df = state->df; gsl_vector *qtdf = state->qtdf; gsl_vector *rdx = state->rdx; gsl_vector *w = state->w; gsl_vector *v = state->v; double prered, actred; double pnorm, fnorm1, fnorm1p; double ratio; double p1 = 0.1, p5 = 0.5, p001 = 0.001, p0001 = 0.0001; /* Compute qtf = Q^T f */ compute_qtf (q, f, qtf); /* Compute dogleg step */ dogleg (r, qtf, diag, state->delta, state->newton, state->gradient, dx); /* Take a trial step */ compute_trial_step (x, dx, state->x_trial); pnorm = scaled_enorm (diag, dx); if (state->iter == 1) { if (pnorm < state->delta) { state->delta = pnorm; } } /* Evaluate function at x + p */ { int status = GSL_MULTIROOT_FN_EVAL_F (fdf, x_trial, f_trial); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } /* Set df = f_trial - f */ compute_df (f_trial, f, df); /* Compute the scaled actual reduction */ fnorm1 = enorm (f_trial); actred = compute_actual_reduction (fnorm, fnorm1); /* Compute rdx = R dx */ compute_rdx (r, dx, rdx); /* Compute the scaled predicted reduction phi1p = |Q^T f + R dx| */ fnorm1p = enorm_sum (qtf, rdx); prered = compute_predicted_reduction (fnorm, fnorm1p); /* Compute the ratio of the actual to predicted reduction */ if (prered > 0) { ratio = actred / prered; } else { ratio = 0; } /* Update the step bound */ if (ratio < p1) { state->ncsuc = 0; state->ncfail++; state->delta *= p5; } else { state->ncfail = 0; state->ncsuc++; if (ratio >= p5 || state->ncsuc > 1) state->delta = GSL_MAX (state->delta, pnorm / p5); if (fabs (ratio - 1) <= p1) state->delta = pnorm / p5; } /* Test for successful iteration */ if (ratio >= p0001) { gsl_vector_memcpy (x, x_trial); gsl_vector_memcpy (f, f_trial); state->fnorm = fnorm1; state->iter++; } /* Determine the progress of the iteration */ state->nslow1++; if (actred >= p001) state->nslow1 = 0; if (actred >= p1) state->nslow2 = 0; if (state->ncfail == 2) { { int status = GSL_MULTIROOT_FN_EVAL_DF (fdf, x, J); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } state->nslow2++; if (state->iter == 1) { if (scale) compute_diag (J, diag); state->delta = compute_delta (diag, x); } else { if (scale) update_diag (J, diag); } /* Factorize J into QR decomposition */ gsl_linalg_QR_decomp (J, tau); gsl_linalg_QR_unpack (J, tau, q, r); return GSL_SUCCESS; } /* Compute qtdf = Q^T df, w = (Q^T df - R dx)/|dx|, v = D^2 dx/|dx| */ compute_qtf (q, df, qtdf); compute_wv (qtdf, rdx, dx, diag, pnorm, w, v); /* Rank-1 update of the jacobian Q'R' = Q(R + w v^T) */ gsl_linalg_QR_update (q, r, w, v); /* No progress as measured by jacobian evaluations */ if (state->nslow2 == 5) { return GSL_ENOPROGJ; } /* No progress as measured by function evaluations */ if (state->nslow1 == 10) { return GSL_ENOPROG; } return GSL_SUCCESS; } static void hybridj_free (void *vstate) { hybridj_state_t *state = (hybridj_state_t *) vstate; gsl_vector_free (state->v); gsl_vector_free (state->w); gsl_vector_free (state->rdx); gsl_vector_free (state->qtdf); gsl_vector_free (state->df); gsl_vector_free (state->f_trial); gsl_vector_free (state->x_trial); gsl_vector_free (state->gradient); gsl_vector_free (state->newton); gsl_vector_free (state->qtf); gsl_vector_free (state->diag); gsl_vector_free (state->tau); gsl_matrix_free (state->r); gsl_matrix_free (state->q); } static const gsl_multiroot_fdfsolver_type hybridj_type = { "hybridj", /* name */ sizeof (hybridj_state_t), &hybridj_alloc, &hybridj_set, &hybridj_iterate, &hybridj_free }; static const gsl_multiroot_fdfsolver_type hybridsj_type = { "hybridsj", /* name */ sizeof (hybridj_state_t), &hybridj_alloc, &hybridsj_set, &hybridsj_iterate, &hybridj_free }; const gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridj = &hybridj_type; const gsl_multiroot_fdfsolver_type *gsl_multiroot_fdfsolver_hybridsj = &hybridsj_type; gsl-1.16/multiroots/enorm.c0000664000252300025230000000205312171574312012657 00000000000000/* multiroots/enorm.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double enorm (const gsl_vector * f); static double enorm (const gsl_vector * f) { double e2 = 0 ; size_t i, n = f->size ; for (i = 0; i < n ; i++) { double fi= gsl_vector_get(f, i); e2 += fi * fi ; } return sqrt(e2); } gsl-1.16/multiroots/gnewton.c0000664000252300025230000001206112171574312013220 00000000000000/* multiroots/gnewton.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include "enorm.c" /* Simple globally convergent Newton method (rejects uphill steps) */ typedef struct { double phi; gsl_vector * x_trial; gsl_vector * d; gsl_matrix * lu; gsl_permutation * permutation; } gnewton_state_t; static int gnewton_alloc (void * vstate, size_t n); static int gnewton_set (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int gnewton_iterate (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static void gnewton_free (void * vstate); static int gnewton_alloc (void * vstate, size_t n) { gnewton_state_t * state = (gnewton_state_t *) vstate; gsl_vector * d, * x_trial ; gsl_permutation * p; gsl_matrix * m; m = gsl_matrix_calloc (n,n); if (m == 0) { GSL_ERROR ("failed to allocate space for lu", GSL_ENOMEM); } state->lu = m ; p = gsl_permutation_calloc (n); if (p == 0) { gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for permutation", GSL_ENOMEM); } state->permutation = p ; d = gsl_vector_calloc (n); if (d == 0) { gsl_permutation_free(p); gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for d", GSL_ENOMEM); } state->d = d; x_trial = gsl_vector_calloc (n); if (x_trial == 0) { gsl_vector_free(d); gsl_permutation_free(p); gsl_matrix_free(m); GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->x_trial = x_trial; return GSL_SUCCESS; } static int gnewton_set (void * vstate, gsl_multiroot_function_fdf * FDF, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { gnewton_state_t * state = (gnewton_state_t *) vstate; size_t i, n = FDF->n ; GSL_MULTIROOT_FN_EVAL_F_DF (FDF, x, f, J); for (i = 0; i < n; i++) { gsl_vector_set (dx, i, 0.0); } state->phi = enorm(f); return GSL_SUCCESS; } static int gnewton_iterate (void * vstate, gsl_multiroot_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { gnewton_state_t * state = (gnewton_state_t *) vstate; int signum ; double t, phi0, phi1; size_t i; size_t n = fdf->n ; gsl_matrix_memcpy (state->lu, J); gsl_linalg_LU_decomp (state->lu, state->permutation, &signum); { int status = gsl_linalg_LU_solve (state->lu, state->permutation, f, state->d); if (status) return status; } t = 1; phi0 = state->phi; new_step: for (i = 0; i < n; i++) { double di = gsl_vector_get (state->d, i); double xi = gsl_vector_get (x, i); gsl_vector_set (state->x_trial, i, xi - t*di); } { int status = GSL_MULTIROOT_FN_EVAL_F (fdf, state->x_trial, f); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } phi1 = enorm (f); if (phi1 > phi0 && t > GSL_DBL_EPSILON) { /* full step goes uphill, take a reduced step instead */ double theta = phi1 / phi0; double u = (sqrt(1.0 + 6.0 * theta) - 1.0) / (3.0 * theta); t *= u ; goto new_step; } /* copy x_trial into x */ gsl_vector_memcpy (x, state->x_trial); for (i = 0; i < n; i++) { double di = gsl_vector_get (state->d, i); gsl_vector_set (dx, i, -t*di); } { int status = GSL_MULTIROOT_FN_EVAL_DF (fdf, x, J); if (status != GSL_SUCCESS) { return GSL_EBADFUNC; } } state->phi = phi1; return GSL_SUCCESS; } static void gnewton_free (void * vstate) { gnewton_state_t * state = (gnewton_state_t *) vstate; gsl_vector_free(state->d); gsl_vector_free(state->x_trial); gsl_matrix_free(state->lu); gsl_permutation_free(state->permutation); } static const gsl_multiroot_fdfsolver_type gnewton_type = {"gnewton", /* name */ sizeof (gnewton_state_t), &gnewton_alloc, &gnewton_set, &gnewton_iterate, &gnewton_free}; const gsl_multiroot_fdfsolver_type * gsl_multiroot_fdfsolver_gnewton = &gnewton_type; gsl-1.16/linalg/0000775000252300025230000000000012172254157010503 500000000000000gsl-1.16/linalg/choleskyc.c0000664000252300025230000002201312171574312012546 00000000000000/* linalg/choleskyc.c * * Copyright (C) 2007 Patrick Alken * Copyright (C) 2010 Huan Wu (gsl_linalg_complex_cholesky_invert) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include /* * This module contains routines related to the Cholesky decomposition * of a complex Hermitian positive definite matrix. */ static void cholesky_complex_conj_vector(gsl_vector_complex *v); /* gsl_linalg_complex_cholesky_decomp() Perform the Cholesky decomposition on a Hermitian positive definite matrix. See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 4.2.2. Inputs: A - (input/output) complex postive definite matrix Return: success or error The lower triangle of A is overwritten with the Cholesky decomposition */ int gsl_linalg_complex_cholesky_decomp(gsl_matrix_complex *A) { const size_t N = A->size1; if (N != A->size2) { GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR); } else { size_t i, j; gsl_complex z; double ajj; for (j = 0; j < N; ++j) { z = gsl_matrix_complex_get(A, j, j); ajj = GSL_REAL(z); if (j > 0) { gsl_vector_complex_const_view aj = gsl_matrix_complex_const_subrow(A, j, 0, j); gsl_blas_zdotc(&aj.vector, &aj.vector, &z); ajj -= GSL_REAL(z); } if (ajj <= 0.0) { GSL_ERROR("matrix is not positive definite", GSL_EDOM); } ajj = sqrt(ajj); GSL_SET_COMPLEX(&z, ajj, 0.0); gsl_matrix_complex_set(A, j, j, z); if (j < N - 1) { gsl_vector_complex_view av = gsl_matrix_complex_subcolumn(A, j, j + 1, N - j - 1); if (j > 0) { gsl_vector_complex_view aj = gsl_matrix_complex_subrow(A, j, 0, j); gsl_matrix_complex_view am = gsl_matrix_complex_submatrix(A, j + 1, 0, N - j - 1, j); cholesky_complex_conj_vector(&aj.vector); gsl_blas_zgemv(CblasNoTrans, GSL_COMPLEX_NEGONE, &am.matrix, &aj.vector, GSL_COMPLEX_ONE, &av.vector); cholesky_complex_conj_vector(&aj.vector); } gsl_blas_zdscal(1.0 / ajj, &av.vector); } } /* Now store L^H in upper triangle */ for (i = 1; i < N; ++i) { for (j = 0; j < i; ++j) { z = gsl_matrix_complex_get(A, i, j); gsl_matrix_complex_set(A, j, i, gsl_complex_conjugate(z)); } } return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_decomp() */ /* gsl_linalg_complex_cholesky_solve() Solve A x = b where A is in cholesky form */ int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * cholesky, const gsl_vector_complex * b, gsl_vector_complex * x) { if (cholesky->size1 != cholesky->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (cholesky->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (cholesky->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { gsl_vector_complex_memcpy (x, b); /* solve for y using forward-substitution, L y = b */ gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x); /* perform back-substitution, L^H x = y */ gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x); return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_solve() */ /* gsl_linalg_complex_cholesky_svx() Solve A x = b in place where A is in cholesky form */ int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * cholesky, gsl_vector_complex * x) { if (cholesky->size1 != cholesky->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (cholesky->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* solve for y using forward-substitution, L y = b */ gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasNonUnit, cholesky, x); /* perform back-substitution, L^H x = y */ gsl_blas_ztrsv (CblasLower, CblasConjTrans, CblasNonUnit, cholesky, x); return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_svx() */ /****************************************************************************** gsl_linalg_complex_cholesky_invert() Compute the inverse of an Hermitian positive definite matrix in Cholesky form. Inputs: LLT - matrix in cholesky form on input A^{-1} = L^{-H} L^{-1} on output Return: success or error ******************************************************************************/ int gsl_linalg_complex_cholesky_invert(gsl_matrix_complex * LLT) { if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else { size_t N = LLT->size1; size_t i, j; gsl_vector_complex_view v1; /* invert the lower triangle of LLT */ for (i = 0; i < N; ++i) { double ajj; gsl_complex z; j = N - i - 1; { gsl_complex z0 = gsl_matrix_complex_get(LLT, j, j); ajj = 1.0 / GSL_REAL(z0); } GSL_SET_COMPLEX(&z, ajj, 0.0); gsl_matrix_complex_set(LLT, j, j, z); { gsl_complex z1 = gsl_matrix_complex_get(LLT, j, j); ajj = -GSL_REAL(z1); } if (j < N - 1) { gsl_matrix_complex_view m; m = gsl_matrix_complex_submatrix(LLT, j + 1, j + 1, N - j - 1, N - j - 1); v1 = gsl_matrix_complex_subcolumn(LLT, j, j + 1, N - j - 1); gsl_blas_ztrmv(CblasLower, CblasNoTrans, CblasNonUnit, &m.matrix, &v1.vector); gsl_blas_zdscal(ajj, &v1.vector); } } /* for (i = 0; i < N; ++i) */ /* * The lower triangle of LLT now contains L^{-1}. Now compute * A^{-1} = L^{-H} L^{-1} * * The (ij) element of A^{-1} is column i of conj(L^{-1}) dotted into * column j of L^{-1} */ for (i = 0; i < N; ++i) { gsl_complex sum; for (j = i + 1; j < N; ++j) { gsl_vector_complex_view v2; v1 = gsl_matrix_complex_subcolumn(LLT, i, j, N - j); v2 = gsl_matrix_complex_subcolumn(LLT, j, j, N - j); /* compute Ainv[i,j] = sum_k{conj(Linv[k,i]) * Linv[k,j]} */ gsl_blas_zdotc(&v1.vector, &v2.vector, &sum); /* store in upper triangle */ gsl_matrix_complex_set(LLT, i, j, sum); } /* now compute the diagonal element */ v1 = gsl_matrix_complex_subcolumn(LLT, i, i, N - i); gsl_blas_zdotc(&v1.vector, &v1.vector, &sum); gsl_matrix_complex_set(LLT, i, i, sum); } /* copy the Hermitian upper triangle to the lower triangle */ for (j = 1; j < N; j++) { for (i = 0; i < j; i++) { gsl_complex z = gsl_matrix_complex_get(LLT, i, j); gsl_matrix_complex_set(LLT, j, i, gsl_complex_conjugate(z)); } } return GSL_SUCCESS; } } /* gsl_linalg_complex_cholesky_invert() */ /******************************************** * INTERNAL ROUTINES * ********************************************/ static void cholesky_complex_conj_vector(gsl_vector_complex *v) { size_t i; for (i = 0; i < v->size; ++i) { gsl_complex z = gsl_vector_complex_get(v, i); gsl_vector_complex_set(v, i, gsl_complex_conjugate(z)); } } /* cholesky_complex_conj_vector() */ gsl-1.16/linalg/householdercomplex.c0000664000252300025230000001647112171574312014506 00000000000000/* linalg/householdercomplex.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Computes a householder transformation matrix H such that * * H' v = -/+ |v| e_1 * * where e_1 is the first unit vector. On exit the matrix H can be * computed from the return values (tau, v) * * H = I - tau * w * w' * * where w = (1, v(2), ..., v(N)). The nonzero element of the result * vector -/+|v| e_1 is stored in v(1). * * Note that the matrix H' in the householder transformation is the * hermitian conjugate of H. To compute H'v, pass the conjugate of * tau as the first argument to gsl_linalg_householder_hm() rather * than tau itself. See the LAPACK function CLARFG for details of this * convention. */ #include #include #include #include #include #include #include #include gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * v) { /* replace v[0:n-1] with a householder vector (v[0:n-1]) and coefficient tau that annihilate v[1:n-1] */ const size_t n = v->size ; if (n == 1) { gsl_complex alpha = gsl_vector_complex_get (v, 0) ; double absa = gsl_complex_abs (alpha); double beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * absa ; gsl_complex tau; if (beta_r == 0.0) { GSL_REAL(tau) = 0.0; GSL_IMAG(tau) = 0.0; } else { GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ; GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ; { gsl_complex beta = gsl_complex_rect (beta_r, 0.0); gsl_vector_complex_set (v, 0, beta) ; } } return tau; } else { gsl_complex tau ; double beta_r; gsl_vector_complex_view x = gsl_vector_complex_subvector (v, 1, n - 1) ; gsl_complex alpha = gsl_vector_complex_get (v, 0) ; double absa = gsl_complex_abs (alpha); double xnorm = gsl_blas_dznrm2 (&x.vector); if (xnorm == 0 && GSL_IMAG(alpha) == 0) { gsl_complex zero = gsl_complex_rect(0.0, 0.0); return zero; /* tau = 0 */ } beta_r = - (GSL_REAL(alpha) >= 0 ? +1 : -1) * hypot(absa, xnorm) ; GSL_REAL(tau) = (beta_r - GSL_REAL(alpha)) / beta_r ; GSL_IMAG(tau) = - GSL_IMAG(alpha) / beta_r ; { gsl_complex amb = gsl_complex_sub_real(alpha, beta_r); gsl_complex s = gsl_complex_inverse(amb); gsl_blas_zscal (s, &x.vector); } { gsl_complex beta = gsl_complex_rect (beta_r, 0.0); gsl_vector_complex_set (v, 0, beta) ; } return tau; } } int gsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A) { /* applies a householder transformation v,tau to matrix m */ size_t i, j; if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0) { return GSL_SUCCESS; } /* w = (v' A)^T */ for (j = 0; j < A->size2; j++) { gsl_complex tauwj; gsl_complex wj = gsl_matrix_complex_get(A,0,j); for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */ { gsl_complex Aij = gsl_matrix_complex_get(A,i,j); gsl_complex vi = gsl_vector_complex_get(v,i); gsl_complex Av = gsl_complex_mul (Aij, gsl_complex_conjugate(vi)); wj = gsl_complex_add (wj, Av); } tauwj = gsl_complex_mul (tau, wj); /* A = A - v w^T */ { gsl_complex A0j = gsl_matrix_complex_get (A, 0, j); gsl_complex Atw = gsl_complex_sub (A0j, tauwj); /* store A0j - tau * wj */ gsl_matrix_complex_set (A, 0, j, Atw); } for (i = 1; i < A->size1; i++) { gsl_complex vi = gsl_vector_complex_get (v, i); gsl_complex tauvw = gsl_complex_mul(vi, tauwj); gsl_complex Aij = gsl_matrix_complex_get (A, i, j); gsl_complex Atwv = gsl_complex_sub (Aij, tauvw); /* store Aij - tau * vi * wj */ gsl_matrix_complex_set (A, i, j, Atwv); } } return GSL_SUCCESS; } int gsl_linalg_complex_householder_mh (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A) { /* applies a householder transformation v,tau to matrix m on the right */ size_t i, j; if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0) { return GSL_SUCCESS; } /* A -> A - A*tau*v*v^h */ for (i = 0; i < A->size1; i++) { gsl_complex tauwi; gsl_complex Ai0 = gsl_matrix_complex_get (A, i, 0); gsl_complex wi = Ai0; /* compute w = A v */ for (j = 1; j < A->size2; j++) /* note, computed for v(0) = 1 above */ { gsl_complex Aij = gsl_matrix_complex_get(A, i, j); gsl_complex vj = gsl_vector_complex_get(v, j); gsl_complex Av = gsl_complex_mul (Aij, vj); wi = gsl_complex_add (wi, Av); } tauwi = gsl_complex_mul (tau, wi); /* A = A - w v^H */ { gsl_complex Atw = gsl_complex_sub (Ai0, tauwi); /* store Ai0 - tau * wi */ gsl_matrix_complex_set (A, i, 0, Atw); } for (j = 1; j < A->size2; j++) { gsl_complex vj = gsl_vector_complex_get (v, j); gsl_complex tauwv = gsl_complex_mul(gsl_complex_conjugate(vj), tauwi); gsl_complex Aij = gsl_matrix_complex_get (A, i, j); gsl_complex Atwv = gsl_complex_sub (Aij, tauwv); /* store Aij - tau * wi * conj(vj) */ gsl_matrix_complex_set (A, i, j, Atwv); } } return GSL_SUCCESS; } int gsl_linalg_complex_householder_hv (gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex * w) { const size_t N = v->size; if (GSL_REAL(tau) == 0.0 && GSL_IMAG(tau) == 0.0) return GSL_SUCCESS; { /* compute z = v'w */ gsl_complex z0 = gsl_vector_complex_get(w,0); gsl_complex z1, z; gsl_complex tz, ntz; gsl_vector_complex_const_view v1 = gsl_vector_complex_const_subvector(v, 1, N-1); gsl_vector_complex_view w1 = gsl_vector_complex_subvector(w, 1, N-1); gsl_blas_zdotc(&v1.vector, &w1.vector, &z1); z = gsl_complex_add (z0, z1); tz = gsl_complex_mul(tau, z); ntz = gsl_complex_negative (tz); /* compute w = w - tau * (v'w) * v */ { gsl_complex w0 = gsl_vector_complex_get(w, 0); gsl_complex w0ntz = gsl_complex_add (w0, ntz); gsl_vector_complex_set (w, 0, w0ntz); } gsl_blas_zaxpy(ntz, &v1.vector, &w1.vector); } return GSL_SUCCESS; } gsl-1.16/linalg/symmtd.c0000664000252300025230000001502712171574312012106 00000000000000/* linalg/sytd.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a symmetric matrix A into * * A = Q T Q' * * where Q is orthogonal and T is symmetric tridiagonal. Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * Q is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for Q can be obtained as the product * * Q = Q_1 Q_2 ... Q_(N-2) * * where * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, ... , 0, 1, A(i+1,i), A(i+2,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * ssytd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 * * Note: this description uses 1-based indices. The code below uses * 0-based indices */ #include #include #include #include #include #include #include int gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * tau) { if (A->size1 != A->size2) { GSL_ERROR ("symmetric tridiagonal decomposition requires square matrix", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; for (i = 0 ; i < N - 2; i++) { gsl_vector_view c = gsl_matrix_column (A, i); gsl_vector_view v = gsl_vector_subvector (&c.vector, i + 1, N - (i + 1)); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation H^T A H to the remaining columns */ if (tau_i != 0.0) { gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i + 1, N - (i+1), N - (i+1)); double ei = gsl_vector_get(&v.vector, 0); gsl_vector_view x = gsl_vector_subvector (tau, i, N-(i+1)); gsl_vector_set (&v.vector, 0, 1.0); /* x = tau * A * v */ gsl_blas_dsymv (CblasLower, tau_i, &m.matrix, &v.vector, 0.0, &x.vector); /* w = x - (1/2) tau * (x' * v) * v */ { double xv, alpha; gsl_blas_ddot(&x.vector, &v.vector, &xv); alpha = - (tau_i / 2.0) * xv; gsl_blas_daxpy(alpha, &v.vector, &x.vector); } /* apply the transformation A = A - v w' - w v' */ gsl_blas_dsyr2(CblasLower, -1.0, &v.vector, &x.vector, &m.matrix); gsl_vector_set (&v.vector, 0, ei); } gsl_vector_set (tau, i, tau_i); } return GSL_SUCCESS; } } /* Form the orthogonal matrix Q from the packed QR matrix */ int gsl_linalg_symmtd_unpack (const gsl_matrix * A, const gsl_vector * tau, gsl_matrix * Q, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else if (Q->size1 != A->size1 || Q->size2 != A->size1) { GSL_ERROR ("size of Q must match size of A", GSL_EBADLEN); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Initialize Q to the identity */ gsl_matrix_set_identity (Q); for (i = N - 2; i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_column (A, i); gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, i + 1, N - (i+1)); double ti = gsl_vector_get (tau, i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_householder_hm (ti, &h.vector, &m.matrix); } /* Copy diagonal into diag */ for (i = 0; i < N; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy subdiagonal into sd */ for (i = 0; i < N - 1; i++) { double Aji = gsl_matrix_get (A, i+1, i); gsl_vector_set (sdiag, i, Aji); } return GSL_SUCCESS; } } int gsl_linalg_symmtd_unpack_T (const gsl_matrix * A, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be square", GSL_ENOTSQR); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Copy diagonal into diag */ for (i = 0; i < N; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy subdiagonal into sdiag */ for (i = 0; i < N - 1; i++) { double Aij = gsl_matrix_get (A, i+1, i); gsl_vector_set (sdiag, i, Aij); } return GSL_SUCCESS; } } gsl-1.16/linalg/lq.c0000664000252300025230000003441712171574312011211 00000000000000/* linalg/lq.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "givens.c" #include "apply_givens.c" /* Note: The standard in numerical linear algebra is to solve A x = b * resp. ||A x - b||_2 -> min by QR-decompositions where x, b are * column vectors. * * When the matrix A has a large number of rows it is much more * efficient to work with the transposed matrix A^T and to solve the * system x^T A = b^T resp. ||x^T A - b^T||_2 -> min. This is caused * by the row-oriented format in which GSL stores matrices. Therefore * the QR-decomposition of A has to be replaced by a LQ decomposition * of A^T * * The purpose of this package is to provide the algorithms to compute * the LQ-decomposition and to solve the linear equations resp. least * squares problems. The dimensions N, M of the matrix are switched * because here A will probably be a transposed matrix. We write x^T, * b^T,... for vectors the comments to emphasize that they are row * vectors. * * It may even be useful to transpose your matrix explicitly (assumed * that there are no memory restrictions) because this takes O(M x N) * computing time where the decompostion takes O(M x N^2) computing * time. */ /* Factorise a general N x M matrix A into * * A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * R is stored in the diagonal and lower triangle of the input matrix. * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK. */ int gsl_linalg_LQ_decomp (gsl_matrix * A, gsl_vector * tau) { const size_t N = A->size1; const size_t M = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i; for (i = 0; i < GSL_MIN (M, N); i++) { /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ gsl_vector_view c_full = gsl_matrix_row (A, i); gsl_vector_view c = gsl_vector_subvector (&(c_full.vector), i, M-i); double tau_i = gsl_linalg_householder_transform (&(c.vector)); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns and update the norms */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i + 1, i, N - (i + 1), M - i ); gsl_linalg_householder_mh (tau_i, &(c.vector), &(m.matrix)); } } return GSL_SUCCESS; } } /* Solves the system x^T A = b^T using the LQ factorisation, * x^T L = b^T Q^T * * to obtain x. Based on SLATEC code. */ int gsl_linalg_LQ_solve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for x */ gsl_linalg_LQ_svx_T (LQ, tau, x); return GSL_SUCCESS; } } /* Solves the system x^T A = b^T in place using the LQ factorisation, * * x^T L = b^T Q^T * * to obtain x. Based on SLATEC code. */ int gsl_linalg_LQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN); } else { /* compute rhs = Q^T b */ gsl_linalg_LQ_vecQT (LQ, tau, x); /* Solve R x = rhs, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } /* Find the least squares solution to the overdetermined system * * x^T A = b^T * * for M >= N using the LQ factorization A = L Q. */ int gsl_linalg_LQ_lssolve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (M < N) { GSL_ERROR ("LQ matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_const_view L = gsl_matrix_const_submatrix (LQ, 0, 0, N, N); gsl_vector_view c = gsl_vector_subvector(residual, 0, N); gsl_vector_memcpy(residual, b); /* compute rhs = b^T Q^T */ gsl_linalg_LQ_vecQT (LQ, tau, residual); /* Solve x^T L = rhs */ gsl_vector_memcpy(x, &(c.vector)); gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, &(L.matrix), x); /* Compute residual = b^T - x^T A = (b^T Q^T - x^T L) Q */ gsl_vector_set_zero(&(c.vector)); gsl_linalg_LQ_vecQ(LQ, tau, residual); return GSL_SUCCESS; } } int gsl_linalg_LQ_Lsolve_T (const gsl_matrix * LQ, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } int gsl_linalg_LQ_Lsvx_T (const gsl_matrix * LQ, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN); } else { /* Solve x^T L = b^T, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); return GSL_SUCCESS; } } int gsl_linalg_L_solve_T (const gsl_matrix * L, const gsl_vector * b, gsl_vector * x) { if (L->size1 != L->size2) { GSL_ERROR ("R matrix must be square", GSL_ENOTSQR); } else if (L->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (L->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x inplace in b */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); return GSL_SUCCESS; } } int gsl_linalg_LQ_vecQT (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute v Q^T */ for (i = 0; i < GSL_MIN (M, N); i++) { gsl_vector_const_view c = gsl_matrix_const_row (LQ, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } int gsl_linalg_LQ_vecQ (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute v Q^T */ for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_row (LQ, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } /* Form the orthogonal matrix Q from the packed LQ matrix */ int gsl_linalg_LQ_unpack (const gsl_matrix * LQ, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L) { const size_t N = LQ->size1; const size_t M = LQ->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR); } else if (L->size1 != N || L->size2 != M) { GSL_ERROR ("R matrix must be N x M", GSL_ENOTSQR); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i, j, l_border; /* Initialize Q to the identity */ gsl_matrix_set_identity (Q); for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_row (LQ, i); gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, i, M - i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_mh (ti, &h.vector, &m.matrix); } /* Form the lower triangular matrix L from a packed LQ matrix */ for (i = 0; i < N; i++) { l_border=GSL_MIN(i,M-1); for (j = 0; j <= l_border ; j++) gsl_matrix_set (L, i, j, gsl_matrix_get (LQ, i, j)); for (j = l_border+1; j < M; j++) gsl_matrix_set (L, i, j, 0.0); } return GSL_SUCCESS; } } /* Update a LQ factorisation for A= L Q , A' = A + v u^T, * L' Q' = LQ + v u^T * = (L + v u^T Q^T) Q * = (L + v w^T) Q * * where w = Q u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_LQ_update (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * v, gsl_vector * w) { const size_t N = L->size1; const size_t M = L->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be N x N if L is M x N", GSL_ENOTSQR); } else if (w->size != M) { GSL_ERROR ("w must be length N if L is M x N", GSL_EBADLEN); } else if (v->size != N) { GSL_ERROR ("v must be length M if L is M x N", GSL_EBADLEN); } else { size_t j, k; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to L, H = J_1^T ... J^T_(n-1) L so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) /* loop from k = M-1 to 1 */ { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); create_givens (wkm1, wk, &c, &s); apply_givens_vec (w, k - 1, k, c, s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in v w^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double lj0 = gsl_matrix_get (L, j, 0); double vj = gsl_vector_get (v, j); gsl_matrix_set (L, j, 0, lj0 + w0 * vj); } /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < GSL_MIN(M,N+1); k++) { double c, s; double diag = gsl_matrix_get (L, k - 1, k - 1); double offdiag = gsl_matrix_get (L, k - 1 , k); create_givens (diag, offdiag, &c, &s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); gsl_matrix_set (L, k - 1, k, 0.0); /* exact zero of G^T */ } return GSL_SUCCESS; } } int gsl_linalg_LQ_LQsolve (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * b, gsl_vector * x) { const size_t N = L->size1; const size_t M = L->size2; if (M != N) { return GSL_ENOTSQR; } else if (Q->size1 != M || b->size != M || x->size != M) { return GSL_EBADLEN; } else { /* compute sol = b^T Q^T */ gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x); /* Solve x^T L = sol, storing x in-place */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); return GSL_SUCCESS; } } gsl-1.16/linalg/ptlq.c0000664000252300025230000003210712171574312011547 00000000000000/* linalg/ptlq.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "givens.c" #include "apply_givens.c" /* The purpose of this package is to speed up QR-decomposition for large matrices. Because QR-decomposition is column oriented, but GSL uses a row-oriented matrix format, there can considerable speedup obtained by computing the LQ-decomposition of the transposed matrix instead. This package provides LQ-decomposition and related algorithms. */ /* Factorise a general N x M matrix A into * * P A = L Q * * where Q is orthogonal (M x M) and L is lower triangular (N x M). * When A is rank deficient, r = rank(A) < n, then the permutation is * used to ensure that the lower n - r columns of L are zero and the first * l rows of Q form an orthonormal basis for the rows of A. * * Q is stored as a packed set of Householder transformations in the * strict upper triangular part of the input matrix. * * L is stored in the diagonal and lower triangle of the input matrix. * * P: column j of P is column k of the identity matrix, where k = * permutation->data[j] * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i,i+1), m(i,i+2), ... , m(i,M)] * * This storage scheme is the same as in LAPACK. See LAPACK's * dgeqpf.f for details. * */ int gsl_linalg_PTLQ_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t N = A->size1; const size_t M = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } else { size_t i; *signum = 1; gsl_permutation_init (p); /* set to identity */ /* Compute column norms and store in workspace */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_row (A, i); double x = gsl_blas_dnrm2 (&c.vector); gsl_vector_set (norm, i, x); } for (i = 0; i < GSL_MIN (M, N); i++) { /* Bring the column of largest norm into the pivot position */ double max_norm = gsl_vector_get(norm, i); size_t j, kmax = i; for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > max_norm) { max_norm = x; kmax = j; } } if (kmax != i) { gsl_matrix_swap_rows (A, i, kmax); gsl_permutation_swap (p, i, kmax); gsl_vector_swap_elements(norm,i,kmax); (*signum) = -(*signum); } /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ { gsl_vector_view c_full = gsl_matrix_row (A, i); gsl_vector_view c = gsl_vector_subvector (&c_full.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&c.vector); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i +1, i, N - (i+1), M - i); gsl_linalg_householder_mh (tau_i, &c.vector, &m.matrix); } } /* Update the norms of the remaining columns too */ if (i + 1 < M) { for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > 0.0) { double y = 0; double temp= gsl_matrix_get (A, j, i) / x; if (fabs (temp) >= 1) y = 0.0; else y = x * sqrt (1 - temp * temp); /* recompute norm to prevent loss of accuracy */ if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON) { gsl_vector_view c_full = gsl_matrix_row (A, j); gsl_vector_view c = gsl_vector_subvector(&c_full.vector, i+1, M - (i+1)); y = gsl_blas_dnrm2 (&c.vector); } gsl_vector_set (norm, j, y); } } } } return GSL_SUCCESS; } } int gsl_linalg_PTLQ_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t N = A->size1; const size_t M = A->size2; if (q->size1 != M || q->size2 !=M) { GSL_ERROR ("q must be M x M", GSL_EBADLEN); } else if (r->size1 != N || r->size2 !=M) { GSL_ERROR ("r must be N x M", GSL_EBADLEN); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } gsl_matrix_memcpy (r, A); gsl_linalg_PTLQ_decomp (r, tau, p, signum, norm); /* FIXME: aliased arguments depends on behavior of unpack routine! */ gsl_linalg_LQ_unpack (r, tau, q, r); return GSL_SUCCESS; } /* Solves the system x^T A = b^T using the P^T L Q factorisation, z^T L = b^T Q^T x = P z; to obtain x. Based on SLATEC code. */ int gsl_linalg_PTLQ_solve_T (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size2 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (QR->size2 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { gsl_vector_memcpy (x, b); gsl_linalg_PTLQ_svx_T (QR, tau, p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_permutation * p, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (LQ->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* compute sol = b^T Q^T */ gsl_linalg_LQ_vecQT (LQ, tau, x); /* Solve L^T x = sol, storing x inplace in sol */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_LQsolve_T (const gsl_matrix * Q, const gsl_matrix * L, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (Q->size1 != Q->size2 || L->size1 != L->size2) { return GSL_ENOTSQR; } else if (Q->size1 != p->size || Q->size1 != L->size1 || Q->size1 != b->size) { return GSL_EBADLEN; } else { /* compute b' = Q b */ gsl_blas_dgemv (CblasNoTrans, 1.0, Q, b, 0.0, x); /* Solve L^T x = b', storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, L, x); /* Apply permutation to solution in place */ gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_Lsolve_T (const gsl_matrix * LQ, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve L^T x = b, storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_PTLQ_Lsvx_T (const gsl_matrix * LQ, const gsl_permutation * p, gsl_vector * x) { if (LQ->size1 != LQ->size2) { GSL_ERROR ("LQ matrix must be square", GSL_ENOTSQR); } else if (LQ->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Solve L^T x = b, storing x inplace */ gsl_blas_dtrsv (CblasLower, CblasTrans, CblasNonUnit, LQ, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } /* Update a P^T L Q factorisation for P A= L Q , A' = A + v u^T, PA' = PA + Pv u^T * P^T L' Q' = P^T LQ + v u^T * = P^T (L + (P v) u^T Q^T) Q * = P^T (L + (P v) w^T) Q * * where w = Q^T u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_PTLQ_update (gsl_matrix * Q, gsl_matrix * L, const gsl_permutation * p, const gsl_vector * v, gsl_vector * w) { if (Q->size1 != Q->size2 || L->size1 != L->size2) { return GSL_ENOTSQR; } else if (L->size1 != Q->size2 || v->size != Q->size2 || w->size != Q->size2) { return GSL_EBADLEN; } else { size_t j, k; const size_t N = Q->size1; const size_t M = Q->size2; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to L, H = J_1^T ... J^T_(n-1) L so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); create_givens (wkm1, wk, &c, &s); apply_givens_vec (w, k - 1, k, c, s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in v w^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double lj0 = gsl_matrix_get (L, j, 0); size_t p_j = gsl_permutation_get (p, j); double vj = gsl_vector_get (v, p_j); gsl_matrix_set (L, j, 0, lj0 + w0 * vj); } /* Apply Givens transformations L' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < N; k++) { double c, s; double diag = gsl_matrix_get (L, k - 1, k - 1); double offdiag = gsl_matrix_get (L, k - 1, k ); create_givens (diag, offdiag, &c, &s); apply_givens_lq (M, N, Q, L, k - 1, k, c, s); } return GSL_SUCCESS; } } gsl-1.16/linalg/TODO0000664000252300025230000000041012171574312011103 00000000000000# -*- org -*- #+CATEGORY: linalg * Support Msize; double d_i = gsl_vector_get (d, 0); size_t i; for (i = 0; i < N - 1; i++) { double f_i = gsl_vector_get (f, i); double d_ip1 = gsl_vector_get (d, i + 1); if (fabs (f_i) < GSL_DBL_EPSILON * (fabs (d_i) + fabs (d_ip1))) { gsl_vector_set (f, i, 0.0); } d_i = d_ip1; } } static double trailing_eigenvalue (const gsl_vector * d, const gsl_vector * f) { const size_t n = d->size; double da = gsl_vector_get (d, n - 2); double db = gsl_vector_get (d, n - 1); double fa = (n > 2) ? gsl_vector_get (f, n - 3) : 0.0; double fb = gsl_vector_get (f, n - 2); double mu; #if GOLUB_VAN_LOAN_8_3_2 /* Golub and van Loan, Algorithm 8.3.2 The full SVD algorithm is described in section 8.6.2 */ double ta = da * da + fa * fa; double tb = db * db + fb * fb; double tab = da * fb; double dt = (ta - tb) / 2.0; if (dt >= 0) { mu = tb - (tab * tab) / (dt + hypot (dt, tab)); } else { mu = tb + (tab * tab) / ((-dt) + hypot (dt, tab)); } #else { /* We can compute mu more accurately than using the formula above since we know the roots cannot be negative. This also avoids the possibility of NaNs in the formula above. The matrix is [ da^2 + fa^2, da fb ; da fb , db^2 + fb^2 ] and mu is the eigenvalue closest to the bottom right element. */ double ta = da * da + fa * fa; double tb = db * db + fb * fb; double tab = da * fb; double dt = (ta - tb) / 2.0; double S = ta + tb; double da2 = da * da, db2 = db * db; double fa2 = fa * fa, fb2 = fb * fb; double P = (da2 * db2) + (fa2 * db2) + (fa2 * fb2); double D = hypot(dt, tab); double r1 = S/2 + D; if (dt >= 0) { /* tb < ta, choose smaller root */ mu = (r1 > 0) ? P / r1 : 0.0; } else { /* tb > ta, choose larger root */ mu = r1; } } #endif return mu; } static void create_schur (double d0, double f0, double d1, double * c, double * s) { double apq = 2.0 * d0 * f0; if (d0 == 0 || f0 == 0) { *c = 1.0; *s = 0.0; return; } /* Check if we need to rescale to avoid underflow/overflow */ if (fabs(d0) < GSL_SQRT_DBL_MIN || fabs(d0) > GSL_SQRT_DBL_MAX || fabs(f0) < GSL_SQRT_DBL_MIN || fabs(f0) > GSL_SQRT_DBL_MAX || fabs(d1) < GSL_SQRT_DBL_MIN || fabs(d1) > GSL_SQRT_DBL_MAX) { double scale; int d0_exp, f0_exp; frexp(d0, &d0_exp); frexp(f0, &f0_exp); /* Bring |d0*f0| into the range GSL_DBL_MIN to GSL_DBL_MAX */ scale = ldexp(1.0, -(d0_exp + f0_exp)/4); d0 *= scale; f0 *= scale; d1 *= scale; apq = 2.0 * d0 * f0; } if (apq != 0.0) { double t; double tau = (f0*f0 + (d1 + d0)*(d1 - d0)) / apq; if (tau >= 0.0) { t = 1.0/(tau + hypot(1.0, tau)); } else { t = -1.0/(-tau + hypot(1.0, tau)); } *c = 1.0 / hypot(1.0, t); *s = t * (*c); } else { *c = 1.0; *s = 0.0; } } static void svd2 (gsl_vector * d, gsl_vector * f, gsl_matrix * U, gsl_matrix * V) { size_t i; double c, s, a11, a12, a21, a22; const size_t M = U->size1; const size_t N = V->size1; double d0 = gsl_vector_get (d, 0); double f0 = gsl_vector_get (f, 0); double d1 = gsl_vector_get (d, 1); if (d0 == 0.0) { /* Eliminate off-diagonal element in [0,f0;0,d1] to make [d,0;0,0] */ create_givens (f0, d1, &c, &s); /* compute B <= G^T B X, where X = [0,1;1,0] */ gsl_vector_set (d, 0, c * f0 - s * d1); gsl_vector_set (f, 0, s * f0 + c * d1); gsl_vector_set (d, 1, 0.0); /* Compute U <= U G */ for (i = 0; i < M; i++) { double Uip = gsl_matrix_get (U, i, 0); double Uiq = gsl_matrix_get (U, i, 1); gsl_matrix_set (U, i, 0, c * Uip - s * Uiq); gsl_matrix_set (U, i, 1, s * Uip + c * Uiq); } /* Compute V <= V X */ gsl_matrix_swap_columns (V, 0, 1); return; } else if (d1 == 0.0) { /* Eliminate off-diagonal element in [d0,f0;0,0] */ create_givens (d0, f0, &c, &s); /* compute B <= B G */ gsl_vector_set (d, 0, d0 * c - f0 * s); gsl_vector_set (f, 0, 0.0); /* Compute V <= V G */ for (i = 0; i < N; i++) { double Vip = gsl_matrix_get (V, i, 0); double Viq = gsl_matrix_get (V, i, 1); gsl_matrix_set (V, i, 0, c * Vip - s * Viq); gsl_matrix_set (V, i, 1, s * Vip + c * Viq); } return; } else { /* Make columns orthogonal, A = [d0, f0; 0, d1] * G */ create_schur (d0, f0, d1, &c, &s); /* compute B <= B G */ a11 = c * d0 - s * f0; a21 = - s * d1; a12 = s * d0 + c * f0; a22 = c * d1; /* Compute V <= V G */ for (i = 0; i < N; i++) { double Vip = gsl_matrix_get (V, i, 0); double Viq = gsl_matrix_get (V, i, 1); gsl_matrix_set (V, i, 0, c * Vip - s * Viq); gsl_matrix_set (V, i, 1, s * Vip + c * Viq); } /* Eliminate off-diagonal elements, bring column with largest norm to first column */ if (hypot(a11, a21) < hypot(a12,a22)) { double t1, t2; /* B <= B X */ t1 = a11; a11 = a12; a12 = t1; t2 = a21; a21 = a22; a22 = t2; /* V <= V X */ gsl_matrix_swap_columns(V, 0, 1); } create_givens (a11, a21, &c, &s); /* compute B <= G^T B */ gsl_vector_set (d, 0, c * a11 - s * a21); gsl_vector_set (f, 0, c * a12 - s * a22); gsl_vector_set (d, 1, s * a12 + c * a22); /* Compute U <= U G */ for (i = 0; i < M; i++) { double Uip = gsl_matrix_get (U, i, 0); double Uiq = gsl_matrix_get (U, i, 1); gsl_matrix_set (U, i, 0, c * Uip - s * Uiq); gsl_matrix_set (U, i, 1, s * Uip + c * Uiq); } return; } } static void chase_out_intermediate_zero (gsl_vector * d, gsl_vector * f, gsl_matrix * U, size_t k0) { #if !USE_BLAS const size_t M = U->size1; #endif const size_t n = d->size; double c, s; double x, y; size_t k; x = gsl_vector_get (f, k0); y = gsl_vector_get (d, k0+1); for (k = k0; k < n - 1; k++) { create_givens (y, -x, &c, &s); /* Compute U <= U G */ #ifdef USE_BLAS { gsl_vector_view Uk0 = gsl_matrix_column(U,k0); gsl_vector_view Ukp1 = gsl_matrix_column(U,k+1); gsl_blas_drot(&Uk0.vector, &Ukp1.vector, c, -s); } #else { size_t i; for (i = 0; i < M; i++) { double Uip = gsl_matrix_get (U, i, k0); double Uiq = gsl_matrix_get (U, i, k + 1); gsl_matrix_set (U, i, k0, c * Uip - s * Uiq); gsl_matrix_set (U, i, k + 1, s * Uip + c * Uiq); } } #endif /* compute B <= G^T B */ gsl_vector_set (d, k + 1, s * x + c * y); if (k == k0) gsl_vector_set (f, k, c * x - s * y ); if (k < n - 2) { double z = gsl_vector_get (f, k + 1); gsl_vector_set (f, k + 1, c * z); x = -s * z ; y = gsl_vector_get (d, k + 2); } } } static void chase_out_trailing_zero (gsl_vector * d, gsl_vector * f, gsl_matrix * V) { #if !USE_BLAS const size_t N = V->size1; #endif const size_t n = d->size; double c, s; double x, y; size_t k; x = gsl_vector_get (d, n - 2); y = gsl_vector_get (f, n - 2); for (k = n - 1; k-- > 0;) { create_givens (x, y, &c, &s); /* Compute V <= V G where G = [c, s ; -s, c] */ #ifdef USE_BLAS { gsl_vector_view Vp = gsl_matrix_column(V,k); gsl_vector_view Vq = gsl_matrix_column(V,n-1); gsl_blas_drot(&Vp.vector, &Vq.vector, c, -s); } #else { size_t i; for (i = 0; i < N; i++) { double Vip = gsl_matrix_get (V, i, k); double Viq = gsl_matrix_get (V, i, n - 1); gsl_matrix_set (V, i, k, c * Vip - s * Viq); gsl_matrix_set (V, i, n - 1, s * Vip + c * Viq); } } #endif /* compute B <= B G */ gsl_vector_set (d, k, c * x - s * y); if (k == n - 2) gsl_vector_set (f, k, s * x + c * y ); if (k > 0) { double z = gsl_vector_get (f, k - 1); gsl_vector_set (f, k - 1, c * z); x = gsl_vector_get (d, k - 1); y = s * z ; } } } static void qrstep (gsl_vector * d, gsl_vector * f, gsl_matrix * U, gsl_matrix * V) { #if !USE_BLAS const size_t M = U->size1; const size_t N = V->size1; #endif const size_t n = d->size; double y, z; double ak, bk, zk, ap, bp, aq, bq; size_t i, k; if (n == 1) return; /* shouldn't happen */ /* Compute 2x2 svd directly */ if (n == 2) { svd2 (d, f, U, V); return; } /* Chase out any zeroes on the diagonal */ for (i = 0; i < n - 1; i++) { double d_i = gsl_vector_get (d, i); if (d_i == 0.0) { chase_out_intermediate_zero (d, f, U, i); return; } } /* Chase out any zero at the end of the diagonal */ { double d_nm1 = gsl_vector_get (d, n - 1); if (d_nm1 == 0.0) { chase_out_trailing_zero (d, f, V); return; } } /* Apply QR reduction steps to the diagonal and offdiagonal */ { double d0 = gsl_vector_get (d, 0); double f0 = gsl_vector_get (f, 0); double d1 = gsl_vector_get (d, 1); double f1 = gsl_vector_get (f, 1); { double mu = trailing_eigenvalue (d, f); y = d0 * d0 - mu; z = d0 * f0; } /* Set up the recurrence for Givens rotations on a bidiagonal matrix */ ak = 0; bk = 0; ap = d0; bp = f0; aq = d1; bq = f1; } for (k = 0; k < n - 1; k++) { double c, s; create_givens (y, z, &c, &s); /* Compute V <= V G */ #ifdef USE_BLAS { gsl_vector_view Vk = gsl_matrix_column(V,k); gsl_vector_view Vkp1 = gsl_matrix_column(V,k+1); gsl_blas_drot(&Vk.vector, &Vkp1.vector, c, -s); } #else for (i = 0; i < N; i++) { double Vip = gsl_matrix_get (V, i, k); double Viq = gsl_matrix_get (V, i, k + 1); gsl_matrix_set (V, i, k, c * Vip - s * Viq); gsl_matrix_set (V, i, k + 1, s * Vip + c * Viq); } #endif /* compute B <= B G */ { double bk1 = c * bk - s * z; double ap1 = c * ap - s * bp; double bp1 = s * ap + c * bp; double zp1 = -s * aq; double aq1 = c * aq; if (k > 0) { gsl_vector_set (f, k - 1, bk1); } ak = ap1; bk = bp1; zk = zp1; ap = aq1; if (k < n - 2) { bp = gsl_vector_get (f, k + 1); } else { bp = 0.0; } y = ak; z = zk; } create_givens (y, z, &c, &s); /* Compute U <= U G */ #ifdef USE_BLAS { gsl_vector_view Uk = gsl_matrix_column(U,k); gsl_vector_view Ukp1 = gsl_matrix_column(U,k+1); gsl_blas_drot(&Uk.vector, &Ukp1.vector, c, -s); } #else for (i = 0; i < M; i++) { double Uip = gsl_matrix_get (U, i, k); double Uiq = gsl_matrix_get (U, i, k + 1); gsl_matrix_set (U, i, k, c * Uip - s * Uiq); gsl_matrix_set (U, i, k + 1, s * Uip + c * Uiq); } #endif /* compute B <= G^T B */ { double ak1 = c * ak - s * zk; double bk1 = c * bk - s * ap; double zk1 = -s * bp; double ap1 = s * bk + c * ap; double bp1 = c * bp; gsl_vector_set (d, k, ak1); ak = ak1; bk = bk1; zk = zk1; ap = ap1; bp = bp1; if (k < n - 2) { aq = gsl_vector_get (d, k + 2); } else { aq = 0.0; } y = bk; z = zk; } } gsl_vector_set (f, n - 2, bk); gsl_vector_set (d, n - 1, ap); } gsl-1.16/linalg/qrpt.c0000664000252300025230000003137112171574312011557 00000000000000/* linalg/qrpt.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #define REAL double #include "givens.c" #include "apply_givens.c" /* Factorise a general M x N matrix A into * * A P = Q R * * where Q is orthogonal (M x M) and R is upper triangular (M x N). * When A is rank deficient, r = rank(A) < n, then the permutation is * used to ensure that the lower n - r rows of R are zero and the first * r columns of Q form an orthonormal basis for A. * * Q is stored as a packed set of Householder transformations in the * strict lower triangular part of the input matrix. * * R is stored in the diagonal and upper triangle of the input matrix. * * P: column j of P is column k of the identity matrix, where k = * permutation->data[j] * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * dgeqpf.f for details. * */ int gsl_linalg_QRPT_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t M = A->size1; const size_t N = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } else { size_t i; *signum = 1; gsl_permutation_init (p); /* set to identity */ /* Compute column norms and store in workspace */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_column (A, i); double x = gsl_blas_dnrm2 (&c.vector); gsl_vector_set (norm, i, x); } for (i = 0; i < GSL_MIN (M, N); i++) { /* Bring the column of largest norm into the pivot position */ double max_norm = gsl_vector_get(norm, i); size_t j, kmax = i; for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > max_norm) { max_norm = x; kmax = j; } } if (kmax != i) { gsl_matrix_swap_columns (A, i, kmax); gsl_permutation_swap (p, i, kmax); gsl_vector_swap_elements(norm,i,kmax); (*signum) = -(*signum); } /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ { gsl_vector_view c_full = gsl_matrix_column (A, i); gsl_vector_view c = gsl_vector_subvector (&c_full.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&c.vector); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i+1)); gsl_linalg_householder_hm (tau_i, &c.vector, &m.matrix); } } /* Update the norms of the remaining columns too */ if (i + 1 < M) { for (j = i + 1; j < N; j++) { double x = gsl_vector_get (norm, j); if (x > 0.0) { double y = 0; double temp= gsl_matrix_get (A, i, j) / x; if (fabs (temp) >= 1) y = 0.0; else y = x * sqrt (1 - temp * temp); /* recompute norm to prevent loss of accuracy */ if (fabs (y / x) < sqrt (20.0) * GSL_SQRT_DBL_EPSILON) { gsl_vector_view c_full = gsl_matrix_column (A, j); gsl_vector_view c = gsl_vector_subvector(&c_full.vector, i+1, M - (i+1)); y = gsl_blas_dnrm2 (&c.vector); } gsl_vector_set (norm, j, y); } } } } return GSL_SUCCESS; } } int gsl_linalg_QRPT_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm) { const size_t M = A->size1; const size_t N = A->size2; if (q->size1 != M || q->size2 !=M) { GSL_ERROR ("q must be M x M", GSL_EBADLEN); } else if (r->size1 != M || r->size2 !=N) { GSL_ERROR ("r must be M x N", GSL_EBADLEN); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (p->size != N) { GSL_ERROR ("permutation size must be N", GSL_EBADLEN); } else if (norm->size != N) { GSL_ERROR ("norm size must be N", GSL_EBADLEN); } gsl_matrix_memcpy (r, A); gsl_linalg_QRPT_decomp (r, tau, p, signum, norm); /* FIXME: aliased arguments depends on behavior of unpack routine! */ gsl_linalg_QR_unpack (r, tau, q, r); return GSL_SUCCESS; } /* Solves the system A x = b using the Q R P^T factorisation, R z = Q^T b x = P z; to obtain x. Based on SLATEC code. */ int gsl_linalg_QRPT_solve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (QR->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { gsl_vector_memcpy (x, b); gsl_linalg_QRPT_svx (QR, tau, p, x); return GSL_SUCCESS; } } int gsl_linalg_QRPT_svx (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != p->size) { GSL_ERROR ("matrix size must match permutation size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* compute sol = Q^T b */ gsl_linalg_QR_QTvec (QR, tau, x); /* Solve R x = sol, storing x inplace in sol */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_QRPT_QRsolve (const gsl_matrix * Q, const gsl_matrix * R, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (Q->size1 != Q->size2 || R->size1 != R->size2) { return GSL_ENOTSQR; } else if (Q->size1 != p->size || Q->size1 != R->size1 || Q->size1 != b->size) { return GSL_EBADLEN; } else { /* compute b' = Q^T b */ gsl_blas_dgemv (CblasTrans, 1.0, Q, b, 0.0, x); /* Solve R x = b', storing x inplace */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x); /* Apply permutation to solution in place */ gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_QRPT_Rsolve (const gsl_matrix * QR, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x inplace */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } int gsl_linalg_QRPT_Rsvx (const gsl_matrix * QR, const gsl_permutation * p, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else if (p->size != x->size) { GSL_ERROR ("permutation size must match x size", GSL_EBADLEN); } else { /* Solve R x = b, storing x inplace */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); gsl_permute_vector_inverse (p, x); return GSL_SUCCESS; } } /* Update a Q R P^T factorisation for A P= Q R , A' = A + u v^T, Q' R' P^-1 = QR P^-1 + u v^T = Q (R + Q^T u v^T P ) P^-1 = Q (R + w v^T P) P^-1 where w = Q^T u. Algorithm from Golub and Van Loan, "Matrix Computations", Section 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R, const gsl_permutation * p, gsl_vector * w, const gsl_vector * v) { const size_t M = R->size1; const size_t N = R->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be M x M if R is M x N", GSL_ENOTSQR); } else if (w->size != M) { GSL_ERROR ("w must be length M if R is M x N", GSL_EBADLEN); } else if (v->size != N) { GSL_ERROR ("v must be length N if R is M x N", GSL_EBADLEN); } else { size_t j, k; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to R, H = J_1^T ... J^T_(n-1) R so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); create_givens (wkm1, wk, &c, &s); apply_givens_vec (w, k - 1, k, c, s); apply_givens_qr (M, N, Q, R, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in w v^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double r0j = gsl_matrix_get (R, 0, j); size_t p_j = gsl_permutation_get (p, j); double vj = gsl_vector_get (v, p_j); gsl_matrix_set (R, 0, j, r0j + w0 * vj); } /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < GSL_MIN(M,N+1); k++) { double c, s; double diag = gsl_matrix_get (R, k - 1, k - 1); double offdiag = gsl_matrix_get (R, k, k - 1); create_givens (diag, offdiag, &c, &s); apply_givens_qr (M, N, Q, R, k - 1, k, c, s); gsl_matrix_set (R, k, k - 1, 0.0); /* exact zero of G^T */ } return GSL_SUCCESS; } } gsl-1.16/linalg/multiply.c0000664000252300025230000001000412171574312012436 00000000000000/* linalg/multiply.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #define SWAP_SIZE_T(a, b) do { size_t swap_tmp = a; a = b; b = swap_tmp; } while(0) int gsl_linalg_matmult (const gsl_matrix * A, const gsl_matrix * B, gsl_matrix * C) { if (A->size2 != B->size1 || A->size1 != C->size1 || B->size2 != C->size2) { GSL_ERROR ("matrix sizes are not conformant", GSL_EBADLEN); } else { double a, b; double temp; size_t i, j, k; for (i = 0; i < C->size1; i++) { for (j = 0; j < C->size2; j++) { a = gsl_matrix_get (A, i, 0); b = gsl_matrix_get (B, 0, j); temp = a * b; for (k = 1; k < A->size2; k++) { a = gsl_matrix_get (A, i, k); b = gsl_matrix_get (B, k, j); temp += a * b; } gsl_matrix_set (C, i, j, temp); } } return GSL_SUCCESS; } } int gsl_linalg_matmult_mod (const gsl_matrix * A, gsl_linalg_matrix_mod_t modA, const gsl_matrix * B, gsl_linalg_matrix_mod_t modB, gsl_matrix * C) { if (modA == GSL_LINALG_MOD_NONE && modB == GSL_LINALG_MOD_NONE) { return gsl_linalg_matmult (A, B, C); } else { size_t dim1_A = A->size1; size_t dim2_A = A->size2; size_t dim1_B = B->size1; size_t dim2_B = B->size2; size_t dim1_C = C->size1; size_t dim2_C = C->size2; if (modA & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (dim1_A, dim2_A); if (modB & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (dim1_B, dim2_B); if (dim2_A != dim1_B || dim1_A != dim1_C || dim2_B != dim2_C) { GSL_ERROR ("matrix sizes are not conformant", GSL_EBADLEN); } else { double a, b; double temp; size_t i, j, k; size_t a1, a2, b1, b2; for (i = 0; i < dim1_C; i++) { for (j = 0; j < dim2_C; j++) { a1 = i; a2 = 0; b1 = 0; b2 = j; if (modA & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (a1, a2); if (modB & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (b1, b2); a = gsl_matrix_get (A, a1, a2); b = gsl_matrix_get (B, b1, b2); temp = a * b; for (k = 1; k < dim2_A; k++) { a1 = i; a2 = k; b1 = k; b2 = j; if (modA & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (a1, a2); if (modB & GSL_LINALG_MOD_TRANSPOSE) SWAP_SIZE_T (b1, b2); a = gsl_matrix_get (A, a1, a2); b = gsl_matrix_get (B, b1, b2); temp += a * b; } gsl_matrix_set (C, i, j, temp); } } return GSL_SUCCESS; } } } gsl-1.16/linalg/apply_givens.c0000664000252300025230000000743312171574312013273 00000000000000/* linalg/apply_givens.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2007 Gerard Jungman, Brian Gough * Copyright (C) 2004 Joerg Wensch, modifications for LQ. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ inline static void apply_givens_qr (size_t M, size_t N, gsl_matrix * Q, gsl_matrix * R, size_t i, size_t j, double c, double s) { size_t k; /* Apply rotation to matrix Q, Q' = Q G */ #if USE_BLAS { gsl_matrix_view Q0M = gsl_matrix_submatrix(Q,0,0,M,j+1); gsl_vector_view Qi = gsl_matrix_column(&Q0M.matrix,i); gsl_vector_view Qj = gsl_matrix_column(&Q0M.matrix,j); gsl_blas_drot(&Qi.vector, &Qj.vector, c, -s); } #else for (k = 0; k < M; k++) { double qki = gsl_matrix_get (Q, k, i); double qkj = gsl_matrix_get (Q, k, j); gsl_matrix_set (Q, k, i, qki * c - qkj * s); gsl_matrix_set (Q, k, j, qki * s + qkj * c); } #endif /* Apply rotation to matrix R, R' = G^T R (note: upper triangular so zero for column < row) */ #if USE_BLAS { k = GSL_MIN(i,j); gsl_matrix_view R0 = gsl_matrix_submatrix(R, 0, k, j+1, N-k); gsl_vector_view Ri = gsl_matrix_row(&R0.matrix,i); gsl_vector_view Rj = gsl_matrix_row(&R0.matrix,j); gsl_blas_drot(&Ri.vector, &Rj.vector, c, -s); } #else for (k = GSL_MIN (i, j); k < N; k++) { double rik = gsl_matrix_get (R, i, k); double rjk = gsl_matrix_get (R, j, k); gsl_matrix_set (R, i, k, c * rik - s * rjk); gsl_matrix_set (R, j, k, s * rik + c * rjk); } #endif } inline static void apply_givens_lq (size_t M, size_t N, gsl_matrix * Q, gsl_matrix * L, size_t i, size_t j, double c, double s) { size_t k; /* Apply rotation to matrix Q, Q' = G Q */ #if USE_BLAS { gsl_matrix_view Q0M = gsl_matrix_submatrix(Q,0,0,j+1,M); gsl_vector_view Qi = gsl_matrix_row(&Q0M.matrix,i); gsl_vector_view Qj = gsl_matrix_row(&Q0M.matrix,j); gsl_blas_drot(&Qi.vector, &Qj.vector, c, -s); } #else for (k = 0; k < M; k++) { double qik = gsl_matrix_get (Q, i, k); double qjk = gsl_matrix_get (Q, j, k); gsl_matrix_set (Q, i, k, qik * c - qjk * s); gsl_matrix_set (Q, j, k, qik * s + qjk * c); } #endif /* Apply rotation to matrix L, L' = L G^T (note: lower triangular so zero for column > row) */ #if USE_BLAS { k = GSL_MIN(i,j); gsl_matrix_view L0 = gsl_matrix_submatrix(L, k, 0, N-k, j+1); gsl_vector_view Li = gsl_matrix_column(&L0.matrix,i); gsl_vector_view Lj = gsl_matrix_column(&L0.matrix,j); gsl_blas_drot(&Li.vector, &Lj.vector, c, -s); } #else for (k = GSL_MIN (i, j); k < N; k++) { double lki = gsl_matrix_get (L, k, i); double lkj = gsl_matrix_get (L, k, j); gsl_matrix_set (L, k, i, c * lki - s * lkj); gsl_matrix_set (L, k, j, s * lki + c * lkj); } #endif } inline static void apply_givens_vec (gsl_vector * v, size_t i, size_t j, double c, double s) { /* Apply rotation to vector v' = G^T v */ double vi = gsl_vector_get (v, i); double vj = gsl_vector_get (v, j); gsl_vector_set (v, i, c * vi - s * vj); gsl_vector_set (v, j, s * vi + c * vj); } gsl-1.16/linalg/test.c0000664000252300025230000034514512171574312011557 00000000000000/* linalg/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2005, 2006, 2007, 2010 Gerard Jungman, Brian Gough * Copyright (C) Huan Wu (test_choleskyc_invert and test_choleskyc_invert_dim) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #define TEST_SVD_4X4 1 int check (double x, double actual, double eps); gsl_matrix * create_hilbert_matrix(unsigned long size); gsl_matrix * create_general_matrix(unsigned long size1, unsigned long size2); gsl_matrix * create_vandermonde_matrix(unsigned long size); gsl_matrix * create_moler_matrix(unsigned long size); gsl_matrix * create_row_matrix(unsigned long size1, unsigned long size2); gsl_matrix * create_2x2_matrix(double a11, double a12, double a21, double a22); gsl_matrix * create_diagonal_matrix(double a[], unsigned long size); gsl_matrix * create_sparse_matrix(unsigned long m, unsigned long n); int test_matmult(void); int test_matmult_mod(void); int test_LU_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_LU_solve(void); int test_LUc_solve_dim(const gsl_matrix_complex * m, const double * actual, double eps); int test_LUc_solve(void); int test_QR_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_QR_solve(void); int test_QR_QRsolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_QR_QRsolve(void); int test_QR_lssolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_QR_lssolve(void); int test_QR_decomp_dim(const gsl_matrix * m, double eps); int test_QR_decomp(void); int test_QRPT_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_QRPT_solve(void); int test_QRPT_QRsolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_QRPT_QRsolve(void); int test_QRPT_decomp_dim(const gsl_matrix * m, double eps); int test_QRPT_decomp(void); int test_QR_update_dim(const gsl_matrix * m, double eps); int test_QR_update(void); int test_QRPT_update_dim(const gsl_matrix * m, double eps); int test_QRPT_update(void); int test_LQ_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_LQ_solve(void); int test_LQ_LQsolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_LQ_LQsolve(void); int test_LQ_lssolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_LQ_lssolve(void); int test_LQ_decomp_dim(const gsl_matrix * m, double eps); int test_LQ_decomp(void); int test_PTLQ_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_PTLQ_solve(void); int test_PTLQ_LQsolve_dim(const gsl_matrix * m, const double * actual, double eps); int test_PTLQ_LQsolve(void); int test_PTLQ_decomp_dim(const gsl_matrix * m, double eps); int test_PTLQ_decomp(void); int test_LQ_update_dim(const gsl_matrix * m, double eps); int test_LQ_update(void); int test_SV_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_SV_solve(void); int test_SV_decomp_dim(const gsl_matrix * m, double eps); int test_SV_decomp(void); int test_SV_decomp_mod_dim(const gsl_matrix * m, double eps); int test_SV_decomp_mod(void); int test_SV_decomp_jacobi_dim(const gsl_matrix * m, double eps); int test_SV_decomp_jacobi(void); int test_cholesky_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_cholesky_solve(void); int test_cholesky_decomp_dim(const gsl_matrix * m, double eps); int test_cholesky_decomp(void); int test_cholesky_invert_dim(const gsl_matrix * m, double eps); int test_cholesky_invert(void); int test_HH_solve_dim(const gsl_matrix * m, const double * actual, double eps); int test_HH_solve(void); int test_TDS_solve_dim(unsigned long dim, double d, double od, const double * actual, double eps); int test_TDS_solve(void); int test_TDN_solve_dim(unsigned long dim, double d, double a, double b, const double * actual, double eps); int test_TDN_solve(void); int test_TDS_cyc_solve_one(const unsigned long dim, const double * d, const double * od, const double * r, const double * actual, double eps); int test_TDS_cyc_solve(void); int test_TDN_cyc_solve_dim(unsigned long dim, double d, double a, double b, const double * actual, double eps); int test_TDN_cyc_solve(void); int test_bidiag_decomp_dim(const gsl_matrix * m, double eps); int test_bidiag_decomp(void); int check (double x, double actual, double eps) { if (x == actual) { return 0; } else if (actual == 0) { return fabs(x) > eps; } else { return (fabs(x - actual)/fabs(actual)) > eps; } } gsl_vector * vector_alloc (size_t n) { size_t p[5] = {3, 5, 7, 11, 13}; static size_t k = 0; size_t stride = p[k]; k = (k + 1) % 5; { gsl_block * b = gsl_block_alloc (n * stride); gsl_vector * v = gsl_vector_alloc_from_block (b, 0, n, stride); v->owner = 1; return v; } } void vector_free (gsl_vector * v) { gsl_vector_free (v); } gsl_matrix * create_hilbert_matrix(unsigned long size) { unsigned long i, j; gsl_matrix * m = gsl_matrix_alloc(size, size); for(i=0; i GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 65.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 30.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 30.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 65.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 42.0) > GSL_DBL_EPSILON ); gsl_matrix_free(A); gsl_matrix_free(B); gsl_matrix_free(C); return s; } int test_matmult_mod(void) { int s = 0; gsl_matrix * A = gsl_matrix_calloc(3, 3); gsl_matrix * B = gsl_matrix_calloc(3, 3); gsl_matrix * C = gsl_matrix_calloc(3, 3); gsl_matrix * D = gsl_matrix_calloc(2, 3); gsl_matrix * E = gsl_matrix_calloc(2, 3); gsl_matrix * F = gsl_matrix_calloc(2, 2); gsl_matrix_set(A, 0, 0, 10.0); gsl_matrix_set(A, 0, 1, 5.0); gsl_matrix_set(A, 0, 2, 1.0); gsl_matrix_set(A, 1, 0, 1.0); gsl_matrix_set(A, 1, 1, 20.0); gsl_matrix_set(A, 1, 2, 5.0); gsl_matrix_set(A, 2, 0, 1.0); gsl_matrix_set(A, 2, 1, 3.0); gsl_matrix_set(A, 2, 2, 7.0); gsl_matrix_set(B, 0, 0, 10.0); gsl_matrix_set(B, 0, 1, 5.0); gsl_matrix_set(B, 0, 2, 2.0); gsl_matrix_set(B, 1, 0, 1.0); gsl_matrix_set(B, 1, 1, 3.0); gsl_matrix_set(B, 1, 2, 2.0); gsl_matrix_set(B, 2, 0, 1.0); gsl_matrix_set(B, 2, 1, 3.0); gsl_matrix_set(B, 2, 2, 2.0); gsl_matrix_set(D, 0, 0, 10.0); gsl_matrix_set(D, 0, 1, 5.0); gsl_matrix_set(D, 0, 2, 1.0); gsl_matrix_set(D, 1, 0, 1.0); gsl_matrix_set(D, 1, 1, 20.0); gsl_matrix_set(D, 1, 2, 5.0); gsl_matrix_set(E, 0, 0, 10.0); gsl_matrix_set(E, 0, 1, 5.0); gsl_matrix_set(E, 0, 2, 2.0); gsl_matrix_set(E, 1, 0, 1.0); gsl_matrix_set(E, 1, 1, 3.0); gsl_matrix_set(E, 1, 2, 2.0); gsl_linalg_matmult_mod(A, GSL_LINALG_MOD_NONE, B, GSL_LINALG_MOD_NONE, C); s += ( fabs(gsl_matrix_get(C, 0, 0) - 106.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 68.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 32.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 35.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 80.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 52.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 0) - 20.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 1) - 35.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 2) - 22.0) > GSL_DBL_EPSILON ); gsl_linalg_matmult_mod(A, GSL_LINALG_MOD_TRANSPOSE, B, GSL_LINALG_MOD_NONE, C); s += ( fabs(gsl_matrix_get(C, 0, 0) - 102.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 56.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 24.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 73.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 94.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 56.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 0) - 22.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 1) - 41.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 2) - 26.0) > GSL_DBL_EPSILON ); gsl_linalg_matmult_mod(A, GSL_LINALG_MOD_NONE, B, GSL_LINALG_MOD_TRANSPOSE, C); s += ( fabs(gsl_matrix_get(C, 0, 0) - 127.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 27.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 27.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 120.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 71.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 71.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 0) - 39.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 1) - 24.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 2) - 24.0) > GSL_DBL_EPSILON ); gsl_linalg_matmult_mod(A, GSL_LINALG_MOD_TRANSPOSE, B, GSL_LINALG_MOD_TRANSPOSE, C); s += ( fabs(gsl_matrix_get(C, 0, 0) - 107.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 15.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 15.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 156.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 71.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 71.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 0) - 49.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 1) - 30.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 2) - 30.0) > GSL_DBL_EPSILON ); /* now try for non-symmetric matrices */ gsl_linalg_matmult_mod(D, GSL_LINALG_MOD_TRANSPOSE, E, GSL_LINALG_MOD_NONE, C); s += ( fabs(gsl_matrix_get(C, 0, 0) - 101.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 1) - 53.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 0, 2) - 22.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 0) - 70.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 1) - 85.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 1, 2) - 50.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 0) - 15.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 1) - 20.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(C, 2, 2) - 12.0) > GSL_DBL_EPSILON ); gsl_linalg_matmult_mod(D, GSL_LINALG_MOD_NONE, E, GSL_LINALG_MOD_TRANSPOSE, F); s += ( fabs(gsl_matrix_get(F, 0, 0) - 127.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(F, 0, 1) - 27.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(F, 1, 0) - 120.0) > GSL_DBL_EPSILON ); s += ( fabs(gsl_matrix_get(F, 1, 1) - 71.0) > GSL_DBL_EPSILON ); gsl_matrix_free(A); gsl_matrix_free(B); gsl_matrix_free(C); gsl_matrix_free(D); gsl_matrix_free(E); gsl_matrix_free(F); return s; } #endif int test_LU_solve_dim(const gsl_matrix * m, const double * actual, double eps) { int s = 0; int signum; unsigned long i, dim = m->size1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * lu = gsl_matrix_alloc(dim,dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_vector * residual = gsl_vector_alloc(dim); gsl_matrix_memcpy(lu,m); for(i=0; isize1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector_complex * rhs = gsl_vector_complex_alloc(dim); gsl_matrix_complex * lu = gsl_matrix_complex_alloc(dim,dim); gsl_vector_complex * x = gsl_vector_complex_alloc(dim); gsl_vector_complex * residual = gsl_vector_complex_alloc(dim); gsl_matrix_complex_memcpy(lu,m); for(i=0; isize1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * qr = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_matrix_memcpy(qr,m); for(i=0; isize1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * qr = gsl_matrix_alloc(dim,dim); gsl_matrix * q = gsl_matrix_alloc(dim,dim); gsl_matrix * r = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_matrix_memcpy(qr,m); for(i=0; isize1, N = m->size2; gsl_vector * rhs = gsl_vector_alloc(M); gsl_matrix * qr = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(N); gsl_vector * x = gsl_vector_alloc(N); gsl_vector * r = gsl_vector_alloc(M); gsl_vector * res = gsl_vector_alloc(M); gsl_matrix_memcpy(qr,m); for(i=0; isize1, N = m->size2; gsl_matrix * qr = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(M,M); gsl_matrix * r = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_matrix_memcpy(qr,m); s += gsl_linalg_QR_decomp(qr, d); s += gsl_linalg_QR_unpack(qr, d, q, r); /* compute a = q r */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, q, r, 0.0, a); for(i=0; isize1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * qr = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_vector * norm = gsl_vector_alloc(dim); gsl_matrix_memcpy(qr,m); for(i=0; isize1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * qr = gsl_matrix_alloc(dim,dim); gsl_matrix * q = gsl_matrix_alloc(dim,dim); gsl_matrix * r = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_vector * norm = gsl_vector_alloc(dim); gsl_matrix_memcpy(qr,m); for(i=0; isize1, N = m->size2; gsl_matrix * qr = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(M,M); gsl_matrix * r = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_vector * norm = gsl_vector_alloc(N); gsl_permutation * perm = gsl_permutation_alloc(N); gsl_matrix_memcpy(qr,m); s += gsl_linalg_QRPT_decomp(qr, d, perm, &signum, norm); s += gsl_linalg_QR_unpack(qr, d, q, r); /* compute a = q r */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, q, r, 0.0, a); /* Compute QR P^T by permuting the elements of the rows of QR */ for (i = 0; i < M; i++) { gsl_vector_view row = gsl_matrix_row (a, i); gsl_permute_vector_inverse (perm, &row.vector); } for(i=0; isize1, N = m->size2; gsl_matrix * qr1 = gsl_matrix_alloc(M,N); gsl_matrix * qr2 = gsl_matrix_alloc(M,N); gsl_matrix * q1 = gsl_matrix_alloc(M,M); gsl_matrix * r1 = gsl_matrix_alloc(M,N); gsl_matrix * q2 = gsl_matrix_alloc(M,M); gsl_matrix * r2 = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_vector * solution1 = gsl_vector_alloc(N); gsl_vector * solution2 = gsl_vector_alloc(N); gsl_vector * u = gsl_vector_alloc(M); gsl_vector * v = gsl_vector_alloc(N); gsl_vector * w = gsl_vector_alloc(M); gsl_matrix_memcpy(qr1,m); gsl_matrix_memcpy(qr2,m); for(i=0; isize1, N = m->size2; gsl_matrix * qr1 = gsl_matrix_alloc(M,N); gsl_matrix * qr2 = gsl_matrix_alloc(M,N); gsl_matrix * q1 = gsl_matrix_alloc(M,M); gsl_matrix * r1 = gsl_matrix_alloc(M,N); gsl_matrix * q2 = gsl_matrix_alloc(M,M); gsl_matrix * r2 = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_vector * u = gsl_vector_alloc(M); gsl_vector * v = gsl_vector_alloc(N); gsl_vector * w = gsl_vector_alloc(M); gsl_vector * norm = gsl_vector_alloc(N); gsl_permutation * perm = gsl_permutation_alloc(N); gsl_matrix_memcpy(qr1,m); gsl_matrix_memcpy(qr2,m); for(i=0; isize1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * lq = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_matrix_transpose_memcpy(lq,m); for(i=0; isize1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * lq = gsl_matrix_alloc(dim,dim); gsl_matrix * q = gsl_matrix_alloc(dim,dim); gsl_matrix * l = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_matrix_transpose_memcpy(lq,m); for(i=0; isize1, N = m->size2; gsl_vector * rhs = gsl_vector_alloc(M); gsl_matrix * lq = gsl_matrix_alloc(N,M); gsl_vector * d = gsl_vector_alloc(N); gsl_vector * x = gsl_vector_alloc(N); gsl_vector * r = gsl_vector_alloc(M); gsl_vector * res = gsl_vector_alloc(M); gsl_matrix_transpose_memcpy(lq,m); for(i=0; isize1, N = m->size2; gsl_matrix * lq = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(N,N); gsl_matrix * l = gsl_matrix_alloc(M,N); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_matrix_memcpy(lq,m); s += gsl_linalg_LQ_decomp(lq, d); s += gsl_linalg_LQ_unpack(lq, d, q, l); /* compute a = q r */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, l, q, 0.0, a); for(i=0; isize1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * lq = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_vector * norm = gsl_vector_alloc(dim); gsl_matrix_transpose_memcpy(lq,m); for(i=0; isize1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * lq = gsl_matrix_alloc(dim,dim); gsl_matrix * q = gsl_matrix_alloc(dim,dim); gsl_matrix * l = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_vector * norm = gsl_vector_alloc(dim); gsl_matrix_transpose_memcpy(lq,m); for(i=0; isize1, N = m->size2; gsl_matrix * lq = gsl_matrix_alloc(N,M); gsl_matrix * a = gsl_matrix_alloc(N,M); gsl_matrix * q = gsl_matrix_alloc(M,M); gsl_matrix * l = gsl_matrix_alloc(N,M); gsl_vector * d = gsl_vector_alloc(GSL_MIN(M,N)); gsl_vector * norm = gsl_vector_alloc(N); gsl_permutation * perm = gsl_permutation_alloc(N); gsl_matrix_transpose_memcpy(lq,m); s += gsl_linalg_PTLQ_decomp(lq, d, perm, &signum, norm); s += gsl_linalg_LQ_unpack(lq, d, q, l); /* compute a = l q */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, l, q, 0.0, a); /* Compute P LQ by permuting the rows of LQ */ for (i = 0; i < M; i++) { gsl_vector_view col = gsl_matrix_column (a, i); gsl_permute_vector_inverse (perm, &col.vector); } for(i=0; isize1, N = m->size2; gsl_matrix * lq1 = gsl_matrix_alloc(N,M); gsl_matrix * lq2 = gsl_matrix_alloc(N,M); gsl_matrix * q1 = gsl_matrix_alloc(M,M); gsl_matrix * l1 = gsl_matrix_alloc(N,M); gsl_matrix * q2 = gsl_matrix_alloc(M,M); gsl_matrix * l2 = gsl_matrix_alloc(N,M); gsl_vector * d2 = gsl_vector_alloc(GSL_MIN(M,N)); gsl_vector * u = gsl_vector_alloc(M); gsl_vector * v = gsl_vector_alloc(N); gsl_vector * w = gsl_vector_alloc(M); gsl_matrix_transpose_memcpy(lq1,m); gsl_matrix_transpose_memcpy(lq2,m); for(i=0; isize1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * u = gsl_matrix_alloc(dim,dim); gsl_matrix * q = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_calloc(dim); gsl_matrix_memcpy(u,m); for(i=0; isize1, N = m->size2; unsigned long input_nans = 0; gsl_matrix * v = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(N,N); gsl_matrix * dqt = gsl_matrix_alloc(N,N); gsl_vector * d = gsl_vector_alloc(N); gsl_vector * w = gsl_vector_alloc(N); gsl_matrix_memcpy(v,m); /* Check for nans in the input */ for (i = 0; i 0) continue; /* skip NaNs if present in input */ else { s++; printf("bad singular value %lu = %22.18g\n", i, di); } } if (di < 0) { s++; printf("singular value %lu = %22.18g < 0\n", i, di); } if(i > 0 && di > di1) { s++; printf("singular value %lu = %22.18g vs previous %22.18g\n", i, di, di1); } di1 = di; } /* Scale dqt = D Q^T */ for (i = 0; i < N ; i++) { double di = gsl_vector_get (d, i); for (j = 0; j < N; j++) { double qji = gsl_matrix_get(q, j, i); gsl_matrix_set (dqt, i, j, qji * di); } } /* compute a = v dqt */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, v, dqt, 0.0, a); for(i=0; idata; for (i=0; i<9; i++) { a[i] = lower; } while (carry == 0.0) { f = test_SV_decomp_dim(A33, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp (3x3) A=[ %g, %g, %g; %g, %g, %g; %g, %g, %g]", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]); /* increment */ carry=1.0; for (i=9; carry > 0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #ifdef TEST_SVD_4X4 { int i; double carry = 0, lower = 0, upper = 1; double *a = A44->data; for (i=0; i<16; i++) { a[i] = lower; } while (carry == 0.0) { f = test_SV_decomp_dim(A44, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp (4x4) A=[ %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g]", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]); /* increment */ carry=1.0; for (i=16; carry > 0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #endif return s; } int test_SV_decomp_mod_dim(const gsl_matrix * m, double eps) { int s = 0; double di1; unsigned long i,j, M = m->size1, N = m->size2; gsl_matrix * v = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(N,N); gsl_matrix * x = gsl_matrix_alloc(N,N); gsl_matrix * dqt = gsl_matrix_alloc(N,N); gsl_vector * d = gsl_vector_alloc(N); gsl_vector * w = gsl_vector_alloc(N); gsl_matrix_memcpy(v,m); s += gsl_linalg_SV_decomp_mod(v, x, q, d, w); /* Check that singular values are non-negative and in non-decreasing order */ di1 = 0.0; for (i = 0; i < N; i++) { double di = gsl_vector_get (d, i); if (gsl_isnan (di)) { continue; /* skip NaNs */ } if (di < 0) { s++; printf("singular value %lu = %22.18g < 0\n", i, di); } if(i > 0 && di > di1) { s++; printf("singular value %lu = %22.18g vs previous %22.18g\n", i, di, di1); } di1 = di; } /* Scale dqt = D Q^T */ for (i = 0; i < N ; i++) { double di = gsl_vector_get (d, i); for (j = 0; j < N; j++) { double qji = gsl_matrix_get(q, j, i); gsl_matrix_set (dqt, i, j, qji * di); } } /* compute a = v dqt */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, v, dqt, 0.0, a); for(i=0; idata; for (i=0; i<9; i++) { a[i] = lower; } while (carry == 0.0) { f = test_SV_decomp_mod_dim(A33, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp_mod (3x3) A=[ %g, %g, %g; %g, %g, %g; %g, %g, %g]", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]); /* increment */ carry=1.0; for (i=9; carry > 0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #ifdef TEST_SVD_4X4 { int i; double carry = 0, lower = 0, upper = 1; double *a = A44->data; for (i=0; i<16; i++) { a[i] = lower; } while (carry == 0.0) { f = test_SV_decomp_mod_dim(A44, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp_mod (4x4) A=[ %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g]", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]); /* increment */ carry=1.0; for (i=16; carry>0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #endif return s; } int test_SV_decomp_jacobi_dim(const gsl_matrix * m, double eps) { int s = 0; double di1; unsigned long i,j, M = m->size1, N = m->size2; gsl_matrix * v = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * q = gsl_matrix_alloc(N,N); gsl_matrix * dqt = gsl_matrix_alloc(N,N); gsl_vector * d = gsl_vector_alloc(N); gsl_matrix_memcpy(v,m); s += gsl_linalg_SV_decomp_jacobi(v, q, d); if (s) printf("call returned status = %d\n", s); /* Check that singular values are non-negative and in non-decreasing order */ di1 = 0.0; for (i = 0; i < N; i++) { double di = gsl_vector_get (d, i); if (gsl_isnan (di)) { continue; /* skip NaNs */ } if (di < 0) { s++; printf("singular value %lu = %22.18g < 0\n", i, di); } if(i > 0 && di > di1) { s++; printf("singular value %lu = %22.18g vs previous %22.18g\n", i, di, di1); } di1 = di; } /* Scale dqt = D Q^T */ for (i = 0; i < N ; i++) { double di = gsl_vector_get (d, i); for (j = 0; j < N; j++) { double qji = gsl_matrix_get(q, j, i); gsl_matrix_set (dqt, i, j, qji * di); } } /* compute a = v dqt */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, v, dqt, 0.0, a); for(i=0; idata; for (i=0; i<9; i++) { a[i] = lower; } while (carry == 0.0) { f = test_SV_decomp_jacobi_dim(A33, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp_jacobi (3x3) A=[ %g, %g, %g; %g, %g, %g; %g, %g, %g]", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]); /* increment */ carry=1.0; for (i=9; carry > 0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #ifdef TEST_SVD_4X4 { int i; unsigned long k = 0; double carry = 0, lower = 0, upper = 1; double *a = A44->data; for (i=0; i<16; i++) { a[i] = lower; } while (carry == 0.0) { k++; f = test_SV_decomp_jacobi_dim(A44, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp_jacobi (4x4) A=[ %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g; %g, %g, %g, %g] %lu", a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15], k); /* increment */ carry=1.0; for (i=16; carry > 0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } #endif { int i; unsigned long k = 0; double carry = 0, lower = 0, upper = 1; double *a = A55->data; for (i=0; i<25; i++) { a[i] = lower; } while (carry == 0.0) { k++; if (k % 1001 == 0) { f = test_SV_decomp_jacobi_dim(A55, 64 * GSL_DBL_EPSILON); gsl_test(f, " SV_decomp_jacobi (5x5) case=%lu",k); } /* increment */ carry=1.0; for (i=25; carry >0.0 && i>0 && i--;) { double v=a[i]+carry; carry = (v>upper) ? 1.0 : 0.0; a[i] = (v>upper) ? lower : v; } } } return s; } int test_cholesky_solve_dim(const gsl_matrix * m, const double * actual, double eps) { int s = 0; unsigned long i, dim = m->size1; gsl_vector * rhs = gsl_vector_alloc(dim); gsl_matrix * u = gsl_matrix_alloc(dim,dim); gsl_vector * x = gsl_vector_calloc(dim); gsl_matrix_memcpy(u,m); for(i=0; isize1, N = m->size2; gsl_matrix * v = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * l = gsl_matrix_alloc(M,N); gsl_matrix * lt = gsl_matrix_alloc(N,N); gsl_matrix_memcpy(v,m); s += gsl_linalg_cholesky_decomp(v); /* Compute L LT */ for (i = 0; i < N ; i++) { for (j = 0; j < N; j++) { double vij = gsl_matrix_get(v, i, j); gsl_matrix_set (l, i, j, i>=j ? vij : 0); gsl_matrix_set (lt, i, j, i<=j ? vij : 0); } } /* compute a = l lt */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, l, lt, 0.0, a); for(i=0; isize1; gsl_matrix * v = gsl_matrix_alloc(N, N); gsl_matrix * c = gsl_matrix_alloc(N, N); gsl_matrix_memcpy(v,m); s += gsl_linalg_cholesky_decomp(v); s += gsl_linalg_cholesky_invert(v); gsl_blas_dsymm(CblasLeft, CblasUpper, 1.0, m, v, 0.0, c); /* c should be the identity matrix */ for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { int foo; double cij = gsl_matrix_get(c, i, j); double expected; if (i == j) expected = 1.0; else expected = 0.0; foo = check(cij, expected, eps); if (foo) printf("(%3lu,%3lu)[%lu,%lu]: %22.18g %22.18g\n", N, N, i,j, cij, expected); s += foo; } } gsl_matrix_free(v); gsl_matrix_free(c); return s; } int test_cholesky_invert(void) { int f; int s = 0; f = test_cholesky_invert_dim(hilb2, 2 * 8.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_invert hilbert(2)"); s += f; f = test_cholesky_invert_dim(hilb3, 2 * 64.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_invert hilbert(3)"); s += f; f = test_cholesky_invert_dim(hilb4, 2 * 1024.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_invert hilbert(4)"); s += f; return s; } int test_cholesky_decomp_unit_dim(const gsl_matrix * m, double eps) { int s = 0; const unsigned long M = m->size1; const unsigned long N = m->size2; unsigned long i,j; gsl_matrix * v = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * l = gsl_matrix_alloc(M,N); gsl_matrix * lt = gsl_matrix_alloc(N,N); gsl_matrix * dm = gsl_matrix_alloc(M,N); gsl_vector * dv = gsl_vector_alloc(M); gsl_matrix_memcpy(v,m); s += gsl_linalg_cholesky_decomp_unit(v, dv); /* for(i = 0; i < M; i++) { for(j = 0; j < N; j++) { printf("v[%lu,%lu]: %22.18e\n", i,j, gsl_matrix_get(v, i, j)); } } for(i = 0; i < M; i++) { printf("d[%lu]: %22.18e\n", i, gsl_vector_get(dv, i)); } */ /* put L and transpose(L) into separate matrices */ for(i = 0; i < N ; i++) { for(j = 0; j < N; j++) { const double vij = gsl_matrix_get(v, i, j); gsl_matrix_set (l, i, j, i>=j ? vij : 0); gsl_matrix_set (lt, i, j, i<=j ? vij : 0); } } /* put D into its own matrix */ gsl_matrix_set_zero(dm); for(i = 0; i < M; ++i) gsl_matrix_set(dm, i, i, gsl_vector_get(dv, i)); /* compute a = L * D * transpose(L); uses v for temp space */ gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, dm, lt, 0.0, v); gsl_blas_dgemm (CblasNoTrans, CblasNoTrans, 1.0, l, v, 0.0, a); for(i = 0; i < M; i++) { for(j = 0; j < N; j++) { const double aij = gsl_matrix_get(a, i, j); const double mij = gsl_matrix_get(m, i, j); int foo = check(aij, mij, eps); if(foo) { printf("(%3lu,%3lu)[%lu,%lu]: %22.18g %22.18g\n", M, N, i,j, aij, mij); } s += foo; } } gsl_vector_free(dv); gsl_matrix_free(dm); gsl_matrix_free(lt); gsl_matrix_free(l); gsl_matrix_free(v); gsl_matrix_free(a); return s; } int test_cholesky_decomp_unit(void) { int f; int s = 0; f = test_cholesky_decomp_unit_dim(hilb2, 2 * 8.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_decomp_unit hilbert(2)"); s += f; f = test_cholesky_decomp_unit_dim(hilb3, 2 * 64.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_decomp_unit hilbert(3)"); s += f; f = test_cholesky_decomp_unit_dim(hilb4, 2 * 1024.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_decomp_unit hilbert(4)"); s += f; f = test_cholesky_decomp_unit_dim(hilb12, 2 * 1024.0 * GSL_DBL_EPSILON); gsl_test(f, " cholesky_decomp_unit hilbert(12)"); s += f; return s; } int test_choleskyc_solve_dim(const gsl_matrix_complex * m, const gsl_vector_complex * actual, double eps) { int s = 0; unsigned long i, dim = m->size1; gsl_complex z; gsl_vector_complex * rhs = gsl_vector_complex_alloc(dim); gsl_matrix_complex * u = gsl_matrix_complex_alloc(dim,dim); gsl_vector_complex * x = gsl_vector_complex_calloc(dim); GSL_SET_IMAG(&z, 0.0); gsl_matrix_complex_memcpy(u,m); for(i=0; isize1, N = m->size2; gsl_matrix_complex * v = gsl_matrix_complex_alloc(M,N); gsl_matrix_complex * a = gsl_matrix_complex_alloc(M,N); gsl_matrix_complex * l = gsl_matrix_complex_alloc(M,N); gsl_matrix_complex * lh = gsl_matrix_complex_alloc(N,N); gsl_matrix_complex_memcpy(v, m); gsl_matrix_complex_set_zero(l); gsl_matrix_complex_set_zero(lh); s += gsl_linalg_complex_cholesky_decomp(v); /* Compute L L^H */ for (i = 0; i < N ; i++) { for (j = 0; j <= i; j++) { gsl_complex vij = gsl_matrix_complex_get(v, i, j); gsl_matrix_complex_set (l, i, j, vij); gsl_matrix_complex_set (lh, j, i, gsl_complex_conjugate(vij)); } } /* compute a = l lh */ gsl_blas_zgemm (CblasNoTrans, CblasNoTrans, GSL_COMPLEX_ONE, l, lh, GSL_COMPLEX_ZERO, a); for(i=0; isize1; gsl_complex af, bt; gsl_matrix_complex * v = gsl_matrix_complex_alloc(N, N); gsl_matrix_complex * c = gsl_matrix_complex_alloc(N, N); gsl_matrix_complex_memcpy(v, m); s += gsl_linalg_complex_cholesky_decomp(v); s += gsl_linalg_complex_cholesky_invert(v); GSL_SET_COMPLEX(&af, 1.0, 0.0); GSL_SET_COMPLEX(&bt, 0.0, 0.0); gsl_blas_zhemm(CblasLeft, CblasUpper, af, m, v, bt, c); /* c should be the identity matrix */ for (i = 0; i < N; ++i) { for (j = 0; j < N; ++j) { int foo; gsl_complex cij = gsl_matrix_complex_get(c, i, j); double expected, actual; /* check real part */ if (i == j) expected = 1.0; else expected = 0.0; actual = GSL_REAL(cij); foo = check(actual, expected, eps); if (foo) printf("REAL(%3lu,%3lu)[%lu,%lu]: %22.18g %22.18g\n", N, N, i,j, actual, expected); s += foo; /* check imaginary part */ expected = 0.0; actual = GSL_IMAG(cij); foo = check(actual, expected, eps); if (foo) printf("IMAG(%3lu,%3lu)[%lu,%lu]: %22.18g %22.18g\n", N, N, i,j, actual, expected); s += foo; } } gsl_matrix_complex_free(v); gsl_matrix_complex_free(c); return s; } int test_choleskyc_invert(void) { int f; int s = 0; double dat2[] = { 92.303, 0.000, 10.858, 1.798, 10.858, -1.798, 89.027, 0.000 }; double dat3[] = { 59.75,0, 49.25,172.25, 66.75,-162.75, 49.25,-172.25, 555.5,0, -429,-333.5, 66.75,162.75, -429,333.5, 536.5,0 }; double dat4[] = { 102.108, 0.000, 14.721, 1.343, -17.480, 15.591, 3.308, -2.936, 14.721, -1.343, 101.970, 0.000, 11.671, -6.776, -5.009, -2.665, -17.480, -15.591, 11.671, 6.776, 105.071, 0.000, 3.396, 6.276, 3.308, 2.936, -5.009, 2.665, 3.396, -6.276, 107.128, 0.000 }; { gsl_matrix_complex_view rv2 = gsl_matrix_complex_view_array(dat2, 2, 2); f = test_choleskyc_invert_dim(&rv2.matrix, 2 * 8.0 * GSL_DBL_EPSILON); gsl_test(f, " choleskyc_invert 2x2 Hermitian"); s += f; } { gsl_matrix_complex_view rv3 = gsl_matrix_complex_view_array(dat3, 3, 3); f = test_choleskyc_invert_dim(&rv3.matrix, 2 * 1024.0 * GSL_DBL_EPSILON); gsl_test(f, " choleskyc_invert 3x3 Hermitian"); s += f; } { gsl_matrix_complex_view rv4 = gsl_matrix_complex_view_array(dat4, 4, 4); f = test_choleskyc_invert_dim(&rv4.matrix, 2 * 64.0 * GSL_DBL_EPSILON); gsl_test(f, " choleskyc_invert 4x4 Hermitian"); s += f; } return s; } int test_HH_solve_dim(const gsl_matrix * m, const double * actual, double eps) { int s = 0; unsigned long i, dim = m->size1; gsl_permutation * perm = gsl_permutation_alloc(dim); gsl_matrix * hh = gsl_matrix_alloc(dim,dim); gsl_vector * d = gsl_vector_alloc(dim); gsl_vector * x = gsl_vector_alloc(dim); gsl_matrix_memcpy(hh,m); for(i=0; isize1, N = m->size2; gsl_matrix * A = gsl_matrix_alloc(M,N); gsl_matrix * a = gsl_matrix_alloc(M,N); gsl_matrix * b = gsl_matrix_alloc(N,N); gsl_matrix * u = gsl_matrix_alloc(M,N); gsl_matrix * v = gsl_matrix_alloc(N,N); gsl_vector * tau1 = gsl_vector_alloc(N); gsl_vector * tau2 = gsl_vector_alloc(N-1); gsl_vector * d = gsl_vector_alloc(N); gsl_vector * sd = gsl_vector_alloc(N-1); gsl_matrix_memcpy(A,m); s += gsl_linalg_bidiag_decomp(A, tau1, tau2); s += gsl_linalg_bidiag_unpack(A, tau1, u, tau2, v, d, sd); gsl_matrix_set_zero(b); for (i = 0; i < N; i++) gsl_matrix_set(b, i,i, gsl_vector_get(d,i)); for (i = 0; i < N-1; i++) gsl_matrix_set(b, i,i+1, gsl_vector_get(sd,i)); /* Compute A = U B V^T */ for (i = 0; i < M ; i++) { for (j = 0; j < N; j++) { double sum = 0; for (k = 0; k < N; k++) { for (r = 0; r < N; r++) { sum += gsl_matrix_get(u, i, k) * gsl_matrix_get (b, k, r) * gsl_matrix_get(v, j, r); } } gsl_matrix_set (a, i, j, sum); } } for(i=0; i #include #include #include #include #include #include #include #include "givens.c" #include "apply_givens.c" /* Factorise a general M x N matrix A into * * A = Q R * * where Q is orthogonal (M x M) and R is upper triangular (M x N). * * Q is stored as a packed set of Householder transformations in the * strict lower triangular part of the input matrix. * * R is stored in the diagonal and upper triangle of the input matrix. * * The full matrix for Q can be obtained as the product * * Q = Q_k .. Q_2 Q_1 * * where k = MIN(M,N) and * * Q_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [1, m(i+1,i), m(i+2,i), ... , m(M,i)] * * This storage scheme is the same as in LAPACK. */ int gsl_linalg_QR_decomp (gsl_matrix * A, gsl_vector * tau) { const size_t M = A->size1; const size_t N = A->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i; for (i = 0; i < GSL_MIN (M, N); i++) { /* Compute the Householder transformation to reduce the j-th column of the matrix to a multiple of the j-th unit vector */ gsl_vector_view c_full = gsl_matrix_column (A, i); gsl_vector_view c = gsl_vector_subvector (&(c_full.vector), i, M-i); double tau_i = gsl_linalg_householder_transform (&(c.vector)); gsl_vector_set (tau, i, tau_i); /* Apply the transformation to the remaining columns and update the norms */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1)); gsl_linalg_householder_hm (tau_i, &(c.vector), &(m.matrix)); } } return GSL_SUCCESS; } } /* Solves the system A x = b using the QR factorisation, * R x = Q^T b * * to obtain x. Based on SLATEC code. */ int gsl_linalg_QR_solve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for x */ gsl_linalg_QR_svx (QR, tau, x); return GSL_SUCCESS; } } /* Solves the system A x = b in place using the QR factorisation, * R x = Q^T b * * to obtain x. Based on SLATEC code. */ int gsl_linalg_QR_svx (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != x->size) { GSL_ERROR ("matrix size must match x/rhs size", GSL_EBADLEN); } else { /* compute rhs = Q^T b */ gsl_linalg_QR_QTvec (QR, tau, x); /* Solve R x = rhs, storing x in-place */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); return GSL_SUCCESS; } } /* Find the least squares solution to the overdetermined system * * A x = b * * for M >= N using the QR factorization A = Q R. */ int gsl_linalg_QR_lssolve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { const size_t M = QR->size1; const size_t N = QR->size2; if (M < N) { GSL_ERROR ("QR matrix must have M>=N", GSL_EBADLEN); } else if (M != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (N != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (M != residual->size) { GSL_ERROR ("matrix size must match residual size", GSL_EBADLEN); } else { gsl_matrix_const_view R = gsl_matrix_const_submatrix (QR, 0, 0, N, N); gsl_vector_view c = gsl_vector_subvector(residual, 0, N); gsl_vector_memcpy(residual, b); /* compute rhs = Q^T b */ gsl_linalg_QR_QTvec (QR, tau, residual); /* Solve R x = rhs */ gsl_vector_memcpy(x, &(c.vector)); gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, &(R.matrix), x); /* Compute residual = b - A x = Q (Q^T b - R x) */ gsl_vector_set_zero(&(c.vector)); gsl_linalg_QR_Qvec(QR, tau, residual); return GSL_SUCCESS; } } int gsl_linalg_QR_Rsolve (const gsl_matrix * QR, const gsl_vector * b, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (QR->size2 != x->size) { GSL_ERROR ("matrix size must match x size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x in-place */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); return GSL_SUCCESS; } } int gsl_linalg_QR_Rsvx (const gsl_matrix * QR, gsl_vector * x) { if (QR->size1 != QR->size2) { GSL_ERROR ("QR matrix must be square", GSL_ENOTSQR); } else if (QR->size1 != x->size) { GSL_ERROR ("matrix size must match rhs size", GSL_EBADLEN); } else { /* Solve R x = b, storing x in-place */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, QR, x); return GSL_SUCCESS; } } int gsl_linalg_R_solve (const gsl_matrix * R, const gsl_vector * b, gsl_vector * x) { if (R->size1 != R->size2) { GSL_ERROR ("R matrix must be square", GSL_ENOTSQR); } else if (R->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (R->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve R x = b, storing x inplace in b */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x); return GSL_SUCCESS; } } int gsl_linalg_R_svx (const gsl_matrix * R, gsl_vector * x) { if (R->size1 != R->size2) { GSL_ERROR ("R matrix must be square", GSL_ENOTSQR); } else if (R->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Solve R x = b, storing x inplace in b */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x); return GSL_SUCCESS; } } /* Form the product Q^T v from a QR factorized matrix */ int gsl_linalg_QR_QTvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v) { const size_t M = QR->size1; const size_t N = QR->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute Q^T v */ for (i = 0; i < GSL_MIN (M, N); i++) { gsl_vector_const_view c = gsl_matrix_const_column (QR, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &(h.vector), &(w.vector)); } return GSL_SUCCESS; } } int gsl_linalg_QR_Qvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v) { const size_t M = QR->size1; const size_t N = QR->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (v->size != M) { GSL_ERROR ("vector size must be M", GSL_EBADLEN); } else { size_t i; /* compute Q^T v */ for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_column (QR, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_vector_view w = gsl_vector_subvector (v, i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hv (ti, &h.vector, &w.vector); } return GSL_SUCCESS; } } /* Form the product Q^T A from a QR factorized matrix */ int gsl_linalg_QR_QTmat (const gsl_matrix * QR, const gsl_vector * tau, gsl_matrix * A) { const size_t M = QR->size1; const size_t N = QR->size2; if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (A->size1 != M) { GSL_ERROR ("matrix must have M rows", GSL_EBADLEN); } else { size_t i; /* compute Q^T A */ for (i = 0; i < GSL_MIN (M, N); i++) { gsl_vector_const_view c = gsl_matrix_const_column (QR, i); gsl_vector_const_view h = gsl_vector_const_subvector (&(c.vector), i, M - i); gsl_matrix_view m = gsl_matrix_submatrix(A, i, 0, M - i, A->size2); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hm (ti, &(h.vector), &(m.matrix)); } return GSL_SUCCESS; } } /* Form the orthogonal matrix Q from the packed QR matrix */ int gsl_linalg_QR_unpack (const gsl_matrix * QR, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * R) { const size_t M = QR->size1; const size_t N = QR->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be M x M", GSL_ENOTSQR); } else if (R->size1 != M || R->size2 != N) { GSL_ERROR ("R matrix must be M x N", GSL_ENOTSQR); } else if (tau->size != GSL_MIN (M, N)) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else { size_t i, j; /* Initialize Q to the identity */ gsl_matrix_set_identity (Q); for (i = GSL_MIN (M, N); i-- > 0;) { gsl_vector_const_view c = gsl_matrix_const_column (QR, i); gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, i, M - i); gsl_matrix_view m = gsl_matrix_submatrix (Q, i, i, M - i, M - i); double ti = gsl_vector_get (tau, i); gsl_linalg_householder_hm (ti, &h.vector, &m.matrix); } /* Form the right triangular matrix R from a packed QR matrix */ for (i = 0; i < M; i++) { for (j = 0; j < i && j < N; j++) gsl_matrix_set (R, i, j, 0.0); for (j = i; j < N; j++) gsl_matrix_set (R, i, j, gsl_matrix_get (QR, i, j)); } return GSL_SUCCESS; } } /* Update a QR factorisation for A= Q R , A' = A + u v^T, * Q' R' = QR + u v^T * = Q (R + Q^T u v^T) * = Q (R + w v^T) * * where w = Q^T u. * * Algorithm from Golub and Van Loan, "Matrix Computations", Section * 12.5 (Updating Matrix Factorizations, Rank-One Changes) */ int gsl_linalg_QR_update (gsl_matrix * Q, gsl_matrix * R, gsl_vector * w, const gsl_vector * v) { const size_t M = R->size1; const size_t N = R->size2; if (Q->size1 != M || Q->size2 != M) { GSL_ERROR ("Q matrix must be M x M if R is M x N", GSL_ENOTSQR); } else if (w->size != M) { GSL_ERROR ("w must be length M if R is M x N", GSL_EBADLEN); } else if (v->size != N) { GSL_ERROR ("v must be length N if R is M x N", GSL_EBADLEN); } else { size_t j, k; double w0; /* Apply Given's rotations to reduce w to (|w|, 0, 0, ... , 0) J_1^T .... J_(n-1)^T w = +/- |w| e_1 simultaneously applied to R, H = J_1^T ... J^T_(n-1) R so that H is upper Hessenberg. (12.5.2) */ for (k = M - 1; k > 0; k--) /* loop from k = M-1 to 1 */ { double c, s; double wk = gsl_vector_get (w, k); double wkm1 = gsl_vector_get (w, k - 1); create_givens (wkm1, wk, &c, &s); apply_givens_vec (w, k - 1, k, c, s); apply_givens_qr (M, N, Q, R, k - 1, k, c, s); } w0 = gsl_vector_get (w, 0); /* Add in w v^T (Equation 12.5.3) */ for (j = 0; j < N; j++) { double r0j = gsl_matrix_get (R, 0, j); double vj = gsl_vector_get (v, j); gsl_matrix_set (R, 0, j, r0j + w0 * vj); } /* Apply Givens transformations R' = G_(n-1)^T ... G_1^T H Equation 12.5.4 */ for (k = 1; k < GSL_MIN(M,N+1); k++) { double c, s; double diag = gsl_matrix_get (R, k - 1, k - 1); double offdiag = gsl_matrix_get (R, k, k - 1); create_givens (diag, offdiag, &c, &s); apply_givens_qr (M, N, Q, R, k - 1, k, c, s); gsl_matrix_set (R, k, k - 1, 0.0); /* exact zero of G^T */ } return GSL_SUCCESS; } } int gsl_linalg_QR_QRsolve (gsl_matrix * Q, gsl_matrix * R, const gsl_vector * b, gsl_vector * x) { const size_t M = R->size1; const size_t N = R->size2; if (M != N) { return GSL_ENOTSQR; } else if (Q->size1 != M || b->size != M || x->size != M) { return GSL_EBADLEN; } else { /* compute sol = Q^T b */ gsl_blas_dgemv (CblasTrans, 1.0, Q, b, 0.0, x); /* Solve R x = sol, storing x in-place */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, R, x); return GSL_SUCCESS; } } gsl-1.16/linalg/Makefile.in0000664000252300025230000011000212172253755012465 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = linalg DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgsllinalg_la_LIBADD = am_libgsllinalg_la_OBJECTS = multiply.lo exponential.lo tridiag.lo \ lu.lo luc.lo hh.lo qr.lo qrpt.lo lq.lo ptlq.lo svd.lo \ householder.lo householdercomplex.lo hessenberg.lo hesstri.lo \ cholesky.lo choleskyc.lo symmtd.lo hermtd.lo bidiag.lo \ balance.lo balancemat.lo libgsllinalg_la_OBJECTS = $(am_libgsllinalg_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgsllinalg.la ../blas/libgslblas.la \ ../cblas/libgslcblas.la ../permutation/libgslpermutation.la \ ../matrix/libgslmatrix.la ../vector/libgslvector.la \ ../block/libgslblock.la ../complex/libgslcomplex.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsllinalg_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgsllinalg_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgsllinalg.la pkginclude_HEADERS = gsl_linalg.h INCLUDES = -I$(top_srcdir) libgsllinalg_la_SOURCES = multiply.c exponential.c tridiag.c tridiag.h lu.c luc.c hh.c qr.c qrpt.c lq.c ptlq.c svd.c householder.c householdercomplex.c hessenberg.c hesstri.c cholesky.c choleskyc.c symmtd.c hermtd.c bidiag.c balance.c balancemat.c noinst_HEADERS = givens.c apply_givens.c svdstep.c tridiag.h TESTS = $(check_PROGRAMS) test_LDADD = libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu linalg/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu linalg/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsllinalg.la: $(libgsllinalg_la_OBJECTS) $(libgsllinalg_la_DEPENDENCIES) $(EXTRA_libgsllinalg_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgsllinalg_la_OBJECTS) $(libgsllinalg_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/balance.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/balancemat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bidiag.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cholesky.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/choleskyc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exponential.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hermtd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hessenberg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hesstri.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hh.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/householder.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/householdercomplex.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lq.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/luc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/multiply.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ptlq.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qrpt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/svd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/symmtd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tridiag.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/linalg/luc.c0000664000252300025230000002220512171574312011350 00000000000000/* linalg/luc.c * * Copyright (C) 2001, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include static int singular (const gsl_matrix_complex * LU); /* Factorise a general N x N complex matrix A into, * * P A = L U * * where P is a permutation matrix, L is unit lower triangular and U * is upper triangular. * * L is stored in the strict lower triangular part of the input * matrix. The diagonal elements of L are unity and are not stored. * * U is stored in the diagonal and upper triangular part of the * input matrix. * * P is stored in the permutation p. Column j of P is column k of the * identity matrix, where k = permutation->data[j] * * signum gives the sign of the permutation, (-1)^n, where n is the * number of interchanges in the permutation. * * See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss * Elimination with Partial Pivoting). */ int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * p, int *signum) { if (A->size1 != A->size2) { GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR); } else if (p->size != A->size1) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i, j, k; *signum = 1; gsl_permutation_init (p); for (j = 0; j < N - 1; j++) { /* Find maximum in the j-th column */ gsl_complex ajj = gsl_matrix_complex_get (A, j, j); double max = gsl_complex_abs (ajj); size_t i_pivot = j; for (i = j + 1; i < N; i++) { gsl_complex aij = gsl_matrix_complex_get (A, i, j); double ai = gsl_complex_abs (aij); if (ai > max) { max = ai; i_pivot = i; } } if (i_pivot != j) { gsl_matrix_complex_swap_rows (A, j, i_pivot); gsl_permutation_swap (p, j, i_pivot); *signum = -(*signum); } ajj = gsl_matrix_complex_get (A, j, j); if (!(GSL_REAL(ajj) == 0.0 && GSL_IMAG(ajj) == 0.0)) { for (i = j + 1; i < N; i++) { gsl_complex aij_orig = gsl_matrix_complex_get (A, i, j); gsl_complex aij = gsl_complex_div (aij_orig, ajj); gsl_matrix_complex_set (A, i, j, aij); for (k = j + 1; k < N; k++) { gsl_complex aik = gsl_matrix_complex_get (A, i, k); gsl_complex ajk = gsl_matrix_complex_get (A, j, k); /* aik = aik - aij * ajk */ gsl_complex aijajk = gsl_complex_mul (aij, ajk); gsl_complex aik_new = gsl_complex_sub (aik, aijajk); gsl_matrix_complex_set (A, i, k, aik_new); } } } } return GSL_SUCCESS; } } int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x) { if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LU->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { int status; /* Copy x <- b */ gsl_vector_complex_memcpy (x, b); /* Solve for x */ status = gsl_linalg_complex_LU_svx (LU, p, x); return status; } } int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_vector_complex * x) { if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != x->size) { GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { /* Apply permutation to RHS */ gsl_permute_vector_complex (p, x); /* Solve for c using forward-substitution, L c = P b */ gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x); /* Perform back-substitution, U x = c */ gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x); return GSL_SUCCESS; } } int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * residual) { if (A->size1 != A->size2) { GSL_ERROR ("matrix a must be square", GSL_ENOTSQR); } if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (A->size1 != LU->size2) { GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LU->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { int status; /* Compute residual, residual = (A * x - b) */ gsl_vector_complex_memcpy (residual, b); { gsl_complex one = GSL_COMPLEX_ONE; gsl_complex negone = GSL_COMPLEX_NEGONE; gsl_blas_zgemv (CblasNoTrans, one, A, x, negone, residual); } /* Find correction, delta = - (A^-1) * residual, and apply it */ status = gsl_linalg_complex_LU_svx (LU, p, residual); { gsl_complex negone= GSL_COMPLEX_NEGONE; gsl_blas_zaxpy (negone, residual, x); } return status; } } int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_matrix_complex * inverse) { size_t i, n = LU->size1; int status = GSL_SUCCESS; gsl_matrix_complex_set_identity (inverse); for (i = 0; i < n; i++) { gsl_vector_complex_view c = gsl_matrix_complex_column (inverse, i); int status_i = gsl_linalg_complex_LU_svx (LU, p, &(c.vector)); if (status_i) status = status_i; } return status; } gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int signum) { size_t i, n = LU->size1; gsl_complex det = gsl_complex_rect((double) signum, 0.0); for (i = 0; i < n; i++) { gsl_complex zi = gsl_matrix_complex_get (LU, i, i); det = gsl_complex_mul (det, zi); } return det; } double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU) { size_t i, n = LU->size1; double lndet = 0.0; for (i = 0; i < n; i++) { gsl_complex z = gsl_matrix_complex_get (LU, i, i); lndet += log (gsl_complex_abs (z)); } return lndet; } gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int signum) { size_t i, n = LU->size1; gsl_complex phase = gsl_complex_rect((double) signum, 0.0); for (i = 0; i < n; i++) { gsl_complex z = gsl_matrix_complex_get (LU, i, i); double r = gsl_complex_abs(z); if (r == 0) { phase = gsl_complex_rect(0.0, 0.0); break; } else { z = gsl_complex_div_real(z, r); phase = gsl_complex_mul(phase, z); } } return phase; } static int singular (const gsl_matrix_complex * LU) { size_t i, n = LU->size1; for (i = 0; i < n; i++) { gsl_complex u = gsl_matrix_complex_get (LU, i, i); if (GSL_REAL(u) == 0 && GSL_IMAG(u) == 0) return 1; } return 0; } gsl-1.16/linalg/gsl_linalg.h0000664000252300025230000005110412171574312012705 00000000000000/* linalg/gsl_linalg.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 Gerard Jungman, Brian Gough, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_LINALG_H__ #define __GSL_LINALG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus #define __BEGIN_DECLS extern "C" { #define __END_DECLS } #else #define __BEGIN_DECLS /* empty */ #define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef enum { GSL_LINALG_MOD_NONE = 0, GSL_LINALG_MOD_TRANSPOSE = 1, GSL_LINALG_MOD_CONJUGATE = 2 } gsl_linalg_matrix_mod_t; /* Note: You can now use the gsl_blas_dgemm function instead of matmult */ /* Simple implementation of matrix multiply. * Calculates C = A.B * * exceptions: GSL_EBADLEN */ int gsl_linalg_matmult (const gsl_matrix * A, const gsl_matrix * B, gsl_matrix * C); /* Simple implementation of matrix multiply. * Allows transposition of either matrix, so it * can compute A.B or Trans(A).B or A.Trans(B) or Trans(A).Trans(B) * * exceptions: GSL_EBADLEN */ int gsl_linalg_matmult_mod (const gsl_matrix * A, gsl_linalg_matrix_mod_t modA, const gsl_matrix * B, gsl_linalg_matrix_mod_t modB, gsl_matrix * C); /* Calculate the matrix exponential by the scaling and * squaring method described in Moler + Van Loan, * SIAM Rev 20, 801 (1978). The mode argument allows * choosing an optimal strategy, from the table * given in the paper, for a given precision. * * exceptions: GSL_ENOTSQR, GSL_EBADLEN */ int gsl_linalg_exponential_ss( const gsl_matrix * A, gsl_matrix * eA, gsl_mode_t mode ); /* Householder Transformations */ double gsl_linalg_householder_transform (gsl_vector * v); gsl_complex gsl_linalg_complex_householder_transform (gsl_vector_complex * v); int gsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A); int gsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A); int gsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w); int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A); int gsl_linalg_complex_householder_hm (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A); int gsl_linalg_complex_householder_mh (gsl_complex tau, const gsl_vector_complex * v, gsl_matrix_complex * A); int gsl_linalg_complex_householder_hv (gsl_complex tau, const gsl_vector_complex * v, gsl_vector_complex * w); /* Hessenberg reduction */ int gsl_linalg_hessenberg_decomp(gsl_matrix *A, gsl_vector *tau); int gsl_linalg_hessenberg_unpack(gsl_matrix * H, gsl_vector * tau, gsl_matrix * U); int gsl_linalg_hessenberg_unpack_accum(gsl_matrix * H, gsl_vector * tau, gsl_matrix * U); int gsl_linalg_hessenberg_set_zero(gsl_matrix * H); int gsl_linalg_hessenberg_submatrix(gsl_matrix *M, gsl_matrix *A, size_t top, gsl_vector *tau); /* To support gsl-1.9 interface: DEPRECATED */ int gsl_linalg_hessenberg(gsl_matrix *A, gsl_vector *tau); /* Hessenberg-Triangular reduction */ int gsl_linalg_hesstri_decomp(gsl_matrix * A, gsl_matrix * B, gsl_matrix * U, gsl_matrix * V, gsl_vector * work); /* Singular Value Decomposition * exceptions: */ int gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, gsl_vector * work); int gsl_linalg_SV_decomp_mod (gsl_matrix * A, gsl_matrix * X, gsl_matrix * V, gsl_vector * S, gsl_vector * work); int gsl_linalg_SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * Q, gsl_vector * S); int gsl_linalg_SV_solve (const gsl_matrix * U, const gsl_matrix * Q, const gsl_vector * S, const gsl_vector * b, gsl_vector * x); int gsl_linalg_SV_leverage(const gsl_matrix *U, gsl_vector *h); /* LU Decomposition, Gaussian elimination with partial pivoting */ int gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * p, int *signum); int gsl_linalg_LU_solve (const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_LU_svx (const gsl_matrix * LU, const gsl_permutation * p, gsl_vector * x); int gsl_linalg_LU_refine (const gsl_matrix * A, const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x, gsl_vector * residual); int gsl_linalg_LU_invert (const gsl_matrix * LU, const gsl_permutation * p, gsl_matrix * inverse); double gsl_linalg_LU_det (gsl_matrix * LU, int signum); double gsl_linalg_LU_lndet (gsl_matrix * LU); int gsl_linalg_LU_sgndet (gsl_matrix * lu, int signum); /* Complex LU Decomposition */ int gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * p, int *signum); int gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x); int gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_vector_complex * x); int gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * residual); int gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_matrix_complex * inverse); gsl_complex gsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int signum); double gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU); gsl_complex gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int signum); /* QR decomposition */ int gsl_linalg_QR_decomp (gsl_matrix * A, gsl_vector * tau); int gsl_linalg_QR_solve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QR_svx (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * x); int gsl_linalg_QR_lssolve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual); int gsl_linalg_QR_QRsolve (gsl_matrix * Q, gsl_matrix * R, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QR_Rsolve (const gsl_matrix * QR, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QR_Rsvx (const gsl_matrix * QR, gsl_vector * x); int gsl_linalg_QR_update (gsl_matrix * Q, gsl_matrix * R, gsl_vector * w, const gsl_vector * v); int gsl_linalg_QR_QTvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v); int gsl_linalg_QR_Qvec (const gsl_matrix * QR, const gsl_vector * tau, gsl_vector * v); int gsl_linalg_QR_QTmat (const gsl_matrix * QR, const gsl_vector * tau, gsl_matrix * A); int gsl_linalg_QR_unpack (const gsl_matrix * QR, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * R); int gsl_linalg_R_solve (const gsl_matrix * R, const gsl_vector * b, gsl_vector * x); int gsl_linalg_R_svx (const gsl_matrix * R, gsl_vector * x); /* Q R P^T decomposition */ int gsl_linalg_QRPT_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm); int gsl_linalg_QRPT_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm); int gsl_linalg_QRPT_solve (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QRPT_svx (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, gsl_vector * x); int gsl_linalg_QRPT_QRsolve (const gsl_matrix * Q, const gsl_matrix * R, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QRPT_Rsolve (const gsl_matrix * QR, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_QRPT_Rsvx (const gsl_matrix * QR, const gsl_permutation * p, gsl_vector * x); int gsl_linalg_QRPT_update (gsl_matrix * Q, gsl_matrix * R, const gsl_permutation * p, gsl_vector * u, const gsl_vector * v); /* LQ decomposition */ int gsl_linalg_LQ_decomp (gsl_matrix * A, gsl_vector * tau); int gsl_linalg_LQ_solve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x); int gsl_linalg_LQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * x); int gsl_linalg_LQ_lssolve_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_vector * b, gsl_vector * x, gsl_vector * residual); int gsl_linalg_LQ_Lsolve_T (const gsl_matrix * LQ, const gsl_vector * b, gsl_vector * x); int gsl_linalg_LQ_Lsvx_T (const gsl_matrix * LQ, gsl_vector * x); int gsl_linalg_L_solve_T (const gsl_matrix * L, const gsl_vector * b, gsl_vector * x); int gsl_linalg_LQ_vecQ (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v); int gsl_linalg_LQ_vecQT (const gsl_matrix * LQ, const gsl_vector * tau, gsl_vector * v); int gsl_linalg_LQ_unpack (const gsl_matrix * LQ, const gsl_vector * tau, gsl_matrix * Q, gsl_matrix * L); int gsl_linalg_LQ_update (gsl_matrix * Q, gsl_matrix * R, const gsl_vector * v, gsl_vector * w); int gsl_linalg_LQ_LQsolve (gsl_matrix * Q, gsl_matrix * L, const gsl_vector * b, gsl_vector * x); /* P^T L Q decomposition */ int gsl_linalg_PTLQ_decomp (gsl_matrix * A, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm); int gsl_linalg_PTLQ_decomp2 (const gsl_matrix * A, gsl_matrix * q, gsl_matrix * r, gsl_vector * tau, gsl_permutation * p, int *signum, gsl_vector * norm); int gsl_linalg_PTLQ_solve_T (const gsl_matrix * QR, const gsl_vector * tau, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_PTLQ_svx_T (const gsl_matrix * LQ, const gsl_vector * tau, const gsl_permutation * p, gsl_vector * x); int gsl_linalg_PTLQ_LQsolve_T (const gsl_matrix * Q, const gsl_matrix * L, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_PTLQ_Lsolve_T (const gsl_matrix * LQ, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x); int gsl_linalg_PTLQ_Lsvx_T (const gsl_matrix * LQ, const gsl_permutation * p, gsl_vector * x); int gsl_linalg_PTLQ_update (gsl_matrix * Q, gsl_matrix * L, const gsl_permutation * p, const gsl_vector * v, gsl_vector * w); /* Cholesky Decomposition */ int gsl_linalg_cholesky_decomp (gsl_matrix * A); int gsl_linalg_cholesky_solve (const gsl_matrix * cholesky, const gsl_vector * b, gsl_vector * x); int gsl_linalg_cholesky_svx (const gsl_matrix * cholesky, gsl_vector * x); int gsl_linalg_cholesky_invert(gsl_matrix * cholesky); /* Cholesky decomposition with unit-diagonal triangular parts. * A = L D L^T, where diag(L) = (1,1,...,1). * Upon exit, A contains L and L^T as for Cholesky, and * the diagonal of A is (1,1,...,1). The vector Dis set * to the diagonal elements of the diagonal matrix D. */ int gsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D); /* Complex Cholesky Decomposition */ int gsl_linalg_complex_cholesky_decomp (gsl_matrix_complex * A); int gsl_linalg_complex_cholesky_solve (const gsl_matrix_complex * cholesky, const gsl_vector_complex * b, gsl_vector_complex * x); int gsl_linalg_complex_cholesky_svx (const gsl_matrix_complex * cholesky, gsl_vector_complex * x); int gsl_linalg_complex_cholesky_invert(gsl_matrix_complex * cholesky); /* Symmetric to symmetric tridiagonal decomposition */ int gsl_linalg_symmtd_decomp (gsl_matrix * A, gsl_vector * tau); int gsl_linalg_symmtd_unpack (const gsl_matrix * A, const gsl_vector * tau, gsl_matrix * Q, gsl_vector * diag, gsl_vector * subdiag); int gsl_linalg_symmtd_unpack_T (const gsl_matrix * A, gsl_vector * diag, gsl_vector * subdiag); /* Hermitian to symmetric tridiagonal decomposition */ int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau); int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, const gsl_vector_complex * tau, gsl_matrix_complex * U, gsl_vector * diag, gsl_vector * sudiag); int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A, gsl_vector * diag, gsl_vector * subdiag); /* Linear Solve Using Householder Transformations * exceptions: */ int gsl_linalg_HH_solve (gsl_matrix * A, const gsl_vector * b, gsl_vector * x); int gsl_linalg_HH_svx (gsl_matrix * A, gsl_vector * x); /* Linear solve for a symmetric tridiagonal system. * The input vectors represent the NxN matrix as follows: * * diag[0] offdiag[0] 0 ... * offdiag[0] diag[1] offdiag[1] ... * 0 offdiag[1] diag[2] ... * 0 0 offdiag[2] ... * ... ... ... ... */ int gsl_linalg_solve_symm_tridiag (const gsl_vector * diag, const gsl_vector * offdiag, const gsl_vector * b, gsl_vector * x); /* Linear solve for a nonsymmetric tridiagonal system. * The input vectors represent the NxN matrix as follows: * * diag[0] abovediag[0] 0 ... * belowdiag[0] diag[1] abovediag[1] ... * 0 belowdiag[1] diag[2] ... * 0 0 belowdiag[2] ... * ... ... ... ... */ int gsl_linalg_solve_tridiag (const gsl_vector * diag, const gsl_vector * abovediag, const gsl_vector * belowdiag, const gsl_vector * b, gsl_vector * x); /* Linear solve for a symmetric cyclic tridiagonal system. * The input vectors represent the NxN matrix as follows: * * diag[0] offdiag[0] 0 ..... offdiag[N-1] * offdiag[0] diag[1] offdiag[1] ..... * 0 offdiag[1] diag[2] ..... * 0 0 offdiag[2] ..... * ... ... * offdiag[N-1] ... */ int gsl_linalg_solve_symm_cyc_tridiag (const gsl_vector * diag, const gsl_vector * offdiag, const gsl_vector * b, gsl_vector * x); /* Linear solve for a nonsymmetric cyclic tridiagonal system. * The input vectors represent the NxN matrix as follows: * * diag[0] abovediag[0] 0 ..... belowdiag[N-1] * belowdiag[0] diag[1] abovediag[1] ..... * 0 belowdiag[1] diag[2] * 0 0 belowdiag[2] ..... * ... ... * abovediag[N-1] ... */ int gsl_linalg_solve_cyc_tridiag (const gsl_vector * diag, const gsl_vector * abovediag, const gsl_vector * belowdiag, const gsl_vector * b, gsl_vector * x); /* Bidiagonal decomposition */ int gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V); int gsl_linalg_bidiag_unpack (const gsl_matrix * A, const gsl_vector * tau_U, gsl_matrix * U, const gsl_vector * tau_V, gsl_matrix * V, gsl_vector * diag, gsl_vector * superdiag); int gsl_linalg_bidiag_unpack2 (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V, gsl_matrix * V); int gsl_linalg_bidiag_unpack_B (const gsl_matrix * A, gsl_vector * diag, gsl_vector * superdiag); /* Balancing */ int gsl_linalg_balance_matrix (gsl_matrix * A, gsl_vector * D); int gsl_linalg_balance_accum (gsl_matrix * A, gsl_vector * D); int gsl_linalg_balance_columns (gsl_matrix * A, gsl_vector * D); __END_DECLS #endif /* __GSL_LINALG_H__ */ gsl-1.16/linalg/ChangeLog0000664000252300025230000003434212171574312012200 000000000000002011-04-15 Brian Gough * choleskyc.c (gsl_linalg_complex_cholesky_invert): avoid mixing declarations and code (C9X) 2010-06-13 Brian Gough * choleskyc.c (gsl_linalg_complex_cholesky_invert): added new routine for inversion (Huan Wu) 2010-02-24 Brian Gough * svdstep.c (trailing_eigenvalue): compute the implicit shift value mu robustly * svd.c (gsl_linalg_SV_decomp): scale the bidiagonal matrix before the implicit QR step * householder.c (gsl_linalg_householder_transform): handle the case where the scaling factor is subnormal 2009-07-04 Brian Gough * luc.c (gsl_linalg_complex_LU_solve, gsl_linalg_complex_LU_svx, gsl_linalg_complex_LU_refine, singular): added check for singular matrix 2009-06-28 Brian Gough * lu.c (gsl_linalg_LU_solve, gsl_linalg_LU_svx, gsl_linalg_LU_refine, gsl_linalg_LU_invert, singular): added check for singular matrix 2009-06-04 Brian Gough * hermtd.c (gsl_linalg_hermtd_unpack): use U as matrix name instead of Q 2008-10-20 Brian Gough * svd.c (gsl_linalg_SV_decomp_jacobi): change use of gsl_coerce_double to macro so it is not called unnecessarily 2008-08-30 Brian Gough * tridiag.c (solve_cyc_tridiag_nonsym): use x_stride when storing in x[] (fixes bug #24162) 2008-08-26 Brian Gough * test.c (test_QRPT_update_dim): added tests for gsl_linalg_QRPT_update * qrpt.c (gsl_linalg_QRPT_update): handle rectangular matrices 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-04-28 Brian Gough * bidiag.c (gsl_linalg_bidiag_unpack, gsl_linalg_bidiag_unpack2): use new descending loop convention * hermtd.c (gsl_linalg_hermtd_unpack): use new descending loop convention * hh.c (gsl_linalg_HH_svx): use new descending loop convention * lq.c (gsl_linalg_LQ_vecQ, gsl_linalg_LQ_unpack): use new descending loop convention * qr.c (gsl_linalg_QR_Qvec, gsl_linalg_QR_unpack): use new descending loop convention * svd.c (gsl_linalg_SV_decomp_mod): use new descending loop convention * svdstep.c (chase_out_trailing_zero): use new descending loop convention * symmtd.c (gsl_linalg_symmtd_unpack): use new descending loop convention 2008-04-03 Brian Gough * qr.c lq.c: removed unused definition of REAL 2007-08-27 Brian Gough * tridiag.c: use GSL_ERROR for failed allocation, signal GSL_EZERODIV if matrix is not positive definite 2007-08-17 Brian Gough * svd.c (gsl_linalg_SV_decomp): bail out if number of iterations exceeds 100*N 2007-08-16 Brian Gough * test.c (main): add some svd tests with small values that will cause underflow in intermediate steps of SVD iteration 2006-08-14 Brian Gough * balancemat.c: balance a general matrix D^-1 A D for rows and columns 2006-04-24 Brian Gough * svdstep.c apply_givens.c householder.c: perform linear operations with level-1 blas when compiled with USE_BLAS. 2006-02-10 Brian Gough * cholesky.c (quiet_sqrt): added a quiet_sqrt to allow checking for positive definiteness without a runtime error 2005-08-22 Brian Gough * svd.c (gsl_linalg_SV_decomp_jacobi): reorganised convergence tests to increase robustness in the presence of extended precision registers. 2005-06-22 Brian Gough * svd.c (gsl_linalg_SV_decomp_jacobi): increased number of sweeps to MAX(5*N,12) and track numerical errors for better termination 2005-02-02 Brian Gough * svd.c (gsl_linalg_SV_decomp_jacobi): changed M * qr.c (gsl_linalg_R_svx): added missing function 2004-09-13 Brian Gough * test.c: added tests for LQ, P^TLQ solvers * ptlq.c: added support for PA = LQ decompositions * lq.c: added support for A = LQ decompositions 2004-05-30 Brian Gough * test.c (test_LU_solve): increase test tolerance to accommodate gcc-3.3.3 w/ bounds checking 2004-05-26 Brian Gough * householder.c (gsl_linalg_householder_hm): (gsl_linalg_householder_mh): (gsl_linalg_householder_hm1): added blas code (but ifdef'd out) * test.c (test_SV_decomp_dim): skip NaNs in test (test_SV_decomp_mod_dim): skip NaNs in test 2004-04-26 Brian Gough * test.c (test_TDN_solve): increased tolerance for tests (test_TDN_cyc_solve): increased tolerance for tests 2004-03-15 Brian Gough * tridiag.c: (gsl_linalg_solve_symm_tridiag): (gsl_linalg_solve_tridiag): (gsl_linalg_solve_symm_cyc_tridiag): (gsl_linalg_solve_cyc_tridiag): use GSL_ERROR macro to report errors, make size restrictions tighter (no unused elements allowed to be passed in). 2004-03-06 Brian Gough * test.c (test_SV_decomp_mod_dim): added tests for SV_decomp_mod * svd.c (gsl_linalg_SV_decomp): handle the case N=1 (SVD of a column vector) (gsl_linalg_SV_decomp_mod): handle the case N=1 (SVD of a column vector) 2004-03-05 Brian Gough * test.c (test_SV_decomp): add tests with inf/nan * svd.c (gsl_linalg_SV_decomp): handle nans in block reduction * balance.c: handle infinity/nan when scaling input matrix 2003-07-24 Brian Gough * tridiag.c (solve_cyc_tridiag_nonsym): fixed declarations of i so they do not shadow each other 2003-05-30 Brian Gough * householder.c (gsl_linalg_householder_hv): converted to use blas routines 2003-05-08 Brian Gough * test.c: added tests for QR_QRsolve and QRPT_QRsolve * qrpt.c (gsl_linalg_QRPT_QRsolve): fixed dgemv to use CblasTrans when computing Q^T b * qr.c (gsl_linalg_QR_QRsolve): fixed dgemv to use CblasTrans when computing Q^T b Fri Oct 18 17:46:30 2002 Brian Gough * householdercomplex.c (gsl_linalg_complex_householder_transform): return tau = 0 to prevent division by zero for beta_r = 0 Mon Aug 12 20:12:55 2002 Brian Gough * bidiag.c (gsl_linalg_bidiag_unpack_B): fixed to copy superdiagonal and not subdiagonal, as was incorrectly done previously. Sun Jun 16 11:57:00 2002 Brian Gough * svd.c (gsl_linalg_SV_decomp): keep track of maximum value correctly when sorting singular values * test.c (test_SV_decomp): add 3x3 of SVD * svdstep.c (chase_out_intermediate_zero): handle case of dk=0 (chase_out_trailing_zero): handle case of dn=0 Wed Apr 17 20:04:11 2002 Brian Gough * tridiag.c (gsl_linalg_solve_tridiag): (gsl_linalg_solve_cyc_tridiag): added tridiagonal solvers for non-symmetric case (David Necas ) Mon Apr 15 19:55:40 2002 Brian Gough * tridiag.c (solve_cyc_tridiag): corrected typographical error in Engeln-Mullges Algorithm 4.35, step 1.7 (f_(n-1) should be alpha_(n-1)) Thu Sep 13 12:26:17 2001 Brian Gough * test.c (test_SV_decomp): added brute force testing of 2x2 svd * svdstep.c (svd2): fixed bug where singular values in 2x2 svd were not ordered correctly. Mon Sep 10 22:35:24 2001 Brian Gough * test.c (test_LUc_solve): added a test for complex LU Tue Sep 4 17:22:58 2001 Brian Gough * luc.c: added LU decomposition for complex matrices Wed Aug 29 16:34:50 2001 Brian Gough * svd.c (gsl_linalg_SV_decomp_jacobi): make sure all singular vectors are zero, not just first. * svdstep.c (svd2): added explicit calculation of 2x2 svd, fixes bug that prevents convergence. Thu Aug 2 18:19:08 2001 Brian Gough * svdstep.c (trailing_eigenvalue): chose better value of mu when dt=0. Sun Jul 8 18:03:05 2001 Brian Gough * qrpt.c (gsl_linalg_QRPT_decomp): fix bug where null column caused division by zero in norm-update calculation Sun Jul 1 22:43:22 2001 Brian Gough * modified to use new-style vector views, affects most functions Wed Jun 20 13:38:24 2001 Brian Gough * svd.c (gsl_linalg_SV_decomp): added error checking Tue Jun 19 23:19:49 2001 Brian Gough * svd.c (gsl_linalg_SV_decomp): Golub-Reinsch svd, has more deterministic convergence (gsl_linalg_SV_decomp_mod): Golub-Reinsch with Preconditioning, much more efficient for M>>N * balance.c (gsl_linalg_balance_columns): balances (or "equilibrates") the columns of a matrix Sun Jun 17 21:49:03 2001 Brian Gough * givens.c: split out apply_givens functions into separate file apply_givens.c Wed Jun 13 23:41:34 2001 Brian Gough * qr.c (gsl_linalg_QR_decomp): simplified reverse loop * bidiag.c: bidiagonalisation of a matrix (needed for Golub-Reinsch SVD) Wed Jun 6 12:36:58 2001 Brian Gough * householdercomplex.c: split out complex functions into a separate file to reduce linking dependencies * qrpt.c (gsl_linalg_QRPT_decomp): provide workspace as an argument, to avoid allocating it on each call (gsl_linalg_QRPT_decomp2): provide workspace as an argument, to avoid allocating it on each call * qr.c (gsl_linalg_QR_decomp): provide workspace as an argument, to avoid allocating it on each call Thu May 17 17:01:45 2001 Brian Gough * qr.c (gsl_linalg_QR_lssolve): added least squares solver Sat Apr 28 00:39:53 2001 Brian Gough * qr.c (gsl_linalg_QR_update): fixed QR update to work correctly with rectangular matrices where M > N Mon Apr 23 10:29:01 2001 Brian Gough * tridiag.c: removed EFAULT test since this should only apply to non-null invalid pointers Fri Apr 13 20:43:38 2001 Brian Gough * test.c: replaced uses of matmult by dgemm Sun Oct 22 13:56:30 2000 Brian Gough * householder.c (gsl_linalg_householder_transform): changed calls to gsl_hypot() to hypot() so that the system function is used in preference (the configure script will define hypot to gsl_hypot if hypot is unavailable) * svd.c (gsl_linalg_SV_decomp): changed calls to gsl_hypot() to hypot() Sat Oct 21 15:54:56 2000 Brian Gough * tridiag.c (solve_tridiag): prevent out-of-bounds array access for small N (attempt to access element[N-2] when N is 1). Tue Sep 19 21:42:13 2000 Brian Gough * qrpt.c (gsl_linalg_QRPT_decomp2): added convenience function to compute q,r unpacked decomposition directly Wed Aug 16 19:50:35 2000 Brian Gough * svd.c (gsl_linalg_SV_decomp): take more care with singular values, set the associated vectors to zero Sun Aug 13 16:39:40 2000 Brian Gough * qrpt.c (gsl_linalg_QRPT_decomp): fixed obvious bug in selection of column with max norm Wed May 31 19:42:59 2000 Brian Gough * test.c (test_QR_update): increased tolerances on results to allow tests to pass with other compilers Wed May 3 21:19:45 2000 Brian Gough * cholesky.c: added cholesky decomposition/solve from Thomas Walter. Modified for GSL. Fri Apr 28 17:13:00 2000 Brian Gough * renamed all matrices to use upper case variable names, e.g. A Thu Apr 27 20:31:46 2000 Brian Gough * test.c: tightened up accuracy of the decomp test * test_la.c: renamed to test.c for consistency (test_QR_decomp): added the "moler" matrix as a test for SVD * svd.c (gsl_linalg_SV_decomp): improved the convergence criterion for rank deficient case. Wed Apr 26 19:37:46 2000 Brian Gough * renamed rhs -> b, and solution -> x throughout for consistency Mon Apr 24 17:04:52 2000 Brian Gough * test_la.c (main): added tests for MxN matrices * test_la.c (main): added tests for SV decomposition and solve. * svd.c (gsl_linalg_SV_decomp): made use of vector row/column functions, tidied up the algorithm a bit. Use a standard tolerance of 10*GSL_DBL_EPSILON. (gsl_linalg_SV_solve): added a least squares solver Sun Apr 23 21:18:04 2000 Brian Gough * gsl_linalg.h, svd.c (gsl_linalg_SV_decomp): changed function name to new naming convention * qr.c (gsl_linalg_QR_unpack): fixed index ranges for rectangular case when unpacking R Sat Apr 22 15:05:21 2000 Brian Gough * matrix.c: removed, equivalent functions now in matrix directory Sat Mar 11 17:36:33 2000 Brian Gough * multiply.c: removed _impl from these functions since all the errors they can return are fatal. Wed Feb 16 12:03:00 2000 Brian Gough * multiply.c (gsl_la_matmult_mod_impl): fixed error in transposed matrix memory access, expressions should always be of the form M->data[i*M->size2 + j] even when i,j are transposed. Safer to replace matrix access by gsl_matrix_set and gsl_matrix_get, which is what I have done now. Shouldn't be any cost in the production version of the library where we have inlines and range checking off. Tue Feb 15 17:46:19 2000 Brian Gough * tridiag.h (solve_cyc_tridiag): fixed typo in header, was solve_cyctridiag, missing _. * converted all functions to use gsl_permutation instead of gsl_vector_int Fri Oct 1 15:51:02 1999 Brian Gough * temporary changes resulting from changes to block/vector/matrix organization Fri Aug 6 14:42:23 1999 Brian Gough * linalg_simple.c: include to declare memcpy gsl-1.16/linalg/exponential.c0000664000252300025230000001164012171574312013114 00000000000000/* linalg/exponential.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Calculate the matrix exponential, following * Moler + Van Loan, SIAM Rev. 20, 801 (1978). */ #include #include #include #include #include #include #include "gsl_linalg.h" /* store one of the suggested choices for the * Taylor series / square method from Moler + VanLoan */ struct moler_vanloan_optimal_suggestion { int k; int j; }; typedef struct moler_vanloan_optimal_suggestion mvl_suggestion_t; /* table from Moler and Van Loan * mvl_tab[gsl_mode_t][matrix_norm_group] */ static mvl_suggestion_t mvl_tab[3][6] = { /* double precision */ { { 5, 1 }, { 5, 4 }, { 7, 5 }, { 9, 7 }, { 10, 10 }, { 8, 14 } }, /* single precision */ { { 2, 1 }, { 4, 0 }, { 7, 1 }, { 6, 5 }, { 5, 9 }, { 7, 11 } }, /* approx precision */ { { 1, 0 }, { 3, 0 }, { 5, 1 }, { 4, 5 }, { 4, 8 }, { 2, 11 } } }; inline static double sup_norm(const gsl_matrix * A) { double min, max; gsl_matrix_minmax(A, &min, &max); return GSL_MAX_DBL(fabs(min), fabs(max)); } static mvl_suggestion_t obtain_suggestion(const gsl_matrix * A, gsl_mode_t mode) { const unsigned int mode_prec = GSL_MODE_PREC(mode); const double norm_A = sup_norm(A); if(norm_A < 0.01) return mvl_tab[mode_prec][0]; else if(norm_A < 0.1) return mvl_tab[mode_prec][1]; else if(norm_A < 1.0) return mvl_tab[mode_prec][2]; else if(norm_A < 10.0) return mvl_tab[mode_prec][3]; else if(norm_A < 100.0) return mvl_tab[mode_prec][4]; else if(norm_A < 1000.0) return mvl_tab[mode_prec][5]; else { /* outside the table we simply increase the number * of squarings, bringing the reduced matrix into * the range of the table; this is obviously suboptimal, * but that is the price paid for not having those extra * table entries */ const double extra = log(1.01*norm_A/1000.0) / M_LN2; const int extra_i = (unsigned int) ceil(extra); mvl_suggestion_t s = mvl_tab[mode][5]; s.j += extra_i; return s; } } /* use series representation to calculate matrix exponential; * this is used for small matrices; we use the sup_norm * to measure the size of the terms in the expansion */ static void matrix_exp_series( const gsl_matrix * B, gsl_matrix * eB, int number_of_terms ) { int count; gsl_matrix * temp = gsl_matrix_calloc(B->size1, B->size2); /* init the Horner polynomial evaluation, * eB = 1 + B/number_of_terms; we use * eB to collect the partial results */ gsl_matrix_memcpy(eB, B); gsl_matrix_scale(eB, 1.0/number_of_terms); gsl_matrix_add_diagonal(eB, 1.0); for(count = number_of_terms-1; count >= 1; --count) { /* mult_temp = 1 + B eB / count */ gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, B, eB, 0.0, temp); gsl_matrix_scale(temp, 1.0/count); gsl_matrix_add_diagonal(temp, 1.0); /* transfer partial result out of temp */ gsl_matrix_memcpy(eB, temp); } /* now eB holds the full result; we're done */ gsl_matrix_free(temp); } int gsl_linalg_exponential_ss( const gsl_matrix * A, gsl_matrix * eA, gsl_mode_t mode ) { if(A->size1 != A->size2) { GSL_ERROR("cannot exponentiate a non-square matrix", GSL_ENOTSQR); } else if(A->size1 != eA->size1 || A->size2 != eA->size2) { GSL_ERROR("exponential of matrix must have same dimension as matrix", GSL_EBADLEN); } else { int i; const mvl_suggestion_t sugg = obtain_suggestion(A, mode); const double divisor = exp(M_LN2 * sugg.j); gsl_matrix * reduced_A = gsl_matrix_alloc(A->size1, A->size2); /* decrease A by the calculated divisor */ gsl_matrix_memcpy(reduced_A, A); gsl_matrix_scale(reduced_A, 1.0/divisor); /* calculate exp of reduced matrix; store in eA as temp */ matrix_exp_series(reduced_A, eA, sugg.k); /* square repeatedly; use reduced_A for scratch */ for(i = 0; i < sugg.j; ++i) { gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, eA, eA, 0.0, reduced_A); gsl_matrix_memcpy(eA, reduced_A); } gsl_matrix_free(reduced_A); return GSL_SUCCESS; } } gsl-1.16/linalg/Makefile.am0000664000252300025230000000146512171574312012462 00000000000000noinst_LTLIBRARIES = libgsllinalg.la pkginclude_HEADERS = gsl_linalg.h INCLUDES = -I$(top_srcdir) libgsllinalg_la_SOURCES = multiply.c exponential.c tridiag.c tridiag.h lu.c luc.c hh.c qr.c qrpt.c lq.c ptlq.c svd.c householder.c householdercomplex.c hessenberg.c hesstri.c cholesky.c choleskyc.c symmtd.c hermtd.c bidiag.c balance.c balancemat.c noinst_HEADERS = givens.c apply_givens.c svdstep.c tridiag.h TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/linalg/hessenberg.c0000664000252300025230000003124612171574312012717 00000000000000/* linalg/hessenberg.c * * Copyright (C) 2006 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* gsl_linalg_hessenberg_decomp() Compute the Householder reduction to Hessenberg form of a square N-by-N matrix A. H = U^t A U See Golub & Van Loan, "Matrix Computations" (3rd ed), algorithm 7.4.2 Inputs: A - matrix to reduce tau - where to store scalar factors in Householder matrices; this vector must be of length N, where N is the order of A Return: GSL_SUCCESS unless error occurs Notes: on output, the upper triangular portion of A (including the diagaonal and subdiagonal) contains the Hessenberg matrix. The lower triangular portion (below the subdiagonal) contains the Householder vectors which can be used to construct the similarity transform matrix U. The matrix U is U = U(1) U(2) ... U(n - 2) where U(i) = I - tau(i) * v(i) * v(i)^t and the vector v(i) is stored in column i of the matrix A underneath the subdiagonal. So the first element of v(i) is stored in row i + 2, column i, the second element at row i + 3, column i, and so on. Also note that for the purposes of computing U(i), v(1:i) = 0, v(i + 1) = 1, and v(i+2:n) is what is stored in column i of A beneath the subdiagonal. */ int gsl_linalg_hessenberg_decomp(gsl_matrix *A, gsl_vector *tau) { const size_t N = A->size1; if (N != A->size2) { GSL_ERROR ("Hessenberg reduction requires square matrix", GSL_ENOTSQR); } else if (N != tau->size) { GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN); } else if (N < 3) { /* nothing to do */ return GSL_SUCCESS; } else { size_t i; /* looping */ gsl_vector_view c, /* matrix column */ hv; /* householder vector */ gsl_matrix_view m; double tau_i; /* beta in algorithm 7.4.2 */ for (i = 0; i < N - 2; ++i) { /* * make a copy of A(i + 1:n, i) and store it in the section * of 'tau' that we haven't stored coefficients in yet */ c = gsl_matrix_subcolumn(A, i, i + 1, N - i - 1); hv = gsl_vector_subvector(tau, i + 1, N - (i + 1)); gsl_vector_memcpy(&hv.vector, &c.vector); /* compute householder transformation of A(i+1:n,i) */ tau_i = gsl_linalg_householder_transform(&hv.vector); /* apply left householder matrix (I - tau_i v v') to A */ m = gsl_matrix_submatrix(A, i + 1, i, N - (i + 1), N - i); gsl_linalg_householder_hm(tau_i, &hv.vector, &m.matrix); /* apply right householder matrix (I - tau_i v v') to A */ m = gsl_matrix_submatrix(A, 0, i + 1, N, N - (i + 1)); gsl_linalg_householder_mh(tau_i, &hv.vector, &m.matrix); /* save Householder coefficient */ gsl_vector_set(tau, i, tau_i); /* * store Householder vector below the subdiagonal in column * i of the matrix. hv(1) does not need to be stored since * it is always 1. */ c = gsl_vector_subvector(&c.vector, 1, c.vector.size - 1); hv = gsl_vector_subvector(&hv.vector, 1, hv.vector.size - 1); gsl_vector_memcpy(&c.vector, &hv.vector); } return GSL_SUCCESS; } } /* gsl_linalg_hessenberg_decomp() */ /* gsl_linalg_hessenberg_unpack() Construct the matrix U which transforms a matrix A into its upper Hessenberg form: H = U^t A U by unpacking the information stored in H from gsl_linalg_hessenberg(). U is a product of Householder matrices: U = U(1) U(2) ... U(n - 2) where U(i) = I - tau(i) * v(i) * v(i)^t The v(i) are stored in the lower triangular part of H by gsl_linalg_hessenberg(). The tau(i) are stored in the vector tau. Inputs: H - Hessenberg matrix computed from gsl_linalg_hessenberg() tau - tau vector computed from gsl_linalg_hessenberg() U - (output) where to store similarity matrix Return: success or error */ int gsl_linalg_hessenberg_unpack(gsl_matrix * H, gsl_vector * tau, gsl_matrix * U) { int s; gsl_matrix_set_identity(U); s = gsl_linalg_hessenberg_unpack_accum(H, tau, U); return s; } /* gsl_linalg_hessenberg_unpack() */ /* gsl_linalg_hessenberg_unpack_accum() This routine is the same as gsl_linalg_hessenberg_unpack(), except instead of storing the similarity matrix in U, it accumulates it, so that U -> U * [ U(1) U(2) ... U(n - 2) ] instead of: U -> U(1) U(2) ... U(n - 2) Inputs: H - Hessenberg matrix computed from gsl_linalg_hessenberg() tau - tau vector computed from gsl_linalg_hessenberg() V - (input/output) where to accumulate similarity matrix Return: success or error Notes: 1) On input, V needs to be initialized. The Householder matrices are accumulated into V, so on output, V_out = V_in * U(1) * U(2) * ... * U(n - 2) so if you just want the product of the Householder matrices, initialize V to the identity matrix before calling this function. 2) V does not have to be square, but must have the same number of columns as the order of H */ int gsl_linalg_hessenberg_unpack_accum(gsl_matrix * H, gsl_vector * tau, gsl_matrix * V) { const size_t N = H->size1; if (N != H->size2) { GSL_ERROR ("Hessenberg reduction requires square matrix", GSL_ENOTSQR); } else if (N != tau->size) { GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN); } else if (N != V->size2) { GSL_ERROR ("V matrix has wrong dimension", GSL_EBADLEN); } else { size_t j; /* looping */ double tau_j; /* householder coefficient */ gsl_vector_view c, /* matrix column */ hv; /* householder vector */ gsl_matrix_view m; if (N < 3) { /* nothing to do */ return GSL_SUCCESS; } for (j = 0; j < (N - 2); ++j) { c = gsl_matrix_column(H, j); tau_j = gsl_vector_get(tau, j); /* * get a view to the householder vector in column j, but * make sure hv(2) starts at the element below the * subdiagonal, since hv(1) was never stored and is always * 1 */ hv = gsl_vector_subvector(&c.vector, j + 1, N - (j + 1)); /* * Only operate on part of the matrix since the first * j + 1 entries of the real householder vector are 0 * * V -> V * U(j) * * Note here that V->size1 is not necessarily equal to N */ m = gsl_matrix_submatrix(V, 0, j + 1, V->size1, N - (j + 1)); /* apply right Householder matrix to V */ gsl_linalg_householder_mh(tau_j, &hv.vector, &m.matrix); } return GSL_SUCCESS; } } /* gsl_linalg_hessenberg_unpack_accum() */ /* gsl_linalg_hessenberg_set_zero() Zero out the lower triangular portion of the Hessenberg matrix H. This is useful when Householder vectors may be stored in the lower part of H, but eigenvalue solvers need some scratch space with zeros. */ int gsl_linalg_hessenberg_set_zero(gsl_matrix * H) { const size_t N = H->size1; size_t i, j; if (N < 3) return GSL_SUCCESS; for (j = 0; j < N - 2; ++j) { for (i = j + 2; i < N; ++i) { gsl_matrix_set(H, i, j, 0.0); } } return GSL_SUCCESS; } /* gsl_linalg_hessenberg_set_zero() */ /* gsl_linalg_hessenberg_submatrix() This routine does the same thing as gsl_linalg_hessenberg(), except that it operates on a submatrix of a larger matrix, but updates the larger matrix with the Householder transformations. For example, suppose M = [ M_{11} | M_{12} | M_{13} ] [ 0 | A | M_{23} ] [ 0 | 0 | M_{33} ] where M_{11} and M_{33} are already in Hessenberg form, and we just want to reduce A to Hessenberg form. Applying the transformations to A alone will cause the larger matrix M to lose its similarity information. So this routine updates M_{12} and M_{23} as A gets reduced. Inputs: M - total matrix A - (sub)matrix to reduce top - row index of top of A in M tau - where to store scalar factors in Householder matrices; this vector must be of length N, where N is the order of A Return: GSL_SUCCESS unless error occurs Notes: on output, the upper triangular portion of A (including the diagaonal and subdiagonal) contains the Hessenberg matrix. The lower triangular portion (below the subdiagonal) contains the Householder vectors which can be used to construct the similarity transform matrix U. The matrix U is U = U(1) U(2) ... U(n - 2) where U(i) = I - tau(i) * v(i) * v(i)^t and the vector v(i) is stored in column i of the matrix A underneath the subdiagonal. So the first element of v(i) is stored in row i + 2, column i, the second element at row i + 3, column i, and so on. Also note that for the purposes of computing U(i), v(1:i) = 0, v(i + 1) = 1, and v(i+2:n) is what is stored in column i of A beneath the subdiagonal. */ int gsl_linalg_hessenberg_submatrix(gsl_matrix *M, gsl_matrix *A, size_t top, gsl_vector *tau) { const size_t N = A->size1; const size_t N_M = M->size1; if (N != A->size2) { GSL_ERROR ("Hessenberg reduction requires square matrix", GSL_ENOTSQR); } else if (N != tau->size) { GSL_ERROR ("tau vector must match matrix size", GSL_EBADLEN); } else if (N < 3) { /* nothing to do */ return GSL_SUCCESS; } else { size_t i; /* looping */ gsl_vector_view c, /* matrix column */ hv; /* householder vector */ gsl_matrix_view m; double tau_i; /* beta in algorithm 7.4.2 */ for (i = 0; i < N - 2; ++i) { /* * make a copy of A(i + 1:n, i) and store it in the section * of 'tau' that we haven't stored coefficients in yet */ c = gsl_matrix_subcolumn(A, i, i + 1, N - i - 1); hv = gsl_vector_subvector(tau, i + 1, N - (i + 1)); gsl_vector_memcpy(&hv.vector, &c.vector); /* compute householder transformation of A(i+1:n,i) */ tau_i = gsl_linalg_householder_transform(&hv.vector); /* * apply left householder matrix (I - tau_i v v') to * [ A | M_{23} ] */ m = gsl_matrix_submatrix(M, top + i + 1, top + i, N - (i + 1), N_M - top - i); gsl_linalg_householder_hm(tau_i, &hv.vector, &m.matrix); /* * apply right householder matrix (I - tau_i v v') to * * [ M_{12} ] * [ A ] */ m = gsl_matrix_submatrix(M, 0, top + i + 1, top + N, N - (i + 1)); gsl_linalg_householder_mh(tau_i, &hv.vector, &m.matrix); /* save Householder coefficient */ gsl_vector_set(tau, i, tau_i); /* * store Householder vector below the subdiagonal in column * i of the matrix. hv(1) does not need to be stored since * it is always 1. */ c = gsl_vector_subvector(&c.vector, 1, c.vector.size - 1); hv = gsl_vector_subvector(&hv.vector, 1, hv.vector.size - 1); gsl_vector_memcpy(&c.vector, &hv.vector); } return GSL_SUCCESS; } } /* gsl_linalg_hessenberg_submatrix() */ /* To support gsl-1.9 interface: DEPRECATED */ int gsl_linalg_hessenberg(gsl_matrix *A, gsl_vector *tau) { return gsl_linalg_hessenberg_decomp(A, tau); } gsl-1.16/linalg/cholesky.c0000664000252300025230000002210312171574312012403 00000000000000/* Cholesky Decomposition * * Copyright (C) 2000 Thomas Walter * * 03 May 2000: Modified for GSL by Brian Gough * 29 Jul 2005: Additions by Gerard Jungman * Copyright (C) 2000,2001, 2002, 2003, 2005, 2007 Brian Gough, Gerard Jungman * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 3, or (at your option) any * later version. * * This source is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* * Cholesky decomposition of a symmetrix positive definite matrix. * This is useful to solve the matrix arising in * periodic cubic splines * approximating splines * * This algorithm does: * A = L * L' * with * L := lower left triangle matrix * L' := the transposed form of L. * */ #include #include #include #include #include #include #include static inline double quiet_sqrt (double x) /* avoids runtime error, for checking matrix for positive definiteness */ { return (x >= 0) ? sqrt(x) : GSL_NAN; } int gsl_linalg_cholesky_decomp (gsl_matrix * A) { const size_t M = A->size1; const size_t N = A->size2; if (M != N) { GSL_ERROR("cholesky decomposition requires square matrix", GSL_ENOTSQR); } else { size_t i,j,k; int status = 0; /* Do the first 2 rows explicitly. It is simple, and faster. And * one can return if the matrix has only 1 or 2 rows. */ double A_00 = gsl_matrix_get (A, 0, 0); double L_00 = quiet_sqrt(A_00); if (A_00 <= 0) { status = GSL_EDOM ; } gsl_matrix_set (A, 0, 0, L_00); if (M > 1) { double A_10 = gsl_matrix_get (A, 1, 0); double A_11 = gsl_matrix_get (A, 1, 1); double L_10 = A_10 / L_00; double diag = A_11 - L_10 * L_10; double L_11 = quiet_sqrt(diag); if (diag <= 0) { status = GSL_EDOM; } gsl_matrix_set (A, 1, 0, L_10); gsl_matrix_set (A, 1, 1, L_11); } for (k = 2; k < M; k++) { double A_kk = gsl_matrix_get (A, k, k); for (i = 0; i < k; i++) { double sum = 0; double A_ki = gsl_matrix_get (A, k, i); double A_ii = gsl_matrix_get (A, i, i); gsl_vector_view ci = gsl_matrix_row (A, i); gsl_vector_view ck = gsl_matrix_row (A, k); if (i > 0) { gsl_vector_view di = gsl_vector_subvector(&ci.vector, 0, i); gsl_vector_view dk = gsl_vector_subvector(&ck.vector, 0, i); gsl_blas_ddot (&di.vector, &dk.vector, &sum); } A_ki = (A_ki - sum) / A_ii; gsl_matrix_set (A, k, i, A_ki); } { gsl_vector_view ck = gsl_matrix_row (A, k); gsl_vector_view dk = gsl_vector_subvector (&ck.vector, 0, k); double sum = gsl_blas_dnrm2 (&dk.vector); double diag = A_kk - sum * sum; double L_kk = quiet_sqrt(diag); if (diag <= 0) { status = GSL_EDOM; } gsl_matrix_set (A, k, k, L_kk); } } /* Now copy the transposed lower triangle to the upper triangle, * the diagonal is common. */ for (i = 1; i < M; i++) { for (j = 0; j < i; j++) { double A_ij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, j, i, A_ij); } } if (status == GSL_EDOM) { GSL_ERROR ("matrix must be positive definite", GSL_EDOM); } return GSL_SUCCESS; } } int gsl_linalg_cholesky_solve (const gsl_matrix * LLT, const gsl_vector * b, gsl_vector * x) { if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (LLT->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LLT->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for c using forward-substitution, L c = b */ gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x); /* Perform back-substitution, U x = c */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x); return GSL_SUCCESS; } } int gsl_linalg_cholesky_svx (const gsl_matrix * LLT, gsl_vector * x) { if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else if (LLT->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else { /* Solve for c using forward-substitution, L c = b */ gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasNonUnit, LLT, x); /* Perform back-substitution, U x = c */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LLT, x); return GSL_SUCCESS; } } /* gsl_linalg_cholesky_invert() Compute the inverse of a symmetric positive definite matrix in Cholesky form. Inputs: LLT - matrix in cholesky form on input A^{-1} = L^{-t} L^{-1} on output Return: success or error */ int gsl_linalg_cholesky_invert(gsl_matrix * LLT) { if (LLT->size1 != LLT->size2) { GSL_ERROR ("cholesky matrix must be square", GSL_ENOTSQR); } else { size_t N = LLT->size1; size_t i, j; double sum; gsl_vector_view v1, v2; /* invert the lower triangle of LLT */ for (i = 0; i < N; ++i) { double ajj; j = N - i - 1; gsl_matrix_set(LLT, j, j, 1.0 / gsl_matrix_get(LLT, j, j)); ajj = -gsl_matrix_get(LLT, j, j); if (j < N - 1) { gsl_matrix_view m; m = gsl_matrix_submatrix(LLT, j + 1, j + 1, N - j - 1, N - j - 1); v1 = gsl_matrix_subcolumn(LLT, j, j + 1, N - j - 1); gsl_blas_dtrmv(CblasLower, CblasNoTrans, CblasNonUnit, &m.matrix, &v1.vector); gsl_blas_dscal(ajj, &v1.vector); } } /* for (i = 0; i < N; ++i) */ /* * The lower triangle of LLT now contains L^{-1}. Now compute * A^{-1} = L^{-t} L^{-1} * * The (ij) element of A^{-1} is column i of L^{-1} dotted into * column j of L^{-1} */ for (i = 0; i < N; ++i) { for (j = i + 1; j < N; ++j) { v1 = gsl_matrix_subcolumn(LLT, i, j, N - j); v2 = gsl_matrix_subcolumn(LLT, j, j, N - j); /* compute Ainv_{ij} = sum_k Linv_{ki} Linv_{kj} */ gsl_blas_ddot(&v1.vector, &v2.vector, &sum); /* store in upper triangle */ gsl_matrix_set(LLT, i, j, sum); } /* now compute the diagonal element */ v1 = gsl_matrix_subcolumn(LLT, i, i, N - i); gsl_blas_ddot(&v1.vector, &v1.vector, &sum); gsl_matrix_set(LLT, i, i, sum); } /* copy the transposed upper triangle to the lower triangle */ for (j = 1; j < N; j++) { for (i = 0; i < j; i++) { double A_ij = gsl_matrix_get (LLT, i, j); gsl_matrix_set (LLT, j, i, A_ij); } } return GSL_SUCCESS; } } /* gsl_linalg_cholesky_invert() */ int gsl_linalg_cholesky_decomp_unit(gsl_matrix * A, gsl_vector * D) { const size_t N = A->size1; size_t i, j; /* initial Cholesky */ int stat_chol = gsl_linalg_cholesky_decomp(A); if(stat_chol == GSL_SUCCESS) { /* calculate D from diagonal part of initial Cholesky */ for(i = 0; i < N; ++i) { const double C_ii = gsl_matrix_get(A, i, i); gsl_vector_set(D, i, C_ii*C_ii); } /* multiply initial Cholesky by 1/sqrt(D) on the right */ for(i = 0; i < N; ++i) { for(j = 0; j < N; ++j) { gsl_matrix_set(A, i, j, gsl_matrix_get(A, i, j) / sqrt(gsl_vector_get(D, j))); } } /* Because the initial Cholesky contained both L and transpose(L), the result of the multiplication is not symmetric anymore; but the lower triangle _is_ correct. Therefore we reflect it to the upper triangle and declare victory. */ for(i = 0; i < N; ++i) for(j = i + 1; j < N; ++j) gsl_matrix_set(A, i, j, gsl_matrix_get(A, j, i)); } return stat_chol; } gsl-1.16/linalg/householder.c0000664000252300025230000002011512171574312013104 00000000000000/* linalg/householder.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include double gsl_linalg_householder_transform (gsl_vector * v) { /* replace v[0:n-1] with a householder vector (v[0:n-1]) and coefficient tau that annihilate v[1:n-1] */ const size_t n = v->size ; if (n == 1) { return 0.0; /* tau = 0 */ } else { double alpha, beta, tau ; gsl_vector_view x = gsl_vector_subvector (v, 1, n - 1) ; double xnorm = gsl_blas_dnrm2 (&x.vector); if (xnorm == 0) { return 0.0; /* tau = 0 */ } alpha = gsl_vector_get (v, 0) ; beta = - (alpha >= 0.0 ? +1.0 : -1.0) * hypot(alpha, xnorm) ; tau = (beta - alpha) / beta ; { double s = (alpha - beta); if (fabs(s) > GSL_DBL_MIN) { gsl_blas_dscal (1.0 / s, &x.vector); gsl_vector_set (v, 0, beta) ; } else { gsl_blas_dscal (GSL_DBL_EPSILON / s, &x.vector); gsl_blas_dscal (1.0 / GSL_DBL_EPSILON, &x.vector); gsl_vector_set (v, 0, beta) ; } } return tau; } } int gsl_linalg_householder_hm (double tau, const gsl_vector * v, gsl_matrix * A) { /* applies a householder transformation v,tau to matrix m */ if (tau == 0.0) { return GSL_SUCCESS; } #ifdef USE_BLAS { gsl_vector_const_view v1 = gsl_vector_const_subvector (v, 1, v->size - 1); gsl_matrix_view A1 = gsl_matrix_submatrix (A, 1, 0, A->size1 - 1, A->size2); size_t j; for (j = 0; j < A->size2; j++) { double wj = 0.0; gsl_vector_view A1j = gsl_matrix_column(&A1.matrix, j); gsl_blas_ddot (&A1j.vector, &v1.vector, &wj); wj += gsl_matrix_get(A,0,j); { double A0j = gsl_matrix_get (A, 0, j); gsl_matrix_set (A, 0, j, A0j - tau * wj); } gsl_blas_daxpy (-tau * wj, &v1.vector, &A1j.vector); } } #else { size_t i, j; for (j = 0; j < A->size2; j++) { /* Compute wj = Akj vk */ double wj = gsl_matrix_get(A,0,j); for (i = 1; i < A->size1; i++) /* note, computed for v(0) = 1 above */ { wj += gsl_matrix_get(A,i,j) * gsl_vector_get(v,i); } /* Aij = Aij - tau vi wj */ /* i = 0 */ { double A0j = gsl_matrix_get (A, 0, j); gsl_matrix_set (A, 0, j, A0j - tau * wj); } /* i = 1 .. M-1 */ for (i = 1; i < A->size1; i++) { double Aij = gsl_matrix_get (A, i, j); double vi = gsl_vector_get (v, i); gsl_matrix_set (A, i, j, Aij - tau * vi * wj); } } } #endif return GSL_SUCCESS; } int gsl_linalg_householder_mh (double tau, const gsl_vector * v, gsl_matrix * A) { /* applies a householder transformation v,tau to matrix m from the right hand side in order to zero out rows */ if (tau == 0) return GSL_SUCCESS; /* A = A - tau w v' */ #ifdef USE_BLAS { gsl_vector_const_view v1 = gsl_vector_const_subvector (v, 1, v->size - 1); gsl_matrix_view A1 = gsl_matrix_submatrix (A, 0, 1, A->size1, A->size2-1); size_t i; for (i = 0; i < A->size1; i++) { double wi = 0.0; gsl_vector_view A1i = gsl_matrix_row(&A1.matrix, i); gsl_blas_ddot (&A1i.vector, &v1.vector, &wi); wi += gsl_matrix_get(A,i,0); { double Ai0 = gsl_matrix_get (A, i, 0); gsl_matrix_set (A, i, 0, Ai0 - tau * wi); } gsl_blas_daxpy(-tau * wi, &v1.vector, &A1i.vector); } } #else { size_t i, j; for (i = 0; i < A->size1; i++) { double wi = gsl_matrix_get(A,i,0); for (j = 1; j < A->size2; j++) /* note, computed for v(0) = 1 above */ { wi += gsl_matrix_get(A,i,j) * gsl_vector_get(v,j); } /* j = 0 */ { double Ai0 = gsl_matrix_get (A, i, 0); gsl_matrix_set (A, i, 0, Ai0 - tau * wi); } /* j = 1 .. N-1 */ for (j = 1; j < A->size2; j++) { double vj = gsl_vector_get (v, j); double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij - tau * wi * vj); } } } #endif return GSL_SUCCESS; } int gsl_linalg_householder_hv (double tau, const gsl_vector * v, gsl_vector * w) { /* applies a householder transformation v to vector w */ const size_t N = v->size; if (tau == 0) return GSL_SUCCESS ; { /* compute d = v'w */ double d0 = gsl_vector_get(w,0); double d1, d; gsl_vector_const_view v1 = gsl_vector_const_subvector(v, 1, N-1); gsl_vector_view w1 = gsl_vector_subvector(w, 1, N-1); gsl_blas_ddot (&v1.vector, &w1.vector, &d1); d = d0 + d1; /* compute w = w - tau (v) (v'w) */ { double w0 = gsl_vector_get (w,0); gsl_vector_set (w, 0, w0 - tau * d); } gsl_blas_daxpy (-tau * d, &v1.vector, &w1.vector); } return GSL_SUCCESS; } int gsl_linalg_householder_hm1 (double tau, gsl_matrix * A) { /* applies a householder transformation v,tau to a matrix being build up from the identity matrix, using the first column of A as a householder vector */ if (tau == 0) { size_t i,j; gsl_matrix_set (A, 0, 0, 1.0); for (j = 1; j < A->size2; j++) { gsl_matrix_set (A, 0, j, 0.0); } for (i = 1; i < A->size1; i++) { gsl_matrix_set (A, i, 0, 0.0); } return GSL_SUCCESS; } /* w = A' v */ #ifdef USE_BLAS { gsl_matrix_view A1 = gsl_matrix_submatrix (A, 1, 0, A->size1 - 1, A->size2); gsl_vector_view v1 = gsl_matrix_column (&A1.matrix, 0); size_t j; for (j = 1; j < A->size2; j++) { double wj = 0.0; /* A0j * v0 */ gsl_vector_view A1j = gsl_matrix_column(&A1.matrix, j); gsl_blas_ddot (&A1j.vector, &v1.vector, &wj); /* A = A - tau v w' */ gsl_matrix_set (A, 0, j, - tau * wj); gsl_blas_daxpy(-tau*wj, &v1.vector, &A1j.vector); } gsl_blas_dscal(-tau, &v1.vector); gsl_matrix_set (A, 0, 0, 1.0 - tau); } #else { size_t i, j; for (j = 1; j < A->size2; j++) { double wj = 0.0; /* A0j * v0 */ for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get(A, i, 0); wj += gsl_matrix_get(A,i,j) * vi; } /* A = A - tau v w' */ gsl_matrix_set (A, 0, j, - tau * wj); for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get (A, i, 0); double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij - tau * vi * wj); } } for (i = 1; i < A->size1; i++) { double vi = gsl_matrix_get(A, i, 0); gsl_matrix_set(A, i, 0, -tau * vi); } gsl_matrix_set (A, 0, 0, 1.0 - tau); } #endif return GSL_SUCCESS; } gsl-1.16/linalg/balance.c0000664000252300025230000000372612171574312012161 00000000000000/* linalg/balance.c * * Copyright (C) 2001, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Balance a general matrix by scaling the columns * * B = A D * * where D is a diagonal matrix */ #include #include #include #include #include #include #include int gsl_linalg_balance_columns (gsl_matrix * A, gsl_vector * D) { const size_t N = A->size2; size_t j; if (D->size != A->size2) { GSL_ERROR("length of D must match second dimension of A", GSL_EINVAL); } gsl_vector_set_all (D, 1.0); for (j = 0; j < N; j++) { gsl_vector_view A_j = gsl_matrix_column (A, j); double s = gsl_blas_dasum(&A_j.vector); double f = 1.0; if (s == 0.0 || !gsl_finite(s)) { gsl_vector_set (D, j, f); continue; } /* FIXME: we could use frexp() here */ while (s > 1.0) { s /= 2.0; f *= 2.0; } while (s < 0.5) { s *= 2.0; f /= 2.0; } gsl_vector_set (D, j, f); if (f != 1.0) { gsl_blas_dscal(1.0/f, &A_j.vector); } } return GSL_SUCCESS; } gsl-1.16/linalg/lu.c0000664000252300025230000001761612171574312011217 00000000000000/* linalg/lu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include #define REAL double static int singular (const gsl_matrix * LU); /* Factorise a general N x N matrix A into, * * P A = L U * * where P is a permutation matrix, L is unit lower triangular and U * is upper triangular. * * L is stored in the strict lower triangular part of the input * matrix. The diagonal elements of L are unity and are not stored. * * U is stored in the diagonal and upper triangular part of the * input matrix. * * P is stored in the permutation p. Column j of P is column k of the * identity matrix, where k = permutation->data[j] * * signum gives the sign of the permutation, (-1)^n, where n is the * number of interchanges in the permutation. * * See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss * Elimination with Partial Pivoting). */ int gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * p, int *signum) { if (A->size1 != A->size2) { GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR); } else if (p->size != A->size1) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i, j, k; *signum = 1; gsl_permutation_init (p); for (j = 0; j < N - 1; j++) { /* Find maximum in the j-th column */ REAL ajj, max = fabs (gsl_matrix_get (A, j, j)); size_t i_pivot = j; for (i = j + 1; i < N; i++) { REAL aij = fabs (gsl_matrix_get (A, i, j)); if (aij > max) { max = aij; i_pivot = i; } } if (i_pivot != j) { gsl_matrix_swap_rows (A, j, i_pivot); gsl_permutation_swap (p, j, i_pivot); *signum = -(*signum); } ajj = gsl_matrix_get (A, j, j); if (ajj != 0.0) { for (i = j + 1; i < N; i++) { REAL aij = gsl_matrix_get (A, i, j) / ajj; gsl_matrix_set (A, i, j, aij); for (k = j + 1; k < N; k++) { REAL aik = gsl_matrix_get (A, i, k); REAL ajk = gsl_matrix_get (A, j, k); gsl_matrix_set (A, i, k, aik - aij * ajk); } } } } return GSL_SUCCESS; } } int gsl_linalg_LU_solve (const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x) { if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LU->size2 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { int status; /* Copy x <- b */ gsl_vector_memcpy (x, b); /* Solve for x */ status = gsl_linalg_LU_svx (LU, p, x); return status; } } int gsl_linalg_LU_svx (const gsl_matrix * LU, const gsl_permutation * p, gsl_vector * x) { if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != x->size) { GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { /* Apply permutation to RHS */ gsl_permute_vector (p, x); /* Solve for c using forward-substitution, L c = P b */ gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x); /* Perform back-substitution, U x = c */ gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x); return GSL_SUCCESS; } } int gsl_linalg_LU_refine (const gsl_matrix * A, const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x, gsl_vector * residual) { if (A->size1 != A->size2) { GSL_ERROR ("matrix a must be square", GSL_ENOTSQR); } if (LU->size1 != LU->size2) { GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR); } else if (A->size1 != LU->size2) { GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR); } else if (LU->size1 != p->size) { GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN); } else if (LU->size1 != b->size) { GSL_ERROR ("matrix size must match b size", GSL_EBADLEN); } else if (LU->size1 != x->size) { GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN); } else if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } else { int status; /* Compute residual, residual = (A * x - b) */ gsl_vector_memcpy (residual, b); gsl_blas_dgemv (CblasNoTrans, 1.0, A, x, -1.0, residual); /* Find correction, delta = - (A^-1) * residual, and apply it */ status = gsl_linalg_LU_svx (LU, p, residual); gsl_blas_daxpy (-1.0, residual, x); return status; } } int gsl_linalg_LU_invert (const gsl_matrix * LU, const gsl_permutation * p, gsl_matrix * inverse) { size_t i, n = LU->size1; int status = GSL_SUCCESS; if (singular (LU)) { GSL_ERROR ("matrix is singular", GSL_EDOM); } gsl_matrix_set_identity (inverse); for (i = 0; i < n; i++) { gsl_vector_view c = gsl_matrix_column (inverse, i); int status_i = gsl_linalg_LU_svx (LU, p, &(c.vector)); if (status_i) status = status_i; } return status; } double gsl_linalg_LU_det (gsl_matrix * LU, int signum) { size_t i, n = LU->size1; double det = (double) signum; for (i = 0; i < n; i++) { det *= gsl_matrix_get (LU, i, i); } return det; } double gsl_linalg_LU_lndet (gsl_matrix * LU) { size_t i, n = LU->size1; double lndet = 0.0; for (i = 0; i < n; i++) { lndet += log (fabs (gsl_matrix_get (LU, i, i))); } return lndet; } int gsl_linalg_LU_sgndet (gsl_matrix * LU, int signum) { size_t i, n = LU->size1; int s = signum; for (i = 0; i < n; i++) { double u = gsl_matrix_get (LU, i, i); if (u < 0) { s *= -1; } else if (u == 0) { s = 0; break; } } return s; } static int singular (const gsl_matrix * LU) { size_t i, n = LU->size1; for (i = 0; i < n; i++) { double u = gsl_matrix_get (LU, i, i); if (u == 0) return 1; } return 0; } gsl-1.16/linalg/tridiag.c0000664000252300025230000003672212171574312012221 00000000000000/* linalg/tridiag.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2002, 2004, 2007 Gerard Jungman, Brian Gough, David Necas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "tridiag.h" #include /* for description of method see [Engeln-Mullges + Uhlig, p. 92] * * diag[0] offdiag[0] 0 ..... * offdiag[0] diag[1] offdiag[1] ..... * 0 offdiag[1] diag[2] * 0 0 offdiag[2] ..... */ static int solve_tridiag( const double diag[], size_t d_stride, const double offdiag[], size_t o_stride, const double b[], size_t b_stride, double x[], size_t x_stride, size_t N) { int status = GSL_SUCCESS; double *gamma = (double *) malloc (N * sizeof (double)); double *alpha = (double *) malloc (N * sizeof (double)); double *c = (double *) malloc (N * sizeof (double)); double *z = (double *) malloc (N * sizeof (double)); if (gamma == 0 || alpha == 0 || c == 0 || z == 0) { GSL_ERROR("failed to allocate working space", GSL_ENOMEM); } else { size_t i, j; /* Cholesky decomposition A = L.D.L^t lower_diag(L) = gamma diag(D) = alpha */ alpha[0] = diag[0]; gamma[0] = offdiag[0] / alpha[0]; if (alpha[0] == 0) { status = GSL_EZERODIV; } for (i = 1; i < N - 1; i++) { alpha[i] = diag[d_stride * i] - offdiag[o_stride*(i - 1)] * gamma[i - 1]; gamma[i] = offdiag[o_stride * i] / alpha[i]; if (alpha[i] == 0) { status = GSL_EZERODIV; } } if (N > 1) { alpha[N - 1] = diag[d_stride * (N - 1)] - offdiag[o_stride*(N - 2)] * gamma[N - 2]; } /* update RHS */ z[0] = b[0]; for (i = 1; i < N; i++) { z[i] = b[b_stride * i] - gamma[i - 1] * z[i - 1]; } for (i = 0; i < N; i++) { c[i] = z[i] / alpha[i]; } /* backsubstitution */ x[x_stride * (N - 1)] = c[N - 1]; if (N >= 2) { for (i = N - 2, j = 0; j <= N - 2; j++, i--) { x[x_stride * i] = c[i] - gamma[i] * x[x_stride * (i + 1)]; } } } if (z != 0) free (z); if (c != 0) free (c); if (alpha != 0) free (alpha); if (gamma != 0) free (gamma); if (status == GSL_EZERODIV) { GSL_ERROR ("matrix must be positive definite", status); } return status; } /* plain gauss elimination, only not bothering with the zeroes * * diag[0] abovediag[0] 0 ..... * belowdiag[0] diag[1] abovediag[1] ..... * 0 belowdiag[1] diag[2] * 0 0 belowdiag[2] ..... */ static int solve_tridiag_nonsym( const double diag[], size_t d_stride, const double abovediag[], size_t a_stride, const double belowdiag[], size_t b_stride, const double rhs[], size_t r_stride, double x[], size_t x_stride, size_t N) { int status = GSL_SUCCESS; double *alpha = (double *) malloc (N * sizeof (double)); double *z = (double *) malloc (N * sizeof (double)); if (alpha == 0 || z == 0) { GSL_ERROR("failed to allocate working space", GSL_ENOMEM); } else { size_t i, j; /* Bidiagonalization (eliminating belowdiag) & rhs update diag' = alpha rhs' = z */ alpha[0] = diag[0]; z[0] = rhs[0]; if (alpha[0] == 0) { status = GSL_EZERODIV; } for (i = 1; i < N; i++) { const double t = belowdiag[b_stride*(i - 1)]/alpha[i-1]; alpha[i] = diag[d_stride*i] - t*abovediag[a_stride*(i - 1)]; z[i] = rhs[r_stride*i] - t*z[i-1]; if (alpha[i] == 0) { status = GSL_EZERODIV; } } /* backsubstitution */ x[x_stride * (N - 1)] = z[N - 1]/alpha[N - 1]; if (N >= 2) { for (i = N - 2, j = 0; j <= N - 2; j++, i--) { x[x_stride * i] = (z[i] - abovediag[a_stride*i] * x[x_stride * (i + 1)])/alpha[i]; } } } if (z != 0) free (z); if (alpha != 0) free (alpha); if (status == GSL_EZERODIV) { GSL_ERROR ("matrix must be positive definite", status); } return status; } /* for description of method see [Engeln-Mullges + Uhlig, p. 96] * * diag[0] offdiag[0] 0 ..... offdiag[N-1] * offdiag[0] diag[1] offdiag[1] ..... * 0 offdiag[1] diag[2] * 0 0 offdiag[2] ..... * ... ... * offdiag[N-1] ... * */ static int solve_cyc_tridiag( const double diag[], size_t d_stride, const double offdiag[], size_t o_stride, const double b[], size_t b_stride, double x[], size_t x_stride, size_t N) { int status = GSL_SUCCESS; double * delta = (double *) malloc (N * sizeof (double)); double * gamma = (double *) malloc (N * sizeof (double)); double * alpha = (double *) malloc (N * sizeof (double)); double * c = (double *) malloc (N * sizeof (double)); double * z = (double *) malloc (N * sizeof (double)); if (delta == 0 || gamma == 0 || alpha == 0 || c == 0 || z == 0) { GSL_ERROR("failed to allocate working space", GSL_ENOMEM); } else { size_t i, j; double sum = 0.0; /* factor */ if (N == 1) { x[0] = b[0] / diag[0]; return GSL_SUCCESS; } alpha[0] = diag[0]; gamma[0] = offdiag[0] / alpha[0]; delta[0] = offdiag[o_stride * (N-1)] / alpha[0]; if (alpha[0] == 0) { status = GSL_EZERODIV; } for (i = 1; i < N - 2; i++) { alpha[i] = diag[d_stride * i] - offdiag[o_stride * (i-1)] * gamma[i - 1]; gamma[i] = offdiag[o_stride * i] / alpha[i]; delta[i] = -delta[i - 1] * offdiag[o_stride * (i-1)] / alpha[i]; if (alpha[i] == 0) { status = GSL_EZERODIV; } } for (i = 0; i < N - 2; i++) { sum += alpha[i] * delta[i] * delta[i]; } alpha[N - 2] = diag[d_stride * (N - 2)] - offdiag[o_stride * (N - 3)] * gamma[N - 3]; gamma[N - 2] = (offdiag[o_stride * (N - 2)] - offdiag[o_stride * (N - 3)] * delta[N - 3]) / alpha[N - 2]; alpha[N - 1] = diag[d_stride * (N - 1)] - sum - alpha[(N - 2)] * gamma[N - 2] * gamma[N - 2]; /* update */ z[0] = b[0]; for (i = 1; i < N - 1; i++) { z[i] = b[b_stride * i] - z[i - 1] * gamma[i - 1]; } sum = 0.0; for (i = 0; i < N - 2; i++) { sum += delta[i] * z[i]; } z[N - 1] = b[b_stride * (N - 1)] - sum - gamma[N - 2] * z[N - 2]; for (i = 0; i < N; i++) { c[i] = z[i] / alpha[i]; } /* backsubstitution */ x[x_stride * (N - 1)] = c[N - 1]; x[x_stride * (N - 2)] = c[N - 2] - gamma[N - 2] * x[x_stride * (N - 1)]; if (N >= 3) { for (i = N - 3, j = 0; j <= N - 3; j++, i--) { x[x_stride * i] = c[i] - gamma[i] * x[x_stride * (i + 1)] - delta[i] * x[x_stride * (N - 1)]; } } } if (z != 0) free (z); if (c != 0) free (c); if (alpha != 0) free (alpha); if (gamma != 0) free (gamma); if (delta != 0) free (delta); if (status == GSL_EZERODIV) { GSL_ERROR ("matrix must be positive definite", status); } return status; } /* solve following system w/o the corner elements and then use * Sherman-Morrison formula to compensate for them * * diag[0] abovediag[0] 0 ..... belowdiag[N-1] * belowdiag[0] diag[1] abovediag[1] ..... * 0 belowdiag[1] diag[2] * 0 0 belowdiag[2] ..... * ... ... * abovediag[N-1] ... */ static int solve_cyc_tridiag_nonsym( const double diag[], size_t d_stride, const double abovediag[], size_t a_stride, const double belowdiag[], size_t b_stride, const double rhs[], size_t r_stride, double x[], size_t x_stride, size_t N) { int status = GSL_SUCCESS; double *alpha = (double *) malloc (N * sizeof (double)); double *zb = (double *) malloc (N * sizeof (double)); double *zu = (double *) malloc (N * sizeof (double)); double *w = (double *) malloc (N * sizeof (double)); if (alpha == 0 || zb == 0 || zu == 0 || w == 0) { GSL_ERROR("failed to allocate working space", GSL_ENOMEM); } else { double beta; /* Bidiagonalization (eliminating belowdiag) & rhs update diag' = alpha rhs' = zb rhs' for Aq=u is zu */ zb[0] = rhs[0]; if (diag[0] != 0) beta = -diag[0]; else beta = 1; { const double q = 1 - abovediag[0]*belowdiag[0]/(diag[0]*diag[d_stride]); if (fabs(q/beta) > 0.5 && fabs(q/beta) < 2) { beta *= (fabs(q/beta) < 1) ? 0.5 : 2; } } zu[0] = beta; alpha[0] = diag[0] - beta; if (alpha[0] == 0) { status = GSL_EZERODIV; } { size_t i; for (i = 1; i+1 < N; i++) { const double t = belowdiag[b_stride*(i - 1)]/alpha[i-1]; alpha[i] = diag[d_stride*i] - t*abovediag[a_stride*(i - 1)]; zb[i] = rhs[r_stride*i] - t*zb[i-1]; zu[i] = -t*zu[i-1]; /* FIXME!!! */ if (alpha[i] == 0) { status = GSL_EZERODIV; } } } { const size_t i = N-1; const double t = belowdiag[b_stride*(i - 1)]/alpha[i-1]; alpha[i] = diag[d_stride*i] - abovediag[a_stride*i]*belowdiag[b_stride*i]/beta - t*abovediag[a_stride*(i - 1)]; zb[i] = rhs[r_stride*i] - t*zb[i-1]; zu[i] = abovediag[a_stride*i] - t*zu[i-1]; /* FIXME!!! */ if (alpha[i] == 0) { status = GSL_EZERODIV; } } /* backsubstitution */ { size_t i, j; w[N-1] = zu[N-1]/alpha[N-1]; x[x_stride*(N-1)] = zb[N-1]/alpha[N-1]; for (i = N - 2, j = 0; j <= N - 2; j++, i--) { w[i] = (zu[i] - abovediag[a_stride*i] * w[i+1])/alpha[i]; x[i*x_stride] = (zb[i] - abovediag[a_stride*i] * x[x_stride*(i + 1)])/alpha[i]; } } /* Sherman-Morrison */ { const double vw = w[0] + belowdiag[b_stride*(N - 1)]/beta * w[N-1]; const double vx = x[0] + belowdiag[b_stride*(N - 1)]/beta * x[x_stride*(N - 1)]; /* FIXME!!! */ if (vw + 1 == 0) { status = GSL_EZERODIV; } { size_t i; for (i = 0; i < N; i++) x[i*x_stride] -= vx/(1 + vw)*w[i]; } } } if (zb != 0) free (zb); if (zu != 0) free (zu); if (w != 0) free (w); if (alpha != 0) free (alpha); if (status == GSL_EZERODIV) { GSL_ERROR ("matrix must be positive definite", status); } return status; } int gsl_linalg_solve_symm_tridiag( const gsl_vector * diag, const gsl_vector * offdiag, const gsl_vector * rhs, gsl_vector * solution) { if(diag->size != rhs->size) { GSL_ERROR ("size of diag must match rhs", GSL_EBADLEN); } else if (offdiag->size != rhs->size-1) { GSL_ERROR ("size of offdiag must match rhs-1", GSL_EBADLEN); } else if (solution->size != rhs->size) { GSL_ERROR ("size of solution must match rhs", GSL_EBADLEN); } else { return solve_tridiag(diag->data, diag->stride, offdiag->data, offdiag->stride, rhs->data, rhs->stride, solution->data, solution->stride, diag->size); } } int gsl_linalg_solve_tridiag( const gsl_vector * diag, const gsl_vector * abovediag, const gsl_vector * belowdiag, const gsl_vector * rhs, gsl_vector * solution) { if(diag->size != rhs->size) { GSL_ERROR ("size of diag must match rhs", GSL_EBADLEN); } else if (abovediag->size != rhs->size-1) { GSL_ERROR ("size of abovediag must match rhs-1", GSL_EBADLEN); } else if (belowdiag->size != rhs->size-1) { GSL_ERROR ("size of belowdiag must match rhs-1", GSL_EBADLEN); } else if (solution->size != rhs->size) { GSL_ERROR ("size of solution must match rhs", GSL_EBADLEN); } else { return solve_tridiag_nonsym(diag->data, diag->stride, abovediag->data, abovediag->stride, belowdiag->data, belowdiag->stride, rhs->data, rhs->stride, solution->data, solution->stride, diag->size); } } int gsl_linalg_solve_symm_cyc_tridiag( const gsl_vector * diag, const gsl_vector * offdiag, const gsl_vector * rhs, gsl_vector * solution) { if(diag->size != rhs->size) { GSL_ERROR ("size of diag must match rhs", GSL_EBADLEN); } else if (offdiag->size != rhs->size) { GSL_ERROR ("size of offdiag must match rhs", GSL_EBADLEN); } else if (solution->size != rhs->size) { GSL_ERROR ("size of solution must match rhs", GSL_EBADLEN); } else if (diag->size < 3) { GSL_ERROR ("size of cyclic system must be 3 or more", GSL_EBADLEN); } else { return solve_cyc_tridiag(diag->data, diag->stride, offdiag->data, offdiag->stride, rhs->data, rhs->stride, solution->data, solution->stride, diag->size); } } int gsl_linalg_solve_cyc_tridiag( const gsl_vector * diag, const gsl_vector * abovediag, const gsl_vector * belowdiag, const gsl_vector * rhs, gsl_vector * solution) { if(diag->size != rhs->size) { GSL_ERROR ("size of diag must match rhs", GSL_EBADLEN); } else if (abovediag->size != rhs->size) { GSL_ERROR ("size of abovediag must match rhs", GSL_EBADLEN); } else if (belowdiag->size != rhs->size) { GSL_ERROR ("size of belowdiag must match rhs", GSL_EBADLEN); } else if (solution->size != rhs->size) { GSL_ERROR ("size of solution must match rhs", GSL_EBADLEN); } else if (diag->size < 3) { GSL_ERROR ("size of cyclic system must be 3 or more", GSL_EBADLEN); } else { return solve_cyc_tridiag_nonsym(diag->data, diag->stride, abovediag->data, abovediag->stride, belowdiag->data, belowdiag->stride, rhs->data, rhs->stride, solution->data, solution->stride, diag->size); } } gsl-1.16/linalg/hermtd.c0000664000252300025230000001623612171574312012057 00000000000000/* linalg/hermtd.c * * Copyright (C) 2001, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a hermitian matrix A into * * A = U T U' * * where U is unitary and T is real symmetric tridiagonal. Only the * diagonal and lower triangular part of A is referenced and modified. * * On exit, T is stored in the diagonal and first subdiagonal of * A. Since T is symmetric the upper diagonal is not stored. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the first subdiagonal. * * The full matrix for U can be obtained as the product * * U = U_N ... U_2 U_1 * * where * * U_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, ..., 0, 1, A(i+2,i), A(i+3,i), ... , A(N,i)] * * This storage scheme is the same as in LAPACK. See LAPACK's * chetd2.f for details. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 8.3 */ #include #include #include #include #include #include #include #include int gsl_linalg_hermtd_decomp (gsl_matrix_complex * A, gsl_vector_complex * tau) { if (A->size1 != A->size2) { GSL_ERROR ("hermitian tridiagonal decomposition requires square matrix", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; const gsl_complex zero = gsl_complex_rect (0.0, 0.0); const gsl_complex one = gsl_complex_rect (1.0, 0.0); const gsl_complex neg_one = gsl_complex_rect (-1.0, 0.0); for (i = 0 ; i < N - 1; i++) { gsl_vector_complex_view c = gsl_matrix_complex_column (A, i); gsl_vector_complex_view v = gsl_vector_complex_subvector (&c.vector, i + 1, N - (i + 1)); gsl_complex tau_i = gsl_linalg_complex_householder_transform (&v.vector); /* Apply the transformation H^T A H to the remaining columns */ if ((i + 1) < (N - 1) && !(GSL_REAL(tau_i) == 0.0 && GSL_IMAG(tau_i) == 0.0)) { gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (A, i + 1, i + 1, N - (i+1), N - (i+1)); gsl_complex ei = gsl_vector_complex_get(&v.vector, 0); gsl_vector_complex_view x = gsl_vector_complex_subvector (tau, i, N-(i+1)); gsl_vector_complex_set (&v.vector, 0, one); /* x = tau * A * v */ gsl_blas_zhemv (CblasLower, tau_i, &m.matrix, &v.vector, zero, &x.vector); /* w = x - (1/2) tau * (x' * v) * v */ { gsl_complex xv, txv, alpha; gsl_blas_zdotc(&x.vector, &v.vector, &xv); txv = gsl_complex_mul(tau_i, xv); alpha = gsl_complex_mul_real(txv, -0.5); gsl_blas_zaxpy(alpha, &v.vector, &x.vector); } /* apply the transformation A = A - v w' - w v' */ gsl_blas_zher2(CblasLower, neg_one, &v.vector, &x.vector, &m.matrix); gsl_vector_complex_set (&v.vector, 0, ei); } gsl_vector_complex_set (tau, i, tau_i); } return GSL_SUCCESS; } } /* Form the orthogonal matrix U from the packed QR matrix */ int gsl_linalg_hermtd_unpack (const gsl_matrix_complex * A, const gsl_vector_complex * tau, gsl_matrix_complex * U, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (tau->size + 1 != A->size1) { GSL_ERROR ("size of tau must be (matrix size - 1)", GSL_EBADLEN); } else if (U->size1 != A->size1 || U->size2 != A->size1) { GSL_ERROR ("size of U must match size of A", GSL_EBADLEN); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Initialize U to the identity */ gsl_matrix_complex_set_identity (U); for (i = N - 1; i-- > 0;) { gsl_complex ti = gsl_vector_complex_get (tau, i); gsl_vector_complex_const_view c = gsl_matrix_complex_const_column (A, i); gsl_vector_complex_const_view h = gsl_vector_complex_const_subvector (&c.vector, i + 1, N - (i+1)); gsl_matrix_complex_view m = gsl_matrix_complex_submatrix (U, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_complex_householder_hm (ti, &h.vector, &m.matrix); } /* Copy diagonal into diag */ for (i = 0; i < N; i++) { gsl_complex Aii = gsl_matrix_complex_get (A, i, i); gsl_vector_set (diag, i, GSL_REAL(Aii)); } /* Copy subdiagonal into sdiag */ for (i = 0; i < N - 1; i++) { gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i); gsl_vector_set (sdiag, i, GSL_REAL(Aji)); } return GSL_SUCCESS; } } int gsl_linalg_hermtd_unpack_T (const gsl_matrix_complex * A, gsl_vector * diag, gsl_vector * sdiag) { if (A->size1 != A->size2) { GSL_ERROR ("matrix A must be sqaure", GSL_ENOTSQR); } else if (diag->size != A->size1) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (sdiag->size + 1 != A->size1) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { const size_t N = A->size1; size_t i; /* Copy diagonal into diag */ for (i = 0; i < N; i++) { gsl_complex Aii = gsl_matrix_complex_get (A, i, i); gsl_vector_set (diag, i, GSL_REAL(Aii)); } /* Copy subdiagonal into sd */ for (i = 0; i < N - 1; i++) { gsl_complex Aji = gsl_matrix_complex_get (A, i+1, i); gsl_vector_set (sdiag, i, GSL_REAL(Aji)); } return GSL_SUCCESS; } } gsl-1.16/linalg/hh.c0000664000252300025230000001105412171574312011164 00000000000000/* linalg/hh.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #define REAL double /* [Engeln-Mullges + Uhlig, Alg. 4.42] */ int gsl_linalg_HH_solve (gsl_matrix * A, const gsl_vector * b, gsl_vector * x) { if (A->size1 > A->size2) { /* System is underdetermined. */ GSL_ERROR ("System is underdetermined", GSL_EINVAL); } else if (A->size2 != x->size) { GSL_ERROR ("matrix and vector sizes must be equal", GSL_EBADLEN); } else { int status ; gsl_vector_memcpy (x, b); status = gsl_linalg_HH_svx (A, x); return status ; } } int gsl_linalg_HH_svx (gsl_matrix * A, gsl_vector * x) { if (A->size1 > A->size2) { /* System is underdetermined. */ GSL_ERROR ("System is underdetermined", GSL_EINVAL); } else if (A->size2 != x->size) { GSL_ERROR ("matrix and vector sizes must be equal", GSL_EBADLEN); } else { const size_t N = A->size1; const size_t M = A->size2; size_t i, j, k; REAL *d = (REAL *) malloc (N * sizeof (REAL)); if (d == 0) { GSL_ERROR ("could not allocate memory for workspace", GSL_ENOMEM); } /* Perform Householder transformation. */ for (i = 0; i < N; i++) { const REAL aii = gsl_matrix_get (A, i, i); REAL alpha; REAL f; REAL ak; REAL max_norm = 0.0; REAL r = 0.0; for (k = i; k < M; k++) { REAL aki = gsl_matrix_get (A, k, i); r += aki * aki; } if (r == 0.0) { /* Rank of matrix is less than size1. */ free (d); GSL_ERROR ("matrix is rank deficient", GSL_ESING); } alpha = sqrt (r) * GSL_SIGN (aii); ak = 1.0 / (r + alpha * aii); gsl_matrix_set (A, i, i, aii + alpha); d[i] = -alpha; for (k = i + 1; k < N; k++) { REAL norm = 0.0; f = 0.0; for (j = i; j < M; j++) { REAL ajk = gsl_matrix_get (A, j, k); REAL aji = gsl_matrix_get (A, j, i); norm += ajk * ajk; f += ajk * aji; } max_norm = GSL_MAX (max_norm, norm); f *= ak; for (j = i; j < M; j++) { REAL ajk = gsl_matrix_get (A, j, k); REAL aji = gsl_matrix_get (A, j, i); gsl_matrix_set (A, j, k, ajk - f * aji); } } if (fabs (alpha) < 2.0 * GSL_DBL_EPSILON * sqrt (max_norm)) { /* Apparent singularity. */ free (d); GSL_ERROR("apparent singularity detected", GSL_ESING); } /* Perform update of RHS. */ f = 0.0; for (j = i; j < M; j++) { f += gsl_vector_get (x, j) * gsl_matrix_get (A, j, i); } f *= ak; for (j = i; j < M; j++) { REAL xj = gsl_vector_get (x, j); REAL aji = gsl_matrix_get (A, j, i); gsl_vector_set (x, j, xj - f * aji); } } /* Perform back-substitution. */ for (i = N; i-- > 0;) { REAL xi = gsl_vector_get (x, i); REAL sum = 0.0; for (k = i + 1; k < N; k++) { sum += gsl_matrix_get (A, i, k) * gsl_vector_get (x, k); } gsl_vector_set (x, i, (xi - sum) / d[i]); } free (d); return GSL_SUCCESS; } } gsl-1.16/linalg/givens.c0000664000252300025230000000255112171574312012062 00000000000000/* linalg/givens.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Generate a Givens rotation (cos,sin) which takes v=(x,y) to (|v|,0) From Golub and Van Loan, "Matrix Computations", Section 5.1.8 */ inline static void create_givens (const double a, const double b, double *c, double *s) { if (b == 0) { *c = 1; *s = 0; } else if (fabs (b) > fabs (a)) { double t = -a / b; double s1 = 1.0 / sqrt (1 + t * t); *s = s1; *c = s1 * t; } else { double t = -b / a; double c1 = 1.0 / sqrt (1 + t * t); *c = c1; *s = c1 * t; } } gsl-1.16/linalg/svd.c0000664000252300025230000004617312171574312011373 00000000000000/* linalg/svd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include "givens.c" #include "svdstep.c" /* Factorise a general M x N matrix A into, * * A = U D V^T * * where U is a column-orthogonal M x N matrix (U^T U = I), * D is a diagonal N x N matrix, * and V is an N x N orthogonal matrix (V^T V = V V^T = I) * * U is stored in the original matrix A, which has the same size * * V is stored as a separate matrix (not V^T). You must take the * transpose to form the product above. * * The diagonal matrix D is stored in the vector S, D_ii = S_i */ int gsl_linalg_SV_decomp (gsl_matrix * A, gsl_matrix * V, gsl_vector * S, gsl_vector * work) { size_t a, b, i, j, iter; const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN (M, N); if (M < N) { GSL_ERROR ("svd of MxN matrix, Msize1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } /* Handle the case of N = 1 (SVD of a column vector) */ if (N == 1) { gsl_vector_view column = gsl_matrix_column (A, 0); double norm = gsl_blas_dnrm2 (&column.vector); gsl_vector_set (S, 0, norm); gsl_matrix_set (V, 0, 0, 1.0); if (norm != 0.0) { gsl_blas_dscal (1.0/norm, &column.vector); } return GSL_SUCCESS; } { gsl_vector_view f = gsl_vector_subvector (work, 0, K - 1); /* bidiagonalize matrix A, unpack A into U S V */ gsl_linalg_bidiag_decomp (A, S, &f.vector); gsl_linalg_bidiag_unpack2 (A, S, &f.vector, V); /* apply reduction steps to B=(S,Sd) */ chop_small_elements (S, &f.vector); /* Progressively reduce the matrix until it is diagonal */ b = N - 1; iter = 0; while (b > 0) { double fbm1 = gsl_vector_get (&f.vector, b - 1); if (fbm1 == 0.0 || gsl_isnan (fbm1)) { b--; continue; } /* Find the largest unreduced block (a,b) starting from b and working backwards */ a = b - 1; while (a > 0) { double fam1 = gsl_vector_get (&f.vector, a - 1); if (fam1 == 0.0 || gsl_isnan (fam1)) { break; } a--; } iter++; if (iter > 100 * N) { GSL_ERROR("SVD decomposition failed to converge", GSL_EMAXITER); } { const size_t n_block = b - a + 1; gsl_vector_view S_block = gsl_vector_subvector (S, a, n_block); gsl_vector_view f_block = gsl_vector_subvector (&f.vector, a, n_block - 1); gsl_matrix_view U_block = gsl_matrix_submatrix (A, 0, a, A->size1, n_block); gsl_matrix_view V_block = gsl_matrix_submatrix (V, 0, a, V->size1, n_block); int rescale = 0; double scale = 1; double norm = 0; /* Find the maximum absolute values of the diagonal and subdiagonal */ for (i = 0; i < n_block; i++) { double s_i = gsl_vector_get (&S_block.vector, i); double a = fabs(s_i); if (a > norm) norm = a; } for (i = 0; i < n_block - 1; i++) { double f_i = gsl_vector_get (&f_block.vector, i); double a = fabs(f_i); if (a > norm) norm = a; } /* Temporarily scale the submatrix if necessary */ if (norm > GSL_SQRT_DBL_MAX) { scale = (norm / GSL_SQRT_DBL_MAX); rescale = 1; } else if (norm < GSL_SQRT_DBL_MIN && norm > 0) { scale = (norm / GSL_SQRT_DBL_MIN); rescale = 1; } if (rescale) { gsl_blas_dscal(1.0 / scale, &S_block.vector); gsl_blas_dscal(1.0 / scale, &f_block.vector); } /* Perform the implicit QR step */ qrstep (&S_block.vector, &f_block.vector, &U_block.matrix, &V_block.matrix); /* remove any small off-diagonal elements */ chop_small_elements (&S_block.vector, &f_block.vector); /* Undo the scaling if needed */ if (rescale) { gsl_blas_dscal(scale, &S_block.vector); gsl_blas_dscal(scale, &f_block.vector); } } } } /* Make singular values positive by reflections if necessary */ for (j = 0; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj < 0.0) { for (i = 0; i < N; i++) { double Vij = gsl_matrix_get (V, i, j); gsl_matrix_set (V, i, j, -Vij); } gsl_vector_set (S, j, -Sj); } } /* Sort singular values into decreasing order */ for (i = 0; i < K; i++) { double S_max = gsl_vector_get (S, i); size_t i_max = i; for (j = i + 1; j < K; j++) { double Sj = gsl_vector_get (S, j); if (Sj > S_max) { S_max = Sj; i_max = j; } } if (i_max != i) { /* swap eigenvalues */ gsl_vector_swap_elements (S, i, i_max); /* swap eigenvectors */ gsl_matrix_swap_columns (A, i, i_max); gsl_matrix_swap_columns (V, i, i_max); } } return GSL_SUCCESS; } /* Modified algorithm which is better for M>>N */ int gsl_linalg_SV_decomp_mod (gsl_matrix * A, gsl_matrix * X, gsl_matrix * V, gsl_vector * S, gsl_vector * work) { size_t i, j; const size_t M = A->size1; const size_t N = A->size2; if (M < N) { GSL_ERROR ("svd of MxN matrix, Msize1 != N) { GSL_ERROR ("square matrix V must match second dimension of matrix A", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (X->size1 != N) { GSL_ERROR ("square matrix X must match second dimension of matrix A", GSL_EBADLEN); } else if (X->size1 != X->size2) { GSL_ERROR ("matrix X must be square", GSL_ENOTSQR); } else if (S->size != N) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else if (work->size != N) { GSL_ERROR ("length of workspace must match second dimension of matrix A", GSL_EBADLEN); } if (N == 1) { gsl_vector_view column = gsl_matrix_column (A, 0); double norm = gsl_blas_dnrm2 (&column.vector); gsl_vector_set (S, 0, norm); gsl_matrix_set (V, 0, 0, 1.0); if (norm != 0.0) { gsl_blas_dscal (1.0/norm, &column.vector); } return GSL_SUCCESS; } /* Convert A into an upper triangular matrix R */ for (i = 0; i < N; i++) { gsl_vector_view c = gsl_matrix_column (A, i); gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1)); gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix); } gsl_vector_set (S, i, tau_i); } /* Copy the upper triangular part of A into X */ for (i = 0; i < N; i++) { for (j = 0; j < i; j++) { gsl_matrix_set (X, i, j, 0.0); } { double Aii = gsl_matrix_get (A, i, i); gsl_matrix_set (X, i, i, Aii); } for (j = i + 1; j < N; j++) { double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (X, i, j, Aij); } } /* Convert A into an orthogonal matrix L */ for (j = N; j-- > 0;) { /* Householder column transformation to accumulate L */ double tj = gsl_vector_get (S, j); gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M - j, N - j); gsl_linalg_householder_hm1 (tj, &m.matrix); } /* unpack R into X V S */ gsl_linalg_SV_decomp (X, V, S, work); /* Multiply L by X, to obtain U = L X, stored in U */ { gsl_vector_view sum = gsl_vector_subvector (work, 0, N); for (i = 0; i < M; i++) { gsl_vector_view L_i = gsl_matrix_row (A, i); gsl_vector_set_zero (&sum.vector); for (j = 0; j < N; j++) { double Lij = gsl_vector_get (&L_i.vector, j); gsl_vector_view X_j = gsl_matrix_row (X, j); gsl_blas_daxpy (Lij, &X_j.vector, &sum.vector); } gsl_vector_memcpy (&L_i.vector, &sum.vector); } } return GSL_SUCCESS; } /* Solves the system A x = b using the SVD factorization * * A = U S V^T * * to obtain x. For M x N systems it finds the solution in the least * squares sense. */ int gsl_linalg_SV_solve (const gsl_matrix * U, const gsl_matrix * V, const gsl_vector * S, const gsl_vector * b, gsl_vector * x) { if (U->size1 != b->size) { GSL_ERROR ("first dimension of matrix U must size of vector b", GSL_EBADLEN); } else if (U->size2 != S->size) { GSL_ERROR ("length of vector S must match second dimension of matrix U", GSL_EBADLEN); } else if (V->size1 != V->size2) { GSL_ERROR ("matrix V must be square", GSL_ENOTSQR); } else if (S->size != V->size1) { GSL_ERROR ("length of vector S must match size of matrix V", GSL_EBADLEN); } else if (V->size2 != x->size) { GSL_ERROR ("size of matrix V must match size of vector x", GSL_EBADLEN); } else { const size_t N = U->size2; size_t i; gsl_vector *w = gsl_vector_calloc (N); gsl_blas_dgemv (CblasTrans, 1.0, U, b, 0.0, w); for (i = 0; i < N; i++) { double wi = gsl_vector_get (w, i); double alpha = gsl_vector_get (S, i); if (alpha != 0) alpha = 1.0 / alpha; gsl_vector_set (w, i, alpha * wi); } gsl_blas_dgemv (CblasNoTrans, 1.0, V, w, 0.0, x); gsl_vector_free (w); return GSL_SUCCESS; } } /* gsl_linalg_SV_leverage() Compute statistical leverage values of a matrix: h = diag(A (A^T A)^{-1} A^T) Inputs: U - U matrix in SVD decomposition h - (output) vector of leverages Return: success or error */ int gsl_linalg_SV_leverage(const gsl_matrix *U, gsl_vector *h) { const size_t M = U->size1; if (M != h->size) { GSL_ERROR ("first dimension of matrix U must match size of vector h", GSL_EBADLEN); } else { size_t i; for (i = 0; i < M; ++i) { gsl_vector_const_view v = gsl_matrix_const_row(U, i); double hi; gsl_blas_ddot(&v.vector, &v.vector, &hi); gsl_vector_set(h, i, hi); } return GSL_SUCCESS; } } /* gsl_linalg_SV_leverage() */ /* This is a the jacobi version */ /* Author: G. Jungman */ /* * Algorithm due to J.C. Nash, Compact Numerical Methods for * Computers (New York: Wiley and Sons, 1979), chapter 3. * See also Algorithm 4.1 in * James Demmel, Kresimir Veselic, "Jacobi's Method is more * accurate than QR", Lapack Working Note 15 (LAWN15), October 1989. * Available from netlib. * * Based on code by Arthur Kosowsky, Rutgers University * kosowsky@physics.rutgers.edu * * Another relevant paper is, P.P.M. De Rijk, "A One-Sided Jacobi * Algorithm for computing the singular value decomposition on a * vector computer", SIAM Journal of Scientific and Statistical * Computing, Vol 10, No 2, pp 359-371, March 1989. * */ int gsl_linalg_SV_decomp_jacobi (gsl_matrix * A, gsl_matrix * Q, gsl_vector * S) { if (A->size1 < A->size2) { /* FIXME: only implemented M>=N case so far */ GSL_ERROR ("svd of MxN matrix, Msize1 != A->size2) { GSL_ERROR ("square matrix Q must match second dimension of matrix A", GSL_EBADLEN); } else if (Q->size1 != Q->size2) { GSL_ERROR ("matrix Q must be square", GSL_ENOTSQR); } else if (S->size != A->size2) { GSL_ERROR ("length of vector S must match second dimension of matrix A", GSL_EBADLEN); } else { const size_t M = A->size1; const size_t N = A->size2; size_t i, j, k; /* Initialize the rotation counter and the sweep counter. */ int count = 1; int sweep = 0; int sweepmax = 5*N; double tolerance = 10 * M * GSL_DBL_EPSILON; /* Always do at least 12 sweeps. */ sweepmax = GSL_MAX (sweepmax, 12); /* Set Q to the identity matrix. */ gsl_matrix_set_identity (Q); /* Store the column error estimates in S, for use during the orthogonalization */ for (j = 0; j < N; j++) { gsl_vector_view cj = gsl_matrix_column (A, j); double sj = gsl_blas_dnrm2 (&cj.vector); gsl_vector_set(S, j, GSL_DBL_EPSILON * sj); } /* Orthogonalize A by plane rotations. */ while (count > 0 && sweep <= sweepmax) { /* Initialize rotation counter. */ count = N * (N - 1) / 2; for (j = 0; j < N - 1; j++) { for (k = j + 1; k < N; k++) { double a = 0.0; double b = 0.0; double p = 0.0; double q = 0.0; double cosine, sine; double v; double abserr_a, abserr_b; int sorted, orthog, noisya, noisyb; gsl_vector_view cj = gsl_matrix_column (A, j); gsl_vector_view ck = gsl_matrix_column (A, k); gsl_blas_ddot (&cj.vector, &ck.vector, &p); p *= 2.0 ; /* equation 9a: p = 2 x.y */ a = gsl_blas_dnrm2 (&cj.vector); b = gsl_blas_dnrm2 (&ck.vector); q = a * a - b * b; v = hypot(p, q); /* test for columns j,k orthogonal, or dominant errors */ abserr_a = gsl_vector_get(S,j); abserr_b = gsl_vector_get(S,k); sorted = (GSL_COERCE_DBL(a) >= GSL_COERCE_DBL(b)); orthog = (fabs (p) <= tolerance * GSL_COERCE_DBL(a * b)); noisya = (a < abserr_a); noisyb = (b < abserr_b); if (sorted && (orthog || noisya || noisyb)) { count--; continue; } /* calculate rotation angles */ if (v == 0 || !sorted) { cosine = 0.0; sine = 1.0; } else { cosine = sqrt((v + q) / (2.0 * v)); sine = p / (2.0 * v * cosine); } /* apply rotation to A */ for (i = 0; i < M; i++) { const double Aik = gsl_matrix_get (A, i, k); const double Aij = gsl_matrix_get (A, i, j); gsl_matrix_set (A, i, j, Aij * cosine + Aik * sine); gsl_matrix_set (A, i, k, -Aij * sine + Aik * cosine); } gsl_vector_set(S, j, fabs(cosine) * abserr_a + fabs(sine) * abserr_b); gsl_vector_set(S, k, fabs(sine) * abserr_a + fabs(cosine) * abserr_b); /* apply rotation to Q */ for (i = 0; i < N; i++) { const double Qij = gsl_matrix_get (Q, i, j); const double Qik = gsl_matrix_get (Q, i, k); gsl_matrix_set (Q, i, j, Qij * cosine + Qik * sine); gsl_matrix_set (Q, i, k, -Qij * sine + Qik * cosine); } } } /* Sweep completed. */ sweep++; } /* * Orthogonalization complete. Compute singular values. */ { double prev_norm = -1.0; for (j = 0; j < N; j++) { gsl_vector_view column = gsl_matrix_column (A, j); double norm = gsl_blas_dnrm2 (&column.vector); /* Determine if singular value is zero, according to the criteria used in the main loop above (i.e. comparison with norm of previous column). */ if (norm == 0.0 || prev_norm == 0.0 || (j > 0 && norm <= tolerance * prev_norm)) { gsl_vector_set (S, j, 0.0); /* singular */ gsl_vector_set_zero (&column.vector); /* annihilate column */ prev_norm = 0.0; } else { gsl_vector_set (S, j, norm); /* non-singular */ gsl_vector_scale (&column.vector, 1.0 / norm); /* normalize column */ prev_norm = norm; } } } if (count > 0) { /* reached sweep limit */ GSL_ERROR ("Jacobi iterations did not reach desired tolerance", GSL_ETOL); } return GSL_SUCCESS; } } gsl-1.16/linalg/hesstri.c0000664000252300025230000001263212171574312012251 00000000000000/* linalg/hesstri.c * * Copyright (C) 2006, 2007 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "givens.c" /* * This module contains routines related to the Hessenberg-Triangular * reduction of two general real matrices * * See Golub & Van Loan, "Matrix Computations", 3rd ed, sec 7.7.4 */ /* gsl_linalg_hesstri_decomp() Perform a reduction to generalized upper Hessenberg form. Given A and B, this function overwrites A with an upper Hessenberg matrix H = U^T A V and B with an upper triangular matrix R = U^T B V with U and V orthogonal. See Golub & Van Loan, "Matrix Computations" (3rd ed) algorithm 7.7.1 Inputs: A - real square matrix B - real square matrix U - (output) if non-null, U is stored here on output V - (output) if non-null, V is stored here on output work - workspace (length n) Return: success or error */ int gsl_linalg_hesstri_decomp(gsl_matrix * A, gsl_matrix * B, gsl_matrix * U, gsl_matrix * V, gsl_vector * work) { const size_t N = A->size1; if ((N != A->size2) || (N != B->size1) || (N != B->size2)) { GSL_ERROR ("Hessenberg-triangular reduction requires square matrices", GSL_ENOTSQR); } else if (N != work->size) { GSL_ERROR ("length of workspace must match matrix dimension", GSL_EBADLEN); } else { double cs, sn; /* rotation parameters */ size_t i, j; /* looping */ gsl_vector_view xv, yv; /* temporary views */ /* B -> Q^T B = R (upper triangular) */ gsl_linalg_QR_decomp(B, work); /* A -> Q^T A */ gsl_linalg_QR_QTmat(B, work, A); /* initialize U and V if desired */ if (U) { gsl_linalg_QR_unpack(B, work, U, B); } else { /* zero out lower triangle of B */ for (j = 0; j < N - 1; ++j) { for (i = j + 1; i < N; ++i) gsl_matrix_set(B, i, j, 0.0); } } if (V) gsl_matrix_set_identity(V); if (N < 3) return GSL_SUCCESS; /* nothing more to do */ /* reduce A and B */ for (j = 0; j < N - 2; ++j) { for (i = N - 1; i >= (j + 2); --i) { /* step 1: rotate rows i - 1, i to kill A(i,j) */ /* * compute G = [ CS SN ] so that G^t [ A(i-1,j) ] = [ * ] * [-SN CS ] [ A(i, j) ] [ 0 ] */ create_givens(gsl_matrix_get(A, i - 1, j), gsl_matrix_get(A, i, j), &cs, &sn); /* invert so drot() works correctly (G -> G^t) */ sn = -sn; /* compute G^t A(i-1:i, j:n) */ xv = gsl_matrix_subrow(A, i - 1, j, N - j); yv = gsl_matrix_subrow(A, i, j, N - j); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); /* compute G^t B(i-1:i, i-1:n) */ xv = gsl_matrix_subrow(B, i - 1, i - 1, N - i + 1); yv = gsl_matrix_subrow(B, i, i - 1, N - i + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (U) { /* accumulate U: U -> U G */ xv = gsl_matrix_column(U, i - 1); yv = gsl_matrix_column(U, i); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } /* step 2: rotate columns i, i - 1 to kill B(i, i - 1) */ create_givens(-gsl_matrix_get(B, i, i), gsl_matrix_get(B, i, i - 1), &cs, &sn); /* invert so drot() works correctly (G -> G^t) */ sn = -sn; /* compute B(1:i, i-1:i) G */ xv = gsl_matrix_subcolumn(B, i - 1, 0, i + 1); yv = gsl_matrix_subcolumn(B, i, 0, i + 1); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); /* apply to A(1:n, i-1:i) */ xv = gsl_matrix_column(A, i - 1); yv = gsl_matrix_column(A, i); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); if (V) { /* accumulate V: V -> V G */ xv = gsl_matrix_column(V, i - 1); yv = gsl_matrix_column(V, i); gsl_blas_drot(&xv.vector, &yv.vector, cs, sn); } } } return GSL_SUCCESS; } } /* gsl_linalg_hesstri_decomp() */ gsl-1.16/linalg/balancemat.c0000664000252300025230000001157212171574312012661 00000000000000/* linalg/balance.c * * Copyright (C) 2006 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Balance a general matrix by scaling the rows and columns, so the * new row and column norms are the same order of magnitude. * * B = D^-1 A D * * where D is a diagonal matrix * * This is necessary for the unsymmetric eigenvalue problem since the * calculation can become numerically unstable for unbalanced * matrices. * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Section 7.5.7 * and Wilkinson & Reinsch, "Handbook for Automatic Computation", II/11 p320. */ #include #include #include #include #include #include #include #define FLOAT_RADIX 2.0 #define FLOAT_RADIX_SQ (FLOAT_RADIX * FLOAT_RADIX) int gsl_linalg_balance_matrix(gsl_matrix * A, gsl_vector * D) { const size_t N = A->size1; if (N != D->size) { GSL_ERROR ("vector must match matrix size", GSL_EBADLEN); } else { double row_norm, col_norm; int not_converged; gsl_vector_view v; /* initialize D to the identity matrix */ gsl_vector_set_all(D, 1.0); not_converged = 1; while (not_converged) { size_t i, j; double g, f, s; not_converged = 0; for (i = 0; i < N; ++i) { row_norm = 0.0; col_norm = 0.0; for (j = 0; j < N; ++j) { if (j != i) { col_norm += fabs(gsl_matrix_get(A, j, i)); row_norm += fabs(gsl_matrix_get(A, i, j)); } } if ((col_norm == 0.0) || (row_norm == 0.0)) { continue; } g = row_norm / FLOAT_RADIX; f = 1.0; s = col_norm + row_norm; /* * find the integer power of the machine radix which * comes closest to balancing the matrix */ while (col_norm < g) { f *= FLOAT_RADIX; col_norm *= FLOAT_RADIX_SQ; } g = row_norm * FLOAT_RADIX; while (col_norm > g) { f /= FLOAT_RADIX; col_norm /= FLOAT_RADIX_SQ; } if ((row_norm + col_norm) < 0.95 * s * f) { not_converged = 1; g = 1.0 / f; /* * apply similarity transformation D, where * D_{ij} = f_i * delta_{ij} */ /* multiply by D^{-1} on the left */ v = gsl_matrix_row(A, i); gsl_blas_dscal(g, &v.vector); /* multiply by D on the right */ v = gsl_matrix_column(A, i); gsl_blas_dscal(f, &v.vector); /* keep track of transformation */ gsl_vector_set(D, i, gsl_vector_get(D, i) * f); } } } return GSL_SUCCESS; } } /* gsl_linalg_balance_matrix() */ /* gsl_linalg_balance_accum() Accumulate a balancing transformation into a matrix. This is used during the computation of Schur vectors since the Schur vectors computed are the vectors for the balanced matrix. We must at some point accumulate the balancing transformation into the Schur vector matrix to get the vectors for the original matrix. A -> D A where D is the diagonal matrix Inputs: A - matrix to transform D - vector containing diagonal elements of D */ int gsl_linalg_balance_accum(gsl_matrix *A, gsl_vector *D) { const size_t N = A->size1; if (N != D->size) { GSL_ERROR ("vector must match matrix size", GSL_EBADLEN); } else { size_t i; double s; gsl_vector_view r; for (i = 0; i < N; ++i) { s = gsl_vector_get(D, i); r = gsl_matrix_row(A, i); gsl_blas_dscal(s, &r.vector); } return GSL_SUCCESS; } } /* gsl_linalg_balance_accum() */ gsl-1.16/linalg/tridiag.h0000664000252300025230000000363712171574312012225 00000000000000/* linalg/tridiag.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2002 Gerard Jungman, * Brian Gough, David Necas * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Low level tridiagonal solvers. * Used internally in other areas of GSL. */ #ifndef __GSL_TRIDIAG_H__ #define __GSL_TRIDIAG_H__ #include static int solve_tridiag_nonsym( const double diag[], size_t d_stride, const double abovediag[], size_t a_stride, const double belowdiag[], size_t b_stride, const double rhs[], size_t r_stride, double x[], size_t x_stride, size_t N ); static int solve_tridiag( const double diag[], size_t d_stride, const double offdiag[], size_t o_stride, const double b[], size_t b_stride, double x[], size_t x_stride, size_t N); static int solve_cyc_tridiag( const double diag[], size_t d_stride, const double offdiag[], size_t o_stride, const double b[], size_t b_stride, double x[], size_t x_stride, size_t N ); static int solve_cyc_tridiag_nonsym( const double diag[], size_t d_stride, const double abovediag[], size_t a_stride, const double belowdiag[], size_t b_stride, const double rhs[], size_t r_stride, double x[], size_t x_stride, size_t N); #endif /* __GSL_TRIDIAG_H__ */ gsl-1.16/linalg/bidiag.c0000664000252300025230000002361212171574312012007 00000000000000/* linalg/bidiag.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Factorise a matrix A into * * A = U B V^T * * where U and V are orthogonal and B is upper bidiagonal. * * On exit, B is stored in the diagonal and first superdiagonal of A. * * U is stored as a packed set of Householder transformations in the * lower triangular part of the input matrix below the diagonal. * * V is stored as a packed set of Householder transformations in the * upper triangular part of the input matrix above the first * superdiagonal. * * The full matrix for U can be obtained as the product * * U = U_1 U_2 .. U_N * * where * * U_i = (I - tau_i * u_i * u_i') * * and where u_i is a Householder vector * * u_i = [0, .. , 0, 1, A(i+1,i), A(i+3,i), .. , A(M,i)] * * The full matrix for V can be obtained as the product * * V = V_1 V_2 .. V_(N-2) * * where * * V_i = (I - tau_i * v_i * v_i') * * and where v_i is a Householder vector * * v_i = [0, .. , 0, 1, A(i,i+2), A(i,i+3), .. , A(i,N)] * * See Golub & Van Loan, "Matrix Computations" (3rd ed), Algorithm 5.4.2 * * Note: this description uses 1-based indices. The code below uses * 0-based indices */ #include #include #include #include #include #include #include int gsl_linalg_bidiag_decomp (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V) { if (A->size1 < A->size2) { GSL_ERROR ("bidiagonal decomposition requires M>=N", GSL_EBADLEN); } else if (tau_U->size != A->size2) { GSL_ERROR ("size of tau_U must be N", GSL_EBADLEN); } else if (tau_V->size + 1 != A->size2) { GSL_ERROR ("size of tau_V must be (N - 1)", GSL_EBADLEN); } else { const size_t M = A->size1; const size_t N = A->size2; size_t i; for (i = 0 ; i < N; i++) { /* Apply Householder transformation to current column */ { gsl_vector_view c = gsl_matrix_column (A, i); gsl_vector_view v = gsl_vector_subvector (&c.vector, i, M - i); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation to the remaining columns */ if (i + 1 < N) { gsl_matrix_view m = gsl_matrix_submatrix (A, i, i + 1, M - i, N - (i + 1)); gsl_linalg_householder_hm (tau_i, &v.vector, &m.matrix); } gsl_vector_set (tau_U, i, tau_i); } /* Apply Householder transformation to current row */ if (i + 1 < N) { gsl_vector_view r = gsl_matrix_row (A, i); gsl_vector_view v = gsl_vector_subvector (&r.vector, i + 1, N - (i + 1)); double tau_i = gsl_linalg_householder_transform (&v.vector); /* Apply the transformation to the remaining rows */ if (i + 1 < M) { gsl_matrix_view m = gsl_matrix_submatrix (A, i+1, i+1, M - (i+1), N - (i+1)); gsl_linalg_householder_mh (tau_i, &v.vector, &m.matrix); } gsl_vector_set (tau_V, i, tau_i); } } } return GSL_SUCCESS; } /* Form the orthogonal matrices U, V, diagonal d and superdiagonal sd from the packed bidiagonal matrix A */ int gsl_linalg_bidiag_unpack (const gsl_matrix * A, const gsl_vector * tau_U, gsl_matrix * U, const gsl_vector * tau_V, gsl_matrix * V, gsl_vector * diag, gsl_vector * superdiag) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (M < N) { GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN); } else if (tau_U->size != K) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (tau_V->size + 1 != K) { GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN); } else if (U->size1 != M || U->size2 != N) { GSL_ERROR ("size of U must be M x N", GSL_EBADLEN); } else if (V->size1 != N || V->size2 != N) { GSL_ERROR ("size of V must be N x N", GSL_EBADLEN); } else if (diag->size != K) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (superdiag->size + 1 != K) { GSL_ERROR ("size of subdiagonal must be (diagonal size - 1)", GSL_EBADLEN); } else { size_t i, j; /* Copy diagonal into diag */ for (i = 0; i < N; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy superdiagonal into superdiag */ for (i = 0; i < N - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (superdiag, i, Aij); } /* Initialize V to the identity */ gsl_matrix_set_identity (V); for (i = N - 1; i-- > 0;) { /* Householder row transformation to accumulate V */ gsl_vector_const_view r = gsl_matrix_const_row (A, i); gsl_vector_const_view h = gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1)); double ti = gsl_vector_get (tau_V, i); gsl_matrix_view m = gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_householder_hm (ti, &h.vector, &m.matrix); } /* Initialize U to the identity */ gsl_matrix_set_identity (U); for (j = N; j-- > 0;) { /* Householder column transformation to accumulate U */ gsl_vector_const_view c = gsl_matrix_const_column (A, j); gsl_vector_const_view h = gsl_vector_const_subvector (&c.vector, j, M - j); double tj = gsl_vector_get (tau_U, j); gsl_matrix_view m = gsl_matrix_submatrix (U, j, j, M-j, N-j); gsl_linalg_householder_hm (tj, &h.vector, &m.matrix); } return GSL_SUCCESS; } } int gsl_linalg_bidiag_unpack2 (gsl_matrix * A, gsl_vector * tau_U, gsl_vector * tau_V, gsl_matrix * V) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (M < N) { GSL_ERROR ("matrix A must have M >= N", GSL_EBADLEN); } else if (tau_U->size != K) { GSL_ERROR ("size of tau must be MIN(M,N)", GSL_EBADLEN); } else if (tau_V->size + 1 != K) { GSL_ERROR ("size of tau must be MIN(M,N) - 1", GSL_EBADLEN); } else if (V->size1 != N || V->size2 != N) { GSL_ERROR ("size of V must be N x N", GSL_EBADLEN); } else { size_t i, j; /* Initialize V to the identity */ gsl_matrix_set_identity (V); for (i = N - 1; i-- > 0;) { /* Householder row transformation to accumulate V */ gsl_vector_const_view r = gsl_matrix_const_row (A, i); gsl_vector_const_view h = gsl_vector_const_subvector (&r.vector, i + 1, N - (i+1)); double ti = gsl_vector_get (tau_V, i); gsl_matrix_view m = gsl_matrix_submatrix (V, i + 1, i + 1, N-(i+1), N-(i+1)); gsl_linalg_householder_hm (ti, &h.vector, &m.matrix); } /* Copy superdiagonal into tau_v */ for (i = 0; i < N - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (tau_V, i, Aij); } /* Allow U to be unpacked into the same memory as A, copy diagonal into tau_U */ for (j = N; j-- > 0;) { /* Householder column transformation to accumulate U */ double tj = gsl_vector_get (tau_U, j); double Ajj = gsl_matrix_get (A, j, j); gsl_matrix_view m = gsl_matrix_submatrix (A, j, j, M-j, N-j); gsl_vector_set (tau_U, j, Ajj); gsl_linalg_householder_hm1 (tj, &m.matrix); } return GSL_SUCCESS; } } int gsl_linalg_bidiag_unpack_B (const gsl_matrix * A, gsl_vector * diag, gsl_vector * superdiag) { const size_t M = A->size1; const size_t N = A->size2; const size_t K = GSL_MIN(M, N); if (diag->size != K) { GSL_ERROR ("size of diagonal must match size of A", GSL_EBADLEN); } else if (superdiag->size + 1 != K) { GSL_ERROR ("size of subdiagonal must be (matrix size - 1)", GSL_EBADLEN); } else { size_t i; /* Copy diagonal into diag */ for (i = 0; i < K; i++) { double Aii = gsl_matrix_get (A, i, i); gsl_vector_set (diag, i, Aii); } /* Copy superdiagonal into superdiag */ for (i = 0; i < K - 1; i++) { double Aij = gsl_matrix_get (A, i, i+1); gsl_vector_set (superdiag, i, Aij); } return GSL_SUCCESS; } } gsl-1.16/utils/0000775000252300025230000000000012172254155010373 500000000000000gsl-1.16/utils/system.h0000664000252300025230000000463312171574312012015 00000000000000/* system.h: System-dependent declarations. Include this first. $Id$ Copyright (C) 1997 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef TEXINFO_SYSTEM_H #define TEXINFO_SYSTEM_H #define _GNU_SOURCE #include /* should be included before any preprocessor test of _POSIX_VERSION. */ #if HAVE_UNISTD_H #include #endif /* HAVE_UNISTD_H */ #include #include #include #if HAVE_LOCALE_H #include #endif #include /* Don't use bcopy! Use memmove if source and destination may overlap, memcpy otherwise. */ #if HAVE_STRING_H # if !STDC_HEADERS && HAVE_MEMORY_H # include # endif # include #else # include char *memchr (); #endif #ifdef STDC_HEADERS #define getopt system_getopt #include #undef getopt #else extern char *getenv (); #endif #ifndef HAVE_STRERROR extern char *strerror (); #endif #include #ifndef errno extern int errno; #endif #ifdef VMS #include #endif #include #if HAVE_SYS_FILE_H #include #endif /* HAVE_SYS_FILE_H */ #ifndef O_RDONLY /* Since is POSIX, prefer that to . This also avoids some useless warnings on (at least) Linux. */ #if HAVE_FCNTL_H #include #else /* not HAVE_FCNTL_H */ #if HAVE_SYS_FCNTL_H #include #endif /* not HAVE_SYS_FCNTL_H */ #endif /* not HAVE_FCNTL_H */ #endif /* not O_RDONLY */ #if HAVE_PWD_H #include #endif /* Some systems don't declare this function in pwd.h. */ struct passwd *getpwnam (); /* Our library routines not included in any system library. */ extern void *xmalloc (), *xrealloc (); extern char *xstrdup (); #endif /* TEXINFO_SYSTEM_H */ gsl-1.16/utils/strtoul.c0000664000252300025230000000155512171574312012200 00000000000000/* Copyright (C) 1991 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02110-1301, USA. */ #define UNSIGNED 1 #include gsl-1.16/utils/memcpy.c0000664000252300025230000000065012171574312011751 00000000000000/* Copy LEN bytes starting at SRCADDR to DESTADDR. Result undefined if the source overlaps with the destination. Return DESTADDR. */ #if HAVE_CONFIG_H #include #endif void * memcpy (destaddr, srcaddr, len) void *destaddr; const void *srcaddr; unsigned int len; { char *dest = (char *) destaddr; const char *src = srcaddr; while (len-- > 0) *dest++ = *src++; return destaddr; } gsl-1.16/utils/Makefile.in0000664000252300025230000004471212172253757012377 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = utils DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs strtoul.c strdup.c memmove.c \ memcpy.c strtol.c $(top_srcdir)/depcomp README ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libutils_la_DEPENDENCIES = @LIBOBJS@ am_libutils_la_OBJECTS = placeholder.lo libutils_la_OBJECTS = $(am_libutils_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libutils_la_SOURCES) DIST_SOURCES = $(libutils_la_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libutils.la # Don't need to list alloca.c, etc., Automake includes them. libutils_la_SOURCES = system.h placeholder.c libutils_la_LIBADD = @LIBOBJS@ EXTRA_DIST = README all: all-am .SUFFIXES: .SUFFIXES: .c .lo .o .obj $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu utils/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu utils/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libutils.la: $(libutils_la_OBJECTS) $(libutils_la_DEPENDENCIES) $(EXTRA_libutils_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libutils_la_OBJECTS) $(libutils_la_LIBADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@$(DEPDIR)/memcpy.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@$(DEPDIR)/memmove.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@$(DEPDIR)/strdup.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@$(DEPDIR)/strtol.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@$(DEPDIR)/strtoul.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/placeholder.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile $(LTLIBRARIES) installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool clean-noinstLTLIBRARIES \ mostlyclean-am distclean: distclean-am -rm -rf $(DEPDIR) ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf $(DEPDIR) ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstLTLIBRARIES cscopelist-am ctags \ ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags tags-am uninstall uninstall-am # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/utils/Makefile.am0000664000252300025230000000030112171574312012340 00000000000000noinst_LTLIBRARIES = libutils.la # Don't need to list alloca.c, etc., Automake includes them. libutils_la_SOURCES = system.h placeholder.c libutils_la_LIBADD = @LIBOBJS@ EXTRA_DIST = README gsl-1.16/utils/strtol.c0000664000252300025230000000744412171574312012016 00000000000000/* Copyright (C) 1991, 1992, 1994 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02110-1301, USA. */ #include #include #include #include #include #ifndef UNSIGNED #define UNSIGNED 0 #endif /* Convert NPTR to an `unsigned long int' or `long int' in base BASE. If BASE is 0 the base is determined by the presence of a leading zero, indicating octal or a leading "0x" or "0X", indicating hexadecimal. If BASE is < 2 or > 36, it is reset to 10. If ENDPTR is not NULL, a pointer to the character after the last one converted is stored in *ENDPTR. */ #if UNSIGNED unsigned long int #define strtol strtoul #else long int #endif strtol (nptr, endptr, base) const char *nptr; char **endptr; int base; { int negative; register unsigned long int cutoff; register unsigned int cutlim; register unsigned long int i; register const char *s; register unsigned char c; const char *save; int overflow; if (base < 0 || base == 1 || base > 36) base = 10; s = nptr; /* Skip white space. */ while (isspace (*s)) ++s; if (*s == '\0') goto noconv; /* Check for a sign. */ if (*s == '-') { negative = 1; ++s; } else if (*s == '+') { negative = 0; ++s; } else negative = 0; if (base == 16 && s[0] == '0' && toupper (s[1]) == 'X') s += 2; /* If BASE is zero, figure it out ourselves. */ if (base == 0) if (*s == '0') { if (toupper (s[1]) == 'X') { s += 2; base = 16; } else base = 8; } else base = 10; /* Save the pointer so we can check later if anything happened. */ save = s; cutoff = ULONG_MAX / (unsigned long int) base; cutlim = ULONG_MAX % (unsigned long int) base; overflow = 0; i = 0; for (c = *s; c != '\0'; c = *++s) { if (isdigit (c)) c -= '0'; else if (isalpha (c)) c = toupper (c) - 'A' + 10; else break; if (c >= base) break; /* Check for overflow. */ if (i > cutoff || (i == cutoff && c > cutlim)) overflow = 1; else { i *= (unsigned long int) base; i += c; } } /* Check if anything actually happened. */ if (s == save) goto noconv; /* Store in ENDPTR the address of one character past the last character we converted. */ if (endptr != NULL) *endptr = (char *) s; #if !UNSIGNED /* Check for a value that is within the range of `unsigned long int', but outside the range of `long int'. */ if (i > (negative ? -(unsigned long int) LONG_MIN : (unsigned long int) LONG_MAX)) overflow = 1; #endif if (overflow) { errno = ERANGE; #if UNSIGNED return ULONG_MAX; #else return negative ? LONG_MIN : LONG_MAX; #endif } /* Return the result of the appropriate sign. */ return (negative ? -i : i); noconv: /* There was no number to convert. */ if (endptr != NULL) *endptr = (char *) nptr; return 0L; } gsl-1.16/utils/README0000664000252300025230000000027012171574312011171 00000000000000Some common routines. These were taken from the lib directory of Texinfo-3.11. Many are common to other GNU packages as well. (On the FSF machines, check /gd/gnu/lib for the latest.) gsl-1.16/utils/placeholder.c0000664000252300025230000000014012171574312012733 00000000000000void gsl_utils_placeholder (void); void gsl_utils_placeholder (void) { int i = 0; i++ ; } gsl-1.16/utils/memmove.c0000664000252300025230000000133112171574312012121 00000000000000/* memmove.c -- copy memory. Copy LENGTH bytes from SOURCE to DEST. Does not null-terminate. In the public domain. By David MacKenzie . */ #if HAVE_CONFIG_H #include #endif void * memmove (destaddr, sourceaddr, length) void *destaddr; const void *sourceaddr; unsigned length; { char *dest = destaddr; const char *source = sourceaddr; if (source < dest) /* Moving from low mem to hi mem; start at end. */ for (source += length, dest += length; length; --length) *--dest = *--source; else if (source != dest) /* Moving from hi mem to low mem; start at beginning. */ for (; length; --length) *dest++ = *source++; return destaddr; } gsl-1.16/utils/strdup.c0000664000252300025230000000226712171574312012006 00000000000000/* strdup.c -- return a newly allocated copy of a string Copyright (C) 1990 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #if HAVE_CONFIG_H #include #endif #ifdef STDC_HEADERS #include #include #else char *malloc (); char *strcpy (); #endif /* Return a newly allocated copy of STR, or 0 if out of memory. */ char * strdup (str) const char *str; { char *newstr; newstr = (char *) malloc (strlen (str) + 1); if (newstr) strcpy (newstr, str); return newstr; } gsl-1.16/test-driver0000755000252300025230000000761112172014014011340 00000000000000#! /bin/sh # test-driver - basic testsuite driver script. scriptversion=2012-06-27.10; # UTC # Copyright (C) 2011-2013 Free Software Foundation, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . # Make unconditional expansion of undefined variables an error. This # helps a lot in preventing typo-related bugs. set -u usage_error () { echo "$0: $*" >&2 print_usage >&2 exit 2 } print_usage () { cat <$log_file 2>&1 estatus=$? if test $enable_hard_errors = no && test $estatus -eq 99; then estatus=1 fi case $estatus:$expect_failure in 0:yes) col=$red res=XPASS recheck=yes gcopy=yes;; 0:*) col=$grn res=PASS recheck=no gcopy=no;; 77:*) col=$blu res=SKIP recheck=no gcopy=yes;; 99:*) col=$mgn res=ERROR recheck=yes gcopy=yes;; *:yes) col=$lgn res=XFAIL recheck=no gcopy=yes;; *:*) col=$red res=FAIL recheck=yes gcopy=yes;; esac # Report outcome to console. echo "${col}${res}${std}: $test_name" # Register the test result, and other relevant metadata. echo ":test-result: $res" > $trs_file echo ":global-test-result: $res" >> $trs_file echo ":recheck: $recheck" >> $trs_file echo ":copy-in-global-log: $gcopy" >> $trs_file # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: gsl-1.16/config.h.in0000664000252300025230000002000612172254154011173 00000000000000/* config.h.in. Generated from configure.ac by autoheader. */ /* Disable deprecated functions and enums while building */ #define GSL_DISABLE_DEPRECATED 1 /* Define if you have inline with C99 behavior */ #undef HAVE_C99_INLINE /* Define to 1 if you have the declaration of `acosh', and to 0 if you don't. */ #undef HAVE_DECL_ACOSH /* Define to 1 if you have the declaration of `asinh', and to 0 if you don't. */ #undef HAVE_DECL_ASINH /* Define to 1 if you have the declaration of `atanh', and to 0 if you don't. */ #undef HAVE_DECL_ATANH /* Define to 1 if you have the declaration of `expm1', and to 0 if you don't. */ #undef HAVE_DECL_EXPM1 /* Define to 1 if you have the declaration of `feenableexcept', and to 0 if you don't. */ #undef HAVE_DECL_FEENABLEEXCEPT /* Define to 1 if you have the declaration of `fesettrapenable', and to 0 if you don't. */ #undef HAVE_DECL_FESETTRAPENABLE /* Define to 1 if you have the declaration of `finite', and to 0 if you don't. */ #undef HAVE_DECL_FINITE /* Define to 1 if you have the declaration of `fprnd_t', and to 0 if you don't. */ #undef HAVE_DECL_FPRND_T /* Define to 1 if you have the declaration of `frexp', and to 0 if you don't. */ #undef HAVE_DECL_FREXP /* Define to 1 if you have the declaration of `hypot', and to 0 if you don't. */ #undef HAVE_DECL_HYPOT /* Define to 1 if you have the declaration of `isfinite', and to 0 if you don't. */ #undef HAVE_DECL_ISFINITE /* Define to 1 if you have the declaration of `isinf', and to 0 if you don't. */ #undef HAVE_DECL_ISINF /* Define to 1 if you have the declaration of `isnan', and to 0 if you don't. */ #undef HAVE_DECL_ISNAN /* Define to 1 if you have the declaration of `ldexp', and to 0 if you don't. */ #undef HAVE_DECL_LDEXP /* Define to 1 if you have the declaration of `log1p', and to 0 if you don't. */ #undef HAVE_DECL_LOG1P /* Define to 1 if you have the header file. */ #undef HAVE_DLFCN_H /* Define to 1 if you don't have `vprintf' but do have `_doprnt.' */ #undef HAVE_DOPRNT /* Defined if you have ansi EXIT_SUCCESS and EXIT_FAILURE in stdlib.h */ #undef HAVE_EXIT_SUCCESS_AND_FAILURE /* Defined on architectures with excess floating-point precision */ #undef HAVE_EXTENDED_PRECISION_REGISTERS /* Define if x86 processor has sse extensions. */ #undef HAVE_FPU_X86_SSE /* Define to 1 if you have the header file. */ #undef HAVE_IEEEFP_H /* Define this if IEEE comparisons work correctly (e.g. NaN != NaN) */ #undef HAVE_IEEE_COMPARISONS /* Define this if IEEE denormalized numbers are available */ #undef HAVE_IEEE_DENORMALS /* Define if you have inline */ #undef HAVE_INLINE /* Define to 1 if you have the header file. */ #undef HAVE_INTTYPES_H /* Define to 1 if you have the `m' library (-lm). */ #undef HAVE_LIBM /* Define to 1 if you have the `memcpy' function. */ #undef HAVE_MEMCPY /* Define to 1 if you have the `memmove' function. */ #undef HAVE_MEMMOVE /* Define to 1 if you have the header file. */ #undef HAVE_MEMORY_H /* Define this if printf can handle %Lf for long double */ #undef HAVE_PRINTF_LONGDOUBLE /* Define to 1 if you have the header file. */ #undef HAVE_STDINT_H /* Define to 1 if you have the header file. */ #undef HAVE_STDLIB_H /* Define to 1 if you have the `strdup' function. */ #undef HAVE_STRDUP /* Define to 1 if you have the header file. */ #undef HAVE_STRINGS_H /* Define to 1 if you have the header file. */ #undef HAVE_STRING_H /* Define to 1 if you have the `strtol' function. */ #undef HAVE_STRTOL /* Define to 1 if you have the `strtoul' function. */ #undef HAVE_STRTOUL /* Define to 1 if you have the header file. */ #undef HAVE_SYS_STAT_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_TYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_UNISTD_H /* Define to 1 if you have the `vprintf' function. */ #undef HAVE_VPRINTF /* Define if you need to hide the static definitions of inline functions */ #undef HIDE_INLINE_STATIC /* Define to the sub-directory in which libtool stores uninstalled libraries. */ #undef LT_OBJDIR /* Name of package */ #undef PACKAGE /* Define to the address where bug reports for this package should be sent. */ #undef PACKAGE_BUGREPORT /* Define to the full name of this package. */ #undef PACKAGE_NAME /* Define to the full name and version of this package. */ #undef PACKAGE_STRING /* Define to the one symbol short name of this package. */ #undef PACKAGE_TARNAME /* Define to the home page for this package. */ #undef PACKAGE_URL /* Define to the version of this package. */ #undef PACKAGE_VERSION /* Defined if this is an official release */ #undef RELEASED /* Define to 1 if you have the ANSI C header files. */ #undef STDC_HEADERS /* Version number of package */ #undef VERSION /* Define to 1 if type `char' is unsigned and you are not using gcc. */ #ifndef __CHAR_UNSIGNED__ # undef __CHAR_UNSIGNED__ #endif /* Define to `__inline__' or `__inline' if that's what the C compiler calls it, or to nothing if 'inline' is not supported under any name. */ #ifndef __cplusplus #undef inline #endif /* Define to `unsigned int' if does not define. */ #undef size_t /* Define to empty if the keyword `volatile' does not work. Warning: valid code using `volatile' can become incorrect without. Disable with care. */ #undef volatile /* Use 0 and 1 for EXIT_SUCCESS and EXIT_FAILURE if we don't have them */ #if !HAVE_EXIT_SUCCESS_AND_FAILURE #define EXIT_SUCCESS 0 #define EXIT_FAILURE 1 #endif /* Define one of these if you have a known IEEE arithmetic interface */ #undef HAVE_GNUSPARC_IEEE_INTERFACE #undef HAVE_GNUM68K_IEEE_INTERFACE #undef HAVE_GNUPPC_IEEE_INTERFACE #undef HAVE_GNUX86_IEEE_INTERFACE #undef HAVE_SUNOS4_IEEE_INTERFACE #undef HAVE_SOLARIS_IEEE_INTERFACE #undef HAVE_HPUX11_IEEE_INTERFACE #undef HAVE_HPUX_IEEE_INTERFACE #undef HAVE_TRU64_IEEE_INTERFACE #undef HAVE_IRIX_IEEE_INTERFACE #undef HAVE_AIX_IEEE_INTERFACE #undef HAVE_FREEBSD_IEEE_INTERFACE #undef HAVE_OS2EMX_IEEE_INTERFACE #undef HAVE_NETBSD_IEEE_INTERFACE #undef HAVE_OPENBSD_IEEE_INTERFACE #undef HAVE_DARWIN_IEEE_INTERFACE #undef HAVE_DARWIN86_IEEE_INTERFACE /* Define a rounding function which moves extended precision values out of registers and rounds them to double-precision. This should be used *sparingly*, in places where it is necessary to keep double-precision rounding for critical expressions while running in extended precision. For example, the following code should ensure exact equality, even when extended precision registers are in use, double q = GSL_COERCE_DBL(3.0/7.0) ; if (q == GSL_COERCE_DBL(3.0/7.0)) { ... } ; It carries a penalty even when the program is running in double precision mode unless you compile a separate version of the library with HAVE_EXTENDED_PRECISION_REGISTERS turned off. */ #if HAVE_EXTENDED_PRECISION_REGISTERS #define GSL_COERCE_DBL(x) (gsl_coerce_double(x)) #else #define GSL_COERCE_DBL(x) (x) #endif /* Substitute gsl functions for missing system functions */ #if !HAVE_DECL_HYPOT #define hypot gsl_hypot #endif #if !HAVE_DECL_LOG1P #define log1p gsl_log1p #endif #if !HAVE_DECL_EXPM1 #define expm1 gsl_expm1 #endif #if !HAVE_DECL_ACOSH #define acosh gsl_acosh #endif #if !HAVE_DECL_ASINH #define asinh gsl_asinh #endif #if !HAVE_DECL_ATANH #define atanh gsl_atanh #endif #if !HAVE_DECL_LDEXP #define ldexp gsl_ldexp #endif #if !HAVE_DECL_FREXP #define frexp gsl_frexp #endif #if !HAVE_DECL_ISINF #define isinf gsl_isinf #endif #if !HAVE_DECL_ISFINITE #define isfinite gsl_finite #endif #if !HAVE_DECL_FINITE #define finite gsl_finite #endif #if !HAVE_DECL_ISNAN #define isnan gsl_isnan #endif #ifdef __GNUC__ #define DISCARD_POINTER(p) do { ; } while(p ? 0 : 0); #else #define DISCARD_POINTER(p) /* ignoring discarded pointer */ #endif #if defined(GSL_RANGE_CHECK_OFF) || !defined(GSL_RANGE_CHECK) #define GSL_RANGE_CHECK 0 /* turn off range checking by default internally */ #endif #define RETURN_IF_NULL(x) if (!x) { return ; } gsl-1.16/version.c0000664000252300025230000000217112171574312011004 00000000000000/* version.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* This file needs to use the top-level due to the possibility of a VPATH-style build where the original source tree is on read-only filesystem and so will not be picked up by the symlinking comands in gsl/Makefile.am */ const char * gsl_version = GSL_VERSION; gsl-1.16/Makefile.am0000664000252300025230000000633112171574312011211 00000000000000## Process this file with automake to produce Makefile.in # AUTOMAKE_OPTIONS = readme-alpha SUBDIRS = gsl utils sys test err const complex cheb block vector matrix permutation combination multiset sort ieee-utils cblas blas linalg eigen specfunc dht qrng rng randist fft poly fit multifit statistics siman sum integration interpolation histogram ode-initval ode-initval2 roots multiroots min multimin monte ntuple diff deriv cdf wavelet bspline doc SUBLIBS = block/libgslblock.la blas/libgslblas.la bspline/libgslbspline.la complex/libgslcomplex.la cheb/libgslcheb.la dht/libgsldht.la diff/libgsldiff.la deriv/libgslderiv.la eigen/libgsleigen.la err/libgslerr.la fft/libgslfft.la fit/libgslfit.la histogram/libgslhistogram.la ieee-utils/libgslieeeutils.la integration/libgslintegration.la interpolation/libgslinterpolation.la linalg/libgsllinalg.la matrix/libgslmatrix.la min/libgslmin.la monte/libgslmonte.la multifit/libgslmultifit.la multimin/libgslmultimin.la multiroots/libgslmultiroots.la ntuple/libgslntuple.la ode-initval/libgslodeiv.la ode-initval2/libgslodeiv2.la permutation/libgslpermutation.la combination/libgslcombination.la multiset/libgslmultiset.la poly/libgslpoly.la qrng/libgslqrng.la randist/libgslrandist.la rng/libgslrng.la roots/libgslroots.la siman/libgslsiman.la sort/libgslsort.la specfunc/libgslspecfunc.la statistics/libgslstatistics.la sum/libgslsum.la sys/libgslsys.la test/libgsltest.la utils/libutils.la vector/libgslvector.la cdf/libgslcdf.la wavelet/libgslwavelet.la pkginclude_HEADERS = gsl_math.h gsl_pow_int.h gsl_nan.h gsl_machine.h gsl_mode.h gsl_precision.h gsl_types.h gsl_version.h gsl_minmax.h gsl_inline.h bin_SCRIPTS = gsl-config pkgconfigdir = $(libdir)/pkgconfig pkgconfig_DATA= gsl.pc CLEANFILES = gsl.pc gsl-config EXTRA_DIST = autogen.sh gsl-config.in gsl.pc.in configure.ac THANKS BUGS gsl.spec.in gsl.m4 test_gsl_histogram.sh pkgconfig.test lib_LTLIBRARIES = libgsl.la libgsl_la_SOURCES = version.c libgsl_la_LIBADD = $(SUBLIBS) libgsl_la_LDFLAGS = -version-info $(GSL_LT_VERSION) noinst_HEADERS = templates_on.h templates_off.h build.h MINGW32_HOST = @MINGW32_HOST@ if MINGW32_HOST libgsl_la_LIBADD += cblas/libgslcblas.la libgsl_la_LDFLAGS += -no-undefined endif m4datadir = $(datadir)/aclocal m4data_DATA = gsl.m4 bin_PROGRAMS = gsl-randist gsl-histogram gsl_randist_SOURCES = gsl-randist.c gsl_randist_LDADD = libgsl.la cblas/libgslcblas.la gsl_histogram_SOURCES = gsl-histogram.c gsl_histogram_LDADD = libgsl.la cblas/libgslcblas.la check_SCRIPTS = test_gsl_histogram.sh pkgconfig.test TESTS = test_gsl_histogram.sh pkgconfig.test #bin_PROGRAMS = main dummy #dummy_SOURCES = version.c #dummy_LDADD = $(SUBLIBS) #main_SOURCES = version.c env.c #main_LDADD = libgsl.la edit = $(SED) \ -e 's|@prefix[@]|$(prefix)|g' \ -e 's|@exec_prefix[@]|$(exec_prefix)|g' \ -e 's|@libdir[@]|$(libdir)|g' \ -e 's|@includedir[@]|$(includedir)|g' \ -e 's|@GSL_CFLAGS[@]|$(GSL_CFLAGS)|g' \ -e 's|@GSL_LIBM[@]|$(GSL_LIBM)|g' \ -e 's|@GSL_LIBS[@]|$(GSL_LIBS)|g' \ -e 's|@LIBS[@]|$(LIBS)|g' \ -e 's|@VERSION[@]|$(VERSION)|g' gsl-config gsl.pc: Makefile @rm -f $@ $@.tmp @$(edit) '$(srcdir)/$@.in' >>$@.tmp @chmod a-w $@.tmp @mv $@.tmp $@ @echo creating $@ gsl-config: $(srcdir)/gsl-config.in gsl.pc: $(srcdir)/gsl.pc.in gsl-1.16/BUGS0000664000252300025230000001007412172013212007623 00000000000000The GSL Bugs Database is at http://savannah.gnu.org/bugs/?group=gsl This file was generated from it at Thu Jul 18 10:23:38 2013 ------------------------------------------------------------------------ BUG-ID: 28267 STATUS: Open/Postponed CATEGORY: Accuracy problem SUMMARY: poor convergence region for gsl_sf_hyperg_1F1 The magnitude of the error is greater than the value itself for a<<0, b>0, x>>0 gsl_sf_hyperg1F1(-3.78e+01, 2, 1.035e+02) => -7.00055e+18 +/- 3.77654e+19 ----------------------------------------------- From: Weibin Li To: bug-gsl@gnu.org Subject: [Bug-gsl] gsl_sf_hyperg_1F1 Date: Mon, 30 Nov 2009 15:26:11 +0100 Hi, guys I experienced bugs with gsl_sf_hyperg_1F1. The version is gsl_1.12, but the testing is also done with gsl_1.13, using a mac with version 10.5.8 and hp-workstation with gnome_2.24.1. #include #include #include #include "gsl/gsl_sf_hyperg.h" int main(int argc, char **argv) { int ii; double Ri; double v0; gsl_sf_result r; for(ii = 10; ii< 140;ii++) { Ri = 2013; v0 =38.86871 +ii*2.5e-10; gsl_sf_hyperg_1F1_e(1.0-v0,2,2.0*Ri/v0,&r); printf("%lg\t%14.13g\t%14.13g\n",v0,r.val,r.err); } return 0; } The output of above code shows an extremely large error. by increasing Ri, the relative error decreases. Is there any idea to fix this? Thank you very much. Best Weibin -It's inherently difficult to compute the value in this region either way as there is massive cancellation in both the series and the Kummer transformed series.I cannot find any algorithm which handles this case.Confirmed ------------------------------------------------------------------------ BUG-ID: 21828 STATUS: Open/Confirmed CATEGORY: Performance SUMMARY: suboptimal performance of gsl_fdfsolver_lmsder From: "Alexander Usov" To: help-gsl@gnu.org Subject: [Help-gsl] Strange performance of gsl_fdfsolver_lmsder Date: Wed, 24 Oct 2007 20:45:01 +0200 Hi all, I am currently working on the problem involving source extraction from astronomical images, which essentially boils down to fitting a number of 2d gaussians to the image. One of the traditionally used fitters in this field is a Levenberg-Marquardt, which gsl_fdfsolver_lmsder is and implementation of. At some moment I have notices that for the bigger images (about 550 pixels, 20-30 parameters) gsl's lmsder algorithm spends a large fraction of the run-time (about 50%) doing household transform. While looking around for are different minimization algorithms I have made a surprising finding that original netlib/minpack/lmder is almost twice faster that that of gsl. Could anyone explain such a big difference in performace? -- Best regards, Alexander. _______________________________________________ Help-gsl mailing list Help-gsl@gnu.org http://lists.gnu.org/mailman/listinfo/help-gsl Reply-To: help-gsl@gnu.org From: Brian Gough To: "Alexander Usov" Cc: help-gsl@gnu.org Subject: Re: [Help-gsl] Strange performance of gsl_fdfsolver_lmsder Date: Thu, 25 Oct 2007 21:57:08 +0100 At Wed, 24 Oct 2007 20:45:01 +0200, Alexander Usov wrote: > At some moment I have notices that for the bigger images (about 550 > pixels, 20-30 parameters) gsl's lmsder algorithm spends a large fraction > of the run-time (about 50%) doing household transform. > > While looking around for are different minimization algorithms I have made > a surprising finding that original netlib/minpack/lmder is almost twice faster > that that of gsl. > > Could anyone explain such a big difference in performace? I have a vague memory that there was some quantity (Jacobian?) that MINPACK only computes fully at the end, but in GSL it is accessible to the user at each step so I felt I had to update it on each iteration in the absence of some alternate scheme. Sorry this is not a great answer but I am not able to look at it in detail now. -- Brian Gough _______________________________________________ Help-gsl mailing list Help-gsl@gnu.org http://lists.gnu.org/mailman/listinfo/help-gsl 1824 gsl-1.16/gsl_minmax.h0000664000252300025230000000511012171574312011456 00000000000000/* gsl_minmax.h * * Copyright (C) 2008 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MINMAX_H__ #define __GSL_MINMAX_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Define MAX and MIN macros/functions if they don't exist. */ /* plain old macros for general use */ #define GSL_MAX(a,b) ((a) > (b) ? (a) : (b)) #define GSL_MIN(a,b) ((a) < (b) ? (a) : (b)) /* function versions of the above, in case they are needed */ double gsl_max (double a, double b); double gsl_min (double a, double b); /* inline-friendly strongly typed versions */ #ifdef HAVE_INLINE INLINE_FUN int GSL_MAX_INT (int a, int b); INLINE_FUN int GSL_MIN_INT (int a, int b); INLINE_FUN double GSL_MAX_DBL (double a, double b); INLINE_FUN double GSL_MIN_DBL (double a, double b); INLINE_FUN long double GSL_MAX_LDBL (long double a, long double b); INLINE_FUN long double GSL_MIN_LDBL (long double a, long double b); INLINE_FUN int GSL_MAX_INT (int a, int b) { return GSL_MAX (a, b); } INLINE_FUN int GSL_MIN_INT (int a, int b) { return GSL_MIN (a, b); } INLINE_FUN double GSL_MAX_DBL (double a, double b) { return GSL_MAX (a, b); } INLINE_FUN double GSL_MIN_DBL (double a, double b) { return GSL_MIN (a, b); } INLINE_FUN long double GSL_MAX_LDBL (long double a, long double b) { return GSL_MAX (a, b); } INLINE_FUN long double GSL_MIN_LDBL (long double a, long double b) { return GSL_MIN (a, b); } #else #define GSL_MAX_INT(a,b) GSL_MAX(a,b) #define GSL_MIN_INT(a,b) GSL_MIN(a,b) #define GSL_MAX_DBL(a,b) GSL_MAX(a,b) #define GSL_MIN_DBL(a,b) GSL_MIN(a,b) #define GSL_MAX_LDBL(a,b) GSL_MAX(a,b) #define GSL_MIN_LDBL(a,b) GSL_MIN(a,b) #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_POW_INT_H__ */ gsl-1.16/complex/0000775000252300025230000000000012172254155010702 500000000000000gsl-1.16/complex/results_real.h0000664000252300025230000002060412171574312013500 00000000000000 {FN (sqrt_real), -1.0e+01, RES(0, 3.1622776601683793320e0)}, {FN (sqrt_real), -2.0e+00, RES(0, 1.4142135623730950488e0)}, {FN (sqrt_real), -1.0e+00, RES(0, 1)}, {FN (sqrt_real), -7.50e-01, RES(0, 8.6602540378443864676e-1)}, {FN (sqrt_real), -5.0e-01, RES(0, 7.0710678118654752440e-1)}, {FN (sqrt_real), -1.250e-01, RES(0, 3.5355339059327376220e-1)}, {FN (sqrt_real), -3.45266983001243932001e-04, RES(0, 1.8581361171917517303e-2)}, {FN (sqrt_real), -1.19209289550781250e-07, RES(0, 3.4526698300124390840e-4)}, {FN (sqrt_real), 0.0e+00, RES(0e0, 0.0)}, {FN (sqrt_real), 1.19209289550781250e-07, RES(3.4526698300124390840e-4, 0.0)}, {FN (sqrt_real), 3.45266983001243932001e-04, RES(1.8581361171917517303e-2, 0.0)}, {FN (sqrt_real), 1.250e-01, RES(3.5355339059327376220e-1, 0.0)}, {FN (sqrt_real), 5.0e-01, RES(7.0710678118654752440e-1, 0.0)}, {FN (sqrt_real), 7.50e-01, RES(8.6602540378443864676e-1, 0.0)}, {FN (sqrt_real), 1.0e+00, RES(1e0, 0.0)}, {FN (sqrt_real), 2.0e+00, RES(1.4142135623730950488e0, 0.0)}, {FN (sqrt_real), 1.0e+01, RES(3.1622776601683793320e0, 0.0)}, {FN (arcsin_real), -1.0e+01, RES(-1.5707963267948966192e0, 2.9932228461263808979e0)}, {FN (arcsin_real), -2.0e+00, RES(-1.5707963267948966192e0, 1.3169578969248167086e0)}, {FN (arcsin_real), -1.0e+00, RES(-1.5707963267948966192e0, 0.0)}, {FN (arcsin_real), -7.50e-01, RES(-8.4806207898148100805e-1, 0.0)}, {FN (arcsin_real), -5.0e-01, RES(-5.2359877559829887308e-1, 0.0)}, {FN (arcsin_real), -1.250e-01, RES(-1.2532783116806539687e-1, 0.0)}, {FN (arcsin_real), -3.45266983001243932001e-04, RES(-3.4526698986108292481e-4, 0.0)}, {FN (arcsin_real), -1.19209289550781250e-07, RES(-1.1920928955078153234e-7, 0.0)}, {FN (arcsin_real), 0.0e+00, RES(0e0, 0.0)}, {FN (arcsin_real), 1.19209289550781250e-07, RES(1.1920928955078153234e-7, 0.0)}, {FN (arcsin_real), 3.45266983001243932001e-04, RES(3.4526698986108292481e-4, 0.0)}, {FN (arcsin_real), 1.250e-01, RES(1.2532783116806539687e-1, 0.0)}, {FN (arcsin_real), 5.0e-01, RES(5.2359877559829887308e-1, 0.0)}, {FN (arcsin_real), 7.50e-01, RES(8.4806207898148100805e-1, 0.0)}, {FN (arcsin_real), 1.0e+00, RES(1.5707963267948966192e0, 0.0)}, {FN (arcsin_real), 2.0e+00, RES(1.5707963267948966192e0, -1.3169578969248167086e0)}, {FN (arcsin_real), 1.0e+01, RES(1.5707963267948966192e0, -2.9932228461263808979e0)}, {FN (arccos_real), -1.0e+01, RES(3.1415926535897932385e0, -2.9932228461263808979e0)}, {FN (arccos_real), -2.0e+00, RES(3.1415926535897932385e0, -1.3169578969248167086e0)}, {FN (arccos_real), -1.0e+00, RES(3.1415926535897932385e0, 0.0)}, {FN (arccos_real), -7.50e-01, RES(2.4188584057763776273e0, 0.0)}, {FN (arccos_real), -5.0e-01, RES(2.0943951023931954923e0, 0.0)}, {FN (arccos_real), -1.250e-01, RES(1.6961241579629620161e0, 0.0)}, {FN (arccos_real), -3.45266983001243932001e-04, RES(1.5711415937847577022e0, 0.0)}, {FN (arccos_real), -1.19209289550781250e-07, RES(1.570796446004186170e0, 0.0)}, {FN (arccos_real), 0.0e+00, RES(1.5707963267948966192e0, 0.0)}, {FN (arccos_real), 1.19209289550781250e-07, RES(1.5707962075856070684e0, 0.0)}, {FN (arccos_real), 3.45266983001243932001e-04, RES(1.5704510598050355363e0, 0.0)}, {FN (arccos_real), 1.250e-01, RES(1.4454684956268312224e0, 0.0)}, {FN (arccos_real), 5.0e-01, RES(1.0471975511965977462e0, 0.0)}, {FN (arccos_real), 7.50e-01, RES(7.2273424781341561118e-1, 0.0)}, {FN (arccos_real), 1.0e+00, RES(0e0, 0.0)}, {FN (arccos_real), 2.0e+00, RES(0, 1.3169578969248167086e0)}, {FN (arccos_real), 1.0e+01, RES(0, 2.9932228461263808979e0)}, {FN (arccosh_real), -1.0e+01, RES(2.9932228461263808979e0, 3.1415926535897932385e0)}, {FN (arccosh_real), -2.0e+00, RES(1.3169578969248167086e0, 3.1415926535897932385e0)}, {FN (arccosh_real), -1.0e+00, RES(0, 3.1415926535897932385e0)}, {FN (arccosh_real), -7.50e-01, RES(0, 2.4188584057763776273e0)}, {FN (arccosh_real), -5.0e-01, RES(0, 2.0943951023931954923e0)}, {FN (arccosh_real), -1.250e-01, RES(0, 1.6961241579629620161e0)}, {FN (arccosh_real), -3.45266983001243932001e-04, RES(0, 1.5711415937847577022e0)}, {FN (arccosh_real), -1.19209289550781250e-07, RES(0, 1.570796446004186170e0)}, {FN (arccosh_real), 0.0e+00, RES(0, 1.5707963267948966192e0)}, {FN (arccosh_real), 1.19209289550781250e-07, RES(0, 1.5707962075856070684e0)}, {FN (arccosh_real), 3.45266983001243932001e-04, RES(0, 1.5704510598050355363e0)}, {FN (arccosh_real), 1.250e-01, RES(0, 1.4454684956268312224e0)}, {FN (arccosh_real), 5.0e-01, RES(0, 1.0471975511965977462e0)}, {FN (arccosh_real), 7.50e-01, RES(0, 7.2273424781341561118e-1)}, {FN (arccosh_real), 1.0e+00, RES(0e0, 0.0)}, {FN (arccosh_real), 2.0e+00, RES(1.3169578969248167086e0, 0.0)}, {FN (arccosh_real), 1.0e+01, RES(2.9932228461263808979e0, 0.0)}, {FN (arctanh_real), -1.0e+01, RES(-1.0033534773107558064e-1, 1.5707963267948966192e0)}, {FN (arctanh_real), -2.0e+00, RES(-5.4930614433405484570e-1, 1.5707963267948966192e0)}, {FN (arctanh_real), -7.50e-01, RES(-9.7295507452765665255e-1, 0.0)}, {FN (arctanh_real), -5.0e-01, RES(-5.4930614433405484570e-1, 0.0)}, {FN (arctanh_real), -1.250e-01, RES(-1.2565721414045303884e-1, 0.0)}, {FN (arctanh_real), -3.45266983001243932001e-04, RES(-3.4526699672092216295e-4, 0.0)}, {FN (arctanh_real), -1.19209289550781250e-07, RES(-1.1920928955078181469e-7, 0.0)}, {FN (arctanh_real), 0.0e+00, RES(0e0, 0.0)}, {FN (arctanh_real), 1.19209289550781250e-07, RES(1.1920928955078181469e-7, 0.0)}, {FN (arctanh_real), 3.45266983001243932001e-04, RES(3.4526699672092216295e-4, 0.0)}, {FN (arctanh_real), 1.250e-01, RES(1.2565721414045303884e-1, 0.0)}, {FN (arctanh_real), 5.0e-01, RES(5.4930614433405484570e-1, 0.0)}, {FN (arctanh_real), 7.50e-01, RES(9.7295507452765665255e-1, 0.0)}, {FN (arctanh_real), 2.0e+00, RES(5.4930614433405484570e-1, -1.5707963267948966192e0)}, {FN (arctanh_real), 1.0e+01, RES(1.0033534773107558064e-1, -1.5707963267948966192e0)}, {FN (arccsc_real), -1.0e+01, RES(-1.0016742116155979635e-1, 0.0)}, {FN (arccsc_real), -2.0e+00, RES(-5.2359877559829887308e-1, 0.0)}, {FN (arccsc_real), -1.0e+00, RES(-1.5707963267948966192e0, 0.0)}, {FN (arccsc_real), -7.50e-01, RES(-1.5707963267948966192e0, 7.9536546122390563053e-1)}, {FN (arccsc_real), -5.0e-01, RES(-1.5707963267948966192e0, 1.3169578969248167086e0)}, {FN (arccsc_real), -1.250e-01, RES(-1.5707963267948966192e0, 2.7686593833135738327e0)}, {FN (arccsc_real), -3.45266983001243932001e-04, RES(-1.5707963267948966192e0, 8.6643397271969925794e0)}, {FN (arccsc_real), -1.19209289550781250e-07, RES(-1.5707963267948966192e0, 1.6635532333438683873e1)}, {FN (arccsc_real), 1.19209289550781250e-07, RES(1.5707963267948966192e0, -1.6635532333438683873e1)}, {FN (arccsc_real), 3.45266983001243932001e-04, RES(1.5707963267948966192e0, -8.6643397271969925794e0)}, {FN (arccsc_real), 1.250e-01, RES(1.5707963267948966192e0, -2.7686593833135738327e0)}, {FN (arccsc_real), 5.0e-01, RES(1.5707963267948966192e0, -1.3169578969248167086e0)}, {FN (arccsc_real), 7.50e-01, RES(1.5707963267948966192e0, -7.9536546122390563053e-1)}, {FN (arccsc_real), 1.0e+00, RES(1.5707963267948966192e0, 0.0)}, {FN (arccsc_real), 2.0e+00, RES(5.2359877559829887308e-1, 0.0)}, {FN (arccsc_real), 1.0e+01, RES(1.0016742116155979635e-1, 0.0)}, {FN (arcsec_real), -1.0e+01, RES(1.6709637479564564156e0, 0.0)}, {FN (arcsec_real), -2.0e+00, RES(2.0943951023931954923e0, 0.0)}, {FN (arcsec_real), -1.0e+00, RES(3.1415926535897932385e0, 0.0)}, {FN (arcsec_real), -7.50e-01, RES(3.1415926535897932385e0, -7.9536546122390563053e-1)}, {FN (arcsec_real), -5.0e-01, RES(3.1415926535897932385e0, -1.3169578969248167086e0)}, {FN (arcsec_real), -1.250e-01, RES(3.1415926535897932385e0, -2.7686593833135738327e0)}, {FN (arcsec_real), -3.45266983001243932001e-04, RES(3.1415926535897932385e0, -8.6643397271969925794e0)}, {FN (arcsec_real), -1.19209289550781250e-07, RES(3.1415926535897932385e0, -1.6635532333438683873e1)}, {FN (arcsec_real), 1.19209289550781250e-07, RES(0, 1.6635532333438683873e1)}, {FN (arcsec_real), 3.45266983001243932001e-04, RES(0, 8.6643397271969925794e0)}, {FN (arcsec_real), 1.250e-01, RES(0, 2.7686593833135738327e0)}, {FN (arcsec_real), 5.0e-01, RES(0, 1.3169578969248167086e0)}, {FN (arcsec_real), 7.50e-01, RES(0, 7.9536546122390563053e-1)}, {FN (arcsec_real), 1.0e+00, RES(0e0, 0.0)}, {FN (arcsec_real), 2.0e+00, RES(1.0471975511965977462e0, 0.0)}, {FN (arcsec_real), 1.0e+01, RES(1.4706289056333368229e0, 0.0)}, gsl-1.16/complex/results.h0000664000252300025230000172367212171574312012515 00000000000000 {FN (sqrt), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (sqrt), ARG(0.0e+00,1.19209289550781250e-07), RES(2.44140625e-4, 2.44140625e-4)}, {FN (sqrt), ARG(0.0e+00,-1.19209289550781250e-07), RES(2.44140625e-4, -2.44140625e-4)}, {FN (sqrt), ARG(0.0e+00,5.0e-01), RES(5e-1, 5e-1)}, {FN (sqrt), ARG(0.0e+00,-5.0e-01), RES(5e-1, -5e-1)}, {FN (sqrt), ARG(0.0e+00,1.0e+00), RES(7.0710678118654752440e-1, 7.0710678118654752440e-1)}, {FN (sqrt), ARG(0.0e+00,-1.0e+00), RES(7.0710678118654752440e-1, -7.0710678118654752440e-1)}, {FN (sqrt), ARG(0.0e+00,2.0e+00), RES(1, 1)}, {FN (sqrt), ARG(0.0e+00,-2.0e+00), RES(1, -1)}, {FN (sqrt), ARG(0.0e+00,8.3886080e+06), RES(2048, 2048)}, {FN (sqrt), ARG(0.0e+00,-8.3886080e+06), RES(2048, -2048)}, {FN (sqrt), ARG(1.19209289550781250e-07,0.0e+00), RES(3.4526698300124390840e-4, 0.0)}, {FN (sqrt), ARG(-1.19209289550781250e-07,0.0e+00), RES(0, 3.4526698300124390840e-4)}, {FN (sqrt), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(3.7933934912842707699e-4, 1.5712750315077700799e-4)}, {FN (sqrt), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(3.7933934912842707699e-4, -1.5712750315077700799e-4)}, {FN (sqrt), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(1.5712750315077700799e-4, 3.7933934912842707699e-4)}, {FN (sqrt), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.5712750315077700799e-4, -3.7933934912842707699e-4)}, {FN (sqrt), ARG(1.19209289550781250e-07,5.0e-01), RES(5.0000005960464832810e-1, 4.9999994039535877732e-1)}, {FN (sqrt), ARG(1.19209289550781250e-07,-5.0e-01), RES(5.0000005960464832810e-1, -4.9999994039535877732e-1)}, {FN (sqrt), ARG(-1.19209289550781250e-07,5.0e-01), RES(4.9999994039535877732e-1, 5.0000005960464832810e-1)}, {FN (sqrt), ARG(-1.19209289550781250e-07,-5.0e-01), RES(4.9999994039535877732e-1, -5.0000005960464832810e-1)}, {FN (sqrt), ARG(1.19209289550781250e-07,1.0e+00), RES(7.0710682333339729137e-1, 7.0710673903970026958e-1)}, {FN (sqrt), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.0710682333339729137e-1, -7.0710673903970026958e-1)}, {FN (sqrt), ARG(-1.19209289550781250e-07,1.0e+00), RES(7.0710673903970026958e-1, 7.0710682333339729137e-1)}, {FN (sqrt), ARG(-1.19209289550781250e-07,-1.0e+00), RES(7.0710673903970026958e-1, -7.0710682333339729137e-1)}, {FN (sqrt), ARG(1.19209289550781250e-07,2.0e+00), RES(1.0000000298023228318e0, 9.9999997019767805639e-1)}, {FN (sqrt), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.0000000298023228318e0, -9.9999997019767805639e-1)}, {FN (sqrt), ARG(-1.19209289550781250e-07,2.0e+00), RES(9.9999997019767805639e-1, 1.0000000298023228318e0)}, {FN (sqrt), ARG(-1.19209289550781250e-07,-2.0e+00), RES(9.9999997019767805639e-1, -1.0000000298023228318e0)}, {FN (sqrt), ARG(1.19209289550781250e-07,8.3886080e+06), RES(2.0480000000000145519e3, 2.0479999999999854481e3)}, {FN (sqrt), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(2.0480000000000145519e3, -2.0479999999999854481e3)}, {FN (sqrt), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(2.0479999999999854481e3, 2.0480000000000145519e3)}, {FN (sqrt), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(2.0479999999999854481e3, -2.0480000000000145519e3)}, {FN (sqrt), ARG(5.0e-01,0.0e+00), RES(7.0710678118654752440e-1, 0.0)}, {FN (sqrt), ARG(-5.0e-01,0.0e+00), RES(0, 7.0710678118654752440e-1)}, {FN (sqrt), ARG(5.0e-01,1.19209289550781250e-07), RES(7.0710678118655254870e-1, 8.4293697021787464631e-8)}, {FN (sqrt), ARG(5.0e-01,-1.19209289550781250e-07), RES(7.0710678118655254870e-1, -8.4293697021787464631e-8)}, {FN (sqrt), ARG(-5.0e-01,1.19209289550781250e-07), RES(8.4293697021787464631e-8, 7.0710678118655254870e-1)}, {FN (sqrt), ARG(-5.0e-01,-1.19209289550781250e-07), RES(8.4293697021787464631e-8, -7.0710678118655254870e-1)}, {FN (sqrt), ARG(5.0e-01,5.0e-01), RES(7.7688698701501865367e-1, 3.2179712645279131237e-1)}, {FN (sqrt), ARG(5.0e-01,-5.0e-01), RES(7.7688698701501865367e-1, -3.2179712645279131237e-1)}, {FN (sqrt), ARG(-5.0e-01,5.0e-01), RES(3.2179712645279131237e-1, 7.7688698701501865367e-1)}, {FN (sqrt), ARG(-5.0e-01,-5.0e-01), RES(3.2179712645279131237e-1, -7.7688698701501865367e-1)}, {FN (sqrt), ARG(5.0e-01,1.0e+00), RES(8.9945371997393363613e-1, 5.5589297025142117199e-1)}, {FN (sqrt), ARG(5.0e-01,-1.0e+00), RES(8.9945371997393363613e-1, -5.5589297025142117199e-1)}, {FN (sqrt), ARG(-5.0e-01,1.0e+00), RES(5.5589297025142117199e-1, 8.9945371997393363613e-1)}, {FN (sqrt), ARG(-5.0e-01,-1.0e+00), RES(5.5589297025142117199e-1, -8.9945371997393363613e-1)}, {FN (sqrt), ARG(5.0e-01,2.0e+00), RES(1.1317139242778694103e0, 8.8361553087551326576e-1)}, {FN (sqrt), ARG(5.0e-01,-2.0e+00), RES(1.1317139242778694103e0, -8.8361553087551326576e-1)}, {FN (sqrt), ARG(-5.0e-01,2.0e+00), RES(8.8361553087551326576e-1, 1.1317139242778694103e0)}, {FN (sqrt), ARG(-5.0e-01,-2.0e+00), RES(8.8361553087551326576e-1, -1.1317139242778694103e0)}, {FN (sqrt), ARG(5.0e-01,8.3886080e+06), RES(2.0480000610351571595e3, 2.0479999389648446595e3)}, {FN (sqrt), ARG(5.0e-01,-8.3886080e+06), RES(2.0480000610351571595e3, -2.0479999389648446595e3)}, {FN (sqrt), ARG(-5.0e-01,8.3886080e+06), RES(2.0479999389648446595e3, 2.0480000610351571595e3)}, {FN (sqrt), ARG(-5.0e-01,-8.3886080e+06), RES(2.0479999389648446595e3, -2.0480000610351571595e3)}, {FN (sqrt), ARG(1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (sqrt), ARG(-1.0e+00,0.0e+00), RES(0, 1)}, {FN (sqrt), ARG(1.0e+00,1.19209289550781250e-07), RES(1.0000000000000017764e0, 5.9604644775390519121e-8)}, {FN (sqrt), ARG(1.0e+00,-1.19209289550781250e-07), RES(1.0000000000000017764e0, -5.9604644775390519121e-8)}, {FN (sqrt), ARG(-1.0e+00,1.19209289550781250e-07), RES(5.9604644775390519121e-8, 1.0000000000000017764e0)}, {FN (sqrt), ARG(-1.0e+00,-1.19209289550781250e-07), RES(5.9604644775390519121e-8, -1.0000000000000017764e0)}, {FN (sqrt), ARG(1.0e+00,5.0e-01), RES(1.0290855136357461252e0, 2.4293413587832283909e-1)}, {FN (sqrt), ARG(1.0e+00,-5.0e-01), RES(1.0290855136357461252e0, -2.4293413587832283909e-1)}, {FN (sqrt), ARG(-1.0e+00,5.0e-01), RES(2.4293413587832283909e-1, 1.0290855136357461252e0)}, {FN (sqrt), ARG(-1.0e+00,-5.0e-01), RES(2.4293413587832283909e-1, -1.0290855136357461252e0)}, {FN (sqrt), ARG(1.0e+00,1.0e+00), RES(1.0986841134678099660e0, 4.5508986056222734130e-1)}, {FN (sqrt), ARG(1.0e+00,-1.0e+00), RES(1.0986841134678099660e0, -4.5508986056222734130e-1)}, {FN (sqrt), ARG(-1.0e+00,1.0e+00), RES(4.5508986056222734130e-1, 1.0986841134678099660e0)}, {FN (sqrt), ARG(-1.0e+00,-1.0e+00), RES(4.5508986056222734130e-1, -1.0986841134678099660e0)}, {FN (sqrt), ARG(1.0e+00,2.0e+00), RES(1.2720196495140689643e0, 7.8615137775742328607e-1)}, {FN (sqrt), ARG(1.0e+00,-2.0e+00), RES(1.2720196495140689643e0, -7.8615137775742328607e-1)}, {FN (sqrt), ARG(-1.0e+00,2.0e+00), RES(7.8615137775742328607e-1, 1.2720196495140689643e0)}, {FN (sqrt), ARG(-1.0e+00,-2.0e+00), RES(7.8615137775742328607e-1, -1.2720196495140689643e0)}, {FN (sqrt), ARG(1.0e+00,8.3886080e+06), RES(2.0480001220703161380e3, 2.0479998779296911380e3)}, {FN (sqrt), ARG(1.0e+00,-8.3886080e+06), RES(2.0480001220703161380e3, -2.0479998779296911380e3)}, {FN (sqrt), ARG(-1.0e+00,8.3886080e+06), RES(2.0479998779296911380e3, 2.0480001220703161380e3)}, {FN (sqrt), ARG(-1.0e+00,-8.3886080e+06), RES(2.0479998779296911380e3, -2.0480001220703161380e3)}, {FN (sqrt), ARG(2.0e+00,0.0e+00), RES(1.4142135623730950488e0, 0.0)}, {FN (sqrt), ARG(-2.0e+00,0.0e+00), RES(0, 1.4142135623730950488e0)}, {FN (sqrt), ARG(2.0e+00,1.19209289550781250e-07), RES(1.4142135623730956768e0, 4.2146848510894013070e-8)}, {FN (sqrt), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.4142135623730956768e0, -4.2146848510894013070e-8)}, {FN (sqrt), ARG(-2.0e+00,1.19209289550781250e-07), RES(4.2146848510894013070e-8, 1.4142135623730956768e0)}, {FN (sqrt), ARG(-2.0e+00,-1.19209289550781250e-07), RES(4.2146848510894013070e-8, -1.4142135623730956768e0)}, {FN (sqrt), ARG(2.0e+00,5.0e-01), RES(1.4250531240639470060e0, 1.7543205637629383228e-1)}, {FN (sqrt), ARG(2.0e+00,-5.0e-01), RES(1.4250531240639470060e0, -1.7543205637629383228e-1)}, {FN (sqrt), ARG(-2.0e+00,5.0e-01), RES(1.7543205637629383228e-1, 1.4250531240639470060e0)}, {FN (sqrt), ARG(-2.0e+00,-5.0e-01), RES(1.7543205637629383228e-1, -1.4250531240639470060e0)}, {FN (sqrt), ARG(2.0e+00,1.0e+00), RES(1.4553466902253548081e0, 3.4356074972251246414e-1)}, {FN (sqrt), ARG(2.0e+00,-1.0e+00), RES(1.4553466902253548081e0, -3.4356074972251246414e-1)}, {FN (sqrt), ARG(-2.0e+00,1.0e+00), RES(3.4356074972251246414e-1, 1.4553466902253548081e0)}, {FN (sqrt), ARG(-2.0e+00,-1.0e+00), RES(3.4356074972251246414e-1, -1.4553466902253548081e0)}, {FN (sqrt), ARG(2.0e+00,2.0e+00), RES(1.5537739740300373073e0, 6.4359425290558262474e-1)}, {FN (sqrt), ARG(2.0e+00,-2.0e+00), RES(1.5537739740300373073e0, -6.4359425290558262474e-1)}, {FN (sqrt), ARG(-2.0e+00,2.0e+00), RES(6.4359425290558262474e-1, 1.5537739740300373073e0)}, {FN (sqrt), ARG(-2.0e+00,-2.0e+00), RES(6.4359425290558262474e-1, -1.5537739740300373073e0)}, {FN (sqrt), ARG(2.0e+00,8.3886080e+06), RES(2.0480002441406395519e3, 2.0479997558593895519e3)}, {FN (sqrt), ARG(2.0e+00,-8.3886080e+06), RES(2.0480002441406395519e3, -2.0479997558593895519e3)}, {FN (sqrt), ARG(-2.0e+00,8.3886080e+06), RES(2.0479997558593895519e3, 2.0480002441406395519e3)}, {FN (sqrt), ARG(-2.0e+00,-8.3886080e+06), RES(2.0479997558593895519e3, -2.0480002441406395519e3)}, {FN (sqrt), ARG(8.3886080e+06,0.0e+00), RES(2.8963093757400986599e3, 0.0)}, {FN (sqrt), ARG(-8.3886080e+06,0.0e+00), RES(0, 2.8963093757400986599e3)}, {FN (sqrt), ARG(8.3886080e+06,1.19209289550781250e-07), RES(2.8963093757400986599e3, 2.0579515874459976458e-11)}, {FN (sqrt), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(2.8963093757400986599e3, -2.0579515874459976458e-11)}, {FN (sqrt), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(2.0579515874459976458e-11, 2.8963093757400986599e3)}, {FN (sqrt), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(2.0579515874459976458e-11, -2.8963093757400986599e3)}, {FN (sqrt), ARG(8.3886080e+06,5.0e-01), RES(2.8963093757400999462e3, 8.6316745750310938767e-5)}, {FN (sqrt), ARG(8.3886080e+06,-5.0e-01), RES(2.8963093757400999462e3, -8.6316745750310938767e-5)}, {FN (sqrt), ARG(-8.3886080e+06,5.0e-01), RES(8.6316745750310938767e-5, 2.8963093757400999462e3)}, {FN (sqrt), ARG(-8.3886080e+06,-5.0e-01), RES(8.6316745750310938767e-5, -2.8963093757400999462e3)}, {FN (sqrt), ARG(8.3886080e+06,1.0e+00), RES(2.8963093757401038048e3, 1.7263349150062164754e-4)}, {FN (sqrt), ARG(8.3886080e+06,-1.0e+00), RES(2.8963093757401038048e3, -1.7263349150062164754e-4)}, {FN (sqrt), ARG(-8.3886080e+06,1.0e+00), RES(1.7263349150062164754e-4, 2.8963093757401038048e3)}, {FN (sqrt), ARG(-8.3886080e+06,-1.0e+00), RES(1.7263349150062164754e-4, -2.8963093757401038048e3)}, {FN (sqrt), ARG(8.3886080e+06,2.0e+00), RES(2.8963093757401192395e3, 3.4526698300124145513e-4)}, {FN (sqrt), ARG(8.3886080e+06,-2.0e+00), RES(2.8963093757401192395e3, -3.4526698300124145513e-4)}, {FN (sqrt), ARG(-8.3886080e+06,2.0e+00), RES(3.4526698300124145513e-4, 2.8963093757401192395e3)}, {FN (sqrt), ARG(-8.3886080e+06,-2.0e+00), RES(3.4526698300124145513e-4, -2.8963093757401192395e3)}, {FN (sqrt), ARG(8.3886080e+06,8.3886080e+06), RES(3.1821290988135164054e3, 1.3180810299506332155e3)}, {FN (sqrt), ARG(8.3886080e+06,-8.3886080e+06), RES(3.1821290988135164054e3, -1.3180810299506332155e3)}, {FN (sqrt), ARG(-8.3886080e+06,8.3886080e+06), RES(1.3180810299506332155e3, 3.1821290988135164054e3)}, {FN (sqrt), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.3180810299506332155e3, -3.1821290988135164054e3)}, {FN (log), ARG(1.19209289550781250e-07,0.0e+00), RES(-1.5942385152878742117e1, 0.0)}, {FN (log), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.5942385152878742117e1, 3.1415926535897932385e0)}, {FN (log), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 7.8539816339744830962e-1)}, {FN (log), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, -7.8539816339744830962e-1)}, {FN (log), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 2.3561944901923449288e0)}, {FN (log), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, -2.3561944901923449288e0)}, {FN (log), ARG(1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 1.5707960883763175177e0)}, {FN (log), ARG(1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, -1.5707960883763175177e0)}, {FN (log), ARG(-1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 1.5707965652134757208e0)}, {FN (log), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, -1.5707965652134757208e0)}, {FN (log), ARG(1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 1.5707962075856070685e0)}, {FN (log), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, -1.5707962075856070685e0)}, {FN (log), ARG(-1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 1.570796446004186170e0)}, {FN (log), ARG(-1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, -1.570796446004186170e0)}, {FN (log), ARG(1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 1.5707962671902518438e0)}, {FN (log), ARG(1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, -1.5707962671902518438e0)}, {FN (log), ARG(-1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 1.5707963863995413946e0)}, {FN (log), ARG(-1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, -1.5707963863995413946e0)}, {FN (log), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 1.5707963267948824084e0)}, {FN (log), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, -1.5707963267948824084e0)}, {FN (log), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 1.5707963267949108301e0)}, {FN (log), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, -1.5707963267949108301e0)}, {FN (log), ARG(5.0e-01,0.0e+00), RES(-6.9314718055994530942e-1, 0.0)}, {FN (log), ARG(-5.0e-01,0.0e+00), RES(-6.9314718055994530942e-1, 3.1415926535897932385e0)}, {FN (log), ARG(5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 2.3841857910155798249e-7)}, {FN (log), ARG(5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, -2.3841857910155798249e-7)}, {FN (log), ARG(-5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 3.1415924151712141369e0)}, {FN (log), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, -3.1415924151712141369e0)}, {FN (log), ARG(5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 7.8539816339744830962e-1)}, {FN (log), ARG(5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, -7.8539816339744830962e-1)}, {FN (log), ARG(-5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 2.3561944901923449288e0)}, {FN (log), ARG(-5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, -2.3561944901923449288e0)}, {FN (log), ARG(5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 1.1071487177940905030e0)}, {FN (log), ARG(5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, -1.1071487177940905030e0)}, {FN (log), ARG(-5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 2.0344439357957027354e0)}, {FN (log), ARG(-5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, -2.0344439357957027354e0)}, {FN (log), ARG(5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 1.3258176636680324651e0)}, {FN (log), ARG(5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, -1.3258176636680324651e0)}, {FN (log), ARG(-5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 1.8157749899217607734e0)}, {FN (log), ARG(-5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, -1.8157749899217607734e0)}, {FN (log), ARG(5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 1.5707962671902518438e0)}, {FN (log), ARG(5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, -1.5707962671902518438e0)}, {FN (log), ARG(-5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 1.5707963863995413946e0)}, {FN (log), ARG(-5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, -1.5707963863995413946e0)}, {FN (log), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (log), ARG(-1.0e+00,0.0e+00), RES(0, 3.1415926535897932385e0)}, {FN (log), ARG(1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 1.1920928955078068531e-7)}, {FN (log), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, -1.1920928955078068531e-7)}, {FN (log), ARG(-1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 3.1415925343805036877e0)}, {FN (log), ARG(-1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, -3.1415925343805036877e0)}, {FN (log), ARG(1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 4.6364760900080611621e-1)}, {FN (log), ARG(1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, -4.6364760900080611621e-1)}, {FN (log), ARG(-1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 2.6779450445889871222e0)}, {FN (log), ARG(-1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, -2.6779450445889871222e0)}, {FN (log), ARG(1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 7.8539816339744830962e-1)}, {FN (log), ARG(1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, -7.8539816339744830962e-1)}, {FN (log), ARG(-1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 2.3561944901923449288e0)}, {FN (log), ARG(-1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, -2.3561944901923449288e0)}, {FN (log), ARG(1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 1.1071487177940905030e0)}, {FN (log), ARG(1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, -1.1071487177940905030e0)}, {FN (log), ARG(-1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 2.0344439357957027354e0)}, {FN (log), ARG(-1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, -2.0344439357957027354e0)}, {FN (log), ARG(1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 1.5707962075856070685e0)}, {FN (log), ARG(1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, -1.5707962075856070685e0)}, {FN (log), ARG(-1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 1.570796446004186170e0)}, {FN (log), ARG(-1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, -1.570796446004186170e0)}, {FN (log), ARG(2.0e+00,0.0e+00), RES(6.9314718055994530942e-1, 0.0)}, {FN (log), ARG(-2.0e+00,0.0e+00), RES(6.9314718055994530942e-1, 3.1415926535897932385e0)}, {FN (log), ARG(2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 5.9604644775390554414e-8)}, {FN (log), ARG(2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, -5.9604644775390554414e-8)}, {FN (log), ARG(-2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 3.1415925939851484631e0)}, {FN (log), ARG(-2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, -3.1415925939851484631e0)}, {FN (log), ARG(2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 2.4497866312686415417e-1)}, {FN (log), ARG(2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, -2.4497866312686415417e-1)}, {FN (log), ARG(-2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 2.8966139904629290843e0)}, {FN (log), ARG(-2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, -2.8966139904629290843e0)}, {FN (log), ARG(2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 4.6364760900080611621e-1)}, {FN (log), ARG(2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, -4.6364760900080611621e-1)}, {FN (log), ARG(-2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 2.6779450445889871222e0)}, {FN (log), ARG(-2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, -2.6779450445889871222e0)}, {FN (log), ARG(2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 7.8539816339744830962e-1)}, {FN (log), ARG(2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, -7.8539816339744830962e-1)}, {FN (log), ARG(-2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 2.3561944901923449288e0)}, {FN (log), ARG(-2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, -2.3561944901923449288e0)}, {FN (log), ARG(2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 1.5707960883763175177e0)}, {FN (log), ARG(2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, -1.5707960883763175177e0)}, {FN (log), ARG(-2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 1.5707965652134757208e0)}, {FN (log), ARG(-2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, -1.5707965652134757208e0)}, {FN (log), ARG(8.3886080e+06,0.0e+00), RES(1.5942385152878742117e1, 0.0)}, {FN (log), ARG(-8.3886080e+06,0.0e+00), RES(1.5942385152878742117e1, 3.1415926535897932385e0)}, {FN (log), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 1.4210854715202003717e-14)}, {FN (log), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, -1.4210854715202003717e-14)}, {FN (log), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 3.1415926535897790276e0)}, {FN (log), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, -3.1415926535897790276e0)}, {FN (log), ARG(8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 5.9604644775390554414e-8)}, {FN (log), ARG(8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, -5.9604644775390554414e-8)}, {FN (log), ARG(-8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 3.1415925939851484631e0)}, {FN (log), ARG(-8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, -3.1415925939851484631e0)}, {FN (log), ARG(8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 1.1920928955078068531e-7)}, {FN (log), ARG(8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, -1.1920928955078068531e-7)}, {FN (log), ARG(-8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 3.1415925343805036877e0)}, {FN (log), ARG(-8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, -3.1415925343805036877e0)}, {FN (log), ARG(8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 2.3841857910155798249e-7)}, {FN (log), ARG(8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, -2.3841857910155798249e-7)}, {FN (log), ARG(-8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 3.1415924151712141369e0)}, {FN (log), ARG(-8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, -3.1415924151712141369e0)}, {FN (log), ARG(8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 7.8539816339744830962e-1)}, {FN (log), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, -7.8539816339744830962e-1)}, {FN (log), ARG(-8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 2.3561944901923449288e0)}, {FN (log), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, -2.3561944901923449288e0)}, {FN (log), ARG(0.0e+00,1.19209289550781250e-07), RES(-1.5942385152878742117e1, 1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,-1.19209289550781250e-07), RES(-1.5942385152878742117e1, -1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,5.0e-01), RES(-6.9314718055994530942e-1, 1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,-5.0e-01), RES(-6.9314718055994530942e-1, -1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,1.0e+00), RES(0, 1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,-1.0e+00), RES(0, -1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,2.0e+00), RES(6.9314718055994530942e-1, 1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,-2.0e+00), RES(6.9314718055994530942e-1, -1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,8.3886080e+06), RES(1.5942385152878742117e1, 1.5707963267948966192e0)}, {FN (log), ARG(0.0e+00,-8.3886080e+06), RES(1.5942385152878742117e1, -1.5707963267948966192e0)}, {FN (log), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 7.8539816339744830962e-1)}, {FN (log), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, -7.8539816339744830962e-1)}, {FN (log), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 2.3561944901923449288e0)}, {FN (log), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, -2.3561944901923449288e0)}, {FN (log), ARG(1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 1.5707960883763175177e0)}, {FN (log), ARG(1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, -1.5707960883763175177e0)}, {FN (log), ARG(-1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 1.5707965652134757208e0)}, {FN (log), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, -1.5707965652134757208e0)}, {FN (log), ARG(1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 1.5707962075856070685e0)}, {FN (log), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, -1.5707962075856070685e0)}, {FN (log), ARG(-1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 1.570796446004186170e0)}, {FN (log), ARG(-1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, -1.570796446004186170e0)}, {FN (log), ARG(1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 1.5707962671902518438e0)}, {FN (log), ARG(1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, -1.5707962671902518438e0)}, {FN (log), ARG(-1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 1.5707963863995413946e0)}, {FN (log), ARG(-1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, -1.5707963863995413946e0)}, {FN (log), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 1.5707963267948824084e0)}, {FN (log), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, -1.5707963267948824084e0)}, {FN (log), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 1.5707963267949108301e0)}, {FN (log), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, -1.5707963267949108301e0)}, {FN (log), ARG(5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 2.3841857910155798249e-7)}, {FN (log), ARG(5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, -2.3841857910155798249e-7)}, {FN (log), ARG(-5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 3.1415924151712141369e0)}, {FN (log), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, -3.1415924151712141369e0)}, {FN (log), ARG(5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 7.8539816339744830962e-1)}, {FN (log), ARG(5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, -7.8539816339744830962e-1)}, {FN (log), ARG(-5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 2.3561944901923449288e0)}, {FN (log), ARG(-5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, -2.3561944901923449288e0)}, {FN (log), ARG(5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 1.1071487177940905030e0)}, {FN (log), ARG(5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, -1.1071487177940905030e0)}, {FN (log), ARG(-5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 2.0344439357957027354e0)}, {FN (log), ARG(-5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, -2.0344439357957027354e0)}, {FN (log), ARG(5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 1.3258176636680324651e0)}, {FN (log), ARG(5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, -1.3258176636680324651e0)}, {FN (log), ARG(-5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 1.8157749899217607734e0)}, {FN (log), ARG(-5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, -1.8157749899217607734e0)}, {FN (log), ARG(5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 1.5707962671902518438e0)}, {FN (log), ARG(5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, -1.5707962671902518438e0)}, {FN (log), ARG(-5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 1.5707963863995413946e0)}, {FN (log), ARG(-5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, -1.5707963863995413946e0)}, {FN (log), ARG(1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 1.1920928955078068531e-7)}, {FN (log), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, -1.1920928955078068531e-7)}, {FN (log), ARG(-1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 3.1415925343805036877e0)}, {FN (log), ARG(-1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, -3.1415925343805036877e0)}, {FN (log), ARG(1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 4.6364760900080611621e-1)}, {FN (log), ARG(1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, -4.6364760900080611621e-1)}, {FN (log), ARG(-1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 2.6779450445889871222e0)}, {FN (log), ARG(-1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, -2.6779450445889871222e0)}, {FN (log), ARG(1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 7.8539816339744830962e-1)}, {FN (log), ARG(1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, -7.8539816339744830962e-1)}, {FN (log), ARG(-1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 2.3561944901923449288e0)}, {FN (log), ARG(-1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, -2.3561944901923449288e0)}, {FN (log), ARG(1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 1.1071487177940905030e0)}, {FN (log), ARG(1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, -1.1071487177940905030e0)}, {FN (log), ARG(-1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 2.0344439357957027354e0)}, {FN (log), ARG(-1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, -2.0344439357957027354e0)}, {FN (log), ARG(1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 1.5707962075856070685e0)}, {FN (log), ARG(1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, -1.5707962075856070685e0)}, {FN (log), ARG(-1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 1.570796446004186170e0)}, {FN (log), ARG(-1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, -1.570796446004186170e0)}, {FN (log), ARG(2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 5.9604644775390554414e-8)}, {FN (log), ARG(2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, -5.9604644775390554414e-8)}, {FN (log), ARG(-2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 3.1415925939851484631e0)}, {FN (log), ARG(-2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, -3.1415925939851484631e0)}, {FN (log), ARG(2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 2.4497866312686415417e-1)}, {FN (log), ARG(2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, -2.4497866312686415417e-1)}, {FN (log), ARG(-2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 2.8966139904629290843e0)}, {FN (log), ARG(-2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, -2.8966139904629290843e0)}, {FN (log), ARG(2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 4.6364760900080611621e-1)}, {FN (log), ARG(2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, -4.6364760900080611621e-1)}, {FN (log), ARG(-2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 2.6779450445889871222e0)}, {FN (log), ARG(-2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, -2.6779450445889871222e0)}, {FN (log), ARG(2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 7.8539816339744830962e-1)}, {FN (log), ARG(2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, -7.8539816339744830962e-1)}, {FN (log), ARG(-2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 2.3561944901923449288e0)}, {FN (log), ARG(-2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, -2.3561944901923449288e0)}, {FN (log), ARG(2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 1.5707960883763175177e0)}, {FN (log), ARG(2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, -1.5707960883763175177e0)}, {FN (log), ARG(-2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 1.5707965652134757208e0)}, {FN (log), ARG(-2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, -1.5707965652134757208e0)}, {FN (log), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 1.4210854715202003717e-14)}, {FN (log), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, -1.4210854715202003717e-14)}, {FN (log), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 3.1415926535897790276e0)}, {FN (log), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, -3.1415926535897790276e0)}, {FN (log), ARG(8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 5.9604644775390554414e-8)}, {FN (log), ARG(8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, -5.9604644775390554414e-8)}, {FN (log), ARG(-8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 3.1415925939851484631e0)}, {FN (log), ARG(-8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, -3.1415925939851484631e0)}, {FN (log), ARG(8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 1.1920928955078068531e-7)}, {FN (log), ARG(8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, -1.1920928955078068531e-7)}, {FN (log), ARG(-8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 3.1415925343805036877e0)}, {FN (log), ARG(-8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, -3.1415925343805036877e0)}, {FN (log), ARG(8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 2.3841857910155798249e-7)}, {FN (log), ARG(8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, -2.3841857910155798249e-7)}, {FN (log), ARG(-8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 3.1415924151712141369e0)}, {FN (log), ARG(-8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, -3.1415924151712141369e0)}, {FN (log), ARG(8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 7.8539816339744830962e-1)}, {FN (log), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, -7.8539816339744830962e-1)}, {FN (log), ARG(-8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 2.3561944901923449288e0)}, {FN (log), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, -2.3561944901923449288e0)}, {FN (log10), ARG(1.19209289550781250e-07,0.0e+00), RES(-6.9236899002715674899e0, 0.0)}, {FN (log10), ARG(-1.19209289550781250e-07,0.0e+00), RES(-6.9236899002715674899e0, 1.3643763538418413475e0)}, {FN (log10), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-6.7731749024395768923e0, 3.4109408846046033687e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-6.7731749024395768923e0, -3.4109408846046033687e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-6.7731749024395768923e0, 1.0232822653813810106e0)}, {FN (log10), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-6.7731749024395768923e0, -1.0232822653813810106e0)}, {FN (log10), ARG(1.19209289550781250e-07,5.0e-01), RES(-3.0102999566396885182e-1, 6.8218807337704738672e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-5.0e-01), RES(-3.0102999566396885182e-1, -6.8218807337704738672e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,5.0e-01), RES(-3.0102999566396885182e-1, 6.8218828046479396076e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-3.0102999566396885182e-1, -6.8218828046479396076e-1)}, {FN (log10), ARG(1.19209289550781250e-07,1.0e+00), RES(3.0858478929704968280e-15, 6.8218812514898403023e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-1.0e+00), RES(3.0858478929704968280e-15, -6.8218812514898403023e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,1.0e+00), RES(3.0858478929704968280e-15, 6.8218822869285731725e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-1.0e+00), RES(3.0858478929704968280e-15, -6.8218822869285731725e-1)}, {FN (log10), ARG(1.19209289550781250e-07,2.0e+00), RES(3.0102999566398196668e-1, 6.8218815103495235199e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-2.0e+00), RES(3.0102999566398196668e-1, -6.8218815103495235199e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,2.0e+00), RES(3.0102999566398196668e-1, 6.8218820280688899550e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-2.0e+00), RES(3.0102999566398196668e-1, -6.8218820280688899550e-1)}, {FN (log10), ARG(1.19209289550781250e-07,8.3886080e+06), RES(6.9236899002715674899e0, 6.8218817692091450205e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(6.9236899002715674899e0, -6.8218817692091450205e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(6.9236899002715674899e0, 6.8218817692092684544e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(6.9236899002715674899e0, -6.8218817692092684544e-1)}, {FN (log10), ARG(5.0e-01,0.0e+00), RES(-3.0102999566398119521e-1, 0.0)}, {FN (log10), ARG(-5.0e-01,0.0e+00), RES(-3.0102999566398119521e-1, 1.3643763538418413475e0)}, {FN (log10), ARG(5.0e-01,1.19209289550781250e-07), RES(-3.0102999566396885182e-1, 1.0354387328702058762e-7)}, {FN (log10), ARG(5.0e-01,-1.19209289550781250e-07), RES(-3.0102999566396885182e-1, -1.0354387328702058762e-7)}, {FN (log10), ARG(-5.0e-01,1.19209289550781250e-07), RES(-3.0102999566396885182e-1, 1.3643762502979680605e0)}, {FN (log10), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-3.0102999566396885182e-1, -1.3643762502979680605e0)}, {FN (log10), ARG(5.0e-01,5.0e-01), RES(-1.5051499783199059761e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(5.0e-01,-5.0e-01), RES(-1.5051499783199059761e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-5.0e-01,5.0e-01), RES(-1.5051499783199059761e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-5.0e-01,-5.0e-01), RES(-1.5051499783199059761e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(5.0e-01,1.0e+00), RES(4.8455006504028207179e-2, 4.8082857878423410270e-1)}, {FN (log10), ARG(5.0e-01,-1.0e+00), RES(4.8455006504028207179e-2, -4.8082857878423410270e-1)}, {FN (log10), ARG(-5.0e-01,1.0e+00), RES(4.8455006504028207179e-2, 8.8354777505760724478e-1)}, {FN (log10), ARG(-5.0e-01,-1.0e+00), RES(4.8455006504028207179e-2, -8.8354777505760724478e-1)}, {FN (log10), ARG(5.0e-01,2.0e+00), RES(3.1419446502515576906e-1, 5.7579529534088794354e-1)}, {FN (log10), ARG(5.0e-01,-2.0e+00), RES(3.1419446502515576906e-1, -5.7579529534088794354e-1)}, {FN (log10), ARG(-5.0e-01,2.0e+00), RES(3.1419446502515576906e-1, 7.8858105850095340394e-1)}, {FN (log10), ARG(-5.0e-01,-2.0e+00), RES(3.1419446502515576906e-1, -7.8858105850095340394e-1)}, {FN (log10), ARG(5.0e-01,8.3886080e+06), RES(6.9236899002715682614e0, 6.8218815103495235199e-1)}, {FN (log10), ARG(5.0e-01,-8.3886080e+06), RES(6.9236899002715682614e0, -6.8218815103495235199e-1)}, {FN (log10), ARG(-5.0e-01,8.3886080e+06), RES(6.9236899002715682614e0, 6.8218820280688899550e-1)}, {FN (log10), ARG(-5.0e-01,-8.3886080e+06), RES(6.9236899002715682614e0, -6.8218820280688899550e-1)}, {FN (log10), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (log10), ARG(-1.0e+00,0.0e+00), RES(0, 1.3643763538418413475e0)}, {FN (log10), ARG(1.0e+00,1.19209289550781250e-07), RES(3.0858478929704968280e-15, 5.1771936643511029532e-8)}, {FN (log10), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.0858478929704968280e-15, -5.1771936643511029532e-8)}, {FN (log10), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.0858478929704968280e-15, 1.3643763020699047040e0)}, {FN (log10), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.0858478929704968280e-15, -1.3643763020699047040e0)}, {FN (log10), ARG(1.0e+00,5.0e-01), RES(4.8455006504028207179e-2, 2.0135959813668657104e-1)}, {FN (log10), ARG(1.0e+00,-5.0e-01), RES(4.8455006504028207179e-2, -2.0135959813668657104e-1)}, {FN (log10), ARG(-1.0e+00,5.0e-01), RES(4.8455006504028207179e-2, 1.1630167557051547764e0)}, {FN (log10), ARG(-1.0e+00,-5.0e-01), RES(4.8455006504028207179e-2, -1.1630167557051547764e0)}, {FN (log10), ARG(1.0e+00,1.0e+00), RES(1.5051499783199059761e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(1.0e+00,-1.0e+00), RES(1.5051499783199059761e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-1.0e+00,1.0e+00), RES(1.5051499783199059761e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-1.0e+00,-1.0e+00), RES(1.5051499783199059761e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(1.0e+00,2.0e+00), RES(3.4948500216800940239e-1, 4.8082857878423410270e-1)}, {FN (log10), ARG(1.0e+00,-2.0e+00), RES(3.4948500216800940239e-1, -4.8082857878423410270e-1)}, {FN (log10), ARG(-1.0e+00,2.0e+00), RES(3.4948500216800940239e-1, 8.8354777505760724478e-1)}, {FN (log10), ARG(-1.0e+00,-2.0e+00), RES(3.4948500216800940239e-1, -8.8354777505760724478e-1)}, {FN (log10), ARG(1.0e+00,8.3886080e+06), RES(6.9236899002715705758e0, 6.8218812514898403023e-1)}, {FN (log10), ARG(1.0e+00,-8.3886080e+06), RES(6.9236899002715705758e0, -6.8218812514898403023e-1)}, {FN (log10), ARG(-1.0e+00,8.3886080e+06), RES(6.9236899002715705758e0, 6.8218822869285731725e-1)}, {FN (log10), ARG(-1.0e+00,-8.3886080e+06), RES(6.9236899002715705758e0, -6.8218822869285731725e-1)}, {FN (log10), ARG(2.0e+00,0.0e+00), RES(3.0102999566398119521e-1, 0.0)}, {FN (log10), ARG(-2.0e+00,0.0e+00), RES(3.0102999566398119521e-1, 1.3643763538418413475e0)}, {FN (log10), ARG(2.0e+00,1.19209289550781250e-07), RES(3.0102999566398196668e-1, 2.5885968321755606731e-8)}, {FN (log10), ARG(2.0e+00,-1.19209289550781250e-07), RES(3.0102999566398196668e-1, -2.5885968321755606731e-8)}, {FN (log10), ARG(-2.0e+00,1.19209289550781250e-07), RES(3.0102999566398196668e-1, 1.3643763279558730257e0)}, {FN (log10), ARG(-2.0e+00,-1.19209289550781250e-07), RES(3.0102999566398196668e-1, -1.3643763279558730257e0)}, {FN (log10), ARG(2.0e+00,5.0e-01), RES(3.1419446502515576906e-1, 1.0639288158003273020e-1)}, {FN (log10), ARG(2.0e+00,-5.0e-01), RES(3.1419446502515576906e-1, -1.0639288158003273020e-1)}, {FN (log10), ARG(-2.0e+00,5.0e-01), RES(3.1419446502515576906e-1, 1.2579834722618086173e0)}, {FN (log10), ARG(-2.0e+00,-5.0e-01), RES(3.1419446502515576906e-1, -1.2579834722618086173e0)}, {FN (log10), ARG(2.0e+00,1.0e+00), RES(3.4948500216800940239e-1, 2.0135959813668657104e-1)}, {FN (log10), ARG(2.0e+00,-1.0e+00), RES(3.4948500216800940239e-1, -2.0135959813668657104e-1)}, {FN (log10), ARG(-2.0e+00,1.0e+00), RES(3.4948500216800940239e-1, 1.1630167557051547764e0)}, {FN (log10), ARG(-2.0e+00,-1.0e+00), RES(3.4948500216800940239e-1, -1.1630167557051547764e0)}, {FN (log10), ARG(2.0e+00,2.0e+00), RES(4.5154499349597179282e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(2.0e+00,-2.0e+00), RES(4.5154499349597179282e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-2.0e+00,2.0e+00), RES(4.5154499349597179282e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-2.0e+00,-2.0e+00), RES(4.5154499349597179282e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(2.0e+00,8.3886080e+06), RES(6.9236899002715798333e0, 6.8218807337704738672e-1)}, {FN (log10), ARG(2.0e+00,-8.3886080e+06), RES(6.9236899002715798333e0, -6.8218807337704738672e-1)}, {FN (log10), ARG(-2.0e+00,8.3886080e+06), RES(6.9236899002715798333e0, 6.8218828046479396076e-1)}, {FN (log10), ARG(-2.0e+00,-8.3886080e+06), RES(6.9236899002715798333e0, -6.8218828046479396076e-1)}, {FN (log10), ARG(8.3886080e+06,0.0e+00), RES(6.9236899002715674899e0, 0.0)}, {FN (log10), ARG(-8.3886080e+06,0.0e+00), RES(6.9236899002715674899e0, 1.3643763538418413475e0)}, {FN (log10), ARG(8.3886080e+06,1.19209289550781250e-07), RES(6.9236899002715674899e0, 6.1716957859410375086e-15)}, {FN (log10), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(6.9236899002715674899e0, -6.1716957859410375086e-15)}, {FN (log10), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(6.9236899002715674899e0, 1.3643763538418351758e0)}, {FN (log10), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(6.9236899002715674899e0, -1.3643763538418351758e0)}, {FN (log10), ARG(8.3886080e+06,5.0e-01), RES(6.9236899002715682614e0, 2.5885968321755606731e-8)}, {FN (log10), ARG(8.3886080e+06,-5.0e-01), RES(6.9236899002715682614e0, -2.5885968321755606731e-8)}, {FN (log10), ARG(-8.3886080e+06,5.0e-01), RES(6.9236899002715682614e0, 1.3643763279558730257e0)}, {FN (log10), ARG(-8.3886080e+06,-5.0e-01), RES(6.9236899002715682614e0, -1.3643763279558730257e0)}, {FN (log10), ARG(8.3886080e+06,1.0e+00), RES(6.9236899002715705758e0, 5.1771936643511029532e-8)}, {FN (log10), ARG(8.3886080e+06,-1.0e+00), RES(6.9236899002715705758e0, -5.1771936643511029532e-8)}, {FN (log10), ARG(-8.3886080e+06,1.0e+00), RES(6.9236899002715705758e0, 1.3643763020699047040e0)}, {FN (log10), ARG(-8.3886080e+06,-1.0e+00), RES(6.9236899002715705758e0, -1.3643763020699047040e0)}, {FN (log10), ARG(8.3886080e+06,2.0e+00), RES(6.9236899002715798333e0, 1.0354387328702058762e-7)}, {FN (log10), ARG(8.3886080e+06,-2.0e+00), RES(6.9236899002715798333e0, -1.0354387328702058762e-7)}, {FN (log10), ARG(-8.3886080e+06,2.0e+00), RES(6.9236899002715798333e0, 1.3643762502979680605e0)}, {FN (log10), ARG(-8.3886080e+06,-2.0e+00), RES(6.9236899002715798333e0, -1.3643762502979680605e0)}, {FN (log10), ARG(8.3886080e+06,8.3886080e+06), RES(7.0742048981035580875e0, 3.4109408846046033687e-1)}, {FN (log10), ARG(8.3886080e+06,-8.3886080e+06), RES(7.0742048981035580875e0, -3.4109408846046033687e-1)}, {FN (log10), ARG(-8.3886080e+06,8.3886080e+06), RES(7.0742048981035580875e0, 1.0232822653813810106e0)}, {FN (log10), ARG(-8.3886080e+06,-8.3886080e+06), RES(7.0742048981035580875e0, -1.0232822653813810106e0)}, {FN (log10), ARG(0.0e+00,1.19209289550781250e-07), RES(-6.9236899002715674899e0, 6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,-1.19209289550781250e-07), RES(-6.9236899002715674899e0, -6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,5.0e-01), RES(-3.0102999566398119521e-1, 6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,-5.0e-01), RES(-3.0102999566398119521e-1, -6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,1.0e+00), RES(0, 6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,-1.0e+00), RES(0, -6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,2.0e+00), RES(3.0102999566398119521e-1, 6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,-2.0e+00), RES(3.0102999566398119521e-1, -6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,8.3886080e+06), RES(6.9236899002715674899e0, 6.8218817692092067374e-1)}, {FN (log10), ARG(0.0e+00,-8.3886080e+06), RES(6.9236899002715674899e0, -6.8218817692092067374e-1)}, {FN (log10), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-6.7731749024395768923e0, 3.4109408846046033687e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-6.7731749024395768923e0, -3.4109408846046033687e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-6.7731749024395768923e0, 1.0232822653813810106e0)}, {FN (log10), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-6.7731749024395768923e0, -1.0232822653813810106e0)}, {FN (log10), ARG(1.19209289550781250e-07,5.0e-01), RES(-3.0102999566396885182e-1, 6.8218807337704738672e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-5.0e-01), RES(-3.0102999566396885182e-1, -6.8218807337704738672e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,5.0e-01), RES(-3.0102999566396885182e-1, 6.8218828046479396076e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-3.0102999566396885182e-1, -6.8218828046479396076e-1)}, {FN (log10), ARG(1.19209289550781250e-07,1.0e+00), RES(3.0858478929704968280e-15, 6.8218812514898403023e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-1.0e+00), RES(3.0858478929704968280e-15, -6.8218812514898403023e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,1.0e+00), RES(3.0858478929704968280e-15, 6.8218822869285731725e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-1.0e+00), RES(3.0858478929704968280e-15, -6.8218822869285731725e-1)}, {FN (log10), ARG(1.19209289550781250e-07,2.0e+00), RES(3.0102999566398196668e-1, 6.8218815103495235199e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-2.0e+00), RES(3.0102999566398196668e-1, -6.8218815103495235199e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,2.0e+00), RES(3.0102999566398196668e-1, 6.8218820280688899550e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-2.0e+00), RES(3.0102999566398196668e-1, -6.8218820280688899550e-1)}, {FN (log10), ARG(1.19209289550781250e-07,8.3886080e+06), RES(6.9236899002715674899e0, 6.8218817692091450205e-1)}, {FN (log10), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(6.9236899002715674899e0, -6.8218817692091450205e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(6.9236899002715674899e0, 6.8218817692092684544e-1)}, {FN (log10), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(6.9236899002715674899e0, -6.8218817692092684544e-1)}, {FN (log10), ARG(5.0e-01,1.19209289550781250e-07), RES(-3.0102999566396885182e-1, 1.0354387328702058762e-7)}, {FN (log10), ARG(5.0e-01,-1.19209289550781250e-07), RES(-3.0102999566396885182e-1, -1.0354387328702058762e-7)}, {FN (log10), ARG(-5.0e-01,1.19209289550781250e-07), RES(-3.0102999566396885182e-1, 1.3643762502979680605e0)}, {FN (log10), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-3.0102999566396885182e-1, -1.3643762502979680605e0)}, {FN (log10), ARG(5.0e-01,5.0e-01), RES(-1.5051499783199059761e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(5.0e-01,-5.0e-01), RES(-1.5051499783199059761e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-5.0e-01,5.0e-01), RES(-1.5051499783199059761e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-5.0e-01,-5.0e-01), RES(-1.5051499783199059761e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(5.0e-01,1.0e+00), RES(4.8455006504028207179e-2, 4.8082857878423410270e-1)}, {FN (log10), ARG(5.0e-01,-1.0e+00), RES(4.8455006504028207179e-2, -4.8082857878423410270e-1)}, {FN (log10), ARG(-5.0e-01,1.0e+00), RES(4.8455006504028207179e-2, 8.8354777505760724478e-1)}, {FN (log10), ARG(-5.0e-01,-1.0e+00), RES(4.8455006504028207179e-2, -8.8354777505760724478e-1)}, {FN (log10), ARG(5.0e-01,2.0e+00), RES(3.1419446502515576906e-1, 5.7579529534088794354e-1)}, {FN (log10), ARG(5.0e-01,-2.0e+00), RES(3.1419446502515576906e-1, -5.7579529534088794354e-1)}, {FN (log10), ARG(-5.0e-01,2.0e+00), RES(3.1419446502515576906e-1, 7.8858105850095340394e-1)}, {FN (log10), ARG(-5.0e-01,-2.0e+00), RES(3.1419446502515576906e-1, -7.8858105850095340394e-1)}, {FN (log10), ARG(5.0e-01,8.3886080e+06), RES(6.9236899002715682614e0, 6.8218815103495235199e-1)}, {FN (log10), ARG(5.0e-01,-8.3886080e+06), RES(6.9236899002715682614e0, -6.8218815103495235199e-1)}, {FN (log10), ARG(-5.0e-01,8.3886080e+06), RES(6.9236899002715682614e0, 6.8218820280688899550e-1)}, {FN (log10), ARG(-5.0e-01,-8.3886080e+06), RES(6.9236899002715682614e0, -6.8218820280688899550e-1)}, {FN (log10), ARG(1.0e+00,1.19209289550781250e-07), RES(3.0858478929704968280e-15, 5.1771936643511029532e-8)}, {FN (log10), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.0858478929704968280e-15, -5.1771936643511029532e-8)}, {FN (log10), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.0858478929704968280e-15, 1.3643763020699047040e0)}, {FN (log10), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.0858478929704968280e-15, -1.3643763020699047040e0)}, {FN (log10), ARG(1.0e+00,5.0e-01), RES(4.8455006504028207179e-2, 2.0135959813668657104e-1)}, {FN (log10), ARG(1.0e+00,-5.0e-01), RES(4.8455006504028207179e-2, -2.0135959813668657104e-1)}, {FN (log10), ARG(-1.0e+00,5.0e-01), RES(4.8455006504028207179e-2, 1.1630167557051547764e0)}, {FN (log10), ARG(-1.0e+00,-5.0e-01), RES(4.8455006504028207179e-2, -1.1630167557051547764e0)}, {FN (log10), ARG(1.0e+00,1.0e+00), RES(1.5051499783199059761e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(1.0e+00,-1.0e+00), RES(1.5051499783199059761e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-1.0e+00,1.0e+00), RES(1.5051499783199059761e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-1.0e+00,-1.0e+00), RES(1.5051499783199059761e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(1.0e+00,2.0e+00), RES(3.4948500216800940239e-1, 4.8082857878423410270e-1)}, {FN (log10), ARG(1.0e+00,-2.0e+00), RES(3.4948500216800940239e-1, -4.8082857878423410270e-1)}, {FN (log10), ARG(-1.0e+00,2.0e+00), RES(3.4948500216800940239e-1, 8.8354777505760724478e-1)}, {FN (log10), ARG(-1.0e+00,-2.0e+00), RES(3.4948500216800940239e-1, -8.8354777505760724478e-1)}, {FN (log10), ARG(1.0e+00,8.3886080e+06), RES(6.9236899002715705758e0, 6.8218812514898403023e-1)}, {FN (log10), ARG(1.0e+00,-8.3886080e+06), RES(6.9236899002715705758e0, -6.8218812514898403023e-1)}, {FN (log10), ARG(-1.0e+00,8.3886080e+06), RES(6.9236899002715705758e0, 6.8218822869285731725e-1)}, {FN (log10), ARG(-1.0e+00,-8.3886080e+06), RES(6.9236899002715705758e0, -6.8218822869285731725e-1)}, {FN (log10), ARG(2.0e+00,1.19209289550781250e-07), RES(3.0102999566398196668e-1, 2.5885968321755606731e-8)}, {FN (log10), ARG(2.0e+00,-1.19209289550781250e-07), RES(3.0102999566398196668e-1, -2.5885968321755606731e-8)}, {FN (log10), ARG(-2.0e+00,1.19209289550781250e-07), RES(3.0102999566398196668e-1, 1.3643763279558730257e0)}, {FN (log10), ARG(-2.0e+00,-1.19209289550781250e-07), RES(3.0102999566398196668e-1, -1.3643763279558730257e0)}, {FN (log10), ARG(2.0e+00,5.0e-01), RES(3.1419446502515576906e-1, 1.0639288158003273020e-1)}, {FN (log10), ARG(2.0e+00,-5.0e-01), RES(3.1419446502515576906e-1, -1.0639288158003273020e-1)}, {FN (log10), ARG(-2.0e+00,5.0e-01), RES(3.1419446502515576906e-1, 1.2579834722618086173e0)}, {FN (log10), ARG(-2.0e+00,-5.0e-01), RES(3.1419446502515576906e-1, -1.2579834722618086173e0)}, {FN (log10), ARG(2.0e+00,1.0e+00), RES(3.4948500216800940239e-1, 2.0135959813668657104e-1)}, {FN (log10), ARG(2.0e+00,-1.0e+00), RES(3.4948500216800940239e-1, -2.0135959813668657104e-1)}, {FN (log10), ARG(-2.0e+00,1.0e+00), RES(3.4948500216800940239e-1, 1.1630167557051547764e0)}, {FN (log10), ARG(-2.0e+00,-1.0e+00), RES(3.4948500216800940239e-1, -1.1630167557051547764e0)}, {FN (log10), ARG(2.0e+00,2.0e+00), RES(4.5154499349597179282e-1, 3.4109408846046033687e-1)}, {FN (log10), ARG(2.0e+00,-2.0e+00), RES(4.5154499349597179282e-1, -3.4109408846046033687e-1)}, {FN (log10), ARG(-2.0e+00,2.0e+00), RES(4.5154499349597179282e-1, 1.0232822653813810106e0)}, {FN (log10), ARG(-2.0e+00,-2.0e+00), RES(4.5154499349597179282e-1, -1.0232822653813810106e0)}, {FN (log10), ARG(2.0e+00,8.3886080e+06), RES(6.9236899002715798333e0, 6.8218807337704738672e-1)}, {FN (log10), ARG(2.0e+00,-8.3886080e+06), RES(6.9236899002715798333e0, -6.8218807337704738672e-1)}, {FN (log10), ARG(-2.0e+00,8.3886080e+06), RES(6.9236899002715798333e0, 6.8218828046479396076e-1)}, {FN (log10), ARG(-2.0e+00,-8.3886080e+06), RES(6.9236899002715798333e0, -6.8218828046479396076e-1)}, {FN (log10), ARG(8.3886080e+06,1.19209289550781250e-07), RES(6.9236899002715674899e0, 6.1716957859410375086e-15)}, {FN (log10), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(6.9236899002715674899e0, -6.1716957859410375086e-15)}, {FN (log10), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(6.9236899002715674899e0, 1.3643763538418351758e0)}, {FN (log10), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(6.9236899002715674899e0, -1.3643763538418351758e0)}, {FN (log10), ARG(8.3886080e+06,5.0e-01), RES(6.9236899002715682614e0, 2.5885968321755606731e-8)}, {FN (log10), ARG(8.3886080e+06,-5.0e-01), RES(6.9236899002715682614e0, -2.5885968321755606731e-8)}, {FN (log10), ARG(-8.3886080e+06,5.0e-01), RES(6.9236899002715682614e0, 1.3643763279558730257e0)}, {FN (log10), ARG(-8.3886080e+06,-5.0e-01), RES(6.9236899002715682614e0, -1.3643763279558730257e0)}, {FN (log10), ARG(8.3886080e+06,1.0e+00), RES(6.9236899002715705758e0, 5.1771936643511029532e-8)}, {FN (log10), ARG(8.3886080e+06,-1.0e+00), RES(6.9236899002715705758e0, -5.1771936643511029532e-8)}, {FN (log10), ARG(-8.3886080e+06,1.0e+00), RES(6.9236899002715705758e0, 1.3643763020699047040e0)}, {FN (log10), ARG(-8.3886080e+06,-1.0e+00), RES(6.9236899002715705758e0, -1.3643763020699047040e0)}, {FN (log10), ARG(8.3886080e+06,2.0e+00), RES(6.9236899002715798333e0, 1.0354387328702058762e-7)}, {FN (log10), ARG(8.3886080e+06,-2.0e+00), RES(6.9236899002715798333e0, -1.0354387328702058762e-7)}, {FN (log10), ARG(-8.3886080e+06,2.0e+00), RES(6.9236899002715798333e0, 1.3643762502979680605e0)}, {FN (log10), ARG(-8.3886080e+06,-2.0e+00), RES(6.9236899002715798333e0, -1.3643762502979680605e0)}, {FN (log10), ARG(8.3886080e+06,8.3886080e+06), RES(7.0742048981035580875e0, 3.4109408846046033687e-1)}, {FN (log10), ARG(8.3886080e+06,-8.3886080e+06), RES(7.0742048981035580875e0, -3.4109408846046033687e-1)}, {FN (log10), ARG(-8.3886080e+06,8.3886080e+06), RES(7.0742048981035580875e0, 1.0232822653813810106e0)}, {FN (log10), ARG(-8.3886080e+06,-8.3886080e+06), RES(7.0742048981035580875e0, -1.0232822653813810106e0)}, {FN (exp), ARG(0.0e+00,-3.45266983001243932001e-04), RES(9.9999994039535581673e-1, -3.4526697614140534807e-4)}, {FN (exp), ARG(0.0e+00,3.45266983001243932001e-04), RES(9.9999994039535581673e-1, 3.4526697614140534807e-4)}, {FN (exp), ARG(0.0e+00,1.57045105981189525579e+00), RES(3.4526697614152485627e-4, 9.9999994039535581669e-1)}, {FN (exp), ARG(0.0e+00,-1.57045105981189525579e+00), RES(3.4526697614152485627e-4, -9.9999994039535581669e-1)}, {FN (exp), ARG(0.0e+00,1.57114159377789786021e+00), RES(-3.4526697614140239160e-4, 9.9999994039535581673e-1)}, {FN (exp), ARG(0.0e+00,-1.57114159377789786021e+00), RES(-3.4526697614140239160e-4, -9.9999994039535581673e-1)}, {FN (exp), ARG(0.0e+00,3.14124738660679181379e+00), RES(-9.9999994039535581667e-1, 3.4526697614158608860e-4)}, {FN (exp), ARG(0.0e+00,-3.14124738660679181379e+00), RES(-9.9999994039535581667e-1, -3.4526697614158608860e-4)}, {FN (exp), ARG(0.0e+00,3.14193792057279441821e+00), RES(-9.9999994039535581675e-1, -3.4526697614134115926e-4)}, {FN (exp), ARG(0.0e+00,-3.14193792057279441821e+00), RES(-9.9999994039535581675e-1, 3.4526697614134115926e-4)}, {FN (exp), ARG(0.0e+00,4.71204371340168837179e+00), RES(-3.4526697614164732094e-4, -9.9999994039535581664e-1)}, {FN (exp), ARG(0.0e+00,-4.71204371340168837179e+00), RES(-3.4526697614164732094e-4, 9.9999994039535581664e-1)}, {FN (exp), ARG(0.0e+00,4.71273424736769097620e+00), RES(3.4526697614127992692e-4, -9.9999994039535581677e-1)}, {FN (exp), ARG(0.0e+00,-4.71273424736769097620e+00), RES(3.4526697614127992692e-4, 9.9999994039535581677e-1)}, {FN (exp), ARG(0.0e+00,6.28284004019658492979e+00), RES(9.9999994039535581662e-1, -3.4526697614170855328e-4)}, {FN (exp), ARG(0.0e+00,-6.28284004019658492979e+00), RES(9.9999994039535581662e-1, 3.4526697614170855328e-4)}, {FN (exp), ARG(0.0e+00,6.28353057416258753420e+00), RES(9.9999994039535581679e-1, 3.4526697614121869459e-4)}, {FN (exp), ARG(0.0e+00,-6.28353057416258753420e+00), RES(9.9999994039535581679e-1, -3.4526697614121869459e-4)}, {FN (exp), ARG(0.0e+00,9.42443269378637893396e+00), RES(-9.9999994039535581689e-1, 3.4526697614094283958e-4)}, {FN (exp), ARG(0.0e+00,-9.42443269378637893396e+00), RES(-9.9999994039535581689e-1, -3.4526697614094283958e-4)}, {FN (exp), ARG(0.0e+00,9.42512322775237976202e+00), RES(-9.9999994039535581714e-1, -3.4526697614020805155e-4)}, {FN (exp), ARG(0.0e+00,-9.42512322775237976202e+00), RES(-9.9999994039535581714e-1, 3.4526697614020805155e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(1.0000000596046453675e0, -3.4526701730043873250e-4)}, {FN (exp), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(1.0000000596046453675e0, 3.4526701730043873250e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(9.9999982118608047680e-1, -3.4526693498237687017e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(9.9999982118608047680e-1, 3.4526693498237687017e-4)}, {FN (exp), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(3.4526701730055824072e-4, 1.0000000596046453675e0)}, {FN (exp), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(3.4526701730055824072e-4, -1.0000000596046453675e0)}, {FN (exp), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(3.4526693498249637836e-4, 9.9999982118608047676e-1)}, {FN (exp), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(3.4526693498249637836e-4, -9.9999982118608047676e-1)}, {FN (exp), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(-3.4526701730043577603e-4, 1.0000000596046453675e0)}, {FN (exp), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-3.4526701730043577603e-4, -1.0000000596046453675e0)}, {FN (exp), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(-3.4526693498237391370e-4, 9.9999982118608047680e-1)}, {FN (exp), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-3.4526693498237391370e-4, -9.9999982118608047680e-1)}, {FN (exp), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(-1.0000000596046453674e0, 3.4526701730061947306e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-1.0000000596046453674e0, -3.4526701730061947306e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(-9.9999982118608047674e-1, 3.4526693498255761069e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-9.9999982118608047674e-1, -3.4526693498255761069e-4)}, {FN (exp), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(-1.0000000596046453675e0, -3.4526701730037454368e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-1.0000000596046453675e0, 3.4526701730037454368e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(-9.9999982118608047682e-1, -3.4526693498231268137e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-9.9999982118608047682e-1, 3.4526693498231268137e-4)}, {FN (exp), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(-3.4526701730068070540e-4, -1.0000000596046453674e0)}, {FN (exp), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-3.4526701730068070540e-4, 1.0000000596046453674e0)}, {FN (exp), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(-3.4526693498261884302e-4, -9.9999982118608047672e-1)}, {FN (exp), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-3.4526693498261884302e-4, 9.9999982118608047672e-1)}, {FN (exp), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(3.4526701730031331134e-4, -1.0000000596046453676e0)}, {FN (exp), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(3.4526701730031331134e-4, 1.0000000596046453676e0)}, {FN (exp), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(3.4526693498225144904e-4, -9.9999982118608047684e-1)}, {FN (exp), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(3.4526693498225144904e-4, 9.9999982118608047684e-1)}, {FN (exp), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(1.0000000596046453674e0, -3.4526701730074193775e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(1.0000000596046453674e0, 3.4526701730074193775e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(9.9999982118608047670e-1, -3.4526693498268007535e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(9.9999982118608047670e-1, 3.4526693498268007535e-4)}, {FN (exp), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(1.0000000596046453676e0, 3.452670173002520790e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(1.0000000596046453676e0, -3.452670173002520790e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(9.9999982118608047687e-1, 3.4526693498219021671e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(9.9999982118608047687e-1, -3.4526693498219021671e-4)}, {FN (exp), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(-1.0000000596046453677e0, 3.4526701729997622396e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-1.0000000596046453677e0, -3.4526701729997622396e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(-9.9999982118608047696e-1, 3.4526693498191436174e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-9.9999982118608047696e-1, -3.4526693498191436174e-4)}, {FN (exp), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(-1.0000000596046453679e0, -3.4526701729924143584e-4)}, {FN (exp), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-1.0000000596046453679e0, 3.4526701729924143584e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(-9.9999982118608047721e-1, -3.4526693498117957380e-4)}, {FN (exp), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-9.9999982118608047721e-1, 3.4526693498117957380e-4)}, {FN (exp), ARG(5.0e-01,-3.45266983001243932001e-04), RES(1.6487211724286834494e0, -5.6924900763464865323e-4)}, {FN (exp), ARG(5.0e-01,3.45266983001243932001e-04), RES(1.6487211724286834494e0, 5.6924900763464865323e-4)}, {FN (exp), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(6.0653062356058926519e-1, -2.0941500681603265022e-4)}, {FN (exp), ARG(-5.0e-01,3.45266983001243932001e-04), RES(6.0653062356058926519e-1, 2.0941500681603265022e-4)}, {FN (exp), ARG(5.0e-01,1.57045105981189525579e+00), RES(5.6924900763484568894e-4, 1.6487211724286834493e0)}, {FN (exp), ARG(5.0e-01,-1.57045105981189525579e+00), RES(5.6924900763484568894e-4, -1.6487211724286834493e0)}, {FN (exp), ARG(-5.0e-01,1.57045105981189525579e+00), RES(2.0941500681610513560e-4, 6.0653062356058926516e-1)}, {FN (exp), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(2.0941500681610513560e-4, -6.0653062356058926516e-1)}, {FN (exp), ARG(5.0e-01,1.57114159377789786021e+00), RES(-5.6924900763464377883e-4, 1.6487211724286834494e0)}, {FN (exp), ARG(5.0e-01,-1.57114159377789786021e+00), RES(-5.6924900763464377883e-4, -1.6487211724286834494e0)}, {FN (exp), ARG(-5.0e-01,1.57114159377789786021e+00), RES(-2.0941500681603085702e-4, 6.0653062356058926519e-1)}, {FN (exp), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(-2.0941500681603085702e-4, -6.0653062356058926519e-1)}, {FN (exp), ARG(5.0e-01,3.14124738660679181379e+00), RES(-1.6487211724286834493e0, 5.6924900763494664399e-4)}, {FN (exp), ARG(5.0e-01,-3.14124738660679181379e+00), RES(-1.6487211724286834493e0, -5.6924900763494664399e-4)}, {FN (exp), ARG(-5.0e-01,3.14124738660679181379e+00), RES(-6.0653062356058926515e-1, 2.0941500681614227489e-4)}, {FN (exp), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(-6.0653062356058926515e-1, -2.0941500681614227489e-4)}, {FN (exp), ARG(5.0e-01,3.14193792057279441821e+00), RES(-1.6487211724286834494e0, -5.6924900763454282377e-4)}, {FN (exp), ARG(5.0e-01,-3.14193792057279441821e+00), RES(-1.6487211724286834494e0, 5.6924900763454282377e-4)}, {FN (exp), ARG(-5.0e-01,3.14193792057279441821e+00), RES(-6.0653062356058926520e-1, -2.0941500681599371773e-4)}, {FN (exp), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(-6.0653062356058926520e-1, 2.0941500681599371773e-4)}, {FN (exp), ARG(5.0e-01,4.71204371340168837179e+00), RES(-5.6924900763504759905e-4, -1.6487211724286834492e0)}, {FN (exp), ARG(5.0e-01,-4.71204371340168837179e+00), RES(-5.6924900763504759905e-4, 1.6487211724286834492e0)}, {FN (exp), ARG(-5.0e-01,4.71204371340168837179e+00), RES(-2.0941500681617941418e-4, -6.0653062356058926514e-1)}, {FN (exp), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(-2.0941500681617941418e-4, 6.0653062356058926514e-1)}, {FN (exp), ARG(5.0e-01,4.71273424736769097620e+00), RES(5.6924900763444186872e-4, -1.6487211724286834494e0)}, {FN (exp), ARG(5.0e-01,-4.71273424736769097620e+00), RES(5.6924900763444186872e-4, 1.6487211724286834494e0)}, {FN (exp), ARG(-5.0e-01,4.71273424736769097620e+00), RES(2.0941500681595657844e-4, -6.0653062356058926521e-1)}, {FN (exp), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(2.0941500681595657844e-4, 6.0653062356058926521e-1)}, {FN (exp), ARG(5.0e-01,6.28284004019658492979e+00), RES(1.6487211724286834492e0, -5.6924900763514855410e-4)}, {FN (exp), ARG(5.0e-01,-6.28284004019658492979e+00), RES(1.6487211724286834492e0, 5.6924900763514855410e-4)}, {FN (exp), ARG(-5.0e-01,6.28284004019658492979e+00), RES(6.0653062356058926512e-1, -2.0941500681621655347e-4)}, {FN (exp), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(6.0653062356058926512e-1, 2.0941500681621655347e-4)}, {FN (exp), ARG(5.0e-01,6.28353057416258753420e+00), RES(1.6487211724286834495e0, 5.6924900763434091366e-4)}, {FN (exp), ARG(5.0e-01,-6.28353057416258753420e+00), RES(1.6487211724286834495e0, -5.6924900763434091366e-4)}, {FN (exp), ARG(-5.0e-01,6.28353057416258753420e+00), RES(6.0653062356058926523e-1, 2.0941500681591943916e-4)}, {FN (exp), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(6.0653062356058926523e-1, -2.0941500681591943916e-4)}, {FN (exp), ARG(5.0e-01,9.42443269378637893396e+00), RES(-1.6487211724286834496e0, 5.6924900763388610565e-4)}, {FN (exp), ARG(5.0e-01,-9.42443269378637893396e+00), RES(-1.6487211724286834496e0, -5.6924900763388610565e-4)}, {FN (exp), ARG(-5.0e-01,9.42443269378637893396e+00), RES(-6.0653062356058926528e-1, 2.0941500681575212464e-4)}, {FN (exp), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(-6.0653062356058926528e-1, -2.0941500681575212464e-4)}, {FN (exp), ARG(5.0e-01,9.42512322775237976202e+00), RES(-1.6487211724286834501e0, -5.6924900763267464498e-4)}, {FN (exp), ARG(5.0e-01,-9.42512322775237976202e+00), RES(-1.6487211724286834501e0, 5.6924900763267464498e-4)}, {FN (exp), ARG(-5.0e-01,9.42512322775237976202e+00), RES(-6.0653062356058926544e-1, -2.0941500681530645317e-4)}, {FN (exp), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(-6.0653062356058926544e-1, 2.0941500681530645317e-4)}, {FN (exp), ARG(1.0e+00,-3.45266983001243932001e-04), RES(2.7182816664368240602e0, -9.3853294721218487636e-4)}, {FN (exp), ARG(1.0e+00,3.45266983001243932001e-04), RES(2.7182816664368240602e0, 9.3853294721218487636e-4)}, {FN (exp), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(3.6787941924411912823e-1, -1.2701662223785390836e-4)}, {FN (exp), ARG(-1.0e+00,3.45266983001243932001e-04), RES(3.6787941924411912823e-1, 1.2701662223785390836e-4)}, {FN (exp), ARG(1.0e+00,1.57045105981189525579e+00), RES(9.3853294721250973333e-4, 2.7182816664368240601e0)}, {FN (exp), ARG(1.0e+00,-1.57045105981189525579e+00), RES(9.3853294721250973333e-4, -2.7182816664368240601e0)}, {FN (exp), ARG(-1.0e+00,1.57045105981189525579e+00), RES(1.2701662223789787297e-4, 3.6787941924411912822e-1)}, {FN (exp), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(1.2701662223789787297e-4, -3.6787941924411912822e-1)}, {FN (exp), ARG(1.0e+00,1.57114159377789786021e+00), RES(-9.3853294721217683983e-4, 2.7182816664368240602e0)}, {FN (exp), ARG(1.0e+00,-1.57114159377789786021e+00), RES(-9.3853294721217683983e-4, -2.7182816664368240602e0)}, {FN (exp), ARG(-1.0e+00,1.57114159377789786021e+00), RES(-1.2701662223785282074e-4, 3.6787941924411912823e-1)}, {FN (exp), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(-1.2701662223785282074e-4, -3.6787941924411912823e-1)}, {FN (exp), ARG(1.0e+00,3.14124738660679181379e+00), RES(-2.718281666436824060e0, 9.3853294721267618008e-4)}, {FN (exp), ARG(1.0e+00,-3.14124738660679181379e+00), RES(-2.718281666436824060e0, -9.3853294721267618008e-4)}, {FN (exp), ARG(-1.0e+00,3.14124738660679181379e+00), RES(-3.6787941924411912821e-1, 1.2701662223792039909e-4)}, {FN (exp), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(-3.6787941924411912821e-1, -1.2701662223792039909e-4)}, {FN (exp), ARG(1.0e+00,3.14193792057279441821e+00), RES(-2.7182816664368240603e0, -9.3853294721201039309e-4)}, {FN (exp), ARG(1.0e+00,-3.14193792057279441821e+00), RES(-2.7182816664368240603e0, 9.3853294721201039309e-4)}, {FN (exp), ARG(-1.0e+00,3.14193792057279441821e+00), RES(-3.6787941924411912824e-1, -1.2701662223783029462e-4)}, {FN (exp), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(-3.6787941924411912824e-1, 1.2701662223783029462e-4)}, {FN (exp), ARG(1.0e+00,4.71204371340168837179e+00), RES(-9.3853294721284262682e-4, -2.718281666436824060e0)}, {FN (exp), ARG(1.0e+00,-4.71204371340168837179e+00), RES(-9.3853294721284262682e-4, 2.718281666436824060e0)}, {FN (exp), ARG(-1.0e+00,4.71204371340168837179e+00), RES(-1.2701662223794292521e-4, -3.6787941924411912820e-1)}, {FN (exp), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(-1.2701662223794292521e-4, 3.6787941924411912820e-1)}, {FN (exp), ARG(1.0e+00,4.71273424736769097620e+00), RES(9.3853294721184394634e-4, -2.7182816664368240603e0)}, {FN (exp), ARG(1.0e+00,-4.71273424736769097620e+00), RES(9.3853294721184394634e-4, 2.7182816664368240603e0)}, {FN (exp), ARG(-1.0e+00,4.71273424736769097620e+00), RES(1.2701662223780776850e-4, -3.6787941924411912825e-1)}, {FN (exp), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(1.2701662223780776850e-4, 3.6787941924411912825e-1)}, {FN (exp), ARG(1.0e+00,6.28284004019658492979e+00), RES(2.7182816664368240599e0, -9.3853294721300907357e-4)}, {FN (exp), ARG(1.0e+00,-6.28284004019658492979e+00), RES(2.7182816664368240599e0, 9.3853294721300907357e-4)}, {FN (exp), ARG(-1.0e+00,6.28284004019658492979e+00), RES(3.6787941924411912819e-1, -1.2701662223796545132e-4)}, {FN (exp), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(3.6787941924411912819e-1, 1.2701662223796545132e-4)}, {FN (exp), ARG(1.0e+00,6.28353057416258753420e+00), RES(2.7182816664368240604e0, 9.3853294721167749959e-4)}, {FN (exp), ARG(1.0e+00,-6.28353057416258753420e+00), RES(2.7182816664368240604e0, -9.3853294721167749959e-4)}, {FN (exp), ARG(-1.0e+00,6.28353057416258753420e+00), RES(3.6787941924411912825e-1, 1.2701662223778524238e-4)}, {FN (exp), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(3.6787941924411912825e-1, -1.2701662223778524238e-4)}, {FN (exp), ARG(1.0e+00,9.42443269378637893396e+00), RES(-2.7182816664368240606e0, 9.3853294721092764795e-4)}, {FN (exp), ARG(1.0e+00,-9.42443269378637893396e+00), RES(-2.7182816664368240606e0, -9.3853294721092764795e-4)}, {FN (exp), ARG(-1.0e+00,9.42443269378637893396e+00), RES(-3.6787941924411912829e-1, 1.270166222376837610e-4)}, {FN (exp), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(-3.6787941924411912829e-1, -1.270166222376837610e-4)}, {FN (exp), ARG(1.0e+00,9.42512322775237976202e+00), RES(-2.7182816664368240613e0, -9.3853294720893028698e-4)}, {FN (exp), ARG(1.0e+00,-9.42512322775237976202e+00), RES(-2.7182816664368240613e0, 9.3853294720893028698e-4)}, {FN (exp), ARG(-1.0e+00,9.42512322775237976202e+00), RES(-3.6787941924411912838e-1, -1.2701662223741344759e-4)}, {FN (exp), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(-3.6787941924411912838e-1, 1.2701662223741344759e-4)}, {FN (exp), ARG(2.0e+00,-3.45266983001243932001e-04), RES(7.3890556585085906002e0, -2.5511970558169944872e-3)}, {FN (exp), ARG(2.0e+00,3.45266983001243932001e-04), RES(7.3890556585085906002e0, 2.5511970558169944872e-3)}, {FN (exp), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(1.3533527517000128913e-1, -4.6726804008345889445e-5)}, {FN (exp), ARG(-2.0e+00,3.45266983001243932001e-04), RES(1.3533527517000128913e-1, 4.6726804008345889445e-5)}, {FN (exp), ARG(2.0e+00,1.57045105981189525579e+00), RES(2.551197055817877540e-3, 7.3890556585085905999e0)}, {FN (exp), ARG(2.0e+00,-1.57045105981189525579e+00), RES(2.551197055817877540e-3, -7.3890556585085905999e0)}, {FN (exp), ARG(-2.0e+00,1.57045105981189525579e+00), RES(4.6726804008362063122e-5, 1.3533527517000128913e-1)}, {FN (exp), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(4.6726804008362063122e-5, -1.3533527517000128913e-1)}, {FN (exp), ARG(2.0e+00,1.57114159377789786021e+00), RES(-2.5511970558169726417e-3, 7.3890556585085906002e0)}, {FN (exp), ARG(2.0e+00,-1.57114159377789786021e+00), RES(-2.5511970558169726417e-3, -7.3890556585085906002e0)}, {FN (exp), ARG(-2.0e+00,1.57114159377789786021e+00), RES(-4.6726804008345489330e-5, 1.3533527517000128913e-1)}, {FN (exp), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(-4.6726804008345489330e-5, -1.3533527517000128913e-1)}, {FN (exp), ARG(2.0e+00,3.14124738660679181379e+00), RES(-7.3890556585085905998e0, 2.5511970558183299892e-3)}, {FN (exp), ARG(2.0e+00,-3.14124738660679181379e+00), RES(-7.3890556585085905998e0, -2.5511970558183299892e-3)}, {FN (exp), ARG(-2.0e+00,3.14124738660679181379e+00), RES(-1.3533527517000128912e-1, 4.6726804008370350017e-5)}, {FN (exp), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(-1.3533527517000128912e-1, -4.6726804008370350017e-5)}, {FN (exp), ARG(2.0e+00,3.14193792057279441821e+00), RES(-7.3890556585085906004e0, -2.5511970558165201925e-3)}, {FN (exp), ARG(2.0e+00,-3.14193792057279441821e+00), RES(-7.3890556585085906004e0, 2.5511970558165201925e-3)}, {FN (exp), ARG(-2.0e+00,3.14193792057279441821e+00), RES(-1.3533527517000128914e-1, -4.6726804008337202435e-5)}, {FN (exp), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(-1.3533527517000128914e-1, 4.6726804008337202435e-5)}, {FN (exp), ARG(2.0e+00,4.71204371340168837179e+00), RES(-2.5511970558187824384e-3, -7.3890556585085905996e0)}, {FN (exp), ARG(2.0e+00,-4.71204371340168837179e+00), RES(-2.5511970558187824384e-3, 7.3890556585085905996e0)}, {FN (exp), ARG(-2.0e+00,4.71204371340168837179e+00), RES(-4.6726804008378636913e-5, -1.3533527517000128912e-1)}, {FN (exp), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(-4.6726804008378636913e-5, 1.3533527517000128912e-1)}, {FN (exp), ARG(2.0e+00,4.71273424736769097620e+00), RES(2.5511970558160677434e-3, -7.3890556585085906006e0)}, {FN (exp), ARG(2.0e+00,-4.71273424736769097620e+00), RES(2.5511970558160677434e-3, 7.3890556585085906006e0)}, {FN (exp), ARG(-2.0e+00,4.71273424736769097620e+00), RES(4.6726804008328915539e-5, -1.3533527517000128914e-1)}, {FN (exp), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(4.6726804008328915539e-5, 1.3533527517000128914e-1)}, {FN (exp), ARG(2.0e+00,6.28284004019658492979e+00), RES(7.3890556585085905995e0, -2.5511970558192348875e-3)}, {FN (exp), ARG(2.0e+00,-6.28284004019658492979e+00), RES(7.3890556585085905995e0, 2.5511970558192348875e-3)}, {FN (exp), ARG(-2.0e+00,6.28284004019658492979e+00), RES(1.3533527517000128912e-1, -4.6726804008386923808e-5)}, {FN (exp), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(1.3533527517000128912e-1, 4.6726804008386923808e-5)}, {FN (exp), ARG(2.0e+00,6.28353057416258753420e+00), RES(7.3890556585085906007e0, 2.5511970558156152942e-3)}, {FN (exp), ARG(2.0e+00,-6.28353057416258753420e+00), RES(7.3890556585085906007e0, -2.5511970558156152942e-3)}, {FN (exp), ARG(-2.0e+00,6.28353057416258753420e+00), RES(1.3533527517000128914e-1, 4.6726804008320628644e-5)}, {FN (exp), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(1.3533527517000128914e-1, -4.6726804008320628644e-5)}, {FN (exp), ARG(2.0e+00,9.42443269378637893396e+00), RES(-7.3890556585085906014e0, 2.5511970558135769861e-3)}, {FN (exp), ARG(2.0e+00,-9.42443269378637893396e+00), RES(-7.3890556585085906014e0, -2.5511970558135769861e-3)}, {FN (exp), ARG(-2.0e+00,9.42443269378637893396e+00), RES(-1.3533527517000128916e-1, 4.6726804008283295729e-5)}, {FN (exp), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(-1.3533527517000128916e-1, -4.6726804008283295729e-5)}, {FN (exp), ARG(2.0e+00,9.42512322775237976202e+00), RES(-7.3890556585085906033e0, -2.5511970558081475961e-3)}, {FN (exp), ARG(2.0e+00,-9.42512322775237976202e+00), RES(-7.3890556585085906033e0, 2.5511970558081475961e-3)}, {FN (exp), ARG(-2.0e+00,9.42512322775237976202e+00), RES(-1.3533527517000128919e-1, -4.6726804008183852982e-5)}, {FN (exp), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(-1.3533527517000128919e-1, 4.6726804008183852982e-5)}, {FN (sin), ARG(-3.45266983001243932001e-04,0.0e+00), RES(-3.4526697614140534807e-4, 0.0)}, {FN (sin), ARG(3.45266983001243932001e-04,0.0e+00), RES(3.4526697614140534807e-4, 0.0)}, {FN (sin), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(-3.4526697614140780134e-4, 1.1920928244535424533e-7)}, {FN (sin), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(-3.4526697614140780134e-4, -1.1920928244535424533e-7)}, {FN (sin), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(3.4526697614140780134e-4, 1.1920928244535424533e-7)}, {FN (sin), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(3.4526697614140780134e-4, -1.1920928244535424533e-7)}, {FN (sin), ARG(-3.45266983001243932001e-04,5.0e-01), RES(-3.8933200722534065172e-4, 5.2109527443404709209e-1)}, {FN (sin), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(-3.8933200722534065172e-4, -5.2109527443404709209e-1)}, {FN (sin), ARG(3.45266983001243932001e-04,5.0e-01), RES(3.8933200722534065172e-4, 5.2109527443404709209e-1)}, {FN (sin), ARG(3.45266983001243932001e-04,-5.0e-01), RES(3.8933200722534065172e-4, -5.2109527443404709209e-1)}, {FN (sin), ARG(-3.45266983001243932001e-04,1.0e+00), RES(-5.3277478472501939236e-4, 1.1752011235963524660e0)}, {FN (sin), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(-5.3277478472501939236e-4, -1.1752011235963524660e0)}, {FN (sin), ARG(3.45266983001243932001e-04,1.0e+00), RES(5.3277478472501939236e-4, 1.1752011235963524660e0)}, {FN (sin), ARG(3.45266983001243932001e-04,-1.0e+00), RES(5.3277478472501939236e-4, -1.1752011235963524660e0)}, {FN (sin), ARG(-3.45266983001243932001e-04,2.0e+00), RES(-1.2989619299126701883e-3, 3.6268601916692946556e0)}, {FN (sin), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(-1.2989619299126701883e-3, -3.6268601916692946556e0)}, {FN (sin), ARG(3.45266983001243932001e-04,2.0e+00), RES(1.2989619299126701883e-3, 3.6268601916692946556e0)}, {FN (sin), ARG(3.45266983001243932001e-04,-2.0e+00), RES(1.2989619299126701883e-3, -3.6268601916692946556e0)}, {FN (sin), ARG(1.57045105981189525579e+00,0.0e+00), RES(9.9999994039535581669e-1, 0.0)}, {FN (sin), ARG(-1.57045105981189525579e+00,0.0e+00), RES(-9.9999994039535581669e-1, 0.0)}, {FN (sin), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(9.9999994039536292211e-1, 4.1159030931177815679e-11)}, {FN (sin), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(9.9999994039536292211e-1, -4.1159030931177815679e-11)}, {FN (sin), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(-9.9999994039536292211e-1, 4.1159030931177815679e-11)}, {FN (sin), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(-9.9999994039536292211e-1, -4.1159030931177815679e-11)}, {FN (sin), ARG(1.57045105981189525579e+00,5.0e-01), RES(1.1276258979946363572e0, 1.7991700040937027667e-4)}, {FN (sin), ARG(1.57045105981189525579e+00,-5.0e-01), RES(1.1276258979946363572e0, -1.7991700040937027667e-4)}, {FN (sin), ARG(-1.57045105981189525579e+00,5.0e-01), RES(-1.1276258979946363572e0, 1.7991700040937027667e-4)}, {FN (sin), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(-1.1276258979946363572e0, -1.7991700040937027667e-4)}, {FN (sin), ARG(1.57045105981189525579e+00,1.0e+00), RES(1.5430805428404715942e0, 4.0575816248730593018e-4)}, {FN (sin), ARG(1.57045105981189525579e+00,-1.0e+00), RES(1.5430805428404715942e0, -4.0575816248730593018e-4)}, {FN (sin), ARG(-1.57045105981189525579e+00,1.0e+00), RES(-1.5430805428404715942e0, 4.0575816248730593018e-4)}, {FN (sin), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(-1.5430805428404715942e0, -4.0575816248730593018e-4)}, {FN (sin), ARG(1.57045105981189525579e+00,2.0e+00), RES(3.7621954668392959445e0, 1.2522351259047577385e-3)}, {FN (sin), ARG(1.57045105981189525579e+00,-2.0e+00), RES(3.7621954668392959445e0, -1.2522351259047577385e-3)}, {FN (sin), ARG(-1.57045105981189525579e+00,2.0e+00), RES(-3.7621954668392959445e0, 1.2522351259047577385e-3)}, {FN (sin), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(-3.7621954668392959445e0, -1.2522351259047577385e-3)}, {FN (sin), ARG(1.57114159377789786021e+00,0.0e+00), RES(9.9999994039535581673e-1, 0.0)}, {FN (sin), ARG(-1.57114159377789786021e+00,0.0e+00), RES(-9.9999994039535581673e-1, 0.0)}, {FN (sin), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(9.9999994039536292216e-1, -4.1159030931163216752e-11)}, {FN (sin), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(9.9999994039536292216e-1, 4.1159030931163216752e-11)}, {FN (sin), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(-9.9999994039536292216e-1, -4.1159030931163216752e-11)}, {FN (sin), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-9.9999994039536292216e-1, 4.1159030931163216752e-11)}, {FN (sin), ARG(1.57114159377789786021e+00,5.0e-01), RES(1.1276258979946363573e0, -1.7991700040930646090e-4)}, {FN (sin), ARG(1.57114159377789786021e+00,-5.0e-01), RES(1.1276258979946363573e0, 1.7991700040930646090e-4)}, {FN (sin), ARG(-1.57114159377789786021e+00,5.0e-01), RES(-1.1276258979946363573e0, -1.7991700040930646090e-4)}, {FN (sin), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(-1.1276258979946363573e0, 1.7991700040930646090e-4)}, {FN (sin), ARG(1.57114159377789786021e+00,1.0e+00), RES(1.5430805428404715942e0, -4.0575816248716200955e-4)}, {FN (sin), ARG(1.57114159377789786021e+00,-1.0e+00), RES(1.5430805428404715942e0, 4.0575816248716200955e-4)}, {FN (sin), ARG(-1.57114159377789786021e+00,1.0e+00), RES(-1.5430805428404715942e0, -4.0575816248716200955e-4)}, {FN (sin), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(-1.5430805428404715942e0, 4.0575816248716200955e-4)}, {FN (sin), ARG(1.57114159377789786021e+00,2.0e+00), RES(3.7621954668392959447e0, -1.2522351259043135762e-3)}, {FN (sin), ARG(1.57114159377789786021e+00,-2.0e+00), RES(3.7621954668392959447e0, 1.2522351259043135762e-3)}, {FN (sin), ARG(-1.57114159377789786021e+00,2.0e+00), RES(-3.7621954668392959447e0, -1.2522351259043135762e-3)}, {FN (sin), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(-3.7621954668392959447e0, 1.2522351259043135762e-3)}, {FN (sin), ARG(3.14124738660679181379e+00,0.0e+00), RES(3.4526697614158608860e-4, 0.0)}, {FN (sin), ARG(-3.14124738660679181379e+00,0.0e+00), RES(-3.4526697614158608860e-4, 0.0)}, {FN (sin), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(3.4526697614158854187e-4, -1.1920928244535424532e-7)}, {FN (sin), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(3.4526697614158854187e-4, 1.1920928244535424532e-7)}, {FN (sin), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(-3.4526697614158854187e-4, -1.1920928244535424532e-7)}, {FN (sin), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-3.4526697614158854187e-4, 1.1920928244535424532e-7)}, {FN (sin), ARG(3.14124738660679181379e+00,5.0e-01), RES(3.8933200722554445944e-4, -5.2109527443404709206e-1)}, {FN (sin), ARG(3.14124738660679181379e+00,-5.0e-01), RES(3.8933200722554445944e-4, 5.2109527443404709206e-1)}, {FN (sin), ARG(-3.14124738660679181379e+00,5.0e-01), RES(-3.8933200722554445944e-4, -5.2109527443404709206e-1)}, {FN (sin), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(-3.8933200722554445944e-4, 5.2109527443404709206e-1)}, {FN (sin), ARG(3.14124738660679181379e+00,1.0e+00), RES(5.3277478472529828958e-4, -1.1752011235963524659e0)}, {FN (sin), ARG(3.14124738660679181379e+00,-1.0e+00), RES(5.3277478472529828958e-4, 1.1752011235963524659e0)}, {FN (sin), ARG(-3.14124738660679181379e+00,1.0e+00), RES(-5.3277478472529828958e-4, -1.1752011235963524659e0)}, {FN (sin), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(-5.3277478472529828958e-4, 1.1752011235963524659e0)}, {FN (sin), ARG(3.14124738660679181379e+00,2.0e+00), RES(1.2989619299133501696e-3, -3.6268601916692946553e0)}, {FN (sin), ARG(3.14124738660679181379e+00,-2.0e+00), RES(1.2989619299133501696e-3, 3.6268601916692946553e0)}, {FN (sin), ARG(-3.14124738660679181379e+00,2.0e+00), RES(-1.2989619299133501696e-3, -3.6268601916692946553e0)}, {FN (sin), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(-1.2989619299133501696e-3, 3.6268601916692946553e0)}, {FN (sin), ARG(3.14193792057279441821e+00,0.0e+00), RES(-3.4526697614134115926e-4, 0.0)}, {FN (sin), ARG(-3.14193792057279441821e+00,0.0e+00), RES(3.4526697614134115926e-4, 0.0)}, {FN (sin), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(-3.4526697614134361253e-4, -1.1920928244535424533e-7)}, {FN (sin), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-3.4526697614134361253e-4, 1.1920928244535424533e-7)}, {FN (sin), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(3.4526697614134361253e-4, -1.1920928244535424533e-7)}, {FN (sin), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(3.4526697614134361253e-4, 1.1920928244535424533e-7)}, {FN (sin), ARG(3.14193792057279441821e+00,5.0e-01), RES(-3.8933200722526827075e-4, -5.2109527443404709211e-1)}, {FN (sin), ARG(3.14193792057279441821e+00,-5.0e-01), RES(-3.8933200722526827075e-4, 5.2109527443404709211e-1)}, {FN (sin), ARG(-3.14193792057279441821e+00,5.0e-01), RES(3.8933200722526827075e-4, -5.2109527443404709211e-1)}, {FN (sin), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(3.8933200722526827075e-4, 5.2109527443404709211e-1)}, {FN (sin), ARG(3.14193792057279441821e+00,1.0e+00), RES(-5.3277478472492034385e-4, -1.1752011235963524660e0)}, {FN (sin), ARG(3.14193792057279441821e+00,-1.0e+00), RES(-5.3277478472492034385e-4, 1.1752011235963524660e0)}, {FN (sin), ARG(-3.14193792057279441821e+00,1.0e+00), RES(5.3277478472492034385e-4, -1.1752011235963524660e0)}, {FN (sin), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(5.3277478472492034385e-4, 1.1752011235963524660e0)}, {FN (sin), ARG(3.14193792057279441821e+00,2.0e+00), RES(-1.2989619299124286975e-3, -3.6268601916692946556e0)}, {FN (sin), ARG(3.14193792057279441821e+00,-2.0e+00), RES(-1.2989619299124286975e-3, 3.6268601916692946556e0)}, {FN (sin), ARG(-3.14193792057279441821e+00,2.0e+00), RES(1.2989619299124286975e-3, -3.6268601916692946556e0)}, {FN (sin), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(1.2989619299124286975e-3, 3.6268601916692946556e0)}, {FN (sin), ARG(4.71204371340168837179e+00,0.0e+00), RES(-9.9999994039535581664e-1, 0.0)}, {FN (sin), ARG(-4.71204371340168837179e+00,0.0e+00), RES(9.9999994039535581664e-1, 0.0)}, {FN (sin), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(-9.9999994039536292207e-1, -4.1159030931192414605e-11)}, {FN (sin), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-9.9999994039536292207e-1, 4.1159030931192414605e-11)}, {FN (sin), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(9.9999994039536292207e-1, -4.1159030931192414605e-11)}, {FN (sin), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(9.9999994039536292207e-1, 4.1159030931192414605e-11)}, {FN (sin), ARG(4.71204371340168837179e+00,5.0e-01), RES(-1.1276258979946363572e0, -1.7991700040943409243e-4)}, {FN (sin), ARG(4.71204371340168837179e+00,-5.0e-01), RES(-1.1276258979946363572e0, 1.7991700040943409243e-4)}, {FN (sin), ARG(-4.71204371340168837179e+00,5.0e-01), RES(1.1276258979946363572e0, -1.7991700040943409243e-4)}, {FN (sin), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(1.1276258979946363572e0, 1.7991700040943409243e-4)}, {FN (sin), ARG(4.71204371340168837179e+00,1.0e+00), RES(-1.5430805428404715941e0, -4.0575816248744985081e-4)}, {FN (sin), ARG(4.71204371340168837179e+00,-1.0e+00), RES(-1.5430805428404715941e0, 4.0575816248744985081e-4)}, {FN (sin), ARG(-4.71204371340168837179e+00,1.0e+00), RES(1.5430805428404715941e0, -4.0575816248744985081e-4)}, {FN (sin), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(1.5430805428404715941e0, 4.0575816248744985081e-4)}, {FN (sin), ARG(4.71204371340168837179e+00,2.0e+00), RES(-3.7621954668392959444e0, -1.2522351259052019007e-3)}, {FN (sin), ARG(4.71204371340168837179e+00,-2.0e+00), RES(-3.7621954668392959444e0, 1.2522351259052019007e-3)}, {FN (sin), ARG(-4.71204371340168837179e+00,2.0e+00), RES(3.7621954668392959444e0, -1.2522351259052019007e-3)}, {FN (sin), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(3.7621954668392959444e0, 1.2522351259052019007e-3)}, {FN (sin), ARG(4.71273424736769097620e+00,0.0e+00), RES(-9.9999994039535581677e-1, 0.0)}, {FN (sin), ARG(-4.71273424736769097620e+00,0.0e+00), RES(9.9999994039535581677e-1, 0.0)}, {FN (sin), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(-9.9999994039536292220e-1, 4.1159030931148617825e-11)}, {FN (sin), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(-9.9999994039536292220e-1, -4.1159030931148617825e-11)}, {FN (sin), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(9.9999994039536292220e-1, 4.1159030931148617825e-11)}, {FN (sin), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(9.9999994039536292220e-1, -4.1159030931148617825e-11)}, {FN (sin), ARG(4.71273424736769097620e+00,5.0e-01), RES(-1.1276258979946363573e0, 1.7991700040924264514e-4)}, {FN (sin), ARG(4.71273424736769097620e+00,-5.0e-01), RES(-1.1276258979946363573e0, -1.7991700040924264514e-4)}, {FN (sin), ARG(-4.71273424736769097620e+00,5.0e-01), RES(1.1276258979946363573e0, 1.7991700040924264514e-4)}, {FN (sin), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(1.1276258979946363573e0, -1.7991700040924264514e-4)}, {FN (sin), ARG(4.71273424736769097620e+00,1.0e+00), RES(-1.5430805428404715943e0, 4.0575816248701808892e-4)}, {FN (sin), ARG(4.71273424736769097620e+00,-1.0e+00), RES(-1.5430805428404715943e0, -4.0575816248701808892e-4)}, {FN (sin), ARG(-4.71273424736769097620e+00,1.0e+00), RES(1.5430805428404715943e0, 4.0575816248701808892e-4)}, {FN (sin), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(1.5430805428404715943e0, -4.0575816248701808892e-4)}, {FN (sin), ARG(4.71273424736769097620e+00,2.0e+00), RES(-3.7621954668392959448e0, 1.2522351259038694139e-3)}, {FN (sin), ARG(4.71273424736769097620e+00,-2.0e+00), RES(-3.7621954668392959448e0, -1.2522351259038694139e-3)}, {FN (sin), ARG(-4.71273424736769097620e+00,2.0e+00), RES(3.7621954668392959448e0, 1.2522351259038694139e-3)}, {FN (sin), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(3.7621954668392959448e0, -1.2522351259038694139e-3)}, {FN (sin), ARG(6.28284004019658492979e+00,0.0e+00), RES(-3.4526697614170855328e-4, 0.0)}, {FN (sin), ARG(-6.28284004019658492979e+00,0.0e+00), RES(3.4526697614170855328e-4, 0.0)}, {FN (sin), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(-3.4526697614171100655e-4, 1.1920928244535424532e-7)}, {FN (sin), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(-3.4526697614171100655e-4, -1.1920928244535424532e-7)}, {FN (sin), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(3.4526697614171100655e-4, 1.1920928244535424532e-7)}, {FN (sin), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(3.4526697614171100655e-4, -1.1920928244535424532e-7)}, {FN (sin), ARG(6.28284004019658492979e+00,5.0e-01), RES(-3.8933200722568255379e-4, 5.2109527443404709204e-1)}, {FN (sin), ARG(6.28284004019658492979e+00,-5.0e-01), RES(-3.8933200722568255379e-4, -5.2109527443404709204e-1)}, {FN (sin), ARG(-6.28284004019658492979e+00,5.0e-01), RES(3.8933200722568255379e-4, 5.2109527443404709204e-1)}, {FN (sin), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(3.8933200722568255379e-4, -5.2109527443404709204e-1)}, {FN (sin), ARG(6.28284004019658492979e+00,1.0e+00), RES(-5.3277478472548726245e-4, 1.1752011235963524659e0)}, {FN (sin), ARG(6.28284004019658492979e+00,-1.0e+00), RES(-5.3277478472548726245e-4, -1.1752011235963524659e0)}, {FN (sin), ARG(-6.28284004019658492979e+00,1.0e+00), RES(5.3277478472548726245e-4, 1.1752011235963524659e0)}, {FN (sin), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(5.3277478472548726245e-4, -1.1752011235963524659e0)}, {FN (sin), ARG(6.28284004019658492979e+00,2.0e+00), RES(-1.2989619299138109057e-3, 3.6268601916692946552e0)}, {FN (sin), ARG(6.28284004019658492979e+00,-2.0e+00), RES(-1.2989619299138109057e-3, -3.6268601916692946552e0)}, {FN (sin), ARG(-6.28284004019658492979e+00,2.0e+00), RES(1.2989619299138109057e-3, 3.6268601916692946552e0)}, {FN (sin), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(1.2989619299138109057e-3, -3.6268601916692946552e0)}, {FN (sin), ARG(6.28353057416258753420e+00,0.0e+00), RES(3.4526697614121869459e-4, 0.0)}, {FN (sin), ARG(-6.28353057416258753420e+00,0.0e+00), RES(-3.4526697614121869459e-4, 0.0)}, {FN (sin), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(3.4526697614122114786e-4, 1.1920928244535424534e-7)}, {FN (sin), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(3.4526697614122114786e-4, -1.1920928244535424534e-7)}, {FN (sin), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(-3.4526697614122114786e-4, 1.1920928244535424534e-7)}, {FN (sin), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(-3.4526697614122114786e-4, -1.1920928244535424534e-7)}, {FN (sin), ARG(6.28353057416258753420e+00,5.0e-01), RES(3.8933200722513017641e-4, 5.2109527443404709213e-1)}, {FN (sin), ARG(6.28353057416258753420e+00,-5.0e-01), RES(3.8933200722513017641e-4, -5.2109527443404709213e-1)}, {FN (sin), ARG(-6.28353057416258753420e+00,5.0e-01), RES(-3.8933200722513017641e-4, 5.2109527443404709213e-1)}, {FN (sin), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(-3.8933200722513017641e-4, -5.2109527443404709213e-1)}, {FN (sin), ARG(6.28353057416258753420e+00,1.0e+00), RES(5.3277478472473137099e-4, 1.1752011235963524661e0)}, {FN (sin), ARG(6.28353057416258753420e+00,-1.0e+00), RES(5.3277478472473137099e-4, -1.1752011235963524661e0)}, {FN (sin), ARG(-6.28353057416258753420e+00,1.0e+00), RES(-5.3277478472473137099e-4, 1.1752011235963524661e0)}, {FN (sin), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(-5.3277478472473137099e-4, -1.1752011235963524661e0)}, {FN (sin), ARG(6.28353057416258753420e+00,2.0e+00), RES(1.2989619299119679614e-3, 3.6268601916692946558e0)}, {FN (sin), ARG(6.28353057416258753420e+00,-2.0e+00), RES(1.2989619299119679614e-3, -3.6268601916692946558e0)}, {FN (sin), ARG(-6.28353057416258753420e+00,2.0e+00), RES(-1.2989619299119679614e-3, 3.6268601916692946558e0)}, {FN (sin), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(-1.2989619299119679614e-3, -3.6268601916692946558e0)}, {FN (sin), ARG(9.42443269378637893396e+00,0.0e+00), RES(3.4526697614094283958e-4, 0.0)}, {FN (sin), ARG(-9.42443269378637893396e+00,0.0e+00), RES(-3.4526697614094283958e-4, 0.0)}, {FN (sin), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(3.4526697614094529285e-4, -1.1920928244535424535e-7)}, {FN (sin), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(3.4526697614094529285e-4, 1.1920928244535424535e-7)}, {FN (sin), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(-3.4526697614094529285e-4, -1.1920928244535424535e-7)}, {FN (sin), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-3.4526697614094529285e-4, 1.1920928244535424535e-7)}, {FN (sin), ARG(9.42443269378637893396e+00,5.0e-01), RES(3.8933200722481911514e-4, -5.2109527443404709218e-1)}, {FN (sin), ARG(9.42443269378637893396e+00,-5.0e-01), RES(3.8933200722481911514e-4, 5.2109527443404709218e-1)}, {FN (sin), ARG(-9.42443269378637893396e+00,5.0e-01), RES(-3.8933200722481911514e-4, -5.2109527443404709218e-1)}, {FN (sin), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(-3.8933200722481911514e-4, 5.2109527443404709218e-1)}, {FN (sin), ARG(9.42443269378637893396e+00,1.0e+00), RES(5.3277478472430570447e-4, -1.1752011235963524662e0)}, {FN (sin), ARG(9.42443269378637893396e+00,-1.0e+00), RES(5.3277478472430570447e-4, 1.1752011235963524662e0)}, {FN (sin), ARG(-9.42443269378637893396e+00,1.0e+00), RES(-5.3277478472430570447e-4, -1.1752011235963524662e0)}, {FN (sin), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(-5.3277478472430570447e-4, 1.1752011235963524662e0)}, {FN (sin), ARG(9.42443269378637893396e+00,2.0e+00), RES(1.2989619299109301409e-3, -3.6268601916692946561e0)}, {FN (sin), ARG(9.42443269378637893396e+00,-2.0e+00), RES(1.2989619299109301409e-3, 3.6268601916692946561e0)}, {FN (sin), ARG(-9.42443269378637893396e+00,2.0e+00), RES(-1.2989619299109301409e-3, -3.6268601916692946561e0)}, {FN (sin), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(-1.2989619299109301409e-3, 3.6268601916692946561e0)}, {FN (sin), ARG(9.42512322775237976202e+00,0.0e+00), RES(-3.4526697614020805155e-4, 0.0)}, {FN (sin), ARG(-9.42512322775237976202e+00,0.0e+00), RES(3.4526697614020805155e-4, 0.0)}, {FN (sin), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(-3.4526697614021050482e-4, -1.1920928244535424538e-7)}, {FN (sin), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-3.4526697614021050482e-4, 1.1920928244535424538e-7)}, {FN (sin), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(3.4526697614021050482e-4, -1.1920928244535424538e-7)}, {FN (sin), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(3.4526697614021050482e-4, 1.1920928244535424538e-7)}, {FN (sin), ARG(9.42512322775237976202e+00,5.0e-01), RES(-3.8933200722399054908e-4, -5.2109527443404709231e-1)}, {FN (sin), ARG(9.42512322775237976202e+00,-5.0e-01), RES(-3.8933200722399054908e-4, 5.2109527443404709231e-1)}, {FN (sin), ARG(-9.42512322775237976202e+00,5.0e-01), RES(3.8933200722399054908e-4, -5.2109527443404709231e-1)}, {FN (sin), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(3.8933200722399054908e-4, 5.2109527443404709231e-1)}, {FN (sin), ARG(9.42512322775237976202e+00,1.0e+00), RES(-5.3277478472317186729e-4, -1.1752011235963524665e0)}, {FN (sin), ARG(9.42512322775237976202e+00,-1.0e+00), RES(-5.3277478472317186729e-4, 1.1752011235963524665e0)}, {FN (sin), ARG(-9.42512322775237976202e+00,1.0e+00), RES(5.3277478472317186729e-4, -1.1752011235963524665e0)}, {FN (sin), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(5.3277478472317186729e-4, 1.1752011235963524665e0)}, {FN (sin), ARG(9.42512322775237976202e+00,2.0e+00), RES(-1.2989619299081657245e-3, -3.6268601916692946571e0)}, {FN (sin), ARG(9.42512322775237976202e+00,-2.0e+00), RES(-1.2989619299081657245e-3, 3.6268601916692946571e0)}, {FN (sin), ARG(-9.42512322775237976202e+00,2.0e+00), RES(1.2989619299081657245e-3, -3.6268601916692946571e0)}, {FN (sin), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(1.2989619299081657245e-3, 3.6268601916692946571e0)}, {FN (cos), ARG(-3.45266983001243932001e-04,0.0e+00), RES(9.9999994039535581673e-1, 0.0)}, {FN (cos), ARG(3.45266983001243932001e-04,0.0e+00), RES(9.9999994039535581673e-1, 0.0)}, {FN (cos), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(9.9999994039536292216e-1, 4.1159030931163569191e-11)}, {FN (cos), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(9.9999994039536292216e-1, -4.1159030931163569191e-11)}, {FN (cos), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(9.9999994039536292216e-1, -4.1159030931163569191e-11)}, {FN (cos), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(9.9999994039536292216e-1, 4.1159030931163569191e-11)}, {FN (cos), ARG(-3.45266983001243932001e-04,5.0e-01), RES(1.1276258979946363573e0, 1.7991700040930800151e-4)}, {FN (cos), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(1.1276258979946363573e0, -1.7991700040930800151e-4)}, {FN (cos), ARG(3.45266983001243932001e-04,5.0e-01), RES(1.1276258979946363573e0, -1.7991700040930800151e-4)}, {FN (cos), ARG(3.45266983001243932001e-04,-5.0e-01), RES(1.1276258979946363573e0, 1.7991700040930800151e-4)}, {FN (cos), ARG(-3.45266983001243932001e-04,1.0e+00), RES(1.5430805428404715942e0, 4.057581624871654840e-4)}, {FN (cos), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(1.5430805428404715942e0, -4.057581624871654840e-4)}, {FN (cos), ARG(3.45266983001243932001e-04,1.0e+00), RES(1.5430805428404715942e0, -4.057581624871654840e-4)}, {FN (cos), ARG(3.45266983001243932001e-04,-1.0e+00), RES(1.5430805428404715942e0, 4.057581624871654840e-4)}, {FN (cos), ARG(-3.45266983001243932001e-04,2.0e+00), RES(3.7621954668392959447e0, 1.2522351259043242989e-3)}, {FN (cos), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(3.7621954668392959447e0, -1.2522351259043242989e-3)}, {FN (cos), ARG(3.45266983001243932001e-04,2.0e+00), RES(3.7621954668392959447e0, -1.2522351259043242989e-3)}, {FN (cos), ARG(3.45266983001243932001e-04,-2.0e+00), RES(3.7621954668392959447e0, 1.2522351259043242989e-3)}, {FN (cos), ARG(1.57045105981189525579e+00,0.0e+00), RES(3.4526697614152485627e-4, 0.0)}, {FN (cos), ARG(-1.57045105981189525579e+00,0.0e+00), RES(3.4526697614152485627e-4, 0.0)}, {FN (cos), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(3.4526697614152730954e-4, -1.1920928244535424532e-7)}, {FN (cos), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(3.4526697614152730954e-4, 1.1920928244535424532e-7)}, {FN (cos), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(3.4526697614152730954e-4, 1.1920928244535424532e-7)}, {FN (cos), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(3.4526697614152730954e-4, -1.1920928244535424532e-7)}, {FN (cos), ARG(1.57045105981189525579e+00,5.0e-01), RES(3.8933200722547541227e-4, -5.2109527443404709207e-1)}, {FN (cos), ARG(1.57045105981189525579e+00,-5.0e-01), RES(3.8933200722547541227e-4, 5.2109527443404709207e-1)}, {FN (cos), ARG(-1.57045105981189525579e+00,5.0e-01), RES(3.8933200722547541227e-4, 5.2109527443404709207e-1)}, {FN (cos), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(3.8933200722547541227e-4, -5.2109527443404709207e-1)}, {FN (cos), ARG(1.57045105981189525579e+00,1.0e+00), RES(5.3277478472520380315e-4, -1.1752011235963524659e0)}, {FN (cos), ARG(1.57045105981189525579e+00,-1.0e+00), RES(5.3277478472520380315e-4, 1.1752011235963524659e0)}, {FN (cos), ARG(-1.57045105981189525579e+00,1.0e+00), RES(5.3277478472520380315e-4, 1.1752011235963524659e0)}, {FN (cos), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(5.3277478472520380315e-4, -1.1752011235963524659e0)}, {FN (cos), ARG(1.57045105981189525579e+00,2.0e+00), RES(1.2989619299131198016e-3, -3.6268601916692946554e0)}, {FN (cos), ARG(1.57045105981189525579e+00,-2.0e+00), RES(1.2989619299131198016e-3, 3.6268601916692946554e0)}, {FN (cos), ARG(-1.57045105981189525579e+00,2.0e+00), RES(1.2989619299131198016e-3, 3.6268601916692946554e0)}, {FN (cos), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(1.2989619299131198016e-3, -3.6268601916692946554e0)}, {FN (cos), ARG(1.57114159377789786021e+00,0.0e+00), RES(-3.4526697614140239160e-4, 0.0)}, {FN (cos), ARG(-1.57114159377789786021e+00,0.0e+00), RES(-3.4526697614140239160e-4, 0.0)}, {FN (cos), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(-3.4526697614140484486e-4, -1.1920928244535424533e-7)}, {FN (cos), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-3.4526697614140484486e-4, 1.1920928244535424533e-7)}, {FN (cos), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(-3.4526697614140484486e-4, 1.1920928244535424533e-7)}, {FN (cos), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-3.4526697614140484486e-4, -1.1920928244535424533e-7)}, {FN (cos), ARG(1.57114159377789786021e+00,5.0e-01), RES(-3.8933200722533731792e-4, -5.2109527443404709209e-1)}, {FN (cos), ARG(1.57114159377789786021e+00,-5.0e-01), RES(-3.8933200722533731792e-4, 5.2109527443404709209e-1)}, {FN (cos), ARG(-1.57114159377789786021e+00,5.0e-01), RES(-3.8933200722533731792e-4, 5.2109527443404709209e-1)}, {FN (cos), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(-3.8933200722533731792e-4, -5.2109527443404709209e-1)}, {FN (cos), ARG(1.57114159377789786021e+00,1.0e+00), RES(-5.3277478472501483029e-4, -1.1752011235963524660e0)}, {FN (cos), ARG(1.57114159377789786021e+00,-1.0e+00), RES(-5.3277478472501483029e-4, 1.1752011235963524660e0)}, {FN (cos), ARG(-1.57114159377789786021e+00,1.0e+00), RES(-5.3277478472501483029e-4, 1.1752011235963524660e0)}, {FN (cos), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(-5.3277478472501483029e-4, -1.1752011235963524660e0)}, {FN (cos), ARG(1.57114159377789786021e+00,2.0e+00), RES(-1.2989619299126590655e-3, -3.6268601916692946556e0)}, {FN (cos), ARG(1.57114159377789786021e+00,-2.0e+00), RES(-1.2989619299126590655e-3, 3.6268601916692946556e0)}, {FN (cos), ARG(-1.57114159377789786021e+00,2.0e+00), RES(-1.2989619299126590655e-3, 3.6268601916692946556e0)}, {FN (cos), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(-1.2989619299126590655e-3, -3.6268601916692946556e0)}, {FN (cos), ARG(3.14124738660679181379e+00,0.0e+00), RES(-9.9999994039535581667e-1, 0.0)}, {FN (cos), ARG(-3.14124738660679181379e+00,0.0e+00), RES(-9.9999994039535581667e-1, 0.0)}, {FN (cos), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(-9.9999994039536292209e-1, -4.1159030931185115142e-11)}, {FN (cos), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-9.9999994039536292209e-1, 4.1159030931185115142e-11)}, {FN (cos), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(-9.9999994039536292209e-1, 4.1159030931185115142e-11)}, {FN (cos), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-9.9999994039536292209e-1, -4.1159030931185115142e-11)}, {FN (cos), ARG(3.14124738660679181379e+00,5.0e-01), RES(-1.1276258979946363572e0, -1.7991700040940218455e-4)}, {FN (cos), ARG(3.14124738660679181379e+00,-5.0e-01), RES(-1.1276258979946363572e0, 1.7991700040940218455e-4)}, {FN (cos), ARG(-3.14124738660679181379e+00,5.0e-01), RES(-1.1276258979946363572e0, 1.7991700040940218455e-4)}, {FN (cos), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(-1.1276258979946363572e0, -1.7991700040940218455e-4)}, {FN (cos), ARG(3.14124738660679181379e+00,1.0e+00), RES(-1.5430805428404715941e0, -4.0575816248737789049e-4)}, {FN (cos), ARG(3.14124738660679181379e+00,-1.0e+00), RES(-1.5430805428404715941e0, 4.0575816248737789049e-4)}, {FN (cos), ARG(-3.14124738660679181379e+00,1.0e+00), RES(-1.5430805428404715941e0, 4.0575816248737789049e-4)}, {FN (cos), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(-1.5430805428404715941e0, -4.0575816248737789049e-4)}, {FN (cos), ARG(3.14124738660679181379e+00,2.0e+00), RES(-3.7621954668392959444e0, -1.2522351259049798196e-3)}, {FN (cos), ARG(3.14124738660679181379e+00,-2.0e+00), RES(-3.7621954668392959444e0, 1.2522351259049798196e-3)}, {FN (cos), ARG(-3.14124738660679181379e+00,2.0e+00), RES(-3.7621954668392959444e0, 1.2522351259049798196e-3)}, {FN (cos), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(-3.7621954668392959444e0, -1.2522351259049798196e-3)}, {FN (cos), ARG(3.14193792057279441821e+00,0.0e+00), RES(-9.9999994039535581675e-1, 0.0)}, {FN (cos), ARG(-3.14193792057279441821e+00,0.0e+00), RES(-9.9999994039535581675e-1, 0.0)}, {FN (cos), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(-9.9999994039536292218e-1, 4.1159030931155917289e-11)}, {FN (cos), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-9.9999994039536292218e-1, -4.1159030931155917289e-11)}, {FN (cos), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(-9.9999994039536292218e-1, -4.1159030931155917289e-11)}, {FN (cos), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-9.9999994039536292218e-1, 4.1159030931155917289e-11)}, {FN (cos), ARG(3.14193792057279441821e+00,5.0e-01), RES(-1.1276258979946363573e0, 1.7991700040927455302e-4)}, {FN (cos), ARG(3.14193792057279441821e+00,-5.0e-01), RES(-1.1276258979946363573e0, -1.7991700040927455302e-4)}, {FN (cos), ARG(-3.14193792057279441821e+00,5.0e-01), RES(-1.1276258979946363573e0, -1.7991700040927455302e-4)}, {FN (cos), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(-1.1276258979946363573e0, 1.7991700040927455302e-4)}, {FN (cos), ARG(3.14193792057279441821e+00,1.0e+00), RES(-1.5430805428404715943e0, 4.0575816248709004923e-4)}, {FN (cos), ARG(3.14193792057279441821e+00,-1.0e+00), RES(-1.5430805428404715943e0, -4.0575816248709004923e-4)}, {FN (cos), ARG(-3.14193792057279441821e+00,1.0e+00), RES(-1.5430805428404715943e0, -4.0575816248709004923e-4)}, {FN (cos), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(-1.5430805428404715943e0, 4.0575816248709004923e-4)}, {FN (cos), ARG(3.14193792057279441821e+00,2.0e+00), RES(-3.7621954668392959448e0, 1.2522351259040914950e-3)}, {FN (cos), ARG(3.14193792057279441821e+00,-2.0e+00), RES(-3.7621954668392959448e0, -1.2522351259040914950e-3)}, {FN (cos), ARG(-3.14193792057279441821e+00,2.0e+00), RES(-3.7621954668392959448e0, -1.2522351259040914950e-3)}, {FN (cos), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(-3.7621954668392959448e0, 1.2522351259040914950e-3)}, {FN (cos), ARG(4.71204371340168837179e+00,0.0e+00), RES(-3.4526697614164732094e-4, 0.0)}, {FN (cos), ARG(-4.71204371340168837179e+00,0.0e+00), RES(-3.4526697614164732094e-4, 0.0)}, {FN (cos), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(-3.4526697614164977421e-4, 1.1920928244535424532e-7)}, {FN (cos), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-3.4526697614164977421e-4, -1.1920928244535424532e-7)}, {FN (cos), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(-3.4526697614164977421e-4, -1.1920928244535424532e-7)}, {FN (cos), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-3.4526697614164977421e-4, 1.1920928244535424532e-7)}, {FN (cos), ARG(4.71204371340168837179e+00,5.0e-01), RES(-3.8933200722561350661e-4, 5.2109527443404709205e-1)}, {FN (cos), ARG(4.71204371340168837179e+00,-5.0e-01), RES(-3.8933200722561350661e-4, -5.2109527443404709205e-1)}, {FN (cos), ARG(-4.71204371340168837179e+00,5.0e-01), RES(-3.8933200722561350661e-4, -5.2109527443404709205e-1)}, {FN (cos), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(-3.8933200722561350661e-4, 5.2109527443404709205e-1)}, {FN (cos), ARG(4.71204371340168837179e+00,1.0e+00), RES(-5.3277478472539277601e-4, 1.1752011235963524659e0)}, {FN (cos), ARG(4.71204371340168837179e+00,-1.0e+00), RES(-5.3277478472539277601e-4, -1.1752011235963524659e0)}, {FN (cos), ARG(-4.71204371340168837179e+00,1.0e+00), RES(-5.3277478472539277601e-4, -1.1752011235963524659e0)}, {FN (cos), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(-5.3277478472539277601e-4, 1.1752011235963524659e0)}, {FN (cos), ARG(4.71204371340168837179e+00,2.0e+00), RES(-1.2989619299135805376e-3, 3.6268601916692946552e0)}, {FN (cos), ARG(4.71204371340168837179e+00,-2.0e+00), RES(-1.2989619299135805376e-3, -3.6268601916692946552e0)}, {FN (cos), ARG(-4.71204371340168837179e+00,2.0e+00), RES(-1.2989619299135805376e-3, -3.6268601916692946552e0)}, {FN (cos), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(-1.2989619299135805376e-3, 3.6268601916692946552e0)}, {FN (cos), ARG(4.71273424736769097620e+00,0.0e+00), RES(3.4526697614127992692e-4, 0.0)}, {FN (cos), ARG(-4.71273424736769097620e+00,0.0e+00), RES(3.4526697614127992692e-4, 0.0)}, {FN (cos), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(3.4526697614128238019e-4, 1.1920928244535424533e-7)}, {FN (cos), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(3.4526697614128238019e-4, -1.1920928244535424533e-7)}, {FN (cos), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(3.4526697614128238019e-4, -1.1920928244535424533e-7)}, {FN (cos), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(3.4526697614128238019e-4, 1.1920928244535424533e-7)}, {FN (cos), ARG(4.71273424736769097620e+00,5.0e-01), RES(3.8933200722519922358e-4, 5.2109527443404709212e-1)}, {FN (cos), ARG(4.71273424736769097620e+00,-5.0e-01), RES(3.8933200722519922358e-4, -5.2109527443404709212e-1)}, {FN (cos), ARG(-4.71273424736769097620e+00,5.0e-01), RES(3.8933200722519922358e-4, -5.2109527443404709212e-1)}, {FN (cos), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(3.8933200722519922358e-4, 5.2109527443404709212e-1)}, {FN (cos), ARG(4.71273424736769097620e+00,1.0e+00), RES(5.3277478472482585742e-4, 1.1752011235963524660e0)}, {FN (cos), ARG(4.71273424736769097620e+00,-1.0e+00), RES(5.3277478472482585742e-4, -1.1752011235963524660e0)}, {FN (cos), ARG(-4.71273424736769097620e+00,1.0e+00), RES(5.3277478472482585742e-4, -1.1752011235963524660e0)}, {FN (cos), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(5.3277478472482585742e-4, 1.1752011235963524660e0)}, {FN (cos), ARG(4.71273424736769097620e+00,2.0e+00), RES(1.2989619299121983294e-3, 3.6268601916692946557e0)}, {FN (cos), ARG(4.71273424736769097620e+00,-2.0e+00), RES(1.2989619299121983294e-3, -3.6268601916692946557e0)}, {FN (cos), ARG(-4.71273424736769097620e+00,2.0e+00), RES(1.2989619299121983294e-3, -3.6268601916692946557e0)}, {FN (cos), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(1.2989619299121983294e-3, 3.6268601916692946557e0)}, {FN (cos), ARG(6.28284004019658492979e+00,0.0e+00), RES(9.9999994039535581662e-1, 0.0)}, {FN (cos), ARG(-6.28284004019658492979e+00,0.0e+00), RES(9.9999994039535581662e-1, 0.0)}, {FN (cos), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(9.9999994039536292205e-1, 4.1159030931199714069e-11)}, {FN (cos), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(9.9999994039536292205e-1, -4.1159030931199714069e-11)}, {FN (cos), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(9.9999994039536292205e-1, -4.1159030931199714069e-11)}, {FN (cos), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(9.9999994039536292205e-1, 4.1159030931199714069e-11)}, {FN (cos), ARG(6.28284004019658492979e+00,5.0e-01), RES(1.1276258979946363572e0, 1.7991700040946600032e-4)}, {FN (cos), ARG(6.28284004019658492979e+00,-5.0e-01), RES(1.1276258979946363572e0, -1.7991700040946600032e-4)}, {FN (cos), ARG(-6.28284004019658492979e+00,5.0e-01), RES(1.1276258979946363572e0, -1.7991700040946600032e-4)}, {FN (cos), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(1.1276258979946363572e0, 1.7991700040946600032e-4)}, {FN (cos), ARG(6.28284004019658492979e+00,1.0e+00), RES(1.5430805428404715941e0, 4.0575816248752181112e-4)}, {FN (cos), ARG(6.28284004019658492979e+00,-1.0e+00), RES(1.5430805428404715941e0, -4.0575816248752181112e-4)}, {FN (cos), ARG(-6.28284004019658492979e+00,1.0e+00), RES(1.5430805428404715941e0, -4.0575816248752181112e-4)}, {FN (cos), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(1.5430805428404715941e0, 4.0575816248752181112e-4)}, {FN (cos), ARG(6.28284004019658492979e+00,2.0e+00), RES(3.7621954668392959443e0, 1.2522351259054239819e-3)}, {FN (cos), ARG(6.28284004019658492979e+00,-2.0e+00), RES(3.7621954668392959443e0, -1.2522351259054239819e-3)}, {FN (cos), ARG(-6.28284004019658492979e+00,2.0e+00), RES(3.7621954668392959443e0, -1.2522351259054239819e-3)}, {FN (cos), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(3.7621954668392959443e0, 1.2522351259054239819e-3)}, {FN (cos), ARG(6.28353057416258753420e+00,0.0e+00), RES(9.9999994039535581679e-1, 0.0)}, {FN (cos), ARG(-6.28353057416258753420e+00,0.0e+00), RES(9.9999994039535581679e-1, 0.0)}, {FN (cos), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(9.9999994039536292222e-1, -4.1159030931141318362e-11)}, {FN (cos), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(9.9999994039536292222e-1, 4.1159030931141318362e-11)}, {FN (cos), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(9.9999994039536292222e-1, 4.1159030931141318362e-11)}, {FN (cos), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(9.9999994039536292222e-1, -4.1159030931141318362e-11)}, {FN (cos), ARG(6.28353057416258753420e+00,5.0e-01), RES(1.1276258979946363574e0, -1.7991700040921073725e-4)}, {FN (cos), ARG(6.28353057416258753420e+00,-5.0e-01), RES(1.1276258979946363574e0, 1.7991700040921073725e-4)}, {FN (cos), ARG(-6.28353057416258753420e+00,5.0e-01), RES(1.1276258979946363574e0, 1.7991700040921073725e-4)}, {FN (cos), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(1.1276258979946363574e0, -1.7991700040921073725e-4)}, {FN (cos), ARG(6.28353057416258753420e+00,1.0e+00), RES(1.5430805428404715943e0, -4.0575816248694612861e-4)}, {FN (cos), ARG(6.28353057416258753420e+00,-1.0e+00), RES(1.5430805428404715943e0, 4.0575816248694612861e-4)}, {FN (cos), ARG(-6.28353057416258753420e+00,1.0e+00), RES(1.5430805428404715943e0, 4.0575816248694612861e-4)}, {FN (cos), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(1.5430805428404715943e0, -4.0575816248694612861e-4)}, {FN (cos), ARG(6.28353057416258753420e+00,2.0e+00), RES(3.7621954668392959449e0, -1.2522351259036473328e-3)}, {FN (cos), ARG(6.28353057416258753420e+00,-2.0e+00), RES(3.7621954668392959449e0, 1.2522351259036473328e-3)}, {FN (cos), ARG(-6.28353057416258753420e+00,2.0e+00), RES(3.7621954668392959449e0, 1.2522351259036473328e-3)}, {FN (cos), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(3.7621954668392959449e0, -1.2522351259036473328e-3)}, {FN (cos), ARG(9.42443269378637893396e+00,0.0e+00), RES(-9.9999994039535581689e-1, 0.0)}, {FN (cos), ARG(-9.42443269378637893396e+00,0.0e+00), RES(-9.9999994039535581689e-1, 0.0)}, {FN (cos), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(-9.9999994039536292231e-1, -4.1159030931108433883e-11)}, {FN (cos), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-9.9999994039536292231e-1, 4.1159030931108433883e-11)}, {FN (cos), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(-9.9999994039536292231e-1, 4.1159030931108433883e-11)}, {FN (cos), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-9.9999994039536292231e-1, -4.1159030931108433883e-11)}, {FN (cos), ARG(9.42443269378637893396e+00,5.0e-01), RES(-1.1276258979946363575e0, -1.7991700040906699050e-4)}, {FN (cos), ARG(9.42443269378637893396e+00,-5.0e-01), RES(-1.1276258979946363575e0, 1.7991700040906699050e-4)}, {FN (cos), ARG(-9.42443269378637893396e+00,5.0e-01), RES(-1.1276258979946363575e0, 1.7991700040906699050e-4)}, {FN (cos), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(-1.1276258979946363575e0, -1.7991700040906699050e-4)}, {FN (cos), ARG(9.42443269378637893396e+00,1.0e+00), RES(-1.5430805428404715945e0, -4.0575816248662194348e-4)}, {FN (cos), ARG(9.42443269378637893396e+00,-1.0e+00), RES(-1.5430805428404715945e0, 4.0575816248662194348e-4)}, {FN (cos), ARG(-9.42443269378637893396e+00,1.0e+00), RES(-1.5430805428404715945e0, 4.0575816248662194348e-4)}, {FN (cos), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(-1.5430805428404715945e0, -4.0575816248662194348e-4)}, {FN (cos), ARG(9.42443269378637893396e+00,2.0e+00), RES(-3.7621954668392959453e0, -1.2522351259026468452e-3)}, {FN (cos), ARG(9.42443269378637893396e+00,-2.0e+00), RES(-3.7621954668392959453e0, 1.2522351259026468452e-3)}, {FN (cos), ARG(-9.42443269378637893396e+00,2.0e+00), RES(-3.7621954668392959453e0, 1.2522351259026468452e-3)}, {FN (cos), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(-3.7621954668392959453e0, -1.2522351259026468452e-3)}, {FN (cos), ARG(9.42512322775237976202e+00,0.0e+00), RES(-9.9999994039535581714e-1, 0.0)}, {FN (cos), ARG(-9.42512322775237976202e+00,0.0e+00), RES(-9.9999994039535581714e-1, 0.0)}, {FN (cos), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(-9.9999994039536292257e-1, 4.1159030931020840323e-11)}, {FN (cos), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-9.9999994039536292257e-1, -4.1159030931020840323e-11)}, {FN (cos), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(-9.9999994039536292257e-1, -4.1159030931020840323e-11)}, {FN (cos), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-9.9999994039536292257e-1, 4.1159030931020840323e-11)}, {FN (cos), ARG(9.42512322775237976202e+00,5.0e-01), RES(-1.1276258979946363577e0, 1.7991700040868409591e-4)}, {FN (cos), ARG(9.42512322775237976202e+00,-5.0e-01), RES(-1.1276258979946363577e0, -1.7991700040868409591e-4)}, {FN (cos), ARG(-9.42512322775237976202e+00,5.0e-01), RES(-1.1276258979946363577e0, -1.7991700040868409591e-4)}, {FN (cos), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(-1.1276258979946363577e0, 1.7991700040868409591e-4)}, {FN (cos), ARG(9.42512322775237976202e+00,1.0e+00), RES(-1.5430805428404715949e0, 4.0575816248575841970e-4)}, {FN (cos), ARG(9.42512322775237976202e+00,-1.0e+00), RES(-1.5430805428404715949e0, -4.0575816248575841970e-4)}, {FN (cos), ARG(-9.42512322775237976202e+00,1.0e+00), RES(-1.5430805428404715949e0, -4.0575816248575841970e-4)}, {FN (cos), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(-1.5430805428404715949e0, 4.0575816248575841970e-4)}, {FN (cos), ARG(9.42512322775237976202e+00,2.0e+00), RES(-3.7621954668392959462e0, 1.2522351258999818715e-3)}, {FN (cos), ARG(9.42512322775237976202e+00,-2.0e+00), RES(-3.7621954668392959462e0, -1.2522351258999818715e-3)}, {FN (cos), ARG(-9.42512322775237976202e+00,2.0e+00), RES(-3.7621954668392959462e0, -1.2522351258999818715e-3)}, {FN (cos), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(-3.7621954668392959462e0, 1.2522351258999818715e-3)}, {FN (tan), ARG(-3.45266983001243932001e-04,0.0e+00), RES(-3.4526699672092183585e-4, 0.0)}, {FN (tan), ARG(3.45266983001243932001e-04,0.0e+00), RES(3.4526699672092183585e-4, 0.0)}, {FN (tan), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(-3.4526699672091692931e-4, 1.1920930376163652989e-7)}, {FN (tan), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(-3.4526699672091692931e-4, -1.1920930376163652989e-7)}, {FN (tan), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(3.4526699672091692931e-4, 1.1920930376163652989e-7)}, {FN (tan), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(3.4526699672091692931e-4, -1.1920930376163652989e-7)}, {FN (tan), ARG(-3.45266983001243932001e-04,5.0e-01), RES(-2.7153443992655805934e-4, 4.6211720058436229979e-1)}, {FN (tan), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(-2.7153443992655805934e-4, -4.6211720058436229979e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,5.0e-01), RES(2.7153443992655805934e-4, 4.6211720058436229979e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,-5.0e-01), RES(2.7153443992655805934e-4, -4.6211720058436229979e-1)}, {FN (tan), ARG(-3.45266983001243932001e-04,1.0e+00), RES(-1.4500326960274960880e-4, 7.6159419408485704836e-1)}, {FN (tan), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(-1.4500326960274960880e-4, -7.6159419408485704836e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,1.0e+00), RES(1.4500326960274960880e-4, 7.6159419408485704836e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,-1.0e+00), RES(1.4500326960274960880e-4, -7.6159419408485704836e-1)}, {FN (tan), ARG(-3.45266983001243932001e-04,2.0e+00), RES(-2.4393395410435306874e-5, 9.6402758819508310556e-1)}, {FN (tan), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(-2.4393395410435306874e-5, -9.6402758819508310556e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,2.0e+00), RES(2.4393395410435306874e-5, 9.6402758819508310556e-1)}, {FN (tan), ARG(3.45266983001243932001e-04,-2.0e+00), RES(2.4393395410435306874e-5, -9.6402758819508310556e-1)}, {FN (tan), ARG(1.57045105981189525579e+00,0.0e+00), RES(2.8963092606501007060e3, 0.0)}, {FN (tan), ARG(-1.57045105981189525579e+00,0.0e+00), RES(-2.8963092606501007060e3, 0.0)}, {FN (tan), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(2.8963089153831588642e3, 9.9999992052646305569e-1)}, {FN (tan), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(2.8963089153831588642e3, -9.9999992052646305569e-1)}, {FN (tan), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(-2.8963089153831588642e3, 9.9999992052646305569e-1)}, {FN (tan), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(-2.8963089153831588642e3, -9.9999992052646305569e-1)}, {FN (tan), ARG(1.57045105981189525579e+00,5.0e-01), RES(1.2715121175455623363e-3, 2.1639524637389325996e0)}, {FN (tan), ARG(1.57045105981189525579e+00,-5.0e-01), RES(1.2715121175455623363e-3, -2.1639524637389325996e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,5.0e-01), RES(-1.2715121175455623363e-3, 2.1639524637389325996e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(-1.2715121175455623363e-3, -2.1639524637389325996e0)}, {FN (tan), ARG(1.57045105981189525579e+00,1.0e+00), RES(2.4999454374276273814e-4, 1.3130351721648674823e0)}, {FN (tan), ARG(1.57045105981189525579e+00,-1.0e+00), RES(2.4999454374276273814e-4, -1.3130351721648674823e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,1.0e+00), RES(-2.4999454374276273814e-4, 1.3130351721648674823e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(-2.4999454374276273814e-4, -1.3130351721648674823e0)}, {FN (tan), ARG(1.57045105981189525579e+00,2.0e+00), RES(2.6247825506572821595e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(1.57045105981189525579e+00,-2.0e+00), RES(2.6247825506572821595e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,2.0e+00), RES(-2.6247825506572821595e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(-2.6247825506572821595e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(1.57114159377789786021e+00,0.0e+00), RES(-2.8963092606511280143e3, 0.0)}, {FN (tan), ARG(-1.57114159377789786021e+00,0.0e+00), RES(2.8963092606511280143e3, 0.0)}, {FN (tan), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(-2.8963089153841861720e3, 9.9999992052717244672e-1)}, {FN (tan), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-2.8963089153841861720e3, -9.9999992052717244672e-1)}, {FN (tan), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(2.8963089153841861720e3, 9.9999992052717244672e-1)}, {FN (tan), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(2.8963089153841861720e3, -9.9999992052717244672e-1)}, {FN (tan), ARG(1.57114159377789786021e+00,5.0e-01), RES(-1.2715121175451113370e-3, 2.1639524637389326002e0)}, {FN (tan), ARG(1.57114159377789786021e+00,-5.0e-01), RES(-1.2715121175451113370e-3, -2.1639524637389326002e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,5.0e-01), RES(1.2715121175451113370e-3, 2.1639524637389326002e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(1.2715121175451113370e-3, -2.1639524637389326002e0)}, {FN (tan), ARG(1.57114159377789786021e+00,1.0e+00), RES(-2.4999454374267406620e-4, 1.3130351721648674824e0)}, {FN (tan), ARG(1.57114159377789786021e+00,-1.0e+00), RES(-2.4999454374267406620e-4, -1.3130351721648674824e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,1.0e+00), RES(2.4999454374267406620e-4, 1.3130351721648674824e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(2.4999454374267406620e-4, -1.3130351721648674824e0)}, {FN (tan), ARG(1.57114159377789786021e+00,2.0e+00), RES(-2.6247825506563511609e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(1.57114159377789786021e+00,-2.0e+00), RES(-2.6247825506563511609e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,2.0e+00), RES(2.6247825506563511609e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(2.6247825506563511609e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(3.14124738660679181379e+00,0.0e+00), RES(-3.4526699672110257641e-4, 0.0)}, {FN (tan), ARG(-3.14124738660679181379e+00,0.0e+00), RES(3.4526699672110257641e-4, 0.0)}, {FN (tan), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(-3.4526699672109766987e-4, 1.1920930376163652991e-7)}, {FN (tan), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-3.4526699672109766987e-4, -1.1920930376163652991e-7)}, {FN (tan), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(3.4526699672109766987e-4, 1.1920930376163652991e-7)}, {FN (tan), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(3.4526699672109766987e-4, -1.1920930376163652991e-7)}, {FN (tan), ARG(3.14124738660679181379e+00,5.0e-01), RES(-2.7153443992670020234e-4, 4.6211720058436229984e-1)}, {FN (tan), ARG(3.14124738660679181379e+00,-5.0e-01), RES(-2.7153443992670020234e-4, -4.6211720058436229984e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,5.0e-01), RES(2.7153443992670020234e-4, 4.6211720058436229984e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(2.7153443992670020234e-4, -4.6211720058436229984e-1)}, {FN (tan), ARG(3.14124738660679181379e+00,1.0e+00), RES(-1.4500326960282551519e-4, 7.6159419408485704840e-1)}, {FN (tan), ARG(3.14124738660679181379e+00,-1.0e+00), RES(-1.4500326960282551519e-4, -7.6159419408485704840e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,1.0e+00), RES(1.4500326960282551519e-4, 7.6159419408485704840e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(1.4500326960282551519e-4, -7.6159419408485704840e-1)}, {FN (tan), ARG(3.14124738660679181379e+00,2.0e+00), RES(-2.4393395410448076340e-5, 9.6402758819508310557e-1)}, {FN (tan), ARG(3.14124738660679181379e+00,-2.0e+00), RES(-2.4393395410448076340e-5, -9.6402758819508310557e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,2.0e+00), RES(2.4393395410448076340e-5, 9.6402758819508310557e-1)}, {FN (tan), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(2.4393395410448076340e-5, -9.6402758819508310557e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,0.0e+00), RES(3.4526699672085764703e-4, 0.0)}, {FN (tan), ARG(-3.14193792057279441821e+00,0.0e+00), RES(-3.4526699672085764703e-4, 0.0)}, {FN (tan), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(3.4526699672085274049e-4, 1.1920930376163652989e-7)}, {FN (tan), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(3.4526699672085274049e-4, -1.1920930376163652989e-7)}, {FN (tan), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(-3.4526699672085274049e-4, 1.1920930376163652989e-7)}, {FN (tan), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-3.4526699672085274049e-4, -1.1920930376163652989e-7)}, {FN (tan), ARG(3.14193792057279441821e+00,5.0e-01), RES(2.7153443992650757820e-4, 4.6211720058436229978e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,-5.0e-01), RES(2.7153443992650757820e-4, -4.6211720058436229978e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,5.0e-01), RES(-2.7153443992650757820e-4, 4.6211720058436229978e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(-2.7153443992650757820e-4, -4.6211720058436229978e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,1.0e+00), RES(1.4500326960272265115e-4, 7.6159419408485704835e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,-1.0e+00), RES(1.4500326960272265115e-4, -7.6159419408485704835e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,1.0e+00), RES(-1.4500326960272265115e-4, 7.6159419408485704835e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(-1.4500326960272265115e-4, -7.6159419408485704835e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,2.0e+00), RES(2.4393395410430771882e-5, 9.6402758819508310556e-1)}, {FN (tan), ARG(3.14193792057279441821e+00,-2.0e+00), RES(2.4393395410430771882e-5, -9.6402758819508310556e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,2.0e+00), RES(-2.4393395410430771882e-5, 9.6402758819508310556e-1)}, {FN (tan), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(-2.4393395410430771882e-5, -9.6402758819508310556e-1)}, {FN (tan), ARG(4.71204371340168837179e+00,0.0e+00), RES(2.8963092606490733978e3, 0.0)}, {FN (tan), ARG(-4.71204371340168837179e+00,0.0e+00), RES(-2.8963092606490733978e3, 0.0)}, {FN (tan), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(2.8963089153821315563e3, 9.9999992052575366466e-1)}, {FN (tan), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(2.8963089153821315563e3, -9.9999992052575366466e-1)}, {FN (tan), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(-2.8963089153821315563e3, 9.9999992052575366466e-1)}, {FN (tan), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-2.8963089153821315563e3, -9.9999992052575366466e-1)}, {FN (tan), ARG(4.71204371340168837179e+00,5.0e-01), RES(1.2715121175460133355e-3, 2.1639524637389325989e0)}, {FN (tan), ARG(4.71204371340168837179e+00,-5.0e-01), RES(1.2715121175460133355e-3, -2.1639524637389325989e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,5.0e-01), RES(-1.2715121175460133355e-3, 2.1639524637389325989e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(-1.2715121175460133355e-3, -2.1639524637389325989e0)}, {FN (tan), ARG(4.71204371340168837179e+00,1.0e+00), RES(2.4999454374285141007e-4, 1.3130351721648674822e0)}, {FN (tan), ARG(4.71204371340168837179e+00,-1.0e+00), RES(2.4999454374285141007e-4, -1.3130351721648674822e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,1.0e+00), RES(-2.4999454374285141007e-4, 1.3130351721648674822e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(-2.4999454374285141007e-4, -1.3130351721648674822e0)}, {FN (tan), ARG(4.71204371340168837179e+00,2.0e+00), RES(2.6247825506582131582e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(4.71204371340168837179e+00,-2.0e+00), RES(2.6247825506582131582e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,2.0e+00), RES(-2.6247825506582131582e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(-2.6247825506582131582e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(4.71273424736769097620e+00,0.0e+00), RES(-2.8963092606521553225e3, 0.0)}, {FN (tan), ARG(-4.71273424736769097620e+00,0.0e+00), RES(2.8963092606521553225e3, 0.0)}, {FN (tan), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(-2.8963089153852134799e3, 9.9999992052788183776e-1)}, {FN (tan), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(-2.8963089153852134799e3, -9.9999992052788183776e-1)}, {FN (tan), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(2.8963089153852134799e3, 9.9999992052788183776e-1)}, {FN (tan), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(2.8963089153852134799e3, -9.9999992052788183776e-1)}, {FN (tan), ARG(4.71273424736769097620e+00,5.0e-01), RES(-1.2715121175446603377e-3, 2.1639524637389326009e0)}, {FN (tan), ARG(4.71273424736769097620e+00,-5.0e-01), RES(-1.2715121175446603377e-3, -2.1639524637389326009e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,5.0e-01), RES(1.2715121175446603377e-3, 2.1639524637389326009e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(1.2715121175446603377e-3, -2.1639524637389326009e0)}, {FN (tan), ARG(4.71273424736769097620e+00,1.0e+00), RES(-2.4999454374258539427e-4, 1.3130351721648674825e0)}, {FN (tan), ARG(4.71273424736769097620e+00,-1.0e+00), RES(-2.4999454374258539427e-4, -1.3130351721648674825e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,1.0e+00), RES(2.4999454374258539427e-4, 1.3130351721648674825e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(2.4999454374258539427e-4, -1.3130351721648674825e0)}, {FN (tan), ARG(4.71273424736769097620e+00,2.0e+00), RES(-2.6247825506554201622e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(4.71273424736769097620e+00,-2.0e+00), RES(-2.6247825506554201622e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,2.0e+00), RES(2.6247825506554201622e-5, 1.0373147113268752620e0)}, {FN (tan), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(2.6247825506554201622e-5, -1.0373147113268752620e0)}, {FN (tan), ARG(6.28284004019658492979e+00,0.0e+00), RES(-3.4526699672122504111e-4, 0.0)}, {FN (tan), ARG(-6.28284004019658492979e+00,0.0e+00), RES(3.4526699672122504111e-4, 0.0)}, {FN (tan), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(-3.4526699672122013457e-4, 1.1920930376163652992e-7)}, {FN (tan), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(-3.4526699672122013457e-4, -1.1920930376163652992e-7)}, {FN (tan), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(3.4526699672122013457e-4, 1.1920930376163652992e-7)}, {FN (tan), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(3.4526699672122013457e-4, -1.1920930376163652992e-7)}, {FN (tan), ARG(6.28284004019658492979e+00,5.0e-01), RES(-2.7153443992679651442e-4, 4.6211720058436229987e-1)}, {FN (tan), ARG(6.28284004019658492979e+00,-5.0e-01), RES(-2.7153443992679651442e-4, -4.6211720058436229987e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,5.0e-01), RES(2.7153443992679651442e-4, 4.6211720058436229987e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(2.7153443992679651442e-4, -4.6211720058436229987e-1)}, {FN (tan), ARG(6.28284004019658492979e+00,1.0e+00), RES(-1.4500326960287694721e-4, 7.6159419408485704843e-1)}, {FN (tan), ARG(6.28284004019658492979e+00,-1.0e+00), RES(-1.4500326960287694721e-4, -7.6159419408485704843e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,1.0e+00), RES(1.4500326960287694721e-4, 7.6159419408485704843e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(1.4500326960287694721e-4, -7.6159419408485704843e-1)}, {FN (tan), ARG(6.28284004019658492979e+00,2.0e+00), RES(-2.4393395410456728569e-5, 9.6402758819508310558e-1)}, {FN (tan), ARG(6.28284004019658492979e+00,-2.0e+00), RES(-2.4393395410456728569e-5, -9.6402758819508310558e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,2.0e+00), RES(2.4393395410456728569e-5, 9.6402758819508310558e-1)}, {FN (tan), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(2.4393395410456728569e-5, -9.6402758819508310558e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,0.0e+00), RES(3.4526699672073518233e-4, 0.0)}, {FN (tan), ARG(-6.28353057416258753420e+00,0.0e+00), RES(-3.4526699672073518233e-4, 0.0)}, {FN (tan), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(3.4526699672073027579e-4, 1.1920930376163652988e-7)}, {FN (tan), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(3.4526699672073027579e-4, -1.1920930376163652988e-7)}, {FN (tan), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(-3.4526699672073027579e-4, 1.1920930376163652988e-7)}, {FN (tan), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(-3.4526699672073027579e-4, -1.1920930376163652988e-7)}, {FN (tan), ARG(6.28353057416258753420e+00,5.0e-01), RES(2.7153443992641126612e-4, 4.6211720058436229974e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,-5.0e-01), RES(2.7153443992641126612e-4, -4.6211720058436229974e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,5.0e-01), RES(-2.7153443992641126612e-4, 4.6211720058436229974e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(-2.7153443992641126612e-4, -4.6211720058436229974e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,1.0e+00), RES(1.4500326960267121913e-4, 7.6159419408485704832e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,-1.0e+00), RES(1.4500326960267121913e-4, -7.6159419408485704832e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,1.0e+00), RES(-1.4500326960267121913e-4, 7.6159419408485704832e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(-1.4500326960267121913e-4, -7.6159419408485704832e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,2.0e+00), RES(2.4393395410422119654e-5, 9.6402758819508310555e-1)}, {FN (tan), ARG(6.28353057416258753420e+00,-2.0e+00), RES(2.4393395410422119654e-5, -9.6402758819508310555e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,2.0e+00), RES(-2.4393395410422119654e-5, 9.6402758819508310555e-1)}, {FN (tan), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(-2.4393395410422119654e-5, -9.6402758819508310555e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,0.0e+00), RES(-3.4526699672045932728e-4, 0.0)}, {FN (tan), ARG(-9.42443269378637893396e+00,0.0e+00), RES(3.4526699672045932728e-4, 0.0)}, {FN (tan), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(-3.4526699672045442074e-4, 1.1920930376163652985e-7)}, {FN (tan), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-3.4526699672045442074e-4, -1.1920930376163652985e-7)}, {FN (tan), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(3.4526699672045442074e-4, 1.1920930376163652985e-7)}, {FN (tan), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(3.4526699672045442074e-4, -1.1920930376163652985e-7)}, {FN (tan), ARG(9.42443269378637893396e+00,5.0e-01), RES(-2.7153443992619432056e-4, 4.6211720058436229968e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,-5.0e-01), RES(-2.7153443992619432056e-4, -4.6211720058436229968e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,5.0e-01), RES(2.7153443992619432056e-4, 4.6211720058436229968e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(2.7153443992619432056e-4, -4.6211720058436229968e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,1.0e+00), RES(-1.4500326960255536711e-4, 7.6159419408485704826e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,-1.0e+00), RES(-1.4500326960255536711e-4, -7.6159419408485704826e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,1.0e+00), RES(1.4500326960255536711e-4, 7.6159419408485704826e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(1.4500326960255536711e-4, -7.6159419408485704826e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,2.0e+00), RES(-2.4393395410402630273e-5, 9.6402758819508310554e-1)}, {FN (tan), ARG(9.42443269378637893396e+00,-2.0e+00), RES(-2.4393395410402630273e-5, -9.6402758819508310554e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,2.0e+00), RES(2.4393395410402630273e-5, 9.6402758819508310554e-1)}, {FN (tan), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(2.4393395410402630273e-5, -9.6402758819508310554e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,0.0e+00), RES(3.4526699671972453911e-4, 0.0)}, {FN (tan), ARG(-9.42512322775237976202e+00,0.0e+00), RES(-3.4526699671972453911e-4, 0.0)}, {FN (tan), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(3.4526699671971963257e-4, 1.1920930376163652979e-7)}, {FN (tan), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(3.4526699671971963257e-4, -1.1920930376163652979e-7)}, {FN (tan), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(-3.4526699671971963257e-4, 1.1920930376163652979e-7)}, {FN (tan), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-3.4526699671971963257e-4, -1.1920930376163652979e-7)}, {FN (tan), ARG(9.42512322775237976202e+00,5.0e-01), RES(2.7153443992561644811e-4, 4.6211720058436229949e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,-5.0e-01), RES(2.7153443992561644811e-4, -4.6211720058436229949e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,5.0e-01), RES(-2.7153443992561644811e-4, 4.6211720058436229949e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(-2.7153443992561644811e-4, -4.6211720058436229949e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,1.0e+00), RES(1.450032696022467750e-4, 7.6159419408485704810e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,-1.0e+00), RES(1.450032696022467750e-4, -7.6159419408485704810e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,1.0e+00), RES(-1.450032696022467750e-4, 7.6159419408485704810e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(-1.450032696022467750e-4, -7.6159419408485704810e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,2.0e+00), RES(2.439339541035071690e-5, 9.6402758819508310550e-1)}, {FN (tan), ARG(9.42512322775237976202e+00,-2.0e+00), RES(2.439339541035071690e-5, -9.6402758819508310550e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,2.0e+00), RES(-2.439339541035071690e-5, 9.6402758819508310550e-1)}, {FN (tan), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(-2.439339541035071690e-5, -9.6402758819508310550e-1)}, {FN (arcsin), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arcsin), ARG(0.0e+00,1.19209289550781250e-07), RES(0, 1.1920928955078096766e-7)}, {FN (arcsin), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, -1.1920928955078096766e-7)}, {FN (arcsin), ARG(0.0e+00,5.0e-01), RES(0, 4.8121182505960344750e-1)}, {FN (arcsin), ARG(0.0e+00,-5.0e-01), RES(0, -4.8121182505960344750e-1)}, {FN (arcsin), ARG(0.0e+00,1.0e+00), RES(0, 8.8137358701954302523e-1)}, {FN (arcsin), ARG(0.0e+00,-1.0e+00), RES(0, -8.8137358701954302523e-1)}, {FN (arcsin), ARG(0.0e+00,2.0e+00), RES(0, 1.4436354751788103425e0)}, {FN (arcsin), ARG(0.0e+00,-2.0e+00), RES(0, -1.4436354751788103425e0)}, {FN (arcsin), ARG(0.0e+00,8.3886080e+06), RES(0, 1.6635532333438690979e1)}, {FN (arcsin), ARG(0.0e+00,-8.3886080e+06), RES(0, -1.6635532333438690979e1)}, {FN (arcsin), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078153234e-7, 0.0)}, {FN (arcsin), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.1920928955078153234e-7, 0.0)}, {FN (arcsin), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078068531e-7, 1.1920928955078181469e-7)}, {FN (arcsin), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078068531e-7, -1.1920928955078181469e-7)}, {FN (arcsin), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.1920928955078068531e-7, 1.1920928955078181469e-7)}, {FN (arcsin), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.1920928955078068531e-7, -1.1920928955078181469e-7)}, {FN (arcsin), ARG(1.19209289550781250e-07,5.0e-01), RES(1.0662402999400097805e-7, 4.8121182505960598961e-1)}, {FN (arcsin), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.0662402999400097805e-7, -4.8121182505960598961e-1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,5.0e-01), RES(-1.0662402999400097805e-7, 4.8121182505960598961e-1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.0662402999400097805e-7, -4.8121182505960598961e-1)}, {FN (arcsin), ARG(1.19209289550781250e-07,1.0e+00), RES(8.4293697021788013662e-8, 8.8137358701954553738e-1)}, {FN (arcsin), ARG(1.19209289550781250e-07,-1.0e+00), RES(8.4293697021788013662e-8, -8.8137358701954553738e-1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,1.0e+00), RES(-8.4293697021788013662e-8, 8.8137358701954553738e-1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-8.4293697021788013662e-8, -8.8137358701954553738e-1)}, {FN (arcsin), ARG(1.19209289550781250e-07,2.0e+00), RES(5.3312014997000413263e-8, 1.4436354751788116136e0)}, {FN (arcsin), ARG(1.19209289550781250e-07,-2.0e+00), RES(5.3312014997000413263e-8, -1.4436354751788116136e0)}, {FN (arcsin), ARG(-1.19209289550781250e-07,2.0e+00), RES(-5.3312014997000413263e-8, 1.4436354751788116136e0)}, {FN (arcsin), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-5.3312014997000413263e-8, -1.4436354751788116136e0)}, {FN (arcsin), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.4210854715201902743e-14, 1.6635532333438690979e1)}, {FN (arcsin), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.4210854715201902743e-14, -1.6635532333438690979e1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.4210854715201902743e-14, 1.6635532333438690979e1)}, {FN (arcsin), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.4210854715201902743e-14, -1.6635532333438690979e1)}, {FN (arcsin), ARG(5.0e-01,0.0e+00), RES(5.2359877559829887308e-1, 0.0)}, {FN (arcsin), ARG(-5.0e-01,0.0e+00), RES(-5.2359877559829887308e-1, 0.0)}, {FN (arcsin), ARG(5.0e-01,1.19209289550781250e-07), RES(5.2359877559829340332e-1, 1.3765103082409432364e-7)}, {FN (arcsin), ARG(5.0e-01,-1.19209289550781250e-07), RES(5.2359877559829340332e-1, -1.3765103082409432364e-7)}, {FN (arcsin), ARG(-5.0e-01,1.19209289550781250e-07), RES(-5.2359877559829340332e-1, 1.3765103082409432364e-7)}, {FN (arcsin), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-5.2359877559829340332e-1, -1.3765103082409432364e-7)}, {FN (arcsin), ARG(5.0e-01,5.0e-01), RES(4.5227844715119068206e-1, 5.3063753095251782602e-1)}, {FN (arcsin), ARG(5.0e-01,-5.0e-01), RES(4.5227844715119068206e-1, -5.3063753095251782602e-1)}, {FN (arcsin), ARG(-5.0e-01,5.0e-01), RES(-4.5227844715119068206e-1, 5.3063753095251782602e-1)}, {FN (arcsin), ARG(-5.0e-01,-5.0e-01), RES(-4.5227844715119068206e-1, -5.3063753095251782602e-1)}, {FN (arcsin), ARG(5.0e-01,1.0e+00), RES(3.4943906285721329363e-1, 9.2613303135018242455e-1)}, {FN (arcsin), ARG(5.0e-01,-1.0e+00), RES(3.4943906285721329363e-1, -9.2613303135018242455e-1)}, {FN (arcsin), ARG(-5.0e-01,1.0e+00), RES(-3.4943906285721329363e-1, 9.2613303135018242455e-1)}, {FN (arcsin), ARG(-5.0e-01,-1.0e+00), RES(-3.4943906285721329363e-1, -9.2613303135018242455e-1)}, {FN (arcsin), ARG(5.0e-01,2.0e+00), RES(2.2101863562288385890e-1, 1.4657153519472905218e0)}, {FN (arcsin), ARG(5.0e-01,-2.0e+00), RES(2.2101863562288385890e-1, -1.4657153519472905218e0)}, {FN (arcsin), ARG(-5.0e-01,2.0e+00), RES(-2.2101863562288385890e-1, 1.4657153519472905218e0)}, {FN (arcsin), ARG(-5.0e-01,-2.0e+00), RES(-2.2101863562288385890e-1, -1.4657153519472905218e0)}, {FN (arcsin), ARG(5.0e-01,8.3886080e+06), RES(5.9604644775390130897e-8, 1.6635532333438692755e1)}, {FN (arcsin), ARG(5.0e-01,-8.3886080e+06), RES(5.9604644775390130897e-8, -1.6635532333438692755e1)}, {FN (arcsin), ARG(-5.0e-01,8.3886080e+06), RES(-5.9604644775390130897e-8, 1.6635532333438692755e1)}, {FN (arcsin), ARG(-5.0e-01,-8.3886080e+06), RES(-5.9604644775390130897e-8, -1.6635532333438692755e1)}, {FN (arcsin), ARG(1.0e+00,0.0e+00), RES(1.5707963267948966192e0, 0.0)}, {FN (arcsin), ARG(-1.0e+00,0.0e+00), RES(-1.5707963267948966192e0, 0.0)}, {FN (arcsin), ARG(1.0e+00,1.19209289550781250e-07), RES(1.5704510598153252947e0, 3.4526698643116312881e-4)}, {FN (arcsin), ARG(1.0e+00,-1.19209289550781250e-07), RES(1.5704510598153252947e0, -3.4526698643116312881e-4)}, {FN (arcsin), ARG(-1.0e+00,1.19209289550781250e-07), RES(-1.5704510598153252947e0, 3.4526698643116312881e-4)}, {FN (arcsin), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-1.5704510598153252947e0, -3.4526698643116312881e-4)}, {FN (arcsin), ARG(1.0e+00,5.0e-01), RES(8.9590748120889023907e-1, 7.3285767597364526089e-1)}, {FN (arcsin), ARG(1.0e+00,-5.0e-01), RES(8.9590748120889023907e-1, -7.3285767597364526089e-1)}, {FN (arcsin), ARG(-1.0e+00,5.0e-01), RES(-8.9590748120889023907e-1, 7.3285767597364526089e-1)}, {FN (arcsin), ARG(-1.0e+00,-5.0e-01), RES(-8.9590748120889023907e-1, -7.3285767597364526089e-1)}, {FN (arcsin), ARG(1.0e+00,1.0e+00), RES(6.6623943249251525510e-1, 1.0612750619050356520e0)}, {FN (arcsin), ARG(1.0e+00,-1.0e+00), RES(6.6623943249251525510e-1, -1.0612750619050356520e0)}, {FN (arcsin), ARG(-1.0e+00,1.0e+00), RES(-6.6623943249251525510e-1, 1.0612750619050356520e0)}, {FN (arcsin), ARG(-1.0e+00,-1.0e+00), RES(-6.6623943249251525510e-1, -1.0612750619050356520e0)}, {FN (arcsin), ARG(1.0e+00,2.0e+00), RES(4.2707858639247612548e-1, 1.5285709194809981613e0)}, {FN (arcsin), ARG(1.0e+00,-2.0e+00), RES(4.2707858639247612548e-1, -1.5285709194809981613e0)}, {FN (arcsin), ARG(-1.0e+00,2.0e+00), RES(-4.2707858639247612548e-1, 1.5285709194809981613e0)}, {FN (arcsin), ARG(-1.0e+00,-2.0e+00), RES(-4.2707858639247612548e-1, -1.5285709194809981613e0)}, {FN (arcsin), ARG(1.0e+00,8.3886080e+06), RES(1.1920928955077983828e-7, 1.6635532333438698084e1)}, {FN (arcsin), ARG(1.0e+00,-8.3886080e+06), RES(1.1920928955077983828e-7, -1.6635532333438698084e1)}, {FN (arcsin), ARG(-1.0e+00,8.3886080e+06), RES(-1.1920928955077983828e-7, 1.6635532333438698084e1)}, {FN (arcsin), ARG(-1.0e+00,-8.3886080e+06), RES(-1.1920928955077983828e-7, -1.6635532333438698084e1)}, {FN (arcsin), ARG(2.0e+00,0.0e+00), RES(1.5707963267948966192e0, -1.3169578969248167086e0)}, {FN (arcsin), ARG(-2.0e+00,0.0e+00), RES(-1.5707963267948966192e0, 1.3169578969248167086e0)}, {FN (arcsin), ARG(2.0e+00,1.19209289550781250e-07), RES(1.5707962579693812072e0, 1.3169578969248194435e0)}, {FN (arcsin), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.5707962579693812072e0, -1.3169578969248194435e0)}, {FN (arcsin), ARG(-2.0e+00,1.19209289550781250e-07), RES(-1.5707962579693812072e0, 1.3169578969248194435e0)}, {FN (arcsin), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-1.5707962579693812072e0, -1.3169578969248194435e0)}, {FN (arcsin), ARG(2.0e+00,5.0e-01), RES(1.2930420702371826591e0, 1.3618009008578457882e0)}, {FN (arcsin), ARG(2.0e+00,-5.0e-01), RES(1.2930420702371826591e0, -1.3618009008578457882e0)}, {FN (arcsin), ARG(-2.0e+00,5.0e-01), RES(-1.2930420702371826591e0, 1.3618009008578457882e0)}, {FN (arcsin), ARG(-2.0e+00,-5.0e-01), RES(-1.2930420702371826591e0, -1.3618009008578457882e0)}, {FN (arcsin), ARG(2.0e+00,1.0e+00), RES(1.0634400235777520562e0, 1.4693517443681852733e0)}, {FN (arcsin), ARG(2.0e+00,-1.0e+00), RES(1.0634400235777520562e0, -1.4693517443681852733e0)}, {FN (arcsin), ARG(-2.0e+00,1.0e+00), RES(-1.0634400235777520562e0, 1.4693517443681852733e0)}, {FN (arcsin), ARG(-2.0e+00,-1.0e+00), RES(-1.0634400235777520562e0, -1.4693517443681852733e0)}, {FN (arcsin), ARG(2.0e+00,2.0e+00), RES(7.5424914469804604071e-1, 1.7343245214879664480e0)}, {FN (arcsin), ARG(2.0e+00,-2.0e+00), RES(7.5424914469804604071e-1, -1.7343245214879664480e0)}, {FN (arcsin), ARG(-2.0e+00,2.0e+00), RES(-7.5424914469804604071e-1, 1.7343245214879664480e0)}, {FN (arcsin), ARG(-2.0e+00,-2.0e+00), RES(-7.5424914469804604071e-1, -1.7343245214879664480e0)}, {FN (arcsin), ARG(2.0e+00,8.3886080e+06), RES(2.3841857910155628843e-7, 1.663553233343871940e1)}, {FN (arcsin), ARG(2.0e+00,-8.3886080e+06), RES(2.3841857910155628843e-7, -1.663553233343871940e1)}, {FN (arcsin), ARG(-2.0e+00,8.3886080e+06), RES(-2.3841857910155628843e-7, 1.663553233343871940e1)}, {FN (arcsin), ARG(-2.0e+00,-8.3886080e+06), RES(-2.3841857910155628843e-7, -1.663553233343871940e1)}, {FN (arcsin), ARG(8.3886080e+06,0.0e+00), RES(1.5707963267948966192e0, -1.6635532333438683873e1)}, {FN (arcsin), ARG(-8.3886080e+06,0.0e+00), RES(-1.5707963267948966192e0, 1.6635532333438683873e1)}, {FN (arcsin), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5707963267948824084e0, 1.6635532333438683873e1)}, {FN (arcsin), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5707963267948824084e0, -1.6635532333438683873e1)}, {FN (arcsin), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.5707963267948824084e0, 1.6635532333438683873e1)}, {FN (arcsin), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.5707963267948824084e0, -1.6635532333438683873e1)}, {FN (arcsin), ARG(8.3886080e+06,5.0e-01), RES(1.5707962671902518438e0, 1.6635532333438685650e1)}, {FN (arcsin), ARG(8.3886080e+06,-5.0e-01), RES(1.5707962671902518438e0, -1.6635532333438685650e1)}, {FN (arcsin), ARG(-8.3886080e+06,5.0e-01), RES(-1.5707962671902518438e0, 1.6635532333438685650e1)}, {FN (arcsin), ARG(-8.3886080e+06,-5.0e-01), RES(-1.5707962671902518438e0, -1.6635532333438685650e1)}, {FN (arcsin), ARG(8.3886080e+06,1.0e+00), RES(1.5707962075856070684e0, 1.6635532333438690979e1)}, {FN (arcsin), ARG(8.3886080e+06,-1.0e+00), RES(1.5707962075856070684e0, -1.6635532333438690979e1)}, {FN (arcsin), ARG(-8.3886080e+06,1.0e+00), RES(-1.5707962075856070684e0, 1.6635532333438690979e1)}, {FN (arcsin), ARG(-8.3886080e+06,-1.0e+00), RES(-1.5707962075856070684e0, -1.6635532333438690979e1)}, {FN (arcsin), ARG(8.3886080e+06,2.0e+00), RES(1.5707960883763175177e0, 1.6635532333438712295e1)}, {FN (arcsin), ARG(8.3886080e+06,-2.0e+00), RES(1.5707960883763175177e0, -1.6635532333438712295e1)}, {FN (arcsin), ARG(-8.3886080e+06,2.0e+00), RES(-1.5707960883763175177e0, 1.6635532333438712295e1)}, {FN (arcsin), ARG(-8.3886080e+06,-2.0e+00), RES(-1.5707960883763175177e0, -1.6635532333438712295e1)}, {FN (arcsin), ARG(8.3886080e+06,8.3886080e+06), RES(7.8539816339744653326e-1, 1.6982105923718660081e1)}, {FN (arcsin), ARG(8.3886080e+06,-8.3886080e+06), RES(7.8539816339744653326e-1, -1.6982105923718660081e1)}, {FN (arcsin), ARG(-8.3886080e+06,8.3886080e+06), RES(-7.8539816339744653326e-1, 1.6982105923718660081e1)}, {FN (arcsin), ARG(-8.3886080e+06,-8.3886080e+06), RES(-7.8539816339744653326e-1, -1.6982105923718660081e1)}, {FN (arccos), ARG(0.0e+00,0.0e+00), RES(1.5707963267948966192e0, 0.0)}, {FN (arccos), ARG(0.0e+00,1.19209289550781250e-07), RES(1.5707963267948966192e0, -1.1920928955078096766e-7)}, {FN (arccos), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.5707963267948966192e0, 1.1920928955078096766e-7)}, {FN (arccos), ARG(0.0e+00,5.0e-01), RES(1.5707963267948966192e0, -4.8121182505960344750e-1)}, {FN (arccos), ARG(0.0e+00,-5.0e-01), RES(1.5707963267948966192e0, 4.8121182505960344750e-1)}, {FN (arccos), ARG(0.0e+00,1.0e+00), RES(1.5707963267948966192e0, -8.8137358701954302523e-1)}, {FN (arccos), ARG(0.0e+00,-1.0e+00), RES(1.5707963267948966192e0, 8.8137358701954302523e-1)}, {FN (arccos), ARG(0.0e+00,2.0e+00), RES(1.5707963267948966192e0, -1.4436354751788103425e0)}, {FN (arccos), ARG(0.0e+00,-2.0e+00), RES(1.5707963267948966192e0, 1.4436354751788103425e0)}, {FN (arccos), ARG(0.0e+00,8.3886080e+06), RES(1.5707963267948966192e0, -1.6635532333438690979e1)}, {FN (arccos), ARG(0.0e+00,-8.3886080e+06), RES(1.5707963267948966192e0, 1.6635532333438690979e1)}, {FN (arccos), ARG(1.19209289550781250e-07,0.0e+00), RES(1.5707962075856070684e0, 0.0)}, {FN (arccos), ARG(-1.19209289550781250e-07,0.0e+00), RES(1.570796446004186170e0, 0.0)}, {FN (arccos), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.5707962075856070685e0, -1.1920928955078181469e-7)}, {FN (arccos), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.5707962075856070685e0, 1.1920928955078181469e-7)}, {FN (arccos), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(1.570796446004186170e0, -1.1920928955078181469e-7)}, {FN (arccos), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.570796446004186170e0, 1.1920928955078181469e-7)}, {FN (arccos), ARG(1.19209289550781250e-07,5.0e-01), RES(1.5707962201708666252e0, -4.8121182505960598961e-1)}, {FN (arccos), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.5707962201708666252e0, 4.8121182505960598961e-1)}, {FN (arccos), ARG(-1.19209289550781250e-07,5.0e-01), RES(1.5707964334189266132e0, -4.8121182505960598961e-1)}, {FN (arccos), ARG(-1.19209289550781250e-07,-5.0e-01), RES(1.5707964334189266132e0, 4.8121182505960598961e-1)}, {FN (arccos), ARG(1.19209289550781250e-07,1.0e+00), RES(1.5707962425011995974e0, -8.8137358701954553738e-1)}, {FN (arccos), ARG(1.19209289550781250e-07,-1.0e+00), RES(1.5707962425011995974e0, 8.8137358701954553738e-1)}, {FN (arccos), ARG(-1.19209289550781250e-07,1.0e+00), RES(1.5707964110885936410e0, -8.8137358701954553738e-1)}, {FN (arccos), ARG(-1.19209289550781250e-07,-1.0e+00), RES(1.5707964110885936410e0, 8.8137358701954553738e-1)}, {FN (arccos), ARG(1.19209289550781250e-07,2.0e+00), RES(1.5707962734828816222e0, -1.4436354751788116136e0)}, {FN (arccos), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.5707962734828816222e0, 1.4436354751788116136e0)}, {FN (arccos), ARG(-1.19209289550781250e-07,2.0e+00), RES(1.5707963801069116162e0, -1.4436354751788116136e0)}, {FN (arccos), ARG(-1.19209289550781250e-07,-2.0e+00), RES(1.5707963801069116162e0, 1.4436354751788116136e0)}, {FN (arccos), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267948824084e0, -1.6635532333438690979e1)}, {FN (arccos), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5707963267948824084e0, 1.6635532333438690979e1)}, {FN (arccos), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267949108301e0, -1.6635532333438690979e1)}, {FN (arccos), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5707963267949108301e0, 1.6635532333438690979e1)}, {FN (arccos), ARG(5.0e-01,0.0e+00), RES(1.0471975511965977462e0, 0.0)}, {FN (arccos), ARG(-5.0e-01,0.0e+00), RES(2.0943951023931954923e0, 0.0)}, {FN (arccos), ARG(5.0e-01,1.19209289550781250e-07), RES(1.0471975511966032159e0, -1.3765103082409432364e-7)}, {FN (arccos), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.0471975511966032159e0, 1.3765103082409432364e-7)}, {FN (arccos), ARG(-5.0e-01,1.19209289550781250e-07), RES(2.0943951023931900225e0, -1.3765103082409432364e-7)}, {FN (arccos), ARG(-5.0e-01,-1.19209289550781250e-07), RES(2.0943951023931900225e0, 1.3765103082409432364e-7)}, {FN (arccos), ARG(5.0e-01,5.0e-01), RES(1.1185178796437059372e0, -5.3063753095251782602e-1)}, {FN (arccos), ARG(5.0e-01,-5.0e-01), RES(1.1185178796437059372e0, 5.3063753095251782602e-1)}, {FN (arccos), ARG(-5.0e-01,5.0e-01), RES(2.0230747739460873013e0, -5.3063753095251782602e-1)}, {FN (arccos), ARG(-5.0e-01,-5.0e-01), RES(2.0230747739460873013e0, 5.3063753095251782602e-1)}, {FN (arccos), ARG(5.0e-01,1.0e+00), RES(1.2213572639376833256e0, -9.2613303135018242455e-1)}, {FN (arccos), ARG(5.0e-01,-1.0e+00), RES(1.2213572639376833256e0, 9.2613303135018242455e-1)}, {FN (arccos), ARG(-5.0e-01,1.0e+00), RES(1.9202353896521099129e0, -9.2613303135018242455e-1)}, {FN (arccos), ARG(-5.0e-01,-1.0e+00), RES(1.9202353896521099129e0, 9.2613303135018242455e-1)}, {FN (arccos), ARG(5.0e-01,2.0e+00), RES(1.3497776911720127603e0, -1.4657153519472905218e0)}, {FN (arccos), ARG(5.0e-01,-2.0e+00), RES(1.3497776911720127603e0, 1.4657153519472905218e0)}, {FN (arccos), ARG(-5.0e-01,2.0e+00), RES(1.7918149624177804781e0, -1.4657153519472905218e0)}, {FN (arccos), ARG(-5.0e-01,-2.0e+00), RES(1.7918149624177804781e0, 1.4657153519472905218e0)}, {FN (arccos), ARG(5.0e-01,8.3886080e+06), RES(1.5707962671902518438e0, -1.6635532333438692755e1)}, {FN (arccos), ARG(5.0e-01,-8.3886080e+06), RES(1.5707962671902518438e0, 1.6635532333438692755e1)}, {FN (arccos), ARG(-5.0e-01,8.3886080e+06), RES(1.5707963863995413946e0, -1.6635532333438692755e1)}, {FN (arccos), ARG(-5.0e-01,-8.3886080e+06), RES(1.5707963863995413946e0, 1.6635532333438692755e1)}, {FN (arccos), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arccos), ARG(-1.0e+00,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arccos), ARG(1.0e+00,1.19209289550781250e-07), RES(3.4526697957132450399e-4, -3.4526698643116312881e-4)}, {FN (arccos), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.4526697957132450399e-4, 3.4526698643116312881e-4)}, {FN (arccos), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.1412473866102219140e0, -3.4526698643116312881e-4)}, {FN (arccos), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.1412473866102219140e0, 3.4526698643116312881e-4)}, {FN (arccos), ARG(1.0e+00,5.0e-01), RES(6.7488884558600638016e-1, -7.3285767597364526089e-1)}, {FN (arccos), ARG(1.0e+00,-5.0e-01), RES(6.7488884558600638016e-1, 7.3285767597364526089e-1)}, {FN (arccos), ARG(-1.0e+00,5.0e-01), RES(2.4667038080037868583e0, -7.3285767597364526089e-1)}, {FN (arccos), ARG(-1.0e+00,-5.0e-01), RES(2.4667038080037868583e0, 7.3285767597364526089e-1)}, {FN (arccos), ARG(1.0e+00,1.0e+00), RES(9.0455689430238136413e-1, -1.0612750619050356520e0)}, {FN (arccos), ARG(1.0e+00,-1.0e+00), RES(9.0455689430238136413e-1, 1.0612750619050356520e0)}, {FN (arccos), ARG(-1.0e+00,1.0e+00), RES(2.2370357592874118743e0, -1.0612750619050356520e0)}, {FN (arccos), ARG(-1.0e+00,-1.0e+00), RES(2.2370357592874118743e0, 1.0612750619050356520e0)}, {FN (arccos), ARG(1.0e+00,2.0e+00), RES(1.1437177404024204938e0, -1.5285709194809981613e0)}, {FN (arccos), ARG(1.0e+00,-2.0e+00), RES(1.1437177404024204938e0, 1.5285709194809981613e0)}, {FN (arccos), ARG(-1.0e+00,2.0e+00), RES(1.9978749131873727447e0, -1.5285709194809981613e0)}, {FN (arccos), ARG(-1.0e+00,-2.0e+00), RES(1.9978749131873727447e0, 1.5285709194809981613e0)}, {FN (arccos), ARG(1.0e+00,8.3886080e+06), RES(1.5707962075856070685e0, -1.6635532333438698084e1)}, {FN (arccos), ARG(1.0e+00,-8.3886080e+06), RES(1.5707962075856070685e0, 1.6635532333438698084e1)}, {FN (arccos), ARG(-1.0e+00,8.3886080e+06), RES(1.570796446004186170e0, -1.6635532333438698084e1)}, {FN (arccos), ARG(-1.0e+00,-8.3886080e+06), RES(1.570796446004186170e0, 1.6635532333438698084e1)}, {FN (arccos), ARG(2.0e+00,0.0e+00), RES(0, 1.3169578969248167086e0)}, {FN (arccos), ARG(-2.0e+00,0.0e+00), RES(3.1415926535897932385e0, -1.3169578969248167086e0)}, {FN (arccos), ARG(2.0e+00,1.19209289550781250e-07), RES(6.8825515412047433504e-8, -1.3169578969248194435e0)}, {FN (arccos), ARG(2.0e+00,-1.19209289550781250e-07), RES(6.8825515412047433504e-8, 1.3169578969248194435e0)}, {FN (arccos), ARG(-2.0e+00,1.19209289550781250e-07), RES(3.1415925847642778264e0, -1.3169578969248194435e0)}, {FN (arccos), ARG(-2.0e+00,-1.19209289550781250e-07), RES(3.1415925847642778264e0, 1.3169578969248194435e0)}, {FN (arccos), ARG(2.0e+00,5.0e-01), RES(2.7775425655771396018e-1, -1.3618009008578457882e0)}, {FN (arccos), ARG(2.0e+00,-5.0e-01), RES(2.7775425655771396018e-1, 1.3618009008578457882e0)}, {FN (arccos), ARG(-2.0e+00,5.0e-01), RES(2.8638383970320792783e0, -1.3618009008578457882e0)}, {FN (arccos), ARG(-2.0e+00,-5.0e-01), RES(2.8638383970320792783e0, 1.3618009008578457882e0)}, {FN (arccos), ARG(2.0e+00,1.0e+00), RES(5.0735630321714456304e-1, -1.4693517443681852733e0)}, {FN (arccos), ARG(2.0e+00,-1.0e+00), RES(5.0735630321714456304e-1, 1.4693517443681852733e0)}, {FN (arccos), ARG(-2.0e+00,1.0e+00), RES(2.6342363503726486754e0, -1.4693517443681852733e0)}, {FN (arccos), ARG(-2.0e+00,-1.0e+00), RES(2.6342363503726486754e0, 1.4693517443681852733e0)}, {FN (arccos), ARG(2.0e+00,2.0e+00), RES(8.1654718209685057852e-1, -1.7343245214879664480e0)}, {FN (arccos), ARG(2.0e+00,-2.0e+00), RES(8.1654718209685057852e-1, 1.7343245214879664480e0)}, {FN (arccos), ARG(-2.0e+00,2.0e+00), RES(2.3250454714929426599e0, -1.7343245214879664480e0)}, {FN (arccos), ARG(-2.0e+00,-2.0e+00), RES(2.3250454714929426599e0, 1.7343245214879664480e0)}, {FN (arccos), ARG(2.0e+00,8.3886080e+06), RES(1.5707960883763175177e0, -1.663553233343871940e1)}, {FN (arccos), ARG(2.0e+00,-8.3886080e+06), RES(1.5707960883763175177e0, 1.663553233343871940e1)}, {FN (arccos), ARG(-2.0e+00,8.3886080e+06), RES(1.5707965652134757208e0, -1.663553233343871940e1)}, {FN (arccos), ARG(-2.0e+00,-8.3886080e+06), RES(1.5707965652134757208e0, 1.663553233343871940e1)}, {FN (arccos), ARG(8.3886080e+06,0.0e+00), RES(0, 1.6635532333438683873e1)}, {FN (arccos), ARG(-8.3886080e+06,0.0e+00), RES(3.1415926535897932385e0, -1.6635532333438683873e1)}, {FN (arccos), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.4210854715202104692e-14, -1.6635532333438683873e1)}, {FN (arccos), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.4210854715202104692e-14, 1.6635532333438683873e1)}, {FN (arccos), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(3.1415926535897790276e0, -1.6635532333438683873e1)}, {FN (arccos), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(3.1415926535897790276e0, 1.6635532333438683873e1)}, {FN (arccos), ARG(8.3886080e+06,5.0e-01), RES(5.9604644775390977930e-8, -1.6635532333438685650e1)}, {FN (arccos), ARG(8.3886080e+06,-5.0e-01), RES(5.9604644775390977930e-8, 1.6635532333438685650e1)}, {FN (arccos), ARG(-8.3886080e+06,5.0e-01), RES(3.1415925939851484631e0, -1.6635532333438685650e1)}, {FN (arccos), ARG(-8.3886080e+06,-5.0e-01), RES(3.1415925939851484631e0, 1.6635532333438685650e1)}, {FN (arccos), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955078153234e-7, -1.6635532333438690979e1)}, {FN (arccos), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955078153234e-7, 1.6635532333438690979e1)}, {FN (arccos), ARG(-8.3886080e+06,1.0e+00), RES(3.1415925343805036877e0, -1.6635532333438690979e1)}, {FN (arccos), ARG(-8.3886080e+06,-1.0e+00), RES(3.1415925343805036877e0, 1.6635532333438690979e1)}, {FN (arccos), ARG(8.3886080e+06,2.0e+00), RES(2.3841857910155967656e-7, -1.6635532333438712295e1)}, {FN (arccos), ARG(8.3886080e+06,-2.0e+00), RES(2.3841857910155967656e-7, 1.6635532333438712295e1)}, {FN (arccos), ARG(-8.3886080e+06,2.0e+00), RES(3.1415924151712141369e0, -1.6635532333438712295e1)}, {FN (arccos), ARG(-8.3886080e+06,-2.0e+00), RES(3.1415924151712141369e0, 1.6635532333438712295e1)}, {FN (arccos), ARG(8.3886080e+06,8.3886080e+06), RES(7.8539816339745008597e-1, -1.6982105923718660081e1)}, {FN (arccos), ARG(8.3886080e+06,-8.3886080e+06), RES(7.8539816339745008597e-1, 1.6982105923718660081e1)}, {FN (arccos), ARG(-8.3886080e+06,8.3886080e+06), RES(2.3561944901923431525e0, -1.6982105923718660081e1)}, {FN (arccos), ARG(-8.3886080e+06,-8.3886080e+06), RES(2.3561944901923431525e0, 1.6982105923718660081e1)}, {FN (arctan), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arctan), ARG(0.0e+00,1.19209289550781250e-07), RES(0, 1.1920928955078181469e-7)}, {FN (arctan), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, -1.1920928955078181469e-7)}, {FN (arctan), ARG(0.0e+00,5.0e-01), RES(0, 5.4930614433405484570e-1)}, {FN (arctan), ARG(0.0e+00,-5.0e-01), RES(0, -5.4930614433405484570e-1)}, {FN (arctan), ARG(0.0e+00,2.0e+00), RES(1.5707963267948966192e0, 5.4930614433405484570e-1)}, {FN (arctan), ARG(0.0e+00,-2.0e+00), RES(-1.5707963267948966192e0, -5.4930614433405484570e-1)}, {FN (arctan), ARG(0.0e+00,8.3886080e+06), RES(1.5707963267948966192e0, 1.1920928955078181469e-7)}, {FN (arctan), ARG(0.0e+00,-8.3886080e+06), RES(-1.5707963267948966192e0, -1.1920928955078181469e-7)}, {FN (arctan), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078068531e-7, 0.0)}, {FN (arctan), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.1920928955078068531e-7, 0.0)}, {FN (arctan), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078237938e-7, 1.1920928955078012062e-7)}, {FN (arctan), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078237938e-7, -1.1920928955078012062e-7)}, {FN (arctan), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.1920928955078237938e-7, 1.1920928955078012062e-7)}, {FN (arctan), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.1920928955078237938e-7, -1.1920928955078012062e-7)}, {FN (arctan), ARG(1.19209289550781250e-07,5.0e-01), RES(1.5894571940103932425e-7, 5.4930614433404221383e-1)}, {FN (arctan), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.5894571940103932425e-7, -5.4930614433404221383e-1)}, {FN (arctan), ARG(-1.19209289550781250e-07,5.0e-01), RES(-1.5894571940103932425e-7, 5.4930614433404221383e-1)}, {FN (arctan), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.5894571940103932425e-7, -5.4930614433404221383e-1)}, {FN (arctan), ARG(1.19209289550781250e-07,1.0e+00), RES(7.8539819319977069731e-1, 8.3177661667193446012e0)}, {FN (arctan), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.8539819319977069731e-1, -8.3177661667193446012e0)}, {FN (arctan), ARG(-1.19209289550781250e-07,1.0e+00), RES(-7.8539819319977069731e-1, 8.3177661667193446012e0)}, {FN (arctan), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-7.8539819319977069731e-1, -8.3177661667193446012e0)}, {FN (arctan), ARG(1.19209289550781250e-07,2.0e+00), RES(1.5707962870584667690e0, 5.4930614433405168773e-1)}, {FN (arctan), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.5707962870584667690e0, -5.4930614433405168773e-1)}, {FN (arctan), ARG(-1.19209289550781250e-07,2.0e+00), RES(-1.5707962870584667690e0, 5.4930614433405168773e-1)}, {FN (arctan), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-1.5707962870584667690e0, -5.4930614433405168773e-1)}, {FN (arctan), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267948966192e0, 1.1920928955078181469e-7)}, {FN (arctan), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5707963267948966192e0, -1.1920928955078181469e-7)}, {FN (arctan), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.5707963267948966192e0, 1.1920928955078181469e-7)}, {FN (arctan), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.5707963267948966192e0, -1.1920928955078181469e-7)}, {FN (arctan), ARG(5.0e-01,0.0e+00), RES(4.6364760900080611621e-1, 0.0)}, {FN (arctan), ARG(-5.0e-01,0.0e+00), RES(-4.6364760900080611621e-1, 0.0)}, {FN (arctan), ARG(5.0e-01,1.19209289550781250e-07), RES(4.6364760900081066369e-1, 9.5367431640625072280e-8)}, {FN (arctan), ARG(5.0e-01,-1.19209289550781250e-07), RES(4.6364760900081066369e-1, -9.5367431640625072280e-8)}, {FN (arctan), ARG(-5.0e-01,1.19209289550781250e-07), RES(-4.6364760900081066369e-1, 9.5367431640625072280e-8)}, {FN (arctan), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-4.6364760900081066369e-1, -9.5367431640625072280e-8)}, {FN (arctan), ARG(5.0e-01,5.0e-01), RES(5.5357435889704525151e-1, 4.0235947810852509365e-1)}, {FN (arctan), ARG(5.0e-01,-5.0e-01), RES(5.5357435889704525151e-1, -4.0235947810852509365e-1)}, {FN (arctan), ARG(-5.0e-01,5.0e-01), RES(-5.5357435889704525151e-1, 4.0235947810852509365e-1)}, {FN (arctan), ARG(-5.0e-01,-5.0e-01), RES(-5.5357435889704525151e-1, -4.0235947810852509365e-1)}, {FN (arctan), ARG(5.0e-01,1.0e+00), RES(9.0788749496088038670e-1, 7.0830333601405402006e-1)}, {FN (arctan), ARG(5.0e-01,-1.0e+00), RES(9.0788749496088038670e-1, -7.0830333601405402006e-1)}, {FN (arctan), ARG(-5.0e-01,1.0e+00), RES(-9.0788749496088038670e-1, 7.0830333601405402006e-1)}, {FN (arctan), ARG(-5.0e-01,-1.0e+00), RES(-9.0788749496088038670e-1, -7.0830333601405402006e-1)}, {FN (arctan), ARG(5.0e-01,2.0e+00), RES(1.4215468610018069803e0, 5.0037000005253101744e-1)}, {FN (arctan), ARG(5.0e-01,-2.0e+00), RES(1.4215468610018069803e0, -5.0037000005253101744e-1)}, {FN (arctan), ARG(-5.0e-01,2.0e+00), RES(-1.4215468610018069803e0, 5.0037000005253101744e-1)}, {FN (arctan), ARG(-5.0e-01,-2.0e+00), RES(-1.4215468610018069803e0, -5.0037000005253101744e-1)}, {FN (arctan), ARG(5.0e-01,8.3886080e+06), RES(1.5707963267948895138e0, 1.1920928955078139117e-7)}, {FN (arctan), ARG(5.0e-01,-8.3886080e+06), RES(1.5707963267948895138e0, -1.1920928955078139117e-7)}, {FN (arctan), ARG(-5.0e-01,8.3886080e+06), RES(-1.5707963267948895138e0, 1.1920928955078139117e-7)}, {FN (arctan), ARG(-5.0e-01,-8.3886080e+06), RES(-1.5707963267948895138e0, -1.1920928955078139117e-7)}, {FN (arctan), ARG(1.0e+00,0.0e+00), RES(7.8539816339744830962e-1, 0.0)}, {FN (arctan), ARG(-1.0e+00,0.0e+00), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arctan), ARG(1.0e+00,1.19209289550781250e-07), RES(7.8539816339745186233e-1, 5.9604644775390483828e-8)}, {FN (arctan), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.8539816339745186233e-1, -5.9604644775390483828e-8)}, {FN (arctan), ARG(-1.0e+00,1.19209289550781250e-07), RES(-7.8539816339745186233e-1, 5.9604644775390483828e-8)}, {FN (arctan), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-7.8539816339745186233e-1, -5.9604644775390483828e-8)}, {FN (arctan), ARG(1.0e+00,5.0e-01), RES(8.4757566067082902713e-1, 2.3887786125685909036e-1)}, {FN (arctan), ARG(1.0e+00,-5.0e-01), RES(8.4757566067082902713e-1, -2.3887786125685909036e-1)}, {FN (arctan), ARG(-1.0e+00,5.0e-01), RES(-8.4757566067082902713e-1, 2.3887786125685909036e-1)}, {FN (arctan), ARG(-1.0e+00,-5.0e-01), RES(-8.4757566067082902713e-1, -2.3887786125685909036e-1)}, {FN (arctan), ARG(1.0e+00,1.0e+00), RES(1.0172219678978513677e0, 4.0235947810852509365e-1)}, {FN (arctan), ARG(1.0e+00,-1.0e+00), RES(1.0172219678978513677e0, -4.0235947810852509365e-1)}, {FN (arctan), ARG(-1.0e+00,1.0e+00), RES(-1.0172219678978513677e0, 4.0235947810852509365e-1)}, {FN (arctan), ARG(-1.0e+00,-1.0e+00), RES(-1.0172219678978513677e0, -4.0235947810852509365e-1)}, {FN (arctan), ARG(1.0e+00,2.0e+00), RES(1.3389725222944935611e0, 4.0235947810852509365e-1)}, {FN (arctan), ARG(1.0e+00,-2.0e+00), RES(1.3389725222944935611e0, -4.0235947810852509365e-1)}, {FN (arctan), ARG(-1.0e+00,2.0e+00), RES(-1.3389725222944935611e0, 4.0235947810852509365e-1)}, {FN (arctan), ARG(-1.0e+00,-2.0e+00), RES(-1.3389725222944935611e0, -4.0235947810852509365e-1)}, {FN (arctan), ARG(1.0e+00,8.3886080e+06), RES(1.5707963267948824084e0, 1.1920928955078012062e-7)}, {FN (arctan), ARG(1.0e+00,-8.3886080e+06), RES(1.5707963267948824084e0, -1.1920928955078012062e-7)}, {FN (arctan), ARG(-1.0e+00,8.3886080e+06), RES(-1.5707963267948824084e0, 1.1920928955078012062e-7)}, {FN (arctan), ARG(-1.0e+00,-8.3886080e+06), RES(-1.5707963267948824084e0, -1.1920928955078012062e-7)}, {FN (arctan), ARG(2.0e+00,0.0e+00), RES(1.1071487177940905030e0, 0.0)}, {FN (arctan), ARG(-2.0e+00,0.0e+00), RES(-1.1071487177940905030e0, 0.0)}, {FN (arctan), ARG(2.0e+00,1.19209289550781250e-07), RES(1.1071487177940916399e0, 2.3841857910156200307e-8)}, {FN (arctan), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.1071487177940916399e0, -2.3841857910156200307e-8)}, {FN (arctan), ARG(-2.0e+00,1.19209289550781250e-07), RES(-1.1071487177940916399e0, 2.3841857910156200307e-8)}, {FN (arctan), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-1.1071487177940916399e0, -2.3841857910156200307e-8)}, {FN (arctan), ARG(2.0e+00,5.0e-01), RES(1.1265564408348223487e0, 9.6415620202996167238e-2)}, {FN (arctan), ARG(2.0e+00,-5.0e-01), RES(1.1265564408348223487e0, -9.6415620202996167238e-2)}, {FN (arctan), ARG(-2.0e+00,5.0e-01), RES(-1.1265564408348223487e0, 9.6415620202996167238e-2)}, {FN (arctan), ARG(-2.0e+00,-5.0e-01), RES(-1.1265564408348223487e0, -9.6415620202996167238e-2)}, {FN (arctan), ARG(2.0e+00,1.0e+00), RES(1.1780972450961724644e0, 1.7328679513998632735e-1)}, {FN (arctan), ARG(2.0e+00,-1.0e+00), RES(1.1780972450961724644e0, -1.7328679513998632735e-1)}, {FN (arctan), ARG(-2.0e+00,1.0e+00), RES(-1.1780972450961724644e0, 1.7328679513998632735e-1)}, {FN (arctan), ARG(-2.0e+00,-1.0e+00), RES(-1.1780972450961724644e0, -1.7328679513998632735e-1)}, {FN (arctan), ARG(2.0e+00,2.0e+00), RES(1.3112232696716351433e0, 2.3887786125685909036e-1)}, {FN (arctan), ARG(2.0e+00,-2.0e+00), RES(1.3112232696716351433e0, -2.3887786125685909036e-1)}, {FN (arctan), ARG(-2.0e+00,2.0e+00), RES(-1.3112232696716351433e0, 2.3887786125685909036e-1)}, {FN (arctan), ARG(-2.0e+00,-2.0e+00), RES(-1.3112232696716351433e0, -2.3887786125685909036e-1)}, {FN (arctan), ARG(2.0e+00,8.3886080e+06), RES(1.5707963267948681975e0, 1.1920928955077503843e-7)}, {FN (arctan), ARG(2.0e+00,-8.3886080e+06), RES(1.5707963267948681975e0, -1.1920928955077503843e-7)}, {FN (arctan), ARG(-2.0e+00,8.3886080e+06), RES(-1.5707963267948681975e0, 1.1920928955077503843e-7)}, {FN (arctan), ARG(-2.0e+00,-8.3886080e+06), RES(-1.5707963267948681975e0, -1.1920928955077503843e-7)}, {FN (arctan), ARG(8.3886080e+06,0.0e+00), RES(1.5707962075856070685e0, 0.0)}, {FN (arctan), ARG(-8.3886080e+06,0.0e+00), RES(-1.5707962075856070685e0, 0.0)}, {FN (arctan), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5707962075856070685e0, 1.6940658945085766040e-21)}, {FN (arctan), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5707962075856070685e0, -1.6940658945085766040e-21)}, {FN (arctan), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.5707962075856070685e0, 1.6940658945085766040e-21)}, {FN (arctan), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.5707962075856070685e0, -1.6940658945085766040e-21)}, {FN (arctan), ARG(8.3886080e+06,5.0e-01), RES(1.5707962075856070685e0, 7.1054273576008756410e-15)}, {FN (arctan), ARG(8.3886080e+06,-5.0e-01), RES(1.5707962075856070685e0, -7.1054273576008756410e-15)}, {FN (arctan), ARG(-8.3886080e+06,5.0e-01), RES(-1.5707962075856070685e0, 7.1054273576008756410e-15)}, {FN (arctan), ARG(-8.3886080e+06,-5.0e-01), RES(-1.5707962075856070685e0, -7.1054273576008756410e-15)}, {FN (arctan), ARG(8.3886080e+06,1.0e+00), RES(1.5707962075856070685e0, 1.4210854715201599821e-14)}, {FN (arctan), ARG(8.3886080e+06,-1.0e+00), RES(1.5707962075856070685e0, -1.4210854715201599821e-14)}, {FN (arctan), ARG(-8.3886080e+06,1.0e+00), RES(-1.5707962075856070685e0, 1.4210854715201599821e-14)}, {FN (arctan), ARG(-8.3886080e+06,-1.0e+00), RES(-1.5707962075856070685e0, -1.4210854715201599821e-14)}, {FN (arctan), ARG(8.3886080e+06,2.0e+00), RES(1.5707962075856070685e0, 2.8421709430401987951e-14)}, {FN (arctan), ARG(8.3886080e+06,-2.0e+00), RES(1.5707962075856070685e0, -2.8421709430401987951e-14)}, {FN (arctan), ARG(-8.3886080e+06,2.0e+00), RES(-1.5707962075856070685e0, 2.8421709430401987951e-14)}, {FN (arctan), ARG(-8.3886080e+06,-2.0e+00), RES(-1.5707962075856070685e0, -2.8421709430401987951e-14)}, {FN (arctan), ARG(8.3886080e+06,8.3886080e+06), RES(1.5707962671902518438e0, 5.9604644775390483828e-8)}, {FN (arctan), ARG(8.3886080e+06,-8.3886080e+06), RES(1.5707962671902518438e0, -5.9604644775390483828e-8)}, {FN (arctan), ARG(-8.3886080e+06,8.3886080e+06), RES(-1.5707962671902518438e0, 5.9604644775390483828e-8)}, {FN (arctan), ARG(-8.3886080e+06,-8.3886080e+06), RES(-1.5707962671902518438e0, -5.9604644775390483828e-8)}, {FN (sinh), ARG(0.0e+00,-3.45266983001243932001e-04), RES(0, -3.4526697614140534807e-4)}, {FN (sinh), ARG(0.0e+00,3.45266983001243932001e-04), RES(0, 3.4526697614140534807e-4)}, {FN (sinh), ARG(0.0e+00,1.57045105981189525579e+00), RES(0, 9.9999994039535581669e-1)}, {FN (sinh), ARG(0.0e+00,-1.57045105981189525579e+00), RES(0, -9.9999994039535581669e-1)}, {FN (sinh), ARG(0.0e+00,1.57114159377789786021e+00), RES(0, 9.9999994039535581673e-1)}, {FN (sinh), ARG(0.0e+00,-1.57114159377789786021e+00), RES(0, -9.9999994039535581673e-1)}, {FN (sinh), ARG(0.0e+00,3.14124738660679181379e+00), RES(0, 3.4526697614158608860e-4)}, {FN (sinh), ARG(0.0e+00,-3.14124738660679181379e+00), RES(0, -3.4526697614158608860e-4)}, {FN (sinh), ARG(0.0e+00,3.14193792057279441821e+00), RES(0, -3.4526697614134115926e-4)}, {FN (sinh), ARG(0.0e+00,-3.14193792057279441821e+00), RES(0, 3.4526697614134115926e-4)}, {FN (sinh), ARG(0.0e+00,4.71204371340168837179e+00), RES(0, -9.9999994039535581664e-1)}, {FN (sinh), ARG(0.0e+00,-4.71204371340168837179e+00), RES(0, 9.9999994039535581664e-1)}, {FN (sinh), ARG(0.0e+00,4.71273424736769097620e+00), RES(0, -9.9999994039535581677e-1)}, {FN (sinh), ARG(0.0e+00,-4.71273424736769097620e+00), RES(0, 9.9999994039535581677e-1)}, {FN (sinh), ARG(0.0e+00,6.28284004019658492979e+00), RES(0, -3.4526697614170855328e-4)}, {FN (sinh), ARG(0.0e+00,-6.28284004019658492979e+00), RES(0, 3.4526697614170855328e-4)}, {FN (sinh), ARG(0.0e+00,6.28353057416258753420e+00), RES(0, 3.4526697614121869459e-4)}, {FN (sinh), ARG(0.0e+00,-6.28353057416258753420e+00), RES(0, -3.4526697614121869459e-4)}, {FN (sinh), ARG(0.0e+00,9.42443269378637893396e+00), RES(0, 3.4526697614094283958e-4)}, {FN (sinh), ARG(0.0e+00,-9.42443269378637893396e+00), RES(0, -3.4526697614094283958e-4)}, {FN (sinh), ARG(0.0e+00,9.42512322775237976202e+00), RES(0, -3.4526697614020805155e-4)}, {FN (sinh), ARG(0.0e+00,-9.42512322775237976202e+00), RES(0, 3.4526697614020805155e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(1.1920928244535424533e-7, -3.4526697614140780134e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(1.1920928244535424533e-7, 3.4526697614140780134e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(-1.1920928244535424533e-7, -3.4526697614140780134e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(-1.1920928244535424533e-7, 3.4526697614140780134e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(4.1159030931177815679e-11, 9.9999994039536292211e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(4.1159030931177815679e-11, -9.9999994039536292211e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(-4.1159030931177815679e-11, 9.9999994039536292211e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(-4.1159030931177815679e-11, -9.9999994039536292211e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(-4.1159030931163216752e-11, 9.9999994039536292216e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-4.1159030931163216752e-11, -9.9999994039536292216e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(4.1159030931163216752e-11, 9.9999994039536292216e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(4.1159030931163216752e-11, -9.9999994039536292216e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(-1.1920928244535424532e-7, 3.4526697614158854187e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-1.1920928244535424532e-7, -3.4526697614158854187e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(1.1920928244535424532e-7, 3.4526697614158854187e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(1.1920928244535424532e-7, -3.4526697614158854187e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(-1.1920928244535424533e-7, -3.4526697614134361253e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-1.1920928244535424533e-7, 3.4526697614134361253e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(1.1920928244535424533e-7, -3.4526697614134361253e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(1.1920928244535424533e-7, 3.4526697614134361253e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(-4.1159030931192414605e-11, -9.9999994039536292207e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-4.1159030931192414605e-11, 9.9999994039536292207e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(4.1159030931192414605e-11, -9.9999994039536292207e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(4.1159030931192414605e-11, 9.9999994039536292207e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(4.1159030931148617825e-11, -9.9999994039536292220e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(4.1159030931148617825e-11, 9.9999994039536292220e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(-4.1159030931148617825e-11, -9.9999994039536292220e-1)}, {FN (sinh), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(-4.1159030931148617825e-11, 9.9999994039536292220e-1)}, {FN (sinh), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(1.1920928244535424532e-7, -3.4526697614171100655e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(1.1920928244535424532e-7, 3.4526697614171100655e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(-1.1920928244535424532e-7, -3.4526697614171100655e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(-1.1920928244535424532e-7, 3.4526697614171100655e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(1.1920928244535424534e-7, 3.4526697614122114786e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(1.1920928244535424534e-7, -3.4526697614122114786e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(-1.1920928244535424534e-7, 3.4526697614122114786e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(-1.1920928244535424534e-7, -3.4526697614122114786e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(-1.1920928244535424535e-7, 3.4526697614094529285e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-1.1920928244535424535e-7, -3.4526697614094529285e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(1.1920928244535424535e-7, 3.4526697614094529285e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(1.1920928244535424535e-7, -3.4526697614094529285e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(-1.1920928244535424538e-7, -3.4526697614021050482e-4)}, {FN (sinh), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-1.1920928244535424538e-7, 3.4526697614021050482e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(1.1920928244535424538e-7, -3.4526697614021050482e-4)}, {FN (sinh), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(1.1920928244535424538e-7, 3.4526697614021050482e-4)}, {FN (sinh), ARG(5.0e-01,-3.45266983001243932001e-04), RES(5.2109527443404709209e-1, -3.8933200722534065172e-4)}, {FN (sinh), ARG(5.0e-01,3.45266983001243932001e-04), RES(5.2109527443404709209e-1, 3.8933200722534065172e-4)}, {FN (sinh), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(-5.2109527443404709209e-1, -3.8933200722534065172e-4)}, {FN (sinh), ARG(-5.0e-01,3.45266983001243932001e-04), RES(-5.2109527443404709209e-1, 3.8933200722534065172e-4)}, {FN (sinh), ARG(5.0e-01,1.57045105981189525579e+00), RES(1.7991700040937027667e-4, 1.1276258979946363572e0)}, {FN (sinh), ARG(5.0e-01,-1.57045105981189525579e+00), RES(1.7991700040937027667e-4, -1.1276258979946363572e0)}, {FN (sinh), ARG(-5.0e-01,1.57045105981189525579e+00), RES(-1.7991700040937027667e-4, 1.1276258979946363572e0)}, {FN (sinh), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(-1.7991700040937027667e-4, -1.1276258979946363572e0)}, {FN (sinh), ARG(5.0e-01,1.57114159377789786021e+00), RES(-1.7991700040930646090e-4, 1.1276258979946363573e0)}, {FN (sinh), ARG(5.0e-01,-1.57114159377789786021e+00), RES(-1.7991700040930646090e-4, -1.1276258979946363573e0)}, {FN (sinh), ARG(-5.0e-01,1.57114159377789786021e+00), RES(1.7991700040930646090e-4, 1.1276258979946363573e0)}, {FN (sinh), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(1.7991700040930646090e-4, -1.1276258979946363573e0)}, {FN (sinh), ARG(5.0e-01,3.14124738660679181379e+00), RES(-5.2109527443404709206e-1, 3.8933200722554445944e-4)}, {FN (sinh), ARG(5.0e-01,-3.14124738660679181379e+00), RES(-5.2109527443404709206e-1, -3.8933200722554445944e-4)}, {FN (sinh), ARG(-5.0e-01,3.14124738660679181379e+00), RES(5.2109527443404709206e-1, 3.8933200722554445944e-4)}, {FN (sinh), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(5.2109527443404709206e-1, -3.8933200722554445944e-4)}, {FN (sinh), ARG(5.0e-01,3.14193792057279441821e+00), RES(-5.2109527443404709211e-1, -3.8933200722526827075e-4)}, {FN (sinh), ARG(5.0e-01,-3.14193792057279441821e+00), RES(-5.2109527443404709211e-1, 3.8933200722526827075e-4)}, {FN (sinh), ARG(-5.0e-01,3.14193792057279441821e+00), RES(5.2109527443404709211e-1, -3.8933200722526827075e-4)}, {FN (sinh), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(5.2109527443404709211e-1, 3.8933200722526827075e-4)}, {FN (sinh), ARG(5.0e-01,4.71204371340168837179e+00), RES(-1.7991700040943409243e-4, -1.1276258979946363572e0)}, {FN (sinh), ARG(5.0e-01,-4.71204371340168837179e+00), RES(-1.7991700040943409243e-4, 1.1276258979946363572e0)}, {FN (sinh), ARG(-5.0e-01,4.71204371340168837179e+00), RES(1.7991700040943409243e-4, -1.1276258979946363572e0)}, {FN (sinh), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(1.7991700040943409243e-4, 1.1276258979946363572e0)}, {FN (sinh), ARG(5.0e-01,4.71273424736769097620e+00), RES(1.7991700040924264514e-4, -1.1276258979946363573e0)}, {FN (sinh), ARG(5.0e-01,-4.71273424736769097620e+00), RES(1.7991700040924264514e-4, 1.1276258979946363573e0)}, {FN (sinh), ARG(-5.0e-01,4.71273424736769097620e+00), RES(-1.7991700040924264514e-4, -1.1276258979946363573e0)}, {FN (sinh), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(-1.7991700040924264514e-4, 1.1276258979946363573e0)}, {FN (sinh), ARG(5.0e-01,6.28284004019658492979e+00), RES(5.2109527443404709204e-1, -3.8933200722568255379e-4)}, {FN (sinh), ARG(5.0e-01,-6.28284004019658492979e+00), RES(5.2109527443404709204e-1, 3.8933200722568255379e-4)}, {FN (sinh), ARG(-5.0e-01,6.28284004019658492979e+00), RES(-5.2109527443404709204e-1, -3.8933200722568255379e-4)}, {FN (sinh), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(-5.2109527443404709204e-1, 3.8933200722568255379e-4)}, {FN (sinh), ARG(5.0e-01,6.28353057416258753420e+00), RES(5.2109527443404709213e-1, 3.8933200722513017641e-4)}, {FN (sinh), ARG(5.0e-01,-6.28353057416258753420e+00), RES(5.2109527443404709213e-1, -3.8933200722513017641e-4)}, {FN (sinh), ARG(-5.0e-01,6.28353057416258753420e+00), RES(-5.2109527443404709213e-1, 3.8933200722513017641e-4)}, {FN (sinh), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(-5.2109527443404709213e-1, -3.8933200722513017641e-4)}, {FN (sinh), ARG(5.0e-01,9.42443269378637893396e+00), RES(-5.2109527443404709218e-1, 3.8933200722481911514e-4)}, {FN (sinh), ARG(5.0e-01,-9.42443269378637893396e+00), RES(-5.2109527443404709218e-1, -3.8933200722481911514e-4)}, {FN (sinh), ARG(-5.0e-01,9.42443269378637893396e+00), RES(5.2109527443404709218e-1, 3.8933200722481911514e-4)}, {FN (sinh), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(5.2109527443404709218e-1, -3.8933200722481911514e-4)}, {FN (sinh), ARG(5.0e-01,9.42512322775237976202e+00), RES(-5.2109527443404709231e-1, -3.8933200722399054908e-4)}, {FN (sinh), ARG(5.0e-01,-9.42512322775237976202e+00), RES(-5.2109527443404709231e-1, 3.8933200722399054908e-4)}, {FN (sinh), ARG(-5.0e-01,9.42512322775237976202e+00), RES(5.2109527443404709231e-1, -3.8933200722399054908e-4)}, {FN (sinh), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(5.2109527443404709231e-1, 3.8933200722399054908e-4)}, {FN (sinh), ARG(1.0e+00,-3.45266983001243932001e-04), RES(1.1752011235963524660e0, -5.3277478472501939236e-4)}, {FN (sinh), ARG(1.0e+00,3.45266983001243932001e-04), RES(1.1752011235963524660e0, 5.3277478472501939236e-4)}, {FN (sinh), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(-1.1752011235963524660e0, -5.3277478472501939236e-4)}, {FN (sinh), ARG(-1.0e+00,3.45266983001243932001e-04), RES(-1.1752011235963524660e0, 5.3277478472501939236e-4)}, {FN (sinh), ARG(1.0e+00,1.57045105981189525579e+00), RES(4.0575816248730593018e-4, 1.5430805428404715942e0)}, {FN (sinh), ARG(1.0e+00,-1.57045105981189525579e+00), RES(4.0575816248730593018e-4, -1.5430805428404715942e0)}, {FN (sinh), ARG(-1.0e+00,1.57045105981189525579e+00), RES(-4.0575816248730593018e-4, 1.5430805428404715942e0)}, {FN (sinh), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(-4.0575816248730593018e-4, -1.5430805428404715942e0)}, {FN (sinh), ARG(1.0e+00,1.57114159377789786021e+00), RES(-4.0575816248716200955e-4, 1.5430805428404715942e0)}, {FN (sinh), ARG(1.0e+00,-1.57114159377789786021e+00), RES(-4.0575816248716200955e-4, -1.5430805428404715942e0)}, {FN (sinh), ARG(-1.0e+00,1.57114159377789786021e+00), RES(4.0575816248716200955e-4, 1.5430805428404715942e0)}, {FN (sinh), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(4.0575816248716200955e-4, -1.5430805428404715942e0)}, {FN (sinh), ARG(1.0e+00,3.14124738660679181379e+00), RES(-1.1752011235963524659e0, 5.3277478472529828958e-4)}, {FN (sinh), ARG(1.0e+00,-3.14124738660679181379e+00), RES(-1.1752011235963524659e0, -5.3277478472529828958e-4)}, {FN (sinh), ARG(-1.0e+00,3.14124738660679181379e+00), RES(1.1752011235963524659e0, 5.3277478472529828958e-4)}, {FN (sinh), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(1.1752011235963524659e0, -5.3277478472529828958e-4)}, {FN (sinh), ARG(1.0e+00,3.14193792057279441821e+00), RES(-1.1752011235963524660e0, -5.3277478472492034385e-4)}, {FN (sinh), ARG(1.0e+00,-3.14193792057279441821e+00), RES(-1.1752011235963524660e0, 5.3277478472492034385e-4)}, {FN (sinh), ARG(-1.0e+00,3.14193792057279441821e+00), RES(1.1752011235963524660e0, -5.3277478472492034385e-4)}, {FN (sinh), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(1.1752011235963524660e0, 5.3277478472492034385e-4)}, {FN (sinh), ARG(1.0e+00,4.71204371340168837179e+00), RES(-4.0575816248744985081e-4, -1.5430805428404715941e0)}, {FN (sinh), ARG(1.0e+00,-4.71204371340168837179e+00), RES(-4.0575816248744985081e-4, 1.5430805428404715941e0)}, {FN (sinh), ARG(-1.0e+00,4.71204371340168837179e+00), RES(4.0575816248744985081e-4, -1.5430805428404715941e0)}, {FN (sinh), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(4.0575816248744985081e-4, 1.5430805428404715941e0)}, {FN (sinh), ARG(1.0e+00,4.71273424736769097620e+00), RES(4.0575816248701808892e-4, -1.5430805428404715943e0)}, {FN (sinh), ARG(1.0e+00,-4.71273424736769097620e+00), RES(4.0575816248701808892e-4, 1.5430805428404715943e0)}, {FN (sinh), ARG(-1.0e+00,4.71273424736769097620e+00), RES(-4.0575816248701808892e-4, -1.5430805428404715943e0)}, {FN (sinh), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(-4.0575816248701808892e-4, 1.5430805428404715943e0)}, {FN (sinh), ARG(1.0e+00,6.28284004019658492979e+00), RES(1.1752011235963524659e0, -5.3277478472548726245e-4)}, {FN (sinh), ARG(1.0e+00,-6.28284004019658492979e+00), RES(1.1752011235963524659e0, 5.3277478472548726245e-4)}, {FN (sinh), ARG(-1.0e+00,6.28284004019658492979e+00), RES(-1.1752011235963524659e0, -5.3277478472548726245e-4)}, {FN (sinh), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(-1.1752011235963524659e0, 5.3277478472548726245e-4)}, {FN (sinh), ARG(1.0e+00,6.28353057416258753420e+00), RES(1.1752011235963524661e0, 5.3277478472473137099e-4)}, {FN (sinh), ARG(1.0e+00,-6.28353057416258753420e+00), RES(1.1752011235963524661e0, -5.3277478472473137099e-4)}, {FN (sinh), ARG(-1.0e+00,6.28353057416258753420e+00), RES(-1.1752011235963524661e0, 5.3277478472473137099e-4)}, {FN (sinh), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(-1.1752011235963524661e0, -5.3277478472473137099e-4)}, {FN (sinh), ARG(1.0e+00,9.42443269378637893396e+00), RES(-1.1752011235963524662e0, 5.3277478472430570447e-4)}, {FN (sinh), ARG(1.0e+00,-9.42443269378637893396e+00), RES(-1.1752011235963524662e0, -5.3277478472430570447e-4)}, {FN (sinh), ARG(-1.0e+00,9.42443269378637893396e+00), RES(1.1752011235963524662e0, 5.3277478472430570447e-4)}, {FN (sinh), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(1.1752011235963524662e0, -5.3277478472430570447e-4)}, {FN (sinh), ARG(1.0e+00,9.42512322775237976202e+00), RES(-1.1752011235963524665e0, -5.3277478472317186729e-4)}, {FN (sinh), ARG(1.0e+00,-9.42512322775237976202e+00), RES(-1.1752011235963524665e0, 5.3277478472317186729e-4)}, {FN (sinh), ARG(-1.0e+00,9.42512322775237976202e+00), RES(1.1752011235963524665e0, -5.3277478472317186729e-4)}, {FN (sinh), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(1.1752011235963524665e0, 5.3277478472317186729e-4)}, {FN (sinh), ARG(2.0e+00,-3.45266983001243932001e-04), RES(3.6268601916692946556e0, -1.2989619299126701883e-3)}, {FN (sinh), ARG(2.0e+00,3.45266983001243932001e-04), RES(3.6268601916692946556e0, 1.2989619299126701883e-3)}, {FN (sinh), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(-3.6268601916692946556e0, -1.2989619299126701883e-3)}, {FN (sinh), ARG(-2.0e+00,3.45266983001243932001e-04), RES(-3.6268601916692946556e0, 1.2989619299126701883e-3)}, {FN (sinh), ARG(2.0e+00,1.57045105981189525579e+00), RES(1.2522351259047577385e-3, 3.7621954668392959445e0)}, {FN (sinh), ARG(2.0e+00,-1.57045105981189525579e+00), RES(1.2522351259047577385e-3, -3.7621954668392959445e0)}, {FN (sinh), ARG(-2.0e+00,1.57045105981189525579e+00), RES(-1.2522351259047577385e-3, 3.7621954668392959445e0)}, {FN (sinh), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(-1.2522351259047577385e-3, -3.7621954668392959445e0)}, {FN (sinh), ARG(2.0e+00,1.57114159377789786021e+00), RES(-1.2522351259043135762e-3, 3.7621954668392959447e0)}, {FN (sinh), ARG(2.0e+00,-1.57114159377789786021e+00), RES(-1.2522351259043135762e-3, -3.7621954668392959447e0)}, {FN (sinh), ARG(-2.0e+00,1.57114159377789786021e+00), RES(1.2522351259043135762e-3, 3.7621954668392959447e0)}, {FN (sinh), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(1.2522351259043135762e-3, -3.7621954668392959447e0)}, {FN (sinh), ARG(2.0e+00,3.14124738660679181379e+00), RES(-3.6268601916692946553e0, 1.2989619299133501696e-3)}, {FN (sinh), ARG(2.0e+00,-3.14124738660679181379e+00), RES(-3.6268601916692946553e0, -1.2989619299133501696e-3)}, {FN (sinh), ARG(-2.0e+00,3.14124738660679181379e+00), RES(3.6268601916692946553e0, 1.2989619299133501696e-3)}, {FN (sinh), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(3.6268601916692946553e0, -1.2989619299133501696e-3)}, {FN (sinh), ARG(2.0e+00,3.14193792057279441821e+00), RES(-3.6268601916692946556e0, -1.2989619299124286975e-3)}, {FN (sinh), ARG(2.0e+00,-3.14193792057279441821e+00), RES(-3.6268601916692946556e0, 1.2989619299124286975e-3)}, {FN (sinh), ARG(-2.0e+00,3.14193792057279441821e+00), RES(3.6268601916692946556e0, -1.2989619299124286975e-3)}, {FN (sinh), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(3.6268601916692946556e0, 1.2989619299124286975e-3)}, {FN (sinh), ARG(2.0e+00,4.71204371340168837179e+00), RES(-1.2522351259052019007e-3, -3.7621954668392959444e0)}, {FN (sinh), ARG(2.0e+00,-4.71204371340168837179e+00), RES(-1.2522351259052019007e-3, 3.7621954668392959444e0)}, {FN (sinh), ARG(-2.0e+00,4.71204371340168837179e+00), RES(1.2522351259052019007e-3, -3.7621954668392959444e0)}, {FN (sinh), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(1.2522351259052019007e-3, 3.7621954668392959444e0)}, {FN (sinh), ARG(2.0e+00,4.71273424736769097620e+00), RES(1.2522351259038694139e-3, -3.7621954668392959448e0)}, {FN (sinh), ARG(2.0e+00,-4.71273424736769097620e+00), RES(1.2522351259038694139e-3, 3.7621954668392959448e0)}, {FN (sinh), ARG(-2.0e+00,4.71273424736769097620e+00), RES(-1.2522351259038694139e-3, -3.7621954668392959448e0)}, {FN (sinh), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(-1.2522351259038694139e-3, 3.7621954668392959448e0)}, {FN (sinh), ARG(2.0e+00,6.28284004019658492979e+00), RES(3.6268601916692946552e0, -1.2989619299138109057e-3)}, {FN (sinh), ARG(2.0e+00,-6.28284004019658492979e+00), RES(3.6268601916692946552e0, 1.2989619299138109057e-3)}, {FN (sinh), ARG(-2.0e+00,6.28284004019658492979e+00), RES(-3.6268601916692946552e0, -1.2989619299138109057e-3)}, {FN (sinh), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(-3.6268601916692946552e0, 1.2989619299138109057e-3)}, {FN (sinh), ARG(2.0e+00,6.28353057416258753420e+00), RES(3.6268601916692946558e0, 1.2989619299119679614e-3)}, {FN (sinh), ARG(2.0e+00,-6.28353057416258753420e+00), RES(3.6268601916692946558e0, -1.2989619299119679614e-3)}, {FN (sinh), ARG(-2.0e+00,6.28353057416258753420e+00), RES(-3.6268601916692946558e0, 1.2989619299119679614e-3)}, {FN (sinh), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(-3.6268601916692946558e0, -1.2989619299119679614e-3)}, {FN (sinh), ARG(2.0e+00,9.42443269378637893396e+00), RES(-3.6268601916692946561e0, 1.2989619299109301409e-3)}, {FN (sinh), ARG(2.0e+00,-9.42443269378637893396e+00), RES(-3.6268601916692946561e0, -1.2989619299109301409e-3)}, {FN (sinh), ARG(-2.0e+00,9.42443269378637893396e+00), RES(3.6268601916692946561e0, 1.2989619299109301409e-3)}, {FN (sinh), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(3.6268601916692946561e0, -1.2989619299109301409e-3)}, {FN (sinh), ARG(2.0e+00,9.42512322775237976202e+00), RES(-3.6268601916692946571e0, -1.2989619299081657245e-3)}, {FN (sinh), ARG(2.0e+00,-9.42512322775237976202e+00), RES(-3.6268601916692946571e0, 1.2989619299081657245e-3)}, {FN (sinh), ARG(-2.0e+00,9.42512322775237976202e+00), RES(3.6268601916692946571e0, -1.2989619299081657245e-3)}, {FN (sinh), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(3.6268601916692946571e0, 1.2989619299081657245e-3)}, {FN (cosh), ARG(0.0e+00,-3.45266983001243932001e-04), RES(9.9999994039535581673e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,3.45266983001243932001e-04), RES(9.9999994039535581673e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,1.57045105981189525579e+00), RES(3.4526697614152485627e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,-1.57045105981189525579e+00), RES(3.4526697614152485627e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,1.57114159377789786021e+00), RES(-3.4526697614140239160e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,-1.57114159377789786021e+00), RES(-3.4526697614140239160e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,3.14124738660679181379e+00), RES(-9.9999994039535581667e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-3.14124738660679181379e+00), RES(-9.9999994039535581667e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,3.14193792057279441821e+00), RES(-9.9999994039535581675e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-3.14193792057279441821e+00), RES(-9.9999994039535581675e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,4.71204371340168837179e+00), RES(-3.4526697614164732094e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,-4.71204371340168837179e+00), RES(-3.4526697614164732094e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,4.71273424736769097620e+00), RES(3.4526697614127992692e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,-4.71273424736769097620e+00), RES(3.4526697614127992692e-4, 0.0)}, {FN (cosh), ARG(0.0e+00,6.28284004019658492979e+00), RES(9.9999994039535581662e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-6.28284004019658492979e+00), RES(9.9999994039535581662e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,6.28353057416258753420e+00), RES(9.9999994039535581679e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-6.28353057416258753420e+00), RES(9.9999994039535581679e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,9.42443269378637893396e+00), RES(-9.9999994039535581689e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-9.42443269378637893396e+00), RES(-9.9999994039535581689e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,9.42512322775237976202e+00), RES(-9.9999994039535581714e-1, 0.0)}, {FN (cosh), ARG(0.0e+00,-9.42512322775237976202e+00), RES(-9.9999994039535581714e-1, 0.0)}, {FN (cosh), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(9.9999994039536292216e-1, -4.1159030931163569191e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(9.9999994039536292216e-1, 4.1159030931163569191e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(9.9999994039536292216e-1, 4.1159030931163569191e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(9.9999994039536292216e-1, -4.1159030931163569191e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(3.4526697614152730954e-4, 1.1920928244535424532e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(3.4526697614152730954e-4, -1.1920928244535424532e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(3.4526697614152730954e-4, -1.1920928244535424532e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(3.4526697614152730954e-4, 1.1920928244535424532e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(-3.4526697614140484486e-4, 1.1920928244535424533e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-3.4526697614140484486e-4, -1.1920928244535424533e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(-3.4526697614140484486e-4, -1.1920928244535424533e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-3.4526697614140484486e-4, 1.1920928244535424533e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(-9.9999994039536292209e-1, 4.1159030931185115142e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-9.9999994039536292209e-1, -4.1159030931185115142e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(-9.9999994039536292209e-1, -4.1159030931185115142e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-9.9999994039536292209e-1, 4.1159030931185115142e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(-9.9999994039536292218e-1, -4.1159030931155917289e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-9.9999994039536292218e-1, 4.1159030931155917289e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(-9.9999994039536292218e-1, 4.1159030931155917289e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-9.9999994039536292218e-1, -4.1159030931155917289e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(-3.4526697614164977421e-4, -1.1920928244535424532e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-3.4526697614164977421e-4, 1.1920928244535424532e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(-3.4526697614164977421e-4, 1.1920928244535424532e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-3.4526697614164977421e-4, -1.1920928244535424532e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(3.4526697614128238019e-4, -1.1920928244535424533e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(3.4526697614128238019e-4, 1.1920928244535424533e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(3.4526697614128238019e-4, 1.1920928244535424533e-7)}, {FN (cosh), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(3.4526697614128238019e-4, -1.1920928244535424533e-7)}, {FN (cosh), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(9.9999994039536292205e-1, -4.1159030931199714069e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(9.9999994039536292205e-1, 4.1159030931199714069e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(9.9999994039536292205e-1, 4.1159030931199714069e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(9.9999994039536292205e-1, -4.1159030931199714069e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(9.9999994039536292222e-1, 4.1159030931141318362e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(9.9999994039536292222e-1, -4.1159030931141318362e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(9.9999994039536292222e-1, -4.1159030931141318362e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(9.9999994039536292222e-1, 4.1159030931141318362e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(-9.9999994039536292231e-1, 4.1159030931108433883e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-9.9999994039536292231e-1, -4.1159030931108433883e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(-9.9999994039536292231e-1, -4.1159030931108433883e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-9.9999994039536292231e-1, 4.1159030931108433883e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(-9.9999994039536292257e-1, -4.1159030931020840323e-11)}, {FN (cosh), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-9.9999994039536292257e-1, 4.1159030931020840323e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(-9.9999994039536292257e-1, 4.1159030931020840323e-11)}, {FN (cosh), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-9.9999994039536292257e-1, -4.1159030931020840323e-11)}, {FN (cosh), ARG(5.0e-01,-3.45266983001243932001e-04), RES(1.1276258979946363573e0, -1.7991700040930800151e-4)}, {FN (cosh), ARG(5.0e-01,3.45266983001243932001e-04), RES(1.1276258979946363573e0, 1.7991700040930800151e-4)}, {FN (cosh), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(1.1276258979946363573e0, 1.7991700040930800151e-4)}, {FN (cosh), ARG(-5.0e-01,3.45266983001243932001e-04), RES(1.1276258979946363573e0, -1.7991700040930800151e-4)}, {FN (cosh), ARG(5.0e-01,1.57045105981189525579e+00), RES(3.8933200722547541227e-4, 5.2109527443404709207e-1)}, {FN (cosh), ARG(5.0e-01,-1.57045105981189525579e+00), RES(3.8933200722547541227e-4, -5.2109527443404709207e-1)}, {FN (cosh), ARG(-5.0e-01,1.57045105981189525579e+00), RES(3.8933200722547541227e-4, -5.2109527443404709207e-1)}, {FN (cosh), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(3.8933200722547541227e-4, 5.2109527443404709207e-1)}, {FN (cosh), ARG(5.0e-01,1.57114159377789786021e+00), RES(-3.8933200722533731792e-4, 5.2109527443404709209e-1)}, {FN (cosh), ARG(5.0e-01,-1.57114159377789786021e+00), RES(-3.8933200722533731792e-4, -5.2109527443404709209e-1)}, {FN (cosh), ARG(-5.0e-01,1.57114159377789786021e+00), RES(-3.8933200722533731792e-4, -5.2109527443404709209e-1)}, {FN (cosh), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(-3.8933200722533731792e-4, 5.2109527443404709209e-1)}, {FN (cosh), ARG(5.0e-01,3.14124738660679181379e+00), RES(-1.1276258979946363572e0, 1.7991700040940218455e-4)}, {FN (cosh), ARG(5.0e-01,-3.14124738660679181379e+00), RES(-1.1276258979946363572e0, -1.7991700040940218455e-4)}, {FN (cosh), ARG(-5.0e-01,3.14124738660679181379e+00), RES(-1.1276258979946363572e0, -1.7991700040940218455e-4)}, {FN (cosh), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(-1.1276258979946363572e0, 1.7991700040940218455e-4)}, {FN (cosh), ARG(5.0e-01,3.14193792057279441821e+00), RES(-1.1276258979946363573e0, -1.7991700040927455302e-4)}, {FN (cosh), ARG(5.0e-01,-3.14193792057279441821e+00), RES(-1.1276258979946363573e0, 1.7991700040927455302e-4)}, {FN (cosh), ARG(-5.0e-01,3.14193792057279441821e+00), RES(-1.1276258979946363573e0, 1.7991700040927455302e-4)}, {FN (cosh), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(-1.1276258979946363573e0, -1.7991700040927455302e-4)}, {FN (cosh), ARG(5.0e-01,4.71204371340168837179e+00), RES(-3.8933200722561350661e-4, -5.2109527443404709205e-1)}, {FN (cosh), ARG(5.0e-01,-4.71204371340168837179e+00), RES(-3.8933200722561350661e-4, 5.2109527443404709205e-1)}, {FN (cosh), ARG(-5.0e-01,4.71204371340168837179e+00), RES(-3.8933200722561350661e-4, 5.2109527443404709205e-1)}, {FN (cosh), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(-3.8933200722561350661e-4, -5.2109527443404709205e-1)}, {FN (cosh), ARG(5.0e-01,4.71273424736769097620e+00), RES(3.8933200722519922358e-4, -5.2109527443404709212e-1)}, {FN (cosh), ARG(5.0e-01,-4.71273424736769097620e+00), RES(3.8933200722519922358e-4, 5.2109527443404709212e-1)}, {FN (cosh), ARG(-5.0e-01,4.71273424736769097620e+00), RES(3.8933200722519922358e-4, 5.2109527443404709212e-1)}, {FN (cosh), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(3.8933200722519922358e-4, -5.2109527443404709212e-1)}, {FN (cosh), ARG(5.0e-01,6.28284004019658492979e+00), RES(1.1276258979946363572e0, -1.7991700040946600032e-4)}, {FN (cosh), ARG(5.0e-01,-6.28284004019658492979e+00), RES(1.1276258979946363572e0, 1.7991700040946600032e-4)}, {FN (cosh), ARG(-5.0e-01,6.28284004019658492979e+00), RES(1.1276258979946363572e0, 1.7991700040946600032e-4)}, {FN (cosh), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(1.1276258979946363572e0, -1.7991700040946600032e-4)}, {FN (cosh), ARG(5.0e-01,6.28353057416258753420e+00), RES(1.1276258979946363574e0, 1.7991700040921073725e-4)}, {FN (cosh), ARG(5.0e-01,-6.28353057416258753420e+00), RES(1.1276258979946363574e0, -1.7991700040921073725e-4)}, {FN (cosh), ARG(-5.0e-01,6.28353057416258753420e+00), RES(1.1276258979946363574e0, -1.7991700040921073725e-4)}, {FN (cosh), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(1.1276258979946363574e0, 1.7991700040921073725e-4)}, {FN (cosh), ARG(5.0e-01,9.42443269378637893396e+00), RES(-1.1276258979946363575e0, 1.7991700040906699050e-4)}, {FN (cosh), ARG(5.0e-01,-9.42443269378637893396e+00), RES(-1.1276258979946363575e0, -1.7991700040906699050e-4)}, {FN (cosh), ARG(-5.0e-01,9.42443269378637893396e+00), RES(-1.1276258979946363575e0, -1.7991700040906699050e-4)}, {FN (cosh), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(-1.1276258979946363575e0, 1.7991700040906699050e-4)}, {FN (cosh), ARG(5.0e-01,9.42512322775237976202e+00), RES(-1.1276258979946363577e0, -1.7991700040868409591e-4)}, {FN (cosh), ARG(5.0e-01,-9.42512322775237976202e+00), RES(-1.1276258979946363577e0, 1.7991700040868409591e-4)}, {FN (cosh), ARG(-5.0e-01,9.42512322775237976202e+00), RES(-1.1276258979946363577e0, 1.7991700040868409591e-4)}, {FN (cosh), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(-1.1276258979946363577e0, -1.7991700040868409591e-4)}, {FN (cosh), ARG(1.0e+00,-3.45266983001243932001e-04), RES(1.5430805428404715942e0, -4.057581624871654840e-4)}, {FN (cosh), ARG(1.0e+00,3.45266983001243932001e-04), RES(1.5430805428404715942e0, 4.057581624871654840e-4)}, {FN (cosh), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(1.5430805428404715942e0, 4.057581624871654840e-4)}, {FN (cosh), ARG(-1.0e+00,3.45266983001243932001e-04), RES(1.5430805428404715942e0, -4.057581624871654840e-4)}, {FN (cosh), ARG(1.0e+00,1.57045105981189525579e+00), RES(5.3277478472520380315e-4, 1.1752011235963524659e0)}, {FN (cosh), ARG(1.0e+00,-1.57045105981189525579e+00), RES(5.3277478472520380315e-4, -1.1752011235963524659e0)}, {FN (cosh), ARG(-1.0e+00,1.57045105981189525579e+00), RES(5.3277478472520380315e-4, -1.1752011235963524659e0)}, {FN (cosh), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(5.3277478472520380315e-4, 1.1752011235963524659e0)}, {FN (cosh), ARG(1.0e+00,1.57114159377789786021e+00), RES(-5.3277478472501483029e-4, 1.1752011235963524660e0)}, {FN (cosh), ARG(1.0e+00,-1.57114159377789786021e+00), RES(-5.3277478472501483029e-4, -1.1752011235963524660e0)}, {FN (cosh), ARG(-1.0e+00,1.57114159377789786021e+00), RES(-5.3277478472501483029e-4, -1.1752011235963524660e0)}, {FN (cosh), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(-5.3277478472501483029e-4, 1.1752011235963524660e0)}, {FN (cosh), ARG(1.0e+00,3.14124738660679181379e+00), RES(-1.5430805428404715941e0, 4.0575816248737789049e-4)}, {FN (cosh), ARG(1.0e+00,-3.14124738660679181379e+00), RES(-1.5430805428404715941e0, -4.0575816248737789049e-4)}, {FN (cosh), ARG(-1.0e+00,3.14124738660679181379e+00), RES(-1.5430805428404715941e0, -4.0575816248737789049e-4)}, {FN (cosh), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(-1.5430805428404715941e0, 4.0575816248737789049e-4)}, {FN (cosh), ARG(1.0e+00,3.14193792057279441821e+00), RES(-1.5430805428404715943e0, -4.0575816248709004923e-4)}, {FN (cosh), ARG(1.0e+00,-3.14193792057279441821e+00), RES(-1.5430805428404715943e0, 4.0575816248709004923e-4)}, {FN (cosh), ARG(-1.0e+00,3.14193792057279441821e+00), RES(-1.5430805428404715943e0, 4.0575816248709004923e-4)}, {FN (cosh), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(-1.5430805428404715943e0, -4.0575816248709004923e-4)}, {FN (cosh), ARG(1.0e+00,4.71204371340168837179e+00), RES(-5.3277478472539277601e-4, -1.1752011235963524659e0)}, {FN (cosh), ARG(1.0e+00,-4.71204371340168837179e+00), RES(-5.3277478472539277601e-4, 1.1752011235963524659e0)}, {FN (cosh), ARG(-1.0e+00,4.71204371340168837179e+00), RES(-5.3277478472539277601e-4, 1.1752011235963524659e0)}, {FN (cosh), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(-5.3277478472539277601e-4, -1.1752011235963524659e0)}, {FN (cosh), ARG(1.0e+00,4.71273424736769097620e+00), RES(5.3277478472482585742e-4, -1.1752011235963524660e0)}, {FN (cosh), ARG(1.0e+00,-4.71273424736769097620e+00), RES(5.3277478472482585742e-4, 1.1752011235963524660e0)}, {FN (cosh), ARG(-1.0e+00,4.71273424736769097620e+00), RES(5.3277478472482585742e-4, 1.1752011235963524660e0)}, {FN (cosh), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(5.3277478472482585742e-4, -1.1752011235963524660e0)}, {FN (cosh), ARG(1.0e+00,6.28284004019658492979e+00), RES(1.5430805428404715941e0, -4.0575816248752181112e-4)}, {FN (cosh), ARG(1.0e+00,-6.28284004019658492979e+00), RES(1.5430805428404715941e0, 4.0575816248752181112e-4)}, {FN (cosh), ARG(-1.0e+00,6.28284004019658492979e+00), RES(1.5430805428404715941e0, 4.0575816248752181112e-4)}, {FN (cosh), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(1.5430805428404715941e0, -4.0575816248752181112e-4)}, {FN (cosh), ARG(1.0e+00,6.28353057416258753420e+00), RES(1.5430805428404715943e0, 4.0575816248694612861e-4)}, {FN (cosh), ARG(1.0e+00,-6.28353057416258753420e+00), RES(1.5430805428404715943e0, -4.0575816248694612861e-4)}, {FN (cosh), ARG(-1.0e+00,6.28353057416258753420e+00), RES(1.5430805428404715943e0, -4.0575816248694612861e-4)}, {FN (cosh), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(1.5430805428404715943e0, 4.0575816248694612861e-4)}, {FN (cosh), ARG(1.0e+00,9.42443269378637893396e+00), RES(-1.5430805428404715945e0, 4.0575816248662194348e-4)}, {FN (cosh), ARG(1.0e+00,-9.42443269378637893396e+00), RES(-1.5430805428404715945e0, -4.0575816248662194348e-4)}, {FN (cosh), ARG(-1.0e+00,9.42443269378637893396e+00), RES(-1.5430805428404715945e0, -4.0575816248662194348e-4)}, {FN (cosh), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(-1.5430805428404715945e0, 4.0575816248662194348e-4)}, {FN (cosh), ARG(1.0e+00,9.42512322775237976202e+00), RES(-1.5430805428404715949e0, -4.0575816248575841970e-4)}, {FN (cosh), ARG(1.0e+00,-9.42512322775237976202e+00), RES(-1.5430805428404715949e0, 4.0575816248575841970e-4)}, {FN (cosh), ARG(-1.0e+00,9.42512322775237976202e+00), RES(-1.5430805428404715949e0, 4.0575816248575841970e-4)}, {FN (cosh), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(-1.5430805428404715949e0, -4.0575816248575841970e-4)}, {FN (cosh), ARG(2.0e+00,-3.45266983001243932001e-04), RES(3.7621954668392959447e0, -1.2522351259043242989e-3)}, {FN (cosh), ARG(2.0e+00,3.45266983001243932001e-04), RES(3.7621954668392959447e0, 1.2522351259043242989e-3)}, {FN (cosh), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(3.7621954668392959447e0, 1.2522351259043242989e-3)}, {FN (cosh), ARG(-2.0e+00,3.45266983001243932001e-04), RES(3.7621954668392959447e0, -1.2522351259043242989e-3)}, {FN (cosh), ARG(2.0e+00,1.57045105981189525579e+00), RES(1.2989619299131198016e-3, 3.6268601916692946554e0)}, {FN (cosh), ARG(2.0e+00,-1.57045105981189525579e+00), RES(1.2989619299131198016e-3, -3.6268601916692946554e0)}, {FN (cosh), ARG(-2.0e+00,1.57045105981189525579e+00), RES(1.2989619299131198016e-3, -3.6268601916692946554e0)}, {FN (cosh), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(1.2989619299131198016e-3, 3.6268601916692946554e0)}, {FN (cosh), ARG(2.0e+00,1.57114159377789786021e+00), RES(-1.2989619299126590655e-3, 3.6268601916692946556e0)}, {FN (cosh), ARG(2.0e+00,-1.57114159377789786021e+00), RES(-1.2989619299126590655e-3, -3.6268601916692946556e0)}, {FN (cosh), ARG(-2.0e+00,1.57114159377789786021e+00), RES(-1.2989619299126590655e-3, -3.6268601916692946556e0)}, {FN (cosh), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(-1.2989619299126590655e-3, 3.6268601916692946556e0)}, {FN (cosh), ARG(2.0e+00,3.14124738660679181379e+00), RES(-3.7621954668392959444e0, 1.2522351259049798196e-3)}, {FN (cosh), ARG(2.0e+00,-3.14124738660679181379e+00), RES(-3.7621954668392959444e0, -1.2522351259049798196e-3)}, {FN (cosh), ARG(-2.0e+00,3.14124738660679181379e+00), RES(-3.7621954668392959444e0, -1.2522351259049798196e-3)}, {FN (cosh), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(-3.7621954668392959444e0, 1.2522351259049798196e-3)}, {FN (cosh), ARG(2.0e+00,3.14193792057279441821e+00), RES(-3.7621954668392959448e0, -1.2522351259040914950e-3)}, {FN (cosh), ARG(2.0e+00,-3.14193792057279441821e+00), RES(-3.7621954668392959448e0, 1.2522351259040914950e-3)}, {FN (cosh), ARG(-2.0e+00,3.14193792057279441821e+00), RES(-3.7621954668392959448e0, 1.2522351259040914950e-3)}, {FN (cosh), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(-3.7621954668392959448e0, -1.2522351259040914950e-3)}, {FN (cosh), ARG(2.0e+00,4.71204371340168837179e+00), RES(-1.2989619299135805376e-3, -3.6268601916692946552e0)}, {FN (cosh), ARG(2.0e+00,-4.71204371340168837179e+00), RES(-1.2989619299135805376e-3, 3.6268601916692946552e0)}, {FN (cosh), ARG(-2.0e+00,4.71204371340168837179e+00), RES(-1.2989619299135805376e-3, 3.6268601916692946552e0)}, {FN (cosh), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(-1.2989619299135805376e-3, -3.6268601916692946552e0)}, {FN (cosh), ARG(2.0e+00,4.71273424736769097620e+00), RES(1.2989619299121983294e-3, -3.6268601916692946557e0)}, {FN (cosh), ARG(2.0e+00,-4.71273424736769097620e+00), RES(1.2989619299121983294e-3, 3.6268601916692946557e0)}, {FN (cosh), ARG(-2.0e+00,4.71273424736769097620e+00), RES(1.2989619299121983294e-3, 3.6268601916692946557e0)}, {FN (cosh), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(1.2989619299121983294e-3, -3.6268601916692946557e0)}, {FN (cosh), ARG(2.0e+00,6.28284004019658492979e+00), RES(3.7621954668392959443e0, -1.2522351259054239819e-3)}, {FN (cosh), ARG(2.0e+00,-6.28284004019658492979e+00), RES(3.7621954668392959443e0, 1.2522351259054239819e-3)}, {FN (cosh), ARG(-2.0e+00,6.28284004019658492979e+00), RES(3.7621954668392959443e0, 1.2522351259054239819e-3)}, {FN (cosh), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(3.7621954668392959443e0, -1.2522351259054239819e-3)}, {FN (cosh), ARG(2.0e+00,6.28353057416258753420e+00), RES(3.7621954668392959449e0, 1.2522351259036473328e-3)}, {FN (cosh), ARG(2.0e+00,-6.28353057416258753420e+00), RES(3.7621954668392959449e0, -1.2522351259036473328e-3)}, {FN (cosh), ARG(-2.0e+00,6.28353057416258753420e+00), RES(3.7621954668392959449e0, -1.2522351259036473328e-3)}, {FN (cosh), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(3.7621954668392959449e0, 1.2522351259036473328e-3)}, {FN (cosh), ARG(2.0e+00,9.42443269378637893396e+00), RES(-3.7621954668392959453e0, 1.2522351259026468452e-3)}, {FN (cosh), ARG(2.0e+00,-9.42443269378637893396e+00), RES(-3.7621954668392959453e0, -1.2522351259026468452e-3)}, {FN (cosh), ARG(-2.0e+00,9.42443269378637893396e+00), RES(-3.7621954668392959453e0, -1.2522351259026468452e-3)}, {FN (cosh), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(-3.7621954668392959453e0, 1.2522351259026468452e-3)}, {FN (cosh), ARG(2.0e+00,9.42512322775237976202e+00), RES(-3.7621954668392959462e0, -1.2522351258999818715e-3)}, {FN (cosh), ARG(2.0e+00,-9.42512322775237976202e+00), RES(-3.7621954668392959462e0, 1.2522351258999818715e-3)}, {FN (cosh), ARG(-2.0e+00,9.42512322775237976202e+00), RES(-3.7621954668392959462e0, 1.2522351258999818715e-3)}, {FN (cosh), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(-3.7621954668392959462e0, -1.2522351258999818715e-3)}, {FN (tanh), ARG(0.0e+00,-3.45266983001243932001e-04), RES(0, -3.4526699672092183585e-4)}, {FN (tanh), ARG(0.0e+00,3.45266983001243932001e-04), RES(0, 3.4526699672092183585e-4)}, {FN (tanh), ARG(0.0e+00,1.57045105981189525579e+00), RES(0, 2.8963092606501007060e3)}, {FN (tanh), ARG(0.0e+00,-1.57045105981189525579e+00), RES(0, -2.8963092606501007060e3)}, {FN (tanh), ARG(0.0e+00,1.57114159377789786021e+00), RES(0, -2.8963092606511280143e3)}, {FN (tanh), ARG(0.0e+00,-1.57114159377789786021e+00), RES(0, 2.8963092606511280143e3)}, {FN (tanh), ARG(0.0e+00,3.14124738660679181379e+00), RES(0, -3.4526699672110257641e-4)}, {FN (tanh), ARG(0.0e+00,-3.14124738660679181379e+00), RES(0, 3.4526699672110257641e-4)}, {FN (tanh), ARG(0.0e+00,3.14193792057279441821e+00), RES(0, 3.4526699672085764703e-4)}, {FN (tanh), ARG(0.0e+00,-3.14193792057279441821e+00), RES(0, -3.4526699672085764703e-4)}, {FN (tanh), ARG(0.0e+00,4.71204371340168837179e+00), RES(0, 2.8963092606490733978e3)}, {FN (tanh), ARG(0.0e+00,-4.71204371340168837179e+00), RES(0, -2.8963092606490733978e3)}, {FN (tanh), ARG(0.0e+00,4.71273424736769097620e+00), RES(0, -2.8963092606521553225e3)}, {FN (tanh), ARG(0.0e+00,-4.71273424736769097620e+00), RES(0, 2.8963092606521553225e3)}, {FN (tanh), ARG(0.0e+00,6.28284004019658492979e+00), RES(0, -3.4526699672122504111e-4)}, {FN (tanh), ARG(0.0e+00,-6.28284004019658492979e+00), RES(0, 3.4526699672122504111e-4)}, {FN (tanh), ARG(0.0e+00,6.28353057416258753420e+00), RES(0, 3.4526699672073518233e-4)}, {FN (tanh), ARG(0.0e+00,-6.28353057416258753420e+00), RES(0, -3.4526699672073518233e-4)}, {FN (tanh), ARG(0.0e+00,9.42443269378637893396e+00), RES(0, -3.4526699672045932728e-4)}, {FN (tanh), ARG(0.0e+00,-9.42443269378637893396e+00), RES(0, 3.4526699672045932728e-4)}, {FN (tanh), ARG(0.0e+00,9.42512322775237976202e+00), RES(0, 3.4526699671972453911e-4)}, {FN (tanh), ARG(0.0e+00,-9.42512322775237976202e+00), RES(0, -3.4526699671972453911e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(1.1920930376163652989e-7, -3.4526699672091692931e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(1.1920930376163652989e-7, 3.4526699672091692931e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(-1.1920930376163652989e-7, -3.4526699672091692931e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(-1.1920930376163652989e-7, 3.4526699672091692931e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(9.9999992052646305569e-1, 2.8963089153831588642e3)}, {FN (tanh), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(9.9999992052646305569e-1, -2.8963089153831588642e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(-9.9999992052646305569e-1, 2.8963089153831588642e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(-9.9999992052646305569e-1, -2.8963089153831588642e3)}, {FN (tanh), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(9.9999992052717244672e-1, -2.8963089153841861720e3)}, {FN (tanh), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(9.9999992052717244672e-1, 2.8963089153841861720e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(-9.9999992052717244672e-1, -2.8963089153841861720e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-9.9999992052717244672e-1, 2.8963089153841861720e3)}, {FN (tanh), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(1.1920930376163652991e-7, -3.4526699672109766987e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(1.1920930376163652991e-7, 3.4526699672109766987e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(-1.1920930376163652991e-7, -3.4526699672109766987e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-1.1920930376163652991e-7, 3.4526699672109766987e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(1.1920930376163652989e-7, 3.4526699672085274049e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(1.1920930376163652989e-7, -3.4526699672085274049e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(-1.1920930376163652989e-7, 3.4526699672085274049e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-1.1920930376163652989e-7, -3.4526699672085274049e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(9.9999992052575366466e-1, 2.8963089153821315563e3)}, {FN (tanh), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(9.9999992052575366466e-1, -2.8963089153821315563e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(-9.9999992052575366466e-1, 2.8963089153821315563e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-9.9999992052575366466e-1, -2.8963089153821315563e3)}, {FN (tanh), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(9.9999992052788183776e-1, -2.8963089153852134799e3)}, {FN (tanh), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(9.9999992052788183776e-1, 2.8963089153852134799e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(-9.9999992052788183776e-1, -2.8963089153852134799e3)}, {FN (tanh), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(-9.9999992052788183776e-1, 2.8963089153852134799e3)}, {FN (tanh), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(1.1920930376163652992e-7, -3.4526699672122013457e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(1.1920930376163652992e-7, 3.4526699672122013457e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(-1.1920930376163652992e-7, -3.4526699672122013457e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(-1.1920930376163652992e-7, 3.4526699672122013457e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(1.1920930376163652988e-7, 3.4526699672073027579e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(1.1920930376163652988e-7, -3.4526699672073027579e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(-1.1920930376163652988e-7, 3.4526699672073027579e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(-1.1920930376163652988e-7, -3.4526699672073027579e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(1.1920930376163652985e-7, -3.4526699672045442074e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(1.1920930376163652985e-7, 3.4526699672045442074e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(-1.1920930376163652985e-7, -3.4526699672045442074e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-1.1920930376163652985e-7, 3.4526699672045442074e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(1.1920930376163652979e-7, 3.4526699671971963257e-4)}, {FN (tanh), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(1.1920930376163652979e-7, -3.4526699671971963257e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(-1.1920930376163652979e-7, 3.4526699671971963257e-4)}, {FN (tanh), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-1.1920930376163652979e-7, -3.4526699671971963257e-4)}, {FN (tanh), ARG(5.0e-01,-3.45266983001243932001e-04), RES(4.6211720058436229979e-1, -2.7153443992655805934e-4)}, {FN (tanh), ARG(5.0e-01,3.45266983001243932001e-04), RES(4.6211720058436229979e-1, 2.7153443992655805934e-4)}, {FN (tanh), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(-4.6211720058436229979e-1, -2.7153443992655805934e-4)}, {FN (tanh), ARG(-5.0e-01,3.45266983001243932001e-04), RES(-4.6211720058436229979e-1, 2.7153443992655805934e-4)}, {FN (tanh), ARG(5.0e-01,1.57045105981189525579e+00), RES(2.1639524637389325996e0, 1.2715121175455623363e-3)}, {FN (tanh), ARG(5.0e-01,-1.57045105981189525579e+00), RES(2.1639524637389325996e0, -1.2715121175455623363e-3)}, {FN (tanh), ARG(-5.0e-01,1.57045105981189525579e+00), RES(-2.1639524637389325996e0, 1.2715121175455623363e-3)}, {FN (tanh), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(-2.1639524637389325996e0, -1.2715121175455623363e-3)}, {FN (tanh), ARG(5.0e-01,1.57114159377789786021e+00), RES(2.1639524637389326002e0, -1.2715121175451113370e-3)}, {FN (tanh), ARG(5.0e-01,-1.57114159377789786021e+00), RES(2.1639524637389326002e0, 1.2715121175451113370e-3)}, {FN (tanh), ARG(-5.0e-01,1.57114159377789786021e+00), RES(-2.1639524637389326002e0, -1.2715121175451113370e-3)}, {FN (tanh), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(-2.1639524637389326002e0, 1.2715121175451113370e-3)}, {FN (tanh), ARG(5.0e-01,3.14124738660679181379e+00), RES(4.6211720058436229984e-1, -2.7153443992670020234e-4)}, {FN (tanh), ARG(5.0e-01,-3.14124738660679181379e+00), RES(4.6211720058436229984e-1, 2.7153443992670020234e-4)}, {FN (tanh), ARG(-5.0e-01,3.14124738660679181379e+00), RES(-4.6211720058436229984e-1, -2.7153443992670020234e-4)}, {FN (tanh), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(-4.6211720058436229984e-1, 2.7153443992670020234e-4)}, {FN (tanh), ARG(5.0e-01,3.14193792057279441821e+00), RES(4.6211720058436229978e-1, 2.7153443992650757820e-4)}, {FN (tanh), ARG(5.0e-01,-3.14193792057279441821e+00), RES(4.6211720058436229978e-1, -2.7153443992650757820e-4)}, {FN (tanh), ARG(-5.0e-01,3.14193792057279441821e+00), RES(-4.6211720058436229978e-1, 2.7153443992650757820e-4)}, {FN (tanh), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(-4.6211720058436229978e-1, -2.7153443992650757820e-4)}, {FN (tanh), ARG(5.0e-01,4.71204371340168837179e+00), RES(2.1639524637389325989e0, 1.2715121175460133355e-3)}, {FN (tanh), ARG(5.0e-01,-4.71204371340168837179e+00), RES(2.1639524637389325989e0, -1.2715121175460133355e-3)}, {FN (tanh), ARG(-5.0e-01,4.71204371340168837179e+00), RES(-2.1639524637389325989e0, 1.2715121175460133355e-3)}, {FN (tanh), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(-2.1639524637389325989e0, -1.2715121175460133355e-3)}, {FN (tanh), ARG(5.0e-01,4.71273424736769097620e+00), RES(2.1639524637389326009e0, -1.2715121175446603377e-3)}, {FN (tanh), ARG(5.0e-01,-4.71273424736769097620e+00), RES(2.1639524637389326009e0, 1.2715121175446603377e-3)}, {FN (tanh), ARG(-5.0e-01,4.71273424736769097620e+00), RES(-2.1639524637389326009e0, -1.2715121175446603377e-3)}, {FN (tanh), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(-2.1639524637389326009e0, 1.2715121175446603377e-3)}, {FN (tanh), ARG(5.0e-01,6.28284004019658492979e+00), RES(4.6211720058436229987e-1, -2.7153443992679651442e-4)}, {FN (tanh), ARG(5.0e-01,-6.28284004019658492979e+00), RES(4.6211720058436229987e-1, 2.7153443992679651442e-4)}, {FN (tanh), ARG(-5.0e-01,6.28284004019658492979e+00), RES(-4.6211720058436229987e-1, -2.7153443992679651442e-4)}, {FN (tanh), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(-4.6211720058436229987e-1, 2.7153443992679651442e-4)}, {FN (tanh), ARG(5.0e-01,6.28353057416258753420e+00), RES(4.6211720058436229974e-1, 2.7153443992641126612e-4)}, {FN (tanh), ARG(5.0e-01,-6.28353057416258753420e+00), RES(4.6211720058436229974e-1, -2.7153443992641126612e-4)}, {FN (tanh), ARG(-5.0e-01,6.28353057416258753420e+00), RES(-4.6211720058436229974e-1, 2.7153443992641126612e-4)}, {FN (tanh), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(-4.6211720058436229974e-1, -2.7153443992641126612e-4)}, {FN (tanh), ARG(5.0e-01,9.42443269378637893396e+00), RES(4.6211720058436229968e-1, -2.7153443992619432056e-4)}, {FN (tanh), ARG(5.0e-01,-9.42443269378637893396e+00), RES(4.6211720058436229968e-1, 2.7153443992619432056e-4)}, {FN (tanh), ARG(-5.0e-01,9.42443269378637893396e+00), RES(-4.6211720058436229968e-1, -2.7153443992619432056e-4)}, {FN (tanh), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(-4.6211720058436229968e-1, 2.7153443992619432056e-4)}, {FN (tanh), ARG(5.0e-01,9.42512322775237976202e+00), RES(4.6211720058436229949e-1, 2.7153443992561644811e-4)}, {FN (tanh), ARG(5.0e-01,-9.42512322775237976202e+00), RES(4.6211720058436229949e-1, -2.7153443992561644811e-4)}, {FN (tanh), ARG(-5.0e-01,9.42512322775237976202e+00), RES(-4.6211720058436229949e-1, 2.7153443992561644811e-4)}, {FN (tanh), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(-4.6211720058436229949e-1, -2.7153443992561644811e-4)}, {FN (tanh), ARG(1.0e+00,-3.45266983001243932001e-04), RES(7.6159419408485704836e-1, -1.4500326960274960880e-4)}, {FN (tanh), ARG(1.0e+00,3.45266983001243932001e-04), RES(7.6159419408485704836e-1, 1.4500326960274960880e-4)}, {FN (tanh), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(-7.6159419408485704836e-1, -1.4500326960274960880e-4)}, {FN (tanh), ARG(-1.0e+00,3.45266983001243932001e-04), RES(-7.6159419408485704836e-1, 1.4500326960274960880e-4)}, {FN (tanh), ARG(1.0e+00,1.57045105981189525579e+00), RES(1.3130351721648674823e0, 2.4999454374276273814e-4)}, {FN (tanh), ARG(1.0e+00,-1.57045105981189525579e+00), RES(1.3130351721648674823e0, -2.4999454374276273814e-4)}, {FN (tanh), ARG(-1.0e+00,1.57045105981189525579e+00), RES(-1.3130351721648674823e0, 2.4999454374276273814e-4)}, {FN (tanh), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(-1.3130351721648674823e0, -2.4999454374276273814e-4)}, {FN (tanh), ARG(1.0e+00,1.57114159377789786021e+00), RES(1.3130351721648674824e0, -2.4999454374267406620e-4)}, {FN (tanh), ARG(1.0e+00,-1.57114159377789786021e+00), RES(1.3130351721648674824e0, 2.4999454374267406620e-4)}, {FN (tanh), ARG(-1.0e+00,1.57114159377789786021e+00), RES(-1.3130351721648674824e0, -2.4999454374267406620e-4)}, {FN (tanh), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(-1.3130351721648674824e0, 2.4999454374267406620e-4)}, {FN (tanh), ARG(1.0e+00,3.14124738660679181379e+00), RES(7.6159419408485704840e-1, -1.4500326960282551519e-4)}, {FN (tanh), ARG(1.0e+00,-3.14124738660679181379e+00), RES(7.6159419408485704840e-1, 1.4500326960282551519e-4)}, {FN (tanh), ARG(-1.0e+00,3.14124738660679181379e+00), RES(-7.6159419408485704840e-1, -1.4500326960282551519e-4)}, {FN (tanh), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(-7.6159419408485704840e-1, 1.4500326960282551519e-4)}, {FN (tanh), ARG(1.0e+00,3.14193792057279441821e+00), RES(7.6159419408485704835e-1, 1.4500326960272265115e-4)}, {FN (tanh), ARG(1.0e+00,-3.14193792057279441821e+00), RES(7.6159419408485704835e-1, -1.4500326960272265115e-4)}, {FN (tanh), ARG(-1.0e+00,3.14193792057279441821e+00), RES(-7.6159419408485704835e-1, 1.4500326960272265115e-4)}, {FN (tanh), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(-7.6159419408485704835e-1, -1.4500326960272265115e-4)}, {FN (tanh), ARG(1.0e+00,4.71204371340168837179e+00), RES(1.3130351721648674822e0, 2.4999454374285141007e-4)}, {FN (tanh), ARG(1.0e+00,-4.71204371340168837179e+00), RES(1.3130351721648674822e0, -2.4999454374285141007e-4)}, {FN (tanh), ARG(-1.0e+00,4.71204371340168837179e+00), RES(-1.3130351721648674822e0, 2.4999454374285141007e-4)}, {FN (tanh), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(-1.3130351721648674822e0, -2.4999454374285141007e-4)}, {FN (tanh), ARG(1.0e+00,4.71273424736769097620e+00), RES(1.3130351721648674825e0, -2.4999454374258539427e-4)}, {FN (tanh), ARG(1.0e+00,-4.71273424736769097620e+00), RES(1.3130351721648674825e0, 2.4999454374258539427e-4)}, {FN (tanh), ARG(-1.0e+00,4.71273424736769097620e+00), RES(-1.3130351721648674825e0, -2.4999454374258539427e-4)}, {FN (tanh), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(-1.3130351721648674825e0, 2.4999454374258539427e-4)}, {FN (tanh), ARG(1.0e+00,6.28284004019658492979e+00), RES(7.6159419408485704843e-1, -1.4500326960287694721e-4)}, {FN (tanh), ARG(1.0e+00,-6.28284004019658492979e+00), RES(7.6159419408485704843e-1, 1.4500326960287694721e-4)}, {FN (tanh), ARG(-1.0e+00,6.28284004019658492979e+00), RES(-7.6159419408485704843e-1, -1.4500326960287694721e-4)}, {FN (tanh), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(-7.6159419408485704843e-1, 1.4500326960287694721e-4)}, {FN (tanh), ARG(1.0e+00,6.28353057416258753420e+00), RES(7.6159419408485704832e-1, 1.4500326960267121913e-4)}, {FN (tanh), ARG(1.0e+00,-6.28353057416258753420e+00), RES(7.6159419408485704832e-1, -1.4500326960267121913e-4)}, {FN (tanh), ARG(-1.0e+00,6.28353057416258753420e+00), RES(-7.6159419408485704832e-1, 1.4500326960267121913e-4)}, {FN (tanh), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(-7.6159419408485704832e-1, -1.4500326960267121913e-4)}, {FN (tanh), ARG(1.0e+00,9.42443269378637893396e+00), RES(7.6159419408485704826e-1, -1.4500326960255536711e-4)}, {FN (tanh), ARG(1.0e+00,-9.42443269378637893396e+00), RES(7.6159419408485704826e-1, 1.4500326960255536711e-4)}, {FN (tanh), ARG(-1.0e+00,9.42443269378637893396e+00), RES(-7.6159419408485704826e-1, -1.4500326960255536711e-4)}, {FN (tanh), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(-7.6159419408485704826e-1, 1.4500326960255536711e-4)}, {FN (tanh), ARG(1.0e+00,9.42512322775237976202e+00), RES(7.6159419408485704810e-1, 1.450032696022467750e-4)}, {FN (tanh), ARG(1.0e+00,-9.42512322775237976202e+00), RES(7.6159419408485704810e-1, -1.450032696022467750e-4)}, {FN (tanh), ARG(-1.0e+00,9.42512322775237976202e+00), RES(-7.6159419408485704810e-1, 1.450032696022467750e-4)}, {FN (tanh), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(-7.6159419408485704810e-1, -1.450032696022467750e-4)}, {FN (tanh), ARG(2.0e+00,-3.45266983001243932001e-04), RES(9.6402758819508310556e-1, -2.4393395410435306874e-5)}, {FN (tanh), ARG(2.0e+00,3.45266983001243932001e-04), RES(9.6402758819508310556e-1, 2.4393395410435306874e-5)}, {FN (tanh), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(-9.6402758819508310556e-1, -2.4393395410435306874e-5)}, {FN (tanh), ARG(-2.0e+00,3.45266983001243932001e-04), RES(-9.6402758819508310556e-1, 2.4393395410435306874e-5)}, {FN (tanh), ARG(2.0e+00,1.57045105981189525579e+00), RES(1.0373147113268752620e0, 2.6247825506572821595e-5)}, {FN (tanh), ARG(2.0e+00,-1.57045105981189525579e+00), RES(1.0373147113268752620e0, -2.6247825506572821595e-5)}, {FN (tanh), ARG(-2.0e+00,1.57045105981189525579e+00), RES(-1.0373147113268752620e0, 2.6247825506572821595e-5)}, {FN (tanh), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(-1.0373147113268752620e0, -2.6247825506572821595e-5)}, {FN (tanh), ARG(2.0e+00,1.57114159377789786021e+00), RES(1.0373147113268752620e0, -2.6247825506563511609e-5)}, {FN (tanh), ARG(2.0e+00,-1.57114159377789786021e+00), RES(1.0373147113268752620e0, 2.6247825506563511609e-5)}, {FN (tanh), ARG(-2.0e+00,1.57114159377789786021e+00), RES(-1.0373147113268752620e0, -2.6247825506563511609e-5)}, {FN (tanh), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(-1.0373147113268752620e0, 2.6247825506563511609e-5)}, {FN (tanh), ARG(2.0e+00,3.14124738660679181379e+00), RES(9.6402758819508310557e-1, -2.4393395410448076340e-5)}, {FN (tanh), ARG(2.0e+00,-3.14124738660679181379e+00), RES(9.6402758819508310557e-1, 2.4393395410448076340e-5)}, {FN (tanh), ARG(-2.0e+00,3.14124738660679181379e+00), RES(-9.6402758819508310557e-1, -2.4393395410448076340e-5)}, {FN (tanh), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(-9.6402758819508310557e-1, 2.4393395410448076340e-5)}, {FN (tanh), ARG(2.0e+00,3.14193792057279441821e+00), RES(9.6402758819508310556e-1, 2.4393395410430771882e-5)}, {FN (tanh), ARG(2.0e+00,-3.14193792057279441821e+00), RES(9.6402758819508310556e-1, -2.4393395410430771882e-5)}, {FN (tanh), ARG(-2.0e+00,3.14193792057279441821e+00), RES(-9.6402758819508310556e-1, 2.4393395410430771882e-5)}, {FN (tanh), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(-9.6402758819508310556e-1, -2.4393395410430771882e-5)}, {FN (tanh), ARG(2.0e+00,4.71204371340168837179e+00), RES(1.0373147113268752620e0, 2.6247825506582131582e-5)}, {FN (tanh), ARG(2.0e+00,-4.71204371340168837179e+00), RES(1.0373147113268752620e0, -2.6247825506582131582e-5)}, {FN (tanh), ARG(-2.0e+00,4.71204371340168837179e+00), RES(-1.0373147113268752620e0, 2.6247825506582131582e-5)}, {FN (tanh), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(-1.0373147113268752620e0, -2.6247825506582131582e-5)}, {FN (tanh), ARG(2.0e+00,4.71273424736769097620e+00), RES(1.0373147113268752620e0, -2.6247825506554201622e-5)}, {FN (tanh), ARG(2.0e+00,-4.71273424736769097620e+00), RES(1.0373147113268752620e0, 2.6247825506554201622e-5)}, {FN (tanh), ARG(-2.0e+00,4.71273424736769097620e+00), RES(-1.0373147113268752620e0, -2.6247825506554201622e-5)}, {FN (tanh), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(-1.0373147113268752620e0, 2.6247825506554201622e-5)}, {FN (tanh), ARG(2.0e+00,6.28284004019658492979e+00), RES(9.6402758819508310558e-1, -2.4393395410456728569e-5)}, {FN (tanh), ARG(2.0e+00,-6.28284004019658492979e+00), RES(9.6402758819508310558e-1, 2.4393395410456728569e-5)}, {FN (tanh), ARG(-2.0e+00,6.28284004019658492979e+00), RES(-9.6402758819508310558e-1, -2.4393395410456728569e-5)}, {FN (tanh), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(-9.6402758819508310558e-1, 2.4393395410456728569e-5)}, {FN (tanh), ARG(2.0e+00,6.28353057416258753420e+00), RES(9.6402758819508310555e-1, 2.4393395410422119654e-5)}, {FN (tanh), ARG(2.0e+00,-6.28353057416258753420e+00), RES(9.6402758819508310555e-1, -2.4393395410422119654e-5)}, {FN (tanh), ARG(-2.0e+00,6.28353057416258753420e+00), RES(-9.6402758819508310555e-1, 2.4393395410422119654e-5)}, {FN (tanh), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(-9.6402758819508310555e-1, -2.4393395410422119654e-5)}, {FN (tanh), ARG(2.0e+00,9.42443269378637893396e+00), RES(9.6402758819508310554e-1, -2.4393395410402630273e-5)}, {FN (tanh), ARG(2.0e+00,-9.42443269378637893396e+00), RES(9.6402758819508310554e-1, 2.4393395410402630273e-5)}, {FN (tanh), ARG(-2.0e+00,9.42443269378637893396e+00), RES(-9.6402758819508310554e-1, -2.4393395410402630273e-5)}, {FN (tanh), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(-9.6402758819508310554e-1, 2.4393395410402630273e-5)}, {FN (tanh), ARG(2.0e+00,9.42512322775237976202e+00), RES(9.6402758819508310550e-1, 2.439339541035071690e-5)}, {FN (tanh), ARG(2.0e+00,-9.42512322775237976202e+00), RES(9.6402758819508310550e-1, -2.439339541035071690e-5)}, {FN (tanh), ARG(-2.0e+00,9.42512322775237976202e+00), RES(-9.6402758819508310550e-1, 2.439339541035071690e-5)}, {FN (tanh), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(-9.6402758819508310550e-1, -2.439339541035071690e-5)}, {FN (arcsinh), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arcsinh), ARG(0.0e+00,1.19209289550781250e-07), RES(0, 1.1920928955078153234e-7)}, {FN (arcsinh), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, -1.1920928955078153234e-7)}, {FN (arcsinh), ARG(0.0e+00,5.0e-01), RES(0, 5.2359877559829887308e-1)}, {FN (arcsinh), ARG(0.0e+00,-5.0e-01), RES(0, -5.2359877559829887308e-1)}, {FN (arcsinh), ARG(0.0e+00,1.0e+00), RES(0, 1.5707963267948966192e0)}, {FN (arcsinh), ARG(0.0e+00,-1.0e+00), RES(0, -1.5707963267948966192e0)}, {FN (arcsinh), ARG(0.0e+00,2.0e+00), RES(1.3169578969248167086e0, 1.5707963267948966192e0)}, {FN (arcsinh), ARG(0.0e+00,-2.0e+00), RES(-1.3169578969248167086e0, -1.5707963267948966192e0)}, {FN (arcsinh), ARG(0.0e+00,8.3886080e+06), RES(1.6635532333438683873e1, 1.5707963267948966192e0)}, {FN (arcsinh), ARG(0.0e+00,-8.3886080e+06), RES(-1.6635532333438683873e1, -1.5707963267948966192e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078096766e-7, 0.0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.1920928955078096766e-7, 0.0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078181469e-7, 1.1920928955078068531e-7)}, {FN (arcsinh), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078181469e-7, -1.1920928955078068531e-7)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.1920928955078181469e-7, 1.1920928955078068531e-7)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.1920928955078181469e-7, -1.1920928955078068531e-7)}, {FN (arcsinh), ARG(1.19209289550781250e-07,5.0e-01), RES(1.3765103082409432364e-7, 5.2359877559829340332e-1)}, {FN (arcsinh), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.3765103082409432364e-7, -5.2359877559829340332e-1)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,5.0e-01), RES(-1.3765103082409432364e-7, 5.2359877559829340332e-1)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.3765103082409432364e-7, -5.2359877559829340332e-1)}, {FN (arcsinh), ARG(1.19209289550781250e-07,1.0e+00), RES(3.4526698643116312881e-4, 1.5704510598153252947e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,-1.0e+00), RES(3.4526698643116312881e-4, -1.5704510598153252947e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,1.0e+00), RES(-3.4526698643116312881e-4, 1.5704510598153252947e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-3.4526698643116312881e-4, -1.5704510598153252947e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,2.0e+00), RES(1.3169578969248194435e0, 1.5707962579693812072e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.3169578969248194435e0, -1.5707962579693812072e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,2.0e+00), RES(-1.3169578969248194435e0, 1.5707962579693812072e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-1.3169578969248194435e0, -1.5707962579693812072e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6635532333438683873e1, 1.5707963267948824084e0)}, {FN (arcsinh), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6635532333438683873e1, -1.5707963267948824084e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6635532333438683873e1, 1.5707963267948824084e0)}, {FN (arcsinh), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6635532333438683873e1, -1.5707963267948824084e0)}, {FN (arcsinh), ARG(5.0e-01,0.0e+00), RES(4.8121182505960344750e-1, 0.0)}, {FN (arcsinh), ARG(-5.0e-01,0.0e+00), RES(-4.8121182505960344750e-1, 0.0)}, {FN (arcsinh), ARG(5.0e-01,1.19209289550781250e-07), RES(4.8121182505960598961e-1, 1.0662402999400097805e-7)}, {FN (arcsinh), ARG(5.0e-01,-1.19209289550781250e-07), RES(4.8121182505960598961e-1, -1.0662402999400097805e-7)}, {FN (arcsinh), ARG(-5.0e-01,1.19209289550781250e-07), RES(-4.8121182505960598961e-1, 1.0662402999400097805e-7)}, {FN (arcsinh), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-4.8121182505960598961e-1, -1.0662402999400097805e-7)}, {FN (arcsinh), ARG(5.0e-01,5.0e-01), RES(5.3063753095251782602e-1, 4.5227844715119068206e-1)}, {FN (arcsinh), ARG(5.0e-01,-5.0e-01), RES(5.3063753095251782602e-1, -4.5227844715119068206e-1)}, {FN (arcsinh), ARG(-5.0e-01,5.0e-01), RES(-5.3063753095251782602e-1, 4.5227844715119068206e-1)}, {FN (arcsinh), ARG(-5.0e-01,-5.0e-01), RES(-5.3063753095251782602e-1, -4.5227844715119068206e-1)}, {FN (arcsinh), ARG(5.0e-01,1.0e+00), RES(7.3285767597364526089e-1, 8.9590748120889023907e-1)}, {FN (arcsinh), ARG(5.0e-01,-1.0e+00), RES(7.3285767597364526089e-1, -8.9590748120889023907e-1)}, {FN (arcsinh), ARG(-5.0e-01,1.0e+00), RES(-7.3285767597364526089e-1, 8.9590748120889023907e-1)}, {FN (arcsinh), ARG(-5.0e-01,-1.0e+00), RES(-7.3285767597364526089e-1, -8.9590748120889023907e-1)}, {FN (arcsinh), ARG(5.0e-01,2.0e+00), RES(1.3618009008578457882e0, 1.2930420702371826591e0)}, {FN (arcsinh), ARG(5.0e-01,-2.0e+00), RES(1.3618009008578457882e0, -1.2930420702371826591e0)}, {FN (arcsinh), ARG(-5.0e-01,2.0e+00), RES(-1.3618009008578457882e0, 1.2930420702371826591e0)}, {FN (arcsinh), ARG(-5.0e-01,-2.0e+00), RES(-1.3618009008578457882e0, -1.2930420702371826591e0)}, {FN (arcsinh), ARG(5.0e-01,8.3886080e+06), RES(1.6635532333438685650e1, 1.5707962671902518438e0)}, {FN (arcsinh), ARG(5.0e-01,-8.3886080e+06), RES(1.6635532333438685650e1, -1.5707962671902518438e0)}, {FN (arcsinh), ARG(-5.0e-01,8.3886080e+06), RES(-1.6635532333438685650e1, 1.5707962671902518438e0)}, {FN (arcsinh), ARG(-5.0e-01,-8.3886080e+06), RES(-1.6635532333438685650e1, -1.5707962671902518438e0)}, {FN (arcsinh), ARG(1.0e+00,0.0e+00), RES(8.8137358701954302523e-1, 0.0)}, {FN (arcsinh), ARG(-1.0e+00,0.0e+00), RES(-8.8137358701954302523e-1, 0.0)}, {FN (arcsinh), ARG(1.0e+00,1.19209289550781250e-07), RES(8.8137358701954553738e-1, 8.4293697021788013662e-8)}, {FN (arcsinh), ARG(1.0e+00,-1.19209289550781250e-07), RES(8.8137358701954553738e-1, -8.4293697021788013662e-8)}, {FN (arcsinh), ARG(-1.0e+00,1.19209289550781250e-07), RES(-8.8137358701954553738e-1, 8.4293697021788013662e-8)}, {FN (arcsinh), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-8.8137358701954553738e-1, -8.4293697021788013662e-8)}, {FN (arcsinh), ARG(1.0e+00,5.0e-01), RES(9.2613303135018242455e-1, 3.4943906285721329363e-1)}, {FN (arcsinh), ARG(1.0e+00,-5.0e-01), RES(9.2613303135018242455e-1, -3.4943906285721329363e-1)}, {FN (arcsinh), ARG(-1.0e+00,5.0e-01), RES(-9.2613303135018242455e-1, 3.4943906285721329363e-1)}, {FN (arcsinh), ARG(-1.0e+00,-5.0e-01), RES(-9.2613303135018242455e-1, -3.4943906285721329363e-1)}, {FN (arcsinh), ARG(1.0e+00,1.0e+00), RES(1.0612750619050356520e0, 6.6623943249251525510e-1)}, {FN (arcsinh), ARG(1.0e+00,-1.0e+00), RES(1.0612750619050356520e0, -6.6623943249251525510e-1)}, {FN (arcsinh), ARG(-1.0e+00,1.0e+00), RES(-1.0612750619050356520e0, 6.6623943249251525510e-1)}, {FN (arcsinh), ARG(-1.0e+00,-1.0e+00), RES(-1.0612750619050356520e0, -6.6623943249251525510e-1)}, {FN (arcsinh), ARG(1.0e+00,2.0e+00), RES(1.4693517443681852733e0, 1.0634400235777520562e0)}, {FN (arcsinh), ARG(1.0e+00,-2.0e+00), RES(1.4693517443681852733e0, -1.0634400235777520562e0)}, {FN (arcsinh), ARG(-1.0e+00,2.0e+00), RES(-1.4693517443681852733e0, 1.0634400235777520562e0)}, {FN (arcsinh), ARG(-1.0e+00,-2.0e+00), RES(-1.4693517443681852733e0, -1.0634400235777520562e0)}, {FN (arcsinh), ARG(1.0e+00,8.3886080e+06), RES(1.6635532333438690979e1, 1.5707962075856070684e0)}, {FN (arcsinh), ARG(1.0e+00,-8.3886080e+06), RES(1.6635532333438690979e1, -1.5707962075856070684e0)}, {FN (arcsinh), ARG(-1.0e+00,8.3886080e+06), RES(-1.6635532333438690979e1, 1.5707962075856070684e0)}, {FN (arcsinh), ARG(-1.0e+00,-8.3886080e+06), RES(-1.6635532333438690979e1, -1.5707962075856070684e0)}, {FN (arcsinh), ARG(2.0e+00,0.0e+00), RES(1.4436354751788103425e0, 0.0)}, {FN (arcsinh), ARG(-2.0e+00,0.0e+00), RES(-1.4436354751788103425e0, 0.0)}, {FN (arcsinh), ARG(2.0e+00,1.19209289550781250e-07), RES(1.4436354751788116136e0, 5.3312014997000413263e-8)}, {FN (arcsinh), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.4436354751788116136e0, -5.3312014997000413263e-8)}, {FN (arcsinh), ARG(-2.0e+00,1.19209289550781250e-07), RES(-1.4436354751788116136e0, 5.3312014997000413263e-8)}, {FN (arcsinh), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-1.4436354751788116136e0, -5.3312014997000413263e-8)}, {FN (arcsinh), ARG(2.0e+00,5.0e-01), RES(1.4657153519472905218e0, 2.2101863562288385890e-1)}, {FN (arcsinh), ARG(2.0e+00,-5.0e-01), RES(1.4657153519472905218e0, -2.2101863562288385890e-1)}, {FN (arcsinh), ARG(-2.0e+00,5.0e-01), RES(-1.4657153519472905218e0, 2.2101863562288385890e-1)}, {FN (arcsinh), ARG(-2.0e+00,-5.0e-01), RES(-1.4657153519472905218e0, -2.2101863562288385890e-1)}, {FN (arcsinh), ARG(2.0e+00,1.0e+00), RES(1.5285709194809981613e0, 4.2707858639247612548e-1)}, {FN (arcsinh), ARG(2.0e+00,-1.0e+00), RES(1.5285709194809981613e0, -4.2707858639247612548e-1)}, {FN (arcsinh), ARG(-2.0e+00,1.0e+00), RES(-1.5285709194809981613e0, 4.2707858639247612548e-1)}, {FN (arcsinh), ARG(-2.0e+00,-1.0e+00), RES(-1.5285709194809981613e0, -4.2707858639247612548e-1)}, {FN (arcsinh), ARG(2.0e+00,2.0e+00), RES(1.7343245214879664480e0, 7.5424914469804604071e-1)}, {FN (arcsinh), ARG(2.0e+00,-2.0e+00), RES(1.7343245214879664480e0, -7.5424914469804604071e-1)}, {FN (arcsinh), ARG(-2.0e+00,2.0e+00), RES(-1.7343245214879664480e0, 7.5424914469804604071e-1)}, {FN (arcsinh), ARG(-2.0e+00,-2.0e+00), RES(-1.7343245214879664480e0, -7.5424914469804604071e-1)}, {FN (arcsinh), ARG(2.0e+00,8.3886080e+06), RES(1.6635532333438712295e1, 1.5707960883763175177e0)}, {FN (arcsinh), ARG(2.0e+00,-8.3886080e+06), RES(1.6635532333438712295e1, -1.5707960883763175177e0)}, {FN (arcsinh), ARG(-2.0e+00,8.3886080e+06), RES(-1.6635532333438712295e1, 1.5707960883763175177e0)}, {FN (arcsinh), ARG(-2.0e+00,-8.3886080e+06), RES(-1.6635532333438712295e1, -1.5707960883763175177e0)}, {FN (arcsinh), ARG(8.3886080e+06,0.0e+00), RES(1.6635532333438690979e1, 0.0)}, {FN (arcsinh), ARG(-8.3886080e+06,0.0e+00), RES(-1.6635532333438690979e1, 0.0)}, {FN (arcsinh), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.6635532333438690979e1, 1.4210854715201902743e-14)}, {FN (arcsinh), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.6635532333438690979e1, -1.4210854715201902743e-14)}, {FN (arcsinh), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.6635532333438690979e1, 1.4210854715201902743e-14)}, {FN (arcsinh), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.6635532333438690979e1, -1.4210854715201902743e-14)}, {FN (arcsinh), ARG(8.3886080e+06,5.0e-01), RES(1.6635532333438692755e1, 5.9604644775390130897e-8)}, {FN (arcsinh), ARG(8.3886080e+06,-5.0e-01), RES(1.6635532333438692755e1, -5.9604644775390130897e-8)}, {FN (arcsinh), ARG(-8.3886080e+06,5.0e-01), RES(-1.6635532333438692755e1, 5.9604644775390130897e-8)}, {FN (arcsinh), ARG(-8.3886080e+06,-5.0e-01), RES(-1.6635532333438692755e1, -5.9604644775390130897e-8)}, {FN (arcsinh), ARG(8.3886080e+06,1.0e+00), RES(1.6635532333438698084e1, 1.1920928955077983828e-7)}, {FN (arcsinh), ARG(8.3886080e+06,-1.0e+00), RES(1.6635532333438698084e1, -1.1920928955077983828e-7)}, {FN (arcsinh), ARG(-8.3886080e+06,1.0e+00), RES(-1.6635532333438698084e1, 1.1920928955077983828e-7)}, {FN (arcsinh), ARG(-8.3886080e+06,-1.0e+00), RES(-1.6635532333438698084e1, -1.1920928955077983828e-7)}, {FN (arcsinh), ARG(8.3886080e+06,2.0e+00), RES(1.663553233343871940e1, 2.3841857910155628843e-7)}, {FN (arcsinh), ARG(8.3886080e+06,-2.0e+00), RES(1.663553233343871940e1, -2.3841857910155628843e-7)}, {FN (arcsinh), ARG(-8.3886080e+06,2.0e+00), RES(-1.663553233343871940e1, 2.3841857910155628843e-7)}, {FN (arcsinh), ARG(-8.3886080e+06,-2.0e+00), RES(-1.663553233343871940e1, -2.3841857910155628843e-7)}, {FN (arcsinh), ARG(8.3886080e+06,8.3886080e+06), RES(1.6982105923718660081e1, 7.8539816339744653326e-1)}, {FN (arcsinh), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6982105923718660081e1, -7.8539816339744653326e-1)}, {FN (arcsinh), ARG(-8.3886080e+06,8.3886080e+06), RES(-1.6982105923718660081e1, 7.8539816339744653326e-1)}, {FN (arcsinh), ARG(-8.3886080e+06,-8.3886080e+06), RES(-1.6982105923718660081e1, -7.8539816339744653326e-1)}, {FN (arccosh), ARG(0.0e+00,0.0e+00), RES(0, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,1.19209289550781250e-07), RES(1.1920928955078096766e-7, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.1920928955078096766e-7, -1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,5.0e-01), RES(4.8121182505960344750e-1, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,-5.0e-01), RES(4.8121182505960344750e-1, -1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,1.0e+00), RES(8.8137358701954302523e-1, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,-1.0e+00), RES(8.8137358701954302523e-1, -1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,2.0e+00), RES(1.4436354751788103425e0, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,-2.0e+00), RES(1.4436354751788103425e0, -1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,8.3886080e+06), RES(1.6635532333438690979e1, 1.5707963267948966192e0)}, {FN (arccosh), ARG(0.0e+00,-8.3886080e+06), RES(1.6635532333438690979e1, -1.5707963267948966192e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,0.0e+00), RES(0, 1.5707962075856070684e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,0.0e+00), RES(0, 1.570796446004186170e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078181469e-7, 1.5707962075856070685e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078181469e-7, -1.5707962075856070685e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078181469e-7, 1.570796446004186170e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078181469e-7, -1.570796446004186170e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,5.0e-01), RES(4.8121182505960598961e-1, 1.5707962201708666252e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,-5.0e-01), RES(4.8121182505960598961e-1, -1.5707962201708666252e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,5.0e-01), RES(4.8121182505960598961e-1, 1.5707964334189266132e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,-5.0e-01), RES(4.8121182505960598961e-1, -1.5707964334189266132e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,1.0e+00), RES(8.8137358701954553738e-1, 1.5707962425011995974e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,-1.0e+00), RES(8.8137358701954553738e-1, -1.5707962425011995974e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,1.0e+00), RES(8.8137358701954553738e-1, 1.5707964110885936410e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,-1.0e+00), RES(8.8137358701954553738e-1, -1.5707964110885936410e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,2.0e+00), RES(1.4436354751788116136e0, 1.5707962734828816222e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.4436354751788116136e0, -1.5707962734828816222e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,2.0e+00), RES(1.4436354751788116136e0, 1.5707963801069116162e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,-2.0e+00), RES(1.4436354751788116136e0, -1.5707963801069116162e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6635532333438690979e1, 1.5707963267948824084e0)}, {FN (arccosh), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6635532333438690979e1, -1.5707963267948824084e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.6635532333438690979e1, 1.5707963267949108301e0)}, {FN (arccosh), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.6635532333438690979e1, -1.5707963267949108301e0)}, {FN (arccosh), ARG(5.0e-01,0.0e+00), RES(0, 1.0471975511965977462e0)}, {FN (arccosh), ARG(-5.0e-01,0.0e+00), RES(0, 2.0943951023931954923e0)}, {FN (arccosh), ARG(5.0e-01,1.19209289550781250e-07), RES(1.3765103082409432364e-7, 1.0471975511966032159e0)}, {FN (arccosh), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.3765103082409432364e-7, -1.0471975511966032159e0)}, {FN (arccosh), ARG(-5.0e-01,1.19209289550781250e-07), RES(1.3765103082409432364e-7, 2.0943951023931900225e0)}, {FN (arccosh), ARG(-5.0e-01,-1.19209289550781250e-07), RES(1.3765103082409432364e-7, -2.0943951023931900225e0)}, {FN (arccosh), ARG(5.0e-01,5.0e-01), RES(5.3063753095251782602e-1, 1.1185178796437059372e0)}, {FN (arccosh), ARG(5.0e-01,-5.0e-01), RES(5.3063753095251782602e-1, -1.1185178796437059372e0)}, {FN (arccosh), ARG(-5.0e-01,5.0e-01), RES(5.3063753095251782602e-1, 2.0230747739460873013e0)}, {FN (arccosh), ARG(-5.0e-01,-5.0e-01), RES(5.3063753095251782602e-1, -2.0230747739460873013e0)}, {FN (arccosh), ARG(5.0e-01,1.0e+00), RES(9.2613303135018242455e-1, 1.2213572639376833256e0)}, {FN (arccosh), ARG(5.0e-01,-1.0e+00), RES(9.2613303135018242455e-1, -1.2213572639376833256e0)}, {FN (arccosh), ARG(-5.0e-01,1.0e+00), RES(9.2613303135018242455e-1, 1.9202353896521099129e0)}, {FN (arccosh), ARG(-5.0e-01,-1.0e+00), RES(9.2613303135018242455e-1, -1.9202353896521099129e0)}, {FN (arccosh), ARG(5.0e-01,2.0e+00), RES(1.4657153519472905218e0, 1.3497776911720127603e0)}, {FN (arccosh), ARG(5.0e-01,-2.0e+00), RES(1.4657153519472905218e0, -1.3497776911720127603e0)}, {FN (arccosh), ARG(-5.0e-01,2.0e+00), RES(1.4657153519472905218e0, 1.7918149624177804781e0)}, {FN (arccosh), ARG(-5.0e-01,-2.0e+00), RES(1.4657153519472905218e0, -1.7918149624177804781e0)}, {FN (arccosh), ARG(5.0e-01,8.3886080e+06), RES(1.6635532333438692755e1, 1.5707962671902518438e0)}, {FN (arccosh), ARG(5.0e-01,-8.3886080e+06), RES(1.6635532333438692755e1, -1.5707962671902518438e0)}, {FN (arccosh), ARG(-5.0e-01,8.3886080e+06), RES(1.6635532333438692755e1, 1.5707963863995413946e0)}, {FN (arccosh), ARG(-5.0e-01,-8.3886080e+06), RES(1.6635532333438692755e1, -1.5707963863995413946e0)}, {FN (arccosh), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arccosh), ARG(-1.0e+00,0.0e+00), RES(0, 3.1415926535897932385e0)}, {FN (arccosh), ARG(1.0e+00,1.19209289550781250e-07), RES(3.4526698643116312881e-4, 3.4526697957132450399e-4)}, {FN (arccosh), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.4526698643116312881e-4, -3.4526697957132450399e-4)}, {FN (arccosh), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.4526698643116312881e-4, 3.1412473866102219140e0)}, {FN (arccosh), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.4526698643116312881e-4, -3.1412473866102219140e0)}, {FN (arccosh), ARG(1.0e+00,5.0e-01), RES(7.3285767597364526089e-1, 6.7488884558600638016e-1)}, {FN (arccosh), ARG(1.0e+00,-5.0e-01), RES(7.3285767597364526089e-1, -6.7488884558600638016e-1)}, {FN (arccosh), ARG(-1.0e+00,5.0e-01), RES(7.3285767597364526089e-1, 2.4667038080037868583e0)}, {FN (arccosh), ARG(-1.0e+00,-5.0e-01), RES(7.3285767597364526089e-1, -2.4667038080037868583e0)}, {FN (arccosh), ARG(1.0e+00,1.0e+00), RES(1.0612750619050356520e0, 9.0455689430238136413e-1)}, {FN (arccosh), ARG(1.0e+00,-1.0e+00), RES(1.0612750619050356520e0, -9.0455689430238136413e-1)}, {FN (arccosh), ARG(-1.0e+00,1.0e+00), RES(1.0612750619050356520e0, 2.2370357592874118743e0)}, {FN (arccosh), ARG(-1.0e+00,-1.0e+00), RES(1.0612750619050356520e0, -2.2370357592874118743e0)}, {FN (arccosh), ARG(1.0e+00,2.0e+00), RES(1.5285709194809981613e0, 1.1437177404024204938e0)}, {FN (arccosh), ARG(1.0e+00,-2.0e+00), RES(1.5285709194809981613e0, -1.1437177404024204938e0)}, {FN (arccosh), ARG(-1.0e+00,2.0e+00), RES(1.5285709194809981613e0, 1.9978749131873727447e0)}, {FN (arccosh), ARG(-1.0e+00,-2.0e+00), RES(1.5285709194809981613e0, -1.9978749131873727447e0)}, {FN (arccosh), ARG(1.0e+00,8.3886080e+06), RES(1.6635532333438698084e1, 1.5707962075856070685e0)}, {FN (arccosh), ARG(1.0e+00,-8.3886080e+06), RES(1.6635532333438698084e1, -1.5707962075856070685e0)}, {FN (arccosh), ARG(-1.0e+00,8.3886080e+06), RES(1.6635532333438698084e1, 1.570796446004186170e0)}, {FN (arccosh), ARG(-1.0e+00,-8.3886080e+06), RES(1.6635532333438698084e1, -1.570796446004186170e0)}, {FN (arccosh), ARG(2.0e+00,0.0e+00), RES(1.3169578969248167086e0, 0.0)}, {FN (arccosh), ARG(-2.0e+00,0.0e+00), RES(1.3169578969248167086e0, 3.1415926535897932385e0)}, {FN (arccosh), ARG(2.0e+00,1.19209289550781250e-07), RES(1.3169578969248194435e0, 6.8825515412047433504e-8)}, {FN (arccosh), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.3169578969248194435e0, -6.8825515412047433504e-8)}, {FN (arccosh), ARG(-2.0e+00,1.19209289550781250e-07), RES(1.3169578969248194435e0, 3.1415925847642778264e0)}, {FN (arccosh), ARG(-2.0e+00,-1.19209289550781250e-07), RES(1.3169578969248194435e0, -3.1415925847642778264e0)}, {FN (arccosh), ARG(2.0e+00,5.0e-01), RES(1.3618009008578457882e0, 2.7775425655771396018e-1)}, {FN (arccosh), ARG(2.0e+00,-5.0e-01), RES(1.3618009008578457882e0, -2.7775425655771396018e-1)}, {FN (arccosh), ARG(-2.0e+00,5.0e-01), RES(1.3618009008578457882e0, 2.8638383970320792783e0)}, {FN (arccosh), ARG(-2.0e+00,-5.0e-01), RES(1.3618009008578457882e0, -2.8638383970320792783e0)}, {FN (arccosh), ARG(2.0e+00,1.0e+00), RES(1.4693517443681852733e0, 5.0735630321714456304e-1)}, {FN (arccosh), ARG(2.0e+00,-1.0e+00), RES(1.4693517443681852733e0, -5.0735630321714456304e-1)}, {FN (arccosh), ARG(-2.0e+00,1.0e+00), RES(1.4693517443681852733e0, 2.6342363503726486754e0)}, {FN (arccosh), ARG(-2.0e+00,-1.0e+00), RES(1.4693517443681852733e0, -2.6342363503726486754e0)}, {FN (arccosh), ARG(2.0e+00,2.0e+00), RES(1.7343245214879664480e0, 8.1654718209685057852e-1)}, {FN (arccosh), ARG(2.0e+00,-2.0e+00), RES(1.7343245214879664480e0, -8.1654718209685057852e-1)}, {FN (arccosh), ARG(-2.0e+00,2.0e+00), RES(1.7343245214879664480e0, 2.3250454714929426599e0)}, {FN (arccosh), ARG(-2.0e+00,-2.0e+00), RES(1.7343245214879664480e0, -2.3250454714929426599e0)}, {FN (arccosh), ARG(2.0e+00,8.3886080e+06), RES(1.663553233343871940e1, 1.5707960883763175177e0)}, {FN (arccosh), ARG(2.0e+00,-8.3886080e+06), RES(1.663553233343871940e1, -1.5707960883763175177e0)}, {FN (arccosh), ARG(-2.0e+00,8.3886080e+06), RES(1.663553233343871940e1, 1.5707965652134757208e0)}, {FN (arccosh), ARG(-2.0e+00,-8.3886080e+06), RES(1.663553233343871940e1, -1.5707965652134757208e0)}, {FN (arccosh), ARG(8.3886080e+06,0.0e+00), RES(1.6635532333438683873e1, 0.0)}, {FN (arccosh), ARG(-8.3886080e+06,0.0e+00), RES(1.6635532333438683873e1, 3.1415926535897932385e0)}, {FN (arccosh), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.6635532333438683873e1, 1.4210854715202104692e-14)}, {FN (arccosh), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.6635532333438683873e1, -1.4210854715202104692e-14)}, {FN (arccosh), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.6635532333438683873e1, 3.1415926535897790276e0)}, {FN (arccosh), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.6635532333438683873e1, -3.1415926535897790276e0)}, {FN (arccosh), ARG(8.3886080e+06,5.0e-01), RES(1.6635532333438685650e1, 5.9604644775390977930e-8)}, {FN (arccosh), ARG(8.3886080e+06,-5.0e-01), RES(1.6635532333438685650e1, -5.9604644775390977930e-8)}, {FN (arccosh), ARG(-8.3886080e+06,5.0e-01), RES(1.6635532333438685650e1, 3.1415925939851484631e0)}, {FN (arccosh), ARG(-8.3886080e+06,-5.0e-01), RES(1.6635532333438685650e1, -3.1415925939851484631e0)}, {FN (arccosh), ARG(8.3886080e+06,1.0e+00), RES(1.6635532333438690979e1, 1.1920928955078153234e-7)}, {FN (arccosh), ARG(8.3886080e+06,-1.0e+00), RES(1.6635532333438690979e1, -1.1920928955078153234e-7)}, {FN (arccosh), ARG(-8.3886080e+06,1.0e+00), RES(1.6635532333438690979e1, 3.1415925343805036877e0)}, {FN (arccosh), ARG(-8.3886080e+06,-1.0e+00), RES(1.6635532333438690979e1, -3.1415925343805036877e0)}, {FN (arccosh), ARG(8.3886080e+06,2.0e+00), RES(1.6635532333438712295e1, 2.3841857910155967656e-7)}, {FN (arccosh), ARG(8.3886080e+06,-2.0e+00), RES(1.6635532333438712295e1, -2.3841857910155967656e-7)}, {FN (arccosh), ARG(-8.3886080e+06,2.0e+00), RES(1.6635532333438712295e1, 3.1415924151712141369e0)}, {FN (arccosh), ARG(-8.3886080e+06,-2.0e+00), RES(1.6635532333438712295e1, -3.1415924151712141369e0)}, {FN (arccosh), ARG(8.3886080e+06,8.3886080e+06), RES(1.6982105923718660081e1, 7.8539816339745008597e-1)}, {FN (arccosh), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6982105923718660081e1, -7.8539816339745008597e-1)}, {FN (arccosh), ARG(-8.3886080e+06,8.3886080e+06), RES(1.6982105923718660081e1, 2.3561944901923431525e0)}, {FN (arccosh), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.6982105923718660081e1, -2.3561944901923431525e0)}, {FN (arctanh), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arctanh), ARG(0.0e+00,1.19209289550781250e-07), RES(0, 1.1920928955078068531e-7)}, {FN (arctanh), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, -1.1920928955078068531e-7)}, {FN (arctanh), ARG(0.0e+00,5.0e-01), RES(0, 4.6364760900080611621e-1)}, {FN (arctanh), ARG(0.0e+00,-5.0e-01), RES(0, -4.6364760900080611621e-1)}, {FN (arctanh), ARG(0.0e+00,1.0e+00), RES(0, 7.8539816339744830962e-1)}, {FN (arctanh), ARG(0.0e+00,-1.0e+00), RES(0, -7.8539816339744830962e-1)}, {FN (arctanh), ARG(0.0e+00,2.0e+00), RES(0, 1.1071487177940905030e0)}, {FN (arctanh), ARG(0.0e+00,-2.0e+00), RES(0, -1.1071487177940905030e0)}, {FN (arctanh), ARG(0.0e+00,8.3886080e+06), RES(0, 1.5707962075856070685e0)}, {FN (arctanh), ARG(0.0e+00,-8.3886080e+06), RES(0, -1.5707962075856070685e0)}, {FN (arctanh), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078181469e-7, 0.0)}, {FN (arctanh), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.1920928955078181469e-7, 0.0)}, {FN (arctanh), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078012062e-7, 1.1920928955078237938e-7)}, {FN (arctanh), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078012062e-7, -1.1920928955078237938e-7)}, {FN (arctanh), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.1920928955078012062e-7, 1.1920928955078237938e-7)}, {FN (arctanh), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.1920928955078012062e-7, -1.1920928955078237938e-7)}, {FN (arctanh), ARG(1.19209289550781250e-07,5.0e-01), RES(9.5367431640625072280e-8, 4.6364760900081066369e-1)}, {FN (arctanh), ARG(1.19209289550781250e-07,-5.0e-01), RES(9.5367431640625072280e-8, -4.6364760900081066369e-1)}, {FN (arctanh), ARG(-1.19209289550781250e-07,5.0e-01), RES(-9.5367431640625072280e-8, 4.6364760900081066369e-1)}, {FN (arctanh), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-9.5367431640625072280e-8, -4.6364760900081066369e-1)}, {FN (arctanh), ARG(1.19209289550781250e-07,1.0e+00), RES(5.9604644775390483828e-8, 7.8539816339745186233e-1)}, {FN (arctanh), ARG(1.19209289550781250e-07,-1.0e+00), RES(5.9604644775390483828e-8, -7.8539816339745186233e-1)}, {FN (arctanh), ARG(-1.19209289550781250e-07,1.0e+00), RES(-5.9604644775390483828e-8, 7.8539816339745186233e-1)}, {FN (arctanh), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-5.9604644775390483828e-8, -7.8539816339745186233e-1)}, {FN (arctanh), ARG(1.19209289550781250e-07,2.0e+00), RES(2.3841857910156200307e-8, 1.1071487177940916399e0)}, {FN (arctanh), ARG(1.19209289550781250e-07,-2.0e+00), RES(2.3841857910156200307e-8, -1.1071487177940916399e0)}, {FN (arctanh), ARG(-1.19209289550781250e-07,2.0e+00), RES(-2.3841857910156200307e-8, 1.1071487177940916399e0)}, {FN (arctanh), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-2.3841857910156200307e-8, -1.1071487177940916399e0)}, {FN (arctanh), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6940658945085766040e-21, 1.5707962075856070685e0)}, {FN (arctanh), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6940658945085766040e-21, -1.5707962075856070685e0)}, {FN (arctanh), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6940658945085766040e-21, 1.5707962075856070685e0)}, {FN (arctanh), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6940658945085766040e-21, -1.5707962075856070685e0)}, {FN (arctanh), ARG(5.0e-01,0.0e+00), RES(5.4930614433405484570e-1, 0.0)}, {FN (arctanh), ARG(-5.0e-01,0.0e+00), RES(-5.4930614433405484570e-1, 0.0)}, {FN (arctanh), ARG(5.0e-01,1.19209289550781250e-07), RES(5.4930614433404221383e-1, 1.5894571940103932425e-7)}, {FN (arctanh), ARG(5.0e-01,-1.19209289550781250e-07), RES(5.4930614433404221383e-1, -1.5894571940103932425e-7)}, {FN (arctanh), ARG(-5.0e-01,1.19209289550781250e-07), RES(-5.4930614433404221383e-1, 1.5894571940103932425e-7)}, {FN (arctanh), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-5.4930614433404221383e-1, -1.5894571940103932425e-7)}, {FN (arctanh), ARG(5.0e-01,5.0e-01), RES(4.0235947810852509365e-1, 5.5357435889704525151e-1)}, {FN (arctanh), ARG(5.0e-01,-5.0e-01), RES(4.0235947810852509365e-1, -5.5357435889704525151e-1)}, {FN (arctanh), ARG(-5.0e-01,5.0e-01), RES(-4.0235947810852509365e-1, 5.5357435889704525151e-1)}, {FN (arctanh), ARG(-5.0e-01,-5.0e-01), RES(-4.0235947810852509365e-1, -5.5357435889704525151e-1)}, {FN (arctanh), ARG(5.0e-01,1.0e+00), RES(2.3887786125685909036e-1, 8.4757566067082902713e-1)}, {FN (arctanh), ARG(5.0e-01,-1.0e+00), RES(2.3887786125685909036e-1, -8.4757566067082902713e-1)}, {FN (arctanh), ARG(-5.0e-01,1.0e+00), RES(-2.3887786125685909036e-1, 8.4757566067082902713e-1)}, {FN (arctanh), ARG(-5.0e-01,-1.0e+00), RES(-2.3887786125685909036e-1, -8.4757566067082902713e-1)}, {FN (arctanh), ARG(5.0e-01,2.0e+00), RES(9.6415620202996167238e-2, 1.1265564408348223487e0)}, {FN (arctanh), ARG(5.0e-01,-2.0e+00), RES(9.6415620202996167238e-2, -1.1265564408348223487e0)}, {FN (arctanh), ARG(-5.0e-01,2.0e+00), RES(-9.6415620202996167238e-2, 1.1265564408348223487e0)}, {FN (arctanh), ARG(-5.0e-01,-2.0e+00), RES(-9.6415620202996167238e-2, -1.1265564408348223487e0)}, {FN (arctanh), ARG(5.0e-01,8.3886080e+06), RES(7.1054273576008756410e-15, 1.5707962075856070685e0)}, {FN (arctanh), ARG(5.0e-01,-8.3886080e+06), RES(7.1054273576008756410e-15, -1.5707962075856070685e0)}, {FN (arctanh), ARG(-5.0e-01,8.3886080e+06), RES(-7.1054273576008756410e-15, 1.5707962075856070685e0)}, {FN (arctanh), ARG(-5.0e-01,-8.3886080e+06), RES(-7.1054273576008756410e-15, -1.5707962075856070685e0)}, {FN (arctanh), ARG(1.0e+00,1.19209289550781250e-07), RES(8.3177661667193446012e0, 7.8539819319977069731e-1)}, {FN (arctanh), ARG(1.0e+00,-1.19209289550781250e-07), RES(8.3177661667193446012e0, -7.8539819319977069731e-1)}, {FN (arctanh), ARG(-1.0e+00,1.19209289550781250e-07), RES(-8.3177661667193446012e0, 7.8539819319977069731e-1)}, {FN (arctanh), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-8.3177661667193446012e0, -7.8539819319977069731e-1)}, {FN (arctanh), ARG(1.0e+00,5.0e-01), RES(7.0830333601405402006e-1, 9.0788749496088038670e-1)}, {FN (arctanh), ARG(1.0e+00,-5.0e-01), RES(7.0830333601405402006e-1, -9.0788749496088038670e-1)}, {FN (arctanh), ARG(-1.0e+00,5.0e-01), RES(-7.0830333601405402006e-1, 9.0788749496088038670e-1)}, {FN (arctanh), ARG(-1.0e+00,-5.0e-01), RES(-7.0830333601405402006e-1, -9.0788749496088038670e-1)}, {FN (arctanh), ARG(1.0e+00,1.0e+00), RES(4.0235947810852509365e-1, 1.0172219678978513677e0)}, {FN (arctanh), ARG(1.0e+00,-1.0e+00), RES(4.0235947810852509365e-1, -1.0172219678978513677e0)}, {FN (arctanh), ARG(-1.0e+00,1.0e+00), RES(-4.0235947810852509365e-1, 1.0172219678978513677e0)}, {FN (arctanh), ARG(-1.0e+00,-1.0e+00), RES(-4.0235947810852509365e-1, -1.0172219678978513677e0)}, {FN (arctanh), ARG(1.0e+00,2.0e+00), RES(1.7328679513998632735e-1, 1.1780972450961724644e0)}, {FN (arctanh), ARG(1.0e+00,-2.0e+00), RES(1.7328679513998632735e-1, -1.1780972450961724644e0)}, {FN (arctanh), ARG(-1.0e+00,2.0e+00), RES(-1.7328679513998632735e-1, 1.1780972450961724644e0)}, {FN (arctanh), ARG(-1.0e+00,-2.0e+00), RES(-1.7328679513998632735e-1, -1.1780972450961724644e0)}, {FN (arctanh), ARG(1.0e+00,8.3886080e+06), RES(1.4210854715201599821e-14, 1.5707962075856070685e0)}, {FN (arctanh), ARG(1.0e+00,-8.3886080e+06), RES(1.4210854715201599821e-14, -1.5707962075856070685e0)}, {FN (arctanh), ARG(-1.0e+00,8.3886080e+06), RES(-1.4210854715201599821e-14, 1.5707962075856070685e0)}, {FN (arctanh), ARG(-1.0e+00,-8.3886080e+06), RES(-1.4210854715201599821e-14, -1.5707962075856070685e0)}, {FN (arctanh), ARG(2.0e+00,0.0e+00), RES(5.4930614433405484570e-1, -1.5707963267948966192e0)}, {FN (arctanh), ARG(-2.0e+00,0.0e+00), RES(-5.4930614433405484570e-1, 1.5707963267948966192e0)}, {FN (arctanh), ARG(2.0e+00,1.19209289550781250e-07), RES(5.4930614433405168773e-1, 1.5707962870584667690e0)}, {FN (arctanh), ARG(2.0e+00,-1.19209289550781250e-07), RES(5.4930614433405168773e-1, -1.5707962870584667690e0)}, {FN (arctanh), ARG(-2.0e+00,1.19209289550781250e-07), RES(-5.4930614433405168773e-1, 1.5707962870584667690e0)}, {FN (arctanh), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-5.4930614433405168773e-1, -1.5707962870584667690e0)}, {FN (arctanh), ARG(2.0e+00,5.0e-01), RES(5.0037000005253101744e-1, 1.4215468610018069803e0)}, {FN (arctanh), ARG(2.0e+00,-5.0e-01), RES(5.0037000005253101744e-1, -1.4215468610018069803e0)}, {FN (arctanh), ARG(-2.0e+00,5.0e-01), RES(-5.0037000005253101744e-1, 1.4215468610018069803e0)}, {FN (arctanh), ARG(-2.0e+00,-5.0e-01), RES(-5.0037000005253101744e-1, -1.4215468610018069803e0)}, {FN (arctanh), ARG(2.0e+00,1.0e+00), RES(4.0235947810852509365e-1, 1.3389725222944935611e0)}, {FN (arctanh), ARG(2.0e+00,-1.0e+00), RES(4.0235947810852509365e-1, -1.3389725222944935611e0)}, {FN (arctanh), ARG(-2.0e+00,1.0e+00), RES(-4.0235947810852509365e-1, 1.3389725222944935611e0)}, {FN (arctanh), ARG(-2.0e+00,-1.0e+00), RES(-4.0235947810852509365e-1, -1.3389725222944935611e0)}, {FN (arctanh), ARG(2.0e+00,2.0e+00), RES(2.3887786125685909036e-1, 1.3112232696716351433e0)}, {FN (arctanh), ARG(2.0e+00,-2.0e+00), RES(2.3887786125685909036e-1, -1.3112232696716351433e0)}, {FN (arctanh), ARG(-2.0e+00,2.0e+00), RES(-2.3887786125685909036e-1, 1.3112232696716351433e0)}, {FN (arctanh), ARG(-2.0e+00,-2.0e+00), RES(-2.3887786125685909036e-1, -1.3112232696716351433e0)}, {FN (arctanh), ARG(2.0e+00,8.3886080e+06), RES(2.8421709430401987951e-14, 1.5707962075856070685e0)}, {FN (arctanh), ARG(2.0e+00,-8.3886080e+06), RES(2.8421709430401987951e-14, -1.5707962075856070685e0)}, {FN (arctanh), ARG(-2.0e+00,8.3886080e+06), RES(-2.8421709430401987951e-14, 1.5707962075856070685e0)}, {FN (arctanh), ARG(-2.0e+00,-8.3886080e+06), RES(-2.8421709430401987951e-14, -1.5707962075856070685e0)}, {FN (arctanh), ARG(8.3886080e+06,0.0e+00), RES(1.1920928955078181469e-7, -1.5707963267948966192e0)}, {FN (arctanh), ARG(-8.3886080e+06,0.0e+00), RES(-1.1920928955078181469e-7, 1.5707963267948966192e0)}, {FN (arctanh), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.1920928955078181469e-7, 1.5707963267948966192e0)}, {FN (arctanh), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.1920928955078181469e-7, -1.5707963267948966192e0)}, {FN (arctanh), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.1920928955078181469e-7, 1.5707963267948966192e0)}, {FN (arctanh), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.1920928955078181469e-7, -1.5707963267948966192e0)}, {FN (arctanh), ARG(8.3886080e+06,5.0e-01), RES(1.1920928955078139117e-7, 1.5707963267948895138e0)}, {FN (arctanh), ARG(8.3886080e+06,-5.0e-01), RES(1.1920928955078139117e-7, -1.5707963267948895138e0)}, {FN (arctanh), ARG(-8.3886080e+06,5.0e-01), RES(-1.1920928955078139117e-7, 1.5707963267948895138e0)}, {FN (arctanh), ARG(-8.3886080e+06,-5.0e-01), RES(-1.1920928955078139117e-7, -1.5707963267948895138e0)}, {FN (arctanh), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955078012062e-7, 1.5707963267948824084e0)}, {FN (arctanh), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955078012062e-7, -1.5707963267948824084e0)}, {FN (arctanh), ARG(-8.3886080e+06,1.0e+00), RES(-1.1920928955078012062e-7, 1.5707963267948824084e0)}, {FN (arctanh), ARG(-8.3886080e+06,-1.0e+00), RES(-1.1920928955078012062e-7, -1.5707963267948824084e0)}, {FN (arctanh), ARG(8.3886080e+06,2.0e+00), RES(1.1920928955077503843e-7, 1.5707963267948681975e0)}, {FN (arctanh), ARG(8.3886080e+06,-2.0e+00), RES(1.1920928955077503843e-7, -1.5707963267948681975e0)}, {FN (arctanh), ARG(-8.3886080e+06,2.0e+00), RES(-1.1920928955077503843e-7, 1.5707963267948681975e0)}, {FN (arctanh), ARG(-8.3886080e+06,-2.0e+00), RES(-1.1920928955077503843e-7, -1.5707963267948681975e0)}, {FN (arctanh), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390483828e-8, 1.5707962671902518438e0)}, {FN (arctanh), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390483828e-8, -1.5707962671902518438e0)}, {FN (arctanh), ARG(-8.3886080e+06,8.3886080e+06), RES(-5.9604644775390483828e-8, 1.5707962671902518438e0)}, {FN (arctanh), ARG(-8.3886080e+06,-8.3886080e+06), RES(-5.9604644775390483828e-8, -1.5707962671902518438e0)}, {FN (csc), ARG(-3.45266983001243932001e-04,0.0e+00), RES(-2.8963094332845964291e3, 0.0)}, {FN (csc), ARG(3.45266983001243932001e-04,0.0e+00), RES(2.8963094332845964291e3, 0.0)}, {FN (csc), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(-2.8963090880176545869e3, -9.9999986092250876926e-1)}, {FN (csc), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(-2.8963090880176545869e3, 9.9999986092250876926e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(2.8963090880176545869e3, -9.9999986092250876926e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(2.8963090880176545869e3, 9.9999986092250876926e-1)}, {FN (csc), ARG(-3.45266983001243932001e-04,5.0e-01), RES(-1.4337901642789801243e-3, -1.9190337944739187237e0)}, {FN (csc), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(-1.4337901642789801243e-3, 1.9190337944739187237e0)}, {FN (csc), ARG(3.45266983001243932001e-04,5.0e-01), RES(1.4337901642789801243e-3, -1.9190337944739187237e0)}, {FN (csc), ARG(3.45266983001243932001e-04,-5.0e-01), RES(1.4337901642789801243e-3, 1.9190337944739187237e0)}, {FN (csc), ARG(-3.45266983001243932001e-04,1.0e+00), RES(-3.8576176225198860914e-4, -8.5091800407377002734e-1)}, {FN (csc), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(-3.8576176225198860914e-4, 8.5091800407377002734e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,1.0e+00), RES(3.8576176225198860914e-4, -8.5091800407377002734e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,-1.0e+00), RES(3.8576176225198860914e-4, 8.5091800407377002734e-1)}, {FN (csc), ARG(-3.45266983001243932001e-04,2.0e+00), RES(-9.8749461907035665386e-5, -2.7572054583883740768e-1)}, {FN (csc), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(-9.8749461907035665386e-5, 2.7572054583883740768e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,2.0e+00), RES(9.8749461907035665386e-5, -2.7572054583883740768e-1)}, {FN (csc), ARG(3.45266983001243932001e-04,-2.0e+00), RES(9.8749461907035665386e-5, 2.7572054583883740768e-1)}, {FN (csc), ARG(1.57045105981189525579e+00,0.0e+00), RES(1.0000000596046477360e0, 0.0)}, {FN (csc), ARG(-1.57045105981189525579e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (csc), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(1.0000000596046406306e0, -4.1159035837716456618e-11)}, {FN (csc), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(1.0000000596046406306e0, 4.1159035837716456618e-11)}, {FN (csc), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(-1.0000000596046406306e0, -4.1159035837716456618e-11)}, {FN (csc), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(-1.0000000596046406306e0, 4.1159035837716456618e-11)}, {FN (csc), ARG(1.57045105981189525579e+00,5.0e-01), RES(8.8681891425248302487e-1, -1.4149533035943115868e-4)}, {FN (csc), ARG(1.57045105981189525579e+00,-5.0e-01), RES(8.8681891425248302487e-1, 1.4149533035943115868e-4)}, {FN (csc), ARG(-1.57045105981189525579e+00,5.0e-01), RES(-8.8681891425248302487e-1, -1.4149533035943115868e-4)}, {FN (csc), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(-8.8681891425248302487e-1, 1.4149533035943115868e-4)}, {FN (csc), ARG(1.57045105981189525579e+00,1.0e+00), RES(6.4805426748157480499e-1, -1.7040802567657401279e-4)}, {FN (csc), ARG(1.57045105981189525579e+00,-1.0e+00), RES(6.4805426748157480499e-1, 1.7040802567657401279e-4)}, {FN (csc), ARG(-1.57045105981189525579e+00,1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567657401279e-4)}, {FN (csc), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567657401279e-4)}, {FN (csc), ARG(1.57045105981189525579e+00,2.0e+00), RES(2.6580221522968095406e-1, -8.8471445300404633228e-5)}, {FN (csc), ARG(1.57045105981189525579e+00,-2.0e+00), RES(2.6580221522968095406e-1, 8.8471445300404633228e-5)}, {FN (csc), ARG(-1.57045105981189525579e+00,2.0e+00), RES(-2.6580221522968095406e-1, -8.8471445300404633228e-5)}, {FN (csc), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(-2.6580221522968095406e-1, 8.8471445300404633228e-5)}, {FN (csc), ARG(1.57114159377789786021e+00,0.0e+00), RES(1.0000000596046477360e0, 0.0)}, {FN (csc), ARG(-1.57114159377789786021e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (csc), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(1.0000000596046406306e0, 4.1159035837701857686e-11)}, {FN (csc), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(1.0000000596046406306e0, -4.1159035837701857686e-11)}, {FN (csc), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(-1.0000000596046406306e0, 4.1159035837701857686e-11)}, {FN (csc), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-1.0000000596046406306e0, -4.1159035837701857686e-11)}, {FN (csc), ARG(1.57114159377789786021e+00,5.0e-01), RES(8.8681891425248302485e-1, 1.4149533035938097090e-4)}, {FN (csc), ARG(1.57114159377789786021e+00,-5.0e-01), RES(8.8681891425248302485e-1, -1.4149533035938097090e-4)}, {FN (csc), ARG(-1.57114159377789786021e+00,5.0e-01), RES(-8.8681891425248302485e-1, 1.4149533035938097090e-4)}, {FN (csc), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(-8.8681891425248302485e-1, -1.4149533035938097090e-4)}, {FN (csc), ARG(1.57114159377789786021e+00,1.0e+00), RES(6.4805426748157480499e-1, 1.7040802567651356981e-4)}, {FN (csc), ARG(1.57114159377789786021e+00,-1.0e+00), RES(6.4805426748157480499e-1, -1.7040802567651356981e-4)}, {FN (csc), ARG(-1.57114159377789786021e+00,1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567651356981e-4)}, {FN (csc), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567651356981e-4)}, {FN (csc), ARG(1.57114159377789786021e+00,2.0e+00), RES(2.6580221522968095407e-1, 8.8471445300373252796e-5)}, {FN (csc), ARG(1.57114159377789786021e+00,-2.0e+00), RES(2.6580221522968095407e-1, -8.8471445300373252796e-5)}, {FN (csc), ARG(-1.57114159377789786021e+00,2.0e+00), RES(-2.6580221522968095407e-1, 8.8471445300373252796e-5)}, {FN (csc), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(-2.6580221522968095407e-1, -8.8471445300373252796e-5)}, {FN (csc), ARG(3.14124738660679181379e+00,0.0e+00), RES(2.8963094332830802676e3, 0.0)}, {FN (csc), ARG(-3.14124738660679181379e+00,0.0e+00), RES(-2.8963094332830802676e3, 0.0)}, {FN (csc), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(2.8963090880161384259e3, 9.9999986092146180843e-1)}, {FN (csc), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(2.8963090880161384259e3, -9.9999986092146180843e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(-2.8963090880161384259e3, 9.9999986092146180843e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-2.8963090880161384259e3, -9.9999986092146180843e-1)}, {FN (csc), ARG(3.14124738660679181379e+00,5.0e-01), RES(1.4337901642797306848e-3, 1.9190337944739187227e0)}, {FN (csc), ARG(3.14124738660679181379e+00,-5.0e-01), RES(1.4337901642797306848e-3, -1.9190337944739187227e0)}, {FN (csc), ARG(-3.14124738660679181379e+00,5.0e-01), RES(-1.4337901642797306848e-3, 1.9190337944739187227e0)}, {FN (csc), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(-1.4337901642797306848e-3, -1.9190337944739187227e0)}, {FN (csc), ARG(3.14124738660679181379e+00,1.0e+00), RES(3.8576176225219054787e-4, 8.5091800407377002721e-1)}, {FN (csc), ARG(3.14124738660679181379e+00,-1.0e+00), RES(3.8576176225219054787e-4, -8.5091800407377002721e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,1.0e+00), RES(-3.8576176225219054787e-4, 8.5091800407377002721e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(-3.8576176225219054787e-4, -8.5091800407377002721e-1)}, {FN (csc), ARG(3.14124738660679181379e+00,2.0e+00), RES(9.8749461907087358805e-5, 2.7572054583883740766e-1)}, {FN (csc), ARG(3.14124738660679181379e+00,-2.0e+00), RES(9.8749461907087358805e-5, -2.7572054583883740766e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,2.0e+00), RES(-9.8749461907087358805e-5, 2.7572054583883740766e-1)}, {FN (csc), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(-9.8749461907087358805e-5, -2.7572054583883740766e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,0.0e+00), RES(-2.8963094332851348839e3, 0.0)}, {FN (csc), ARG(-3.14193792057279441821e+00,0.0e+00), RES(2.8963094332851348839e3, 0.0)}, {FN (csc), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(-2.8963090880181930415e3, 9.9999986092288059049e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-2.8963090880181930415e3, -9.9999986092288059049e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(2.8963090880181930415e3, 9.9999986092288059049e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(2.8963090880181930415e3, -9.9999986092288059049e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,5.0e-01), RES(-1.4337901642787135676e-3, 1.9190337944739187241e0)}, {FN (csc), ARG(3.14193792057279441821e+00,-5.0e-01), RES(-1.4337901642787135676e-3, -1.9190337944739187241e0)}, {FN (csc), ARG(-3.14193792057279441821e+00,5.0e-01), RES(1.4337901642787135676e-3, 1.9190337944739187241e0)}, {FN (csc), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(1.4337901642787135676e-3, -1.9190337944739187241e0)}, {FN (csc), ARG(3.14193792057279441821e+00,1.0e+00), RES(-3.8576176225191689193e-4, 8.5091800407377002738e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,-1.0e+00), RES(-3.8576176225191689193e-4, -8.5091800407377002738e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,1.0e+00), RES(3.8576176225191689193e-4, 8.5091800407377002738e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(3.8576176225191689193e-4, -8.5091800407377002738e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,2.0e+00), RES(-9.8749461907017306810e-5, 2.7572054583883740769e-1)}, {FN (csc), ARG(3.14193792057279441821e+00,-2.0e+00), RES(-9.8749461907017306810e-5, -2.7572054583883740769e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,2.0e+00), RES(9.8749461907017306810e-5, 2.7572054583883740769e-1)}, {FN (csc), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(9.8749461907017306810e-5, -2.7572054583883740769e-1)}, {FN (csc), ARG(4.71204371340168837179e+00,0.0e+00), RES(-1.0000000596046477361e0, 0.0)}, {FN (csc), ARG(-4.71204371340168837179e+00,0.0e+00), RES(1.0000000596046477361e0, 0.0)}, {FN (csc), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(-1.0000000596046406306e0, 4.1159035837731055550e-11)}, {FN (csc), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-1.0000000596046406306e0, -4.1159035837731055550e-11)}, {FN (csc), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(1.0000000596046406306e0, 4.1159035837731055550e-11)}, {FN (csc), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(1.0000000596046406306e0, -4.1159035837731055550e-11)}, {FN (csc), ARG(4.71204371340168837179e+00,5.0e-01), RES(-8.8681891425248302489e-1, 1.4149533035948134646e-4)}, {FN (csc), ARG(4.71204371340168837179e+00,-5.0e-01), RES(-8.8681891425248302489e-1, -1.4149533035948134646e-4)}, {FN (csc), ARG(-4.71204371340168837179e+00,5.0e-01), RES(8.8681891425248302489e-1, 1.4149533035948134646e-4)}, {FN (csc), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(8.8681891425248302489e-1, -1.4149533035948134646e-4)}, {FN (csc), ARG(4.71204371340168837179e+00,1.0e+00), RES(-6.4805426748157480498e-1, 1.7040802567663445577e-4)}, {FN (csc), ARG(4.71204371340168837179e+00,-1.0e+00), RES(-6.4805426748157480498e-1, -1.7040802567663445577e-4)}, {FN (csc), ARG(-4.71204371340168837179e+00,1.0e+00), RES(6.4805426748157480498e-1, 1.7040802567663445577e-4)}, {FN (csc), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(6.4805426748157480498e-1, -1.7040802567663445577e-4)}, {FN (csc), ARG(4.71204371340168837179e+00,2.0e+00), RES(-2.6580221522968095405e-1, 8.8471445300436013659e-5)}, {FN (csc), ARG(4.71204371340168837179e+00,-2.0e+00), RES(-2.6580221522968095405e-1, -8.8471445300436013659e-5)}, {FN (csc), ARG(-4.71204371340168837179e+00,2.0e+00), RES(2.6580221522968095405e-1, 8.8471445300436013659e-5)}, {FN (csc), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(2.6580221522968095405e-1, -8.8471445300436013659e-5)}, {FN (csc), ARG(4.71273424736769097620e+00,0.0e+00), RES(-1.0000000596046477359e0, 0.0)}, {FN (csc), ARG(-4.71273424736769097620e+00,0.0e+00), RES(1.0000000596046477359e0, 0.0)}, {FN (csc), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(-1.0000000596046406305e0, -4.1159035837687258754e-11)}, {FN (csc), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(-1.0000000596046406305e0, 4.1159035837687258754e-11)}, {FN (csc), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(1.0000000596046406305e0, -4.1159035837687258754e-11)}, {FN (csc), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(1.0000000596046406305e0, 4.1159035837687258754e-11)}, {FN (csc), ARG(4.71273424736769097620e+00,5.0e-01), RES(-8.8681891425248302483e-1, -1.4149533035933078312e-4)}, {FN (csc), ARG(4.71273424736769097620e+00,-5.0e-01), RES(-8.8681891425248302483e-1, 1.4149533035933078312e-4)}, {FN (csc), ARG(-4.71273424736769097620e+00,5.0e-01), RES(8.8681891425248302483e-1, -1.4149533035933078312e-4)}, {FN (csc), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(8.8681891425248302483e-1, 1.4149533035933078312e-4)}, {FN (csc), ARG(4.71273424736769097620e+00,1.0e+00), RES(-6.480542674815748050e-1, -1.7040802567645312683e-4)}, {FN (csc), ARG(4.71273424736769097620e+00,-1.0e+00), RES(-6.480542674815748050e-1, 1.7040802567645312683e-4)}, {FN (csc), ARG(-4.71273424736769097620e+00,1.0e+00), RES(6.480542674815748050e-1, -1.7040802567645312683e-4)}, {FN (csc), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(6.480542674815748050e-1, 1.7040802567645312683e-4)}, {FN (csc), ARG(4.71273424736769097620e+00,2.0e+00), RES(-2.6580221522968095408e-1, -8.8471445300341872364e-5)}, {FN (csc), ARG(4.71273424736769097620e+00,-2.0e+00), RES(-2.6580221522968095408e-1, 8.8471445300341872364e-5)}, {FN (csc), ARG(-4.71273424736769097620e+00,2.0e+00), RES(2.6580221522968095408e-1, -8.8471445300341872364e-5)}, {FN (csc), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(2.6580221522968095408e-1, 8.8471445300341872364e-5)}, {FN (csc), ARG(6.28284004019658492979e+00,0.0e+00), RES(-2.8963094332820529594e3, 0.0)}, {FN (csc), ARG(-6.28284004019658492979e+00,0.0e+00), RES(2.8963094332820529594e3, 0.0)}, {FN (csc), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(-2.8963090880151111181e3, -9.9999986092075241740e-1)}, {FN (csc), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(-2.8963090880151111181e3, 9.9999986092075241740e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(2.8963090880151111181e3, -9.9999986092075241740e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(2.8963090880151111181e3, 9.9999986092075241740e-1)}, {FN (csc), ARG(6.28284004019658492979e+00,5.0e-01), RES(-1.4337901642802392434e-3, -1.9190337944739187220e0)}, {FN (csc), ARG(6.28284004019658492979e+00,-5.0e-01), RES(-1.4337901642802392434e-3, 1.9190337944739187220e0)}, {FN (csc), ARG(-6.28284004019658492979e+00,5.0e-01), RES(1.4337901642802392434e-3, -1.9190337944739187220e0)}, {FN (csc), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(1.4337901642802392434e-3, 1.9190337944739187220e0)}, {FN (csc), ARG(6.28284004019658492979e+00,1.0e+00), RES(-3.8576176225232737584e-4, -8.5091800407377002712e-1)}, {FN (csc), ARG(6.28284004019658492979e+00,-1.0e+00), RES(-3.8576176225232737584e-4, 8.5091800407377002712e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,1.0e+00), RES(3.8576176225232737584e-4, -8.5091800407377002712e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(3.8576176225232737584e-4, 8.5091800407377002712e-1)}, {FN (csc), ARG(6.28284004019658492979e+00,2.0e+00), RES(-9.8749461907122384803e-5, -2.7572054583883740765e-1)}, {FN (csc), ARG(6.28284004019658492979e+00,-2.0e+00), RES(-9.8749461907122384803e-5, 2.7572054583883740765e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,2.0e+00), RES(9.8749461907122384803e-5, -2.7572054583883740765e-1)}, {FN (csc), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(9.8749461907122384803e-5, 2.7572054583883740765e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,0.0e+00), RES(2.8963094332861621921e3, 0.0)}, {FN (csc), ARG(-6.28353057416258753420e+00,0.0e+00), RES(-2.8963094332861621921e3, 0.0)}, {FN (csc), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(2.8963090880192203493e3, -9.9999986092358998153e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(2.8963090880192203493e3, 9.9999986092358998153e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(-2.8963090880192203493e3, -9.9999986092358998153e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(-2.8963090880192203493e3, 9.9999986092358998153e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,5.0e-01), RES(1.4337901642782050091e-3, -1.9190337944739187248e0)}, {FN (csc), ARG(6.28353057416258753420e+00,-5.0e-01), RES(1.4337901642782050091e-3, 1.9190337944739187248e0)}, {FN (csc), ARG(-6.28353057416258753420e+00,5.0e-01), RES(-1.4337901642782050091e-3, -1.9190337944739187248e0)}, {FN (csc), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(-1.4337901642782050091e-3, 1.9190337944739187248e0)}, {FN (csc), ARG(6.28353057416258753420e+00,1.0e+00), RES(3.8576176225178006396e-4, -8.5091800407377002747e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,-1.0e+00), RES(3.8576176225178006396e-4, 8.5091800407377002747e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,1.0e+00), RES(-3.8576176225178006396e-4, -8.5091800407377002747e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(-3.8576176225178006396e-4, 8.5091800407377002747e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,2.0e+00), RES(9.8749461906982280812e-5, -2.7572054583883740770e-1)}, {FN (csc), ARG(6.28353057416258753420e+00,-2.0e+00), RES(9.8749461906982280812e-5, 2.7572054583883740770e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,2.0e+00), RES(-9.8749461906982280812e-5, -2.7572054583883740770e-1)}, {FN (csc), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(-9.8749461906982280812e-5, 2.7572054583883740770e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,0.0e+00), RES(2.8963094332884762317e3, 0.0)}, {FN (csc), ARG(-9.42443269378637893396e+00,0.0e+00), RES(-2.8963094332884762317e3, 0.0)}, {FN (csc), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(2.8963090880215343881e3, 9.9999986092518790411e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(2.8963090880215343881e3, -9.9999986092518790411e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(-2.8963090880215343881e3, 9.9999986092518790411e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-2.8963090880215343881e3, -9.9999986092518790411e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,5.0e-01), RES(1.4337901642770594670e-3, 1.9190337944739187263e0)}, {FN (csc), ARG(9.42443269378637893396e+00,-5.0e-01), RES(1.4337901642770594670e-3, -1.9190337944739187263e0)}, {FN (csc), ARG(-9.42443269378637893396e+00,5.0e-01), RES(-1.4337901642770594670e-3, 1.9190337944739187263e0)}, {FN (csc), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(-1.4337901642770594670e-3, -1.9190337944739187263e0)}, {FN (csc), ARG(9.42443269378637893396e+00,1.0e+00), RES(3.8576176225147185523e-4, 8.5091800407377002767e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,-1.0e+00), RES(3.8576176225147185523e-4, -8.5091800407377002767e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,1.0e+00), RES(-3.8576176225147185523e-4, 8.5091800407377002767e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(-3.8576176225147185523e-4, -8.5091800407377002767e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,2.0e+00), RES(9.874946190690338380e-5, 2.7572054583883740773e-1)}, {FN (csc), ARG(9.42443269378637893396e+00,-2.0e+00), RES(9.874946190690338380e-5, -2.7572054583883740773e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,2.0e+00), RES(-9.874946190690338380e-5, 2.7572054583883740773e-1)}, {FN (csc), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(-9.874946190690338380e-5, -2.7572054583883740773e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,0.0e+00), RES(-2.8963094332946400807e3, 0.0)}, {FN (csc), ARG(-9.42512322775237976202e+00,0.0e+00), RES(2.8963094332946400807e3, 0.0)}, {FN (csc), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(-2.8963090880276982349e3, 9.9999986092944425030e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-2.8963090880276982349e3, -9.9999986092944425030e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(2.8963090880276982349e3, 9.9999986092944425030e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(2.8963090880276982349e3, -9.9999986092944425030e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,5.0e-01), RES(-1.4337901642740081154e-3, 1.9190337944739187304e0)}, {FN (csc), ARG(9.42512322775237976202e+00,-5.0e-01), RES(-1.4337901642740081154e-3, -1.9190337944739187304e0)}, {FN (csc), ARG(-9.42512322775237976202e+00,5.0e-01), RES(1.4337901642740081154e-3, 1.9190337944739187304e0)}, {FN (csc), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(1.4337901642740081154e-3, -1.9190337944739187304e0)}, {FN (csc), ARG(9.42512322775237976202e+00,1.0e+00), RES(-3.8576176225065088741e-4, 8.5091800407377002820e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,-1.0e+00), RES(-3.8576176225065088741e-4, -8.5091800407377002820e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,1.0e+00), RES(3.8576176225065088741e-4, 8.5091800407377002820e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(3.8576176225065088741e-4, -8.5091800407377002820e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,2.0e+00), RES(-9.8749461906693227814e-5, 2.7572054583883740781e-1)}, {FN (csc), ARG(9.42512322775237976202e+00,-2.0e+00), RES(-9.8749461906693227814e-5, -2.7572054583883740781e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,2.0e+00), RES(9.8749461906693227814e-5, 2.7572054583883740781e-1)}, {FN (csc), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(9.8749461906693227814e-5, -2.7572054583883740781e-1)}, {FN (sec), ARG(-3.45266983001243932001e-04,0.0e+00), RES(1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(3.45266983001243932001e-04,0.0e+00), RES(1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(1.0000000596046406306e0, -4.1159035837702210125e-11)}, {FN (sec), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(1.0000000596046406306e0, 4.1159035837702210125e-11)}, {FN (sec), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(1.0000000596046406306e0, 4.1159035837702210125e-11)}, {FN (sec), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(1.0000000596046406306e0, -4.1159035837702210125e-11)}, {FN (sec), ARG(-3.45266983001243932001e-04,5.0e-01), RES(8.8681891425248302485e-1, -1.4149533035938218250e-4)}, {FN (sec), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(8.8681891425248302485e-1, 1.4149533035938218250e-4)}, {FN (sec), ARG(3.45266983001243932001e-04,5.0e-01), RES(8.8681891425248302485e-1, 1.4149533035938218250e-4)}, {FN (sec), ARG(3.45266983001243932001e-04,-5.0e-01), RES(8.8681891425248302485e-1, -1.4149533035938218250e-4)}, {FN (sec), ARG(-3.45266983001243932001e-04,1.0e+00), RES(6.4805426748157480499e-1, -1.7040802567651502899e-4)}, {FN (sec), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(6.4805426748157480499e-1, 1.7040802567651502899e-4)}, {FN (sec), ARG(3.45266983001243932001e-04,1.0e+00), RES(6.4805426748157480499e-1, 1.7040802567651502899e-4)}, {FN (sec), ARG(3.45266983001243932001e-04,-1.0e+00), RES(6.4805426748157480499e-1, -1.7040802567651502899e-4)}, {FN (sec), ARG(-3.45266983001243932001e-04,2.0e+00), RES(2.6580221522968095407e-1, -8.8471445300374010365e-5)}, {FN (sec), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(2.6580221522968095407e-1, 8.8471445300374010365e-5)}, {FN (sec), ARG(3.45266983001243932001e-04,2.0e+00), RES(2.6580221522968095407e-1, 8.8471445300374010365e-5)}, {FN (sec), ARG(3.45266983001243932001e-04,-2.0e+00), RES(2.6580221522968095407e-1, -8.8471445300374010365e-5)}, {FN (sec), ARG(1.57045105981189525579e+00,0.0e+00), RES(2.8963094332835939217e3, 0.0)}, {FN (sec), ARG(-1.57045105981189525579e+00,0.0e+00), RES(2.8963094332835939217e3, 0.0)}, {FN (sec), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(2.8963090880166520798e3, 9.9999986092181650394e-1)}, {FN (sec), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(2.8963090880166520798e3, -9.9999986092181650394e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(2.8963090880166520798e3, -9.9999986092181650394e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(2.8963090880166520798e3, 9.9999986092181650394e-1)}, {FN (sec), ARG(1.57045105981189525579e+00,5.0e-01), RES(1.4337901642794764055e-3, 1.9190337944739187231e0)}, {FN (sec), ARG(1.57045105981189525579e+00,-5.0e-01), RES(1.4337901642794764055e-3, -1.9190337944739187231e0)}, {FN (sec), ARG(-1.57045105981189525579e+00,5.0e-01), RES(1.4337901642794764055e-3, -1.9190337944739187231e0)}, {FN (sec), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(1.4337901642794764055e-3, 1.9190337944739187231e0)}, {FN (sec), ARG(1.57045105981189525579e+00,1.0e+00), RES(3.8576176225212213388e-4, 8.5091800407377002725e-1)}, {FN (sec), ARG(1.57045105981189525579e+00,-1.0e+00), RES(3.8576176225212213388e-4, -8.5091800407377002725e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,1.0e+00), RES(3.8576176225212213388e-4, -8.5091800407377002725e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(3.8576176225212213388e-4, 8.5091800407377002725e-1)}, {FN (sec), ARG(1.57045105981189525579e+00,2.0e+00), RES(9.8749461907069845806e-5, 2.7572054583883740767e-1)}, {FN (sec), ARG(1.57045105981189525579e+00,-2.0e+00), RES(9.8749461907069845806e-5, -2.7572054583883740767e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,2.0e+00), RES(9.8749461907069845806e-5, -2.7572054583883740767e-1)}, {FN (sec), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(9.8749461907069845806e-5, 2.7572054583883740767e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,0.0e+00), RES(-2.8963094332846212298e3, 0.0)}, {FN (sec), ARG(-1.57114159377789786021e+00,0.0e+00), RES(-2.8963094332846212298e3, 0.0)}, {FN (sec), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(-2.8963090880176793876e3, 9.9999986092252589498e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-2.8963090880176793876e3, -9.9999986092252589498e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(-2.8963090880176793876e3, -9.9999986092252589498e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-2.8963090880176793876e3, 9.9999986092252589498e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,5.0e-01), RES(-1.4337901642789678469e-3, 1.9190337944739187237e0)}, {FN (sec), ARG(1.57114159377789786021e+00,-5.0e-01), RES(-1.4337901642789678469e-3, -1.9190337944739187237e0)}, {FN (sec), ARG(-1.57114159377789786021e+00,5.0e-01), RES(-1.4337901642789678469e-3, -1.9190337944739187237e0)}, {FN (sec), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(-1.4337901642789678469e-3, 1.9190337944739187237e0)}, {FN (sec), ARG(1.57114159377789786021e+00,1.0e+00), RES(-3.8576176225198530591e-4, 8.5091800407377002734e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,-1.0e+00), RES(-3.8576176225198530591e-4, -8.5091800407377002734e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,1.0e+00), RES(-3.8576176225198530591e-4, -8.5091800407377002734e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(-3.8576176225198530591e-4, 8.5091800407377002734e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,2.0e+00), RES(-9.8749461907034819809e-5, 2.7572054583883740768e-1)}, {FN (sec), ARG(1.57114159377789786021e+00,-2.0e+00), RES(-9.8749461907034819809e-5, -2.7572054583883740768e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,2.0e+00), RES(-9.8749461907034819809e-5, -2.7572054583883740768e-1)}, {FN (sec), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(-9.8749461907034819809e-5, 2.7572054583883740768e-1)}, {FN (sec), ARG(3.14124738660679181379e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(-3.14124738660679181379e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(-1.0000000596046406306e0, 4.1159035837723756084e-11)}, {FN (sec), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-1.0000000596046406306e0, -4.1159035837723756084e-11)}, {FN (sec), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(-1.0000000596046406306e0, -4.1159035837723756084e-11)}, {FN (sec), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-1.0000000596046406306e0, 4.1159035837723756084e-11)}, {FN (sec), ARG(3.14124738660679181379e+00,5.0e-01), RES(-8.8681891425248302488e-1, 1.4149533035945625257e-4)}, {FN (sec), ARG(3.14124738660679181379e+00,-5.0e-01), RES(-8.8681891425248302488e-1, -1.4149533035945625257e-4)}, {FN (sec), ARG(-3.14124738660679181379e+00,5.0e-01), RES(-8.8681891425248302488e-1, -1.4149533035945625257e-4)}, {FN (sec), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(-8.8681891425248302488e-1, 1.4149533035945625257e-4)}, {FN (sec), ARG(3.14124738660679181379e+00,1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567660423428e-4)}, {FN (sec), ARG(3.14124738660679181379e+00,-1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567660423428e-4)}, {FN (sec), ARG(-3.14124738660679181379e+00,1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567660423428e-4)}, {FN (sec), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567660423428e-4)}, {FN (sec), ARG(3.14124738660679181379e+00,2.0e+00), RES(-2.6580221522968095405e-1, 8.8471445300420323443e-5)}, {FN (sec), ARG(3.14124738660679181379e+00,-2.0e+00), RES(-2.6580221522968095405e-1, -8.8471445300420323443e-5)}, {FN (sec), ARG(-3.14124738660679181379e+00,2.0e+00), RES(-2.6580221522968095405e-1, -8.8471445300420323443e-5)}, {FN (sec), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(-2.6580221522968095405e-1, 8.8471445300420323443e-5)}, {FN (sec), ARG(3.14193792057279441821e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(-3.14193792057279441821e+00,0.0e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sec), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(-1.0000000596046406305e0, -4.1159035837694558220e-11)}, {FN (sec), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-1.0000000596046406305e0, 4.1159035837694558220e-11)}, {FN (sec), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(-1.0000000596046406305e0, 4.1159035837694558220e-11)}, {FN (sec), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-1.0000000596046406305e0, -4.1159035837694558220e-11)}, {FN (sec), ARG(3.14193792057279441821e+00,5.0e-01), RES(-8.8681891425248302484e-1, -1.4149533035935587701e-4)}, {FN (sec), ARG(3.14193792057279441821e+00,-5.0e-01), RES(-8.8681891425248302484e-1, 1.4149533035935587701e-4)}, {FN (sec), ARG(-3.14193792057279441821e+00,5.0e-01), RES(-8.8681891425248302484e-1, 1.4149533035935587701e-4)}, {FN (sec), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(-8.8681891425248302484e-1, -1.4149533035935587701e-4)}, {FN (sec), ARG(3.14193792057279441821e+00,1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567648334832e-4)}, {FN (sec), ARG(3.14193792057279441821e+00,-1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567648334832e-4)}, {FN (sec), ARG(-3.14193792057279441821e+00,1.0e+00), RES(-6.4805426748157480499e-1, 1.7040802567648334832e-4)}, {FN (sec), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(-6.4805426748157480499e-1, -1.7040802567648334832e-4)}, {FN (sec), ARG(3.14193792057279441821e+00,2.0e+00), RES(-2.6580221522968095407e-1, -8.8471445300357562580e-5)}, {FN (sec), ARG(3.14193792057279441821e+00,-2.0e+00), RES(-2.6580221522968095407e-1, 8.8471445300357562580e-5)}, {FN (sec), ARG(-3.14193792057279441821e+00,2.0e+00), RES(-2.6580221522968095407e-1, 8.8471445300357562580e-5)}, {FN (sec), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(-2.6580221522968095407e-1, -8.8471445300357562580e-5)}, {FN (sec), ARG(4.71204371340168837179e+00,0.0e+00), RES(-2.8963094332825666135e3, 0.0)}, {FN (sec), ARG(-4.71204371340168837179e+00,0.0e+00), RES(-2.8963094332825666135e3, 0.0)}, {FN (sec), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(-2.8963090880156247720e3, -9.9999986092110711291e-1)}, {FN (sec), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-2.8963090880156247720e3, 9.9999986092110711291e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(-2.8963090880156247720e3, 9.9999986092110711291e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-2.8963090880156247720e3, -9.9999986092110711291e-1)}, {FN (sec), ARG(4.71204371340168837179e+00,5.0e-01), RES(-1.4337901642799849641e-3, -1.9190337944739187224e0)}, {FN (sec), ARG(4.71204371340168837179e+00,-5.0e-01), RES(-1.4337901642799849641e-3, 1.9190337944739187224e0)}, {FN (sec), ARG(-4.71204371340168837179e+00,5.0e-01), RES(-1.4337901642799849641e-3, 1.9190337944739187224e0)}, {FN (sec), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(-1.4337901642799849641e-3, -1.9190337944739187224e0)}, {FN (sec), ARG(4.71204371340168837179e+00,1.0e+00), RES(-3.8576176225225896185e-4, -8.5091800407377002716e-1)}, {FN (sec), ARG(4.71204371340168837179e+00,-1.0e+00), RES(-3.8576176225225896185e-4, 8.5091800407377002716e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,1.0e+00), RES(-3.8576176225225896185e-4, 8.5091800407377002716e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(-3.8576176225225896185e-4, -8.5091800407377002716e-1)}, {FN (sec), ARG(4.71204371340168837179e+00,2.0e+00), RES(-9.8749461907104871804e-5, -2.7572054583883740766e-1)}, {FN (sec), ARG(4.71204371340168837179e+00,-2.0e+00), RES(-9.8749461907104871804e-5, 2.7572054583883740766e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,2.0e+00), RES(-9.8749461907104871804e-5, 2.7572054583883740766e-1)}, {FN (sec), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(-9.8749461907104871804e-5, -2.7572054583883740766e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,0.0e+00), RES(2.8963094332856485380e3, 0.0)}, {FN (sec), ARG(-4.71273424736769097620e+00,0.0e+00), RES(2.8963094332856485380e3, 0.0)}, {FN (sec), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(2.8963090880187066954e3, -9.9999986092323528601e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(2.8963090880187066954e3, 9.9999986092323528601e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(2.8963090880187066954e3, 9.9999986092323528601e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(2.8963090880187066954e3, -9.9999986092323528601e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,5.0e-01), RES(1.4337901642784592884e-3, -1.9190337944739187244e0)}, {FN (sec), ARG(4.71273424736769097620e+00,-5.0e-01), RES(1.4337901642784592884e-3, 1.9190337944739187244e0)}, {FN (sec), ARG(-4.71273424736769097620e+00,5.0e-01), RES(1.4337901642784592884e-3, 1.9190337944739187244e0)}, {FN (sec), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(1.4337901642784592884e-3, -1.9190337944739187244e0)}, {FN (sec), ARG(4.71273424736769097620e+00,1.0e+00), RES(3.8576176225184847794e-4, -8.5091800407377002743e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,-1.0e+00), RES(3.8576176225184847794e-4, 8.5091800407377002743e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,1.0e+00), RES(3.8576176225184847794e-4, 8.5091800407377002743e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(3.8576176225184847794e-4, -8.5091800407377002743e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,2.0e+00), RES(9.8749461906999793811e-5, -2.7572054583883740770e-1)}, {FN (sec), ARG(4.71273424736769097620e+00,-2.0e+00), RES(9.8749461906999793811e-5, 2.7572054583883740770e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,2.0e+00), RES(9.8749461906999793811e-5, 2.7572054583883740770e-1)}, {FN (sec), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(9.8749461906999793811e-5, -2.7572054583883740770e-1)}, {FN (sec), ARG(6.28284004019658492979e+00,0.0e+00), RES(1.0000000596046477361e0, 0.0)}, {FN (sec), ARG(-6.28284004019658492979e+00,0.0e+00), RES(1.0000000596046477361e0, 0.0)}, {FN (sec), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(1.0000000596046406307e0, -4.1159035837738355016e-11)}, {FN (sec), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(1.0000000596046406307e0, 4.1159035837738355016e-11)}, {FN (sec), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(1.0000000596046406307e0, 4.1159035837738355016e-11)}, {FN (sec), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(1.0000000596046406307e0, -4.1159035837738355016e-11)}, {FN (sec), ARG(6.28284004019658492979e+00,5.0e-01), RES(8.8681891425248302490e-1, -1.4149533035950644034e-4)}, {FN (sec), ARG(6.28284004019658492979e+00,-5.0e-01), RES(8.8681891425248302490e-1, 1.4149533035950644034e-4)}, {FN (sec), ARG(-6.28284004019658492979e+00,5.0e-01), RES(8.8681891425248302490e-1, 1.4149533035950644034e-4)}, {FN (sec), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(8.8681891425248302490e-1, -1.4149533035950644034e-4)}, {FN (sec), ARG(6.28284004019658492979e+00,1.0e+00), RES(6.4805426748157480498e-1, -1.7040802567666467726e-4)}, {FN (sec), ARG(6.28284004019658492979e+00,-1.0e+00), RES(6.4805426748157480498e-1, 1.7040802567666467726e-4)}, {FN (sec), ARG(-6.28284004019658492979e+00,1.0e+00), RES(6.4805426748157480498e-1, 1.7040802567666467726e-4)}, {FN (sec), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(6.4805426748157480498e-1, -1.7040802567666467726e-4)}, {FN (sec), ARG(6.28284004019658492979e+00,2.0e+00), RES(2.6580221522968095404e-1, -8.8471445300451703875e-5)}, {FN (sec), ARG(6.28284004019658492979e+00,-2.0e+00), RES(2.6580221522968095404e-1, 8.8471445300451703875e-5)}, {FN (sec), ARG(-6.28284004019658492979e+00,2.0e+00), RES(2.6580221522968095404e-1, 8.8471445300451703875e-5)}, {FN (sec), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(2.6580221522968095404e-1, -8.8471445300451703875e-5)}, {FN (sec), ARG(6.28353057416258753420e+00,0.0e+00), RES(1.0000000596046477359e0, 0.0)}, {FN (sec), ARG(-6.28353057416258753420e+00,0.0e+00), RES(1.0000000596046477359e0, 0.0)}, {FN (sec), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(1.0000000596046406305e0, 4.1159035837679959288e-11)}, {FN (sec), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(1.0000000596046406305e0, -4.1159035837679959288e-11)}, {FN (sec), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(1.0000000596046406305e0, -4.1159035837679959288e-11)}, {FN (sec), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(1.0000000596046406305e0, 4.1159035837679959288e-11)}, {FN (sec), ARG(6.28353057416258753420e+00,5.0e-01), RES(8.8681891425248302482e-1, 1.4149533035930568923e-4)}, {FN (sec), ARG(6.28353057416258753420e+00,-5.0e-01), RES(8.8681891425248302482e-1, -1.4149533035930568923e-4)}, {FN (sec), ARG(-6.28353057416258753420e+00,5.0e-01), RES(8.8681891425248302482e-1, -1.4149533035930568923e-4)}, {FN (sec), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(8.8681891425248302482e-1, 1.4149533035930568923e-4)}, {FN (sec), ARG(6.28353057416258753420e+00,1.0e+00), RES(6.480542674815748050e-1, 1.7040802567642290534e-4)}, {FN (sec), ARG(6.28353057416258753420e+00,-1.0e+00), RES(6.480542674815748050e-1, -1.7040802567642290534e-4)}, {FN (sec), ARG(-6.28353057416258753420e+00,1.0e+00), RES(6.480542674815748050e-1, -1.7040802567642290534e-4)}, {FN (sec), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(6.480542674815748050e-1, 1.7040802567642290534e-4)}, {FN (sec), ARG(6.28353057416258753420e+00,2.0e+00), RES(2.6580221522968095408e-1, 8.8471445300326182148e-5)}, {FN (sec), ARG(6.28353057416258753420e+00,-2.0e+00), RES(2.6580221522968095408e-1, -8.8471445300326182148e-5)}, {FN (sec), ARG(-6.28353057416258753420e+00,2.0e+00), RES(2.6580221522968095408e-1, -8.8471445300326182148e-5)}, {FN (sec), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(2.6580221522968095408e-1, 8.8471445300326182148e-5)}, {FN (sec), ARG(9.42443269378637893396e+00,0.0e+00), RES(-1.0000000596046477358e0, 0.0)}, {FN (sec), ARG(-9.42443269378637893396e+00,0.0e+00), RES(-1.0000000596046477358e0, 0.0)}, {FN (sec), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(-1.0000000596046406304e0, 4.1159035837647074798e-11)}, {FN (sec), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-1.0000000596046406304e0, -4.1159035837647074798e-11)}, {FN (sec), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(-1.0000000596046406304e0, -4.1159035837647074798e-11)}, {FN (sec), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-1.0000000596046406304e0, 4.1159035837647074798e-11)}, {FN (sec), ARG(9.42443269378637893396e+00,5.0e-01), RES(-8.8681891425248302477e-1, 1.4149533035919263990e-4)}, {FN (sec), ARG(9.42443269378637893396e+00,-5.0e-01), RES(-8.8681891425248302477e-1, -1.4149533035919263990e-4)}, {FN (sec), ARG(-9.42443269378637893396e+00,5.0e-01), RES(-8.8681891425248302477e-1, -1.4149533035919263990e-4)}, {FN (sec), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(-8.8681891425248302477e-1, 1.4149533035919263990e-4)}, {FN (sec), ARG(9.42443269378637893396e+00,1.0e+00), RES(-6.4805426748157480501e-1, 1.7040802567628675588e-4)}, {FN (sec), ARG(9.42443269378637893396e+00,-1.0e+00), RES(-6.4805426748157480501e-1, -1.7040802567628675588e-4)}, {FN (sec), ARG(-9.42443269378637893396e+00,1.0e+00), RES(-6.4805426748157480501e-1, -1.7040802567628675588e-4)}, {FN (sec), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(-6.4805426748157480501e-1, 1.7040802567628675588e-4)}, {FN (sec), ARG(9.42443269378637893396e+00,2.0e+00), RES(-2.6580221522968095410e-1, 8.8471445300255496873e-5)}, {FN (sec), ARG(9.42443269378637893396e+00,-2.0e+00), RES(-2.6580221522968095410e-1, -8.8471445300255496873e-5)}, {FN (sec), ARG(-9.42443269378637893396e+00,2.0e+00), RES(-2.6580221522968095410e-1, -8.8471445300255496873e-5)}, {FN (sec), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(-2.6580221522968095410e-1, 8.8471445300255496873e-5)}, {FN (sec), ARG(9.42512322775237976202e+00,0.0e+00), RES(-1.0000000596046477356e0, 0.0)}, {FN (sec), ARG(-9.42512322775237976202e+00,0.0e+00), RES(-1.0000000596046477356e0, 0.0)}, {FN (sec), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(-1.0000000596046406301e0, -4.1159035837559481207e-11)}, {FN (sec), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-1.0000000596046406301e0, 4.1159035837559481207e-11)}, {FN (sec), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(-1.0000000596046406301e0, 4.1159035837559481207e-11)}, {FN (sec), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-1.0000000596046406301e0, -4.1159035837559481207e-11)}, {FN (sec), ARG(9.42512322775237976202e+00,5.0e-01), RES(-8.8681891425248302464e-1, -1.4149533035889151322e-4)}, {FN (sec), ARG(9.42512322775237976202e+00,-5.0e-01), RES(-8.8681891425248302464e-1, 1.4149533035889151322e-4)}, {FN (sec), ARG(-9.42512322775237976202e+00,5.0e-01), RES(-8.8681891425248302464e-1, 1.4149533035889151322e-4)}, {FN (sec), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(-8.8681891425248302464e-1, -1.4149533035889151322e-4)}, {FN (sec), ARG(9.42512322775237976202e+00,1.0e+00), RES(-6.4805426748157480504e-1, -1.704080256759240980e-4)}, {FN (sec), ARG(9.42512322775237976202e+00,-1.0e+00), RES(-6.4805426748157480504e-1, 1.704080256759240980e-4)}, {FN (sec), ARG(-9.42512322775237976202e+00,1.0e+00), RES(-6.4805426748157480504e-1, 1.704080256759240980e-4)}, {FN (sec), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(-6.4805426748157480504e-1, -1.704080256759240980e-4)}, {FN (sec), ARG(9.42512322775237976202e+00,2.0e+00), RES(-2.6580221522968095416e-1, -8.8471445300067214283e-5)}, {FN (sec), ARG(9.42512322775237976202e+00,-2.0e+00), RES(-2.6580221522968095416e-1, 8.8471445300067214283e-5)}, {FN (sec), ARG(-9.42512322775237976202e+00,2.0e+00), RES(-2.6580221522968095416e-1, 8.8471445300067214283e-5)}, {FN (sec), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(-2.6580221522968095416e-1, -8.8471445300067214283e-5)}, {FN (cot), ARG(-3.45266983001243932001e-04,0.0e+00), RES(-2.8963092606511032136e3, 0.0)}, {FN (cot), ARG(3.45266983001243932001e-04,0.0e+00), RES(2.8963092606511032136e3, 0.0)}, {FN (cot), ARG(-3.45266983001243932001e-04,1.19209289550781250e-07), RES(-2.8963089153841613713e3, -9.9999992052715532101e-1)}, {FN (cot), ARG(-3.45266983001243932001e-04,-1.19209289550781250e-07), RES(-2.8963089153841613713e3, 9.9999992052715532101e-1)}, {FN (cot), ARG(3.45266983001243932001e-04,1.19209289550781250e-07), RES(2.8963089153841613713e3, -9.9999992052715532101e-1)}, {FN (cot), ARG(3.45266983001243932001e-04,-1.19209289550781250e-07), RES(2.8963089153841613713e3, 9.9999992052715532101e-1)}, {FN (cot), ARG(-3.45266983001243932001e-04,5.0e-01), RES(-1.2715121175451222247e-3, -2.1639524637389326002e0)}, {FN (cot), ARG(-3.45266983001243932001e-04,-5.0e-01), RES(-1.2715121175451222247e-3, 2.1639524637389326002e0)}, {FN (cot), ARG(3.45266983001243932001e-04,5.0e-01), RES(1.2715121175451222247e-3, -2.1639524637389326002e0)}, {FN (cot), ARG(3.45266983001243932001e-04,-5.0e-01), RES(1.2715121175451222247e-3, 2.1639524637389326002e0)}, {FN (cot), ARG(-3.45266983001243932001e-04,1.0e+00), RES(-2.4999454374267620687e-4, -1.3130351721648674824e0)}, {FN (cot), ARG(-3.45266983001243932001e-04,-1.0e+00), RES(-2.4999454374267620687e-4, 1.3130351721648674824e0)}, {FN (cot), ARG(3.45266983001243932001e-04,1.0e+00), RES(2.4999454374267620687e-4, -1.3130351721648674824e0)}, {FN (cot), ARG(3.45266983001243932001e-04,-1.0e+00), RES(2.4999454374267620687e-4, 1.3130351721648674824e0)}, {FN (cot), ARG(-3.45266983001243932001e-04,2.0e+00), RES(-2.6247825506563736365e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-3.45266983001243932001e-04,-2.0e+00), RES(-2.6247825506563736365e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(3.45266983001243932001e-04,2.0e+00), RES(2.6247825506563736365e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(3.45266983001243932001e-04,-2.0e+00), RES(2.6247825506563736365e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(1.57045105981189525579e+00,0.0e+00), RES(3.4526699672104134407e-4, 0.0)}, {FN (cot), ARG(-1.57045105981189525579e+00,0.0e+00), RES(-3.4526699672104134407e-4, 0.0)}, {FN (cot), ARG(1.57045105981189525579e+00,1.19209289550781250e-07), RES(3.4526699672103643753e-4, -1.1920930376163652990e-7)}, {FN (cot), ARG(1.57045105981189525579e+00,-1.19209289550781250e-07), RES(3.4526699672103643753e-4, 1.1920930376163652990e-7)}, {FN (cot), ARG(-1.57045105981189525579e+00,1.19209289550781250e-07), RES(-3.4526699672103643753e-4, -1.1920930376163652990e-7)}, {FN (cot), ARG(-1.57045105981189525579e+00,-1.19209289550781250e-07), RES(-3.4526699672103643753e-4, 1.1920930376163652990e-7)}, {FN (cot), ARG(1.57045105981189525579e+00,5.0e-01), RES(2.7153443992665204631e-4, -4.6211720058436229982e-1)}, {FN (cot), ARG(1.57045105981189525579e+00,-5.0e-01), RES(2.7153443992665204631e-4, 4.6211720058436229982e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,5.0e-01), RES(-2.7153443992665204631e-4, -4.6211720058436229982e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,-5.0e-01), RES(-2.7153443992665204631e-4, 4.6211720058436229982e-1)}, {FN (cot), ARG(1.57045105981189525579e+00,1.0e+00), RES(1.4500326960279979918e-4, -7.6159419408485704839e-1)}, {FN (cot), ARG(1.57045105981189525579e+00,-1.0e+00), RES(1.4500326960279979918e-4, 7.6159419408485704839e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,1.0e+00), RES(-1.4500326960279979918e-4, -7.6159419408485704839e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,-1.0e+00), RES(-1.4500326960279979918e-4, 7.6159419408485704839e-1)}, {FN (cot), ARG(1.57045105981189525579e+00,2.0e+00), RES(2.4393395410443750226e-5, -9.6402758819508310557e-1)}, {FN (cot), ARG(1.57045105981189525579e+00,-2.0e+00), RES(2.4393395410443750226e-5, 9.6402758819508310557e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,2.0e+00), RES(-2.4393395410443750226e-5, -9.6402758819508310557e-1)}, {FN (cot), ARG(-1.57045105981189525579e+00,-2.0e+00), RES(-2.4393395410443750226e-5, 9.6402758819508310557e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,0.0e+00), RES(-3.4526699672091887937e-4, 0.0)}, {FN (cot), ARG(-1.57114159377789786021e+00,0.0e+00), RES(3.4526699672091887937e-4, 0.0)}, {FN (cot), ARG(1.57114159377789786021e+00,1.19209289550781250e-07), RES(-3.4526699672091397283e-4, -1.1920930376163652989e-7)}, {FN (cot), ARG(1.57114159377789786021e+00,-1.19209289550781250e-07), RES(-3.4526699672091397283e-4, 1.1920930376163652989e-7)}, {FN (cot), ARG(-1.57114159377789786021e+00,1.19209289550781250e-07), RES(3.4526699672091397283e-4, -1.1920930376163652989e-7)}, {FN (cot), ARG(-1.57114159377789786021e+00,-1.19209289550781250e-07), RES(3.4526699672091397283e-4, 1.1920930376163652989e-7)}, {FN (cot), ARG(1.57114159377789786021e+00,5.0e-01), RES(-2.7153443992655573423e-4, -4.6211720058436229979e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,-5.0e-01), RES(-2.7153443992655573423e-4, 4.6211720058436229979e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,5.0e-01), RES(2.7153443992655573423e-4, -4.6211720058436229979e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,-5.0e-01), RES(2.7153443992655573423e-4, 4.6211720058436229979e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,1.0e+00), RES(-1.4500326960274836716e-4, -7.6159419408485704836e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,-1.0e+00), RES(-1.4500326960274836716e-4, 7.6159419408485704836e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,1.0e+00), RES(1.4500326960274836716e-4, -7.6159419408485704836e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,-1.0e+00), RES(1.4500326960274836716e-4, 7.6159419408485704836e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,2.0e+00), RES(-2.4393395410435097997e-5, -9.6402758819508310556e-1)}, {FN (cot), ARG(1.57114159377789786021e+00,-2.0e+00), RES(-2.4393395410435097997e-5, 9.6402758819508310556e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,2.0e+00), RES(2.4393395410435097997e-5, -9.6402758819508310556e-1)}, {FN (cot), ARG(-1.57114159377789786021e+00,-2.0e+00), RES(2.4393395410435097997e-5, 9.6402758819508310556e-1)}, {FN (cot), ARG(3.14124738660679181379e+00,0.0e+00), RES(-2.8963092606495870519e3, 0.0)}, {FN (cot), ARG(-3.14124738660679181379e+00,0.0e+00), RES(2.8963092606495870519e3, 0.0)}, {FN (cot), ARG(3.14124738660679181379e+00,1.19209289550781250e-07), RES(-2.8963089153826452102e3, -9.9999992052610836018e-1)}, {FN (cot), ARG(3.14124738660679181379e+00,-1.19209289550781250e-07), RES(-2.8963089153826452102e3, 9.9999992052610836018e-1)}, {FN (cot), ARG(-3.14124738660679181379e+00,1.19209289550781250e-07), RES(2.8963089153826452102e3, -9.9999992052610836018e-1)}, {FN (cot), ARG(-3.14124738660679181379e+00,-1.19209289550781250e-07), RES(2.8963089153826452102e3, 9.9999992052610836018e-1)}, {FN (cot), ARG(3.14124738660679181379e+00,5.0e-01), RES(-1.2715121175457878359e-3, -2.1639524637389325992e0)}, {FN (cot), ARG(3.14124738660679181379e+00,-5.0e-01), RES(-1.2715121175457878359e-3, 2.1639524637389325992e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,5.0e-01), RES(1.2715121175457878359e-3, -2.1639524637389325992e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,-5.0e-01), RES(1.2715121175457878359e-3, 2.1639524637389325992e0)}, {FN (cot), ARG(3.14124738660679181379e+00,1.0e+00), RES(-2.4999454374280707411e-4, -1.3130351721648674823e0)}, {FN (cot), ARG(3.14124738660679181379e+00,-1.0e+00), RES(-2.4999454374280707411e-4, 1.3130351721648674823e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,1.0e+00), RES(2.4999454374280707411e-4, -1.3130351721648674823e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,-1.0e+00), RES(2.4999454374280707411e-4, 1.3130351721648674823e0)}, {FN (cot), ARG(3.14124738660679181379e+00,2.0e+00), RES(-2.6247825506577476589e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(3.14124738660679181379e+00,-2.0e+00), RES(-2.6247825506577476589e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,2.0e+00), RES(2.6247825506577476589e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-3.14124738660679181379e+00,-2.0e+00), RES(2.6247825506577476589e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(3.14193792057279441821e+00,0.0e+00), RES(2.8963092606516416684e3, 0.0)}, {FN (cot), ARG(-3.14193792057279441821e+00,0.0e+00), RES(-2.8963092606516416684e3, 0.0)}, {FN (cot), ARG(3.14193792057279441821e+00,1.19209289550781250e-07), RES(2.8963089153846998260e3, -9.9999992052752714224e-1)}, {FN (cot), ARG(3.14193792057279441821e+00,-1.19209289550781250e-07), RES(2.8963089153846998260e3, 9.9999992052752714224e-1)}, {FN (cot), ARG(-3.14193792057279441821e+00,1.19209289550781250e-07), RES(-2.8963089153846998260e3, -9.9999992052752714224e-1)}, {FN (cot), ARG(-3.14193792057279441821e+00,-1.19209289550781250e-07), RES(-2.8963089153846998260e3, 9.9999992052752714224e-1)}, {FN (cot), ARG(3.14193792057279441821e+00,5.0e-01), RES(1.2715121175448858373e-3, -2.1639524637389326006e0)}, {FN (cot), ARG(3.14193792057279441821e+00,-5.0e-01), RES(1.2715121175448858373e-3, 2.1639524637389326006e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,5.0e-01), RES(-1.2715121175448858373e-3, -2.1639524637389326006e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,-5.0e-01), RES(-1.2715121175448858373e-3, 2.1639524637389326006e0)}, {FN (cot), ARG(3.14193792057279441821e+00,1.0e+00), RES(2.4999454374262973024e-4, -1.3130351721648674824e0)}, {FN (cot), ARG(3.14193792057279441821e+00,-1.0e+00), RES(2.4999454374262973024e-4, 1.3130351721648674824e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,1.0e+00), RES(-2.4999454374262973024e-4, -1.3130351721648674824e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,-1.0e+00), RES(-2.4999454374262973024e-4, 1.3130351721648674824e0)}, {FN (cot), ARG(3.14193792057279441821e+00,2.0e+00), RES(2.6247825506558856616e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(3.14193792057279441821e+00,-2.0e+00), RES(2.6247825506558856616e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,2.0e+00), RES(-2.6247825506558856616e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-3.14193792057279441821e+00,-2.0e+00), RES(-2.6247825506558856616e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(4.71204371340168837179e+00,0.0e+00), RES(3.4526699672116380876e-4, 0.0)}, {FN (cot), ARG(-4.71204371340168837179e+00,0.0e+00), RES(-3.4526699672116380876e-4, 0.0)}, {FN (cot), ARG(4.71204371340168837179e+00,1.19209289550781250e-07), RES(3.4526699672115890222e-4, -1.1920930376163652991e-7)}, {FN (cot), ARG(4.71204371340168837179e+00,-1.19209289550781250e-07), RES(3.4526699672115890222e-4, 1.1920930376163652991e-7)}, {FN (cot), ARG(-4.71204371340168837179e+00,1.19209289550781250e-07), RES(-3.4526699672115890222e-4, -1.1920930376163652991e-7)}, {FN (cot), ARG(-4.71204371340168837179e+00,-1.19209289550781250e-07), RES(-3.4526699672115890222e-4, 1.1920930376163652991e-7)}, {FN (cot), ARG(4.71204371340168837179e+00,5.0e-01), RES(2.7153443992674835838e-4, -4.6211720058436229985e-1)}, {FN (cot), ARG(4.71204371340168837179e+00,-5.0e-01), RES(2.7153443992674835838e-4, 4.6211720058436229985e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,5.0e-01), RES(-2.7153443992674835838e-4, -4.6211720058436229985e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,-5.0e-01), RES(-2.7153443992674835838e-4, 4.6211720058436229985e-1)}, {FN (cot), ARG(4.71204371340168837179e+00,1.0e+00), RES(1.4500326960285123120e-4, -7.6159419408485704842e-1)}, {FN (cot), ARG(4.71204371340168837179e+00,-1.0e+00), RES(1.4500326960285123120e-4, 7.6159419408485704842e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,1.0e+00), RES(-1.4500326960285123120e-4, -7.6159419408485704842e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,-1.0e+00), RES(-1.4500326960285123120e-4, 7.6159419408485704842e-1)}, {FN (cot), ARG(4.71204371340168837179e+00,2.0e+00), RES(2.4393395410452402454e-5, -9.6402758819508310557e-1)}, {FN (cot), ARG(4.71204371340168837179e+00,-2.0e+00), RES(2.4393395410452402454e-5, 9.6402758819508310557e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,2.0e+00), RES(-2.4393395410452402454e-5, -9.6402758819508310557e-1)}, {FN (cot), ARG(-4.71204371340168837179e+00,-2.0e+00), RES(-2.4393395410452402454e-5, 9.6402758819508310557e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,0.0e+00), RES(-3.4526699672079641468e-4, 0.0)}, {FN (cot), ARG(-4.71273424736769097620e+00,0.0e+00), RES(3.4526699672079641468e-4, 0.0)}, {FN (cot), ARG(4.71273424736769097620e+00,1.19209289550781250e-07), RES(-3.4526699672079150814e-4, -1.1920930376163652988e-7)}, {FN (cot), ARG(4.71273424736769097620e+00,-1.19209289550781250e-07), RES(-3.4526699672079150814e-4, 1.1920930376163652988e-7)}, {FN (cot), ARG(-4.71273424736769097620e+00,1.19209289550781250e-07), RES(3.4526699672079150814e-4, -1.1920930376163652988e-7)}, {FN (cot), ARG(-4.71273424736769097620e+00,-1.19209289550781250e-07), RES(3.4526699672079150814e-4, 1.1920930376163652988e-7)}, {FN (cot), ARG(4.71273424736769097620e+00,5.0e-01), RES(-2.7153443992645942216e-4, -4.6211720058436229976e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,-5.0e-01), RES(-2.7153443992645942216e-4, 4.6211720058436229976e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,5.0e-01), RES(2.7153443992645942216e-4, -4.6211720058436229976e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,-5.0e-01), RES(2.7153443992645942216e-4, 4.6211720058436229976e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,1.0e+00), RES(-1.4500326960269693514e-4, -7.6159419408485704834e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,-1.0e+00), RES(-1.4500326960269693514e-4, 7.6159419408485704834e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,1.0e+00), RES(1.4500326960269693514e-4, -7.6159419408485704834e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,-1.0e+00), RES(1.4500326960269693514e-4, 7.6159419408485704834e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,2.0e+00), RES(-2.4393395410426445768e-5, -9.6402758819508310556e-1)}, {FN (cot), ARG(4.71273424736769097620e+00,-2.0e+00), RES(-2.4393395410426445768e-5, 9.6402758819508310556e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,2.0e+00), RES(2.4393395410426445768e-5, -9.6402758819508310556e-1)}, {FN (cot), ARG(-4.71273424736769097620e+00,-2.0e+00), RES(2.4393395410426445768e-5, 9.6402758819508310556e-1)}, {FN (cot), ARG(6.28284004019658492979e+00,0.0e+00), RES(-2.8963092606485597437e3, 0.0)}, {FN (cot), ARG(-6.28284004019658492979e+00,0.0e+00), RES(2.8963092606485597437e3, 0.0)}, {FN (cot), ARG(6.28284004019658492979e+00,1.19209289550781250e-07), RES(-2.8963089153816179024e3, -9.9999992052539896914e-1)}, {FN (cot), ARG(6.28284004019658492979e+00,-1.19209289550781250e-07), RES(-2.8963089153816179024e3, 9.9999992052539896914e-1)}, {FN (cot), ARG(-6.28284004019658492979e+00,1.19209289550781250e-07), RES(2.8963089153816179024e3, -9.9999992052539896914e-1)}, {FN (cot), ARG(-6.28284004019658492979e+00,-1.19209289550781250e-07), RES(2.8963089153816179024e3, 9.9999992052539896914e-1)}, {FN (cot), ARG(6.28284004019658492979e+00,5.0e-01), RES(-1.2715121175462388352e-3, -2.1639524637389325986e0)}, {FN (cot), ARG(6.28284004019658492979e+00,-5.0e-01), RES(-1.2715121175462388352e-3, 2.1639524637389325986e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,5.0e-01), RES(1.2715121175462388352e-3, -2.1639524637389325986e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,-5.0e-01), RES(1.2715121175462388352e-3, 2.1639524637389325986e0)}, {FN (cot), ARG(6.28284004019658492979e+00,1.0e+00), RES(-2.4999454374289574604e-4, -1.3130351721648674822e0)}, {FN (cot), ARG(6.28284004019658492979e+00,-1.0e+00), RES(-2.4999454374289574604e-4, 1.3130351721648674822e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,1.0e+00), RES(2.4999454374289574604e-4, -1.3130351721648674822e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,-1.0e+00), RES(2.4999454374289574604e-4, 1.3130351721648674822e0)}, {FN (cot), ARG(6.28284004019658492979e+00,2.0e+00), RES(-2.6247825506586786575e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(6.28284004019658492979e+00,-2.0e+00), RES(-2.6247825506586786575e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,2.0e+00), RES(2.6247825506586786575e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-6.28284004019658492979e+00,-2.0e+00), RES(2.6247825506586786575e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(6.28353057416258753420e+00,0.0e+00), RES(2.8963092606526689766e3, 0.0)}, {FN (cot), ARG(-6.28353057416258753420e+00,0.0e+00), RES(-2.8963092606526689766e3, 0.0)}, {FN (cot), ARG(6.28353057416258753420e+00,1.19209289550781250e-07), RES(2.8963089153857271338e3, -9.9999992052823653327e-1)}, {FN (cot), ARG(6.28353057416258753420e+00,-1.19209289550781250e-07), RES(2.8963089153857271338e3, 9.9999992052823653327e-1)}, {FN (cot), ARG(-6.28353057416258753420e+00,1.19209289550781250e-07), RES(-2.8963089153857271338e3, -9.9999992052823653327e-1)}, {FN (cot), ARG(-6.28353057416258753420e+00,-1.19209289550781250e-07), RES(-2.8963089153857271338e3, 9.9999992052823653327e-1)}, {FN (cot), ARG(6.28353057416258753420e+00,5.0e-01), RES(1.2715121175444348380e-3, -2.1639524637389326012e0)}, {FN (cot), ARG(6.28353057416258753420e+00,-5.0e-01), RES(1.2715121175444348380e-3, 2.1639524637389326012e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,5.0e-01), RES(-1.2715121175444348380e-3, -2.1639524637389326012e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,-5.0e-01), RES(-1.2715121175444348380e-3, 2.1639524637389326012e0)}, {FN (cot), ARG(6.28353057416258753420e+00,1.0e+00), RES(2.4999454374254105830e-4, -1.3130351721648674825e0)}, {FN (cot), ARG(6.28353057416258753420e+00,-1.0e+00), RES(2.4999454374254105830e-4, 1.3130351721648674825e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,1.0e+00), RES(-2.4999454374254105830e-4, -1.3130351721648674825e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,-1.0e+00), RES(-2.4999454374254105830e-4, 1.3130351721648674825e0)}, {FN (cot), ARG(6.28353057416258753420e+00,2.0e+00), RES(2.6247825506549546629e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(6.28353057416258753420e+00,-2.0e+00), RES(2.6247825506549546629e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,2.0e+00), RES(-2.6247825506549546629e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-6.28353057416258753420e+00,-2.0e+00), RES(-2.6247825506549546629e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(9.42443269378637893396e+00,0.0e+00), RES(-2.8963092606549830163e3, 0.0)}, {FN (cot), ARG(-9.42443269378637893396e+00,0.0e+00), RES(2.8963092606549830163e3, 0.0)}, {FN (cot), ARG(9.42443269378637893396e+00,1.19209289550781250e-07), RES(-2.8963089153880411727e3, -9.9999992052983445585e-1)}, {FN (cot), ARG(9.42443269378637893396e+00,-1.19209289550781250e-07), RES(-2.8963089153880411727e3, 9.9999992052983445585e-1)}, {FN (cot), ARG(-9.42443269378637893396e+00,1.19209289550781250e-07), RES(2.8963089153880411727e3, -9.9999992052983445585e-1)}, {FN (cot), ARG(-9.42443269378637893396e+00,-1.19209289550781250e-07), RES(2.8963089153880411727e3, 9.9999992052983445585e-1)}, {FN (cot), ARG(9.42443269378637893396e+00,5.0e-01), RES(-1.2715121175434189499e-3, -2.1639524637389326028e0)}, {FN (cot), ARG(9.42443269378637893396e+00,-5.0e-01), RES(-1.2715121175434189499e-3, 2.1639524637389326028e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,5.0e-01), RES(1.2715121175434189499e-3, -2.1639524637389326028e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,-5.0e-01), RES(1.2715121175434189499e-3, 2.1639524637389326028e0)}, {FN (cot), ARG(9.42443269378637893396e+00,1.0e+00), RES(-2.4999454374234132236e-4, -1.3130351721648674827e0)}, {FN (cot), ARG(9.42443269378637893396e+00,-1.0e+00), RES(-2.4999454374234132236e-4, 1.3130351721648674827e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,1.0e+00), RES(2.4999454374234132236e-4, -1.3130351721648674827e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,-1.0e+00), RES(2.4999454374234132236e-4, 1.3130351721648674827e0)}, {FN (cot), ARG(9.42443269378637893396e+00,2.0e+00), RES(-2.6247825506528575631e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(9.42443269378637893396e+00,-2.0e+00), RES(-2.6247825506528575631e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,2.0e+00), RES(2.6247825506528575631e-5, -1.0373147113268752620e0)}, {FN (cot), ARG(-9.42443269378637893396e+00,-2.0e+00), RES(2.6247825506528575631e-5, 1.0373147113268752620e0)}, {FN (cot), ARG(9.42512322775237976202e+00,0.0e+00), RES(2.8963092606611468657e3, 0.0)}, {FN (cot), ARG(-9.42512322775237976202e+00,0.0e+00), RES(-2.8963092606611468657e3, 0.0)}, {FN (cot), ARG(9.42512322775237976202e+00,1.19209289550781250e-07), RES(2.8963089153942050199e3, -9.9999992053409080205e-1)}, {FN (cot), ARG(9.42512322775237976202e+00,-1.19209289550781250e-07), RES(2.8963089153942050199e3, 9.9999992053409080205e-1)}, {FN (cot), ARG(-9.42512322775237976202e+00,1.19209289550781250e-07), RES(-2.8963089153942050199e3, -9.9999992053409080205e-1)}, {FN (cot), ARG(-9.42512322775237976202e+00,-1.19209289550781250e-07), RES(-2.8963089153942050199e3, 9.9999992053409080205e-1)}, {FN (cot), ARG(9.42512322775237976202e+00,5.0e-01), RES(1.2715121175407129542e-3, -2.1639524637389326068e0)}, {FN (cot), ARG(9.42512322775237976202e+00,-5.0e-01), RES(1.2715121175407129542e-3, 2.1639524637389326068e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,5.0e-01), RES(-1.2715121175407129542e-3, -2.1639524637389326068e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,-5.0e-01), RES(-1.2715121175407129542e-3, 2.1639524637389326068e0)}, {FN (cot), ARG(9.42512322775237976202e+00,1.0e+00), RES(2.4999454374180929074e-4, -1.3130351721648674832e0)}, {FN (cot), ARG(9.42512322775237976202e+00,-1.0e+00), RES(2.4999454374180929074e-4, 1.3130351721648674832e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,1.0e+00), RES(-2.4999454374180929074e-4, -1.3130351721648674832e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,-1.0e+00), RES(-2.4999454374180929074e-4, 1.3130351721648674832e0)}, {FN (cot), ARG(9.42512322775237976202e+00,2.0e+00), RES(2.6247825506472715712e-5, -1.0373147113268752621e0)}, {FN (cot), ARG(9.42512322775237976202e+00,-2.0e+00), RES(2.6247825506472715712e-5, 1.0373147113268752621e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,2.0e+00), RES(-2.6247825506472715712e-5, -1.0373147113268752621e0)}, {FN (cot), ARG(-9.42512322775237976202e+00,-2.0e+00), RES(-2.6247825506472715712e-5, 1.0373147113268752621e0)}, {FN (arccsc), ARG(0.0e+00,1.19209289550781250e-07), RES(0, -1.6635532333438690979e1)}, {FN (arccsc), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, 1.6635532333438690979e1)}, {FN (arccsc), ARG(0.0e+00,5.0e-01), RES(0, -1.4436354751788103425e0)}, {FN (arccsc), ARG(0.0e+00,-5.0e-01), RES(0, 1.4436354751788103425e0)}, {FN (arccsc), ARG(0.0e+00,1.0e+00), RES(0, -8.8137358701954302523e-1)}, {FN (arccsc), ARG(0.0e+00,-1.0e+00), RES(0, 8.8137358701954302523e-1)}, {FN (arccsc), ARG(0.0e+00,2.0e+00), RES(0, -4.8121182505960344750e-1)}, {FN (arccsc), ARG(0.0e+00,-2.0e+00), RES(0, 4.8121182505960344750e-1)}, {FN (arccsc), ARG(0.0e+00,8.3886080e+06), RES(0, -1.1920928955078096766e-7)}, {FN (arccsc), ARG(0.0e+00,-8.3886080e+06), RES(0, 1.1920928955078096766e-7)}, {FN (arccsc), ARG(1.19209289550781250e-07,0.0e+00), RES(1.5707963267948966192e0, -1.6635532333438683873e1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.5707963267948966192e0, 1.6635532333438683873e1)}, {FN (arccsc), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(7.8539816339744120419e-1, -1.6288958743158714771e1)}, {FN (arccsc), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(7.8539816339744120419e-1, 1.6288958743158714771e1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-7.8539816339744120419e-1, -1.6288958743158714771e1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-7.8539816339744120419e-1, 1.6288958743158714771e1)}, {FN (arccsc), ARG(1.19209289550781250e-07,5.0e-01), RES(2.1324805998799710740e-7, -1.4436354751787798371e0)}, {FN (arccsc), ARG(1.19209289550781250e-07,-5.0e-01), RES(2.1324805998799710740e-7, 1.4436354751787798371e0)}, {FN (arccsc), ARG(-1.19209289550781250e-07,5.0e-01), RES(-2.1324805998799710740e-7, -1.4436354751787798371e0)}, {FN (arccsc), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-2.1324805998799710740e-7, 1.4436354751787798371e0)}, {FN (arccsc), ARG(1.19209289550781250e-07,1.0e+00), RES(8.4293697021787414719e-8, -8.8137358701953548879e-1)}, {FN (arccsc), ARG(1.19209289550781250e-07,-1.0e+00), RES(8.4293697021787414719e-8, 8.8137358701953548879e-1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,1.0e+00), RES(-8.4293697021787414719e-8, -8.8137358701953548879e-1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-8.4293697021787414719e-8, 8.8137358701953548879e-1)}, {FN (arccsc), ARG(1.19209289550781250e-07,2.0e+00), RES(2.6656007498500149811e-8, -4.8121182505960201756e-1)}, {FN (arccsc), ARG(1.19209289550781250e-07,-2.0e+00), RES(2.6656007498500149811e-8, 4.8121182505960201756e-1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,2.0e+00), RES(-2.6656007498500149811e-8, -4.8121182505960201756e-1)}, {FN (arccsc), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-2.6656007498500149811e-8, 4.8121182505960201756e-1)}, {FN (arccsc), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6940658945085886411e-21, -1.1920928955078096766e-7)}, {FN (arccsc), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6940658945085886411e-21, 1.1920928955078096766e-7)}, {FN (arccsc), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6940658945085886411e-21, -1.1920928955078096766e-7)}, {FN (arccsc), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6940658945085886411e-21, 1.1920928955078096766e-7)}, {FN (arccsc), ARG(5.0e-01,0.0e+00), RES(1.5707963267948966192e0, -1.3169578969248167086e0)}, {FN (arccsc), ARG(-5.0e-01,0.0e+00), RES(-1.5707963267948966192e0, 1.3169578969248167086e0)}, {FN (arccsc), ARG(5.0e-01,1.19209289550781250e-07), RES(1.5707960514928349710e0, -1.3169578969247948296e0)}, {FN (arccsc), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.5707960514928349710e0, 1.3169578969247948296e0)}, {FN (arccsc), ARG(-5.0e-01,1.19209289550781250e-07), RES(-1.5707960514928349710e0, -1.3169578969247948296e0)}, {FN (arccsc), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-1.5707960514928349710e0, 1.3169578969247948296e0)}, {FN (arccsc), ARG(5.0e-01,5.0e-01), RES(6.6623943249251525510e-1, -1.0612750619050356520e0)}, {FN (arccsc), ARG(5.0e-01,-5.0e-01), RES(6.6623943249251525510e-1, 1.0612750619050356520e0)}, {FN (arccsc), ARG(-5.0e-01,5.0e-01), RES(-6.6623943249251525510e-1, -1.0612750619050356520e0)}, {FN (arccsc), ARG(-5.0e-01,-5.0e-01), RES(-6.6623943249251525510e-1, 1.0612750619050356520e0)}, {FN (arccsc), ARG(5.0e-01,1.0e+00), RES(3.1122579724476109533e-1, -7.6388434595371104541e-1)}, {FN (arccsc), ARG(5.0e-01,-1.0e+00), RES(3.1122579724476109533e-1, 7.6388434595371104541e-1)}, {FN (arccsc), ARG(-5.0e-01,1.0e+00), RES(-3.1122579724476109533e-1, -7.6388434595371104541e-1)}, {FN (arccsc), ARG(-5.0e-01,-1.0e+00), RES(-3.1122579724476109533e-1, 7.6388434595371104541e-1)}, {FN (arccsc), ARG(5.0e-01,2.0e+00), RES(1.0654050295275703990e-1, -4.5717847686917515748e-1)}, {FN (arccsc), ARG(5.0e-01,-2.0e+00), RES(1.0654050295275703990e-1, 4.5717847686917515748e-1)}, {FN (arccsc), ARG(-5.0e-01,2.0e+00), RES(-1.0654050295275703990e-1, -4.5717847686917515748e-1)}, {FN (arccsc), ARG(-5.0e-01,-2.0e+00), RES(-1.0654050295275703990e-1, 4.5717847686917515748e-1)}, {FN (arccsc), ARG(5.0e-01,8.3886080e+06), RES(7.1054273576009261281e-15, -1.1920928955078054414e-7)}, {FN (arccsc), ARG(5.0e-01,-8.3886080e+06), RES(7.1054273576009261281e-15, 1.1920928955078054414e-7)}, {FN (arccsc), ARG(-5.0e-01,8.3886080e+06), RES(-7.1054273576009261281e-15, -1.1920928955078054414e-7)}, {FN (arccsc), ARG(-5.0e-01,-8.3886080e+06), RES(-7.1054273576009261281e-15, 1.1920928955078054414e-7)}, {FN (arccsc), ARG(1.0e+00,0.0e+00), RES(1.5707963267948966192e0, 0.0)}, {FN (arccsc), ARG(-1.0e+00,0.0e+00), RES(-1.5707963267948966192e0, 0.0)}, {FN (arccsc), ARG(1.0e+00,1.19209289550781250e-07), RES(1.5704510597947457801e0, -3.4526696585164602772e-4)}, {FN (arccsc), ARG(1.0e+00,-1.19209289550781250e-07), RES(1.5704510597947457801e0, 3.4526696585164602772e-4)}, {FN (arccsc), ARG(-1.0e+00,1.19209289550781250e-07), RES(-1.5704510597947457801e0, -3.4526696585164602772e-4)}, {FN (arccsc), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-1.5704510597947457801e0, 3.4526696585164602772e-4)}, {FN (arccsc), ARG(1.0e+00,5.0e-01), RES(7.7308635671950473342e-1, -5.3321829058411214108e-1)}, {FN (arccsc), ARG(1.0e+00,-5.0e-01), RES(7.7308635671950473342e-1, 5.3321829058411214108e-1)}, {FN (arccsc), ARG(-1.0e+00,5.0e-01), RES(-7.7308635671950473342e-1, -5.3321829058411214108e-1)}, {FN (arccsc), ARG(-1.0e+00,-5.0e-01), RES(-7.7308635671950473342e-1, 5.3321829058411214108e-1)}, {FN (arccsc), ARG(1.0e+00,1.0e+00), RES(4.5227844715119068206e-1, -5.3063753095251782602e-1)}, {FN (arccsc), ARG(1.0e+00,-1.0e+00), RES(4.5227844715119068206e-1, 5.3063753095251782602e-1)}, {FN (arccsc), ARG(-1.0e+00,1.0e+00), RES(-4.5227844715119068206e-1, -5.3063753095251782602e-1)}, {FN (arccsc), ARG(-1.0e+00,-1.0e+00), RES(-4.5227844715119068206e-1, 5.3063753095251782602e-1)}, {FN (arccsc), ARG(1.0e+00,2.0e+00), RES(1.8631805410781552582e-1, -3.9656823011232897892e-1)}, {FN (arccsc), ARG(1.0e+00,-2.0e+00), RES(1.8631805410781552582e-1, 3.9656823011232897892e-1)}, {FN (arccsc), ARG(-1.0e+00,2.0e+00), RES(-1.8631805410781552582e-1, -3.9656823011232897892e-1)}, {FN (arccsc), ARG(-1.0e+00,-2.0e+00), RES(-1.8631805410781552582e-1, 3.9656823011232897892e-1)}, {FN (arccsc), ARG(1.0e+00,8.3886080e+06), RES(1.4210854715201700795e-14, -1.1920928955077927359e-7)}, {FN (arccsc), ARG(1.0e+00,-8.3886080e+06), RES(1.4210854715201700795e-14, 1.1920928955077927359e-7)}, {FN (arccsc), ARG(-1.0e+00,8.3886080e+06), RES(-1.4210854715201700795e-14, -1.1920928955077927359e-7)}, {FN (arccsc), ARG(-1.0e+00,-8.3886080e+06), RES(-1.4210854715201700795e-14, 1.1920928955077927359e-7)}, {FN (arccsc), ARG(2.0e+00,0.0e+00), RES(5.2359877559829887308e-1, 0.0)}, {FN (arccsc), ARG(-2.0e+00,0.0e+00), RES(-5.2359877559829887308e-1, 0.0)}, {FN (arccsc), ARG(2.0e+00,1.19209289550781250e-07), RES(5.2359877559829648006e-1, -3.4412757706023621662e-8)}, {FN (arccsc), ARG(2.0e+00,-1.19209289550781250e-07), RES(5.2359877559829648006e-1, 3.4412757706023621662e-8)}, {FN (arccsc), ARG(-2.0e+00,1.19209289550781250e-07), RES(-5.2359877559829648006e-1, -3.4412757706023621662e-8)}, {FN (arccsc), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-5.2359877559829648006e-1, 3.4412757706023621662e-8)}, {FN (arccsc), ARG(2.0e+00,5.0e-01), RES(4.8530734047334251250e-1, -1.3261586085051183885e-1)}, {FN (arccsc), ARG(2.0e+00,-5.0e-01), RES(4.8530734047334251250e-1, 1.3261586085051183885e-1)}, {FN (arccsc), ARG(-2.0e+00,5.0e-01), RES(-4.8530734047334251250e-1, -1.3261586085051183885e-1)}, {FN (arccsc), ARG(-2.0e+00,-5.0e-01), RES(-4.8530734047334251250e-1, 1.3261586085051183885e-1)}, {FN (arccsc), ARG(2.0e+00,1.0e+00), RES(4.0158639166780606828e-1, -2.1561241855582964497e-1)}, {FN (arccsc), ARG(2.0e+00,-1.0e+00), RES(4.0158639166780606828e-1, 2.1561241855582964497e-1)}, {FN (arccsc), ARG(-2.0e+00,1.0e+00), RES(-4.0158639166780606828e-1, -2.1561241855582964497e-1)}, {FN (arccsc), ARG(-2.0e+00,-1.0e+00), RES(-4.0158639166780606828e-1, 2.1561241855582964497e-1)}, {FN (arccsc), ARG(2.0e+00,2.0e+00), RES(2.4452216513554014646e-1, -2.5489557334055081773e-1)}, {FN (arccsc), ARG(2.0e+00,-2.0e+00), RES(2.4452216513554014646e-1, 2.5489557334055081773e-1)}, {FN (arccsc), ARG(-2.0e+00,2.0e+00), RES(-2.4452216513554014646e-1, -2.5489557334055081773e-1)}, {FN (arccsc), ARG(-2.0e+00,-2.0e+00), RES(-2.4452216513554014646e-1, 2.5489557334055081773e-1)}, {FN (arccsc), ARG(2.0e+00,8.3886080e+06), RES(2.8421709430402189899e-14, -1.1920928955077419139e-7)}, {FN (arccsc), ARG(2.0e+00,-8.3886080e+06), RES(2.8421709430402189899e-14, 1.1920928955077419139e-7)}, {FN (arccsc), ARG(-2.0e+00,8.3886080e+06), RES(-2.8421709430402189899e-14, -1.1920928955077419139e-7)}, {FN (arccsc), ARG(-2.0e+00,-8.3886080e+06), RES(-2.8421709430402189899e-14, 1.1920928955077419139e-7)}, {FN (arccsc), ARG(8.3886080e+06,0.0e+00), RES(1.1920928955078153234e-7, 0.0)}, {FN (arccsc), ARG(-8.3886080e+06,0.0e+00), RES(-1.1920928955078153234e-7, 0.0)}, {FN (arccsc), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.1920928955078153234e-7, -1.6940658945086127152e-21)}, {FN (arccsc), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.1920928955078153234e-7, 1.6940658945086127152e-21)}, {FN (arccsc), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.1920928955078153234e-7, -1.6940658945086127152e-21)}, {FN (arccsc), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.1920928955078153234e-7, 1.6940658945086127152e-21)}, {FN (arccsc), ARG(8.3886080e+06,5.0e-01), RES(1.1920928955078110883e-7, -7.1054273576010271023e-15)}, {FN (arccsc), ARG(8.3886080e+06,-5.0e-01), RES(1.1920928955078110883e-7, 7.1054273576010271023e-15)}, {FN (arccsc), ARG(-8.3886080e+06,5.0e-01), RES(-1.1920928955078110883e-7, -7.1054273576010271023e-15)}, {FN (arccsc), ARG(-8.3886080e+06,-5.0e-01), RES(-1.1920928955078110883e-7, 7.1054273576010271023e-15)}, {FN (arccsc), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955077983828e-7, -1.4210854715201902743e-14)}, {FN (arccsc), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955077983828e-7, 1.4210854715201902743e-14)}, {FN (arccsc), ARG(-8.3886080e+06,1.0e+00), RES(-1.1920928955077983828e-7, -1.4210854715201902743e-14)}, {FN (arccsc), ARG(-8.3886080e+06,-1.0e+00), RES(-1.1920928955077983828e-7, 1.4210854715201902743e-14)}, {FN (arccsc), ARG(8.3886080e+06,2.0e+00), RES(1.1920928955077475608e-7, -2.8421709430402593796e-14)}, {FN (arccsc), ARG(8.3886080e+06,-2.0e+00), RES(1.1920928955077475608e-7, 2.8421709430402593796e-14)}, {FN (arccsc), ARG(-8.3886080e+06,2.0e+00), RES(-1.1920928955077475608e-7, -2.8421709430402593796e-14)}, {FN (arccsc), ARG(-8.3886080e+06,-2.0e+00), RES(-1.1920928955077475608e-7, 2.8421709430402593796e-14)}, {FN (arccsc), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390554414e-8, -5.9604644775390695586e-8)}, {FN (arccsc), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390554414e-8, 5.9604644775390695586e-8)}, {FN (arccsc), ARG(-8.3886080e+06,8.3886080e+06), RES(-5.9604644775390554414e-8, -5.9604644775390695586e-8)}, {FN (arccsc), ARG(-8.3886080e+06,-8.3886080e+06), RES(-5.9604644775390554414e-8, 5.9604644775390695586e-8)}, {FN (arcsec), ARG(0.0e+00,1.19209289550781250e-07), RES(1.5707963267948966192e0, 1.6635532333438690979e1)}, {FN (arcsec), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.5707963267948966192e0, -1.6635532333438690979e1)}, {FN (arcsec), ARG(0.0e+00,5.0e-01), RES(1.5707963267948966192e0, 1.4436354751788103425e0)}, {FN (arcsec), ARG(0.0e+00,-5.0e-01), RES(1.5707963267948966192e0, -1.4436354751788103425e0)}, {FN (arcsec), ARG(0.0e+00,1.0e+00), RES(1.5707963267948966192e0, 8.8137358701954302523e-1)}, {FN (arcsec), ARG(0.0e+00,-1.0e+00), RES(1.5707963267948966192e0, -8.8137358701954302523e-1)}, {FN (arcsec), ARG(0.0e+00,2.0e+00), RES(1.5707963267948966192e0, 4.8121182505960344750e-1)}, {FN (arcsec), ARG(0.0e+00,-2.0e+00), RES(1.5707963267948966192e0, -4.8121182505960344750e-1)}, {FN (arcsec), ARG(0.0e+00,8.3886080e+06), RES(1.5707963267948966192e0, 1.1920928955078096766e-7)}, {FN (arcsec), ARG(0.0e+00,-8.3886080e+06), RES(1.5707963267948966192e0, -1.1920928955078096766e-7)}, {FN (arcsec), ARG(1.19209289550781250e-07,0.0e+00), RES(0, 1.6635532333438683873e1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,0.0e+00), RES(3.1415926535897932385e0, -1.6635532333438683873e1)}, {FN (arcsec), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(7.8539816339745541504e-1, 1.6288958743158714771e1)}, {FN (arcsec), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(7.8539816339745541504e-1, -1.6288958743158714771e1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(2.3561944901923378234e0, 1.6288958743158714771e1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(2.3561944901923378234e0, -1.6288958743158714771e1)}, {FN (arcsec), ARG(1.19209289550781250e-07,5.0e-01), RES(1.5707961135468366312e0, 1.4436354751787798371e0)}, {FN (arcsec), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.5707961135468366312e0, -1.4436354751787798371e0)}, {FN (arcsec), ARG(-1.19209289550781250e-07,5.0e-01), RES(1.5707965400429566072e0, 1.4436354751787798371e0)}, {FN (arcsec), ARG(-1.19209289550781250e-07,-5.0e-01), RES(1.5707965400429566072e0, -1.4436354751787798371e0)}, {FN (arcsec), ARG(1.19209289550781250e-07,1.0e+00), RES(1.5707962425011995974e0, 8.8137358701953548879e-1)}, {FN (arcsec), ARG(1.19209289550781250e-07,-1.0e+00), RES(1.5707962425011995974e0, -8.8137358701953548879e-1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,1.0e+00), RES(1.5707964110885936410e0, 8.8137358701953548879e-1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,-1.0e+00), RES(1.5707964110885936410e0, -8.8137358701953548879e-1)}, {FN (arcsec), ARG(1.19209289550781250e-07,2.0e+00), RES(1.5707963001388891207e0, 4.8121182505960201756e-1)}, {FN (arcsec), ARG(1.19209289550781250e-07,-2.0e+00), RES(1.5707963001388891207e0, -4.8121182505960201756e-1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,2.0e+00), RES(1.5707963534509041177e0, 4.8121182505960201756e-1)}, {FN (arcsec), ARG(-1.19209289550781250e-07,-2.0e+00), RES(1.5707963534509041177e0, -4.8121182505960201756e-1)}, {FN (arcsec), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267948966192e0, 1.1920928955078096766e-7)}, {FN (arcsec), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5707963267948966192e0, -1.1920928955078096766e-7)}, {FN (arcsec), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267948966192e0, 1.1920928955078096766e-7)}, {FN (arcsec), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5707963267948966192e0, -1.1920928955078096766e-7)}, {FN (arcsec), ARG(5.0e-01,0.0e+00), RES(0, 1.3169578969248167086e0)}, {FN (arcsec), ARG(-5.0e-01,0.0e+00), RES(3.1415926535897932385e0, -1.3169578969248167086e0)}, {FN (arcsec), ARG(5.0e-01,1.19209289550781250e-07), RES(2.7530206164818516969e-7, 1.3169578969247948296e0)}, {FN (arcsec), ARG(5.0e-01,-1.19209289550781250e-07), RES(2.7530206164818516969e-7, -1.3169578969247948296e0)}, {FN (arcsec), ARG(-5.0e-01,1.19209289550781250e-07), RES(3.1415923782877315903e0, 1.3169578969247948296e0)}, {FN (arcsec), ARG(-5.0e-01,-1.19209289550781250e-07), RES(3.1415923782877315903e0, -1.3169578969247948296e0)}, {FN (arcsec), ARG(5.0e-01,5.0e-01), RES(9.0455689430238136413e-1, 1.0612750619050356520e0)}, {FN (arcsec), ARG(5.0e-01,-5.0e-01), RES(9.0455689430238136413e-1, -1.0612750619050356520e0)}, {FN (arcsec), ARG(-5.0e-01,5.0e-01), RES(2.2370357592874118743e0, 1.0612750619050356520e0)}, {FN (arcsec), ARG(-5.0e-01,-5.0e-01), RES(2.2370357592874118743e0, -1.0612750619050356520e0)}, {FN (arcsec), ARG(5.0e-01,1.0e+00), RES(1.2595705295501355239e0, 7.6388434595371104541e-1)}, {FN (arcsec), ARG(5.0e-01,-1.0e+00), RES(1.2595705295501355239e0, -7.6388434595371104541e-1)}, {FN (arcsec), ARG(-5.0e-01,1.0e+00), RES(1.8820221240396577146e0, 7.6388434595371104541e-1)}, {FN (arcsec), ARG(-5.0e-01,-1.0e+00), RES(1.8820221240396577146e0, -7.6388434595371104541e-1)}, {FN (arcsec), ARG(5.0e-01,2.0e+00), RES(1.4642558238421395793e0, 4.5717847686917515748e-1)}, {FN (arcsec), ARG(5.0e-01,-2.0e+00), RES(1.4642558238421395793e0, -4.5717847686917515748e-1)}, {FN (arcsec), ARG(-5.0e-01,2.0e+00), RES(1.6773368297476536591e0, 4.5717847686917515748e-1)}, {FN (arcsec), ARG(-5.0e-01,-2.0e+00), RES(1.6773368297476536591e0, -4.5717847686917515748e-1)}, {FN (arcsec), ARG(5.0e-01,8.3886080e+06), RES(1.5707963267948895138e0, 1.1920928955078054414e-7)}, {FN (arcsec), ARG(5.0e-01,-8.3886080e+06), RES(1.5707963267948895138e0, -1.1920928955078054414e-7)}, {FN (arcsec), ARG(-5.0e-01,8.3886080e+06), RES(1.5707963267949037247e0, 1.1920928955078054414e-7)}, {FN (arcsec), ARG(-5.0e-01,-8.3886080e+06), RES(1.5707963267949037247e0, -1.1920928955078054414e-7)}, {FN (arcsec), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arcsec), ARG(-1.0e+00,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arcsec), ARG(1.0e+00,1.19209289550781250e-07), RES(3.4526700015083915182e-4, 3.4526696585164602772e-4)}, {FN (arcsec), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.4526700015083915182e-4, -3.4526696585164602772e-4)}, {FN (arcsec), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.1412473865896423993e0, 3.4526696585164602772e-4)}, {FN (arcsec), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.1412473865896423993e0, -3.4526696585164602772e-4)}, {FN (arcsec), ARG(1.0e+00,5.0e-01), RES(7.9770997007539188581e-1, 5.3321829058411214108e-1)}, {FN (arcsec), ARG(1.0e+00,-5.0e-01), RES(7.9770997007539188581e-1, -5.3321829058411214108e-1)}, {FN (arcsec), ARG(-1.0e+00,5.0e-01), RES(2.3438826835144013527e0, 5.3321829058411214108e-1)}, {FN (arcsec), ARG(-1.0e+00,-5.0e-01), RES(2.3438826835144013527e0, -5.3321829058411214108e-1)}, {FN (arcsec), ARG(1.0e+00,1.0e+00), RES(1.1185178796437059372e0, 5.3063753095251782602e-1)}, {FN (arcsec), ARG(1.0e+00,-1.0e+00), RES(1.1185178796437059372e0, -5.3063753095251782602e-1)}, {FN (arcsec), ARG(-1.0e+00,1.0e+00), RES(2.0230747739460873013e0, 5.3063753095251782602e-1)}, {FN (arcsec), ARG(-1.0e+00,-1.0e+00), RES(2.0230747739460873013e0, -5.3063753095251782602e-1)}, {FN (arcsec), ARG(1.0e+00,2.0e+00), RES(1.3844782726870810934e0, 3.9656823011232897892e-1)}, {FN (arcsec), ARG(1.0e+00,-2.0e+00), RES(1.3844782726870810934e0, -3.9656823011232897892e-1)}, {FN (arcsec), ARG(-1.0e+00,2.0e+00), RES(1.7571143809027121451e0, 3.9656823011232897892e-1)}, {FN (arcsec), ARG(-1.0e+00,-2.0e+00), RES(1.7571143809027121451e0, -3.9656823011232897892e-1)}, {FN (arcsec), ARG(1.0e+00,8.3886080e+06), RES(1.5707963267948824084e0, 1.1920928955077927359e-7)}, {FN (arcsec), ARG(1.0e+00,-8.3886080e+06), RES(1.5707963267948824084e0, -1.1920928955077927359e-7)}, {FN (arcsec), ARG(-1.0e+00,8.3886080e+06), RES(1.5707963267949108301e0, 1.1920928955077927359e-7)}, {FN (arcsec), ARG(-1.0e+00,-8.3886080e+06), RES(1.5707963267949108301e0, -1.1920928955077927359e-7)}, {FN (arcsec), ARG(2.0e+00,0.0e+00), RES(1.0471975511965977462e0, 0.0)}, {FN (arcsec), ARG(-2.0e+00,0.0e+00), RES(2.0943951023931954923e0, 0.0)}, {FN (arcsec), ARG(2.0e+00,1.19209289550781250e-07), RES(1.0471975511966001392e0, 3.4412757706023621662e-8)}, {FN (arcsec), ARG(2.0e+00,-1.19209289550781250e-07), RES(1.0471975511966001392e0, -3.4412757706023621662e-8)}, {FN (arcsec), ARG(-2.0e+00,1.19209289550781250e-07), RES(2.0943951023931930993e0, 3.4412757706023621662e-8)}, {FN (arcsec), ARG(-2.0e+00,-1.19209289550781250e-07), RES(2.0943951023931930993e0, -3.4412757706023621662e-8)}, {FN (arcsec), ARG(2.0e+00,5.0e-01), RES(1.0854889863215541067e0, 1.3261586085051183885e-1)}, {FN (arcsec), ARG(2.0e+00,-5.0e-01), RES(1.0854889863215541067e0, -1.3261586085051183885e-1)}, {FN (arcsec), ARG(-2.0e+00,5.0e-01), RES(2.0561036672682391317e0, 1.3261586085051183885e-1)}, {FN (arcsec), ARG(-2.0e+00,-5.0e-01), RES(2.0561036672682391317e0, -1.3261586085051183885e-1)}, {FN (arcsec), ARG(2.0e+00,1.0e+00), RES(1.1692099351270905509e0, 2.1561241855582964497e-1)}, {FN (arcsec), ARG(2.0e+00,-1.0e+00), RES(1.1692099351270905509e0, -2.1561241855582964497e-1)}, {FN (arcsec), ARG(-2.0e+00,1.0e+00), RES(1.9723827184627026875e0, 2.1561241855582964497e-1)}, {FN (arcsec), ARG(-2.0e+00,-1.0e+00), RES(1.9723827184627026875e0, -2.1561241855582964497e-1)}, {FN (arcsec), ARG(2.0e+00,2.0e+00), RES(1.3262741616593564728e0, 2.5489557334055081773e-1)}, {FN (arcsec), ARG(2.0e+00,-2.0e+00), RES(1.3262741616593564728e0, -2.5489557334055081773e-1)}, {FN (arcsec), ARG(-2.0e+00,2.0e+00), RES(1.8153184919304367657e0, 2.5489557334055081773e-1)}, {FN (arcsec), ARG(-2.0e+00,-2.0e+00), RES(1.8153184919304367657e0, -2.5489557334055081773e-1)}, {FN (arcsec), ARG(2.0e+00,8.3886080e+06), RES(1.5707963267948681975e0, 1.1920928955077419139e-7)}, {FN (arcsec), ARG(2.0e+00,-8.3886080e+06), RES(1.5707963267948681975e0, -1.1920928955077419139e-7)}, {FN (arcsec), ARG(-2.0e+00,8.3886080e+06), RES(1.5707963267949250409e0, 1.1920928955077419139e-7)}, {FN (arcsec), ARG(-2.0e+00,-8.3886080e+06), RES(1.5707963267949250409e0, -1.1920928955077419139e-7)}, {FN (arcsec), ARG(8.3886080e+06,0.0e+00), RES(1.5707962075856070684e0, 0.0)}, {FN (arcsec), ARG(-8.3886080e+06,0.0e+00), RES(1.570796446004186170e0, 0.0)}, {FN (arcsec), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5707962075856070684e0, 1.6940658945086127152e-21)}, {FN (arcsec), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5707962075856070684e0, -1.6940658945086127152e-21)}, {FN (arcsec), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.570796446004186170e0, 1.6940658945086127152e-21)}, {FN (arcsec), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.570796446004186170e0, -1.6940658945086127152e-21)}, {FN (arcsec), ARG(8.3886080e+06,5.0e-01), RES(1.5707962075856070685e0, 7.1054273576010271023e-15)}, {FN (arcsec), ARG(8.3886080e+06,-5.0e-01), RES(1.5707962075856070685e0, -7.1054273576010271023e-15)}, {FN (arcsec), ARG(-8.3886080e+06,5.0e-01), RES(1.570796446004186170e0, 7.1054273576010271023e-15)}, {FN (arcsec), ARG(-8.3886080e+06,-5.0e-01), RES(1.570796446004186170e0, -7.1054273576010271023e-15)}, {FN (arcsec), ARG(8.3886080e+06,1.0e+00), RES(1.5707962075856070685e0, 1.4210854715201902743e-14)}, {FN (arcsec), ARG(8.3886080e+06,-1.0e+00), RES(1.5707962075856070685e0, -1.4210854715201902743e-14)}, {FN (arcsec), ARG(-8.3886080e+06,1.0e+00), RES(1.570796446004186170e0, 1.4210854715201902743e-14)}, {FN (arcsec), ARG(-8.3886080e+06,-1.0e+00), RES(1.570796446004186170e0, -1.4210854715201902743e-14)}, {FN (arcsec), ARG(8.3886080e+06,2.0e+00), RES(1.5707962075856070685e0, 2.8421709430402593796e-14)}, {FN (arcsec), ARG(8.3886080e+06,-2.0e+00), RES(1.5707962075856070685e0, -2.8421709430402593796e-14)}, {FN (arcsec), ARG(-8.3886080e+06,2.0e+00), RES(1.570796446004186170e0, 2.8421709430402593796e-14)}, {FN (arcsec), ARG(-8.3886080e+06,-2.0e+00), RES(1.570796446004186170e0, -2.8421709430402593796e-14)}, {FN (arcsec), ARG(8.3886080e+06,8.3886080e+06), RES(1.5707962671902518438e0, 5.9604644775390695586e-8)}, {FN (arcsec), ARG(8.3886080e+06,-8.3886080e+06), RES(1.5707962671902518438e0, -5.9604644775390695586e-8)}, {FN (arcsec), ARG(-8.3886080e+06,8.3886080e+06), RES(1.5707963863995413946e0, 5.9604644775390695586e-8)}, {FN (arcsec), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.5707963863995413946e0, -5.9604644775390695586e-8)}, {FN (arccot), ARG(0.0e+00,1.19209289550781250e-07), RES(-1.5707963267948966192e0, -1.1920928955078181469e-7)}, {FN (arccot), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.5707963267948966192e0, 1.1920928955078181469e-7)}, {FN (arccot), ARG(0.0e+00,5.0e-01), RES(-1.5707963267948966192e0, -5.4930614433405484570e-1)}, {FN (arccot), ARG(0.0e+00,-5.0e-01), RES(1.5707963267948966192e0, 5.4930614433405484570e-1)}, {FN (arccot), ARG(0.0e+00,2.0e+00), RES(0, -5.4930614433405484570e-1)}, {FN (arccot), ARG(0.0e+00,-2.0e+00), RES(0, 5.4930614433405484570e-1)}, {FN (arccot), ARG(0.0e+00,8.3886080e+06), RES(0, -1.1920928955078181469e-7)}, {FN (arccot), ARG(0.0e+00,-8.3886080e+06), RES(0, 1.1920928955078181469e-7)}, {FN (arccot), ARG(1.19209289550781250e-07,0.0e+00), RES(1.5707962075856070685e0, 0.0)}, {FN (arccot), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.5707962075856070685e0, 0.0)}, {FN (arccot), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.5707962075856070684e0, -1.1920928955078012062e-7)}, {FN (arccot), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.5707962075856070684e0, 1.1920928955078012062e-7)}, {FN (arccot), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5707962075856070684e0, -1.1920928955078012062e-7)}, {FN (arccot), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5707962075856070684e0, 1.1920928955078012062e-7)}, {FN (arccot), ARG(1.19209289550781250e-07,5.0e-01), RES(1.5707961678491772182e0, -5.4930614433404221383e-1)}, {FN (arccot), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.5707961678491772182e0, 5.4930614433404221383e-1)}, {FN (arccot), ARG(-1.19209289550781250e-07,5.0e-01), RES(-1.5707961678491772182e0, -5.4930614433404221383e-1)}, {FN (arccot), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.5707961678491772182e0, 5.4930614433404221383e-1)}, {FN (arccot), ARG(1.19209289550781250e-07,1.0e+00), RES(7.8539813359512592192e-1, -8.3177661667193446012e0)}, {FN (arccot), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.8539813359512592192e-1, 8.3177661667193446012e0)}, {FN (arccot), ARG(-1.19209289550781250e-07,1.0e+00), RES(-7.8539813359512592192e-1, -8.3177661667193446012e0)}, {FN (arccot), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-7.8539813359512592192e-1, 8.3177661667193446012e0)}, {FN (arccot), ARG(1.19209289550781250e-07,2.0e+00), RES(3.9736429850260144780e-8, -5.4930614433405168773e-1)}, {FN (arccot), ARG(1.19209289550781250e-07,-2.0e+00), RES(3.9736429850260144780e-8, 5.4930614433405168773e-1)}, {FN (arccot), ARG(-1.19209289550781250e-07,2.0e+00), RES(-3.9736429850260144780e-8, -5.4930614433405168773e-1)}, {FN (arccot), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-3.9736429850260144780e-8, 5.4930614433405168773e-1)}, {FN (arccot), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6940658945086247523e-21, -1.1920928955078181469e-7)}, {FN (arccot), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6940658945086247523e-21, 1.1920928955078181469e-7)}, {FN (arccot), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6940658945086247523e-21, -1.1920928955078181469e-7)}, {FN (arccot), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6940658945086247523e-21, 1.1920928955078181469e-7)}, {FN (arccot), ARG(5.0e-01,0.0e+00), RES(1.1071487177940905030e0, 0.0)}, {FN (arccot), ARG(-5.0e-01,0.0e+00), RES(-1.1071487177940905030e0, 0.0)}, {FN (arccot), ARG(5.0e-01,1.19209289550781250e-07), RES(1.1071487177940859555e0, -9.5367431640625072280e-8)}, {FN (arccot), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.1071487177940859555e0, 9.5367431640625072280e-8)}, {FN (arccot), ARG(-5.0e-01,1.19209289550781250e-07), RES(-1.1071487177940859555e0, -9.5367431640625072280e-8)}, {FN (arccot), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-1.1071487177940859555e0, 9.5367431640625072280e-8)}, {FN (arccot), ARG(5.0e-01,5.0e-01), RES(1.0172219678978513677e0, -4.0235947810852509365e-1)}, {FN (arccot), ARG(5.0e-01,-5.0e-01), RES(1.0172219678978513677e0, 4.0235947810852509365e-1)}, {FN (arccot), ARG(-5.0e-01,5.0e-01), RES(-1.0172219678978513677e0, -4.0235947810852509365e-1)}, {FN (arccot), ARG(-5.0e-01,-5.0e-01), RES(-1.0172219678978513677e0, 4.0235947810852509365e-1)}, {FN (arccot), ARG(5.0e-01,1.0e+00), RES(6.6290883183401623253e-1, -7.0830333601405402006e-1)}, {FN (arccot), ARG(5.0e-01,-1.0e+00), RES(6.6290883183401623253e-1, 7.0830333601405402006e-1)}, {FN (arccot), ARG(-5.0e-01,1.0e+00), RES(-6.6290883183401623253e-1, -7.0830333601405402006e-1)}, {FN (arccot), ARG(-5.0e-01,-1.0e+00), RES(-6.6290883183401623253e-1, 7.0830333601405402006e-1)}, {FN (arccot), ARG(5.0e-01,2.0e+00), RES(1.4924946579308963897e-1, -5.0037000005253101744e-1)}, {FN (arccot), ARG(5.0e-01,-2.0e+00), RES(1.4924946579308963897e-1, 5.0037000005253101744e-1)}, {FN (arccot), ARG(-5.0e-01,2.0e+00), RES(-1.4924946579308963897e-1, -5.0037000005253101744e-1)}, {FN (arccot), ARG(-5.0e-01,-2.0e+00), RES(-1.4924946579308963897e-1, 5.0037000005253101744e-1)}, {FN (arccot), ARG(5.0e-01,8.3886080e+06), RES(7.1054273576010775894e-15, -1.1920928955078139117e-7)}, {FN (arccot), ARG(5.0e-01,-8.3886080e+06), RES(7.1054273576010775894e-15, 1.1920928955078139117e-7)}, {FN (arccot), ARG(-5.0e-01,8.3886080e+06), RES(-7.1054273576010775894e-15, -1.1920928955078139117e-7)}, {FN (arccot), ARG(-5.0e-01,-8.3886080e+06), RES(-7.1054273576010775894e-15, 1.1920928955078139117e-7)}, {FN (arccot), ARG(1.0e+00,0.0e+00), RES(7.8539816339744830962e-1, 0.0)}, {FN (arccot), ARG(-1.0e+00,0.0e+00), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arccot), ARG(1.0e+00,1.19209289550781250e-07), RES(7.8539816339744475690e-1, -5.9604644775390483828e-8)}, {FN (arccot), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.8539816339744475690e-1, 5.9604644775390483828e-8)}, {FN (arccot), ARG(-1.0e+00,1.19209289550781250e-07), RES(-7.8539816339744475690e-1, -5.9604644775390483828e-8)}, {FN (arccot), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-7.8539816339744475690e-1, 5.9604644775390483828e-8)}, {FN (arccot), ARG(1.0e+00,5.0e-01), RES(7.2322066612406759210e-1, -2.3887786125685909036e-1)}, {FN (arccot), ARG(1.0e+00,-5.0e-01), RES(7.2322066612406759210e-1, 2.3887786125685909036e-1)}, {FN (arccot), ARG(-1.0e+00,5.0e-01), RES(-7.2322066612406759210e-1, -2.3887786125685909036e-1)}, {FN (arccot), ARG(-1.0e+00,-5.0e-01), RES(-7.2322066612406759210e-1, 2.3887786125685909036e-1)}, {FN (arccot), ARG(1.0e+00,1.0e+00), RES(5.5357435889704525151e-1, -4.0235947810852509365e-1)}, {FN (arccot), ARG(1.0e+00,-1.0e+00), RES(5.5357435889704525151e-1, 4.0235947810852509365e-1)}, {FN (arccot), ARG(-1.0e+00,1.0e+00), RES(-5.5357435889704525151e-1, -4.0235947810852509365e-1)}, {FN (arccot), ARG(-1.0e+00,-1.0e+00), RES(-5.5357435889704525151e-1, 4.0235947810852509365e-1)}, {FN (arccot), ARG(1.0e+00,2.0e+00), RES(2.3182380450040305811e-1, -4.0235947810852509365e-1)}, {FN (arccot), ARG(1.0e+00,-2.0e+00), RES(2.3182380450040305811e-1, 4.0235947810852509365e-1)}, {FN (arccot), ARG(-1.0e+00,2.0e+00), RES(-2.3182380450040305811e-1, -4.0235947810852509365e-1)}, {FN (arccot), ARG(-1.0e+00,-2.0e+00), RES(-2.3182380450040305811e-1, 4.0235947810852509365e-1)}, {FN (arccot), ARG(1.0e+00,8.3886080e+06), RES(1.4210854715202003717e-14, -1.1920928955078012062e-7)}, {FN (arccot), ARG(1.0e+00,-8.3886080e+06), RES(1.4210854715202003717e-14, 1.1920928955078012062e-7)}, {FN (arccot), ARG(-1.0e+00,8.3886080e+06), RES(-1.4210854715202003717e-14, -1.1920928955078012062e-7)}, {FN (arccot), ARG(-1.0e+00,-8.3886080e+06), RES(-1.4210854715202003717e-14, 1.1920928955078012062e-7)}, {FN (arccot), ARG(2.0e+00,0.0e+00), RES(4.6364760900080611621e-1, 0.0)}, {FN (arccot), ARG(-2.0e+00,0.0e+00), RES(-4.6364760900080611621e-1, 0.0)}, {FN (arccot), ARG(2.0e+00,1.19209289550781250e-07), RES(4.6364760900080497935e-1, -2.3841857910156200307e-8)}, {FN (arccot), ARG(2.0e+00,-1.19209289550781250e-07), RES(4.6364760900080497935e-1, 2.3841857910156200307e-8)}, {FN (arccot), ARG(-2.0e+00,1.19209289550781250e-07), RES(-4.6364760900080497935e-1, -2.3841857910156200307e-8)}, {FN (arccot), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-4.6364760900080497935e-1, 2.3841857910156200307e-8)}, {FN (arccot), ARG(2.0e+00,5.0e-01), RES(4.4423988596007427049e-1, -9.6415620202996167238e-2)}, {FN (arccot), ARG(2.0e+00,-5.0e-01), RES(4.4423988596007427049e-1, 9.6415620202996167238e-2)}, {FN (arccot), ARG(-2.0e+00,5.0e-01), RES(-4.4423988596007427049e-1, -9.6415620202996167238e-2)}, {FN (arccot), ARG(-2.0e+00,-5.0e-01), RES(-4.4423988596007427049e-1, 9.6415620202996167238e-2)}, {FN (arccot), ARG(2.0e+00,1.0e+00), RES(3.9269908169872415481e-1, -1.7328679513998632735e-1)}, {FN (arccot), ARG(2.0e+00,-1.0e+00), RES(3.9269908169872415481e-1, 1.7328679513998632735e-1)}, {FN (arccot), ARG(-2.0e+00,1.0e+00), RES(-3.9269908169872415481e-1, -1.7328679513998632735e-1)}, {FN (arccot), ARG(-2.0e+00,-1.0e+00), RES(-3.9269908169872415481e-1, 1.7328679513998632735e-1)}, {FN (arccot), ARG(2.0e+00,2.0e+00), RES(2.5957305712326147589e-1, -2.3887786125685909036e-1)}, {FN (arccot), ARG(2.0e+00,-2.0e+00), RES(2.5957305712326147589e-1, 2.3887786125685909036e-1)}, {FN (arccot), ARG(-2.0e+00,2.0e+00), RES(-2.5957305712326147589e-1, -2.3887786125685909036e-1)}, {FN (arccot), ARG(-2.0e+00,-2.0e+00), RES(-2.5957305712326147589e-1, 2.3887786125685909036e-1)}, {FN (arccot), ARG(2.0e+00,8.3886080e+06), RES(2.8421709430402795744e-14, -1.1920928955077503843e-7)}, {FN (arccot), ARG(2.0e+00,-8.3886080e+06), RES(2.8421709430402795744e-14, 1.1920928955077503843e-7)}, {FN (arccot), ARG(-2.0e+00,8.3886080e+06), RES(-2.8421709430402795744e-14, -1.1920928955077503843e-7)}, {FN (arccot), ARG(-2.0e+00,-8.3886080e+06), RES(-2.8421709430402795744e-14, 1.1920928955077503843e-7)}, {FN (arccot), ARG(8.3886080e+06,0.0e+00), RES(1.1920928955078068531e-7, 0.0)}, {FN (arccot), ARG(-8.3886080e+06,0.0e+00), RES(-1.1920928955078068531e-7, 0.0)}, {FN (arccot), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.1920928955078068531e-7, -1.6940658945085766040e-21)}, {FN (arccot), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.1920928955078068531e-7, 1.6940658945085766040e-21)}, {FN (arccot), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.1920928955078068531e-7, -1.6940658945085766040e-21)}, {FN (arccot), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.1920928955078068531e-7, 1.6940658945085766040e-21)}, {FN (arccot), ARG(8.3886080e+06,5.0e-01), RES(1.1920928955078026179e-7, -7.1054273576008756410e-15)}, {FN (arccot), ARG(8.3886080e+06,-5.0e-01), RES(1.1920928955078026179e-7, 7.1054273576008756410e-15)}, {FN (arccot), ARG(-8.3886080e+06,5.0e-01), RES(-1.1920928955078026179e-7, -7.1054273576008756410e-15)}, {FN (arccot), ARG(-8.3886080e+06,-5.0e-01), RES(-1.1920928955078026179e-7, 7.1054273576008756410e-15)}, {FN (arccot), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955077899125e-7, -1.4210854715201599821e-14)}, {FN (arccot), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955077899125e-7, 1.4210854715201599821e-14)}, {FN (arccot), ARG(-8.3886080e+06,1.0e+00), RES(-1.1920928955077899125e-7, -1.4210854715201599821e-14)}, {FN (arccot), ARG(-8.3886080e+06,-1.0e+00), RES(-1.1920928955077899125e-7, 1.4210854715201599821e-14)}, {FN (arccot), ARG(8.3886080e+06,2.0e+00), RES(1.1920928955077390905e-7, -2.8421709430401987951e-14)}, {FN (arccot), ARG(8.3886080e+06,-2.0e+00), RES(1.1920928955077390905e-7, 2.8421709430401987951e-14)}, {FN (arccot), ARG(-8.3886080e+06,2.0e+00), RES(-1.1920928955077390905e-7, -2.8421709430401987951e-14)}, {FN (arccot), ARG(-8.3886080e+06,-2.0e+00), RES(-1.1920928955077390905e-7, 2.8421709430401987951e-14)}, {FN (arccot), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390766172e-8, -5.9604644775390483828e-8)}, {FN (arccot), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390766172e-8, 5.9604644775390483828e-8)}, {FN (arccot), ARG(-8.3886080e+06,8.3886080e+06), RES(-5.9604644775390766172e-8, -5.9604644775390483828e-8)}, {FN (arccot), ARG(-8.3886080e+06,-8.3886080e+06), RES(-5.9604644775390766172e-8, 5.9604644775390483828e-8)}, {FN (csch), ARG(0.0e+00,-3.45266983001243932001e-04), RES(0, 2.8963094332845964291e3)}, {FN (csch), ARG(0.0e+00,3.45266983001243932001e-04), RES(0, -2.8963094332845964291e3)}, {FN (csch), ARG(0.0e+00,1.57045105981189525579e+00), RES(0, -1.0000000596046477360e0)}, {FN (csch), ARG(0.0e+00,-1.57045105981189525579e+00), RES(0, 1.0000000596046477360e0)}, {FN (csch), ARG(0.0e+00,1.57114159377789786021e+00), RES(0, -1.0000000596046477360e0)}, {FN (csch), ARG(0.0e+00,-1.57114159377789786021e+00), RES(0, 1.0000000596046477360e0)}, {FN (csch), ARG(0.0e+00,3.14124738660679181379e+00), RES(0, -2.8963094332830802676e3)}, {FN (csch), ARG(0.0e+00,-3.14124738660679181379e+00), RES(0, 2.8963094332830802676e3)}, {FN (csch), ARG(0.0e+00,3.14193792057279441821e+00), RES(0, 2.8963094332851348839e3)}, {FN (csch), ARG(0.0e+00,-3.14193792057279441821e+00), RES(0, -2.8963094332851348839e3)}, {FN (csch), ARG(0.0e+00,4.71204371340168837179e+00), RES(0, 1.0000000596046477361e0)}, {FN (csch), ARG(0.0e+00,-4.71204371340168837179e+00), RES(0, -1.0000000596046477361e0)}, {FN (csch), ARG(0.0e+00,4.71273424736769097620e+00), RES(0, 1.0000000596046477359e0)}, {FN (csch), ARG(0.0e+00,-4.71273424736769097620e+00), RES(0, -1.0000000596046477359e0)}, {FN (csch), ARG(0.0e+00,6.28284004019658492979e+00), RES(0, 2.8963094332820529594e3)}, {FN (csch), ARG(0.0e+00,-6.28284004019658492979e+00), RES(0, -2.8963094332820529594e3)}, {FN (csch), ARG(0.0e+00,6.28353057416258753420e+00), RES(0, -2.8963094332861621921e3)}, {FN (csch), ARG(0.0e+00,-6.28353057416258753420e+00), RES(0, 2.8963094332861621921e3)}, {FN (csch), ARG(0.0e+00,9.42443269378637893396e+00), RES(0, -2.8963094332884762317e3)}, {FN (csch), ARG(0.0e+00,-9.42443269378637893396e+00), RES(0, 2.8963094332884762317e3)}, {FN (csch), ARG(0.0e+00,9.42512322775237976202e+00), RES(0, 2.8963094332946400807e3)}, {FN (csch), ARG(0.0e+00,-9.42512322775237976202e+00), RES(0, -2.8963094332946400807e3)}, {FN (csch), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(9.9999986092250876926e-1, 2.8963090880176545869e3)}, {FN (csch), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(9.9999986092250876926e-1, -2.8963090880176545869e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(-9.9999986092250876926e-1, 2.8963090880176545869e3)}, {FN (csch), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(-9.9999986092250876926e-1, -2.8963090880176545869e3)}, {FN (csch), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(4.1159035837716456618e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(4.1159035837716456618e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(-4.1159035837716456618e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(-4.1159035837716456618e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(-4.1159035837701857686e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-4.1159035837701857686e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(4.1159035837701857686e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(4.1159035837701857686e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(-9.9999986092146180843e-1, -2.8963090880161384259e3)}, {FN (csch), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-9.9999986092146180843e-1, 2.8963090880161384259e3)}, {FN (csch), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(9.9999986092146180843e-1, -2.8963090880161384259e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(9.9999986092146180843e-1, 2.8963090880161384259e3)}, {FN (csch), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(-9.9999986092288059049e-1, 2.8963090880181930415e3)}, {FN (csch), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-9.9999986092288059049e-1, -2.8963090880181930415e3)}, {FN (csch), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(9.9999986092288059049e-1, 2.8963090880181930415e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(9.9999986092288059049e-1, -2.8963090880181930415e3)}, {FN (csch), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(-4.1159035837731055550e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-4.1159035837731055550e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(4.1159035837731055550e-11, 1.0000000596046406306e0)}, {FN (csch), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(4.1159035837731055550e-11, -1.0000000596046406306e0)}, {FN (csch), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(4.1159035837687258754e-11, 1.0000000596046406305e0)}, {FN (csch), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(4.1159035837687258754e-11, -1.0000000596046406305e0)}, {FN (csch), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(-4.1159035837687258754e-11, 1.0000000596046406305e0)}, {FN (csch), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(-4.1159035837687258754e-11, -1.0000000596046406305e0)}, {FN (csch), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(9.9999986092075241740e-1, 2.8963090880151111181e3)}, {FN (csch), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(9.9999986092075241740e-1, -2.8963090880151111181e3)}, {FN (csch), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(-9.9999986092075241740e-1, 2.8963090880151111181e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(-9.9999986092075241740e-1, -2.8963090880151111181e3)}, {FN (csch), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(9.9999986092358998153e-1, -2.8963090880192203493e3)}, {FN (csch), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(9.9999986092358998153e-1, 2.8963090880192203493e3)}, {FN (csch), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(-9.9999986092358998153e-1, -2.8963090880192203493e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(-9.9999986092358998153e-1, 2.8963090880192203493e3)}, {FN (csch), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(-9.9999986092518790411e-1, -2.8963090880215343881e3)}, {FN (csch), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-9.9999986092518790411e-1, 2.8963090880215343881e3)}, {FN (csch), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(9.9999986092518790411e-1, -2.8963090880215343881e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(9.9999986092518790411e-1, 2.8963090880215343881e3)}, {FN (csch), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(-9.9999986092944425030e-1, 2.8963090880276982349e3)}, {FN (csch), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-9.9999986092944425030e-1, -2.8963090880276982349e3)}, {FN (csch), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(9.9999986092944425030e-1, 2.8963090880276982349e3)}, {FN (csch), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(9.9999986092944425030e-1, -2.8963090880276982349e3)}, {FN (csch), ARG(5.0e-01,-3.45266983001243932001e-04), RES(1.9190337944739187237e0, 1.4337901642789801243e-3)}, {FN (csch), ARG(5.0e-01,3.45266983001243932001e-04), RES(1.9190337944739187237e0, -1.4337901642789801243e-3)}, {FN (csch), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(-1.9190337944739187237e0, 1.4337901642789801243e-3)}, {FN (csch), ARG(-5.0e-01,3.45266983001243932001e-04), RES(-1.9190337944739187237e0, -1.4337901642789801243e-3)}, {FN (csch), ARG(5.0e-01,1.57045105981189525579e+00), RES(1.4149533035943115868e-4, -8.8681891425248302487e-1)}, {FN (csch), ARG(5.0e-01,-1.57045105981189525579e+00), RES(1.4149533035943115868e-4, 8.8681891425248302487e-1)}, {FN (csch), ARG(-5.0e-01,1.57045105981189525579e+00), RES(-1.4149533035943115868e-4, -8.8681891425248302487e-1)}, {FN (csch), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(-1.4149533035943115868e-4, 8.8681891425248302487e-1)}, {FN (csch), ARG(5.0e-01,1.57114159377789786021e+00), RES(-1.4149533035938097090e-4, -8.8681891425248302485e-1)}, {FN (csch), ARG(5.0e-01,-1.57114159377789786021e+00), RES(-1.4149533035938097090e-4, 8.8681891425248302485e-1)}, {FN (csch), ARG(-5.0e-01,1.57114159377789786021e+00), RES(1.4149533035938097090e-4, -8.8681891425248302485e-1)}, {FN (csch), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(1.4149533035938097090e-4, 8.8681891425248302485e-1)}, {FN (csch), ARG(5.0e-01,3.14124738660679181379e+00), RES(-1.9190337944739187227e0, -1.4337901642797306848e-3)}, {FN (csch), ARG(5.0e-01,-3.14124738660679181379e+00), RES(-1.9190337944739187227e0, 1.4337901642797306848e-3)}, {FN (csch), ARG(-5.0e-01,3.14124738660679181379e+00), RES(1.9190337944739187227e0, -1.4337901642797306848e-3)}, {FN (csch), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(1.9190337944739187227e0, 1.4337901642797306848e-3)}, {FN (csch), ARG(5.0e-01,3.14193792057279441821e+00), RES(-1.9190337944739187241e0, 1.4337901642787135676e-3)}, {FN (csch), ARG(5.0e-01,-3.14193792057279441821e+00), RES(-1.9190337944739187241e0, -1.4337901642787135676e-3)}, {FN (csch), ARG(-5.0e-01,3.14193792057279441821e+00), RES(1.9190337944739187241e0, 1.4337901642787135676e-3)}, {FN (csch), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(1.9190337944739187241e0, -1.4337901642787135676e-3)}, {FN (csch), ARG(5.0e-01,4.71204371340168837179e+00), RES(-1.4149533035948134646e-4, 8.8681891425248302489e-1)}, {FN (csch), ARG(5.0e-01,-4.71204371340168837179e+00), RES(-1.4149533035948134646e-4, -8.8681891425248302489e-1)}, {FN (csch), ARG(-5.0e-01,4.71204371340168837179e+00), RES(1.4149533035948134646e-4, 8.8681891425248302489e-1)}, {FN (csch), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(1.4149533035948134646e-4, -8.8681891425248302489e-1)}, {FN (csch), ARG(5.0e-01,4.71273424736769097620e+00), RES(1.4149533035933078312e-4, 8.8681891425248302483e-1)}, {FN (csch), ARG(5.0e-01,-4.71273424736769097620e+00), RES(1.4149533035933078312e-4, -8.8681891425248302483e-1)}, {FN (csch), ARG(-5.0e-01,4.71273424736769097620e+00), RES(-1.4149533035933078312e-4, 8.8681891425248302483e-1)}, {FN (csch), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(-1.4149533035933078312e-4, -8.8681891425248302483e-1)}, {FN (csch), ARG(5.0e-01,6.28284004019658492979e+00), RES(1.9190337944739187220e0, 1.4337901642802392434e-3)}, {FN (csch), ARG(5.0e-01,-6.28284004019658492979e+00), RES(1.9190337944739187220e0, -1.4337901642802392434e-3)}, {FN (csch), ARG(-5.0e-01,6.28284004019658492979e+00), RES(-1.9190337944739187220e0, 1.4337901642802392434e-3)}, {FN (csch), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(-1.9190337944739187220e0, -1.4337901642802392434e-3)}, {FN (csch), ARG(5.0e-01,6.28353057416258753420e+00), RES(1.9190337944739187248e0, -1.4337901642782050091e-3)}, {FN (csch), ARG(5.0e-01,-6.28353057416258753420e+00), RES(1.9190337944739187248e0, 1.4337901642782050091e-3)}, {FN (csch), ARG(-5.0e-01,6.28353057416258753420e+00), RES(-1.9190337944739187248e0, -1.4337901642782050091e-3)}, {FN (csch), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(-1.9190337944739187248e0, 1.4337901642782050091e-3)}, {FN (csch), ARG(5.0e-01,9.42443269378637893396e+00), RES(-1.9190337944739187263e0, -1.4337901642770594670e-3)}, {FN (csch), ARG(5.0e-01,-9.42443269378637893396e+00), RES(-1.9190337944739187263e0, 1.4337901642770594670e-3)}, {FN (csch), ARG(-5.0e-01,9.42443269378637893396e+00), RES(1.9190337944739187263e0, -1.4337901642770594670e-3)}, {FN (csch), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(1.9190337944739187263e0, 1.4337901642770594670e-3)}, {FN (csch), ARG(5.0e-01,9.42512322775237976202e+00), RES(-1.9190337944739187304e0, 1.4337901642740081154e-3)}, {FN (csch), ARG(5.0e-01,-9.42512322775237976202e+00), RES(-1.9190337944739187304e0, -1.4337901642740081154e-3)}, {FN (csch), ARG(-5.0e-01,9.42512322775237976202e+00), RES(1.9190337944739187304e0, 1.4337901642740081154e-3)}, {FN (csch), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(1.9190337944739187304e0, -1.4337901642740081154e-3)}, {FN (csch), ARG(1.0e+00,-3.45266983001243932001e-04), RES(8.5091800407377002734e-1, 3.8576176225198860914e-4)}, {FN (csch), ARG(1.0e+00,3.45266983001243932001e-04), RES(8.5091800407377002734e-1, -3.8576176225198860914e-4)}, {FN (csch), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(-8.5091800407377002734e-1, 3.8576176225198860914e-4)}, {FN (csch), ARG(-1.0e+00,3.45266983001243932001e-04), RES(-8.5091800407377002734e-1, -3.8576176225198860914e-4)}, {FN (csch), ARG(1.0e+00,1.57045105981189525579e+00), RES(1.7040802567657401279e-4, -6.4805426748157480499e-1)}, {FN (csch), ARG(1.0e+00,-1.57045105981189525579e+00), RES(1.7040802567657401279e-4, 6.4805426748157480499e-1)}, {FN (csch), ARG(-1.0e+00,1.57045105981189525579e+00), RES(-1.7040802567657401279e-4, -6.4805426748157480499e-1)}, {FN (csch), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(-1.7040802567657401279e-4, 6.4805426748157480499e-1)}, {FN (csch), ARG(1.0e+00,1.57114159377789786021e+00), RES(-1.7040802567651356981e-4, -6.4805426748157480499e-1)}, {FN (csch), ARG(1.0e+00,-1.57114159377789786021e+00), RES(-1.7040802567651356981e-4, 6.4805426748157480499e-1)}, {FN (csch), ARG(-1.0e+00,1.57114159377789786021e+00), RES(1.7040802567651356981e-4, -6.4805426748157480499e-1)}, {FN (csch), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(1.7040802567651356981e-4, 6.4805426748157480499e-1)}, {FN (csch), ARG(1.0e+00,3.14124738660679181379e+00), RES(-8.5091800407377002721e-1, -3.8576176225219054787e-4)}, {FN (csch), ARG(1.0e+00,-3.14124738660679181379e+00), RES(-8.5091800407377002721e-1, 3.8576176225219054787e-4)}, {FN (csch), ARG(-1.0e+00,3.14124738660679181379e+00), RES(8.5091800407377002721e-1, -3.8576176225219054787e-4)}, {FN (csch), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(8.5091800407377002721e-1, 3.8576176225219054787e-4)}, {FN (csch), ARG(1.0e+00,3.14193792057279441821e+00), RES(-8.5091800407377002738e-1, 3.8576176225191689193e-4)}, {FN (csch), ARG(1.0e+00,-3.14193792057279441821e+00), RES(-8.5091800407377002738e-1, -3.8576176225191689193e-4)}, {FN (csch), ARG(-1.0e+00,3.14193792057279441821e+00), RES(8.5091800407377002738e-1, 3.8576176225191689193e-4)}, {FN (csch), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(8.5091800407377002738e-1, -3.8576176225191689193e-4)}, {FN (csch), ARG(1.0e+00,4.71204371340168837179e+00), RES(-1.7040802567663445577e-4, 6.4805426748157480498e-1)}, {FN (csch), ARG(1.0e+00,-4.71204371340168837179e+00), RES(-1.7040802567663445577e-4, -6.4805426748157480498e-1)}, {FN (csch), ARG(-1.0e+00,4.71204371340168837179e+00), RES(1.7040802567663445577e-4, 6.4805426748157480498e-1)}, {FN (csch), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(1.7040802567663445577e-4, -6.4805426748157480498e-1)}, {FN (csch), ARG(1.0e+00,4.71273424736769097620e+00), RES(1.7040802567645312683e-4, 6.480542674815748050e-1)}, {FN (csch), ARG(1.0e+00,-4.71273424736769097620e+00), RES(1.7040802567645312683e-4, -6.480542674815748050e-1)}, {FN (csch), ARG(-1.0e+00,4.71273424736769097620e+00), RES(-1.7040802567645312683e-4, 6.480542674815748050e-1)}, {FN (csch), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(-1.7040802567645312683e-4, -6.480542674815748050e-1)}, {FN (csch), ARG(1.0e+00,6.28284004019658492979e+00), RES(8.5091800407377002712e-1, 3.8576176225232737584e-4)}, {FN (csch), ARG(1.0e+00,-6.28284004019658492979e+00), RES(8.5091800407377002712e-1, -3.8576176225232737584e-4)}, {FN (csch), ARG(-1.0e+00,6.28284004019658492979e+00), RES(-8.5091800407377002712e-1, 3.8576176225232737584e-4)}, {FN (csch), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(-8.5091800407377002712e-1, -3.8576176225232737584e-4)}, {FN (csch), ARG(1.0e+00,6.28353057416258753420e+00), RES(8.5091800407377002747e-1, -3.8576176225178006396e-4)}, {FN (csch), ARG(1.0e+00,-6.28353057416258753420e+00), RES(8.5091800407377002747e-1, 3.8576176225178006396e-4)}, {FN (csch), ARG(-1.0e+00,6.28353057416258753420e+00), RES(-8.5091800407377002747e-1, -3.8576176225178006396e-4)}, {FN (csch), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(-8.5091800407377002747e-1, 3.8576176225178006396e-4)}, {FN (csch), ARG(1.0e+00,9.42443269378637893396e+00), RES(-8.5091800407377002767e-1, -3.8576176225147185523e-4)}, {FN (csch), ARG(1.0e+00,-9.42443269378637893396e+00), RES(-8.5091800407377002767e-1, 3.8576176225147185523e-4)}, {FN (csch), ARG(-1.0e+00,9.42443269378637893396e+00), RES(8.5091800407377002767e-1, -3.8576176225147185523e-4)}, {FN (csch), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(8.5091800407377002767e-1, 3.8576176225147185523e-4)}, {FN (csch), ARG(1.0e+00,9.42512322775237976202e+00), RES(-8.5091800407377002820e-1, 3.8576176225065088741e-4)}, {FN (csch), ARG(1.0e+00,-9.42512322775237976202e+00), RES(-8.5091800407377002820e-1, -3.8576176225065088741e-4)}, {FN (csch), ARG(-1.0e+00,9.42512322775237976202e+00), RES(8.5091800407377002820e-1, 3.8576176225065088741e-4)}, {FN (csch), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(8.5091800407377002820e-1, -3.8576176225065088741e-4)}, {FN (csch), ARG(2.0e+00,-3.45266983001243932001e-04), RES(2.7572054583883740768e-1, 9.8749461907035665386e-5)}, {FN (csch), ARG(2.0e+00,3.45266983001243932001e-04), RES(2.7572054583883740768e-1, -9.8749461907035665386e-5)}, {FN (csch), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(-2.7572054583883740768e-1, 9.8749461907035665386e-5)}, {FN (csch), ARG(-2.0e+00,3.45266983001243932001e-04), RES(-2.7572054583883740768e-1, -9.8749461907035665386e-5)}, {FN (csch), ARG(2.0e+00,1.57045105981189525579e+00), RES(8.8471445300404633228e-5, -2.6580221522968095406e-1)}, {FN (csch), ARG(2.0e+00,-1.57045105981189525579e+00), RES(8.8471445300404633228e-5, 2.6580221522968095406e-1)}, {FN (csch), ARG(-2.0e+00,1.57045105981189525579e+00), RES(-8.8471445300404633228e-5, -2.6580221522968095406e-1)}, {FN (csch), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(-8.8471445300404633228e-5, 2.6580221522968095406e-1)}, {FN (csch), ARG(2.0e+00,1.57114159377789786021e+00), RES(-8.8471445300373252796e-5, -2.6580221522968095407e-1)}, {FN (csch), ARG(2.0e+00,-1.57114159377789786021e+00), RES(-8.8471445300373252796e-5, 2.6580221522968095407e-1)}, {FN (csch), ARG(-2.0e+00,1.57114159377789786021e+00), RES(8.8471445300373252796e-5, -2.6580221522968095407e-1)}, {FN (csch), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(8.8471445300373252796e-5, 2.6580221522968095407e-1)}, {FN (csch), ARG(2.0e+00,3.14124738660679181379e+00), RES(-2.7572054583883740766e-1, -9.8749461907087358805e-5)}, {FN (csch), ARG(2.0e+00,-3.14124738660679181379e+00), RES(-2.7572054583883740766e-1, 9.8749461907087358805e-5)}, {FN (csch), ARG(-2.0e+00,3.14124738660679181379e+00), RES(2.7572054583883740766e-1, -9.8749461907087358805e-5)}, {FN (csch), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(2.7572054583883740766e-1, 9.8749461907087358805e-5)}, {FN (csch), ARG(2.0e+00,3.14193792057279441821e+00), RES(-2.7572054583883740769e-1, 9.8749461907017306810e-5)}, {FN (csch), ARG(2.0e+00,-3.14193792057279441821e+00), RES(-2.7572054583883740769e-1, -9.8749461907017306810e-5)}, {FN (csch), ARG(-2.0e+00,3.14193792057279441821e+00), RES(2.7572054583883740769e-1, 9.8749461907017306810e-5)}, {FN (csch), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(2.7572054583883740769e-1, -9.8749461907017306810e-5)}, {FN (csch), ARG(2.0e+00,4.71204371340168837179e+00), RES(-8.8471445300436013659e-5, 2.6580221522968095405e-1)}, {FN (csch), ARG(2.0e+00,-4.71204371340168837179e+00), RES(-8.8471445300436013659e-5, -2.6580221522968095405e-1)}, {FN (csch), ARG(-2.0e+00,4.71204371340168837179e+00), RES(8.8471445300436013659e-5, 2.6580221522968095405e-1)}, {FN (csch), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(8.8471445300436013659e-5, -2.6580221522968095405e-1)}, {FN (csch), ARG(2.0e+00,4.71273424736769097620e+00), RES(8.8471445300341872364e-5, 2.6580221522968095408e-1)}, {FN (csch), ARG(2.0e+00,-4.71273424736769097620e+00), RES(8.8471445300341872364e-5, -2.6580221522968095408e-1)}, {FN (csch), ARG(-2.0e+00,4.71273424736769097620e+00), RES(-8.8471445300341872364e-5, 2.6580221522968095408e-1)}, {FN (csch), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(-8.8471445300341872364e-5, -2.6580221522968095408e-1)}, {FN (csch), ARG(2.0e+00,6.28284004019658492979e+00), RES(2.7572054583883740765e-1, 9.8749461907122384803e-5)}, {FN (csch), ARG(2.0e+00,-6.28284004019658492979e+00), RES(2.7572054583883740765e-1, -9.8749461907122384803e-5)}, {FN (csch), ARG(-2.0e+00,6.28284004019658492979e+00), RES(-2.7572054583883740765e-1, 9.8749461907122384803e-5)}, {FN (csch), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(-2.7572054583883740765e-1, -9.8749461907122384803e-5)}, {FN (csch), ARG(2.0e+00,6.28353057416258753420e+00), RES(2.7572054583883740770e-1, -9.8749461906982280812e-5)}, {FN (csch), ARG(2.0e+00,-6.28353057416258753420e+00), RES(2.7572054583883740770e-1, 9.8749461906982280812e-5)}, {FN (csch), ARG(-2.0e+00,6.28353057416258753420e+00), RES(-2.7572054583883740770e-1, -9.8749461906982280812e-5)}, {FN (csch), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(-2.7572054583883740770e-1, 9.8749461906982280812e-5)}, {FN (csch), ARG(2.0e+00,9.42443269378637893396e+00), RES(-2.7572054583883740773e-1, -9.874946190690338380e-5)}, {FN (csch), ARG(2.0e+00,-9.42443269378637893396e+00), RES(-2.7572054583883740773e-1, 9.874946190690338380e-5)}, {FN (csch), ARG(-2.0e+00,9.42443269378637893396e+00), RES(2.7572054583883740773e-1, -9.874946190690338380e-5)}, {FN (csch), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(2.7572054583883740773e-1, 9.874946190690338380e-5)}, {FN (csch), ARG(2.0e+00,9.42512322775237976202e+00), RES(-2.7572054583883740781e-1, 9.8749461906693227814e-5)}, {FN (csch), ARG(2.0e+00,-9.42512322775237976202e+00), RES(-2.7572054583883740781e-1, -9.8749461906693227814e-5)}, {FN (csch), ARG(-2.0e+00,9.42512322775237976202e+00), RES(2.7572054583883740781e-1, 9.8749461906693227814e-5)}, {FN (csch), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(2.7572054583883740781e-1, -9.8749461906693227814e-5)}, {FN (sech), ARG(0.0e+00,-3.45266983001243932001e-04), RES(1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,3.45266983001243932001e-04), RES(1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,1.57045105981189525579e+00), RES(2.8963094332835939217e3, 0.0)}, {FN (sech), ARG(0.0e+00,-1.57045105981189525579e+00), RES(2.8963094332835939217e3, 0.0)}, {FN (sech), ARG(0.0e+00,1.57114159377789786021e+00), RES(-2.8963094332846212298e3, 0.0)}, {FN (sech), ARG(0.0e+00,-1.57114159377789786021e+00), RES(-2.8963094332846212298e3, 0.0)}, {FN (sech), ARG(0.0e+00,3.14124738660679181379e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,-3.14124738660679181379e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,3.14193792057279441821e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,-3.14193792057279441821e+00), RES(-1.0000000596046477360e0, 0.0)}, {FN (sech), ARG(0.0e+00,4.71204371340168837179e+00), RES(-2.8963094332825666135e3, 0.0)}, {FN (sech), ARG(0.0e+00,-4.71204371340168837179e+00), RES(-2.8963094332825666135e3, 0.0)}, {FN (sech), ARG(0.0e+00,4.71273424736769097620e+00), RES(2.8963094332856485380e3, 0.0)}, {FN (sech), ARG(0.0e+00,-4.71273424736769097620e+00), RES(2.8963094332856485380e3, 0.0)}, {FN (sech), ARG(0.0e+00,6.28284004019658492979e+00), RES(1.0000000596046477361e0, 0.0)}, {FN (sech), ARG(0.0e+00,-6.28284004019658492979e+00), RES(1.0000000596046477361e0, 0.0)}, {FN (sech), ARG(0.0e+00,6.28353057416258753420e+00), RES(1.0000000596046477359e0, 0.0)}, {FN (sech), ARG(0.0e+00,-6.28353057416258753420e+00), RES(1.0000000596046477359e0, 0.0)}, {FN (sech), ARG(0.0e+00,9.42443269378637893396e+00), RES(-1.0000000596046477358e0, 0.0)}, {FN (sech), ARG(0.0e+00,-9.42443269378637893396e+00), RES(-1.0000000596046477358e0, 0.0)}, {FN (sech), ARG(0.0e+00,9.42512322775237976202e+00), RES(-1.0000000596046477356e0, 0.0)}, {FN (sech), ARG(0.0e+00,-9.42512322775237976202e+00), RES(-1.0000000596046477356e0, 0.0)}, {FN (sech), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(1.0000000596046406306e0, 4.1159035837702210125e-11)}, {FN (sech), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(1.0000000596046406306e0, -4.1159035837702210125e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(1.0000000596046406306e0, -4.1159035837702210125e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(1.0000000596046406306e0, 4.1159035837702210125e-11)}, {FN (sech), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(2.8963090880166520798e3, -9.9999986092181650394e-1)}, {FN (sech), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(2.8963090880166520798e3, 9.9999986092181650394e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(2.8963090880166520798e3, 9.9999986092181650394e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(2.8963090880166520798e3, -9.9999986092181650394e-1)}, {FN (sech), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(-2.8963090880176793876e3, -9.9999986092252589498e-1)}, {FN (sech), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-2.8963090880176793876e3, 9.9999986092252589498e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(-2.8963090880176793876e3, 9.9999986092252589498e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-2.8963090880176793876e3, -9.9999986092252589498e-1)}, {FN (sech), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(-1.0000000596046406306e0, -4.1159035837723756084e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-1.0000000596046406306e0, 4.1159035837723756084e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(-1.0000000596046406306e0, 4.1159035837723756084e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-1.0000000596046406306e0, -4.1159035837723756084e-11)}, {FN (sech), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(-1.0000000596046406305e0, 4.1159035837694558220e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-1.0000000596046406305e0, -4.1159035837694558220e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(-1.0000000596046406305e0, -4.1159035837694558220e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-1.0000000596046406305e0, 4.1159035837694558220e-11)}, {FN (sech), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(-2.8963090880156247720e3, 9.9999986092110711291e-1)}, {FN (sech), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-2.8963090880156247720e3, -9.9999986092110711291e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(-2.8963090880156247720e3, -9.9999986092110711291e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-2.8963090880156247720e3, 9.9999986092110711291e-1)}, {FN (sech), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(2.8963090880187066954e3, 9.9999986092323528601e-1)}, {FN (sech), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(2.8963090880187066954e3, -9.9999986092323528601e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(2.8963090880187066954e3, -9.9999986092323528601e-1)}, {FN (sech), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(2.8963090880187066954e3, 9.9999986092323528601e-1)}, {FN (sech), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(1.0000000596046406307e0, 4.1159035837738355016e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(1.0000000596046406307e0, -4.1159035837738355016e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(1.0000000596046406307e0, -4.1159035837738355016e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(1.0000000596046406307e0, 4.1159035837738355016e-11)}, {FN (sech), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(1.0000000596046406305e0, -4.1159035837679959288e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(1.0000000596046406305e0, 4.1159035837679959288e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(1.0000000596046406305e0, 4.1159035837679959288e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(1.0000000596046406305e0, -4.1159035837679959288e-11)}, {FN (sech), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(-1.0000000596046406304e0, -4.1159035837647074798e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-1.0000000596046406304e0, 4.1159035837647074798e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(-1.0000000596046406304e0, 4.1159035837647074798e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-1.0000000596046406304e0, -4.1159035837647074798e-11)}, {FN (sech), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(-1.0000000596046406301e0, 4.1159035837559481207e-11)}, {FN (sech), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-1.0000000596046406301e0, -4.1159035837559481207e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(-1.0000000596046406301e0, -4.1159035837559481207e-11)}, {FN (sech), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-1.0000000596046406301e0, 4.1159035837559481207e-11)}, {FN (sech), ARG(5.0e-01,-3.45266983001243932001e-04), RES(8.8681891425248302485e-1, 1.4149533035938218250e-4)}, {FN (sech), ARG(5.0e-01,3.45266983001243932001e-04), RES(8.8681891425248302485e-1, -1.4149533035938218250e-4)}, {FN (sech), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(8.8681891425248302485e-1, -1.4149533035938218250e-4)}, {FN (sech), ARG(-5.0e-01,3.45266983001243932001e-04), RES(8.8681891425248302485e-1, 1.4149533035938218250e-4)}, {FN (sech), ARG(5.0e-01,1.57045105981189525579e+00), RES(1.4337901642794764055e-3, -1.9190337944739187231e0)}, {FN (sech), ARG(5.0e-01,-1.57045105981189525579e+00), RES(1.4337901642794764055e-3, 1.9190337944739187231e0)}, {FN (sech), ARG(-5.0e-01,1.57045105981189525579e+00), RES(1.4337901642794764055e-3, 1.9190337944739187231e0)}, {FN (sech), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(1.4337901642794764055e-3, -1.9190337944739187231e0)}, {FN (sech), ARG(5.0e-01,1.57114159377789786021e+00), RES(-1.4337901642789678469e-3, -1.9190337944739187237e0)}, {FN (sech), ARG(5.0e-01,-1.57114159377789786021e+00), RES(-1.4337901642789678469e-3, 1.9190337944739187237e0)}, {FN (sech), ARG(-5.0e-01,1.57114159377789786021e+00), RES(-1.4337901642789678469e-3, 1.9190337944739187237e0)}, {FN (sech), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(-1.4337901642789678469e-3, -1.9190337944739187237e0)}, {FN (sech), ARG(5.0e-01,3.14124738660679181379e+00), RES(-8.8681891425248302488e-1, -1.4149533035945625257e-4)}, {FN (sech), ARG(5.0e-01,-3.14124738660679181379e+00), RES(-8.8681891425248302488e-1, 1.4149533035945625257e-4)}, {FN (sech), ARG(-5.0e-01,3.14124738660679181379e+00), RES(-8.8681891425248302488e-1, 1.4149533035945625257e-4)}, {FN (sech), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(-8.8681891425248302488e-1, -1.4149533035945625257e-4)}, {FN (sech), ARG(5.0e-01,3.14193792057279441821e+00), RES(-8.8681891425248302484e-1, 1.4149533035935587701e-4)}, {FN (sech), ARG(5.0e-01,-3.14193792057279441821e+00), RES(-8.8681891425248302484e-1, -1.4149533035935587701e-4)}, {FN (sech), ARG(-5.0e-01,3.14193792057279441821e+00), RES(-8.8681891425248302484e-1, -1.4149533035935587701e-4)}, {FN (sech), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(-8.8681891425248302484e-1, 1.4149533035935587701e-4)}, {FN (sech), ARG(5.0e-01,4.71204371340168837179e+00), RES(-1.4337901642799849641e-3, 1.9190337944739187224e0)}, {FN (sech), ARG(5.0e-01,-4.71204371340168837179e+00), RES(-1.4337901642799849641e-3, -1.9190337944739187224e0)}, {FN (sech), ARG(-5.0e-01,4.71204371340168837179e+00), RES(-1.4337901642799849641e-3, -1.9190337944739187224e0)}, {FN (sech), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(-1.4337901642799849641e-3, 1.9190337944739187224e0)}, {FN (sech), ARG(5.0e-01,4.71273424736769097620e+00), RES(1.4337901642784592884e-3, 1.9190337944739187244e0)}, {FN (sech), ARG(5.0e-01,-4.71273424736769097620e+00), RES(1.4337901642784592884e-3, -1.9190337944739187244e0)}, {FN (sech), ARG(-5.0e-01,4.71273424736769097620e+00), RES(1.4337901642784592884e-3, -1.9190337944739187244e0)}, {FN (sech), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(1.4337901642784592884e-3, 1.9190337944739187244e0)}, {FN (sech), ARG(5.0e-01,6.28284004019658492979e+00), RES(8.8681891425248302490e-1, 1.4149533035950644034e-4)}, {FN (sech), ARG(5.0e-01,-6.28284004019658492979e+00), RES(8.8681891425248302490e-1, -1.4149533035950644034e-4)}, {FN (sech), ARG(-5.0e-01,6.28284004019658492979e+00), RES(8.8681891425248302490e-1, -1.4149533035950644034e-4)}, {FN (sech), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(8.8681891425248302490e-1, 1.4149533035950644034e-4)}, {FN (sech), ARG(5.0e-01,6.28353057416258753420e+00), RES(8.8681891425248302482e-1, -1.4149533035930568923e-4)}, {FN (sech), ARG(5.0e-01,-6.28353057416258753420e+00), RES(8.8681891425248302482e-1, 1.4149533035930568923e-4)}, {FN (sech), ARG(-5.0e-01,6.28353057416258753420e+00), RES(8.8681891425248302482e-1, 1.4149533035930568923e-4)}, {FN (sech), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(8.8681891425248302482e-1, -1.4149533035930568923e-4)}, {FN (sech), ARG(5.0e-01,9.42443269378637893396e+00), RES(-8.8681891425248302477e-1, -1.4149533035919263990e-4)}, {FN (sech), ARG(5.0e-01,-9.42443269378637893396e+00), RES(-8.8681891425248302477e-1, 1.4149533035919263990e-4)}, {FN (sech), ARG(-5.0e-01,9.42443269378637893396e+00), RES(-8.8681891425248302477e-1, 1.4149533035919263990e-4)}, {FN (sech), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(-8.8681891425248302477e-1, -1.4149533035919263990e-4)}, {FN (sech), ARG(5.0e-01,9.42512322775237976202e+00), RES(-8.8681891425248302464e-1, 1.4149533035889151322e-4)}, {FN (sech), ARG(5.0e-01,-9.42512322775237976202e+00), RES(-8.8681891425248302464e-1, -1.4149533035889151322e-4)}, {FN (sech), ARG(-5.0e-01,9.42512322775237976202e+00), RES(-8.8681891425248302464e-1, -1.4149533035889151322e-4)}, {FN (sech), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(-8.8681891425248302464e-1, 1.4149533035889151322e-4)}, {FN (sech), ARG(1.0e+00,-3.45266983001243932001e-04), RES(6.4805426748157480499e-1, 1.7040802567651502899e-4)}, {FN (sech), ARG(1.0e+00,3.45266983001243932001e-04), RES(6.4805426748157480499e-1, -1.7040802567651502899e-4)}, {FN (sech), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(6.4805426748157480499e-1, -1.7040802567651502899e-4)}, {FN (sech), ARG(-1.0e+00,3.45266983001243932001e-04), RES(6.4805426748157480499e-1, 1.7040802567651502899e-4)}, {FN (sech), ARG(1.0e+00,1.57045105981189525579e+00), RES(3.8576176225212213388e-4, -8.5091800407377002725e-1)}, {FN (sech), ARG(1.0e+00,-1.57045105981189525579e+00), RES(3.8576176225212213388e-4, 8.5091800407377002725e-1)}, {FN (sech), ARG(-1.0e+00,1.57045105981189525579e+00), RES(3.8576176225212213388e-4, 8.5091800407377002725e-1)}, {FN (sech), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(3.8576176225212213388e-4, -8.5091800407377002725e-1)}, {FN (sech), ARG(1.0e+00,1.57114159377789786021e+00), RES(-3.8576176225198530591e-4, -8.5091800407377002734e-1)}, {FN (sech), ARG(1.0e+00,-1.57114159377789786021e+00), RES(-3.8576176225198530591e-4, 8.5091800407377002734e-1)}, {FN (sech), ARG(-1.0e+00,1.57114159377789786021e+00), RES(-3.8576176225198530591e-4, 8.5091800407377002734e-1)}, {FN (sech), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(-3.8576176225198530591e-4, -8.5091800407377002734e-1)}, {FN (sech), ARG(1.0e+00,3.14124738660679181379e+00), RES(-6.4805426748157480499e-1, -1.7040802567660423428e-4)}, {FN (sech), ARG(1.0e+00,-3.14124738660679181379e+00), RES(-6.4805426748157480499e-1, 1.7040802567660423428e-4)}, {FN (sech), ARG(-1.0e+00,3.14124738660679181379e+00), RES(-6.4805426748157480499e-1, 1.7040802567660423428e-4)}, {FN (sech), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(-6.4805426748157480499e-1, -1.7040802567660423428e-4)}, {FN (sech), ARG(1.0e+00,3.14193792057279441821e+00), RES(-6.4805426748157480499e-1, 1.7040802567648334832e-4)}, {FN (sech), ARG(1.0e+00,-3.14193792057279441821e+00), RES(-6.4805426748157480499e-1, -1.7040802567648334832e-4)}, {FN (sech), ARG(-1.0e+00,3.14193792057279441821e+00), RES(-6.4805426748157480499e-1, -1.7040802567648334832e-4)}, {FN (sech), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(-6.4805426748157480499e-1, 1.7040802567648334832e-4)}, {FN (sech), ARG(1.0e+00,4.71204371340168837179e+00), RES(-3.8576176225225896185e-4, 8.5091800407377002716e-1)}, {FN (sech), ARG(1.0e+00,-4.71204371340168837179e+00), RES(-3.8576176225225896185e-4, -8.5091800407377002716e-1)}, {FN (sech), ARG(-1.0e+00,4.71204371340168837179e+00), RES(-3.8576176225225896185e-4, -8.5091800407377002716e-1)}, {FN (sech), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(-3.8576176225225896185e-4, 8.5091800407377002716e-1)}, {FN (sech), ARG(1.0e+00,4.71273424736769097620e+00), RES(3.8576176225184847794e-4, 8.5091800407377002743e-1)}, {FN (sech), ARG(1.0e+00,-4.71273424736769097620e+00), RES(3.8576176225184847794e-4, -8.5091800407377002743e-1)}, {FN (sech), ARG(-1.0e+00,4.71273424736769097620e+00), RES(3.8576176225184847794e-4, -8.5091800407377002743e-1)}, {FN (sech), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(3.8576176225184847794e-4, 8.5091800407377002743e-1)}, {FN (sech), ARG(1.0e+00,6.28284004019658492979e+00), RES(6.4805426748157480498e-1, 1.7040802567666467726e-4)}, {FN (sech), ARG(1.0e+00,-6.28284004019658492979e+00), RES(6.4805426748157480498e-1, -1.7040802567666467726e-4)}, {FN (sech), ARG(-1.0e+00,6.28284004019658492979e+00), RES(6.4805426748157480498e-1, -1.7040802567666467726e-4)}, {FN (sech), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(6.4805426748157480498e-1, 1.7040802567666467726e-4)}, {FN (sech), ARG(1.0e+00,6.28353057416258753420e+00), RES(6.480542674815748050e-1, -1.7040802567642290534e-4)}, {FN (sech), ARG(1.0e+00,-6.28353057416258753420e+00), RES(6.480542674815748050e-1, 1.7040802567642290534e-4)}, {FN (sech), ARG(-1.0e+00,6.28353057416258753420e+00), RES(6.480542674815748050e-1, 1.7040802567642290534e-4)}, {FN (sech), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(6.480542674815748050e-1, -1.7040802567642290534e-4)}, {FN (sech), ARG(1.0e+00,9.42443269378637893396e+00), RES(-6.4805426748157480501e-1, -1.7040802567628675588e-4)}, {FN (sech), ARG(1.0e+00,-9.42443269378637893396e+00), RES(-6.4805426748157480501e-1, 1.7040802567628675588e-4)}, {FN (sech), ARG(-1.0e+00,9.42443269378637893396e+00), RES(-6.4805426748157480501e-1, 1.7040802567628675588e-4)}, {FN (sech), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(-6.4805426748157480501e-1, -1.7040802567628675588e-4)}, {FN (sech), ARG(1.0e+00,9.42512322775237976202e+00), RES(-6.4805426748157480504e-1, 1.704080256759240980e-4)}, {FN (sech), ARG(1.0e+00,-9.42512322775237976202e+00), RES(-6.4805426748157480504e-1, -1.704080256759240980e-4)}, {FN (sech), ARG(-1.0e+00,9.42512322775237976202e+00), RES(-6.4805426748157480504e-1, -1.704080256759240980e-4)}, {FN (sech), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(-6.4805426748157480504e-1, 1.704080256759240980e-4)}, {FN (sech), ARG(2.0e+00,-3.45266983001243932001e-04), RES(2.6580221522968095407e-1, 8.8471445300374010365e-5)}, {FN (sech), ARG(2.0e+00,3.45266983001243932001e-04), RES(2.6580221522968095407e-1, -8.8471445300374010365e-5)}, {FN (sech), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(2.6580221522968095407e-1, -8.8471445300374010365e-5)}, {FN (sech), ARG(-2.0e+00,3.45266983001243932001e-04), RES(2.6580221522968095407e-1, 8.8471445300374010365e-5)}, {FN (sech), ARG(2.0e+00,1.57045105981189525579e+00), RES(9.8749461907069845806e-5, -2.7572054583883740767e-1)}, {FN (sech), ARG(2.0e+00,-1.57045105981189525579e+00), RES(9.8749461907069845806e-5, 2.7572054583883740767e-1)}, {FN (sech), ARG(-2.0e+00,1.57045105981189525579e+00), RES(9.8749461907069845806e-5, 2.7572054583883740767e-1)}, {FN (sech), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(9.8749461907069845806e-5, -2.7572054583883740767e-1)}, {FN (sech), ARG(2.0e+00,1.57114159377789786021e+00), RES(-9.8749461907034819809e-5, -2.7572054583883740768e-1)}, {FN (sech), ARG(2.0e+00,-1.57114159377789786021e+00), RES(-9.8749461907034819809e-5, 2.7572054583883740768e-1)}, {FN (sech), ARG(-2.0e+00,1.57114159377789786021e+00), RES(-9.8749461907034819809e-5, 2.7572054583883740768e-1)}, {FN (sech), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(-9.8749461907034819809e-5, -2.7572054583883740768e-1)}, {FN (sech), ARG(2.0e+00,3.14124738660679181379e+00), RES(-2.6580221522968095405e-1, -8.8471445300420323443e-5)}, {FN (sech), ARG(2.0e+00,-3.14124738660679181379e+00), RES(-2.6580221522968095405e-1, 8.8471445300420323443e-5)}, {FN (sech), ARG(-2.0e+00,3.14124738660679181379e+00), RES(-2.6580221522968095405e-1, 8.8471445300420323443e-5)}, {FN (sech), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(-2.6580221522968095405e-1, -8.8471445300420323443e-5)}, {FN (sech), ARG(2.0e+00,3.14193792057279441821e+00), RES(-2.6580221522968095407e-1, 8.8471445300357562580e-5)}, {FN (sech), ARG(2.0e+00,-3.14193792057279441821e+00), RES(-2.6580221522968095407e-1, -8.8471445300357562580e-5)}, {FN (sech), ARG(-2.0e+00,3.14193792057279441821e+00), RES(-2.6580221522968095407e-1, -8.8471445300357562580e-5)}, {FN (sech), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(-2.6580221522968095407e-1, 8.8471445300357562580e-5)}, {FN (sech), ARG(2.0e+00,4.71204371340168837179e+00), RES(-9.8749461907104871804e-5, 2.7572054583883740766e-1)}, {FN (sech), ARG(2.0e+00,-4.71204371340168837179e+00), RES(-9.8749461907104871804e-5, -2.7572054583883740766e-1)}, {FN (sech), ARG(-2.0e+00,4.71204371340168837179e+00), RES(-9.8749461907104871804e-5, -2.7572054583883740766e-1)}, {FN (sech), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(-9.8749461907104871804e-5, 2.7572054583883740766e-1)}, {FN (sech), ARG(2.0e+00,4.71273424736769097620e+00), RES(9.8749461906999793811e-5, 2.7572054583883740770e-1)}, {FN (sech), ARG(2.0e+00,-4.71273424736769097620e+00), RES(9.8749461906999793811e-5, -2.7572054583883740770e-1)}, {FN (sech), ARG(-2.0e+00,4.71273424736769097620e+00), RES(9.8749461906999793811e-5, -2.7572054583883740770e-1)}, {FN (sech), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(9.8749461906999793811e-5, 2.7572054583883740770e-1)}, {FN (sech), ARG(2.0e+00,6.28284004019658492979e+00), RES(2.6580221522968095404e-1, 8.8471445300451703875e-5)}, {FN (sech), ARG(2.0e+00,-6.28284004019658492979e+00), RES(2.6580221522968095404e-1, -8.8471445300451703875e-5)}, {FN (sech), ARG(-2.0e+00,6.28284004019658492979e+00), RES(2.6580221522968095404e-1, -8.8471445300451703875e-5)}, {FN (sech), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(2.6580221522968095404e-1, 8.8471445300451703875e-5)}, {FN (sech), ARG(2.0e+00,6.28353057416258753420e+00), RES(2.6580221522968095408e-1, -8.8471445300326182148e-5)}, {FN (sech), ARG(2.0e+00,-6.28353057416258753420e+00), RES(2.6580221522968095408e-1, 8.8471445300326182148e-5)}, {FN (sech), ARG(-2.0e+00,6.28353057416258753420e+00), RES(2.6580221522968095408e-1, 8.8471445300326182148e-5)}, {FN (sech), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(2.6580221522968095408e-1, -8.8471445300326182148e-5)}, {FN (sech), ARG(2.0e+00,9.42443269378637893396e+00), RES(-2.6580221522968095410e-1, -8.8471445300255496873e-5)}, {FN (sech), ARG(2.0e+00,-9.42443269378637893396e+00), RES(-2.6580221522968095410e-1, 8.8471445300255496873e-5)}, {FN (sech), ARG(-2.0e+00,9.42443269378637893396e+00), RES(-2.6580221522968095410e-1, 8.8471445300255496873e-5)}, {FN (sech), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(-2.6580221522968095410e-1, -8.8471445300255496873e-5)}, {FN (sech), ARG(2.0e+00,9.42512322775237976202e+00), RES(-2.6580221522968095416e-1, 8.8471445300067214283e-5)}, {FN (sech), ARG(2.0e+00,-9.42512322775237976202e+00), RES(-2.6580221522968095416e-1, -8.8471445300067214283e-5)}, {FN (sech), ARG(-2.0e+00,9.42512322775237976202e+00), RES(-2.6580221522968095416e-1, -8.8471445300067214283e-5)}, {FN (sech), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(-2.6580221522968095416e-1, 8.8471445300067214283e-5)}, {FN (coth), ARG(0.0e+00,-3.45266983001243932001e-04), RES(0, 2.8963092606511032136e3)}, {FN (coth), ARG(0.0e+00,3.45266983001243932001e-04), RES(0, -2.8963092606511032136e3)}, {FN (coth), ARG(0.0e+00,1.57045105981189525579e+00), RES(0, -3.4526699672104134407e-4)}, {FN (coth), ARG(0.0e+00,-1.57045105981189525579e+00), RES(0, 3.4526699672104134407e-4)}, {FN (coth), ARG(0.0e+00,1.57114159377789786021e+00), RES(0, 3.4526699672091887937e-4)}, {FN (coth), ARG(0.0e+00,-1.57114159377789786021e+00), RES(0, -3.4526699672091887937e-4)}, {FN (coth), ARG(0.0e+00,3.14124738660679181379e+00), RES(0, 2.8963092606495870519e3)}, {FN (coth), ARG(0.0e+00,-3.14124738660679181379e+00), RES(0, -2.8963092606495870519e3)}, {FN (coth), ARG(0.0e+00,3.14193792057279441821e+00), RES(0, -2.8963092606516416684e3)}, {FN (coth), ARG(0.0e+00,-3.14193792057279441821e+00), RES(0, 2.8963092606516416684e3)}, {FN (coth), ARG(0.0e+00,4.71204371340168837179e+00), RES(0, -3.4526699672116380876e-4)}, {FN (coth), ARG(0.0e+00,-4.71204371340168837179e+00), RES(0, 3.4526699672116380876e-4)}, {FN (coth), ARG(0.0e+00,4.71273424736769097620e+00), RES(0, 3.4526699672079641468e-4)}, {FN (coth), ARG(0.0e+00,-4.71273424736769097620e+00), RES(0, -3.4526699672079641468e-4)}, {FN (coth), ARG(0.0e+00,6.28284004019658492979e+00), RES(0, 2.8963092606485597437e3)}, {FN (coth), ARG(0.0e+00,-6.28284004019658492979e+00), RES(0, -2.8963092606485597437e3)}, {FN (coth), ARG(0.0e+00,6.28353057416258753420e+00), RES(0, -2.8963092606526689766e3)}, {FN (coth), ARG(0.0e+00,-6.28353057416258753420e+00), RES(0, 2.8963092606526689766e3)}, {FN (coth), ARG(0.0e+00,9.42443269378637893396e+00), RES(0, 2.8963092606549830163e3)}, {FN (coth), ARG(0.0e+00,-9.42443269378637893396e+00), RES(0, -2.8963092606549830163e3)}, {FN (coth), ARG(0.0e+00,9.42512322775237976202e+00), RES(0, -2.8963092606611468657e3)}, {FN (coth), ARG(0.0e+00,-9.42512322775237976202e+00), RES(0, 2.8963092606611468657e3)}, {FN (coth), ARG(1.19209289550781250e-07,-3.45266983001243932001e-04), RES(9.9999992052715532101e-1, 2.8963089153841613713e3)}, {FN (coth), ARG(1.19209289550781250e-07,3.45266983001243932001e-04), RES(9.9999992052715532101e-1, -2.8963089153841613713e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-3.45266983001243932001e-04), RES(-9.9999992052715532101e-1, 2.8963089153841613713e3)}, {FN (coth), ARG(-1.19209289550781250e-07,3.45266983001243932001e-04), RES(-9.9999992052715532101e-1, -2.8963089153841613713e3)}, {FN (coth), ARG(1.19209289550781250e-07,1.57045105981189525579e+00), RES(1.1920930376163652990e-7, -3.4526699672103643753e-4)}, {FN (coth), ARG(1.19209289550781250e-07,-1.57045105981189525579e+00), RES(1.1920930376163652990e-7, 3.4526699672103643753e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,1.57045105981189525579e+00), RES(-1.1920930376163652990e-7, -3.4526699672103643753e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,-1.57045105981189525579e+00), RES(-1.1920930376163652990e-7, 3.4526699672103643753e-4)}, {FN (coth), ARG(1.19209289550781250e-07,1.57114159377789786021e+00), RES(1.1920930376163652989e-7, 3.4526699672091397283e-4)}, {FN (coth), ARG(1.19209289550781250e-07,-1.57114159377789786021e+00), RES(1.1920930376163652989e-7, -3.4526699672091397283e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,1.57114159377789786021e+00), RES(-1.1920930376163652989e-7, 3.4526699672091397283e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,-1.57114159377789786021e+00), RES(-1.1920930376163652989e-7, -3.4526699672091397283e-4)}, {FN (coth), ARG(1.19209289550781250e-07,3.14124738660679181379e+00), RES(9.9999992052610836018e-1, 2.8963089153826452102e3)}, {FN (coth), ARG(1.19209289550781250e-07,-3.14124738660679181379e+00), RES(9.9999992052610836018e-1, -2.8963089153826452102e3)}, {FN (coth), ARG(-1.19209289550781250e-07,3.14124738660679181379e+00), RES(-9.9999992052610836018e-1, 2.8963089153826452102e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-3.14124738660679181379e+00), RES(-9.9999992052610836018e-1, -2.8963089153826452102e3)}, {FN (coth), ARG(1.19209289550781250e-07,3.14193792057279441821e+00), RES(9.9999992052752714224e-1, -2.8963089153846998260e3)}, {FN (coth), ARG(1.19209289550781250e-07,-3.14193792057279441821e+00), RES(9.9999992052752714224e-1, 2.8963089153846998260e3)}, {FN (coth), ARG(-1.19209289550781250e-07,3.14193792057279441821e+00), RES(-9.9999992052752714224e-1, -2.8963089153846998260e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-3.14193792057279441821e+00), RES(-9.9999992052752714224e-1, 2.8963089153846998260e3)}, {FN (coth), ARG(1.19209289550781250e-07,4.71204371340168837179e+00), RES(1.1920930376163652991e-7, -3.4526699672115890222e-4)}, {FN (coth), ARG(1.19209289550781250e-07,-4.71204371340168837179e+00), RES(1.1920930376163652991e-7, 3.4526699672115890222e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,4.71204371340168837179e+00), RES(-1.1920930376163652991e-7, -3.4526699672115890222e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,-4.71204371340168837179e+00), RES(-1.1920930376163652991e-7, 3.4526699672115890222e-4)}, {FN (coth), ARG(1.19209289550781250e-07,4.71273424736769097620e+00), RES(1.1920930376163652988e-7, 3.4526699672079150814e-4)}, {FN (coth), ARG(1.19209289550781250e-07,-4.71273424736769097620e+00), RES(1.1920930376163652988e-7, -3.4526699672079150814e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,4.71273424736769097620e+00), RES(-1.1920930376163652988e-7, 3.4526699672079150814e-4)}, {FN (coth), ARG(-1.19209289550781250e-07,-4.71273424736769097620e+00), RES(-1.1920930376163652988e-7, -3.4526699672079150814e-4)}, {FN (coth), ARG(1.19209289550781250e-07,6.28284004019658492979e+00), RES(9.9999992052539896914e-1, 2.8963089153816179024e3)}, {FN (coth), ARG(1.19209289550781250e-07,-6.28284004019658492979e+00), RES(9.9999992052539896914e-1, -2.8963089153816179024e3)}, {FN (coth), ARG(-1.19209289550781250e-07,6.28284004019658492979e+00), RES(-9.9999992052539896914e-1, 2.8963089153816179024e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-6.28284004019658492979e+00), RES(-9.9999992052539896914e-1, -2.8963089153816179024e3)}, {FN (coth), ARG(1.19209289550781250e-07,6.28353057416258753420e+00), RES(9.9999992052823653327e-1, -2.8963089153857271338e3)}, {FN (coth), ARG(1.19209289550781250e-07,-6.28353057416258753420e+00), RES(9.9999992052823653327e-1, 2.8963089153857271338e3)}, {FN (coth), ARG(-1.19209289550781250e-07,6.28353057416258753420e+00), RES(-9.9999992052823653327e-1, -2.8963089153857271338e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-6.28353057416258753420e+00), RES(-9.9999992052823653327e-1, 2.8963089153857271338e3)}, {FN (coth), ARG(1.19209289550781250e-07,9.42443269378637893396e+00), RES(9.9999992052983445585e-1, 2.8963089153880411727e3)}, {FN (coth), ARG(1.19209289550781250e-07,-9.42443269378637893396e+00), RES(9.9999992052983445585e-1, -2.8963089153880411727e3)}, {FN (coth), ARG(-1.19209289550781250e-07,9.42443269378637893396e+00), RES(-9.9999992052983445585e-1, 2.8963089153880411727e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-9.42443269378637893396e+00), RES(-9.9999992052983445585e-1, -2.8963089153880411727e3)}, {FN (coth), ARG(1.19209289550781250e-07,9.42512322775237976202e+00), RES(9.9999992053409080205e-1, -2.8963089153942050199e3)}, {FN (coth), ARG(1.19209289550781250e-07,-9.42512322775237976202e+00), RES(9.9999992053409080205e-1, 2.8963089153942050199e3)}, {FN (coth), ARG(-1.19209289550781250e-07,9.42512322775237976202e+00), RES(-9.9999992053409080205e-1, -2.8963089153942050199e3)}, {FN (coth), ARG(-1.19209289550781250e-07,-9.42512322775237976202e+00), RES(-9.9999992053409080205e-1, 2.8963089153942050199e3)}, {FN (coth), ARG(5.0e-01,-3.45266983001243932001e-04), RES(2.1639524637389326002e0, 1.2715121175451222247e-3)}, {FN (coth), ARG(5.0e-01,3.45266983001243932001e-04), RES(2.1639524637389326002e0, -1.2715121175451222247e-3)}, {FN (coth), ARG(-5.0e-01,-3.45266983001243932001e-04), RES(-2.1639524637389326002e0, 1.2715121175451222247e-3)}, {FN (coth), ARG(-5.0e-01,3.45266983001243932001e-04), RES(-2.1639524637389326002e0, -1.2715121175451222247e-3)}, {FN (coth), ARG(5.0e-01,1.57045105981189525579e+00), RES(4.6211720058436229982e-1, -2.7153443992665204631e-4)}, {FN (coth), ARG(5.0e-01,-1.57045105981189525579e+00), RES(4.6211720058436229982e-1, 2.7153443992665204631e-4)}, {FN (coth), ARG(-5.0e-01,1.57045105981189525579e+00), RES(-4.6211720058436229982e-1, -2.7153443992665204631e-4)}, {FN (coth), ARG(-5.0e-01,-1.57045105981189525579e+00), RES(-4.6211720058436229982e-1, 2.7153443992665204631e-4)}, {FN (coth), ARG(5.0e-01,1.57114159377789786021e+00), RES(4.6211720058436229979e-1, 2.7153443992655573423e-4)}, {FN (coth), ARG(5.0e-01,-1.57114159377789786021e+00), RES(4.6211720058436229979e-1, -2.7153443992655573423e-4)}, {FN (coth), ARG(-5.0e-01,1.57114159377789786021e+00), RES(-4.6211720058436229979e-1, 2.7153443992655573423e-4)}, {FN (coth), ARG(-5.0e-01,-1.57114159377789786021e+00), RES(-4.6211720058436229979e-1, -2.7153443992655573423e-4)}, {FN (coth), ARG(5.0e-01,3.14124738660679181379e+00), RES(2.1639524637389325992e0, 1.2715121175457878359e-3)}, {FN (coth), ARG(5.0e-01,-3.14124738660679181379e+00), RES(2.1639524637389325992e0, -1.2715121175457878359e-3)}, {FN (coth), ARG(-5.0e-01,3.14124738660679181379e+00), RES(-2.1639524637389325992e0, 1.2715121175457878359e-3)}, {FN (coth), ARG(-5.0e-01,-3.14124738660679181379e+00), RES(-2.1639524637389325992e0, -1.2715121175457878359e-3)}, {FN (coth), ARG(5.0e-01,3.14193792057279441821e+00), RES(2.1639524637389326006e0, -1.2715121175448858373e-3)}, {FN (coth), ARG(5.0e-01,-3.14193792057279441821e+00), RES(2.1639524637389326006e0, 1.2715121175448858373e-3)}, {FN (coth), ARG(-5.0e-01,3.14193792057279441821e+00), RES(-2.1639524637389326006e0, -1.2715121175448858373e-3)}, {FN (coth), ARG(-5.0e-01,-3.14193792057279441821e+00), RES(-2.1639524637389326006e0, 1.2715121175448858373e-3)}, {FN (coth), ARG(5.0e-01,4.71204371340168837179e+00), RES(4.6211720058436229985e-1, -2.7153443992674835838e-4)}, {FN (coth), ARG(5.0e-01,-4.71204371340168837179e+00), RES(4.6211720058436229985e-1, 2.7153443992674835838e-4)}, {FN (coth), ARG(-5.0e-01,4.71204371340168837179e+00), RES(-4.6211720058436229985e-1, -2.7153443992674835838e-4)}, {FN (coth), ARG(-5.0e-01,-4.71204371340168837179e+00), RES(-4.6211720058436229985e-1, 2.7153443992674835838e-4)}, {FN (coth), ARG(5.0e-01,4.71273424736769097620e+00), RES(4.6211720058436229976e-1, 2.7153443992645942216e-4)}, {FN (coth), ARG(5.0e-01,-4.71273424736769097620e+00), RES(4.6211720058436229976e-1, -2.7153443992645942216e-4)}, {FN (coth), ARG(-5.0e-01,4.71273424736769097620e+00), RES(-4.6211720058436229976e-1, 2.7153443992645942216e-4)}, {FN (coth), ARG(-5.0e-01,-4.71273424736769097620e+00), RES(-4.6211720058436229976e-1, -2.7153443992645942216e-4)}, {FN (coth), ARG(5.0e-01,6.28284004019658492979e+00), RES(2.1639524637389325986e0, 1.2715121175462388352e-3)}, {FN (coth), ARG(5.0e-01,-6.28284004019658492979e+00), RES(2.1639524637389325986e0, -1.2715121175462388352e-3)}, {FN (coth), ARG(-5.0e-01,6.28284004019658492979e+00), RES(-2.1639524637389325986e0, 1.2715121175462388352e-3)}, {FN (coth), ARG(-5.0e-01,-6.28284004019658492979e+00), RES(-2.1639524637389325986e0, -1.2715121175462388352e-3)}, {FN (coth), ARG(5.0e-01,6.28353057416258753420e+00), RES(2.1639524637389326012e0, -1.2715121175444348380e-3)}, {FN (coth), ARG(5.0e-01,-6.28353057416258753420e+00), RES(2.1639524637389326012e0, 1.2715121175444348380e-3)}, {FN (coth), ARG(-5.0e-01,6.28353057416258753420e+00), RES(-2.1639524637389326012e0, -1.2715121175444348380e-3)}, {FN (coth), ARG(-5.0e-01,-6.28353057416258753420e+00), RES(-2.1639524637389326012e0, 1.2715121175444348380e-3)}, {FN (coth), ARG(5.0e-01,9.42443269378637893396e+00), RES(2.1639524637389326028e0, 1.2715121175434189499e-3)}, {FN (coth), ARG(5.0e-01,-9.42443269378637893396e+00), RES(2.1639524637389326028e0, -1.2715121175434189499e-3)}, {FN (coth), ARG(-5.0e-01,9.42443269378637893396e+00), RES(-2.1639524637389326028e0, 1.2715121175434189499e-3)}, {FN (coth), ARG(-5.0e-01,-9.42443269378637893396e+00), RES(-2.1639524637389326028e0, -1.2715121175434189499e-3)}, {FN (coth), ARG(5.0e-01,9.42512322775237976202e+00), RES(2.1639524637389326068e0, -1.2715121175407129542e-3)}, {FN (coth), ARG(5.0e-01,-9.42512322775237976202e+00), RES(2.1639524637389326068e0, 1.2715121175407129542e-3)}, {FN (coth), ARG(-5.0e-01,9.42512322775237976202e+00), RES(-2.1639524637389326068e0, -1.2715121175407129542e-3)}, {FN (coth), ARG(-5.0e-01,-9.42512322775237976202e+00), RES(-2.1639524637389326068e0, 1.2715121175407129542e-3)}, {FN (coth), ARG(1.0e+00,-3.45266983001243932001e-04), RES(1.3130351721648674824e0, 2.4999454374267620687e-4)}, {FN (coth), ARG(1.0e+00,3.45266983001243932001e-04), RES(1.3130351721648674824e0, -2.4999454374267620687e-4)}, {FN (coth), ARG(-1.0e+00,-3.45266983001243932001e-04), RES(-1.3130351721648674824e0, 2.4999454374267620687e-4)}, {FN (coth), ARG(-1.0e+00,3.45266983001243932001e-04), RES(-1.3130351721648674824e0, -2.4999454374267620687e-4)}, {FN (coth), ARG(1.0e+00,1.57045105981189525579e+00), RES(7.6159419408485704839e-1, -1.4500326960279979918e-4)}, {FN (coth), ARG(1.0e+00,-1.57045105981189525579e+00), RES(7.6159419408485704839e-1, 1.4500326960279979918e-4)}, {FN (coth), ARG(-1.0e+00,1.57045105981189525579e+00), RES(-7.6159419408485704839e-1, -1.4500326960279979918e-4)}, {FN (coth), ARG(-1.0e+00,-1.57045105981189525579e+00), RES(-7.6159419408485704839e-1, 1.4500326960279979918e-4)}, {FN (coth), ARG(1.0e+00,1.57114159377789786021e+00), RES(7.6159419408485704836e-1, 1.4500326960274836716e-4)}, {FN (coth), ARG(1.0e+00,-1.57114159377789786021e+00), RES(7.6159419408485704836e-1, -1.4500326960274836716e-4)}, {FN (coth), ARG(-1.0e+00,1.57114159377789786021e+00), RES(-7.6159419408485704836e-1, 1.4500326960274836716e-4)}, {FN (coth), ARG(-1.0e+00,-1.57114159377789786021e+00), RES(-7.6159419408485704836e-1, -1.4500326960274836716e-4)}, {FN (coth), ARG(1.0e+00,3.14124738660679181379e+00), RES(1.3130351721648674823e0, 2.4999454374280707411e-4)}, {FN (coth), ARG(1.0e+00,-3.14124738660679181379e+00), RES(1.3130351721648674823e0, -2.4999454374280707411e-4)}, {FN (coth), ARG(-1.0e+00,3.14124738660679181379e+00), RES(-1.3130351721648674823e0, 2.4999454374280707411e-4)}, {FN (coth), ARG(-1.0e+00,-3.14124738660679181379e+00), RES(-1.3130351721648674823e0, -2.4999454374280707411e-4)}, {FN (coth), ARG(1.0e+00,3.14193792057279441821e+00), RES(1.3130351721648674824e0, -2.4999454374262973024e-4)}, {FN (coth), ARG(1.0e+00,-3.14193792057279441821e+00), RES(1.3130351721648674824e0, 2.4999454374262973024e-4)}, {FN (coth), ARG(-1.0e+00,3.14193792057279441821e+00), RES(-1.3130351721648674824e0, -2.4999454374262973024e-4)}, {FN (coth), ARG(-1.0e+00,-3.14193792057279441821e+00), RES(-1.3130351721648674824e0, 2.4999454374262973024e-4)}, {FN (coth), ARG(1.0e+00,4.71204371340168837179e+00), RES(7.6159419408485704842e-1, -1.4500326960285123120e-4)}, {FN (coth), ARG(1.0e+00,-4.71204371340168837179e+00), RES(7.6159419408485704842e-1, 1.4500326960285123120e-4)}, {FN (coth), ARG(-1.0e+00,4.71204371340168837179e+00), RES(-7.6159419408485704842e-1, -1.4500326960285123120e-4)}, {FN (coth), ARG(-1.0e+00,-4.71204371340168837179e+00), RES(-7.6159419408485704842e-1, 1.4500326960285123120e-4)}, {FN (coth), ARG(1.0e+00,4.71273424736769097620e+00), RES(7.6159419408485704834e-1, 1.4500326960269693514e-4)}, {FN (coth), ARG(1.0e+00,-4.71273424736769097620e+00), RES(7.6159419408485704834e-1, -1.4500326960269693514e-4)}, {FN (coth), ARG(-1.0e+00,4.71273424736769097620e+00), RES(-7.6159419408485704834e-1, 1.4500326960269693514e-4)}, {FN (coth), ARG(-1.0e+00,-4.71273424736769097620e+00), RES(-7.6159419408485704834e-1, -1.4500326960269693514e-4)}, {FN (coth), ARG(1.0e+00,6.28284004019658492979e+00), RES(1.3130351721648674822e0, 2.4999454374289574604e-4)}, {FN (coth), ARG(1.0e+00,-6.28284004019658492979e+00), RES(1.3130351721648674822e0, -2.4999454374289574604e-4)}, {FN (coth), ARG(-1.0e+00,6.28284004019658492979e+00), RES(-1.3130351721648674822e0, 2.4999454374289574604e-4)}, {FN (coth), ARG(-1.0e+00,-6.28284004019658492979e+00), RES(-1.3130351721648674822e0, -2.4999454374289574604e-4)}, {FN (coth), ARG(1.0e+00,6.28353057416258753420e+00), RES(1.3130351721648674825e0, -2.4999454374254105830e-4)}, {FN (coth), ARG(1.0e+00,-6.28353057416258753420e+00), RES(1.3130351721648674825e0, 2.4999454374254105830e-4)}, {FN (coth), ARG(-1.0e+00,6.28353057416258753420e+00), RES(-1.3130351721648674825e0, -2.4999454374254105830e-4)}, {FN (coth), ARG(-1.0e+00,-6.28353057416258753420e+00), RES(-1.3130351721648674825e0, 2.4999454374254105830e-4)}, {FN (coth), ARG(1.0e+00,9.42443269378637893396e+00), RES(1.3130351721648674827e0, 2.4999454374234132236e-4)}, {FN (coth), ARG(1.0e+00,-9.42443269378637893396e+00), RES(1.3130351721648674827e0, -2.4999454374234132236e-4)}, {FN (coth), ARG(-1.0e+00,9.42443269378637893396e+00), RES(-1.3130351721648674827e0, 2.4999454374234132236e-4)}, {FN (coth), ARG(-1.0e+00,-9.42443269378637893396e+00), RES(-1.3130351721648674827e0, -2.4999454374234132236e-4)}, {FN (coth), ARG(1.0e+00,9.42512322775237976202e+00), RES(1.3130351721648674832e0, -2.4999454374180929074e-4)}, {FN (coth), ARG(1.0e+00,-9.42512322775237976202e+00), RES(1.3130351721648674832e0, 2.4999454374180929074e-4)}, {FN (coth), ARG(-1.0e+00,9.42512322775237976202e+00), RES(-1.3130351721648674832e0, -2.4999454374180929074e-4)}, {FN (coth), ARG(-1.0e+00,-9.42512322775237976202e+00), RES(-1.3130351721648674832e0, 2.4999454374180929074e-4)}, {FN (coth), ARG(2.0e+00,-3.45266983001243932001e-04), RES(1.0373147113268752620e0, 2.6247825506563736365e-5)}, {FN (coth), ARG(2.0e+00,3.45266983001243932001e-04), RES(1.0373147113268752620e0, -2.6247825506563736365e-5)}, {FN (coth), ARG(-2.0e+00,-3.45266983001243932001e-04), RES(-1.0373147113268752620e0, 2.6247825506563736365e-5)}, {FN (coth), ARG(-2.0e+00,3.45266983001243932001e-04), RES(-1.0373147113268752620e0, -2.6247825506563736365e-5)}, {FN (coth), ARG(2.0e+00,1.57045105981189525579e+00), RES(9.6402758819508310557e-1, -2.4393395410443750226e-5)}, {FN (coth), ARG(2.0e+00,-1.57045105981189525579e+00), RES(9.6402758819508310557e-1, 2.4393395410443750226e-5)}, {FN (coth), ARG(-2.0e+00,1.57045105981189525579e+00), RES(-9.6402758819508310557e-1, -2.4393395410443750226e-5)}, {FN (coth), ARG(-2.0e+00,-1.57045105981189525579e+00), RES(-9.6402758819508310557e-1, 2.4393395410443750226e-5)}, {FN (coth), ARG(2.0e+00,1.57114159377789786021e+00), RES(9.6402758819508310556e-1, 2.4393395410435097997e-5)}, {FN (coth), ARG(2.0e+00,-1.57114159377789786021e+00), RES(9.6402758819508310556e-1, -2.4393395410435097997e-5)}, {FN (coth), ARG(-2.0e+00,1.57114159377789786021e+00), RES(-9.6402758819508310556e-1, 2.4393395410435097997e-5)}, {FN (coth), ARG(-2.0e+00,-1.57114159377789786021e+00), RES(-9.6402758819508310556e-1, -2.4393395410435097997e-5)}, {FN (coth), ARG(2.0e+00,3.14124738660679181379e+00), RES(1.0373147113268752620e0, 2.6247825506577476589e-5)}, {FN (coth), ARG(2.0e+00,-3.14124738660679181379e+00), RES(1.0373147113268752620e0, -2.6247825506577476589e-5)}, {FN (coth), ARG(-2.0e+00,3.14124738660679181379e+00), RES(-1.0373147113268752620e0, 2.6247825506577476589e-5)}, {FN (coth), ARG(-2.0e+00,-3.14124738660679181379e+00), RES(-1.0373147113268752620e0, -2.6247825506577476589e-5)}, {FN (coth), ARG(2.0e+00,3.14193792057279441821e+00), RES(1.0373147113268752620e0, -2.6247825506558856616e-5)}, {FN (coth), ARG(2.0e+00,-3.14193792057279441821e+00), RES(1.0373147113268752620e0, 2.6247825506558856616e-5)}, {FN (coth), ARG(-2.0e+00,3.14193792057279441821e+00), RES(-1.0373147113268752620e0, -2.6247825506558856616e-5)}, {FN (coth), ARG(-2.0e+00,-3.14193792057279441821e+00), RES(-1.0373147113268752620e0, 2.6247825506558856616e-5)}, {FN (coth), ARG(2.0e+00,4.71204371340168837179e+00), RES(9.6402758819508310557e-1, -2.4393395410452402454e-5)}, {FN (coth), ARG(2.0e+00,-4.71204371340168837179e+00), RES(9.6402758819508310557e-1, 2.4393395410452402454e-5)}, {FN (coth), ARG(-2.0e+00,4.71204371340168837179e+00), RES(-9.6402758819508310557e-1, -2.4393395410452402454e-5)}, {FN (coth), ARG(-2.0e+00,-4.71204371340168837179e+00), RES(-9.6402758819508310557e-1, 2.4393395410452402454e-5)}, {FN (coth), ARG(2.0e+00,4.71273424736769097620e+00), RES(9.6402758819508310556e-1, 2.4393395410426445768e-5)}, {FN (coth), ARG(2.0e+00,-4.71273424736769097620e+00), RES(9.6402758819508310556e-1, -2.4393395410426445768e-5)}, {FN (coth), ARG(-2.0e+00,4.71273424736769097620e+00), RES(-9.6402758819508310556e-1, 2.4393395410426445768e-5)}, {FN (coth), ARG(-2.0e+00,-4.71273424736769097620e+00), RES(-9.6402758819508310556e-1, -2.4393395410426445768e-5)}, {FN (coth), ARG(2.0e+00,6.28284004019658492979e+00), RES(1.0373147113268752620e0, 2.6247825506586786575e-5)}, {FN (coth), ARG(2.0e+00,-6.28284004019658492979e+00), RES(1.0373147113268752620e0, -2.6247825506586786575e-5)}, {FN (coth), ARG(-2.0e+00,6.28284004019658492979e+00), RES(-1.0373147113268752620e0, 2.6247825506586786575e-5)}, {FN (coth), ARG(-2.0e+00,-6.28284004019658492979e+00), RES(-1.0373147113268752620e0, -2.6247825506586786575e-5)}, {FN (coth), ARG(2.0e+00,6.28353057416258753420e+00), RES(1.0373147113268752620e0, -2.6247825506549546629e-5)}, {FN (coth), ARG(2.0e+00,-6.28353057416258753420e+00), RES(1.0373147113268752620e0, 2.6247825506549546629e-5)}, {FN (coth), ARG(-2.0e+00,6.28353057416258753420e+00), RES(-1.0373147113268752620e0, -2.6247825506549546629e-5)}, {FN (coth), ARG(-2.0e+00,-6.28353057416258753420e+00), RES(-1.0373147113268752620e0, 2.6247825506549546629e-5)}, {FN (coth), ARG(2.0e+00,9.42443269378637893396e+00), RES(1.0373147113268752620e0, 2.6247825506528575631e-5)}, {FN (coth), ARG(2.0e+00,-9.42443269378637893396e+00), RES(1.0373147113268752620e0, -2.6247825506528575631e-5)}, {FN (coth), ARG(-2.0e+00,9.42443269378637893396e+00), RES(-1.0373147113268752620e0, 2.6247825506528575631e-5)}, {FN (coth), ARG(-2.0e+00,-9.42443269378637893396e+00), RES(-1.0373147113268752620e0, -2.6247825506528575631e-5)}, {FN (coth), ARG(2.0e+00,9.42512322775237976202e+00), RES(1.0373147113268752621e0, -2.6247825506472715712e-5)}, {FN (coth), ARG(2.0e+00,-9.42512322775237976202e+00), RES(1.0373147113268752621e0, 2.6247825506472715712e-5)}, {FN (coth), ARG(-2.0e+00,9.42512322775237976202e+00), RES(-1.0373147113268752621e0, -2.6247825506472715712e-5)}, {FN (coth), ARG(-2.0e+00,-9.42512322775237976202e+00), RES(-1.0373147113268752621e0, 2.6247825506472715712e-5)}, {FN (arccsch), ARG(0.0e+00,1.19209289550781250e-07), RES(-1.6635532333438683873e1, -1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.6635532333438683873e1, 1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,5.0e-01), RES(-1.3169578969248167086e0, -1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,-5.0e-01), RES(1.3169578969248167086e0, 1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,1.0e+00), RES(0, -1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,-1.0e+00), RES(0, 1.5707963267948966192e0)}, {FN (arccsch), ARG(0.0e+00,2.0e+00), RES(0, -5.2359877559829887308e-1)}, {FN (arccsch), ARG(0.0e+00,-2.0e+00), RES(0, 5.2359877559829887308e-1)}, {FN (arccsch), ARG(0.0e+00,8.3886080e+06), RES(0, -1.1920928955078153234e-7)}, {FN (arccsch), ARG(0.0e+00,-8.3886080e+06), RES(0, 1.1920928955078153234e-7)}, {FN (arccsch), ARG(1.19209289550781250e-07,0.0e+00), RES(1.6635532333438690979e1, 0.0)}, {FN (arccsch), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.6635532333438690979e1, 0.0)}, {FN (arccsch), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.6288958743158714771e1, -7.8539816339744120419e-1)}, {FN (arccsch), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.6288958743158714771e1, 7.8539816339744120419e-1)}, {FN (arccsch), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.6288958743158714771e1, -7.8539816339744120419e-1)}, {FN (arccsch), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.6288958743158714771e1, 7.8539816339744120419e-1)}, {FN (arccsch), ARG(1.19209289550781250e-07,5.0e-01), RES(1.3169578969247948296e0, -1.5707960514928349710e0)}, {FN (arccsch), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.3169578969247948296e0, 1.5707960514928349710e0)}, {FN (arccsch), ARG(-1.19209289550781250e-07,5.0e-01), RES(-1.3169578969247948296e0, -1.5707960514928349710e0)}, {FN (arccsch), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.3169578969247948296e0, 1.5707960514928349710e0)}, {FN (arccsch), ARG(1.19209289550781250e-07,1.0e+00), RES(3.4526696585164602772e-4, -1.5704510597947457801e0)}, {FN (arccsch), ARG(1.19209289550781250e-07,-1.0e+00), RES(3.4526696585164602772e-4, 1.5704510597947457801e0)}, {FN (arccsch), ARG(-1.19209289550781250e-07,1.0e+00), RES(-3.4526696585164602772e-4, -1.5704510597947457801e0)}, {FN (arccsch), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-3.4526696585164602772e-4, 1.5704510597947457801e0)}, {FN (arccsch), ARG(1.19209289550781250e-07,2.0e+00), RES(3.4412757706023621662e-8, -5.2359877559829648006e-1)}, {FN (arccsch), ARG(1.19209289550781250e-07,-2.0e+00), RES(3.4412757706023621662e-8, 5.2359877559829648006e-1)}, {FN (arccsch), ARG(-1.19209289550781250e-07,2.0e+00), RES(-3.4412757706023621662e-8, -5.2359877559829648006e-1)}, {FN (arccsch), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-3.4412757706023621662e-8, 5.2359877559829648006e-1)}, {FN (arccsch), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6940658945086127152e-21, -1.1920928955078153234e-7)}, {FN (arccsch), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6940658945086127152e-21, 1.1920928955078153234e-7)}, {FN (arccsch), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6940658945086127152e-21, -1.1920928955078153234e-7)}, {FN (arccsch), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6940658945086127152e-21, 1.1920928955078153234e-7)}, {FN (arccsch), ARG(5.0e-01,0.0e+00), RES(1.4436354751788103425e0, 0.0)}, {FN (arccsch), ARG(-5.0e-01,0.0e+00), RES(-1.4436354751788103425e0, 0.0)}, {FN (arccsch), ARG(5.0e-01,1.19209289550781250e-07), RES(1.4436354751787798371e0, -2.1324805998799710740e-7)}, {FN (arccsch), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.4436354751787798371e0, 2.1324805998799710740e-7)}, {FN (arccsch), ARG(-5.0e-01,1.19209289550781250e-07), RES(-1.4436354751787798371e0, -2.1324805998799710740e-7)}, {FN (arccsch), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-1.4436354751787798371e0, 2.1324805998799710740e-7)}, {FN (arccsch), ARG(5.0e-01,5.0e-01), RES(1.0612750619050356520e0, -6.6623943249251525510e-1)}, {FN (arccsch), ARG(5.0e-01,-5.0e-01), RES(1.0612750619050356520e0, 6.6623943249251525510e-1)}, {FN (arccsch), ARG(-5.0e-01,5.0e-01), RES(-1.0612750619050356520e0, -6.6623943249251525510e-1)}, {FN (arccsch), ARG(-5.0e-01,-5.0e-01), RES(-1.0612750619050356520e0, 6.6623943249251525510e-1)}, {FN (arccsch), ARG(5.0e-01,1.0e+00), RES(5.3321829058411214108e-1, -7.7308635671950473342e-1)}, {FN (arccsch), ARG(5.0e-01,-1.0e+00), RES(5.3321829058411214108e-1, 7.7308635671950473342e-1)}, {FN (arccsch), ARG(-5.0e-01,1.0e+00), RES(-5.3321829058411214108e-1, -7.7308635671950473342e-1)}, {FN (arccsch), ARG(-5.0e-01,-1.0e+00), RES(-5.3321829058411214108e-1, 7.7308635671950473342e-1)}, {FN (arccsch), ARG(5.0e-01,2.0e+00), RES(1.3261586085051183885e-1, -4.8530734047334251250e-1)}, {FN (arccsch), ARG(5.0e-01,-2.0e+00), RES(1.3261586085051183885e-1, 4.8530734047334251250e-1)}, {FN (arccsch), ARG(-5.0e-01,2.0e+00), RES(-1.3261586085051183885e-1, -4.8530734047334251250e-1)}, {FN (arccsch), ARG(-5.0e-01,-2.0e+00), RES(-1.3261586085051183885e-1, 4.8530734047334251250e-1)}, {FN (arccsch), ARG(5.0e-01,8.3886080e+06), RES(7.1054273576010271023e-15, -1.1920928955078110883e-7)}, {FN (arccsch), ARG(5.0e-01,-8.3886080e+06), RES(7.1054273576010271023e-15, 1.1920928955078110883e-7)}, {FN (arccsch), ARG(-5.0e-01,8.3886080e+06), RES(-7.1054273576010271023e-15, -1.1920928955078110883e-7)}, {FN (arccsch), ARG(-5.0e-01,-8.3886080e+06), RES(-7.1054273576010271023e-15, 1.1920928955078110883e-7)}, {FN (arccsch), ARG(1.0e+00,0.0e+00), RES(8.8137358701954302523e-1, 0.0)}, {FN (arccsch), ARG(-1.0e+00,0.0e+00), RES(-8.8137358701954302523e-1, 0.0)}, {FN (arccsch), ARG(1.0e+00,1.19209289550781250e-07), RES(8.8137358701953548879e-1, -8.4293697021787414719e-8)}, {FN (arccsch), ARG(1.0e+00,-1.19209289550781250e-07), RES(8.8137358701953548879e-1, 8.4293697021787414719e-8)}, {FN (arccsch), ARG(-1.0e+00,1.19209289550781250e-07), RES(-8.8137358701953548879e-1, -8.4293697021787414719e-8)}, {FN (arccsch), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-8.8137358701953548879e-1, 8.4293697021787414719e-8)}, {FN (arccsch), ARG(1.0e+00,5.0e-01), RES(7.6388434595371104541e-1, -3.1122579724476109533e-1)}, {FN (arccsch), ARG(1.0e+00,-5.0e-01), RES(7.6388434595371104541e-1, 3.1122579724476109533e-1)}, {FN (arccsch), ARG(-1.0e+00,5.0e-01), RES(-7.6388434595371104541e-1, -3.1122579724476109533e-1)}, {FN (arccsch), ARG(-1.0e+00,-5.0e-01), RES(-7.6388434595371104541e-1, 3.1122579724476109533e-1)}, {FN (arccsch), ARG(1.0e+00,1.0e+00), RES(5.3063753095251782602e-1, -4.5227844715119068206e-1)}, {FN (arccsch), ARG(1.0e+00,-1.0e+00), RES(5.3063753095251782602e-1, 4.5227844715119068206e-1)}, {FN (arccsch), ARG(-1.0e+00,1.0e+00), RES(-5.3063753095251782602e-1, -4.5227844715119068206e-1)}, {FN (arccsch), ARG(-1.0e+00,-1.0e+00), RES(-5.3063753095251782602e-1, 4.5227844715119068206e-1)}, {FN (arccsch), ARG(1.0e+00,2.0e+00), RES(2.1561241855582964497e-1, -4.0158639166780606828e-1)}, {FN (arccsch), ARG(1.0e+00,-2.0e+00), RES(2.1561241855582964497e-1, 4.0158639166780606828e-1)}, {FN (arccsch), ARG(-1.0e+00,2.0e+00), RES(-2.1561241855582964497e-1, -4.0158639166780606828e-1)}, {FN (arccsch), ARG(-1.0e+00,-2.0e+00), RES(-2.1561241855582964497e-1, 4.0158639166780606828e-1)}, {FN (arccsch), ARG(1.0e+00,8.3886080e+06), RES(1.4210854715201902743e-14, -1.1920928955077983828e-7)}, {FN (arccsch), ARG(1.0e+00,-8.3886080e+06), RES(1.4210854715201902743e-14, 1.1920928955077983828e-7)}, {FN (arccsch), ARG(-1.0e+00,8.3886080e+06), RES(-1.4210854715201902743e-14, -1.1920928955077983828e-7)}, {FN (arccsch), ARG(-1.0e+00,-8.3886080e+06), RES(-1.4210854715201902743e-14, 1.1920928955077983828e-7)}, {FN (arccsch), ARG(2.0e+00,0.0e+00), RES(4.8121182505960344750e-1, 0.0)}, {FN (arccsch), ARG(-2.0e+00,0.0e+00), RES(-4.8121182505960344750e-1, 0.0)}, {FN (arccsch), ARG(2.0e+00,1.19209289550781250e-07), RES(4.8121182505960201756e-1, -2.6656007498500149811e-8)}, {FN (arccsch), ARG(2.0e+00,-1.19209289550781250e-07), RES(4.8121182505960201756e-1, 2.6656007498500149811e-8)}, {FN (arccsch), ARG(-2.0e+00,1.19209289550781250e-07), RES(-4.8121182505960201756e-1, -2.6656007498500149811e-8)}, {FN (arccsch), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-4.8121182505960201756e-1, 2.6656007498500149811e-8)}, {FN (arccsch), ARG(2.0e+00,5.0e-01), RES(4.5717847686917515748e-1, -1.0654050295275703990e-1)}, {FN (arccsch), ARG(2.0e+00,-5.0e-01), RES(4.5717847686917515748e-1, 1.0654050295275703990e-1)}, {FN (arccsch), ARG(-2.0e+00,5.0e-01), RES(-4.5717847686917515748e-1, -1.0654050295275703990e-1)}, {FN (arccsch), ARG(-2.0e+00,-5.0e-01), RES(-4.5717847686917515748e-1, 1.0654050295275703990e-1)}, {FN (arccsch), ARG(2.0e+00,1.0e+00), RES(3.9656823011232897892e-1, -1.8631805410781552582e-1)}, {FN (arccsch), ARG(2.0e+00,-1.0e+00), RES(3.9656823011232897892e-1, 1.8631805410781552582e-1)}, {FN (arccsch), ARG(-2.0e+00,1.0e+00), RES(-3.9656823011232897892e-1, -1.8631805410781552582e-1)}, {FN (arccsch), ARG(-2.0e+00,-1.0e+00), RES(-3.9656823011232897892e-1, 1.8631805410781552582e-1)}, {FN (arccsch), ARG(2.0e+00,2.0e+00), RES(2.5489557334055081773e-1, -2.4452216513554014646e-1)}, {FN (arccsch), ARG(2.0e+00,-2.0e+00), RES(2.5489557334055081773e-1, 2.4452216513554014646e-1)}, {FN (arccsch), ARG(-2.0e+00,2.0e+00), RES(-2.5489557334055081773e-1, -2.4452216513554014646e-1)}, {FN (arccsch), ARG(-2.0e+00,-2.0e+00), RES(-2.5489557334055081773e-1, 2.4452216513554014646e-1)}, {FN (arccsch), ARG(2.0e+00,8.3886080e+06), RES(2.8421709430402593796e-14, -1.1920928955077475608e-7)}, {FN (arccsch), ARG(2.0e+00,-8.3886080e+06), RES(2.8421709430402593796e-14, 1.1920928955077475608e-7)}, {FN (arccsch), ARG(-2.0e+00,8.3886080e+06), RES(-2.8421709430402593796e-14, -1.1920928955077475608e-7)}, {FN (arccsch), ARG(-2.0e+00,-8.3886080e+06), RES(-2.8421709430402593796e-14, 1.1920928955077475608e-7)}, {FN (arccsch), ARG(8.3886080e+06,0.0e+00), RES(1.1920928955078096766e-7, 0.0)}, {FN (arccsch), ARG(-8.3886080e+06,0.0e+00), RES(-1.1920928955078096766e-7, 0.0)}, {FN (arccsch), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.1920928955078096766e-7, -1.6940658945085886411e-21)}, {FN (arccsch), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.1920928955078096766e-7, 1.6940658945085886411e-21)}, {FN (arccsch), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.1920928955078096766e-7, -1.6940658945085886411e-21)}, {FN (arccsch), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.1920928955078096766e-7, 1.6940658945085886411e-21)}, {FN (arccsch), ARG(8.3886080e+06,5.0e-01), RES(1.1920928955078054414e-7, -7.1054273576009261281e-15)}, {FN (arccsch), ARG(8.3886080e+06,-5.0e-01), RES(1.1920928955078054414e-7, 7.1054273576009261281e-15)}, {FN (arccsch), ARG(-8.3886080e+06,5.0e-01), RES(-1.1920928955078054414e-7, -7.1054273576009261281e-15)}, {FN (arccsch), ARG(-8.3886080e+06,-5.0e-01), RES(-1.1920928955078054414e-7, 7.1054273576009261281e-15)}, {FN (arccsch), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955077927359e-7, -1.4210854715201700795e-14)}, {FN (arccsch), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955077927359e-7, 1.4210854715201700795e-14)}, {FN (arccsch), ARG(-8.3886080e+06,1.0e+00), RES(-1.1920928955077927359e-7, -1.4210854715201700795e-14)}, {FN (arccsch), ARG(-8.3886080e+06,-1.0e+00), RES(-1.1920928955077927359e-7, 1.4210854715201700795e-14)}, {FN (arccsch), ARG(8.3886080e+06,2.0e+00), RES(1.1920928955077419139e-7, -2.8421709430402189899e-14)}, {FN (arccsch), ARG(8.3886080e+06,-2.0e+00), RES(1.1920928955077419139e-7, 2.8421709430402189899e-14)}, {FN (arccsch), ARG(-8.3886080e+06,2.0e+00), RES(-1.1920928955077419139e-7, -2.8421709430402189899e-14)}, {FN (arccsch), ARG(-8.3886080e+06,-2.0e+00), RES(-1.1920928955077419139e-7, 2.8421709430402189899e-14)}, {FN (arccsch), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390695586e-8, -5.9604644775390554414e-8)}, {FN (arccsch), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390695586e-8, 5.9604644775390554414e-8)}, {FN (arccsch), ARG(-8.3886080e+06,8.3886080e+06), RES(-5.9604644775390695586e-8, -5.9604644775390554414e-8)}, {FN (arccsch), ARG(-8.3886080e+06,-8.3886080e+06), RES(-5.9604644775390695586e-8, 5.9604644775390554414e-8)}, {FN (arcsech), ARG(0.0e+00,1.19209289550781250e-07), RES(1.6635532333438690979e1, -1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.6635532333438690979e1, 1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,5.0e-01), RES(1.4436354751788103425e0, -1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,-5.0e-01), RES(1.4436354751788103425e0, 1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,1.0e+00), RES(8.8137358701954302523e-1, -1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,-1.0e+00), RES(8.8137358701954302523e-1, 1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,2.0e+00), RES(4.8121182505960344750e-1, -1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,-2.0e+00), RES(4.8121182505960344750e-1, 1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,8.3886080e+06), RES(1.1920928955078096766e-7, -1.5707963267948966192e0)}, {FN (arcsech), ARG(0.0e+00,-8.3886080e+06), RES(1.1920928955078096766e-7, 1.5707963267948966192e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,0.0e+00), RES(1.6635532333438683873e1, 0.0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,0.0e+00), RES(1.6635532333438683873e1, 3.1415926535897932385e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.6288958743158714771e1, -7.8539816339745541504e-1)}, {FN (arcsech), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.6288958743158714771e1, 7.8539816339745541504e-1)}, {FN (arcsech), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(1.6288958743158714771e1, -2.3561944901923378234e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.6288958743158714771e1, 2.3561944901923378234e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,5.0e-01), RES(1.4436354751787798371e0, -1.5707961135468366312e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,-5.0e-01), RES(1.4436354751787798371e0, 1.5707961135468366312e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,5.0e-01), RES(1.4436354751787798371e0, -1.5707965400429566072e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,-5.0e-01), RES(1.4436354751787798371e0, 1.5707965400429566072e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,1.0e+00), RES(8.8137358701953548879e-1, -1.5707962425011995974e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,-1.0e+00), RES(8.8137358701953548879e-1, 1.5707962425011995974e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,1.0e+00), RES(8.8137358701953548879e-1, -1.5707964110885936410e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,-1.0e+00), RES(8.8137358701953548879e-1, 1.5707964110885936410e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,2.0e+00), RES(4.8121182505960201756e-1, -1.5707963001388891207e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,-2.0e+00), RES(4.8121182505960201756e-1, 1.5707963001388891207e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,2.0e+00), RES(4.8121182505960201756e-1, -1.5707963534509041177e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,-2.0e+00), RES(4.8121182505960201756e-1, 1.5707963534509041177e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.1920928955078096766e-7, -1.5707963267948966192e0)}, {FN (arcsech), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.1920928955078096766e-7, 1.5707963267948966192e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.1920928955078096766e-7, -1.5707963267948966192e0)}, {FN (arcsech), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.1920928955078096766e-7, 1.5707963267948966192e0)}, {FN (arcsech), ARG(5.0e-01,0.0e+00), RES(1.3169578969248167086e0, 0.0)}, {FN (arcsech), ARG(-5.0e-01,0.0e+00), RES(1.3169578969248167086e0, 3.1415926535897932385e0)}, {FN (arcsech), ARG(5.0e-01,1.19209289550781250e-07), RES(1.3169578969247948296e0, -2.7530206164818516969e-7)}, {FN (arcsech), ARG(5.0e-01,-1.19209289550781250e-07), RES(1.3169578969247948296e0, 2.7530206164818516969e-7)}, {FN (arcsech), ARG(-5.0e-01,1.19209289550781250e-07), RES(1.3169578969247948296e0, -3.1415923782877315903e0)}, {FN (arcsech), ARG(-5.0e-01,-1.19209289550781250e-07), RES(1.3169578969247948296e0, 3.1415923782877315903e0)}, {FN (arcsech), ARG(5.0e-01,5.0e-01), RES(1.0612750619050356520e0, -9.0455689430238136413e-1)}, {FN (arcsech), ARG(5.0e-01,-5.0e-01), RES(1.0612750619050356520e0, 9.0455689430238136413e-1)}, {FN (arcsech), ARG(-5.0e-01,5.0e-01), RES(1.0612750619050356520e0, -2.2370357592874118743e0)}, {FN (arcsech), ARG(-5.0e-01,-5.0e-01), RES(1.0612750619050356520e0, 2.2370357592874118743e0)}, {FN (arcsech), ARG(5.0e-01,1.0e+00), RES(7.6388434595371104541e-1, -1.2595705295501355239e0)}, {FN (arcsech), ARG(5.0e-01,-1.0e+00), RES(7.6388434595371104541e-1, 1.2595705295501355239e0)}, {FN (arcsech), ARG(-5.0e-01,1.0e+00), RES(7.6388434595371104541e-1, -1.8820221240396577146e0)}, {FN (arcsech), ARG(-5.0e-01,-1.0e+00), RES(7.6388434595371104541e-1, 1.8820221240396577146e0)}, {FN (arcsech), ARG(5.0e-01,2.0e+00), RES(4.5717847686917515748e-1, -1.4642558238421395793e0)}, {FN (arcsech), ARG(5.0e-01,-2.0e+00), RES(4.5717847686917515748e-1, 1.4642558238421395793e0)}, {FN (arcsech), ARG(-5.0e-01,2.0e+00), RES(4.5717847686917515748e-1, -1.6773368297476536591e0)}, {FN (arcsech), ARG(-5.0e-01,-2.0e+00), RES(4.5717847686917515748e-1, 1.6773368297476536591e0)}, {FN (arcsech), ARG(5.0e-01,8.3886080e+06), RES(1.1920928955078054414e-7, -1.5707963267948895138e0)}, {FN (arcsech), ARG(5.0e-01,-8.3886080e+06), RES(1.1920928955078054414e-7, 1.5707963267948895138e0)}, {FN (arcsech), ARG(-5.0e-01,8.3886080e+06), RES(1.1920928955078054414e-7, -1.5707963267949037247e0)}, {FN (arcsech), ARG(-5.0e-01,-8.3886080e+06), RES(1.1920928955078054414e-7, 1.5707963267949037247e0)}, {FN (arcsech), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arcsech), ARG(-1.0e+00,0.0e+00), RES(0, 3.1415926535897932385e0)}, {FN (arcsech), ARG(1.0e+00,1.19209289550781250e-07), RES(3.4526696585164602772e-4, -3.4526700015083915182e-4)}, {FN (arcsech), ARG(1.0e+00,-1.19209289550781250e-07), RES(3.4526696585164602772e-4, 3.4526700015083915182e-4)}, {FN (arcsech), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.4526696585164602772e-4, -3.1412473865896423993e0)}, {FN (arcsech), ARG(-1.0e+00,-1.19209289550781250e-07), RES(3.4526696585164602772e-4, 3.1412473865896423993e0)}, {FN (arcsech), ARG(1.0e+00,5.0e-01), RES(5.3321829058411214108e-1, -7.9770997007539188581e-1)}, {FN (arcsech), ARG(1.0e+00,-5.0e-01), RES(5.3321829058411214108e-1, 7.9770997007539188581e-1)}, {FN (arcsech), ARG(-1.0e+00,5.0e-01), RES(5.3321829058411214108e-1, -2.3438826835144013527e0)}, {FN (arcsech), ARG(-1.0e+00,-5.0e-01), RES(5.3321829058411214108e-1, 2.3438826835144013527e0)}, {FN (arcsech), ARG(1.0e+00,1.0e+00), RES(5.3063753095251782602e-1, -1.1185178796437059372e0)}, {FN (arcsech), ARG(1.0e+00,-1.0e+00), RES(5.3063753095251782602e-1, 1.1185178796437059372e0)}, {FN (arcsech), ARG(-1.0e+00,1.0e+00), RES(5.3063753095251782602e-1, -2.0230747739460873013e0)}, {FN (arcsech), ARG(-1.0e+00,-1.0e+00), RES(5.3063753095251782602e-1, 2.0230747739460873013e0)}, {FN (arcsech), ARG(1.0e+00,2.0e+00), RES(3.9656823011232897892e-1, -1.3844782726870810934e0)}, {FN (arcsech), ARG(1.0e+00,-2.0e+00), RES(3.9656823011232897892e-1, 1.3844782726870810934e0)}, {FN (arcsech), ARG(-1.0e+00,2.0e+00), RES(3.9656823011232897892e-1, -1.7571143809027121451e0)}, {FN (arcsech), ARG(-1.0e+00,-2.0e+00), RES(3.9656823011232897892e-1, 1.7571143809027121451e0)}, {FN (arcsech), ARG(1.0e+00,8.3886080e+06), RES(1.1920928955077927359e-7, -1.5707963267948824084e0)}, {FN (arcsech), ARG(1.0e+00,-8.3886080e+06), RES(1.1920928955077927359e-7, 1.5707963267948824084e0)}, {FN (arcsech), ARG(-1.0e+00,8.3886080e+06), RES(1.1920928955077927359e-7, -1.5707963267949108301e0)}, {FN (arcsech), ARG(-1.0e+00,-8.3886080e+06), RES(1.1920928955077927359e-7, 1.5707963267949108301e0)}, {FN (arcsech), ARG(2.0e+00,0.0e+00), RES(0, 1.0471975511965977462e0)}, {FN (arcsech), ARG(-2.0e+00,0.0e+00), RES(0, 2.0943951023931954923e0)}, {FN (arcsech), ARG(2.0e+00,1.19209289550781250e-07), RES(3.4412757706023621662e-8, -1.0471975511966001392e0)}, {FN (arcsech), ARG(2.0e+00,-1.19209289550781250e-07), RES(3.4412757706023621662e-8, 1.0471975511966001392e0)}, {FN (arcsech), ARG(-2.0e+00,1.19209289550781250e-07), RES(3.4412757706023621662e-8, -2.0943951023931930993e0)}, {FN (arcsech), ARG(-2.0e+00,-1.19209289550781250e-07), RES(3.4412757706023621662e-8, 2.0943951023931930993e0)}, {FN (arcsech), ARG(2.0e+00,5.0e-01), RES(1.3261586085051183885e-1, -1.0854889863215541067e0)}, {FN (arcsech), ARG(2.0e+00,-5.0e-01), RES(1.3261586085051183885e-1, 1.0854889863215541067e0)}, {FN (arcsech), ARG(-2.0e+00,5.0e-01), RES(1.3261586085051183885e-1, -2.0561036672682391317e0)}, {FN (arcsech), ARG(-2.0e+00,-5.0e-01), RES(1.3261586085051183885e-1, 2.0561036672682391317e0)}, {FN (arcsech), ARG(2.0e+00,1.0e+00), RES(2.1561241855582964497e-1, -1.1692099351270905509e0)}, {FN (arcsech), ARG(2.0e+00,-1.0e+00), RES(2.1561241855582964497e-1, 1.1692099351270905509e0)}, {FN (arcsech), ARG(-2.0e+00,1.0e+00), RES(2.1561241855582964497e-1, -1.9723827184627026875e0)}, {FN (arcsech), ARG(-2.0e+00,-1.0e+00), RES(2.1561241855582964497e-1, 1.9723827184627026875e0)}, {FN (arcsech), ARG(2.0e+00,2.0e+00), RES(2.5489557334055081773e-1, -1.3262741616593564728e0)}, {FN (arcsech), ARG(2.0e+00,-2.0e+00), RES(2.5489557334055081773e-1, 1.3262741616593564728e0)}, {FN (arcsech), ARG(-2.0e+00,2.0e+00), RES(2.5489557334055081773e-1, -1.8153184919304367657e0)}, {FN (arcsech), ARG(-2.0e+00,-2.0e+00), RES(2.5489557334055081773e-1, 1.8153184919304367657e0)}, {FN (arcsech), ARG(2.0e+00,8.3886080e+06), RES(1.1920928955077419139e-7, -1.5707963267948681975e0)}, {FN (arcsech), ARG(2.0e+00,-8.3886080e+06), RES(1.1920928955077419139e-7, 1.5707963267948681975e0)}, {FN (arcsech), ARG(-2.0e+00,8.3886080e+06), RES(1.1920928955077419139e-7, -1.5707963267949250409e0)}, {FN (arcsech), ARG(-2.0e+00,-8.3886080e+06), RES(1.1920928955077419139e-7, 1.5707963267949250409e0)}, {FN (arcsech), ARG(8.3886080e+06,0.0e+00), RES(0, 1.5707962075856070684e0)}, {FN (arcsech), ARG(-8.3886080e+06,0.0e+00), RES(0, 1.570796446004186170e0)}, {FN (arcsech), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.6940658945086127152e-21, -1.5707962075856070684e0)}, {FN (arcsech), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.6940658945086127152e-21, 1.5707962075856070684e0)}, {FN (arcsech), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.6940658945086127152e-21, -1.570796446004186170e0)}, {FN (arcsech), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.6940658945086127152e-21, 1.570796446004186170e0)}, {FN (arcsech), ARG(8.3886080e+06,5.0e-01), RES(7.1054273576010271023e-15, -1.5707962075856070685e0)}, {FN (arcsech), ARG(8.3886080e+06,-5.0e-01), RES(7.1054273576010271023e-15, 1.5707962075856070685e0)}, {FN (arcsech), ARG(-8.3886080e+06,5.0e-01), RES(7.1054273576010271023e-15, -1.570796446004186170e0)}, {FN (arcsech), ARG(-8.3886080e+06,-5.0e-01), RES(7.1054273576010271023e-15, 1.570796446004186170e0)}, {FN (arcsech), ARG(8.3886080e+06,1.0e+00), RES(1.4210854715201902743e-14, -1.5707962075856070685e0)}, {FN (arcsech), ARG(8.3886080e+06,-1.0e+00), RES(1.4210854715201902743e-14, 1.5707962075856070685e0)}, {FN (arcsech), ARG(-8.3886080e+06,1.0e+00), RES(1.4210854715201902743e-14, -1.570796446004186170e0)}, {FN (arcsech), ARG(-8.3886080e+06,-1.0e+00), RES(1.4210854715201902743e-14, 1.570796446004186170e0)}, {FN (arcsech), ARG(8.3886080e+06,2.0e+00), RES(2.8421709430402593796e-14, -1.5707962075856070685e0)}, {FN (arcsech), ARG(8.3886080e+06,-2.0e+00), RES(2.8421709430402593796e-14, 1.5707962075856070685e0)}, {FN (arcsech), ARG(-8.3886080e+06,2.0e+00), RES(2.8421709430402593796e-14, -1.570796446004186170e0)}, {FN (arcsech), ARG(-8.3886080e+06,-2.0e+00), RES(2.8421709430402593796e-14, 1.570796446004186170e0)}, {FN (arcsech), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390695586e-8, -1.5707962671902518438e0)}, {FN (arcsech), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390695586e-8, 1.5707962671902518438e0)}, {FN (arcsech), ARG(-8.3886080e+06,8.3886080e+06), RES(5.9604644775390695586e-8, -1.5707963863995413946e0)}, {FN (arcsech), ARG(-8.3886080e+06,-8.3886080e+06), RES(5.9604644775390695586e-8, 1.5707963863995413946e0)}, {FN (arccoth), ARG(0.0e+00,1.19209289550781250e-07), RES(0, -1.5707962075856070685e0)}, {FN (arccoth), ARG(0.0e+00,-1.19209289550781250e-07), RES(0, 1.5707962075856070685e0)}, {FN (arccoth), ARG(0.0e+00,5.0e-01), RES(0, -1.1071487177940905030e0)}, {FN (arccoth), ARG(0.0e+00,-5.0e-01), RES(0, 1.1071487177940905030e0)}, {FN (arccoth), ARG(0.0e+00,1.0e+00), RES(0, -7.8539816339744830962e-1)}, {FN (arccoth), ARG(0.0e+00,-1.0e+00), RES(0, 7.8539816339744830962e-1)}, {FN (arccoth), ARG(0.0e+00,2.0e+00), RES(0, -4.6364760900080611621e-1)}, {FN (arccoth), ARG(0.0e+00,-2.0e+00), RES(0, 4.6364760900080611621e-1)}, {FN (arccoth), ARG(0.0e+00,8.3886080e+06), RES(0, -1.1920928955078068531e-7)}, {FN (arccoth), ARG(0.0e+00,-8.3886080e+06), RES(0, 1.1920928955078068531e-7)}, {FN (arccoth), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078181469e-7, -1.5707963267948966192e0)}, {FN (arccoth), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.1920928955078181469e-7, 1.5707963267948966192e0)}, {FN (arccoth), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.1920928955078012062e-7, -1.5707962075856070684e0)}, {FN (arccoth), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.1920928955078012062e-7, 1.5707962075856070684e0)}, {FN (arccoth), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.1920928955078012062e-7, -1.5707962075856070684e0)}, {FN (arccoth), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.1920928955078012062e-7, 1.5707962075856070684e0)}, {FN (arccoth), ARG(1.19209289550781250e-07,5.0e-01), RES(9.5367431640625072280e-8, -1.1071487177940859555e0)}, {FN (arccoth), ARG(1.19209289550781250e-07,-5.0e-01), RES(9.5367431640625072280e-8, 1.1071487177940859555e0)}, {FN (arccoth), ARG(-1.19209289550781250e-07,5.0e-01), RES(-9.5367431640625072280e-8, -1.1071487177940859555e0)}, {FN (arccoth), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-9.5367431640625072280e-8, 1.1071487177940859555e0)}, {FN (arccoth), ARG(1.19209289550781250e-07,1.0e+00), RES(5.9604644775390483828e-8, -7.8539816339744475690e-1)}, {FN (arccoth), ARG(1.19209289550781250e-07,-1.0e+00), RES(5.9604644775390483828e-8, 7.8539816339744475690e-1)}, {FN (arccoth), ARG(-1.19209289550781250e-07,1.0e+00), RES(-5.9604644775390483828e-8, -7.8539816339744475690e-1)}, {FN (arccoth), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-5.9604644775390483828e-8, 7.8539816339744475690e-1)}, {FN (arccoth), ARG(1.19209289550781250e-07,2.0e+00), RES(2.3841857910156200307e-8, -4.6364760900080497935e-1)}, {FN (arccoth), ARG(1.19209289550781250e-07,-2.0e+00), RES(2.3841857910156200307e-8, 4.6364760900080497935e-1)}, {FN (arccoth), ARG(-1.19209289550781250e-07,2.0e+00), RES(-2.3841857910156200307e-8, -4.6364760900080497935e-1)}, {FN (arccoth), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-2.3841857910156200307e-8, 4.6364760900080497935e-1)}, {FN (arccoth), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.6940658945085766040e-21, -1.1920928955078068531e-7)}, {FN (arccoth), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.6940658945085766040e-21, 1.1920928955078068531e-7)}, {FN (arccoth), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(-1.6940658945085766040e-21, -1.1920928955078068531e-7)}, {FN (arccoth), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.6940658945085766040e-21, 1.1920928955078068531e-7)}, {FN (arccoth), ARG(5.0e-01,0.0e+00), RES(5.4930614433405484570e-1, -1.5707963267948966192e0)}, {FN (arccoth), ARG(-5.0e-01,0.0e+00), RES(-5.4930614433405484570e-1, 1.5707963267948966192e0)}, {FN (arccoth), ARG(5.0e-01,1.19209289550781250e-07), RES(5.4930614433404221383e-1, -1.5707961678491772182e0)}, {FN (arccoth), ARG(5.0e-01,-1.19209289550781250e-07), RES(5.4930614433404221383e-1, 1.5707961678491772182e0)}, {FN (arccoth), ARG(-5.0e-01,1.19209289550781250e-07), RES(-5.4930614433404221383e-1, -1.5707961678491772182e0)}, {FN (arccoth), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-5.4930614433404221383e-1, 1.5707961678491772182e0)}, {FN (arccoth), ARG(5.0e-01,5.0e-01), RES(4.0235947810852509365e-1, -1.0172219678978513677e0)}, {FN (arccoth), ARG(5.0e-01,-5.0e-01), RES(4.0235947810852509365e-1, 1.0172219678978513677e0)}, {FN (arccoth), ARG(-5.0e-01,5.0e-01), RES(-4.0235947810852509365e-1, -1.0172219678978513677e0)}, {FN (arccoth), ARG(-5.0e-01,-5.0e-01), RES(-4.0235947810852509365e-1, 1.0172219678978513677e0)}, {FN (arccoth), ARG(5.0e-01,1.0e+00), RES(2.3887786125685909036e-1, -7.2322066612406759210e-1)}, {FN (arccoth), ARG(5.0e-01,-1.0e+00), RES(2.3887786125685909036e-1, 7.2322066612406759210e-1)}, {FN (arccoth), ARG(-5.0e-01,1.0e+00), RES(-2.3887786125685909036e-1, -7.2322066612406759210e-1)}, {FN (arccoth), ARG(-5.0e-01,-1.0e+00), RES(-2.3887786125685909036e-1, 7.2322066612406759210e-1)}, {FN (arccoth), ARG(5.0e-01,2.0e+00), RES(9.6415620202996167238e-2, -4.4423988596007427049e-1)}, {FN (arccoth), ARG(5.0e-01,-2.0e+00), RES(9.6415620202996167238e-2, 4.4423988596007427049e-1)}, {FN (arccoth), ARG(-5.0e-01,2.0e+00), RES(-9.6415620202996167238e-2, -4.4423988596007427049e-1)}, {FN (arccoth), ARG(-5.0e-01,-2.0e+00), RES(-9.6415620202996167238e-2, 4.4423988596007427049e-1)}, {FN (arccoth), ARG(5.0e-01,8.3886080e+06), RES(7.1054273576008756410e-15, -1.1920928955078026179e-7)}, {FN (arccoth), ARG(5.0e-01,-8.3886080e+06), RES(7.1054273576008756410e-15, 1.1920928955078026179e-7)}, {FN (arccoth), ARG(-5.0e-01,8.3886080e+06), RES(-7.1054273576008756410e-15, -1.1920928955078026179e-7)}, {FN (arccoth), ARG(-5.0e-01,-8.3886080e+06), RES(-7.1054273576008756410e-15, 1.1920928955078026179e-7)}, {FN (arccoth), ARG(1.0e+00,1.19209289550781250e-07), RES(8.3177661667193446012e0, -7.8539813359512592192e-1)}, {FN (arccoth), ARG(1.0e+00,-1.19209289550781250e-07), RES(8.3177661667193446012e0, 7.8539813359512592192e-1)}, {FN (arccoth), ARG(-1.0e+00,1.19209289550781250e-07), RES(-8.3177661667193446012e0, -7.8539813359512592192e-1)}, {FN (arccoth), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-8.3177661667193446012e0, 7.8539813359512592192e-1)}, {FN (arccoth), ARG(1.0e+00,5.0e-01), RES(7.0830333601405402006e-1, -6.6290883183401623253e-1)}, {FN (arccoth), ARG(1.0e+00,-5.0e-01), RES(7.0830333601405402006e-1, 6.6290883183401623253e-1)}, {FN (arccoth), ARG(-1.0e+00,5.0e-01), RES(-7.0830333601405402006e-1, -6.6290883183401623253e-1)}, {FN (arccoth), ARG(-1.0e+00,-5.0e-01), RES(-7.0830333601405402006e-1, 6.6290883183401623253e-1)}, {FN (arccoth), ARG(1.0e+00,1.0e+00), RES(4.0235947810852509365e-1, -5.5357435889704525151e-1)}, {FN (arccoth), ARG(1.0e+00,-1.0e+00), RES(4.0235947810852509365e-1, 5.5357435889704525151e-1)}, {FN (arccoth), ARG(-1.0e+00,1.0e+00), RES(-4.0235947810852509365e-1, -5.5357435889704525151e-1)}, {FN (arccoth), ARG(-1.0e+00,-1.0e+00), RES(-4.0235947810852509365e-1, 5.5357435889704525151e-1)}, {FN (arccoth), ARG(1.0e+00,2.0e+00), RES(1.7328679513998632735e-1, -3.9269908169872415481e-1)}, {FN (arccoth), ARG(1.0e+00,-2.0e+00), RES(1.7328679513998632735e-1, 3.9269908169872415481e-1)}, {FN (arccoth), ARG(-1.0e+00,2.0e+00), RES(-1.7328679513998632735e-1, -3.9269908169872415481e-1)}, {FN (arccoth), ARG(-1.0e+00,-2.0e+00), RES(-1.7328679513998632735e-1, 3.9269908169872415481e-1)}, {FN (arccoth), ARG(1.0e+00,8.3886080e+06), RES(1.4210854715201599821e-14, -1.1920928955077899125e-7)}, {FN (arccoth), ARG(1.0e+00,-8.3886080e+06), RES(1.4210854715201599821e-14, 1.1920928955077899125e-7)}, {FN (arccoth), ARG(-1.0e+00,8.3886080e+06), RES(-1.4210854715201599821e-14, -1.1920928955077899125e-7)}, {FN (arccoth), ARG(-1.0e+00,-8.3886080e+06), RES(-1.4210854715201599821e-14, 1.1920928955077899125e-7)}, {FN (arccoth), ARG(2.0e+00,0.0e+00), RES(5.4930614433405484570e-1, 0.0)}, {FN (arccoth), ARG(-2.0e+00,0.0e+00), RES(-5.4930614433405484570e-1, 0.0)}, {FN (arccoth), ARG(2.0e+00,1.19209289550781250e-07), RES(5.4930614433405168773e-1, -3.9736429850260144780e-8)}, {FN (arccoth), ARG(2.0e+00,-1.19209289550781250e-07), RES(5.4930614433405168773e-1, 3.9736429850260144780e-8)}, {FN (arccoth), ARG(-2.0e+00,1.19209289550781250e-07), RES(-5.4930614433405168773e-1, -3.9736429850260144780e-8)}, {FN (arccoth), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-5.4930614433405168773e-1, 3.9736429850260144780e-8)}, {FN (arccoth), ARG(2.0e+00,5.0e-01), RES(5.0037000005253101744e-1, -1.4924946579308963897e-1)}, {FN (arccoth), ARG(2.0e+00,-5.0e-01), RES(5.0037000005253101744e-1, 1.4924946579308963897e-1)}, {FN (arccoth), ARG(-2.0e+00,5.0e-01), RES(-5.0037000005253101744e-1, -1.4924946579308963897e-1)}, {FN (arccoth), ARG(-2.0e+00,-5.0e-01), RES(-5.0037000005253101744e-1, 1.4924946579308963897e-1)}, {FN (arccoth), ARG(2.0e+00,1.0e+00), RES(4.0235947810852509365e-1, -2.3182380450040305811e-1)}, {FN (arccoth), ARG(2.0e+00,-1.0e+00), RES(4.0235947810852509365e-1, 2.3182380450040305811e-1)}, {FN (arccoth), ARG(-2.0e+00,1.0e+00), RES(-4.0235947810852509365e-1, -2.3182380450040305811e-1)}, {FN (arccoth), ARG(-2.0e+00,-1.0e+00), RES(-4.0235947810852509365e-1, 2.3182380450040305811e-1)}, {FN (arccoth), ARG(2.0e+00,2.0e+00), RES(2.3887786125685909036e-1, -2.5957305712326147589e-1)}, {FN (arccoth), ARG(2.0e+00,-2.0e+00), RES(2.3887786125685909036e-1, 2.5957305712326147589e-1)}, {FN (arccoth), ARG(-2.0e+00,2.0e+00), RES(-2.3887786125685909036e-1, -2.5957305712326147589e-1)}, {FN (arccoth), ARG(-2.0e+00,-2.0e+00), RES(-2.3887786125685909036e-1, 2.5957305712326147589e-1)}, {FN (arccoth), ARG(2.0e+00,8.3886080e+06), RES(2.8421709430401987951e-14, -1.1920928955077390905e-7)}, {FN (arccoth), ARG(2.0e+00,-8.3886080e+06), RES(2.8421709430401987951e-14, 1.1920928955077390905e-7)}, {FN (arccoth), ARG(-2.0e+00,8.3886080e+06), RES(-2.8421709430401987951e-14, -1.1920928955077390905e-7)}, {FN (arccoth), ARG(-2.0e+00,-8.3886080e+06), RES(-2.8421709430401987951e-14, 1.1920928955077390905e-7)}, {FN (arccoth), ARG(8.3886080e+06,0.0e+00), RES(1.1920928955078181469e-7, 0.0)}, {FN (arccoth), ARG(-8.3886080e+06,0.0e+00), RES(-1.1920928955078181469e-7, 0.0)}, {FN (arccoth), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.1920928955078181469e-7, -1.6940658945086247523e-21)}, {FN (arccoth), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.1920928955078181469e-7, 1.6940658945086247523e-21)}, {FN (arccoth), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(-1.1920928955078181469e-7, -1.6940658945086247523e-21)}, {FN (arccoth), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-1.1920928955078181469e-7, 1.6940658945086247523e-21)}, {FN (arccoth), ARG(8.3886080e+06,5.0e-01), RES(1.1920928955078139117e-7, -7.1054273576010775894e-15)}, {FN (arccoth), ARG(8.3886080e+06,-5.0e-01), RES(1.1920928955078139117e-7, 7.1054273576010775894e-15)}, {FN (arccoth), ARG(-8.3886080e+06,5.0e-01), RES(-1.1920928955078139117e-7, -7.1054273576010775894e-15)}, {FN (arccoth), ARG(-8.3886080e+06,-5.0e-01), RES(-1.1920928955078139117e-7, 7.1054273576010775894e-15)}, {FN (arccoth), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955078012062e-7, -1.4210854715202003717e-14)}, {FN (arccoth), ARG(8.3886080e+06,-1.0e+00), RES(1.1920928955078012062e-7, 1.4210854715202003717e-14)}, {FN (arccoth), ARG(-8.3886080e+06,1.0e+00), RES(-1.1920928955078012062e-7, -1.4210854715202003717e-14)}, {FN (arccoth), ARG(-8.3886080e+06,-1.0e+00), RES(-1.1920928955078012062e-7, 1.4210854715202003717e-14)}, {FN (arccoth), ARG(8.3886080e+06,2.0e+00), RES(1.1920928955077503843e-7, -2.8421709430402795744e-14)}, {FN (arccoth), ARG(8.3886080e+06,-2.0e+00), RES(1.1920928955077503843e-7, 2.8421709430402795744e-14)}, {FN (arccoth), ARG(-8.3886080e+06,2.0e+00), RES(-1.1920928955077503843e-7, -2.8421709430402795744e-14)}, {FN (arccoth), ARG(-8.3886080e+06,-2.0e+00), RES(-1.1920928955077503843e-7, 2.8421709430402795744e-14)}, {FN (arccoth), ARG(8.3886080e+06,8.3886080e+06), RES(5.9604644775390483828e-8, -5.9604644775390766172e-8)}, {FN (arccoth), ARG(8.3886080e+06,-8.3886080e+06), RES(5.9604644775390483828e-8, 5.9604644775390766172e-8)}, {FN (arccoth), ARG(-8.3886080e+06,8.3886080e+06), RES(-5.9604644775390483828e-8, -5.9604644775390766172e-8)}, {FN (arccoth), ARG(-8.3886080e+06,-8.3886080e+06), RES(-5.9604644775390483828e-8, 5.9604644775390766172e-8)}, gsl-1.16/complex/gsl_complex.h0000664000252300025230000000645612171574312013321 00000000000000/* complex/gsl_complex.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_COMPLEX_H__ #define __GSL_COMPLEX_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* two consecutive built-in types as a complex number */ typedef double * gsl_complex_packed ; typedef float * gsl_complex_packed_float ; typedef long double * gsl_complex_packed_long_double ; typedef const double * gsl_const_complex_packed ; typedef const float * gsl_const_complex_packed_float ; typedef const long double * gsl_const_complex_packed_long_double ; /* 2N consecutive built-in types as N complex numbers */ typedef double * gsl_complex_packed_array ; typedef float * gsl_complex_packed_array_float ; typedef long double * gsl_complex_packed_array_long_double ; typedef const double * gsl_const_complex_packed_array ; typedef const float * gsl_const_complex_packed_array_float ; typedef const long double * gsl_const_complex_packed_array_long_double ; /* Yes... this seems weird. Trust us. The point is just that sometimes you want to make it obvious that something is an output value. The fact that it lacks a 'const' may not be enough of a clue for people in some contexts. */ typedef double * gsl_complex_packed_ptr ; typedef float * gsl_complex_packed_float_ptr ; typedef long double * gsl_complex_packed_long_double_ptr ; typedef const double * gsl_const_complex_packed_ptr ; typedef const float * gsl_const_complex_packed_float_ptr ; typedef const long double * gsl_const_complex_packed_long_double_ptr ; typedef struct { long double dat[2]; } gsl_complex_long_double; typedef struct { double dat[2]; } gsl_complex; typedef struct { float dat[2]; } gsl_complex_float; #define GSL_REAL(z) ((z).dat[0]) #define GSL_IMAG(z) ((z).dat[1]) #define GSL_COMPLEX_P(zp) ((zp)->dat) #define GSL_COMPLEX_P_REAL(zp) ((zp)->dat[0]) #define GSL_COMPLEX_P_IMAG(zp) ((zp)->dat[1]) #define GSL_COMPLEX_EQ(z1,z2) (((z1).dat[0] == (z2).dat[0]) && ((z1).dat[1] == (z2).dat[1])) #define GSL_SET_COMPLEX(zp,x,y) do {(zp)->dat[0]=(x); (zp)->dat[1]=(y);} while(0) #define GSL_SET_REAL(zp,x) do {(zp)->dat[0]=(x);} while(0) #define GSL_SET_IMAG(zp,y) do {(zp)->dat[1]=(y);} while(0) #define GSL_SET_COMPLEX_PACKED(zp,n,x,y) do {*((zp)+2*(n))=(x); *((zp)+(2*(n)+1))=(y);} while(0) __END_DECLS #endif /* __GSL_COMPLEX_H__ */ gsl-1.16/complex/TODO0000664000252300025230000000156712171574312011322 00000000000000# -*- org -*- #+CATEGORY: complex * Complex polynomial solvers (Got Newton-Mueller from jotahtin@cc.hut.fi, still to add (BJG)). * The asymptotic behavior of the secondary functions (sec, csc, cot, etc) can overflow because of expressions like cosh(x) / D , where D = cosh^2 which is computed prior to the division. This should by special casing "small" vs "large" arguments as has been done for the sin,cos,tan versions. * Perhaps there is something useful in LCY65 L. A. Lyusternik, O. A. Chervonenkis, and A. R. Yanpol'skii, Handbook for computing elementary functions, International Series of Monographs in Pure and Applied Mathematics, vol. 76, Pergamon Press, Oxford, 1965. * Comparing the Complex Arithmetic routines in Section 5.5 of Numerical Recipes gsl_complex_div() uses simple complex division while 5.5.5 has a more sophisticated one that avoids underflow/overflow. gsl-1.16/complex/results2.h0000664000252300025230000001044112171574312012555 00000000000000 {FN (pow), ARG(1.0e+00,0.0e+00), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(0.0e+00,1.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(-1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(0.0e+00,-1.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(5.0e-01,1.00000000000000005551e-01), RES(1e0, 0.0)}, {FN (pow), ARG(1.0e+00,0.0e+00), ARG(5.0e-01,-1.00000000000000005551e-01), RES(1e0, 0.0)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(1.0e+00,0.0e+00), RES(0, 1)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(0.0e+00,1.0e+00), RES(2.0787957635076190855e-1, 0.0)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(-1.0e+00,0.0e+00), RES(0, -1)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(0.0e+00,-1.0e+00), RES(4.8104773809653516555e0, 0.0)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(5.0e-01,1.00000000000000005551e-01), RES(6.0431891044739184057e-1, 6.0431891044739184057e-1)}, {FN (pow), ARG(0.0e+00,1.0e+00), ARG(5.0e-01,-1.00000000000000005551e-01), RES(8.2737771622906514822e-1, 8.2737771622906514822e-1)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(1.0e+00,0.0e+00), RES(-1e0, 0.0)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(0.0e+00,1.0e+00), RES(4.3213918263772249774e-2, 0.0)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(-1.0e+00,0.0e+00), RES(-1e0, 0.0)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(0.0e+00,-1.0e+00), RES(2.3140692632779269006e1, 0.0)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(5.0e-01,1.00000000000000005551e-01), RES(0, 7.3040269104864559813e-1)}, {FN (pow), ARG(-1.0e+00,0.0e+00), ARG(5.0e-01,-1.00000000000000005551e-01), RES(0, 1.3691077706248469087e0)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(1.0e+00,0.0e+00), RES(0, -1)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(0.0e+00,1.0e+00), RES(4.8104773809653516555e0, 0.0)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(-1.0e+00,0.0e+00), RES(0, 1)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(0.0e+00,-1.0e+00), RES(2.0787957635076190855e-1, 0.0)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(5.0e-01,1.00000000000000005551e-01), RES(8.2737771622906514822e-1, -8.2737771622906514822e-1)}, {FN (pow), ARG(0.0e+00,-1.0e+00), ARG(5.0e-01,-1.00000000000000005551e-01), RES(6.0431891044739184057e-1, -6.0431891044739184057e-1)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(1.0e+00,0.0e+00), RES(5e-1, 1.0000000000000000555e-1)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(0.0e+00,1.0e+00), RES(6.4160554864378080418e-1, -5.1201864456768275590e-1)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(-1.0e+00,0.0e+00), RES(1.9230769230769230687e0, -3.8461538461538463509e-1)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(0.0e+00,-1.0e+00), RES(9.5219021866126714108e-1, 7.5987364224031834571e-1)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(5.0e-01,1.00000000000000005551e-01), RES(6.9977300530987816719e-1, 2.1940939105372143160e-2)}, {FN (pow), ARG(5.0e-01,1.00000000000000005551e-01), ARG(5.0e-01,-1.00000000000000005551e-01), RES(7.1829191470060938876e-1, 1.2038189555821612762e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(0.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(1.0e+00,0.0e+00), RES(5e-1, -1.0000000000000000555e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(0.0e+00,1.0e+00), RES(9.5219021866126714108e-1, -7.5987364224031834571e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(-1.0e+00,0.0e+00), RES(1.9230769230769230687e0, 3.8461538461538463509e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(0.0e+00,-1.0e+00), RES(6.4160554864378080418e-1, 5.1201864456768275590e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(5.0e-01,1.00000000000000005551e-01), RES(7.1829191470060938876e-1, -1.2038189555821612762e-1)}, {FN (pow), ARG(5.0e-01,-1.00000000000000005551e-01), ARG(5.0e-01,-1.00000000000000005551e-01), RES(6.9977300530987816719e-1, -2.1940939105372143160e-2)}, gsl-1.16/complex/inline.c0000664000252300025230000000161612171574312012247 00000000000000/* complex/inline.c * * Copyright (C) 2008 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/complex/test.c0000664000252300025230000001525112171574312011750 00000000000000/* complex/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include struct f { char *name; double (*f) (gsl_complex z); double x; double y; double fx; double fy; }; struct fz { char *name; gsl_complex (*f) (gsl_complex z); double x; double y; double fx; double fy; }; struct fzz { char *name; gsl_complex (*f) (gsl_complex z1, gsl_complex z2); double x1; double y1; double x2; double y2; double fx; double fy; }; struct freal { char *name; gsl_complex (*f) (double x); double x; double fx; double fy; }; struct fzreal { char *name; gsl_complex (*f) (gsl_complex z, double a); double x; double y; double a; double fx; double fy; }; #define FN(x) "gsl_complex_" #x, gsl_complex_ ## x #define ARG(x,y) x, y #define RES(x,y) x, y struct f list[] = { #include "results1.h" {"", 0, 0, 0, 0, 0} }; struct fz listz[] = { #include "results.h" {"", 0, 0, 0, 0, 0} }; struct fzz listzz[] = { {FN (pow), ARG(0.0,0.0), ARG(0.0,0.0), RES(1.0, 0.0)}, #include "results2.h" {"", 0, 0, 0, 0, 0, 0, 0} }; struct freal listreal[] = { #include "results_real.h" {"", 0, 0, 0, 0} }; struct fzreal listzreal[] = { #include "results_zreal.h" {"", 0, 0, 0, 0} }; #ifndef TEST_FACTOR #ifdef RELEASED #define TEST_FACTOR 100.0 #else #define TEST_FACTOR 1.0 #endif #endif int main (void) { size_t i = 0; const double tol = TEST_FACTOR * 10 * GSL_DBL_EPSILON; const double tolf = TEST_FACTOR * 10 * GSL_FLT_EPSILON; gsl_ieee_env_setup(); for (i = 0 ; i < 10; i++) { double r = (i - 5.0) * 0.3 ; double t = 2.0 * M_PI * i / 5 ; double x = r * cos(t), y = r * sin(t) ; gsl_complex z = gsl_complex_polar (r, t) ; gsl_test_rel (GSL_REAL(z), x, tol, "gsl_complex_polar real part at (r=%g,t=%g)", r, t); gsl_test_rel (GSL_IMAG(z), y, tol, "gsl_complex_polar imag part at (r=%g,t=%g)", r, t); } i = 0; while (list[i].f) { struct f t = list[i]; gsl_complex z = gsl_complex_rect (t.x, t.y); double f = (t.f) (z); gsl_test_rel (f, t.fx, tol, "%s at (%g,%g)", t.name, t.x, t.y); i++; } i = 0; while (listz[i].f) { struct fz t = listz[i]; gsl_complex z = gsl_complex_rect (t.x, t.y); gsl_complex fz = (t.f) (z); double fx = GSL_REAL (fz), fy = GSL_IMAG (fz); #ifdef DEBUG printf("x = "); gsl_ieee_fprintf_double (stdout, &t.x); printf("\n"); printf("y = "); gsl_ieee_fprintf_double (stdout, &t.y); printf("\n"); printf("fx = "); gsl_ieee_fprintf_double (stdout, &fx); printf("\n"); printf("ex = "); gsl_ieee_fprintf_double (stdout, &t.fx); printf("\n"); printf("fy = "); gsl_ieee_fprintf_double (stdout, &fy); printf("\n"); printf("ey = "); gsl_ieee_fprintf_double (stdout, &t.fy); printf("\n"); #endif gsl_test_rel (fx, t.fx, tol, "%s real part at (%g,%g)", t.name, t.x, t.y); gsl_test_rel (fy, t.fy, tol, "%s imag part at (%g,%g)", t.name, t.x, t.y); i++; } i = 0; while (listzz[i].f) { struct fzz t = listzz[i]; gsl_complex z1 = gsl_complex_rect (t.x1, t.y1); gsl_complex z2 = gsl_complex_rect (t.x2, t.y2); gsl_complex fz = (t.f) (z1, z2); double fx = GSL_REAL (fz), fy = GSL_IMAG (fz); #ifdef DEBUG printf("x1 = "); gsl_ieee_fprintf_double (stdout, &t.x1); printf("\n"); printf("y1 = "); gsl_ieee_fprintf_double (stdout, &t.y1); printf("\n"); printf("x2 = "); gsl_ieee_fprintf_double (stdout, &t.x2); printf("\n"); printf("y2 = "); gsl_ieee_fprintf_double (stdout, &t.y2); printf("\n"); printf("fx = "); gsl_ieee_fprintf_double (stdout, &fx); printf("\n"); printf("ex = "); gsl_ieee_fprintf_double (stdout, &t.fx); printf("\n"); printf("fy = "); gsl_ieee_fprintf_double (stdout, &fy); printf("\n"); printf("ey = "); gsl_ieee_fprintf_double (stdout, &t.fy); printf("\n"); #endif gsl_test_rel (fx, t.fx, tolf, "%s real part at (%g,%g;%g,%g)", t.name, t.x1, t.y1, t.x2, t.y2); gsl_test_rel (fy, t.fy, tolf, "%s imag part at (%g,%g;%g,%g)", t.name, t.x1, t.y1, t.x2, t.y2); i++; } i = 0; while (listreal[i].f) { struct freal t = listreal[i]; gsl_complex fz = (t.f) (t.x); double fx = GSL_REAL (fz), fy = GSL_IMAG (fz); #ifdef DEBUG printf("x = "); gsl_ieee_fprintf_double (stdout, &t.x); printf("\n"); printf("fx = "); gsl_ieee_fprintf_double (stdout, &fx); printf("\n"); printf("ex = "); gsl_ieee_fprintf_double (stdout, &t.fx); printf("\n"); printf("fy = "); gsl_ieee_fprintf_double (stdout, &fy); printf("\n"); printf("ey = "); gsl_ieee_fprintf_double (stdout, &t.fy); printf("\n"); #endif gsl_test_rel (fx, t.fx, tol, "%s real part at (%g,0)", t.name, t.x); gsl_test_rel (fy, t.fy, tol, "%s imag part at (%g,0)", t.name, t.x); i++; } i = 0; while (listzreal[i].f) { struct fzreal t = listzreal[i]; gsl_complex z = gsl_complex_rect (t.x, t.y); gsl_complex fz = (t.f) (z, t.a); double fx = GSL_REAL (fz), fy = GSL_IMAG (fz); #ifdef DEBUG printf("x = "); gsl_ieee_fprintf_double (stdout, &t.x); printf("\n"); printf("y = "); gsl_ieee_fprintf_double (stdout, &t.y); printf("\n"); printf("a = "); gsl_ieee_fprintf_double (stdout, &t.a); printf("\n"); printf("fx = "); gsl_ieee_fprintf_double (stdout, &fx); printf("\n"); printf("ex = "); gsl_ieee_fprintf_double (stdout, &t.fx); printf("\n"); printf("fy = "); gsl_ieee_fprintf_double (stdout, &fy); printf("\n"); printf("ey = "); gsl_ieee_fprintf_double (stdout, &t.fy); printf("\n"); #endif gsl_test_rel (fx, t.fx, tol, "%s real part at (%g,0)", t.name, t.x); gsl_test_rel (fy, t.fy, tol, "%s imag part at (%g,0)", t.name, t.x); i++; } exit (gsl_test_summary ()); } gsl-1.16/complex/gsl_complex_math.h0000664000252300025230000001364012171574312014323 00000000000000/* complex/gsl_complex_math.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Jorma Olavi Tähtinen, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_COMPLEX_MATH_H__ #define __GSL_COMPLEX_MATH_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus #define __BEGIN_DECLS extern "C" { #define __END_DECLS } #else #define __BEGIN_DECLS /* empty */ #define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Complex numbers */ gsl_complex gsl_complex_polar (double r, double theta); /* r= r e^(i theta) */ INLINE_DECL gsl_complex gsl_complex_rect (double x, double y); /* r= real+i*imag */ #ifdef HAVE_INLINE INLINE_FUN gsl_complex gsl_complex_rect (double x, double y) { /* return z = x + i y */ gsl_complex z; GSL_SET_COMPLEX (&z, x, y); return z; } #endif #define GSL_COMPLEX_ONE (gsl_complex_rect(1.0,0.0)) #define GSL_COMPLEX_ZERO (gsl_complex_rect(0.0,0.0)) #define GSL_COMPLEX_NEGONE (gsl_complex_rect(-1.0,0.0)) /* Properties of complex numbers */ double gsl_complex_arg (gsl_complex z); /* return arg(z), -pi< arg(z) <=+pi */ double gsl_complex_abs (gsl_complex z); /* return |z| */ double gsl_complex_abs2 (gsl_complex z); /* return |z|^2 */ double gsl_complex_logabs (gsl_complex z); /* return log|z| */ /* Complex arithmetic operators */ gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b); /* r=a+b */ gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b); /* r=a-b */ gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b); /* r=a*b */ gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b); /* r=a/b */ gsl_complex gsl_complex_add_real (gsl_complex a, double x); /* r=a+x */ gsl_complex gsl_complex_sub_real (gsl_complex a, double x); /* r=a-x */ gsl_complex gsl_complex_mul_real (gsl_complex a, double x); /* r=a*x */ gsl_complex gsl_complex_div_real (gsl_complex a, double x); /* r=a/x */ gsl_complex gsl_complex_add_imag (gsl_complex a, double y); /* r=a+iy */ gsl_complex gsl_complex_sub_imag (gsl_complex a, double y); /* r=a-iy */ gsl_complex gsl_complex_mul_imag (gsl_complex a, double y); /* r=a*iy */ gsl_complex gsl_complex_div_imag (gsl_complex a, double y); /* r=a/iy */ gsl_complex gsl_complex_conjugate (gsl_complex z); /* r=conj(z) */ gsl_complex gsl_complex_inverse (gsl_complex a); /* r=1/a */ gsl_complex gsl_complex_negative (gsl_complex a); /* r=-a */ /* Elementary Complex Functions */ gsl_complex gsl_complex_sqrt (gsl_complex z); /* r=sqrt(z) */ gsl_complex gsl_complex_sqrt_real (double x); /* r=sqrt(x) (x<0 ok) */ gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b); /* r=a^b */ gsl_complex gsl_complex_pow_real (gsl_complex a, double b); /* r=a^b */ gsl_complex gsl_complex_exp (gsl_complex a); /* r=exp(a) */ gsl_complex gsl_complex_log (gsl_complex a); /* r=log(a) (base e) */ gsl_complex gsl_complex_log10 (gsl_complex a); /* r=log10(a) (base 10) */ gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b); /* r=log_b(a) (base=b) */ /* Complex Trigonometric Functions */ gsl_complex gsl_complex_sin (gsl_complex a); /* r=sin(a) */ gsl_complex gsl_complex_cos (gsl_complex a); /* r=cos(a) */ gsl_complex gsl_complex_sec (gsl_complex a); /* r=sec(a) */ gsl_complex gsl_complex_csc (gsl_complex a); /* r=csc(a) */ gsl_complex gsl_complex_tan (gsl_complex a); /* r=tan(a) */ gsl_complex gsl_complex_cot (gsl_complex a); /* r=cot(a) */ /* Inverse Complex Trigonometric Functions */ gsl_complex gsl_complex_arcsin (gsl_complex a); /* r=arcsin(a) */ gsl_complex gsl_complex_arcsin_real (double a); /* r=arcsin(a) */ gsl_complex gsl_complex_arccos (gsl_complex a); /* r=arccos(a) */ gsl_complex gsl_complex_arccos_real (double a); /* r=arccos(a) */ gsl_complex gsl_complex_arcsec (gsl_complex a); /* r=arcsec(a) */ gsl_complex gsl_complex_arcsec_real (double a); /* r=arcsec(a) */ gsl_complex gsl_complex_arccsc (gsl_complex a); /* r=arccsc(a) */ gsl_complex gsl_complex_arccsc_real (double a); /* r=arccsc(a) */ gsl_complex gsl_complex_arctan (gsl_complex a); /* r=arctan(a) */ gsl_complex gsl_complex_arccot (gsl_complex a); /* r=arccot(a) */ /* Complex Hyperbolic Functions */ gsl_complex gsl_complex_sinh (gsl_complex a); /* r=sinh(a) */ gsl_complex gsl_complex_cosh (gsl_complex a); /* r=coshh(a) */ gsl_complex gsl_complex_sech (gsl_complex a); /* r=sech(a) */ gsl_complex gsl_complex_csch (gsl_complex a); /* r=csch(a) */ gsl_complex gsl_complex_tanh (gsl_complex a); /* r=tanh(a) */ gsl_complex gsl_complex_coth (gsl_complex a); /* r=coth(a) */ /* Inverse Complex Hyperbolic Functions */ gsl_complex gsl_complex_arcsinh (gsl_complex a); /* r=arcsinh(a) */ gsl_complex gsl_complex_arccosh (gsl_complex a); /* r=arccosh(a) */ gsl_complex gsl_complex_arccosh_real (double a); /* r=arccosh(a) */ gsl_complex gsl_complex_arcsech (gsl_complex a); /* r=arcsech(a) */ gsl_complex gsl_complex_arccsch (gsl_complex a); /* r=arccsch(a) */ gsl_complex gsl_complex_arctanh (gsl_complex a); /* r=arctanh(a) */ gsl_complex gsl_complex_arctanh_real (double a); /* r=arctanh(a) */ gsl_complex gsl_complex_arccoth (gsl_complex a); /* r=arccoth(a) */ __END_DECLS #endif /* __GSL_COMPLEX_MATH_H__ */ gsl-1.16/complex/Makefile.in0000664000252300025230000010431412172253754012676 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = complex DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslcomplex_la_LIBADD = am_libgslcomplex_la_OBJECTS = math.lo inline.lo libgslcomplex_la_OBJECTS = $(am_libgslcomplex_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslcomplex.la ../err/libgslerr.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslcomplex_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslcomplex_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslcomplex.la pkginclude_HEADERS = gsl_complex.h gsl_complex_math.h INCLUDES = -I$(top_srcdir) libgslcomplex_la_SOURCES = math.c inline.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c results.h results1.h results2.h results_real.h results_zreal.h test_LDADD = libgslcomplex.la ../err/libgslerr.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu complex/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu complex/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslcomplex.la: $(libgslcomplex_la_OBJECTS) $(libgslcomplex_la_DEPENDENCIES) $(EXTRA_libgslcomplex_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslcomplex_la_OBJECTS) $(libgslcomplex_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/math.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS results: emacs -batch -l test.el -f test1 | sed 's/00\+e/0e/g' > results1.h emacs -batch -l test.el -f test2 | sed 's/00\+e/0e/g' > results.h emacs -batch -l test.el -f test3 | sed 's/00\+e/0e/g' > results_real.h emacs -batch -l test.el -f test4 | sed 's/00\+e/0e/g' > results2.h emacs -batch -l test.el -f test5 | sed 's/00\+e/0e/g' > results_zreal.h # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/complex/ChangeLog0000664000252300025230000000505512171574312012400 000000000000002010-05-06 Brian Gough * test.c (main): added tests for functions like pow_real 2008-07-03 Brian Gough * math.c: handle inline functions separately * gsl_complex_math.h: add declarations for inline functions * inline.c: separate file for inline functions * Makefile.am (INCLUDES): use top_srcdir 2007-09-14 Brian Gough * test.c: add a margin of safety on tests for released versions, as in special functions 2007-08-30 Brian Gough * Makefile.am (test_SOURCES): added missing file results2.h 2007-08-30 Brian Gough * Makefile.am (test_SOURCES): added missing file results2.h 2007-08-15 Brian Gough * math.c (gsl_complex_pow): handle (0,0)^(0,0) (x,y)^(1,0) and (x,y)^(-1,0) as special cases 2003-01-25 Brian Gough * math.c (gsl_complex_arccsc_real): fixed bug for incorrect sign of imaginary part when -1 * math.c (gsl_complex_arg): enforce special case arg(0,0) = 0.0 Mon Sep 10 22:57:27 2001 Brian Gough * math.c (gsl_complex_div_real gsl_complex_div_real): added missing functions div_real and div_imag Mon Aug 27 18:58:41 2001 Brian Gough * test.el: trim the tests down to a more reasonable size Thu Aug 9 15:48:48 2001 Brian Gough * math.c (gsl_complex_tanh): improve accuracy for large R Fri Jul 27 23:29:10 2001 Brian Gough * math.c (gsl_complex_cos): avoid returning negative zero for the imaginary part when the argument is purely real Wed Mar 21 14:40:34 2001 Brian Gough * gsl_complex.h (GSL_COMPLEX_P): added macro to point to beginning of complex array within the struct Mon Dec 4 12:29:12 2000 Brian Gough * math.c (gsl_complex_rect): changed the function gsl_complex_xy to gsl_complex_rect, since this is more meaningful Sun Oct 22 13:55:09 2000 Brian Gough * math.c: changed calls to gsl_hypot() to hypot() so that the system function is used in preference (the configure script will define hypot to gsl_hypot if hypot is unavailable), similar change for functions log1p and gsl_log1p also Wed Mar 15 11:17:21 2000 Brian Gough * gsl_complex.h: moved into complex/ subdirectory from top-level gsl-1.16/complex/Makefile.am0000664000252300025230000000147712171574312012666 00000000000000noinst_LTLIBRARIES = libgslcomplex.la pkginclude_HEADERS = gsl_complex.h gsl_complex_math.h INCLUDES = -I$(top_srcdir) libgslcomplex_la_SOURCES = math.c inline.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c results.h results1.h results2.h results_real.h results_zreal.h test_LDADD = libgslcomplex.la ../err/libgslerr.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la results: emacs -batch -l test.el -f test1 | sed 's/00\+e/0e/g' > results1.h emacs -batch -l test.el -f test2 | sed 's/00\+e/0e/g' > results.h emacs -batch -l test.el -f test3 | sed 's/00\+e/0e/g' > results_real.h emacs -batch -l test.el -f test4 | sed 's/00\+e/0e/g' > results2.h emacs -batch -l test.el -f test5 | sed 's/00\+e/0e/g' > results_zreal.h gsl-1.16/complex/results1.h0000664000252300025230000013176112171574312012565 00000000000000 {FN (arg), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(0.0e+00,1.19209289550781250e-07), RES(1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,-1.19209289550781250e-07), RES(-1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,5.0e-01), RES(1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,-5.0e-01), RES(-1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,1.0e+00), RES(1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,-1.0e+00), RES(-1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,2.0e+00), RES(1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,-2.0e+00), RES(-1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,8.3886080e+06), RES(1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(0.0e+00,-8.3886080e+06), RES(-1.5707963267948966192e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,5.0e-01), RES(1.5707960883763175177e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,-5.0e-01), RES(-1.5707960883763175177e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,5.0e-01), RES(1.5707965652134757208e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-1.5707965652134757208e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,1.0e+00), RES(1.5707962075856070685e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,-1.0e+00), RES(-1.5707962075856070685e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,1.0e+00), RES(1.570796446004186170e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,-1.0e+00), RES(-1.570796446004186170e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,2.0e+00), RES(1.5707962671902518438e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,-2.0e+00), RES(-1.5707962671902518438e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,2.0e+00), RES(1.5707963863995413946e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,-2.0e+00), RES(-1.5707963863995413946e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267948824084e0, 0.0)}, {FN (arg), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(-1.5707963267948824084e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5707963267949108301e0, 0.0)}, {FN (arg), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(-1.5707963267949108301e0, 0.0)}, {FN (arg), ARG(5.0e-01,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(-5.0e-01,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arg), ARG(5.0e-01,1.19209289550781250e-07), RES(2.3841857910155798249e-7, 0.0)}, {FN (arg), ARG(5.0e-01,-1.19209289550781250e-07), RES(-2.3841857910155798249e-7, 0.0)}, {FN (arg), ARG(-5.0e-01,1.19209289550781250e-07), RES(3.1415924151712141369e0, 0.0)}, {FN (arg), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-3.1415924151712141369e0, 0.0)}, {FN (arg), ARG(5.0e-01,5.0e-01), RES(7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(5.0e-01,-5.0e-01), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(-5.0e-01,5.0e-01), RES(2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(-5.0e-01,-5.0e-01), RES(-2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(5.0e-01,1.0e+00), RES(1.1071487177940905030e0, 0.0)}, {FN (arg), ARG(5.0e-01,-1.0e+00), RES(-1.1071487177940905030e0, 0.0)}, {FN (arg), ARG(-5.0e-01,1.0e+00), RES(2.0344439357957027354e0, 0.0)}, {FN (arg), ARG(-5.0e-01,-1.0e+00), RES(-2.0344439357957027354e0, 0.0)}, {FN (arg), ARG(5.0e-01,2.0e+00), RES(1.3258176636680324651e0, 0.0)}, {FN (arg), ARG(5.0e-01,-2.0e+00), RES(-1.3258176636680324651e0, 0.0)}, {FN (arg), ARG(-5.0e-01,2.0e+00), RES(1.8157749899217607734e0, 0.0)}, {FN (arg), ARG(-5.0e-01,-2.0e+00), RES(-1.8157749899217607734e0, 0.0)}, {FN (arg), ARG(5.0e-01,8.3886080e+06), RES(1.5707962671902518438e0, 0.0)}, {FN (arg), ARG(5.0e-01,-8.3886080e+06), RES(-1.5707962671902518438e0, 0.0)}, {FN (arg), ARG(-5.0e-01,8.3886080e+06), RES(1.5707963863995413946e0, 0.0)}, {FN (arg), ARG(-5.0e-01,-8.3886080e+06), RES(-1.5707963863995413946e0, 0.0)}, {FN (arg), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(-1.0e+00,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arg), ARG(1.0e+00,1.19209289550781250e-07), RES(1.1920928955078068531e-7, 0.0)}, {FN (arg), ARG(1.0e+00,-1.19209289550781250e-07), RES(-1.1920928955078068531e-7, 0.0)}, {FN (arg), ARG(-1.0e+00,1.19209289550781250e-07), RES(3.1415925343805036877e0, 0.0)}, {FN (arg), ARG(-1.0e+00,-1.19209289550781250e-07), RES(-3.1415925343805036877e0, 0.0)}, {FN (arg), ARG(1.0e+00,5.0e-01), RES(4.6364760900080611621e-1, 0.0)}, {FN (arg), ARG(1.0e+00,-5.0e-01), RES(-4.6364760900080611621e-1, 0.0)}, {FN (arg), ARG(-1.0e+00,5.0e-01), RES(2.6779450445889871222e0, 0.0)}, {FN (arg), ARG(-1.0e+00,-5.0e-01), RES(-2.6779450445889871222e0, 0.0)}, {FN (arg), ARG(1.0e+00,1.0e+00), RES(7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(1.0e+00,-1.0e+00), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(-1.0e+00,1.0e+00), RES(2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(-1.0e+00,-1.0e+00), RES(-2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(1.0e+00,2.0e+00), RES(1.1071487177940905030e0, 0.0)}, {FN (arg), ARG(1.0e+00,-2.0e+00), RES(-1.1071487177940905030e0, 0.0)}, {FN (arg), ARG(-1.0e+00,2.0e+00), RES(2.0344439357957027354e0, 0.0)}, {FN (arg), ARG(-1.0e+00,-2.0e+00), RES(-2.0344439357957027354e0, 0.0)}, {FN (arg), ARG(1.0e+00,8.3886080e+06), RES(1.5707962075856070685e0, 0.0)}, {FN (arg), ARG(1.0e+00,-8.3886080e+06), RES(-1.5707962075856070685e0, 0.0)}, {FN (arg), ARG(-1.0e+00,8.3886080e+06), RES(1.570796446004186170e0, 0.0)}, {FN (arg), ARG(-1.0e+00,-8.3886080e+06), RES(-1.570796446004186170e0, 0.0)}, {FN (arg), ARG(2.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(-2.0e+00,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arg), ARG(2.0e+00,1.19209289550781250e-07), RES(5.9604644775390554414e-8, 0.0)}, {FN (arg), ARG(2.0e+00,-1.19209289550781250e-07), RES(-5.9604644775390554414e-8, 0.0)}, {FN (arg), ARG(-2.0e+00,1.19209289550781250e-07), RES(3.1415925939851484631e0, 0.0)}, {FN (arg), ARG(-2.0e+00,-1.19209289550781250e-07), RES(-3.1415925939851484631e0, 0.0)}, {FN (arg), ARG(2.0e+00,5.0e-01), RES(2.4497866312686415417e-1, 0.0)}, {FN (arg), ARG(2.0e+00,-5.0e-01), RES(-2.4497866312686415417e-1, 0.0)}, {FN (arg), ARG(-2.0e+00,5.0e-01), RES(2.8966139904629290843e0, 0.0)}, {FN (arg), ARG(-2.0e+00,-5.0e-01), RES(-2.8966139904629290843e0, 0.0)}, {FN (arg), ARG(2.0e+00,1.0e+00), RES(4.6364760900080611621e-1, 0.0)}, {FN (arg), ARG(2.0e+00,-1.0e+00), RES(-4.6364760900080611621e-1, 0.0)}, {FN (arg), ARG(-2.0e+00,1.0e+00), RES(2.6779450445889871222e0, 0.0)}, {FN (arg), ARG(-2.0e+00,-1.0e+00), RES(-2.6779450445889871222e0, 0.0)}, {FN (arg), ARG(2.0e+00,2.0e+00), RES(7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(2.0e+00,-2.0e+00), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(-2.0e+00,2.0e+00), RES(2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(-2.0e+00,-2.0e+00), RES(-2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(2.0e+00,8.3886080e+06), RES(1.5707960883763175177e0, 0.0)}, {FN (arg), ARG(2.0e+00,-8.3886080e+06), RES(-1.5707960883763175177e0, 0.0)}, {FN (arg), ARG(-2.0e+00,8.3886080e+06), RES(1.5707965652134757208e0, 0.0)}, {FN (arg), ARG(-2.0e+00,-8.3886080e+06), RES(-1.5707965652134757208e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,0.0e+00), RES(0e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,0.0e+00), RES(3.1415926535897932385e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.4210854715202003717e-14, 0.0)}, {FN (arg), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(-1.4210854715202003717e-14, 0.0)}, {FN (arg), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(3.1415926535897790276e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(-3.1415926535897790276e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,5.0e-01), RES(5.9604644775390554414e-8, 0.0)}, {FN (arg), ARG(8.3886080e+06,-5.0e-01), RES(-5.9604644775390554414e-8, 0.0)}, {FN (arg), ARG(-8.3886080e+06,5.0e-01), RES(3.1415925939851484631e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,-5.0e-01), RES(-3.1415925939851484631e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,1.0e+00), RES(1.1920928955078068531e-7, 0.0)}, {FN (arg), ARG(8.3886080e+06,-1.0e+00), RES(-1.1920928955078068531e-7, 0.0)}, {FN (arg), ARG(-8.3886080e+06,1.0e+00), RES(3.1415925343805036877e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,-1.0e+00), RES(-3.1415925343805036877e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,2.0e+00), RES(2.3841857910155798249e-7, 0.0)}, {FN (arg), ARG(8.3886080e+06,-2.0e+00), RES(-2.3841857910155798249e-7, 0.0)}, {FN (arg), ARG(-8.3886080e+06,2.0e+00), RES(3.1415924151712141369e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,-2.0e+00), RES(-3.1415924151712141369e0, 0.0)}, {FN (arg), ARG(8.3886080e+06,8.3886080e+06), RES(7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(8.3886080e+06,-8.3886080e+06), RES(-7.8539816339744830962e-1, 0.0)}, {FN (arg), ARG(-8.3886080e+06,8.3886080e+06), RES(2.3561944901923449288e0, 0.0)}, {FN (arg), ARG(-8.3886080e+06,-8.3886080e+06), RES(-2.3561944901923449288e0, 0.0)}, {FN (abs), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (abs), ARG(0.0e+00,1.19209289550781250e-07), RES(1.1920928955078125e-7, 0.0)}, {FN (abs), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.1920928955078125e-7, 0.0)}, {FN (abs), ARG(0.0e+00,5.0e-01), RES(5e-1, 0.0)}, {FN (abs), ARG(0.0e+00,-5.0e-01), RES(5e-1, 0.0)}, {FN (abs), ARG(0.0e+00,1.0e+00), RES(1e0, 0.0)}, {FN (abs), ARG(0.0e+00,-1.0e+00), RES(1e0, 0.0)}, {FN (abs), ARG(0.0e+00,2.0e+00), RES(2e0, 0.0)}, {FN (abs), ARG(0.0e+00,-2.0e+00), RES(2e0, 0.0)}, {FN (abs), ARG(0.0e+00,8.3886080e+06), RES(8.388608e6, 0.0)}, {FN (abs), ARG(0.0e+00,-8.3886080e+06), RES(8.388608e6, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,0.0e+00), RES(1.1920928955078125e-7, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,0.0e+00), RES(1.1920928955078125e-7, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(1.6858739404357612715e-7, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.6858739404357612715e-7, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(1.6858739404357612715e-7, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(1.6858739404357612715e-7, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,5.0e-01), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,-5.0e-01), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,5.0e-01), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,-5.0e-01), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,1.0e+00), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,-1.0e+00), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,1.0e+00), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,-1.0e+00), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,2.0e+00), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,-2.0e+00), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,2.0e+00), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,-2.0e+00), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,8.3886080e+06), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(5.0e-01,0.0e+00), RES(5e-1, 0.0)}, {FN (abs), ARG(-5.0e-01,0.0e+00), RES(5e-1, 0.0)}, {FN (abs), ARG(5.0e-01,1.19209289550781250e-07), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(5.0e-01,-1.19209289550781250e-07), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(-5.0e-01,1.19209289550781250e-07), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(-5.0e-01,-1.19209289550781250e-07), RES(5.0000000000001421085e-1, 0.0)}, {FN (abs), ARG(5.0e-01,5.0e-01), RES(7.0710678118654752440e-1, 0.0)}, {FN (abs), ARG(5.0e-01,-5.0e-01), RES(7.0710678118654752440e-1, 0.0)}, {FN (abs), ARG(-5.0e-01,5.0e-01), RES(7.0710678118654752440e-1, 0.0)}, {FN (abs), ARG(-5.0e-01,-5.0e-01), RES(7.0710678118654752440e-1, 0.0)}, {FN (abs), ARG(5.0e-01,1.0e+00), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(5.0e-01,-1.0e+00), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(-5.0e-01,1.0e+00), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(-5.0e-01,-1.0e+00), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(5.0e-01,2.0e+00), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(5.0e-01,-2.0e+00), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(-5.0e-01,2.0e+00), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(-5.0e-01,-2.0e+00), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(5.0e-01,8.3886080e+06), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(5.0e-01,-8.3886080e+06), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(-5.0e-01,8.3886080e+06), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(-5.0e-01,-8.3886080e+06), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (abs), ARG(-1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (abs), ARG(1.0e+00,1.19209289550781250e-07), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(1.0e+00,-1.19209289550781250e-07), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(-1.0e+00,1.19209289550781250e-07), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(-1.0e+00,-1.19209289550781250e-07), RES(1.0000000000000071054e0, 0.0)}, {FN (abs), ARG(1.0e+00,5.0e-01), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(1.0e+00,-5.0e-01), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(-1.0e+00,5.0e-01), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(-1.0e+00,-5.0e-01), RES(1.1180339887498948482e0, 0.0)}, {FN (abs), ARG(1.0e+00,1.0e+00), RES(1.4142135623730950488e0, 0.0)}, {FN (abs), ARG(1.0e+00,-1.0e+00), RES(1.4142135623730950488e0, 0.0)}, {FN (abs), ARG(-1.0e+00,1.0e+00), RES(1.4142135623730950488e0, 0.0)}, {FN (abs), ARG(-1.0e+00,-1.0e+00), RES(1.4142135623730950488e0, 0.0)}, {FN (abs), ARG(1.0e+00,2.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(1.0e+00,-2.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(-1.0e+00,2.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(-1.0e+00,-2.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(1.0e+00,8.3886080e+06), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(1.0e+00,-8.3886080e+06), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(-1.0e+00,8.3886080e+06), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(-1.0e+00,-8.3886080e+06), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(2.0e+00,0.0e+00), RES(2e0, 0.0)}, {FN (abs), ARG(-2.0e+00,0.0e+00), RES(2e0, 0.0)}, {FN (abs), ARG(2.0e+00,1.19209289550781250e-07), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(2.0e+00,-1.19209289550781250e-07), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(-2.0e+00,1.19209289550781250e-07), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(-2.0e+00,-1.19209289550781250e-07), RES(2.0000000000000035527e0, 0.0)}, {FN (abs), ARG(2.0e+00,5.0e-01), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(2.0e+00,-5.0e-01), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(-2.0e+00,5.0e-01), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(-2.0e+00,-5.0e-01), RES(2.0615528128088302749e0, 0.0)}, {FN (abs), ARG(2.0e+00,1.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(2.0e+00,-1.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(-2.0e+00,1.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(-2.0e+00,-1.0e+00), RES(2.2360679774997896964e0, 0.0)}, {FN (abs), ARG(2.0e+00,2.0e+00), RES(2.8284271247461900976e0, 0.0)}, {FN (abs), ARG(2.0e+00,-2.0e+00), RES(2.8284271247461900976e0, 0.0)}, {FN (abs), ARG(-2.0e+00,2.0e+00), RES(2.8284271247461900976e0, 0.0)}, {FN (abs), ARG(-2.0e+00,-2.0e+00), RES(2.8284271247461900976e0, 0.0)}, {FN (abs), ARG(2.0e+00,8.3886080e+06), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(2.0e+00,-8.3886080e+06), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(-2.0e+00,8.3886080e+06), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(-2.0e+00,-8.3886080e+06), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,0.0e+00), RES(8.388608e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,0.0e+00), RES(8.388608e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,1.19209289550781250e-07), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(8.3886080e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,5.0e-01), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,-5.0e-01), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,5.0e-01), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,-5.0e-01), RES(8.3886080000000149012e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,1.0e+00), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,-1.0e+00), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,1.0e+00), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,-1.0e+00), RES(8.3886080000000596046e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,2.0e+00), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,-2.0e+00), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,2.0e+00), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(-8.3886080e+06,-2.0e+00), RES(8.3886080000002384186e6, 0.0)}, {FN (abs), ARG(8.3886080e+06,8.3886080e+06), RES(1.1863283203031444111e7, 0.0)}, {FN (abs), ARG(8.3886080e+06,-8.3886080e+06), RES(1.1863283203031444111e7, 0.0)}, {FN (abs), ARG(-8.3886080e+06,8.3886080e+06), RES(1.1863283203031444111e7, 0.0)}, {FN (abs), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.1863283203031444111e7, 0.0)}, {FN (abs2), ARG(0.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (abs2), ARG(0.0e+00,1.19209289550781250e-07), RES(1.4210854715202003717e-14, 0.0)}, {FN (abs2), ARG(0.0e+00,-1.19209289550781250e-07), RES(1.4210854715202003717e-14, 0.0)}, {FN (abs2), ARG(0.0e+00,5.0e-01), RES(2.5e-1, 0.0)}, {FN (abs2), ARG(0.0e+00,-5.0e-01), RES(2.5e-1, 0.0)}, {FN (abs2), ARG(0.0e+00,1.0e+00), RES(1e0, 0.0)}, {FN (abs2), ARG(0.0e+00,-1.0e+00), RES(1e0, 0.0)}, {FN (abs2), ARG(0.0e+00,2.0e+00), RES(4e0, 0.0)}, {FN (abs2), ARG(0.0e+00,-2.0e+00), RES(4e0, 0.0)}, {FN (abs2), ARG(0.0e+00,8.3886080e+06), RES(7.0368744177664e13, 0.0)}, {FN (abs2), ARG(0.0e+00,-8.3886080e+06), RES(7.0368744177664e13, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,0.0e+00), RES(1.4210854715202003717e-14, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,0.0e+00), RES(1.4210854715202003717e-14, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(2.8421709430404007435e-14, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(2.8421709430404007435e-14, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(2.8421709430404007435e-14, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(2.8421709430404007435e-14, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,5.0e-01), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,-5.0e-01), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,5.0e-01), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,-5.0e-01), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,1.0e+00), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,-1.0e+00), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,1.0e+00), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,-1.0e+00), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,2.0e+00), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,-2.0e+00), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,2.0e+00), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,-2.0e+00), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,8.3886080e+06), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(5.0e-01,0.0e+00), RES(2.5e-1, 0.0)}, {FN (abs2), ARG(-5.0e-01,0.0e+00), RES(2.5e-1, 0.0)}, {FN (abs2), ARG(5.0e-01,1.19209289550781250e-07), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(5.0e-01,-1.19209289550781250e-07), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(-5.0e-01,1.19209289550781250e-07), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(-5.0e-01,-1.19209289550781250e-07), RES(2.5000000000001421085e-1, 0.0)}, {FN (abs2), ARG(5.0e-01,5.0e-01), RES(5e-1, 0.0)}, {FN (abs2), ARG(5.0e-01,-5.0e-01), RES(5e-1, 0.0)}, {FN (abs2), ARG(-5.0e-01,5.0e-01), RES(5e-1, 0.0)}, {FN (abs2), ARG(-5.0e-01,-5.0e-01), RES(5e-1, 0.0)}, {FN (abs2), ARG(5.0e-01,1.0e+00), RES(1.25e0, 0.0)}, {FN (abs2), ARG(5.0e-01,-1.0e+00), RES(1.25e0, 0.0)}, {FN (abs2), ARG(-5.0e-01,1.0e+00), RES(1.25e0, 0.0)}, {FN (abs2), ARG(-5.0e-01,-1.0e+00), RES(1.25e0, 0.0)}, {FN (abs2), ARG(5.0e-01,2.0e+00), RES(4.25e0, 0.0)}, {FN (abs2), ARG(5.0e-01,-2.0e+00), RES(4.25e0, 0.0)}, {FN (abs2), ARG(-5.0e-01,2.0e+00), RES(4.25e0, 0.0)}, {FN (abs2), ARG(-5.0e-01,-2.0e+00), RES(4.25e0, 0.0)}, {FN (abs2), ARG(5.0e-01,8.3886080e+06), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(5.0e-01,-8.3886080e+06), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(-5.0e-01,8.3886080e+06), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(-5.0e-01,-8.3886080e+06), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,0.0e+00), RES(1e0, 0.0)}, {FN (abs2), ARG(1.0e+00,1.19209289550781250e-07), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.0e+00,-1.19209289550781250e-07), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,1.19209289550781250e-07), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,-1.19209289550781250e-07), RES(1.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(1.0e+00,5.0e-01), RES(1.25e0, 0.0)}, {FN (abs2), ARG(1.0e+00,-5.0e-01), RES(1.25e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,5.0e-01), RES(1.25e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,-5.0e-01), RES(1.25e0, 0.0)}, {FN (abs2), ARG(1.0e+00,1.0e+00), RES(2e0, 0.0)}, {FN (abs2), ARG(1.0e+00,-1.0e+00), RES(2e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,1.0e+00), RES(2e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,-1.0e+00), RES(2e0, 0.0)}, {FN (abs2), ARG(1.0e+00,2.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(1.0e+00,-2.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,2.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(-1.0e+00,-2.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(1.0e+00,8.3886080e+06), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(1.0e+00,-8.3886080e+06), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(-1.0e+00,8.3886080e+06), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(-1.0e+00,-8.3886080e+06), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(2.0e+00,0.0e+00), RES(4e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,0.0e+00), RES(4e0, 0.0)}, {FN (abs2), ARG(2.0e+00,1.19209289550781250e-07), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(2.0e+00,-1.19209289550781250e-07), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,1.19209289550781250e-07), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,-1.19209289550781250e-07), RES(4.0000000000000142109e0, 0.0)}, {FN (abs2), ARG(2.0e+00,5.0e-01), RES(4.25e0, 0.0)}, {FN (abs2), ARG(2.0e+00,-5.0e-01), RES(4.25e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,5.0e-01), RES(4.25e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,-5.0e-01), RES(4.25e0, 0.0)}, {FN (abs2), ARG(2.0e+00,1.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(2.0e+00,-1.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,1.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,-1.0e+00), RES(5e0, 0.0)}, {FN (abs2), ARG(2.0e+00,2.0e+00), RES(8e0, 0.0)}, {FN (abs2), ARG(2.0e+00,-2.0e+00), RES(8e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,2.0e+00), RES(8e0, 0.0)}, {FN (abs2), ARG(-2.0e+00,-2.0e+00), RES(8e0, 0.0)}, {FN (abs2), ARG(2.0e+00,8.3886080e+06), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(2.0e+00,-8.3886080e+06), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(-2.0e+00,8.3886080e+06), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(-2.0e+00,-8.3886080e+06), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,0.0e+00), RES(7.0368744177664e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,0.0e+00), RES(7.0368744177664e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,1.19209289550781250e-07), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(7.03687441776640e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,5.0e-01), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,-5.0e-01), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,5.0e-01), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,-5.0e-01), RES(7.036874417766425e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,1.0e+00), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,-1.0e+00), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,1.0e+00), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,-1.0e+00), RES(7.0368744177665e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,2.0e+00), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,-2.0e+00), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,2.0e+00), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,-2.0e+00), RES(7.0368744177668e13, 0.0)}, {FN (abs2), ARG(8.3886080e+06,8.3886080e+06), RES(1.40737488355328e14, 0.0)}, {FN (abs2), ARG(8.3886080e+06,-8.3886080e+06), RES(1.40737488355328e14, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,8.3886080e+06), RES(1.40737488355328e14, 0.0)}, {FN (abs2), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.40737488355328e14, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,0.0e+00), RES(-1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,0.0e+00), RES(-1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(5.0e-01,0.0e+00), RES(-6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,0.0e+00), RES(-6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (logabs), ARG(-1.0e+00,0.0e+00), RES(0e0, 0.0)}, {FN (logabs), ARG(1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(2.0e+00,0.0e+00), RES(6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,0.0e+00), RES(6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(-2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(-2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,0.0e+00), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,0.0e+00), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(0.0e+00,1.19209289550781250e-07), RES(-1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(0.0e+00,-1.19209289550781250e-07), RES(-1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(0.0e+00,5.0e-01), RES(-6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(0.0e+00,-5.0e-01), RES(-6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(0.0e+00,1.0e+00), RES(0e0, 0.0)}, {FN (logabs), ARG(0.0e+00,-1.0e+00), RES(0e0, 0.0)}, {FN (logabs), ARG(0.0e+00,2.0e+00), RES(6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(0.0e+00,-2.0e+00), RES(6.9314718055994530942e-1, 0.0)}, {FN (logabs), ARG(0.0e+00,8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(0.0e+00,-8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-1.19209289550781250e-07), RES(-1.5595811562598769462e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-5.0e-01), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-1.0e+00), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-2.0e+00), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-1.19209289550781250e-07,-8.3886080e+06), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-1.19209289550781250e-07), RES(-6.9314718055991688771e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-5.0e-01), RES(-3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-1.0e+00), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-2.0e+00), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-5.0e-01,8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-5.0e-01,-8.3886080e+06), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.0e+00,1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(-1.0e+00,-1.19209289550781250e-07), RES(7.1054273576009513716e-15, 0.0)}, {FN (logabs), ARG(1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-5.0e-01), RES(1.1157177565710487788e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-1.0e+00), RES(3.4657359027997265471e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-2.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-1.0e+00,8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-1.0e+00,-8.3886080e+06), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-1.19209289550781250e-07), RES(6.9314718055994708577e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-5.0e-01), RES(7.2345949146816273071e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-1.0e+00), RES(8.0471895621705018730e-1, 0.0)}, {FN (logabs), ARG(2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(-2.0e+00,2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(-2.0e+00,-2.0e+00), RES(1.0397207708399179641e0, 0.0)}, {FN (logabs), ARG(2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-2.0e+00,8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-2.0e+00,-8.3886080e+06), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-1.19209289550781250e-07), RES(1.5942385152878742117e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-5.0e-01), RES(1.5942385152878743893e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-1.0e+00), RES(1.5942385152878749222e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-2.0e+00), RES(1.5942385152878770538e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, {FN (logabs), ARG(-8.3886080e+06,-8.3886080e+06), RES(1.6288958743158714771e1, 0.0)}, gsl-1.16/complex/math.c0000664000252300025230000005567112171574312011734 00000000000000/* complex/math.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jorma Olavi Tähtinen, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Basic complex arithmetic functions * Original version by Jorma Olavi Tähtinen * * Modified for GSL by Brian Gough, 3/2000 */ /* The following references describe the methods used in these * functions, * * T. E. Hull and Thomas F. Fairgrieve and Ping Tak Peter Tang, * "Implementing Complex Elementary Functions Using Exception * Handling", ACM Transactions on Mathematical Software, Volume 20 * (1994), pp 215-244, Corrigenda, p553 * * Hull et al, "Implementing the complex arcsin and arccosine * functions using exception handling", ACM Transactions on * Mathematical Software, Volume 23 (1997) pp 299-335 * * Abramowitz and Stegun, Handbook of Mathematical Functions, "Inverse * Circular Functions in Terms of Real and Imaginary Parts", Formulas * 4.4.37, 4.4.38, 4.4.39 */ #include #include #include #include #include /********************************************************************** * Complex numbers **********************************************************************/ gsl_complex gsl_complex_polar (double r, double theta) { /* return z = r exp(i theta) */ gsl_complex z; GSL_SET_COMPLEX (&z, r * cos (theta), r * sin (theta)); return z; } /********************************************************************** * Properties of complex numbers **********************************************************************/ double gsl_complex_arg (gsl_complex z) { /* return arg(z), -pi < arg(z) <= +pi */ double x = GSL_REAL (z); double y = GSL_IMAG (z); if (x == 0.0 && y == 0.0) { return 0; } return atan2 (y, x); } double gsl_complex_abs (gsl_complex z) { /* return |z| */ return hypot (GSL_REAL (z), GSL_IMAG (z)); } double gsl_complex_abs2 (gsl_complex z) { /* return |z|^2 */ double x = GSL_REAL (z); double y = GSL_IMAG (z); return (x * x + y * y); } double gsl_complex_logabs (gsl_complex z) { /* return log|z| */ double xabs = fabs (GSL_REAL (z)); double yabs = fabs (GSL_IMAG (z)); double max, u; if (xabs >= yabs) { max = xabs; u = yabs / xabs; } else { max = yabs; u = xabs / yabs; } /* Handle underflow when u is close to 0 */ return log (max) + 0.5 * log1p (u * u); } /*********************************************************************** * Complex arithmetic operators ***********************************************************************/ gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b) { /* z=a+b */ double ar = GSL_REAL (a), ai = GSL_IMAG (a); double br = GSL_REAL (b), bi = GSL_IMAG (b); gsl_complex z; GSL_SET_COMPLEX (&z, ar + br, ai + bi); return z; } gsl_complex gsl_complex_add_real (gsl_complex a, double x) { /* z=a+x */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a) + x, GSL_IMAG (a)); return z; } gsl_complex gsl_complex_add_imag (gsl_complex a, double y) { /* z=a+iy */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a), GSL_IMAG (a) + y); return z; } gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b) { /* z=a-b */ double ar = GSL_REAL (a), ai = GSL_IMAG (a); double br = GSL_REAL (b), bi = GSL_IMAG (b); gsl_complex z; GSL_SET_COMPLEX (&z, ar - br, ai - bi); return z; } gsl_complex gsl_complex_sub_real (gsl_complex a, double x) { /* z=a-x */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a) - x, GSL_IMAG (a)); return z; } gsl_complex gsl_complex_sub_imag (gsl_complex a, double y) { /* z=a-iy */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a), GSL_IMAG (a) - y); return z; } gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b) { /* z=a*b */ double ar = GSL_REAL (a), ai = GSL_IMAG (a); double br = GSL_REAL (b), bi = GSL_IMAG (b); gsl_complex z; GSL_SET_COMPLEX (&z, ar * br - ai * bi, ar * bi + ai * br); return z; } gsl_complex gsl_complex_mul_real (gsl_complex a, double x) { /* z=a*x */ gsl_complex z; GSL_SET_COMPLEX (&z, x * GSL_REAL (a), x * GSL_IMAG (a)); return z; } gsl_complex gsl_complex_mul_imag (gsl_complex a, double y) { /* z=a*iy */ gsl_complex z; GSL_SET_COMPLEX (&z, -y * GSL_IMAG (a), y * GSL_REAL (a)); return z; } gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b) { /* z=a/b */ double ar = GSL_REAL (a), ai = GSL_IMAG (a); double br = GSL_REAL (b), bi = GSL_IMAG (b); double s = 1.0 / gsl_complex_abs (b); double sbr = s * br; double sbi = s * bi; double zr = (ar * sbr + ai * sbi) * s; double zi = (ai * sbr - ar * sbi) * s; gsl_complex z; GSL_SET_COMPLEX (&z, zr, zi); return z; } gsl_complex gsl_complex_div_real (gsl_complex a, double x) { /* z=a/x */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a) / x, GSL_IMAG (a) / x); return z; } gsl_complex gsl_complex_div_imag (gsl_complex a, double y) { /* z=a/(iy) */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_IMAG (a) / y, - GSL_REAL (a) / y); return z; } gsl_complex gsl_complex_conjugate (gsl_complex a) { /* z=conj(a) */ gsl_complex z; GSL_SET_COMPLEX (&z, GSL_REAL (a), -GSL_IMAG (a)); return z; } gsl_complex gsl_complex_negative (gsl_complex a) { /* z=-a */ gsl_complex z; GSL_SET_COMPLEX (&z, -GSL_REAL (a), -GSL_IMAG (a)); return z; } gsl_complex gsl_complex_inverse (gsl_complex a) { /* z=1/a */ double s = 1.0 / gsl_complex_abs (a); gsl_complex z; GSL_SET_COMPLEX (&z, (GSL_REAL (a) * s) * s, -(GSL_IMAG (a) * s) * s); return z; } /********************************************************************** * Elementary complex functions **********************************************************************/ gsl_complex gsl_complex_sqrt (gsl_complex a) { /* z=sqrt(a) */ gsl_complex z; if (GSL_REAL (a) == 0.0 && GSL_IMAG (a) == 0.0) { GSL_SET_COMPLEX (&z, 0, 0); } else { double x = fabs (GSL_REAL (a)); double y = fabs (GSL_IMAG (a)); double w; if (x >= y) { double t = y / x; w = sqrt (x) * sqrt (0.5 * (1.0 + sqrt (1.0 + t * t))); } else { double t = x / y; w = sqrt (y) * sqrt (0.5 * (t + sqrt (1.0 + t * t))); } if (GSL_REAL (a) >= 0.0) { double ai = GSL_IMAG (a); GSL_SET_COMPLEX (&z, w, ai / (2.0 * w)); } else { double ai = GSL_IMAG (a); double vi = (ai >= 0) ? w : -w; GSL_SET_COMPLEX (&z, ai / (2.0 * vi), vi); } } return z; } gsl_complex gsl_complex_sqrt_real (double x) { /* z=sqrt(x) */ gsl_complex z; if (x >= 0) { GSL_SET_COMPLEX (&z, sqrt (x), 0.0); } else { GSL_SET_COMPLEX (&z, 0.0, sqrt (-x)); } return z; } gsl_complex gsl_complex_exp (gsl_complex a) { /* z=exp(a) */ double rho = exp (GSL_REAL (a)); double theta = GSL_IMAG (a); gsl_complex z; GSL_SET_COMPLEX (&z, rho * cos (theta), rho * sin (theta)); return z; } gsl_complex gsl_complex_pow (gsl_complex a, gsl_complex b) { /* z=a^b */ gsl_complex z; if (GSL_REAL (a) == 0 && GSL_IMAG (a) == 0.0) { if (GSL_REAL (b) == 0 && GSL_IMAG (b) == 0.0) { GSL_SET_COMPLEX (&z, 1.0, 0.0); } else { GSL_SET_COMPLEX (&z, 0.0, 0.0); } } else if (GSL_REAL (b) == 1.0 && GSL_IMAG (b) == 0.0) { return a; } else if (GSL_REAL (b) == -1.0 && GSL_IMAG (b) == 0.0) { return gsl_complex_inverse (a); } else { double logr = gsl_complex_logabs (a); double theta = gsl_complex_arg (a); double br = GSL_REAL (b), bi = GSL_IMAG (b); double rho = exp (logr * br - bi * theta); double beta = theta * br + bi * logr; GSL_SET_COMPLEX (&z, rho * cos (beta), rho * sin (beta)); } return z; } gsl_complex gsl_complex_pow_real (gsl_complex a, double b) { /* z=a^b */ gsl_complex z; if (GSL_REAL (a) == 0 && GSL_IMAG (a) == 0) { if (b == 0) { GSL_SET_COMPLEX (&z, 1, 0); } else { GSL_SET_COMPLEX (&z, 0, 0); } } else { double logr = gsl_complex_logabs (a); double theta = gsl_complex_arg (a); double rho = exp (logr * b); double beta = theta * b; GSL_SET_COMPLEX (&z, rho * cos (beta), rho * sin (beta)); } return z; } gsl_complex gsl_complex_log (gsl_complex a) { /* z=log(a) */ double logr = gsl_complex_logabs (a); double theta = gsl_complex_arg (a); gsl_complex z; GSL_SET_COMPLEX (&z, logr, theta); return z; } gsl_complex gsl_complex_log10 (gsl_complex a) { /* z = log10(a) */ return gsl_complex_mul_real (gsl_complex_log (a), 1 / log (10.)); } gsl_complex gsl_complex_log_b (gsl_complex a, gsl_complex b) { return gsl_complex_div (gsl_complex_log (a), gsl_complex_log (b)); } /*********************************************************************** * Complex trigonometric functions ***********************************************************************/ gsl_complex gsl_complex_sin (gsl_complex a) { /* z = sin(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0.0) { /* avoid returing negative zero (-0.0) for the imaginary part */ GSL_SET_COMPLEX (&z, sin (R), 0.0); } else { GSL_SET_COMPLEX (&z, sin (R) * cosh (I), cos (R) * sinh (I)); } return z; } gsl_complex gsl_complex_cos (gsl_complex a) { /* z = cos(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0.0) { /* avoid returing negative zero (-0.0) for the imaginary part */ GSL_SET_COMPLEX (&z, cos (R), 0.0); } else { GSL_SET_COMPLEX (&z, cos (R) * cosh (I), sin (R) * sinh (-I)); } return z; } gsl_complex gsl_complex_tan (gsl_complex a) { /* z = tan(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (fabs (I) < 1) { double D = pow (cos (R), 2.0) + pow (sinh (I), 2.0); GSL_SET_COMPLEX (&z, 0.5 * sin (2 * R) / D, 0.5 * sinh (2 * I) / D); } else { double u = exp (-I); double C = 2 * u / (1 - pow (u, 2.0)); double D = 1 + pow (cos (R), 2.0) * pow (C, 2.0); double S = pow (C, 2.0); double T = 1.0 / tanh (I); GSL_SET_COMPLEX (&z, 0.5 * sin (2 * R) * S / D, T / D); } return z; } gsl_complex gsl_complex_sec (gsl_complex a) { /* z = sec(a) */ gsl_complex z = gsl_complex_cos (a); return gsl_complex_inverse (z); } gsl_complex gsl_complex_csc (gsl_complex a) { /* z = csc(a) */ gsl_complex z = gsl_complex_sin (a); return gsl_complex_inverse(z); } gsl_complex gsl_complex_cot (gsl_complex a) { /* z = cot(a) */ gsl_complex z = gsl_complex_tan (a); return gsl_complex_inverse (z); } /********************************************************************** * Inverse Complex Trigonometric Functions **********************************************************************/ gsl_complex gsl_complex_arcsin (gsl_complex a) { /* z = arcsin(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { z = gsl_complex_arcsin_real (R); } else { double x = fabs (R), y = fabs (I); double r = hypot (x + 1, y), s = hypot (x - 1, y); double A = 0.5 * (r + s); double B = x / A; double y2 = y * y; double real, imag; const double A_crossover = 1.5, B_crossover = 0.6417; if (B <= B_crossover) { real = asin (B); } else { if (x <= 1) { double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x))); real = atan (x / sqrt (D)); } else { double Apx = A + x; double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1))); real = atan (x / (y * sqrt (D))); } } if (A <= A_crossover) { double Am1; if (x < 1) { Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x))); } else { Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1))); } imag = log1p (Am1 + sqrt (Am1 * (A + 1))); } else { imag = log (A + sqrt (A * A - 1)); } GSL_SET_COMPLEX (&z, (R >= 0) ? real : -real, (I >= 0) ? imag : -imag); } return z; } gsl_complex gsl_complex_arcsin_real (double a) { /* z = arcsin(a) */ gsl_complex z; if (fabs (a) <= 1.0) { GSL_SET_COMPLEX (&z, asin (a), 0.0); } else { if (a < 0.0) { GSL_SET_COMPLEX (&z, -M_PI_2, acosh (-a)); } else { GSL_SET_COMPLEX (&z, M_PI_2, -acosh (a)); } } return z; } gsl_complex gsl_complex_arccos (gsl_complex a) { /* z = arccos(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { z = gsl_complex_arccos_real (R); } else { double x = fabs (R), y = fabs (I); double r = hypot (x + 1, y), s = hypot (x - 1, y); double A = 0.5 * (r + s); double B = x / A; double y2 = y * y; double real, imag; const double A_crossover = 1.5, B_crossover = 0.6417; if (B <= B_crossover) { real = acos (B); } else { if (x <= 1) { double D = 0.5 * (A + x) * (y2 / (r + x + 1) + (s + (1 - x))); real = atan (sqrt (D) / x); } else { double Apx = A + x; double D = 0.5 * (Apx / (r + x + 1) + Apx / (s + (x - 1))); real = atan ((y * sqrt (D)) / x); } } if (A <= A_crossover) { double Am1; if (x < 1) { Am1 = 0.5 * (y2 / (r + (x + 1)) + y2 / (s + (1 - x))); } else { Am1 = 0.5 * (y2 / (r + (x + 1)) + (s + (x - 1))); } imag = log1p (Am1 + sqrt (Am1 * (A + 1))); } else { imag = log (A + sqrt (A * A - 1)); } GSL_SET_COMPLEX (&z, (R >= 0) ? real : M_PI - real, (I >= 0) ? -imag : imag); } return z; } gsl_complex gsl_complex_arccos_real (double a) { /* z = arccos(a) */ gsl_complex z; if (fabs (a) <= 1.0) { GSL_SET_COMPLEX (&z, acos (a), 0); } else { if (a < 0.0) { GSL_SET_COMPLEX (&z, M_PI, -acosh (-a)); } else { GSL_SET_COMPLEX (&z, 0, acosh (a)); } } return z; } gsl_complex gsl_complex_arctan (gsl_complex a) { /* z = arctan(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (I == 0) { GSL_SET_COMPLEX (&z, atan (R), 0); } else { /* FIXME: This is a naive implementation which does not fully take into account cancellation errors, overflow, underflow etc. It would benefit from the Hull et al treatment. */ double r = hypot (R, I); double imag; double u = 2 * I / (1 + r * r); /* FIXME: the following cross-over should be optimized but 0.1 seems to work ok */ if (fabs (u) < 0.1) { imag = 0.25 * (log1p (u) - log1p (-u)); } else { double A = hypot (R, I + 1); double B = hypot (R, I - 1); imag = 0.5 * log (A / B); } if (R == 0) { if (I > 1) { GSL_SET_COMPLEX (&z, M_PI_2, imag); } else if (I < -1) { GSL_SET_COMPLEX (&z, -M_PI_2, imag); } else { GSL_SET_COMPLEX (&z, 0, imag); }; } else { GSL_SET_COMPLEX (&z, 0.5 * atan2 (2 * R, ((1 + r) * (1 - r))), imag); } } return z; } gsl_complex gsl_complex_arcsec (gsl_complex a) { /* z = arcsec(a) */ gsl_complex z = gsl_complex_inverse (a); return gsl_complex_arccos (z); } gsl_complex gsl_complex_arcsec_real (double a) { /* z = arcsec(a) */ gsl_complex z; if (a <= -1.0 || a >= 1.0) { GSL_SET_COMPLEX (&z, acos (1 / a), 0.0); } else { if (a >= 0.0) { GSL_SET_COMPLEX (&z, 0, acosh (1 / a)); } else { GSL_SET_COMPLEX (&z, M_PI, -acosh (-1 / a)); } } return z; } gsl_complex gsl_complex_arccsc (gsl_complex a) { /* z = arccsc(a) */ gsl_complex z = gsl_complex_inverse (a); return gsl_complex_arcsin (z); } gsl_complex gsl_complex_arccsc_real (double a) { /* z = arccsc(a) */ gsl_complex z; if (a <= -1.0 || a >= 1.0) { GSL_SET_COMPLEX (&z, asin (1 / a), 0.0); } else { if (a >= 0.0) { GSL_SET_COMPLEX (&z, M_PI_2, -acosh (1 / a)); } else { GSL_SET_COMPLEX (&z, -M_PI_2, acosh (-1 / a)); } } return z; } gsl_complex gsl_complex_arccot (gsl_complex a) { /* z = arccot(a) */ gsl_complex z; if (GSL_REAL (a) == 0.0 && GSL_IMAG (a) == 0.0) { GSL_SET_COMPLEX (&z, M_PI_2, 0); } else { z = gsl_complex_inverse (a); z = gsl_complex_arctan (z); } return z; } /********************************************************************** * Complex Hyperbolic Functions **********************************************************************/ gsl_complex gsl_complex_sinh (gsl_complex a) { /* z = sinh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; GSL_SET_COMPLEX (&z, sinh (R) * cos (I), cosh (R) * sin (I)); return z; } gsl_complex gsl_complex_cosh (gsl_complex a) { /* z = cosh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; GSL_SET_COMPLEX (&z, cosh (R) * cos (I), sinh (R) * sin (I)); return z; } gsl_complex gsl_complex_tanh (gsl_complex a) { /* z = tanh(a) */ double R = GSL_REAL (a), I = GSL_IMAG (a); gsl_complex z; if (fabs(R) < 1.0) { double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0); GSL_SET_COMPLEX (&z, sinh (R) * cosh (R) / D, 0.5 * sin (2 * I) / D); } else { double D = pow (cos (I), 2.0) + pow (sinh (R), 2.0); double F = 1 + pow (cos (I) / sinh (R), 2.0); GSL_SET_COMPLEX (&z, 1.0 / (tanh (R) * F), 0.5 * sin (2 * I) / D); } return z; } gsl_complex gsl_complex_sech (gsl_complex a) { /* z = sech(a) */ gsl_complex z = gsl_complex_cosh (a); return gsl_complex_inverse (z); } gsl_complex gsl_complex_csch (gsl_complex a) { /* z = csch(a) */ gsl_complex z = gsl_complex_sinh (a); return gsl_complex_inverse (z); } gsl_complex gsl_complex_coth (gsl_complex a) { /* z = coth(a) */ gsl_complex z = gsl_complex_tanh (a); return gsl_complex_inverse (z); } /********************************************************************** * Inverse Complex Hyperbolic Functions **********************************************************************/ gsl_complex gsl_complex_arcsinh (gsl_complex a) { /* z = arcsinh(a) */ gsl_complex z = gsl_complex_mul_imag(a, 1.0); z = gsl_complex_arcsin (z); z = gsl_complex_mul_imag (z, -1.0); return z; } gsl_complex gsl_complex_arccosh (gsl_complex a) { /* z = arccosh(a) */ gsl_complex z = gsl_complex_arccos (a); z = gsl_complex_mul_imag (z, GSL_IMAG(z) > 0 ? -1.0 : 1.0); return z; } gsl_complex gsl_complex_arccosh_real (double a) { /* z = arccosh(a) */ gsl_complex z; if (a >= 1) { GSL_SET_COMPLEX (&z, acosh (a), 0); } else { if (a >= -1.0) { GSL_SET_COMPLEX (&z, 0, acos (a)); } else { GSL_SET_COMPLEX (&z, acosh (-a), M_PI); } } return z; } gsl_complex gsl_complex_arctanh (gsl_complex a) { /* z = arctanh(a) */ if (GSL_IMAG (a) == 0.0) { return gsl_complex_arctanh_real (GSL_REAL (a)); } else { gsl_complex z = gsl_complex_mul_imag(a, 1.0); z = gsl_complex_arctan (z); z = gsl_complex_mul_imag (z, -1.0); return z; } } gsl_complex gsl_complex_arctanh_real (double a) { /* z = arctanh(a) */ gsl_complex z; if (a > -1.0 && a < 1.0) { GSL_SET_COMPLEX (&z, atanh (a), 0); } else { GSL_SET_COMPLEX (&z, atanh (1 / a), (a < 0) ? M_PI_2 : -M_PI_2); } return z; } gsl_complex gsl_complex_arcsech (gsl_complex a) { /* z = arcsech(a); */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arccosh (t); } gsl_complex gsl_complex_arccsch (gsl_complex a) { /* z = arccsch(a) */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arcsinh (t); } gsl_complex gsl_complex_arccoth (gsl_complex a) { /* z = arccoth(a) */ gsl_complex t = gsl_complex_inverse (a); return gsl_complex_arctanh (t); } gsl-1.16/complex/results_zreal.h0000664000252300025230000000434412171574312013675 00000000000000 {FN (pow_real), ARG(0.0e+00,0.0e+00), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,0.0e+00), 1.0e+00, RES(0e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,0.0e+00), 5.0e-01, RES(0e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,0.0e+00), 2.0e+00, RES(0e0, 0.0)}, {FN (pow_real), ARG(1.0e+00,0.0e+00), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(1.0e+00,0.0e+00), 1.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(1.0e+00,0.0e+00), 5.0e-01, RES(1e0, 0.0)}, {FN (pow_real), ARG(1.0e+00,0.0e+00), 2.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,1.0e+00), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,1.0e+00), 1.0e+00, RES(0, 1)}, {FN (pow_real), ARG(0.0e+00,1.0e+00), 5.0e-01, RES(7.0710678118654752440e-1, 7.0710678118654752440e-1)}, {FN (pow_real), ARG(0.0e+00,1.0e+00), 2.0e+00, RES(-1e0, 0.0)}, {FN (pow_real), ARG(-1.0e+00,0.0e+00), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(-1.0e+00,0.0e+00), 1.0e+00, RES(-1e0, 0.0)}, {FN (pow_real), ARG(-1.0e+00,0.0e+00), 5.0e-01, RES(0, 1)}, {FN (pow_real), ARG(-1.0e+00,0.0e+00), 2.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,-1.0e+00), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(0.0e+00,-1.0e+00), 1.0e+00, RES(0, -1)}, {FN (pow_real), ARG(0.0e+00,-1.0e+00), 5.0e-01, RES(7.0710678118654752440e-1, -7.0710678118654752440e-1)}, {FN (pow_real), ARG(0.0e+00,-1.0e+00), 2.0e+00, RES(-1e0, 0.0)}, {FN (pow_real), ARG(5.0e-01,1.00000000000000005551e-01), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(5.0e-01,1.00000000000000005551e-01), 1.0e+00, RES(5e-1, 1.0000000000000000555e-1)}, {FN (pow_real), ARG(5.0e-01,1.00000000000000005551e-01), 5.0e-01, RES(7.1059902594898006379e-1, 7.0363169908974695409e-2)}, {FN (pow_real), ARG(5.0e-01,1.00000000000000005551e-01), 2.0e+00, RES(2.3999999999999999889e-1, 1.0000000000000000555e-1)}, {FN (pow_real), ARG(5.0e-01,-1.00000000000000005551e-01), 0.0e+00, RES(1e0, 0.0)}, {FN (pow_real), ARG(5.0e-01,-1.00000000000000005551e-01), 1.0e+00, RES(5e-1, -1.0000000000000000555e-1)}, {FN (pow_real), ARG(5.0e-01,-1.00000000000000005551e-01), 5.0e-01, RES(7.1059902594898006379e-1, -7.0363169908974695409e-2)}, {FN (pow_real), ARG(5.0e-01,-1.00000000000000005551e-01), 2.0e+00, RES(2.3999999999999999889e-1, -1.0000000000000000555e-1)}, gsl-1.16/multimin/0000775000252300025230000000000012172254163011070 500000000000000gsl-1.16/multimin/TODO0000664000252300025230000000033612171574312011502 00000000000000# -*- org -*- #+CATEGORY: multimin * Check behavior of conjugate_fr in multimin -- the demo results look odd. * Should have made f and df return int instead of void. * Handle errors via GSL_NAN similar to min.h in min/ gsl-1.16/multimin/linear_minimize.c0000664000252300025230000001415012171574312014330 00000000000000#include #include #include /* Find a minimum in x=[0,1] of the interpolating quadratic through * (0,f0) (1,f1) with derivative fp0 at x=0. The interpolating * polynomial is q(x) = f0 + fp0 * z + (f1-f0-fp0) * z^2 */ static double interp_quad (double f0, double fp0, double f1, double zl, double zh) { double fl = f0 + zl*(fp0 + zl*(f1 - f0 -fp0)); double fh = f0 + zh*(fp0 + zh*(f1 - f0 -fp0)); double c = 2 * (f1 - f0 - fp0); /* curvature */ double zmin = zl, fmin = fl; if (fh < fmin) { zmin = zh; fmin = fh; } if (c > 0) /* positive curvature required for a minimum */ { double z = -fp0 / c; /* location of minimum */ if (z > zl && z < zh) { double f = f0 + z*(fp0 + z*(f1 - f0 -fp0)); if (f < fmin) { zmin = z; fmin = f; }; } } return zmin; } /* Find a minimum in x=[0,1] of the interpolating cubic through * (0,f0) (1,f1) with derivatives fp0 at x=0 and fp1 at x=1. * * The interpolating polynomial is: * * c(x) = f0 + fp0 * z + eta * z^2 + xi * z^3 * * where eta=3*(f1-f0)-2*fp0-fp1, xi=fp0+fp1-2*(f1-f0). */ static double cubic (double c0, double c1, double c2, double c3, double z) { return c0 + z * (c1 + z * (c2 + z * c3)); } static void check_extremum (double c0, double c1, double c2, double c3, double z, double *zmin, double *fmin) { /* could make an early return by testing curvature >0 for minimum */ double y = cubic (c0, c1, c2, c3, z); if (y < *fmin) { *zmin = z; /* accepted new point*/ *fmin = y; } } static double interp_cubic (double f0, double fp0, double f1, double fp1, double zl, double zh) { double eta = 3 * (f1 - f0) - 2 * fp0 - fp1; double xi = fp0 + fp1 - 2 * (f1 - f0); double c0 = f0, c1 = fp0, c2 = eta, c3 = xi; double zmin, fmin; double z0, z1; zmin = zl; fmin = cubic(c0, c1, c2, c3, zl); check_extremum (c0, c1, c2, c3, zh, &zmin, &fmin); { int n = gsl_poly_solve_quadratic (3 * c3, 2 * c2, c1, &z0, &z1); if (n == 2) /* found 2 roots */ { if (z0 > zl && z0 < zh) check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin); if (z1 > zl && z1 < zh) check_extremum (c0, c1, c2, c3, z1, &zmin, &fmin); } else if (n == 1) /* found 1 root */ { if (z0 > zl && z0 < zh) check_extremum (c0, c1, c2, c3, z0, &zmin, &fmin); } } return zmin; } static double interpolate (double a, double fa, double fpa, double b, double fb, double fpb, double xmin, double xmax, int order) { /* Map [a,b] to [0,1] */ double z, alpha, zmin, zmax; zmin = (xmin - a) / (b - a); zmax = (xmax - a) / (b - a); if (zmin > zmax) { double tmp = zmin; zmin = zmax; zmax = tmp; }; if (order > 2 && GSL_IS_REAL(fpb)) { z = interp_cubic (fa, fpa * (b - a), fb, fpb * (b - a), zmin, zmax); } else { z = interp_quad (fa, fpa * (b - a), fb, zmin, zmax); } alpha = a + z * (b - a); return alpha; } /* recommended values from Fletcher are rho = 0.01, sigma = 0.1, tau1 = 9, tau2 = 0.05, tau3 = 0.5 */ static int minimize (gsl_function_fdf * fn, double rho, double sigma, double tau1, double tau2, double tau3, int order, double alpha1, double *alpha_new) { double f0, fp0, falpha, falpha_prev, fpalpha, fpalpha_prev, delta, alpha_next; double alpha = alpha1, alpha_prev = 0.0; double a, b, fa, fb, fpa, fpb; const size_t bracket_iters = 100, section_iters = 100; size_t i = 0; GSL_FN_FDF_EVAL_F_DF (fn, 0.0, &f0, &fp0); falpha_prev = f0; fpalpha_prev = fp0; /* Avoid uninitialized variables morning */ a = 0.0; b = alpha; fa = f0; fb = 0.0; fpa = fp0; fpb = 0.0; /* Begin bracketing */ while (i++ < bracket_iters) { falpha = GSL_FN_FDF_EVAL_F (fn, alpha); /* Fletcher's rho test */ if (falpha > f0 + alpha * rho * fp0 || falpha >= falpha_prev) { a = alpha_prev; fa = falpha_prev; fpa = fpalpha_prev; b = alpha; fb = falpha; fpb = GSL_NAN; break; /* goto sectioning */ } fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha); /* Fletcher's sigma test */ if (fabs (fpalpha) <= -sigma * fp0) { *alpha_new = alpha; return GSL_SUCCESS; } if (fpalpha >= 0) { a = alpha; fa = falpha; fpa = fpalpha; b = alpha_prev; fb = falpha_prev; fpb = fpalpha_prev; break; /* goto sectioning */ } delta = alpha - alpha_prev; { double lower = alpha + delta; double upper = alpha + tau1 * delta; alpha_next = interpolate (alpha_prev, falpha_prev, fpalpha_prev, alpha, falpha, fpalpha, lower, upper, order); } alpha_prev = alpha; falpha_prev = falpha; fpalpha_prev = fpalpha; alpha = alpha_next; } /* Sectioning of bracket [a,b] */ while (i++ < section_iters) { delta = b - a; { double lower = a + tau2 * delta; double upper = b - tau3 * delta; alpha = interpolate (a, fa, fpa, b, fb, fpb, lower, upper, order); } falpha = GSL_FN_FDF_EVAL_F (fn, alpha); if ((a-alpha)*fpa <= GSL_DBL_EPSILON) { /* roundoff prevents progress */ return GSL_ENOPROG; }; if (falpha > f0 + rho * alpha * fp0 || falpha >= fa) { /* a_next = a; */ b = alpha; fb = falpha; fpb = GSL_NAN; } else { fpalpha = GSL_FN_FDF_EVAL_DF (fn, alpha); if (fabs(fpalpha) <= -sigma * fp0) { *alpha_new = alpha; return GSL_SUCCESS; /* terminate */ } if ( ((b-a) >= 0 && fpalpha >= 0) || ((b-a) <=0 && fpalpha <= 0)) { b = a; fb = fa; fpb = fpa; a = alpha; fa = falpha; fpa = fpalpha; } else { a = alpha; fa = falpha; fpa = fpalpha; } } } return GSL_SUCCESS; } gsl-1.16/multimin/steepest_descent.c0000664000252300025230000001015512171574312014517 00000000000000/* multimin/steepest_descent.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* steepest_descent.c -- the steepest descent algorithm */ /* Modified by Brian Gough to use single iteration structure */ #include #include #include #include typedef struct { double step; double max_step; double tol; gsl_vector *x1; gsl_vector *g1; } steepest_descent_state_t; static int steepest_descent_alloc (void *vstate, size_t n) { steepest_descent_state_t *state = (steepest_descent_state_t *) vstate; state->x1 = gsl_vector_alloc (n); if (state->x1 == NULL) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->g1 = gsl_vector_alloc (n); if (state->g1 == NULL) { gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g1", GSL_ENOMEM); } return GSL_SUCCESS; } static int steepest_descent_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { steepest_descent_state_t *state = (steepest_descent_state_t *) vstate; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); state->step = step_size; state->max_step = step_size; state->tol = tol; return GSL_SUCCESS; } static void steepest_descent_free (void *vstate) { steepest_descent_state_t *state = (steepest_descent_state_t *) vstate; gsl_vector_free (state->x1); gsl_vector_free (state->g1); } static int steepest_descent_restart (void *vstate) { steepest_descent_state_t *state = (steepest_descent_state_t *) vstate; state->step = state->max_step; return GSL_SUCCESS; } static int steepest_descent_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { steepest_descent_state_t *state = (steepest_descent_state_t *) vstate; gsl_vector *x1 = state->x1; gsl_vector *g1 = state->g1; double f0 = *f; double f1; double step = state->step, tol = state->tol; int failed = 0; /* compute new trial point at x1= x - step * dir, where dir is the normalized gradient */ double gnorm = gsl_blas_dnrm2 (gradient); if (gnorm == 0.0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } trial: gsl_vector_set_zero (dx); gsl_blas_daxpy (-step / gnorm, gradient, dx); gsl_vector_memcpy (x1, x); gsl_blas_daxpy (1.0, dx, x1); if (gsl_vector_equal (x, x1)) { return GSL_ENOPROG; } /* evaluate function and gradient at new point x1 */ GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x1, &f1, g1); if (f1 > f0) { /* downhill step failed, reduce step-size and try again */ failed = 1; step *= tol; goto trial; } if (failed) step *= tol; else step *= 2.0; state->step = step; gsl_vector_memcpy (x, x1); gsl_vector_memcpy (gradient, g1); *f = f1; return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type steepest_descent_type = { "steepest_descent", /* name */ sizeof (steepest_descent_state_t), &steepest_descent_alloc, &steepest_descent_set, &steepest_descent_iterate, &steepest_descent_restart, &steepest_descent_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_steepest_descent = &steepest_descent_type; gsl-1.16/multimin/diff.c0000664000252300025230000000305612171574312012070 00000000000000/* multimin/diff.c * * Copyright (C) 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include int gsl_multimin_diff (const gsl_multimin_function * f, const gsl_vector * x, gsl_vector * g) { size_t i, n = f->n; double h = GSL_SQRT_DBL_EPSILON; gsl_vector * x1 = gsl_vector_alloc (n); /* FIXME: pass as argument */ gsl_vector_memcpy (x1, x); for (i = 0; i < n; i++) { double fl, fh; double xi = gsl_vector_get (x, i); double dx = fabs(xi) * h; if (dx == 0.0) dx = h; gsl_vector_set (x1, i, xi + dx); fh = GSL_MULTIMIN_FN_EVAL(f, x1); gsl_vector_set (x1, i, xi - dx); fl = GSL_MULTIMIN_FN_EVAL(f, x1); gsl_vector_set (x1, i, xi); gsl_vector_set (g, i, (fh - fl) / (2.0 * dx)); } gsl_vector_free (x1); return GSL_SUCCESS; } gsl-1.16/multimin/vector_bfgs.c0000664000252300025230000002074112171574312013463 00000000000000/* multimin/vector_bfgs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* vector_bfgs.c -- Limited memory Broyden-Fletcher-Goldfarb-Shanno method */ /* Modified by Brian Gough to use single iteration structure */ #include #include #include #include "directional_minimize.c" typedef struct { int iter; double step; double max_step; double tol; gsl_vector *x1; gsl_vector *dx1; gsl_vector *x2; double g0norm; double pnorm; gsl_vector *p; gsl_vector *x0; gsl_vector *g0; gsl_vector *dx0; gsl_vector *dg0; } vector_bfgs_state_t; static int vector_bfgs_alloc (void *vstate, size_t n) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->x1 = gsl_vector_calloc (n); if (state->x1 == 0) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->dx1 = gsl_vector_calloc (n); if (state->dx1 == 0) { gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for dx1", GSL_ENOMEM); } state->x2 = gsl_vector_calloc (n); if (state->x2 == 0) { gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for x2", GSL_ENOMEM); } state->p = gsl_vector_calloc (n); if (state->p == 0) { gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->x0 = gsl_vector_calloc (n); if (state->x0 == 0) { gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dx0 = gsl_vector_calloc (n); if (state->dx0 == 0) { gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dg0 = gsl_vector_calloc (n); if (state->dg0 == 0) { gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int vector_bfgs_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->iter = 0; state->step = step_size; state->max_step = step_size; state->tol = tol; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->x0, x); gsl_vector_memcpy (state->p, gradient); gsl_vector_memcpy (state->g0, gradient); { double gnorm = gsl_blas_dnrm2 (gradient); state->pnorm = gnorm; state->g0norm = gnorm; } return GSL_SUCCESS; } static void vector_bfgs_free (void *vstate) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); } static int vector_bfgs_restart (void *vstate) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int vector_bfgs_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { vector_bfgs_state_t *state = (vector_bfgs_state_t *) vstate; gsl_vector *x1 = state->x1; gsl_vector *dx1 = state->dx1; gsl_vector *x2 = state->x2; gsl_vector *p = state->p; gsl_vector *g0 = state->g0; gsl_vector *x0 = state->x0; double pnorm = state->pnorm; double g0norm = state->g0norm; double fa = *f, fb, fc; double dir; double stepa = 0.0, stepb, stepc = state->step, tol = state->tol; double g1norm; double pg; if (pnorm == 0.0 || g0norm == 0.0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } /* Determine which direction is downhill, +p or -p */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? +1.0 : -1.0; /* Compute new trial point at x_c= x - step * p, where p is the current direction */ take_step (x, p, stepc, dir / pnorm, x1, dx); /* Evaluate function and gradient at new point xc */ fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); if (fc < fa) { /* Success, reduced the function value */ state->step = stepc * 2.0; *f = fc; gsl_vector_memcpy (x, x1); GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient); return GSL_SUCCESS; } #ifdef DEBUG printf ("got stepc = %g fc = %g\n", stepc, fc); #endif /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an intermediate (xb,fb) satisifying fa > fb < fc. Choose an initial xb based on parabolic interpolation */ intermediate_point (fdf, x, p, dir / pnorm, pg, stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb); if (stepb == 0.0) { return GSL_ENOPROG; } minimize (fdf, x, p, dir / pnorm, stepa, stepb, stepc, fa, fb, fc, tol, x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm); gsl_vector_memcpy (x, x2); /* Choose a new direction for the next step */ state->iter = (state->iter + 1) % x->size; if (state->iter == 0) { gsl_vector_memcpy (p, gradient); state->pnorm = g1norm; } else { /* This is the BFGS update: */ /* p' = g1 - A dx - B dg */ /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */ /* B = dx.g/dx.dg */ gsl_vector *dx0 = state->dx0; gsl_vector *dg0 = state->dg0; double dxg, dgg, dxdg, dgnorm, A, B; /* dx0 = x - x0 */ gsl_vector_memcpy (dx0, x); gsl_blas_daxpy (-1.0, x0, dx0); /* dg0 = g - g0 */ gsl_vector_memcpy (dg0, gradient); gsl_blas_daxpy (-1.0, g0, dg0); gsl_blas_ddot (dx0, gradient, &dxg); gsl_blas_ddot (dg0, gradient, &dgg); gsl_blas_ddot (dx0, dg0, &dxdg); dgnorm = gsl_blas_dnrm2 (dg0); if (dxdg != 0) { B = dxg / dxdg; A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg; } else { B = 0; A = 0; } gsl_vector_memcpy (p, gradient); gsl_blas_daxpy (-A, dx0, p); gsl_blas_daxpy (-B, dg0, p); state->pnorm = gsl_blas_dnrm2 (p); } gsl_vector_memcpy (g0, gradient); gsl_vector_memcpy (x0, x); state->g0norm = gsl_blas_dnrm2 (g0); #ifdef DEBUG printf ("updated directions\n"); printf ("p: "); gsl_vector_fprintf (stdout, p, "%g"); printf ("g: "); gsl_vector_fprintf (stdout, gradient, "%g"); #endif return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type vector_bfgs_type = { "vector_bfgs", /* name */ sizeof (vector_bfgs_state_t), &vector_bfgs_alloc, &vector_bfgs_set, &vector_bfgs_iterate, &vector_bfgs_restart, &vector_bfgs_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_vector_bfgs = &vector_bfgs_type; gsl-1.16/multimin/test.c0000664000252300025230000001372012171574312012136 00000000000000/* multimin/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Modified by Tuomo Keskitalo to add Nelder Mead Simplex test suite */ #include #include #include #include #include #include #include "test_funcs.h" unsigned int fcount, gcount; int test_fdf(const char * desc, gsl_multimin_function_fdf *f, initpt_function initpt, const gsl_multimin_fdfminimizer_type *T); int test_f(const char * desc, gsl_multimin_function *f, initpt_function initpt, const gsl_multimin_fminimizer_type *T); int main (void) { gsl_ieee_env_setup (); { const gsl_multimin_fdfminimizer_type *fdfminimizers[6]; const gsl_multimin_fdfminimizer_type ** T; fdfminimizers[0] = gsl_multimin_fdfminimizer_steepest_descent; fdfminimizers[1] = gsl_multimin_fdfminimizer_conjugate_pr; fdfminimizers[2] = gsl_multimin_fdfminimizer_conjugate_fr; fdfminimizers[3] = gsl_multimin_fdfminimizer_vector_bfgs; fdfminimizers[4] = gsl_multimin_fdfminimizer_vector_bfgs2; fdfminimizers[5] = 0; T = fdfminimizers; while (*T != 0) { test_fdf("Roth", &roth, roth_initpt,*T); test_fdf("Wood", &wood, wood_initpt,*T); test_fdf("Rosenbrock", &rosenbrock, rosenbrock_initpt,*T); test_fdf("Rosenbrock1", &rosenbrock, rosenbrock_initpt1,*T); test_fdf("SimpleAbs", &simpleabs, simpleabs_initpt,*T); T++; } T = fdfminimizers; while (*T != 0) { test_fdf("NRoth", &Nroth, roth_initpt,*T); test_fdf("NWood", &Nwood, wood_initpt,*T); test_fdf("NRosenbrock", &Nrosenbrock, rosenbrock_initpt,*T); T++; } } { const gsl_multimin_fminimizer_type *fminimizers[4]; const gsl_multimin_fminimizer_type ** T; fminimizers[0] = gsl_multimin_fminimizer_nmsimplex; fminimizers[1] = gsl_multimin_fminimizer_nmsimplex2; fminimizers[2] = gsl_multimin_fminimizer_nmsimplex2rand; fminimizers[3] = 0; T = fminimizers; while (*T != 0) { test_f("Roth", &roth_fmin, roth_initpt,*T); test_f("Wood", &wood_fmin, wood_initpt,*T); test_f("Rosenbrock", &rosenbrock_fmin, rosenbrock_initpt,*T); test_f("Spring", &spring_fmin, spring_initpt,*T); T++; } } exit (gsl_test_summary()); } int test_fdf(const char * desc, gsl_multimin_function_fdf *f, initpt_function initpt, const gsl_multimin_fdfminimizer_type *T) { int status; size_t iter = 0; double step_size; gsl_vector *x = gsl_vector_alloc (f->n); gsl_multimin_fdfminimizer *s; fcount = 0; gcount = 0; (*initpt) (x); step_size = 0.1 * gsl_blas_dnrm2 (x); s = gsl_multimin_fdfminimizer_alloc(T, f->n); gsl_multimin_fdfminimizer_set (s, f, x, step_size, 0.1); #ifdef DEBUG printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("g "); gsl_vector_fprintf (stdout, s->gradient, "%g"); #endif do { iter++; status = gsl_multimin_fdfminimizer_iterate(s); #ifdef DEBUG printf("%i: \n",iter); printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("g "); gsl_vector_fprintf (stdout, s->gradient, "%g"); printf("f(x) %g\n",s->f); printf("dx %g\n",gsl_blas_dnrm2(s->dx)); printf("status=%d\n", status); printf("\n"); #endif if (status == GSL_ENOPROG) break; status = gsl_multimin_test_gradient(s->gradient,1e-3); } while (iter < 5000 && status == GSL_CONTINUE); /* If no error in iteration, test for numerical convergence */ if (status == GSL_CONTINUE || status == GSL_ENOPROG) status = (fabs(s->f) > 1e-5); gsl_test(status, "%s, on %s: %i iters (fn+g=%d+%d), f(x)=%g", gsl_multimin_fdfminimizer_name(s),desc, iter, fcount, gcount, s->f); gsl_multimin_fdfminimizer_free(s); gsl_vector_free(x); return status; } int test_f(const char * desc, gsl_multimin_function *f, initpt_function initpt, const gsl_multimin_fminimizer_type *T) { int status; size_t i, iter = 0; gsl_vector *x = gsl_vector_alloc (f->n); gsl_vector *step_size = gsl_vector_alloc (f->n); gsl_multimin_fminimizer *s; fcount = 0; gcount = 0; (*initpt) (x); for (i = 0; i < f->n; i++) gsl_vector_set (step_size, i, 1); s = gsl_multimin_fminimizer_alloc(T, f->n); gsl_multimin_fminimizer_set (s, f, x, step_size); #ifdef DEBUG printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); #endif do { iter++; status = gsl_multimin_fminimizer_iterate(s); #ifdef DEBUG printf("%i: \n",iter); printf("x "); gsl_vector_fprintf (stdout, s->x, "%g"); printf("f(x) %g\n", gsl_multimin_fminimizer_minimum (s)); printf("size: %g\n", gsl_multimin_fminimizer_size (s)); printf("\n"); #endif status = gsl_multimin_test_size (gsl_multimin_fminimizer_size (s), 1e-3); } while (iter < 5000 && status == GSL_CONTINUE); status |= (fabs(s->fval) > 1e-5); gsl_test(status, "%s, on %s: %d iter (fn=%d), f(x)=%g", gsl_multimin_fminimizer_name(s),desc, iter, fcount, s->fval); gsl_multimin_fminimizer_free(s); gsl_vector_free(x); gsl_vector_free(step_size); return status; } gsl-1.16/multimin/convergence.c0000664000252300025230000000264612171574312013462 00000000000000/* multimin/convergence.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_multimin_test_gradient (const gsl_vector *g, double epsabs) { double norm; if (epsabs < 0.0) { GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); } norm = gsl_blas_dnrm2(g); if (norm < epsabs) { return GSL_SUCCESS; } return GSL_CONTINUE; } int gsl_multimin_test_size (const double size, double epsabs) { if (epsabs < 0.0) { GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); } if (size < epsabs) { return GSL_SUCCESS; } return GSL_CONTINUE; } gsl-1.16/multimin/simplex2.c0000664000252300025230000004142412171574312012724 00000000000000/* multimin/simplex2.c * * Copyright (C) 2007, 2008, 2009 Brian Gough * Copyright (C) 2002 Tuomo Keskitalo, Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* - Originally written by Tuomo Keskitalo - Corrections to nmsimplex_iterate and other functions by Ivo Alxneit - Additional help by Brian Gough - Optimisations added by Brian Gough + use BLAS for frequently-called functions + keep track of the center to avoid unnecessary computation + compute size as RMS value, allowing linear update on each step instead of recomputing from all N+1 vectors. */ /* The Simplex method of Nelder and Mead, also known as the polytope search alogorithm. Ref: Nelder, J.A., Mead, R., Computer Journal 7 (1965) pp. 308-313. This implementation uses n+1 corner points in the simplex. */ #include #include #include #include #include typedef struct { gsl_matrix *x1; /* simplex corner points */ gsl_vector *y1; /* function value at corner points */ gsl_vector *ws1; /* workspace 1 for algorithm */ gsl_vector *ws2; /* workspace 2 for algorithm */ gsl_vector *center; /* center of all points */ gsl_vector *delta; /* current step */ gsl_vector *xmc; /* x - center (workspace) */ double S2; unsigned long count; } nmsimplex_state_t; static int compute_center (const nmsimplex_state_t * state, gsl_vector * center); static double compute_size (nmsimplex_state_t * state, const gsl_vector * center); static double try_corner_move (const double coeff, const nmsimplex_state_t * state, size_t corner, gsl_vector * xc, const gsl_multimin_function * f) { /* moves a simplex corner scaled by coeff (negative value represents mirroring by the middle point of the "other" corner points) and gives new corner in xc and function value at xc as a return value */ gsl_matrix *x1 = state->x1; const size_t P = x1->size1; double newval; /* xc = (1-coeff)*(P/(P-1)) * center(all) + ((P*coeff-1)/(P-1))*x_corner */ { double alpha = (1 - coeff) * P / (P - 1.0); double beta = (P * coeff - 1.0) / (P - 1.0); gsl_vector_const_view row = gsl_matrix_const_row (x1, corner); gsl_vector_memcpy (xc, state->center); gsl_blas_dscal (alpha, xc); gsl_blas_daxpy (beta, &row.vector, xc); } newval = GSL_MULTIMIN_FN_EVAL (f, xc); return newval; } static void update_point (nmsimplex_state_t * state, size_t i, const gsl_vector * x, double val) { gsl_vector_const_view x_orig = gsl_matrix_const_row (state->x1, i); const size_t P = state->x1->size1; /* Compute delta = x - x_orig */ gsl_vector_memcpy (state->delta, x); gsl_blas_daxpy (-1.0, &x_orig.vector, state->delta); /* Compute xmc = x_orig - c */ gsl_vector_memcpy (state->xmc, &x_orig.vector); gsl_blas_daxpy (-1.0, state->center, state->xmc); /* Update size: S2' = S2 + (2/P) * (x_orig - c).delta + (P-1)*(delta/P)^2 */ { double d = gsl_blas_dnrm2 (state->delta); double xmcd; gsl_blas_ddot (state->xmc, state->delta, &xmcd); state->S2 += (2.0 / P) * xmcd + ((P - 1.0) / P) * (d * d / P); } /* Update center: c' = c + (x - x_orig) / P */ { double alpha = 1.0 / P; gsl_blas_daxpy (-alpha, &x_orig.vector, state->center); gsl_blas_daxpy (alpha, x, state->center); } gsl_matrix_set_row (state->x1, i, x); gsl_vector_set (state->y1, i, val); } static int contract_by_best (nmsimplex_state_t * state, size_t best, gsl_vector * xc, gsl_multimin_function * f) { /* Function contracts the simplex in respect to best valued corner. That is, all corners besides the best corner are moved. (This function is rarely called in practice, since it is the last choice, hence not optimised - BJG) */ /* the xc vector is simply work space here */ gsl_matrix *x1 = state->x1; gsl_vector *y1 = state->y1; size_t i, j; double newval; int status = GSL_SUCCESS; for (i = 0; i < x1->size1; i++) { if (i != best) { for (j = 0; j < x1->size2; j++) { newval = 0.5 * (gsl_matrix_get (x1, i, j) + gsl_matrix_get (x1, best, j)); gsl_matrix_set (x1, i, j, newval); } /* evaluate function in the new point */ gsl_matrix_get_row (xc, x1, i); newval = GSL_MULTIMIN_FN_EVAL (f, xc); gsl_vector_set (y1, i, newval); /* notify caller that we found at least one bad function value. we finish the contraction (and do not abort) to allow the user to handle the situation */ if (!gsl_finite (newval)) { status = GSL_EBADFUNC; } } } /* We need to update the centre and size as well */ compute_center (state, state->center); compute_size (state, state->center); return status; } static int compute_center (const nmsimplex_state_t * state, gsl_vector * center) { /* calculates the center of the simplex and stores in center */ gsl_matrix *x1 = state->x1; const size_t P = x1->size1; size_t i; gsl_vector_set_zero (center); for (i = 0; i < P; i++) { gsl_vector_const_view row = gsl_matrix_const_row (x1, i); gsl_blas_daxpy (1.0, &row.vector, center); } { const double alpha = 1.0 / P; gsl_blas_dscal (alpha, center); } return GSL_SUCCESS; } static double compute_size (nmsimplex_state_t * state, const gsl_vector * center) { /* calculates simplex size as rms sum of length of vectors from simplex center to corner points: sqrt( sum ( || y - y_middlepoint ||^2 ) / n ) */ gsl_vector *s = state->ws1; gsl_matrix *x1 = state->x1; const size_t P = x1->size1; size_t i; double ss = 0.0; for (i = 0; i < P; i++) { double t; gsl_matrix_get_row (s, x1, i); gsl_blas_daxpy (-1.0, center, s); t = gsl_blas_dnrm2 (s); ss += t * t; } /* Store squared size in the state */ state->S2 = (ss / P); return sqrt (ss / P); } static int nmsimplex_alloc (void *vstate, size_t n) { nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; if (n == 0) { GSL_ERROR ("invalid number of parameters specified", GSL_EINVAL); } state->x1 = gsl_matrix_alloc (n + 1, n); if (state->x1 == NULL) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->y1 = gsl_vector_alloc (n + 1); if (state->y1 == NULL) { gsl_matrix_free (state->x1); GSL_ERROR ("failed to allocate space for y", GSL_ENOMEM); } state->ws1 = gsl_vector_alloc (n); if (state->ws1 == NULL) { gsl_matrix_free (state->x1); gsl_vector_free (state->y1); GSL_ERROR ("failed to allocate space for ws1", GSL_ENOMEM); } state->ws2 = gsl_vector_alloc (n); if (state->ws2 == NULL) { gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); GSL_ERROR ("failed to allocate space for ws2", GSL_ENOMEM); } state->center = gsl_vector_alloc (n); if (state->center == NULL) { gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); gsl_vector_free (state->ws2); GSL_ERROR ("failed to allocate space for center", GSL_ENOMEM); } state->delta = gsl_vector_alloc (n); if (state->delta == NULL) { gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); gsl_vector_free (state->ws2); gsl_vector_free (state->center); GSL_ERROR ("failed to allocate space for delta", GSL_ENOMEM); } state->xmc = gsl_vector_alloc (n); if (state->xmc == NULL) { gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); gsl_vector_free (state->ws2); gsl_vector_free (state->center); gsl_vector_free (state->delta); GSL_ERROR ("failed to allocate space for xmc", GSL_ENOMEM); } state->count = 0; return GSL_SUCCESS; } static void nmsimplex_free (void *vstate) { nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); gsl_vector_free (state->ws2); gsl_vector_free (state->center); gsl_vector_free (state->delta); gsl_vector_free (state->xmc); } static int nmsimplex_set (void *vstate, gsl_multimin_function * f, const gsl_vector * x, double *size, const gsl_vector * step_size) { int status; size_t i; double val; nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; gsl_vector *xtemp = state->ws1; if (xtemp->size != x->size) { GSL_ERROR ("incompatible size of x", GSL_EINVAL); } if (xtemp->size != step_size->size) { GSL_ERROR ("incompatible size of step_size", GSL_EINVAL); } /* first point is the original x0 */ val = GSL_MULTIMIN_FN_EVAL (f, x); if (!gsl_finite (val)) { GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC); } gsl_matrix_set_row (state->x1, 0, x); gsl_vector_set (state->y1, 0, val); /* following points are initialized to x0 + step_size */ for (i = 0; i < x->size; i++) { status = gsl_vector_memcpy (xtemp, x); if (status != 0) { GSL_ERROR ("vector memcopy failed", GSL_EFAILED); } { double xi = gsl_vector_get (x, i); double si = gsl_vector_get (step_size, i); gsl_vector_set (xtemp, i, xi + si); val = GSL_MULTIMIN_FN_EVAL (f, xtemp); } if (!gsl_finite (val)) { GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC); } gsl_matrix_set_row (state->x1, i + 1, xtemp); gsl_vector_set (state->y1, i + 1, val); } compute_center (state, state->center); /* Initialize simplex size */ *size = compute_size (state, state->center); state->count++; return GSL_SUCCESS; } static int nmsimplex_iterate (void *vstate, gsl_multimin_function * f, gsl_vector * x, double *size, double *fval) { /* Simplex iteration tries to minimize function f value */ /* Includes corrections from Ivo Alxneit */ nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; /* xc and xc2 vectors store tried corner point coordinates */ gsl_vector *xc = state->ws1; gsl_vector *xc2 = state->ws2; gsl_vector *y1 = state->y1; gsl_matrix *x1 = state->x1; const size_t n = y1->size; size_t i; size_t hi, s_hi, lo; double dhi, ds_hi, dlo; int status; double val, val2; if (xc->size != x->size) { GSL_ERROR ("incompatible size of x", GSL_EINVAL); } /* get index of highest, second highest and lowest point */ dhi = dlo = gsl_vector_get (y1, 0); hi = 0; lo = 0; ds_hi = gsl_vector_get (y1, 1); s_hi = 1; for (i = 1; i < n; i++) { val = (gsl_vector_get (y1, i)); if (val < dlo) { dlo = val; lo = i; } else if (val > dhi) { ds_hi = dhi; s_hi = hi; dhi = val; hi = i; } else if (val > ds_hi) { ds_hi = val; s_hi = i; } } /* try reflecting the highest value point */ val = try_corner_move (-1.0, state, hi, xc, f); if (gsl_finite (val) && val < gsl_vector_get (y1, lo)) { /* reflected point is lowest, try expansion */ val2 = try_corner_move (-2.0, state, hi, xc2, f); if (gsl_finite (val2) && val2 < gsl_vector_get (y1, lo)) { update_point (state, hi, xc2, val2); } else { update_point (state, hi, xc, val); } } else if (!gsl_finite (val) || val > gsl_vector_get (y1, s_hi)) { /* reflection does not improve things enough, or we got a non-finite function value */ if (gsl_finite (val) && val <= gsl_vector_get (y1, hi)) { /* if trial point is better than highest point, replace highest point */ update_point (state, hi, xc, val); } /* try one-dimensional contraction */ val2 = try_corner_move (0.5, state, hi, xc2, f); if (gsl_finite (val2) && val2 <= gsl_vector_get (y1, hi)) { update_point (state, hi, xc2, val2); } else { /* contract the whole simplex about the best point */ status = contract_by_best (state, lo, xc, f); if (status != GSL_SUCCESS) { GSL_ERROR ("contraction failed", GSL_EFAILED); } } } else { /* trial point is better than second highest point. Replace highest point by it */ update_point (state, hi, xc, val); } /* return lowest point of simplex as x */ lo = gsl_vector_min_index (y1); gsl_matrix_get_row (x, x1, lo); *fval = gsl_vector_get (y1, lo); /* Update simplex size */ { double S2 = state->S2; if (S2 > 0) { *size = sqrt (S2); } else { /* recompute if accumulated error has made size invalid */ *size = compute_size (state, state->center); } } return GSL_SUCCESS; } static const gsl_multimin_fminimizer_type nmsimplex_type = { "nmsimplex2", /* name */ sizeof (nmsimplex_state_t), &nmsimplex_alloc, &nmsimplex_set, &nmsimplex_iterate, &nmsimplex_free }; const gsl_multimin_fminimizer_type * gsl_multimin_fminimizer_nmsimplex2 = &nmsimplex_type; static inline double ran_unif (unsigned long *seed) { unsigned long s = *seed; *seed = (s * 69069 + 1) & 0xffffffffUL; return (*seed) / 4294967296.0; } static int nmsimplex_set_rand (void *vstate, gsl_multimin_function * f, const gsl_vector * x, double *size, const gsl_vector * step_size) { size_t i, j; double val; nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; gsl_vector *xtemp = state->ws1; if (xtemp->size != x->size) { GSL_ERROR ("incompatible size of x", GSL_EINVAL); } if (xtemp->size != step_size->size) { GSL_ERROR ("incompatible size of step_size", GSL_EINVAL); } /* first point is the original x0 */ val = GSL_MULTIMIN_FN_EVAL (f, x); if (!gsl_finite (val)) { GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC); } gsl_matrix_set_row (state->x1, 0, x); gsl_vector_set (state->y1, 0, val); { gsl_matrix_view m = gsl_matrix_submatrix (state->x1, 1, 0, x->size, x->size); /* generate a random orthornomal basis */ unsigned long seed = state->count ^ 0x12345678; ran_unif (&seed); /* warm it up */ gsl_matrix_set_identity (&m.matrix); /* start with random reflections */ for (i = 0; i < x->size; i++) { double s = ran_unif (&seed); if (s > 0.5) gsl_matrix_set (&m.matrix, i, i, -1.0); } /* apply random rotations */ for (i = 0; i < x->size; i++) { for (j = i + 1; j < x->size; j++) { /* rotate columns i and j by a random angle */ double angle = 2.0 * M_PI * ran_unif (&seed); double c = cos (angle), s = sin (angle); gsl_vector_view c_i = gsl_matrix_column (&m.matrix, i); gsl_vector_view c_j = gsl_matrix_column (&m.matrix, j); gsl_blas_drot (&c_i.vector, &c_j.vector, c, s); } } /* scale the orthonormal basis by the user-supplied step_size in each dimension, and use as an offset from the central point x */ for (i = 0; i < x->size; i++) { double x_i = gsl_vector_get (x, i); double s_i = gsl_vector_get (step_size, i); gsl_vector_view c_i = gsl_matrix_column (&m.matrix, i); for (j = 0; j < x->size; j++) { double x_ij = gsl_vector_get (&c_i.vector, j); gsl_vector_set (&c_i.vector, j, x_i + s_i * x_ij); } } /* compute the function values at each offset point */ for (i = 0; i < x->size; i++) { gsl_vector_view r_i = gsl_matrix_row (&m.matrix, i); val = GSL_MULTIMIN_FN_EVAL (f, &r_i.vector); if (!gsl_finite (val)) { GSL_ERROR ("non-finite function value encountered", GSL_EBADFUNC); } gsl_vector_set (state->y1, i + 1, val); } } compute_center (state, state->center); /* Initialize simplex size */ *size = compute_size (state, state->center); state->count++; return GSL_SUCCESS; } static const gsl_multimin_fminimizer_type nmsimplex2rand_type = { "nmsimplex2rand", /* name */ sizeof (nmsimplex_state_t), &nmsimplex_alloc, &nmsimplex_set_rand, &nmsimplex_iterate, &nmsimplex_free }; const gsl_multimin_fminimizer_type * gsl_multimin_fminimizer_nmsimplex2rand = &nmsimplex2rand_type; gsl-1.16/multimin/linear_wrapper.c0000664000252300025230000000773412171574312014201 00000000000000typedef struct { gsl_function_fdf fdf_linear; gsl_multimin_function_fdf *fdf; /* fixed values */ const gsl_vector *x; const gsl_vector *g; const gsl_vector *p; /* cached values, for x(alpha) = x + alpha * p */ double f_alpha; double df_alpha; gsl_vector *x_alpha; gsl_vector *g_alpha; /* cache "keys" */ double f_cache_key; double df_cache_key; double x_cache_key; double g_cache_key; } wrapper_t; static void moveto (double alpha, wrapper_t * w) { if (alpha == w->x_cache_key) /* using previously cached position */ { return; } /* set x_alpha = x + alpha * p */ gsl_vector_memcpy (w->x_alpha, w->x); gsl_blas_daxpy (alpha, w->p, w->x_alpha); w->x_cache_key = alpha; } static double slope (wrapper_t * w) /* compute gradient . direction */ { double df; gsl_blas_ddot (w->g_alpha, w->p, &df); return df; } static double wrap_f (double alpha, void *params) { wrapper_t *w = (wrapper_t *) params; if (alpha == w->f_cache_key) /* using previously cached f(alpha) */ { return w->f_alpha; } moveto (alpha, w); w->f_alpha = GSL_MULTIMIN_FN_EVAL_F (w->fdf, w->x_alpha); w->f_cache_key = alpha; return w->f_alpha; } static double wrap_df (double alpha, void *params) { wrapper_t *w = (wrapper_t *) params; if (alpha == w->df_cache_key) /* using previously cached df(alpha) */ { return w->df_alpha; } moveto (alpha, w); if (alpha != w->g_cache_key) { GSL_MULTIMIN_FN_EVAL_DF (w->fdf, w->x_alpha, w->g_alpha); w->g_cache_key = alpha; } w->df_alpha = slope (w); w->df_cache_key = alpha; return w->df_alpha; } static void wrap_fdf (double alpha, void *params, double *f, double *df) { wrapper_t *w = (wrapper_t *) params; /* Check for previously cached values */ if (alpha == w->f_cache_key && alpha == w->df_cache_key) { *f = w->f_alpha; *df = w->df_alpha; return; } if (alpha == w->f_cache_key || alpha == w->df_cache_key) { *f = wrap_f (alpha, params); *df = wrap_df (alpha, params); return; } moveto (alpha, w); GSL_MULTIMIN_FN_EVAL_F_DF (w->fdf, w->x_alpha, &w->f_alpha, w->g_alpha); w->f_cache_key = alpha; w->g_cache_key = alpha; w->df_alpha = slope (w); w->df_cache_key = alpha; *f = w->f_alpha; *df = w->df_alpha; } static void prepare_wrapper (wrapper_t * w, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double f, const gsl_vector *g, const gsl_vector * p, gsl_vector * x_alpha, gsl_vector *g_alpha) { w->fdf_linear.f = &wrap_f; w->fdf_linear.df = &wrap_df; w->fdf_linear.fdf = &wrap_fdf; w->fdf_linear.params = (void *)w; /* pointer to "self" */ w->fdf = fdf; w->x = x; w->g = g; w->p = p; w->x_alpha = x_alpha; w->g_alpha = g_alpha; gsl_vector_memcpy(w->x_alpha, w->x); w->x_cache_key = 0.0; w->f_alpha = f; w->f_cache_key = 0.0; gsl_vector_memcpy(w->g_alpha, w->g); w->g_cache_key = 0.0; w->df_alpha = slope(w); w->df_cache_key = 0.0; } static void update_position (wrapper_t * w, double alpha, gsl_vector *x, double *f, gsl_vector *g) { /* ensure that everything is fully cached */ { double f_alpha, df_alpha; wrap_fdf (alpha, w, &f_alpha, &df_alpha); } ; *f = w->f_alpha; gsl_vector_memcpy(x, w->x_alpha); gsl_vector_memcpy(g, w->g_alpha); } static void change_direction (wrapper_t * w) { /* Convert the cache values from the end of the current minimisation to those needed for the start of the next minimisation, alpha=0 */ /* The new x_alpha for alpha=0 is the current position */ gsl_vector_memcpy (w->x_alpha, w->x); w->x_cache_key = 0.0; /* The function value does not change */ w->f_cache_key = 0.0; /* The new g_alpha for alpha=0 is the current gradient at the endpoint */ gsl_vector_memcpy (w->g_alpha, w->g); w->g_cache_key = 0.0; /* Calculate the slope along the new direction vector, p */ w->df_alpha = slope (w); w->df_cache_key = 0.0; } gsl-1.16/multimin/Makefile.in0000664000252300025230000010745612172253756013101 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = multimin DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmultimin_la_LIBADD = am_libgslmultimin_la_OBJECTS = fdfminimizer.lo steepest_descent.lo \ conjugate_fr.lo conjugate_pr.lo convergence.lo diff.lo \ vector_bfgs.lo vector_bfgs2.lo fminimizer.lo simplex.lo \ simplex2.lo libgslmultimin_la_OBJECTS = $(am_libgslmultimin_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_funcs.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmultimin.la ../min/libgslmin.la \ ../poly/libgslpoly.la ../blas/libgslblas.la \ ../cblas/libgslcblas.la ../linalg/libgsllinalg.la \ ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmultimin_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmultimin_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmultimin.la pkginclude_HEADERS = gsl_multimin.h INCLUDES = -I$(top_srcdir) libgslmultimin_la_SOURCES = fdfminimizer.c steepest_descent.c conjugate_fr.c conjugate_pr.c convergence.c diff.c vector_bfgs.c vector_bfgs2.c fminimizer.c simplex.c simplex2.c noinst_HEADERS = directional_minimize.c linear_minimize.c linear_wrapper.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test_funcs.h test_LDADD = libgslmultimin.la ../min/libgslmin.la ../poly/libgslpoly.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu multimin/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu multimin/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmultimin.la: $(libgslmultimin_la_OBJECTS) $(libgslmultimin_la_DEPENDENCIES) $(EXTRA_libgslmultimin_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmultimin_la_OBJECTS) $(libgslmultimin_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/conjugate_fr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/conjugate_pr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/convergence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/diff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdfminimizer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fminimizer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/simplex.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/simplex2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/steepest_descent.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_funcs.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/vector_bfgs.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/vector_bfgs2.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES = demo.c #demo_LDADD = libgslmultimin.la ../min/libgslmin.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../linalg/libgsllinalg.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/multimin/test_funcs.c0000664000252300025230000001713412171574312013337 00000000000000/* multimin/test_funcs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "test_funcs.h" gsl_multimin_function_fdf simpleabs = {&simpleabs_f, &simpleabs_df, &simpleabs_fdf, 2, 0}; gsl_multimin_function simpleabs_fmin = {&simpleabs_f, 2, 0}; void simpleabs_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 1.0); gsl_vector_set (x, 1, 2.0); } void simpleabs_initpt1 (gsl_vector * x) { gsl_vector_set (x, 0, 1.0); gsl_vector_set (x, 1, 1.0); } double simpleabs_f (const gsl_vector * x, void *params) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = u - 1; double b = v - 2; fcount++; return fabs(a) + fabs(b); } void simpleabs_df (const gsl_vector * x, void *params, gsl_vector * df) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); gcount++; gsl_vector_set(df,0, GSL_SIGN(u-1)); gsl_vector_set(df,1, GSL_SIGN(v-2)); } void simpleabs_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = u - 1; double b = v - 2; gcount++; *f = fabs(a) + fabs(b); gsl_vector_set(df,0, GSL_SIGN(u-1)); gsl_vector_set(df,1, GSL_SIGN(v-2)); } gsl_multimin_function_fdf rosenbrock = {&rosenbrock_f, &rosenbrock_df, &rosenbrock_fdf, 2, 0}; gsl_multimin_function rosenbrock_fmin = {&rosenbrock_f, 2, 0}; void rosenbrock_initpt (gsl_vector * x) { gsl_vector_set (x, 0, -1.2); gsl_vector_set (x, 1, 1.0); } void rosenbrock_initpt1 (gsl_vector * x) { gsl_vector_set (x, 0, 1.0); gsl_vector_set (x, 1, 1.0); } double rosenbrock_f (const gsl_vector * x, void *params) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = u - 1; double b = u * u - v; fcount++; return a * a + 10 * b * b; } void rosenbrock_df (const gsl_vector * x, void *params, gsl_vector * df) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double b = u * u - v; gcount++; gsl_vector_set(df,0,2 * (u - 1) + 40 * u * b); gsl_vector_set(df,1,-20 * b); } void rosenbrock_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = u - 1; double b = u * u - v; gcount++; *f = a * a + 10 * b * b; gsl_vector_set(df,0,2 * (u - 1) + 40 * u * b); gsl_vector_set(df,1,-20 * b); } gsl_multimin_function_fdf roth = {&roth_f, &roth_df, &roth_fdf, 2, 0}; gsl_multimin_function roth_fmin = {&roth_f, 2, 0}; void roth_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 4.5); gsl_vector_set (x, 1, 3.5); } double roth_f (const gsl_vector * x, void *params) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = -13.0 + u + ((5.0 - v)*v - 2.0)*v; double b = -29.0 + u + ((v + 1.0)*v - 14.0)*v; fcount++; return a * a + b * b; } void roth_df (const gsl_vector * x, void *params, gsl_vector * df) { double u = gsl_vector_get(x,0); double v = gsl_vector_get(x,1); double a = -13.0 + u + ((5.0 - v)*v - 2.0)*v; double b = -29.0 + u + ((v + 1.0)*v - 14.0)*v; double c = -2 + v * (10 - 3 * v); double d = -14 + v * (2 + 3 * v); gcount++; gsl_vector_set(df,0,2 * a + 2 * b); gsl_vector_set(df,1,2 * a * c + 2 * b * d); } void roth_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { *f = roth_f (x,params); roth_df(x,params,df); } gsl_multimin_function_fdf wood = {&wood_f, &wood_df, &wood_fdf, 4, 0}; gsl_multimin_function wood_fmin = {&wood_f, 4, 0}; void wood_initpt (gsl_vector * x) { gsl_vector_set (x, 0, -3.0); gsl_vector_set (x, 1, -1.0); gsl_vector_set (x, 2, -3.0); gsl_vector_set (x, 3, -1.0); } double wood_f (const gsl_vector * x, void *params) { double u1 = gsl_vector_get(x,0); double u2 = gsl_vector_get(x,1); double u3 = gsl_vector_get(x,2); double u4 = gsl_vector_get(x,3); double t1 = u1 * u1 - u2; double t2 = u3 * u3 - u4; fcount++; return 100 * t1 * t1 + (1 - u1) * (1 - u1) + 90 * t2 * t2 + (1 - u3) * (1 - u3) + 10.1 * ( (1 - u2) * (1 - u2) + (1 - u4) * (1 - u4) ) + 19.8 * (1 - u2) * (1 - u4); } void wood_df (const gsl_vector * x, void *params, gsl_vector * df) { double u1 = gsl_vector_get(x,0); double u2 = gsl_vector_get(x,1); double u3 = gsl_vector_get(x,2); double u4 = gsl_vector_get(x,3); double t1 = u1 * u1 - u2; double t2 = u3 * u3 - u4; gcount++; gsl_vector_set(df,0, 400 * u1 * t1 - 2 * (1 - u1) ); gsl_vector_set(df,1, -200 * t1 - 20.2 * (1 - u2) - 19.8 * (1 - u4) ); gsl_vector_set(df,2, 360 * u3 * t2 - 2 * (1 - u3) ); gsl_vector_set(df,3, -180 * t2 - 20.2 * (1 - u4) - 19.8 * (1 - u2) ); } void wood_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { wood_df(x,params,df); *f=wood_f(x,params); } gsl_multimin_function_fdf Nrosenbrock = {&rosenbrock_f, &Nrosenbrock_df, &Nrosenbrock_fdf, 2, 0}; void Nrosenbrock_df (const gsl_vector * x, void *params, gsl_vector * df) { gsl_multimin_function F ; F.f = rosenbrock_f; F.params = params; F.n = x->size; gsl_multimin_diff (&F, x, df); } void Nrosenbrock_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { *f = rosenbrock_f (x, params); Nrosenbrock_df (x, params, df); } gsl_multimin_function_fdf Nroth = {&roth_f, &Nroth_df, &Nroth_fdf, 2, 0}; void Nroth_df (const gsl_vector * x, void *params, gsl_vector * df) { gsl_multimin_function F ; F.f = roth_f; F.params = params; F.n = x->size; gsl_multimin_diff (&F, x, df); } void Nroth_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { *f = roth_f (x, params); Nroth_df (x, params, df); } gsl_multimin_function_fdf Nwood = {&wood_f, &Nwood_df, &Nwood_fdf, 4, 0}; void Nwood_df (const gsl_vector * x, void *params, gsl_vector * df) { gsl_multimin_function F ; F.f = wood_f; F.params = params; F.n = x->size; gsl_multimin_diff (&F, x, df); } void Nwood_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df) { *f = wood_f (x, params); Nwood_df (x, params, df); } gsl_multimin_function spring_fmin = { &spring_f, 3, 0 }; void spring_initpt (gsl_vector * x) { gsl_vector_set (x, 0, 1.0); gsl_vector_set (x, 1, 0.0); gsl_vector_set (x, 2, 7.0 * M_PI); } double spring_f (const gsl_vector * x, void *params) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double theta = atan2 (x1, x0); double r = sqrt (x0 * x0 + x1 * x1); double z = x2; while (z > M_PI) z -= 2.0 * M_PI; while (z < -M_PI) z += 2.0 * M_PI; { double tmz = theta - z; double rm1 = r - 1.0; double ret = 0.1 * (expm1 (tmz * tmz + rm1 * rm1) + fabs (x2 / 10.0)); return ret; } } gsl-1.16/multimin/conjugate_fr.c0000664000252300025230000001474012171574312013630 00000000000000/* multimin/conjugate_fr.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* conjugate_fr.c -- Conjugate gradient Fletcher-Reeve algorithm */ /* Modified by Brian Gough to use single iteration structure */ #include #include #include #include "directional_minimize.c" typedef struct { int iter; double step; double max_step; double tol; gsl_vector *x1; gsl_vector *dx1; gsl_vector *x2; double pnorm; gsl_vector *p; double g0norm; gsl_vector *g0; } conjugate_fr_state_t; static int conjugate_fr_alloc (void *vstate, size_t n) { conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate; state->x1 = gsl_vector_calloc (n); if (state->x1 == 0) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->dx1 = gsl_vector_calloc (n); if (state->dx1 == 0) { gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for dx1", GSL_ENOMEM); } state->x2 = gsl_vector_calloc (n); if (state->x2 == 0) { gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for x2", GSL_ENOMEM); } state->p = gsl_vector_calloc (n); if (state->p == 0) { gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int conjugate_fr_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate; state->iter = 0; state->step = step_size; state->max_step = step_size; state->tol = tol; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->p, gradient); gsl_vector_memcpy (state->g0, gradient); { double gnorm = gsl_blas_dnrm2 (gradient); state->pnorm = gnorm; state->g0norm = gnorm; } return GSL_SUCCESS; } static void conjugate_fr_free (void *vstate) { conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate; gsl_vector_free (state->g0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); } static int conjugate_fr_restart (void *vstate) { conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int conjugate_fr_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { conjugate_fr_state_t *state = (conjugate_fr_state_t *) vstate; gsl_vector *x1 = state->x1; gsl_vector *dx1 = state->dx1; gsl_vector *x2 = state->x2; gsl_vector *p = state->p; gsl_vector *g0 = state->g0; double pnorm = state->pnorm; double g0norm = state->g0norm; double fa = *f, fb, fc; double dir; double stepa = 0.0, stepb, stepc = state->step, tol = state->tol; double g1norm; double pg; if (pnorm == 0.0 || g0norm == 0.0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } /* Determine which direction is downhill, +p or -p */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? +1.0 : -1.0; /* Compute new trial point at x_c= x - step * p, where p is the current direction */ take_step (x, p, stepc, dir / pnorm, x1, dx); /* Evaluate function and gradient at new point xc */ fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); if (fc < fa) { /* Success, reduced the function value */ state->step = stepc * 2.0; *f = fc; gsl_vector_memcpy (x, x1); GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient); return GSL_SUCCESS; } #ifdef DEBUG printf ("got stepc = %g fc = %g\n", stepc, fc); #endif /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an intermediate (xb,fb) satisifying fa > fb < fc. Choose an initial xb based on parabolic interpolation */ intermediate_point (fdf, x, p, dir / pnorm, pg, stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb); if (stepb == 0.0) { return GSL_ENOPROG; } minimize (fdf, x, p, dir / pnorm, stepa, stepb, stepc, fa, fb, fc, tol, x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm); gsl_vector_memcpy (x, x2); /* Choose a new conjugate direction for the next step */ state->iter = (state->iter + 1) % x->size; if (state->iter == 0) { gsl_vector_memcpy (p, gradient); state->pnorm = g1norm; } else { /* p' = g1 - beta * p */ double beta = -pow (g1norm / g0norm, 2.0); gsl_blas_dscal (-beta, p); gsl_blas_daxpy (1.0, gradient, p); state->pnorm = gsl_blas_dnrm2 (p); } state->g0norm = g1norm; gsl_vector_memcpy (g0, gradient); #ifdef DEBUG printf ("updated conjugate directions\n"); printf ("p: "); gsl_vector_fprintf (stdout, p, "%g"); printf ("g: "); gsl_vector_fprintf (stdout, gradient, "%g"); #endif return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type conjugate_fr_type = { "conjugate_fr", /* name */ sizeof (conjugate_fr_state_t), &conjugate_fr_alloc, &conjugate_fr_set, &conjugate_fr_iterate, &conjugate_fr_restart, &conjugate_fr_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_conjugate_fr = &conjugate_fr_type; gsl-1.16/multimin/ChangeLog0000664000252300025230000001330312171574312012562 000000000000002010-04-07 Brian Gough * test.c (test_fdf): handle case of GSL_ENOPROG from early returns * test_funcs.c (simpleabs_f): new test function with non-zero first derivatives around minimum * steepest_descent.c (steepest_descent_iterate): return early if trial point does not move within machine precision * directional_minimize.c (intermediate_point): return early with step=0 if trial point does not move from initial point within machine precision 2009-08-05 Brian Gough * simplex2.c (contract_by_best): update the size and center to avoid old values being used * test.c (main): added a testcase for the spring function 2009-07-11 Brian Gough * simplex2.c (nmsimplex_set_rand): provide alternative initialisation which randomizes the initial simplex 2009-07-09 Brian Gough * fminimizer.c (gsl_multimin_fminimizer_free): handle NULL argument in free * fdfminimizer.c (gsl_multimin_fdfminimizer_free): handle NULL argument in free 2008-11-29 Brian Gough * test.c (test_f): extended fminimizer test to allow type to be passed in as a parameter * simplex2.c: use BLAS, keep track of center in state to avoid unnecessary computation, compute size as RMS value to allow linear update. 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-05-06 Brian Gough * simplex.c (nmsimplex_iterate): fix search for second highest point 2007-07-30 Brian Gough * history.c: removed (unused file) 2007-02-20 Brian Gough * vector_bfgs2.c (vector_bfgs2_iterate): use positive step size 2007-02-17 Brian Gough * linear_minimize.c (minimize): return GSL_ENOPROG for roundoff 2007-02-14 Brian Gough * linear_minimize.c: made all functions static * linear_wrapper.c: made all functions static 2007-02-08 Brian Gough * linear_wrapper.c: convert multidimensional function to one-dimensional for line minimisation * linear_minimize.c: one-dimensional minimisation from Fletcher * vector_bfgs2.c: added Fletcher's implementation 2006-02-18 Brian Gough * vector_bfgs.c (vector_bfgs_iterate): avoid division by zero if dxdg == 0 2003-07-24 Brian Gough * simplex.c (nmsimplex_set): changed index variable i from int to size_t 2003-04-17 Brian Gough * simplex.c (nmsimplex_iterate): bug fix to find the second highest point correctly * vector_bfgs.c (vector_bfgs_iterate): no need to update g0norm on each downhill step, since g0norm is the norm for the initial gradient. * conjugate_pr.c (conjugate_pr_iterate): no need to update g0norm on each downhill step, since g0norm is the norm for the initial gradient. * conjugate_fr.c (conjugate_fr_iterate): no need to update g0norm on each downhill step, since g0norm is the norm for the initial gradient. Sun Sep 30 20:50:00 2002 Tuomo Keskitalo * Added Nelder-Mead Simplex optimization algorithm and fminimizer structure. Sun Feb 10 21:57:36 2002 Brian Gough * conjugate_pr.c (conjugate_pr_iterate): return error ENOPROG if cannot find downward step * conjugate_fr.c (conjugate_fr_iterate): return error ENOPROG if cannot find downward step * vector_bfgs.c (vector_bfgs_iterate): return error ENOPROG if cannot find downward step Thu Oct 25 11:56:06 2001 Brian Gough * added a tolerance parameter for the line minimizations Wed Oct 24 23:18:46 2001 Brian Gough * modified all routines to use a single minimiztion iteration, instead of nested iterations for line and gradient search. Thu Oct 18 22:56:52 2001 Brian Gough * renamed gsl_multimin_f_minimizer to gsl_multimin_fminimizer for consistency with rest of the library * renamed gsl_multimin_fdf_minimizer to gsl_multimin_fdfminimizer for consistency with rest of the library Mon Oct 8 21:41:51 2001 Brian Gough * diff.c (gsl_multimin_diff): pass params argument using GSL_MULTIMIN_FN_EVAL (3 occurrences) Sun Jul 15 17:54:15 2001 Brian Gough * fdfminimizer.c (gsl_multimin_fdf_minimizer_alloc): eliminated use of interval type Sat Apr 28 11:29:08 2001 Brian Gough * diff.c (gsl_multimin_diff): made indices unsigned Mon Apr 23 13:22:31 2001 Brian Gough * gsl_multimin.h diff.c: made starting_point const throughout to avoid compiler warnings * made internal functions static * gsl_multimin.h: added missing prototype for gsl_multimin_diff Tue Apr 17 22:15:37 2001 Brian Gough * gsl_multimin.h: added missing prototype for gsl_multimin_compute_ep Sun Feb 18 16:35:21 2001 Brian Gough * fdfminimizer.c (gsl_multimin_fdf_minimizer_alloc): modified to account for change in calling convection of gsl_min_fminimizer_alloc Fri May 5 16:08:34 2000 Brian Gough * test.c (test_fdf): fixed warning about "control reaches end of non-void function" by changing test_fdf to return type void Tue May 2 19:20:46 2000 Brian Gough * test.c (main): added return gsl_test_summary() to main, so that test results are returned through the exit status. Mon Feb 14 13:12:16 2000 Brian Gough * made all internal functions static gsl-1.16/multimin/directional_minimize.c0000664000252300025230000001325312171574312015356 00000000000000/* multimin/directional_minimize.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void take_step (const gsl_vector * x, const gsl_vector * p, double step, double lambda, gsl_vector * x1, gsl_vector * dx) { gsl_vector_set_zero (dx); gsl_blas_daxpy (-step * lambda, p, dx); gsl_vector_memcpy (x1, x); gsl_blas_daxpy (1.0, dx, x1); } static void intermediate_point (gsl_multimin_function_fdf * fdf, const gsl_vector * x, const gsl_vector * p, double lambda, double pg, double stepa, double stepc, double fa, double fc, gsl_vector * x1, gsl_vector * dx, gsl_vector * gradient, double * step, double * f) { double stepb, fb; trial: { double u = fabs (pg * lambda * stepc); stepb = 0.5 * stepc * u / ((fc - fa) + u); } take_step (x, p, stepb, lambda, x1, dx); if (gsl_vector_equal (x, x1)) { /* Take fast exit if trial point does not move from initial point */ #ifdef DEBUG printf ("fast exit x == x1 for stepb = %g\n", stepb); #endif *step = 0; *f = fa; GSL_MULTIMIN_FN_EVAL_DF(fdf, x1, gradient); return ; } fb = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); #ifdef DEBUG printf ("trying stepb = %g fb = %.18e\n", stepb, fb); #endif if (fb >= fa && stepb > 0.0) { /* downhill step failed, reduce step-size and try again */ fc = fb; stepc = stepb; goto trial; } #ifdef DEBUG printf ("ok!\n"); #endif *step = stepb; *f = fb; GSL_MULTIMIN_FN_EVAL_DF(fdf, x1, gradient); } static void minimize (gsl_multimin_function_fdf * fdf, const gsl_vector * x, const gsl_vector * p, double lambda, double stepa, double stepb, double stepc, double fa, double fb, double fc, double tol, gsl_vector * x1, gsl_vector * dx1, gsl_vector * x2, gsl_vector * dx2, gsl_vector * gradient, double * step, double * f, double * gnorm) { /* Starting at (x0, f0) move along the direction p to find a minimum f(x0 - lambda * p), returning the new point x1 = x0-lambda*p, f1=f(x1) and g1 = grad(f) at x1. */ double u = stepb; double v = stepa; double w = stepc; double fu = fb; double fv = fa; double fw = fc; double old2 = fabs(w - v); double old1 = fabs(v - u); double stepm, fm, pg, gnorm1; int iter = 0; gsl_vector_memcpy (x2, x1); gsl_vector_memcpy (dx2, dx1); *f = fb; *step = stepb; *gnorm = gsl_blas_dnrm2 (gradient); mid_trial: iter++; if (iter > 10) { return; /* MAX ITERATIONS */ } { double dw = w - u; double dv = v - u; double du = 0.0; double e1 = ((fv - fu) * dw * dw + (fu - fw) * dv * dv); double e2 = 2.0 * ((fv - fu) * dw + (fu - fw) * dv); if (e2 != 0.0) { du = e1 / e2; } if (du > 0.0 && du < (stepc - stepb) && fabs(du) < 0.5 * old2) { stepm = u + du; } else if (du < 0.0 && du > (stepa - stepb) && fabs(du) < 0.5 * old2) { stepm = u + du; } else if ((stepc - stepb) > (stepb - stepa)) { stepm = 0.38 * (stepc - stepb) + stepb; } else { stepm = stepb - 0.38 * (stepb - stepa); } } take_step (x, p, stepm, lambda, x1, dx1); fm = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); #ifdef DEBUG printf ("trying stepm = %g fm = %.18e\n", stepm, fm); #endif if (fm > fb) { if (fm < fv) { w = v; v = stepm; fw = fv; fv = fm; } else if (fm < fw) { w = stepm; fw = fm; } if (stepm < stepb) { stepa = stepm; fa = fm; } else { stepc = stepm; fc = fm; } goto mid_trial; } else if (fm <= fb) { old2 = old1; old1 = fabs(u - stepm); w = v; v = u; u = stepm; fw = fv; fv = fu; fu = fm; gsl_vector_memcpy (x2, x1); gsl_vector_memcpy (dx2, dx1); GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient); gsl_blas_ddot (p, gradient, &pg); gnorm1 = gsl_blas_dnrm2 (gradient); #ifdef DEBUG printf ("p: "); gsl_vector_fprintf(stdout, p, "%g"); printf ("g: "); gsl_vector_fprintf(stdout, gradient, "%g"); printf ("gnorm: %.18e\n", gnorm1); printf ("pg: %.18e\n", pg); printf ("orth: %g\n", fabs (pg * lambda/ gnorm1)); #endif *f = fm; *step = stepm; *gnorm = gnorm1; if (fabs (pg * lambda / gnorm1) < tol) { #ifdef DEBUG printf("ok!\n"); #endif return; /* SUCCESS */ } if (stepm < stepb) { stepc = stepb; fc = fb; stepb = stepm; fb = fm; } else { stepa = stepb; fa = fb; stepb = stepm; fb = fm; } goto mid_trial; } } gsl-1.16/multimin/Makefile.am0000664000252300025230000000232312171574312013044 00000000000000noinst_LTLIBRARIES = libgslmultimin.la pkginclude_HEADERS = gsl_multimin.h INCLUDES = -I$(top_srcdir) libgslmultimin_la_SOURCES = fdfminimizer.c steepest_descent.c conjugate_fr.c conjugate_pr.c convergence.c diff.c vector_bfgs.c vector_bfgs2.c fminimizer.c simplex.c simplex2.c noinst_HEADERS = directional_minimize.c linear_minimize.c linear_wrapper.c check_PROGRAMS = test #demo TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test_funcs.h test_LDADD = libgslmultimin.la ../min/libgslmin.la ../poly/libgslpoly.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #demo_SOURCES = demo.c #demo_LDADD = libgslmultimin.la ../min/libgslmin.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../linalg/libgsllinalg.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/multimin/test_funcs.h0000664000252300025230000000574512171574312013351 00000000000000/* multimin/test_funcs.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ extern unsigned int fcount, gcount; typedef void (*initpt_function) (gsl_vector * x); extern gsl_multimin_function_fdf simpleabs; extern gsl_multimin_function simpleabs_fmin; void simpleabs_initpt (gsl_vector * x); void simpleabs_initpt1 (gsl_vector * x); double simpleabs_f (const gsl_vector * x, void *params); void simpleabs_df (const gsl_vector * x, void *params, gsl_vector * df); void simpleabs_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf rosenbrock; extern gsl_multimin_function rosenbrock_fmin; void rosenbrock_initpt (gsl_vector * x); void rosenbrock_initpt1 (gsl_vector * x); double rosenbrock_f (const gsl_vector * x, void *params); void rosenbrock_df (const gsl_vector * x, void *params, gsl_vector * df); void rosenbrock_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf wood; extern gsl_multimin_function wood_fmin; void wood_initpt (gsl_vector * x); double wood_f (const gsl_vector * x, void *params); void wood_df (const gsl_vector * x, void *params, gsl_vector * df); void wood_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf roth; extern gsl_multimin_function roth_fmin; void roth_initpt (gsl_vector * x); double roth_f (const gsl_vector * x, void *params); void roth_df (const gsl_vector * x, void *params, gsl_vector * df); void roth_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf Nrosenbrock; void Nrosenbrock_df (const gsl_vector * x, void *params, gsl_vector * df); void Nrosenbrock_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf Nroth; void Nroth_df (const gsl_vector * x, void *params, gsl_vector * df); void Nroth_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function_fdf Nwood; void Nwood_df (const gsl_vector * x, void *params, gsl_vector * df); void Nwood_fdf (const gsl_vector * x, void *params, double * f, gsl_vector * df); extern gsl_multimin_function spring_fmin; void spring_initpt (gsl_vector * x); double spring_f (const gsl_vector *x, void *params); gsl-1.16/multimin/simplex.c0000664000252300025230000002605712171574312012647 00000000000000/* multimin/simplex.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 2002 Tuomo Keskitalo, Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* - Originally written by Tuomo Keskitalo - Corrections to nmsimplex_iterate and other functions by Ivo Alxneit - Additional help by Brian Gough */ /* The Simplex method of Nelder and Mead, also known as the polytope search alogorithm. Ref: Nelder, J.A., Mead, R., Computer Journal 7 (1965) pp. 308-313. This implementation uses n+1 corner points in the simplex. */ #include #include #include #include typedef struct { gsl_matrix *x1; /* simplex corner points */ gsl_vector *y1; /* function value at corner points */ gsl_vector *ws1; /* workspace 1 for algorithm */ gsl_vector *ws2; /* workspace 2 for algorithm */ } nmsimplex_state_t; static double nmsimplex_move_corner (const double coeff, const nmsimplex_state_t * state, size_t corner, gsl_vector * xc, const gsl_multimin_function * f) { /* moves a simplex corner scaled by coeff (negative value represents mirroring by the middle point of the "other" corner points) and gives new corner in xc and function value at xc as a return value */ gsl_matrix *x1 = state->x1; size_t i, j; double newval, mp; for (j = 0; j < x1->size2; j++) { mp = 0.0; for (i = 0; i < x1->size1; i++) { if (i != corner) { mp += (gsl_matrix_get (x1, i, j)); } } mp /= (double) (x1->size1 - 1); newval = mp - coeff * (mp - gsl_matrix_get (x1, corner, j)); gsl_vector_set (xc, j, newval); } newval = GSL_MULTIMIN_FN_EVAL (f, xc); return newval; } static int nmsimplex_contract_by_best (nmsimplex_state_t * state, size_t best, gsl_vector * xc, gsl_multimin_function * f) { /* Function contracts the simplex in respect to best valued corner. That is, all corners besides the best corner are moved. */ /* the xc vector is simply work space here */ gsl_matrix *x1 = state->x1; gsl_vector *y1 = state->y1; size_t i, j; double newval; int status = GSL_SUCCESS; for (i = 0; i < x1->size1; i++) { if (i != best) { for (j = 0; j < x1->size2; j++) { newval = 0.5 * (gsl_matrix_get (x1, i, j) + gsl_matrix_get (x1, best, j)); gsl_matrix_set (x1, i, j, newval); } /* evaluate function in the new point */ gsl_matrix_get_row (xc, x1, i); newval = GSL_MULTIMIN_FN_EVAL (f, xc); gsl_vector_set (y1, i, newval); /* notify caller that we found at least one bad function value. we finish the contraction (and do not abort) to allow the user to handle the situation */ if(!gsl_finite(newval)) { status = GSL_EBADFUNC; } } } return status; } static int nmsimplex_calc_center (const nmsimplex_state_t * state, gsl_vector * mp) { /* calculates the center of the simplex to mp */ gsl_matrix *x1 = state->x1; size_t i, j; double val; for (j = 0; j < x1->size2; j++) { val = 0.0; for (i = 0; i < x1->size1; i++) { val += gsl_matrix_get (x1, i, j); } val /= x1->size1; gsl_vector_set (mp, j, val); } return GSL_SUCCESS; } static double nmsimplex_size (nmsimplex_state_t * state) { /* calculates simplex size as average sum of length of vectors from simplex center to corner points: ( sum ( || y - y_middlepoint || ) ) / n */ gsl_vector *s = state->ws1; gsl_vector *mp = state->ws2; gsl_matrix *x1 = state->x1; size_t i; double ss = 0.0; /* Calculate middle point */ nmsimplex_calc_center (state, mp); for (i = 0; i < x1->size1; i++) { gsl_matrix_get_row (s, x1, i); gsl_blas_daxpy (-1.0, mp, s); ss += gsl_blas_dnrm2 (s); } return ss / (double) (x1->size1); } static int nmsimplex_alloc (void *vstate, size_t n) { nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; if (n == 0) { GSL_ERROR("invalid number of parameters specified", GSL_EINVAL); } state->x1 = gsl_matrix_alloc (n + 1, n); if (state->x1 == NULL) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->y1 = gsl_vector_alloc (n + 1); if (state->y1 == NULL) { gsl_matrix_free(state->x1); GSL_ERROR ("failed to allocate space for y", GSL_ENOMEM); } state->ws1 = gsl_vector_alloc (n); if (state->ws1 == NULL) { gsl_matrix_free(state->x1); gsl_vector_free(state->y1); GSL_ERROR ("failed to allocate space for ws1", GSL_ENOMEM); } state->ws2 = gsl_vector_alloc (n); if (state->ws2 == NULL) { gsl_matrix_free(state->x1); gsl_vector_free(state->y1); gsl_vector_free(state->ws1); GSL_ERROR ("failed to allocate space for ws2", GSL_ENOMEM); } return GSL_SUCCESS; } static int nmsimplex_set (void *vstate, gsl_multimin_function * f, const gsl_vector * x, double *size, const gsl_vector * step_size) { int status; size_t i; double val; nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; gsl_vector *xtemp = state->ws1; if (xtemp->size != x->size) { GSL_ERROR("incompatible size of x", GSL_EINVAL); } if (xtemp->size != step_size->size) { GSL_ERROR("incompatible size of step_size", GSL_EINVAL); } /* first point is the original x0 */ val = GSL_MULTIMIN_FN_EVAL (f, x); if (!gsl_finite(val)) { GSL_ERROR("non-finite function value encountered", GSL_EBADFUNC); } gsl_matrix_set_row (state->x1, 0, x); gsl_vector_set (state->y1, 0, val); /* following points are initialized to x0 + step_size */ for (i = 0; i < x->size; i++) { status = gsl_vector_memcpy (xtemp, x); if (status != 0) { GSL_ERROR ("vector memcopy failed", GSL_EFAILED); } val = gsl_vector_get (xtemp, i) + gsl_vector_get (step_size, i); gsl_vector_set (xtemp, i, val); val = GSL_MULTIMIN_FN_EVAL (f, xtemp); if (!gsl_finite(val)) { GSL_ERROR("non-finite function value encountered", GSL_EBADFUNC); } gsl_matrix_set_row (state->x1, i + 1, xtemp); gsl_vector_set (state->y1, i + 1, val); } /* Initialize simplex size */ *size = nmsimplex_size (state); return GSL_SUCCESS; } static void nmsimplex_free (void *vstate) { nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; gsl_matrix_free (state->x1); gsl_vector_free (state->y1); gsl_vector_free (state->ws1); gsl_vector_free (state->ws2); } static int nmsimplex_iterate (void *vstate, gsl_multimin_function * f, gsl_vector * x, double *size, double *fval) { /* Simplex iteration tries to minimize function f value */ /* Includes corrections from Ivo Alxneit */ nmsimplex_state_t *state = (nmsimplex_state_t *) vstate; /* xc and xc2 vectors store tried corner point coordinates */ gsl_vector *xc = state->ws1; gsl_vector *xc2 = state->ws2; gsl_vector *y1 = state->y1; gsl_matrix *x1 = state->x1; size_t n = y1->size; size_t i; size_t hi, s_hi, lo; double dhi, ds_hi, dlo; int status; double val, val2; if (xc->size != x->size) { GSL_ERROR("incompatible size of x", GSL_EINVAL); } /* get index of highest, second highest and lowest point */ dhi = dlo = gsl_vector_get (y1, 0); hi = 0; lo = 0; ds_hi = gsl_vector_get(y1, 1); s_hi = 1; for (i = 1; i < n; i++) { val = (gsl_vector_get (y1, i)); if (val < dlo) { dlo = val; lo = i; } else if (val > dhi) { ds_hi = dhi; s_hi = hi; dhi = val; hi = i; } else if (val > ds_hi) { ds_hi = val; s_hi = i; } } /* reflect the highest value */ val = nmsimplex_move_corner (-1.0, state, hi, xc, f); if (gsl_finite(val) && val < gsl_vector_get (y1, lo)) { /* reflected point becomes lowest point, try expansion */ val2 = nmsimplex_move_corner (-2.0, state, hi, xc2, f); if (gsl_finite(val2) && val2 < gsl_vector_get (y1, lo)) { gsl_matrix_set_row (x1, hi, xc2); gsl_vector_set (y1, hi, val2); } else { gsl_matrix_set_row (x1, hi, xc); gsl_vector_set (y1, hi, val); } } /* reflection does not improve things enough or we got a non-finite (illegal) function value */ else if (!gsl_finite(val) || val > gsl_vector_get (y1, s_hi)) { if (gsl_finite(val) && val <= gsl_vector_get (y1, hi)) { /* if trial point is better than highest point, replace highest point */ gsl_matrix_set_row (x1, hi, xc); gsl_vector_set (y1, hi, val); } /* try one dimensional contraction */ val2 = nmsimplex_move_corner (0.5, state, hi, xc2, f); if (gsl_finite(val2) && val2 <= gsl_vector_get (y1, hi)) { gsl_matrix_set_row (state->x1, hi, xc2); gsl_vector_set (y1, hi, val2); } else { /* contract the whole simplex in respect to the best point */ status = nmsimplex_contract_by_best (state, lo, xc, f); if (status != GSL_SUCCESS) { GSL_ERROR ("nmsimplex_contract_by_best failed", GSL_EFAILED); } } } else { /* trial point is better than second highest point. Replace highest point by it */ gsl_matrix_set_row (x1, hi, xc); gsl_vector_set (y1, hi, val); } /* return lowest point of simplex as x */ lo = gsl_vector_min_index (y1); gsl_matrix_get_row (x, x1, lo); *fval = gsl_vector_get (y1, lo); /* Update simplex size */ *size = nmsimplex_size (state); return GSL_SUCCESS; } static const gsl_multimin_fminimizer_type nmsimplex_type = { "nmsimplex", /* name */ sizeof (nmsimplex_state_t), &nmsimplex_alloc, &nmsimplex_set, &nmsimplex_iterate, &nmsimplex_free }; const gsl_multimin_fminimizer_type * gsl_multimin_fminimizer_nmsimplex = &nmsimplex_type; gsl-1.16/multimin/vector_bfgs2.c0000664000252300025230000002033612171574312013545 00000000000000/* multimin/vector_bfgs2.c * * Copyright (C) 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ /* vector_bfgs2.c -- Fletcher's implementation of the BFGS method, using the line minimisation algorithm from from R.Fletcher, "Practical Methods of Optimization", Second Edition, ISBN 0471915475. Algorithms 2.6.2 and 2.6.4. */ /* Thanks to Alan Irwin irwin@beluga.phys.uvic.ca. for suggesting this algorithm and providing sample fortran benchmarks */ #include #include #include #include "linear_minimize.c" #include "linear_wrapper.c" typedef struct { int iter; double step; double g0norm; double pnorm; double delta_f; double fp0; /* f'(0) for f(x-alpha*p) */ gsl_vector *x0; gsl_vector *g0; gsl_vector *p; /* work space */ gsl_vector *dx0; gsl_vector *dg0; gsl_vector *x_alpha; gsl_vector *g_alpha; /* wrapper function */ wrapper_t wrap; /* minimization parameters */ double rho; double sigma; double tau1; double tau2; double tau3; int order; } vector_bfgs2_state_t; static int vector_bfgs2_alloc (void *vstate, size_t n) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->p = gsl_vector_calloc (n); if (state->p == 0) { GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->x0 = gsl_vector_calloc (n); if (state->x0 == 0) { gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dx0 = gsl_vector_calloc (n); if (state->dx0 == 0) { gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->dg0 = gsl_vector_calloc (n); if (state->dg0 == 0) { gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->x_alpha = gsl_vector_calloc (n); if (state->x_alpha == 0) { gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } state->g_alpha = gsl_vector_calloc (n); if (state->g_alpha == 0) { gsl_vector_free (state->x_alpha); gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int vector_bfgs2_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->iter = 0; state->step = step_size; state->delta_f = 0; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->x0, x); gsl_vector_memcpy (state->g0, gradient); state->g0norm = gsl_blas_dnrm2 (state->g0); gsl_vector_memcpy (state->p, gradient); gsl_blas_dscal (-1 / state->g0norm, state->p); state->pnorm = gsl_blas_dnrm2 (state->p); /* should be 1 */ state->fp0 = -state->g0norm; /* Prepare the wrapper */ prepare_wrapper (&state->wrap, fdf, state->x0, *f, state->g0, state->p, state->x_alpha, state->g_alpha); /* Prepare 1d minimisation parameters */ state->rho = 0.01; state->sigma = tol; state->tau1 = 9; state->tau2 = 0.05; state->tau3 = 0.5; state->order = 3; /* use cubic interpolation where possible */ return GSL_SUCCESS; } static void vector_bfgs2_free (void *vstate) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; gsl_vector_free (state->x_alpha); gsl_vector_free (state->g_alpha); gsl_vector_free (state->dg0); gsl_vector_free (state->dx0); gsl_vector_free (state->g0); gsl_vector_free (state->x0); gsl_vector_free (state->p); } static int vector_bfgs2_restart (void *vstate) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int vector_bfgs2_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { vector_bfgs2_state_t *state = (vector_bfgs2_state_t *) vstate; double alpha = 0.0, alpha1; gsl_vector *x0 = state->x0; gsl_vector *g0 = state->g0; gsl_vector *p = state->p; double g0norm = state->g0norm; double pnorm = state->pnorm; double delta_f = state->delta_f; double pg, dir; int status; double f0 = *f; if (pnorm == 0.0 || g0norm == 0.0 || state->fp0 == 0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } if (delta_f < 0) { double del = GSL_MAX_DBL (-delta_f, 10 * GSL_DBL_EPSILON * fabs(f0)); alpha1 = GSL_MIN_DBL (1.0, 2.0 * del / (-state->fp0)); } else { alpha1 = fabs(state->step); } /* line minimisation, with cubic interpolation (order = 3) */ status = minimize (&state->wrap.fdf_linear, state->rho, state->sigma, state->tau1, state->tau2, state->tau3, state->order, alpha1, &alpha); if (status != GSL_SUCCESS) { return status; } update_position (&(state->wrap), alpha, x, f, gradient); state->delta_f = *f - f0; /* Choose a new direction for the next step */ { /* This is the BFGS update: */ /* p' = g1 - A dx - B dg */ /* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */ /* B = dx.g/dx.dg */ gsl_vector *dx0 = state->dx0; gsl_vector *dg0 = state->dg0; double dxg, dgg, dxdg, dgnorm, A, B; /* dx0 = x - x0 */ gsl_vector_memcpy (dx0, x); gsl_blas_daxpy (-1.0, x0, dx0); gsl_vector_memcpy (dx, dx0); /* keep a copy */ /* dg0 = g - g0 */ gsl_vector_memcpy (dg0, gradient); gsl_blas_daxpy (-1.0, g0, dg0); gsl_blas_ddot (dx0, gradient, &dxg); gsl_blas_ddot (dg0, gradient, &dgg); gsl_blas_ddot (dx0, dg0, &dxdg); dgnorm = gsl_blas_dnrm2 (dg0); if (dxdg != 0) { B = dxg / dxdg; A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg; } else { B = 0; A = 0; } gsl_vector_memcpy (p, gradient); gsl_blas_daxpy (-A, dx0, p); gsl_blas_daxpy (-B, dg0, p); } gsl_vector_memcpy (g0, gradient); gsl_vector_memcpy (x0, x); state->g0norm = gsl_blas_dnrm2 (g0); state->pnorm = gsl_blas_dnrm2 (p); /* update direction and fp0 */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? -1.0 : +1.0; gsl_blas_dscal (dir / state->pnorm, p); state->pnorm = gsl_blas_dnrm2 (p); gsl_blas_ddot (p, g0, &state->fp0); change_direction (&state->wrap); return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type vector_bfgs2_type = { "vector_bfgs2", /* name */ sizeof (vector_bfgs2_state_t), &vector_bfgs2_alloc, &vector_bfgs2_set, &vector_bfgs2_iterate, &vector_bfgs2_restart, &vector_bfgs2_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_vector_bfgs2 = &vector_bfgs2_type; gsl-1.16/multimin/conjugate_pr.c0000664000252300025230000001523012171574312013635 00000000000000/* multimin/conjugate_pr.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* conjugate_pr.c -- Conjugate gradient Polak-Ribiere algorithm */ /* Modified by Brian Gough to use single iteration structure */ #include #include #include #include "directional_minimize.c" typedef struct { int iter; double step; double max_step; double tol; gsl_vector *x1; gsl_vector *dx1; gsl_vector *x2; double pnorm; gsl_vector *p; double g0norm; gsl_vector *g0; } conjugate_pr_state_t; static int conjugate_pr_alloc (void *vstate, size_t n) { conjugate_pr_state_t *state = (conjugate_pr_state_t *) vstate; state->x1 = gsl_vector_calloc (n); if (state->x1 == 0) { GSL_ERROR ("failed to allocate space for x1", GSL_ENOMEM); } state->dx1 = gsl_vector_calloc (n); if (state->dx1 == 0) { gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for dx1", GSL_ENOMEM); } state->x2 = gsl_vector_calloc (n); if (state->x2 == 0) { gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for x2", GSL_ENOMEM); } state->p = gsl_vector_calloc (n); if (state->p == 0) { gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for p", GSL_ENOMEM); } state->g0 = gsl_vector_calloc (n); if (state->g0 == 0) { gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); GSL_ERROR ("failed to allocate space for g0", GSL_ENOMEM); } return GSL_SUCCESS; } static int conjugate_pr_set (void *vstate, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double *f, gsl_vector * gradient, double step_size, double tol) { conjugate_pr_state_t *state = (conjugate_pr_state_t *) vstate; state->iter = 0; state->step = step_size; state->max_step = step_size; state->tol = tol; GSL_MULTIMIN_FN_EVAL_F_DF (fdf, x, f, gradient); /* Use the gradient as the initial direction */ gsl_vector_memcpy (state->p, gradient); gsl_vector_memcpy (state->g0, gradient); { double gnorm = gsl_blas_dnrm2 (gradient); state->pnorm = gnorm; state->g0norm = gnorm; } return GSL_SUCCESS; } static void conjugate_pr_free (void *vstate) { conjugate_pr_state_t *state = (conjugate_pr_state_t *) vstate; gsl_vector_free (state->g0); gsl_vector_free (state->p); gsl_vector_free (state->x2); gsl_vector_free (state->dx1); gsl_vector_free (state->x1); } static int conjugate_pr_restart (void *vstate) { conjugate_pr_state_t *state = (conjugate_pr_state_t *) vstate; state->iter = 0; return GSL_SUCCESS; } static int conjugate_pr_iterate (void *vstate, gsl_multimin_function_fdf * fdf, gsl_vector * x, double *f, gsl_vector * gradient, gsl_vector * dx) { conjugate_pr_state_t *state = (conjugate_pr_state_t *) vstate; gsl_vector *x1 = state->x1; gsl_vector *dx1 = state->dx1; gsl_vector *x2 = state->x2; gsl_vector *p = state->p; gsl_vector *g0 = state->g0; double pnorm = state->pnorm; double g0norm = state->g0norm; double fa = *f, fb, fc; double dir; double stepa = 0.0, stepb, stepc = state->step, tol = state->tol; double g1norm; double pg; if (pnorm == 0.0 || g0norm == 0.0) { gsl_vector_set_zero (dx); return GSL_ENOPROG; } /* Determine which direction is downhill, +p or -p */ gsl_blas_ddot (p, gradient, &pg); dir = (pg >= 0.0) ? +1.0 : -1.0; /* Compute new trial point at x_c= x - step * p, where p is the current direction */ take_step (x, p, stepc, dir / pnorm, x1, dx); /* Evaluate function and gradient at new point xc */ fc = GSL_MULTIMIN_FN_EVAL_F (fdf, x1); if (fc < fa) { /* Success, reduced the function value */ state->step = stepc * 2.0; *f = fc; gsl_vector_memcpy (x, x1); GSL_MULTIMIN_FN_EVAL_DF (fdf, x1, gradient); return GSL_SUCCESS; } #ifdef DEBUG printf ("got stepc = %g fc = %g\n", stepc, fc); #endif /* Do a line minimisation in the region (xa,fa) (xc,fc) to find an intermediate (xb,fb) satisifying fa > fb < fc. Choose an initial xb based on parabolic interpolation */ intermediate_point (fdf, x, p, dir / pnorm, pg, stepa, stepc, fa, fc, x1, dx1, gradient, &stepb, &fb); if (stepb == 0.0) { return GSL_ENOPROG; } minimize (fdf, x, p, dir / pnorm, stepa, stepb, stepc, fa, fb, fc, tol, x1, dx1, x2, dx, gradient, &(state->step), f, &g1norm); gsl_vector_memcpy (x, x2); /* Choose a new conjugate direction for the next step */ state->iter = (state->iter + 1) % x->size; if (state->iter == 0) { gsl_vector_memcpy (p, gradient); state->pnorm = g1norm; } else { /* p' = g1 - beta * p */ double g0g1, beta; gsl_blas_daxpy (-1.0, gradient, g0); /* g0' = g0 - g1 */ gsl_blas_ddot(g0, gradient, &g0g1); /* g1g0 = (g0-g1).g1 */ beta = g0g1 / (g0norm*g0norm); /* beta = -((g1 - g0).g1)/(g0.g0) */ gsl_blas_dscal (-beta, p); gsl_blas_daxpy (1.0, gradient, p); state->pnorm = gsl_blas_dnrm2 (p); } state->g0norm = g1norm; gsl_vector_memcpy (g0, gradient); #ifdef DEBUG printf ("updated conjugate directions\n"); printf ("p: "); gsl_vector_fprintf (stdout, p, "%g"); printf ("g: "); gsl_vector_fprintf (stdout, gradient, "%g"); #endif return GSL_SUCCESS; } static const gsl_multimin_fdfminimizer_type conjugate_pr_type = { "conjugate_pr", /* name */ sizeof (conjugate_pr_state_t), &conjugate_pr_alloc, &conjugate_pr_set, &conjugate_pr_iterate, &conjugate_pr_restart, &conjugate_pr_free }; const gsl_multimin_fdfminimizer_type * gsl_multimin_fdfminimizer_conjugate_pr = &conjugate_pr_type; gsl-1.16/multimin/fdfminimizer.c0000664000252300025230000001014212171574312013635 00000000000000/* multimin/fdfminimizer.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include gsl_multimin_fdfminimizer * gsl_multimin_fdfminimizer_alloc (const gsl_multimin_fdfminimizer_type * T, size_t n) { int status; gsl_multimin_fdfminimizer *s = (gsl_multimin_fdfminimizer *) malloc (sizeof (gsl_multimin_fdfminimizer)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for minimizer struct", GSL_ENOMEM, 0); } s->type = T; s->x = gsl_vector_calloc (n); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->gradient = gsl_vector_calloc (n); if (s->gradient == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for gradient", GSL_ENOMEM, 0); } s->dx = gsl_vector_calloc (n); if (s->dx == 0) { gsl_vector_free (s->x); gsl_vector_free (s->gradient); free (s); GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->x); gsl_vector_free (s->gradient); gsl_vector_free (s->dx); free (s); GSL_ERROR_VAL ("failed to allocate space for minimizer state", GSL_ENOMEM, 0); } status = (T->alloc) (s->state, n); if (status != GSL_SUCCESS) { free (s->state); gsl_vector_free (s->x); gsl_vector_free (s->gradient); gsl_vector_free (s->dx); free (s); GSL_ERROR_VAL ("failed to initialize minimizer state", GSL_ENOMEM, 0); } return s; } int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * s, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double step_size, double tol) { if (s->x->size != fdf->n) { GSL_ERROR ("function incompatible with solver size", GSL_EBADLEN); } if (x->size != fdf->n) { GSL_ERROR ("vector length not compatible with function", GSL_EBADLEN); } s->fdf = fdf; gsl_vector_memcpy (s->x,x); gsl_vector_set_zero (s->dx); return (s->type->set) (s->state, s->fdf, s->x, &(s->f), s->gradient, step_size, tol); } void gsl_multimin_fdfminimizer_free (gsl_multimin_fdfminimizer * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->gradient); gsl_vector_free (s->x); free (s); } int gsl_multimin_fdfminimizer_iterate (gsl_multimin_fdfminimizer * s) { return (s->type->iterate) (s->state, s->fdf, s->x, &(s->f), s->gradient, s->dx); } int gsl_multimin_fdfminimizer_restart (gsl_multimin_fdfminimizer * s) { return (s->type->restart) (s->state); } const char * gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * s) { return s->type->name; } gsl_vector * gsl_multimin_fdfminimizer_x (const gsl_multimin_fdfminimizer * s) { return s->x; } gsl_vector * gsl_multimin_fdfminimizer_dx (const gsl_multimin_fdfminimizer * s) { return s->dx; } gsl_vector * gsl_multimin_fdfminimizer_gradient (const gsl_multimin_fdfminimizer * s) { return s->gradient; } double gsl_multimin_fdfminimizer_minimum (const gsl_multimin_fdfminimizer * s) { return s->f; } gsl-1.16/multimin/gsl_multimin.h0000664000252300025230000001521312171574312013666 00000000000000/* multimin/gsl_multimin.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Modified by Tuomo Keskitalo to include fminimizer and Nelder Mead related lines */ #ifndef __GSL_MULTIMIN_H__ #define __GSL_MULTIMIN_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Definition of an arbitrary real-valued function with gsl_vector input and */ /* parameters */ struct gsl_multimin_function_struct { double (* f) (const gsl_vector * x, void * params); size_t n; void * params; }; typedef struct gsl_multimin_function_struct gsl_multimin_function; #define GSL_MULTIMIN_FN_EVAL(F,x) (*((F)->f))(x,(F)->params) /* Definition of an arbitrary differentiable real-valued function */ /* with gsl_vector input and parameters */ struct gsl_multimin_function_fdf_struct { double (* f) (const gsl_vector * x, void * params); void (* df) (const gsl_vector * x, void * params,gsl_vector * df); void (* fdf) (const gsl_vector * x, void * params,double *f,gsl_vector * df); size_t n; void * params; }; typedef struct gsl_multimin_function_fdf_struct gsl_multimin_function_fdf; #define GSL_MULTIMIN_FN_EVAL_F(F,x) (*((F)->f))(x,(F)->params) #define GSL_MULTIMIN_FN_EVAL_DF(F,x,g) (*((F)->df))(x,(F)->params,(g)) #define GSL_MULTIMIN_FN_EVAL_F_DF(F,x,y,g) (*((F)->fdf))(x,(F)->params,(y),(g)) int gsl_multimin_diff (const gsl_multimin_function * f, const gsl_vector * x, gsl_vector * g); /* minimization of non-differentiable functions */ typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n); int (*set) (void *state, gsl_multimin_function * f, const gsl_vector * x, double * size, const gsl_vector * step_size); int (*iterate) (void *state, gsl_multimin_function * f, gsl_vector * x, double * size, double * fval); void (*free) (void *state); } gsl_multimin_fminimizer_type; typedef struct { /* multi dimensional part */ const gsl_multimin_fminimizer_type *type; gsl_multimin_function *f; double fval; gsl_vector * x; double size; void *state; } gsl_multimin_fminimizer; gsl_multimin_fminimizer * gsl_multimin_fminimizer_alloc(const gsl_multimin_fminimizer_type *T, size_t n); int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer * s, gsl_multimin_function * f, const gsl_vector * x, const gsl_vector * step_size); void gsl_multimin_fminimizer_free(gsl_multimin_fminimizer *s); const char * gsl_multimin_fminimizer_name (const gsl_multimin_fminimizer * s); int gsl_multimin_fminimizer_iterate(gsl_multimin_fminimizer *s); gsl_vector * gsl_multimin_fminimizer_x (const gsl_multimin_fminimizer * s); double gsl_multimin_fminimizer_minimum (const gsl_multimin_fminimizer * s); double gsl_multimin_fminimizer_size (const gsl_multimin_fminimizer * s); /* Convergence test functions */ int gsl_multimin_test_gradient(const gsl_vector * g, double epsabs); int gsl_multimin_test_size(const double size, double epsabs); /* minimisation of differentiable functions */ typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n); int (*set) (void *state, gsl_multimin_function_fdf * fdf, const gsl_vector * x, double * f, gsl_vector * gradient, double step_size, double tol); int (*iterate) (void *state,gsl_multimin_function_fdf * fdf, gsl_vector * x, double * f, gsl_vector * gradient, gsl_vector * dx); int (*restart) (void *state); void (*free) (void *state); } gsl_multimin_fdfminimizer_type; typedef struct { /* multi dimensional part */ const gsl_multimin_fdfminimizer_type *type; gsl_multimin_function_fdf *fdf; double f; gsl_vector * x; gsl_vector * gradient; gsl_vector * dx; void *state; } gsl_multimin_fdfminimizer; gsl_multimin_fdfminimizer * gsl_multimin_fdfminimizer_alloc(const gsl_multimin_fdfminimizer_type *T, size_t n); int gsl_multimin_fdfminimizer_set (gsl_multimin_fdfminimizer * s, gsl_multimin_function_fdf *fdf, const gsl_vector * x, double step_size, double tol); void gsl_multimin_fdfminimizer_free(gsl_multimin_fdfminimizer *s); const char * gsl_multimin_fdfminimizer_name (const gsl_multimin_fdfminimizer * s); int gsl_multimin_fdfminimizer_iterate(gsl_multimin_fdfminimizer *s); int gsl_multimin_fdfminimizer_restart(gsl_multimin_fdfminimizer *s); gsl_vector * gsl_multimin_fdfminimizer_x (const gsl_multimin_fdfminimizer * s); gsl_vector * gsl_multimin_fdfminimizer_dx (const gsl_multimin_fdfminimizer * s); gsl_vector * gsl_multimin_fdfminimizer_gradient (const gsl_multimin_fdfminimizer * s); double gsl_multimin_fdfminimizer_minimum (const gsl_multimin_fdfminimizer * s); GSL_VAR const gsl_multimin_fdfminimizer_type *gsl_multimin_fdfminimizer_steepest_descent; GSL_VAR const gsl_multimin_fdfminimizer_type *gsl_multimin_fdfminimizer_conjugate_pr; GSL_VAR const gsl_multimin_fdfminimizer_type *gsl_multimin_fdfminimizer_conjugate_fr; GSL_VAR const gsl_multimin_fdfminimizer_type *gsl_multimin_fdfminimizer_vector_bfgs; GSL_VAR const gsl_multimin_fdfminimizer_type *gsl_multimin_fdfminimizer_vector_bfgs2; GSL_VAR const gsl_multimin_fminimizer_type *gsl_multimin_fminimizer_nmsimplex; GSL_VAR const gsl_multimin_fminimizer_type *gsl_multimin_fminimizer_nmsimplex2; GSL_VAR const gsl_multimin_fminimizer_type *gsl_multimin_fminimizer_nmsimplex2rand; __END_DECLS #endif /* __GSL_MULTIMIN_H__ */ gsl-1.16/multimin/fminimizer.c0000664000252300025230000000626012171574312013331 00000000000000/* multimin/fminimizer.c * * Copyright (C) 2002, 2009 Tuomo Keskitalo, Ivo Alxneit * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include gsl_multimin_fminimizer * gsl_multimin_fminimizer_alloc (const gsl_multimin_fminimizer_type * T, size_t n) { int status; gsl_multimin_fminimizer *s = (gsl_multimin_fminimizer *) malloc (sizeof (gsl_multimin_fminimizer)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for minimizer struct", GSL_ENOMEM, 0); } s->type = T; s->x = gsl_vector_calloc (n); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for minimizer state", GSL_ENOMEM, 0); } status = (T->alloc) (s->state, n); if (status != GSL_SUCCESS) { free (s->state); gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to initialize minimizer state", GSL_ENOMEM, 0); } return s; } int gsl_multimin_fminimizer_set (gsl_multimin_fminimizer * s, gsl_multimin_function * f, const gsl_vector * x, const gsl_vector * step_size) { if (s->x->size != f->n) { GSL_ERROR ("function incompatible with solver size", GSL_EBADLEN); } if (x->size != f->n || step_size->size != f->n) { GSL_ERROR ("vector length not compatible with function", GSL_EBADLEN); } s->f = f; gsl_vector_memcpy (s->x,x); return (s->type->set) (s->state, s->f, s->x, &(s->size), step_size); } void gsl_multimin_fminimizer_free (gsl_multimin_fminimizer * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->x); free (s); } int gsl_multimin_fminimizer_iterate (gsl_multimin_fminimizer * s) { return (s->type->iterate) (s->state, s->f, s->x, &(s->size), &(s->fval)); } const char * gsl_multimin_fminimizer_name (const gsl_multimin_fminimizer * s) { return s->type->name; } gsl_vector * gsl_multimin_fminimizer_x (const gsl_multimin_fminimizer * s) { return s->x; } double gsl_multimin_fminimizer_minimum (const gsl_multimin_fminimizer * s) { return s->fval; } double gsl_multimin_fminimizer_size (const gsl_multimin_fminimizer * s) { return s->size; } gsl-1.16/README0000664000252300025230000000501412171574312010032 00000000000000GSL - GNU Scientific Library ============================ This is GSL, the GNU Scientific Library, a collection of numerical routines for scientific computing. GSL is free software, you can redistribute it and/or modify it under the terms of the GNU General Public License. The GNU General Public License does not permit this software to be redistributed in proprietary programs. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Availability ============ The current stable version of GSL is always available from ftp.gnu.org in the directory /pub/gnu/gsl. A list of mirror sites can be found at http://www.gnu.org/order/ftp.html Installation ============ GSL follows the standard GNU installation procedure. Please consult the INSTALL file in this distribution for more detailed instructions. For information about specific platforms and compilers see the "Compilation Notes" section in the INSTALL file. More information about GSL ========================== The project homepage is http://www.gnu.org/software/gsl/ See the NEWS file for recent changes to the library. The GSL Manual has been published and can be ordered from most bookstores. The publication details are, GNU Scientific Library Reference Manual - Revised Second Edition, M. Galassi et al, ISBN 0954161734 (620 pages, paperback). The money raised from sales of the manual helps support the development of GSL. A Japanese translation of the reference manual is available from the GSL website above (thanks to Daisuke TOMINAGA). Reporting Bugs ============== A list of known bugs can be found in the BUGS file. Details of compilation problems can be found in the INSTALL file. If you find a bug which is not listed in these files please report it to bug-gsl@gnu.org. All bug reports should include: The version number of GSL, and where you obtained it. The hardware and operating system The compiler used, including version number and compilation options A description of the bug behaviour A short program which reproducibly exercises the bug It is useful if you can check whether the same problem occurs when the library is compiled without optimization. Thank you. Any errors or omissions in the manual can also be reported to the same address. Contributing to GSL =================== If you are interested in participating in GSL development, please see the webpage at http://www.gnu.org/software/gsl/ gsl-1.16/gsl_inline.h0000664000252300025230000000463712171574312011460 00000000000000/* gsl_inline.h * * Copyright (C) 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_INLINE_H__ #define __GSL_INLINE_H__ /* In recent versiions of GCC, the inline keyword has two different forms: GNU and C99. In GNU mode we can use 'extern inline' to make inline functions work like macros. The function is only inlined--it is never output as a definition in an object file. In the new C99 mode 'extern inline' has a different meaning--it causes the definition of the function to be output in each object file where it is used. This will result in multiple-definition errors on linking. The 'inline' keyword on its own (without extern) has the same behavior as the original GNU 'extern inline'. The C99 style is the default with -std=c99 in GCC 4.3. This header file allows either form of inline to be used by redefining the macros INLINE_DECL and INLINE_FUN. These are used in the public header files as INLINE_DECL double gsl_foo (double x); #ifdef HAVE_INLINE INLINE_FUN double gsl_foo (double x) { return x+1.0; } ; #endif */ #ifdef HAVE_INLINE # if defined(__GNUC_STDC_INLINE__) || defined(GSL_C99_INLINE) || defined(HAVE_C99_INLINE) # define INLINE_DECL inline /* use C99 inline */ # define INLINE_FUN inline # else # define INLINE_DECL /* use GNU extern inline */ # define INLINE_FUN extern inline # endif #else # define INLINE_DECL /* */ #endif /* Range checking conditions in headers do not require any run-time tests of the global variable gsl_check_range. They are enabled or disabled in user code at compile time with GSL_RANGE_CHECK macro. See also build.h. */ #define GSL_RANGE_COND(x) (x) #endif /* __GSL_INLINE_H__ */ gsl-1.16/NEWS0000664000252300025230000016613612171577656007704 00000000000000* What is new in gsl-1.16: ** fixed error in gsl_rng_fwrite where uninitialized padding bytes were being written (bug #39104) ** fixed error in gsl_block_alloc where padding bytes were not properly initialized (bugs #39101,#39102,#39103) ** fixed error in ntuple/test.c where padding bytes were not properly initialized (bug #39105) ** fixed triangle selection bug in gsl_sf_coupling_6j_e and gsl_sf_coupling_9j_e (bugs #39466 and #29606) (Håkan Johansson and Alexey Illarionov) ** added higher level wrapper routine gsl_multifit_fdfsolver_driver ** converted gsl_multifit_linear_residuals to use dgemv to improve efficiency (bug #39153) ** added functions gsl_stats_spearman and gsl_sort_vector2 to compute Spearman rank correlation ** added function gsl_poly_dd_hermite_init for Hermite interpolation ** Added support for robust linear least squares ** Added function gsl_linalg_SV_leverage for computing statistical leverages from SVD decomposition ** Added support for approximating the Jacobian of nonlinear least squares fits using forward finite differences ** Extended gsl_sf_coupling_3j to allow larger range and to handle the special case (ja jb jc; 0 0 0)=0 when ja+jb+jc is odd ** Fixed gsl_sf_mathieu_se_array to return zero when the order is zero [bug #33679]. ** Fixed overflow in gsl_sf_lncosh for large negative x (x<-354). ** Improved gsl_ran_negative_binomial_pdf to avoid underflow/overflow for large arguments. ** Multisets now allow k strictly greater than n. ** Fixed gsl_matrix_complex_fwrite/fread failure for noncontiguous matrices (Matthias Sitte). * What was new in gsl-1.15: ** Added Tuomo Keskitalo's new ode branch ode-initval2 with a gsl_odeiv2 prefix. This provides proper support for implicit solvers. It is intended to be the new default for differential equations. The existing gsl_odeiv routines will be retained for binary compatibility but their interface will be deprecated. ** Added new gsl_integrate_cquad routines for robust integration of difficult functions using the doubly-adaptive CQUAD algorithm (Pedro Gonnet). ** Added error checking to CBLAS functions (José Luis García Pallero) ** Added a new function gsl_integration_glfixed_point to return ordered Gauss-Legendre points and weights contained within a gsl_integration_glfixed_table [bug #32237]. ** Added a new function gsl_interp_type_min_size to return the size of an interpolation type. ** Added a function gsl_pow_uint(x,n) to compute x^n for unsigned exponents (needed when n exceeds the range of signed integers). ** Added new routine gsl_linalg_complex_cholesky_invert to handle the matrix inversion for complex Cholesky decompositions (Huan Wu). ** Added the functions gsl_vector_equal(x,y) and gsl_matrix_equal(x,y) for testing equality of two vectors or matrices. ** Added function gsl_eigen_nonsymmv_params to control the balancing transformation for eigenvector calculations. Balancing is now turned off by default for gsl_eigen_nonsymmv. ** It is now possible to choose an alternative cblas library via pkg-config using the GSL_CBLAS_LIB environment variable or the pkg-config --define-variable option. ** The jacobi method gsl_eigen_jacobi now uses the norm of the off-diagonal elements for its convergence criterion, as in algorithm 8.4.3 of Golub and van Loan. ** The newton multiroot solvers now return an error when a singular jacobian is detected. ** The interpolation functions now return NaN and when x is out of range, instead of extrapolating. ** The gsl_multimin_fdfsolver multidimensional minimisers now return GSL_ENOPROG immediately if the generated trial point does not differ from the initial point (to machine precision), avoiding unnecessary further iterations. ** Extended the range of gsl_sf_bessel_lnKnu_e by rescaling intermediate results to avoid internal overflows [bug #31528]. ** Improved the result of gsl_sf_atanint_e for large arguments by adding the first order 1/x correction term. [bug #29562] ** Fixed the gsl_rng_ranlxs generators to enforce a maximum seed value of 2^31-1. Larger seed values corrupted the random number state and caused out of range values to be returned. ** Fixed gsl_ran_chisq_pdf(x,nu) to return correct result of 1/2 instead of 0 when x=0 and nu=2, and +inf when x=0 and nu<2. ** Fixed gsl_pow_int(x,n) to avoid an infinite loop when n=INT_MIN due to wrapping of signed integers. ** Fixed gsl_sf_hyperg_2F1(a,b,c,x) to avoid returning NaN for arguments |a|>10. [bug #24812] ** Avoid spurious underflow return code in gsl_sf_beta_inc_e when intermediate underflow does not affect the result. [bug #30933] ** Avoid segfault in Chebyshev series derivatives gsl_cheb_calc_deriv for n=1. [bug #29139] * What was new in gsl-1.14: ** Upgraded to latest libtool, autoconf and automake (libtool-2.2.6b, autoconf-2.65, automake-1.11.1). Fixes security hole in 'make dist' (see Automake CVE-2009-4029). ** Added support for "multisets", which are similar to permutations and combinations. A multiset is an array of k integers in the range 0 to n-1 where each value may occur more than once. Multisets can be used to iterate over the indices of a k-th order symmetric tensor in n-space. (Rhys Ulerich) ** Added gsl_integrate_glfixed routines for performing fixed order Gauss-Legendre integration (Pavel Holoborodko, Konstantin Holoborodko, Rhys Ulerich) ** In the LMDER multi-dimensional fitting routines, the return code GSL_ENOPROG is now used instead of GSL_CONTINUE for the case where 10 or more attempts to find a suitable trial step have been made without success. [bug #25383] ** The confluent hypergeometric function gsl_sf_hyperg_U (a,b,x) has been extended to support x < 0 for cases not involving singularities in 1F1(a,b,x). [bug #27859] ** The F-distribution gsl_ran_fdist_pdf now avoids unnecessary underflow and overflow and handles cases where n > 248. [bug #28500] ** The SVD routines now use a scaled version of the implicit QR method and compute the shift more reliably for values at the limit of double precision, avoiding potential NaNs. [bug #28767] ** A compile time error is emitted if the configuration stage prevents the functions gsl_isnan and gsl_finite from being defined. ** Added missing dereference in GSL_VECTOR_COMPLEX when not using GSL_RANGE_CHECK [bug #28017] ** Improved the range of gsl_sf_hyperg1F1(a,b,x) when a<0,b>0. [bug #28718] ** Added macros GSL_MAJOR_VERSION and GSL_MINOR_VERSION in ** Improved gsl_eigen_symmv and gsl_eigen_symm to avoid a potential infinite loop when the tridiagonalised matrix contains very small values. [bug #28096] ** Added functions gsl_multifit_linear_usvd and gsl_multifit_wlinear_usvd for multilinear fitting without column-scaling of the fit matrix. * What was new in gsl-1.13: ** Upgraded to latest autoconf and automake (autoconf-2.64, automake-1.11) ** Fixed the rk4 and bspline allocators to avoid invalid free() calls under out of memory conditions. [bug #27194, #27236] ** Fixed a bug in gsl_multimin_fminimizer_nmsimplex2 where the center and size of the simplex were not updated on contract-by-best steps, causing failures in convergence. [bug #27180] ** Added new functions to set MISER and VEGAS Monte Carlo integration parameters, and to examine VEGAS chi-squared value and intermediate results. ** Added the function gsl_bspline_greville_abscissa to compute Greville abscissae for B-splines. ** The cumulative distribution functions gsl_cdf_gumbel1_{P,Q} should now handle a larger range of parameters without underflow and overflow. ** The header file gsl_const_cgs.h no longer defines values for electromagnetic units. Applications should use gsl_const_cgsm.h instead to obtain the values in the CGS-Magnetic system. The previous values for these units given in gsl_const_cgs.h were ill-defined as the type of CGS electromagnetic system was unspecified (the values were a mixture of CGS units with the Ampere of the MSKA system). The affected constants are GSL_CONST_CGS_BOHR_MAGNETON, GSL_CONST_CGS_ELECTRON_CHARGE, GSL_CONST_CGS_ELECTRON_MAGNETIC_MOMENT, GSL_CONST_CGS_FARADAY, GSL_CONST_CGS_GAUSS, GSL_CONST_CGS_NUCLEAR_MAGNETON, GSL_CONST_CGS_PROTON_MAGNETIC_MOMENT, and GSL_CONST_CGS_ROENTGEN. ** The Pochhammer functions gsl_sf_poch(a,x) and gsl_sf_lnpoch(a,x) now handle the special cases where a and a+x are zero or negative integers. ** The confluent hypergeometric function gsl_sf_hyperg_U (a,b,x) now handles some cases where x=0. The case where 1+a-b is a negative integer no longer returns an error [bug #22859] and the incorrect termination of the series in certain cases is fixed [bug #26706]. ** Added a new function gsl_poly_eval_derivs to evaluate a polynomial and its derivatives simultaneously. ** Added a new univariate minimisation algorithm gsl_min_fminimizer_quad_golden which is a variant of Brent's algorithm with safeguarded step-length adjustment. ** Added a new Nelder-Mead minimiser gsl_multimin_fminimizer_nmsimplex2rand which uses a randomly oriented simplex rather than one fixed on the coordinate axes [bug #25077] ** The texinfo file now uses the dircategory "Software libraries" from the Free Software Directory, as recommended in the Texinfo manual. ** The function gsl_ran_exponential now includes zero in its output range. [bug #25039] ** All functions for freeing allocated memory now accept a NULL pointer, following the standard C convention for free(). [bug #25319] ** The function gsl_sum_levin_u_accel now handles the special case c_0 + 0 + 0 + 0 + .... that occurs when summing power series c_n*x^n with x=0. [bug #26807] ** The functions gsl_linalg_LU_solve, gsl_linalg_LU_svx, gsl_linalg_LU_refine, gsl_linalg_LU_invert and their complex equivalents now return an error for singular matrices. ** The multifit LMDER hybrid solvers now check the return code of the user-supplied function in the gsl_multifit_fdfsolver_set method. [bug #26871] ** Improved the implementation of gsl_ran_discrete_preproc to avoid internal errors due to inconsistencies from excess precision on some platforms. [bug #26502] ** Corrected gsl_sf_hyperg_2F1(a,b,c,x) to not give a domain error in the case where c is a negative integer and the series terminates with a finite result. ** The C99 inline keyword is now supported, in addition to the previously supported GNU-style inline. ** Modified gsl_poly_complex_solve_cubic and gsl_poly_solve_cubic to avoid returning NaNs in cases where excess precision causes a change in the number of roots. ** Fixed incorrect length check in gsl_blas_drotm. [bug #26503] ** Fixed gsl_odeiv_step_gear2 to restore y on step failure ** gsl_odeiv_evolve_apply now restores the correct value of t on step failures [bug #26255]. ** Using make install prefix=DIR now puts correct paths in package config files gsl-config and gsl.pc ** Modified gsl_monte_vegas to work around pow() function inaccuracies on MinGW [bug #25413]. ** Increased the number of terms in gsl_sf_mathieu_a and gsl_sf_mathieu_b to improve convergence in difficult regions [bug #25075] * What was new in gsl-1.12: ** Upgraded to latest libtool, autoconf and automake (libtool-2.2.6, autoconf-2.63, automake-1.10.2) ** Improved the convergence of gsl_sf_gamma_inc_P for x/a ~=~ 1 and large x,a. Fixes problems with large arguments in cdf functions such as gsl_cdf_chisq_Pinv(x,nu) [bug 24704]. ** Fixed gsl_ran_gamma_knuth to handle the case of a >= UINT_MAX [bug #24897] ** Added gsl_bspline_eval_deriv to compute bspline derivatives (Rhys Ulerich) ** Added a faster simplex mininimser gsl_multimin_fminimizer_nmsimplex2 which is O(N) instead of O(N^2) [bug #24418] ** Improved the original chi-squared formula in gsl_monte_vegas to avoid catastrophic cancellation [bug #24510]. The previous formula could return incorrect or negative values for relative errors < 1e-8, which could occur when integrating very smooth functions. ** Added new auxiliary functions gsl_cheb_order, gsl_cheb_size, gsl_cheb_coeffs for Chebyshev series [bug #21830] ** Updated license of the reference manual to GNU FDL version 1.3. ** Fixed a bug where the gsl_isinf function would return +1 for -Inf on systems where isinf(-Inf) returns the non-standard value +1. [bug #24489] ** Added missing functions gsl_vector_complex_{isnonneg,add,sub,mul, div,scale,add_constant} and gsl_matrix_complex_float_isnonneg [bug #22478] ** Cross compilation should now work for x86 hosts. ** Fixed a bug in gsl_interp_accel_find() where values lying on the upper boundary between interpolation points could return the index from the lower side. [bug #24211] ** Fixed gsl_linalg_solve_cyc_tridiag so that its output respects the solution vector's stride. Previously the x_stride value was ignored causing the output to be incorrect for non-unit stride. [bug #24162] ** Corrected a bug in the series calculation of gsl_sf_ellint_Kcomp for k close to 1. [bug #24146] ** Extended gsl_linalg_QRPT_update to handle rectangular matrices. Corrected definition of the update formula in the manual for both gsl_linalg_QR_update and gsl_linalg_QRPT_update. ** Added routine gsl_linalg_cholesky_invert ** Fixed a bug the simplex algorithm which caused the second highest point to be incorrectly equal to the first when the first value was the highest, which could cause suboptimal convergence. [bug #23192] ** Fixed a problem with convergence for inverse gamma and chisq distribitions, gsl_cdf_gamma_{P,Q}inv and gsl_cdf_chisq_{P,Q}inv. [bug #23101] ** Improved the handling of constant regions in Vegas by eliminating spurious excess precision when computing box variances. ** Fixed a potential division by zero in gsl_monte_miser when the left/right weight factors decrease below 1. ** Fixed incorrect dimensions check in gsl_matrix_sub{row,column} * What was new in gsl-1.11: ** The GSL repository and bug database are now hosted at Savannah http://savannah.gnu.org/projects/gsl/ ** Upgraded to latest libtool, autoconf and automake (libtool-2.2, autoconf-2.61, automake-1.10.1) ** Fixed underflow in ODE adaptive step size controller that could cause step size to decrease to zero (bug #21933). ** Improved the handling of the asymptotic regime in gsl_sf_bessel_jl. ** Improved the handling of large arguments in cumulative distribution functions using the incomplete beta function, such as gsl_cdf_fdist_P. ** Fixed overflow bug in gsl_cdf_hypergeometric_{P,Q} for large arguments (bug #22293). ** gsl_ran_gaussian_ziggurat now handles generators with different ranges explicitly, to minimise the number of function calls required (bug #21820). Also fixes bug #22446 (rng limit in gsl_ran_chisq()). ** Added missing error terms in gsl_sf_exp_mult_e10_e to prevent the error being underestimated (bug #22041). ** Updated some constants to the CODATA 2006 values. ** The hypergeometric function gsl_sf_hyperg_2F1 now handles the case where x==1. ** Fixed a bug in the brent minimiser which prevented optimal convergence. ** Added functions for evaluating complex polynomials ** The convergence condition for gsl_multiroots_test_delta now accepts dxi == 0. ** Improved functions gsl_ldexp and gsl_frexp to handle the full range of double precision numbers in all cases. ** Added new quasi random generators gsl_qrng_halton and gsl_qrng_reversehalton which support dimensions up to 1229. ** Added function gsl_multifit_linear_residuals for computing the residuals of the fit * What was new in gsl-1.10: ** License updated to GNU GPL version 3. ** Added support for generalized eigensystems ** Added function gsl_stats_correlation to compute Pearson correlation of two datasets ** Added the new function gsl_sf_expint(n,x) for computing the n-th order exponential integral. ** Added functions gsl_vector_isnonneg and gsl_matrix_isnonneg. ** Added functions gsl_matrix_subrow and gsl_matrix_subcolumn ** Extended Cholesky routines to complex matrices ** Added support in gsl_ieee_set_mode for controlling SSE exceptions and rounding through the MXCSR control word on x86 processors. ** The autoconf macro AM_PATH_GSL has been renamed to AX_PATH_GSL, to avoid conflicts with the autoconf namespace. ** Improved handling of underflow in gsl_eigen_symm. ** The function gsl_multiroot_fdjacobian now returns the error code GSL_ESING if any of the columns of the computed jacobian matrix are zero. This may occur if the step size of the derivative is too small. ** Extended the function gsl_sf_beta_inc(a,b,x) to handle cases where a<0 or b<0. ** Fixed the round-off error estimate in gsl_deriv_{central,backwards, forward} to correctly account for numerical error in the step-size h. ** Fixed gsl_cdf_beta_Pinv, gsl_cdf_gamma_Pinv, gsl_cdf_beta_Pinv to avoid returning spurious values for large parameters when the iteration did not converge. If the iteration cannot converge, GSL_NAN is returned. ** gsl_ran_dirichlet now handles smaller values of alpha[] without underflow, avoiding a NaN in the returned value. ** The SVD routines now avoid underflow in the Schur decomposition for matrices with extremely small values pi/2 and phi < 0. The angular argument is now valid for all phi. Also added the complete elliptic integral gsl_sf_ellint_Pcomp. ** Added a new BFGS minimisation method gsl_multimin_fdfminimizer_vector_bfgs2 based on the algorithm given by R.Fletcher in "Practical Methods of Optimisation" (Second edition). This requires substantially fewer function and gradient evaluations, and supercedes the existing BFGS minimiser. ** The beta functions gsl_sf_beta_e(a,b) and gsl_sf_lnbeta_e(a,b) now handle negative arguments a,b. Added new function gsl_sf_lnbeta_sgn_e for computing magnitude and sign of negative beta values, analagous to gsl_sf_lngamma_sgn_e. ** gsl_cheb_eval_mode now uses the same error estimate as gsl_cheb_eval_err. ** Improved gsl_sf_legendre_sphPlm_e to avoid underflow with large arguments. ** Added updated Knuth generator, gsl_rng_knuthran2002, from 9th printing of "The Art of Computer Programming". Fixes various weaknesses in the earlier version gsl_rng_knuthran. See http://www-cs-faculty.stanford.edu/~knuth/news02.htm ** The functions gsl_multifit_fsolver_set, gsl_multifit_fdfsolver_set and gsl_multiroot_fsolver_set, gsl_multiroot_fdfsolver_set now have a const qualifier for the input vector x, reflecting their actual usage. ** gsl_sf_expint_E2(x) now returns the correct value 1 for x==0, instead of NaN. ** The gsl_ran_gamma function now uses the Marsaglia-Tsang fast gamma method of gsl_ran_gamma_mt by default. ** The matrix and vector min/max functions now always propagate any NaNs in their input. ** Prevented NaN occuring for extreme parameters in gsl_cdf_fdist_{P,Q}inv and gsl_cdf_beta_{P,Q}inv ** Corrected error estimates for the angular reduction functions gsl_sf_angle_restrict_symm_err and gsl_sf_angle_restrict_pos_err. Fixed gsl_sf_angle_restrict_pos to avoid possibility of returning small negative values. Errors are now reported for out of range negative arguments as well as positive. These functions now return NaN when there would be significant loss of precision. ** Corrected an error in the higher digits of M_PI_4 (this was beyond the limit of double precision, so double precision results are not affected). ** gsl_root_test_delta now always returns success if two iterates are the same, x1==x0. ** A Japanese translation of the reference manual is now available from the GSL webpage at http://www.gnu.org/software/gsl/ thanks to Daisuke TOMINAGA. ** Added new functions for basis splines, see the "Basis Splines" chapter in the GSL Reference Manual for details. ** Added new functions for testing the sign of vectors and matrices, gsl_vector_ispos, gsl_vector_isneg, gsl_matrix_ispos and gsl_matrix_isneg. ** Fixed a bug in gsl_sf_lnpoch_e and gsl_sf_lnpoch_sgn_e which caused the incorrect value 1.0 instead of 0.0 to be returned for x==0. ** Fixed cancellation error in gsl_sf_laguerre_n for n > 1e7 so that larger arguments can be calculated without loss of precision. ** Improved gsl_sf_zeta_e to return exactly zero for negative even integers, avoiding less accurate trigonometric reduction. ** Fixed a bug in gsl_sf_zetam1_int_e where 0 was returned instead of -1 for negative even integer arguments. ** When the differential equation solver gsl_odeiv_apply encounters a singularity it returns the step-size which caused the error code from the user-defined function, as opposed to leaving the step-size unchanged. ** Added support for nonsymmetric eigensystems ** Added Mathieu functions * What was new in gsl-1.8: ** Added an error check to trap multifit calls with fewer observations than parameters. Previously calling the multifit routines with n

100*l*l to satisfy he requirement x>>l*l in the asymptotic expansion. ** The scaled bessel function gsl_sf_bessel_In_scaled now handles larger arguments x > 1e7 correctly for n < 150 using the uniform asymptotic expansion instead of the continued fraction expansion. ** The functions gsl_stats_min/max now return NaN if the data contains NaN. Similarly, the functions gsl_stats_min/max_index return the index of the first occurring NaN in the data when it contains a NaN. ** Fixed an invalid memory access that caused incorrect results for the special case in periodic cubic spline interpolation of 3 points. ** Added Debye functions for n=5 and n=6 ** Added the missing functions gsl_spline_name() and gsl_spline_min_size() ** The function gsl_rng_uniform_int(r,n) now returns an error for n=0, which can occur when passing an unsigned integer value of 2^32. * What was new in gsl-1.7: ** Switched gsl_randist_binomial to use the faster binomial random variate TPE algorithm by default. The previous binomial variate algorithm is available as gsl_randist_binomial_knuth. This will result in a different sequence of binomial variates in programs using this function. ** Improved the algorithm for gsl_sf_elljac_e to avoid cancellation errors near quarter periods. ** Fixed the branch selection in gsl_sf_gamma_inc_Q_e to avoid inaccurate results for large a,x where x~=~a. ** The multilinear fitting functions now have forms which accept a user-specified tolerance for the SVD cutoff and return the corresponding effective rank of the design matrix. ** The quadratic solvers in poly/ now handle linear equations gracefully (i.e. quadratrics with a leading coefficient of zero). ** The output of "make check" now only shows test failures by default, to reduce the amount of output. Set the environment variable GSL_TEST_VERBOSE=1 to display all the output. To assist debugging, the test number of each failure is shown in square brackets at the line-end [NNNN]. ** Fixed bugs in gsl_linalg_SV_decomp_jacobi which caused incorrect results for some input matrices. ** Bessel, coulomb, dilogarithm and legendre_H3d functions now use hypot internally to avoid overflow when computing terms like sqrt(1+x*x). ** The 'Usage' chapter of the reference manual now explains how to handle deprecated functions using the GSL_DISABLE_DEPRECATED macro. ** The conflicting enum definitions for 'forward' and 'backward' in gsl_ftt.h and gsl_wavelet.h are deprecated. User code should switch to the new definitions gsl_fft_forward, gsl_fft_backward, gsl_wavelet_forward and gsl_wavelet_backward. Selectively define GSL_DISABLE_DEPRECATED before including the headers to use the new definitions on either or both modules. ** Fixed an error in the the brent minimisation algorithm. Iterations should now follow Brent's original description correctly. ** The bound coulomb function gsl_sf_hydrogenicR_e no longer reports an underflow for exact zeroes of the wavefunction. ** gsl_linalg_SV_decomp_jacobi now reports an error for the unimplemented case M>N) use the LQ decomposition, solving the transpose of the original system. This allows more efficient memory access, and is useful for solving large least-squares problems. ** Fixed a bug in the SYRK and HERK blas functions gsl_blas_{s,d,c,z}syrk and gsl_blas_{c,z}herk which caused invalid memory access for non-square matrices. ** Fixed a bug in gsl_swap_vectors which caused it to return incorrect results when swapping vectors with different strides. ** Corrected the error estimate for gsl_cheb_eval_n_err to use evaluation order instead of the approximation order. ** Improved the reliability of the gsl_sf_gamma_inc family of functions. ** Equal abscissae are now handled gracefully in the cspline and periodic cspline interpolations. ** Removed potential cancellation error in calculation of uniform histogram ranges. ** Improved numerical stability of integration for akima and cspline interpolation. ** Differential equation solvers now handle error codes returned from user-defined functions. ** Improved error estimates in ode-initval solvers, and provide exact derivatives on output. Added new semi-implicit ode-initval solver, gsl_odeiv_step_rk2simp. ** Added missing function definition for gsl_sf_psi_1. ** Fixed the function gsl_sf_expint_Ei_scaled to call gsl_sf_expint_Ei_scaled_e instead of gsl_sf_expint_Ei_e. ** Added cumulative distribution function for exponential power distribution. ** The functions gsl_cdf_beta_P and gsl_cdf_beta_Q now return consistent results of 0 or 1 for out of range values, x<0 and x>1, rather than 0 for left and right tails simultaneously. ** The Jacobi eigensolvers gsl_eigen_jacobi and gsl_eigen_jacobi_invert have new implementations from Golub and Van Loan. ** The standard output and standard error streams are now flushed by the default error handler before the program aborts, in order to ensure that error messages are properly displayed on some platforms. * What was new in gsl-1.5: ** Multifit routines now handle iterations where |f| is already minimised to zero, without division by zero. ** Fixed the singular value tolerance test in the multifit covariance calculation from < to <= to match the original MINPACK code. ** The macro HAVE_INLINE is now tested with #ifdef instead of #if as in versions prior to 1.4, to match the documentation, and the macro GSL_RANGE_CHECK_OFF now works correctly. An alternative macro GSL_RANGE_CHECK={0,1} can be used to control range-checking. ** Fixed a potential array overflow in gsl_ran_landau. ** Fixed a small discrepancy in the tolerance calculation of the one-dimensional brent minimiser. ** Numerical derivatives should now be calculated using the gsl_deriv_forward, gsl_deriv_central and gsl_deriv_backward functions, which accept a step-size argument in addition to the position x. The original gsl_diff functions (without the step-size) are deprecated. ** Corrected documentation for gsl_ran_hypergeometric_pdf() ** The tridiagonal matrix solvers gsl_linalg_solve_symm_tridiag, gsl_linalg_solve_tridiag, gsl_linalg_solve_symm_cyc_tridiag, gsl_linalg_solve_cyc_tridiag now use the GSL_ERROR macro to report errors, instead of simply returning an error code. The arguments to these functions must now use exact lengths with no additional elements. For cyclic systems all vectors must be of length N, for tridiagonal systems the offdiagonal elements must be of length N-1. ** The singular value decomposition routines gsl_linalg_SV_decomp and gsl_linalg_SV_decomp_mod now handle the SVD of a column vector (N=1, arbitrary M), which can occur in linear fitting. ** Restored missing header files gsl_const_mks.h and gsl_const_cgs.h. The incorrect values of the electrical units for gsl_const_cgs (VACUUM_PERMEABILITY and VACUUM_PERMITTIVITY) have been removed. ** Fixed gsl_linalg_SV_decomp() to avoid an infinite loop when computing the SVD of matrices containing Inf and Nan. ** Fixed gsl_linalg_balance_columns() to avoid an infinite loop when rescaling matrices containing Inf and NaN. ** Fixed header file to include declarations for error codes in inline versions of gsl_sf_log functions ** Fixed header file to include new MKSA and CGSM header files. ** Added Stefan-Boltzmann constant and Thomson cross section to physical constants * What was new in gsl-1.4: ** Added cumulative distribution functions and their inverses for the continuous random distributions including: gaussian, lognormal, gamma, beta, cauchy, laplace, chisq, exponential, gumbel, weibull, F-distribution, t-distribution, logistic, pareto and rayleigh. ** Added faster binomial random variates using the TPE rejection algorithm, in the function gsl_randist_binomial_tpe. ** Added new functions gsl_rng_fwrite and gsl_rnd_fread for storing the state of random number generators in a file. ** Added a new function gsl_combination_memcpy() ** Corrected values of electrical constants in CGS units. To take account of different electrical systems of units the values are now prefixed by GSL_CONST_MKSA (for the SI Metre, Kilogram, Second, Ampere system) or GSL_CONST_CGSM (for the Centimetre, Gram, Second, Magnetic system with the Gauss as the fundamental unit of magnetic field strength). The previous GSL_CONST_MKS and GSL_CONST_CGS prefixes have been removed, as have the permeability and permittivity constants in the CGS system since this uses different defining equations. ** Fixed bugs in the random number generators gsl_rng_fishman18, gsl_rng_fishman2x, and gsl_rng_knuthran2 which caused them to return incorrect results. Minor corrections were made to the parameters in the other Knuth generators borosh13, coveyou, fishman20, lecuyer21, and waterman14. ** Fixed a missing transpose bug in the gsl_linalg_QR_QRsolve and gsl_linalg_QRPT_QRsolve routines which were computing the solution to Q^T R x = b instead of Q R x = b. ** Fixed gsl_sf_gammainv to return zero instead of a domain error for arguments corresponding to singularities in gamma. ** Fixed a bug in the simplex minimization algorithm which caused it to fail to find the second highest point correctly when searching the set of simplex points. ** Fixed a bug in the conjugate gradient minimizers conjugate_pr, conjugate_fr and vector_bgfs which caused the search directions to be updated incorrectly. ** Fixed a bug in gsl_sf_psi_1_int(1) which caused it to return the incorrect sign for psi(1,1). ** Fixed the simulated annealing routine gsl_siman_solve to use the parameter iters_fixed_T for the number of iterations at fixed temperature instead of n_tries. ** Fixed a bug in gsl_combination_valid which caused it to return the incorrect status. ** Fixed a bug in gsl_permutation_canonical_to_linear which caused the output to always be zero, and the input permutation to be incorrectly replaced by the output. ** Fixed a bug is gsl_ran_discrete which could cause uninitialised data to be returned for some distributions. ** Fixed the dependencies for gsl_chebyshev.h to include gsl_math.h. ** Fixed a bug in gsl_complex_arccsc_real which caused it to return the incorrect sign for the imaginary part when -110. ** Improved the accuracy of gsl_sf_coupling_3j for large arguments. ** Improved the performance of gsl_sf_choose(m,n) by separating the calculations for small and large arguments. ** On platforms without IEEE comparisons gsl_{isnan,isinf,finite} will fall back to the system versions of isnan, isinf and finite if available. ** gsl_linalg_householder_hv now uses BLAS routines internally ** The script configure.in is now compatible with autoconf-2.50 and later. ** Reduced the memory usage of the multifit algorithms from MxM to MxN for large M by performing the QR decomposition of the Jacobian in-place. ** IEEE modes now use the C99 fenv.h functions when platform spectific functions are not available. * What was new in gsl-1.3: ** Changed interface for gsl_sf_coupling_6j...(...). The old functions actually calculated 6j for a permutation of the arguments (that related to Racah W). This was incorrect and not consistent with the documentation. The new versions calculate < {a,b,c}, {d,e,f} >, as stated in the documentation. The old versions are still available as gsl_sf_coupling_6j_INCORRECT...(...), though they are deprecated and will be removed at some point in the future. ** Added new functions for computing Em(x)=exp(-x)*Ei(x), the modified (scaled) form of the exponential integral, gsl_sf_expint_E1_scaled, gsl_sf_expint_E2_scaled, gsl_sf_expint_Ei_scaled. ** Fixed compilation problems with gcc -ansi and other ANSI compilers. ** Fixed uninitialized memory access in the Niederreiter quasi-random number generator. ** Fixed the eigenvalue routines to prevent an infinite loop for Inf or NaN entries in matrix. ** Fixed a bug in the multifit and multiroots allocation routines which cause them to fail to report some out of memory conditions. ** Fixed a bug in the seeding for the random number generator gsl_rng_taus2 which affected a small number of seeds. ** Modified the complex householder transforms to avoid division by zero, which could cause NaNs to be returned by the gsl_eigen_hermv eigenvalue decomposition. ** The Nelder-Mead simplex algorithm for multidimensional minimisation has been added. ** The random number distributions now include the Dirichlet and Multinomial distributions. ** Added a new function gsl_fcmp for approximate comparison of floating point numbers using Knuth's algorithm. ** Added new functions gsl_ldexp and gsl_frexp as portable alternatives to ldexp() and frexp(). ** Fixed a bug in gsl_linalg_bidiag_unpack_B which was returning incorrect results for the superdiagonal. ** Fixed a bug in the acceptance condition for simulated annealing ** Ordinary differential equations can now be solved using a different absolute error for each component with gsl_odeiv_control_scaled_new(). ** Upgraded to libtool-1.4.3 * What was new in gsl-1.2: ** Added new functions for combining permutations, converting between cyclic and linear representations, and counting cycles and inversions. ** New multiroot functions now allow access to the current values of f and dx. ** The default error handler now outputs a explanatory message before aborting. ** Extended gsl_linalg_SV_decomp to handle exact zeroes in the singular values, and added tests for 3x3 matrices. ** Fixed a bug in gsl_linalg_SV_decomp which caused singular values to be sorted incorrectly. ** Fixed a bug in gsl_linalg_solv_symm_cyc_tridiag which caused it to produce incorrect results. ** Added nonsymmetric tridiagonal solvers gsl_linalg_solve_tridiag and gsl_linalg_solve_cyc_tridiag. ** The declarations used to export static objects can now be controlled through a macro GSL_VAR and the header file . ** The simulated annealing routine gsl_siman_solve now keeps track of the best solution so far. ** The values of the physical constants have been updated to the CODATA 1998 recommendations. ** Added new physical constants, newton, dyne, joule, erg and power-of-ten prefixes, Mega, Giga, Tera, etc. ** The error estimate for the elliptic function gsl_sf_ellint_Kcomp_e has been improved to take account of numerical cancellation for small arguments. ** The domain of gsl_sf_psi_1piy has been extended to negative y. ** Fixed memory leak in the Chebyshev module. ** The seeding procedure of mt19937 has been updated to the latest version from Makoto Matsumoto and Takuji Nishimura (Jan 2002). The original seeding procedure is available through the generator gsl_rng_mt19937_1999. ** A new random number generator gsl_rng_taus2 has been added to correct flaws in the seeding procedure of gsl_rng_taus, as described in an erratum to the original paper of P. L'Ecuyer. ** Added missing declaration for the generator gsl_rng_mt_19937_1998. ** Added missing quasi-random number generator function gsl_qrng_init. ** Removed unnecessary endpoint subtraction in chebyshev-based QUADPACK routines to avoid possible loss of precision. ** Fixed bug in gsl_interp_cspline_periodic which caused a discontinuity in the derivative near the boundary. ** The function gsl_min_fminimizer_minimum has been renamed to gsl_min_fminimizer_x_minimum for consistency (the old function name is still available but is deprecated). Additional functions have been added for accessing the function values at the minimum and endpoints of the bounding interval. ** The KNOWN-PROBLEMS file of "make check" failures has been replaced by a BUGS file, since we now require "make check" to work correctly for stable releases. * What was new in gsl-1.1.1: ** Fixes to histogram2d stat functions ** Added missing prototypes for complex LU determinant functions ** Improved error handling in multifit routines ** Added check to avoid division by zero for rank-deficient matrix in multifit iteration * What was new in gsl-1.1: ** The permutation module now includes a copy function gsl_permutation_memcpy ** The implementation of gsl_sf_gamma_inc has been improved and now avoids problems caused by internal singularities which occurred in the series expansion for some combinations of parameters. ** IEEE comparisons of infinities and NaNs are tested during the configure stage and the functions gsl_isnan, gsl_isinf and gsl_finite are only compiled on platforms which support the necessary tests. ** The histogram routines now include a sum function, gsl_histogram_sum for computing the total bin sum, and additional statistics functions for 2d histograms. ** Internal error checking of user-defined functions has been improved in the multiroots functions. ** Constants now include the Bohr Radius and Vacuum Permittivity. ** Range checking is now turned off when building the library, but is still on by default when compiling user applications. ** A combinations directory has been added for generating combinations (n,k). ** The gamma function now returns exact values for integer arguments. ** Fixed bugs in gsl_sf_hyperg_1F1_int and gsl_sf_hyperg_1F1. ** Fixed internal error handling in gsl_sf_laguerre_n to allow recovery from overflow. ** Several routines for handling divided difference polynomials have been added to the poly/ directory. ** The interpolation routines now include polynomial interpolation, based on divided-differences. ** Added new random number generators from Knuth's Seminumerical Algorithms, 3rd Edition: borosh13, coveyou, fishman18, fishman20, fishman2x, knuthran, knuthran2, lecuyer21, waterman14. ** Changed divisor in random number generator gfsr4 from 2^32-1 to 2^32 to prevent exact value of 1.0 from being returned, as specified in the documentation. * What was new in gsl-1.0: ** First general release. ** Increased the maximum number of iterations in gsl_poly_complex_solve() from 30 to 60. * What was new in gsl-0.9.4: ** Reorganized the multmin functions to use the same interface as the other iterative solvers. ** Added histogram _alloc functions for consistency, in addition to the existing _calloc functions. ** Renamed all the gsl_multimin functions to be consistent with the rest of the library. An underscore has been removed from _minimizer in all the function names. ** Renamed the function gsl_sf_coulomb_CL_list to gsl_sf_coulomb_CL_array ** A bug in the multimin functions where the function parameters (params) were omitted has been fixed. ** A bug in the nonlinear minimization routines has been fixed, which could prevent the algorithms from converging. Additional tests from the NIST reference datasets have been added and these now agree with MINPACK. ** All the physical constants and conversion factors are now defined as real numbers to avoid potential problems with integer arithmetic. ** The ODE evolution routines now allow for negative step sizes, and integrating backwards as well as forwards. ** The implicit Burlisch-Stoer ODE algorithm 'bsimp' now detects singularities and forces a reduction in step size, preventing runaway instabilities. ** Fixed a bug in the ODE evolution function gsl_odeiv_evolve_apply which could cause an erroneous value to be returned if the step size is reduced on the last step. * What was new in gsl-0.9.3: ** Routines for complex LU decomposition are now available, allowing the solution of systems of equations with complex coefficients. ** Matrix views of vectors now correctly require a unit stride for the original vector. ** Permutations can now be applied to complex arrays and vectors. ** gsl_sf_pow_int now handles the case x = 0, n < 0 ** The static versions of inline functions can now be hidden by defining the preprocessor macro HIDE_INLINE_STATIC. This is needed for some compilers. ** The original seeding procedure of mt19937 is available through the generator gsl_rng_mt19937_1998. The seeding procedure was flawed, but is available for compatibility. ** Added missing functions gsl_complex_div_real and gsl_complex_div_imag. ** Missing functions for constant vector and matrix views have now been added. ** Statistical calculations for histograms are now available, and the gsl-histogram command also displays the histogram mean and standard deviation. ** The behavior of GSL_IEEE_MODE for denormalized exceptions has been fixed on Openbsd and Netbsd. ** A pkg-config file gsl.pc is included in the distribution ** The reference manual can now be printed in @smallbook format without overflow. * What was new in gsl-0.9.2: ** Vector and matrix views are now compliant with the ANSI standard. ** Added Lambert functions gsl_sf_lambert_W0, gsl_sf_lambert_Wm1. ** The reference manual now uses the GNU Free Documentation License. ** Fixed a couple of bugs in the SVD routines. ** Macros for Infinity and Nan now work correctly with Microsoft Visual C++, and a bug in the config.h file for the finite() function has been fixed. ** Redundant entries in the test suite for the complex math functions have been removed, making the distribution size smaller. ** Installed programs gsl-randist and gsl-histogram now use shared libraries. * What was new in gsl-0.9.1: ** The single precision ffts now uses float throughout, rather than mixing float and double. ** The random number distributions now include the Landau distribution. ** The fft function interface has been reorganized, with workspaces separate from wavetables to eliminate unnecessary recomputation of trigonometric factors. ** The gsl_interval type has been eliminated and replaced by two double arguments for simplicity. ** The order of the arguments to the minimization routines is no more logical, with function values assocatied with x-values. ** Modified initialization of vector and matrix views to work with the SunPro compiler. ** Renamed gsl_Efunc_t to gsl_siman_Efunc_t, in accordance with namespace conventions. ** Improved accuracy and fixed bugs in gsl_sf_hyperg_1F1, gsl_sf_bessel_I0_scaled, gsl_sf_erfc, gsl_sf_log_erfc, gsl_sf_legendre_Q0 and gsl_sf_legendre_Q1, and gsl_sf_zeta. ** Improved IEEE compliance of special functions, overflows now return Inf and domain errors return NaN. ** Improved checking for underflows in special functions when using extended precision registers * What was new in gsl-0.9: ** There is a new system of vector and matrix views. Any code using vector and matrix views will need to be updated. ** The order of arguments of the view functions involving strides have been changed to be consistent with the rest of the library. ** The ode solvers have been reorganized. ** There are new eigensystem routines for real symmetric and complex hermitian matrices. ** The linear algebra directory now includes functions for computing symmetric tridiagonal decompositions and bidiagonal decompositions. ** The svd routines now include the Golub-Reinsch and Modified Golub-Reinsch algorithms in addition to the Jacobi algorithm. ** The interpolation directory has been reorganized and a higher-level "spline" interface has been added which simplifies the handling of interpolation arguments. ** IEEE support is now available on OpenBSD. * What was new in gsl-0.8: ** The build process now uses the latest libtool and automake. ** The library should now compile with Microsoft Visual C++. ** Portable versions of the isinf, isnan and finite functions are available as gsl_isinf(x), gsl_isnan(x) and gsl_finite(x). ** The definitions of GSL_POSINF, GSL_NEGINF and GSL_NAN no longer cause divisions by zero during compilation. ** The gsl_interp_obj has been renamed to gsl_interp. ** The poly_eval and pow_int functions have been moved from the specfunc directory to the poly and sys directories. ** The Chebyshev functions are now available as an independent module in their own directory. ** The error handling conventions have been unified across the library. This simplifies the use of the special functions. ** A full CBLAS implementation is now included for systems where ATLAS has not been installed. The CBLAS library can also be used independently of GSL. The organisation of the BLAS directories has been simplified. ** IEEE support for HPUX-11, NetBSD, Apple Darwin and OS/2 are now included. ** The library now includes implementations of log1p, expm1, hypot, acosh, asinh, atanh for platforms which do not provide them. ** The convention for alloc and set functions has changed so that they are orthogonal. After allocating an object it is now necessary to initialize it. ** There is a new module for estimating numerical derivatives of functions ** There is a new module for handling data with ntuples ** The histogram lookup functions are now optimized for the case of uniform bins, and include an inline binary search for speed. ** The Chebyschev coefficients for the QAWO algorithm are now precomputed in a table for efficiency, rather than being computed on the fly. ** There are several new sorting functions for selecting the k-th smallest or largest elements of a dataset. ** Iterator functions are now available for permutations, gsl_permutation_next and gsl_permutation_prev. ** The function gsl_complex_xy has been renamed gsl_complex_rect ** The API for simulated annealing has been changed to support search spaces in which the points cannot be represented as contiguous-memory data structures. gsl_siman_solve() now takes three extra arguments: a copy constructor, a copy function and a destructor, allowing gsl_siman_solve() to do its work with linked data structures. If all three of these function pointers are NULL, then the traditioanl approach of using malloc(), memcpy(), and free() with the element size is used. * What was new in gsl-0.7: ** Linux/PowerPC should now be well supported. ** Header files for common physical constants have been added. ** Functions linear and nonlinear regression in one or more dimensions are now available. ** Vector and matrix views now have access to the address of the underlying block for compatibility with VSIPL (www.vsipl.org). ** There is a new library for generating low-discrepancy quasi-random sequences. ** The seeding procedure of the default random number generator MT19937 has been updated to match the 10/99 release of the original code. This fixes a weakness which occurred for seeds which were powers of 2. ** The blas library libgslblasnative has been renamed libgslblas to avoid confusion with system blas library * What was new in gsl-0.6: ** The library is now installed as a single shared or static libgsl file using libtool. ** The gsl-config script now works. There is also a gsl.m4 file which people can use in their configure scripts. ** All header files are now in installed as pkginclude headers in a gsl/ subdirectory. ** The header files now use extern "C" to allow them to be included in C++ programs ** For consistency the following functions have been renamed, gsl_vector_copy (dest, src) is now gsl_vector_memcpy (dest, src) gsl_rng_cpy (dest, src) is now gsl_rng_memcpy (dest, src) gsl_matrix_copy_row (v,m,i) is now gsl_matrix_get_row (v,m,i) gsl_matrix_copy_col (v,m,j) is now gsl_matrix_get_col (v,m,j) gsl_vector_swap is now gsl_vector_swap_elements gsl_vector_swap_cols is now gsl_vector_swap_columns gsl_vector_swap_row_col is now gsl_vector_swap_row_column and the vector/matrix view allocation functions have been simplified. ** A new sort directory has been added for sorting objects and vectors. ** A permutation directory has been added for manipulating permutations ** Statistics functions now support a stride argument for generality, and also support weighted samples and a covariance function. ** The names of the statistics functions have been reorganized for improved clarity. Consult manual for details. ** The environment variable GSL_IEEE_MODE now uses "," as a separator instead of ";" ** The autogen.sh script, mostly for use by developers who use the CVS repository, now does not run configure. ** The histogram directory now has additional functions for copying and comparing histograms, performing arithmetic on histograms and finding maximum and minimum values. Corresponding functions have been added for vectors and matrices. ** The linear algebra directory supports additional methods, including rectangular QR, rectangular QRPT and Cholesky decomposition. ** Complex arithmetic (+,-,*,/) and complex elementary functions (sqrt, log, exp, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh, arctanh) are now supported. ** Multidimensional minimization methods are now available. ** The special functions directory now includes a routine for computing the value of the incomplete beta function. * Was new in gsl-0.5: ** There is now a KNOWN-PROBLEMS file which lists compilation problems and test failures which are known to the developers. ** Many improvements have been made to the special functions directory. ** The extrapolations from the Levin u-transform are now more reliable. ** Linear algebra and Eigensystem routines are now available. ** ODE solvers are now available. ** Multidimensional root finding algorithms are available. ** Minimization now keeps track of function values. ** Matrices and vectors now use a BLAS compatible format, and have a separate memory handling layer (gsl_block). ** Roots of general polynomials can now be found using gsl_poly_complex_solve ** IEEE modes support on Sparclinux, Tru64, AIX and IRIX ** We have added the second generation RANLUX generators RANLXS and RANLXD ** Minimization algorithms are available (one-dimensional) ** Documentation now works out of the box with the standard Texinfo. ** Full reimplementation of the QUADPACK integration library ** Introduced THANKS file. We appreciate all patches from people on the net, even those which are too small to warrant adding the author to the AUTHORS file. The THANKS file should include everyone who sent in patches. They should also be mentioned in the ChangeLog entry. * What was new in gsl-0.4.1: ** Two changes not making their way into the documentation A couple of things are not getting into the docs, so here are the errata: *** The FFT routines now take a stride parameter. Passing 1 for the stride will make them behave as documented. *** The complex numbers are now an opaque type, and no assumptions can be made about the format in which they are stored (they are not stored as a simple structure anymore, since that is not portable). The type is now gsl_complex (or gsl_complex_long_double or gsl_complex_float), and the macros to access them are GSL_REAL(z) GSL_IMAG(z) GSL_COMPLEX_P_REAL(zp) GSL_COMPLEX_P_IMAG(zp) GSL_COMPLEX_EQ(z1,z2) GSL_SET_COMPLEX(zp,x,y) GSL_SET_REAL(zp,x) GSL_SET_IMAG(zp,y) This change in the complex number API makes it important that you start working with 0.4.1 or later. ** 0.4.1 is being released in occasion of the Red Hat 6.0 release. The specfunc module is still in an alpha state; if you run "make check" in the specfunc directory you will see that some tests still fail. ** Most Alpha specific problems have been fixed. In particular the random number generators rand48 and ranf now work on the Alpha ** Additional random number distributions: Rayleigh distribution n-dimensional spherical distribution (ie, points at random on an n-dimensional sphere) Gaussian tail distribution (ie, choosing values from a gaussian distribution subject to a constraint that they be larger than some fixed value, eg 5 sigmas) Walker's algorithm for arbitrary discrete distributions * What was new in gsl-0.4: ** A single libgsl.a file is built in the top level directory and installed, instead of separate .a files for each subdirectory. ** The parts of the complex struct gsl_complex, .real and .imag, are not supported anymore. The macros GSL_REAL(z) and GSL_IMAG(z) do the same job. All complex numbers are considered as packed arrays of floating point numbers, for portability since the layout of structs or arrays of structs is not guaranteed. ** The interface for matrices and vectors has changed. Vectors now support strides, and can be used to access rows and columns of a matrix. Many more types are available (float, double, long double, int, long, short, char, signed and unsigned, plus complex floats, doubles and long doubles) due to improvements in our preprocessor template system. ** The random number generators have a completely new thread-safe interface and have moved from the random directory to the rng directory. Any program using random numbers will have to be updated. You can also choose generators and seeds using the environment variables GSL_RNG_TYPE and GSL_RNG_SEED. ** Some additional random number distributions have been added in the randist directory. The available distributiosn are: bernoulli, beta, binomial, cauchy, chisq, erlang, exponential, fdist, flat, gamma, gauss, geometric, levy, logistic, lognormal, nbinomial, pareto, poisson, sphere, tdist, twosidedexp, weibull. ** The FFT interface has be extended to support strides, but the implementation hasn't been finished for all the cases yet, The FFT allocation functions now return a pointer to a newly allocated wavetable struct, instead of taking the pointer to an existing struct as an argument. e.g. status = gsl_fft_wavetable_alloc(n, w) is now w = gsl_fft_wavetable_alloc(n) in accordance with usual practice ** The statistics directory now works with all the builtin types. It has a new function for computing the lag1-autocorrelation and an extra set of numerical accuracy tests from NIST as part of 'make check'. ** The simulated annealing routines no longer set the random number seed with the time of day. You'll need to reseed the generator yourself if you want subsequent runs to use different random numbers. ** Work is in progress on a reimplementation of QUADPACK in the `integration' subdirectory, but it is not finished yet. ** Work is in progress on reimplementations of the VEGAS and MISER Monte Carlo algorithms in the monte' subdirectory. They work just fine, but the code is still evolving. ** Work has started on a portable blas system in the `blas' subdirectory. ** You can now set the IEEE arithmetic mode for your programs from the environment variable GSL_IEEE_MODE by calling the function gsl_ieee_env_setup(). Currently this only works with the Linux kernel, HP-UX, SunOS4 and Solaris. ** There are some simple spline interpolation functions in the `interp' subdir. ** The NEWS file now uses outline mode, like the Emacs NEWS file * This covers changes made *after* the gsl-0.2 snapshot ** Added several new modules: histogram, integration, matrix, specfunc and vectors. ** Changed libgsl_statisctics.a to libgslstatistics.a and libgsl_siman.a to libgslsiman.a, since most of the packages don't have the underscore. Users will have to remove the old files, unless they do a "make uninstall" on the previous release before they install this new one. ** Changes to the random number suite Incorporated the gauss, poisson and exponential distributions in the standard libgslrandom.a Local variables: mode: outline paragraph-separate: "[ ]*$" end: gsl-1.16/ltmain.sh0000644000252300025230000105152212172014005010763 00000000000000 # libtool (GNU libtool) 2.4.2 # Written by Gordon Matzigkeit , 1996 # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, # 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # GNU Libtool is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Libtool; see the file COPYING. If not, a copy # can be downloaded from http://www.gnu.org/licenses/gpl.html, # or obtained by writing to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # Usage: $progname [OPTION]... [MODE-ARG]... # # Provide generalized library-building support services. # # --config show all configuration variables # --debug enable verbose shell tracing # -n, --dry-run display commands without modifying any files # --features display basic configuration information and exit # --mode=MODE use operation mode MODE # --preserve-dup-deps don't remove duplicate dependency libraries # --quiet, --silent don't print informational messages # --no-quiet, --no-silent # print informational messages (default) # --no-warn don't display warning messages # --tag=TAG use configuration variables from tag TAG # -v, --verbose print more informational messages than default # --no-verbose don't print the extra informational messages # --version print version information # -h, --help, --help-all print short, long, or detailed help message # # MODE must be one of the following: # # clean remove files from the build directory # compile compile a source file into a libtool object # execute automatically set library path, then run a program # finish complete the installation of libtool libraries # install install libraries or executables # link create a library or an executable # uninstall remove libraries from an installed directory # # MODE-ARGS vary depending on the MODE. When passed as first option, # `--mode=MODE' may be abbreviated as `MODE' or a unique abbreviation of that. # Try `$progname --help --mode=MODE' for a more detailed description of MODE. # # When reporting a bug, please describe a test case to reproduce it and # include the following information: # # host-triplet: $host # shell: $SHELL # compiler: $LTCC # compiler flags: $LTCFLAGS # linker: $LD (gnu? $with_gnu_ld) # $progname: (GNU libtool) 2.4.2 # automake: $automake_version # autoconf: $autoconf_version # # Report bugs to . # GNU libtool home page: . # General help using GNU software: . PROGRAM=libtool PACKAGE=libtool VERSION=2.4.2 TIMESTAMP="" package_revision=1.3337 # Be Bourne compatible if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then emulate sh NULLCMD=: # Zsh 3.x and 4.x performs word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in *posix*) set -o posix;; esac fi BIN_SH=xpg4; export BIN_SH # for Tru64 DUALCASE=1; export DUALCASE # for MKS sh # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } # NLS nuisances: We save the old values to restore during execute mode. lt_user_locale= lt_safe_locale= for lt_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test \"\${$lt_var+set}\" = set; then save_$lt_var=\$$lt_var $lt_var=C export $lt_var lt_user_locale=\"$lt_var=\\\$save_\$lt_var; \$lt_user_locale\" lt_safe_locale=\"$lt_var=C; \$lt_safe_locale\" fi" done LC_ALL=C LANGUAGE=C export LANGUAGE LC_ALL $lt_unset CDPATH # Work around backward compatibility issue on IRIX 6.5. On IRIX 6.4+, sh # is ksh but when the shell is invoked as "sh" and the current value of # the _XPG environment variable is not equal to 1 (one), the special # positional parameter $0, within a function call, is the name of the # function. progpath="$0" : ${CP="cp -f"} test "${ECHO+set}" = set || ECHO=${as_echo-'printf %s\n'} : ${MAKE="make"} : ${MKDIR="mkdir"} : ${MV="mv -f"} : ${RM="rm -f"} : ${SHELL="${CONFIG_SHELL-/bin/sh}"} : ${Xsed="$SED -e 1s/^X//"} # Global variables: EXIT_SUCCESS=0 EXIT_FAILURE=1 EXIT_MISMATCH=63 # $? = 63 is used to indicate version mismatch to missing. EXIT_SKIP=77 # $? = 77 is used to indicate a skipped test to automake. exit_status=$EXIT_SUCCESS # Make sure IFS has a sensible default lt_nl=' ' IFS=" $lt_nl" dirname="s,/[^/]*$,," basename="s,^.*/,," # func_dirname file append nondir_replacement # Compute the dirname of FILE. If nonempty, add APPEND to the result, # otherwise set result to NONDIR_REPLACEMENT. func_dirname () { func_dirname_result=`$ECHO "${1}" | $SED "$dirname"` if test "X$func_dirname_result" = "X${1}"; then func_dirname_result="${3}" else func_dirname_result="$func_dirname_result${2}" fi } # func_dirname may be replaced by extended shell implementation # func_basename file func_basename () { func_basename_result=`$ECHO "${1}" | $SED "$basename"` } # func_basename may be replaced by extended shell implementation # func_dirname_and_basename file append nondir_replacement # perform func_basename and func_dirname in a single function # call: # dirname: Compute the dirname of FILE. If nonempty, # add APPEND to the result, otherwise set result # to NONDIR_REPLACEMENT. # value returned in "$func_dirname_result" # basename: Compute filename of FILE. # value retuned in "$func_basename_result" # Implementation must be kept synchronized with func_dirname # and func_basename. For efficiency, we do not delegate to # those functions but instead duplicate the functionality here. func_dirname_and_basename () { # Extract subdirectory from the argument. func_dirname_result=`$ECHO "${1}" | $SED -e "$dirname"` if test "X$func_dirname_result" = "X${1}"; then func_dirname_result="${3}" else func_dirname_result="$func_dirname_result${2}" fi func_basename_result=`$ECHO "${1}" | $SED -e "$basename"` } # func_dirname_and_basename may be replaced by extended shell implementation # func_stripname prefix suffix name # strip PREFIX and SUFFIX off of NAME. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). # func_strip_suffix prefix name func_stripname () { case ${2} in .*) func_stripname_result=`$ECHO "${3}" | $SED "s%^${1}%%; s%\\\\${2}\$%%"`;; *) func_stripname_result=`$ECHO "${3}" | $SED "s%^${1}%%; s%${2}\$%%"`;; esac } # func_stripname may be replaced by extended shell implementation # These SED scripts presuppose an absolute path with a trailing slash. pathcar='s,^/\([^/]*\).*$,\1,' pathcdr='s,^/[^/]*,,' removedotparts=':dotsl s@/\./@/@g t dotsl s,/\.$,/,' collapseslashes='s@/\{1,\}@/@g' finalslash='s,/*$,/,' # func_normal_abspath PATH # Remove doubled-up and trailing slashes, "." path components, # and cancel out any ".." path components in PATH after making # it an absolute path. # value returned in "$func_normal_abspath_result" func_normal_abspath () { # Start from root dir and reassemble the path. func_normal_abspath_result= func_normal_abspath_tpath=$1 func_normal_abspath_altnamespace= case $func_normal_abspath_tpath in "") # Empty path, that just means $cwd. func_stripname '' '/' "`pwd`" func_normal_abspath_result=$func_stripname_result return ;; # The next three entries are used to spot a run of precisely # two leading slashes without using negated character classes; # we take advantage of case's first-match behaviour. ///*) # Unusual form of absolute path, do nothing. ;; //*) # Not necessarily an ordinary path; POSIX reserves leading '//' # and for example Cygwin uses it to access remote file shares # over CIFS/SMB, so we conserve a leading double slash if found. func_normal_abspath_altnamespace=/ ;; /*) # Absolute path, do nothing. ;; *) # Relative path, prepend $cwd. func_normal_abspath_tpath=`pwd`/$func_normal_abspath_tpath ;; esac # Cancel out all the simple stuff to save iterations. We also want # the path to end with a slash for ease of parsing, so make sure # there is one (and only one) here. func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$removedotparts" -e "$collapseslashes" -e "$finalslash"` while :; do # Processed it all yet? if test "$func_normal_abspath_tpath" = / ; then # If we ascended to the root using ".." the result may be empty now. if test -z "$func_normal_abspath_result" ; then func_normal_abspath_result=/ fi break fi func_normal_abspath_tcomponent=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$pathcar"` func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$pathcdr"` # Figure out what to do with it case $func_normal_abspath_tcomponent in "") # Trailing empty path component, ignore it. ;; ..) # Parent dir; strip last assembled component from result. func_dirname "$func_normal_abspath_result" func_normal_abspath_result=$func_dirname_result ;; *) # Actual path component, append it. func_normal_abspath_result=$func_normal_abspath_result/$func_normal_abspath_tcomponent ;; esac done # Restore leading double-slash if one was found on entry. func_normal_abspath_result=$func_normal_abspath_altnamespace$func_normal_abspath_result } # func_relative_path SRCDIR DSTDIR # generates a relative path from SRCDIR to DSTDIR, with a trailing # slash if non-empty, suitable for immediately appending a filename # without needing to append a separator. # value returned in "$func_relative_path_result" func_relative_path () { func_relative_path_result= func_normal_abspath "$1" func_relative_path_tlibdir=$func_normal_abspath_result func_normal_abspath "$2" func_relative_path_tbindir=$func_normal_abspath_result # Ascend the tree starting from libdir while :; do # check if we have found a prefix of bindir case $func_relative_path_tbindir in $func_relative_path_tlibdir) # found an exact match func_relative_path_tcancelled= break ;; $func_relative_path_tlibdir*) # found a matching prefix func_stripname "$func_relative_path_tlibdir" '' "$func_relative_path_tbindir" func_relative_path_tcancelled=$func_stripname_result if test -z "$func_relative_path_result"; then func_relative_path_result=. fi break ;; *) func_dirname $func_relative_path_tlibdir func_relative_path_tlibdir=${func_dirname_result} if test "x$func_relative_path_tlibdir" = x ; then # Have to descend all the way to the root! func_relative_path_result=../$func_relative_path_result func_relative_path_tcancelled=$func_relative_path_tbindir break fi func_relative_path_result=../$func_relative_path_result ;; esac done # Now calculate path; take care to avoid doubling-up slashes. func_stripname '' '/' "$func_relative_path_result" func_relative_path_result=$func_stripname_result func_stripname '/' '/' "$func_relative_path_tcancelled" if test "x$func_stripname_result" != x ; then func_relative_path_result=${func_relative_path_result}/${func_stripname_result} fi # Normalisation. If bindir is libdir, return empty string, # else relative path ending with a slash; either way, target # file name can be directly appended. if test ! -z "$func_relative_path_result"; then func_stripname './' '' "$func_relative_path_result/" func_relative_path_result=$func_stripname_result fi } # The name of this program: func_dirname_and_basename "$progpath" progname=$func_basename_result # Make sure we have an absolute path for reexecution: case $progpath in [\\/]*|[A-Za-z]:\\*) ;; *[\\/]*) progdir=$func_dirname_result progdir=`cd "$progdir" && pwd` progpath="$progdir/$progname" ;; *) save_IFS="$IFS" IFS=${PATH_SEPARATOR-:} for progdir in $PATH; do IFS="$save_IFS" test -x "$progdir/$progname" && break done IFS="$save_IFS" test -n "$progdir" || progdir=`pwd` progpath="$progdir/$progname" ;; esac # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. Xsed="${SED}"' -e 1s/^X//' sed_quote_subst='s/\([`"$\\]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution that turns a string into a regex matching for the # string literally. sed_make_literal_regex='s,[].[^$\\*\/],\\&,g' # Sed substitution that converts a w32 file name or path # which contains forward slashes, into one that contains # (escaped) backslashes. A very naive implementation. lt_sed_naive_backslashify='s|\\\\*|\\|g;s|/|\\|g;s|\\|\\\\|g' # Re-`\' parameter expansions in output of double_quote_subst that were # `\'-ed in input to the same. If an odd number of `\' preceded a '$' # in input to double_quote_subst, that '$' was protected from expansion. # Since each input `\' is now two `\'s, look for any number of runs of # four `\'s followed by two `\'s and then a '$'. `\' that '$'. bs='\\' bs2='\\\\' bs4='\\\\\\\\' dollar='\$' sed_double_backslash="\ s/$bs4/&\\ /g s/^$bs2$dollar/$bs&/ s/\\([^$bs]\\)$bs2$dollar/\\1$bs2$bs$dollar/g s/\n//g" # Standard options: opt_dry_run=false opt_help=false opt_quiet=false opt_verbose=false opt_warning=: # func_echo arg... # Echo program name prefixed message, along with the current mode # name if it has been set yet. func_echo () { $ECHO "$progname: ${opt_mode+$opt_mode: }$*" } # func_verbose arg... # Echo program name prefixed message in verbose mode only. func_verbose () { $opt_verbose && func_echo ${1+"$@"} # A bug in bash halts the script if the last line of a function # fails when set -e is in force, so we need another command to # work around that: : } # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } # func_error arg... # Echo program name prefixed message to standard error. func_error () { $ECHO "$progname: ${opt_mode+$opt_mode: }"${1+"$@"} 1>&2 } # func_warning arg... # Echo program name prefixed warning message to standard error. func_warning () { $opt_warning && $ECHO "$progname: ${opt_mode+$opt_mode: }warning: "${1+"$@"} 1>&2 # bash bug again: : } # func_fatal_error arg... # Echo program name prefixed message to standard error, and exit. func_fatal_error () { func_error ${1+"$@"} exit $EXIT_FAILURE } # func_fatal_help arg... # Echo program name prefixed message to standard error, followed by # a help hint, and exit. func_fatal_help () { func_error ${1+"$@"} func_fatal_error "$help" } help="Try \`$progname --help' for more information." ## default # func_grep expression filename # Check whether EXPRESSION matches any line of FILENAME, without output. func_grep () { $GREP "$1" "$2" >/dev/null 2>&1 } # func_mkdir_p directory-path # Make sure the entire path to DIRECTORY-PATH is available. func_mkdir_p () { my_directory_path="$1" my_dir_list= if test -n "$my_directory_path" && test "$opt_dry_run" != ":"; then # Protect directory names starting with `-' case $my_directory_path in -*) my_directory_path="./$my_directory_path" ;; esac # While some portion of DIR does not yet exist... while test ! -d "$my_directory_path"; do # ...make a list in topmost first order. Use a colon delimited # list incase some portion of path contains whitespace. my_dir_list="$my_directory_path:$my_dir_list" # If the last portion added has no slash in it, the list is done case $my_directory_path in */*) ;; *) break ;; esac # ...otherwise throw away the child directory and loop my_directory_path=`$ECHO "$my_directory_path" | $SED -e "$dirname"` done my_dir_list=`$ECHO "$my_dir_list" | $SED 's,:*$,,'` save_mkdir_p_IFS="$IFS"; IFS=':' for my_dir in $my_dir_list; do IFS="$save_mkdir_p_IFS" # mkdir can fail with a `File exist' error if two processes # try to create one of the directories concurrently. Don't # stop in that case! $MKDIR "$my_dir" 2>/dev/null || : done IFS="$save_mkdir_p_IFS" # Bail out if we (or some other process) failed to create a directory. test -d "$my_directory_path" || \ func_fatal_error "Failed to create \`$1'" fi } # func_mktempdir [string] # Make a temporary directory that won't clash with other running # libtool processes, and avoids race conditions if possible. If # given, STRING is the basename for that directory. func_mktempdir () { my_template="${TMPDIR-/tmp}/${1-$progname}" if test "$opt_dry_run" = ":"; then # Return a directory name, but don't create it in dry-run mode my_tmpdir="${my_template}-$$" else # If mktemp works, use that first and foremost my_tmpdir=`mktemp -d "${my_template}-XXXXXXXX" 2>/dev/null` if test ! -d "$my_tmpdir"; then # Failing that, at least try and use $RANDOM to avoid a race my_tmpdir="${my_template}-${RANDOM-0}$$" save_mktempdir_umask=`umask` umask 0077 $MKDIR "$my_tmpdir" umask $save_mktempdir_umask fi # If we're not in dry-run mode, bomb out on failure test -d "$my_tmpdir" || \ func_fatal_error "cannot create temporary directory \`$my_tmpdir'" fi $ECHO "$my_tmpdir" } # func_quote_for_eval arg # Aesthetically quote ARG to be evaled later. # This function returns two values: FUNC_QUOTE_FOR_EVAL_RESULT # is double-quoted, suitable for a subsequent eval, whereas # FUNC_QUOTE_FOR_EVAL_UNQUOTED_RESULT has merely all characters # which are still active within double quotes backslashified. func_quote_for_eval () { case $1 in *[\\\`\"\$]*) func_quote_for_eval_unquoted_result=`$ECHO "$1" | $SED "$sed_quote_subst"` ;; *) func_quote_for_eval_unquoted_result="$1" ;; esac case $func_quote_for_eval_unquoted_result in # Double-quote args containing shell metacharacters to delay # word splitting, command substitution and and variable # expansion for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") func_quote_for_eval_result="\"$func_quote_for_eval_unquoted_result\"" ;; *) func_quote_for_eval_result="$func_quote_for_eval_unquoted_result" esac } # func_quote_for_expand arg # Aesthetically quote ARG to be evaled later; same as above, # but do not quote variable references. func_quote_for_expand () { case $1 in *[\\\`\"]*) my_arg=`$ECHO "$1" | $SED \ -e "$double_quote_subst" -e "$sed_double_backslash"` ;; *) my_arg="$1" ;; esac case $my_arg in # Double-quote args containing shell metacharacters to delay # word splitting and command substitution for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") my_arg="\"$my_arg\"" ;; esac func_quote_for_expand_result="$my_arg" } # func_show_eval cmd [fail_exp] # Unless opt_silent is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. func_show_eval () { my_cmd="$1" my_fail_exp="${2-:}" ${opt_silent-false} || { func_quote_for_expand "$my_cmd" eval "func_echo $func_quote_for_expand_result" } if ${opt_dry_run-false}; then :; else eval "$my_cmd" my_status=$? if test "$my_status" -eq 0; then :; else eval "(exit $my_status); $my_fail_exp" fi fi } # func_show_eval_locale cmd [fail_exp] # Unless opt_silent is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. Use the saved locale for evaluation. func_show_eval_locale () { my_cmd="$1" my_fail_exp="${2-:}" ${opt_silent-false} || { func_quote_for_expand "$my_cmd" eval "func_echo $func_quote_for_expand_result" } if ${opt_dry_run-false}; then :; else eval "$lt_user_locale $my_cmd" my_status=$? eval "$lt_safe_locale" if test "$my_status" -eq 0; then :; else eval "(exit $my_status); $my_fail_exp" fi fi } # func_tr_sh # Turn $1 into a string suitable for a shell variable name. # Result is stored in $func_tr_sh_result. All characters # not in the set a-zA-Z0-9_ are replaced with '_'. Further, # if $1 begins with a digit, a '_' is prepended as well. func_tr_sh () { case $1 in [0-9]* | *[!a-zA-Z0-9_]*) func_tr_sh_result=`$ECHO "$1" | $SED 's/^\([0-9]\)/_\1/; s/[^a-zA-Z0-9_]/_/g'` ;; * ) func_tr_sh_result=$1 ;; esac } # func_version # Echo version message to standard output and exit. func_version () { $opt_debug $SED -n '/(C)/!b go :more /\./!{ N s/\n# / / b more } :go /^# '$PROGRAM' (GNU /,/# warranty; / { s/^# // s/^# *$// s/\((C)\)[ 0-9,-]*\( [1-9][0-9]*\)/\1\2/ p }' < "$progpath" exit $? } # func_usage # Echo short help message to standard output and exit. func_usage () { $opt_debug $SED -n '/^# Usage:/,/^# *.*--help/ { s/^# // s/^# *$// s/\$progname/'$progname'/ p }' < "$progpath" echo $ECHO "run \`$progname --help | more' for full usage" exit $? } # func_help [NOEXIT] # Echo long help message to standard output and exit, # unless 'noexit' is passed as argument. func_help () { $opt_debug $SED -n '/^# Usage:/,/# Report bugs to/ { :print s/^# // s/^# *$// s*\$progname*'$progname'* s*\$host*'"$host"'* s*\$SHELL*'"$SHELL"'* s*\$LTCC*'"$LTCC"'* s*\$LTCFLAGS*'"$LTCFLAGS"'* s*\$LD*'"$LD"'* s/\$with_gnu_ld/'"$with_gnu_ld"'/ s/\$automake_version/'"`(${AUTOMAKE-automake} --version) 2>/dev/null |$SED 1q`"'/ s/\$autoconf_version/'"`(${AUTOCONF-autoconf} --version) 2>/dev/null |$SED 1q`"'/ p d } /^# .* home page:/b print /^# General help using/b print ' < "$progpath" ret=$? if test -z "$1"; then exit $ret fi } # func_missing_arg argname # Echo program name prefixed message to standard error and set global # exit_cmd. func_missing_arg () { $opt_debug func_error "missing argument for $1." exit_cmd=exit } # func_split_short_opt shortopt # Set func_split_short_opt_name and func_split_short_opt_arg shell # variables after splitting SHORTOPT after the 2nd character. func_split_short_opt () { my_sed_short_opt='1s/^\(..\).*$/\1/;q' my_sed_short_rest='1s/^..\(.*\)$/\1/;q' func_split_short_opt_name=`$ECHO "$1" | $SED "$my_sed_short_opt"` func_split_short_opt_arg=`$ECHO "$1" | $SED "$my_sed_short_rest"` } # func_split_short_opt may be replaced by extended shell implementation # func_split_long_opt longopt # Set func_split_long_opt_name and func_split_long_opt_arg shell # variables after splitting LONGOPT at the `=' sign. func_split_long_opt () { my_sed_long_opt='1s/^\(--[^=]*\)=.*/\1/;q' my_sed_long_arg='1s/^--[^=]*=//' func_split_long_opt_name=`$ECHO "$1" | $SED "$my_sed_long_opt"` func_split_long_opt_arg=`$ECHO "$1" | $SED "$my_sed_long_arg"` } # func_split_long_opt may be replaced by extended shell implementation exit_cmd=: magic="%%%MAGIC variable%%%" magic_exe="%%%MAGIC EXE variable%%%" # Global variables. nonopt= preserve_args= lo2o="s/\\.lo\$/.${objext}/" o2lo="s/\\.${objext}\$/.lo/" extracted_archives= extracted_serial=0 # If this variable is set in any of the actions, the command in it # will be execed at the end. This prevents here-documents from being # left over by shells. exec_cmd= # func_append var value # Append VALUE to the end of shell variable VAR. func_append () { eval "${1}=\$${1}\${2}" } # func_append may be replaced by extended shell implementation # func_append_quoted var value # Quote VALUE and append to the end of shell variable VAR, separated # by a space. func_append_quoted () { func_quote_for_eval "${2}" eval "${1}=\$${1}\\ \$func_quote_for_eval_result" } # func_append_quoted may be replaced by extended shell implementation # func_arith arithmetic-term... func_arith () { func_arith_result=`expr "${@}"` } # func_arith may be replaced by extended shell implementation # func_len string # STRING may not start with a hyphen. func_len () { func_len_result=`expr "${1}" : ".*" 2>/dev/null || echo $max_cmd_len` } # func_len may be replaced by extended shell implementation # func_lo2o object func_lo2o () { func_lo2o_result=`$ECHO "${1}" | $SED "$lo2o"` } # func_lo2o may be replaced by extended shell implementation # func_xform libobj-or-source func_xform () { func_xform_result=`$ECHO "${1}" | $SED 's/\.[^.]*$/.lo/'` } # func_xform may be replaced by extended shell implementation # func_fatal_configuration arg... # Echo program name prefixed message to standard error, followed by # a configuration failure hint, and exit. func_fatal_configuration () { func_error ${1+"$@"} func_error "See the $PACKAGE documentation for more information." func_fatal_error "Fatal configuration error." } # func_config # Display the configuration for all the tags in this script. func_config () { re_begincf='^# ### BEGIN LIBTOOL' re_endcf='^# ### END LIBTOOL' # Default configuration. $SED "1,/$re_begincf CONFIG/d;/$re_endcf CONFIG/,\$d" < "$progpath" # Now print the configurations for the tags. for tagname in $taglist; do $SED -n "/$re_begincf TAG CONFIG: $tagname\$/,/$re_endcf TAG CONFIG: $tagname\$/p" < "$progpath" done exit $? } # func_features # Display the features supported by this script. func_features () { echo "host: $host" if test "$build_libtool_libs" = yes; then echo "enable shared libraries" else echo "disable shared libraries" fi if test "$build_old_libs" = yes; then echo "enable static libraries" else echo "disable static libraries" fi exit $? } # func_enable_tag tagname # Verify that TAGNAME is valid, and either flag an error and exit, or # enable the TAGNAME tag. We also add TAGNAME to the global $taglist # variable here. func_enable_tag () { # Global variable: tagname="$1" re_begincf="^# ### BEGIN LIBTOOL TAG CONFIG: $tagname\$" re_endcf="^# ### END LIBTOOL TAG CONFIG: $tagname\$" sed_extractcf="/$re_begincf/,/$re_endcf/p" # Validate tagname. case $tagname in *[!-_A-Za-z0-9,/]*) func_fatal_error "invalid tag name: $tagname" ;; esac # Don't test for the "default" C tag, as we know it's # there but not specially marked. case $tagname in CC) ;; *) if $GREP "$re_begincf" "$progpath" >/dev/null 2>&1; then taglist="$taglist $tagname" # Evaluate the configuration. Be careful to quote the path # and the sed script, to avoid splitting on whitespace, but # also don't use non-portable quotes within backquotes within # quotes we have to do it in 2 steps: extractedcf=`$SED -n -e "$sed_extractcf" < "$progpath"` eval "$extractedcf" else func_error "ignoring unknown tag $tagname" fi ;; esac } # func_check_version_match # Ensure that we are using m4 macros, and libtool script from the same # release of libtool. func_check_version_match () { if test "$package_revision" != "$macro_revision"; then if test "$VERSION" != "$macro_version"; then if test -z "$macro_version"; then cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from an older release. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from $PACKAGE $macro_version. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF fi else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, revision $package_revision, $progname: but the definition of this LT_INIT comes from revision $macro_revision. $progname: You should recreate aclocal.m4 with macros from revision $package_revision $progname: of $PACKAGE $VERSION and run autoconf again. _LT_EOF fi exit $EXIT_MISMATCH fi } # Shorthand for --mode=foo, only valid as the first argument case $1 in clean|clea|cle|cl) shift; set dummy --mode clean ${1+"$@"}; shift ;; compile|compil|compi|comp|com|co|c) shift; set dummy --mode compile ${1+"$@"}; shift ;; execute|execut|execu|exec|exe|ex|e) shift; set dummy --mode execute ${1+"$@"}; shift ;; finish|finis|fini|fin|fi|f) shift; set dummy --mode finish ${1+"$@"}; shift ;; install|instal|insta|inst|ins|in|i) shift; set dummy --mode install ${1+"$@"}; shift ;; link|lin|li|l) shift; set dummy --mode link ${1+"$@"}; shift ;; uninstall|uninstal|uninsta|uninst|unins|unin|uni|un|u) shift; set dummy --mode uninstall ${1+"$@"}; shift ;; esac # Option defaults: opt_debug=: opt_dry_run=false opt_config=false opt_preserve_dup_deps=false opt_features=false opt_finish=false opt_help=false opt_help_all=false opt_silent=: opt_warning=: opt_verbose=: opt_silent=false opt_verbose=false # Parse options once, thoroughly. This comes as soon as possible in the # script to make things like `--version' happen as quickly as we can. { # this just eases exit handling while test $# -gt 0; do opt="$1" shift case $opt in --debug|-x) opt_debug='set -x' func_echo "enabling shell trace mode" $opt_debug ;; --dry-run|--dryrun|-n) opt_dry_run=: ;; --config) opt_config=: func_config ;; --dlopen|-dlopen) optarg="$1" opt_dlopen="${opt_dlopen+$opt_dlopen }$optarg" shift ;; --preserve-dup-deps) opt_preserve_dup_deps=: ;; --features) opt_features=: func_features ;; --finish) opt_finish=: set dummy --mode finish ${1+"$@"}; shift ;; --help) opt_help=: ;; --help-all) opt_help_all=: opt_help=': help-all' ;; --mode) test $# = 0 && func_missing_arg $opt && break optarg="$1" opt_mode="$optarg" case $optarg in # Valid mode arguments: clean|compile|execute|finish|install|link|relink|uninstall) ;; # Catch anything else as an error *) func_error "invalid argument for $opt" exit_cmd=exit break ;; esac shift ;; --no-silent|--no-quiet) opt_silent=false func_append preserve_args " $opt" ;; --no-warning|--no-warn) opt_warning=false func_append preserve_args " $opt" ;; --no-verbose) opt_verbose=false func_append preserve_args " $opt" ;; --silent|--quiet) opt_silent=: func_append preserve_args " $opt" opt_verbose=false ;; --verbose|-v) opt_verbose=: func_append preserve_args " $opt" opt_silent=false ;; --tag) test $# = 0 && func_missing_arg $opt && break optarg="$1" opt_tag="$optarg" func_append preserve_args " $opt $optarg" func_enable_tag "$optarg" shift ;; -\?|-h) func_usage ;; --help) func_help ;; --version) func_version ;; # Separate optargs to long options: --*=*) func_split_long_opt "$opt" set dummy "$func_split_long_opt_name" "$func_split_long_opt_arg" ${1+"$@"} shift ;; # Separate non-argument short options: -\?*|-h*|-n*|-v*) func_split_short_opt "$opt" set dummy "$func_split_short_opt_name" "-$func_split_short_opt_arg" ${1+"$@"} shift ;; --) break ;; -*) func_fatal_help "unrecognized option \`$opt'" ;; *) set dummy "$opt" ${1+"$@"}; shift; break ;; esac done # Validate options: # save first non-option argument if test "$#" -gt 0; then nonopt="$opt" shift fi # preserve --debug test "$opt_debug" = : || func_append preserve_args " --debug" case $host in *cygwin* | *mingw* | *pw32* | *cegcc*) # don't eliminate duplications in $postdeps and $predeps opt_duplicate_compiler_generated_deps=: ;; *) opt_duplicate_compiler_generated_deps=$opt_preserve_dup_deps ;; esac $opt_help || { # Sanity checks first: func_check_version_match if test "$build_libtool_libs" != yes && test "$build_old_libs" != yes; then func_fatal_configuration "not configured to build any kind of library" fi # Darwin sucks eval std_shrext=\"$shrext_cmds\" # Only execute mode is allowed to have -dlopen flags. if test -n "$opt_dlopen" && test "$opt_mode" != execute; then func_error "unrecognized option \`-dlopen'" $ECHO "$help" 1>&2 exit $EXIT_FAILURE fi # Change the help message to a mode-specific one. generic_help="$help" help="Try \`$progname --help --mode=$opt_mode' for more information." } # Bail if the options were screwed $exit_cmd $EXIT_FAILURE } ## ----------- ## ## Main. ## ## ----------- ## # func_lalib_p file # True iff FILE is a libtool `.la' library or `.lo' object file. # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_lalib_p () { test -f "$1" && $SED -e 4q "$1" 2>/dev/null \ | $GREP "^# Generated by .*$PACKAGE" > /dev/null 2>&1 } # func_lalib_unsafe_p file # True iff FILE is a libtool `.la' library or `.lo' object file. # This function implements the same check as func_lalib_p without # resorting to external programs. To this end, it redirects stdin and # closes it afterwards, without saving the original file descriptor. # As a safety measure, use it only where a negative result would be # fatal anyway. Works if `file' does not exist. func_lalib_unsafe_p () { lalib_p=no if test -f "$1" && test -r "$1" && exec 5<&0 <"$1"; then for lalib_p_l in 1 2 3 4 do read lalib_p_line case "$lalib_p_line" in \#\ Generated\ by\ *$PACKAGE* ) lalib_p=yes; break;; esac done exec 0<&5 5<&- fi test "$lalib_p" = yes } # func_ltwrapper_script_p file # True iff FILE is a libtool wrapper script # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_script_p () { func_lalib_p "$1" } # func_ltwrapper_executable_p file # True iff FILE is a libtool wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_executable_p () { func_ltwrapper_exec_suffix= case $1 in *.exe) ;; *) func_ltwrapper_exec_suffix=.exe ;; esac $GREP "$magic_exe" "$1$func_ltwrapper_exec_suffix" >/dev/null 2>&1 } # func_ltwrapper_scriptname file # Assumes file is an ltwrapper_executable # uses $file to determine the appropriate filename for a # temporary ltwrapper_script. func_ltwrapper_scriptname () { func_dirname_and_basename "$1" "" "." func_stripname '' '.exe' "$func_basename_result" func_ltwrapper_scriptname_result="$func_dirname_result/$objdir/${func_stripname_result}_ltshwrapper" } # func_ltwrapper_p file # True iff FILE is a libtool wrapper script or wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_p () { func_ltwrapper_script_p "$1" || func_ltwrapper_executable_p "$1" } # func_execute_cmds commands fail_cmd # Execute tilde-delimited COMMANDS. # If FAIL_CMD is given, eval that upon failure. # FAIL_CMD may read-access the current command in variable CMD! func_execute_cmds () { $opt_debug save_ifs=$IFS; IFS='~' for cmd in $1; do IFS=$save_ifs eval cmd=\"$cmd\" func_show_eval "$cmd" "${2-:}" done IFS=$save_ifs } # func_source file # Source FILE, adding directory component if necessary. # Note that it is not necessary on cygwin/mingw to append a dot to # FILE even if both FILE and FILE.exe exist: automatic-append-.exe # behavior happens only for exec(3), not for open(2)! Also, sourcing # `FILE.' does not work on cygwin managed mounts. func_source () { $opt_debug case $1 in */* | *\\*) . "$1" ;; *) . "./$1" ;; esac } # func_resolve_sysroot PATH # Replace a leading = in PATH with a sysroot. Store the result into # func_resolve_sysroot_result func_resolve_sysroot () { func_resolve_sysroot_result=$1 case $func_resolve_sysroot_result in =*) func_stripname '=' '' "$func_resolve_sysroot_result" func_resolve_sysroot_result=$lt_sysroot$func_stripname_result ;; esac } # func_replace_sysroot PATH # If PATH begins with the sysroot, replace it with = and # store the result into func_replace_sysroot_result. func_replace_sysroot () { case "$lt_sysroot:$1" in ?*:"$lt_sysroot"*) func_stripname "$lt_sysroot" '' "$1" func_replace_sysroot_result="=$func_stripname_result" ;; *) # Including no sysroot. func_replace_sysroot_result=$1 ;; esac } # func_infer_tag arg # Infer tagged configuration to use if any are available and # if one wasn't chosen via the "--tag" command line option. # Only attempt this if the compiler in the base compile # command doesn't match the default compiler. # arg is usually of the form 'gcc ...' func_infer_tag () { $opt_debug if test -n "$available_tags" && test -z "$tagname"; then CC_quoted= for arg in $CC; do func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case $@ in # Blanks in the command may have been stripped by the calling shell, # but not from the CC environment variable when configure was run. " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) ;; # Blanks at the start of $base_compile will cause this to fail # if we don't check for them as well. *) for z in $available_tags; do if $GREP "^# ### BEGIN LIBTOOL TAG CONFIG: $z$" < "$progpath" > /dev/null; then # Evaluate the configuration. eval "`${SED} -n -e '/^# ### BEGIN LIBTOOL TAG CONFIG: '$z'$/,/^# ### END LIBTOOL TAG CONFIG: '$z'$/p' < $progpath`" CC_quoted= for arg in $CC; do # Double-quote args containing other shell metacharacters. func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case "$@ " in " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) # The compiler in the base compile command matches # the one in the tagged configuration. # Assume this is the tagged configuration we want. tagname=$z break ;; esac fi done # If $tagname still isn't set, then no tagged configuration # was found and let the user know that the "--tag" command # line option must be used. if test -z "$tagname"; then func_echo "unable to infer tagged configuration" func_fatal_error "specify a tag with \`--tag'" # else # func_verbose "using $tagname tagged configuration" fi ;; esac fi } # func_write_libtool_object output_name pic_name nonpic_name # Create a libtool object file (analogous to a ".la" file), # but don't create it if we're doing a dry run. func_write_libtool_object () { write_libobj=${1} if test "$build_libtool_libs" = yes; then write_lobj=\'${2}\' else write_lobj=none fi if test "$build_old_libs" = yes; then write_oldobj=\'${3}\' else write_oldobj=none fi $opt_dry_run || { cat >${write_libobj}T </dev/null` if test "$?" -eq 0 && test -n "${func_convert_core_file_wine_to_w32_tmp}"; then func_convert_core_file_wine_to_w32_result=`$ECHO "$func_convert_core_file_wine_to_w32_tmp" | $SED -e "$lt_sed_naive_backslashify"` else func_convert_core_file_wine_to_w32_result= fi fi } # end: func_convert_core_file_wine_to_w32 # func_convert_core_path_wine_to_w32 ARG # Helper function used by path conversion functions when $build is *nix, and # $host is mingw, cygwin, or some other w32 environment. Relies on a correctly # configured wine environment available, with the winepath program in $build's # $PATH. Assumes ARG has no leading or trailing path separator characters. # # ARG is path to be converted from $build format to win32. # Result is available in $func_convert_core_path_wine_to_w32_result. # Unconvertible file (directory) names in ARG are skipped; if no directory names # are convertible, then the result may be empty. func_convert_core_path_wine_to_w32 () { $opt_debug # unfortunately, winepath doesn't convert paths, only file names func_convert_core_path_wine_to_w32_result="" if test -n "$1"; then oldIFS=$IFS IFS=: for func_convert_core_path_wine_to_w32_f in $1; do IFS=$oldIFS func_convert_core_file_wine_to_w32 "$func_convert_core_path_wine_to_w32_f" if test -n "$func_convert_core_file_wine_to_w32_result" ; then if test -z "$func_convert_core_path_wine_to_w32_result"; then func_convert_core_path_wine_to_w32_result="$func_convert_core_file_wine_to_w32_result" else func_append func_convert_core_path_wine_to_w32_result ";$func_convert_core_file_wine_to_w32_result" fi fi done IFS=$oldIFS fi } # end: func_convert_core_path_wine_to_w32 # func_cygpath ARGS... # Wrapper around calling the cygpath program via LT_CYGPATH. This is used when # when (1) $build is *nix and Cygwin is hosted via a wine environment; or (2) # $build is MSYS and $host is Cygwin, or (3) $build is Cygwin. In case (1) or # (2), returns the Cygwin file name or path in func_cygpath_result (input # file name or path is assumed to be in w32 format, as previously converted # from $build's *nix or MSYS format). In case (3), returns the w32 file name # or path in func_cygpath_result (input file name or path is assumed to be in # Cygwin format). Returns an empty string on error. # # ARGS are passed to cygpath, with the last one being the file name or path to # be converted. # # Specify the absolute *nix (or w32) name to cygpath in the LT_CYGPATH # environment variable; do not put it in $PATH. func_cygpath () { $opt_debug if test -n "$LT_CYGPATH" && test -f "$LT_CYGPATH"; then func_cygpath_result=`$LT_CYGPATH "$@" 2>/dev/null` if test "$?" -ne 0; then # on failure, ensure result is empty func_cygpath_result= fi else func_cygpath_result= func_error "LT_CYGPATH is empty or specifies non-existent file: \`$LT_CYGPATH'" fi } #end: func_cygpath # func_convert_core_msys_to_w32 ARG # Convert file name or path ARG from MSYS format to w32 format. Return # result in func_convert_core_msys_to_w32_result. func_convert_core_msys_to_w32 () { $opt_debug # awkward: cmd appends spaces to result func_convert_core_msys_to_w32_result=`( cmd //c echo "$1" ) 2>/dev/null | $SED -e 's/[ ]*$//' -e "$lt_sed_naive_backslashify"` } #end: func_convert_core_msys_to_w32 # func_convert_file_check ARG1 ARG2 # Verify that ARG1 (a file name in $build format) was converted to $host # format in ARG2. Otherwise, emit an error message, but continue (resetting # func_to_host_file_result to ARG1). func_convert_file_check () { $opt_debug if test -z "$2" && test -n "$1" ; then func_error "Could not determine host file name corresponding to" func_error " \`$1'" func_error "Continuing, but uninstalled executables may not work." # Fallback: func_to_host_file_result="$1" fi } # end func_convert_file_check # func_convert_path_check FROM_PATHSEP TO_PATHSEP FROM_PATH TO_PATH # Verify that FROM_PATH (a path in $build format) was converted to $host # format in TO_PATH. Otherwise, emit an error message, but continue, resetting # func_to_host_file_result to a simplistic fallback value (see below). func_convert_path_check () { $opt_debug if test -z "$4" && test -n "$3"; then func_error "Could not determine the host path corresponding to" func_error " \`$3'" func_error "Continuing, but uninstalled executables may not work." # Fallback. This is a deliberately simplistic "conversion" and # should not be "improved". See libtool.info. if test "x$1" != "x$2"; then lt_replace_pathsep_chars="s|$1|$2|g" func_to_host_path_result=`echo "$3" | $SED -e "$lt_replace_pathsep_chars"` else func_to_host_path_result="$3" fi fi } # end func_convert_path_check # func_convert_path_front_back_pathsep FRONTPAT BACKPAT REPL ORIG # Modifies func_to_host_path_result by prepending REPL if ORIG matches FRONTPAT # and appending REPL if ORIG matches BACKPAT. func_convert_path_front_back_pathsep () { $opt_debug case $4 in $1 ) func_to_host_path_result="$3$func_to_host_path_result" ;; esac case $4 in $2 ) func_append func_to_host_path_result "$3" ;; esac } # end func_convert_path_front_back_pathsep ################################################## # $build to $host FILE NAME CONVERSION FUNCTIONS # ################################################## # invoked via `$to_host_file_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # Result will be available in $func_to_host_file_result. # func_to_host_file ARG # Converts the file name ARG from $build format to $host format. Return result # in func_to_host_file_result. func_to_host_file () { $opt_debug $to_host_file_cmd "$1" } # end func_to_host_file # func_to_tool_file ARG LAZY # converts the file name ARG from $build format to toolchain format. Return # result in func_to_tool_file_result. If the conversion in use is listed # in (the comma separated) LAZY, no conversion takes place. func_to_tool_file () { $opt_debug case ,$2, in *,"$to_tool_file_cmd",*) func_to_tool_file_result=$1 ;; *) $to_tool_file_cmd "$1" func_to_tool_file_result=$func_to_host_file_result ;; esac } # end func_to_tool_file # func_convert_file_noop ARG # Copy ARG to func_to_host_file_result. func_convert_file_noop () { func_to_host_file_result="$1" } # end func_convert_file_noop # func_convert_file_msys_to_w32 ARG # Convert file name ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_file_result. func_convert_file_msys_to_w32 () { $opt_debug func_to_host_file_result="$1" if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_to_host_file_result="$func_convert_core_msys_to_w32_result" fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_w32 # func_convert_file_cygwin_to_w32 ARG # Convert file name ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_file_cygwin_to_w32 () { $opt_debug func_to_host_file_result="$1" if test -n "$1"; then # because $build is cygwin, we call "the" cygpath in $PATH; no need to use # LT_CYGPATH in this case. func_to_host_file_result=`cygpath -m "$1"` fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_cygwin_to_w32 # func_convert_file_nix_to_w32 ARG # Convert file name ARG from *nix to w32 format. Requires a wine environment # and a working winepath. Returns result in func_to_host_file_result. func_convert_file_nix_to_w32 () { $opt_debug func_to_host_file_result="$1" if test -n "$1"; then func_convert_core_file_wine_to_w32 "$1" func_to_host_file_result="$func_convert_core_file_wine_to_w32_result" fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_w32 # func_convert_file_msys_to_cygwin ARG # Convert file name ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_file_msys_to_cygwin () { $opt_debug func_to_host_file_result="$1" if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_cygpath -u "$func_convert_core_msys_to_w32_result" func_to_host_file_result="$func_cygpath_result" fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_cygwin # func_convert_file_nix_to_cygwin ARG # Convert file name ARG from *nix to Cygwin format. Requires Cygwin installed # in a wine environment, working winepath, and LT_CYGPATH set. Returns result # in func_to_host_file_result. func_convert_file_nix_to_cygwin () { $opt_debug func_to_host_file_result="$1" if test -n "$1"; then # convert from *nix to w32, then use cygpath to convert from w32 to cygwin. func_convert_core_file_wine_to_w32 "$1" func_cygpath -u "$func_convert_core_file_wine_to_w32_result" func_to_host_file_result="$func_cygpath_result" fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_cygwin ############################################# # $build to $host PATH CONVERSION FUNCTIONS # ############################################# # invoked via `$to_host_path_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # The result will be available in $func_to_host_path_result. # # Path separators are also converted from $build format to $host format. If # ARG begins or ends with a path separator character, it is preserved (but # converted to $host format) on output. # # All path conversion functions are named using the following convention: # file name conversion function : func_convert_file_X_to_Y () # path conversion function : func_convert_path_X_to_Y () # where, for any given $build/$host combination the 'X_to_Y' value is the # same. If conversion functions are added for new $build/$host combinations, # the two new functions must follow this pattern, or func_init_to_host_path_cmd # will break. # func_init_to_host_path_cmd # Ensures that function "pointer" variable $to_host_path_cmd is set to the # appropriate value, based on the value of $to_host_file_cmd. to_host_path_cmd= func_init_to_host_path_cmd () { $opt_debug if test -z "$to_host_path_cmd"; then func_stripname 'func_convert_file_' '' "$to_host_file_cmd" to_host_path_cmd="func_convert_path_${func_stripname_result}" fi } # func_to_host_path ARG # Converts the path ARG from $build format to $host format. Return result # in func_to_host_path_result. func_to_host_path () { $opt_debug func_init_to_host_path_cmd $to_host_path_cmd "$1" } # end func_to_host_path # func_convert_path_noop ARG # Copy ARG to func_to_host_path_result. func_convert_path_noop () { func_to_host_path_result="$1" } # end func_convert_path_noop # func_convert_path_msys_to_w32 ARG # Convert path ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_path_result. func_convert_path_msys_to_w32 () { $opt_debug func_to_host_path_result="$1" if test -n "$1"; then # Remove leading and trailing path separator characters from ARG. MSYS # behavior is inconsistent here; cygpath turns them into '.;' and ';.'; # and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result="$func_convert_core_msys_to_w32_result" func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_msys_to_w32 # func_convert_path_cygwin_to_w32 ARG # Convert path ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_path_cygwin_to_w32 () { $opt_debug func_to_host_path_result="$1" if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_to_host_path_result=`cygpath -m -p "$func_to_host_path_tmp1"` func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_cygwin_to_w32 # func_convert_path_nix_to_w32 ARG # Convert path ARG from *nix to w32 format. Requires a wine environment and # a working winepath. Returns result in func_to_host_file_result. func_convert_path_nix_to_w32 () { $opt_debug func_to_host_path_result="$1" if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result="$func_convert_core_path_wine_to_w32_result" func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_nix_to_w32 # func_convert_path_msys_to_cygwin ARG # Convert path ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_path_msys_to_cygwin () { $opt_debug func_to_host_path_result="$1" if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_msys_to_w32_result" func_to_host_path_result="$func_cygpath_result" func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_msys_to_cygwin # func_convert_path_nix_to_cygwin ARG # Convert path ARG from *nix to Cygwin format. Requires Cygwin installed in a # a wine environment, working winepath, and LT_CYGPATH set. Returns result in # func_to_host_file_result. func_convert_path_nix_to_cygwin () { $opt_debug func_to_host_path_result="$1" if test -n "$1"; then # Remove leading and trailing path separator characters from # ARG. msys behavior is inconsistent here, cygpath turns them # into '.;' and ';.', and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_path_wine_to_w32_result" func_to_host_path_result="$func_cygpath_result" func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_nix_to_cygwin # func_mode_compile arg... func_mode_compile () { $opt_debug # Get the compilation command and the source file. base_compile= srcfile="$nonopt" # always keep a non-empty value in "srcfile" suppress_opt=yes suppress_output= arg_mode=normal libobj= later= pie_flag= for arg do case $arg_mode in arg ) # do not "continue". Instead, add this to base_compile lastarg="$arg" arg_mode=normal ;; target ) libobj="$arg" arg_mode=normal continue ;; normal ) # Accept any command-line options. case $arg in -o) test -n "$libobj" && \ func_fatal_error "you cannot specify \`-o' more than once" arg_mode=target continue ;; -pie | -fpie | -fPIE) func_append pie_flag " $arg" continue ;; -shared | -static | -prefer-pic | -prefer-non-pic) func_append later " $arg" continue ;; -no-suppress) suppress_opt=no continue ;; -Xcompiler) arg_mode=arg # the next one goes into the "base_compile" arg list continue # The current "srcfile" will either be retained or ;; # replaced later. I would guess that would be a bug. -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result lastarg= save_ifs="$IFS"; IFS=',' for arg in $args; do IFS="$save_ifs" func_append_quoted lastarg "$arg" done IFS="$save_ifs" func_stripname ' ' '' "$lastarg" lastarg=$func_stripname_result # Add the arguments to base_compile. func_append base_compile " $lastarg" continue ;; *) # Accept the current argument as the source file. # The previous "srcfile" becomes the current argument. # lastarg="$srcfile" srcfile="$arg" ;; esac # case $arg ;; esac # case $arg_mode # Aesthetically quote the previous argument. func_append_quoted base_compile "$lastarg" done # for arg case $arg_mode in arg) func_fatal_error "you must specify an argument for -Xcompile" ;; target) func_fatal_error "you must specify a target with \`-o'" ;; *) # Get the name of the library object. test -z "$libobj" && { func_basename "$srcfile" libobj="$func_basename_result" } ;; esac # Recognize several different file suffixes. # If the user specifies -o file.o, it is replaced with file.lo case $libobj in *.[cCFSifmso] | \ *.ada | *.adb | *.ads | *.asm | \ *.c++ | *.cc | *.ii | *.class | *.cpp | *.cxx | \ *.[fF][09]? | *.for | *.java | *.go | *.obj | *.sx | *.cu | *.cup) func_xform "$libobj" libobj=$func_xform_result ;; esac case $libobj in *.lo) func_lo2o "$libobj"; obj=$func_lo2o_result ;; *) func_fatal_error "cannot determine name of library object from \`$libobj'" ;; esac func_infer_tag $base_compile for arg in $later; do case $arg in -shared) test "$build_libtool_libs" != yes && \ func_fatal_configuration "can not build a shared library" build_old_libs=no continue ;; -static) build_libtool_libs=no build_old_libs=yes continue ;; -prefer-pic) pic_mode=yes continue ;; -prefer-non-pic) pic_mode=no continue ;; esac done func_quote_for_eval "$libobj" test "X$libobj" != "X$func_quote_for_eval_result" \ && $ECHO "X$libobj" | $GREP '[]~#^*{};<>?"'"'"' &()|`$[]' \ && func_warning "libobj name \`$libobj' may not contain shell special characters." func_dirname_and_basename "$obj" "/" "" objname="$func_basename_result" xdir="$func_dirname_result" lobj=${xdir}$objdir/$objname test -z "$base_compile" && \ func_fatal_help "you must specify a compilation command" # Delete any leftover library objects. if test "$build_old_libs" = yes; then removelist="$obj $lobj $libobj ${libobj}T" else removelist="$lobj $libobj ${libobj}T" fi # On Cygwin there's no "real" PIC flag so we must build both object types case $host_os in cygwin* | mingw* | pw32* | os2* | cegcc*) pic_mode=default ;; esac if test "$pic_mode" = no && test "$deplibs_check_method" != pass_all; then # non-PIC code in shared libraries is not supported pic_mode=default fi # Calculate the filename of the output object if compiler does # not support -o with -c if test "$compiler_c_o" = no; then output_obj=`$ECHO "$srcfile" | $SED 's%^.*/%%; s%\.[^.]*$%%'`.${objext} lockfile="$output_obj.lock" else output_obj= need_locks=no lockfile= fi # Lock this critical section if it is needed # We use this script file to make the link, it avoids creating a new file if test "$need_locks" = yes; then until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done elif test "$need_locks" = warn; then if test -f "$lockfile"; then $ECHO "\ *** ERROR, $lockfile exists and contains: `cat $lockfile 2>/dev/null` This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support \`-c' and \`-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi func_append removelist " $output_obj" $ECHO "$srcfile" > "$lockfile" fi $opt_dry_run || $RM $removelist func_append removelist " $lockfile" trap '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' 1 2 15 func_to_tool_file "$srcfile" func_convert_file_msys_to_w32 srcfile=$func_to_tool_file_result func_quote_for_eval "$srcfile" qsrcfile=$func_quote_for_eval_result # Only build a PIC object if we are building libtool libraries. if test "$build_libtool_libs" = yes; then # Without this assignment, base_compile gets emptied. fbsd_hideous_sh_bug=$base_compile if test "$pic_mode" != no; then command="$base_compile $qsrcfile $pic_flag" else # Don't build PIC code command="$base_compile $qsrcfile" fi func_mkdir_p "$xdir$objdir" if test -z "$output_obj"; then # Place PIC objects in $objdir func_append command " -o $lobj" fi func_show_eval_locale "$command" \ 'test -n "$output_obj" && $RM $removelist; exit $EXIT_FAILURE' if test "$need_locks" = warn && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support \`-c' and \`-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed, then go on to compile the next one if test -n "$output_obj" && test "X$output_obj" != "X$lobj"; then func_show_eval '$MV "$output_obj" "$lobj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi # Allow error messages only from the first compilation. if test "$suppress_opt" = yes; then suppress_output=' >/dev/null 2>&1' fi fi # Only build a position-dependent object if we build old libraries. if test "$build_old_libs" = yes; then if test "$pic_mode" != yes; then # Don't build PIC code command="$base_compile $qsrcfile$pie_flag" else command="$base_compile $qsrcfile $pic_flag" fi if test "$compiler_c_o" = yes; then func_append command " -o $obj" fi # Suppress compiler output if we already did a PIC compilation. func_append command "$suppress_output" func_show_eval_locale "$command" \ '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' if test "$need_locks" = warn && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support \`-c' and \`-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed if test -n "$output_obj" && test "X$output_obj" != "X$obj"; then func_show_eval '$MV "$output_obj" "$obj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi fi $opt_dry_run || { func_write_libtool_object "$libobj" "$objdir/$objname" "$objname" # Unlock the critical section if it was locked if test "$need_locks" != no; then removelist=$lockfile $RM "$lockfile" fi } exit $EXIT_SUCCESS } $opt_help || { test "$opt_mode" = compile && func_mode_compile ${1+"$@"} } func_mode_help () { # We need to display help for each of the modes. case $opt_mode in "") # Generic help is extracted from the usage comments # at the start of this file. func_help ;; clean) $ECHO \ "Usage: $progname [OPTION]... --mode=clean RM [RM-OPTION]... FILE... Remove files from the build directory. RM is the name of the program to use to delete files associated with each FILE (typically \`/bin/rm'). RM-OPTIONS are options (such as \`-f') to be passed to RM. If FILE is a libtool library, object or program, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; compile) $ECHO \ "Usage: $progname [OPTION]... --mode=compile COMPILE-COMMAND... SOURCEFILE Compile a source file into a libtool library object. This mode accepts the following additional options: -o OUTPUT-FILE set the output file name to OUTPUT-FILE -no-suppress do not suppress compiler output for multiple passes -prefer-pic try to build PIC objects only -prefer-non-pic try to build non-PIC objects only -shared do not build a \`.o' file suitable for static linking -static only build a \`.o' file suitable for static linking -Wc,FLAG pass FLAG directly to the compiler COMPILE-COMMAND is a command to be used in creating a \`standard' object file from the given SOURCEFILE. The output file name is determined by removing the directory component from SOURCEFILE, then substituting the C source code suffix \`.c' with the library object suffix, \`.lo'." ;; execute) $ECHO \ "Usage: $progname [OPTION]... --mode=execute COMMAND [ARGS]... Automatically set library path, then run a program. This mode accepts the following additional options: -dlopen FILE add the directory containing FILE to the library path This mode sets the library path environment variable according to \`-dlopen' flags. If any of the ARGS are libtool executable wrappers, then they are translated into their corresponding uninstalled binary, and any of their required library directories are added to the library path. Then, COMMAND is executed, with ARGS as arguments." ;; finish) $ECHO \ "Usage: $progname [OPTION]... --mode=finish [LIBDIR]... Complete the installation of libtool libraries. Each LIBDIR is a directory that contains libtool libraries. The commands that this mode executes may require superuser privileges. Use the \`--dry-run' option if you just want to see what would be executed." ;; install) $ECHO \ "Usage: $progname [OPTION]... --mode=install INSTALL-COMMAND... Install executables or libraries. INSTALL-COMMAND is the installation command. The first component should be either the \`install' or \`cp' program. The following components of INSTALL-COMMAND are treated specially: -inst-prefix-dir PREFIX-DIR Use PREFIX-DIR as a staging area for installation The rest of the components are interpreted as arguments to that command (only BSD-compatible install options are recognized)." ;; link) $ECHO \ "Usage: $progname [OPTION]... --mode=link LINK-COMMAND... Link object files or libraries together to form another library, or to create an executable program. LINK-COMMAND is a command using the C compiler that you would use to create a program from several object files. The following components of LINK-COMMAND are treated specially: -all-static do not do any dynamic linking at all -avoid-version do not add a version suffix if possible -bindir BINDIR specify path to binaries directory (for systems where libraries must be found in the PATH setting at runtime) -dlopen FILE \`-dlpreopen' FILE if it cannot be dlopened at runtime -dlpreopen FILE link in FILE and add its symbols to lt_preloaded_symbols -export-dynamic allow symbols from OUTPUT-FILE to be resolved with dlsym(3) -export-symbols SYMFILE try to export only the symbols listed in SYMFILE -export-symbols-regex REGEX try to export only the symbols matching REGEX -LLIBDIR search LIBDIR for required installed libraries -lNAME OUTPUT-FILE requires the installed library libNAME -module build a library that can dlopened -no-fast-install disable the fast-install mode -no-install link a not-installable executable -no-undefined declare that a library does not refer to external symbols -o OUTPUT-FILE create OUTPUT-FILE from the specified objects -objectlist FILE Use a list of object files found in FILE to specify objects -precious-files-regex REGEX don't remove output files matching REGEX -release RELEASE specify package release information -rpath LIBDIR the created library will eventually be installed in LIBDIR -R[ ]LIBDIR add LIBDIR to the runtime path of programs and libraries -shared only do dynamic linking of libtool libraries -shrext SUFFIX override the standard shared library file extension -static do not do any dynamic linking of uninstalled libtool libraries -static-libtool-libs do not do any dynamic linking of libtool libraries -version-info CURRENT[:REVISION[:AGE]] specify library version info [each variable defaults to 0] -weak LIBNAME declare that the target provides the LIBNAME interface -Wc,FLAG -Xcompiler FLAG pass linker-specific FLAG directly to the compiler -Wl,FLAG -Xlinker FLAG pass linker-specific FLAG directly to the linker -XCClinker FLAG pass link-specific FLAG to the compiler driver (CC) All other options (arguments beginning with \`-') are ignored. Every other argument is treated as a filename. Files ending in \`.la' are treated as uninstalled libtool libraries, other files are standard or library object files. If the OUTPUT-FILE ends in \`.la', then a libtool library is created, only library objects (\`.lo' files) may be specified, and \`-rpath' is required, except when creating a convenience library. If OUTPUT-FILE ends in \`.a' or \`.lib', then a standard library is created using \`ar' and \`ranlib', or on Windows using \`lib'. If OUTPUT-FILE ends in \`.lo' or \`.${objext}', then a reloadable object file is created, otherwise an executable program is created." ;; uninstall) $ECHO \ "Usage: $progname [OPTION]... --mode=uninstall RM [RM-OPTION]... FILE... Remove libraries from an installation directory. RM is the name of the program to use to delete files associated with each FILE (typically \`/bin/rm'). RM-OPTIONS are options (such as \`-f') to be passed to RM. If FILE is a libtool library, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; *) func_fatal_help "invalid operation mode \`$opt_mode'" ;; esac echo $ECHO "Try \`$progname --help' for more information about other modes." } # Now that we've collected a possible --mode arg, show help if necessary if $opt_help; then if test "$opt_help" = :; then func_mode_help else { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do func_mode_help done } | sed -n '1p; 2,$s/^Usage:/ or: /p' { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do echo func_mode_help done } | sed '1d /^When reporting/,/^Report/{ H d } $x /information about other modes/d /more detailed .*MODE/d s/^Usage:.*--mode=\([^ ]*\) .*/Description of \1 mode:/' fi exit $? fi # func_mode_execute arg... func_mode_execute () { $opt_debug # The first argument is the command name. cmd="$nonopt" test -z "$cmd" && \ func_fatal_help "you must specify a COMMAND" # Handle -dlopen flags immediately. for file in $opt_dlopen; do test -f "$file" \ || func_fatal_help "\`$file' is not a file" dir= case $file in *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "\`$lib' is not a valid libtool archive" # Read the libtool library. dlname= library_names= func_source "$file" # Skip this library if it cannot be dlopened. if test -z "$dlname"; then # Warn if it was a shared library. test -n "$library_names" && \ func_warning "\`$file' was not linked with \`-export-dynamic'" continue fi func_dirname "$file" "" "." dir="$func_dirname_result" if test -f "$dir/$objdir/$dlname"; then func_append dir "/$objdir" else if test ! -f "$dir/$dlname"; then func_fatal_error "cannot find \`$dlname' in \`$dir' or \`$dir/$objdir'" fi fi ;; *.lo) # Just add the directory containing the .lo file. func_dirname "$file" "" "." dir="$func_dirname_result" ;; *) func_warning "\`-dlopen' is ignored for non-libtool libraries and objects" continue ;; esac # Get the absolute pathname. absdir=`cd "$dir" && pwd` test -n "$absdir" && dir="$absdir" # Now add the directory to shlibpath_var. if eval "test -z \"\$$shlibpath_var\""; then eval "$shlibpath_var=\"\$dir\"" else eval "$shlibpath_var=\"\$dir:\$$shlibpath_var\"" fi done # This variable tells wrapper scripts just to set shlibpath_var # rather than running their programs. libtool_execute_magic="$magic" # Check if any of the arguments is a wrapper script. args= for file do case $file in -* | *.la | *.lo ) ;; *) # Do a test to see if this is really a libtool program. if func_ltwrapper_script_p "$file"; then func_source "$file" # Transform arg to wrapped name. file="$progdir/$program" elif func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" func_source "$func_ltwrapper_scriptname_result" # Transform arg to wrapped name. file="$progdir/$program" fi ;; esac # Quote arguments (to preserve shell metacharacters). func_append_quoted args "$file" done if test "X$opt_dry_run" = Xfalse; then if test -n "$shlibpath_var"; then # Export the shlibpath_var. eval "export $shlibpath_var" fi # Restore saved environment variables for lt_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test \"\${save_$lt_var+set}\" = set; then $lt_var=\$save_$lt_var; export $lt_var else $lt_unset $lt_var fi" done # Now prepare to actually exec the command. exec_cmd="\$cmd$args" else # Display what would be done. if test -n "$shlibpath_var"; then eval "\$ECHO \"\$shlibpath_var=\$$shlibpath_var\"" echo "export $shlibpath_var" fi $ECHO "$cmd$args" exit $EXIT_SUCCESS fi } test "$opt_mode" = execute && func_mode_execute ${1+"$@"} # func_mode_finish arg... func_mode_finish () { $opt_debug libs= libdirs= admincmds= for opt in "$nonopt" ${1+"$@"} do if test -d "$opt"; then func_append libdirs " $opt" elif test -f "$opt"; then if func_lalib_unsafe_p "$opt"; then func_append libs " $opt" else func_warning "\`$opt' is not a valid libtool archive" fi else func_fatal_error "invalid argument \`$opt'" fi done if test -n "$libs"; then if test -n "$lt_sysroot"; then sysroot_regex=`$ECHO "$lt_sysroot" | $SED "$sed_make_literal_regex"` sysroot_cmd="s/\([ ']\)$sysroot_regex/\1/g;" else sysroot_cmd= fi # Remove sysroot references if $opt_dry_run; then for lib in $libs; do echo "removing references to $lt_sysroot and \`=' prefixes from $lib" done else tmpdir=`func_mktempdir` for lib in $libs; do sed -e "${sysroot_cmd} s/\([ ']-[LR]\)=/\1/g; s/\([ ']\)=/\1/g" $lib \ > $tmpdir/tmp-la mv -f $tmpdir/tmp-la $lib done ${RM}r "$tmpdir" fi fi if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then for libdir in $libdirs; do if test -n "$finish_cmds"; then # Do each command in the finish commands. func_execute_cmds "$finish_cmds" 'admincmds="$admincmds '"$cmd"'"' fi if test -n "$finish_eval"; then # Do the single finish_eval. eval cmds=\"$finish_eval\" $opt_dry_run || eval "$cmds" || func_append admincmds " $cmds" fi done fi # Exit here if they wanted silent mode. $opt_silent && exit $EXIT_SUCCESS if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then echo "----------------------------------------------------------------------" echo "Libraries have been installed in:" for libdir in $libdirs; do $ECHO " $libdir" done echo echo "If you ever happen to want to link against installed libraries" echo "in a given directory, LIBDIR, you must either use libtool, and" echo "specify the full pathname of the library, or use the \`-LLIBDIR'" echo "flag during linking and do at least one of the following:" if test -n "$shlibpath_var"; then echo " - add LIBDIR to the \`$shlibpath_var' environment variable" echo " during execution" fi if test -n "$runpath_var"; then echo " - add LIBDIR to the \`$runpath_var' environment variable" echo " during linking" fi if test -n "$hardcode_libdir_flag_spec"; then libdir=LIBDIR eval flag=\"$hardcode_libdir_flag_spec\" $ECHO " - use the \`$flag' linker flag" fi if test -n "$admincmds"; then $ECHO " - have your system administrator run these commands:$admincmds" fi if test -f /etc/ld.so.conf; then echo " - have your system administrator add LIBDIR to \`/etc/ld.so.conf'" fi echo echo "See any operating system documentation about shared libraries for" case $host in solaris2.[6789]|solaris2.1[0-9]) echo "more information, such as the ld(1), crle(1) and ld.so(8) manual" echo "pages." ;; *) echo "more information, such as the ld(1) and ld.so(8) manual pages." ;; esac echo "----------------------------------------------------------------------" fi exit $EXIT_SUCCESS } test "$opt_mode" = finish && func_mode_finish ${1+"$@"} # func_mode_install arg... func_mode_install () { $opt_debug # There may be an optional sh(1) argument at the beginning of # install_prog (especially on Windows NT). if test "$nonopt" = "$SHELL" || test "$nonopt" = /bin/sh || # Allow the use of GNU shtool's install command. case $nonopt in *shtool*) :;; *) false;; esac; then # Aesthetically quote it. func_quote_for_eval "$nonopt" install_prog="$func_quote_for_eval_result " arg=$1 shift else install_prog= arg=$nonopt fi # The real first argument should be the name of the installation program. # Aesthetically quote it. func_quote_for_eval "$arg" func_append install_prog "$func_quote_for_eval_result" install_shared_prog=$install_prog case " $install_prog " in *[\\\ /]cp\ *) install_cp=: ;; *) install_cp=false ;; esac # We need to accept at least all the BSD install flags. dest= files= opts= prev= install_type= isdir=no stripme= no_mode=: for arg do arg2= if test -n "$dest"; then func_append files " $dest" dest=$arg continue fi case $arg in -d) isdir=yes ;; -f) if $install_cp; then :; else prev=$arg fi ;; -g | -m | -o) prev=$arg ;; -s) stripme=" -s" continue ;; -*) ;; *) # If the previous option needed an argument, then skip it. if test -n "$prev"; then if test "x$prev" = x-m && test -n "$install_override_mode"; then arg2=$install_override_mode no_mode=false fi prev= else dest=$arg continue fi ;; esac # Aesthetically quote the argument. func_quote_for_eval "$arg" func_append install_prog " $func_quote_for_eval_result" if test -n "$arg2"; then func_quote_for_eval "$arg2" fi func_append install_shared_prog " $func_quote_for_eval_result" done test -z "$install_prog" && \ func_fatal_help "you must specify an install program" test -n "$prev" && \ func_fatal_help "the \`$prev' option requires an argument" if test -n "$install_override_mode" && $no_mode; then if $install_cp; then :; else func_quote_for_eval "$install_override_mode" func_append install_shared_prog " -m $func_quote_for_eval_result" fi fi if test -z "$files"; then if test -z "$dest"; then func_fatal_help "no file or destination specified" else func_fatal_help "you must specify a destination" fi fi # Strip any trailing slash from the destination. func_stripname '' '/' "$dest" dest=$func_stripname_result # Check to see that the destination is a directory. test -d "$dest" && isdir=yes if test "$isdir" = yes; then destdir="$dest" destname= else func_dirname_and_basename "$dest" "" "." destdir="$func_dirname_result" destname="$func_basename_result" # Not a directory, so check to see that there is only one file specified. set dummy $files; shift test "$#" -gt 1 && \ func_fatal_help "\`$dest' is not a directory" fi case $destdir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) for file in $files; do case $file in *.lo) ;; *) func_fatal_help "\`$destdir' must be an absolute directory name" ;; esac done ;; esac # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic="$magic" staticlibs= future_libdirs= current_libdirs= for file in $files; do # Do each installation. case $file in *.$libext) # Do the static libraries later. func_append staticlibs " $file" ;; *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "\`$file' is not a valid libtool archive" library_names= old_library= relink_command= func_source "$file" # Add the libdir to current_libdirs if it is the destination. if test "X$destdir" = "X$libdir"; then case "$current_libdirs " in *" $libdir "*) ;; *) func_append current_libdirs " $libdir" ;; esac else # Note the libdir as a future libdir. case "$future_libdirs " in *" $libdir "*) ;; *) func_append future_libdirs " $libdir" ;; esac fi func_dirname "$file" "/" "" dir="$func_dirname_result" func_append dir "$objdir" if test -n "$relink_command"; then # Determine the prefix the user has applied to our future dir. inst_prefix_dir=`$ECHO "$destdir" | $SED -e "s%$libdir\$%%"` # Don't allow the user to place us outside of our expected # location b/c this prevents finding dependent libraries that # are installed to the same prefix. # At present, this check doesn't affect windows .dll's that # are installed into $libdir/../bin (currently, that works fine) # but it's something to keep an eye on. test "$inst_prefix_dir" = "$destdir" && \ func_fatal_error "error: cannot install \`$file' to a directory not ending in $libdir" if test -n "$inst_prefix_dir"; then # Stick the inst_prefix_dir data into the link command. relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%-inst-prefix-dir $inst_prefix_dir%"` else relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%%"` fi func_warning "relinking \`$file'" func_show_eval "$relink_command" \ 'func_fatal_error "error: relink \`$file'\'' with the above command before installing it"' fi # See the names of the shared library. set dummy $library_names; shift if test -n "$1"; then realname="$1" shift srcname="$realname" test -n "$relink_command" && srcname="$realname"T # Install the shared library and build the symlinks. func_show_eval "$install_shared_prog $dir/$srcname $destdir/$realname" \ 'exit $?' tstripme="$stripme" case $host_os in cygwin* | mingw* | pw32* | cegcc*) case $realname in *.dll.a) tstripme="" ;; esac ;; esac if test -n "$tstripme" && test -n "$striplib"; then func_show_eval "$striplib $destdir/$realname" 'exit $?' fi if test "$#" -gt 0; then # Delete the old symlinks, and create new ones. # Try `ln -sf' first, because the `ln' binary might depend on # the symlink we replace! Solaris /bin/ln does not understand -f, # so we also need to try rm && ln -s. for linkname do test "$linkname" != "$realname" \ && func_show_eval "(cd $destdir && { $LN_S -f $realname $linkname || { $RM $linkname && $LN_S $realname $linkname; }; })" done fi # Do each command in the postinstall commands. lib="$destdir/$realname" func_execute_cmds "$postinstall_cmds" 'exit $?' fi # Install the pseudo-library for information purposes. func_basename "$file" name="$func_basename_result" instname="$dir/$name"i func_show_eval "$install_prog $instname $destdir/$name" 'exit $?' # Maybe install the static library, too. test -n "$old_library" && func_append staticlibs " $dir/$old_library" ;; *.lo) # Install (i.e. copy) a libtool object. # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile="$destdir/$destname" else func_basename "$file" destfile="$func_basename_result" destfile="$destdir/$destfile" fi # Deduce the name of the destination old-style object file. case $destfile in *.lo) func_lo2o "$destfile" staticdest=$func_lo2o_result ;; *.$objext) staticdest="$destfile" destfile= ;; *) func_fatal_help "cannot copy a libtool object to \`$destfile'" ;; esac # Install the libtool object if requested. test -n "$destfile" && \ func_show_eval "$install_prog $file $destfile" 'exit $?' # Install the old object if enabled. if test "$build_old_libs" = yes; then # Deduce the name of the old-style object file. func_lo2o "$file" staticobj=$func_lo2o_result func_show_eval "$install_prog \$staticobj \$staticdest" 'exit $?' fi exit $EXIT_SUCCESS ;; *) # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile="$destdir/$destname" else func_basename "$file" destfile="$func_basename_result" destfile="$destdir/$destfile" fi # If the file is missing, and there is a .exe on the end, strip it # because it is most likely a libtool script we actually want to # install stripped_ext="" case $file in *.exe) if test ! -f "$file"; then func_stripname '' '.exe' "$file" file=$func_stripname_result stripped_ext=".exe" fi ;; esac # Do a test to see if this is really a libtool program. case $host in *cygwin* | *mingw*) if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" wrapper=$func_ltwrapper_scriptname_result else func_stripname '' '.exe' "$file" wrapper=$func_stripname_result fi ;; *) wrapper=$file ;; esac if func_ltwrapper_script_p "$wrapper"; then notinst_deplibs= relink_command= func_source "$wrapper" # Check the variables that should have been set. test -z "$generated_by_libtool_version" && \ func_fatal_error "invalid libtool wrapper script \`$wrapper'" finalize=yes for lib in $notinst_deplibs; do # Check to see that each library is installed. libdir= if test -f "$lib"; then func_source "$lib" fi libfile="$libdir/"`$ECHO "$lib" | $SED 's%^.*/%%g'` ### testsuite: skip nested quoting test if test -n "$libdir" && test ! -f "$libfile"; then func_warning "\`$lib' has not been installed in \`$libdir'" finalize=no fi done relink_command= func_source "$wrapper" outputname= if test "$fast_install" = no && test -n "$relink_command"; then $opt_dry_run || { if test "$finalize" = yes; then tmpdir=`func_mktempdir` func_basename "$file$stripped_ext" file="$func_basename_result" outputname="$tmpdir/$file" # Replace the output file specification. relink_command=`$ECHO "$relink_command" | $SED 's%@OUTPUT@%'"$outputname"'%g'` $opt_silent || { func_quote_for_expand "$relink_command" eval "func_echo $func_quote_for_expand_result" } if eval "$relink_command"; then : else func_error "error: relink \`$file' with the above command before installing it" $opt_dry_run || ${RM}r "$tmpdir" continue fi file="$outputname" else func_warning "cannot relink \`$file'" fi } else # Install the binary that we compiled earlier. file=`$ECHO "$file$stripped_ext" | $SED "s%\([^/]*\)$%$objdir/\1%"` fi fi # remove .exe since cygwin /usr/bin/install will append another # one anyway case $install_prog,$host in */usr/bin/install*,*cygwin*) case $file:$destfile in *.exe:*.exe) # this is ok ;; *.exe:*) destfile=$destfile.exe ;; *:*.exe) func_stripname '' '.exe' "$destfile" destfile=$func_stripname_result ;; esac ;; esac func_show_eval "$install_prog\$stripme \$file \$destfile" 'exit $?' $opt_dry_run || if test -n "$outputname"; then ${RM}r "$tmpdir" fi ;; esac done for file in $staticlibs; do func_basename "$file" name="$func_basename_result" # Set up the ranlib parameters. oldlib="$destdir/$name" func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result func_show_eval "$install_prog \$file \$oldlib" 'exit $?' if test -n "$stripme" && test -n "$old_striplib"; then func_show_eval "$old_striplib $tool_oldlib" 'exit $?' fi # Do each command in the postinstall commands. func_execute_cmds "$old_postinstall_cmds" 'exit $?' done test -n "$future_libdirs" && \ func_warning "remember to run \`$progname --finish$future_libdirs'" if test -n "$current_libdirs"; then # Maybe just do a dry run. $opt_dry_run && current_libdirs=" -n$current_libdirs" exec_cmd='$SHELL $progpath $preserve_args --finish$current_libdirs' else exit $EXIT_SUCCESS fi } test "$opt_mode" = install && func_mode_install ${1+"$@"} # func_generate_dlsyms outputname originator pic_p # Extract symbols from dlprefiles and create ${outputname}S.o with # a dlpreopen symbol table. func_generate_dlsyms () { $opt_debug my_outputname="$1" my_originator="$2" my_pic_p="${3-no}" my_prefix=`$ECHO "$my_originator" | sed 's%[^a-zA-Z0-9]%_%g'` my_dlsyms= if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then if test -n "$NM" && test -n "$global_symbol_pipe"; then my_dlsyms="${my_outputname}S.c" else func_error "not configured to extract global symbols from dlpreopened files" fi fi if test -n "$my_dlsyms"; then case $my_dlsyms in "") ;; *.c) # Discover the nlist of each of the dlfiles. nlist="$output_objdir/${my_outputname}.nm" func_show_eval "$RM $nlist ${nlist}S ${nlist}T" # Parse the name list into a source file. func_verbose "creating $output_objdir/$my_dlsyms" $opt_dry_run || $ECHO > "$output_objdir/$my_dlsyms" "\ /* $my_dlsyms - symbol resolution table for \`$my_outputname' dlsym emulation. */ /* Generated by $PROGRAM (GNU $PACKAGE$TIMESTAMP) $VERSION */ #ifdef __cplusplus extern \"C\" { #endif #if defined(__GNUC__) && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 4)) || (__GNUC__ > 4)) #pragma GCC diagnostic ignored \"-Wstrict-prototypes\" #endif /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined(_WIN32) || defined(__CYGWIN__) || defined(_WIN32_WCE) /* DATA imports from DLLs on WIN32 con't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined(__osf__) /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif /* External symbol declarations for the compiler. */\ " if test "$dlself" = yes; then func_verbose "generating symbol list for \`$output'" $opt_dry_run || echo ': @PROGRAM@ ' > "$nlist" # Add our own program objects to the symbol list. progfiles=`$ECHO "$objs$old_deplibs" | $SP2NL | $SED "$lo2o" | $NL2SP` for progfile in $progfiles; do func_to_tool_file "$progfile" func_convert_file_msys_to_w32 func_verbose "extracting global C symbols from \`$func_to_tool_file_result'" $opt_dry_run || eval "$NM $func_to_tool_file_result | $global_symbol_pipe >> '$nlist'" done if test -n "$exclude_expsyms"; then $opt_dry_run || { eval '$EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi if test -n "$export_symbols_regex"; then $opt_dry_run || { eval '$EGREP -e "$export_symbols_regex" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi # Prepare the list of exported symbols if test -z "$export_symbols"; then export_symbols="$output_objdir/$outputname.exp" $opt_dry_run || { $RM $export_symbols eval "${SED} -n -e '/^: @PROGRAM@ $/d' -e 's/^.* \(.*\)$/\1/p' "'< "$nlist" > "$export_symbols"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$export_symbols" >> "$output_objdir/$outputname.def"' ;; esac } else $opt_dry_run || { eval "${SED} -e 's/\([].[*^$]\)/\\\\\1/g' -e 's/^/ /' -e 's/$/$/'"' < "$export_symbols" > "$output_objdir/$outputname.exp"' eval '$GREP -f "$output_objdir/$outputname.exp" < "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$nlist" >> "$output_objdir/$outputname.def"' ;; esac } fi fi for dlprefile in $dlprefiles; do func_verbose "extracting global C symbols from \`$dlprefile'" func_basename "$dlprefile" name="$func_basename_result" case $host in *cygwin* | *mingw* | *cegcc* ) # if an import library, we need to obtain dlname if func_win32_import_lib_p "$dlprefile"; then func_tr_sh "$dlprefile" eval "curr_lafile=\$libfile_$func_tr_sh_result" dlprefile_dlbasename="" if test -n "$curr_lafile" && func_lalib_p "$curr_lafile"; then # Use subshell, to avoid clobbering current variable values dlprefile_dlname=`source "$curr_lafile" && echo "$dlname"` if test -n "$dlprefile_dlname" ; then func_basename "$dlprefile_dlname" dlprefile_dlbasename="$func_basename_result" else # no lafile. user explicitly requested -dlpreopen . $sharedlib_from_linklib_cmd "$dlprefile" dlprefile_dlbasename=$sharedlib_from_linklib_result fi fi $opt_dry_run || { if test -n "$dlprefile_dlbasename" ; then eval '$ECHO ": $dlprefile_dlbasename" >> "$nlist"' else func_warning "Could not compute DLL name from $name" eval '$ECHO ": $name " >> "$nlist"' fi func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe | $SED -e '/I __imp/d' -e 's/I __nm_/D /;s/_nm__//' >> '$nlist'" } else # not an import lib $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } fi ;; *) $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } ;; esac done $opt_dry_run || { # Make sure we have at least an empty file. test -f "$nlist" || : > "$nlist" if test -n "$exclude_expsyms"; then $EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T $MV "$nlist"T "$nlist" fi # Try sorting and uniquifying the output. if $GREP -v "^: " < "$nlist" | if sort -k 3 /dev/null 2>&1; then sort -k 3 else sort +2 fi | uniq > "$nlist"S; then : else $GREP -v "^: " < "$nlist" > "$nlist"S fi if test -f "$nlist"S; then eval "$global_symbol_to_cdecl"' < "$nlist"S >> "$output_objdir/$my_dlsyms"' else echo '/* NONE */' >> "$output_objdir/$my_dlsyms" fi echo >> "$output_objdir/$my_dlsyms" "\ /* The mapping between symbol names and symbols. */ typedef struct { const char *name; void *address; } lt_dlsymlist; extern LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[]; LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[] = {\ { \"$my_originator\", (void *) 0 }," case $need_lib_prefix in no) eval "$global_symbol_to_c_name_address" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; *) eval "$global_symbol_to_c_name_address_lib_prefix" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; esac echo >> "$output_objdir/$my_dlsyms" "\ {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt_${my_prefix}_LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif\ " } # !$opt_dry_run pic_flag_for_symtable= case "$compile_command " in *" -static "*) ;; *) case $host in # compiling the symbol table file with pic_flag works around # a FreeBSD bug that causes programs to crash when -lm is # linked before any other PIC object. But we must not use # pic_flag when linking with -static. The problem exists in # FreeBSD 2.2.6 and is fixed in FreeBSD 3.1. *-*-freebsd2.*|*-*-freebsd3.0*|*-*-freebsdelf3.0*) pic_flag_for_symtable=" $pic_flag -DFREEBSD_WORKAROUND" ;; *-*-hpux*) pic_flag_for_symtable=" $pic_flag" ;; *) if test "X$my_pic_p" != Xno; then pic_flag_for_symtable=" $pic_flag" fi ;; esac ;; esac symtab_cflags= for arg in $LTCFLAGS; do case $arg in -pie | -fpie | -fPIE) ;; *) func_append symtab_cflags " $arg" ;; esac done # Now compile the dynamic symbol file. func_show_eval '(cd $output_objdir && $LTCC$symtab_cflags -c$no_builtin_flag$pic_flag_for_symtable "$my_dlsyms")' 'exit $?' # Clean up the generated files. func_show_eval '$RM "$output_objdir/$my_dlsyms" "$nlist" "${nlist}S" "${nlist}T"' # Transform the symbol file into the correct name. symfileobj="$output_objdir/${my_outputname}S.$objext" case $host in *cygwin* | *mingw* | *cegcc* ) if test -f "$output_objdir/$my_outputname.def"; then compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` else compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` fi ;; *) compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` ;; esac ;; *) func_fatal_error "unknown suffix for \`$my_dlsyms'" ;; esac else # We keep going just in case the user didn't refer to # lt_preloaded_symbols. The linker will fail if global_symbol_pipe # really was required. # Nullify the symbol file. compile_command=`$ECHO "$compile_command" | $SED "s% @SYMFILE@%%"` finalize_command=`$ECHO "$finalize_command" | $SED "s% @SYMFILE@%%"` fi } # func_win32_libid arg # return the library type of file 'arg' # # Need a lot of goo to handle *both* DLLs and import libs # Has to be a shell function in order to 'eat' the argument # that is supplied when $file_magic_command is called. # Despite the name, also deal with 64 bit binaries. func_win32_libid () { $opt_debug win32_libid_type="unknown" win32_fileres=`file -L $1 2>/dev/null` case $win32_fileres in *ar\ archive\ import\ library*) # definitely import win32_libid_type="x86 archive import" ;; *ar\ archive*) # could be an import, or static # Keep the egrep pattern in sync with the one in _LT_CHECK_MAGIC_METHOD. if eval $OBJDUMP -f $1 | $SED -e '10q' 2>/dev/null | $EGREP 'file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' >/dev/null; then func_to_tool_file "$1" func_convert_file_msys_to_w32 win32_nmres=`eval $NM -f posix -A \"$func_to_tool_file_result\" | $SED -n -e ' 1,100{ / I /{ s,.*,import, p q } }'` case $win32_nmres in import*) win32_libid_type="x86 archive import";; *) win32_libid_type="x86 archive static";; esac fi ;; *DLL*) win32_libid_type="x86 DLL" ;; *executable*) # but shell scripts are "executable" too... case $win32_fileres in *MS\ Windows\ PE\ Intel*) win32_libid_type="x86 DLL" ;; esac ;; esac $ECHO "$win32_libid_type" } # func_cygming_dll_for_implib ARG # # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib () { $opt_debug sharedlib_from_linklib_result=`$DLLTOOL --identify-strict --identify "$1"` } # func_cygming_dll_for_implib_fallback_core SECTION_NAME LIBNAMEs # # The is the core of a fallback implementation of a # platform-specific function to extract the name of the # DLL associated with the specified import library LIBNAME. # # SECTION_NAME is either .idata$6 or .idata$7, depending # on the platform and compiler that created the implib. # # Echos the name of the DLL associated with the # specified import library. func_cygming_dll_for_implib_fallback_core () { $opt_debug match_literal=`$ECHO "$1" | $SED "$sed_make_literal_regex"` $OBJDUMP -s --section "$1" "$2" 2>/dev/null | $SED '/^Contents of section '"$match_literal"':/{ # Place marker at beginning of archive member dllname section s/.*/====MARK====/ p d } # These lines can sometimes be longer than 43 characters, but # are always uninteresting /:[ ]*file format pe[i]\{,1\}-/d /^In archive [^:]*:/d # Ensure marker is printed /^====MARK====/p # Remove all lines with less than 43 characters /^.\{43\}/!d # From remaining lines, remove first 43 characters s/^.\{43\}//' | $SED -n ' # Join marker and all lines until next marker into a single line /^====MARK====/ b para H $ b para b :para x s/\n//g # Remove the marker s/^====MARK====// # Remove trailing dots and whitespace s/[\. \t]*$// # Print /./p' | # we now have a list, one entry per line, of the stringified # contents of the appropriate section of all members of the # archive which possess that section. Heuristic: eliminate # all those which have a first or second character that is # a '.' (that is, objdump's representation of an unprintable # character.) This should work for all archives with less than # 0x302f exports -- but will fail for DLLs whose name actually # begins with a literal '.' or a single character followed by # a '.'. # # Of those that remain, print the first one. $SED -e '/^\./d;/^.\./d;q' } # func_cygming_gnu_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is a GNU/binutils-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_gnu_implib_p () { $opt_debug func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_gnu_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $EGREP ' (_head_[A-Za-z0-9_]+_[ad]l*|[A-Za-z0-9_]+_[ad]l*_iname)$'` test -n "$func_cygming_gnu_implib_tmp" } # func_cygming_ms_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is an MS-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_ms_implib_p () { $opt_debug func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_ms_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $GREP '_NULL_IMPORT_DESCRIPTOR'` test -n "$func_cygming_ms_implib_tmp" } # func_cygming_dll_for_implib_fallback ARG # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # # This fallback implementation is for use when $DLLTOOL # does not support the --identify-strict option. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib_fallback () { $opt_debug if func_cygming_gnu_implib_p "$1" ; then # binutils import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$7' "$1"` elif func_cygming_ms_implib_p "$1" ; then # ms-generated import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$6' "$1"` else # unknown sharedlib_from_linklib_result="" fi } # func_extract_an_archive dir oldlib func_extract_an_archive () { $opt_debug f_ex_an_ar_dir="$1"; shift f_ex_an_ar_oldlib="$1" if test "$lock_old_archive_extraction" = yes; then lockfile=$f_ex_an_ar_oldlib.lock until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done fi func_show_eval "(cd \$f_ex_an_ar_dir && $AR x \"\$f_ex_an_ar_oldlib\")" \ 'stat=$?; rm -f "$lockfile"; exit $stat' if test "$lock_old_archive_extraction" = yes; then $opt_dry_run || rm -f "$lockfile" fi if ($AR t "$f_ex_an_ar_oldlib" | sort | sort -uc >/dev/null 2>&1); then : else func_fatal_error "object name conflicts in archive: $f_ex_an_ar_dir/$f_ex_an_ar_oldlib" fi } # func_extract_archives gentop oldlib ... func_extract_archives () { $opt_debug my_gentop="$1"; shift my_oldlibs=${1+"$@"} my_oldobjs="" my_xlib="" my_xabs="" my_xdir="" for my_xlib in $my_oldlibs; do # Extract the objects. case $my_xlib in [\\/]* | [A-Za-z]:[\\/]*) my_xabs="$my_xlib" ;; *) my_xabs=`pwd`"/$my_xlib" ;; esac func_basename "$my_xlib" my_xlib="$func_basename_result" my_xlib_u=$my_xlib while :; do case " $extracted_archives " in *" $my_xlib_u "*) func_arith $extracted_serial + 1 extracted_serial=$func_arith_result my_xlib_u=lt$extracted_serial-$my_xlib ;; *) break ;; esac done extracted_archives="$extracted_archives $my_xlib_u" my_xdir="$my_gentop/$my_xlib_u" func_mkdir_p "$my_xdir" case $host in *-darwin*) func_verbose "Extracting $my_xabs" # Do not bother doing anything if just a dry run $opt_dry_run || { darwin_orig_dir=`pwd` cd $my_xdir || exit $? darwin_archive=$my_xabs darwin_curdir=`pwd` darwin_base_archive=`basename "$darwin_archive"` darwin_arches=`$LIPO -info "$darwin_archive" 2>/dev/null | $GREP Architectures 2>/dev/null || true` if test -n "$darwin_arches"; then darwin_arches=`$ECHO "$darwin_arches" | $SED -e 's/.*are://'` darwin_arch= func_verbose "$darwin_base_archive has multiple architectures $darwin_arches" for darwin_arch in $darwin_arches ; do func_mkdir_p "unfat-$$/${darwin_base_archive}-${darwin_arch}" $LIPO -thin $darwin_arch -output "unfat-$$/${darwin_base_archive}-${darwin_arch}/${darwin_base_archive}" "${darwin_archive}" cd "unfat-$$/${darwin_base_archive}-${darwin_arch}" func_extract_an_archive "`pwd`" "${darwin_base_archive}" cd "$darwin_curdir" $RM "unfat-$$/${darwin_base_archive}-${darwin_arch}/${darwin_base_archive}" done # $darwin_arches ## Okay now we've a bunch of thin objects, gotta fatten them up :) darwin_filelist=`find unfat-$$ -type f -name \*.o -print -o -name \*.lo -print | $SED -e "$basename" | sort -u` darwin_file= darwin_files= for darwin_file in $darwin_filelist; do darwin_files=`find unfat-$$ -name $darwin_file -print | sort | $NL2SP` $LIPO -create -output "$darwin_file" $darwin_files done # $darwin_filelist $RM -rf unfat-$$ cd "$darwin_orig_dir" else cd $darwin_orig_dir func_extract_an_archive "$my_xdir" "$my_xabs" fi # $darwin_arches } # !$opt_dry_run ;; *) func_extract_an_archive "$my_xdir" "$my_xabs" ;; esac my_oldobjs="$my_oldobjs "`find $my_xdir -name \*.$objext -print -o -name \*.lo -print | sort | $NL2SP` done func_extract_archives_result="$my_oldobjs" } # func_emit_wrapper [arg=no] # # Emit a libtool wrapper script on stdout. # Don't directly open a file because we may want to # incorporate the script contents within a cygwin/mingw # wrapper executable. Must ONLY be called from within # func_mode_link because it depends on a number of variables # set therein. # # ARG is the value that the WRAPPER_SCRIPT_BELONGS_IN_OBJDIR # variable will take. If 'yes', then the emitted script # will assume that the directory in which it is stored is # the $objdir directory. This is a cygwin/mingw-specific # behavior. func_emit_wrapper () { func_emit_wrapper_arg1=${1-no} $ECHO "\ #! $SHELL # $output - temporary wrapper script for $objdir/$outputname # Generated by $PROGRAM (GNU $PACKAGE$TIMESTAMP) $VERSION # # The $output program cannot be directly executed until all the libtool # libraries that it depends on are installed. # # This wrapper script should never be moved out of the build directory. # If it is, it will not operate correctly. # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. sed_quote_subst='$sed_quote_subst' # Be Bourne compatible if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then emulate sh NULLCMD=: # Zsh 3.x and 4.x performs word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in *posix*) set -o posix;; esac fi BIN_SH=xpg4; export BIN_SH # for Tru64 DUALCASE=1; export DUALCASE # for MKS sh # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH relink_command=\"$relink_command\" # This environment variable determines our operation mode. if test \"\$libtool_install_magic\" = \"$magic\"; then # install mode needs the following variables: generated_by_libtool_version='$macro_version' notinst_deplibs='$notinst_deplibs' else # When we are sourced in execute mode, \$file and \$ECHO are already set. if test \"\$libtool_execute_magic\" != \"$magic\"; then file=\"\$0\"" qECHO=`$ECHO "$ECHO" | $SED "$sed_quote_subst"` $ECHO "\ # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } ECHO=\"$qECHO\" fi # Very basic option parsing. These options are (a) specific to # the libtool wrapper, (b) are identical between the wrapper # /script/ and the wrapper /executable/ which is used only on # windows platforms, and (c) all begin with the string "--lt-" # (application programs are unlikely to have options which match # this pattern). # # There are only two supported options: --lt-debug and # --lt-dump-script. There is, deliberately, no --lt-help. # # The first argument to this parsing function should be the # script's $0 value, followed by "$@". lt_option_debug= func_parse_lt_options () { lt_script_arg0=\$0 shift for lt_opt do case \"\$lt_opt\" in --lt-debug) lt_option_debug=1 ;; --lt-dump-script) lt_dump_D=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%/[^/]*$%%'\` test \"X\$lt_dump_D\" = \"X\$lt_script_arg0\" && lt_dump_D=. lt_dump_F=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%^.*/%%'\` cat \"\$lt_dump_D/\$lt_dump_F\" exit 0 ;; --lt-*) \$ECHO \"Unrecognized --lt- option: '\$lt_opt'\" 1>&2 exit 1 ;; esac done # Print the debug banner immediately: if test -n \"\$lt_option_debug\"; then echo \"${outputname}:${output}:\${LINENO}: libtool wrapper (GNU $PACKAGE$TIMESTAMP) $VERSION\" 1>&2 fi } # Used when --lt-debug. Prints its arguments to stdout # (redirection is the responsibility of the caller) func_lt_dump_args () { lt_dump_args_N=1; for lt_arg do \$ECHO \"${outputname}:${output}:\${LINENO}: newargv[\$lt_dump_args_N]: \$lt_arg\" lt_dump_args_N=\`expr \$lt_dump_args_N + 1\` done } # Core function for launching the target application func_exec_program_core () { " case $host in # Backslashes separate directories on plain windows *-*-mingw | *-*-os2* | *-cegcc*) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"${outputname}:${output}:\${LINENO}: newargv[0]: \$progdir\\\\\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir\\\\\$program\" \${1+\"\$@\"} " ;; *) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"${outputname}:${output}:\${LINENO}: newargv[0]: \$progdir/\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir/\$program\" \${1+\"\$@\"} " ;; esac $ECHO "\ \$ECHO \"\$0: cannot exec \$program \$*\" 1>&2 exit 1 } # A function to encapsulate launching the target application # Strips options in the --lt-* namespace from \$@ and # launches target application with the remaining arguments. func_exec_program () { case \" \$* \" in *\\ --lt-*) for lt_wr_arg do case \$lt_wr_arg in --lt-*) ;; *) set x \"\$@\" \"\$lt_wr_arg\"; shift;; esac shift done ;; esac func_exec_program_core \${1+\"\$@\"} } # Parse options func_parse_lt_options \"\$0\" \${1+\"\$@\"} # Find the directory that this script lives in. thisdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*$%%'\` test \"x\$thisdir\" = \"x\$file\" && thisdir=. # Follow symbolic links until we get to the real thisdir. file=\`ls -ld \"\$file\" | $SED -n 's/.*-> //p'\` while test -n \"\$file\"; do destdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*\$%%'\` # If there was a directory component, then change thisdir. if test \"x\$destdir\" != \"x\$file\"; then case \"\$destdir\" in [\\\\/]* | [A-Za-z]:[\\\\/]*) thisdir=\"\$destdir\" ;; *) thisdir=\"\$thisdir/\$destdir\" ;; esac fi file=\`\$ECHO \"\$file\" | $SED 's%^.*/%%'\` file=\`ls -ld \"\$thisdir/\$file\" | $SED -n 's/.*-> //p'\` done # Usually 'no', except on cygwin/mingw when embedded into # the cwrapper. WRAPPER_SCRIPT_BELONGS_IN_OBJDIR=$func_emit_wrapper_arg1 if test \"\$WRAPPER_SCRIPT_BELONGS_IN_OBJDIR\" = \"yes\"; then # special case for '.' if test \"\$thisdir\" = \".\"; then thisdir=\`pwd\` fi # remove .libs from thisdir case \"\$thisdir\" in *[\\\\/]$objdir ) thisdir=\`\$ECHO \"\$thisdir\" | $SED 's%[\\\\/][^\\\\/]*$%%'\` ;; $objdir ) thisdir=. ;; esac fi # Try to get the absolute directory name. absdir=\`cd \"\$thisdir\" && pwd\` test -n \"\$absdir\" && thisdir=\"\$absdir\" " if test "$fast_install" = yes; then $ECHO "\ program=lt-'$outputname'$exeext progdir=\"\$thisdir/$objdir\" if test ! -f \"\$progdir/\$program\" || { file=\`ls -1dt \"\$progdir/\$program\" \"\$progdir/../\$program\" 2>/dev/null | ${SED} 1q\`; \\ test \"X\$file\" != \"X\$progdir/\$program\"; }; then file=\"\$\$-\$program\" if test ! -d \"\$progdir\"; then $MKDIR \"\$progdir\" else $RM \"\$progdir/\$file\" fi" $ECHO "\ # relink executable if necessary if test -n \"\$relink_command\"; then if relink_command_output=\`eval \$relink_command 2>&1\`; then : else $ECHO \"\$relink_command_output\" >&2 $RM \"\$progdir/\$file\" exit 1 fi fi $MV \"\$progdir/\$file\" \"\$progdir/\$program\" 2>/dev/null || { $RM \"\$progdir/\$program\"; $MV \"\$progdir/\$file\" \"\$progdir/\$program\"; } $RM \"\$progdir/\$file\" fi" else $ECHO "\ program='$outputname' progdir=\"\$thisdir/$objdir\" " fi $ECHO "\ if test -f \"\$progdir/\$program\"; then" # fixup the dll searchpath if we need to. # # Fix the DLL searchpath if we need to. Do this before prepending # to shlibpath, because on Windows, both are PATH and uninstalled # libraries must come first. if test -n "$dllsearchpath"; then $ECHO "\ # Add the dll search path components to the executable PATH PATH=$dllsearchpath:\$PATH " fi # Export our shlibpath_var if we have one. if test "$shlibpath_overrides_runpath" = yes && test -n "$shlibpath_var" && test -n "$temp_rpath"; then $ECHO "\ # Add our own library path to $shlibpath_var $shlibpath_var=\"$temp_rpath\$$shlibpath_var\" # Some systems cannot cope with colon-terminated $shlibpath_var # The second colon is a workaround for a bug in BeOS R4 sed $shlibpath_var=\`\$ECHO \"\$$shlibpath_var\" | $SED 's/::*\$//'\` export $shlibpath_var " fi $ECHO "\ if test \"\$libtool_execute_magic\" != \"$magic\"; then # Run the actual program with our arguments. func_exec_program \${1+\"\$@\"} fi else # The program doesn't exist. \$ECHO \"\$0: error: \\\`\$progdir/\$program' does not exist\" 1>&2 \$ECHO \"This script is just a wrapper for \$program.\" 1>&2 \$ECHO \"See the $PACKAGE documentation for more information.\" 1>&2 exit 1 fi fi\ " } # func_emit_cwrapperexe_src # emit the source code for a wrapper executable on stdout # Must ONLY be called from within func_mode_link because # it depends on a number of variable set therein. func_emit_cwrapperexe_src () { cat < #include #ifdef _MSC_VER # include # include # include #else # include # include # ifdef __CYGWIN__ # include # endif #endif #include #include #include #include #include #include #include #include /* declarations of non-ANSI functions */ #if defined(__MINGW32__) # ifdef __STRICT_ANSI__ int _putenv (const char *); # endif #elif defined(__CYGWIN__) # ifdef __STRICT_ANSI__ char *realpath (const char *, char *); int putenv (char *); int setenv (const char *, const char *, int); # endif /* #elif defined (other platforms) ... */ #endif /* portability defines, excluding path handling macros */ #if defined(_MSC_VER) # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv # define S_IXUSR _S_IEXEC # ifndef _INTPTR_T_DEFINED # define _INTPTR_T_DEFINED # define intptr_t int # endif #elif defined(__MINGW32__) # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv #elif defined(__CYGWIN__) # define HAVE_SETENV # define FOPEN_WB "wb" /* #elif defined (other platforms) ... */ #endif #if defined(PATH_MAX) # define LT_PATHMAX PATH_MAX #elif defined(MAXPATHLEN) # define LT_PATHMAX MAXPATHLEN #else # define LT_PATHMAX 1024 #endif #ifndef S_IXOTH # define S_IXOTH 0 #endif #ifndef S_IXGRP # define S_IXGRP 0 #endif /* path handling portability macros */ #ifndef DIR_SEPARATOR # define DIR_SEPARATOR '/' # define PATH_SEPARATOR ':' #endif #if defined (_WIN32) || defined (__MSDOS__) || defined (__DJGPP__) || \ defined (__OS2__) # define HAVE_DOS_BASED_FILE_SYSTEM # define FOPEN_WB "wb" # ifndef DIR_SEPARATOR_2 # define DIR_SEPARATOR_2 '\\' # endif # ifndef PATH_SEPARATOR_2 # define PATH_SEPARATOR_2 ';' # endif #endif #ifndef DIR_SEPARATOR_2 # define IS_DIR_SEPARATOR(ch) ((ch) == DIR_SEPARATOR) #else /* DIR_SEPARATOR_2 */ # define IS_DIR_SEPARATOR(ch) \ (((ch) == DIR_SEPARATOR) || ((ch) == DIR_SEPARATOR_2)) #endif /* DIR_SEPARATOR_2 */ #ifndef PATH_SEPARATOR_2 # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR) #else /* PATH_SEPARATOR_2 */ # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR_2) #endif /* PATH_SEPARATOR_2 */ #ifndef FOPEN_WB # define FOPEN_WB "w" #endif #ifndef _O_BINARY # define _O_BINARY 0 #endif #define XMALLOC(type, num) ((type *) xmalloc ((num) * sizeof(type))) #define XFREE(stale) do { \ if (stale) { free ((void *) stale); stale = 0; } \ } while (0) #if defined(LT_DEBUGWRAPPER) static int lt_debug = 1; #else static int lt_debug = 0; #endif const char *program_name = "libtool-wrapper"; /* in case xstrdup fails */ void *xmalloc (size_t num); char *xstrdup (const char *string); const char *base_name (const char *name); char *find_executable (const char *wrapper); char *chase_symlinks (const char *pathspec); int make_executable (const char *path); int check_executable (const char *path); char *strendzap (char *str, const char *pat); void lt_debugprintf (const char *file, int line, const char *fmt, ...); void lt_fatal (const char *file, int line, const char *message, ...); static const char *nonnull (const char *s); static const char *nonempty (const char *s); void lt_setenv (const char *name, const char *value); char *lt_extend_str (const char *orig_value, const char *add, int to_end); void lt_update_exe_path (const char *name, const char *value); void lt_update_lib_path (const char *name, const char *value); char **prepare_spawn (char **argv); void lt_dump_script (FILE *f); EOF cat <= 0) && (st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) return 1; else return 0; } int make_executable (const char *path) { int rval = 0; struct stat st; lt_debugprintf (__FILE__, __LINE__, "(make_executable): %s\n", nonempty (path)); if ((!path) || (!*path)) return 0; if (stat (path, &st) >= 0) { rval = chmod (path, st.st_mode | S_IXOTH | S_IXGRP | S_IXUSR); } return rval; } /* Searches for the full path of the wrapper. Returns newly allocated full path name if found, NULL otherwise Does not chase symlinks, even on platforms that support them. */ char * find_executable (const char *wrapper) { int has_slash = 0; const char *p; const char *p_next; /* static buffer for getcwd */ char tmp[LT_PATHMAX + 1]; int tmp_len; char *concat_name; lt_debugprintf (__FILE__, __LINE__, "(find_executable): %s\n", nonempty (wrapper)); if ((wrapper == NULL) || (*wrapper == '\0')) return NULL; /* Absolute path? */ #if defined (HAVE_DOS_BASED_FILE_SYSTEM) if (isalpha ((unsigned char) wrapper[0]) && wrapper[1] == ':') { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } else { #endif if (IS_DIR_SEPARATOR (wrapper[0])) { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } #if defined (HAVE_DOS_BASED_FILE_SYSTEM) } #endif for (p = wrapper; *p; p++) if (*p == '/') { has_slash = 1; break; } if (!has_slash) { /* no slashes; search PATH */ const char *path = getenv ("PATH"); if (path != NULL) { for (p = path; *p; p = p_next) { const char *q; size_t p_len; for (q = p; *q; q++) if (IS_PATH_SEPARATOR (*q)) break; p_len = q - p; p_next = (*q == '\0' ? q : q + 1); if (p_len == 0) { /* empty path: current directory */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); } else { concat_name = XMALLOC (char, p_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, p, p_len); concat_name[p_len] = '/'; strcpy (concat_name + p_len + 1, wrapper); } if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } } /* not found in PATH; assume curdir */ } /* Relative path | not found in path: prepend cwd */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); return NULL; } char * chase_symlinks (const char *pathspec) { #ifndef S_ISLNK return xstrdup (pathspec); #else char buf[LT_PATHMAX]; struct stat s; char *tmp_pathspec = xstrdup (pathspec); char *p; int has_symlinks = 0; while (strlen (tmp_pathspec) && !has_symlinks) { lt_debugprintf (__FILE__, __LINE__, "checking path component for symlinks: %s\n", tmp_pathspec); if (lstat (tmp_pathspec, &s) == 0) { if (S_ISLNK (s.st_mode) != 0) { has_symlinks = 1; break; } /* search backwards for last DIR_SEPARATOR */ p = tmp_pathspec + strlen (tmp_pathspec) - 1; while ((p > tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) p--; if ((p == tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) { /* no more DIR_SEPARATORS left */ break; } *p = '\0'; } else { lt_fatal (__FILE__, __LINE__, "error accessing file \"%s\": %s", tmp_pathspec, nonnull (strerror (errno))); } } XFREE (tmp_pathspec); if (!has_symlinks) { return xstrdup (pathspec); } tmp_pathspec = realpath (pathspec, buf); if (tmp_pathspec == 0) { lt_fatal (__FILE__, __LINE__, "could not follow symlinks for %s", pathspec); } return xstrdup (tmp_pathspec); #endif } char * strendzap (char *str, const char *pat) { size_t len, patlen; assert (str != NULL); assert (pat != NULL); len = strlen (str); patlen = strlen (pat); if (patlen <= len) { str += len - patlen; if (strcmp (str, pat) == 0) *str = '\0'; } return str; } void lt_debugprintf (const char *file, int line, const char *fmt, ...) { va_list args; if (lt_debug) { (void) fprintf (stderr, "%s:%s:%d: ", program_name, file, line); va_start (args, fmt); (void) vfprintf (stderr, fmt, args); va_end (args); } } static void lt_error_core (int exit_status, const char *file, int line, const char *mode, const char *message, va_list ap) { fprintf (stderr, "%s:%s:%d: %s: ", program_name, file, line, mode); vfprintf (stderr, message, ap); fprintf (stderr, ".\n"); if (exit_status >= 0) exit (exit_status); } void lt_fatal (const char *file, int line, const char *message, ...) { va_list ap; va_start (ap, message); lt_error_core (EXIT_FAILURE, file, line, "FATAL", message, ap); va_end (ap); } static const char * nonnull (const char *s) { return s ? s : "(null)"; } static const char * nonempty (const char *s) { return (s && !*s) ? "(empty)" : nonnull (s); } void lt_setenv (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_setenv) setting '%s' to '%s'\n", nonnull (name), nonnull (value)); { #ifdef HAVE_SETENV /* always make a copy, for consistency with !HAVE_SETENV */ char *str = xstrdup (value); setenv (name, str, 1); #else int len = strlen (name) + 1 + strlen (value) + 1; char *str = XMALLOC (char, len); sprintf (str, "%s=%s", name, value); if (putenv (str) != EXIT_SUCCESS) { XFREE (str); } #endif } } char * lt_extend_str (const char *orig_value, const char *add, int to_end) { char *new_value; if (orig_value && *orig_value) { int orig_value_len = strlen (orig_value); int add_len = strlen (add); new_value = XMALLOC (char, add_len + orig_value_len + 1); if (to_end) { strcpy (new_value, orig_value); strcpy (new_value + orig_value_len, add); } else { strcpy (new_value, add); strcpy (new_value + add_len, orig_value); } } else { new_value = xstrdup (add); } return new_value; } void lt_update_exe_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_exe_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); /* some systems can't cope with a ':'-terminated path #' */ int len = strlen (new_value); while (((len = strlen (new_value)) > 0) && IS_PATH_SEPARATOR (new_value[len-1])) { new_value[len-1] = '\0'; } lt_setenv (name, new_value); XFREE (new_value); } } void lt_update_lib_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_lib_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); lt_setenv (name, new_value); XFREE (new_value); } } EOF case $host_os in mingw*) cat <<"EOF" /* Prepares an argument vector before calling spawn(). Note that spawn() does not by itself call the command interpreter (getenv ("COMSPEC") != NULL ? getenv ("COMSPEC") : ({ OSVERSIONINFO v; v.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&v); v.dwPlatformId == VER_PLATFORM_WIN32_NT; }) ? "cmd.exe" : "command.com"). Instead it simply concatenates the arguments, separated by ' ', and calls CreateProcess(). We must quote the arguments since Win32 CreateProcess() interprets characters like ' ', '\t', '\\', '"' (but not '<' and '>') in a special way: - Space and tab are interpreted as delimiters. They are not treated as delimiters if they are surrounded by double quotes: "...". - Unescaped double quotes are removed from the input. Their only effect is that within double quotes, space and tab are treated like normal characters. - Backslashes not followed by double quotes are not special. - But 2*n+1 backslashes followed by a double quote become n backslashes followed by a double quote (n >= 0): \" -> " \\\" -> \" \\\\\" -> \\" */ #define SHELL_SPECIAL_CHARS "\"\\ \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" #define SHELL_SPACE_CHARS " \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" char ** prepare_spawn (char **argv) { size_t argc; char **new_argv; size_t i; /* Count number of arguments. */ for (argc = 0; argv[argc] != NULL; argc++) ; /* Allocate new argument vector. */ new_argv = XMALLOC (char *, argc + 1); /* Put quoted arguments into the new argument vector. */ for (i = 0; i < argc; i++) { const char *string = argv[i]; if (string[0] == '\0') new_argv[i] = xstrdup ("\"\""); else if (strpbrk (string, SHELL_SPECIAL_CHARS) != NULL) { int quote_around = (strpbrk (string, SHELL_SPACE_CHARS) != NULL); size_t length; unsigned int backslashes; const char *s; char *quoted_string; char *p; length = 0; backslashes = 0; if (quote_around) length++; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') length += backslashes + 1; length++; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) length += backslashes + 1; quoted_string = XMALLOC (char, length + 1); p = quoted_string; backslashes = 0; if (quote_around) *p++ = '"'; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') { unsigned int j; for (j = backslashes + 1; j > 0; j--) *p++ = '\\'; } *p++ = c; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) { unsigned int j; for (j = backslashes; j > 0; j--) *p++ = '\\'; *p++ = '"'; } *p = '\0'; new_argv[i] = quoted_string; } else new_argv[i] = (char *) string; } new_argv[argc] = NULL; return new_argv; } EOF ;; esac cat <<"EOF" void lt_dump_script (FILE* f) { EOF func_emit_wrapper yes | $SED -n -e ' s/^\(.\{79\}\)\(..*\)/\1\ \2/ h s/\([\\"]\)/\\\1/g s/$/\\n/ s/\([^\n]*\).*/ fputs ("\1", f);/p g D' cat <<"EOF" } EOF } # end: func_emit_cwrapperexe_src # func_win32_import_lib_p ARG # True if ARG is an import lib, as indicated by $file_magic_cmd func_win32_import_lib_p () { $opt_debug case `eval $file_magic_cmd \"\$1\" 2>/dev/null | $SED -e 10q` in *import*) : ;; *) false ;; esac } # func_mode_link arg... func_mode_link () { $opt_debug case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) # It is impossible to link a dll without this setting, and # we shouldn't force the makefile maintainer to figure out # which system we are compiling for in order to pass an extra # flag for every libtool invocation. # allow_undefined=no # FIXME: Unfortunately, there are problems with the above when trying # to make a dll which has undefined symbols, in which case not # even a static library is built. For now, we need to specify # -no-undefined on the libtool link line when we can be certain # that all symbols are satisfied, otherwise we get a static library. allow_undefined=yes ;; *) allow_undefined=yes ;; esac libtool_args=$nonopt base_compile="$nonopt $@" compile_command=$nonopt finalize_command=$nonopt compile_rpath= finalize_rpath= compile_shlibpath= finalize_shlibpath= convenience= old_convenience= deplibs= old_deplibs= compiler_flags= linker_flags= dllsearchpath= lib_search_path=`pwd` inst_prefix_dir= new_inherited_linker_flags= avoid_version=no bindir= dlfiles= dlprefiles= dlself=no export_dynamic=no export_symbols= export_symbols_regex= generated= libobjs= ltlibs= module=no no_install=no objs= non_pic_objects= precious_files_regex= prefer_static_libs=no preload=no prev= prevarg= release= rpath= xrpath= perm_rpath= temp_rpath= thread_safe=no vinfo= vinfo_number=no weak_libs= single_module="${wl}-single_module" func_infer_tag $base_compile # We need to know -static, to get the right output filenames. for arg do case $arg in -shared) test "$build_libtool_libs" != yes && \ func_fatal_configuration "can not build a shared library" build_old_libs=no break ;; -all-static | -static | -static-libtool-libs) case $arg in -all-static) if test "$build_libtool_libs" = yes && test -z "$link_static_flag"; then func_warning "complete static linking is impossible in this configuration" fi if test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; -static) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=built ;; -static-libtool-libs) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; esac build_libtool_libs=no build_old_libs=yes break ;; esac done # See if our shared archives depend on static archives. test -n "$old_archive_from_new_cmds" && build_old_libs=yes # Go through the arguments, transforming them on the way. while test "$#" -gt 0; do arg="$1" shift func_quote_for_eval "$arg" qarg=$func_quote_for_eval_unquoted_result func_append libtool_args " $func_quote_for_eval_result" # If the previous option needs an argument, assign it. if test -n "$prev"; then case $prev in output) func_append compile_command " @OUTPUT@" func_append finalize_command " @OUTPUT@" ;; esac case $prev in bindir) bindir="$arg" prev= continue ;; dlfiles|dlprefiles) if test "$preload" = no; then # Add the symbol object into the linking commands. func_append compile_command " @SYMFILE@" func_append finalize_command " @SYMFILE@" preload=yes fi case $arg in *.la | *.lo) ;; # We handle these cases below. force) if test "$dlself" = no; then dlself=needless export_dynamic=yes fi prev= continue ;; self) if test "$prev" = dlprefiles; then dlself=yes elif test "$prev" = dlfiles && test "$dlopen_self" != yes; then dlself=yes else dlself=needless export_dynamic=yes fi prev= continue ;; *) if test "$prev" = dlfiles; then func_append dlfiles " $arg" else func_append dlprefiles " $arg" fi prev= continue ;; esac ;; expsyms) export_symbols="$arg" test -f "$arg" \ || func_fatal_error "symbol file \`$arg' does not exist" prev= continue ;; expsyms_regex) export_symbols_regex="$arg" prev= continue ;; framework) case $host in *-*-darwin*) case "$deplibs " in *" $qarg.ltframework "*) ;; *) func_append deplibs " $qarg.ltframework" # this is fixed later ;; esac ;; esac prev= continue ;; inst_prefix) inst_prefix_dir="$arg" prev= continue ;; objectlist) if test -f "$arg"; then save_arg=$arg moreargs= for fil in `cat "$save_arg"` do # func_append moreargs " $fil" arg=$fil # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test "$pic_object" = none && test "$non_pic_object" = none; then func_fatal_error "cannot find name of object for \`$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir="$func_dirname_result" if test "$pic_object" != none; then # Prepend the subdirectory the object is found in. pic_object="$xdir$pic_object" if test "$prev" = dlfiles; then if test "$build_libtool_libs" = yes && test "$dlopen_support" = yes; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test "$prev" = dlprefiles; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg="$pic_object" fi # Non-PIC object. if test "$non_pic_object" != none; then # Prepend the subdirectory the object is found in. non_pic_object="$xdir$non_pic_object" # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test "$pic_object" = none ; then arg="$non_pic_object" fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object="$pic_object" func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir="$func_dirname_result" func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "\`$arg' is not a valid libtool object" fi fi done else func_fatal_error "link input file \`$arg' does not exist" fi arg=$save_arg prev= continue ;; precious_regex) precious_files_regex="$arg" prev= continue ;; release) release="-$arg" prev= continue ;; rpath | xrpath) # We need an absolute path. case $arg in [\\/]* | [A-Za-z]:[\\/]*) ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac if test "$prev" = rpath; then case "$rpath " in *" $arg "*) ;; *) func_append rpath " $arg" ;; esac else case "$xrpath " in *" $arg "*) ;; *) func_append xrpath " $arg" ;; esac fi prev= continue ;; shrext) shrext_cmds="$arg" prev= continue ;; weak) func_append weak_libs " $arg" prev= continue ;; xcclinker) func_append linker_flags " $qarg" func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xcompiler) func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xlinker) func_append linker_flags " $qarg" func_append compiler_flags " $wl$qarg" prev= func_append compile_command " $wl$qarg" func_append finalize_command " $wl$qarg" continue ;; *) eval "$prev=\"\$arg\"" prev= continue ;; esac fi # test -n "$prev" prevarg="$arg" case $arg in -all-static) if test -n "$link_static_flag"; then # See comment for -static flag below, for more details. func_append compile_command " $link_static_flag" func_append finalize_command " $link_static_flag" fi continue ;; -allow-undefined) # FIXME: remove this flag sometime in the future. func_fatal_error "\`-allow-undefined' must not be used because it is the default" ;; -avoid-version) avoid_version=yes continue ;; -bindir) prev=bindir continue ;; -dlopen) prev=dlfiles continue ;; -dlpreopen) prev=dlprefiles continue ;; -export-dynamic) export_dynamic=yes continue ;; -export-symbols | -export-symbols-regex) if test -n "$export_symbols" || test -n "$export_symbols_regex"; then func_fatal_error "more than one -exported-symbols argument is not allowed" fi if test "X$arg" = "X-export-symbols"; then prev=expsyms else prev=expsyms_regex fi continue ;; -framework) prev=framework continue ;; -inst-prefix-dir) prev=inst_prefix continue ;; # The native IRIX linker understands -LANG:*, -LIST:* and -LNO:* # so, if we see these flags be careful not to treat them like -L -L[A-Z][A-Z]*:*) case $with_gcc/$host in no/*-*-irix* | /*-*-irix*) func_append compile_command " $arg" func_append finalize_command " $arg" ;; esac continue ;; -L*) func_stripname "-L" '' "$arg" if test -z "$func_stripname_result"; then if test "$#" -gt 0; then func_fatal_error "require no space between \`-L' and \`$1'" else func_fatal_error "need path for \`-L' option" fi fi func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) absdir=`cd "$dir" && pwd` test -z "$absdir" && \ func_fatal_error "cannot determine absolute directory name of \`$dir'" dir="$absdir" ;; esac case "$deplibs " in *" -L$dir "* | *" $arg "*) # Will only happen for absolute or sysroot arguments ;; *) # Preserve sysroot, but never include relative directories case $dir in [\\/]* | [A-Za-z]:[\\/]* | =*) func_append deplibs " $arg" ;; *) func_append deplibs " -L$dir" ;; esac func_append lib_search_path " $dir" ;; esac case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`$ECHO "$dir" | $SED 's*/lib$*/bin*'` case :$dllsearchpath: in *":$dir:"*) ;; ::) dllsearchpath=$dir;; *) func_append dllsearchpath ":$dir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac continue ;; -l*) if test "X$arg" = "X-lc" || test "X$arg" = "X-lm"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-beos* | *-cegcc* | *-*-haiku*) # These systems don't actually have a C or math library (as such) continue ;; *-*-os2*) # These systems don't actually have a C library (as such) test "X$arg" = "X-lc" && continue ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly*) # Do not include libc due to us having libc/libc_r. test "X$arg" = "X-lc" && continue ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C and math libraries are in the System framework func_append deplibs " System.ltframework" continue ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype test "X$arg" = "X-lc" && continue ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work test "X$arg" = "X-lc" && continue ;; esac elif test "X$arg" = "X-lc_r"; then case $host in *-*-openbsd* | *-*-freebsd* | *-*-dragonfly*) # Do not include libc_r directly, use -pthread flag. continue ;; esac fi func_append deplibs " $arg" continue ;; -module) module=yes continue ;; # Tru64 UNIX uses -model [arg] to determine the layout of C++ # classes, name mangling, and exception handling. # Darwin uses the -arch flag to determine output architecture. -model|-arch|-isysroot|--sysroot) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" prev=xcompiler continue ;; -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" case "$new_inherited_linker_flags " in *" $arg "*) ;; * ) func_append new_inherited_linker_flags " $arg" ;; esac continue ;; -multi_module) single_module="${wl}-multi_module" continue ;; -no-fast-install) fast_install=no continue ;; -no-install) case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-darwin* | *-cegcc*) # The PATH hackery in wrapper scripts is required on Windows # and Darwin in order for the loader to find any dlls it needs. func_warning "\`-no-install' is ignored for $host" func_warning "assuming \`-no-fast-install' instead" fast_install=no ;; *) no_install=yes ;; esac continue ;; -no-undefined) allow_undefined=no continue ;; -objectlist) prev=objectlist continue ;; -o) prev=output ;; -precious-files-regex) prev=precious_regex continue ;; -release) prev=release continue ;; -rpath) prev=rpath continue ;; -R) prev=xrpath continue ;; -R*) func_stripname '-R' '' "$arg" dir=$func_stripname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; =*) func_stripname '=' '' "$dir" dir=$lt_sysroot$func_stripname_result ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac continue ;; -shared) # The effects of -shared are defined in a previous loop. continue ;; -shrext) prev=shrext continue ;; -static | -static-libtool-libs) # The effects of -static are defined in a previous loop. # We used to do the same as -all-static on platforms that # didn't have a PIC flag, but the assumption that the effects # would be equivalent was wrong. It would break on at least # Digital Unix and AIX. continue ;; -thread-safe) thread_safe=yes continue ;; -version-info) prev=vinfo continue ;; -version-number) prev=vinfo vinfo_number=yes continue ;; -weak) prev=weak continue ;; -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result arg= save_ifs="$IFS"; IFS=',' for flag in $args; do IFS="$save_ifs" func_quote_for_eval "$flag" func_append arg " $func_quote_for_eval_result" func_append compiler_flags " $func_quote_for_eval_result" done IFS="$save_ifs" func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Wl,*) func_stripname '-Wl,' '' "$arg" args=$func_stripname_result arg= save_ifs="$IFS"; IFS=',' for flag in $args; do IFS="$save_ifs" func_quote_for_eval "$flag" func_append arg " $wl$func_quote_for_eval_result" func_append compiler_flags " $wl$func_quote_for_eval_result" func_append linker_flags " $func_quote_for_eval_result" done IFS="$save_ifs" func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Xcompiler) prev=xcompiler continue ;; -Xlinker) prev=xlinker continue ;; -XCClinker) prev=xcclinker continue ;; # -msg_* for osf cc -msg_*) func_quote_for_eval "$arg" arg="$func_quote_for_eval_result" ;; # Flags to be passed through unchanged, with rationale: # -64, -mips[0-9] enable 64-bit mode for the SGI compiler # -r[0-9][0-9]* specify processor for the SGI compiler # -xarch=*, -xtarget=* enable 64-bit mode for the Sun compiler # +DA*, +DD* enable 64-bit mode for the HP compiler # -q* compiler args for the IBM compiler # -m*, -t[45]*, -txscale* architecture-specific flags for GCC # -F/path path to uninstalled frameworks, gcc on darwin # -p, -pg, --coverage, -fprofile-* profiling flags for GCC # @file GCC response files # -tp=* Portland pgcc target processor selection # --sysroot=* for sysroot support # -O*, -flto*, -fwhopr*, -fuse-linker-plugin GCC link-time optimization -64|-mips[0-9]|-r[0-9][0-9]*|-xarch=*|-xtarget=*|+DA*|+DD*|-q*|-m*| \ -t[45]*|-txscale*|-p|-pg|--coverage|-fprofile-*|-F*|@*|-tp=*|--sysroot=*| \ -O*|-flto*|-fwhopr*|-fuse-linker-plugin) func_quote_for_eval "$arg" arg="$func_quote_for_eval_result" func_append compile_command " $arg" func_append finalize_command " $arg" func_append compiler_flags " $arg" continue ;; # Some other compiler flag. -* | +*) func_quote_for_eval "$arg" arg="$func_quote_for_eval_result" ;; *.$objext) # A standard object. func_append objs " $arg" ;; *.lo) # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test "$pic_object" = none && test "$non_pic_object" = none; then func_fatal_error "cannot find name of object for \`$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir="$func_dirname_result" if test "$pic_object" != none; then # Prepend the subdirectory the object is found in. pic_object="$xdir$pic_object" if test "$prev" = dlfiles; then if test "$build_libtool_libs" = yes && test "$dlopen_support" = yes; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test "$prev" = dlprefiles; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg="$pic_object" fi # Non-PIC object. if test "$non_pic_object" != none; then # Prepend the subdirectory the object is found in. non_pic_object="$xdir$non_pic_object" # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test "$pic_object" = none ; then arg="$non_pic_object" fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object="$pic_object" func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir="$func_dirname_result" func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "\`$arg' is not a valid libtool object" fi fi ;; *.$libext) # An archive. func_append deplibs " $arg" func_append old_deplibs " $arg" continue ;; *.la) # A libtool-controlled library. func_resolve_sysroot "$arg" if test "$prev" = dlfiles; then # This library was specified with -dlopen. func_append dlfiles " $func_resolve_sysroot_result" prev= elif test "$prev" = dlprefiles; then # The library was specified with -dlpreopen. func_append dlprefiles " $func_resolve_sysroot_result" prev= else func_append deplibs " $func_resolve_sysroot_result" fi continue ;; # Some other compiler argument. *) # Unknown arguments in both finalize_command and compile_command need # to be aesthetically quoted because they are evaled later. func_quote_for_eval "$arg" arg="$func_quote_for_eval_result" ;; esac # arg # Now actually substitute the argument into the commands. if test -n "$arg"; then func_append compile_command " $arg" func_append finalize_command " $arg" fi done # argument parsing loop test -n "$prev" && \ func_fatal_help "the \`$prevarg' option requires an argument" if test "$export_dynamic" = yes && test -n "$export_dynamic_flag_spec"; then eval arg=\"$export_dynamic_flag_spec\" func_append compile_command " $arg" func_append finalize_command " $arg" fi oldlibs= # calculate the name of the file, without its directory func_basename "$output" outputname="$func_basename_result" libobjs_save="$libobjs" if test -n "$shlibpath_var"; then # get the directories listed in $shlibpath_var eval shlib_search_path=\`\$ECHO \"\${$shlibpath_var}\" \| \$SED \'s/:/ /g\'\` else shlib_search_path= fi eval sys_lib_search_path=\"$sys_lib_search_path_spec\" eval sys_lib_dlsearch_path=\"$sys_lib_dlsearch_path_spec\" func_dirname "$output" "/" "" output_objdir="$func_dirname_result$objdir" func_to_tool_file "$output_objdir/" tool_output_objdir=$func_to_tool_file_result # Create the object directory. func_mkdir_p "$output_objdir" # Determine the type of output case $output in "") func_fatal_help "you must specify an output file" ;; *.$libext) linkmode=oldlib ;; *.lo | *.$objext) linkmode=obj ;; *.la) linkmode=lib ;; *) linkmode=prog ;; # Anything else should be a program. esac specialdeplibs= libs= # Find all interdependent deplibs by searching for libraries # that are linked more than once (e.g. -la -lb -la) for deplib in $deplibs; do if $opt_preserve_dup_deps ; then case "$libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append libs " $deplib" done if test "$linkmode" = lib; then libs="$predeps $libs $compiler_lib_search_path $postdeps" # Compute libraries that are listed more than once in $predeps # $postdeps and mark them as special (i.e., whose duplicates are # not to be eliminated). pre_post_deps= if $opt_duplicate_compiler_generated_deps; then for pre_post_dep in $predeps $postdeps; do case "$pre_post_deps " in *" $pre_post_dep "*) func_append specialdeplibs " $pre_post_deps" ;; esac func_append pre_post_deps " $pre_post_dep" done fi pre_post_deps= fi deplibs= newdependency_libs= newlib_search_path= need_relink=no # whether we're linking any uninstalled libtool libraries notinst_deplibs= # not-installed libtool libraries notinst_path= # paths that contain not-installed libtool libraries case $linkmode in lib) passes="conv dlpreopen link" for file in $dlfiles $dlprefiles; do case $file in *.la) ;; *) func_fatal_help "libraries can \`-dlopen' only libtool libraries: $file" ;; esac done ;; prog) compile_deplibs= finalize_deplibs= alldeplibs=no newdlfiles= newdlprefiles= passes="conv scan dlopen dlpreopen link" ;; *) passes="conv" ;; esac for pass in $passes; do # The preopen pass in lib mode reverses $deplibs; put it back here # so that -L comes before libs that need it for instance... if test "$linkmode,$pass" = "lib,link"; then ## FIXME: Find the place where the list is rebuilt in the wrong ## order, and fix it there properly tmp_deplibs= for deplib in $deplibs; do tmp_deplibs="$deplib $tmp_deplibs" done deplibs="$tmp_deplibs" fi if test "$linkmode,$pass" = "lib,link" || test "$linkmode,$pass" = "prog,scan"; then libs="$deplibs" deplibs= fi if test "$linkmode" = prog; then case $pass in dlopen) libs="$dlfiles" ;; dlpreopen) libs="$dlprefiles" ;; link) libs="$deplibs %DEPLIBS% $dependency_libs" ;; esac fi if test "$linkmode,$pass" = "lib,dlpreopen"; then # Collect and forward deplibs of preopened libtool libs for lib in $dlprefiles; do # Ignore non-libtool-libs dependency_libs= func_resolve_sysroot "$lib" case $lib in *.la) func_source "$func_resolve_sysroot_result" ;; esac # Collect preopened libtool deplibs, except any this library # has declared as weak libs for deplib in $dependency_libs; do func_basename "$deplib" deplib_base=$func_basename_result case " $weak_libs " in *" $deplib_base "*) ;; *) func_append deplibs " $deplib" ;; esac done done libs="$dlprefiles" fi if test "$pass" = dlopen; then # Collect dlpreopened libraries save_deplibs="$deplibs" deplibs= fi for deplib in $libs; do lib= found=no case $deplib in -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) if test "$linkmode,$pass" = "prog,link"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append compiler_flags " $deplib" if test "$linkmode" = lib ; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -l*) if test "$linkmode" != lib && test "$linkmode" != prog; then func_warning "\`-l' is ignored for archives/objects" continue fi func_stripname '-l' '' "$deplib" name=$func_stripname_result if test "$linkmode" = lib; then searchdirs="$newlib_search_path $lib_search_path $compiler_lib_search_dirs $sys_lib_search_path $shlib_search_path" else searchdirs="$newlib_search_path $lib_search_path $sys_lib_search_path $shlib_search_path" fi for searchdir in $searchdirs; do for search_ext in .la $std_shrext .so .a; do # Search the libtool library lib="$searchdir/lib${name}${search_ext}" if test -f "$lib"; then if test "$search_ext" = ".la"; then found=yes else found=no fi break 2 fi done done if test "$found" != yes; then # deplib doesn't seem to be a libtool library if test "$linkmode,$pass" = "prog,link"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test "$linkmode" = lib && newdependency_libs="$deplib $newdependency_libs" fi continue else # deplib is a libtool library # If $allow_libtool_libs_with_static_runtimes && $deplib is a stdlib, # We need to do some special things here, and not later. if test "X$allow_libtool_libs_with_static_runtimes" = "Xyes" ; then case " $predeps $postdeps " in *" $deplib "*) if func_lalib_p "$lib"; then library_names= old_library= func_source "$lib" for l in $old_library $library_names; do ll="$l" done if test "X$ll" = "X$old_library" ; then # only static version available found=no func_dirname "$lib" "" "." ladir="$func_dirname_result" lib=$ladir/$old_library if test "$linkmode,$pass" = "prog,link"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test "$linkmode" = lib && newdependency_libs="$deplib $newdependency_libs" fi continue fi fi ;; *) ;; esac fi fi ;; # -l *.ltframework) if test "$linkmode,$pass" = "prog,link"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" if test "$linkmode" = lib ; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -L*) case $linkmode in lib) deplibs="$deplib $deplibs" test "$pass" = conv && continue newdependency_libs="$deplib $newdependency_libs" func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; prog) if test "$pass" = conv; then deplibs="$deplib $deplibs" continue fi if test "$pass" = scan; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; *) func_warning "\`-L' is ignored for archives/objects" ;; esac # linkmode continue ;; # -L -R*) if test "$pass" = link; then func_stripname '-R' '' "$deplib" func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # Make sure the xrpath contains only unique directories. case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac fi deplibs="$deplib $deplibs" continue ;; *.la) func_resolve_sysroot "$deplib" lib=$func_resolve_sysroot_result ;; *.$libext) if test "$pass" = conv; then deplibs="$deplib $deplibs" continue fi case $linkmode in lib) # Linking convenience modules into shared libraries is allowed, # but linking other static libraries is non-portable. case " $dlpreconveniencelibs " in *" $deplib "*) ;; *) valid_a_lib=no case $deplibs_check_method in match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` if eval "\$ECHO \"$deplib\"" 2>/dev/null | $SED 10q \ | $EGREP "$match_pattern_regex" > /dev/null; then valid_a_lib=yes fi ;; pass_all) valid_a_lib=yes ;; esac if test "$valid_a_lib" != yes; then echo $ECHO "*** Warning: Trying to link with static lib archive $deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because the file extensions .$libext of this argument makes me believe" echo "*** that it is just a static archive that I should not use here." else echo $ECHO "*** Warning: Linking the shared library $output against the" $ECHO "*** static library $deplib is not portable!" deplibs="$deplib $deplibs" fi ;; esac continue ;; prog) if test "$pass" != link; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi continue ;; esac # linkmode ;; # *.$libext *.lo | *.$objext) if test "$pass" = conv; then deplibs="$deplib $deplibs" elif test "$linkmode" = prog; then if test "$pass" = dlpreopen || test "$dlopen_support" != yes || test "$build_libtool_libs" = no; then # If there is no dlopen support or we're linking statically, # we need to preload. func_append newdlprefiles " $deplib" compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append newdlfiles " $deplib" fi fi continue ;; %DEPLIBS%) alldeplibs=yes continue ;; esac # case $deplib if test "$found" = yes || test -f "$lib"; then : else func_fatal_error "cannot find the library \`$lib' or unhandled argument \`$deplib'" fi # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$lib" \ || func_fatal_error "\`$lib' is not a valid libtool archive" func_dirname "$lib" "" "." ladir="$func_dirname_result" dlname= dlopen= dlpreopen= libdir= library_names= old_library= inherited_linker_flags= # If the library was installed with an old release of libtool, # it will not redefine variables installed, or shouldnotlink installed=yes shouldnotlink=no avoidtemprpath= # Read the .la file func_source "$lib" # Convert "-framework foo" to "foo.ltframework" if test -n "$inherited_linker_flags"; then tmp_inherited_linker_flags=`$ECHO "$inherited_linker_flags" | $SED 's/-framework \([^ $]*\)/\1.ltframework/g'` for tmp_inherited_linker_flag in $tmp_inherited_linker_flags; do case " $new_inherited_linker_flags " in *" $tmp_inherited_linker_flag "*) ;; *) func_append new_inherited_linker_flags " $tmp_inherited_linker_flag";; esac done fi dependency_libs=`$ECHO " $dependency_libs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` if test "$linkmode,$pass" = "lib,link" || test "$linkmode,$pass" = "prog,scan" || { test "$linkmode" != prog && test "$linkmode" != lib; }; then test -n "$dlopen" && func_append dlfiles " $dlopen" test -n "$dlpreopen" && func_append dlprefiles " $dlpreopen" fi if test "$pass" = conv; then # Only check for convenience libraries deplibs="$lib $deplibs" if test -z "$libdir"; then if test -z "$old_library"; then func_fatal_error "cannot find name of link library for \`$lib'" fi # It is a libtool convenience library, so add in its objects. func_append convenience " $ladir/$objdir/$old_library" func_append old_convenience " $ladir/$objdir/$old_library" elif test "$linkmode" != prog && test "$linkmode" != lib; then func_fatal_error "\`$lib' is not a convenience library" fi tmp_libs= for deplib in $dependency_libs; do deplibs="$deplib $deplibs" if $opt_preserve_dup_deps ; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done continue fi # $pass = conv # Get the name of the library we link against. linklib= if test -n "$old_library" && { test "$prefer_static_libs" = yes || test "$prefer_static_libs,$installed" = "built,no"; }; then linklib=$old_library else for l in $old_library $library_names; do linklib="$l" done fi if test -z "$linklib"; then func_fatal_error "cannot find name of link library for \`$lib'" fi # This library was specified with -dlopen. if test "$pass" = dlopen; then if test -z "$libdir"; then func_fatal_error "cannot -dlopen a convenience library: \`$lib'" fi if test -z "$dlname" || test "$dlopen_support" != yes || test "$build_libtool_libs" = no; then # If there is no dlname, no dlopen support or we're linking # statically, we need to preload. We also need to preload any # dependent libraries so libltdl's deplib preloader doesn't # bomb out in the load deplibs phase. func_append dlprefiles " $lib $dependency_libs" else func_append newdlfiles " $lib" fi continue fi # $pass = dlopen # We need an absolute path. case $ladir in [\\/]* | [A-Za-z]:[\\/]*) abs_ladir="$ladir" ;; *) abs_ladir=`cd "$ladir" && pwd` if test -z "$abs_ladir"; then func_warning "cannot determine absolute directory name of \`$ladir'" func_warning "passing it literally to the linker, although it might fail" abs_ladir="$ladir" fi ;; esac func_basename "$lib" laname="$func_basename_result" # Find the relevant object directory and library name. if test "X$installed" = Xyes; then if test ! -f "$lt_sysroot$libdir/$linklib" && test -f "$abs_ladir/$linklib"; then func_warning "library \`$lib' was moved." dir="$ladir" absdir="$abs_ladir" libdir="$abs_ladir" else dir="$lt_sysroot$libdir" absdir="$lt_sysroot$libdir" fi test "X$hardcode_automatic" = Xyes && avoidtemprpath=yes else if test ! -f "$ladir/$objdir/$linklib" && test -f "$abs_ladir/$linklib"; then dir="$ladir" absdir="$abs_ladir" # Remove this search path later func_append notinst_path " $abs_ladir" else dir="$ladir/$objdir" absdir="$abs_ladir/$objdir" # Remove this search path later func_append notinst_path " $abs_ladir" fi fi # $installed = yes func_stripname 'lib' '.la' "$laname" name=$func_stripname_result # This library was specified with -dlpreopen. if test "$pass" = dlpreopen; then if test -z "$libdir" && test "$linkmode" = prog; then func_fatal_error "only libraries may -dlpreopen a convenience library: \`$lib'" fi case "$host" in # special handling for platforms with PE-DLLs. *cygwin* | *mingw* | *cegcc* ) # Linker will automatically link against shared library if both # static and shared are present. Therefore, ensure we extract # symbols from the import library if a shared library is present # (otherwise, the dlopen module name will be incorrect). We do # this by putting the import library name into $newdlprefiles. # We recover the dlopen module name by 'saving' the la file # name in a special purpose variable, and (later) extracting the # dlname from the la file. if test -n "$dlname"; then func_tr_sh "$dir/$linklib" eval "libfile_$func_tr_sh_result=\$abs_ladir/\$laname" func_append newdlprefiles " $dir/$linklib" else func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" fi ;; * ) # Prefer using a static library (so that no silly _DYNAMIC symbols # are required to link). if test -n "$old_library"; then func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" # Otherwise, use the dlname, so that lt_dlopen finds it. elif test -n "$dlname"; then func_append newdlprefiles " $dir/$dlname" else func_append newdlprefiles " $dir/$linklib" fi ;; esac fi # $pass = dlpreopen if test -z "$libdir"; then # Link the convenience library if test "$linkmode" = lib; then deplibs="$dir/$old_library $deplibs" elif test "$linkmode,$pass" = "prog,link"; then compile_deplibs="$dir/$old_library $compile_deplibs" finalize_deplibs="$dir/$old_library $finalize_deplibs" else deplibs="$lib $deplibs" # used for prog,scan pass fi continue fi if test "$linkmode" = prog && test "$pass" != link; then func_append newlib_search_path " $ladir" deplibs="$lib $deplibs" linkalldeplibs=no if test "$link_all_deplibs" != no || test -z "$library_names" || test "$build_libtool_libs" = no; then linkalldeplibs=yes fi tmp_libs= for deplib in $dependency_libs; do case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; esac # Need to link against all dependency_libs? if test "$linkalldeplibs" = yes; then deplibs="$deplib $deplibs" else # Need to hardcode shared library paths # or/and link against static libraries newdependency_libs="$deplib $newdependency_libs" fi if $opt_preserve_dup_deps ; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done # for deplib continue fi # $linkmode = prog... if test "$linkmode,$pass" = "prog,link"; then if test -n "$library_names" && { { test "$prefer_static_libs" = no || test "$prefer_static_libs,$installed" = "built,yes"; } || test -z "$old_library"; }; then # We need to hardcode the library path if test -n "$shlibpath_var" && test -z "$avoidtemprpath" ; then # Make sure the rpath contains only unique directories. case "$temp_rpath:" in *"$absdir:"*) ;; *) func_append temp_rpath "$absdir:" ;; esac fi # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi # $linkmode,$pass = prog,link... if test "$alldeplibs" = yes && { test "$deplibs_check_method" = pass_all || { test "$build_libtool_libs" = yes && test -n "$library_names"; }; }; then # We only need to search for static libraries continue fi fi link_static=no # Whether the deplib will be linked statically use_static_libs=$prefer_static_libs if test "$use_static_libs" = built && test "$installed" = yes; then use_static_libs=no fi if test -n "$library_names" && { test "$use_static_libs" = no || test -z "$old_library"; }; then case $host in *cygwin* | *mingw* | *cegcc*) # No point in relinking DLLs because paths are not encoded func_append notinst_deplibs " $lib" need_relink=no ;; *) if test "$installed" = no; then func_append notinst_deplibs " $lib" need_relink=yes fi ;; esac # This is a shared library # Warn about portability, can't link against -module's on some # systems (darwin). Don't bleat about dlopened modules though! dlopenmodule="" for dlpremoduletest in $dlprefiles; do if test "X$dlpremoduletest" = "X$lib"; then dlopenmodule="$dlpremoduletest" break fi done if test -z "$dlopenmodule" && test "$shouldnotlink" = yes && test "$pass" = link; then echo if test "$linkmode" = prog; then $ECHO "*** Warning: Linking the executable $output against the loadable module" else $ECHO "*** Warning: Linking the shared library $output against the loadable module" fi $ECHO "*** $linklib is not portable!" fi if test "$linkmode" = lib && test "$hardcode_into_libs" = yes; then # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi if test -n "$old_archive_from_expsyms_cmds"; then # figure out the soname set dummy $library_names shift realname="$1" shift libname=`eval "\\$ECHO \"$libname_spec\""` # use dlname if we got it. it's perfectly good, no? if test -n "$dlname"; then soname="$dlname" elif test -n "$soname_spec"; then # bleh windows case $host in *cygwin* | mingw* | *cegcc*) func_arith $current - $age major=$func_arith_result versuffix="-$major" ;; esac eval soname=\"$soname_spec\" else soname="$realname" fi # Make a new name for the extract_expsyms_cmds to use soroot="$soname" func_basename "$soroot" soname="$func_basename_result" func_stripname 'lib' '.dll' "$soname" newlib=libimp-$func_stripname_result.a # If the library has no export list, then create one now if test -f "$output_objdir/$soname-def"; then : else func_verbose "extracting exported symbol list from \`$soname'" func_execute_cmds "$extract_expsyms_cmds" 'exit $?' fi # Create $newlib if test -f "$output_objdir/$newlib"; then :; else func_verbose "generating import library for \`$soname'" func_execute_cmds "$old_archive_from_expsyms_cmds" 'exit $?' fi # make sure the library variables are pointing to the new library dir=$output_objdir linklib=$newlib fi # test -n "$old_archive_from_expsyms_cmds" if test "$linkmode" = prog || test "$opt_mode" != relink; then add_shlibpath= add_dir= add= lib_linked=yes case $hardcode_action in immediate | unsupported) if test "$hardcode_direct" = no; then add="$dir/$linklib" case $host in *-*-sco3.2v5.0.[024]*) add_dir="-L$dir" ;; *-*-sysv4*uw2*) add_dir="-L$dir" ;; *-*-sysv5OpenUNIX* | *-*-sysv5UnixWare7.[01].[10]* | \ *-*-unixware7*) add_dir="-L$dir" ;; *-*-darwin* ) # if the lib is a (non-dlopened) module then we can not # link against it, someone is ignoring the earlier warnings if /usr/bin/file -L $add 2> /dev/null | $GREP ": [^:]* bundle" >/dev/null ; then if test "X$dlopenmodule" != "X$lib"; then $ECHO "*** Warning: lib $linklib is a module, not a shared library" if test -z "$old_library" ; then echo echo "*** And there doesn't seem to be a static archive available" echo "*** The link will probably fail, sorry" else add="$dir/$old_library" fi elif test -n "$old_library"; then add="$dir/$old_library" fi fi esac elif test "$hardcode_minus_L" = no; then case $host in *-*-sunos*) add_shlibpath="$dir" ;; esac add_dir="-L$dir" add="-l$name" elif test "$hardcode_shlibpath_var" = no; then add_shlibpath="$dir" add="-l$name" else lib_linked=no fi ;; relink) if test "$hardcode_direct" = yes && test "$hardcode_direct_absolute" = no; then add="$dir/$linklib" elif test "$hardcode_minus_L" = yes; then add_dir="-L$absdir" # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add="-l$name" elif test "$hardcode_shlibpath_var" = yes; then add_shlibpath="$dir" add="-l$name" else lib_linked=no fi ;; *) lib_linked=no ;; esac if test "$lib_linked" != yes; then func_fatal_configuration "unsupported hardcode properties" fi if test -n "$add_shlibpath"; then case :$compile_shlibpath: in *":$add_shlibpath:"*) ;; *) func_append compile_shlibpath "$add_shlibpath:" ;; esac fi if test "$linkmode" = prog; then test -n "$add_dir" && compile_deplibs="$add_dir $compile_deplibs" test -n "$add" && compile_deplibs="$add $compile_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" if test "$hardcode_direct" != yes && test "$hardcode_minus_L" != yes && test "$hardcode_shlibpath_var" = yes; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac fi fi fi if test "$linkmode" = prog || test "$opt_mode" = relink; then add_shlibpath= add_dir= add= # Finalize command for both is simple: just hardcode it. if test "$hardcode_direct" = yes && test "$hardcode_direct_absolute" = no; then add="$libdir/$linklib" elif test "$hardcode_minus_L" = yes; then add_dir="-L$libdir" add="-l$name" elif test "$hardcode_shlibpath_var" = yes; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac add="-l$name" elif test "$hardcode_automatic" = yes; then if test -n "$inst_prefix_dir" && test -f "$inst_prefix_dir$libdir/$linklib" ; then add="$inst_prefix_dir$libdir/$linklib" else add="$libdir/$linklib" fi else # We cannot seem to hardcode it, guess we'll fake it. add_dir="-L$libdir" # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add="-l$name" fi if test "$linkmode" = prog; then test -n "$add_dir" && finalize_deplibs="$add_dir $finalize_deplibs" test -n "$add" && finalize_deplibs="$add $finalize_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" fi fi elif test "$linkmode" = prog; then # Here we assume that one of hardcode_direct or hardcode_minus_L # is not unsupported. This is valid on all known static and # shared platforms. if test "$hardcode_direct" != unsupported; then test -n "$old_library" && linklib="$old_library" compile_deplibs="$dir/$linklib $compile_deplibs" finalize_deplibs="$dir/$linklib $finalize_deplibs" else compile_deplibs="-l$name -L$dir $compile_deplibs" finalize_deplibs="-l$name -L$dir $finalize_deplibs" fi elif test "$build_libtool_libs" = yes; then # Not a shared library if test "$deplibs_check_method" != pass_all; then # We're trying link a shared library against a static one # but the system doesn't support it. # Just print a warning and add the library to dependency_libs so # that the program can be linked against the static library. echo $ECHO "*** Warning: This system can not link to static lib archive $lib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have." if test "$module" = yes; then echo "*** But as you try to build a module library, libtool will still create " echo "*** a static module, that should work as long as the dlopening application" echo "*** is linked with the -dlopen flag to resolve symbols at runtime." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using \`nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** \`nm' from GNU binutils and a full rebuild may help." fi if test "$build_old_libs" = no; then build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi else deplibs="$dir/$old_library $deplibs" link_static=yes fi fi # link shared/static library? if test "$linkmode" = lib; then if test -n "$dependency_libs" && { test "$hardcode_into_libs" != yes || test "$build_old_libs" = yes || test "$link_static" = yes; }; then # Extract -R from dependency_libs temp_deplibs= for libdir in $dependency_libs; do case $libdir in -R*) func_stripname '-R' '' "$libdir" temp_xrpath=$func_stripname_result case " $xrpath " in *" $temp_xrpath "*) ;; *) func_append xrpath " $temp_xrpath";; esac;; *) func_append temp_deplibs " $libdir";; esac done dependency_libs="$temp_deplibs" fi func_append newlib_search_path " $absdir" # Link against this library test "$link_static" = no && newdependency_libs="$abs_ladir/$laname $newdependency_libs" # ... and its dependency_libs tmp_libs= for deplib in $dependency_libs; do newdependency_libs="$deplib $newdependency_libs" case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result";; *) func_resolve_sysroot "$deplib" ;; esac if $opt_preserve_dup_deps ; then case "$tmp_libs " in *" $func_resolve_sysroot_result "*) func_append specialdeplibs " $func_resolve_sysroot_result" ;; esac fi func_append tmp_libs " $func_resolve_sysroot_result" done if test "$link_all_deplibs" != no; then # Add the search paths of all dependency libraries for deplib in $dependency_libs; do path= case $deplib in -L*) path="$deplib" ;; *.la) func_resolve_sysroot "$deplib" deplib=$func_resolve_sysroot_result func_dirname "$deplib" "" "." dir=$func_dirname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) absdir="$dir" ;; *) absdir=`cd "$dir" && pwd` if test -z "$absdir"; then func_warning "cannot determine absolute directory name of \`$dir'" absdir="$dir" fi ;; esac if $GREP "^installed=no" $deplib > /dev/null; then case $host in *-*-darwin*) depdepl= eval deplibrary_names=`${SED} -n -e 's/^library_names=\(.*\)$/\1/p' $deplib` if test -n "$deplibrary_names" ; then for tmp in $deplibrary_names ; do depdepl=$tmp done if test -f "$absdir/$objdir/$depdepl" ; then depdepl="$absdir/$objdir/$depdepl" darwin_install_name=`${OTOOL} -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` if test -z "$darwin_install_name"; then darwin_install_name=`${OTOOL64} -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` fi func_append compiler_flags " ${wl}-dylib_file ${wl}${darwin_install_name}:${depdepl}" func_append linker_flags " -dylib_file ${darwin_install_name}:${depdepl}" path= fi fi ;; *) path="-L$absdir/$objdir" ;; esac else eval libdir=`${SED} -n -e 's/^libdir=\(.*\)$/\1/p' $deplib` test -z "$libdir" && \ func_fatal_error "\`$deplib' is not a valid libtool archive" test "$absdir" != "$libdir" && \ func_warning "\`$deplib' seems to be moved" path="-L$absdir" fi ;; esac case " $deplibs " in *" $path "*) ;; *) deplibs="$path $deplibs" ;; esac done fi # link_all_deplibs != no fi # linkmode = lib done # for deplib in $libs if test "$pass" = link; then if test "$linkmode" = "prog"; then compile_deplibs="$new_inherited_linker_flags $compile_deplibs" finalize_deplibs="$new_inherited_linker_flags $finalize_deplibs" else compiler_flags="$compiler_flags "`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` fi fi dependency_libs="$newdependency_libs" if test "$pass" = dlpreopen; then # Link the dlpreopened libraries before other libraries for deplib in $save_deplibs; do deplibs="$deplib $deplibs" done fi if test "$pass" != dlopen; then if test "$pass" != conv; then # Make sure lib_search_path contains only unique directories. lib_search_path= for dir in $newlib_search_path; do case "$lib_search_path " in *" $dir "*) ;; *) func_append lib_search_path " $dir" ;; esac done newlib_search_path= fi if test "$linkmode,$pass" != "prog,link"; then vars="deplibs" else vars="compile_deplibs finalize_deplibs" fi for var in $vars dependency_libs; do # Add libraries to $var in reverse order eval tmp_libs=\"\$$var\" new_libs= for deplib in $tmp_libs; do # FIXME: Pedantically, this is the right thing to do, so # that some nasty dependency loop isn't accidentally # broken: #new_libs="$deplib $new_libs" # Pragmatically, this seems to cause very few problems in # practice: case $deplib in -L*) new_libs="$deplib $new_libs" ;; -R*) ;; *) # And here is the reason: when a library appears more # than once as an explicit dependence of a library, or # is implicitly linked in more than once by the # compiler, it is considered special, and multiple # occurrences thereof are not removed. Compare this # with having the same library being listed as a # dependency of multiple other libraries: in this case, # we know (pedantically, we assume) the library does not # need to be listed more than once, so we keep only the # last copy. This is not always right, but it is rare # enough that we require users that really mean to play # such unportable linking tricks to link the library # using -Wl,-lname, so that libtool does not consider it # for duplicate removal. case " $specialdeplibs " in *" $deplib "*) new_libs="$deplib $new_libs" ;; *) case " $new_libs " in *" $deplib "*) ;; *) new_libs="$deplib $new_libs" ;; esac ;; esac ;; esac done tmp_libs= for deplib in $new_libs; do case $deplib in -L*) case " $tmp_libs " in *" $deplib "*) ;; *) func_append tmp_libs " $deplib" ;; esac ;; *) func_append tmp_libs " $deplib" ;; esac done eval $var=\"$tmp_libs\" done # for var fi # Last step: remove runtime libs from dependency_libs # (they stay in deplibs) tmp_libs= for i in $dependency_libs ; do case " $predeps $postdeps $compiler_lib_search_path " in *" $i "*) i="" ;; esac if test -n "$i" ; then func_append tmp_libs " $i" fi done dependency_libs=$tmp_libs done # for pass if test "$linkmode" = prog; then dlfiles="$newdlfiles" fi if test "$linkmode" = prog || test "$linkmode" = lib; then dlprefiles="$newdlprefiles" fi case $linkmode in oldlib) if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then func_warning "\`-dlopen' is ignored for archives" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "\`-l' and \`-L' are ignored for archives" ;; esac test -n "$rpath" && \ func_warning "\`-rpath' is ignored for archives" test -n "$xrpath" && \ func_warning "\`-R' is ignored for archives" test -n "$vinfo" && \ func_warning "\`-version-info/-version-number' is ignored for archives" test -n "$release" && \ func_warning "\`-release' is ignored for archives" test -n "$export_symbols$export_symbols_regex" && \ func_warning "\`-export-symbols' is ignored for archives" # Now set the variables for building old libraries. build_libtool_libs=no oldlibs="$output" func_append objs "$old_deplibs" ;; lib) # Make sure we only generate libraries of the form `libNAME.la'. case $outputname in lib*) func_stripname 'lib' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" ;; *) test "$module" = no && \ func_fatal_help "libtool library \`$output' must begin with \`lib'" if test "$need_lib_prefix" != no; then # Add the "lib" prefix for modules if required func_stripname '' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" else func_stripname '' '.la' "$outputname" libname=$func_stripname_result fi ;; esac if test -n "$objs"; then if test "$deplibs_check_method" != pass_all; then func_fatal_error "cannot build libtool library \`$output' from non-libtool objects on this host:$objs" else echo $ECHO "*** Warning: Linking the shared library $output against the non-libtool" $ECHO "*** objects $objs is not portable!" func_append libobjs " $objs" fi fi test "$dlself" != no && \ func_warning "\`-dlopen self' is ignored for libtool libraries" set dummy $rpath shift test "$#" -gt 1 && \ func_warning "ignoring multiple \`-rpath's for a libtool library" install_libdir="$1" oldlibs= if test -z "$rpath"; then if test "$build_libtool_libs" = yes; then # Building a libtool convenience library. # Some compilers have problems with a `.al' extension so # convenience libraries should have the same extension an # archive normally would. oldlibs="$output_objdir/$libname.$libext $oldlibs" build_libtool_libs=convenience build_old_libs=yes fi test -n "$vinfo" && \ func_warning "\`-version-info/-version-number' is ignored for convenience libraries" test -n "$release" && \ func_warning "\`-release' is ignored for convenience libraries" else # Parse the version information argument. save_ifs="$IFS"; IFS=':' set dummy $vinfo 0 0 0 shift IFS="$save_ifs" test -n "$7" && \ func_fatal_help "too many parameters to \`-version-info'" # convert absolute version numbers to libtool ages # this retains compatibility with .la files and attempts # to make the code below a bit more comprehensible case $vinfo_number in yes) number_major="$1" number_minor="$2" number_revision="$3" # # There are really only two kinds -- those that # use the current revision as the major version # and those that subtract age and use age as # a minor version. But, then there is irix # which has an extra 1 added just for fun # case $version_type in # correct linux to gnu/linux during the next big refactor darwin|linux|osf|windows|none) func_arith $number_major + $number_minor current=$func_arith_result age="$number_minor" revision="$number_revision" ;; freebsd-aout|freebsd-elf|qnx|sunos) current="$number_major" revision="$number_minor" age="0" ;; irix|nonstopux) func_arith $number_major + $number_minor current=$func_arith_result age="$number_minor" revision="$number_minor" lt_irix_increment=no ;; esac ;; no) current="$1" revision="$2" age="$3" ;; esac # Check that each of the things are valid numbers. case $current in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "CURRENT \`$current' must be a nonnegative integer" func_fatal_error "\`$vinfo' is not valid version information" ;; esac case $revision in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "REVISION \`$revision' must be a nonnegative integer" func_fatal_error "\`$vinfo' is not valid version information" ;; esac case $age in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "AGE \`$age' must be a nonnegative integer" func_fatal_error "\`$vinfo' is not valid version information" ;; esac if test "$age" -gt "$current"; then func_error "AGE \`$age' is greater than the current interface number \`$current'" func_fatal_error "\`$vinfo' is not valid version information" fi # Calculate the version variables. major= versuffix= verstring= case $version_type in none) ;; darwin) # Like Linux, but with the current version available in # verstring for coding it into the library header func_arith $current - $age major=.$func_arith_result versuffix="$major.$age.$revision" # Darwin ld doesn't like 0 for these options... func_arith $current + 1 minor_current=$func_arith_result xlcverstring="${wl}-compatibility_version ${wl}$minor_current ${wl}-current_version ${wl}$minor_current.$revision" verstring="-compatibility_version $minor_current -current_version $minor_current.$revision" ;; freebsd-aout) major=".$current" versuffix=".$current.$revision"; ;; freebsd-elf) major=".$current" versuffix=".$current" ;; irix | nonstopux) if test "X$lt_irix_increment" = "Xno"; then func_arith $current - $age else func_arith $current - $age + 1 fi major=$func_arith_result case $version_type in nonstopux) verstring_prefix=nonstopux ;; *) verstring_prefix=sgi ;; esac verstring="$verstring_prefix$major.$revision" # Add in all the interfaces that we are compatible with. loop=$revision while test "$loop" -ne 0; do func_arith $revision - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring="$verstring_prefix$major.$iface:$verstring" done # Before this point, $major must not contain `.'. major=.$major versuffix="$major.$revision" ;; linux) # correct to gnu/linux during the next big refactor func_arith $current - $age major=.$func_arith_result versuffix="$major.$age.$revision" ;; osf) func_arith $current - $age major=.$func_arith_result versuffix=".$current.$age.$revision" verstring="$current.$age.$revision" # Add in all the interfaces that we are compatible with. loop=$age while test "$loop" -ne 0; do func_arith $current - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring="$verstring:${iface}.0" done # Make executables depend on our current version. func_append verstring ":${current}.0" ;; qnx) major=".$current" versuffix=".$current" ;; sunos) major=".$current" versuffix=".$current.$revision" ;; windows) # Use '-' rather than '.', since we only want one # extension on DOS 8.3 filesystems. func_arith $current - $age major=$func_arith_result versuffix="-$major" ;; *) func_fatal_configuration "unknown library version type \`$version_type'" ;; esac # Clear the version info if we defaulted, and they specified a release. if test -z "$vinfo" && test -n "$release"; then major= case $version_type in darwin) # we can't check for "0.0" in archive_cmds due to quoting # problems, so we reset it completely verstring= ;; *) verstring="0.0" ;; esac if test "$need_version" = no; then versuffix= else versuffix=".0.0" fi fi # Remove version info from name if versioning should be avoided if test "$avoid_version" = yes && test "$need_version" = no; then major= versuffix= verstring="" fi # Check to see if the archive will have undefined symbols. if test "$allow_undefined" = yes; then if test "$allow_undefined_flag" = unsupported; then func_warning "undefined symbols not allowed in $host shared libraries" build_libtool_libs=no build_old_libs=yes fi else # Don't allow undefined symbols. allow_undefined_flag="$no_undefined_flag" fi fi func_generate_dlsyms "$libname" "$libname" "yes" func_append libobjs " $symfileobj" test "X$libobjs" = "X " && libobjs= if test "$opt_mode" != relink; then # Remove our outputs, but don't remove object files since they # may have been created when compiling PIC objects. removelist= tempremovelist=`$ECHO "$output_objdir/*"` for p in $tempremovelist; do case $p in *.$objext | *.gcno) ;; $output_objdir/$outputname | $output_objdir/$libname.* | $output_objdir/${libname}${release}.*) if test "X$precious_files_regex" != "X"; then if $ECHO "$p" | $EGREP -e "$precious_files_regex" >/dev/null 2>&1 then continue fi fi func_append removelist " $p" ;; *) ;; esac done test -n "$removelist" && \ func_show_eval "${RM}r \$removelist" fi # Now set the variables for building old libraries. if test "$build_old_libs" = yes && test "$build_libtool_libs" != convenience ; then func_append oldlibs " $output_objdir/$libname.$libext" # Transform .lo files to .o files. oldobjs="$objs "`$ECHO "$libobjs" | $SP2NL | $SED "/\.${libext}$/d; $lo2o" | $NL2SP` fi # Eliminate all temporary directories. #for path in $notinst_path; do # lib_search_path=`$ECHO "$lib_search_path " | $SED "s% $path % %g"` # deplibs=`$ECHO "$deplibs " | $SED "s% -L$path % %g"` # dependency_libs=`$ECHO "$dependency_libs " | $SED "s% -L$path % %g"` #done if test -n "$xrpath"; then # If the user specified any rpath flags, then add them. temp_xrpath= for libdir in $xrpath; do func_replace_sysroot "$libdir" func_append temp_xrpath " -R$func_replace_sysroot_result" case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done if test "$hardcode_into_libs" != yes || test "$build_old_libs" = yes; then dependency_libs="$temp_xrpath $dependency_libs" fi fi # Make sure dlfiles contains only unique files that won't be dlpreopened old_dlfiles="$dlfiles" dlfiles= for lib in $old_dlfiles; do case " $dlprefiles $dlfiles " in *" $lib "*) ;; *) func_append dlfiles " $lib" ;; esac done # Make sure dlprefiles contains only unique files old_dlprefiles="$dlprefiles" dlprefiles= for lib in $old_dlprefiles; do case "$dlprefiles " in *" $lib "*) ;; *) func_append dlprefiles " $lib" ;; esac done if test "$build_libtool_libs" = yes; then if test -n "$rpath"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-beos* | *-cegcc* | *-*-haiku*) # these systems don't actually have a c library (as such)! ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C library is in the System framework func_append deplibs " System.ltframework" ;; *-*-netbsd*) # Don't link with libc until the a.out ld.so is fixed. ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly*) # Do not include libc due to us having libc/libc_r. ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work ;; *) # Add libc to deplibs on all other systems if necessary. if test "$build_libtool_need_lc" = "yes"; then func_append deplibs " -lc" fi ;; esac fi # Transform deplibs into only deplibs that can be linked in shared. name_save=$name libname_save=$libname release_save=$release versuffix_save=$versuffix major_save=$major # I'm not sure if I'm treating the release correctly. I think # release should show up in the -l (ie -lgmp5) so we don't want to # add it in twice. Is that correct? release="" versuffix="" major="" newdeplibs= droppeddeps=no case $deplibs_check_method in pass_all) # Don't check for shared/static. Everything works. # This might be a little naive. We might want to check # whether the library exists or not. But this is on # osf3 & osf4 and I'm not really sure... Just # implementing what was already the behavior. newdeplibs=$deplibs ;; test_compile) # This code stresses the "libraries are programs" paradigm to its # limits. Maybe even breaks it. We compile a program, linking it # against the deplibs as a proxy for the library. Then we can check # whether they linked in statically or dynamically with ldd. $opt_dry_run || $RM conftest.c cat > conftest.c </dev/null` $nocaseglob else potential_libs=`ls $i/$libnameglob[.-]* 2>/dev/null` fi for potent_lib in $potential_libs; do # Follow soft links. if ls -lLd "$potent_lib" 2>/dev/null | $GREP " -> " >/dev/null; then continue fi # The statement above tries to avoid entering an # endless loop below, in case of cyclic links. # We might still enter an endless loop, since a link # loop can be closed while we follow links, # but so what? potlib="$potent_lib" while test -h "$potlib" 2>/dev/null; do potliblink=`ls -ld $potlib | ${SED} 's/.* -> //'` case $potliblink in [\\/]* | [A-Za-z]:[\\/]*) potlib="$potliblink";; *) potlib=`$ECHO "$potlib" | $SED 's,[^/]*$,,'`"$potliblink";; esac done if eval $file_magic_cmd \"\$potlib\" 2>/dev/null | $SED -e 10q | $EGREP "$file_magic_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib="" break 2 fi done done fi if test -n "$a_deplib" ; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib" ; then $ECHO "*** with $libname but no candidates were found. (...for file magic test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a file magic. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` for a_deplib in $deplibs; do case $a_deplib in -l*) func_stripname -l '' "$a_deplib" name=$func_stripname_result if test "X$allow_libtool_libs_with_static_runtimes" = "Xyes" ; then case " $predeps $postdeps " in *" $a_deplib "*) func_append newdeplibs " $a_deplib" a_deplib="" ;; esac fi if test -n "$a_deplib" ; then libname=`eval "\\$ECHO \"$libname_spec\""` for i in $lib_search_path $sys_lib_search_path $shlib_search_path; do potential_libs=`ls $i/$libname[.-]* 2>/dev/null` for potent_lib in $potential_libs; do potlib="$potent_lib" # see symlink-check above in file_magic test if eval "\$ECHO \"$potent_lib\"" 2>/dev/null | $SED 10q | \ $EGREP "$match_pattern_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib="" break 2 fi done done fi if test -n "$a_deplib" ; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib" ; then $ECHO "*** with $libname but no candidates were found. (...for regex pattern test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a regex pattern. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; none | unknown | *) newdeplibs="" tmp_deplibs=`$ECHO " $deplibs" | $SED 's/ -lc$//; s/ -[LR][^ ]*//g'` if test "X$allow_libtool_libs_with_static_runtimes" = "Xyes" ; then for i in $predeps $postdeps ; do # can't use Xsed below, because $i might contain '/' tmp_deplibs=`$ECHO " $tmp_deplibs" | $SED "s,$i,,"` done fi case $tmp_deplibs in *[!\ \ ]*) echo if test "X$deplibs_check_method" = "Xnone"; then echo "*** Warning: inter-library dependencies are not supported in this platform." else echo "*** Warning: inter-library dependencies are not known to be supported." fi echo "*** All declared inter-library dependencies are being dropped." droppeddeps=yes ;; esac ;; esac versuffix=$versuffix_save major=$major_save release=$release_save libname=$libname_save name=$name_save case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library with the System framework newdeplibs=`$ECHO " $newdeplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac if test "$droppeddeps" = yes; then if test "$module" = yes; then echo echo "*** Warning: libtool could not satisfy all declared inter-library" $ECHO "*** dependencies of module $libname. Therefore, libtool will create" echo "*** a static module, that should work as long as the dlopening" echo "*** application is linked with the -dlopen flag." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using \`nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** \`nm' from GNU binutils and a full rebuild may help." fi if test "$build_old_libs" = no; then oldlibs="$output_objdir/$libname.$libext" build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi else echo "*** The inter-library dependencies that have been dropped here will be" echo "*** automatically added whenever a program is linked with this library" echo "*** or is declared to -dlopen it." if test "$allow_undefined" = no; then echo echo "*** Since this library must not contain undefined symbols," echo "*** because either the platform does not support them or" echo "*** it was explicitly requested with -no-undefined," echo "*** libtool will only create a static version of it." if test "$build_old_libs" = no; then oldlibs="$output_objdir/$libname.$libext" build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi fi fi # Done checking deplibs! deplibs=$newdeplibs fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" case $host in *-*-darwin*) newdeplibs=`$ECHO " $newdeplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` new_inherited_linker_flags=`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` deplibs=`$ECHO " $deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done deplibs="$new_libs" # All the library-specific variables (install_libdir is set above). library_names= old_library= dlname= # Test again, we may have decided not to build it any more if test "$build_libtool_libs" = yes; then # Remove ${wl} instances when linking with ld. # FIXME: should test the right _cmds variable. case $archive_cmds in *\$LD\ *) wl= ;; esac if test "$hardcode_into_libs" = yes; then # Hardcode the library paths hardcode_libdirs= dep_rpath= rpath="$finalize_rpath" test "$opt_mode" != relink && rpath="$compile_rpath$rpath" for libdir in $rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then func_replace_sysroot "$libdir" libdir=$func_replace_sysroot_result if test -z "$hardcode_libdirs"; then hardcode_libdirs="$libdir" else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append dep_rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir="$hardcode_libdirs" eval "dep_rpath=\"$hardcode_libdir_flag_spec\"" fi if test -n "$runpath_var" && test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done eval "$runpath_var='$rpath\$$runpath_var'; export $runpath_var" fi test -n "$dep_rpath" && deplibs="$dep_rpath $deplibs" fi shlibpath="$finalize_shlibpath" test "$opt_mode" != relink && shlibpath="$compile_shlibpath$shlibpath" if test -n "$shlibpath"; then eval "$shlibpath_var='$shlibpath\$$shlibpath_var'; export $shlibpath_var" fi # Get the real and link names of the library. eval shared_ext=\"$shrext_cmds\" eval library_names=\"$library_names_spec\" set dummy $library_names shift realname="$1" shift if test -n "$soname_spec"; then eval soname=\"$soname_spec\" else soname="$realname" fi if test -z "$dlname"; then dlname=$soname fi lib="$output_objdir/$realname" linknames= for link do func_append linknames " $link" done # Use standard objects if they are pic test -z "$pic_flag" && libobjs=`$ECHO "$libobjs" | $SP2NL | $SED "$lo2o" | $NL2SP` test "X$libobjs" = "X " && libobjs= delfiles= if test -n "$export_symbols" && test -n "$include_expsyms"; then $opt_dry_run || cp "$export_symbols" "$output_objdir/$libname.uexp" export_symbols="$output_objdir/$libname.uexp" func_append delfiles " $export_symbols" fi orig_export_symbols= case $host_os in cygwin* | mingw* | cegcc*) if test -n "$export_symbols" && test -z "$export_symbols_regex"; then # exporting using user supplied symfile if test "x`$SED 1q $export_symbols`" != xEXPORTS; then # and it's NOT already a .def file. Must figure out # which of the given symbols are data symbols and tag # them as such. So, trigger use of export_symbols_cmds. # export_symbols gets reassigned inside the "prepare # the list of exported symbols" if statement, so the # include_expsyms logic still works. orig_export_symbols="$export_symbols" export_symbols= always_export_symbols=yes fi fi ;; esac # Prepare the list of exported symbols if test -z "$export_symbols"; then if test "$always_export_symbols" = yes || test -n "$export_symbols_regex"; then func_verbose "generating symbol list for \`$libname.la'" export_symbols="$output_objdir/$libname.exp" $opt_dry_run || $RM $export_symbols cmds=$export_symbols_cmds save_ifs="$IFS"; IFS='~' for cmd1 in $cmds; do IFS="$save_ifs" # Take the normal branch if the nm_file_list_spec branch # doesn't work or if tool conversion is not needed. case $nm_file_list_spec~$to_tool_file_cmd in *~func_convert_file_noop | *~func_convert_file_msys_to_w32 | ~*) try_normal_branch=yes eval cmd=\"$cmd1\" func_len " $cmd" len=$func_len_result ;; *) try_normal_branch=no ;; esac if test "$try_normal_branch" = yes \ && { test "$len" -lt "$max_cmd_len" \ || test "$max_cmd_len" -le -1; } then func_show_eval "$cmd" 'exit $?' skipped_export=false elif test -n "$nm_file_list_spec"; then func_basename "$output" output_la=$func_basename_result save_libobjs=$libobjs save_output=$output output=${output_objdir}/${output_la}.nm func_to_tool_file "$output" libobjs=$nm_file_list_spec$func_to_tool_file_result func_append delfiles " $output" func_verbose "creating $NM input file list: $output" for obj in $save_libobjs; do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > "$output" eval cmd=\"$cmd1\" func_show_eval "$cmd" 'exit $?' output=$save_output libobjs=$save_libobjs skipped_export=false else # The command line is too long to execute in one step. func_verbose "using reloadable object file for export list..." skipped_export=: # Break out early, otherwise skipped_export may be # set to false by a later but shorter cmd. break fi done IFS="$save_ifs" if test -n "$export_symbols_regex" && test "X$skipped_export" != "X:"; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi fi if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols="$export_symbols" test -n "$orig_export_symbols" && tmp_export_symbols="$orig_export_symbols" $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test "X$skipped_export" != "X:" && test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for \`$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi tmp_deplibs= for test_deplib in $deplibs; do case " $convenience " in *" $test_deplib "*) ;; *) func_append tmp_deplibs " $test_deplib" ;; esac done deplibs="$tmp_deplibs" if test -n "$convenience"; then if test -n "$whole_archive_flag_spec" && test "$compiler_needs_object" = yes && test -z "$libobjs"; then # extract the archives, so we have objects to list. # TODO: could optimize this to just extract one archive. whole_archive_flag_spec= fi if test -n "$whole_archive_flag_spec"; then save_libobjs=$libobjs eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= else gentop="$output_objdir/${outputname}x" func_append generated " $gentop" func_extract_archives $gentop $convenience func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi fi if test "$thread_safe" = yes && test -n "$thread_safe_flag_spec"; then eval flag=\"$thread_safe_flag_spec\" func_append linker_flags " $flag" fi # Make a backup of the uninstalled library when relinking if test "$opt_mode" = relink; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}U && $MV $realname ${realname}U)' || exit $? fi # Do each of the archive commands. if test "$module" = yes && test -n "$module_cmds" ; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then eval test_cmds=\"$module_expsym_cmds\" cmds=$module_expsym_cmds else eval test_cmds=\"$module_cmds\" cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then eval test_cmds=\"$archive_expsym_cmds\" cmds=$archive_expsym_cmds else eval test_cmds=\"$archive_cmds\" cmds=$archive_cmds fi fi if test "X$skipped_export" != "X:" && func_len " $test_cmds" && len=$func_len_result && test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then : else # The command line is too long to link in one step, link piecewise # or, if using GNU ld and skipped_export is not :, use a linker # script. # Save the value of $output and $libobjs because we want to # use them later. If we have whole_archive_flag_spec, we # want to use save_libobjs as it was before # whole_archive_flag_spec was expanded, because we can't # assume the linker understands whole_archive_flag_spec. # This may have to be revisited, in case too many # convenience libraries get linked in and end up exceeding # the spec. if test -z "$convenience" || test -z "$whole_archive_flag_spec"; then save_libobjs=$libobjs fi save_output=$output func_basename "$output" output_la=$func_basename_result # Clear the reloadable object creation command queue and # initialize k to one. test_cmds= concat_cmds= objlist= last_robj= k=1 if test -n "$save_libobjs" && test "X$skipped_export" != "X:" && test "$with_gnu_ld" = yes; then output=${output_objdir}/${output_la}.lnkscript func_verbose "creating GNU ld script: $output" echo 'INPUT (' > $output for obj in $save_libobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done echo ')' >> $output func_append delfiles " $output" func_to_tool_file "$output" output=$func_to_tool_file_result elif test -n "$save_libobjs" && test "X$skipped_export" != "X:" && test "X$file_list_spec" != X; then output=${output_objdir}/${output_la}.lnk func_verbose "creating linker input file list: $output" : > $output set x $save_libobjs shift firstobj= if test "$compiler_needs_object" = yes; then firstobj="$1 " shift fi for obj do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done func_append delfiles " $output" func_to_tool_file "$output" output=$firstobj\"$file_list_spec$func_to_tool_file_result\" else if test -n "$save_libobjs"; then func_verbose "creating reloadable object files..." output=$output_objdir/$output_la-${k}.$objext eval test_cmds=\"$reload_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 # Loop over the list of objects to be linked. for obj in $save_libobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result if test "X$objlist" = X || test "$len" -lt "$max_cmd_len"; then func_append objlist " $obj" else # The command $test_cmds is almost too long, add a # command to the queue. if test "$k" -eq 1 ; then # The first file doesn't have a previous command to add. reload_objs=$objlist eval concat_cmds=\"$reload_cmds\" else # All subsequent reloadable object files will link in # the last one created. reload_objs="$objlist $last_robj" eval concat_cmds=\"\$concat_cmds~$reload_cmds~\$RM $last_robj\" fi last_robj=$output_objdir/$output_la-${k}.$objext func_arith $k + 1 k=$func_arith_result output=$output_objdir/$output_la-${k}.$objext objlist=" $obj" func_len " $last_robj" func_arith $len0 + $func_len_result len=$func_arith_result fi done # Handle the remaining objects by creating one last # reloadable object file. All subsequent reloadable object # files will link in the last one created. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ reload_objs="$objlist $last_robj" eval concat_cmds=\"\${concat_cmds}$reload_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\${concat_cmds}~\$RM $last_robj\" fi func_append delfiles " $output" else output= fi if ${skipped_export-false}; then func_verbose "generating symbol list for \`$libname.la'" export_symbols="$output_objdir/$libname.exp" $opt_dry_run || $RM $export_symbols libobjs=$output # Append the command to create the export file. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\$concat_cmds$export_symbols_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\" fi fi test -n "$save_libobjs" && func_verbose "creating a temporary reloadable object file: $output" # Loop through the commands generated above and execute them. save_ifs="$IFS"; IFS='~' for cmd in $concat_cmds; do IFS="$save_ifs" $opt_silent || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test "$opt_mode" = relink; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS="$save_ifs" if test -n "$export_symbols_regex" && ${skipped_export-false}; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi if ${skipped_export-false}; then if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols="$export_symbols" test -n "$orig_export_symbols" && tmp_export_symbols="$orig_export_symbols" $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for \`$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi fi libobjs=$output # Restore the value of output. output=$save_output if test -n "$convenience" && test -n "$whole_archive_flag_spec"; then eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= fi # Expand the library linking commands again to reset the # value of $libobjs for piecewise linking. # Do each of the archive commands. if test "$module" = yes && test -n "$module_cmds" ; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then cmds=$module_expsym_cmds else cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then cmds=$archive_expsym_cmds else cmds=$archive_cmds fi fi fi if test -n "$delfiles"; then # Append the command to remove temporary files to $cmds. eval cmds=\"\$cmds~\$RM $delfiles\" fi # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop="$output_objdir/${outputname}x" func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi save_ifs="$IFS"; IFS='~' for cmd in $cmds; do IFS="$save_ifs" eval cmd=\"$cmd\" $opt_silent || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test "$opt_mode" = relink; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS="$save_ifs" # Restore the uninstalled library and exit if test "$opt_mode" = relink; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}T && $MV $realname ${realname}T && $MV ${realname}U $realname)' || exit $? if test -n "$convenience"; then if test -z "$whole_archive_flag_spec"; then func_show_eval '${RM}r "$gentop"' fi fi exit $EXIT_SUCCESS fi # Create links to the real library. for linkname in $linknames; do if test "$realname" != "$linkname"; then func_show_eval '(cd "$output_objdir" && $RM "$linkname" && $LN_S "$realname" "$linkname")' 'exit $?' fi done # If -module or -export-dynamic was specified, set the dlname. if test "$module" = yes || test "$export_dynamic" = yes; then # On all known operating systems, these are identical. dlname="$soname" fi fi ;; obj) if test -n "$dlfiles$dlprefiles" || test "$dlself" != no; then func_warning "\`-dlopen' is ignored for objects" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "\`-l' and \`-L' are ignored for objects" ;; esac test -n "$rpath" && \ func_warning "\`-rpath' is ignored for objects" test -n "$xrpath" && \ func_warning "\`-R' is ignored for objects" test -n "$vinfo" && \ func_warning "\`-version-info' is ignored for objects" test -n "$release" && \ func_warning "\`-release' is ignored for objects" case $output in *.lo) test -n "$objs$old_deplibs" && \ func_fatal_error "cannot build library object \`$output' from non-libtool objects" libobj=$output func_lo2o "$libobj" obj=$func_lo2o_result ;; *) libobj= obj="$output" ;; esac # Delete the old objects. $opt_dry_run || $RM $obj $libobj # Objects from convenience libraries. This assumes # single-version convenience libraries. Whenever we create # different ones for PIC/non-PIC, this we'll have to duplicate # the extraction. reload_conv_objs= gentop= # reload_cmds runs $LD directly, so let us get rid of # -Wl from whole_archive_flag_spec and hope we can get by with # turning comma into space.. wl= if test -n "$convenience"; then if test -n "$whole_archive_flag_spec"; then eval tmp_whole_archive_flags=\"$whole_archive_flag_spec\" reload_conv_objs=$reload_objs\ `$ECHO "$tmp_whole_archive_flags" | $SED 's|,| |g'` else gentop="$output_objdir/${obj}x" func_append generated " $gentop" func_extract_archives $gentop $convenience reload_conv_objs="$reload_objs $func_extract_archives_result" fi fi # If we're not building shared, we need to use non_pic_objs test "$build_libtool_libs" != yes && libobjs="$non_pic_objects" # Create the old-style object. reload_objs="$objs$old_deplibs "`$ECHO "$libobjs" | $SP2NL | $SED "/\.${libext}$/d; /\.lib$/d; $lo2o" | $NL2SP`" $reload_conv_objs" ### testsuite: skip nested quoting test output="$obj" func_execute_cmds "$reload_cmds" 'exit $?' # Exit if we aren't doing a library object file. if test -z "$libobj"; then if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS fi if test "$build_libtool_libs" != yes; then if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi # Create an invalid libtool object if no PIC, so that we don't # accidentally link it into a program. # $show "echo timestamp > $libobj" # $opt_dry_run || eval "echo timestamp > $libobj" || exit $? exit $EXIT_SUCCESS fi if test -n "$pic_flag" || test "$pic_mode" != default; then # Only do commands if we really have different PIC objects. reload_objs="$libobjs $reload_conv_objs" output="$libobj" func_execute_cmds "$reload_cmds" 'exit $?' fi if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS ;; prog) case $host in *cygwin*) func_stripname '' '.exe' "$output" output=$func_stripname_result.exe;; esac test -n "$vinfo" && \ func_warning "\`-version-info' is ignored for programs" test -n "$release" && \ func_warning "\`-release' is ignored for programs" test "$preload" = yes \ && test "$dlopen_support" = unknown \ && test "$dlopen_self" = unknown \ && test "$dlopen_self_static" = unknown && \ func_warning "\`LT_INIT([dlopen])' not used. Assuming no dlopen support." case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library is the System framework compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's/ -lc / System.ltframework /'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac case $host in *-*-darwin*) # Don't allow lazy linking, it breaks C++ global constructors # But is supposedly fixed on 10.4 or later (yay!). if test "$tagname" = CXX ; then case ${MACOSX_DEPLOYMENT_TARGET-10.0} in 10.[0123]) func_append compile_command " ${wl}-bind_at_load" func_append finalize_command " ${wl}-bind_at_load" ;; esac fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $compile_deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $compile_deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done compile_deplibs="$new_libs" func_append compile_command " $compile_deplibs" func_append finalize_command " $finalize_deplibs" if test -n "$rpath$xrpath"; then # If the user specified any rpath flags, then add them. for libdir in $rpath $xrpath; do # This is the magic to use -rpath. case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done fi # Now hardcode the library paths rpath= hardcode_libdirs= for libdir in $compile_rpath $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs="$libdir" else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`${ECHO} "$libdir" | ${SED} -e 's*/lib$*/bin*'` case :$dllsearchpath: in *":$libdir:"*) ;; ::) dllsearchpath=$libdir;; *) func_append dllsearchpath ":$libdir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir="$hardcode_libdirs" eval rpath=\" $hardcode_libdir_flag_spec\" fi compile_rpath="$rpath" rpath= hardcode_libdirs= for libdir in $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs="$libdir" else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$finalize_perm_rpath " in *" $libdir "*) ;; *) func_append finalize_perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir="$hardcode_libdirs" eval rpath=\" $hardcode_libdir_flag_spec\" fi finalize_rpath="$rpath" if test -n "$libobjs" && test "$build_old_libs" = yes; then # Transform all the library objects into standard objects. compile_command=`$ECHO "$compile_command" | $SP2NL | $SED "$lo2o" | $NL2SP` finalize_command=`$ECHO "$finalize_command" | $SP2NL | $SED "$lo2o" | $NL2SP` fi func_generate_dlsyms "$outputname" "@PROGRAM@" "no" # template prelinking step if test -n "$prelink_cmds"; then func_execute_cmds "$prelink_cmds" 'exit $?' fi wrappers_required=yes case $host in *cegcc* | *mingw32ce*) # Disable wrappers for cegcc and mingw32ce hosts, we are cross compiling anyway. wrappers_required=no ;; *cygwin* | *mingw* ) if test "$build_libtool_libs" != yes; then wrappers_required=no fi ;; *) if test "$need_relink" = no || test "$build_libtool_libs" != yes; then wrappers_required=no fi ;; esac if test "$wrappers_required" = no; then # Replace the output file specification. compile_command=`$ECHO "$compile_command" | $SED 's%@OUTPUT@%'"$output"'%g'` link_command="$compile_command$compile_rpath" # We have no uninstalled library dependencies, so finalize right now. exit_status=0 func_show_eval "$link_command" 'exit_status=$?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Delete the generated files. if test -f "$output_objdir/${outputname}S.${objext}"; then func_show_eval '$RM "$output_objdir/${outputname}S.${objext}"' fi exit $exit_status fi if test -n "$compile_shlibpath$finalize_shlibpath"; then compile_command="$shlibpath_var=\"$compile_shlibpath$finalize_shlibpath\$$shlibpath_var\" $compile_command" fi if test -n "$finalize_shlibpath"; then finalize_command="$shlibpath_var=\"$finalize_shlibpath\$$shlibpath_var\" $finalize_command" fi compile_var= finalize_var= if test -n "$runpath_var"; then if test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done compile_var="$runpath_var=\"$rpath\$$runpath_var\" " fi if test -n "$finalize_perm_rpath"; then # We should set the runpath_var. rpath= for dir in $finalize_perm_rpath; do func_append rpath "$dir:" done finalize_var="$runpath_var=\"$rpath\$$runpath_var\" " fi fi if test "$no_install" = yes; then # We don't need to create a wrapper script. link_command="$compile_var$compile_command$compile_rpath" # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output"'%g'` # Delete the old output file. $opt_dry_run || $RM $output # Link the executable and exit func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi exit $EXIT_SUCCESS fi if test "$hardcode_action" = relink; then # Fast installation is not supported link_command="$compile_var$compile_command$compile_rpath" relink_command="$finalize_var$finalize_command$finalize_rpath" func_warning "this platform does not like uninstalled shared libraries" func_warning "\`$output' will be relinked during installation" else if test "$fast_install" != no; then link_command="$finalize_var$compile_command$finalize_rpath" if test "$fast_install" = yes; then relink_command=`$ECHO "$compile_var$compile_command$compile_rpath" | $SED 's%@OUTPUT@%\$progdir/\$file%g'` else # fast_install is set to needless relink_command= fi else link_command="$compile_var$compile_command$compile_rpath" relink_command="$finalize_var$finalize_command$finalize_rpath" fi fi # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output_objdir/$outputname"'%g'` # Delete the old output files. $opt_dry_run || $RM $output $output_objdir/$outputname $output_objdir/lt-$outputname func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output_objdir/$outputname" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output_objdir/$outputname"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Now create the wrapper script. func_verbose "creating $output" # Quote the relink command for shipping. if test -n "$relink_command"; then # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done relink_command="(cd `pwd`; $relink_command)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` fi # Only actually do things if not in dry run mode. $opt_dry_run || { # win32 will think the script is a binary if it has # a .exe suffix, so we strip it off here. case $output in *.exe) func_stripname '' '.exe' "$output" output=$func_stripname_result ;; esac # test for cygwin because mv fails w/o .exe extensions case $host in *cygwin*) exeext=.exe func_stripname '' '.exe' "$outputname" outputname=$func_stripname_result ;; *) exeext= ;; esac case $host in *cygwin* | *mingw* ) func_dirname_and_basename "$output" "" "." output_name=$func_basename_result output_path=$func_dirname_result cwrappersource="$output_path/$objdir/lt-$output_name.c" cwrapper="$output_path/$output_name.exe" $RM $cwrappersource $cwrapper trap "$RM $cwrappersource $cwrapper; exit $EXIT_FAILURE" 1 2 15 func_emit_cwrapperexe_src > $cwrappersource # The wrapper executable is built using the $host compiler, # because it contains $host paths and files. If cross- # compiling, it, like the target executable, must be # executed on the $host or under an emulation environment. $opt_dry_run || { $LTCC $LTCFLAGS -o $cwrapper $cwrappersource $STRIP $cwrapper } # Now, create the wrapper script for func_source use: func_ltwrapper_scriptname $cwrapper $RM $func_ltwrapper_scriptname_result trap "$RM $func_ltwrapper_scriptname_result; exit $EXIT_FAILURE" 1 2 15 $opt_dry_run || { # note: this script will not be executed, so do not chmod. if test "x$build" = "x$host" ; then $cwrapper --lt-dump-script > $func_ltwrapper_scriptname_result else func_emit_wrapper no > $func_ltwrapper_scriptname_result fi } ;; * ) $RM $output trap "$RM $output; exit $EXIT_FAILURE" 1 2 15 func_emit_wrapper no > $output chmod +x $output ;; esac } exit $EXIT_SUCCESS ;; esac # See if we need to build an old-fashioned archive. for oldlib in $oldlibs; do if test "$build_libtool_libs" = convenience; then oldobjs="$libobjs_save $symfileobj" addlibs="$convenience" build_libtool_libs=no else if test "$build_libtool_libs" = module; then oldobjs="$libobjs_save" build_libtool_libs=no else oldobjs="$old_deplibs $non_pic_objects" if test "$preload" = yes && test -f "$symfileobj"; then func_append oldobjs " $symfileobj" fi fi addlibs="$old_convenience" fi if test -n "$addlibs"; then gentop="$output_objdir/${outputname}x" func_append generated " $gentop" func_extract_archives $gentop $addlibs func_append oldobjs " $func_extract_archives_result" fi # Do each command in the archive commands. if test -n "$old_archive_from_new_cmds" && test "$build_libtool_libs" = yes; then cmds=$old_archive_from_new_cmds else # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop="$output_objdir/${outputname}x" func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append oldobjs " $func_extract_archives_result" fi # POSIX demands no paths to be encoded in archives. We have # to avoid creating archives with duplicate basenames if we # might have to extract them afterwards, e.g., when creating a # static archive out of a convenience library, or when linking # the entirety of a libtool archive into another (currently # not supported by libtool). if (for obj in $oldobjs do func_basename "$obj" $ECHO "$func_basename_result" done | sort | sort -uc >/dev/null 2>&1); then : else echo "copying selected object files to avoid basename conflicts..." gentop="$output_objdir/${outputname}x" func_append generated " $gentop" func_mkdir_p "$gentop" save_oldobjs=$oldobjs oldobjs= counter=1 for obj in $save_oldobjs do func_basename "$obj" objbase="$func_basename_result" case " $oldobjs " in " ") oldobjs=$obj ;; *[\ /]"$objbase "*) while :; do # Make sure we don't pick an alternate name that also # overlaps. newobj=lt$counter-$objbase func_arith $counter + 1 counter=$func_arith_result case " $oldobjs " in *[\ /]"$newobj "*) ;; *) if test ! -f "$gentop/$newobj"; then break; fi ;; esac done func_show_eval "ln $obj $gentop/$newobj || cp $obj $gentop/$newobj" func_append oldobjs " $gentop/$newobj" ;; *) func_append oldobjs " $obj" ;; esac done fi func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result eval cmds=\"$old_archive_cmds\" func_len " $cmds" len=$func_len_result if test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then cmds=$old_archive_cmds elif test -n "$archiver_list_spec"; then func_verbose "using command file archive linking..." for obj in $oldobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > $output_objdir/$libname.libcmd func_to_tool_file "$output_objdir/$libname.libcmd" oldobjs=" $archiver_list_spec$func_to_tool_file_result" cmds=$old_archive_cmds else # the command line is too long to link in one step, link in parts func_verbose "using piecewise archive linking..." save_RANLIB=$RANLIB RANLIB=: objlist= concat_cmds= save_oldobjs=$oldobjs oldobjs= # Is there a better way of finding the last object in the list? for obj in $save_oldobjs do last_oldobj=$obj done eval test_cmds=\"$old_archive_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 for obj in $save_oldobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result func_append objlist " $obj" if test "$len" -lt "$max_cmd_len"; then : else # the above command should be used before it gets too long oldobjs=$objlist if test "$obj" = "$last_oldobj" ; then RANLIB=$save_RANLIB fi test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\${concat_cmds}$old_archive_cmds\" objlist= len=$len0 fi done RANLIB=$save_RANLIB oldobjs=$objlist if test "X$oldobjs" = "X" ; then eval cmds=\"\$concat_cmds\" else eval cmds=\"\$concat_cmds~\$old_archive_cmds\" fi fi fi func_execute_cmds "$cmds" 'exit $?' done test -n "$generated" && \ func_show_eval "${RM}r$generated" # Now create the libtool archive. case $output in *.la) old_library= test "$build_old_libs" = yes && old_library="$libname.$libext" func_verbose "creating $output" # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done # Quote the link command for shipping. relink_command="(cd `pwd`; $SHELL $progpath $preserve_args --mode=relink $libtool_args @inst_prefix_dir@)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` if test "$hardcode_automatic" = yes ; then relink_command= fi # Only create the output if not a dry run. $opt_dry_run || { for installed in no yes; do if test "$installed" = yes; then if test -z "$install_libdir"; then break fi output="$output_objdir/$outputname"i # Replace all uninstalled libtool libraries with the installed ones newdependency_libs= for deplib in $dependency_libs; do case $deplib in *.la) func_basename "$deplib" name="$func_basename_result" func_resolve_sysroot "$deplib" eval libdir=`${SED} -n -e 's/^libdir=\(.*\)$/\1/p' $func_resolve_sysroot_result` test -z "$libdir" && \ func_fatal_error "\`$deplib' is not a valid libtool archive" func_append newdependency_libs " ${lt_sysroot:+=}$libdir/$name" ;; -L*) func_stripname -L '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -L$func_replace_sysroot_result" ;; -R*) func_stripname -R '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -R$func_replace_sysroot_result" ;; *) func_append newdependency_libs " $deplib" ;; esac done dependency_libs="$newdependency_libs" newdlfiles= for lib in $dlfiles; do case $lib in *.la) func_basename "$lib" name="$func_basename_result" eval libdir=`${SED} -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "\`$lib' is not a valid libtool archive" func_append newdlfiles " ${lt_sysroot:+=}$libdir/$name" ;; *) func_append newdlfiles " $lib" ;; esac done dlfiles="$newdlfiles" newdlprefiles= for lib in $dlprefiles; do case $lib in *.la) # Only pass preopened files to the pseudo-archive (for # eventual linking with the app. that links it) if we # didn't already link the preopened objects directly into # the library: func_basename "$lib" name="$func_basename_result" eval libdir=`${SED} -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "\`$lib' is not a valid libtool archive" func_append newdlprefiles " ${lt_sysroot:+=}$libdir/$name" ;; esac done dlprefiles="$newdlprefiles" else newdlfiles= for lib in $dlfiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs="$lib" ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlfiles " $abs" done dlfiles="$newdlfiles" newdlprefiles= for lib in $dlprefiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs="$lib" ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlprefiles " $abs" done dlprefiles="$newdlprefiles" fi $RM $output # place dlname in correct position for cygwin # In fact, it would be nice if we could use this code for all target # systems that can't hard-code library paths into their executables # and that have no shared library path variable independent of PATH, # but it turns out we can't easily determine that from inspecting # libtool variables, so we have to hard-code the OSs to which it # applies here; at the moment, that means platforms that use the PE # object format with DLL files. See the long comment at the top of # tests/bindir.at for full details. tdlname=$dlname case $host,$output,$installed,$module,$dlname in *cygwin*,*lai,yes,no,*.dll | *mingw*,*lai,yes,no,*.dll | *cegcc*,*lai,yes,no,*.dll) # If a -bindir argument was supplied, place the dll there. if test "x$bindir" != x ; then func_relative_path "$install_libdir" "$bindir" tdlname=$func_relative_path_result$dlname else # Otherwise fall back on heuristic. tdlname=../bin/$dlname fi ;; esac $ECHO > $output "\ # $outputname - a libtool library file # Generated by $PROGRAM (GNU $PACKAGE$TIMESTAMP) $VERSION # # Please DO NOT delete this file! # It is necessary for linking the library. # The name that we can dlopen(3). dlname='$tdlname' # Names of this library. library_names='$library_names' # The name of the static archive. old_library='$old_library' # Linker flags that can not go in dependency_libs. inherited_linker_flags='$new_inherited_linker_flags' # Libraries that this one depends upon. dependency_libs='$dependency_libs' # Names of additional weak libraries provided by this library weak_library_names='$weak_libs' # Version information for $libname. current=$current age=$age revision=$revision # Is this an already installed library? installed=$installed # Should we warn about portability when linking against -modules? shouldnotlink=$module # Files to dlopen/dlpreopen dlopen='$dlfiles' dlpreopen='$dlprefiles' # Directory that this library needs to be installed in: libdir='$install_libdir'" if test "$installed" = no && test "$need_relink" = yes; then $ECHO >> $output "\ relink_command=\"$relink_command\"" fi done } # Do a symbolic link so that the libtool archive can be found in # LD_LIBRARY_PATH before the program is installed. func_show_eval '( cd "$output_objdir" && $RM "$outputname" && $LN_S "../$outputname" "$outputname" )' 'exit $?' ;; esac exit $EXIT_SUCCESS } { test "$opt_mode" = link || test "$opt_mode" = relink; } && func_mode_link ${1+"$@"} # func_mode_uninstall arg... func_mode_uninstall () { $opt_debug RM="$nonopt" files= rmforce= exit_status=0 # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic="$magic" for arg do case $arg in -f) func_append RM " $arg"; rmforce=yes ;; -*) func_append RM " $arg" ;; *) func_append files " $arg" ;; esac done test -z "$RM" && \ func_fatal_help "you must specify an RM program" rmdirs= for file in $files; do func_dirname "$file" "" "." dir="$func_dirname_result" if test "X$dir" = X.; then odir="$objdir" else odir="$dir/$objdir" fi func_basename "$file" name="$func_basename_result" test "$opt_mode" = uninstall && odir="$dir" # Remember odir for removal later, being careful to avoid duplicates if test "$opt_mode" = clean; then case " $rmdirs " in *" $odir "*) ;; *) func_append rmdirs " $odir" ;; esac fi # Don't error if the file doesn't exist and rm -f was used. if { test -L "$file"; } >/dev/null 2>&1 || { test -h "$file"; } >/dev/null 2>&1 || test -f "$file"; then : elif test -d "$file"; then exit_status=1 continue elif test "$rmforce" = yes; then continue fi rmfiles="$file" case $name in *.la) # Possibly a libtool archive, so verify it. if func_lalib_p "$file"; then func_source $dir/$name # Delete the libtool libraries and symlinks. for n in $library_names; do func_append rmfiles " $odir/$n" done test -n "$old_library" && func_append rmfiles " $odir/$old_library" case "$opt_mode" in clean) case " $library_names " in *" $dlname "*) ;; *) test -n "$dlname" && func_append rmfiles " $odir/$dlname" ;; esac test -n "$libdir" && func_append rmfiles " $odir/$name $odir/${name}i" ;; uninstall) if test -n "$library_names"; then # Do each command in the postuninstall commands. func_execute_cmds "$postuninstall_cmds" 'test "$rmforce" = yes || exit_status=1' fi if test -n "$old_library"; then # Do each command in the old_postuninstall commands. func_execute_cmds "$old_postuninstall_cmds" 'test "$rmforce" = yes || exit_status=1' fi # FIXME: should reinstall the best remaining shared library. ;; esac fi ;; *.lo) # Possibly a libtool object, so verify it. if func_lalib_p "$file"; then # Read the .lo file func_source $dir/$name # Add PIC object to the list of files to remove. if test -n "$pic_object" && test "$pic_object" != none; then func_append rmfiles " $dir/$pic_object" fi # Add non-PIC object to the list of files to remove. if test -n "$non_pic_object" && test "$non_pic_object" != none; then func_append rmfiles " $dir/$non_pic_object" fi fi ;; *) if test "$opt_mode" = clean ; then noexename=$name case $file in *.exe) func_stripname '' '.exe' "$file" file=$func_stripname_result func_stripname '' '.exe' "$name" noexename=$func_stripname_result # $file with .exe has already been added to rmfiles, # add $file without .exe func_append rmfiles " $file" ;; esac # Do a test to see if this is a libtool program. if func_ltwrapper_p "$file"; then if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" relink_command= func_source $func_ltwrapper_scriptname_result func_append rmfiles " $func_ltwrapper_scriptname_result" else relink_command= func_source $dir/$noexename fi # note $name still contains .exe if it was in $file originally # as does the version of $file that was added into $rmfiles func_append rmfiles " $odir/$name $odir/${name}S.${objext}" if test "$fast_install" = yes && test -n "$relink_command"; then func_append rmfiles " $odir/lt-$name" fi if test "X$noexename" != "X$name" ; then func_append rmfiles " $odir/lt-${noexename}.c" fi fi fi ;; esac func_show_eval "$RM $rmfiles" 'exit_status=1' done # Try to remove the ${objdir}s in the directories where we deleted files for dir in $rmdirs; do if test -d "$dir"; then func_show_eval "rmdir $dir >/dev/null 2>&1" fi done exit $exit_status } { test "$opt_mode" = uninstall || test "$opt_mode" = clean; } && func_mode_uninstall ${1+"$@"} test -z "$opt_mode" && { help="$generic_help" func_fatal_help "you must specify a MODE" } test -z "$exec_cmd" && \ func_fatal_help "invalid operation mode \`$opt_mode'" if test -n "$exec_cmd"; then eval exec "$exec_cmd" exit $EXIT_FAILURE fi exit $exit_status # The TAGs below are defined such that we never get into a situation # in which we disable both kinds of libraries. Given conflicting # choices, we go for a static library, that is the most portable, # since we can't tell whether shared libraries were disabled because # the user asked for that or because the platform doesn't support # them. This is particularly important on AIX, because we don't # support having both static and shared libraries enabled at the same # time on that platform, so we default to a shared-only configuration. # If a disable-shared tag is given, we'll fallback to a static-only # configuration. But we'll never go from static-only to shared-only. # ### BEGIN LIBTOOL TAG CONFIG: disable-shared build_libtool_libs=no build_old_libs=yes # ### END LIBTOOL TAG CONFIG: disable-shared # ### BEGIN LIBTOOL TAG CONFIG: disable-static build_old_libs=`case $build_libtool_libs in yes) echo no;; *) echo yes;; esac` # ### END LIBTOOL TAG CONFIG: disable-static # Local Variables: # mode:shell-script # sh-indentation:2 # End: # vi:sw=2 gsl-1.16/const/0000775000252300025230000000000012172254155010361 500000000000000gsl-1.16/const/TODO0000664000252300025230000000014412171574312010767 00000000000000# -*- org -*- #+CATEGORY: const could add RADIATION_DENSITY_CONSTANT (7.56591e-16) /* J m-3 K-4 */ gsl-1.16/const/gsl_const_cgsm.h0000664000252300025230000001517312171574312013464 00000000000000/* const/gsl_const_cgsm.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2007, 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST_CGSM__ #define __GSL_CONST_CGSM__ #define GSL_CONST_CGSM_SPEED_OF_LIGHT (2.99792458e10) /* cm / s */ #define GSL_CONST_CGSM_GRAVITATIONAL_CONSTANT (6.673e-8) /* cm^3 / g s^2 */ #define GSL_CONST_CGSM_PLANCKS_CONSTANT_H (6.62606896e-27) /* g cm^2 / s */ #define GSL_CONST_CGSM_PLANCKS_CONSTANT_HBAR (1.05457162825e-27) /* g cm^2 / s */ #define GSL_CONST_CGSM_ASTRONOMICAL_UNIT (1.49597870691e13) /* cm */ #define GSL_CONST_CGSM_LIGHT_YEAR (9.46053620707e17) /* cm */ #define GSL_CONST_CGSM_PARSEC (3.08567758135e18) /* cm */ #define GSL_CONST_CGSM_GRAV_ACCEL (9.80665e2) /* cm / s^2 */ #define GSL_CONST_CGSM_ELECTRON_VOLT (1.602176487e-12) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_MASS_ELECTRON (9.10938188e-28) /* g */ #define GSL_CONST_CGSM_MASS_MUON (1.88353109e-25) /* g */ #define GSL_CONST_CGSM_MASS_PROTON (1.67262158e-24) /* g */ #define GSL_CONST_CGSM_MASS_NEUTRON (1.67492716e-24) /* g */ #define GSL_CONST_CGSM_RYDBERG (2.17987196968e-11) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_BOLTZMANN (1.3806504e-16) /* g cm^2 / K s^2 */ #define GSL_CONST_CGSM_MOLAR_GAS (8.314472e7) /* g cm^2 / K mol s^2 */ #define GSL_CONST_CGSM_STANDARD_GAS_VOLUME (2.2710981e4) /* cm^3 / mol */ #define GSL_CONST_CGSM_MINUTE (6e1) /* s */ #define GSL_CONST_CGSM_HOUR (3.6e3) /* s */ #define GSL_CONST_CGSM_DAY (8.64e4) /* s */ #define GSL_CONST_CGSM_WEEK (6.048e5) /* s */ #define GSL_CONST_CGSM_INCH (2.54e0) /* cm */ #define GSL_CONST_CGSM_FOOT (3.048e1) /* cm */ #define GSL_CONST_CGSM_YARD (9.144e1) /* cm */ #define GSL_CONST_CGSM_MILE (1.609344e5) /* cm */ #define GSL_CONST_CGSM_NAUTICAL_MILE (1.852e5) /* cm */ #define GSL_CONST_CGSM_FATHOM (1.8288e2) /* cm */ #define GSL_CONST_CGSM_MIL (2.54e-3) /* cm */ #define GSL_CONST_CGSM_POINT (3.52777777778e-2) /* cm */ #define GSL_CONST_CGSM_TEXPOINT (3.51459803515e-2) /* cm */ #define GSL_CONST_CGSM_MICRON (1e-4) /* cm */ #define GSL_CONST_CGSM_ANGSTROM (1e-8) /* cm */ #define GSL_CONST_CGSM_HECTARE (1e8) /* cm^2 */ #define GSL_CONST_CGSM_ACRE (4.04685642241e7) /* cm^2 */ #define GSL_CONST_CGSM_BARN (1e-24) /* cm^2 */ #define GSL_CONST_CGSM_LITER (1e3) /* cm^3 */ #define GSL_CONST_CGSM_US_GALLON (3.78541178402e3) /* cm^3 */ #define GSL_CONST_CGSM_QUART (9.46352946004e2) /* cm^3 */ #define GSL_CONST_CGSM_PINT (4.73176473002e2) /* cm^3 */ #define GSL_CONST_CGSM_CUP (2.36588236501e2) /* cm^3 */ #define GSL_CONST_CGSM_FLUID_OUNCE (2.95735295626e1) /* cm^3 */ #define GSL_CONST_CGSM_TABLESPOON (1.47867647813e1) /* cm^3 */ #define GSL_CONST_CGSM_TEASPOON (4.92892159375e0) /* cm^3 */ #define GSL_CONST_CGSM_CANADIAN_GALLON (4.54609e3) /* cm^3 */ #define GSL_CONST_CGSM_UK_GALLON (4.546092e3) /* cm^3 */ #define GSL_CONST_CGSM_MILES_PER_HOUR (4.4704e1) /* cm / s */ #define GSL_CONST_CGSM_KILOMETERS_PER_HOUR (2.77777777778e1) /* cm / s */ #define GSL_CONST_CGSM_KNOT (5.14444444444e1) /* cm / s */ #define GSL_CONST_CGSM_POUND_MASS (4.5359237e2) /* g */ #define GSL_CONST_CGSM_OUNCE_MASS (2.8349523125e1) /* g */ #define GSL_CONST_CGSM_TON (9.0718474e5) /* g */ #define GSL_CONST_CGSM_METRIC_TON (1e6) /* g */ #define GSL_CONST_CGSM_UK_TON (1.0160469088e6) /* g */ #define GSL_CONST_CGSM_TROY_OUNCE (3.1103475e1) /* g */ #define GSL_CONST_CGSM_CARAT (2e-1) /* g */ #define GSL_CONST_CGSM_UNIFIED_ATOMIC_MASS (1.660538782e-24) /* g */ #define GSL_CONST_CGSM_GRAM_FORCE (9.80665e2) /* cm g / s^2 */ #define GSL_CONST_CGSM_POUND_FORCE (4.44822161526e5) /* cm g / s^2 */ #define GSL_CONST_CGSM_KILOPOUND_FORCE (4.44822161526e8) /* cm g / s^2 */ #define GSL_CONST_CGSM_POUNDAL (1.38255e4) /* cm g / s^2 */ #define GSL_CONST_CGSM_CALORIE (4.1868e7) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_BTU (1.05505585262e10) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_THERM (1.05506e15) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_HORSEPOWER (7.457e9) /* g cm^2 / s^3 */ #define GSL_CONST_CGSM_BAR (1e6) /* g / cm s^2 */ #define GSL_CONST_CGSM_STD_ATMOSPHERE (1.01325e6) /* g / cm s^2 */ #define GSL_CONST_CGSM_TORR (1.33322368421e3) /* g / cm s^2 */ #define GSL_CONST_CGSM_METER_OF_MERCURY (1.33322368421e6) /* g / cm s^2 */ #define GSL_CONST_CGSM_INCH_OF_MERCURY (3.38638815789e4) /* g / cm s^2 */ #define GSL_CONST_CGSM_INCH_OF_WATER (2.490889e3) /* g / cm s^2 */ #define GSL_CONST_CGSM_PSI (6.89475729317e4) /* g / cm s^2 */ #define GSL_CONST_CGSM_POISE (1e0) /* g / cm s */ #define GSL_CONST_CGSM_STOKES (1e0) /* cm^2 / s */ #define GSL_CONST_CGSM_STILB (1e0) /* cd / cm^2 */ #define GSL_CONST_CGSM_LUMEN (1e0) /* cd sr */ #define GSL_CONST_CGSM_LUX (1e-4) /* cd sr / cm^2 */ #define GSL_CONST_CGSM_PHOT (1e0) /* cd sr / cm^2 */ #define GSL_CONST_CGSM_FOOTCANDLE (1.076e-3) /* cd sr / cm^2 */ #define GSL_CONST_CGSM_LAMBERT (1e0) /* cd sr / cm^2 */ #define GSL_CONST_CGSM_FOOTLAMBERT (1.07639104e-3) /* cd sr / cm^2 */ #define GSL_CONST_CGSM_CURIE (3.7e10) /* 1 / s */ #define GSL_CONST_CGSM_ROENTGEN (2.58e-8) /* abamp s / g */ #define GSL_CONST_CGSM_RAD (1e2) /* cm^2 / s^2 */ #define GSL_CONST_CGSM_SOLAR_MASS (1.98892e33) /* g */ #define GSL_CONST_CGSM_BOHR_RADIUS (5.291772083e-9) /* cm */ #define GSL_CONST_CGSM_NEWTON (1e5) /* cm g / s^2 */ #define GSL_CONST_CGSM_DYNE (1e0) /* cm g / s^2 */ #define GSL_CONST_CGSM_JOULE (1e7) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_ERG (1e0) /* g cm^2 / s^2 */ #define GSL_CONST_CGSM_STEFAN_BOLTZMANN_CONSTANT (5.67040047374e-5) /* g / K^4 s^3 */ #define GSL_CONST_CGSM_THOMSON_CROSS_SECTION (6.65245893699e-25) /* cm^2 */ #define GSL_CONST_CGSM_BOHR_MAGNETON (9.27400899e-21) /* abamp cm^2 */ #define GSL_CONST_CGSM_NUCLEAR_MAGNETON (5.05078317e-24) /* abamp cm^2 */ #define GSL_CONST_CGSM_ELECTRON_MAGNETIC_MOMENT (9.28476362e-21) /* abamp cm^2 */ #define GSL_CONST_CGSM_PROTON_MAGNETIC_MOMENT (1.410606633e-23) /* abamp cm^2 */ #define GSL_CONST_CGSM_FARADAY (9.64853429775e3) /* abamp s / mol */ #define GSL_CONST_CGSM_ELECTRON_CHARGE (1.602176487e-20) /* abamp s */ #endif /* __GSL_CONST_CGSM__ */ gsl-1.16/const/gsl_const_mks.h0000664000252300025230000001542112171574312013321 00000000000000/* const/gsl_const_mks.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2007, 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST_MKS__ #define __GSL_CONST_MKS__ #define GSL_CONST_MKS_SPEED_OF_LIGHT (2.99792458e8) /* m / s */ #define GSL_CONST_MKS_GRAVITATIONAL_CONSTANT (6.673e-11) /* m^3 / kg s^2 */ #define GSL_CONST_MKS_PLANCKS_CONSTANT_H (6.62606896e-34) /* kg m^2 / s */ #define GSL_CONST_MKS_PLANCKS_CONSTANT_HBAR (1.05457162825e-34) /* kg m^2 / s */ #define GSL_CONST_MKS_ASTRONOMICAL_UNIT (1.49597870691e11) /* m */ #define GSL_CONST_MKS_LIGHT_YEAR (9.46053620707e15) /* m */ #define GSL_CONST_MKS_PARSEC (3.08567758135e16) /* m */ #define GSL_CONST_MKS_GRAV_ACCEL (9.80665e0) /* m / s^2 */ #define GSL_CONST_MKS_ELECTRON_VOLT (1.602176487e-19) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_MASS_ELECTRON (9.10938188e-31) /* kg */ #define GSL_CONST_MKS_MASS_MUON (1.88353109e-28) /* kg */ #define GSL_CONST_MKS_MASS_PROTON (1.67262158e-27) /* kg */ #define GSL_CONST_MKS_MASS_NEUTRON (1.67492716e-27) /* kg */ #define GSL_CONST_MKS_RYDBERG (2.17987196968e-18) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_BOLTZMANN (1.3806504e-23) /* kg m^2 / K s^2 */ #define GSL_CONST_MKS_MOLAR_GAS (8.314472e0) /* kg m^2 / K mol s^2 */ #define GSL_CONST_MKS_STANDARD_GAS_VOLUME (2.2710981e-2) /* m^3 / mol */ #define GSL_CONST_MKS_MINUTE (6e1) /* s */ #define GSL_CONST_MKS_HOUR (3.6e3) /* s */ #define GSL_CONST_MKS_DAY (8.64e4) /* s */ #define GSL_CONST_MKS_WEEK (6.048e5) /* s */ #define GSL_CONST_MKS_INCH (2.54e-2) /* m */ #define GSL_CONST_MKS_FOOT (3.048e-1) /* m */ #define GSL_CONST_MKS_YARD (9.144e-1) /* m */ #define GSL_CONST_MKS_MILE (1.609344e3) /* m */ #define GSL_CONST_MKS_NAUTICAL_MILE (1.852e3) /* m */ #define GSL_CONST_MKS_FATHOM (1.8288e0) /* m */ #define GSL_CONST_MKS_MIL (2.54e-5) /* m */ #define GSL_CONST_MKS_POINT (3.52777777778e-4) /* m */ #define GSL_CONST_MKS_TEXPOINT (3.51459803515e-4) /* m */ #define GSL_CONST_MKS_MICRON (1e-6) /* m */ #define GSL_CONST_MKS_ANGSTROM (1e-10) /* m */ #define GSL_CONST_MKS_HECTARE (1e4) /* m^2 */ #define GSL_CONST_MKS_ACRE (4.04685642241e3) /* m^2 */ #define GSL_CONST_MKS_BARN (1e-28) /* m^2 */ #define GSL_CONST_MKS_LITER (1e-3) /* m^3 */ #define GSL_CONST_MKS_US_GALLON (3.78541178402e-3) /* m^3 */ #define GSL_CONST_MKS_QUART (9.46352946004e-4) /* m^3 */ #define GSL_CONST_MKS_PINT (4.73176473002e-4) /* m^3 */ #define GSL_CONST_MKS_CUP (2.36588236501e-4) /* m^3 */ #define GSL_CONST_MKS_FLUID_OUNCE (2.95735295626e-5) /* m^3 */ #define GSL_CONST_MKS_TABLESPOON (1.47867647813e-5) /* m^3 */ #define GSL_CONST_MKS_TEASPOON (4.92892159375e-6) /* m^3 */ #define GSL_CONST_MKS_CANADIAN_GALLON (4.54609e-3) /* m^3 */ #define GSL_CONST_MKS_UK_GALLON (4.546092e-3) /* m^3 */ #define GSL_CONST_MKS_MILES_PER_HOUR (4.4704e-1) /* m / s */ #define GSL_CONST_MKS_KILOMETERS_PER_HOUR (2.77777777778e-1) /* m / s */ #define GSL_CONST_MKS_KNOT (5.14444444444e-1) /* m / s */ #define GSL_CONST_MKS_POUND_MASS (4.5359237e-1) /* kg */ #define GSL_CONST_MKS_OUNCE_MASS (2.8349523125e-2) /* kg */ #define GSL_CONST_MKS_TON (9.0718474e2) /* kg */ #define GSL_CONST_MKS_METRIC_TON (1e3) /* kg */ #define GSL_CONST_MKS_UK_TON (1.0160469088e3) /* kg */ #define GSL_CONST_MKS_TROY_OUNCE (3.1103475e-2) /* kg */ #define GSL_CONST_MKS_CARAT (2e-4) /* kg */ #define GSL_CONST_MKS_UNIFIED_ATOMIC_MASS (1.660538782e-27) /* kg */ #define GSL_CONST_MKS_GRAM_FORCE (9.80665e-3) /* kg m / s^2 */ #define GSL_CONST_MKS_POUND_FORCE (4.44822161526e0) /* kg m / s^2 */ #define GSL_CONST_MKS_KILOPOUND_FORCE (4.44822161526e3) /* kg m / s^2 */ #define GSL_CONST_MKS_POUNDAL (1.38255e-1) /* kg m / s^2 */ #define GSL_CONST_MKS_CALORIE (4.1868e0) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_BTU (1.05505585262e3) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_THERM (1.05506e8) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_HORSEPOWER (7.457e2) /* kg m^2 / s^3 */ #define GSL_CONST_MKS_BAR (1e5) /* kg / m s^2 */ #define GSL_CONST_MKS_STD_ATMOSPHERE (1.01325e5) /* kg / m s^2 */ #define GSL_CONST_MKS_TORR (1.33322368421e2) /* kg / m s^2 */ #define GSL_CONST_MKS_METER_OF_MERCURY (1.33322368421e5) /* kg / m s^2 */ #define GSL_CONST_MKS_INCH_OF_MERCURY (3.38638815789e3) /* kg / m s^2 */ #define GSL_CONST_MKS_INCH_OF_WATER (2.490889e2) /* kg / m s^2 */ #define GSL_CONST_MKS_PSI (6.89475729317e3) /* kg / m s^2 */ #define GSL_CONST_MKS_POISE (1e-1) /* kg m^-1 s^-1 */ #define GSL_CONST_MKS_STOKES (1e-4) /* m^2 / s */ #define GSL_CONST_MKS_STILB (1e4) /* cd / m^2 */ #define GSL_CONST_MKS_LUMEN (1e0) /* cd sr */ #define GSL_CONST_MKS_LUX (1e0) /* cd sr / m^2 */ #define GSL_CONST_MKS_PHOT (1e4) /* cd sr / m^2 */ #define GSL_CONST_MKS_FOOTCANDLE (1.076e1) /* cd sr / m^2 */ #define GSL_CONST_MKS_LAMBERT (1e4) /* cd sr / m^2 */ #define GSL_CONST_MKS_FOOTLAMBERT (1.07639104e1) /* cd sr / m^2 */ #define GSL_CONST_MKS_CURIE (3.7e10) /* 1 / s */ #define GSL_CONST_MKS_ROENTGEN (2.58e-4) /* A s / kg */ #define GSL_CONST_MKS_RAD (1e-2) /* m^2 / s^2 */ #define GSL_CONST_MKS_SOLAR_MASS (1.98892e30) /* kg */ #define GSL_CONST_MKS_BOHR_RADIUS (5.291772083e-11) /* m */ #define GSL_CONST_MKS_NEWTON (1e0) /* kg m / s^2 */ #define GSL_CONST_MKS_DYNE (1e-5) /* kg m / s^2 */ #define GSL_CONST_MKS_JOULE (1e0) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_ERG (1e-7) /* kg m^2 / s^2 */ #define GSL_CONST_MKS_STEFAN_BOLTZMANN_CONSTANT (5.67040047374e-8) /* kg / K^4 s^3 */ #define GSL_CONST_MKS_THOMSON_CROSS_SECTION (6.65245893699e-29) /* m^2 */ #define GSL_CONST_MKS_BOHR_MAGNETON (9.27400899e-24) /* A m^2 */ #define GSL_CONST_MKS_NUCLEAR_MAGNETON (5.05078317e-27) /* A m^2 */ #define GSL_CONST_MKS_ELECTRON_MAGNETIC_MOMENT (9.28476362e-24) /* A m^2 */ #define GSL_CONST_MKS_PROTON_MAGNETIC_MOMENT (1.410606633e-26) /* A m^2 */ #define GSL_CONST_MKS_FARADAY (9.64853429775e4) /* A s / mol */ #define GSL_CONST_MKS_ELECTRON_CHARGE (1.602176487e-19) /* A s */ #define GSL_CONST_MKS_VACUUM_PERMITTIVITY (8.854187817e-12) /* A^2 s^4 / kg m^3 */ #define GSL_CONST_MKS_VACUUM_PERMEABILITY (1.25663706144e-6) /* kg m / A^2 s^2 */ #define GSL_CONST_MKS_DEBYE (3.33564095198e-30) /* A s^2 / m^2 */ #define GSL_CONST_MKS_GAUSS (1e-4) /* kg / A s^2 */ #endif /* __GSL_CONST_MKS__ */ gsl-1.16/const/test.c0000664000252300025230000000525512171574312011432 00000000000000/* const/test.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include int main (void) { gsl_ieee_env_setup (); /* Basic check to make sure the header files are functioning */ { double c = GSL_CONST_MKS_SPEED_OF_LIGHT; double eps = GSL_CONST_MKS_VACUUM_PERMITTIVITY; double mu = GSL_CONST_MKS_VACUUM_PERMEABILITY; gsl_test_rel (c, 1.0/sqrt(eps*mu), 1e-6, "speed of light (mks)"); } { double ly = GSL_CONST_CGS_LIGHT_YEAR; double c = GSL_CONST_CGS_SPEED_OF_LIGHT; double y = 365.2425 * GSL_CONST_CGS_DAY; gsl_test_rel (ly, c * y, 1e-6, "light year (cgs)"); } { double c = GSL_CONST_MKSA_SPEED_OF_LIGHT; double eps = GSL_CONST_MKSA_VACUUM_PERMITTIVITY; double mu = GSL_CONST_MKSA_VACUUM_PERMEABILITY; gsl_test_rel (c, 1.0/sqrt(eps*mu), 1e-6, "speed of light (mksa)"); } { double ly = GSL_CONST_CGSM_LIGHT_YEAR; double c = GSL_CONST_CGSM_SPEED_OF_LIGHT; double y = 365.2425 * GSL_CONST_CGSM_DAY; gsl_test_rel (ly, c * y, 1e-6, "light year (cgsm)"); } { double micro = GSL_CONST_NUM_MICRO; double mega = GSL_CONST_NUM_MEGA; double kilo = GSL_CONST_NUM_KILO; gsl_test_rel (mega/kilo, 1/(micro*kilo), 1e-10, "kilo (mega/kilo, 1/(micro*kilo))"); } { double d = GSL_CONST_MKSA_DEBYE; double c = GSL_CONST_MKSA_SPEED_OF_LIGHT; double desu = d * c * 1000.0; gsl_test_rel (desu, 1e-18, 1e-10, "debye (esu)"); } { double k = GSL_CONST_MKSA_BOLTZMANN; double c = GSL_CONST_MKSA_SPEED_OF_LIGHT; double h = GSL_CONST_MKSA_PLANCKS_CONSTANT_H; double s = 2 * pow(M_PI, 5.0) * pow(k, 4.0) / (15 * pow(c, 2.0) * pow(h, 3.0)); double sigma = GSL_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT; gsl_test_rel(s, sigma, 1e-10, "stefan boltzmann constant"); } exit (gsl_test_summary ()); } gsl-1.16/const/Makefile.in0000664000252300025230000010136612172253754012361 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = const DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(test_SOURCES) DIST_SOURCES = $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ pkginclude_HEADERS = gsl_const.h gsl_const_cgs.h gsl_const_mks.h gsl_const_cgsm.h gsl_const_mksa.h gsl_const_num.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu const/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu const/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool cscopelist-am \ ctags ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-compile mostlyclean-generic mostlyclean-libtool \ pdf pdf-am ps ps-am recheck tags tags-am uninstall \ uninstall-am uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/const/ChangeLog0000664000252300025230000000511012171574312012047 000000000000002009-08-17 Brian Gough * const.el: removed electromagnetic constants from cgs, now only in CGSM 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2006-03-21 Brian Gough * test.c (main): added some extra tests 2006-03-17 Brian Gough * const.el (gsl-electrical-constants): added debye unit 2004-05-26 Brian Gough * test.c: added stdlib.h for exit() 2004-03-05 Brian Gough * const.el: added CGS and MKS systems back in, with CGSM electrical units excluded from CGS, for backwards compatibility 2003-11-27 Brian Gough * const.el (gsl-constants): added stefan-boltzmann constant and thomson cross section 2003-09-18 Brian Gough * test.c: added a test program * gsl_const.h: fixed to use new header files for MKSA and CGSM 2003-06-09 Brian Gough * calc-units-update.el: changed to use MKSA and CGSM units, so that electromagnetic constants are converted correctly Sat Jul 20 21:25:56 2002 Brian Gough * calc-units-update.el (math-additional-units): changed setvar to setq, otherwise the new values do not override the original values Wed May 29 22:41:31 2002 Brian Gough * calc-units-update.el (math-additional-units): updated unit values, in a backwards compatible way. Made mue an absolute value, and put Ryd in energy units. 2002-05-18 Jochen Küpper * calc-units-update.el (math-additional-units): Add this file to provide updated costants for Emacs calc. (These values are in the current development versions of GNU Emacs and Xemacs already.) Mon Apr 1 19:27:57 2002 Brian Gough * const.el (gsl-constants): Added newton, dyne, joule, erg and power-of-ten prefixes, Mega, Giga, Tera, etc. Tue Jan 8 21:48:56 2002 Brian Gough * const.el (gsl-constants): added bohr_radius and vacuum_permittivity Tue Sep 25 15:15:33 2001 Brian Gough * const.el (fn): make all output double precision to avoid possibility of unexpected integer division. (gsl-constants): fix definition of barn and btu (gsl-constants): added solar mass Tue Jan 23 16:19:50 2001 Brian Gough * const.el (gsl-constants): fixed definition of POINT (from pt to point, was previously measuring 'pints') gsl-1.16/const/gsl_const_mksa.h0000664000252300025230000001557212171574312013471 00000000000000/* const/gsl_const_mksa.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2007, 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST_MKSA__ #define __GSL_CONST_MKSA__ #define GSL_CONST_MKSA_SPEED_OF_LIGHT (2.99792458e8) /* m / s */ #define GSL_CONST_MKSA_GRAVITATIONAL_CONSTANT (6.673e-11) /* m^3 / kg s^2 */ #define GSL_CONST_MKSA_PLANCKS_CONSTANT_H (6.62606896e-34) /* kg m^2 / s */ #define GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR (1.05457162825e-34) /* kg m^2 / s */ #define GSL_CONST_MKSA_ASTRONOMICAL_UNIT (1.49597870691e11) /* m */ #define GSL_CONST_MKSA_LIGHT_YEAR (9.46053620707e15) /* m */ #define GSL_CONST_MKSA_PARSEC (3.08567758135e16) /* m */ #define GSL_CONST_MKSA_GRAV_ACCEL (9.80665e0) /* m / s^2 */ #define GSL_CONST_MKSA_ELECTRON_VOLT (1.602176487e-19) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_MASS_ELECTRON (9.10938188e-31) /* kg */ #define GSL_CONST_MKSA_MASS_MUON (1.88353109e-28) /* kg */ #define GSL_CONST_MKSA_MASS_PROTON (1.67262158e-27) /* kg */ #define GSL_CONST_MKSA_MASS_NEUTRON (1.67492716e-27) /* kg */ #define GSL_CONST_MKSA_RYDBERG (2.17987196968e-18) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_BOLTZMANN (1.3806504e-23) /* kg m^2 / K s^2 */ #define GSL_CONST_MKSA_MOLAR_GAS (8.314472e0) /* kg m^2 / K mol s^2 */ #define GSL_CONST_MKSA_STANDARD_GAS_VOLUME (2.2710981e-2) /* m^3 / mol */ #define GSL_CONST_MKSA_MINUTE (6e1) /* s */ #define GSL_CONST_MKSA_HOUR (3.6e3) /* s */ #define GSL_CONST_MKSA_DAY (8.64e4) /* s */ #define GSL_CONST_MKSA_WEEK (6.048e5) /* s */ #define GSL_CONST_MKSA_INCH (2.54e-2) /* m */ #define GSL_CONST_MKSA_FOOT (3.048e-1) /* m */ #define GSL_CONST_MKSA_YARD (9.144e-1) /* m */ #define GSL_CONST_MKSA_MILE (1.609344e3) /* m */ #define GSL_CONST_MKSA_NAUTICAL_MILE (1.852e3) /* m */ #define GSL_CONST_MKSA_FATHOM (1.8288e0) /* m */ #define GSL_CONST_MKSA_MIL (2.54e-5) /* m */ #define GSL_CONST_MKSA_POINT (3.52777777778e-4) /* m */ #define GSL_CONST_MKSA_TEXPOINT (3.51459803515e-4) /* m */ #define GSL_CONST_MKSA_MICRON (1e-6) /* m */ #define GSL_CONST_MKSA_ANGSTROM (1e-10) /* m */ #define GSL_CONST_MKSA_HECTARE (1e4) /* m^2 */ #define GSL_CONST_MKSA_ACRE (4.04685642241e3) /* m^2 */ #define GSL_CONST_MKSA_BARN (1e-28) /* m^2 */ #define GSL_CONST_MKSA_LITER (1e-3) /* m^3 */ #define GSL_CONST_MKSA_US_GALLON (3.78541178402e-3) /* m^3 */ #define GSL_CONST_MKSA_QUART (9.46352946004e-4) /* m^3 */ #define GSL_CONST_MKSA_PINT (4.73176473002e-4) /* m^3 */ #define GSL_CONST_MKSA_CUP (2.36588236501e-4) /* m^3 */ #define GSL_CONST_MKSA_FLUID_OUNCE (2.95735295626e-5) /* m^3 */ #define GSL_CONST_MKSA_TABLESPOON (1.47867647813e-5) /* m^3 */ #define GSL_CONST_MKSA_TEASPOON (4.92892159375e-6) /* m^3 */ #define GSL_CONST_MKSA_CANADIAN_GALLON (4.54609e-3) /* m^3 */ #define GSL_CONST_MKSA_UK_GALLON (4.546092e-3) /* m^3 */ #define GSL_CONST_MKSA_MILES_PER_HOUR (4.4704e-1) /* m / s */ #define GSL_CONST_MKSA_KILOMETERS_PER_HOUR (2.77777777778e-1) /* m / s */ #define GSL_CONST_MKSA_KNOT (5.14444444444e-1) /* m / s */ #define GSL_CONST_MKSA_POUND_MASS (4.5359237e-1) /* kg */ #define GSL_CONST_MKSA_OUNCE_MASS (2.8349523125e-2) /* kg */ #define GSL_CONST_MKSA_TON (9.0718474e2) /* kg */ #define GSL_CONST_MKSA_METRIC_TON (1e3) /* kg */ #define GSL_CONST_MKSA_UK_TON (1.0160469088e3) /* kg */ #define GSL_CONST_MKSA_TROY_OUNCE (3.1103475e-2) /* kg */ #define GSL_CONST_MKSA_CARAT (2e-4) /* kg */ #define GSL_CONST_MKSA_UNIFIED_ATOMIC_MASS (1.660538782e-27) /* kg */ #define GSL_CONST_MKSA_GRAM_FORCE (9.80665e-3) /* kg m / s^2 */ #define GSL_CONST_MKSA_POUND_FORCE (4.44822161526e0) /* kg m / s^2 */ #define GSL_CONST_MKSA_KILOPOUND_FORCE (4.44822161526e3) /* kg m / s^2 */ #define GSL_CONST_MKSA_POUNDAL (1.38255e-1) /* kg m / s^2 */ #define GSL_CONST_MKSA_CALORIE (4.1868e0) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_BTU (1.05505585262e3) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_THERM (1.05506e8) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_HORSEPOWER (7.457e2) /* kg m^2 / s^3 */ #define GSL_CONST_MKSA_BAR (1e5) /* kg / m s^2 */ #define GSL_CONST_MKSA_STD_ATMOSPHERE (1.01325e5) /* kg / m s^2 */ #define GSL_CONST_MKSA_TORR (1.33322368421e2) /* kg / m s^2 */ #define GSL_CONST_MKSA_METER_OF_MERCURY (1.33322368421e5) /* kg / m s^2 */ #define GSL_CONST_MKSA_INCH_OF_MERCURY (3.38638815789e3) /* kg / m s^2 */ #define GSL_CONST_MKSA_INCH_OF_WATER (2.490889e2) /* kg / m s^2 */ #define GSL_CONST_MKSA_PSI (6.89475729317e3) /* kg / m s^2 */ #define GSL_CONST_MKSA_POISE (1e-1) /* kg m^-1 s^-1 */ #define GSL_CONST_MKSA_STOKES (1e-4) /* m^2 / s */ #define GSL_CONST_MKSA_STILB (1e4) /* cd / m^2 */ #define GSL_CONST_MKSA_LUMEN (1e0) /* cd sr */ #define GSL_CONST_MKSA_LUX (1e0) /* cd sr / m^2 */ #define GSL_CONST_MKSA_PHOT (1e4) /* cd sr / m^2 */ #define GSL_CONST_MKSA_FOOTCANDLE (1.076e1) /* cd sr / m^2 */ #define GSL_CONST_MKSA_LAMBERT (1e4) /* cd sr / m^2 */ #define GSL_CONST_MKSA_FOOTLAMBERT (1.07639104e1) /* cd sr / m^2 */ #define GSL_CONST_MKSA_CURIE (3.7e10) /* 1 / s */ #define GSL_CONST_MKSA_ROENTGEN (2.58e-4) /* A s / kg */ #define GSL_CONST_MKSA_RAD (1e-2) /* m^2 / s^2 */ #define GSL_CONST_MKSA_SOLAR_MASS (1.98892e30) /* kg */ #define GSL_CONST_MKSA_BOHR_RADIUS (5.291772083e-11) /* m */ #define GSL_CONST_MKSA_NEWTON (1e0) /* kg m / s^2 */ #define GSL_CONST_MKSA_DYNE (1e-5) /* kg m / s^2 */ #define GSL_CONST_MKSA_JOULE (1e0) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_ERG (1e-7) /* kg m^2 / s^2 */ #define GSL_CONST_MKSA_STEFAN_BOLTZMANN_CONSTANT (5.67040047374e-8) /* kg / K^4 s^3 */ #define GSL_CONST_MKSA_THOMSON_CROSS_SECTION (6.65245893699e-29) /* m^2 */ #define GSL_CONST_MKSA_BOHR_MAGNETON (9.27400899e-24) /* A m^2 */ #define GSL_CONST_MKSA_NUCLEAR_MAGNETON (5.05078317e-27) /* A m^2 */ #define GSL_CONST_MKSA_ELECTRON_MAGNETIC_MOMENT (9.28476362e-24) /* A m^2 */ #define GSL_CONST_MKSA_PROTON_MAGNETIC_MOMENT (1.410606633e-26) /* A m^2 */ #define GSL_CONST_MKSA_FARADAY (9.64853429775e4) /* A s / mol */ #define GSL_CONST_MKSA_ELECTRON_CHARGE (1.602176487e-19) /* A s */ #define GSL_CONST_MKSA_VACUUM_PERMITTIVITY (8.854187817e-12) /* A^2 s^4 / kg m^3 */ #define GSL_CONST_MKSA_VACUUM_PERMEABILITY (1.25663706144e-6) /* kg m / A^2 s^2 */ #define GSL_CONST_MKSA_DEBYE (3.33564095198e-30) /* A s^2 / m^2 */ #define GSL_CONST_MKSA_GAUSS (1e-4) /* kg / A s^2 */ #endif /* __GSL_CONST_MKSA__ */ gsl-1.16/const/gsl_const_num.h0000664000252300025230000000334112171574312013324 00000000000000/* const/gsl_const_num.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2007, 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST_NUM__ #define __GSL_CONST_NUM__ #define GSL_CONST_NUM_FINE_STRUCTURE (7.297352533e-3) /* 1 */ #define GSL_CONST_NUM_AVOGADRO (6.02214199e23) /* 1 / mol */ #define GSL_CONST_NUM_YOTTA (1e24) /* 1 */ #define GSL_CONST_NUM_ZETTA (1e21) /* 1 */ #define GSL_CONST_NUM_EXA (1e18) /* 1 */ #define GSL_CONST_NUM_PETA (1e15) /* 1 */ #define GSL_CONST_NUM_TERA (1e12) /* 1 */ #define GSL_CONST_NUM_GIGA (1e9) /* 1 */ #define GSL_CONST_NUM_MEGA (1e6) /* 1 */ #define GSL_CONST_NUM_KILO (1e3) /* 1 */ #define GSL_CONST_NUM_MILLI (1e-3) /* 1 */ #define GSL_CONST_NUM_MICRO (1e-6) /* 1 */ #define GSL_CONST_NUM_NANO (1e-9) /* 1 */ #define GSL_CONST_NUM_PICO (1e-12) /* 1 */ #define GSL_CONST_NUM_FEMTO (1e-15) /* 1 */ #define GSL_CONST_NUM_ATTO (1e-18) /* 1 */ #define GSL_CONST_NUM_ZEPTO (1e-21) /* 1 */ #define GSL_CONST_NUM_YOCTO (1e-24) /* 1 */ #endif /* __GSL_CONST_NUM__ */ gsl-1.16/const/Makefile.am0000664000252300025230000000053712171574312012341 00000000000000pkginclude_HEADERS = gsl_const.h gsl_const_cgs.h gsl_const_mks.h gsl_const_cgsm.h gsl_const_mksa.h gsl_const_num.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/const/gsl_const_cgs.h0000664000252300025230000001413012171574312013277 00000000000000/* const/gsl_const_cgs.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, * 2006, 2007, 2008, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST_CGS__ #define __GSL_CONST_CGS__ #define GSL_CONST_CGS_SPEED_OF_LIGHT (2.99792458e10) /* cm / s */ #define GSL_CONST_CGS_GRAVITATIONAL_CONSTANT (6.673e-8) /* cm^3 / g s^2 */ #define GSL_CONST_CGS_PLANCKS_CONSTANT_H (6.62606896e-27) /* g cm^2 / s */ #define GSL_CONST_CGS_PLANCKS_CONSTANT_HBAR (1.05457162825e-27) /* g cm^2 / s */ #define GSL_CONST_CGS_ASTRONOMICAL_UNIT (1.49597870691e13) /* cm */ #define GSL_CONST_CGS_LIGHT_YEAR (9.46053620707e17) /* cm */ #define GSL_CONST_CGS_PARSEC (3.08567758135e18) /* cm */ #define GSL_CONST_CGS_GRAV_ACCEL (9.80665e2) /* cm / s^2 */ #define GSL_CONST_CGS_ELECTRON_VOLT (1.602176487e-12) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_MASS_ELECTRON (9.10938188e-28) /* g */ #define GSL_CONST_CGS_MASS_MUON (1.88353109e-25) /* g */ #define GSL_CONST_CGS_MASS_PROTON (1.67262158e-24) /* g */ #define GSL_CONST_CGS_MASS_NEUTRON (1.67492716e-24) /* g */ #define GSL_CONST_CGS_RYDBERG (2.17987196968e-11) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_BOLTZMANN (1.3806504e-16) /* g cm^2 / K s^2 */ #define GSL_CONST_CGS_MOLAR_GAS (8.314472e7) /* g cm^2 / K mol s^2 */ #define GSL_CONST_CGS_STANDARD_GAS_VOLUME (2.2710981e4) /* cm^3 / mol */ #define GSL_CONST_CGS_MINUTE (6e1) /* s */ #define GSL_CONST_CGS_HOUR (3.6e3) /* s */ #define GSL_CONST_CGS_DAY (8.64e4) /* s */ #define GSL_CONST_CGS_WEEK (6.048e5) /* s */ #define GSL_CONST_CGS_INCH (2.54e0) /* cm */ #define GSL_CONST_CGS_FOOT (3.048e1) /* cm */ #define GSL_CONST_CGS_YARD (9.144e1) /* cm */ #define GSL_CONST_CGS_MILE (1.609344e5) /* cm */ #define GSL_CONST_CGS_NAUTICAL_MILE (1.852e5) /* cm */ #define GSL_CONST_CGS_FATHOM (1.8288e2) /* cm */ #define GSL_CONST_CGS_MIL (2.54e-3) /* cm */ #define GSL_CONST_CGS_POINT (3.52777777778e-2) /* cm */ #define GSL_CONST_CGS_TEXPOINT (3.51459803515e-2) /* cm */ #define GSL_CONST_CGS_MICRON (1e-4) /* cm */ #define GSL_CONST_CGS_ANGSTROM (1e-8) /* cm */ #define GSL_CONST_CGS_HECTARE (1e8) /* cm^2 */ #define GSL_CONST_CGS_ACRE (4.04685642241e7) /* cm^2 */ #define GSL_CONST_CGS_BARN (1e-24) /* cm^2 */ #define GSL_CONST_CGS_LITER (1e3) /* cm^3 */ #define GSL_CONST_CGS_US_GALLON (3.78541178402e3) /* cm^3 */ #define GSL_CONST_CGS_QUART (9.46352946004e2) /* cm^3 */ #define GSL_CONST_CGS_PINT (4.73176473002e2) /* cm^3 */ #define GSL_CONST_CGS_CUP (2.36588236501e2) /* cm^3 */ #define GSL_CONST_CGS_FLUID_OUNCE (2.95735295626e1) /* cm^3 */ #define GSL_CONST_CGS_TABLESPOON (1.47867647813e1) /* cm^3 */ #define GSL_CONST_CGS_TEASPOON (4.92892159375e0) /* cm^3 */ #define GSL_CONST_CGS_CANADIAN_GALLON (4.54609e3) /* cm^3 */ #define GSL_CONST_CGS_UK_GALLON (4.546092e3) /* cm^3 */ #define GSL_CONST_CGS_MILES_PER_HOUR (4.4704e1) /* cm / s */ #define GSL_CONST_CGS_KILOMETERS_PER_HOUR (2.77777777778e1) /* cm / s */ #define GSL_CONST_CGS_KNOT (5.14444444444e1) /* cm / s */ #define GSL_CONST_CGS_POUND_MASS (4.5359237e2) /* g */ #define GSL_CONST_CGS_OUNCE_MASS (2.8349523125e1) /* g */ #define GSL_CONST_CGS_TON (9.0718474e5) /* g */ #define GSL_CONST_CGS_METRIC_TON (1e6) /* g */ #define GSL_CONST_CGS_UK_TON (1.0160469088e6) /* g */ #define GSL_CONST_CGS_TROY_OUNCE (3.1103475e1) /* g */ #define GSL_CONST_CGS_CARAT (2e-1) /* g */ #define GSL_CONST_CGS_UNIFIED_ATOMIC_MASS (1.660538782e-24) /* g */ #define GSL_CONST_CGS_GRAM_FORCE (9.80665e2) /* cm g / s^2 */ #define GSL_CONST_CGS_POUND_FORCE (4.44822161526e5) /* cm g / s^2 */ #define GSL_CONST_CGS_KILOPOUND_FORCE (4.44822161526e8) /* cm g / s^2 */ #define GSL_CONST_CGS_POUNDAL (1.38255e4) /* cm g / s^2 */ #define GSL_CONST_CGS_CALORIE (4.1868e7) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_BTU (1.05505585262e10) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_THERM (1.05506e15) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_HORSEPOWER (7.457e9) /* g cm^2 / s^3 */ #define GSL_CONST_CGS_BAR (1e6) /* g / cm s^2 */ #define GSL_CONST_CGS_STD_ATMOSPHERE (1.01325e6) /* g / cm s^2 */ #define GSL_CONST_CGS_TORR (1.33322368421e3) /* g / cm s^2 */ #define GSL_CONST_CGS_METER_OF_MERCURY (1.33322368421e6) /* g / cm s^2 */ #define GSL_CONST_CGS_INCH_OF_MERCURY (3.38638815789e4) /* g / cm s^2 */ #define GSL_CONST_CGS_INCH_OF_WATER (2.490889e3) /* g / cm s^2 */ #define GSL_CONST_CGS_PSI (6.89475729317e4) /* g / cm s^2 */ #define GSL_CONST_CGS_POISE (1e0) /* g / cm s */ #define GSL_CONST_CGS_STOKES (1e0) /* cm^2 / s */ #define GSL_CONST_CGS_STILB (1e0) /* cd / cm^2 */ #define GSL_CONST_CGS_LUMEN (1e0) /* cd sr */ #define GSL_CONST_CGS_LUX (1e-4) /* cd sr / cm^2 */ #define GSL_CONST_CGS_PHOT (1e0) /* cd sr / cm^2 */ #define GSL_CONST_CGS_FOOTCANDLE (1.076e-3) /* cd sr / cm^2 */ #define GSL_CONST_CGS_LAMBERT (1e0) /* cd sr / cm^2 */ #define GSL_CONST_CGS_FOOTLAMBERT (1.07639104e-3) /* cd sr / cm^2 */ #define GSL_CONST_CGS_CURIE (3.7e10) /* 1 / s */ #define GSL_CONST_CGS_ROENTGEN (2.58e-7) /* A s / g */ #define GSL_CONST_CGS_RAD (1e2) /* cm^2 / s^2 */ #define GSL_CONST_CGS_SOLAR_MASS (1.98892e33) /* g */ #define GSL_CONST_CGS_BOHR_RADIUS (5.291772083e-9) /* cm */ #define GSL_CONST_CGS_NEWTON (1e5) /* cm g / s^2 */ #define GSL_CONST_CGS_DYNE (1e0) /* cm g / s^2 */ #define GSL_CONST_CGS_JOULE (1e7) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_ERG (1e0) /* g cm^2 / s^2 */ #define GSL_CONST_CGS_STEFAN_BOLTZMANN_CONSTANT (5.67040047374e-5) /* g / K^4 s^3 */ #define GSL_CONST_CGS_THOMSON_CROSS_SECTION (6.65245893699e-25) /* cm^2 */ #endif /* __GSL_CONST_CGS__ */ gsl-1.16/const/gsl_const.h0000664000252300025230000000204012171574312012440 00000000000000/* const/gsl_const.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_CONST__ #define __GSL_CONST__ #include #include #include #include #include #endif /* __GSL_CONST__ */ gsl-1.16/vector/0000775000252300025230000000000012172254156010536 500000000000000gsl-1.16/vector/oper_complex_source.c0000664000252300025230000001043412171574312014676 00000000000000/* vector/oper_source.c * * Copyright (C) 2008 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_vector, add) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[2 * i * stride_a] += b->data[2 * i * stride_b]; a->data[2 * i * stride_a + 1] += b->data[2 * i * stride_b + 1]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, sub) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[2 * i * stride_a] -= b->data[2 * i * stride_b]; a->data[2 * i * stride_a + 1] -= b->data[2 * i * stride_b + 1]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, mul) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { ATOMIC ar = a->data[2 * i * stride_a]; ATOMIC ai = a->data[2 * i * stride_a + 1]; ATOMIC br = b->data[2 * i * stride_b]; ATOMIC bi = b->data[2 * i * stride_b + 1]; a->data[2 * i * stride_a] = ar * br - ai * bi; a->data[2 * i * stride_a + 1] = ar * bi + ai * br; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, div) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { ATOMIC ar = a->data[2 * i * stride_a]; ATOMIC ai = a->data[2 * i * stride_a + 1]; ATOMIC br = b->data[2 * i * stride_b]; ATOMIC bi = b->data[2 * i * stride_b + 1]; ATOMIC s = 1.0 / hypot(br, bi); ATOMIC sbr = s * br; ATOMIC sbi = s * bi; a->data[2 * i * stride_a] = (ar * sbr + ai * sbi) * s; a->data[2 * i * stride_a + 1] = (ai * sbr - ar * sbi) * s; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, scale) (TYPE(gsl_vector) * a, const BASE x) { const size_t N = a->size; const size_t stride = a->stride; size_t i; ATOMIC xr = GSL_REAL(x); ATOMIC xi = GSL_IMAG(x); for (i = 0; i < N; i++) { ATOMIC ar = a->data[2 * i * stride]; ATOMIC ai = a->data[2 * i * stride + 1]; a->data[2 * i * stride] = ar * xr - ai * xi; a->data[2 * i * stride + 1] = ar * xi + ai * xr; } return GSL_SUCCESS; } int FUNCTION(gsl_vector, add_constant) (TYPE(gsl_vector) * a, const BASE x) { const size_t N = a->size; const size_t stride = a->stride; size_t i; ATOMIC xr = GSL_REAL(x); ATOMIC xi = GSL_IMAG(x); for (i = 0; i < N; i++) { a->data[2 * i * stride] += xr; a->data[2 * i * stride + 1] += xi; } return GSL_SUCCESS; } gsl-1.16/vector/test_static.c0000664000252300025230000000015112171574312013143 00000000000000#undef HAVE_INLINE #ifndef NO_INLINE #define NO_INLINE #endif #define DESC " (static)" #include "test.c" gsl-1.16/vector/minmax.c0000664000252300025230000000260312171574312012112 00000000000000#include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/view.h0000664000252300025230000000011712171574312011576 00000000000000#define NULL_VECTOR {0, 0, 0, 0, 0} #define NULL_VECTOR_VIEW {{0, 0, 0, 0, 0}} gsl-1.16/vector/TODO0000664000252300025230000000011412171574312011140 00000000000000# -*- org -*- #+CATEGORY: vector * Pretty print function * Vector p-norms gsl-1.16/vector/reim.c0000664000252300025230000000167012171574312011560 00000000000000#include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "reim_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT gsl-1.16/vector/copy_source.c0000664000252300025230000000300712171574312013152 00000000000000/* vector/copy_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_vector, memcpy) (TYPE (gsl_vector) * dest, const TYPE (gsl_vector) * src) { const size_t src_size = src->size; const size_t dest_size = dest->size; if (src_size != dest_size) { GSL_ERROR ("vector lengths are not equal", GSL_EBADLEN); } { const size_t src_stride = src->stride ; const size_t dest_stride = dest->stride ; size_t j; for (j = 0; j < src_size; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { dest->data[MULTIPLICITY * dest_stride * j + k] = src->data[MULTIPLICITY * src_stride * j + k]; } } } return GSL_SUCCESS; } gsl-1.16/vector/init_source.c0000664000252300025230000001207012171574312013143 00000000000000/* vector/init_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE (gsl_vector) * FUNCTION (gsl_vector, alloc) (const size_t n) { TYPE (gsl_block) * block; TYPE (gsl_vector) * v; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, 0); } v = (TYPE (gsl_vector) *) malloc (sizeof (TYPE (gsl_vector))); if (v == 0) { GSL_ERROR_VAL ("failed to allocate space for vector struct", GSL_ENOMEM, 0); } block = FUNCTION (gsl_block,alloc) (n); if (block == 0) { free (v) ; GSL_ERROR_VAL ("failed to allocate space for block", GSL_ENOMEM, 0); } v->data = block->data ; v->size = n; v->stride = 1; v->block = block; v->owner = 1; return v; } TYPE (gsl_vector) * FUNCTION (gsl_vector, calloc) (const size_t n) { size_t i; TYPE (gsl_vector) * v = FUNCTION (gsl_vector, alloc) (n); if (v == 0) return 0; /* initialize vector to zero */ for (i = 0; i < MULTIPLICITY * n; i++) { v->data[i] = 0; } return v; } TYPE (gsl_vector) * FUNCTION (gsl_vector, alloc_from_block) (TYPE(gsl_block) * block, const size_t offset, const size_t n, const size_t stride) { TYPE (gsl_vector) * v; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, 0); } if (stride == 0) { GSL_ERROR_VAL ("stride must be positive integer", GSL_EINVAL, 0); } if (block->size <= offset + (n - 1) * stride) { GSL_ERROR_VAL ("vector would extend past end of block", GSL_EINVAL, 0); } v = (TYPE (gsl_vector) *) malloc (sizeof (TYPE (gsl_vector))); if (v == 0) { GSL_ERROR_VAL ("failed to allocate space for vector struct", GSL_ENOMEM, 0); } v->data = block->data + MULTIPLICITY * offset ; v->size = n; v->stride = stride; v->block = block; v->owner = 0; return v; } TYPE (gsl_vector) * FUNCTION (gsl_vector, alloc_from_vector) (TYPE(gsl_vector) * w, const size_t offset, const size_t n, const size_t stride) { TYPE (gsl_vector) * v; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, 0); } if (stride == 0) { GSL_ERROR_VAL ("stride must be positive integer", GSL_EINVAL, 0); } if (offset + (n - 1) * stride >= w->size) { GSL_ERROR_VAL ("vector would extend past end of block", GSL_EINVAL, 0); } v = (TYPE (gsl_vector) *) malloc (sizeof (TYPE (gsl_vector))); if (v == 0) { GSL_ERROR_VAL ("failed to allocate space for vector struct", GSL_ENOMEM, 0); } v->data = w->data + MULTIPLICITY * w->stride * offset ; v->size = n; v->stride = stride * w->stride; v->block = w->block; v->owner = 0; return v; } void FUNCTION (gsl_vector, free) (TYPE (gsl_vector) * v) { RETURN_IF_NULL (v); if (v->owner) { FUNCTION(gsl_block, free) (v->block) ; } free (v); } void FUNCTION (gsl_vector, set_all) (TYPE (gsl_vector) * v, BASE x) { ATOMIC * const data = v->data; const size_t n = v->size; const size_t stride = v->stride; size_t i; for (i = 0; i < n; i++) { *(BASE *) (data + MULTIPLICITY * i * stride) = x; } } void FUNCTION (gsl_vector, set_zero) (TYPE (gsl_vector) * v) { ATOMIC * const data = v->data; const size_t n = v->size; const size_t stride = v->stride; const BASE zero = ZERO ; size_t i; for (i = 0; i < n; i++) { *(BASE *) (data + MULTIPLICITY * i * stride) = zero; } } int FUNCTION (gsl_vector, set_basis) (TYPE (gsl_vector) * v, size_t i) { ATOMIC * const data = v->data; const size_t n = v->size; const size_t stride = v->stride; const BASE zero = ZERO ; const BASE one = ONE; size_t k; if (i >= n) { GSL_ERROR ("index out of range", GSL_EINVAL); } for (k = 0; k < n; k++) { *(BASE *) (data + MULTIPLICITY * k * stride) = zero; } *(BASE *) (data + MULTIPLICITY * i * stride) = one; return GSL_SUCCESS; } gsl-1.16/vector/gsl_vector_double.h0000664000252300025230000001520712171574312014333 00000000000000/* vector/gsl_vector_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_DOUBLE_H__ #define __GSL_VECTOR_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; double *data; gsl_block *block; int owner; } gsl_vector; typedef struct { gsl_vector vector; } _gsl_vector_view; typedef _gsl_vector_view gsl_vector_view; typedef struct { gsl_vector vector; } _gsl_vector_const_view; typedef const _gsl_vector_const_view gsl_vector_const_view; /* Allocation */ gsl_vector *gsl_vector_alloc (const size_t n); gsl_vector *gsl_vector_calloc (const size_t n); gsl_vector *gsl_vector_alloc_from_block (gsl_block * b, const size_t offset, const size_t n, const size_t stride); gsl_vector *gsl_vector_alloc_from_vector (gsl_vector * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_free (gsl_vector * v); /* Views */ _gsl_vector_view gsl_vector_view_array (double *v, size_t n); _gsl_vector_view gsl_vector_view_array_with_stride (double *base, size_t stride, size_t n); _gsl_vector_const_view gsl_vector_const_view_array (const double *v, size_t n); _gsl_vector_const_view gsl_vector_const_view_array_with_stride (const double *base, size_t stride, size_t n); _gsl_vector_view gsl_vector_subvector (gsl_vector *v, size_t i, size_t n); _gsl_vector_view gsl_vector_subvector_with_stride (gsl_vector *v, size_t i, size_t stride, size_t n); _gsl_vector_const_view gsl_vector_const_subvector (const gsl_vector *v, size_t i, size_t n); _gsl_vector_const_view gsl_vector_const_subvector_with_stride (const gsl_vector *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_set_zero (gsl_vector * v); void gsl_vector_set_all (gsl_vector * v, double x); int gsl_vector_set_basis (gsl_vector * v, size_t i); int gsl_vector_fread (FILE * stream, gsl_vector * v); int gsl_vector_fwrite (FILE * stream, const gsl_vector * v); int gsl_vector_fscanf (FILE * stream, gsl_vector * v); int gsl_vector_fprintf (FILE * stream, const gsl_vector * v, const char *format); int gsl_vector_memcpy (gsl_vector * dest, const gsl_vector * src); int gsl_vector_reverse (gsl_vector * v); int gsl_vector_swap (gsl_vector * v, gsl_vector * w); int gsl_vector_swap_elements (gsl_vector * v, const size_t i, const size_t j); double gsl_vector_max (const gsl_vector * v); double gsl_vector_min (const gsl_vector * v); void gsl_vector_minmax (const gsl_vector * v, double * min_out, double * max_out); size_t gsl_vector_max_index (const gsl_vector * v); size_t gsl_vector_min_index (const gsl_vector * v); void gsl_vector_minmax_index (const gsl_vector * v, size_t * imin, size_t * imax); int gsl_vector_add (gsl_vector * a, const gsl_vector * b); int gsl_vector_sub (gsl_vector * a, const gsl_vector * b); int gsl_vector_mul (gsl_vector * a, const gsl_vector * b); int gsl_vector_div (gsl_vector * a, const gsl_vector * b); int gsl_vector_scale (gsl_vector * a, const double x); int gsl_vector_add_constant (gsl_vector * a, const double x); int gsl_vector_equal (const gsl_vector * u, const gsl_vector * v); int gsl_vector_isnull (const gsl_vector * v); int gsl_vector_ispos (const gsl_vector * v); int gsl_vector_isneg (const gsl_vector * v); int gsl_vector_isnonneg (const gsl_vector * v); INLINE_DECL double gsl_vector_get (const gsl_vector * v, const size_t i); INLINE_DECL void gsl_vector_set (gsl_vector * v, const size_t i, double x); INLINE_DECL double * gsl_vector_ptr (gsl_vector * v, const size_t i); INLINE_DECL const double * gsl_vector_const_ptr (const gsl_vector * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN double gsl_vector_get (const gsl_vector * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_set (gsl_vector * v, const size_t i, double x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN double * gsl_vector_ptr (gsl_vector * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (double *) (v->data + i * v->stride); } INLINE_FUN const double * gsl_vector_const_ptr (const gsl_vector * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const double *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_DOUBLE_H__ */ gsl-1.16/vector/reim_source.c0000664000252300025230000000323212171574312013134 00000000000000/* vector/reim_source.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_REAL_VIEW(_gsl_vector, view) FUNCTION(gsl_vector, real) (QUALIFIED_TYPE(gsl_vector) * v) { REAL_TYPE(gsl_vector) s = NULL_VECTOR; s.data = v->data; s.size = v->size; s.stride = MULTIPLICITY * v->stride; s.block = 0; /* FIXME: should be v->block, but cannot point to block of different type */ s.owner = 0; { QUALIFIED_REAL_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; view.vector = s; return view; } } QUALIFIED_REAL_VIEW(_gsl_vector, view) FUNCTION(gsl_vector, imag) (QUALIFIED_TYPE(gsl_vector) * v) { REAL_TYPE(gsl_vector) s = NULL_VECTOR; s.data = v->data + 1; s.size = v->size; s.stride = MULTIPLICITY * v->stride; s.block = 0; /* FIXME: cannot point to block of different type */ s.owner = 0; { QUALIFIED_REAL_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; view.vector = s; return view; } } gsl-1.16/vector/gsl_vector_long_double.h0000664000252300025230000002026012171574312015345 00000000000000/* vector/gsl_vector_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_LONG_DOUBLE_H__ #define __GSL_VECTOR_LONG_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; long double *data; gsl_block_long_double *block; int owner; } gsl_vector_long_double; typedef struct { gsl_vector_long_double vector; } _gsl_vector_long_double_view; typedef _gsl_vector_long_double_view gsl_vector_long_double_view; typedef struct { gsl_vector_long_double vector; } _gsl_vector_long_double_const_view; typedef const _gsl_vector_long_double_const_view gsl_vector_long_double_const_view; /* Allocation */ gsl_vector_long_double *gsl_vector_long_double_alloc (const size_t n); gsl_vector_long_double *gsl_vector_long_double_calloc (const size_t n); gsl_vector_long_double *gsl_vector_long_double_alloc_from_block (gsl_block_long_double * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_long_double *gsl_vector_long_double_alloc_from_vector (gsl_vector_long_double * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_long_double_free (gsl_vector_long_double * v); /* Views */ _gsl_vector_long_double_view gsl_vector_long_double_view_array (long double *v, size_t n); _gsl_vector_long_double_view gsl_vector_long_double_view_array_with_stride (long double *base, size_t stride, size_t n); _gsl_vector_long_double_const_view gsl_vector_long_double_const_view_array (const long double *v, size_t n); _gsl_vector_long_double_const_view gsl_vector_long_double_const_view_array_with_stride (const long double *base, size_t stride, size_t n); _gsl_vector_long_double_view gsl_vector_long_double_subvector (gsl_vector_long_double *v, size_t i, size_t n); _gsl_vector_long_double_view gsl_vector_long_double_subvector_with_stride (gsl_vector_long_double *v, size_t i, size_t stride, size_t n); _gsl_vector_long_double_const_view gsl_vector_long_double_const_subvector (const gsl_vector_long_double *v, size_t i, size_t n); _gsl_vector_long_double_const_view gsl_vector_long_double_const_subvector_with_stride (const gsl_vector_long_double *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_long_double_set_zero (gsl_vector_long_double * v); void gsl_vector_long_double_set_all (gsl_vector_long_double * v, long double x); int gsl_vector_long_double_set_basis (gsl_vector_long_double * v, size_t i); int gsl_vector_long_double_fread (FILE * stream, gsl_vector_long_double * v); int gsl_vector_long_double_fwrite (FILE * stream, const gsl_vector_long_double * v); int gsl_vector_long_double_fscanf (FILE * stream, gsl_vector_long_double * v); int gsl_vector_long_double_fprintf (FILE * stream, const gsl_vector_long_double * v, const char *format); int gsl_vector_long_double_memcpy (gsl_vector_long_double * dest, const gsl_vector_long_double * src); int gsl_vector_long_double_reverse (gsl_vector_long_double * v); int gsl_vector_long_double_swap (gsl_vector_long_double * v, gsl_vector_long_double * w); int gsl_vector_long_double_swap_elements (gsl_vector_long_double * v, const size_t i, const size_t j); long double gsl_vector_long_double_max (const gsl_vector_long_double * v); long double gsl_vector_long_double_min (const gsl_vector_long_double * v); void gsl_vector_long_double_minmax (const gsl_vector_long_double * v, long double * min_out, long double * max_out); size_t gsl_vector_long_double_max_index (const gsl_vector_long_double * v); size_t gsl_vector_long_double_min_index (const gsl_vector_long_double * v); void gsl_vector_long_double_minmax_index (const gsl_vector_long_double * v, size_t * imin, size_t * imax); int gsl_vector_long_double_add (gsl_vector_long_double * a, const gsl_vector_long_double * b); int gsl_vector_long_double_sub (gsl_vector_long_double * a, const gsl_vector_long_double * b); int gsl_vector_long_double_mul (gsl_vector_long_double * a, const gsl_vector_long_double * b); int gsl_vector_long_double_div (gsl_vector_long_double * a, const gsl_vector_long_double * b); int gsl_vector_long_double_scale (gsl_vector_long_double * a, const double x); int gsl_vector_long_double_add_constant (gsl_vector_long_double * a, const double x); int gsl_vector_long_double_equal (const gsl_vector_long_double * u, const gsl_vector_long_double * v); int gsl_vector_long_double_isnull (const gsl_vector_long_double * v); int gsl_vector_long_double_ispos (const gsl_vector_long_double * v); int gsl_vector_long_double_isneg (const gsl_vector_long_double * v); int gsl_vector_long_double_isnonneg (const gsl_vector_long_double * v); INLINE_DECL long double gsl_vector_long_double_get (const gsl_vector_long_double * v, const size_t i); INLINE_DECL void gsl_vector_long_double_set (gsl_vector_long_double * v, const size_t i, long double x); INLINE_DECL long double * gsl_vector_long_double_ptr (gsl_vector_long_double * v, const size_t i); INLINE_DECL const long double * gsl_vector_long_double_const_ptr (const gsl_vector_long_double * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN long double gsl_vector_long_double_get (const gsl_vector_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_long_double_set (gsl_vector_long_double * v, const size_t i, long double x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN long double * gsl_vector_long_double_ptr (gsl_vector_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (long double *) (v->data + i * v->stride); } INLINE_FUN const long double * gsl_vector_long_double_const_ptr (const gsl_vector_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const long double *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_LONG_DOUBLE_H__ */ gsl-1.16/vector/swap.c0000664000252300025230000000336112171574312011575 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector_char.h0000664000252300025230000001626212171574312014000 00000000000000/* vector/gsl_vector_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_CHAR_H__ #define __GSL_VECTOR_CHAR_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; char *data; gsl_block_char *block; int owner; } gsl_vector_char; typedef struct { gsl_vector_char vector; } _gsl_vector_char_view; typedef _gsl_vector_char_view gsl_vector_char_view; typedef struct { gsl_vector_char vector; } _gsl_vector_char_const_view; typedef const _gsl_vector_char_const_view gsl_vector_char_const_view; /* Allocation */ gsl_vector_char *gsl_vector_char_alloc (const size_t n); gsl_vector_char *gsl_vector_char_calloc (const size_t n); gsl_vector_char *gsl_vector_char_alloc_from_block (gsl_block_char * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_char *gsl_vector_char_alloc_from_vector (gsl_vector_char * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_char_free (gsl_vector_char * v); /* Views */ _gsl_vector_char_view gsl_vector_char_view_array (char *v, size_t n); _gsl_vector_char_view gsl_vector_char_view_array_with_stride (char *base, size_t stride, size_t n); _gsl_vector_char_const_view gsl_vector_char_const_view_array (const char *v, size_t n); _gsl_vector_char_const_view gsl_vector_char_const_view_array_with_stride (const char *base, size_t stride, size_t n); _gsl_vector_char_view gsl_vector_char_subvector (gsl_vector_char *v, size_t i, size_t n); _gsl_vector_char_view gsl_vector_char_subvector_with_stride (gsl_vector_char *v, size_t i, size_t stride, size_t n); _gsl_vector_char_const_view gsl_vector_char_const_subvector (const gsl_vector_char *v, size_t i, size_t n); _gsl_vector_char_const_view gsl_vector_char_const_subvector_with_stride (const gsl_vector_char *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_char_set_zero (gsl_vector_char * v); void gsl_vector_char_set_all (gsl_vector_char * v, char x); int gsl_vector_char_set_basis (gsl_vector_char * v, size_t i); int gsl_vector_char_fread (FILE * stream, gsl_vector_char * v); int gsl_vector_char_fwrite (FILE * stream, const gsl_vector_char * v); int gsl_vector_char_fscanf (FILE * stream, gsl_vector_char * v); int gsl_vector_char_fprintf (FILE * stream, const gsl_vector_char * v, const char *format); int gsl_vector_char_memcpy (gsl_vector_char * dest, const gsl_vector_char * src); int gsl_vector_char_reverse (gsl_vector_char * v); int gsl_vector_char_swap (gsl_vector_char * v, gsl_vector_char * w); int gsl_vector_char_swap_elements (gsl_vector_char * v, const size_t i, const size_t j); char gsl_vector_char_max (const gsl_vector_char * v); char gsl_vector_char_min (const gsl_vector_char * v); void gsl_vector_char_minmax (const gsl_vector_char * v, char * min_out, char * max_out); size_t gsl_vector_char_max_index (const gsl_vector_char * v); size_t gsl_vector_char_min_index (const gsl_vector_char * v); void gsl_vector_char_minmax_index (const gsl_vector_char * v, size_t * imin, size_t * imax); int gsl_vector_char_add (gsl_vector_char * a, const gsl_vector_char * b); int gsl_vector_char_sub (gsl_vector_char * a, const gsl_vector_char * b); int gsl_vector_char_mul (gsl_vector_char * a, const gsl_vector_char * b); int gsl_vector_char_div (gsl_vector_char * a, const gsl_vector_char * b); int gsl_vector_char_scale (gsl_vector_char * a, const double x); int gsl_vector_char_add_constant (gsl_vector_char * a, const double x); int gsl_vector_char_equal (const gsl_vector_char * u, const gsl_vector_char * v); int gsl_vector_char_isnull (const gsl_vector_char * v); int gsl_vector_char_ispos (const gsl_vector_char * v); int gsl_vector_char_isneg (const gsl_vector_char * v); int gsl_vector_char_isnonneg (const gsl_vector_char * v); INLINE_DECL char gsl_vector_char_get (const gsl_vector_char * v, const size_t i); INLINE_DECL void gsl_vector_char_set (gsl_vector_char * v, const size_t i, char x); INLINE_DECL char * gsl_vector_char_ptr (gsl_vector_char * v, const size_t i); INLINE_DECL const char * gsl_vector_char_const_ptr (const gsl_vector_char * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN char gsl_vector_char_get (const gsl_vector_char * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_char_set (gsl_vector_char * v, const size_t i, char x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN char * gsl_vector_char_ptr (gsl_vector_char * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (char *) (v->data + i * v->stride); } INLINE_FUN const char * gsl_vector_char_const_ptr (const gsl_vector_char * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const char *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_CHAR_H__ */ gsl-1.16/vector/test.c0000664000252300025230000001515212171574312011603 00000000000000/* vector/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #if (!GSL_RANGE_CHECK) && defined(HAVE_INLINE) #undef GSL_RANGE_CHECK #define GSL_RANGE_CHECK 1 #endif #include #include #include #include #include #include #include int status = 0; #ifndef DESC #define DESC "" #endif #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_CHAR void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { size_t stride, ostride, N; gsl_ieee_env_setup (); for (N = 10; N < 1024; N = 2*N + 1) { for (stride = 1; stride < 5 ; stride++) { test_func (stride, N); test_float_func (stride, N); test_long_double_func (stride, N); test_ulong_func (stride, N); test_long_func (stride, N); test_uint_func (stride, N); test_int_func (stride, N); test_ushort_func (stride, N); test_short_func (stride, N); test_uchar_func (stride, N); test_char_func (stride, N); test_complex_func (stride, N); test_complex_float_func (stride, N); test_complex_long_double_func (stride, N); for (ostride = 1; ostride < 5 ; ostride++) { test_ops (stride, ostride, N); test_float_ops (stride, ostride, N); test_long_double_ops (stride, ostride, N); test_ulong_ops (stride, ostride, N); test_long_ops (stride, ostride, N); test_uint_ops (stride, ostride, N); test_int_ops (stride, ostride, N); test_ushort_ops (stride, ostride, N); test_short_ops (stride, ostride, N); test_uchar_ops (stride, ostride, N); test_char_ops (stride, ostride, N); test_complex_ops (stride, ostride, N); test_complex_float_ops (stride, ostride, N); test_complex_long_double_ops (stride, ostride, N); } test_text (stride, N); test_float_text (stride, N); #if HAVE_PRINTF_LONGDOUBLE test_long_double_text (stride, N); #endif test_ulong_text (stride, N); test_long_text (stride, N); test_uint_text (stride, N); test_int_text (stride, N); test_ushort_text (stride, N); test_short_text (stride, N); test_uchar_text (stride, N); test_char_text (stride, N); test_complex_text (stride, N); test_complex_float_text (stride, N); #if HAVE_PRINTF_LONGDOUBLE test_complex_long_double_text (stride, N); #endif test_file (stride, N); test_float_file (stride, N); test_long_double_file (stride, N); test_ulong_file (stride, N); test_long_file (stride, N); test_uint_file (stride, N); test_int_file (stride, N); test_ushort_file (stride, N); test_short_file (stride, N); test_uchar_file (stride, N); test_char_file (stride, N); test_complex_file (stride, N); test_complex_float_file (stride, N); test_complex_long_double_file (stride, N); } } #if GSL_RANGE_CHECK gsl_set_error_handler (&my_error_handler); for (N = 1; N < 1024; N *=2) { for (stride = 1; stride < 5 ; stride++) { test_trap (stride, N); test_float_trap (stride, N); test_long_double_trap (stride, N); test_ulong_trap (stride, N); test_long_trap (stride, N); test_uint_trap (stride, N); test_int_trap (stride, N); test_ushort_trap (stride, N); test_short_trap (stride, N); test_uchar_trap (stride, N); test_char_trap (stride, N); test_complex_trap (stride, N); test_complex_float_trap (stride, N); test_complex_long_double_trap (stride, N); } } #endif exit (gsl_test_summary ()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); status = 1; } gsl-1.16/vector/init.c0000664000252300025230000000335212171574312011566 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector_ulong.h0000664000252300025230000001674412171574312014214 00000000000000/* vector/gsl_vector_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_ULONG_H__ #define __GSL_VECTOR_ULONG_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; unsigned long *data; gsl_block_ulong *block; int owner; } gsl_vector_ulong; typedef struct { gsl_vector_ulong vector; } _gsl_vector_ulong_view; typedef _gsl_vector_ulong_view gsl_vector_ulong_view; typedef struct { gsl_vector_ulong vector; } _gsl_vector_ulong_const_view; typedef const _gsl_vector_ulong_const_view gsl_vector_ulong_const_view; /* Allocation */ gsl_vector_ulong *gsl_vector_ulong_alloc (const size_t n); gsl_vector_ulong *gsl_vector_ulong_calloc (const size_t n); gsl_vector_ulong *gsl_vector_ulong_alloc_from_block (gsl_block_ulong * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_ulong *gsl_vector_ulong_alloc_from_vector (gsl_vector_ulong * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_ulong_free (gsl_vector_ulong * v); /* Views */ _gsl_vector_ulong_view gsl_vector_ulong_view_array (unsigned long *v, size_t n); _gsl_vector_ulong_view gsl_vector_ulong_view_array_with_stride (unsigned long *base, size_t stride, size_t n); _gsl_vector_ulong_const_view gsl_vector_ulong_const_view_array (const unsigned long *v, size_t n); _gsl_vector_ulong_const_view gsl_vector_ulong_const_view_array_with_stride (const unsigned long *base, size_t stride, size_t n); _gsl_vector_ulong_view gsl_vector_ulong_subvector (gsl_vector_ulong *v, size_t i, size_t n); _gsl_vector_ulong_view gsl_vector_ulong_subvector_with_stride (gsl_vector_ulong *v, size_t i, size_t stride, size_t n); _gsl_vector_ulong_const_view gsl_vector_ulong_const_subvector (const gsl_vector_ulong *v, size_t i, size_t n); _gsl_vector_ulong_const_view gsl_vector_ulong_const_subvector_with_stride (const gsl_vector_ulong *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_ulong_set_zero (gsl_vector_ulong * v); void gsl_vector_ulong_set_all (gsl_vector_ulong * v, unsigned long x); int gsl_vector_ulong_set_basis (gsl_vector_ulong * v, size_t i); int gsl_vector_ulong_fread (FILE * stream, gsl_vector_ulong * v); int gsl_vector_ulong_fwrite (FILE * stream, const gsl_vector_ulong * v); int gsl_vector_ulong_fscanf (FILE * stream, gsl_vector_ulong * v); int gsl_vector_ulong_fprintf (FILE * stream, const gsl_vector_ulong * v, const char *format); int gsl_vector_ulong_memcpy (gsl_vector_ulong * dest, const gsl_vector_ulong * src); int gsl_vector_ulong_reverse (gsl_vector_ulong * v); int gsl_vector_ulong_swap (gsl_vector_ulong * v, gsl_vector_ulong * w); int gsl_vector_ulong_swap_elements (gsl_vector_ulong * v, const size_t i, const size_t j); unsigned long gsl_vector_ulong_max (const gsl_vector_ulong * v); unsigned long gsl_vector_ulong_min (const gsl_vector_ulong * v); void gsl_vector_ulong_minmax (const gsl_vector_ulong * v, unsigned long * min_out, unsigned long * max_out); size_t gsl_vector_ulong_max_index (const gsl_vector_ulong * v); size_t gsl_vector_ulong_min_index (const gsl_vector_ulong * v); void gsl_vector_ulong_minmax_index (const gsl_vector_ulong * v, size_t * imin, size_t * imax); int gsl_vector_ulong_add (gsl_vector_ulong * a, const gsl_vector_ulong * b); int gsl_vector_ulong_sub (gsl_vector_ulong * a, const gsl_vector_ulong * b); int gsl_vector_ulong_mul (gsl_vector_ulong * a, const gsl_vector_ulong * b); int gsl_vector_ulong_div (gsl_vector_ulong * a, const gsl_vector_ulong * b); int gsl_vector_ulong_scale (gsl_vector_ulong * a, const double x); int gsl_vector_ulong_add_constant (gsl_vector_ulong * a, const double x); int gsl_vector_ulong_equal (const gsl_vector_ulong * u, const gsl_vector_ulong * v); int gsl_vector_ulong_isnull (const gsl_vector_ulong * v); int gsl_vector_ulong_ispos (const gsl_vector_ulong * v); int gsl_vector_ulong_isneg (const gsl_vector_ulong * v); int gsl_vector_ulong_isnonneg (const gsl_vector_ulong * v); INLINE_DECL unsigned long gsl_vector_ulong_get (const gsl_vector_ulong * v, const size_t i); INLINE_DECL void gsl_vector_ulong_set (gsl_vector_ulong * v, const size_t i, unsigned long x); INLINE_DECL unsigned long * gsl_vector_ulong_ptr (gsl_vector_ulong * v, const size_t i); INLINE_DECL const unsigned long * gsl_vector_ulong_const_ptr (const gsl_vector_ulong * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN unsigned long gsl_vector_ulong_get (const gsl_vector_ulong * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_ulong_set (gsl_vector_ulong * v, const size_t i, unsigned long x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN unsigned long * gsl_vector_ulong_ptr (gsl_vector_ulong * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (unsigned long *) (v->data + i * v->stride); } INLINE_FUN const unsigned long * gsl_vector_ulong_const_ptr (const gsl_vector_ulong * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const unsigned long *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_ULONG_H__ */ gsl-1.16/vector/prop.c0000664000252300025230000000336112171574312011603 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector_short.h0000664000252300025230000001650412171574312014221 00000000000000/* vector/gsl_vector_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_SHORT_H__ #define __GSL_VECTOR_SHORT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; short *data; gsl_block_short *block; int owner; } gsl_vector_short; typedef struct { gsl_vector_short vector; } _gsl_vector_short_view; typedef _gsl_vector_short_view gsl_vector_short_view; typedef struct { gsl_vector_short vector; } _gsl_vector_short_const_view; typedef const _gsl_vector_short_const_view gsl_vector_short_const_view; /* Allocation */ gsl_vector_short *gsl_vector_short_alloc (const size_t n); gsl_vector_short *gsl_vector_short_calloc (const size_t n); gsl_vector_short *gsl_vector_short_alloc_from_block (gsl_block_short * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_short *gsl_vector_short_alloc_from_vector (gsl_vector_short * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_short_free (gsl_vector_short * v); /* Views */ _gsl_vector_short_view gsl_vector_short_view_array (short *v, size_t n); _gsl_vector_short_view gsl_vector_short_view_array_with_stride (short *base, size_t stride, size_t n); _gsl_vector_short_const_view gsl_vector_short_const_view_array (const short *v, size_t n); _gsl_vector_short_const_view gsl_vector_short_const_view_array_with_stride (const short *base, size_t stride, size_t n); _gsl_vector_short_view gsl_vector_short_subvector (gsl_vector_short *v, size_t i, size_t n); _gsl_vector_short_view gsl_vector_short_subvector_with_stride (gsl_vector_short *v, size_t i, size_t stride, size_t n); _gsl_vector_short_const_view gsl_vector_short_const_subvector (const gsl_vector_short *v, size_t i, size_t n); _gsl_vector_short_const_view gsl_vector_short_const_subvector_with_stride (const gsl_vector_short *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_short_set_zero (gsl_vector_short * v); void gsl_vector_short_set_all (gsl_vector_short * v, short x); int gsl_vector_short_set_basis (gsl_vector_short * v, size_t i); int gsl_vector_short_fread (FILE * stream, gsl_vector_short * v); int gsl_vector_short_fwrite (FILE * stream, const gsl_vector_short * v); int gsl_vector_short_fscanf (FILE * stream, gsl_vector_short * v); int gsl_vector_short_fprintf (FILE * stream, const gsl_vector_short * v, const char *format); int gsl_vector_short_memcpy (gsl_vector_short * dest, const gsl_vector_short * src); int gsl_vector_short_reverse (gsl_vector_short * v); int gsl_vector_short_swap (gsl_vector_short * v, gsl_vector_short * w); int gsl_vector_short_swap_elements (gsl_vector_short * v, const size_t i, const size_t j); short gsl_vector_short_max (const gsl_vector_short * v); short gsl_vector_short_min (const gsl_vector_short * v); void gsl_vector_short_minmax (const gsl_vector_short * v, short * min_out, short * max_out); size_t gsl_vector_short_max_index (const gsl_vector_short * v); size_t gsl_vector_short_min_index (const gsl_vector_short * v); void gsl_vector_short_minmax_index (const gsl_vector_short * v, size_t * imin, size_t * imax); int gsl_vector_short_add (gsl_vector_short * a, const gsl_vector_short * b); int gsl_vector_short_sub (gsl_vector_short * a, const gsl_vector_short * b); int gsl_vector_short_mul (gsl_vector_short * a, const gsl_vector_short * b); int gsl_vector_short_div (gsl_vector_short * a, const gsl_vector_short * b); int gsl_vector_short_scale (gsl_vector_short * a, const double x); int gsl_vector_short_add_constant (gsl_vector_short * a, const double x); int gsl_vector_short_equal (const gsl_vector_short * u, const gsl_vector_short * v); int gsl_vector_short_isnull (const gsl_vector_short * v); int gsl_vector_short_ispos (const gsl_vector_short * v); int gsl_vector_short_isneg (const gsl_vector_short * v); int gsl_vector_short_isnonneg (const gsl_vector_short * v); INLINE_DECL short gsl_vector_short_get (const gsl_vector_short * v, const size_t i); INLINE_DECL void gsl_vector_short_set (gsl_vector_short * v, const size_t i, short x); INLINE_DECL short * gsl_vector_short_ptr (gsl_vector_short * v, const size_t i); INLINE_DECL const short * gsl_vector_short_const_ptr (const gsl_vector_short * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN short gsl_vector_short_get (const gsl_vector_short * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_short_set (gsl_vector_short * v, const size_t i, short x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN short * gsl_vector_short_ptr (gsl_vector_short * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (short *) (v->data + i * v->stride); } INLINE_FUN const short * gsl_vector_short_const_ptr (const gsl_vector_short * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const short *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_SHORT_H__ */ gsl-1.16/vector/gsl_vector_float.h0000664000252300025230000001650412171574312014167 00000000000000/* vector/gsl_vector_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_FLOAT_H__ #define __GSL_VECTOR_FLOAT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; float *data; gsl_block_float *block; int owner; } gsl_vector_float; typedef struct { gsl_vector_float vector; } _gsl_vector_float_view; typedef _gsl_vector_float_view gsl_vector_float_view; typedef struct { gsl_vector_float vector; } _gsl_vector_float_const_view; typedef const _gsl_vector_float_const_view gsl_vector_float_const_view; /* Allocation */ gsl_vector_float *gsl_vector_float_alloc (const size_t n); gsl_vector_float *gsl_vector_float_calloc (const size_t n); gsl_vector_float *gsl_vector_float_alloc_from_block (gsl_block_float * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_float *gsl_vector_float_alloc_from_vector (gsl_vector_float * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_float_free (gsl_vector_float * v); /* Views */ _gsl_vector_float_view gsl_vector_float_view_array (float *v, size_t n); _gsl_vector_float_view gsl_vector_float_view_array_with_stride (float *base, size_t stride, size_t n); _gsl_vector_float_const_view gsl_vector_float_const_view_array (const float *v, size_t n); _gsl_vector_float_const_view gsl_vector_float_const_view_array_with_stride (const float *base, size_t stride, size_t n); _gsl_vector_float_view gsl_vector_float_subvector (gsl_vector_float *v, size_t i, size_t n); _gsl_vector_float_view gsl_vector_float_subvector_with_stride (gsl_vector_float *v, size_t i, size_t stride, size_t n); _gsl_vector_float_const_view gsl_vector_float_const_subvector (const gsl_vector_float *v, size_t i, size_t n); _gsl_vector_float_const_view gsl_vector_float_const_subvector_with_stride (const gsl_vector_float *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_float_set_zero (gsl_vector_float * v); void gsl_vector_float_set_all (gsl_vector_float * v, float x); int gsl_vector_float_set_basis (gsl_vector_float * v, size_t i); int gsl_vector_float_fread (FILE * stream, gsl_vector_float * v); int gsl_vector_float_fwrite (FILE * stream, const gsl_vector_float * v); int gsl_vector_float_fscanf (FILE * stream, gsl_vector_float * v); int gsl_vector_float_fprintf (FILE * stream, const gsl_vector_float * v, const char *format); int gsl_vector_float_memcpy (gsl_vector_float * dest, const gsl_vector_float * src); int gsl_vector_float_reverse (gsl_vector_float * v); int gsl_vector_float_swap (gsl_vector_float * v, gsl_vector_float * w); int gsl_vector_float_swap_elements (gsl_vector_float * v, const size_t i, const size_t j); float gsl_vector_float_max (const gsl_vector_float * v); float gsl_vector_float_min (const gsl_vector_float * v); void gsl_vector_float_minmax (const gsl_vector_float * v, float * min_out, float * max_out); size_t gsl_vector_float_max_index (const gsl_vector_float * v); size_t gsl_vector_float_min_index (const gsl_vector_float * v); void gsl_vector_float_minmax_index (const gsl_vector_float * v, size_t * imin, size_t * imax); int gsl_vector_float_add (gsl_vector_float * a, const gsl_vector_float * b); int gsl_vector_float_sub (gsl_vector_float * a, const gsl_vector_float * b); int gsl_vector_float_mul (gsl_vector_float * a, const gsl_vector_float * b); int gsl_vector_float_div (gsl_vector_float * a, const gsl_vector_float * b); int gsl_vector_float_scale (gsl_vector_float * a, const double x); int gsl_vector_float_add_constant (gsl_vector_float * a, const double x); int gsl_vector_float_equal (const gsl_vector_float * u, const gsl_vector_float * v); int gsl_vector_float_isnull (const gsl_vector_float * v); int gsl_vector_float_ispos (const gsl_vector_float * v); int gsl_vector_float_isneg (const gsl_vector_float * v); int gsl_vector_float_isnonneg (const gsl_vector_float * v); INLINE_DECL float gsl_vector_float_get (const gsl_vector_float * v, const size_t i); INLINE_DECL void gsl_vector_float_set (gsl_vector_float * v, const size_t i, float x); INLINE_DECL float * gsl_vector_float_ptr (gsl_vector_float * v, const size_t i); INLINE_DECL const float * gsl_vector_float_const_ptr (const gsl_vector_float * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN float gsl_vector_float_get (const gsl_vector_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_float_set (gsl_vector_float * v, const size_t i, float x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN float * gsl_vector_float_ptr (gsl_vector_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (float *) (v->data + i * v->stride); } INLINE_FUN const float * gsl_vector_float_const_ptr (const gsl_vector_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const float *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_FLOAT_H__ */ gsl-1.16/vector/Makefile.in0000664000252300025230000011046312172253757012536 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) test_static$(EXEEXT) subdir = vector DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslvector_la_LIBADD = am_libgslvector_la_OBJECTS = init.lo file.lo vector.lo copy.lo swap.lo \ prop.lo minmax.lo oper.lo reim.lo subvector.lo view.lo libgslvector_la_OBJECTS = $(am_libgslvector_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslvector.la ../block/libgslblock.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la am_test_static_OBJECTS = test_static.$(OBJEXT) test_static_OBJECTS = $(am_test_static_OBJECTS) test_static_DEPENDENCIES = libgslvector.la ../block/libgslblock.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslvector_la_SOURCES) $(test_SOURCES) \ $(test_static_SOURCES) DIST_SOURCES = $(libgslvector_la_SOURCES) $(test_SOURCES) \ $(test_static_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslvector.la pkginclude_HEADERS = gsl_vector.h gsl_vector_char.h gsl_vector_complex.h gsl_vector_complex_double.h gsl_vector_complex_float.h gsl_vector_complex_long_double.h gsl_vector_double.h gsl_vector_float.h gsl_vector_int.h gsl_vector_long.h gsl_vector_long_double.h gsl_vector_short.h gsl_vector_uchar.h gsl_vector_uint.h gsl_vector_ulong.h gsl_vector_ushort.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_static_LDADD = libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c test_static_SOURCES = test_static.c CLEANFILES = test.txt test.dat noinst_HEADERS = init_source.c file_source.c copy_source.c swap_source.c prop_source.c test_complex_source.c test_source.c minmax_source.c oper_source.c oper_complex_source.c reim_source.c subvector_source.c view_source.c libgslvector_la_SOURCES = init.c file.c vector.c copy.c swap.c prop.c minmax.c oper.c reim.c subvector.c view.c view.h all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu vector/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu vector/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslvector.la: $(libgslvector_la_OBJECTS) $(libgslvector_la_DEPENDENCIES) $(EXTRA_libgslvector_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslvector_la_OBJECTS) $(libgslvector_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) test_static$(EXEEXT): $(test_static_OBJECTS) $(test_static_DEPENDENCIES) $(EXTRA_test_static_DEPENDENCIES) @rm -f test_static$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_static_OBJECTS) $(test_static_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/copy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/minmax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/oper.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/prop.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/reim.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/subvector.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/swap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_static.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/vector.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/view.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) test_static.log: test_static$(EXEEXT) @p='test_static$(EXEEXT)'; \ b='test_static'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/vector/ChangeLog0000664000252300025230000001656112171574312012237 000000000000002010-03-12 Brian Gough * prop_source.c (FUNCTION): added a function to test if two vectors are equal 2009-11-14 Brian Gough * gsl_vector_complex.h (GSL_VECTOR_COMPLEX): added missing dereference 2009-07-09 Brian Gough * init_source.c (FUNCTION): handle NULL argument in free 2008-09-27 Brian Gough * gsl_vector_complex_double.h: added missing functions isnonneg, add, sub, mul, div, scale, add_constant 2008-07-03 Brian Gough * gsl_vector.h: use new inline declarations in all header files * vector.c: compile inline functions from header here * vector_source.c: removed * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-08-21 Brian Gough * prop_source.c (FUNCTION): added gsl_vector_isnonneg 2007-02-17 Brian Gough * test_source.c (FUNCTION): avoid running tests on char, because it can be unsigned 2007-01-26 Brian Gough * minmax_source.c: added support for NaNs 2006-10-31 Brian Gough * prop_source.c: added functions gsl_vector_ispos, gsl_vector_isneg 2004-09-13 Brian Gough * swap_source.c (gsl_vector_swap): fixed bug where stride of first argument v was used for second argument w * test.c: improved test coverage 2003-01-01 Brian Gough * gsl_vector_complex_float.h (gsl_vector_complex_float_get): removed const from zero * vector_source.c (FUNCTION): removed const from zero Sun Jan 27 22:29:54 2002 Brian Gough * test.c: ensure that range check is working when running the tests Fri Sep 14 19:13:20 2001 Brian Gough * view.c (USE_QUALIFIER): added missing qualified types Thu Aug 23 13:22:29 2001 Brian Gough * gsl_vector_complex_float.h: added const to second argument of _ptr functions * gsl_vector.h: changed definition of gsl_vector_const_view to compile with Sun's cc Fri Aug 3 14:11:51 2001 Brian Gough * added gsl_vector_ptr and gsl_vector_const_ptr functions Mon Jul 16 21:28:37 2001 Brian Gough * reim_source.c: initialized views to null Fri Jul 13 21:29:06 2001 Brian Gough * changed views to be structs and used casts to initialize them Mon Jul 2 12:34:43 2001 Brian Gough * view.h: provide macros for initializing null vectors and views Sun Jul 1 22:38:30 2001 Brian Gough * introduction of new-style vector views * view_source.c: changed order of arguments to be consistent with rest of library for _with_stride functions Mon May 14 22:43:18 2001 Brian Gough * vector_source.c (FUNCTION): removed unnecessary inline from static function definition Tue Mar 27 15:12:07 2001 Brian Gough * view_source.c: split view functions into a separate file Sat Sep 9 16:45:15 2000 Brian Gough * added an owner field for indicating whether the underlying memory is owned by the vector. Changed the meaning of the block field to always be the address of the underlying block, even for subviews (previously the block field was set to NULL in this case). Sun Jul 16 10:39:39 2000 Brian Gough * init_source.c (FUNCTION): added gsl_vector_view function for creating a vector view of an ordinary C array Sat Jul 15 21:44:49 2000 Brian Gough * changed GSL_EDOM to GSL_EINVAL for invalid vector size arguments Sat Jun 17 15:37:57 2000 Brian Gough * fixed up missing MULTIPLICITY factors in various functions Sun May 28 12:25:31 2000 Brian Gough * test_complex_source.c (FUNCTION): use binary mode "b" when reading and writing binary files * test_source.c (FUNCTION): use binary mode "b" when reading and writing binary files Fri May 5 10:57:16 2000 Brian Gough * oper_source.c (FUNCTION): changed functions gsl_vector_mul_elements and gsl_vector_div_elements to gsl_vector_mul and gsl_vector_div since the _elements suffix is redundant for vectors (unlike matrices). * oper.c: added simple arithmetic operations (+,-,*,/,scale,+const) Wed Apr 26 14:17:14 2000 Brian Gough * prop_source.c (FUNCTION): added const to argument of gsl_vector_isnull * init_source.c (FUNCTION): added gsl_vector_set_basis(v,i) to set v to basis vector v = e_i (0,0,...,1,...,0) Tue Apr 25 11:31:38 2000 Brian Gough * test_source.c (FUNCTION): modified the tests so that they work more cleanly with checkergcc when using long doubles. The trick seems to be to avoid having any long doubles on the stack. Sat Apr 22 15:09:44 2000 Brian Gough * init_source.c (FUNCTION): separated subvector functions into gsl_vector_subvector and gsl_vector_subvector_with_stride Sat Mar 25 20:23:58 2000 Brian Gough * swap_source.c (FUNCTION): renames gsl_vector_swap to gsl_vector_swap_elements Tue Mar 21 21:15:10 2000 Brian Gough * vector_source.c (FUNCTION): added set_zero function Thu Feb 24 16:19:55 2000 Brian Gough * added missing prototypes for gsl_vector_complex_..._reverse Fri Feb 18 20:48:32 2000 Brian Gough * swap_source.c (FUNCTION): added gsl_vector_reverse function for flipping the order of a vector * copy_source.c: renamed gsl_vector_copy to gsl_vector_cpy since it acts like memcpy (dest, src) not 'cp(copy) from to' Thu Dec 2 20:39:02 1999 Brian Gough * init_source.c: fixed bug, block element needs to be null in gsl_vector_alloc_from_vector to maintain correct ownership, added gsl_vector_view_from_vector (Thanks to Fabrice Rossi) Tue Oct 19 14:13:14 1999 Brian Gough * added gsl_vector_swap function to exchange elements Fri Oct 1 15:47:45 1999 Brian Gough * removed support for gsl_vector_ptr. Use set/get instead. * now uses separate block directory for memory management Mon Mar 1 19:38:16 1999 Brian Gough * test_source.c: added tests for gsl_vector_ptr with and without stride * gsl_vector_char.h: added missing code to gsl_vector_char_ptr for stride in char case. Sun Nov 8 18:39:40 1998 Brian Gough * test_io.c, test_complex_io.c: split out the printf/scanf routines since these aren't supported on all platforms for long double Fri Jul 24 19:44:52 1998 Brian Gough * added parent pointer in structs, to determine whether or not we're allowed to free the memory pointed to by * data. Wed Jun 10 19:13:35 1998 Brian Gough * init_source.c: added a cast for each malloc Sun Apr 26 14:10:06 1998 Brian Gough * added support for complex vectors Mon Apr 6 15:06:38 1998 Brian Gough * make range checking the default, you have to define GSL_RANGE_CHECK_OFF to turn it off gsl-1.16/vector/gsl_vector_uchar.h0000664000252300025230000001674412171574312014172 00000000000000/* vector/gsl_vector_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_UCHAR_H__ #define __GSL_VECTOR_UCHAR_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; unsigned char *data; gsl_block_uchar *block; int owner; } gsl_vector_uchar; typedef struct { gsl_vector_uchar vector; } _gsl_vector_uchar_view; typedef _gsl_vector_uchar_view gsl_vector_uchar_view; typedef struct { gsl_vector_uchar vector; } _gsl_vector_uchar_const_view; typedef const _gsl_vector_uchar_const_view gsl_vector_uchar_const_view; /* Allocation */ gsl_vector_uchar *gsl_vector_uchar_alloc (const size_t n); gsl_vector_uchar *gsl_vector_uchar_calloc (const size_t n); gsl_vector_uchar *gsl_vector_uchar_alloc_from_block (gsl_block_uchar * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_uchar *gsl_vector_uchar_alloc_from_vector (gsl_vector_uchar * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_uchar_free (gsl_vector_uchar * v); /* Views */ _gsl_vector_uchar_view gsl_vector_uchar_view_array (unsigned char *v, size_t n); _gsl_vector_uchar_view gsl_vector_uchar_view_array_with_stride (unsigned char *base, size_t stride, size_t n); _gsl_vector_uchar_const_view gsl_vector_uchar_const_view_array (const unsigned char *v, size_t n); _gsl_vector_uchar_const_view gsl_vector_uchar_const_view_array_with_stride (const unsigned char *base, size_t stride, size_t n); _gsl_vector_uchar_view gsl_vector_uchar_subvector (gsl_vector_uchar *v, size_t i, size_t n); _gsl_vector_uchar_view gsl_vector_uchar_subvector_with_stride (gsl_vector_uchar *v, size_t i, size_t stride, size_t n); _gsl_vector_uchar_const_view gsl_vector_uchar_const_subvector (const gsl_vector_uchar *v, size_t i, size_t n); _gsl_vector_uchar_const_view gsl_vector_uchar_const_subvector_with_stride (const gsl_vector_uchar *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_uchar_set_zero (gsl_vector_uchar * v); void gsl_vector_uchar_set_all (gsl_vector_uchar * v, unsigned char x); int gsl_vector_uchar_set_basis (gsl_vector_uchar * v, size_t i); int gsl_vector_uchar_fread (FILE * stream, gsl_vector_uchar * v); int gsl_vector_uchar_fwrite (FILE * stream, const gsl_vector_uchar * v); int gsl_vector_uchar_fscanf (FILE * stream, gsl_vector_uchar * v); int gsl_vector_uchar_fprintf (FILE * stream, const gsl_vector_uchar * v, const char *format); int gsl_vector_uchar_memcpy (gsl_vector_uchar * dest, const gsl_vector_uchar * src); int gsl_vector_uchar_reverse (gsl_vector_uchar * v); int gsl_vector_uchar_swap (gsl_vector_uchar * v, gsl_vector_uchar * w); int gsl_vector_uchar_swap_elements (gsl_vector_uchar * v, const size_t i, const size_t j); unsigned char gsl_vector_uchar_max (const gsl_vector_uchar * v); unsigned char gsl_vector_uchar_min (const gsl_vector_uchar * v); void gsl_vector_uchar_minmax (const gsl_vector_uchar * v, unsigned char * min_out, unsigned char * max_out); size_t gsl_vector_uchar_max_index (const gsl_vector_uchar * v); size_t gsl_vector_uchar_min_index (const gsl_vector_uchar * v); void gsl_vector_uchar_minmax_index (const gsl_vector_uchar * v, size_t * imin, size_t * imax); int gsl_vector_uchar_add (gsl_vector_uchar * a, const gsl_vector_uchar * b); int gsl_vector_uchar_sub (gsl_vector_uchar * a, const gsl_vector_uchar * b); int gsl_vector_uchar_mul (gsl_vector_uchar * a, const gsl_vector_uchar * b); int gsl_vector_uchar_div (gsl_vector_uchar * a, const gsl_vector_uchar * b); int gsl_vector_uchar_scale (gsl_vector_uchar * a, const double x); int gsl_vector_uchar_add_constant (gsl_vector_uchar * a, const double x); int gsl_vector_uchar_equal (const gsl_vector_uchar * u, const gsl_vector_uchar * v); int gsl_vector_uchar_isnull (const gsl_vector_uchar * v); int gsl_vector_uchar_ispos (const gsl_vector_uchar * v); int gsl_vector_uchar_isneg (const gsl_vector_uchar * v); int gsl_vector_uchar_isnonneg (const gsl_vector_uchar * v); INLINE_DECL unsigned char gsl_vector_uchar_get (const gsl_vector_uchar * v, const size_t i); INLINE_DECL void gsl_vector_uchar_set (gsl_vector_uchar * v, const size_t i, unsigned char x); INLINE_DECL unsigned char * gsl_vector_uchar_ptr (gsl_vector_uchar * v, const size_t i); INLINE_DECL const unsigned char * gsl_vector_uchar_const_ptr (const gsl_vector_uchar * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN unsigned char gsl_vector_uchar_get (const gsl_vector_uchar * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_uchar_set (gsl_vector_uchar * v, const size_t i, unsigned char x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN unsigned char * gsl_vector_uchar_ptr (gsl_vector_uchar * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (unsigned char *) (v->data + i * v->stride); } INLINE_FUN const unsigned char * gsl_vector_uchar_const_ptr (const gsl_vector_uchar * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const unsigned char *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_UCHAR_H__ */ gsl-1.16/vector/test_complex_source.c0000664000252300025230000004550712171574312014721 00000000000000/* vector/test_complex_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (size_t stride, size_t N); void FUNCTION (test, ops) (size_t stride1, size_t stride2, size_t N); void FUNCTION (test, file) (size_t stride, size_t N); void FUNCTION (test, text) (size_t stride, size_t N); void FUNCTION (test, trap) (size_t stride, size_t N); TYPE (gsl_vector) * FUNCTION(create, vector) (size_t stride, size_t N); #define TEST(expr,desc) gsl_test((expr), NAME(gsl_vector) desc " stride=%d, N=%d", stride, N) #define TEST2(expr,desc) gsl_test((expr), NAME(gsl_vector) desc " stride1=%d, stride2=%d, N=%d", stride1, stride2, N) TYPE (gsl_vector) * FUNCTION(create, vector) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (gsl_vector, calloc) (N*stride); v->stride = stride; v->size = N; return v; } void FUNCTION (test, func) (size_t stride, size_t N) { TYPE (gsl_vector) * v0; TYPE (gsl_vector) * v; QUALIFIED_VIEW(gsl_vector,view) view; size_t i, j; if (stride == 1) { v = FUNCTION (gsl_vector, calloc) (N); TEST(v->data == 0, "_calloc pointer"); TEST(v->size != N, "_calloc size"); TEST(v->stride != 1, "_calloc stride"); { int status = (FUNCTION(gsl_vector,isnull)(v) != 1); TEST (status, "_isnull" DESC " on calloc vector"); status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on calloc vector"); status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on calloc vector"); } FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ } if (stride == 1) { v = FUNCTION (gsl_vector, alloc) (N); TEST(v->data == 0, "_alloc pointer"); TEST(v->size != N, "_alloc size"); TEST(v->stride != 1, "_alloc stride"); FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ } if (stride == 1) { v0 = FUNCTION (gsl_vector, alloc) (N); view = FUNCTION (gsl_vector, subvector) (v0, 0, N); v = &view.vector; } else { v0 = FUNCTION (gsl_vector, alloc) (N * stride); for (i = 0; i < N*stride; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); FUNCTION (gsl_vector, set) (v0, i, x); } view = FUNCTION (gsl_vector, subvector_with_stride) (v0, 0, stride, N); v = &view.vector; } { int status = 0; for (i = 0; i < N; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); FUNCTION (gsl_vector, set) (v, i, x); } for (i = 0; i < N; i++) { if (v->data[2*i*stride] != (ATOMIC) (i) || v->data[2 * i * stride + 1] != (ATOMIC) (i + 1234)) status = 1; }; TEST(status,"_set" DESC " writes into array"); } { int status = 0; for (i = 0; i < N; i++) { BASE x, y; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); y = FUNCTION (gsl_vector, get) (v, i); if (!GSL_COMPLEX_EQ (x, y)) status = 1; }; TEST (status, "_get" DESC " reads from array"); } { int status = 0; for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, ptr) (v, i) != (BASE *)v->data + i*stride) status = 1; }; TEST (status, "_ptr" DESC " access to array"); } { int status = 0; for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, const_ptr) (v, i) != (BASE *)v->data + i*stride) status = 1; }; TEST (status, "_const_ptr" DESC " access to array"); } { int status = 0; for (i = 0; i < N; i++) { BASE x = ZERO; FUNCTION (gsl_vector, set) (v, i, x); } status = (FUNCTION(gsl_vector,isnull)(v) != 1); TEST (status, "_isnull" DESC " on null vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on null vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on null vector") ; } { int status = 0; for (i = 0; i < N; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); FUNCTION (gsl_vector, set) (v, i, x); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on non-null vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on non-null vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_isneg" DESC " on non-null vector") ; } { int status = 0; FUNCTION (gsl_vector, set_zero) (v); for (i = 0; i < N; i++) { BASE x, y = ZERO; x = FUNCTION (gsl_vector, get) (v, i); if (!GSL_COMPLEX_EQ (x, y)) status = 1; }; TEST (status, "_setzero" DESC " on non-null vector") ; } { int status = 0; BASE x; GSL_REAL (x) = (ATOMIC)27; GSL_IMAG (x) = (ATOMIC)(27 + 1234); FUNCTION (gsl_vector, set_all) (v, x); for (i = 0; i < N; i++) { BASE y = FUNCTION (gsl_vector, get) (v, i); if (!GSL_COMPLEX_EQ (x, y)) status = 1; }; TEST (status, "_setall" DESC " to non-zero value") ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set_basis) (v, i); for (j = 0; j < N; j++) { BASE x = FUNCTION (gsl_vector, get) (v, j); BASE one = ONE; BASE zero = ZERO; if (i == j) { if (!GSL_COMPLEX_EQ (x, one)) status = 1 ; } else { if (!GSL_COMPLEX_EQ (x, zero)) status = 1; } }; } TEST (status, "_setbasis" DESC " over range") ; } { int status = 0; for (i = 0; i < N; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); FUNCTION (gsl_vector, set) (v, i, x); } { BASE x = ZERO; GSL_REAL(x) = 2.0; GSL_IMAG(x) = 3.0; FUNCTION (gsl_vector, scale) (v, x); } for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); ATOMIC real = -(ATOMIC)i-(ATOMIC)3702; ATOMIC imag = 5*(ATOMIC)i+(ATOMIC)2468; if (GSL_REAL(r) != real || GSL_IMAG(r) != imag) status = 1; }; TEST (status, "_scale" DESC " by 2") ; } { int status = 0; { BASE x = ZERO; GSL_REAL(x) = 7.0; GSL_IMAG(x) = 13.0; FUNCTION (gsl_vector, add_constant) (v, x); } for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); ATOMIC real = -(ATOMIC)i-(ATOMIC)3695; ATOMIC imag = 5*(ATOMIC)i+(ATOMIC)2481; if (GSL_REAL(r) != real || GSL_IMAG(r) != imag) status = 1; }; TEST (status, "_add_constant" DESC) ; } for (i = 0; i < N; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1234); FUNCTION (gsl_vector, set) (v, i, x); } { int status; BASE x, y, r, s ; GSL_REAL(x) = 2 ; GSL_IMAG(x) = 2 + 1234; GSL_REAL(y) = 5 ; GSL_IMAG(y) = 5 + 1234; FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ; r = FUNCTION(gsl_vector,get)(v,2); s = FUNCTION(gsl_vector,get)(v,5); status = ! GSL_COMPLEX_EQ(r,y) ; status |= ! GSL_COMPLEX_EQ(s,x) ; FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ; r = FUNCTION(gsl_vector,get)(v,2); s = FUNCTION(gsl_vector,get)(v,5); status |= ! GSL_COMPLEX_EQ(r,x) ; status |= ! GSL_COMPLEX_EQ(s,y) ; TEST (status, "_swap_elements" DESC " exchanges elements") ; } { int status = 0; FUNCTION (gsl_vector,reverse) (v) ; for (i = 0; i < N; i++) { BASE x,r ; GSL_REAL(x) = (ATOMIC)(N - i - 1) ; GSL_IMAG(x) = (ATOMIC)(N - i - 1 + 1234); r = FUNCTION (gsl_vector, get) (v, i); status |= !GSL_COMPLEX_EQ(r,x); } gsl_test (status, NAME(gsl_vector) "_reverse" DESC " reverses elements") ; } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array) (v->data, N*stride); for (i = 0; i < N; i++) { BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i*stride) ; BASE y = FUNCTION (gsl_vector, get) (v, i); if (!GSL_COMPLEX_EQ(x,y)) status = 1; }; TEST (status, "_view_array" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array_with_stride) (v->data, stride, N*stride); for (i = 0; i < N; i++) { BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ; BASE y = FUNCTION (gsl_vector, get) (v, i); if (!GSL_COMPLEX_EQ(x,y)) status = 1; }; TEST (status, "_view_array_with_stride" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector) (v, N/3, N/2); for (i = 0; i < N/2; i++) { BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ; BASE y = FUNCTION (gsl_vector, get) (v, (N/3)+i); if (!GSL_COMPLEX_EQ(x,y)) status = 1; }; TEST (status, "_view_subvector" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector_with_stride) (v, N/5, 3, N/4); for (i = 0; i < N/4; i++) { BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ; BASE y = FUNCTION (gsl_vector, get) (v, (N/5)+3*i); if (!GSL_COMPLEX_EQ(x,y)) status = 1; }; TEST (status, "_view_subvector_with_stride" DESC); } { int status = 0; QUALIFIED_REAL_VIEW(gsl_vector,view) vv = FUNCTION(gsl_vector, real) (v); for (i = 0; i < N; i++) { ATOMIC xr = REAL_VIEW (gsl_vector, get) (&vv.vector, i) ; BASE y = FUNCTION (gsl_vector, get) (v, i); ATOMIC yr = GSL_REAL(y); if (xr != yr) status = 1; }; TEST (status, "_real" DESC); } { int status = 0; QUALIFIED_REAL_VIEW(gsl_vector,view) vv = FUNCTION(gsl_vector, imag) (v); for (i = 0; i < N; i++) { ATOMIC xr = REAL_VIEW (gsl_vector, get) (&vv.vector, i) ; BASE y = FUNCTION (gsl_vector, get) (v, i); ATOMIC yr = GSL_IMAG(y); if (xr != yr) status = 1; }; TEST (status, "_imag" DESC); } FUNCTION (gsl_vector, free) (v0); /* free whatever is in v */ } void FUNCTION (test, ops) (size_t stride1, size_t stride2, size_t N) { size_t i; TYPE (gsl_vector) * a = FUNCTION (create, vector) (stride1, N); TYPE (gsl_vector) * b = FUNCTION (create, vector) (stride2, N); TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride1, N); for (i = 0; i < N; i++) { BASE z, z1; GSL_REAL (z) = (ATOMIC) 3+i; GSL_IMAG (z) = (ATOMIC) (3+i + 10); GSL_REAL (z1) = (ATOMIC) (3 + 2*i + 5); GSL_IMAG (z1) = (ATOMIC) (3 + 2*i + 20); FUNCTION (gsl_vector, set) (a, i, z); FUNCTION (gsl_vector, set) (b, i, z1); } { int status = (FUNCTION(gsl_vector,equal) (a,b) != 0); TEST2 (status, "_equal vectors unequal"); } FUNCTION(gsl_vector, memcpy) (v, a); { int status = (FUNCTION(gsl_vector,equal) (a,v) != 1); TEST2 (status, "_equal vectors equal"); } FUNCTION(gsl_vector, add) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); if (GSL_REAL(r) != (ATOMIC) (3*i+11) || GSL_IMAG(r) != (ATOMIC) (3*i+36)) status = 1; } TEST2 (status, "_add vector addition"); } { int status = 0; FUNCTION(gsl_vector, swap) (a, b); for (i = 0; i < N; i++) { BASE z, z1; BASE x = FUNCTION (gsl_vector, get) (a, i); BASE y = FUNCTION (gsl_vector, get) (b, i); GSL_REAL (z) = (ATOMIC) 3+i; GSL_IMAG (z) = (ATOMIC) (3+i + 10); GSL_REAL (z1) = (ATOMIC) (3 + 2*i + 5); GSL_IMAG (z1) = (ATOMIC) (3 + 2*i + 20); status |= !GSL_COMPLEX_EQ(z,y); status |= !GSL_COMPLEX_EQ(z1,x); } FUNCTION(gsl_vector, swap) (a, b); for (i = 0; i < N; i++) { BASE z, z1; BASE x = FUNCTION (gsl_vector, get) (a, i); BASE y = FUNCTION (gsl_vector, get) (b, i); GSL_REAL (z) = (ATOMIC) 3+i; GSL_IMAG (z) = (ATOMIC) (3+i + 10); GSL_REAL (z1) = (ATOMIC) (3 + 2*i + 5); GSL_IMAG (z1) = (ATOMIC) (3 + 2*i + 20); status |= !GSL_COMPLEX_EQ(z,x); status |= !GSL_COMPLEX_EQ(z1,y); } TEST2 (status, "_swap exchange vectors"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, sub) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); if (GSL_REAL(r) != (-(ATOMIC)i-(ATOMIC)5) || GSL_IMAG(r) != (-(ATOMIC)i-(ATOMIC)10)) status = 1; } TEST2 (status, "_sub vector subtraction"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, mul) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); ATOMIC real = (-35*(ATOMIC)i-275); ATOMIC imag = (173+((ATOMIC)i)*(63+4*(ATOMIC)i)); if (fabs(GSL_REAL(r) - real) > 100 * BASE_EPSILON || fabs(GSL_IMAG(r) - imag) > 100 * BASE_EPSILON) status = 1; } TEST2 (status, "_mul multiplication"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, div) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); ATOMIC denom = 593 + ((ATOMIC)i)*(124+((ATOMIC)i)*8); ATOMIC real = (323+((ATOMIC)i)*(63+4*((ATOMIC)i))) / denom; ATOMIC imag = (35 +((ATOMIC)i)*5) / denom; if (fabs(GSL_REAL(r) - real) > 100 * BASE_EPSILON) status = 1; if (fabs(GSL_IMAG(r) - imag) > 100 * BASE_EPSILON) status = 1; } TEST2 (status, "_div division"); } FUNCTION(gsl_vector, free) (a); FUNCTION(gsl_vector, free) (b); FUNCTION(gsl_vector, free) (v); } void FUNCTION (test, file) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride, N); TYPE (gsl_vector) * w = FUNCTION (create, vector) (stride, N); size_t i; { FILE *f = fopen ("test.dat", "wb"); for (i = 0; i < N; i++) { BASE x = ZERO; GSL_REAL (x) = (ATOMIC)(N - i); GSL_IMAG (x) = (ATOMIC)(N - i + 1); FUNCTION (gsl_vector, set) (v, i, x); }; FUNCTION (gsl_vector, fwrite) (f, v); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); FUNCTION (gsl_vector, fread) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[2 * i * stride] != (ATOMIC) (N - i) || w->data[2 * i * stride + 1] != (ATOMIC) (N - i + 1)) status = 1; }; fclose (f); } FUNCTION (gsl_vector, free) (v); FUNCTION (gsl_vector, free) (w); gsl_test (status, NAME (gsl_vector) "_write and read work"); } #if USES_LONGDOUBLE && ! HAVE_PRINTF_LONGDOUBLE /* skip this test */ #else void FUNCTION (test, text) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride, N); TYPE (gsl_vector) * w = FUNCTION (create, vector) (stride, N); size_t i; { FILE *f = fopen ("test.txt", "w"); for (i = 0; i < N; i++) { BASE x; GSL_REAL (x) = (ATOMIC)i; GSL_IMAG (x) = (ATOMIC)(i + 1); FUNCTION (gsl_vector, set) (v, i, x); }; FUNCTION (gsl_vector, fprintf) (f, v, OUT_FORMAT); fclose (f); } { FILE *f = fopen ("test.txt", "r"); FUNCTION (gsl_vector, fscanf) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[2 * i * stride] != (ATOMIC) i || w->data[2 * i * stride + 1] != (ATOMIC) (i + 1)) status = 1; }; fclose (f); } FUNCTION (gsl_vector, free) (v); FUNCTION (gsl_vector, free) (w); gsl_test (status, NAME (gsl_vector) "_fprintf and fscanf"); } #endif void FUNCTION (test, trap) (size_t stride, size_t N) { TYPE (gsl_vector) * vc = FUNCTION (create, vector) (stride, N); BASE z = {{(ATOMIC)1.2, (ATOMIC)3.4}}; BASE z1 = {{(ATOMIC)4.5, (ATOMIC)6.7}}; size_t j = 0; status = 0; FUNCTION (gsl_vector, set) (vc, j - 1, z); gsl_test (!status, NAME (gsl_vector) "_set traps index below lower bound"); status = 0; FUNCTION (gsl_vector, set) (vc, N + 1, z); gsl_test (!status, NAME (gsl_vector) "_set traps index above upper bound"); status = 0; FUNCTION (gsl_vector, set) (vc, N, z); gsl_test (!status, NAME (gsl_vector) "_set traps index at upper bound"); status = 0; z1 = FUNCTION (gsl_vector, get) (vc, j - 1); gsl_test (!status, NAME (gsl_vector) "_get traps index below lower bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_vector) "_get returns zero real below lower bound"); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_vector) "_get returns zero imag below lower bound"); status = 0; z1 = FUNCTION (gsl_vector, get) (vc, N + 1); gsl_test (!status, NAME (gsl_vector) "_get traps index above upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_vector) "_get returns zero real above upper bound"); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_vector) "_get returns zero imag above upper bound"); status = 0; z1 = FUNCTION (gsl_vector, get) (vc, N); gsl_test (!status, NAME (gsl_vector) "_get traps index at upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_vector) "_get returns zero real at upper bound"); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_vector) "_get returns zero imag at upper bound"); FUNCTION (gsl_vector, free) (vc); } gsl-1.16/vector/gsl_vector_complex_double.h0000664000252300025230000002011412171574312016053 00000000000000/* vector/gsl_vector_complex_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_COMPLEX_DOUBLE_H__ #define __GSL_VECTOR_COMPLEX_DOUBLE_H__ #include #include #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; double *data; gsl_block_complex *block; int owner; } gsl_vector_complex; typedef struct { gsl_vector_complex vector; } _gsl_vector_complex_view; typedef _gsl_vector_complex_view gsl_vector_complex_view; typedef struct { gsl_vector_complex vector; } _gsl_vector_complex_const_view; typedef const _gsl_vector_complex_const_view gsl_vector_complex_const_view; /* Allocation */ gsl_vector_complex *gsl_vector_complex_alloc (const size_t n); gsl_vector_complex *gsl_vector_complex_calloc (const size_t n); gsl_vector_complex * gsl_vector_complex_alloc_from_block (gsl_block_complex * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_complex * gsl_vector_complex_alloc_from_vector (gsl_vector_complex * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_complex_free (gsl_vector_complex * v); /* Views */ _gsl_vector_complex_view gsl_vector_complex_view_array (double *base, size_t n); _gsl_vector_complex_view gsl_vector_complex_view_array_with_stride (double *base, size_t stride, size_t n); _gsl_vector_complex_const_view gsl_vector_complex_const_view_array (const double *base, size_t n); _gsl_vector_complex_const_view gsl_vector_complex_const_view_array_with_stride (const double *base, size_t stride, size_t n); _gsl_vector_complex_view gsl_vector_complex_subvector (gsl_vector_complex *base, size_t i, size_t n); _gsl_vector_complex_view gsl_vector_complex_subvector_with_stride (gsl_vector_complex *v, size_t i, size_t stride, size_t n); _gsl_vector_complex_const_view gsl_vector_complex_const_subvector (const gsl_vector_complex *base, size_t i, size_t n); _gsl_vector_complex_const_view gsl_vector_complex_const_subvector_with_stride (const gsl_vector_complex *v, size_t i, size_t stride, size_t n); _gsl_vector_view gsl_vector_complex_real (gsl_vector_complex *v); _gsl_vector_view gsl_vector_complex_imag (gsl_vector_complex *v); _gsl_vector_const_view gsl_vector_complex_const_real (const gsl_vector_complex *v); _gsl_vector_const_view gsl_vector_complex_const_imag (const gsl_vector_complex *v); /* Operations */ void gsl_vector_complex_set_zero (gsl_vector_complex * v); void gsl_vector_complex_set_all (gsl_vector_complex * v, gsl_complex z); int gsl_vector_complex_set_basis (gsl_vector_complex * v, size_t i); int gsl_vector_complex_fread (FILE * stream, gsl_vector_complex * v); int gsl_vector_complex_fwrite (FILE * stream, const gsl_vector_complex * v); int gsl_vector_complex_fscanf (FILE * stream, gsl_vector_complex * v); int gsl_vector_complex_fprintf (FILE * stream, const gsl_vector_complex * v, const char *format); int gsl_vector_complex_memcpy (gsl_vector_complex * dest, const gsl_vector_complex * src); int gsl_vector_complex_reverse (gsl_vector_complex * v); int gsl_vector_complex_swap (gsl_vector_complex * v, gsl_vector_complex * w); int gsl_vector_complex_swap_elements (gsl_vector_complex * v, const size_t i, const size_t j); int gsl_vector_complex_equal (const gsl_vector_complex * u, const gsl_vector_complex * v); int gsl_vector_complex_isnull (const gsl_vector_complex * v); int gsl_vector_complex_ispos (const gsl_vector_complex * v); int gsl_vector_complex_isneg (const gsl_vector_complex * v); int gsl_vector_complex_isnonneg (const gsl_vector_complex * v); int gsl_vector_complex_add (gsl_vector_complex * a, const gsl_vector_complex * b); int gsl_vector_complex_sub (gsl_vector_complex * a, const gsl_vector_complex * b); int gsl_vector_complex_mul (gsl_vector_complex * a, const gsl_vector_complex * b); int gsl_vector_complex_div (gsl_vector_complex * a, const gsl_vector_complex * b); int gsl_vector_complex_scale (gsl_vector_complex * a, const gsl_complex x); int gsl_vector_complex_add_constant (gsl_vector_complex * a, const gsl_complex x); INLINE_DECL gsl_complex gsl_vector_complex_get (const gsl_vector_complex * v, const size_t i); INLINE_DECL void gsl_vector_complex_set (gsl_vector_complex * v, const size_t i, gsl_complex z); INLINE_DECL gsl_complex *gsl_vector_complex_ptr (gsl_vector_complex * v, const size_t i); INLINE_DECL const gsl_complex *gsl_vector_complex_const_ptr (const gsl_vector_complex * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN gsl_complex gsl_vector_complex_get (const gsl_vector_complex * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { gsl_complex zero = {{0, 0}}; GSL_ERROR_VAL ("index out of range", GSL_EINVAL, zero); } #endif return *GSL_COMPLEX_AT (v, i); } INLINE_FUN void gsl_vector_complex_set (gsl_vector_complex * v, const size_t i, gsl_complex z) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif *GSL_COMPLEX_AT (v, i) = z; } INLINE_FUN gsl_complex * gsl_vector_complex_ptr (gsl_vector_complex * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_AT (v, i); } INLINE_FUN const gsl_complex * gsl_vector_complex_const_ptr (const gsl_vector_complex * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_AT (v, i); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_COMPLEX_DOUBLE_H__ */ gsl-1.16/vector/Makefile.am0000664000252300025230000000236012171574312012511 00000000000000noinst_LTLIBRARIES = libgslvector.la check_PROGRAMS = test test_static pkginclude_HEADERS = gsl_vector.h gsl_vector_char.h gsl_vector_complex.h gsl_vector_complex_double.h gsl_vector_complex_float.h gsl_vector_complex_long_double.h gsl_vector_double.h gsl_vector_float.h gsl_vector_int.h gsl_vector_long.h gsl_vector_long_double.h gsl_vector_short.h gsl_vector_uchar.h gsl_vector_uint.h gsl_vector_ulong.h gsl_vector_ushort.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_static_LDADD = libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c test_static_SOURCES = test_static.c CLEANFILES = test.txt test.dat noinst_HEADERS = init_source.c file_source.c copy_source.c swap_source.c prop_source.c test_complex_source.c test_source.c minmax_source.c oper_source.c oper_complex_source.c reim_source.c subvector_source.c view_source.c libgslvector_la_SOURCES = init.c file.c vector.c copy.c swap.c prop.c minmax.c oper.c reim.c subvector.c view.c view.h gsl-1.16/vector/gsl_vector_long.h0000664000252300025230000001626212171574312014022 00000000000000/* vector/gsl_vector_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_LONG_H__ #define __GSL_VECTOR_LONG_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; long *data; gsl_block_long *block; int owner; } gsl_vector_long; typedef struct { gsl_vector_long vector; } _gsl_vector_long_view; typedef _gsl_vector_long_view gsl_vector_long_view; typedef struct { gsl_vector_long vector; } _gsl_vector_long_const_view; typedef const _gsl_vector_long_const_view gsl_vector_long_const_view; /* Allocation */ gsl_vector_long *gsl_vector_long_alloc (const size_t n); gsl_vector_long *gsl_vector_long_calloc (const size_t n); gsl_vector_long *gsl_vector_long_alloc_from_block (gsl_block_long * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_long *gsl_vector_long_alloc_from_vector (gsl_vector_long * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_long_free (gsl_vector_long * v); /* Views */ _gsl_vector_long_view gsl_vector_long_view_array (long *v, size_t n); _gsl_vector_long_view gsl_vector_long_view_array_with_stride (long *base, size_t stride, size_t n); _gsl_vector_long_const_view gsl_vector_long_const_view_array (const long *v, size_t n); _gsl_vector_long_const_view gsl_vector_long_const_view_array_with_stride (const long *base, size_t stride, size_t n); _gsl_vector_long_view gsl_vector_long_subvector (gsl_vector_long *v, size_t i, size_t n); _gsl_vector_long_view gsl_vector_long_subvector_with_stride (gsl_vector_long *v, size_t i, size_t stride, size_t n); _gsl_vector_long_const_view gsl_vector_long_const_subvector (const gsl_vector_long *v, size_t i, size_t n); _gsl_vector_long_const_view gsl_vector_long_const_subvector_with_stride (const gsl_vector_long *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_long_set_zero (gsl_vector_long * v); void gsl_vector_long_set_all (gsl_vector_long * v, long x); int gsl_vector_long_set_basis (gsl_vector_long * v, size_t i); int gsl_vector_long_fread (FILE * stream, gsl_vector_long * v); int gsl_vector_long_fwrite (FILE * stream, const gsl_vector_long * v); int gsl_vector_long_fscanf (FILE * stream, gsl_vector_long * v); int gsl_vector_long_fprintf (FILE * stream, const gsl_vector_long * v, const char *format); int gsl_vector_long_memcpy (gsl_vector_long * dest, const gsl_vector_long * src); int gsl_vector_long_reverse (gsl_vector_long * v); int gsl_vector_long_swap (gsl_vector_long * v, gsl_vector_long * w); int gsl_vector_long_swap_elements (gsl_vector_long * v, const size_t i, const size_t j); long gsl_vector_long_max (const gsl_vector_long * v); long gsl_vector_long_min (const gsl_vector_long * v); void gsl_vector_long_minmax (const gsl_vector_long * v, long * min_out, long * max_out); size_t gsl_vector_long_max_index (const gsl_vector_long * v); size_t gsl_vector_long_min_index (const gsl_vector_long * v); void gsl_vector_long_minmax_index (const gsl_vector_long * v, size_t * imin, size_t * imax); int gsl_vector_long_add (gsl_vector_long * a, const gsl_vector_long * b); int gsl_vector_long_sub (gsl_vector_long * a, const gsl_vector_long * b); int gsl_vector_long_mul (gsl_vector_long * a, const gsl_vector_long * b); int gsl_vector_long_div (gsl_vector_long * a, const gsl_vector_long * b); int gsl_vector_long_scale (gsl_vector_long * a, const double x); int gsl_vector_long_add_constant (gsl_vector_long * a, const double x); int gsl_vector_long_equal (const gsl_vector_long * u, const gsl_vector_long * v); int gsl_vector_long_isnull (const gsl_vector_long * v); int gsl_vector_long_ispos (const gsl_vector_long * v); int gsl_vector_long_isneg (const gsl_vector_long * v); int gsl_vector_long_isnonneg (const gsl_vector_long * v); INLINE_DECL long gsl_vector_long_get (const gsl_vector_long * v, const size_t i); INLINE_DECL void gsl_vector_long_set (gsl_vector_long * v, const size_t i, long x); INLINE_DECL long * gsl_vector_long_ptr (gsl_vector_long * v, const size_t i); INLINE_DECL const long * gsl_vector_long_const_ptr (const gsl_vector_long * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN long gsl_vector_long_get (const gsl_vector_long * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_long_set (gsl_vector_long * v, const size_t i, long x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN long * gsl_vector_long_ptr (gsl_vector_long * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (long *) (v->data + i * v->stride); } INLINE_FUN const long * gsl_vector_long_const_ptr (const gsl_vector_long * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const long *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_LONG_H__ */ gsl-1.16/vector/minmax_source.c0000664000252300025230000001007112171574312013470 00000000000000/* vector/minmax_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ BASE FUNCTION(gsl_vector,max) (const TYPE(gsl_vector) * v) { /* finds the largest element of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; BASE max = v->data[0 * stride]; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x > max) max = x; #ifdef FP if (isnan (x)) return x; #endif } return max; } BASE FUNCTION(gsl_vector,min) (const TYPE(gsl_vector) * v) { /* finds the smallest element of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; BASE min = v->data[0 * stride]; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x < min) min = x; #ifdef FP if (isnan (x)) return x; #endif } return min; } void FUNCTION(gsl_vector,minmax) (const TYPE(gsl_vector) * v, BASE * min_out, BASE * max_out) { /* finds the smallest and largest elements of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; BASE max = v->data[0 * stride]; BASE min = v->data[0 * stride]; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x < min) { min = x; } if (x > max) { max = x; } #ifdef FP if (isnan (x)) { min = x; max = x; break; } #endif } *min_out = min; *max_out = max; } size_t FUNCTION(gsl_vector,max_index) (const TYPE(gsl_vector) * v) { /* finds the largest element of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; BASE max = v->data[0 * stride]; size_t imax = 0; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x > max) { max = x; imax = i; } #ifdef FP if (isnan (x)) { return i; } #endif } return imax; } size_t FUNCTION(gsl_vector,min_index) (const TYPE(gsl_vector) * v) { /* finds the smallest element of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; BASE min = v->data[0 * stride]; size_t imin = 0; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x < min) { min = x; imin = i; } #ifdef FP if (isnan (x)) { return i; } #endif } return imin; } void FUNCTION(gsl_vector,minmax_index) (const TYPE(gsl_vector) * v, size_t * imin_out, size_t * imax_out) { /* finds the smallest and largest elements of a vector */ const size_t N = v->size ; const size_t stride = v->stride ; size_t imin = 0, imax = 0; BASE max = v->data[0 * stride]; BASE min = v->data[0 * stride]; size_t i; for (i = 0; i < N; i++) { BASE x = v->data[i*stride]; if (x < min) { min = x; imin = i; } if (x > max) { max = x; imax = i; } #ifdef FP if (isnan (x)) { imin = i; imax = i; break; } #endif } *imin_out = imin; *imax_out = imax; } gsl-1.16/vector/swap_source.c0000664000252300025230000000507312171574312013157 00000000000000/* vector/swap_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_vector, swap) (TYPE (gsl_vector) * v, TYPE (gsl_vector) * w) { ATOMIC * d1 = v->data ; ATOMIC * d2 = w->data ; const size_t size = v->size ; const size_t s1 = MULTIPLICITY * v->stride ; const size_t s2 = MULTIPLICITY * w->stride ; size_t i, k ; if (v->size != w->size) { GSL_ERROR("vector lengths must be equal", GSL_EINVAL); } for (i = 0; i < size; i++) { for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = d1[i*s1 + k]; d1[i*s1+k] = d2[i*s2 + k]; d2[i*s2+k] = tmp; } } return GSL_SUCCESS; } int FUNCTION (gsl_vector, swap_elements) (TYPE (gsl_vector) * v, const size_t i, const size_t j) { ATOMIC * data = v->data ; const size_t size = v->size ; const size_t stride = v->stride ; if (i >= size) { GSL_ERROR("first index is out of range", GSL_EINVAL); } if (j >= size) { GSL_ERROR("second index is out of range", GSL_EINVAL); } if (i != j) { const size_t s = MULTIPLICITY * stride ; size_t k ; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = data[j*s + k]; data[j*s+k] = data[i*s + k]; data[i*s+k] = tmp; } } return GSL_SUCCESS; } int FUNCTION (gsl_vector, reverse) (TYPE (gsl_vector) * v) { ATOMIC * data = v->data ; const size_t size = v->size ; const size_t stride = v->stride ; const size_t s = MULTIPLICITY * stride ; size_t i ; for (i = 0 ; i < (size / 2) ; i++) { size_t j = size - i - 1 ; size_t k; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = data[j*s + k]; data[j*s+k] = data[i*s + k]; data[i*s+k] = tmp; } } return GSL_SUCCESS; } gsl-1.16/vector/copy.c0000664000252300025230000000336112171574312011575 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/prop_source.c0000664000252300025230000000575212171574312013171 00000000000000/* vector/prop_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_vector, equal) (const TYPE (gsl_vector) * u, const TYPE (gsl_vector) * v) { const size_t n = v->size; const size_t stride_u = u->stride ; const size_t stride_v = v->stride ; size_t j; if (u->size != v->size) { GSL_ERROR_VAL ("vectors must have same length", GSL_EBADLEN, 0); } for (j = 0; j < n; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { if (u->data[MULTIPLICITY * stride_u * j + k] != v->data[MULTIPLICITY * stride_v * j + k]) { return 0; } } } return 1; } int FUNCTION (gsl_vector, isnull) (const TYPE (gsl_vector) * v) { const size_t n = v->size; const size_t stride = v->stride ; size_t j; for (j = 0; j < n; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { if (v->data[MULTIPLICITY * stride * j + k] != 0.0) { return 0; } } } return 1; } int FUNCTION (gsl_vector, ispos) (const TYPE (gsl_vector) * v) { const size_t n = v->size; const size_t stride = v->stride ; size_t j; for (j = 0; j < n; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { if (v->data[MULTIPLICITY * stride * j + k] <= 0.0) { return 0; } } } return 1; } int FUNCTION (gsl_vector, isneg) (const TYPE (gsl_vector) * v) { const size_t n = v->size; const size_t stride = v->stride ; size_t j; for (j = 0; j < n; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { if (v->data[MULTIPLICITY * stride * j + k] >= 0.0) { return 0; } } } return 1; } int FUNCTION (gsl_vector, isnonneg) (const TYPE (gsl_vector) * v) { const size_t n = v->size; const size_t stride = v->stride ; size_t j; for (j = 0; j < n; j++) { size_t k; for (k = 0; k < MULTIPLICITY; k++) { if (v->data[MULTIPLICITY * stride * j + k] < 0.0) { return 0; } } } return 1; } gsl-1.16/vector/subvector_source.c0000664000252300025230000000456612171574312014227 00000000000000/* vector/subvector_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_VIEW(_gsl_vector, view) FUNCTION(gsl_vector, subvector) (QUALIFIED_TYPE(gsl_vector) * v, size_t offset, size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } if (offset + (n - 1) >= v->size) { GSL_ERROR_VAL ("view would extend past end of vector", GSL_EINVAL, view); } { TYPE(gsl_vector) s = NULL_VECTOR; s.data = v->data + MULTIPLICITY * v->stride * offset ; s.size = n; s.stride = v->stride; s.block = v->block; s.owner = 0; view.vector = s; return view; } } QUALIFIED_VIEW(_gsl_vector, view) FUNCTION(gsl_vector, subvector_with_stride) (QUALIFIED_TYPE(gsl_vector) * v, size_t offset, size_t stride, size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } if (stride == 0) { GSL_ERROR_VAL ("stride must be positive integer", GSL_EINVAL, view); } if (offset + (n - 1) * stride >= v->size) { GSL_ERROR_VAL ("view would extend past end of vector", GSL_EINVAL, view); } { TYPE(gsl_vector) s = NULL_VECTOR; s.data = v->data + MULTIPLICITY * v->stride * offset ; s.size = n; s.stride = v->stride * stride; s.block = v->block; s.owner = 0; view.vector = s; return view; } } gsl-1.16/vector/gsl_vector_complex.h0000664000252300025230000000137412171574312014530 00000000000000#ifndef __GSL_VECTOR_COMPLEX_H__ #define __GSL_VECTOR_COMPLEX_H__ #define GSL_VECTOR_REAL(z, i) ((z)->data[2*(i)*(z)->stride]) #define GSL_VECTOR_IMAG(z, i) ((z)->data[2*(i)*(z)->stride + 1]) #if GSL_RANGE_CHECK #define GSL_VECTOR_COMPLEX(zv, i) (((i) >= (zv)->size ? (gsl_error ("index out of range", __FILE__, __LINE__, GSL_EINVAL), 0):0 , *GSL_COMPLEX_AT((zv),(i)))) #else #define GSL_VECTOR_COMPLEX(zv, i) (*GSL_COMPLEX_AT((zv),(i))) #endif #define GSL_COMPLEX_AT(zv,i) ((gsl_complex*)&((zv)->data[2*(i)*(zv)->stride])) #define GSL_COMPLEX_FLOAT_AT(zv,i) ((gsl_complex_float*)&((zv)->data[2*(i)*(zv)->stride])) #define GSL_COMPLEX_LONG_DOUBLE_AT(zv,i) ((gsl_complex_long_double*)&((zv)->data[2*(i)*(zv)->stride])) #endif /* __GSL_VECTOR_COMPLEX_H__ */ gsl-1.16/vector/test_source.c0000664000252300025230000005022212171574312013160 00000000000000/* vector/test_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (size_t stride, size_t N); void FUNCTION (test, ops) (size_t stride1, size_t stride2, size_t N); void FUNCTION (test, file) (size_t stride, size_t N); void FUNCTION (test, text) (size_t stride, size_t N); void FUNCTION (test, trap) (size_t stride, size_t N); TYPE (gsl_vector) * FUNCTION(create, vector) (size_t stride, size_t N); #define TEST(expr,desc) gsl_test((expr), NAME(gsl_vector) desc " stride=%d, N=%d", stride, N) #define TEST2(expr,desc) gsl_test((expr), NAME(gsl_vector) desc " stride1=%d, stride2=%d, N=%d", stride1, stride2, N) TYPE (gsl_vector) * FUNCTION(create, vector) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (gsl_vector, calloc) (N*stride); v->stride = stride; v->size = N; return v; } void FUNCTION (test, func) (size_t stride, size_t N) { TYPE (gsl_vector) * v0; TYPE (gsl_vector) * v; QUALIFIED_VIEW(gsl_vector,view) view; size_t i, j; if (stride == 1) { v = FUNCTION (gsl_vector, calloc) (N); TEST(v->data == 0, "_calloc pointer"); TEST(v->size != N, "_calloc size"); TEST(v->stride != 1, "_calloc stride"); { int status = (FUNCTION(gsl_vector,isnull)(v) != 1); TEST (status, "_isnull" DESC " on calloc vector"); status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on calloc vector"); status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on calloc vector"); status = (FUNCTION(gsl_vector,isnonneg)(v) != 1); TEST (status, "_isnonneg" DESC " on calloc vector"); } FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ } if (stride == 1) { v = FUNCTION (gsl_vector, alloc) (N); TEST(v->data == 0, "_alloc pointer"); TEST(v->size != N, "_alloc size"); TEST(v->stride != 1, "_alloc stride"); FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ } if (stride == 1) { v0 = FUNCTION (gsl_vector, alloc) (N); view = FUNCTION (gsl_vector, subvector) (v0, 0, N); v = &view.vector; } else { v0 = FUNCTION (gsl_vector, alloc) (N * stride); for (i = 0; i < N*stride; i++) { v0->data[i] = i; } view = FUNCTION (gsl_vector, subvector_with_stride) (v0, 0, stride, N); v = &view.vector; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i); } for (i = 0; i < N; i++) { if (v->data[i*stride] != (ATOMIC) (i)) status = 1; }; TEST(status,"_set" DESC " writes into array"); } { int status = 0; for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (i)) status = 1; }; TEST (status, "_get" DESC " reads from array"); } { int status = 0; for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, ptr) (v, i) != v->data + i*stride) status = 1; }; TEST (status, "_ptr" DESC " access to array"); } { int status = 0; for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, const_ptr) (v, i) != v->data + i*stride) status = 1; }; TEST (status, "_const_ptr" DESC " access to array"); } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) 0); } status = (FUNCTION(gsl_vector,isnull)(v) != 1); TEST (status, "_isnull" DESC " on null vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on null vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on null vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 1); TEST (status, "_isnonneg" DESC " on null vector") ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) (i % 10)); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on non-negative vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on non-negative vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on non-negative vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 1); TEST (status, "_isnonneg" DESC " on non-negative vector") ; } #ifndef UNSIGNED { int status = 0; for (i = 0; i < N; i++) { ATOMIC vi = (i % 10) - (ATOMIC) 5; FUNCTION (gsl_vector, set) (v, i, vi); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on mixed vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on mixed vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on mixed vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 0); TEST (status, "_isnonneg" DESC " on mixed vector") ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, -(ATOMIC) (i % 10)); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on non-positive vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on non-positive vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on non-positive non-null vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 0); TEST (status, "_isnonneg" DESC " on non-positive non-null vector") ; } #endif { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) (i % 10 + 1)); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on positive vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 1); TEST (status, "_ispos" DESC " on positive vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 0); TEST (status, "_isneg" DESC " on positive vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 1); TEST (status, "_isnonneg" DESC " on positive vector") ; } #if (!defined(UNSIGNED) && !defined(BASE_CHAR)) { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, -(ATOMIC) (i % 10 + 1)); } status = (FUNCTION(gsl_vector,isnull)(v) != 0); TEST (status, "_isnull" DESC " on negative vector") ; status = (FUNCTION(gsl_vector,ispos)(v) != 0); TEST (status, "_ispos" DESC " on negative vector") ; status = (FUNCTION(gsl_vector,isneg)(v) != 1); TEST (status, "_isneg" DESC " on negative vector") ; status = (FUNCTION(gsl_vector,isnonneg)(v) != 0); TEST (status, "_isnonneg" DESC " on negative vector") ; } #endif { int status = 0; FUNCTION (gsl_vector, set_zero) (v); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC)0) status = 1; }; TEST (status, "_setzero" DESC " on non-null vector") ; } { int status = 0; FUNCTION (gsl_vector, set_all) (v, (ATOMIC)27); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (27)) status = 1; }; TEST (status, "_setall" DESC " to non-zero value") ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set_basis) (v, i); for (j = 0; j < N; j++) { if (i == j) { if (FUNCTION (gsl_vector, get) (v, j) != (ATOMIC)1) status = 1 ; } else { if (FUNCTION (gsl_vector, get) (v, j) != (ATOMIC)(0)) status = 1; } }; } TEST (status, "_setbasis" DESC " over range") ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i); } FUNCTION (gsl_vector, scale) (v, 2.0); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (i*2.0)) status = 1; }; TEST (status, "_scale" DESC " by 2") ; } { int status = 0; FUNCTION (gsl_vector, add_constant) (v, (ATOMIC)7); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (i*2.0 + 7)) status = 1; }; TEST (status, "_add_constant" DESC) ; } { int status = 0; for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i); } FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ; status = (FUNCTION(gsl_vector,get)(v,2) != 5) ; status |= (FUNCTION(gsl_vector,get)(v,5) != 2) ; FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ; status |= (FUNCTION(gsl_vector,get)(v,2) != 2) ; status |= (FUNCTION(gsl_vector,get)(v,5) != 5) ; TEST (status, "_swap_elements" DESC " (2,5)") ; } { int status = 0; FUNCTION (gsl_vector,reverse) (v) ; for (i = 0; i < N; i++) { status |= (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (N - i - 1)); } TEST (status, "_reverse" DESC " reverses elements") ; } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array) (v->data, N*stride); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (&v1.vector, i*stride) != FUNCTION (gsl_vector, get) (v, i)) status = 1; }; TEST (status, "_view_array" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array_with_stride) (v->data, stride, N*stride); for (i = 0; i < N; i++) { if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, i)) status = 1; }; TEST (status, "_view_array_with_stride" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector) (v, N/3, N/2); for (i = 0; i < N/2; i++) { if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, (N/3) + i)) status = 1; }; TEST (status, "_view_subvector" DESC); } { int status = 0; QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector_with_stride) (v, N/5, 3, N/4); for (i = 0; i < N/4; i++) { if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, (N/5) + 3*i)) status = 1; }; TEST (status, "_view_subvector_with_stride" DESC); } { BASE exp_max = FUNCTION(gsl_vector,get)(v, 0); BASE exp_min = FUNCTION(gsl_vector,get)(v, 0); size_t exp_imax = 0, exp_imin = 0; for (i = 0; i < N; i++) { BASE k = FUNCTION(gsl_vector, get) (v, i) ; if (k < exp_min) { exp_min = FUNCTION(gsl_vector, get) (v, i); exp_imin = i; } } for (i = 0; i < N; i++) { BASE k = FUNCTION(gsl_vector, get) (v, i) ; if (k > exp_max) { exp_max = FUNCTION(gsl_vector, get) (v, i) ; exp_imax = i; } } { BASE max = FUNCTION(gsl_vector, max) (v) ; TEST (max != exp_max, "_max returns correct maximum value"); } { BASE min = FUNCTION(gsl_vector, min) (v) ; TEST (min != exp_min, "_min returns correct minimum value"); } { BASE min, max; FUNCTION(gsl_vector, minmax) (v, &min, &max); TEST (max != exp_max, "_minmax returns correct maximum value"); TEST (min != exp_min, "_minmax returns correct minimum value"); } { size_t imax = FUNCTION(gsl_vector, max_index) (v) ; TEST (imax != exp_imax, "_max_index returns correct maximum i"); } { size_t imin = FUNCTION(gsl_vector, min_index) (v) ; TEST (imin != exp_imin, "_min_index returns correct minimum i"); } { size_t imin, imax; FUNCTION(gsl_vector, minmax_index) (v, &imin, &imax); TEST (imax != exp_imax, "_minmax_index returns correct maximum i"); TEST (imin != exp_imin, "_minmax_index returns correct minimum i"); } #if FP i = N/2; FUNCTION(gsl_vector, set) (v, i, GSL_NAN); exp_max = GSL_NAN; exp_min = GSL_NAN; exp_imax = i; exp_imin = i; { BASE max = FUNCTION(gsl_vector, max) (v) ; gsl_test_abs (max, exp_max, 0, "_max returns correct maximum value for NaN"); } { BASE min = FUNCTION(gsl_vector, min) (v) ; gsl_test_abs (min, exp_min, 0, "_min returns correct minimum value for NaN"); } { BASE min, max; FUNCTION(gsl_vector, minmax) (v, &min, &max); gsl_test_abs (max, exp_max, 0, "_minmax returns correct maximum value for NaN"); gsl_test_abs (min, exp_min, 0, "_minmax returns correct minimum value for NaN"); } { size_t imax = FUNCTION(gsl_vector, max_index) (v) ; TEST (imax != exp_imax, "_max_index returns correct maximum i for NaN"); } { size_t imin = FUNCTION(gsl_vector, min_index) (v) ; TEST (imin != exp_imin, "_min_index returns correct minimum i for NaN"); } { size_t imin, imax; FUNCTION(gsl_vector, minmax_index) (v, &imin, &imax); TEST (imax != exp_imax, "_minmax_index returns correct maximum i for NaN"); TEST (imin != exp_imin, "_minmax_index returns correct minimum i for NaN"); } #endif } FUNCTION (gsl_vector, free) (v0); /* free whatever is in v */ } void FUNCTION (test, ops) (size_t stride1, size_t stride2, size_t N) { size_t i; TYPE (gsl_vector) * a = FUNCTION (create, vector) (stride1, N); TYPE (gsl_vector) * b = FUNCTION (create, vector) (stride2, N); TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride1, N); for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (a, i, (BASE)(3 + i)); FUNCTION (gsl_vector, set) (b, i, (BASE)(3 + 2 * i)); } { int status = (FUNCTION(gsl_vector,equal) (a,b) != 0); TEST2 (status, "_equal vectors unequal"); } FUNCTION(gsl_vector, memcpy) (v, a); { int status = (FUNCTION(gsl_vector,equal) (a,v) != 1); TEST2 (status, "_equal vectors equal"); } FUNCTION(gsl_vector, add) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); BASE x = FUNCTION(gsl_vector,get) (a,i); BASE y = FUNCTION(gsl_vector,get) (b,i); BASE z = x + y; if (r != z) status = 1; } TEST2 (status, "_add vector addition"); } { int status = 0; FUNCTION(gsl_vector, swap) (a, b); for (i = 0; i < N; i++) { status |= (FUNCTION (gsl_vector, get) (a, i) != (BASE)(3 + 2 * i)); status |= (FUNCTION (gsl_vector, get) (b, i) != (BASE)(3 + i)); } FUNCTION(gsl_vector, swap) (a, b); for (i = 0; i < N; i++) { status |= (FUNCTION (gsl_vector, get) (a, i) != (BASE)(3 + i)); status |= (FUNCTION (gsl_vector, get) (b, i) != (BASE)(3 + 2 * i)); } TEST2 (status, "_swap exchange vectors"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, sub) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); BASE x = FUNCTION(gsl_vector,get) (a,i); BASE y = FUNCTION(gsl_vector,get) (b,i); BASE z = x - y; if (r != z) status = 1; } TEST2 (status, "_sub vector subtraction"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, mul) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); BASE x = FUNCTION(gsl_vector,get) (a,i); BASE y = FUNCTION(gsl_vector,get) (b,i); BASE z = x * y; if (r != z) status = 1; } TEST2 (status, "_mul multiplication"); } FUNCTION(gsl_vector, memcpy) (v, a); FUNCTION(gsl_vector, div) (v, b); { int status = 0; for (i = 0; i < N; i++) { BASE r = FUNCTION(gsl_vector,get) (v,i); BASE x = FUNCTION(gsl_vector,get) (a,i); BASE y = FUNCTION(gsl_vector,get) (b,i); BASE z = x / y; if (fabs(r - z) > 2 * GSL_FLT_EPSILON * fabs(z)) status = 1; } TEST2 (status, "_div division"); } FUNCTION(gsl_vector, free) (a); FUNCTION(gsl_vector, free) (b); FUNCTION(gsl_vector, free) (v); } void FUNCTION (test, file) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride, N); TYPE (gsl_vector) * w = FUNCTION (create, vector) (stride, N); size_t i; { FILE *f = fopen ("test.dat", "wb"); for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) (N - i)); }; FUNCTION (gsl_vector, fwrite) (f, v); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); FUNCTION (gsl_vector, fread) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[i*stride] != (ATOMIC) (N - i)) status = 1; }; TEST (status, "_write and read"); fclose (f); } FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ FUNCTION (gsl_vector, free) (w); /* free whatever is in w */ } #if USES_LONGDOUBLE && ! HAVE_PRINTF_LONGDOUBLE /* skip this test */ #else void FUNCTION (test, text) (size_t stride, size_t N) { TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride, N); TYPE (gsl_vector) * w = FUNCTION (create, vector) (stride, N); size_t i; { FILE *f = fopen ("test.txt", "w"); for (i = 0; i < N; i++) { FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i); }; FUNCTION (gsl_vector, fprintf) (f, v, OUT_FORMAT); fclose (f); } { FILE *f = fopen ("test.txt", "r"); FUNCTION (gsl_vector, fscanf) (f, w); status = 0; for (i = 0; i < N; i++) { if (w->data[i*stride] != (ATOMIC) i) status = 1; }; gsl_test (status, NAME (gsl_vector) "_fprintf and fscanf"); fclose (f); } FUNCTION (gsl_vector, free) (v); FUNCTION (gsl_vector, free) (w); } #endif void FUNCTION (test, trap) (size_t stride, size_t N) { double x; size_t j = 0; TYPE (gsl_vector) * v = FUNCTION (create, vector) (stride, N); v->size = N; v->stride = stride; status = 0; FUNCTION (gsl_vector, set) (v, j - 1, (ATOMIC)0); TEST (!status, "_set traps index below lower bound"); status = 0; FUNCTION (gsl_vector, set) (v, N + 1, (ATOMIC)0); TEST (!status, "_set traps index above upper bound"); status = 0; FUNCTION (gsl_vector, set) (v, N, (ATOMIC)0); TEST (!status, "_set traps index at upper bound"); status = 0; x = FUNCTION (gsl_vector, get) (v, j - 1); TEST (!status, "_get traps index below lower bound"); TEST (x != 0, "_get returns zero for index below lower bound"); status = 0; x = FUNCTION (gsl_vector, get) (v, N + 1); TEST (!status, "_get traps index above upper bound"); TEST (x != 0, "_get returns zero for index above upper bound"); status = 0; x = FUNCTION (gsl_vector, get) (v, N); TEST (!status, "_get traps index at upper bound"); TEST (x != 0, "_get returns zero for index at upper bound"); FUNCTION (gsl_vector, free) (v); /* free whatever is in v */ } gsl-1.16/vector/oper.c0000664000252300025230000000346012171574312011570 00000000000000#include #include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector_complex_long_double.h0000664000252300025230000002335712171574312017106 00000000000000/* vector/gsl_vector_complex_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_COMPLEX_LONG_DOUBLE_H__ #define __GSL_VECTOR_COMPLEX_LONG_DOUBLE_H__ #include #include #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; long double *data; gsl_block_complex_long_double *block; int owner; } gsl_vector_complex_long_double; typedef struct { gsl_vector_complex_long_double vector; } _gsl_vector_complex_long_double_view; typedef _gsl_vector_complex_long_double_view gsl_vector_complex_long_double_view; typedef struct { gsl_vector_complex_long_double vector; } _gsl_vector_complex_long_double_const_view; typedef const _gsl_vector_complex_long_double_const_view gsl_vector_complex_long_double_const_view; /* Allocation */ gsl_vector_complex_long_double *gsl_vector_complex_long_double_alloc (const size_t n); gsl_vector_complex_long_double *gsl_vector_complex_long_double_calloc (const size_t n); gsl_vector_complex_long_double * gsl_vector_complex_long_double_alloc_from_block (gsl_block_complex_long_double * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_complex_long_double * gsl_vector_complex_long_double_alloc_from_vector (gsl_vector_complex_long_double * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_complex_long_double_free (gsl_vector_complex_long_double * v); /* Views */ _gsl_vector_complex_long_double_view gsl_vector_complex_long_double_view_array (long double *base, size_t n); _gsl_vector_complex_long_double_view gsl_vector_complex_long_double_view_array_with_stride (long double *base, size_t stride, size_t n); _gsl_vector_complex_long_double_const_view gsl_vector_complex_long_double_const_view_array (const long double *base, size_t n); _gsl_vector_complex_long_double_const_view gsl_vector_complex_long_double_const_view_array_with_stride (const long double *base, size_t stride, size_t n); _gsl_vector_complex_long_double_view gsl_vector_complex_long_double_subvector (gsl_vector_complex_long_double *base, size_t i, size_t n); _gsl_vector_complex_long_double_view gsl_vector_complex_long_double_subvector_with_stride (gsl_vector_complex_long_double *v, size_t i, size_t stride, size_t n); _gsl_vector_complex_long_double_const_view gsl_vector_complex_long_double_const_subvector (const gsl_vector_complex_long_double *base, size_t i, size_t n); _gsl_vector_complex_long_double_const_view gsl_vector_complex_long_double_const_subvector_with_stride (const gsl_vector_complex_long_double *v, size_t i, size_t stride, size_t n); _gsl_vector_long_double_view gsl_vector_complex_long_double_real (gsl_vector_complex_long_double *v); _gsl_vector_long_double_view gsl_vector_complex_long_double_imag (gsl_vector_complex_long_double *v); _gsl_vector_long_double_const_view gsl_vector_complex_long_double_const_real (const gsl_vector_complex_long_double *v); _gsl_vector_long_double_const_view gsl_vector_complex_long_double_const_imag (const gsl_vector_complex_long_double *v); /* Operations */ void gsl_vector_complex_long_double_set_zero (gsl_vector_complex_long_double * v); void gsl_vector_complex_long_double_set_all (gsl_vector_complex_long_double * v, gsl_complex_long_double z); int gsl_vector_complex_long_double_set_basis (gsl_vector_complex_long_double * v, size_t i); int gsl_vector_complex_long_double_fread (FILE * stream, gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_fwrite (FILE * stream, const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_fscanf (FILE * stream, gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_fprintf (FILE * stream, const gsl_vector_complex_long_double * v, const char *format); int gsl_vector_complex_long_double_memcpy (gsl_vector_complex_long_double * dest, const gsl_vector_complex_long_double * src); int gsl_vector_complex_long_double_reverse (gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_swap (gsl_vector_complex_long_double * v, gsl_vector_complex_long_double * w); int gsl_vector_complex_long_double_swap_elements (gsl_vector_complex_long_double * v, const size_t i, const size_t j); int gsl_vector_complex_long_double_equal (const gsl_vector_complex_long_double * u, const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_isnull (const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_ispos (const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_isneg (const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_isnonneg (const gsl_vector_complex_long_double * v); int gsl_vector_complex_long_double_add (gsl_vector_complex_long_double * a, const gsl_vector_complex_long_double * b); int gsl_vector_complex_long_double_sub (gsl_vector_complex_long_double * a, const gsl_vector_complex_long_double * b); int gsl_vector_complex_long_double_mul (gsl_vector_complex_long_double * a, const gsl_vector_complex_long_double * b); int gsl_vector_complex_long_double_div (gsl_vector_complex_long_double * a, const gsl_vector_complex_long_double * b); int gsl_vector_complex_long_double_scale (gsl_vector_complex_long_double * a, const gsl_complex_long_double x); int gsl_vector_complex_long_double_add_constant (gsl_vector_complex_long_double * a, const gsl_complex_long_double x); INLINE_DECL gsl_complex_long_double gsl_vector_complex_long_double_get (const gsl_vector_complex_long_double * v, const size_t i); INLINE_DECL void gsl_vector_complex_long_double_set (gsl_vector_complex_long_double * v, const size_t i, gsl_complex_long_double z); INLINE_DECL gsl_complex_long_double *gsl_vector_complex_long_double_ptr (gsl_vector_complex_long_double * v, const size_t i); INLINE_DECL const gsl_complex_long_double *gsl_vector_complex_long_double_const_ptr (const gsl_vector_complex_long_double * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN gsl_complex_long_double gsl_vector_complex_long_double_get (const gsl_vector_complex_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { gsl_complex_long_double zero = {{0, 0}}; GSL_ERROR_VAL ("index out of range", GSL_EINVAL, zero); } #endif return *GSL_COMPLEX_LONG_DOUBLE_AT (v, i); } INLINE_FUN void gsl_vector_complex_long_double_set (gsl_vector_complex_long_double * v, const size_t i, gsl_complex_long_double z) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif *GSL_COMPLEX_LONG_DOUBLE_AT (v, i) = z; } INLINE_FUN gsl_complex_long_double * gsl_vector_complex_long_double_ptr (gsl_vector_complex_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_LONG_DOUBLE_AT (v, i); } INLINE_FUN const gsl_complex_long_double * gsl_vector_complex_long_double_const_ptr (const gsl_vector_complex_long_double * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_LONG_DOUBLE_AT (v, i); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_COMPLEX_LONG_DOUBLE_H__ */ gsl-1.16/vector/view.c0000664000252300025230000000672212171574312011601 00000000000000#include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_CHAR #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/file_source.c0000664000252300025230000000443412171574312013124 00000000000000/* vector/file_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_vector, fread) (FILE * stream, TYPE (gsl_vector) * v) { int status = FUNCTION (gsl_block, raw_fread) (stream, v->data, v->size, v->stride); return status; } int FUNCTION (gsl_vector, fwrite) (FILE * stream, const TYPE (gsl_vector) * v) { int status = FUNCTION (gsl_block, raw_fwrite) (stream, v->data, v->size, v->stride); return status; } #if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE) int FUNCTION (gsl_vector, fprintf) (FILE * stream, const TYPE (gsl_vector) * v, const char *format) { int status = FUNCTION (gsl_block, raw_fprintf) (stream, v->data, v->size, v->stride, format); return status; } int FUNCTION (gsl_vector, fscanf) (FILE * stream, TYPE (gsl_vector) * v) { int status = FUNCTION (gsl_block, raw_fscanf) (stream, v->data, v->size, v->stride); return status; } #endif gsl-1.16/vector/view_source.c0000664000252300025230000000402712171574312013155 00000000000000/* vector/view_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_VIEW(_gsl_vector,view) FUNCTION(gsl_vector, view_array) (QUALIFIER ATOMIC * base, size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = (ATOMIC *)base ; v.size = n; v.stride = 1; v.block = 0; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION(gsl_vector, view_array_with_stride) (QUALIFIER ATOMIC * base, size_t stride, size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } if (stride == 0) { GSL_ERROR_VAL ("stride must be positive integer", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = (ATOMIC *)base ; v.size = n; v.stride = stride; v.block = 0; v.owner = 0; view.vector = v; return view; } } gsl-1.16/vector/gsl_vector_int.h0000664000252300025230000001604012171574312013647 00000000000000/* vector/gsl_vector_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_INT_H__ #define __GSL_VECTOR_INT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; int *data; gsl_block_int *block; int owner; } gsl_vector_int; typedef struct { gsl_vector_int vector; } _gsl_vector_int_view; typedef _gsl_vector_int_view gsl_vector_int_view; typedef struct { gsl_vector_int vector; } _gsl_vector_int_const_view; typedef const _gsl_vector_int_const_view gsl_vector_int_const_view; /* Allocation */ gsl_vector_int *gsl_vector_int_alloc (const size_t n); gsl_vector_int *gsl_vector_int_calloc (const size_t n); gsl_vector_int *gsl_vector_int_alloc_from_block (gsl_block_int * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_int *gsl_vector_int_alloc_from_vector (gsl_vector_int * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_int_free (gsl_vector_int * v); /* Views */ _gsl_vector_int_view gsl_vector_int_view_array (int *v, size_t n); _gsl_vector_int_view gsl_vector_int_view_array_with_stride (int *base, size_t stride, size_t n); _gsl_vector_int_const_view gsl_vector_int_const_view_array (const int *v, size_t n); _gsl_vector_int_const_view gsl_vector_int_const_view_array_with_stride (const int *base, size_t stride, size_t n); _gsl_vector_int_view gsl_vector_int_subvector (gsl_vector_int *v, size_t i, size_t n); _gsl_vector_int_view gsl_vector_int_subvector_with_stride (gsl_vector_int *v, size_t i, size_t stride, size_t n); _gsl_vector_int_const_view gsl_vector_int_const_subvector (const gsl_vector_int *v, size_t i, size_t n); _gsl_vector_int_const_view gsl_vector_int_const_subvector_with_stride (const gsl_vector_int *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_int_set_zero (gsl_vector_int * v); void gsl_vector_int_set_all (gsl_vector_int * v, int x); int gsl_vector_int_set_basis (gsl_vector_int * v, size_t i); int gsl_vector_int_fread (FILE * stream, gsl_vector_int * v); int gsl_vector_int_fwrite (FILE * stream, const gsl_vector_int * v); int gsl_vector_int_fscanf (FILE * stream, gsl_vector_int * v); int gsl_vector_int_fprintf (FILE * stream, const gsl_vector_int * v, const char *format); int gsl_vector_int_memcpy (gsl_vector_int * dest, const gsl_vector_int * src); int gsl_vector_int_reverse (gsl_vector_int * v); int gsl_vector_int_swap (gsl_vector_int * v, gsl_vector_int * w); int gsl_vector_int_swap_elements (gsl_vector_int * v, const size_t i, const size_t j); int gsl_vector_int_max (const gsl_vector_int * v); int gsl_vector_int_min (const gsl_vector_int * v); void gsl_vector_int_minmax (const gsl_vector_int * v, int * min_out, int * max_out); size_t gsl_vector_int_max_index (const gsl_vector_int * v); size_t gsl_vector_int_min_index (const gsl_vector_int * v); void gsl_vector_int_minmax_index (const gsl_vector_int * v, size_t * imin, size_t * imax); int gsl_vector_int_add (gsl_vector_int * a, const gsl_vector_int * b); int gsl_vector_int_sub (gsl_vector_int * a, const gsl_vector_int * b); int gsl_vector_int_mul (gsl_vector_int * a, const gsl_vector_int * b); int gsl_vector_int_div (gsl_vector_int * a, const gsl_vector_int * b); int gsl_vector_int_scale (gsl_vector_int * a, const double x); int gsl_vector_int_add_constant (gsl_vector_int * a, const double x); int gsl_vector_int_equal (const gsl_vector_int * u, const gsl_vector_int * v); int gsl_vector_int_isnull (const gsl_vector_int * v); int gsl_vector_int_ispos (const gsl_vector_int * v); int gsl_vector_int_isneg (const gsl_vector_int * v); int gsl_vector_int_isnonneg (const gsl_vector_int * v); INLINE_DECL int gsl_vector_int_get (const gsl_vector_int * v, const size_t i); INLINE_DECL void gsl_vector_int_set (gsl_vector_int * v, const size_t i, int x); INLINE_DECL int * gsl_vector_int_ptr (gsl_vector_int * v, const size_t i); INLINE_DECL const int * gsl_vector_int_const_ptr (const gsl_vector_int * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN int gsl_vector_int_get (const gsl_vector_int * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_int_set (gsl_vector_int * v, const size_t i, int x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN int * gsl_vector_int_ptr (gsl_vector_int * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (int *) (v->data + i * v->stride); } INLINE_FUN const int * gsl_vector_int_const_ptr (const gsl_vector_int * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const int *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_INT_H__ */ gsl-1.16/vector/gsl_vector_complex_float.h0000664000252300025230000002156712171574312015723 00000000000000/* vector/gsl_vector_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_COMPLEX_FLOAT_H__ #define __GSL_VECTOR_COMPLEX_FLOAT_H__ #include #include #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; float *data; gsl_block_complex_float *block; int owner; } gsl_vector_complex_float; typedef struct { gsl_vector_complex_float vector; } _gsl_vector_complex_float_view; typedef _gsl_vector_complex_float_view gsl_vector_complex_float_view; typedef struct { gsl_vector_complex_float vector; } _gsl_vector_complex_float_const_view; typedef const _gsl_vector_complex_float_const_view gsl_vector_complex_float_const_view; /* Allocation */ gsl_vector_complex_float *gsl_vector_complex_float_alloc (const size_t n); gsl_vector_complex_float *gsl_vector_complex_float_calloc (const size_t n); gsl_vector_complex_float * gsl_vector_complex_float_alloc_from_block (gsl_block_complex_float * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_complex_float * gsl_vector_complex_float_alloc_from_vector (gsl_vector_complex_float * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_complex_float_free (gsl_vector_complex_float * v); /* Views */ _gsl_vector_complex_float_view gsl_vector_complex_float_view_array (float *base, size_t n); _gsl_vector_complex_float_view gsl_vector_complex_float_view_array_with_stride (float *base, size_t stride, size_t n); _gsl_vector_complex_float_const_view gsl_vector_complex_float_const_view_array (const float *base, size_t n); _gsl_vector_complex_float_const_view gsl_vector_complex_float_const_view_array_with_stride (const float *base, size_t stride, size_t n); _gsl_vector_complex_float_view gsl_vector_complex_float_subvector (gsl_vector_complex_float *base, size_t i, size_t n); _gsl_vector_complex_float_view gsl_vector_complex_float_subvector_with_stride (gsl_vector_complex_float *v, size_t i, size_t stride, size_t n); _gsl_vector_complex_float_const_view gsl_vector_complex_float_const_subvector (const gsl_vector_complex_float *base, size_t i, size_t n); _gsl_vector_complex_float_const_view gsl_vector_complex_float_const_subvector_with_stride (const gsl_vector_complex_float *v, size_t i, size_t stride, size_t n); _gsl_vector_float_view gsl_vector_complex_float_real (gsl_vector_complex_float *v); _gsl_vector_float_view gsl_vector_complex_float_imag (gsl_vector_complex_float *v); _gsl_vector_float_const_view gsl_vector_complex_float_const_real (const gsl_vector_complex_float *v); _gsl_vector_float_const_view gsl_vector_complex_float_const_imag (const gsl_vector_complex_float *v); /* Operations */ void gsl_vector_complex_float_set_zero (gsl_vector_complex_float * v); void gsl_vector_complex_float_set_all (gsl_vector_complex_float * v, gsl_complex_float z); int gsl_vector_complex_float_set_basis (gsl_vector_complex_float * v, size_t i); int gsl_vector_complex_float_fread (FILE * stream, gsl_vector_complex_float * v); int gsl_vector_complex_float_fwrite (FILE * stream, const gsl_vector_complex_float * v); int gsl_vector_complex_float_fscanf (FILE * stream, gsl_vector_complex_float * v); int gsl_vector_complex_float_fprintf (FILE * stream, const gsl_vector_complex_float * v, const char *format); int gsl_vector_complex_float_memcpy (gsl_vector_complex_float * dest, const gsl_vector_complex_float * src); int gsl_vector_complex_float_reverse (gsl_vector_complex_float * v); int gsl_vector_complex_float_swap (gsl_vector_complex_float * v, gsl_vector_complex_float * w); int gsl_vector_complex_float_swap_elements (gsl_vector_complex_float * v, const size_t i, const size_t j); int gsl_vector_complex_float_equal (const gsl_vector_complex_float * u, const gsl_vector_complex_float * v); int gsl_vector_complex_float_isnull (const gsl_vector_complex_float * v); int gsl_vector_complex_float_ispos (const gsl_vector_complex_float * v); int gsl_vector_complex_float_isneg (const gsl_vector_complex_float * v); int gsl_vector_complex_float_isnonneg (const gsl_vector_complex_float * v); int gsl_vector_complex_float_add (gsl_vector_complex_float * a, const gsl_vector_complex_float * b); int gsl_vector_complex_float_sub (gsl_vector_complex_float * a, const gsl_vector_complex_float * b); int gsl_vector_complex_float_mul (gsl_vector_complex_float * a, const gsl_vector_complex_float * b); int gsl_vector_complex_float_div (gsl_vector_complex_float * a, const gsl_vector_complex_float * b); int gsl_vector_complex_float_scale (gsl_vector_complex_float * a, const gsl_complex_float x); int gsl_vector_complex_float_add_constant (gsl_vector_complex_float * a, const gsl_complex_float x); INLINE_DECL gsl_complex_float gsl_vector_complex_float_get (const gsl_vector_complex_float * v, const size_t i); INLINE_DECL void gsl_vector_complex_float_set (gsl_vector_complex_float * v, const size_t i, gsl_complex_float z); INLINE_DECL gsl_complex_float *gsl_vector_complex_float_ptr (gsl_vector_complex_float * v, const size_t i); INLINE_DECL const gsl_complex_float *gsl_vector_complex_float_const_ptr (const gsl_vector_complex_float * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN gsl_complex_float gsl_vector_complex_float_get (const gsl_vector_complex_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { gsl_complex_float zero = {{0, 0}}; GSL_ERROR_VAL ("index out of range", GSL_EINVAL, zero); } #endif return *GSL_COMPLEX_FLOAT_AT (v, i); } INLINE_FUN void gsl_vector_complex_float_set (gsl_vector_complex_float * v, const size_t i, gsl_complex_float z) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif *GSL_COMPLEX_FLOAT_AT (v, i) = z; } INLINE_FUN gsl_complex_float * gsl_vector_complex_float_ptr (gsl_vector_complex_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_FLOAT_AT (v, i); } INLINE_FUN const gsl_complex_float * gsl_vector_complex_float_const_ptr (const gsl_vector_complex_float * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return GSL_COMPLEX_FLOAT_AT (v, i); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_COMPLEX_FLOAT_H__ */ gsl-1.16/vector/file.c0000664000252300025230000000343712171574312011546 00000000000000#include #include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector_uint.h0000664000252300025230000001652212171574312014041 00000000000000/* vector/gsl_vector_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_UINT_H__ #define __GSL_VECTOR_UINT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; unsigned int *data; gsl_block_uint *block; int owner; } gsl_vector_uint; typedef struct { gsl_vector_uint vector; } _gsl_vector_uint_view; typedef _gsl_vector_uint_view gsl_vector_uint_view; typedef struct { gsl_vector_uint vector; } _gsl_vector_uint_const_view; typedef const _gsl_vector_uint_const_view gsl_vector_uint_const_view; /* Allocation */ gsl_vector_uint *gsl_vector_uint_alloc (const size_t n); gsl_vector_uint *gsl_vector_uint_calloc (const size_t n); gsl_vector_uint *gsl_vector_uint_alloc_from_block (gsl_block_uint * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_uint *gsl_vector_uint_alloc_from_vector (gsl_vector_uint * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_uint_free (gsl_vector_uint * v); /* Views */ _gsl_vector_uint_view gsl_vector_uint_view_array (unsigned int *v, size_t n); _gsl_vector_uint_view gsl_vector_uint_view_array_with_stride (unsigned int *base, size_t stride, size_t n); _gsl_vector_uint_const_view gsl_vector_uint_const_view_array (const unsigned int *v, size_t n); _gsl_vector_uint_const_view gsl_vector_uint_const_view_array_with_stride (const unsigned int *base, size_t stride, size_t n); _gsl_vector_uint_view gsl_vector_uint_subvector (gsl_vector_uint *v, size_t i, size_t n); _gsl_vector_uint_view gsl_vector_uint_subvector_with_stride (gsl_vector_uint *v, size_t i, size_t stride, size_t n); _gsl_vector_uint_const_view gsl_vector_uint_const_subvector (const gsl_vector_uint *v, size_t i, size_t n); _gsl_vector_uint_const_view gsl_vector_uint_const_subvector_with_stride (const gsl_vector_uint *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_uint_set_zero (gsl_vector_uint * v); void gsl_vector_uint_set_all (gsl_vector_uint * v, unsigned int x); int gsl_vector_uint_set_basis (gsl_vector_uint * v, size_t i); int gsl_vector_uint_fread (FILE * stream, gsl_vector_uint * v); int gsl_vector_uint_fwrite (FILE * stream, const gsl_vector_uint * v); int gsl_vector_uint_fscanf (FILE * stream, gsl_vector_uint * v); int gsl_vector_uint_fprintf (FILE * stream, const gsl_vector_uint * v, const char *format); int gsl_vector_uint_memcpy (gsl_vector_uint * dest, const gsl_vector_uint * src); int gsl_vector_uint_reverse (gsl_vector_uint * v); int gsl_vector_uint_swap (gsl_vector_uint * v, gsl_vector_uint * w); int gsl_vector_uint_swap_elements (gsl_vector_uint * v, const size_t i, const size_t j); unsigned int gsl_vector_uint_max (const gsl_vector_uint * v); unsigned int gsl_vector_uint_min (const gsl_vector_uint * v); void gsl_vector_uint_minmax (const gsl_vector_uint * v, unsigned int * min_out, unsigned int * max_out); size_t gsl_vector_uint_max_index (const gsl_vector_uint * v); size_t gsl_vector_uint_min_index (const gsl_vector_uint * v); void gsl_vector_uint_minmax_index (const gsl_vector_uint * v, size_t * imin, size_t * imax); int gsl_vector_uint_add (gsl_vector_uint * a, const gsl_vector_uint * b); int gsl_vector_uint_sub (gsl_vector_uint * a, const gsl_vector_uint * b); int gsl_vector_uint_mul (gsl_vector_uint * a, const gsl_vector_uint * b); int gsl_vector_uint_div (gsl_vector_uint * a, const gsl_vector_uint * b); int gsl_vector_uint_scale (gsl_vector_uint * a, const double x); int gsl_vector_uint_add_constant (gsl_vector_uint * a, const double x); int gsl_vector_uint_equal (const gsl_vector_uint * u, const gsl_vector_uint * v); int gsl_vector_uint_isnull (const gsl_vector_uint * v); int gsl_vector_uint_ispos (const gsl_vector_uint * v); int gsl_vector_uint_isneg (const gsl_vector_uint * v); int gsl_vector_uint_isnonneg (const gsl_vector_uint * v); INLINE_DECL unsigned int gsl_vector_uint_get (const gsl_vector_uint * v, const size_t i); INLINE_DECL void gsl_vector_uint_set (gsl_vector_uint * v, const size_t i, unsigned int x); INLINE_DECL unsigned int * gsl_vector_uint_ptr (gsl_vector_uint * v, const size_t i); INLINE_DECL const unsigned int * gsl_vector_uint_const_ptr (const gsl_vector_uint * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN unsigned int gsl_vector_uint_get (const gsl_vector_uint * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_uint_set (gsl_vector_uint * v, const size_t i, unsigned int x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN unsigned int * gsl_vector_uint_ptr (gsl_vector_uint * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (unsigned int *) (v->data + i * v->stride); } INLINE_FUN const unsigned int * gsl_vector_uint_const_ptr (const gsl_vector_uint * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const unsigned int *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_UINT_H__ */ gsl-1.16/vector/gsl_vector_ushort.h0000664000252300025230000001716612171574312014413 00000000000000/* vector/gsl_vector_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_VECTOR_USHORT_H__ #define __GSL_VECTOR_USHORT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size; size_t stride; unsigned short *data; gsl_block_ushort *block; int owner; } gsl_vector_ushort; typedef struct { gsl_vector_ushort vector; } _gsl_vector_ushort_view; typedef _gsl_vector_ushort_view gsl_vector_ushort_view; typedef struct { gsl_vector_ushort vector; } _gsl_vector_ushort_const_view; typedef const _gsl_vector_ushort_const_view gsl_vector_ushort_const_view; /* Allocation */ gsl_vector_ushort *gsl_vector_ushort_alloc (const size_t n); gsl_vector_ushort *gsl_vector_ushort_calloc (const size_t n); gsl_vector_ushort *gsl_vector_ushort_alloc_from_block (gsl_block_ushort * b, const size_t offset, const size_t n, const size_t stride); gsl_vector_ushort *gsl_vector_ushort_alloc_from_vector (gsl_vector_ushort * v, const size_t offset, const size_t n, const size_t stride); void gsl_vector_ushort_free (gsl_vector_ushort * v); /* Views */ _gsl_vector_ushort_view gsl_vector_ushort_view_array (unsigned short *v, size_t n); _gsl_vector_ushort_view gsl_vector_ushort_view_array_with_stride (unsigned short *base, size_t stride, size_t n); _gsl_vector_ushort_const_view gsl_vector_ushort_const_view_array (const unsigned short *v, size_t n); _gsl_vector_ushort_const_view gsl_vector_ushort_const_view_array_with_stride (const unsigned short *base, size_t stride, size_t n); _gsl_vector_ushort_view gsl_vector_ushort_subvector (gsl_vector_ushort *v, size_t i, size_t n); _gsl_vector_ushort_view gsl_vector_ushort_subvector_with_stride (gsl_vector_ushort *v, size_t i, size_t stride, size_t n); _gsl_vector_ushort_const_view gsl_vector_ushort_const_subvector (const gsl_vector_ushort *v, size_t i, size_t n); _gsl_vector_ushort_const_view gsl_vector_ushort_const_subvector_with_stride (const gsl_vector_ushort *v, size_t i, size_t stride, size_t n); /* Operations */ void gsl_vector_ushort_set_zero (gsl_vector_ushort * v); void gsl_vector_ushort_set_all (gsl_vector_ushort * v, unsigned short x); int gsl_vector_ushort_set_basis (gsl_vector_ushort * v, size_t i); int gsl_vector_ushort_fread (FILE * stream, gsl_vector_ushort * v); int gsl_vector_ushort_fwrite (FILE * stream, const gsl_vector_ushort * v); int gsl_vector_ushort_fscanf (FILE * stream, gsl_vector_ushort * v); int gsl_vector_ushort_fprintf (FILE * stream, const gsl_vector_ushort * v, const char *format); int gsl_vector_ushort_memcpy (gsl_vector_ushort * dest, const gsl_vector_ushort * src); int gsl_vector_ushort_reverse (gsl_vector_ushort * v); int gsl_vector_ushort_swap (gsl_vector_ushort * v, gsl_vector_ushort * w); int gsl_vector_ushort_swap_elements (gsl_vector_ushort * v, const size_t i, const size_t j); unsigned short gsl_vector_ushort_max (const gsl_vector_ushort * v); unsigned short gsl_vector_ushort_min (const gsl_vector_ushort * v); void gsl_vector_ushort_minmax (const gsl_vector_ushort * v, unsigned short * min_out, unsigned short * max_out); size_t gsl_vector_ushort_max_index (const gsl_vector_ushort * v); size_t gsl_vector_ushort_min_index (const gsl_vector_ushort * v); void gsl_vector_ushort_minmax_index (const gsl_vector_ushort * v, size_t * imin, size_t * imax); int gsl_vector_ushort_add (gsl_vector_ushort * a, const gsl_vector_ushort * b); int gsl_vector_ushort_sub (gsl_vector_ushort * a, const gsl_vector_ushort * b); int gsl_vector_ushort_mul (gsl_vector_ushort * a, const gsl_vector_ushort * b); int gsl_vector_ushort_div (gsl_vector_ushort * a, const gsl_vector_ushort * b); int gsl_vector_ushort_scale (gsl_vector_ushort * a, const double x); int gsl_vector_ushort_add_constant (gsl_vector_ushort * a, const double x); int gsl_vector_ushort_equal (const gsl_vector_ushort * u, const gsl_vector_ushort * v); int gsl_vector_ushort_isnull (const gsl_vector_ushort * v); int gsl_vector_ushort_ispos (const gsl_vector_ushort * v); int gsl_vector_ushort_isneg (const gsl_vector_ushort * v); int gsl_vector_ushort_isnonneg (const gsl_vector_ushort * v); INLINE_DECL unsigned short gsl_vector_ushort_get (const gsl_vector_ushort * v, const size_t i); INLINE_DECL void gsl_vector_ushort_set (gsl_vector_ushort * v, const size_t i, unsigned short x); INLINE_DECL unsigned short * gsl_vector_ushort_ptr (gsl_vector_ushort * v, const size_t i); INLINE_DECL const unsigned short * gsl_vector_ushort_const_ptr (const gsl_vector_ushort * v, const size_t i); #ifdef HAVE_INLINE INLINE_FUN unsigned short gsl_vector_ushort_get (const gsl_vector_ushort * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return v->data[i * v->stride]; } INLINE_FUN void gsl_vector_ushort_set (gsl_vector_ushort * v, const size_t i, unsigned short x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_VOID ("index out of range", GSL_EINVAL); } #endif v->data[i * v->stride] = x; } INLINE_FUN unsigned short * gsl_vector_ushort_ptr (gsl_vector_ushort * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (unsigned short *) (v->data + i * v->stride); } INLINE_FUN const unsigned short * gsl_vector_ushort_const_ptr (const gsl_vector_ushort * v, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= v->size)) { GSL_ERROR_NULL ("index out of range", GSL_EINVAL); } #endif return (const unsigned short *) (v->data + i * v->stride); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_VECTOR_USHORT_H__ */ gsl-1.16/vector/subvector.c0000664000252300025230000000713612171574312012643 00000000000000#include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_CHAR #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "subvector_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/vector/gsl_vector.h0000664000252300025230000000112612171574312012774 00000000000000#ifndef __GSL_VECTOR_H__ #define __GSL_VECTOR_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_VECTOR_H__ */ gsl-1.16/vector/oper_source.c0000664000252300025230000000623212171574312013150 00000000000000/* vector/oper_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_vector, add) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride_a] += b->data[i * stride_b]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, sub) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride_a] -= b->data[i * stride_b]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, mul) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride_a] *= b->data[i * stride_b]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, div) (TYPE(gsl_vector) * a, const TYPE(gsl_vector) * b) { const size_t N = a->size; if (b->size != N) { GSL_ERROR ("vectors must have same length", GSL_EBADLEN); } else { const size_t stride_a = a->stride; const size_t stride_b = b->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride_a] /= b->data[i * stride_b]; } return GSL_SUCCESS; } } int FUNCTION(gsl_vector, scale) (TYPE(gsl_vector) * a, const double x) { const size_t N = a->size; const size_t stride = a->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride] *= x; } return GSL_SUCCESS; } int FUNCTION(gsl_vector, add_constant) (TYPE(gsl_vector) * a, const double x) { const size_t N = a->size; const size_t stride = a->stride; size_t i; for (i = 0; i < N; i++) { a->data[i * stride] += x; } return GSL_SUCCESS; } gsl-1.16/vector/vector.c0000664000252300025230000000207312171574312012124 00000000000000/* vector/vector.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include /* turn on range checking at runtime (disabled if zero) */ int gsl_check_range = 1; gsl-1.16/aclocal.m40000664000252300025230000124771612172253752011037 00000000000000# generated automatically by aclocal 1.13.2 -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. m4_ifndef([AC_CONFIG_MACRO_DIRS], [m4_defun([_AM_CONFIG_MACRO_DIRS], [])m4_defun([AC_CONFIG_MACRO_DIRS], [_AM_CONFIG_MACRO_DIRS($@)])]) m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl m4_if(m4_defn([AC_AUTOCONF_VERSION]), [2.69],, [m4_warning([this file was generated for autoconf 2.69. You have another version of autoconf. It may work, but is not guaranteed to. If you have problems, you may need to regenerate the build system entirely. To do so, use the procedure documented by the package, typically 'autoreconf'.])]) # libtool.m4 - Configure libtool for the host system. -*-Autoconf-*- # # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # 2006, 2007, 2008, 2009, 2010, 2011 Free Software # Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. m4_define([_LT_COPYING], [dnl # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # 2006, 2007, 2008, 2009, 2010, 2011 Free Software # Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is part of GNU Libtool. # # GNU Libtool is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Libtool; see the file COPYING. If not, a copy # can be downloaded from http://www.gnu.org/licenses/gpl.html, or # obtained by writing to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ]) # serial 57 LT_INIT # LT_PREREQ(VERSION) # ------------------ # Complain and exit if this libtool version is less that VERSION. m4_defun([LT_PREREQ], [m4_if(m4_version_compare(m4_defn([LT_PACKAGE_VERSION]), [$1]), -1, [m4_default([$3], [m4_fatal([Libtool version $1 or higher is required], 63)])], [$2])]) # _LT_CHECK_BUILDDIR # ------------------ # Complain if the absolute build directory name contains unusual characters m4_defun([_LT_CHECK_BUILDDIR], [case `pwd` in *\ * | *\ *) AC_MSG_WARN([Libtool does not cope well with whitespace in `pwd`]) ;; esac ]) # LT_INIT([OPTIONS]) # ------------------ AC_DEFUN([LT_INIT], [AC_PREREQ([2.58])dnl We use AC_INCLUDES_DEFAULT AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl AC_BEFORE([$0], [LT_LANG])dnl AC_BEFORE([$0], [LT_OUTPUT])dnl AC_BEFORE([$0], [LTDL_INIT])dnl m4_require([_LT_CHECK_BUILDDIR])dnl dnl Autoconf doesn't catch unexpanded LT_ macros by default: m4_pattern_forbid([^_?LT_[A-Z_]+$])dnl m4_pattern_allow([^(_LT_EOF|LT_DLGLOBAL|LT_DLLAZY_OR_NOW|LT_MULTI_MODULE)$])dnl dnl aclocal doesn't pull ltoptions.m4, ltsugar.m4, or ltversion.m4 dnl unless we require an AC_DEFUNed macro: AC_REQUIRE([LTOPTIONS_VERSION])dnl AC_REQUIRE([LTSUGAR_VERSION])dnl AC_REQUIRE([LTVERSION_VERSION])dnl AC_REQUIRE([LTOBSOLETE_VERSION])dnl m4_require([_LT_PROG_LTMAIN])dnl _LT_SHELL_INIT([SHELL=${CONFIG_SHELL-/bin/sh}]) dnl Parse OPTIONS _LT_SET_OPTIONS([$0], [$1]) # This can be used to rebuild libtool when needed LIBTOOL_DEPS="$ltmain" # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' AC_SUBST(LIBTOOL)dnl _LT_SETUP # Only expand once: m4_define([LT_INIT]) ])# LT_INIT # Old names: AU_ALIAS([AC_PROG_LIBTOOL], [LT_INIT]) AU_ALIAS([AM_PROG_LIBTOOL], [LT_INIT]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PROG_LIBTOOL], []) dnl AC_DEFUN([AM_PROG_LIBTOOL], []) # _LT_CC_BASENAME(CC) # ------------------- # Calculate cc_basename. Skip known compiler wrappers and cross-prefix. m4_defun([_LT_CC_BASENAME], [for cc_temp in $1""; do case $cc_temp in compile | *[[\\/]]compile | ccache | *[[\\/]]ccache ) ;; distcc | *[[\\/]]distcc | purify | *[[\\/]]purify ) ;; \-*) ;; *) break;; esac done cc_basename=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` ]) # _LT_FILEUTILS_DEFAULTS # ---------------------- # It is okay to use these file commands and assume they have been set # sensibly after `m4_require([_LT_FILEUTILS_DEFAULTS])'. m4_defun([_LT_FILEUTILS_DEFAULTS], [: ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} ])# _LT_FILEUTILS_DEFAULTS # _LT_SETUP # --------- m4_defun([_LT_SETUP], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_REQUIRE([_LT_PREPARE_SED_QUOTE_VARS])dnl AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl _LT_DECL([], [PATH_SEPARATOR], [1], [The PATH separator for the build system])dnl dnl _LT_DECL([], [host_alias], [0], [The host system])dnl _LT_DECL([], [host], [0])dnl _LT_DECL([], [host_os], [0])dnl dnl _LT_DECL([], [build_alias], [0], [The build system])dnl _LT_DECL([], [build], [0])dnl _LT_DECL([], [build_os], [0])dnl dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl dnl AC_REQUIRE([AC_PROG_LN_S])dnl test -z "$LN_S" && LN_S="ln -s" _LT_DECL([], [LN_S], [1], [Whether we need soft or hard links])dnl dnl AC_REQUIRE([LT_CMD_MAX_LEN])dnl _LT_DECL([objext], [ac_objext], [0], [Object file suffix (normally "o")])dnl _LT_DECL([], [exeext], [0], [Executable file suffix (normally "")])dnl dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl m4_require([_LT_PATH_CONVERSION_FUNCTIONS])dnl m4_require([_LT_CMD_RELOAD])dnl m4_require([_LT_CHECK_MAGIC_METHOD])dnl m4_require([_LT_CHECK_SHAREDLIB_FROM_LINKLIB])dnl m4_require([_LT_CMD_OLD_ARCHIVE])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_WITH_SYSROOT])dnl _LT_CONFIG_LIBTOOL_INIT([ # See if we are running on zsh, and set the options which allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi ]) if test -n "${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi _LT_CHECK_OBJDIR m4_require([_LT_TAG_COMPILER])dnl case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test "X${COLLECT_NAMES+set}" != Xset; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a `.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld="$lt_cv_prog_gnu_ld" old_CC="$CC" old_CFLAGS="$CFLAGS" # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o _LT_CC_BASENAME([$compiler]) # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then _LT_PATH_MAGIC fi ;; esac # Use C for the default configuration in the libtool script LT_SUPPORTED_TAG([CC]) _LT_LANG_C_CONFIG _LT_LANG_DEFAULT_CONFIG _LT_CONFIG_COMMANDS ])# _LT_SETUP # _LT_PREPARE_SED_QUOTE_VARS # -------------------------- # Define a few sed substitution that help us do robust quoting. m4_defun([_LT_PREPARE_SED_QUOTE_VARS], [# Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\([["`$\\]]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\([["`\\]]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ]) # _LT_PROG_LTMAIN # --------------- # Note that this code is called both from `configure', and `config.status' # now that we use AC_CONFIG_COMMANDS to generate libtool. Notably, # `config.status' has no value for ac_aux_dir unless we are using Automake, # so we pass a copy along to make sure it has a sensible value anyway. m4_defun([_LT_PROG_LTMAIN], [m4_ifdef([AC_REQUIRE_AUX_FILE], [AC_REQUIRE_AUX_FILE([ltmain.sh])])dnl _LT_CONFIG_LIBTOOL_INIT([ac_aux_dir='$ac_aux_dir']) ltmain="$ac_aux_dir/ltmain.sh" ])# _LT_PROG_LTMAIN # So that we can recreate a full libtool script including additional # tags, we accumulate the chunks of code to send to AC_CONFIG_COMMANDS # in macros and then make a single call at the end using the `libtool' # label. # _LT_CONFIG_LIBTOOL_INIT([INIT-COMMANDS]) # ---------------------------------------- # Register INIT-COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL_INIT], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_INIT], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_INIT]) # _LT_CONFIG_LIBTOOL([COMMANDS]) # ------------------------------ # Register COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_COMMANDS], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS]) # _LT_CONFIG_SAVE_COMMANDS([COMMANDS], [INIT_COMMANDS]) # ----------------------------------------------------- m4_defun([_LT_CONFIG_SAVE_COMMANDS], [_LT_CONFIG_LIBTOOL([$1]) _LT_CONFIG_LIBTOOL_INIT([$2]) ]) # _LT_FORMAT_COMMENT([COMMENT]) # ----------------------------- # Add leading comment marks to the start of each line, and a trailing # full-stop to the whole comment if one is not present already. m4_define([_LT_FORMAT_COMMENT], [m4_ifval([$1], [ m4_bpatsubst([m4_bpatsubst([$1], [^ *], [# ])], [['`$\]], [\\\&])]m4_bmatch([$1], [[!?.]$], [], [.]) )]) # _LT_DECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION], [IS-TAGGED?]) # ------------------------------------------------------------------- # CONFIGNAME is the name given to the value in the libtool script. # VARNAME is the (base) name used in the configure script. # VALUE may be 0, 1 or 2 for a computed quote escaped value based on # VARNAME. Any other value will be used directly. m4_define([_LT_DECL], [lt_if_append_uniq([lt_decl_varnames], [$2], [, ], [lt_dict_add_subkey([lt_decl_dict], [$2], [libtool_name], [m4_ifval([$1], [$1], [$2])]) lt_dict_add_subkey([lt_decl_dict], [$2], [value], [$3]) m4_ifval([$4], [lt_dict_add_subkey([lt_decl_dict], [$2], [description], [$4])]) lt_dict_add_subkey([lt_decl_dict], [$2], [tagged?], [m4_ifval([$5], [yes], [no])])]) ]) # _LT_TAGDECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION]) # -------------------------------------------------------- m4_define([_LT_TAGDECL], [_LT_DECL([$1], [$2], [$3], [$4], [yes])]) # lt_decl_tag_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_tag_varnames], [_lt_decl_filter([tagged?], [yes], $@)]) # _lt_decl_filter(SUBKEY, VALUE, [SEPARATOR], [VARNAME1..]) # --------------------------------------------------------- m4_define([_lt_decl_filter], [m4_case([$#], [0], [m4_fatal([$0: too few arguments: $#])], [1], [m4_fatal([$0: too few arguments: $#: $1])], [2], [lt_dict_filter([lt_decl_dict], [$1], [$2], [], lt_decl_varnames)], [3], [lt_dict_filter([lt_decl_dict], [$1], [$2], [$3], lt_decl_varnames)], [lt_dict_filter([lt_decl_dict], $@)])[]dnl ]) # lt_decl_quote_varnames([SEPARATOR], [VARNAME1...]) # -------------------------------------------------- m4_define([lt_decl_quote_varnames], [_lt_decl_filter([value], [1], $@)]) # lt_decl_dquote_varnames([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_dquote_varnames], [_lt_decl_filter([value], [2], $@)]) # lt_decl_varnames_tagged([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_varnames_tagged], [m4_assert([$# <= 2])dnl _$0(m4_quote(m4_default([$1], [[, ]])), m4_ifval([$2], [[$2]], [m4_dquote(lt_decl_tag_varnames)]), m4_split(m4_normalize(m4_quote(_LT_TAGS)), [ ]))]) m4_define([_lt_decl_varnames_tagged], [m4_ifval([$3], [lt_combine([$1], [$2], [_], $3)])]) # lt_decl_all_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_all_varnames], [_$0(m4_quote(m4_default([$1], [[, ]])), m4_if([$2], [], m4_quote(lt_decl_varnames), m4_quote(m4_shift($@))))[]dnl ]) m4_define([_lt_decl_all_varnames], [lt_join($@, lt_decl_varnames_tagged([$1], lt_decl_tag_varnames([[, ]], m4_shift($@))))dnl ]) # _LT_CONFIG_STATUS_DECLARE([VARNAME]) # ------------------------------------ # Quote a variable value, and forward it to `config.status' so that its # declaration there will have the same value as in `configure'. VARNAME # must have a single quote delimited value for this to work. m4_define([_LT_CONFIG_STATUS_DECLARE], [$1='`$ECHO "$][$1" | $SED "$delay_single_quote_subst"`']) # _LT_CONFIG_STATUS_DECLARATIONS # ------------------------------ # We delimit libtool config variables with single quotes, so when # we write them to config.status, we have to be sure to quote all # embedded single quotes properly. In configure, this macro expands # each variable declared with _LT_DECL (and _LT_TAGDECL) into: # # ='`$ECHO "$" | $SED "$delay_single_quote_subst"`' m4_defun([_LT_CONFIG_STATUS_DECLARATIONS], [m4_foreach([_lt_var], m4_quote(lt_decl_all_varnames), [m4_n([_LT_CONFIG_STATUS_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAGS # ---------------- # Output comment and list of tags supported by the script m4_defun([_LT_LIBTOOL_TAGS], [_LT_FORMAT_COMMENT([The names of the tagged configurations supported by this script])dnl available_tags="_LT_TAGS"dnl ]) # _LT_LIBTOOL_DECLARE(VARNAME, [TAG]) # ----------------------------------- # Extract the dictionary values for VARNAME (optionally with TAG) and # expand to a commented shell variable setting: # # # Some comment about what VAR is for. # visible_name=$lt_internal_name m4_define([_LT_LIBTOOL_DECLARE], [_LT_FORMAT_COMMENT(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [description])))[]dnl m4_pushdef([_libtool_name], m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [libtool_name])))[]dnl m4_case(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [value])), [0], [_libtool_name=[$]$1], [1], [_libtool_name=$lt_[]$1], [2], [_libtool_name=$lt_[]$1], [_libtool_name=lt_dict_fetch([lt_decl_dict], [$1], [value])])[]dnl m4_ifval([$2], [_$2])[]m4_popdef([_libtool_name])[]dnl ]) # _LT_LIBTOOL_CONFIG_VARS # ----------------------- # Produce commented declarations of non-tagged libtool config variables # suitable for insertion in the LIBTOOL CONFIG section of the `libtool' # script. Tagged libtool config variables (even for the LIBTOOL CONFIG # section) are produced by _LT_LIBTOOL_TAG_VARS. m4_defun([_LT_LIBTOOL_CONFIG_VARS], [m4_foreach([_lt_var], m4_quote(_lt_decl_filter([tagged?], [no], [], lt_decl_varnames)), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAG_VARS(TAG) # ------------------------- m4_define([_LT_LIBTOOL_TAG_VARS], [m4_foreach([_lt_var], m4_quote(lt_decl_tag_varnames), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var, [$1])])])]) # _LT_TAGVAR(VARNAME, [TAGNAME]) # ------------------------------ m4_define([_LT_TAGVAR], [m4_ifval([$2], [$1_$2], [$1])]) # _LT_CONFIG_COMMANDS # ------------------- # Send accumulated output to $CONFIG_STATUS. Thanks to the lists of # variables for single and double quote escaping we saved from calls # to _LT_DECL, we can put quote escaped variables declarations # into `config.status', and then the shell code to quote escape them in # for loops in `config.status'. Finally, any additional code accumulated # from calls to _LT_CONFIG_LIBTOOL_INIT is expanded. m4_defun([_LT_CONFIG_COMMANDS], [AC_PROVIDE_IFELSE([LT_OUTPUT], dnl If the libtool generation code has been placed in $CONFIG_LT, dnl instead of duplicating it all over again into config.status, dnl then we will have config.status run $CONFIG_LT later, so it dnl needs to know what name is stored there: [AC_CONFIG_COMMANDS([libtool], [$SHELL $CONFIG_LT || AS_EXIT(1)], [CONFIG_LT='$CONFIG_LT'])], dnl If the libtool generation code is destined for config.status, dnl expand the accumulated commands and init code now: [AC_CONFIG_COMMANDS([libtool], [_LT_OUTPUT_LIBTOOL_COMMANDS], [_LT_OUTPUT_LIBTOOL_COMMANDS_INIT])]) ])#_LT_CONFIG_COMMANDS # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS_INIT], [ # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' _LT_CONFIG_STATUS_DECLARATIONS LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$[]1 _LTECHO_EOF' } # Quote evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_quote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_dquote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done _LT_OUTPUT_LIBTOOL_INIT ]) # _LT_GENERATED_FILE_INIT(FILE, [COMMENT]) # ------------------------------------ # Generate a child script FILE with all initialization necessary to # reuse the environment learned by the parent script, and make the # file executable. If COMMENT is supplied, it is inserted after the # `#!' sequence but before initialization text begins. After this # macro, additional text can be appended to FILE to form the body of # the child script. The macro ends with non-zero status if the # file could not be fully written (such as if the disk is full). m4_ifdef([AS_INIT_GENERATED], [m4_defun([_LT_GENERATED_FILE_INIT],[AS_INIT_GENERATED($@)])], [m4_defun([_LT_GENERATED_FILE_INIT], [m4_require([AS_PREPARE])]dnl [m4_pushdef([AS_MESSAGE_LOG_FD])]dnl [lt_write_fail=0 cat >$1 <<_ASEOF || lt_write_fail=1 #! $SHELL # Generated by $as_me. $2 SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$1 <<\_ASEOF || lt_write_fail=1 AS_SHELL_SANITIZE _AS_PREPARE exec AS_MESSAGE_FD>&1 _ASEOF test $lt_write_fail = 0 && chmod +x $1[]dnl m4_popdef([AS_MESSAGE_LOG_FD])])])# _LT_GENERATED_FILE_INIT # LT_OUTPUT # --------- # This macro allows early generation of the libtool script (before # AC_OUTPUT is called), incase it is used in configure for compilation # tests. AC_DEFUN([LT_OUTPUT], [: ${CONFIG_LT=./config.lt} AC_MSG_NOTICE([creating $CONFIG_LT]) _LT_GENERATED_FILE_INIT(["$CONFIG_LT"], [# Run this file to recreate a libtool stub with the current configuration.]) cat >>"$CONFIG_LT" <<\_LTEOF lt_cl_silent=false exec AS_MESSAGE_LOG_FD>>config.log { echo AS_BOX([Running $as_me.]) } >&AS_MESSAGE_LOG_FD lt_cl_help="\ \`$as_me' creates a local libtool stub from the current configuration, for use in further configure time tests before the real libtool is generated. Usage: $[0] [[OPTIONS]] -h, --help print this help, then exit -V, --version print version number, then exit -q, --quiet do not print progress messages -d, --debug don't remove temporary files Report bugs to ." lt_cl_version="\ m4_ifset([AC_PACKAGE_NAME], [AC_PACKAGE_NAME ])config.lt[]dnl m4_ifset([AC_PACKAGE_VERSION], [ AC_PACKAGE_VERSION]) configured by $[0], generated by m4_PACKAGE_STRING. Copyright (C) 2011 Free Software Foundation, Inc. This config.lt script is free software; the Free Software Foundation gives unlimited permision to copy, distribute and modify it." while test $[#] != 0 do case $[1] in --version | --v* | -V ) echo "$lt_cl_version"; exit 0 ;; --help | --h* | -h ) echo "$lt_cl_help"; exit 0 ;; --debug | --d* | -d ) debug=: ;; --quiet | --q* | --silent | --s* | -q ) lt_cl_silent=: ;; -*) AC_MSG_ERROR([unrecognized option: $[1] Try \`$[0] --help' for more information.]) ;; *) AC_MSG_ERROR([unrecognized argument: $[1] Try \`$[0] --help' for more information.]) ;; esac shift done if $lt_cl_silent; then exec AS_MESSAGE_FD>/dev/null fi _LTEOF cat >>"$CONFIG_LT" <<_LTEOF _LT_OUTPUT_LIBTOOL_COMMANDS_INIT _LTEOF cat >>"$CONFIG_LT" <<\_LTEOF AC_MSG_NOTICE([creating $ofile]) _LT_OUTPUT_LIBTOOL_COMMANDS AS_EXIT(0) _LTEOF chmod +x "$CONFIG_LT" # configure is writing to config.log, but config.lt does its own redirection, # appending to config.log, which fails on DOS, as config.log is still kept # open by configure. Here we exec the FD to /dev/null, effectively closing # config.log, so it can be properly (re)opened and appended to by config.lt. lt_cl_success=: test "$silent" = yes && lt_config_lt_args="$lt_config_lt_args --quiet" exec AS_MESSAGE_LOG_FD>/dev/null $SHELL "$CONFIG_LT" $lt_config_lt_args || lt_cl_success=false exec AS_MESSAGE_LOG_FD>>config.log $lt_cl_success || AS_EXIT(1) ])# LT_OUTPUT # _LT_CONFIG(TAG) # --------------- # If TAG is the built-in tag, create an initial libtool script with a # default configuration from the untagged config vars. Otherwise add code # to config.status for appending the configuration named by TAG from the # matching tagged config vars. m4_defun([_LT_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_CONFIG_SAVE_COMMANDS([ m4_define([_LT_TAG], m4_if([$1], [], [C], [$1]))dnl m4_if(_LT_TAG, [C], [ # See if we are running on zsh, and set the options which allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}" ; then setopt NO_GLOB_SUBST fi cfgfile="${ofile}T" trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # `$ECHO "$ofile" | sed 's%^.*/%%'` - Provide generalized library-building support services. # Generated automatically by $as_me ($PACKAGE$TIMESTAMP) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # _LT_COPYING _LT_LIBTOOL_TAGS # ### BEGIN LIBTOOL CONFIG _LT_LIBTOOL_CONFIG_VARS _LT_LIBTOOL_TAG_VARS # ### END LIBTOOL CONFIG _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test "X${COLLECT_NAMES+set}" != Xset; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac _LT_PROG_LTMAIN # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) _LT_PROG_REPLACE_SHELLFNS mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" ], [cat <<_LT_EOF >> "$ofile" dnl Unfortunately we have to use $1 here, since _LT_TAG is not expanded dnl in a comment (ie after a #). # ### BEGIN LIBTOOL TAG CONFIG: $1 _LT_LIBTOOL_TAG_VARS(_LT_TAG) # ### END LIBTOOL TAG CONFIG: $1 _LT_EOF ])dnl /m4_if ], [m4_if([$1], [], [ PACKAGE='$PACKAGE' VERSION='$VERSION' TIMESTAMP='$TIMESTAMP' RM='$RM' ofile='$ofile'], []) ])dnl /_LT_CONFIG_SAVE_COMMANDS ])# _LT_CONFIG # LT_SUPPORTED_TAG(TAG) # --------------------- # Trace this macro to discover what tags are supported by the libtool # --tag option, using: # autoconf --trace 'LT_SUPPORTED_TAG:$1' AC_DEFUN([LT_SUPPORTED_TAG], []) # C support is built-in for now m4_define([_LT_LANG_C_enabled], []) m4_define([_LT_TAGS], []) # LT_LANG(LANG) # ------------- # Enable libtool support for the given language if not already enabled. AC_DEFUN([LT_LANG], [AC_BEFORE([$0], [LT_OUTPUT])dnl m4_case([$1], [C], [_LT_LANG(C)], [C++], [_LT_LANG(CXX)], [Go], [_LT_LANG(GO)], [Java], [_LT_LANG(GCJ)], [Fortran 77], [_LT_LANG(F77)], [Fortran], [_LT_LANG(FC)], [Windows Resource], [_LT_LANG(RC)], [m4_ifdef([_LT_LANG_]$1[_CONFIG], [_LT_LANG($1)], [m4_fatal([$0: unsupported language: "$1"])])])dnl ])# LT_LANG # _LT_LANG(LANGNAME) # ------------------ m4_defun([_LT_LANG], [m4_ifdef([_LT_LANG_]$1[_enabled], [], [LT_SUPPORTED_TAG([$1])dnl m4_append([_LT_TAGS], [$1 ])dnl m4_define([_LT_LANG_]$1[_enabled], [])dnl _LT_LANG_$1_CONFIG($1)])dnl ])# _LT_LANG m4_ifndef([AC_PROG_GO], [ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_GO. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # m4_defun([AC_PROG_GO], [AC_LANG_PUSH(Go)dnl AC_ARG_VAR([GOC], [Go compiler command])dnl AC_ARG_VAR([GOFLAGS], [Go compiler flags])dnl _AC_ARG_VAR_LDFLAGS()dnl AC_CHECK_TOOL(GOC, gccgo) if test -z "$GOC"; then if test -n "$ac_tool_prefix"; then AC_CHECK_PROG(GOC, [${ac_tool_prefix}gccgo], [${ac_tool_prefix}gccgo]) fi fi if test -z "$GOC"; then AC_CHECK_PROG(GOC, gccgo, gccgo, false) fi ])#m4_defun ])#m4_ifndef # _LT_LANG_DEFAULT_CONFIG # ----------------------- m4_defun([_LT_LANG_DEFAULT_CONFIG], [AC_PROVIDE_IFELSE([AC_PROG_CXX], [LT_LANG(CXX)], [m4_define([AC_PROG_CXX], defn([AC_PROG_CXX])[LT_LANG(CXX)])]) AC_PROVIDE_IFELSE([AC_PROG_F77], [LT_LANG(F77)], [m4_define([AC_PROG_F77], defn([AC_PROG_F77])[LT_LANG(F77)])]) AC_PROVIDE_IFELSE([AC_PROG_FC], [LT_LANG(FC)], [m4_define([AC_PROG_FC], defn([AC_PROG_FC])[LT_LANG(FC)])]) dnl The call to [A][M_PROG_GCJ] is quoted like that to stop aclocal dnl pulling things in needlessly. AC_PROVIDE_IFELSE([AC_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([A][M_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([LT_PROG_GCJ], [LT_LANG(GCJ)], [m4_ifdef([AC_PROG_GCJ], [m4_define([AC_PROG_GCJ], defn([AC_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([A][M_PROG_GCJ], [m4_define([A][M_PROG_GCJ], defn([A][M_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([LT_PROG_GCJ], [m4_define([LT_PROG_GCJ], defn([LT_PROG_GCJ])[LT_LANG(GCJ)])])])])]) AC_PROVIDE_IFELSE([AC_PROG_GO], [LT_LANG(GO)], [m4_define([AC_PROG_GO], defn([AC_PROG_GO])[LT_LANG(GO)])]) AC_PROVIDE_IFELSE([LT_PROG_RC], [LT_LANG(RC)], [m4_define([LT_PROG_RC], defn([LT_PROG_RC])[LT_LANG(RC)])]) ])# _LT_LANG_DEFAULT_CONFIG # Obsolete macros: AU_DEFUN([AC_LIBTOOL_CXX], [LT_LANG(C++)]) AU_DEFUN([AC_LIBTOOL_F77], [LT_LANG(Fortran 77)]) AU_DEFUN([AC_LIBTOOL_FC], [LT_LANG(Fortran)]) AU_DEFUN([AC_LIBTOOL_GCJ], [LT_LANG(Java)]) AU_DEFUN([AC_LIBTOOL_RC], [LT_LANG(Windows Resource)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_CXX], []) dnl AC_DEFUN([AC_LIBTOOL_F77], []) dnl AC_DEFUN([AC_LIBTOOL_FC], []) dnl AC_DEFUN([AC_LIBTOOL_GCJ], []) dnl AC_DEFUN([AC_LIBTOOL_RC], []) # _LT_TAG_COMPILER # ---------------- m4_defun([_LT_TAG_COMPILER], [AC_REQUIRE([AC_PROG_CC])dnl _LT_DECL([LTCC], [CC], [1], [A C compiler])dnl _LT_DECL([LTCFLAGS], [CFLAGS], [1], [LTCC compiler flags])dnl _LT_TAGDECL([CC], [compiler], [1], [A language specific compiler])dnl _LT_TAGDECL([with_gcc], [GCC], [0], [Is the compiler the GNU compiler?])dnl # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC ])# _LT_TAG_COMPILER # _LT_COMPILER_BOILERPLATE # ------------------------ # Check for compiler boilerplate output or warnings with # the simple compiler test code. m4_defun([_LT_COMPILER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ])# _LT_COMPILER_BOILERPLATE # _LT_LINKER_BOILERPLATE # ---------------------- # Check for linker boilerplate output or warnings with # the simple link test code. m4_defun([_LT_LINKER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* ])# _LT_LINKER_BOILERPLATE # _LT_REQUIRED_DARWIN_CHECKS # ------------------------- m4_defun_once([_LT_REQUIRED_DARWIN_CHECKS],[ case $host_os in rhapsody* | darwin*) AC_CHECK_TOOL([DSYMUTIL], [dsymutil], [:]) AC_CHECK_TOOL([NMEDIT], [nmedit], [:]) AC_CHECK_TOOL([LIPO], [lipo], [:]) AC_CHECK_TOOL([OTOOL], [otool], [:]) AC_CHECK_TOOL([OTOOL64], [otool64], [:]) _LT_DECL([], [DSYMUTIL], [1], [Tool to manipulate archived DWARF debug symbol files on Mac OS X]) _LT_DECL([], [NMEDIT], [1], [Tool to change global to local symbols on Mac OS X]) _LT_DECL([], [LIPO], [1], [Tool to manipulate fat objects and archives on Mac OS X]) _LT_DECL([], [OTOOL], [1], [ldd/readelf like tool for Mach-O binaries on Mac OS X]) _LT_DECL([], [OTOOL64], [1], [ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4]) AC_CACHE_CHECK([for -single_module linker flag],[lt_cv_apple_cc_single_mod], [lt_cv_apple_cc_single_mod=no if test -z "${LT_MULTI_MODULE}"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test $_lt_result -eq 0; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -rf libconftest.dylib* rm -f conftest.* fi]) AC_CACHE_CHECK([for -exported_symbols_list linker flag], [lt_cv_ld_exported_symbols_list], [lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [lt_cv_ld_exported_symbols_list=yes], [lt_cv_ld_exported_symbols_list=no]) LDFLAGS="$save_LDFLAGS" ]) AC_CACHE_CHECK([for -force_load linker flag],[lt_cv_ld_force_load], [lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&AS_MESSAGE_LOG_FD echo "$AR cru libconftest.a conftest.o" >&AS_MESSAGE_LOG_FD $AR cru libconftest.a conftest.o 2>&AS_MESSAGE_LOG_FD echo "$RANLIB libconftest.a" >&AS_MESSAGE_LOG_FD $RANLIB libconftest.a 2>&AS_MESSAGE_LOG_FD cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD elif test -f conftest && test $_lt_result -eq 0 && $GREP forced_load conftest >/dev/null 2>&1 ; then lt_cv_ld_force_load=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM ]) case $host_os in rhapsody* | darwin1.[[012]]) _lt_dar_allow_undefined='${wl}-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='${wl}-flat_namespace ${wl}-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[[91]]*) _lt_dar_allow_undefined='${wl}-undefined ${wl}dynamic_lookup' ;; 10.[[012]]*) _lt_dar_allow_undefined='${wl}-flat_namespace ${wl}-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='${wl}-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test "$lt_cv_apple_cc_single_mod" = "yes"; then _lt_dar_single_mod='$single_module' fi if test "$lt_cv_ld_exported_symbols_list" = "yes"; then _lt_dar_export_syms=' ${wl}-exported_symbols_list,$output_objdir/${libname}-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/${libname}-symbols.expsym ${lib}' fi if test "$DSYMUTIL" != ":" && test "$lt_cv_ld_force_load" = "no"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac ]) # _LT_DARWIN_LINKER_FEATURES([TAG]) # --------------------------------- # Checks for linker and compiler features on darwin m4_defun([_LT_DARWIN_LINKER_FEATURES], [ m4_require([_LT_REQUIRED_DARWIN_CHECKS]) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported if test "$lt_cv_ld_force_load" = "yes"; then _LT_TAGVAR(whole_archive_flag_spec, $1)='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience ${wl}-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' m4_case([$1], [F77], [_LT_TAGVAR(compiler_needs_object, $1)=yes], [FC], [_LT_TAGVAR(compiler_needs_object, $1)=yes]) else _LT_TAGVAR(whole_archive_flag_spec, $1)='' fi _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)="$_lt_dar_allow_undefined" case $cc_basename in ifort*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test "$_lt_dar_can_shared" = "yes"; then output_verbose_link_cmd=func_echo_all _LT_TAGVAR(archive_cmds, $1)="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod${_lt_dsymutil}" _LT_TAGVAR(module_cmds, $1)="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags${_lt_dsymutil}" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's,^,_,' < \$export_symbols > \$output_objdir/\${libname}-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring ${_lt_dar_single_mod}${_lt_dar_export_syms}${_lt_dsymutil}" _LT_TAGVAR(module_expsym_cmds, $1)="sed -e 's,^,_,' < \$export_symbols > \$output_objdir/\${libname}-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags${_lt_dar_export_syms}${_lt_dsymutil}" m4_if([$1], [CXX], [ if test "$lt_cv_apple_cc_single_mod" != "yes"; then _LT_TAGVAR(archive_cmds, $1)="\$CC -r -keep_private_externs -nostdlib -o \${lib}-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \${lib}-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring${_lt_dsymutil}" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's,^,_,' < \$export_symbols > \$output_objdir/\${libname}-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \${lib}-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \${lib}-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring${_lt_dar_export_syms}${_lt_dsymutil}" fi ],[]) else _LT_TAGVAR(ld_shlibs, $1)=no fi ]) # _LT_SYS_MODULE_PATH_AIX([TAGNAME]) # ---------------------------------- # Links a minimal program and checks the executable # for the system default hardcoded library path. In most cases, # this is /usr/lib:/lib, but when the MPI compilers are used # the location of the communication and MPI libs are included too. # If we don't find anything, use the default library path according # to the aix ld manual. # Store the results from the different compilers for each TAGNAME. # Allow to override them for all tags through lt_cv_aix_libpath. m4_defun([_LT_SYS_MODULE_PATH_AIX], [m4_require([_LT_DECL_SED])dnl if test "${lt_cv_aix_libpath+set}" = set; then aix_libpath=$lt_cv_aix_libpath else AC_CACHE_VAL([_LT_TAGVAR([lt_cv_aix_libpath_], [$1])], [AC_LINK_IFELSE([AC_LANG_PROGRAM],[ lt_aix_libpath_sed='[ /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }]' _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi],[]) if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])="/usr/lib:/lib" fi ]) aix_libpath=$_LT_TAGVAR([lt_cv_aix_libpath_], [$1]) fi ])# _LT_SYS_MODULE_PATH_AIX # _LT_SHELL_INIT(ARG) # ------------------- m4_define([_LT_SHELL_INIT], [m4_divert_text([M4SH-INIT], [$1 ])])# _LT_SHELL_INIT # _LT_PROG_ECHO_BACKSLASH # ----------------------- # Find how we can fake an echo command that does not interpret backslash. # In particular, with Autoconf 2.60 or later we add some code to the start # of the generated configure script which will find a shell with a builtin # printf (which we can use as an echo command). m4_defun([_LT_PROG_ECHO_BACKSLASH], [ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO AC_MSG_CHECKING([how to print strings]) # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $[]1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } case "$ECHO" in printf*) AC_MSG_RESULT([printf]) ;; print*) AC_MSG_RESULT([print -r]) ;; *) AC_MSG_RESULT([cat]) ;; esac m4_ifdef([_AS_DETECT_SUGGESTED], [_AS_DETECT_SUGGESTED([ test -n "${ZSH_VERSION+set}${BASH_VERSION+set}" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test "X`printf %s $ECHO`" = "X$ECHO" \ || test "X`print -r -- $ECHO`" = "X$ECHO" )])]) _LT_DECL([], [SHELL], [1], [Shell to use when invoking shell scripts]) _LT_DECL([], [ECHO], [1], [An echo program that protects backslashes]) ])# _LT_PROG_ECHO_BACKSLASH # _LT_WITH_SYSROOT # ---------------- AC_DEFUN([_LT_WITH_SYSROOT], [AC_MSG_CHECKING([for sysroot]) AC_ARG_WITH([sysroot], [ --with-sysroot[=DIR] Search for dependent libraries within DIR (or the compiler's sysroot if not specified).], [], [with_sysroot=no]) dnl lt_sysroot will always be passed unquoted. We quote it here dnl in case the user passed a directory name. lt_sysroot= case ${with_sysroot} in #( yes) if test "$GCC" = yes; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) AC_MSG_RESULT([${with_sysroot}]) AC_MSG_ERROR([The sysroot must be an absolute path.]) ;; esac AC_MSG_RESULT([${lt_sysroot:-no}]) _LT_DECL([], [lt_sysroot], [0], [The root where to search for ]dnl [dependent libraries, and in which our libraries should be installed.])]) # _LT_ENABLE_LOCK # --------------- m4_defun([_LT_ENABLE_LOCK], [AC_ARG_ENABLE([libtool-lock], [AS_HELP_STRING([--disable-libtool-lock], [avoid locking (might break parallel builds)])]) test "x$enable_libtool_lock" != xno && enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE="32" ;; *ELF-64*) HPUX_IA64_MODE="64" ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then if test "$lt_cv_prog_gnu_ld" = yes; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|ppc*-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_i386" ;; ppc64-*linux*|powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; ppc*-*linux*|powerpc*-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS -belf" AC_CACHE_CHECK([whether the C compiler needs -belf], lt_cv_cc_needs_belf, [AC_LANG_PUSH(C) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],[[]])],[lt_cv_cc_needs_belf=yes],[lt_cv_cc_needs_belf=no]) AC_LANG_POP]) if test x"$lt_cv_cc_needs_belf" != x"yes"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS="$SAVE_CFLAGS" fi ;; *-*solaris*) # Find out which ABI we are using. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD="${LD-ld}_sol2" fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks="$enable_libtool_lock" ])# _LT_ENABLE_LOCK # _LT_PROG_AR # ----------- m4_defun([_LT_PROG_AR], [AC_CHECK_TOOLS(AR, [ar], false) : ${AR=ar} : ${AR_FLAGS=cru} _LT_DECL([], [AR], [1], [The archiver]) _LT_DECL([], [AR_FLAGS], [1], [Flags to create an archive]) AC_CACHE_CHECK([for archiver @FILE support], [lt_cv_ar_at_file], [lt_cv_ar_at_file=no AC_COMPILE_IFELSE([AC_LANG_PROGRAM], [echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&AS_MESSAGE_LOG_FD' AC_TRY_EVAL([lt_ar_try]) if test "$ac_status" -eq 0; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a AC_TRY_EVAL([lt_ar_try]) if test "$ac_status" -ne 0; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a ]) ]) if test "x$lt_cv_ar_at_file" = xno; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi _LT_DECL([], [archiver_list_spec], [1], [How to feed a file listing to the archiver]) ])# _LT_PROG_AR # _LT_CMD_OLD_ARCHIVE # ------------------- m4_defun([_LT_CMD_OLD_ARCHIVE], [_LT_PROG_AR AC_CHECK_TOOL(STRIP, strip, :) test -z "$STRIP" && STRIP=: _LT_DECL([], [STRIP], [1], [A symbol stripping program]) AC_CHECK_TOOL(RANLIB, ranlib, :) test -z "$RANLIB" && RANLIB=: _LT_DECL([], [RANLIB], [1], [Commands used to install an old-style archive]) # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac _LT_DECL([], [old_postinstall_cmds], [2]) _LT_DECL([], [old_postuninstall_cmds], [2]) _LT_TAGDECL([], [old_archive_cmds], [2], [Commands used to build an old-style archive]) _LT_DECL([], [lock_old_archive_extraction], [0], [Whether to use a lock for old archive extraction]) ])# _LT_CMD_OLD_ARCHIVE # _LT_COMPILER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [OUTPUT-FILE], [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------------------- # Check whether the given compiler option works AC_DEFUN([_LT_COMPILER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no m4_if([$4], , [ac_outfile=conftest.$ac_objext], [ac_outfile=$4]) echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$3" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi fi $RM conftest* ]) if test x"[$]$2" = xyes; then m4_if([$5], , :, [$5]) else m4_if([$6], , :, [$6]) fi ])# _LT_COMPILER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_COMPILER_OPTION], [_LT_COMPILER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_COMPILER_OPTION], []) # _LT_LINKER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------- # Check whether the given linker option works AC_DEFUN([_LT_LINKER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no save_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS $3" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&AS_MESSAGE_LOG_FD $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi else $2=yes fi fi $RM -r conftest* LDFLAGS="$save_LDFLAGS" ]) if test x"[$]$2" = xyes; then m4_if([$4], , :, [$4]) else m4_if([$5], , :, [$5]) fi ])# _LT_LINKER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_LINKER_OPTION], [_LT_LINKER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_LINKER_OPTION], []) # LT_CMD_MAX_LEN #--------------- AC_DEFUN([LT_CMD_MAX_LEN], [AC_REQUIRE([AC_CANONICAL_HOST])dnl # find the maximum length of command line arguments AC_MSG_CHECKING([the maximum length of command line arguments]) AC_CACHE_VAL([lt_cv_sys_max_cmd_len], [dnl i=0 teststring="ABCD" case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; netbsd* | freebsd* | openbsd* | darwin* | dragonfly*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[[ ]]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8 ; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test "X"`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test $i != 17 # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac ]) if test -n $lt_cv_sys_max_cmd_len ; then AC_MSG_RESULT($lt_cv_sys_max_cmd_len) else AC_MSG_RESULT(none) fi max_cmd_len=$lt_cv_sys_max_cmd_len _LT_DECL([], [max_cmd_len], [0], [What is the maximum length of a command?]) ])# LT_CMD_MAX_LEN # Old name: AU_ALIAS([AC_LIBTOOL_SYS_MAX_CMD_LEN], [LT_CMD_MAX_LEN]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_SYS_MAX_CMD_LEN], []) # _LT_HEADER_DLFCN # ---------------- m4_defun([_LT_HEADER_DLFCN], [AC_CHECK_HEADERS([dlfcn.h], [], [], [AC_INCLUDES_DEFAULT])dnl ])# _LT_HEADER_DLFCN # _LT_TRY_DLOPEN_SELF (ACTION-IF-TRUE, ACTION-IF-TRUE-W-USCORE, # ACTION-IF-FALSE, ACTION-IF-CROSS-COMPILING) # ---------------------------------------------------------------- m4_defun([_LT_TRY_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test "$cross_compiling" = yes; then : [$4] else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF [#line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined(__GNUC__) && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; }] _LT_EOF if AC_TRY_EVAL(ac_link) && test -s conftest${ac_exeext} 2>/dev/null; then (./conftest; exit; ) >&AS_MESSAGE_LOG_FD 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) $1 ;; x$lt_dlneed_uscore) $2 ;; x$lt_dlunknown|x*) $3 ;; esac else : # compilation failed $3 fi fi rm -fr conftest* ])# _LT_TRY_DLOPEN_SELF # LT_SYS_DLOPEN_SELF # ------------------ AC_DEFUN([LT_SYS_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test "x$enable_dlopen" != xyes; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen="load_add_on" lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen="LoadLibrary" lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen="dlopen" lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-ldl"],[ lt_cv_dlopen="dyld" lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ]) ;; *) AC_CHECK_FUNC([shl_load], [lt_cv_dlopen="shl_load"], [AC_CHECK_LIB([dld], [shl_load], [lt_cv_dlopen="shl_load" lt_cv_dlopen_libs="-ldld"], [AC_CHECK_FUNC([dlopen], [lt_cv_dlopen="dlopen"], [AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-ldl"], [AC_CHECK_LIB([svld], [dlopen], [lt_cv_dlopen="dlopen" lt_cv_dlopen_libs="-lsvld"], [AC_CHECK_LIB([dld], [dld_link], [lt_cv_dlopen="dld_link" lt_cv_dlopen_libs="-ldld"]) ]) ]) ]) ]) ]) ;; esac if test "x$lt_cv_dlopen" != xno; then enable_dlopen=yes else enable_dlopen=no fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS="$CPPFLAGS" test "x$ac_cv_header_dlfcn_h" = xyes && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS="$LDFLAGS" wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS="$LIBS" LIBS="$lt_cv_dlopen_libs $LIBS" AC_CACHE_CHECK([whether a program can dlopen itself], lt_cv_dlopen_self, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self=yes, lt_cv_dlopen_self=yes, lt_cv_dlopen_self=no, lt_cv_dlopen_self=cross) ]) if test "x$lt_cv_dlopen_self" = xyes; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" AC_CACHE_CHECK([whether a statically linked program can dlopen itself], lt_cv_dlopen_self_static, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=no, lt_cv_dlopen_self_static=cross) ]) fi CPPFLAGS="$save_CPPFLAGS" LDFLAGS="$save_LDFLAGS" LIBS="$save_LIBS" ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi _LT_DECL([dlopen_support], [enable_dlopen], [0], [Whether dlopen is supported]) _LT_DECL([dlopen_self], [enable_dlopen_self], [0], [Whether dlopen of programs is supported]) _LT_DECL([dlopen_self_static], [enable_dlopen_self_static], [0], [Whether dlopen of statically linked programs is supported]) ])# LT_SYS_DLOPEN_SELF # Old name: AU_ALIAS([AC_LIBTOOL_DLOPEN_SELF], [LT_SYS_DLOPEN_SELF]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN_SELF], []) # _LT_COMPILER_C_O([TAGNAME]) # --------------------------- # Check to see if options -c and -o are simultaneously supported by compiler. # This macro does not hard code the compiler like AC_PROG_CC_C_O. m4_defun([_LT_COMPILER_C_O], [m4_require([_LT_DECL_SED])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_CACHE_CHECK([if $compiler supports -c -o file.$ac_objext], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes fi fi chmod u+w . 2>&AS_MESSAGE_LOG_FD $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* ]) _LT_TAGDECL([compiler_c_o], [lt_cv_prog_compiler_c_o], [1], [Does compiler simultaneously support -c and -o options?]) ])# _LT_COMPILER_C_O # _LT_COMPILER_FILE_LOCKS([TAGNAME]) # ---------------------------------- # Check to see if we can do hard links to lock some files if needed m4_defun([_LT_COMPILER_FILE_LOCKS], [m4_require([_LT_ENABLE_LOCK])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_COMPILER_C_O([$1]) hard_links="nottested" if test "$_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)" = no && test "$need_locks" != no; then # do not overwrite the value of need_locks provided by the user AC_MSG_CHECKING([if we can lock with hard links]) hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no AC_MSG_RESULT([$hard_links]) if test "$hard_links" = no; then AC_MSG_WARN([`$CC' does not support `-c -o', so `make -j' may be unsafe]) need_locks=warn fi else need_locks=no fi _LT_DECL([], [need_locks], [1], [Must we lock files when doing compilation?]) ])# _LT_COMPILER_FILE_LOCKS # _LT_CHECK_OBJDIR # ---------------- m4_defun([_LT_CHECK_OBJDIR], [AC_CACHE_CHECK([for objdir], [lt_cv_objdir], [rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null]) objdir=$lt_cv_objdir _LT_DECL([], [objdir], [0], [The name of the directory that contains temporary libtool files])dnl m4_pattern_allow([LT_OBJDIR])dnl AC_DEFINE_UNQUOTED(LT_OBJDIR, "$lt_cv_objdir/", [Define to the sub-directory in which libtool stores uninstalled libraries.]) ])# _LT_CHECK_OBJDIR # _LT_LINKER_HARDCODE_LIBPATH([TAGNAME]) # -------------------------------------- # Check hardcoding attributes. m4_defun([_LT_LINKER_HARDCODE_LIBPATH], [AC_MSG_CHECKING([how to hardcode library paths into programs]) _LT_TAGVAR(hardcode_action, $1)= if test -n "$_LT_TAGVAR(hardcode_libdir_flag_spec, $1)" || test -n "$_LT_TAGVAR(runpath_var, $1)" || test "X$_LT_TAGVAR(hardcode_automatic, $1)" = "Xyes" ; then # We can hardcode non-existent directories. if test "$_LT_TAGVAR(hardcode_direct, $1)" != no && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test "$_LT_TAGVAR(hardcode_shlibpath_var, $1)" != no && test "$_LT_TAGVAR(hardcode_minus_L, $1)" != no; then # Linking always hardcodes the temporary library directory. _LT_TAGVAR(hardcode_action, $1)=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. _LT_TAGVAR(hardcode_action, $1)=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. _LT_TAGVAR(hardcode_action, $1)=unsupported fi AC_MSG_RESULT([$_LT_TAGVAR(hardcode_action, $1)]) if test "$_LT_TAGVAR(hardcode_action, $1)" = relink || test "$_LT_TAGVAR(inherit_rpath, $1)" = yes; then # Fast installation is not supported enable_fast_install=no elif test "$shlibpath_overrides_runpath" = yes || test "$enable_shared" = no; then # Fast installation is not necessary enable_fast_install=needless fi _LT_TAGDECL([], [hardcode_action], [0], [How to hardcode a shared library path into an executable]) ])# _LT_LINKER_HARDCODE_LIBPATH # _LT_CMD_STRIPLIB # ---------------- m4_defun([_LT_CMD_STRIPLIB], [m4_require([_LT_DECL_EGREP]) striplib= old_striplib= AC_MSG_CHECKING([whether stripping libraries is possible]) if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" AC_MSG_RESULT([yes]) else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP" ; then striplib="$STRIP -x" old_striplib="$STRIP -S" AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi ;; *) AC_MSG_RESULT([no]) ;; esac fi _LT_DECL([], [old_striplib], [1], [Commands to strip libraries]) _LT_DECL([], [striplib], [1]) ])# _LT_CMD_STRIPLIB # _LT_SYS_DYNAMIC_LINKER([TAG]) # ----------------------------- # PORTME Fill in your ld.so characteristics m4_defun([_LT_SYS_DYNAMIC_LINKER], [AC_REQUIRE([AC_CANONICAL_HOST])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_OBJDUMP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl AC_MSG_CHECKING([dynamic linker characteristics]) m4_if([$1], [], [ if test "$GCC" = yes; then case $host_os in darwin*) lt_awk_arg="/^libraries:/,/LR/" ;; *) lt_awk_arg="/^libraries:/" ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq="s,=\([[A-Za-z]]:\),\1,g" ;; *) lt_sed_strip_eq="s,=/,/,g" ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary. lt_tmp_lt_search_path_spec= lt_multi_os_dir=`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path/$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path/$lt_multi_os_dir" else test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS=" "; FS="/|\n";} { lt_foo=""; lt_count=0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo="/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[[lt_foo]]++; } if (lt_freq[[lt_foo]] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's,/\([[A-Za-z]]:\),\1,g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi]) library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=".so" postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='${libname}${release}${shared_ext}$major' ;; aix[[4-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test "$host_cpu" = ia64; then # AIX 5 supports IA64 library_names_spec='${libname}${release}${shared_ext}$major ${libname}${release}${shared_ext}$versuffix $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line `#! .'. This would cause the generated library to # depend on `.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[[01]] | aix4.[[01]].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | ${CC} -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # AIX (on Power*) has no versioning support, so currently we can not hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. if test "$aix_use_runtimelinking" = yes; then # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' else # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='${libname}${release}.a $libname.a' soname_spec='${libname}${release}${shared_ext}$major' fi shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([[^/]]*\)\.ixlibrary$%\1%'\''`; test $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='${libname}${shared_ext}' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[[45]]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=".dll" need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \${file}`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\${base_file}'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo ${libname} | sed -e 's/^lib/cyg/'``echo ${release} | $SED -e 's/[[.]]/-/g'`${versuffix}${shared_ext}' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api"]) ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='${libname}`echo ${release} | $SED -e 's/[[.]]/-/g'`${versuffix}${shared_ext}' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo ${libname} | sed -e 's/^lib/pw/'``echo ${release} | $SED -e 's/[[.]]/-/g'`${versuffix}${shared_ext}' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='${libname}`echo ${release} | $SED -e 's/[[.]]/-/g'`${versuffix}${shared_ext}' library_names_spec='${libname}.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([[a-zA-Z]]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec="$LIB" if $ECHO "$sys_lib_search_path_spec" | [$GREP ';[c-zC-Z]:/' >/dev/null]; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \${file}`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\${base_file}'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='${libname}`echo ${release} | $SED -e 's/[[.]]/-/g'`${versuffix}${shared_ext} $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${major}$shared_ext ${libname}$shared_ext' soname_spec='${libname}${release}${major}$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib"]) sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname$shared_ext' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[[23]].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext} $libname${shared_ext}' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='${libname}${release}${shared_ext}$versuffix $libname${shared_ext}$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[[01]]* | freebsdelf3.[[01]]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[[2-9]]* | freebsdelf3.[[2-9]]* | \ freebsd4.[[0-5]] | freebsdelf4.[[0-5]] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}${major} ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}${major} ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=yes sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' if test "X$HPUX_IA64_MODE" = X32; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" fi sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[[3-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test "$lt_cv_prog_gnu_ld" = yes; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='${libname}${release}${shared_ext}$major' library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${release}${shared_ext} $libname${shared_ext}' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib${libsuff} /lib${libsuff} /usr/local/lib${libsuff}" sys_lib_dlsearch_path_spec="/usr/lib${libsuff} /lib${libsuff}" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH AC_CACHE_VAL([lt_cv_shlibpath_overrides_runpath], [lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$_LT_TAGVAR(lt_prog_compiler_wl, $1)\"; \ LDFLAGS=\"\$LDFLAGS $_LT_TAGVAR(hardcode_libdir_flag_spec, $1)\"" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [AS_IF([ ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null], [lt_cv_shlibpath_overrides_runpath=yes])]) LDFLAGS=$save_LDFLAGS libdir=$save_libdir ]) shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Append ld.so.conf contents to the search path if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \[$]2)); skip = 1; } { if (!skip) print \[$]0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major ${libname}${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd*) version_type=sunos sys_lib_dlsearch_path_spec="/usr/lib" need_lib_prefix=no # Some older versions of OpenBSD (3.3 at least) *do* need versioned libs. case $host_os in openbsd3.3 | openbsd3.3.*) need_version=yes ;; *) need_version=no ;; esac library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then case $host_os in openbsd2.[[89]] | openbsd2.[[89]].*) shlibpath_overrides_runpath=no ;; *) shlibpath_overrides_runpath=yes ;; esac else shlibpath_overrides_runpath=yes fi ;; os2*) libname_spec='$name' shrext_cmds=".dll" need_lib_prefix=no library_names_spec='$libname${shared_ext} $libname.a' dynamic_linker='OS/2 ld.exe' shlibpath_var=LIBPATH ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='${libname}${release}${shared_ext}$major' library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec="$sys_lib_search_path_spec" ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${shared_ext}$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test "$with_gnu_ld" = yes; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec ;then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname${shared_ext}.$versuffix $libname${shared_ext}.$major $libname${shared_ext}' soname_spec='$libname${shared_ext}.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=freebsd-elf need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext} $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test "$with_gnu_ld" = yes; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='${libname}${release}${shared_ext}$versuffix ${libname}${release}${shared_ext}$major $libname${shared_ext}' soname_spec='${libname}${release}${shared_ext}$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac AC_MSG_RESULT([$dynamic_linker]) test "$dynamic_linker" = no && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test "$GCC" = yes; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test "${lt_cv_sys_lib_search_path_spec+set}" = set; then sys_lib_search_path_spec="$lt_cv_sys_lib_search_path_spec" fi if test "${lt_cv_sys_lib_dlsearch_path_spec+set}" = set; then sys_lib_dlsearch_path_spec="$lt_cv_sys_lib_dlsearch_path_spec" fi _LT_DECL([], [variables_saved_for_relink], [1], [Variables whose values should be saved in libtool wrapper scripts and restored at link time]) _LT_DECL([], [need_lib_prefix], [0], [Do we need the "lib" prefix for modules?]) _LT_DECL([], [need_version], [0], [Do we need a version for libraries?]) _LT_DECL([], [version_type], [0], [Library versioning type]) _LT_DECL([], [runpath_var], [0], [Shared library runtime path variable]) _LT_DECL([], [shlibpath_var], [0],[Shared library path variable]) _LT_DECL([], [shlibpath_overrides_runpath], [0], [Is shlibpath searched before the hard-coded library search path?]) _LT_DECL([], [libname_spec], [1], [Format of library name prefix]) _LT_DECL([], [library_names_spec], [1], [[List of archive names. First name is the real one, the rest are links. The last name is the one that the linker finds with -lNAME]]) _LT_DECL([], [soname_spec], [1], [[The coded name of the library, if different from the real name]]) _LT_DECL([], [install_override_mode], [1], [Permission mode override for installation of shared libraries]) _LT_DECL([], [postinstall_cmds], [2], [Command to use after installation of a shared archive]) _LT_DECL([], [postuninstall_cmds], [2], [Command to use after uninstallation of a shared archive]) _LT_DECL([], [finish_cmds], [2], [Commands used to finish a libtool library installation in a directory]) _LT_DECL([], [finish_eval], [1], [[As "finish_cmds", except a single script fragment to be evaled but not shown]]) _LT_DECL([], [hardcode_into_libs], [0], [Whether we should hardcode library paths into libraries]) _LT_DECL([], [sys_lib_search_path_spec], [2], [Compile-time system search path for libraries]) _LT_DECL([], [sys_lib_dlsearch_path_spec], [2], [Run-time system search path for libraries]) ])# _LT_SYS_DYNAMIC_LINKER # _LT_PATH_TOOL_PREFIX(TOOL) # -------------------------- # find a file program which can recognize shared library AC_DEFUN([_LT_PATH_TOOL_PREFIX], [m4_require([_LT_DECL_EGREP])dnl AC_MSG_CHECKING([for $1]) AC_CACHE_VAL(lt_cv_path_MAGIC_CMD, [case $MAGIC_CMD in [[\\/*] | ?:[\\/]*]) lt_cv_path_MAGIC_CMD="$MAGIC_CMD" # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD="$MAGIC_CMD" lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR dnl $ac_dummy forces splitting on constant user-supplied paths. dnl POSIX.2 word splitting is done only on the output of word expansions, dnl not every word. This closes a longstanding sh security hole. ac_dummy="m4_if([$2], , $PATH, [$2])" for ac_dir in $ac_dummy; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. if test -f $ac_dir/$1; then lt_cv_path_MAGIC_CMD="$ac_dir/$1" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS="$lt_save_ifs" MAGIC_CMD="$lt_save_MAGIC_CMD" ;; esac]) MAGIC_CMD="$lt_cv_path_MAGIC_CMD" if test -n "$MAGIC_CMD"; then AC_MSG_RESULT($MAGIC_CMD) else AC_MSG_RESULT(no) fi _LT_DECL([], [MAGIC_CMD], [0], [Used to examine libraries when file_magic_cmd begins with "file"])dnl ])# _LT_PATH_TOOL_PREFIX # Old name: AU_ALIAS([AC_PATH_TOOL_PREFIX], [_LT_PATH_TOOL_PREFIX]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PATH_TOOL_PREFIX], []) # _LT_PATH_MAGIC # -------------- # find a file program which can recognize a shared library m4_defun([_LT_PATH_MAGIC], [_LT_PATH_TOOL_PREFIX(${ac_tool_prefix}file, /usr/bin$PATH_SEPARATOR$PATH) if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then _LT_PATH_TOOL_PREFIX(file, /usr/bin$PATH_SEPARATOR$PATH) else MAGIC_CMD=: fi fi ])# _LT_PATH_MAGIC # LT_PATH_LD # ---------- # find the pathname to the GNU or non-GNU linker AC_DEFUN([LT_PATH_LD], [AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PROG_ECHO_BACKSLASH])dnl AC_ARG_WITH([gnu-ld], [AS_HELP_STRING([--with-gnu-ld], [assume the C compiler uses GNU ld @<:@default=no@:>@])], [test "$withval" = no || with_gnu_ld=yes], [with_gnu_ld=no])dnl ac_prog=ld if test "$GCC" = yes; then # Check if gcc -print-prog-name=ld gives a path. AC_MSG_CHECKING([for ld used by $CC]) case $host in *-*-mingw*) # gcc leaves a trailing carriage return which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [[\\/]]* | ?:[[\\/]]*) re_direlt='/[[^/]][[^/]]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD="$ac_prog" ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test "$with_gnu_ld" = yes; then AC_MSG_CHECKING([for GNU ld]) else AC_MSG_CHECKING([for non-GNU ld]) fi AC_CACHE_VAL(lt_cv_path_LD, [if test -z "$LD"; then lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD="$ac_dir/$ac_prog" # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &1 /dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[[3-9]]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; gnu*) lt_cv_deplibs_check_method=pass_all ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|ELF-[[0-9]][[0-9]]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) [lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]'] lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|PA-RISC[[0-9]]\.[[0-9]]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[[3-9]]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib) M[[0-9]][[0-9]]* Version [[0-9]]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; esac ]) file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[[\1]]\/[[\1]]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown _LT_DECL([], [deplibs_check_method], [1], [Method to check whether dependent libraries are shared objects]) _LT_DECL([], [file_magic_cmd], [1], [Command to use when deplibs_check_method = "file_magic"]) _LT_DECL([], [file_magic_glob], [1], [How to find potential files when deplibs_check_method = "file_magic"]) _LT_DECL([], [want_nocaseglob], [1], [Find potential files using nocaseglob when deplibs_check_method = "file_magic"]) ])# _LT_CHECK_MAGIC_METHOD # LT_PATH_NM # ---------- # find the pathname to a BSD- or MS-compatible name lister AC_DEFUN([LT_PATH_NM], [AC_REQUIRE([AC_PROG_CC])dnl AC_CACHE_CHECK([for BSD- or MS-compatible name lister (nm)], lt_cv_path_NM, [if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM="$NM" else lt_nm_to_check="${ac_tool_prefix}nm" if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs="$IFS"; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS="$lt_save_ifs" test -z "$ac_dir" && ac_dir=. tmp_nm="$ac_dir/$lt_tmp_nm" if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext" ; then # Check to see if the nm accepts a BSD-compat flag. # Adding the `sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file case `"$tmp_nm" -B /dev/null 2>&1 | sed '1q'` in */dev/null* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS="$lt_save_ifs" done : ${lt_cv_path_NM=no} fi]) if test "$lt_cv_path_NM" != "no"; then NM="$lt_cv_path_NM" else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else AC_CHECK_TOOLS(DUMPBIN, [dumpbin "link -dump"], :) case `$DUMPBIN -symbols /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols" ;; *) DUMPBIN=: ;; esac fi AC_SUBST([DUMPBIN]) if test "$DUMPBIN" != ":"; then NM="$DUMPBIN" fi fi test -z "$NM" && NM=nm AC_SUBST([NM]) _LT_DECL([], [NM], [1], [A BSD- or MS-compatible name lister])dnl AC_CACHE_CHECK([the name lister ($NM) interface], [lt_cv_nm_interface], [lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&AS_MESSAGE_LOG_FD) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: output\"" >&AS_MESSAGE_LOG_FD) cat conftest.out >&AS_MESSAGE_LOG_FD if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest*]) ])# LT_PATH_NM # Old names: AU_ALIAS([AM_PROG_NM], [LT_PATH_NM]) AU_ALIAS([AC_PROG_NM], [LT_PATH_NM]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_PROG_NM], []) dnl AC_DEFUN([AC_PROG_NM], []) # _LT_CHECK_SHAREDLIB_FROM_LINKLIB # -------------------------------- # how to determine the name of the shared library # associated with a specific link library. # -- PORTME fill in with the dynamic library characteristics m4_defun([_LT_CHECK_SHAREDLIB_FROM_LINKLIB], [m4_require([_LT_DECL_EGREP]) m4_require([_LT_DECL_OBJDUMP]) m4_require([_LT_DECL_DLLTOOL]) AC_CACHE_CHECK([how to associate runtime and link libraries], lt_cv_sharedlib_from_linklib_cmd, [lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh # decide which to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd="$ECHO" ;; esac ]) sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO _LT_DECL([], [sharedlib_from_linklib_cmd], [1], [Command to associate shared and link libraries]) ])# _LT_CHECK_SHAREDLIB_FROM_LINKLIB # _LT_PATH_MANIFEST_TOOL # ---------------------- # locate the manifest tool m4_defun([_LT_PATH_MANIFEST_TOOL], [AC_CHECK_TOOL(MANIFEST_TOOL, mt, :) test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt AC_CACHE_CHECK([if $MANIFEST_TOOL is a manifest tool], [lt_cv_path_mainfest_tool], [lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&AS_MESSAGE_LOG_FD $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&AS_MESSAGE_LOG_FD if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest*]) if test "x$lt_cv_path_mainfest_tool" != xyes; then MANIFEST_TOOL=: fi _LT_DECL([], [MANIFEST_TOOL], [1], [Manifest tool])dnl ])# _LT_PATH_MANIFEST_TOOL # LT_LIB_M # -------- # check for math library AC_DEFUN([LT_LIB_M], [AC_REQUIRE([AC_CANONICAL_HOST])dnl LIBM= case $host in *-*-beos* | *-*-cegcc* | *-*-cygwin* | *-*-haiku* | *-*-pw32* | *-*-darwin*) # These system don't have libm, or don't need it ;; *-ncr-sysv4.3*) AC_CHECK_LIB(mw, _mwvalidcheckl, LIBM="-lmw") AC_CHECK_LIB(m, cos, LIBM="$LIBM -lm") ;; *) AC_CHECK_LIB(m, cos, LIBM="-lm") ;; esac AC_SUBST([LIBM]) ])# LT_LIB_M # Old name: AU_ALIAS([AC_CHECK_LIBM], [LT_LIB_M]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_CHECK_LIBM], []) # _LT_COMPILER_NO_RTTI([TAGNAME]) # ------------------------------- m4_defun([_LT_COMPILER_NO_RTTI], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= if test "$GCC" = yes; then case $cc_basename in nvcc*) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -Xcompiler -fno-builtin' ;; *) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' ;; esac _LT_COMPILER_OPTION([if $compiler supports -fno-rtti -fno-exceptions], lt_cv_prog_compiler_rtti_exceptions, [-fno-rtti -fno-exceptions], [], [_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)="$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1) -fno-rtti -fno-exceptions"]) fi _LT_TAGDECL([no_builtin_flag], [lt_prog_compiler_no_builtin_flag], [1], [Compiler flag to turn off builtin functions]) ])# _LT_COMPILER_NO_RTTI # _LT_CMD_GLOBAL_SYMBOLS # ---------------------- m4_defun([_LT_CMD_GLOBAL_SYMBOLS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([LT_PATH_NM])dnl AC_REQUIRE([LT_PATH_LD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_TAG_COMPILER])dnl # Check for command to grab the raw symbol name followed by C symbol from nm. AC_MSG_CHECKING([command to parse $NM output from $compiler object]) AC_CACHE_VAL([lt_cv_sys_global_symbol_pipe], [ # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[[BCDEGRST]]' # Regexp to match symbols that can be accessed directly from C. sympat='\([[_A-Za-z]][[_A-Za-z0-9]]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[[BCDT]]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[[ABCDGISTW]]' ;; hpux*) if test "$host_cpu" = ia64; then symcode='[[ABCDEGRST]]' fi ;; irix* | nonstopux*) symcode='[[BCDEGRST]]' ;; osf*) symcode='[[BCDEGQRST]]' ;; solaris*) symcode='[[BDRT]]' ;; sco3.2v5*) symcode='[[DT]]' ;; sysv4.2uw2*) symcode='[[DT]]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[[ABDT]]' ;; sysv4) symcode='[[DFNSTU]]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[[ABCDGIRSTW]]' ;; esac # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n -e 's/^T .* \(.*\)$/extern int \1();/p' -e 's/^$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n -e 's/^: \([[^ ]]*\)[[ ]]*$/ {\\\"\1\\\", (void *) 0},/p' -e 's/^$symcode* \([[^ ]]*\) \([[^ ]]*\)$/ {\"\2\", (void *) \&\2},/p'" lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n -e 's/^: \([[^ ]]*\)[[ ]]*$/ {\\\"\1\\\", (void *) 0},/p' -e 's/^$symcode* \([[^ ]]*\) \(lib[[^ ]]*\)$/ {\"\2\", (void *) \&\2},/p' -e 's/^$symcode* \([[^ ]]*\) \([[^ ]]*\)$/ {\"lib\2\", (void *) \&\2},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function # and D for any global variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK ['"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=0}; \$ 0~/\(\).*\|/{f=1}; {printf f ? \"T \" : \"D \"};"\ " {split(\$ 0, a, /\||\r/); split(a[2], s)};"\ " s[1]~/^[@?]/{print s[1], s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print t[1], substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx]" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[[ ]]\($symcode$symcode*\)[[ ]][[ ]]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if AC_TRY_EVAL(ac_compile); then # Now try to grab the symbols. nlist=conftest.nm if AC_TRY_EVAL(NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined(_WIN32) || defined(__CYGWIN__) || defined(_WIN32_WCE) /* DATA imports from DLLs on WIN32 con't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT@&t@_DLSYM_CONST #elif defined(__osf__) /* This system does not cope well with relocations in const data. */ # define LT@&t@_DLSYM_CONST #else # define LT@&t@_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT@&t@_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[[]] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* \(.*\) \(.*\)$/ {\"\2\", (void *) \&\2},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS="conftstm.$ac_objext" CFLAGS="$CFLAGS$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)" if AC_TRY_EVAL(ac_link) && test -s conftest${ac_exeext}; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot find nm_test_var in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&AS_MESSAGE_LOG_FD fi else echo "$progname: failed program was:" >&AS_MESSAGE_LOG_FD cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test "$pipe_works" = yes; then break else lt_cv_sys_global_symbol_pipe= fi done ]) if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then AC_MSG_RESULT(failed) else AC_MSG_RESULT(ok) fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[[@]]FILE' >/dev/null; then nm_file_list_spec='@' fi _LT_DECL([global_symbol_pipe], [lt_cv_sys_global_symbol_pipe], [1], [Take the output of nm and produce a listing of raw symbols and C names]) _LT_DECL([global_symbol_to_cdecl], [lt_cv_sys_global_symbol_to_cdecl], [1], [Transform the output of nm in a proper C declaration]) _LT_DECL([global_symbol_to_c_name_address], [lt_cv_sys_global_symbol_to_c_name_address], [1], [Transform the output of nm in a C name address pair]) _LT_DECL([global_symbol_to_c_name_address_lib_prefix], [lt_cv_sys_global_symbol_to_c_name_address_lib_prefix], [1], [Transform the output of nm in a C name address pair when lib prefix is needed]) _LT_DECL([], [nm_file_list_spec], [1], [Specify filename containing input files for $NM]) ]) # _LT_CMD_GLOBAL_SYMBOLS # _LT_COMPILER_PIC([TAGNAME]) # --------------------------- m4_defun([_LT_COMPILER_PIC], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_wl, $1)= _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)= m4_if([$1], [CXX], [ # C++ specific cases for pic, static, wl, etc. if test "$GXX" = yes; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the `-m68020' flag to GCC prevents building anything better, # like `-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; *djgpp*) # DJGPP does not support shared libraries at all _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac else case $host_os in aix[[4-9]]*) # All AIX code is PIC. if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; chorus*) case $cc_basename in cxch68*) # Green Hills C++ Compiler # _LT_TAGVAR(lt_prog_compiler_static, $1)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a" ;; esac ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; dgux*) case $cc_basename in ec++*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; ghcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; freebsd* | dragonfly*) # FreeBSD uses GNU C++ ;; hpux9* | hpux10* | hpux11*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='${wl}-a ${wl}archive' if test "$host_cpu" != ia64; then _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' fi ;; aCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='${wl}-a ${wl}archive' case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac ;; *) ;; esac ;; interix*) # This is c89, which is MS Visual C++ (no shared libs) # Anyone wants to do a port? ;; irix5* | irix6* | nonstopux*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' # CC pic flag -KPIC is the default. ;; *) ;; esac ;; linux* | k*bsd*-gnu | kopensolaris*-gnu) case $cc_basename in KCC*) # KAI C++ Compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; ecpc* ) # old Intel C++ for x86_64 which still supported -KPIC. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; icpc* ) # Intel C++, used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; pgCC* | pgcpp*) # Portland Group C++ compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; cxx*) # Compaq C++ # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xlc* | xlC* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL 8.0, 9.0 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; esac ;; esac ;; lynxos*) ;; m88k*) ;; mvs*) case $cc_basename in cxx*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-W c,exportall' ;; *) ;; esac ;; netbsd*) ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' ;; RCC*) # Rational C++ 2.4.1 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; cxx*) # Digital/Compaq C++ _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; *) ;; esac ;; psos*) ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' ;; *) ;; esac ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; lcc*) # Lucid _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; *) ;; esac ;; vxworks*) ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ], [ if test "$GCC" = yes; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the `-m68020' flag to GCC prevents building anything better, # like `-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Xlinker ' if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_TAGVAR(lt_prog_compiler_pic, $1)="-Xcompiler $_LT_TAGVAR(lt_prog_compiler_pic, $1)" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' if test "$host_cpu" = ia64; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; hpux9* | hpux10* | hpux11*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? _LT_TAGVAR(lt_prog_compiler_static, $1)='${wl}-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC (with -KPIC) is the default. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu) case $cc_basename in # old Intel for x86_64 which still supported -KPIC. ecc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # Lahey Fortran 8.1. lf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='--shared' _LT_TAGVAR(lt_prog_compiler_static, $1)='--static' ;; nagfor*) # NAG Fortran compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; ccc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All Alpha code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [[1-7]].* | *Sun*Fortran*\ 8.[[0-3]]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='' ;; *Sun\ F* | *Sun*Fortran*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' ;; *Intel*\ [[CF]]*Compiler*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; *Portland\ Group*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; esac ;; newsos6) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All OSF/1 code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; rdos*) _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; solaris*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ';; *) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,';; esac ;; sunos4*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec ;then _LT_TAGVAR(lt_prog_compiler_pic, $1)='-Kconform_pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; unicos*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; uts4*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ]) case $host_os in # For platforms which do not support PIC, -DPIC is meaningless: *djgpp*) _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)="$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])" ;; esac AC_CACHE_CHECK([for $compiler option to produce PIC], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_prog_compiler_pic, $1)]) _LT_TAGVAR(lt_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_cv_prog_compiler_pic, $1) # # Check to make sure the PIC flag actually works. # if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_COMPILER_OPTION([if $compiler PIC flag $_LT_TAGVAR(lt_prog_compiler_pic, $1) works], [_LT_TAGVAR(lt_cv_prog_compiler_pic_works, $1)], [$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])], [], [case $_LT_TAGVAR(lt_prog_compiler_pic, $1) in "" | " "*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)=" $_LT_TAGVAR(lt_prog_compiler_pic, $1)" ;; esac], [_LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no]) fi _LT_TAGDECL([pic_flag], [lt_prog_compiler_pic], [1], [Additional compiler flags for building library objects]) _LT_TAGDECL([wl], [lt_prog_compiler_wl], [1], [How to pass a linker flag through the compiler]) # # Check to make sure the static flag actually works. # wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) eval lt_tmp_static_flag=\"$_LT_TAGVAR(lt_prog_compiler_static, $1)\" _LT_LINKER_OPTION([if $compiler static flag $lt_tmp_static_flag works], _LT_TAGVAR(lt_cv_prog_compiler_static_works, $1), $lt_tmp_static_flag, [], [_LT_TAGVAR(lt_prog_compiler_static, $1)=]) _LT_TAGDECL([link_static_flag], [lt_prog_compiler_static], [1], [Compiler flag to prevent dynamic linking]) ])# _LT_COMPILER_PIC # _LT_LINKER_SHLIBS([TAGNAME]) # ---------------------------- # See if the linker supports building shared libraries. m4_defun([_LT_LINKER_SHLIBS], [AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) m4_if([$1], [CXX], [ _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] case $host_os in aix[[4-9]]*) # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global defined # symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi ;; pw32*) _LT_TAGVAR(export_symbols_cmds, $1)="$ltdll_cmds" ;; cygwin* | mingw* | cegcc*) case $cc_basename in cl*) _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] ;; esac ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' ;; esac ], [ runpath_var= _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_cmds, $1)= _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(old_archive_from_new_cmds, $1)= _LT_TAGVAR(old_archive_from_expsyms_cmds, $1)= _LT_TAGVAR(thread_safe_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list _LT_TAGVAR(include_expsyms, $1)= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ` (' and `)$', so one must not match beginning or # end of line. Example: `a|bc|.*d.*' will exclude the symbols `a' and `bc', # as well as any symbol that contains `d'. _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. dnl Note also adjust exclude_expsyms for C++ above. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test "$GCC" != yes; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd*) with_gnu_ld=no ;; esac _LT_TAGVAR(ld_shlibs, $1)=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test "$with_gnu_ld" = yes; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[[2-9]]*) ;; *\ \(GNU\ Binutils\)\ [[3-9]]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test "$lt_use_gnu_ld_interface" = yes; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='${wl}' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)="$wlarc"'--whole-archive$convenience '"$wlarc"'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi supports_anon_versioning=no case `$LD -v 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[[3-9]]*) # On AIX/PPC, the GNU linker is very broken if test "$host_cpu" != ia64; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file (1st line # is EXPORTS), use it as is; otherwise, prepend... _LT_TAGVAR(archive_expsym_cmds, $1)='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s,^,_," $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--retain-symbols-file,$output_objdir/$soname.expsym ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test "$host_os" = linux-dietlibc; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test "$tmp_diet" = no then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 _LT_TAGVAR(whole_archive_flag_spec, $1)= tmp_sharedflag='--shared' ;; xl[[cC]]* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac _LT_TAGVAR(archive_cmds, $1)='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' if test "x$supports_anon_versioning" = xyes; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-version-script ${wl}$output_objdir/$libname.ver -o $lib' fi case $cc_basename in xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself _LT_TAGVAR(whole_archive_flag_spec, $1)='--whole-archive$convenience --no-whole-archive' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(archive_cmds, $1)='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test "x$supports_anon_versioning" = xyes; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.1[[0-5]].*) _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 can not *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; sunos4*) _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac if test "$_LT_TAGVAR(ld_shlibs, $1)" = no; then runpath_var= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(archive_expsym_cmds, $1)='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. _LT_TAGVAR(hardcode_minus_L, $1)=yes if test "$GCC" = yes && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. _LT_TAGVAR(hardcode_direct, $1)=unsupported fi ;; aix[[4-9]]*) if test "$host_cpu" = ia64; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag="" else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global # defined symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do if (test $ld_flag = "-brtl" || test $ld_flag = "-Wl,-brtl"); then aix_use_runtimelinking=yes break fi done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='${wl}-f,' if test "$GCC" = yes; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`${CC} -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi ;; esac shared_flag='-shared' if test "$aix_use_runtimelinking" = yes; then shared_flag="$shared_flag "'${wl}-G' fi else # not using gcc if test "$host_cpu" = ia64; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test "$aix_use_runtimelinking" = yes; then shared_flag='${wl}-G' else shared_flag='${wl}-bM:SRE' fi fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. _LT_TAGVAR(always_export_symbols, $1)=yes if test "$aix_use_runtimelinking" = yes; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. _LT_TAGVAR(allow_undefined_flag, $1)='-berok' # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags `if test "x${allow_undefined_flag}" != "x"; then func_echo_all "${wl}${allow_undefined_flag}"; else :; fi` '"\${wl}$exp_sym_flag:\$export_symbols $shared_flag" else if test "$host_cpu" = ia64; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags ${wl}${allow_undefined_flag} '"\${wl}$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' ${wl}-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-berok' if test "$with_gnu_ld" = yes; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive$convenience ${wl}--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes # This is similar to how AIX traditionally builds its shared libraries. _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs ${wl}-bnoentry $compiler_flags ${wl}-bE:$export_symbols${allow_undefined_flag}~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; bsdi[[45]]*) _LT_TAGVAR(export_dynamic_flag_spec, $1)=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=".dll" # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-dll~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then sed -n -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' -e '1\\\!p' < $export_symbols > $output_objdir/$soname.exp; else sed -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1,DATA/'\'' | $SED -e '\''/^[[AITW]][[ ]]/s/.*[[ ]]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile="$lt_outputfile.exe" lt_tool_outputfile="$lt_tool_outputfile.exe" ;; esac~ if test "$MANIFEST_TOOL" != ":" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=".dll" # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' # FIXME: Should let the user specify the lib program. _LT_TAGVAR(old_archive_cmds, $1)='lib -OUT:$oldlib$oldobjs$old_deplibs' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; dgux*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; hpux9*) if test "$GCC" = yes; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared $pic_flag ${wl}+b ${wl}$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' else _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}+b ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' ;; hpux10*) if test "$GCC" = yes && test "$with_gnu_ld" = no; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test "$with_gnu_ld" = no; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}+b ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes fi ;; hpux11*) if test "$GCC" = yes && test "$with_gnu_ld" = no; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared ${wl}+h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) m4_if($1, [], [ # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) _LT_LINKER_OPTION([if $CC understands -b], _LT_TAGVAR(lt_cv_prog_compiler__b, $1), [-b], [_LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags'], [_LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'])], [_LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $libobjs $deplibs $compiler_flags']) ;; esac fi if test "$with_gnu_ld" = no; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}+b ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test "$GCC" = yes; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. AC_CACHE_CHECK([whether the $host_os linker accepts -exported_symbol], [lt_cv_irix_exported_symbol], [save_LDFLAGS="$LDFLAGS" LDFLAGS="$LDFLAGS -shared ${wl}-exported_symbol ${wl}foo ${wl}-update_registry ${wl}/dev/null" AC_LINK_IFELSE( [AC_LANG_SOURCE( [AC_LANG_CASE([C], [[int foo (void) { return 0; }]], [C++], [[int foo (void) { return 0; }]], [Fortran 77], [[ subroutine foo end]], [Fortran], [[ subroutine foo end]])])], [lt_cv_irix_exported_symbol=yes], [lt_cv_irix_exported_symbol=no]) LDFLAGS="$save_LDFLAGS"]) if test "$lt_cv_irix_exported_symbol" = yes; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations ${wl}-exports_file ${wl}$export_symbols -o $lib' fi else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -exports_file $export_symbols -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes _LT_TAGVAR(link_all_deplibs, $1)=yes ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else _LT_TAGVAR(archive_cmds, $1)='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; newsos6) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *nto* | *qnx*) ;; openbsd*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags ${wl}-retain-symbols-file,$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' else case $host_os in openbsd[[01]].* | openbsd2.[[0-7]] | openbsd2.[[0-7]].*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' ;; esac fi else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; os2*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY $libname INITINSTANCE" > $output_objdir/$libname.def~$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~echo DATA >> $output_objdir/$libname.def~echo " SINGLE NONSHARED" >> $output_objdir/$libname.def~echo EXPORTS >> $output_objdir/$libname.def~emxexp $libobjs >> $output_objdir/$libname.def~$CC -Zdll -Zcrtdll -o $lib $libobjs $deplibs $compiler_flags $output_objdir/$libname.def' _LT_TAGVAR(old_archive_from_new_cmds, $1)='emximp -o $output_objdir/$libname.a $output_objdir/$libname.def' ;; osf3*) if test "$GCC" = yes; then _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-expect_unresolved ${wl}\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test "$GCC" = yes; then _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-expect_unresolved ${wl}\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $pic_flag $libobjs $deplibs $compiler_flags ${wl}-msym ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared${allow_undefined_flag} ${wl}-input ${wl}$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; solaris*) _LT_TAGVAR(no_undefined_flag, $1)=' -z defs' if test "$GCC" = yes; then wlarc='${wl}' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag ${wl}-z ${wl}text ${wl}-h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag ${wl}-z ${wl}text ${wl}-M ${wl}$lib.exp ${wl}-h ${wl}$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' _LT_TAGVAR(archive_cmds, $1)='$LD -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='${wl}' _LT_TAGVAR(archive_cmds, $1)='$CC -G${allow_undefined_flag} -h $soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G${allow_undefined_flag} -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands `-z linker_flag'. GCC discards it without `$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test "$GCC" = yes; then _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}-z ${wl}allextract$convenience ${wl}-z ${wl}defaultextract' else _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' fi ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes ;; sunos4*) if test "x$host_vendor" = xsequent; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. _LT_TAGVAR(archive_cmds, $1)='$CC -G ${wl}-h $soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4) case $host_vendor in sni) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. _LT_TAGVAR(archive_cmds, $1)='$LD -G -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(reload_cmds, $1)='$CC -r -o $output$reload_objs' _LT_TAGVAR(hardcode_direct, $1)=no ;; motorola) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4.3*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes _LT_TAGVAR(ld_shlibs, $1)=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='${wl}-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' if test "$GCC" = yes; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We can NOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='${wl}-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='${wl}-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-Bexport' runpath_var='LD_RUN_PATH' if test "$GCC" = yes; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(ld_shlibs, $1)=no ;; esac if test x$host_vendor = xsni; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-Blargedynsym' ;; esac fi fi ]) AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test "$_LT_TAGVAR(ld_shlibs, $1)" = no && can_build_shared=no _LT_TAGVAR(with_gnu_ld, $1)=$with_gnu_ld _LT_DECL([], [libext], [0], [Old archive suffix (normally "a")])dnl _LT_DECL([], [shrext_cmds], [1], [Shared library suffix (normally ".so")])dnl _LT_DECL([], [extract_expsyms_cmds], [2], [The commands to extract the exported symbol list from a shared archive]) # # Do we need to explicitly link libc? # case "x$_LT_TAGVAR(archive_cmds_need_lc, $1)" in x|xyes) # Assume -lc should be added _LT_TAGVAR(archive_cmds_need_lc, $1)=yes if test "$enable_shared" = yes && test "$GCC" = yes; then case $_LT_TAGVAR(archive_cmds, $1) in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. AC_CACHE_CHECK([whether -lc should be explicitly linked in], [lt_cv_]_LT_TAGVAR(archive_cmds_need_lc, $1), [$RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if AC_TRY_EVAL(ac_compile) 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) pic_flag=$_LT_TAGVAR(lt_prog_compiler_pic, $1) compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$_LT_TAGVAR(allow_undefined_flag, $1) _LT_TAGVAR(allow_undefined_flag, $1)= if AC_TRY_EVAL(_LT_TAGVAR(archive_cmds, $1) 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) then lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=no else lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=yes fi _LT_TAGVAR(allow_undefined_flag, $1)=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* ]) _LT_TAGVAR(archive_cmds_need_lc, $1)=$lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1) ;; esac fi ;; esac _LT_TAGDECL([build_libtool_need_lc], [archive_cmds_need_lc], [0], [Whether or not to add -lc for building shared libraries]) _LT_TAGDECL([allow_libtool_libs_with_static_runtimes], [enable_shared_with_static_runtimes], [0], [Whether or not to disallow shared libs when runtime libs are static]) _LT_TAGDECL([], [export_dynamic_flag_spec], [1], [Compiler flag to allow reflexive dlopens]) _LT_TAGDECL([], [whole_archive_flag_spec], [1], [Compiler flag to generate shared objects directly from archives]) _LT_TAGDECL([], [compiler_needs_object], [1], [Whether the compiler copes with passing no objects directly]) _LT_TAGDECL([], [old_archive_from_new_cmds], [2], [Create an old-style archive from a shared archive]) _LT_TAGDECL([], [old_archive_from_expsyms_cmds], [2], [Create a temporary old-style archive to link instead of a shared archive]) _LT_TAGDECL([], [archive_cmds], [2], [Commands used to build a shared archive]) _LT_TAGDECL([], [archive_expsym_cmds], [2]) _LT_TAGDECL([], [module_cmds], [2], [Commands used to build a loadable module if different from building a shared archive.]) _LT_TAGDECL([], [module_expsym_cmds], [2]) _LT_TAGDECL([], [with_gnu_ld], [1], [Whether we are building with GNU ld or not]) _LT_TAGDECL([], [allow_undefined_flag], [1], [Flag that allows shared libraries with undefined symbols to be built]) _LT_TAGDECL([], [no_undefined_flag], [1], [Flag that enforces no undefined symbols]) _LT_TAGDECL([], [hardcode_libdir_flag_spec], [1], [Flag to hardcode $libdir into a binary during linking. This must work even if $libdir does not exist]) _LT_TAGDECL([], [hardcode_libdir_separator], [1], [Whether we need a single "-rpath" flag with a separated argument]) _LT_TAGDECL([], [hardcode_direct], [0], [Set to "yes" if using DIR/libNAME${shared_ext} during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_direct_absolute], [0], [Set to "yes" if using DIR/libNAME${shared_ext} during linking hardcodes DIR into the resulting binary and the resulting library dependency is "absolute", i.e impossible to change by setting ${shlibpath_var} if the library is relocated]) _LT_TAGDECL([], [hardcode_minus_L], [0], [Set to "yes" if using the -LDIR flag during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_shlibpath_var], [0], [Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_automatic], [0], [Set to "yes" if building a shared library automatically hardcodes DIR into the library and all subsequent libraries and executables linked against it]) _LT_TAGDECL([], [inherit_rpath], [0], [Set to yes if linker adds runtime paths of dependent libraries to runtime path list]) _LT_TAGDECL([], [link_all_deplibs], [0], [Whether libtool must link a program against all its dependency libraries]) _LT_TAGDECL([], [always_export_symbols], [0], [Set to "yes" if exported symbols are required]) _LT_TAGDECL([], [export_symbols_cmds], [2], [The commands to list exported symbols]) _LT_TAGDECL([], [exclude_expsyms], [1], [Symbols that should not be listed in the preloaded symbols]) _LT_TAGDECL([], [include_expsyms], [1], [Symbols that must always be exported]) _LT_TAGDECL([], [prelink_cmds], [2], [Commands necessary for linking programs (against libraries) with templates]) _LT_TAGDECL([], [postlink_cmds], [2], [Commands necessary for finishing linking programs]) _LT_TAGDECL([], [file_list_spec], [1], [Specify filename containing input files]) dnl FIXME: Not yet implemented dnl _LT_TAGDECL([], [thread_safe_flag_spec], [1], dnl [Compiler flag to generate thread safe objects]) ])# _LT_LINKER_SHLIBS # _LT_LANG_C_CONFIG([TAG]) # ------------------------ # Ensure that the configuration variables for a C compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to `libtool'. m4_defun([_LT_LANG_C_CONFIG], [m4_require([_LT_DECL_EGREP])dnl lt_save_CC="$CC" AC_LANG_PUSH(C) # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' _LT_TAG_COMPILER # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) LT_SYS_DLOPEN_SELF _LT_CMD_STRIPLIB # Report which library types will actually be built AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test "$can_build_shared" = "no" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test "$enable_shared" = yes && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test "$host_cpu" != ia64 && test "$aix_use_runtimelinking" = no ; then test "$enable_shared" = yes && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test "$enable_shared" = yes || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_CONFIG($1) fi AC_LANG_POP CC="$lt_save_CC" ])# _LT_LANG_C_CONFIG # _LT_LANG_CXX_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a C++ compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to `libtool'. m4_defun([_LT_LANG_CXX_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl if test -n "$CXX" && ( test "X$CXX" != "Xno" && ( (test "X$CXX" = "Xg++" && `g++ -v >/dev/null 2>&1` ) || (test "X$CXX" != "Xg++"))) ; then AC_PROG_CXXCPP else _lt_caught_CXX_error=yes fi AC_LANG_PUSH(C++) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for C++ test sources. ac_ext=cpp # Object file extension for compiled C++ test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the CXX compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test "$_lt_caught_CXX_error" != yes; then # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(int, char *[[]]) { return(0); }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_LD=$LD lt_save_GCC=$GCC GCC=$GXX lt_save_with_gnu_ld=$with_gnu_ld lt_save_path_LD=$lt_cv_path_LD if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx else $as_unset lt_cv_prog_gnu_ld fi if test -n "${lt_cv_path_LDCXX+set}"; then lt_cv_path_LD=$lt_cv_path_LDCXX else $as_unset lt_cv_path_LD fi test -z "${LDCXX+set}" || LD=$LDCXX CC=${CXX-"c++"} CFLAGS=$CXXFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then # We don't want -fno-exception when compiling C++ code, so set the # no_builtin_flag separately if test "$GXX" = yes; then _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' else _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= fi if test "$GXX" = yes; then # Set up default GNU C++ configuration LT_PATH_LD # Check if GNU C++ uses GNU ld as the underlying linker, since the # archiving commands below assume that GNU ld is being used. if test "$with_gnu_ld" = yes; then _LT_TAGVAR(archive_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' # If archive_cmds runs LD, not CC, wlarc should be empty # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to # investigate it a little bit more. (MM) wlarc='${wl}' # ancient GNU ld didn't support --whole-archive et. al. if eval "`$CC -print-prog-name=ld` --help 2>&1" | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)="$wlarc"'--whole-archive$convenience '"$wlarc"'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else with_gnu_ld=no wlarc= # A generic and very simple default shared library creation # command for GNU C++ for the case where it uses the native # linker, instead of GNU ld. If possible, this setting should # overridden to take advantage of the native linker features on # the platform it is being used on. _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' fi # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else GXX=no with_gnu_ld=no wlarc= fi # PORTME: fill in a description of your system's C++ link characteristics AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) _LT_TAGVAR(ld_shlibs, $1)=yes case $host_os in aix3*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aix[[4-9]]*) if test "$host_cpu" = ia64; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag="" else aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do case $ld_flag in *-brtl*) aix_use_runtimelinking=yes break ;; esac done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='${wl}-f,' if test "$GXX" = yes; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`${CC} -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi esac shared_flag='-shared' if test "$aix_use_runtimelinking" = yes; then shared_flag="$shared_flag "'${wl}-G' fi else # not using gcc if test "$host_cpu" = ia64; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test "$aix_use_runtimelinking" = yes; then shared_flag='${wl}-G' else shared_flag='${wl}-bM:SRE' fi fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to # export. _LT_TAGVAR(always_export_symbols, $1)=yes if test "$aix_use_runtimelinking" = yes; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. _LT_TAGVAR(allow_undefined_flag, $1)='-berok' # Determine the default libpath from the value encoded in an empty # executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags `if test "x${allow_undefined_flag}" != "x"; then func_echo_all "${wl}${allow_undefined_flag}"; else :; fi` '"\${wl}$exp_sym_flag:\$export_symbols $shared_flag" else if test "$host_cpu" = ia64; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\${wl}$no_entry_flag"' $compiler_flags ${wl}${allow_undefined_flag} '"\${wl}$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' ${wl}-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-berok' if test "$with_gnu_ld" = yes; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive$convenience ${wl}--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes # This is similar to how AIX traditionally builds its shared # libraries. _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs ${wl}-bnoentry $compiler_flags ${wl}-bE:$export_symbols${allow_undefined_flag}~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; chorus*) case $cc_basename in *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; cygwin* | mingw* | pw32* | cegcc*) case $GXX,$cc_basename in ,cl* | no,cl*) # Native MSVC # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=".dll" # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-dll~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then $SED -n -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' -e '1\\\!p' < $export_symbols > $output_objdir/$soname.exp; else $SED -e 's/\\\\\\\(.*\\\\\\\)/-link\\\ -EXPORT:\\\\\\\1/' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile="$lt_outputfile.exe" lt_tool_outputfile="$lt_tool_outputfile.exe" ;; esac~ func_to_tool_file "$lt_outputfile"~ if test "$MANIFEST_TOOL" != ":" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # g++ # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file (1st line # is EXPORTS), use it as is; otherwise, prepend... _LT_TAGVAR(archive_expsym_cmds, $1)='if test "x`$SED 1q $export_symbols`" = xEXPORTS; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname ${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; dgux*) case $cc_basename in ec++*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; ghcx*) # Green Hills C++ Compiler # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; freebsd2.*) # C++ shared libraries reported to be fairly broken before # switch to ELF _LT_TAGVAR(ld_shlibs, $1)=no ;; freebsd-elf*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; freebsd* | dragonfly*) # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF # conventions _LT_TAGVAR(ld_shlibs, $1)=yes ;; gnu*) ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; hpux9*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}+b ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -b ${wl}+b ${wl}$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list=""; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test "$GXX" = yes; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag ${wl}+b ${wl}$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test $output_objdir/$soname = $lib || mv $output_objdir/$soname $lib' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; hpux10*|hpux11*) if test $with_gnu_ld = no; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}+b ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) ;; *) _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' ;; esac fi case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. ;; esac case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -b ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list=""; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test "$GXX" = yes; then if test $with_gnu_ld = no; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib -fPIC ${wl}+h ${wl}$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag ${wl}+h ${wl}$soname ${wl}+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag ${wl}+h ${wl}$soname ${wl}+b ${wl}$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac fi else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s,^,_," $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags ${wl}-h,$soname ${wl}--retain-symbols-file,$output_objdir/$soname.expsym ${wl}--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; irix5* | irix6*) case $cc_basename in CC*) # SGI C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' # Archives containing C++ object files must be created using # "CC -ar", where "CC" is the IRIX C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -ar -WR,-u -o $oldlib $oldobjs' ;; *) if test "$GXX" = yes; then if test "$with_gnu_ld" = no; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` -o $lib' fi fi _LT_TAGVAR(link_all_deplibs, $1)=yes ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes ;; linux* | k*bsd*-gnu | kopensolaris*-gnu) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\${tempext}\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\${tempext}\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib ${wl}-retain-symbols-file,$export_symbols; mv \$templib $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list=""; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' # Archives containing C++ object files must be created using # "CC -Bstatic", where "CC" is the KAI C++ compiler. _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; icpc* | ecpc* ) # Intel C++ with_gnu_ld=yes # version 8.0 and above of icpc choke on multiply defined symbols # if we add $predep_objects and $postdep_objects, however 7.1 and # earlier do not add the objects themselves. case `$CC -V 2>&1` in *"Version 7."*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 8.0 or newer tmp_idyn= case $host_cpu in ia64*) tmp_idyn=' -i_dynamic';; esac _LT_TAGVAR(archive_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-retain-symbols-file $wl$export_symbols -o $lib' ;; esac _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive$convenience ${wl}--no-whole-archive' ;; pgCC* | pgcpp*) # Portland Group C++ compiler case `$CC -V` in *pgCC\ [[1-5]].* | *pgcpp\ [[1-5]].*) _LT_TAGVAR(prelink_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~ compile_command="$compile_command `find $tpldir -name \*.o | sort | $NL2SP`"' _LT_TAGVAR(old_archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~ $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name \*.o | sort | $NL2SP`~ $RANLIB $oldlib' _LT_TAGVAR(archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname ${wl}-retain-symbols-file ${wl}$export_symbols -o $lib' ;; *) # Version 6 and above use weak symbols _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname ${wl}-retain-symbols-file ${wl}$export_symbols -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}--rpath ${wl}$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' ;; cxx*) # Compaq C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $wl$soname -o $lib ${wl}-retain-symbols-file $wl$export_symbols' runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld .*$\)/\1/"`; list=""; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed' ;; xl* | mpixl* | bgxl*) # IBM XL 8.0 on PPC, with GNU ld _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}--export-dynamic' _LT_TAGVAR(archive_cmds, $1)='$CC -qmkshrobj $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname -o $lib' if test "x$supports_anon_versioning" = xyes; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC -qmkshrobj $libobjs $deplibs $compiler_flags ${wl}-soname $wl$soname ${wl}-version-script ${wl}$output_objdir/$libname.ver -o $lib' fi ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G${allow_undefined_flag} -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G${allow_undefined_flag} -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-retain-symbols-file ${wl}$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` ${wl}--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes # Not sure whether something based on # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 # would be better. output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; esac ;; esac ;; lynxos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; m88k*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; mvs*) case $cc_basename in cxx*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags' wlarc= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no fi # Workaround some broken pre-1.5 toolchains output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"' ;; *nto* | *qnx*) _LT_TAGVAR(ld_shlibs, $1)=yes ;; openbsd2*) # C++ shared libraries are fairly broken _LT_TAGVAR(ld_shlibs, $1)=no ;; openbsd*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`" || test "$host_os-$host_cpu" = "openbsd2.8-powerpc"; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-retain-symbols-file,$export_symbols -o $lib' _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-E' _LT_TAGVAR(whole_archive_flag_spec, $1)="$wlarc"'--whole-archive$convenience '"$wlarc"'--no-whole-archive' fi output_verbose_link_cmd=func_echo_all else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\${tempext}\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Archives containing C++ object files must be created using # the KAI C++ compiler. case $host in osf3*) _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; *) _LT_TAGVAR(old_archive_cmds, $1)='$CC -o $oldlib $oldobjs' ;; esac ;; RCC*) # Rational C++ 2.4.1 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; cxx*) case $host in osf3*) _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-expect_unresolved ${wl}\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname $soname `test -n "$verstring" && func_echo_all "${wl}-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' ;; *) _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared${allow_undefined_flag} $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~ echo "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname ${wl}-input ${wl}$lib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry ${output_objdir}/so_locations -o $lib~ $RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' ;; esac _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld.*$\)/\1/"`; list=""; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test "$GXX" = yes && test "$with_gnu_ld" = no; then _LT_TAGVAR(allow_undefined_flag, $1)=' ${wl}-expect_unresolved ${wl}\*' case $host in osf3*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib ${allow_undefined_flag} $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib ${allow_undefined_flag} $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-msym ${wl}-soname ${wl}$soname `test -n "$verstring" && func_echo_all "${wl}-set_version ${wl}$verstring"` ${wl}-update_registry ${wl}${output_objdir}/so_locations -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-rpath ${wl}$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; psos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; lcc*) # Lucid # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(archive_cmds_need_lc,$1)=yes _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G${allow_undefined_flag} -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G${allow_undefined_flag} ${wl}-M ${wl}$lib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands `-z linker_flag'. # Supported since Solaris 2.6 (maybe 2.5.1?) _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-h $wl$soname -o $lib' # The C++ compiler must be used to create the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC $LDFLAGS -archive -o $oldlib $oldobjs' ;; *) # GNU C++ compiler with Solaris linker if test "$GXX" = yes && test "$with_gnu_ld" = no; then _LT_TAGVAR(no_undefined_flag, $1)=' ${wl}-z ${wl}defs' if $CC --version | $GREP -v '^2\.7' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $LDFLAGS $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag -nostdlib ${wl}-M $wl$lib.exp -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # g++ 2.7 appears to require `-G' NOT `-shared' on this # platform. _LT_TAGVAR(archive_cmds, $1)='$CC -G -nostdlib $LDFLAGS $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags ${wl}-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G -nostdlib ${wl}-M $wl$lib.exp -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-R $wl$libdir' case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) _LT_TAGVAR(whole_archive_flag_spec, $1)='${wl}-z ${wl}allextract$convenience ${wl}-z ${wl}defaultextract' ;; esac fi ;; esac ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='${wl}-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We can NOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='${wl}-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='${wl}-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='${wl}-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='${wl}-Bexport' runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(old_archive_cmds, $1)='$CC -Tprelink_objects $oldobjs~ '"$_LT_TAGVAR(old_archive_cmds, $1)" _LT_TAGVAR(reload_cmds, $1)='$CC -Tprelink_objects $reload_objs~ '"$_LT_TAGVAR(reload_cmds, $1)" ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared ${wl}-Bexport:$export_symbols ${wl}-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; vxworks*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test "$_LT_TAGVAR(ld_shlibs, $1)" = no && can_build_shared=no _LT_TAGVAR(GCC, $1)="$GXX" _LT_TAGVAR(LD, $1)="$LD" ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS LDCXX=$LD LD=$lt_save_LD GCC=$lt_save_GCC with_gnu_ld=$lt_save_with_gnu_ld lt_cv_path_LDCXX=$lt_cv_path_LD lt_cv_path_LD=$lt_save_path_LD lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld fi # test "$_lt_caught_CXX_error" != yes AC_LANG_POP ])# _LT_LANG_CXX_CONFIG # _LT_FUNC_STRIPNAME_CNF # ---------------------- # func_stripname_cnf prefix suffix name # strip PREFIX and SUFFIX off of NAME. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). # # This function is identical to the (non-XSI) version of func_stripname, # except this one can be used by m4 code that may be executed by configure, # rather than the libtool script. m4_defun([_LT_FUNC_STRIPNAME_CNF],[dnl AC_REQUIRE([_LT_DECL_SED]) AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH]) func_stripname_cnf () { case ${2} in .*) func_stripname_result=`$ECHO "${3}" | $SED "s%^${1}%%; s%\\\\${2}\$%%"`;; *) func_stripname_result=`$ECHO "${3}" | $SED "s%^${1}%%; s%${2}\$%%"`;; esac } # func_stripname_cnf ])# _LT_FUNC_STRIPNAME_CNF # _LT_SYS_HIDDEN_LIBDEPS([TAGNAME]) # --------------------------------- # Figure out "hidden" library dependencies from verbose # compiler output when linking a shared library. # Parse the compiler output and extract the necessary # objects, libraries and library flags. m4_defun([_LT_SYS_HIDDEN_LIBDEPS], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl AC_REQUIRE([_LT_FUNC_STRIPNAME_CNF])dnl # Dependencies to place before and after the object being linked: _LT_TAGVAR(predep_objects, $1)= _LT_TAGVAR(postdep_objects, $1)= _LT_TAGVAR(predeps, $1)= _LT_TAGVAR(postdeps, $1)= _LT_TAGVAR(compiler_lib_search_path, $1)= dnl we can't use the lt_simple_compile_test_code here, dnl because it contains code intended for an executable, dnl not a library. It's possible we should let each dnl tag define a new lt_????_link_test_code variable, dnl but it's only used here... m4_if([$1], [], [cat > conftest.$ac_ext <<_LT_EOF int a; void foo (void) { a = 0; } _LT_EOF ], [$1], [CXX], [cat > conftest.$ac_ext <<_LT_EOF class Foo { public: Foo (void) { a = 0; } private: int a; }; _LT_EOF ], [$1], [F77], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer*4 a a=0 return end _LT_EOF ], [$1], [FC], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer a a=0 return end _LT_EOF ], [$1], [GCJ], [cat > conftest.$ac_ext <<_LT_EOF public class foo { private int a; public void bar (void) { a = 0; } }; _LT_EOF ], [$1], [GO], [cat > conftest.$ac_ext <<_LT_EOF package foo func foo() { } _LT_EOF ]) _lt_libdeps_save_CFLAGS=$CFLAGS case "$CC $CFLAGS " in #( *\ -flto*\ *) CFLAGS="$CFLAGS -fno-lto" ;; *\ -fwhopr*\ *) CFLAGS="$CFLAGS -fno-whopr" ;; *\ -fuse-linker-plugin*\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;; esac dnl Parse the compiler output and extract the necessary dnl objects, libraries and library flags. if AC_TRY_EVAL(ac_compile); then # Parse the compiler output and extract the necessary # objects, libraries and library flags. # Sentinel used to keep track of whether or not we are before # the conftest object file. pre_test_object_deps_done=no for p in `eval "$output_verbose_link_cmd"`; do case ${prev}${p} in -L* | -R* | -l*) # Some compilers place space between "-{L,R}" and the path. # Remove the space. if test $p = "-L" || test $p = "-R"; then prev=$p continue fi # Expand the sysroot to ease extracting the directories later. if test -z "$prev"; then case $p in -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;; -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;; -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;; esac fi case $p in =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;; esac if test "$pre_test_object_deps_done" = no; then case ${prev} in -L | -R) # Internal compiler library paths should come after those # provided the user. The postdeps already come after the # user supplied libs so there is no need to process them. if test -z "$_LT_TAGVAR(compiler_lib_search_path, $1)"; then _LT_TAGVAR(compiler_lib_search_path, $1)="${prev}${p}" else _LT_TAGVAR(compiler_lib_search_path, $1)="${_LT_TAGVAR(compiler_lib_search_path, $1)} ${prev}${p}" fi ;; # The "-l" case would never come before the object being # linked, so don't bother handling this case. esac else if test -z "$_LT_TAGVAR(postdeps, $1)"; then _LT_TAGVAR(postdeps, $1)="${prev}${p}" else _LT_TAGVAR(postdeps, $1)="${_LT_TAGVAR(postdeps, $1)} ${prev}${p}" fi fi prev= ;; *.lto.$objext) ;; # Ignore GCC LTO objects *.$objext) # This assumes that the test object file only shows up # once in the compiler output. if test "$p" = "conftest.$objext"; then pre_test_object_deps_done=yes continue fi if test "$pre_test_object_deps_done" = no; then if test -z "$_LT_TAGVAR(predep_objects, $1)"; then _LT_TAGVAR(predep_objects, $1)="$p" else _LT_TAGVAR(predep_objects, $1)="$_LT_TAGVAR(predep_objects, $1) $p" fi else if test -z "$_LT_TAGVAR(postdep_objects, $1)"; then _LT_TAGVAR(postdep_objects, $1)="$p" else _LT_TAGVAR(postdep_objects, $1)="$_LT_TAGVAR(postdep_objects, $1) $p" fi fi ;; *) ;; # Ignore the rest. esac done # Clean up. rm -f a.out a.exe else echo "libtool.m4: error: problem compiling $1 test program" fi $RM -f confest.$objext CFLAGS=$_lt_libdeps_save_CFLAGS # PORTME: override above test on systems where it is broken m4_if([$1], [CXX], [case $host_os in interix[[3-9]]*) # Interix 3.5 installs completely hosed .la files for C++, so rather than # hack all around it, let's just trust "g++" to DTRT. _LT_TAGVAR(predep_objects,$1)= _LT_TAGVAR(postdep_objects,$1)= _LT_TAGVAR(postdeps,$1)= ;; linux*) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac if test "$solaris_use_stlport4" != yes; then _LT_TAGVAR(postdeps,$1)='-library=Cstd -library=Crun' fi ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac # Adding this requires a known-good setup of shared libraries for # Sun compiler versions before 5.6, else PIC objects from an old # archive will be linked into the output, leading to subtle bugs. if test "$solaris_use_stlport4" != yes; then _LT_TAGVAR(postdeps,$1)='-library=Cstd -library=Crun' fi ;; esac ;; esac ]) case " $_LT_TAGVAR(postdeps, $1) " in *" -lc "*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; esac _LT_TAGVAR(compiler_lib_search_dirs, $1)= if test -n "${_LT_TAGVAR(compiler_lib_search_path, $1)}"; then _LT_TAGVAR(compiler_lib_search_dirs, $1)=`echo " ${_LT_TAGVAR(compiler_lib_search_path, $1)}" | ${SED} -e 's! -L! !g' -e 's!^ !!'` fi _LT_TAGDECL([], [compiler_lib_search_dirs], [1], [The directories searched by this compiler when creating a shared library]) _LT_TAGDECL([], [predep_objects], [1], [Dependencies to place before and after the objects being linked to create a shared library]) _LT_TAGDECL([], [postdep_objects], [1]) _LT_TAGDECL([], [predeps], [1]) _LT_TAGDECL([], [postdeps], [1]) _LT_TAGDECL([], [compiler_lib_search_path], [1], [The library search path used internally by the compiler when linking a shared library]) ])# _LT_SYS_HIDDEN_LIBDEPS # _LT_LANG_F77_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a Fortran 77 compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to `libtool'. m4_defun([_LT_LANG_F77_CONFIG], [AC_LANG_PUSH(Fortran 77) if test -z "$F77" || test "X$F77" = "Xno"; then _lt_disable_F77=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for f77 test sources. ac_ext=f # Object file extension for compiled f77 test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the F77 compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test "$_lt_disable_F77" != yes; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC="$CC" lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${F77-"f77"} CFLAGS=$FFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) GCC=$G77 if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test "$can_build_shared" = "no" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test "$enable_shared" = yes && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test "$host_cpu" != ia64 && test "$aix_use_runtimelinking" = no ; then test "$enable_shared" = yes && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test "$enable_shared" = yes || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)="$G77" _LT_TAGVAR(LD, $1)="$LD" ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC="$lt_save_CC" CFLAGS="$lt_save_CFLAGS" fi # test "$_lt_disable_F77" != yes AC_LANG_POP ])# _LT_LANG_F77_CONFIG # _LT_LANG_FC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for a Fortran compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to `libtool'. m4_defun([_LT_LANG_FC_CONFIG], [AC_LANG_PUSH(Fortran) if test -z "$FC" || test "X$FC" = "Xno"; then _lt_disable_FC=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for fc test sources. ac_ext=${ac_fc_srcext-f} # Object file extension for compiled fc test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the FC compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test "$_lt_disable_FC" != yes; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC="$CC" lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${FC-"f95"} CFLAGS=$FCFLAGS compiler=$CC GCC=$ac_cv_fc_compiler_gnu _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test "$can_build_shared" = "no" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test "$enable_shared" = yes && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test "$host_cpu" != ia64 && test "$aix_use_runtimelinking" = no ; then test "$enable_shared" = yes && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test "$enable_shared" = yes || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)="$ac_cv_fc_compiler_gnu" _LT_TAGVAR(LD, $1)="$LD" ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS fi # test "$_lt_disable_FC" != yes AC_LANG_POP ])# _LT_LANG_FC_CONFIG # _LT_LANG_GCJ_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Java Compiler compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to `libtool'. m4_defun([_LT_LANG_GCJ_CONFIG], [AC_REQUIRE([LT_PROG_GCJ])dnl AC_LANG_SAVE # Source file extension for Java test sources. ac_ext=java # Object file extension for compiled Java test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="class foo {}" # Code to be used in simple link tests lt_simple_link_test_code='public class conftest { public static void main(String[[]] argv) {}; }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GCJ-"gcj"} CFLAGS=$GCJFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)="$LD" _LT_CC_BASENAME([$compiler]) # GCJ did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GCJ_CONFIG # _LT_LANG_GO_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Go compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to `libtool'. m4_defun([_LT_LANG_GO_CONFIG], [AC_REQUIRE([LT_PROG_GO])dnl AC_LANG_SAVE # Source file extension for Go test sources. ac_ext=go # Object file extension for compiled Go test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="package main; func main() { }" # Code to be used in simple link tests lt_simple_link_test_code='package main; func main() { }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GOC-"gccgo"} CFLAGS=$GOFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)="$LD" _LT_CC_BASENAME([$compiler]) # Go did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GO_CONFIG # _LT_LANG_RC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for the Windows resource compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to `libtool'. m4_defun([_LT_LANG_RC_CONFIG], [AC_REQUIRE([LT_PROG_RC])dnl AC_LANG_SAVE # Source file extension for RC test sources. ac_ext=rc # Object file extension for compiled RC test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code='sample MENU { MENUITEM "&Soup", 100, CHECKED }' # Code to be used in simple link tests lt_simple_link_test_code="$lt_simple_compile_test_code" # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC="$CC" lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC= CC=${RC-"windres"} CFLAGS= compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes if test -n "$compiler"; then : _LT_CONFIG($1) fi GCC=$lt_save_GCC AC_LANG_RESTORE CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_RC_CONFIG # LT_PROG_GCJ # ----------- AC_DEFUN([LT_PROG_GCJ], [m4_ifdef([AC_PROG_GCJ], [AC_PROG_GCJ], [m4_ifdef([A][M_PROG_GCJ], [A][M_PROG_GCJ], [AC_CHECK_TOOL(GCJ, gcj,) test "x${GCJFLAGS+set}" = xset || GCJFLAGS="-g -O2" AC_SUBST(GCJFLAGS)])])[]dnl ]) # Old name: AU_ALIAS([LT_AC_PROG_GCJ], [LT_PROG_GCJ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_GCJ], []) # LT_PROG_GO # ---------- AC_DEFUN([LT_PROG_GO], [AC_CHECK_TOOL(GOC, gccgo,) ]) # LT_PROG_RC # ---------- AC_DEFUN([LT_PROG_RC], [AC_CHECK_TOOL(RC, windres,) ]) # Old name: AU_ALIAS([LT_AC_PROG_RC], [LT_PROG_RC]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_RC], []) # _LT_DECL_EGREP # -------------- # If we don't have a new enough Autoconf to choose the best grep # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_EGREP], [AC_REQUIRE([AC_PROG_EGREP])dnl AC_REQUIRE([AC_PROG_FGREP])dnl test -z "$GREP" && GREP=grep _LT_DECL([], [GREP], [1], [A grep program that handles long lines]) _LT_DECL([], [EGREP], [1], [An ERE matcher]) _LT_DECL([], [FGREP], [1], [A literal string matcher]) dnl Non-bleeding-edge autoconf doesn't subst GREP, so do it here too AC_SUBST([GREP]) ]) # _LT_DECL_OBJDUMP # -------------- # If we don't have a new enough Autoconf to choose the best objdump # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_OBJDUMP], [AC_CHECK_TOOL(OBJDUMP, objdump, false) test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [An object symbol dumper]) AC_SUBST([OBJDUMP]) ]) # _LT_DECL_DLLTOOL # ---------------- # Ensure DLLTOOL variable is set. m4_defun([_LT_DECL_DLLTOOL], [AC_CHECK_TOOL(DLLTOOL, dlltool, false) test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program]) AC_SUBST([DLLTOOL]) ]) # _LT_DECL_SED # ------------ # Check for a fully-functional sed program, that truncates # as few characters as possible. Prefer GNU sed if found. m4_defun([_LT_DECL_SED], [AC_PROG_SED test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" _LT_DECL([], [SED], [1], [A sed program that does not truncate output]) _LT_DECL([], [Xsed], ["\$SED -e 1s/^X//"], [Sed that helps us avoid accidentally triggering echo(1) options like -n]) ])# _LT_DECL_SED m4_ifndef([AC_PROG_SED], [ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_SED. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # m4_defun([AC_PROG_SED], [AC_MSG_CHECKING([for a sed that does not truncate output]) AC_CACHE_VAL(lt_cv_path_SED, [# Loop through the user's path and test for sed and gsed. # Then use that list of sed's as ones to test for truncation. as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for lt_ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do if $as_executable_p "$as_dir/$lt_ac_prog$ac_exec_ext"; then lt_ac_sed_list="$lt_ac_sed_list $as_dir/$lt_ac_prog$ac_exec_ext" fi done done done IFS=$as_save_IFS lt_ac_max=0 lt_ac_count=0 # Add /usr/xpg4/bin/sed as it is typically found on Solaris # along with /bin/sed that truncates output. for lt_ac_sed in $lt_ac_sed_list /usr/xpg4/bin/sed; do test ! -f $lt_ac_sed && continue cat /dev/null > conftest.in lt_ac_count=0 echo $ECHO_N "0123456789$ECHO_C" >conftest.in # Check for GNU sed and select it if it is found. if "$lt_ac_sed" --version 2>&1 < /dev/null | grep 'GNU' > /dev/null; then lt_cv_path_SED=$lt_ac_sed break fi while true; do cat conftest.in conftest.in >conftest.tmp mv conftest.tmp conftest.in cp conftest.in conftest.nl echo >>conftest.nl $lt_ac_sed -e 's/a$//' < conftest.nl >conftest.out || break cmp -s conftest.out conftest.nl || break # 10000 chars as input seems more than enough test $lt_ac_count -gt 10 && break lt_ac_count=`expr $lt_ac_count + 1` if test $lt_ac_count -gt $lt_ac_max; then lt_ac_max=$lt_ac_count lt_cv_path_SED=$lt_ac_sed fi done done ]) SED=$lt_cv_path_SED AC_SUBST([SED]) AC_MSG_RESULT([$SED]) ])#AC_PROG_SED ])#m4_ifndef # Old name: AU_ALIAS([LT_AC_PROG_SED], [AC_PROG_SED]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_SED], []) # _LT_CHECK_SHELL_FEATURES # ------------------------ # Find out whether the shell is Bourne or XSI compatible, # or has some other useful features. m4_defun([_LT_CHECK_SHELL_FEATURES], [AC_MSG_CHECKING([whether the shell understands some XSI constructs]) # Try some XSI features xsi_shell=no ( _lt_dummy="a/b/c" test "${_lt_dummy##*/},${_lt_dummy%/*},${_lt_dummy#??}"${_lt_dummy%"$_lt_dummy"}, \ = c,a/b,b/c, \ && eval 'test $(( 1 + 1 )) -eq 2 \ && test "${#_lt_dummy}" -eq 5' ) >/dev/null 2>&1 \ && xsi_shell=yes AC_MSG_RESULT([$xsi_shell]) _LT_CONFIG_LIBTOOL_INIT([xsi_shell='$xsi_shell']) AC_MSG_CHECKING([whether the shell understands "+="]) lt_shell_append=no ( foo=bar; set foo baz; eval "$[1]+=\$[2]" && test "$foo" = barbaz ) \ >/dev/null 2>&1 \ && lt_shell_append=yes AC_MSG_RESULT([$lt_shell_append]) _LT_CONFIG_LIBTOOL_INIT([lt_shell_append='$lt_shell_append']) if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi _LT_DECL([], [lt_unset], [0], [whether the shell understands "unset"])dnl # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac _LT_DECL([SP2NL], [lt_SP2NL], [1], [turn spaces into newlines])dnl _LT_DECL([NL2SP], [lt_NL2SP], [1], [turn newlines into spaces])dnl ])# _LT_CHECK_SHELL_FEATURES # _LT_PROG_FUNCTION_REPLACE (FUNCNAME, REPLACEMENT-BODY) # ------------------------------------------------------ # In `$cfgfile', look for function FUNCNAME delimited by `^FUNCNAME ()$' and # '^} FUNCNAME ', and replace its body with REPLACEMENT-BODY. m4_defun([_LT_PROG_FUNCTION_REPLACE], [dnl { sed -e '/^$1 ()$/,/^} # $1 /c\ $1 ()\ {\ m4_bpatsubsts([$2], [$], [\\], [^\([ ]\)], [\\\1]) } # Extended-shell $1 implementation' "$cfgfile" > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: ]) # _LT_PROG_REPLACE_SHELLFNS # ------------------------- # Replace existing portable implementations of several shell functions with # equivalent extended shell implementations where those features are available.. m4_defun([_LT_PROG_REPLACE_SHELLFNS], [if test x"$xsi_shell" = xyes; then _LT_PROG_FUNCTION_REPLACE([func_dirname], [dnl case ${1} in */*) func_dirname_result="${1%/*}${2}" ;; * ) func_dirname_result="${3}" ;; esac]) _LT_PROG_FUNCTION_REPLACE([func_basename], [dnl func_basename_result="${1##*/}"]) _LT_PROG_FUNCTION_REPLACE([func_dirname_and_basename], [dnl case ${1} in */*) func_dirname_result="${1%/*}${2}" ;; * ) func_dirname_result="${3}" ;; esac func_basename_result="${1##*/}"]) _LT_PROG_FUNCTION_REPLACE([func_stripname], [dnl # pdksh 5.2.14 does not do ${X%$Y} correctly if both X and Y are # positional parameters, so assign one to ordinary parameter first. func_stripname_result=${3} func_stripname_result=${func_stripname_result#"${1}"} func_stripname_result=${func_stripname_result%"${2}"}]) _LT_PROG_FUNCTION_REPLACE([func_split_long_opt], [dnl func_split_long_opt_name=${1%%=*} func_split_long_opt_arg=${1#*=}]) _LT_PROG_FUNCTION_REPLACE([func_split_short_opt], [dnl func_split_short_opt_arg=${1#??} func_split_short_opt_name=${1%"$func_split_short_opt_arg"}]) _LT_PROG_FUNCTION_REPLACE([func_lo2o], [dnl case ${1} in *.lo) func_lo2o_result=${1%.lo}.${objext} ;; *) func_lo2o_result=${1} ;; esac]) _LT_PROG_FUNCTION_REPLACE([func_xform], [ func_xform_result=${1%.*}.lo]) _LT_PROG_FUNCTION_REPLACE([func_arith], [ func_arith_result=$(( $[*] ))]) _LT_PROG_FUNCTION_REPLACE([func_len], [ func_len_result=${#1}]) fi if test x"$lt_shell_append" = xyes; then _LT_PROG_FUNCTION_REPLACE([func_append], [ eval "${1}+=\\${2}"]) _LT_PROG_FUNCTION_REPLACE([func_append_quoted], [dnl func_quote_for_eval "${2}" dnl m4 expansion turns \\\\ into \\, and then the shell eval turns that into \ eval "${1}+=\\\\ \\$func_quote_for_eval_result"]) # Save a `func_append' function call where possible by direct use of '+=' sed -e 's%func_append \([[a-zA-Z_]]\{1,\}\) "%\1+="%g' $cfgfile > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: else # Save a `func_append' function call even when '+=' is not available sed -e 's%func_append \([[a-zA-Z_]]\{1,\}\) "%\1="$\1%g' $cfgfile > $cfgfile.tmp \ && mv -f "$cfgfile.tmp" "$cfgfile" \ || (rm -f "$cfgfile" && cp "$cfgfile.tmp" "$cfgfile" && rm -f "$cfgfile.tmp") test 0 -eq $? || _lt_function_replace_fail=: fi if test x"$_lt_function_replace_fail" = x":"; then AC_MSG_WARN([Unable to substitute extended shell functions in $ofile]) fi ]) # _LT_PATH_CONVERSION_FUNCTIONS # ----------------------------- # Determine which file name conversion functions should be used by # func_to_host_file (and, implicitly, by func_to_host_path). These are needed # for certain cross-compile configurations and native mingw. m4_defun([_LT_PATH_CONVERSION_FUNCTIONS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_MSG_CHECKING([how to convert $build file names to $host format]) AC_CACHE_VAL(lt_cv_to_host_file_cmd, [case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac ]) to_host_file_cmd=$lt_cv_to_host_file_cmd AC_MSG_RESULT([$lt_cv_to_host_file_cmd]) _LT_DECL([to_host_file_cmd], [lt_cv_to_host_file_cmd], [0], [convert $build file names to $host format])dnl AC_MSG_CHECKING([how to convert $build file names to toolchain format]) AC_CACHE_VAL(lt_cv_to_tool_file_cmd, [#assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac ]) to_tool_file_cmd=$lt_cv_to_tool_file_cmd AC_MSG_RESULT([$lt_cv_to_tool_file_cmd]) _LT_DECL([to_tool_file_cmd], [lt_cv_to_tool_file_cmd], [0], [convert $build files to toolchain format])dnl ])# _LT_PATH_CONVERSION_FUNCTIONS # Helper functions for option handling. -*- Autoconf -*- # # Copyright (C) 2004, 2005, 2007, 2008, 2009 Free Software Foundation, # Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 7 ltoptions.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOPTIONS_VERSION], [m4_if([1])]) # _LT_MANGLE_OPTION(MACRO-NAME, OPTION-NAME) # ------------------------------------------ m4_define([_LT_MANGLE_OPTION], [[_LT_OPTION_]m4_bpatsubst($1__$2, [[^a-zA-Z0-9_]], [_])]) # _LT_SET_OPTION(MACRO-NAME, OPTION-NAME) # --------------------------------------- # Set option OPTION-NAME for macro MACRO-NAME, and if there is a # matching handler defined, dispatch to it. Other OPTION-NAMEs are # saved as a flag. m4_define([_LT_SET_OPTION], [m4_define(_LT_MANGLE_OPTION([$1], [$2]))dnl m4_ifdef(_LT_MANGLE_DEFUN([$1], [$2]), _LT_MANGLE_DEFUN([$1], [$2]), [m4_warning([Unknown $1 option `$2'])])[]dnl ]) # _LT_IF_OPTION(MACRO-NAME, OPTION-NAME, IF-SET, [IF-NOT-SET]) # ------------------------------------------------------------ # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. m4_define([_LT_IF_OPTION], [m4_ifdef(_LT_MANGLE_OPTION([$1], [$2]), [$3], [$4])]) # _LT_UNLESS_OPTIONS(MACRO-NAME, OPTION-LIST, IF-NOT-SET) # ------------------------------------------------------- # Execute IF-NOT-SET unless all options in OPTION-LIST for MACRO-NAME # are set. m4_define([_LT_UNLESS_OPTIONS], [m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [m4_ifdef(_LT_MANGLE_OPTION([$1], _LT_Option), [m4_define([$0_found])])])[]dnl m4_ifdef([$0_found], [m4_undefine([$0_found])], [$3 ])[]dnl ]) # _LT_SET_OPTIONS(MACRO-NAME, OPTION-LIST) # ---------------------------------------- # OPTION-LIST is a space-separated list of Libtool options associated # with MACRO-NAME. If any OPTION has a matching handler declared with # LT_OPTION_DEFINE, dispatch to that macro; otherwise complain about # the unknown option and exit. m4_defun([_LT_SET_OPTIONS], [# Set options m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [_LT_SET_OPTION([$1], _LT_Option)]) m4_if([$1],[LT_INIT],[ dnl dnl Simply set some default values (i.e off) if boolean options were not dnl specified: _LT_UNLESS_OPTIONS([LT_INIT], [dlopen], [enable_dlopen=no ]) _LT_UNLESS_OPTIONS([LT_INIT], [win32-dll], [enable_win32_dll=no ]) dnl dnl If no reference was made to various pairs of opposing options, then dnl we run the default mode handler for the pair. For example, if neither dnl `shared' nor `disable-shared' was passed, we enable building of shared dnl archives by default: _LT_UNLESS_OPTIONS([LT_INIT], [shared disable-shared], [_LT_ENABLE_SHARED]) _LT_UNLESS_OPTIONS([LT_INIT], [static disable-static], [_LT_ENABLE_STATIC]) _LT_UNLESS_OPTIONS([LT_INIT], [pic-only no-pic], [_LT_WITH_PIC]) _LT_UNLESS_OPTIONS([LT_INIT], [fast-install disable-fast-install], [_LT_ENABLE_FAST_INSTALL]) ]) ])# _LT_SET_OPTIONS # _LT_MANGLE_DEFUN(MACRO-NAME, OPTION-NAME) # ----------------------------------------- m4_define([_LT_MANGLE_DEFUN], [[_LT_OPTION_DEFUN_]m4_bpatsubst(m4_toupper([$1__$2]), [[^A-Z0-9_]], [_])]) # LT_OPTION_DEFINE(MACRO-NAME, OPTION-NAME, CODE) # ----------------------------------------------- m4_define([LT_OPTION_DEFINE], [m4_define(_LT_MANGLE_DEFUN([$1], [$2]), [$3])[]dnl ])# LT_OPTION_DEFINE # dlopen # ------ LT_OPTION_DEFINE([LT_INIT], [dlopen], [enable_dlopen=yes ]) AU_DEFUN([AC_LIBTOOL_DLOPEN], [_LT_SET_OPTION([LT_INIT], [dlopen]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the `dlopen' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN], []) # win32-dll # --------- # Declare package support for building win32 dll's. LT_OPTION_DEFINE([LT_INIT], [win32-dll], [enable_win32_dll=yes case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-cegcc*) AC_CHECK_TOOL(AS, as, false) AC_CHECK_TOOL(DLLTOOL, dlltool, false) AC_CHECK_TOOL(OBJDUMP, objdump, false) ;; esac test -z "$AS" && AS=as _LT_DECL([], [AS], [1], [Assembler program])dnl test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program])dnl test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [Object dumper program])dnl ])# win32-dll AU_DEFUN([AC_LIBTOOL_WIN32_DLL], [AC_REQUIRE([AC_CANONICAL_HOST])dnl _LT_SET_OPTION([LT_INIT], [win32-dll]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the `win32-dll' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_WIN32_DLL], []) # _LT_ENABLE_SHARED([DEFAULT]) # ---------------------------- # implement the --enable-shared flag, and supports the `shared' and # `disable-shared' LT_INIT options. # DEFAULT is either `yes' or `no'. If omitted, it defaults to `yes'. m4_define([_LT_ENABLE_SHARED], [m4_define([_LT_ENABLE_SHARED_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([shared], [AS_HELP_STRING([--enable-shared@<:@=PKGS@:>@], [build shared libraries @<:@default=]_LT_ENABLE_SHARED_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS="$lt_save_ifs" ;; esac], [enable_shared=]_LT_ENABLE_SHARED_DEFAULT) _LT_DECL([build_libtool_libs], [enable_shared], [0], [Whether or not to build shared libraries]) ])# _LT_ENABLE_SHARED LT_OPTION_DEFINE([LT_INIT], [shared], [_LT_ENABLE_SHARED([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-shared], [_LT_ENABLE_SHARED([no])]) # Old names: AC_DEFUN([AC_ENABLE_SHARED], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[shared]) ]) AC_DEFUN([AC_DISABLE_SHARED], [_LT_SET_OPTION([LT_INIT], [disable-shared]) ]) AU_DEFUN([AM_ENABLE_SHARED], [AC_ENABLE_SHARED($@)]) AU_DEFUN([AM_DISABLE_SHARED], [AC_DISABLE_SHARED($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_SHARED], []) dnl AC_DEFUN([AM_DISABLE_SHARED], []) # _LT_ENABLE_STATIC([DEFAULT]) # ---------------------------- # implement the --enable-static flag, and support the `static' and # `disable-static' LT_INIT options. # DEFAULT is either `yes' or `no'. If omitted, it defaults to `yes'. m4_define([_LT_ENABLE_STATIC], [m4_define([_LT_ENABLE_STATIC_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([static], [AS_HELP_STRING([--enable-static@<:@=PKGS@:>@], [build static libraries @<:@default=]_LT_ENABLE_STATIC_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS="$lt_save_ifs" ;; esac], [enable_static=]_LT_ENABLE_STATIC_DEFAULT) _LT_DECL([build_old_libs], [enable_static], [0], [Whether or not to build static libraries]) ])# _LT_ENABLE_STATIC LT_OPTION_DEFINE([LT_INIT], [static], [_LT_ENABLE_STATIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-static], [_LT_ENABLE_STATIC([no])]) # Old names: AC_DEFUN([AC_ENABLE_STATIC], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[static]) ]) AC_DEFUN([AC_DISABLE_STATIC], [_LT_SET_OPTION([LT_INIT], [disable-static]) ]) AU_DEFUN([AM_ENABLE_STATIC], [AC_ENABLE_STATIC($@)]) AU_DEFUN([AM_DISABLE_STATIC], [AC_DISABLE_STATIC($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_STATIC], []) dnl AC_DEFUN([AM_DISABLE_STATIC], []) # _LT_ENABLE_FAST_INSTALL([DEFAULT]) # ---------------------------------- # implement the --enable-fast-install flag, and support the `fast-install' # and `disable-fast-install' LT_INIT options. # DEFAULT is either `yes' or `no'. If omitted, it defaults to `yes'. m4_define([_LT_ENABLE_FAST_INSTALL], [m4_define([_LT_ENABLE_FAST_INSTALL_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([fast-install], [AS_HELP_STRING([--enable-fast-install@<:@=PKGS@:>@], [optimize for fast installation @<:@default=]_LT_ENABLE_FAST_INSTALL_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for pkg in $enableval; do IFS="$lt_save_ifs" if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS="$lt_save_ifs" ;; esac], [enable_fast_install=]_LT_ENABLE_FAST_INSTALL_DEFAULT) _LT_DECL([fast_install], [enable_fast_install], [0], [Whether or not to optimize for fast installation])dnl ])# _LT_ENABLE_FAST_INSTALL LT_OPTION_DEFINE([LT_INIT], [fast-install], [_LT_ENABLE_FAST_INSTALL([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-fast-install], [_LT_ENABLE_FAST_INSTALL([no])]) # Old names: AU_DEFUN([AC_ENABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the `fast-install' option into LT_INIT's first parameter.]) ]) AU_DEFUN([AC_DISABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], [disable-fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the `disable-fast-install' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_ENABLE_FAST_INSTALL], []) dnl AC_DEFUN([AM_DISABLE_FAST_INSTALL], []) # _LT_WITH_PIC([MODE]) # -------------------- # implement the --with-pic flag, and support the `pic-only' and `no-pic' # LT_INIT options. # MODE is either `yes' or `no'. If omitted, it defaults to `both'. m4_define([_LT_WITH_PIC], [AC_ARG_WITH([pic], [AS_HELP_STRING([--with-pic@<:@=PKGS@:>@], [try to use only PIC/non-PIC objects @<:@default=use both@:>@])], [lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs="$IFS"; IFS="${IFS}$PATH_SEPARATOR," for lt_pkg in $withval; do IFS="$lt_save_ifs" if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS="$lt_save_ifs" ;; esac], [pic_mode=default]) test -z "$pic_mode" && pic_mode=m4_default([$1], [default]) _LT_DECL([], [pic_mode], [0], [What type of objects to build])dnl ])# _LT_WITH_PIC LT_OPTION_DEFINE([LT_INIT], [pic-only], [_LT_WITH_PIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [no-pic], [_LT_WITH_PIC([no])]) # Old name: AU_DEFUN([AC_LIBTOOL_PICMODE], [_LT_SET_OPTION([LT_INIT], [pic-only]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the `pic-only' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_PICMODE], []) m4_define([_LTDL_MODE], []) LT_OPTION_DEFINE([LTDL_INIT], [nonrecursive], [m4_define([_LTDL_MODE], [nonrecursive])]) LT_OPTION_DEFINE([LTDL_INIT], [recursive], [m4_define([_LTDL_MODE], [recursive])]) LT_OPTION_DEFINE([LTDL_INIT], [subproject], [m4_define([_LTDL_MODE], [subproject])]) m4_define([_LTDL_TYPE], []) LT_OPTION_DEFINE([LTDL_INIT], [installable], [m4_define([_LTDL_TYPE], [installable])]) LT_OPTION_DEFINE([LTDL_INIT], [convenience], [m4_define([_LTDL_TYPE], [convenience])]) # ltsugar.m4 -- libtool m4 base layer. -*-Autoconf-*- # # Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 6 ltsugar.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTSUGAR_VERSION], [m4_if([0.1])]) # lt_join(SEP, ARG1, [ARG2...]) # ----------------------------- # Produce ARG1SEPARG2...SEPARGn, omitting [] arguments and their # associated separator. # Needed until we can rely on m4_join from Autoconf 2.62, since all earlier # versions in m4sugar had bugs. m4_define([lt_join], [m4_if([$#], [1], [], [$#], [2], [[$2]], [m4_if([$2], [], [], [[$2]_])$0([$1], m4_shift(m4_shift($@)))])]) m4_define([_lt_join], [m4_if([$#$2], [2], [], [m4_if([$2], [], [], [[$1$2]])$0([$1], m4_shift(m4_shift($@)))])]) # lt_car(LIST) # lt_cdr(LIST) # ------------ # Manipulate m4 lists. # These macros are necessary as long as will still need to support # Autoconf-2.59 which quotes differently. m4_define([lt_car], [[$1]]) m4_define([lt_cdr], [m4_if([$#], 0, [m4_fatal([$0: cannot be called without arguments])], [$#], 1, [], [m4_dquote(m4_shift($@))])]) m4_define([lt_unquote], $1) # lt_append(MACRO-NAME, STRING, [SEPARATOR]) # ------------------------------------------ # Redefine MACRO-NAME to hold its former content plus `SEPARATOR'`STRING'. # Note that neither SEPARATOR nor STRING are expanded; they are appended # to MACRO-NAME as is (leaving the expansion for when MACRO-NAME is invoked). # No SEPARATOR is output if MACRO-NAME was previously undefined (different # than defined and empty). # # This macro is needed until we can rely on Autoconf 2.62, since earlier # versions of m4sugar mistakenly expanded SEPARATOR but not STRING. m4_define([lt_append], [m4_define([$1], m4_ifdef([$1], [m4_defn([$1])[$3]])[$2])]) # lt_combine(SEP, PREFIX-LIST, INFIX, SUFFIX1, [SUFFIX2...]) # ---------------------------------------------------------- # Produce a SEP delimited list of all paired combinations of elements of # PREFIX-LIST with SUFFIX1 through SUFFIXn. Each element of the list # has the form PREFIXmINFIXSUFFIXn. # Needed until we can rely on m4_combine added in Autoconf 2.62. m4_define([lt_combine], [m4_if(m4_eval([$# > 3]), [1], [m4_pushdef([_Lt_sep], [m4_define([_Lt_sep], m4_defn([lt_car]))])]]dnl [[m4_foreach([_Lt_prefix], [$2], [m4_foreach([_Lt_suffix], ]m4_dquote(m4_dquote(m4_shift(m4_shift(m4_shift($@)))))[, [_Lt_sep([$1])[]m4_defn([_Lt_prefix])[$3]m4_defn([_Lt_suffix])])])])]) # lt_if_append_uniq(MACRO-NAME, VARNAME, [SEPARATOR], [UNIQ], [NOT-UNIQ]) # ----------------------------------------------------------------------- # Iff MACRO-NAME does not yet contain VARNAME, then append it (delimited # by SEPARATOR if supplied) and expand UNIQ, else NOT-UNIQ. m4_define([lt_if_append_uniq], [m4_ifdef([$1], [m4_if(m4_index([$3]m4_defn([$1])[$3], [$3$2$3]), [-1], [lt_append([$1], [$2], [$3])$4], [$5])], [lt_append([$1], [$2], [$3])$4])]) # lt_dict_add(DICT, KEY, VALUE) # ----------------------------- m4_define([lt_dict_add], [m4_define([$1($2)], [$3])]) # lt_dict_add_subkey(DICT, KEY, SUBKEY, VALUE) # -------------------------------------------- m4_define([lt_dict_add_subkey], [m4_define([$1($2:$3)], [$4])]) # lt_dict_fetch(DICT, KEY, [SUBKEY]) # ---------------------------------- m4_define([lt_dict_fetch], [m4_ifval([$3], m4_ifdef([$1($2:$3)], [m4_defn([$1($2:$3)])]), m4_ifdef([$1($2)], [m4_defn([$1($2)])]))]) # lt_if_dict_fetch(DICT, KEY, [SUBKEY], VALUE, IF-TRUE, [IF-FALSE]) # ----------------------------------------------------------------- m4_define([lt_if_dict_fetch], [m4_if(lt_dict_fetch([$1], [$2], [$3]), [$4], [$5], [$6])]) # lt_dict_filter(DICT, [SUBKEY], VALUE, [SEPARATOR], KEY, [...]) # -------------------------------------------------------------- m4_define([lt_dict_filter], [m4_if([$5], [], [], [lt_join(m4_quote(m4_default([$4], [[, ]])), lt_unquote(m4_split(m4_normalize(m4_foreach(_Lt_key, lt_car([m4_shiftn(4, $@)]), [lt_if_dict_fetch([$1], _Lt_key, [$2], [$3], [_Lt_key ])])))))])[]dnl ]) # ltversion.m4 -- version numbers -*- Autoconf -*- # # Copyright (C) 2004 Free Software Foundation, Inc. # Written by Scott James Remnant, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # @configure_input@ # serial 3337 ltversion.m4 # This file is part of GNU Libtool m4_define([LT_PACKAGE_VERSION], [2.4.2]) m4_define([LT_PACKAGE_REVISION], [1.3337]) AC_DEFUN([LTVERSION_VERSION], [macro_version='2.4.2' macro_revision='1.3337' _LT_DECL(, macro_version, 0, [Which release of libtool.m4 was used?]) _LT_DECL(, macro_revision, 0) ]) # lt~obsolete.m4 -- aclocal satisfying obsolete definitions. -*-Autoconf-*- # # Copyright (C) 2004, 2005, 2007, 2009 Free Software Foundation, Inc. # Written by Scott James Remnant, 2004. # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 5 lt~obsolete.m4 # These exist entirely to fool aclocal when bootstrapping libtool. # # In the past libtool.m4 has provided macros via AC_DEFUN (or AU_DEFUN) # which have later been changed to m4_define as they aren't part of the # exported API, or moved to Autoconf or Automake where they belong. # # The trouble is, aclocal is a bit thick. It'll see the old AC_DEFUN # in /usr/share/aclocal/libtool.m4 and remember it, then when it sees us # using a macro with the same name in our local m4/libtool.m4 it'll # pull the old libtool.m4 in (it doesn't see our shiny new m4_define # and doesn't know about Autoconf macros at all.) # # So we provide this file, which has a silly filename so it's always # included after everything else. This provides aclocal with the # AC_DEFUNs it wants, but when m4 processes it, it doesn't do anything # because those macros already exist, or will be overwritten later. # We use AC_DEFUN over AU_DEFUN for compatibility with aclocal-1.6. # # Anytime we withdraw an AC_DEFUN or AU_DEFUN, remember to add it here. # Yes, that means every name once taken will need to remain here until # we give up compatibility with versions before 1.7, at which point # we need to keep only those names which we still refer to. # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOBSOLETE_VERSION], [m4_if([1])]) m4_ifndef([AC_LIBTOOL_LINKER_OPTION], [AC_DEFUN([AC_LIBTOOL_LINKER_OPTION])]) m4_ifndef([AC_PROG_EGREP], [AC_DEFUN([AC_PROG_EGREP])]) m4_ifndef([_LT_AC_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_AC_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_AC_SHELL_INIT], [AC_DEFUN([_LT_AC_SHELL_INIT])]) m4_ifndef([_LT_AC_SYS_LIBPATH_AIX], [AC_DEFUN([_LT_AC_SYS_LIBPATH_AIX])]) m4_ifndef([_LT_PROG_LTMAIN], [AC_DEFUN([_LT_PROG_LTMAIN])]) m4_ifndef([_LT_AC_TAGVAR], [AC_DEFUN([_LT_AC_TAGVAR])]) m4_ifndef([AC_LTDL_ENABLE_INSTALL], [AC_DEFUN([AC_LTDL_ENABLE_INSTALL])]) m4_ifndef([AC_LTDL_PREOPEN], [AC_DEFUN([AC_LTDL_PREOPEN])]) m4_ifndef([_LT_AC_SYS_COMPILER], [AC_DEFUN([_LT_AC_SYS_COMPILER])]) m4_ifndef([_LT_AC_LOCK], [AC_DEFUN([_LT_AC_LOCK])]) m4_ifndef([AC_LIBTOOL_SYS_OLD_ARCHIVE], [AC_DEFUN([AC_LIBTOOL_SYS_OLD_ARCHIVE])]) m4_ifndef([_LT_AC_TRY_DLOPEN_SELF], [AC_DEFUN([_LT_AC_TRY_DLOPEN_SELF])]) m4_ifndef([AC_LIBTOOL_PROG_CC_C_O], [AC_DEFUN([AC_LIBTOOL_PROG_CC_C_O])]) m4_ifndef([AC_LIBTOOL_SYS_HARD_LINK_LOCKS], [AC_DEFUN([AC_LIBTOOL_SYS_HARD_LINK_LOCKS])]) m4_ifndef([AC_LIBTOOL_OBJDIR], [AC_DEFUN([AC_LIBTOOL_OBJDIR])]) m4_ifndef([AC_LTDL_OBJDIR], [AC_DEFUN([AC_LTDL_OBJDIR])]) m4_ifndef([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH], [AC_DEFUN([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH])]) m4_ifndef([AC_LIBTOOL_SYS_LIB_STRIP], [AC_DEFUN([AC_LIBTOOL_SYS_LIB_STRIP])]) m4_ifndef([AC_PATH_MAGIC], [AC_DEFUN([AC_PATH_MAGIC])]) m4_ifndef([AC_PROG_LD_GNU], [AC_DEFUN([AC_PROG_LD_GNU])]) m4_ifndef([AC_PROG_LD_RELOAD_FLAG], [AC_DEFUN([AC_PROG_LD_RELOAD_FLAG])]) m4_ifndef([AC_DEPLIBS_CHECK_METHOD], [AC_DEFUN([AC_DEPLIBS_CHECK_METHOD])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_NO_RTTI], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_NO_RTTI])]) m4_ifndef([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE], [AC_DEFUN([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_PIC], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_PIC])]) m4_ifndef([AC_LIBTOOL_PROG_LD_SHLIBS], [AC_DEFUN([AC_LIBTOOL_PROG_LD_SHLIBS])]) m4_ifndef([AC_LIBTOOL_POSTDEP_PREDEP], [AC_DEFUN([AC_LIBTOOL_POSTDEP_PREDEP])]) m4_ifndef([LT_AC_PROG_EGREP], [AC_DEFUN([LT_AC_PROG_EGREP])]) m4_ifndef([LT_AC_PROG_SED], [AC_DEFUN([LT_AC_PROG_SED])]) m4_ifndef([_LT_CC_BASENAME], [AC_DEFUN([_LT_CC_BASENAME])]) m4_ifndef([_LT_COMPILER_BOILERPLATE], [AC_DEFUN([_LT_COMPILER_BOILERPLATE])]) m4_ifndef([_LT_LINKER_BOILERPLATE], [AC_DEFUN([_LT_LINKER_BOILERPLATE])]) m4_ifndef([_AC_PROG_LIBTOOL], [AC_DEFUN([_AC_PROG_LIBTOOL])]) m4_ifndef([AC_LIBTOOL_SETUP], [AC_DEFUN([AC_LIBTOOL_SETUP])]) m4_ifndef([_LT_AC_CHECK_DLFCN], [AC_DEFUN([_LT_AC_CHECK_DLFCN])]) m4_ifndef([AC_LIBTOOL_SYS_DYNAMIC_LINKER], [AC_DEFUN([AC_LIBTOOL_SYS_DYNAMIC_LINKER])]) m4_ifndef([_LT_AC_TAGCONFIG], [AC_DEFUN([_LT_AC_TAGCONFIG])]) m4_ifndef([AC_DISABLE_FAST_INSTALL], [AC_DEFUN([AC_DISABLE_FAST_INSTALL])]) m4_ifndef([_LT_AC_LANG_CXX], [AC_DEFUN([_LT_AC_LANG_CXX])]) m4_ifndef([_LT_AC_LANG_F77], [AC_DEFUN([_LT_AC_LANG_F77])]) m4_ifndef([_LT_AC_LANG_GCJ], [AC_DEFUN([_LT_AC_LANG_GCJ])]) m4_ifndef([AC_LIBTOOL_LANG_C_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_C_CONFIG])]) m4_ifndef([_LT_AC_LANG_C_CONFIG], [AC_DEFUN([_LT_AC_LANG_C_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_CXX_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_CXX_CONFIG])]) m4_ifndef([_LT_AC_LANG_CXX_CONFIG], [AC_DEFUN([_LT_AC_LANG_CXX_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_F77_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_F77_CONFIG])]) m4_ifndef([_LT_AC_LANG_F77_CONFIG], [AC_DEFUN([_LT_AC_LANG_F77_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_GCJ_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_GCJ_CONFIG])]) m4_ifndef([_LT_AC_LANG_GCJ_CONFIG], [AC_DEFUN([_LT_AC_LANG_GCJ_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_RC_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_RC_CONFIG])]) m4_ifndef([_LT_AC_LANG_RC_CONFIG], [AC_DEFUN([_LT_AC_LANG_RC_CONFIG])]) m4_ifndef([AC_LIBTOOL_CONFIG], [AC_DEFUN([AC_LIBTOOL_CONFIG])]) m4_ifndef([_LT_AC_FILE_LTDLL_C], [AC_DEFUN([_LT_AC_FILE_LTDLL_C])]) m4_ifndef([_LT_REQUIRED_DARWIN_CHECKS], [AC_DEFUN([_LT_REQUIRED_DARWIN_CHECKS])]) m4_ifndef([_LT_AC_PROG_CXXCPP], [AC_DEFUN([_LT_AC_PROG_CXXCPP])]) m4_ifndef([_LT_PREPARE_SED_QUOTE_VARS], [AC_DEFUN([_LT_PREPARE_SED_QUOTE_VARS])]) m4_ifndef([_LT_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_PROG_F77], [AC_DEFUN([_LT_PROG_F77])]) m4_ifndef([_LT_PROG_FC], [AC_DEFUN([_LT_PROG_FC])]) m4_ifndef([_LT_PROG_CXX], [AC_DEFUN([_LT_PROG_CXX])]) # Copyright (C) 2002-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_AUTOMAKE_VERSION(VERSION) # ---------------------------- # Automake X.Y traces this macro to ensure aclocal.m4 has been # generated from the m4 files accompanying Automake X.Y. # (This private macro should not be called outside this file.) AC_DEFUN([AM_AUTOMAKE_VERSION], [am__api_version='1.13' dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to dnl require some minimum version. Point them to the right macro. m4_if([$1], [1.13.2], [], [AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl ]) # _AM_AUTOCONF_VERSION(VERSION) # ----------------------------- # aclocal traces this macro to find the Autoconf version. # This is a private macro too. Using m4_define simplifies # the logic in aclocal, which can simply ignore this definition. m4_define([_AM_AUTOCONF_VERSION], []) # AM_SET_CURRENT_AUTOMAKE_VERSION # ------------------------------- # Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced. # This function is AC_REQUIREd by AM_INIT_AUTOMAKE. AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION], [AM_AUTOMAKE_VERSION([1.13.2])dnl m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl _AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))]) # AM_AUX_DIR_EXPAND -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # For projects using AC_CONFIG_AUX_DIR([foo]), Autoconf sets # $ac_aux_dir to '$srcdir/foo'. In other projects, it is set to # '$srcdir', '$srcdir/..', or '$srcdir/../..'. # # Of course, Automake must honor this variable whenever it calls a # tool from the auxiliary directory. The problem is that $srcdir (and # therefore $ac_aux_dir as well) can be either absolute or relative, # depending on how configure is run. This is pretty annoying, since # it makes $ac_aux_dir quite unusable in subdirectories: in the top # source directory, any form will work fine, but in subdirectories a # relative path needs to be adjusted first. # # $ac_aux_dir/missing # fails when called from a subdirectory if $ac_aux_dir is relative # $top_srcdir/$ac_aux_dir/missing # fails if $ac_aux_dir is absolute, # fails when called from a subdirectory in a VPATH build with # a relative $ac_aux_dir # # The reason of the latter failure is that $top_srcdir and $ac_aux_dir # are both prefixed by $srcdir. In an in-source build this is usually # harmless because $srcdir is '.', but things will broke when you # start a VPATH build or use an absolute $srcdir. # # So we could use something similar to $top_srcdir/$ac_aux_dir/missing, # iff we strip the leading $srcdir from $ac_aux_dir. That would be: # am_aux_dir='\$(top_srcdir)/'`expr "$ac_aux_dir" : "$srcdir//*\(.*\)"` # and then we would define $MISSING as # MISSING="\${SHELL} $am_aux_dir/missing" # This will work as long as MISSING is not called from configure, because # unfortunately $(top_srcdir) has no meaning in configure. # However there are other variables, like CC, which are often used in # configure, and could therefore not use this "fixed" $ac_aux_dir. # # Another solution, used here, is to always expand $ac_aux_dir to an # absolute PATH. The drawback is that using absolute paths prevent a # configured tree to be moved without reconfiguration. AC_DEFUN([AM_AUX_DIR_EXPAND], [dnl Rely on autoconf to set up CDPATH properly. AC_PREREQ([2.50])dnl # expand $ac_aux_dir to an absolute path am_aux_dir=`cd $ac_aux_dir && pwd` ]) # AM_CONDITIONAL -*- Autoconf -*- # Copyright (C) 1997-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_CONDITIONAL(NAME, SHELL-CONDITION) # ------------------------------------- # Define a conditional. AC_DEFUN([AM_CONDITIONAL], [AC_PREREQ([2.52])dnl m4_if([$1], [TRUE], [AC_FATAL([$0: invalid condition: $1])], [$1], [FALSE], [AC_FATAL([$0: invalid condition: $1])])dnl AC_SUBST([$1_TRUE])dnl AC_SUBST([$1_FALSE])dnl _AM_SUBST_NOTMAKE([$1_TRUE])dnl _AM_SUBST_NOTMAKE([$1_FALSE])dnl m4_define([_AM_COND_VALUE_$1], [$2])dnl if $2; then $1_TRUE= $1_FALSE='#' else $1_TRUE='#' $1_FALSE= fi AC_CONFIG_COMMANDS_PRE( [if test -z "${$1_TRUE}" && test -z "${$1_FALSE}"; then AC_MSG_ERROR([[conditional "$1" was never defined. Usually this means the macro was only invoked conditionally.]]) fi])]) # Copyright (C) 1999-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # There are a few dirty hacks below to avoid letting 'AC_PROG_CC' be # written in clear, in which case automake, when reading aclocal.m4, # will think it sees a *use*, and therefore will trigger all it's # C support machinery. Also note that it means that autoscan, seeing # CC etc. in the Makefile, will ask for an AC_PROG_CC use... # _AM_DEPENDENCIES(NAME) # ---------------------- # See how the compiler implements dependency checking. # NAME is "CC", "CXX", "OBJC", "OBJCXX", "UPC", or "GJC". # We try a few techniques and use that to set a single cache variable. # # We don't AC_REQUIRE the corresponding AC_PROG_CC since the latter was # modified to invoke _AM_DEPENDENCIES(CC); we would have a circular # dependency, and given that the user is not expected to run this macro, # just rely on AC_PROG_CC. AC_DEFUN([_AM_DEPENDENCIES], [AC_REQUIRE([AM_SET_DEPDIR])dnl AC_REQUIRE([AM_OUTPUT_DEPENDENCY_COMMANDS])dnl AC_REQUIRE([AM_MAKE_INCLUDE])dnl AC_REQUIRE([AM_DEP_TRACK])dnl m4_if([$1], [CC], [depcc="$CC" am_compiler_list=], [$1], [CXX], [depcc="$CXX" am_compiler_list=], [$1], [OBJC], [depcc="$OBJC" am_compiler_list='gcc3 gcc'], [$1], [OBJCXX], [depcc="$OBJCXX" am_compiler_list='gcc3 gcc'], [$1], [UPC], [depcc="$UPC" am_compiler_list=], [$1], [GCJ], [depcc="$GCJ" am_compiler_list='gcc3 gcc'], [depcc="$$1" am_compiler_list=]) AC_CACHE_CHECK([dependency style of $depcc], [am_cv_$1_dependencies_compiler_type], [if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_$1_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n ['s/^#*\([a-zA-Z0-9]*\))$/\1/p'] < ./depcomp` fi am__universal=false m4_case([$1], [CC], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac], [CXX], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac]) for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_$1_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_$1_dependencies_compiler_type=none fi ]) AC_SUBST([$1DEPMODE], [depmode=$am_cv_$1_dependencies_compiler_type]) AM_CONDITIONAL([am__fastdep$1], [ test "x$enable_dependency_tracking" != xno \ && test "$am_cv_$1_dependencies_compiler_type" = gcc3]) ]) # AM_SET_DEPDIR # ------------- # Choose a directory name for dependency files. # This macro is AC_REQUIREd in _AM_DEPENDENCIES. AC_DEFUN([AM_SET_DEPDIR], [AC_REQUIRE([AM_SET_LEADING_DOT])dnl AC_SUBST([DEPDIR], ["${am__leading_dot}deps"])dnl ]) # AM_DEP_TRACK # ------------ AC_DEFUN([AM_DEP_TRACK], [AC_ARG_ENABLE([dependency-tracking], [dnl AS_HELP_STRING( [--enable-dependency-tracking], [do not reject slow dependency extractors]) AS_HELP_STRING( [--disable-dependency-tracking], [speeds up one-time build])]) if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi AM_CONDITIONAL([AMDEP], [test "x$enable_dependency_tracking" != xno]) AC_SUBST([AMDEPBACKSLASH])dnl _AM_SUBST_NOTMAKE([AMDEPBACKSLASH])dnl AC_SUBST([am__nodep])dnl _AM_SUBST_NOTMAKE([am__nodep])dnl ]) # Generate code to set up dependency tracking. -*- Autoconf -*- # Copyright (C) 1999-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_OUTPUT_DEPENDENCY_COMMANDS # ------------------------------ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS], [{ # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`AS_DIRNAME("$mf")` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`AS_DIRNAME(["$file"])` AS_MKDIR_P([$dirpart/$fdir]) # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ])# _AM_OUTPUT_DEPENDENCY_COMMANDS # AM_OUTPUT_DEPENDENCY_COMMANDS # ----------------------------- # This macro should only be invoked once -- use via AC_REQUIRE. # # This code is only required when automatic dependency tracking # is enabled. FIXME. This creates each '.P' file that we will # need in order to bootstrap the dependency handling code. AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS], [AC_CONFIG_COMMANDS([depfiles], [test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS], [AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"]) ]) # Do all the work for Automake. -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This macro actually does too much. Some checks are only needed if # your package does certain things. But this isn't really a big deal. # AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE]) # AM_INIT_AUTOMAKE([OPTIONS]) # ----------------------------------------------- # The call with PACKAGE and VERSION arguments is the old style # call (pre autoconf-2.50), which is being phased out. PACKAGE # and VERSION should now be passed to AC_INIT and removed from # the call to AM_INIT_AUTOMAKE. # We support both call styles for the transition. After # the next Automake release, Autoconf can make the AC_INIT # arguments mandatory, and then we can depend on a new Autoconf # release and drop the old call support. AC_DEFUN([AM_INIT_AUTOMAKE], [AC_PREREQ([2.65])dnl dnl Autoconf wants to disallow AM_ names. We explicitly allow dnl the ones we care about. m4_pattern_allow([^AM_[A-Z]+FLAGS$])dnl AC_REQUIRE([AM_SET_CURRENT_AUTOMAKE_VERSION])dnl AC_REQUIRE([AC_PROG_INSTALL])dnl if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." AC_SUBST([am__isrc], [' -I$(srcdir)'])_AM_SUBST_NOTMAKE([am__isrc])dnl # test to see if srcdir already configured if test -f $srcdir/config.status; then AC_MSG_ERROR([source directory already configured; run "make distclean" there first]) fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi AC_SUBST([CYGPATH_W]) # Define the identity of the package. dnl Distinguish between old-style and new-style calls. m4_ifval([$2], [AC_DIAGNOSE([obsolete], [$0: two- and three-arguments forms are deprecated.]) m4_ifval([$3], [_AM_SET_OPTION([no-define])])dnl AC_SUBST([PACKAGE], [$1])dnl AC_SUBST([VERSION], [$2])], [_AM_SET_OPTIONS([$1])dnl dnl Diagnose old-style AC_INIT with new-style AM_AUTOMAKE_INIT. m4_if( m4_ifdef([AC_PACKAGE_NAME], [ok]):m4_ifdef([AC_PACKAGE_VERSION], [ok]), [ok:ok],, [m4_fatal([AC_INIT should be called with package and version arguments])])dnl AC_SUBST([PACKAGE], ['AC_PACKAGE_TARNAME'])dnl AC_SUBST([VERSION], ['AC_PACKAGE_VERSION'])])dnl _AM_IF_OPTION([no-define],, [AC_DEFINE_UNQUOTED([PACKAGE], ["$PACKAGE"], [Name of package]) AC_DEFINE_UNQUOTED([VERSION], ["$VERSION"], [Version number of package])])dnl # Some tools Automake needs. AC_REQUIRE([AM_SANITY_CHECK])dnl AC_REQUIRE([AC_ARG_PROGRAM])dnl AM_MISSING_PROG([ACLOCAL], [aclocal-${am__api_version}]) AM_MISSING_PROG([AUTOCONF], [autoconf]) AM_MISSING_PROG([AUTOMAKE], [automake-${am__api_version}]) AM_MISSING_PROG([AUTOHEADER], [autoheader]) AM_MISSING_PROG([MAKEINFO], [makeinfo]) AC_REQUIRE([AM_PROG_INSTALL_SH])dnl AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl AC_REQUIRE([AC_PROG_MKDIR_P])dnl # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # AC_SUBST([mkdir_p], ['$(MKDIR_P)']) # We need awk for the "check" target. The system "awk" is bad on # some platforms. AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([AC_PROG_MAKE_SET])dnl AC_REQUIRE([AM_SET_LEADING_DOT])dnl _AM_IF_OPTION([tar-ustar], [_AM_PROG_TAR([ustar])], [_AM_IF_OPTION([tar-pax], [_AM_PROG_TAR([pax])], [_AM_PROG_TAR([v7])])]) _AM_IF_OPTION([no-dependencies],, [AC_PROVIDE_IFELSE([AC_PROG_CC], [_AM_DEPENDENCIES([CC])], [m4_define([AC_PROG_CC], m4_defn([AC_PROG_CC])[_AM_DEPENDENCIES([CC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_CXX], [_AM_DEPENDENCIES([CXX])], [m4_define([AC_PROG_CXX], m4_defn([AC_PROG_CXX])[_AM_DEPENDENCIES([CXX])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJC], [_AM_DEPENDENCIES([OBJC])], [m4_define([AC_PROG_OBJC], m4_defn([AC_PROG_OBJC])[_AM_DEPENDENCIES([OBJC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJCXX], [_AM_DEPENDENCIES([OBJCXX])], [m4_define([AC_PROG_OBJCXX], m4_defn([AC_PROG_OBJCXX])[_AM_DEPENDENCIES([OBJCXX])])])dnl ]) AC_REQUIRE([AM_SILENT_RULES])dnl dnl The testsuite driver may need to know about EXEEXT, so add the dnl 'am__EXEEXT' conditional if _AM_COMPILER_EXEEXT was seen. This dnl macro is hooked onto _AC_COMPILER_EXEEXT early, see below. AC_CONFIG_COMMANDS_PRE(dnl [m4_provide_if([_AM_COMPILER_EXEEXT], [AM_CONDITIONAL([am__EXEEXT], [test -n "$EXEEXT"])])])dnl ]) dnl Hook into '_AC_COMPILER_EXEEXT' early to learn its expansion. Do not dnl add the conditional right here, as _AC_COMPILER_EXEEXT may be further dnl mangled by Autoconf and run in a shell conditional statement. m4_define([_AC_COMPILER_EXEEXT], m4_defn([_AC_COMPILER_EXEEXT])[m4_provide([_AM_COMPILER_EXEEXT])]) # When config.status generates a header, we must update the stamp-h file. # This file resides in the same directory as the config header # that is generated. The stamp files are numbered to have different names. # Autoconf calls _AC_AM_CONFIG_HEADER_HOOK (when defined) in the # loop where config.status creates the headers, so we can generate # our stamp files there. AC_DEFUN([_AC_AM_CONFIG_HEADER_HOOK], [# Compute $1's index in $config_headers. _am_arg=$1 _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count]) # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_SH # ------------------ # Define $install_sh. AC_DEFUN([AM_PROG_INSTALL_SH], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl if test x"${install_sh}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi AC_SUBST([install_sh])]) # Copyright (C) 2003-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # Check whether the underlying file-system supports filenames # with a leading dot. For instance MS-DOS doesn't. AC_DEFUN([AM_SET_LEADING_DOT], [rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null AC_SUBST([am__leading_dot])]) # Add --enable-maintainer-mode option to configure. -*- Autoconf -*- # From Jim Meyering # Copyright (C) 1996-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MAINTAINER_MODE([DEFAULT-MODE]) # ---------------------------------- # Control maintainer-specific portions of Makefiles. # Default is to disable them, unless 'enable' is passed literally. # For symmetry, 'disable' may be passed as well. Anyway, the user # can override the default with the --enable/--disable switch. AC_DEFUN([AM_MAINTAINER_MODE], [m4_case(m4_default([$1], [disable]), [enable], [m4_define([am_maintainer_other], [disable])], [disable], [m4_define([am_maintainer_other], [enable])], [m4_define([am_maintainer_other], [enable]) m4_warn([syntax], [unexpected argument to AM@&t@_MAINTAINER_MODE: $1])]) AC_MSG_CHECKING([whether to enable maintainer-specific portions of Makefiles]) dnl maintainer-mode's default is 'disable' unless 'enable' is passed AC_ARG_ENABLE([maintainer-mode], [AS_HELP_STRING([--]am_maintainer_other[-maintainer-mode], am_maintainer_other[ make rules and dependencies not useful (and sometimes confusing) to the casual installer])], [USE_MAINTAINER_MODE=$enableval], [USE_MAINTAINER_MODE=]m4_if(am_maintainer_other, [enable], [no], [yes])) AC_MSG_RESULT([$USE_MAINTAINER_MODE]) AM_CONDITIONAL([MAINTAINER_MODE], [test $USE_MAINTAINER_MODE = yes]) MAINT=$MAINTAINER_MODE_TRUE AC_SUBST([MAINT])dnl ] ) # Check to see how 'make' treats includes. -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MAKE_INCLUDE() # ----------------- # Check to see how make treats includes. AC_DEFUN([AM_MAKE_INCLUDE], [am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. AC_MSG_CHECKING([for style of include used by $am_make]) am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi AC_SUBST([am__include]) AC_SUBST([am__quote]) AC_MSG_RESULT([$_am_result]) rm -f confinc confmf ]) # Fake the existence of programs that GNU maintainers use. -*- Autoconf -*- # Copyright (C) 1997-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MISSING_PROG(NAME, PROGRAM) # ------------------------------ AC_DEFUN([AM_MISSING_PROG], [AC_REQUIRE([AM_MISSING_HAS_RUN]) $1=${$1-"${am_missing_run}$2"} AC_SUBST($1)]) # AM_MISSING_HAS_RUN # ------------------ # Define MISSING if not defined so far and test if it is modern enough. # If it is, set am_missing_run to use it, otherwise, to nothing. AC_DEFUN([AM_MISSING_HAS_RUN], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([missing])dnl if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= AC_MSG_WARN(['missing' script is too old or missing]) fi ]) # Helper functions for option handling. -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_MANGLE_OPTION(NAME) # ----------------------- AC_DEFUN([_AM_MANGLE_OPTION], [[_AM_OPTION_]m4_bpatsubst($1, [[^a-zA-Z0-9_]], [_])]) # _AM_SET_OPTION(NAME) # -------------------- # Set option NAME. Presently that only means defining a flag for this option. AC_DEFUN([_AM_SET_OPTION], [m4_define(_AM_MANGLE_OPTION([$1]), [1])]) # _AM_SET_OPTIONS(OPTIONS) # ------------------------ # OPTIONS is a space-separated list of Automake options. AC_DEFUN([_AM_SET_OPTIONS], [m4_foreach_w([_AM_Option], [$1], [_AM_SET_OPTION(_AM_Option)])]) # _AM_IF_OPTION(OPTION, IF-SET, [IF-NOT-SET]) # ------------------------------------------- # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. AC_DEFUN([_AM_IF_OPTION], [m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])]) # Check to make sure that the build environment is sane. -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SANITY_CHECK # --------------- AC_DEFUN([AM_SANITY_CHECK], [AC_MSG_CHECKING([whether build environment is sane]) # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[[\\\"\#\$\&\'\`$am_lf]]*) AC_MSG_ERROR([unsafe absolute working directory name]);; esac case $srcdir in *[[\\\"\#\$\&\'\`$am_lf\ \ ]]*) AC_MSG_ERROR([unsafe srcdir value: '$srcdir']);; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$[*]" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$[*]" != "X $srcdir/configure conftest.file" \ && test "$[*]" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". AC_MSG_ERROR([ls -t appears to fail. Make sure there is not a broken alias in your environment]) fi if test "$[2]" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$[2]" = conftest.file ) then # Ok. : else AC_MSG_ERROR([newly created file is older than distributed files! Check your system clock]) fi AC_MSG_RESULT([yes]) # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi AC_CONFIG_COMMANDS_PRE( [AC_MSG_CHECKING([that generated files are newer than configure]) if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi AC_MSG_RESULT([done])]) rm -f conftest.file ]) # Copyright (C) 2009-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SILENT_RULES([DEFAULT]) # -------------------------- # Enable less verbose build rules; with the default set to DEFAULT # ("yes" being less verbose, "no" or empty being verbose). AC_DEFUN([AM_SILENT_RULES], [AC_ARG_ENABLE([silent-rules], [dnl AS_HELP_STRING( [--enable-silent-rules], [less verbose build output (undo: "make V=1")]) AS_HELP_STRING( [--disable-silent-rules], [verbose build output (undo: "make V=0")])dnl ]) case $enable_silent_rules in @%:@ ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=m4_if([$1], [yes], [0], [1]);; esac dnl dnl A few 'make' implementations (e.g., NonStop OS and NextStep) dnl do not support nested variable expansions. dnl See automake bug#9928 and bug#10237. am_make=${MAKE-make} AC_CACHE_CHECK([whether $am_make supports nested variables], [am_cv_make_support_nested_variables], [if AS_ECHO([['TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit']]) | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi]) if test $am_cv_make_support_nested_variables = yes; then dnl Using '$V' instead of '$(V)' breaks IRIX make. AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AC_SUBST([AM_V])dnl AM_SUBST_NOTMAKE([AM_V])dnl AC_SUBST([AM_DEFAULT_V])dnl AM_SUBST_NOTMAKE([AM_DEFAULT_V])dnl AC_SUBST([AM_DEFAULT_VERBOSITY])dnl AM_BACKSLASH='\' AC_SUBST([AM_BACKSLASH])dnl _AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl ]) # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_STRIP # --------------------- # One issue with vendor 'install' (even GNU) is that you can't # specify the program used to strip binaries. This is especially # annoying in cross-compiling environments, where the build's strip # is unlikely to handle the host's binaries. # Fortunately install-sh will honor a STRIPPROG variable, so we # always use install-sh in "make install-strip", and initialize # STRIPPROG with the value of the STRIP variable (set by the user). AC_DEFUN([AM_PROG_INSTALL_STRIP], [AC_REQUIRE([AM_PROG_INSTALL_SH])dnl # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. dnl Don't test for $cross_compiling = yes, because it might be 'maybe'. if test "$cross_compiling" != no; then AC_CHECK_TOOL([STRIP], [strip], :) fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" AC_SUBST([INSTALL_STRIP_PROGRAM])]) # Copyright (C) 2006-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_SUBST_NOTMAKE(VARIABLE) # --------------------------- # Prevent Automake from outputting VARIABLE = @VARIABLE@ in Makefile.in. # This macro is traced by Automake. AC_DEFUN([_AM_SUBST_NOTMAKE]) # AM_SUBST_NOTMAKE(VARIABLE) # -------------------------- # Public sister of _AM_SUBST_NOTMAKE. AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)]) # Check how to create a tarball. -*- Autoconf -*- # Copyright (C) 2004-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_PROG_TAR(FORMAT) # -------------------- # Check how to create a tarball in format FORMAT. # FORMAT should be one of 'v7', 'ustar', or 'pax'. # # Substitute a variable $(am__tar) that is a command # writing to stdout a FORMAT-tarball containing the directory # $tardir. # tardir=directory && $(am__tar) > result.tar # # Substitute a variable $(am__untar) that extract such # a tarball read from stdin. # $(am__untar) < result.tar # AC_DEFUN([_AM_PROG_TAR], [# Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AC_SUBST([AMTAR], ['$${TAR-tar}']) # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar m4_if([$1], [ustar], [plaintar]) pax cpio none' m4_if([$1], [v7], [am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'], [m4_case([$1], [ustar], [# The POSIX 1988 'ustar' format is defined with fixed-size fields. # There is notably a 21 bits limit for the UID and the GID. In fact, # the 'pax' utility can hang on bigger UID/GID (see automake bug#8343 # and bug#13588). am_max_uid=2097151 # 2^21 - 1 am_max_gid=$am_max_uid # The $UID and $GID variables are not portable, so we need to resort # to the POSIX-mandated id(1) utility. Errors in the 'id' calls # below are definitely unexpected, so allow the users to see them # (that is, avoid stderr redirection). am_uid=`id -u || echo unknown` am_gid=`id -g || echo unknown` AC_MSG_CHECKING([whether UID '$am_uid' is supported by ustar format]) if test $am_uid -le $am_max_uid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi AC_MSG_CHECKING([whether GID '$am_gid' is supported by ustar format]) if test $am_gid -le $am_max_gid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi], [pax], [], [m4_fatal([Unknown tar format])]) AC_MSG_CHECKING([how to create a $1 tar archive]) # Go ahead even if we have the value already cached. We do so because we # need to set the values for the 'am__tar' and 'am__untar' variables. _am_tools=${am_cv_prog_tar_$1-$_am_tools} for _am_tool in $_am_tools; do case $_am_tool in gnutar) for _am_tar in tar gnutar gtar; do AM_RUN_LOG([$_am_tar --version]) && break done am__tar="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$$tardir"' am__tar_="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$tardir"' am__untar="$_am_tar -xf -" ;; plaintar) # Must skip GNU tar: if it does not support --format= it doesn't create # ustar tarball either. (tar --version) >/dev/null 2>&1 && continue am__tar='tar chf - "$$tardir"' am__tar_='tar chf - "$tardir"' am__untar='tar xf -' ;; pax) am__tar='pax -L -x $1 -w "$$tardir"' am__tar_='pax -L -x $1 -w "$tardir"' am__untar='pax -r' ;; cpio) am__tar='find "$$tardir" -print | cpio -o -H $1 -L' am__tar_='find "$tardir" -print | cpio -o -H $1 -L' am__untar='cpio -i -H $1 -d' ;; none) am__tar=false am__tar_=false am__untar=false ;; esac # If the value was cached, stop now. We just wanted to have am__tar # and am__untar set. test -n "${am_cv_prog_tar_$1}" && break # tar/untar a dummy directory, and stop if the command works. rm -rf conftest.dir mkdir conftest.dir echo GrepMe > conftest.dir/file AM_RUN_LOG([tardir=conftest.dir && eval $am__tar_ >conftest.tar]) rm -rf conftest.dir if test -s conftest.tar; then AM_RUN_LOG([$am__untar /dev/null 2>&1 && break fi done rm -rf conftest.dir AC_CACHE_VAL([am_cv_prog_tar_$1], [am_cv_prog_tar_$1=$_am_tool]) AC_MSG_RESULT([$am_cv_prog_tar_$1])]) AC_SUBST([am__tar]) AC_SUBST([am__untar]) ]) # _AM_PROG_TAR gsl-1.16/gsl-randist.c0000664000252300025230000002330712171574312011552 00000000000000/* randist/gsl-randist.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include void error (const char * s); int main (int argc, char *argv[]) { size_t i,j; size_t n = 0; double mu = 0, nu = 0, nu1 = 0, nu2 = 0, sigma = 0, a = 0, b = 0, c = 0; double zeta = 0, sigmax = 0, sigmay = 0, rho = 0; double p = 0; double x = 0, y =0, z=0 ; unsigned int N = 0, t = 0, n1 = 0, n2 = 0 ; unsigned long int seed = 0 ; const char * name ; gsl_rng * r ; if (argc < 4) { printf ( "Usage: gsl-randist seed n DIST param1 param2 ...\n" "Generates n samples from the distribution DIST with parameters param1,\n" "param2, etc. Valid distributions are,\n\n"); printf( " beta\n" " binomial\n" " bivariate-gaussian\n" " cauchy\n" " chisq\n" " dir-2d\n" " dir-3d\n" " dir-nd\n" " erlang\n" " exponential\n" " exppow\n" " fdist\n" " flat\n" " gamma\n" " gaussian-tail\n" " gaussian\n" " geometric\n" " gumbel1\n" " gumbel2\n" " hypergeometric\n" " laplace\n" " landau\n" " levy\n" " levy-skew\n" " logarithmic\n" " logistic\n" " lognormal\n" " negative-binomial\n" " pareto\n" " pascal\n" " poisson\n" " rayleigh-tail\n" " rayleigh\n" " tdist\n" " ugaussian-tail\n" " ugaussian\n" " weibull\n") ; exit (0); } argv++ ; seed = atol (argv[0]); argc-- ; argv++ ; n = atol (argv[0]); argc-- ; argv++ ; name = argv[0] ; argc-- ; argc-- ; gsl_rng_env_setup() ; if (gsl_rng_default_seed != 0) { fprintf(stderr, "overriding GSL_RNG_SEED with command line value, seed = %ld\n", seed) ; } gsl_rng_default_seed = seed ; r = gsl_rng_alloc(gsl_rng_default) ; #define NAME(x) !strcmp(name,(x)) #define OUTPUT(x) for (i = 0; i < n; i++) { printf("%g\n", (x)) ; } #define OUTPUT1(a,x) for(i = 0; i < n; i++) { a ; printf("%g\n", x) ; } #define OUTPUT2(a,x,y) for(i = 0; i < n; i++) { a ; printf("%g %g\n", x, y) ; } #define OUTPUT3(a,x,y,z) for(i = 0; i < n; i++) { a ; printf("%g %g %g\n", x, y, z) ; } #define INT_OUTPUT(x) for (i = 0; i < n; i++) { printf("%d\n", (x)) ; } #define ARGS(x,y) if (argc != x) error(y) ; #define DBL_ARG(x) if (argc) { x=atof((++argv)[0]);argc--;} else {error( #x);}; #define INT_ARG(x) if (argc) { x=atoi((++argv)[0]);argc--;} else {error( #x);}; if (NAME("bernoulli")) { ARGS(1, "p = probability of success"); DBL_ARG(p) INT_OUTPUT(gsl_ran_bernoulli (r, p)); } else if (NAME("beta")) { ARGS(2, "a,b = shape parameters"); DBL_ARG(a) DBL_ARG(b) OUTPUT(gsl_ran_beta (r, a, b)); } else if (NAME("binomial")) { ARGS(2, "p = probability, N = number of trials"); DBL_ARG(p) INT_ARG(N) INT_OUTPUT(gsl_ran_binomial (r, p, N)); } else if (NAME("cauchy")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) OUTPUT(gsl_ran_cauchy (r, a)); } else if (NAME("chisq")) { ARGS(1, "nu = degrees of freedom"); DBL_ARG(nu) OUTPUT(gsl_ran_chisq (r, nu)); } else if (NAME("erlang")) { ARGS(2, "a = scale parameter, b = order"); DBL_ARG(a) DBL_ARG(b) OUTPUT(gsl_ran_erlang (r, a, b)); } else if (NAME("exponential")) { ARGS(1, "mu = mean value"); DBL_ARG(mu) ; OUTPUT(gsl_ran_exponential (r, mu)); } else if (NAME("exppow")) { ARGS(2, "a = scale parameter, b = power (1=exponential, 2=gaussian)"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_exppow (r, a, b)); } else if (NAME("fdist")) { ARGS(2, "nu1, nu2 = degrees of freedom parameters"); DBL_ARG(nu1) ; DBL_ARG(nu2) ; OUTPUT(gsl_ran_fdist (r, nu1, nu2)); } else if (NAME("flat")) { ARGS(2, "a = lower limit, b = upper limit"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_flat (r, a, b)); } else if (NAME("gamma")) { ARGS(2, "a = order, b = scale"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gamma (r, a, b)); } else if (NAME("gaussian")) { ARGS(1, "sigma = standard deviation"); DBL_ARG(sigma) ; OUTPUT(gsl_ran_gaussian (r, sigma)); } else if (NAME("gaussian-tail")) { ARGS(2, "a = lower limit, sigma = standard deviation"); DBL_ARG(a) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_gaussian_tail (r, a, sigma)); } else if (NAME("ugaussian")) { ARGS(0, "unit gaussian, no parameters required"); OUTPUT(gsl_ran_ugaussian (r)); } else if (NAME("ugaussian-tail")) { ARGS(1, "a = lower limit"); DBL_ARG(a) ; OUTPUT(gsl_ran_ugaussian_tail (r, a)); } else if (NAME("bivariate-gaussian")) { ARGS(3, "sigmax = x std.dev., sigmay = y std.dev., rho = correlation"); DBL_ARG(sigmax) ; DBL_ARG(sigmay) ; DBL_ARG(rho) ; OUTPUT2(gsl_ran_bivariate_gaussian (r, sigmax, sigmay, rho, &x, &y), x, y); } else if (NAME("dir-2d")) { OUTPUT2(gsl_ran_dir_2d (r, &x, &y), x, y); } else if (NAME("dir-3d")) { OUTPUT3(gsl_ran_dir_3d (r, &x, &y, &z), x, y, z); } else if (NAME("dir-nd")) { double *xarr; ARGS(1, "n1 = number of dimensions of hypersphere"); INT_ARG(n1) ; xarr = (double *)malloc(n1*sizeof(double)); for(i = 0; i < n; i++) { gsl_ran_dir_nd (r, n1, xarr) ; for (j = 0; j < n1; j++) { if (j) putchar(' '); printf("%g", xarr[j]) ; } putchar('\n'); } ; free(xarr); } else if (NAME("geometric")) { ARGS(1, "p = bernoulli trial probability of success"); DBL_ARG(p) ; INT_OUTPUT(gsl_ran_geometric (r, p)); } else if (NAME("gumbel1")) { ARGS(2, "a = order, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gumbel1 (r, a, b)); } else if (NAME("gumbel2")) { ARGS(2, "a = order, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_gumbel2 (r, a, b)); } else if (NAME("hypergeometric")) { ARGS(3, "n1 = tagged population, n2 = untagged population, t = number of trials"); INT_ARG(n1) ; INT_ARG(n2) ; INT_ARG(t) ; INT_OUTPUT(gsl_ran_hypergeometric (r, n1, n2, t)); } else if (NAME("laplace")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) ; OUTPUT(gsl_ran_laplace (r, a)); } else if (NAME("landau")) { ARGS(0, "no arguments required"); OUTPUT(gsl_ran_landau (r)); } else if (NAME("levy")) { ARGS(2, "c = scale, a = power (1=cauchy, 2=gaussian)"); DBL_ARG(c) ; DBL_ARG(a) ; OUTPUT(gsl_ran_levy (r, c, a)); } else if (NAME("levy-skew")) { ARGS(3, "c = scale, a = power (1=cauchy, 2=gaussian), b = skew"); DBL_ARG(c) ; DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_levy_skew (r, c, a, b)); } else if (NAME("logarithmic")) { ARGS(1, "p = probability"); DBL_ARG(p) ; INT_OUTPUT(gsl_ran_logarithmic (r, p)); } else if (NAME("logistic")) { ARGS(1, "a = scale parameter"); DBL_ARG(a) ; OUTPUT(gsl_ran_logistic (r, a)); } else if (NAME("lognormal")) { ARGS(2, "zeta = location parameter, sigma = scale parameter"); DBL_ARG(zeta) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_lognormal (r, zeta, sigma)); } else if (NAME("negative-binomial")) { ARGS(2, "p = probability, a = order"); DBL_ARG(p) ; DBL_ARG(a) ; INT_OUTPUT(gsl_ran_negative_binomial (r, p, a)); } else if (NAME("pareto")) { ARGS(2, "a = power, b = scale parameter"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_pareto (r, a, b)); } else if (NAME("pascal")) { ARGS(2, "p = probability, n = order (integer)"); DBL_ARG(p) ; INT_ARG(N) ; INT_OUTPUT(gsl_ran_pascal (r, p, N)); } else if (NAME("poisson")) { ARGS(1, "mu = scale parameter"); DBL_ARG(mu) ; INT_OUTPUT(gsl_ran_poisson (r, mu)); } else if (NAME("rayleigh")) { ARGS(1, "sigma = scale parameter"); DBL_ARG(sigma) ; OUTPUT(gsl_ran_rayleigh (r, sigma)); } else if (NAME("rayleigh-tail")) { ARGS(2, "a = lower limit, sigma = scale parameter"); DBL_ARG(a) ; DBL_ARG(sigma) ; OUTPUT(gsl_ran_rayleigh_tail (r, a, sigma)); } else if (NAME("tdist")) { ARGS(1, "nu = degrees of freedom"); DBL_ARG(nu) ; OUTPUT(gsl_ran_tdist (r, nu)); } else if (NAME("weibull")) { ARGS(2, "a = scale parameter, b = exponent"); DBL_ARG(a) ; DBL_ARG(b) ; OUTPUT(gsl_ran_weibull (r, a, b)); } else { fprintf(stderr,"Error: unrecognized distribution: %s\n", name) ; } return 0 ; } void error (const char * s) { fprintf(stderr, "Error: arguments should be %s\n",s) ; exit (EXIT_FAILURE) ; } gsl-1.16/gsl-config.in0000775000252300025230000000233312171574312011536 00000000000000#! /bin/sh prefix=@prefix@ exec_prefix=@exec_prefix@ includedir=@includedir@ usage() { cat < #include #include #include gsl_sum_levin_utrunc_workspace * gsl_sum_levin_utrunc_alloc (size_t n) { gsl_sum_levin_utrunc_workspace * w; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } w = (gsl_sum_levin_utrunc_workspace *) malloc(sizeof(gsl_sum_levin_utrunc_workspace)); if (w == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } w->q_num = (double *) malloc (n * sizeof (double)); if (w->q_num == NULL) { free(w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for q_num", GSL_ENOMEM, 0); } w->q_den = (double *) malloc (n * sizeof (double)); if (w->q_den == NULL) { free (w->q_num); free (w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for q_den", GSL_ENOMEM, 0); } w->dsum = (double *) malloc (n * sizeof (double)); if (w->dsum == NULL) { free (w->q_den); free (w->q_num); free (w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for dsum", GSL_ENOMEM, 0); } w->size = n; w->terms_used = 0; w->sum_plain = 0; return w; } void gsl_sum_levin_utrunc_free (gsl_sum_levin_utrunc_workspace * w) { RETURN_IF_NULL (w); free (w->dsum); free (w->q_den); free (w->q_num); free (w); } gsl-1.16/sum/test.c0000664000252300025230000001225112171574312011102 00000000000000/* sum/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #define N 50 void check_trunc (double * t, double expected, const char * desc); void check_full (double * t, double expected, const char * desc); int main (void) { gsl_ieee_env_setup (); { double t[N]; int n; const double zeta_2 = M_PI * M_PI / 6.0; /* terms for zeta(2) */ for (n = 0; n < N; n++) { double np1 = n + 1.0; t[n] = 1.0 / (np1 * np1); } check_trunc (t, zeta_2, "zeta(2)"); check_full (t, zeta_2, "zeta(2)"); } { double t[N]; double x, y; int n; /* terms for exp(10.0) */ x = 10.0; y = exp(x); t[0] = 1.0; for (n = 1; n < N; n++) { t[n] = t[n - 1] * (x / n); } check_trunc (t, y, "exp(10)"); check_full (t, y, "exp(10)"); } { double t[N]; double x, y; int n; /* terms for exp(-10.0) */ x = -10.0; y = exp(x); t[0] = 1.0; for (n = 1; n < N; n++) { t[n] = t[n - 1] * (x / n); } check_trunc (t, y, "exp(-10)"); check_full (t, y, "exp(-10)"); } { double t[N]; double x, y; int n; /* terms for -log(1-x) */ x = 0.5; y = -log(1-x); t[0] = x; for (n = 1; n < N; n++) { t[n] = t[n - 1] * (x * n) / (n + 1.0); } check_trunc (t, y, "-log(1/2)"); check_full (t, y, "-log(1/2)"); } { double t[N]; double x, y; int n; /* terms for -log(1-x) */ x = -1.0; y = -log(1-x); t[0] = x; for (n = 1; n < N; n++) { t[n] = t[n - 1] * (x * n) / (n + 1.0); } check_trunc (t, y, "-log(2)"); check_full (t, y, "-log(2)"); } { double t[N]; int n; double result = 0.192594048773; /* terms for an alternating asymptotic series */ t[0] = 3.0 / (M_PI * M_PI); for (n = 1; n < N; n++) { t[n] = -t[n - 1] * (4.0 * (n + 1.0) - 1.0) / (M_PI * M_PI); } check_trunc (t, result, "asymptotic series"); check_full (t, result, "asymptotic series"); } { double t[N]; int n; /* Euler's gamma from GNU Calc (precision = 32) */ double result = 0.5772156649015328606065120900824; /* terms for Euler's gamma */ t[0] = 1.0; for (n = 1; n < N; n++) { t[n] = 1/(n+1.0) + log(n/(n+1.0)); } check_trunc (t, result, "Euler's constant"); check_full (t, result, "Euler's constant"); } { double t[N]; int n; /* eta(1/2) = sum_{k=1}^{\infty} (-1)^(k+1) / sqrt(k) From Levin, Intern. J. Computer Math. B3:371--388, 1973. I=(1-sqrt(2))zeta(1/2) =(2/sqrt(pi))*integ(1/(exp(x^2)+1),x,0,inf) */ double result = 0.6048986434216305; /* approx */ /* terms for eta(1/2) */ for (n = 0; n < N; n++) { t[n] = (n%2 ? -1 : 1) * 1.0 /sqrt(n + 1.0); } check_trunc (t, result, "eta(1/2)"); check_full (t, result, "eta(1/2)"); } { double t[N]; int n; double result = 1.23; for (n = 0; n < N; n++) { t[n] = (n == 0) ? 1.23 : 0.0; } check_trunc (t, result, "1.23 + 0 + 0 + 0..."); check_full (t, result, "1.23 + 0 + 0 + 0..."); } exit (gsl_test_summary ()); } void check_trunc (double * t, double expected, const char * desc) { double sum_accel, prec; gsl_sum_levin_utrunc_workspace * w = gsl_sum_levin_utrunc_alloc (N); gsl_sum_levin_utrunc_accel (t, N, w, &sum_accel, &prec); gsl_test_rel (sum_accel, expected, 1e-8, "trunc result, %s", desc); /* No need to check precision for truncated result since this is not a meaningful number */ gsl_sum_levin_utrunc_free (w); } void check_full (double * t, double expected, const char * desc) { double sum_accel, err_est, sd_actual, sd_est; gsl_sum_levin_u_workspace * w = gsl_sum_levin_u_alloc (N); gsl_sum_levin_u_accel (t, N, w, &sum_accel, &err_est); gsl_test_rel (sum_accel, expected, 1e-8, "full result, %s", desc); sd_est = -log10 (err_est/fabs(sum_accel) + GSL_DBL_EPSILON); sd_actual = -log10 (DBL_EPSILON + fabs ((sum_accel - expected)/expected)); /* Allow one digit of slop */ gsl_test (sd_est > sd_actual + 1.0, "full significant digits, %s (%g vs %g)", desc, sd_est, sd_actual); gsl_sum_levin_u_free (w); } gsl-1.16/sum/gsl_sum.h0000664000252300025230000001253412171574312011605 00000000000000/* sum/gsl_sum.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_SUM_H__ #define __GSL_SUM_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Workspace for Levin U Transform with error estimation, * * size = number of terms the workspace can handle * sum_plain = simple sum of series * q_num = backward diagonal of numerator; length = size * q_den = backward diagonal of denominator; length = size * dq_num = table of numerator derivatives; length = size**2 * dq_den = table of denominator derivatives; length = size**2 * dsum = derivative of sum wrt term i; length = size */ typedef struct { size_t size; size_t i; /* position in array */ size_t terms_used; /* number of calls */ double sum_plain; double *q_num; double *q_den; double *dq_num; double *dq_den; double *dsum; } gsl_sum_levin_u_workspace; gsl_sum_levin_u_workspace *gsl_sum_levin_u_alloc (size_t n); void gsl_sum_levin_u_free (gsl_sum_levin_u_workspace * w); /* Basic Levin-u acceleration method. * * array = array of series elements * n = size of array * sum_accel = result of summation acceleration * err = estimated error * * See [Fessler et al., ACM TOMS 9, 346 (1983) and TOMS-602] */ int gsl_sum_levin_u_accel (const double *array, const size_t n, gsl_sum_levin_u_workspace * w, double *sum_accel, double *abserr); /* Basic Levin-u acceleration method with constraints on the terms * used, * * array = array of series elements * n = size of array * min_terms = minimum number of terms to sum * max_terms = maximum number of terms to sum * sum_accel = result of summation acceleration * err = estimated error * * See [Fessler et al., ACM TOMS 9, 346 (1983) and TOMS-602] */ int gsl_sum_levin_u_minmax (const double *array, const size_t n, const size_t min_terms, const size_t max_terms, gsl_sum_levin_u_workspace * w, double *sum_accel, double *abserr); /* Basic Levin-u step w/o reference to the array of terms. * We only need to specify the value of the current term * to execute the step. See TOMS-745. * * sum = t0 + ... + t_{n-1} + term; term = t_{n} * * term = value of the series term to be added * n = position of term in series (starting from 0) * sum_accel = result of summation acceleration * sum_plain = simple sum of series */ int gsl_sum_levin_u_step (const double term, const size_t n, const size_t nmax, gsl_sum_levin_u_workspace * w, double *sum_accel); /* The following functions perform the same calculation without estimating the errors. They require O(N) storage instead of O(N^2). This may be useful for summing many similar series where the size of the error has already been estimated reliably and is not expected to change. */ typedef struct { size_t size; size_t i; /* position in array */ size_t terms_used; /* number of calls */ double sum_plain; double *q_num; double *q_den; double *dsum; } gsl_sum_levin_utrunc_workspace; gsl_sum_levin_utrunc_workspace *gsl_sum_levin_utrunc_alloc (size_t n); void gsl_sum_levin_utrunc_free (gsl_sum_levin_utrunc_workspace * w); int gsl_sum_levin_utrunc_accel (const double *array, const size_t n, gsl_sum_levin_utrunc_workspace * w, double *sum_accel, double *abserr_trunc); int gsl_sum_levin_utrunc_minmax (const double *array, const size_t n, const size_t min_terms, const size_t max_terms, gsl_sum_levin_utrunc_workspace * w, double *sum_accel, double *abserr_trunc); int gsl_sum_levin_utrunc_step (const double term, const size_t n, gsl_sum_levin_utrunc_workspace * w, double *sum_accel); __END_DECLS #endif /* __GSL_SUM_H__ */ gsl-1.16/sum/Makefile.in0000664000252300025230000010356312172253757012043 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = sum DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslsum_la_LIBADD = am_libgslsum_la_OBJECTS = levin_u.lo levin_utrunc.lo work_u.lo \ work_utrunc.lo libgslsum_la_OBJECTS = $(am_libgslsum_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslsum.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslsum_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslsum_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslsum.la pkginclude_HEADERS = gsl_sum.h INCLUDES = -I$(top_srcdir) libgslsum_la_SOURCES = levin_u.c levin_utrunc.c work_u.c work_utrunc.c TESTS = $(check_PROGRAMS) test_LDADD = libgslsum.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu sum/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu sum/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslsum.la: $(libgslsum_la_OBJECTS) $(libgslsum_la_DEPENDENCIES) $(EXTRA_libgslsum_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslsum_la_OBJECTS) $(libgslsum_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/levin_u.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/levin_utrunc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/work_u.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/work_utrunc.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/sum/ChangeLog0000664000252300025230000000673512171574312011543 000000000000002009-07-09 Brian Gough * work_utrunc.c (gsl_sum_levin_utrunc_free): handle NULL argument in free * work_u.c (gsl_sum_levin_u_free): handle NULL argument in free 2009-06-28 Brian Gough * test.c (check_full): allow for case where err_est is zero. * levin_u.c (gsl_sum_levin_u_minmax): handle the special case where the sum has the form 1+0+0+0+... by ignoring trailing zeros. 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir Thu Dec 21 21:46:54 2000 Brian Gough * changed err to abserr, to make it clear that it is an absolute error in line with other modules. Thu Nov 2 20:08:14 2000 Brian Gough * added support for a workspace so that the user does not have to allocate memory * made the names of the functions consistent as either levin_u, for the full u transform with error estimate, or levin_utrunc for the u transform with only a truncation error estimate. Mon Apr 24 21:15:27 2000 Brian Gough * gsl_sum.h: added #include for size_t Mon Nov 1 12:50:17 1999 Brian Gough * test.c (main): added tests using series for the Euler constant and eta(1/2) * resolved problems with spurious failures by replacing the directly computed truncation error by an estimate which varies more smoothly. I have used the average of the previous two values, which seems to give a reliable estimate of the truncation error. The direct evaluation of the truncation error sometimes fluctuated wildly, due to cancellation effects. Thu Oct 28 12:05:47 1999 Brian Gough * test.c: cleaned up tests, now find that everything works in double-precision but not extended-precision where there are two failures depending on the optimization level * levin_uerr.c (gsl_sum_levin_u_accel_minmax): changed loop maximum from <=n to * levin_u.c levin_uerr.c: changed DBL_MAX to GSL_DBL_MAX since we don't rely on DBL_MAX Sat Feb 6 20:35:26 1999 Brian Gough * test.c: adjusted the precision check to allow for "infinite accuracy" which occurs when two results agree to machine precision Thu Nov 19 13:10:19 1998 Brian Gough * added an n_used parameter to all routines which gives the number of terms actually used Tue Nov 17 12:31:03 1998 Brian Gough * test.c: added #include * renamed test_sum.c to test.c * renamed all the functions so that _with_derivs is now the default and _trunc is the case of no error estimates from the derivatives * test_sum.c (main): cleaned up tests Mon Nov 9 22:05:45 1998 Brian Gough * levin_u.c (gsl_sum_levin_u_accel_minmax): got rid of noise variables since they aren't used in the non-derivative case 1998-11-06 * test_sum.c: replace variable N by macro to avoid variable length array warning Tue Oct 27 18:06:16 1998 Brian Gough * levin_u.c: added in noise but it does not seem to be giving the right answer for the error estimate. The actual value for the accelerated sum is correct though. Check toms/602 for the original algorithm. gsl-1.16/sum/Makefile.am0000664000252300025230000000060212171574312012010 00000000000000noinst_LTLIBRARIES = libgslsum.la pkginclude_HEADERS = gsl_sum.h INCLUDES = -I$(top_srcdir) libgslsum_la_SOURCES = levin_u.c levin_utrunc.c work_u.c work_utrunc.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgslsum.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/sum/work_u.c0000664000252300025230000000413712171574312011435 00000000000000#include #include #include #include gsl_sum_levin_u_workspace * gsl_sum_levin_u_alloc (size_t n) { gsl_sum_levin_u_workspace * w; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } w = (gsl_sum_levin_u_workspace *) malloc(sizeof(gsl_sum_levin_u_workspace)); if (w == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } w->q_num = (double *) malloc (n * sizeof (double)); if (w->q_num == NULL) { free(w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for q_num", GSL_ENOMEM, 0); } w->q_den = (double *) malloc (n * sizeof (double)); if (w->q_den == NULL) { free (w->q_num); free (w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for q_den", GSL_ENOMEM, 0); } w->dq_num = (double *) malloc (n * n * sizeof (double)); if (w->dq_num == NULL) { free (w->q_den); free (w->q_num); free(w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for dq_num", GSL_ENOMEM, 0); } w->dq_den = (double *) malloc (n * n * sizeof (double)); if (w->dq_den == NULL) { free (w->dq_num); free (w->q_den); free (w->q_num); free (w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for dq_den", GSL_ENOMEM, 0); } w->dsum = (double *) malloc (n * sizeof (double)); if (w->dsum == NULL) { free (w->dq_den); free (w->dq_num); free (w->q_den); free (w->q_num); free (w) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate space for dsum", GSL_ENOMEM, 0); } w->size = n; w->terms_used = 0; w->sum_plain = 0; return w; } void gsl_sum_levin_u_free (gsl_sum_levin_u_workspace * w) { RETURN_IF_NULL (w); free (w->dsum); free (w->dq_den); free (w->dq_num); free (w->q_den); free (w->q_num); free (w); } gsl-1.16/sum/levin_u.c0000664000252300025230000001617512171574312011575 00000000000000/* sum/levin_u.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_sum_levin_u_accel (const double *array, const size_t array_size, gsl_sum_levin_u_workspace * w, double *sum_accel, double *abserr) { return gsl_sum_levin_u_minmax (array, array_size, 0, array_size - 1, w, sum_accel, abserr); } int gsl_sum_levin_u_minmax (const double *array, const size_t array_size, const size_t min_terms, const size_t max_terms, gsl_sum_levin_u_workspace * w, double *sum_accel, double *abserr) { /* Ignore any trailing zeros in the array */ size_t size = array_size; while (size > 0 && array[size - 1] == 0) { size--; } if (size == 0) { *sum_accel = 0.0; *abserr = 0.0; w->sum_plain = 0.0; w->terms_used = 0; return GSL_SUCCESS; } else if (size == 1) { *sum_accel = array[0]; *abserr = 0.0; w->sum_plain = array[0]; w->terms_used = 1; return GSL_SUCCESS; } else { const double SMALL = 0.01; const size_t nmax = GSL_MAX (max_terms, array_size) - 1; double noise_n = 0.0, noise_nm1 = 0.0; double trunc_n = 0.0, trunc_nm1 = 0.0; double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0; double result_n = 0.0, result_nm1 = 0.0; double variance = 0; size_t n; unsigned int i; int better = 0; int before = 0; int converging = 0; double least_trunc = GSL_DBL_MAX; double least_trunc_noise = GSL_DBL_MAX; double least_trunc_result; /* Calculate specified minimum number of terms. No convergence tests are made, and no truncation information is stored. */ for (n = 0; n < min_terms; n++) { const double t = array[n]; result_nm1 = result_n; gsl_sum_levin_u_step (t, n, nmax, w, &result_n); } least_trunc_result = result_n; variance = 0; for (i = 0; i < n; i++) { double dn = w->dsum[i] * GSL_MACH_EPS * array[i]; variance += dn * dn; } noise_n = sqrt (variance); /* Calculate up to maximum number of terms. Check truncation condition. */ for (; n <= nmax; n++) { const double t = array[n]; result_nm1 = result_n; gsl_sum_levin_u_step (t, n, nmax, w, &result_n); /* Compute the truncation error directly */ actual_trunc_nm1 = actual_trunc_n; actual_trunc_n = fabs (result_n - result_nm1); /* Average results to make a more reliable estimate of the real truncation error */ trunc_nm1 = trunc_n; trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1); noise_nm1 = noise_n; variance = 0; for (i = 0; i <= n; i++) { double dn = w->dsum[i] * GSL_MACH_EPS * array[i]; variance += dn * dn; } noise_n = sqrt (variance); /* Determine if we are in the convergence region. */ better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n)); converging = converging || (better && before); before = better; if (converging) { if (trunc_n < least_trunc) { /* Found a low truncation point in the convergence region. Save it. */ least_trunc_result = result_n; least_trunc = trunc_n; least_trunc_noise = noise_n; } if (noise_n > trunc_n / 3.0) break; if (trunc_n < 10.0 * GSL_MACH_EPS * fabs (result_n)) break; } } if (converging) { /* Stopped in the convergence region. Return result and error estimate. */ *sum_accel = least_trunc_result; *abserr = GSL_MAX_DBL (least_trunc, least_trunc_noise); w->terms_used = n; return GSL_SUCCESS; } else { /* Never reached the convergence region. Use the last calculated values. */ *sum_accel = result_n; *abserr = GSL_MAX_DBL (trunc_n, noise_n); w->terms_used = n; return GSL_SUCCESS; } } } int gsl_sum_levin_u_step (const double term, const size_t n, const size_t nmax, gsl_sum_levin_u_workspace * w, double *sum_accel) { #define I(i,j) ((i)*(nmax+1) + (j)) if (n == 0) { *sum_accel = term; w->sum_plain = term; w->q_den[0] = 1.0 / term; w->q_num[0] = 1.0; w->dq_den[I (0, 0)] = -1.0 / (term * term); w->dq_num[I (0, 0)] = 0.0; w->dsum[0] = 1.0; return GSL_SUCCESS; } else { double result; double factor = 1.0; double ratio = (double) n / (n + 1.0); unsigned int i; int j; w->sum_plain += term; w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0)); w->q_num[n] = w->sum_plain * w->q_den[n]; for (i = 0; i < n; i++) { w->dq_den[I (i, n)] = 0; w->dq_num[I (i, n)] = w->q_den[n]; } w->dq_den[I (n, n)] = -w->q_den[n] / term; w->dq_num[I (n, n)] = w->q_den[n] + w->sum_plain * (w->dq_den[I (n, n)]); for (j = n - 1; j >= 0; j--) { double c = factor * (j + 1) / (n + 1); factor *= ratio; w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j]; w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j]; for (i = 0; i < n; i++) { w->dq_den[I (i, j)] = w->dq_den[I (i, j + 1)] - c * w->dq_den[I (i, j)]; w->dq_num[I (i, j)] = w->dq_num[I (i, j + 1)] - c * w->dq_num[I (i, j)]; } w->dq_den[I (n, j)] = w->dq_den[I (n, j + 1)]; w->dq_num[I (n, j)] = w->dq_num[I (n, j + 1)]; } result = w->q_num[0] / w->q_den[0]; *sum_accel = result; for (i = 0; i <= n; i++) { w->dsum[i] = (w->dq_num[I (i, 0)] - result * w->dq_den[I (i, 0)]) / w->q_den[0]; } return GSL_SUCCESS; } } gsl-1.16/sum/levin_utrunc.c0000664000252300025230000001355012171574312012643 00000000000000/* sum/levin_utrunc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include int gsl_sum_levin_utrunc_accel (const double *array, const size_t array_size, gsl_sum_levin_utrunc_workspace * w, double *sum_accel, double *abserr_trunc) { return gsl_sum_levin_utrunc_minmax (array, array_size, 0, array_size - 1, w, sum_accel, abserr_trunc); } int gsl_sum_levin_utrunc_minmax (const double *array, const size_t array_size, const size_t min_terms, const size_t max_terms, gsl_sum_levin_utrunc_workspace * w, double *sum_accel, double *abserr_trunc) { if (array_size == 0) { *sum_accel = 0.0; *abserr_trunc = 0.0; w->sum_plain = 0.0; w->terms_used = 0; return GSL_SUCCESS; } else if (array_size == 1) { *sum_accel = array[0]; *abserr_trunc = GSL_POSINF; w->sum_plain = array[0]; w->terms_used = 1; return GSL_SUCCESS; } else { const double SMALL = 0.01; const size_t nmax = GSL_MAX (max_terms, array_size) - 1; double trunc_n = 0.0, trunc_nm1 = 0.0; double actual_trunc_n = 0.0, actual_trunc_nm1 = 0.0; double result_n = 0.0, result_nm1 = 0.0; size_t n; int better = 0; int before = 0; int converging = 0; double least_trunc = GSL_DBL_MAX; double result_least_trunc; /* Calculate specified minimum number of terms. No convergence tests are made, and no truncation information is stored. */ for (n = 0; n < min_terms; n++) { const double t = array[n]; result_nm1 = result_n; gsl_sum_levin_utrunc_step (t, n, w, &result_n); } /* Assume the result after the minimum calculation is the best. */ result_least_trunc = result_n; /* Calculate up to maximum number of terms. Check truncation condition. */ for (; n <= nmax; n++) { const double t = array[n]; result_nm1 = result_n; gsl_sum_levin_utrunc_step (t, n, w, &result_n); /* Compute the truncation error directly */ actual_trunc_nm1 = actual_trunc_n; actual_trunc_n = fabs (result_n - result_nm1); /* Average results to make a more reliable estimate of the real truncation error */ trunc_nm1 = trunc_n; trunc_n = 0.5 * (actual_trunc_n + actual_trunc_nm1); /* Determine if we are in the convergence region. */ better = (trunc_n < trunc_nm1 || trunc_n < SMALL * fabs (result_n)); converging = converging || (better && before); before = better; if (converging) { if (trunc_n < least_trunc) { /* Found a low truncation point in the convergence region. Save it. */ least_trunc = trunc_n; result_least_trunc = result_n; } if (fabs (trunc_n / result_n) < 10.0 * GSL_MACH_EPS) break; } } if (converging) { /* Stopped in the convergence region. Return result and error estimate. */ *sum_accel = result_least_trunc; *abserr_trunc = least_trunc; w->terms_used = n; return GSL_SUCCESS; } else { /* Never reached the convergence region. Use the last calculated values. */ *sum_accel = result_n; *abserr_trunc = trunc_n; w->terms_used = n; return GSL_SUCCESS; } } } int gsl_sum_levin_utrunc_step (const double term, const size_t n, gsl_sum_levin_utrunc_workspace * w, double *sum_accel) { if (term == 0.0) { /* This is actually harmless when treated in this way. A term which is exactly zero is simply ignored; the state is not changed. We return GSL_EZERODIV as an indicator that this occured. */ return GSL_EZERODIV; } else if (n == 0) { *sum_accel = term; w->sum_plain = term; w->q_den[0] = 1.0 / term; w->q_num[0] = 1.0; return GSL_SUCCESS; } else { double factor = 1.0; double ratio = (double) n / (n + 1.0); int j; w->sum_plain += term; w->q_den[n] = 1.0 / (term * (n + 1.0) * (n + 1.0)); w->q_num[n] = w->sum_plain * w->q_den[n]; for (j = n - 1; j >= 0; j--) { double c = factor * (j + 1) / (n + 1); factor *= ratio; w->q_den[j] = w->q_den[j + 1] - c * w->q_den[j]; w->q_num[j] = w->q_num[j + 1] - c * w->q_num[j]; } *sum_accel = w->q_num[0] / w->q_den[0]; return GSL_SUCCESS; } } gsl-1.16/integration/0000775000252300025230000000000012172254162011554 500000000000000gsl-1.16/integration/qcheb.c0000664000252300025230000001341312171574312012725 00000000000000/* integration/qcheb.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* This function computes the 12-th order and 24-th order Chebyshev approximations to f(x) on [a,b] */ void gsl_integration_qcheb (gsl_function * f, double a, double b, double *cheb12, double *cheb24) { size_t i; double fval[25], v[12]; /* These are the values of cos(pi*k/24) for k=1..11 needed for the Chebyshev expansion of f(x) */ const double x[11] = { 0.9914448613738104, 0.9659258262890683, 0.9238795325112868, 0.8660254037844386, 0.7933533402912352, 0.7071067811865475, 0.6087614290087206, 0.5000000000000000, 0.3826834323650898, 0.2588190451025208, 0.1305261922200516 }; const double center = 0.5 * (b + a); const double half_length = 0.5 * (b - a); fval[0] = 0.5 * GSL_FN_EVAL (f, b); fval[12] = GSL_FN_EVAL (f, center); fval[24] = 0.5 * GSL_FN_EVAL (f, a); for (i = 1; i < 12; i++) { const size_t j = 24 - i; const double u = half_length * x[i-1]; fval[i] = GSL_FN_EVAL(f, center + u); fval[j] = GSL_FN_EVAL(f, center - u); } for (i = 0; i < 12; i++) { const size_t j = 24 - i; v[i] = fval[i] - fval[j]; fval[i] = fval[i] + fval[j]; } { const double alam1 = v[0] - v[8]; const double alam2 = x[5] * (v[2] - v[6] - v[10]); cheb12[3] = alam1 + alam2; cheb12[9] = alam1 - alam2; } { const double alam1 = v[1] - v[7] - v[9]; const double alam2 = v[3] - v[5] - v[11]; { const double alam = x[2] * alam1 + x[8] * alam2; cheb24[3] = cheb12[3] + alam; cheb24[21] = cheb12[3] - alam; } { const double alam = x[8] * alam1 - x[2] * alam2; cheb24[9] = cheb12[9] + alam; cheb24[15] = cheb12[9] - alam; } } { const double part1 = x[3] * v[4]; const double part2 = x[7] * v[8]; const double part3 = x[5] * v[6]; { const double alam1 = v[0] + part1 + part2; const double alam2 = x[1] * v[2] + part3 + x[9] * v[10]; cheb12[1] = alam1 + alam2; cheb12[11] = alam1 - alam2; } { const double alam1 = v[0] - part1 + part2; const double alam2 = x[9] * v[2] - part3 + x[1] * v[10]; cheb12[5] = alam1 + alam2; cheb12[7] = alam1 - alam2; } } { const double alam = (x[0] * v[1] + x[2] * v[3] + x[4] * v[5] + x[6] * v[7] + x[8] * v[9] + x[10] * v[11]); cheb24[1] = cheb12[1] + alam; cheb24[23] = cheb12[1] - alam; } { const double alam = (x[10] * v[1] - x[8] * v[3] + x[6] * v[5] - x[4] * v[7] + x[2] * v[9] - x[0] * v[11]); cheb24[11] = cheb12[11] + alam; cheb24[13] = cheb12[11] - alam; } { const double alam = (x[4] * v[1] - x[8] * v[3] - x[0] * v[5] - x[10] * v[7] + x[2] * v[9] + x[6] * v[11]); cheb24[5] = cheb12[5] + alam; cheb24[19] = cheb12[5] - alam; } { const double alam = (x[6] * v[1] - x[2] * v[3] - x[10] * v[5] + x[0] * v[7] - x[8] * v[9] - x[4] * v[11]); cheb24[7] = cheb12[7] + alam; cheb24[17] = cheb12[7] - alam; } for (i = 0; i < 6; i++) { const size_t j = 12 - i; v[i] = fval[i] - fval[j]; fval[i] = fval[i] + fval[j]; } { const double alam1 = v[0] + x[7] * v[4]; const double alam2 = x[3] * v[2]; cheb12[2] = alam1 + alam2; cheb12[10] = alam1 - alam2; } cheb12[6] = v[0] - v[4]; { const double alam = x[1] * v[1] + x[5] * v[3] + x[9] * v[5]; cheb24[2] = cheb12[2] + alam; cheb24[22] = cheb12[2] - alam; } { const double alam = x[5] * (v[1] - v[3] - v[5]); cheb24[6] = cheb12[6] + alam; cheb24[18] = cheb12[6] - alam; } { const double alam = x[9] * v[1] - x[5] * v[3] + x[1] * v[5]; cheb24[10] = cheb12[10] + alam; cheb24[14] = cheb12[10] - alam; } for (i = 0; i < 3; i++) { const size_t j = 6 - i; v[i] = fval[i] - fval[j]; fval[i] = fval[i] + fval[j]; } cheb12[4] = v[0] + x[7] * v[2]; cheb12[8] = fval[0] - x[7] * fval[2]; { const double alam = x[3] * v[1]; cheb24[4] = cheb12[4] + alam; cheb24[20] = cheb12[4] - alam; } { const double alam = x[7] * fval[1] - fval[3]; cheb24[8] = cheb12[8] + alam; cheb24[16] = cheb12[8] - alam; } cheb12[0] = fval[0] + fval[2]; { const double alam = fval[1] + fval[3]; cheb24[0] = cheb12[0] + alam; cheb24[24] = cheb12[0] - alam; } cheb12[12] = v[0] - v[2]; cheb24[12] = cheb12[12]; for (i = 1; i < 12; i++) { cheb12[i] *= 1.0 / 6.0; } cheb12[0] *= 1.0 / 12.0; cheb12[12] *= 1.0 / 12.0; for (i = 1; i < 24; i++) { cheb24[i] *= 1.0 / 12.0; } cheb24[0] *= 1.0 / 24.0; cheb24[24] *= 1.0 / 24.0; } gsl-1.16/integration/qawc.c0000664000252300025230000001273112171574312012600 00000000000000/* integration/qawc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "initialise.c" #include "set_initial.c" #include "qpsrt.c" #include "util.c" #include "qc25c.c" int gsl_integration_qawc (gsl_function * f, const double a, const double b, const double c, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr) { double area, errsum; double result0, abserr0; double tolerance; size_t iteration = 0; int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0; int err_reliable; int sign = 1; double lower, higher; /* Initialize results */ *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } if (b < a) { lower = b ; higher = a ; sign = -1 ; } else { lower = a; higher = b; } initialise (workspace, lower, higher); if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } if (c == a || c == b) { GSL_ERROR ("cannot integrate with singularity on endpoint", GSL_EINVAL); } /* perform the first integration */ qc25c (f, lower, higher, c, &result0, &abserr0, &err_reliable); set_initial_result (workspace, result0, abserr0); /* Test on accuracy, use 0.01 relative error as an extra safety margin on the first iteration (ignored for subsequent iterations) */ tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); if (abserr0 < tolerance && abserr0 < 0.01 * fabs(result0)) { *result = sign * result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = sign * result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } area = result0; errsum = abserr0; iteration = 1; do { double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; int err_reliable1, err_reliable2; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; if (c > a1 && c <= b1) { b1 = 0.5 * (c + b2) ; a2 = b1; } else if (c > b1 && c < b2) { b1 = 0.5 * (a1 + c) ; a2 = b1; } qc25c (f, a1, b1, c, &area1, &error1, &err_reliable1); qc25c (f, a2, b2, c, &area2, &error2, &err_reliable2); area12 = area1 + area2; error12 = error1 + error2; errsum += (error12 - e_i); area += area12 - r_i; if (err_reliable1 && err_reliable2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { roundoff_type1++; } if (iteration >= 10 && error12 > e_i) { roundoff_type2++; } } tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (errsum > tolerance) { if (roundoff_type1 >= 6 || roundoff_type2 >= 20) { error_type = 2; /* round off error */ } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 3; } } update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); retrieve (workspace, &a_i, &b_i, &r_i, &e_i); iteration++; } while (iteration < limit && !error_type && errsum > tolerance); *result = sign * sum_results (workspace); *abserr = errsum; if (errsum <= tolerance) { return GSL_SUCCESS; } else if (error_type == 2) { GSL_ERROR ("roundoff error prevents tolerance from being achieved", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (iteration == limit) { GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/TODO0000664000252300025230000000217412171574312012171 00000000000000# -*- org -*- #+CATEGORY: integration * BUG#14 -- qagil The extrapolation used in qags gives negative results when integrating the small tails of probability distributions using qagil, even though each individual term in the sequence is positive and increasing (!). This is a feature of the original quadpack and appears to be due to the extrapolation algorithm, which should probably be tweaked to avoid this undesirable behavior. * Someone to volunteer to do Cubature, e.g as provided by Cubpack. * ACM Transactions on Mathematical Software (TOMS) archive Volume 33 , Issue 3 (August 2007) Algorithm 867: QUADLOG---a package of routines for generating gauss-related quadrature for two classes of logarithmic weight functions Nelson H. F. Beebe, James S. Ball Article No. 20 Full text available: pdfPdf (209 KB) Additional Information: _full citation, abstract, references, index terms gsl-1.16/integration/qelg.c0000664000252300025230000001311612171574312012573 00000000000000/* integration/qelg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ struct extrapolation_table { size_t n; double rlist2[52]; size_t nres; double res3la[3]; }; static void initialise_table (struct extrapolation_table *table); static void append_table (struct extrapolation_table *table, double y); static void initialise_table (struct extrapolation_table *table) { table->n = 0; table->nres = 0; } #ifdef JUNK static void initialise_table (struct extrapolation_table *table, double y) { table->n = 0; table->rlist2[0] = y; table->nres = 0; } #endif static void append_table (struct extrapolation_table *table, double y) { size_t n; n = table->n; table->rlist2[n] = y; table->n++; } /* static inline void qelg (size_t * n, double epstab[], double * result, double * abserr, double res3la[], size_t * nres); */ static inline void qelg (struct extrapolation_table *table, double *result, double *abserr); static inline void qelg (struct extrapolation_table *table, double *result, double *abserr) { double *epstab = table->rlist2; double *res3la = table->res3la; const size_t n = table->n - 1; const double current = epstab[n]; double absolute = GSL_DBL_MAX; double relative = 5 * GSL_DBL_EPSILON * fabs (current); const size_t newelm = n / 2; const size_t n_orig = n; size_t n_final = n; size_t i; const size_t nres_orig = table->nres; *result = current; *abserr = GSL_DBL_MAX; if (n < 2) { *result = current; *abserr = GSL_MAX_DBL (absolute, relative); return; } epstab[n + 2] = epstab[n]; epstab[n] = GSL_DBL_MAX; for (i = 0; i < newelm; i++) { double res = epstab[n - 2 * i + 2]; double e0 = epstab[n - 2 * i - 2]; double e1 = epstab[n - 2 * i - 1]; double e2 = res; double e1abs = fabs (e1); double delta2 = e2 - e1; double err2 = fabs (delta2); double tol2 = GSL_MAX_DBL (fabs (e2), e1abs) * GSL_DBL_EPSILON; double delta3 = e1 - e0; double err3 = fabs (delta3); double tol3 = GSL_MAX_DBL (e1abs, fabs (e0)) * GSL_DBL_EPSILON; double e3, delta1, err1, tol1, ss; if (err2 <= tol2 && err3 <= tol3) { /* If e0, e1 and e2 are equal to within machine accuracy, convergence is assumed. */ *result = res; absolute = err2 + err3; relative = 5 * GSL_DBL_EPSILON * fabs (res); *abserr = GSL_MAX_DBL (absolute, relative); return; } e3 = epstab[n - 2 * i]; epstab[n - 2 * i] = e1; delta1 = e1 - e3; err1 = fabs (delta1); tol1 = GSL_MAX_DBL (e1abs, fabs (e3)) * GSL_DBL_EPSILON; /* If two elements are very close to each other, omit a part of the table by adjusting the value of n */ if (err1 <= tol1 || err2 <= tol2 || err3 <= tol3) { n_final = 2 * i; break; } ss = (1 / delta1 + 1 / delta2) - 1 / delta3; /* Test to detect irregular behaviour in the table, and eventually omit a part of the table by adjusting the value of n. */ if (fabs (ss * e1) <= 0.0001) { n_final = 2 * i; break; } /* Compute a new element and eventually adjust the value of result. */ res = e1 + 1 / ss; epstab[n - 2 * i] = res; { const double error = err2 + fabs (res - e2) + err3; if (error <= *abserr) { *abserr = error; *result = res; } } } /* Shift the table */ { const size_t limexp = 50 - 1; if (n_final == limexp) { n_final = 2 * (limexp / 2); } } if (n_orig % 2 == 1) { for (i = 0; i <= newelm; i++) { epstab[1 + i * 2] = epstab[i * 2 + 3]; } } else { for (i = 0; i <= newelm; i++) { epstab[i * 2] = epstab[i * 2 + 2]; } } if (n_orig != n_final) { for (i = 0; i <= n_final; i++) { epstab[i] = epstab[n_orig - n_final + i]; } } table->n = n_final + 1; if (nres_orig < 3) { res3la[nres_orig] = *result; *abserr = GSL_DBL_MAX; } else { /* Compute error estimate */ *abserr = (fabs (*result - res3la[2]) + fabs (*result - res3la[1]) + fabs (*result - res3la[0])); res3la[0] = res3la[1]; res3la[1] = res3la[2]; res3la[2] = *result; } /* In QUADPACK the variable table->nres is incremented at the top of qelg, so it increases on every call. This leads to the array res3la being accessed when its elements are still undefined, so I have moved the update to this point so that its value more useful. */ table->nres = nres_orig + 1; *abserr = GSL_MAX_DBL (*abserr, 5 * GSL_DBL_EPSILON * fabs (*result)); return; } gsl-1.16/integration/qk21.c0000664000252300025230000000533712171574312012427 00000000000000/* integration/qk21.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[11] = /* abscissae of the 21-point kronrod rule */ { 0.995657163025808080735527280689003, 0.973906528517171720077964012084452, 0.930157491355708226001207180059508, 0.865063366688984510732096688423493, 0.780817726586416897063717578345042, 0.679409568299024406234327365114874, 0.562757134668604683339000099272694, 0.433395394129247190799265943165784, 0.294392862701460198131126603103866, 0.148874338981631210884826001129720, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 10-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 10-point gauss rule */ static const double wg[5] = /* weights of the 10-point gauss rule */ { 0.066671344308688137593568809893332, 0.149451349150580593145776339657697, 0.219086362515982043995534934228163, 0.269266719309996355091226921569469, 0.295524224714752870173892994651338 }; static const double wgk[11] = /* weights of the 21-point kronrod rule */ { 0.011694638867371874278064396062192, 0.032558162307964727478818972459390, 0.054755896574351996031381300244580, 0.075039674810919952767043140916190, 0.093125454583697605535065465083366, 0.109387158802297641899210590325805, 0.123491976262065851077958109831074, 0.134709217311473325928054001771707, 0.142775938577060080797094273138717, 0.147739104901338491374841515972068, 0.149445554002916905664936468389821 }; void gsl_integration_qk21 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[11], fv2[11]; gsl_integration_qk (11, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/qk61.c0000664000252300025230000001117412171574312012427 00000000000000/* integration/qk61.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[31] = /* abscissae of the 61-point kronrod rule */ { 0.999484410050490637571325895705811, 0.996893484074649540271630050918695, 0.991630996870404594858628366109486, 0.983668123279747209970032581605663, 0.973116322501126268374693868423707, 0.960021864968307512216871025581798, 0.944374444748559979415831324037439, 0.926200047429274325879324277080474, 0.905573307699907798546522558925958, 0.882560535792052681543116462530226, 0.857205233546061098958658510658944, 0.829565762382768397442898119732502, 0.799727835821839083013668942322683, 0.767777432104826194917977340974503, 0.733790062453226804726171131369528, 0.697850494793315796932292388026640, 0.660061064126626961370053668149271, 0.620526182989242861140477556431189, 0.579345235826361691756024932172540, 0.536624148142019899264169793311073, 0.492480467861778574993693061207709, 0.447033769538089176780609900322854, 0.400401254830394392535476211542661, 0.352704725530878113471037207089374, 0.304073202273625077372677107199257, 0.254636926167889846439805129817805, 0.204525116682309891438957671002025, 0.153869913608583546963794672743256, 0.102806937966737030147096751318001, 0.051471842555317695833025213166723, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 30-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 30-point gauss rule */ static const double wg[15] = /* weights of the 30-point gauss rule */ { 0.007968192496166605615465883474674, 0.018466468311090959142302131912047, 0.028784707883323369349719179611292, 0.038799192569627049596801936446348, 0.048402672830594052902938140422808, 0.057493156217619066481721689402056, 0.065974229882180495128128515115962, 0.073755974737705206268243850022191, 0.080755895229420215354694938460530, 0.086899787201082979802387530715126, 0.092122522237786128717632707087619, 0.096368737174644259639468626351810, 0.099593420586795267062780282103569, 0.101762389748405504596428952168554, 0.102852652893558840341285636705415 }; static const double wgk[31] = /* weights of the 61-point kronrod rule */ { 0.001389013698677007624551591226760, 0.003890461127099884051267201844516, 0.006630703915931292173319826369750, 0.009273279659517763428441146892024, 0.011823015253496341742232898853251, 0.014369729507045804812451432443580, 0.016920889189053272627572289420322, 0.019414141193942381173408951050128, 0.021828035821609192297167485738339, 0.024191162078080601365686370725232, 0.026509954882333101610601709335075, 0.028754048765041292843978785354334, 0.030907257562387762472884252943092, 0.032981447057483726031814191016854, 0.034979338028060024137499670731468, 0.036882364651821229223911065617136, 0.038678945624727592950348651532281, 0.040374538951535959111995279752468, 0.041969810215164246147147541285970, 0.043452539701356069316831728117073, 0.044814800133162663192355551616723, 0.046059238271006988116271735559374, 0.047185546569299153945261478181099, 0.048185861757087129140779492298305, 0.049055434555029778887528165367238, 0.049795683427074206357811569379942, 0.050405921402782346840893085653585, 0.050881795898749606492297473049805, 0.051221547849258772170656282604944, 0.051426128537459025933862879215781, 0.051494729429451567558340433647099 }; void gsl_integration_qk61 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[31], fv2[31]; gsl_integration_qk (31, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/qk15.c0000664000252300025230000000465012171574312012427 00000000000000/* integration/qk15.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[8] = /* abscissae of the 15-point kronrod rule */ { 0.991455371120812639206854697526329, 0.949107912342758524526189684047851, 0.864864423359769072789712788640926, 0.741531185599394439863864773280788, 0.586087235467691130294144838258730, 0.405845151377397166906606412076961, 0.207784955007898467600689403773245, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 7-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 7-point gauss rule */ static const double wg[4] = /* weights of the 7-point gauss rule */ { 0.129484966168869693270611432679082, 0.279705391489276667901467771423780, 0.381830050505118944950369775488975, 0.417959183673469387755102040816327 }; static const double wgk[8] = /* weights of the 15-point kronrod rule */ { 0.022935322010529224963732008058970, 0.063092092629978553290700663189204, 0.104790010322250183839876322541518, 0.140653259715525918745189590510238, 0.169004726639267902826583426598550, 0.190350578064785409913256402421014, 0.204432940075298892414161999234649, 0.209482141084727828012999174891714 }; void gsl_integration_qk15 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[8], fv2[8]; gsl_integration_qk (8, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/util.c0000664000252300025230000000714012171574312012620 00000000000000/* integration/util.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static inline void update (gsl_integration_workspace * workspace, double a1, double b1, double area1, double error1, double a2, double b2, double area2, double error2); static inline void retrieve (const gsl_integration_workspace * workspace, double * a, double * b, double * r, double * e); static inline void update (gsl_integration_workspace * workspace, double a1, double b1, double area1, double error1, double a2, double b2, double area2, double error2) { double * alist = workspace->alist ; double * blist = workspace->blist ; double * rlist = workspace->rlist ; double * elist = workspace->elist ; size_t * level = workspace->level ; const size_t i_max = workspace->i ; const size_t i_new = workspace->size ; const size_t new_level = workspace->level[i_max] + 1; /* append the newly-created intervals to the list */ if (error2 > error1) { alist[i_max] = a2; /* blist[maxerr] is already == b2 */ rlist[i_max] = area2; elist[i_max] = error2; level[i_max] = new_level; alist[i_new] = a1; blist[i_new] = b1; rlist[i_new] = area1; elist[i_new] = error1; level[i_new] = new_level; } else { blist[i_max] = b1; /* alist[maxerr] is already == a1 */ rlist[i_max] = area1; elist[i_max] = error1; level[i_max] = new_level; alist[i_new] = a2; blist[i_new] = b2; rlist[i_new] = area2; elist[i_new] = error2; level[i_new] = new_level; } workspace->size++; if (new_level > workspace->maximum_level) { workspace->maximum_level = new_level; } qpsrt (workspace) ; } static inline void retrieve (const gsl_integration_workspace * workspace, double * a, double * b, double * r, double * e) { const size_t i = workspace->i; double * alist = workspace->alist; double * blist = workspace->blist; double * rlist = workspace->rlist; double * elist = workspace->elist; *a = alist[i] ; *b = blist[i] ; *r = rlist[i] ; *e = elist[i] ; } static inline double sum_results (const gsl_integration_workspace * workspace); static inline double sum_results (const gsl_integration_workspace * workspace) { const double * const rlist = workspace->rlist ; const size_t n = workspace->size; size_t k; double result_sum = 0; for (k = 0; k < n; k++) { result_sum += rlist[k]; } return result_sum; } static inline int subinterval_too_small (double a1, double a2, double b2); static inline int subinterval_too_small (double a1, double a2, double b2) { const double e = GSL_DBL_EPSILON; const double u = GSL_DBL_MIN; double tmp = (1 + 100 * e) * (fabs (a2) + 1000 * u); int status = fabs (a1) <= tmp && fabs (b2) <= tmp; return status; } gsl-1.16/integration/glfixed.c0000664000252300025230000032026112171574312013267 00000000000000/* * Numerical Integration by Gauss-Legendre Quadrature Formulas of high orders. * High-precision abscissas and weights are used. * * Original project homepage: http://www.holoborodko.com/pavel/?page_id=679 * Original contact e-mail: pavel@holoborodko.com * * Copyright (c)2007-2008 Pavel Holoborodko * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributors: * Konstantin Holoborodko - Optimization of Legendre polynomial computing. * Rhys Ulerich - Inclusion within GNU Scientific Library. * */ #include #include #include #include #include #include static void gauss_legendre_tbl(int n, double* x, double* w, double eps); /* n = 2 */ static double x2[1] = {0.5773502691896257645091488}; static double w2[1] = {1.0000000000000000000000000}; /* n = 4 */ static double x4[2] = {0.3399810435848562648026658, 0.8611363115940525752239465}; static double w4[2] = {0.6521451548625461426269361, 0.3478548451374538573730639}; /* n = 6 */ static double x6[3] = {0.2386191860831969086305017, 0.6612093864662645136613996, 0.9324695142031520278123016}; static double w6[3] = {0.4679139345726910473898703, 0.3607615730481386075698335, 0.1713244923791703450402961}; /* n = 8 */ static double x8[4] = {0.1834346424956498049394761, 0.5255324099163289858177390, 0.7966664774136267395915539, 0.9602898564975362316835609}; static double w8[4] = {0.3626837833783619829651504, 0.3137066458778872873379622, 0.2223810344533744705443560, 0.1012285362903762591525314}; /* n = 10 */ static double x10[5] = {0.1488743389816312108848260, 0.4333953941292471907992659, 0.6794095682990244062343274, 0.8650633666889845107320967, 0.9739065285171717200779640}; static double w10[5] = {0.2955242247147528701738930, 0.2692667193099963550912269, 0.2190863625159820439955349, 0.1494513491505805931457763, 0.0666713443086881375935688}; /* n = 12 */ static double x12[6] = {0.1252334085114689154724414, 0.3678314989981801937526915, 0.5873179542866174472967024, 0.7699026741943046870368938, 0.9041172563704748566784659, 0.9815606342467192506905491}; static double w12[6] = {0.2491470458134027850005624, 0.2334925365383548087608499, 0.2031674267230659217490645, 0.1600783285433462263346525, 0.1069393259953184309602547, 0.0471753363865118271946160}; /* n = 14 */ static double x14[7] = {0.1080549487073436620662447, 0.3191123689278897604356718, 0.5152486363581540919652907, 0.6872929048116854701480198, 0.8272013150697649931897947, 0.9284348836635735173363911, 0.9862838086968123388415973}; static double w14[7] = {0.2152638534631577901958764, 0.2051984637212956039659241, 0.1855383974779378137417166, 0.1572031671581935345696019, 0.1215185706879031846894148, 0.0801580871597602098056333, 0.0351194603317518630318329}; /* n = 16 */ static double x16[8] = {0.0950125098376374401853193, 0.2816035507792589132304605, 0.4580167776572273863424194, 0.6178762444026437484466718, 0.7554044083550030338951012, 0.8656312023878317438804679, 0.9445750230732325760779884, 0.9894009349916499325961542}; static double w16[8] = {0.1894506104550684962853967, 0.1826034150449235888667637, 0.1691565193950025381893121, 0.1495959888165767320815017, 0.1246289712555338720524763, 0.0951585116824927848099251, 0.0622535239386478928628438, 0.0271524594117540948517806}; /* n = 18 */ static double x18[9] = {0.0847750130417353012422619, 0.2518862256915055095889729, 0.4117511614628426460359318, 0.5597708310739475346078715, 0.6916870430603532078748911, 0.8037049589725231156824175, 0.8926024664975557392060606, 0.9558239495713977551811959, 0.9915651684209309467300160}; static double w18[9] = {0.1691423829631435918406565, 0.1642764837458327229860538, 0.1546846751262652449254180, 0.1406429146706506512047313, 0.1225552067114784601845191, 0.1009420441062871655628140, 0.0764257302548890565291297, 0.0497145488949697964533349, 0.0216160135264833103133427}; /* n = 20 */ static double x20[10] = {0.0765265211334973337546404, 0.2277858511416450780804962, 0.3737060887154195606725482, 0.5108670019508270980043641, 0.6360536807265150254528367, 0.7463319064601507926143051, 0.8391169718222188233945291, 0.9122344282513259058677524, 0.9639719272779137912676661, 0.9931285991850949247861224}; static double w20[10] = {0.1527533871307258506980843, 0.1491729864726037467878287, 0.1420961093183820513292983, 0.1316886384491766268984945, 0.1181945319615184173123774, 0.1019301198172404350367501, 0.0832767415767047487247581, 0.0626720483341090635695065, 0.0406014298003869413310400, 0.0176140071391521183118620}; /* n = 32 */ static double x32[16] = {0.0483076656877383162348126, 0.1444719615827964934851864, 0.2392873622521370745446032, 0.3318686022821276497799168, 0.4213512761306353453641194, 0.5068999089322293900237475, 0.5877157572407623290407455, 0.6630442669302152009751152, 0.7321821187402896803874267, 0.7944837959679424069630973, 0.8493676137325699701336930, 0.8963211557660521239653072, 0.9349060759377396891709191, 0.9647622555875064307738119, 0.9856115115452683354001750, 0.9972638618494815635449811}; static double w32[16] = {0.0965400885147278005667648, 0.0956387200792748594190820, 0.0938443990808045656391802, 0.0911738786957638847128686, 0.0876520930044038111427715, 0.0833119242269467552221991, 0.0781938957870703064717409, 0.0723457941088485062253994, 0.0658222227763618468376501, 0.0586840934785355471452836, 0.0509980592623761761961632, 0.0428358980222266806568786, 0.0342738629130214331026877, 0.0253920653092620594557526, 0.0162743947309056706051706, 0.0070186100094700966004071}; /* n = 64 */ static double x64[32] = {0.0243502926634244325089558, 0.0729931217877990394495429, 0.1214628192961205544703765, 0.1696444204239928180373136, 0.2174236437400070841496487, 0.2646871622087674163739642, 0.3113228719902109561575127, 0.3572201583376681159504426, 0.4022701579639916036957668, 0.4463660172534640879849477, 0.4894031457070529574785263, 0.5312794640198945456580139, 0.5718956462026340342838781, 0.6111553551723932502488530, 0.6489654712546573398577612, 0.6852363130542332425635584, 0.7198818501716108268489402, 0.7528199072605318966118638, 0.7839723589433414076102205, 0.8132653151227975597419233, 0.8406292962525803627516915, 0.8659993981540928197607834, 0.8893154459951141058534040, 0.9105221370785028057563807, 0.9295691721319395758214902, 0.9464113748584028160624815, 0.9610087996520537189186141, 0.9733268277899109637418535, 0.9833362538846259569312993, 0.9910133714767443207393824, 0.9963401167719552793469245, 0.9993050417357721394569056}; static double w64[32] = {0.0486909570091397203833654, 0.0485754674415034269347991, 0.0483447622348029571697695, 0.0479993885964583077281262, 0.0475401657148303086622822, 0.0469681828162100173253263, 0.0462847965813144172959532, 0.0454916279274181444797710, 0.0445905581637565630601347, 0.0435837245293234533768279, 0.0424735151236535890073398, 0.0412625632426235286101563, 0.0399537411327203413866569, 0.0385501531786156291289625, 0.0370551285402400460404151, 0.0354722132568823838106931, 0.0338051618371416093915655, 0.0320579283548515535854675, 0.0302346570724024788679741, 0.0283396726142594832275113, 0.0263774697150546586716918, 0.0243527025687108733381776, 0.0222701738083832541592983, 0.0201348231535302093723403, 0.0179517157756973430850453, 0.0157260304760247193219660, 0.0134630478967186425980608, 0.0111681394601311288185905, 0.0088467598263639477230309, 0.0065044579689783628561174, 0.0041470332605624676352875, 0.0017832807216964329472961}; /* n = 96 */ static double x96[48] = {0.0162767448496029695791346, 0.0488129851360497311119582, 0.0812974954644255589944713, 0.1136958501106659209112081, 0.1459737146548969419891073, 0.1780968823676186027594026, 0.2100313104605672036028472, 0.2417431561638400123279319, 0.2731988125910491414872722, 0.3043649443544963530239298, 0.3352085228926254226163256, 0.3656968614723136350308956, 0.3957976498289086032850002, 0.4254789884073005453648192, 0.4547094221677430086356761, 0.4834579739205963597684056, 0.5116941771546676735855097, 0.5393881083243574362268026, 0.5665104185613971684042502, 0.5930323647775720806835558, 0.6189258401254685703863693, 0.6441634037849671067984124, 0.6687183100439161539525572, 0.6925645366421715613442458, 0.7156768123489676262251441, 0.7380306437444001328511657, 0.7596023411766474987029704, 0.7803690438674332176036045, 0.8003087441391408172287961, 0.8194003107379316755389996, 0.8376235112281871214943028, 0.8549590334346014554627870, 0.8713885059092965028737748, 0.8868945174024204160568774, 0.9014606353158523413192327, 0.9150714231208980742058845, 0.9277124567223086909646905, 0.9393703397527552169318574, 0.9500327177844376357560989, 0.9596882914487425393000680, 0.9683268284632642121736594, 0.9759391745851364664526010, 0.9825172635630146774470458, 0.9880541263296237994807628, 0.9925439003237626245718923, 0.9959818429872092906503991, 0.9983643758631816777241494, 0.9996895038832307668276901}; static double w96[48] = {0.0325506144923631662419614, 0.0325161187138688359872055, 0.0324471637140642693640128, 0.0323438225685759284287748, 0.0322062047940302506686671, 0.0320344562319926632181390, 0.0318287588944110065347537, 0.0315893307707271685580207, 0.0313164255968613558127843, 0.0310103325863138374232498, 0.0306713761236691490142288, 0.0302999154208275937940888, 0.0298963441363283859843881, 0.0294610899581679059704363, 0.0289946141505552365426788, 0.0284974110650853856455995, 0.0279700076168483344398186, 0.0274129627260292428234211, 0.0268268667255917621980567, 0.0262123407356724139134580, 0.0255700360053493614987972, 0.0249006332224836102883822, 0.0242048417923646912822673, 0.0234833990859262198422359, 0.0227370696583293740013478, 0.0219666444387443491947564, 0.0211729398921912989876739, 0.0203567971543333245952452, 0.0195190811401450224100852, 0.0186606796274114673851568, 0.0177825023160452608376142, 0.0168854798642451724504775, 0.0159705629025622913806165, 0.0150387210269949380058763, 0.0140909417723148609158616, 0.0131282295669615726370637, 0.0121516046710883196351814, 0.0111621020998384985912133, 0.0101607705350084157575876, 0.0091486712307833866325846, 0.0081268769256987592173824, 0.0070964707911538652691442, 0.0060585455042359616833167, 0.0050142027429275176924702, 0.0039645543384446866737334, 0.0029107318179349464084106, 0.0018539607889469217323359, 0.0007967920655520124294381}; /* n = 100 */ static double x100[50] = {0.0156289844215430828722167, 0.0468716824215916316149239, 0.0780685828134366366948174, 0.1091892035800611150034260, 0.1402031372361139732075146, 0.1710800805386032748875324, 0.2017898640957359972360489, 0.2323024818449739696495100, 0.2625881203715034791689293, 0.2926171880384719647375559, 0.3223603439005291517224766, 0.3517885263724217209723438, 0.3808729816246299567633625, 0.4095852916783015425288684, 0.4378974021720315131089780, 0.4657816497733580422492166, 0.4932107892081909335693088, 0.5201580198817630566468157, 0.5465970120650941674679943, 0.5725019326213811913168704, 0.5978474702471787212648065, 0.6226088602037077716041908, 0.6467619085141292798326303, 0.6702830156031410158025870, 0.6931491993558019659486479, 0.7153381175730564464599671, 0.7368280898020207055124277, 0.7575981185197071760356680, 0.7776279096494954756275514, 0.7968978923903144763895729, 0.8153892383391762543939888, 0.8330838798884008235429158, 0.8499645278795912842933626, 0.8660146884971646234107400, 0.8812186793850184155733168, 0.8955616449707269866985210, 0.9090295709825296904671263, 0.9216092981453339526669513, 0.9332885350430795459243337, 0.9440558701362559779627747, 0.9539007829254917428493369, 0.9628136542558155272936593, 0.9707857757637063319308979, 0.9778093584869182885537811, 0.9838775407060570154961002, 0.9889843952429917480044187, 0.9931249370374434596520099, 0.9962951347331251491861317, 0.9984919506395958184001634, 0.9997137267734412336782285}; static double w100[50] = {0.0312554234538633569476425, 0.0312248842548493577323765, 0.0311638356962099067838183, 0.0310723374275665165878102, 0.0309504788504909882340635, 0.0307983790311525904277139, 0.0306161865839804484964594, 0.0304040795264548200165079, 0.0301622651051691449190687, 0.0298909795933328309168368, 0.0295904880599126425117545, 0.0292610841106382766201190, 0.0289030896011252031348762, 0.0285168543223950979909368, 0.0281027556591011733176483, 0.0276611982207923882942042, 0.0271926134465768801364916, 0.0266974591835709626603847, 0.0261762192395456763423087, 0.0256294029102081160756420, 0.0250575444815795897037642, 0.0244612027079570527199750, 0.0238409602659682059625604, 0.0231974231852541216224889, 0.0225312202563362727017970, 0.0218430024162473863139537, 0.0211334421125276415426723, 0.0204032326462094327668389, 0.0196530874944353058653815, 0.0188837396133749045529412, 0.0180959407221281166643908, 0.0172904605683235824393442, 0.0164680861761452126431050, 0.0156296210775460027239369, 0.0147758845274413017688800, 0.0139077107037187726879541, 0.0130259478929715422855586, 0.0121314576629794974077448, 0.0112251140231859771172216, 0.0103078025748689695857821, 0.0093804196536944579514182, 0.0084438714696689714026208, 0.0074990732554647115788287, 0.0065469484508453227641521, 0.0055884280038655151572119, 0.0046244500634221193510958, 0.0036559612013263751823425, 0.0026839253715534824194396, 0.0017093926535181052395294, 0.0007346344905056717304063}; /* n = 128 */ static double x128[64] = {0.0122236989606157641980521, 0.0366637909687334933302153, 0.0610819696041395681037870, 0.0854636405045154986364980, 0.1097942311276437466729747, 0.1340591994611877851175753, 0.1582440427142249339974755, 0.1823343059853371824103826, 0.2063155909020792171540580, 0.2301735642266599864109866, 0.2538939664226943208556180, 0.2774626201779044028062316, 0.3008654388776772026671541, 0.3240884350244133751832523, 0.3471177285976355084261628, 0.3699395553498590266165917, 0.3925402750332674427356482, 0.4149063795522750154922739, 0.4370245010371041629370429, 0.4588814198335521954490891, 0.4804640724041720258582757, 0.5017595591361444642896063, 0.5227551520511754784539479, 0.5434383024128103634441936, 0.5637966482266180839144308, 0.5838180216287630895500389, 0.6034904561585486242035732, 0.6228021939105849107615396, 0.6417416925623075571535249, 0.6602976322726460521059468, 0.6784589224477192593677557, 0.6962147083695143323850866, 0.7135543776835874133438599, 0.7304675667419088064717369, 0.7469441667970619811698824, 0.7629743300440947227797691, 0.7785484755064119668504941, 0.7936572947621932902433329, 0.8082917575079136601196422, 0.8224431169556438424645942, 0.8361029150609068471168753, 0.8492629875779689691636001, 0.8619154689395484605906323, 0.8740527969580317986954180, 0.8856677173453972174082924, 0.8967532880491581843864474, 0.9073028834017568139214859, 0.9173101980809605370364836, 0.9267692508789478433346245, 0.9356743882779163757831268, 0.9440202878302201821211114, 0.9518019613412643862177963, 0.9590147578536999280989185, 0.9656543664319652686458290, 0.9717168187471365809043384, 0.9771984914639073871653744, 0.9820961084357185360247656, 0.9864067427245862088712355, 0.9901278184917343833379303, 0.9932571129002129353034372, 0.9957927585349811868641612, 0.9977332486255140198821574, 0.9990774599773758950119878, 0.9998248879471319144736081}; static double w128[64] = {0.0244461801962625182113259, 0.0244315690978500450548486, 0.0244023556338495820932980, 0.0243585572646906258532685, 0.0243002001679718653234426, 0.0242273192228152481200933, 0.0241399579890192849977167, 0.0240381686810240526375873, 0.0239220121367034556724504, 0.0237915577810034006387807, 0.0236468835844476151436514, 0.0234880760165359131530253, 0.0233152299940627601224157, 0.0231284488243870278792979, 0.0229278441436868469204110, 0.0227135358502364613097126, 0.0224856520327449668718246, 0.0222443288937997651046291, 0.0219897106684604914341221, 0.0217219495380520753752610, 0.0214412055392084601371119, 0.0211476464682213485370195, 0.0208414477807511491135839, 0.0205227924869600694322850, 0.0201918710421300411806732, 0.0198488812328308622199444, 0.0194940280587066028230219, 0.0191275236099509454865185, 0.0187495869405447086509195, 0.0183604439373313432212893, 0.0179603271850086859401969, 0.0175494758271177046487069, 0.0171281354231113768306810, 0.0166965578015892045890915, 0.0162550009097851870516575, 0.0158037286593993468589656, 0.0153430107688651440859909, 0.0148731226021473142523855, 0.0143943450041668461768239, 0.0139069641329519852442880, 0.0134112712886163323144890, 0.0129075627392673472204428, 0.0123961395439509229688217, 0.0118773073727402795758911, 0.0113513763240804166932817, 0.0108186607395030762476596, 0.0102794790158321571332153, 0.0097341534150068058635483, 0.0091830098716608743344787, 0.0086263777986167497049788, 0.0080645898904860579729286, 0.0074979819256347286876720, 0.0069268925668988135634267, 0.0063516631617071887872143, 0.0057726375428656985893346, 0.0051901618326763302050708, 0.0046045842567029551182905, 0.0040162549837386423131943, 0.0034255260409102157743378, 0.0028327514714579910952857, 0.0022382884309626187436221, 0.0016425030186690295387909, 0.0010458126793403487793129, 0.0004493809602920903763943}; /* n = 256 */ static double x256[128] = {0.0061239123751895295011702, 0.0183708184788136651179263, 0.0306149687799790293662786, 0.0428545265363790983812423, 0.0550876556946339841045614, 0.0673125211657164002422903, 0.0795272891002329659032271, 0.0917301271635195520311456, 0.1039192048105094036391969, 0.1160926935603328049407349, 0.1282487672706070947420496, 0.1403856024113758859130249, 0.1525013783386563953746068, 0.1645942775675538498292845, 0.1766624860449019974037218, 0.1887041934213888264615036, 0.2007175933231266700680007, 0.2127008836226259579370402, 0.2246522667091319671478783, 0.2365699497582840184775084, 0.2484521450010566668332427, 0.2602970699919425419785609, 0.2721029478763366095052447, 0.2838680076570817417997658, 0.2955904844601356145637868, 0.3072686197993190762586103, 0.3189006618401062756316834, 0.3304848656624169762291870, 0.3420194935223716364807297, 0.3535028151129699895377902, 0.3649331078236540185334649, 0.3763086569987163902830557, 0.3876277561945155836379846, 0.3988887074354591277134632, 0.4100898214687165500064336, 0.4212294180176238249768124, 0.4323058260337413099534411, 0.4433173839475273572169258, 0.4542624399175899987744552, 0.4651393520784793136455705, 0.4759464887869833063907375, 0.4866822288668903501036214, 0.4973449618521814771195124, 0.5079330882286160362319249, 0.5184450196736744762216617, 0.5288791792948222619514764, 0.5392340018660591811279362, 0.5495079340627185570424269, 0.5596994346944811451369074, 0.5698069749365687590576675, 0.5798290385590829449218317, 0.5897641221544543007857861, 0.5996107353629683217303882, 0.6093674010963339395223108, 0.6190326557592612194309676, 0.6286050494690149754322099, 0.6380831462729113686686886, 0.6474655243637248626170162, 0.6567507762929732218875002, 0.6659375091820485599064084, 0.6750243449311627638559187, 0.6840099204260759531248771, 0.6928928877425769601053416, 0.7016719143486851594060835, 0.7103456833045433133945663, 0.7189128934599714483726399, 0.7273722596496521265868944, 0.7357225128859178346203729, 0.7439624005491115684556831, 0.7520906865754920595875297, 0.7601061516426554549419068, 0.7680075933524456359758906, 0.7757938264113257391320526, 0.7834636828081838207506702, 0.7910160119895459945467075, 0.7984496810321707587825429, 0.8057635748129986232573891, 0.8129565961764315431364104, 0.8200276660989170674034781, 0.8269757238508125142890929, 0.8337997271555048943484439, 0.8404986523457627138950680, 0.8470714945172962071870724, 0.8535172676795029650730355, 0.8598350049033763506961731, 0.8660237584665545192975154, 0.8720825999954882891300459, 0.8780106206047065439864349, 0.8838069310331582848598262, 0.8894706617776108888286766, 0.8950009632230845774412228, 0.9003970057703035447716200, 0.9056579799601446470826819, 0.9107830965950650118909072, 0.9157715868574903845266696, 0.9206227024251464955050471, 0.9253357155833162028727303, 0.9299099193340056411802456, 0.9343446275020030942924765, 0.9386391748378148049819261, 0.9427929171174624431830761, 0.9468052312391274813720517, 0.9506755153166282763638521, 0.9544031887697162417644479, 0.9579876924111781293657904, 0.9614284885307321440064075, 0.9647250609757064309326123, 0.9678769152284894549090038, 0.9708835784807430293209233, 0.9737445997043704052660786, 0.9764595497192341556210107, 0.9790280212576220388242380, 0.9814496290254644057693031, 0.9837240097603154961666861, 0.9858508222861259564792451, 0.9878297475648606089164877, 0.9896604887450652183192437, 0.9913427712075830869221885, 0.9928763426088221171435338, 0.9942609729224096649628775, 0.9954964544810963565926471, 0.9965826020233815404305044, 0.9975192527567208275634088, 0.9983062664730064440555005, 0.9989435258434088565550263, 0.9994309374662614082408542, 0.9997684374092631861048786, 0.9999560500189922307348012}; static double w256[128] = {0.0122476716402897559040703, 0.0122458343697479201424639, 0.0122421601042728007697281, 0.0122366493950401581092426, 0.0122293030687102789041463, 0.0122201222273039691917087, 0.0122091082480372404075141, 0.0121962627831147135181810, 0.0121815877594817721740476, 0.0121650853785355020613073, 0.0121467581157944598155598, 0.0121266087205273210347185, 0.0121046402153404630977578, 0.0120808558957245446559752, 0.0120552593295601498143471, 0.0120278543565825711612675, 0.0119986450878058119345367, 0.0119676359049058937290073, 0.0119348314595635622558732, 0.0119002366727664897542872, 0.0118638567340710787319046, 0.0118256971008239777711607, 0.0117857634973434261816901, 0.0117440619140605503053767, 0.0117005986066207402881898, 0.0116553800949452421212989, 0.0116084131622531057220847, 0.0115597048540436357726687, 0.0115092624770394979585864, 0.0114570935980906391523344, 0.0114032060430391859648471, 0.0113476078955454919416257, 0.0112903074958755095083676, 0.0112313134396496685726568, 0.0111706345765534494627109, 0.0111082800090098436304608, 0.0110442590908139012635176, 0.0109785814257295706379882, 0.0109112568660490397007968, 0.0108422955111147959952935, 0.0107717077058046266366536, 0.0106995040389797856030482, 0.0106256953418965611339617, 0.0105502926865814815175336, 0.0104733073841704030035696, 0.0103947509832117289971017, 0.0103146352679340150682607, 0.0102329722564782196569549, 0.0101497741990948656546341, 0.0100650535763063833094610, 0.0099788230970349101247339, 0.0098910956966958286026307, 0.0098018845352573278254988, 0.0097112029952662799642497, 0.0096190646798407278571622, 0.0095254834106292848118297, 0.0094304732257377527473528, 0.0093340483776232697124660, 0.0092362233309563026873787, 0.0091370127604508064020005, 0.0090364315486628736802278, 0.0089344947837582075484084, 0.0088312177572487500253183, 0.0087266159616988071403366, 0.0086207050884010143053688, 0.0085135010250224906938384, 0.0084050198532215357561803, 0.0082952778462352254251714, 0.0081842914664382699356198, 0.0080720773628734995009470, 0.0079586523687543483536132, 0.0078440334989397118668103, 0.0077282379473815556311102, 0.0076112830845456594616187, 0.0074931864548058833585998, 0.0073739657738123464375724, 0.0072536389258339137838291, 0.0071322239610753900716724, 0.0070097390929698226212344, 0.0068862026954463203467133, 0.0067616333001737987809279, 0.0066360495937810650445900, 0.0065094704150536602678099, 0.0063819147521078805703752, 0.0062534017395424012720636, 0.0061239506555679325423891, 0.0059935809191153382211277, 0.0058623120869226530606616, 0.0057301638506014371773844, 0.0055971560336829100775514, 0.0054633085886443102775705, 0.0053286415939159303170811, 0.0051931752508692809303288, 0.0050569298807868423875578, 0.0049199259218138656695588, 0.0047821839258926913729317, 0.0046437245556800603139791, 0.0045045685814478970686418, 0.0043647368779680566815684, 0.0042242504213815362723565, 0.0040831302860526684085998, 0.0039413976414088336277290, 0.0037990737487662579981170, 0.0036561799581425021693892, 0.0035127377050563073309711, 0.0033687685073155510120191, 0.0032242939617941981570107, 0.0030793357411993375832054, 0.0029339155908297166460123, 0.0027880553253277068805748, 0.0026417768254274905641208, 0.0024951020347037068508395, 0.0023480529563273120170065, 0.0022006516498399104996849, 0.0020529202279661431745488, 0.0019048808534997184044191, 0.0017565557363307299936069, 0.0016079671307493272424499, 0.0014591373333107332010884, 0.0013100886819025044578317, 0.0011608435575677247239706, 0.0010114243932084404526058, 0.0008618537014200890378141, 0.0007121541634733206669090, 0.0005623489540314098028152, 0.0004124632544261763284322, 0.0002625349442964459062875, 0.0001127890178222721755125}; /* n = 512 */ static double x512[256] = {0.0030649621851593961529232, 0.0091947713864329108047442, 0.0153242350848981855249677, 0.0214531229597748745137841, 0.0275812047119197840615246, 0.0337082500724805951232271, 0.0398340288115484476830396, 0.0459583107468090617788760, 0.0520808657521920701127271, 0.0582014637665182372392330, 0.0643198748021442404045319, 0.0704358689536046871990309, 0.0765492164062510452915674, 0.0826596874448871596284651, 0.0887670524624010326092165, 0.0948710819683925428909483, 0.1009715465977967786264323, 0.1070682171195026611052004, 0.1131608644449665349442888, 0.1192492596368204011642726, 0.1253331739174744696875513, 0.1314123786777137080093018, 0.1374866454852880630171099, 0.1435557460934960331730353, 0.1496194524497612685217272, 0.1556775367042018762501969, 0.1617297712181921097989489, 0.1677759285729161198103670, 0.1738157815779134454985394, 0.1798491032796159253350647, 0.1858756669698757062678115, 0.1918952461944840310240859, 0.1979076147616804833961808, 0.2039125467506523717658375, 0.2099098165200239314947094, 0.2158991987163350271904893, 0.2218804682825090362529109, 0.2278534004663095955103621, 0.2338177708287858931763260, 0.2397733552527061887852891, 0.2457199299509792442100997, 0.2516572714750633493170137, 0.2575851567233626262808095, 0.2635033629496102970603704, 0.2694116677712385990250046, 0.2753098491777350342234845, 0.2811976855389846383013106, 0.2870749556135979555970354, 0.2929414385572244074855835, 0.2987969139308507415853707, 0.3046411617090842500066247, 0.3104739622884204453906292, 0.3162950964954948840736281, 0.3221043455953188263048133, 0.3279014912994984240551598, 0.3336863157744371275728377, 0.3394586016495210024715049, 0.3452181320252866497799379, 0.3509646904815714220351686, 0.3566980610856456291665404, 0.3624180284003264285948478, 0.3681243774920730946589582, 0.3738168939390633631820054, 0.3794953638392505477003659, 0.3851595738184011246011504, 0.3908093110381124851478484, 0.3964443632038105531190080, 0.4020645185727269675414064, 0.4076695659618555307670286, 0.4132592947558876229222955, 0.4188334949151262845483445, 0.4243919569833786700527309, 0.4299344720958265754056529, 0.4354608319868747443376920, 0.4409708289979766581310498, 0.4464642560854375149423431, 0.4519409068281941054521446, 0.4574005754355712925046003, 0.4628430567550148032795831, 0.4682681462798000434299255, 0.4736756401567166435172692, 0.4790653351937284489919577, 0.4844370288676086658851277, 0.4897905193315498753147078, 0.4951256054227486308513615, 0.5004420866699643537454866, 0.5057397633010522419821678, 0.5110184362504699101074361, 0.5162779071667574777562819, 0.5215179784199908258105606, 0.5267384531092077401231844, 0.5319391350698066637637706, 0.5371198288809177797701793, 0.5422803398727461474300859, 0.5474204741338866161668468, 0.5525400385186102421644070, 0.5576388406541219339368088, 0.5627166889477890541289656, 0.5677733925943407059267120, 0.5728087615830374335557009, 0.5778226067048110674604360, 0.5828147395593744458765762, 0.5877849725623007456415722, 0.5927331189520721562306608, 0.5976589927970976321572046, 0.6025624090026994600382737, 0.6074431833180683777981926, 0.6123011323431869846644595, 0.6171360735357211818019505, 0.6219478252178793846326095, 0.6267362065832392490988318, 0.6315010377035416553494506, 0.6362421395354516935575740, 0.6409593339272863978194482, 0.6456524436257089753330001, 0.6503212922823892793136899, 0.6549657044606302753737317, 0.6595855056419602523685720, 0.6641805222326905300017078, 0.6687505815704384167754210, 0.6732955119306151731807642, 0.6778151425328787363350998, 0.6823093035475509635996236, 0.6867778261019991540425409, 0.6912205422869816079558685, 0.6956372851629569859851427, 0.7000278887663572307915895, 0.7043921881158238155354902, 0.7087300192184070848475163, 0.7130412190757284553416507, 0.7173256256901052441189100, 0.7215830780706378951153816, 0.7258134162392593745610389, 0.7300164812367465082373380, 0.7341921151286930346516885, 0.7383401610114441496854630, 0.7424604630179923197192207, 0.7465528663238341416942072, 0.7506172171527880300329109, 0.7546533627827725118134392, 0.7586611515515449130726824, 0.7626404328624002206015913, 0.7665910571898299050923647, 0.7705128760851404930018538, 0.7744057421820316760079998, 0.7782695092021337484565606, 0.7821040319605041647237048, 0.7859091663710830099561901, 0.7896847694521071791947507, 0.7934306993314830614379285, 0.7971468152521175267628422, 0.8008329775772070161862372, 0.8044890477954845355235412, 0.8081148885264243560855026, 0.8117103635254042266412553, 0.8152753376888249026732770, 0.8188096770591868005536242, 0.8223132488301235858819787, 0.8257859213513925068443721, 0.8292275641338212850768968, 0.8326380478542113781512150, 0.8360172443601974294381733, 0.8393650266750627227522641, 0.8426812690025104608329811, 0.8459658467313906883792422, 0.8492186364403826820199251, 0.8524395159026326312771384, 0.8556283640903464362590494, 0.8587850611793374495058711, 0.8619094885535289911058997, 0.8650015288094114678982387, 0.8680610657604539292849800, 0.8710879844414698938880857, 0.8740821711129372830049576, 0.8770435132652722985416439, 0.8799718996230570848337538, 0.8828672201492210155023745, 0.8857293660491754482355527, 0.8885582297749017921351663, 0.8913537050289927340242104, 0.8941156867686464718706125, 0.8968440712096138052506156, 0.8995387558300979345474886, 0.9021996393746068223597927, 0.9048266218577579723776075, 0.9074196045680354827749729, 0.9099784900714992329623006, 0.9125031822154460643436214, 0.9149935861320228175302595, 0.9174496082417910902748409, 0.9198711562572435822074657, 0.9222581391862718942794141, 0.9246104673355856526489486, 0.9269280523140828285786768, 0.9292108070361711277546193, 0.9314586457250403242837002, 0.9336714839158854164789745, 0.9358492384590804834007204, 0.9379918275233031229867813, 0.9400991705986093544775539, 0.9421711884994588697201555, 0.9442078033676905198230562, 0.9462089386754479255274304, 0.9481745192280551015654245, 0.9501044711668419871894147, 0.9519987219719197769813274, 0.9538572004649059479887372, 0.9556798368115988811866200, 0.9574665625246019772327448, 0.9592173104658971684737507, 0.9609320148493677311718534, 0.9626106112432703039637754, 0.9642530365726560206402068, 0.9658592291217406674540047, 0.9674291285362237773389233, 0.9689626758255565756615864, 0.9704598133651586944555050, 0.9719204848985835745206522, 0.9733446355396324773464471, 0.9747322117744170315712560, 0.9760831614633702416830300, 0.9773974338432058899681861, 0.9786749795288262664309572, 0.9799157505151781656726285, 0.9811197001790570947322311, 0.9822867832808596419166429, 0.9834169559662839640681455, 0.9845101757679783590716126, 0.9855664016071379024692622, 0.9865855937950491429603684, 0.9875677140345828729848910, 0.9885127254216350200148487, 0.9894205924465157453777048, 0.9902912809952868962106899, 0.9911247583510480415528399, 0.9919209931951714500244370, 0.9926799556084865573546763, 0.9934016170724147657859271, 0.9940859504700558793702825, 0.9947329300872282225027936, 0.9953425316134657151476031, 0.9959147321429772566997088, 0.9964495101755774022837600, 0.9969468456176038804367370, 0.9974067197828498321611183, 0.9978291153935628466036470, 0.9982140165816127953876923, 0.9985614088900397275573677, 0.9988712792754494246541769, 0.9991436161123782382453400, 0.9993784092025992514480161, 0.9995756497983108555936109, 0.9997353306710426625827368, 0.9998574463699794385446275, 0.9999419946068456536361287, 0.9999889909843818679872841}; static double w512[256] = {0.0061299051754057857591564, 0.0061296748380364986664278, 0.0061292141719530834395471, 0.0061285231944655327693402, 0.0061276019315380226384508, 0.0061264504177879366912426, 0.0061250686964845654506976, 0.0061234568195474804311878, 0.0061216148475445832082156, 0.0061195428496898295184288, 0.0061172409038406284754329, 0.0061147090964949169991245, 0.0061119475227879095684795, 0.0061089562864885234199252, 0.0061057354999954793256260, 0.0061022852843330780981965, 0.0060986057691466529805468, 0.0060946970926976980917399, 0.0060905594018586731119147, 0.0060861928521074844014940, 0.0060815976075216427620556, 0.0060767738407720980583934, 0.0060717217331167509334394, 0.0060664414743936418598512, 0.0060609332630138177841916, 0.0060551973059538766317450, 0.0060492338187481899521175, 0.0060430430254808039978627, 0.0060366251587770195404584, 0.0060299804597946507400317, 0.0060231091782149633972884, 0.0060160115722332929281516, 0.0060086879085493424136484, 0.0060011384623571610896056, 0.0059933635173348036527221, 0.0059853633656336707715812, 0.0059771383078675312031423, 0.0059686886531012259272183, 0.0059600147188390547233923, 0.0059511168310128456267588, 0.0059419953239697077107922, 0.0059326505404594676575446, 0.0059230828316217905872556, 0.0059132925569729856313229, 0.0059032800843924967444267, 0.0058930457901090792634301, 0.0058825900586866627324847, 0.0058719132830099005255609, 0.0058610158642694068093892, 0.0058498982119466814015496, 0.0058385607437987230901727, 0.0058270038858423319934219, 0.0058152280723381015486124, 0.0058032337457741007324836, 0.0057910213568492471257818, 0.0057785913644563714469284, 0.0057659442356649741911390, 0.0057530804457036750229319, 0.0057400004779423555815070, 0.0057267048238739963699973, 0.0057131939830962084110906, 0.0056994684632924603629882, 0.0056855287802130018011102, 0.0056713754576554833823756, 0.0056570090274452746202723, 0.0056424300294154800102991, 0.0056276390113866542566918, 0.0056126365291462173626557, 0.0055974231464275703576030, 0.0055819994348889124461425, 0.0055663659740917603747899, 0.0055505233514791708235538, 0.0055344721623536666407146, 0.0055182130098548677502395, 0.0055017465049368275723757, 0.0054850732663450758090285, 0.0054681939205933684565648, 0.0054511091019401459196852, 0.0054338194523647001109732, 0.0054163256215430514316688, 0.0053986282668235365401123, 0.0053807280532021078251738, 0.0053626256532973455128155, 0.0053443217473251833447318, 0.0053258170230733487787774, 0.0053071121758755186716175, 0.0052882079085851914147269, 0.0052691049315492765055207, 0.0052498039625814025460136, 0.0052303057269349446719890, 0.0052106109572757724261988, 0.0051907203936547190996206, 0.0051706347834797735752665, 0.0051503548814879957194620, 0.0051298814497171563759039, 0.0051092152574771030281542, 0.0050883570813208522065339, 0.0050673077050154097256505, 0.0050460679195123198490183, 0.0050246385229179444874178, 0.0050030203204634735477834, 0.0049812141244746675595135, 0.0049592207543413337151533, 0.0049370410364865364724225, 0.0049146758043355438745290, 0.0048921258982845107556462, 0.0048693921656689000083132, 0.0048464754607316430993636, 0.0048233766445910410307843, 0.0048000965852084069516609, 0.0047766361573554516370718, 0.0047529962425814130594576, 0.0047291777291799312876071, 0.0047051815121556699579709, 0.0046810084931906855725376, 0.0046566595806105458869828, 0.0046321356893501986622283, 0.0046074377409195920619320, 0.0045825666633690479877601, 0.0045575233912543896535753, 0.0045323088656018247089130, 0.0045069240338725852313010, 0.0044813698499273259161146, 0.0044556472739902818017469, 0.0044297572726131868769073, 0.0044037008186389549258496, 0.0043774788911651239762643, 0.0043510924755070657234522, 0.0043245425631609613132305, 0.0042978301517665448748000, 0.0042709562450696162035304, 0.0042439218528843240022977, 0.0042167279910552210986262, 0.0041893756814190930634598, 0.0041618659517665616659011, 0.0041341998358034646067195, 0.0041063783731120129818357, 0.0040784026091117279353449, 0.0040502735950201579699371, 0.0040219923878133783908191, 0.0039935600501862743674273, 0.0039649776505126091053562, 0.0039362462628048786290012, 0.0039073669666739546834366, 0.0038783408472885172720108, 0.0038491689953342783540510, 0.0038198525069729982349166, 0.0037903924838012961884344, 0.0037607900328092568594835, 0.0037310462663388340021755, 0.0037011623020420531166926, 0.0036711392628390145554094, 0.0036409782768756986764252, 0.0036106804774815746300758, 0.0035802470031270143713799, 0.0035496789973805134987000, 0.0035189776088657205261605, 0.0034881439912182762045767, 0.0034571793030424645127888, 0.0034260847078676769483860, 0.0033948613741046917538288, 0.0033635104750017697209450, 0.0033320331886005682236783, 0.0033004306976918751358177, 0.0032687041897711642972145, 0.0032368548569939741987234, 0.0032048838961311115627642, 0.0031727925085236815030060, 0.0031405819000379459532169, 0.0031082532810200120618074, 0.0030758078662503522550163, 0.0030432468748981576780527, 0.0030105715304755267298129, 0.0029777830607914904130339, 0.0029448826979058762279357, 0.0029118716780830123435331, 0.0028787512417452737868732, 0.0028455226334264723964728, 0.0028121871017250922921949, 0.0027787458992573726197173, 0.0027452002826102393336092, 0.0027115515122940877888456, 0.0026778008526954179163600, 0.0026439495720293237639656, 0.0026099989422918391896635, 0.0025759502392121415000167, 0.0025418047422046148318992, 0.0025075637343207750815413, 0.0024732285022010581903898, 0.0024388003360264736029032, 0.0024042805294701247170072, 0.0023696703796485981535706, 0.0023349711870732236769383, 0.0023001842556012066042973, 0.0022653108923866345474810, 0.0022303524078313603367724, 0.0021953101155357629823745, 0.0021601853322493885355395, 0.0021249793778214727179358, 0.0020896935751513471947536, 0.0020543292501387313744068, 0.0020188877316339116255770, 0.0019833703513878098109153, 0.0019477784440019430461334, 0.0019121133468782766036998, 0.0018763764001689718921795, 0.0018405689467260314557679, 0.0018046923320508429542037, 0.0017687479042436241015783, 0.0017327370139527705642995, 0.0016966610143241088445575, 0.0016605212609500562072903, 0.0016243191118186897474239, 0.0015880559272627267421479, 0.0015517330699084184928942, 0.0015153519046243599371387, 0.0014789137984702174059640, 0.0014424201206453770259886, 0.0014058722424375164225552, 0.0013692715371711025869345, 0.0013326193801558190401403, 0.0012959171486349257824991, 0.0012591662217335559930561, 0.0012223679804069540808915, 0.0011855238073886605549070, 0.0011486350871386503607080, 0.0011117032057914329649653, 0.0010747295511041247428251, 0.0010377155124045074300544, 0.0010006624805390909706032, 0.0009635718478212056798501, 0.0009264450079791582697455, 0.0008892833561045005372012, 0.0008520882886004809402792, 0.0008148612031307819965602, 0.0007776034985686972438014, 0.0007403165749469818962867, 0.0007030018334087411433900, 0.0006656606761599343409382, 0.0006282945064244358390880, 0.0005909047284032230162400, 0.0005534927472403894647847, 0.0005160599690007674370993, 0.0004786078006679509066920, 0.0004411376501795405636493, 0.0004036509265333198797447, 0.0003661490400356268530141, 0.0003286334028523334162522, 0.0002911054302514885125319, 0.0002535665435705865135866, 0.0002160181779769908583388, 0.0001784618055459532946077, 0.0001408990173881984930124, 0.0001033319034969132362968, 0.0000657657316592401958310, 0.0000282526373739346920387}; /* n = 1024 */ static double x1024[512] = {0.0015332313560626384065387, 0.0045996796509132604743248, 0.0076660846940754867627839, 0.0107324176515422803327458, 0.0137986496899844401539048, 0.0168647519770217265449962, 0.0199306956814939776907024, 0.0229964519737322146859283, 0.0260619920258297325581921, 0.0291272870119131747190088, 0.0321923081084135882953009, 0.0352570264943374577920498, 0.0383214133515377145376052, 0.0413854398649847193632977, 0.0444490772230372159692514, 0.0475122966177132524285687, 0.0505750692449610682823599, 0.0536373663049299446784129, 0.0566991590022410150066456, 0.0597604185462580334848567, 0.0628211161513580991486838, 0.0658812230372023327000985, 0.0689407104290065036692117, 0.0719995495578116053446277, 0.0750577116607543749280791, 0.0781151679813377563695878, 0.0811718897697013033399379, 0.0842278482828915197978074, 0.0872830147851321356094940, 0.0903373605480943146797811, 0.0933908568511667930531222, 0.0964434749817259444449839, 0.0994951862354057706638682, 0.1025459619163678143852404, 0.1055957733375709917393206, 0.1086445918210413421754502, 0.1116923886981416930665228, 0.1147391353098412365177689, 0.1177848030069850158450139, 0.1208293631505633191883714, 0.1238727871119809777282145, 0.1269150462733265659711591, 0.1299561120276415015747167, 0.1329959557791890421802183, 0.1360345489437231767245806, 0.1390718629487574087024745, 0.1421078692338334288514767, 0.1451425392507896747338214, 0.1481758444640297746894331, 0.1512077563507908736360111, 0.1542382464014118381930443, 0.1572672861196013386077717, 0.1602948470227058049622614, 0.1633209006419772551419632, 0.1663454185228409920472972, 0.1693683722251631675310675, 0.1723897333235182105457458, 0.1754094734074561169859457, 0.1784275640817695987127083, 0.1814439769667610892475458, 0.1844586836985096036255346, 0.1874716559291374498981239, 0.1904828653270767897777182, 0.1934922835773360459175133, 0.1964998823817661533215037, 0.1995056334593266523810493, 0.2025095085463516210358758, 0.2055114793968154435588961, 0.2085115177825984134657778, 0.2115095954937521680517391, 0.2145056843387649520596422, 0.2174997561448267079850562, 0.2204917827580939905255947, 0.2234817360439547026834844, 0.2264695878872926510320010, 0.2294553101927519176581055, 0.2324388748850010462953415, 0.2354202539089970401627982, 0.2383994192302491690277166, 0.2413763428350825830111093, 0.2443509967309017306575811, 0.2473233529464535787923793, 0.2502933835320906316905658, 0.2532610605600337470850902, 0.2562263561246347465424530, 0.2591892423426388177365829, 0.2621496913534467061535080, 0.2651076753193766937613805, 0.2680631664259263621824189, 0.2710161368820341379053566, 0.2739665589203406170790369, 0.2769144047974496674298651, 0.2798596467941893048479266, 0.2828022572158723421886958, 0.2857422083925568078394062, 0.2886794726793061316013119, 0.2916140224564490954412652, 0.2945458301298395466682397, 0.2974748681311158710926665, 0.3004011089179602237287060, 0.3033245249743575146018584, 0.3062450888108541472266190, 0.3091627729648165073212094, 0.3120775500006891993287636, 0.3149893925102530283167230, 0.3178982731128827248285835, 0.3208041644558044102645582, 0.3237070392143528003701590, 0.3266068700922281444141618, 0.3295036298217528976399056, 0.3323972911641281245763845, 0.3352878269096896307981228, 0.3381752098781638207253743, 0.3410594129189232790587667, 0.3439404089112420734451077, 0.3468181707645507759736923, 0.3496926714186912011050938, 0.3525638838441708576370887, 0.3554317810424171123150528, 0.3582963360460310626968790, 0.3611575219190411168852009, 0.3640153117571562777424605, 0.3668696786880191292071420, 0.3697205958714585223322883, 0.3725680364997419586702471, 0.3754119737978276686304337, 0.3782523810236163824397703, 0.3810892314682027913383487, 0.3839224984561266966457784, 0.3867521553456238443366159, 0.3895781755288764427662286, 0.3924005324322633611914264, 0.3952191995166100067331951, 0.3980341502774378774318886, 0.4008453582452137890482864, 0.4036527969855987732669841, 0.4064564400996966449616823, 0.4092562612243022361850445, 0.4120522340321492945489319, 0.4148443322321580436639788, 0.4176325295696824033106488, 0.4204167998267568670171117, 0.4231971168223430347225035, 0.4259734544125757982073747, 0.4287457864910091769763965, 0.4315140869888618022816824, 0.4342783298752620469783905, 0.4370384891574927989076034, 0.4397945388812358755048319, 0.4425464531308160773358662, 0.4452942060294448782650898, 0.4480377717394637499647905, 0.4507771244625871184774399, 0.4535122384401449505463744, 0.4562430879533249674337895, 0.4589696473234144839484647, 0.4616918909120418704091584, 0.4644097931214176352731591, 0.4671233283945751261630457, 0.4698324712156108470282980, 0.4725371961099243891820077, 0.4752374776444579739565725, 0.4779332904279356047259052, 0.4806246091111018260453658, 0.4833114083869600876643171, 0.4859936629910107111699206, 0.4886713477014884570245255, 0.4913444373395996897627612, 0.4940129067697591391182235, 0.4966767308998262548534419, 0.4993358846813411530706387, 0.5019903431097601517846292, 0.5046400812246908935430768, 0.5072850741101270528831987, 0.5099252968946826264179220, 0.5125607247518258033484145, 0.5151913329001124142038603, 0.5178170966034189556133159, 0.5204379911711751889184691, 0.5230539919585963104401304, 0.5256650743669146912153147, 0.5282712138436111840258187, 0.5308723858826459955432696, 0.5334685660246891214197081, 0.5360597298573503421568799, 0.5386458530154087775915395, 0.5412269111810419978382210, 0.5438028800840546885350993, 0.5463737355021068682427603, 0.5489394532609416558499039, 0.5515000092346125858442412, 0.5540553793457104693110943, 0.5566055395655897985264809, 0.5591504659145946930157566, 0.5616901344622843849532002, 0.5642245213276582417822586, 0.5667536026793803239405196, 0.5692773547360034755778519, 0.5717957537661929461605442, 0.5743087760889495408586850, 0.5768163980738322976184566, 0.5793185961411806888254667, 0.5818153467623363454697137, 0.5843066264598643017272666, 0.5867924118077737578782574, 0.5892726794317383594853053, 0.5917474060093159907610475, 0.5942165682701680800580147, 0.5966801429962784154186793, 0.5991381070221714681281111, 0.6015904372351302222163013, 0.6040371105754135078618616, 0.6064781040364728366534687, 0.6089133946651687366701116, 0.6113429595619865853458987, 0.6137667758812519380899084, 0.6161848208313453506363029, 0.6185970716749166931046915, 0.6210035057290989537555048, 0.6234041003657215304299416, 0.6257988330115230076688675, 0.6281876811483634175098794, 0.6305706223134359819666081, 0.6329476340994783351992008, 0.6353186941549832233898213, 0.6376837801844086803419153, 0.6400428699483876768269192, 0.6423959412639372417070377, 0.6447429720046670528676835, 0.6470839401009874959981582, 0.6494188235403171892641570, 0.6517476003672899719207013, 0.6540702486839613549191454, 0.6563867466500144315669620, 0.6586970724829652463040876, 0.6610012044583676196647058, 0.6632991209100174274984589, 0.6655908002301563325302097, 0.6678762208696749663426270, 0.6701553613383155598710345, 0.6724282002048740205051479, 0.6746947160974014538975312, 0.6769548877034051285838219, 0.6792086937700488815250166, 0.6814561131043529626873631, 0.6836971245733933167806834, 0.6859317071045003002812397, 0.6881598396854568318705713, 0.6903815013646959744270519, 0.6925966712514979467122689, 0.6948053285161865628996815, 0.6970074523903250980984011, 0.6992030221669115780303307, 0.7013920172005734910243170, 0.7035744169077619204963997, 0.7057502007669450960906928, 0.7079193483188013616608982, 0.7100818391664115582779368, 0.7122376529754508204546805, 0.7143867694743797837842896, 0.7165291684546352021941915, 0.7186648297708199730232898, 0.7207937333408925681355609, 0.7229158591463558692887801, 0.7250311872324454059827217, 0.7271396977083169940167956, 0.7292413707472337729927181, 0.7313361865867526410034676, 0.7334241255289100847554419, 0.7355051679404074033764222, 0.7375792942527953241676460, 0.7396464849626580085640129, 0.7417067206317964465721772, 0.7437599818874112379620360, 0.7458062494222847584928838, 0.7478455039949627094612890, 0.7498777264299350488635483, 0.7519028976178163024713854, 0.7539209985155252531253957, 0.7559320101464640065565832, 0.7579359136006964320521972, 0.7599326900351259762879594, 0.7619223206736728486546595, 0.7639047868074505764130149, 0.7658800697949419280166093, 0.7678481510621742029486694, 0.7698090121028938864243967, 0.7717626344787406673165402, 0.7737089998194208176678866, 0.7756480898228799321603470, 0.7775798862554750259163361, 0.7795043709521459890141759, 0.7814215258165863961053031, 0.7833313328214136695271245, 0.7852337740083385943114429, 0.7871288314883341834944720, 0.7890164874418038921405657, 0.7908967241187491784979139, 0.7927695238389364107105941, 0.7946348689920631175175217, 0.7964927420379235813750136, 0.7983431255065737724458586, 0.8001860019984956219039900, 0.8020213541847606330100649, 0.8038491648071928284194859, 0.8056694166785310321906380, 0.8074820926825904849673728, 0.8092871757744237908160400, 0.8110846489804811942036542, 0.8128744953987701856100790, 0.8146566981990144342734272, 0.8164312406228120465742028, 0.8181981059837931485700490, 0.8199572776677767911993239, 0.8217087391329271766780945, 0.8234524739099092046215225, 0.8251884656020433364270094, 0.8269166978854597764628854, 0.8286371545092519686128428, 0.8303498192956294067327593, 0.8320546761400697575830038, 0.8337517090114702948057846, 0.8354409019522986425235764, 0.8371222390787428271411563, 0.8387957045808606359402829, 0.8404612827227282810625704, 0.8421189578425883674826439, 0.8437687143529971635802028, 0.8454105367409711729261812, 0.8470444095681330059047621, 0.8486703174708565497995875, 0.8502882451604114359791023, 0.8518981774231068028225812, 0.8535000991204343530350070, 0.8550939951892107040056078, 0.8566798506417190298715048, 0.8582576505658499939545848, 0.8598273801252419702463831, 0.8613890245594205526224495, 0.8629425691839373504743648, 0.8644879993905080694542896, 0.8660253006471498760336444, 0.8675544584983180445842596, 0.8690754585650418856970762, 0.8705882865450599544602407, 0.8720929282129545374252050, 0.8735893694202854169962281, 0.8750775960957229119854680, 0.8765575942451801930826613, 0.8780293499519448719952049, 0.8794928493768098630212838, 0.8809480787582035158255322, 0.8823950244123190181935674, 0.8838336727332430675485994, 0.8852640101930838100201983, 0.8866860233420980458621863, 0.8880996988088177000235219, 0.8895050233001755566829532, 0.8909019836016302565651375, 0.8922905665772905558628607, 0.8936707591700388455969280, 0.8950425484016539302522575, 0.8964059213729330645356690, 0.8977608652638132471078410, 0.8991073673334917701488930, 0.9004454149205460236240486, 0.9017749954430525531228459, 0.9030960963987053701523781, 0.9044087053649335137720782, 0.9057128099990178624646022, 0.9070083980382071951444166, 0.9082954572998335002127549, 0.9095739756814265315746820, 0.9108439411608276105410847, 0.9121053417963026725455006, 0.9133581657266545576127977, 0.9146024011713345435238301, 0.9158380364305531206273175, 0.9170650598853900072573273, 0.9182834599979034047218800, 0.9194932253112384908353520, 0.9206943444497351509745089, 0.9218868061190349456451742, 0.9230705991061873135537215, 0.9242457122797550091847637, 0.9254121345899187738936182, 0.9265698550685812395293315, 0.9277188628294700636112689, 0.9288591470682402950895005, 0.9299906970625759697264543, 0.9311135021722909341445515, 0.9322275518394288975917975, 0.9333328355883627104845635, 0.9344293430258928687940732, 0.9355170638413452433503852, 0.9365959878066680331449597, 0.9376661047765279417201973, 0.9387274046884055757416456, 0.9397798775626900648558921, 0.9408235135027729019444869, 0.9418583026951410028915762, 0.9428842354094689849902736, 0.9439013019987106631201510, 0.9449094928991897628355911, 0.9459087986306898495121205, 0.9468992097965434727052183, 0.9478807170837205248834878, 0.9488533112629158137054760, 0.9498169831886358470168335, 0.9507717237992848297519245, 0.9517175241172498719314184, 0.9526543752489854069548347, 0.9535822683850968193944507, 0.9545011948004232815044368, 0.9554111458541197976665483, 0.9563121129897384560011695, 0.9572040877353088863799924, 0.9580870617034179240840996, 0.9589610265912884783587268, 0.9598259741808576051234879, 0.9606818963388537831043733, 0.9615287850168733926613630, 0.9623666322514563965930439, 0.9631954301641612222071790, 0.9640151709616388439537466, 0.9648258469357060659245549, 0.9656274504634180035311332, 0.9664199740071397636802195, 0.9672034101146173227737943, 0.9679777514190476018682591, 0.9687429906391477383350273, 0.9694991205792235533724866, 0.9702461341292372147270016, 0.9709840242648740939883669, 0.9717127840476088178328839, 0.9724324066247705125950353, 0.9731428852296072415565604, 0.9738442131813496343496072, 0.9745363838852737078785517, 0.9752193908327628781730396, 0.9758932276013691625928266, 0.9765578878548735718130775, 0.9772133653433456910269459, 0.9778596539032024498104955, 0.9784967474572660801033674, 0.9791246400148212617670490, 0.9797433256716714551911835, 0.9803527986101944204270933, 0.9809530530993969223366037, 0.9815440834949686212533729, 0.9821258842393351486632952, 0.9826984498617103674201996, 0.9832617749781478160230522, 0.9838158542915913364912672, 0.9843606825919248853856025, 0.9848962547560215275335618, 0.9854225657477916120303537, 0.9859396106182301300994116, 0.9864473845054632544104222, 0.9869458826347940594679517, 0.9874351003187474227003598, 0.9879150329571141058970610, 0.9883856760369940166627304, 0.9888470251328386495802522, 0.9892990759064927068006818, 0.9897418241072348978090276, 0.9901752655718179181502248, 0.9905993962245076069415402, 0.9910142120771212830473891, 0.9914197092290652598522332, 0.9918158838673715386394944, 0.9922027322667336806727008, 0.9925802507895418581838653, 0.9929484358859170846092543, 0.9933072840937446245820355, 0.9936567920387065844051246, 0.9939969564343136839997662, 0.9943277740819362116746914, 0.9946492418708341635125525, 0.9949613567781865697596566, 0.9952641158691200113800912, 0.9955575162967363309635588, 0.9958415553021395435525955, 0.9961162302144619548145649, 0.9963815384508894965215124, 0.9966374775166862927999356, 0.9968840450052184754903082, 0.9971212385979772738362093, 0.9973490560646014135491635, 0.9975674952628988745188845, 0.9977765541388680773265018, 0.9979762307267185998745420, 0.9981665231488915727109186, 0.9983474296160799746514418, 0.9985189484272491654281575, 0.9986810779696581776171579, 0.9988338167188825964389443, 0.9989771632388403756649803, 0.9991111161818228462260355, 0.9992356742885348165163858, 0.9993508363881507486653971, 0.9994566013984000492749057, 0.9995529683257070064969677, 0.9996399362654382464576482, 0.9997175044023747284307007, 0.9997856720116889628341744, 0.9998444384611711916084367, 0.9998938032169419878731474, 0.9999337658606177711221103, 0.9999643261538894550943330, 0.9999854843850284447675914, 0.9999972450545584403516182}; static double w1024[512] = {0.0030664603092439082115513, 0.0030664314747171934849726, 0.0030663738059349007324470, 0.0030662873034393008056861, 0.0030661719680437936084028, 0.0030660278008329004477528, 0.0030658548031622538363679, 0.0030656529766585847450783, 0.0030654223232197073064431, 0.0030651628450145009692318, 0.0030648745444828901040266, 0.0030645574243358210601357, 0.0030642114875552366740338, 0.0030638367373940482295700, 0.0030634331773761048702058, 0.0030630008112961604635720, 0.0030625396432198379186545, 0.0030620496774835909559465, 0.0030615309186946633309249, 0.0030609833717310455112352, 0.0030604070417414288079918, 0.0030598019341451569616257, 0.0030591680546321751827342, 0.0030585054091629766484119, 0.0030578140039685464545661, 0.0030570938455503030247440, 0.0030563449406800369760227, 0.0030555672963998474425352, 0.0030547609200220758572342, 0.0030539258191292371925135, 0.0030530620015739486603347, 0.0030521694754788558725307, 0.0030512482492365564619779, 0.0030502983315095211653578, 0.0030493197312300123682482, 0.0030483124576000001133114, 0.0030472765200910755723677, 0.0030462119284443619831693, 0.0030451186926704230517109, 0.0030439968230491688209395, 0.0030428463301297590067471, 0.0030416672247305038021562, 0.0030404595179387621506312, 0.0030392232211108374894710, 0.0030379583458718709642643, 0.0030366649041157321154111, 0.0030353429080049070377385, 0.0030339923699703840142628, 0.0030326133027115366251721, 0.0030312057191960043331307, 0.0030297696326595705460252, 0.0030283050566060381583022, 0.0030268120048071025720655, 0.0030252904913022221991274, 0.0030237405303984864452325, 0.0030221621366704811776946, 0.0030205553249601516777118, 0.0030189201103766630786495, 0.0030172565082962582916016, 0.0030155645343621134195681, 0.0030138442044841906616068, 0.0030120955348390887083441, 0.0030103185418698906302495, 0.0030085132422860092601062, 0.0030066796530630300711306, 0.0030048177914425515522176, 0.0030029276749320230818149, 0.0030010093213045803019478, 0.0029990627485988779939449, 0.0029970879751189204574353, 0.0029950850194338893942123, 0.0029930539003779692985814, 0.0029909946370501703558363, 0.0029889072488141488505262, 0.0029867917552980250862041, 0.0029846481763941988183689, 0.0029824765322591622023349, 0.0029802768433133102577897, 0.0029780491302407488518214, 0.0029757934139891002022209, 0.0029735097157693059028890, 0.0029711980570554274731990, 0.0029688584595844444331918, 0.0029664909453560499065010, 0.0029640955366324437529314, 0.0029616722559381232326340, 0.0029592211260596712038487, 0.0029567421700455418562030, 0.0029542354112058439815854, 0.0029517008731121217846274, 0.0029491385795971332348581, 0.0029465485547546259626151, 0.0029439308229391107008170, 0.0029412854087656322747309, 0.0029386123371095381418860, 0.0029359116331062444843108, 0.0029331833221509998552933, 0.0029304274298986463828860, 0.0029276439822633785324025, 0.0029248330054184994301727, 0.0029219945257961747508486, 0.0029191285700871841705750, 0.0029162351652406703883623, 0.0029133143384638857180205, 0.0029103661172219362530391, 0.0029073905292375236068160, 0.0029043876024906842306667, 0.0029013573652185263120627, 0.0028982998459149642555740, 0.0028952150733304507490135, 0.0028921030764717064173001, 0.0028889638846014470665859, 0.0028857975272381085212091, 0.0028826040341555690560623, 0.0028793834353828694269858, 0.0028761357612039305018167, 0.0028728610421572684947521, 0.0028695593090357078067012, 0.0028662305928860914743281, 0.0028628749250089892305081, 0.0028594923369584031789413, 0.0028560828605414710856927, 0.0028526465278181672904478, 0.0028491833711010012402964, 0.0028456934229547136488796, 0.0028421767161959702837564, 0.0028386332838930533848701, 0.0028350631593655507170153, 0.0028314663761840422592303, 0.0028278429681697845340603, 0.0028241929693943925796601, 0.0028205164141795195677262, 0.0028168133370965340702726, 0.0028130837729661949782821, 0.0028093277568583240752928, 0.0028055453240914762689974, 0.0028017365102326074839556, 0.0027979013510967402185435, 0.0027940398827466267692845, 0.0027901521414924101257281, 0.0027862381638912825390663, 0.0027822979867471417676962, 0.0027783316471102450029635, 0.0027743391822768604783394, 0.0027703206297889167653083, 0.0027662760274336497592617, 0.0027622054132432473587211, 0.0027581088254944918412282, 0.0027539863027083999392661, 0.0027498378836498606195970, 0.0027456636073272705694208, 0.0027414635129921673927833, 0.0027372376401388605206822, 0.0027329860285040598383428, 0.0027287087180665020331547, 0.0027244057490465746667821, 0.0027200771619059379749851, 0.0027157229973471443987056, 0.0027113432963132558499974, 0.0027069380999874587163979, 0.0027025074497926766073634, 0.0026980513873911808464073, 0.0026935699546841987126055, 0.0026890631938115194351518, 0.0026845311471510979446691, 0.0026799738573186563850015, 0.0026753913671672833892344, 0.0026707837197870311237119, 0.0026661509585045101038391, 0.0026614931268824817854798, 0.0026568102687194489357814, 0.0026521024280492437872770, 0.0026473696491406139791397, 0.0026426119764968062894804, 0.0026378294548551481626046, 0.0026330221291866270351630, 0.0026281900446954674651512, 0.0026233332468187060677353, 0.0026184517812257642618999, 0.0026135456938180188319369, 0.0026086150307283703078113, 0.0026036598383208091684657, 0.0025986801631899798721388, 0.0025936760521607427178014, 0.0025886475522877335418257, 0.0025835947108549212540321, 0.0025785175753751632172710, 0.0025734161935897584747222, 0.0025682906134679988291122, 0.0025631408832067177780710, 0.0025579670512298373098703, 0.0025527691661879125638030, 0.0025475472769576743594882, 0.0025423014326415695994010, 0.0025370316825672995489502, 0.0025317380762873559984451, 0.0025264206635785553113127, 0.0025210794944415703629476, 0.0025157146191004603745948, 0.0025103260880021986466869, 0.0025049139518161981960773, 0.0024994782614338353016280, 0.0024940190679679709626349, 0.0024885364227524702745874, 0.0024830303773417197267843, 0.0024775009835101424263432, 0.0024719482932517112531633, 0.0024663723587794599504176, 0.0024607732325249921551741, 0.0024551509671379883737605, 0.0024495056154857109065099, 0.0024438372306525067265426, 0.0024381458659393083172574, 0.0024324315748631324732279, 0.0024266944111565770692147, 0.0024209344287673158020275, 0.0024151516818575909099866, 0.0024093462248037038747545, 0.0024035181121955041103265, 0.0023976673988358756439882, 0.0023917941397402217940673, 0.0023858983901359478493246, 0.0023799802054619417548485, 0.0023740396413680528093376, 0.0023680767537145683786720, 0.0023620915985716886306938, 0.0023560842322189992961374, 0.0023500547111449424606655, 0.0023440030920462853929883, 0.0023379294318275874140606, 0.0023318337876006648123684, 0.0023257162166840538103394, 0.0023195767766024715869239, 0.0023134155250862753614165, 0.0023072325200709195436049, 0.0023010278196964109553481, 0.0022948014823067621287099, 0.0022885535664494426857857, 0.0022822841308748288053830, 0.0022759932345356507817318, 0.0022696809365864386804193, 0.0022633472963829660967620, 0.0022569923734816920218464, 0.0022506162276392008214839, 0.0022442189188116403333494, 0.0022378005071541580875846, 0.0022313610530203356561684, 0.0022249006169616211363732, 0.0022184192597267597736437, 0.0022119170422612227292520, 0.0022053940257066339981005, 0.0021988502714001954820607, 0.0021922858408741102242558, 0.0021857007958550038097087, 0.0021790951982633439377969, 0.0021724691102128581719720, 0.0021658225940099498722195, 0.0021591557121531123157498, 0.0021524685273323410114303, 0.0021457611024285442134846, 0.0021390335005129516400021, 0.0021322857848465214018174, 0.0021255180188793451473363, 0.0021187302662500514289029, 0.0021119225907852072963166, 0.0021050950564987181231273, 0.0020982477275912256713511, 0.0020913806684495044002679, 0.0020844939436458560249764, 0.0020775876179375023304007, 0.0020706617562659762464561, 0.0020637164237565111901030, 0.0020567516857174286800274, 0.0020497676076395242297101, 0.0020427642551954515246552, 0.0020357416942391048895728, 0.0020286999908050000513193, 0.0020216392111076532034194, 0.0020145594215409583780096, 0.0020074606886775631310555, 0.0020003430792682425467160, 0.0019932066602412715667394, 0.0019860514987017956507927, 0.0019788776619311997736447, 0.0019716852173864757651327, 0.0019644742326995879988655, 0.0019572447756768374356240, 0.0019499969142982240274419, 0.0019427307167168074883601, 0.0019354462512580664378677, 0.0019281435864192559230531, 0.0019208227908687633255086, 0.0019134839334454626590447, 0.0019061270831580672642844, 0.0018987523091844809062265, 0.0018913596808711472808775, 0.0018839492677323979370705, 0.0018765211394497986196010, 0.0018690753658714940398285, 0.0018616120170115510799024, 0.0018541311630493004367905, 0.0018466328743286767122991, 0.0018391172213575569552912, 0.0018315842748070976623218, 0.0018240341055110702429247, 0.0018164667844651949558009, 0.0018088823828264733221690, 0.0018012809719125190225581, 0.0017936626232008872833327, 0.0017860274083284027592567, 0.0017783753990904859184165, 0.0017707066674404779358362, 0.0017630212854889641021349, 0.0017553193255030957535871, 0.0017476008599059107299616, 0.0017398659612756523665312, 0.0017321147023450870266539, 0.0017243471560008201813452, 0.0017165633952826110422716, 0.0017087634933826857546100, 0.0017009475236450491562317, 0.0016931155595647951096823, 0.0016852676747874154134422, 0.0016774039431081072989678, 0.0016695244384710795200224, 0.0016616292349688570408253, 0.0016537184068415843295541, 0.0016457920284763272637533, 0.0016378501744063736542136, 0.0016298929193105323938983, 0.0016219203380124312385075, 0.0016139325054798132252838, 0.0016059294968238317366751, 0.0015979113872983442154825, 0.0015898782522992045381361, 0.0015818301673635540527516, 0.0015737672081691112886347, 0.0015656894505334603439125, 0.0015575969704133379579831, 0.0015494898439039192754876, 0.0015413681472381023085203, 0.0015332319567857911038062, 0.0015250813490531776215856, 0.0015169164006820223329593, 0.0015087371884489335424584, 0.0015005437892646454426166, 0.0014923362801732949073323, 0.0014841147383516970308228, 0.0014758792411086194189814, 0.0014676298658840552399621, 0.0014593666902484950408286, 0.0014510897919021973371136, 0.0014427992486744579821480, 0.0014344951385228783230315, 0.0014261775395326321501237, 0.0014178465299157314469528, 0.0014095021880102909474427, 0.0014011445922797915073771, 0.0013927738213123422970256, 0.0013843899538199418218713, 0.0013759930686377377783877, 0.0013675832447232857518263, 0.0013591605611558067629844, 0.0013507250971354436709363, 0.0013422769319825164387192, 0.0013338161451367762689788, 0.0013253428161566586165863, 0.0013168570247185350852537, 0.0013083588506159642151809, 0.0012998483737589411687807, 0.0012913256741731463215379, 0.0012827908319991927650686, 0.0012742439274918727294554, 0.0012656850410194029319476, 0.0012571142530626688591208, 0.0012485316442144679896043, 0.0012399372951787519644928, 0.0012313312867698677125706, 0.0012227136999117975374834, 0.0012140846156373981740056, 0.0012054441150876388205601, 0.0011967922795108381551550, 0.0011881291902619003419159, 0.0011794549288015500353964, 0.0011707695766955663898644, 0.0011620732156140160807669, 0.0011533659273304853455891, 0.0011446477937213110513287, 0.0011359188967648107958214, 0.0011271793185405120501566, 0.0011184291412283803494364, 0.0011096684471080465391373, 0.0011008973185580330843445, 0.0010921158380549794491381, 0.0010833240881728665534171, 0.0010745221515822403144596, 0.0010657101110494342805238, 0.0010568880494357913638046, 0.0010480560496968846800697, 0.0010392141948817375023057, 0.0010303625681320423357186, 0.0010215012526813791214350, 0.0010126303318544325762649, 0.0010037498890662086758941, 0.0009948600078212502888805, 0.0009859607717128519688418, 0.0009770522644222739122264, 0.0009681345697179550890732, 0.0009592077714547255541688, 0.0009502719535730179460261, 0.0009413272000980781811114, 0.0009323735951391753507612, 0.0009234112228888108282347, 0.0009144401676219265933610, 0.0009054605136951127822476, 0.0008964723455458144695262, 0.0008874757476915376906225, 0.0008784708047290547115472, 0.0008694576013336085537138, 0.0008604362222581167813022, 0.0008514067523323745586954, 0.0008423692764622569855308, 0.0008333238796289207169173, 0.0008242706468880048763834, 0.0008152096633688312691343, 0.0008061410142736039032099, 0.0007970647848766078261514, 0.0007879810605234072847989, 0.0007788899266300432158601, 0.0007697914686822300749096, 0.0007606857722345520114971, 0.0007515729229096583980656, 0.0007424530063974587204051, 0.0007333261084543168373926, 0.0007241923149022446178008, 0.0007150517116280949619884, 0.0007059043845827542163241, 0.0006967504197803339882351, 0.0006875899032973623698204, 0.0006784229212719745780188, 0.0006692495599031030193850, 0.0006600699054496667875923, 0.0006508840442297606018626, 0.0006416920626198431946113, 0.0006324940470539251567018, 0.0006232900840227562488244, 0.0006140802600730121876541, 0.0006048646618064809156059, 0.0005956433758792483631993, 0.0005864164890008837132649, 0.0005771840879336241764943, 0.0005679462594915592881427, 0.0005587030905398147360662, 0.0005494546679937357307118, 0.0005402010788180699282026, 0.0005309424100261499182844, 0.0005216787486790752896494, 0.0005124101818848942860548, 0.0005031367967977850677401, 0.0004938586806172365939677, 0.0004845759205872291441124, 0.0004752886039954144966810, 0.0004659968181722957880391, 0.0004567006504904070755681, 0.0004474001883634926336095, 0.0004380955192456860150653, 0.0004287867306306889171352, 0.0004194739100509498966958, 0.0004101571450768429896514, 0.0004008365233158462997325, 0.0003915121324117206363681, 0.0003821840600436882993131, 0.0003728523939256121308821, 0.0003635172218051749865499, 0.0003541786314630598135175, 0.0003448367107121305776064, 0.0003354915473966143456333, 0.0003261432293912849189248, 0.0003167918446006485317858, 0.0003074374809581322877037, 0.0002980802264252762217455, 0.0002887201689909301727620, 0.0002793573966704570567274, 0.0002699919975049447012834, 0.0002606240595604292032823, 0.0002512536709271339139118, 0.0002418809197187298044384, 0.0002325058940716253739001, 0.0002231286821442978268308, 0.0002137493721166826096154, 0.0002043680521896465790359, 0.0001949848105845827899210, 0.0001855997355431850062940, 0.0001762129153274925249194, 0.0001668244382203495280013, 0.0001574343925265138930609, 0.0001480428665748079976500, 0.0001386499487219861751244, 0.0001292557273595155266326, 0.0001198602909254695827354, 0.0001104637279257437565603, 0.0001010661269730276014588, 0.0000916675768613669107254, 0.0000822681667164572752810, 0.0000728679863190274661367, 0.0000634671268598044229933, 0.0000540656828939400071988, 0.0000446637581285753393838, 0.0000352614859871986975067, 0.0000258591246764618586716, 0.0000164577275798968681068, 0.0000070700764101825898713}; /* n = 3 */ static double x3[2] = {0.0000000000000000000000000, 0.7745966692414833770358531}; static double w3[2] = {0.8888888888888888888888889, 0.5555555555555555555555556}; /* n = 5 */ static double x5[3] = {0.0000000000000000000000000, 0.5384693101056830910363144, 0.9061798459386639927976269}; static double w5[3] = {0.5688888888888888888888889, 0.4786286704993664680412915, 0.2369268850561890875142640}; /* n = 7 */ static double x7[4] = {0.0000000000000000000000000, 0.4058451513773971669066064, 0.7415311855993944398638648, 0.9491079123427585245261897}; static double w7[4] = {0.4179591836734693877551020, 0.3818300505051189449503698, 0.2797053914892766679014678, 0.1294849661688696932706114}; /* n = 9 */ static double x9[5] = {0.0000000000000000000000000, 0.3242534234038089290385380, 0.6133714327005903973087020, 0.8360311073266357942994298, 0.9681602395076260898355762}; static double w9[5] = {0.3302393550012597631645251, 0.3123470770400028400686304, 0.2606106964029354623187429, 0.1806481606948574040584720, 0.0812743883615744119718922}; /* n = 11 */ static double x11[6] = {0.0000000000000000000000000, 0.2695431559523449723315320, 0.5190961292068118159257257, 0.7301520055740493240934163, 0.8870625997680952990751578, 0.9782286581460569928039380}; static double w11[6] = {0.2729250867779006307144835, 0.2628045445102466621806889, 0.2331937645919904799185237, 0.1862902109277342514260976, 0.1255803694649046246346943, 0.0556685671161736664827537}; /* n = 13 */ static double x13[7] = {0.0000000000000000000000000, 0.2304583159551347940655281, 0.4484927510364468528779129, 0.6423493394403402206439846, 0.8015780907333099127942065, 0.9175983992229779652065478, 0.9841830547185881494728294}; static double w13[7] = {0.2325515532308739101945895, 0.2262831802628972384120902, 0.2078160475368885023125232, 0.1781459807619457382800467, 0.1388735102197872384636018, 0.0921214998377284479144218, 0.0404840047653158795200216}; /* n = 15 */ static double x15[8] = {0.0000000000000000000000000, 0.2011940939974345223006283, 0.3941513470775633698972074, 0.5709721726085388475372267, 0.7244177313601700474161861, 0.8482065834104272162006483, 0.9372733924007059043077589, 0.9879925180204854284895657}; static double w15[8] = {0.2025782419255612728806202, 0.1984314853271115764561183, 0.1861610000155622110268006, 0.1662692058169939335532009, 0.1395706779261543144478048, 0.1071592204671719350118695, 0.0703660474881081247092674, 0.0307532419961172683546284}; /* n = 17 */ static double x17[9] = {0.0000000000000000000000000, 0.1784841814958478558506775, 0.3512317634538763152971855, 0.5126905370864769678862466, 0.6576711592166907658503022, 0.7815140038968014069252301, 0.8802391537269859021229557, 0.9506755217687677612227170, 0.9905754753144173356754340}; static double w17[9] = {0.1794464703562065254582656, 0.1765627053669926463252710, 0.1680041021564500445099707, 0.1540457610768102880814316, 0.1351363684685254732863200, 0.1118838471934039710947884, 0.0850361483171791808835354, 0.0554595293739872011294402, 0.0241483028685479319601100}; /* n = 19 */ static double x19[10] = {0.0000000000000000000000000, 0.1603586456402253758680961, 0.3165640999636298319901173, 0.4645707413759609457172671, 0.6005453046616810234696382, 0.7209661773352293786170959, 0.8227146565371428249789225, 0.9031559036148179016426609, 0.9602081521348300308527788, 0.9924068438435844031890177}; static double w19[10] = {0.1610544498487836959791636, 0.1589688433939543476499564, 0.1527660420658596667788554, 0.1426067021736066117757461, 0.1287539625393362276755158, 0.1115666455473339947160239, 0.0914900216224499994644621, 0.0690445427376412265807083, 0.0448142267656996003328382, 0.0194617882297264770363120}; /* Merge all together */ static gsl_integration_glfixed_table glaw[] = { { 2, x2, w2, 1 /* precomputed */ }, { 3, x3, w3, 1 }, { 4, x4, w4, 1 }, { 5, x5, w5, 1 }, { 6, x6, w6, 1 }, { 7, x7, w7, 1 }, { 8, x8, w8, 1 }, { 9, x9, w9, 1 }, { 10, x10, w10, 1 }, { 11, x11, w11, 1 }, { 12, x12, w12, 1 }, { 13, x13, w13, 1 }, { 14, x14, w14, 1 }, { 15, x15, w15, 1 }, { 16, x16, w16, 1 }, { 17, x17, w17, 1 }, { 18, x18, w18, 1 }, { 19, x19, w19, 1 }, { 20, x20, w20, 1 }, { 32, x32, w32, 1 }, { 64, x64, w64, 1 }, { 96, x96, w96, 1 }, { 100, x100, w100, 1 }, { 128, x128, w128, 1 }, { 256, x256, w256, 1 }, { 512, x512, w512, 1 }, { 1024, x1024, w1024, 1 } }; static const size_t GLAWSIZE = sizeof(glaw)/sizeof(glaw[0]); gsl_integration_glfixed_table * gsl_integration_glfixed_table_alloc (size_t n) { int i; double *x = 0; double *w = 0; gsl_integration_glfixed_table * retval = 0; /* Kludgy error check: indices in the original algorithm use ints but GSL * conventions are to take a size_t parameter for n */ if (n > INT_MAX) { GSL_ERROR_NULL ("Requested n is too large", GSL_EINVAL); } /* Use a predefined table of size n if possible */ for (i = 0; i < GLAWSIZE;i++) { if (n == glaw[i].n) { retval = &glaw[i]; break; } } /* No predefined table is available. Generate one on the fly. */ if (retval == 0) { const int m = (n + 1) >> 1; x = (double *) malloc(m * sizeof(double)); if (x == 0) { GSL_ERROR_NULL ("failed to allocate space for abscissae", GSL_ENOMEM); } w = (double *) malloc(m * sizeof(double)); if (w == 0) { free(x); GSL_ERROR_NULL ("failed to allocate space for weights", GSL_ENOMEM); } retval = (gsl_integration_glfixed_table *) malloc(sizeof(gsl_integration_glfixed_table)); if (retval == 0) { free(x); free(w); GSL_ERROR_NULL ("failed to allocate space for table struct", GSL_ENOMEM); } gauss_legendre_tbl(n, x, w, 1e-10 /* precision magic number */); retval->n = n; retval->x = x; retval->w = w; retval->precomputed = 0; } return retval; } void gsl_integration_glfixed_table_free (gsl_integration_glfixed_table * t) { /* We only free the table memory if we allocated it */ /* Leave precomputed, static tables alone */ if (! t->precomputed) { free(t->x); free(t->w); free(t); } } /* Gauss-Legendre n-points quadrature, exact for polynomial of degree <=2n-1 1. n - even: int(f(t),t=a..b) = A*sum(w[i]*f(A*x[i]+B),i=0..n-1) = A*sum(w[k]*[f(B+A*x[k])+f(B-A*x[k])],k=0..n/2-1) A = (b-a)/2, B = (a+b)/2 2. n - odd: int(f(t),t=a..b) = A*sum(w[i]*f(A*x[i]+B),i=0..n-1) = A*w[0]*f(B)+A*sum(w[k]*[f(B+A*x[k])+f(B-A*x[k])],k=1..(n-1)/2) A = (b-a)/2, B = (a+b)/2 */ double gsl_integration_glfixed (const gsl_function *f, double a, double b, const gsl_integration_glfixed_table * t) { const double * const x = t->x; const double * const w = t->w; const int n = t->n; double A, B, Ax, s; int i, m; m = (n + 1) >> 1; A = 0.5 * (b - a); B = 0.5 * (b + a); if (n&1) /* n - odd */ { s = w[0] * GSL_FN_EVAL(f,B); for (i = 1;i < m;i++) { Ax = A * x[i]; s += w[i] * (GSL_FN_EVAL(f,B+Ax) + GSL_FN_EVAL(f,B-Ax)); } } else /* n - even */ { s = 0.0; for (i = 0;i < m;i++) { Ax = A * x[i]; s += w[i] * (GSL_FN_EVAL(f,B+Ax) + GSL_FN_EVAL(f,B-Ax)); } } return A*s; } /* Routine to retrieve the i-th Gauss-Legendre point and weight from t. Useful when the caller wishes to access the information stored in the high-precision gsl_integration_glfixed_table struct. Points are indexed and presented in increasing order to the caller. */ int gsl_integration_glfixed_point (double a, double b, size_t i, double *xi, double *wi, const gsl_integration_glfixed_table * t) { const double A = (b - a) / 2; /* Length of [a,b] */ const double B = (a + b) / 2; /* Midpoint of [a,b] */ if (i >= t->n) { GSL_ERROR ("i must be less than t->n", GSL_EINVAL); } /* See comments above gsl_integration_glfixed for struct's x, w layout. */ /* Simply unpack that layout into a sorted set of points, weights. */ if (GSL_IS_ODD(t->n)) { const int k = ((int) i) - ((int) t->n) / 2; const int s = k < 0 ? -1 : 1; *xi = B + s*A*t->x[s*k]; *wi = A*t->w[s*k]; } else if (/* GSL_IS_EVEN(t->n) && */ i < t->n / 2) { i = (t->n / 2) - 1 - i; *xi = B - A*t->x[i]; *wi = A*t->w[i]; } else /* GSL_IS_EVEN(t->n) && i >= n / 2 */ { i -= t->n / 2; *xi = B + A*t->x[i]; *wi = A*t->w[i]; } return GSL_SUCCESS; } /* Computing of abscissas and weights for Gauss-Legendre quadrature for any(reasonable) order n [in] n - order of quadrature [in] eps - required precision (must be eps>=macheps(double), usually eps = 1e-10 is ok) [out]x - abscisass, size = (n+1)>>1 [out]w - weights, size = (n+1)>>1 */ /* Look up table for fast calculation of Legendre polynomial for n<1024 */ /* ltbl[k] = 1.0 - 1.0/(double)k; */ static double ltbl[1024] = {0.00000000000000000000, 0.00000000000000000000, 0.50000000000000000000, 0.66666666666666674000, 0.75000000000000000000, 0.80000000000000004000, 0.83333333333333337000, 0.85714285714285721000, 0.87500000000000000000, 0.88888888888888884000, 0.90000000000000002000, 0.90909090909090906000, 0.91666666666666663000, 0.92307692307692313000, 0.92857142857142860000, 0.93333333333333335000, 0.93750000000000000000, 0.94117647058823528000, 0.94444444444444442000, 0.94736842105263164000, 0.94999999999999996000, 0.95238095238095233000, 0.95454545454545459000, 0.95652173913043481000, 0.95833333333333337000, 0.95999999999999996000, 0.96153846153846156000, 0.96296296296296302000, 0.96428571428571430000, 0.96551724137931039000, 0.96666666666666667000, 0.96774193548387100000, 0.96875000000000000000, 0.96969696969696972000, 0.97058823529411764000, 0.97142857142857142000, 0.97222222222222221000, 0.97297297297297303000, 0.97368421052631582000, 0.97435897435897434000, 0.97499999999999998000, 0.97560975609756095000, 0.97619047619047616000, 0.97674418604651159000, 0.97727272727272729000, 0.97777777777777775000, 0.97826086956521741000, 0.97872340425531912000, 0.97916666666666663000, 0.97959183673469385000, 0.97999999999999998000, 0.98039215686274506000, 0.98076923076923073000, 0.98113207547169812000, 0.98148148148148151000, 0.98181818181818181000, 0.98214285714285710000, 0.98245614035087714000, 0.98275862068965514000, 0.98305084745762716000, 0.98333333333333328000, 0.98360655737704916000, 0.98387096774193550000, 0.98412698412698418000, 0.98437500000000000000, 0.98461538461538467000, 0.98484848484848486000, 0.98507462686567160000, 0.98529411764705888000, 0.98550724637681164000, 0.98571428571428577000, 0.98591549295774650000, 0.98611111111111116000, 0.98630136986301364000, 0.98648648648648651000, 0.98666666666666669000, 0.98684210526315785000, 0.98701298701298701000, 0.98717948717948723000, 0.98734177215189878000, 0.98750000000000004000, 0.98765432098765427000, 0.98780487804878048000, 0.98795180722891562000, 0.98809523809523814000, 0.98823529411764710000, 0.98837209302325579000, 0.98850574712643680000, 0.98863636363636365000, 0.98876404494382020000, 0.98888888888888893000, 0.98901098901098905000, 0.98913043478260865000, 0.98924731182795700000, 0.98936170212765961000, 0.98947368421052628000, 0.98958333333333337000, 0.98969072164948457000, 0.98979591836734693000, 0.98989898989898994000, 0.98999999999999999000, 0.99009900990099009000, 0.99019607843137258000, 0.99029126213592233000, 0.99038461538461542000, 0.99047619047619051000, 0.99056603773584906000, 0.99065420560747663000, 0.99074074074074070000, 0.99082568807339455000, 0.99090909090909096000, 0.99099099099099097000, 0.99107142857142860000, 0.99115044247787609000, 0.99122807017543857000, 0.99130434782608701000, 0.99137931034482762000, 0.99145299145299148000, 0.99152542372881358000, 0.99159663865546221000, 0.99166666666666670000, 0.99173553719008267000, 0.99180327868852458000, 0.99186991869918695000, 0.99193548387096775000, 0.99199999999999999000, 0.99206349206349209000, 0.99212598425196852000, 0.99218750000000000000, 0.99224806201550386000, 0.99230769230769234000, 0.99236641221374045000, 0.99242424242424243000, 0.99248120300751874000, 0.99253731343283580000, 0.99259259259259258000, 0.99264705882352944000, 0.99270072992700731000, 0.99275362318840576000, 0.99280575539568350000, 0.99285714285714288000, 0.99290780141843971000, 0.99295774647887325000, 0.99300699300699302000, 0.99305555555555558000, 0.99310344827586206000, 0.99315068493150682000, 0.99319727891156462000, 0.99324324324324320000, 0.99328859060402686000, 0.99333333333333329000, 0.99337748344370858000, 0.99342105263157898000, 0.99346405228758172000, 0.99350649350649356000, 0.99354838709677418000, 0.99358974358974361000, 0.99363057324840764000, 0.99367088607594933000, 0.99371069182389937000, 0.99375000000000002000, 0.99378881987577639000, 0.99382716049382713000, 0.99386503067484666000, 0.99390243902439024000, 0.99393939393939390000, 0.99397590361445787000, 0.99401197604790414000, 0.99404761904761907000, 0.99408284023668636000, 0.99411764705882355000, 0.99415204678362579000, 0.99418604651162790000, 0.99421965317919070000, 0.99425287356321834000, 0.99428571428571433000, 0.99431818181818177000, 0.99435028248587576000, 0.99438202247191010000, 0.99441340782122900000, 0.99444444444444446000, 0.99447513812154698000, 0.99450549450549453000, 0.99453551912568305000, 0.99456521739130432000, 0.99459459459459465000, 0.99462365591397850000, 0.99465240641711228000, 0.99468085106382975000, 0.99470899470899465000, 0.99473684210526314000, 0.99476439790575921000, 0.99479166666666663000, 0.99481865284974091000, 0.99484536082474229000, 0.99487179487179489000, 0.99489795918367352000, 0.99492385786802029000, 0.99494949494949492000, 0.99497487437185927000, 0.99500000000000000000, 0.99502487562189057000, 0.99504950495049505000, 0.99507389162561577000, 0.99509803921568629000, 0.99512195121951219000, 0.99514563106796117000, 0.99516908212560384000, 0.99519230769230771000, 0.99521531100478466000, 0.99523809523809526000, 0.99526066350710896000, 0.99528301886792447000, 0.99530516431924887000, 0.99532710280373837000, 0.99534883720930234000, 0.99537037037037035000, 0.99539170506912444000, 0.99541284403669728000, 0.99543378995433796000, 0.99545454545454548000, 0.99547511312217196000, 0.99549549549549554000, 0.99551569506726456000, 0.99553571428571430000, 0.99555555555555553000, 0.99557522123893805000, 0.99559471365638763000, 0.99561403508771928000, 0.99563318777292575000, 0.99565217391304350000, 0.99567099567099571000, 0.99568965517241381000, 0.99570815450643779000, 0.99572649572649574000, 0.99574468085106382000, 0.99576271186440679000, 0.99578059071729963000, 0.99579831932773111000, 0.99581589958159000000, 0.99583333333333335000, 0.99585062240663902000, 0.99586776859504134000, 0.99588477366255146000, 0.99590163934426235000, 0.99591836734693873000, 0.99593495934959353000, 0.99595141700404854000, 0.99596774193548387000, 0.99598393574297184000, 0.99600000000000000000, 0.99601593625498008000, 0.99603174603174605000, 0.99604743083003955000, 0.99606299212598426000, 0.99607843137254903000, 0.99609375000000000000, 0.99610894941634243000, 0.99612403100775193000, 0.99613899613899615000, 0.99615384615384617000, 0.99616858237547889000, 0.99618320610687028000, 0.99619771863117867000, 0.99621212121212122000, 0.99622641509433962000, 0.99624060150375937000, 0.99625468164794007000, 0.99626865671641796000, 0.99628252788104088000, 0.99629629629629635000, 0.99630996309963105000, 0.99632352941176472000, 0.99633699633699635000, 0.99635036496350360000, 0.99636363636363634000, 0.99637681159420288000, 0.99638989169675085000, 0.99640287769784175000, 0.99641577060931896000, 0.99642857142857144000, 0.99644128113879005000, 0.99645390070921991000, 0.99646643109540634000, 0.99647887323943662000, 0.99649122807017543000, 0.99650349650349646000, 0.99651567944250874000, 0.99652777777777779000, 0.99653979238754320000, 0.99655172413793103000, 0.99656357388316152000, 0.99657534246575341000, 0.99658703071672350000, 0.99659863945578231000, 0.99661016949152548000, 0.99662162162162160000, 0.99663299663299665000, 0.99664429530201337000, 0.99665551839464883000, 0.99666666666666670000, 0.99667774086378735000, 0.99668874172185429000, 0.99669966996699666000, 0.99671052631578949000, 0.99672131147540988000, 0.99673202614379086000, 0.99674267100977199000, 0.99675324675324672000, 0.99676375404530748000, 0.99677419354838714000, 0.99678456591639875000, 0.99679487179487181000, 0.99680511182108622000, 0.99681528662420382000, 0.99682539682539684000, 0.99683544303797467000, 0.99684542586750791000, 0.99685534591194969000, 0.99686520376175547000, 0.99687499999999996000, 0.99688473520249221000, 0.99689440993788825000, 0.99690402476780182000, 0.99691358024691357000, 0.99692307692307691000, 0.99693251533742333000, 0.99694189602446481000, 0.99695121951219512000, 0.99696048632218848000, 0.99696969696969695000, 0.99697885196374625000, 0.99698795180722888000, 0.99699699699699695000, 0.99700598802395213000, 0.99701492537313430000, 0.99702380952380953000, 0.99703264094955490000, 0.99704142011834318000, 0.99705014749262533000, 0.99705882352941178000, 0.99706744868035191000, 0.99707602339181289000, 0.99708454810495628000, 0.99709302325581395000, 0.99710144927536237000, 0.99710982658959535000, 0.99711815561959649000, 0.99712643678160917000, 0.99713467048710602000, 0.99714285714285711000, 0.99715099715099720000, 0.99715909090909094000, 0.99716713881019825000, 0.99717514124293782000, 0.99718309859154930000, 0.99719101123595510000, 0.99719887955182074000, 0.99720670391061450000, 0.99721448467966578000, 0.99722222222222223000, 0.99722991689750695000, 0.99723756906077343000, 0.99724517906336085000, 0.99725274725274726000, 0.99726027397260275000, 0.99726775956284153000, 0.99727520435967298000, 0.99728260869565222000, 0.99728997289972898000, 0.99729729729729732000, 0.99730458221024254000, 0.99731182795698925000, 0.99731903485254692000, 0.99732620320855614000, 0.99733333333333329000, 0.99734042553191493000, 0.99734748010610075000, 0.99735449735449733000, 0.99736147757255933000, 0.99736842105263157000, 0.99737532808398954000, 0.99738219895287961000, 0.99738903394255873000, 0.99739583333333337000, 0.99740259740259740000, 0.99740932642487046000, 0.99741602067183466000, 0.99742268041237114000, 0.99742930591259638000, 0.99743589743589745000, 0.99744245524296671000, 0.99744897959183676000, 0.99745547073791352000, 0.99746192893401020000, 0.99746835443037973000, 0.99747474747474751000, 0.99748110831234260000, 0.99748743718592969000, 0.99749373433583965000, 0.99750000000000005000, 0.99750623441396513000, 0.99751243781094523000, 0.99751861042183620000, 0.99752475247524752000, 0.99753086419753090000, 0.99753694581280783000, 0.99754299754299758000, 0.99754901960784315000, 0.99755501222493892000, 0.99756097560975610000, 0.99756690997566910000, 0.99757281553398058000, 0.99757869249394671000, 0.99758454106280192000, 0.99759036144578317000, 0.99759615384615385000, 0.99760191846522783000, 0.99760765550239239000, 0.99761336515513122000, 0.99761904761904763000, 0.99762470308788598000, 0.99763033175355453000, 0.99763593380614657000, 0.99764150943396224000, 0.99764705882352944000, 0.99765258215962438000, 0.99765807962529274000, 0.99766355140186913000, 0.99766899766899764000, 0.99767441860465111000, 0.99767981438515085000, 0.99768518518518523000, 0.99769053117782913000, 0.99769585253456217000, 0.99770114942528731000, 0.99770642201834858000, 0.99771167048054921000, 0.99771689497716898000, 0.99772209567198178000, 0.99772727272727268000, 0.99773242630385484000, 0.99773755656108598000, 0.99774266365688491000, 0.99774774774774777000, 0.99775280898876406000, 0.99775784753363228000, 0.99776286353467558000, 0.99776785714285710000, 0.99777282850779514000, 0.99777777777777776000, 0.99778270509977829000, 0.99778761061946908000, 0.99779249448123619000, 0.99779735682819382000, 0.99780219780219781000, 0.99780701754385970000, 0.99781181619256021000, 0.99781659388646293000, 0.99782135076252720000, 0.99782608695652175000, 0.99783080260303691000, 0.99783549783549785000, 0.99784017278617709000, 0.99784482758620685000, 0.99784946236559136000, 0.99785407725321884000, 0.99785867237687365000, 0.99786324786324787000, 0.99786780383795304000, 0.99787234042553197000, 0.99787685774946921000, 0.99788135593220340000, 0.99788583509513740000, 0.99789029535864981000, 0.99789473684210528000, 0.99789915966386555000, 0.99790356394129975000, 0.99790794979079500000, 0.99791231732776620000, 0.99791666666666667000, 0.99792099792099798000, 0.99792531120331951000, 0.99792960662525876000, 0.99793388429752061000, 0.99793814432989691000, 0.99794238683127567000, 0.99794661190965095000, 0.99795081967213117000, 0.99795501022494892000, 0.99795918367346936000, 0.99796334012219956000, 0.99796747967479671000, 0.99797160243407712000, 0.99797570850202433000, 0.99797979797979797000, 0.99798387096774188000, 0.99798792756539234000, 0.99799196787148592000, 0.99799599198396793000, 0.99800000000000000000, 0.99800399201596801000, 0.99800796812749004000, 0.99801192842942343000, 0.99801587301587302000, 0.99801980198019802000, 0.99802371541501977000, 0.99802761341222879000, 0.99803149606299213000, 0.99803536345776034000, 0.99803921568627452000, 0.99804305283757344000, 0.99804687500000000000, 0.99805068226120852000, 0.99805447470817121000, 0.99805825242718449000, 0.99806201550387597000, 0.99806576402321079000, 0.99806949806949807000, 0.99807321772639690000, 0.99807692307692308000, 0.99808061420345484000, 0.99808429118773945000, 0.99808795411089868000, 0.99809160305343514000, 0.99809523809523815000, 0.99809885931558939000, 0.99810246679316883000, 0.99810606060606055000, 0.99810964083175802000, 0.99811320754716981000, 0.99811676082862522000, 0.99812030075187974000, 0.99812382739212002000, 0.99812734082397003000, 0.99813084112149530000, 0.99813432835820892000, 0.99813780260707630000, 0.99814126394052050000, 0.99814471243042668000, 0.99814814814814812000, 0.99815157116451014000, 0.99815498154981552000, 0.99815837937384899000, 0.99816176470588236000, 0.99816513761467895000, 0.99816849816849818000, 0.99817184643510060000, 0.99817518248175185000, 0.99817850637522765000, 0.99818181818181817000, 0.99818511796733211000, 0.99818840579710144000, 0.99819168173598549000, 0.99819494584837543000, 0.99819819819819822000, 0.99820143884892087000, 0.99820466786355477000, 0.99820788530465954000, 0.99821109123434704000, 0.99821428571428572000, 0.99821746880570406000, 0.99822064056939497000, 0.99822380106571940000, 0.99822695035460995000, 0.99823008849557526000, 0.99823321554770317000, 0.99823633156966496000, 0.99823943661971826000, 0.99824253075571179000, 0.99824561403508771000, 0.99824868651488619000, 0.99825174825174823000, 0.99825479930191974000, 0.99825783972125437000, 0.99826086956521742000, 0.99826388888888884000, 0.99826689774696709000, 0.99826989619377160000, 0.99827288428324701000, 0.99827586206896557000, 0.99827882960413084000, 0.99828178694158076000, 0.99828473413379071000, 0.99828767123287676000, 0.99829059829059830000, 0.99829351535836175000, 0.99829642248722317000, 0.99829931972789121000, 0.99830220713073003000, 0.99830508474576274000, 0.99830795262267347000, 0.99831081081081086000, 0.99831365935919059000, 0.99831649831649827000, 0.99831932773109244000, 0.99832214765100669000, 0.99832495812395305000, 0.99832775919732442000, 0.99833055091819700000, 0.99833333333333329000, 0.99833610648918469000, 0.99833887043189373000, 0.99834162520729686000, 0.99834437086092720000, 0.99834710743801658000, 0.99834983498349839000, 0.99835255354200991000, 0.99835526315789469000, 0.99835796387520526000, 0.99836065573770494000, 0.99836333878887074000, 0.99836601307189543000, 0.99836867862969003000, 0.99837133550488599000, 0.99837398373983743000, 0.99837662337662336000, 0.99837925445705022000, 0.99838187702265369000, 0.99838449111470118000, 0.99838709677419357000, 0.99838969404186795000, 0.99839228295819937000, 0.99839486356340290000, 0.99839743589743590000, 0.99839999999999995000, 0.99840255591054317000, 0.99840510366826152000, 0.99840764331210186000, 0.99841017488076311000, 0.99841269841269842000, 0.99841521394611732000, 0.99841772151898733000, 0.99842022116903628000, 0.99842271293375395000, 0.99842519685039366000, 0.99842767295597479000, 0.99843014128728413000, 0.99843260188087779000, 0.99843505477308292000, 0.99843749999999998000, 0.99843993759750393000, 0.99844236760124616000, 0.99844479004665632000, 0.99844720496894412000, 0.99844961240310082000, 0.99845201238390091000, 0.99845440494590421000, 0.99845679012345678000, 0.99845916795069334000, 0.99846153846153851000, 0.99846390168970811000, 0.99846625766871167000, 0.99846860643185298000, 0.99847094801223246000, 0.99847328244274813000, 0.99847560975609762000, 0.99847792998477924000, 0.99848024316109418000, 0.99848254931714719000, 0.99848484848484853000, 0.99848714069591527000, 0.99848942598187307000, 0.99849170437405732000, 0.99849397590361444000, 0.99849624060150377000, 0.99849849849849848000, 0.99850074962518742000, 0.99850299401197606000, 0.99850523168908822000, 0.99850746268656720000, 0.99850968703427723000, 0.99851190476190477000, 0.99851411589895989000, 0.99851632047477745000, 0.99851851851851847000, 0.99852071005917165000, 0.99852289512555392000, 0.99852507374631272000, 0.99852724594992637000, 0.99852941176470589000, 0.99853157121879588000, 0.99853372434017595000, 0.99853587115666176000, 0.99853801169590639000, 0.99854014598540142000, 0.99854227405247808000, 0.99854439592430855000, 0.99854651162790697000, 0.99854862119013066000, 0.99855072463768113000, 0.99855282199710560000, 0.99855491329479773000, 0.99855699855699853000, 0.99855907780979825000, 0.99856115107913668000, 0.99856321839080464000, 0.99856527977044474000, 0.99856733524355301000, 0.99856938483547930000, 0.99857142857142855000, 0.99857346647646217000, 0.99857549857549854000, 0.99857752489331442000, 0.99857954545454541000, 0.99858156028368794000, 0.99858356940509918000, 0.99858557284299854000, 0.99858757062146897000, 0.99858956276445698000, 0.99859154929577465000, 0.99859353023909991000, 0.99859550561797750000, 0.99859747545582045000, 0.99859943977591037000, 0.99860139860139863000, 0.99860335195530725000, 0.99860529986053004000, 0.99860724233983289000, 0.99860917941585536000, 0.99861111111111112000, 0.99861303744798890000, 0.99861495844875348000, 0.99861687413554634000, 0.99861878453038677000, 0.99862068965517237000, 0.99862258953168048000, 0.99862448418156813000, 0.99862637362637363000, 0.99862825788751719000, 0.99863013698630132000, 0.99863201094391241000, 0.99863387978142082000, 0.99863574351978168000, 0.99863760217983655000, 0.99863945578231295000, 0.99864130434782605000, 0.99864314789687925000, 0.99864498644986455000, 0.99864682002706362000, 0.99864864864864866000, 0.99865047233468285000, 0.99865229110512133000, 0.99865410497981155000, 0.99865591397849462000, 0.99865771812080539000, 0.99865951742627346000, 0.99866131191432395000, 0.99866310160427807000, 0.99866488651535379000, 0.99866666666666670000, 0.99866844207723038000, 0.99867021276595747000, 0.99867197875166003000, 0.99867374005305043000, 0.99867549668874167000, 0.99867724867724872000, 0.99867899603698806000, 0.99868073878627972000, 0.99868247694334655000, 0.99868421052631584000, 0.99868593955321949000, 0.99868766404199472000, 0.99868938401048490000, 0.99869109947643975000, 0.99869281045751634000, 0.99869451697127942000, 0.99869621903520212000, 0.99869791666666663000, 0.99869960988296491000, 0.99870129870129876000, 0.99870298313878081000, 0.99870466321243523000, 0.99870633893919791000, 0.99870801033591727000, 0.99870967741935479000, 0.99871134020618557000, 0.99871299871299868000, 0.99871465295629824000, 0.99871630295250324000, 0.99871794871794872000, 0.99871959026888601000, 0.99872122762148341000, 0.99872286079182626000, 0.99872448979591832000, 0.99872611464968153000, 0.99872773536895676000, 0.99872935196950441000, 0.99873096446700504000, 0.99873257287705952000, 0.99873417721518987000, 0.99873577749683939000, 0.99873737373737370000, 0.99873896595208067000, 0.99874055415617125000, 0.99874213836477987000, 0.99874371859296485000, 0.99874529485570895000, 0.99874686716791983000, 0.99874843554443049000, 0.99875000000000003000, 0.99875156054931336000, 0.99875311720698257000, 0.99875466998754669000, 0.99875621890547261000, 0.99875776397515525000, 0.99875930521091816000, 0.99876084262701359000, 0.99876237623762376000, 0.99876390605686027000, 0.99876543209876545000, 0.99876695437731200000, 0.99876847290640391000, 0.99876998769987702000, 0.99877149877149873000, 0.99877300613496933000, 0.99877450980392157000, 0.99877600979192172000, 0.99877750611246940000, 0.99877899877899878000, 0.99878048780487805000, 0.99878197320341044000, 0.99878345498783450000, 0.99878493317132444000, 0.99878640776699024000, 0.99878787878787878000, 0.99878934624697335000, 0.99879081015719473000, 0.99879227053140096000, 0.99879372738238847000, 0.99879518072289153000, 0.99879663056558365000, 0.99879807692307687000, 0.99879951980792314000, 0.99880095923261392000, 0.99880239520958081000, 0.99880382775119614000, 0.99880525686977295000, 0.99880668257756566000, 0.99880810488676997000, 0.99880952380952381000, 0.99881093935790721000, 0.99881235154394299000, 0.99881376037959668000, 0.99881516587677721000, 0.99881656804733732000, 0.99881796690307334000, 0.99881936245572611000, 0.99882075471698117000, 0.99882214369846878000, 0.99882352941176467000, 0.99882491186839018000, 0.99882629107981225000, 0.99882766705744430000, 0.99882903981264637000, 0.99883040935672518000, 0.99883177570093462000, 0.99883313885647607000, 0.99883449883449882000, 0.99883585564610011000, 0.99883720930232556000, 0.99883855981416958000, 0.99883990719257543000, 0.99884125144843572000, 0.99884259259259256000, 0.99884393063583810000, 0.99884526558891451000, 0.99884659746251436000, 0.99884792626728114000, 0.99884925201380903000, 0.99885057471264371000, 0.99885189437428246000, 0.99885321100917435000, 0.99885452462772051000, 0.99885583524027455000, 0.99885714285714289000, 0.99885844748858443000, 0.99885974914481190000, 0.99886104783599083000, 0.99886234357224113000, 0.99886363636363640000, 0.99886492622020429000, 0.99886621315192747000, 0.99886749716874290000, 0.99886877828054299000, 0.99887005649717520000, 0.99887133182844245000, 0.99887260428410374000, 0.99887387387387383000, 0.99887514060742411000, 0.99887640449438198000, 0.99887766554433222000, 0.99887892376681620000, 0.99888017917133254000, 0.99888143176733779000, 0.99888268156424576000, 0.99888392857142860000, 0.99888517279821631000, 0.99888641425389757000, 0.99888765294771964000, 0.99888888888888894000, 0.99889012208657046000, 0.99889135254988914000, 0.99889258028792915000, 0.99889380530973448000, 0.99889502762430937000, 0.99889624724061810000, 0.99889746416758540000, 0.99889867841409696000, 0.99889988998899892000, 0.99890109890109891000, 0.99890230515916578000, 0.99890350877192979000, 0.99890470974808321000, 0.99890590809628010000, 0.99890710382513659000, 0.99890829694323147000, 0.99890948745910579000, 0.99891067538126366000, 0.99891186071817195000, 0.99891304347826082000, 0.99891422366992400000, 0.99891540130151846000, 0.99891657638136511000, 0.99891774891774887000, 0.99891891891891893000, 0.99892008639308860000, 0.99892125134843579000, 0.99892241379310343000, 0.99892357373519913000, 0.99892473118279568000, 0.99892588614393130000, 0.99892703862660948000, 0.99892818863879962000, 0.99892933618843682000, 0.99893048128342243000, 0.99893162393162394000, 0.99893276414087517000, 0.99893390191897657000, 0.99893503727369537000, 0.99893617021276593000, 0.99893730074388953000, 0.99893842887473461000, 0.99893955461293749000, 0.99894067796610164000, 0.99894179894179891000, 0.99894291754756870000, 0.99894403379091867000, 0.99894514767932485000, 0.99894625922023184000, 0.99894736842105258000, 0.99894847528916930000, 0.99894957983193278000, 0.99895068205666315000, 0.99895178197064993000, 0.99895287958115186000, 0.99895397489539750000, 0.99895506792058519000, 0.99895615866388310000, 0.99895724713242962000, 0.99895833333333328000, 0.99895941727367321000, 0.99896049896049899000, 0.99896157840083077000, 0.99896265560165975000, 0.99896373056994814000, 0.99896480331262938000, 0.99896587383660806000, 0.99896694214876036000, 0.99896800825593390000, 0.99896907216494846000, 0.99897013388259526000, 0.99897119341563789000, 0.99897225077081198000, 0.99897330595482547000, 0.99897435897435893000, 0.99897540983606559000, 0.99897645854657113000, 0.99897750511247441000, 0.99897854954034726000, 0.99897959183673468000, 0.99898063200815490000, 0.99898167006109984000, 0.99898270600203454000, 0.99898373983739841000, 0.99898477157360410000, 0.99898580121703850000, 0.99898682877406286000, 0.99898785425101211000, 0.99898887765419619000, 0.99898989898989898000, 0.99899091826437947000, 0.99899193548387100000, 0.99899295065458205000, 0.99899396378269623000, 0.99899497487437183000, 0.99899598393574296000, 0.99899699097291872000, 0.99899799599198402000, 0.99899899899899902000, 0.99900000000000000000, 0.99900099900099903000, 0.99900199600798401000, 0.99900299102691925000, 0.99900398406374502000, 0.99900497512437814000, 0.99900596421471177000, 0.99900695134061568000, 0.99900793650793651000, 0.99900891972249750000, 0.99900990099009901000, 0.99901088031651830000, 0.99901185770750989000, 0.99901283316880551000, 0.99901380670611439000, 0.99901477832512320000, 0.99901574803149606000, 0.99901671583087515000, 0.99901768172888017000, 0.99901864573110888000, 0.99901960784313726000, 0.99902056807051909000, 0.99902152641878672000, 0.99902248289345064000}; static void gauss_legendre_tbl(int n, double* x, double* w, double eps) { double x0, x1, dx; /* Abscissas */ double w0, w1, dw; /* Weights */ double P0, P_1, P_2; /* Legendre polynomial values */ double dpdx; /* Legendre polynomial derivative */ int i, j, k, m; /* Iterators */ double t0, t1, t2, t3; m = (n + 1) >> 1; t0 = (1.0 - (1.0 - 1.0 / (double)n) / (8.0 * (double)n * (double)n)); t1 = 1.0 / (4.0 * (double)n + 2.0); for (i = 1; i <= m; i++) { /* Find i-th root of Legendre polynomial */ /* Initial guess */ const double pi_to_many_places = 3.1415926535897932384626433832795028841971693993751; x0 = cos(pi_to_many_places * (double)((i << 2) - 1) * t1) * t0; /* Newton iterations, at least one */ j = 0; dx = dw = DBL_MAX; do { /* Compute Legendre polynomial value at x0 */ P_1 = 1.0; P0 = x0; /* Optimized version using lookup tables */ if (n < 1024) { /* Use fast algorithm for small n*/ for (k = 2; k <= n; k++) { P_2 = P_1; P_1 = P0; t2 = x0 * P_1; P0 = t2 + ltbl[k] * (t2 - P_2); } } else { /* Use general algorithm for other n */ for (k = 2; k < 1024; k++) { P_2 = P_1; P_1 = P0; t2 = x0 * P_1; P0 = t2 + ltbl[k] * (t2 - P_2); } for (k = 1024; k <= n; k++) { P_2 = P_1; P_1 = P0; t2 = x0 * P_1; t3 = (double)(k - 1) / (double)k; P0 = t2 + t3 * (t2 - P_2); } } /* Compute Legendre polynomial derivative at x0 */ dpdx = ((x0 * P0 - P_1) * (double)n) / (x0 * x0 - 1.0); /* Newton step */ x1 = x0 - P0 / dpdx; /* Weight computing */ w1 = 2.0 / ((1.0 - x1 * x1) * dpdx * dpdx); /* Compute weight w0 on first iteration, needed for dw */ if (j == 0) w0 = 2.0 / ((1.0 - x0 * x0) * dpdx * dpdx); dx = x0 - x1; dw = w0 - w1; x0 = x1; w0 = w1; j++; } while ((fabs(dx) > eps || fabs(dw) > eps) && j < 100); x[(m-1)-(i-1)] = x1; w[(m-1)-(i-1)] = w1; } return; } gsl-1.16/integration/cquad_const.c0000664000252300025230000022571412171574312014157 00000000000000/* Some constants and matrices that we'll need. */ static const double xi[33] = { -1., -0.99518472667219688624, -0.98078528040323044912, -0.95694033573220886493, -0.92387953251128675612, -0.88192126434835502970, -0.83146961230254523708, -0.77301045336273696082, -0.70710678118654752440, -0.63439328416364549822, -0.55557023301960222475, -0.47139673682599764857, -0.38268343236508977173, -0.29028467725446236764, -0.19509032201612826785, -0.098017140329560601995, 0., 0.098017140329560601995, 0.19509032201612826785, 0.29028467725446236764, 0.38268343236508977173, 0.47139673682599764857, 0.55557023301960222475, 0.63439328416364549822, 0.70710678118654752440, 0.77301045336273696082, 0.83146961230254523708, 0.88192126434835502970, 0.92387953251128675612, 0.95694033573220886493, 0.98078528040323044912, 0.99518472667219688624, 1. }; static const double bee[68] = { 0.00000000000000e+00, 2.28868854108532e-01, 0.00000000000000e+00, -8.15740215243451e-01, 0.00000000000000e+00, 5.31212715259731e-01, 0.00000000000000e+00, 1.38538036812454e-02, 0.00000000000000e+00, 3.74405228908818e-02, 0.00000000000000e+00, 2.12224115039342e-01, 0.00000000000000e+00, -8.16362644507898e-01, 0.00000000000000e+00, 5.35648426691481e-01, 0.00000000000000e+00, 1.52417902753662e-03, 0.00000000000000e+00, 2.63058840550873e-03, 0.00000000000000e+00, 4.15292106318904e-03, 0.00000000000000e+00, 6.97106011119775e-03, 0.00000000000000e+00, 1.35535708431058e-02, 0.00000000000000e+00, 3.52132898424856e-02, 0.00000000000000e+00, 2.06946714741884e-01, 0.00000000000000e+00, -8.15674251283876e-01, 0.00000000000000e+00, 5.38841175520580e-01, 0.00000000000000e+00, 1.84909689577590e-04, 0.00000000000000e+00, 2.90936325007499e-04, 0.00000000000000e+00, 3.84877750950089e-04, 0.00000000000000e+00, 4.86436656735046e-04, 0.00000000000000e+00, 6.08688640346879e-04, 0.00000000000000e+00, 7.66732830740331e-04, 0.00000000000000e+00, 9.82753336104205e-04, 0.00000000000000e+00, 1.29359957505615e-03, 0.00000000000000e+00, 1.76616363801885e-03, 0.00000000000000e+00, 2.53323433039089e-03, 0.00000000000000e+00, 3.88872172121956e-03, 0.00000000000000e+00, 6.58635106468291e-03, 0.00000000000000e+00, 1.30326736343254e-02, 0.00000000000000e+00, 3.44353850696714e-02, 0.00000000000000e+00, 2.05025409531915e-01, 0.00000000000000e+00, -8.14985893995401e-01, 0.00000000000000e+00, 5.40679930965238e-01 }; static const double Lalpha[33] = { 5.77350269189626e-01, 5.16397779494322e-01, 5.07092552837110e-01, 5.03952630678970e-01, 5.02518907629606e-01, 5.01745206004255e-01, 5.01280411827603e-01, 5.00979432868120e-01, 5.00773395667191e-01, 5.00626174321759e-01, 5.00517330712619e-01, 5.00434593736979e-01, 5.00370233297676e-01, 5.00319182924304e-01, 5.00278009473803e-01, 5.00244319584578e-01, 5.00216403386025e-01, 5.00193012939056e-01, 5.00173220168024e-01, 5.00156323280355e-01, 5.00141783641018e-01, 5.00129182278347e-01, 5.00118189340972e-01, 5.00108542278496e-01, 5.00100030010004e-01, 5.00092481273333e-01, 5.00085755939229e-01, 5.00079738458365e-01, 5.00074332862969e-01, 5.00069458915387e-01, 5.00065049112355e-01, 5.00061046334395e-01, 5.00057401986298e-01 }; static const double Lgamma[33] = { 0.0, 0.0, 5.16397779494322e-01, 5.07092552837110e-01, 5.03952630678970e-01, 5.02518907629606e-01, 5.01745206004255e-01, 5.01280411827603e-01, 5.00979432868120e-01, 5.00773395667191e-01, 5.00626174321759e-01, 5.00517330712619e-01, 5.00434593736979e-01, 5.00370233297676e-01, 5.00319182924304e-01, 5.00278009473803e-01, 5.00244319584578e-01, 5.00216403386025e-01, 5.00193012939056e-01, 5.00173220168024e-01, 5.00156323280355e-01, 5.00141783641018e-01, 5.00129182278347e-01, 5.00118189340972e-01, 5.00108542278496e-01, 5.00100030010003e-01, 5.00092481273333e-01, 5.00085755939229e-01, 5.00079738458365e-01, 5.00074332862969e-01, 5.00069458915387e-01, 5.00065049112355e-01, 5.00061046334395e-01 }; static const double V1inv[5 * 5] = { .47140452079103168293e-1, .37712361663282534635, .56568542494923801952, .37712361663282534635, .47140452079103168293e-1, -.81649658092772603273e-1, -.46188021535170061160, 0, .46188021535170061160, .81649658092772603273e-1, .15058465048420853962, .12046772038736683169, -.54210474174315074262, .12046772038736683169, .15058465048420853962, -.21380899352993950775, .30237157840738178177, -0., -.30237157840738178177, .21380899352993950775, .10774960475223581324, -.21549920950447162648, .21549920950447162648, -.21549920950447162648, .10774960475223581324 }; static const double V2inv[9 * 9] = { .11223917161691230546e-1, .10339219839658349826, .19754094204576565761, .25577315077753587922, .27835314560994251755, .25577315077753587922, .19754094204576565761, .10339219839658349826, .11223917161691230546e-1, -.19440394783993476970e-1, -.16544884625069155470, -.24193725566041460608, -.16953338808305493604, 0.0, .16953338808305493604, .24193725566041460608, .16544884625069155470, .19440394783993476970e-1, .26466393115406349388e-1, .17766815796285469394, .11316664642449611462, -.16306601003711325980, -.30847037493128779631, -.16306601003711325980, .11316664642449611462, .17766815796285469394, .26466393115406349388e-1, -.32395302049990834508e-1, -.15521142532414866547, .88573492664788602740e-1, .29570405784974857322, 0.0, -.29570405784974857322, -.88573492664788602740e-1, .15521142532414866547, .32395302049990834508e-1, .41442155673936851246e-1, .98186757907405608245e-1, -.23056908429499411784, -.68047008326360625520e-1, .31797435808002456774, -.68047008326360625520e-1, -.23056908429499411784, .98186757907405608245e-1, .41442155673936851246e-1, -.49981120317798783134e-1, -.24861810572835756217e-1, .23561326072010832539, -.24472785656448415351, 0.0, .24472785656448415351, -.23561326072010832539, .24861810572835756217e-1, .49981120317798783134e-1, .79691635865674781228e-1, -.95725617891693941833e-1, -.57957553356854386344e-1, .21164072460540271452, -.27529837844505833514, .21164072460540271452, -.57957553356854386344e-1, -.95725617891693941833e-1, .79691635865674781228e-1, -.10894869830716590913, .20131094491947531782, -.15407672674888869038, .83385723639789791384e-1, 0.0, -.83385723639789791384e-1, .15407672674888869038, -.20131094491947531782, .10894869830716590913, .54581057089643838221e-1, -.10916211417928767644, .10916211417928767644, -.10916211417928767644, .10916211417928767644, -.10916211417928767644, .10916211417928767644, -.10916211417928767644, .54581057089643838221e-1 }; static const double V3inv[17 * 17] = { .27729677693590098996e-2, .26423663180333065153e-1, .53374068493933898312e-1, .77007854739523195947e-1, .98257061072911596869e-1, .11538049741786835604, .12832134344120884559, .13612785914022865001, .13888293186236181317, .13612785914022865001, .12832134344120884559, .11538049741786835604, .98257061072911596869e-1, .77007854739523195947e-1, .53374068493933898312e-1, .26423663180333065153e-1, .27729677693590098996e-2, -.48029210642807413690e-2, -.44887724635478800254e-1, -.85409520147301089416e-1, -.11090267822061423050, -.12033983162705862441, -.11102786862182788886, -.85054870109799336515e-1, -.45998467987742225160e-1, 0.0, .45998467987742225160e-1, .85054870109799336515e-1, .11102786862182788886, .12033983162705862441, .11090267822061423050, .85409520147301089416e-1, .44887724635478800254e-1, .48029210642807413690e-2, .62758546879582030087e-2, .55561297093529155869e-1, .93281491021051539742e-1, .92320151237493695139e-1, .55077987469605684531e-1, -.96998141716497488255e-2, -.80285961895427405567e-1, -.13496839655913850224, -.15512521776684524331, -.13496839655913850224, -.80285961895427405567e-1, -.96998141716497488255e-2, .55077987469605684531e-1, .92320151237493695139e-1, .93281491021051539742e-1, .55561297093529155869e-1, .62758546879582030087e-2, -.74850969394858555939e-2, -.61751608943839234096e-1, -.82974150437304275958e-1, -.38437763431942633378e-1, .45745502025779701366e-1, .12369235652734542162, .14720439712852868239, .98768034347019704401e-1, 0.0, -.98768034347019704401e-1, -.14720439712852868239, -.12369235652734542162, -.45745502025779701366e-1, .38437763431942633378e-1, .82974150437304275958e-1, .61751608943839234096e-1, .74850969394858555939e-2, .86710099994384056338e-2, .64006230103659573344e-1, .58517426396091675690e-1, -.29743410528985802680e-1, -.11934127779157114754, -.12686773515361299409, -.30729137153877447035e-1, .97307836256600731568e-1, .15635811574451401023, .97307836256600731568e-1, -.30729137153877447035e-1, -.12686773515361299409, -.11934127779157114754, -.29743410528985802680e-1, .58517426396091675690e-1, .64006230103659573344e-1, .86710099994384056338e-2, -.97486395666294840165e-2, -.62995604908060224672e-1, -.24373234450275529219e-1, .87760984413626872730e-1, .12205204576993351394, .16216004196864002088e-1, -.12422320942156845775, -.13682714580929614678, 0.0, .13682714580929614678, .12422320942156845775, -.16216004196864002088e-1, -.12205204576993351394, -.87760984413626872730e-1, .24373234450275529219e-1, .62995604908060224672e-1, .97486395666294840165e-2, .10956271233750488468e-1, .58613204255294358939e-1, -.13306063940736618859e-1, -.11606666444978454399, -.52059598001115805639e-1, .10868540217796151849, .12594452879014618005, -.44678658254872910434e-1, -.15617684362128533405, -.44678658254872910434e-1, .12594452879014618005, .10868540217796151849, -.52059598001115805639e-1, -.11606666444978454399, -.13306063940736618859e-1, .58613204255294358939e-1, .10956271233750488468e-1, -.12098893000863087230e-1, -.51626244709126208453e-1, .48919433304746979330e-1, .10467644465949427090, -.48729879523084673782e-1, -.13668732103524749234, .28190838706814496438e-1, .15434223333238741600, 0.0, -.15434223333238741600, -.28190838706814496438e-1, .13668732103524749234, .48729879523084673782e-1, -.10467644465949427090, -.48919433304746979330e-1, .51626244709126208453e-1, .12098893000863087230e-1, .13542668300437944822e-1, .41712033418258689308e-1, -.76190463272803434388e-1, -.58303943170068132010e-1, .12158068748245606853, .42121099930651007882e-1, -.14684425840766337756, -.16108203535058647043e-1, .15698075850757976092, -.16108203535058647043e-1, -.14684425840766337756, .42121099930651007882e-1, .12158068748245606853, -.58303943170068132010e-1, -.76190463272803434388e-1, .41712033418258689308e-1, .13542668300437944822e-1, -.14939634995117694417e-1, -.30047246373341564039e-1, .91624635082546425678e-1, -.79133374319110026377e-2, -.12292558212072233355, .90013382617762643524e-1, .84013717196539593395e-1, -.14813033309980695856, 0.0, .14813033309980695856, -.84013717196539593395e-1, -.90013382617762643524e-1, .12292558212072233355, .79133374319110026377e-2, -.91624635082546425678e-1, .30047246373341564039e-1, .14939634995117694417e-1, .16986031342807474208e-1, .15760203882617033601e-1, -.91494054040950941996e-1, .70082459207876130806e-1, .53390713710144539104e-1, -.14340746778352039430, .84048122493418898508e-1, .72456667788091316868e-1, -.15564535320096811360, .72456667788091316868e-1, .84048122493418898508e-1, -.14340746778352039430, .53390713710144539104e-1, .70082459207876130806e-1, -.91494054040950941996e-1, .15760203882617033601e-1, .16986031342807474208e-1, -.18994065631858742028e-1, -.82901821370405592927e-3, .77239669773015192888e-1, -.10850735431039424680, .47524484622086496464e-1, .69148184871588737021e-1, -.14829314646228194928, .11992057742398672066, 0.0, -.11992057742398672066, .14829314646228194928, -.69148184871588737021e-1, -.47524484622086496464e-1, .10850735431039424680, -.77239669773015192888e-1, .82901821370405592927e-3, .18994065631858742028e-1, .22761703826371535132e-1, -.17728848711449643358e-1, -.47496371572480503788e-1, .10659958402328690063, -.11696013966166296514, .63073750910894244526e-1, .32928881123602721303e-1, -.12280950532497593683, .15926189077282729505, -.12280950532497593683, .32928881123602721303e-1, .63073750910894244526e-1, -.11696013966166296514, .10659958402328690063, -.47496371572480503788e-1, -.17728848711449643358e-1, .22761703826371535132e-1, -.26493215276042203434e-1, .35579780856128386192e-1, .10447309718398935122e-1, -.68616154085314996709e-1, .11775363082763954214, -.13918901977011837274, .12312819418827395690, -.72053565748259077905e-1, 0.0, .72053565748259077905e-1, -.12312819418827395690, .13918901977011837274, -.11775363082763954214, .68616154085314996709e-1, -.10447309718398935122e-1, -.35579780856128386192e-1, .26493215276042203434e-1, .40742523354399706918e-1, -.73124912999529117195e-1, .49317266444153837821e-1, -.13686605413876015320e-1, -.28342624942191100464e-1, .70371855298258216249e-1, -.10600251632853603875, .12981016288391131812, -.13817029659318161476, .12981016288391131812, -.10600251632853603875, .70371855298258216249e-1, -.28342624942191100464e-1, -.13686605413876015320e-1, .49317266444153837821e-1, -.73124912999529117195e-1, .40742523354399706918e-1, -.54944368958699908688e-1, .10777725663147408190, -.10152395581538265428, .91369146312596428468e-1, -.77703071757424700773e-1, .61050911730999815031e-1, -.42052599404498348871e-1, .21438229266251454773e-1, 0.0, -.21438229266251454773e-1, .42052599404498348871e-1, -.61050911730999815031e-1, .77703071757424700773e-1, -.91369146312596428468e-1, .10152395581538265428, -.10777725663147408190, .54944368958699908688e-1, .27485608464748840573e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .54971216929497681146e-1, -.54971216929497681146e-1, .27485608464748840573e-1 }; static const double V4inv[33 * 33] = { .69120897476690862600e-3, .66419939766331555194e-2, .13600665164323186111e-1, .20122785860913684493e-1, .26583214101668429944e-1, .32712713318999268739e-1, .38576221976287138036e-1, .44033030938268925133e-1, .49092709529622799673e-1, .53657949874312515646e-1, .57724533144734311859e-1, .61219564530655179096e-1, .64138907503837875026e-1, .66427905189318792009e-1, .68088956652280022887e-1, .69083051391555695878e-1, .69422738116739271449e-1, .69083051391555695878e-1, .68088956652280022887e-1, .66427905189318792009e-1, .64138907503837875026e-1, .61219564530655179096e-1, .57724533144734311859e-1, .53657949874312515646e-1, .49092709529622799673e-1, .44033030938268925133e-1, .38576221976287138036e-1, .32712713318999268739e-1, .26583214101668429944e-1, .20122785860913684493e-1, .13600665164323186111e-1, .66419939766331555194e-2, .69120897476690862600e-3, -.11972090629438798134e-2, -.11448874821643225573e-1, -.23104401104002905904e-1, -.33352899418646530133e-1, -.42538626424075425908e-1, -.49969730733911825941e-1, -.55555454015360728353e-1, -.58955533624852604918e-1, -.60126044219122513907e-1, -.58959430451175833624e-1, -.55546925396227130606e-1, -.49984739749347973762e-1, -.42513009141170294365e-1, -.33399140950669746346e-1, -.23007690803851790829e-1, -.11728275717520066169e-1, 0.0, .11728275717520066169e-1, .23007690803851790829e-1, .33399140950669746346e-1, .42513009141170294365e-1, .49984739749347973762e-1, .55546925396227130606e-1, .58959430451175833624e-1, .60126044219122513907e-1, .58955533624852604918e-1, .55555454015360728353e-1, .49969730733911825941e-1, .42538626424075425908e-1, .33352899418646530133e-1, .23104401104002905904e-1, .11448874821643225573e-1, .11972090629438798134e-2, .15501585012936019146e-2, .14628781502199620482e-1, .28684915921474815271e-1, .39299396074628048026e-1, .46393418975496284204e-1, .48756902531094699526e-1, .46331333488337494692e-1, .39012645376980228775e-1, .27452795421085791153e-1, .12430953621169863781e-1, -.47682978056024928800e-2, -.22825828045428973853e-1, -.40195512090720278312e-1, -.55503004262826221955e-1, -.67424537752827046308e-1, -.75020199300113606452e-1, -.77607844312483656131e-1, -.75020199300113606452e-1, -.67424537752827046308e-1, -.55503004262826221955e-1, -.40195512090720278312e-1, -.22825828045428973853e-1, -.47682978056024928800e-2, .12430953621169863781e-1, .27452795421085791153e-1, .39012645376980228775e-1, .46331333488337494692e-1, .48756902531094699526e-1, .46393418975496284204e-1, .39299396074628048026e-1, .28684915921474815271e-1, .14628781502199620482e-1, .15501585012936019146e-2, -.18377757558949194214e-2, -.17050470050949761565e-1, -.31952119564923250836e-1, -.40197423449026348155e-1, -.41205649520281371624e-1, -.33909965817492272248e-1, -.19393664422115332144e-1, .56661049630886784692e-3, .22948272173686561721e-1, .44489719570904738207e-1, .61790363672287920596e-1, .72121014727028013894e-1, .73627151185287858579e-1, .65784665375961398923e-1, .49369676372333667559e-1, .26444326317059715065e-1, 0.0, -.26444326317059715065e-1, -.49369676372333667559e-1, -.65784665375961398923e-1, -.73627151185287858579e-1, -.72121014727028013894e-1, -.61790363672287920596e-1, -.44489719570904738207e-1, -.22948272173686561721e-1, -.56661049630886784692e-3, .19393664422115332144e-1, .33909965817492272248e-1, .41205649520281371624e-1, .40197423449026348155e-1, .31952119564923250836e-1, .17050470050949761565e-1, .18377757558949194214e-2, .20942714740729767769e-2, .18935902405146518232e-1, .33335840852491735126e-1, .36770680999102286065e-1, .28873194534132768509e-1, .10267303017729535513e-1, -.14607738306201572890e-1, -.40139568545572305818e-1, -.59808326733858291561e-1, -.68528358823372627506e-1, -.63306535387619244879e-1, -.44508601817574921056e-1, -.15449116105605395357e-1, .17941083795006546367e-1, .48747356011657242123e-1, .70329553984201665523e-1, .78106117292526169663e-1, .70329553984201665523e-1, .48747356011657242123e-1, .17941083795006546367e-1, -.15449116105605395357e-1, -.44508601817574921056e-1, -.63306535387619244879e-1, -.68528358823372627506e-1, -.59808326733858291561e-1, -.40139568545572305818e-1, -.14607738306201572890e-1, .10267303017729535513e-1, .28873194534132768509e-1, .36770680999102286065e-1, .33335840852491735126e-1, .18935902405146518232e-1, .20942714740729767769e-2, -.23245285491878278419e-2, -.20401404737639389919e-1, -.33019548231022514097e-1, -.29709828426463720091e-1, -.11760070922697422156e-1, .15987584743850393793e-1, .43619012891472813485e-1, .61177322409671487721e-1, .61144030218486655594e-1, .41895377620089086167e-1, .80232011820644308033e-2, -.30574701186675900915e-1, -.62072243008844865848e-1, -.76336186183574765586e-1, -.68435466095345537115e-1, -.40237669208466966207e-1, 0.0, .40237669208466966207e-1, .68435466095345537115e-1, .76336186183574765586e-1, .62072243008844865848e-1, .30574701186675900915e-1, -.80232011820644308033e-2, -.41895377620089086167e-1, -.61144030218486655594e-1, -.61177322409671487721e-1, -.43619012891472813485e-1, -.15987584743850393793e-1, .11760070922697422156e-1, .29709828426463720091e-1, .33019548231022514097e-1, .20401404737639389919e-1, .23245285491878278419e-2, .25451717261579269307e-2, .21480418595666878775e-1, .31177212469293007998e-1, .19816333607013379373e-1, -.72439496274458793681e-2, -.38404203906598342397e-1, -.57633632255322221046e-1, -.54070547403585392952e-1, -.26249823354368866005e-1, .15643058212336881516e-1, .54539832735118677194e-1, .73283028002473989724e-1, .62835303524135936213e-1, .26175977027801048141e-1, -.22193636309998606610e-1, -.62597049956093311234e-1, -.78206986173170212505e-1, -.62597049956093311234e-1, -.22193636309998606610e-1, .26175977027801048141e-1, .62835303524135936213e-1, .73283028002473989724e-1, .54539832735118677194e-1, .15643058212336881516e-1, -.26249823354368866005e-1, -.54070547403585392952e-1, -.57633632255322221046e-1, -.38404203906598342397e-1, -.72439496274458793681e-2, .19816333607013379373e-1, .31177212469293007998e-1, .21480418595666878775e-1, .25451717261579269307e-2, -.27506573922483820005e-2, -.22224442095099251870e-1, -.27949927254215773020e-1, -.80918481053370034987e-2, .25121859354449306916e-1, .51563535009373061074e-1, .51936965107145960512e-1, .22146626648171527753e-1, -.24172689882103382748e-1, -.61731229104853568296e-1, -.68477262429344201201e-1, -.38311232728303704742e-1, .14160578713659552679e-1, .61248813427564184033e-1, .77136328841293031805e-1, .52514801765183697988e-1, 0.0, -.52514801765183697988e-1, -.77136328841293031805e-1, -.61248813427564184033e-1, -.14160578713659552679e-1, .38311232728303704742e-1, .68477262429344201201e-1, .61731229104853568296e-1, .24172689882103382748e-1, -.22146626648171527753e-1, -.51936965107145960512e-1, -.51563535009373061074e-1, -.25121859354449306916e-1, .80918481053370034987e-2, .27949927254215773020e-1, .22224442095099251870e-1, .27506573922483820005e-2, .29562461131654311467e-2, .22630271480554450613e-1, .23547399831373800971e-1, -.43964593440902476642e-2, -.39055315767504970597e-1, -.52369643937940066804e-1, -.28506131614971613422e-1, .19906048093338832322e-1, .60408880866392420279e-1, .62493397473656883090e-1, .21391278377641297859e-1, -.37302864786623254746e-1, -.73665127933539496872e-1, -.61706142476854010202e-1, -.78065168882546327888e-2, .52335307373945544428e-1, .78278746279419264777e-1, .52335307373945544428e-1, -.78065168882546327888e-2, -.61706142476854010202e-1, -.73665127933539496872e-1, -.37302864786623254746e-1, .21391278377641297859e-1, .62493397473656883090e-1, .60408880866392420279e-1, .19906048093338832322e-1, -.28506131614971613422e-1, -.52369643937940066804e-1, -.39055315767504970597e-1, -.43964593440902476642e-2, .23547399831373800971e-1, .22630271480554450613e-1, .29562461131654311467e-2, -.31515718415504761303e-2, -.22739451096655080673e-1, -.18157123602272119779e-1, .16496480897167303621e-1, .46921166788569301124e-1, .40644395739978416354e-1, -.46275803430732216900e-2, -.52883375891308909486e-1, -.61116483226324111734e-1, -.17411698764545629853e-1, .44773430013166822765e-1, .73441577962383869198e-1, .42127368371995472815e-1, -.25504645957196772465e-1, -.74126818045972742488e-1, -.62780077864719287317e-1, 0.0, .62780077864719287317e-1, .74126818045972742488e-1, .25504645957196772465e-1, -.42127368371995472815e-1, -.73441577962383869198e-1, -.44773430013166822765e-1, .17411698764545629853e-1, .61116483226324111734e-1, .52883375891308909486e-1, .46275803430732216900e-2, -.40644395739978416354e-1, -.46921166788569301124e-1, -.16496480897167303621e-1, .18157123602272119779e-1, .22739451096655080673e-1, .31515718415504761303e-2, .33536559294882188208e-2, .22535348942792006185e-1, .12048629300953560767e-1, -.27166076791299493403e-1, -.47492745604230978367e-1, -.19246623430993153174e-1, .36231297307556299322e-1, .61713617181636122004e-1, .25928029734266134490e-1, -.40478700752883602818e-1, -.71053889866326412049e-1, -.31870824482961751482e-1, .41515251100219081281e-1, .76481960760098381651e-1, .36726509155999912440e-1, -.40090067032627055969e-1, -.78270742903374539397e-1, -.40090067032627055969e-1, .36726509155999912440e-1, .76481960760098381651e-1, .41515251100219081281e-1, -.31870824482961751482e-1, -.71053889866326412049e-1, -.40478700752883602818e-1, .25928029734266134490e-1, .61713617181636122004e-1, .36231297307556299322e-1, -.19246623430993153174e-1, -.47492745604230978367e-1, -.27166076791299493403e-1, .12048629300953560767e-1, .22535348942792006185e-1, .33536559294882188208e-2, -.35481220456925318865e-2, -.22062913693073191150e-1, -.54487362861834144999e-2, .35438821865804087489e-1, .40733077820527411302e-1, -.67403098138950720914e-2, -.55559584405239171054e-1, -.42417050790865158745e-1, .24499901971884704925e-1, .68721232891705409302e-1, .34086082787461126592e-1, -.43441000373118474002e-1, -.73878085292669148950e-1, -.18846995664706657127e-1, .59827776178286834498e-1, .70644634584085901794e-1, 0.0, -.70644634584085901794e-1, -.59827776178286834498e-1, .18846995664706657127e-1, .73878085292669148950e-1, .43441000373118474002e-1, -.34086082787461126592e-1, -.68721232891705409302e-1, -.24499901971884704925e-1, .42417050790865158745e-1, .55559584405239171054e-1, .67403098138950720914e-2, -.40733077820527411302e-1, -.35438821865804087489e-1, .54487362861834144999e-2, .22062913693073191150e-1, .35481220456925318865e-2, .37554176816665075631e-2, .21297045781589919482e-1, -.13327293083183431816e-2, -.40635299172764596484e-1, -.27659860508374175359e-1, .31089232744083445986e-1, .56113781541334176109e-1, .37577840643257763400e-2, -.60511227350664590865e-1, -.46670556446129053853e-1, .33263195878575888247e-1, .72757324720645228775e-1, .15011712351692283635e-1, -.65601212994924119078e-1, -.60016855838843789772e-1, .26220858553188665966e-1, .78322776605833552980e-1, .26220858553188665966e-1, -.60016855838843789772e-1, -.65601212994924119078e-1, .15011712351692283635e-1, .72757324720645228775e-1, .33263195878575888247e-1, -.46670556446129053853e-1, -.60511227350664590865e-1, .37577840643257763400e-2, .56113781541334176109e-1, .31089232744083445986e-1, -.27659860508374175359e-1, -.40635299172764596484e-1, -.13327293083183431816e-2, .21297045781589919482e-1, .37554176816665075631e-2, -.39566995305720591229e-2, -.20291873414438919995e-1, .80617453830770930551e-2, .42270189157016547906e-1, .10332624526759093004e-1, -.48054759547616142024e-1, -.37678032941171643972e-1, .36617192625732482394e-1, .61009425973424865714e-1, -.95589113168026591466e-2, -.71023202645076922361e-1, -.25097788086808784456e-1, .62406621963267050244e-1, .56907293171100693511e-1, -.36435383083882206257e-1, -.75790105119208756348e-1, 0.0, .75790105119208756348e-1, .36435383083882206257e-1, -.56907293171100693511e-1, -.62406621963267050244e-1, .25097788086808784456e-1, .71023202645076922361e-1, .95589113168026591466e-2, -.61009425973424865714e-1, -.36617192625732482394e-1, .37678032941171643972e-1, .48054759547616142024e-1, -.10332624526759093004e-1, -.42270189157016547906e-1, -.80617453830770930551e-2, .20291873414438919995e-1, .39566995305720591229e-2, .41776092289182138591e-2, .19013221163904414395e-1, -.14420609729849899876e-1, -.40259160586844441220e-1, .86327811113710831649e-2, .53564430703021034399e-1, .65469185402150431933e-2, -.60383116311280629856e-1, -.25657793784058876939e-1, .58745680576829226900e-1, .45649937869034420296e-1, -.49167932056844167772e-1, -.62696614328552187977e-1, .32540234556426699997e-1, .74280410383464269758e-1, -.11425672633410999870e-1, -.78280649404686404903e-1, -.11425672633410999870e-1, .74280410383464269758e-1, .32540234556426699997e-1, -.62696614328552187977e-1, -.49167932056844167772e-1, .45649937869034420296e-1, .58745680576829226900e-1, -.25657793784058876939e-1, -.60383116311280629856e-1, .65469185402150431933e-2, .53564430703021034399e-1, .86327811113710831649e-2, -.40259160586844441220e-1, -.14420609729849899876e-1, .19013221163904414395e-1, .41776092289182138591e-2, -.43935502082478059199e-2, -.17528761237509401631e-1, .20208915249153872535e-1, .34734743119040669109e-1, -.26275910172353637955e-1, -.46368003346018878786e-1, .26800056330709381025e-1, .56681476464606609921e-1, -.24749011438127255898e-1, -.64934612189056658992e-1, .20333742247679279535e-1, .71429299070059318651e-1, -.14452513210428671266e-1, -.75793341281736586582e-1, .74717094137184935270e-2, .78034921554757317374e-1, 0.0, -.78034921554757317374e-1, -.74717094137184935270e-2, .75793341281736586582e-1, .14452513210428671266e-1, -.71429299070059318651e-1, -.20333742247679279535e-1, .64934612189056658992e-1, .24749011438127255898e-1, -.56681476464606609921e-1, -.26800056330709381025e-1, .46368003346018878786e-1, .26275910172353637955e-1, -.34734743119040669109e-1, -.20208915249153872535e-1, .17528761237509401631e-1, .43935502082478059199e-2, .46379089482818671473e-2, .15791188144791287229e-1, -.25134290048737455284e-1, -.26249795071946841205e-1, .39960457575789924651e-1, .28111892450146525404e-1, -.51026476400767918226e-1, -.27266747278681831364e-1, .60708796647861610865e-1, .23532306960642115854e-1, -.68169639871532441111e-1, -.18204924701958312032e-1, .73822890510656128485e-1, .11373392486424717019e-1, -.77133324017644609416e-1, -.39295877480342619961e-2, .78351902829418987960e-1, -.39295877480342619961e-2, -.77133324017644609416e-1, .11373392486424717019e-1, .73822890510656128485e-1, -.18204924701958312032e-1, -.68169639871532441111e-1, .23532306960642115854e-1, .60708796647861610865e-1, -.27266747278681831364e-1, -.51026476400767918226e-1, .28111892450146525404e-1, .39960457575789924651e-1, -.26249795071946841205e-1, -.25134290048737455284e-1, .15791188144791287229e-1, .46379089482818671473e-2, -.48780095920069827068e-2, -.13886961667516983541e-1, .29071311049368895844e-1, .15480559452075811600e-1, -.47527977686242313065e-1, -.31929089844361042178e-2, .58015667638415922967e-1, -.14547915466597622925e-1, -.61067668299848923244e-1, .35093678009090186851e-1, .55378399159800654657e-1, -.54277226474891610385e-1, -.42023830782434076509e-1, .69197384645944912066e-1, .22610783557709586445e-1, -.77269275900637030185e-1, 0.0, .77269275900637030185e-1, -.22610783557709586445e-1, -.69197384645944912066e-1, .42023830782434076509e-1, .54277226474891610385e-1, -.55378399159800654657e-1, -.35093678009090186851e-1, .61067668299848923244e-1, .14547915466597622925e-1, -.58015667638415922967e-1, .31929089844361042178e-2, .47527977686242313065e-1, -.15480559452075811600e-1, -.29071311049368895844e-1, .13886961667516983541e-1, .48780095920069827068e-2, .51591759101720291381e-2, .11747497650231330965e-1, -.31777863364694653331e-1, -.34555825499804605557e-2, .47914131921157015198e-1, -.22573685920142225247e-1, -.45320344390022666738e-1, .49660630547172186418e-1, .25707858143963615736e-1, -.68132707341917233933e-1, .67534860185243140399e-2, .69268150370037450063e-1, -.41585011920451477177e-1, -.51622397460510041271e-1, .68408139576363036148e-1, .18981259024768933323e-1, -.78265472429342305554e-1, .18981259024768933323e-1, .68408139576363036148e-1, -.51622397460510041271e-1, -.41585011920451477177e-1, .69268150370037450063e-1, .67534860185243140399e-2, -.68132707341917233933e-1, .25707858143963615736e-1, .49660630547172186418e-1, -.45320344390022666738e-1, -.22573685920142225247e-1, .47914131921157015198e-1, -.34555825499804605557e-2, -.31777863364694653331e-1, .11747497650231330965e-1, .51591759101720291381e-2, -.54365757412741340377e-2, -.94862516619529080191e-2, .33240472093448190877e-1, -.88698898099681552229e-2, -.40973252097216337576e-1, .42995673349795657065e-1, .17320914507876958783e-1, -.62201292691914856803e-1, .24726274174637346693e-1, .51320859246515407288e-1, -.62882063373810501763e-1, -.11003569131725622672e-1, .73842261324108943465e-1, -.39240120294802923208e-1, -.49293966443941122807e-1, .73552644778818223475e-1, 0.0, -.73552644778818223475e-1, .49293966443941122807e-1, .39240120294802923208e-1, -.73842261324108943465e-1, .11003569131725622672e-1, .62882063373810501763e-1, -.51320859246515407288e-1, -.24726274174637346693e-1, .62201292691914856803e-1, -.17320914507876958783e-1, -.42995673349795657065e-1, .40973252097216337576e-1, .88698898099681552229e-2, -.33240472093448190877e-1, .94862516619529080191e-2, .54365757412741340377e-2, .57750194549356126240e-2, .69981166020044116791e-2, -.33274982140403110792e-1, .20297071020698356116e-1, .27898517839646066582e-1, -.53368678853282030262e-1, .16656482990394548343e-1, .46342901447260614255e-1, -.60536796508149003365e-1, .29109107483842596340e-2, .63224486124385124504e-1, -.59028872851312033411e-1, -.14783105962696191734e-1, .74269399241069253865e-1, -.49053677339382384625e-1, -.33525466624811186739e-1, .78397349622515386647e-1, -.33525466624811186739e-1, -.49053677339382384625e-1, .74269399241069253865e-1, -.14783105962696191734e-1, -.59028872851312033411e-1, .63224486124385124504e-1, .29109107483842596340e-2, -.60536796508149003365e-1, .46342901447260614255e-1, .16656482990394548343e-1, -.53368678853282030262e-1, .27898517839646066582e-1, .20297071020698356116e-1, -.33274982140403110792e-1, .69981166020044116791e-2, .57750194549356126240e-2, -.61100308370519200637e-2, -.44383614355738148616e-2, .32011283412619094811e-1, -.29965011866372897633e-1, -.10560682331349193348e-1, .51110336443392506342e-1, -.45012284729681775492e-1, -.94236825555873320102e-2, .60860695783141264746e-1, -.55014628647083368926e-1, -.73474782382499482121e-2, .66640148475243034781e-1, -.62533116045749887988e-1, -.38650525912400102585e-2, .68429769005837003777e-1, -.66984505412544901945e-1, 0.0, .66984505412544901945e-1, -.68429769005837003777e-1, .38650525912400102585e-2, .62533116045749887988e-1, -.66640148475243034781e-1, .73474782382499482121e-2, .55014628647083368926e-1, -.60860695783141264746e-1, .94236825555873320102e-2, .45012284729681775492e-1, -.51110336443392506342e-1, .10560682331349193348e-1, .29965011866372897633e-1, -.32011283412619094811e-1, .44383614355738148616e-2, .61100308370519200637e-2, .65409373892036191538e-2, .16350101107071157065e-2, -.29301957285983144319e-1, .36838667173388832579e-1, -.81922703976491586393e-2, -.36955670021050133434e-1, .58374851095540469865e-1, -.31977016246946181856e-1, -.25311073698658094646e-1, .66674413950106952577e-1, -.54865713324521039571e-1, -.39797027891537985440e-2, .62830285264808449064e-1, -.72226313251296100676e-1, .22560232697133353980e-1, .46455784709904033738e-1, -.78200930751070349956e-1, .46455784709904033738e-1, .22560232697133353980e-1, -.72226313251296100676e-1, .62830285264808449064e-1, -.39797027891537985440e-2, -.54865713324521039571e-1, .66674413950106952577e-1, -.25311073698658094646e-1, -.31977016246946181856e-1, .58374851095540469865e-1, -.36955670021050133434e-1, -.81922703976491586393e-2, .36838667173388832579e-1, -.29301957285983144319e-1, .16350101107071157065e-2, .65409373892036191538e-2, -.69686180931868703196e-2, .11849538727632789870e-2, .25452286414610537766e-1, -.40522480651713943230e-1, .25694679053362813183e-1, .14057118113748390637e-1, -.52037614725803488893e-1, .58849342223684035589e-1, -.25075229077361409271e-1, -.29559771094034181083e-1, .68296746944165720199e-1, -.62890462146423984955e-1, .14457636466274596445e-1, .45787612031322361496e-1, -.77231759014655809742e-1, .57881203613910543657e-1, 0.0, -.57881203613910543657e-1, .77231759014655809742e-1, -.45787612031322361496e-1, -.14457636466274596445e-1, .62890462146423984955e-1, -.68296746944165720199e-1, .29559771094034181083e-1, .25075229077361409271e-1, -.58849342223684035589e-1, .52037614725803488893e-1, -.14057118113748390637e-1, -.25694679053362813183e-1, .40522480651713943230e-1, -.25452286414610537766e-1, -.11849538727632789870e-2, .69686180931868703196e-2, .75611653617520254845e-2, -.43290610418608409141e-2, -.20277062025115566914e-1, .40362947027704828926e-1, -.38938808024132120254e-1, .11831186195916702262e-1, .28476667401744525357e-1, -.59320969056617684621e-1, .61101629747436200186e-1, -.29514834848355389223e-1, -.20668001885001084821e-1, .62923592802445122793e-1, -.73558456263588833115e-1, .45314556330160999776e-1, .79031645918426015574e-2, -.58136953576334689357e-1, .78538474524006405758e-1, -.58136953576334689357e-1, .79031645918426015574e-2, .45314556330160999776e-1, -.73558456263588833115e-1, .62923592802445122793e-1, -.20668001885001084821e-1, -.29514834848355389223e-1, .61101629747436200186e-1, -.59320969056617684621e-1, .28476667401744525357e-1, .11831186195916702262e-1, -.38938808024132120254e-1, .40362947027704828926e-1, -.20277062025115566914e-1, -.43290610418608409141e-2, .75611653617520254845e-2, -.81505692478987769484e-2, .74297333588288568430e-2, .14314212513540223314e-1, -.36711242251332751607e-1, .46240027755503814626e-1, -.34921532671769023773e-1, .46930051972353714773e-2, .32842770336385381562e-1, -.61317813706529588466e-1, .67000809902468893103e-1, -.45337449655535622885e-1, .35794459576271920867e-2, .41830061526027213385e-1, -.72091371931944711708e-1, .74150028530317793195e-1, -.46487632538609942002e-1, 0.0, .46487632538609942002e-1, -.74150028530317793195e-1, .72091371931944711708e-1, -.41830061526027213385e-1, -.35794459576271920867e-2, .45337449655535622885e-1, -.67000809902468893103e-1, .61317813706529588466e-1, -.32842770336385381562e-1, -.46930051972353714773e-2, .34921532671769023773e-1, -.46240027755503814626e-1, .36711242251332751607e-1, -.14314212513540223314e-1, -.74297333588288568430e-2, .81505692478987769484e-2, .90693182942442189743e-2, -.11121000903959576737e-1, -.71308296141317458546e-2, .29219439765986671645e-1, -.45820286629778129593e-1, .49088381175879124421e-1, -.35614888785023038938e-1, .78906970900092777895e-2, .26262843038404929480e-1, -.56143674270125757857e-1, .71700220472378350694e-1, -.66963544500697307945e-1, .42215091779892228883e-1, -.41338867413966866997e-2, -.36164891772995367321e-1, .66584367783847858225e-1, -.77874712365070098328e-1, .66584367783847858225e-1, -.36164891772995367321e-1, -.41338867413966866997e-2, .42215091779892228883e-1, -.66963544500697307945e-1, .71700220472378350694e-1, -.56143674270125757857e-1, .26262843038404929480e-1, .78906970900092777895e-2, -.35614888785023038938e-1, .49088381175879124421e-1, -.45820286629778129593e-1, .29219439765986671645e-1, -.71308296141317458546e-2, -.11121000903959576737e-1, .90693182942442189743e-2, -.99848472706332791043e-2, .14701271465939718856e-1, -.32917820356048383366e-3, -.19201195309873585230e-1, .38409681836626963278e-1, -.51647324405878909521e-1, .54522171113149311354e-1, -.45040302741689006270e-1, .24183738595685990149e-1, .42204134165479735097e-2, -.34317295181348742251e-1, .59542472465494579941e-1, -.74135115907618101263e-1, .74491937840566532596e-1, -.60042604725161994304e-1, .33437677409000083169e-1, 0.0, -.33437677409000083169e-1, .60042604725161994304e-1, -.74491937840566532596e-1, .74135115907618101263e-1, -.59542472465494579941e-1, .34317295181348742251e-1, -.42204134165479735097e-2, -.24183738595685990149e-1, .45040302741689006270e-1, -.54522171113149311354e-1, .51647324405878909521e-1, -.38409681836626963278e-1, .19201195309873585230e-1, .32917820356048383366e-3, -.14701271465939718856e-1, .99848472706332791043e-2, .11775579274769383373e-1, -.19892153937316935880e-1, .95335114477449041055e-2, .57661528440359081617e-2, -.23382690532380910781e-1, .40237257037170725321e-1, -.53280289903551636474e-1, .59974361806023689068e-1, -.58701684061992853224e-1, .49033407111597129616e-1, -.31818835267847249219e-1, .90800541261162098886e-2, .16272906819312603838e-1, -.40863896581186229487e-1, .61346046297517367703e-1, -.74896047554167268919e-1, .79632642148310325817e-1, -.74896047554167268919e-1, .61346046297517367703e-1, -.40863896581186229487e-1, .16272906819312603838e-1, .90800541261162098886e-2, -.31818835267847249219e-1, .49033407111597129616e-1, -.58701684061992853224e-1, .59974361806023689068e-1, -.53280289903551636474e-1, .40237257037170725321e-1, -.23382690532380910781e-1, .57661528440359081617e-2, .95335114477449041055e-2, -.19892153937316935880e-1, .11775579274769383373e-1, -.13562702617218467450e-1, .24885419969649845849e-1, -.18368693901908875583e-1, .81673147806084084638e-2, .47890591326129587131e-2, -.19313752945227974024e-1, .34065953398362954708e-1, -.47667045133463415672e-1, .58820377816690514309e-1, -.66424139824618415970e-1, .69667606260856092515e-1, -.68102459384364543253e-1, .61683024923302547971e-1, -.50771943476441639136e-1, .36110771847327189215e-1, -.18758028464284563358e-1, 0.0, .18758028464284563358e-1, -.36110771847327189215e-1, .50771943476441639136e-1, -.61683024923302547971e-1, .68102459384364543253e-1, -.69667606260856092515e-1, .66424139824618415970e-1, -.58820377816690514309e-1, .47667045133463415672e-1, -.34065953398362954708e-1, .19313752945227974024e-1, -.47890591326129587131e-2, -.81673147806084084638e-2, .18368693901908875583e-1, -.24885419969649845849e-1, .13562702617218467450e-1, .20576545037980523979e-1, -.40093155172981004337e-1, .36954083167944054826e-1, -.31856506837591907746e-1, .24996323181546255126e-1, -.16637165210473614136e-1, .71002706773325085237e-2, .32478629093205201133e-2, -.14009562579050569518e-1, .24771262248780618922e-1, -.35119395835433647559e-1, .44656290368574753171e-1, -.53015448339647394161e-1, .59875631995693046782e-1, -.64973208326045193862e-1, .68112280331082143373e-1, -.69172215234062186994e-1, .68112280331082143373e-1, -.64973208326045193862e-1, .59875631995693046782e-1, -.53015448339647394161e-1, .44656290368574753171e-1, -.35119395835433647559e-1, .24771262248780618922e-1, -.14009562579050569518e-1, .32478629093205201133e-2, .71002706773325085237e-2, -.16637165210473614136e-1, .24996323181546255126e-1, -.31856506837591907746e-1, .36954083167944054826e-1, -.40093155172981004337e-1, .20576545037980523979e-1, -.27584914609096156163e-1, .54904171411058497973e-1, -.54109756419563083153e-1, .52794234894345577483e-1, -.50970276026831042415e-1, .48655445537990983379e-1, -.45872036510847994332e-1, .42646854695899611372e-1, -.39010960357087507670e-1, .34999369144476467749e-1, -.30650714874402762189e-1, .26006877464703437057e-1, -.21112579608213651273e-1, .16014956068786763273e-1, -.10763099747751940252e-1, .54075888924374485533e-2, 0.0, -.54075888924374485533e-2, .10763099747751940252e-1, -.16014956068786763273e-1, .21112579608213651273e-1, -.26006877464703437057e-1, .30650714874402762189e-1, -.34999369144476467749e-1, .39010960357087507670e-1, -.42646854695899611372e-1, .45872036510847994332e-1, -.48655445537990983379e-1, .50970276026831042415e-1, -.52794234894345577483e-1, .54109756419563083153e-1, -.54904171411058497973e-1, .27584914609096156163e-1, .13794141262469565740e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .27588282524939131481e-1, -.27588282524939131481e-1, .13794141262469565740e-1 }; static const double Tleft[33 * 33] = { 1., -.86602540378443864678, 0., .33071891388307382381, 0., -.20728904939721249057, 0., .15128841196122722208, 0., -.11918864298744029244, 0., .98352013661686631224e-1, 0., -.83727065404940845733e-1, 0., .72893399403505841203e-1, 0., -.64544632643375022436e-1, 0., .57913170372415565639e-1, 0., -.52518242575729562263e-1, 0., .48043311993977520457e-1, 0., -.44271433659733990243e-1, 0., .41048928022856771981e-1, 0., -.38263878662008271459e-1, 0., .35832844026365304501e-1, 0., 0., .50000000000000000000, -.96824583655185422130, .57282196186948000082, .21650635094610966169, -.35903516540862679125, -.97578093724974971969e-1, .26203921611325660506, .55792409597991015609e-1, -.20644078533943456204, -.36172381205961199479e-1, .17035068468874958194, .25371838001497225980e-1, -.14501953125000000000, -.18786835250972344757e-1, .12625507130328301066, .14473795929590520582e-1, -.11179458309419422675, -.11494434254897626155e-1, .10030855351241635862, .93498556820544479096e-2, -.90964264465390582629e-1, -.77546391824364392762e-2, .83213457337452292745e-1, .65358085945588638605e-2, -.76680372422574234569e-1, -.55835321940047427169e-2, .71098828931825789428e-1, .48253327982967591019e-2, -.66274981937248958553e-1, -.42118078245337801387e-2, .62064306433355646267e-1, .37083386598903548973e-2, 0., 0., .25000000000000000000, -.73950997288745200531, .83852549156242113615, -.23175620272173946716, -.37791833195149451496, .25710129174850522325, .21608307321780204633, -.22844049245646009157, -.14009503000335388415, .19897685605518413847, .98264706042471226893e-1, -.17445445004279014046, -.72761100054958328401e-1, .15463589893742108388, .56056770591708784481e-1, -.13855313872640495158, -.44517752443294564781e-1, .12534277657695128850, .36211835346039665762e-1, -.11434398255136139683, -.30033588409423828125e-1, .10506705408753910481, .25313077840725783008e-1, -.97149327637744872155e-1, -.21624927200393328444e-1, .90319582367202122625e-1, .18688433567711780666e-1, -.84372291635345108584e-1, -.16312261561845420752e-1, .79149526894804751586e-1, .14362333871852474757e-1, 0., 0., 0., .12500000000000000000, -.49607837082461073572, .82265291131801144317, -.59621200088559103072, -.80054302859059362371e-1, .42612156697795759420, -.90098145270865592887e-1, -.29769623255090078484, .13630307904779758221, .21638835185708931831, -.14600247270306082052, -.16348801804014290453, .14340708728599057249, .12755243353979286190, -.13661523715071346961, -.10215585947881057394, .12864248070157166547, .83592528025348693602e-1, -.12066728689302565222, -.69633728678718053052e-1, .11314245177331919532, .58882939251410088028e-1, -.10621835858758221487, -.50432266865187597572e-1, .99916834723527771581e-1, .43672094283057258509e-1, -.94206380251950852413e-1, -.38181356812697746418e-1, .89035739656537771225e-1, .33661934598216332678e-1, 0., 0., 0., 0., .62500000000000000000e-1, -.31093357409581873586, .67604086414949799246, -.75644205980613611039, .28990586430124175741, .30648508196770360914, -.35801372616842500052, -.91326869828709014708e-1, .31127929687500000000, -.90915752838698393094e-2, -.25637381283965534330, .57601077850322797594e-1, .21019685709225757945, -.81244992138514014256e-1, -.17375078516720988858, .92289437277967051125e-1, .14527351914265391374, -.96675340792832019889e-1, -.12289485697108543415, .97448175340011084006e-1, .10511755943298339844, -.96242247086378239657e-1, -.90822942272780513537e-1, .93966350452322132384e-1, .79189411876493712558e-1, -.91139307067989309325e-1, -.69613039934383197265e-1, .88062491671135767870e-1, .61646331729340817494e-1, 0., 0., 0., 0., 0., .31250000000000000000e-1, -.18684782411095934408, .50176689760410660236, -.74784031498626095398, .56472001151566251186, .14842464993721351203e-1, -.41162920273003120936, .20243071230196532282, .23772054897172750436, -.24963810923972235950, -.12116179938394678936, .24330535483519110663, .47903849781124471359e-1, -.22133299683101224293, -.20542915138527200983e-2, .19653465717678146728, -.26818172626509178444e-1, -.17319122357631210944, .45065391411065545445e-1, .15253391395444065941, -.56543897711725408302e-1, -.13469154928743585367, .63632471400208840155e-1, .11941684923913523817, -.67828850207933293098e-1, -.10636309084510652670, .70095786922999181504e-1, .95187373095150709082e-1, 0., 0., 0., 0., 0., 0., .15625000000000000000e-1, -.10909562534194485289, .34842348626527747318, -.64461114561628111443, .69382480527334683659, -.29551102358528827763, -.25527584713978439819, .38878771718544715394, -.82956185835347407489e-2, -.31183177761966943912, .12831420840372374767, .22067618205599434368, -.17569196937129496961, -.14598057000132284135, .18864406621763419484, .89921002550386645767e-1, -.18571835020187122114, -.48967672227195481777e-1, .17584685670380332798, .19267984545067426324e-1, -.16335437520503462738, .22598055455032407594e-2, .15032800884170631129, -.17883358353754640871e-1, -.13774837869432209951, .29227555960587143675e-1, .12604194747513151053, 0., 0., 0., 0., 0., 0., 0., .78125000000000000000e-2, -.62377810244809812496e-1, .23080781467370883845, -.50841310636012325368, .69834547012574056043, -.52572723156526459672, .11464215704954976471e-1, .38698869011491210342, -.26125646622255207507, -.16951698812361607510, .29773875898928782269, .20130501202570367491e-1, -.26332493149159310198, .67734613690401207009e-1, .21207315477103762715, -.11541543390889415193, -.16249634759782417533, .13885887405041735068, .11996491328010275427, -.14810432001630926895, -.85177658352556243411e-1, .14918860659904380587, .57317789510444151564e-1, -.14569827645586660151, -.35213090145965327390e-1, .13975998126844578198, 0., 0., 0., 0., 0., 0., 0., 0., .39062500000000000000e-2, -.35101954600803571207e-1, .14761284084133737720, -.37655033076080192966, .62410290231517322776, -.64335622317683389875, .28188168266139524244, .22488495672137010675, -.39393811089283576186, .75184777995770096714e-1, .28472023119398293003, -.20410910833705899572, -.15590046962908511750, .23814567544617953125, .54442805556829031204e-1, -.22855930338589720954, .16303223615756629897e-1, .20172722433875559213, -.62723406421217419404e-1, -.17012230831020922010, .91754642766136561612e-1, .13927644821381121197, -.10886600968068418181, -.11139075654373395292, .11797455976331702879, 0., 0., 0., 0., 0., 0., 0., 0., 0., .19531250000000000000e-2, -.19506820659607596598e-1, .91865676095362231937e-1, -.26604607809696493849, .51425874205091288223, -.66047561132505329292, .48660109511591303851, -.17575661168678285615e-1, -.36594333408055703366, .29088854695378694533, .11318677346656537927, -.31110645235730182168, .60733219161008787341e-1, .24333848233620420826, -.15254312332655419708, -.15995968483455388613, .19010344455215289289, .86040636766440260000e-1, -.19652589954665259945, -.27633388517205837713e-1, .18660848552712880387, -.15942583868416775867e-1, -.16902042462382064786, .47278526495327740646e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .97656250000000000000e-3, -.10731084460857378207e-1, .55939644713816406331e-1, -.18118487371914493668, .39914857299829864263, -.60812322949933902435, .60011887183061967583, -.26002695805835928795, -.20883922404786010096, .38988130966114638081, -.11797833550782589082, -.25231824756239520077, .24817859972953934712, .90516417677868996417e-1, -.26079073291293066798, .30259468817169480161e-1, .22178195264114178432, -.10569877864302048175, -.16679648389266977455, .14637718550245050850, .11219272032739559870, -.16359363640525750353, -.64358194509092101393e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .48828125000000000000e-3, -.58542865274813470967e-2, .33461741635290096452e-1, -.11979993155896201271, .29580223766987206958, -.51874761979436016742, .62861483498014306968, -.44868895761051453296, .12567502628371529386e-1, .35040366183235474275, -.30466868455569500886, -.70903913601490112666e-1, .30822791893032512740, -.11969443264190207736, -.20764760317621313946, .20629838355452128532, .95269702915334718507e-1, -.22432624768705133300, -.33103381593477797101e-2, .20570036048155716333, -.62208282720094518964e-1, -.17095309330441436348, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .24414062500000000000e-3, -.31714797501871532475e-2, .19721062526127334100e-1, -.77311181185536498246e-1, .21124871792841566575, -.41777980401893650886, .59401977834943551650, -.56132417807488349048, .23433675061367565951, .20222775295220942126, -.38280372496506190127, .14443804214023095767, .22268950939178466797, -.27211314150777981984, -.34184876506180717313e-1, .26006498895669734842, -.97650425186005090107e-1, -.19024527660129101293, .16789164198044635671, .10875811641651905252, -.19276785058805921298, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .12207031250000000000e-3, -.17078941137247586143e-2, .11477733754843910060e-1, -.48887017020924625462e-1, .14634927241421789683, -.32156282683019547854, .52165811920227223937, -.60001958466396926460, .41208501541480733755, -.11366945503190350975e-2, -.33968093962672089159, .30955190935923386766, .40657421856578262210e-1, -.29873400409871531764, .16094481791768257440, .16876122436206497694, -.23650217045022161255, -.33070260090574765012e-1, .22985258456375907796, -.68645651043827097771e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .61035156250000000000e-4, -.91501857608428649078e-3, .66085179496951987952e-2, -.30383171695850355404e-1, .98840838845366876117e-1, -.23855447246420318989, .43322017468145613917, -.58049033744876107191, .52533893203742699346, -.20681056202371946180, -.20180000924562504384, .37503922291962681797, -.15988102869837429062, -.19823558102762374094, .28393023878803799622, -.11188133439357510403e-1, -.24730368377168229255, .14731529061377942839, .14878558042884266021, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .30517578125000000000e-4, -.48804277318479845551e-3, .37696080990601968396e-2, -.18603912108994738255e-1, .65325006755649582964e-1, -.17162960707938819795, .34411527956476971322, -.52289350347082497959, .57319653625674910592, -.37662253421045430413, -.14099055105384663902e-1, .33265570610216904208, -.30921265572647566661, -.19911390594166455281e-1, .28738590811031797718, -.18912130469738472647, -.13235936203215819193, .25076406142356675279, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .15258789062500000000e-4, -.25928719280954633249e-3, .21327398937568540428e-2, -.11244626133630732010e-1, .42375605740664331966e-1, -.12031130345907846211, .26352562258934426830, -.44590628258512682078, .56682835613700749379, -.49116715128261660395, .17845943097110339078, .20541650677432497477, -.36739803642257458221, .16776034069210108273, .17920950989905112908, -.28867732805385066532, .46473465543376206337e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .76293945312500000000e-5, -.13727610943181290891e-3, .11979683091449349286e-2, -.67195313034570709806e-2, .27044920779931968175e-1, -.82472196498517457862e-1, .19570475044896150093, -.36391620788543817693, .52241392782736588032, -.54727504974907879912, .34211551468813581183, .31580472732719957762e-1, -.32830006549176759667, .30563797665254420769, .64905014620683140120e-2, -.27642986248995073032, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .38146972656250000000e-5, -.72454147007837596854e-4, .66859847582761390285e-3, -.39751311980366118437e-2, .17015198650201528366e-1, -.55443621868993855715e-1, .14157060481641692131, -.28641242619559616836, .45610665490966615415, -.55262786406029265394, .45818352706035500108, -.14984403004611673047, -.21163807462970713245, .36007252928843413718, -.17030961385712954159, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .19073486328125000000e-5, -.38135049864067468562e-4, .37101393638555730015e-3, -.23305339886279723213e-2, .10569913448297127219e-1, -.36640175162216897547e-1, .10010476414320235508, -.21860074212675559892, .38124757096345313719, -.52020999209879669177, .52172632730659212045, -.30841620620308814614, -.50322546186721500184e-1, .32577618885114899053, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .95367431640625000000e-6, -.20021483206955925244e-4, .20481807322420625431e-3, -.13553476938058909882e-2, .64919676350791905019e-2, -.23848725425069251903e-1, .69384632678886421292e-1, -.16249711393618776934, .30736618106830314788, -.46399909601971539157, .53765031034002467225, -.42598991476520183929, .12130445348350215652, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .47683715820312500000e-6, -.10487707828484902486e-4, .11254146162337528943e-3, -.78248929534271987118e-3, .39468337145306794566e-2, -.15313546659475671763e-1, .47249070825218564146e-1, -.11804374107101480543, .24031796927792491122, -.39629215049166341285, .51629108968402548545, -.49622372075429782915, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .23841857910156250000e-6, -.54823314130625337326e-5, .61575377321535518154e-4, -.44877834366497538134e-3, .23774612048621955857e-2, -.97136347645161687796e-2, .31671599547606636717e-1, -.84028665767000747480e-1, .18298487576742964949, -.32647878537696945218, .46970971486488895077, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .11920928955078125000e-6, -.28604020001177375838e-5, .33559227978295551013e-4, -.25583821662860610560e-3, .14201552747787302339e-2, -.60938046986874414969e-2, .20930869247951926793e-1, -.58745021125678072911e-1, .13613725780285953720, -.26083988356030237586, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .59604644775390625000e-7, -.14898180663526043291e-5, .18224991282807693921e-4, -.14504433444608833821e-3, .84184722720281809548e-3, -.37846965430000478789e-2, .13656355548211376864e-1, -.40409541997718853934e-1, .99226988101858325902e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .29802322387695312500e-7, -.77471708843445529468e-6, .98649879372606876995e-5, -.81814934772838523887e-4, .49554483992403011328e-3, -.23290922072351413938e-2, .88068134250844034186e-2, -.27393666952485719070e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .14901161193847656250e-7, -.40226235946098233685e-6, .53236418690561306700e-5, -.45933829691164002269e-4, .28982005232838857913e-3, -.14212974043211018374e-2, .56192363087488842264e-2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .74505805969238281250e-8, -.20858299254133430408e-6, .28648457300134381744e-5, -.25677535898258910850e-4, .16849420429491355445e-3, -.86062824010315834002e-3, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .37252902984619140625e-8, -.10801736017613096861e-6, .15376606719887104015e-5, -.14296523739727437959e-4, .97419023656050887203e-4, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .18626451492309570312e-8, -.55871592916438890146e-7, .82331193828137454068e-6, -.79302250528382787666e-5, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .93132257461547851562e-9, -.28867244235852488244e-7, .43982811713864556957e-6, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .46566128730773925781e-9, -.14899342093408253335e-7, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .23283064365386962891e-9 }; static const double Tright[33 * 33] = { 1., .86602540378443864678, 0., -.33071891388307382381, 0., .20728904939721249057, 0., -.15128841196122722208, 0., .11918864298744029244, 0., -.98352013661686631224e-1, 0., .83727065404940845733e-1, 0., -.72893399403505841203e-1, 0., .64544632643375022436e-1, 0., -.57913170372415565639e-1, 0., .52518242575729562263e-1, 0., -.48043311993977520457e-1, 0., .44271433659733990243e-1, 0., -.41048928022856771981e-1, 0., .38263878662008271459e-1, 0., -.35832844026365304501e-1, 0., 0., .50000000000000000000, .96824583655185422130, .57282196186948000082, -.21650635094610966169, -.35903516540862679125, .97578093724974971969e-1, .26203921611325660506, -.55792409597991015609e-1, -.20644078533943456204, .36172381205961199479e-1, .17035068468874958194, -.25371838001497225980e-1, -.14501953125000000000, .18786835250972344757e-1, .12625507130328301066, -.14473795929590520582e-1, -.11179458309419422675, .11494434254897626155e-1, .10030855351241635862, -.93498556820544479096e-2, -.90964264465390582629e-1, .77546391824364392762e-2, .83213457337452292745e-1, -.65358085945588638605e-2, -.76680372422574234569e-1, .55835321940047427169e-2, .71098828931825789428e-1, -.48253327982967591019e-2, -.66274981937248958553e-1, .42118078245337801387e-2, .62064306433355646267e-1, -.37083386598903548973e-2, 0., 0., .25000000000000000000, .73950997288745200531, .83852549156242113615, .23175620272173946716, -.37791833195149451496, -.25710129174850522325, .21608307321780204633, .22844049245646009157, -.14009503000335388415, -.19897685605518413847, .98264706042471226893e-1, .17445445004279014046, -.72761100054958328401e-1, -.15463589893742108388, .56056770591708784481e-1, .13855313872640495158, -.44517752443294564781e-1, -.12534277657695128850, .36211835346039665762e-1, .11434398255136139683, -.30033588409423828125e-1, -.10506705408753910481, .25313077840725783008e-1, .97149327637744872155e-1, -.21624927200393328444e-1, -.90319582367202122625e-1, .18688433567711780666e-1, .84372291635345108584e-1, -.16312261561845420752e-1, -.79149526894804751586e-1, .14362333871852474757e-1, 0., 0., 0., .12500000000000000000, .49607837082461073572, .82265291131801144317, .59621200088559103072, -.80054302859059362371e-1, -.42612156697795759420, -.90098145270865592887e-1, .29769623255090078484, .13630307904779758221, -.21638835185708931831, -.14600247270306082052, .16348801804014290453, .14340708728599057249, -.12755243353979286190, -.13661523715071346961, .10215585947881057394, .12864248070157166547, -.83592528025348693602e-1, -.12066728689302565222, .69633728678718053052e-1, .11314245177331919532, -.58882939251410088028e-1, -.10621835858758221487, .50432266865187597572e-1, .99916834723527771581e-1, -.43672094283057258509e-1, -.94206380251950852413e-1, .38181356812697746418e-1, .89035739656537771225e-1, -.33661934598216332678e-1, 0., 0., 0., 0., .62500000000000000000e-1, .31093357409581873586, .67604086414949799246, .75644205980613611039, .28990586430124175741, -.30648508196770360914, -.35801372616842500052, .91326869828709014708e-1, .31127929687500000000, .90915752838698393094e-2, -.25637381283965534330, -.57601077850322797594e-1, .21019685709225757945, .81244992138514014256e-1, -.17375078516720988858, -.92289437277967051125e-1, .14527351914265391374, .96675340792832019889e-1, -.12289485697108543415, -.97448175340011084006e-1, .10511755943298339844, .96242247086378239657e-1, -.90822942272780513537e-1, -.93966350452322132384e-1, .79189411876493712558e-1, .91139307067989309325e-1, -.69613039934383197265e-1, -.88062491671135767870e-1, .61646331729340817494e-1, 0., 0., 0., 0., 0., .31250000000000000000e-1, .18684782411095934408, .50176689760410660236, .74784031498626095398, .56472001151566251186, -.14842464993721351203e-1, -.41162920273003120936, -.20243071230196532282, .23772054897172750436, .24963810923972235950, -.12116179938394678936, -.24330535483519110663, .47903849781124471359e-1, .22133299683101224293, -.20542915138527200983e-2, -.19653465717678146728, -.26818172626509178444e-1, .17319122357631210944, .45065391411065545445e-1, -.15253391395444065941, -.56543897711725408302e-1, .13469154928743585367, .63632471400208840155e-1, -.11941684923913523817, -.67828850207933293098e-1, .10636309084510652670, .70095786922999181504e-1, -.95187373095150709082e-1, 0., 0., 0., 0., 0., 0., .15625000000000000000e-1, .10909562534194485289, .34842348626527747318, .64461114561628111443, .69382480527334683659, .29551102358528827763, -.25527584713978439819, -.38878771718544715394, -.82956185835347407489e-2, .31183177761966943912, .12831420840372374767, -.22067618205599434368, -.17569196937129496961, .14598057000132284135, .18864406621763419484, -.89921002550386645767e-1, -.18571835020187122114, .48967672227195481777e-1, .17584685670380332798, -.19267984545067426324e-1, -.16335437520503462738, -.22598055455032407594e-2, .15032800884170631129, .17883358353754640871e-1, -.13774837869432209951, -.29227555960587143675e-1, .12604194747513151053, 0., 0., 0., 0., 0., 0., 0., .78125000000000000000e-2, .62377810244809812496e-1, .23080781467370883845, .50841310636012325368, .69834547012574056043, .52572723156526459672, .11464215704954976471e-1, -.38698869011491210342, -.26125646622255207507, .16951698812361607510, .29773875898928782269, -.20130501202570367491e-1, -.26332493149159310198, -.67734613690401207009e-1, .21207315477103762715, .11541543390889415193, -.16249634759782417533, -.13885887405041735068, .11996491328010275427, .14810432001630926895, -.85177658352556243411e-1, -.14918860659904380587, .57317789510444151564e-1, .14569827645586660151, -.35213090145965327390e-1, -.13975998126844578198, 0., 0., 0., 0., 0., 0., 0., 0., .39062500000000000000e-2, .35101954600803571207e-1, .14761284084133737720, .37655033076080192966, .62410290231517322776, .64335622317683389875, .28188168266139524244, -.22488495672137010675, -.39393811089283576186, -.75184777995770096714e-1, .28472023119398293003, .20410910833705899572, -.15590046962908511750, -.23814567544617953125, .54442805556829031204e-1, .22855930338589720954, .16303223615756629897e-1, -.20172722433875559213, -.62723406421217419404e-1, .17012230831020922010, .91754642766136561612e-1, -.13927644821381121197, -.10886600968068418181, .11139075654373395292, .11797455976331702879, 0., 0., 0., 0., 0., 0., 0., 0., 0., .19531250000000000000e-2, .19506820659607596598e-1, .91865676095362231937e-1, .26604607809696493849, .51425874205091288223, .66047561132505329292, .48660109511591303851, .17575661168678285615e-1, -.36594333408055703366, -.29088854695378694533, .11318677346656537927, .31110645235730182168, .60733219161008787341e-1, -.24333848233620420826, -.15254312332655419708, .15995968483455388613, .19010344455215289289, -.86040636766440260000e-1, -.19652589954665259945, .27633388517205837713e-1, .18660848552712880387, .15942583868416775867e-1, -.16902042462382064786, -.47278526495327740646e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .97656250000000000000e-3, .10731084460857378207e-1, .55939644713816406331e-1, .18118487371914493668, .39914857299829864263, .60812322949933902435, .60011887183061967583, .26002695805835928795, -.20883922404786010096, -.38988130966114638081, -.11797833550782589082, .25231824756239520077, .24817859972953934712, -.90516417677868996417e-1, -.26079073291293066798, -.30259468817169480161e-1, .22178195264114178432, .10569877864302048175, -.16679648389266977455, -.14637718550245050850, .11219272032739559870, .16359363640525750353, -.64358194509092101393e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .48828125000000000000e-3, .58542865274813470967e-2, .33461741635290096452e-1, .11979993155896201271, .29580223766987206958, .51874761979436016742, .62861483498014306968, .44868895761051453296, .12567502628371529386e-1, -.35040366183235474275, -.30466868455569500886, .70903913601490112666e-1, .30822791893032512740, .11969443264190207736, -.20764760317621313946, -.20629838355452128532, .95269702915334718507e-1, .22432624768705133300, -.33103381593477797101e-2, -.20570036048155716333, -.62208282720094518964e-1, .17095309330441436348, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .24414062500000000000e-3, .31714797501871532475e-2, .19721062526127334100e-1, .77311181185536498246e-1, .21124871792841566575, .41777980401893650886, .59401977834943551650, .56132417807488349048, .23433675061367565951, -.20222775295220942126, -.38280372496506190127, -.14443804214023095767, .22268950939178466797, .27211314150777981984, -.34184876506180717313e-1, -.26006498895669734842, -.97650425186005090107e-1, .19024527660129101293, .16789164198044635671, -.10875811641651905252, -.19276785058805921298, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .12207031250000000000e-3, .17078941137247586143e-2, .11477733754843910060e-1, .48887017020924625462e-1, .14634927241421789683, .32156282683019547854, .52165811920227223937, .60001958466396926460, .41208501541480733755, .11366945503190350975e-2, -.33968093962672089159, -.30955190935923386766, .40657421856578262210e-1, .29873400409871531764, .16094481791768257440, -.16876122436206497694, -.23650217045022161255, .33070260090574765012e-1, .22985258456375907796, .68645651043827097771e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .61035156250000000000e-4, .91501857608428649078e-3, .66085179496951987952e-2, .30383171695850355404e-1, .98840838845366876117e-1, .23855447246420318989, .43322017468145613917, .58049033744876107191, .52533893203742699346, .20681056202371946180, -.20180000924562504384, -.37503922291962681797, -.15988102869837429062, .19823558102762374094, .28393023878803799622, .11188133439357510403e-1, -.24730368377168229255, -.14731529061377942839, .14878558042884266021, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .30517578125000000000e-4, .48804277318479845551e-3, .37696080990601968396e-2, .18603912108994738255e-1, .65325006755649582964e-1, .17162960707938819795, .34411527956476971322, .52289350347082497959, .57319653625674910592, .37662253421045430413, -.14099055105384663902e-1, -.33265570610216904208, -.30921265572647566661, .19911390594166455281e-1, .28738590811031797718, .18912130469738472647, -.13235936203215819193, -.25076406142356675279, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .15258789062500000000e-4, .25928719280954633249e-3, .21327398937568540428e-2, .11244626133630732010e-1, .42375605740664331966e-1, .12031130345907846211, .26352562258934426830, .44590628258512682078, .56682835613700749379, .49116715128261660395, .17845943097110339078, -.20541650677432497477, -.36739803642257458221, -.16776034069210108273, .17920950989905112908, .28867732805385066532, .46473465543376206337e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .76293945312500000000e-5, .13727610943181290891e-3, .11979683091449349286e-2, .67195313034570709806e-2, .27044920779931968175e-1, .82472196498517457862e-1, .19570475044896150093, .36391620788543817693, .52241392782736588032, .54727504974907879912, .34211551468813581183, -.31580472732719957762e-1, -.32830006549176759667, -.30563797665254420769, .64905014620683140120e-2, .27642986248995073032, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .38146972656250000000e-5, .72454147007837596854e-4, .66859847582761390285e-3, .39751311980366118437e-2, .17015198650201528366e-1, .55443621868993855715e-1, .14157060481641692131, .28641242619559616836, .45610665490966615415, .55262786406029265394, .45818352706035500108, .14984403004611673047, -.21163807462970713245, -.36007252928843413718, -.17030961385712954159, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .19073486328125000000e-5, .38135049864067468562e-4, .37101393638555730015e-3, .23305339886279723213e-2, .10569913448297127219e-1, .36640175162216897547e-1, .10010476414320235508, .21860074212675559892, .38124757096345313719, .52020999209879669177, .52172632730659212045, .30841620620308814614, -.50322546186721500184e-1, -.32577618885114899053, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .95367431640625000000e-6, .20021483206955925244e-4, .20481807322420625431e-3, .13553476938058909882e-2, .64919676350791905019e-2, .23848725425069251903e-1, .69384632678886421292e-1, .16249711393618776934, .30736618106830314788, .46399909601971539157, .53765031034002467225, .42598991476520183929, .12130445348350215652, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .47683715820312500000e-6, .10487707828484902486e-4, .11254146162337528943e-3, .78248929534271987118e-3, .39468337145306794566e-2, .15313546659475671763e-1, .47249070825218564146e-1, .11804374107101480543, .24031796927792491122, .39629215049166341285, .51629108968402548545, .49622372075429782915, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .23841857910156250000e-6, .54823314130625337326e-5, .61575377321535518154e-4, .44877834366497538134e-3, .23774612048621955857e-2, .97136347645161687796e-2, .31671599547606636717e-1, .84028665767000747480e-1, .18298487576742964949, .32647878537696945218, .46970971486488895077, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .11920928955078125000e-6, .28604020001177375838e-5, .33559227978295551013e-4, .25583821662860610560e-3, .14201552747787302339e-2, .60938046986874414969e-2, .20930869247951926793e-1, .58745021125678072911e-1, .13613725780285953720, .26083988356030237586, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .59604644775390625000e-7, .14898180663526043291e-5, .18224991282807693921e-4, .14504433444608833821e-3, .84184722720281809548e-3, .37846965430000478789e-2, .13656355548211376864e-1, .40409541997718853934e-1, .99226988101858325902e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .29802322387695312500e-7, .77471708843445529468e-6, .98649879372606876995e-5, .81814934772838523887e-4, .49554483992403011328e-3, .23290922072351413938e-2, .88068134250844034186e-2, .27393666952485719070e-1, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .14901161193847656250e-7, .40226235946098233685e-6, .53236418690561306700e-5, .45933829691164002269e-4, .28982005232838857913e-3, .14212974043211018374e-2, .56192363087488842264e-2, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .74505805969238281250e-8, .20858299254133430408e-6, .28648457300134381744e-5, .25677535898258910850e-4, .16849420429491355445e-3, .86062824010315834002e-3, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .37252902984619140625e-8, .10801736017613096861e-6, .15376606719887104015e-5, .14296523739727437959e-4, .97419023656050887203e-4, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .18626451492309570312e-8, .55871592916438890146e-7, .82331193828137454068e-6, .79302250528382787666e-5, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .93132257461547851562e-9, .28867244235852488244e-7, .43982811713864556957e-6, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .46566128730773925781e-9, .14899342093408253335e-7, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., .23283064365386962891e-9 }; gsl-1.16/integration/workspace.c0000664000252300025230000000744412171574312013650 00000000000000/* integration/workspace.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_integration_workspace * gsl_integration_workspace_alloc (const size_t n) { gsl_integration_workspace * w ; if (n == 0) { GSL_ERROR_VAL ("workspace length n must be positive integer", GSL_EDOM, 0); } w = (gsl_integration_workspace *) malloc (sizeof (gsl_integration_workspace)); if (w == 0) { GSL_ERROR_VAL ("failed to allocate space for workspace struct", GSL_ENOMEM, 0); } w->alist = (double *) malloc (n * sizeof (double)); if (w->alist == 0) { free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for alist ranges", GSL_ENOMEM, 0); } w->blist = (double *) malloc (n * sizeof (double)); if (w->blist == 0) { free (w->alist); free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for blist ranges", GSL_ENOMEM, 0); } w->rlist = (double *) malloc (n * sizeof (double)); if (w->rlist == 0) { free (w->blist); free (w->alist); free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for rlist ranges", GSL_ENOMEM, 0); } w->elist = (double *) malloc (n * sizeof (double)); if (w->elist == 0) { free (w->rlist); free (w->blist); free (w->alist); free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for elist ranges", GSL_ENOMEM, 0); } w->order = (size_t *) malloc (n * sizeof (size_t)); if (w->order == 0) { free (w->elist); free (w->rlist); free (w->blist); free (w->alist); free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for order ranges", GSL_ENOMEM, 0); } w->level = (size_t *) malloc (n * sizeof (size_t)); if (w->level == 0) { free (w->order); free (w->elist); free (w->rlist); free (w->blist); free (w->alist); free (w); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for order ranges", GSL_ENOMEM, 0); } w->size = 0 ; w->limit = n ; w->maximum_level = 0 ; return w ; } void gsl_integration_workspace_free (gsl_integration_workspace * w) { RETURN_IF_NULL (w); free (w->level) ; free (w->order) ; free (w->elist) ; free (w->rlist) ; free (w->blist) ; free (w->alist) ; free (w) ; } /* size_t gsl_integration_workspace_limit (gsl_integration_workspace * w) { return w->limit ; } size_t gsl_integration_workspace_size (gsl_integration_workspace * w) { return w->size ; } */ gsl-1.16/integration/qc25f.c0000664000252300025230000001035112171574312012561 00000000000000/* integration/qc25f.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ struct fn_fourier_params { gsl_function *function; double omega; }; static double fn_sin (double t, void *params); static double fn_cos (double t, void *params); static void qc25f (gsl_function * f, double a, double b, gsl_integration_qawo_table * wf, size_t level, double *result, double *abserr, double *resabs, double *resasc); static void qc25f (gsl_function * f, double a, double b, gsl_integration_qawo_table * wf, size_t level, double *result, double *abserr, double *resabs, double *resasc) { const double center = 0.5 * (a + b); const double half_length = 0.5 * (b - a); const double omega = wf->omega ; const double par = omega * half_length; if (fabs (par) < 2) { gsl_function weighted_function; struct fn_fourier_params fn_params; fn_params.function = f; fn_params.omega = omega; if (wf->sine == GSL_INTEG_SINE) { weighted_function.function = &fn_sin; } else { weighted_function.function = &fn_cos; } weighted_function.params = &fn_params; gsl_integration_qk15 (&weighted_function, a, b, result, abserr, resabs, resasc); return; } else { double *moment; double cheb12[13], cheb24[25]; double result_abs, res12_cos, res12_sin, res24_cos, res24_sin; double est_cos, est_sin; double c, s; size_t i; gsl_integration_qcheb (f, a, b, cheb12, cheb24); if (level >= wf->n) { /* table overflow should not happen, check before calling */ GSL_ERROR_VOID("table overflow in internal function", GSL_ESANITY); } /* obtain moments from the table */ moment = wf->chebmo + 25 * level; res12_cos = cheb12[12] * moment[12]; res12_sin = 0 ; for (i = 0; i < 6; i++) { size_t k = 10 - 2 * i; res12_cos += cheb12[k] * moment[k]; res12_sin += cheb12[k + 1] * moment[k + 1]; } res24_cos = cheb24[24] * moment[24]; res24_sin = 0 ; result_abs = fabs(cheb24[24]) ; for (i = 0; i < 12; i++) { size_t k = 22 - 2 * i; res24_cos += cheb24[k] * moment[k]; res24_sin += cheb24[k + 1] * moment[k + 1]; result_abs += fabs(cheb24[k]) + fabs(cheb24[k+1]); } est_cos = fabs(res24_cos - res12_cos); est_sin = fabs(res24_sin - res12_sin); c = half_length * cos(center * omega); s = half_length * sin(center * omega); if (wf->sine == GSL_INTEG_SINE) { *result = c * res24_sin + s * res24_cos; *abserr = fabs(c * est_sin) + fabs(s * est_cos); } else { *result = c * res24_cos - s * res24_sin; *abserr = fabs(c * est_cos) + fabs(s * est_sin); } *resabs = result_abs * half_length; *resasc = GSL_DBL_MAX; return; } } static double fn_sin (double x, void *params) { struct fn_fourier_params *p = (struct fn_fourier_params *) params; gsl_function *f = p->function; double w = p->omega; double wx = w * x; double sinwx = sin(wx) ; return GSL_FN_EVAL (f, x) * sinwx; } static double fn_cos (double x, void *params) { struct fn_fourier_params *p = (struct fn_fourier_params *) params; gsl_function *f = p->function; double w = p->omega; double wx = w * x; double coswx = cos(wx) ; return GSL_FN_EVAL (f, x) * coswx ; } gsl-1.16/integration/test.c0000664000252300025230000027013412171574312012627 00000000000000/* integration/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include "tests.h" gsl_function make_function (double (* f) (double, void *), double * p); gsl_function make_function (double (* f) (double, void *), double * p) { gsl_function f_new; f_new.function = f ; f_new.params = p ; return f_new; } struct counter_params { gsl_function * f; int neval; } ; double counter (double x, void * params); gsl_function make_counter (gsl_function * f, struct counter_params * p); double counter (double x, void * params) { struct counter_params * p = (struct counter_params *) params; p->neval++ ; /* increment counter */ return GSL_FN_EVAL(p->f, x); } gsl_function make_counter (gsl_function * f, struct counter_params * p) { gsl_function f_new; p->f = f; p->neval = 0 ; f_new.function = &counter ; f_new.params = p ; return f_new; } void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { gsl_ieee_env_setup (); gsl_set_error_handler (&my_error_handler); /* Test the basic Gauss-Kronrod rules with a smooth positive function. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049357767090777E-02; double exp_abserr = 2.990224871000550874E-06; double exp_resabs = 7.716049357767090777E-02; double exp_resasc = 4.434273814139995384E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha) ; gsl_integration_qk15 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) smooth resasc") ; gsl_integration_qk15 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049379303084599E-02; double exp_abserr = 9.424302194248481445E-08; double exp_resabs = 7.716049379303084599E-02; double exp_resasc = 4.434311425038358484E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk21 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) smooth resasc") ; gsl_integration_qk21 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382494900855E-02; double exp_abserr = 1.713503193600029893E-09; double exp_resabs = 7.716049382494900855E-02; double exp_resasc = 4.427995051868838933E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk31 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) smooth resasc") ; gsl_integration_qk31 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382681375302E-02; double exp_abserr = 9.576386660975511224E-11; double exp_resabs = 7.716049382681375302E-02; double exp_resasc = 4.421521169637691873E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk41 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) smooth resasc") ; gsl_integration_qk41 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382708510540E-02; double exp_abserr = 1.002079980317363772E-11; double exp_resabs = 7.716049382708510540E-02; double exp_resasc = 4.416474291216854892E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk51 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk51(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) smooth resasc") ; gsl_integration_qk51 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk51(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 7.716049382713800753E-02; double exp_abserr = 1.566060362296155616E-12; double exp_resabs = 7.716049382713800753E-02; double exp_resasc = 4.419287685934316506E-02; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk61 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk61(f1) smooth abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) smooth resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) smooth resasc") ; gsl_integration_qk61 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk61(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) reverse resasc") ; } /* Now test the basic rules with a positive function that has a singularity. This should give large values of abserr which would find discrepancies in the abserr calculation. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 1.555688196612745777E+01; double exp_abserr = 2.350164577239293706E+01; double exp_resabs = 1.555688196612745777E+01; double exp_resasc = 2.350164577239293706E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk15 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) singular resasc") ; gsl_integration_qk15 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 1.799045317938126232E+01; double exp_abserr = 2.782360287710622515E+01; double exp_resabs = 1.799045317938126232E+01; double exp_resasc = 2.782360287710622515E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk21 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) singular resasc") ; gsl_integration_qk21 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk21(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.081873305159121657E+01; double exp_abserr = 3.296500137482590276E+01; double exp_resabs = 2.081873305159121301E+01; double exp_resasc = 3.296500137482590276E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk31 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) singular resasc") ; gsl_integration_qk31 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.288677623903126701E+01; double exp_abserr = 3.671538820274916048E+01; double exp_resabs = 2.288677623903126701E+01; double exp_resasc = 3.671538820274916048E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk41 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) singular resasc") ; gsl_integration_qk41 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.449953612016972215E+01; double exp_abserr = 3.967771249391228849E+01; double exp_resabs = 2.449953612016972215E+01; double exp_resasc = 3.967771249391228849E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk51 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) singular resasc") ; gsl_integration_qk51 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f1) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result = 2.583030240976628988E+01; double exp_abserr = 4.213750493076978643E+01; double exp_resabs = 2.583030240976628988E+01; double exp_resasc = 4.213750493076978643E+01; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); gsl_integration_qk61 (&f, 0.0, 1.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f1) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f1) singular abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) singular resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) singular resasc") ; gsl_integration_qk61 (&f, 1.0, 0.0, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f1) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f1) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f1) reverse resasc") ; } /* Test the basic Gauss-Kronrod rules with a smooth oscillating function, over an unsymmetric range. This should find any discrepancies in the abscissae. */ { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575483799046E-01; double exp_abserr = 8.760080200939757174E-06; double exp_resabs = 1.165564172429140788E+00; double exp_resasc = 9.334560307787327371E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk15 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk15(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f3) oscill resasc") ; gsl_integration_qk15 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk15(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk15(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk15(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk15(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 7.999213141433641888E-11; double exp_resabs = 1.150829032708484023E+00; double exp_resasc = 9.297591249133687619E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk21 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk21(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk21(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f3) oscill resasc") ; gsl_integration_qk21 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk21(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qk21(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk21(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk21(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.285805464427459261E-14; double exp_resabs = 1.158150602093290571E+00; double exp_resasc = 9.277828092501518853E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk31 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk31(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f3) oscill resasc") ; gsl_integration_qk31 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk31(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk31(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk31(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk31(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.286535726271015626E-14; double exp_resabs = 1.158808363486595328E+00; double exp_resasc = 9.264382258645686985E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk41 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk41(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f3) oscill resasc") ; gsl_integration_qk41 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk41(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk41(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk41(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk41(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482961938E-01; double exp_abserr = 1.285290995039385778E-14; double exp_resabs = 1.157687209264406381E+00; double exp_resasc = 9.264666884071264263E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk51 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk51(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f3) oscill resasc") ; gsl_integration_qk51 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk51(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk51(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk51(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk51(f3) reverse resasc") ; } { double result = 0, abserr = 0, resabs = 0, resasc = 0 ; double exp_result =-7.238969575482959717E-01; double exp_abserr = 1.286438572027470736E-14; double exp_resabs = 1.158720854723590099E+00; double exp_resasc = 9.270469641771273972E-01; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_integration_qk61 (&f, 0.3, 2.71, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,exp_result,1e-15,"qk61(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f3) oscill abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f3) oscill resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f3) oscill resasc") ; gsl_integration_qk61 (&f, 2.71, 0.3, &result, &abserr, &resabs, &resasc) ; gsl_test_rel(result,-exp_result,1e-15,"qk61(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qk61(f3) reverse abserr") ; gsl_test_rel(resabs,exp_resabs,1e-15,"qk61(f3) reverse resabs") ; gsl_test_rel(resasc,exp_resasc,1e-15,"qk61(f3) reverse resasc") ; } /* Test the non-adaptive gaussian integrator QNG */ { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049379303083211E-02; double exp_abserr = 9.424302199601294244E-08; int exp_neval = 21; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 1e-1, 0.0, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) smooth abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) smooth neval") ; gsl_test_int(status,exp_ier,"qng(f1) smooth status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 1e-1, 0.0, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) reverse neval") ; gsl_test_int(status,exp_ier,"qng(f1) reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049382706505200E-02; double exp_abserr = 2.666893044866214501E-12; int exp_neval = 43; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-9, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) smooth 43pt result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qng(f1) smooth 43pt abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) smooth 43pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) smooth 43pt status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-9, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse 43pt result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qng(f1) reverse 43pt abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) reverse 43pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) reverse 43pt status") ; } { int status; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result =-7.238969575482961938E-01; double exp_abserr = 1.277676889520056369E-14; int exp_neval = 43; int exp_ier = 0; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); status = gsl_integration_qng (&f, 0.3, 2.71, 0.0, 1e-12, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qnq(f3) oscill result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f3) oscill abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f3) oscill neval") ; gsl_test_int(status,exp_ier,"qng(f3) oscill status") ; status = gsl_integration_qng (&f, 2.71, 0.3, 0.0, 1e-12, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qnq(f3) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f3) reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f3) reverse neval") ; gsl_test_int(status,exp_ier,"qng(f3) reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 7.716049382716029525E-02; double exp_abserr = 8.566535680046930668E-16; int exp_neval = 87; int exp_ier = 0; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-13, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) 87pt smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) 87pt smooth abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) 87pt smooth neval") ; gsl_test_int(status,exp_ier,"qng(f1) 87pt smooth status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-13, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) 87pt reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) 87pt reverse abserr") ; gsl_test_int((int)neval,exp_neval,"qng(f1) 87pt reverse neval") ; gsl_test_int(status,exp_ier,"qng(f1) 87pt reverse status") ; } { int status = 0; size_t neval = 0 ; double result = 0, abserr = 0 ; double exp_result = 3.222948711817264211E+01; double exp_abserr = 2.782360287710622870E+01; int exp_neval = 87; int exp_ier = GSL_ETOL; double alpha = -0.9 ; gsl_function f = make_function(&f1, &alpha); status = gsl_integration_qng (&f, 0.0, 1.0, 0.0, 1e-3, &result, &abserr, &neval) ; gsl_test_rel(result,exp_result,1e-15,"qng(f1) sing beyond 87pt result"); gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) sing beyond 87pt abserr"); gsl_test_int((int)neval,exp_neval,"qng(f1) sing beyond 87pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) sing beyond 87pt status") ; status = gsl_integration_qng (&f, 1.0, 0.0, 0.0, 1e-3, &result, &abserr, &neval) ; gsl_test_rel(result,-exp_result,1e-15,"qng(f1) reverse beyond 87pt result"); gsl_test_rel(abserr,exp_abserr,1e-7,"qng(f1) rev beyond 87pt abserr"); gsl_test_int((int)neval,exp_neval,"qng(f1) rev beyond 87pt neval") ; gsl_test_int(status,exp_ier,"qng(f1) rev beyond 87pt status") ; } /* Test the adaptive integrator QAG */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382715854665E-02 ; double exp_abserr = 6.679384885865053037E-12 ; int exp_neval = 165; int exp_ier = 0; int exp_last = 6; double a[6] = { 0, 0.5, 0.25, 0.125, 0.0625, 0.03125 } ; double b[6] = { 0.03125, 1, 0.5, 0.25, 0.125, 0.0625 } ; double r[6] = { 3.966769831709074375E-06, 5.491842501998222409E-02, 1.909827770934243926E-02, 2.776531175604360531E-03, 3.280661030752063693E-04, 3.522704932261797744E-05 } ; double e[6] = { 6.678528276336181873E-12, 6.097169993333454062E-16, 2.120334764359736934E-16, 3.082568839745514608E-17, 3.642265412331439511E-18, 3.910988124757650942E-19 } ; int order[6] = { 1, 2, 3, 4, 5, 6 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha) ; gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.0, 1.0, 0.0, 1e-10, w->limit, GSL_INTEG_GAUSS15, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1) smooth last") ; gsl_test_int(status,exp_ier,"qag(f1) smooth status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f1) smooth alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f1) smooth blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f1) smooth rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f1) smooth elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f1) smooth order") ; p.neval = 0; status = gsl_integration_qag (&fc, 1.0, 0.0, 0.0, 1e-10, w->limit, GSL_INTEG_GAUSS15, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1) reverse last") ; gsl_test_int(status,exp_ier,"qag(f1) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test the same function using an absolute error bound and the 21-point rule */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382716050342E-02 ; double exp_abserr = 2.227969521869139532E-15 ; int exp_neval = 315; int exp_ier = 0; int exp_last = 8; double a[8] = { 0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125 } ; double b[8] = { 0.0078125, 1, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625 } ; double r[8] = { 3.696942726831556522E-08, 5.491842501998223103E-02, 1.909827770934243579E-02, 2.776531175604360097E-03, 3.280661030752062609E-04, 3.522704932261797744E-05, 3.579060884684503576E-06, 3.507395216921808047E-07 } ; double e[8] = { 1.371316364034059572E-15, 6.097169993333454062E-16, 2.120334764359736441E-16, 3.082568839745514608E-17, 3.642265412331439511E-18, 3.910988124757650460E-19, 3.973555800712018091E-20, 3.893990926286736620E-21 } ; int order[8] = { 1, 2, 3, 4, 5, 6, 7, 8 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS21, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f1,21pt) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1,21pt) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1,21pt) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1,21pt) smooth last") ; gsl_test_int(status,exp_ier,"qag(f1,21pt) smooth status") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f1,21pt) smooth alist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f1,21pt) smooth blist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f1,21pt) smooth rlist") ; for (i = 0; i < 8 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f1,21pt) smooth elist") ; for (i = 0; i < 8 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f1,21pt) smooth order"); p.neval = 0; status = gsl_integration_qag (&fc, 1.0, 0.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS21, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f1,21pt) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f1,21pt) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f1,21pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f1,21pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f1,21pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Adaptive integration of an oscillatory function which terminates because of roundoff error, uses the 31-pt rule */ { int status = 0; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = -7.238969575482959717E-01; double exp_abserr = 1.285805464427459261E-14; int exp_neval = 31; int exp_ier = GSL_EROUND; int exp_last = 1; double alpha = 1.3 ; gsl_function f = make_function(&f3, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, 0.3, 2.71, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS31, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f3,31pt) oscill result"); gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f3,31pt) oscill abserr"); gsl_test_int((int)(p.neval),exp_neval,"qag(f3,31pt) oscill neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f3,31pt) oscill last") ; gsl_test_int(status,exp_ier,"qag(f3,31pt) oscill status") ; p.neval = 0; status = gsl_integration_qag (&fc, 2.71, 0.3, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS31, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f3,31pt) reverse result"); gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f3,31pt) reverse abserr"); gsl_test_int((int)(p.neval),exp_neval,"qag(f3,31pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f3,31pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f3,31pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Check the singularity detection (singularity at x=-0.1 in this example) */ { int status = 0; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; int exp_neval = 5151; int exp_ier = GSL_ESING; int exp_last = 51; double alpha = 2.0 ; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, -1.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS51, w, &result, &abserr) ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,51pt) sing neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,51pt) sing last") ; gsl_test_int(status,exp_ier,"qag(f16,51pt) sing status") ; p.neval = 0; status = gsl_integration_qag (&fc, 1.0, -1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS51, w, &result, &abserr) ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,51pt) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,51pt) rev last") ; gsl_test_int(status,exp_ier,"qag(f16,51pt) rev status") ; gsl_integration_workspace_free (w) ; } /* Check for hitting the iteration limit */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (3) ; double exp_result = 9.565151449233894709 ; double exp_abserr = 1.570369823891028460E+01; int exp_neval = 305; int exp_ier = GSL_EMAXITER; int exp_last = 3; double a[3] = { -5.000000000000000000E-01, 0.000000000000000000, -1.000000000000000000 } ; double b[3] = { 0.000000000000000000, 1.000000000000000000, -5.000000000000000000E-01 } ; double r[3] = { 9.460353469435913709, 9.090909090909091161E-02, 1.388888888888888812E-02 } ; double e[3] = { 1.570369823891028460E+01, 1.009293658750142399E-15, 1.541976423090495140E-16 } ; int order[3] = { 1, 2, 3 } ; double alpha = 1.0 ; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qag (&fc, -1.0, 1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS61, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qag(f16,61pt) limit result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f16,61pt) limit abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,61pt) limit neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,61pt) limit last") ; gsl_test_int(status,exp_ier,"qag(f16,61pt) limit status") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qag(f16,61pt) limit alist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qag(f16,61pt) limit blist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qag(f16,61pt) limit rlist") ; for (i = 0; i < 3 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qag(f16,61pt) limit elist") ; for (i = 0; i < 3 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qag(f16,61pt) limit order"); p.neval = 0; status = gsl_integration_qag (&fc, 1.0, -1.0, 1e-14, 0.0, w->limit, GSL_INTEG_GAUSS61, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qag(f16,61pt) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qag(f16,61pt) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qag(f16,61pt) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qag(f16,61pt) reverse last") ; gsl_test_int(status,exp_ier,"qag(f16,61pt) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test the adaptive integrator with extrapolation QAGS */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; double exp_result = 7.716049382715789440E-02 ; double exp_abserr = 2.216394961010438404E-12 ; int exp_neval = 189; int exp_ier = 0; int exp_last = 5; double a[5] = { 0, 0.5, 0.25, 0.125, 0.0625 } ; double b[5] = { 0.0625, 1, 0.5, 0.25, 0.125 } ; double r[5] = { 3.919381915366914693E-05, 5.491842501998223103E-02, 1.909827770934243579E-02, 2.776531175604360097E-03, 3.280661030752062609E-04 } ; double e[5] = { 2.215538742580964735E-12, 6.097169993333454062E-16, 2.120334764359736441E-16, 3.082568839745514608E-17, 3.642265412331439511E-18 } ; int order[5] = { 1, 2, 3, 4, 5 } ; double alpha = 2.6 ; gsl_function f = make_function(&f1, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qags (&fc, 0.0, 1.0, 0.0, 1e-10, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qags(f1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qags(f1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f1) smooth last") ; gsl_test_int(status,exp_ier,"qags(f1) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qags(f1) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qags(f1) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qags(f1) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-6,"qags(f1) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qags(f1) smooth order") ; p.neval = 0; status = gsl_integration_qags (&fc, 1.0, 0.0, 0.0, 1e-10, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qags(f1) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qags(f1) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f1) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f1) reverse last") ; gsl_test_int(status,exp_ier,"qags(f1) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test f11 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -5.908755278982136588E+03 ; double exp_abserr = 1.299646281053874554E-10 ; int exp_neval = 357; int exp_ier = 0; int exp_last = 9; double a[9] = { 1.000000000000000000E+00, 5.005000000000000000E+02, 2.507500000000000000E+02, 1.258750000000000000E+02, 6.343750000000000000E+01, 3.221875000000000000E+01, 1.660937500000000000E+01, 8.804687500000000000E+00, 4.902343750000000000E+00 } ; double b[9] = { 4.902343750000000000E+00, 1.000000000000000000E+03, 5.005000000000000000E+02, 2.507500000000000000E+02, 1.258750000000000000E+02, 6.343750000000000000E+01, 3.221875000000000000E+01, 1.660937500000000000E+01, 8.804687500000000000E+00 } ; double r[9] = { -3.890977835520834649E+00, -3.297343675805121620E+03, -1.475904154146372775E+03, -6.517404019686431411E+02, -2.829354222635842007E+02, -1.201692001973227519E+02, -4.959999906099650246E+01, -1.971441499411640308E+01, -7.457032710459004399E+00 } ; double e[9] = { 6.448276035006137169E-11, 3.660786868980994028E-11, 1.638582774073219226E-11, 7.235772003440423011E-12, 3.141214202790722909E-12, 1.334146129098576244E-12, 5.506706097890446534E-13, 2.188739744348345039E-13, 8.278969410534525339E-14 } ; int order[9] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ; double alpha = 2.0 ; gsl_function f = make_function(&f11, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qags (&fc, 1.0, 1000.0, 1e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-15,"qags(f11) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qags(f11) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f11) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f11) smooth last") ; gsl_test_int(status,exp_ier,"qags(f11) smooth status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qags(f11) smooth alist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qags(f11) smooth blist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qags(f11) smooth rlist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],1e-5,"qags(f11) smooth elist") ; for (i = 0; i < 9 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qags(f11) smooth order"); p.neval = 0; status = gsl_integration_qags (&fc, 1000.0, 1.0, 1e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-15,"qags(f11) reverse result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qags(f11) reverse abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qags(f11) reverse neval") ; gsl_test_int((int)(w->size),exp_last,"qags(f11) reverse last") ; gsl_test_int(status,exp_ier,"qags(f11) reverse status") ; gsl_integration_workspace_free (w) ; } /* Test infinite range integral f455 using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -3.616892186127022568E-01 ; double exp_abserr = 3.016716913328831851E-06; int exp_neval = 285; int exp_ier = 0; int exp_last = 10; double a[10] = { 9.687500000000000000E-01, 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 7.500000000000000000E-01, 1.250000000000000000E-01, 8.750000000000000000E-01, 6.250000000000000000E-02, 9.375000000000000000E-01, 3.125000000000000000E-02 } ; double b[10] = { 1.000000000000000000E+00, 3.125000000000000000E-02, 7.500000000000000000E-01, 5.000000000000000000E-01, 8.750000000000000000E-01, 2.500000000000000000E-01, 9.375000000000000000E-01, 1.250000000000000000E-01, 9.687500000000000000E-01, 6.250000000000000000E-02 } ; double r[10] = { -1.390003415539725340E-01, 1.429785306003466313E-03, -1.229943369113085765E-02, 2.995321156568048898E-03, -4.980050133751051655E-02, 2.785385934678596704E-03, -8.653752279614615461E-02, 1.736218164975512294E-03, -8.398745675010892142E-02, 1.041689192004495576E-03 } ; double e[10] = { 2.395037249893453013E-02, 2.161214992172538524E-04, 5.720644840858777846E-14, 3.325474514168701167E-17, 3.147380432198176412E-14, 3.092399597147240624E-17, 9.607595030230581153E-16, 1.927589382528252344E-17, 9.324480826368044019E-16, 1.156507325466566521E-17 } ; int order[10] = { 1, 2, 3, 5, 7, 9, 4, 6, 8, 10 } ; gsl_function f = make_function(&f455, 0); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f455) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f455) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f455) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f455) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f455) smooth status") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f455) smooth alist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f455) smooth blist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f455) smooth rlist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f455) smooth elist") ; for (i = 0; i < 10 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f455) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral f15 using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 6.553600000000024738E+04; double exp_abserr = 7.121667111456009280E-04; int exp_neval = 285; int exp_ier = 0; int exp_last = 10; double a[10] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03, 1.953125000000000000E-03 } ; double b[10] = { 1.953125000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03 } ; double r[10] = { 1.099297665754340292E+00, 3.256176475185617591E-01, 8.064694554185326325E+00, 8.873128656118993263E+01, 6.977679035845269482E+02, 4.096981198511257389E+03, 1.574317583220441520E+04, 2.899418134793237914E+04, 1.498314766425578091E+04, 9.225251570832365360E+02 } ; double e[10] = { 7.101865971621337814E-04, 1.912660677170175771E-08, 9.167763417119923333E-08, 3.769501719163865578E-07, 6.973493131275552509E-07, 1.205653952340679711E-07, 1.380003928453846583E-07, 1.934652413547325474E-07, 3.408933028357320364E-07, 2.132473175465897029E-09 } ; int order[10] = { 1, 5, 4, 9, 8, 7, 6, 3, 2, 10 } ; double alpha = 5.0; gsl_function f = make_function(&f15, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 0.0, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f15) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f15) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f15) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f15) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f15) smooth status") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f15) smooth alist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f15) smooth blist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f15) smooth rlist") ; for (i = 0; i < 10 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f15) smooth elist") ; for (i = 0; i < 10 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f15) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral f16 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 1.000000000006713292E-04; double exp_abserr = 3.084062020905636316E-09; int exp_neval = 165; int exp_ier = 0; int exp_last = 6; double a[6] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02 } ; double b[6] = { 3.125000000000000000E-02, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02 } ; double r[6] = { 7.633587786326674618E-05, 9.900990099009899620E-07, 1.922522349322310737E-06, 3.629434715543053753E-06, 6.501422186103209199E-06, 1.062064387653501389E-05 } ; double e[6] = { 3.084061858351569051E-09, 3.112064814755089674E-17, 4.543453652226561245E-17, 4.908618166361344548E-17, 3.014338672269481784E-17, 6.795996738013555461E-18 } ; int order[6] = { 1, 4, 3, 2, 5, 6 } ; double alpha = 1.0; gsl_function f = make_function(&f16, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagiu (&fc, 99.9, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(f16) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(f16) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(f16) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(f16) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(f16) smooth status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(f16) smooth alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(f16) smooth blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-15,"qagiu(f16) smooth rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(f16) smooth elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(f16) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral myfn1 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 2.275875794468747770E+00; double exp_abserr = 7.436490118267390744E-09; int exp_neval = 270; int exp_ier = 0; int exp_last = 5; double a[5] = { 1.250000000000000000E-01, 5.000000000000000000E-01, 2.500000000000000000E-01, 0.000000000000000000E+00, 3.750000000000000000E-01 } ; double b[5] = { 2.500000000000000000E-01, 1.000000000000000000E+00, 3.750000000000000000E-01, 1.250000000000000000E-01, 5.000000000000000000E-01 } ; double r[5] = { 4.639317228058405717E-04, 1.691664195356748834E+00, 1.146307471900291086E-01, 4.379392477350953574E-20, 4.691169201991640669E-01 } ; double e[5] = { 3.169263960393051137E-09, 4.265988974874425043E-09, 1.231954072964969637E-12, 8.360902986775307673E-20, 5.208244060463541433E-15 } ; int order[5] = { 2, 1, 3, 5, 4 } ; gsl_function f = make_function(&myfn1, 0); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagi (&fc, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(myfn1) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(myfn1) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(myfn1) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(myfn1) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(myfn1) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(myfn1) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(myfn1) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagiu(myfn1) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(myfn1) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(myfn1) smooth order"); gsl_integration_workspace_free (w) ; } /* Test infinite range integral myfn1 using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 2.718281828459044647E+00; double exp_abserr = 1.588185109253204805E-10; int exp_neval = 135; int exp_ier = 0; int exp_last = 5; double a[5] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02 } ; double b[5] = { 6.250000000000000000E-02, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01 } ; double r[5] = { 8.315287189746029816E-07, 1.718281828459045091E+00, 8.646647167633871867E-01, 1.328565310599463256E-01, 2.477920647947255521E-03 } ; double e[5] = { 1.533437090413525935E-10, 4.117868247943567505E-12, 7.802455785301941044E-13, 5.395586026138397182E-13, 3.713312434866150125E-14 } ; int order[5] = { 1, 2, 3, 4, 5 } ; double alpha = 1.0 ; gsl_function f = make_function(&myfn2, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qagil (&fc, 1.0, 1.0e-7, 0.0, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagiu(myfn2) smooth result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagiu(myfn2) smooth abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagiu(myfn2) smooth neval") ; gsl_test_int((int)(w->size),exp_last,"qagiu(myfn2) smooth last") ; gsl_test_int(status,exp_ier,"qagiu(myfn2) smooth status") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagiu(myfn2) smooth alist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagiu(myfn2) smooth blist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagiu(myfn2) smooth rlist") ; for (i = 0; i < 5 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagiu(myfn2) smooth elist") ; for (i = 0; i < 5 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagiu(myfn2) smooth order"); gsl_integration_workspace_free (w) ; } /* Test integral f454 with integrable singular points */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 5.274080611672716401E+01; double exp_abserr = 1.755703848687062418E-04; int exp_neval = 777; int exp_ier = 0; int exp_last = 20; double a[20] = { 9.687500000000000000E-01, 1.401269388548935790E+00, 1.414213562373095145E+00, 1.000000000000000000E+00, 0.000000000000000000E+00, 2.207106781186547462E+00, 1.810660171779821415E+00, 1.207106781186547462E+00, 5.000000000000000000E-01, 1.103553390593273731E+00, 1.612436867076458391E+00, 1.310660171779821415E+00, 7.500000000000000000E-01, 1.051776695296636976E+00, 1.513325214724776657E+00, 1.362436867076458391E+00, 8.750000000000000000E-01, 1.463769388548935790E+00, 1.388325214724776657E+00, 9.375000000000000000E-01} ; double b[20] = { 1.000000000000000000E+00, 1.414213562373095145E+00, 1.463769388548935790E+00, 1.051776695296636976E+00, 5.000000000000000000E-01, 3.000000000000000000E+00, 2.207106781186547462E+00, 1.310660171779821415E+00, 7.500000000000000000E-01, 1.207106781186547462E+00, 1.810660171779821415E+00, 1.362436867076458391E+00, 8.750000000000000000E-01, 1.103553390593273731E+00, 1.612436867076458391E+00, 1.388325214724776657E+00, 9.375000000000000000E-01, 1.513325214724776657E+00, 1.401269388548935790E+00, 9.687500000000000000E-01} ; double r[20] = { -1.125078814079027711E-01, -1.565132123531515207E-01, -4.225328513207429193E-01, -1.830392049835374568E-01, 6.575875041899758092E-03, 4.873920540843067783E+01, 6.032891565603589079E+00, -2.991531901645863023E-01, -7.326282608704996063E-03, -2.431894410706912923E-01, 5.911661670635662835E-01, -2.236786562536174916E-01, -5.647871991778510847E-02, -1.305470403178642658E-01, -1.721363984401322045E-01, -1.589345454585119055E-01, -7.406626263352669715E-02, -2.208730668000830344E-01, -1.048692749517999567E-01, -6.302287584527696551E-02} ; double e[20] = { 2.506431410088378817E-02, 2.730454695485963826E-02, 1.017446081816190118E-01, 3.252808038935910834E-02, 7.300687878575027348E-17, 5.411138804637469780E-13, 6.697855121200013106E-14, 3.321267596107916554E-15, 1.417509685426979386E-16, 2.699945168224041491E-15, 6.573952690524728748E-15, 2.483331942899818875E-15, 6.270397525408045936E-16, 1.449363299575615261E-15, 1.911097929242846383E-15, 1.764527917763735212E-15, 8.223007012367522077E-16, 2.452183642810224359E-15, 1.164282836272345215E-15, 6.996944784151910810E-16} ; int order[20] = { 3, 4, 2, 1, 6, 7, 11, 8, 10, 12, 18, 15, 16, 14, 19, 17, 20, 13, 9, 5 } ; gsl_function f = make_function(&f454, 0); gsl_function fc = make_counter(&f, &p) ; double pts[4] ; pts[0] = 0.0; pts[1] = 1.0; pts[2] = sqrt(2.0); pts[3] = 3.0; status = gsl_integration_qagp (&fc, pts, 4, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qagp(f454) singular result") ; gsl_test_rel(abserr,exp_abserr,1e-5,"qagp(f454) singular abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qagp(f454) singular neval") ; gsl_test_int((int)(w->size),exp_last,"qagp(f454) singular last") ; gsl_test_int(status,exp_ier,"qagp(f454) singular status") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qagp(f454) singular alist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qagp(f454) singular blist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qagp(f454) singular rlist") ; for (i = 0; i < 20 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qagp(f454) singular elist") ; for (i = 0; i < 20 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qagp(f454) singular order"); gsl_integration_workspace_free (w) ; } /* Test cauchy integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -8.994400695837000137E-02; double exp_abserr = 1.185290176227023727E-06; int exp_neval = 215; int exp_ier = 0; int exp_last = 6; double a[6] = { -1.000000000000000000E+00, 2.500000000000000000E+00, 1.250000000000000000E+00, 6.250000000000000000E-01, -5.000000000000000000E-01, -7.500000000000000000E-01} ; double b[6] = { -7.500000000000000000E-01, 5.000000000000000000E+00, 2.500000000000000000E+00, 1.250000000000000000E+00, 6.250000000000000000E-01, -5.000000000000000000E-01} ; double r[6] = { -1.234231128040012976E-01, 3.579970394639702888E-03, 2.249831615049339983E-02, 7.214232992127905808E-02, 2.079093855884046535E-02, -8.553244917962132821E-02} ; double e[6] = { 1.172832717970022565E-06, 9.018232896137375412E-13, 1.815172652101790755E-12, 1.006998195150956048E-13, 1.245463873006391609E-08, 1.833082948207153514E-15 } ; int order[6] = { 1, 5, 3, 2, 4, 6 } ; double alpha = 1.0 ; gsl_function f = make_function(&f459, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawc (&fc, -1.0, 5.0, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawc(f459) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qawc(f459) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawc(f459) neval") ; gsl_test_int((int)(w->size),exp_last,"qawc(f459) last") ; gsl_test_int(status,exp_ier,"qawc(f459) status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qawc(f459) alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qawc(f459) blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qawc(f459) rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qawc(f459) elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qawc(f459) order"); p.neval = 0; status = gsl_integration_qawc (&fc, 5.0, -1.0, 0.0, 0.0, 1.0e-3, w->limit, w, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-14,"qawc(f459) rev result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qawc(f459) rev abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawc(f459) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qawc(f459) rev last") ; gsl_test_int(status,exp_ier,"qawc(f459) rev status") ; gsl_integration_workspace_free (w) ; } /* Test QAWS singular integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_qaws_table * t = gsl_integration_qaws_table_alloc (0.0, 0.0, 1, 0); gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -1.892751853489401670E-01; double exp_abserr = 1.129133712015747658E-08; int exp_neval = 280; int exp_ier = 0; int exp_last = 8; double a[8] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03} ; double b[8] = { 7.812500000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02} ; double r[8] = { -4.126317299834445824E-05, -1.076283950172247789E-01, -6.240573216173390947E-02, -1.456169844189576269E-02, -3.408925115926728436E-03, -8.914083918175634211E-04, -2.574191402137795482E-04, -8.034390712936630608E-05} ; double e[8] = { 1.129099387465713953E-08, 3.423394967694403596E-13, 6.928428071454762659E-16, 1.616673288784094320E-16, 3.784667152924835070E-17, 9.896621209399419425E-18, 2.857926564445496100E-18, 8.919965558336773736E-19} ; int order[8] = { 1, 2, 3, 4, 5, 6, 7, 8 } ; double alpha = 1.0 ; gsl_function f = make_function(&f458, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) ln(x-a) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) ln(x-a) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qaws(f458) ln(x-a) neval") ; gsl_test_int((int)(w->size),exp_last,"qaws(f458) ln(x-a) last") ; gsl_test_int(status,exp_ier,"qaws(f458) ln(x-a) status") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qaws(f458) ln(x-a) alist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qaws(f458) ln(x-a) blist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qaws(f458) ln(x-a) rlist") ; for (i = 0; i < 6 ; i++) gsl_test_rel(w->elist[i],e[i],1e-4,"qaws(f458) ln(x-a) elist") ; for (i = 0; i < 6 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qaws(f458) ln(x-a) order"); /* Test without logs */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 0, 0); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = 9.896686656601706433E-01; exp_abserr = 5.888032513201251628E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB abserr") ; /* Test with ln(x - a) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 1, 0); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = -3.636679470586539620E-01; exp_abserr = 2.851348775257054093E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(x-a) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(x-a) abserr") ; /* Test with ln(b - x) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 0, 1); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = -1.911489253363409802E+00; exp_abserr = 9.854016753016499034E-09; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(b-x) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(b-x) abserr") ; /* Test with ln(x - a) ln(b - x) */ gsl_integration_qaws_table_set (t, -0.5, -0.3, 1, 1); status = gsl_integration_qaws (&fc, 0.0, 1.0, t, 0.0, 1.0e-7, w->limit, w, &result, &abserr) ; exp_result = 3.159922862811048172E-01; exp_abserr = 2.336183482198144595E-08; gsl_test_rel(result,exp_result,1e-14,"qaws(f458) AB ln(x-a)ln(b-x) result") ; gsl_test_rel(abserr,exp_abserr,1e-6,"qaws(f458) AB ln(x-a)ln(b-x) abserr") ; gsl_integration_workspace_free (w) ; gsl_integration_qaws_table_free (t) ; } /* Test oscillatory integration using a relative error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; gsl_integration_qawo_table * wo = gsl_integration_qawo_table_alloc (10.0 * M_PI, 1.0, GSL_INTEG_SINE, 1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = -1.281368483991674190E-01; double exp_abserr = 6.875028324415666248E-12; int exp_neval = 305; int exp_ier = 0; int exp_last = 9; double a[9] = { 0.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03, 3.906250000000000000E-03 } ; double b[9] = { 3.906250000000000000E-03, 1.000000000000000000E+00, 5.000000000000000000E-01, 2.500000000000000000E-01, 1.250000000000000000E-01, 6.250000000000000000E-02, 3.125000000000000000E-02, 1.562500000000000000E-02, 7.812500000000000000E-03 } ; double r[9] = { -1.447193692377651136E-03, 2.190541162282139478E-02, -2.587726479625663753E-02, 5.483209176363500886E-02, -3.081695575172510582E-02, -9.178321994387816929E-02, -3.886716016498160953E-02, -1.242306301902117854E-02, -3.659495117871544145E-03} ; double e[9] = { 8.326506625798146465E-07, 1.302638552580516100E-13, 7.259224351945759794E-15, 1.249770395036711102E-14, 7.832180081562836579E-16, 1.018998440559284116E-15, 4.315121611695628020E-16, 1.379237060008662177E-16, 4.062855738364339357E-17 } ; int order[9] = { 1, 2, 4, 3, 6, 5, 7, 8, 9 } ; double alpha = 1.0 ; gsl_function f = make_function(&f456, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawo (&fc, 0.0, 0.0, 1e-7, w->limit, w, wo, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawo(f456) result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawo(f456) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawo(f456) neval") ; gsl_test_int((int)(w->size),exp_last,"qawo(f456) last") ; gsl_test_int(status,exp_ier,"qawo(f456) status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->alist[i],a[i],1e-15,"qawo(f456) alist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->blist[i],b[i],1e-15,"qawo(f456) blist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-14,"qawo(f456) rlist") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],1e-2,"qawo(f456) elist") ; for (i = 0; i < 9 ; i++) gsl_test_int((int)w->order[i],order[i]-1,"qawo(f456) order"); /* In reverse, flip limit and sign of length */ gsl_integration_qawo_table_set_length (wo, -1.0); p.neval = 0; status = gsl_integration_qawo (&fc, 1.0, 0.0, 1e-7, w->limit, w, wo, &result, &abserr) ; gsl_test_rel(result,-exp_result,1e-14,"qawo(f456) rev result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawo(f456) rev abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawo(f456) rev neval") ; gsl_test_int((int)(w->size),exp_last,"qawo(f456) rev last") ; gsl_test_int(status,exp_ier,"qawo(f456) rev status") ; gsl_integration_qawo_table_free (wo) ; gsl_integration_workspace_free (w) ; } /* Test fourier integration using an absolute error bound */ { int status = 0, i; struct counter_params p; double result = 0, abserr=0; gsl_integration_workspace * w = gsl_integration_workspace_alloc (1000) ; gsl_integration_workspace * wc = gsl_integration_workspace_alloc (1000) ; gsl_integration_qawo_table * wo = gsl_integration_qawo_table_alloc (M_PI / 2.0, 1.0, GSL_INTEG_COSINE, 1000) ; /* All results are for GSL_IEEE_MODE=double-precision */ double exp_result = 9.999999999279802765E-01; double exp_abserr = 1.556289974669056164E-08; int exp_neval = 590; int exp_ier = 0; int exp_last = 12; double r[12] = { 1.013283128125232802E+00, -1.810857954748607349E-02, 7.466754034900931897E-03, -4.360312526786496237E-03, 2.950184068216192904E-03, -2.168238443073697373E-03, 1.680910783140869081E-03, -1.352797860944863345E-03, 1.119354921991485901E-03, -9.462367583691360827E-04, 8.136341270731781887E-04, -7.093931338504278145E-04 } ; double e[12] = { 1.224798040766472695E-12, 1.396565155187268456E-13, 1.053844511655910310E-16, 6.505213034913026604E-19, 7.155734338404329264E-18, 1.105886215935214523E-17, 9.757819552369539906E-18, 5.854691731421723944E-18, 4.553649124439220312E-18, 7.643625316022806260E-18, 2.439454888092388058E-17, 2.130457268934021451E-17 } ; double alpha = 1.0 ; gsl_function f = make_function(&f457, &alpha); gsl_function fc = make_counter(&f, &p) ; status = gsl_integration_qawf (&fc, 0.0, 1e-7, w->limit, w, wc, wo, &result, &abserr) ; gsl_test_rel(result,exp_result,1e-14,"qawf(f457) result") ; gsl_test_rel(abserr,exp_abserr,1e-3,"qawf(f457) abserr") ; gsl_test_int((int)(p.neval),exp_neval,"qawf(f457) neval") ; gsl_test_int((int)(w->size),exp_last,"qawf(f457) last") ; gsl_test_int(status,exp_ier,"qawf(f457) status") ; for (i = 0; i < 9 ; i++) gsl_test_rel(w->rlist[i],r[i],1e-12,"qawf(f457) rlist") ; /* We can only get within two orders of magnitude on the error here, which is very sensitive to the floating point precision */ for (i = 0; i < 9 ; i++) gsl_test_rel(w->elist[i],e[i],50.0,"qawf(f457) elist") ; gsl_integration_qawo_table_free (wo) ; gsl_integration_workspace_free (wc) ; gsl_integration_workspace_free (w) ; } /* Sanity check monomial test function for fixed Gauss-Legendre rules */ { struct monomial_params params; gsl_function f; f.function = &f_monomial; f.params = ¶ms; params.degree = 2; params.constant = 1.0; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), 4.0, 8*GSL_DBL_EPSILON, "f_monomial sanity check 1"); params.degree = 1; params.constant = 2.0; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), 4.0, 8*GSL_DBL_EPSILON, "f_monomial sanity check 2"); params.degree = 2; params.constant = 2.0; gsl_test_abs(integ_f_monomial(1.0, 2.0, ¶ms), (2.0/3.0)*(2.0*2.0*2.0 - 1.0*1.0*1.0), 8*GSL_DBL_EPSILON, "integ_f_monomial sanity check"); } /* Test the fixed-order Gauss-Legendre rules with a monomial. */ { int n; struct monomial_params params; gsl_function f; const double a = 0.0, b = 1.2; f.function = &f_monomial; f.params = ¶ms; params.constant = 1.0; for (n = 1; n < 1025; ++n) { double expected, result; gsl_integration_glfixed_table * tbl = gsl_integration_glfixed_table_alloc(n); params.degree = 2*n-1; /* n point rule exact for 2n-1 degree poly */ expected = integ_f_monomial(a, b, ¶ms); result = gsl_integration_glfixed(&f, a, b, tbl); if (tbl->precomputed) { gsl_test_rel(result, expected, 1.0e-12, "glfixed %d-point: Integrating (%g*x^%d) over [%g,%g]", n, params.constant, params.degree, a, b); } else { gsl_test_rel(result, expected, 1.0e-7, "glfixed %d-point: Integrating (%g*x^%d) over [%g,%g]", n, params.constant, params.degree, a, b); } gsl_integration_glfixed_table_free(tbl); } } /* Sanity check sin(x) test function for fixed Gauss-Legendre rules */ { gsl_function f = { f_sin, NULL }; gsl_test_abs(GSL_FN_EVAL(&f, 2.0), sin(2.0), 0.0, "f_sin sanity check 1"); gsl_test_abs(GSL_FN_EVAL(&f, 7.0), sin(7.0), 0.0, "f_sin sanity check 2"); gsl_test_abs(integ_f_sin(0.0, M_PI), 2.0, GSL_DBL_EPSILON, "integ_f_sin sanity check"); } /* Test the fixed-order Gauss-Legendre rules against sin(x) on [0, pi] */ { const int n_max = 1024; const gsl_function f = { f_sin, NULL }; const double a = 0.0, b = M_PI; const double expected = integ_f_sin(a, b); double result, abserr, prev_abserr = 0.0; int n; for (n = 1; n <= n_max; ++n) { gsl_integration_glfixed_table * const tbl = gsl_integration_glfixed_table_alloc(n); result = gsl_integration_glfixed(&f, a, b, tbl); abserr = fabs(expected - result); if (n == 1) { gsl_test_abs(result, GSL_FN_EVAL(&f,(b+a)/2)*(b-a), 0.0, "glfixed %d-point: behavior for n == 1", n); } else if (n < 9) { gsl_test(! (abserr < prev_abserr), "glfixed %d-point: observed drop in absolute error versus %d-points", n, n-1); } else if (tbl->precomputed) { gsl_test_abs(result, expected, 2.0 * n * GSL_DBL_EPSILON, "glfixed %d-point: very low absolute error for high precision coefficients", n); } else { gsl_test_abs(result, expected, 1.0e6 * GSL_DBL_EPSILON, "glfixed %d-point: acceptable absolute error for on-the-fly coefficients", n); } prev_abserr = abserr; gsl_integration_glfixed_table_free(tbl); } } /* Test some fixed-order Gauss-Legendre rule points and weights on [-1, 1] */ /* This verifies the (point, weight) retrieval API behaves sanely */ { const double eps = GSL_DBL_EPSILON; gsl_integration_glfixed_table *tbl; int n, i; double xi, wi; /* Analytical results for points and weights on [-1, 1] Pulled from http://en.wikipedia.org/wiki/Gaussian_quadrature Sorted in increasing order of Gauss points */ const double e1[1][2] = { {0, 2 } }; const double e2[2][2] = { {-1/sqrt(3), 1}, { 1/sqrt(3), 1} }; const double e3[3][2] = { {-sqrt(15)/5, 5./9}, { 0, 8./9}, { sqrt(15)/5, 5./9} }; const double e4[4][2] = { {-sqrt((3+2*sqrt(6./5))/7), (18-sqrt(30))/36}, {-sqrt((3-2*sqrt(6./5))/7), (18+sqrt(30))/36}, { sqrt((3-2*sqrt(6./5))/7), (18+sqrt(30))/36}, { sqrt((3+2*sqrt(6./5))/7), (18-sqrt(30))/36} }; const double e5[5][2] = { {-sqrt((5+2*sqrt(10./7)))/3, (322-13*sqrt(70))/900}, {-sqrt((5-2*sqrt(10./7)))/3, (322+13*sqrt(70))/900}, { 0, 128./225 }, { sqrt((5-2*sqrt(10./7)))/3, (322+13*sqrt(70))/900}, { sqrt((5+2*sqrt(10./7)))/3, (322-13*sqrt(70))/900} }; n = 1; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e1[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e1[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 2; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e2[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e2[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 3; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e3[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e3[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 4; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e4[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e4[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); n = 5; tbl = gsl_integration_glfixed_table_alloc(n); for (i = 0; i < n; ++i) { gsl_integration_glfixed_point(-1, 1, i, &xi, &wi, tbl); gsl_test_abs(xi, e5[i][0], eps, "glfixed %d-point lookup: x(%d)", n, i); gsl_test_abs(wi, e5[i][1], eps, "glfixed %d-point lookup: w(%d)", n, i); } gsl_integration_glfixed_table_free(tbl); } /* Test some fixed-order Gauss-Legendre rule points and weights on [-2, 3] */ /* This verifies the (point, weight) retrieval API is okay on non-[-1,1] */ { gsl_integration_glfixed_table *tbl; double result, x, w; int i; /* Odd n = 3, f(x) = x**5 + x**4 + x**3 + x**2 + x**1 + 1 */ result = 0; tbl = gsl_integration_glfixed_table_alloc(3); for (i = 0; i < 3; ++i) { gsl_integration_glfixed_point(-2, 3, i, &x, &w, tbl); result += w * (1 + x*(1 + x*(1 + x*(1 + x*(1 + x))))); } gsl_test_rel(result, 805./4, 1e-8, "glfixed %d-point xi,wi eval", 3); gsl_integration_glfixed_table_free(tbl); /* Even n = 4, f(x) = x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x**1 + 1 */ result = 0; tbl = gsl_integration_glfixed_table_alloc(4); for (i = 0; i < 4; ++i) { gsl_integration_glfixed_point(-2, 3, i, &x, &w, tbl); result += w * (1 + x*(1 + x*(1 + x*(1 + x*(1 + x*(1 + x*(1 + x))))))); } gsl_test_rel(result, 73925./56, 1e-8, "glfixed %d-point xi,wi eval", 4); gsl_integration_glfixed_table_free(tbl); } { typedef double (*fptr) ( double , void * ); const static fptr funs[25] = { &cqf1 , &cqf2 , &cqf3 , &cqf4 , &cqf5 , &cqf6 , &cqf7 , &cqf8 , &cqf9 , &cqf10 , &cqf11 , &cqf12 , &cqf13 , &cqf14 , &cqf15 , &cqf16 , &cqf17 , &cqf18 , &cqf19 , &cqf20 , &cqf21 , &cqf22 , &cqf23 , &cqf24 , &cqf25 }; const static double ranges[50] = { 0, 1 , 0, 1 , 0, 1 , -1, 1 , -1, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 10 , 0, 10 , 0, 10 , 0, 1 , 0, M_PI , 0, 1 , -1, 1 , 0, 1 , 0, 1 , 0, 1 , 0, 3 , 0, 5 }; const static double f_exact[25] = { 1.7182818284590452354 , 0.7 , 2.0/3 , 0.4794282266888016674 , 1.5822329637296729331 , 0.4 , 2 , 0.86697298733991103757 , 1.1547005383792515290 , 0.69314718055994530942 , 0.3798854930417224753 , 0.77750463411224827640 , 0.49898680869304550249 , 0.5 , 1 , 0.13263071079267703209e+08 , 0.49898680869304550249 , 0.83867634269442961454 , -1 , 1.5643964440690497731 , 0.16349494301863722618 , -0.63466518254339257343 , 0.013492485649467772692 , 17.664383539246514971 , 7.5 }; double result, abserr; size_t neval; int fid; /* Loop over the functions... */ for ( fid = 0 ; fid < 25 ; fid++ ) { gsl_integration_cquad_workspace *ws = gsl_integration_cquad_workspace_alloc ( 200 ); gsl_function f = make_function(funs[fid], NULL); double exact = f_exact[fid]; /* Call our quadrature routine. */ int status = gsl_integration_cquad (&f, ranges[2*fid] , ranges[2*fid+1] , 0.0 , 1.0e-12 , ws , &result , &abserr , &neval); gsl_test_rel (result, exact, 1e-12, "cquad f%d", fid); gsl_test (fabs(result - exact) > 5.0 * abserr, "cquad f%d error (%g actual vs %g estimated)", fid, fabs(result-exact), abserr); gsl_test_int (status, GSL_SUCCESS, "cquad return code"); gsl_integration_cquad_workspace_free(ws); } } exit (gsl_test_summary()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err) ; } gsl-1.16/integration/set_initial.c0000664000252300025230000000054612171574312014152 00000000000000static inline void set_initial_result (gsl_integration_workspace * workspace, double result, double error); static inline void set_initial_result (gsl_integration_workspace * workspace, double result, double error) { workspace->size = 1; workspace->rlist[0] = result; workspace->elist[0] = error; } gsl-1.16/integration/qawf.c0000664000252300025230000001423112171574312012600 00000000000000/* integration/qawf.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "initialise.c" #include "append.c" #include "qelg.c" int gsl_integration_qawf (gsl_function * f, const double a, const double epsabs, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_workspace * cycle_workspace, gsl_integration_qawo_table * wf, double *result, double *abserr) { double area, errsum; double res_ext, err_ext; double correc, total_error = 0.0, truncation_error; size_t ktmin = 0; size_t iteration = 0; struct extrapolation_table table; double cycle; double omega = wf->omega; const double p = 0.9; double factor = 1; double initial_eps, eps; int error_type = 0; /* Initialize results */ initialise (workspace, a, a); *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } /* Test on accuracy */ if (epsabs <= 0) { GSL_ERROR ("absolute tolerance epsabs must be positive", GSL_EBADTOL) ; } if (omega == 0.0) { if (wf->sine == GSL_INTEG_SINE) { /* The function sin(w x) f(x) is always zero for w = 0 */ *result = 0; *abserr = 0; return GSL_SUCCESS; } else { /* The function cos(w x) f(x) is always f(x) for w = 0 */ int status = gsl_integration_qagiu (f, a, epsabs, 0.0, cycle_workspace->limit, cycle_workspace, result, abserr); return status; } } if (epsabs > GSL_DBL_MIN / (1 - p)) { eps = epsabs * (1 - p); } else { eps = epsabs; } initial_eps = eps; area = 0; errsum = 0; res_ext = 0; err_ext = GSL_DBL_MAX; correc = 0; cycle = (2 * floor (fabs (omega)) + 1) * M_PI / fabs (omega); gsl_integration_qawo_table_set_length (wf, cycle); initialise_table (&table); for (iteration = 0; iteration < limit; iteration++) { double area1, error1, reseps, erreps; double a1 = a + iteration * cycle; double b1 = a1 + cycle; double epsabs1 = eps * factor; int status = gsl_integration_qawo (f, a1, epsabs1, 0.0, limit, cycle_workspace, wf, &area1, &error1); append_interval (workspace, a1, b1, area1, error1); factor *= p; area = area + area1; errsum = errsum + error1; /* estimate the truncation error as 50 times the final term */ truncation_error = 50 * fabs (area1); total_error = errsum + truncation_error; if (total_error < epsabs && iteration > 4) { goto compute_result; } if (error1 > correc) { correc = error1; } if (status) { eps = GSL_MAX_DBL (initial_eps, correc * (1.0 - p)); } if (status && total_error < 10 * correc && iteration > 3) { goto compute_result; } append_table (&table, area); if (table.n < 2) { continue; } qelg (&table, &reseps, &erreps); ktmin++; if (ktmin >= 15 && err_ext < 0.001 * total_error) { error_type = 4; } if (erreps < err_ext) { ktmin = 0; err_ext = erreps; res_ext = reseps; if (err_ext + 10 * correc <= epsabs) break; if (err_ext <= epsabs && 10 * correc >= epsabs) break; } } if (iteration == limit) error_type = 1; if (err_ext == GSL_DBL_MAX) goto compute_result; err_ext = err_ext + 10 * correc; *result = res_ext; *abserr = err_ext; if (error_type == 0) { return GSL_SUCCESS ; } if (res_ext != 0.0 && area != 0.0) { if (err_ext / fabs (res_ext) > errsum / fabs (area)) goto compute_result; } else if (err_ext > errsum) { goto compute_result; } else if (area == 0.0) { goto return_error; } if (error_type == 4) { err_ext = err_ext + truncation_error; } goto return_error; compute_result: *result = area; *abserr = total_error; return_error: if (error_type > 2) error_type--; if (error_type == 0) { return GSL_SUCCESS; } else if (error_type == 1) { GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER); } else if (error_type == 2) { GSL_ERROR ("cannot reach tolerance because of roundoff error", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (error_type == 4) { GSL_ERROR ("roundoff error detected in the extrapolation table", GSL_EROUND); } else if (error_type == 5) { GSL_ERROR ("integral is divergent, or slowly convergent", GSL_EDIVERGE); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/Makefile.in0000664000252300025230000010727712172253755013566 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = integration DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslintegration_la_LIBADD = am_libgslintegration_la_OBJECTS = qk15.lo qk21.lo qk31.lo qk41.lo \ qk51.lo qk61.lo qk.lo qng.lo qag.lo qags.lo qagp.lo \ workspace.lo qcheb.lo qawc.lo qmomo.lo qaws.lo qmomof.lo \ qawo.lo qawf.lo glfixed.lo cquad.lo libgslintegration_la_OBJECTS = $(am_libgslintegration_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) tests.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslintegration.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslintegration_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslintegration_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslintegration.la INCLUDES = -I$(top_srcdir) libgslintegration_la_SOURCES = qk15.c qk21.c qk31.c qk41.c qk51.c qk61.c qk.c qng.c qng.h qag.c qags.c qagp.c workspace.c qcheb.c qawc.c qmomo.c qaws.c qmomof.c qawo.c qawf.c glfixed.c cquad.c pkginclude_HEADERS = gsl_integration.h noinst_HEADERS = qpsrt.c qpsrt2.c qelg.c qc25c.c qc25s.c qc25f.c ptsort.c util.c err.c positivity.c append.c initialise.c set_initial.c reset.c cquad_const.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c tests.c tests.h test_LDADD = libgslintegration.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu integration/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu integration/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslintegration.la: $(libgslintegration_la_OBJECTS) $(libgslintegration_la_DEPENDENCIES) $(EXTRA_libgslintegration_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslintegration_la_OBJECTS) $(libgslintegration_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cquad.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/glfixed.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qag.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qagp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qags.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qawc.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qawf.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qawo.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qaws.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qcheb.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk15.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk21.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk31.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk41.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk51.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qk61.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qmomo.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qmomof.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qng.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tests.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/workspace.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/integration/ChangeLog0000664000252300025230000001265312171574312013256 000000000000002012-09-23 Rhys Ulerich * cquad.c Fix NaN handling using patch from author Pedro Gonnet. Pedro reports bug found by Mick Pont at NAG. 2011-05-02 Brian Gough * cquad.c (gsl_integration_cquad): use finite instead of isfinite 2010-04-24 Brian Gough * cquad.c (gsl_integration_cquad): added CQUAD algorithm 2010-03-09 Brian Gough * glfixed.c (gauss_legendre_tbl): made this function static 2009-08-23 Brian Gough * test.c (main): increase tolerance for qawc(f459) elist test 2009-07-09 Brian Gough * workspace.c (gsl_integration_workspace_free): handle NULL argument in free * qmomof.c (gsl_integration_qawo_table_free): handle NULL argument in free * qmomo.c (gsl_integration_qaws_table_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2003-01-12 Brian Gough * qawc.c (gsl_integration_qawc): fixed bisection condition to prevent singularity falling on interval boundary Mon Apr 29 20:05:56 2002 Brian Gough * qcheb.c (gsl_integration_qcheb): avoid loss of precision by replacing endpoints center+half_length by b and center-half_length by a Mon Jul 30 17:46:42 2001 Brian Gough * test.c (main): reduced tolerance on qagiu(f455) smooth elist test slightly Mon Jul 2 15:42:41 2001 Brian Gough * util.c: split out some static functions into separate files Tue Apr 17 22:11:28 2001 Brian Gough * qc25f.c (qc25f): need GSL_ERROR_VOID because function does not return value Mon Apr 16 20:09:09 2001 Brian Gough * qc25f.c (qc25f): removed unnecessary variables, replaced use of abort by GSL_ERROR * qmomof.c (gsl_integration_qawo_table_set_length): removed unnecessary duplicate variable declaration for i Mon Jan 22 12:35:05 2001 Brian Gough * qmomof.c: moments are now precomputed in a read-only table instead of being computed on the fly (cached) Fri Dec 8 19:45:52 2000 Brian Gough * reorganized, made internal functions static Thu Nov 16 19:45:19 2000 Brian Gough * qag_impl.c (gsl_integration_qag_impl): replace use of volatile with the macro GSL_COERCE_DBL Wed May 31 19:35:57 2000 Brian Gough * test.c (main): increased tolerances on some results to allow tests to pass with other compilers Mon May 15 14:21:00 2000 Brian Gough * test.c (main): increased one test limit slightly to allow for rounding errors Wed Feb 23 14:35:31 2000 Brian Gough * qpsrt.c (qpsrt): changed ordering of while conditions to avoid segmentation faults due to accessing values before testing end of loop condition. Thanks to Brett Viren for pointing this out. * qelg.c (qelg): changed update of nres from the original quadpack so that uninitialized elements of the res3la array are never accessed. * test.c (main): eliminate small memory leak from test Mon Feb 14 13:45:04 2000 Brian Gough * qk.c: renamed function qk to gsl_integration_qk since it is exported * err.c: made internal function rescale_err static, only used in qk.c and qng.c Mon Jul 12 11:37:55 1999 Brian Gough * qawc_impl.c (gsl_integration_qawc_impl): removed, no longer necessary since everything goes into qawc.c Fri Apr 2 20:57:09 1999 Brian Gough * qelg.c (qelg): removed debugging code * qpsrt.c (qpsrt): removed debugging code Thu Mar 11 15:15:46 1999 Brian Gough * qags_impl.c (gsl_integration_qags_impl): removed dependency in quadrature function calls by introducing dummy variables resabs1 and resabs2 Wed Mar 10 19:05:41 1999 Brian Gough * added integrators QAGI, QAGIU, QAGIL for infinite and semi-infinite ranges 1999-01-01 Mark Galassi * integration.c: replaced strings.h with string.h, which is the ISO library way. Sat Nov 21 12:43:03 1998 Brian Gough * Makefile.am (libgslintegration_a_SOURCES): eliminated local max.h in favor of global GSL_MAX * added missing gsl_math.h headers for new GSL_DBL_EPSILON macros Tue Nov 17 17:16:51 1998 Brian Gough * added #include to all top-level source files Fri Jun 12 22:30:21 1998 Brian Gough * qage_impl.c: started using volatile (selectively) to enforce strict IEEE behavior for the branches where it matters. I was going to use gcc's -ffloat-store option but it didn't work for me. Using volatile is not really a complete solution but is probably close enough for all practical purposes (also it doesn't degrade the performance as much as -ffloat-store would). Sat May 30 15:40:51 1998 Brian Gough * test.c (main): basic tests of qage are now complete * qage_impl.c (gsl_integration_qage_impl): fixed serious bug for index i, which was incremented at the end of the do loop and give an extra undefined entry in the result list! gsl-1.16/integration/qag.c0000664000252300025230000001541712171574312012421 00000000000000/* integration/qag.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "initialise.c" #include "set_initial.c" #include "qpsrt.c" #include "util.c" static int qag (const gsl_function *f, const double a, const double b, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr, gsl_integration_rule * q) ; int gsl_integration_qag (const gsl_function *f, double a, double b, double epsabs, double epsrel, size_t limit, int key, gsl_integration_workspace * workspace, double * result, double * abserr) { int status ; gsl_integration_rule * integration_rule = gsl_integration_qk15 ; if (key < GSL_INTEG_GAUSS15) { key = GSL_INTEG_GAUSS15 ; } else if (key > GSL_INTEG_GAUSS61) { key = GSL_INTEG_GAUSS61 ; } switch (key) { case GSL_INTEG_GAUSS15: integration_rule = gsl_integration_qk15 ; break ; case GSL_INTEG_GAUSS21: integration_rule = gsl_integration_qk21 ; break ; case GSL_INTEG_GAUSS31: integration_rule = gsl_integration_qk31 ; break ; case GSL_INTEG_GAUSS41: integration_rule = gsl_integration_qk41 ; break ; case GSL_INTEG_GAUSS51: integration_rule = gsl_integration_qk51 ; break ; case GSL_INTEG_GAUSS61: integration_rule = gsl_integration_qk61 ; break ; default: GSL_ERROR("value of key does specify a known integration rule", GSL_EINVAL) ; } status = qag (f, a, b, epsabs, epsrel, limit, workspace, result, abserr, integration_rule) ; return status ; } static int qag (const gsl_function * f, const double a, const double b, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr, gsl_integration_rule * q) { double area, errsum; double result0, abserr0, resabs0, resasc0; double tolerance; size_t iteration = 0; int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0; double round_off; /* Initialize results */ initialise (workspace, a, b); *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } /* perform the first integration */ q (f, a, b, &result0, &abserr0, &resabs0, &resasc0); set_initial_result (workspace, result0, abserr0); /* Test on accuracy */ tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); /* need IEEE rounding here to match original quadpack behavior */ round_off = GSL_COERCE_DBL (50 * GSL_DBL_EPSILON * resabs0); if (abserr0 <= round_off && abserr0 > tolerance) { *result = result0; *abserr = abserr0; GSL_ERROR ("cannot reach tolerance because of roundoff error " "on first attempt", GSL_EROUND); } else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0) { *result = result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } area = result0; errsum = abserr0; iteration = 1; do { double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; double resasc1, resasc2; double resabs1, resabs2; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; q (f, a1, b1, &area1, &error1, &resabs1, &resasc1); q (f, a2, b2, &area2, &error2, &resabs2, &resasc2); area12 = area1 + area2; error12 = error1 + error2; errsum += (error12 - e_i); area += area12 - r_i; if (resasc1 != error1 && resasc2 != error2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { roundoff_type1++; } if (iteration >= 10 && error12 > e_i) { roundoff_type2++; } } tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (errsum > tolerance) { if (roundoff_type1 >= 6 || roundoff_type2 >= 20) { error_type = 2; /* round off error */ } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 3; } } update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); retrieve (workspace, &a_i, &b_i, &r_i, &e_i); iteration++; } while (iteration < limit && !error_type && errsum > tolerance); *result = sum_results (workspace); *abserr = errsum; if (errsum <= tolerance) { return GSL_SUCCESS; } else if (error_type == 2) { GSL_ERROR ("roundoff error prevents tolerance from being achieved", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (iteration == limit) { GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/Makefile.am0000664000252300025230000000127412171574312013535 00000000000000noinst_LTLIBRARIES = libgslintegration.la INCLUDES = -I$(top_srcdir) libgslintegration_la_SOURCES = qk15.c qk21.c qk31.c qk41.c qk51.c qk61.c qk.c qng.c qng.h qag.c qags.c qagp.c workspace.c qcheb.c qawc.c qmomo.c qaws.c qmomof.c qawo.c qawf.c glfixed.c cquad.c pkginclude_HEADERS = gsl_integration.h noinst_HEADERS = qpsrt.c qpsrt2.c qelg.c qc25c.c qc25s.c qc25f.c ptsort.c util.c err.c positivity.c append.c initialise.c set_initial.c reset.c cquad_const.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c tests.c tests.h test_LDADD = libgslintegration.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/integration/tests.h0000664000252300025230000000601212171574312013007 00000000000000/* integration/tests.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double f1 (double x, void * params); double f2 (double x, void * params); double f3 (double x, void * params); double f4 (double x, void * params); double f5 (double x, void * params); double f6 (double x, void * params); double f7 (double x, void * params); double f8 (double x, void * params); double f9 (double x, void * params); double f10 (double x, void * params); double f11 (double x, void * params); double f12 (double x, void * params); double f13 (double x, void * params); double f14 (double x, void * params); double f15 (double x, void * params); double f16 (double x, void * params); double f17 (double x, void * params); double f454 (double x, void * params); double f455 (double x, void * params); double f456 (double x, void * params); double f457 (double x, void * params); double f458 (double x, void * params); double f459 (double x, void * params); double myfn1 (double x, void * params); double myfn2 (double x, void * params); struct monomial_params { int degree; double constant; } ; double f_monomial(double x, void * params); double integ_f_monomial(double a, double b, struct monomial_params * p); double f_sin(double x, void * params); double integ_f_sin(double a, double b); double cqf1 ( double x , void *params ); double cqf2 ( double x , void *params ); double cqf3 ( double x , void *params ); double cqf4 ( double x , void *params ); double cqf5 ( double x , void *params ); double cqf6 ( double x , void *params ); double cqf7 ( double x , void *params ); double cqf8 ( double x , void *params ); double cqf9 ( double x , void *params ); double cqf10 ( double x , void *params ); double cqf11 ( double x , void *params ); double cqf12 ( double x , void *params ); double cqf13 ( double x , void *params ); double cqf14 ( double x , void *params ); double cqf15 ( double x , void *params ); double cqf16 ( double x , void *params ); double cqf17 ( double x , void *params ); double cqf18 ( double x , void *params ); double cqf19 ( double x , void *params ); double cqf20 ( double x , void *params ); double cqf21 ( double x , void *params ); double cqf22 ( double x , void *params ); double cqf23 ( double x , void *params ); double cqf24 ( double x , void *params ); double cqf25 ( double x , void *params ); gsl-1.16/integration/qk41.c0000664000252300025230000000725612171574312012433 00000000000000/* integration/qk41.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[21] = /* abscissae of the 41-point kronrod rule */ { 0.998859031588277663838315576545863, 0.993128599185094924786122388471320, 0.981507877450250259193342994720217, 0.963971927277913791267666131197277, 0.940822633831754753519982722212443, 0.912234428251325905867752441203298, 0.878276811252281976077442995113078, 0.839116971822218823394529061701521, 0.795041428837551198350638833272788, 0.746331906460150792614305070355642, 0.693237656334751384805490711845932, 0.636053680726515025452836696226286, 0.575140446819710315342946036586425, 0.510867001950827098004364050955251, 0.443593175238725103199992213492640, 0.373706088715419560672548177024927, 0.301627868114913004320555356858592, 0.227785851141645078080496195368575, 0.152605465240922675505220241022678, 0.076526521133497333754640409398838, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 20-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 20-point gauss rule */ static const double wg[11] = /* weights of the 20-point gauss rule */ { 0.017614007139152118311861962351853, 0.040601429800386941331039952274932, 0.062672048334109063569506535187042, 0.083276741576704748724758143222046, 0.101930119817240435036750135480350, 0.118194531961518417312377377711382, 0.131688638449176626898494499748163, 0.142096109318382051329298325067165, 0.149172986472603746787828737001969, 0.152753387130725850698084331955098 }; static const double wgk[21] = /* weights of the 41-point kronrod rule */ { 0.003073583718520531501218293246031, 0.008600269855642942198661787950102, 0.014626169256971252983787960308868, 0.020388373461266523598010231432755, 0.025882133604951158834505067096153, 0.031287306777032798958543119323801, 0.036600169758200798030557240707211, 0.041668873327973686263788305936895, 0.046434821867497674720231880926108, 0.050944573923728691932707670050345, 0.055195105348285994744832372419777, 0.059111400880639572374967220648594, 0.062653237554781168025870122174255, 0.065834597133618422111563556969398, 0.068648672928521619345623411885368, 0.071054423553444068305790361723210, 0.073030690332786667495189417658913, 0.074582875400499188986581418362488, 0.075704497684556674659542775376617, 0.076377867672080736705502835038061, 0.076600711917999656445049901530102 }; void gsl_integration_qk41 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[21], fv2[21]; gsl_integration_qk (21, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/qmomof.c0000664000252300025230000002144112171574312013141 00000000000000/* integration/qmomof.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include static void compute_moments (double par, double * cheb); static int dgtsl (size_t n, double *c, double *d, double *e, double *b); gsl_integration_qawo_table * gsl_integration_qawo_table_alloc (double omega, double L, enum gsl_integration_qawo_enum sine, size_t n) { gsl_integration_qawo_table *t; double * chebmo; if (n == 0) { GSL_ERROR_VAL ("table length n must be positive integer", GSL_EDOM, 0); } t = (gsl_integration_qawo_table *) malloc (sizeof (gsl_integration_qawo_table)); if (t == 0) { GSL_ERROR_VAL ("failed to allocate space for qawo_table struct", GSL_ENOMEM, 0); } chebmo = (double *) malloc (25 * n * sizeof (double)); if (chebmo == 0) { free (t); GSL_ERROR_VAL ("failed to allocate space for chebmo block", GSL_ENOMEM, 0); } t->n = n; t->sine = sine; t->omega = omega; t->L = L; t->par = 0.5 * omega * L; t->chebmo = chebmo; /* precompute the moments */ { size_t i; double scale = 1.0; for (i = 0 ; i < t->n; i++) { compute_moments (t->par * scale, t->chebmo + 25*i); scale *= 0.5; } } return t; } int gsl_integration_qawo_table_set (gsl_integration_qawo_table * t, double omega, double L, enum gsl_integration_qawo_enum sine) { t->omega = omega; t->sine = sine; t->L = L; t->par = 0.5 * omega * L; /* recompute the moments */ { size_t i; double scale = 1.0; for (i = 0 ; i < t->n; i++) { compute_moments (t->par * scale, t->chebmo + 25*i); scale *= 0.5; } } return GSL_SUCCESS; } int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * t, double L) { /* return immediately if the length is the same as the old length */ if (L == t->L) return GSL_SUCCESS; /* otherwise reset the table and compute the new parameters */ t->L = L; t->par = 0.5 * t->omega * L; /* recompute the moments */ { size_t i; double scale = 1.0; for (i = 0 ; i < t->n; i++) { compute_moments (t->par * scale, t->chebmo + 25*i); scale *= 0.5; } } return GSL_SUCCESS; } void gsl_integration_qawo_table_free (gsl_integration_qawo_table * t) { RETURN_IF_NULL (t); free (t->chebmo); free (t); } static void compute_moments (double par, double *chebmo) { double v[28], d[25], d1[25], d2[25]; const size_t noeq = 25; const double par2 = par * par; const double par4 = par2 * par2; const double par22 = par2 + 2.0; const double sinpar = sin (par); const double cospar = cos (par); size_t i; /* compute the chebyschev moments with respect to cosine */ double ac = 8 * cospar; double as = 24 * par * sinpar; v[0] = 2 * sinpar / par; v[1] = (8 * cospar + (2 * par2 - 8) * sinpar / par) / par2; v[2] = (32 * (par2 - 12) * cospar + (2 * ((par2 - 80) * par2 + 192) * sinpar) / par) / par4; if (fabs (par) <= 24) { /* compute the moments as the solution of a boundary value problem using the asyptotic expansion as an endpoint */ double an2, ass, asap; double an = 6; size_t k; for (k = 0; k < noeq - 1; k++) { an2 = an * an; d[k] = -2 * (an2 - 4) * (par22 - 2 * an2); d2[k] = (an - 1) * (an - 2) * par2; d1[k + 1] = (an + 3) * (an + 4) * par2; v[k + 3] = as - (an2 - 4) * ac; an = an + 2.0; } an2 = an * an; d[noeq - 1] = -2 * (an2 - 4) * (par22 - 2 * an2); v[noeq + 2] = as - (an2 - 4) * ac; v[3] = v[3] - 56 * par2 * v[2]; ass = par * sinpar; asap = (((((210 * par2 - 1) * cospar - (105 * par2 - 63) * ass) / an2 - (1 - 15 * par2) * cospar + 15 * ass) / an2 - cospar + 3 * ass) / an2 - cospar) / an2; v[noeq + 2] = v[noeq + 2] - 2 * asap * par2 * (an - 1) * (an - 2); dgtsl (noeq, d1, d, d2, v + 3); } else { /* compute the moments by forward recursion */ size_t k; double an = 4; for (k = 3; k < 13; k++) { double an2 = an * an; v[k] = ((an2 - 4) * (2 * (par22 - 2 * an2) * v[k - 1] - ac) + as - par2 * (an + 1) * (an + 2) * v[k - 2]) / (par2 * (an - 1) * (an - 2)); an = an + 2.0; } } for (i = 0; i < 13; i++) { chebmo[2 * i] = v[i]; } /* compute the chebyschev moments with respect to sine */ v[0] = 2 * (sinpar - par * cospar) / par2; v[1] = (18 - 48 / par2) * sinpar / par2 + (-2 + 48 / par2) * cospar / par; ac = -24 * par * cospar; as = -8 * sinpar; if (fabs (par) <= 24) { /* compute the moments as the solution of a boundary value problem using the asyptotic expansion as an endpoint */ size_t k; double an2, ass, asap; double an = 5; for (k = 0; k < noeq - 1; k++) { an2 = an * an; d[k] = -2 * (an2 - 4) * (par22 - 2 * an2); d2[k] = (an - 1) * (an - 2) * par2; d1[k + 1] = (an + 3) * (an + 4) * par2; v[k + 2] = ac + (an2 - 4) * as; an = an + 2.0; } an2 = an * an; d[noeq - 1] = -2 * (an2 - 4) * (par22 - 2 * an2); v[noeq + 1] = ac + (an2 - 4) * as; v[2] = v[2] - 42 * par2 * v[1]; ass = par * cospar; asap = (((((105 * par2 - 63) * ass - (210 * par2 - 1) * sinpar) / an2 + (15 * par2 - 1) * sinpar - 15 * ass) / an2 - sinpar - 3 * ass) / an2 - sinpar) / an2; v[noeq + 1] = v[noeq + 1] - 2 * asap * par2 * (an - 1) * (an - 2); dgtsl (noeq, d1, d, d2, v + 2); } else { /* compute the moments by forward recursion */ size_t k; double an = 3; for (k = 2; k < 12; k++) { double an2 = an * an; v[k] = ((an2 - 4) * (2 * (par22 - 2 * an2) * v[k - 1] + as) + ac - par2 * (an + 1) * (an + 2) * v[k - 2]) / (par2 * (an - 1) * (an - 2)); an = an + 2.0; } } for (i = 0; i < 12; i++) { chebmo[2 * i + 1] = v[i]; } } static int dgtsl (size_t n, double *c, double *d, double *e, double *b) { /* solves a tridiagonal matrix A x = b c[1 .. n - 1] subdiagonal of the matrix A d[0 .. n - 1] diagonal of the matrix A e[0 .. n - 2] superdiagonal of the matrix A b[0 .. n - 1] right hand side, replaced by the solution vector x */ size_t k; c[0] = d[0]; if (n == 0) { return GSL_SUCCESS; } if (n == 1) { b[0] = b[0] / d[0] ; return GSL_SUCCESS; } d[0] = e[0]; e[0] = 0; e[n - 1] = 0; for (k = 0; k < n - 1; k++) { size_t k1 = k + 1; if (fabs (c[k1]) >= fabs (c[k])) { { double t = c[k1]; c[k1] = c[k]; c[k] = t; }; { double t = d[k1]; d[k1] = d[k]; d[k] = t; }; { double t = e[k1]; e[k1] = e[k]; e[k] = t; }; { double t = b[k1]; b[k1] = b[k]; b[k] = t; }; } if (c[k] == 0) { return GSL_FAILURE ; } { double t = -c[k1] / c[k]; c[k1] = d[k1] + t * d[k]; d[k1] = e[k1] + t * e[k]; e[k1] = 0; b[k1] = b[k1] + t * b[k]; } } if (c[n - 1] == 0) { return GSL_FAILURE; } b[n - 1] = b[n - 1] / c[n - 1]; b[n - 2] = (b[n - 2] - d[n - 2] * b[n - 1]) / c[n - 2]; for (k = n ; k > 2; k--) { size_t kb = k - 3; b[kb] = (b[kb] - d[kb] * b[kb + 1] - e[kb] * b[kb + 2]) / c[kb]; } return GSL_SUCCESS; } gsl-1.16/integration/initialise.c0000664000252300025230000000240312171574312013772 00000000000000/* integration/initialise.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static inline void initialise (gsl_integration_workspace * workspace, double a, double b); static inline void initialise (gsl_integration_workspace * workspace, double a, double b) { workspace->size = 0; workspace->nrmax = 0; workspace->i = 0; workspace->alist[0] = a; workspace->blist[0] = b; workspace->rlist[0] = 0.0; workspace->elist[0] = 0.0; workspace->order[0] = 0; workspace->level[0] = 0; workspace->maximum_level = 0; } gsl-1.16/integration/qng.c0000664000252300025230000001236512171574312012435 00000000000000/* integration/qng.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "err.c" #include "qng.h" int gsl_integration_qng (const gsl_function *f, double a, double b, double epsabs, double epsrel, double * result, double * abserr, size_t * neval) { double fv1[5], fv2[5], fv3[5], fv4[5]; double savfun[21]; /* array of function values which have been computed */ double res10, res21, res43, res87; /* 10, 21, 43 and 87 point results */ double result_kronrod, err ; double resabs; /* approximation to the integral of abs(f) */ double resasc; /* approximation to the integral of abs(f-i/(b-a)) */ const double half_length = 0.5 * (b - a); const double abs_half_length = fabs (half_length); const double center = 0.5 * (b + a); const double f_center = GSL_FN_EVAL(f, center); int k ; if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { * result = 0; * abserr = 0; * neval = 0; GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); }; /* Compute the integral using the 10- and 21-point formula. */ res10 = 0; res21 = w21b[5] * f_center; resabs = w21b[5] * fabs (f_center); for (k = 0; k < 5; k++) { const double abscissa = half_length * x1[k]; const double fval1 = GSL_FN_EVAL(f, center + abscissa); const double fval2 = GSL_FN_EVAL(f, center - abscissa); const double fval = fval1 + fval2; res10 += w10[k] * fval; res21 += w21a[k] * fval; resabs += w21a[k] * (fabs (fval1) + fabs (fval2)); savfun[k] = fval; fv1[k] = fval1; fv2[k] = fval2; } for (k = 0; k < 5; k++) { const double abscissa = half_length * x2[k]; const double fval1 = GSL_FN_EVAL(f, center + abscissa); const double fval2 = GSL_FN_EVAL(f, center - abscissa); const double fval = fval1 + fval2; res21 += w21b[k] * fval; resabs += w21b[k] * (fabs (fval1) + fabs (fval2)); savfun[k + 5] = fval; fv3[k] = fval1; fv4[k] = fval2; } resabs *= abs_half_length ; { const double mean = 0.5 * res21; resasc = w21b[5] * fabs (f_center - mean); for (k = 0; k < 5; k++) { resasc += (w21a[k] * (fabs (fv1[k] - mean) + fabs (fv2[k] - mean)) + w21b[k] * (fabs (fv3[k] - mean) + fabs (fv4[k] - mean))); } resasc *= abs_half_length ; } result_kronrod = res21 * half_length; err = rescale_error ((res21 - res10) * half_length, resabs, resasc) ; /* test for convergence. */ if (err < epsabs || err < epsrel * fabs (result_kronrod)) { * result = result_kronrod ; * abserr = err ; * neval = 21; return GSL_SUCCESS; } /* compute the integral using the 43-point formula. */ res43 = w43b[11] * f_center; for (k = 0; k < 10; k++) { res43 += savfun[k] * w43a[k]; } for (k = 0; k < 11; k++) { const double abscissa = half_length * x3[k]; const double fval = (GSL_FN_EVAL(f, center + abscissa) + GSL_FN_EVAL(f, center - abscissa)); res43 += fval * w43b[k]; savfun[k + 10] = fval; } /* test for convergence */ result_kronrod = res43 * half_length; err = rescale_error ((res43 - res21) * half_length, resabs, resasc); if (err < epsabs || err < epsrel * fabs (result_kronrod)) { * result = result_kronrod ; * abserr = err ; * neval = 43; return GSL_SUCCESS; } /* compute the integral using the 87-point formula. */ res87 = w87b[22] * f_center; for (k = 0; k < 21; k++) { res87 += savfun[k] * w87a[k]; } for (k = 0; k < 22; k++) { const double abscissa = half_length * x4[k]; res87 += w87b[k] * (GSL_FN_EVAL(f, center + abscissa) + GSL_FN_EVAL(f, center - abscissa)); } /* test for convergence */ result_kronrod = res87 * half_length ; err = rescale_error ((res87 - res43) * half_length, resabs, resasc); if (err < epsabs || err < epsrel * fabs (result_kronrod)) { * result = result_kronrod ; * abserr = err ; * neval = 87; return GSL_SUCCESS; } /* failed to converge */ * result = result_kronrod ; * abserr = err ; * neval = 87; GSL_ERROR("failed to reach tolerance with highest-order rule", GSL_ETOL) ; } gsl-1.16/integration/err.c0000664000252300025230000000315012171574312012430 00000000000000/* integration/err.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include static double rescale_error (double err, const double result_abs, const double result_asc) ; static double rescale_error (double err, const double result_abs, const double result_asc) { err = fabs(err) ; if (result_asc != 0 && err != 0) { double scale = pow((200 * err / result_asc), 1.5) ; if (scale < 1) { err = result_asc * scale ; } else { err = result_asc ; } } if (result_abs > GSL_DBL_MIN / (50 * GSL_DBL_EPSILON)) { double min_err = 50 * GSL_DBL_EPSILON * result_abs ; if (min_err > err) { err = min_err ; } } return err ; } gsl-1.16/integration/qagp.c0000664000252300025230000002706612171574312012604 00000000000000/* integration/qagp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include static int qagp (const gsl_function *f, const double *pts, const size_t npts, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr, gsl_integration_rule * q); #include "initialise.c" #include "qpsrt.c" #include "util.c" #include "append.c" #include "reset.c" #include "qelg.c" #include "qpsrt2.c" #include "ptsort.c" #include "positivity.c" int gsl_integration_qagp (const gsl_function *f, double * pts, size_t npts, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) { int status = qagp (f, pts, npts, epsabs, epsrel, limit, workspace, result, abserr, &gsl_integration_qk21) ; return status ; } static int qagp (const gsl_function * f, const double *pts, const size_t npts, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr, gsl_integration_rule * q) { double area, errsum; double res_ext, err_ext; double result0, abserr0, resabs0; double tolerance; double ertest = 0; double error_over_large_intervals = 0; double reseps = 0, abseps = 0, correc = 0; size_t ktmin = 0; int roundoff_type1 = 0, roundoff_type2 = 0, roundoff_type3 = 0; int error_type = 0, error_type2 = 0; size_t iteration = 0; int positive_integrand = 0; int extrapolate = 0; int disallow_extrapolation = 0; struct extrapolation_table table; const size_t nint = npts - 1; /* number of intervals */ size_t *ndin = workspace->level; /* temporarily alias ndin to level */ size_t i; /* Initialize results */ *result = 0; *abserr = 0; /* Test on validity of parameters */ if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } if (npts > workspace->limit) { GSL_ERROR ("npts exceeds size of workspace", GSL_EINVAL); } if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } /* Check that the integration range and break points are an ascending sequence */ for (i = 0; i < nint; i++) { if (pts[i + 1] < pts[i]) { GSL_ERROR ("points are not in an ascending sequence", GSL_EINVAL); } } /* Perform the first integration */ result0 = 0; abserr0 = 0; resabs0 = 0; initialise (workspace, 0.0, 0.0) ; for (i = 0; i < nint; i++) { double area1, error1, resabs1, resasc1; const double a1 = pts[i]; const double b1 = pts[i + 1]; q (f, a1, b1, &area1, &error1, &resabs1, &resasc1); result0 = result0 + area1; abserr0 = abserr0 + error1; resabs0 = resabs0 + resabs1; append_interval (workspace, a1, b1, area1, error1); if (error1 == resasc1 && error1 != 0.0) { ndin[i] = 1; } else { ndin[i] = 0; } } /* Compute the initial error estimate */ errsum = 0.0; for (i = 0; i < nint; i++) { if (ndin[i]) { workspace->elist[i] = abserr0; } errsum = errsum + workspace->elist[i]; } for (i = 0; i < nint; i++) { workspace->level[i] = 0; } /* Sort results into order of decreasing error via the indirection array order[] */ sort_results (workspace); /* Test on accuracy */ tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); if (abserr0 <= 100 * GSL_DBL_EPSILON * resabs0 && abserr0 > tolerance) { *result = result0; *abserr = abserr0; GSL_ERROR ("cannot reach tolerance because of roundoff error" "on first attempt", GSL_EROUND); } else if (abserr0 <= tolerance) { *result = result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } /* Initialization */ initialise_table (&table); append_table (&table, result0); area = result0; res_ext = result0; err_ext = GSL_DBL_MAX; error_over_large_intervals = errsum; ertest = tolerance; positive_integrand = test_positivity (result0, resabs0); iteration = nint - 1; do { size_t current_level; double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; double resasc1, resasc2; double resabs1, resabs2; double last_e_i; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); current_level = workspace->level[workspace->i] + 1; a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; iteration++; q (f, a1, b1, &area1, &error1, &resabs1, &resasc1); q (f, a2, b2, &area2, &error2, &resabs2, &resasc2); area12 = area1 + area2; error12 = error1 + error2; last_e_i = e_i; /* Improve previous approximations to the integral and test for accuracy. We write these expressions in the same way as the original QUADPACK code so that the rounding errors are the same, which makes testing easier. */ errsum = errsum + error12 - e_i; area = area + area12 - r_i; tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (resasc1 != error1 && resasc2 != error2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { if (!extrapolate) { roundoff_type1++; } else { roundoff_type2++; } } if (i > 10 && error12 > e_i) { roundoff_type3++; } } /* Test for roundoff and eventually set error flag */ if (roundoff_type1 + roundoff_type2 >= 10 || roundoff_type3 >= 20) { error_type = 2; /* round off error */ } if (roundoff_type2 >= 5) { error_type2 = 1; } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 4; } /* append the newly-created intervals to the list */ update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); if (errsum <= tolerance) { goto compute_result; } if (error_type) { break; } if (iteration >= limit - 1) { error_type = 1; break; } if (disallow_extrapolation) { continue; } error_over_large_intervals += -last_e_i; if (current_level < workspace->maximum_level) { error_over_large_intervals += error12; } if (!extrapolate) { /* test whether the interval to be bisected next is the smallest interval. */ if (large_interval (workspace)) continue; extrapolate = 1; workspace->nrmax = 1; } /* The smallest interval has the largest error. Before bisecting decrease the sum of the errors over the larger intervals (error_over_large_intervals) and perform extrapolation. */ if (!error_type2 && error_over_large_intervals > ertest) { if (increase_nrmax (workspace)) continue; } /* Perform extrapolation */ append_table (&table, area); if (table.n < 3) { goto skip_extrapolation; } qelg (&table, &reseps, &abseps); ktmin++; if (ktmin > 5 && err_ext < 0.001 * errsum) { error_type = 5; } if (abseps < err_ext) { ktmin = 0; err_ext = abseps; res_ext = reseps; correc = error_over_large_intervals; ertest = GSL_MAX_DBL (epsabs, epsrel * fabs (reseps)); if (err_ext <= ertest) break; } /* Prepare bisection of the smallest interval. */ if (table.n == 1) { disallow_extrapolation = 1; } if (error_type == 5) { break; } skip_extrapolation: reset_nrmax (workspace); extrapolate = 0; error_over_large_intervals = errsum; } while (iteration < limit); *result = res_ext; *abserr = err_ext; if (err_ext == GSL_DBL_MAX) goto compute_result; if (error_type || error_type2) { if (error_type2) { err_ext += correc; } if (error_type == 0) error_type = 3; if (result != 0 && area != 0) { if (err_ext / fabs (res_ext) > errsum / fabs (area)) goto compute_result; } else if (err_ext > errsum) { goto compute_result; } else if (area == 0.0) { goto return_error; } } /* Test on divergence. */ { double max_area = GSL_MAX_DBL (fabs (res_ext), fabs (area)); if (!positive_integrand && max_area < 0.01 * resabs0) goto return_error; } { double ratio = res_ext / area; if (ratio < 0.01 || ratio > 100 || errsum > fabs (area)) error_type = 6; } goto return_error; compute_result: *result = sum_results (workspace); *abserr = errsum; return_error: if (error_type > 2) error_type--; if (error_type == 0) { return GSL_SUCCESS; } else if (error_type == 1) { GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER); } else if (error_type == 2) { GSL_ERROR ("cannot reach tolerance because of roundoff error", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (error_type == 4) { GSL_ERROR ("roundoff error detected in the extrapolation table", GSL_EROUND); } else if (error_type == 5) { GSL_ERROR ("integral is divergent, or slowly convergent", GSL_EDIVERGE); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/positivity.c0000664000252300025230000000054212171574312014065 00000000000000/* Compare the integral of f(x) with the integral of |f(x)| to determine if f(x) covers both positive and negative values */ static inline int test_positivity (double result, double resabs); static inline int test_positivity (double result, double resabs) { int status = (fabs (result) >= (1 - 50 * GSL_DBL_EPSILON) * resabs); return status; } gsl-1.16/integration/tests.c0000664000252300025230000002110312171574312013000 00000000000000/* integration/tests.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "tests.h" /* These are the test functions from table 4.1 of the QUADPACK book */ /* f1(x) = x^alpha * log(1/x) */ /* integ(f1,x,0,1) = 1/(alpha + 1)^2 */ double f1 (double x, void * params) { double alpha = *(double *) params ; return pow(x,alpha) * log(1/x) ; } /* f2(x) = 4^-alpha / ((x-pi/4)^2 + 16^-alpha) */ /* integ(f2,x,0,1) = arctan((4-pi)4^(alpha-1)) + arctan(pi 4^(alpha-1)) */ double f2 (double x, void * params) { double alpha = *(double *) params ; return pow(4.0,-alpha) / (pow((x-M_PI/4.0),2.0) + pow(16.0,-alpha)) ; } /* f3(x) = cos(2^alpha * sin(x)) */ /* integ(f3,x,0,pi) = pi J_0(2^alpha) */ double f3 (double x, void * params) { double alpha = *(double *) params ; return cos(pow(2.0,alpha) * sin(x)) ; } /* Functions 4, 5 and 6 are duplicates of functions 1, 2 and 3 */ /* .... */ /* f7(x) = |x - 1/3|^alpha */ /* integ(f7,x,0,1) = ((2/3)^(alpha+1) + (1/3)^(alpha+1))/(alpha + 1) */ double f7 (double x, void * params) { double alpha = *(double *) params ; return pow(fabs(x - (1.0/3.0)),alpha) ; } /* f8(x) = |x - pi/4|^alpha */ /* integ(f8,x,0,1) = ((1 - pi/4)^(alpha+1) + (pi/4)^(alpha+1))/(alpha + 1) */ double f8 (double x, void * params) { double alpha = *(double *) params ; return pow(fabs(x - (M_PI/4.0)),alpha) ; } /* f9(x) = sqrt(1 - x^2) / (x + 1 + 2^-alpha) */ /* integ(f9,x,-1,1) = pi/sqrt((1+2^-alpha)^2-1) */ double f9 (double x, void * params) { double alpha = *(double *) params ; return 1 / ((x + 1 + pow(2.0,-alpha)) * sqrt(1-x*x)) ; } /* f10(x) = sin(x)^(alpha - 1) */ /* integ(f10,x,0,pi/2) = 2^(alpha-2) ((Gamma(alpha/2))^2)/Gamma(alpha) */ double f10 (double x, void * params) { double alpha = *(double *) params ; return pow(sin(x), alpha-1) ; } /* f11(x) = log(1/x)^(alpha - 1) */ /* integ(f11,x,0,1) = Gamma(alpha) */ double f11 (double x, void * params) { double alpha = *(double *) params ; return pow(log(1/x), alpha-1) ; } /* f12(x) = exp(20*(x-1)) * sin(2^alpha * x) */ /* integ(f12,x,0,1) = (20 sin(2^alpha) - 2^alpha cos(2^alpha) + 2^alpha exp(-20)) /(400 + 4^alpha) */ double f12 (double x, void * params) { double alpha = *(double *) params ; return exp(20*(x-1)) * sin(pow(2.0,alpha) * x) ; } /* f13(x) = cos(2^alpha * x)/sqrt(x(1 - x)) */ /* integ(f13,x,0,1) = pi cos(2^(alpha-1)) J_0(2^(alpha-1)) */ double f13 (double x, void * params) { double alpha = *(double *) params ; return cos(pow(2.0,alpha)*x)/sqrt(x*(1-x)) ; } double f14 (double x, void * params) { double alpha = *(double *) params ; return exp(-pow(2.0,-alpha)*x)*cos(x)/sqrt(x) ; } double f15 (double x, void * params) { double alpha = *(double *) params ; return x*x * exp(-pow(2.0,-alpha)*x) ; } double f16 (double x, void * params) { double alpha = *(double *) params ; if (x==0 && alpha == 1) return 1 ; /* make the function continuous in x */ if (x==0 && alpha > 1) return 0 ; /* avoid problems with pow(0,1) */ return pow(x,alpha-1)/pow((1+10*x),2.0) ; } double f17 (double x, void * params) { double alpha = *(double *) params ; return pow(2.0,-alpha)/(((x-1)*(x-1)+pow(4.0,-alpha))*(x-2)) ; } /* f454(x) = x^3 log|(x^2-1)(x^2-2)| */ /* integ(f454,x,0,inf) = 61 log(2) + (77/4) log(7) - 27 */ double f454 (double x, void * params) { double x2 = x * x; double x3 = x * x2; params = 0 ; return x3 * log(fabs((x2 - 1.0) * (x2 - 2.0))) ; } /* f455(x) = log(x)/(1+100*x^2) */ /* integ(f455,x,0,inf) = -log(10)/20 */ double f455 (double x, void * params) { params = 0 ; return log(x) / (1.0 + 100.0 * x * x) ; } /* f456(x) = log(x) */ /* integ(f456*sin(10 pi x),x,0,1) = -(gamma + log(10pi) - Ci(10pi))/(10pi) */ double f456 (double x, void * params) { params = 0 ; if (x == 0.0) { return 0; } return log(x) ; } /* f457(x) = 1/sqrt(x) */ /* integ(f457*cos(pi x / 2),x,0,+inf) = 1 */ double f457 (double x, void * params) { params = 0 ; if (x == 0.0) { return 0; } return 1/sqrt(x) ; } /* f458(x) = 1/(1 + log(x)^2)^2 */ /* integ(log(x) f458(x),x,0,1) = (Ci(1) sin(1) + (pi/2 - Si(1)) cos(1))/pi = -0.1892752 */ double f458 (double x, void * params) { params = 0 ; if (x == 0.0) { return 0; } else { double u = log(x); double v = 1 + u * u; return 1.0 / (v * v) ; } } /* f459(x) = 1/(5 x^3 + 6) */ /* integ(f459/(x-0),x,-1,5) = log(125/631)/18 */ double f459 (double x, void * params) { params = 0 ; return 1.0 / (5.0 * x * x * x + 6.0) ; } /* myfn1(x) = exp(-x - x^2) */ /* integ(myfn1,x,-inf,inf) = sqrt(pi) exp(-1/4) */ double myfn1 (double x, void * params) { params = 0; return exp(-x - x*x) ; } /* myfn2(x) = exp(alpha*x) */ /* integ(myfn2,x,-inf,b) = exp(alpha*b)/alpha */ double myfn2 (double x, void * params) { double alpha = *(double *) params ; return exp(alpha*x) ; } /* f_monomial = constant * x^degree */ double f_monomial(double x, void * params) { struct monomial_params * p = (struct monomial_params *) params; return p->constant * gsl_pow_int(x, p->degree); } /* integ(f_monomial,x,a b)=constant*(b^(degree+1)-a^(degree+1))/(degree+1) */ double integ_f_monomial(double a, double b, struct monomial_params * p) { const int degreep1 = p->degree + 1; const double bnp1 = gsl_pow_int(b, degreep1); const double anp1 = gsl_pow_int(a, degreep1); return (p->constant / degreep1)*(bnp1 - anp1); } /* f(x) = sin(x) */ double f_sin(double x, void * params) { return sin(x); } /* integ(f_sin,x,a,b) */ double integ_f_sin(double a, double b) { return -cos(b) + cos(a); } /* The test functions. */ double cqf1 ( double x , void *params ) { return exp(x); } double cqf2 ( double x , void *params ) { return x >= 0.3; } double cqf3 ( double x , void *params ) { return sqrt(x); } double cqf4 ( double x , void *params ) { return (23.0/25) * cosh(x) - cos(x); } double cqf5 ( double x , void *params ) { double x2 = x*x; return 1.0 / ( x2 * (x2 + 1) + 0.9); } double cqf6 ( double x , void *params ) { return x * sqrt( x ); } double cqf7 ( double x , void *params ) { return 1.0 / sqrt(x); } double cqf8 ( double x , void *params ) { double x2 = x*x; return 1.0 / (1 + x2*x2); } double cqf9 ( double x , void *params ) { return 2.0 / (2 + sin(10*M_PI*x)); } double cqf10 ( double x , void *params ) { return 1.0 / (1 + x); } double cqf11 ( double x , void *params ) { return 1.0 / (1 + exp(x)); } double cqf12 ( double x , void *params ) { return x / (exp(x) - 1.0); } double cqf13 ( double x , void *params ) { return sin(100 * M_PI * x) / (M_PI * x); } double cqf14 ( double x , void *params ) { return sqrt(50.0) * exp(-50*M_PI*x*x); } double cqf15 ( double x , void *params ) { return 25.0 * exp(-25*x); } double cqf16 ( double x , void *params ) { return 50 / M_PI * (2500 * x*x + 1); } double cqf17 ( double x , void *params ) { double t1 = 50 * M_PI * x ,t2; t2 = sin(t1) / t1; return 50 * t2 * t2; } double cqf18 ( double x , void *params ) { return cos( cos(x) + 3*sin(x) + 2*cos(2*x) + 3*sin(2*x) + 3*cos(3*x) ); } double cqf19 ( double x , void *params ) { return log(x); } double cqf20 ( double x , void *params ) { return 1 / (x*x + 1.005); } double cqf21 ( double x , void *params ) { return 1 / cosh( 10 * (x - 0.2) * 2 ) + 1 / cosh( 100 * (x - 0.4) * 4 ) + 1 / cosh( 1000 * (x - 0.6) * 8 ); } double cqf22 ( double x , void *params ) { return 4 * M_PI*M_PI * x * sin(20*M_PI*x) * cos(2*M_PI*x); } double cqf23 ( double x , void *params ) { double t = 230*x - 30; return 1 / (1 + t*t); } double cqf24 ( double x , void *params ) { return floor(exp(x)); } double cqf25 ( double x , void *params ) { return (x < 1) * (x + 1) + (1 <= x && x <= 3) * (3 - x) + (x > 3) * 2; } gsl-1.16/integration/cquad.c0000664000252300025230000003774312171574312012754 00000000000000/* integration/cquad.c * * Copyright (C) 2010 Pedro Gonnet * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "cquad_const.c" /* Allocates a workspace for the given maximum number of intervals. Note that if the workspace gets filled, the intervals with the lowest error estimates are dropped. The maximum number of intervals is therefore not the maximum number of intervals that will be computed, but merely the size of the buffer. */ gsl_integration_cquad_workspace * gsl_integration_cquad_workspace_alloc (const size_t n) { gsl_integration_cquad_workspace *w; /* Check inputs */ if (n < 3) GSL_ERROR_VAL ("workspace size n must be at least 3", GSL_EDOM, 0); /* Allocate first the workspace struct */ if ((w = (gsl_integration_cquad_workspace *) malloc (sizeof (gsl_integration_cquad_workspace))) == NULL) GSL_ERROR_VAL ("failed to allocate space for workspace struct", GSL_ENOMEM, 0); /* Allocate the intervals */ if ((w->ivals = (gsl_integration_cquad_ival *) malloc (sizeof (gsl_integration_cquad_ival) * n)) == NULL) { free (w); GSL_ERROR_VAL ("failed to allocate space for the intervals", GSL_ENOMEM, 0); } /* Allocate the max-heap indices */ if ((w->heap = (size_t *) malloc (sizeof (size_t) * n)) == NULL) { free (w->ivals); free (w); GSL_ERROR_VAL ("failed to allocate space for the heap", GSL_ENOMEM, 0); } /* Remember the size of the workspace */ w->size = n; /* Return the result */ return w; } /* Liberates the workspace memory. */ void gsl_integration_cquad_workspace_free (gsl_integration_cquad_workspace * w) { /* Nothing to be done? */ if (w == NULL) return; /* Free the intervals first */ if (w->ivals != NULL) free (w->ivals); /* Free the heap */ if (w->heap != NULL) free (w->heap); /* Free the structure */ free (w); } /* Compute the product of the fx with one of the inverse Vandermonde-like matrices. */ static void Vinvfx (const double *fx, double *c, const int d) { int i, j; switch (d) { case 0: for (i = 0; i <= 4; i++) { c[i] = 0.0; for (j = 0; j <= 4; j++) c[i] += V1inv[i * 5 + j] * fx[j * 8]; } break; case 1: for (i = 0; i <= 8; i++) { c[i] = 0.0; for (j = 0; j <= 8; j++) c[i] += V2inv[i * 9 + j] * fx[j * 4]; } break; case 2: for (i = 0; i <= 16; i++) { c[i] = 0.0; for (j = 0; j <= 16; j++) c[i] += V3inv[i * 17 + j] * fx[j * 2]; } break; case 3: for (i = 0; i <= 32; i++) { c[i] = 0.0; for (j = 0; j <= 32; j++) c[i] += V4inv[i * 33 + j] * fx[j]; } break; } } /* Downdate the interpolation given by the n coefficients c by removing the nodes with indices in nans. */ static void downdate (double *c, int n, int d, int *nans, int nnans) { static const int bidx[4] = { 0, 6, 16, 34 }; double b_new[34], alpha; int i, j; for (i = 0; i <= n + 1; i++) b_new[i] = bee[bidx[d] + i]; for (i = 0; i < nnans; i++) { b_new[n + 1] = b_new[n + 1] / Lalpha[n]; b_new[n] = (b_new[n] + xi[nans[i]] * b_new[n + 1]) / Lalpha[n - 1]; for (j = n - 1; j > 0; j--) b_new[j] = (b_new[j] + xi[nans[i]] * b_new[j + 1] - Lgamma[j + 1] * b_new[j + 2]) / Lalpha[j - 1]; for (j = 0; j <= n; j++) b_new[j] = b_new[j + 1]; alpha = c[n] / b_new[n]; for (j = 0; j < n; j++) c[j] -= alpha * b_new[j]; c[n] = 0; n--; } } /* The actual integration routine. */ int gsl_integration_cquad (const gsl_function * f, double a, double b, double epsabs, double epsrel, gsl_integration_cquad_workspace * ws, double *result, double *abserr, size_t * nevals) { /* Some constants that we will need. */ static const int n[4] = { 4, 8, 16, 32 }; static const int skip[4] = { 8, 4, 2, 1 }; static const int idx[4] = { 0, 5, 14, 31 }; static const double w = M_SQRT2 / 2; static const int ndiv_max = 20; /* Actual variables (as opposed to constants above). */ double m, h, temp; double igral, err, igral_final, err_final, err_excess; int nivals, neval = 0; int i, j, d, split, t; int nnans, nans[32]; gsl_integration_cquad_ival *iv, *ivl, *ivr; double nc, ncdiff; /* Check the input arguments. */ if (f == NULL) GSL_ERROR ("function pointer shouldn't be NULL", GSL_EINVAL); if (result == NULL) GSL_ERROR ("result pointer shouldn't be NULL", GSL_EINVAL); if (ws == NULL) GSL_ERROR ("workspace pointer shouldn't be NULL", GSL_EINVAL); /* Check for unreasonable accuracy demands */ if (epsabs < 0.0 || epsrel < 0.0) GSL_ERROR ("tolerances may not be negative", GSL_EBADTOL); if (epsabs <= 0 && epsrel < GSL_DBL_EPSILON) GSL_ERROR ("unreasonable accuracy requirement", GSL_EBADTOL); /* Create the first interval. */ iv = &(ws->ivals[0]); m = (a + b) / 2; h = (b - a) / 2; nnans = 0; for (i = 0; i <= n[3]; i++) { iv->fx[i] = GSL_FN_EVAL (f, m + xi[i] * h); neval++; if (!finite (iv->fx[i])) { nans[nnans++] = i; iv->fx[i] = 0.0; } } Vinvfx (iv->fx, &(iv->c[idx[0]]), 0); Vinvfx (iv->fx, &(iv->c[idx[3]]), 3); Vinvfx (iv->fx, &(iv->c[idx[2]]), 2); for (i = 0; i < nnans; i++) iv->fx[nans[i]] = GSL_NAN; iv->a = a; iv->b = b; iv->depth = 3; iv->rdepth = 1; iv->ndiv = 0; iv->igral = 2 * h * iv->c[idx[3]] * w; nc = 0.0; for (i = n[2] + 1; i <= n[3]; i++) { temp = iv->c[idx[3] + i]; nc += temp * temp; } ncdiff = nc; for (i = 0; i <= n[2]; i++) { temp = iv->c[idx[2] + i] - iv->c[idx[3] + i]; ncdiff += temp * temp; nc += iv->c[idx[3] + i] * iv->c[idx[3] + i]; } ncdiff = sqrt (ncdiff); nc = sqrt (nc); iv->err = ncdiff * 2 * h; if (ncdiff / nc > 0.1 && iv->err < 2 * h * nc) iv->err = 2 * h * nc; /* Initialize the heaps. */ for (i = 0; i < ws->size; i++) ws->heap[i] = i; /* Initialize some global values. */ igral = iv->igral; err = iv->err; nivals = 1; igral_final = 0.0; err_final = 0.0; err_excess = 0.0; /* Main loop. */ while (nivals > 0 && err > 0.0 && !(err <= fabs (igral) * epsrel || err <= epsabs) && !(err_final > fabs (igral) * epsrel && err - err_final < fabs (igral) * epsrel) && !(err_final > epsabs && err - err_final < epsabs)) { /* Put our finger on the interval with the largest error. */ iv = &(ws->ivals[ws->heap[0]]); m = (iv->a + iv->b) / 2; h = (iv->b - iv->a) / 2; /* printf ("cquad: processing ival %i (of %i) with [%e,%e] int=%e, err=%e, depth=%i\n", ws->heap[0], nivals, iv->a, iv->b, iv->igral, iv->err, iv->depth); */ /* Should we try to increase the degree? */ if (iv->depth < 3) { /* Keep tabs on some variables. */ d = ++iv->depth; /* Get the new (missing) function values */ for (i = skip[d]; i <= 32; i += 2 * skip[d]) { iv->fx[i] = GSL_FN_EVAL (f, m + xi[i] * h); neval++; } nnans = 0; for (i = 0; i <= 32; i += skip[d]) { if (!finite (iv->fx[i])) { nans[nnans++] = i; iv->fx[i] = 0.0; } } /* Compute the new coefficients. */ Vinvfx (iv->fx, &(iv->c[idx[d]]), d); /* Downdate any NaNs. */ if (nnans > 0) { downdate (&(iv->c[idx[d]]), n[d], d, nans, nnans); for (i = 0; i < nnans; i++) iv->fx[nans[i]] = GSL_NAN; } /* Compute the error estimate. */ nc = 0.0; for (i = n[d - 1] + 1; i <= n[d]; i++) { temp = iv->c[idx[d] + i]; nc += temp * temp; } ncdiff = nc; for (i = 0; i <= n[d - 1]; i++) { temp = iv->c[idx[d - 1] + i] - iv->c[idx[d] + i]; ncdiff += temp * temp; nc += iv->c[idx[d] + i] * iv->c[idx[d] + i]; } ncdiff = sqrt (ncdiff); nc = sqrt (nc); iv->err = ncdiff * 2 * h; /* Compute the local integral. */ iv->igral = 2 * h * w * iv->c[idx[d]]; /* Split the interval prematurely? */ split = (nc > 0 && ncdiff / nc > 0.1); } /* Maximum degree reached, just split. */ else { split = 1; } /* Should we drop this interval? */ if ((m + h * xi[0]) >= (m + h * xi[1]) || (m + h * xi[31]) >= (m + h * xi[32]) || iv->err < fabs (iv->igral) * GSL_DBL_EPSILON * 10) { /* printf ("cquad: dumping ival %i (of %i) with [%e,%e] int=%e, err=%e, depth=%i\n", ws->heap[0], nivals, iv->a, iv->b, iv->igral, iv->err, iv->depth); */ /* Keep this interval's contribution */ err_final += iv->err; igral_final += iv->igral; /* Swap with the last element on the heap */ t = ws->heap[nivals - 1]; ws->heap[nivals - 1] = ws->heap[0]; ws->heap[0] = t; nivals--; /* Fix up the heap */ i = 0; while (2 * i + 1 < nivals) { /* Get the kids */ j = 2 * i + 1; /* If the j+1st entry exists and is larger than the jth, use it instead. */ if (j + 1 < nivals && ws->ivals[ws->heap[j + 1]].err >= ws->ivals[ws->heap[j]].err) j++; /* Do we need to move the ith entry up? */ if (ws->ivals[ws->heap[j]].err <= ws->ivals[ws->heap[i]].err) break; else { t = ws->heap[j]; ws->heap[j] = ws->heap[i]; ws->heap[i] = t; i = j; } } } /* Do we need to split this interval? */ else if (split) { /* Some values we will need often... */ d = iv->depth; /* Generate the interval on the left */ ivl = &(ws->ivals[ws->heap[nivals++]]); ivl->a = iv->a; ivl->b = m; ivl->depth = 0; ivl->rdepth = iv->rdepth + 1; ivl->fx[0] = iv->fx[0]; ivl->fx[32] = iv->fx[16]; for (i = skip[0]; i < 32; i += skip[0]) { ivl->fx[i] = GSL_FN_EVAL (f, (ivl->a + ivl->b) / 2 + xi[i] * h / 2); neval++; } nnans = 0; for (i = 0; i <= 32; i += skip[0]) { if (!finite (ivl->fx[i])) { nans[nnans++] = i; ivl->fx[i] = 0.0; } } Vinvfx (ivl->fx, ivl->c, 0); if (nnans > 0) { downdate (ivl->c, n[0], 0, nans, nnans); for (i = 0; i < nnans; i++) ivl->fx[nans[i]] = GSL_NAN; } for (i = 0; i <= n[d]; i++) { ivl->c[idx[d] + i] = 0.0; for (j = i; j <= n[d]; j++) ivl->c[idx[d] + i] += Tleft[i * 33 + j] * iv->c[idx[d] + j]; } ncdiff = 0.0; for (i = 0; i <= n[0]; i++) { temp = ivl->c[i] - ivl->c[idx[d] + i]; ncdiff += temp * temp; } for (i = n[0] + 1; i <= n[d]; i++) { temp = ivl->c[idx[d] + i]; ncdiff += temp * temp; } ncdiff = sqrt (ncdiff); ivl->err = ncdiff * h; /* Check for divergence. */ ivl->ndiv = iv->ndiv + (fabs (iv->c[0]) > 0 && ivl->c[0] / iv->c[0] > 2); if (ivl->ndiv > ndiv_max && 2 * ivl->ndiv > ivl->rdepth) { /* need copysign(INFINITY, igral) */ *result = (igral >= 0) ? GSL_POSINF : GSL_NEGINF; if (nevals != NULL) *nevals = neval; return GSL_EDIVERGE; } /* Compute the local integral. */ ivl->igral = h * w * ivl->c[0]; /* Generate the interval on the right */ ivr = &(ws->ivals[ws->heap[nivals++]]); ivr->a = m; ivr->b = iv->b; ivr->depth = 0; ivr->rdepth = iv->rdepth + 1; ivr->fx[0] = iv->fx[16]; ivr->fx[32] = iv->fx[32]; for (i = skip[0]; i < 32; i += skip[0]) { ivr->fx[i] = GSL_FN_EVAL (f, (ivr->a + ivr->b) / 2 + xi[i] * h / 2); neval++; } nnans = 0; for (i = 0; i <= 32; i += skip[0]) { if (!finite (ivr->fx[i])) { nans[nnans++] = i; ivr->fx[i] = 0.0; } } Vinvfx (ivr->fx, ivr->c, 0); if (nnans > 0) { downdate (ivr->c, n[0], 0, nans, nnans); for (i = 0; i < nnans; i++) ivr->fx[nans[i]] = GSL_NAN; } for (i = 0; i <= n[d]; i++) { ivr->c[idx[d] + i] = 0.0; for (j = i; j <= n[d]; j++) ivr->c[idx[d] + i] += Tright[i * 33 + j] * iv->c[idx[d] + j]; } ncdiff = 0.0; for (i = 0; i <= n[0]; i++) { temp = ivr->c[i] - ivr->c[idx[d] + i]; ncdiff += temp * temp; } for (i = n[0] + 1; i <= n[d]; i++) { temp = ivr->c[idx[d] + i]; ncdiff += temp * temp; } ncdiff = sqrt (ncdiff); ivr->err = ncdiff * h; /* Check for divergence. */ ivr->ndiv = iv->ndiv + (fabs (iv->c[0]) > 0 && ivr->c[0] / iv->c[0] > 2); if (ivr->ndiv > ndiv_max && 2 * ivr->ndiv > ivr->rdepth) { /* need copysign(INFINITY, igral) */ *result = (igral >= 0) ? GSL_POSINF : GSL_NEGINF; if (nevals != NULL) *nevals = neval; return GSL_EDIVERGE; } /* Compute the local integral. */ ivr->igral = h * w * ivr->c[0]; /* Fix-up the heap: we now have one interval on top that we don't need any more and two new, unsorted ones at the bottom. */ /* Flip the last interval to the top of the heap and sift down. */ t = ws->heap[nivals - 1]; ws->heap[nivals - 1] = ws->heap[0]; ws->heap[0] = t; nivals--; /* Sift this interval back down the heap. */ i = 0; while (2 * i + 1 < nivals - 1) { j = 2 * i + 1; if (j + 1 < nivals - 1 && ws->ivals[ws->heap[j + 1]].err >= ws->ivals[ws->heap[j]].err) j++; if (ws->ivals[ws->heap[j]].err <= ws->ivals[ws->heap[i]].err) break; else { t = ws->heap[j]; ws->heap[j] = ws->heap[i]; ws->heap[i] = t; i = j; } } /* Now grab the last interval and sift it up the heap. */ i = nivals - 1; while (i > 0) { j = (i - 1) / 2; if (ws->ivals[ws->heap[j]].err < ws->ivals[ws->heap[i]].err) { t = ws->heap[j]; ws->heap[j] = ws->heap[i]; ws->heap[i] = t; i = j; } else break; } } /* Otherwise, just fix-up the heap. */ else { i = 0; while (2 * i + 1 < nivals) { j = 2 * i + 1; if (j + 1 < nivals && ws->ivals[ws->heap[j + 1]].err >= ws->ivals[ws->heap[j]].err) j++; if (ws->ivals[ws->heap[j]].err <= ws->ivals[ws->heap[i]].err) break; else { t = ws->heap[j]; ws->heap[j] = ws->heap[i]; ws->heap[i] = t; i = j; } } } /* If the heap is about to overflow, remove the last two intervals. */ while (nivals > ws->size - 2) { iv = &(ws->ivals[ws->heap[nivals - 1]]); /* printf ("cquad: dumping ival %i (of %i) with [%e,%e] int=%e, err=%e, depth=%i\n", ws->heap[0], nivals, iv->a, iv->b, iv->igral, iv->err, iv->depth); */ err_final += iv->err; igral_final += iv->igral; nivals--; } /* Collect the value of the integral and error. */ igral = igral_final; err = err_final; for (i = 0; i < nivals; i++) { igral += ws->ivals[ws->heap[i]].igral; err += ws->ivals[ws->heap[i]].err; } } /* Dump the contents of the heap. */ /* for (i = 0; i < nivals; i++) { iv = &(ws->ivals[ws->heap[i]]); printf ("cquad: ival %i (%i) with [%e,%e], int=%e, err=%e, depth=%i, rdepth=%i\n", i, ws->heap[i], iv->a, iv->b, iv->igral, iv->err, iv->depth, iv->rdepth); } */ /* Clean up and present the results. */ *result = igral; if (abserr != NULL) *abserr = err; if (nevals != NULL) *nevals = neval; /* All is well that ends well. */ return GSL_SUCCESS; } gsl-1.16/integration/reset.c0000664000252300025230000000032312171574312012761 00000000000000static inline void reset_nrmax (gsl_integration_workspace * workspace); static inline void reset_nrmax (gsl_integration_workspace * workspace) { workspace->nrmax = 0; workspace->i = workspace->order[0] ; } gsl-1.16/integration/qags.c0000664000252300025230000003254012171574312012600 00000000000000/* integration/qags.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "initialise.c" #include "set_initial.c" #include "qpsrt.c" #include "util.c" #include "reset.c" #include "qpsrt2.c" #include "qelg.c" #include "positivity.c" static int qags (const gsl_function * f, const double a, const double b, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr, gsl_integration_rule * q); int gsl_integration_qags (const gsl_function *f, double a, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr) { int status = qags (f, a, b, epsabs, epsrel, limit, workspace, result, abserr, &gsl_integration_qk21) ; return status ; } /* QAGI: evaluate an integral over an infinite range using the transformation integrate(f(x),-Inf,Inf) = integrate((f((1-t)/t) + f(-(1-t)/t))/t^2,0,1) */ static double i_transform (double t, void *params); int gsl_integration_qagi (gsl_function * f, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr) { int status; gsl_function f_transform; f_transform.function = &i_transform; f_transform.params = f; status = qags (&f_transform, 0.0, 1.0, epsabs, epsrel, limit, workspace, result, abserr, &gsl_integration_qk15); return status; } static double i_transform (double t, void *params) { gsl_function *f = (gsl_function *) params; double x = (1 - t) / t; double y = GSL_FN_EVAL (f, x) + GSL_FN_EVAL (f, -x); return (y / t) / t; } /* QAGIL: Evaluate an integral over an infinite range using the transformation, integrate(f(x),-Inf,b) = integrate(f(b-(1-t)/t)/t^2,0,1) */ struct il_params { double b ; gsl_function * f ; } ; static double il_transform (double t, void *params); int gsl_integration_qagil (gsl_function * f, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr) { int status; gsl_function f_transform; struct il_params transform_params ; transform_params.b = b ; transform_params.f = f ; f_transform.function = &il_transform; f_transform.params = &transform_params; status = qags (&f_transform, 0.0, 1.0, epsabs, epsrel, limit, workspace, result, abserr, &gsl_integration_qk15); return status; } static double il_transform (double t, void *params) { struct il_params *p = (struct il_params *) params; double b = p->b; gsl_function * f = p->f; double x = b - (1 - t) / t; double y = GSL_FN_EVAL (f, x); return (y / t) / t; } /* QAGIU: Evaluate an integral over an infinite range using the transformation integrate(f(x),a,Inf) = integrate(f(a+(1-t)/t)/t^2,0,1) */ struct iu_params { double a ; gsl_function * f ; } ; static double iu_transform (double t, void *params); int gsl_integration_qagiu (gsl_function * f, double a, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr) { int status; gsl_function f_transform; struct iu_params transform_params ; transform_params.a = a ; transform_params.f = f ; f_transform.function = &iu_transform; f_transform.params = &transform_params; status = qags (&f_transform, 0.0, 1.0, epsabs, epsrel, limit, workspace, result, abserr, &gsl_integration_qk15); return status; } static double iu_transform (double t, void *params) { struct iu_params *p = (struct iu_params *) params; double a = p->a; gsl_function * f = p->f; double x = a + (1 - t) / t; double y = GSL_FN_EVAL (f, x); return (y / t) / t; } /* Main integration function */ static int qags (const gsl_function * f, const double a, const double b, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr, gsl_integration_rule * q) { double area, errsum; double res_ext, err_ext; double result0, abserr0, resabs0, resasc0; double tolerance; double ertest = 0; double error_over_large_intervals = 0; double reseps = 0, abseps = 0, correc = 0; size_t ktmin = 0; int roundoff_type1 = 0, roundoff_type2 = 0, roundoff_type3 = 0; int error_type = 0, error_type2 = 0; size_t iteration = 0; int positive_integrand = 0; int extrapolate = 0; int disallow_extrapolation = 0; struct extrapolation_table table; /* Initialize results */ initialise (workspace, a, b); *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } /* Test on accuracy */ if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } /* Perform the first integration */ q (f, a, b, &result0, &abserr0, &resabs0, &resasc0); set_initial_result (workspace, result0, abserr0); tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); if (abserr0 <= 100 * GSL_DBL_EPSILON * resabs0 && abserr0 > tolerance) { *result = result0; *abserr = abserr0; GSL_ERROR ("cannot reach tolerance because of roundoff error" "on first attempt", GSL_EROUND); } else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0) { *result = result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } /* Initialization */ initialise_table (&table); append_table (&table, result0); area = result0; errsum = abserr0; res_ext = result0; err_ext = GSL_DBL_MAX; positive_integrand = test_positivity (result0, resabs0); iteration = 1; do { size_t current_level; double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; double resasc1, resasc2; double resabs1, resabs2; double last_e_i; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); current_level = workspace->level[workspace->i] + 1; a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; iteration++; q (f, a1, b1, &area1, &error1, &resabs1, &resasc1); q (f, a2, b2, &area2, &error2, &resabs2, &resasc2); area12 = area1 + area2; error12 = error1 + error2; last_e_i = e_i; /* Improve previous approximations to the integral and test for accuracy. We write these expressions in the same way as the original QUADPACK code so that the rounding errors are the same, which makes testing easier. */ errsum = errsum + error12 - e_i; area = area + area12 - r_i; tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (resasc1 != error1 && resasc2 != error2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { if (!extrapolate) { roundoff_type1++; } else { roundoff_type2++; } } if (iteration > 10 && error12 > e_i) { roundoff_type3++; } } /* Test for roundoff and eventually set error flag */ if (roundoff_type1 + roundoff_type2 >= 10 || roundoff_type3 >= 20) { error_type = 2; /* round off error */ } if (roundoff_type2 >= 5) { error_type2 = 1; } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 4; } /* append the newly-created intervals to the list */ update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); if (errsum <= tolerance) { goto compute_result; } if (error_type) { break; } if (iteration >= limit - 1) { error_type = 1; break; } if (iteration == 2) /* set up variables on first iteration */ { error_over_large_intervals = errsum; ertest = tolerance; append_table (&table, area); continue; } if (disallow_extrapolation) { continue; } error_over_large_intervals += -last_e_i; if (current_level < workspace->maximum_level) { error_over_large_intervals += error12; } if (!extrapolate) { /* test whether the interval to be bisected next is the smallest interval. */ if (large_interval (workspace)) continue; extrapolate = 1; workspace->nrmax = 1; } if (!error_type2 && error_over_large_intervals > ertest) { if (increase_nrmax (workspace)) continue; } /* Perform extrapolation */ append_table (&table, area); qelg (&table, &reseps, &abseps); ktmin++; if (ktmin > 5 && err_ext < 0.001 * errsum) { error_type = 5; } if (abseps < err_ext) { ktmin = 0; err_ext = abseps; res_ext = reseps; correc = error_over_large_intervals; ertest = GSL_MAX_DBL (epsabs, epsrel * fabs (reseps)); if (err_ext <= ertest) break; } /* Prepare bisection of the smallest interval. */ if (table.n == 1) { disallow_extrapolation = 1; } if (error_type == 5) { break; } /* work on interval with largest error */ reset_nrmax (workspace); extrapolate = 0; error_over_large_intervals = errsum; } while (iteration < limit); *result = res_ext; *abserr = err_ext; if (err_ext == GSL_DBL_MAX) goto compute_result; if (error_type || error_type2) { if (error_type2) { err_ext += correc; } if (error_type == 0) error_type = 3; if (res_ext != 0.0 && area != 0.0) { if (err_ext / fabs (res_ext) > errsum / fabs (area)) goto compute_result; } else if (err_ext > errsum) { goto compute_result; } else if (area == 0.0) { goto return_error; } } /* Test on divergence. */ { double max_area = GSL_MAX_DBL (fabs (res_ext), fabs (area)); if (!positive_integrand && max_area < 0.01 * resabs0) goto return_error; } { double ratio = res_ext / area; if (ratio < 0.01 || ratio > 100.0 || errsum > fabs (area)) error_type = 6; } goto return_error; compute_result: *result = sum_results (workspace); *abserr = errsum; return_error: if (error_type > 2) error_type--; if (error_type == 0) { return GSL_SUCCESS; } else if (error_type == 1) { GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER); } else if (error_type == 2) { GSL_ERROR ("cannot reach tolerance because of roundoff error", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (error_type == 4) { GSL_ERROR ("roundoff error detected in the extrapolation table", GSL_EROUND); } else if (error_type == 5) { GSL_ERROR ("integral is divergent, or slowly convergent", GSL_EDIVERGE); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/qc25s.c0000664000252300025230000001332712171574312012604 00000000000000/* integration/qc25s.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ struct fn_qaws_params { gsl_function *function; double a; double b; gsl_integration_qaws_table *table; }; static double fn_qaws (double t, void *params); static double fn_qaws_L (double x, void *params); static double fn_qaws_R (double x, void *params); static void compute_result (const double * r, const double * cheb12, const double * cheb24, double * result12, double * result24); static void qc25s (gsl_function * f, double a, double b, double a1, double b1, gsl_integration_qaws_table * t, double *result, double *abserr, int *err_reliable); static void qc25s (gsl_function * f, double a, double b, double a1, double b1, gsl_integration_qaws_table * t, double *result, double *abserr, int *err_reliable) { gsl_function weighted_function; struct fn_qaws_params fn_params; fn_params.function = f; fn_params.a = a; fn_params.b = b; fn_params.table = t; weighted_function.params = &fn_params; if (a1 == a && (t->alpha != 0.0 || t->mu != 0)) { double cheb12[13], cheb24[25]; double factor = pow(0.5 * (b1 - a1), t->alpha + 1.0); weighted_function.function = &fn_qaws_R; gsl_integration_qcheb (&weighted_function, a1, b1, cheb12, cheb24); if (t->mu == 0) { double res12 = 0, res24 = 0; double u = factor; compute_result (t->ri, cheb12, cheb24, &res12, &res24); *result = u * res24; *abserr = fabs(u * (res24 - res12)); } else { double res12a = 0, res24a = 0; double res12b = 0, res24b = 0; double u = factor * log(b1 - a1); double v = factor; compute_result (t->ri, cheb12, cheb24, &res12a, &res24a); compute_result (t->rg, cheb12, cheb24, &res12b, &res24b); *result = u * res24a + v * res24b; *abserr = fabs(u * (res24a - res12a)) + fabs(v * (res24b - res12b)); } *err_reliable = 0; return; } else if (b1 == b && (t->beta != 0.0 || t->nu != 0)) { double cheb12[13], cheb24[25]; double factor = pow(0.5 * (b1 - a1), t->beta + 1.0); weighted_function.function = &fn_qaws_L; gsl_integration_qcheb (&weighted_function, a1, b1, cheb12, cheb24); if (t->nu == 0) { double res12 = 0, res24 = 0; double u = factor; compute_result (t->rj, cheb12, cheb24, &res12, &res24); *result = u * res24; *abserr = fabs(u * (res24 - res12)); } else { double res12a = 0, res24a = 0; double res12b = 0, res24b = 0; double u = factor * log(b1 - a1); double v = factor; compute_result (t->rj, cheb12, cheb24, &res12a, &res24a); compute_result (t->rh, cheb12, cheb24, &res12b, &res24b); *result = u * res24a + v * res24b; *abserr = fabs(u * (res24a - res12a)) + fabs(v * (res24b - res12b)); } *err_reliable = 0; return; } else { double resabs, resasc; weighted_function.function = &fn_qaws; gsl_integration_qk15 (&weighted_function, a1, b1, result, abserr, &resabs, &resasc); if (*abserr == resasc) { *err_reliable = 0; } else { *err_reliable = 1; } return; } } static double fn_qaws (double x, void *params) { struct fn_qaws_params *p = (struct fn_qaws_params *) params; gsl_function *f = p->function; gsl_integration_qaws_table *t = p->table; double factor = 1.0; if (t->alpha != 0.0) factor *= pow(x - p->a, t->alpha); if (t->beta != 0.0) factor *= pow(p->b - x, t->beta); if (t->mu == 1) factor *= log(x - p->a); if (t->nu == 1) factor *= log(p->b - x); return factor * GSL_FN_EVAL (f, x); } static double fn_qaws_L (double x, void *params) { struct fn_qaws_params *p = (struct fn_qaws_params *) params; gsl_function *f = p->function; gsl_integration_qaws_table *t = p->table; double factor = 1.0; if (t->alpha != 0.0) factor *= pow(x - p->a, t->alpha); if (t->mu == 1) factor *= log(x - p->a); return factor * GSL_FN_EVAL (f, x); } static double fn_qaws_R (double x, void *params) { struct fn_qaws_params *p = (struct fn_qaws_params *) params; gsl_function *f = p->function; gsl_integration_qaws_table *t = p->table; double factor = 1.0; if (t->beta != 0.0) factor *= pow(p->b - x, t->beta); if (t->nu == 1) factor *= log(p->b - x); return factor * GSL_FN_EVAL (f, x); } static void compute_result (const double * r, const double * cheb12, const double * cheb24, double * result12, double * result24) { size_t i; double res12 = 0; double res24 = 0; for (i = 0; i < 13; i++) { res12 += r[i] * cheb12[i]; } for (i = 0; i < 25; i++) { res24 += r[i] * cheb24[i]; } *result12 = res12; *result24 = res24; } gsl-1.16/integration/ptsort.c0000664000252300025230000000306212171574312013175 00000000000000/* integration/ptsort.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void sort_results (gsl_integration_workspace * workspace); static void sort_results (gsl_integration_workspace * workspace) { size_t i; double * elist = workspace->elist ; size_t * order = workspace->order ; size_t nint = workspace->size; for (i = 0; i < nint; i++) { size_t i1 = order[i]; double e1 = elist[i1]; size_t i_max = i1; size_t j; for (j = i + 1; j < nint; j++) { size_t i2 = order[j]; double e2 = elist[i2]; if (e2 >= e1) { i_max = i2; e1 = e2; } } if (i_max != i1) { order[i] = order[i_max]; order[i_max] = i1; } } workspace->i = order[0] ; } gsl-1.16/integration/qpsrt2.c0000664000252300025230000000371212171574312013077 00000000000000/* integration/qpsrt2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* The smallest interval has the largest error. Before bisecting decrease the sum of the errors over the larger intervals (error_over_large_intervals) and perform extrapolation. */ static int increase_nrmax (gsl_integration_workspace * workspace); static int increase_nrmax (gsl_integration_workspace * workspace) { int k; int id = workspace->nrmax; int jupbnd; const size_t * level = workspace->level; const size_t * order = workspace->order; size_t limit = workspace->limit ; size_t last = workspace->size - 1 ; if (last > (1 + limit / 2)) { jupbnd = limit + 1 - last; } else { jupbnd = last; } for (k = id; k <= jupbnd; k++) { size_t i_max = order[workspace->nrmax]; workspace->i = i_max ; if (level[i_max] < workspace->maximum_level) { return 1; } workspace->nrmax++; } return 0; } static int large_interval (gsl_integration_workspace * workspace) { size_t i = workspace->i ; const size_t * level = workspace->level; if (level[i] < workspace->maximum_level) { return 1 ; } else { return 0 ; } } gsl-1.16/integration/qng.h0000664000252300025230000001543512171574312012443 00000000000000/* integration/qng.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Gauss-Kronrod-Patterson quadrature coefficients for use in quadpack routine qng. These coefficients were calculated with 101 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov 1981. */ /* x1, abscissae common to the 10-, 21-, 43- and 87-point rule */ static const double x1[5] = { 0.973906528517171720077964012084452, 0.865063366688984510732096688423493, 0.679409568299024406234327365114874, 0.433395394129247190799265943165784, 0.148874338981631210884826001129720 } ; /* w10, weights of the 10-point formula */ static const double w10[5] = { 0.066671344308688137593568809893332, 0.149451349150580593145776339657697, 0.219086362515982043995534934228163, 0.269266719309996355091226921569469, 0.295524224714752870173892994651338 } ; /* x2, abscissae common to the 21-, 43- and 87-point rule */ static const double x2[5] = { 0.995657163025808080735527280689003, 0.930157491355708226001207180059508, 0.780817726586416897063717578345042, 0.562757134668604683339000099272694, 0.294392862701460198131126603103866 } ; /* w21a, weights of the 21-point formula for abscissae x1 */ static const double w21a[5] = { 0.032558162307964727478818972459390, 0.075039674810919952767043140916190, 0.109387158802297641899210590325805, 0.134709217311473325928054001771707, 0.147739104901338491374841515972068 } ; /* w21b, weights of the 21-point formula for abscissae x2 */ static const double w21b[6] = { 0.011694638867371874278064396062192, 0.054755896574351996031381300244580, 0.093125454583697605535065465083366, 0.123491976262065851077958109831074, 0.142775938577060080797094273138717, 0.149445554002916905664936468389821 } ; /* x3, abscissae common to the 43- and 87-point rule */ static const double x3[11] = { 0.999333360901932081394099323919911, 0.987433402908088869795961478381209, 0.954807934814266299257919200290473, 0.900148695748328293625099494069092, 0.825198314983114150847066732588520, 0.732148388989304982612354848755461, 0.622847970537725238641159120344323, 0.499479574071056499952214885499755, 0.364901661346580768043989548502644, 0.222254919776601296498260928066212, 0.074650617461383322043914435796506 } ; /* w43a, weights of the 43-point formula for abscissae x1, x3 */ static const double w43a[10] = { 0.016296734289666564924281974617663, 0.037522876120869501461613795898115, 0.054694902058255442147212685465005, 0.067355414609478086075553166302174, 0.073870199632393953432140695251367, 0.005768556059769796184184327908655, 0.027371890593248842081276069289151, 0.046560826910428830743339154433824, 0.061744995201442564496240336030883, 0.071387267268693397768559114425516 } ; /* w43b, weights of the 43-point formula for abscissae x3 */ static const double w43b[12] = { 0.001844477640212414100389106552965, 0.010798689585891651740465406741293, 0.021895363867795428102523123075149, 0.032597463975345689443882222526137, 0.042163137935191811847627924327955, 0.050741939600184577780189020092084, 0.058379395542619248375475369330206, 0.064746404951445885544689259517511, 0.069566197912356484528633315038405, 0.072824441471833208150939535192842, 0.074507751014175118273571813842889, 0.074722147517403005594425168280423 } ; /* x4, abscissae of the 87-point rule */ static const double x4[22] = { 0.999902977262729234490529830591582, 0.997989895986678745427496322365960, 0.992175497860687222808523352251425, 0.981358163572712773571916941623894, 0.965057623858384619128284110607926, 0.943167613133670596816416634507426, 0.915806414685507209591826430720050, 0.883221657771316501372117548744163, 0.845710748462415666605902011504855, 0.803557658035230982788739474980964, 0.757005730685495558328942793432020, 0.706273209787321819824094274740840, 0.651589466501177922534422205016736, 0.593223374057961088875273770349144, 0.531493605970831932285268948562671, 0.466763623042022844871966781659270, 0.399424847859218804732101665817923, 0.329874877106188288265053371824597, 0.258503559202161551802280975429025, 0.185695396568346652015917141167606, 0.111842213179907468172398359241362, 0.037352123394619870814998165437704 } ; /* w87a, weights of the 87-point formula for abscissae x1, x2, x3 */ static const double w87a[21] = { 0.008148377384149172900002878448190, 0.018761438201562822243935059003794, 0.027347451050052286161582829741283, 0.033677707311637930046581056957588, 0.036935099820427907614589586742499, 0.002884872430211530501334156248695, 0.013685946022712701888950035273128, 0.023280413502888311123409291030404, 0.030872497611713358675466394126442, 0.035693633639418770719351355457044, 0.000915283345202241360843392549948, 0.005399280219300471367738743391053, 0.010947679601118931134327826856808, 0.016298731696787335262665703223280, 0.021081568889203835112433060188190, 0.025370969769253827243467999831710, 0.029189697756475752501446154084920, 0.032373202467202789685788194889595, 0.034783098950365142750781997949596, 0.036412220731351787562801163687577, 0.037253875503047708539592001191226 } ; /* w87b, weights of the 87-point formula for abscissae x4 */ static const double w87b[23] = { 0.000274145563762072350016527092881, 0.001807124155057942948341311753254, 0.004096869282759164864458070683480, 0.006758290051847378699816577897424, 0.009549957672201646536053581325377, 0.012329447652244853694626639963780, 0.015010447346388952376697286041943, 0.017548967986243191099665352925900, 0.019938037786440888202278192730714, 0.022194935961012286796332102959499, 0.024339147126000805470360647041454, 0.026374505414839207241503786552615, 0.028286910788771200659968002987960, 0.030052581128092695322521110347341, 0.031646751371439929404586051078883, 0.033050413419978503290785944862689, 0.034255099704226061787082821046821, 0.035262412660156681033782717998428, 0.036076989622888701185500318003895, 0.036698604498456094498018047441094, 0.037120549269832576114119958413599, 0.037334228751935040321235449094698, 0.037361073762679023410321241766599 } ; gsl-1.16/integration/qc25c.c0000664000252300025230000000606012171574312012560 00000000000000/* integration/qc25c.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ struct fn_cauchy_params { gsl_function *function; double singularity; }; static double fn_cauchy (double t, void *params); static void compute_moments (double cc, double *moment); static void qc25c (gsl_function * f, double a, double b, double c, double *result, double *abserr, int *err_reliable); static void qc25c (gsl_function * f, double a, double b, double c, double *result, double *abserr, int *err_reliable) { double cc = (2 * c - b - a) / (b - a); if (fabs (cc) > 1.1) { double resabs, resasc; gsl_function weighted_function; struct fn_cauchy_params fn_params; fn_params.function = f; fn_params.singularity = c; weighted_function.function = &fn_cauchy; weighted_function.params = &fn_params; gsl_integration_qk15 (&weighted_function, a, b, result, abserr, &resabs, &resasc); if (*abserr == resasc) { *err_reliable = 0; } else { *err_reliable = 1; } return; } else { double cheb12[13], cheb24[25], moment[25]; double res12 = 0, res24 = 0; size_t i; gsl_integration_qcheb (f, a, b, cheb12, cheb24); compute_moments (cc, moment); for (i = 0; i < 13; i++) { res12 += cheb12[i] * moment[i]; } for (i = 0; i < 25; i++) { res24 += cheb24[i] * moment[i]; } *result = res24; *abserr = fabs(res24 - res12) ; *err_reliable = 0; return; } } static double fn_cauchy (double x, void *params) { struct fn_cauchy_params *p = (struct fn_cauchy_params *) params; gsl_function *f = p->function; double c = p->singularity; return GSL_FN_EVAL (f, x) / (x - c); } static void compute_moments (double cc, double *moment) { size_t k; double a0 = log (fabs ((1.0 - cc) / (1.0 + cc))); double a1 = 2 + a0 * cc; moment[0] = a0; moment[1] = a1; for (k = 2; k < 25; k++) { double a2; if ((k % 2) == 0) { a2 = 2.0 * cc * a1 - a0; } else { const double km1 = k - 1.0; a2 = 2.0 * cc * a1 - a0 - 4.0 / (km1 * km1 - 1.0); } moment[k] = a2; a0 = a1; a1 = a2; } } gsl-1.16/integration/qmomo.c0000664000252300025230000001043312171574312012772 00000000000000/* integration/qmomo.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include static void initialise (double * ri, double * rj, double * rg, double * rh, double alpha, double beta); gsl_integration_qaws_table * gsl_integration_qaws_table_alloc (double alpha, double beta, int mu, int nu) { gsl_integration_qaws_table * t; if (alpha < -1.0) { GSL_ERROR_VAL ("alpha must be greater than -1.0", GSL_EINVAL, 0); } if (beta < -1.0) { GSL_ERROR_VAL ("beta must be greater than -1.0", GSL_EINVAL, 0); } if (mu != 0 && mu != 1) { GSL_ERROR_VAL ("mu must be 0 or 1", GSL_EINVAL, 0); } if (nu != 0 && nu != 1) { GSL_ERROR_VAL ("nu must be 0 or 1", GSL_EINVAL, 0); } t = (gsl_integration_qaws_table *) malloc(sizeof(gsl_integration_qaws_table)); if (t == 0) { GSL_ERROR_VAL ("failed to allocate space for qaws_table struct", GSL_ENOMEM, 0); } t->alpha = alpha; t->beta = beta; t->mu = mu; t->nu = nu; initialise (t->ri, t->rj, t->rg, t->rh, alpha, beta); return t; } int gsl_integration_qaws_table_set (gsl_integration_qaws_table * t, double alpha, double beta, int mu, int nu) { if (alpha < -1.0) { GSL_ERROR ("alpha must be greater than -1.0", GSL_EINVAL); } if (beta < -1.0) { GSL_ERROR ("beta must be greater than -1.0", GSL_EINVAL); } if (mu != 0 && mu != 1) { GSL_ERROR ("mu must be 0 or 1", GSL_EINVAL); } if (nu != 0 && nu != 1) { GSL_ERROR ("nu must be 0 or 1", GSL_EINVAL); } t->alpha = alpha; t->beta = beta; t->mu = mu; t->nu = nu; initialise (t->ri, t->rj, t->rg, t->rh, alpha, beta); return GSL_SUCCESS; } void gsl_integration_qaws_table_free (gsl_integration_qaws_table * t) { RETURN_IF_NULL (t); free (t); } static void initialise (double * ri, double * rj, double * rg, double * rh, double alpha, double beta) { const double alpha_p1 = alpha + 1.0; const double beta_p1 = beta + 1.0; const double alpha_p2 = alpha + 2.0; const double beta_p2 = beta + 2.0; const double r_alpha = pow (2.0, alpha_p1); const double r_beta = pow (2.0, beta_p1); size_t i; double an, anm1; ri[0] = r_alpha / alpha_p1; ri[1] = ri[0] * alpha / alpha_p2; an = 2.0; anm1 = 1.0; for (i = 2; i < 25; i++) { ri[i] = -(r_alpha + an * (an - alpha_p2) * ri[i - 1]) / (anm1 * (an + alpha_p1)); anm1 = an; an = an + 1.0; } rj[0] = r_beta / beta_p1; rj[1] = rj[0] * beta / beta_p2; an = 2.0; anm1 = 1.0; for (i = 2; i < 25; i++) { rj[i] = -(r_beta + an * (an - beta_p2) * rj[i - 1]) / (anm1 * (an + beta_p1)); anm1 = an; an = an + 1.0; } rg[0] = -ri[0] / alpha_p1; rg[1] = -rg[0] - 2.0 * r_alpha / (alpha_p2 * alpha_p2); an = 2.0; anm1 = 1.0; for (i = 2; i < 25; i++) { rg[i] = -(an * (an - alpha_p2) * rg[i - 1] - an * ri[i - 1] + anm1 * ri[i]) / (anm1 * (an + alpha_p1)); anm1 = an; an = an + 1.0; } rh[0] = -rj[0] / beta_p1; rh[1] = -rh[0] - 2.0 * r_beta / (beta_p2 * beta_p2); an = 2.0; anm1 = 1.0; for (i = 2; i < 25; i++) { rh[i] = -(an * (an - beta_p2) * rh[i - 1] - an * rj[i - 1] + anm1 * rj[i]) / (anm1 * (an + beta_p1)); anm1 = an; an = an + 1.0; } for (i = 1; i < 25; i += 2) { rj[i] *= -1; rh[i] *= -1; } } gsl-1.16/integration/qk.c0000664000252300025230000000622412171574312012260 00000000000000/* integration/qk.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "err.c" void gsl_integration_qk (const int n, const double xgk[], const double wg[], const double wgk[], double fv1[], double fv2[], const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { const double center = 0.5 * (a + b); const double half_length = 0.5 * (b - a); const double abs_half_length = fabs (half_length); const double f_center = GSL_FN_EVAL (f, center); double result_gauss = 0; double result_kronrod = f_center * wgk[n - 1]; double result_abs = fabs (result_kronrod); double result_asc = 0; double mean = 0, err = 0; int j; if (n % 2 == 0) { result_gauss = f_center * wg[n / 2 - 1]; } for (j = 0; j < (n - 1) / 2; j++) { const int jtw = j * 2 + 1; /* in original fortran j=1,2,3 jtw=2,4,6 */ const double abscissa = half_length * xgk[jtw]; const double fval1 = GSL_FN_EVAL (f, center - abscissa); const double fval2 = GSL_FN_EVAL (f, center + abscissa); const double fsum = fval1 + fval2; fv1[jtw] = fval1; fv2[jtw] = fval2; result_gauss += wg[j] * fsum; result_kronrod += wgk[jtw] * fsum; result_abs += wgk[jtw] * (fabs (fval1) + fabs (fval2)); } for (j = 0; j < n / 2; j++) { int jtwm1 = j * 2; const double abscissa = half_length * xgk[jtwm1]; const double fval1 = GSL_FN_EVAL (f, center - abscissa); const double fval2 = GSL_FN_EVAL (f, center + abscissa); fv1[jtwm1] = fval1; fv2[jtwm1] = fval2; result_kronrod += wgk[jtwm1] * (fval1 + fval2); result_abs += wgk[jtwm1] * (fabs (fval1) + fabs (fval2)); }; mean = result_kronrod * 0.5; result_asc = wgk[n - 1] * fabs (f_center - mean); for (j = 0; j < n - 1; j++) { result_asc += wgk[j] * (fabs (fv1[j] - mean) + fabs (fv2[j] - mean)); } /* scale by the width of the integration region */ err = (result_kronrod - result_gauss) * half_length; result_kronrod *= half_length; result_abs *= abs_half_length; result_asc *= abs_half_length; *result = result_kronrod; *resabs = result_abs; *resasc = result_asc; *abserr = rescale_error (err, result_abs, result_asc); } gsl-1.16/integration/qk31.c0000664000252300025230000000627112171574312012426 00000000000000/* integration/qk31.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[16] = /* abscissae of the 31-point kronrod rule */ { 0.998002298693397060285172840152271, 0.987992518020485428489565718586613, 0.967739075679139134257347978784337, 0.937273392400705904307758947710209, 0.897264532344081900882509656454496, 0.848206583410427216200648320774217, 0.790418501442465932967649294817947, 0.724417731360170047416186054613938, 0.650996741297416970533735895313275, 0.570972172608538847537226737253911, 0.485081863640239680693655740232351, 0.394151347077563369897207370981045, 0.299180007153168812166780024266389, 0.201194093997434522300628303394596, 0.101142066918717499027074231447392, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 15-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 15-point gauss rule */ static const double wg[8] = /* weights of the 15-point gauss rule */ { 0.030753241996117268354628393577204, 0.070366047488108124709267416450667, 0.107159220467171935011869546685869, 0.139570677926154314447804794511028, 0.166269205816993933553200860481209, 0.186161000015562211026800561866423, 0.198431485327111576456118326443839, 0.202578241925561272880620199967519 }; static const double wgk[16] = /* weights of the 31-point kronrod rule */ { 0.005377479872923348987792051430128, 0.015007947329316122538374763075807, 0.025460847326715320186874001019653, 0.035346360791375846222037948478360, 0.044589751324764876608227299373280, 0.053481524690928087265343147239430, 0.062009567800670640285139230960803, 0.069854121318728258709520077099147, 0.076849680757720378894432777482659, 0.083080502823133021038289247286104, 0.088564443056211770647275443693774, 0.093126598170825321225486872747346, 0.096642726983623678505179907627589, 0.099173598721791959332393173484603, 0.100769845523875595044946662617570, 0.101330007014791549017374792767493 }; void gsl_integration_qk31 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[16], fv2[16]; gsl_integration_qk (16, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/qawo.c0000664000252300025230000002510612171574312012614 00000000000000/* integration/qawo.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "initialise.c" #include "set_initial.c" #include "reset.c" #include "qpsrt.c" #include "util.c" #include "qpsrt2.c" #include "qelg.c" #include "positivity.c" #include "qc25f.c" int gsl_integration_qawo (gsl_function * f, const double a, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_qawo_table * wf, double *result, double *abserr) { double area, errsum; double res_ext, err_ext; double result0, abserr0, resabs0, resasc0; double tolerance; double ertest = 0; double error_over_large_intervals = 0; double reseps = 0, abseps = 0, correc = 0; size_t ktmin = 0; int roundoff_type1 = 0, roundoff_type2 = 0, roundoff_type3 = 0; int error_type = 0, error_type2 = 0; size_t iteration = 0; int positive_integrand = 0; int extrapolate = 0; int extall = 0; int disallow_extrapolation = 0; struct extrapolation_table table; double b = a + wf->L ; double abs_omega = fabs (wf->omega) ; /* Initialize results */ initialise (workspace, a, b); *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } /* Test on accuracy */ if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } /* Perform the first integration */ qc25f (f, a, b, wf, 0, &result0, &abserr0, &resabs0, &resasc0); set_initial_result (workspace, result0, abserr0); tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); if (abserr0 <= 100 * GSL_DBL_EPSILON * resabs0 && abserr0 > tolerance) { *result = result0; *abserr = abserr0; GSL_ERROR ("cannot reach tolerance because of roundoff error" "on first attempt", GSL_EROUND); } else if ((abserr0 <= tolerance && abserr0 != resasc0) || abserr0 == 0.0) { *result = result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } /* Initialization */ initialise_table (&table); if (0.5 * abs_omega * fabs(b - a) <= 2) { append_table (&table, result0); extall = 1; } area = result0; errsum = abserr0; res_ext = result0; err_ext = GSL_DBL_MAX; positive_integrand = test_positivity (result0, resabs0); iteration = 1; do { size_t current_level; double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; double resasc1, resasc2; double resabs1, resabs2; double last_e_i; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); current_level = workspace->level[workspace->i] + 1; if (current_level >= wf->n) { error_type = -1 ; /* exceeded limit of table */ break ; } a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; iteration++; qc25f (f, a1, b1, wf, current_level, &area1, &error1, &resabs1, &resasc1); qc25f (f, a2, b2, wf, current_level, &area2, &error2, &resabs2, &resasc2); area12 = area1 + area2; error12 = error1 + error2; last_e_i = e_i; /* Improve previous approximations to the integral and test for accuracy. We write these expressions in the same way as the original QUADPACK code so that the rounding errors are the same, which makes testing easier. */ errsum = errsum + error12 - e_i; area = area + area12 - r_i; tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (resasc1 != error1 && resasc2 != error2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { if (!extrapolate) { roundoff_type1++; } else { roundoff_type2++; } } if (iteration > 10 && error12 > e_i) { roundoff_type3++; } } /* Test for roundoff and eventually set error flag */ if (roundoff_type1 + roundoff_type2 >= 10 || roundoff_type3 >= 20) { error_type = 2; /* round off error */ } if (roundoff_type2 >= 5) { error_type2 = 1; } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 4; } /* append the newly-created intervals to the list */ update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); if (errsum <= tolerance) { goto compute_result; } if (error_type) { break; } if (iteration >= limit - 1) { error_type = 1; break; } /* set up variables on first iteration */ if (iteration == 2 && extall) { error_over_large_intervals = errsum; ertest = tolerance; append_table (&table, area); continue; } if (disallow_extrapolation) { continue; } if (extall) { error_over_large_intervals += -last_e_i; if (current_level < workspace->maximum_level) { error_over_large_intervals += error12; } if (extrapolate) goto label70; } if (large_interval(workspace)) { continue; } if (extall) { extrapolate = 1; workspace->nrmax = 1; } else { /* test whether the interval to be bisected next is the smallest interval. */ size_t i = workspace->i; double width = workspace->blist[i] - workspace->alist[i]; if (0.25 * fabs(width) * abs_omega > 2) continue; extall = 1; error_over_large_intervals = errsum; ertest = tolerance; continue; } label70: if (!error_type2 && error_over_large_intervals > ertest) { if (increase_nrmax (workspace)) continue; } /* Perform extrapolation */ append_table (&table, area); if (table.n < 3) { reset_nrmax(workspace); extrapolate = 0; error_over_large_intervals = errsum; continue; } qelg (&table, &reseps, &abseps); ktmin++; if (ktmin > 5 && err_ext < 0.001 * errsum) { error_type = 5; } if (abseps < err_ext) { ktmin = 0; err_ext = abseps; res_ext = reseps; correc = error_over_large_intervals; ertest = GSL_MAX_DBL (epsabs, epsrel * fabs (reseps)); if (err_ext <= ertest) break; } /* Prepare bisection of the smallest interval. */ if (table.n == 1) { disallow_extrapolation = 1; } if (error_type == 5) { break; } /* work on interval with largest error */ reset_nrmax (workspace); extrapolate = 0; error_over_large_intervals = errsum; } while (iteration < limit); *result = res_ext; *abserr = err_ext; if (err_ext == GSL_DBL_MAX) goto compute_result; if (error_type || error_type2) { if (error_type2) { err_ext += correc; } if (error_type == 0) error_type = 3; if (result != 0 && area != 0) { if (err_ext / fabs (res_ext) > errsum / fabs (area)) goto compute_result; } else if (err_ext > errsum) { goto compute_result; } else if (area == 0.0) { goto return_error; } } /* Test on divergence. */ { double max_area = GSL_MAX_DBL (fabs (res_ext), fabs (area)); if (!positive_integrand && max_area < 0.01 * resabs0) goto return_error; } { double ratio = res_ext / area; if (ratio < 0.01 || ratio > 100 || errsum > fabs (area)) error_type = 6; } goto return_error; compute_result: *result = sum_results (workspace); *abserr = errsum; return_error: if (error_type > 2) error_type--; if (error_type == 0) { return GSL_SUCCESS; } else if (error_type == 1) { GSL_ERROR ("number of iterations was insufficient", GSL_EMAXITER); } else if (error_type == 2) { GSL_ERROR ("cannot reach tolerance because of roundoff error", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (error_type == 4) { GSL_ERROR ("roundoff error detected in extrapolation table", GSL_EROUND); } else if (error_type == 5) { GSL_ERROR ("integral is divergent, or slowly convergent", GSL_EDIVERGE); } else if (error_type == -1) { GSL_ERROR ("exceeded limit of trigonometric table", GSL_ETABLE); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/qk51.c0000664000252300025230000001034512171574312012425 00000000000000/* integration/qk51.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Gauss quadrature weights and kronrod quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by L. W. Fullerton, Bell Labs, Nov. 1981. */ static const double xgk[26] = /* abscissae of the 51-point kronrod rule */ { 0.999262104992609834193457486540341, 0.995556969790498097908784946893902, 0.988035794534077247637331014577406, 0.976663921459517511498315386479594, 0.961614986425842512418130033660167, 0.942974571228974339414011169658471, 0.920747115281701561746346084546331, 0.894991997878275368851042006782805, 0.865847065293275595448996969588340, 0.833442628760834001421021108693570, 0.797873797998500059410410904994307, 0.759259263037357630577282865204361, 0.717766406813084388186654079773298, 0.673566368473468364485120633247622, 0.626810099010317412788122681624518, 0.577662930241222967723689841612654, 0.526325284334719182599623778158010, 0.473002731445714960522182115009192, 0.417885382193037748851814394594572, 0.361172305809387837735821730127641, 0.303089538931107830167478909980339, 0.243866883720988432045190362797452, 0.183718939421048892015969888759528, 0.122864692610710396387359818808037, 0.061544483005685078886546392366797, 0.000000000000000000000000000000000 }; /* xgk[1], xgk[3], ... abscissae of the 25-point gauss rule. xgk[0], xgk[2], ... abscissae to optimally extend the 25-point gauss rule */ static const double wg[13] = /* weights of the 25-point gauss rule */ { 0.011393798501026287947902964113235, 0.026354986615032137261901815295299, 0.040939156701306312655623487711646, 0.054904695975835191925936891540473, 0.068038333812356917207187185656708, 0.080140700335001018013234959669111, 0.091028261982963649811497220702892, 0.100535949067050644202206890392686, 0.108519624474263653116093957050117, 0.114858259145711648339325545869556, 0.119455763535784772228178126512901, 0.122242442990310041688959518945852, 0.123176053726715451203902873079050 }; static const double wgk[26] = /* weights of the 51-point kronrod rule */ { 0.001987383892330315926507851882843, 0.005561932135356713758040236901066, 0.009473973386174151607207710523655, 0.013236229195571674813656405846976, 0.016847817709128298231516667536336, 0.020435371145882835456568292235939, 0.024009945606953216220092489164881, 0.027475317587851737802948455517811, 0.030792300167387488891109020215229, 0.034002130274329337836748795229551, 0.037116271483415543560330625367620, 0.040083825504032382074839284467076, 0.042872845020170049476895792439495, 0.045502913049921788909870584752660, 0.047982537138836713906392255756915, 0.050277679080715671963325259433440, 0.052362885806407475864366712137873, 0.054251129888545490144543370459876, 0.055950811220412317308240686382747, 0.057437116361567832853582693939506, 0.058689680022394207961974175856788, 0.059720340324174059979099291932562, 0.060539455376045862945360267517565, 0.061128509717053048305859030416293, 0.061471189871425316661544131965264, 0.061580818067832935078759824240066 }; /* wgk[25] was calculated from the values of wgk[0..24] */ void gsl_integration_qk51 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc) { double fv1[26], fv2[26]; gsl_integration_qk (26, xgk, wg, wgk, fv1, fv2, f, a, b, result, abserr, resabs, resasc); } gsl-1.16/integration/qpsrt.c0000664000252300025230000000545612171574312013024 00000000000000/* integration/qpsrt.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static inline void qpsrt (gsl_integration_workspace * workspace); static inline void qpsrt (gsl_integration_workspace * workspace) { const size_t last = workspace->size - 1; const size_t limit = workspace->limit; double * elist = workspace->elist; size_t * order = workspace->order; double errmax ; double errmin ; int i, k, top; size_t i_nrmax = workspace->nrmax; size_t i_maxerr = order[i_nrmax] ; /* Check whether the list contains more than two error estimates */ if (last < 2) { order[0] = 0 ; order[1] = 1 ; workspace->i = i_maxerr ; return ; } errmax = elist[i_maxerr] ; /* This part of the routine is only executed if, due to a difficult integrand, subdivision increased the error estimate. In the normal case the insert procedure should start after the nrmax-th largest error estimate. */ while (i_nrmax > 0 && errmax > elist[order[i_nrmax - 1]]) { order[i_nrmax] = order[i_nrmax - 1] ; i_nrmax-- ; } /* Compute the number of elements in the list to be maintained in descending order. This number depends on the number of subdivisions still allowed. */ if(last < (limit/2 + 2)) { top = last ; } else { top = limit - last + 1; } /* Insert errmax by traversing the list top-down, starting comparison from the element elist(order(i_nrmax+1)). */ i = i_nrmax + 1 ; /* The order of the tests in the following line is important to prevent a segmentation fault */ while (i < top && errmax < elist[order[i]]) { order[i-1] = order[i] ; i++ ; } order[i-1] = i_maxerr ; /* Insert errmin by traversing the list bottom-up */ errmin = elist[last] ; k = top - 1 ; while (k > i - 2 && errmin >= elist[order[k]]) { order[k+1] = order[k] ; k-- ; } order[k+1] = last ; /* Set i_max and e_max */ i_maxerr = order[i_nrmax] ; workspace->i = i_maxerr ; workspace->nrmax = i_nrmax ; } gsl-1.16/integration/qaws.c0000664000252300025230000001323712171574312012622 00000000000000/* integration/qaws.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "initialise.c" #include "append.c" #include "qpsrt.c" #include "util.c" #include "qc25s.c" int gsl_integration_qaws (gsl_function * f, const double a, const double b, gsl_integration_qaws_table * t, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr) { double area, errsum; double result0, abserr0; double tolerance; size_t iteration = 0; int roundoff_type1 = 0, roundoff_type2 = 0, error_type = 0; /* Initialize results */ initialise (workspace, a, b); *result = 0; *abserr = 0; if (limit > workspace->limit) { GSL_ERROR ("iteration limit exceeds available workspace", GSL_EINVAL) ; } if (b <= a) { GSL_ERROR ("limits must form an ascending sequence, a < b", GSL_EINVAL) ; } if (epsabs <= 0 && (epsrel < 50 * GSL_DBL_EPSILON || epsrel < 0.5e-28)) { GSL_ERROR ("tolerance cannot be acheived with given epsabs and epsrel", GSL_EBADTOL); } /* perform the first integration */ { double area1, area2; double error1, error2; int err_reliable1, err_reliable2; double a1 = a; double b1 = 0.5 * (a + b); double a2 = b1; double b2 = b; qc25s (f, a, b, a1, b1, t, &area1, &error1, &err_reliable1); qc25s (f, a, b, a2, b2, t, &area2, &error2, &err_reliable2); if (error1 > error2) { append_interval (workspace, a1, b1, area1, error1); append_interval (workspace, a2, b2, area2, error2); } else { append_interval (workspace, a2, b2, area2, error2); append_interval (workspace, a1, b1, area1, error1); } result0 = area1 + area2; abserr0 = error1 + error2; } /* Test on accuracy */ tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (result0)); /* Test on accuracy, use 0.01 relative error as an extra safety margin on the first iteration (ignored for subsequent iterations) */ if (abserr0 < tolerance && abserr0 < 0.01 * fabs(result0)) { *result = result0; *abserr = abserr0; return GSL_SUCCESS; } else if (limit == 1) { *result = result0; *abserr = abserr0; GSL_ERROR ("a maximum of one iteration was insufficient", GSL_EMAXITER); } area = result0; errsum = abserr0; iteration = 2; do { double a1, b1, a2, b2; double a_i, b_i, r_i, e_i; double area1 = 0, area2 = 0, area12 = 0; double error1 = 0, error2 = 0, error12 = 0; int err_reliable1, err_reliable2; /* Bisect the subinterval with the largest error estimate */ retrieve (workspace, &a_i, &b_i, &r_i, &e_i); a1 = a_i; b1 = 0.5 * (a_i + b_i); a2 = b1; b2 = b_i; qc25s (f, a, b, a1, b1, t, &area1, &error1, &err_reliable1); qc25s (f, a, b, a2, b2, t, &area2, &error2, &err_reliable2); area12 = area1 + area2; error12 = error1 + error2; errsum += (error12 - e_i); area += area12 - r_i; if (err_reliable1 && err_reliable2) { double delta = r_i - area12; if (fabs (delta) <= 1.0e-5 * fabs (area12) && error12 >= 0.99 * e_i) { roundoff_type1++; } if (iteration >= 10 && error12 > e_i) { roundoff_type2++; } } tolerance = GSL_MAX_DBL (epsabs, epsrel * fabs (area)); if (errsum > tolerance) { if (roundoff_type1 >= 6 || roundoff_type2 >= 20) { error_type = 2; /* round off error */ } /* set error flag in the case of bad integrand behaviour at a point of the integration range */ if (subinterval_too_small (a1, a2, b2)) { error_type = 3; } } update (workspace, a1, b1, area1, error1, a2, b2, area2, error2); retrieve (workspace, &a_i, &b_i, &r_i, &e_i); iteration++; } while (iteration < limit && !error_type && errsum > tolerance); *result = sum_results (workspace); *abserr = errsum; if (errsum <= tolerance) { return GSL_SUCCESS; } else if (error_type == 2) { GSL_ERROR ("roundoff error prevents tolerance from being achieved", GSL_EROUND); } else if (error_type == 3) { GSL_ERROR ("bad integrand behavior found in the integration interval", GSL_ESING); } else if (iteration == limit) { GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER); } else { GSL_ERROR ("could not integrate function", GSL_EFAILED); } } gsl-1.16/integration/append.c0000664000252300025230000000233512171574312013113 00000000000000/* integration/append.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static inline void append_interval (gsl_integration_workspace * workspace, double a1, double b1, double area1, double error1) { const size_t i_new = workspace->size ; workspace->alist[i_new] = a1; workspace->blist[i_new] = b1; workspace->rlist[i_new] = area1; workspace->elist[i_new] = error1; workspace->order[i_new] = i_new; workspace->level[i_new] = 0; workspace->size++; } gsl-1.16/integration/gsl_integration.h0000664000252300025230000002530012171574312015036 00000000000000/* integration/gsl_integration.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_INTEGRATION_H__ #define __GSL_INTEGRATION_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Workspace for adaptive integrators */ typedef struct { size_t limit; size_t size; size_t nrmax; size_t i; size_t maximum_level; double *alist; double *blist; double *rlist; double *elist; size_t *order; size_t *level; } gsl_integration_workspace; gsl_integration_workspace * gsl_integration_workspace_alloc (const size_t n); void gsl_integration_workspace_free (gsl_integration_workspace * w); /* Workspace for QAWS integrator */ typedef struct { double alpha; double beta; int mu; int nu; double ri[25]; double rj[25]; double rg[25]; double rh[25]; } gsl_integration_qaws_table; gsl_integration_qaws_table * gsl_integration_qaws_table_alloc (double alpha, double beta, int mu, int nu); int gsl_integration_qaws_table_set (gsl_integration_qaws_table * t, double alpha, double beta, int mu, int nu); void gsl_integration_qaws_table_free (gsl_integration_qaws_table * t); /* Workspace for QAWO integrator */ enum gsl_integration_qawo_enum { GSL_INTEG_COSINE, GSL_INTEG_SINE }; typedef struct { size_t n; double omega; double L; double par; enum gsl_integration_qawo_enum sine; double *chebmo; } gsl_integration_qawo_table; gsl_integration_qawo_table * gsl_integration_qawo_table_alloc (double omega, double L, enum gsl_integration_qawo_enum sine, size_t n); int gsl_integration_qawo_table_set (gsl_integration_qawo_table * t, double omega, double L, enum gsl_integration_qawo_enum sine); int gsl_integration_qawo_table_set_length (gsl_integration_qawo_table * t, double L); void gsl_integration_qawo_table_free (gsl_integration_qawo_table * t); /* Definition of an integration rule */ typedef void gsl_integration_rule (const gsl_function * f, double a, double b, double *result, double *abserr, double *defabs, double *resabs); void gsl_integration_qk15 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qk21 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qk31 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qk41 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qk51 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qk61 (const gsl_function * f, double a, double b, double *result, double *abserr, double *resabs, double *resasc); void gsl_integration_qcheb (gsl_function * f, double a, double b, double *cheb12, double *cheb24); /* The low-level integration rules in QUADPACK are identified by small integers (1-6). We'll use symbolic constants to refer to them. */ enum { GSL_INTEG_GAUSS15 = 1, /* 15 point Gauss-Kronrod rule */ GSL_INTEG_GAUSS21 = 2, /* 21 point Gauss-Kronrod rule */ GSL_INTEG_GAUSS31 = 3, /* 31 point Gauss-Kronrod rule */ GSL_INTEG_GAUSS41 = 4, /* 41 point Gauss-Kronrod rule */ GSL_INTEG_GAUSS51 = 5, /* 51 point Gauss-Kronrod rule */ GSL_INTEG_GAUSS61 = 6 /* 61 point Gauss-Kronrod rule */ }; void gsl_integration_qk (const int n, const double xgk[], const double wg[], const double wgk[], double fv1[], double fv2[], const gsl_function *f, double a, double b, double * result, double * abserr, double * resabs, double * resasc); int gsl_integration_qng (const gsl_function * f, double a, double b, double epsabs, double epsrel, double *result, double *abserr, size_t * neval); int gsl_integration_qag (const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, int key, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qagi (gsl_function * f, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qagiu (gsl_function * f, double a, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qagil (gsl_function * f, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qags (const gsl_function * f, double a, double b, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qagp (const gsl_function * f, double *pts, size_t npts, double epsabs, double epsrel, size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qawc (gsl_function *f, const double a, const double b, const double c, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double * result, double * abserr); int gsl_integration_qaws (gsl_function * f, const double a, const double b, gsl_integration_qaws_table * t, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, double *result, double *abserr); int gsl_integration_qawo (gsl_function * f, const double a, const double epsabs, const double epsrel, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_qawo_table * wf, double *result, double *abserr); int gsl_integration_qawf (gsl_function * f, const double a, const double epsabs, const size_t limit, gsl_integration_workspace * workspace, gsl_integration_workspace * cycle_workspace, gsl_integration_qawo_table * wf, double *result, double *abserr); /* Workspace for fixed-order Gauss-Legendre integration */ typedef struct { size_t n; /* number of points */ double *x; /* Gauss abscissae/points */ double *w; /* Gauss weights for each abscissae */ int precomputed; /* high precision abscissae/weights precomputed? */ } gsl_integration_glfixed_table; gsl_integration_glfixed_table * gsl_integration_glfixed_table_alloc (size_t n); void gsl_integration_glfixed_table_free (gsl_integration_glfixed_table * t); /* Routine for fixed-order Gauss-Legendre integration */ double gsl_integration_glfixed (const gsl_function *f, double a, double b, const gsl_integration_glfixed_table * t); /* Routine to retrieve the i-th Gauss-Legendre point and weight from t */ int gsl_integration_glfixed_point (double a, double b, size_t i, double *xi, double *wi, const gsl_integration_glfixed_table * t); /* Cquad integration - Pedro Gonnet */ /* Data of a single interval */ typedef struct { double a, b; double c[64]; double fx[33]; double igral, err; int depth, rdepth, ndiv; } gsl_integration_cquad_ival; /* The workspace is just a collection of intervals */ typedef struct { size_t size; gsl_integration_cquad_ival *ivals; size_t *heap; } gsl_integration_cquad_workspace; gsl_integration_cquad_workspace * gsl_integration_cquad_workspace_alloc (const size_t n); void gsl_integration_cquad_workspace_free (gsl_integration_cquad_workspace * w); int gsl_integration_cquad (const gsl_function * f, double a, double b, double epsabs, double epsrel, gsl_integration_cquad_workspace * ws, double *result, double *abserr, size_t * nevals); __END_DECLS #endif /* __GSL_INTEGRATION_H__ */ gsl-1.16/gsl_types.h0000664000252300025230000000217512171574312011341 00000000000000/* gsl_types.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_TYPES_H__ #define __GSL_TYPES_H__ #ifndef GSL_VAR #ifdef WIN32 # ifdef GSL_DLL # ifdef DLL_EXPORT # define GSL_VAR extern __declspec(dllexport) # else # define GSL_VAR extern __declspec(dllimport) # endif # else # define GSL_VAR extern # endif #else # define GSL_VAR extern #endif #endif #endif /* __GSL_TYPES_H__ */ gsl-1.16/deriv/0000775000252300025230000000000012172254163010343 500000000000000gsl-1.16/deriv/test.c0000664000252300025230000001105612171574312011411 00000000000000/* deriv/test.c * * Copyright (C) 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include double f1 (double x, void *params) { return exp (x); } double df1 (double x, void *params) { return exp (x); } double f2 (double x, void *params) { if (x >= 0.0) { return x * sqrt (x); } else { return 0.0; } } double df2 (double x, void *params) { if (x >= 0.0) { return 1.5 * sqrt (x); } else { return 0.0; } } double f3 (double x, void *params) { if (x != 0.0) { return sin (1 / x); } else { return 0.0; } } double df3 (double x, void *params) { if (x != 0.0) { return -cos (1 / x) / (x * x); } else { return 0.0; } } double f4 (double x, void *params) { return exp (-x * x); } double df4 (double x, void *params) { return -2.0 * x * exp (-x * x); } double f5 (double x, void *params) { return x * x; } double df5 (double x, void *params) { return 2.0 * x; } double f6 (double x, void *params) { return 1.0 / x; } double df6 (double x, void *params) { return -1.0 / (x * x); } typedef int (deriv_fn) (const gsl_function * f, double x, double h, double * res, double *abserr); void test (deriv_fn * deriv, gsl_function * f, gsl_function * df, double x, const char * desc) { double result, abserr; double expected = GSL_FN_EVAL (df, x); (*deriv) (f, x, 1e-4, &result, &abserr); gsl_test_abs (result, expected, GSL_MIN(1e-4,fabs(expected)) + GSL_DBL_EPSILON, desc); if (abserr < fabs(result-expected)) { gsl_test_factor (abserr, fabs(result-expected), 2, "%s error estimate", desc); } else if (result == expected || expected == 0.0) { gsl_test_abs (abserr, 0.0, 1e-6, "%s abserr", desc); } else { double d = fabs(result - expected); gsl_test_abs (abserr, fabs(result-expected), 1e6*d, "%s abserr", desc); } } int main () { gsl_function F1, DF1, F2, DF2, F3, DF3, F4, DF4, F5, DF5, F6, DF6; gsl_ieee_env_setup (); F1.function = &f1; DF1.function = &df1; F2.function = &f2; DF2.function = &df2; F3.function = &f3; DF3.function = &df3; F4.function = &f4; DF4.function = &df4; F5.function = &f5; DF5.function = &df5; F6.function = &f6; DF6.function = &df6; test (&gsl_deriv_central, &F1, &DF1, 1.0, "exp(x), x=1, central deriv"); test (&gsl_deriv_forward, &F1, &DF1, 1.0, "exp(x), x=1, forward deriv"); test (&gsl_deriv_backward, &F1, &DF1, 1.0, "exp(x), x=1, backward deriv"); test (&gsl_deriv_central, &F2, &DF2, 0.1, "x^(3/2), x=0.1, central deriv"); test (&gsl_deriv_forward, &F2, &DF2, 0.1, "x^(3/2), x=0.1, forward deriv"); test (&gsl_deriv_backward, &F2, &DF2, 0.1, "x^(3/2), x=0.1, backward deriv"); test (&gsl_deriv_central, &F3, &DF3, 0.45, "sin(1/x), x=0.45, central deriv"); test (&gsl_deriv_forward, &F3, &DF3, 0.45, "sin(1/x), x=0.45, forward deriv"); test (&gsl_deriv_backward, &F3, &DF3, 0.45, "sin(1/x), x=0.45, backward deriv"); test (&gsl_deriv_central, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, central deriv"); test (&gsl_deriv_forward, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, forward deriv"); test (&gsl_deriv_backward, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, backward deriv"); test (&gsl_deriv_central, &F5, &DF5, 0.0, "x^2, x=0, central deriv"); test (&gsl_deriv_forward, &F5, &DF5, 0.0, "x^2, x=0, forward deriv"); test (&gsl_deriv_backward, &F5, &DF5, 0.0, "x^2, x=0, backward deriv"); test (&gsl_deriv_central, &F6, &DF6, 10.0, "1/x, x=10, central deriv"); test (&gsl_deriv_forward, &F6, &DF6, 10.0, "1/x, x=10, forward deriv"); test (&gsl_deriv_backward, &F6, &DF6, 10.0, "1/x, x=10, backward deriv"); exit (gsl_test_summary ()); } gsl-1.16/deriv/Makefile.in0000664000252300025230000010350512172253755012342 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = deriv DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslderiv_la_LIBADD = am_libgslderiv_la_OBJECTS = deriv.lo libgslderiv_la_OBJECTS = $(am_libgslderiv_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslderiv.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslderiv_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslderiv_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslderiv.la INCLUDES = -I$(top_srcdir) libgslderiv_la_SOURCES = deriv.c pkginclude_HEADERS = gsl_deriv.h TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslderiv.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu deriv/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu deriv/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslderiv.la: $(libgslderiv_la_OBJECTS) $(libgslderiv_la_DEPENDENCIES) $(EXTRA_libgslderiv_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslderiv_la_OBJECTS) $(libgslderiv_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/deriv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES = demo.c #demo_LDADD = libgslderiv.la ../vector/libgslvector.la ../block/libgslblock.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/deriv/ChangeLog0000664000252300025230000000056512171574312012043 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-08-22 Brian Gough * deriv.c (central_deriv): corrected dy term for error in h (forward_deriv): corrected dy term for error in h 2004-03-06 Brian Gough * reworking API of gsl_diff gsl-1.16/deriv/Makefile.am0000664000252300025230000000105212171574312012315 00000000000000noinst_LTLIBRARIES = libgslderiv.la INCLUDES = -I$(top_srcdir) libgslderiv_la_SOURCES = deriv.c pkginclude_HEADERS = gsl_deriv.h TESTS = $(check_PROGRAMS) check_PROGRAMS = test #demo test_SOURCES = test.c test_LDADD = libgslderiv.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #demo_SOURCES = demo.c #demo_LDADD = libgslderiv.la ../vector/libgslvector.la ../block/libgslblock.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la gsl-1.16/deriv/deriv.c0000664000252300025230000001343012171574312011541 00000000000000/* deriv/deriv.c * * Copyright (C) 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include static void central_deriv (const gsl_function * f, double x, double h, double *result, double *abserr_round, double *abserr_trunc) { /* Compute the derivative using the 5-point rule (x-h, x-h/2, x, x+h/2, x+h). Note that the central point is not used. Compute the error using the difference between the 5-point and the 3-point rule (x-h,x,x+h). Again the central point is not used. */ double fm1 = GSL_FN_EVAL (f, x - h); double fp1 = GSL_FN_EVAL (f, x + h); double fmh = GSL_FN_EVAL (f, x - h / 2); double fph = GSL_FN_EVAL (f, x + h / 2); double r3 = 0.5 * (fp1 - fm1); double r5 = (4.0 / 3.0) * (fph - fmh) - (1.0 / 3.0) * r3; double e3 = (fabs (fp1) + fabs (fm1)) * GSL_DBL_EPSILON; double e5 = 2.0 * (fabs (fph) + fabs (fmh)) * GSL_DBL_EPSILON + e3; /* The next term is due to finite precision in x+h = O (eps * x) */ double dy = GSL_MAX (fabs (r3 / h), fabs (r5 / h)) *(fabs (x) / h) * GSL_DBL_EPSILON; /* The truncation error in the r5 approximation itself is O(h^4). However, for safety, we estimate the error from r5-r3, which is O(h^2). By scaling h we will minimise this estimated error, not the actual truncation error in r5. */ *result = r5 / h; *abserr_trunc = fabs ((r5 - r3) / h); /* Estimated truncation error O(h^2) */ *abserr_round = fabs (e5 / h) + dy; /* Rounding error (cancellations) */ } int gsl_deriv_central (const gsl_function * f, double x, double h, double *result, double *abserr) { double r_0, round, trunc, error; central_deriv (f, x, h, &r_0, &round, &trunc); error = round + trunc; if (round < trunc && (round > 0 && trunc > 0)) { double r_opt, round_opt, trunc_opt, error_opt; /* Compute an optimised stepsize to minimize the total error, using the scaling of the truncation error (O(h^2)) and rounding error (O(1/h)). */ double h_opt = h * pow (round / (2.0 * trunc), 1.0 / 3.0); central_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt); error_opt = round_opt + trunc_opt; /* Check that the new error is smaller, and that the new derivative is consistent with the error bounds of the original estimate. */ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error) { r_0 = r_opt; error = error_opt; } } *result = r_0; *abserr = error; return GSL_SUCCESS; } static void forward_deriv (const gsl_function * f, double x, double h, double *result, double *abserr_round, double *abserr_trunc) { /* Compute the derivative using the 4-point rule (x+h/4, x+h/2, x+3h/4, x+h). Compute the error using the difference between the 4-point and the 2-point rule (x+h/2,x+h). */ double f1 = GSL_FN_EVAL (f, x + h / 4.0); double f2 = GSL_FN_EVAL (f, x + h / 2.0); double f3 = GSL_FN_EVAL (f, x + (3.0 / 4.0) * h); double f4 = GSL_FN_EVAL (f, x + h); double r2 = 2.0*(f4 - f2); double r4 = (22.0 / 3.0) * (f4 - f3) - (62.0 / 3.0) * (f3 - f2) + (52.0 / 3.0) * (f2 - f1); /* Estimate the rounding error for r4 */ double e4 = 2 * 20.67 * (fabs (f4) + fabs (f3) + fabs (f2) + fabs (f1)) * GSL_DBL_EPSILON; /* The next term is due to finite precision in x+h = O (eps * x) */ double dy = GSL_MAX (fabs (r2 / h), fabs (r4 / h)) * fabs (x / h) * GSL_DBL_EPSILON; /* The truncation error in the r4 approximation itself is O(h^3). However, for safety, we estimate the error from r4-r2, which is O(h). By scaling h we will minimise this estimated error, not the actual truncation error in r4. */ *result = r4 / h; *abserr_trunc = fabs ((r4 - r2) / h); /* Estimated truncation error O(h) */ *abserr_round = fabs (e4 / h) + dy; } int gsl_deriv_forward (const gsl_function * f, double x, double h, double *result, double *abserr) { double r_0, round, trunc, error; forward_deriv (f, x, h, &r_0, &round, &trunc); error = round + trunc; if (round < trunc && (round > 0 && trunc > 0)) { double r_opt, round_opt, trunc_opt, error_opt; /* Compute an optimised stepsize to minimize the total error, using the scaling of the estimated truncation error (O(h)) and rounding error (O(1/h)). */ double h_opt = h * pow (round / (trunc), 1.0 / 2.0); forward_deriv (f, x, h_opt, &r_opt, &round_opt, &trunc_opt); error_opt = round_opt + trunc_opt; /* Check that the new error is smaller, and that the new derivative is consistent with the error bounds of the original estimate. */ if (error_opt < error && fabs (r_opt - r_0) < 4.0 * error) { r_0 = r_opt; error = error_opt; } } *result = r_0; *abserr = error; return GSL_SUCCESS; } int gsl_deriv_backward (const gsl_function * f, double x, double h, double *result, double *abserr) { return gsl_deriv_forward (f, x, -h, result, abserr); } gsl-1.16/deriv/gsl_deriv.h0000664000252300025230000000303412171574312012412 00000000000000/* deriv/gsl_deriv.h * * Copyright (C) 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_DERIV_H__ #define __GSL_DERIV_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_deriv_central (const gsl_function *f, double x, double h, double *result, double *abserr); int gsl_deriv_backward (const gsl_function *f, double x, double h, double *result, double *abserr); int gsl_deriv_forward (const gsl_function *f, double x, double h, double *result, double *abserr); __END_DECLS #endif /* __GSL_DERIV_H__ */ gsl-1.16/matrix/0000775000252300025230000000000012172254156010540 500000000000000gsl-1.16/matrix/oper_complex_source.c0000664000252300025230000001315212171574312014700 00000000000000/* matrix/oper_complex_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, add) (TYPE (gsl_matrix) * a, const TYPE (gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { const size_t aij = 2 * (i * tda_a + j); const size_t bij = 2 * (i * tda_b + j); a->data[aij] += b->data[bij]; a->data[aij + 1] += b->data[bij + 1]; } } return GSL_SUCCESS; } } int FUNCTION (gsl_matrix, sub) (TYPE (gsl_matrix) * a, const TYPE (gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { const size_t aij = 2 * (i * tda_a + j); const size_t bij = 2 * (i * tda_b + j); a->data[aij] -= b->data[bij]; a->data[aij + 1] -= b->data[bij + 1]; } } return GSL_SUCCESS; } } int FUNCTION (gsl_matrix, mul_elements) (TYPE (gsl_matrix) * a, const TYPE (gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { const size_t aij = 2 * (i * tda_a + j); const size_t bij = 2 * (i * tda_b + j); ATOMIC ar = a->data[aij]; ATOMIC ai = a->data[aij + 1]; ATOMIC br = b->data[bij]; ATOMIC bi = b->data[bij + 1]; a->data[aij] = ar * br - ai * bi; a->data[aij + 1] = ar * bi + ai * br; } } return GSL_SUCCESS; } } int FUNCTION (gsl_matrix, div_elements) (TYPE (gsl_matrix) * a, const TYPE (gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { const size_t aij = 2 * (i * tda_a + j); const size_t bij = 2 * (i * tda_b + j); ATOMIC ar = a->data[aij]; ATOMIC ai = a->data[aij + 1]; ATOMIC br = b->data[bij]; ATOMIC bi = b->data[bij + 1]; ATOMIC s = 1.0 / hypot(br, bi); ATOMIC sbr = s * br; ATOMIC sbi = s * bi; a->data[aij] = (ar * sbr + ai * sbi) * s; a->data[aij + 1] = (ai * sbr - ar * sbi) * s; } } return GSL_SUCCESS; } } int FUNCTION (gsl_matrix, scale) (TYPE (gsl_matrix) * a, const BASE x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; size_t i, j; ATOMIC xr = GSL_REAL(x); ATOMIC xi = GSL_IMAG(x); for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { const size_t aij = 2 * (i * tda + j); ATOMIC ar = a->data[aij]; ATOMIC ai = a->data[aij + 1]; a->data[aij] = ar * xr - ai * xi; a->data[aij + 1] = ar * xi + ai * xr; } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, add_constant) (TYPE (gsl_matrix) * a, const BASE x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[2 * (i * tda + j)] += GSL_REAL (x); a->data[2 * (i * tda + j) + 1] += GSL_IMAG (x); } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, add_diagonal) (TYPE (gsl_matrix) * a, const BASE x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; const size_t loop_lim = (M < N ? M : N); size_t i; for (i = 0; i < loop_lim; i++) { a->data[2 * (i * tda + i)] += GSL_REAL (x); a->data[2 * (i * tda + i) + 1] += GSL_IMAG (x); } return GSL_SUCCESS; } gsl-1.16/matrix/test_static.c0000664000252300025230000000015212171574312013146 00000000000000 #undef HAVE_INLINE #ifndef NO_INLINE #define NO_INLINE #endif #define DESC " (static)" #include "test.c" gsl-1.16/matrix/minmax.c0000664000252300025230000000260312171574312012114 00000000000000#include #include #include #include #define BASE_LONG_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "minmax_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/gsl_matrix_complex_double.h0000664000252300025230000003043212171574312016063 00000000000000/* matrix/gsl_matrix_complex_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_COMPLEX_DOUBLE_H__ #define __GSL_MATRIX_COMPLEX_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; double * data; gsl_block_complex * block; int owner; } gsl_matrix_complex ; typedef struct { gsl_matrix_complex matrix; } _gsl_matrix_complex_view; typedef _gsl_matrix_complex_view gsl_matrix_complex_view; typedef struct { gsl_matrix_complex matrix; } _gsl_matrix_complex_const_view; typedef const _gsl_matrix_complex_const_view gsl_matrix_complex_const_view; /* Allocation */ gsl_matrix_complex * gsl_matrix_complex_alloc (const size_t n1, const size_t n2); gsl_matrix_complex * gsl_matrix_complex_calloc (const size_t n1, const size_t n2); gsl_matrix_complex * gsl_matrix_complex_alloc_from_block (gsl_block_complex * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_complex * gsl_matrix_complex_alloc_from_matrix (gsl_matrix_complex * b, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_complex * gsl_vector_complex_alloc_row_from_matrix (gsl_matrix_complex * m, const size_t i); gsl_vector_complex * gsl_vector_complex_alloc_col_from_matrix (gsl_matrix_complex * m, const size_t j); void gsl_matrix_complex_free (gsl_matrix_complex * m); /* Views */ _gsl_matrix_complex_view gsl_matrix_complex_submatrix (gsl_matrix_complex * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_view gsl_matrix_complex_row (gsl_matrix_complex * m, const size_t i); _gsl_vector_complex_view gsl_matrix_complex_column (gsl_matrix_complex * m, const size_t j); _gsl_vector_complex_view gsl_matrix_complex_diagonal (gsl_matrix_complex * m); _gsl_vector_complex_view gsl_matrix_complex_subdiagonal (gsl_matrix_complex * m, const size_t k); _gsl_vector_complex_view gsl_matrix_complex_superdiagonal (gsl_matrix_complex * m, const size_t k); _gsl_vector_complex_view gsl_matrix_complex_subrow (gsl_matrix_complex * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_view gsl_matrix_complex_subcolumn (gsl_matrix_complex * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_view gsl_matrix_complex_view_array (double * base, const size_t n1, const size_t n2); _gsl_matrix_complex_view gsl_matrix_complex_view_array_with_tda (double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_view gsl_matrix_complex_view_vector (gsl_vector_complex * v, const size_t n1, const size_t n2); _gsl_matrix_complex_view gsl_matrix_complex_view_vector_with_tda (gsl_vector_complex * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_const_view gsl_matrix_complex_const_submatrix (const gsl_matrix_complex * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_const_view gsl_matrix_complex_const_row (const gsl_matrix_complex * m, const size_t i); _gsl_vector_complex_const_view gsl_matrix_complex_const_column (const gsl_matrix_complex * m, const size_t j); _gsl_vector_complex_const_view gsl_matrix_complex_const_diagonal (const gsl_matrix_complex * m); _gsl_vector_complex_const_view gsl_matrix_complex_const_subdiagonal (const gsl_matrix_complex * m, const size_t k); _gsl_vector_complex_const_view gsl_matrix_complex_const_superdiagonal (const gsl_matrix_complex * m, const size_t k); _gsl_vector_complex_const_view gsl_matrix_complex_const_subrow (const gsl_matrix_complex * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_const_view gsl_matrix_complex_const_subcolumn (const gsl_matrix_complex * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_const_view gsl_matrix_complex_const_view_array (const double * base, const size_t n1, const size_t n2); _gsl_matrix_complex_const_view gsl_matrix_complex_const_view_array_with_tda (const double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_const_view gsl_matrix_complex_const_view_vector (const gsl_vector_complex * v, const size_t n1, const size_t n2); _gsl_matrix_complex_const_view gsl_matrix_complex_const_view_vector_with_tda (const gsl_vector_complex * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_complex_set_zero (gsl_matrix_complex * m); void gsl_matrix_complex_set_identity (gsl_matrix_complex * m); void gsl_matrix_complex_set_all (gsl_matrix_complex * m, gsl_complex x); int gsl_matrix_complex_fread (FILE * stream, gsl_matrix_complex * m) ; int gsl_matrix_complex_fwrite (FILE * stream, const gsl_matrix_complex * m) ; int gsl_matrix_complex_fscanf (FILE * stream, gsl_matrix_complex * m); int gsl_matrix_complex_fprintf (FILE * stream, const gsl_matrix_complex * m, const char * format); int gsl_matrix_complex_memcpy(gsl_matrix_complex * dest, const gsl_matrix_complex * src); int gsl_matrix_complex_swap(gsl_matrix_complex * m1, gsl_matrix_complex * m2); int gsl_matrix_complex_swap_rows(gsl_matrix_complex * m, const size_t i, const size_t j); int gsl_matrix_complex_swap_columns(gsl_matrix_complex * m, const size_t i, const size_t j); int gsl_matrix_complex_swap_rowcol(gsl_matrix_complex * m, const size_t i, const size_t j); int gsl_matrix_complex_transpose (gsl_matrix_complex * m); int gsl_matrix_complex_transpose_memcpy (gsl_matrix_complex * dest, const gsl_matrix_complex * src); int gsl_matrix_complex_equal (const gsl_matrix_complex * a, const gsl_matrix_complex * b); int gsl_matrix_complex_isnull (const gsl_matrix_complex * m); int gsl_matrix_complex_ispos (const gsl_matrix_complex * m); int gsl_matrix_complex_isneg (const gsl_matrix_complex * m); int gsl_matrix_complex_isnonneg (const gsl_matrix_complex * m); int gsl_matrix_complex_add (gsl_matrix_complex * a, const gsl_matrix_complex * b); int gsl_matrix_complex_sub (gsl_matrix_complex * a, const gsl_matrix_complex * b); int gsl_matrix_complex_mul_elements (gsl_matrix_complex * a, const gsl_matrix_complex * b); int gsl_matrix_complex_div_elements (gsl_matrix_complex * a, const gsl_matrix_complex * b); int gsl_matrix_complex_scale (gsl_matrix_complex * a, const gsl_complex x); int gsl_matrix_complex_add_constant (gsl_matrix_complex * a, const gsl_complex x); int gsl_matrix_complex_add_diagonal (gsl_matrix_complex * a, const gsl_complex x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_complex_get_row(gsl_vector_complex * v, const gsl_matrix_complex * m, const size_t i); int gsl_matrix_complex_get_col(gsl_vector_complex * v, const gsl_matrix_complex * m, const size_t j); int gsl_matrix_complex_set_row(gsl_matrix_complex * m, const size_t i, const gsl_vector_complex * v); int gsl_matrix_complex_set_col(gsl_matrix_complex * m, const size_t j, const gsl_vector_complex * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL gsl_complex gsl_matrix_complex_get(const gsl_matrix_complex * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_complex_set(gsl_matrix_complex * m, const size_t i, const size_t j, const gsl_complex x); INLINE_DECL gsl_complex * gsl_matrix_complex_ptr(gsl_matrix_complex * m, const size_t i, const size_t j); INLINE_DECL const gsl_complex * gsl_matrix_complex_const_ptr(const gsl_matrix_complex * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN gsl_complex gsl_matrix_complex_get(const gsl_matrix_complex * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { gsl_complex zero = {{0,0}}; if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, zero) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, zero) ; } } #endif return *(gsl_complex *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN void gsl_matrix_complex_set(gsl_matrix_complex * m, const size_t i, const size_t j, const gsl_complex x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif *(gsl_complex *)(m->data + 2*(i * m->tda + j)) = x ; } INLINE_FUN gsl_complex * gsl_matrix_complex_ptr(gsl_matrix_complex * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (gsl_complex *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN const gsl_complex * gsl_matrix_complex_const_ptr(const gsl_matrix_complex * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const gsl_complex *)(m->data + 2*(i * m->tda + j)) ; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_MATRIX_COMPLEX_DOUBLE_H__ */ gsl-1.16/matrix/view.h0000664000252300025230000000024512171574312011602 00000000000000#define NULL_VECTOR {0, 0, 0, 0, 0} #define NULL_VECTOR_VIEW {{0, 0, 0, 0, 0}} #define NULL_MATRIX {0, 0, 0, 0, 0, 0} #define NULL_MATRIX_VIEW {{0, 0, 0, 0, 0, 0}} gsl-1.16/matrix/TODO0000664000252300025230000000055412171574312011152 00000000000000# -*- org -*- #+CATEGORY: matrix * Tests for subrowcol * Pretty print function * Clean up the tests. * Run tests where matrix tda != size2, note that tda is a physical dimension and size2 is the number of columns in the matrix. This will probably find a lot of bugs in the matrix logic. * Matrix norms that can be calculated analytically, e.g. Frobenius, etc gsl-1.16/matrix/gsl_matrix_complex_long_double.h0000664000252300025230000003527012171574312017107 00000000000000/* matrix/gsl_matrix_complex_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_COMPLEX_LONG_DOUBLE_H__ #define __GSL_MATRIX_COMPLEX_LONG_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; long double * data; gsl_block_complex_long_double * block; int owner; } gsl_matrix_complex_long_double ; typedef struct { gsl_matrix_complex_long_double matrix; } _gsl_matrix_complex_long_double_view; typedef _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_view; typedef struct { gsl_matrix_complex_long_double matrix; } _gsl_matrix_complex_long_double_const_view; typedef const _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_view; /* Allocation */ gsl_matrix_complex_long_double * gsl_matrix_complex_long_double_alloc (const size_t n1, const size_t n2); gsl_matrix_complex_long_double * gsl_matrix_complex_long_double_calloc (const size_t n1, const size_t n2); gsl_matrix_complex_long_double * gsl_matrix_complex_long_double_alloc_from_block (gsl_block_complex_long_double * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_complex_long_double * gsl_matrix_complex_long_double_alloc_from_matrix (gsl_matrix_complex_long_double * b, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_complex_long_double * gsl_vector_complex_long_double_alloc_row_from_matrix (gsl_matrix_complex_long_double * m, const size_t i); gsl_vector_complex_long_double * gsl_vector_complex_long_double_alloc_col_from_matrix (gsl_matrix_complex_long_double * m, const size_t j); void gsl_matrix_complex_long_double_free (gsl_matrix_complex_long_double * m); /* Views */ _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_submatrix (gsl_matrix_complex_long_double * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_row (gsl_matrix_complex_long_double * m, const size_t i); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_column (gsl_matrix_complex_long_double * m, const size_t j); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_diagonal (gsl_matrix_complex_long_double * m); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_subdiagonal (gsl_matrix_complex_long_double * m, const size_t k); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_superdiagonal (gsl_matrix_complex_long_double * m, const size_t k); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_subrow (gsl_matrix_complex_long_double * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_long_double_view gsl_matrix_complex_long_double_subcolumn (gsl_matrix_complex_long_double * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_view_array (long double * base, const size_t n1, const size_t n2); _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_view_array_with_tda (long double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_view_vector (gsl_vector_complex_long_double * v, const size_t n1, const size_t n2); _gsl_matrix_complex_long_double_view gsl_matrix_complex_long_double_view_vector_with_tda (gsl_vector_complex_long_double * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_submatrix (const gsl_matrix_complex_long_double * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_row (const gsl_matrix_complex_long_double * m, const size_t i); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_column (const gsl_matrix_complex_long_double * m, const size_t j); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_diagonal (const gsl_matrix_complex_long_double * m); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_subdiagonal (const gsl_matrix_complex_long_double * m, const size_t k); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_superdiagonal (const gsl_matrix_complex_long_double * m, const size_t k); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_subrow (const gsl_matrix_complex_long_double * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_long_double_const_view gsl_matrix_complex_long_double_const_subcolumn (const gsl_matrix_complex_long_double * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_view_array (const long double * base, const size_t n1, const size_t n2); _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_view_array_with_tda (const long double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_view_vector (const gsl_vector_complex_long_double * v, const size_t n1, const size_t n2); _gsl_matrix_complex_long_double_const_view gsl_matrix_complex_long_double_const_view_vector_with_tda (const gsl_vector_complex_long_double * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_complex_long_double_set_zero (gsl_matrix_complex_long_double * m); void gsl_matrix_complex_long_double_set_identity (gsl_matrix_complex_long_double * m); void gsl_matrix_complex_long_double_set_all (gsl_matrix_complex_long_double * m, gsl_complex_long_double x); int gsl_matrix_complex_long_double_fread (FILE * stream, gsl_matrix_complex_long_double * m) ; int gsl_matrix_complex_long_double_fwrite (FILE * stream, const gsl_matrix_complex_long_double * m) ; int gsl_matrix_complex_long_double_fscanf (FILE * stream, gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_fprintf (FILE * stream, const gsl_matrix_complex_long_double * m, const char * format); int gsl_matrix_complex_long_double_memcpy(gsl_matrix_complex_long_double * dest, const gsl_matrix_complex_long_double * src); int gsl_matrix_complex_long_double_swap(gsl_matrix_complex_long_double * m1, gsl_matrix_complex_long_double * m2); int gsl_matrix_complex_long_double_swap_rows(gsl_matrix_complex_long_double * m, const size_t i, const size_t j); int gsl_matrix_complex_long_double_swap_columns(gsl_matrix_complex_long_double * m, const size_t i, const size_t j); int gsl_matrix_complex_long_double_swap_rowcol(gsl_matrix_complex_long_double * m, const size_t i, const size_t j); int gsl_matrix_complex_long_double_transpose (gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_transpose_memcpy (gsl_matrix_complex_long_double * dest, const gsl_matrix_complex_long_double * src); int gsl_matrix_complex_long_double_equal (const gsl_matrix_complex_long_double * a, const gsl_matrix_complex_long_double * b); int gsl_matrix_complex_long_double_isnull (const gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_ispos (const gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_isneg (const gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_isnonneg (const gsl_matrix_complex_long_double * m); int gsl_matrix_complex_long_double_add (gsl_matrix_complex_long_double * a, const gsl_matrix_complex_long_double * b); int gsl_matrix_complex_long_double_sub (gsl_matrix_complex_long_double * a, const gsl_matrix_complex_long_double * b); int gsl_matrix_complex_long_double_mul_elements (gsl_matrix_complex_long_double * a, const gsl_matrix_complex_long_double * b); int gsl_matrix_complex_long_double_div_elements (gsl_matrix_complex_long_double * a, const gsl_matrix_complex_long_double * b); int gsl_matrix_complex_long_double_scale (gsl_matrix_complex_long_double * a, const gsl_complex_long_double x); int gsl_matrix_complex_long_double_add_constant (gsl_matrix_complex_long_double * a, const gsl_complex_long_double x); int gsl_matrix_complex_long_double_add_diagonal (gsl_matrix_complex_long_double * a, const gsl_complex_long_double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_complex_long_double_get_row(gsl_vector_complex_long_double * v, const gsl_matrix_complex_long_double * m, const size_t i); int gsl_matrix_complex_long_double_get_col(gsl_vector_complex_long_double * v, const gsl_matrix_complex_long_double * m, const size_t j); int gsl_matrix_complex_long_double_set_row(gsl_matrix_complex_long_double * m, const size_t i, const gsl_vector_complex_long_double * v); int gsl_matrix_complex_long_double_set_col(gsl_matrix_complex_long_double * m, const size_t j, const gsl_vector_complex_long_double * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL gsl_complex_long_double gsl_matrix_complex_long_double_get(const gsl_matrix_complex_long_double * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_complex_long_double_set(gsl_matrix_complex_long_double * m, const size_t i, const size_t j, const gsl_complex_long_double x); INLINE_DECL gsl_complex_long_double * gsl_matrix_complex_long_double_ptr(gsl_matrix_complex_long_double * m, const size_t i, const size_t j); INLINE_DECL const gsl_complex_long_double * gsl_matrix_complex_long_double_const_ptr(const gsl_matrix_complex_long_double * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN gsl_complex_long_double gsl_matrix_complex_long_double_get(const gsl_matrix_complex_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { gsl_complex_long_double zero = {{0,0}}; if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, zero) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, zero) ; } } #endif return *(gsl_complex_long_double *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN void gsl_matrix_complex_long_double_set(gsl_matrix_complex_long_double * m, const size_t i, const size_t j, const gsl_complex_long_double x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif *(gsl_complex_long_double *)(m->data + 2*(i * m->tda + j)) = x ; } INLINE_FUN gsl_complex_long_double * gsl_matrix_complex_long_double_ptr(gsl_matrix_complex_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (gsl_complex_long_double *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN const gsl_complex_long_double * gsl_matrix_complex_long_double_const_ptr(const gsl_matrix_complex_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const gsl_complex_long_double *)(m->data + 2*(i * m->tda + j)) ; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_MATRIX_COMPLEX_LONG_DOUBLE_H__ */ gsl-1.16/matrix/copy_source.c0000664000252300025230000000473612171574312013166 00000000000000/* matrix/copy_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, memcpy) (TYPE (gsl_matrix) * dest, const TYPE (gsl_matrix) * src) { const size_t src_size1 = src->size1; const size_t src_size2 = src->size2; const size_t dest_size1 = dest->size1; const size_t dest_size2 = dest->size2; if (src_size1 != dest_size1 || src_size2 != dest_size2) { GSL_ERROR ("matrix sizes are different", GSL_EBADLEN); } { const size_t src_tda = src->tda ; const size_t dest_tda = dest->tda ; size_t i, j; for (i = 0; i < src_size1 ; i++) { for (j = 0; j < MULTIPLICITY * src_size2; j++) { dest->data[MULTIPLICITY * dest_tda * i + j] = src->data[MULTIPLICITY * src_tda * i + j]; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap) (TYPE (gsl_matrix) * dest, TYPE (gsl_matrix) * src) { const size_t src_size1 = src->size1; const size_t src_size2 = src->size2; const size_t dest_size1 = dest->size1; const size_t dest_size2 = dest->size2; if (src_size1 != dest_size1 || src_size2 != dest_size2) { GSL_ERROR ("matrix sizes are different", GSL_EBADLEN); } { const size_t src_tda = src->tda ; const size_t dest_tda = dest->tda ; size_t i, j; for (i = 0; i < src_size1 ; i++) { for (j = 0; j < MULTIPLICITY * src_size2; j++) { ATOMIC tmp = src->data[MULTIPLICITY * src_tda * i + j]; src->data[MULTIPLICITY * src_tda * i + j] = dest->data[MULTIPLICITY * dest_tda * i + j]; dest->data[MULTIPLICITY * dest_tda * i + j] = tmp ; } } } return GSL_SUCCESS; } gsl-1.16/matrix/init_source.c0000664000252300025230000001367512171574312013161 00000000000000/* matrix/init_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE (gsl_matrix) * FUNCTION (gsl_matrix, alloc) (const size_t n1, const size_t n2) { TYPE (gsl_block) * block; TYPE (gsl_matrix) * m; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, 0); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, 0); } m = (TYPE (gsl_matrix) *) malloc (sizeof (TYPE (gsl_matrix))); if (m == 0) { GSL_ERROR_VAL ("failed to allocate space for matrix struct", GSL_ENOMEM, 0); } /* FIXME: n1*n2 could overflow for large dimensions */ block = FUNCTION(gsl_block, alloc) (n1 * n2) ; if (block == 0) { GSL_ERROR_VAL ("failed to allocate space for block", GSL_ENOMEM, 0); } m->data = block->data; m->size1 = n1; m->size2 = n2; m->tda = n2; m->block = block; m->owner = 1; return m; } TYPE (gsl_matrix) * FUNCTION (gsl_matrix, calloc) (const size_t n1, const size_t n2) { size_t i; TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (n1, n2); if (m == 0) return 0; /* initialize matrix to zero */ for (i = 0; i < MULTIPLICITY * n1 * n2; i++) { m->data[i] = 0; } return m; } TYPE (gsl_matrix) * FUNCTION (gsl_matrix, alloc_from_block) (TYPE(gsl_block) * block, const size_t offset, const size_t n1, const size_t n2, const size_t d2) { TYPE (gsl_matrix) * m; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, 0); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, 0); } else if (d2 < n2) { GSL_ERROR_VAL ("matrix dimension d2 must be greater than n2", GSL_EINVAL, 0); } else if (block->size < offset + n1 * d2) { GSL_ERROR_VAL ("matrix size exceeds available block size", GSL_EINVAL, 0); } m = (TYPE (gsl_matrix) *) malloc (sizeof (TYPE (gsl_matrix))); if (m == 0) { GSL_ERROR_VAL ("failed to allocate space for matrix struct", GSL_ENOMEM, 0); } m->data = block->data + MULTIPLICITY * offset; m->size1 = n1; m->size2 = n2; m->tda = d2; m->block = block; m->owner = 0; return m; } TYPE (gsl_matrix) * FUNCTION (gsl_matrix, alloc_from_matrix) (TYPE(gsl_matrix) * mm, const size_t k1, const size_t k2, const size_t n1, const size_t n2) { TYPE (gsl_matrix) * m; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, 0); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, 0); } else if (k1 + n1 > mm->size1) { GSL_ERROR_VAL ("submatrix dimension 1 exceeds size of original", GSL_EINVAL, 0); } else if (k2 + n2 > mm->size2) { GSL_ERROR_VAL ("submatrix dimension 2 exceeds size of original", GSL_EINVAL, 0); } m = (TYPE (gsl_matrix) *) malloc (sizeof (TYPE (gsl_matrix))); if (m == 0) { GSL_ERROR_VAL ("failed to allocate space for matrix struct", GSL_ENOMEM, 0); } m->data = mm->data + k1 * mm->tda + k2 ; m->size1 = n1; m->size2 = n2; m->tda = mm->tda; m->block = mm->block; m->owner = 0; return m; } void FUNCTION (gsl_matrix, free) (TYPE (gsl_matrix) * m) { RETURN_IF_NULL (m); if (m->owner) { FUNCTION(gsl_block, free) (m->block); } free (m); } void FUNCTION (gsl_matrix, set_identity) (TYPE (gsl_matrix) * m) { size_t i, j; ATOMIC * const data = m->data; const size_t p = m->size1 ; const size_t q = m->size2 ; const size_t tda = m->tda ; const BASE zero = ZERO; const BASE one = ONE; for (i = 0; i < p; i++) { for (j = 0; j < q; j++) { *(BASE *) (data + MULTIPLICITY * (i * tda + j)) = ((i == j) ? one : zero); } } } void FUNCTION (gsl_matrix, set_zero) (TYPE (gsl_matrix) * m) { size_t i, j; ATOMIC * const data = m->data; const size_t p = m->size1 ; const size_t q = m->size2 ; const size_t tda = m->tda ; const BASE zero = ZERO; for (i = 0; i < p; i++) { for (j = 0; j < q; j++) { *(BASE *) (data + MULTIPLICITY * (i * tda + j)) = zero; } } } void FUNCTION (gsl_matrix, set_all) (TYPE (gsl_matrix) * m, BASE x) { size_t i, j; ATOMIC * const data = m->data; const size_t p = m->size1 ; const size_t q = m->size2 ; const size_t tda = m->tda ; for (i = 0; i < p; i++) { for (j = 0; j < q; j++) { *(BASE *) (data + MULTIPLICITY * (i * tda + j)) = x; } } } gsl-1.16/matrix/gsl_matrix_long.h0000664000252300025230000002744212171574312014030 00000000000000/* matrix/gsl_matrix_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_LONG_H__ #define __GSL_MATRIX_LONG_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; long * data; gsl_block_long * block; int owner; } gsl_matrix_long; typedef struct { gsl_matrix_long matrix; } _gsl_matrix_long_view; typedef _gsl_matrix_long_view gsl_matrix_long_view; typedef struct { gsl_matrix_long matrix; } _gsl_matrix_long_const_view; typedef const _gsl_matrix_long_const_view gsl_matrix_long_const_view; /* Allocation */ gsl_matrix_long * gsl_matrix_long_alloc (const size_t n1, const size_t n2); gsl_matrix_long * gsl_matrix_long_calloc (const size_t n1, const size_t n2); gsl_matrix_long * gsl_matrix_long_alloc_from_block (gsl_block_long * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_long * gsl_matrix_long_alloc_from_matrix (gsl_matrix_long * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_long * gsl_vector_long_alloc_row_from_matrix (gsl_matrix_long * m, const size_t i); gsl_vector_long * gsl_vector_long_alloc_col_from_matrix (gsl_matrix_long * m, const size_t j); void gsl_matrix_long_free (gsl_matrix_long * m); /* Views */ _gsl_matrix_long_view gsl_matrix_long_submatrix (gsl_matrix_long * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_long_view gsl_matrix_long_row (gsl_matrix_long * m, const size_t i); _gsl_vector_long_view gsl_matrix_long_column (gsl_matrix_long * m, const size_t j); _gsl_vector_long_view gsl_matrix_long_diagonal (gsl_matrix_long * m); _gsl_vector_long_view gsl_matrix_long_subdiagonal (gsl_matrix_long * m, const size_t k); _gsl_vector_long_view gsl_matrix_long_superdiagonal (gsl_matrix_long * m, const size_t k); _gsl_vector_long_view gsl_matrix_long_subrow (gsl_matrix_long * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_long_view gsl_matrix_long_subcolumn (gsl_matrix_long * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_long_view gsl_matrix_long_view_array (long * base, const size_t n1, const size_t n2); _gsl_matrix_long_view gsl_matrix_long_view_array_with_tda (long * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_view gsl_matrix_long_view_vector (gsl_vector_long * v, const size_t n1, const size_t n2); _gsl_matrix_long_view gsl_matrix_long_view_vector_with_tda (gsl_vector_long * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_const_view gsl_matrix_long_const_submatrix (const gsl_matrix_long * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_long_const_view gsl_matrix_long_const_row (const gsl_matrix_long * m, const size_t i); _gsl_vector_long_const_view gsl_matrix_long_const_column (const gsl_matrix_long * m, const size_t j); _gsl_vector_long_const_view gsl_matrix_long_const_diagonal (const gsl_matrix_long * m); _gsl_vector_long_const_view gsl_matrix_long_const_subdiagonal (const gsl_matrix_long * m, const size_t k); _gsl_vector_long_const_view gsl_matrix_long_const_superdiagonal (const gsl_matrix_long * m, const size_t k); _gsl_vector_long_const_view gsl_matrix_long_const_subrow (const gsl_matrix_long * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_long_const_view gsl_matrix_long_const_subcolumn (const gsl_matrix_long * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_long_const_view gsl_matrix_long_const_view_array (const long * base, const size_t n1, const size_t n2); _gsl_matrix_long_const_view gsl_matrix_long_const_view_array_with_tda (const long * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_const_view gsl_matrix_long_const_view_vector (const gsl_vector_long * v, const size_t n1, const size_t n2); _gsl_matrix_long_const_view gsl_matrix_long_const_view_vector_with_tda (const gsl_vector_long * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_long_set_zero (gsl_matrix_long * m); void gsl_matrix_long_set_identity (gsl_matrix_long * m); void gsl_matrix_long_set_all (gsl_matrix_long * m, long x); int gsl_matrix_long_fread (FILE * stream, gsl_matrix_long * m) ; int gsl_matrix_long_fwrite (FILE * stream, const gsl_matrix_long * m) ; int gsl_matrix_long_fscanf (FILE * stream, gsl_matrix_long * m); int gsl_matrix_long_fprintf (FILE * stream, const gsl_matrix_long * m, const char * format); int gsl_matrix_long_memcpy(gsl_matrix_long * dest, const gsl_matrix_long * src); int gsl_matrix_long_swap(gsl_matrix_long * m1, gsl_matrix_long * m2); int gsl_matrix_long_swap_rows(gsl_matrix_long * m, const size_t i, const size_t j); int gsl_matrix_long_swap_columns(gsl_matrix_long * m, const size_t i, const size_t j); int gsl_matrix_long_swap_rowcol(gsl_matrix_long * m, const size_t i, const size_t j); int gsl_matrix_long_transpose (gsl_matrix_long * m); int gsl_matrix_long_transpose_memcpy (gsl_matrix_long * dest, const gsl_matrix_long * src); long gsl_matrix_long_max (const gsl_matrix_long * m); long gsl_matrix_long_min (const gsl_matrix_long * m); void gsl_matrix_long_minmax (const gsl_matrix_long * m, long * min_out, long * max_out); void gsl_matrix_long_max_index (const gsl_matrix_long * m, size_t * imax, size_t *jmax); void gsl_matrix_long_min_index (const gsl_matrix_long * m, size_t * imin, size_t *jmin); void gsl_matrix_long_minmax_index (const gsl_matrix_long * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_long_equal (const gsl_matrix_long * a, const gsl_matrix_long * b); int gsl_matrix_long_isnull (const gsl_matrix_long * m); int gsl_matrix_long_ispos (const gsl_matrix_long * m); int gsl_matrix_long_isneg (const gsl_matrix_long * m); int gsl_matrix_long_isnonneg (const gsl_matrix_long * m); int gsl_matrix_long_add (gsl_matrix_long * a, const gsl_matrix_long * b); int gsl_matrix_long_sub (gsl_matrix_long * a, const gsl_matrix_long * b); int gsl_matrix_long_mul_elements (gsl_matrix_long * a, const gsl_matrix_long * b); int gsl_matrix_long_div_elements (gsl_matrix_long * a, const gsl_matrix_long * b); int gsl_matrix_long_scale (gsl_matrix_long * a, const double x); int gsl_matrix_long_add_constant (gsl_matrix_long * a, const double x); int gsl_matrix_long_add_diagonal (gsl_matrix_long * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_long_get_row(gsl_vector_long * v, const gsl_matrix_long * m, const size_t i); int gsl_matrix_long_get_col(gsl_vector_long * v, const gsl_matrix_long * m, const size_t j); int gsl_matrix_long_set_row(gsl_matrix_long * m, const size_t i, const gsl_vector_long * v); int gsl_matrix_long_set_col(gsl_matrix_long * m, const size_t j, const gsl_vector_long * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL long gsl_matrix_long_get(const gsl_matrix_long * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_long_set(gsl_matrix_long * m, const size_t i, const size_t j, const long x); INLINE_DECL long * gsl_matrix_long_ptr(gsl_matrix_long * m, const size_t i, const size_t j); INLINE_DECL const long * gsl_matrix_long_const_ptr(const gsl_matrix_long * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN long gsl_matrix_long_get(const gsl_matrix_long * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_long_set(gsl_matrix_long * m, const size_t i, const size_t j, const long x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN long * gsl_matrix_long_ptr(gsl_matrix_long * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (long *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const long * gsl_matrix_long_const_ptr(const gsl_matrix_long * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const long *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_LONG_H__ */ gsl-1.16/matrix/submatrix_source.c0000664000252300025230000000402412171574312014220 00000000000000/* matrix/submatrix_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_VIEW(_gsl_matrix,view) FUNCTION (gsl_matrix, submatrix) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t i, const size_t j, const size_t n1, const size_t n2) { QUALIFIED_VIEW(_gsl_matrix,view) view = NULL_MATRIX_VIEW; if (i >= m->size1) { GSL_ERROR_VAL ("row index is out of range", GSL_EINVAL, view); } else if (j >= m->size2) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, view); } else if (n1 == 0) { GSL_ERROR_VAL ("first dimension must be non-zero", GSL_EINVAL, view); } else if (n2 == 0) { GSL_ERROR_VAL ("second dimension must be non-zero", GSL_EINVAL, view); } else if (i + n1 > m->size1) { GSL_ERROR_VAL ("first dimension overflows matrix", GSL_EINVAL, view); } else if (j + n2 > m->size2) { GSL_ERROR_VAL ("second dimension overflows matrix", GSL_EINVAL, view); } { TYPE(gsl_matrix) s = NULL_MATRIX; s.data = m->data + MULTIPLICITY * (i * m->tda + j); s.size1 = n1; s.size2 = n2; s.tda = m->tda; s.block = m->block; s.owner = 0; view.matrix = s; return view; } } gsl-1.16/matrix/gsl_matrix_complex_float.h0000664000252300025230000003270612171574312015724 00000000000000/* matrix/gsl_matrix_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_COMPLEX_FLOAT_H__ #define __GSL_MATRIX_COMPLEX_FLOAT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; float * data; gsl_block_complex_float * block; int owner; } gsl_matrix_complex_float ; typedef struct { gsl_matrix_complex_float matrix; } _gsl_matrix_complex_float_view; typedef _gsl_matrix_complex_float_view gsl_matrix_complex_float_view; typedef struct { gsl_matrix_complex_float matrix; } _gsl_matrix_complex_float_const_view; typedef const _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_view; /* Allocation */ gsl_matrix_complex_float * gsl_matrix_complex_float_alloc (const size_t n1, const size_t n2); gsl_matrix_complex_float * gsl_matrix_complex_float_calloc (const size_t n1, const size_t n2); gsl_matrix_complex_float * gsl_matrix_complex_float_alloc_from_block (gsl_block_complex_float * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_complex_float * gsl_matrix_complex_float_alloc_from_matrix (gsl_matrix_complex_float * b, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_complex_float * gsl_vector_complex_float_alloc_row_from_matrix (gsl_matrix_complex_float * m, const size_t i); gsl_vector_complex_float * gsl_vector_complex_float_alloc_col_from_matrix (gsl_matrix_complex_float * m, const size_t j); void gsl_matrix_complex_float_free (gsl_matrix_complex_float * m); /* Views */ _gsl_matrix_complex_float_view gsl_matrix_complex_float_submatrix (gsl_matrix_complex_float * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_float_view gsl_matrix_complex_float_row (gsl_matrix_complex_float * m, const size_t i); _gsl_vector_complex_float_view gsl_matrix_complex_float_column (gsl_matrix_complex_float * m, const size_t j); _gsl_vector_complex_float_view gsl_matrix_complex_float_diagonal (gsl_matrix_complex_float * m); _gsl_vector_complex_float_view gsl_matrix_complex_float_subdiagonal (gsl_matrix_complex_float * m, const size_t k); _gsl_vector_complex_float_view gsl_matrix_complex_float_superdiagonal (gsl_matrix_complex_float * m, const size_t k); _gsl_vector_complex_float_view gsl_matrix_complex_float_subrow (gsl_matrix_complex_float * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_float_view gsl_matrix_complex_float_subcolumn (gsl_matrix_complex_float * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_float_view gsl_matrix_complex_float_view_array (float * base, const size_t n1, const size_t n2); _gsl_matrix_complex_float_view gsl_matrix_complex_float_view_array_with_tda (float * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_float_view gsl_matrix_complex_float_view_vector (gsl_vector_complex_float * v, const size_t n1, const size_t n2); _gsl_matrix_complex_float_view gsl_matrix_complex_float_view_vector_with_tda (gsl_vector_complex_float * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_submatrix (const gsl_matrix_complex_float * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_row (const gsl_matrix_complex_float * m, const size_t i); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_column (const gsl_matrix_complex_float * m, const size_t j); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_diagonal (const gsl_matrix_complex_float * m); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_subdiagonal (const gsl_matrix_complex_float * m, const size_t k); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_superdiagonal (const gsl_matrix_complex_float * m, const size_t k); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_subrow (const gsl_matrix_complex_float * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_complex_float_const_view gsl_matrix_complex_float_const_subcolumn (const gsl_matrix_complex_float * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_view_array (const float * base, const size_t n1, const size_t n2); _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_view_array_with_tda (const float * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_view_vector (const gsl_vector_complex_float * v, const size_t n1, const size_t n2); _gsl_matrix_complex_float_const_view gsl_matrix_complex_float_const_view_vector_with_tda (const gsl_vector_complex_float * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_complex_float_set_zero (gsl_matrix_complex_float * m); void gsl_matrix_complex_float_set_identity (gsl_matrix_complex_float * m); void gsl_matrix_complex_float_set_all (gsl_matrix_complex_float * m, gsl_complex_float x); int gsl_matrix_complex_float_fread (FILE * stream, gsl_matrix_complex_float * m) ; int gsl_matrix_complex_float_fwrite (FILE * stream, const gsl_matrix_complex_float * m) ; int gsl_matrix_complex_float_fscanf (FILE * stream, gsl_matrix_complex_float * m); int gsl_matrix_complex_float_fprintf (FILE * stream, const gsl_matrix_complex_float * m, const char * format); int gsl_matrix_complex_float_memcpy(gsl_matrix_complex_float * dest, const gsl_matrix_complex_float * src); int gsl_matrix_complex_float_swap(gsl_matrix_complex_float * m1, gsl_matrix_complex_float * m2); int gsl_matrix_complex_float_swap_rows(gsl_matrix_complex_float * m, const size_t i, const size_t j); int gsl_matrix_complex_float_swap_columns(gsl_matrix_complex_float * m, const size_t i, const size_t j); int gsl_matrix_complex_float_swap_rowcol(gsl_matrix_complex_float * m, const size_t i, const size_t j); int gsl_matrix_complex_float_transpose (gsl_matrix_complex_float * m); int gsl_matrix_complex_float_transpose_memcpy (gsl_matrix_complex_float * dest, const gsl_matrix_complex_float * src); int gsl_matrix_complex_float_equal (const gsl_matrix_complex_float * a, const gsl_matrix_complex_float * b); int gsl_matrix_complex_float_isnull (const gsl_matrix_complex_float * m); int gsl_matrix_complex_float_ispos (const gsl_matrix_complex_float * m); int gsl_matrix_complex_float_isneg (const gsl_matrix_complex_float * m); int gsl_matrix_complex_float_isnonneg (const gsl_matrix_complex_float * m); int gsl_matrix_complex_float_add (gsl_matrix_complex_float * a, const gsl_matrix_complex_float * b); int gsl_matrix_complex_float_sub (gsl_matrix_complex_float * a, const gsl_matrix_complex_float * b); int gsl_matrix_complex_float_mul_elements (gsl_matrix_complex_float * a, const gsl_matrix_complex_float * b); int gsl_matrix_complex_float_div_elements (gsl_matrix_complex_float * a, const gsl_matrix_complex_float * b); int gsl_matrix_complex_float_scale (gsl_matrix_complex_float * a, const gsl_complex_float x); int gsl_matrix_complex_float_add_constant (gsl_matrix_complex_float * a, const gsl_complex_float x); int gsl_matrix_complex_float_add_diagonal (gsl_matrix_complex_float * a, const gsl_complex_float x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_complex_float_get_row(gsl_vector_complex_float * v, const gsl_matrix_complex_float * m, const size_t i); int gsl_matrix_complex_float_get_col(gsl_vector_complex_float * v, const gsl_matrix_complex_float * m, const size_t j); int gsl_matrix_complex_float_set_row(gsl_matrix_complex_float * m, const size_t i, const gsl_vector_complex_float * v); int gsl_matrix_complex_float_set_col(gsl_matrix_complex_float * m, const size_t j, const gsl_vector_complex_float * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL gsl_complex_float gsl_matrix_complex_float_get(const gsl_matrix_complex_float * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_complex_float_set(gsl_matrix_complex_float * m, const size_t i, const size_t j, const gsl_complex_float x); INLINE_DECL gsl_complex_float * gsl_matrix_complex_float_ptr(gsl_matrix_complex_float * m, const size_t i, const size_t j); INLINE_DECL const gsl_complex_float * gsl_matrix_complex_float_const_ptr(const gsl_matrix_complex_float * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN gsl_complex_float gsl_matrix_complex_float_get(const gsl_matrix_complex_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { gsl_complex_float zero = {{0,0}}; if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, zero) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, zero) ; } } #endif return *(gsl_complex_float *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN void gsl_matrix_complex_float_set(gsl_matrix_complex_float * m, const size_t i, const size_t j, const gsl_complex_float x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif *(gsl_complex_float *)(m->data + 2*(i * m->tda + j)) = x ; } INLINE_FUN gsl_complex_float * gsl_matrix_complex_float_ptr(gsl_matrix_complex_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (gsl_complex_float *)(m->data + 2*(i * m->tda + j)) ; } INLINE_FUN const gsl_complex_float * gsl_matrix_complex_float_const_ptr(const gsl_matrix_complex_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const gsl_complex_float *)(m->data + 2*(i * m->tda + j)) ; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_MATRIX_COMPLEX_FLOAT_H__ */ gsl-1.16/matrix/getset.c0000664000252300025230000000345112171574312012120 00000000000000#include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "getset_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/swap.c0000664000252300025230000000341512171574312011577 00000000000000#include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "swap_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/test.c0000664000252300025230000001401612171574312011603 00000000000000/* matrix/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #if (!GSL_RANGE_CHECK) && defined(HAVE_INLINE) #undef GSL_RANGE_CHECK #define GSL_RANGE_CHECK 1 #endif #include #include #include #include #include #include #include int status = 0; #ifndef DESC #define DESC "" #endif #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "test_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "test_source.c" #include "templates_off.h" #undef BASE_CHAR void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { size_t M = 53; size_t N = 107; gsl_ieee_env_setup (); test_func (M, N); test_float_func (M, N); test_long_double_func (M, N); test_ulong_func (M, N); test_long_func (M, N); test_uint_func (M, N); test_int_func (M, N); test_ushort_func (M, N); test_short_func (M, N); test_uchar_func (M, N); test_char_func (M, N); test_complex_func (M, N); test_complex_float_func (M, N); test_complex_long_double_func (M, N); test_ops (M, N); test_float_ops (M, N); test_long_double_ops (M, N); test_ulong_ops (M, N); test_long_ops (M, N); test_uint_ops (M, N); test_int_ops (M, N); test_ushort_ops (M, N); test_short_ops (M, N); test_uchar_ops (M, N); test_char_ops (M, N); /* Must use smaller dimensions to prevent approximation of floats in float_mul_elements test*/ { const size_t P = 8; const size_t Q = 12; test_complex_ops (P, Q); test_complex_float_ops (P, Q); test_complex_long_double_ops (P, Q); } test_text (M, N); test_float_text (M, N); #if HAVE_PRINTF_LONGDOUBLE test_long_double_text (M, N); #endif test_ulong_text (M, N); test_long_text (M, N); test_uint_text (M, N); test_int_text (M, N); test_ushort_text (M, N); test_short_text (M, N); test_uchar_text (M, N); test_char_text (M, N); test_complex_text (M, N); test_complex_float_text (M, N); #if HAVE_PRINTF_LONGDOUBLE test_complex_long_double_text (M, N); #endif test_binary (M, N); test_float_binary (M, N); test_long_double_binary (M, N); test_ulong_binary (M, N); test_long_binary (M, N); test_uint_binary (M, N); test_int_binary (M, N); test_ushort_binary (M, N); test_short_binary (M, N); test_uchar_binary (M, N); test_char_binary (M, N); test_complex_binary (M, N); test_complex_float_binary (M, N); test_complex_long_double_binary (M, N); test_binary_noncontiguous (M, N); test_float_binary_noncontiguous (M, N); test_long_double_binary_noncontiguous (M, N); test_ulong_binary_noncontiguous (M, N); test_long_binary_noncontiguous (M, N); test_uint_binary_noncontiguous (M, N); test_int_binary_noncontiguous (M, N); test_ushort_binary_noncontiguous (M, N); test_short_binary_noncontiguous (M, N); test_uchar_binary_noncontiguous (M, N); test_char_binary_noncontiguous (M, N); test_complex_binary_noncontiguous (M, N); test_complex_float_binary_noncontiguous (M, N); test_complex_long_double_binary_noncontiguous (M, N); #if GSL_RANGE_CHECK gsl_set_error_handler (&my_error_handler); test_trap (M, N); test_float_trap (M, N); test_long_double_trap (M, N); test_ulong_trap (M, N); test_long_trap (M, N); test_uint_trap (M, N); test_int_trap (M, N); test_ushort_trap (M, N); test_short_trap (M, N); test_uchar_trap (M, N); test_char_trap (M, N); test_complex_trap (M, N); test_complex_float_trap (M, N); test_complex_long_double_trap (M, N); #endif exit (gsl_test_summary ()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); status = 1; } gsl-1.16/matrix/init.c0000664000252300025230000000336112171574312011570 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "init_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/prop.c0000664000252300025230000000336112171574312011605 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "prop_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/Makefile.in0000664000252300025230000011100412172253755012526 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) test_static$(EXEEXT) subdir = matrix DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmatrix_la_LIBADD = am_libgslmatrix_la_OBJECTS = init.lo matrix.lo file.lo rowcol.lo \ swap.lo copy.lo minmax.lo prop.lo oper.lo getset.lo view.lo \ submatrix.lo libgslmatrix_la_OBJECTS = $(am_libgslmatrix_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmatrix.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la am_test_static_OBJECTS = test_static.$(OBJEXT) test_static_OBJECTS = $(am_test_static_OBJECTS) test_static_DEPENDENCIES = libgslmatrix.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmatrix_la_SOURCES) $(test_SOURCES) \ $(test_static_SOURCES) DIST_SOURCES = $(libgslmatrix_la_SOURCES) $(test_SOURCES) \ $(test_static_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmatrix.la pkginclude_HEADERS = gsl_matrix.h gsl_matrix_char.h gsl_matrix_complex_double.h gsl_matrix_complex_float.h gsl_matrix_complex_long_double.h gsl_matrix_double.h gsl_matrix_float.h gsl_matrix_int.h gsl_matrix_long.h gsl_matrix_long_double.h gsl_matrix_short.h gsl_matrix_uchar.h gsl_matrix_uint.h gsl_matrix_ulong.h gsl_matrix_ushort.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_static_LDADD = libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c test_static_SOURCES = test_static.c CLEANFILES = test.txt test.dat noinst_HEADERS = init_source.c file_source.c rowcol_source.c swap_source.c copy_source.c test_complex_source.c test_source.c minmax_source.c prop_source.c oper_source.c getset_source.c view_source.c submatrix_source.c oper_complex_source.c libgslmatrix_la_SOURCES = init.c matrix.c file.c rowcol.c swap.c copy.c minmax.c prop.c oper.c getset.c view.c submatrix.c view.h all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu matrix/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu matrix/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmatrix.la: $(libgslmatrix_la_OBJECTS) $(libgslmatrix_la_DEPENDENCIES) $(EXTRA_libgslmatrix_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmatrix_la_OBJECTS) $(libgslmatrix_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) test_static$(EXEEXT): $(test_static_OBJECTS) $(test_static_DEPENDENCIES) $(EXTRA_test_static_DEPENDENCIES) @rm -f test_static$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_static_OBJECTS) $(test_static_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/copy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/getset.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/matrix.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/minmax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/oper.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/prop.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rowcol.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/submatrix.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/swap.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_static.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/view.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) test_static.log: test_static$(EXEEXT) @p='test_static$(EXEEXT)'; \ b='test_static'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/matrix/gsl_matrix_char.h0000664000252300025230000002744212171574312014006 00000000000000/* matrix/gsl_matrix_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_CHAR_H__ #define __GSL_MATRIX_CHAR_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; char * data; gsl_block_char * block; int owner; } gsl_matrix_char; typedef struct { gsl_matrix_char matrix; } _gsl_matrix_char_view; typedef _gsl_matrix_char_view gsl_matrix_char_view; typedef struct { gsl_matrix_char matrix; } _gsl_matrix_char_const_view; typedef const _gsl_matrix_char_const_view gsl_matrix_char_const_view; /* Allocation */ gsl_matrix_char * gsl_matrix_char_alloc (const size_t n1, const size_t n2); gsl_matrix_char * gsl_matrix_char_calloc (const size_t n1, const size_t n2); gsl_matrix_char * gsl_matrix_char_alloc_from_block (gsl_block_char * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_char * gsl_matrix_char_alloc_from_matrix (gsl_matrix_char * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_char * gsl_vector_char_alloc_row_from_matrix (gsl_matrix_char * m, const size_t i); gsl_vector_char * gsl_vector_char_alloc_col_from_matrix (gsl_matrix_char * m, const size_t j); void gsl_matrix_char_free (gsl_matrix_char * m); /* Views */ _gsl_matrix_char_view gsl_matrix_char_submatrix (gsl_matrix_char * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_char_view gsl_matrix_char_row (gsl_matrix_char * m, const size_t i); _gsl_vector_char_view gsl_matrix_char_column (gsl_matrix_char * m, const size_t j); _gsl_vector_char_view gsl_matrix_char_diagonal (gsl_matrix_char * m); _gsl_vector_char_view gsl_matrix_char_subdiagonal (gsl_matrix_char * m, const size_t k); _gsl_vector_char_view gsl_matrix_char_superdiagonal (gsl_matrix_char * m, const size_t k); _gsl_vector_char_view gsl_matrix_char_subrow (gsl_matrix_char * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_char_view gsl_matrix_char_subcolumn (gsl_matrix_char * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_char_view gsl_matrix_char_view_array (char * base, const size_t n1, const size_t n2); _gsl_matrix_char_view gsl_matrix_char_view_array_with_tda (char * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_char_view gsl_matrix_char_view_vector (gsl_vector_char * v, const size_t n1, const size_t n2); _gsl_matrix_char_view gsl_matrix_char_view_vector_with_tda (gsl_vector_char * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_char_const_view gsl_matrix_char_const_submatrix (const gsl_matrix_char * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_char_const_view gsl_matrix_char_const_row (const gsl_matrix_char * m, const size_t i); _gsl_vector_char_const_view gsl_matrix_char_const_column (const gsl_matrix_char * m, const size_t j); _gsl_vector_char_const_view gsl_matrix_char_const_diagonal (const gsl_matrix_char * m); _gsl_vector_char_const_view gsl_matrix_char_const_subdiagonal (const gsl_matrix_char * m, const size_t k); _gsl_vector_char_const_view gsl_matrix_char_const_superdiagonal (const gsl_matrix_char * m, const size_t k); _gsl_vector_char_const_view gsl_matrix_char_const_subrow (const gsl_matrix_char * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_char_const_view gsl_matrix_char_const_subcolumn (const gsl_matrix_char * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_char_const_view gsl_matrix_char_const_view_array (const char * base, const size_t n1, const size_t n2); _gsl_matrix_char_const_view gsl_matrix_char_const_view_array_with_tda (const char * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_char_const_view gsl_matrix_char_const_view_vector (const gsl_vector_char * v, const size_t n1, const size_t n2); _gsl_matrix_char_const_view gsl_matrix_char_const_view_vector_with_tda (const gsl_vector_char * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_char_set_zero (gsl_matrix_char * m); void gsl_matrix_char_set_identity (gsl_matrix_char * m); void gsl_matrix_char_set_all (gsl_matrix_char * m, char x); int gsl_matrix_char_fread (FILE * stream, gsl_matrix_char * m) ; int gsl_matrix_char_fwrite (FILE * stream, const gsl_matrix_char * m) ; int gsl_matrix_char_fscanf (FILE * stream, gsl_matrix_char * m); int gsl_matrix_char_fprintf (FILE * stream, const gsl_matrix_char * m, const char * format); int gsl_matrix_char_memcpy(gsl_matrix_char * dest, const gsl_matrix_char * src); int gsl_matrix_char_swap(gsl_matrix_char * m1, gsl_matrix_char * m2); int gsl_matrix_char_swap_rows(gsl_matrix_char * m, const size_t i, const size_t j); int gsl_matrix_char_swap_columns(gsl_matrix_char * m, const size_t i, const size_t j); int gsl_matrix_char_swap_rowcol(gsl_matrix_char * m, const size_t i, const size_t j); int gsl_matrix_char_transpose (gsl_matrix_char * m); int gsl_matrix_char_transpose_memcpy (gsl_matrix_char * dest, const gsl_matrix_char * src); char gsl_matrix_char_max (const gsl_matrix_char * m); char gsl_matrix_char_min (const gsl_matrix_char * m); void gsl_matrix_char_minmax (const gsl_matrix_char * m, char * min_out, char * max_out); void gsl_matrix_char_max_index (const gsl_matrix_char * m, size_t * imax, size_t *jmax); void gsl_matrix_char_min_index (const gsl_matrix_char * m, size_t * imin, size_t *jmin); void gsl_matrix_char_minmax_index (const gsl_matrix_char * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_char_equal (const gsl_matrix_char * a, const gsl_matrix_char * b); int gsl_matrix_char_isnull (const gsl_matrix_char * m); int gsl_matrix_char_ispos (const gsl_matrix_char * m); int gsl_matrix_char_isneg (const gsl_matrix_char * m); int gsl_matrix_char_isnonneg (const gsl_matrix_char * m); int gsl_matrix_char_add (gsl_matrix_char * a, const gsl_matrix_char * b); int gsl_matrix_char_sub (gsl_matrix_char * a, const gsl_matrix_char * b); int gsl_matrix_char_mul_elements (gsl_matrix_char * a, const gsl_matrix_char * b); int gsl_matrix_char_div_elements (gsl_matrix_char * a, const gsl_matrix_char * b); int gsl_matrix_char_scale (gsl_matrix_char * a, const double x); int gsl_matrix_char_add_constant (gsl_matrix_char * a, const double x); int gsl_matrix_char_add_diagonal (gsl_matrix_char * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_char_get_row(gsl_vector_char * v, const gsl_matrix_char * m, const size_t i); int gsl_matrix_char_get_col(gsl_vector_char * v, const gsl_matrix_char * m, const size_t j); int gsl_matrix_char_set_row(gsl_matrix_char * m, const size_t i, const gsl_vector_char * v); int gsl_matrix_char_set_col(gsl_matrix_char * m, const size_t j, const gsl_vector_char * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL char gsl_matrix_char_get(const gsl_matrix_char * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_char_set(gsl_matrix_char * m, const size_t i, const size_t j, const char x); INLINE_DECL char * gsl_matrix_char_ptr(gsl_matrix_char * m, const size_t i, const size_t j); INLINE_DECL const char * gsl_matrix_char_const_ptr(const gsl_matrix_char * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN char gsl_matrix_char_get(const gsl_matrix_char * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_char_set(gsl_matrix_char * m, const size_t i, const size_t j, const char x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN char * gsl_matrix_char_ptr(gsl_matrix_char * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (char *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const char * gsl_matrix_char_const_ptr(const gsl_matrix_char * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const char *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_CHAR_H__ */ gsl-1.16/matrix/ChangeLog0000664000252300025230000001707712171574312012244 000000000000002011-10-16 Rhys Ulerich * file_source.c: applied patch provided by Matthias Sitte which repairs failing binary_noncontiguous tests for complex-valued matrices 2011-10-16 Rhys Ulerich * test_source.c: added binary_noncontiguous test template * test_complex_source.c: added binary_noncontiguous test template * test.c: now running binary_noncontiguous 2010-04-07 Brian Gough * prop_source.c (FUNCTION): added a function to test if two matrices are equal 2009-07-09 Brian Gough * init_source.c (FUNCTION): handle NULL argument in free 2008-07-03 Brian Gough * matrix.c: compile all the inline matrix functions from header * gsl_matrix.h and all related files: use new inline declarations * Makefile.am (INCLUDES): use top_srcdir, remove top_builddir (noinst_HEADERS): remove matrix_source.c 2007-08-21 Brian Gough * prop_source.c (FUNCTION): added gsl_matrix_isnonneg 2007-02-17 Brian Gough * test_source.c (FUNCTION): avoid running negative value tests on char, because it can be unsigned. 2007-01-26 Brian Gough * minmax_source.c: added support for NaNs 2006-10-31 Brian Gough * prop_source.c (FUNCTION): added functions gsl_matrix_ispos, gsl_matrix_isneg 2003-01-01 Brian Gough * gsl_matrix_complex_float.h (gsl_matrix_complex_float_get): removed const from zero * matrix_source.c (FUNCTION): removed const from zero 2002-11-24 Brian Gough * Makefile.am: added libgslsys.a to link, to provide gsl_hypot for complex division Mon Jun 17 22:31:33 2002 Brian Gough * test_complex_source.c (FUNCTION): fixed non-constant initializer Wed May 1 21:33:44 2002 Brian Gough * gsl_matrix_complex_float.h (gsl_matrix_complex_float_get): moved constant zero inside GSL_RANGE_CHECK_OFF Sun Mar 24 20:28:48 2002 Brian Gough * oper_complex_source.c: complex matrix operations (from Toby White) Mon Feb 18 20:33:58 2002 Brian Gough * copy_source.c (gsl_matrix_swap): fixed prototype by removing const from second arg. Sun Jan 27 22:29:37 2002 Brian Gough * test.c: ensure that range check is working when running the tests Fri Sep 14 18:56:34 2001 Brian Gough * view_source.c: fixed cast for array type * view.c: added #includes for missing const qualified types * view_source.c: error for non-unit strides Fri Aug 3 14:11:23 2001 Brian Gough * added gsl_matrix_ptr and gsl_matrix_const_ptr functions Mon Jul 16 21:28:05 2001 Brian Gough * rowcol_source.c (FUNCTION): initialized view to NULL Fri Jul 13 21:29:27 2001 Brian Gough * changed views to be structs and used casts to initialize them Mon Jul 2 12:35:16 2001 Brian Gough * view.h: provide macros for initializing null vectors and views Sun Jul 1 22:44:51 2001 Brian Gough * introduction of new-style vector/matrix views Fri Jun 1 17:04:52 2001 Brian Gough * getset_source.c: made these routines work with the current matrix struct, previously they would give incorrect results Mon May 14 22:43:39 2001 Brian Gough * matrix_source.c (FUNCTION): removed unnecessary inline from static function definition Tue May 1 23:09:25 2001 Brian Gough * gsl_matrix_float.h (struct ): MS VC++ requires that the struct/typedef be made with a single definition Mon Mar 26 20:33:45 2001 Brian Gough * view_source.c: split view functions out into a separate file Sat Sep 9 16:47:16 2000 Brian Gough * added an owner field for indicating whether the underlying memory is owned by the vector. Changed the meaning of the block field to always be the address of the underlying block, even for subviews (previously the block field was set to NULL in this case). Thu Aug 17 19:46:22 2000 Brian Gough * swap_source.c (FUNCTION): added function gsl_matrix_transpose_memcpy for transposing rectangular matrices Sun Jul 16 10:40:15 2000 Brian Gough * init_source.c (FUNCTION): added gsl_matrix_view function for creating a matrix view of an ordinary C array Sat Jul 15 21:44:22 2000 Brian Gough * changed GSL_EDOM to GSL_EINVAL for invalid matrix size arguments Sat Jun 17 15:38:30 2000 Brian Gough * fixed up missing MULTIPLICITY factors in various functions Sun May 28 12:25:02 2000 Brian Gough * test_complex_source.c (FUNCTION): use binary mode "b" when reading and writing binary files * test_source.c (FUNCTION): use binary mode "b" when reading and writing binary files Thu May 4 20:58:59 2000 Brian Gough * oper.c: added simple arithmetic operations (+,-,*,/,scale,+const) Wed Apr 26 15:04:22 2000 Brian Gough * prop_source.c (FUNCTION): added function gsl_matrix_isnull Tue Apr 18 12:51:49 2000 Brian Gough * minmax_source.c (FUNCTION): fixed bug in minmax where coordinates would be incorrect for min or max in the first element * test_source.c (FUNCTION): added tests for max/min functions Thu Apr 13 18:39:27 2000 Brian Gough * minmax.c: added matrix max/min functions Sat Mar 25 20:29:41 2000 Brian Gough * swap_source.c (FUNCTION): renamed swap_cols to swap_columns, and renamed swap_rowcol to swap_row_column Tue Mar 21 21:15:22 2000 Brian Gough * matrix_source.c (FUNCTION): added set_all and set_zero functions Sat Mar 11 11:19:05 2000 Brian Gough * init_source.c (FUNCTION): added gsl_matrix_identity to set a matrix to the identity, and gsl_matrix_zero for zeroing a matrix * gsl_matrix.h: renamed struct element dim2 to tda (trailing dimension) following blas conventions for row-major matrices Thu Dec 2 21:17:16 1999 Brian Gough * rowcol_source.c (FUNCTION): added gsl_matrix_view_from_vector (Thanks to Fabrice Rossi) Sun Oct 31 20:01:39 1999 Brian Gough * copy.c copy_source.c: added gsl_matrix_copy function Tue Oct 19 14:13:35 1999 Brian Gough * added gsl_matrix_swap_row/col to exchange rows and columns Fri Oct 1 15:48:07 1999 Brian Gough * the matrix struct now supports a separate 'trailing dimension' to allow handling of submatrices * now uses separate block directory for memory management Mon Mar 1 20:05:52 1999 Brian Gough * rowcol_source.c: fix rowcol to use strides 1998-11-09 * test_source.c, test_complex_source.c: use macros to determine if we should run tests with long double printf/scanf, since these aren't supported on all platforms Mon Apr 6 15:06:38 1998 Brian Gough * make range checking the default, you have to define GSL_RANGE_CHECK_OFF to turn it off gsl-1.16/matrix/test_complex_source.c0000664000252300025230000005034312171574312014715 00000000000000/* matrix/test_complex_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (const size_t M, const size_t N); void FUNCTION (test, ops) (const size_t P, const size_t Q); void FUNCTION (test, trap) (const size_t M, const size_t N); void FUNCTION (test, text) (const size_t M, const size_t N); void FUNCTION (test, binary) (const size_t M, const size_t N); void FUNCTION (test, binary_noncontiguous) (const size_t M, const size_t N); #define TEST(expr,desc) gsl_test((expr), NAME(gsl_matrix) desc " M=%d, N=%d", M, N) void FUNCTION (test, func) (const size_t M, const size_t N) { size_t i, j; int k = 0; TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); gsl_test (m->data == 0, NAME (gsl_matrix) "_alloc returns valid pointer"); gsl_test (m->size1 != M, NAME (gsl_matrix) "_alloc returns valid size1"); gsl_test (m->size2 != N, NAME (gsl_matrix) "_alloc returns valid size2"); gsl_test (m->tda != N, NAME (gsl_matrix) "_alloc returns valid tda"); for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) k; GSL_IMAG (z) = (ATOMIC) (k + 1000); FUNCTION (gsl_matrix, set) (m, i, j, z); } } status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (m->data[2 * (i * N + j)] != k || m->data[2 * (i * N + j) + 1] != k + 1000) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_set writes into array"); status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = FUNCTION (gsl_matrix, get) (m, i, j); k++; if (GSL_REAL (z) != k || GSL_IMAG (z) != k + 1000) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_get reads from array"); FUNCTION (gsl_matrix, free) (m); /* free whatever is in m */ m = FUNCTION (gsl_matrix, calloc) (M, N); { int status = (FUNCTION(gsl_matrix,isnull)(m) != 1); TEST (status, "_isnull" DESC " on calloc matrix"); status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on calloc matrix"); status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on calloc matrix"); } for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 1); TEST (status, "_isnull" DESC " on null matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on null matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on null matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) (k % 10); GSL_IMAG (z) = (ATOMIC) ((k + 5) % 10); FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on non-negative matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on non-negative matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on non-negative matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) ((k % 10) - 5); GSL_IMAG (z) = (ATOMIC) (((k + 5) % 10) - 5); FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on mixed matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on mixed matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on mixed matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = -(ATOMIC) (k % 10); GSL_IMAG (z) = -(ATOMIC) ((k + 5) % 10); FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on non-positive matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on non-positive matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on non-positive matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) (k % 10 + 1); GSL_IMAG (z) = (ATOMIC) ((k + 5) % 10 + 1); FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on positive matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 1); TEST (status, "_ispos" DESC " on positive matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on positive matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = -(ATOMIC) (k % 10 + 1); GSL_IMAG (z) = -(ATOMIC) ((k + 5) % 10 + 1); FUNCTION (gsl_matrix, set) (m, i, j, z); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on negative matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on negative matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 1); TEST (status, "_isneg" DESC " on negative matrix") ; } FUNCTION (gsl_matrix, free) (m); /* free whatever is in m */ } #if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE) void FUNCTION (test, text) (const size_t M, const size_t N) { TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); size_t i, j; int k = 0; { FILE *f = fopen ("test.txt", "w"); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z; k++; GSL_REAL (z) = (ATOMIC) k; GSL_IMAG (z) = (ATOMIC) (k + 1000); FUNCTION (gsl_matrix, set) (m, i, j, z); } } FUNCTION (gsl_matrix, fprintf) (f, m, OUT_FORMAT); fclose (f); } { FILE *f = fopen ("test.txt", "r"); TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N); status = 0; FUNCTION (gsl_matrix, fscanf) (f, mm); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (mm->data[2 * (i * N + j)] != k || mm->data[2 * (i * N + j) + 1] != k + 1000) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_fprintf and fscanf"); fclose (f); FUNCTION (gsl_matrix, free) (mm); } FUNCTION (gsl_matrix, free) (m); } #endif void FUNCTION (test, binary) (const size_t M, const size_t N) { TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); size_t i, j; int k = 0; { FILE *f = fopen ("test.dat", "wb"); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) k; GSL_IMAG (z) = (ATOMIC) (k + 1000); FUNCTION (gsl_matrix, set) (m, i, j, z); } } FUNCTION (gsl_matrix, fwrite) (f, m); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N); status = 0; FUNCTION (gsl_matrix, fread) (f, mm); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (mm->data[2 * (i * N + j)] != k || mm->data[2 * (i * N + j) + 1] != k + 1000) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_write and read"); fclose (f); FUNCTION (gsl_matrix, free) (mm); } FUNCTION (gsl_matrix, free) (m); } void FUNCTION (test, binary_noncontiguous) (const size_t M, const size_t N) { TYPE (gsl_matrix) * l = FUNCTION (gsl_matrix, alloc) (M+1, N+1); VIEW (gsl_matrix, view) m = FUNCTION (gsl_matrix, submatrix) (l, 0, 0, M, N); size_t i, j; int k = 0; { FILE *f = fopen ("test.dat", "wb"); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = ZERO; k++; GSL_REAL (z) = (ATOMIC) k; GSL_IMAG (z) = (ATOMIC) (k + 1000); FUNCTION (gsl_matrix, set) (&m.matrix, i, j, z); } } FUNCTION (gsl_matrix, fwrite) (f, &m.matrix); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); TYPE (gsl_matrix) * ll = FUNCTION (gsl_matrix, alloc) (M+1, N+1); VIEW (gsl_matrix, view) mm = FUNCTION (gsl_matrix, submatrix) (ll, 0, 0, M, N); status = 0; FUNCTION (gsl_matrix, fread) (f, &mm.matrix); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE z = FUNCTION (gsl_matrix, get) (&mm.matrix, i, j); k++; if (GSL_REAL (z) != k || GSL_IMAG (z) != k + 1000) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_write and read (noncontiguous)"); fclose (f); FUNCTION (gsl_matrix, free) (ll); } FUNCTION (gsl_matrix, free) (l); } void FUNCTION (test, trap) (const size_t M, const size_t N) { TYPE (gsl_matrix) * mc = FUNCTION (gsl_matrix, alloc) (M, N); size_t i = 0, j = 0; BASE z = { {(ATOMIC) 1.2, (ATOMIC) 3.4} }; BASE z1; status = 0; FUNCTION (gsl_matrix, set) (mc, i - 1, j, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index below lower bound"); status = 0; FUNCTION (gsl_matrix, set) (mc, i, j - 1, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index below lower bound"); status = 0; FUNCTION (gsl_matrix, set) (mc, M + 1, 0, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index above upper bound"); status = 0; FUNCTION (gsl_matrix, set) (mc, 0, N + 1, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index above upper bound"); status = 0; FUNCTION (gsl_matrix, set) (mc, M, 0, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index at upper bound"); status = 0; FUNCTION (gsl_matrix, set) (mc, 0, N, z); gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index at upper bound"); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, i - 1, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index below lower bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 1st index below l.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 1st index below l.b."); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, 0, j - 1); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index below lower bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 2nd index below l.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 2nd index below l.b."); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, M + 1, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index above upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 1st index above u.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 1st index above u.b."); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, 0, N + 1); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index above upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 2nd index above u.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 2nd index above u.b."); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, M, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index at upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 1st index at u.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 1st index at u.b."); status = 0; z1 = FUNCTION (gsl_matrix, get) (mc, 0, N); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index at upper bound"); gsl_test (GSL_REAL (z1) != 0, NAME (gsl_matrix) "_get, zero real for 2nd index at u.b."); gsl_test (GSL_IMAG (z1) != 0, NAME (gsl_matrix) "_get, zero imag for 2nd index at u.b."); FUNCTION (gsl_matrix, free) (mc); } void FUNCTION (test, ops) (const size_t P, const size_t Q) { TYPE (gsl_matrix) * a = FUNCTION (gsl_matrix, alloc) (P, Q); TYPE (gsl_matrix) * b = FUNCTION (gsl_matrix, alloc) (P, Q); TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (P, Q); size_t i, j; size_t k = 0; size_t status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { BASE z, z1; GSL_REAL (z) = (ATOMIC) k; GSL_IMAG (z) = (ATOMIC) (k + 10); GSL_REAL (z1) = (ATOMIC) (k + 5); GSL_IMAG (z1) = (ATOMIC) (k + 20); FUNCTION (gsl_matrix, set) (a, i, j, z); FUNCTION (gsl_matrix, set) (b, i, j, z1); k++; } } { { int status = (FUNCTION(gsl_matrix,equal) (a,b) != 0); gsl_test (status, NAME (gsl_matrix) "_equal matrix unequal"); } FUNCTION (gsl_matrix, memcpy) (m, a); { int status = (FUNCTION(gsl_matrix,equal) (a,m) != 1); gsl_test (status, NAME (gsl_matrix) "_equal matrix equal"); } FUNCTION (gsl_matrix, add) (m, b); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (GSL_REAL (z) != (ATOMIC) (2 * k + 5) || GSL_IMAG (z) != (ATOMIC) (2 * k + 30)) status = 1; k++; } } gsl_test (status, NAME (gsl_matrix) "_add matrix addition"); } { FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, sub) (m, b); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (GSL_REAL (z) != (ATOMIC) (-5) || GSL_IMAG (z) != (ATOMIC) (-10)) status = 1; k++; } } gsl_test (status, NAME (gsl_matrix) "_sub matrix subtraction"); } { FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, mul_elements) (m, b); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { ATOMIC real = -(ATOMIC) (25 * k + 200); ATOMIC imag = (ATOMIC) (2 * k * k + 35 * k + 50); BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (fabs (GSL_REAL (z) - real) > 100 * BASE_EPSILON || fabs (GSL_IMAG (z) - imag) > 100 * BASE_EPSILON) { status = 1; #ifdef DEBUG printf ("%d\t%d\n", i, j); printf (OUT_FORMAT "\n", GSL_REAL (z) + (ATOMIC) (25 * (ATOMIC) k + 200)); printf (OUT_FORMAT "\n", GSL_IMAG (z) - (ATOMIC) (2 * k * k + 35 * k + 50)); printf ("\n"); #endif } k++; } } gsl_test (status, NAME (gsl_matrix) "_mul_elements multiplication"); } { FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, div_elements) (m, b); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { ATOMIC denom = (2 * k * k + 50 * k + 425); ATOMIC real = (ATOMIC) (2 * k * k + 35 * k + 200) / denom; ATOMIC imag = ((ATOMIC) (50) - (ATOMIC) (5 * k)) / denom; BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (fabs (GSL_REAL (z) - real) > 100 * BASE_EPSILON || fabs (GSL_IMAG (z) - imag) > 100 * BASE_EPSILON) { #ifdef DEBUG printf (OUT_FORMAT "\t", GSL_REAL (z) - (ATOMIC) (2 * k * k + 35 * k + 200) / denom); printf (OUT_FORMAT "\n", GSL_IMAG (z) - ((ATOMIC) (50) - (ATOMIC) (5 * k)) / denom); #endif status = 1; } k++; } } gsl_test (status, NAME (gsl_matrix) "_div_elements division"); } { BASE s; GSL_SET_COMPLEX(&s, 2.0, 3.0); FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, scale) (m, s); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { ATOMIC real = (ATOMIC) (-(ATOMIC)k - 30); ATOMIC imag = (ATOMIC) (5 * (ATOMIC)k + 20); BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (GSL_REAL (z) != real || GSL_IMAG (z) != imag) { status = 1; } k++; } } gsl_test (status, NAME (gsl_matrix) "_scale"); } { BASE s; GSL_SET_COMPLEX(&s, 2.0, 3.0); FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, add_constant) (m, s); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { ATOMIC real = (ATOMIC) ((ATOMIC)k + 2); ATOMIC imag = (ATOMIC) ((ATOMIC)k + 10 + 3); BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (GSL_REAL (z) != real || GSL_IMAG (z) != imag) { status = 1; } k++; } } gsl_test (status, NAME (gsl_matrix) "_add_constant"); } { BASE s; GSL_SET_COMPLEX(&s, 2.0, 3.0); FUNCTION (gsl_matrix, memcpy) (m, a); FUNCTION (gsl_matrix, add_diagonal) (m, s); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { ATOMIC real = (ATOMIC) ((ATOMIC)k + ((i==j) ? 2 : 0)); ATOMIC imag = (ATOMIC) ((ATOMIC)k + 10 +((i==j) ? 3 : 0)); BASE z = FUNCTION (gsl_matrix, get) (m, i, j); if (GSL_REAL (z) != real || GSL_IMAG (z) != imag) { status = 1; } k++; } } gsl_test (status, NAME (gsl_matrix) "_add_diagonal"); } { FUNCTION (gsl_matrix, swap) (a, b); k = 0; status = 0; for (i = 0; i < P; i++) { for (j = 0; j < Q; j++) { BASE x = FUNCTION (gsl_matrix, get) (a, i, j); BASE y = FUNCTION (gsl_matrix, get) (b, i, j); if (GSL_REAL (x) != (ATOMIC) (k + 5) || GSL_IMAG (x) != (ATOMIC) (k + 20) || GSL_REAL (y) != (ATOMIC) (k) || GSL_IMAG (y) != (ATOMIC) (k + 10)) { status = 1; } k++; } } gsl_test (status, NAME (gsl_matrix) "_swap"); } FUNCTION (gsl_matrix, free) (a); FUNCTION (gsl_matrix, free) (b); FUNCTION (gsl_matrix, free) (m); } gsl-1.16/matrix/gsl_matrix.h0000664000252300025230000000112612171574312013000 00000000000000#ifndef __GSL_MATRIX_H__ #define __GSL_MATRIX_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_MATRIX_H__ */ gsl-1.16/matrix/gsl_matrix_ulong.h0000664000252300025230000003023712171574312014211 00000000000000/* matrix/gsl_matrix_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_ULONG_H__ #define __GSL_MATRIX_ULONG_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; unsigned long * data; gsl_block_ulong * block; int owner; } gsl_matrix_ulong; typedef struct { gsl_matrix_ulong matrix; } _gsl_matrix_ulong_view; typedef _gsl_matrix_ulong_view gsl_matrix_ulong_view; typedef struct { gsl_matrix_ulong matrix; } _gsl_matrix_ulong_const_view; typedef const _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_view; /* Allocation */ gsl_matrix_ulong * gsl_matrix_ulong_alloc (const size_t n1, const size_t n2); gsl_matrix_ulong * gsl_matrix_ulong_calloc (const size_t n1, const size_t n2); gsl_matrix_ulong * gsl_matrix_ulong_alloc_from_block (gsl_block_ulong * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_ulong * gsl_matrix_ulong_alloc_from_matrix (gsl_matrix_ulong * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_ulong * gsl_vector_ulong_alloc_row_from_matrix (gsl_matrix_ulong * m, const size_t i); gsl_vector_ulong * gsl_vector_ulong_alloc_col_from_matrix (gsl_matrix_ulong * m, const size_t j); void gsl_matrix_ulong_free (gsl_matrix_ulong * m); /* Views */ _gsl_matrix_ulong_view gsl_matrix_ulong_submatrix (gsl_matrix_ulong * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_ulong_view gsl_matrix_ulong_row (gsl_matrix_ulong * m, const size_t i); _gsl_vector_ulong_view gsl_matrix_ulong_column (gsl_matrix_ulong * m, const size_t j); _gsl_vector_ulong_view gsl_matrix_ulong_diagonal (gsl_matrix_ulong * m); _gsl_vector_ulong_view gsl_matrix_ulong_subdiagonal (gsl_matrix_ulong * m, const size_t k); _gsl_vector_ulong_view gsl_matrix_ulong_superdiagonal (gsl_matrix_ulong * m, const size_t k); _gsl_vector_ulong_view gsl_matrix_ulong_subrow (gsl_matrix_ulong * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_ulong_view gsl_matrix_ulong_subcolumn (gsl_matrix_ulong * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_ulong_view gsl_matrix_ulong_view_array (unsigned long * base, const size_t n1, const size_t n2); _gsl_matrix_ulong_view gsl_matrix_ulong_view_array_with_tda (unsigned long * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ulong_view gsl_matrix_ulong_view_vector (gsl_vector_ulong * v, const size_t n1, const size_t n2); _gsl_matrix_ulong_view gsl_matrix_ulong_view_vector_with_tda (gsl_vector_ulong * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_submatrix (const gsl_matrix_ulong * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_row (const gsl_matrix_ulong * m, const size_t i); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_column (const gsl_matrix_ulong * m, const size_t j); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_diagonal (const gsl_matrix_ulong * m); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_subdiagonal (const gsl_matrix_ulong * m, const size_t k); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_superdiagonal (const gsl_matrix_ulong * m, const size_t k); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_subrow (const gsl_matrix_ulong * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_ulong_const_view gsl_matrix_ulong_const_subcolumn (const gsl_matrix_ulong * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_view_array (const unsigned long * base, const size_t n1, const size_t n2); _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_view_array_with_tda (const unsigned long * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_view_vector (const gsl_vector_ulong * v, const size_t n1, const size_t n2); _gsl_matrix_ulong_const_view gsl_matrix_ulong_const_view_vector_with_tda (const gsl_vector_ulong * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_ulong_set_zero (gsl_matrix_ulong * m); void gsl_matrix_ulong_set_identity (gsl_matrix_ulong * m); void gsl_matrix_ulong_set_all (gsl_matrix_ulong * m, unsigned long x); int gsl_matrix_ulong_fread (FILE * stream, gsl_matrix_ulong * m) ; int gsl_matrix_ulong_fwrite (FILE * stream, const gsl_matrix_ulong * m) ; int gsl_matrix_ulong_fscanf (FILE * stream, gsl_matrix_ulong * m); int gsl_matrix_ulong_fprintf (FILE * stream, const gsl_matrix_ulong * m, const char * format); int gsl_matrix_ulong_memcpy(gsl_matrix_ulong * dest, const gsl_matrix_ulong * src); int gsl_matrix_ulong_swap(gsl_matrix_ulong * m1, gsl_matrix_ulong * m2); int gsl_matrix_ulong_swap_rows(gsl_matrix_ulong * m, const size_t i, const size_t j); int gsl_matrix_ulong_swap_columns(gsl_matrix_ulong * m, const size_t i, const size_t j); int gsl_matrix_ulong_swap_rowcol(gsl_matrix_ulong * m, const size_t i, const size_t j); int gsl_matrix_ulong_transpose (gsl_matrix_ulong * m); int gsl_matrix_ulong_transpose_memcpy (gsl_matrix_ulong * dest, const gsl_matrix_ulong * src); unsigned long gsl_matrix_ulong_max (const gsl_matrix_ulong * m); unsigned long gsl_matrix_ulong_min (const gsl_matrix_ulong * m); void gsl_matrix_ulong_minmax (const gsl_matrix_ulong * m, unsigned long * min_out, unsigned long * max_out); void gsl_matrix_ulong_max_index (const gsl_matrix_ulong * m, size_t * imax, size_t *jmax); void gsl_matrix_ulong_min_index (const gsl_matrix_ulong * m, size_t * imin, size_t *jmin); void gsl_matrix_ulong_minmax_index (const gsl_matrix_ulong * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_ulong_equal (const gsl_matrix_ulong * a, const gsl_matrix_ulong * b); int gsl_matrix_ulong_isnull (const gsl_matrix_ulong * m); int gsl_matrix_ulong_ispos (const gsl_matrix_ulong * m); int gsl_matrix_ulong_isneg (const gsl_matrix_ulong * m); int gsl_matrix_ulong_isnonneg (const gsl_matrix_ulong * m); int gsl_matrix_ulong_add (gsl_matrix_ulong * a, const gsl_matrix_ulong * b); int gsl_matrix_ulong_sub (gsl_matrix_ulong * a, const gsl_matrix_ulong * b); int gsl_matrix_ulong_mul_elements (gsl_matrix_ulong * a, const gsl_matrix_ulong * b); int gsl_matrix_ulong_div_elements (gsl_matrix_ulong * a, const gsl_matrix_ulong * b); int gsl_matrix_ulong_scale (gsl_matrix_ulong * a, const double x); int gsl_matrix_ulong_add_constant (gsl_matrix_ulong * a, const double x); int gsl_matrix_ulong_add_diagonal (gsl_matrix_ulong * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_ulong_get_row(gsl_vector_ulong * v, const gsl_matrix_ulong * m, const size_t i); int gsl_matrix_ulong_get_col(gsl_vector_ulong * v, const gsl_matrix_ulong * m, const size_t j); int gsl_matrix_ulong_set_row(gsl_matrix_ulong * m, const size_t i, const gsl_vector_ulong * v); int gsl_matrix_ulong_set_col(gsl_matrix_ulong * m, const size_t j, const gsl_vector_ulong * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL unsigned long gsl_matrix_ulong_get(const gsl_matrix_ulong * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_ulong_set(gsl_matrix_ulong * m, const size_t i, const size_t j, const unsigned long x); INLINE_DECL unsigned long * gsl_matrix_ulong_ptr(gsl_matrix_ulong * m, const size_t i, const size_t j); INLINE_DECL const unsigned long * gsl_matrix_ulong_const_ptr(const gsl_matrix_ulong * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN unsigned long gsl_matrix_ulong_get(const gsl_matrix_ulong * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_ulong_set(gsl_matrix_ulong * m, const size_t i, const size_t j, const unsigned long x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN unsigned long * gsl_matrix_ulong_ptr(gsl_matrix_ulong * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (unsigned long *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const unsigned long * gsl_matrix_ulong_const_ptr(const gsl_matrix_ulong * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const unsigned long *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_ULONG_H__ */ gsl-1.16/matrix/Makefile.am0000664000252300025230000000246212171574312012516 00000000000000noinst_LTLIBRARIES = libgslmatrix.la check_PROGRAMS = test test_static pkginclude_HEADERS = gsl_matrix.h gsl_matrix_char.h gsl_matrix_complex_double.h gsl_matrix_complex_float.h gsl_matrix_complex_long_double.h gsl_matrix_double.h gsl_matrix_float.h gsl_matrix_int.h gsl_matrix_long.h gsl_matrix_long_double.h gsl_matrix_short.h gsl_matrix_uchar.h gsl_matrix_uint.h gsl_matrix_ulong.h gsl_matrix_ushort.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_static_LDADD = libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c test_static_SOURCES = test_static.c CLEANFILES = test.txt test.dat noinst_HEADERS = init_source.c file_source.c rowcol_source.c swap_source.c copy_source.c test_complex_source.c test_source.c minmax_source.c prop_source.c oper_source.c getset_source.c view_source.c submatrix_source.c oper_complex_source.c libgslmatrix_la_SOURCES = init.c matrix.c file.c rowcol.c swap.c copy.c minmax.c prop.c oper.c getset.c view.c submatrix.c view.h gsl-1.16/matrix/minmax_source.c0000664000252300025230000001256512171574312013504 00000000000000/* matrix/minmax_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ BASE FUNCTION (gsl_matrix, max) (const TYPE (gsl_matrix) * m) { /* finds the largest element of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; BASE max = m->data[0 * tda + 0]; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x > max) max = x; #ifdef FP if (isnan (x)) return x; #endif } } return max; } BASE FUNCTION (gsl_matrix, min) (const TYPE (gsl_matrix) * m) { /* finds the smallest element of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; BASE min = m->data[0 * tda + 0]; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x < min) min = x; #ifdef FP if (isnan (x)) return x; #endif } } return min; } void FUNCTION (gsl_matrix, minmax) (const TYPE (gsl_matrix) * m, BASE * min_out, BASE * max_out) { /* finds the smallest and largest elements of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; BASE max = m->data[0 * tda + 0]; BASE min = m->data[0 * tda + 0]; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x < min) { min = x; } if (x > max) { max = x; } #ifdef FP if (isnan (x)) { *min_out = x; *max_out = x; return; } #endif } } *min_out = min; *max_out = max; } void FUNCTION (gsl_matrix, max_index) (const TYPE (gsl_matrix) * m, size_t * imax_out, size_t *jmax_out) { /* finds the largest element of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; BASE max = m->data[0 * tda + 0]; size_t imax = 0, jmax = 0; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x > max) { max = x; imax = i; jmax = j; } #ifdef FP if (isnan (x)) { *imax_out = i; *jmax_out = j; return; } #endif } } *imax_out = imax; *jmax_out = jmax; } void FUNCTION (gsl_matrix, min_index) (const TYPE (gsl_matrix) * m, size_t * imin_out, size_t *jmin_out) { /* finds the largest element of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; BASE min = m->data[0 * tda + 0]; size_t imin = 0, jmin = 0; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x < min) { min = x; imin = i; jmin = j; } #ifdef FP if (isnan (x)) { *imin_out = i; *jmin_out = j; return; } #endif } } *imin_out = imin; *jmin_out = jmin; } void FUNCTION (gsl_matrix, minmax_index) (const TYPE (gsl_matrix) * m, size_t * imin_out, size_t * jmin_out, size_t * imax_out, size_t * jmax_out) { /* finds the smallest and largest elements of a matrix */ const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; size_t imin = 0, jmin = 0, imax = 0, jmax = 0; BASE max = m->data[0 * tda + 0]; BASE min = m->data[0 * tda + 0]; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = m->data[i * tda + j]; if (x < min) { min = x; imin = i; jmin = j; } if (x > max) { max = x; imax = i; jmax = j; } #ifdef FP if (isnan (x)) { *imin_out = i; *jmin_out = j; *imax_out = i; *jmax_out = j; return; } #endif } } *imin_out = imin; *jmin_out = jmin; *imax_out = imax; *jmax_out = jmax; } gsl-1.16/matrix/getset_source.c0000664000252300025230000001167612171574312013510 00000000000000/**********************************************************************/ /* The functions below are obsolete */ /**********************************************************************/ int FUNCTION (gsl_matrix, get_row) (TYPE (gsl_vector) * v, const TYPE (gsl_matrix) * m, const size_t i) { const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; if (i >= M) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (v->size != N) { GSL_ERROR ("matrix row size and vector length are not equal", GSL_EBADLEN); } { ATOMIC *v_data = v->data; const ATOMIC *row_data = m->data + MULTIPLICITY * i * tda; const size_t stride = v->stride ; size_t j; for (j = 0; j < N; j++) { unsigned int k; for (k = 0; k < MULTIPLICITY; k++) { v_data[MULTIPLICITY * stride * j + k] = row_data[MULTIPLICITY * j + k]; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, get_col) (TYPE (gsl_vector) * v, const TYPE (gsl_matrix) * m, const size_t j) { const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; if (j >= N) { GSL_ERROR ("column index is out of range", GSL_EINVAL); } if (v->size != M) { GSL_ERROR ("matrix column size and vector length are not equal", GSL_EBADLEN); } { ATOMIC *v_data = v->data; const ATOMIC *column_data = m->data + MULTIPLICITY * j; const size_t stride = v->stride ; size_t i; for (i = 0; i < M; i++) { unsigned int k; for (k = 0; k < MULTIPLICITY; k++) { v_data[stride * MULTIPLICITY * i + k] = column_data[MULTIPLICITY * i * tda + k]; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, set_row) (TYPE (gsl_matrix) * m, const size_t i, const TYPE (gsl_vector) * v) { const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; if (i >= M) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (v->size != N) { GSL_ERROR ("matrix row size and vector length are not equal", GSL_EBADLEN); } { const ATOMIC *v_data = v->data; ATOMIC *row_data = m->data + MULTIPLICITY * i * tda; const size_t stride = v->stride ; size_t j; for (j = 0; j < N; j++) { unsigned int k; for (k = 0; k < MULTIPLICITY; k++) { row_data[MULTIPLICITY*j + k] = v_data[MULTIPLICITY * stride * j + k]; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, set_col) (TYPE (gsl_matrix) * m, const size_t j, const TYPE (gsl_vector) * v) { const size_t M = m->size1; const size_t N = m->size2; const size_t tda = m->tda; if (j >= N) { GSL_ERROR ("column index is out of range", GSL_EINVAL); } if (v->size != M) { GSL_ERROR ("matrix column size and vector length are not equal", GSL_EBADLEN); } { const ATOMIC *v_data = v->data; ATOMIC *column_data = m->data + MULTIPLICITY * j; const size_t stride = v->stride ; size_t i; for (i = 0; i < M; i++) { unsigned int k; for (k = 0; k < MULTIPLICITY; k++) { column_data[MULTIPLICITY * i * tda + k] = v_data[MULTIPLICITY * stride * i + k]; } } } return GSL_SUCCESS; } TYPE (gsl_vector) * FUNCTION (gsl_vector, alloc_row_from_matrix) (TYPE(gsl_matrix) * m, const size_t i) { TYPE (gsl_vector) * v; const size_t M = m->size1; if (i >= M) { GSL_ERROR_VAL ("row index is out of range", GSL_EINVAL, 0); } v = (TYPE (gsl_vector) *) malloc (sizeof (TYPE (gsl_vector))); if (v == 0) { GSL_ERROR_VAL ("failed to allocate space for vector struct", GSL_ENOMEM, 0); } v->data = m->data + MULTIPLICITY * i * m->tda ; v->size = m->size2; v->stride = 1; v->block = 0; return v; } TYPE (gsl_vector) * FUNCTION (gsl_vector, alloc_col_from_matrix) (TYPE(gsl_matrix) * m, const size_t j) { TYPE (gsl_vector) * v; const size_t N = m->size2; if (j >= N) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, 0); } v = (TYPE (gsl_vector) *) malloc (sizeof (TYPE (gsl_vector))); if (v == 0) { GSL_ERROR_VAL ("failed to allocate space for vector struct", GSL_ENOMEM, 0); } v->data = m->data + MULTIPLICITY * j ; v->size = m->size1; v->stride = m->tda; v->block = 0; return v; } gsl-1.16/matrix/rowcol.c0000664000252300025230000000710712171574312012134 00000000000000#include #include #include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_CHAR #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "rowcol_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/swap_source.c0000664000252300025230000001176612171574312013167 00000000000000/* matrix/swap_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, swap_rows) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size1) { GSL_ERROR ("first row index is out of range", GSL_EINVAL); } if (j >= size1) { GSL_ERROR ("second row index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *row1 = m->data + MULTIPLICITY * i * m->tda; ATOMIC *row2 = m->data + MULTIPLICITY * j * m->tda; size_t k; for (k = 0; k < MULTIPLICITY * size2; k++) { ATOMIC tmp = row1[k] ; row1[k] = row2[k] ; row2[k] = tmp ; } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_columns) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (i >= size2) { GSL_ERROR ("first column index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("second column index is out of range", GSL_EINVAL); } if (i != j) { ATOMIC *col1 = m->data + MULTIPLICITY * i; ATOMIC *col2 = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t n = p * MULTIPLICITY * m->tda; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col1[n+k] ; col1[n+k] = col2[n+k] ; col2[n+k] = tmp ; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, swap_rowcol) (TYPE (gsl_matrix) * m, const size_t i, const size_t j) { const size_t size1 = m->size1; const size_t size2 = m->size2; if (size1 != size2) { GSL_ERROR ("matrix must be square to swap row and column", GSL_ENOTSQR); } if (i >= size1) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (j >= size2) { GSL_ERROR ("column index is out of range", GSL_EINVAL); } { ATOMIC *row = m->data + MULTIPLICITY * i * m->tda; ATOMIC *col = m->data + MULTIPLICITY * j; size_t p; for (p = 0; p < size1; p++) { size_t k; size_t r = p * MULTIPLICITY; size_t c = p * MULTIPLICITY * m->tda; for (k = 0; k < MULTIPLICITY; k++) { ATOMIC tmp = col[c+k] ; col[c+k] = row[r+k] ; row[r+k] = tmp ; } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, transpose) (TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; size_t i, j, k; if (size1 != size2) { GSL_ERROR ("matrix must be square to take transpose", GSL_ENOTSQR); } for (i = 0; i < size1; i++) { for (j = i + 1 ; j < size2 ; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (i * m->tda + j) * MULTIPLICITY + k ; size_t e2 = (j * m->tda + i) * MULTIPLICITY + k ; { ATOMIC tmp = m->data[e1] ; m->data[e1] = m->data[e2] ; m->data[e2] = tmp ; } } } } return GSL_SUCCESS; } int FUNCTION (gsl_matrix, transpose_memcpy) (TYPE (gsl_matrix) * dest, const TYPE (gsl_matrix) * src) { const size_t src_size1 = src->size1; const size_t src_size2 = src->size2; const size_t dest_size1 = dest->size1; const size_t dest_size2 = dest->size2; size_t i, j, k; if (dest_size2 != src_size1 || dest_size1 != src_size2) { GSL_ERROR ("dimensions of dest matrix must be transpose of src matrix", GSL_EBADLEN); } for (i = 0; i < dest_size1; i++) { for (j = 0 ; j < dest_size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { size_t e1 = (i * dest->tda + j) * MULTIPLICITY + k ; size_t e2 = (j * src->tda + i) * MULTIPLICITY + k ; dest->data[e1] = src->data[e2] ; } } } return GSL_SUCCESS; } gsl-1.16/matrix/copy.c0000664000252300025230000000336112171574312011577 00000000000000#include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "copy_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/prop_source.c0000664000252300025230000000715612171574312013173 00000000000000/* matrix/prop_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, equal) (const TYPE (gsl_matrix) * a, const TYPE (gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR_VAL ("matrices must have same dimensions", GSL_EBADLEN, 0); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j, k; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { for (k = 0; k < MULTIPLICITY; k++) { if (a->data[(i * tda_a + j) * MULTIPLICITY + k] != b->data[(i * tda_b + j) * MULTIPLICITY + k]) { return 0; } } } } } return 1; } int FUNCTION (gsl_matrix, isnull) (const TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda ; size_t i, j, k; for (i = 0; i < size1 ; i++) { for (j = 0; j < size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { if (m->data[(i * tda + j) * MULTIPLICITY + k] != 0.0) { return 0; } } } } return 1; } int FUNCTION (gsl_matrix, ispos) (const TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda ; size_t i, j, k; for (i = 0; i < size1 ; i++) { for (j = 0; j < size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { if (m->data[(i * tda + j) * MULTIPLICITY + k] <= 0.0) { return 0; } } } } return 1; } int FUNCTION (gsl_matrix, isneg) (const TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda ; size_t i, j, k; for (i = 0; i < size1 ; i++) { for (j = 0; j < size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { if (m->data[(i * tda + j) * MULTIPLICITY + k] >= 0.0) { return 0; } } } } return 1; } int FUNCTION (gsl_matrix, isnonneg) (const TYPE (gsl_matrix) * m) { const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda ; size_t i, j, k; for (i = 0; i < size1 ; i++) { for (j = 0; j < size2; j++) { for (k = 0; k < MULTIPLICITY; k++) { if (m->data[(i * tda + j) * MULTIPLICITY + k] < 0.0) { return 0; } } } } return 1; } gsl-1.16/matrix/gsl_matrix_short.h0000664000252300025230000002777712171574312014243 00000000000000/* matrix/gsl_matrix_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_SHORT_H__ #define __GSL_MATRIX_SHORT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; short * data; gsl_block_short * block; int owner; } gsl_matrix_short; typedef struct { gsl_matrix_short matrix; } _gsl_matrix_short_view; typedef _gsl_matrix_short_view gsl_matrix_short_view; typedef struct { gsl_matrix_short matrix; } _gsl_matrix_short_const_view; typedef const _gsl_matrix_short_const_view gsl_matrix_short_const_view; /* Allocation */ gsl_matrix_short * gsl_matrix_short_alloc (const size_t n1, const size_t n2); gsl_matrix_short * gsl_matrix_short_calloc (const size_t n1, const size_t n2); gsl_matrix_short * gsl_matrix_short_alloc_from_block (gsl_block_short * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_short * gsl_matrix_short_alloc_from_matrix (gsl_matrix_short * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_short * gsl_vector_short_alloc_row_from_matrix (gsl_matrix_short * m, const size_t i); gsl_vector_short * gsl_vector_short_alloc_col_from_matrix (gsl_matrix_short * m, const size_t j); void gsl_matrix_short_free (gsl_matrix_short * m); /* Views */ _gsl_matrix_short_view gsl_matrix_short_submatrix (gsl_matrix_short * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_short_view gsl_matrix_short_row (gsl_matrix_short * m, const size_t i); _gsl_vector_short_view gsl_matrix_short_column (gsl_matrix_short * m, const size_t j); _gsl_vector_short_view gsl_matrix_short_diagonal (gsl_matrix_short * m); _gsl_vector_short_view gsl_matrix_short_subdiagonal (gsl_matrix_short * m, const size_t k); _gsl_vector_short_view gsl_matrix_short_superdiagonal (gsl_matrix_short * m, const size_t k); _gsl_vector_short_view gsl_matrix_short_subrow (gsl_matrix_short * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_short_view gsl_matrix_short_subcolumn (gsl_matrix_short * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_short_view gsl_matrix_short_view_array (short * base, const size_t n1, const size_t n2); _gsl_matrix_short_view gsl_matrix_short_view_array_with_tda (short * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_short_view gsl_matrix_short_view_vector (gsl_vector_short * v, const size_t n1, const size_t n2); _gsl_matrix_short_view gsl_matrix_short_view_vector_with_tda (gsl_vector_short * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_short_const_view gsl_matrix_short_const_submatrix (const gsl_matrix_short * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_short_const_view gsl_matrix_short_const_row (const gsl_matrix_short * m, const size_t i); _gsl_vector_short_const_view gsl_matrix_short_const_column (const gsl_matrix_short * m, const size_t j); _gsl_vector_short_const_view gsl_matrix_short_const_diagonal (const gsl_matrix_short * m); _gsl_vector_short_const_view gsl_matrix_short_const_subdiagonal (const gsl_matrix_short * m, const size_t k); _gsl_vector_short_const_view gsl_matrix_short_const_superdiagonal (const gsl_matrix_short * m, const size_t k); _gsl_vector_short_const_view gsl_matrix_short_const_subrow (const gsl_matrix_short * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_short_const_view gsl_matrix_short_const_subcolumn (const gsl_matrix_short * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_short_const_view gsl_matrix_short_const_view_array (const short * base, const size_t n1, const size_t n2); _gsl_matrix_short_const_view gsl_matrix_short_const_view_array_with_tda (const short * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_short_const_view gsl_matrix_short_const_view_vector (const gsl_vector_short * v, const size_t n1, const size_t n2); _gsl_matrix_short_const_view gsl_matrix_short_const_view_vector_with_tda (const gsl_vector_short * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_short_set_zero (gsl_matrix_short * m); void gsl_matrix_short_set_identity (gsl_matrix_short * m); void gsl_matrix_short_set_all (gsl_matrix_short * m, short x); int gsl_matrix_short_fread (FILE * stream, gsl_matrix_short * m) ; int gsl_matrix_short_fwrite (FILE * stream, const gsl_matrix_short * m) ; int gsl_matrix_short_fscanf (FILE * stream, gsl_matrix_short * m); int gsl_matrix_short_fprintf (FILE * stream, const gsl_matrix_short * m, const char * format); int gsl_matrix_short_memcpy(gsl_matrix_short * dest, const gsl_matrix_short * src); int gsl_matrix_short_swap(gsl_matrix_short * m1, gsl_matrix_short * m2); int gsl_matrix_short_swap_rows(gsl_matrix_short * m, const size_t i, const size_t j); int gsl_matrix_short_swap_columns(gsl_matrix_short * m, const size_t i, const size_t j); int gsl_matrix_short_swap_rowcol(gsl_matrix_short * m, const size_t i, const size_t j); int gsl_matrix_short_transpose (gsl_matrix_short * m); int gsl_matrix_short_transpose_memcpy (gsl_matrix_short * dest, const gsl_matrix_short * src); short gsl_matrix_short_max (const gsl_matrix_short * m); short gsl_matrix_short_min (const gsl_matrix_short * m); void gsl_matrix_short_minmax (const gsl_matrix_short * m, short * min_out, short * max_out); void gsl_matrix_short_max_index (const gsl_matrix_short * m, size_t * imax, size_t *jmax); void gsl_matrix_short_min_index (const gsl_matrix_short * m, size_t * imin, size_t *jmin); void gsl_matrix_short_minmax_index (const gsl_matrix_short * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_short_equal (const gsl_matrix_short * a, const gsl_matrix_short * b); int gsl_matrix_short_isnull (const gsl_matrix_short * m); int gsl_matrix_short_ispos (const gsl_matrix_short * m); int gsl_matrix_short_isneg (const gsl_matrix_short * m); int gsl_matrix_short_isnonneg (const gsl_matrix_short * m); int gsl_matrix_short_add (gsl_matrix_short * a, const gsl_matrix_short * b); int gsl_matrix_short_sub (gsl_matrix_short * a, const gsl_matrix_short * b); int gsl_matrix_short_mul_elements (gsl_matrix_short * a, const gsl_matrix_short * b); int gsl_matrix_short_div_elements (gsl_matrix_short * a, const gsl_matrix_short * b); int gsl_matrix_short_scale (gsl_matrix_short * a, const double x); int gsl_matrix_short_add_constant (gsl_matrix_short * a, const double x); int gsl_matrix_short_add_diagonal (gsl_matrix_short * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_short_get_row(gsl_vector_short * v, const gsl_matrix_short * m, const size_t i); int gsl_matrix_short_get_col(gsl_vector_short * v, const gsl_matrix_short * m, const size_t j); int gsl_matrix_short_set_row(gsl_matrix_short * m, const size_t i, const gsl_vector_short * v); int gsl_matrix_short_set_col(gsl_matrix_short * m, const size_t j, const gsl_vector_short * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL short gsl_matrix_short_get(const gsl_matrix_short * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_short_set(gsl_matrix_short * m, const size_t i, const size_t j, const short x); INLINE_DECL short * gsl_matrix_short_ptr(gsl_matrix_short * m, const size_t i, const size_t j); INLINE_DECL const short * gsl_matrix_short_const_ptr(const gsl_matrix_short * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN short gsl_matrix_short_get(const gsl_matrix_short * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_short_set(gsl_matrix_short * m, const size_t i, const size_t j, const short x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN short * gsl_matrix_short_ptr(gsl_matrix_short * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (short *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const short * gsl_matrix_short_const_ptr(const gsl_matrix_short * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const short *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_SHORT_H__ */ gsl-1.16/matrix/test_source.c0000664000252300025230000005372012171574312013170 00000000000000/* matrix/test_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION (test, func) (const size_t M, const size_t N); void FUNCTION (test, ops) (const size_t M, const size_t N); void FUNCTION (test, trap) (const size_t M, const size_t N); void FUNCTION (test, text) (const size_t M, const size_t N); void FUNCTION (test, binary) (const size_t M, const size_t N); void FUNCTION (test, binary_noncontiguous) (const size_t M, const size_t N); #define TEST(expr,desc) gsl_test((expr), NAME(gsl_matrix) desc " M=%d, N=%d", M, N) void FUNCTION (test, func) (const size_t M, const size_t N) { TYPE (gsl_vector) * v; size_t i, j; size_t k = 0; TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); gsl_test (m->data == 0, NAME (gsl_matrix) "_alloc returns valid pointer"); gsl_test (m->size1 != M, NAME (gsl_matrix) "_alloc returns valid size1"); gsl_test (m->size2 != N, NAME (gsl_matrix) "_alloc returns valid size2"); gsl_test (m->tda != N, NAME (gsl_matrix) "_alloc returns valid tda"); for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k); } } { status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (m->data[i * N + j] != (BASE) k) status = 1; }; }; gsl_test (status, NAME (gsl_matrix) "_set writes into array"); } { status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (FUNCTION (gsl_matrix, get) (m, i, j) != (BASE) k) status = 1; }; }; gsl_test (status, NAME (gsl_matrix) "_get reads from array"); } FUNCTION (gsl_matrix, free) (m); /* free whatever is in m */ m = FUNCTION (gsl_matrix, calloc) (M, N); v = FUNCTION (gsl_vector, calloc) (N); { int status = (FUNCTION(gsl_matrix,isnull)(m) != 1); TEST (status, "_isnull" DESC " on calloc matrix"); status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on calloc matrix"); status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on calloc matrix"); status = (FUNCTION(gsl_matrix,isnonneg)(m) != 1); TEST (status, "_isnonneg" DESC " on calloc matrix"); } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k); } } { status = 0; k = 0; for (i = 0; i < M; i++) { FUNCTION (gsl_matrix, get_row) (v, m, i); for (j = 0; j < N; j++) { k++; if (v->data[j] != (BASE) k) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_get_row extracts row"); } { BASE exp_max = FUNCTION(gsl_matrix, get) (m, 0, 0); BASE exp_min = FUNCTION(gsl_matrix, get) (m, 0, 0); size_t exp_imax = 0, exp_jmax = 0, exp_imin = 0, exp_jmin = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE k = FUNCTION(gsl_matrix, get) (m, i, j); if (k > exp_max) { exp_max = FUNCTION(gsl_matrix, get) (m, i, j); exp_imax = i; exp_jmax = j; } if (k < exp_min) { exp_min = FUNCTION(gsl_matrix, get) (m, i, j); exp_imin = i; exp_jmin = j; } } } { BASE max = FUNCTION(gsl_matrix, max) (m) ; gsl_test (max != exp_max, NAME(gsl_matrix) "_max returns correct maximum value"); } { BASE min = FUNCTION(gsl_matrix, min) (m) ; gsl_test (min != exp_min, NAME(gsl_matrix) "_min returns correct minimum value"); } { BASE min, max; FUNCTION(gsl_matrix, minmax) (m, &min, &max); gsl_test (max != exp_max, NAME(gsl_matrix) "_minmax returns correct maximum value"); gsl_test (min != exp_min, NAME(gsl_matrix) "_minmax returns correct minimum value"); } { size_t imax, jmax; FUNCTION(gsl_matrix, max_index) (m, &imax, &jmax) ; gsl_test (imax != exp_imax, NAME(gsl_matrix) "_max_index returns correct maximum i"); gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_max_index returns correct maximum j"); } { size_t imin, jmin; FUNCTION(gsl_matrix, min_index) (m, &imin, &jmin) ; gsl_test (imin != exp_imin, NAME(gsl_matrix) "_min_index returns correct minimum i"); gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_min_index returns correct minimum j"); } { size_t imin, jmin, imax, jmax; FUNCTION(gsl_matrix, minmax_index) (m, &imin, &jmin, &imax, &jmax); gsl_test (imax != exp_imax, NAME(gsl_matrix) "_minmax_index returns correct maximum i"); gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_minmax_index returns correct maximum j"); gsl_test (imin != exp_imin, NAME(gsl_matrix) "_minmax_index returns correct minimum i"); gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_minmax_index returns correct minimum j"); } #if FP FUNCTION(gsl_matrix,set)(m, 2, 3, GSL_NAN); exp_min = GSL_NAN; exp_max = GSL_NAN; exp_imin = 2; exp_jmin = 3; exp_imax = 2; exp_jmax = 3; { BASE max = FUNCTION(gsl_matrix, max) (m) ; gsl_test_abs (max,exp_max, 0, NAME(gsl_matrix) "_max returns correct maximum value for NaN"); } { BASE min = FUNCTION(gsl_matrix, min) (m) ; gsl_test_abs (min, exp_min, 0, NAME(gsl_matrix) "_min returns correct minimum value for NaN"); } { BASE min, max; FUNCTION(gsl_matrix, minmax) (m, &min, &max); gsl_test_abs (max, exp_max, 0, NAME(gsl_matrix) "_minmax returns correct maximum value for NaN"); gsl_test_abs (min, exp_min, 0, NAME(gsl_matrix) "_minmax returns correct minimum value for NaN"); } { size_t imax, jmax; FUNCTION(gsl_matrix, max_index) (m, &imax, &jmax) ; gsl_test (imax != exp_imax, NAME(gsl_matrix) "_max_index returns correct maximum i for NaN"); gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_max_index returns correct maximum j for NaN"); } { size_t imin, jmin; FUNCTION(gsl_matrix, min_index) (m, &imin, &jmin) ; gsl_test (imin != exp_imin, NAME(gsl_matrix) "_min_index returns correct minimum i for NaN"); gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_min_index returns correct minimum j for NaN"); } { size_t imin, jmin, imax, jmax; FUNCTION(gsl_matrix, minmax_index) (m, &imin, &jmin, &imax, &jmax); gsl_test (imax != exp_imax, NAME(gsl_matrix) "_minmax_index returns correct maximum i for NaN"); gsl_test (jmax != exp_jmax, NAME(gsl_matrix) "_minmax_index returns correct maximum j for NaN"); gsl_test (imin != exp_imin, NAME(gsl_matrix) "_minmax_index returns correct minimum i for NaN"); gsl_test (jmin != exp_jmin, NAME(gsl_matrix) "_minmax_index returns correct minimum j for NaN"); } #endif } for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) 0); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 1); TEST (status, "_isnull" DESC " on null matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on null matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on null matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 1); TEST (status, "_isnonneg" DESC " on null matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) (k % 10)); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on non-negative matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on non-negative matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on non-negative matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 1); TEST (status, "_isnonneg" DESC " on non-negative matrix") ; } #ifndef UNSIGNED k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { ATOMIC mij = ((++k) % 10) - (ATOMIC) 5; FUNCTION (gsl_matrix, set) (m, i, j, mij); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on mixed matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on mixed matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on mixed matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 0); TEST (status, "_isnonneg" DESC " on mixed matrix") ; } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, -(ATOMIC) (k % 10)); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on non-positive matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on non-positive matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on non-positive matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 0); TEST (status, "_isnonneg" DESC " on non-positive matrix") ; } #endif k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (ATOMIC) (k % 10 + 1)); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on positive matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 1); TEST (status, "_ispos" DESC " on positive matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 0); TEST (status, "_isneg" DESC " on positive matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 1); TEST (status, "_isnonneg" DESC " on positive matrix") ; } #if (!defined(UNSIGNED) && !defined(BASE_CHAR)) k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, -(ATOMIC) (k % 10 + 1)); } } { status = (FUNCTION(gsl_matrix,isnull)(m) != 0); TEST (status, "_isnull" DESC " on negative matrix") ; status = (FUNCTION(gsl_matrix,ispos)(m) != 0); TEST (status, "_ispos" DESC " on negative matrix") ; status = (FUNCTION(gsl_matrix,isneg)(m) != 1); TEST (status, "_isneg" DESC " on negative matrix") ; status = (FUNCTION(gsl_matrix,isnonneg)(m) != 0); TEST (status, "_isnonneg" DESC " on negative matrix") ; } #endif FUNCTION (gsl_matrix, free) (m); FUNCTION (gsl_vector, free) (v); } void FUNCTION (test, ops) (const size_t M, const size_t N) { size_t i, j; size_t k = 0; TYPE (gsl_matrix) * a = FUNCTION (gsl_matrix, calloc) (M, N); TYPE (gsl_matrix) * b = FUNCTION (gsl_matrix, calloc) (M, N); TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { FUNCTION (gsl_matrix, set) (a, i, j, (BASE)(3 + i + 5 * j)); FUNCTION (gsl_matrix, set) (b, i, j, (BASE)(3 + 2 * i + 4 * j)); } } { int status = (FUNCTION(gsl_matrix,equal) (a,b) != 0); gsl_test (status, NAME (gsl_matrix) "_equal matrix unequal"); } FUNCTION (gsl_matrix, memcpy) (m, a); { int status = (FUNCTION(gsl_matrix,equal) (a,m) != 1); gsl_test (status, NAME (gsl_matrix) "_equal matrix equal"); } FUNCTION (gsl_matrix, add) (m, b); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = FUNCTION(gsl_matrix,get) (b,i,j); BASE z = x + y; if (r != z) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_add matrix addition"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, sub) (m, b); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = FUNCTION(gsl_matrix,get) (b,i,j); BASE z = x - y; if (r != z) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_sub matrix subtraction"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, mul_elements) (m, b); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = FUNCTION(gsl_matrix,get) (b,i,j); BASE z = x * y; if (r != z) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_mul_elements multiplication"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, div_elements) (m, b); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = FUNCTION(gsl_matrix,get) (b,i,j); BASE z = x / y; if (fabs(r - z) > 2 * GSL_FLT_EPSILON * fabs(z)) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_div_elements division"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, scale) (m, 2.0); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); if (r != (ATOMIC)(2*x)) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_scale"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, add_constant) (m, 3.0); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = x + 3.0; if (fabs(r - y) > 2 * GSL_FLT_EPSILON * fabs(y)) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_add_constant"); } FUNCTION(gsl_matrix, memcpy) (m, a); FUNCTION(gsl_matrix, add_diagonal) (m, 5.0); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE r = FUNCTION(gsl_matrix,get) (m,i,j); BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = (i == j) ? (x + 5.0) : x; if (fabs(r - y) > 2 * GSL_FLT_EPSILON * fabs(y)) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_add_diagonal"); } FUNCTION(gsl_matrix, swap) (a, b); { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { BASE x = FUNCTION(gsl_matrix,get) (a,i,j); BASE y = FUNCTION(gsl_matrix,get) (b,i,j); if (y != (BASE)(3 + i + 5 * j) || x != (BASE)(3 + 2 * i + 4 * j)) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_swap"); } FUNCTION(gsl_matrix, free) (a); FUNCTION(gsl_matrix, free) (b); FUNCTION(gsl_matrix, free) (m); } #if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE) void FUNCTION (test, text) (const size_t M, const size_t N) { TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); size_t i, j; int k = 0; { FILE *f = fopen ("test.txt", "w"); for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k); } } FUNCTION (gsl_matrix, fprintf) (f, m, OUT_FORMAT); fclose (f); } { FILE *f = fopen ("test.txt", "r"); TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N); status = 0; FUNCTION (gsl_matrix, fscanf) (f, mm); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (mm->data[i * N + j] != (BASE) k) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_fprintf and fscanf"); fclose (f); FUNCTION (gsl_matrix, free) (mm); } FUNCTION (gsl_matrix, free) (m); } #endif void FUNCTION (test, binary) (const size_t M, const size_t N) { TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, calloc) (M, N); size_t i, j; size_t k = 0; { FILE *f = fopen ("test.dat", "wb"); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (m, i, j, (BASE) k); } } FUNCTION (gsl_matrix, fwrite) (f, m); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); TYPE (gsl_matrix) * mm = FUNCTION (gsl_matrix, alloc) (M, N); status = 0; FUNCTION (gsl_matrix, fread) (f, mm); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (mm->data[i * N + j] != (BASE) k) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_write and read"); fclose (f); FUNCTION (gsl_matrix, free) (mm); } FUNCTION (gsl_matrix, free) (m); } void FUNCTION (test, binary_noncontiguous) (const size_t M, const size_t N) { TYPE (gsl_matrix) * l = FUNCTION (gsl_matrix, calloc) (M+1, N+1); VIEW (gsl_matrix, view) m = FUNCTION (gsl_matrix, submatrix) (l, 0, 0, M, N); size_t i, j; size_t k = 0; { FILE *f = fopen ("test.dat", "wb"); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; FUNCTION (gsl_matrix, set) (&m.matrix, i, j, (BASE) k); } } FUNCTION (gsl_matrix, fwrite) (f, &m.matrix); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); TYPE (gsl_matrix) * ll = FUNCTION (gsl_matrix, alloc) (M+1, N+1); VIEW (gsl_matrix, view) mm = FUNCTION (gsl_matrix, submatrix) (ll, 0, 0, M, N); status = 0; FUNCTION (gsl_matrix, fread) (f, &mm.matrix); k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (FUNCTION (gsl_matrix, get) (&mm.matrix, i, j) != (BASE) k) status = 1; } } gsl_test (status, NAME (gsl_matrix) "_write and read (noncontiguous)"); fclose (f); FUNCTION (gsl_matrix, free) (ll); } FUNCTION (gsl_matrix, free) (l); } void FUNCTION (test, trap) (const size_t M, const size_t N) { TYPE (gsl_matrix) * m = FUNCTION (gsl_matrix, alloc) (M, N); size_t i = 0, j = 0; double x; status = 0; FUNCTION (gsl_matrix, set) (m, M + 1, 0, (BASE) 1.2); gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index above upper bound"); status = 0; FUNCTION (gsl_matrix, set) (m, 0, N + 1, (BASE) 1.2); gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index above upper bound"); status = 0; FUNCTION (gsl_matrix, set) (m, M, 0, (BASE) 1.2); gsl_test (!status, NAME (gsl_matrix) "_set traps 1st index at upper bound"); status = 0; FUNCTION (gsl_matrix, set) (m, 0, N, (BASE) 1.2); gsl_test (!status, NAME (gsl_matrix) "_set traps 2nd index at upper bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, i - 1, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index below lower bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 1st index below lower bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, 0, j - 1); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index below lower bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 2nd index below lower bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, M + 1, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index above upper bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 1st index above upper bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, 0, N + 1); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index above upper bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 2nd index above upper bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, M, 0); gsl_test (!status, NAME (gsl_matrix) "_get traps 1st index at upper bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 1st index at upper bound"); status = 0; x = FUNCTION (gsl_matrix, get) (m, 0, N); gsl_test (!status, NAME (gsl_matrix) "_get traps 2nd index at upper bound"); gsl_test (x != 0, NAME (gsl_matrix) "_get returns zero for 2nd index at upper bound"); FUNCTION (gsl_matrix, free) (m); } gsl-1.16/matrix/oper.c0000664000252300025230000000346012171574312011572 00000000000000#include #include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "oper_complex_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "oper_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/view.c0000664000252300025230000000673112171574312011603 00000000000000#include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_CHAR #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "view_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/file_source.c0000664000252300025230000001052612171574312013125 00000000000000/* matrix/file_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION (gsl_matrix, fread) (FILE * stream, TYPE (gsl_matrix) * m) { int status = 0; const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda; if (tda == size2) /* the rows are contiguous */ { status = FUNCTION (gsl_block, raw_fread) (stream, m->data, size1 * size2, 1); } else { size_t i; for (i = 0 ; i < size1 ; i++) /* read each row separately */ { status = FUNCTION (gsl_block, raw_fread) (stream, m->data + i * MULTIPLICITY * tda, size2, 1); if (status) break; } } return status; } int FUNCTION (gsl_matrix, fwrite) (FILE * stream, const TYPE (gsl_matrix) * m) { int status = 0; const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda; if (tda == size2) /* the rows are contiguous */ { status = FUNCTION (gsl_block, raw_fwrite) (stream, m->data, size1 * size2, 1); } else { size_t i; for (i = 0 ; i < size1 ; i++) /* write each row separately */ { status = FUNCTION (gsl_block, raw_fwrite) (stream, m->data + i * MULTIPLICITY * tda, size2, 1); if (status) break; } } return status; } #if !(USES_LONGDOUBLE && !HAVE_PRINTF_LONGDOUBLE) int FUNCTION (gsl_matrix, fprintf) (FILE * stream, const TYPE (gsl_matrix) * m, const char *format) { int status = 0; const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda; if (tda == size2) /* the rows are contiguous */ { status = FUNCTION (gsl_block, raw_fprintf) (stream, m->data, size1 * size2, 1, format); } else { size_t i; for (i = 0 ; i < size1 ; i++) /* print each row separately */ { status = FUNCTION (gsl_block, raw_fprintf) (stream, m->data + i * MULTIPLICITY * tda, size2, 1, format); if (status) break; } } return status; } int FUNCTION (gsl_matrix, fscanf) (FILE * stream, TYPE (gsl_matrix) * m) { int status = 0; const size_t size1 = m->size1; const size_t size2 = m->size2; const size_t tda = m->tda; if (tda == size2) /* the rows are contiguous */ { status = FUNCTION (gsl_block, raw_fscanf) (stream, m->data, size1 * size2, 1); } else { size_t i; for (i = 0 ; i < size1 ; i++) /* scan each row separately */ { status = FUNCTION (gsl_block, raw_fscanf) (stream, m->data + i * MULTIPLICITY * tda, size2, 1); if (status) break; } } return status; } #endif gsl-1.16/matrix/view_source.c0000664000252300025230000001570312171574312013162 00000000000000/* matrix/view_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_VIEW (_gsl_matrix,view) FUNCTION (gsl_matrix, view_array) (QUALIFIER ATOMIC * array, const size_t n1, const size_t n2) { QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, view); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, view); } { TYPE(gsl_matrix) m = NULL_MATRIX; m.data = (ATOMIC *)array; m.size1 = n1; m.size2 = n2; m.tda = n2; m.block = 0; m.owner = 0; view.matrix = m; return view; } } QUALIFIED_VIEW (_gsl_matrix,view) FUNCTION(gsl_matrix, view_array_with_tda) (QUALIFIER ATOMIC * base, const size_t n1, const size_t n2, const size_t tda) { QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, view); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, view); } else if (n2 > tda) { GSL_ERROR_VAL ("matrix dimension n2 must not exceed tda", GSL_EINVAL, view); } { TYPE(gsl_matrix) m = NULL_MATRIX; m.data = (ATOMIC *)base; m.size1 = n1; m.size2 = n2; m.tda = tda; m.block = 0; m.owner = 0; view.matrix = m; return view; } } QUALIFIED_VIEW (_gsl_matrix,view) FUNCTION(gsl_matrix, view_vector) (QUALIFIED_TYPE(gsl_vector) * v, const size_t n1, const size_t n2) { QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, view); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, view); } else if (v->stride != 1) { GSL_ERROR_VAL ("vector must have unit stride", GSL_EINVAL, view); } else if (n1 * n2 > v->size) { GSL_ERROR_VAL ("matrix size exceeds size of original", GSL_EINVAL, view); } { TYPE(gsl_matrix) m = NULL_MATRIX; m.data = v->data; m.size1 = n1; m.size2 = n2; m.tda = n2; m.block = v->block; m.owner = 0; view.matrix = m; return view; } } QUALIFIED_VIEW (_gsl_matrix,view) FUNCTION(gsl_matrix, view_vector_with_tda) (QUALIFIED_TYPE(gsl_vector) * v, const size_t n1, const size_t n2, const size_t tda) { QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW; if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, view); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, view); } else if (v->stride != 1) { GSL_ERROR_VAL ("vector must have unit stride", GSL_EINVAL, view); } else if (n2 > tda) { GSL_ERROR_VAL ("matrix dimension n2 must not exceed tda", GSL_EINVAL, view); } else if (n1 * tda > v->size) { GSL_ERROR_VAL ("matrix size exceeds size of original", GSL_EINVAL, view); } { TYPE(gsl_matrix) m = NULL_MATRIX; m.data = v->data; m.size1 = n1; m.size2 = n2; m.tda = tda; m.block = v->block; m.owner = 0; view.matrix = m; return view; } } #ifdef JUNK int FUNCTION (gsl_matrix, view_from_matrix) (TYPE(gsl_matrix) * m, TYPE(gsl_matrix) * mm, const size_t k1, const size_t k2, const size_t n1, const size_t n2) { if (n1 == 0) { GSL_ERROR_VAL ("matrix dimension n1 must be positive integer", GSL_EINVAL, 0); } else if (n2 == 0) { GSL_ERROR_VAL ("matrix dimension n2 must be positive integer", GSL_EINVAL, 0); } else if (k1 + n1 > mm->size1) { GSL_ERROR_VAL ("submatrix dimension 1 exceeds size of original", GSL_EINVAL, 0); } else if (k2 + n2 > mm->size2) { GSL_ERROR_VAL ("submatrix dimension 2 exceeds size of original", GSL_EINVAL, 0); } m->data = mm->data + k1 * mm->tda + k2 ; m->size1 = n1; m->size2 = n2; m->tda = mm->tda; m->block = mm->block; m->owner = 0; return GSL_SUCCESS; } int FUNCTION (gsl_vector, view_row_from_matrix) (TYPE(gsl_vector) * v, TYPE(gsl_matrix) * m, const size_t i) { const size_t column_length = m->size1; if (i >= column_length) { GSL_ERROR ("row index is out of range", GSL_EINVAL); } if (v->block != 0) { GSL_ERROR ("vector already has memory allocated to it", GSL_ENOMEM); } v->data = m->data + MULTIPLICITY * i * m->tda ; v->size = m->size2; v->stride = 1; return GSL_SUCCESS; } int FUNCTION (gsl_vector, view_col_from_matrix) (TYPE(gsl_vector) * v, TYPE(gsl_matrix) * m, const size_t j) { const size_t row_length = m->size2; if (j >= row_length) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, 0); } if (v->block != 0) { GSL_ERROR ("vector already has memory allocated to it", GSL_ENOMEM); } v->data = m->data + MULTIPLICITY * j ; v->size = m->size1; v->stride = m->tda; return GSL_SUCCESS; } #endif /* JUNK */ gsl-1.16/matrix/gsl_matrix_uchar.h0000664000252300025230000003023712171574312014167 00000000000000/* matrix/gsl_matrix_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_UCHAR_H__ #define __GSL_MATRIX_UCHAR_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; unsigned char * data; gsl_block_uchar * block; int owner; } gsl_matrix_uchar; typedef struct { gsl_matrix_uchar matrix; } _gsl_matrix_uchar_view; typedef _gsl_matrix_uchar_view gsl_matrix_uchar_view; typedef struct { gsl_matrix_uchar matrix; } _gsl_matrix_uchar_const_view; typedef const _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_view; /* Allocation */ gsl_matrix_uchar * gsl_matrix_uchar_alloc (const size_t n1, const size_t n2); gsl_matrix_uchar * gsl_matrix_uchar_calloc (const size_t n1, const size_t n2); gsl_matrix_uchar * gsl_matrix_uchar_alloc_from_block (gsl_block_uchar * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_uchar * gsl_matrix_uchar_alloc_from_matrix (gsl_matrix_uchar * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_uchar * gsl_vector_uchar_alloc_row_from_matrix (gsl_matrix_uchar * m, const size_t i); gsl_vector_uchar * gsl_vector_uchar_alloc_col_from_matrix (gsl_matrix_uchar * m, const size_t j); void gsl_matrix_uchar_free (gsl_matrix_uchar * m); /* Views */ _gsl_matrix_uchar_view gsl_matrix_uchar_submatrix (gsl_matrix_uchar * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_uchar_view gsl_matrix_uchar_row (gsl_matrix_uchar * m, const size_t i); _gsl_vector_uchar_view gsl_matrix_uchar_column (gsl_matrix_uchar * m, const size_t j); _gsl_vector_uchar_view gsl_matrix_uchar_diagonal (gsl_matrix_uchar * m); _gsl_vector_uchar_view gsl_matrix_uchar_subdiagonal (gsl_matrix_uchar * m, const size_t k); _gsl_vector_uchar_view gsl_matrix_uchar_superdiagonal (gsl_matrix_uchar * m, const size_t k); _gsl_vector_uchar_view gsl_matrix_uchar_subrow (gsl_matrix_uchar * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_uchar_view gsl_matrix_uchar_subcolumn (gsl_matrix_uchar * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_uchar_view gsl_matrix_uchar_view_array (unsigned char * base, const size_t n1, const size_t n2); _gsl_matrix_uchar_view gsl_matrix_uchar_view_array_with_tda (unsigned char * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uchar_view gsl_matrix_uchar_view_vector (gsl_vector_uchar * v, const size_t n1, const size_t n2); _gsl_matrix_uchar_view gsl_matrix_uchar_view_vector_with_tda (gsl_vector_uchar * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_submatrix (const gsl_matrix_uchar * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_row (const gsl_matrix_uchar * m, const size_t i); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_column (const gsl_matrix_uchar * m, const size_t j); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_diagonal (const gsl_matrix_uchar * m); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_subdiagonal (const gsl_matrix_uchar * m, const size_t k); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_superdiagonal (const gsl_matrix_uchar * m, const size_t k); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_subrow (const gsl_matrix_uchar * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_uchar_const_view gsl_matrix_uchar_const_subcolumn (const gsl_matrix_uchar * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_view_array (const unsigned char * base, const size_t n1, const size_t n2); _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_view_array_with_tda (const unsigned char * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_view_vector (const gsl_vector_uchar * v, const size_t n1, const size_t n2); _gsl_matrix_uchar_const_view gsl_matrix_uchar_const_view_vector_with_tda (const gsl_vector_uchar * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_uchar_set_zero (gsl_matrix_uchar * m); void gsl_matrix_uchar_set_identity (gsl_matrix_uchar * m); void gsl_matrix_uchar_set_all (gsl_matrix_uchar * m, unsigned char x); int gsl_matrix_uchar_fread (FILE * stream, gsl_matrix_uchar * m) ; int gsl_matrix_uchar_fwrite (FILE * stream, const gsl_matrix_uchar * m) ; int gsl_matrix_uchar_fscanf (FILE * stream, gsl_matrix_uchar * m); int gsl_matrix_uchar_fprintf (FILE * stream, const gsl_matrix_uchar * m, const char * format); int gsl_matrix_uchar_memcpy(gsl_matrix_uchar * dest, const gsl_matrix_uchar * src); int gsl_matrix_uchar_swap(gsl_matrix_uchar * m1, gsl_matrix_uchar * m2); int gsl_matrix_uchar_swap_rows(gsl_matrix_uchar * m, const size_t i, const size_t j); int gsl_matrix_uchar_swap_columns(gsl_matrix_uchar * m, const size_t i, const size_t j); int gsl_matrix_uchar_swap_rowcol(gsl_matrix_uchar * m, const size_t i, const size_t j); int gsl_matrix_uchar_transpose (gsl_matrix_uchar * m); int gsl_matrix_uchar_transpose_memcpy (gsl_matrix_uchar * dest, const gsl_matrix_uchar * src); unsigned char gsl_matrix_uchar_max (const gsl_matrix_uchar * m); unsigned char gsl_matrix_uchar_min (const gsl_matrix_uchar * m); void gsl_matrix_uchar_minmax (const gsl_matrix_uchar * m, unsigned char * min_out, unsigned char * max_out); void gsl_matrix_uchar_max_index (const gsl_matrix_uchar * m, size_t * imax, size_t *jmax); void gsl_matrix_uchar_min_index (const gsl_matrix_uchar * m, size_t * imin, size_t *jmin); void gsl_matrix_uchar_minmax_index (const gsl_matrix_uchar * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_uchar_equal (const gsl_matrix_uchar * a, const gsl_matrix_uchar * b); int gsl_matrix_uchar_isnull (const gsl_matrix_uchar * m); int gsl_matrix_uchar_ispos (const gsl_matrix_uchar * m); int gsl_matrix_uchar_isneg (const gsl_matrix_uchar * m); int gsl_matrix_uchar_isnonneg (const gsl_matrix_uchar * m); int gsl_matrix_uchar_add (gsl_matrix_uchar * a, const gsl_matrix_uchar * b); int gsl_matrix_uchar_sub (gsl_matrix_uchar * a, const gsl_matrix_uchar * b); int gsl_matrix_uchar_mul_elements (gsl_matrix_uchar * a, const gsl_matrix_uchar * b); int gsl_matrix_uchar_div_elements (gsl_matrix_uchar * a, const gsl_matrix_uchar * b); int gsl_matrix_uchar_scale (gsl_matrix_uchar * a, const double x); int gsl_matrix_uchar_add_constant (gsl_matrix_uchar * a, const double x); int gsl_matrix_uchar_add_diagonal (gsl_matrix_uchar * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_uchar_get_row(gsl_vector_uchar * v, const gsl_matrix_uchar * m, const size_t i); int gsl_matrix_uchar_get_col(gsl_vector_uchar * v, const gsl_matrix_uchar * m, const size_t j); int gsl_matrix_uchar_set_row(gsl_matrix_uchar * m, const size_t i, const gsl_vector_uchar * v); int gsl_matrix_uchar_set_col(gsl_matrix_uchar * m, const size_t j, const gsl_vector_uchar * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL unsigned char gsl_matrix_uchar_get(const gsl_matrix_uchar * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_uchar_set(gsl_matrix_uchar * m, const size_t i, const size_t j, const unsigned char x); INLINE_DECL unsigned char * gsl_matrix_uchar_ptr(gsl_matrix_uchar * m, const size_t i, const size_t j); INLINE_DECL const unsigned char * gsl_matrix_uchar_const_ptr(const gsl_matrix_uchar * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN unsigned char gsl_matrix_uchar_get(const gsl_matrix_uchar * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_uchar_set(gsl_matrix_uchar * m, const size_t i, const size_t j, const unsigned char x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN unsigned char * gsl_matrix_uchar_ptr(gsl_matrix_uchar * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (unsigned char *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const unsigned char * gsl_matrix_uchar_const_ptr(const gsl_matrix_uchar * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const unsigned char *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_UCHAR_H__ */ gsl-1.16/matrix/gsl_matrix_uint.h0000664000252300025230000002770212171574312014047 00000000000000/* matrix/gsl_matrix_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_UINT_H__ #define __GSL_MATRIX_UINT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; unsigned int * data; gsl_block_uint * block; int owner; } gsl_matrix_uint; typedef struct { gsl_matrix_uint matrix; } _gsl_matrix_uint_view; typedef _gsl_matrix_uint_view gsl_matrix_uint_view; typedef struct { gsl_matrix_uint matrix; } _gsl_matrix_uint_const_view; typedef const _gsl_matrix_uint_const_view gsl_matrix_uint_const_view; /* Allocation */ gsl_matrix_uint * gsl_matrix_uint_alloc (const size_t n1, const size_t n2); gsl_matrix_uint * gsl_matrix_uint_calloc (const size_t n1, const size_t n2); gsl_matrix_uint * gsl_matrix_uint_alloc_from_block (gsl_block_uint * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_uint * gsl_matrix_uint_alloc_from_matrix (gsl_matrix_uint * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_uint * gsl_vector_uint_alloc_row_from_matrix (gsl_matrix_uint * m, const size_t i); gsl_vector_uint * gsl_vector_uint_alloc_col_from_matrix (gsl_matrix_uint * m, const size_t j); void gsl_matrix_uint_free (gsl_matrix_uint * m); /* Views */ _gsl_matrix_uint_view gsl_matrix_uint_submatrix (gsl_matrix_uint * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_uint_view gsl_matrix_uint_row (gsl_matrix_uint * m, const size_t i); _gsl_vector_uint_view gsl_matrix_uint_column (gsl_matrix_uint * m, const size_t j); _gsl_vector_uint_view gsl_matrix_uint_diagonal (gsl_matrix_uint * m); _gsl_vector_uint_view gsl_matrix_uint_subdiagonal (gsl_matrix_uint * m, const size_t k); _gsl_vector_uint_view gsl_matrix_uint_superdiagonal (gsl_matrix_uint * m, const size_t k); _gsl_vector_uint_view gsl_matrix_uint_subrow (gsl_matrix_uint * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_uint_view gsl_matrix_uint_subcolumn (gsl_matrix_uint * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_uint_view gsl_matrix_uint_view_array (unsigned int * base, const size_t n1, const size_t n2); _gsl_matrix_uint_view gsl_matrix_uint_view_array_with_tda (unsigned int * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uint_view gsl_matrix_uint_view_vector (gsl_vector_uint * v, const size_t n1, const size_t n2); _gsl_matrix_uint_view gsl_matrix_uint_view_vector_with_tda (gsl_vector_uint * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uint_const_view gsl_matrix_uint_const_submatrix (const gsl_matrix_uint * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_uint_const_view gsl_matrix_uint_const_row (const gsl_matrix_uint * m, const size_t i); _gsl_vector_uint_const_view gsl_matrix_uint_const_column (const gsl_matrix_uint * m, const size_t j); _gsl_vector_uint_const_view gsl_matrix_uint_const_diagonal (const gsl_matrix_uint * m); _gsl_vector_uint_const_view gsl_matrix_uint_const_subdiagonal (const gsl_matrix_uint * m, const size_t k); _gsl_vector_uint_const_view gsl_matrix_uint_const_superdiagonal (const gsl_matrix_uint * m, const size_t k); _gsl_vector_uint_const_view gsl_matrix_uint_const_subrow (const gsl_matrix_uint * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_uint_const_view gsl_matrix_uint_const_subcolumn (const gsl_matrix_uint * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_uint_const_view gsl_matrix_uint_const_view_array (const unsigned int * base, const size_t n1, const size_t n2); _gsl_matrix_uint_const_view gsl_matrix_uint_const_view_array_with_tda (const unsigned int * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_uint_const_view gsl_matrix_uint_const_view_vector (const gsl_vector_uint * v, const size_t n1, const size_t n2); _gsl_matrix_uint_const_view gsl_matrix_uint_const_view_vector_with_tda (const gsl_vector_uint * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_uint_set_zero (gsl_matrix_uint * m); void gsl_matrix_uint_set_identity (gsl_matrix_uint * m); void gsl_matrix_uint_set_all (gsl_matrix_uint * m, unsigned int x); int gsl_matrix_uint_fread (FILE * stream, gsl_matrix_uint * m) ; int gsl_matrix_uint_fwrite (FILE * stream, const gsl_matrix_uint * m) ; int gsl_matrix_uint_fscanf (FILE * stream, gsl_matrix_uint * m); int gsl_matrix_uint_fprintf (FILE * stream, const gsl_matrix_uint * m, const char * format); int gsl_matrix_uint_memcpy(gsl_matrix_uint * dest, const gsl_matrix_uint * src); int gsl_matrix_uint_swap(gsl_matrix_uint * m1, gsl_matrix_uint * m2); int gsl_matrix_uint_swap_rows(gsl_matrix_uint * m, const size_t i, const size_t j); int gsl_matrix_uint_swap_columns(gsl_matrix_uint * m, const size_t i, const size_t j); int gsl_matrix_uint_swap_rowcol(gsl_matrix_uint * m, const size_t i, const size_t j); int gsl_matrix_uint_transpose (gsl_matrix_uint * m); int gsl_matrix_uint_transpose_memcpy (gsl_matrix_uint * dest, const gsl_matrix_uint * src); unsigned int gsl_matrix_uint_max (const gsl_matrix_uint * m); unsigned int gsl_matrix_uint_min (const gsl_matrix_uint * m); void gsl_matrix_uint_minmax (const gsl_matrix_uint * m, unsigned int * min_out, unsigned int * max_out); void gsl_matrix_uint_max_index (const gsl_matrix_uint * m, size_t * imax, size_t *jmax); void gsl_matrix_uint_min_index (const gsl_matrix_uint * m, size_t * imin, size_t *jmin); void gsl_matrix_uint_minmax_index (const gsl_matrix_uint * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_uint_equal (const gsl_matrix_uint * a, const gsl_matrix_uint * b); int gsl_matrix_uint_isnull (const gsl_matrix_uint * m); int gsl_matrix_uint_ispos (const gsl_matrix_uint * m); int gsl_matrix_uint_isneg (const gsl_matrix_uint * m); int gsl_matrix_uint_isnonneg (const gsl_matrix_uint * m); int gsl_matrix_uint_add (gsl_matrix_uint * a, const gsl_matrix_uint * b); int gsl_matrix_uint_sub (gsl_matrix_uint * a, const gsl_matrix_uint * b); int gsl_matrix_uint_mul_elements (gsl_matrix_uint * a, const gsl_matrix_uint * b); int gsl_matrix_uint_div_elements (gsl_matrix_uint * a, const gsl_matrix_uint * b); int gsl_matrix_uint_scale (gsl_matrix_uint * a, const double x); int gsl_matrix_uint_add_constant (gsl_matrix_uint * a, const double x); int gsl_matrix_uint_add_diagonal (gsl_matrix_uint * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_uint_get_row(gsl_vector_uint * v, const gsl_matrix_uint * m, const size_t i); int gsl_matrix_uint_get_col(gsl_vector_uint * v, const gsl_matrix_uint * m, const size_t j); int gsl_matrix_uint_set_row(gsl_matrix_uint * m, const size_t i, const gsl_vector_uint * v); int gsl_matrix_uint_set_col(gsl_matrix_uint * m, const size_t j, const gsl_vector_uint * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL unsigned int gsl_matrix_uint_get(const gsl_matrix_uint * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_uint_set(gsl_matrix_uint * m, const size_t i, const size_t j, const unsigned int x); INLINE_DECL unsigned int * gsl_matrix_uint_ptr(gsl_matrix_uint * m, const size_t i, const size_t j); INLINE_DECL const unsigned int * gsl_matrix_uint_const_ptr(const gsl_matrix_uint * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN unsigned int gsl_matrix_uint_get(const gsl_matrix_uint * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_uint_set(gsl_matrix_uint * m, const size_t i, const size_t j, const unsigned int x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN unsigned int * gsl_matrix_uint_ptr(gsl_matrix_uint * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (unsigned int *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const unsigned int * gsl_matrix_uint_const_ptr(const gsl_matrix_uint * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const unsigned int *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_UINT_H__ */ gsl-1.16/matrix/file.c0000664000252300025230000000341512171574312011544 00000000000000#include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "file_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/matrix.c0000664000252300025230000000031112171574312012121 00000000000000#include #include #include /* Compile all the inline matrix functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/matrix/gsl_matrix_ushort.h0000664000252300025230000003057412171574312014415 00000000000000/* matrix/gsl_matrix_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_USHORT_H__ #define __GSL_MATRIX_USHORT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; unsigned short * data; gsl_block_ushort * block; int owner; } gsl_matrix_ushort; typedef struct { gsl_matrix_ushort matrix; } _gsl_matrix_ushort_view; typedef _gsl_matrix_ushort_view gsl_matrix_ushort_view; typedef struct { gsl_matrix_ushort matrix; } _gsl_matrix_ushort_const_view; typedef const _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_view; /* Allocation */ gsl_matrix_ushort * gsl_matrix_ushort_alloc (const size_t n1, const size_t n2); gsl_matrix_ushort * gsl_matrix_ushort_calloc (const size_t n1, const size_t n2); gsl_matrix_ushort * gsl_matrix_ushort_alloc_from_block (gsl_block_ushort * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_ushort * gsl_matrix_ushort_alloc_from_matrix (gsl_matrix_ushort * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_ushort * gsl_vector_ushort_alloc_row_from_matrix (gsl_matrix_ushort * m, const size_t i); gsl_vector_ushort * gsl_vector_ushort_alloc_col_from_matrix (gsl_matrix_ushort * m, const size_t j); void gsl_matrix_ushort_free (gsl_matrix_ushort * m); /* Views */ _gsl_matrix_ushort_view gsl_matrix_ushort_submatrix (gsl_matrix_ushort * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_ushort_view gsl_matrix_ushort_row (gsl_matrix_ushort * m, const size_t i); _gsl_vector_ushort_view gsl_matrix_ushort_column (gsl_matrix_ushort * m, const size_t j); _gsl_vector_ushort_view gsl_matrix_ushort_diagonal (gsl_matrix_ushort * m); _gsl_vector_ushort_view gsl_matrix_ushort_subdiagonal (gsl_matrix_ushort * m, const size_t k); _gsl_vector_ushort_view gsl_matrix_ushort_superdiagonal (gsl_matrix_ushort * m, const size_t k); _gsl_vector_ushort_view gsl_matrix_ushort_subrow (gsl_matrix_ushort * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_ushort_view gsl_matrix_ushort_subcolumn (gsl_matrix_ushort * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_ushort_view gsl_matrix_ushort_view_array (unsigned short * base, const size_t n1, const size_t n2); _gsl_matrix_ushort_view gsl_matrix_ushort_view_array_with_tda (unsigned short * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ushort_view gsl_matrix_ushort_view_vector (gsl_vector_ushort * v, const size_t n1, const size_t n2); _gsl_matrix_ushort_view gsl_matrix_ushort_view_vector_with_tda (gsl_vector_ushort * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_submatrix (const gsl_matrix_ushort * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_row (const gsl_matrix_ushort * m, const size_t i); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_column (const gsl_matrix_ushort * m, const size_t j); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_diagonal (const gsl_matrix_ushort * m); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_subdiagonal (const gsl_matrix_ushort * m, const size_t k); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_superdiagonal (const gsl_matrix_ushort * m, const size_t k); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_subrow (const gsl_matrix_ushort * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_ushort_const_view gsl_matrix_ushort_const_subcolumn (const gsl_matrix_ushort * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_view_array (const unsigned short * base, const size_t n1, const size_t n2); _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_view_array_with_tda (const unsigned short * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_view_vector (const gsl_vector_ushort * v, const size_t n1, const size_t n2); _gsl_matrix_ushort_const_view gsl_matrix_ushort_const_view_vector_with_tda (const gsl_vector_ushort * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_ushort_set_zero (gsl_matrix_ushort * m); void gsl_matrix_ushort_set_identity (gsl_matrix_ushort * m); void gsl_matrix_ushort_set_all (gsl_matrix_ushort * m, unsigned short x); int gsl_matrix_ushort_fread (FILE * stream, gsl_matrix_ushort * m) ; int gsl_matrix_ushort_fwrite (FILE * stream, const gsl_matrix_ushort * m) ; int gsl_matrix_ushort_fscanf (FILE * stream, gsl_matrix_ushort * m); int gsl_matrix_ushort_fprintf (FILE * stream, const gsl_matrix_ushort * m, const char * format); int gsl_matrix_ushort_memcpy(gsl_matrix_ushort * dest, const gsl_matrix_ushort * src); int gsl_matrix_ushort_swap(gsl_matrix_ushort * m1, gsl_matrix_ushort * m2); int gsl_matrix_ushort_swap_rows(gsl_matrix_ushort * m, const size_t i, const size_t j); int gsl_matrix_ushort_swap_columns(gsl_matrix_ushort * m, const size_t i, const size_t j); int gsl_matrix_ushort_swap_rowcol(gsl_matrix_ushort * m, const size_t i, const size_t j); int gsl_matrix_ushort_transpose (gsl_matrix_ushort * m); int gsl_matrix_ushort_transpose_memcpy (gsl_matrix_ushort * dest, const gsl_matrix_ushort * src); unsigned short gsl_matrix_ushort_max (const gsl_matrix_ushort * m); unsigned short gsl_matrix_ushort_min (const gsl_matrix_ushort * m); void gsl_matrix_ushort_minmax (const gsl_matrix_ushort * m, unsigned short * min_out, unsigned short * max_out); void gsl_matrix_ushort_max_index (const gsl_matrix_ushort * m, size_t * imax, size_t *jmax); void gsl_matrix_ushort_min_index (const gsl_matrix_ushort * m, size_t * imin, size_t *jmin); void gsl_matrix_ushort_minmax_index (const gsl_matrix_ushort * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_ushort_equal (const gsl_matrix_ushort * a, const gsl_matrix_ushort * b); int gsl_matrix_ushort_isnull (const gsl_matrix_ushort * m); int gsl_matrix_ushort_ispos (const gsl_matrix_ushort * m); int gsl_matrix_ushort_isneg (const gsl_matrix_ushort * m); int gsl_matrix_ushort_isnonneg (const gsl_matrix_ushort * m); int gsl_matrix_ushort_add (gsl_matrix_ushort * a, const gsl_matrix_ushort * b); int gsl_matrix_ushort_sub (gsl_matrix_ushort * a, const gsl_matrix_ushort * b); int gsl_matrix_ushort_mul_elements (gsl_matrix_ushort * a, const gsl_matrix_ushort * b); int gsl_matrix_ushort_div_elements (gsl_matrix_ushort * a, const gsl_matrix_ushort * b); int gsl_matrix_ushort_scale (gsl_matrix_ushort * a, const double x); int gsl_matrix_ushort_add_constant (gsl_matrix_ushort * a, const double x); int gsl_matrix_ushort_add_diagonal (gsl_matrix_ushort * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_ushort_get_row(gsl_vector_ushort * v, const gsl_matrix_ushort * m, const size_t i); int gsl_matrix_ushort_get_col(gsl_vector_ushort * v, const gsl_matrix_ushort * m, const size_t j); int gsl_matrix_ushort_set_row(gsl_matrix_ushort * m, const size_t i, const gsl_vector_ushort * v); int gsl_matrix_ushort_set_col(gsl_matrix_ushort * m, const size_t j, const gsl_vector_ushort * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL unsigned short gsl_matrix_ushort_get(const gsl_matrix_ushort * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_ushort_set(gsl_matrix_ushort * m, const size_t i, const size_t j, const unsigned short x); INLINE_DECL unsigned short * gsl_matrix_ushort_ptr(gsl_matrix_ushort * m, const size_t i, const size_t j); INLINE_DECL const unsigned short * gsl_matrix_ushort_const_ptr(const gsl_matrix_ushort * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN unsigned short gsl_matrix_ushort_get(const gsl_matrix_ushort * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_ushort_set(gsl_matrix_ushort * m, const size_t i, const size_t j, const unsigned short x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN unsigned short * gsl_matrix_ushort_ptr(gsl_matrix_ushort * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (unsigned short *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const unsigned short * gsl_matrix_ushort_const_ptr(const gsl_matrix_ushort * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const unsigned short *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_USHORT_H__ */ gsl-1.16/matrix/gsl_matrix_int.h0000664000252300025230000002710512171574312013657 00000000000000/* matrix/gsl_matrix_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_INT_H__ #define __GSL_MATRIX_INT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; int * data; gsl_block_int * block; int owner; } gsl_matrix_int; typedef struct { gsl_matrix_int matrix; } _gsl_matrix_int_view; typedef _gsl_matrix_int_view gsl_matrix_int_view; typedef struct { gsl_matrix_int matrix; } _gsl_matrix_int_const_view; typedef const _gsl_matrix_int_const_view gsl_matrix_int_const_view; /* Allocation */ gsl_matrix_int * gsl_matrix_int_alloc (const size_t n1, const size_t n2); gsl_matrix_int * gsl_matrix_int_calloc (const size_t n1, const size_t n2); gsl_matrix_int * gsl_matrix_int_alloc_from_block (gsl_block_int * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_int * gsl_matrix_int_alloc_from_matrix (gsl_matrix_int * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_int * gsl_vector_int_alloc_row_from_matrix (gsl_matrix_int * m, const size_t i); gsl_vector_int * gsl_vector_int_alloc_col_from_matrix (gsl_matrix_int * m, const size_t j); void gsl_matrix_int_free (gsl_matrix_int * m); /* Views */ _gsl_matrix_int_view gsl_matrix_int_submatrix (gsl_matrix_int * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_int_view gsl_matrix_int_row (gsl_matrix_int * m, const size_t i); _gsl_vector_int_view gsl_matrix_int_column (gsl_matrix_int * m, const size_t j); _gsl_vector_int_view gsl_matrix_int_diagonal (gsl_matrix_int * m); _gsl_vector_int_view gsl_matrix_int_subdiagonal (gsl_matrix_int * m, const size_t k); _gsl_vector_int_view gsl_matrix_int_superdiagonal (gsl_matrix_int * m, const size_t k); _gsl_vector_int_view gsl_matrix_int_subrow (gsl_matrix_int * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_int_view gsl_matrix_int_subcolumn (gsl_matrix_int * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_int_view gsl_matrix_int_view_array (int * base, const size_t n1, const size_t n2); _gsl_matrix_int_view gsl_matrix_int_view_array_with_tda (int * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_int_view gsl_matrix_int_view_vector (gsl_vector_int * v, const size_t n1, const size_t n2); _gsl_matrix_int_view gsl_matrix_int_view_vector_with_tda (gsl_vector_int * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_int_const_view gsl_matrix_int_const_submatrix (const gsl_matrix_int * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_int_const_view gsl_matrix_int_const_row (const gsl_matrix_int * m, const size_t i); _gsl_vector_int_const_view gsl_matrix_int_const_column (const gsl_matrix_int * m, const size_t j); _gsl_vector_int_const_view gsl_matrix_int_const_diagonal (const gsl_matrix_int * m); _gsl_vector_int_const_view gsl_matrix_int_const_subdiagonal (const gsl_matrix_int * m, const size_t k); _gsl_vector_int_const_view gsl_matrix_int_const_superdiagonal (const gsl_matrix_int * m, const size_t k); _gsl_vector_int_const_view gsl_matrix_int_const_subrow (const gsl_matrix_int * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_int_const_view gsl_matrix_int_const_subcolumn (const gsl_matrix_int * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_int_const_view gsl_matrix_int_const_view_array (const int * base, const size_t n1, const size_t n2); _gsl_matrix_int_const_view gsl_matrix_int_const_view_array_with_tda (const int * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_int_const_view gsl_matrix_int_const_view_vector (const gsl_vector_int * v, const size_t n1, const size_t n2); _gsl_matrix_int_const_view gsl_matrix_int_const_view_vector_with_tda (const gsl_vector_int * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_int_set_zero (gsl_matrix_int * m); void gsl_matrix_int_set_identity (gsl_matrix_int * m); void gsl_matrix_int_set_all (gsl_matrix_int * m, int x); int gsl_matrix_int_fread (FILE * stream, gsl_matrix_int * m) ; int gsl_matrix_int_fwrite (FILE * stream, const gsl_matrix_int * m) ; int gsl_matrix_int_fscanf (FILE * stream, gsl_matrix_int * m); int gsl_matrix_int_fprintf (FILE * stream, const gsl_matrix_int * m, const char * format); int gsl_matrix_int_memcpy(gsl_matrix_int * dest, const gsl_matrix_int * src); int gsl_matrix_int_swap(gsl_matrix_int * m1, gsl_matrix_int * m2); int gsl_matrix_int_swap_rows(gsl_matrix_int * m, const size_t i, const size_t j); int gsl_matrix_int_swap_columns(gsl_matrix_int * m, const size_t i, const size_t j); int gsl_matrix_int_swap_rowcol(gsl_matrix_int * m, const size_t i, const size_t j); int gsl_matrix_int_transpose (gsl_matrix_int * m); int gsl_matrix_int_transpose_memcpy (gsl_matrix_int * dest, const gsl_matrix_int * src); int gsl_matrix_int_max (const gsl_matrix_int * m); int gsl_matrix_int_min (const gsl_matrix_int * m); void gsl_matrix_int_minmax (const gsl_matrix_int * m, int * min_out, int * max_out); void gsl_matrix_int_max_index (const gsl_matrix_int * m, size_t * imax, size_t *jmax); void gsl_matrix_int_min_index (const gsl_matrix_int * m, size_t * imin, size_t *jmin); void gsl_matrix_int_minmax_index (const gsl_matrix_int * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_int_equal (const gsl_matrix_int * a, const gsl_matrix_int * b); int gsl_matrix_int_isnull (const gsl_matrix_int * m); int gsl_matrix_int_ispos (const gsl_matrix_int * m); int gsl_matrix_int_isneg (const gsl_matrix_int * m); int gsl_matrix_int_isnonneg (const gsl_matrix_int * m); int gsl_matrix_int_add (gsl_matrix_int * a, const gsl_matrix_int * b); int gsl_matrix_int_sub (gsl_matrix_int * a, const gsl_matrix_int * b); int gsl_matrix_int_mul_elements (gsl_matrix_int * a, const gsl_matrix_int * b); int gsl_matrix_int_div_elements (gsl_matrix_int * a, const gsl_matrix_int * b); int gsl_matrix_int_scale (gsl_matrix_int * a, const double x); int gsl_matrix_int_add_constant (gsl_matrix_int * a, const double x); int gsl_matrix_int_add_diagonal (gsl_matrix_int * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_int_get_row(gsl_vector_int * v, const gsl_matrix_int * m, const size_t i); int gsl_matrix_int_get_col(gsl_vector_int * v, const gsl_matrix_int * m, const size_t j); int gsl_matrix_int_set_row(gsl_matrix_int * m, const size_t i, const gsl_vector_int * v); int gsl_matrix_int_set_col(gsl_matrix_int * m, const size_t j, const gsl_vector_int * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL int gsl_matrix_int_get(const gsl_matrix_int * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_int_set(gsl_matrix_int * m, const size_t i, const size_t j, const int x); INLINE_DECL int * gsl_matrix_int_ptr(gsl_matrix_int * m, const size_t i, const size_t j); INLINE_DECL const int * gsl_matrix_int_const_ptr(const gsl_matrix_int * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN int gsl_matrix_int_get(const gsl_matrix_int * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_int_set(gsl_matrix_int * m, const size_t i, const size_t j, const int x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN int * gsl_matrix_int_ptr(gsl_matrix_int * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (int *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const int * gsl_matrix_int_const_ptr(const gsl_matrix_int * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const int *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_INT_H__ */ gsl-1.16/matrix/gsl_matrix_long_double.h0000664000252300025230000003245512171574312015362 00000000000000/* matrix/gsl_matrix_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_LONG_DOUBLE_H__ #define __GSL_MATRIX_LONG_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; long double * data; gsl_block_long_double * block; int owner; } gsl_matrix_long_double; typedef struct { gsl_matrix_long_double matrix; } _gsl_matrix_long_double_view; typedef _gsl_matrix_long_double_view gsl_matrix_long_double_view; typedef struct { gsl_matrix_long_double matrix; } _gsl_matrix_long_double_const_view; typedef const _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_view; /* Allocation */ gsl_matrix_long_double * gsl_matrix_long_double_alloc (const size_t n1, const size_t n2); gsl_matrix_long_double * gsl_matrix_long_double_calloc (const size_t n1, const size_t n2); gsl_matrix_long_double * gsl_matrix_long_double_alloc_from_block (gsl_block_long_double * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_long_double * gsl_matrix_long_double_alloc_from_matrix (gsl_matrix_long_double * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_long_double * gsl_vector_long_double_alloc_row_from_matrix (gsl_matrix_long_double * m, const size_t i); gsl_vector_long_double * gsl_vector_long_double_alloc_col_from_matrix (gsl_matrix_long_double * m, const size_t j); void gsl_matrix_long_double_free (gsl_matrix_long_double * m); /* Views */ _gsl_matrix_long_double_view gsl_matrix_long_double_submatrix (gsl_matrix_long_double * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_long_double_view gsl_matrix_long_double_row (gsl_matrix_long_double * m, const size_t i); _gsl_vector_long_double_view gsl_matrix_long_double_column (gsl_matrix_long_double * m, const size_t j); _gsl_vector_long_double_view gsl_matrix_long_double_diagonal (gsl_matrix_long_double * m); _gsl_vector_long_double_view gsl_matrix_long_double_subdiagonal (gsl_matrix_long_double * m, const size_t k); _gsl_vector_long_double_view gsl_matrix_long_double_superdiagonal (gsl_matrix_long_double * m, const size_t k); _gsl_vector_long_double_view gsl_matrix_long_double_subrow (gsl_matrix_long_double * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_long_double_view gsl_matrix_long_double_subcolumn (gsl_matrix_long_double * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_long_double_view gsl_matrix_long_double_view_array (long double * base, const size_t n1, const size_t n2); _gsl_matrix_long_double_view gsl_matrix_long_double_view_array_with_tda (long double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_double_view gsl_matrix_long_double_view_vector (gsl_vector_long_double * v, const size_t n1, const size_t n2); _gsl_matrix_long_double_view gsl_matrix_long_double_view_vector_with_tda (gsl_vector_long_double * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_submatrix (const gsl_matrix_long_double * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_row (const gsl_matrix_long_double * m, const size_t i); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_column (const gsl_matrix_long_double * m, const size_t j); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_diagonal (const gsl_matrix_long_double * m); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_subdiagonal (const gsl_matrix_long_double * m, const size_t k); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_superdiagonal (const gsl_matrix_long_double * m, const size_t k); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_subrow (const gsl_matrix_long_double * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_long_double_const_view gsl_matrix_long_double_const_subcolumn (const gsl_matrix_long_double * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_view_array (const long double * base, const size_t n1, const size_t n2); _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_view_array_with_tda (const long double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_view_vector (const gsl_vector_long_double * v, const size_t n1, const size_t n2); _gsl_matrix_long_double_const_view gsl_matrix_long_double_const_view_vector_with_tda (const gsl_vector_long_double * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_long_double_set_zero (gsl_matrix_long_double * m); void gsl_matrix_long_double_set_identity (gsl_matrix_long_double * m); void gsl_matrix_long_double_set_all (gsl_matrix_long_double * m, long double x); int gsl_matrix_long_double_fread (FILE * stream, gsl_matrix_long_double * m) ; int gsl_matrix_long_double_fwrite (FILE * stream, const gsl_matrix_long_double * m) ; int gsl_matrix_long_double_fscanf (FILE * stream, gsl_matrix_long_double * m); int gsl_matrix_long_double_fprintf (FILE * stream, const gsl_matrix_long_double * m, const char * format); int gsl_matrix_long_double_memcpy(gsl_matrix_long_double * dest, const gsl_matrix_long_double * src); int gsl_matrix_long_double_swap(gsl_matrix_long_double * m1, gsl_matrix_long_double * m2); int gsl_matrix_long_double_swap_rows(gsl_matrix_long_double * m, const size_t i, const size_t j); int gsl_matrix_long_double_swap_columns(gsl_matrix_long_double * m, const size_t i, const size_t j); int gsl_matrix_long_double_swap_rowcol(gsl_matrix_long_double * m, const size_t i, const size_t j); int gsl_matrix_long_double_transpose (gsl_matrix_long_double * m); int gsl_matrix_long_double_transpose_memcpy (gsl_matrix_long_double * dest, const gsl_matrix_long_double * src); long double gsl_matrix_long_double_max (const gsl_matrix_long_double * m); long double gsl_matrix_long_double_min (const gsl_matrix_long_double * m); void gsl_matrix_long_double_minmax (const gsl_matrix_long_double * m, long double * min_out, long double * max_out); void gsl_matrix_long_double_max_index (const gsl_matrix_long_double * m, size_t * imax, size_t *jmax); void gsl_matrix_long_double_min_index (const gsl_matrix_long_double * m, size_t * imin, size_t *jmin); void gsl_matrix_long_double_minmax_index (const gsl_matrix_long_double * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_long_double_equal (const gsl_matrix_long_double * a, const gsl_matrix_long_double * b); int gsl_matrix_long_double_isnull (const gsl_matrix_long_double * m); int gsl_matrix_long_double_ispos (const gsl_matrix_long_double * m); int gsl_matrix_long_double_isneg (const gsl_matrix_long_double * m); int gsl_matrix_long_double_isnonneg (const gsl_matrix_long_double * m); int gsl_matrix_long_double_add (gsl_matrix_long_double * a, const gsl_matrix_long_double * b); int gsl_matrix_long_double_sub (gsl_matrix_long_double * a, const gsl_matrix_long_double * b); int gsl_matrix_long_double_mul_elements (gsl_matrix_long_double * a, const gsl_matrix_long_double * b); int gsl_matrix_long_double_div_elements (gsl_matrix_long_double * a, const gsl_matrix_long_double * b); int gsl_matrix_long_double_scale (gsl_matrix_long_double * a, const double x); int gsl_matrix_long_double_add_constant (gsl_matrix_long_double * a, const double x); int gsl_matrix_long_double_add_diagonal (gsl_matrix_long_double * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_long_double_get_row(gsl_vector_long_double * v, const gsl_matrix_long_double * m, const size_t i); int gsl_matrix_long_double_get_col(gsl_vector_long_double * v, const gsl_matrix_long_double * m, const size_t j); int gsl_matrix_long_double_set_row(gsl_matrix_long_double * m, const size_t i, const gsl_vector_long_double * v); int gsl_matrix_long_double_set_col(gsl_matrix_long_double * m, const size_t j, const gsl_vector_long_double * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL long double gsl_matrix_long_double_get(const gsl_matrix_long_double * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_long_double_set(gsl_matrix_long_double * m, const size_t i, const size_t j, const long double x); INLINE_DECL long double * gsl_matrix_long_double_ptr(gsl_matrix_long_double * m, const size_t i, const size_t j); INLINE_DECL const long double * gsl_matrix_long_double_const_ptr(const gsl_matrix_long_double * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN long double gsl_matrix_long_double_get(const gsl_matrix_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_long_double_set(gsl_matrix_long_double * m, const size_t i, const size_t j, const long double x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN long double * gsl_matrix_long_double_ptr(gsl_matrix_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (long double *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const long double * gsl_matrix_long_double_const_ptr(const gsl_matrix_long_double * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const long double *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_LONG_DOUBLE_H__ */ gsl-1.16/matrix/gsl_matrix_float.h0000664000252300025230000002777712171574312014211 00000000000000/* matrix/gsl_matrix_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_FLOAT_H__ #define __GSL_MATRIX_FLOAT_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; float * data; gsl_block_float * block; int owner; } gsl_matrix_float; typedef struct { gsl_matrix_float matrix; } _gsl_matrix_float_view; typedef _gsl_matrix_float_view gsl_matrix_float_view; typedef struct { gsl_matrix_float matrix; } _gsl_matrix_float_const_view; typedef const _gsl_matrix_float_const_view gsl_matrix_float_const_view; /* Allocation */ gsl_matrix_float * gsl_matrix_float_alloc (const size_t n1, const size_t n2); gsl_matrix_float * gsl_matrix_float_calloc (const size_t n1, const size_t n2); gsl_matrix_float * gsl_matrix_float_alloc_from_block (gsl_block_float * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix_float * gsl_matrix_float_alloc_from_matrix (gsl_matrix_float * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector_float * gsl_vector_float_alloc_row_from_matrix (gsl_matrix_float * m, const size_t i); gsl_vector_float * gsl_vector_float_alloc_col_from_matrix (gsl_matrix_float * m, const size_t j); void gsl_matrix_float_free (gsl_matrix_float * m); /* Views */ _gsl_matrix_float_view gsl_matrix_float_submatrix (gsl_matrix_float * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_float_view gsl_matrix_float_row (gsl_matrix_float * m, const size_t i); _gsl_vector_float_view gsl_matrix_float_column (gsl_matrix_float * m, const size_t j); _gsl_vector_float_view gsl_matrix_float_diagonal (gsl_matrix_float * m); _gsl_vector_float_view gsl_matrix_float_subdiagonal (gsl_matrix_float * m, const size_t k); _gsl_vector_float_view gsl_matrix_float_superdiagonal (gsl_matrix_float * m, const size_t k); _gsl_vector_float_view gsl_matrix_float_subrow (gsl_matrix_float * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_float_view gsl_matrix_float_subcolumn (gsl_matrix_float * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_float_view gsl_matrix_float_view_array (float * base, const size_t n1, const size_t n2); _gsl_matrix_float_view gsl_matrix_float_view_array_with_tda (float * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_float_view gsl_matrix_float_view_vector (gsl_vector_float * v, const size_t n1, const size_t n2); _gsl_matrix_float_view gsl_matrix_float_view_vector_with_tda (gsl_vector_float * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_float_const_view gsl_matrix_float_const_submatrix (const gsl_matrix_float * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_float_const_view gsl_matrix_float_const_row (const gsl_matrix_float * m, const size_t i); _gsl_vector_float_const_view gsl_matrix_float_const_column (const gsl_matrix_float * m, const size_t j); _gsl_vector_float_const_view gsl_matrix_float_const_diagonal (const gsl_matrix_float * m); _gsl_vector_float_const_view gsl_matrix_float_const_subdiagonal (const gsl_matrix_float * m, const size_t k); _gsl_vector_float_const_view gsl_matrix_float_const_superdiagonal (const gsl_matrix_float * m, const size_t k); _gsl_vector_float_const_view gsl_matrix_float_const_subrow (const gsl_matrix_float * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_float_const_view gsl_matrix_float_const_subcolumn (const gsl_matrix_float * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_float_const_view gsl_matrix_float_const_view_array (const float * base, const size_t n1, const size_t n2); _gsl_matrix_float_const_view gsl_matrix_float_const_view_array_with_tda (const float * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_float_const_view gsl_matrix_float_const_view_vector (const gsl_vector_float * v, const size_t n1, const size_t n2); _gsl_matrix_float_const_view gsl_matrix_float_const_view_vector_with_tda (const gsl_vector_float * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_float_set_zero (gsl_matrix_float * m); void gsl_matrix_float_set_identity (gsl_matrix_float * m); void gsl_matrix_float_set_all (gsl_matrix_float * m, float x); int gsl_matrix_float_fread (FILE * stream, gsl_matrix_float * m) ; int gsl_matrix_float_fwrite (FILE * stream, const gsl_matrix_float * m) ; int gsl_matrix_float_fscanf (FILE * stream, gsl_matrix_float * m); int gsl_matrix_float_fprintf (FILE * stream, const gsl_matrix_float * m, const char * format); int gsl_matrix_float_memcpy(gsl_matrix_float * dest, const gsl_matrix_float * src); int gsl_matrix_float_swap(gsl_matrix_float * m1, gsl_matrix_float * m2); int gsl_matrix_float_swap_rows(gsl_matrix_float * m, const size_t i, const size_t j); int gsl_matrix_float_swap_columns(gsl_matrix_float * m, const size_t i, const size_t j); int gsl_matrix_float_swap_rowcol(gsl_matrix_float * m, const size_t i, const size_t j); int gsl_matrix_float_transpose (gsl_matrix_float * m); int gsl_matrix_float_transpose_memcpy (gsl_matrix_float * dest, const gsl_matrix_float * src); float gsl_matrix_float_max (const gsl_matrix_float * m); float gsl_matrix_float_min (const gsl_matrix_float * m); void gsl_matrix_float_minmax (const gsl_matrix_float * m, float * min_out, float * max_out); void gsl_matrix_float_max_index (const gsl_matrix_float * m, size_t * imax, size_t *jmax); void gsl_matrix_float_min_index (const gsl_matrix_float * m, size_t * imin, size_t *jmin); void gsl_matrix_float_minmax_index (const gsl_matrix_float * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_float_equal (const gsl_matrix_float * a, const gsl_matrix_float * b); int gsl_matrix_float_isnull (const gsl_matrix_float * m); int gsl_matrix_float_ispos (const gsl_matrix_float * m); int gsl_matrix_float_isneg (const gsl_matrix_float * m); int gsl_matrix_float_isnonneg (const gsl_matrix_float * m); int gsl_matrix_float_add (gsl_matrix_float * a, const gsl_matrix_float * b); int gsl_matrix_float_sub (gsl_matrix_float * a, const gsl_matrix_float * b); int gsl_matrix_float_mul_elements (gsl_matrix_float * a, const gsl_matrix_float * b); int gsl_matrix_float_div_elements (gsl_matrix_float * a, const gsl_matrix_float * b); int gsl_matrix_float_scale (gsl_matrix_float * a, const double x); int gsl_matrix_float_add_constant (gsl_matrix_float * a, const double x); int gsl_matrix_float_add_diagonal (gsl_matrix_float * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_float_get_row(gsl_vector_float * v, const gsl_matrix_float * m, const size_t i); int gsl_matrix_float_get_col(gsl_vector_float * v, const gsl_matrix_float * m, const size_t j); int gsl_matrix_float_set_row(gsl_matrix_float * m, const size_t i, const gsl_vector_float * v); int gsl_matrix_float_set_col(gsl_matrix_float * m, const size_t j, const gsl_vector_float * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL float gsl_matrix_float_get(const gsl_matrix_float * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_float_set(gsl_matrix_float * m, const size_t i, const size_t j, const float x); INLINE_DECL float * gsl_matrix_float_ptr(gsl_matrix_float * m, const size_t i, const size_t j); INLINE_DECL const float * gsl_matrix_float_const_ptr(const gsl_matrix_float * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN float gsl_matrix_float_get(const gsl_matrix_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_float_set(gsl_matrix_float * m, const size_t i, const size_t j, const float x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN float * gsl_matrix_float_ptr(gsl_matrix_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (float *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const float * gsl_matrix_float_const_ptr(const gsl_matrix_float * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const float *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_FLOAT_H__ */ gsl-1.16/matrix/oper_source.c0000664000252300025230000001011712171574312013147 00000000000000/* matrix/oper_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_matrix, add) (TYPE(gsl_matrix) * a, const TYPE(gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda_a + j] += b->data[i * tda_b + j]; } } return GSL_SUCCESS; } } int FUNCTION(gsl_matrix, sub) (TYPE(gsl_matrix) * a, const TYPE(gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda_a + j] -= b->data[i * tda_b + j]; } } return GSL_SUCCESS; } } int FUNCTION(gsl_matrix, mul_elements) (TYPE(gsl_matrix) * a, const TYPE(gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda_a + j] *= b->data[i * tda_b + j]; } } return GSL_SUCCESS; } } int FUNCTION(gsl_matrix, div_elements) (TYPE(gsl_matrix) * a, const TYPE(gsl_matrix) * b) { const size_t M = a->size1; const size_t N = a->size2; if (b->size1 != M || b->size2 != N) { GSL_ERROR ("matrices must have same dimensions", GSL_EBADLEN); } else { const size_t tda_a = a->tda; const size_t tda_b = b->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda_a + j] /= b->data[i * tda_b + j]; } } return GSL_SUCCESS; } } int FUNCTION(gsl_matrix, scale) (TYPE(gsl_matrix) * a, const double x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda + j] *= x; } } return GSL_SUCCESS; } int FUNCTION(gsl_matrix, add_constant) (TYPE(gsl_matrix) * a, const double x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; size_t i, j; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { a->data[i * tda + j] += x; } } return GSL_SUCCESS; } int FUNCTION(gsl_matrix, add_diagonal) (TYPE(gsl_matrix) * a, const double x) { const size_t M = a->size1; const size_t N = a->size2; const size_t tda = a->tda; const size_t loop_lim = ( M < N ? M : N ); size_t i; for (i = 0; i < loop_lim; i++) { a->data[i * tda + i] += x; } return GSL_SUCCESS; } gsl-1.16/matrix/submatrix.c0000664000252300025230000000723312171574312012645 00000000000000#include #include #include #include #include #include "view.h" #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_CHAR #define USE_QUALIFIER #define QUALIFIER const #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "submatrix_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/matrix/gsl_matrix_double.h0000664000252300025230000002560012171574312014335 00000000000000/* matrix/gsl_matrix_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MATRIX_DOUBLE_H__ #define __GSL_MATRIX_DOUBLE_H__ #include #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t size1; size_t size2; size_t tda; double * data; gsl_block * block; int owner; } gsl_matrix; typedef struct { gsl_matrix matrix; } _gsl_matrix_view; typedef _gsl_matrix_view gsl_matrix_view; typedef struct { gsl_matrix matrix; } _gsl_matrix_const_view; typedef const _gsl_matrix_const_view gsl_matrix_const_view; /* Allocation */ gsl_matrix * gsl_matrix_alloc (const size_t n1, const size_t n2); gsl_matrix * gsl_matrix_calloc (const size_t n1, const size_t n2); gsl_matrix * gsl_matrix_alloc_from_block (gsl_block * b, const size_t offset, const size_t n1, const size_t n2, const size_t d2); gsl_matrix * gsl_matrix_alloc_from_matrix (gsl_matrix * m, const size_t k1, const size_t k2, const size_t n1, const size_t n2); gsl_vector * gsl_vector_alloc_row_from_matrix (gsl_matrix * m, const size_t i); gsl_vector * gsl_vector_alloc_col_from_matrix (gsl_matrix * m, const size_t j); void gsl_matrix_free (gsl_matrix * m); /* Views */ _gsl_matrix_view gsl_matrix_submatrix (gsl_matrix * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_view gsl_matrix_row (gsl_matrix * m, const size_t i); _gsl_vector_view gsl_matrix_column (gsl_matrix * m, const size_t j); _gsl_vector_view gsl_matrix_diagonal (gsl_matrix * m); _gsl_vector_view gsl_matrix_subdiagonal (gsl_matrix * m, const size_t k); _gsl_vector_view gsl_matrix_superdiagonal (gsl_matrix * m, const size_t k); _gsl_vector_view gsl_matrix_subrow (gsl_matrix * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_view gsl_matrix_subcolumn (gsl_matrix * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_view gsl_matrix_view_array (double * base, const size_t n1, const size_t n2); _gsl_matrix_view gsl_matrix_view_array_with_tda (double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_view gsl_matrix_view_vector (gsl_vector * v, const size_t n1, const size_t n2); _gsl_matrix_view gsl_matrix_view_vector_with_tda (gsl_vector * v, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_const_view gsl_matrix_const_submatrix (const gsl_matrix * m, const size_t i, const size_t j, const size_t n1, const size_t n2); _gsl_vector_const_view gsl_matrix_const_row (const gsl_matrix * m, const size_t i); _gsl_vector_const_view gsl_matrix_const_column (const gsl_matrix * m, const size_t j); _gsl_vector_const_view gsl_matrix_const_diagonal (const gsl_matrix * m); _gsl_vector_const_view gsl_matrix_const_subdiagonal (const gsl_matrix * m, const size_t k); _gsl_vector_const_view gsl_matrix_const_superdiagonal (const gsl_matrix * m, const size_t k); _gsl_vector_const_view gsl_matrix_const_subrow (const gsl_matrix * m, const size_t i, const size_t offset, const size_t n); _gsl_vector_const_view gsl_matrix_const_subcolumn (const gsl_matrix * m, const size_t j, const size_t offset, const size_t n); _gsl_matrix_const_view gsl_matrix_const_view_array (const double * base, const size_t n1, const size_t n2); _gsl_matrix_const_view gsl_matrix_const_view_array_with_tda (const double * base, const size_t n1, const size_t n2, const size_t tda); _gsl_matrix_const_view gsl_matrix_const_view_vector (const gsl_vector * v, const size_t n1, const size_t n2); _gsl_matrix_const_view gsl_matrix_const_view_vector_with_tda (const gsl_vector * v, const size_t n1, const size_t n2, const size_t tda); /* Operations */ void gsl_matrix_set_zero (gsl_matrix * m); void gsl_matrix_set_identity (gsl_matrix * m); void gsl_matrix_set_all (gsl_matrix * m, double x); int gsl_matrix_fread (FILE * stream, gsl_matrix * m) ; int gsl_matrix_fwrite (FILE * stream, const gsl_matrix * m) ; int gsl_matrix_fscanf (FILE * stream, gsl_matrix * m); int gsl_matrix_fprintf (FILE * stream, const gsl_matrix * m, const char * format); int gsl_matrix_memcpy(gsl_matrix * dest, const gsl_matrix * src); int gsl_matrix_swap(gsl_matrix * m1, gsl_matrix * m2); int gsl_matrix_swap_rows(gsl_matrix * m, const size_t i, const size_t j); int gsl_matrix_swap_columns(gsl_matrix * m, const size_t i, const size_t j); int gsl_matrix_swap_rowcol(gsl_matrix * m, const size_t i, const size_t j); int gsl_matrix_transpose (gsl_matrix * m); int gsl_matrix_transpose_memcpy (gsl_matrix * dest, const gsl_matrix * src); double gsl_matrix_max (const gsl_matrix * m); double gsl_matrix_min (const gsl_matrix * m); void gsl_matrix_minmax (const gsl_matrix * m, double * min_out, double * max_out); void gsl_matrix_max_index (const gsl_matrix * m, size_t * imax, size_t *jmax); void gsl_matrix_min_index (const gsl_matrix * m, size_t * imin, size_t *jmin); void gsl_matrix_minmax_index (const gsl_matrix * m, size_t * imin, size_t * jmin, size_t * imax, size_t * jmax); int gsl_matrix_equal (const gsl_matrix * a, const gsl_matrix * b); int gsl_matrix_isnull (const gsl_matrix * m); int gsl_matrix_ispos (const gsl_matrix * m); int gsl_matrix_isneg (const gsl_matrix * m); int gsl_matrix_isnonneg (const gsl_matrix * m); int gsl_matrix_add (gsl_matrix * a, const gsl_matrix * b); int gsl_matrix_sub (gsl_matrix * a, const gsl_matrix * b); int gsl_matrix_mul_elements (gsl_matrix * a, const gsl_matrix * b); int gsl_matrix_div_elements (gsl_matrix * a, const gsl_matrix * b); int gsl_matrix_scale (gsl_matrix * a, const double x); int gsl_matrix_add_constant (gsl_matrix * a, const double x); int gsl_matrix_add_diagonal (gsl_matrix * a, const double x); /***********************************************************************/ /* The functions below are obsolete */ /***********************************************************************/ int gsl_matrix_get_row(gsl_vector * v, const gsl_matrix * m, const size_t i); int gsl_matrix_get_col(gsl_vector * v, const gsl_matrix * m, const size_t j); int gsl_matrix_set_row(gsl_matrix * m, const size_t i, const gsl_vector * v); int gsl_matrix_set_col(gsl_matrix * m, const size_t j, const gsl_vector * v); /***********************************************************************/ /* inline functions if you are using GCC */ INLINE_DECL double gsl_matrix_get(const gsl_matrix * m, const size_t i, const size_t j); INLINE_DECL void gsl_matrix_set(gsl_matrix * m, const size_t i, const size_t j, const double x); INLINE_DECL double * gsl_matrix_ptr(gsl_matrix * m, const size_t i, const size_t j); INLINE_DECL const double * gsl_matrix_const_ptr(const gsl_matrix * m, const size_t i, const size_t j); #ifdef HAVE_INLINE INLINE_FUN double gsl_matrix_get(const gsl_matrix * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VAL("first index out of range", GSL_EINVAL, 0) ; } else if (j >= m->size2) { GSL_ERROR_VAL("second index out of range", GSL_EINVAL, 0) ; } } #endif return m->data[i * m->tda + j] ; } INLINE_FUN void gsl_matrix_set(gsl_matrix * m, const size_t i, const size_t j, const double x) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_VOID("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_VOID("second index out of range", GSL_EINVAL) ; } } #endif m->data[i * m->tda + j] = x ; } INLINE_FUN double * gsl_matrix_ptr(gsl_matrix * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (double *) (m->data + (i * m->tda + j)) ; } INLINE_FUN const double * gsl_matrix_const_ptr(const gsl_matrix * m, const size_t i, const size_t j) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(1)) { if (i >= m->size1) { GSL_ERROR_NULL("first index out of range", GSL_EINVAL) ; } else if (j >= m->size2) { GSL_ERROR_NULL("second index out of range", GSL_EINVAL) ; } } #endif return (const double *) (m->data + (i * m->tda + j)) ; } #endif __END_DECLS #endif /* __GSL_MATRIX_DOUBLE_H__ */ gsl-1.16/matrix/rowcol_source.c0000664000252300025230000001157412171574312013517 00000000000000/* matrix/rowcol_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, row) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t i) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (i >= m->size1) { GSL_ERROR_VAL ("row index is out of range", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + i * MULTIPLICITY * m->tda; v.size = m->size2; v.stride = 1; v.block = m->block; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, column) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t j) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (j >= m->size2) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + j * MULTIPLICITY; v.size = m->size1; v.stride = m->tda; v.block = m->block; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, diagonal) (QUALIFIED_TYPE(gsl_matrix) * m) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data; v.size = GSL_MIN(m->size1,m->size2); v.stride = m->tda + 1; v.block = m->block; v.owner = 0; view.vector = v; return view; } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, subdiagonal) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t k) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (k >= m->size1) { GSL_ERROR_VAL ("subdiagonal index is out of range", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + k * MULTIPLICITY * m->tda; v.size = GSL_MIN(m->size1 - k, m->size2); v.stride = m->tda + 1; v.block = m->block; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, superdiagonal) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t k) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (k >= m->size2) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + k * MULTIPLICITY; v.size = GSL_MIN(m->size1, m->size2 - k); v.stride = m->tda + 1; v.block = m->block; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, subrow) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t i, const size_t offset, const size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (i >= m->size1) { GSL_ERROR_VAL ("row index is out of range", GSL_EINVAL, view); } else if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } else if (offset + n > m->size2) { GSL_ERROR_VAL ("dimension n overflows matrix", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + MULTIPLICITY * (i * m->tda + offset); v.size = n; v.stride = 1; v.block = m->block; v.owner = 0; view.vector = v; return view; } } QUALIFIED_VIEW(_gsl_vector,view) FUNCTION (gsl_matrix, subcolumn) (QUALIFIED_TYPE(gsl_matrix) * m, const size_t j, const size_t offset, const size_t n) { QUALIFIED_VIEW(_gsl_vector,view) view = NULL_VECTOR_VIEW; if (j >= m->size2) { GSL_ERROR_VAL ("column index is out of range", GSL_EINVAL, view); } else if (n == 0) { GSL_ERROR_VAL ("vector length n must be positive integer", GSL_EINVAL, view); } else if (offset + n > m->size1) { GSL_ERROR_VAL ("dimension n overflows matrix", GSL_EINVAL, view); } { TYPE(gsl_vector) v = NULL_VECTOR; v.data = m->data + MULTIPLICITY * (offset * m->tda + j); v.size = n; v.stride = m->tda; v.block = m->block; v.owner = 0; view.vector = v; return view; } } gsl-1.16/multifit/0000775000252300025230000000000012172254161011065 500000000000000gsl-1.16/multifit/test_pontius.c0000664000252300025230000001157412171574312013723 00000000000000size_t pontius_n = 40; size_t pontius_p = 3; double pontius_x[] = { 150000, 300000, 450000, 600000, 750000, 900000, 1050000, 1200000, 1350000, 1500000, 1650000, 1800000, 1950000, 2100000, 2250000, 2400000, 2550000, 2700000, 2850000, 3000000, 150000, 300000, 450000, 600000, 750000, 900000, 1050000, 1200000, 1350000, 1500000, 1650000, 1800000, 1950000, 2100000, 2250000, 2400000, 2550000, 2700000, 2850000, 3000000 }; double pontius_y[] = { .11019, .21956, .32949, .43899, .54803, .65694, .76562, .87487, .98292, 1.09146, 1.20001, 1.30822, 1.41599, 1.52399, 1.63194, 1.73947, 1.84646, 1.95392, 2.06128, 2.16844, .11052, .22018, .32939, .43886, .54798, .65739, .76596, .87474, .98300, 1.09150, 1.20004, 1.30818, 1.41613, 1.52408, 1.63159, 1.73965, 1.84696, 1.95445, 2.06177, 2.16829 }; static int test_pontius_results(const char *str, const gsl_vector *c, const gsl_vector *expected_c, const gsl_vector *cov_diag, const gsl_vector *expected_sd, const double chisq, const double chisq_res, const double expected_chisq) { size_t i; /* test coefficient vector */ for (i = 0; i < pontius_p; ++i) { gsl_test_rel (gsl_vector_get(c,i), gsl_vector_get(expected_c, i), 1.0e-10, "%s c[%zu]", str, i) ; if (cov_diag && expected_sd) { gsl_test_rel (sqrt(gsl_vector_get(cov_diag, i)), gsl_vector_get(expected_sd, i), 1e-10, "%s cov[%zu,%zu]", str, i, i); } } gsl_test_rel (chisq, expected_chisq, 1.0e-10, "%s chisq", str); gsl_test_rel (chisq_res, expected_chisq, 1.0e-10, "%s chisq residuals", str); return GSL_SUCCESS; } void test_pontius () { size_t i, j; gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (pontius_n, pontius_p); gsl_multifit_robust_workspace * work_rob = gsl_multifit_robust_alloc (gsl_multifit_robust_ols, pontius_n, pontius_p); gsl_matrix * X = gsl_matrix_alloc (pontius_n, pontius_p); gsl_vector_view y = gsl_vector_view_array (pontius_y, pontius_n); gsl_vector * c = gsl_vector_alloc (pontius_p); gsl_vector * r = gsl_vector_alloc (pontius_n); gsl_matrix * cov = gsl_matrix_alloc (pontius_p, pontius_p); double chisq, chisq_res; double expected_c[3] = { 0.673565789473684E-03, 0.732059160401003E-06, -0.316081871345029E-14}; double expected_sd[3] = { 0.107938612033077E-03, 0.157817399981659E-09, 0.486652849992036E-16 }; double expected_chisq = 0.155761768796992E-05; gsl_vector_view diag = gsl_matrix_diagonal (cov); gsl_vector_view exp_c = gsl_vector_view_array(expected_c, pontius_p); gsl_vector_view exp_sd = gsl_vector_view_array(expected_sd, pontius_p); for (i = 0 ; i < pontius_n; i++) { for (j = 0; j < pontius_p; j++) { gsl_matrix_set(X, i, j, pow(pontius_x[i], j)); } } /* test unweighted least squares */ gsl_multifit_linear (X, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(X, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_pontius_results("pontius gsl_multifit_linear", c, &exp_c.vector, &diag.vector, &exp_sd.vector, chisq, chisq_res, expected_chisq); /* test robust least squares */ gsl_multifit_robust (X, &y.vector, c, cov, work_rob); test_pontius_results("pontius gsl_multifit_robust", c, &exp_c.vector, &diag.vector, &exp_sd.vector, 1.0, 1.0, 1.0); /* test weighted least squares */ { gsl_vector * w = gsl_vector_alloc (pontius_n); double expected_cov[3][3] ={ {2.76754385964916e-01 , -3.59649122807024e-07, 9.74658869395731e-14}, {-3.59649122807024e-07, 5.91630591630603e-13, -1.77210703526497e-19}, {9.74658869395731e-14, -1.77210703526497e-19, 5.62573661988878e-26} }; gsl_vector_set_all (w, 1.0); gsl_multifit_wlinear (X, w, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(X, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_pontius_results("pontius gsl_multifit_wlinear", c, &exp_c.vector, NULL, NULL, chisq, chisq_res, expected_chisq); for (i = 0; i < pontius_p; i++) { for (j = 0; j < pontius_p; j++) { gsl_test_rel (gsl_matrix_get(cov,i,j), expected_cov[i][j], 1e-10, "pontius gsl_multifit_wlinear cov(%d,%d)", i, j) ; } } gsl_vector_free(w); } gsl_vector_free(c); gsl_vector_free(r); gsl_matrix_free(cov); gsl_matrix_free(X); gsl_multifit_linear_free (work); gsl_multifit_robust_free (work_rob); } gsl-1.16/multifit/gradient.c0000664000252300025230000000217512171574312012755 00000000000000/* multifit/covar.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_multifit_gradient (const gsl_matrix * J, const gsl_vector * f, gsl_vector * g) { int status = gsl_blas_dgemv (CblasTrans, 1.0, J, f, 0.0, g); return status; } gsl-1.16/multifit/lmiterate.c0000664000252300025230000001237212171574312013146 00000000000000static int iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *qtf = state->qtf; gsl_vector *x_trial = state->x_trial; gsl_vector *f_trial = state->f_trial; gsl_vector *rptdx = state->rptdx; gsl_vector *newton = state->newton; gsl_vector *gradient = state->gradient; gsl_vector *sdiag = state->sdiag; gsl_vector *w = state->w; gsl_vector *work1 = state->work1; gsl_permutation *perm = state->perm; double prered, actred; double pnorm, fnorm1, fnorm1p, gnorm; double ratio; double dirder; int iter = 0; double p1 = 0.1, p25 = 0.25, p5 = 0.5, p75 = 0.75, p0001 = 0.0001; if (state->fnorm == 0.0) { return GSL_SUCCESS; } /* Compute qtf = Q^T f */ gsl_vector_memcpy (qtf, f); gsl_linalg_QR_QTvec (r, tau, qtf); /* Compute norm of scaled gradient */ compute_gradient_direction (r, perm, qtf, diag, gradient); { size_t iamax = gsl_blas_idamax (gradient); gnorm = fabs(gsl_vector_get (gradient, iamax) / state->fnorm); } /* Determine the Levenberg-Marquardt parameter */ lm_iteration: iter++ ; { int status = lmpar (r, perm, qtf, diag, state->delta, &(state->par), newton, gradient, sdiag, dx, w); if (status) return status; } /* Take a trial step */ gsl_vector_scale (dx, -1.0); /* reverse the step to go downhill */ compute_trial_step (x, dx, state->x_trial); pnorm = scaled_enorm (diag, dx); if (state->iter == 1) { if (pnorm < state->delta) { #ifdef DEBUG printf("set delta = pnorm = %g\n" , pnorm); #endif state->delta = pnorm; } } /* Evaluate function at x + p */ /* return immediately if evaluation raised error */ { int status = GSL_MULTIFIT_FN_EVAL_F (fdf, x_trial, f_trial); if (status) return status; } fnorm1 = enorm (f_trial); /* Compute the scaled actual reduction */ actred = compute_actual_reduction (state->fnorm, fnorm1); #ifdef DEBUG printf("lmiterate: fnorm = %g fnorm1 = %g actred = %g\n", state->fnorm, fnorm1, actred); printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d"); printf("dx = "); gsl_vector_fprintf(stdout, dx, "%g"); #endif /* Compute rptdx = R P^T dx, noting that |J dx| = |R P^T dx| */ compute_rptdx (r, perm, dx, rptdx); #ifdef DEBUG printf("rptdx = "); gsl_vector_fprintf(stdout, rptdx, "%g"); #endif fnorm1p = enorm (rptdx); /* Compute the scaled predicted reduction = |J dx|^2 + 2 par |D dx|^2 */ { double t1 = fnorm1p / state->fnorm; double t2 = (sqrt(state->par) * pnorm) / state->fnorm; prered = t1 * t1 + t2 * t2 / p5; dirder = -(t1 * t1 + t2 * t2); } /* compute the ratio of the actual to predicted reduction */ if (prered > 0) { ratio = actred / prered; } else { ratio = 0; } #ifdef DEBUG printf("lmiterate: prered = %g dirder = %g ratio = %g\n", prered, dirder,ratio); #endif /* update the step bound */ if (ratio > p25) { #ifdef DEBUG printf("ratio > p25\n"); #endif if (state->par == 0 || ratio >= p75) { state->delta = pnorm / p5; state->par *= p5; #ifdef DEBUG printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par); #endif } } else { double temp = (actred >= 0) ? p5 : p5*dirder / (dirder + p5 * actred); #ifdef DEBUG printf("ratio < p25\n"); #endif if (p1 * fnorm1 >= state->fnorm || temp < p1 ) { temp = p1; } state->delta = temp * GSL_MIN_DBL (state->delta, pnorm/p1); state->par /= temp; #ifdef DEBUG printf("updated step bounds: delta = %g, par = %g\n", state->delta, state->par); #endif } /* test for successful iteration, termination and stringent tolerances */ if (ratio >= p0001) { gsl_vector_memcpy (x, x_trial); gsl_vector_memcpy (f, f_trial); /* return immediately if evaluation raised error */ { int status; if (fdf->df) status = GSL_MULTIFIT_FN_EVAL_DF (fdf, x_trial, J); else status = gsl_multifit_fdfsolver_dif_df(x_trial, fdf, f_trial, J); if (status) return status; } /* wa2_j = diag_j * x_j */ state->xnorm = scaled_enorm(diag, x); state->fnorm = fnorm1; state->iter++; /* Rescale if necessary */ if (scale) { update_diag (J, diag); } { int signum; gsl_matrix_memcpy (r, J); gsl_linalg_QRPT_decomp (r, tau, perm, &signum, work1); } return GSL_SUCCESS; } else if (fabs(actred) <= GSL_DBL_EPSILON && prered <= GSL_DBL_EPSILON && p5 * ratio <= 1.0) { return GSL_ETOLF ; } else if (state->delta <= GSL_DBL_EPSILON * state->xnorm) { return GSL_ETOLX; } else if (gnorm <= GSL_DBL_EPSILON) { return GSL_ETOLG; } else if (iter < 10) { /* Repeat inner loop if unsuccessful */ goto lm_iteration; } return GSL_ENOPROG; } gsl-1.16/multifit/TODO0000664000252300025230000000114212171574312011475 00000000000000# -*- org -*- #+CATEGORY: multifit The following would also be nice additions to the multifit function suite (see MS Excel regression output for example): 1. Produce the correlation coefficient (r) and other statistics. 2. Allow fit variable weighting (not observation weighting). 3. Allow for principal factor computations. The following features should be added to the nonlinear least squares routines: 1. More information reporting to the user (see levmar code for examples) such as: - number of function evaluations - number of Jacobian evaluations 2. Support for constraints 3. robust fitting gsl-1.16/multifit/fsolver.c0000664000252300025230000001046512171574312012641 00000000000000/* multifit/fsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_multifit_fsolver * gsl_multifit_fsolver_alloc (const gsl_multifit_fsolver_type * T, size_t n, size_t p) { int status; gsl_multifit_fsolver * s; if (n < p) { GSL_ERROR_VAL ("insufficient data points, n < p", GSL_EINVAL, 0); } s = (gsl_multifit_fsolver *) malloc (sizeof (gsl_multifit_fsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for multifit solver struct", GSL_ENOMEM, 0); } s->x = gsl_vector_calloc (p); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->f = gsl_vector_calloc (n); if (s->f == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0); } s->dx = gsl_vector_calloc (p); if (s->dx == 0) { gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for multifit solver state", GSL_ENOMEM, 0); } s->type = T ; status = (s->type->alloc)(s->state, n, p); if (status != GSL_SUCCESS) { (s->type->free)(s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to set solver", status, 0); } s->function = NULL; return s; } int gsl_multifit_fsolver_set (gsl_multifit_fsolver * s, gsl_multifit_function * f, const gsl_vector * x) { if (s->f->size != f->n) { GSL_ERROR ("function size does not match solver", GSL_EBADLEN); } if (s->x->size != x->size) { GSL_ERROR ("vector length does not match solver", GSL_EBADLEN); } s->function = f; gsl_vector_memcpy(s->x,x); return (s->type->set) (s->state, s->function, s->x, s->f, s->dx); } int gsl_multifit_fsolver_iterate (gsl_multifit_fsolver * s) { return (s->type->iterate) (s->state, s->function, s->x, s->f, s->dx); } int gsl_multifit_fsolver_driver (gsl_multifit_fsolver * s, const size_t maxiter, const double epsabs, const double epsrel) { int status; size_t iter = 0; do { status = gsl_multifit_fsolver_iterate (s); if (status) break; /* test for convergence */ status = gsl_multifit_test_delta (s->dx, s->x, epsabs, epsrel); } while (status == GSL_CONTINUE && ++iter < maxiter); return status; } /* gsl_multifit_fdfsolver_driver() */ void gsl_multifit_fsolver_free (gsl_multifit_fsolver * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); } const char * gsl_multifit_fsolver_name (const gsl_multifit_fsolver * s) { return s->type->name; } gsl_vector * gsl_multifit_fsolver_position (const gsl_multifit_fsolver * s) { return s->x; } gsl-1.16/multifit/multirobust.c0000664000252300025230000004065512171574312013556 00000000000000/* multirobust.c * * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * This module contains routines related to robust linear least squares. The * algorithm used closely follows the publications: * * [1] DuMouchel, W. and F. O'Brien (1989), "Integrating a robust * option into a multiple regression computing environment," * Computer Science and Statistics: Proceedings of the 21st * Symposium on the Interface, American Statistical Association * * [2] Street, J.O., R.J. Carroll, and D. Ruppert (1988), "A note on * computing robust regression estimates via iteratively * reweighted least squares," The American Statistician, v. 42, * pp. 152-154. */ #include #include #include #include #include #include #include #include #include #include static int robust_test_convergence(const gsl_vector *c_prev, const gsl_vector *c, const double tol); static double robust_madsigma(const gsl_vector *x, gsl_multifit_robust_workspace *w); static double robust_robsigma(const gsl_vector *r, const double s, const double tune, gsl_multifit_robust_workspace *w); static double robust_sigma(const double s_ols, const double s_rob, gsl_multifit_robust_workspace *w); static int robust_covariance(const double sigma, gsl_matrix *cov, gsl_multifit_robust_workspace *w); /* gsl_multifit_robust_alloc Allocate a robust workspace Inputs: T - robust weighting algorithm n - number of observations p - number of model parameters Return: pointer to workspace */ gsl_multifit_robust_workspace * gsl_multifit_robust_alloc(const gsl_multifit_robust_type *T, const size_t n, const size_t p) { gsl_multifit_robust_workspace *w; if (n < p) { GSL_ERROR_VAL("observations n must be >= p", GSL_EINVAL, 0); } w = calloc(1, sizeof(gsl_multifit_robust_workspace)); if (w == 0) { GSL_ERROR_VAL("failed to allocate space for multifit_robust struct", GSL_ENOMEM, 0); } w->n = n; w->p = p; w->type = T; w->maxiter = 100; /* maximum iterations */ w->tune = w->type->tuning_default; w->multifit_p = gsl_multifit_linear_alloc(n, p); if (w->multifit_p == 0) { GSL_ERROR_VAL("failed to allocate space for multifit_linear struct", GSL_ENOMEM, 0); } w->r = gsl_vector_alloc(n); if (w->r == 0) { GSL_ERROR_VAL("failed to allocate space for residuals", GSL_ENOMEM, 0); } w->weights = gsl_vector_alloc(n); if (w->weights == 0) { GSL_ERROR_VAL("failed to allocate space for weights", GSL_ENOMEM, 0); } w->c_prev = gsl_vector_alloc(p); if (w->c_prev == 0) { GSL_ERROR_VAL("failed to allocate space for c_prev", GSL_ENOMEM, 0); } w->resfac = gsl_vector_alloc(n); if (w->resfac == 0) { GSL_ERROR_VAL("failed to allocate space for residual factors", GSL_ENOMEM, 0); } w->psi = gsl_vector_alloc(n); if (w->psi == 0) { GSL_ERROR_VAL("failed to allocate space for psi", GSL_ENOMEM, 0); } w->dpsi = gsl_vector_alloc(n); if (w->dpsi == 0) { GSL_ERROR_VAL("failed to allocate space for dpsi", GSL_ENOMEM, 0); } w->QSI = gsl_matrix_alloc(p, p); if (w->QSI == 0) { GSL_ERROR_VAL("failed to allocate space for QSI", GSL_ENOMEM, 0); } w->D = gsl_vector_alloc(p); if (w->D == 0) { GSL_ERROR_VAL("failed to allocate space for D", GSL_ENOMEM, 0); } w->workn = gsl_vector_alloc(n); if (w->workn == 0) { GSL_ERROR_VAL("failed to allocate space for workn", GSL_ENOMEM, 0); } w->stats.sigma_ols = 0.0; w->stats.sigma_mad = 0.0; w->stats.sigma_rob = 0.0; w->stats.sigma = 0.0; w->stats.Rsq = 0.0; w->stats.adj_Rsq = 0.0; w->stats.rmse = 0.0; w->stats.sse = 0.0; w->stats.dof = n - p; w->stats.weights = w->weights; w->stats.r = w->r; return w; } /* gsl_multifit_robust_alloc() */ /* gsl_multifit_robust_free() Free memory associated with robust workspace */ void gsl_multifit_robust_free(gsl_multifit_robust_workspace *w) { if (w->multifit_p) gsl_multifit_linear_free(w->multifit_p); if (w->r) gsl_vector_free(w->r); if (w->weights) gsl_vector_free(w->weights); if (w->c_prev) gsl_vector_free(w->c_prev); if (w->resfac) gsl_vector_free(w->resfac); if (w->psi) gsl_vector_free(w->psi); if (w->dpsi) gsl_vector_free(w->dpsi); if (w->QSI) gsl_matrix_free(w->QSI); if (w->D) gsl_vector_free(w->D); if (w->workn) gsl_vector_free(w->workn); free(w); } /* gsl_multifit_robust_free() */ int gsl_multifit_robust_tune(const double tune, gsl_multifit_robust_workspace *w) { w->tune = tune; return GSL_SUCCESS; } const char * gsl_multifit_robust_name(const gsl_multifit_robust_workspace *w) { return w->type->name; } gsl_multifit_robust_stats gsl_multifit_robust_statistics(const gsl_multifit_robust_workspace *w) { return w->stats; } /* gsl_multifit_robust() Perform robust iteratively reweighted linear least squares fit Inputs: X - design matrix of basis functions y - right hand side vector c - (output) model coefficients cov - (output) covariance matrix w - workspace */ int gsl_multifit_robust(const gsl_matrix * X, const gsl_vector * y, gsl_vector * c, gsl_matrix * cov, gsl_multifit_robust_workspace *w) { /* check matrix and vector sizes */ if (X->size1 != y->size) { GSL_ERROR ("number of observations in y does not match rows of matrix X", GSL_EBADLEN); } else if (X->size2 != c->size) { GSL_ERROR ("number of parameters c does not match columns of matrix X", GSL_EBADLEN); } else if (cov->size1 != cov->size2) { GSL_ERROR ("covariance matrix is not square", GSL_ENOTSQR); } else if (c->size != cov->size1) { GSL_ERROR ("number of parameters does not match size of covariance matrix", GSL_EBADLEN); } else if (X->size1 != w->n || X->size2 != w->p) { GSL_ERROR ("size of workspace does not match size of observation matrix", GSL_EBADLEN); } else { int s; double chisq; const double tol = GSL_SQRT_DBL_EPSILON; int converged = 0; size_t numit = 0; const size_t n = y->size; double sigy = gsl_stats_sd(y->data, y->stride, n); double sig_lower; size_t i; /* * if the initial fit is very good, then finding outliers by comparing * them to the residual standard deviation is difficult. Therefore we * set a lower bound on the standard deviation estimate that is a small * fraction of the standard deviation of the data values */ sig_lower = 1.0e-6 * sigy; if (sig_lower == 0.0) sig_lower = 1.0; /* compute initial estimates using ordinary least squares */ s = gsl_multifit_linear(X, y, c, cov, &chisq, w->multifit_p); if (s) return s; /* save Q S^{-1} of original matrix */ gsl_matrix_memcpy(w->QSI, w->multifit_p->QSI); gsl_vector_memcpy(w->D, w->multifit_p->D); /* compute statistical leverage of each data point */ s = gsl_linalg_SV_leverage(w->multifit_p->A, w->resfac); if (s) return s; /* correct residuals with factor 1 / sqrt(1 - h) */ for (i = 0; i < n; ++i) { double h = gsl_vector_get(w->resfac, i); if (h > 0.9999) h = 0.9999; gsl_vector_set(w->resfac, i, 1.0 / sqrt(1.0 - h)); } /* compute residuals from OLS fit r = y - X c */ s = gsl_multifit_linear_residuals(X, y, c, w->r); if (s) return s; /* compute estimate of sigma from ordinary least squares */ w->stats.sigma_ols = gsl_blas_dnrm2(w->r) / sqrt((double) w->stats.dof); while (!converged && ++numit <= w->maxiter) { double sig; /* adjust residuals by statistical leverage (see DuMouchel and O'Brien) */ s = gsl_vector_mul(w->r, w->resfac); if (s) return s; /* compute estimate of standard deviation using MAD */ sig = robust_madsigma(w->r, w); /* scale residuals by standard deviation and tuning parameter */ gsl_vector_scale(w->r, 1.0 / (GSL_MAX(sig, sig_lower) * w->tune)); /* compute weights using these residuals */ s = w->type->wfun(w->r, w->weights); if (s) return s; gsl_vector_memcpy(w->c_prev, c); /* solve weighted least squares with new weights */ s = gsl_multifit_wlinear(X, w->weights, y, c, cov, &chisq, w->multifit_p); if (s) return s; /* compute new residuals r = y - X c */ s = gsl_multifit_linear_residuals(X, y, c, w->r); if (s) return s; converged = robust_test_convergence(w->c_prev, c, tol); } /* compute final MAD sigma */ w->stats.sigma_mad = robust_madsigma(w->r, w); /* compute robust estimate of sigma */ w->stats.sigma_rob = robust_robsigma(w->r, w->stats.sigma_mad, w->tune, w); /* compute final estimate of sigma */ w->stats.sigma = robust_sigma(w->stats.sigma_ols, w->stats.sigma_rob, w); /* store number of iterations */ w->stats.numit = numit; { double dof = (double) w->stats.dof; double rnorm = w->stats.sigma * sqrt(dof); /* see DuMouchel, sec 4.2 */ double ss_err = rnorm * rnorm; double ss_tot = gsl_stats_tss(y->data, y->stride, n); /* compute R^2 */ w->stats.Rsq = 1.0 - ss_err / ss_tot; /* compute adjusted R^2 */ w->stats.adj_Rsq = 1.0 - (1.0 - w->stats.Rsq) * (n - 1.0) / dof; /* compute rmse */ w->stats.rmse = sqrt(ss_err / dof); /* store SSE */ w->stats.sse = ss_err; } /* calculate covariance matrix = sigma^2 (X^T X)^{-1} */ s = robust_covariance(w->stats.sigma, cov, w); if (s) return s; /* raise an error if not converged */ if (numit > w->maxiter) { GSL_ERROR("maximum iterations exceeded", GSL_EMAXITER); } return s; } } /* gsl_multifit_robust() */ /* Estimation of values for given x */ int gsl_multifit_robust_est(const gsl_vector * x, const gsl_vector * c, const gsl_matrix * cov, double *y, double *y_err) { int s = gsl_multifit_linear_est(x, c, cov, y, y_err); return s; } /*********************************** * INTERNAL ROUTINES * ***********************************/ /* robust_test_convergence() Test for convergence in robust least squares Convergence criteria: |c_i^(k) - c_i^(k-1)| <= tol * max(|c_i^(k)|, |c_i^(k-1)|) for all i. k refers to iteration number. Inputs: c_prev - coefficients from previous iteration c - coefficients from current iteration tol - tolerance Return: 1 if converged, 0 if not */ static int robust_test_convergence(const gsl_vector *c_prev, const gsl_vector *c, const double tol) { size_t p = c->size; size_t i; for (i = 0; i < p; ++i) { double ai = gsl_vector_get(c_prev, i); double bi = gsl_vector_get(c, i); if (fabs(bi - ai) > tol * GSL_MAX(fabs(ai), fabs(bi))) return 0; /* not yet converged */ } /* converged */ return 1; } /* robust_test_convergence() */ /* robust_madsigma() Estimate the standard deviation of the residuals using the Median-Absolute-Deviation (MAD) of the residuals, throwing away the smallest p residuals. See: Street et al, 1988 Inputs: r - vector of residuals w - workspace */ static double robust_madsigma(const gsl_vector *r, gsl_multifit_robust_workspace *w) { gsl_vector_view v; double sigma; size_t n = r->size; const size_t p = w->p; size_t i; /* copy |r| into workn */ for (i = 0; i < n; ++i) { gsl_vector_set(w->workn, i, fabs(gsl_vector_get(r, i))); } gsl_sort_vector(w->workn); /* * ignore the smallest p residuals when computing the median * (see Street et al 1988) */ v = gsl_vector_subvector(w->workn, p - 1, n - p + 1); sigma = gsl_stats_median_from_sorted_data(v.vector.data, v.vector.stride, v.vector.size) / 0.6745; return sigma; } /* robust_madsigma() */ /* robust_robsigma() Compute robust estimate of sigma so that sigma^2 * inv(X' * X) is a reasonable estimate of the covariance for robust regression. Based heavily on the equations of Street et al, 1988. Inputs: r - vector of residuals y - X c s - sigma estimate using MAD tune - tuning constant w - workspace */ static double robust_robsigma(const gsl_vector *r, const double s, const double tune, gsl_multifit_robust_workspace *w) { double sigma; size_t i; const size_t n = w->n; const size_t p = w->p; const double st = s * tune; double a, b, lambda; /* compute u = r / sqrt(1 - h) / st */ gsl_vector_memcpy(w->workn, r); gsl_vector_mul(w->workn, w->resfac); gsl_vector_scale(w->workn, 1.0 / st); /* compute w(u) and psi'(u) */ w->type->wfun(w->workn, w->psi); w->type->psi_deriv(w->workn, w->dpsi); /* compute psi(u) = u*w(u) */ gsl_vector_mul(w->psi, w->workn); /* Street et al, Eq (3) */ a = gsl_stats_mean(w->dpsi->data, w->dpsi->stride, n); /* Street et al, Eq (5) */ b = 0.0; for (i = 0; i < n; ++i) { double psi_i = gsl_vector_get(w->psi, i); double resfac = gsl_vector_get(w->resfac, i); double fac = 1.0 / (resfac*resfac); /* 1 - h */ b += fac * psi_i * psi_i; } b /= (double) (n - p); /* Street et al, Eq (5) */ lambda = 1.0 + ((double)p)/((double)n) * (1.0 - a) / a; sigma = lambda * sqrt(b) * st / a; return sigma; } /* robust_robsigma() */ /* robust_sigma() Compute final estimate of residual standard deviation, using the OLS and robust sigma estimates. This equation is taken from DuMouchel and O'Brien, sec 4.1: \hat{\sigma_R} Inputs: s_ols - OLS sigma s_rob - robust sigma w - workspace Return: final estimate of sigma */ static double robust_sigma(const double s_ols, const double s_rob, gsl_multifit_robust_workspace *w) { double sigma; const size_t p = w->p; const size_t n = w->n; /* see DuMouchel and O'Brien, sec 4.1 */ sigma = GSL_MAX(s_rob, sqrt((s_ols*s_ols*p*p + s_rob*s_rob*n) / (p*p + n))); return sigma; } /* robust_sigma() */ /* robust_covariance() Calculate final covariance matrix, defined as: sigma * (X^T X)^{-1} Inputs: sigma - residual standard deviation cov - (output) covariance matrix w - workspace */ static int robust_covariance(const double sigma, gsl_matrix *cov, gsl_multifit_robust_workspace *w) { int s = 0; const size_t p = w->p; const double s2 = sigma * sigma; size_t i, j; gsl_matrix *QSI = w->QSI; gsl_vector *D = w->D; /* Form variance-covariance matrix cov = s2 * (Q S^-1) (Q S^-1)^T */ for (i = 0; i < p; i++) { gsl_vector_view row_i = gsl_matrix_row (QSI, i); double d_i = gsl_vector_get (D, i); for (j = i; j < p; j++) { gsl_vector_view row_j = gsl_matrix_row (QSI, j); double d_j = gsl_vector_get (D, j); double s; gsl_blas_ddot (&row_i.vector, &row_j.vector, &s); gsl_matrix_set (cov, i, j, s * s2 / (d_i * d_j)); gsl_matrix_set (cov, j, i, s * s2 / (d_i * d_j)); } } return s; } /* robust_covariance() */ gsl-1.16/multifit/work.c0000664000252300025230000000647212171574312012146 00000000000000/* multifit/work.c * * Copyright (C) 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include gsl_multifit_linear_workspace * gsl_multifit_linear_alloc (size_t n, size_t p) { gsl_multifit_linear_workspace *w; w = (gsl_multifit_linear_workspace *) malloc (sizeof (gsl_multifit_linear_workspace)); if (w == 0) { GSL_ERROR_VAL ("failed to allocate space for multifit_linear struct", GSL_ENOMEM, 0); } w->n = n; /* number of observations */ w->p = p; /* number of parameters */ w->A = gsl_matrix_alloc (n, p); if (w->A == 0) { free (w); GSL_ERROR_VAL ("failed to allocate space for A", GSL_ENOMEM, 0); } w->Q = gsl_matrix_alloc (p, p); if (w->Q == 0) { gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for Q", GSL_ENOMEM, 0); } w->QSI = gsl_matrix_alloc (p, p); if (w->QSI == 0) { gsl_matrix_free (w->Q); gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for QSI", GSL_ENOMEM, 0); } w->S = gsl_vector_alloc (p); if (w->S == 0) { gsl_matrix_free (w->QSI); gsl_matrix_free (w->Q); gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for S", GSL_ENOMEM, 0); } w->t = gsl_vector_alloc (n); if (w->t == 0) { gsl_vector_free (w->S); gsl_matrix_free (w->QSI); gsl_matrix_free (w->Q); gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for t", GSL_ENOMEM, 0); } w->xt = gsl_vector_calloc (p); if (w->xt == 0) { gsl_vector_free (w->t); gsl_vector_free (w->S); gsl_matrix_free (w->QSI); gsl_matrix_free (w->Q); gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for xt", GSL_ENOMEM, 0); } w->D = gsl_vector_calloc (p); if (w->D == 0) { gsl_vector_free (w->D); gsl_vector_free (w->t); gsl_vector_free (w->S); gsl_matrix_free (w->QSI); gsl_matrix_free (w->Q); gsl_matrix_free (w->A); free (w); GSL_ERROR_VAL ("failed to allocate space for xt", GSL_ENOMEM, 0); } return w; } void gsl_multifit_linear_free (gsl_multifit_linear_workspace * work) { RETURN_IF_NULL (work); gsl_matrix_free (work->A); gsl_matrix_free (work->Q); gsl_matrix_free (work->QSI); gsl_vector_free (work->S); gsl_vector_free (work->t); gsl_vector_free (work->xt); gsl_vector_free (work->D); free (work); } gsl-1.16/multifit/qrsolv.c0000664000252300025230000001324712171574312012510 00000000000000/* This function computes the solution to the least squares system phi = [ A x = b , lambda D x = 0 ]^2 where A is an M by N matrix, D is an N by N diagonal matrix, lambda is a scalar parameter and b is a vector of length M. The function requires the factorization of A into A = Q R P^T, where Q is an orthogonal matrix, R is an upper triangular matrix with diagonal elements of non-increasing magnitude and P is a permuation matrix. The system above is then equivalent to [ R z = Q^T b, P^T (lambda D) P z = 0 ] where x = P z. If this system does not have full rank then a least squares solution is obtained. On output the function also provides an upper triangular matrix S such that P^T (A^T A + lambda^2 D^T D) P = S^T S Parameters, r: On input, contains the full upper triangle of R. On output the strict lower triangle contains the transpose of the strict upper triangle of S, and the diagonal of S is stored in sdiag. The full upper triangle of R is not modified. p: the encoded form of the permutation matrix P. column j of P is column p[j] of the identity matrix. lambda, diag: contains the scalar lambda and the diagonal elements of the matrix D qtb: contains the product Q^T b x: on output contains the least squares solution of the system wa: is a workspace of length N */ static int qrsolv (gsl_matrix * r, const gsl_permutation * p, const double lambda, const gsl_vector * diag, const gsl_vector * qtb, gsl_vector * x, gsl_vector * sdiag, gsl_vector * wa) { size_t n = r->size2; size_t i, j, k, nsing; /* Copy r and qtb to preserve input and initialise s. In particular, save the diagonal elements of r in x */ for (j = 0; j < n; j++) { double rjj = gsl_matrix_get (r, j, j); double qtbj = gsl_vector_get (qtb, j); for (i = j + 1; i < n; i++) { double rji = gsl_matrix_get (r, j, i); gsl_matrix_set (r, i, j, rji); } gsl_vector_set (x, j, rjj); gsl_vector_set (wa, j, qtbj); } /* Eliminate the diagonal matrix d using a Givens rotation */ for (j = 0; j < n; j++) { double qtbpj; size_t pj = gsl_permutation_get (p, j); double diagpj = lambda * gsl_vector_get (diag, pj); if (diagpj == 0) { continue; } gsl_vector_set (sdiag, j, diagpj); for (k = j + 1; k < n; k++) { gsl_vector_set (sdiag, k, 0.0); } /* The transformations to eliminate the row of d modify only a single element of qtb beyond the first n, which is initially zero */ qtbpj = 0; for (k = j; k < n; k++) { /* Determine a Givens rotation which eliminates the appropriate element in the current row of d */ double sine, cosine; double wak = gsl_vector_get (wa, k); double rkk = gsl_matrix_get (r, k, k); double sdiagk = gsl_vector_get (sdiag, k); if (sdiagk == 0) { continue; } if (fabs (rkk) < fabs (sdiagk)) { double cotangent = rkk / sdiagk; sine = 0.5 / sqrt (0.25 + 0.25 * cotangent * cotangent); cosine = sine * cotangent; } else { double tangent = sdiagk / rkk; cosine = 0.5 / sqrt (0.25 + 0.25 * tangent * tangent); sine = cosine * tangent; } /* Compute the modified diagonal element of r and the modified element of [qtb,0] */ { double new_rkk = cosine * rkk + sine * sdiagk; double new_wak = cosine * wak + sine * qtbpj; qtbpj = -sine * wak + cosine * qtbpj; gsl_matrix_set(r, k, k, new_rkk); gsl_vector_set(wa, k, new_wak); } /* Accumulate the transformation in the row of s */ for (i = k + 1; i < n; i++) { double rik = gsl_matrix_get (r, i, k); double sdiagi = gsl_vector_get (sdiag, i); double new_rik = cosine * rik + sine * sdiagi; double new_sdiagi = -sine * rik + cosine * sdiagi; gsl_matrix_set(r, i, k, new_rik); gsl_vector_set(sdiag, i, new_sdiagi); } } /* Store the corresponding diagonal element of s and restore the corresponding diagonal element of r */ { double rjj = gsl_matrix_get (r, j, j); double xj = gsl_vector_get(x, j); gsl_vector_set (sdiag, j, rjj); gsl_matrix_set (r, j, j, xj); } } /* Solve the triangular system for z. If the system is singular then obtain a least squares solution */ nsing = n; for (j = 0; j < n; j++) { double sdiagj = gsl_vector_get (sdiag, j); if (sdiagj == 0) { nsing = j; break; } } for (j = nsing; j < n; j++) { gsl_vector_set (wa, j, 0.0); } for (k = 0; k < nsing; k++) { double sum = 0; j = (nsing - 1) - k; for (i = j + 1; i < nsing; i++) { sum += gsl_matrix_get(r, i, j) * gsl_vector_get(wa, i); } { double waj = gsl_vector_get (wa, j); double sdiagj = gsl_vector_get (sdiag, j); gsl_vector_set (wa, j, (waj - sum) / sdiagj); } } /* Permute the components of z back to the components of x */ for (j = 0; j < n; j++) { size_t pj = gsl_permutation_get (p, j); double waj = gsl_vector_get (wa, j); gsl_vector_set (x, pj, waj); } return GSL_SUCCESS; } gsl-1.16/multifit/test_brown.c0000664000252300025230000000600512171574312013342 00000000000000const size_t brown_N = 20; const size_t brown_P = 4; double brown_X[20][4] = { {24.3485677, 4.71448798, -2.19486633, 2.69405755}, {22.4116222, 3.93075538, -1.42344852, 2.5233557}, {17.88886, 2.9290853, .125174936, -3.96823353}, {17.3237176, 2.99606803, 2.03285653, 2.28992327}, {17.0906508, 3.02485425, .296995153, .0876226126}, {16.578006, 3.1036312, -.18617941, .103262914}, {15.692993, 3.33088442, .0706406887, 1.05923955}, {14.3232177, 3.85604218, -2.3762839, -3.09486813}, {14.1279266, 3.97896121, .446109351, 1.40023753}, {13.6081961, 4.16435075, -1.51250057, -1.52510626}, {13.4295245, 4.22697223, -.196985195, .532009293}, {13.0176117, 4.3579261, -.353131208, .301377627}, {12.2713535, 4.62398535, -.00183585584, .894170703}, {11.0316144, 5.13967727, -2.38978772, -2.89510064}, {10.8807981, 5.24558004, .230495952, 1.27315117}, {10.4029264, 5.41141257, -1.5116632, -1.47615921}, {10.2574435, 5.46211045, -.299855732, .451893162}, {9.87863876, 5.57914292, -.368885288, .358086545}, {9.1894983, 5.82082741, -.230157969, .621476534}, {8.00589008, 6.27788753, -1.46022815, -1.33468082} }; double brown_F[20] = { 2474.05541, 1924.69004, 1280.63194, 1244.81867, 1190.53739, 1159.34935, 1108.44426, 1090.11073, 1015.92942, 1002.43533, 971.221084, 949.589435, 911.359899, 906.522994, 840.525729, 833.950164, 807.557511, 791.00924, 761.09598, 726.787783, }; double brown_cov[4][4] = { { 1.8893186910e-01, -4.7099989571e-02, 5.2154168404e-01, 1.6608168209e-02}, {-4.7099989571e-02, 1.1761534388e-02, -1.2987843074e-01, -4.1615942391e-03}, { 5.2154168404e-01, -1.2987843074e-01, 1.4653936514e+00, 1.5738321686e-02}, { 1.6608168209e-02, -4.1615942391e-03, 1.5738321686e-02, 4.2348042340e-02}, }; double brown_x0[4] = { 25, 5, -5, -1 }; int brown_f (const gsl_vector * x, void *params, gsl_vector * f) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); size_t i; for (i = 0; i < 20; i++) { double ti = 0.2 * (i + 1); double ui = x0 + x1 * ti - exp (ti); double vi = x2 + x3 * sin (ti) - cos (ti); gsl_vector_set (f, i, ui * ui + vi * vi); } return GSL_SUCCESS; } int brown_df (const gsl_vector * x, void *params, gsl_matrix * df) { double x0 = gsl_vector_get (x, 0); double x1 = gsl_vector_get (x, 1); double x2 = gsl_vector_get (x, 2); double x3 = gsl_vector_get (x, 3); size_t i; for (i = 0; i < 20; i++) { double ti = 0.2 * (i + 1); double ui = x0 + x1 * ti - exp (ti); double vi = x2 + x3 * sin (ti) - cos (ti); gsl_matrix_set (df, i, 0, 2 * ui); gsl_matrix_set (df, i, 1, 2 * ui * ti); gsl_matrix_set (df, i, 2, 2 * vi); gsl_matrix_set (df, i, 3, 2 * vi * sin (ti)); } return GSL_SUCCESS; } int brown_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { brown_f (x, params, f); brown_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multifit/test.c0000664000252300025230000002027012171574312012133 00000000000000/* multifit/test.c * * Copyright (C) 2007, 2013 Brian Gough, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* These tests are based on the NIST Statistical Reference Datasets See http://www.nist.gov/itl/div898/strd/index.html for more information. */ #include #include #include #include #include #include #include #include #include "test_longley.c" #include "test_filip.c" #include "test_pontius.c" #include "test_brown.c" #include "test_enso.c" #include "test_kirby2.c" #include "test_hahn1.c" #include "test_nelson.c" #include "test_fn.c" #include "test_estimator.c" void test_lmder (gsl_multifit_function_fdf * f, double x0[], double * X, double F[], double * cov); void test_fdf (const char * name, gsl_multifit_function_fdf * f, double x0[], double x[], double sumsq, double sigma[], double epsrel, double epsrel_sigma); int main (void) { double epsrel = 1.0e-5; double epsrel_sigma = 1.0e-4; double epsrel_fd = 1.0e-2; double epsrel_sigma_fd = 1.0e-2; gsl_multifit_function_fdf f; gsl_ieee_env_setup(); /* test linear regression */ test_longley(); test_filip(); test_pontius(); test_estimator(); { f = make_fdf (&brown_f, &brown_df, &brown_fdf, brown_N, brown_P, 0); test_lmder(&f, brown_x0, &brown_X[0][0], brown_F, &brown_cov[0][0]); } { f = make_fdf (&enso_f, &enso_df, &enso_fdf, enso_N, enso_P, 0); test_fdf("nist-ENSO", &f, enso_x0, enso_x, enso_sumsq, enso_sigma, epsrel, epsrel_sigma); f = make_fdf (&enso_f, NULL, NULL, enso_N, enso_P, 0); test_fdf("nist-ENSO", &f, enso_x0, enso_x, enso_sumsq, enso_sigma, epsrel_fd, epsrel_sigma_fd); } { f = make_fdf (&kirby2_f, &kirby2_df, &kirby2_fdf, kirby2_N, kirby2_P, 0); test_fdf("nist-kirby2", &f, kirby2_x0, kirby2_x, kirby2_sumsq, kirby2_sigma, epsrel, epsrel_sigma); f = make_fdf (&kirby2_f, NULL, NULL, kirby2_N, kirby2_P, 0); test_fdf("nist-kirby2", &f, kirby2_x0, kirby2_x, kirby2_sumsq, kirby2_sigma, epsrel_fd, epsrel_sigma_fd); } { f = make_fdf (&hahn1_f, &hahn1_df, &hahn1_fdf, hahn1_N, hahn1_P, 0); test_fdf("nist-hahn1", &f, hahn1_x0, hahn1_x, hahn1_sumsq, hahn1_sigma, epsrel, epsrel_sigma); f = make_fdf (&hahn1_f, NULL, NULL, hahn1_N, hahn1_P, 0); test_fdf("nist-hahn1", &f, hahn1_x0, hahn1_x, hahn1_sumsq, hahn1_sigma, epsrel_fd, epsrel_sigma_fd); } #ifdef JUNK { f = make_fdf (&nelson_f, &nelson_df, &nelson_fdf, nelson_N, nelson_P, 0); test_fdf("nist-nelson", &f, nelson_x0, nelson_x, nelson_sumsq, nelson_sigma, epsrel, epsrel_sigma); } #endif /* now summarize the results */ exit (gsl_test_summary ()); } void test_lmder (gsl_multifit_function_fdf * f, double x0[], double * X, double F[], double * cov) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; const size_t n = f->n; const size_t p = f->p; int status; size_t iter = 0, i; gsl_vector_view x = gsl_vector_view_array (x0, p); T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, f, &x.vector); do { status = gsl_multifit_fdfsolver_iterate (s); for (i = 0 ; i < p; i++) { gsl_test_rel (gsl_vector_get (s->x, i), X[p*iter+i], 1e-5, "lmsder, iter=%u, x%u", iter, i); } gsl_test_rel (gsl_blas_dnrm2 (s->f), F[iter], 1e-5, "lmsder, iter=%u, f", iter); iter++; } while (iter < 20); { size_t i, j; gsl_matrix * covar = gsl_matrix_alloc (4, 4); gsl_multifit_covar (s->J, 0.0, covar); for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { gsl_test_rel (gsl_matrix_get(covar,i,j), cov[i*p + j], 1e-7, "gsl_multifit_covar cov(%d,%d)", i, j) ; } } gsl_matrix_free (covar); } gsl_multifit_fdfsolver_free (s); } void test_fdf (const char * name, gsl_multifit_function_fdf * f, double x0[], double x_final[], double f_sumsq, double sigma[], double epsrel, double epsrel_sigma) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; const size_t n = f->n; const size_t p = f->p; int status; size_t iter = 0; gsl_vector_view x = gsl_vector_view_array (x0, p); T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, f, &x.vector); do { status = gsl_multifit_fdfsolver_iterate (s); #ifdef DEBUG printf("iter = %d status = %d |f| = %.18e x = \n", iter, status, gsl_blas_dnrm2 (s->f)); gsl_vector_fprintf(stdout, s->x, "%.8e"); #endif status = gsl_multifit_test_delta (s->dx, s->x, 0.0, 1e-7); iter++; } while (status == GSL_CONTINUE && iter < 1000); { size_t i; gsl_matrix * covar = gsl_matrix_alloc (p, p); gsl_multifit_covar (s->J, 0.0, covar); for (i = 0 ; i < p; i++) { gsl_test_rel (gsl_vector_get (s->x, i), x_final[i], epsrel, "%s, lmsder, x%u", name, i); } { double s2 = pow(gsl_blas_dnrm2 (s->f), 2.0); gsl_test_rel (s2, f_sumsq, epsrel, "%s, lmsder, |f|^2", name); for (i = 0; i < p; i++) { double ei = sqrt(s2/(n-p))*sqrt(gsl_matrix_get(covar,i,i)); gsl_test_rel (ei, sigma[i], epsrel_sigma, "%s, sigma(%d)", name, i) ; } } gsl_matrix_free (covar); } /* check higher level driver routine */ { size_t i; gsl_multifit_fdfsolver_set (s, f, &x.vector); gsl_multifit_fdfsolver_driver (s, 1000, 0.0, 1.0e-7); for (i = 0 ; i < p; i++) { gsl_test_rel (gsl_vector_get (s->x, i), x_final[i], epsrel, "%s, lmsder, x%u", name, i); } } /* Check that there is no hidden state, restarting should produce identical results. */ { int status0, status1; size_t i; gsl_multifit_fdfsolver *t = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (t, f, &x.vector); /* do a few extra iterations to stir things up */ gsl_multifit_fdfsolver_set (s, f, &x.vector); for (i = 0; i < 3; i++) { gsl_multifit_fdfsolver_iterate (s); } gsl_multifit_fdfsolver_set (s, f, &x.vector); do { status0 = gsl_multifit_fdfsolver_iterate (s); status1 = gsl_multifit_fdfsolver_iterate (t); gsl_test_int(status0, status1, "%s, lmsder status after set iter=%u", name, iter); for (i = 0; i < p; i++) { double sxi = gsl_vector_get(s->x,i); double txi = gsl_vector_get(t->x,i); #ifdef DEBUG printf("%d %g %g\n", i, sxi, txi); #endif gsl_test_rel(sxi, txi, 1e-15, "%s, lmsder after set, %u/%u", name, iter, i); } #ifdef DEBUG printf("iter = %d status = %d |f| = %.18e x = \n", iter, status, gsl_blas_dnrm2 (s->f)); gsl_vector_fprintf(stdout, s->x, "%.8e"); #endif status0 = gsl_multifit_test_delta (s->dx, s->x, 0.0, 1e-7); status1 = gsl_multifit_test_delta (t->dx, s->x, 0.0, 1e-7); gsl_test_int(status0, status1, "%s, lmsder test delta status after set iter=%u", name, iter); iter++; } while (status1 == GSL_CONTINUE && iter < 1000); gsl_multifit_fdfsolver_free (t); } gsl_multifit_fdfsolver_free (s); } gsl-1.16/multifit/fdjac.c0000664000252300025230000000712112171574312012223 00000000000000/* multifit/fdjac.c * * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * * This module contains routines for approximating the Jacobian with finite * differences for nonlinear least-squares fitting. */ #include #include #include #include #include static int fdjac(const gsl_vector *x, gsl_multifit_function_fdf *fdf, const gsl_vector *f, gsl_matrix *J); /* fdjac() Compute approximate Jacobian using forward differences Inputs: x - parameter vector fdf - fdf struct f - (input) vector of function values f_i(x) J - (output) Jacobian matrix Return: success or error */ static int fdjac(const gsl_vector *x, gsl_multifit_function_fdf *fdf, const gsl_vector *f, gsl_matrix *J) { int status = 0; size_t i, j; double h; const double epsfcn = 0.0; double eps = sqrt(GSL_MAX(epsfcn, GSL_DBL_EPSILON)); for (j = 0; j < fdf->p; ++j) { double xj = gsl_vector_get(x, j); /* use column j of J as temporary storage for f(x + dx) */ gsl_vector_view v = gsl_matrix_column(J, j); h = eps * fabs(xj); if (h == 0.0) h = eps; /* perturb x_j to compute forward difference */ gsl_vector_set((gsl_vector *) x, j, xj + h); status += GSL_MULTIFIT_FN_EVAL_F (fdf, x, &v.vector); if (status) return status; /* restore x_j */ gsl_vector_set((gsl_vector *) x, j, xj); h = 1.0 / h; for (i = 0; i < fdf->n; ++i) { double fnext = gsl_vector_get(&v.vector, i); double fi = gsl_vector_get(f, i); gsl_matrix_set(J, i, j, (fnext - fi) * h); } } return status; } /* fdjac() */ /* gsl_multifit_fdfsolver_dif_df() Compute approximate Jacobian using finite differences Inputs: x - parameter vector fdf - fdf f - (input) function values f_i(x) J - (output) approximate Jacobian matrix Return: success or error */ int gsl_multifit_fdfsolver_dif_df(const gsl_vector *x, gsl_multifit_function_fdf *fdf, const gsl_vector *f, gsl_matrix *J) { return fdjac(x, fdf, f, J); } /* gsl_multifit_fdfsolver_dif_df() */ /* gsl_multifit_fdfsolver_dif_fdf() Compute function values (analytic) and approximate Jacobian using finite differences Inputs: x - parameter vector fdf - fdf f - (output) function values f_i(x) J - (output) approximate Jacobian matrix Return: success or error */ int gsl_multifit_fdfsolver_dif_fdf(const gsl_vector *x, gsl_multifit_function_fdf *fdf, gsl_vector *f, gsl_matrix *J) { int status = 0; status = GSL_MULTIFIT_FN_EVAL_F(fdf, x, f); if (status) return status; status = fdjac(x, fdf, f, J); if (status) return status; return status; } /* gsl_multifit_fdfsolver_dif_fdf() */ gsl-1.16/multifit/convergence.c0000664000252300025230000000376712171574312013466 00000000000000/* multifit/convergence.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_multifit_test_delta (const gsl_vector * dx, const gsl_vector * x, double epsabs, double epsrel) { size_t i; int ok = 1; const size_t n = x->size ; if (epsrel < 0.0) { GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL); } for (i = 0 ; i < n ; i++) { double xi = gsl_vector_get(x,i); double dxi = gsl_vector_get(dx,i); double tolerance = epsabs + epsrel * fabs(xi) ; if (fabs(dxi) < tolerance) { ok = 1; } else { ok = 0; break; } } if (ok) return GSL_SUCCESS ; return GSL_CONTINUE; } int gsl_multifit_test_gradient (const gsl_vector * g, double epsabs) { size_t i; double residual = 0; const size_t n = g->size; if (epsabs < 0.0) { GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); } for (i = 0 ; i < n ; i++) { double gi = gsl_vector_get(g, i); residual += fabs(gi); } if (residual < epsabs) { return GSL_SUCCESS; } return GSL_CONTINUE ; } gsl-1.16/multifit/gsl_multifit_nlin.h0000664000252300025230000001427712171574312014715 00000000000000/* multifit_nlin/gsl_multifit_nlin.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MULTIFIT_NLIN_H__ #define __GSL_MULTIFIT_NLIN_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_multifit_gradient (const gsl_matrix * J, const gsl_vector * f, gsl_vector * g); int gsl_multifit_covar (const gsl_matrix * J, double epsrel, gsl_matrix * covar); /* Definition of vector-valued functions with parameters based on gsl_vector */ struct gsl_multifit_function_struct { int (* f) (const gsl_vector * x, void * params, gsl_vector * f); size_t n; /* number of functions */ size_t p; /* number of independent variables */ void * params; }; typedef struct gsl_multifit_function_struct gsl_multifit_function ; #define GSL_MULTIFIT_FN_EVAL(F,x,y) (*((F)->f))(x,(F)->params,(y)) typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n, size_t p); int (*set) (void *state, gsl_multifit_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); int (*iterate) (void *state, gsl_multifit_function * function, gsl_vector * x, gsl_vector * f, gsl_vector * dx); void (*free) (void *state); } gsl_multifit_fsolver_type; typedef struct { const gsl_multifit_fsolver_type * type; gsl_multifit_function * function ; gsl_vector * x ; gsl_vector * f ; gsl_vector * dx ; void *state; } gsl_multifit_fsolver; gsl_multifit_fsolver * gsl_multifit_fsolver_alloc (const gsl_multifit_fsolver_type * T, size_t n, size_t p); void gsl_multifit_fsolver_free (gsl_multifit_fsolver * s); int gsl_multifit_fsolver_set (gsl_multifit_fsolver * s, gsl_multifit_function * f, const gsl_vector * x); int gsl_multifit_fsolver_iterate (gsl_multifit_fsolver * s); int gsl_multifit_fsolver_driver (gsl_multifit_fsolver * s, const size_t maxiter, const double epsabs, const double epsrel); const char * gsl_multifit_fsolver_name (const gsl_multifit_fsolver * s); gsl_vector * gsl_multifit_fsolver_position (const gsl_multifit_fsolver * s); /* Definition of vector-valued functions and gradient with parameters based on gsl_vector */ struct gsl_multifit_function_fdf_struct { int (* f) (const gsl_vector * x, void * params, gsl_vector * f); int (* df) (const gsl_vector * x, void * params, gsl_matrix * df); int (* fdf) (const gsl_vector * x, void * params, gsl_vector * f, gsl_matrix *df); size_t n; /* number of functions */ size_t p; /* number of independent variables */ void * params; }; typedef struct gsl_multifit_function_fdf_struct gsl_multifit_function_fdf ; #define GSL_MULTIFIT_FN_EVAL_F(F,x,y) ((*((F)->f))(x,(F)->params,(y))) #define GSL_MULTIFIT_FN_EVAL_DF(F,x,dy) ((*((F)->df))(x,(F)->params,(dy))) #define GSL_MULTIFIT_FN_EVAL_F_DF(F,x,y,dy) ((*((F)->fdf))(x,(F)->params,(y),(dy))) typedef struct { const char *name; size_t size; int (*alloc) (void *state, size_t n, size_t p); int (*set) (void *state, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); int (*iterate) (void *state, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); void (*free) (void *state); } gsl_multifit_fdfsolver_type; typedef struct { const gsl_multifit_fdfsolver_type * type; gsl_multifit_function_fdf * fdf ; gsl_vector * x; gsl_vector * f; gsl_matrix * J; gsl_vector * dx; void *state; } gsl_multifit_fdfsolver; gsl_multifit_fdfsolver * gsl_multifit_fdfsolver_alloc (const gsl_multifit_fdfsolver_type * T, size_t n, size_t p); int gsl_multifit_fdfsolver_set (gsl_multifit_fdfsolver * s, gsl_multifit_function_fdf * fdf, const gsl_vector * x); int gsl_multifit_fdfsolver_iterate (gsl_multifit_fdfsolver * s); int gsl_multifit_fdfsolver_driver (gsl_multifit_fdfsolver * s, const size_t maxiter, const double epsabs, const double epsrel); void gsl_multifit_fdfsolver_free (gsl_multifit_fdfsolver * s); const char * gsl_multifit_fdfsolver_name (const gsl_multifit_fdfsolver * s); gsl_vector * gsl_multifit_fdfsolver_position (const gsl_multifit_fdfsolver * s); int gsl_multifit_test_delta (const gsl_vector * dx, const gsl_vector * x, double epsabs, double epsrel); int gsl_multifit_test_gradient (const gsl_vector * g, double epsabs); int gsl_multifit_fdfsolver_dif_df(const gsl_vector *x, gsl_multifit_function_fdf *fdf, const gsl_vector *f, gsl_matrix *J); int gsl_multifit_fdfsolver_dif_fdf(const gsl_vector *x, gsl_multifit_function_fdf *fdf, gsl_vector *f, gsl_matrix *J); /* extern const gsl_multifit_fsolver_type * gsl_multifit_fsolver_gradient; */ GSL_VAR const gsl_multifit_fdfsolver_type * gsl_multifit_fdfsolver_lmder; GSL_VAR const gsl_multifit_fdfsolver_type * gsl_multifit_fdfsolver_lmsder; __END_DECLS #endif /* __GSL_MULTIFIT_NLIN_H__ */ gsl-1.16/multifit/test_nelson.c0000664000252300025230000001413712171574312013516 00000000000000const size_t nelson_N = 128; const size_t nelson_P = 3; /* double nelson_x0[3] = { 2, 0.0001, -0.01}; */ double nelson_x0[3] = { 2.5 , 0.000000005, -0.01}; double nelson_x[3] = { 2.5906836021E+00, 5.6177717026E-09, -5.7701013174E-02 }; double nelson_sumsq = 3.7976833176E+00; double nelson_sigma[3] = { 1.9149996413E-02, 6.1124096540E-09, 3.9572366543E-03 }; double nelson_F[128][3] = { { 15.00E0, 1E0, 180E0}, { 17.00E0, 1E0, 180E0}, { 15.50E0, 1E0, 180E0}, { 16.50E0, 1E0, 180E0}, { 15.50E0, 1E0, 225E0}, { 15.00E0, 1E0, 225E0}, { 16.00E0, 1E0, 225E0}, { 14.50E0, 1E0, 225E0}, { 15.00E0, 1E0, 250E0}, { 14.50E0, 1E0, 250E0}, { 12.50E0, 1E0, 250E0}, { 11.00E0, 1E0, 250E0}, { 14.00E0, 1E0, 275E0}, { 13.00E0, 1E0, 275E0}, { 14.00E0, 1E0, 275E0}, { 11.50E0, 1E0, 275E0}, { 14.00E0, 2E0, 180E0}, { 16.00E0, 2E0, 180E0}, { 13.00E0, 2E0, 180E0}, { 13.50E0, 2E0, 180E0}, { 13.00E0, 2E0, 225E0}, { 13.50E0, 2E0, 225E0}, { 12.50E0, 2E0, 225E0}, { 12.50E0, 2E0, 225E0}, { 12.50E0, 2E0, 250E0}, { 12.00E0, 2E0, 250E0}, { 11.50E0, 2E0, 250E0}, { 12.00E0, 2E0, 250E0}, { 13.00E0, 2E0, 275E0}, { 11.50E0, 2E0, 275E0}, { 13.00E0, 2E0, 275E0}, { 12.50E0, 2E0, 275E0}, { 13.50E0, 4E0, 180E0}, { 17.50E0, 4E0, 180E0}, { 17.50E0, 4E0, 180E0}, { 13.50E0, 4E0, 180E0}, { 12.50E0, 4E0, 225E0}, { 12.50E0, 4E0, 225E0}, { 15.00E0, 4E0, 225E0}, { 13.00E0, 4E0, 225E0}, { 12.00E0, 4E0, 250E0}, { 13.00E0, 4E0, 250E0}, { 12.00E0, 4E0, 250E0}, { 13.50E0, 4E0, 250E0}, { 10.00E0, 4E0, 275E0}, { 11.50E0, 4E0, 275E0}, { 11.00E0, 4E0, 275E0}, { 9.50E0, 4E0, 275E0}, { 15.00E0, 8E0, 180E0}, { 15.00E0, 8E0, 180E0}, { 15.50E0, 8E0, 180E0}, { 16.00E0, 8E0, 180E0}, { 13.00E0, 8E0, 225E0}, { 10.50E0, 8E0, 225E0}, { 13.50E0, 8E0, 225E0}, { 14.00E0, 8E0, 225E0}, { 12.50E0, 8E0, 250E0}, { 12.00E0, 8E0, 250E0}, { 11.50E0, 8E0, 250E0}, { 11.50E0, 8E0, 250E0}, { 6.50E0, 8E0, 275E0}, { 5.50E0, 8E0, 275E0}, { 6.00E0, 8E0, 275E0}, { 6.00E0, 8E0, 275E0}, { 18.50E0, 16E0, 180E0}, { 17.00E0, 16E0, 180E0}, { 15.30E0, 16E0, 180E0}, { 16.00E0, 16E0, 180E0}, { 13.00E0, 16E0, 225E0}, { 14.00E0, 16E0, 225E0}, { 12.50E0, 16E0, 225E0}, { 11.00E0, 16E0, 225E0}, { 12.00E0, 16E0, 250E0}, { 12.00E0, 16E0, 250E0}, { 11.50E0, 16E0, 250E0}, { 12.00E0, 16E0, 250E0}, { 6.00E0, 16E0, 275E0}, { 6.00E0, 16E0, 275E0}, { 5.00E0, 16E0, 275E0}, { 5.50E0, 16E0, 275E0}, { 12.50E0, 32E0, 180E0}, { 13.00E0, 32E0, 180E0}, { 16.00E0, 32E0, 180E0}, { 12.00E0, 32E0, 180E0}, { 11.00E0, 32E0, 225E0}, { 9.50E0, 32E0, 225E0}, { 11.00E0, 32E0, 225E0}, { 11.00E0, 32E0, 225E0}, { 11.00E0, 32E0, 250E0}, { 10.00E0, 32E0, 250E0}, { 10.50E0, 32E0, 250E0}, { 10.50E0, 32E0, 250E0}, { 2.70E0, 32E0, 275E0}, { 2.70E0, 32E0, 275E0}, { 2.50E0, 32E0, 275E0}, { 2.40E0, 32E0, 275E0}, { 13.00E0, 48E0, 180E0}, { 13.50E0, 48E0, 180E0}, { 16.50E0, 48E0, 180E0}, { 13.60E0, 48E0, 180E0}, { 11.50E0, 48E0, 225E0}, { 10.50E0, 48E0, 225E0}, { 13.50E0, 48E0, 225E0}, { 12.00E0, 48E0, 225E0}, { 7.00E0, 48E0, 250E0}, { 6.90E0, 48E0, 250E0}, { 8.80E0, 48E0, 250E0}, { 7.90E0, 48E0, 250E0}, { 1.20E0, 48E0, 275E0}, { 1.50E0, 48E0, 275E0}, { 1.00E0, 48E0, 275E0}, { 1.50E0, 48E0, 275E0}, { 13.00E0, 64E0, 180E0}, { 12.50E0, 64E0, 180E0}, { 16.50E0, 64E0, 180E0}, { 16.00E0, 64E0, 180E0}, { 11.00E0, 64E0, 225E0}, { 11.50E0, 64E0, 225E0}, { 10.50E0, 64E0, 225E0}, { 10.00E0, 64E0, 225E0}, { 7.27E0, 64E0, 250E0}, { 7.50E0, 64E0, 250E0}, { 6.70E0, 64E0, 250E0}, { 7.60E0, 64E0, 250E0}, { 1.50E0, 64E0, 275E0}, { 1.00E0, 64E0, 275E0}, { 1.20E0, 64E0, 275E0}, { 1.20E0, 64E0, 275E0} }; int nelson_f (const gsl_vector * x, void *params, gsl_vector * f) { double b[3]; size_t i; for (i = 0; i < 3; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 128; i++) { double x1 = nelson_F[i][1]; double x2 = nelson_F[i][2]; double y = b[0] - b[1] * x1 * (b[2]*x2 < -100) ? 0.0 : exp(-b[2] * x2); gsl_vector_set (f, i, log(nelson_F[i][0]) - y); } return GSL_SUCCESS; } int nelson_df (const gsl_vector * x, void *params, gsl_matrix * df) { double b[3]; size_t i; for (i = 0; i < 3; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 128; i++) { double x1 = nelson_F[i][1]; double x2 = nelson_F[i][2]; gsl_matrix_set (df, i, 0, -1.0); gsl_matrix_set (df, i, 1, x1 * exp(-b[2] * x2)); gsl_matrix_set (df, i, 2, -b[1] * x1 * x2 * exp(-b[2] * x2)); } return GSL_SUCCESS; } int nelson_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { nelson_f (x, params, f); nelson_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multifit/multilinear.c0000664000252300025230000003463012171574312013506 00000000000000/* multifit/multilinear.c * * Copyright (C) 2000, 2007, 2010 Brian Gough * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include /* Fit * * y = X c * * where X is an M x N matrix of M observations for N variables. * */ static int multifit_linear_svd (const gsl_matrix * X, const gsl_vector * y, double tol, int balance, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { if (X->size1 != y->size) { GSL_ERROR ("number of observations in y does not match rows of matrix X", GSL_EBADLEN); } else if (X->size2 != c->size) { GSL_ERROR ("number of parameters c does not match columns of matrix X", GSL_EBADLEN); } else if (cov->size1 != cov->size2) { GSL_ERROR ("covariance matrix is not square", GSL_ENOTSQR); } else if (c->size != cov->size1) { GSL_ERROR ("number of parameters does not match size of covariance matrix", GSL_EBADLEN); } else if (X->size1 != work->n || X->size2 != work->p) { GSL_ERROR ("size of workspace does not match size of observation matrix", GSL_EBADLEN); } else if (tol <= 0) { GSL_ERROR ("tolerance must be positive", GSL_EINVAL); } else { const size_t n = X->size1; const size_t p = X->size2; size_t i, j, p_eff; gsl_matrix *A = work->A; gsl_matrix *Q = work->Q; gsl_matrix *QSI = work->QSI; gsl_vector *S = work->S; gsl_vector *xt = work->xt; gsl_vector *D = work->D; /* Copy X to workspace, A <= X */ gsl_matrix_memcpy (A, X); /* Balance the columns of the matrix A if requested */ if (balance) { gsl_linalg_balance_columns (A, D); } else { gsl_vector_set_all (D, 1.0); } /* Decompose A into U S Q^T */ gsl_linalg_SV_decomp_mod (A, QSI, Q, S, xt); /* Solve y = A c for c */ gsl_blas_dgemv (CblasTrans, 1.0, A, y, 0.0, xt); /* Scale the matrix Q, Q' = Q S^-1 */ gsl_matrix_memcpy (QSI, Q); { double alpha0 = gsl_vector_get (S, 0); p_eff = 0; for (j = 0; j < p; j++) { gsl_vector_view column = gsl_matrix_column (QSI, j); double alpha = gsl_vector_get (S, j); if (alpha <= tol * alpha0) { alpha = 0.0; } else { alpha = 1.0 / alpha; p_eff++; } gsl_vector_scale (&column.vector, alpha); } *rank = p_eff; } gsl_vector_set_zero (c); gsl_blas_dgemv (CblasNoTrans, 1.0, QSI, xt, 0.0, c); /* Unscale the balancing factors */ gsl_vector_div (c, D); /* Compute chisq, from residual r = y - X c */ { double s2 = 0, r2 = 0; for (i = 0; i < n; i++) { double yi = gsl_vector_get (y, i); gsl_vector_const_view row = gsl_matrix_const_row (X, i); double y_est, ri; gsl_blas_ddot (&row.vector, c, &y_est); ri = yi - y_est; r2 += ri * ri; } s2 = r2 / (n - p_eff); /* p_eff == rank */ *chisq = r2; /* Form variance-covariance matrix cov = s2 * (Q S^-1) (Q S^-1)^T */ for (i = 0; i < p; i++) { gsl_vector_view row_i = gsl_matrix_row (QSI, i); double d_i = gsl_vector_get (D, i); for (j = i; j < p; j++) { gsl_vector_view row_j = gsl_matrix_row (QSI, j); double d_j = gsl_vector_get (D, j); double s; gsl_blas_ddot (&row_i.vector, &row_j.vector, &s); gsl_matrix_set (cov, i, j, s * s2 / (d_i * d_j)); gsl_matrix_set (cov, j, i, s * s2 / (d_i * d_j)); } } } return GSL_SUCCESS; } } int gsl_multifit_linear (const gsl_matrix * X, const gsl_vector * y, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { size_t rank; int status = multifit_linear_svd (X, y, GSL_DBL_EPSILON, 1, &rank, c, cov, chisq, work); return status; } /* Handle the general case of the SVD with tolerance and rank */ int gsl_multifit_linear_svd (const gsl_matrix * X, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { int status = multifit_linear_svd (X, y, tol, 1, rank, c, cov, chisq, work); return status; } int gsl_multifit_linear_usvd (const gsl_matrix * X, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { int status = multifit_linear_svd (X, y, tol, 0, rank, c, cov, chisq, work); return status; } /* General weighted case */ static int multifit_wlinear_svd (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, double tol, int balance, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { if (X->size1 != y->size) { GSL_ERROR ("number of observations in y does not match rows of matrix X", GSL_EBADLEN); } else if (X->size2 != c->size) { GSL_ERROR ("number of parameters c does not match columns of matrix X", GSL_EBADLEN); } else if (w->size != y->size) { GSL_ERROR ("number of weights does not match number of observations", GSL_EBADLEN); } else if (cov->size1 != cov->size2) { GSL_ERROR ("covariance matrix is not square", GSL_ENOTSQR); } else if (c->size != cov->size1) { GSL_ERROR ("number of parameters does not match size of covariance matrix", GSL_EBADLEN); } else if (X->size1 != work->n || X->size2 != work->p) { GSL_ERROR ("size of workspace does not match size of observation matrix", GSL_EBADLEN); } else { const size_t n = X->size1; const size_t p = X->size2; size_t i, j, p_eff; gsl_matrix *A = work->A; gsl_matrix *Q = work->Q; gsl_matrix *QSI = work->QSI; gsl_vector *S = work->S; gsl_vector *t = work->t; gsl_vector *xt = work->xt; gsl_vector *D = work->D; /* Scale X, A = sqrt(w) X */ gsl_matrix_memcpy (A, X); for (i = 0; i < n; i++) { double wi = gsl_vector_get (w, i); if (wi < 0) wi = 0; { gsl_vector_view row = gsl_matrix_row (A, i); gsl_vector_scale (&row.vector, sqrt (wi)); } } /* Balance the columns of the matrix A if requested */ if (balance) { gsl_linalg_balance_columns (A, D); } else { gsl_vector_set_all (D, 1.0); } /* Decompose A into U S Q^T */ gsl_linalg_SV_decomp_mod (A, QSI, Q, S, xt); /* Solve sqrt(w) y = A c for c, by first computing t = sqrt(w) y */ for (i = 0; i < n; i++) { double wi = gsl_vector_get (w, i); double yi = gsl_vector_get (y, i); if (wi < 0) wi = 0; gsl_vector_set (t, i, sqrt (wi) * yi); } gsl_blas_dgemv (CblasTrans, 1.0, A, t, 0.0, xt); /* Scale the matrix Q, Q' = Q S^-1 */ gsl_matrix_memcpy (QSI, Q); { double alpha0 = gsl_vector_get (S, 0); p_eff = 0; for (j = 0; j < p; j++) { gsl_vector_view column = gsl_matrix_column (QSI, j); double alpha = gsl_vector_get (S, j); if (alpha <= tol * alpha0) { alpha = 0.0; } else { alpha = 1.0 / alpha; p_eff++; } gsl_vector_scale (&column.vector, alpha); } *rank = p_eff; } gsl_vector_set_zero (c); /* Solution */ gsl_blas_dgemv (CblasNoTrans, 1.0, QSI, xt, 0.0, c); /* Unscale the balancing factors */ gsl_vector_div (c, D); /* Compute chisq, from residual r = y - X c */ { double r2 = 0; for (i = 0; i < n; i++) { double yi = gsl_vector_get (y, i); double wi = gsl_vector_get (w, i); gsl_vector_const_view row = gsl_matrix_const_row (X, i); double y_est, ri; gsl_blas_ddot (&row.vector, c, &y_est); ri = yi - y_est; r2 += wi * ri * ri; } *chisq = r2; /* Form covariance matrix cov = (X^T W X)^-1 = (Q S^-1) (Q S^-1)^T */ for (i = 0; i < p; i++) { gsl_vector_view row_i = gsl_matrix_row (QSI, i); double d_i = gsl_vector_get (D, i); for (j = i; j < p; j++) { gsl_vector_view row_j = gsl_matrix_row (QSI, j); double d_j = gsl_vector_get (D, j); double s; gsl_blas_ddot (&row_i.vector, &row_j.vector, &s); gsl_matrix_set (cov, i, j, s / (d_i * d_j)); gsl_matrix_set (cov, j, i, s / (d_i * d_j)); } } } return GSL_SUCCESS; } } int gsl_multifit_wlinear (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { size_t rank; int status = multifit_wlinear_svd (X, w, y, GSL_DBL_EPSILON, 1, &rank, c, cov, chisq, work); return status; } int gsl_multifit_wlinear_svd (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { int status = multifit_wlinear_svd (X, w, y, tol, 1, rank, c, cov, chisq, work); return status; } int gsl_multifit_wlinear_usvd (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work) { int status = multifit_wlinear_svd (X, w, y, tol, 0, rank, c, cov, chisq, work); return status; } /* Estimation of values for given x */ int gsl_multifit_linear_est (const gsl_vector * x, const gsl_vector * c, const gsl_matrix * cov, double *y, double *y_err) { if (x->size != c->size) { GSL_ERROR ("number of parameters c does not match number of observations x", GSL_EBADLEN); } else if (cov->size1 != cov->size2) { GSL_ERROR ("covariance matrix is not square", GSL_ENOTSQR); } else if (c->size != cov->size1) { GSL_ERROR ("number of parameters c does not match size of covariance matrix cov", GSL_EBADLEN); } else { size_t i, j; double var = 0; gsl_blas_ddot(x, c, y); /* y = x.c */ /* var = x' cov x */ for (i = 0; i < x->size; i++) { const double xi = gsl_vector_get (x, i); var += xi * xi * gsl_matrix_get (cov, i, i); for (j = 0; j < i; j++) { const double xj = gsl_vector_get (x, j); var += 2 * xi * xj * gsl_matrix_get (cov, i, j); } } *y_err = sqrt (var); return GSL_SUCCESS; } } /* gsl_multifit_linear_residuals() Compute vector of residuals from fit Inputs: X - design matrix y - rhs vector c - fit coefficients r - (output) where to store residuals */ int gsl_multifit_linear_residuals (const gsl_matrix *X, const gsl_vector *y, const gsl_vector *c, gsl_vector *r) { if (X->size1 != y->size) { GSL_ERROR ("number of observations in y does not match rows of matrix X", GSL_EBADLEN); } else if (X->size2 != c->size) { GSL_ERROR ("number of parameters c does not match columns of matrix X", GSL_EBADLEN); } else if (y->size != r->size) { GSL_ERROR ("number of observations in y does not match number of residuals", GSL_EBADLEN); } else { /* r = y - X c */ gsl_vector_memcpy(r, y); gsl_blas_dgemv(CblasNoTrans, -1.0, X, c, 1.0, r); return GSL_SUCCESS; } } /* gsl_multifit_linear_residuals() */ gsl-1.16/multifit/gsl_multifit.h0000664000252300025230000001637312171574312013674 00000000000000/* multifit/gsl_multifit.h * * Copyright (C) 2000, 2007, 2010 Brian Gough * Copyright (C) 2013, Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MULTIFIT_H__ #define __GSL_MULTIFIT_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t n; /* number of observations */ size_t p; /* number of parameters */ gsl_matrix * A; gsl_matrix * Q; gsl_matrix * QSI; gsl_vector * S; gsl_vector * t; gsl_vector * xt; gsl_vector * D; } gsl_multifit_linear_workspace; gsl_multifit_linear_workspace * gsl_multifit_linear_alloc (size_t n, size_t p); void gsl_multifit_linear_free (gsl_multifit_linear_workspace * work); int gsl_multifit_linear (const gsl_matrix * X, const gsl_vector * y, gsl_vector * c, gsl_matrix * cov, double * chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_linear_svd (const gsl_matrix * X, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_linear_usvd (const gsl_matrix * X, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_wlinear (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, gsl_vector * c, gsl_matrix * cov, double * chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_wlinear_svd (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_wlinear_usvd (const gsl_matrix * X, const gsl_vector * w, const gsl_vector * y, double tol, size_t * rank, gsl_vector * c, gsl_matrix * cov, double *chisq, gsl_multifit_linear_workspace * work); int gsl_multifit_linear_est (const gsl_vector * x, const gsl_vector * c, const gsl_matrix * cov, double *y, double *y_err); int gsl_multifit_linear_residuals (const gsl_matrix *X, const gsl_vector *y, const gsl_vector *c, gsl_vector *r); typedef struct { const char * name; /* method name */ int (*wfun)(const gsl_vector *r, gsl_vector *w); int (*psi_deriv)(const gsl_vector *r, gsl_vector *dpsi); double tuning_default; /* default tuning constant */ } gsl_multifit_robust_type; typedef struct { double sigma_ols; /* OLS estimate of sigma */ double sigma_mad; /* MAD estimate of sigma */ double sigma_rob; /* robust estimate of sigma */ double sigma; /* final estimate of sigma */ double Rsq; /* R^2 coefficient of determination */ double adj_Rsq; /* degree of freedom adjusted R^2 */ double rmse; /* root mean squared error */ double sse; /* residual sum of squares */ size_t dof; /* degrees of freedom */ size_t numit; /* number of iterations */ gsl_vector *weights; /* final weights */ gsl_vector *r; /* final residuals y - X c */ } gsl_multifit_robust_stats; typedef struct { size_t n; /* number of observations */ size_t p; /* number of parameters */ size_t numit; /* number of iterations */ size_t maxiter; /* maximum iterations */ const gsl_multifit_robust_type *type; double tune; /* tuning parameter */ gsl_vector *r; /* residuals at current iteration */ gsl_vector *weights; /* weights at current iteration */ gsl_vector *c_prev; /* coefficients from previous iteration */ gsl_vector *resfac; /* multiplicative factors for residuals */ gsl_vector *psi; /* psi(r) */ gsl_vector *dpsi; /* psi'(r) */ gsl_matrix *QSI; /* Q S^{-1} of original matrix X */ gsl_vector *D; /* balancing parameters of original matrix X */ gsl_vector *workn; /* workspace of length n */ gsl_multifit_robust_stats stats; /* various statistics */ gsl_multifit_linear_workspace *multifit_p; } gsl_multifit_robust_workspace; /* available types */ GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_default; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_bisquare; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_cauchy; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_fair; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_huber; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_ols; GSL_VAR const gsl_multifit_robust_type * gsl_multifit_robust_welsch; gsl_multifit_robust_workspace *gsl_multifit_robust_alloc(const gsl_multifit_robust_type *T, const size_t n, const size_t p); void gsl_multifit_robust_free(gsl_multifit_robust_workspace *w); int gsl_multifit_robust_tune(const double tune, gsl_multifit_robust_workspace *w); const char *gsl_multifit_robust_name(const gsl_multifit_robust_workspace *w); gsl_multifit_robust_stats gsl_multifit_robust_statistics(const gsl_multifit_robust_workspace *w); int gsl_multifit_robust(const gsl_matrix * X, const gsl_vector * y, gsl_vector * c, gsl_matrix *cov, gsl_multifit_robust_workspace *w); int gsl_multifit_robust_est(const gsl_vector * x, const gsl_vector * c, const gsl_matrix * cov, double *y, double *y_err); __END_DECLS #endif /* __GSL_MULTIFIT_H__ */ gsl-1.16/multifit/test_kirby2.c0000664000252300025230000001370212171574312013417 00000000000000const size_t kirby2_N = 151; const size_t kirby2_P = 5; /* double kirby2_x0[5] = { 2, -0.1, 0.003, -0.001, 0.00001 }; */ double kirby2_x0[5] = { 1.5, -0.15, 0.0025, -0.0015, 0.00002 }; double kirby2_x[5] = { 1.6745063063E+00, -1.3927397867E-01, 2.5961181191E-03, -1.7241811870E-03, 2.1664802578E-05 }; double kirby2_sumsq = 3.9050739624E+00; double kirby2_sigma[5] = { 8.7989634338E-02, 4.1182041386E-03, 4.1856520458E-05, 5.8931897355E-05, 2.0129761919E-07 }; double kirby2_F1[151] = { 0.0082E0, 0.0112E0, 0.0149E0, 0.0198E0, 0.0248E0, 0.0324E0, 0.0420E0, 0.0549E0, 0.0719E0, 0.0963E0, 0.1291E0, 0.1710E0, 0.2314E0, 0.3227E0, 0.4809E0, 0.7084E0, 1.0220E0, 1.4580E0, 1.9520E0, 2.5410E0, 3.2230E0, 3.9990E0, 4.8520E0, 5.7320E0, 6.7270E0, 7.8350E0, 9.0250E0, 10.2670E0, 11.5780E0, 12.9440E0, 14.3770E0, 15.8560E0, 17.3310E0, 18.8850E0, 20.5750E0, 22.3200E0, 22.3030E0, 23.4600E0, 24.0600E0, 25.2720E0, 25.8530E0, 27.1100E0, 27.6580E0, 28.9240E0, 29.5110E0, 30.7100E0, 31.3500E0, 32.5200E0, 33.2300E0, 34.3300E0, 35.0600E0, 36.1700E0, 36.8400E0, 38.0100E0, 38.6700E0, 39.8700E0, 40.0300E0, 40.5000E0, 41.3700E0, 41.6700E0, 42.3100E0, 42.7300E0, 43.4600E0, 44.1400E0, 44.5500E0, 45.2200E0, 45.9200E0, 46.3000E0, 47.0000E0, 47.6800E0, 48.0600E0, 48.7400E0, 49.4100E0, 49.7600E0, 50.4300E0, 51.1100E0, 51.5000E0, 52.1200E0, 52.7600E0, 53.1800E0, 53.7800E0, 54.4600E0, 54.8300E0, 55.4000E0, 56.4300E0, 57.0300E0, 58.0000E0, 58.6100E0, 59.5800E0, 60.1100E0, 61.1000E0, 61.6500E0, 62.5900E0, 63.1200E0, 64.0300E0, 64.6200E0, 65.4900E0, 66.0300E0, 66.8900E0, 67.4200E0, 68.2300E0, 68.7700E0, 69.5900E0, 70.1100E0, 70.8600E0, 71.4300E0, 72.1600E0, 72.7000E0, 73.4000E0, 73.9300E0, 74.6000E0, 75.1600E0, 75.8200E0, 76.3400E0, 76.9800E0, 77.4800E0, 78.0800E0, 78.6000E0, 79.1700E0, 79.6200E0, 79.8800E0, 80.1900E0, 80.6600E0, 81.2200E0, 81.6600E0, 82.1600E0, 82.5900E0, 83.1400E0, 83.5000E0, 84.0000E0, 84.4000E0, 84.8900E0, 85.2600E0, 85.7400E0, 86.0700E0, 86.5400E0, 86.8900E0, 87.3200E0, 87.6500E0, 88.1000E0, 88.4300E0, 88.8300E0, 89.1200E0, 89.5400E0, 89.8500E0, 90.2500E0, 90.5500E0, 90.9300E0, 91.2000E0, 91.5500E0, 92.2000E0 }; double kirby2_F0[151] = { 9.65E0, 10.74E0, 11.81E0, 12.88E0, 14.06E0, 15.28E0, 16.63E0, 18.19E0, 19.88E0, 21.84E0, 24.00E0, 26.25E0, 28.86E0, 31.85E0, 35.79E0, 40.18E0, 44.74E0, 49.53E0, 53.94E0, 58.29E0, 62.63E0, 67.03E0, 71.25E0, 75.22E0, 79.33E0, 83.56E0, 87.75E0, 91.93E0, 96.10E0, 100.28E0, 104.46E0, 108.66E0, 112.71E0, 116.88E0, 121.33E0, 125.79E0, 125.79E0, 128.74E0, 130.27E0, 133.33E0, 134.79E0, 137.93E0, 139.33E0, 142.46E0, 143.90E0, 146.91E0, 148.51E0, 151.41E0, 153.17E0, 155.97E0, 157.76E0, 160.56E0, 162.30E0, 165.21E0, 166.90E0, 169.92E0, 170.32E0, 171.54E0, 173.79E0, 174.57E0, 176.25E0, 177.34E0, 179.19E0, 181.02E0, 182.08E0, 183.88E0, 185.75E0, 186.80E0, 188.63E0, 190.45E0, 191.48E0, 193.35E0, 195.22E0, 196.23E0, 198.05E0, 199.97E0, 201.06E0, 202.83E0, 204.69E0, 205.86E0, 207.58E0, 209.50E0, 210.65E0, 212.33E0, 215.43E0, 217.16E0, 220.21E0, 221.98E0, 225.06E0, 226.79E0, 229.92E0, 231.69E0, 234.77E0, 236.60E0, 239.63E0, 241.50E0, 244.48E0, 246.40E0, 249.35E0, 251.32E0, 254.22E0, 256.24E0, 259.11E0, 261.18E0, 264.02E0, 266.13E0, 268.94E0, 271.09E0, 273.87E0, 276.08E0, 278.83E0, 281.08E0, 283.81E0, 286.11E0, 288.81E0, 291.08E0, 293.75E0, 295.99E0, 298.64E0, 300.84E0, 302.02E0, 303.48E0, 305.65E0, 308.27E0, 310.41E0, 313.01E0, 315.12E0, 317.71E0, 319.79E0, 322.36E0, 324.42E0, 326.98E0, 329.01E0, 331.56E0, 333.56E0, 336.10E0, 338.08E0, 340.60E0, 342.57E0, 345.08E0, 347.02E0, 349.52E0, 351.44E0, 353.93E0, 355.83E0, 358.32E0, 360.20E0, 362.67E0, 364.53E0, 367.00E0, 371.30E0 }; int kirby2_f (const gsl_vector * x, void *params, gsl_vector * f) { double b[5]; size_t i; for (i = 0; i < 5; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 151; i++) { double x = kirby2_F0[i]; double y = ((b[0] + x* (b[1] + x * b[2])) / (1 + x*(b[3] + x *b[4]))); gsl_vector_set (f, i, kirby2_F1[i] - y); } return GSL_SUCCESS; } int kirby2_df (const gsl_vector * x, void *params, gsl_matrix * df) { double b[5]; size_t i; for (i = 0; i < 5; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 151; i++) { double x = kirby2_F0[i]; double u = (b[0] + x*(b[1] + x*b[2])); double v = (1 + x*(b[3] + x*b[4])); gsl_matrix_set (df, i, 0, -1/v); gsl_matrix_set (df, i, 1, -x/v); gsl_matrix_set (df, i, 2, -x*x/v); gsl_matrix_set (df, i, 3, x*u/(v*v)); gsl_matrix_set (df, i, 4, x*x*u/(v*v)); } return GSL_SUCCESS; } int kirby2_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { kirby2_f (x, params, f); kirby2_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multifit/Makefile.in0000664000252300025230000010751112172253756013070 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = multifit DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmultifit_la_LIBADD = am_libgslmultifit_la_OBJECTS = multilinear.lo work.lo lmder.lo \ fsolver.lo fdfsolver.lo fdjac.lo convergence.lo gradient.lo \ covar.lo multirobust.lo robust_wfun.lo libgslmultifit_la_OBJECTS = $(am_libgslmultifit_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmultifit.la ../linalg/libgsllinalg.la \ ../permutation/libgslpermutation.la ../blas/libgslblas.la \ ../cblas/libgslcblas.la ../matrix/libgslmatrix.la \ ../sort/libgslsort.la ../statistics/libgslstatistics.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la \ ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmultifit_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmultifit_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmultifit.la pkginclude_HEADERS = gsl_multifit.h gsl_multifit_nlin.h INCLUDES = -I$(top_srcdir) libgslmultifit_la_SOURCES = multilinear.c work.c lmder.c fsolver.c fdfsolver.c fdjac.c convergence.c gradient.c covar.c multirobust.c robust_wfun.c noinst_HEADERS = lmutil.c lmpar.c lmset.c lmiterate.c qrsolv.c test_brown.c test_enso.c test_filip.c test_fn.c test_hahn1.c test_kirby2.c test_longley.c test_nelson.c test_pontius.c test_estimator.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslmultifit.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../sort/libgslsort.la ../statistics/libgslstatistics.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu multifit/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu multifit/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmultifit.la: $(libgslmultifit_la_OBJECTS) $(libgslmultifit_la_DEPENDENCIES) $(EXTRA_libgslmultifit_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmultifit_la_OBJECTS) $(libgslmultifit_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/convergence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/covar.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdfsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdjac.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gradient.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lmder.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/multilinear.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/multirobust.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/robust_wfun.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/work.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES = demo.c #demo_LDADD = libgslmultifit.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../randist/libgslrandist.la ../rng/libgslrng.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/multifit/fdfsolver.c0000664000252300025230000001120612171574312013145 00000000000000/* multifit/fdfsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_multifit_fdfsolver * gsl_multifit_fdfsolver_alloc (const gsl_multifit_fdfsolver_type * T, size_t n, size_t p) { int status; gsl_multifit_fdfsolver * s; if (n < p) { GSL_ERROR_VAL ("insufficient data points, n < p", GSL_EINVAL, 0); } s = (gsl_multifit_fdfsolver *) malloc (sizeof (gsl_multifit_fdfsolver)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for multifit solver struct", GSL_ENOMEM, 0); } s->x = gsl_vector_calloc (p); if (s->x == 0) { free (s); GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0); } s->f = gsl_vector_calloc (n); if (s->f == 0) { gsl_vector_free (s->x); free (s); GSL_ERROR_VAL ("failed to allocate space for f", GSL_ENOMEM, 0); } s->J = gsl_matrix_calloc (n,p); if (s->J == 0) { gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for g", GSL_ENOMEM, 0); } s->dx = gsl_vector_calloc (p); if (s->dx == 0) { gsl_matrix_free (s->J); gsl_vector_free (s->x); gsl_vector_free (s->f); free (s); GSL_ERROR_VAL ("failed to allocate space for dx", GSL_ENOMEM, 0); } s->state = malloc (T->size); if (s->state == 0) { gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for multifit solver state", GSL_ENOMEM, 0); } s->type = T ; status = (s->type->alloc)(s->state, n, p); if (status != GSL_SUCCESS) { free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to set solver", status, 0); } s->fdf = NULL; return s; } int gsl_multifit_fdfsolver_set (gsl_multifit_fdfsolver * s, gsl_multifit_function_fdf * f, const gsl_vector * x) { if (s->f->size != f->n) { GSL_ERROR ("function size does not match solver", GSL_EBADLEN); } if (s->x->size != x->size) { GSL_ERROR ("vector length does not match solver", GSL_EBADLEN); } s->fdf = f; gsl_vector_memcpy(s->x,x); return (s->type->set) (s->state, s->fdf, s->x, s->f, s->J, s->dx); } int gsl_multifit_fdfsolver_iterate (gsl_multifit_fdfsolver * s) { return (s->type->iterate) (s->state, s->fdf, s->x, s->f, s->J, s->dx); } int gsl_multifit_fdfsolver_driver (gsl_multifit_fdfsolver * s, const size_t maxiter, const double epsabs, const double epsrel) { int status; size_t iter = 0; do { status = gsl_multifit_fdfsolver_iterate (s); if (status) break; /* test for convergence */ status = gsl_multifit_test_delta (s->dx, s->x, epsabs, epsrel); } while (status == GSL_CONTINUE && ++iter < maxiter); return status; } /* gsl_multifit_fdfsolver_driver() */ void gsl_multifit_fdfsolver_free (gsl_multifit_fdfsolver * s) { RETURN_IF_NULL (s); (s->type->free) (s->state); free (s->state); gsl_vector_free (s->dx); gsl_vector_free (s->x); gsl_vector_free (s->f); gsl_matrix_free (s->J); free (s); } const char * gsl_multifit_fdfsolver_name (const gsl_multifit_fdfsolver * s) { return s->type->name; } gsl_vector * gsl_multifit_fdfsolver_position (const gsl_multifit_fdfsolver * s) { return s->x; } gsl-1.16/multifit/lmutil.c0000664000252300025230000000530312171574312012462 00000000000000static void compute_diag (const gsl_matrix * J, gsl_vector * diag); static void update_diag (const gsl_matrix * J, gsl_vector * diag); static double compute_delta (gsl_vector * diag, gsl_vector * x); static double scaled_enorm (const gsl_vector * d, const gsl_vector * f); static double enorm (const gsl_vector * f); static double enorm (const gsl_vector * f) { return gsl_blas_dnrm2 (f); } static double scaled_enorm (const gsl_vector * d, const gsl_vector * f) { double e2 = 0; size_t i, n = f->size; for (i = 0; i < n; i++) { double fi = gsl_vector_get (f, i); double di = gsl_vector_get (d, i); double u = di * fi; e2 += u * u; } return sqrt (e2); } static double compute_delta (gsl_vector * diag, gsl_vector * x) { double Dx = scaled_enorm (diag, x); double factor = 100; /* generally recommended value from MINPACK */ return (Dx > 0) ? factor * Dx : factor; } static double compute_actual_reduction (double fnorm, double fnorm1) { double actred; if (0.1 * fnorm1 < fnorm) { double u = fnorm1 / fnorm; actred = 1 - u * u; } else { actred = -1; } return actred; } static void compute_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = J->size1, p = J->size2; for (j = 0; j < p; j++) { double sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; gsl_vector_set (diag, j, sqrt (sum)); } } static void update_diag (const gsl_matrix * J, gsl_vector * diag) { size_t i, j, n = diag->size; for (j = 0; j < n; j++) { double cnorm, diagj, sum = 0; for (i = 0; i < n; i++) { double Jij = gsl_matrix_get (J, i, j); sum += Jij * Jij; } if (sum == 0) sum = 1.0; cnorm = sqrt (sum); diagj = gsl_vector_get (diag, j); if (cnorm > diagj) gsl_vector_set (diag, j, cnorm); } } static void compute_rptdx (const gsl_matrix * r, const gsl_permutation * p, const gsl_vector * dx, gsl_vector * rptdx) { size_t i, j, N = dx->size; for (i = 0; i < N; i++) { double sum = 0; for (j = i; j < N; j++) { size_t pj = gsl_permutation_get (p, j); sum += gsl_matrix_get (r, i, j) * gsl_vector_get (dx, pj); } gsl_vector_set (rptdx, i, sum); } } static void compute_trial_step (gsl_vector * x, gsl_vector * dx, gsl_vector * x_trial) { size_t i, N = x->size; for (i = 0; i < N; i++) { double pi = gsl_vector_get (dx, i); double xi = gsl_vector_get (x, i); gsl_vector_set (x_trial, i, xi + pi); } } gsl-1.16/multifit/ChangeLog0000664000252300025230000001301312171574312012557 000000000000002013-06-10 Patrick Alken * fdfsolver.c (gsl_multifit_fdfsolver_driver): added higher level wrapper routine 2010-02-25 Brian Gough * lmiterate.c (iterate): changed GSL_CONTINUE to GSL_ENOPROG for the case where the routine has made 10 or more attempts to find a suitable trial step without success. 2009-11-25 Brian Gough * multilinear.c (gsl_multifit_linear_usvd) (gsl_multifit_wlinear_usvd): provide an unscaled version of the fits 2009-07-09 Brian Gough * work.c (gsl_multifit_linear_free): handle NULL argument in free * fsolver.c (gsl_multifit_fsolver_free): handle NULL argument in free * fdfsolver.c (gsl_multifit_fdfsolver_free): handle NULL argument in free 2009-06-24 Brian Gough * lmset.c (set): check the return code of fdf 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-07-29 Brian Gough * lmset.c (set): ensure internal state is zeroed after a set 2007-01-26 Brian Gough * fsolver.c (gsl_multifit_fsolver_set): made vector argument x const 2006-03-30 Brian Gough * fsolver.c (gsl_multifit_fsolver_alloc): minpack algorithms require n>=p, added check * fdfsolver.c (gsl_multifit_fdfsolver_alloc): minpack algorithms require n>=p, added check 2006-02-20 Brian Gough * multilinear.c (gsl_multifit_linear_est): added linear estimator * test_estimator.c (test_estimator): added test for gsl_multifit_linear_est 2005-07-03 Brian Gough * multilinear.c (gsl_multifit_linear_svd): accept a user-specified tolerance for the SVD cutoff and return effective rank (gsl_multifit_wlinear_svd): same 2004-12-23 Brian Gough * gsl_multifit_nlin.h: removed unused declaration of gsl_multifit_fdjacobian 2004-06-14 Brian Gough * lmiterate.c (iterate): handle case where fnorm = 0 to avoid division by zero * covar.c (gsl_multifit_covar): change tolerance test to match original code, and handle case where tolr = 0 2003-03-21 Brian Gough * lmset.c (set): removed reference to q, compute QR decomposition in place * lmiterate.c (iterate): removed reference to q, compute QR decomposition in-place for R * lmutil.c: removed compute_qtf * lmder.c (lmder_free): removed reference to q (lmder_alloc): removed reference to q Tue Nov 12 22:18:14 2002 Brian Gough * lmder.c (lmder_alloc): use GSL_ERROR instead of GSL_ERROR_VAL for internal alloc functions which return int Thu Feb 28 20:15:33 2002 Brian Gough * lmiterate.c (iterate): return immediately if evaluation raised error (Hans E. Plesser) * lmpar.c (lmpar): avoid division by zero for w=0 in rank deficient case Mon Oct 8 19:25:55 2001 Brian Gough * test.c (main): added extra nist tests * lmutil.c (compute_rptdx): fixed bug, permutation in rptdx vector was incorrectly applied * lmpar.c (compute_newton_direction): fixed bug, permutation of newton direction vector was incorrect (should have been inverse permutation) Mon Jul 30 17:43:21 2001 Brian Gough * test_filip.c (test_filip): reduce tolerance on covariance test slightly for MSVC with /O2 Sun Jul 1 22:42:34 2001 Brian Gough * multilinear.c: modified to use new-style vector views * test_pontius.c: modified to use new-style vector views * test_longley.c: modified to use new-style vector views * test_fn.c: modified to use new-style vector views * test_filip.c: modified to use new-style vector views Tue Jun 26 21:41:30 2001 Brian Gough * test_filip.c (test_filip): reduce tolerance on covariance test slightly Wed Jun 20 13:11:26 2001 Brian Gough * removed unused variable work2 Tue Jun 19 23:18:01 2001 Brian Gough * multilinear.c: perform column scaling before doing fit to improve accuracy (gsl_multifit_linear): use modified Golub-Reinsch SVD for greater speed (gsl_multifit_wlinear): use modified Golub-Reinsch SVD for greater speed Wed Jun 6 13:32:22 2001 Brian Gough * lmder.c covar.c lmiterate.c lmset.c: updated to use new QR calling convention (now passes workspace) Sat Apr 28 11:46:59 2001 Brian Gough * qrsolv.c (qrsolv): removed local declaration of j to avoid shadowing global j Mon Apr 23 13:40:04 2001 Brian Gough * qrsolv.c (qrsolv): made function static so it is not exported Wed Apr 18 13:39:33 2001 Brian Gough * lmpar.c (compute_newton_direction): moved final rescaling inside loop, as in the original lmpar.f Thu Mar 8 15:29:32 2001 Brian Gough * lmpar.c (compute_newton_direction): corrected bug that produced negative index Sun Feb 18 16:39:46 2001 Brian Gough * fdfsolver.c (gsl_multifit_fdfsolver_alloc): changed so that the solver _alloc function no longer calls _set, the user must do that separately. Fri Sep 29 19:19:24 2000 Brian Gough * Makefile.am multifit/demo.c: removed demo from Makefile since it is was just a temporary test. gsl-1.16/multifit/Makefile.am0000664000252300025230000000257212171574312013051 00000000000000noinst_LTLIBRARIES = libgslmultifit.la pkginclude_HEADERS = gsl_multifit.h gsl_multifit_nlin.h INCLUDES = -I$(top_srcdir) libgslmultifit_la_SOURCES = multilinear.c work.c lmder.c fsolver.c fdfsolver.c fdjac.c convergence.c gradient.c covar.c multirobust.c robust_wfun.c noinst_HEADERS = lmutil.c lmpar.c lmset.c lmiterate.c qrsolv.c test_brown.c test_enso.c test_filip.c test_fn.c test_hahn1.c test_kirby2.c test_longley.c test_nelson.c test_pontius.c test_estimator.c check_PROGRAMS = test #demo TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslmultifit.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../sort/libgslsort.la ../statistics/libgslstatistics.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la #demo_SOURCES = demo.c #demo_LDADD = libgslmultifit.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../randist/libgslrandist.la ../rng/libgslrng.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la gsl-1.16/multifit/lmder.c0000664000252300025230000002263212171574312012263 00000000000000/* multfit/lmder.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include typedef struct { size_t iter; double xnorm; double fnorm; double delta; double par; gsl_matrix *r; gsl_vector *tau; gsl_vector *diag; gsl_vector *qtf; gsl_vector *newton; gsl_vector *gradient; gsl_vector *x_trial; gsl_vector *f_trial; gsl_vector *df; gsl_vector *sdiag; gsl_vector *rptdx; gsl_vector *w; gsl_vector *work1; gsl_permutation * perm; } lmder_state_t; static int lmder_alloc (void *vstate, size_t n, size_t p); static int lmder_set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int lmsder_set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static int set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale); static int lmder_iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx); static void lmder_free (void *vstate); static int iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale); #include "lmutil.c" #include "lmpar.c" #include "lmset.c" #include "lmiterate.c" static int lmder_alloc (void *vstate, size_t n, size_t p) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_matrix *r; gsl_vector *tau, *diag, *qtf, *newton, *gradient, *x_trial, *f_trial, *df, *sdiag, *rptdx, *w, *work1; gsl_permutation *perm; r = gsl_matrix_calloc (n, p); if (r == 0) { GSL_ERROR ("failed to allocate space for r", GSL_ENOMEM); } state->r = r; tau = gsl_vector_calloc (GSL_MIN(n, p)); if (tau == 0) { gsl_matrix_free (r); GSL_ERROR ("failed to allocate space for tau", GSL_ENOMEM); } state->tau = tau; diag = gsl_vector_calloc (p); if (diag == 0) { gsl_matrix_free (r); gsl_vector_free (tau); GSL_ERROR ("failed to allocate space for diag", GSL_ENOMEM); } state->diag = diag; qtf = gsl_vector_calloc (n); if (qtf == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); GSL_ERROR ("failed to allocate space for qtf", GSL_ENOMEM); } state->qtf = qtf; newton = gsl_vector_calloc (p); if (newton == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); GSL_ERROR ("failed to allocate space for newton", GSL_ENOMEM); } state->newton = newton; gradient = gsl_vector_calloc (p); if (gradient == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); GSL_ERROR ("failed to allocate space for gradient", GSL_ENOMEM); } state->gradient = gradient; x_trial = gsl_vector_calloc (p); if (x_trial == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); GSL_ERROR ("failed to allocate space for x_trial", GSL_ENOMEM); } state->x_trial = x_trial; f_trial = gsl_vector_calloc (n); if (f_trial == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); GSL_ERROR ("failed to allocate space for f_trial", GSL_ENOMEM); } state->f_trial = f_trial; df = gsl_vector_calloc (n); if (df == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); GSL_ERROR ("failed to allocate space for df", GSL_ENOMEM); } state->df = df; sdiag = gsl_vector_calloc (p); if (sdiag == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); GSL_ERROR ("failed to allocate space for sdiag", GSL_ENOMEM); } state->sdiag = sdiag; rptdx = gsl_vector_calloc (n); if (rptdx == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (sdiag); GSL_ERROR ("failed to allocate space for rptdx", GSL_ENOMEM); } state->rptdx = rptdx; w = gsl_vector_calloc (n); if (w == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (sdiag); gsl_vector_free (rptdx); GSL_ERROR ("failed to allocate space for w", GSL_ENOMEM); } state->w = w; work1 = gsl_vector_calloc (p); if (work1 == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (sdiag); gsl_vector_free (rptdx); gsl_vector_free (w); GSL_ERROR ("failed to allocate space for work1", GSL_ENOMEM); } state->work1 = work1; perm = gsl_permutation_calloc (p); if (perm == 0) { gsl_matrix_free (r); gsl_vector_free (tau); gsl_vector_free (diag); gsl_vector_free (qtf); gsl_vector_free (newton); gsl_vector_free (gradient); gsl_vector_free (x_trial); gsl_vector_free (f_trial); gsl_vector_free (df); gsl_vector_free (sdiag); gsl_vector_free (rptdx); gsl_vector_free (w); gsl_vector_free (work1); GSL_ERROR ("failed to allocate space for perm", GSL_ENOMEM); } state->perm = perm; return GSL_SUCCESS; } static int lmder_set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = set (vstate, fdf, x, f, J, dx, 0); return status ; } static int lmsder_set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = set (vstate, fdf, x, f, J, dx, 1); return status ; } static int lmder_iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = iterate (vstate, fdf, x, f, J, dx, 0); return status; } static int lmsder_iterate (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx) { int status = iterate (vstate, fdf, x, f, J, dx, 1); return status; } static void lmder_free (void *vstate) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_permutation_free (state->perm); gsl_vector_free (state->work1); gsl_vector_free (state->w); gsl_vector_free (state->rptdx); gsl_vector_free (state->sdiag); gsl_vector_free (state->df); gsl_vector_free (state->f_trial); gsl_vector_free (state->x_trial); gsl_vector_free (state->gradient); gsl_vector_free (state->newton); gsl_vector_free (state->qtf); gsl_vector_free (state->diag); gsl_vector_free (state->tau); gsl_matrix_free (state->r); } static const gsl_multifit_fdfsolver_type lmder_type = { "lmder", /* name */ sizeof (lmder_state_t), &lmder_alloc, &lmder_set, &lmder_iterate, &lmder_free }; static const gsl_multifit_fdfsolver_type lmsder_type = { "lmsder", /* name */ sizeof (lmder_state_t), &lmder_alloc, &lmsder_set, &lmsder_iterate, &lmder_free }; const gsl_multifit_fdfsolver_type *gsl_multifit_fdfsolver_lmder = &lmder_type; const gsl_multifit_fdfsolver_type *gsl_multifit_fdfsolver_lmsder = &lmsder_type; gsl-1.16/multifit/test_estimator.c0000664000252300025230000000206412171574312014223 00000000000000void test_estimator () { gsl_vector_view c; gsl_matrix_view cov; gsl_vector_view x; double y, y_err; double cov_ij[25] = { 4.271520, -0.526675, 0.957930, 0.267750, -0.103610, -0.526675, 5.701680, -0.098080, 0.641845, 0.429780, 0.957930, -0.098080, 4.584790, 0.375865, 1.510810, 0.267750, 0.641845, 0.375865, 4.422720, 0.392210, -0.103610, 0.429780, 1.510810, 0.392210, 5.782750 }; double c_i[5] = { -0.627020, 0.848674, 0.216877, -0.057883, 0.596668 }; double x_i[5] = { 0.99932, 0.23858, 0.19797, 1.44008, -0.15335 }; double y_expected = -5.56037032230000e-01; double yerr_expected = 3.91891123349318e+00; cov = gsl_matrix_view_array(cov_ij, 5, 5); c = gsl_vector_view_array(c_i, 5); x = gsl_vector_view_array(x_i, 5); gsl_multifit_linear_est(&x.vector , &c.vector, &cov.matrix, &y, &y_err); gsl_test_rel (y, y_expected, 256*GSL_DBL_EPSILON, "gsl_multifit_linear_est y"); gsl_test_rel (y_err, yerr_expected, 256*GSL_DBL_EPSILON, "gsl_multifit_linear_est yerr"); } gsl-1.16/multifit/robust_wfun.c0000664000252300025230000001275312171574312013540 00000000000000/* robust_wfun.c * * Copyright (C) 2013 Patrick Alken * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* default tuning constants */ #define TUNING_BISQUARE (4.685) #define TUNING_CAUCHY (2.385) #define TUNING_FAIR (1.4) #define TUNING_HUBER (1.345) #define TUNING_OLS (1.0) #define TUNING_WELSCH (2.985) static int bisquare(const gsl_vector *r, gsl_vector *w) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); if (fabs(ri) < 1.0) gsl_vector_set(w, i, (1.0 - ri*ri)*(1.0 - ri*ri)); else gsl_vector_set(w, i, 0.0); } return GSL_SUCCESS; } /* bisquare() */ static int bisquare_dpsi(const gsl_vector *r, gsl_vector *dpsi) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); if (fabs(ri) < 1.0) gsl_vector_set(dpsi, i, (1.0 - ri*ri)*(1.0 - 5.0*ri*ri)); else gsl_vector_set(dpsi, i, 0.0); } return GSL_SUCCESS; } /* bisquare_dpsi() */ static const gsl_multifit_robust_type bisquare_type = { "bisquare", &bisquare, &bisquare_dpsi, TUNING_BISQUARE }; static int cauchy(const gsl_vector *r, gsl_vector *w) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); gsl_vector_set(w, i, 1.0 / (1.0 + ri*ri)); } return GSL_SUCCESS; } /* cauchy() */ static int cauchy_dpsi(const gsl_vector *r, gsl_vector *dpsi) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); double rsq = ri * ri; gsl_vector_set(dpsi, i, (1 - rsq) / (1.0 + rsq) / (1.0 + rsq)); } return GSL_SUCCESS; } /* cauchy_dpsi() */ static const gsl_multifit_robust_type cauchy_type = { "cauchy", &cauchy, &cauchy_dpsi, TUNING_CAUCHY }; static int fair(const gsl_vector *r, gsl_vector *w) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); gsl_vector_set(w, i, 1.0 / (1.0 + fabs(ri))); } return GSL_SUCCESS; } /* fair() */ static int fair_dpsi(const gsl_vector *r, gsl_vector *dpsi) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); gsl_vector_set(dpsi, i, 1.0 / (1.0 + fabs(ri)) / (1.0 + fabs(ri))); } return GSL_SUCCESS; } /* fair_dpsi() */ static const gsl_multifit_robust_type fair_type = { "fair", &fair, &fair_dpsi, TUNING_FAIR }; static int huber(const gsl_vector *r, gsl_vector *w) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double absri = fabs(gsl_vector_get(r, i)); if (absri <= 1.0) gsl_vector_set(w, i, 1.0); else gsl_vector_set(w, i, 1.0 / absri); } return GSL_SUCCESS; } /* huber() */ static int huber_dpsi(const gsl_vector *r, gsl_vector *dpsi) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); if (fabs(ri) <= 1.0) gsl_vector_set(dpsi, i, 1.0); else gsl_vector_set(dpsi, i, 0.0); } return GSL_SUCCESS; } /* huber_dpsi() */ static const gsl_multifit_robust_type huber_type = { "huber", &huber, &huber_dpsi, TUNING_HUBER }; static int ols(const gsl_vector *r, gsl_vector *w) { gsl_vector_set_all(w, 1.0); return GSL_SUCCESS; } static int ols_dpsi(const gsl_vector *r, gsl_vector *dpsi) { gsl_vector_set_all(dpsi, 1.0); return GSL_SUCCESS; } static const gsl_multifit_robust_type ols_type = { "ols", &ols, &ols_dpsi, TUNING_OLS }; static int welsch(const gsl_vector *r, gsl_vector *w) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); gsl_vector_set(w, i, exp(-ri*ri)); } return GSL_SUCCESS; } /* welsch() */ static int welsch_dpsi(const gsl_vector *r, gsl_vector *dpsi) { size_t i; size_t n = r->size; for (i = 0; i < n; ++i) { double ri = gsl_vector_get(r, i); gsl_vector_set(dpsi, i, (1.0 - 2.0*ri*ri) * exp(-ri*ri)); } return GSL_SUCCESS; } /* welsch_dpsi() */ static const gsl_multifit_robust_type welsch_type = { "welsch", &welsch, &welsch_dpsi, TUNING_WELSCH }; const gsl_multifit_robust_type *gsl_multifit_robust_default = &bisquare_type; const gsl_multifit_robust_type *gsl_multifit_robust_bisquare = &bisquare_type; const gsl_multifit_robust_type *gsl_multifit_robust_cauchy = &cauchy_type; const gsl_multifit_robust_type *gsl_multifit_robust_fair = &fair_type; const gsl_multifit_robust_type *gsl_multifit_robust_huber = &huber_type; const gsl_multifit_robust_type *gsl_multifit_robust_ols = &ols_type; const gsl_multifit_robust_type *gsl_multifit_robust_welsch = &welsch_type; gsl-1.16/multifit/lmset.c0000664000252300025230000000313612171574312012302 00000000000000static int set (void *vstate, gsl_multifit_function_fdf * fdf, gsl_vector * x, gsl_vector * f, gsl_matrix * J, gsl_vector * dx, int scale) { lmder_state_t *state = (lmder_state_t *) vstate; gsl_matrix *r = state->r; gsl_vector *tau = state->tau; gsl_vector *diag = state->diag; gsl_vector *work1 = state->work1; gsl_permutation *perm = state->perm; int signum; /* Evaluate function at x */ /* return immediately if evaluation raised error */ { int status; if (fdf->fdf) status = GSL_MULTIFIT_FN_EVAL_F_DF (fdf, x, f, J); else /* finite difference approximation */ status = gsl_multifit_fdfsolver_dif_fdf(x, fdf, f, J); if (status) return status; } state->par = 0; state->iter = 1; state->fnorm = enorm (f); gsl_vector_set_all (dx, 0.0); /* store column norms in diag */ if (scale) { compute_diag (J, diag); } else { gsl_vector_set_all (diag, 1.0); } /* set delta to 100 |D x| or to 100 if |D x| is zero */ state->xnorm = scaled_enorm (diag, x); state->delta = compute_delta (diag, x); /* Factorize J into QR decomposition */ gsl_matrix_memcpy (r, J); gsl_linalg_QRPT_decomp (r, tau, perm, &signum, work1); gsl_vector_set_zero (state->rptdx); gsl_vector_set_zero (state->w); /* Zero the trial vector, as in the alloc function */ gsl_vector_set_zero (state->f_trial); #ifdef DEBUG printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d"); printf("tau = "); gsl_vector_fprintf(stdout, tau, "%g"); #endif return GSL_SUCCESS; } gsl-1.16/multifit/covar.c0000664000252300025230000001072612171574312012273 00000000000000/* multifit/covar.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* Compute the covariance matrix cov = inv (J^T J) by QRP^T decomposition of J */ int gsl_multifit_covar (const gsl_matrix * J, double epsrel, gsl_matrix * covar) { double tolr; size_t i, j, k; size_t kmax = 0; gsl_matrix * r; gsl_vector * tau; gsl_vector * norm; gsl_permutation * perm; size_t m = J->size1, n = J->size2 ; if (m < n) { GSL_ERROR ("Jacobian be rectangular M x N with M >= N", GSL_EBADLEN); } if (covar->size1 != covar->size2 || covar->size1 != n) { GSL_ERROR ("covariance matrix must be square and match second dimension of jacobian", GSL_EBADLEN); } r = gsl_matrix_alloc (m, n); tau = gsl_vector_alloc (n); perm = gsl_permutation_alloc (n) ; norm = gsl_vector_alloc (n) ; { int signum = 0; gsl_matrix_memcpy (r, J); gsl_linalg_QRPT_decomp (r, tau, perm, &signum, norm); } /* Form the inverse of R in the full upper triangle of R */ tolr = epsrel * fabs(gsl_matrix_get(r, 0, 0)); for (k = 0 ; k < n ; k++) { double rkk = gsl_matrix_get(r, k, k); if (fabs(rkk) <= tolr) { break; } gsl_matrix_set(r, k, k, 1.0/rkk); for (j = 0; j < k ; j++) { double t = gsl_matrix_get(r, j, k) / rkk; gsl_matrix_set (r, j, k, 0.0); for (i = 0; i <= j; i++) { double rik = gsl_matrix_get (r, i, k); double rij = gsl_matrix_get (r, i, j); gsl_matrix_set (r, i, k, rik - t * rij); } } kmax = k; } /* Form the full upper triangle of the inverse of R^T R in the full upper triangle of R */ for (k = 0; k <= kmax ; k++) { for (j = 0; j < k; j++) { double rjk = gsl_matrix_get (r, j, k); for (i = 0; i <= j ; i++) { double rij = gsl_matrix_get (r, i, j); double rik = gsl_matrix_get (r, i, k); gsl_matrix_set (r, i, j, rij + rjk * rik); } } { double t = gsl_matrix_get (r, k, k); for (i = 0; i <= k; i++) { double rik = gsl_matrix_get (r, i, k); gsl_matrix_set (r, i, k, t * rik); }; } } /* Form the full lower triangle of the covariance matrix in the strict lower triangle of R and in w */ for (j = 0 ; j < n ; j++) { size_t pj = gsl_permutation_get (perm, j); for (i = 0; i <= j; i++) { size_t pi = gsl_permutation_get (perm, i); double rij; if (j > kmax) { gsl_matrix_set (r, i, j, 0.0); rij = 0.0 ; } else { rij = gsl_matrix_get (r, i, j); } if (pi > pj) { gsl_matrix_set (r, pi, pj, rij); } else if (pi < pj) { gsl_matrix_set (r, pj, pi, rij); } } { double rjj = gsl_matrix_get (r, j, j); gsl_matrix_set (covar, pj, pj, rjj); } } /* symmetrize the covariance matrix */ for (j = 0 ; j < n ; j++) { for (i = 0; i < j ; i++) { double rji = gsl_matrix_get (r, j, i); gsl_matrix_set (covar, j, i, rji); gsl_matrix_set (covar, i, j, rji); } } gsl_matrix_free (r); gsl_permutation_free (perm); gsl_vector_free (tau); gsl_vector_free (norm); return GSL_SUCCESS; } gsl-1.16/multifit/test_hahn1.c0000664000252300025230000002110112171574312013204 00000000000000const size_t hahn1_N = 236; const size_t hahn1_P = 7; /* double hahn1_x0[7] = { 10, -1, 0.05, -0.00001, -0.05, 0.001, -0.000001 }; */ double hahn1_x0[7] = { 1, -0.1, 0.005, -0.000001, -0.005, 0.0001, -0.0000001}; double hahn1_x[7] = { 1.0776351733E+00, -1.2269296921E-01, 4.0863750610E-03, -1.4262662514E-06, -5.7609940901E-03, 2.4053735503E-04, -1.2314450199E-07 }; double hahn1_sumsq = 1.5324382854E+00; double hahn1_sigma[7] = { 1.7070154742E-01, 1.2000289189E-02, 2.2508314937E-04, 2.7578037666E-07, 2.4712888219E-04, 1.0449373768E-05, 1.3027335327E-08 }; double hahn1_F1[236] = { .591E0, 1.547E0, 2.902E0, 2.894E0, 4.703E0, 6.307E0, 7.03E0 , 7.898E0, 9.470E0, 9.484E0, 10.072E0, 10.163E0, 11.615E0, 12.005E0, 12.478E0, 12.982E0, 12.970E0, 13.926E0, 14.452E0, 14.404E0, 15.190E0, 15.550E0, 15.528E0, 15.499E0, 16.131E0, 16.438E0, 16.387E0, 16.549E0, 16.872E0, 16.830E0, 16.926E0, 16.907E0, 16.966E0, 17.060E0, 17.122E0, 17.311E0, 17.355E0, 17.668E0, 17.767E0, 17.803E0, 17.765E0, 17.768E0, 17.736E0, 17.858E0, 17.877E0, 17.912E0, 18.046E0, 18.085E0, 18.291E0, 18.357E0, 18.426E0, 18.584E0, 18.610E0, 18.870E0, 18.795E0, 19.111E0, .367E0, .796E0, 0.892E0, 1.903E0, 2.150E0, 3.697E0, 5.870E0, 6.421E0, 7.422E0, 9.944E0, 11.023E0, 11.87E0 , 12.786E0, 14.067E0, 13.974E0, 14.462E0, 14.464E0, 15.381E0, 15.483E0, 15.59E0 , 16.075E0, 16.347E0, 16.181E0, 16.915E0, 17.003E0, 16.978E0, 17.756E0, 17.808E0, 17.868E0, 18.481E0, 18.486E0, 19.090E0, 16.062E0, 16.337E0, 16.345E0, 16.388E0, 17.159E0, 17.116E0, 17.164E0, 17.123E0, 17.979E0, 17.974E0, 18.007E0, 17.993E0, 18.523E0, 18.669E0, 18.617E0, 19.371E0, 19.330E0, 0.080E0, 0.248E0, 1.089E0, 1.418E0, 2.278E0, 3.624E0, 4.574E0, 5.556E0, 7.267E0, 7.695E0, 9.136E0, 9.959E0, 9.957E0, 11.600E0, 13.138E0, 13.564E0, 13.871E0, 13.994E0, 14.947E0, 15.473E0, 15.379E0, 15.455E0, 15.908E0, 16.114E0, 17.071E0, 17.135E0, 17.282E0, 17.368E0, 17.483E0, 17.764E0, 18.185E0, 18.271E0, 18.236E0, 18.237E0, 18.523E0, 18.627E0, 18.665E0, 19.086E0, 0.214E0, 0.943E0, 1.429E0, 2.241E0, 2.951E0, 3.782E0, 4.757E0, 5.602E0, 7.169E0, 8.920E0, 10.055E0, 12.035E0, 12.861E0, 13.436E0, 14.167E0, 14.755E0, 15.168E0, 15.651E0, 15.746E0, 16.216E0, 16.445E0, 16.965E0, 17.121E0, 17.206E0, 17.250E0, 17.339E0, 17.793E0, 18.123E0, 18.49E0 , 18.566E0, 18.645E0, 18.706E0, 18.924E0, 19.1E0 , 0.375E0, 0.471E0, 1.504E0, 2.204E0, 2.813E0, 4.765E0, 9.835E0, 10.040E0, 11.946E0, 12.596E0, 13.303E0, 13.922E0, 14.440E0, 14.951E0, 15.627E0, 15.639E0, 15.814E0, 16.315E0, 16.334E0, 16.430E0, 16.423E0, 17.024E0, 17.009E0, 17.165E0, 17.134E0, 17.349E0, 17.576E0, 17.848E0, 18.090E0, 18.276E0, 18.404E0, 18.519E0, 19.133E0, 19.074E0, 19.239E0, 19.280E0, 19.101E0, 19.398E0, 19.252E0, 19.89E0 , 20.007E0, 19.929E0, 19.268E0, 19.324E0, 20.049E0, 20.107E0, 20.062E0, 20.065E0, 19.286E0, 19.972E0, 20.088E0, 20.743E0, 20.83E0 , 20.935E0, 21.035E0, 20.93E0 , 21.074E0, 21.085E0, 20.935E0 }; double hahn1_F0[236] = { 24.41E0, 34.82E0, 44.09E0, 45.07E0, 54.98E0, 65.51E0, 70.53E0, 75.70E0, 89.57E0, 91.14E0, 96.40E0, 97.19E0, 114.26E0, 120.25E0, 127.08E0, 133.55E0, 133.61E0, 158.67E0, 172.74E0, 171.31E0, 202.14E0, 220.55E0, 221.05E0, 221.39E0, 250.99E0, 268.99E0, 271.80E0, 271.97E0, 321.31E0, 321.69E0, 330.14E0, 333.03E0, 333.47E0, 340.77E0, 345.65E0, 373.11E0, 373.79E0, 411.82E0, 419.51E0, 421.59E0, 422.02E0, 422.47E0, 422.61E0, 441.75E0, 447.41E0, 448.7E0 , 472.89E0, 476.69E0, 522.47E0, 522.62E0, 524.43E0, 546.75E0, 549.53E0, 575.29E0, 576.00E0, 625.55E0, 20.15E0, 28.78E0, 29.57E0, 37.41E0, 39.12E0, 50.24E0, 61.38E0, 66.25E0, 73.42E0, 95.52E0, 107.32E0, 122.04E0, 134.03E0, 163.19E0, 163.48E0, 175.70E0, 179.86E0, 211.27E0, 217.78E0, 219.14E0, 262.52E0, 268.01E0, 268.62E0, 336.25E0, 337.23E0, 339.33E0, 427.38E0, 428.58E0, 432.68E0, 528.99E0, 531.08E0, 628.34E0, 253.24E0, 273.13E0, 273.66E0, 282.10E0, 346.62E0, 347.19E0, 348.78E0, 351.18E0, 450.10E0, 450.35E0, 451.92E0, 455.56E0, 552.22E0, 553.56E0, 555.74E0, 652.59E0, 656.20E0, 14.13E0, 20.41E0, 31.30E0, 33.84E0, 39.70E0, 48.83E0, 54.50E0, 60.41E0, 72.77E0, 75.25E0, 86.84E0, 94.88E0, 96.40E0, 117.37E0, 139.08E0, 147.73E0, 158.63E0, 161.84E0, 192.11E0, 206.76E0, 209.07E0, 213.32E0, 226.44E0, 237.12E0, 330.90E0, 358.72E0, 370.77E0, 372.72E0, 396.24E0, 416.59E0, 484.02E0, 495.47E0, 514.78E0, 515.65E0, 519.47E0, 544.47E0, 560.11E0, 620.77E0, 18.97E0, 28.93E0, 33.91E0, 40.03E0, 44.66E0, 49.87E0, 55.16E0, 60.90E0, 72.08E0, 85.15E0, 97.06E0, 119.63E0, 133.27E0, 143.84E0, 161.91E0, 180.67E0, 198.44E0, 226.86E0, 229.65E0, 258.27E0, 273.77E0, 339.15E0, 350.13E0, 362.75E0, 371.03E0, 393.32E0, 448.53E0, 473.78E0, 511.12E0, 524.70E0, 548.75E0, 551.64E0, 574.02E0, 623.86E0, 21.46E0, 24.33E0, 33.43E0, 39.22E0, 44.18E0, 55.02E0, 94.33E0, 96.44E0, 118.82E0, 128.48E0, 141.94E0, 156.92E0, 171.65E0, 190.00E0, 223.26E0, 223.88E0, 231.50E0, 265.05E0, 269.44E0, 271.78E0, 273.46E0, 334.61E0, 339.79E0, 349.52E0, 358.18E0, 377.98E0, 394.77E0, 429.66E0, 468.22E0, 487.27E0, 519.54E0, 523.03E0, 612.99E0, 638.59E0, 641.36E0, 622.05E0, 631.50E0, 663.97E0, 646.9E0 , 748.29E0, 749.21E0, 750.14E0, 647.04E0, 646.89E0, 746.9E0 , 748.43E0, 747.35E0, 749.27E0, 647.61E0, 747.78E0, 750.51E0, 851.37E0, 845.97E0, 847.54E0, 849.93E0, 851.61E0, 849.75E0, 850.98E0, 848.23E0 }; int hahn1_f (const gsl_vector * x, void *params, gsl_vector * f) { double b[7]; size_t i; for (i = 0; i < 7; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 236; i++) { double x = hahn1_F0[i]; double y = ((b[0] + x* (b[1] + x * (b[2] + x * b[3]))) / (1 + x*(b[4] + x *(b[5] + x*b[6])))); gsl_vector_set (f, i, hahn1_F1[i] - y); } return GSL_SUCCESS; } int hahn1_df (const gsl_vector * x, void *params, gsl_matrix * df) { double b[7]; size_t i; for (i = 0; i < 7; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 236; i++) { double x = hahn1_F0[i]; double u = (b[0] + x*(b[1] + x*(b[2] + x * b[3]))); double v = (1 + x*(b[4] + x*(b[5] + x*b[6]))); gsl_matrix_set (df, i, 0, -1/v); gsl_matrix_set (df, i, 1, -x/v); gsl_matrix_set (df, i, 2, -x*x/v); gsl_matrix_set (df, i, 3, -x*x*x/v); gsl_matrix_set (df, i, 4, x*u/(v*v)); gsl_matrix_set (df, i, 5, x*x*u/(v*v)); gsl_matrix_set (df, i, 6, x*x*x*u/(v*v)); } return GSL_SUCCESS; } int hahn1_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { hahn1_f (x, params, f); hahn1_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multifit/test_longley.c0000664000252300025230000001453212171574312013670 00000000000000size_t longley_n = 16; size_t longley_p = 7; double longley_x [] = { 1, 83.0, 234289, 2356, 1590, 107608, 1947, 1, 88.5, 259426, 2325, 1456, 108632, 1948, 1, 88.2, 258054, 3682, 1616, 109773, 1949, 1, 89.5, 284599, 3351, 1650, 110929, 1950, 1, 96.2, 328975, 2099, 3099, 112075, 1951, 1, 98.1, 346999, 1932, 3594, 113270, 1952, 1, 99.0, 365385, 1870, 3547, 115094, 1953, 1, 100.0, 363112, 3578, 3350, 116219, 1954, 1, 101.2, 397469, 2904, 3048, 117388, 1955, 1, 104.6, 419180, 2822, 2857, 118734, 1956, 1, 108.4, 442769, 2936, 2798, 120445, 1957, 1, 110.8, 444546, 4681, 2637, 121950, 1958, 1, 112.6, 482704, 3813, 2552, 123366, 1959, 1, 114.2, 502601, 3931, 2514, 125368, 1960, 1, 115.7, 518173, 4806, 2572, 127852, 1961, 1, 116.9, 554894, 4007, 2827, 130081, 1962 } ; double longley_y[] = {60323, 61122, 60171, 61187, 63221, 63639, 64989, 63761, 66019, 67857, 68169, 66513, 68655, 69564, 69331, 70551}; static int test_longley_results(const char *str, const gsl_vector *c, const gsl_vector *expected_c, const gsl_vector *cov_diag, const gsl_vector *expected_sd, const double chisq, const double chisq_res, const double expected_chisq) { size_t i; /* test coefficient vector */ for (i = 0; i < longley_p; ++i) { gsl_test_rel (gsl_vector_get(c,i), gsl_vector_get(expected_c, i), 1.0e-10, "%s c[%zu]", str, i) ; if (cov_diag && expected_sd) { gsl_test_rel (sqrt(gsl_vector_get(cov_diag, i)), gsl_vector_get(expected_sd, i), 1e-10, "%s cov[%zu,%zu]", str, i, i); } } gsl_test_rel (chisq, expected_chisq, 1.0e-10, "%s chisq", str); gsl_test_rel (chisq_res, expected_chisq, 1.0e-10, "%s chisq residuals", str); return GSL_SUCCESS; } void test_longley () { gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (longley_n, longley_p); gsl_multifit_robust_workspace * work_rob = gsl_multifit_robust_alloc (gsl_multifit_robust_ols, longley_n, longley_p); gsl_matrix_view X = gsl_matrix_view_array (longley_x, longley_n, longley_p); gsl_vector_view y = gsl_vector_view_array (longley_y, longley_n); gsl_vector * c = gsl_vector_alloc (longley_p); gsl_vector * r = gsl_vector_alloc (longley_n); gsl_matrix * cov = gsl_matrix_alloc (longley_p, longley_p); double chisq, chisq_res; double expected_c[7] = { -3482258.63459582, 15.0618722713733, -0.358191792925910E-01, -2.02022980381683, -1.03322686717359, -0.511041056535807E-01, 1829.15146461355 }; double expected_sd[7] = { 890420.383607373, 84.9149257747669, 0.334910077722432E-01, 0.488399681651699, 0.214274163161675, 0.226073200069370, 455.478499142212 } ; double expected_chisq = 836424.055505915; gsl_vector_view diag = gsl_matrix_diagonal (cov); gsl_vector_view exp_c = gsl_vector_view_array(expected_c, longley_p); gsl_vector_view exp_sd = gsl_vector_view_array(expected_sd, longley_p); /* test unweighted least squares */ gsl_multifit_linear (&X.matrix, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(&X.matrix, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_longley_results("longley gsl_multifit_linear", c, &exp_c.vector, &diag.vector, &exp_sd.vector, chisq, chisq_res, expected_chisq); /* test robust least squares */ gsl_multifit_robust (&X.matrix, &y.vector, c, cov, work_rob); test_longley_results("longley gsl_multifit_robust", c, &exp_c.vector, &diag.vector, &exp_sd.vector, 1.0, 1.0, 1.0); /* test weighted least squares */ { size_t i, j; gsl_vector * w = gsl_vector_alloc (longley_n); double expected_cov[7][7] = { { 8531122.56783558, -166.727799925578, 0.261873708176346, 3.91188317230983, 1.1285582054705, -0.889550869422687, -4362.58709870581}, {-166.727799925578, 0.0775861253030891, -1.98725210399982e-05, -0.000247667096727256, -6.82911920718824e-05, 0.000136160797527761, 0.0775255245956248}, {0.261873708176346, -1.98725210399982e-05, 1.20690316701888e-08, 1.66429546772984e-07, 3.61843600487847e-08, -6.78805814483582e-08, -0.00013158719037715}, {3.91188317230983, -0.000247667096727256, 1.66429546772984e-07, 2.56665052544717e-06, 6.96541409215597e-07, -9.00858307771567e-07, -0.00197260370663974}, {1.1285582054705, -6.82911920718824e-05, 3.61843600487847e-08, 6.96541409215597e-07, 4.94032602583969e-07, -9.8469143760973e-08, -0.000576921112208274}, {-0.889550869422687, 0.000136160797527761, -6.78805814483582e-08, -9.00858307771567e-07, -9.8469143760973e-08, 5.49938542664952e-07, 0.000430074434198215}, {-4362.58709870581, 0.0775255245956248, -0.00013158719037715, -0.00197260370663974, -0.000576921112208274, 0.000430074434198215, 2.23229587481535 }} ; gsl_vector_set_all (w, 1.0); gsl_multifit_wlinear (&X.matrix, w, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(&X.matrix, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_longley_results("longley gsl_multifit_wlinear", c, &exp_c.vector, NULL, NULL, chisq, chisq_res, expected_chisq); for (i = 0; i < longley_p; i++) { for (j = 0; j < longley_p; j++) { gsl_test_rel (gsl_matrix_get(cov,i,j), expected_cov[i][j], 1e-7, "longley gsl_multifit_wlinear cov(%d,%d)", i, j) ; } } gsl_vector_free(w); } gsl_vector_free(c); gsl_vector_free(r); gsl_matrix_free(cov); gsl_multifit_linear_free (work); gsl_multifit_robust_free (work_rob); } /* test_longley() */ gsl-1.16/multifit/test_fn.c0000664000252300025230000000137312171574312012621 00000000000000gsl_multifit_function_fdf make_fdf (int (* f) (const gsl_vector *, void *, gsl_vector *), int (* df) (const gsl_vector *, void *, gsl_matrix *), int (* fdf) (const gsl_vector *, void *, gsl_vector *, gsl_matrix *), size_t n, size_t p, void * params); gsl_multifit_function_fdf make_fdf (int (* f) (const gsl_vector *, void *, gsl_vector *), int (* df) (const gsl_vector *, void *, gsl_matrix *), int (* fdf) (const gsl_vector *, void *, gsl_vector *, gsl_matrix *), size_t n, size_t p, void * params) { gsl_multifit_function_fdf F_new; F_new.f = f; F_new.df = df; F_new.fdf = fdf; F_new.n = n; F_new.p = p; F_new.params = params; return F_new; } gsl-1.16/multifit/test_filip.c0000664000252300025230000002603712171574312013325 00000000000000size_t filip_n = 82; size_t filip_p = 11; double filip_x[] = { -6.860120914, -4.324130045, -4.358625055, -4.358426747, -6.955852379, -6.661145254, -6.355462942, -6.118102026, -7.115148017, -6.815308569, -6.519993057, -6.204119983, -5.853871964, -6.109523091, -5.79832982, -5.482672118, -5.171791386, -4.851705903, -4.517126416, -4.143573228, -3.709075441, -3.499489089, -6.300769497, -5.953504836, -5.642065153, -5.031376979, -4.680685696, -4.329846955, -3.928486195, -8.56735134, -8.363211311, -8.107682739, -7.823908741, -7.522878745, -7.218819279, -6.920818754, -6.628932138, -6.323946875, -5.991399828, -8.781464495, -8.663140179, -8.473531488, -8.247337057, -7.971428747, -7.676129393, -7.352812702, -7.072065318, -6.774174009, -6.478861916, -6.159517513, -6.835647144, -6.53165267, -6.224098421, -5.910094889, -5.598599459, -5.290645224, -4.974284616, -4.64454848, -4.290560426, -3.885055584, -3.408378962, -3.13200249, -8.726767166, -8.66695597, -8.511026475, -8.165388579, -7.886056648, -7.588043762, -7.283412422, -6.995678626, -6.691862621, -6.392544977, -6.067374056, -6.684029655, -6.378719832, -6.065855188, -5.752272167, -5.132414673, -4.811352704, -4.098269308, -3.66174277, -3.2644011}; double filip_y[] = { 0.8116, 0.9072, 0.9052, 0.9039, 0.8053, 0.8377, 0.8667, 0.8809, 0.7975, 0.8162, 0.8515, 0.8766, 0.8885, 0.8859, 0.8959, 0.8913, 0.8959, 0.8971, 0.9021, 0.909, 0.9139, 0.9199, 0.8692, 0.8872, 0.89, 0.891, 0.8977, 0.9035, 0.9078, 0.7675, 0.7705, 0.7713, 0.7736, 0.7775, 0.7841, 0.7971, 0.8329, 0.8641, 0.8804, 0.7668, 0.7633, 0.7678, 0.7697, 0.77, 0.7749, 0.7796, 0.7897, 0.8131, 0.8498, 0.8741, 0.8061, 0.846, 0.8751, 0.8856, 0.8919, 0.8934, 0.894, 0.8957, 0.9047, 0.9129, 0.9209, 0.9219, 0.7739, 0.7681, 0.7665, 0.7703, 0.7702, 0.7761, 0.7809, 0.7961, 0.8253, 0.8602, 0.8809, 0.8301, 0.8664, 0.8834, 0.8898, 0.8964, 0.8963, 0.9074, 0.9119, 0.9228 } ; static int test_filip_results(const char *str, const gsl_vector *c, const gsl_vector *expected_c, const gsl_vector *cov_diag, const gsl_vector *expected_sd, const double chisq, const double chisq_res, const double expected_chisq) { size_t i; /* test coefficient vector */ for (i = 0; i < filip_p; ++i) { gsl_test_rel (gsl_vector_get(c,i), gsl_vector_get(expected_c, i), 1.0e-7, "%s c[%zu]", str, i) ; if (cov_diag && expected_sd) { gsl_test_rel (sqrt(gsl_vector_get(cov_diag, i)), gsl_vector_get(expected_sd, i), 1e-7, "%s cov[%zu,%zu]", str, i, i); } } gsl_test_rel (chisq, expected_chisq, 1.0e-7, "%s chisq", str); gsl_test_rel (chisq_res, expected_chisq, 1.0e-7, "%s chisq residuals", str); return GSL_SUCCESS; } void test_filip () { size_t i, j; gsl_multifit_linear_workspace * work = gsl_multifit_linear_alloc (filip_n, filip_p); gsl_multifit_robust_workspace * work_rob = gsl_multifit_robust_alloc (gsl_multifit_robust_ols, filip_n, filip_p); gsl_matrix * X = gsl_matrix_alloc (filip_n, filip_p); gsl_vector_view y = gsl_vector_view_array (filip_y, filip_n); gsl_vector * c = gsl_vector_alloc (filip_p); gsl_matrix * cov = gsl_matrix_alloc (filip_p, filip_p); gsl_vector * r = gsl_vector_alloc(filip_n); double chisq, chisq_res; double expected_c[11] = { -1467.48961422980, -2772.17959193342, -2316.37108160893, -1127.97394098372, -354.478233703349, -75.1242017393757, -10.8753180355343, -1.06221498588947, -0.670191154593408E-01, -0.246781078275479E-02, -0.402962525080404E-04 }; double expected_sd[11] = { 298.084530995537, 559.779865474950, 466.477572127796, 227.204274477751, 71.6478660875927, 15.2897178747400, 2.23691159816033, 0.221624321934227, 0.142363763154724E-01, 0.535617408889821E-03, 0.896632837373868E-05 }; double expected_chisq = 0.795851382172941E-03; gsl_vector_view diag = gsl_matrix_diagonal (cov); gsl_vector_view exp_c = gsl_vector_view_array(expected_c, filip_p); gsl_vector_view exp_sd = gsl_vector_view_array(expected_sd, filip_p); for (i = 0 ; i < filip_n; i++) { for (j = 0; j < filip_p; j++) { gsl_matrix_set(X, i, j, pow(filip_x[i], j)); } } /* test unweighted least squares */ gsl_multifit_linear (X, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(X, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_filip_results("filip gsl_multifit_linear", c, &exp_c.vector, &diag.vector, &exp_sd.vector, chisq, chisq_res, expected_chisq); /* test robust least squares */ gsl_multifit_robust (X, &y.vector, c, cov, work_rob); test_filip_results("filip gsl_multifit_robust", c, &exp_c.vector, &diag.vector, &exp_sd.vector, 1.0, 1.0, 1.0); /* test weighted least squares */ { gsl_vector * w = gsl_vector_alloc (filip_n); /* computed using GNU Calc */ double expected_cov[11][11] ={ { 7.9269341767252183262588583867942e9, 1.4880416622254098343441063389706e10, 1.2385811858111487905481427591107e10, 6.0210784406215266653697715794241e9, 1.8936652526181982747116667336389e9, 4.0274900618493109653998118587093e8, 5.8685468011819735806180092394606e7, 5.7873451475721689084330083708901e6, 3.6982719848703747920663262917032e5, 1.3834818802741350637527054170891e4, 2.301758578713219280719633494302e2 }, { 1.4880416622254098334697515488559e10, 2.7955091668548290835529555438088e10, 2.3286604504243362691678565997033e10, 1.132895006796272983689297219686e10, 3.5657281653312473123348357644683e9, 7.5893300392314445528176646366087e8, 1.1066654886143524811964131660002e8, 1.0921285448484575110763947787775e7, 6.9838139975394769253353547606971e5, 2.6143091775349597218939272614126e4, 4.3523386330348588614289505633539e2 }, { 1.2385811858111487890788272968677e10, 2.3286604504243362677757802422747e10, 1.9412787917766676553608636489674e10, 9.4516246492862131849077729250098e9, 2.9771226694709917550143152097252e9, 6.3413035086730038062129508949859e8, 9.2536164488309401636559552742339e7, 9.1386304643423333815338760248027e6, 5.8479478338916429826337004060941e5, 2.1905933113294737443808429764554e4, 3.6493161325305557266196635180155e2 }, { 6.0210784406215266545770691532365e9, 1.1328950067962729823273441573365e10, 9.4516246492862131792040001429636e9, 4.6053152992000107509329772255094e9, 1.4517147860312147098138030287038e9, 3.0944988323328589376402579060072e8, 4.5190223822292688669369522708712e7, 4.4660958693678497534529855690752e6, 2.8599340736122198213681258676423e5, 1.0720394998549386596165641244705e4, 1.7870937745661967319298031044424e2 }, { 1.8936652526181982701620450132636e9, 3.5657281653312473058825073094524e9, 2.9771226694709917514149924058297e9, 1.451714786031214708936087401632e9, 4.5796563896564815123074920050827e8, 9.7693972414561515534525103622773e7, 1.427717861635658545863942948444e7, 1.4120161287735817621354292900338e6, 9.0484361228623960006818614875557e4, 3.394106783764852373199087455398e3, 5.6617406468519495376287407526295e1 }, { 4.0274900618493109532650887473599e8, 7.589330039231444534478894935778e8, 6.3413035086730037947153564986653e8, 3.09449883233285893390542947998e8, 9.7693972414561515475770399055121e7, 2.0855726248311948992114244257719e7, 3.0501263034740400533872858749566e6, 3.0187475839310308153394428784224e5, 1.9358204633534233524477930175632e4, 7.2662989867560017077361942813911e2, 1.2129002231061036467607394277965e1 }, { 5.868546801181973559370854830868e7, 1.1066654886143524778548044386795e8, 9.2536164488309401413296494869777e7, 4.5190223822292688587853853162072e7, 1.4277178616356585441556046753562e7, 3.050126303474040051574715592746e6, 4.4639982579046340884744460329946e5, 4.4212093985989836047285007760238e4, 2.8371395028774486687625333589972e3, 1.0656694507620102300567296504381e2, 1.7799982046359973175080475654123e0 }, { 5.7873451475721688839974153925406e6, 1.0921285448484575071271480643397e7, 9.1386304643423333540728480344578e6, 4.4660958693678497427674903565664e6, 1.4120161287735817596182229182587e6, 3.0187475839310308117812257613082e5, 4.4212093985989836021482392757677e4, 4.3818874017028389517560906916315e3, 2.813828775753142855163154605027e2, 1.0576188138416671883232607188969e1, 1.7676976288918295012452853715408e-1 }, { 3.6982719848703747742568351456818e5, 6.9838139975394768959780068745979e5, 5.8479478338916429616547638954781e5, 2.8599340736122198128717796825489e5, 9.0484361228623959793493985226792e4, 1.9358204633534233490579641064343e4, 2.8371395028774486654873647731797e3, 2.8138287757531428535592907878017e2, 1.8081118503579798222896804627964e1, 6.8005074291434681866415478598732e-1, 1.1373581557749643543869665860719e-2 }, { 1.3834818802741350562839757244708e4, 2.614309177534959709397445440919e4, 2.1905933113294737352721470167247e4, 1.0720394998549386558251721913182e4, 3.3941067837648523632905604575131e3, 7.2662989867560016909534954790835e2, 1.0656694507620102282337905013451e2, 1.0576188138416671871337685672492e1, 6.8005074291434681828743281967838e-1, 2.5593857187900736057022477529078e-2, 4.2831487599116264442963102045936e-4 }, { 2.3017585787132192669801658674163e2, 4.3523386330348588381716460685124e2, 3.6493161325305557094116270974735e2, 1.7870937745661967246233792737255e2, 5.6617406468519495180024059284629e1, 1.2129002231061036433003571679329e1, 1.7799982046359973135014027410646e0, 1.7676976288918294983059118597214e-1, 1.137358155774964353146460100337e-2, 4.283148759911626442000316269063e-4, 7.172253875245080423800933453952e-6 } }; gsl_vector_set_all (w, 1.0); gsl_multifit_wlinear (X, w, &y.vector, c, cov, &chisq, work); gsl_multifit_linear_residuals(X, &y.vector, c, r); gsl_blas_ddot(r, r, &chisq_res); test_filip_results("filip gsl_multifit_wlinear", c, &exp_c.vector, NULL, NULL, chisq, chisq_res, expected_chisq); for (i = 0; i < filip_p; i++) { for (j = 0; j < filip_p; j++) { gsl_test_rel (gsl_matrix_get(cov,i,j), expected_cov[i][j], 1e-6, "filip gsl_multifit_wlinear cov(%d,%d)", i, j) ; } } gsl_vector_free(w); } gsl_vector_free(c); gsl_matrix_free(cov); gsl_matrix_free(X); gsl_vector_free(r); gsl_multifit_linear_free (work); gsl_multifit_robust_free (work_rob); } gsl-1.16/multifit/test_enso.c0000664000252300025230000001134512171574312013162 00000000000000const size_t enso_N = 168; const size_t enso_P = 9; double enso_x0[9] = { 10.0, 3.0, 0.5, 44.0, -1.5, 0.5, 26.0, 0.1, 1.5 }; double enso_x[9] = { 1.0510749193E+01, 3.0762128085E+00, 5.3280138227E-01, 4.4311088700E+01, -1.6231428586E+00, 5.2554493756E-01, 2.6887614440E+01, 2.1232288488E-01, 1.4966870418E+00 }; double enso_sumsq = 7.8853978668E+02; double enso_sigma[9] = { 1.7488832467E-01, 2.4310052139E-01, 2.4354686618E-01, 9.4408025976E-01, 2.8078369611E-01, 4.8073701119E-01, 4.1612939130E-01, 5.1460022911E-01, 2.5434468893E-01 }; double enso_F[168] = { 12.90000, 11.30000, 10.60000, 11.20000, 10.90000, 7.500000, 7.700000, 11.70000, 12.90000, 14.30000, 10.90000, 13.70000, 17.10000, 14.00000, 15.30000, 8.500000, 5.700000, 5.500000, 7.600000, 8.600000, 7.300000, 7.600000, 12.70000, 11.00000, 12.70000, 12.90000, 13.00000, 10.90000, 10.400000, 10.200000, 8.000000, 10.90000, 13.60000, 10.500000, 9.200000, 12.40000, 12.70000, 13.30000, 10.100000, 7.800000, 4.800000, 3.000000, 2.500000, 6.300000, 9.700000, 11.60000, 8.600000, 12.40000, 10.500000, 13.30000, 10.400000, 8.100000, 3.700000, 10.70000, 5.100000, 10.400000, 10.90000, 11.70000, 11.40000, 13.70000, 14.10000, 14.00000, 12.50000, 6.300000, 9.600000, 11.70000, 5.000000, 10.80000, 12.70000, 10.80000, 11.80000, 12.60000, 15.70000, 12.60000, 14.80000, 7.800000, 7.100000, 11.20000, 8.100000, 6.400000, 5.200000, 12.00000, 10.200000, 12.70000, 10.200000, 14.70000, 12.20000, 7.100000, 5.700000, 6.700000, 3.900000, 8.500000, 8.300000, 10.80000, 16.70000, 12.60000, 12.50000, 12.50000, 9.800000, 7.200000, 4.100000, 10.60000, 10.100000, 10.100000, 11.90000, 13.60000, 16.30000, 17.60000, 15.50000, 16.00000, 15.20000, 11.20000, 14.30000, 14.50000, 8.500000, 12.00000, 12.70000, 11.30000, 14.50000, 15.10000, 10.400000, 11.50000, 13.40000, 7.500000, 0.6000000, 0.3000000, 5.500000, 5.000000, 4.600000, 8.200000, 9.900000, 9.200000, 12.50000, 10.90000, 9.900000, 8.900000, 7.600000, 9.500000, 8.400000, 10.70000, 13.60000, 13.70000, 13.70000, 16.50000, 16.80000, 17.10000, 15.40000, 9.500000, 6.100000, 10.100000, 9.300000, 5.300000, 11.20000, 16.60000, 15.60000, 12.00000, 11.50000, 8.600000, 13.80000, 8.700000, 8.600000, 8.600000, 8.700000, 12.80000, 13.20000, 14.00000, 13.40000, 14.80000 }; int enso_f (const gsl_vector * x, void *params, gsl_vector * f) { double b[9]; size_t i; for (i = 0; i < 9; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 168; i++) { double t = (i + 1.0); double y; y = b[0]; y += b[1] * cos(2*M_PI*t/12); y += b[2] * sin(2*M_PI*t/12); y += b[4] * cos(2*M_PI*t/b[3]); y += b[5] * sin(2*M_PI*t/b[3]); y += b[7] * cos(2*M_PI*t/b[6]); y += b[8] * sin(2*M_PI*t/b[6]); gsl_vector_set (f, i, enso_F[i] - y); } return GSL_SUCCESS; } int enso_df (const gsl_vector * x, void *params, gsl_matrix * df) { double b[9]; size_t i; for (i = 0; i < 9; i++) { b[i] = gsl_vector_get(x, i); } for (i = 0; i < 168; i++) { double t = (i + 1.0); gsl_matrix_set (df, i, 0, -1.0); gsl_matrix_set (df, i, 1, -cos(2*M_PI*t/12)); gsl_matrix_set (df, i, 2, -sin(2*M_PI*t/12)); gsl_matrix_set (df, i, 3, -b[4]*(2*M_PI*t/(b[3]*b[3]))*sin(2*M_PI*t/b[3]) +b[5]*(2*M_PI*t/(b[3]*b[3]))*cos(2*M_PI*t/b[3])); gsl_matrix_set (df, i, 4, -cos(2*M_PI*t/b[3])); gsl_matrix_set (df, i, 5, -sin(2*M_PI*t/b[3])); gsl_matrix_set (df, i, 6, -b[7] * (2*M_PI*t/(b[6]*b[6])) * sin(2*M_PI*t/b[6]) +b[8] * (2*M_PI*t/(b[6]*b[6])) * cos(2*M_PI*t/b[6])); gsl_matrix_set (df, i, 7, -cos(2*M_PI*t/b[6])); gsl_matrix_set (df, i, 8, -sin(2*M_PI*t/b[6])); } return GSL_SUCCESS; } int enso_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * df) { enso_f (x, params, f); enso_df (x, params, df); return GSL_SUCCESS; } gsl-1.16/multifit/lmpar.c0000664000252300025230000002516412171574312012276 00000000000000/* multifit/lmpar.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "qrsolv.c" static size_t count_nsing (const gsl_matrix * r) { /* Count the number of nonsingular entries. Returns the index of the first entry which is singular. */ size_t n = r->size2; size_t i; for (i = 0; i < n; i++) { double rii = gsl_matrix_get (r, i, i); if (rii == 0) { break; } } return i; } static void compute_newton_direction (const gsl_matrix * r, const gsl_permutation * perm, const gsl_vector * qtf, gsl_vector * x) { /* Compute and store in x the Gauss-Newton direction. If the Jacobian is rank-deficient then obtain a least squares solution. */ const size_t n = r->size2; size_t i, j, nsing; for (i = 0 ; i < n ; i++) { double qtfi = gsl_vector_get (qtf, i); gsl_vector_set (x, i, qtfi); } nsing = count_nsing (r); #ifdef DEBUG printf("nsing = %d\n", nsing); printf("r = "); gsl_matrix_fprintf(stdout, r, "%g"); printf("\n"); printf("qtf = "); gsl_vector_fprintf(stdout, x, "%g"); printf("\n"); #endif for (i = nsing; i < n; i++) { gsl_vector_set (x, i, 0.0); } if (nsing > 0) { for (j = nsing; j > 0 && j--;) { double rjj = gsl_matrix_get (r, j, j); double temp = gsl_vector_get (x, j) / rjj; gsl_vector_set (x, j, temp); for (i = 0; i < j; i++) { double rij = gsl_matrix_get (r, i, j); double xi = gsl_vector_get (x, i); gsl_vector_set (x, i, xi - rij * temp); } } } gsl_permute_vector_inverse (perm, x); } static void compute_newton_correction (const gsl_matrix * r, const gsl_vector * sdiag, const gsl_permutation * p, gsl_vector * x, double dxnorm, const gsl_vector * diag, gsl_vector * w) { size_t n = r->size2; size_t i, j; for (i = 0; i < n; i++) { size_t pi = gsl_permutation_get (p, i); double dpi = gsl_vector_get (diag, pi); double xpi = gsl_vector_get (x, pi); gsl_vector_set (w, i, dpi * (dpi * xpi) / dxnorm); } for (j = 0; j < n; j++) { double sj = gsl_vector_get (sdiag, j); double wj = gsl_vector_get (w, j); double tj = wj / sj; gsl_vector_set (w, j, tj); for (i = j + 1; i < n; i++) { double rij = gsl_matrix_get (r, i, j); double wi = gsl_vector_get (w, i); gsl_vector_set (w, i, wi - rij * tj); } } } static void compute_newton_bound (const gsl_matrix * r, const gsl_vector * x, double dxnorm, const gsl_permutation * perm, const gsl_vector * diag, gsl_vector * w) { /* If the jacobian is not rank-deficient then the Newton step provides a lower bound for the zero of the function. Otherwise set this bound to zero. */ size_t n = r->size2; size_t i, j; size_t nsing = count_nsing (r); if (nsing < n) { gsl_vector_set_zero (w); return; } for (i = 0; i < n; i++) { size_t pi = gsl_permutation_get (perm, i); double dpi = gsl_vector_get (diag, pi); double xpi = gsl_vector_get (x, pi); gsl_vector_set (w, i, dpi * (dpi * xpi / dxnorm)); } for (j = 0; j < n; j++) { double sum = 0; for (i = 0; i < j; i++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (w, i); } { double rjj = gsl_matrix_get (r, j, j); double wj = gsl_vector_get (w, j); gsl_vector_set (w, j, (wj - sum) / rjj); } } } static void compute_gradient_direction (const gsl_matrix * r, const gsl_permutation * p, const gsl_vector * qtf, const gsl_vector * diag, gsl_vector * g) { const size_t n = r->size2; size_t i, j; for (j = 0; j < n; j++) { double sum = 0; for (i = 0; i <= j; i++) { sum += gsl_matrix_get (r, i, j) * gsl_vector_get (qtf, i); } { size_t pj = gsl_permutation_get (p, j); double dpj = gsl_vector_get (diag, pj); gsl_vector_set (g, j, sum / dpj); } } } static int lmpar (gsl_matrix * r, const gsl_permutation * perm, const gsl_vector * qtf, const gsl_vector * diag, double delta, double * par_inout, gsl_vector * newton, gsl_vector * gradient, gsl_vector * sdiag, gsl_vector * x, gsl_vector * w) { double dxnorm, gnorm, fp, fp_old, par_lower, par_upper, par_c; double par = *par_inout; size_t iter = 0; #ifdef DEBUG printf("ENTERING lmpar\n"); #endif compute_newton_direction (r, perm, qtf, newton); #ifdef DEBUG printf ("newton = "); gsl_vector_fprintf (stdout, newton, "%g"); printf ("\n"); printf ("diag = "); gsl_vector_fprintf (stdout, diag, "%g"); printf ("\n"); #endif /* Evaluate the function at the origin and test for acceptance of the Gauss-Newton direction. */ dxnorm = scaled_enorm (diag, newton); fp = dxnorm - delta; #ifdef DEBUG printf ("dxnorm = %g, delta = %g, fp = %g\n", dxnorm, delta, fp); #endif if (fp <= 0.1 * delta) { gsl_vector_memcpy (x, newton); #ifdef DEBUG printf ("took newton (fp = %g, delta = %g)\n", fp, delta); #endif *par_inout = 0; return GSL_SUCCESS; } #ifdef DEBUG printf ("r = "); gsl_matrix_fprintf (stdout, r, "%g"); printf ("\n"); printf ("newton = "); gsl_vector_fprintf (stdout, newton, "%g"); printf ("\n"); printf ("dxnorm = %g\n", dxnorm); #endif compute_newton_bound (r, newton, dxnorm, perm, diag, w); #ifdef DEBUG printf("perm = "); gsl_permutation_fprintf(stdout, perm, "%d"); printf ("diag = "); gsl_vector_fprintf (stdout, diag, "%g"); printf ("\n"); printf ("w = "); gsl_vector_fprintf (stdout, w, "%g"); printf ("\n"); #endif { double wnorm = enorm (w); double phider = wnorm * wnorm; /* w == zero if r rank-deficient, then set lower bound to zero form MINPACK, lmder.f Hans E. Plesser 2002-02-25 (hans.plesser@itf.nlh.no) */ if ( wnorm > 0 ) par_lower = fp / (delta * phider); else par_lower = 0.0; } #ifdef DEBUG printf("par = %g\n", par ); printf("par_lower = %g\n", par_lower); #endif compute_gradient_direction (r, perm, qtf, diag, gradient); gnorm = enorm (gradient); #ifdef DEBUG printf("gradient = "); gsl_vector_fprintf(stdout, gradient, "%g"); printf("\n"); printf("gnorm = %g\n", gnorm); #endif par_upper = gnorm / delta; if (par_upper == 0) { par_upper = GSL_DBL_MIN / GSL_MIN_DBL(delta, 0.1); } #ifdef DEBUG printf("par_upper = %g\n", par_upper); #endif if (par > par_upper) { #ifdef DEBUG printf("set par to par_upper\n"); #endif par = par_upper; } else if (par < par_lower) { #ifdef DEBUG printf("set par to par_lower\n"); #endif par = par_lower; } if (par == 0) { par = gnorm / dxnorm; #ifdef DEBUG printf("set par to gnorm/dxnorm = %g\n", par); #endif } /* Beginning of iteration */ iteration: iter++; #ifdef DEBUG printf("lmpar iteration = %d\n", iter); #endif #ifdef BRIANSFIX /* Seems like this is described in the paper but not in the MINPACK code */ if (par < par_lower || par > par_upper) { par = GSL_MAX_DBL (0.001 * par_upper, sqrt(par_lower * par_upper)); } #endif /* Evaluate the function at the current value of par */ if (par == 0) { par = GSL_MAX_DBL (0.001 * par_upper, GSL_DBL_MIN); #ifdef DEBUG printf("par = 0, set par to = %g\n", par); #endif } /* Compute the least squares solution of [ R P x - Q^T f, sqrt(par) D x] for A = Q R P^T */ #ifdef DEBUG printf ("calling qrsolv with par = %g\n", par); #endif { double sqrt_par = sqrt(par); qrsolv (r, perm, sqrt_par, diag, qtf, x, sdiag, w); } dxnorm = scaled_enorm (diag, x); fp_old = fp; fp = dxnorm - delta; #ifdef DEBUG printf ("After qrsolv dxnorm = %g, delta = %g, fp = %g\n", dxnorm, delta, fp); printf ("sdiag = ") ; gsl_vector_fprintf(stdout, sdiag, "%g"); printf("\n"); printf ("x = ") ; gsl_vector_fprintf(stdout, x, "%g"); printf("\n"); printf ("r = ") ; gsl_matrix_fprintf(stdout, r, "%g"); printf("\nXXX\n"); #endif /* If the function is small enough, accept the current value of par */ if (fabs (fp) <= 0.1 * delta) goto line220; if (par_lower == 0 && fp <= fp_old && fp_old < 0) goto line220; /* Check for maximum number of iterations */ if (iter == 10) goto line220; /* Compute the Newton correction */ compute_newton_correction (r, sdiag, perm, x, dxnorm, diag, w); #ifdef DEBUG printf ("newton_correction = "); gsl_vector_fprintf(stdout, w, "%g"); printf("\n"); #endif { double wnorm = enorm (w); par_c = fp / (delta * wnorm * wnorm); } #ifdef DEBUG printf("fp = %g\n", fp); printf("par_lower = %g\n", par_lower); printf("par_upper = %g\n", par_upper); printf("par_c = %g\n", par_c); #endif /* Depending on the sign of the function, update par_lower or par_upper */ if (fp > 0) { if (par > par_lower) { par_lower = par; #ifdef DEBUG printf("fp > 0: set par_lower = par = %g\n", par); #endif } } else if (fp < 0) { if (par < par_upper) { #ifdef DEBUG printf("fp < 0: set par_upper = par = %g\n", par); #endif par_upper = par; } } /* Compute an improved estimate for par */ #ifdef DEBUG printf("improved estimate par = MAX(%g, %g) \n", par_lower, par+par_c); #endif par = GSL_MAX_DBL (par_lower, par + par_c); #ifdef DEBUG printf("improved estimate par = %g \n", par); #endif goto iteration; line220: #ifdef DEBUG printf("LEAVING lmpar, par = %g\n", par); #endif *par_inout = par; return GSL_SUCCESS; } gsl-1.16/ntuple/0000775000252300025230000000000012172254163010541 500000000000000gsl-1.16/ntuple/test.c0000664000252300025230000000677012171575101011613 00000000000000#include #include #include #include #include #include struct data { int num; double x; double y; double z; }; int sel_func (void *ntuple_data, void * params); double val_func (void *ntuple_data, void * params); int main (void) { struct data ntuple_row; int i; double x[1000], y[1000], z[1000], f[100]; gsl_ntuple_select_fn S; gsl_ntuple_value_fn V; double scale = 1.5; gsl_ieee_env_setup (); /* zero struct including padding bytes to avoid valgrind errors */ memset(&ntuple_row, 0, sizeof(struct data)); S.function = &sel_func; S.params = &scale; V.function = &val_func; V.params = &scale; { gsl_ntuple *ntuple = gsl_ntuple_create ("test.dat", &ntuple_row, sizeof (ntuple_row)); int status = 0; for (i = 0; i < 100; i++) f[i] = 0; for (i = 0; i < 1000; i++) { double xi = 1.0 / (i + 1.5); double yi = xi * xi ; double zi = xi * xi * xi; ntuple_row.x = xi; ntuple_row.y = yi; ntuple_row.z = zi; ntuple_row.num = i; x[i] = xi; y[i] = yi; z[i] = zi; if (xi * scale < 0.1) { double v = xi + yi + zi; int k = (int)(100.0*v*scale); f[k]++; } /* printf ("x,y,z = %f,%f,%f; n=%x \n", ntuple_row.x, ntuple_row.y, ntuple_row.z, ntuple_row.num); */ { int s = gsl_ntuple_bookdata (ntuple); if (s != GSL_SUCCESS) { status = 1; } } } gsl_ntuple_close (ntuple); gsl_test (status, "writing ntuples"); } { gsl_ntuple *ntuple = gsl_ntuple_open ("test.dat", &ntuple_row, sizeof (ntuple_row)); int status = 0; for (i = 0; i < 1000; i++) { gsl_ntuple_read (ntuple); status = (ntuple_row.num != i); status |= (ntuple_row.x != x[i]); status |= (ntuple_row.y != y[i]); status |= (ntuple_row.z != z[i]); /* printf ("x,y,z = %f,%f,%f; n=%d\n", ntuple_row.x, ntuple_row.y, ntuple_row.z, ntuple_row.num); */ } gsl_ntuple_close (ntuple); gsl_test (status, "reading ntuples"); } { int status = 0; gsl_ntuple *ntuple = gsl_ntuple_open ("test.dat", &ntuple_row, sizeof (ntuple_row)); gsl_histogram *h = gsl_histogram_calloc_uniform (100, 0., 1.); gsl_ntuple_project (h, ntuple, &V, &S); gsl_ntuple_close (ntuple); /* gsl_histogram_fprintf (stdout, h, "%f", "%f"); */ for (i = 0; i < 100; i++) { /* printf ("h %g f %g\n", h->bin[i], f[i]); */ if (h->bin[i] != f[i]) { status = 1; } } gsl_test (status, "histogramming ntuples"); gsl_histogram_free (h); } exit (gsl_test_summary()); } int sel_func (void *ntuple_data, void * params) { double x, y, z, scale; scale = *(double *)params; x = ((struct data *) ntuple_data)->x; y = ((struct data *) ntuple_data)->y; z = ((struct data *) ntuple_data)->z; return (x*scale < 0.1); } double val_func (void *ntuple_data, void * params) { double x, y, z, scale; scale = *(double *)params; x = ((struct data *) ntuple_data)->x; y = ((struct data *) ntuple_data)->y; z = ((struct data *) ntuple_data)->z; return (x + y + z) * scale; } gsl-1.16/ntuple/Makefile.in0000664000252300025230000010437112172253756012543 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = ntuple DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslntuple_la_LIBADD = am_libgslntuple_la_OBJECTS = ntuple.lo libgslntuple_la_OBJECTS = $(am_libgslntuple_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslntuple.la ../histogram/libgslhistogram.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslntuple_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslntuple_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslntuple.la pkginclude_HEADERS = gsl_ntuple.h INCLUDES = -I$(top_srcdir) libgslntuple_la_SOURCES = ntuple.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #demo_SOURCES = demo.c #demo_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #demo1_SOURCES = demo1.c #demo1_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la CLEANFILES = test.dat all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu ntuple/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu ntuple/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslntuple.la: $(libgslntuple_la_OBJECTS) $(libgslntuple_la_DEPENDENCIES) $(EXTRA_libgslntuple_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslntuple_la_OBJECTS) $(libgslntuple_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ntuple.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/ntuple/ChangeLog0000664000252300025230000000042012171574312012227 000000000000002008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2004-05-30 Brian Gough * ntuple/test.c (main): choose ratio 1/(i+1.5) to avoid values exactly on test cutoff x=0.1 gsl-1.16/ntuple/ntuple.c0000664000252300025230000001047112171574312012137 00000000000000/* histogram/ntuple.c * * Copyright (C) 2000 Simone Piccardi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Jan/2001 Modified by Brian Gough. Minor changes for GSL */ #include #include #include #include /* * gsl_ntuple_open: * Initialize an ntuple structure and create the related file */ gsl_ntuple * gsl_ntuple_create (char *filename, void *ntuple_data, size_t size) { gsl_ntuple *ntuple = (gsl_ntuple *)malloc (sizeof (gsl_ntuple)); if (ntuple == 0) { GSL_ERROR_VAL ("failed to allocate space for ntuple struct", GSL_ENOMEM, 0); } ntuple->ntuple_data = ntuple_data; ntuple->size = size; ntuple->file = fopen (filename, "wb"); if (ntuple->file == 0) { free (ntuple); GSL_ERROR_VAL ("unable to create ntuple file", GSL_EFAILED, 0); } return ntuple; } /* * gsl_ntuple_open: * Initialize an ntuple structure and open the related file */ gsl_ntuple * gsl_ntuple_open (char *filename, void *ntuple_data, size_t size) { gsl_ntuple *ntuple = (gsl_ntuple *)malloc (sizeof (gsl_ntuple)); if (ntuple == 0) { GSL_ERROR_VAL ("failed to allocate space for ntuple struct", GSL_ENOMEM, 0); } ntuple->ntuple_data = ntuple_data; ntuple->size = size; ntuple->file = fopen (filename, "rb"); if (ntuple->file == 0) { free (ntuple); GSL_ERROR_VAL ("unable to open ntuple file for reading", GSL_EFAILED, 0); } return ntuple; } /* * gsl_ntuple_write: * write to file a data row, must be used in a loop! */ int gsl_ntuple_write (gsl_ntuple * ntuple) { size_t nwrite; nwrite = fwrite (ntuple->ntuple_data, ntuple->size, 1, ntuple->file); if (nwrite != 1) { GSL_ERROR ("failed to write ntuple entry to file", GSL_EFAILED); } return GSL_SUCCESS; } /* the following function is a synonym for gsl_ntuple_write */ int gsl_ntuple_bookdata (gsl_ntuple * ntuple) { return gsl_ntuple_write (ntuple); } /* * gsl_ntuple_read: * read form file a data row, must be used in a loop! */ int gsl_ntuple_read (gsl_ntuple * ntuple) { size_t nread; nread = fread (ntuple->ntuple_data, ntuple->size, 1, ntuple->file); if (nread == 0 && feof(ntuple->file)) { return GSL_EOF; } if (nread != 1) { GSL_ERROR ("failed to read ntuple entry from file", GSL_EFAILED); } return GSL_SUCCESS; } /* * gsl_ntuple_project: * fill an histogram with an ntuple file contents, use * SelVal and SelFunc user defined functions to get * the value to book and the selection funtion */ #define EVAL(f,x) ((*((f)->function))(x,(f)->params)) int gsl_ntuple_project (gsl_histogram * h, gsl_ntuple * ntuple, gsl_ntuple_value_fn * value_func, gsl_ntuple_select_fn * select_func) { size_t nread; do { nread = fread (ntuple->ntuple_data, ntuple->size, 1, ntuple->file); if (nread == 0 && feof(ntuple->file)) { break ; } if (nread != 1) { GSL_ERROR ("failed to read ntuple for projection", GSL_EFAILED); } if (EVAL(select_func, ntuple->ntuple_data)) { gsl_histogram_increment (h, EVAL(value_func, ntuple->ntuple_data)); } } while (1); return GSL_SUCCESS; } /* * gsl_ntuple_close: * close the ntuple file and free the memory */ int gsl_ntuple_close (gsl_ntuple * ntuple) { int status = fclose (ntuple->file); if (status) { GSL_ERROR ("failed to close ntuple file", GSL_EFAILED); } free (ntuple); return GSL_SUCCESS; } gsl-1.16/ntuple/Makefile.am0000664000252300025230000000160412171574312012516 00000000000000noinst_LTLIBRARIES = libgslntuple.la pkginclude_HEADERS = gsl_ntuple.h INCLUDES = -I$(top_srcdir) libgslntuple_la_SOURCES = ntuple.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test #demo demo1 test_SOURCES = test.c test_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #demo_SOURCES = demo.c #demo_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #demo1_SOURCES = demo1.c #demo1_LDADD = libgslntuple.la ../histogram/libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la CLEANFILES = test.dat gsl-1.16/ntuple/gsl_ntuple.h0000664000252300025230000000414512171574312013012 00000000000000/* histogram/ntuple.h * * Copyright (C) 2000 Simone Piccardi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ /* Jan/2001 Modified by Brian Gough. Minor changes for GSL */ #ifndef __GSL_NTUPLE_H__ #define __GSL_NTUPLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { FILE * file; void * ntuple_data; size_t size; } gsl_ntuple; typedef struct { int (* function) (void * ntuple_data, void * params); void * params; } gsl_ntuple_select_fn; typedef struct { double (* function) (void * ntuple_data, void * params); void * params; } gsl_ntuple_value_fn; gsl_ntuple * gsl_ntuple_open (char * filename, void * ntuple_data, size_t size); gsl_ntuple * gsl_ntuple_create (char * filename, void * ntuple_data, size_t size); int gsl_ntuple_write (gsl_ntuple * ntuple); int gsl_ntuple_read (gsl_ntuple * ntuple); int gsl_ntuple_bookdata (gsl_ntuple * ntuple); /* synonym for write */ int gsl_ntuple_project (gsl_histogram * h, gsl_ntuple * ntuple, gsl_ntuple_value_fn *value_func, gsl_ntuple_select_fn *select_func); int gsl_ntuple_close (gsl_ntuple * ntuple); __END_DECLS #endif /* __GSL_NTUPLE_H__ */ gsl-1.16/permutation/0000775000252300025230000000000012172254156011603 500000000000000gsl-1.16/permutation/gsl_permute_vector_double.h0000664000252300025230000000265712171574312017146 00000000000000/* permutation/gsl_permute_vector_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_DOUBLE_H__ #define __GSL_PERMUTE_VECTOR_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector (const gsl_permutation * p, gsl_vector * v); int gsl_permute_vector_inverse (const gsl_permutation * p, gsl_vector * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permute_vector_uint.h0000664000252300025230000000267112171574312016647 00000000000000/* permutation/gsl_permute_vector_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_UINT_H__ #define __GSL_PERMUTE_VECTOR_UINT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_uint (const gsl_permutation * p, gsl_vector_uint * v); int gsl_permute_vector_uint_inverse (const gsl_permutation * p, gsl_vector_uint * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_UINT_H__ */ gsl-1.16/permutation/gsl_permute_vector_ulong.h0000664000252300025230000000270212171574312017007 00000000000000/* permutation/gsl_permute_vector_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_ULONG_H__ #define __GSL_PERMUTE_VECTOR_ULONG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_ulong (const gsl_permutation * p, gsl_vector_ulong * v); int gsl_permute_vector_ulong_inverse (const gsl_permutation * p, gsl_vector_ulong * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_ULONG_H__ */ gsl-1.16/permutation/inline.c0000664000252300025230000000170112171574312013142 00000000000000/* permutation/inline.c * * Copyright (C) 2008 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/permutation/permutation.c0000664000252300025230000001221012171574312014230 00000000000000/* permutation/permutation.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include size_t gsl_permutation_size (const gsl_permutation * p) { return p->size ; } size_t * gsl_permutation_data (const gsl_permutation * p) { return p->data ; } int gsl_permutation_swap (gsl_permutation * p, const size_t i, const size_t j) { const size_t size = p->size ; if (i >= size) { GSL_ERROR("first index is out of range", GSL_EINVAL); } if (j >= size) { GSL_ERROR("second index is out of range", GSL_EINVAL); } if (i != j) { size_t tmp = p->data[i]; p->data[i] = p->data[j]; p->data[j] = tmp; } return GSL_SUCCESS; } int gsl_permutation_valid (const gsl_permutation * p) { const size_t size = p->size ; size_t i, j ; for (i = 0; i < size; i++) { if (p->data[i] >= size) { GSL_ERROR("permutation index outside range", GSL_FAILURE) ; } for (j = 0; j < i; j++) { if (p->data[i] == p->data[j]) { GSL_ERROR("duplicate permutation index", GSL_FAILURE) ; } } } return GSL_SUCCESS; } void gsl_permutation_reverse (gsl_permutation * p) { const size_t size = p->size ; size_t i ; for (i = 0; i < (size / 2); i++) { size_t j = size - i - 1; size_t tmp = p->data[i] ; p->data[i] = p->data[j] ; p->data[j] = tmp ; } } int gsl_permutation_inverse (gsl_permutation * inv, const gsl_permutation * p) { const size_t size = p->size ; size_t i ; if (inv->size != size) { GSL_ERROR("permutation lengths are not equal", GSL_EBADLEN); } for (i = 0; i < size; i++) { inv->data[p->data[i]] = i ; } return GSL_SUCCESS ; } int gsl_permutation_next (gsl_permutation * p) { /* Replaces p with the next permutation (in the standard lexicographical * ordering). Returns GSL_FAILURE if there is no next permutation. */ const size_t size = p->size; size_t i, j, k; if (size < 2) { return GSL_FAILURE; } i = size - 2; while ((p->data[i] > p->data[i+1]) && (i != 0)) { i--; } if ((i == 0) && (p->data[0] > p->data[1])) { return GSL_FAILURE; } k = i + 1; for (j = i + 2; j < size; j++ ) { if ((p->data[j] > p->data[i]) && (p->data[j] < p->data[k])) { k = j; } } /* swap i and k */ { size_t tmp = p->data[i]; p->data[i] = p->data[k]; p->data[k] = tmp; } for (j = i + 1; j <= ((size + i) / 2); j++) { size_t tmp = p->data[j]; p->data[j] = p->data[size + i - j]; p->data[size + i - j] = tmp; } return GSL_SUCCESS; } int gsl_permutation_prev (gsl_permutation * p) { const size_t size = p->size; size_t i, j, k; if (size < 2) { return GSL_FAILURE; } i = size - 2; while ((p->data[i] < p->data[i+1]) && (i != 0)) { i--; } if ((i == 0) && (p->data[0] < p->data[1])) { return GSL_FAILURE; } k = i + 1; for (j = i + 2; j < size; j++ ) { if ((p->data[j] < p->data[i]) && (p->data[j] > p->data[k])) { k = j; } } /* swap i and k */ { size_t tmp = p->data[i]; p->data[i] = p->data[k]; p->data[k] = tmp; } for (j = i + 1; j <= ((size + i) / 2); j++) { size_t tmp = p->data[j]; p->data[j] = p->data[size + i - j]; p->data[size + i - j] = tmp; } return GSL_SUCCESS; } int gsl_permutation_mul (gsl_permutation * p, const gsl_permutation * pa, const gsl_permutation * pb) { size_t i; const size_t size = p->size; if (pa->size != size) { GSL_ERROR("size of result does not match size of pa", GSL_EINVAL); } if (pb->size != size) { GSL_ERROR("size of result does not match size of pb", GSL_EINVAL); } for (i = 0; i < size; i++) { p->data[i] = pb->data[pa->data[i]]; } return GSL_SUCCESS; } int gsl_permutation_memcpy (gsl_permutation * dest, const gsl_permutation * src) { const size_t src_size = src->size; const size_t dest_size = dest->size; if (src_size != dest_size) { GSL_ERROR ("permutation lengths are not equal", GSL_EBADLEN); } { size_t j; for (j = 0; j < src_size; j++) { dest->data[j] = src->data[j]; } } return GSL_SUCCESS; } gsl-1.16/permutation/gsl_permute.h0000664000252300025230000000114612171574312014222 00000000000000#ifndef __GSL_PERMUTE_H__ #define __GSL_PERMUTE_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_PERMUTE_H__ */ gsl-1.16/permutation/gsl_permute_vector_uchar.h0000664000252300025230000000270212171574312016765 00000000000000/* permutation/gsl_permute_vector_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_UCHAR_H__ #define __GSL_PERMUTE_VECTOR_UCHAR_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_uchar (const gsl_permutation * p, gsl_vector_uchar * v); int gsl_permute_vector_uchar_inverse (const gsl_permutation * p, gsl_vector_uchar * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_UCHAR_H__ */ gsl-1.16/permutation/gsl_permute_int.h0000664000252300025230000000261612171574312015077 00000000000000/* permutation/gsl_permute_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_INT_H__ #define __GSL_PERMUTE_INT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_int (const size_t * p, int * data, const size_t stride, const size_t n); int gsl_permute_int_inverse (const size_t * p, int * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_INT_H__ */ gsl-1.16/permutation/gsl_permute_uint.h0000664000252300025230000000264612171574312015267 00000000000000/* permutation/gsl_permute_uint.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_UINT_H__ #define __GSL_PERMUTE_UINT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_uint (const size_t * p, unsigned int * data, const size_t stride, const size_t n); int gsl_permute_uint_inverse (const size_t * p, unsigned int * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_UINT_H__ */ gsl-1.16/permutation/gsl_permute_vector_ushort.h0000664000252300025230000000271312171574312017211 00000000000000/* permutation/gsl_permute_vector_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_USHORT_H__ #define __GSL_PERMUTE_VECTOR_USHORT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_ushort (const gsl_permutation * p, gsl_vector_ushort * v); int gsl_permute_vector_ushort_inverse (const gsl_permutation * p, gsl_vector_ushort * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_USHORT_H__ */ gsl-1.16/permutation/test.c0000664000252300025230000002340412171574312012647 00000000000000/* permutation/test.c * * Copyright (C) 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include unsigned int p5[120][5] = { {0, 1, 2, 3, 4}, {0, 1, 2, 4, 3}, {0, 1, 3, 2, 4}, {0, 1, 3, 4, 2}, {0, 1, 4, 2, 3}, {0, 1, 4, 3, 2}, {0, 2, 1, 3, 4}, {0, 2, 1, 4, 3}, {0, 2, 3, 1, 4}, {0, 2, 3, 4, 1}, {0, 2, 4, 1, 3}, {0, 2, 4, 3, 1}, {0, 3, 1, 2, 4}, {0, 3, 1, 4, 2}, {0, 3, 2, 1, 4}, {0, 3, 2, 4, 1}, {0, 3, 4, 1, 2}, {0, 3, 4, 2, 1}, {0, 4, 1, 2, 3}, {0, 4, 1, 3, 2}, {0, 4, 2, 1, 3}, {0, 4, 2, 3, 1}, {0, 4, 3, 1, 2}, {0, 4, 3, 2, 1}, {1, 0, 2, 3, 4}, {1, 0, 2, 4, 3}, {1, 0, 3, 2, 4}, {1, 0, 3, 4, 2}, {1, 0, 4, 2, 3}, {1, 0, 4, 3, 2}, {1, 2, 0, 3, 4}, {1, 2, 0, 4, 3}, {1, 2, 3, 0, 4}, {1, 2, 3, 4, 0}, {1, 2, 4, 0, 3}, {1, 2, 4, 3, 0}, {1, 3, 0, 2, 4}, {1, 3, 0, 4, 2}, {1, 3, 2, 0, 4}, {1, 3, 2, 4, 0}, {1, 3, 4, 0, 2}, {1, 3, 4, 2, 0}, {1, 4, 0, 2, 3}, {1, 4, 0, 3, 2}, {1, 4, 2, 0, 3}, {1, 4, 2, 3, 0}, {1, 4, 3, 0, 2}, {1, 4, 3, 2, 0}, {2, 0, 1, 3, 4}, {2, 0, 1, 4, 3}, {2, 0, 3, 1, 4}, {2, 0, 3, 4, 1}, {2, 0, 4, 1, 3}, {2, 0, 4, 3, 1}, {2, 1, 0, 3, 4}, {2, 1, 0, 4, 3}, {2, 1, 3, 0, 4}, {2, 1, 3, 4, 0}, {2, 1, 4, 0, 3}, {2, 1, 4, 3, 0}, {2, 3, 0, 1, 4}, {2, 3, 0, 4, 1}, {2, 3, 1, 0, 4}, {2, 3, 1, 4, 0}, {2, 3, 4, 0, 1}, {2, 3, 4, 1, 0}, {2, 4, 0, 1, 3}, {2, 4, 0, 3, 1}, {2, 4, 1, 0, 3}, {2, 4, 1, 3, 0}, {2, 4, 3, 0, 1}, {2, 4, 3, 1, 0}, {3, 0, 1, 2, 4}, {3, 0, 1, 4, 2}, {3, 0, 2, 1, 4}, {3, 0, 2, 4, 1}, {3, 0, 4, 1, 2}, {3, 0, 4, 2, 1}, {3, 1, 0, 2, 4}, {3, 1, 0, 4, 2}, {3, 1, 2, 0, 4}, {3, 1, 2, 4, 0}, {3, 1, 4, 0, 2}, {3, 1, 4, 2, 0}, {3, 2, 0, 1, 4}, {3, 2, 0, 4, 1}, {3, 2, 1, 0, 4}, {3, 2, 1, 4, 0}, {3, 2, 4, 0, 1}, {3, 2, 4, 1, 0}, {3, 4, 0, 1, 2}, {3, 4, 0, 2, 1}, {3, 4, 1, 0, 2}, {3, 4, 1, 2, 0}, {3, 4, 2, 0, 1}, {3, 4, 2, 1, 0}, {4, 0, 1, 2, 3}, {4, 0, 1, 3, 2}, {4, 0, 2, 1, 3}, {4, 0, 2, 3, 1}, {4, 0, 3, 1, 2}, {4, 0, 3, 2, 1}, {4, 1, 0, 2, 3}, {4, 1, 0, 3, 2}, {4, 1, 2, 0, 3}, {4, 1, 2, 3, 0}, {4, 1, 3, 0, 2}, {4, 1, 3, 2, 0}, {4, 2, 0, 1, 3}, {4, 2, 0, 3, 1}, {4, 2, 1, 0, 3}, {4, 2, 1, 3, 0}, {4, 2, 3, 0, 1}, {4, 2, 3, 1, 0}, {4, 3, 0, 1, 2}, {4, 3, 0, 2, 1}, {4, 3, 1, 0, 2}, {4, 3, 1, 2, 0}, {4, 3, 2, 0, 1}, {4, 3, 2, 1, 0} } ; unsigned int c5[120][5] = { {4, 3, 2, 1, 0}, {3, 4, 2, 1, 0}, {4, 2, 3, 1, 0}, {2, 3, 4, 1, 0}, {2, 4, 3, 1, 0}, {3, 2, 4, 1, 0}, {4, 3, 1, 2, 0}, {3, 4, 1, 2, 0}, {4, 1, 2, 3, 0}, {1, 2, 3, 4, 0}, {1, 2, 4, 3, 0}, {3, 1, 2, 4, 0}, {4, 1, 3, 2, 0}, {1, 3, 4, 2, 0}, {4, 2, 1, 3, 0}, {2, 1, 3, 4, 0}, {2, 4, 1, 3, 0}, {1, 3, 2, 4, 0}, {1, 4, 3, 2, 0}, {3, 1, 4, 2, 0}, {2, 1, 4, 3, 0}, {3, 2, 1, 4, 0}, {1, 4, 2, 3, 0}, {2, 3, 1, 4, 0}, {4, 3, 2, 0, 1}, {3, 4, 2, 0, 1}, {4, 2, 3, 0, 1}, {2, 3, 4, 0, 1}, {2, 4, 3, 0, 1}, {3, 2, 4, 0, 1}, {4, 3, 0, 1, 2}, {3, 4, 0, 1, 2}, {4, 0, 1, 2, 3}, {0, 1, 2, 3, 4}, {0, 1, 2, 4, 3}, {3, 0, 1, 2, 4}, {4, 0, 1, 3, 2}, {0, 1, 3, 4, 2}, {4, 2, 0, 1, 3}, {2, 0, 1, 3, 4}, {2, 4, 0, 1, 3}, {0, 1, 3, 2, 4}, {0, 1, 4, 3, 2}, {3, 0, 1, 4, 2}, {2, 0, 1, 4, 3}, {3, 2, 0, 1, 4}, {0, 1, 4, 2, 3}, {2, 3, 0, 1, 4}, {4, 3, 0, 2, 1}, {3, 4, 0, 2, 1}, {4, 0, 2, 3, 1}, {0, 2, 3, 4, 1}, {0, 2, 4, 3, 1}, {3, 0, 2, 4, 1}, {4, 3, 1, 0, 2}, {3, 4, 1, 0, 2}, {4, 1, 0, 2, 3}, {1, 0, 2, 3, 4}, {1, 0, 2, 4, 3}, {3, 1, 0, 2, 4}, {4, 1, 3, 0, 2}, {1, 3, 4, 0, 2}, {4, 0, 2, 1, 3}, {0, 2, 1, 3, 4}, {0, 2, 4, 1, 3}, {1, 3, 0, 2, 4}, {1, 4, 3, 0, 2}, {3, 1, 4, 0, 2}, {0, 2, 1, 4, 3}, {3, 0, 2, 1, 4}, {1, 4, 0, 2, 3}, {0, 2, 3, 1, 4}, {4, 0, 3, 2, 1}, {0, 3, 4, 2, 1}, {4, 2, 0, 3, 1}, {2, 0, 3, 4, 1}, {2, 4, 0, 3, 1}, {0, 3, 2, 4, 1}, {4, 1, 0, 3, 2}, {1, 0, 3, 4, 2}, {4, 2, 1, 0, 3}, {2, 1, 0, 3, 4}, {2, 4, 1, 0, 3}, {1, 0, 3, 2, 4}, {4, 0, 3, 1, 2}, {0, 3, 4, 1, 2}, {4, 1, 2, 0, 3}, {1, 2, 0, 3, 4}, {1, 2, 4, 0, 3}, {0, 3, 1, 2, 4}, {0, 3, 1, 4, 2}, {1, 4, 0, 3, 2}, {1, 4, 2, 0, 3}, {0, 3, 2, 1, 4}, {2, 1, 4, 0, 3}, {2, 0, 3, 1, 4}, {0, 4, 3, 2, 1}, {3, 0, 4, 2, 1}, {2, 0, 4, 3, 1}, {3, 2, 0, 4, 1}, {0, 4, 2, 3, 1}, {2, 3, 0, 4, 1}, {1, 0, 4, 3, 2}, {3, 1, 0, 4, 2}, {2, 1, 0, 4, 3}, {3, 2, 1, 0, 4}, {1, 0, 4, 2, 3}, {2, 3, 1, 0, 4}, {0, 4, 3, 1, 2}, {3, 0, 4, 1, 2}, {1, 2, 0, 4, 3}, {3, 1, 2, 0, 4}, {0, 4, 1, 2, 3}, {1, 2, 3, 0, 4}, {1, 3, 0, 4, 2}, {0, 4, 1, 3, 2}, {0, 4, 2, 1, 3}, {1, 3, 2, 0, 4}, {2, 0, 4, 1, 3}, {2, 1, 3, 0, 4} } ; unsigned int cycles[120] = { 5, 4, 4, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 2, 4, 3, 3, 2, 2, 3, 3, 4, 2, 3, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2, 3, 1, 2, 3, 2, 2, 1, 1, 2, 4, 3, 3, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 1, 2, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 4, 3, 3, 2, 2, 1, 3, 2, 2, 1, 1, 2, 2, 1, 3, 2, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 2, 1, 1, 2, 2, 3 } ; unsigned int inversions[120] = { 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10 } ; int main (void) { gsl_ieee_env_setup (); { int i = 0, j, status = 0; gsl_permutation * p ; p = gsl_permutation_alloc (5); gsl_permutation_init (p); do { for (j = 0; j < 5; j++) { status |= (p->data[j] != p5[i][j]); } i++; } while (gsl_permutation_next(p) == GSL_SUCCESS); gsl_test(status, "gsl_permutation_next, 5-th order permutation, 120 steps"); do { i--; for (j = 0; j < 5; j++) { status |= (p->data[j] != p5[i][j]); } } while (gsl_permutation_prev(p) == GSL_SUCCESS); gsl_test(status, "gsl_permutation_prev, 5-th order permutation, 120 steps"); gsl_permutation_free (p); } #ifdef JUNK { int i; int status = 0 ; gsl_permutation * p1 = gsl_permutation_alloc (5); gsl_permutation * p2 = gsl_permutation_alloc (5); gsl_permutation * p = gsl_permutation_alloc (5); double v[5] = { 100.0, 101.0, 102.0, 103.0, 104.0 } ; gsl_permutation_init (p1); do { gsl_permutation_init (p2); do { double x[5], y[5]; /* Compute x= p1 p2 v */ memcpy (x, v, 5 * sizeof(double)); gsl_permute (p2->data, x, 1, 5); gsl_permute (p1->data, x, 1, 5); /* Compute P= p1 p2, y = P v */ gsl_permutation_mul (p, p1, p2); memcpy (y, v, 5 * sizeof(double)); gsl_permute (p->data, y, 1, 5); for (i = 0; i < 5; i++) { if (x[i] != y[i]) status = 1; } if (status == 1) break; } while (gsl_permutation_next(p2) == GSL_SUCCESS); if (status == 1) break; } while (gsl_permutation_next(p1) == GSL_SUCCESS); gsl_permutation_free (p1); gsl_permutation_free (p2); gsl_permutation_free (p); gsl_test(status, "gsl_permutation_mul, all 5-th order combinations"); } #endif /* testing cycles representations */ { int i = 0, j, status = 0; gsl_permutation * p = gsl_permutation_alloc (5); gsl_permutation * plin = gsl_permutation_alloc (5); gsl_permutation * pcan = gsl_permutation_alloc (5); gsl_permutation_init (p); do { gsl_permutation_memcpy (plin, p); for (j = 0; j < 5; j++) { pcan->data[j] = 0; } gsl_permutation_linear_to_canonical (pcan, plin); for (j = 0; j < 5; j++) { status |= (pcan->data[j] != c5[i][j]); } status |= (gsl_permutation_canonical_cycles (pcan) != cycles[i]); status |= (gsl_permutation_linear_cycles (plin) != cycles[i]); for (j = 0; j < 5; j++) { plin->data[j] = 0; } gsl_permutation_canonical_to_linear (plin, pcan); for (j = 0; j < 5; j++) { status |= (plin->data[j] != p5[i][j]); } i++; } while (gsl_permutation_next(p) == GSL_SUCCESS); gsl_permutation_free (p); gsl_permutation_free (plin); gsl_permutation_free (pcan); gsl_test (status, "gsl_permutation canonical conversion, 5-th order permutation, 120 steps"); } /* testing number of inversions */ { int i = 0, status = 0; gsl_permutation * p = gsl_permutation_alloc (5); gsl_permutation_init (p); do { status |= gsl_permutation_inversions (p) != inversions[i]; i++; } while (gsl_permutation_next(p) == GSL_SUCCESS); gsl_permutation_free (p); gsl_test (status, "gsl_permutation_inversions, 5-th order permutation, 120 steps"); } exit (gsl_test_summary()); } gsl-1.16/permutation/gsl_permute_long_double.h0000664000252300025230000000271612171574312016577 00000000000000/* permutation/gsl_permute_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_LONG_DOUBLE_H__ #define __GSL_PERMUTE_LONG_DOUBLE_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_long_double (const size_t * p, long double * data, const size_t stride, const size_t n); int gsl_permute_long_double_inverse (const size_t * p, long double * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_LONG_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permute_complex_float.h0000664000252300025230000000275312171574312017143 00000000000000/* permutation/gsl_permute_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_COMPLEX_FLOAT_H__ #define __GSL_PERMUTE_COMPLEX_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_complex_float (const size_t * p, float * data, const size_t stride, const size_t n); int gsl_permute_complex_float_inverse (const size_t * p, float * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_COMPLEX_FLOAT_H__ */ gsl-1.16/permutation/init.c0000664000252300025230000000425412171574312012635 00000000000000/* permutation/init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_permutation * gsl_permutation_alloc (const size_t n) { gsl_permutation * p; if (n == 0) { GSL_ERROR_VAL ("permutation length n must be positive integer", GSL_EDOM, 0); } p = (gsl_permutation *) malloc (sizeof (gsl_permutation)); if (p == 0) { GSL_ERROR_VAL ("failed to allocate space for permutation struct", GSL_ENOMEM, 0); } p->data = (size_t *) malloc (n * sizeof (size_t)); if (p->data == 0) { free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for permutation data", GSL_ENOMEM, 0); } p->size = n; return p; } gsl_permutation * gsl_permutation_calloc (const size_t n) { size_t i; gsl_permutation * p = gsl_permutation_alloc (n); if (p == 0) return 0; /* initialize permutation to identity */ for (i = 0; i < n; i++) { p->data[i] = i; } return p; } void gsl_permutation_init (gsl_permutation * p) { const size_t n = p->size ; size_t i; /* initialize permutation to identity */ for (i = 0; i < n; i++) { p->data[i] = i; } } void gsl_permutation_free (gsl_permutation * p) { RETURN_IF_NULL (p); free (p->data); free (p); } gsl-1.16/permutation/canonical.c0000664000252300025230000000703012171574312013614 00000000000000/* permutation/permutation.c * * Copyright (C) 2001, 2002 Nicolas Darnis * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Modified for GSL by Brian Gough. * Use in-place algorithms, no need for workspace * Use conventions for canonical form given in Knuth (opposite of Sedgewick) */ #include #include #include int gsl_permutation_linear_to_canonical (gsl_permutation * q, const gsl_permutation * p) { const size_t n = p->size; size_t i, k, s; size_t t = n; const size_t *const pp = p->data; size_t *const qq = q->data; if (q->size != p->size) { GSL_ERROR ("size of q does not match size of p", GSL_EINVAL); } for (i = 0; i < n; i++) { k = pp[i]; s = 1; while (k > i) { k = pp[k]; s++; } if (k < i) continue; /* Now have k == i, i.e the least in its cycle, and s == cycle length */ t -= s; qq[t] = i; k = pp[i]; s = 1; while (k > i) { qq[t + s] = k; k = pp[k]; s++; } if (t == 0) break; } return GSL_SUCCESS; } int gsl_permutation_canonical_to_linear (gsl_permutation * p, const gsl_permutation * q) { size_t i, k, kk, first; const size_t n = p->size; size_t *const pp = p->data; const size_t *const qq = q->data; if (q->size != p->size) { GSL_ERROR ("size of q does not match size of p", GSL_EINVAL); } for (i = 0; i < n; i++) { pp[i] = i; } k = qq[0]; first = pp[k]; for (i = 1; i < n; i++) { kk = qq[i]; if (kk > first) { pp[k] = pp[kk]; k = kk; } else { pp[k] = first; k = kk; first = pp[kk]; } } pp[k] = first; return GSL_SUCCESS; } size_t gsl_permutation_inversions (const gsl_permutation * p) { size_t count = 0; size_t i, j; const size_t size = p->size; for (i = 0; i < size - 1; i++) { for (j = i + 1; j < size; j++) { if (p->data[i] > p->data[j]) { count++; } } } return count; } size_t gsl_permutation_linear_cycles (const gsl_permutation * p) { size_t i, k; size_t count = 0; const size_t size = p->size; for (i = 0; i < size; i++) { k = p->data[i]; while (k > i) { k = p->data[k]; } if (k < i) continue; count++; } return count; } size_t gsl_permutation_canonical_cycles (const gsl_permutation * p) { size_t i; size_t count = 1; size_t min = p->data[0]; for (i = 0; i < p->size; i++) { if (p->data[i] < min) { min = p->data[i]; count++; } } return count; } gsl-1.16/permutation/gsl_permute_vector_short.h0000664000252300025230000000270212171574312017022 00000000000000/* permutation/gsl_permute_vector_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_SHORT_H__ #define __GSL_PERMUTE_VECTOR_SHORT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_short (const gsl_permutation * p, gsl_vector_short * v); int gsl_permute_vector_short_inverse (const gsl_permutation * p, gsl_vector_short * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_SHORT_H__ */ gsl-1.16/permutation/gsl_permute_double.h0000664000252300025230000000263012171574312015553 00000000000000/* permutation/gsl_permute_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_DOUBLE_H__ #define __GSL_PERMUTE_DOUBLE_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute (const size_t * p, double * data, const size_t stride, const size_t n); int gsl_permute_inverse (const size_t * p, double * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permute_vector_int.h0000664000252300025230000000266012171574312016460 00000000000000/* permutation/gsl_permute_vector_int.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_INT_H__ #define __GSL_PERMUTE_VECTOR_INT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_int (const gsl_permutation * p, gsl_vector_int * v); int gsl_permute_vector_int_inverse (const gsl_permutation * p, gsl_vector_int * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_INT_H__ */ gsl-1.16/permutation/Makefile.in0000664000252300025230000010617312172253756013605 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = permutation DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslpermutation_la_LIBADD = am_libgslpermutation_la_OBJECTS = init.lo file.lo permutation.lo \ permute.lo canonical.lo inline.lo libgslpermutation_la_OBJECTS = $(am_libgslpermutation_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslpermutation.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslpermutation_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslpermutation_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslpermutation.la pkginclude_HEADERS = gsl_permutation.h gsl_permute.h gsl_permute_char.h gsl_permute_complex_double.h gsl_permute_complex_float.h gsl_permute_complex_long_double.h gsl_permute_double.h gsl_permute_float.h gsl_permute_int.h gsl_permute_long.h gsl_permute_long_double.h gsl_permute_short.h gsl_permute_uchar.h gsl_permute_uint.h gsl_permute_ulong.h gsl_permute_ushort.h gsl_permute_vector.h gsl_permute_vector_char.h gsl_permute_vector_complex_double.h gsl_permute_vector_complex_float.h gsl_permute_vector_complex_long_double.h gsl_permute_vector_double.h gsl_permute_vector_float.h gsl_permute_vector_int.h gsl_permute_vector_long.h gsl_permute_vector_long_double.h gsl_permute_vector_short.h gsl_permute_vector_uchar.h gsl_permute_vector_uint.h gsl_permute_vector_ulong.h gsl_permute_vector_ushort.h INCLUDES = -I$(top_srcdir) libgslpermutation_la_SOURCES = init.c file.c permutation.c permute.c canonical.c inline.c noinst_HEADERS = permute_source.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu permutation/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu permutation/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslpermutation.la: $(libgslpermutation_la_OBJECTS) $(libgslpermutation_la_DEPENDENCIES) $(EXTRA_libgslpermutation_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslpermutation_la_OBJECTS) $(libgslpermutation_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/canonical.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/permutation.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/permute.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #CLEANFILES = test.txt test.dat # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/permutation/gsl_permute_char.h0000664000252300025230000000262612171574312015223 00000000000000/* permutation/gsl_permute_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_CHAR_H__ #define __GSL_PERMUTE_CHAR_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_char (const size_t * p, char * data, const size_t stride, const size_t n); int gsl_permute_char_inverse (const size_t * p, char * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_CHAR_H__ */ gsl-1.16/permutation/gsl_permute_vector_char.h0000664000252300025230000000267112171574312016605 00000000000000/* permutation/gsl_permute_vector_char.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_CHAR_H__ #define __GSL_PERMUTE_VECTOR_CHAR_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_char (const gsl_permutation * p, gsl_vector_char * v); int gsl_permute_vector_char_inverse (const gsl_permutation * p, gsl_vector_char * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_CHAR_H__ */ gsl-1.16/permutation/gsl_permute_vector_complex_float.h0000664000252300025230000000301212171574312020512 00000000000000/* permutation/gsl_permute_vector_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_COMPLEX_FLOAT_H__ #define __GSL_PERMUTE_VECTOR_COMPLEX_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_complex_float (const gsl_permutation * p, gsl_vector_complex_float * v); int gsl_permute_vector_complex_float_inverse (const gsl_permutation * p, gsl_vector_complex_float * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_COMPLEX_FLOAT_H__ */ gsl-1.16/permutation/ChangeLog0000664000252300025230000000432412171574312013276 000000000000002009-07-09 Brian Gough * init.c (gsl_permutation_free): handle NULL argument in free 2008-07-03 Brian Gough * permutation.c: move gsl_permutation_get to inline.c * gsl_permutation.h: use new inline declarations * inline.c: handle inline functions separately * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2003-02-17 Brian Gough * canonical.c (gsl_permutation_canonical_to_linear): fixed bug confusing input and output (swapped pp and qq) Sat Apr 6 19:08:40 2002 Brian Gough * test.c (main): added tests for canonical representation functions * canonical.c: functions for canonical representations (Nicolas Darnis) Mon Apr 1 17:29:49 2002 Brian Gough * permutation.c (gsl_permutation_mul): added function for combining permutations (Nicolas Darnis) Sat Feb 9 18:17:53 2002 Brian Gough * permutation.c (gsl_permutation_memcpy): added memcpy function Tue Sep 4 17:22:06 2001 Brian Gough * added permutations of complex arrays and vectors * permute_source.c: added permutations of complex arrays and vectors Sat Dec 30 21:30:16 2000 Brian Gough * test.c: added the start of a test program * permutation.c: added gsl_permutation_next and gsl_permutation_prev as in STL, from vattervi@msu.edu Mon Apr 24 20:54:03 2000 Brian Gough * gsl_permutation.h: renamed gsl_permutation_invert to gsl_permutation_inverse Mon Apr 10 14:31:01 2000 Brian Gough * added functions for permuting data and vectors Thu Feb 24 17:53:55 2000 Brian Gough * permutation.c (gsl_permutation_invert): add an inverse function for permutations Sat Feb 19 12:04:32 2000 Brian Gough * permutation.c (gsl_permutation_reverse): changed from return type int to void, since no errors can occur. Fri Feb 18 12:06:13 2000 Brian Gough * permutation.c: added valid and reverse methods (gsl_permutation_reverse): fixed bug in reverse gsl-1.16/permutation/gsl_permute_vector_complex_long_double.h0000664000252300025230000000310012171574312021674 00000000000000/* permutation/gsl_permute_vector_complex_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_COMPLEX_LONG_DOUBLE_H__ #define __GSL_PERMUTE_VECTOR_COMPLEX_LONG_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_complex_long_double (const gsl_permutation * p, gsl_vector_complex_long_double * v); int gsl_permute_vector_complex_long_double_inverse (const gsl_permutation * p, gsl_vector_complex_long_double * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_COMPLEX_LONG_DOUBLE_H__ */ gsl-1.16/permutation/Makefile.am0000664000252300025230000000243312171574312013557 00000000000000noinst_LTLIBRARIES = libgslpermutation.la pkginclude_HEADERS = gsl_permutation.h gsl_permute.h gsl_permute_char.h gsl_permute_complex_double.h gsl_permute_complex_float.h gsl_permute_complex_long_double.h gsl_permute_double.h gsl_permute_float.h gsl_permute_int.h gsl_permute_long.h gsl_permute_long_double.h gsl_permute_short.h gsl_permute_uchar.h gsl_permute_uint.h gsl_permute_ulong.h gsl_permute_ushort.h gsl_permute_vector.h gsl_permute_vector_char.h gsl_permute_vector_complex_double.h gsl_permute_vector_complex_float.h gsl_permute_vector_complex_long_double.h gsl_permute_vector_double.h gsl_permute_vector_float.h gsl_permute_vector_int.h gsl_permute_vector_long.h gsl_permute_vector_long_double.h gsl_permute_vector_short.h gsl_permute_vector_uchar.h gsl_permute_vector_uint.h gsl_permute_vector_ulong.h gsl_permute_vector_ushort.h INCLUDES = -I$(top_srcdir) libgslpermutation_la_SOURCES = init.c file.c permutation.c permute.c canonical.c inline.c noinst_HEADERS = permute_source.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #CLEANFILES = test.txt test.dat gsl-1.16/permutation/permute.c0000664000252300025230000000353412171574312013353 00000000000000#include #include #include #include #include #define BASE_GSL_COMPLEX_LONG #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_LONG #define BASE_GSL_COMPLEX #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX #define BASE_GSL_COMPLEX_FLOAT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_GSL_COMPLEX_FLOAT #define BASE_LONG_DOUBLE #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_LONG_DOUBLE #define BASE_DOUBLE #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_FLOAT #define BASE_ULONG #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_ULONG #define BASE_LONG #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_LONG #define BASE_UINT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_UINT #define BASE_INT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_INT #define BASE_USHORT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_USHORT #define BASE_SHORT #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_SHORT #define BASE_UCHAR #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_UCHAR #define BASE_CHAR #include "templates_on.h" #include "permute_source.c" #include "templates_off.h" #undef BASE_CHAR gsl-1.16/permutation/gsl_permute_vector_float.h0000664000252300025230000000270212171574312016770 00000000000000/* permutation/gsl_permute_vector_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_FLOAT_H__ #define __GSL_PERMUTE_VECTOR_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_float (const gsl_permutation * p, gsl_vector_float * v); int gsl_permute_vector_float_inverse (const gsl_permutation * p, gsl_vector_float * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_FLOAT_H__ */ gsl-1.16/permutation/gsl_permute_vector_long.h0000664000252300025230000000267112171574312016627 00000000000000/* permutation/gsl_permute_vector_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_LONG_H__ #define __GSL_PERMUTE_VECTOR_LONG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_long (const gsl_permutation * p, gsl_vector_long * v); int gsl_permute_vector_long_inverse (const gsl_permutation * p, gsl_vector_long * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_LONG_H__ */ gsl-1.16/permutation/permute_source.c0000664000252300025230000000756312171574312014741 00000000000000/* permutation/permute_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* In-place Permutations permute: OUT[i] = IN[perm[i]] i = 0 .. N-1 invpermute: OUT[perm[i]] = IN[i] i = 0 .. N-1 PERM is an index map, i.e. a vector which contains a permutation of the integers 0 .. N-1. From Knuth "Sorting and Searching", Volume 3 (3rd ed), Section 5.2 Exercise 10 (answers), p 617 FIXME: these have not been fully tested. */ int TYPE (gsl_permute) (const size_t * p, ATOMIC * data, const size_t stride, const size_t n) { size_t i, k, pk; for (i = 0; i < n; i++) { k = p[i]; while (k > i) k = p[k]; if (k < i) continue ; /* Now have k == i, i.e the least in its cycle */ pk = p[k]; if (pk == i) continue ; /* shuffle the elements of the cycle */ { unsigned int a; ATOMIC t[MULTIPLICITY]; for (a = 0; a < MULTIPLICITY; a++) t[a] = data[i*stride*MULTIPLICITY + a]; while (pk != i) { for (a = 0; a < MULTIPLICITY; a++) { ATOMIC r1 = data[pk*stride*MULTIPLICITY + a]; data[k*stride*MULTIPLICITY + a] = r1; } k = pk; pk = p[k]; }; for (a = 0; a < MULTIPLICITY; a++) data[k*stride*MULTIPLICITY + a] = t[a]; } } return GSL_SUCCESS; } int FUNCTION (gsl_permute,inverse) (const size_t * p, ATOMIC * data, const size_t stride, const size_t n) { size_t i, k, pk; for (i = 0; i < n; i++) { k = p[i]; while (k > i) k = p[k]; if (k < i) continue ; /* Now have k == i, i.e the least in its cycle */ pk = p[k]; if (pk == i) continue ; /* shuffle the elements of the cycle in the inverse direction */ { unsigned int a; ATOMIC t[MULTIPLICITY]; for (a = 0; a < MULTIPLICITY; a++) t[a] = data[k*stride*MULTIPLICITY+a]; while (pk != i) { for (a = 0; a < MULTIPLICITY; a++) { ATOMIC r1 = data[pk*stride*MULTIPLICITY + a]; data[pk*stride*MULTIPLICITY + a] = t[a]; t[a] = r1; } k = pk; pk = p[k]; }; for (a = 0; a < MULTIPLICITY; a++) data[pk*stride*MULTIPLICITY+a] = t[a]; } } return GSL_SUCCESS; } int TYPE (gsl_permute_vector) (const gsl_permutation * p, TYPE (gsl_vector) * v) { if (v->size != p->size) { GSL_ERROR ("vector and permutation must be the same length", GSL_EBADLEN); } TYPE (gsl_permute) (p->data, v->data, v->stride, v->size) ; return GSL_SUCCESS; } int FUNCTION (gsl_permute_vector,inverse) (const gsl_permutation * p, TYPE (gsl_vector) * v) { if (v->size != p->size) { GSL_ERROR ("vector and permutation must be the same length", GSL_EBADLEN); } FUNCTION (gsl_permute,inverse) (p->data, v->data, v->stride, v->size) ; return GSL_SUCCESS; } gsl-1.16/permutation/gsl_permute_vector.h0000664000252300025230000000133512171574312015604 00000000000000#ifndef __GSL_PERMUTE_VECTOR_H__ #define __GSL_PERMUTE_VECTOR_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #endif /* __GSL_PERMUTE_VECTOR_H__ */ gsl-1.16/permutation/gsl_permute_long.h0000664000252300025230000000262612171574312015245 00000000000000/* permutation/gsl_permute_long.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_LONG_H__ #define __GSL_PERMUTE_LONG_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_long (const size_t * p, long * data, const size_t stride, const size_t n); int gsl_permute_long_inverse (const size_t * p, long * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_LONG_H__ */ gsl-1.16/permutation/gsl_permute_vector_complex_double.h0000664000252300025230000000276712171574312020677 00000000000000/* permutation/gsl_permute_vector_complex_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_COMPLEX_DOUBLE_H__ #define __GSL_PERMUTE_VECTOR_COMPLEX_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_complex (const gsl_permutation * p, gsl_vector_complex * v); int gsl_permute_vector_complex_inverse (const gsl_permutation * p, gsl_vector_complex * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_COMPLEX_DOUBLE_H__ */ gsl-1.16/permutation/file.c0000664000252300025230000000463112171574312012610 00000000000000/* permutation/file.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #define IN_FORMAT "%lu" int gsl_permutation_fread (FILE * stream, gsl_permutation * p) { size_t n = p->size ; size_t * data = p->data ; size_t items = fread (data, sizeof (size_t), n, stream); if (items != n) { GSL_ERROR ("fread failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_permutation_fwrite (FILE * stream, const gsl_permutation * p) { size_t n = p->size ; size_t * data = p->data ; size_t items = fwrite (data, sizeof (size_t), n, stream); if (items != n) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_permutation_fprintf (FILE * stream, const gsl_permutation * p, const char *format) { size_t n = p->size ; size_t * data = p->data ; size_t i; for (i = 0; i < n; i++) { int status = fprintf (stream, format, data[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } } return GSL_SUCCESS; } int gsl_permutation_fscanf (FILE * stream, gsl_permutation * p) { size_t n = p->size ; size_t * data = p->data ; size_t i; for (i = 0; i < n; i++) { unsigned long j ; /* FIXME: what if size_t != unsigned long ??? want read in size_t but have to read in unsigned long to avoid error from compiler */ int status = fscanf (stream, IN_FORMAT, &j); if (status != 1) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } data[i] = j; } return GSL_SUCCESS; } gsl-1.16/permutation/gsl_permute_ulong.h0000664000252300025230000000265612171574312015435 00000000000000/* permutation/gsl_permute_ulong.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_ULONG_H__ #define __GSL_PERMUTE_ULONG_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_ulong (const size_t * p, unsigned long * data, const size_t stride, const size_t n); int gsl_permute_ulong_inverse (const size_t * p, unsigned long * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_ULONG_H__ */ gsl-1.16/permutation/gsl_permute_ushort.h0000664000252300025230000000266612171574312015636 00000000000000/* permutation/gsl_permute_ushort.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_USHORT_H__ #define __GSL_PERMUTE_USHORT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_ushort (const size_t * p, unsigned short * data, const size_t stride, const size_t n); int gsl_permute_ushort_inverse (const size_t * p, unsigned short * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_USHORT_H__ */ gsl-1.16/permutation/gsl_permute_complex_double.h0000664000252300025230000000274512171574312017311 00000000000000/* permutation/gsl_permute_complex_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_COMPLEX_DOUBLE_H__ #define __GSL_PERMUTE_COMPLEX_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_complex (const size_t * p, double * data, const size_t stride, const size_t n); int gsl_permute_complex_inverse (const size_t * p, double * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_COMPLEX_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permute_float.h0000664000252300025230000000263612171574312015414 00000000000000/* permutation/gsl_permute_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_FLOAT_H__ #define __GSL_PERMUTE_FLOAT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_float (const size_t * p, float * data, const size_t stride, const size_t n); int gsl_permute_float_inverse (const size_t * p, float * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_FLOAT_H__ */ gsl-1.16/permutation/gsl_permute_vector_long_double.h0000664000252300025230000000277012171574312020161 00000000000000/* permutation/gsl_permute_vector_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_VECTOR_LONG_DOUBLE_H__ #define __GSL_PERMUTE_VECTOR_LONG_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_vector_long_double (const gsl_permutation * p, gsl_vector_long_double * v); int gsl_permute_vector_long_double_inverse (const gsl_permutation * p, gsl_vector_long_double * v); __END_DECLS #endif /* __GSL_PERMUTE_VECTOR_LONG_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permute_uchar.h0000664000252300025230000000265612171574312015413 00000000000000/* permutation/gsl_permute_uchar.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_UCHAR_H__ #define __GSL_PERMUTE_UCHAR_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_uchar (const size_t * p, unsigned char * data, const size_t stride, const size_t n); int gsl_permute_uchar_inverse (const size_t * p, unsigned char * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_UCHAR_H__ */ gsl-1.16/permutation/gsl_permute_complex_long_double.h0000664000252300025230000000303312171574312020317 00000000000000/* permutation/gsl_permute_complex_long_double.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_COMPLEX_LONG_DOUBLE_H__ #define __GSL_PERMUTE_COMPLEX_LONG_DOUBLE_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_complex_long_double (const size_t * p, long double * data, const size_t stride, const size_t n); int gsl_permute_complex_long_double_inverse (const size_t * p, long double * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_COMPLEX_LONG_DOUBLE_H__ */ gsl-1.16/permutation/gsl_permutation.h0000664000252300025230000000642212171574312015112 00000000000000/* permutation/gsl_permutation.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTATION_H__ #define __GSL_PERMUTATION_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_permutation_struct { size_t size; size_t *data; }; typedef struct gsl_permutation_struct gsl_permutation; gsl_permutation *gsl_permutation_alloc (const size_t n); gsl_permutation *gsl_permutation_calloc (const size_t n); void gsl_permutation_init (gsl_permutation * p); void gsl_permutation_free (gsl_permutation * p); int gsl_permutation_memcpy (gsl_permutation * dest, const gsl_permutation * src); int gsl_permutation_fread (FILE * stream, gsl_permutation * p); int gsl_permutation_fwrite (FILE * stream, const gsl_permutation * p); int gsl_permutation_fscanf (FILE * stream, gsl_permutation * p); int gsl_permutation_fprintf (FILE * stream, const gsl_permutation * p, const char *format); size_t gsl_permutation_size (const gsl_permutation * p); size_t * gsl_permutation_data (const gsl_permutation * p); int gsl_permutation_swap (gsl_permutation * p, const size_t i, const size_t j); int gsl_permutation_valid (const gsl_permutation * p); void gsl_permutation_reverse (gsl_permutation * p); int gsl_permutation_inverse (gsl_permutation * inv, const gsl_permutation * p); int gsl_permutation_next (gsl_permutation * p); int gsl_permutation_prev (gsl_permutation * p); int gsl_permutation_mul (gsl_permutation * p, const gsl_permutation * pa, const gsl_permutation * pb); int gsl_permutation_linear_to_canonical (gsl_permutation * q, const gsl_permutation * p); int gsl_permutation_canonical_to_linear (gsl_permutation * p, const gsl_permutation * q); size_t gsl_permutation_inversions (const gsl_permutation * p); size_t gsl_permutation_linear_cycles (const gsl_permutation * p); size_t gsl_permutation_canonical_cycles (const gsl_permutation * q); INLINE_DECL size_t gsl_permutation_get (const gsl_permutation * p, const size_t i); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_permutation_get (const gsl_permutation * p, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= p->size)) { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return p->data[i]; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_PERMUTATION_H__ */ gsl-1.16/permutation/gsl_permute_short.h0000664000252300025230000000263612171574312015446 00000000000000/* permutation/gsl_permute_short.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_PERMUTE_SHORT_H__ #define __GSL_PERMUTE_SHORT_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_permute_short (const size_t * p, short * data, const size_t stride, const size_t n); int gsl_permute_short_inverse (const size_t * p, short * data, const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_PERMUTE_SHORT_H__ */ gsl-1.16/rng/0000775000252300025230000000000012172254161010016 500000000000000gsl-1.16/rng/types.c0000664000252300025230000000520412171574312011251 00000000000000/* rng/types.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #define N 100 const gsl_rng_type * gsl_rng_generator_types[N]; #define ADD(t) {if (i==N) abort(); gsl_rng_generator_types[i] = (t); i++; }; const gsl_rng_type ** gsl_rng_types_setup (void) { int i = 0; ADD(gsl_rng_borosh13); ADD(gsl_rng_cmrg); ADD(gsl_rng_coveyou); ADD(gsl_rng_fishman18); ADD(gsl_rng_fishman20); ADD(gsl_rng_fishman2x); ADD(gsl_rng_gfsr4); ADD(gsl_rng_knuthran); ADD(gsl_rng_knuthran2); ADD(gsl_rng_knuthran2002); ADD(gsl_rng_lecuyer21); ADD(gsl_rng_minstd); ADD(gsl_rng_mrg); ADD(gsl_rng_mt19937); ADD(gsl_rng_mt19937_1999); ADD(gsl_rng_mt19937_1998); ADD(gsl_rng_r250); ADD(gsl_rng_ran0); ADD(gsl_rng_ran1); ADD(gsl_rng_ran2); ADD(gsl_rng_ran3); ADD(gsl_rng_rand); ADD(gsl_rng_rand48); ADD(gsl_rng_random128_bsd); ADD(gsl_rng_random128_glibc2); ADD(gsl_rng_random128_libc5); ADD(gsl_rng_random256_bsd); ADD(gsl_rng_random256_glibc2); ADD(gsl_rng_random256_libc5); ADD(gsl_rng_random32_bsd); ADD(gsl_rng_random32_glibc2); ADD(gsl_rng_random32_libc5); ADD(gsl_rng_random64_bsd); ADD(gsl_rng_random64_glibc2); ADD(gsl_rng_random64_libc5); ADD(gsl_rng_random8_bsd); ADD(gsl_rng_random8_glibc2); ADD(gsl_rng_random8_libc5); ADD(gsl_rng_random_bsd); ADD(gsl_rng_random_glibc2); ADD(gsl_rng_random_libc5); ADD(gsl_rng_randu); ADD(gsl_rng_ranf); ADD(gsl_rng_ranlux); ADD(gsl_rng_ranlux389); ADD(gsl_rng_ranlxd1); ADD(gsl_rng_ranlxd2); ADD(gsl_rng_ranlxs0); ADD(gsl_rng_ranlxs1); ADD(gsl_rng_ranlxs2); ADD(gsl_rng_ranmar); ADD(gsl_rng_slatec); ADD(gsl_rng_taus); ADD(gsl_rng_taus2); ADD(gsl_rng_taus113); ADD(gsl_rng_transputer); ADD(gsl_rng_tt800); ADD(gsl_rng_uni); ADD(gsl_rng_uni32); ADD(gsl_rng_vax); ADD(gsl_rng_waterman14); ADD(gsl_rng_zuf); ADD(0); return gsl_rng_generator_types; } gsl-1.16/rng/mrg.c0000664000252300025230000000760012171574312010674 00000000000000/* rng/mrg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a fifth-order multiple recursive generator. The sequence is, x_n = (a_1 x_{n-1} + a_5 x_{n-5}) mod m with a_1 = 107374182, a_2 = a_3 = a_4 = 0, a_5 = 104480 and m = 2^31-1. We initialize the generator with x_n = s_n MOD m for n = 1..5, where s_n = (69069 * s_{n-1}) mod 2^32, and s_0 = s is the user-supplied seed. NOTE: According to the paper the seeds must lie in the range [0, 2^31 - 2] with at least one non-zero value -- our seeding procedure satisfies these constraints. We then use 6 iterations of the generator to "warm up" the internal state. With this initialization procedure the theoretical value of z_{10006} is 2064828650 for s = 1. The subscript 10006 means (1) seed the generator with s = 1, (2) do the 6 warm-up iterations that are part of the seeding process, (3) then do 10000 actual iterations. The period of this generator is about 2^155. From: P. L'Ecuyer, F. Blouin, and R. Coutre, "A search for good multiple recursive random number generators", ACM Transactions on Modeling and Computer Simulation 3, 87-98 (1993). */ static inline unsigned long int mrg_get (void *vstate); static double mrg_get_double (void *vstate); static void mrg_set (void *state, unsigned long int s); static const long int m = 2147483647; static const long int a1 = 107374182, q1 = 20, r1 = 7; static const long int a5 = 104480, q5 = 20554, r5 = 1727; typedef struct { long int x1, x2, x3, x4, x5; } mrg_state_t; static inline unsigned long int mrg_get (void *vstate) { mrg_state_t *state = (mrg_state_t *) vstate; long int p1, h1, p5, h5; h5 = state->x5 / q5; p5 = a5 * (state->x5 - h5 * q5) - h5 * r5; if (p5 > 0) p5 -= m; h1 = state->x1 / q1; p1 = a1 * (state->x1 - h1 * q1) - h1 * r1; if (p1 < 0) p1 += m; state->x5 = state->x4; state->x4 = state->x3; state->x3 = state->x2; state->x2 = state->x1; state->x1 = p1 + p5; if (state->x1 < 0) state->x1 += m; return state->x1; } static double mrg_get_double (void *vstate) { return mrg_get (vstate) / 2147483647.0 ; } static void mrg_set (void *vstate, unsigned long int s) { /* An entirely adhoc way of seeding! This does **not** come from L'Ecuyer et al */ mrg_state_t *state = (mrg_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ #define LCG(n) ((69069 * n) & 0xffffffffUL) s = LCG (s); state->x1 = s % m; s = LCG (s); state->x2 = s % m; s = LCG (s); state->x3 = s % m; s = LCG (s); state->x4 = s % m; s = LCG (s); state->x5 = s % m; /* "warm it up" with at least 5 calls to go through all the x values */ mrg_get (state); mrg_get (state); mrg_get (state); mrg_get (state); mrg_get (state); mrg_get (state); return; } static const gsl_rng_type mrg_type = {"mrg", /* name */ 2147483646, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (mrg_state_t), &mrg_set, &mrg_get, &mrg_get_double}; const gsl_rng_type *gsl_rng_mrg = &mrg_type; gsl-1.16/rng/ran2.c0000664000252300025230000000676412171574312010763 00000000000000/* rng/ran2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is an implementation of the algorithm used in Numerical Recipe's ran2 generator. It is a L'Ecuyer combined recursive generator with a 32-element shuffle-box. As far as I can tell, in general the effects of adding a shuffle box cannot be proven theoretically, so the period of this generator is unknown. The period of the underlying combined generator is O(2^60). */ static inline unsigned long int ran2_get (void *vstate); static double ran2_get_double (void *vstate); static void ran2_set (void *state, unsigned long int s); static const long int m1 = 2147483563, a1 = 40014, q1 = 53668, r1 = 12211; static const long int m2 = 2147483399, a2 = 40692, q2 = 52774, r2 = 3791; #define N_SHUFFLE 32 #define N_DIV (1 + 2147483562/N_SHUFFLE) typedef struct { unsigned long int x; unsigned long int y; unsigned long int n; unsigned long int shuffle[N_SHUFFLE]; } ran2_state_t; static inline unsigned long int ran2_get (void *vstate) { ran2_state_t *state = (ran2_state_t *) vstate; const unsigned long int x = state->x; const unsigned long int y = state->y; long int h1 = x / q1; long int t1 = a1 * (x - h1 * q1) - h1 * r1; long int h2 = y / q2; long int t2 = a2 * (y - h2 * q2) - h2 * r2; if (t1 < 0) t1 += m1; if (t2 < 0) t2 += m2; state->x = t1; state->y = t2; { unsigned long int j = state->n / N_DIV; long int delta = state->shuffle[j] - t2; if (delta < 1) delta += m1 - 1; state->n = delta; state->shuffle[j] = t1; } return state->n; } static double ran2_get_double (void *vstate) { float x_max = 1 - 1.2e-7f ; /* Numerical Recipes version of 1-FLT_EPS */ float x = ran2_get (vstate) / 2147483563.0f ; if (x > x_max) return x_max ; return x ; } static void ran2_set (void *vstate, unsigned long int s) { ran2_state_t *state = (ran2_state_t *) vstate; int i; if (s == 0) s = 1; /* default seed is 1 */ state->y = s; for (i = 0; i < 8; i++) { long int h = s / q1; long int t = a1 * (s - h * q1) - h * r1; if (t < 0) t += m1; s = t; } for (i = N_SHUFFLE - 1; i >= 0; i--) { long int h = s / q1; long int t = a1 * (s - h * q1) - h * r1; if (t < 0) t += m1; s = t; state->shuffle[i] = s; } state->x = s; state->n = s; return; } static const gsl_rng_type ran2_type = {"ran2", /* name */ 2147483562, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran2_state_t), &ran2_set, &ran2_get, &ran2_get_double}; const gsl_rng_type *gsl_rng_ran2 = &ran2_type; gsl-1.16/rng/gfsr4.c0000664000252300025230000001263112171574312011134 00000000000000/* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. From Robert M. Ziff, "Four-tap shift-register-sequence random-number generators," Computers in Physics 12(4), Jul/Aug 1998, pp 385-392. A generalized feedback shift-register (GFSR) is basically an xor-sum of particular past lagged values. A four-tap register looks like: ra[nd] = ra[nd-A] ^ ra[nd-B] ^ ra[nd-C] ^ ra[nd-D] Ziff notes that "it is now widely known" that two-tap registers have serious flaws, the most obvious one being the three-point correlation that comes from the defn of the generator. Nice mathematical properties can be derived for GFSR's, and numerics bears out the claim that 4-tap GFSR's with appropriately chosen offsets are as random as can be measured, using the author's test. This implementation uses the values suggested the the author's example on p392, but altered to fit the GSL framework. The "state" is 2^14 longs, or 64Kbytes; 2^14 is the smallest power of two that is larger than D, the largest offset. We really only need a state with the last D values, but by going to a power of two, we can do a masking operation instead of a modulo, and this is presumably faster, though I haven't actually tried it. The article actually suggested a short/fast hack: #define RandomInteger (++nd, ra[nd&M]=ra[(nd-A)&M]\ ^ra[(nd-B)&M]^ra[(nd-C)&M]^ra[(nd-D)&M]) so that (as long as you've defined nd,ra[M+1]), then you ca do things like: 'if (RandomInteger < p) {...}'. Note that n&M varies from 0 to M, *including* M, so that the array has to be of size M+1. Since M+1 is a power of two, n&M is a potentially quicker implementation of the equivalent n%(M+1). This implementation copyright (C) 1998 James Theiler, based on the example mt.c in the GSL, as implemented by Brian Gough. */ #include #include #include static inline unsigned long int gfsr4_get (void *vstate); static double gfsr4_get_double (void *vstate); static void gfsr4_set (void *state, unsigned long int s); /* Magic numbers */ #define A 471 #define B 1586 #define C 6988 #define D 9689 #define M 16383 /* = 2^14-1 */ /* #define M 0x0003fff */ typedef struct { int nd; unsigned long ra[M+1]; } gfsr4_state_t; static inline unsigned long gfsr4_get (void *vstate) { gfsr4_state_t *state = (gfsr4_state_t *) vstate; state->nd = ((state->nd)+1)&M; return state->ra[(state->nd)] = state->ra[((state->nd)+(M+1-A))&M]^ state->ra[((state->nd)+(M+1-B))&M]^ state->ra[((state->nd)+(M+1-C))&M]^ state->ra[((state->nd)+(M+1-D))&M]; } static double gfsr4_get_double (void * vstate) { return gfsr4_get (vstate) / 4294967296.0 ; } static void gfsr4_set (void *vstate, unsigned long int s) { gfsr4_state_t *state = (gfsr4_state_t *) vstate; int i, j; /* Masks for turning on the diagonal bit and turning off the leftmost bits */ unsigned long int msb = 0x80000000UL; unsigned long int mask = 0xffffffffUL; if (s == 0) s = 4357; /* the default seed is 4357 */ /* We use the congruence s_{n+1} = (69069*s_n) mod 2^32 to initialize the state. This works because ANSI-C unsigned long integer arithmetic is automatically modulo 2^32 (or a higher power of two), so we can safely ignore overflow. */ #define LCG(n) ((69069 * n) & 0xffffffffUL) /* Brian Gough suggests this to avoid low-order bit correlations */ for (i = 0; i <= M; i++) { unsigned long t = 0 ; unsigned long bit = msb ; for (j = 0; j < 32; j++) { s = LCG(s) ; if (s & msb) t |= bit ; bit >>= 1 ; } state->ra[i] = t ; } /* Perform the "orthogonalization" of the matrix */ /* Based on the orthogonalization used in r250, as suggested initially * by Kirkpatrick and Stoll, and pointed out to me by Brian Gough */ /* BJG: note that this orthogonalisation doesn't have any effect here because the the initial 6695 elements do not participate in the calculation. For practical purposes this orthogonalisation is somewhat irrelevant, because the probability of the original sequence being degenerate should be exponentially small. */ for (i=0; i<32; ++i) { int k=7+i*3; state->ra[k] &= mask; /* Turn off bits left of the diagonal */ state->ra[k] |= msb; /* Turn on the diagonal bit */ mask >>= 1; msb >>= 1; } state->nd = i; } static const gsl_rng_type gfsr4_type = {"gfsr4", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (gfsr4_state_t), &gfsr4_set, &gfsr4_get, &gfsr4_get_double}; const gsl_rng_type *gsl_rng_gfsr4 = &gfsr4_type; gsl-1.16/rng/borosh13.c0000664000252300025230000000423112171574312011544 00000000000000/* rng/borosh13.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 106-108 * * It is called "Borosh - Niederreiter" * * This implementation copyright (C) 2001 Carlo Perassi and * (C) 2003 Heiko Bauke. */ #include #include #include #define AA 1812433253UL #define MM 0xffffffffUL /* 2 ^ 32 - 1 */ static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; state->x = (AA * state->x) & MM; return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 4294967296.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ state->x = s & MM; return; } static const gsl_rng_type ran_type = { "borosh13", /* name */ MM, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_borosh13 = &ran_type; gsl-1.16/rng/rand48.c0000664000252300025230000000742712171574312011216 00000000000000/* rng/rand48.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* This is the Unix rand48() generator. The generator returns the upper 32 bits from each term of the sequence, x_{n+1} = (a x_n + c) mod m using 48-bit unsigned arithmetic, with a = 0x5DEECE66D , c = 0xB and m = 2^48. The seed specifies the upper 32 bits of the initial value, x_1, with the lower 16 bits set to 0x330E. The theoretical value of x_{10001} is 244131582646046. The period of this generator is ? FIXME (probably around 2^48). */ static inline void rand48_advance (void *vstate); static unsigned long int rand48_get (void *vstate); static double rand48_get_double (void *vstate); static void rand48_set (void *state, unsigned long int s); static const unsigned short int a0 = 0xE66D ; static const unsigned short int a1 = 0xDEEC ; static const unsigned short int a2 = 0x0005 ; static const unsigned short int c0 = 0x000B ; typedef struct { unsigned short int x0, x1, x2; } rand48_state_t; static inline void rand48_advance (void *vstate) { rand48_state_t *state = (rand48_state_t *) vstate; /* work with unsigned long ints throughout to get correct integer promotions of any unsigned short ints */ const unsigned long int x0 = (unsigned long int) state->x0 ; const unsigned long int x1 = (unsigned long int) state->x1 ; const unsigned long int x2 = (unsigned long int) state->x2 ; unsigned long int a ; a = a0 * x0 + c0 ; state->x0 = (a & 0xFFFF) ; a >>= 16 ; /* although the next line may overflow we only need the top 16 bits in the following stage, so it does not matter */ a += a0 * x1 + a1 * x0 ; state->x1 = (a & 0xFFFF) ; a >>= 16 ; a += a0 * x2 + a1 * x1 + a2 * x0 ; state->x2 = (a & 0xFFFF) ; } static unsigned long int rand48_get (void *vstate) { unsigned long int x1, x2; rand48_state_t *state = (rand48_state_t *) vstate; rand48_advance (state) ; x2 = (unsigned long int) state->x2; x1 = (unsigned long int) state->x1; return (x2 << 16) + x1; } static double rand48_get_double (void * vstate) { rand48_state_t *state = (rand48_state_t *) vstate; rand48_advance (state) ; return (ldexp((double) state->x2, -16) + ldexp((double) state->x1, -32) + ldexp((double) state->x0, -48)) ; } static void rand48_set (void *vstate, unsigned long int s) { rand48_state_t *state = (rand48_state_t *) vstate; if (s == 0) /* default seed */ { state->x0 = 0x330E ; state->x1 = 0xABCD ; state->x2 = 0x1234 ; } else { state->x0 = 0x330E ; state->x1 = s & 0xFFFF ; state->x2 = (s >> 16) & 0xFFFF ; } return; } static const gsl_rng_type rand48_type = {"rand48", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (rand48_state_t), &rand48_set, &rand48_get, &rand48_get_double }; const gsl_rng_type *gsl_rng_rand48 = &rand48_type; gsl-1.16/rng/uni32.c0000664000252300025230000001406312171574312011050 00000000000000/* rng/uni32.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** This is a lagged Fibonacci generator which supposedly excellent statistical properties (I do not concur) I got it from the net and translated into C. * ====================================================================== * NIST Guide to Available Math Software. * Fullsource for module UNI from package CMLIB. * Retrieved from CAMSUN on Tue Oct 8 14:04:10 1996. * ====================================================================== C***BEGIN PROLOGUE UNI C***DATE WRITTEN 810915 C***REVISION DATE 830805 C***CATEGORY NO. L6A21 C***KEYWORDS RANDOM NUMBERS, UNIFORM RANDOM NUMBERS C***AUTHOR BLUE, JAMES, SCIENTIFIC COMPUTING DIVISION, NBS C KAHANER, DAVID, SCIENTIFIC COMPUTING DIVISION, NBS C MARSAGLIA, GEORGE, COMPUTER SCIENCE DEPT., WASH STATE UNIV C C***PURPOSE THIS ROUTINE GENERATES QUASI UNIFORM RANDOM NUMBERS ON [0,1 C AND CAN BE USED ON ANY COMPUTER WITH WHICH ALLOWS INTEGERS C AT LEAST AS LARGE AS 32767. C***DESCRIPTION C C THIS ROUTINE GENERATES QUASI UNIFORM RANDOM NUMBERS ON THE INTER C [0,1). IT CAN BE USED WITH ANY COMPUTER WHICH ALLOWS C INTEGERS AT LEAST AS LARGE AS 32767. C C C USE C FIRST TIME.... C Z = UNI(JD) C HERE JD IS ANY N O N - Z E R O INTEGER. C THIS CAUSES INITIALIZATION OF THE PROGRAM C AND THE FIRST RANDOM NUMBER TO BE RETURNED AS Z. C SUBSEQUENT TIMES... C Z = UNI(0) C CAUSES THE NEXT RANDOM NUMBER TO BE RETURNED AS Z. C C C.................................................................. C NOTE: USERS WHO WISH TO TRANSPORT THIS PROGRAM FROM ONE COMPUTER C TO ANOTHER SHOULD READ THE FOLLOWING INFORMATION..... C C MACHINE DEPENDENCIES... C MDIG = A LOWER BOUND ON THE NUMBER OF BINARY DIGITS AVAILABLE C FOR REPRESENTING INTEGERS, INCLUDING THE SIGN BIT. C THIS VALUE MUST BE AT LEAST 16, BUT MAY BE INCREASED C IN LINE WITH REMARK A BELOW. C C REMARKS... C A. THIS PROGRAM CAN BE USED IN TWO WAYS: C (1) TO OBTAIN REPEATABLE RESULTS ON DIFFERENT COMPUTERS, C SET 'MDIG' TO THE SMALLEST OF ITS VALUES ON EACH, OR, C (2) TO ALLOW THE LONGEST SEQUENCE OF RANDOM NUMBERS TO BE C GENERATED WITHOUT CYCLING (REPEATING) SET 'MDIG' TO THE C LARGEST POSSIBLE VALUE. C B. THE SEQUENCE OF NUMBERS GENERATED DEPENDS ON THE INITIAL C INPUT 'JD' AS WELL AS THE VALUE OF 'MDIG'. C IF MDIG=16 ONE SHOULD FIND THAT Editors Note: set the seed using 152 in order to get uni(305) -jt C THE FIRST EVALUATION C Z=UNI(305) GIVES Z=.027832881... C THE SECOND EVALUATION C Z=UNI(0) GIVES Z=.56102176... C THE THIRD EVALUATION C Z=UNI(0) GIVES Z=.41456343... C THE THOUSANDTH EVALUATION C Z=UNI(0) GIVES Z=.19797357... C C***REFERENCES MARSAGLIA G., "COMMENTS ON THE PERFECT UNIFORM RANDOM C NUMBER GENERATOR", UNPUBLISHED NOTES, WASH S. U. C***ROUTINES CALLED I1MACH,XERROR C***END PROLOGUE UNI **/ #include #include #include static inline unsigned long int uni32_get (void *vstate); static double uni32_get_double (void *vstate); static void uni32_set (void *state, unsigned long int s); static const unsigned long int MDIG = 32; /* Machine digits in int */ static const unsigned long int m1 = 2147483647; /* 2^(MDIG-1) - 1 */ static const unsigned long int m2 = 65536; /* 2^(MDIG/2) */ typedef struct { int i, j; unsigned long m[17]; } uni32_state_t; static inline unsigned long uni32_get (void *vstate) { uni32_state_t *state = (uni32_state_t *) vstate; const long int i = state->i; const long int j = state->j; /* important k not be unsigned */ long int k = state->m[i] - state->m[j]; if (k < 0) k += m1; state->m[j] = k; if (i == 0) { state->i = 16; } else { (state->i)--; } if (j == 0) { state->j = 16; } else { (state->j)--; } return k; } static double uni32_get_double (void *vstate) { return uni32_get (vstate) / 2147483647.0 ; } static void uni32_set (void *vstate, unsigned long int s) { long int seed, k0, k1, j0, j1; int i; uni32_state_t *state = (uni32_state_t *) vstate; /* For this routine, the seeding is very elaborate! */ /* A flaw in this approach is that seeds 1,2 give exactly the same random number sequence! */ /*s = 2*s+1; *//* enforce seed be odd */ seed = (s < m1 ? s : m1); /* seed should be less than m1 */ seed -= (seed % 2 == 0 ? 1 : 0); k0 = 9069 % m2; k1 = 9069 / m2; j0 = seed % m2; j1 = seed / m2; for (i = 0; i < 17; i++) { seed = j0 * k0; j1 = (seed / m2 + j0 * k1 + j1 * k0) % (m2 / 2); j0 = seed % m2; state->m[i] = j0 + m2 * j1; } state->i = 4; state->j = 16; return; } static const gsl_rng_type uni32_type = {"uni32", /* name */ 2147483646, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (uni32_state_t), &uni32_set, &uni32_get, &uni32_get_double}; const gsl_rng_type *gsl_rng_uni32 = &uni32_type; gsl-1.16/rng/TODO0000664000252300025230000000750412171574312010436 00000000000000# -*- org -*- #+CATEGORY: rng * gfsr: for consistency (Charles A. Wemple). Make this change in 2.0 127a142 > state->nd = i-1; 133,134c148,149 < for (i=0; i<32; ++i) { < int k=7+i*3; --- > for (i=0; i<32; i++) { > int k=7*i+3; 141d155 < state->nd = i; * Sort out "const" in prototypes, it looks odd since there are consts for many functions which modify the state. (Applies to both qrng and rng) * New 64 bit generators in "Tables of 64-bit Mersenne Twisters", Takuji Nishimura, ACM Transactions on Modeling and Computer Simulation, Volumen 10, No 4, October 2000, p 348--357 * Need to run tests over the space of seeds, in addition to serial tests (DIEHARD) for the default seed. The congruences used for seeding will give poor initial vectors for some seed values, e.g. 2^n. Improve the seeding procedure by using a high-quality generator (e.g. hash functions, md5 or sha) to generate the initial vectors. Even if this is moderately expensive it is worthwhile since the seeding is usually a one-off cost at program initialization, and the results of all subsequent calls to the generator depend on it. The GSFR4 generator is particularly likely to benefit from this procedure. * Add SWNS generator Phys.Rev.E 50 (2) p. 1607-1615 (1994), Phys.Rev.E 60 (6), p.7626-7628 (1999) * Add get_array type methods which can provide optimized versions of each function (?). We should offer the possibility of eliminating function call overhead -- there are various possible ways to implement it. * Add ISAAC generator (??) * Add (A)RC4 and hash based random number generators MD5, SHA. This should give crypto quality randomness, and guarantee different sequences for each seed. Make the state (seed, count) where count increments on each call of the generator. Implement count as a big integer stored in separate unsigned integers so that the period is sufficiently long (e.g. 2^64 or 2^96). The generator would return HASH(seed, count) on each call. * Check that RANLXS will work on machines with non-standard width of float/dbl (original has checks for DBL_MANT_DIG ..) * mention more clearly why not all Cokus used (or recheck MT pages for improvements) * run the DIEHARD tests on all the generators, especially the ones we are listing as "Simulation Quality" -- some of those are a bit old and might fail one or two diehard tests. * Add NAG, missing, gave up! CDC 48-bit missing * Check out the bug fix to mrand48 that was made in glibc2, pr757 * Check out the following paper, On the anomaly of ran1() in Monte Carlo pricing of financial derivatives; Akira Tajima , Syoiti Ninomiya , and Shu Tezuka ; Winter simulation , 1996, Page 360, from ACM * The following papers have been published, I think we refer to them (or could do), Pierre L'Ecuyer, "Tables of Linear Congruential Generators of different size and good lattice structure", Mathematics of Computation, Vol 68, No 225, Jan 1999, p249-260 Pierre L'Ecuyer, "Tables of Maximally equidistributed combined LSFR generators", ibid, p261-270 * Look at this paper: I. Vattulainen, "Framework for testing random numbers in parallel calculations", Phys. Rev. E, 59, 6, June 1999, p7200 ---------------------------------------------------------------------- DONE x1. Improve the seeding for routines that use the LCG seed generator. It can only generate 130,000 different initial states. We should change it to provide 2^31 different initial states (this will also prevent the high bits being zero). DONE - we now use a 32-bit generator. x8. Get the macros from the faster MT19937 generator and use them. We need to make MT be the fastest of the simulation quality generators if it is the default. DONE. It didn't improve the speed on other platforms, so I just used the tricks which also worked on the pentium (e.g. changing mag[x&1] to x&1 ? mag[1] : mag[0]) gsl-1.16/rng/coveyou.c0000664000252300025230000000431212171574312011575 00000000000000/* rng/coveyou.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Section 3.2.2 * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. * Carlo Perassi reorganized the code to use the rng framework of GSL. */ #include #include #include #define MM 0xffffffffUL /* 2 ^ 32 - 1 */ static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; state->x = (state->x * (state->x + 1)) & MM; return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 4294967296.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; unsigned long int diff = ((s % 4UL) - 2UL) % MM; if (diff) state->x = (s - diff) & MM; else state->x = s & MM; return; } static const gsl_rng_type ran_type = { "coveyou", /* name */ MM-1, /* RAND_MAX */ 2, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_coveyou = &ran_type; gsl-1.16/rng/schrage.c0000664000252300025230000000352212171574312011522 00000000000000/* rng/schrage.c * Copyright (C) 2003 Carlo Perassi and Heiko Bauke. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static inline unsigned long int schrage (unsigned long int a, unsigned long int b, unsigned long int m) { /* This is a modified version of Schrage's method. It ensures that no * overflow or underflow occurs even if a=ceil(sqrt(m)). Usual * Schrage's method works only until a=floor(sqrt(m)). */ unsigned long int q, t; if (a == 0UL) return 0UL; q = m / a; t = 2 * m - (m % a) * (b / q); if (t >= m) t -= m; t += a * (b % q); return (t >= m) ? (t - m) : t; } static inline unsigned long int schrage_mult (unsigned long int a, unsigned long int b, unsigned long int m, unsigned long int sqrtm) { /* To multiply a and b use Schrage's method 3 times. * represent a in base ceil(sqrt(m)) a = a1*ceil(sqrt(m)) + a0 * a*b = (a1*ceil(sqrt(m)) + a0)*b = a1*ceil(sqrt(m))*b + a0*b */ unsigned long int t0 = schrage (sqrtm, b, m); unsigned long int t1 = schrage (a / sqrtm, t0, m); unsigned long int t2 = schrage (a % sqrtm, b, m); unsigned long int t = t1 + t2; return (t >= m) ? (t - m) : t; } gsl-1.16/rng/vax.c0000664000252300025230000000421212171574312010701 00000000000000/* rng/vax.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is the old vax generator MTH$RANDOM. The sequence is, x_{n+1} = (a x_n + c) mod m with a = 69069, c = 1 and m = 2^32. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 3051034865. The period of this generator is 2^32. */ static inline unsigned long int vax_get (void *vstate); static double vax_get_double (void *vstate); static void vax_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } vax_state_t; static inline unsigned long int vax_get (void *vstate) { vax_state_t *state = (vax_state_t *) vstate; state->x = (69069 * state->x + 1) & 0xffffffffUL; return state->x; } static double vax_get_double (void *vstate) { return vax_get (vstate) / 4294967296.0 ; } static void vax_set (void *vstate, unsigned long int s) { vax_state_t *state = (vax_state_t *) vstate; /* default seed is 0. The constant term c stops the series from collapsing to 0,0,0,0,0,... */ state->x = s; return; } static const gsl_rng_type vax_type = {"vax", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (vax_state_t), &vax_set, &vax_get, &vax_get_double}; const gsl_rng_type *gsl_rng_vax = &vax_type; gsl-1.16/rng/inline.c0000664000252300025230000000203112171574312011356 00000000000000/* rng/inline.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/rng/slatec.c0000664000252300025230000001661712171574312011372 00000000000000/* rng/slatec.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** * ====================================================================== * NIST Guide to Available Math Software. * Source for module RAND from package CMLIB. * Retrieved from TIBER on Fri Oct 11 11:43:42 1996. * ====================================================================== FUNCTION RAND(R) C***BEGIN PROLOGUE RAND C***DATE WRITTEN 770401 (YYMMDD) C***REVISION DATE 820801 (YYMMDD) C***CATEGORY NO. L6A21 C***KEYWORDS RANDOM NUMBER,SPECIAL FUNCTION,UNIFORM C***AUTHOR FULLERTON, W., (LANL) C***PURPOSE Generates a uniformly distributed random number. C***DESCRIPTION C C This pseudo-random number generator is portable among a wide C variety of computers. RAND(R) undoubtedly is not as good as many C readily available installation dependent versions, and so this C routine is not recommended for widespread usage. Its redeeming C feature is that the exact same random numbers (to within final round- C off error) can be generated from machine to machine. Thus, programs C that make use of random numbers can be easily transported to and C checked in a new environment. C The random numbers are generated by the linear congruential C method described, e.g., by Knuth in Seminumerical Methods (p.9), C Addison-Wesley, 1969. Given the I-th number of a pseudo-random C sequence, the I+1 -st number is generated from C X(I+1) = (A*X(I) + C) MOD M, C where here M = 2**22 = 4194304, C = 1731 and several suitable values C of the multiplier A are discussed below. Both the multiplier A and C random number X are represented in double precision as two 11-bit C words. The constants are chosen so that the period is the maximum C possible, 4194304. C In order that the same numbers be generated from machine to C machine, it is necessary that 23-bit integers be reducible modulo C 2**11 exactly, that 23-bit integers be added exactly, and that 11-bit C integers be multiplied exactly. Furthermore, if the restart option C is used (where R is between 0 and 1), then the product R*2**22 = C R*4194304 must be correct to the nearest integer. C The first four random numbers should be .0004127026, C .6750836372, .1614754200, and .9086198807. The tenth random number C is .5527787209, and the hundredth is .3600893021 . The thousandth C number should be .2176990509 . C In order to generate several effectively independent sequences C with the same generator, it is necessary to know the random number C for several widely spaced calls. The I-th random number times 2**22, C where I=K*P/8 and P is the period of the sequence (P = 2**22), is C still of the form L*P/8. In particular we find the I-th random C number multiplied by 2**22 is given by C I = 0 1*P/8 2*P/8 3*P/8 4*P/8 5*P/8 6*P/8 7*P/8 8*P/8 C RAND= 0 5*P/8 2*P/8 7*P/8 4*P/8 1*P/8 6*P/8 3*P/8 0 C Thus the 4*P/8 = 2097152 random number is 2097152/2**22. C Several multipliers have been subjected to the spectral test C (see Knuth, p. 82). Four suitable multipliers roughly in order of C goodness according to the spectral test are C 3146757 = 1536*2048 + 1029 = 2**21 + 2**20 + 2**10 + 5 C 2098181 = 1024*2048 + 1029 = 2**21 + 2**10 + 5 C 3146245 = 1536*2048 + 517 = 2**21 + 2**20 + 2**9 + 5 C 2776669 = 1355*2048 + 1629 = 5**9 + 7**7 + 1 C C In the table below LOG10(NU(I)) gives roughly the number of C random decimal digits in the random numbers considered I at a time. C C is the primary measure of goodness. In both cases bigger is better. C C LOG10 NU(I) C(I) C A I=2 I=3 I=4 I=5 I=2 I=3 I=4 I=5 C C 3146757 3.3 2.0 1.6 1.3 3.1 1.3 4.6 2.6 C 2098181 3.3 2.0 1.6 1.2 3.2 1.3 4.6 1.7 C 3146245 3.3 2.2 1.5 1.1 3.2 4.2 1.1 0.4 C 2776669 3.3 2.1 1.6 1.3 2.5 2.0 1.9 2.6 C Best C Possible 3.3 2.3 1.7 1.4 3.6 5.9 9.7 14.9 C C Input Argument -- C R If R=0., the next random number of the sequence is generated. C If R .LT. 0., the last generated number will be returned for C possible use in a restart procedure. C If R .GT. 0., the sequence of random numbers will start with C the seed R mod 1. This seed is also returned as the value of C RAND provided the arithmetic is done exactly. C C Output Value -- C RAND a pseudo-random number between 0. and 1. C***REFERENCES (NONE) C***ROUTINES CALLED (NONE) C***END PROLOGUE RAND DATA IA1, IA0, IA1MA0 /1536, 1029, 507/ DATA IC /1731/ DATA IX1, IX0 /0, 0/ C***FIRST EXECUTABLE STATEMENT RAND IF (R.LT.0.) GO TO 10 IF (R.GT.0.) GO TO 20 C C A*X = 2**22*IA1*IX1 + 2**11*(IA1*IX1 + (IA1-IA0)*(IX0-IX1) C + IA0*IX0) + IA0*IX0 C IY0 = IA0*IX0 IY1 = IA1*IX1 + IA1MA0*(IX0-IX1) + IY0 IY0 = IY0 + IC IX0 = MOD (IY0, 2048) IY1 = IY1 + (IY0-IX0)/2048 IX1 = MOD (IY1, 2048) C 10 RAND = IX1*2048 + IX0 RAND = RAND / 4194304. RETURN C 20 IX1 = AMOD(R,1.)*4194304. + 0.5 IX0 = MOD (IX1, 2048) IX1 = (IX1-IX0)/2048 GO TO 10 C END **/ #include #include #include static inline unsigned long int slatec_get (void *vstate); static double slatec_get_double (void *vstate); static void slatec_set (void *state, unsigned long int s); typedef struct { long int x0, x1; } slatec_state_t; static const long P = 4194304; static const long a1 = 1536; static const long a0 = 1029; static const long a1ma0 = 507; static const long c = 1731; static inline unsigned long int slatec_get (void *vstate) { long y0, y1; slatec_state_t *state = (slatec_state_t *) vstate; y0 = a0 * state->x0; y1 = a1 * state->x1 + a1ma0 * (state->x0 - state->x1) + y0; y0 = y0 + c; state->x0 = y0 % 2048; y1 = y1 + (y0 - state->x0) / 2048; state->x1 = y1 % 2048; return state->x1 * 2048 + state->x0; } static double slatec_get_double (void *vstate) { return slatec_get (vstate) / 4194304.0 ; } static void slatec_set (void *vstate, unsigned long int s) { slatec_state_t *state = (slatec_state_t *) vstate; /* Only eight seeds are permitted. This is pretty limiting, but at least we are guaranteed that the eight sequences are different */ s = s % 8; s *= P / 8; state->x0 = s % 2048; state->x1 = (s - state->x0) / 2048; } static const gsl_rng_type slatec_type = {"slatec", /* name */ 4194303, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (slatec_state_t), &slatec_set, &slatec_get, &slatec_get_double}; const gsl_rng_type *gsl_rng_slatec = &slatec_type; gsl-1.16/rng/tt.c0000664000252300025230000000741512171574312010542 00000000000000/* rng/tt.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is the TT800 twisted GSFR generator for 32 bit integers. It has been superceded by MT19937 (mt.c). The period is 2^800. This implementation is based on tt800.c, July 8th 1996 version by M. Matsumoto, email: matumoto@math.keio.ac.jp From: Makoto Matsumoto and Yoshiharu Kurita, "Twisted GFSR Generators II", ACM Transactions on Modelling and Computer Simulation, Vol. 4, No. 3, 1994, pages 254-266. */ static inline unsigned long int tt_get (void *vstate); static double tt_get_double (void *vstate); static void tt_set (void *state, unsigned long int s); #define N 25 #define M 7 typedef struct { int n; unsigned long int x[N]; } tt_state_t; static inline unsigned long int tt_get (void *vstate) { tt_state_t *state = (tt_state_t *) vstate; /* this is the magic vector, a */ const unsigned long mag01[2] = {0x00000000, 0x8ebfd028UL}; unsigned long int y; unsigned long int *const x = state->x; int n = state->n; if (n >= N) { int i; for (i = 0; i < N - M; i++) { x[i] = x[i + M] ^ (x[i] >> 1) ^ mag01[x[i] % 2]; } for (; i < N; i++) { x[i] = x[i + (M - N)] ^ (x[i] >> 1) ^ mag01[x[i] % 2]; }; n = 0; } y = x[n]; y ^= (y << 7) & 0x2b5b2500UL; /* s and b, magic vectors */ y ^= (y << 15) & 0xdb8b0000UL; /* t and c, magic vectors */ y &= 0xffffffffUL; /* you may delete this line if word size = 32 */ /* The following line was added by Makoto Matsumoto in the 1996 version to improve lower bit's correlation. Delete this line to use the code published in 1994. */ y ^= (y >> 16); /* added to the 1994 version */ state->n = n + 1; return y; } static double tt_get_double (void * vstate) { return tt_get (vstate) / 4294967296.0 ; } static void tt_set (void *vstate, unsigned long int s) { tt_state_t *state = (tt_state_t *) vstate; const tt_state_t init_state = {0, {0x95f24dabUL, 0x0b685215UL, 0xe76ccae7UL, 0xaf3ec239UL, 0x715fad23UL, 0x24a590adUL, 0x69e4b5efUL, 0xbf456141UL, 0x96bc1b7bUL, 0xa7bdf825UL, 0xc1de75b7UL, 0x8858a9c9UL, 0x2da87693UL, 0xb657f9ddUL, 0xffdc8a9fUL, 0x8121da71UL, 0x8b823ecbUL, 0x885d05f5UL, 0x4e20cd47UL, 0x5a9ad5d9UL, 0x512c0c03UL, 0xea857ccdUL, 0x4cc1d30fUL, 0x8891a8a1UL, 0xa6b7aadbUL}}; if (s == 0) /* default seed is given explicitly in the original code */ { *state = init_state; } else { int i; state->n = 0; state->x[0] = s & 0xffffffffUL; for (i = 1; i < N; i++) state->x[i] = (69069 * state->x[i - 1]) & 0xffffffffUL; } return; } static const gsl_rng_type tt_type = {"tt800", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (tt_state_t), &tt_set, &tt_get, &tt_get_double}; const gsl_rng_type *gsl_rng_tt800 = &tt_type; gsl-1.16/rng/ran1.c0000664000252300025230000000570212171574312010751 00000000000000/* rng/ran1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is an implementation of the algorithm used in Numerical Recipe's ran1 generator. It is MINSTD with a 32-element shuffle-box. */ static inline unsigned long int ran1_get (void *vstate); static double ran1_get_double (void *vstate); static void ran1_set (void *state, unsigned long int s); static const long int m = 2147483647, a = 16807, q = 127773, r = 2836; #define N_SHUFFLE 32 #define N_DIV (1 + 2147483646/N_SHUFFLE) typedef struct { unsigned long int x; unsigned long int n; unsigned long int shuffle[N_SHUFFLE]; } ran1_state_t; static inline unsigned long int ran1_get (void *vstate) { ran1_state_t *state = (ran1_state_t *) vstate; const unsigned long int x = state->x; const long int h = x / q; const long int t = a * (x - h * q) - h * r; if (t < 0) { state->x = t + m; } else { state->x = t; } { unsigned long int j = state->n / N_DIV; state->n = state->shuffle[j]; state->shuffle[j] = state->x; } return state->n; } static double ran1_get_double (void *vstate) { float x_max = 1 - 1.2e-7f ; /* Numerical Recipes version of 1-FLT_EPS */ float x = ran1_get (vstate) / 2147483647.0f ; if (x > x_max) return x_max ; return x ; } static void ran1_set (void *vstate, unsigned long int s) { ran1_state_t *state = (ran1_state_t *) vstate; int i; if (s == 0) s = 1; /* default seed is 1 */ for (i = 0; i < 8; i++) { long int h = s / q; long int t = a * (s - h * q) - h * r; if (t < 0) t += m; s = t; } for (i = N_SHUFFLE - 1; i >= 0; i--) { long int h = s / q; long int t = a * (s - h * q) - h * r; if (t < 0) t += m; s = t; state->shuffle[i] = s; } state->x = s; state->n = s; return; } static const gsl_rng_type ran1_type = {"ran1", /* name */ 2147483646, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran1_state_t), &ran1_set, &ran1_get, &ran1_get_double}; const gsl_rng_type *gsl_rng_ran1 = &ran1_type; gsl-1.16/rng/test.c0000664000252300025230000004255412171574312011075 00000000000000/* rng/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include void rng_test (const gsl_rng_type * T, unsigned long int seed, unsigned int n, unsigned long int result); void rng_float_test (const gsl_rng_type * T); void generic_rng_test (const gsl_rng_type * T); void rng_state_test (const gsl_rng_type * T); void rng_parallel_state_test (const gsl_rng_type * T); void rng_read_write_test (const gsl_rng_type * T); int rng_max_test (gsl_rng * r, unsigned long int *kmax, unsigned long int ran_max) ; int rng_min_test (gsl_rng * r, unsigned long int *kmin, unsigned long int ran_min, unsigned long int ran_max) ; int rng_sum_test (gsl_rng * r, double *sigma); int rng_bin_test (gsl_rng * r, double *sigma); void rng_seed_test (const gsl_rng_type * T); #define N 10000 #define N2 200000 int main (void) { const gsl_rng_type ** rngs = gsl_rng_types_setup(); /* get all rng types */ const gsl_rng_type ** r ; gsl_ieee_env_setup (); gsl_rng_env_setup (); /* specific tests of known results for 10000 iterations with seed = 1 */ rng_test (gsl_rng_rand, 1, 10000, 1910041713); rng_test (gsl_rng_randu, 1, 10000, 1623524161); rng_test (gsl_rng_cmrg, 1, 10000, 719452880); rng_test (gsl_rng_minstd, 1, 10000, 1043618065); rng_test (gsl_rng_mrg, 1, 10000, 2064828650); rng_test (gsl_rng_taus, 1, 10000, 2733957125UL); rng_test (gsl_rng_taus2, 1, 10000, 2733957125UL); rng_test (gsl_rng_taus113, 1, 1000, 1925420673UL); rng_test (gsl_rng_transputer, 1, 10000, 1244127297UL); rng_test (gsl_rng_vax, 1, 10000, 3051034865UL); /* Borosh13 test value from PARI: (1812433253^10000)%(2^32) */ rng_test (gsl_rng_borosh13, 1, 10000, 2513433025UL); /* Fishman18 test value from PARI: (62089911^10000)%(2^31-1) */ rng_test (gsl_rng_fishman18, 1, 10000, 330402013UL); /* Fishman2x test value from PARI: ((48271^10000)%(2^31-1) - (40692^10000)%(2^31-249))%(2^31-1) */ rng_test (gsl_rng_fishman2x, 1, 10000, 540133597UL); /* Knuthran2 test value from PARI: { xn1=1; xn2=1; for (n=1,10000, xn = (271828183*xn1 - 314159269*xn2)%(2^31-1); xn2=xn1; xn1=xn; print(xn); ) } */ rng_test (gsl_rng_knuthran2, 1, 10000, 1084477620UL); /* Knuthran test value taken from p188 in Knuth Vol 2. 3rd Ed */ rng_test (gsl_rng_knuthran, 310952, 1009 * 2009 + 1, 461390032); /* Knuthran improved test value from Knuth's source */ rng_test (gsl_rng_knuthran2002, 310952, 1, 708622036); rng_test (gsl_rng_knuthran2002, 310952, 2, 1005450560); rng_test (gsl_rng_knuthran2002, 310952, 100 * 2009 + 1, 995235265); rng_test (gsl_rng_knuthran2002, 310952, 1009 * 2009 + 1, 704987132); /* Lecuyer21 test value from PARI: (40692^10000)%(2^31-249) */ rng_test (gsl_rng_lecuyer21, 1, 10000, 2006618587UL); /* Waterman14 test value from PARI: (1566083941^10000)%(2^32) */ rng_test (gsl_rng_waterman14, 1, 10000, 3776680385UL); /* specific tests of known results for 10000 iterations with seed = 6 */ /* Coveyou test value from PARI: x=6; for(n=1,10000,x=(x*(x+1))%(2^32);print(x);) */ rng_test (gsl_rng_coveyou, 6, 10000, 1416754246UL); /* Fishman20 test value from PARI: (6*48271^10000)%(2^31-1) */ rng_test (gsl_rng_fishman20, 6, 10000, 248127575UL); /* FIXME: the ranlux tests below were made by running the fortran code and getting the expected value from that. An analytic calculation would be preferable. */ rng_test (gsl_rng_ranlux, 314159265, 10000, 12077992); rng_test (gsl_rng_ranlux389, 314159265, 10000, 165942); rng_test (gsl_rng_ranlxs0, 1, 10000, 11904320); /* 0.709552764892578125 * ldexp(1.0,24) */ rng_test (gsl_rng_ranlxs1, 1, 10000, 8734328); /* 0.520606517791748047 * ldexp(1.0,24) */ rng_test (gsl_rng_ranlxs2, 1, 10000, 6843140); /* 0.407882928848266602 * ldexp(1.0,24) */ rng_test (gsl_rng_ranlxd1, 1, 10000, 1998227290UL); /* 0.465248546261094020 * ldexp(1.0,32) */ rng_test (gsl_rng_ranlxd2, 1, 10000, 3949287736UL); /* 0.919515205581550532 * ldexp(1.0,32) */ /* FIXME: the tests below were made by running the original code in the ../random directory and getting the expected value from that. An analytic calculation would be preferable. */ rng_test (gsl_rng_slatec, 1, 10000, 45776); rng_test (gsl_rng_uni, 1, 10000, 9214); rng_test (gsl_rng_uni32, 1, 10000, 1155229825); rng_test (gsl_rng_zuf, 1, 10000, 3970); /* The tests below were made by running the original code and getting the expected value from that. An analytic calculation would be preferable. */ rng_test (gsl_rng_r250, 1, 10000, 1100653588); rng_test (gsl_rng_mt19937, 4357, 1000, 1186927261); rng_test (gsl_rng_mt19937_1999, 4357, 1000, 1030650439); rng_test (gsl_rng_mt19937_1998, 4357, 1000, 1309179303); rng_test (gsl_rng_tt800, 0, 10000, 2856609219UL); rng_test (gsl_rng_ran0, 0, 10000, 1115320064); rng_test (gsl_rng_ran1, 0, 10000, 1491066076); rng_test (gsl_rng_ran2, 0, 10000, 1701364455); rng_test (gsl_rng_ran3, 0, 10000, 186340785); rng_test (gsl_rng_ranmar, 1, 10000, 14428370); rng_test (gsl_rng_rand48, 0, 10000, 0xDE095043UL); rng_test (gsl_rng_rand48, 1, 10000, 0xEDA54977UL); rng_test (gsl_rng_random_glibc2, 0, 10000, 1908609430); rng_test (gsl_rng_random8_glibc2, 0, 10000, 1910041713); rng_test (gsl_rng_random32_glibc2, 0, 10000, 1587395585); rng_test (gsl_rng_random64_glibc2, 0, 10000, 52848624); rng_test (gsl_rng_random128_glibc2, 0, 10000, 1908609430); rng_test (gsl_rng_random256_glibc2, 0, 10000, 179943260); rng_test (gsl_rng_random_bsd, 0, 10000, 1457025928); rng_test (gsl_rng_random8_bsd, 0, 10000, 1910041713); rng_test (gsl_rng_random32_bsd, 0, 10000, 1663114331); rng_test (gsl_rng_random64_bsd, 0, 10000, 864469165); rng_test (gsl_rng_random128_bsd, 0, 10000, 1457025928); rng_test (gsl_rng_random256_bsd, 0, 10000, 1216357476); rng_test (gsl_rng_random_libc5, 0, 10000, 428084942); rng_test (gsl_rng_random8_libc5, 0, 10000, 1910041713); rng_test (gsl_rng_random32_libc5, 0, 10000, 1967452027); rng_test (gsl_rng_random64_libc5, 0, 10000, 2106639801); rng_test (gsl_rng_random128_libc5, 0, 10000, 428084942); rng_test (gsl_rng_random256_libc5, 0, 10000, 116367984); rng_test (gsl_rng_ranf, 0, 10000, 2152890433UL); rng_test (gsl_rng_ranf, 2, 10000, 339327233); /* Test constant relationship between int and double functions */ for (r = rngs ; *r != 0; r++) rng_float_test (*r); /* Test save/restore functions */ for (r = rngs ; *r != 0; r++) rng_state_test (*r); for (r = rngs ; *r != 0; r++) rng_parallel_state_test (*r); for (r = rngs ; *r != 0; r++) rng_read_write_test (*r); /* generic statistical tests (these are just to make sure that we don't get any crazy results back from the generator, i.e. they aren't a test of the algorithm, just the implementation) */ for (r = rngs ; *r != 0; r++) generic_rng_test (*r); #ifdef TEST_SEEDS rng_seed_test (gsl_rng_mt19937); rng_seed_test (gsl_rng_ranlxs0); rng_seed_test (gsl_rng_ranlxs1); rng_seed_test (gsl_rng_ranlxs2); rng_seed_test (gsl_rng_ranlxd1); rng_seed_test (gsl_rng_ranlxd2); rng_seed_test (gsl_rng_ranlux); rng_seed_test (gsl_rng_ranlux389); rng_seed_test (gsl_rng_cmrg); rng_seed_test (gsl_rng_mrg); rng_seed_test (gsl_rng_taus); rng_seed_test (gsl_rng_taus2); rng_seed_test (gsl_rng_gfsr4); #endif exit (gsl_test_summary ()); } void rng_test (const gsl_rng_type * T, unsigned long int seed, unsigned int n, unsigned long int result) { gsl_rng *r = gsl_rng_alloc (T); unsigned int i; unsigned long int k = 0; int status; if (seed != 0) { gsl_rng_set (r, seed); } for (i = 0; i < n; i++) { k = gsl_rng_get (r); } status = (k != result); gsl_test (status, "%s, %u steps (%u observed vs %u expected)", gsl_rng_name (r), n, k, result); gsl_rng_free (r); } void rng_float_test (const gsl_rng_type * T) { gsl_rng *ri = gsl_rng_alloc (T); gsl_rng *rf = gsl_rng_alloc (T); double u, c ; unsigned int i; unsigned long int k = 0; int status = 0 ; do { k = gsl_rng_get (ri); u = gsl_rng_get (rf); } while (k == 0) ; c = k / u ; for (i = 0; i < N2; i++) { k = gsl_rng_get (ri); u = gsl_rng_get (rf); if (c*k != u) { status = 1 ; break ; } } gsl_test (status, "%s, ratio of int to double (%g observed vs %g expected)", gsl_rng_name (ri), c, k/u); gsl_rng_free (ri); gsl_rng_free (rf); } void rng_state_test (const gsl_rng_type * T) { unsigned long int test_a[N], test_b[N]; int i; gsl_rng *r = gsl_rng_alloc (T); gsl_rng *r_save = gsl_rng_alloc (T); for (i = 0; i < N; ++i) { gsl_rng_get (r); /* throw away N iterations */ } gsl_rng_memcpy (r_save, r); /* save the intermediate state */ for (i = 0; i < N; ++i) { test_a[i] = gsl_rng_get (r); } gsl_rng_memcpy (r, r_save); /* restore the intermediate state */ gsl_rng_free (r_save); for (i = 0; i < N; ++i) { test_b[i] = gsl_rng_get (r); } { int status = 0; for (i = 0; i < N; ++i) { status |= (test_b[i] != test_a[i]); } gsl_test (status, "%s, random number state consistency", gsl_rng_name (r)); } gsl_rng_free (r); } void rng_parallel_state_test (const gsl_rng_type * T) { unsigned long int test_a[N], test_b[N]; unsigned long int test_c[N], test_d[N]; double test_e[N], test_f[N]; int i; gsl_rng *r1 = gsl_rng_alloc (T); gsl_rng *r2 = gsl_rng_alloc (T); for (i = 0; i < N; ++i) { gsl_rng_get (r1); /* throw away N iterations */ } gsl_rng_memcpy (r2, r1); /* save the intermediate state */ for (i = 0; i < N; ++i) { /* check that there is no hidden state intermixed between r1 and r2 */ test_a[i] = gsl_rng_get (r1); test_b[i] = gsl_rng_get (r2); test_c[i] = gsl_rng_uniform_int (r1, 1234); test_d[i] = gsl_rng_uniform_int (r2, 1234); test_e[i] = gsl_rng_uniform (r1); test_f[i] = gsl_rng_uniform (r2); } { int status = 0; for (i = 0; i < N; ++i) { status |= (test_b[i] != test_a[i]); status |= (test_c[i] != test_d[i]); status |= (test_e[i] != test_f[i]); } gsl_test (status, "%s, parallel random number state consistency", gsl_rng_name (r1)); } gsl_rng_free (r1); gsl_rng_free (r2); } void rng_read_write_test (const gsl_rng_type * T) { unsigned long int test_a[N], test_b[N]; int i; gsl_rng *r = gsl_rng_alloc (T); for (i = 0; i < N; ++i) { gsl_rng_get (r); /* throw away N iterations */ } { /* save the state to a binary file */ FILE *f = fopen("test.dat", "wb"); gsl_rng_fwrite(f, r); fclose(f); } for (i = 0; i < N; ++i) { test_a[i] = gsl_rng_get (r); } { /* read the state from a binary file */ FILE *f = fopen("test.dat", "rb"); gsl_rng_fread(f, r); fclose(f); } for (i = 0; i < N; ++i) { test_b[i] = gsl_rng_get (r); } { int status = 0; for (i = 0; i < N; ++i) { status |= (test_b[i] != test_a[i]); } gsl_test (status, "%s, random number generator read and write", gsl_rng_name (r)); } gsl_rng_free (r); } void generic_rng_test (const gsl_rng_type * T) { gsl_rng *r = gsl_rng_alloc (T); const char *name = gsl_rng_name (r); unsigned long int kmax = 0, kmin = 1000; double sigma = 0; const unsigned long int ran_max = gsl_rng_max (r); const unsigned long int ran_min = gsl_rng_min (r); int status = rng_max_test (r, &kmax, ran_max); gsl_test (status, "%s, observed vs theoretical maximum (%lu vs %lu)", name, kmax, ran_max); status = rng_min_test (r, &kmin, ran_min, ran_max); gsl_test (status, "%s, observed vs theoretical minimum (%lu vs %lu)", name, kmin, ran_min); status = rng_sum_test (r, &sigma); gsl_test (status, "%s, sum test within acceptable sigma (observed %.2g sigma)", name, sigma); status = rng_bin_test (r, &sigma); gsl_test (status, "%s, bin test within acceptable chisq (observed %.2g sigma)", name, sigma); gsl_rng_set (r, 1); /* set seed to 1 */ status = rng_max_test (r, &kmax, ran_max); gsl_rng_set (r, 1); /* set seed to 1 */ status |= rng_min_test (r, &kmin, ran_min, ran_max); gsl_rng_set (r, 1); /* set seed to 1 */ status |= rng_sum_test (r, &sigma); gsl_test (status, "%s, max, min and sum tests for seed=1", name); gsl_rng_set (r, 12345); /* set seed to a "typical" value */ status = rng_max_test (r, &kmax, ran_max); gsl_rng_set (r, 12345); /* set seed to a "typical" value */ status |= rng_min_test (r, &kmin, ran_min, ran_max); gsl_rng_set (r, 12345); /* set seed to a "typical" value */ status |= rng_sum_test (r, &sigma); gsl_test (status, "%s, max, min and sum tests for non-default seeds", name); gsl_rng_free (r); } int rng_max_test (gsl_rng * r, unsigned long int *kmax, unsigned long int ran_max) { unsigned long int actual_uncovered; double expect_uncovered; int status; unsigned long int max = 0; int i; for (i = 0; i < N2; ++i) { unsigned long int k = gsl_rng_get (r); if (k > max) max = k; } *kmax = max; actual_uncovered = ran_max - max; expect_uncovered = (double) ran_max / (double) N2; status = (max > ran_max) || (actual_uncovered > 7 * expect_uncovered) ; return status; } int rng_min_test (gsl_rng * r, unsigned long int *kmin, unsigned long int ran_min, unsigned long int ran_max) { unsigned long int actual_uncovered; double expect_uncovered; int status; unsigned long int min = 1000000000UL; int i; for (i = 0; i < N2; ++i) { unsigned long int k = gsl_rng_get (r); if (k < min) min = k; } *kmin = min; actual_uncovered = min - ran_min; expect_uncovered = (double) ran_max / (double) N2; status = (min < ran_min) || (actual_uncovered > 7 * expect_uncovered); return status; } int rng_sum_test (gsl_rng * r, double *sigma) { double sum = 0; int i, status; for (i = 0; i < N2; ++i) { double x = gsl_rng_uniform (r) - 0.5; sum += x; } sum /= N2; /* expect the average to have a variance of 1/(12 n) */ *sigma = sum * sqrt (12.0 * N2); /* more than 3 sigma is an error (increased to 3.1 to avoid false alarms) */ status = (fabs (*sigma) > 3.1 || fabs(*sigma) < 0.003); if (status) { fprintf(stderr,"sum=%g, sigma=%g\n",sum,*sigma); } return status; } #define BINS 17 #define EXTRA 10 int rng_bin_test (gsl_rng * r, double *sigma) { int count[BINS+EXTRA]; double chisq = 0; int i, status; for (i = 0; i < BINS+EXTRA; i++) count[i] = 0 ; for (i = 0; i < N2; i++) { int j = gsl_rng_uniform_int (r, BINS); count[j]++ ; } chisq = 0 ; for (i = 0; i < BINS; i++) { double x = (double)N2/(double)BINS ; double d = (count[i] - x) ; chisq += (d*d) / x; } *sigma = sqrt(chisq/BINS) ; /* more than 3 sigma is an error */ status = (fabs (*sigma) > 3 || fabs(*sigma) < 0.003); for (i = BINS; i < BINS+EXTRA; i++) { if (count[i] != 0) { status = 1 ; gsl_test (status, "%s, wrote outside range in bin test " "(%d observed vs %d expected)", gsl_rng_name(r), i, BINS - 1); } } return status; } int rng_sanity_test (gsl_rng * r) { double sum = 0, sigma; int i, status = 0; for (i = 0; i < N2; ++i) { double x = gsl_rng_uniform (r); sum += x; if (x < 0.0 || x > 1.0) { fprintf(stderr,"x=%g out of range\n", x); return 1; } } sum /= N2; /* expect the average to have a variance of 1/(12 n) */ sigma = (sum - 0.5)* sqrt (12.0 * N2); /* more than 5 sigma is an error */ status = (fabs (sigma) > 5 || fabs(sigma) < 0.0001); if (status) { fprintf(stderr,"sum=%g, sigma=%g\n",sum,sigma); } return status; } void rng_seed_test (const gsl_rng_type * T) { gsl_rng *r = gsl_rng_alloc (T); const char *name = gsl_rng_name (r); unsigned long int i; int j; int status; for (i = 0xFFFFFFFFUL ; i > 0; i >>= 1) { for (j = 1; j >= -1 ; j--) { unsigned long int seed = i + j; if (j > 0 && seed < i) continue; gsl_rng_set (r, seed); status = rng_sanity_test (r); if (status) gsl_test (status, "%s, sanity tests for seed = %#lx", name, seed); } } } gsl-1.16/rng/ranf.c0000664000252300025230000001023112171574312011027 00000000000000/* rng/ranf.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* This is the CRAY RANF generator. The generator returns the upper 32 bits from each term of the sequence, x_{n+1} = (a x_n) mod m using 48-bit unsigned arithmetic, with a = 0x2875A2E7B175 and m = 2^48. The seed specifies the lower 32 bits of the initial value, x_1, with the lowest bit set (to prevent the seed taking an even value), and the upper 16 bits set to 0. There is a subtlety in the implementation of the seed. The initial state is put one step back by multiplying by the modular inverse of a mod m. This is done for compatibility with the original CRAY implementation. Note, you can only seed the generator with integers up to 2^32, while the CRAY uses wide integers which can cover all 2^48 states of the generator. The theoretical value of x_{10001} is 141091827447341. The period of this generator is 2^{46}. */ static inline void ranf_advance (void *vstate); static unsigned long int ranf_get (void *vstate); static double ranf_get_double (void *vstate); static void ranf_set (void *state, unsigned long int s); static const unsigned short int a0 = 0xB175 ; static const unsigned short int a1 = 0xA2E7 ; static const unsigned short int a2 = 0x2875 ; typedef struct { unsigned short int x0, x1, x2; } ranf_state_t; static inline void ranf_advance (void *vstate) { ranf_state_t *state = (ranf_state_t *) vstate; const unsigned long int x0 = (unsigned long int) state->x0 ; const unsigned long int x1 = (unsigned long int) state->x1 ; const unsigned long int x2 = (unsigned long int) state->x2 ; unsigned long int r ; r = a0 * x0 ; state->x0 = (r & 0xFFFF) ; r >>= 16 ; r += a0 * x1 + a1 * x0 ; state->x1 = (r & 0xFFFF) ; r >>= 16 ; r += a0 * x2 + a1 * x1 + a2 * x0 ; state->x2 = (r & 0xFFFF) ; } static unsigned long int ranf_get (void *vstate) { unsigned long int x1, x2; ranf_state_t *state = (ranf_state_t *) vstate; ranf_advance (state) ; x1 = (unsigned long int) state->x1; x2 = (unsigned long int) state->x2; return (x2 << 16) + x1; } static double ranf_get_double (void * vstate) { ranf_state_t *state = (ranf_state_t *) vstate; ranf_advance (state) ; return (ldexp((double) state->x2, -16) + ldexp((double) state->x1, -32) + ldexp((double) state->x0, -48)) ; } static void ranf_set (void *vstate, unsigned long int s) { ranf_state_t *state = (ranf_state_t *) vstate; unsigned short int x0, x1, x2 ; unsigned long int r ; unsigned long int b0 = 0xD6DD ; unsigned long int b1 = 0xB894 ; unsigned long int b2 = 0x5CEE ; if (s == 0) /* default seed */ { x0 = 0x9CD1 ; x1 = 0x53FC ; x2 = 0x9482 ; } else { x0 = (s | 1) & 0xFFFF ; x1 = s >> 16 & 0xFFFF ; x2 = 0 ; } r = b0 * x0 ; state->x0 = (r & 0xFFFF) ; r >>= 16 ; r += b0 * x1 + b1 * x0 ; state->x1 = (r & 0xFFFF) ; r >>= 16 ; r += b0 * x2 + b1 * x1 + b2 * x0 ; state->x2 = (r & 0xFFFF) ; return; } static const gsl_rng_type ranf_type = {"ranf", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranf_state_t), &ranf_set, &ranf_get, &ranf_get_double }; const gsl_rng_type *gsl_rng_ranf = &ranf_type; gsl-1.16/rng/default.c0000664000252300025230000000460012171574312011530 00000000000000/* rng/default.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The initial defaults are defined in the file mt.c, so we can get access to the static parts of the default generator. */ const gsl_rng_type * gsl_rng_env_setup (void) { unsigned long int seed = 0; const char *p = getenv ("GSL_RNG_TYPE"); if (p) { const gsl_rng_type **t, **t0 = gsl_rng_types_setup (); gsl_rng_default = 0; /* check GSL_RNG_TYPE against the names of all the generators */ for (t = t0; *t != 0; t++) { if (strcmp (p, (*t)->name) == 0) { gsl_rng_default = *t; break; } } if (gsl_rng_default == 0) { int i = 0; fprintf (stderr, "GSL_RNG_TYPE=%s not recognized\n", p); fprintf (stderr, "Valid generator types are:\n"); for (t = t0; *t != 0; t++) { fprintf (stderr, " %18s", (*t)->name); if ((++i) % 4 == 0) { fputc ('\n', stderr); } } fputc ('\n', stderr); GSL_ERROR_VAL ("unknown generator", GSL_EINVAL, 0); } fprintf (stderr, "GSL_RNG_TYPE=%s\n", gsl_rng_default->name); } else { gsl_rng_default = gsl_rng_mt19937; } p = getenv ("GSL_RNG_SEED"); if (p) { seed = strtoul (p, 0, 0); fprintf (stderr, "GSL_RNG_SEED=%lu\n", seed); }; gsl_rng_default_seed = seed; return gsl_rng_default; } gsl-1.16/rng/ranlxs.c0000664000252300025230000001577112171574312011426 00000000000000/* rng/ranlxs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is an implementation of M. Luescher's second generation version of the RANLUX generator. Thanks to Martin Luescher for providing information on this generator. */ static unsigned long int ranlxs_get (void *vstate); static inline double ranlxs_get_double (void *vstate); static void ranlxs_set_lux (void *state, unsigned long int s, unsigned int luxury); static void ranlxs0_set (void *state, unsigned long int s); static void ranlxs1_set (void *state, unsigned long int s); static void ranlxs2_set (void *state, unsigned long int s); static const int next[12] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0}; static const int snext[24] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 0}; static const double sbase = 16777216.0; /* 2^24 */ static const double sone_bit = 1.0 / 16777216.0; /* 1/2^24 */ static const double one_bit = 1.0 / 281474976710656.0; /* 1/2^48 */ static const double shift = 268435456.0; /* 2^28 */ #define RANLUX_STEP(x1,x2,i1,i2,i3) \ x1=xdbl[i1] - xdbl[i2]; \ if (x2 < 0) \ { \ x1-=one_bit; \ x2+=1; \ } \ xdbl[i3]=x2 typedef struct { double xdbl[12], ydbl[12]; /* doubles first so they are 8-byte aligned */ double carry; float xflt[24]; unsigned int ir; unsigned int jr; unsigned int is; unsigned int is_old; unsigned int pr; } ranlxs_state_t; static void increment_state (ranlxs_state_t * state); static void increment_state (ranlxs_state_t * state) { int k, kmax, m; double x, y1, y2, y3; float *xflt = state->xflt; double *xdbl = state->xdbl; double *ydbl = state->ydbl; double carry = state->carry; unsigned int ir = state->ir; unsigned int jr = state->jr; for (k = 0; ir > 0; ++k) { y1 = xdbl[jr] - xdbl[ir]; y2 = y1 - carry; if (y2 < 0) { carry = one_bit; y2 += 1; } else { carry = 0; } xdbl[ir] = y2; ir = next[ir]; jr = next[jr]; } kmax = state->pr - 12; for (; k <= kmax; k += 12) { y1 = xdbl[7] - xdbl[0]; y1 -= carry; RANLUX_STEP (y2, y1, 8, 1, 0); RANLUX_STEP (y3, y2, 9, 2, 1); RANLUX_STEP (y1, y3, 10, 3, 2); RANLUX_STEP (y2, y1, 11, 4, 3); RANLUX_STEP (y3, y2, 0, 5, 4); RANLUX_STEP (y1, y3, 1, 6, 5); RANLUX_STEP (y2, y1, 2, 7, 6); RANLUX_STEP (y3, y2, 3, 8, 7); RANLUX_STEP (y1, y3, 4, 9, 8); RANLUX_STEP (y2, y1, 5, 10, 9); RANLUX_STEP (y3, y2, 6, 11, 10); if (y3 < 0) { carry = one_bit; y3 += 1; } else { carry = 0; } xdbl[11] = y3; } kmax = state->pr; for (; k < kmax; ++k) { y1 = xdbl[jr] - xdbl[ir]; y2 = y1 - carry; if (y2 < 0) { carry = one_bit; y2 += 1; } else { carry = 0; } xdbl[ir] = y2; ydbl[ir] = y2 + shift; ir = next[ir]; jr = next[jr]; } ydbl[ir] = xdbl[ir] + shift; for (k = next[ir]; k > 0;) { ydbl[k] = xdbl[k] + shift; k = next[k]; } for (k = 0, m = 0; k < 12; ++k) { x = xdbl[k]; y2 = ydbl[k] - shift; if (y2 > x) y2 -= sone_bit; y1 = (x - y2) * sbase; xflt[m++] = (float) y1; xflt[m++] = (float) y2; } state->ir = ir; state->is = 2 * ir; state->is_old = 2 * ir; state->jr = jr; state->carry = carry; } static inline double ranlxs_get_double (void *vstate) { ranlxs_state_t *state = (ranlxs_state_t *) vstate; const unsigned int is = snext[state->is]; state->is = is; if (is == state->is_old) increment_state (state); return state->xflt[state->is]; } static unsigned long int ranlxs_get (void *vstate) { return ranlxs_get_double (vstate) * 16777216.0; /* 2^24 */ } static void ranlxs_set_lux (void *vstate, unsigned long int s, unsigned int luxury) { ranlxs_state_t *state = (ranlxs_state_t *) vstate; int ibit, jbit, i, k, m, xbit[31]; double x, y; long int seed; if (s == 0) s = 1; /* default seed is 1 */ seed = s; i = seed & 0x7FFFFFFFUL; /* Allowed seeds for ranlxs are 0 .. 2^31-1 */ for (k = 0; k < 31; ++k) { xbit[k] = i % 2; i /= 2; } ibit = 0; jbit = 18; for (k = 0; k < 12; ++k) { x = 0; for (m = 1; m <= 48; ++m) { y = (double) xbit[ibit]; x += x + y; xbit[ibit] = (xbit[ibit] + xbit[jbit]) % 2; ibit = (ibit + 1) % 31; jbit = (jbit + 1) % 31; } state->xdbl[k] = one_bit * x; } state->carry = 0; state->ir = 0; state->jr = 7; state->is = 23; state->is_old = 0; state->pr = luxury; } static void ranlxs0_set (void *vstate, unsigned long int s) { ranlxs_set_lux (vstate, s, 109); } void ranlxs1_set (void *vstate, unsigned long int s) { ranlxs_set_lux (vstate, s, 202); } static void ranlxs2_set (void *vstate, unsigned long int s) { ranlxs_set_lux (vstate, s, 397); } static const gsl_rng_type ranlxs0_type = {"ranlxs0", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlxs_state_t), &ranlxs0_set, &ranlxs_get, &ranlxs_get_double}; static const gsl_rng_type ranlxs1_type = {"ranlxs1", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlxs_state_t), &ranlxs1_set, &ranlxs_get, &ranlxs_get_double}; static const gsl_rng_type ranlxs2_type = {"ranlxs2", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlxs_state_t), &ranlxs2_set, &ranlxs_get, &ranlxs_get_double}; const gsl_rng_type *gsl_rng_ranlxs0 = &ranlxs0_type; const gsl_rng_type *gsl_rng_ranlxs1 = &ranlxs1_type; const gsl_rng_type *gsl_rng_ranlxs2 = &ranlxs2_type; gsl-1.16/rng/random.c0000664000252300025230000004003312171574312011364 00000000000000/* rng/random.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This file provides support for random() generators. There are three versions in widespread use today, - The original BSD version, e.g. on SunOS 4.1 and FreeBSD. - The Linux libc5 version, which is differs from the BSD version in its seeding procedure, possibly due to the introduction of a typo in the multiplier. - The GNU glibc2 version, which has a new (and better) seeding procedure. They all produce different numbers, due to the different seeding algorithms, but the algorithm for the generator is the same in each case. */ static inline long int random_get (int * i, int * j, int n, long int * x); static inline unsigned long int random8_get (void *vstate); static inline unsigned long int random32_get (void *vstate); static inline unsigned long int random64_get (void *vstate); static inline unsigned long int random128_get (void *vstate); static inline unsigned long int random256_get (void *vstate); static double random8_get_double (void *vstate); static double random32_get_double (void *vstate); static double random64_get_double (void *vstate); static double random128_get_double (void *vstate); static double random256_get_double (void *vstate); static void random8_glibc2_set (void *state, unsigned long int s); static void random32_glibc2_set (void *state, unsigned long int s); static void random64_glibc2_set (void *state, unsigned long int s); static void random128_glibc2_set (void *state, unsigned long int s); static void random256_glibc2_set (void *state, unsigned long int s); static void random8_libc5_set (void *state, unsigned long int s); static void random32_libc5_set (void *state, unsigned long int s); static void random64_libc5_set (void *state, unsigned long int s); static void random128_libc5_set (void *state, unsigned long int s); static void random256_libc5_set (void *state, unsigned long int s); static void random8_bsd_set (void *state, unsigned long int s); static void random32_bsd_set (void *state, unsigned long int s); static void random64_bsd_set (void *state, unsigned long int s); static void random128_bsd_set (void *state, unsigned long int s); static void random256_bsd_set (void *state, unsigned long int s); static void bsd_initialize (long int * x, int n, unsigned long int s); static void libc5_initialize (long int * x, int n, unsigned long int s); static void glibc2_initialize (long int * x, int n, unsigned long int s); typedef struct { long int x; } random8_state_t; typedef struct { int i, j; long int x[7]; } random32_state_t; typedef struct { int i, j; long int x[15]; } random64_state_t; typedef struct { int i, j; long int x[31]; } random128_state_t; typedef struct { int i, j; long int x[63]; } random256_state_t; static inline unsigned long int random8_get (void *vstate) { random8_state_t *state = (random8_state_t *) vstate; state->x = (1103515245 * state->x + 12345) & 0x7fffffffUL; return state->x; } static inline long int random_get (int * i, int * j, int n, long int * x) { long int k ; x[*i] += x[*j] ; k = (x[*i] >> 1) & 0x7FFFFFFF ; (*i)++ ; if (*i == n) *i = 0 ; (*j)++ ; if (*j == n) *j = 0 ; return k ; } static inline unsigned long int random32_get (void *vstate) { random32_state_t *state = (random32_state_t *) vstate; unsigned long int k = random_get (&state->i, &state->j, 7, state->x) ; return k ; } static inline unsigned long int random64_get (void *vstate) { random64_state_t *state = (random64_state_t *) vstate; long int k = random_get (&state->i, &state->j, 15, state->x) ; return k ; } static inline unsigned long int random128_get (void *vstate) { random128_state_t *state = (random128_state_t *) vstate; unsigned long int k = random_get (&state->i, &state->j, 31, state->x) ; return k ; } static inline unsigned long int random256_get (void *vstate) { random256_state_t *state = (random256_state_t *) vstate; long int k = random_get (&state->i, &state->j, 63, state->x) ; return k ; } static double random8_get_double (void *vstate) { return random8_get (vstate) / 2147483648.0 ; } static double random32_get_double (void *vstate) { return random32_get (vstate) / 2147483648.0 ; } static double random64_get_double (void *vstate) { return random64_get (vstate) / 2147483648.0 ; } static double random128_get_double (void *vstate) { return random128_get (vstate) / 2147483648.0 ; } static double random256_get_double (void *vstate) { return random256_get (vstate) / 2147483648.0 ; } static void random8_bsd_set (void *vstate, unsigned long int s) { random8_state_t *state = (random8_state_t *) vstate; if (s == 0) s = 1; state->x = s; } static void random32_bsd_set (void *vstate, unsigned long int s) { random32_state_t *state = (random32_state_t *) vstate; int i; bsd_initialize (state->x, 7, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 7 ; i++) random32_get (state) ; } static void random64_bsd_set (void *vstate, unsigned long int s) { random64_state_t *state = (random64_state_t *) vstate; int i; bsd_initialize (state->x, 15, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 15 ; i++) random64_get (state) ; } static void random128_bsd_set (void *vstate, unsigned long int s) { random128_state_t *state = (random128_state_t *) vstate; int i; bsd_initialize (state->x, 31, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 31 ; i++) random128_get (state) ; } static void random256_bsd_set (void *vstate, unsigned long int s) { random256_state_t *state = (random256_state_t *) vstate; int i; bsd_initialize (state->x, 63, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 63 ; i++) random256_get (state) ; } static void bsd_initialize (long int * x, int n, unsigned long int s) { int i; if (s == 0) s = 1 ; x[0] = s; for (i = 1 ; i < n ; i++) x[i] = 1103515245 * x[i-1] + 12345 ; } static void libc5_initialize (long int * x, int n, unsigned long int s) { int i; if (s == 0) s = 1 ; x[0] = s; for (i = 1 ; i < n ; i++) x[i] = 1103515145 * x[i-1] + 12345 ; } static void glibc2_initialize (long int * x, int n, unsigned long int s) { int i; if (s == 0) s = 1 ; x[0] = s; for (i = 1 ; i < n ; i++) { const long int h = s / 127773; const long int t = 16807 * (s - h * 127773) - h * 2836; if (t < 0) { s = t + 2147483647 ; } else { s = t ; } x[i] = s ; } } static void random8_glibc2_set (void *vstate, unsigned long int s) { random8_state_t *state = (random8_state_t *) vstate; if (s == 0) s = 1; state->x = s; } static void random32_glibc2_set (void *vstate, unsigned long int s) { random32_state_t *state = (random32_state_t *) vstate; int i; glibc2_initialize (state->x, 7, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 7 ; i++) random32_get (state) ; } static void random64_glibc2_set (void *vstate, unsigned long int s) { random64_state_t *state = (random64_state_t *) vstate; int i; glibc2_initialize (state->x, 15, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 15 ; i++) random64_get (state) ; } static void random128_glibc2_set (void *vstate, unsigned long int s) { random128_state_t *state = (random128_state_t *) vstate; int i; glibc2_initialize (state->x, 31, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 31 ; i++) random128_get (state) ; } static void random256_glibc2_set (void *vstate, unsigned long int s) { random256_state_t *state = (random256_state_t *) vstate; int i; glibc2_initialize (state->x, 63, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 63 ; i++) random256_get (state) ; } static void random8_libc5_set (void *vstate, unsigned long int s) { random8_state_t *state = (random8_state_t *) vstate; if (s == 0) s = 1; state->x = s; } static void random32_libc5_set (void *vstate, unsigned long int s) { random32_state_t *state = (random32_state_t *) vstate; int i; libc5_initialize (state->x, 7, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 7 ; i++) random32_get (state) ; } static void random64_libc5_set (void *vstate, unsigned long int s) { random64_state_t *state = (random64_state_t *) vstate; int i; libc5_initialize (state->x, 15, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 15 ; i++) random64_get (state) ; } static void random128_libc5_set (void *vstate, unsigned long int s) { random128_state_t *state = (random128_state_t *) vstate; int i; libc5_initialize (state->x, 31, s) ; state->i = 3; state->j = 0; for (i = 0 ; i < 10 * 31 ; i++) random128_get (state) ; } static void random256_libc5_set (void *vstate, unsigned long int s) { random256_state_t *state = (random256_state_t *) vstate; int i; libc5_initialize (state->x, 63, s) ; state->i = 1; state->j = 0; for (i = 0 ; i < 10 * 63 ; i++) random256_get (state) ; } static const gsl_rng_type random_glibc2_type = {"random-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_glibc2_set, &random128_get, &random128_get_double}; static const gsl_rng_type random8_glibc2_type = {"random8-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random8_state_t), &random8_glibc2_set, &random8_get, &random8_get_double}; static const gsl_rng_type random32_glibc2_type = {"random32-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random32_state_t), &random32_glibc2_set, &random32_get, &random32_get_double}; static const gsl_rng_type random64_glibc2_type = {"random64-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random64_state_t), &random64_glibc2_set, &random64_get, &random64_get_double}; static const gsl_rng_type random128_glibc2_type = {"random128-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_glibc2_set, &random128_get, &random128_get_double}; static const gsl_rng_type random256_glibc2_type = {"random256-glibc2", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random256_state_t), &random256_glibc2_set, &random256_get, &random256_get_double}; static const gsl_rng_type random_libc5_type = {"random-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_libc5_set, &random128_get, &random128_get_double}; static const gsl_rng_type random8_libc5_type = {"random8-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random8_state_t), &random8_libc5_set, &random8_get, &random8_get_double}; static const gsl_rng_type random32_libc5_type = {"random32-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random32_state_t), &random32_libc5_set, &random32_get, &random32_get_double}; static const gsl_rng_type random64_libc5_type = {"random64-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random64_state_t), &random64_libc5_set, &random64_get, &random64_get_double}; static const gsl_rng_type random128_libc5_type = {"random128-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_libc5_set, &random128_get, &random128_get_double}; static const gsl_rng_type random256_libc5_type = {"random256-libc5", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random256_state_t), &random256_libc5_set, &random256_get, &random256_get_double}; static const gsl_rng_type random_bsd_type = {"random-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_bsd_set, &random128_get, &random128_get_double}; static const gsl_rng_type random8_bsd_type = {"random8-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random8_state_t), &random8_bsd_set, &random8_get, &random8_get_double}; static const gsl_rng_type random32_bsd_type = {"random32-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random32_state_t), &random32_bsd_set, &random32_get, &random32_get_double}; static const gsl_rng_type random64_bsd_type = {"random64-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random64_state_t), &random64_bsd_set, &random64_get, &random64_get_double}; static const gsl_rng_type random128_bsd_type = {"random128-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random128_state_t), &random128_bsd_set, &random128_get, &random128_get_double}; static const gsl_rng_type random256_bsd_type = {"random256-bsd", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (random256_state_t), &random256_bsd_set, &random256_get, &random256_get_double}; const gsl_rng_type *gsl_rng_random_libc5 = &random_libc5_type; const gsl_rng_type *gsl_rng_random8_libc5 = &random8_libc5_type; const gsl_rng_type *gsl_rng_random32_libc5 = &random32_libc5_type; const gsl_rng_type *gsl_rng_random64_libc5 = &random64_libc5_type; const gsl_rng_type *gsl_rng_random128_libc5 = &random128_libc5_type; const gsl_rng_type *gsl_rng_random256_libc5 = &random256_libc5_type; const gsl_rng_type *gsl_rng_random_glibc2 = &random_glibc2_type; const gsl_rng_type *gsl_rng_random8_glibc2 = &random8_glibc2_type; const gsl_rng_type *gsl_rng_random32_glibc2 = &random32_glibc2_type; const gsl_rng_type *gsl_rng_random64_glibc2 = &random64_glibc2_type; const gsl_rng_type *gsl_rng_random128_glibc2 = &random128_glibc2_type; const gsl_rng_type *gsl_rng_random256_glibc2 = &random256_glibc2_type; const gsl_rng_type *gsl_rng_random_bsd = &random_bsd_type; const gsl_rng_type *gsl_rng_random8_bsd = &random8_bsd_type; const gsl_rng_type *gsl_rng_random32_bsd = &random32_bsd_type; const gsl_rng_type *gsl_rng_random64_bsd = &random64_bsd_type; const gsl_rng_type *gsl_rng_random128_bsd = &random128_bsd_type; const gsl_rng_type *gsl_rng_random256_bsd = &random256_bsd_type; gsl-1.16/rng/zuf.c0000664000252300025230000000671112171574312010715 00000000000000/* rng/zuf.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* It is crucial that m == n-273 mod 607 at all times; For speed of execution, however, this is never enforced. Instead is is set in the initializer: note 607-273=334 Note also that the state.u[607] is not initialized */ static inline unsigned long int zuf_get (void *vstate); static double zuf_get_double (void *vstate); static void zuf_set (void *state, unsigned long int s); static const unsigned long int zuf_randmax = 16777216; /* 2^24 */ typedef struct { int n; unsigned long int u[607]; } zuf_state_t; /* The zufall package was implemented with float's, which is to say 24 bits of precision. Since I'm using long's instead, my RANDMAX reflects this. */ static inline unsigned long int zuf_get (void *vstate) { zuf_state_t *state = (zuf_state_t *) vstate; const int n = state->n; const int m = (n - 273 + 607) % 607; unsigned long int t = state->u[n] + state->u[m]; while (t > zuf_randmax) t -= zuf_randmax; state->u[n] = t; if (n == 606) { state->n = 0; } else { state->n = n + 1; } return t; } static double zuf_get_double (void *vstate) { return zuf_get (vstate) / 16777216.0 ; } static void zuf_set (void *vstate, unsigned long int s) { /* A very elaborate seeding procedure is provided with the zufall package; this is virtually a copy of that procedure */ /* Initialized data */ long int kl = 9373; long int ij = 1802; /* Local variables */ long int i, j, k, l, m; double x, y; long int ii, jj; zuf_state_t *state = (zuf_state_t *) vstate; state->n = 0; /* generates initial seed buffer by linear congruential */ /* method. Taken from Marsaglia, FSU report FSU-SCRI-87-50 */ /* variable seed should be 0 < seed <31328 */ if (s == 0) s = 1802; /* default seed is 1802 */ ij = s; i = ij / 177 % 177 + 2; j = ij % 177 + 2; k = kl / 169 % 178 + 1; l = kl % 169; for (ii = 0; ii < 607; ++ii) { x = 0.0; y = 0.5; /* 24 bits?? */ for (jj = 1; jj <= 24; ++jj) { m = i * j % 179 * k % 179; i = j; j = k; k = m; l = (l * 53 + 1) % 169; if (l * m % 64 >= 32) { x += y; } y *= 0.5; } state->u[ii] = (unsigned long int) (x * zuf_randmax); } } static const gsl_rng_type zuf_type = {"zuf", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (zuf_state_t), &zuf_set, &zuf_get, &zuf_get_double}; const gsl_rng_type *gsl_rng_zuf = &zuf_type; gsl-1.16/rng/rand.c0000664000252300025230000000436612171574312011041 00000000000000/* rng/rand.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is the old BSD rand() generator. The sequence is x_{n+1} = (a x_n + c) mod m with a = 1103515245, c = 12345 and m = 2^31 = 2147483648. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 1910041713. The period of this generator is 2^31. The rand() generator is not very good -- the low bits of successive numbers are correlated. */ static inline unsigned long int rand_get (void *vstate); static double rand_get_double (void *vstate); static void rand_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } rand_state_t; static inline unsigned long int rand_get (void *vstate) { rand_state_t *state = (rand_state_t *) vstate; /* The following line relies on unsigned 32-bit arithmetic */ state->x = (1103515245 * state->x + 12345) & 0x7fffffffUL; return state->x; } static double rand_get_double (void *vstate) { return rand_get (vstate) / 2147483648.0 ; } static void rand_set (void *vstate, unsigned long int s) { rand_state_t *state = (rand_state_t *) vstate; state->x = s; return; } static const gsl_rng_type rand_type = {"rand", /* name */ 0x7fffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (rand_state_t), &rand_set, &rand_get, &rand_get_double}; const gsl_rng_type *gsl_rng_rand = &rand_type; gsl-1.16/rng/waterman14.c0000664000252300025230000000422112171574312012066 00000000000000/* rng/waterman14.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 106-108 * * It is called "Waterman". * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include #define AA 1566083941UL #define MM 0xffffffffUL /* 2 ^ 32 - 1 */ static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; state->x = (AA * state->x) & MM; return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 4294967296.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ state->x = s & MM; return; } static const gsl_rng_type ran_type = { "waterman14", /* name */ MM, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_waterman14 = &ran_type; gsl-1.16/rng/lecuyer21.c0000664000252300025230000000434312171574312011723 00000000000000/* rng/lecuyer21.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 108 * * This implementation copyright (C) 2001 Brian Gough, Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include #define AAA 40692 #define MMM 2147483399UL #define QQQ 52774 #define RRR 3791 static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; long int y = state->x; long int r = RRR * (y / QQQ); y = AAA * (y % QQQ) - r; if (y < 0) y += MMM; state->x = y; return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 2147483399.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if ((s%MMM) == 0) s = 1; /* default seed is 1 */ state->x = s % MMM; return; } static const gsl_rng_type ran_type = { "lecuyer21", /* name */ MMM-1, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_lecuyer21 = &ran_type; gsl-1.16/rng/Makefile.in0000664000252300025230000011313312172253756012016 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = rng DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslrng_la_LIBADD = am_libgslrng_la_OBJECTS = borosh13.lo cmrg.lo coveyou.lo default.lo \ file.lo fishman18.lo fishman20.lo fishman2x.lo gfsr4.lo \ knuthran2.lo knuthran.lo knuthran2002.lo lecuyer21.lo \ minstd.lo mrg.lo mt.lo r250.lo ran0.lo ran1.lo ran2.lo ran3.lo \ rand48.lo rand.lo random.lo randu.lo ranf.lo ranlux.lo \ ranlxd.lo ranlxs.lo ranmar.lo rng.lo slatec.lo taus.lo \ taus113.lo transputer.lo tt.lo types.lo uni32.lo uni.lo vax.lo \ waterman14.lo zuf.lo inline.lo libgslrng_la_OBJECTS = $(am_libgslrng_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslrng.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslrng_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslrng_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslrng.la pkginclude_HEADERS = gsl_rng.h INCLUDES = -I$(top_srcdir) libgslrng_la_SOURCES = borosh13.c cmrg.c coveyou.c default.c file.c fishman18.c fishman20.c fishman2x.c gfsr4.c knuthran2.c knuthran.c knuthran2002.c lecuyer21.c minstd.c mrg.c mt.c r250.c ran0.c ran1.c ran2.c ran3.c rand48.c rand.c random.c randu.c ranf.c ranlux.c ranlxd.c ranlxs.c ranmar.c rng.c slatec.c taus.c taus113.c transputer.c tt.c types.c uni32.c uni.c vax.c waterman14.c zuf.c inline.c CLEANFILES = test.dat noinst_HEADERS = schrage.c test_SOURCES = test.c test_LDADD = libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la TESTS = $(check_PROGRAMS) all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu rng/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu rng/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslrng.la: $(libgslrng_la_OBJECTS) $(libgslrng_la_DEPENDENCIES) $(EXTRA_libgslrng_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslrng_la_OBJECTS) $(libgslrng_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/borosh13.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cmrg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/coveyou.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/default.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fishman18.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fishman20.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fishman2x.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gfsr4.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/knuthran.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/knuthran2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/knuthran2002.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lecuyer21.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/minstd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mrg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/r250.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ran0.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ran1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ran2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ran3.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rand.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rand48.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/random.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/randu.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ranf.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ranlux.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ranlxd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ranlxs.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/ranmar.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rng.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/slatec.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/taus.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/taus113.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/transputer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tt.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/types.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/uni.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/uni32.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/vax.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/waterman14.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/zuf.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # benchmark_SOURCES = benchmark.c # benchmark_LDADD = libgslrng.la ../err/libgslerr.la ../utils/libutils.la # rng_dump_SOURCES = rng-dump.c # rng_dump_LDADD = libgslrng.la ../err/libgslerr.la ../utils/libutils.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/rng/taus.c0000664000252300025230000001266412171574312011071 00000000000000/* rng/taus.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a maximally equidistributed combined Tausworthe generator. The sequence is, x_n = (s1_n ^ s2_n ^ s3_n) s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19)) s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25)) s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11)) computed modulo 2^32. In the three formulas above '^' means exclusive-or (C-notation), not exponentiation. Note that the algorithm relies on the properties of 32-bit unsigned integers (it is formally defined on bit-vectors of length 32). I have added a bitmask to make it work on 64 bit machines. We initialize the generator with s1_1 .. s3_1 = s_n MOD m, where s_n = (69069 * s_{n-1}) mod 2^32, and s_0 = s is the user-supplied seed. The theoretical value of x_{10007} is 2733957125. The subscript 10007 means (1) seed the generator with s=1 (2) do six warm-up iterations, (3) then do 10000 actual iterations. The period of this generator is about 2^88. From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213. This is available on the net from L'Ecuyer's home page, http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps Update: April 2002 There is an erratum in the paper "Tables of Maximally Equidistributed Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps ... the k_j most significant bits of z_j must be non- zero, for each j. (Note: this restriction also applies to the computer code given in [4], but was mistakenly not mentioned in that paper.) This affects the seeding procedure by imposing the requirement s1 > 1, s2 > 7, s3 > 15. The generator taus2 has been added to satisfy this requirement. The original taus generator is unchanged. Update: November 2002 There was a bug in the correction to the seeding procedure for s2. It affected the following seeds 254679140 1264751179 1519430319 2274823218 2529502358 3284895257 3539574397 (s2 < 8). */ static inline unsigned long int taus_get (void *vstate); static double taus_get_double (void *vstate); static void taus_set (void *state, unsigned long int s); typedef struct { unsigned long int s1, s2, s3; } taus_state_t; static inline unsigned long taus_get (void *vstate) { taus_state_t *state = (taus_state_t *) vstate; #define MASK 0xffffffffUL #define TAUSWORTHE(s,a,b,c,d) (((s &c) <>b) state->s1 = TAUSWORTHE (state->s1, 13, 19, 4294967294UL, 12); state->s2 = TAUSWORTHE (state->s2, 2, 25, 4294967288UL, 4); state->s3 = TAUSWORTHE (state->s3, 3, 11, 4294967280UL, 17); return (state->s1 ^ state->s2 ^ state->s3); } static double taus_get_double (void *vstate) { return taus_get (vstate) / 4294967296.0 ; } static void taus_set (void *vstate, unsigned long int s) { taus_state_t *state = (taus_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ #define LCG(n) ((69069 * n) & 0xffffffffUL) state->s1 = LCG (s); state->s2 = LCG (state->s1); state->s3 = LCG (state->s2); /* "warm it up" */ taus_get (state); taus_get (state); taus_get (state); taus_get (state); taus_get (state); taus_get (state); return; } static void taus2_set (void *vstate, unsigned long int s) { taus_state_t *state = (taus_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ #define LCG(n) ((69069 * n) & 0xffffffffUL) state->s1 = LCG (s); if (state->s1 < 2) state->s1 += 2UL; state->s2 = LCG (state->s1); if (state->s2 < 8) state->s2 += 8UL; state->s3 = LCG (state->s2); if (state->s3 < 16) state->s3 += 16UL; /* "warm it up" */ taus_get (state); taus_get (state); taus_get (state); taus_get (state); taus_get (state); taus_get (state); return; } static const gsl_rng_type taus_type = {"taus", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (taus_state_t), &taus_set, &taus_get, &taus_get_double}; const gsl_rng_type *gsl_rng_taus = &taus_type; static const gsl_rng_type taus2_type = {"taus2", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (taus_state_t), &taus2_set, &taus_get, &taus_get_double}; const gsl_rng_type *gsl_rng_taus2 = &taus2_type; gsl-1.16/rng/minstd.c0000664000252300025230000000546712171574312011416 00000000000000/* rng/minstd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* MINSTD is Park and Miller's minimal standard generator (i.e. it's not particularly good). The sequence is x_{n+1} = (a x_n) mod m with a = 16807 and m = 2^31 - 1 = 2147483647. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 1043618065, starting with a seed of x_1 = 1. The period of this generator is 2^31. It is used as the RNUN subroutine in the IMSL Library and the RAND function in MATLAB. The generator is sometimes known by the acronym "GGL" (I'm not sure what that stands for). From: Park and Miller, "Random Number Generators: Good ones are hard to find" Communications of the ACM, October 1988, Volume 31, No 10, pages 1192-1201. */ static inline unsigned long int minstd_get (void *vstate); static double minstd_get_double (void *vstate); static void minstd_set (void *state, unsigned long int s); static const long int m = 2147483647, a = 16807, q = 127773, r = 2836; typedef struct { unsigned long int x; } minstd_state_t; static inline unsigned long int minstd_get (void *vstate) { minstd_state_t *state = (minstd_state_t *) vstate; const unsigned long int x = state->x; const long int h = x / q; const long int t = a * (x - h * q) - h * r; if (t < 0) { state->x = t + m; } else { state->x = t; } return state->x; } static double minstd_get_double (void *vstate) { return minstd_get (vstate) / 2147483647.0; } static void minstd_set (void *vstate, unsigned long int s) { minstd_state_t *state = (minstd_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ state->x = s; return; } static const gsl_rng_type minstd_type = {"minstd", /* name */ 2147483646, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (minstd_state_t), &minstd_set, &minstd_get, &minstd_get_double}; const gsl_rng_type *gsl_rng_minstd = &minstd_type; gsl-1.16/rng/ChangeLog0000664000252300025230000003075712171574312011526 000000000000002012-09-10 Rhys Ulerich * ranf.c Add include for gsl_sys.h to fix MSVC build. Thanks to Brian Gladman for the suggestion. 2011-04-28 Brian Gough * ranlxs.c (ranlxs_set_lux): enforce maximum seed of 2^31-1 (0x7FFFFFFF) for ranlxs 2010-01-07 Brian Gough * ran3.c (ran3_set): added a check for negative j 2009-07-09 Brian Gough * rng.c (gsl_rng_free): handle NULL argument in free 2008-10-13 Brian Gough * file.c: added (char *) to allow compilation with C++ compiler 2008-07-03 Brian Gough * rng.c: moved inline functions to inline.c * gsl_rng.h: use new inline declarations * inline.c: handle inline functions separately * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-01-28 Brian Gough * knuthran2002.c: added revised version from 9th printing 2007-01-04 Brian Gough * default.c (gsl_rng_env_setup): send newline to stderr not stdout 2006-04-13 Brian Gough * default.c (gsl_rng_env_setup): print a newline after list of generators in error message 2006-03-16 Brian Gough * test.c (main): added taus2 test 2006-02-19 Brian Gough * rng.c: added note about why range=max-min not max-min+1 2005-12-16 Brian Gough * rng.c (gsl_rng_uniform_int): catch the case n = 0 and return an error 2003-07-23 Brian Gough * file.c: added fwrite/fread functions 2003-06-12 Brian Gough * Makefile.am: removed benchmark programs from default build 2003-06-02 Brian Gough * waterman14.c: increased RAND_MIN to 1 * lecuyer21.c: corrections to RAND_MIN, RAND_MAX, floating point denominator and seeding modulus * fishman20.c (ran_get): use schrage multiplication to avoid overflow * coveyou.c: corrected value of RAND_MIN to 1 and RAND_MAX to 2^32-1 * borosh13.c: increased RAND_MIN to 1 * knuthran2.c (ran_get): use schrage multiplication to avoid overflow in intermediate results * fishman2x.c (ran_get): use schrage multiplication to avoid overflow in intermediate results * fishman18.c (ran_get): use schrage multiplication to avoid overflow in intermediate results * schrage.c (schrage): utility functions for multiplication of long integers * test.c (main): updated incorrect test values for gsl_rng_fishman18 gsl_rng_fishman2x gsl_rng_knuthran2 Mon Nov 25 19:27:10 2002 Brian Gough * taus.c (taus2_set): fixed bug in seeding for s3 (test should be for s3<16, not s3<8) Sun Nov 3 14:40:43 2002 Brian Gough * taus.c (taus2_set): fixed bug in seeding for s2 < 8 Mon Jun 17 21:04:10 2002 Brian Gough * mt.c (mt_set): ensure state counter mti is initialised by seeding routine Wed May 29 21:52:11 2002 Brian Gough * randu.c: removed unused variable m Tue May 7 22:34:52 2002 Brian Gough * mt.c (mt_1999_set): updated seeding procedure according to new release of MT19937 from the original authors. Fri Apr 26 21:17:05 2002 Brian Gough * taus.c (taus2_set): added alternate seeding procedure as described in erratum to P.L'Ecuyer's paper. Wed Apr 17 19:37:49 2002 Brian Gough * test.c (main): added missing test for gsl_rng_mt19937_1998 * gsl_rng.h: added missing declaration for gsl_rng_mt19937_1998 Sun Dec 2 15:45:24 2001 Brian Gough * Added new generators borosh13, coveyou, fishman18, fishman20, fishman2x, knuthran, knuthran2, lecuyer21, waterman14 from Knuth's Seminumerical Algorithms 3rd Ed. Implemented by Carlo Perassi. * gfsr4.c (gfsr4_get_double): increased divisor for double to 2^32, avoids generating exact result of 1.0 as specified in the documentation Mon Sep 3 10:32:01 2001 Brian Gough * mt.c (mt_1998_set): renamed macro to avoid duplicate definition Fri Aug 31 17:49:37 2001 Brian Gough * mt.c (mt_1998_set): added the original (buggy) MT19937 seeding routine as mt19937_1998 for compatibility. Wed May 2 15:35:38 2001 Brian Gough * ran1.c (ran1_get_double): use float constants for comparison for compatibility with original Numerical Recipes routines * ran2.c (ran2_get_double): ditto Fri Apr 27 18:47:07 2001 Brian Gough * types.c (gsl_rng_types_setup): added void to make prototype valid in ansi c Mon Apr 16 20:03:07 2001 Brian Gough * default.c (gsl_rng_env_setup): removed spurious argument to fprintf Tue Jan 23 13:24:26 2001 Brian Gough * types.c (gsl_rng_types_setup): provide a function that returns a list of all the generator types * default.c (gsl_rng_env_setup): get the list of generators from a function rather than having a list in the code itself. Display a list of the valid generators if the user provides an incorrect one. Fri Dec 8 20:30:58 2000 Brian Gough * ranlxs.c: renamed internal function ranlxs_set_impl to ranlxs_set * ranlxd.c: renamed internal function ranlxd_set_impl to ranlxd_set * ranlux.c: renamed internal function ranlux_set_impl to ranlux_set * random.c: renamed internal function random_get_impl function to random_get Sat Jul 29 14:29:54 2000 Brian Gough * test.c (main): updated test value for MT19937 for new seeding procedure * mt.c: The seeding procedure has been updated to match the 10/99 release of MT19937. Wed Mar 8 16:04:34 2000 Brian Gough * rng.c (gsl_rng_memcpy): generators must now be of the same type for a copy from one to the other to work. Thu Feb 24 16:41:48 2000 Brian Gough * ran3.c (ran3_set): initialize unused zeroth element of state to zero for consistency. Mon Feb 14 13:28:26 2000 Brian Gough * made all internal functions static Mon Dec 6 16:21:05 1999 Brian Gough * test.c (main): rewrote the tests to loop over all the generators Wed Aug 11 20:57:10 1999 Brian Gough * ranlxd.c, ranlxs.c: added ranlxd and ranlxs, second generation RANLUX generators from Martin Luescher. Mon Mar 1 21:12:28 1999 Brian Gough * test.c (rng_parallel_state_test): added some extra tests to fill a few holes in the net * gsl_rng.h: moved static class information (max, min, etc) out of the instance data. Originally I avoided this because of the overhead of the extra indirection (r->type->get vs r->get) for every get function call, but that turns out to be only about 10% at worst so it's worth the slight speed cost to make the code safer. Tue Nov 17 17:09:31 1998 Brian Gough * gfsr4.c: added #include which was missing 1998-11-04 * ranf.c: fix portability problems on alpha, by ensuring that shorts are correctly promoted to longs at the appropriate points * rand48.c: fix portability problems by ensuring that shorts are correctly promoted to longs at the appropriate points * rng-dump.c (main): write out file correctly by using chars instead of unsigned long ints, since these can vary in size on different architectures Wed Oct 28 15:02:22 1998 Brian Gough * rng.c: added #include to get prototype for memcpy Mon Sep 14 20:53:09 1998 Brian Gough * default.c (gsl_rng_env_setup): added gfsr4 1998-09-10 James Theiler * gfsr4.c: added new random number generator * Makefile.am: added gfsr4.c to SOURCES list * gsl_rng.h: added gfsr4 * test.c: added gfsr4 * benchmark.c: added gfsr4 Mon Aug 10 22:12:13 1998 Brian Gough * rng-dump.c: program to write out 3 million random numbers, suitable for testing with DIEHARD. Tue Aug 4 19:51:57 1998 Brian Gough * default.c (gsl_rng_env_setup): send default/enviroment output to stderr Mon Aug 3 18:25:52 1998 Brian Gough * mt.c: made constants static since they shouldn't be exported, added some speed improvements from Cokus' code (not all of them since they seemed to use more registers than available on the pentium). Thu Jul 9 13:56:20 1998 Brian Gough * slatec.c: renamed cmlib.c to slatec.c * transputer.c: renamed tds.c to transputer.c so the name is a bit more obvious * random.c: renamed random0 functions to random8, since obviously we can't have 0 bytes of state * default.c (gsl_rng_env_setup): made gsl_rng_mt19937 the default generator Wed Jul 8 17:06:54 1998 Brian Gough * added random() functions. There are three(!) versions: the original BSD, linux libc5 (had a typo in the multiplier, but got installed on millions of machines so is now a defacto standard) and GNU glibc2 (fixes the typo and has an improved seeding procedure) Sun Jul 5 15:59:29 1998 Brian Gough * rand.c: renamed rand.c to cmlib.c and bsdrand.c to rand.c. * ranf.c: added CRAY RANF, 48 bit generator * rand48.c: added the standard unix rand48() * changed all the routines to allow an additional callback for returning doubles. Now we can implement numerical recipes with its non-standard checks on the floating point results and also access the full state for getting 48-bit doubles out of rand48. Sat Jul 4 11:14:49 1998 Brian Gough * ranmar.c: added the RANMAR generator * tds.c: added the INMOS Transputer RNG * test.c (rng_min_test): added a test for RAND_MIN, to make sure none of the generators go below it. Statistically the test is not much good since it's very unlikely that an off-by-one error would show up unless we ran the test for > 4 billion numbers. However, the test might detect a gross error like a typo in RAND_MIN or a degeneracy 0,0,0,... for a multiplicative generator. * uni.c: fixed RAND_MAX here too * uni32.c: fixed RAND_MAX to m1-1, not m1 (since it's modulo m1 so m1 can't occur, only m1-1) Fri Jul 3 15:55:34 1998 Brian Gough * rng.c (gsl_rng_uniform_gt0_lt1): added a function which returns numbers in the range (0,1), i.e. excluding 0.0 and 1.0 * renamed bad_randu.c to randu.c * renamed bad_rand.c to bsdrand.c Mon Jun 29 18:11:08 1998 Brian Gough * added implementations of the numerical recipes algorithms ran0, ran1, ran2, ran3 Sun Jun 28 11:51:48 1998 Brian Gough * gsl_rng.h: added gsl_rng_uniform_pos which guarantees positive numbers, (0,1] * added a RAND_MIN entry to the gsl_rng/gsl_rng_type structs * gsl_rng.h: renamed gsl_rng_get_uni to gsl_rng_uniform Wed Jun 24 12:10:23 1998 Brian Gough * gsl_rng.h: added inline versions of gsl_rng_get and gsl_rng_get_uni * benchmark.c: added a simple benchmark program to measure rng's per second * test.c (N2): reduced the number of tests from 1 million to 100k to speed things up a bit * changed the generic seeding algorithm to s -> (69069*s) & 0xFFFFFFFF which covers all 32 bits. Sun Jun 21 23:24:36 1998 Brian Gough * added the MT19937 and TT880 mersenne prime generators Sat Jun 20 13:58:40 1998 Brian Gough * ensured that 32 bit quantities are defined as 'long', as required by ANSI. On a 16 bit platform 'int' is usually just 16 bits. * ranlux.c: added the RANLUX generator Fri Jun 19 11:12:06 1998 Brian Gough * removed the gsl- prefix from generator name strings Thu Jun 18 12:17:16 1998 Brian Gough * test.c: added a 10000 iteration check for cmrg * got rid of init_state values. It's simpler to generate them directly from the seed, the cost of creating an rng is not usually a big deal. * rng.c: eliminated the gsl_rng_internal struct since it was not really necessary Wed Jun 17 17:31:27 1998 Brian Gough * minstd.c: added Park and Millers MINSTD generator Thu Jun 11 18:08:40 1998 Brian Gough * this will be an alternate, thread-safe interface to the random number generators. gsl-1.16/rng/fishman20.c0000664000252300025230000000446212171574312011701 00000000000000/* rng/fishman20.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 108 * * It is called "Fishman" * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); static const long int m = 2147483647, a = 48271, q = 44488, r = 3399; typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; const unsigned long int x = state->x; const long int h = x / q; const long int t = a * (x - h * q) - h * r; if (t < 0) { state->x = t + m; } else { state->x = t; } return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 2147483647.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if ((s%m) == 0) s = 1; /* default seed is 1 */ state->x = s & m; return; } static const gsl_rng_type ran_type = { "fishman20", /* name */ 2147483646, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_fishman20 = &ran_type; gsl-1.16/rng/mt.c0000664000252300025230000001465612171574312010540 00000000000000/* This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Original implementation was copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. Coded by Takuji Nishimura, considering the suggestions by Topher Cooper and Marc Rieffel in July-Aug. 1997, "A C-program for MT19937: Integer version (1998/4/6)" This implementation copyright (C) 1998 Brian Gough. I reorganized the code to use the module framework of GSL. The license on this implementation was changed from LGPL to GPL, following paragraph 3 of the LGPL, version 2. Update: The seeding procedure has been updated to match the 10/99 release of MT19937. Update: The seeding procedure has been updated again to match the 2002 release of MT19937 The original code included the comment: "When you use this, send an email to: matumoto@math.keio.ac.jp with an appropriate reference to your work". Makoto Matsumoto has a web page with more information about the generator, http://www.math.keio.ac.jp/~matumoto/emt.html. The paper below has details of the algorithm. From: Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A 623-dimensionally equidistributerd uniform pseudorandom number generator". ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1 (Jan. 1998), Pages 3-30 You can obtain the paper directly from Makoto Matsumoto's web page. The period of this generator is 2^{19937} - 1. */ #include #include #include static inline unsigned long int mt_get (void *vstate); static double mt_get_double (void *vstate); static void mt_set (void *state, unsigned long int s); #define N 624 /* Period parameters */ #define M 397 /* most significant w-r bits */ static const unsigned long UPPER_MASK = 0x80000000UL; /* least significant r bits */ static const unsigned long LOWER_MASK = 0x7fffffffUL; typedef struct { unsigned long mt[N]; int mti; } mt_state_t; static inline unsigned long mt_get (void *vstate) { mt_state_t *state = (mt_state_t *) vstate; unsigned long k ; unsigned long int *const mt = state->mt; #define MAGIC(y) (((y)&0x1) ? 0x9908b0dfUL : 0) if (state->mti >= N) { /* generate N words at one time */ int kk; for (kk = 0; kk < N - M; kk++) { unsigned long y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + M] ^ (y >> 1) ^ MAGIC(y); } for (; kk < N - 1; kk++) { unsigned long y = (mt[kk] & UPPER_MASK) | (mt[kk + 1] & LOWER_MASK); mt[kk] = mt[kk + (M - N)] ^ (y >> 1) ^ MAGIC(y); } { unsigned long y = (mt[N - 1] & UPPER_MASK) | (mt[0] & LOWER_MASK); mt[N - 1] = mt[M - 1] ^ (y >> 1) ^ MAGIC(y); } state->mti = 0; } /* Tempering */ k = mt[state->mti]; k ^= (k >> 11); k ^= (k << 7) & 0x9d2c5680UL; k ^= (k << 15) & 0xefc60000UL; k ^= (k >> 18); state->mti++; return k; } static double mt_get_double (void * vstate) { return mt_get (vstate) / 4294967296.0 ; } static void mt_set (void *vstate, unsigned long int s) { mt_state_t *state = (mt_state_t *) vstate; int i; if (s == 0) s = 4357; /* the default seed is 4357 */ state->mt[0]= s & 0xffffffffUL; for (i = 1; i < N; i++) { /* See Knuth's "Art of Computer Programming" Vol. 2, 3rd Ed. p.106 for multiplier. */ state->mt[i] = (1812433253UL * (state->mt[i-1] ^ (state->mt[i-1] >> 30)) + i); state->mt[i] &= 0xffffffffUL; } state->mti = i; } static void mt_1999_set (void *vstate, unsigned long int s) { mt_state_t *state = (mt_state_t *) vstate; int i; if (s == 0) s = 4357; /* the default seed is 4357 */ /* This is the October 1999 version of the seeding procedure. It was updated by the original developers to avoid the periodicity in the simple congruence originally used. Note that an ANSI-C unsigned long integer arithmetic is automatically modulo 2^32 (or a higher power of two), so we can safely ignore overflow. */ #define LCG(x) ((69069 * x) + 1) &0xffffffffUL for (i = 0; i < N; i++) { state->mt[i] = s & 0xffff0000UL; s = LCG(s); state->mt[i] |= (s &0xffff0000UL) >> 16; s = LCG(s); } state->mti = i; } /* This is the original version of the seeding procedure, no longer used but available for compatibility with the original MT19937. */ static void mt_1998_set (void *vstate, unsigned long int s) { mt_state_t *state = (mt_state_t *) vstate; int i; if (s == 0) s = 4357; /* the default seed is 4357 */ state->mt[0] = s & 0xffffffffUL; #define LCG1998(n) ((69069 * n) & 0xffffffffUL) for (i = 1; i < N; i++) state->mt[i] = LCG1998 (state->mt[i - 1]); state->mti = i; } static const gsl_rng_type mt_type = {"mt19937", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (mt_state_t), &mt_set, &mt_get, &mt_get_double}; static const gsl_rng_type mt_1999_type = {"mt19937_1999", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (mt_state_t), &mt_1999_set, &mt_get, &mt_get_double}; static const gsl_rng_type mt_1998_type = {"mt19937_1998", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (mt_state_t), &mt_1998_set, &mt_get, &mt_get_double}; const gsl_rng_type *gsl_rng_mt19937 = &mt_type; const gsl_rng_type *gsl_rng_mt19937_1999 = &mt_1999_type; const gsl_rng_type *gsl_rng_mt19937_1998 = &mt_1998_type; /* MT19937 is the default generator, so define that here too */ const gsl_rng_type *gsl_rng_default = &mt_type; unsigned long int gsl_rng_default_seed = 0; gsl-1.16/rng/taus113.c0000664000252300025230000001256712171574312011320 00000000000000/* rng/taus113.c * Copyright (C) 2002 Atakan Gurkan * Based on the file taus.c which has the notice * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* This is a maximally equidistributed combined, collision free Tausworthe generator, with a period ~2^{113}. The sequence is, x_n = (z1_n ^ z2_n ^ z3_n ^ z4_n) b = (((z1_n << 6) ^ z1_n) >> 13) z1_{n+1} = (((z1_n & 4294967294) << 18) ^ b) b = (((z2_n << 2) ^ z2_n) >> 27) z2_{n+1} = (((z2_n & 4294967288) << 2) ^ b) b = (((z3_n << 13) ^ z3_n) >> 21) z3_{n+1} = (((z3_n & 4294967280) << 7) ^ b) b = (((z4_n << 3) ^ z4_n) >> 12) z4_{n+1} = (((z4_n & 4294967168) << 13) ^ b) computed modulo 2^32. In the formulas above '^' means exclusive-or (C-notation), not exponentiation. The algorithm is for 32-bit integers, hence a bitmask is used to clear all but least significant 32 bits, after left shifts, to make the code work on architectures where integers are 64-bit. The generator is initialized with zi = (69069 * z{i+1}) MOD 2^32 where z0 is the seed provided During initialization a check is done to make sure that the initial seeds have a required number of their most significant bits set. After this, the state is passed through the RNG 10 times to ensure the state satisfies a recurrence relation. References: P. L'Ecuyer, "Tables of Maximally-Equidistributed Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999), 261--269. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe Generators", Mathematics of Computation, 65, 213 (1996), 203--213. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps the online version of the latter contains corrections to the print version. */ #include #include #include #define LCG(n) ((69069UL * n) & 0xffffffffUL) #define MASK 0xffffffffUL static inline unsigned long int taus113_get (void *vstate); static double taus113_get_double (void *vstate); static void taus113_set (void *state, unsigned long int s); typedef struct { unsigned long int z1, z2, z3, z4; } taus113_state_t; static inline unsigned long taus113_get (void *vstate) { taus113_state_t *state = (taus113_state_t *) vstate; unsigned long b1, b2, b3, b4; b1 = ((((state->z1 << 6UL) & MASK) ^ state->z1) >> 13UL); state->z1 = ((((state->z1 & 4294967294UL) << 18UL) & MASK) ^ b1); b2 = ((((state->z2 << 2UL) & MASK) ^ state->z2) >> 27UL); state->z2 = ((((state->z2 & 4294967288UL) << 2UL) & MASK) ^ b2); b3 = ((((state->z3 << 13UL) & MASK) ^ state->z3) >> 21UL); state->z3 = ((((state->z3 & 4294967280UL) << 7UL) & MASK) ^ b3); b4 = ((((state->z4 << 3UL) & MASK) ^ state->z4) >> 12UL); state->z4 = ((((state->z4 & 4294967168UL) << 13UL) & MASK) ^ b4); return (state->z1 ^ state->z2 ^ state->z3 ^ state->z4); } static double taus113_get_double (void *vstate) { return taus113_get (vstate) / 4294967296.0; } static void taus113_set (void *vstate, unsigned long int s) { taus113_state_t *state = (taus113_state_t *) vstate; if (!s) s = 1UL; /* default seed is 1 */ state->z1 = LCG (s); if (state->z1 < 2UL) state->z1 += 2UL; state->z2 = LCG (state->z1); if (state->z2 < 8UL) state->z2 += 8UL; state->z3 = LCG (state->z2); if (state->z3 < 16UL) state->z3 += 16UL; state->z4 = LCG (state->z3); if (state->z4 < 128UL) state->z4 += 128UL; /* Calling RNG ten times to satify recurrence condition */ taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); taus113_get (state); return; } static const gsl_rng_type taus113_type = { "taus113", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (taus113_state_t), &taus113_set, &taus113_get, &taus113_get_double }; const gsl_rng_type *gsl_rng_taus113 = &taus113_type; /* Rules for analytic calculations using GNU Emacs Calc: (used to find the values for the test program) [ LCG(n) := n * 69069 mod (2^32) ] [ b1(x) := rsh(xor(lsh(x, 6), x), 13), q1(x) := xor(lsh(and(x, 4294967294), 18), b1(x)), b2(x) := rsh(xor(lsh(x, 2), x), 27), q2(x) := xor(lsh(and(x, 4294967288), 2), b2(x)), b3(x) := rsh(xor(lsh(x, 13), x), 21), q3(x) := xor(lsh(and(x, 4294967280), 7), b3(x)), b4(x) := rsh(xor(lsh(x, 3), x), 12), q4(x) := xor(lsh(and(x, 4294967168), 13), b4(x)) ] [ S([z1,z2,z3,z4]) := [q1(z1), q2(z2), q3(z3), q4(z4)] ] */ gsl-1.16/rng/Makefile.am0000664000252300025230000000172012171574312011774 00000000000000noinst_LTLIBRARIES = libgslrng.la pkginclude_HEADERS = gsl_rng.h INCLUDES = -I$(top_srcdir) libgslrng_la_SOURCES = borosh13.c cmrg.c coveyou.c default.c file.c fishman18.c fishman20.c fishman2x.c gfsr4.c knuthran2.c knuthran.c knuthran2002.c lecuyer21.c minstd.c mrg.c mt.c r250.c ran0.c ran1.c ran2.c ran3.c rand48.c rand.c random.c randu.c ranf.c ranlux.c ranlxd.c ranlxs.c ranmar.c rng.c slatec.c taus.c taus113.c transputer.c tt.c types.c uni32.c uni.c vax.c waterman14.c zuf.c inline.c CLEANFILES = test.dat noinst_HEADERS = schrage.c test_SOURCES = test.c test_LDADD = libgslrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la TESTS = $(check_PROGRAMS) check_PROGRAMS = test # benchmark_SOURCES = benchmark.c # benchmark_LDADD = libgslrng.la ../err/libgslerr.la ../utils/libutils.la # rng_dump_SOURCES = rng-dump.c # rng_dump_LDADD = libgslrng.la ../err/libgslerr.la ../utils/libutils.la gsl-1.16/rng/gsl_rng.h0000664000252300025230000001545512171574312011556 00000000000000/* rng/gsl_rng.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_RNG_H__ #define __GSL_RNG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { const char *name; unsigned long int max; unsigned long int min; size_t size; void (*set) (void *state, unsigned long int seed); unsigned long int (*get) (void *state); double (*get_double) (void *state); } gsl_rng_type; typedef struct { const gsl_rng_type * type; void *state; } gsl_rng; /* These structs also need to appear in default.c so you can select them via the environment variable GSL_RNG_TYPE */ GSL_VAR const gsl_rng_type *gsl_rng_borosh13; GSL_VAR const gsl_rng_type *gsl_rng_coveyou; GSL_VAR const gsl_rng_type *gsl_rng_cmrg; GSL_VAR const gsl_rng_type *gsl_rng_fishman18; GSL_VAR const gsl_rng_type *gsl_rng_fishman20; GSL_VAR const gsl_rng_type *gsl_rng_fishman2x; GSL_VAR const gsl_rng_type *gsl_rng_gfsr4; GSL_VAR const gsl_rng_type *gsl_rng_knuthran; GSL_VAR const gsl_rng_type *gsl_rng_knuthran2; GSL_VAR const gsl_rng_type *gsl_rng_knuthran2002; GSL_VAR const gsl_rng_type *gsl_rng_lecuyer21; GSL_VAR const gsl_rng_type *gsl_rng_minstd; GSL_VAR const gsl_rng_type *gsl_rng_mrg; GSL_VAR const gsl_rng_type *gsl_rng_mt19937; GSL_VAR const gsl_rng_type *gsl_rng_mt19937_1999; GSL_VAR const gsl_rng_type *gsl_rng_mt19937_1998; GSL_VAR const gsl_rng_type *gsl_rng_r250; GSL_VAR const gsl_rng_type *gsl_rng_ran0; GSL_VAR const gsl_rng_type *gsl_rng_ran1; GSL_VAR const gsl_rng_type *gsl_rng_ran2; GSL_VAR const gsl_rng_type *gsl_rng_ran3; GSL_VAR const gsl_rng_type *gsl_rng_rand; GSL_VAR const gsl_rng_type *gsl_rng_rand48; GSL_VAR const gsl_rng_type *gsl_rng_random128_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random128_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random128_libc5; GSL_VAR const gsl_rng_type *gsl_rng_random256_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random256_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random256_libc5; GSL_VAR const gsl_rng_type *gsl_rng_random32_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random32_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random32_libc5; GSL_VAR const gsl_rng_type *gsl_rng_random64_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random64_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random64_libc5; GSL_VAR const gsl_rng_type *gsl_rng_random8_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random8_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random8_libc5; GSL_VAR const gsl_rng_type *gsl_rng_random_bsd; GSL_VAR const gsl_rng_type *gsl_rng_random_glibc2; GSL_VAR const gsl_rng_type *gsl_rng_random_libc5; GSL_VAR const gsl_rng_type *gsl_rng_randu; GSL_VAR const gsl_rng_type *gsl_rng_ranf; GSL_VAR const gsl_rng_type *gsl_rng_ranlux; GSL_VAR const gsl_rng_type *gsl_rng_ranlux389; GSL_VAR const gsl_rng_type *gsl_rng_ranlxd1; GSL_VAR const gsl_rng_type *gsl_rng_ranlxd2; GSL_VAR const gsl_rng_type *gsl_rng_ranlxs0; GSL_VAR const gsl_rng_type *gsl_rng_ranlxs1; GSL_VAR const gsl_rng_type *gsl_rng_ranlxs2; GSL_VAR const gsl_rng_type *gsl_rng_ranmar; GSL_VAR const gsl_rng_type *gsl_rng_slatec; GSL_VAR const gsl_rng_type *gsl_rng_taus; GSL_VAR const gsl_rng_type *gsl_rng_taus2; GSL_VAR const gsl_rng_type *gsl_rng_taus113; GSL_VAR const gsl_rng_type *gsl_rng_transputer; GSL_VAR const gsl_rng_type *gsl_rng_tt800; GSL_VAR const gsl_rng_type *gsl_rng_uni; GSL_VAR const gsl_rng_type *gsl_rng_uni32; GSL_VAR const gsl_rng_type *gsl_rng_vax; GSL_VAR const gsl_rng_type *gsl_rng_waterman14; GSL_VAR const gsl_rng_type *gsl_rng_zuf; const gsl_rng_type ** gsl_rng_types_setup(void); GSL_VAR const gsl_rng_type *gsl_rng_default; GSL_VAR unsigned long int gsl_rng_default_seed; gsl_rng *gsl_rng_alloc (const gsl_rng_type * T); int gsl_rng_memcpy (gsl_rng * dest, const gsl_rng * src); gsl_rng *gsl_rng_clone (const gsl_rng * r); void gsl_rng_free (gsl_rng * r); void gsl_rng_set (const gsl_rng * r, unsigned long int seed); unsigned long int gsl_rng_max (const gsl_rng * r); unsigned long int gsl_rng_min (const gsl_rng * r); const char *gsl_rng_name (const gsl_rng * r); int gsl_rng_fread (FILE * stream, gsl_rng * r); int gsl_rng_fwrite (FILE * stream, const gsl_rng * r); size_t gsl_rng_size (const gsl_rng * r); void * gsl_rng_state (const gsl_rng * r); void gsl_rng_print_state (const gsl_rng * r); const gsl_rng_type * gsl_rng_env_setup (void); INLINE_DECL unsigned long int gsl_rng_get (const gsl_rng * r); INLINE_DECL double gsl_rng_uniform (const gsl_rng * r); INLINE_DECL double gsl_rng_uniform_pos (const gsl_rng * r); INLINE_DECL unsigned long int gsl_rng_uniform_int (const gsl_rng * r, unsigned long int n); #ifdef HAVE_INLINE INLINE_FUN unsigned long int gsl_rng_get (const gsl_rng * r) { return (r->type->get) (r->state); } INLINE_FUN double gsl_rng_uniform (const gsl_rng * r) { return (r->type->get_double) (r->state); } INLINE_FUN double gsl_rng_uniform_pos (const gsl_rng * r) { double x ; do { x = (r->type->get_double) (r->state) ; } while (x == 0) ; return x ; } /* Note: to avoid integer overflow in (range+1) we work with scale = range/n = (max-min)/n rather than scale=(max-min+1)/n, this reduces efficiency slightly but avoids having to check for the out of range value. Note that range is typically O(2^32) so the addition of 1 is negligible in most usage. */ INLINE_FUN unsigned long int gsl_rng_uniform_int (const gsl_rng * r, unsigned long int n) { unsigned long int offset = r->type->min; unsigned long int range = r->type->max - offset; unsigned long int scale; unsigned long int k; if (n > range || n == 0) { GSL_ERROR_VAL ("invalid n, either 0 or exceeds maximum value of generator", GSL_EINVAL, 0) ; } scale = range / n; do { k = (((r->type->get) (r->state)) - offset) / scale; } while (k >= n); return k; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_RNG_H__ */ gsl-1.16/rng/cmrg.c0000664000252300025230000001231012171574312011031 00000000000000/* rng/cmrg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a combined multiple recursive generator. The sequence is, z_n = (x_n - y_n) mod m1 where the two underlying generators x and y are, x_n = (a_{1} x_{n-1} + a_{2} x_{n-2} + a_{3} x_{n-3}) mod m1 y_n = (b_{1} y_{n-1} + b_{2} y_{n-2} + b_{3} y_{n-3}) mod m2 with coefficients a11 ... a23, a_{1} = 0, a_{2} = 63308, a_{3} = -183326 b_{1} = 86098, b_{2} = 0, b_{3} = -539608 and moduli m1, m2, m1 = 2^31 - 1 = 2147483647 m2 = 2^31 - 2000169 = 2145483479 We initialize the generator with x_1 = s_1 MOD m1, x_2 = s_2 MOD m1, x_3 = s_3 MOD m1 y_1 = s_4 MOD m2, y_2 = s_5 MOD m2, y_3 = s_6 MOD m2 where s_n = (69069 * s_{n-1}) mod 2^32 and s_0 = s is the user-supplied seed. NOTE: According to the paper the initial values for x_n must lie in the range 0 <= x_n <= (m1 - 1) and the initial values for y_n must lie in the range 0 <= y_n <= (m2 - 1), with at least one non-zero value -- our seeding procedure satisfies these constraints. We then use 7 iterations of the generator to "warm up" the internal state. The theoretical value of z_{10008} is 719452880. The subscript 10008 means (1) seed the generator with s=1, (2) do the seven warm-up iterations that are part of the seeding process, (3) then do 10000 actual iterations. The period of this generator is about 2^205. From: P. L'Ecuyer, "Combined Multiple Recursive Random Number Generators," Operations Research, 44, 5 (1996), 816--822. This is available on the net from L'Ecuyer's home page, http://www.iro.umontreal.ca/~lecuyer/myftp/papers/combmrg.ps ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/combmrg.ps */ static inline unsigned long int cmrg_get (void *vstate); static double cmrg_get_double (void *vstate); static void cmrg_set (void *state, unsigned long int s); static const long int m1 = 2147483647, m2 = 2145483479; static const long int a2 = 63308, qa2 = 33921, ra2 = 12979; static const long int a3 = -183326, qa3 = 11714, ra3 = 2883; static const long int b1 = 86098, qb1 = 24919, rb1 = 7417; static const long int b3 = -539608, qb3 = 3976, rb3 = 2071; typedef struct { long int x1, x2, x3; /* first component */ long int y1, y2, y3; /* second component */ } cmrg_state_t; static inline unsigned long int cmrg_get (void *vstate) { cmrg_state_t *state = (cmrg_state_t *) vstate; /* Component 1 */ { long int h3 = state->x3 / qa3; long int p3 = -a3 * (state->x3 - h3 * qa3) - h3 * ra3; long int h2 = state->x2 / qa2; long int p2 = a2 * (state->x2 - h2 * qa2) - h2 * ra2; if (p3 < 0) p3 += m1; if (p2 < 0) p2 += m1; state->x3 = state->x2; state->x2 = state->x1; state->x1 = p2 - p3; if (state->x1 < 0) state->x1 += m1; } /* Component 2 */ { long int h3 = state->y3 / qb3; long int p3 = -b3 * (state->y3 - h3 * qb3) - h3 * rb3; long int h1 = state->y1 / qb1; long int p1 = b1 * (state->y1 - h1 * qb1) - h1 * rb1; if (p3 < 0) p3 += m2; if (p1 < 0) p1 += m2; state->y3 = state->y2; state->y2 = state->y1; state->y1 = p1 - p3; if (state->y1 < 0) state->y1 += m2; } if (state->x1 < state->y1) return (state->x1 - state->y1 + m1); else return (state->x1 - state->y1); } static double cmrg_get_double (void *vstate) { return cmrg_get (vstate) / 2147483647.0 ; } static void cmrg_set (void *vstate, unsigned long int s) { /* An entirely adhoc way of seeding! This does **not** come from L'Ecuyer et al */ cmrg_state_t *state = (cmrg_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ #define LCG(n) ((69069 * n) & 0xffffffffUL) s = LCG (s); state->x1 = s % m1; s = LCG (s); state->x2 = s % m1; s = LCG (s); state->x3 = s % m1; s = LCG (s); state->y1 = s % m2; s = LCG (s); state->y2 = s % m2; s = LCG (s); state->y3 = s % m2; /* "warm it up" */ cmrg_get (state); cmrg_get (state); cmrg_get (state); cmrg_get (state); cmrg_get (state); cmrg_get (state); cmrg_get (state); } static const gsl_rng_type cmrg_type = {"cmrg", /* name */ 2147483646, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (cmrg_state_t), &cmrg_set, &cmrg_get, &cmrg_get_double}; const gsl_rng_type *gsl_rng_cmrg = &cmrg_type; gsl-1.16/rng/randu.c0000664000252300025230000000502212171574312011214 00000000000000/* rng/randu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a reincarnation of the infamously bad RANDU generator. The sequence is, x_{n+1} = (a x_n) mod m with a = 65539 and m = 2^31 = 2147483648. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 1623524161. The period of this generator is 2^29. Note: Knuth describes this generator as "really horrible". From: Park and Miller, "Random Number Generators: Good ones are hard to find" Communications of the ACM, October 1988, Volume 31, No 10, pages 1192-1201. */ static inline unsigned long int randu_get (void *vstate); static double randu_get_double (void *vstate); static void randu_set (void *state, unsigned long int s); static const long int a = 65539; /* static const unsigned long int m = 2147483648UL; */ typedef struct { unsigned long int x; } randu_state_t; static inline unsigned long int randu_get (void *vstate) { randu_state_t *state = (randu_state_t *) vstate; /* The following line relies on unsigned 32-bit arithmetic */ state->x = (a * state->x) & 0x7fffffffUL; return state->x; } static double randu_get_double (void *vstate) { return randu_get (vstate) / 2147483648.0 ; } static void randu_set (void *vstate, unsigned long int s) { randu_state_t *state = (randu_state_t *) vstate; if (s == 0) s = 1; /* default seed is 1 */ state->x = s; return; } static const gsl_rng_type randu_type = {"randu", /* name */ 0x7fffffffUL, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (randu_state_t), &randu_set, &randu_get, &randu_get_double}; const gsl_rng_type *gsl_rng_randu = &randu_type; gsl-1.16/rng/knuthran2.c0000664000252300025230000000477212171574312012032 00000000000000/* rng/knuthran2.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 108 * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include #include "schrage.c" #define AA1 271828183UL #define AA2 1833324378UL /* = -314159269 mod (2 ^ 31 -1) */ #define MM 0x7fffffffUL /* 2 ^ 31 - 1 */ #define CEIL_SQRT_MM 46341UL /* sqrt(2 ^ 31 - 1) */ static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x0; unsigned long int x1; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; const unsigned long int xtmp = state->x1; state->x1 = schrage_mult (AA1, state->x1, MM, CEIL_SQRT_MM) + schrage_mult (AA2, state->x0, MM, CEIL_SQRT_MM); if (state->x1 >= MM) state->x1 -= MM; state->x0 = xtmp; return state->x1; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 2147483647.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if ((s % MM) == 0) s = 1; /* default seed is 1 */ state->x0 = s % MM; state->x1 = s % MM; return; } static const gsl_rng_type ran_type = { "knuthran2", /* name */ MM - 1L, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_knuthran2 = &ran_type; gsl-1.16/rng/rng.c0000664000252300025230000000617712171577566010723 00000000000000/* rng/rng.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include gsl_rng * gsl_rng_alloc (const gsl_rng_type * T) { gsl_rng *r = (gsl_rng *) malloc (sizeof (gsl_rng)); if (r == 0) { GSL_ERROR_VAL ("failed to allocate space for rng struct", GSL_ENOMEM, 0); }; r->state = calloc (1, T->size); if (r->state == 0) { free (r); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for rng state", GSL_ENOMEM, 0); }; r->type = T; gsl_rng_set (r, gsl_rng_default_seed); /* seed the generator */ return r; } int gsl_rng_memcpy (gsl_rng * dest, const gsl_rng * src) { if (dest->type != src->type) { GSL_ERROR ("generators must be of the same type", GSL_EINVAL); } memcpy (dest->state, src->state, src->type->size); return GSL_SUCCESS; } gsl_rng * gsl_rng_clone (const gsl_rng * q) { gsl_rng *r = (gsl_rng *) malloc (sizeof (gsl_rng)); if (r == 0) { GSL_ERROR_VAL ("failed to allocate space for rng struct", GSL_ENOMEM, 0); }; r->state = malloc (q->type->size); if (r->state == 0) { free (r); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for rng state", GSL_ENOMEM, 0); }; r->type = q->type; memcpy (r->state, q->state, q->type->size); return r; } void gsl_rng_set (const gsl_rng * r, unsigned long int seed) { (r->type->set) (r->state, seed); } unsigned long int gsl_rng_max (const gsl_rng * r) { return r->type->max; } unsigned long int gsl_rng_min (const gsl_rng * r) { return r->type->min; } const char * gsl_rng_name (const gsl_rng * r) { return r->type->name; } size_t gsl_rng_size (const gsl_rng * r) { return r->type->size; } void * gsl_rng_state (const gsl_rng * r) { return r->state; } void gsl_rng_print_state (const gsl_rng * r) { size_t i; unsigned char *p = (unsigned char *) (r->state); const size_t n = r->type->size; for (i = 0; i < n; i++) { /* FIXME: we're assuming that a char is 8 bits */ printf ("%.2x", *(p + i)); } } void gsl_rng_free (gsl_rng * r) { RETURN_IF_NULL (r); free (r->state); free (r); } gsl-1.16/rng/ranlux.c0000664000252300025230000001242412171574312011420 00000000000000/* rng/ranlux.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a lagged fibonacci generator with skipping developed by Luescher. The sequence is a series of 24-bit integers, x_n, x_n = d_n + b_n where d_n = x_{n-10} - x_{n-24} - c_{n-1}, b_n = 0 if d_n >= 0 and b_n = 2^24 if d_n < 0, c_n = 0 if d_n >= 0 and c_n = 1 if d_n < 0, where after 24 samples a group of p integers are "skipped", to reduce correlations. By default p = 199, but can be increased to 365. The period of the generator is around 10^171. From: M. Luescher, "A portable high-quality random number generator for lattice field theory calculations", Computer Physics Communications, 79 (1994) 100-110. Available on the net as hep-lat/9309020 at http://xxx.lanl.gov/ See also, F. James, "RANLUX: A Fortran implementation of the high-quality pseudo-random number generator of Luscher", Computer Physics Communications, 79 (1994) 111-114 Kenneth G. Hamilton, F. James, "Acceleration of RANLUX", Computer Physics Communications, 101 (1997) 241-248 Kenneth G. Hamilton, "Assembler RANLUX for PCs", Computer Physics Communications, 101 (1997) 249-253 */ static inline unsigned long int ranlux_get (void *vstate); static double ranlux_get_double (void *vstate); static void ranlux_set_lux (void *state, unsigned long int s, unsigned int luxury); static void ranlux_set (void *state, unsigned long int s); static void ranlux389_set (void *state, unsigned long int s); static const unsigned long int mask_lo = 0x00ffffffUL; /* 2^24 - 1 */ static const unsigned long int mask_hi = ~0x00ffffffUL; static const unsigned long int two24 = 16777216; /* 2^24 */ typedef struct { unsigned int i; unsigned int j; unsigned int n; unsigned int skip; unsigned int carry; unsigned long int u[24]; } ranlux_state_t; static inline unsigned long int increment_state (ranlux_state_t * state); static inline unsigned long int increment_state (ranlux_state_t * state) { unsigned int i = state->i; unsigned int j = state->j; long int delta = state->u[j] - state->u[i] - state->carry; if (delta & mask_hi) { state->carry = 1; delta &= mask_lo; } else { state->carry = 0; } state->u[i] = delta; if (i == 0) { i = 23; } else { i--; } state->i = i; if (j == 0) { j = 23; } else { j--; } state->j = j; return delta; } static inline unsigned long int ranlux_get (void *vstate) { ranlux_state_t *state = (ranlux_state_t *) vstate; const unsigned int skip = state->skip; unsigned long int r = increment_state (state); state->n++; if (state->n == 24) { unsigned int i; state->n = 0; for (i = 0; i < skip; i++) increment_state (state); } return r; } static double ranlux_get_double (void *vstate) { return ranlux_get (vstate) / 16777216.0; } static void ranlux_set_lux (void *vstate, unsigned long int s, unsigned int luxury) { ranlux_state_t *state = (ranlux_state_t *) vstate; int i; long int seed; if (s == 0) s = 314159265; /* default seed is 314159265 */ seed = s; /* This is the initialization algorithm of F. James, widely in use for RANLUX. */ for (i = 0; i < 24; i++) { unsigned long int k = seed / 53668; seed = 40014 * (seed - k * 53668) - k * 12211; if (seed < 0) { seed += 2147483563; } state->u[i] = seed % two24; } state->i = 23; state->j = 9; state->n = 0; state->skip = luxury - 24; if (state->u[23] & mask_hi) { state->carry = 1; } else { state->carry = 0; } } static void ranlux_set (void *vstate, unsigned long int s) { ranlux_set_lux (vstate, s, 223); } static void ranlux389_set (void *vstate, unsigned long int s) { ranlux_set_lux (vstate, s, 389); } static const gsl_rng_type ranlux_type = {"ranlux", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlux_state_t), &ranlux_set, &ranlux_get, &ranlux_get_double}; static const gsl_rng_type ranlux389_type = {"ranlux389", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlux_state_t), &ranlux389_set, &ranlux_get, &ranlux_get_double}; const gsl_rng_type *gsl_rng_ranlux = &ranlux_type; const gsl_rng_type *gsl_rng_ranlux389 = &ranlux389_type; gsl-1.16/rng/ranlxd.c0000664000252300025230000001321412171574312011375 00000000000000/* rng/ranlxd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is an implementation of Martin Luescher's second generation double-precision (48-bit) version of the RANLUX generator. Thanks to Martin Luescher for providing information on this generator. */ static inline unsigned long int ranlxd_get (void *vstate); static double ranlxd_get_double (void *vstate); static void ranlxd_set_lux (void *state, unsigned long int s, unsigned int luxury); static void ranlxd1_set (void *state, unsigned long int s); static void ranlxd2_set (void *state, unsigned long int s); static const int next[12] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0}; static const double one_bit = 1.0 / 281474976710656.0; /* 1/2^48 */ #define RANLUX_STEP(x1,x2,i1,i2,i3) \ x1=xdbl[i1] - xdbl[i2]; \ if (x2 < 0) \ { \ x1-=one_bit; \ x2+=1; \ } \ xdbl[i3]=x2 typedef struct { double xdbl[12]; double carry; unsigned int ir; unsigned int jr; unsigned int ir_old; unsigned int pr; } ranlxd_state_t; static inline void increment_state (ranlxd_state_t * state); static inline void increment_state (ranlxd_state_t * state) { int k, kmax; double y1, y2, y3; double *xdbl = state->xdbl; double carry = state->carry; unsigned int ir = state->ir; unsigned int jr = state->jr; for (k = 0; ir > 0; ++k) { y1 = xdbl[jr] - xdbl[ir]; y2 = y1 - carry; if (y2 < 0) { carry = one_bit; y2 += 1; } else { carry = 0; } xdbl[ir] = y2; ir = next[ir]; jr = next[jr]; } kmax = state->pr - 12; for (; k <= kmax; k += 12) { y1 = xdbl[7] - xdbl[0]; y1 -= carry; RANLUX_STEP (y2, y1, 8, 1, 0); RANLUX_STEP (y3, y2, 9, 2, 1); RANLUX_STEP (y1, y3, 10, 3, 2); RANLUX_STEP (y2, y1, 11, 4, 3); RANLUX_STEP (y3, y2, 0, 5, 4); RANLUX_STEP (y1, y3, 1, 6, 5); RANLUX_STEP (y2, y1, 2, 7, 6); RANLUX_STEP (y3, y2, 3, 8, 7); RANLUX_STEP (y1, y3, 4, 9, 8); RANLUX_STEP (y2, y1, 5, 10, 9); RANLUX_STEP (y3, y2, 6, 11, 10); if (y3 < 0) { carry = one_bit; y3 += 1; } else { carry = 0; } xdbl[11] = y3; } kmax = state->pr; for (; k < kmax; ++k) { y1 = xdbl[jr] - xdbl[ir]; y2 = y1 - carry; if (y2 < 0) { carry = one_bit; y2 += 1; } else { carry = 0; } xdbl[ir] = y2; ir = next[ir]; jr = next[jr]; } state->ir = ir; state->ir_old = ir; state->jr = jr; state->carry = carry; } static inline unsigned long int ranlxd_get (void *vstate) { return ranlxd_get_double (vstate) * 4294967296.0; /* 2^32 */ } static double ranlxd_get_double (void *vstate) { ranlxd_state_t *state = (ranlxd_state_t *) vstate; int ir = state->ir; state->ir = next[ir]; if (state->ir == state->ir_old) increment_state (state); return state->xdbl[state->ir]; } static void ranlxd_set_lux (void *vstate, unsigned long int s, unsigned int luxury) { ranlxd_state_t *state = (ranlxd_state_t *) vstate; int ibit, jbit, i, k, l, xbit[31]; double x, y; long int seed; if (s == 0) s = 1; /* default seed is 1 */ seed = s; i = seed & 0xFFFFFFFFUL; for (k = 0; k < 31; ++k) { xbit[k] = i % 2; i /= 2; } ibit = 0; jbit = 18; for (k = 0; k < 12; ++k) { x = 0; for (l = 1; l <= 48; ++l) { y = (double) ((xbit[ibit] + 1) % 2); x += x + y; xbit[ibit] = (xbit[ibit] + xbit[jbit]) % 2; ibit = (ibit + 1) % 31; jbit = (jbit + 1) % 31; } state->xdbl[k] = one_bit * x; } state->carry = 0; state->ir = 11; state->jr = 7; state->ir_old = 0; state->pr = luxury; } static void ranlxd1_set (void *vstate, unsigned long int s) { ranlxd_set_lux (vstate, s, 202); } static void ranlxd2_set (void *vstate, unsigned long int s) { ranlxd_set_lux (vstate, s, 397); } static const gsl_rng_type ranlxd1_type = {"ranlxd1", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlxd_state_t), &ranlxd1_set, &ranlxd_get, &ranlxd_get_double}; static const gsl_rng_type ranlxd2_type = {"ranlxd2", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranlxd_state_t), &ranlxd2_set, &ranlxd_get, &ranlxd_get_double}; const gsl_rng_type *gsl_rng_ranlxd1 = &ranlxd1_type; const gsl_rng_type *gsl_rng_ranlxd2 = &ranlxd2_type; gsl-1.16/rng/uni.c0000664000252300025230000001367212171574312010710 00000000000000/* rng/uni.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** This is a lagged Fibonacci generator which supposedly excellent statistical properties (I do not concur) I got it from the net and translated into C. * ====================================================================== * NIST Guide to Available Math Software. * Fullsource for module UNI from package CMLIB. * Retrieved from CAMSUN on Tue Oct 8 14:04:10 1996. * ====================================================================== C***BEGIN PROLOGUE UNI C***DATE WRITTEN 810915 C***REVISION DATE 830805 C***CATEGORY NO. L6A21 C***KEYWORDS RANDOM NUMBERS, UNIFORM RANDOM NUMBERS C***AUTHOR BLUE, JAMES, SCIENTIFIC COMPUTING DIVISION, NBS C KAHANER, DAVID, SCIENTIFIC COMPUTING DIVISION, NBS C MARSAGLIA, GEORGE, COMPUTER SCIENCE DEPT., WASH STATE UNIV C C***PURPOSE THIS ROUTINE GENERATES QUASI UNIFORM RANDOM NUMBERS ON [0,1 C AND CAN BE USED ON ANY COMPUTER WITH WHICH ALLOWS INTEGERS C AT LEAST AS LARGE AS 32767. C***DESCRIPTION C C THIS ROUTINE GENERATES QUASI UNIFORM RANDOM NUMBERS ON THE INTER C [0,1). IT CAN BE USED WITH ANY COMPUTER WHICH ALLOWS C INTEGERS AT LEAST AS LARGE AS 32767. C C C USE C FIRST TIME.... C Z = UNI(JD) C HERE JD IS ANY N O N - Z E R O INTEGER. C THIS CAUSES INITIALIZATION OF THE PROGRAM C AND THE FIRST RANDOM NUMBER TO BE RETURNED AS Z. C SUBSEQUENT TIMES... C Z = UNI(0) C CAUSES THE NEXT RANDOM NUMBER TO BE RETURNED AS Z. C C C.................................................................. C NOTE: USERS WHO WISH TO TRANSPORT THIS PROGRAM FROM ONE COMPUTER C TO ANOTHER SHOULD READ THE FOLLOWING INFORMATION..... C C MACHINE DEPENDENCIES... C MDIG = A LOWER BOUND ON THE NUMBER OF BINARY DIGITS AVAILABLE C FOR REPRESENTING INTEGERS, INCLUDING THE SIGN BIT. C THIS VALUE MUST BE AT LEAST 16, BUT MAY BE INCREASED C IN LINE WITH REMARK A BELOW. C C REMARKS... C A. THIS PROGRAM CAN BE USED IN TWO WAYS: C (1) TO OBTAIN REPEATABLE RESULTS ON DIFFERENT COMPUTERS, C SET 'MDIG' TO THE SMALLEST OF ITS VALUES ON EACH, OR, C (2) TO ALLOW THE LONGEST SEQUENCE OF RANDOM NUMBERS TO BE C GENERATED WITHOUT CYCLING (REPEATING) SET 'MDIG' TO THE C LARGEST POSSIBLE VALUE. C B. THE SEQUENCE OF NUMBERS GENERATED DEPENDS ON THE INITIAL C INPUT 'JD' AS WELL AS THE VALUE OF 'MDIG'. C IF MDIG=16 ONE SHOULD FIND THAT Editors Note: set the seed using 152 in order to get uni(305) -jt C THE FIRST EVALUATION C Z=UNI(305) GIVES Z=.027832881... C THE SECOND EVALUATION C Z=UNI(0) GIVES Z=.56102176... C THE THIRD EVALUATION C Z=UNI(0) GIVES Z=.41456343... C THE THOUSANDTH EVALUATION C Z=UNI(0) GIVES Z=.19797357... C C***REFERENCES MARSAGLIA G., "COMMENTS ON THE PERFECT UNIFORM RANDOM C NUMBER GENERATOR", UNPUBLISHED NOTES, WASH S. U. C***ROUTINES CALLED I1MACH,XERROR C***END PROLOGUE UNI **/ #include #include #include static inline unsigned long int uni_get (void *vstate); static double uni_get_double (void *vstate); static void uni_set (void *state, unsigned long int s); static const unsigned int MDIG = 16; /* Machine digits in int */ static const unsigned int m1 = 32767; /* 2^(MDIG-1) - 1 */ static const unsigned int m2 = 256; /* 2^(MDIG/2) */ typedef struct { int i, j; unsigned long m[17]; } uni_state_t; static inline unsigned long uni_get (void *vstate) { uni_state_t *state = (uni_state_t *) vstate; const int i = state->i; const int j = state->j; /* important k not be unsigned */ long k = state->m[i] - state->m[j]; if (k < 0) k += m1; state->m[j] = k; if (i == 0) { state->i = 16; } else { (state->i)--; } if (j == 0) { state->j = 16; } else { (state->j)--; } return k; } static double uni_get_double (void *vstate) { return uni_get (vstate) / 32767.0 ; } static void uni_set (void *vstate, unsigned long int s) { unsigned int i, seed, k0, k1, j0, j1; uni_state_t *state = (uni_state_t *) vstate; /* For this routine, the seeding is very elaborate! */ /* A flaw in this approach is that seeds 1,2 give exactly the same random number sequence! */ s = 2 * s + 1; /* enforce seed be odd */ seed = (s < m1 ? s : m1); /* seed should be less than m1 */ k0 = 9069 % m2; k1 = 9069 / m2; j0 = seed % m2; j1 = seed / m2; for (i = 0; i < 17; ++i) { seed = j0 * k0; j1 = (seed / m2 + j0 * k1 + j1 * k0) % (m2 / 2); j0 = seed % m2; state->m[i] = j0 + m2 * j1; } state->i = 4; state->j = 16; return; } static const gsl_rng_type uni_type = {"uni", /* name */ 32766, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (uni_state_t), &uni_set, &uni_get, &uni_get_double}; const gsl_rng_type *gsl_rng_uni = &uni_type; gsl-1.16/rng/fishman2x.c0000664000252300025230000000551512171574312012011 00000000000000/* rng/fishman2x.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 108 * * It is called "Fishman - L'Ecuyer" * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include /* Fishman */ #define AAA_F 48271UL #define MMM_F 0x7fffffffUL /* 2 ^ 31 - 1 */ #define QQQ_F 44488UL #define RRR_F 3399UL /* L'Ecuyer */ #define AAA_L 40692UL #define MMM_L 0x7fffff07UL /* 2 ^ 31 - 249 */ #define QQQ_L 52774UL #define RRR_L 3791UL static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; unsigned long int y; unsigned long int z; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; long int y, r; r = RRR_F * (state->x / QQQ_F); y = AAA_F * (state->x % QQQ_F) - r; if (y < 0) y += MMM_F; state->x = y; r = RRR_L * (state->y / QQQ_L); y = AAA_L * (state->y % QQQ_L) - r; if (y < 0) y += MMM_L; state->y = y; state->z = (state->x > state->y) ? (state->x - state->y) : MMM_F + state->x - state->y; return state->z; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 2147483647.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if ((s % MMM_F) == 0 || (s % MMM_L) == 0) s = 1; /* default seed is 1 */ state->x = s % MMM_F; state->y = s % MMM_L; state->z = (state->x > state->y) ? (state->x - state->y) : MMM_F + state->x - state->y; return; } static const gsl_rng_type ran_type = { "fishman2x", /* name */ MMM_F - 1, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_fishman2x = &ran_type; gsl-1.16/rng/ran3.c0000664000252300025230000000603612171574312010754 00000000000000/* rng/ran3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is an implementation of the algorithm used in Knuths's subtractive generator, with the Numerical Recipe's ran3 paramters. It is a subtractive lagged fibonnaci generator. */ static inline unsigned long int ran3_get (void *vstate); static double ran3_get_double (void *vstate); static void ran3_set (void *state, unsigned long int s); #define M_BIG 1000000000 #define M_SEED 161803398 typedef struct { unsigned int x; unsigned int y; unsigned long int buffer[56]; } ran3_state_t; static inline unsigned long int ran3_get (void *vstate) { ran3_state_t *state = (ran3_state_t *) vstate; long int j; state->x++; if (state->x == 56) state->x = 1; state->y++; if (state->y == 56) state->y = 1; j = state->buffer[state->x] - state->buffer[state->y]; if (j < 0) j += M_BIG; state->buffer[state->x] = j; return j; } static double ran3_get_double (void *vstate) { return ran3_get (vstate) / (double) M_BIG ; } static void ran3_set (void *vstate, unsigned long int s) { ran3_state_t *state = (ran3_state_t *) vstate; int i, i1; long int j, k; if (s == 0) s = 1; /* default seed is 1 */ j = (M_SEED - s) % M_BIG; /* Avoid potential problem with negative values */ if (j < 0) j += M_BIG; /* the zeroth element is never used, but we initialize it for consistency between states */ state->buffer[0] = 0; state->buffer[55] = j; k = 1; for (i = 1; i < 55; i++) { int n = (21 * i) % 55; state->buffer[n] = k; k = j - k; if (k < 0) k += M_BIG; j = state->buffer[n]; } for (i1 = 0; i1 < 4; i1++) { for (i = 1; i < 56; i++) { long int t = state->buffer[i] - state->buffer[1 + (i + 30) % 55]; if (t < 0) t += M_BIG; state->buffer[i] = t; } } state->x = 0; state->y = 31; return; } static const gsl_rng_type ran3_type = {"ran3", /* name */ M_BIG, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ran3_state_t), &ran3_set, &ran3_get, &ran3_get_double}; const gsl_rng_type *gsl_rng_ran3 = &ran3_type; gsl-1.16/rng/ranmar.c0000664000252300025230000000757012171574312011375 00000000000000/* rng/ranmar.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is the RANMAR lagged fibonacci generator of Marsaglia, Zaman and Tsang. The sequence is a series of 24-bit integers, x_n, x_n = (y_n - c_n + 2^24) mod 2^24 where, y_n = (y_{n-97) - y_{n-33} + 2^24) mod 2^24 c_n = (c_{n-1} - 7654321 + 2^24 - 3) mod (2^24 - 3) The period of this generator is 2^144. The generator provides about 900 million different subsequences each of length O(10^30). Thus each seed up to 900,000,000 gives an independent sequence. Although it was good in its day this generator now has known statistical defects and has been superseded by RANLUX. From: F. James, "A Review of Pseudorandom number generators", Computer Physics Communications 60, 329 (1990). G. Marsaglia, A. Zaman and W.W. Tsang, Stat. Prob. Lett. 9, 35 (1990) */ static inline unsigned long int ranmar_get (void *vstate); static double ranmar_get_double (void *vstate); static void ranmar_set (void *state, unsigned long int s); static const unsigned long int two24 = 16777216; /* 2^24 */ typedef struct { unsigned int i; unsigned int j; long int carry; unsigned long int u[97]; } ranmar_state_t; static inline unsigned long int ranmar_get (void *vstate) { ranmar_state_t *state = (ranmar_state_t *) vstate; unsigned int i = state->i; unsigned int j = state->j; long int carry = state->carry; long int delta = state->u[i] - state->u[j]; if (delta < 0) delta += two24 ; state->u[i] = delta; if (i == 0) { i = 96; } else { i--; } state->i = i; if (j == 0) { j = 96; } else { j--; } state->j = j; carry += - 7654321 ; if (carry < 0) carry += two24 - 3; state->carry = carry ; delta += - carry ; if (delta < 0) delta += two24 ; return delta; } static double ranmar_get_double (void *vstate) { return ranmar_get (vstate) / 16777216.0 ; } static void ranmar_set (void *vstate, unsigned long int s) { ranmar_state_t *state = (ranmar_state_t *) vstate; unsigned long int ij = s / 30082 ; unsigned long int kl = s % 30082 ; int i = (ij / 177) % 177 + 2 ; int j = (ij % 177) + 2 ; int k = (kl / 169) % 178 + 1 ; int l = (kl % 169) ; int a, b; for (a = 0; a < 97; a++) { unsigned long int sum = 0 ; unsigned long int t = two24 ; for (b = 0; b < 24; b++) { unsigned long int m = (((i * j) % 179) * k) % 179 ; i = j ; j = k ; k = m ; l = (53 * l + 1) % 169 ; t >>= 1 ; if ((l * m) % 64 >= 32) sum += t ; } state->u[a] = sum ; } state->i = 96; state->j = 32; state->carry = 362436 ; } static const gsl_rng_type ranmar_type = {"ranmar", /* name */ 0x00ffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (ranmar_state_t), &ranmar_set, &ranmar_get, &ranmar_get_double}; const gsl_rng_type *gsl_rng_ranmar = &ranmar_type; gsl-1.16/rng/transputer.c0000664000252300025230000000435412171574312012321 00000000000000/* rng/transputer.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is the INMOS Transputer Development System generator. The sequence is, x_{n+1} = (a x_n) mod m with a = 1664525 and m = 2^32. The seed specifies the initial value, x_1. The theoretical value of x_{10001} is 1244127297. The period of this generator is 2^30. */ static inline unsigned long int transputer_get (void *vstate); static double transputer_get_double (void *vstate); static void transputer_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } transputer_state_t; static unsigned long int transputer_get (void *vstate) { transputer_state_t *state = (transputer_state_t *) vstate; state->x = (1664525 * state->x) & 0xffffffffUL; return state->x; } static double transputer_get_double (void *vstate) { return transputer_get (vstate) / 4294967296.0 ; } static void transputer_set (void *vstate, unsigned long int s) { transputer_state_t *state = (transputer_state_t *) vstate; if (s == 0) s = 1 ; /* default seed is 1. */ state->x = s; return; } static const gsl_rng_type transputer_type = {"transputer", /* name */ 0xffffffffUL, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (transputer_state_t), &transputer_set, &transputer_get, &transputer_get_double}; const gsl_rng_type *gsl_rng_transputer = &transputer_type; gsl-1.16/rng/ran0.c0000664000252300025230000000505012171574312010744 00000000000000/* rng/ran0.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* This is an implementation of the algorithm used in Numerical Recipe's ran0 generator. It is the same as MINSTD with an XOR mask of 123459876 on the seed. The period of this generator is 2^31. Note, if you choose a seed of 123459876 it would give a degenerate series 0,0,0,0, ... I've made that into an error. */ static inline unsigned long int ran0_get (void *vstate); static double ran0_get_double (void *vstate); static void ran0_set (void *state, unsigned long int s); static const long int m = 2147483647, a = 16807, q = 127773, r = 2836; static const unsigned long int mask = 123459876; typedef struct { unsigned long int x; } ran0_state_t; static inline unsigned long int ran0_get (void *vstate) { ran0_state_t *state = (ran0_state_t *) vstate; const unsigned long int x = state->x; const long int h = x / q; const long int t = a * (x - h * q) - h * r; if (t < 0) { state->x = t + m; } else { state->x = t; } return state->x; } static double ran0_get_double (void *vstate) { return ran0_get (vstate) / 2147483647.0 ; } static void ran0_set (void *vstate, unsigned long int s) { ran0_state_t *state = (ran0_state_t *) vstate; if (s == mask) { GSL_ERROR_VOID ("ran0 should not use seed == mask", GSL_EINVAL); } state->x = s ^ mask; return; } static const gsl_rng_type ran0_type = {"ran0", /* name */ 2147483646, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran0_state_t), &ran0_set, &ran0_get, &ran0_get_double}; const gsl_rng_type *gsl_rng_ran0 = &ran0_type; gsl-1.16/rng/file.c0000664000252300025230000000261512171574312011027 00000000000000/* rng/file.c * * Copyright (C) 2003 Olaf Lenz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_rng_fread (FILE * stream, gsl_rng * r) { size_t n = r->type->size ; char * state = (char *)r->state; size_t items = fread (state, 1, n, stream); if (items != n) { GSL_ERROR ("fread failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_rng_fwrite (FILE * stream, const gsl_rng * r) { size_t n = r->type->size ; char * state = (char *)r->state; size_t items = fwrite (state, 1, n, stream); if (items != n) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } return GSL_SUCCESS; } gsl-1.16/rng/fishman18.c0000664000252300025230000000443512171574312011710 00000000000000/* rng/fishman18.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Page 106-108 * * It is called "Fishman - Moore III". * * This implementation copyright (C) 2001 Carlo Perassi * and (C) 2003 Heiko Bauke. */ #include #include #include #include "schrage.c" #define AA 62089911UL #define MM 0x7fffffffUL /* 2 ^ 31 - 1 */ #define CEIL_SQRT_MM 46341UL /* ceil(sqrt(2 ^ 31 - 1)) */ static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned long int x; } ran_state_t; static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; state->x = schrage_mult (AA, state->x, MM, CEIL_SQRT_MM); return state->x; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 2147483647.0; } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; if ((s % MM) == 0) s = 1; /* default seed is 1 */ state->x = s % MM; return; } static const gsl_rng_type ran_type = { "fishman18", /* name */ MM - 1, /* RAND_MAX */ 1, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_fishman18 = &ran_type; gsl-1.16/rng/knuthran2002.c0000664000252300025230000001143012171574312012241 00000000000000/* rng/knuthran2002.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 2001, 2007 Brian Gough, Carlo Perassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth, The Art of Computer Programming, Volume 2, Section 3.6 * Third Edition, Addison-Wesley, * * The modifications introduced in the 9th printing (2002) are * included here; there's no backwards compatibility with the * original. [ see http://www-cs-faculty.stanford.edu/~knuth/taocp.html ] * */ #include #include #include #define BUFLEN 1009 /* length of the buffer aa[] */ #define KK 100 /* the long lag */ #define LL 37 /* the short lag */ #define MM (1L << 30) /* the modulus */ #define TT 70 /* guaranteed separation between streams */ #define is_odd(x) ((x) & 1) /* the units bit of x */ #define mod_diff(x, y) (((x) - (y)) & (MM - 1)) /* (x - y) mod MM */ static inline void ran_array (long int aa[], unsigned int n, long int ran_x[]); static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned int i; long int aa[BUFLEN]; long int ran_x[KK]; /* the generator state */ } ran_state_t; static inline void ran_array (long int aa[], unsigned int n, long int ran_x[]) { unsigned int i; unsigned int j; for (j = 0; j < KK; j++) aa[j] = ran_x[j]; for (; j < n; j++) aa[j] = mod_diff (aa[j - KK], aa[j - LL]); for (i = 0; i < LL; i++, j++) ran_x[i] = mod_diff (aa[j - KK], aa[j - LL]); for (; i < KK; i++, j++) ran_x[i] = mod_diff (aa[j - KK], ran_x[i - LL]); } static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; unsigned int i = state->i; unsigned long int v; if (i == 0) { /* fill buffer with new random numbers */ ran_array (state->aa, BUFLEN, state->ran_x); } v = state->aa[i]; state->i = (i + 1) % KK; return v; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 1073741824.0; /* RAND_MAX + 1 */ } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; long x[KK + KK - 1]; /* the preparation buffer */ register int j; register int t; register long ss; if (s == 0 ) s = 314159; /* default seed used by Knuth */ ss = (s + 2)&(MM-2); for (j = 0; j < KK; j++) { x[j] = ss; /* bootstrap the buffer */ ss <<= 1; if (ss >= MM) /* cyclic shift 29 bits */ ss -= MM - 2; } x[1]++; /* make x[1] (and only x[1]) odd */ ss = s & (MM - 1); t = TT - 1; while (t) { for (j = KK - 1; j > 0; j--) /* square */ { x[j + j] = x[j]; x[j + j - 1] = 0; } for (j = KK + KK - 2; j >= KK; j--) { x[j - (KK - LL)] = mod_diff (x[j - (KK - LL)], x[j]); x[j - KK] = mod_diff (x[j - KK], x[j]); } if (is_odd (ss)) { /* multiply by "z" */ for (j = KK; j > 0; j--) { x[j] = x[j - 1]; } x[0] = x[KK]; /* shift the buffer cyclically */ x[LL] = mod_diff (x[LL], x[KK]); } if (ss) ss >>= 1; else t--; } for (j = 0; j < LL; j++) state->ran_x[j + KK - LL] = x[j]; for (; j < KK; j++) state->ran_x[j - LL] = x[j]; for (j = 0; j< 10; j++) ran_array(x, KK+KK-1, state->ran_x); /* warm things up */ state->i = 0; return; } static const gsl_rng_type ran_type = { "knuthran2002", /* name */ 0x3fffffffUL, /* RAND_MAX = (2 ^ 30) - 1 */ 0, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_knuthran2002 = &ran_type; gsl-1.16/rng/r250.c0000664000252300025230000001132412171574312010575 00000000000000/* rng/r250.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a shift-register random number generator. The sequence is x_n = x_{n-103} ^ x_{n-250} ("^" means XOR) defined on 32-bit words. BJG: Note that this implementation actually uses the sequence, x_n = x_{n-147} ^ x_{n-250} which generates the outputs in time-reversed order but is otherwise completely equivalent. The first 250 elements x_1 .. x_250 are first initialized as x_n = s_n, where s_n = (69069*s_{n-1}) mod 2^32 and s_0=s is the user-supplied seed. To ensure that the sequence does not lie on a subspace we force 32 of the entries to be linearly independent. We take the 32 elements x[3], x[10], x[17], x[24], ..., 213 and apply the following operations, x[3] &= 11111111111111111111111111111111 x[3] |= 10000000000000000000000000000000 x[10] &= 01111111111111111111111111111111 x[10] |= 01000000000000000000000000000000 x[17] &= 00111111111111111111111111111111 x[17] |= 00100000000000000000000000000000 .... ... x[206] &= 00000000000000000000000000000111 x[206] |= 00000000000000000000000000000100 x[213] &= 00000000000000000000000000000011 x[213] |= 00000000000000000000000000000010 x[220] &= 00000000000000000000000000000001 x[220] |= 00000000000000000000000000000001 i.e. if we consider the bits of the 32 elements as forming a 32x32 array then we are setting the diagonal bits of the array to one and masking the lower triangle below the diagonal to zero. With this initialization procedure the theoretical value of x_{10001} is 1100653588 for s = 1 (Actually I got this by running the original code). The subscript 10001 means (1) seed the generator with s = 1 and then do 10000 actual iterations. The period of this generator is about 2^250. The algorithm works for any number of bits. It is implemented here for 32 bits. From: S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence random number generator", Journal of Computational Physics, 40, 517-526 (1981). */ static inline unsigned long int r250_get (void *vstate); static double r250_get_double (void *vstate); static void r250_set (void *state, unsigned long int s); typedef struct { int i; unsigned long x[250]; } r250_state_t; static inline unsigned long int r250_get (void *vstate) { r250_state_t *state = (r250_state_t *) vstate; unsigned long int k; int j; int i = state->i; if (i >= 147) { j = i - 147; } else { j = i + 103; } k = state->x[i] ^ state->x[j]; state->x[i] = k; if (i >= 249) { state->i = 0; } else { state->i = i + 1; } return k; } static double r250_get_double (void *vstate) { return r250_get (vstate) / 4294967296.0 ; } static void r250_set (void *vstate, unsigned long int s) { r250_state_t *state = (r250_state_t *) vstate; int i; if (s == 0) s = 1; /* default seed is 1 */ state->i = 0; #define LCG(n) ((69069 * n) & 0xffffffffUL) for (i = 0; i < 250; i++) /* Fill the buffer */ { s = LCG (s); state->x[i] = s; } { /* Masks for turning on the diagonal bit and turning off the leftmost bits */ unsigned long int msb = 0x80000000UL; unsigned long int mask = 0xffffffffUL; for (i = 0; i < 32; i++) { int k = 7 * i + 3; /* Select a word to operate on */ state->x[k] &= mask; /* Turn off bits left of the diagonal */ state->x[k] |= msb; /* Turn on the diagonal bit */ mask >>= 1; msb >>= 1; } } return; } static const gsl_rng_type r250_type = {"r250", /* name */ 0xffffffffUL, /* RAND_MAX */ 0, /* RAND_MIN */ sizeof (r250_state_t), &r250_set, &r250_get, &r250_get_double}; const gsl_rng_type *gsl_rng_r250 = &r250_type; gsl-1.16/rng/knuthran.c0000664000252300025230000001134712171574312011744 00000000000000/* rng/knuthran.c * * Copyright (C) 2001, 2007 Brian Gough, Carlo Perassi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This generator is taken from * * Donald E. Knuth * The Art of Computer Programming * Volume 2 * Third Edition * Addison-Wesley * Section 3.6 * * The comments are taken from the book * Our comments are signed */ #include #include #include #define BUFLEN 2009 /* [Brian]: length of the buffer aa[] */ #define KK 100 /* the long lag */ #define LL 37 /* the short lag */ #define MM (1L << 30) /* the modulus */ #define TT 70 /* guaranteed separation between streams */ #define evenize(x) ((x) & (MM - 2)) /* make x even */ #define is_odd(x) ((x) & 1) /* the units bit of x */ #define mod_diff(x, y) (((x) - (y)) & (MM - 1)) /* (x - y) mod MM */ static inline void ran_array (unsigned long int aa[], unsigned int n, unsigned long int ran_x[]); static inline unsigned long int ran_get (void *vstate); static double ran_get_double (void *vstate); static void ran_set (void *state, unsigned long int s); typedef struct { unsigned int i; unsigned long int aa[BUFLEN]; /* [Carlo]: I can't pass n to ran_array like Knuth does */ unsigned long int ran_x[KK]; /* the generator state */ } ran_state_t; static inline void ran_array (unsigned long int aa[], unsigned int n, unsigned long int ran_x[]) { unsigned int i; unsigned int j; for (j = 0; j < KK; j++) aa[j] = ran_x[j]; for (; j < n; j++) aa[j] = mod_diff (aa[j - KK], aa[j - LL]); for (i = 0; i < LL; i++, j++) ran_x[i] = mod_diff (aa[j - KK], aa[j - LL]); for (; i < KK; i++, j++) ran_x[i] = mod_diff (aa[j - KK], ran_x[i - LL]); } static inline unsigned long int ran_get (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; unsigned int i = state->i; if (i == 0) { /* fill buffer with new random numbers */ ran_array (state->aa, BUFLEN, state->ran_x); } state->i = (i + 1) % BUFLEN; return state->aa[i]; } static double ran_get_double (void *vstate) { ran_state_t *state = (ran_state_t *) vstate; return ran_get (state) / 1073741824.0; /* [Carlo]: RAND_MAX + 1 */ } static void ran_set (void *vstate, unsigned long int s) { ran_state_t *state = (ran_state_t *) vstate; long x[KK + KK - 1]; /* the preparation buffer */ register int j; register int t; register long ss = evenize (s + 2); for (j = 0; j < KK; j++) { x[j] = ss; /* bootstrap the buffer */ ss <<= 1; if (ss >= MM) /* cyclic shift 29 bits */ ss -= MM - 2; } for (; j < KK + KK - 1; j++) x[j] = 0; x[1]++; /* make x[1] (and only x[1]) odd */ ss = s & (MM - 1); t = TT - 1; while (t) { for (j = KK - 1; j > 0; j--) /* square */ x[j + j] = x[j]; for (j = KK + KK - 2; j > KK - LL; j -= 2) x[KK + KK - 1 - j] = evenize (x[j]); for (j = KK + KK - 2; j >= KK; j--) if (is_odd (x[j])) { x[j - (KK - LL)] = mod_diff (x[j - (KK - LL)], x[j]); x[j - KK] = mod_diff (x[j - KK], x[j]); } if (is_odd (ss)) { /* multiply by "z" */ for (j = KK; j > 0; j--) x[j] = x[j - 1]; x[0] = x[KK]; /* shift the buffer cyclically */ if (is_odd (x[KK])) x[LL] = mod_diff (x[LL], x[KK]); } if (ss) ss >>= 1; else t--; } state->i = 0; for (j = 0; j < LL; j++) state->ran_x[j + KK - LL] = x[j]; for (; j < KK; j++) state->ran_x[j - LL] = x[j]; return; } static const gsl_rng_type ran_type = { "knuthran", /* name */ 0x3fffffffUL, /* RAND_MAX *//* [Carlo]: (2 ^ 30) - 1 */ 0, /* RAND_MIN */ sizeof (ran_state_t), &ran_set, &ran_get, &ran_get_double }; const gsl_rng_type *gsl_rng_knuthran = &ran_type; gsl-1.16/dht/0000775000252300025230000000000012172254160010006 500000000000000gsl-1.16/dht/test.c0000664000252300025230000001204112171574312011052 00000000000000/* dht/test_dht.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include /* Test exact small transform. */ int test_dht_exact(void) { int stat = 0; double f_in[3] = { 1.0, 2.0, 3.0 }; double f_out[3]; gsl_dht * t = gsl_dht_new(3, 1.0, 1.0); gsl_dht_apply(t, f_in, f_out); /* Check values. */ if(fabs( f_out[0]-( 0.375254649407520))/0.375254649407520 > 1.0e-14) stat++; if(fabs( f_out[1]-(-0.133507872695560))/0.133507872695560 > 1.0e-14) stat++; if(fabs( f_out[2]-( 0.044679925143840))/0.044679925143840 > 1.0e-14) stat++; /* Check inverse. * We have to adjust the normalization * so we can use the same precalculated transform. */ gsl_dht_apply(t, f_out, f_in); f_in[0] *= 13.323691936314223*13.323691936314223; /* jzero[1,4]^2 */ f_in[1] *= 13.323691936314223*13.323691936314223; f_in[2] *= 13.323691936314223*13.323691936314223; /* The loss of precision on the inverse * is a little surprising. However, this * thing is quite tricky since the band-limited * function represented by the samples {1,2,3} * need not be very nice. Like in any spectral * application, you really have to have some * a-priori knowledge of the underlying function. */ if(fabs( f_in[0]-1.0)/1.0 > 2.0e-05) stat++; if(fabs( f_in[1]-2.0)/2.0 > 2.0e-05) stat++; if(fabs( f_in[2]-3.0)/3.0 > 2.0e-05) stat++; gsl_dht_free(t); return stat; } /* Test the transform * Integrate[x J_0(a x) / (x^2 + 1), {x,0,Inf}] = K_0(a) */ int test_dht_simple(void) { int stat = 0; int n; double f_in[128]; double f_out[128]; gsl_dht * t = gsl_dht_new(128, 0.0, 100.0); for(n=0; n<128; n++) { const double x = gsl_dht_x_sample(t, n); f_in[n] = 1.0/(1.0+x*x); } gsl_dht_apply(t, f_in, f_out); /* This is a difficult transform to calculate this way, * since it does not satisfy the boundary condition and * it dies quite slowly. So it is not meaningful to * compare this to high accuracy. We only check * that it seems to be working. */ if(fabs( f_out[0]-4.00)/4.00 > 0.02) stat++; if(fabs( f_out[5]-1.84)/1.84 > 0.02) stat++; if(fabs(f_out[10]-1.27)/1.27 > 0.02) stat++; if(fabs(f_out[35]-0.352)/0.352 > 0.02) stat++; if(fabs(f_out[100]-0.0237)/0.0237 > 0.02) stat++; gsl_dht_free(t); return stat; } /* Test the transform * Integrate[ x exp(-x) J_1(a x), {x,0,Inf}] = a F(3/2, 2; 2; -a^2) */ int test_dht_exp1(void) { int stat = 0; int n; double f_in[128]; double f_out[128]; gsl_dht * t = gsl_dht_new(128, 1.0, 20.0); for(n=0; n<128; n++) { const double x = gsl_dht_x_sample(t, n); f_in[n] = exp(-x); } gsl_dht_apply(t, f_in, f_out); /* Spot check. * Note that the systematic errors in the calculation * are quite large, so it is meaningless to compare * to a high accuracy. */ if(fabs( f_out[0]-0.181)/0.181 > 0.02) stat++; if(fabs( f_out[5]-0.357)/0.357 > 0.02) stat++; if(fabs(f_out[10]-0.211)/0.211 > 0.02) stat++; if(fabs(f_out[35]-0.0289)/0.0289 > 0.02) stat++; if(fabs(f_out[100]-0.00221)/0.00211 > 0.02) stat++; gsl_dht_free(t); return stat; } /* Test the transform * Integrate[ x^2 (1-x^2) J_1(a x), {x,0,1}] = 2/a^2 J_3(a) */ int test_dht_poly1(void) { int stat = 0; int n; double f_in[128]; double f_out[128]; gsl_dht * t = gsl_dht_new(128, 1.0, 1.0); for(n=0; n<128; n++) { const double x = gsl_dht_x_sample(t, n); f_in[n] = x * (1.0 - x*x); } gsl_dht_apply(t, f_in, f_out); /* Spot check. This function satisfies the boundary condition, * so the accuracy should be ok. */ if(fabs( f_out[0]-0.057274214)/0.057274214 > 1.0e-07) stat++; if(fabs( f_out[5]-(-0.000190850))/0.000190850 > 1.0e-05) stat++; if(fabs(f_out[10]-0.000024342)/0.000024342 > 1.0e-04) stat++; if(fabs(f_out[35]-(-4.04e-07))/4.04e-07 > 1.0e-03) stat++; if(fabs(f_out[100]-1.0e-08)/1.0e-08 > 0.25) stat++; gsl_dht_free(t); return stat; } int main() { gsl_ieee_env_setup (); gsl_test( test_dht_exact(), "Small Exact DHT"); gsl_test( test_dht_simple(), "Simple DHT"); gsl_test( test_dht_exp1(), "Exp J1 DHT"); gsl_test( test_dht_poly1(), "Poly J1 DHT"); exit (gsl_test_summary()); } gsl-1.16/dht/Makefile.in0000664000252300025230000010325312172253755012010 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = dht DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgsldht_la_LIBADD = am_libgsldht_la_OBJECTS = dht.lo libgsldht_la_OBJECTS = $(am_libgsldht_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgsldht.la ../specfunc/libgslspecfunc.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsldht_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgsldht_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgsldht.la pkginclude_HEADERS = gsl_dht.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgsldht.la ../specfunc/libgslspecfunc.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c libgsldht_la_SOURCES = dht.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu dht/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu dht/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsldht.la: $(libgsldht_la_OBJECTS) $(libgsldht_la_DEPENDENCIES) $(EXTRA_libgsldht_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgsldht_la_OBJECTS) $(libgsldht_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dht.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/dht/ChangeLog0000664000252300025230000000070512171574312011505 000000000000002009-07-09 Brian Gough * dht.c (gsl_dht_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir Mon Apr 23 10:31:58 2001 Brian Gough * unified error handling conventions to _e for error handling functions and no suffix for plain functions, so _impl functions are no longer needed. gsl-1.16/dht/Makefile.am0000664000252300025230000000061712171574312011771 00000000000000noinst_LTLIBRARIES = libgsldht.la pkginclude_HEADERS = gsl_dht.h INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgsldht.la ../specfunc/libgslspecfunc.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c libgsldht_la_SOURCES = dht.c gsl-1.16/dht/dht.c0000664000252300025230000001136012171574312010655 00000000000000/* dht/dht.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include gsl_dht * gsl_dht_alloc (size_t size) { gsl_dht * t; if(size == 0) { GSL_ERROR_VAL("size == 0", GSL_EDOM, 0); } t = (gsl_dht *)malloc(sizeof(gsl_dht)); if(t == 0) { GSL_ERROR_VAL("out of memory", GSL_ENOMEM, 0); } t->size = size; t->xmax = -1.0; /* Make it clear that this needs to be calculated. */ t->nu = -1.0; t->j = (double *)malloc((size+2)*sizeof(double)); if(t->j == 0) { free(t); GSL_ERROR_VAL("could not allocate memory for j", GSL_ENOMEM, 0); } t->Jjj = (double *)malloc(size*(size+1)/2 * sizeof(double)); if(t->Jjj == 0) { free(t->j); free(t); GSL_ERROR_VAL("could not allocate memory for Jjj", GSL_ENOMEM, 0); } t->J2 = (double *)malloc((size+1)*sizeof(double)); if(t->J2 == 0) { free(t->Jjj); free(t->j); free(t); GSL_ERROR_VAL("could not allocate memory for J2", GSL_ENOMEM, 0); } return t; } /* Handle internal calculation of Bessel zeros. */ static int dht_bessel_zeros(gsl_dht * t) { unsigned int s; gsl_sf_result z; int stat_z = 0; t->j[0] = 0.0; for(s=1; s < t->size + 2; s++) { stat_z += gsl_sf_bessel_zero_Jnu_e(t->nu, s, &z); t->j[s] = z.val; } if(stat_z != 0) { GSL_ERROR("could not compute bessel zeroes", GSL_EFAILED); } else { return GSL_SUCCESS; } } gsl_dht * gsl_dht_new (size_t size, double nu, double xmax) { int status; gsl_dht * dht = gsl_dht_alloc (size); if (dht == 0) return 0; status = gsl_dht_init(dht, nu, xmax); if (status) return 0; return dht; } int gsl_dht_init(gsl_dht * t, double nu, double xmax) { if(xmax <= 0.0) { GSL_ERROR ("xmax is not positive", GSL_EDOM); } else if(nu < 0.0) { GSL_ERROR ("nu is negative", GSL_EDOM); } else { size_t n, m; int stat_bz = GSL_SUCCESS; int stat_J = 0; double jN; if(nu != t->nu) { /* Recalculate Bessel zeros if necessary. */ t->nu = nu; stat_bz = dht_bessel_zeros(t); } jN = t->j[t->size+1]; t->xmax = xmax; t->kmax = jN / xmax; t->J2[0] = 0.0; for(m=1; msize+1; m++) { gsl_sf_result J; stat_J += gsl_sf_bessel_Jnu_e(nu + 1.0, t->j[m], &J); t->J2[m] = J.val * J.val; } /* J_nu(j[n] j[m] / j[N]) = Jjj[n(n-1)/2 + m - 1], 1 <= n,m <= size */ for(n=1; nsize+1; n++) { for(m=1; m<=n; m++) { double arg = t->j[n] * t->j[m] / jN; gsl_sf_result J; stat_J += gsl_sf_bessel_Jnu_e(nu, arg, &J); t->Jjj[n*(n-1)/2 + m - 1] = J.val; } } if(stat_J != 0) { GSL_ERROR("error computing bessel function", GSL_EFAILED); } else { return stat_bz; } } } double gsl_dht_x_sample(const gsl_dht * t, int n) { return t->j[n+1]/t->j[t->size+1] * t->xmax; } double gsl_dht_k_sample(const gsl_dht * t, int n) { return t->j[n+1] / t->xmax; } void gsl_dht_free(gsl_dht * t) { RETURN_IF_NULL (t); free(t->J2); free(t->Jjj); free(t->j); free(t); } int gsl_dht_apply(const gsl_dht * t, double * f_in, double * f_out) { const double jN = t->j[t->size + 1]; const double r = t->xmax / jN; size_t m; size_t i; for(m=0; msize; m++) { double sum = 0.0; double Y; for(i=0; isize; i++) { /* Need to find max and min so that we * address the symmetric Jjj matrix properly. * FIXME: we can presumably optimize this * by just running over the elements of Jjj * in a deterministic manner. */ size_t m_local; size_t n_local; if(i < m) { m_local = i; n_local = m; } else { m_local = m; n_local = i; } Y = t->Jjj[n_local*(n_local+1)/2 + m_local] / t->J2[i+1]; sum += Y * f_in[i]; } f_out[m] = sum * 2.0 * r*r; } return GSL_SUCCESS; } gsl-1.16/dht/gsl_dht.h0000664000252300025230000000510512171574312011527 00000000000000/* dht/gsl_dht.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_DHT_H__ #define __GSL_DHT_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_dht_struct { size_t size; /* size of the sample arrays to be transformed */ double nu; /* Bessel function order */ double xmax; /* the upper limit to the x-sampling domain */ double kmax; /* the upper limit to the k-sampling domain */ double * j; /* array of computed J_nu zeros, j_{nu,s} = j[s] */ double * Jjj; /* transform numerator, J_nu(j_i j_m / j_N) */ double * J2; /* transform denominator, J_{nu+1}^2(j_m) */ }; typedef struct gsl_dht_struct gsl_dht; /* Create a new transform object for a given size * sampling array on the domain [0, xmax]. */ gsl_dht * gsl_dht_alloc(size_t size); gsl_dht * gsl_dht_new(size_t size, double nu, double xmax); /* Recalculate a transform object for given values of nu, xmax. * You cannot change the size of the object since the internal * allocation is reused. */ int gsl_dht_init(gsl_dht * t, double nu, double xmax); /* The n'th computed x sample point for a given transform. * 0 <= n <= size-1 */ double gsl_dht_x_sample(const gsl_dht * t, int n); /* The n'th computed k sample point for a given transform. * 0 <= n <= size-1 */ double gsl_dht_k_sample(const gsl_dht * t, int n); /* Free a transform object. */ void gsl_dht_free(gsl_dht * t); /* Perform a transform on a sampled array. * f_in[0] ... f_in[size-1] and similarly for f_out[] */ int gsl_dht_apply(const gsl_dht * t, double * f_in, double * f_out); __END_DECLS #endif /* __GSL_DHT_H__ */ gsl-1.16/test/0000775000252300025230000000000012172254155010212 500000000000000gsl-1.16/test/results.c0000664000252300025230000002215012171574312011776 00000000000000/* err/test_results.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #if HAVE_VPRINTF #ifdef STDC_HEADERS #include #else #include #endif #endif #include static unsigned int tests = 0; static unsigned int passed = 0; static unsigned int failed = 0; static unsigned int verbose = 0; static void initialise (void) { const char * p = getenv("GSL_TEST_VERBOSE"); /* 0 = show failures only (we always want to see these) */ /* 1 = show passes and failures */ if (p == 0) /* environment variable is not set */ return ; if (*p == '\0') /* environment variable is empty */ return ; verbose = strtoul (p, 0, 0); return; } static void update (int s) { tests++; if (s == 0) { passed++; } else { failed++; } } void gsl_test (int status, const char *test_description,...) { if (!tests) initialise(); update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status && !verbose) printf(" [%u]", tests); printf("\n"); fflush (stdout); } } void gsl_test_rel (double result, double expected, double relative_error, const char *test_description,...) { int status ; if (!tests) initialise(); /* Check for NaN vs inf vs number */ if (gsl_isnan(result) || gsl_isnan(expected)) { status = gsl_isnan(result) != gsl_isnan(expected); } else if (gsl_isinf(result) || gsl_isinf(expected)) { status = gsl_isinf(result) != gsl_isinf(expected); } else if ((expected > 0 && expected < GSL_DBL_MIN) || (expected < 0 && expected > -(GSL_DBL_MIN))) { status = -1; } else if (expected != 0 ) { status = (fabs(result-expected)/fabs(expected) > relative_error) ; } else { status = (fabs(result) > relative_error) ; } update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status == 0) { if (strlen(test_description) < 45) { printf(" (%g observed vs %g expected)", result, expected) ; } else { printf(" (%g obs vs %g exp)", result, expected) ; } } else { printf(" (%.18g observed vs %.18g expected)", result, expected) ; } if (status == -1) { printf(" [test uses subnormal value]") ; } if (status && !verbose) printf(" [%u]", tests); printf ("\n") ; fflush (stdout); } } void gsl_test_abs (double result, double expected, double absolute_error, const char *test_description,...) { int status ; if (!tests) initialise(); /* Check for NaN vs inf vs number */ if (gsl_isnan(result) || gsl_isnan(expected)) { status = gsl_isnan(result) != gsl_isnan(expected); } else if (gsl_isinf(result) || gsl_isinf(expected)) { status = gsl_isinf(result) != gsl_isinf(expected); } else if ((expected > 0 && expected < GSL_DBL_MIN) || (expected < 0 && expected > -(GSL_DBL_MIN))) { status = -1; } else { status = fabs(result-expected) > absolute_error ; } update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status == 0) { if (strlen(test_description) < 45) { printf(" (%g observed vs %g expected)", result, expected) ; } else { printf(" (%g obs vs %g exp)", result, expected) ; } } else { printf(" (%.18g observed vs %.18g expected)", result, expected) ; } if (status == -1) { printf(" [test uses subnormal value]") ; } if (status && !verbose) printf(" [%u]", tests); printf ("\n") ; fflush (stdout); } } void gsl_test_factor (double result, double expected, double factor, const char *test_description,...) { int status; if (!tests) initialise(); if ((expected > 0 && expected < GSL_DBL_MIN) || (expected < 0 && expected > -(GSL_DBL_MIN))) { status = -1; } else if (result == expected) { status = 0; } else if (expected == 0.0) { status = (result > expected || result < expected); } else { double u = result / expected; status = (u > factor || u < 1.0 / factor) ; } update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status == 0) { if (strlen(test_description) < 45) { printf(" (%g observed vs %g expected)", result, expected) ; } else { printf(" (%g obs vs %g exp)", result, expected) ; } } else { printf(" (%.18g observed vs %.18g expected)", result, expected) ; } if (status == -1) { printf(" [test uses subnormal value]") ; } if (status && !verbose) printf(" [%u]", tests); printf ("\n") ; fflush (stdout); } } void gsl_test_int (int result, int expected, const char *test_description,...) { int status = (result != expected) ; if (!tests) initialise(); update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status == 0) { printf(" (%d observed vs %d expected)", result, expected) ; } else { printf(" (%d observed vs %d expected)", result, expected) ; } if (status && !verbose) printf(" [%u]", tests); printf ("\n"); fflush (stdout); } } void gsl_test_str (const char * result, const char * expected, const char *test_description,...) { int status = strcmp(result,expected) ; if (!tests) initialise(); update (status); if (status || verbose) { printf (status ? "FAIL: " : "PASS: "); #if HAVE_VPRINTF { va_list ap; #ifdef STDC_HEADERS va_start (ap, test_description); #else va_start (ap); #endif vprintf (test_description, ap); va_end (ap); } #endif if (status) { printf(" (%s observed vs %s expected)", result, expected) ; } if (status && !verbose) printf(" [%u]", tests); printf ("\n"); fflush (stdout); } } void gsl_test_verbose (int v) { verbose = v; } int gsl_test_summary (void) { if (verbose && 0) /* FIXME: turned it off, this annoys me */ printf ("%d tests, passed %d, failed %d.\n", tests, passed, failed); if (failed != 0) { return EXIT_FAILURE; } if (tests != passed + failed) { if (verbose) printf ("TEST RESULTS DO NOT ADD UP %d != %d + %d\n", tests, passed, failed); return EXIT_FAILURE; } if (passed == tests) { if (!verbose) /* display a summary of passed tests */ printf ("Completed [%d/%d]\n", passed, tests); return EXIT_SUCCESS; } return EXIT_FAILURE; } gsl-1.16/test/gsl_test.h0000664000252300025230000000347212171574312012134 00000000000000/* err/gsl_test.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_TEST_H__ #define __GSL_TEST_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS void gsl_test (int status, const char *test_description, ...); void gsl_test_rel (double result, double expected, double relative_error, const char *test_description, ...) ; void gsl_test_abs (double result, double expected, double absolute_error, const char *test_description, ...) ; void gsl_test_factor (double result, double expected, double factor, const char *test_description, ...) ; void gsl_test_int (int result, int expected, const char *test_description, ...) ; void gsl_test_str (const char * result, const char * expected, const char *test_description, ...) ; void gsl_test_verbose (int verbose) ; int gsl_test_summary (void) ; __END_DECLS #endif /* __GSL_TEST_H__ */ gsl-1.16/test/Makefile.in0000664000252300025230000005063112172253757012213 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = test DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgsltest_la_LIBADD = am_libgsltest_la_OBJECTS = results.lo libgsltest_la_OBJECTS = $(am_libgsltest_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsltest_la_SOURCES) DIST_SOURCES = $(libgsltest_la_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgsltest.la pkginclude_HEADERS = gsl_test.h libgsltest_la_SOURCES = results.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .o .obj $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu test/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu test/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsltest.la: $(libgsltest_la_OBJECTS) $(libgsltest_la_DEPENDENCIES) $(EXTRA_libgsltest_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgsltest_la_OBJECTS) $(libgsltest_la_LIBADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/results.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool clean-noinstLTLIBRARIES \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstLTLIBRARIES cscopelist-am ctags \ ctags-am distclean distclean-compile distclean-generic \ distclean-libtool distclean-tags distdir dvi dvi-am html \ html-am info info-am install install-am install-data \ install-data-am install-dvi install-dvi-am install-exec \ install-exec-am install-html install-html-am install-info \ install-info-am install-man install-pdf install-pdf-am \ install-pkgincludeHEADERS install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-compile mostlyclean-generic mostlyclean-libtool \ pdf pdf-am ps ps-am tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #check_PROGRAMS = test #TESTS = test #test_SOURCES = test_errnos.c #test_LDADD = libgsltest.la ../sys/libgslsys.la ../utils/libutils.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/test/ChangeLog0000664000252300025230000000214512171574312011705 000000000000002005-06-21 Brian Gough * results.c: now displayed PASS lines only if GSL_TEST_VERBOSE=1, otherwise only display fail lines by default. Thu Sep 12 22:56:31 2002 Brian Gough * results.c (gsl_test_rel): catch NaN (gsl_test_abs): catch NaN Fri Sep 28 10:40:21 2001 Brian Gough * results.c: use the definition STDC_HEADERS instead of __STDC__ as recommended by the autoconf manual Thu Sep 6 10:17:10 2001 Brian Gough * results.c (gsl_test_factor): fixed factor to work for case of 0==0 without dividing by zero Wed Nov 29 10:42:57 2000 Brian Gough * results.c (gsl_test_factor): added a test for two results being within a given factor of each other (e.g. "result should be good to within a factor of 2"). Note that this is different from the definition of relative error, which starts with a measurement of the difference by subtraction. Fri May 5 11:20:36 2000 Brian Gough * split out gsl_test code from err/ directory gsl-1.16/test/Makefile.am0000664000252300025230000000036112171574312012165 00000000000000noinst_LTLIBRARIES = libgsltest.la pkginclude_HEADERS = gsl_test.h libgsltest_la_SOURCES = results.c #check_PROGRAMS = test #TESTS = test #test_SOURCES = test_errnos.c #test_LDADD = libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/fft/0000775000252300025230000000000012172254161010007 500000000000000gsl-1.16/fft/real_radix2.c0000664000252300025230000000753712171574312012305 00000000000000/* fft/real_radix2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_fft_real,radix2_transform) (BASE data[], const size_t stride, const size_t n) { int result ; size_t p, p_1, q; size_t i; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* bit reverse the ordering of input data for decimation in time algorithm */ status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ; /* apply fft recursion */ p = 1; q = n ; for (i = 1; i <= logn; i++) { size_t a, b; p_1 = p ; p = 2 * p ; q = q / 2 ; /* a = 0 */ for (b = 0; b < q; b++) { ATOMIC t0_real = VECTOR(data,stride,b*p) + VECTOR(data,stride,b*p + p_1) ; ATOMIC t1_real = VECTOR(data,stride,b*p) - VECTOR(data,stride,b*p + p_1) ; VECTOR(data,stride,b*p) = t0_real ; VECTOR(data,stride,b*p + p_1) = t1_real ; } /* a = 1 ... p_{i-1}/2 - 1 */ { ATOMIC w_real = 1.0; ATOMIC w_imag = 0.0; const double theta = - 2.0 * M_PI / p; const ATOMIC s = sin (theta); const ATOMIC t = sin (theta / 2.0); const ATOMIC s2 = 2.0 * t * t; for (a = 1; a < (p_1)/2; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real; const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < q; b++) { ATOMIC z0_real = VECTOR(data,stride,b*p + a) ; ATOMIC z0_imag = VECTOR(data,stride,b*p + p_1 - a) ; ATOMIC z1_real = VECTOR(data,stride,b*p + p_1 + a) ; ATOMIC z1_imag = VECTOR(data,stride,b*p + p - a) ; /* t0 = z0 + w * z1 */ ATOMIC t0_real = z0_real + w_real * z1_real - w_imag * z1_imag; ATOMIC t0_imag = z0_imag + w_real * z1_imag + w_imag * z1_real; /* t1 = z0 - w * z1 */ ATOMIC t1_real = z0_real - w_real * z1_real + w_imag * z1_imag; ATOMIC t1_imag = z0_imag - w_real * z1_imag - w_imag * z1_real; VECTOR(data,stride,b*p + a) = t0_real ; VECTOR(data,stride,b*p + p - a) = t0_imag ; VECTOR(data,stride,b*p + p_1 - a) = t1_real ; VECTOR(data,stride,b*p + p_1 + a) = -t1_imag ; } } } if (p_1 > 1) { for (b = 0; b < q; b++) { /* a = p_{i-1}/2 */ VECTOR(data,stride,b*p + p - p_1/2) *= -1 ; } } } return 0; } gsl-1.16/fft/c_main.c0000664000252300025230000001573112171574312011332 00000000000000/* fft/c_main.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "c_pass.h" int FUNCTION(gsl_fft_complex,forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); return status; } int FUNCTION(gsl_fft_complex,backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); return status; } int FUNCTION(gsl_fft_complex,inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,transform) (data, stride, n, wavetable, work, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const ATOMIC norm = ONE / (ATOMIC)n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const TYPE(gsl_fft_complex_wavetable) * wavetable, TYPE(gsl_fft_complex_workspace) * work, const gsl_fft_direction sign) { const size_t nf = wavetable->nf; size_t i; size_t q, product = 1; TYPE(gsl_complex) *twiddle1, *twiddle2, *twiddle3, *twiddle4, *twiddle5, *twiddle6; size_t state = 0; BASE * const scratch = work->scratch; BASE * in = data; size_t istride = stride; BASE * out = scratch; size_t ostride = 1; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { /* FFT of 1 data point is the identity */ return 0; } if (n != wavetable->n) { GSL_ERROR ("wavetable does not match length of data", GSL_EINVAL); } if (n != work->n) { GSL_ERROR ("workspace does not match length of data", GSL_EINVAL); } for (i = 0; i < nf; i++) { const size_t factor = wavetable->factor[i]; product *= factor; q = n / product; if (state == 0) { in = data; istride = stride; out = scratch; ostride = 1; state = 1; } else { in = scratch; istride = 1; out = data; ostride = stride; state = 0; } if (factor == 2) { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_complex,pass_2) (in, istride, out, ostride, sign, product, n, twiddle1); } else if (factor == 3) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; FUNCTION(fft_complex,pass_3) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2); } else if (factor == 4) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; FUNCTION(fft_complex,pass_4) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3); } else if (factor == 5) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; FUNCTION(fft_complex,pass_5) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4); } else if (factor == 6) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; twiddle5 = twiddle4 + q; FUNCTION(fft_complex,pass_6) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4, twiddle5); } else if (factor == 7) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + q; twiddle3 = twiddle2 + q; twiddle4 = twiddle3 + q; twiddle5 = twiddle4 + q; twiddle6 = twiddle5 + q; FUNCTION(fft_complex,pass_7) (in, istride, out, ostride, sign, product, n, twiddle1, twiddle2, twiddle3, twiddle4, twiddle5, twiddle6); } else { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_complex,pass_n) (in, istride, out, ostride, sign, factor, product, n, twiddle1); } } if (state == 1) /* copy results back from scratch to data */ { for (i = 0; i < n; i++) { REAL(data,stride,i) = REAL(scratch,1,i) ; IMAG(data,stride,i) = IMAG(scratch,1,i) ; } } return 0; } gsl-1.16/fft/hc_pass_n.c0000664000252300025230000002006512171574312012035 00000000000000/* fft/hc_pass_n.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_n) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t k, k1; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; size_t e1, e2; const double d_theta = 2.0 * M_PI / ((double) factor); const ATOMIC cos_d_theta = cos (d_theta); const ATOMIC sin_d_theta = sin (d_theta); for (k1 = 0; k1 < product_1; k1++) { /* compute z = W(factor) x, for x halfcomplex */ ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC sum_real = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { ATOMIC tmp_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC tmp_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = tmp_real; dw_imag = tmp_imag; } for (e2 = 0; e2 <= factor - e2; e2++) { ATOMIC z_real, z_imag; if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 == 0) { size_t from_idx = factor * k1 * q; z_real = VECTOR(in,istride,from_idx); z_imag = 0.0; sum_real += w_real * z_real - w_imag * z_imag; } else if (e2 == factor - e2) { size_t from_idx = factor * q * k1 + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from_idx); z_imag = 0.0; sum_real += w_real * z_real; } else { size_t from_idx = factor * q * k1 + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from_idx); z_imag = VECTOR(in,istride,from_idx + 1); sum_real += 2 * (w_real * z_real - w_imag * z_imag); } } { const size_t to_idx = q * k1 + e1 * m; VECTOR(out,ostride,to_idx) = sum_real; } } } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { for (k1 = 0; k1 < product_1; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC z_real, z_imag; ATOMIC sum_real = 0.0; ATOMIC sum_imag = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { ATOMIC t_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC t_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = t_real; dw_imag = t_imag; } for (e2 = 0; e2 < factor; e2++) { if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 < factor - e2) { const size_t from0 = factor * k1 * q + 2 * k + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = VECTOR(in,istride,from0 + 1); } else { const size_t from0 = factor * k1 * q - 2 * k + 2 * (factor - e2) * q - 1; z_real = VECTOR(in,istride,from0); z_imag = -VECTOR(in,istride,from0 + 1); } sum_real += w_real * z_real - w_imag * z_imag; sum_imag += w_real * z_imag + w_imag * z_real; } if (k == 0 || e1 == 0) { w_real = 1.0; w_imag = 0.0; } else { size_t tskip = (q + 1) / 2 - 1; w_real = GSL_REAL(twiddle[k - 1 + tskip * (e1 - 1)]); w_imag = GSL_IMAG(twiddle[k - 1 + tskip * (e1 - 1)]); } { const size_t to0 = k1 * q + 2 * k + e1 * m - 1; VECTOR(out,ostride,to0) = w_real * sum_real - w_imag * sum_imag; VECTOR(out,ostride,to0 + 1) = w_real * sum_imag + w_imag * sum_real; } } } } if (q % 2 == 1) return; { double tw_arg = M_PI / ((double) factor); ATOMIC cos_tw_arg = cos (tw_arg); ATOMIC sin_tw_arg = sin (tw_arg); for (k1 = 0; k1 < product_1; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; ATOMIC tw_real = 1.0, tw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC w_real, w_imag, z_real, z_imag; ATOMIC sum_real = 0.0; if (e1 > 0) { ATOMIC tmp_real = tw_real * cos_tw_arg - tw_imag * sin_tw_arg; ATOMIC tmp_imag = tw_real * sin_tw_arg + tw_imag * cos_tw_arg; tw_real = tmp_real; tw_imag = tmp_imag; } w_real = tw_real; w_imag = tw_imag; if (e1 > 0) { ATOMIC t_real = dw_real * cos_d_theta - dw_imag * sin_d_theta; ATOMIC t_imag = dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = t_real; dw_imag = t_imag; } for (e2 = 0; e2 <= factor - e2 - 1; e2++) { if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } if (e2 == factor - e2 - 1) { const size_t from0 = factor * k1 * q + q + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = 0.0; sum_real += w_real * z_real - w_imag * z_imag; } else { const size_t from0 = factor * k1 * q + q + 2 * e2 * q - 1; z_real = VECTOR(in,istride,from0); z_imag = VECTOR(in,istride,from0 + 1); sum_real += 2 * (w_real * z_real - w_imag * z_imag); } } { const size_t to0 = k1 * q + q + e1 * m - 1; VECTOR(out,ostride,to0) = sum_real; } } } } return; } gsl-1.16/fft/hc_main.c0000664000252300025230000001222012171574312011470 00000000000000/* fft/hc_main.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "hc_pass.h" int FUNCTION(gsl_fft_halfcomplex,backward) (BASE data[], const size_t stride, const size_t n, const TYPE(gsl_fft_halfcomplex_wavetable) * wavetable, TYPE(gsl_fft_real_workspace) * work) { int status = FUNCTION(gsl_fft_halfcomplex,transform) (data, stride, n, wavetable, work) ; return status ; } int FUNCTION(gsl_fft_halfcomplex,inverse) (BASE data[], const size_t stride, const size_t n, const TYPE(gsl_fft_halfcomplex_wavetable) * wavetable, TYPE(gsl_fft_real_workspace) * work) { int status = FUNCTION(gsl_fft_halfcomplex,transform) (data, stride, n, wavetable, work); if (status) { return status; } /* normalize inverse fft with 1/n */ { const double norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { data[stride*i] *= norm; } } return status; } int FUNCTION(gsl_fft_halfcomplex,transform) (BASE data[], const size_t stride, const size_t n, const TYPE(gsl_fft_halfcomplex_wavetable) * wavetable, TYPE(gsl_fft_real_workspace) * work) { BASE * const scratch = work->scratch; BASE * in; BASE * out; size_t istride, ostride ; size_t factor, product, q; size_t i; size_t nf; int state; int product_1; int tskip; TYPE(gsl_complex) *twiddle1, *twiddle2, *twiddle3, *twiddle4; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { /* FFT of one data point is the identity */ return 0; } if (n != wavetable->n) { GSL_ERROR ("wavetable does not match length of data", GSL_EINVAL); } if (n != work->n) { GSL_ERROR ("workspace does not match length of data", GSL_EINVAL); } nf = wavetable->nf; product = 1; state = 0; for (i = 0; i < nf; i++) { factor = wavetable->factor[i]; product_1 = product; product *= factor; q = n / product; tskip = (q + 1) / 2 - 1; if (state == 0) { in = data; istride = stride; out = scratch; ostride = 1; state = 1; } else { in = scratch; istride = 1; out = data; ostride = stride; state = 0; } if (factor == 2) { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_halfcomplex,pass_2) (in, istride, out, ostride, product, n, twiddle1); } else if (factor == 3) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; FUNCTION(fft_halfcomplex,pass_3) (in, istride, out, ostride, product, n, twiddle1, twiddle2); } else if (factor == 4) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; twiddle3 = twiddle2 + tskip; FUNCTION(fft_halfcomplex,pass_4) (in, istride, out, ostride, product, n, twiddle1, twiddle2, twiddle3); } else if (factor == 5) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; twiddle3 = twiddle2 + tskip; twiddle4 = twiddle3 + tskip; FUNCTION(fft_halfcomplex,pass_5) (in, istride, out, ostride, product, n, twiddle1, twiddle2, twiddle3, twiddle4); } else { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_halfcomplex,pass_n) (in, istride, out, ostride, factor, product, n, twiddle1); } } if (state == 1) /* copy results back from scratch to data */ { for (i = 0; i < n; i++) { data[stride*i] = scratch[i] ; } } return 0; } gsl-1.16/fft/hc_pass_3.c0000664000252300025230000001235712171574312011747 00000000000000/* fft/hc_pass_3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[]) { size_t i, j, k, k1, jump; size_t factor, q, m, product_1; ATOMIC tau = sqrt (3.0) / 2.0; i = 0; j = 0; factor = 3; m = n / factor; q = n / product; product_1 = product / factor; jump = (factor - 1) * q; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 3 * k1 * q; const size_t from1 = from0 + 2 * q - 1; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC t1_real = 2 * z1_real; const ATOMIC t2_real = z0_real - z1_real; const ATOMIC t3_imag = 2 * tau * z1_imag; const size_t to0 = q * k1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; VECTOR(out,ostride,to0) = z0_real + t1_real; VECTOR(out,ostride,to1) = t2_real - t3_imag; VECTOR(out,ostride,to2) = t2_real + t3_imag; } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { const ATOMIC w1_real = GSL_REAL(twiddle1[k - 1]); const ATOMIC w1_imag = GSL_IMAG(twiddle1[k - 1]); const ATOMIC w2_real = GSL_REAL(twiddle2[k - 1]); const ATOMIC w2_imag = GSL_IMAG(twiddle2[k - 1]); for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 3 * k1 * q + 2 * k - 1; const size_t from1 = from0 + 2 * q; const size_t from2 = 3 * k1 * q - 2 * k + 2 * q - 1; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z2_imag = -VECTOR(in,istride,from2 + 1); /* compute x = W(3) z */ /* t1 = z1 + z2 */ const ATOMIC t1_real = z1_real + z2_real; const ATOMIC t1_imag = z1_imag + z2_imag; /* t2 = z0 - t1/2 */ const ATOMIC t2_real = z0_real - t1_real / 2.0; const ATOMIC t2_imag = z0_imag - t1_imag / 2.0; /* t3 = sin(pi/3)*(z1 - z2) */ const ATOMIC t3_real = tau * (z1_real - z2_real); const ATOMIC t3_imag = tau * (z1_imag - z2_imag); /* x0 = z0 + t1 */ const ATOMIC x0_real = z0_real + t1_real; const ATOMIC x0_imag = z0_imag + t1_imag; /* x1 = t2 + i t3 */ const ATOMIC x1_real = t2_real - t3_imag; const ATOMIC x1_imag = t2_imag + t3_real; /* x2 = t2 - i t3 */ const ATOMIC x2_real = t2_real + t3_imag; const ATOMIC x2_imag = t2_imag - t3_real; const size_t to0 = k1 * q + 2 * k - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = w1_real * x1_real - w1_imag * x1_imag; VECTOR(out,ostride,to1 + 1) = w1_imag * x1_real + w1_real * x1_imag; VECTOR(out,ostride,to2) = w2_real * x2_real - w2_imag * x2_imag; VECTOR(out,ostride,to2 + 1) = w2_imag * x2_real + w2_real * x2_imag; } } if (q % 2 == 1) return; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 3 * k1 * q + q - 1; const size_t from1 = from0 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC t1_real = z0_real - z1_real; const ATOMIC t2_real = 2 * tau * z0_imag; const ATOMIC x0_real = 2 * z0_real + z1_real; const ATOMIC x1_real = t1_real - t2_real; const ATOMIC x2_real = -t1_real - t2_real; const size_t to0 = k1 * q + q - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to2) = x2_real; } return; } gsl-1.16/fft/real_pass_n.c0000664000252300025230000002052212171574312012364 00000000000000/* fft/real_pass_n.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_n) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t k, k1; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; size_t e1, e2; const double d_theta = 2.0 * M_PI / ((double) factor); const ATOMIC cos_d_theta = cos (d_theta); const ATOMIC sin_d_theta = sin (d_theta); for (k1 = 0; k1 < q; k1++) { /* compute x = W(factor) z, for z real */ ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 <= factor - e1; e1++) { ATOMIC sum_real = 0.0; ATOMIC sum_imag = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { ATOMIC tmp_real = dw_real * cos_d_theta + dw_imag * sin_d_theta; ATOMIC tmp_imag = -dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = tmp_real; dw_imag = tmp_imag; } for (e2 = 0; e2 < factor; e2++) { ATOMIC z_real = VECTOR(in,istride,k1 * product_1 + e2 * m); if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } sum_real += w_real * z_real; sum_imag += w_imag * z_real; } if (e1 == 0) { const size_t to0 = product * k1; VECTOR(out,ostride,to0) = sum_real; } else if (e1 < factor - e1) { const size_t to0 = k1 * product + 2 * e1 * product_1 - 1; VECTOR(out,ostride,to0) = sum_real; VECTOR(out,ostride,to0 + 1) = sum_imag; } else if (e1 == factor - e1) { const size_t to0 = k1 * product + 2 * e1 * product_1 - 1; VECTOR(out,ostride,to0) = sum_real; } } } if (product_1 == 1) return; for (k = 1; k < (product_1 + 1) / 2; k++) { for (k1 = 0; k1 < q; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC sum_real = 0.0, sum_imag = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; if (e1 > 0) { const ATOMIC tmp_real = dw_real * cos_d_theta + dw_imag * sin_d_theta; const ATOMIC tmp_imag = -dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = tmp_real; dw_imag = tmp_imag; } for (e2 = 0; e2 < factor; e2++) { int tskip = (product_1 + 1) / 2 - 1; const size_t from0 = k1 * product_1 + 2 * k + e2 * m - 1; ATOMIC tw_real, tw_imag; ATOMIC z_real, z_imag; if (e2 == 0) { tw_real = 1.0; tw_imag = 0.0; } else { const size_t t_index = (k - 1) + (e2 - 1) * tskip; tw_real = GSL_REAL(twiddle[t_index]); tw_imag = -GSL_IMAG(twiddle[t_index]); } { const ATOMIC f0_real = VECTOR(in,istride,from0); const ATOMIC f0_imag = VECTOR(in,istride,from0 + 1); z_real = tw_real * f0_real - tw_imag * f0_imag; z_imag = tw_real * f0_imag + tw_imag * f0_real; } if (e2 > 0) { const ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; const ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } sum_real += w_real * z_real - w_imag * z_imag; sum_imag += w_real * z_imag + w_imag * z_real; } if (e1 < factor - e1) { const size_t to0 = k1 * product - 1 + 2 * e1 * product_1 + 2 * k; VECTOR(out,ostride,to0) = sum_real; VECTOR(out,ostride,to0 + 1) = sum_imag; } else { const size_t to0 = k1 * product - 1 + 2 * (factor - e1) * product_1 - 2 * k; VECTOR(out,ostride,to0) = sum_real; VECTOR(out,ostride,to0 + 1) = -sum_imag; } } } } if (product_1 % 2 == 1) return; { double tw_arg = M_PI / ((double) factor); ATOMIC cos_tw_arg = cos (tw_arg); ATOMIC sin_tw_arg = -sin (tw_arg); for (k1 = 0; k1 < q; k1++) { ATOMIC dw_real = 1.0, dw_imag = 0.0; for (e1 = 0; e1 < factor; e1++) { ATOMIC z_real, z_imag; ATOMIC sum_real = 0.0; ATOMIC sum_imag = 0.0; ATOMIC w_real = 1.0, w_imag = 0.0; ATOMIC tw_real = 1.0, tw_imag = 0.0; if (e1 > 0) { ATOMIC t_real = dw_real * cos_d_theta + dw_imag * sin_d_theta; ATOMIC t_imag = -dw_real * sin_d_theta + dw_imag * cos_d_theta; dw_real = t_real; dw_imag = t_imag; } for (e2 = 0; e2 < factor; e2++) { if (e2 > 0) { ATOMIC tmp_real = tw_real * cos_tw_arg - tw_imag * sin_tw_arg; ATOMIC tmp_imag = tw_real * sin_tw_arg + tw_imag * cos_tw_arg; tw_real = tmp_real; tw_imag = tmp_imag; } if (e2 > 0) { ATOMIC tmp_real = dw_real * w_real - dw_imag * w_imag; ATOMIC tmp_imag = dw_real * w_imag + dw_imag * w_real; w_real = tmp_real; w_imag = tmp_imag; } { const size_t from0 = k1 * product_1 + 2 * k + e2 * m - 1; const ATOMIC f0_real = VECTOR(in,istride,from0); z_real = tw_real * f0_real; z_imag = tw_imag * f0_real; } sum_real += w_real * z_real - w_imag * z_imag; sum_imag += w_real * z_imag + w_imag * z_real; } if (e1 + 1 < factor - e1) { const size_t to0 = k1 * product - 1 + 2 * e1 * product_1 + 2 * k; VECTOR(out,ostride,to0) = sum_real; VECTOR(out,ostride,to0 + 1) = sum_imag; } else if (e1 + 1 == factor - e1) { const size_t to0 = k1 * product - 1 + 2 * e1 * product_1 + 2 * k; VECTOR(out,ostride,to0) = sum_real; } else { const size_t to0 = k1 * product - 1 + 2 * (factor - e1) * product_1 - 2 * k; VECTOR(out,ostride,to0) = sum_real; VECTOR(out,ostride,to0 + 1) = -sum_imag; } } } } return; } gsl-1.16/fft/hc_radix2.c0000664000252300025230000001133512171574312011743 00000000000000/* fft/hc_radix2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_fft_halfcomplex,radix2_backward) (BASE data[], const size_t stride, const size_t n) { int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n) ; return status ; } int FUNCTION(gsl_fft_halfcomplex,radix2_inverse) (BASE data[], const size_t stride, const size_t n) { int status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (data, stride, n); if (status) { return status; } /* normalize inverse fft with 1/n */ { const ATOMIC norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { data[stride*i] *= norm; } } return status; } int FUNCTION(gsl_fft_halfcomplex,radix2_transform) (BASE data[], const size_t stride, const size_t n) { int result ; size_t p, p_1, q; size_t i; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* apply fft recursion */ p = n; q = 1 ; p_1 = n/2 ; for (i = 1; i <= logn; i++) { size_t a, b; /* a = 0 */ for (b = 0; b < q; b++) { const ATOMIC z0 = VECTOR(data,stride,b*p); const ATOMIC z1 = VECTOR(data,stride,b*p + p_1); const ATOMIC t0_real = z0 + z1 ; const ATOMIC t1_real = z0 - z1 ; VECTOR(data,stride,b*p) = t0_real; VECTOR(data,stride,b*p + p_1) = t1_real ; } /* a = 1 ... p_{i-1}/2 - 1 */ { ATOMIC w_real = 1.0; ATOMIC w_imag = 0.0; const ATOMIC theta = 2.0 * M_PI / p; const ATOMIC s = sin (theta); const ATOMIC t = sin (theta / 2.0); const ATOMIC s2 = 2.0 * t * t; for (a = 1; a < (p_1)/2; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real; const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < q; b++) { ATOMIC z0_real = VECTOR(data,stride,b*p + a) ; ATOMIC z0_imag = VECTOR(data,stride,b*p + p - a) ; ATOMIC z1_real = VECTOR(data,stride,b*p + p_1 - a) ; ATOMIC z1_imag = -VECTOR(data,stride,b*p + p_1 + a) ; /* t0 = z0 + z1 */ ATOMIC t0_real = z0_real + z1_real; ATOMIC t0_imag = z0_imag + z1_imag; /* t1 = (z0 - z1) */ ATOMIC t1_real = z0_real - z1_real; ATOMIC t1_imag = z0_imag - z1_imag; VECTOR(data,stride,b*p + a) = t0_real ; VECTOR(data,stride,b*p + p_1 - a) = t0_imag ; VECTOR(data,stride,b*p + p_1 + a) = (w_real * t1_real - w_imag * t1_imag) ; VECTOR(data,stride,b*p + p - a) = (w_real * t1_imag + w_imag * t1_real) ; } } } if (p_1 > 1) { for (b = 0; b < q; b++) { VECTOR(data,stride,b*p + p_1/2) *= 2 ; VECTOR(data,stride,b*p + p_1 + p_1/2) *= -2 ; } } p_1 = p_1 / 2 ; p = p / 2 ; q = q * 2 ; } /* bit reverse the ordering of output data for decimation in frequency algorithm */ status = FUNCTION(fft_real,bitreverse_order)(data, stride, n, logn) ; return 0; } gsl-1.16/fft/TODO0000664000252300025230000000126312171574312010423 00000000000000# -*- org -*- #+CATEGORY: fft * Sine and Cosine Transforms from FFTPACK. * A simple multidimensional fft. * Convolutions. This will need different interfaces corresponding to the type of underlying FFT (radix-2, mixed-radix, radix-2 real, mixed-radix real). The convolution function should be fft'ed before being passed, so that the function can be used in a loop. The main point of the function being to do the index manipulation for the multiplication F*G. Theoretically someone might want to convolve real and complex data together which could be done but would double the number of interfaces. It would be reasonable to restrict the convolutions to real-real and complex-complex. gsl-1.16/fft/c_pass_4.c0000664000252300025230000001221512171574312011571 00000000000000/* fft/c_pass_4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 4; const size_t m = n / factor; const size_t q = n / product; const size_t p_1 = product / factor; const size_t jump = (factor - 1) * p_1; for (k = 0; k < q; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag, w3_real, w3_imag; if (k == 0) { w1_real = 1.0; w1_imag = 0.0; w2_real = 1.0; w2_imag = 0.0; w3_real = 1.0; w3_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = GSL_IMAG(twiddle3[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = -GSL_IMAG(twiddle3[k - 1]); } } for (k1 = 0; k1 < p_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); const ATOMIC z2_real = REAL(in,istride,i+2*m); const ATOMIC z2_imag = IMAG(in,istride,i+2*m); const ATOMIC z3_real = REAL(in,istride,i+3*m); const ATOMIC z3_imag = IMAG(in,istride,i+3*m); /* compute x = W(4) z */ /* t1 = z0 + z2 */ const ATOMIC t1_real = z0_real + z2_real; const ATOMIC t1_imag = z0_imag + z2_imag; /* t2 = z1 + z3 */ const ATOMIC t2_real = z1_real + z3_real; const ATOMIC t2_imag = z1_imag + z3_imag; /* t3 = z0 - z2 */ const ATOMIC t3_real = z0_real - z2_real; const ATOMIC t3_imag = z0_imag - z2_imag; /* t4 = (+/-) (z1 - z3) */ const ATOMIC t4_real = ((int) sign) * (z1_real - z3_real); const ATOMIC t4_imag = ((int) sign) * (z1_imag - z3_imag); /* x0 = t1 + t2 */ const ATOMIC x0_real = t1_real + t2_real; const ATOMIC x0_imag = t1_imag + t2_imag; /* x1 = t3 + i t4 */ const ATOMIC x1_real = t3_real - t4_imag; const ATOMIC x1_imag = t3_imag + t4_real; /* x2 = t1 - t2 */ const ATOMIC x2_real = t1_real - t2_real; const ATOMIC x2_imag = t1_imag - t2_imag; /* x3 = t3 - i t4 */ const ATOMIC x3_real = t3_real + t4_imag; const ATOMIC x3_imag = t3_imag - t4_real; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out, ostride, j + p_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out, ostride, j + p_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out, ostride, j + 2 * p_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out, ostride, j + 2 * p_1) = w2_real * x2_imag + w2_imag * x2_real; /* to3 = w3 * x3 */ REAL(out, ostride, j + 3 * p_1) = w3_real * x3_real - w3_imag * x3_imag; IMAG(out, ostride, j + 3 * p_1) = w3_real * x3_imag + w3_imag * x3_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/factorize.c0000664000252300025230000000721712171574312012072 00000000000000/* fft/factorize.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "factorize.h" static int fft_complex_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t complex_subtransforms[] = {7, 6, 5, 4, 3, 2, 0}; /* other factors can be added here if their transform modules are implemented. The end of the list is marked by 0. */ int status = fft_factorize (n, complex_subtransforms, nf, factors); return status; } static int fft_halfcomplex_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t halfcomplex_subtransforms[] = {5, 4, 3, 2, 0}; int status = fft_factorize (n, halfcomplex_subtransforms, nf, factors); return status; } static int fft_real_factorize (const size_t n, size_t *nf, size_t factors[]) { const size_t real_subtransforms[] = {5, 4, 3, 2, 0}; int status = fft_factorize (n, real_subtransforms, nf, factors); return status; } static int fft_factorize (const size_t n, const size_t implemented_subtransforms[], size_t *n_factors, size_t factors[]) { size_t nf = 0; size_t ntest = n; size_t factor; size_t i = 0; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { factors[0] = 1; *n_factors = 1; return 0; } /* deal with the implemented factors first */ while (implemented_subtransforms[i] && ntest != 1) { factor = implemented_subtransforms[i]; while ((ntest % factor) == 0) { ntest = ntest / factor; factors[nf] = factor; nf++; } i++; } /* deal with any other even prime factors (there is only one) */ factor = 2; while ((ntest % factor) == 0 && (ntest != 1)) { ntest = ntest / factor; factors[nf] = factor; nf++; } /* deal with any other odd prime factors */ factor = 3; while (ntest != 1) { while ((ntest % factor) != 0) { factor += 2; } ntest = ntest / factor; factors[nf] = factor; nf++; } /* check that the factorization is correct */ { size_t product = 1; for (i = 0; i < nf; i++) { product *= factors[i]; } if (product != n) { GSL_ERROR ("factorization failed", GSL_ESANITY); } } *n_factors = nf; return 0; } static int fft_binary_logn (const size_t n) { size_t ntest ; size_t binary_logn = 0 ; size_t k = 1; while (k < n) { k *= 2; binary_logn++; } ntest = (1 << binary_logn) ; if (n != ntest ) { return -1 ; /* n is not a power of 2 */ } return binary_logn; } gsl-1.16/fft/gsl_fft.h0000664000252300025230000000257212171574312011534 00000000000000/* fft/gsl_fft.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_H__ #define __GSL_FFT_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef enum { gsl_fft_forward = -1, gsl_fft_backward = +1 } gsl_fft_direction; /* this gives the sign in the formula h(f) = \sum x(t) exp(+/- 2 pi i f t) where - is the forward transform direction and + the inverse direction */ __END_DECLS #endif /* __GSL_FFT_H__ */ gsl-1.16/fft/c_pass_3.c0000664000252300025230000001050712171574312011572 00000000000000/* fft/c_pass_3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) * twiddle1, const TYPE(gsl_complex) * twiddle2) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 3; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; const size_t jump = (factor - 1) * product_1; const ATOMIC tau = sqrt (3.0) / 2.0; for (k = 0; k < q; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag; if (k == 0) { w1_real = 1.0; w1_imag = 0.0; w2_real = 1.0; w2_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = GSL_IMAG(twiddle2[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); } } for (k1 = 0; k1 < product_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); const ATOMIC z2_real = REAL(in,istride,i+2*m); const ATOMIC z2_imag = IMAG(in,istride,i+2*m); /* compute x = W(3) z */ /* t1 = z1 + z2 */ const ATOMIC t1_real = z1_real + z2_real; const ATOMIC t1_imag = z1_imag + z2_imag; /* t2 = z0 - t1/2 */ const ATOMIC t2_real = z0_real - t1_real / 2.0; const ATOMIC t2_imag = z0_imag - t1_imag / 2.0; /* t3 = (+/-) sin(pi/3)*(z1 - z2) */ const ATOMIC t3_real = ((int) sign) * tau * (z1_real - z2_real); const ATOMIC t3_imag = ((int) sign) * tau * (z1_imag - z2_imag); /* x0 = z0 + t1 */ const ATOMIC x0_real = z0_real + t1_real; const ATOMIC x0_imag = z0_imag + t1_imag; /* x1 = t2 + i t3 */ const ATOMIC x1_real = t2_real - t3_imag; const ATOMIC x1_imag = t2_imag + t3_real; /* x2 = t2 - i t3 */ const ATOMIC x2_real = t2_real + t3_imag; const ATOMIC x2_imag = t2_imag - t3_real; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out,ostride,j+product_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out,ostride,j+product_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out,ostride,j+2*product_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out,ostride,j+2*product_1) = w2_real * x2_imag + w2_imag * x2_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/hc_pass_4.c0000664000252300025230000001466212171574312011751 00000000000000/* fft/hc_pass_4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]) { size_t i, j, k, k1, jump; size_t factor, q, m, product_1; i = 0; j = 0; factor = 4; m = n / factor; q = n / product; product_1 = product / factor; jump = (factor - 1) * q; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 4 * k1 * q; const size_t from1 = from0 + 2 * q - 1; const size_t from2 = from1 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC t1_real = z0_real + z2_real; const ATOMIC t2_real = 2 * z1_real; const ATOMIC t3_real = z0_real - z2_real; const ATOMIC t4_imag = 2 * z1_imag; const size_t to0 = q * k1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; VECTOR(out,ostride,to0) = t1_real + t2_real; VECTOR(out,ostride,to1) = t3_real - t4_imag; VECTOR(out,ostride,to2) = t1_real - t2_real; VECTOR(out,ostride,to3) = t3_real + t4_imag; } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { const ATOMIC w1_real = GSL_REAL(twiddle1[k - 1]); const ATOMIC w1_imag = GSL_IMAG(twiddle1[k - 1]); const ATOMIC w2_real = GSL_REAL(twiddle2[k - 1]); const ATOMIC w2_imag = GSL_IMAG(twiddle2[k - 1]); const ATOMIC w3_real = GSL_REAL(twiddle3[k - 1]); const ATOMIC w3_imag = GSL_IMAG(twiddle3[k - 1]); for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 4 * k1 * q + 2 * k - 1; const size_t from1 = from0 + 2 * q; const size_t from2 = 4 * k1 * q - 2 * k + 2 * q - 1; const size_t from3 = from2 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from3); const ATOMIC z2_imag = -VECTOR(in,istride,from3 + 1); const ATOMIC z3_real = VECTOR(in,istride,from2); const ATOMIC z3_imag = -VECTOR(in,istride,from2 + 1); /* compute x = W(4) z */ /* t1 = z0 + z2 */ const ATOMIC t1_real = z0_real + z2_real; const ATOMIC t1_imag = z0_imag + z2_imag; /* t2 = z1 + z3 */ const ATOMIC t2_real = z1_real + z3_real; const ATOMIC t2_imag = z1_imag + z3_imag; /* t3 = z0 - z2 */ const ATOMIC t3_real = z0_real - z2_real; const ATOMIC t3_imag = z0_imag - z2_imag; /* t4 = (z1 - z3) */ const ATOMIC t4_real = (z1_real - z3_real); const ATOMIC t4_imag = (z1_imag - z3_imag); /* x0 = t1 + t2 */ const ATOMIC x0_real = t1_real + t2_real; const ATOMIC x0_imag = t1_imag + t2_imag; /* x1 = t3 + i t4 */ const ATOMIC x1_real = t3_real - t4_imag; const ATOMIC x1_imag = t3_imag + t4_real; /* x2 = t1 - t2 */ const ATOMIC x2_real = t1_real - t2_real; const ATOMIC x2_imag = t1_imag - t2_imag; /* x3 = t3 - i t4 */ const ATOMIC x3_real = t3_real + t4_imag; const ATOMIC x3_imag = t3_imag - t4_real; const size_t to0 = k1 * q + 2 * k - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = w1_real * x1_real - w1_imag * x1_imag; VECTOR(out,ostride,to1 + 1) = w1_imag * x1_real + w1_real * x1_imag; VECTOR(out,ostride,to2) = w2_real * x2_real - w2_imag * x2_imag; VECTOR(out,ostride,to2 + 1) = w2_imag * x2_real + w2_real * x2_imag; /* to3 = w3 * x3 */ VECTOR(out,ostride,to3) = w3_real * x3_real - w3_imag * x3_imag; VECTOR(out,ostride,to3 + 1) = w3_real * x3_imag + w3_imag * x3_real; } } if (q % 2 == 1) return; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 4 * k1 * q + q - 1; const size_t from1 = from0 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC t1_real = sqrt (2.0) * (z0_imag + z1_imag); const ATOMIC t2_real = sqrt (2.0) * (z0_real - z1_real); const ATOMIC x0_real = 2 * (z0_real + z1_real); const ATOMIC x1_real = t2_real - t1_real; const ATOMIC x2_real = 2 * (z1_imag - z0_imag); const ATOMIC x3_real = -(t2_real + t1_real); const size_t to0 = k1 * q + q - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to3) = x3_real; } return; } gsl-1.16/fft/hc_unpack.c0000664000252300025230000000547612171574312012044 00000000000000/* fft/hc_unpack.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_fft_halfcomplex,unpack) (const BASE halfcomplex_coefficient[], BASE complex_coefficient[], const size_t stride, const size_t n) { size_t i; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } REAL(complex_coefficient,stride,0) = halfcomplex_coefficient[0]; IMAG(complex_coefficient,stride,0) = 0.0; for (i = 1; i < n - i; i++) { const ATOMIC hc_real = halfcomplex_coefficient[(2 * i - 1) * stride]; const ATOMIC hc_imag = halfcomplex_coefficient[2 * i * stride]; REAL(complex_coefficient,stride,i) = hc_real; IMAG(complex_coefficient,stride,i) = hc_imag; REAL(complex_coefficient,stride,n - i) = hc_real; IMAG(complex_coefficient,stride,n - i) = -hc_imag; } if (i == n - i) { REAL(complex_coefficient,stride,i) = halfcomplex_coefficient[(n - 1) * stride]; IMAG(complex_coefficient,stride,i) = 0.0; } return 0; } int FUNCTION(gsl_fft_halfcomplex,radix2_unpack) (const BASE halfcomplex_coefficient[], BASE complex_coefficient[], const size_t stride, const size_t n) { size_t i; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } REAL(complex_coefficient,stride,0) = halfcomplex_coefficient[0]; IMAG(complex_coefficient,stride,0) = 0.0; for (i = 1; i < n - i; i++) { const ATOMIC hc_real = halfcomplex_coefficient[i * stride]; const ATOMIC hc_imag = halfcomplex_coefficient[(n - i) * stride]; REAL(complex_coefficient,stride,i) = hc_real; IMAG(complex_coefficient,stride,i) = hc_imag; REAL(complex_coefficient,stride,n - i) = hc_real; IMAG(complex_coefficient,stride,n - i) = -hc_imag; } if (i == n - i) { REAL(complex_coefficient,stride,i) = halfcomplex_coefficient[i * stride]; IMAG(complex_coefficient,stride,i) = 0.0; } return 0; } gsl-1.16/fft/test.c0000664000252300025230000000630612171574312011061 00000000000000/* fft/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void my_error_handler (const char *reason, const char *file, int line, int err); #include "complex_internal.h" /* Usage: test [n] Exercise the fft routines for length n. By default n runs from 1 to 100. The exit status indicates success or failure. */ #define BASE_DOUBLE #include "templates_on.h" #include "compare_source.c" #include "bitreverse.c" #include "test_complex_source.c" #include "test_real_source.c" #include "test_trap_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "compare_source.c" #include "bitreverse.c" #include "test_complex_source.c" #include "test_real_source.c" #include "test_trap_source.c" #include "templates_off.h" #undef BASE_FLOAT int main (int argc, char *argv[]) { size_t i; size_t start = 1, end = 99; size_t stride ; size_t n = 0; gsl_ieee_env_setup (); if (argc == 2) n = strtol (argv[1], NULL, 0); if (n) { start = n ; end = n ; } for (i = 1 ; i <= end ; i *= 2) { if (i >= start) { for (stride = 1 ; stride < 4 ; stride++) { test_complex_bitreverse_order (stride, i) ; test_complex_radix2 (stride, i) ; test_real_bitreverse_order (stride, i) ; test_real_radix2 (stride, i) ; } } } for (i = start ; i <= end ; i++) { for (stride = 1 ; stride < 4 ; stride++) { test_complex_func (stride, i) ; test_complex_float_func (stride, i) ; test_real_func (stride, i) ; test_real_float_func (stride, i) ; } } gsl_set_error_handler (&my_error_handler); test_trap () ; test_float_trap () ; exit (gsl_test_summary ()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err) ; } gsl-1.16/fft/factorize.h0000664000252300025230000000232112171574312012066 00000000000000/* fft/factorize.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int fft_complex_factorize (const size_t n, size_t *nf, size_t factors[]); static int fft_halfcomplex_factorize (const size_t n, size_t *nf, size_t factors[]); static int fft_real_factorize (const size_t n, size_t *nf, size_t factors[]); static int fft_factorize (const size_t n, const size_t implemented_subtransforms[], size_t *n_factors, size_t factors[]); static int fft_binary_logn (const size_t n) ; gsl-1.16/fft/bitreverse.c0000664000252300025230000000473512171574312012260 00000000000000/* fft/bitreverse.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include "complex_internal.h" #include "bitreverse.h" static int FUNCTION(fft_complex,bitreverse_order) (BASE data[], const size_t stride, const size_t n, size_t logn) { /* This is the Goldrader bit-reversal algorithm */ size_t i; size_t j = 0; logn = 0 ; /* not needed for this algorithm */ for (i = 0; i < n - 1; i++) { size_t k = n / 2 ; if (i < j) { const BASE tmp_real = REAL(data,stride,i); const BASE tmp_imag = IMAG(data,stride,i); REAL(data,stride,i) = REAL(data,stride,j); IMAG(data,stride,i) = IMAG(data,stride,j); REAL(data,stride,j) = tmp_real; IMAG(data,stride,j) = tmp_imag; } while (k <= j) { j = j - k ; k = k / 2 ; } j += k ; } return 0; } static int FUNCTION(fft_real,bitreverse_order) (BASE data[], const size_t stride, const size_t n, size_t logn) { /* This is the Goldrader bit-reversal algorithm */ size_t i; size_t j = 0; logn = 0 ; /* not needed for this algorithm */ for (i = 0; i < n - 1; i++) { size_t k = n / 2 ; if (i < j) { const BASE tmp = VECTOR(data,stride,i); VECTOR(data,stride,i) = VECTOR(data,stride,j); VECTOR(data,stride,j) = tmp; } while (k <= j) { j = j - k ; k = k / 2 ; } j += k ; } return 0; } gsl-1.16/fft/urand.c0000664000252300025230000000171212171574312011207 00000000000000/* fft/urand.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ double urand (void); double urand (void) { static unsigned long int x = 1; x = (1103515245 * x + 12345) & 0x7fffffffUL ; return x / 2147483648.0 ; } gsl-1.16/fft/real_pass_3.c0000664000252300025230000001332312171574312012272 00000000000000/* fft/real_pass_3.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[]) { size_t k, k1; const size_t factor = 3; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; const ATOMIC tau = sqrt (3.0) / 2.0; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC t1 = z1_real + z2_real; const ATOMIC x0_real = z0_real + t1; const ATOMIC x1_real = z0_real - t1 / 2.0; const ATOMIC x1_imag = -tau * (z1_real - z2_real); const size_t to0 = product * k1; const size_t to1 = to0 + 2 * product_1 - 1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; } if (product_1 == 1) return; for (k = 1; k < (product_1 + 1) / 2; k++) { const ATOMIC w1_real = GSL_REAL(twiddle1[k - 1]); const ATOMIC w1_imag = -GSL_IMAG(twiddle1[k - 1]); const ATOMIC w2_real = GSL_REAL(twiddle2[k - 1]); const ATOMIC w2_imag = -GSL_IMAG(twiddle2[k - 1]); for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + 2 * k - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const ATOMIC f0_real = VECTOR(in,istride,from0); const ATOMIC f0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC f1_real = VECTOR(in,istride,from1); const ATOMIC f1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC f2_real = VECTOR(in,istride,from2); const ATOMIC f2_imag = VECTOR(in,istride,from2 + 1); const ATOMIC z0_real = f0_real; const ATOMIC z0_imag = f0_imag; const ATOMIC z1_real = w1_real * f1_real - w1_imag * f1_imag; const ATOMIC z1_imag = w1_real * f1_imag + w1_imag * f1_real; const ATOMIC z2_real = w2_real * f2_real - w2_imag * f2_imag; const ATOMIC z2_imag = w2_real * f2_imag + w2_imag * f2_real; /* compute x = W(3) z */ /* t1 = z1 + z2 */ const ATOMIC t1_real = z1_real + z2_real; const ATOMIC t1_imag = z1_imag + z2_imag; /* t2 = z0 - t1/2 */ const ATOMIC t2_real = z0_real - t1_real / 2; const ATOMIC t2_imag = z0_imag - t1_imag / 2; /* t3 = (+/-) sin(pi/3)*(z1 - z2) */ const ATOMIC t3_real = -tau * (z1_real - z2_real); const ATOMIC t3_imag = -tau * (z1_imag - z2_imag); /* x0 = z0 + t1 */ const ATOMIC x0_real = z0_real + t1_real; const ATOMIC x0_imag = z0_imag + t1_imag; /* x1 = t2 + i t3 */ const ATOMIC x1_real = t2_real - t3_imag; const ATOMIC x1_imag = t2_imag + t3_real; /* x2 = t2 - i t3 */ const ATOMIC x2_real = t2_real + t3_imag; const ATOMIC x2_imag = t2_imag - t3_real; /* apply twiddle factors */ const size_t to0 = k1 * product + 2 * k - 1; const size_t to1 = to0 + 2 * product_1; const size_t to2 = 2 * product_1 - 2 * k + k1 * product - 1; /* to0 = 1 * x0 */ VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; /* to1 = 1 * x1 */ VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; /* to2 = 1 * x2 */ VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to2 + 1) = -x2_imag; } } if (product_1 % 2 == 1) return; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + product_1 - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC t1 = z1_real - z2_real; const ATOMIC x0_real = z0_real + t1 / 2.0; const ATOMIC x0_imag = -tau * (z1_real + z2_real); const ATOMIC x1_real = z0_real - t1; const size_t to0 = k1 * product + product_1 - 1; const size_t to1 = to0 + 2 * product_1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = x1_real; } return; } gsl-1.16/fft/signals.c0000664000252300025230000000077312171574312011544 00000000000000#include #include #include #include #include #include #include #include #include "complex_internal.h" #include "urand.c" #define BASE_DOUBLE #include "templates_on.h" #include "signals_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "signals_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/fft/Makefile.in0000664000252300025230000010527612172253755012017 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = fft DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslfft_la_LIBADD = am_libgslfft_la_OBJECTS = dft.lo fft.lo libgslfft_la_OBJECTS = $(am_libgslfft_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) signals.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslfft.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslfft_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslfft_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslfft.la pkginclude_HEADERS = gsl_fft.h gsl_fft_complex.h gsl_fft_halfcomplex.h gsl_fft_real.h gsl_dft_complex.h gsl_dft_complex_float.h gsl_fft_complex_float.h gsl_fft_halfcomplex_float.h gsl_fft_real_float.h INCLUDES = -I$(top_srcdir) libgslfft_la_SOURCES = dft.c fft.c noinst_HEADERS = c_pass.h hc_pass.h real_pass.h signals.h signals_source.c c_main.c c_init.c c_pass_2.c c_pass_3.c c_pass_4.c c_pass_5.c c_pass_6.c c_pass_7.c c_pass_n.c c_radix2.c bitreverse.c bitreverse.h factorize.c factorize.h hc_init.c hc_pass_2.c hc_pass_3.c hc_pass_4.c hc_pass_5.c hc_pass_n.c hc_radix2.c hc_unpack.c real_init.c real_pass_2.c real_pass_3.c real_pass_4.c real_pass_5.c real_pass_n.c real_radix2.c real_unpack.c compare.h compare_source.c dft_source.c hc_main.c real_main.c test_complex_source.c test_real_source.c test_trap_source.c urand.c complex_internal.h TESTS = $(check_PROGRAMS) test_SOURCES = test.c signals.c test_LDADD = libgslfft.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu fft/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu fft/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslfft.la: $(libgslfft_la_OBJECTS) $(libgslfft_la_DEPENDENCIES) $(EXTRA_libgslfft_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslfft_la_OBJECTS) $(libgslfft_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dft.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fft.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/signals.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #errs_LDADD = libgslfft.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #benchmark_LDADD = libgslfft.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/fft/ChangeLog0000664000252300025230000001027012171574312011503 000000000000002009-07-09 Brian Gough * real_init.c (FUNCTION): handle NULL argument in free * hc_init.c (FUNCTION): handle NULL argument in free * c_init.c (FUNCTION): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2006-03-16 Brian Gough * changed to gsl_fft_forward and gsl_fft_backward enums throughout internally instead of forward and backward. 2005-05-19 Brian Gough * Makefile.am (noinst_HEADERS): removed unused real.c Tue Jul 24 15:16:50 2001 Brian Gough * single precision fft now uses float throughout, rather than mixing float and double. Mon Jul 16 12:38:29 2001 Brian Gough * reorganized function names and split work Tue May 1 14:35:52 2001 Brian Gough * Makefile.am (libgslfft_la_SOURCES): removed spurious headers from SOURCES line 2000-10-19 Brian Gough * hc_init.c (FUNCTION): scratch space changed to n elements instead of 2*n (apparently the routine previously allocated too much space) Wed Feb 16 14:43:42 2000 Brian Gough * Makefile.am (pkginclude_HEADERS): added missing pkginclude_HEADERS for float functions. Mon Feb 14 15:11:55 2000 Brian Gough * made all internal functions static (required a slight reorganization) Fri Aug 6 11:20:25 1999 Brian Gough * removed dependence on rand() and RAND_MAX Sun Feb 14 17:31:21 1999 Brian Gough * started converting header files to use gsl_complex_packed_array more consistently Mon Dec 14 22:55:00 1998 Brian Gough * real_init.c: fixed a possible malloc(0) bug found by Electric Fence. Mon Nov 23 15:47:13 1998 Brian Gough * gsl_fft_complex.h, gsl_fft_complex_float.h: removed data[][] type arguments from prototypes since this seems to be non-ANSI. Use **data instead. 1998-11-09 * compare_source.c: fix up int/unsigned format types to prevent warnings Wed Oct 28 15:07:22 1998 Brian Gough * c.c: added #include for memcpy * c_float.c: added #include for memcpy Thu Sep 10 12:05:07 1998 Brian Gough * removed wavetable from function names to make them shorter and avoid confusion, e.g. gsl_fft_complex_wavetable_alloc -> gsl_fft_complex_alloc Sat Sep 5 22:32:19 1998 Brian Gough * major work done on templatizing everything so that you can do an fft of a float or a double vector. Tue Sep 1 16:44:06 1998 Brian Gough * c_main.c: renamed c.c to c_main.c Tue Jul 28 11:30:43 1998 Brian Gough * renamed gsl_fft_signals.h to fft_signals.h (not exported) * fft.h: a place to keep some local macros * c.c: renamed complex.c to c.c Mon Jul 27 12:46:25 1998 Brian Gough * bitreverse.c: removed gsl_ftt_ prefix from non-exported functions Wed Jun 10 17:36:01 1998 Brian Gough * test.c: Eliminated the need for getopt * test_radix2.c: Eliminated the need for getopt * test_trap.c: Eliminated the need for getopt Mon Apr 27 18:48:58 1998 Brian Gough * fft_alloc functions now return a pointer to a newly allocated wavetable struct (or a null pointer if there isn't enough memory) Fri Apr 10 15:12:37 1998 Brian Gough * renamed complex_*.c and halfcomplex_*.c to c_*.c and hc_*.c to avoid linker complaints about long filenames on some platforms Sun Mar 29 15:56:34 1998 Brian Gough * To be compatible with other architectures use size_t everywhere instead of unsigned int Sat Mar 21 17:28:26 1998 Brian Gough * factorize.c (gsl_fft_factorize): Stopped returning the sum of factors in the status variable. The user can compute it if necessary. 1998-01-27 Mark Galassi * Makefile.am: fixed a typo: removed trailing \ at the end of this file. gsl-1.16/fft/real_pass_4.c0000664000252300025230000001604512171574312012277 00000000000000/* fft/real_pass_4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]) { size_t k, k1; const size_t factor = 4; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z3_real = VECTOR(in,istride,from3); /* compute x = W(4) z */ /* t1 = z0 + z2 */ const ATOMIC t1_real = z0_real + z2_real; /* t2 = z1 + z3 */ const ATOMIC t2_real = z1_real + z3_real; /* t3 = z0 - z2 */ const ATOMIC t3_real = z0_real - z2_real; /* t4 = - (z1 - z3) */ const ATOMIC t4_real = -(z1_real - z3_real); /* x0 = t1 + t2 */ const ATOMIC x0_real = t1_real + t2_real; /* x1 = t3 + i t4 */ const ATOMIC x1_real = t3_real; const ATOMIC x1_imag = t4_real; /* x2 = t1 - t2 */ const ATOMIC x2_real = t1_real - t2_real; const size_t to0 = product * k1; const size_t to1 = to0 + 2 * product_1 - 1; const size_t to2 = to1 + 2 * product_1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; VECTOR(out,ostride,to2) = x2_real; } if (product_1 == 1) return; for (k = 1; k < (product_1 + 1) / 2; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag, w3_real, w3_imag; w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = -GSL_IMAG(twiddle3[k - 1]); for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + 2 * k - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const ATOMIC f0_real = VECTOR(in,istride,from0); const ATOMIC f0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC f1_real = VECTOR(in,istride,from1); const ATOMIC f1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC f2_real = VECTOR(in,istride,from2); const ATOMIC f2_imag = VECTOR(in,istride,from2 + 1); const ATOMIC f3_real = VECTOR(in,istride,from3); const ATOMIC f3_imag = VECTOR(in,istride,from3 + 1); const ATOMIC z0_real = f0_real; const ATOMIC z0_imag = f0_imag; const ATOMIC z1_real = w1_real * f1_real - w1_imag * f1_imag; const ATOMIC z1_imag = w1_real * f1_imag + w1_imag * f1_real; const ATOMIC z2_real = w2_real * f2_real - w2_imag * f2_imag; const ATOMIC z2_imag = w2_real * f2_imag + w2_imag * f2_real; const ATOMIC z3_real = w3_real * f3_real - w3_imag * f3_imag; const ATOMIC z3_imag = w3_real * f3_imag + w3_imag * f3_real; /* compute x = W(4) z */ /* t1 = z0 + z2 */ const ATOMIC t1_real = z0_real + z2_real; const ATOMIC t1_imag = z0_imag + z2_imag; /* t2 = z1 + z3 */ const ATOMIC t2_real = z1_real + z3_real; const ATOMIC t2_imag = z1_imag + z3_imag; /* t3 = z0 - z2 */ const ATOMIC t3_real = z0_real - z2_real; const ATOMIC t3_imag = z0_imag - z2_imag; /* t4 = - (z1 - z3) */ const ATOMIC t4_real = -(z1_real - z3_real); const ATOMIC t4_imag = -(z1_imag - z3_imag); /* x0 = t1 + t2 */ const ATOMIC x0_real = t1_real + t2_real; const ATOMIC x0_imag = t1_imag + t2_imag; /* x1 = t3 + i t4 */ const ATOMIC x1_real = t3_real - t4_imag; const ATOMIC x1_imag = t3_imag + t4_real; /* x2 = t1 - t2 */ const ATOMIC x2_real = t1_real - t2_real; const ATOMIC x2_imag = t1_imag - t2_imag; /* x3 = t3 - i t4 */ const ATOMIC x3_real = t3_real + t4_imag; const ATOMIC x3_imag = t3_imag - t4_real; const size_t to0 = k1 * product + 2 * k - 1; const size_t to1 = to0 + 2 * product_1; const size_t to2 = 2 * product_1 - 2 * k + k1 * product - 1; const size_t to3 = to2 + 2 * product_1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; VECTOR(out,ostride,to3) = x2_real; VECTOR(out,ostride,to3 + 1) = -x2_imag; VECTOR(out,ostride,to2) = x3_real; VECTOR(out,ostride,to2 + 1) = -x3_imag; } } if (product_1 % 2 == 1) return; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + product_1 - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const ATOMIC x0 = VECTOR(in,istride,from0); const ATOMIC x1 = VECTOR(in,istride,from1); const ATOMIC x2 = VECTOR(in,istride,from2); const ATOMIC x3 = VECTOR(in,istride,from3); const ATOMIC t1 = (1.0 / sqrt (2.0)) * (x1 - x3); const ATOMIC t2 = (1.0 / sqrt (2.0)) * (x1 + x3); const size_t to0 = k1 * product + 2 * k - 1; const size_t to1 = to0 + 2 * product_1; VECTOR(out,ostride,to0) = x0 + t1; VECTOR(out,ostride,to0 + 1) = -x2 - t2; VECTOR(out,ostride,to1) = x0 - t1; VECTOR(out,ostride,to1 + 1) = x2 - t2; } return; } gsl-1.16/fft/test_complex_source.c0000664000252300025230000003560712171574312014176 00000000000000/* fft/test_complex.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "bitreverse.h" #include "signals.h" #include "compare.h" void FUNCTION(test_complex,func) (size_t stride, size_t n); int FUNCTION(test,offset) (const BASE data[], size_t stride, size_t n, size_t offset); void FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n) ; void FUNCTION(test_complex,radix2) (size_t stride, size_t n); int FUNCTION(test,offset) (const BASE data[], size_t stride, size_t n, size_t offset) { int status = 0 ; size_t i, j, k = 0 ; for (i = 0; i < n; i++) { k += 2 ; for (j = 1; j < stride; j++) { status |= data[k] != k + offset ; k++ ; status |= data[k] != k + offset ; k++ ; } } return status ; } void FUNCTION(test_complex,func) (size_t stride, size_t n) { size_t i ; int status ; TYPE(gsl_fft_complex_wavetable) * cw ; TYPE(gsl_fft_complex_workspace) * cwork ; BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); for (i = 0 ; i < 2 * n * stride ; i++) { complex_data[i] = (BASE)i ; complex_tmp[i] = (BASE)(i + 1000.0) ; fft_complex_data[i] = (BASE)(i + 2000.0) ; fft_complex_tmp[i] = (BASE)(i + 3000.0) ; } gsl_set_error_handler (NULL); /* abort on any errors */ /* Test allocation */ { cw = FUNCTION(gsl_fft_complex_wavetable,alloc) (n); gsl_test (cw == 0, NAME(gsl_fft_complex_wavetable) "_alloc, n = %d, stride = %d", n, stride); } { cwork = FUNCTION(gsl_fft_complex_workspace,alloc) (n); gsl_test (cwork == 0, NAME(gsl_fft_complex_workspace) "_alloc, n = %d", n); } /* Test mixed radix fft with noise */ { FUNCTION(fft_signal,complex_noise) (n, stride, complex_data, fft_complex_data); for (i = 0 ; i < n ; i++) { REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ; IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ; } FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork); for (i = 0 ; i < n ; i++) { REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ; IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ; } status = FUNCTION(compare_complex,results) ("dft", fft_complex_data, "fft of noise", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_forward with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (complex_data, stride, n, 0) ; gsl_test (status, NAME(gsl_fft_complex) "_forward avoids unstrided data, n = %d, stride = %d", n, stride); } } /* Test the inverse fft */ { status = FUNCTION(gsl_fft_complex,inverse) (complex_data, stride, n, cw, cwork); status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft inverse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_inverse with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (complex_data, stride, n, 0) ; gsl_test (status, NAME(gsl_fft_complex) "_inverse other data untouched, n = %d, stride = %d", n, stride); } } /* Test the backward fft */ { status = FUNCTION(gsl_fft_complex,backward) (fft_complex_tmp, stride, n, cw, cwork); for (i = 0; i < n; i++) { REAL(complex_tmp,stride,i) *= n; IMAG(complex_tmp,stride,i) *= n; } status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft backward", fft_complex_tmp, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_backward with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ; gsl_test (status, NAME(gsl_fft_complex) "_backward avoids unstrided data, n = %d, stride = %d", n, stride); } } /* Test a pulse signal */ { FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork); status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of pulse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_forward with signal_pulse, n = %d, stride = %d", n, stride); } /* Test a constant signal */ { FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork); status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of constant", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_forward with signal_constant, n = %d, stride = %d", n, stride); } /* Test an exponential (cos/sin) signal */ { status = 0; for (i = 0; i < n; i++) { FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,forward) (complex_data, stride, n, cw, cwork); status |= FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of exp", complex_data, stride, n, 1e6); } gsl_test (status, NAME(gsl_fft_complex) "_forward with signal_exp, n = %d, stride = %d", n, stride); } FUNCTION(gsl_fft_complex_wavetable,free) (cw); FUNCTION(gsl_fft_complex_workspace,free) (cwork); free (complex_data); free (complex_tmp); free (fft_complex_data); free (fft_complex_tmp); } void FUNCTION(test_complex,bitreverse_order) (size_t stride, size_t n) { int status ; size_t logn, i ; BASE * tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * reversed_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); for (i = 0; i < 2 * stride * n; i++) { data[i] = (BASE)i ; } memcpy (tmp, data, 2 * n * stride * sizeof(BASE)) ; logn = 0 ; while (n > (1U<>= 1; } reversed_data[2*j*stride] = data[2*i*stride] ; reversed_data[2*j*stride+1] = data[2*i*stride+1] ; } FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn); status = FUNCTION(compare_complex,results) ("naive bit reverse", reversed_data, "fft_complex_bitreverse_order", data, stride, n, 1e6); gsl_test (status, "fft_complex_bitreverse_order, n = %d", n); free (reversed_data) ; free (data) ; free (tmp) ; } void FUNCTION(test_complex,radix2) (size_t stride, size_t n) { size_t i ; int status ; BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); for (i = 0 ; i < 2 * n * stride ; i++) { complex_data[i] = (BASE)i ; complex_tmp[i] = (BASE)(i + 1000.0) ; fft_complex_data[i] = (BASE)(i + 2000.0) ; fft_complex_tmp[i] = (BASE)(i + 3000.0) ; } gsl_set_error_handler (NULL); /* abort on any errors */ /* Test radix-2 fft with noise */ { FUNCTION(fft_signal,complex_noise) (n, stride, complex_data, fft_complex_data); for (i = 0 ; i < n ; i++) { REAL(complex_tmp,stride,i) = REAL(complex_data,stride,i) ; IMAG(complex_tmp,stride,i) = IMAG(complex_data,stride,i) ; } FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n); for (i = 0 ; i < n ; i++) { REAL(fft_complex_tmp,stride,i) = REAL(complex_data,stride,i) ; IMAG(fft_complex_tmp,stride,i) = IMAG(complex_data,stride,i) ; } status = FUNCTION(compare_complex,results) ("dft", fft_complex_data, "fft of noise", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_radix2_forward with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (complex_data, stride, n, 0) ; gsl_test (status, NAME(gsl_fft_complex) "_radix2_forward avoids unstrided data, n = %d, stride = %d", n, stride); } } /* Test the inverse fft */ { status = FUNCTION(gsl_fft_complex,radix2_inverse) (complex_data, stride, n); status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft inverse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_radix2_inverse with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (complex_data, stride, n, 0) ; gsl_test (status, NAME(gsl_fft_complex) "_radix2_inverse other data untouched, n = %d, stride = %d", n, stride); } } /* Test the backward fft */ { status = FUNCTION(gsl_fft_complex,radix2_backward) (fft_complex_tmp, stride, n); for (i = 0; i < n; i++) { REAL(complex_tmp,stride,i) *= n; IMAG(complex_tmp,stride,i) *= n; } status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft backward", fft_complex_tmp, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_radix2_backward with signal_noise, n = %d, stride = %d", n, stride); if (stride > 1) { status = FUNCTION(test, offset) (fft_complex_tmp, stride, n, 3000) ; gsl_test (status, NAME(gsl_fft_complex) "_radix2_backward avoids unstrided data, n = %d, stride = %d", n, stride); } } /* Test a pulse signal */ { FUNCTION(fft_signal,complex_pulse) (1, n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n); status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of pulse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_radix2_forward with signal_pulse, n = %d, stride = %d", n, stride); } /* Test a constant signal */ { FUNCTION(fft_signal,complex_constant) (n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n); status = FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of constant", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_complex) "_radix2_forward with signal_constant, n = %d, stride = %d", n, stride); } /* Test an exponential (cos/sin) signal */ { status = 0; for (i = 0; i < n; i++) { FUNCTION(fft_signal,complex_exp) ((int)i, n, stride, 1.0, 0.0, complex_data, fft_complex_data); FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, stride, n); status |= FUNCTION(compare_complex,results) ("analytic", fft_complex_data, "fft of exp", complex_data, stride, n, 1e6); } gsl_test (status, NAME(gsl_fft_complex) "_radix2_forward with signal_exp, n = %d, stride = %d", n, stride); } free (complex_data); free (complex_tmp); free (fft_complex_data); free (fft_complex_tmp); } gsl-1.16/fft/dft.c0000664000252300025230000000073212171574312010654 00000000000000#include #include #include #include #include #include #include #include #include "complex_internal.h" #define BASE_DOUBLE #include "templates_on.h" #include "dft_source.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "dft_source.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/fft/Makefile.am0000664000252300025230000000242212171574312011765 00000000000000noinst_LTLIBRARIES = libgslfft.la pkginclude_HEADERS = gsl_fft.h gsl_fft_complex.h gsl_fft_halfcomplex.h gsl_fft_real.h gsl_dft_complex.h gsl_dft_complex_float.h gsl_fft_complex_float.h gsl_fft_halfcomplex_float.h gsl_fft_real_float.h INCLUDES = -I$(top_srcdir) libgslfft_la_SOURCES = dft.c fft.c noinst_HEADERS = c_pass.h hc_pass.h real_pass.h signals.h signals_source.c c_main.c c_init.c c_pass_2.c c_pass_3.c c_pass_4.c c_pass_5.c c_pass_6.c c_pass_7.c c_pass_n.c c_radix2.c bitreverse.c bitreverse.h factorize.c factorize.h hc_init.c hc_pass_2.c hc_pass_3.c hc_pass_4.c hc_pass_5.c hc_pass_n.c hc_radix2.c hc_unpack.c real_init.c real_pass_2.c real_pass_3.c real_pass_4.c real_pass_5.c real_pass_n.c real_radix2.c real_unpack.c compare.h compare_source.c dft_source.c hc_main.c real_main.c test_complex_source.c test_real_source.c test_trap_source.c urand.c complex_internal.h TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c signals.c test_LDADD = libgslfft.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #errs_LDADD = libgslfft.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #benchmark_LDADD = libgslfft.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la gsl-1.16/fft/hc_pass_5.c0000664000252300025230000002275512171574312011754 00000000000000/* fft/hc_pass_5.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]) { size_t i, j, k, k1, jump; size_t factor, q, m, product_1; const ATOMIC sina = sin (2.0 * M_PI / 5.0); const ATOMIC sinb = sin (2.0 * M_PI / 10.0); i = 0; j = 0; factor = 5; m = n / factor; q = n / product; product_1 = product / factor; jump = (factor - 1) * q; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 5 * k1 * q; const size_t from1 = from0 + 2 * q - 1; const size_t from2 = from1 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z2_imag = VECTOR(in,istride,from2 + 1); const ATOMIC t1_real = 2 * (z1_real + z2_real); const ATOMIC t2_real = 2 * (sqrt (5.0) / 4.0) * (z1_real - z2_real); const ATOMIC t3_real = z0_real - t1_real / 4.0; const ATOMIC t4_real = t2_real + t3_real; const ATOMIC t5_real = -t2_real + t3_real; const ATOMIC t6_imag = 2 * (sina * z1_imag + sinb * z2_imag); const ATOMIC t7_imag = 2 * (sinb * z1_imag - sina * z2_imag); const ATOMIC x0_real = z0_real + t1_real; const ATOMIC x1_real = t4_real - t6_imag; const ATOMIC x2_real = t5_real - t7_imag; const ATOMIC x3_real = t5_real + t7_imag; const ATOMIC x4_real = t4_real + t6_imag; const size_t to0 = q * k1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; const size_t to4 = to3 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to3) = x3_real; VECTOR(out,ostride,to4) = x4_real; } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { const ATOMIC w1_real = GSL_REAL(twiddle1[k - 1]); const ATOMIC w1_imag = GSL_IMAG(twiddle1[k - 1]); const ATOMIC w2_real = GSL_REAL(twiddle2[k - 1]); const ATOMIC w2_imag = GSL_IMAG(twiddle2[k - 1]); const ATOMIC w3_real = GSL_REAL(twiddle3[k - 1]); const ATOMIC w3_imag = GSL_IMAG(twiddle3[k - 1]); const ATOMIC w4_real = GSL_REAL(twiddle4[k - 1]); const ATOMIC w4_imag = GSL_IMAG(twiddle4[k - 1]); for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 5 * k1 * q + 2 * k - 1; const size_t from1 = from0 + 2 * q; const size_t from2 = from1 + 2 * q; const size_t from3 = 5 * k1 * q - 2 * k + 2 * q - 1; const size_t from4 = from3 + 2 * q; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z2_imag = VECTOR(in,istride,from2 + 1); const ATOMIC z3_real = VECTOR(in,istride,from4); const ATOMIC z3_imag = -VECTOR(in,istride,from4 + 1); const ATOMIC z4_real = VECTOR(in,istride,from3); const ATOMIC z4_imag = -VECTOR(in,istride,from3 + 1); /* compute x = W(5) z */ /* t1 = z1 + z4 */ const ATOMIC t1_real = z1_real + z4_real; const ATOMIC t1_imag = z1_imag + z4_imag; /* t2 = z2 + z3 */ const ATOMIC t2_real = z2_real + z3_real; const ATOMIC t2_imag = z2_imag + z3_imag; /* t3 = z1 - z4 */ const ATOMIC t3_real = z1_real - z4_real; const ATOMIC t3_imag = z1_imag - z4_imag; /* t4 = z2 - z3 */ const ATOMIC t4_real = z2_real - z3_real; const ATOMIC t4_imag = z2_imag - z3_imag; /* t5 = t1 + t2 */ const ATOMIC t5_real = t1_real + t2_real; const ATOMIC t5_imag = t1_imag + t2_imag; /* t6 = (sqrt(5)/4)(t1 - t2) */ const ATOMIC t6_real = (sqrt (5.0) / 4.0) * (t1_real - t2_real); const ATOMIC t6_imag = (sqrt (5.0) / 4.0) * (t1_imag - t2_imag); /* t7 = z0 - ((t5)/4) */ const ATOMIC t7_real = z0_real - t5_real / 4.0; const ATOMIC t7_imag = z0_imag - t5_imag / 4.0; /* t8 = t7 + t6 */ const ATOMIC t8_real = t7_real + t6_real; const ATOMIC t8_imag = t7_imag + t6_imag; /* t9 = t7 - t6 */ const ATOMIC t9_real = t7_real - t6_real; const ATOMIC t9_imag = t7_imag - t6_imag; /* t10 = sin(2 pi/5) t3 + sin(2 pi/10) t4 */ const ATOMIC t10_real = sina * t3_real + sinb * t4_real; const ATOMIC t10_imag = sina * t3_imag + sinb * t4_imag; /* t11 = sin(2 pi/10) t3 - sin(2 pi/5) t4 */ const ATOMIC t11_real = sinb * t3_real - sina * t4_real; const ATOMIC t11_imag = sinb * t3_imag - sina * t4_imag; /* x0 = z0 + t5 */ const ATOMIC x0_real = z0_real + t5_real; const ATOMIC x0_imag = z0_imag + t5_imag; /* x1 = t8 + i t10 */ const ATOMIC x1_real = t8_real - t10_imag; const ATOMIC x1_imag = t8_imag + t10_real; /* x2 = t9 + i t11 */ const ATOMIC x2_real = t9_real - t11_imag; const ATOMIC x2_imag = t9_imag + t11_real; /* x3 = t9 - i t11 */ const ATOMIC x3_real = t9_real + t11_imag; const ATOMIC x3_imag = t9_imag - t11_real; /* x4 = t8 - i t10 */ const ATOMIC x4_real = t8_real + t10_imag; const ATOMIC x4_imag = t8_imag - t10_real; const size_t to0 = k1 * q + 2 * k - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; const size_t to4 = to3 + m; /* apply twiddle factors */ /* to0 = 1 * x0 */ VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; /* to1 = w1 * x1 */ VECTOR(out,ostride,to1) = w1_real * x1_real - w1_imag * x1_imag; VECTOR(out,ostride,to1 + 1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ VECTOR(out,ostride,to2) = w2_real * x2_real - w2_imag * x2_imag; VECTOR(out,ostride,to2 + 1) = w2_real * x2_imag + w2_imag * x2_real; /* to3 = w3 * x3 */ VECTOR(out,ostride,to3) = w3_real * x3_real - w3_imag * x3_imag; VECTOR(out,ostride,to3 + 1) = w3_real * x3_imag + w3_imag * x3_real; /* to4 = w4 * x4 */ VECTOR(out,ostride,to4) = w4_real * x4_real - w4_imag * x4_imag; VECTOR(out,ostride,to4 + 1) = w4_real * x4_imag + w4_imag * x4_real; } } if (q % 2 == 1) return; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 5 * k1 * q + q - 1; const size_t from1 = from0 + 2 * q; const size_t from2 = from1 + 2 * q; const ATOMIC z0_real = 2 * VECTOR(in,istride,from0); const ATOMIC z0_imag = 2 * VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = 2 * VECTOR(in,istride,from1); const ATOMIC z1_imag = 2 * VECTOR(in,istride,from1 + 1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC t1_real = z0_real + z1_real; const ATOMIC t2_real = (t1_real / 4.0) - z2_real; const ATOMIC t3_real = (sqrt (5.0) / 4.0) * (z0_real - z1_real); const ATOMIC t4_real = sinb * z0_imag + sina * z1_imag; const ATOMIC t5_real = sina * z0_imag - sinb * z1_imag; const ATOMIC t6_real = t3_real + t2_real; const ATOMIC t7_real = t3_real - t2_real; const ATOMIC x0_real = t1_real + z2_real; const ATOMIC x1_real = t6_real - t4_real; const ATOMIC x2_real = t7_real - t5_real; const ATOMIC x3_real = -t7_real - t5_real; const ATOMIC x4_real = -t6_real - t4_real; const size_t to0 = k1 * q + q - 1; const size_t to1 = to0 + m; const size_t to2 = to1 + m; const size_t to3 = to2 + m; const size_t to4 = to3 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to3) = x3_real; VECTOR(out,ostride,to4) = x4_real; } return; } gsl-1.16/fft/real_init.c0000664000252300025230000001047412171574312012051 00000000000000/* fft/real_init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE(gsl_fft_real_wavetable) * FUNCTION(gsl_fft_real_wavetable,alloc) (size_t n) { int status; size_t i; size_t n_factors; size_t t, product, product_1, q; double d_theta; TYPE(gsl_fft_real_wavetable) * wavetable; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } wavetable = (TYPE(gsl_fft_real_wavetable) *) malloc(sizeof(TYPE(gsl_fft_real_wavetable))); if (wavetable == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } if (n == 1) { wavetable->trig = 0; } else { wavetable->trig = (TYPE(gsl_complex) *) malloc ((n / 2) * sizeof (TYPE(gsl_complex))); if (wavetable->trig == NULL) { /* error in constructor, prevent memory leak */ free(wavetable) ; GSL_ERROR_VAL ("failed to allocate trigonometric lookup table", GSL_ENOMEM, 0); } } wavetable->n = n; status = fft_real_factorize (n, &n_factors, wavetable->factor); if (status) { /* error in constructor, prevent memory leak */ free(wavetable->trig); free(wavetable) ; GSL_ERROR_VAL ("factorization failed", GSL_EFACTOR, 0); } wavetable->nf = n_factors; d_theta = 2.0 * M_PI / ((double) n); t = 0; product = 1; for (i = 0; i < wavetable->nf; i++) { size_t j; const size_t factor = wavetable->factor[i]; wavetable->twiddle[i] = wavetable->trig + t; product_1 = product; /* product_1 = p_(i-1) */ product *= factor; q = n / product; for (j = 1; j < factor; j++) { size_t k; size_t m = 0; for (k = 1; k < (product_1 + 1) / 2; k++) { double theta; m = m + j * q; m = m % n; theta = d_theta * m; /* d_theta*j*k*q */ GSL_REAL(wavetable->trig[t]) = cos (theta); GSL_IMAG(wavetable->trig[t]) = sin (theta); t++; } } } if (t > (n / 2)) { /* error in constructor, prevent memory leak */ free(wavetable->trig); free(wavetable) ; GSL_ERROR_VAL ("overflowed trigonometric lookup table", GSL_ESANITY, 0); } return wavetable; } TYPE(gsl_fft_real_workspace) * FUNCTION(gsl_fft_real_workspace,alloc) (size_t n) { TYPE(gsl_fft_real_workspace) * workspace; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } workspace = (TYPE(gsl_fft_real_workspace) *) malloc(sizeof(TYPE(gsl_fft_real_workspace))); if (workspace == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } workspace->n = n; workspace->scratch = (BASE *) malloc (n * sizeof (BASE)); if (workspace->scratch == NULL) { /* error in constructor, prevent memory leak */ free(workspace) ; GSL_ERROR_VAL ("failed to allocate scratch space", GSL_ENOMEM, 0); } return workspace; } void FUNCTION(gsl_fft_real_wavetable,free) (TYPE(gsl_fft_real_wavetable) * wavetable) { RETURN_IF_NULL (wavetable); /* release trigonometric lookup tables */ free (wavetable->trig); wavetable->trig = NULL; free (wavetable) ; } void FUNCTION(gsl_fft_real_workspace,free) (TYPE(gsl_fft_real_workspace) * workspace) { RETURN_IF_NULL (workspace); /* release scratch space */ free (workspace->scratch); workspace->scratch = NULL; free (workspace) ; } gsl-1.16/fft/real_pass_2.c0000664000252300025230000000720612171574312012274 00000000000000/* fft/real_pass_2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t k, k1; const size_t factor = 2; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1; const size_t from1 = from0 + m; const ATOMIC r0 = VECTOR(in,istride,from0); const ATOMIC r1 = VECTOR(in,istride,from1); const ATOMIC s0 = r0 + r1; const ATOMIC s1 = r0 - r1; const size_t to0 = product * k1; const size_t to1 = to0 + product - 1; VECTOR(out,ostride,to0) = s0; VECTOR(out,ostride,to1) = s1; } if (product_1 == 1) return; for (k = 1; k < (product_1 + 1) / 2; k++) { /* forward real transform: w -> conjugate(w) */ const ATOMIC w_real = GSL_REAL(twiddle[k - 1]); const ATOMIC w_imag = -GSL_IMAG(twiddle[k - 1]); for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + 2 * k - 1; const size_t from1 = from0 + m; const ATOMIC f0_real = VECTOR(in,istride,from0); const ATOMIC f0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC f1_real = VECTOR(in,istride,from1); const ATOMIC f1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC z0_real = f0_real; const ATOMIC z0_imag = f0_imag; const ATOMIC z1_real = w_real * f1_real - w_imag * f1_imag; const ATOMIC z1_imag = w_real * f1_imag + w_imag * f1_real; /* compute x = W(2) z */ /* x0 = z0 + z1 */ const ATOMIC x0_real = z0_real + z1_real; const ATOMIC x0_imag = z0_imag + z1_imag; /* x1 = z0 - z1 */ const ATOMIC x1_real = z0_real - z1_real; const ATOMIC x1_imag = z0_imag - z1_imag; const size_t to0 = k1 * product + 2 * k - 1; const size_t to1 = k1 * product + product - 2 * k - 1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; /* stored in conjugate location */ VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = -x1_imag; } } if (product_1 % 2 == 1) return; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + product_1 - 1; const size_t from1 = from0 + m; const size_t to0 = k1 * product + product_1 - 1; VECTOR(out,ostride,to0) = VECTOR(in,istride,from0); VECTOR(out,ostride,to0 + 1) = -VECTOR(in,istride,from1); } return; } gsl-1.16/fft/complex_internal.h0000664000252300025230000000055612171574312013453 00000000000000/* Handling of packed complex types... not meant for client consumption. */ #ifndef COMPLEX_INTERNAL_H_ #define COMPLEX_INTERNAL_H_ #define VECTOR(a,stride,i) ((a)[(stride)*(i)]) #define REAL(a,stride,i) ((a)[2*(stride)*(i)]) #define IMAG(a,stride,i) ((a)[2*(stride)*(i)+1]) #define REAL0(a) ((a)[0]) #define IMAG0(a) ((a)[1]) #endif /* !COMPLEX_INTERNAL_H_ */ gsl-1.16/fft/gsl_fft_complex_float.h0000664000252300025230000001234512171574312014447 00000000000000/* fft/gsl_fft_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_COMPLEX_FLOAT_H__ #define __GSL_FFT_COMPLEX_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Power of 2 routines */ int gsl_fft_complex_float_radix2_forward (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_backward (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_inverse (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_transform (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_direction sign); int gsl_fft_complex_float_radix2_dif_forward (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_dif_backward (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_dif_inverse (gsl_complex_packed_array_float data, const size_t stride, const size_t n); int gsl_fft_complex_float_radix2_dif_transform (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_direction sign); /* Mixed Radix general-N routines */ typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex_float *twiddle[64]; gsl_complex_float *trig; } gsl_fft_complex_wavetable_float; typedef struct { size_t n; float *scratch; } gsl_fft_complex_workspace_float; gsl_fft_complex_wavetable_float *gsl_fft_complex_wavetable_float_alloc (size_t n); void gsl_fft_complex_wavetable_float_free (gsl_fft_complex_wavetable_float * wavetable); gsl_fft_complex_workspace_float *gsl_fft_complex_workspace_float_alloc (size_t n); void gsl_fft_complex_workspace_float_free (gsl_fft_complex_workspace_float * workspace); int gsl_fft_complex_float_memcpy (gsl_fft_complex_wavetable_float * dest, gsl_fft_complex_wavetable_float * src); int gsl_fft_complex_float_forward (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable_float * wavetable, gsl_fft_complex_workspace_float * work); int gsl_fft_complex_float_backward (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable_float * wavetable, gsl_fft_complex_workspace_float * work); int gsl_fft_complex_float_inverse (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable_float * wavetable, gsl_fft_complex_workspace_float * work); int gsl_fft_complex_float_transform (gsl_complex_packed_array_float data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable_float * wavetable, gsl_fft_complex_workspace_float * work, const gsl_fft_direction sign); __END_DECLS #endif /* __GSL_FFT_COMPLEX_FLOAT_H__ */ gsl-1.16/fft/signals_source.c0000664000252300025230000001613712171574312013125 00000000000000/* fft/signals_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "signals.h" int FUNCTION(fft_signal,complex_pulse) (const size_t k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* gsl_complex pulse at position k, data[j] = z * delta_{jk} */ for (j = 0; j < n; j++) { REAL(data,stride,j) = 0.0; IMAG(data,stride,j) = 0.0; } REAL(data,stride,k % n) = z_real; IMAG(data,stride,k % n) = z_imag; /* fourier transform, fft[j] = z * exp(-2 pi i j k / n) */ for (j = 0; j < n; j++) { const double arg = -2 * M_PI * ((double) ((j * k) % n)) / ((double) n); const BASE w_real = (BASE)cos (arg); const BASE w_imag = (BASE)sin (arg); REAL(fft,stride,j) = w_real * z_real - w_imag * z_imag; IMAG(fft,stride,j) = w_real * z_imag + w_imag * z_real; } return 0; } int FUNCTION(fft_signal,complex_constant) (const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* constant, data[j] = z */ for (j = 0; j < n; j++) { REAL(data,stride,j) = z_real; IMAG(data,stride,j) = z_imag; } /* fourier transform, fft[j] = n z delta_{j0} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } REAL(fft,stride,0) = ((BASE) n) * z_real; IMAG(fft,stride,0) = ((BASE) n) * z_imag; return 0; } int FUNCTION(fft_signal,complex_exp) (const int k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* exponential, data[j] = z * exp(2 pi i j k) */ for (j = 0; j < n; j++) { const double arg = 2 * M_PI * ((double) ((j * k) % n)) / ((double) n); const BASE w_real = (BASE)cos (arg); const BASE w_imag = (BASE)sin (arg); REAL(data,stride,j) = w_real * z_real - w_imag * z_imag; IMAG(data,stride,j) = w_real * z_imag + w_imag * z_real; } /* fourier transform, fft[j] = z * delta{(j - k),0} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } { int freq; if (k <= 0) { freq = (n-k) % n ; } else { freq = (k % n); }; REAL(fft,stride,freq) = ((BASE) n) * z_real; IMAG(fft,stride,freq) = ((BASE) n) * z_imag; } return 0; } int FUNCTION(fft_signal,complex_exppair) (const int k1, const int k2, const size_t n, const size_t stride, const BASE z1_real, const BASE z1_imag, const BASE z2_real, const BASE z2_imag, BASE data[], BASE fft[]) { size_t j; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } /* exponential, data[j] = z1 * exp(2 pi i j k1) + z2 * exp(2 pi i j k2) */ for (j = 0; j < n; j++) { const double arg1 = 2 * M_PI * ((double) ((j * k1) % n)) / ((double) n); const BASE w1_real = (BASE)cos (arg1); const BASE w1_imag = (BASE)sin (arg1); const double arg2 = 2 * M_PI * ((double) ((j * k2) % n)) / ((double) n); const BASE w2_real = (BASE)cos (arg2); const BASE w2_imag = (BASE)sin (arg2); REAL(data,stride,j) = w1_real * z1_real - w1_imag * z1_imag; IMAG(data,stride,j) = w1_real * z1_imag + w1_imag * z1_real; REAL(data,stride,j) += w2_real * z2_real - w2_imag * z2_imag; IMAG(data,stride,j) += w2_real * z2_imag + w2_imag * z2_real; } /* fourier transform, fft[j] = z1 * delta{(j - k1),0} + z2 * delta{(j - k2,0)} */ for (j = 0; j < n; j++) { REAL(fft,stride,j) = 0.0; IMAG(fft,stride,j) = 0.0; } { int freq1, freq2; if (k1 <= 0) { freq1 = (n - k1) % n; } else { freq1 = (k1 % n); }; if (k2 <= 0) { freq2 = (n - k2) % n; } else { freq2 = (k2 % n); }; REAL(fft,stride,freq1) += ((BASE) n) * z1_real; IMAG(fft,stride,freq1) += ((BASE) n) * z1_imag; REAL(fft,stride,freq2) += ((BASE) n) * z2_real; IMAG(fft,stride,freq2) += ((BASE) n) * z2_imag; } return 0; } int FUNCTION(fft_signal,complex_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]) { size_t i; int status; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } for (i = 0; i < n; i++) { REAL(data,stride,i) = (BASE)urand(); IMAG(data,stride,i) = (BASE)urand(); } /* compute the dft */ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft); return status; } int FUNCTION(fft_signal,real_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]) { size_t i; int status; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } for (i = 0; i < n; i++) { REAL(data,stride,i) = (BASE)urand(); IMAG(data,stride,i) = 0.0; } /* compute the dft */ status = FUNCTION(gsl_dft_complex,forward) (data, stride, n, fft); return status; } gsl-1.16/fft/hc_init.c0000664000252300025230000000640612171574312011520 00000000000000/* fft/hc_init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE(gsl_fft_halfcomplex_wavetable) * FUNCTION(gsl_fft_halfcomplex_wavetable,alloc) (size_t n) { int status; size_t i; size_t n_factors; size_t t, product, product_1, q; double d_theta; TYPE(gsl_fft_halfcomplex_wavetable) * wavetable ; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } wavetable = (TYPE(gsl_fft_halfcomplex_wavetable) *) malloc(sizeof(TYPE(gsl_fft_halfcomplex_wavetable))); if (wavetable == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } wavetable->trig = (TYPE(gsl_complex) *) malloc (n * sizeof (TYPE(gsl_complex))); if (wavetable->trig == NULL) { /* error in constructor, prevent memory leak */ free(wavetable) ; GSL_ERROR_VAL ("failed to allocate trigonometric lookup table", GSL_ENOMEM, 0); } wavetable->n = n ; status = fft_halfcomplex_factorize (n, &n_factors, wavetable->factor); if (status) { /* error in constructor, prevent memory leak */ free(wavetable->trig) ; free(wavetable) ; GSL_ERROR_VAL ("factorization failed", GSL_EFACTOR, 0); } wavetable->nf = n_factors; d_theta = 2.0 * M_PI / ((double) n); t = 0; product = 1; for (i = 0; i < n_factors; i++) { size_t j; const size_t factor = wavetable->factor[i]; wavetable->twiddle[i] = wavetable->trig + t; product_1 = product; /* product_1 = p_(i-1) */ product *= factor; q = n / product; for (j = 1; j < factor; j++) { size_t k; size_t m = 0; for (k = 1; k < (q + 1) / 2; k++) { double theta; m = m + j * product_1; m = m % n; theta = d_theta * m; /* d_theta*j*k*product_1 */ GSL_REAL(wavetable->trig[t]) = cos (theta); GSL_IMAG(wavetable->trig[t]) = sin (theta); t++; } } } if (t > (n / 2)) { /* error in constructor, prevent memory leak */ free(wavetable->trig) ; free(wavetable) ; GSL_ERROR_VAL ("overflowed trigonometric lookup table", GSL_ESANITY, 0); } return wavetable; } void FUNCTION(gsl_fft_halfcomplex_wavetable,free) (TYPE(gsl_fft_halfcomplex_wavetable) * wavetable) { RETURN_IF_NULL (wavetable); /* release trigonometric lookup tables */ free (wavetable->trig); wavetable->trig = NULL; free (wavetable); } gsl-1.16/fft/dft_source.c0000664000252300025230000000616412171574312012241 00000000000000/* fft/dft_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_dft_complex,forward) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); return status; } int FUNCTION(gsl_dft_complex,backward) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); return status; } int FUNCTION(gsl_dft_complex,inverse) (const BASE data[], const size_t stride, const size_t n, BASE result[]) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_dft_complex,transform) (data, stride, n, result, sign); /* normalize inverse fft with 1/n */ { const ATOMIC norm = ONE / (ATOMIC)n; size_t i; for (i = 0; i < n; i++) { REAL(result,stride,i) *= norm; IMAG(result,stride,i) *= norm; } } return status; } int FUNCTION(gsl_dft_complex,transform) (const BASE data[], const size_t stride, const size_t n, BASE result[], const gsl_fft_direction sign) { size_t i, j, exponent; const double d_theta = 2.0 * ((int) sign) * M_PI / (double) n; /* FIXME: check that input length == output length and give error */ for (i = 0; i < n; i++) { ATOMIC sum_real = 0; ATOMIC sum_imag = 0; exponent = 0; for (j = 0; j < n; j++) { double theta = d_theta * (double) exponent; /* sum = exp(i theta) * data[j] */ ATOMIC w_real = (ATOMIC) cos (theta); ATOMIC w_imag = (ATOMIC) sin (theta); ATOMIC data_real = REAL(data,stride,j); ATOMIC data_imag = IMAG(data,stride,j); sum_real += w_real * data_real - w_imag * data_imag; sum_imag += w_real * data_imag + w_imag * data_real; exponent = (exponent + i) % n; } REAL(result,stride,i) = sum_real; IMAG(result,stride,i) = sum_imag; } return 0; } gsl-1.16/fft/c_pass_5.c0000664000252300025230000001703512171574312011577 00000000000000/* fft/c_pass_5.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 5; const size_t m = n / factor; const size_t q = n / product; const size_t p_1 = product / factor; const size_t jump = (factor - 1) * p_1; const ATOMIC sin_2pi_by_5 = sin (2.0 * M_PI / 5.0); const ATOMIC sin_2pi_by_10 = sin (2.0 * M_PI / 10.0); for (k = 0; k < q; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag, w3_real, w3_imag, w4_real, w4_imag; if (k == 0) { w1_real = 1.0; w1_imag = 0.0; w2_real = 1.0; w2_imag = 0.0; w3_real = 1.0; w3_imag = 0.0; w4_real = 1.0; w4_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = GSL_IMAG(twiddle3[k - 1]); w4_real = GSL_REAL(twiddle4[k - 1]); w4_imag = GSL_IMAG(twiddle4[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = -GSL_IMAG(twiddle3[k - 1]); w4_real = GSL_REAL(twiddle4[k - 1]); w4_imag = -GSL_IMAG(twiddle4[k - 1]); } } for (k1 = 0; k1 < p_1; k1++) { ATOMIC x0_real, x0_imag, x1_real, x1_imag, x2_real, x2_imag, x3_real, x3_imag, x4_real, x4_imag; const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i + m); const ATOMIC z1_imag = IMAG(in,istride,i + m); const ATOMIC z2_real = REAL(in,istride,i + 2*m); const ATOMIC z2_imag = IMAG(in,istride,i + 2*m); const ATOMIC z3_real = REAL(in,istride,i + 3*m); const ATOMIC z3_imag = IMAG(in,istride,i + 3*m); const ATOMIC z4_real = REAL(in,istride,i + 4*m); const ATOMIC z4_imag = IMAG(in,istride,i + 4*m); /* compute x = W(5) z */ /* t1 = z1 + z4 */ const ATOMIC t1_real = z1_real + z4_real; const ATOMIC t1_imag = z1_imag + z4_imag; /* t2 = z2 + z3 */ const ATOMIC t2_real = z2_real + z3_real; const ATOMIC t2_imag = z2_imag + z3_imag; /* t3 = z1 - z4 */ const ATOMIC t3_real = z1_real - z4_real; const ATOMIC t3_imag = z1_imag - z4_imag; /* t4 = z2 - z3 */ const ATOMIC t4_real = z2_real - z3_real; const ATOMIC t4_imag = z2_imag - z3_imag; /* t5 = t1 + t2 */ const ATOMIC t5_real = t1_real + t2_real; const ATOMIC t5_imag = t1_imag + t2_imag; /* t6 = (sqrt(5)/4)(t1 - t2) */ const ATOMIC t6_real = (sqrt (5.0) / 4.0) * (t1_real - t2_real); const ATOMIC t6_imag = (sqrt (5.0) / 4.0) * (t1_imag - t2_imag); /* t7 = z0 - ((t5)/4) */ const ATOMIC t7_real = z0_real - t5_real / 4.0; const ATOMIC t7_imag = z0_imag - t5_imag / 4.0; /* t8 = t7 + t6 */ const ATOMIC t8_real = t7_real + t6_real; const ATOMIC t8_imag = t7_imag + t6_imag; /* t9 = t7 - t6 */ const ATOMIC t9_real = t7_real - t6_real; const ATOMIC t9_imag = t7_imag - t6_imag; /* t10 = sin(2 pi/5) t3 + sin(2 pi/10) t4 */ const ATOMIC t10_real = ((int) sign) * (sin_2pi_by_5 * t3_real + sin_2pi_by_10 * t4_real); const ATOMIC t10_imag = ((int) sign) * (sin_2pi_by_5 * t3_imag + sin_2pi_by_10 * t4_imag); /* t11 = sin(2 pi/10) t3 - sin(2 pi/5) t4 */ const ATOMIC t11_real = ((int) sign) * (sin_2pi_by_10 * t3_real - sin_2pi_by_5 * t4_real); const ATOMIC t11_imag = ((int) sign) * (sin_2pi_by_10 * t3_imag - sin_2pi_by_5 * t4_imag); /* x0 = z0 + t5 */ x0_real = z0_real + t5_real; x0_imag = z0_imag + t5_imag; /* x1 = t8 + i t10 */ x1_real = t8_real - t10_imag; x1_imag = t8_imag + t10_real; /* x2 = t9 + i t11 */ x2_real = t9_real - t11_imag; x2_imag = t9_imag + t11_real; /* x3 = t9 - i t11 */ x3_real = t9_real + t11_imag; x3_imag = t9_imag - t11_real; /* x4 = t8 - i t10 */ x4_real = t8_real + t10_imag; x4_imag = t8_imag - t10_real; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out,ostride,j + p_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out,ostride,j + p_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out,ostride,j + 2*p_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out,ostride,j+2*p_1) = w2_real * x2_imag + w2_imag * x2_real; /* to3 = w3 * x3 */ REAL(out,ostride,j+3*p_1) = w3_real * x3_real - w3_imag * x3_imag; IMAG(out,ostride,j+3*p_1) = w3_real * x3_imag + w3_imag * x3_real; /* to4 = w4 * x4 */ REAL(out,ostride,j+4*p_1) = w4_real * x4_real - w4_imag * x4_imag; IMAG(out,ostride,j+4*p_1) = w4_real * x4_imag + w4_imag * x4_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/fft.c0000664000252300025230000000465012171574312010661 00000000000000#include #include #include #include #include #include #include #include #include #define BASE_DOUBLE #include "templates_on.h" #include "bitreverse.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "bitreverse.c" #include "templates_off.h" #undef BASE_FLOAT #include "factorize.c" #define BASE_DOUBLE #include "templates_on.h" #include "c_init.c" #include "c_main.c" #include "c_pass_2.c" #include "c_pass_3.c" #include "c_pass_4.c" #include "c_pass_5.c" #include "c_pass_6.c" #include "c_pass_7.c" #include "c_pass_n.c" #include "c_radix2.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "c_init.c" #include "c_main.c" #include "c_pass_2.c" #include "c_pass_3.c" #include "c_pass_4.c" #include "c_pass_5.c" #include "c_pass_6.c" #include "c_pass_7.c" #include "c_pass_n.c" #include "c_radix2.c" #include "templates_off.h" #undef BASE_FLOAT #include #include #define BASE_DOUBLE #include "templates_on.h" #include "hc_init.c" #include "hc_main.c" #include "hc_pass_2.c" #include "hc_pass_3.c" #include "hc_pass_4.c" #include "hc_pass_5.c" #include "hc_pass_n.c" #include "hc_radix2.c" #include "hc_unpack.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "hc_init.c" #include "hc_main.c" #include "hc_pass_2.c" #include "hc_pass_3.c" #include "hc_pass_4.c" #include "hc_pass_5.c" #include "hc_pass_n.c" #include "hc_radix2.c" #include "hc_unpack.c" #include "templates_off.h" #undef BASE_FLOAT #include #include #define BASE_DOUBLE #include "templates_on.h" #include "real_init.c" #include "real_main.c" #include "real_pass_2.c" #include "real_pass_3.c" #include "real_pass_4.c" #include "real_pass_5.c" #include "real_pass_n.c" #include "real_radix2.c" #include "real_unpack.c" #include "templates_off.h" #undef BASE_DOUBLE #define BASE_FLOAT #include "templates_on.h" #include "real_init.c" #include "real_main.c" #include "real_pass_2.c" #include "real_pass_3.c" #include "real_pass_4.c" #include "real_pass_5.c" #include "real_pass_n.c" #include "real_radix2.c" #include "real_unpack.c" #include "templates_off.h" #undef BASE_FLOAT gsl-1.16/fft/real_unpack.c0000664000252300025230000000245412171574312012366 00000000000000/* fft/real_unpack.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "complex_internal.h" int FUNCTION(gsl_fft_real,unpack) (const BASE real_coefficient[], BASE complex_coefficient[], const size_t stride, const size_t n) { size_t i; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } for (i = 0; i < n; i++) { REAL(complex_coefficient,stride,i) = real_coefficient[i * stride]; IMAG(complex_coefficient,stride,i) = 0.0; } return 0; } gsl-1.16/fft/real_pass.h0000664000252300025230000000655312171574312012064 00000000000000/* fft/real_pass.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); static void FUNCTION(fft_real,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[]); static void FUNCTION(fft_real,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]); static void FUNCTION(fft_real,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]); static void FUNCTION(fft_real,pass_n) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); gsl-1.16/fft/real_main.c0000664000252300025230000000765212171574312012036 00000000000000/* fft/real_main.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "real_pass.h" int FUNCTION(gsl_fft_real,transform) (BASE data[], const size_t stride, const size_t n, const TYPE(gsl_fft_real_wavetable) * wavetable, TYPE(gsl_fft_real_workspace) * work) { const size_t nf = wavetable->nf; size_t i; size_t q, product = 1; size_t tskip; size_t product_1; BASE *const scratch = work->scratch; TYPE(gsl_complex) *twiddle1, *twiddle2, *twiddle3, *twiddle4; size_t state = 0; BASE *in = data; size_t istride = stride ; BASE *out = scratch; size_t ostride = 1 ; if (n == 0) { GSL_ERROR ("length n must be positive integer", GSL_EDOM); } if (n == 1) { /* FFT of one data point is the identity */ return 0; } if (n != wavetable->n) { GSL_ERROR ("wavetable does not match length of data", GSL_EINVAL); } if (n != work->n) { GSL_ERROR ("workspace does not match length of data", GSL_EINVAL); } for (i = 0; i < nf; i++) { const size_t factor = wavetable->factor[i]; product_1 = product; product *= factor; q = n / product; tskip = (product_1 + 1) / 2 - 1; if (state == 0) { in = data; istride = stride; out = scratch; ostride = 1; state = 1; } else { in = scratch; istride = 1; out = data; ostride = stride; state = 0; } if (factor == 2) { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_real,pass_2) (in, istride, out, ostride, product, n, twiddle1); } else if (factor == 3) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; FUNCTION(fft_real,pass_3) (in, istride, out, ostride, product, n, twiddle1, twiddle2); } else if (factor == 4) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; twiddle3 = twiddle2 + tskip; FUNCTION(fft_real,pass_4) (in, istride, out, ostride, product, n, twiddle1, twiddle2, twiddle3); } else if (factor == 5) { twiddle1 = wavetable->twiddle[i]; twiddle2 = twiddle1 + tskip; twiddle3 = twiddle2 + tskip; twiddle4 = twiddle3 + tskip; FUNCTION(fft_real,pass_5) (in, istride, out, ostride, product, n, twiddle1, twiddle2, twiddle3, twiddle4); } else { twiddle1 = wavetable->twiddle[i]; FUNCTION(fft_real,pass_n) (in, istride, out, ostride, factor, product, n, twiddle1); } } if (state == 1) /* copy results back from scratch to data */ { for (i = 0; i < n; i++) { data[stride*i] = scratch[i] ; } } return 0; } gsl-1.16/fft/c_pass_2.c0000664000252300025230000000577612171574312011605 00000000000000/* fft/c_pass_2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 2; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; const size_t jump = (factor - 1) * product_1; for (k = 0; k < q; k++) { ATOMIC w_real, w_imag; if (k == 0) { w_real = 1.0; w_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w_real = GSL_REAL(twiddle[k - 1]); w_imag = GSL_IMAG(twiddle[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w_real = GSL_REAL(twiddle[k - 1]); w_imag = -GSL_IMAG(twiddle[k - 1]); } } for (k1 = 0; k1 < product_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); /* compute x = W(2) z */ /* x0 = z0 + z1 */ const ATOMIC x0_real = z0_real + z1_real; const ATOMIC x0_imag = z0_imag + z1_imag; /* x1 = z0 - z1 */ const ATOMIC x1_real = z0_real - z1_real; const ATOMIC x1_imag = z0_imag - z1_imag; /* apply twiddle factors */ /* out0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* out1 = w * x1 */ REAL(out,ostride,j+product_1) = w_real * x1_real - w_imag * x1_imag; IMAG(out,ostride,j+product_1) = w_real * x1_imag + w_imag * x1_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/c_init.c0000664000252300025230000001131012171574312011336 00000000000000/* fft/c_init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ TYPE(gsl_fft_complex_wavetable) * FUNCTION(gsl_fft_complex_wavetable,alloc) (size_t n) { int status ; size_t i; size_t n_factors; size_t t, product, product_1, q; double d_theta; TYPE(gsl_fft_complex_wavetable) * wavetable ; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } wavetable = (TYPE(gsl_fft_complex_wavetable) *) malloc(sizeof(TYPE(gsl_fft_complex_wavetable))); if (wavetable == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } wavetable->trig = (TYPE(gsl_complex) *) malloc (n * sizeof (TYPE(gsl_complex))); if (wavetable->trig == NULL) { free(wavetable) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate trigonometric lookup table", GSL_ENOMEM, 0); } wavetable->n = n ; status = fft_complex_factorize (n, &n_factors, wavetable->factor); if (status) { /* exception in constructor, avoid memory leak */ free (wavetable->trig); free (wavetable); GSL_ERROR_VAL ("factorization failed", GSL_EFACTOR, 0); }; wavetable->nf = n_factors; d_theta = -2.0 * M_PI / ((double) n); t = 0; product = 1; for (i = 0; i < n_factors; i++) { size_t j; const size_t factor = wavetable->factor[i]; wavetable->twiddle[i] = wavetable->trig + t; product_1 = product; /* product_1 = p_(i-1) */ product *= factor; q = n / product; for (j = 1; j < factor; j++) { size_t k; size_t m = 0; for (k = 1; k <= q; k++) { double theta; m = m + j * product_1; m = m % n; theta = d_theta * m; /* d_theta*j*k*p_(i-1) */ GSL_REAL(wavetable->trig[t]) = cos (theta); GSL_IMAG(wavetable->trig[t]) = sin (theta); t++; } } } if (t > n) { /* exception in constructor, avoid memory leak */ free (wavetable->trig); free (wavetable); GSL_ERROR_VAL ("overflowed trigonometric lookup table", GSL_ESANITY, 0); } return wavetable; } TYPE(gsl_fft_complex_workspace) * FUNCTION(gsl_fft_complex_workspace,alloc) (size_t n) { TYPE(gsl_fft_complex_workspace) * workspace ; if (n == 0) { GSL_ERROR_VAL ("length n must be positive integer", GSL_EDOM, 0); } workspace = (TYPE(gsl_fft_complex_workspace) *) malloc(sizeof(TYPE(gsl_fft_complex_workspace))); if (workspace == NULL) { GSL_ERROR_VAL ("failed to allocate struct", GSL_ENOMEM, 0); } workspace->n = n ; workspace->scratch = (BASE *) malloc (2 * n * sizeof (BASE)); if (workspace->scratch == NULL) { free(workspace) ; /* error in constructor, prevent memory leak */ GSL_ERROR_VAL ("failed to allocate scratch space", GSL_ENOMEM, 0); } return workspace; } void FUNCTION(gsl_fft_complex_wavetable,free) (TYPE(gsl_fft_complex_wavetable) * wavetable) { RETURN_IF_NULL (wavetable); /* release trigonometric lookup tables */ free (wavetable->trig); wavetable->trig = NULL; free (wavetable) ; } void FUNCTION(gsl_fft_complex_workspace,free) (TYPE(gsl_fft_complex_workspace) * workspace) { RETURN_IF_NULL (workspace); /* release scratch space */ free (workspace->scratch); workspace->scratch = NULL; free (workspace) ; } int FUNCTION(gsl_fft_complex,memcpy) (TYPE(gsl_fft_complex_wavetable) * dest, TYPE(gsl_fft_complex_wavetable) * src) { int i, n, nf ; if (dest->n != src->n) { GSL_ERROR ("length of src and dest do not match", GSL_EINVAL); } n = dest->n ; nf = dest->nf ; memcpy(dest->trig, src->trig, n * sizeof (double)) ; for (i = 0 ; i < nf ; i++) { dest->twiddle[i] = dest->trig + (src->twiddle[i] - src->trig) ; } return 0 ; } gsl-1.16/fft/c_radix2.c0000664000252300025230000002045112171574312011572 00000000000000/* fft/c_radix2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(gsl_fft_complex,radix2_forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,radix2_transform) (data, stride, n, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const ATOMIC norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,radix2_transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const gsl_fft_direction sign) { int result ; size_t dual; size_t bit; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* bit reverse the ordering of input data for decimation in time algorithm */ status = FUNCTION(fft_complex,bitreverse_order) (data, stride, n, logn) ; /* apply fft recursion */ dual = 1; for (bit = 0; bit < logn; bit++) { ATOMIC w_real = 1.0; ATOMIC w_imag = 0.0; const double theta = 2.0 * ((int) sign) * M_PI / (2.0 * (double) dual); const ATOMIC s = sin (theta); const ATOMIC t = sin (theta / 2.0); const ATOMIC s2 = 2.0 * t * t; size_t a, b; /* a = 0 */ for (b = 0; b < n; b += 2 * dual) { const size_t i = b ; const size_t j = b + dual; const ATOMIC z1_real = REAL(data,stride,j) ; const ATOMIC z1_imag = IMAG(data,stride,j) ; const ATOMIC wd_real = z1_real ; const ATOMIC wd_imag = z1_imag ; REAL(data,stride,j) = REAL(data,stride,i) - wd_real; IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag; REAL(data,stride,i) += wd_real; IMAG(data,stride,i) += wd_imag; } /* a = 1 .. (dual-1) */ for (a = 1; a < dual; a++) { /* trignometric recurrence for w-> exp(i theta) w */ { const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real; const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } for (b = 0; b < n; b += 2 * dual) { const size_t i = b + a; const size_t j = b + a + dual; const ATOMIC z1_real = REAL(data,stride,j) ; const ATOMIC z1_imag = IMAG(data,stride,j) ; const ATOMIC wd_real = w_real * z1_real - w_imag * z1_imag; const ATOMIC wd_imag = w_real * z1_imag + w_imag * z1_real; REAL(data,stride,j) = REAL(data,stride,i) - wd_real; IMAG(data,stride,j) = IMAG(data,stride,i) - wd_imag; REAL(data,stride,i) += wd_real; IMAG(data,stride,i) += wd_imag; } } dual *= 2; } return 0; } int FUNCTION(gsl_fft_complex,radix2_dif_forward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_forward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_dif_backward) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); return status; } int FUNCTION(gsl_fft_complex,radix2_dif_inverse) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n) { gsl_fft_direction sign = gsl_fft_backward; int status = FUNCTION(gsl_fft_complex,radix2_dif_transform) (data, stride, n, sign); if (status) { return status; } /* normalize inverse fft with 1/n */ { const ATOMIC norm = 1.0 / n; size_t i; for (i = 0; i < n; i++) { REAL(data,stride,i) *= norm; IMAG(data,stride,i) *= norm; } } return status; } int FUNCTION(gsl_fft_complex,radix2_dif_transform) (TYPE(gsl_complex_packed_array) data, const size_t stride, const size_t n, const gsl_fft_direction sign) { int result ; size_t dual; size_t bit; size_t logn = 0; int status; if (n == 1) /* identity operation */ { return 0 ; } /* make sure that n is a power of 2 */ result = fft_binary_logn(n) ; if (result == -1) { GSL_ERROR ("n is not a power of 2", GSL_EINVAL); } else { logn = result ; } /* apply fft recursion */ dual = n / 2; for (bit = 0; bit < logn; bit++) { ATOMIC w_real = 1.0; ATOMIC w_imag = 0.0; const double theta = 2.0 * ((int) sign) * M_PI / ((double) (2 * dual)); const ATOMIC s = sin (theta); const ATOMIC t = sin (theta / 2.0); const ATOMIC s2 = 2.0 * t * t; size_t a, b; for (b = 0; b < dual; b++) { for (a = 0; a < n; a+= 2 * dual) { const size_t i = b + a; const size_t j = b + a + dual; const ATOMIC t1_real = REAL(data,stride,i) + REAL(data,stride,j); const ATOMIC t1_imag = IMAG(data,stride,i) + IMAG(data,stride,j); const ATOMIC t2_real = REAL(data,stride,i) - REAL(data,stride,j); const ATOMIC t2_imag = IMAG(data,stride,i) - IMAG(data,stride,j); REAL(data,stride,i) = t1_real; IMAG(data,stride,i) = t1_imag; REAL(data,stride,j) = w_real*t2_real - w_imag * t2_imag; IMAG(data,stride,j) = w_real*t2_imag + w_imag * t2_real; } /* trignometric recurrence for w-> exp(i theta) w */ { const ATOMIC tmp_real = w_real - s * w_imag - s2 * w_real; const ATOMIC tmp_imag = w_imag + s * w_real - s2 * w_imag; w_real = tmp_real; w_imag = tmp_imag; } } dual /= 2; } /* bit reverse the ordering of output data for decimation in frequency algorithm */ status = FUNCTION(fft_complex,bitreverse_order)(data, stride, n, logn) ; return 0; } gsl-1.16/fft/test_trap_source.c0000664000252300025230000001226012171574312013463 00000000000000/* fft/test_trap.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ void FUNCTION(test,trap) (void); void FUNCTION(test,trap) (void) { int status ; BASE real_x ; BASE complex_x ; BASE * real_data = &real_x ; BASE * complex_data = &complex_x ; TYPE(gsl_fft_complex_wavetable) * cw; TYPE(gsl_fft_real_wavetable) * rw; TYPE(gsl_fft_halfcomplex_wavetable) * hcw; TYPE(gsl_fft_complex_workspace) * cwork; TYPE(gsl_fft_real_workspace) * rwork; /* n = 0 in alloc */ cw = FUNCTION(gsl_fft_complex_wavetable,alloc) (0); gsl_test (cw != 0, "trap for n = 0 in " NAME(gsl_fft_complex_wavetable) "_alloc"); rw = FUNCTION(gsl_fft_real_wavetable,alloc) (0); gsl_test (rw != 0, "trap for n = 0 in " NAME(gsl_fft_real_wavetable) "_alloc" ); hcw = FUNCTION(gsl_fft_halfcomplex_wavetable,alloc) (0); gsl_test (hcw != 0, "trap for n = 0 in " NAME(gsl_fft_halfcomplex_wavetable) "_alloc"); cwork = FUNCTION(gsl_fft_complex_workspace,alloc) (0); gsl_test (cw != 0, "trap for n = 0 in " NAME(gsl_fft_complex_workspace) "_alloc"); rwork = FUNCTION(gsl_fft_real_workspace,alloc) (0); gsl_test (rw != 0, "trap for n = 0 in " NAME(gsl_fft_real_workspace) "_alloc" ); cw = FUNCTION(gsl_fft_complex_wavetable,alloc) (10); hcw = FUNCTION(gsl_fft_halfcomplex_wavetable,alloc) (10); rw = FUNCTION(gsl_fft_real_wavetable,alloc) (10); cwork = FUNCTION(gsl_fft_complex_workspace,alloc) (10); rwork = FUNCTION(gsl_fft_real_workspace,alloc) (10); /* n = 0 in fft forward */ status = FUNCTION(gsl_fft_complex,forward) (complex_data, 1, 0, cw, cwork); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_forward"); status = FUNCTION(gsl_fft_real,transform) (real_data, 1, 0, rw, rwork); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_real) "_transform"); status = FUNCTION(gsl_fft_halfcomplex,transform) (real_data, 1, 0, hcw, rwork); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_halfcomplex) "_transform"); status = FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, 1, 0); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_radix2_forward"); /* n = 0 in fft backward */ status = FUNCTION(gsl_fft_complex,backward) (complex_data, 1, 0, cw, cwork); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_backward"); status = FUNCTION(gsl_fft_complex,radix2_backward) (complex_data, 1, 0); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_radix2_backward"); /* n = 0 in fft inverse */ status = FUNCTION(gsl_fft_complex,inverse) (complex_data, 1, 0, cw, cwork); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_inverse"); status = FUNCTION(gsl_fft_complex,radix2_inverse) (complex_data, 1, 0); gsl_test (!status, "trap for n = 0 in " NAME(gsl_fft_complex) "_radix2_inverse"); /* n != 2^k in power of 2 routines */ status = FUNCTION(gsl_fft_complex,radix2_forward) (complex_data, 1, 17); gsl_test (!status, "trap for n != 2^k in " NAME(gsl_fft_complex) "_radix2_forward"); status = FUNCTION(gsl_fft_complex,radix2_backward) (complex_data, 1, 17); gsl_test (!status, "trap for n != 2^k in " NAME(gsl_fft_complex) "_radix2_backward"); status = FUNCTION(gsl_fft_complex,radix2_inverse) (complex_data, 1, 17); gsl_test (!status, "trap for n != 2^k in " NAME(gsl_fft_complex) "_radix2_inverse"); /* n != wavetable.n in mixed radix routines */ cw->n = 3; status = FUNCTION(gsl_fft_complex,forward) (complex_data, 1, 4, cw, cwork); gsl_test (!status, "trap for n != nw in " NAME(gsl_fft_complex) "_forward"); cw->n = 3; status = FUNCTION(gsl_fft_complex,backward) (complex_data, 1, 4, cw, cwork); gsl_test (!status, "trap for n != nw in " NAME(gsl_fft_complex) "_backward"); cw->n = 3; status = FUNCTION(gsl_fft_complex,inverse) (complex_data, 1, 4, cw, cwork); gsl_test (!status, "trap for n != nw in " NAME(gsl_fft_complex) "_inverse"); rw->n = 3; status = FUNCTION(gsl_fft_real,transform) (real_data, 1, 4, rw, rwork); gsl_test (!status, "trap for n != nw in " NAME(gsl_fft_real) "_transform"); hcw->n = 3; status = FUNCTION(gsl_fft_halfcomplex,transform) (real_data, 1, 4, hcw, rwork); gsl_test (!status, "trap for n != nw in " NAME(gsl_fft_halfcomplex) "_transform"); FUNCTION (gsl_fft_halfcomplex_wavetable,free) (hcw) ; FUNCTION (gsl_fft_real_wavetable,free) (rw) ; FUNCTION (gsl_fft_complex_wavetable,free) (cw) ; FUNCTION (gsl_fft_real_workspace,free) (rwork) ; FUNCTION (gsl_fft_complex_workspace,free) (cwork) ; } gsl-1.16/fft/gsl_fft_halfcomplex.h0000664000252300025230000000572412171574312014120 00000000000000/* fft/gsl_fft_halfcomplex.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_HALFCOMPLEX_H__ #define __GSL_FFT_HALFCOMPLEX_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_fft_halfcomplex_radix2_backward (double data[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_radix2_inverse (double data[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_radix2_transform (double data[], const size_t stride, const size_t n); typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex *twiddle[64]; gsl_complex *trig; } gsl_fft_halfcomplex_wavetable; gsl_fft_halfcomplex_wavetable * gsl_fft_halfcomplex_wavetable_alloc (size_t n); void gsl_fft_halfcomplex_wavetable_free (gsl_fft_halfcomplex_wavetable * wavetable); int gsl_fft_halfcomplex_backward (double data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable * wavetable, gsl_fft_real_workspace * work); int gsl_fft_halfcomplex_inverse (double data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable * wavetable, gsl_fft_real_workspace * work); int gsl_fft_halfcomplex_transform (double data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable * wavetable, gsl_fft_real_workspace * work); int gsl_fft_halfcomplex_unpack (const double halfcomplex_coefficient[], double complex_coefficient[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_radix2_unpack (const double halfcomplex_coefficient[], double complex_coefficient[], const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_FFT_HALFCOMPLEX_H__ */ gsl-1.16/fft/gsl_fft_halfcomplex_float.h0000664000252300025230000000624212171574312015301 00000000000000/* fft/gsl_fft_halfcomplex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_HALFCOMPLEX_FLOAT_H__ #define __GSL_FFT_HALFCOMPLEX_FLOAT_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_fft_halfcomplex_float_radix2_backward (float data[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_float_radix2_inverse (float data[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_float_radix2_transform (float data[], const size_t stride, const size_t n); typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex_float *twiddle[64]; gsl_complex_float *trig; } gsl_fft_halfcomplex_wavetable_float; gsl_fft_halfcomplex_wavetable_float * gsl_fft_halfcomplex_wavetable_float_alloc (size_t n); void gsl_fft_halfcomplex_wavetable_float_free (gsl_fft_halfcomplex_wavetable_float * wavetable); int gsl_fft_halfcomplex_float_backward (float data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable_float * wavetable, gsl_fft_real_workspace_float * work); int gsl_fft_halfcomplex_float_inverse (float data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable_float * wavetable, gsl_fft_real_workspace_float * work); int gsl_fft_halfcomplex_float_transform (float data[], const size_t stride, const size_t n, const gsl_fft_halfcomplex_wavetable_float * wavetable, gsl_fft_real_workspace_float * work); int gsl_fft_halfcomplex_float_unpack (const float halfcomplex_coefficient[], float complex_coefficient[], const size_t stride, const size_t n); int gsl_fft_halfcomplex_float_radix2_unpack (const float halfcomplex_coefficient[], float complex_coefficient[], const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_FFT_HALFCOMPLEX_FLOAT_H__ */ gsl-1.16/fft/hc_pass_2.c0000664000252300025230000000637112171574312011745 00000000000000/* fft/hc_pass_2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_halfcomplex,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t i, j, k, k1, jump; size_t factor, q, m, product_1; i = 0; j = 0; factor = 2; m = n / factor; q = n / product; product_1 = product / factor; jump = (factor - 1) * q; for (k1 = 0; k1 < product_1; k1++) { const ATOMIC r0 = VECTOR(in,istride,2 * k1 * q); const ATOMIC r1 = VECTOR(in,istride,2 * k1 * q + 2 * q - 1); const ATOMIC s0 = r0 + r1; const ATOMIC s1 = r0 - r1; VECTOR(out,ostride,q * k1) = s0; VECTOR(out,ostride,q * k1 + m) = s1; } if (q == 1) return; for (k = 1; k < (q + 1) / 2; k++) { const ATOMIC w_real = GSL_REAL(twiddle[k - 1]); const ATOMIC w_imag = GSL_IMAG(twiddle[k - 1]); for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 2 * k1 * q + 2 * k - 1; const size_t from1 = 2 * k1 * q - 2 * k + 2 * q - 1; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z1_imag = VECTOR(in,istride,from1 + 1); /* compute x = W(2) z */ /* x0 = z0 + z1 */ const ATOMIC x0_real = z0_real + z1_real; const ATOMIC x0_imag = z0_imag - z1_imag; /* x1 = z0 - z1 */ const ATOMIC x1_real = z0_real - z1_real; const ATOMIC x1_imag = z0_imag + z1_imag; const size_t to0 = k1 * q + 2 * k - 1; const size_t to1 = to0 + m; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = w_real * x1_real - w_imag * x1_imag; VECTOR(out,ostride,to1 + 1) = w_imag * x1_real + w_real * x1_imag; } } if (q % 2 == 1) return; for (k1 = 0; k1 < product_1; k1++) { const size_t from0 = 2 * k1 * q + q - 1; const size_t to0 = k1 * q + q - 1; const size_t to1 = to0 + m; VECTOR(out,ostride,to0) = 2 * VECTOR(in,istride,from0); VECTOR(out,ostride,to1) = -2 * VECTOR(in,istride,from0 + 1); } return; } gsl-1.16/fft/compare_source.c0000664000252300025230000000626312171574312013112 00000000000000/* fft/compare_source.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "compare.h" int FUNCTION(compare_complex,results) (const char *name_a, const BASE a[], const char *name_b, const BASE b[], size_t stride, size_t n, const double allowed_ticks) { size_t i; double ticks, max_ticks = 0; double dr, di; const char *flag; for (i = 0; i < n; i++) { dr = b[2*stride*i] - a[2*stride*i]; di = b[2*stride*i+1] - a[2*stride*i+1]; ticks = (fabs (dr) + fabs (di)) / BASE_EPSILON; if (ticks > max_ticks) { max_ticks = ticks; } } if (max_ticks < allowed_ticks) { return 0; } printf ("\n%s vs %s : max_ticks = %f\n", name_a, name_b, max_ticks); for (i = 0; i < n; i++) { dr = b[2*stride*i] - a[2*stride*i]; di = b[2*stride*i+1] - a[2*stride*i+1]; ticks = (fabs (dr) + fabs (di)) / BASE_EPSILON; if (ticks > 1000) { flag = "***"; } else { flag = ""; } printf ("%15s: %d %.16f %.16f %s\n", name_a, (int)i, a[2*stride*i], a[2*stride*i+1], flag); printf ("%15s: %d %.16f %.16f %e %s\n", name_b, (int)i, b[2*stride*i], b[2*stride*i+1], ticks, flag); } return -1; } int FUNCTION(compare_real,results) (const char *name_a, const BASE a[], const char *name_b, const BASE b[], size_t stride, size_t n, const double allowed_ticks) { size_t i; double ticks, max_ticks = 0; double dr; const char *flag; for (i = 0; i < n; i++) { dr = b[stride*i] - a[stride*i]; ticks = fabs (dr) / BASE_EPSILON; if (ticks > max_ticks) { max_ticks = ticks; } } if (max_ticks < allowed_ticks) { return 0; } printf ("\n%s vs %s : max_ticks = %f\n", name_a, name_b, max_ticks); for (i = 0; i < n; i++) { dr = b[stride*i] - a[stride*i]; ticks = fabs (dr) / BASE_EPSILON; if (ticks > 1000) { flag = "***"; } else { flag = ""; } printf ("%15s: %d %.16f %s\n", name_a, (int)i, a[stride*i], flag); printf ("%15s: %d %.16f %e %s\n", name_b, (int)i, b[stride*i], ticks, flag); } return -1; } gsl-1.16/fft/c_pass.h0000664000252300025230000001137112171574312011355 00000000000000/* fft/c_pass.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); static int FUNCTION(fft_complex,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[]); static int FUNCTION(fft_complex,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]); static int FUNCTION(fft_complex,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]); static int FUNCTION(fft_complex,pass_6) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[], const TYPE(gsl_complex) twiddle5[]); static int FUNCTION(fft_complex,pass_7) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[], const TYPE(gsl_complex) twiddle5[], const TYPE(gsl_complex) twiddle6[]); static int FUNCTION(fft_complex,pass_n) (BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); gsl-1.16/fft/test_real_source.c0000664000252300025230000001660212171574312013444 00000000000000/* fft/test_real.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "bitreverse.h" #include "signals.h" #include "compare.h" void FUNCTION(test_real,func) (size_t stride, size_t n); void FUNCTION(test_real,bitreverse_order) (size_t stride, size_t n); void FUNCTION(test_real,radix2) (size_t stride, size_t n); void FUNCTION(test_real,func) (size_t stride, size_t n) { size_t i ; int status ; TYPE(gsl_fft_real_wavetable) * rw ; TYPE(gsl_fft_halfcomplex_wavetable) * hcw ; TYPE(gsl_fft_real_workspace) * rwork ; BASE * real_data = (BASE *) malloc (n * stride * sizeof (BASE)); BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); for (i = 0 ; i < n * stride ; i++) { real_data[i] = (BASE)i ; } for (i = 0 ; i < 2 * n * stride ; i++) { complex_data[i] = (BASE)(i + 1000.0) ; complex_tmp[i] = (BASE)(i + 2000.0) ; fft_complex_data[i] = (BASE)(i + 3000.0) ; } gsl_set_error_handler (NULL); /* abort on any errors */ /* mixed radix real fft */ rw = FUNCTION(gsl_fft_real_wavetable,alloc) (n); gsl_test (rw == 0, NAME(gsl_fft_real_wavetable) "_alloc, n = %d, stride = %d", n, stride); rwork = FUNCTION(gsl_fft_real_workspace,alloc) (n); gsl_test (rwork == 0, NAME(gsl_fft_real_workspace) "_alloc, n = %d", n); FUNCTION(fft_signal,real_noise) (n, stride, complex_data, fft_complex_data); memcpy (complex_tmp, complex_data, 2 * n * stride * sizeof (BASE)); for (i = 0; i < n; i++) { real_data[i*stride] = REAL(complex_data,stride,i); } FUNCTION(gsl_fft_real,transform) (real_data, stride, n, rw, rwork); FUNCTION(gsl_fft_halfcomplex,unpack) (real_data, complex_data, stride, n); status = FUNCTION(compare_complex,results) ("dft", fft_complex_data, "fft of noise", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_real) " with signal_real_noise, n = %d, stride = %d", n, stride); /* compute the inverse fft */ hcw = FUNCTION(gsl_fft_halfcomplex_wavetable,alloc) (n); gsl_test (hcw == 0, NAME(gsl_fft_halfcomplex_wavetable) "_alloc, n = %d, stride = %d", n, stride); status = FUNCTION(gsl_fft_halfcomplex,transform) (real_data, stride, n, hcw, rwork); for (i = 0; i < n; i++) { real_data[i*stride] /= n; } FUNCTION(gsl_fft_real,unpack) (real_data, complex_data, stride, n); status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft inverse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_halfcomplex) " with data from signal_noise, n = %d, stride = %d", n, stride); FUNCTION(gsl_fft_real_workspace,free) (rwork); FUNCTION(gsl_fft_real_wavetable,free) (rw); FUNCTION(gsl_fft_halfcomplex_wavetable,free) (hcw); free(real_data) ; free(complex_data) ; free(complex_tmp) ; free(fft_complex_data) ; } void FUNCTION(test_real,bitreverse_order) (size_t stride, size_t n) { int status ; size_t logn, i ; BASE * tmp = (BASE *) malloc (n * stride * sizeof (BASE)); BASE * data = (BASE *) malloc (n * stride * sizeof (BASE)); BASE * reversed_data = (BASE *) malloc (n * stride * sizeof (BASE)); for (i = 0; i < stride * n; i++) { data[i] = (BASE)i ; } memcpy (tmp, data, n * stride * sizeof(BASE)) ; logn = 0 ; while (n > (1U <>= 1; } reversed_data[j*stride] = data[i*stride] ; } FUNCTION(fft_real,bitreverse_order) (data, stride, n, logn); status = FUNCTION(compare_real,results) ("naive bit reverse", reversed_data, "fft_complex_bitreverse_order", data, stride, n, 1e6); gsl_test (status, NAME(fft_real) "_bitreverse_order, n = %d", n); free (reversed_data) ; free (data) ; free (tmp) ; } void FUNCTION(test_real,radix2) (size_t stride, size_t n) { size_t i ; int status ; BASE * real_data = (BASE *) malloc (n * stride * sizeof (BASE)); BASE * complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * complex_tmp = (BASE *) malloc (2 * n * stride * sizeof (BASE)); BASE * fft_complex_data = (BASE *) malloc (2 * n * stride * sizeof (BASE)); for (i = 0 ; i < n * stride ; i++) { real_data[i] = (BASE)i ; } for (i = 0 ; i < 2 * n * stride ; i++) { complex_data[i] = (BASE)(i + 1000.0) ; complex_tmp[i] = (BASE)(i + 2000.0) ; fft_complex_data[i] = (BASE)(i + 3000.0) ; } gsl_set_error_handler (NULL); /* abort on any errors */ /* radix-2 real fft */ FUNCTION(fft_signal,real_noise) (n, stride, complex_data, fft_complex_data); memcpy (complex_tmp, complex_data, 2 * n * stride * sizeof (BASE)); for (i = 0; i < n; i++) { real_data[i*stride] = REAL(complex_data,stride,i); } FUNCTION(gsl_fft_real,radix2_transform) (real_data, stride, n); FUNCTION(gsl_fft_halfcomplex,radix2_unpack) (real_data, complex_data, stride, n); status = FUNCTION(compare_complex,results) ("dft", fft_complex_data, "fft of noise", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_real) "_radix2 with signal_real_noise, n = %d, stride = %d", n, stride); /* compute the inverse fft */ status = FUNCTION(gsl_fft_halfcomplex,radix2_transform) (real_data, stride, n); for (i = 0; i < n; i++) { real_data[i*stride] /= n; } FUNCTION(gsl_fft_real,unpack) (real_data, complex_data, stride, n); status = FUNCTION(compare_complex,results) ("orig", complex_tmp, "fft inverse", complex_data, stride, n, 1e6); gsl_test (status, NAME(gsl_fft_halfcomplex) "_radix2 with data from signal_noise, n = %d, stride = %d", n, stride); free(real_data) ; free(complex_data) ; free(complex_tmp) ; free(fft_complex_data) ; } gsl-1.16/fft/real_pass_5.c0000664000252300025230000002437212171574312012302 00000000000000/* fft/real_pass_5.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void FUNCTION(fft_real,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]) { size_t k, k1; const size_t factor = 5; const size_t m = n / factor; const size_t q = n / product; const size_t product_1 = product / factor; const ATOMIC sina = sin (2.0 * M_PI / 5.0); const ATOMIC sinb = sin (2.0 * M_PI / 10.0); for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const size_t from4 = from3 + m; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z3_real = VECTOR(in,istride,from3); const ATOMIC z4_real = VECTOR(in,istride,from4); /* t1 = z1 + z4 */ const ATOMIC t1_real = z1_real + z4_real; /* t2 = z2 + z3 */ const ATOMIC t2_real = z2_real + z3_real; /* t3 = z1 - z4 */ const ATOMIC t3_real = z1_real - z4_real; /* t4 = z2 - z3 */ const ATOMIC t4_real = z2_real - z3_real; /* t5 = t1 + t2 */ const ATOMIC t5_real = t1_real + t2_real; /* t6 = (sqrt(5)/4)(t1 - t2) */ const ATOMIC t6_real = (sqrt (5.0) / 4.0) * (t1_real - t2_real); /* t7 = z0 - ((t5)/4) */ const ATOMIC t7_real = z0_real - t5_real / 4.0; /* t8 = t7 + t6 */ const ATOMIC t8_real = t7_real + t6_real; /* t9 = t7 - t6 */ const ATOMIC t9_real = t7_real - t6_real; /* t10 = -(sin(2 pi/5) t3 + sin(2 pi/10) t4 ) */ const ATOMIC t10_real = -sina * t3_real - sinb * t4_real; /* t11 = -(sin(2 pi/10) t3 - sin(2 pi/5) t4) */ const ATOMIC t11_real = -sinb * t3_real + sina * t4_real; /* x0 = z0 + t5 */ const ATOMIC x0_real = z0_real + t5_real; /* x1 = t8 + i t10 */ const ATOMIC x1_real = t8_real; const ATOMIC x1_imag = t10_real; /* x2 = t9 + i t11 */ const ATOMIC x2_real = t9_real; const ATOMIC x2_imag = t11_real; const size_t to0 = product * k1; const size_t to1 = to0 + 2 * product_1 - 1; const size_t to2 = to1 + 2 * product_1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to2 + 1) = x2_imag; } if (product_1 == 1) return; for (k = 1; k < (product_1 + 1) / 2; k++) { const ATOMIC w1_real = GSL_REAL(twiddle1[k - 1]); const ATOMIC w1_imag = -GSL_IMAG(twiddle1[k - 1]); const ATOMIC w2_real = GSL_REAL(twiddle2[k - 1]); const ATOMIC w2_imag = -GSL_IMAG(twiddle2[k - 1]); const ATOMIC w3_real = GSL_REAL(twiddle3[k - 1]); const ATOMIC w3_imag = -GSL_IMAG(twiddle3[k - 1]); const ATOMIC w4_real = GSL_REAL(twiddle4[k - 1]); const ATOMIC w4_imag = -GSL_IMAG(twiddle4[k - 1]); for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + 2 * k - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const size_t from4 = from3 + m; const ATOMIC f0_real = VECTOR(in,istride,from0); const ATOMIC f0_imag = VECTOR(in,istride,from0 + 1); const ATOMIC f1_real = VECTOR(in,istride,from1); const ATOMIC f1_imag = VECTOR(in,istride,from1 + 1); const ATOMIC f2_real = VECTOR(in,istride,from2); const ATOMIC f2_imag = VECTOR(in,istride,from2 + 1); const ATOMIC f3_real = VECTOR(in,istride,from3); const ATOMIC f3_imag = VECTOR(in,istride,from3 + 1); const ATOMIC f4_real = VECTOR(in,istride,from4); const ATOMIC f4_imag = VECTOR(in,istride,from4 + 1); const ATOMIC z0_real = f0_real; const ATOMIC z0_imag = f0_imag; const ATOMIC z1_real = w1_real * f1_real - w1_imag * f1_imag; const ATOMIC z1_imag = w1_real * f1_imag + w1_imag * f1_real; const ATOMIC z2_real = w2_real * f2_real - w2_imag * f2_imag; const ATOMIC z2_imag = w2_real * f2_imag + w2_imag * f2_real; const ATOMIC z3_real = w3_real * f3_real - w3_imag * f3_imag; const ATOMIC z3_imag = w3_real * f3_imag + w3_imag * f3_real; const ATOMIC z4_real = w4_real * f4_real - w4_imag * f4_imag; const ATOMIC z4_imag = w4_real * f4_imag + w4_imag * f4_real; /* compute x = W(5) z */ /* t1 = z1 + z4 */ const ATOMIC t1_real = z1_real + z4_real; const ATOMIC t1_imag = z1_imag + z4_imag; /* t2 = z2 + z3 */ const ATOMIC t2_real = z2_real + z3_real; const ATOMIC t2_imag = z2_imag + z3_imag; /* t3 = z1 - z4 */ const ATOMIC t3_real = z1_real - z4_real; const ATOMIC t3_imag = z1_imag - z4_imag; /* t4 = z2 - z3 */ const ATOMIC t4_real = z2_real - z3_real; const ATOMIC t4_imag = z2_imag - z3_imag; /* t5 = t1 + t2 */ const ATOMIC t5_real = t1_real + t2_real; const ATOMIC t5_imag = t1_imag + t2_imag; /* t6 = (sqrt(5)/4)(t1 - t2) */ const ATOMIC t6_real = (sqrt (5.0) / 4.0) * (t1_real - t2_real); const ATOMIC t6_imag = (sqrt (5.0) / 4.0) * (t1_imag - t2_imag); /* t7 = z0 - ((t5)/4) */ const ATOMIC t7_real = z0_real - t5_real / 4.0; const ATOMIC t7_imag = z0_imag - t5_imag / 4.0; /* t8 = t7 + t6 */ const ATOMIC t8_real = t7_real + t6_real; const ATOMIC t8_imag = t7_imag + t6_imag; /* t9 = t7 - t6 */ const ATOMIC t9_real = t7_real - t6_real; const ATOMIC t9_imag = t7_imag - t6_imag; /* t10 = - (sin(2 pi/5) t3 + sin(2 pi/10) t4) */ const ATOMIC t10_real = -sina * t3_real - sinb * t4_real; const ATOMIC t10_imag = -sina * t3_imag - sinb * t4_imag; /* t11 = -(sin(2 pi/10) t3 - sin(2 pi/5) t4) */ const ATOMIC t11_real = -sinb * t3_real + sina * t4_real; const ATOMIC t11_imag = -sinb * t3_imag + sina * t4_imag; /* x0 = z0 + t5 */ const ATOMIC x0_real = z0_real + t5_real; const ATOMIC x0_imag = z0_imag + t5_imag; /* x1 = t8 + i t10 */ const ATOMIC x1_real = t8_real - t10_imag; const ATOMIC x1_imag = t8_imag + t10_real; /* x2 = t9 + i t11 */ const ATOMIC x2_real = t9_real - t11_imag; const ATOMIC x2_imag = t9_imag + t11_real; /* x3 = t9 - i t11 */ const ATOMIC x3_real = t9_real + t11_imag; const ATOMIC x3_imag = t9_imag - t11_real; /* x4 = t8 - i t10 */ const ATOMIC x4_real = t8_real + t10_imag; const ATOMIC x4_imag = t8_imag - t10_real; const size_t to0 = k1 * product + 2 * k - 1; const size_t to1 = to0 + 2 * product_1; const size_t to2 = to1 + 2 * product_1; const size_t to3 = 2 * product_1 - 2 * k + k1 * product - 1; const size_t to4 = to3 + 2 * product_1; VECTOR(out,ostride,to0) = x0_real; VECTOR(out,ostride,to0 + 1) = x0_imag; VECTOR(out,ostride,to1) = x1_real; VECTOR(out,ostride,to1 + 1) = x1_imag; VECTOR(out,ostride,to2) = x2_real; VECTOR(out,ostride,to2 + 1) = x2_imag; VECTOR(out,ostride,to3) = x4_real; VECTOR(out,ostride,to3 + 1) = -x4_imag; VECTOR(out,ostride,to4) = x3_real; VECTOR(out,ostride,to4 + 1) = -x3_imag; } } if (product_1 % 2 == 1) return; for (k1 = 0; k1 < q; k1++) { const size_t from0 = k1 * product_1 + product_1 - 1; const size_t from1 = from0 + m; const size_t from2 = from1 + m; const size_t from3 = from2 + m; const size_t from4 = from3 + m; const ATOMIC z0_real = VECTOR(in,istride,from0); const ATOMIC z1_real = VECTOR(in,istride,from1); const ATOMIC z2_real = VECTOR(in,istride,from2); const ATOMIC z3_real = VECTOR(in,istride,from3); const ATOMIC z4_real = VECTOR(in,istride,from4); const ATOMIC t1 = z1_real - z4_real; const ATOMIC t2 = z1_real + z4_real; const ATOMIC t3 = z2_real - z3_real; const ATOMIC t4 = z2_real + z3_real; const ATOMIC t5 = t1 - t3; const ATOMIC t6 = z0_real + t5 / 4.0; const ATOMIC t7 = (sqrt (5.0) / 4.0) * (t1 + t3); const size_t to0 = k1 * product + product_1 - 1; const size_t to1 = to0 + 2 * product_1; const size_t to2 = to1 + 2 * product_1; VECTOR(out,ostride,to0) = t6 + t7; VECTOR(out,ostride,to0 + 1) = -sinb * t2 - sina * t4; VECTOR(out,ostride,to1) = t6 - t7; VECTOR(out,ostride,to1 + 1) = -sina * t2 + sinb * t4; VECTOR(out,ostride,to2) = z0_real - t5; } return; } gsl-1.16/fft/gsl_fft_complex.h0000664000252300025230000001133612171574312013261 00000000000000/* fft/gsl_fft_complex.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_COMPLEX_H__ #define __GSL_FFT_COMPLEX_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Power of 2 routines */ int gsl_fft_complex_radix2_forward (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_backward (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_inverse (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_transform (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_direction sign); int gsl_fft_complex_radix2_dif_forward (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_dif_backward (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_dif_inverse (gsl_complex_packed_array data, const size_t stride, const size_t n); int gsl_fft_complex_radix2_dif_transform (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_direction sign); /* Mixed Radix general-N routines */ typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex *twiddle[64]; gsl_complex *trig; } gsl_fft_complex_wavetable; typedef struct { size_t n; double *scratch; } gsl_fft_complex_workspace; gsl_fft_complex_wavetable *gsl_fft_complex_wavetable_alloc (size_t n); void gsl_fft_complex_wavetable_free (gsl_fft_complex_wavetable * wavetable); gsl_fft_complex_workspace *gsl_fft_complex_workspace_alloc (size_t n); void gsl_fft_complex_workspace_free (gsl_fft_complex_workspace * workspace); int gsl_fft_complex_memcpy (gsl_fft_complex_wavetable * dest, gsl_fft_complex_wavetable * src); int gsl_fft_complex_forward (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable * wavetable, gsl_fft_complex_workspace * work); int gsl_fft_complex_backward (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable * wavetable, gsl_fft_complex_workspace * work); int gsl_fft_complex_inverse (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable * wavetable, gsl_fft_complex_workspace * work); int gsl_fft_complex_transform (gsl_complex_packed_array data, const size_t stride, const size_t n, const gsl_fft_complex_wavetable * wavetable, gsl_fft_complex_workspace * work, const gsl_fft_direction sign); __END_DECLS #endif /* __GSL_FFT_COMPLEX_H__ */ gsl-1.16/fft/bitreverse.h0000664000252300025230000000250712171574312012260 00000000000000/* fft/bitreverse.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,bitreverse_order) (BASE data[], const size_t stride, const size_t n, size_t logn) ; static int FUNCTION(fft_real,bitreverse_order) (BASE data[], const size_t stride, const size_t n, size_t logn) ; gsl-1.16/fft/c_pass_n.c0000664000252300025230000001374012171574312011667 00000000000000/* fft/c_pass_n.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_n) (BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]) { size_t i = 0, j = 0; size_t k, k1; const size_t m = n / factor; const size_t q = n / product; const size_t p_1 = product / factor; const size_t jump = (factor - 1) * p_1; size_t e, e1; for (i = 0; i < m; i++) { REAL(out,ostride,i) = REAL(in,istride,i); IMAG(out,ostride,i) = IMAG(in,istride,i); } for (e = 1; e < (factor - 1) / 2 + 1; e++) { for (i = 0; i < m; i++) { const size_t idx = i + e * m; const size_t idxc = i + (factor - e) * m; REAL(out,ostride,idx) = REAL(in,istride,idx) + REAL(in,istride,idxc); IMAG(out,ostride,idx) = IMAG(in,istride,idx) + IMAG(in,istride,idxc); REAL(out,ostride,idxc) = REAL(in,istride,idx) - REAL(in,istride,idxc); IMAG(out,ostride,idxc) = IMAG(in,istride,idx) - IMAG(in,istride,idxc); } } /* e = 0 */ for (i=0 ; i conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = -GSL_IMAG(twiddle3[k - 1]); w4_real = GSL_REAL(twiddle4[k - 1]); w4_imag = -GSL_IMAG(twiddle4[k - 1]); w5_real = GSL_REAL(twiddle5[k - 1]); w5_imag = -GSL_IMAG(twiddle5[k - 1]); w6_real = GSL_REAL(twiddle6[k - 1]); w6_imag = -GSL_IMAG(twiddle6[k - 1]); } } for (k1 = 0; k1 < p_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); const ATOMIC z2_real = REAL(in,istride,i+2*m); const ATOMIC z2_imag = IMAG(in,istride,i+2*m); const ATOMIC z3_real = REAL(in,istride,i+3*m); const ATOMIC z3_imag = IMAG(in,istride,i+3*m); const ATOMIC z4_real = REAL(in,istride,i+4*m); const ATOMIC z4_imag = IMAG(in,istride,i+4*m); const ATOMIC z5_real = REAL(in,istride,i+5*m); const ATOMIC z5_imag = IMAG(in,istride,i+5*m); const ATOMIC z6_real = REAL(in,istride,i+6*m); const ATOMIC z6_imag = IMAG(in,istride,i+6*m); /* compute x = W(7) z */ /* t0 = z1 + z6 */ const ATOMIC t0_real = z1_real + z6_real ; const ATOMIC t0_imag = z1_imag + z6_imag ; /* t1 = z1 - z6 */ const ATOMIC t1_real = z1_real - z6_real ; const ATOMIC t1_imag = z1_imag - z6_imag ; /* t2 = z2 + z5 */ const ATOMIC t2_real = z2_real + z5_real ; const ATOMIC t2_imag = z2_imag + z5_imag ; /* t3 = z2 - z5 */ const ATOMIC t3_real = z2_real - z5_real ; const ATOMIC t3_imag = z2_imag - z5_imag ; /* t4 = z4 + z3 */ const ATOMIC t4_real = z4_real + z3_real ; const ATOMIC t4_imag = z4_imag + z3_imag ; /* t5 = z4 - z3 */ const ATOMIC t5_real = z4_real - z3_real ; const ATOMIC t5_imag = z4_imag - z3_imag ; /* t6 = t2 + t0 */ const ATOMIC t6_real = t2_real + t0_real ; const ATOMIC t6_imag = t2_imag + t0_imag ; /* t7 = t5 + t3 */ const ATOMIC t7_real = t5_real + t3_real ; const ATOMIC t7_imag = t5_imag + t3_imag ; /* b0 = z0 + t6 + t4 */ const ATOMIC b0_real = z0_real + t6_real + t4_real ; const ATOMIC b0_imag = z0_imag + t6_imag + t4_imag ; /* b1 = ((cos(2pi/7) + cos(4pi/7) + cos(6pi/7))/3-1) (t6 + t4) */ const ATOMIC b1_real = (((c1 + c2 + c3)/3.0 - 1.0) * (t6_real + t4_real)); const ATOMIC b1_imag = (((c1 + c2 + c3)/3.0 - 1.0) * (t6_imag + t4_imag)); /* b2 = ((2*cos(2pi/7) - cos(4pi/7) - cos(6pi/7))/3) (t0 - t4) */ const ATOMIC b2_real = (((2.0 * c1 - c2 - c3)/3.0) * (t0_real - t4_real)); const ATOMIC b2_imag = (((2.0 * c1 - c2 - c3)/3.0) * (t0_imag - t4_imag)); /* b3 = ((cos(2pi/7) - 2*cos(4pi/7) + cos(6pi/7))/3) (t4 - t2) */ const ATOMIC b3_real = (((c1 - 2.0*c2 + c3)/3.0) * (t4_real - t2_real)); const ATOMIC b3_imag = (((c1 - 2.0*c2 + c3)/3.0) * (t4_imag - t2_imag)); /* b4 = ((cos(2pi/7) + cos(4pi/7) - 2*cos(6pi/7))/3) (t2 - t0) */ const ATOMIC b4_real = (((c1 + c2 - 2.0 * c3)/3.0) * (t2_real - t0_real)); const ATOMIC b4_imag = (((c1 + c2 - 2.0 * c3)/3.0) * (t2_imag - t0_imag)); /* b5 = sign * ((sin(2pi/7) + sin(4pi/7) - sin(6pi/7))/3) (t7 + t1) */ const ATOMIC b5_real = (-(int)sign) * ((s1 + s2 - s3)/3.0) * (t7_real + t1_real) ; const ATOMIC b5_imag = (-(int)sign) * ((s1 + s2 - s3)/3.0) * (t7_imag + t1_imag) ; /* b6 = sign * ((2sin(2pi/7) - sin(4pi/7) + sin(6pi/7))/3) (t1 - t5) */ const ATOMIC b6_real = (-(int)sign) * ((2.0 * s1 - s2 + s3)/3.0) * (t1_real - t5_real) ; const ATOMIC b6_imag = (-(int)sign) * ((2.0 * s1 - s2 + s3)/3.0) * (t1_imag - t5_imag) ; /* b7 = sign * ((sin(2pi/7) - 2sin(4pi/7) - sin(6pi/7))/3) (t5 - t3) */ const ATOMIC b7_real = (-(int)sign) * ((s1 - 2.0 * s2 - s3)/3.0) * (t5_real - t3_real) ; const ATOMIC b7_imag = (-(int)sign) * ((s1 - 2.0 * s2 - s3)/3.0) * (t5_imag - t3_imag) ; /* b8 = sign * ((sin(2pi/7) + sin(4pi/7) + 2sin(6pi/7))/3) (t3 - t1) */ const ATOMIC b8_real = (-(int)sign) * ((s1 + s2 + 2.0 * s3)/3.0) * (t3_real - t1_real) ; const ATOMIC b8_imag = (-(int)sign) * ((s1 + s2 + 2.0 * s3)/3.0) * (t3_imag - t1_imag) ; /* T0 = b0 + b1 */ const ATOMIC T0_real = b0_real + b1_real ; const ATOMIC T0_imag = b0_imag + b1_imag ; /* T1 = b2 + b3 */ const ATOMIC T1_real = b2_real + b3_real ; const ATOMIC T1_imag = b2_imag + b3_imag ; /* T2 = b4 - b3 */ const ATOMIC T2_real = b4_real - b3_real ; const ATOMIC T2_imag = b4_imag - b3_imag ; /* T3 = -b2 - b4 */ const ATOMIC T3_real = -b2_real - b4_real ; const ATOMIC T3_imag = -b2_imag - b4_imag ; /* T4 = b6 + b7 */ const ATOMIC T4_real = b6_real + b7_real ; const ATOMIC T4_imag = b6_imag + b7_imag ; /* T5 = b8 - b7 */ const ATOMIC T5_real = b8_real - b7_real ; const ATOMIC T5_imag = b8_imag - b7_imag ; /* T6 = -b8 - b6 */ const ATOMIC T6_real = -b8_real - b6_real ; const ATOMIC T6_imag = -b8_imag - b6_imag ; /* T7 = T0 + T1 */ const ATOMIC T7_real = T0_real + T1_real ; const ATOMIC T7_imag = T0_imag + T1_imag ; /* T8 = T0 + T2 */ const ATOMIC T8_real = T0_real + T2_real ; const ATOMIC T8_imag = T0_imag + T2_imag ; /* T9 = T0 + T3 */ const ATOMIC T9_real = T0_real + T3_real ; const ATOMIC T9_imag = T0_imag + T3_imag ; /* T10 = T4 + b5 */ const ATOMIC T10_real = T4_real + b5_real ; const ATOMIC T10_imag = T4_imag + b5_imag ; /* T11 = T5 + b5 */ const ATOMIC T11_real = T5_real + b5_real ; const ATOMIC T11_imag = T5_imag + b5_imag ; /* T12 = T6 + b5 */ const ATOMIC T12_real = T6_real + b5_real ; const ATOMIC T12_imag = T6_imag + b5_imag ; /* x0 = b0 */ const ATOMIC x0_real = b0_real ; const ATOMIC x0_imag = b0_imag ; /* x1 = T7 - i T10 */ const ATOMIC x1_real = T7_real + T10_imag ; const ATOMIC x1_imag = T7_imag - T10_real ; /* x2 = T9 - i T12 */ const ATOMIC x2_real = T9_real + T12_imag ; const ATOMIC x2_imag = T9_imag - T12_real ; /* x3 = T8 + i T11 */ const ATOMIC x3_real = T8_real - T11_imag ; const ATOMIC x3_imag = T8_imag + T11_real ; /* x4 = T8 - i T11 */ const ATOMIC x4_real = T8_real + T11_imag ; const ATOMIC x4_imag = T8_imag - T11_real ; /* x5 = T9 + i T12 */ const ATOMIC x5_real = T9_real - T12_imag ; const ATOMIC x5_imag = T9_imag + T12_real ; /* x6 = T7 + i T10 */ const ATOMIC x6_real = T7_real - T10_imag ; const ATOMIC x6_imag = T7_imag + T10_real ; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out,ostride,j+p_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out,ostride,j+p_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out,ostride,j+2*p_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out,ostride,j+2*p_1) = w2_real * x2_imag + w2_imag * x2_real; /* to3 = w3 * x3 */ REAL(out,ostride,j+3*p_1) = w3_real * x3_real - w3_imag * x3_imag; IMAG(out,ostride,j+3*p_1) = w3_real * x3_imag + w3_imag * x3_real; /* to4 = w4 * x4 */ REAL(out,ostride,j+4*p_1) = w4_real * x4_real - w4_imag * x4_imag; IMAG(out,ostride,j+4*p_1) = w4_real * x4_imag + w4_imag * x4_real; /* to5 = w5 * x5 */ REAL(out,ostride,j+5*p_1) = w5_real * x5_real - w5_imag * x5_imag; IMAG(out,ostride,j+5*p_1) = w5_real * x5_imag + w5_imag * x5_real; /* to6 = w6 * x6 */ REAL(out,ostride,j+6*p_1) = w6_real * x6_real - w6_imag * x6_imag; IMAG(out,ostride,j+6*p_1) = w6_real * x6_imag + w6_imag * x6_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/gsl_dft_complex.h0000664000252300025230000000342612171574312013260 00000000000000/* fft/gsl_dft_complex.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_DFT_COMPLEX_H__ #define __GSL_DFT_COMPLEX_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_dft_complex_forward (const double data[], const size_t stride, const size_t n, double result[]); int gsl_dft_complex_backward (const double data[], const size_t stride, const size_t n, double result[]); int gsl_dft_complex_inverse (const double data[], const size_t stride, const size_t n, double result[]); int gsl_dft_complex_transform (const double data[], const size_t stride, const size_t n, double result[], const gsl_fft_direction sign); __END_DECLS #endif /* __GSL_DFT_COMPLEX_H__ */ gsl-1.16/fft/compare.h0000664000252300025230000000251212171574312011530 00000000000000/* fft/compare.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(compare_complex,results) (const char *name_a, const BASE a[], const char *name_b, const BASE b[], size_t stride, size_t n, const double allowed_ticks); int FUNCTION(compare_real,results) (const char *name_a, const BASE a[], const char *name_b, const BASE b[], size_t stride, size_t n, const double allowed_ticks); gsl-1.16/fft/c_pass_6.c0000664000252300025230000002023112171574312011570 00000000000000/* fft/c_pass_6.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static int FUNCTION(fft_complex,pass_6) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const gsl_fft_direction sign, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[], const TYPE(gsl_complex) twiddle5[]) { size_t i = 0, j = 0; size_t k, k1; const size_t factor = 6; const size_t m = n / factor; const size_t q = n / product; const size_t p_1 = product / factor; const size_t jump = (factor - 1) * p_1; const ATOMIC tau = sqrt (3.0) / 2.0; for (k = 0; k < q; k++) { ATOMIC w1_real, w1_imag, w2_real, w2_imag, w3_real, w3_imag, w4_real, w4_imag, w5_real, w5_imag; if (k == 0) { w1_real = 1.0; w1_imag = 0.0; w2_real = 1.0; w2_imag = 0.0; w3_real = 1.0; w3_imag = 0.0; w4_real = 1.0; w4_imag = 0.0; w5_real = 1.0; w5_imag = 0.0; } else { if (sign == gsl_fft_forward) { /* forward tranform */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = GSL_IMAG(twiddle3[k - 1]); w4_real = GSL_REAL(twiddle4[k - 1]); w4_imag = GSL_IMAG(twiddle4[k - 1]); w5_real = GSL_REAL(twiddle5[k - 1]); w5_imag = GSL_IMAG(twiddle5[k - 1]); } else { /* backward tranform: w -> conjugate(w) */ w1_real = GSL_REAL(twiddle1[k - 1]); w1_imag = -GSL_IMAG(twiddle1[k - 1]); w2_real = GSL_REAL(twiddle2[k - 1]); w2_imag = -GSL_IMAG(twiddle2[k - 1]); w3_real = GSL_REAL(twiddle3[k - 1]); w3_imag = -GSL_IMAG(twiddle3[k - 1]); w4_real = GSL_REAL(twiddle4[k - 1]); w4_imag = -GSL_IMAG(twiddle4[k - 1]); w5_real = GSL_REAL(twiddle5[k - 1]); w5_imag = -GSL_IMAG(twiddle5[k - 1]); } } for (k1 = 0; k1 < p_1; k1++) { const ATOMIC z0_real = REAL(in,istride,i); const ATOMIC z0_imag = IMAG(in,istride,i); const ATOMIC z1_real = REAL(in,istride,i+m); const ATOMIC z1_imag = IMAG(in,istride,i+m); const ATOMIC z2_real = REAL(in,istride,i+2*m); const ATOMIC z2_imag = IMAG(in,istride,i+2*m); const ATOMIC z3_real = REAL(in,istride,i+3*m); const ATOMIC z3_imag = IMAG(in,istride,i+3*m); const ATOMIC z4_real = REAL(in,istride,i+4*m); const ATOMIC z4_imag = IMAG(in,istride,i+4*m); const ATOMIC z5_real = REAL(in,istride,i+5*m); const ATOMIC z5_imag = IMAG(in,istride,i+5*m); /* compute x = W(6) z */ /* W(6) is a combination of sums and differences of W(3) acting on the even and odd elements of z */ /* ta1 = z2 + z4 */ const ATOMIC ta1_real = z2_real + z4_real; const ATOMIC ta1_imag = z2_imag + z4_imag; /* ta2 = z0 - ta1/2 */ const ATOMIC ta2_real = z0_real - ta1_real / 2; const ATOMIC ta2_imag = z0_imag - ta1_imag / 2; /* ta3 = (+/-) sin(pi/3)*(z2 - z4) */ const ATOMIC ta3_real = ((int) sign) * tau * (z2_real - z4_real); const ATOMIC ta3_imag = ((int) sign) * tau * (z2_imag - z4_imag); /* a0 = z0 + ta1 */ const ATOMIC a0_real = z0_real + ta1_real; const ATOMIC a0_imag = z0_imag + ta1_imag; /* a1 = ta2 + i ta3 */ const ATOMIC a1_real = ta2_real - ta3_imag; const ATOMIC a1_imag = ta2_imag + ta3_real; /* a2 = ta2 - i ta3 */ const ATOMIC a2_real = ta2_real + ta3_imag; const ATOMIC a2_imag = ta2_imag - ta3_real; /* tb1 = z5 + z1 */ const ATOMIC tb1_real = z5_real + z1_real; const ATOMIC tb1_imag = z5_imag + z1_imag; /* tb2 = z3 - tb1/2 */ const ATOMIC tb2_real = z3_real - tb1_real / 2; const ATOMIC tb2_imag = z3_imag - tb1_imag / 2; /* tb3 = (+/-) sin(pi/3)*(z5 - z1) */ const ATOMIC tb3_real = ((int) sign) * tau * (z5_real - z1_real); const ATOMIC tb3_imag = ((int) sign) * tau * (z5_imag - z1_imag); /* b0 = z3 + tb1 */ const ATOMIC b0_real = z3_real + tb1_real; const ATOMIC b0_imag = z3_imag + tb1_imag; /* b1 = tb2 + i tb3 */ const ATOMIC b1_real = tb2_real - tb3_imag; const ATOMIC b1_imag = tb2_imag + tb3_real; /* b2 = tb2 - i tb3 */ const ATOMIC b2_real = tb2_real + tb3_imag; const ATOMIC b2_imag = tb2_imag - tb3_real; /* x0 = a0 + b0 */ const ATOMIC x0_real = a0_real + b0_real; const ATOMIC x0_imag = a0_imag + b0_imag; /* x4 = a1 + b1 */ const ATOMIC x4_real = a1_real + b1_real; const ATOMIC x4_imag = a1_imag + b1_imag; /* x2 = a2 + b2 */ const ATOMIC x2_real = a2_real + b2_real; const ATOMIC x2_imag = a2_imag + b2_imag; /* x3 = a0 - b0 */ const ATOMIC x3_real = a0_real - b0_real; const ATOMIC x3_imag = a0_imag - b0_imag; /* x1 = a1 - b1 */ const ATOMIC x1_real = a1_real - b1_real; const ATOMIC x1_imag = a1_imag - b1_imag; /* x5 = a2 - b2 */ const ATOMIC x5_real = a2_real - b2_real; const ATOMIC x5_imag = a2_imag - b2_imag; /* apply twiddle factors */ /* to0 = 1 * x0 */ REAL(out,ostride,j) = x0_real; IMAG(out,ostride,j) = x0_imag; /* to1 = w1 * x1 */ REAL(out,ostride,j+p_1) = w1_real * x1_real - w1_imag * x1_imag; IMAG(out,ostride,j+p_1) = w1_real * x1_imag + w1_imag * x1_real; /* to2 = w2 * x2 */ REAL(out,ostride,j+2*p_1) = w2_real * x2_real - w2_imag * x2_imag; IMAG(out,ostride,j+2*p_1) = w2_real * x2_imag + w2_imag * x2_real; /* to3 = w3 * x3 */ REAL(out,ostride,j+3*p_1) = w3_real * x3_real - w3_imag * x3_imag; IMAG(out,ostride,j+3*p_1) = w3_real * x3_imag + w3_imag * x3_real; /* to4 = w4 * x4 */ REAL(out,ostride,j+4*p_1) = w4_real * x4_real - w4_imag * x4_imag; IMAG(out,ostride,j+4*p_1) = w4_real * x4_imag + w4_imag * x4_real; /* to5 = w5 * x5 */ REAL(out,ostride,j+5*p_1) = w5_real * x5_real - w5_imag * x5_imag; IMAG(out,ostride,j+5*p_1) = w5_real * x5_imag + w5_imag * x5_real; i++; j++; } j += jump; } return 0; } gsl-1.16/fft/hc_pass.h0000664000252300025230000000636512171574312011534 00000000000000/* fft/hc_pass.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "complex_internal.h" static void FUNCTION(fft_halfcomplex,pass_2) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); static void FUNCTION(fft_halfcomplex,pass_3) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[]); static void FUNCTION(fft_halfcomplex,pass_4) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[]); static void FUNCTION(fft_halfcomplex,pass_5) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle1[], const TYPE(gsl_complex) twiddle2[], const TYPE(gsl_complex) twiddle3[], const TYPE(gsl_complex) twiddle4[]); static void FUNCTION(fft_halfcomplex,pass_n) (const BASE in[], const size_t istride, BASE out[], const size_t ostride, const size_t factor, const size_t product, const size_t n, const TYPE(gsl_complex) twiddle[]); gsl-1.16/fft/gsl_fft_real_float.h0000664000252300025230000000451612171574312013724 00000000000000/* fft/gsl_fft_real_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_REAL_FLOAT_H__ #define __GSL_FFT_REAL_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_fft_real_float_radix2_transform (float data[], const size_t stride, const size_t n) ; typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex_float *twiddle[64]; gsl_complex_float *trig; } gsl_fft_real_wavetable_float; typedef struct { size_t n; float *scratch; } gsl_fft_real_workspace_float; gsl_fft_real_wavetable_float * gsl_fft_real_wavetable_float_alloc (size_t n); void gsl_fft_real_wavetable_float_free (gsl_fft_real_wavetable_float * wavetable); gsl_fft_real_workspace_float * gsl_fft_real_workspace_float_alloc (size_t n); void gsl_fft_real_workspace_float_free (gsl_fft_real_workspace_float * workspace); int gsl_fft_real_float_transform (float data[], const size_t stride, const size_t n, const gsl_fft_real_wavetable_float * wavetable, gsl_fft_real_workspace_float * work); int gsl_fft_real_float_unpack (const float real_float_coefficient[], float complex_coefficient[], const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_FFT_REAL_FLOAT_H__ */ gsl-1.16/fft/gsl_dft_complex_float.h0000664000252300025230000000347612171574312014452 00000000000000/* fft/gsl_dft_complex_float.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_DFT_COMPLEX_FLOAT_H__ #define __GSL_DFT_COMPLEX_FLOAT_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_dft_complex_float_forward (const float data[], const size_t stride, const size_t n, float result[]); int gsl_dft_complex_float_backward (const float data[], const size_t stride, const size_t n, float result[]); int gsl_dft_complex_float_inverse (const float data[], const size_t stride, const size_t n, float result[]); int gsl_dft_complex_float_transform (const float data[], const size_t stride, const size_t n, float result[], const gsl_fft_direction sign); __END_DECLS #endif /* __GSL_DFT_COMPLEX_FLOAT_H__ */ gsl-1.16/fft/gsl_fft_real.h0000664000252300025230000000427012171574312012534 00000000000000/* fft/gsl_fft_real.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_FFT_REAL_H__ #define __GSL_FFT_REAL_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS int gsl_fft_real_radix2_transform (double data[], const size_t stride, const size_t n) ; typedef struct { size_t n; size_t nf; size_t factor[64]; gsl_complex *twiddle[64]; gsl_complex *trig; } gsl_fft_real_wavetable; typedef struct { size_t n; double *scratch; } gsl_fft_real_workspace; gsl_fft_real_wavetable * gsl_fft_real_wavetable_alloc (size_t n); void gsl_fft_real_wavetable_free (gsl_fft_real_wavetable * wavetable); gsl_fft_real_workspace * gsl_fft_real_workspace_alloc (size_t n); void gsl_fft_real_workspace_free (gsl_fft_real_workspace * workspace); int gsl_fft_real_transform (double data[], const size_t stride, const size_t n, const gsl_fft_real_wavetable * wavetable, gsl_fft_real_workspace * work); int gsl_fft_real_unpack (const double real_coefficient[], double complex_coefficient[], const size_t stride, const size_t n); __END_DECLS #endif /* __GSL_FFT_REAL_H__ */ gsl-1.16/fft/signals.h0000664000252300025230000000565012171574312011550 00000000000000/* fft/signals.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ int FUNCTION(fft_signal,complex_pulse) (const size_t k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]); int FUNCTION(fft_signal,complex_constant) (const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]); int FUNCTION(fft_signal,complex_exp) (const int k, const size_t n, const size_t stride, const BASE z_real, const BASE z_imag, BASE data[], BASE fft[]); int FUNCTION(fft_signal,complex_exppair) (const int k1, const int k2, const size_t n, const size_t stride, const BASE z1_real, const BASE z1_imag, const BASE z2_real, const BASE z2_imag, BASE data[], BASE fft[]); int FUNCTION(fft_signal,complex_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]); int FUNCTION(fft_signal,real_noise) (const size_t n, const size_t stride, BASE data[], BASE fft[]); gsl-1.16/gsl_mode.h0000664000252300025230000000454512171574312011124 00000000000000/* gsl_mode.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: B. Gough and G. Jungman */ #ifndef __GSL_MODE_H__ #define __GSL_MODE_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Some functions can take a mode argument. This * is a rough method to do things like control * the precision of the algorithm. This mainly * occurs in special functions, but we figured * it was ok to have a general facility. * * The mode type is 32-bit field. Most of * the fields are currently unused. Users * '|' various predefined constants to get * a desired mode. */ typedef unsigned int gsl_mode_t; /* Here are the predefined constants. * Note that the precision constants * are special because they are used * to index arrays, so do not change * them. The precision information is * in the low order 3 bits of gsl_mode_t * (the third bit is currently unused). */ /* Note that "0" is double precision, * so that you get that by default if * you forget a flag. */ #define GSL_PREC_DOUBLE 0 #define GSL_PREC_SINGLE 1 #define GSL_PREC_APPROX 2 #ifdef HAVE_INLINE INLINE_FUN unsigned int GSL_MODE_PREC(gsl_mode_t mt); INLINE_FUN unsigned int GSL_MODE_PREC(gsl_mode_t mt) { return (mt & (unsigned int)7); } #else /* HAVE_INLINE */ #define GSL_MODE_PREC(mt) ((mt) & (unsigned int)7) #endif /* HAVE_INLINE */ /* Here are some predefined generic modes. */ #define GSL_MODE_DEFAULT 0 __END_DECLS #endif /* __GSL_MODE_H__ */ gsl-1.16/min/0000775000252300025230000000000012172254163010015 500000000000000gsl-1.16/min/quad_golden.c0000664000252300025230000002656712171574312012403 00000000000000/*----------------------------------------------------------------------------*/ /* */ /* quad_golden.c */ /* */ /* Copyright (C) 2007 James Howse */ /* Copyright (C) 2009 Brian Gough */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 3 of the License, or (at */ /* your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, but */ /* WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU */ /* General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with this program; if not, write to the Free Software */ /* Foundation, Inc., 51 Franklin Street, Fifth Floor, */ /* Boston, MA 02110-1301, USA. */ /* */ /* :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: */ /* */ /* This algorithm performs univariate minimization (i.e., line search). */ /* It requires only objective function values g(x) to compute the minimum. */ /* The algorithm maintains an interval of uncertainty [a,b] and a point x */ /* in the interval [a,b] such that a < x < b, and g(a) > g(x) and */ /* g(x) < g(b). The algorithm also maintains the three points with the */ /* smallest objective values x, v and w such that g(x) < g(v) < g(w). The */ /* algorithm terminates when max( x - a, b - x ) < 2(r |x| + t) where r */ /* and t are small positive reals. At a given iteration, the algorithm */ /* first fits a quadratic through the three points (x, g(x)), (v, g(v)) */ /* and (w, g(w)) and computes the location of the minimum u of the */ /* resulting quadratic. If u is in the interval [a,b] then g(u) is */ /* computed. If u is not in the interval [a,b], and either v < x and */ /* w < x, or v > x and w > x (i.e., the quadratic is extrapolating), then */ /* a point u' is computed using a safeguarding procedure and g(u') is */ /* computed. If u is not in the interval [a,b], and the quadratic is not */ /* extrapolating, then a point u'' is computed using approximate golden */ /* section and g(u'') is computed. After evaluating g() at the */ /* appropriate new point, a, b, x, v, and w are updated and the next */ /* iteration is performed. The algorithm is based on work presented in */ /* the following references. */ /* */ /* Algorithms for Minimization without derivatives */ /* Richard Brent */ /* Prentice-Hall Inc., Englewood Cliffs, NJ, 1973 */ /* */ /* Safeguarded Steplength Algorithms for Optimization using Descent Methods */ /* Philip E. Gill and Walter Murray */ /* Division of Numerical Analysis and Computing */ /* National Physical Laboratory, Teddington, United Kingdom */ /* NPL Report NAC 37, August 1974 */ /* */ /*----------------------------------------------------------------------------*/ #include #include #include #include #include #include #include #include #include #include "min.h" #define REL_ERR_VAL 1.0e-06 #define ABS_ERR_VAL 1.0e-10 #define GOLDEN_MEAN 0.3819660112501052 /* (3 - sqrt(5))/2 */ #define GOLDEN_RATIO 1.6180339887498950 /* (1 + sqrt(5))/2 */ #define DEBUG_PRINTF(x) /* do nothing */ typedef struct { double step_size, stored_step, prev_stored_step; double x_prev_small, f_prev_small, x_small, f_small; unsigned int num_iter; } quad_golden_state_t; static int quad_golden_init (void *vstate, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper) { quad_golden_state_t *state = (quad_golden_state_t *) vstate; /* For the original behavior, the first value for x_minimum_minimum passed in by the user should be a golden section step but we don't enforce this here. */ state->x_prev_small = x_minimum; state->x_small = x_minimum; state->f_prev_small = f_minimum; state->f_small = f_minimum; state->step_size = 0.0; state->stored_step = 0.0; state->prev_stored_step = 0.0; state->num_iter = 0; x_lower = 0 ; /* avoid warnings about unused variables */ x_upper = 0 ; f_lower = 0 ; f_upper = 0 ; f = 0; return GSL_SUCCESS; } static int quad_golden_iterate (void *vstate, gsl_function * f, double *x_minimum, double *f_minimum, double *x_lower, double *f_lower, double *x_upper, double *f_upper) { quad_golden_state_t *state = (quad_golden_state_t *) vstate; const double x_m = *x_minimum; const double f_m = *f_minimum; const double x_l = *x_lower; const double x_u = *x_upper; const double x_small = state->x_small; const double f_small = state->f_small; const double x_prev_small = state->x_prev_small; const double f_prev_small = state->f_prev_small; double stored_step = state->stored_step; /* update on exit */ double prev_stored_step = state->prev_stored_step; /* update on exit */ double step_size = state->step_size; /* update on exit */ double quad_step_size = prev_stored_step; double x_trial; double x_eval, f_eval; double x_midpoint = 0.5 * (x_l + x_u); double tol = REL_ERR_VAL * fabs (x_m) + ABS_ERR_VAL; /* total error tolerance */ if (fabs (stored_step) - tol > -2.0 * GSL_DBL_EPSILON) { /* Fit quadratic */ double c3 = (x_m - x_small) * (f_m - f_prev_small); double c2 = (x_m - x_prev_small) * (f_m - f_small); double c1 = (x_m - x_prev_small) * c2 - (x_m - x_small) * c3; c2 = 2.0 * (c2 - c3); if (fabs (c2) > GSL_DBL_EPSILON) /* if( c2 != 0 ) */ { if (c2 > 0.0) c1 = -c1; c2 = fabs (c2); quad_step_size = c1 / c2; } else { /* Handle case where c2 ~=~ 0 */ /* Insure that the line search will NOT take a quadratic interpolation step in this iteration */ quad_step_size = stored_step; } prev_stored_step = stored_step; stored_step = step_size; } x_trial = x_m + quad_step_size; if (fabs (quad_step_size) < fabs (0.5 * prev_stored_step) && x_trial > x_l && x_trial < x_u) { /* Take quadratic interpolation step */ step_size = quad_step_size; /* Do not evaluate function too close to x_l or x_u */ if ((x_trial - x_l) < 2.0 * tol || (x_u - x_trial) < 2.0 * tol) { step_size = (x_midpoint >= x_m ? +1.0 : -1.0) * fabs(tol); } DEBUG_PRINTF(("quadratic step: %g\n", step_size)); } else if ((x_small != x_prev_small && x_small < x_m && x_prev_small < x_m) || (x_small != x_prev_small && x_small > x_m && x_prev_small > x_m)) { /* Take safeguarded function comparison step */ double outside_interval, inside_interval; if (x_small < x_m) { outside_interval = x_l - x_m; inside_interval = x_u - x_m; } else { outside_interval = x_u - x_m; inside_interval = x_l - x_m; } if (fabs (inside_interval) <= tol) { /* Swap inside and outside intervals */ double tmp = outside_interval; outside_interval = inside_interval; inside_interval = tmp; } { double step = inside_interval; double scale_factor; if (fabs (outside_interval) < fabs (inside_interval)) { scale_factor = 0.5 * sqrt (-outside_interval / inside_interval); } else { scale_factor = (5.0 / 11.0) * (0.1 - inside_interval / outside_interval); } state->stored_step = step; step_size = scale_factor * step; } DEBUG_PRINTF(("safeguard step: %g\n", step_size)); } else { /* Take golden section step */ double step; if (x_m < x_midpoint) { step = x_u - x_m; } else { step = x_l - x_m; } state->stored_step = step; step_size = GOLDEN_MEAN * step; DEBUG_PRINTF(("golden step: %g\n", step_size)); } /* Do not evaluate function too close to x_minimum */ if (fabs (step_size) > tol) { x_eval = x_m + step_size; } else { x_eval = x_m + (step_size >= 0 ? +1.0 : -1.0) * fabs(tol); } /* Evaluate function at the new point x_eval */ SAFE_FUNC_CALL(f, x_eval, &f_eval); /* Update {x,f}_lower, {x,f}_upper, {x,f}_prev_small, {x,f}_small, and {x,f}_minimum */ if (f_eval <= f_m) { if (x_eval < x_m) { *x_upper = x_m; *f_upper = f_m; } else { *x_lower = x_m; *f_upper = f_m; } state->x_prev_small = x_small; state->f_prev_small = f_small; state->x_small = x_m; state->f_small = f_m; *x_minimum = x_eval; *f_minimum = f_eval; } else { if (x_eval < x_m) { *x_lower = x_eval; *f_lower = f_eval; } else { *x_upper = x_eval; *f_upper = f_eval; } if (f_eval <= f_small || fabs (x_small - x_m) < 2.0 * GSL_DBL_EPSILON) { state->x_prev_small = x_small; state->f_prev_small = f_small; state->x_small = x_eval; state->f_small = f_eval; } else if (f_eval <= f_prev_small || fabs (x_prev_small - x_m) < 2.0 * GSL_DBL_EPSILON || fabs (x_prev_small - x_small) < 2.0 * GSL_DBL_EPSILON) { state->x_prev_small = x_eval; state->f_prev_small = f_eval; } } /* Update stored values for next iteration */ state->stored_step = stored_step; state->prev_stored_step = prev_stored_step; state->step_size = step_size; state->num_iter++; DEBUG_PRINTF(("[%d] Final State: %g %g %g\n", state->num_iter, x_l, x_m, x_u)); return GSL_SUCCESS; } static const gsl_min_fminimizer_type quad_golden_type = { "quad-golden", /* name */ sizeof (quad_golden_state_t), &quad_golden_init, &quad_golden_iterate }; const gsl_min_fminimizer_type *gsl_min_fminimizer_quad_golden = &quad_golden_type; gsl-1.16/min/golden.c0000664000252300025230000000655512171574312011364 00000000000000/* min/golden.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* goldensection.c -- goldensection minimum finding algorithm */ #include #include #include #include #include #include #include #include #include #include "min.h" typedef struct { double dummy; } goldensection_state_t; static int goldensection_init (void * vstate, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper); static int goldensection_iterate (void * vstate, gsl_function * f, double * x_minimum, double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper); static int goldensection_init (void * vstate, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper) { goldensection_state_t * state = (goldensection_state_t *) vstate; /* no initialization required, prevent warnings about unused variables */ state = 0; f = 0; x_minimum = 0; f_minimum = 0; x_lower = 0; f_lower = 0; x_upper = 0; f_upper = 0; return GSL_SUCCESS; } static int goldensection_iterate (void * vstate, gsl_function * f, double * x_minimum, double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper) { goldensection_state_t * state = (goldensection_state_t *) vstate; const double x_center = *x_minimum ; const double x_left = *x_lower ; const double x_right = *x_upper ; const double f_min = *f_minimum; const double golden = 0.3819660; /* golden = (3 - sqrt(5))/2 */ const double w_lower = (x_center - x_left); const double w_upper = (x_right - x_center); double x_new, f_new; state = 0 ; /* avoid warning about unused parameters */ x_new = x_center + golden * ((w_upper > w_lower) ? w_upper : -w_lower) ; SAFE_FUNC_CALL (f, x_new, &f_new); if (f_new < f_min) { *x_minimum = x_new ; *f_minimum = f_new ; return GSL_SUCCESS; } else if (x_new < x_center && f_new > f_min) { *x_lower = x_new ; *f_lower = f_new ; return GSL_SUCCESS; } else if (x_new > x_center && f_new > f_min) { *x_upper = x_new ; *f_upper = f_new ; return GSL_SUCCESS; } else { return GSL_FAILURE; } } static const gsl_min_fminimizer_type goldensection_type = {"goldensection", /* name */ sizeof (goldensection_state_t), &goldensection_init, &goldensection_iterate}; const gsl_min_fminimizer_type * gsl_min_fminimizer_goldensection = &goldensection_type; gsl-1.16/min/fsolver.c0000664000252300025230000001165012171574312011564 00000000000000/* min/fsolver.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "min.h" static int compute_f_values (gsl_function * f, double x_minimum, double * f_minimum, double x_lower, double * f_lower, double x_upper, double * f_upper); static int compute_f_values (gsl_function * f, double x_minimum, double * f_minimum, double x_lower, double * f_lower, double x_upper, double * f_upper) { SAFE_FUNC_CALL(f, x_lower, f_lower); SAFE_FUNC_CALL(f, x_upper, f_upper); SAFE_FUNC_CALL(f, x_minimum, f_minimum); return GSL_SUCCESS; } int gsl_min_fminimizer_set (gsl_min_fminimizer * s, gsl_function * f, double x_minimum, double x_lower, double x_upper) { int status ; double f_minimum, f_lower, f_upper; status = compute_f_values (f, x_minimum, &f_minimum, x_lower, &f_lower, x_upper, &f_upper); if (status != GSL_SUCCESS) { return status ; } status = gsl_min_fminimizer_set_with_values (s, f, x_minimum, f_minimum, x_lower, f_lower, x_upper, f_upper); return status; } gsl_min_fminimizer * gsl_min_fminimizer_alloc (const gsl_min_fminimizer_type * T) { gsl_min_fminimizer * s = (gsl_min_fminimizer *) malloc (sizeof (gsl_min_fminimizer)); if (s == 0) { GSL_ERROR_VAL ("failed to allocate space for minimizer struct", GSL_ENOMEM, 0); }; s->state = malloc (T->size); if (s->state == 0) { free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for minimizer state", GSL_ENOMEM, 0); }; s->type = T ; s->function = NULL; return s; } int gsl_min_fminimizer_set_with_values (gsl_min_fminimizer * s, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper) { s->function = f; s->x_minimum = x_minimum; s->x_lower = x_lower; s->x_upper = x_upper; if (x_lower > x_upper) { GSL_ERROR ("invalid interval (lower > upper)", GSL_EINVAL); } if (x_minimum >= x_upper || x_minimum <= x_lower) { GSL_ERROR ("x_minimum must lie inside interval (lower < x < upper)", GSL_EINVAL); } s->f_lower = f_lower; s->f_upper = f_upper; s->f_minimum = f_minimum; if (f_minimum >= f_lower || f_minimum >= f_upper) { GSL_ERROR ("endpoints do not enclose a minimum", GSL_EINVAL); } return (s->type->set) (s->state, s->function, x_minimum, f_minimum, x_lower, f_lower, x_upper, f_upper); } int gsl_min_fminimizer_iterate (gsl_min_fminimizer * s) { return (s->type->iterate) (s->state, s->function, &(s->x_minimum), &(s->f_minimum), &(s->x_lower), &(s->f_lower), &(s->x_upper), &(s->f_upper)); } void gsl_min_fminimizer_free (gsl_min_fminimizer * s) { RETURN_IF_NULL (s); free (s->state); free (s); } const char * gsl_min_fminimizer_name (const gsl_min_fminimizer * s) { return s->type->name; } /* Deprecated, use x_minimum instead */ double gsl_min_fminimizer_minimum (const gsl_min_fminimizer * s) { return s->x_minimum; } double gsl_min_fminimizer_x_minimum (const gsl_min_fminimizer * s) { return s->x_minimum; } double gsl_min_fminimizer_x_lower (const gsl_min_fminimizer * s) { return s->x_lower; } double gsl_min_fminimizer_x_upper (const gsl_min_fminimizer * s) { return s->x_upper; } double gsl_min_fminimizer_f_minimum (const gsl_min_fminimizer * s) { return s->f_minimum; } double gsl_min_fminimizer_f_lower (const gsl_min_fminimizer * s) { return s->f_lower; } double gsl_min_fminimizer_f_upper (const gsl_min_fminimizer * s) { return s->f_upper; } gsl-1.16/min/test.c0000664000252300025230000001443612171574312011070 00000000000000/* min/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "test.h" #include "min.h" /* stopping parameters */ const double EPSABS = 0.001 ; const double EPSREL = 0.001 ; const unsigned int MAX_ITERATIONS = 100; void my_error_handler (const char *reason, const char *file, int line, int err); #define WITHIN_TOL(a, b, epsrel, epsabs) \ (fabs((a) - (b)) < (epsrel) * GSL_MIN(fabs(a), fabs(b)) + (epsabs)) int main (void) { gsl_function F_cos, F_func1, F_func2, F_func3, F_func4; const gsl_min_fminimizer_type * fminimizer[4] ; const gsl_min_fminimizer_type ** T; gsl_ieee_env_setup (); fminimizer[0] = gsl_min_fminimizer_goldensection; fminimizer[1] = gsl_min_fminimizer_brent; fminimizer[2] = gsl_min_fminimizer_quad_golden; fminimizer[3] = 0; F_cos = create_function (f_cos) ; F_func1 = create_function (func1) ; F_func2 = create_function (func2) ; F_func3 = create_function (func3) ; F_func4 = create_function (func4) ; gsl_set_error_handler (&my_error_handler); for (T = fminimizer ; *T != 0 ; T++) { test_f (*T, "cos(x) [0 (3) 6]", &F_cos, 0.0, 3.0, 6.0, M_PI); test_f (*T, "x^4 - 1 [-3 (-1) 17]", &F_func1, -3.0, -1.0, 17.0, 0.0); test_f (*T, "sqrt(|x|) [-2 (-1) 1.5]", &F_func2, -2.0, -1.0, 1.5, 0.0); test_f (*T, "func3(x) [-2 (3) 4]", &F_func3, -2.0, 3.0, 4.0, 1.0); test_f (*T, "func4(x) [0 (0.782) 1]", &F_func4, 0, 0.782, 1.0, 0.8); test_f_e (*T, "invalid range check [4, 0]", &F_cos, 4.0, 3.0, 0.0, M_PI); test_f_e (*T, "invalid range check [1, 1]", &F_cos, 1.0, 1.0, 1.0, M_PI); test_f_e (*T, "invalid range check [-1, 1]", &F_cos, -1.0, 0.0, 1.0, M_PI); } test_bracket("cos(x) [1,2]",&F_cos,1.0,2.0,15); test_bracket("sqrt(|x|) [-1,0]",&F_func2,-1.0,0.0,15); test_bracket("sqrt(|x|) [-1,-0.6]",&F_func2,-1.0,-0.6,15); test_bracket("sqrt(|x|) [-1,1]",&F_func2,-1.0,1.0,15); exit (gsl_test_summary ()); } void test_f (const gsl_min_fminimizer_type * T, const char * description, gsl_function *f, double lower_bound, double middle, double upper_bound, double correct_minimum) { int status; size_t iterations = 0; double m, a, b; double x_lower, x_upper; gsl_min_fminimizer * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_min_fminimizer_alloc (T) ; gsl_min_fminimizer_set (s, f, middle, x_lower, x_upper) ; do { iterations++ ; status = gsl_min_fminimizer_iterate (s); m = gsl_min_fminimizer_x_minimum(s); a = gsl_min_fminimizer_x_lower(s); b = gsl_min_fminimizer_x_upper(s); #ifdef DEBUG printf("%.12f %.18f %.12f %.18f %.12f %.18f status=%d\n", a, GSL_FN_EVAL(f, a), m, GSL_FN_EVAL(f, m), b, GSL_FN_EVAL(f, b), status); #endif if (a > b) gsl_test (GSL_FAILURE, "interval is invalid (%g,%g)", a, b); if (m < a || m > b) gsl_test (GSL_FAILURE, "m lies outside interval %g (%g,%g)", m, a, b); if (status) break ; status = gsl_min_test_interval (a, b, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (status, "%s, %s (%g obs vs %g expected) ", gsl_min_fminimizer_name(s), description, gsl_min_fminimizer_x_minimum(s), correct_minimum); /* check the validity of the returned result */ if (!WITHIN_TOL (m, correct_minimum, EPSREL, EPSABS)) { gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", m, correct_minimum); } gsl_min_fminimizer_free (s); } void test_f_e (const gsl_min_fminimizer_type * T, const char * description, gsl_function *f, double lower_bound, double middle, double upper_bound, double correct_minimum) { int status; size_t iterations = 0; double x_lower, x_upper; double a, b; gsl_min_fminimizer * s; x_lower = lower_bound; x_upper = upper_bound; s = gsl_min_fminimizer_alloc (T) ; status = gsl_min_fminimizer_set (s, f, middle, x_lower, x_upper) ; if (status != GSL_SUCCESS) { gsl_min_fminimizer_free (s) ; gsl_test (status == GSL_SUCCESS, "%s, %s", T->name, description); return ; } do { iterations++ ; gsl_min_fminimizer_iterate (s); a = gsl_min_fminimizer_x_lower(s); b = gsl_min_fminimizer_x_upper(s); status = gsl_min_test_interval (a, b, EPSABS, EPSREL); } while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS); gsl_test (!status, "%s, %s", gsl_min_fminimizer_name(s), description, gsl_min_fminimizer_x_minimum(s) - correct_minimum); gsl_min_fminimizer_free (s); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); } int test_bracket (const char * description,gsl_function *f,double lower_bound, double upper_bound, unsigned int max) { int status; double x_lower, x_upper; double f_upper,f_lower,f_minimum; double x_minimum; x_lower=lower_bound; x_upper=upper_bound; SAFE_FUNC_CALL (f,x_lower,&f_lower); SAFE_FUNC_CALL (f,x_upper,&f_upper); status=gsl_min_find_bracket(f,&x_minimum,&f_minimum,&x_lower,&f_lower,&x_upper,&f_upper,max); gsl_test (status,"%s, interval: [%g,%g], values: (%g,%g), minimum at: %g, value: %g", description,x_lower,x_upper,f_lower,f_upper,x_minimum,f_minimum); return status; } gsl-1.16/min/convergence.c0000664000252300025230000000332412171574312012401 00000000000000/* min/convergence.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_min_test_interval (double x_lower, double x_upper, double epsabs, double epsrel) { const double lower = x_lower; const double upper = x_upper; const double abs_lower = fabs(lower) ; const double abs_upper = fabs(upper) ; double min_abs, tolerance; if (epsrel < 0.0) GSL_ERROR ("relative tolerance is negative", GSL_EBADTOL); if (epsabs < 0.0) GSL_ERROR ("absolute tolerance is negative", GSL_EBADTOL); if (lower > upper) GSL_ERROR ("lower bound larger than upper_bound", GSL_EINVAL); if ((lower > 0 && upper > 0) || (lower < 0 && upper < 0)) { min_abs = GSL_MIN_DBL(abs_lower, abs_upper) ; } else { min_abs = 0; } tolerance = epsabs + epsrel * min_abs ; if (fabs(upper - lower) < tolerance) return GSL_SUCCESS; return GSL_CONTINUE ; } gsl-1.16/min/gsl_min.h0000664000252300025230000000770712171574312011551 00000000000000/* min/gsl_min.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_MIN_H__ #define __GSL_MIN_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { const char *name; size_t size; int (*set) (void *state, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper); int (*iterate) (void *state, gsl_function * f, double * x_minimum, double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper); } gsl_min_fminimizer_type; typedef struct { const gsl_min_fminimizer_type * type; gsl_function * function ; double x_minimum ; double x_lower ; double x_upper ; double f_minimum, f_lower, f_upper; void *state; } gsl_min_fminimizer; gsl_min_fminimizer * gsl_min_fminimizer_alloc (const gsl_min_fminimizer_type * T) ; void gsl_min_fminimizer_free (gsl_min_fminimizer * s); int gsl_min_fminimizer_set (gsl_min_fminimizer * s, gsl_function * f, double x_minimum, double x_lower, double x_upper); int gsl_min_fminimizer_set_with_values (gsl_min_fminimizer * s, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper); int gsl_min_fminimizer_iterate (gsl_min_fminimizer * s); const char * gsl_min_fminimizer_name (const gsl_min_fminimizer * s); double gsl_min_fminimizer_x_minimum (const gsl_min_fminimizer * s); double gsl_min_fminimizer_x_lower (const gsl_min_fminimizer * s); double gsl_min_fminimizer_x_upper (const gsl_min_fminimizer * s); double gsl_min_fminimizer_f_minimum (const gsl_min_fminimizer * s); double gsl_min_fminimizer_f_lower (const gsl_min_fminimizer * s); double gsl_min_fminimizer_f_upper (const gsl_min_fminimizer * s); /* Deprecated, use x_minimum instead */ double gsl_min_fminimizer_minimum (const gsl_min_fminimizer * s); int gsl_min_test_interval (double x_lower, double x_upper, double epsabs, double epsrel); GSL_VAR const gsl_min_fminimizer_type * gsl_min_fminimizer_goldensection; GSL_VAR const gsl_min_fminimizer_type * gsl_min_fminimizer_brent; GSL_VAR const gsl_min_fminimizer_type * gsl_min_fminimizer_quad_golden; typedef int (*gsl_min_bracketing_function)(gsl_function *f, double *x_minimum,double * f_minimum, double *x_lower, double * f_lower, double *x_upper, double * f_upper, size_t eval_max); int gsl_min_find_bracket(gsl_function *f,double *x_minimum,double * f_minimum, double *x_lower, double * f_lower, double *x_upper, double * f_upper, size_t eval_max); __END_DECLS #endif /* __GSL_MIN_H__ */ gsl-1.16/min/Makefile.in0000664000252300025230000010433512172253756012017 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = min DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslmin_la_LIBADD = am_libgslmin_la_OBJECTS = fsolver.lo golden.lo brent.lo convergence.lo \ bracketing.lo quad_golden.lo libgslmin_la_OBJECTS = $(am_libgslmin_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_funcs.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslmin.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la \ ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslmin_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslmin_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslmin.la pkginclude_HEADERS = gsl_min.h noinst_HEADERS = min.h INCLUDES = -I$(top_srcdir) libgslmin_la_SOURCES = fsolver.c golden.c brent.c convergence.c bracketing.c quad_golden.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test.h test_LDADD = libgslmin.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu min/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu min/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslmin.la: $(libgslmin_la_OBJECTS) $(libgslmin_la_DEPENDENCIES) $(EXTRA_libgslmin_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslmin_la_OBJECTS) $(libgslmin_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bracketing.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/brent.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/convergence.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fsolver.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/golden.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/quad_golden.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test_funcs.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/min/test_funcs.c0000664000252300025230000000354512171574312012265 00000000000000/* min/test_funcs.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include "test.h" gsl_function create_function (double (*f)(double, void *)) { gsl_function F ; F.function = f ; F.params = 0 ; return F ; } double f_cos (double x, void * p) { p = 0; /* avoid warning about unused parameter */ return cos(x); } /* f(x) = x^4 - 1 */ /* minimum at x = 0 */ double func1 (double x, void * p) { p = 0; /* avoid warning about unused parameter */ return pow (x, 4.0) - 1; } /* f(x) = sqrt(|x|) */ /* minimum at x = 0 */ double func2 (double x, void * p) { p = 0; /* avoid warning about unused parameter */ return sqrt(fabs(x)); } /* f(x) = 1 for x < 1 and -exp(-x) for x >= 1 */ /* minimum at x = 1 */ double func3 (double x, void * p) { p = 0; /* avoid warning about unused parameter */ if (x < 1) return 1 ; else return - exp(-x) ; } /* f(x) = x - 30/(1+1e5*(x-0.8)**2) */ /* minimum near x = 0.8 */ double func4 (double x, void * p) { p = 0; /* avoid warning about unused parameter */ return x - 30.0 / (1.0 + 1e5 * pow(x-0.8, 2.0)); } gsl-1.16/min/ChangeLog0000664000252300025230000000602112171574312011506 000000000000002009-07-11 Brian Gough * quad_golden.c: added new safeguarded step-length algorithm from James Howse 2009-07-09 Brian Gough * fsolver.c (gsl_min_fminimizer_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-01-09 Brian Gough * brent.c (brent_iterate): remove spurious early return 2007-07-30 Brian Gough * min.h (SAFE_FUNC_CALL): use gsl_finite instead of finite 2005-09-09 Brian Gough * min.h: improved error message, function can be discontinuous despite what error message said. 2005-04-28 Brian Gough * brent.c (brent_iterate): fixed error in ordering of tests for updates so that it agrees with Brent's book. 2004-04-13 Brian Gough * brent.c (brent_iterate): corrected condition for setting to +/-tolerance. Sun Apr 7 15:22:11 2002 Brian Gough * fsolver.c (gsl_min_fminimizer_x_minimum): new function, obsoletes gsl_min_fminimizer_minimum. (gsl_min_fminimizer_f_minimum): new function for accessing function values (gsl_min_fminimizer_f_lower): new function for accessing function values (gsl_min_fminimizer_f_upper): new function for accessing function values * renamed minimum to x_minimum throughout Wed Oct 3 11:35:45 2001 Brian Gough * test.c (main): added an extra test Sun Jul 15 17:53:26 2001 Brian Gough * eliminated interval type, changed order of arguments to set functions Tue Apr 17 22:13:58 2001 Brian Gough * fsolver.c (gsl_min_fminimizer_alloc): removed unnecessary status variable Mon Apr 2 14:54:33 2001 Brian Gough * brent.c (brent_init): fixed incorrect value for golden ratio (brent_iterate): fixed incorrect value for golden ratio * golden.c (goldensection_iterate): fixed incorrect value for golden ratio * bracketing.c (gsl_min_find_bracket): fixed incorrect value for golden ratio Sun Feb 18 11:43:04 2001 Brian Gough * fsolver.c: changed so that the solver _alloc function no longer calls _set, the user must do that separately. Fri May 5 16:09:11 2000 Brian Gough * test.c (test_bracket): fixed warning about "control reaches end of non-void function" by changing return type to void Tue Feb 15 16:32:55 2000 Brian Gough * bracketing.c (gsl_min_find_bracket): changed counter nb_eval from type int to type size_t in order to avoid comparison between signed and unsigned, (nb_eval < eval_max). Mon Feb 14 13:07:43 2000 Brian Gough * made all internal functions static Wed Oct 13 16:08:03 1999 Brian Gough * rewritten to allow initial values to be specified gsl-1.16/min/test.h0000664000252300025230000000306212171574312011066 00000000000000/* min/test.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ gsl_function create_function (double (*f)(double, void *)); void test_f_e (const gsl_min_fminimizer_type * T, const char * description, gsl_function *f, double lower_bound, double minimum, double upper_bound, double correct_minimum); void test_f (const gsl_min_fminimizer_type * T, const char * description, gsl_function *f, double lower_bound, double middle, double upper_bound, double correct_minimum); int test_bracket (const char * description,gsl_function *f,double lower_bound, double upper_bound, unsigned int max); double f_cos (double x, void * p); double func1 (double x, void * p); double func2 (double x, void * p); double func3 (double x, void * p); double func4 (double x, void * p); gsl-1.16/min/bracketing.c0000664000252300025230000000775112171574312012224 00000000000000/* min/bracketing.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Fabrice Rossi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* bracketing.c -- find an initial bracketing interval for a function to minimize */ #include #include #include #include #include #include "min.h" int gsl_min_find_bracket(gsl_function *f,double *x_minimum,double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper, size_t eval_max) { /* The three following variables must be declared volatile to avoid storage in extended precision registers available on some architecture. The code relies on the ability to compare double values. As the values will be store in regular memory, the extended precision will then be lost and values that are different in extended precision might have equal representation in double precision. This behavior might break the algorithm. */ volatile double f_left = *f_lower; volatile double f_right = *f_upper; volatile double f_center; double x_left = *x_lower; double x_right= *x_upper; double x_center; const double golden = 0.3819660; /* golden = (3 - sqrt(5))/2 */ size_t nb_eval = 0; if (f_right >= f_left) { x_center = (x_right - x_left) * golden + x_left; nb_eval++; SAFE_FUNC_CALL (f, x_center, &f_center); } else { x_center = x_right ; f_center = f_right ; x_right = (x_center - x_left) / golden + x_left; nb_eval++; SAFE_FUNC_CALL (f, x_right, &f_right); } do { if (f_center < f_left ) { if (f_center < f_right) { *x_lower = x_left; *x_upper = x_right; *x_minimum = x_center; *f_lower = f_left; *f_upper = f_right; *f_minimum = f_center; /* gsl_ieee_printf_double (&f_left); printf(" "); gsl_ieee_printf_double (&f_center); printf("\n");*/ return GSL_SUCCESS; } else if (f_center > f_right) { x_left = x_center; f_left = f_center; x_center = x_right; f_center = f_right; x_right = (x_center - x_left) / golden + x_left; nb_eval++; SAFE_FUNC_CALL (f, x_right, &f_right); } else /* f_center == f_right */ { x_right = x_center; f_right = f_center; x_center = (x_right - x_left) * golden + x_left; nb_eval++; SAFE_FUNC_CALL (f, x_center, &f_center); } } else /* f_center >= f_left */ { x_right = x_center; f_right = f_center; x_center = (x_right - x_left) * golden + x_left; nb_eval++; SAFE_FUNC_CALL (f, x_center, &f_center); } } while (nb_eval < eval_max && (x_right - x_left) > GSL_SQRT_DBL_EPSILON * ( (x_right + x_left) * 0.5 ) + GSL_SQRT_DBL_EPSILON); *x_lower = x_left; *x_upper = x_right; *x_minimum = x_center; *f_lower = f_left; *f_upper = f_right; *f_minimum = f_center; return GSL_FAILURE; } gsl-1.16/min/Makefile.am0000664000252300025230000000067612171574312012002 00000000000000noinst_LTLIBRARIES = libgslmin.la pkginclude_HEADERS = gsl_min.h noinst_HEADERS = min.h INCLUDES = -I$(top_srcdir) libgslmin_la_SOURCES = fsolver.c golden.c brent.c convergence.c bracketing.c quad_golden.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_funcs.c test.h test_LDADD = libgslmin.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../utils/libutils.la ../sys/libgslsys.la gsl-1.16/min/brent.c0000664000252300025230000001162212171574312011215 00000000000000/* min/brent.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* brent.c -- brent minimum finding algorithm */ #include #include #include #include #include #include #include #include #include #include "min.h" typedef struct { double d, e, v, w; double f_v, f_w; } brent_state_t; static int brent_init (void *vstate, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper); static int brent_iterate (void *vstate, gsl_function * f, double *x_minimum, double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper); static int brent_init (void *vstate, gsl_function * f, double x_minimum, double f_minimum, double x_lower, double f_lower, double x_upper, double f_upper) { brent_state_t *state = (brent_state_t *) vstate; const double golden = 0.3819660; /* golden = (3 - sqrt(5))/2 */ double v = x_lower + golden * (x_upper - x_lower); double w = v; double f_vw; x_minimum = 0 ; /* avoid warnings about unused varibles */ f_minimum = 0 ; f_lower = 0 ; f_upper = 0 ; state->v = v; state->w = w; state->d = 0; state->e = 0; SAFE_FUNC_CALL (f, v, &f_vw); state->f_v = f_vw; state->f_w = f_vw; return GSL_SUCCESS; } static int brent_iterate (void *vstate, gsl_function * f, double *x_minimum, double * f_minimum, double * x_lower, double * f_lower, double * x_upper, double * f_upper) { brent_state_t *state = (brent_state_t *) vstate; const double x_left = *x_lower; const double x_right = *x_upper; const double z = *x_minimum; double d = state->e; double e = state->d; double u, f_u; const double v = state->v; const double w = state->w; const double f_v = state->f_v; const double f_w = state->f_w; const double f_z = *f_minimum; const double golden = 0.3819660; /* golden = (3 - sqrt(5))/2 */ const double w_lower = (z - x_left); const double w_upper = (x_right - z); const double tolerance = GSL_SQRT_DBL_EPSILON * fabs (z); double p = 0, q = 0, r = 0; const double midpoint = 0.5 * (x_left + x_right); if (fabs (e) > tolerance) { /* fit parabola */ r = (z - w) * (f_z - f_v); q = (z - v) * (f_z - f_w); p = (z - v) * q - (z - w) * r; q = 2 * (q - r); if (q > 0) { p = -p; } else { q = -q; } r = e; e = d; } if (fabs (p) < fabs (0.5 * q * r) && p < q * w_lower && p < q * w_upper) { double t2 = 2 * tolerance ; d = p / q; u = z + d; if ((u - x_left) < t2 || (x_right - u) < t2) { d = (z < midpoint) ? tolerance : -tolerance ; } } else { e = (z < midpoint) ? x_right - z : -(z - x_left) ; d = golden * e; } if (fabs (d) >= tolerance) { u = z + d; } else { u = z + ((d > 0) ? tolerance : -tolerance) ; } state->e = e; state->d = d; SAFE_FUNC_CALL(f, u, &f_u); if (f_u <= f_z) { if (u < z) { *x_upper = z; *f_upper = f_z; } else { *x_lower = z; *f_lower = f_z; } state->v = w; state->f_v = f_w; state->w = z; state->f_w = f_z; *x_minimum = u; *f_minimum = f_u; return GSL_SUCCESS; } else { if (u < z) { *x_lower = u; *f_lower = f_u; } else { *x_upper = u; *f_upper = f_u; } if (f_u <= f_w || w == z) { state->v = w; state->f_v = f_w; state->w = u; state->f_w = f_u; return GSL_SUCCESS; } else if (f_u <= f_v || v == z || v == w) { state->v = u; state->f_v = f_u; return GSL_SUCCESS; } } return GSL_SUCCESS; } static const gsl_min_fminimizer_type brent_type = {"brent", /* name */ sizeof (brent_state_t), &brent_init, &brent_iterate}; const gsl_min_fminimizer_type *gsl_min_fminimizer_brent = &brent_type; gsl-1.16/min/min.h0000664000252300025230000000174312171574312010676 00000000000000/* min/min.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #define SAFE_FUNC_CALL(f, x, yp) \ do { \ *yp = GSL_FN_EVAL(f,x); \ if (!gsl_finite(*yp)) \ GSL_ERROR("computed function value is infinite or NaN", GSL_EBADFUNC); \ } while (0) gsl-1.16/gsl_precision.h0000664000252300025230000000336412171574312012171 00000000000000/* gsl_precision.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: B. Gough and G. Jungman */ #ifndef __GSL_PRECISION_H__ #define __GSL_PRECISION_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* A type for the precision indicator. * This is mainly for pedagogy. */ typedef unsigned int gsl_prec_t; /* The number of precision types. * Remember that precision-mode * can index an array. */ #define _GSL_PREC_T_NUM 3 /* Arrays containing derived * precision constants for the * different precision levels. */ GSL_VAR const double gsl_prec_eps[]; GSL_VAR const double gsl_prec_sqrt_eps[]; GSL_VAR const double gsl_prec_root3_eps[]; GSL_VAR const double gsl_prec_root4_eps[]; GSL_VAR const double gsl_prec_root5_eps[]; GSL_VAR const double gsl_prec_root6_eps[]; __END_DECLS #endif /* __GSL_PRECISION_H__ */ gsl-1.16/autogen.sh0000775000252300025230000000064512171574312011160 00000000000000#! /bin/sh echo "If you use a recent version of autotools, this script is obsolete" echo "Just run autoreconf -i -f -v" echo "followed by ./configure --enable-maintainer-mode" echo # Run this to generate all the auto-generated files needed by the GNU # configure program libtoolize --automake aclocal autoheader automake --add-missing --gnu --force-missing autoconf echo "Now use ./configure --enable-maintainer-mode" gsl-1.16/mkinstalldirs0000755000252300025230000000672212172014014011752 00000000000000#! /bin/sh # mkinstalldirs --- make directory hierarchy scriptversion=2009-04-28.21; # UTC # Original author: Noah Friedman # Created: 1993-05-16 # Public domain. # # This file is maintained in Automake, please report # bugs to or send patches to # . nl=' ' IFS=" "" $nl" errstatus=0 dirmode= usage="\ Usage: mkinstalldirs [-h] [--help] [--version] [-m MODE] DIR ... Create each directory DIR (with mode MODE, if specified), including all leading file name components. Report bugs to ." # process command line arguments while test $# -gt 0 ; do case $1 in -h | --help | --h*) # -h for help echo "$usage" exit $? ;; -m) # -m PERM arg shift test $# -eq 0 && { echo "$usage" 1>&2; exit 1; } dirmode=$1 shift ;; --version) echo "$0 $scriptversion" exit $? ;; --) # stop option processing shift break ;; -*) # unknown option echo "$usage" 1>&2 exit 1 ;; *) # first non-opt arg break ;; esac done for file do if test -d "$file"; then shift else break fi done case $# in 0) exit 0 ;; esac # Solaris 8's mkdir -p isn't thread-safe. If you mkdir -p a/b and # mkdir -p a/c at the same time, both will detect that a is missing, # one will create a, then the other will try to create a and die with # a "File exists" error. This is a problem when calling mkinstalldirs # from a parallel make. We use --version in the probe to restrict # ourselves to GNU mkdir, which is thread-safe. case $dirmode in '') if mkdir -p --version . >/dev/null 2>&1 && test ! -d ./--version; then echo "mkdir -p -- $*" exec mkdir -p -- "$@" else # On NextStep and OpenStep, the 'mkdir' command does not # recognize any option. It will interpret all options as # directories to create, and then abort because '.' already # exists. test -d ./-p && rmdir ./-p test -d ./--version && rmdir ./--version fi ;; *) if mkdir -m "$dirmode" -p --version . >/dev/null 2>&1 && test ! -d ./--version; then echo "mkdir -m $dirmode -p -- $*" exec mkdir -m "$dirmode" -p -- "$@" else # Clean up after NextStep and OpenStep mkdir. for d in ./-m ./-p ./--version "./$dirmode"; do test -d $d && rmdir $d done fi ;; esac for file do case $file in /*) pathcomp=/ ;; *) pathcomp= ;; esac oIFS=$IFS IFS=/ set fnord $file shift IFS=$oIFS for d do test "x$d" = x && continue pathcomp=$pathcomp$d case $pathcomp in -*) pathcomp=./$pathcomp ;; esac if test ! -d "$pathcomp"; then echo "mkdir $pathcomp" mkdir "$pathcomp" || lasterr=$? if test ! -d "$pathcomp"; then errstatus=$lasterr else if test ! -z "$dirmode"; then echo "chmod $dirmode $pathcomp" lasterr= chmod "$dirmode" "$pathcomp" || lasterr=$? if test ! -z "$lasterr"; then errstatus=$lasterr fi fi fi fi pathcomp=$pathcomp/ done done exit $errstatus # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: gsl-1.16/combination/0000775000252300025230000000000012172254156011536 500000000000000gsl-1.16/combination/TODO0000664000252300025230000000020712171574312012143 00000000000000# -*- org -*- #+CATEGORY: combination * The module has a lot of overlap with multiset/ some of the functions could be abstracted out. gsl-1.16/combination/inline.c0000664000252300025230000000162112171574312013076 00000000000000/* combination/inline.c * * Copyright (C) 2008 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/combination/test.c0000664000252300025230000001460312171574312012603 00000000000000/* combination/test.c * based on permutation/test.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include size_t c63[20][3] = { { 0, 1, 2 }, { 0, 1, 3 }, { 0, 1, 4 }, { 0, 1, 5 }, { 0, 2, 3 }, { 0, 2, 4 }, { 0, 2, 5 }, { 0, 3, 4 }, { 0, 3, 5 }, { 0, 4, 5 }, { 1, 2, 3 }, { 1, 2, 4 }, { 1, 2, 5 }, { 1, 3, 4 }, { 1, 3, 5 }, { 1, 4, 5 }, { 2, 3, 4 }, { 2, 3, 5 }, { 2, 4, 5 }, { 3, 4, 5 } } ; void my_error_handler (const char *reason, const char *file, int line, int err); int main (void) { size_t i, j; int status = 0, s; gsl_combination * c ; gsl_ieee_env_setup (); c = gsl_combination_alloc (6,3); /* Test combinations in forward order */ gsl_combination_init_first (c); i = 0; do { if ( i >= 20 ) { status = 1; break; } for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[i][j]); } { int s1 = gsl_combination_valid (c); gsl_test (s1, "gsl_combination_valid (%u)", i); } i++; } while (gsl_combination_next(c) == GSL_SUCCESS); gsl_test(status, "gsl_combination_next, 6 choose 3 combination, 20 steps"); gsl_combination_next(c); gsl_combination_next(c); gsl_combination_next(c); for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[19][j]); } gsl_test(status, "gsl_combination_next on the last combination"); { int s1 = gsl_combination_valid (c); gsl_test (s1, "gsl_combination_valid on the last combination"); } { gsl_combination * d = gsl_combination_alloc (6,3); gsl_combination_memcpy (d, c); status = 0; for (j = 0; j < 3; j++) { status |= (d->data[j] != c->data[j]); } gsl_test (status, "gsl_combination_memcpy, 6 choose 3 combination"); gsl_combination_free(d); } /* Now test combinations in reverse order */ gsl_combination_init_last (c); i = 20; do { if ( i == 0 ) { status = 1; break; } i--; for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[i][j]); } { int s1 = gsl_combination_valid (c); gsl_test (s1, "gsl_combination_valid (%u)", i); } } while (gsl_combination_prev(c) == GSL_SUCCESS); gsl_test(status, "gsl_combination_prev, 6 choose 3 combination, 20 steps"); gsl_combination_prev(c); gsl_combination_prev(c); gsl_combination_prev(c); for (j = 0; j < 3; j++) { status |= (c->data[j] != c63[0][j]); } gsl_test(status, "gsl_combination_prev on the first combination"); { int s1 = gsl_combination_valid (c); gsl_test (s1, "gsl_combination_valid on the first combination"); } { gsl_combination * d = gsl_combination_alloc (6,3); gsl_combination_memcpy (d, c); status = 0; for (j = 0; j < 3; j++) { status |= (d->data[j] != c->data[j]); } gsl_test (status, "gsl_combination_memcpy, 6 choose 3 combination"); gsl_combination_free(d); } gsl_combination_free (c); c = gsl_combination_calloc(7, 0); /* should return GSL_FAILURE every time */ status |= (gsl_combination_next(c) != GSL_FAILURE); status |= (gsl_combination_next(c) != GSL_FAILURE); status |= (gsl_combination_prev(c) != GSL_FAILURE); status |= (gsl_combination_prev(c) != GSL_FAILURE); gsl_test(status, "gsl_combination 7 choose 0"); gsl_combination_free (c); c = gsl_combination_calloc(7, 7); /* should return GSL_FAILURE every time */ for(j = 0; j < 7; j++) { status |= (gsl_combination_get(c, j) != j); } status |= (gsl_combination_next(c) != GSL_FAILURE); for(j = 0; j < 7; j++) { status |= (gsl_combination_get(c, j) != j); } status |= (gsl_combination_next(c) != GSL_FAILURE); for(j = 0; j < 7; j++) { status |= (gsl_combination_get(c, j) != j); } status |= (gsl_combination_prev(c) != GSL_FAILURE); for(j = 0; j < 7; j++) { status |= (gsl_combination_get(c, j) != j); } status |= (gsl_combination_prev(c) != GSL_FAILURE); for(j = 0; j < 7; j++) { status |= (gsl_combination_get(c, j) != j); } gsl_test(status, "gsl_combination 7 choose 7"); gsl_combination_free (c); c = gsl_combination_calloc(6, 3); gsl_set_error_handler (&my_error_handler); c->data[0] = 1; c->data[1] = 1; c->data[2] = 2; s = gsl_combination_valid (c); gsl_test (!s, "gsl_combination_valid on an invalid combination (1,1,2)"); c->data[0] = 2; c->data[1] = 1; c->data[2] = 0; s = gsl_combination_valid (c); gsl_test (!s, "gsl_combination_valid on an invalid combination (2,1,0)"); c->data[0] = 1; c->data[1] = 2; c->data[2] = 0; s = gsl_combination_valid (c); gsl_test (!s, "gsl_combination_valid on an invalid combination (1,2,0)"); { gsl_combination * d = gsl_combination_alloc (6,4); int s = gsl_combination_memcpy (d, c); gsl_test (!s, "gsl_combination_memcpy, (6,4) vs (6,3)"); gsl_combination_free(d); } { gsl_combination * d = gsl_combination_alloc (7,3); int s = gsl_combination_memcpy (d, c); gsl_test (!s, "gsl_combination_memcpy, (7,3) vs (6,3)"); gsl_combination_free(d); } { gsl_combination * d = gsl_combination_alloc (7,2); int s = gsl_combination_memcpy (d, c); gsl_test (!s, "gsl_combination_memcpy, (7,2) vs (6,3)"); gsl_combination_free(d); } gsl_combination_free (c); exit (gsl_test_summary()); } void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err) ; } gsl-1.16/combination/combination.c0000664000252300025230000000706112171574312014126 00000000000000/* combination/combination.c * based on permutation/permutation.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include size_t gsl_combination_n (const gsl_combination * c) { return c->n ; } size_t gsl_combination_k (const gsl_combination * c) { return c->k ; } size_t * gsl_combination_data (const gsl_combination * c) { return c->data ; } int gsl_combination_valid (gsl_combination * c) { const size_t n = c->n ; const size_t k = c->k ; size_t i, j ; if( k > n ) { GSL_ERROR("combination has k greater than n", GSL_FAILURE) ; } for (i = 0; i < k; i++) { const size_t ci = c->data[i]; if (ci >= n) { GSL_ERROR("combination index outside range", GSL_FAILURE) ; } for (j = 0; j < i; j++) { if (c->data[j] == ci) { GSL_ERROR("duplicate combination index", GSL_FAILURE) ; } if (c->data[j] > ci) { GSL_ERROR("combination indices not in increasing order", GSL_FAILURE) ; } } } return GSL_SUCCESS; } int gsl_combination_next (gsl_combination * c) { /* Replaces c with the next combination (in the standard lexicographical * ordering). Returns GSL_FAILURE if there is no next combination. */ const size_t n = c->n; const size_t k = c->k; size_t *data = c->data; size_t i; if(k == 0) { return GSL_FAILURE; } i = k - 1; while(i > 0 && data[i] == n - k + i) { i--; } if(i == 0 && data[i] == n - k) { return GSL_FAILURE; } data[i]++; for(; i < k - 1; i++) { data[i + 1] = data[i] + 1; } return GSL_SUCCESS; } int gsl_combination_prev (gsl_combination * c) { /* Replaces c with the previous combination (in the standard * lexicographical ordering). Returns GSL_FAILURE if there is no * previous combination. */ const size_t n = c->n; const size_t k = c->k; size_t *data = c->data; size_t i; if(k == 0) { return GSL_FAILURE; } i = k - 1; while(i > 0 && data[i] == data[i-1] + 1) { i--; } if(i == 0 && data[i] == 0) { return GSL_FAILURE; } data[i++]--; for(; i < k; i++) { data[i] = n - k + i; } return GSL_SUCCESS; } int gsl_combination_memcpy (gsl_combination * dest, const gsl_combination * src) { const size_t src_n = src->n; const size_t src_k = src->k; const size_t dest_n = dest->n; const size_t dest_k = dest->k; if (src_n != dest_n || src_k != dest_k) { GSL_ERROR ("combination lengths are not equal", GSL_EBADLEN); } { size_t j; for (j = 0; j < src_k; j++) { dest->data[j] = src->data[j]; } } return GSL_SUCCESS; } gsl-1.16/combination/init.c0000664000252300025230000000537312171574312012573 00000000000000/* combination/init.c * based on permutation/init.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * Copyright (C) 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_combination * gsl_combination_alloc (const size_t n, const size_t k) { gsl_combination * c; if (n == 0) { GSL_ERROR_VAL ("combination parameter n must be positive integer", GSL_EDOM, 0); } if (k > n) { GSL_ERROR_VAL ("combination length k must be an integer less than or equal to n", GSL_EDOM, 0); } c = (gsl_combination *) malloc (sizeof (gsl_combination)); if (c == 0) { GSL_ERROR_VAL ("failed to allocate space for combination struct", GSL_ENOMEM, 0); } if (k > 0) { c->data = (size_t *) malloc (k * sizeof (size_t)); if (c->data == 0) { free (c); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for combination data", GSL_ENOMEM, 0); } } else { c->data = 0; } c->n = n; c->k = k; return c; } gsl_combination * gsl_combination_calloc (const size_t n, const size_t k) { size_t i; gsl_combination * c = gsl_combination_alloc (n, k); if (c == 0) return 0; /* initialize combination to identity */ for (i = 0; i < k; i++) { c->data[i] = i; } return c; } void gsl_combination_init_first (gsl_combination * c) { const size_t k = c->k ; size_t i; /* initialize combination to identity */ for (i = 0; i < k; i++) { c->data[i] = i; } } void gsl_combination_init_last (gsl_combination * c) { const size_t k = c->k ; size_t i; size_t n = c->n; /* initialize combination to identity */ for (i = 0; i < k; i++) { c->data[i] = n - k + i; } } void gsl_combination_free (gsl_combination * c) { RETURN_IF_NULL (c); if (c->k > 0) free (c->data); free (c); } gsl-1.16/combination/Makefile.in0000664000252300025230000010457012172253754013535 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = combination DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslcombination_la_LIBADD = am_libgslcombination_la_OBJECTS = init.lo file.lo combination.lo \ inline.lo libgslcombination_la_OBJECTS = $(am_libgslcombination_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslcombination.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslcombination_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslcombination_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslcombination.la pkginclude_HEADERS = gsl_combination.h INCLUDES = -I$(top_srcdir) libgslcombination_la_SOURCES = init.c file.c combination.c inline.c noinst_HEADERS = TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslcombination.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu combination/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu combination/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslcombination.la: $(libgslcombination_la_OBJECTS) $(libgslcombination_la_DEPENDENCIES) $(EXTRA_libgslcombination_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslcombination_la_OBJECTS) $(libgslcombination_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/combination.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #noinst_PROGRAMS = demo #demo_SOURCES = demo.c #demo_LDADD = libgslcombination.la ../vector/libgslvector.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #CLEANFILES = test.txt test.dat # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/combination/gsl_combination.h0000664000252300025230000000546212171574312015003 00000000000000/* combination/gsl_combination.h * based on permutation/gsl_permutation.h by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_COMBINATION_H__ #define __GSL_COMBINATION_H__ #include #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS struct gsl_combination_struct { size_t n; size_t k; size_t *data; }; typedef struct gsl_combination_struct gsl_combination; gsl_combination *gsl_combination_alloc (const size_t n, const size_t k); gsl_combination *gsl_combination_calloc (const size_t n, const size_t k); void gsl_combination_init_first (gsl_combination * c); void gsl_combination_init_last (gsl_combination * c); void gsl_combination_free (gsl_combination * c); int gsl_combination_memcpy (gsl_combination * dest, const gsl_combination * src); int gsl_combination_fread (FILE * stream, gsl_combination * c); int gsl_combination_fwrite (FILE * stream, const gsl_combination * c); int gsl_combination_fscanf (FILE * stream, gsl_combination * c); int gsl_combination_fprintf (FILE * stream, const gsl_combination * c, const char *format); size_t gsl_combination_n (const gsl_combination * c); size_t gsl_combination_k (const gsl_combination * c); size_t * gsl_combination_data (const gsl_combination * c); int gsl_combination_valid (gsl_combination * c); int gsl_combination_next (gsl_combination * c); int gsl_combination_prev (gsl_combination * c); INLINE_DECL size_t gsl_combination_get (const gsl_combination * c, const size_t i); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_combination_get (const gsl_combination * c, const size_t i) { #if GSL_RANGE_CHECK if (GSL_RANGE_COND(i >= c->k)) /* size_t is unsigned, can't be negative */ { GSL_ERROR_VAL ("index out of range", GSL_EINVAL, 0); } #endif return c->data[i]; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_COMBINATION_H__ */ gsl-1.16/combination/ChangeLog0000664000252300025230000000261712171574312013234 000000000000002012-12-16 Rhys Ulerich * demo.c: remove NOP while statement per comment from Jorge Barros de Abreu . Add proper return statement to main(). 2009-07-09 Brian Gough * init.c (gsl_combination_free): handle NULL argument in free 2008-07-03 Brian Gough * gsl_combination.h: added gsl_inline.h, use INLINE_DECL and GSL_RANGE_COND for gsl_combination_get * combination.c: moved gsl_combination_get to inline.c * inline.c: separate file for inline function object code * Makefile.am (INCLUDES): use top_srcdir only, remove top_builddir 2003-07-30 Brian Gough * init.c (gsl_combination_alloc): set c->data to NULL when k=0 2003-04-12 Szymon Jaroszewicz * combination.c (gsl_combination_valid): fix a typo in error message 2003-03-22 Brian Gough * combination.c (gsl_combination_memcpy): added memcpy function 2003-03-21 Brian Gough * combination.c (gsl_combination_valid): fix bug in test for validity (cj * test.c: use unsigned loop variables Sat Dec 8 18:22:06 2001 Szymon Jaroszewicz * added combination support to GSL gsl-1.16/combination/Makefile.am0000664000252300025230000000127512171574312013515 00000000000000noinst_LTLIBRARIES = libgslcombination.la pkginclude_HEADERS = gsl_combination.h INCLUDES = -I$(top_srcdir) libgslcombination_la_SOURCES = init.c file.c combination.c inline.c noinst_HEADERS = TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslcombination.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #noinst_PROGRAMS = demo #demo_SOURCES = demo.c #demo_LDADD = libgslcombination.la ../vector/libgslvector.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la #CLEANFILES = test.txt test.dat gsl-1.16/combination/file.c0000664000252300025230000000464412171574312012547 00000000000000/* combination/file.c * based on permutation/file.c by Brian Gough * * Copyright (C) 2001 Szymon Jaroszewicz * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #define IN_FORMAT "%lu" int gsl_combination_fread (FILE * stream, gsl_combination * c) { size_t k = c->k ; size_t * data = c->data ; size_t items = fread (data, sizeof (size_t), k, stream); if (items != k) { GSL_ERROR ("fread failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_combination_fwrite (FILE * stream, const gsl_combination * c) { size_t k = c->k ; size_t * data = c->data ; size_t items = fwrite (data, sizeof (size_t), k, stream); if (items != k) { GSL_ERROR ("fwrite failed", GSL_EFAILED); } return GSL_SUCCESS; } int gsl_combination_fprintf (FILE * stream, const gsl_combination * c, const char *format) { size_t k = c->k ; size_t * data = c->data ; size_t i; for (i = 0; i < k; i++) { int status = fprintf (stream, format, data[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } } return GSL_SUCCESS; } int gsl_combination_fscanf (FILE * stream, gsl_combination * c) { size_t k = c->k ; size_t * data = c->data ; size_t i; for (i = 0; i < k; i++) { unsigned long j ; /* FIXME: what if size_t != unsigned long ??? want read in size_t but have to read in unsigned long to avoid error from compiler */ int status = fscanf (stream, IN_FORMAT, &j); if (status != 1) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } data[i] = j; } return GSL_SUCCESS; } gsl-1.16/gsl_version.h.in0000664000252300025230000000076412171574312012271 00000000000000#ifndef __GSL_VERSION_H__ #define __GSL_VERSION_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS #define GSL_VERSION "@VERSION@" #define GSL_MAJOR_VERSION @GSL_MAJOR_VERSION@ #define GSL_MINOR_VERSION @GSL_MINOR_VERSION@ GSL_VAR const char * gsl_version; __END_DECLS #endif /* __GSL_VERSION_H__ */ gsl-1.16/randist/0000775000252300025230000000000012172254161010674 500000000000000gsl-1.16/randist/pareto.c0000664000252300025230000000254712171574312012264 00000000000000/* randist/pareto.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Pareto distribution has the form, p(x) dx = (a/b) / (x/b)^(a+1) dx for x >= b */ double gsl_ran_pareto (const gsl_rng * r, double a, const double b) { double x = gsl_rng_uniform_pos (r); double z = pow (x, -1 / a); return b * z; } double gsl_ran_pareto_pdf (const double x, const double a, const double b) { if (x >= b) { double p = (a/b) / pow (x/b, a + 1); return p; } else { return 0; } } gsl-1.16/randist/dirichlet.c0000664000252300025230000000775512171574312012747 00000000000000/* randist/dirichlet.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 2002 Gavin E. Crooks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The Dirichlet probability distribution of order K-1 is p(\theta_1,...,\theta_K) d\theta_1 ... d\theta_K = (1/Z) \prod_i=1,K \theta_i^{alpha_i - 1} \delta(1 -\sum_i=1,K \theta_i) The normalization factor Z can be expressed in terms of gamma functions: Z = {\prod_i=1,K \Gamma(\alpha_i)} / {\Gamma( \sum_i=1,K \alpha_i)} The K constants, \alpha_1,...,\alpha_K, must be positive. The K parameters, \theta_1,...,\theta_K are nonnegative and sum to 1. The random variates are generated by sampling K values from gamma distributions with parameters a=\alpha_i, b=1, and renormalizing. See A.M. Law, W.D. Kelton, Simulation Modeling and Analysis (1991). Gavin E. Crooks (2002) */ static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]); void gsl_ran_dirichlet (const gsl_rng * r, const size_t K, const double alpha[], double theta[]) { size_t i; double norm = 0.0; for (i = 0; i < K; i++) { theta[i] = gsl_ran_gamma (r, alpha[i], 1.0); } for (i = 0; i < K; i++) { norm += theta[i]; } if (norm < GSL_SQRT_DBL_MIN) /* Handle underflow */ { ran_dirichlet_small (r, K, alpha, theta); return; } for (i = 0; i < K; i++) { theta[i] /= norm; } } /* When the values of alpha[] are small, scale the variates to avoid underflow so that the result is not 0/0. Note that the Dirichlet distribution is defined by a ratio of gamma functions so we can take out an arbitrary factor to keep the values in the range of double precision. */ static void ran_dirichlet_small (const gsl_rng * r, const size_t K, const double alpha[], double theta[]) { size_t i; double norm = 0.0, umax = 0; for (i = 0; i < K; i++) { double u = log(gsl_rng_uniform_pos (r)) / alpha[i]; theta[i] = u; if (u > umax || i == 0) { umax = u; } } for (i = 0; i < K; i++) { theta[i] = exp(theta[i] - umax); } for (i = 0; i < K; i++) { theta[i] = theta[i] * gsl_ran_gamma (r, alpha[i] + 1.0, 1.0); } for (i = 0; i < K; i++) { norm += theta[i]; } for (i = 0; i < K; i++) { theta[i] /= norm; } } double gsl_ran_dirichlet_pdf (const size_t K, const double alpha[], const double theta[]) { return exp (gsl_ran_dirichlet_lnpdf (K, alpha, theta)); } double gsl_ran_dirichlet_lnpdf (const size_t K, const double alpha[], const double theta[]) { /*We calculate the log of the pdf to minimize the possibility of overflow */ size_t i; double log_p = 0.0; double sum_alpha = 0.0; for (i = 0; i < K; i++) { log_p += (alpha[i] - 1.0) * log (theta[i]); } for (i = 0; i < K; i++) { sum_alpha += alpha[i]; } log_p += gsl_sf_lngamma (sum_alpha); for (i = 0; i < K; i++) { log_p -= gsl_sf_lngamma (alpha[i]); } return log_p; } gsl-1.16/randist/gausszig.c0000664000252300025230000002272312171574312012624 00000000000000/* gauss.c - gaussian random numbers, using the Ziggurat method * * Copyright (C) 2005 Jochen Voss. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * This routine is based on the following article, with a couple of * modifications which simplify the implementation. * * George Marsaglia, Wai Wan Tsang * The Ziggurat Method for Generating Random Variables * Journal of Statistical Software, vol. 5 (2000), no. 8 * http://www.jstatsoft.org/v05/i08/ * * The modifications are: * * 1) use 128 steps instead of 256 to decrease the amount of static * data necessary. * * 2) use an acceptance sampling from an exponential wedge * exp(-R*(x-R/2)) for the tail of the base strip to simplify the * implementation. The area of exponential wedge is used in * calculating 'v' and the coefficients in ziggurat table, so the * coefficients differ slightly from those in the Marsaglia and Tsang * paper. * * See also Leong et al, "A Comment on the Implementation of the * Ziggurat Method", Journal of Statistical Software, vol 5 (2005), no 7. * */ #include #include #include #include #include /* position of right-most step */ #define PARAM_R 3.44428647676 /* tabulated values for the heigt of the Ziggurat levels */ static const double ytab[128] = { 1, 0.963598623011, 0.936280813353, 0.913041104253, 0.892278506696, 0.873239356919, 0.855496407634, 0.838778928349, 0.822902083699, 0.807732738234, 0.793171045519, 0.779139726505, 0.765577436082, 0.752434456248, 0.739669787677, 0.727249120285, 0.715143377413, 0.703327646455, 0.691780377035, 0.68048276891, 0.669418297233, 0.65857233912, 0.647931876189, 0.637485254896, 0.62722199145, 0.617132611532, 0.607208517467, 0.597441877296, 0.587825531465, 0.578352913803, 0.569017984198, 0.559815170911, 0.550739320877, 0.541785656682, 0.532949739145, 0.524227434628, 0.515614886373, 0.507108489253, 0.498704867478, 0.490400854812, 0.482193476986, 0.47407993601, 0.466057596125, 0.458123971214, 0.450276713467, 0.442513603171, 0.434832539473, 0.427231532022, 0.419708693379, 0.41226223212, 0.404890446548, 0.397591718955, 0.390364510382, 0.383207355816, 0.376118859788, 0.369097692334, 0.362142585282, 0.355252328834, 0.348425768415, 0.341661801776, 0.334959376311, 0.328317486588, 0.321735172063, 0.31521151497, 0.308745638367, 0.302336704338, 0.29598391232, 0.289686497571, 0.283443729739, 0.27725491156, 0.271119377649, 0.265036493387, 0.259005653912, 0.253026283183, 0.247097833139, 0.241219782932, 0.235391638239, 0.229612930649, 0.223883217122, 0.218202079518, 0.212569124201, 0.206983981709, 0.201446306496, 0.195955776745, 0.190512094256, 0.185114984406, 0.179764196185, 0.174459502324, 0.169200699492, 0.1639876086, 0.158820075195, 0.153697969964, 0.148621189348, 0.143589656295, 0.138603321143, 0.133662162669, 0.128766189309, 0.123915440582, 0.119109988745, 0.114349940703, 0.10963544023, 0.104966670533, 0.100343857232, 0.0957672718266, 0.0912372357329, 0.0867541250127, 0.082318375932, 0.0779304915295, 0.0735910494266, 0.0693007111742, 0.065060233529, 0.0608704821745, 0.056732448584, 0.05264727098, 0.0486162607163, 0.0446409359769, 0.0407230655415, 0.0368647267386, 0.0330683839378, 0.0293369977411, 0.0256741818288, 0.0220844372634, 0.0185735200577, 0.0151490552854, 0.0118216532614, 0.00860719483079, 0.00553245272614, 0.00265435214565 }; /* tabulated values for 2^24 times x[i]/x[i+1], * used to accept for U*x[i+1]<=x[i] without any floating point operations */ static const unsigned long ktab[128] = { 0, 12590644, 14272653, 14988939, 15384584, 15635009, 15807561, 15933577, 16029594, 16105155, 16166147, 16216399, 16258508, 16294295, 16325078, 16351831, 16375291, 16396026, 16414479, 16431002, 16445880, 16459343, 16471578, 16482744, 16492970, 16502368, 16511031, 16519039, 16526459, 16533352, 16539769, 16545755, 16551348, 16556584, 16561493, 16566101, 16570433, 16574511, 16578353, 16581977, 16585398, 16588629, 16591685, 16594575, 16597311, 16599901, 16602354, 16604679, 16606881, 16608968, 16610945, 16612818, 16614592, 16616272, 16617861, 16619363, 16620782, 16622121, 16623383, 16624570, 16625685, 16626730, 16627708, 16628619, 16629465, 16630248, 16630969, 16631628, 16632228, 16632768, 16633248, 16633671, 16634034, 16634340, 16634586, 16634774, 16634903, 16634972, 16634980, 16634926, 16634810, 16634628, 16634381, 16634066, 16633680, 16633222, 16632688, 16632075, 16631380, 16630598, 16629726, 16628757, 16627686, 16626507, 16625212, 16623794, 16622243, 16620548, 16618698, 16616679, 16614476, 16612071, 16609444, 16606571, 16603425, 16599973, 16596178, 16591995, 16587369, 16582237, 16576520, 16570120, 16562917, 16554758, 16545450, 16534739, 16522287, 16507638, 16490152, 16468907, 16442518, 16408804, 16364095, 16301683, 16207738, 16047994, 15704248, 15472926 }; /* tabulated values of 2^{-24}*x[i] */ static const double wtab[128] = { 1.62318314817e-08, 2.16291505214e-08, 2.54246305087e-08, 2.84579525938e-08, 3.10340022482e-08, 3.33011726243e-08, 3.53439060345e-08, 3.72152672658e-08, 3.8950989572e-08, 4.05763964764e-08, 4.21101548915e-08, 4.35664624904e-08, 4.49563968336e-08, 4.62887864029e-08, 4.75707945735e-08, 4.88083237257e-08, 5.00063025384e-08, 5.11688950428e-08, 5.22996558616e-08, 5.34016475624e-08, 5.44775307871e-08, 5.55296344581e-08, 5.65600111659e-08, 5.75704813695e-08, 5.85626690412e-08, 5.95380306862e-08, 6.04978791776e-08, 6.14434034901e-08, 6.23756851626e-08, 6.32957121259e-08, 6.42043903937e-08, 6.51025540077e-08, 6.59909735447e-08, 6.68703634341e-08, 6.77413882848e-08, 6.8604668381e-08, 6.94607844804e-08, 7.03102820203e-08, 7.11536748229e-08, 7.1991448372e-08, 7.2824062723e-08, 7.36519550992e-08, 7.44755422158e-08, 7.52952223703e-08, 7.61113773308e-08, 7.69243740467e-08, 7.77345662086e-08, 7.85422956743e-08, 7.93478937793e-08, 8.01516825471e-08, 8.09539758128e-08, 8.17550802699e-08, 8.25552964535e-08, 8.33549196661e-08, 8.41542408569e-08, 8.49535474601e-08, 8.57531242006e-08, 8.65532538723e-08, 8.73542180955e-08, 8.8156298059e-08, 8.89597752521e-08, 8.97649321908e-08, 9.05720531451e-08, 9.138142487e-08, 9.21933373471e-08, 9.30080845407e-08, 9.38259651738e-08, 9.46472835298e-08, 9.54723502847e-08, 9.63014833769e-08, 9.71350089201e-08, 9.79732621669e-08, 9.88165885297e-08, 9.96653446693e-08, 1.00519899658e-07, 1.0138063623e-07, 1.02247952126e-07, 1.03122261554e-07, 1.04003996769e-07, 1.04893609795e-07, 1.05791574313e-07, 1.06698387725e-07, 1.07614573423e-07, 1.08540683296e-07, 1.09477300508e-07, 1.1042504257e-07, 1.11384564771e-07, 1.12356564007e-07, 1.13341783071e-07, 1.14341015475e-07, 1.15355110887e-07, 1.16384981291e-07, 1.17431607977e-07, 1.18496049514e-07, 1.19579450872e-07, 1.20683053909e-07, 1.21808209468e-07, 1.2295639141e-07, 1.24129212952e-07, 1.25328445797e-07, 1.26556042658e-07, 1.27814163916e-07, 1.29105209375e-07, 1.30431856341e-07, 1.31797105598e-07, 1.3320433736e-07, 1.34657379914e-07, 1.36160594606e-07, 1.37718982103e-07, 1.39338316679e-07, 1.41025317971e-07, 1.42787873535e-07, 1.44635331499e-07, 1.4657889173e-07, 1.48632138436e-07, 1.50811780719e-07, 1.53138707402e-07, 1.55639532047e-07, 1.58348931426e-07, 1.61313325908e-07, 1.64596952856e-07, 1.68292495203e-07, 1.72541128694e-07, 1.77574279496e-07, 1.83813550477e-07, 1.92166040885e-07, 2.05295471952e-07, 2.22600839893e-07 }; double gsl_ran_gaussian_ziggurat (const gsl_rng * r, const double sigma) { unsigned long int i, j; int sign; double x, y; const unsigned long int range = r->type->max - r->type->min; const unsigned long int offset = r->type->min; while (1) { if (range >= 0xFFFFFFFF) { unsigned long int k = gsl_rng_get(r) - offset; i = (k & 0xFF); j = (k >> 8) & 0xFFFFFF; } else if (range >= 0x00FFFFFF) { unsigned long int k1 = gsl_rng_get(r) - offset; unsigned long int k2 = gsl_rng_get(r) - offset; i = (k1 & 0xFF); j = (k2 & 0x00FFFFFF); } else { i = gsl_rng_uniform_int (r, 256); /* choose the step */ j = gsl_rng_uniform_int (r, 16777216); /* sample from 2^24 */ } sign = (i & 0x80) ? +1 : -1; i &= 0x7f; x = j * wtab[i]; if (j < ktab[i]) break; if (i < 127) { double y0, y1, U1; y0 = ytab[i]; y1 = ytab[i + 1]; U1 = gsl_rng_uniform (r); y = y1 + (y0 - y1) * U1; } else { double U1, U2; U1 = 1.0 - gsl_rng_uniform (r); U2 = gsl_rng_uniform (r); x = PARAM_R - log (U1) / PARAM_R; y = exp (-PARAM_R * (x - 0.5 * PARAM_R)) * U2; } if (y < exp (-0.5 * x * x)) break; } return sign * sigma * x; } gsl-1.16/randist/TODO0000664000252300025230000000600412171574312011306 00000000000000# -*- org -*- #+CATEGORY: randist * ACM Computing Surveys (CSUR) Volume 39 , Issue 4 (2007) Gaussian random number generators David B. Thomas, Wayne Luk, Philip H.W. Leong, John D. Villasenor Article No. 11 * add Erlang dist back in? * DONE, for mu. Note that we need to get rid of mu when it is not the mean. From: Brian Gough To: briggsk@info.bt.co.uk Cc: gsl-discuss@sourceware.cygnus.com Subject: Re: Pareto Distribution Date: Sun, 9 Jul 2000 20:05:03 +0100 (BST) Yes, we should adopt the conventions from a standard reference book -- the existing functions are drawn from a variety of sources, mostly Devroye's book on Random Variates (which is public domain, but not available electronically unfortunately). Maybe the three volumes of Johnson & Kotz on Univariate Distributions would do, for example. Patches are welcome from anyone who wants sort this out. Keith Briggs writes: > Another thing to think about: some of the other distributions > have a argument `mu' to the C function which is a parameter > which is not the mean. This is non-standard and confusing. > (Also, in the Pareto function, `a' is normally called beta, > `b' is normally called alpha.) > > Keith > > +-------------------------------------------------------------------+ > | Dr. Keith M. Briggs, Complexity Research Group, BT Research Labs. | > | Adastral Park admin2 pp5, Martlesham Heath, IP5 3RE, Suffolk, UK | > | Tel. 01473 641 911 Fax. 01473 647 410. Home tel: 01473 625 972 | > | www.bt.com | personal homepage: www.labs.bt.com/people/briggsk2/ | > +-------------------------------------------------------------------+ * The exponential power distribution method could be speeded up by using a rational function approximation for the rejection scaling parameter. * Do something about the possibility of the user providing invalid parameters (e.g. negative variance etc). Not sure what to do though, since returning an error code is not possible. Maybe just return zero. We should return NAN in this case, and for the CDFs. * Add the triangular distribution. * Look at Marsaglia & Tsang, "The Monte Python Method for generating random variables", ACM TOMS Vol 24, No 3, p341 and the paper on the Ziggurat Method: Journal of Statistical Software, Volume 05 Issue 08. George Marsaglia and Wai Wan Tsang. "The ziggurat method for generating random variables" * Should 0 be included in distributions such as the exponential distribution? If we want a consistent behaviour, is it included in others? Note that 1-gsl_rng_uniform() can have a slight loss of precision when the random float is small. gsl-1.16/randist/multinomial.c0000664000252300025230000000572612171574312013326 00000000000000/* randist/multinomial.c * * Copyright (C) 2002 Gavin E. Crooks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The multinomial distribution has the form N! n_1 n_2 n_K prob(n_1, n_2, ... n_K) = -------------------- p_1 p_2 ... p_K (n_1! n_2! ... n_K!) where n_1, n_2, ... n_K are nonnegative integers, sum_{k=1,K} n_k = N, and p = (p_1, p_2, ..., p_K) is a probability distribution. Random variates are generated using the conditional binomial method. This scales well with N and does not require a setup step. Ref: C.S. David, The computer generation of multinomial random variates, Comp. Stat. Data Anal. 16 (1993) 205-217 */ void gsl_ran_multinomial (const gsl_rng * r, const size_t K, const unsigned int N, const double p[], unsigned int n[]) { size_t k; double norm = 0.0; double sum_p = 0.0; unsigned int sum_n = 0; /* p[k] may contain non-negative weights that do not sum to 1.0. * Even a probability distribution will not exactly sum to 1.0 * due to rounding errors. */ for (k = 0; k < K; k++) { norm += p[k]; } for (k = 0; k < K; k++) { if (p[k] > 0.0) { n[k] = gsl_ran_binomial (r, p[k] / (norm - sum_p), N - sum_n); } else { n[k] = 0; } sum_p += p[k]; sum_n += n[k]; } } double gsl_ran_multinomial_pdf (const size_t K, const double p[], const unsigned int n[]) { return exp (gsl_ran_multinomial_lnpdf (K, p, n)); } double gsl_ran_multinomial_lnpdf (const size_t K, const double p[], const unsigned int n[]) { size_t k; unsigned int N = 0; double log_pdf = 0.0; double norm = 0.0; for (k = 0; k < K; k++) { N += n[k]; } for (k = 0; k < K; k++) { norm += p[k]; } log_pdf = gsl_sf_lnfact (N); for (k = 0; k < K; k++) { /* Handle case where n[k]==0 and p[k]==0 */ if (n[k] > 0) { log_pdf += log (p[k] / norm) * n[k] - gsl_sf_lnfact (n[k]); } } return log_pdf; } gsl-1.16/randist/gauss.c0000664000252300025230000001063712171574312012113 00000000000000/* randist/gauss.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough * Copyright (C) 2006 Charles Karney * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* Of the two methods provided below, I think the Polar method is more * efficient, but only when you are actually producing two random * deviates. We don't produce two, because then we'd have to save one * in a static variable for the next call, and that would screws up * re-entrant or threaded code, so we only produce one. This makes * the Ratio method suddenly more appealing. * * [Added by Charles Karney] We use Leva's implementation of the Ratio * method which avoids calling log() nearly all the time and makes the * Ratio method faster than the Polar method (when it produces just one * result per call). Timing per call (gcc -O2 on 866MHz Pentium, * average over 10^8 calls) * * Polar method: 660 ns * Ratio method: 368 ns * */ /* Polar (Box-Mueller) method; See Knuth v2, 3rd ed, p122 */ double gsl_ran_gaussian (const gsl_rng * r, const double sigma) { double x, y, r2; do { /* choose x,y in uniform square (-1,-1) to (+1,+1) */ x = -1 + 2 * gsl_rng_uniform_pos (r); y = -1 + 2 * gsl_rng_uniform_pos (r); /* see if it is in the unit circle */ r2 = x * x + y * y; } while (r2 > 1.0 || r2 == 0); /* Box-Muller transform */ return sigma * y * sqrt (-2.0 * log (r2) / r2); } /* Ratio method (Kinderman-Monahan); see Knuth v2, 3rd ed, p130. * K+M, ACM Trans Math Software 3 (1977) 257-260. * * [Added by Charles Karney] This is an implementation of Leva's * modifications to the original K+M method; see: * J. L. Leva, ACM Trans Math Software 18 (1992) 449-453 and 454-455. */ double gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma) { double u, v, x, y, Q; const double s = 0.449871; /* Constants from Leva */ const double t = -0.386595; const double a = 0.19600; const double b = 0.25472; const double r1 = 0.27597; const double r2 = 0.27846; do /* This loop is executed 1.369 times on average */ { /* Generate a point P = (u, v) uniform in a rectangle enclosing the K+M region v^2 <= - 4 u^2 log(u). */ /* u in (0, 1] to avoid singularity at u = 0 */ u = 1 - gsl_rng_uniform (r); /* v is in the asymmetric interval [-0.5, 0.5). However v = -0.5 is rejected in the last part of the while clause. The resulting normal deviate is strictly symmetric about 0 (provided that v is symmetric once v = -0.5 is excluded). */ v = gsl_rng_uniform (r) - 0.5; /* Constant 1.7156 > sqrt(8/e) (for accuracy); but not by too much (for efficiency). */ v *= 1.7156; /* Compute Leva's quadratic form Q */ x = u - s; y = fabs (v) - t; Q = x * x + y * (a * y - b * x); /* Accept P if Q < r1 (Leva) */ /* Reject P if Q > r2 (Leva) */ /* Accept if v^2 <= -4 u^2 log(u) (K+M) */ /* This final test is executed 0.012 times on average. */ } while (Q >= r1 && (Q > r2 || v * v > -4 * u * u * log (u))); return sigma * (v / u); /* Return slope */ } double gsl_ran_gaussian_pdf (const double x, const double sigma) { double u = x / fabs (sigma); double p = (1 / (sqrt (2 * M_PI) * fabs (sigma))) * exp (-u * u / 2); return p; } double gsl_ran_ugaussian (const gsl_rng * r) { return gsl_ran_gaussian (r, 1.0); } double gsl_ran_ugaussian_ratio_method (const gsl_rng * r) { return gsl_ran_gaussian_ratio_method (r, 1.0); } double gsl_ran_ugaussian_pdf (const double x) { return gsl_ran_gaussian_pdf (x, 1.0); } gsl-1.16/randist/bernoulli.c0000664000252300025230000000255412171574312012763 00000000000000/* randist/bernoulli.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The bernoulli distribution has the form, prob(0) = 1-p, prob(1) = p */ unsigned int gsl_ran_bernoulli (const gsl_rng * r, double p) { double u = gsl_rng_uniform (r) ; if (u < p) { return 1 ; } else { return 0 ; } } double gsl_ran_bernoulli_pdf (const unsigned int k, double p) { if (k == 0) { return 1 - p ; } else if (k == 1) { return p ; } else { return 0 ; } } gsl-1.16/randist/test.c0000664000252300025230000012414012171574312011743 00000000000000/* randist/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #define N 100000 /* Convient test dimension for multivariant distributions */ #define MULTI_DIM 10 void testMoments (double (*f) (void), const char *name, double a, double b, double p); void testPDF (double (*f) (void), double (*pdf) (double), const char *name); void testDiscretePDF (double (*f) (void), double (*pdf) (unsigned int), const char *name); void test_shuffle (void); void test_choose (void); double test_beta (void); double test_beta_pdf (double x); double test_bernoulli (void); double test_bernoulli_pdf (unsigned int n); double test_binomial (void); double test_binomial_pdf (unsigned int n); double test_binomial_large (void); double test_binomial_large_pdf (unsigned int n); double test_binomial_huge (void); double test_binomial_huge_pdf (unsigned int n); double test_binomial_max (void); double test_binomial_max_pdf (unsigned int n); double test_binomial0 (void); double test_binomial0_pdf (unsigned int n); double test_binomial1 (void); double test_binomial1_pdf (unsigned int n); double test_binomial_knuth (void); double test_binomial_knuth_pdf (unsigned int n); double test_binomial_large_knuth (void); double test_binomial_large_knuth_pdf (unsigned int n); double test_binomial_huge_knuth (void); double test_binomial_huge_knuth_pdf (unsigned int n); double test_cauchy (void); double test_cauchy_pdf (double x); double test_chisq (void); double test_chisq_pdf (double x); double test_chisqnu2 (void); double test_chisqnu2_pdf (double x); double test_dirichlet (void); double test_dirichlet_pdf (double x); double test_dirichlet_small (void); double test_dirichlet_small_pdf (double x); void test_dirichlet_moments (void); double test_discrete1 (void); double test_discrete1_pdf (unsigned int n); double test_discrete2 (void); double test_discrete2_pdf (unsigned int n); double test_discrete3 (void); double test_discrete3_pdf (unsigned int n); double test_erlang (void); double test_erlang_pdf (double x); double test_exponential (void); double test_exponential_pdf (double x); double test_exppow0 (void); double test_exppow0_pdf (double x); double test_exppow1 (void); double test_exppow1_pdf (double x); double test_exppow1a (void); double test_exppow1a_pdf (double x); double test_exppow2 (void); double test_exppow2_pdf (double x); double test_exppow2a (void); double test_exppow2a_pdf (double x); double test_exppow2b (void); double test_exppow2b_pdf (double x); double test_fdist (void); double test_fdist_pdf (double x); double test_fdist_large (void); double test_fdist_large_pdf (double x); double test_flat (void); double test_flat_pdf (double x); double test_gamma (void); double test_gamma_pdf (double x); double test_gamma1 (void); double test_gamma1_pdf (double x); double test_gamma_int (void); double test_gamma_int_pdf (double x); double test_gamma_large (void); double test_gamma_large_pdf (double x); double test_gamma_vlarge (void); double test_gamma_vlarge_pdf (double x); double test_gamma_small (void); double test_gamma_small_pdf (double x); double test_gamma_mt (void); double test_gamma_mt_pdf (double x); double test_gamma_mt1 (void); double test_gamma_mt1_pdf (double x); double test_gamma_mt_int (void); double test_gamma_mt_int_pdf (double x); double test_gamma_mt_large (void); double test_gamma_mt_large_pdf (double x); double test_gamma_mt_small (void); double test_gamma_mt_small_pdf (double x); double test_gamma_knuth_vlarge (void); double test_gamma_knuth_vlarge_pdf (double x); double test_gaussian (void); double test_gaussian_pdf (double x); double test_gaussian_ratio_method (void); double test_gaussian_ratio_method_pdf (double x); double test_gaussian_ziggurat (void); double test_gaussian_ziggurat_pdf (double x); double test_gaussian_tail (void); double test_gaussian_tail_pdf (double x); double test_gaussian_tail1 (void); double test_gaussian_tail1_pdf (double x); double test_gaussian_tail2 (void); double test_gaussian_tail2_pdf (double x); double test_ugaussian (void); double test_ugaussian_pdf (double x); double test_ugaussian_ratio_method (void); double test_ugaussian_ratio_method_pdf (double x); double test_ugaussian_tail (void); double test_ugaussian_tail_pdf (double x); double test_bivariate_gaussian1 (void); double test_bivariate_gaussian1_pdf (double x); double test_bivariate_gaussian2 (void); double test_bivariate_gaussian2_pdf (double x); double test_bivariate_gaussian3 (void); double test_bivariate_gaussian3_pdf (double x); double test_bivariate_gaussian4 (void); double test_bivariate_gaussian4_pdf (double x); double test_gumbel1 (void); double test_gumbel1_pdf (double x); double test_gumbel2 (void); double test_gumbel2_pdf (double x); double test_geometric (void); double test_geometric_pdf (unsigned int x); double test_geometric1 (void); double test_geometric1_pdf (unsigned int x); double test_hypergeometric1 (void); double test_hypergeometric1_pdf (unsigned int x); double test_hypergeometric2 (void); double test_hypergeometric2_pdf (unsigned int x); double test_hypergeometric3 (void); double test_hypergeometric3_pdf (unsigned int x); double test_hypergeometric4 (void); double test_hypergeometric4_pdf (unsigned int x); double test_hypergeometric5 (void); double test_hypergeometric5_pdf (unsigned int x); double test_hypergeometric6 (void); double test_hypergeometric6_pdf (unsigned int x); double test_landau (void); double test_landau_pdf (double x); double test_levy1 (void); double test_levy1_pdf (double x); double test_levy2 (void); double test_levy2_pdf (double x); double test_levy1a (void); double test_levy1a_pdf (double x); double test_levy2a (void); double test_levy2a_pdf (double x); double test_levy_skew1 (void); double test_levy_skew1_pdf (double x); double test_levy_skew2 (void); double test_levy_skew2_pdf (double x); double test_levy_skew1a (void); double test_levy_skew1a_pdf (double x); double test_levy_skew2a (void); double test_levy_skew2a_pdf (double x); double test_levy_skew1b (void); double test_levy_skew1b_pdf (double x); double test_levy_skew2b (void); double test_levy_skew2b_pdf (double x); double test_logistic (void); double test_logistic_pdf (double x); double test_lognormal (void); double test_lognormal_pdf (double x); double test_logarithmic (void); double test_logarithmic_pdf (unsigned int n); double test_multinomial (void); double test_multinomial_pdf (unsigned int n); double test_multinomial_large (void); double test_multinomial_large_pdf (unsigned int n); void test_multinomial_moments (void); double test_negative_binomial (void); double test_negative_binomial_pdf (unsigned int n); double test_pascal (void); double test_pascal_pdf (unsigned int n); double test_pareto (void); double test_pareto_pdf (double x); double test_poisson (void); double test_poisson_pdf (unsigned int x); double test_poisson_large (void); double test_poisson_large_pdf (unsigned int x); double test_dir2d (void); double test_dir2d_pdf (double x); double test_dir2d_trig_method (void); double test_dir2d_trig_method_pdf (double x); double test_dir3dxy (void); double test_dir3dxy_pdf (double x); double test_dir3dyz (void); double test_dir3dyz_pdf (double x); double test_dir3dzx (void); double test_dir3dzx_pdf (double x); double test_rayleigh (void); double test_rayleigh_pdf (double x); double test_rayleigh_tail (void); double test_rayleigh_tail_pdf (double x); double test_tdist1 (void); double test_tdist1_pdf (double x); double test_tdist2 (void); double test_tdist2_pdf (double x); double test_laplace (void); double test_laplace_pdf (double x); double test_weibull (void); double test_weibull_pdf (double x); double test_weibull1 (void); double test_weibull1_pdf (double x); gsl_rng *r_global; static gsl_ran_discrete_t *g1 = NULL; static gsl_ran_discrete_t *g2 = NULL; static gsl_ran_discrete_t *g3 = NULL; int main (void) { gsl_ieee_env_setup (); gsl_rng_env_setup (); r_global = gsl_rng_alloc (gsl_rng_default); #define FUNC(x) test_ ## x, "test gsl_ran_" #x #define FUNC2(x) test_ ## x, test_ ## x ## _pdf, "test gsl_ran_" #x test_shuffle (); test_choose (); testMoments (FUNC (ugaussian), 0.0, 100.0, 0.5); testMoments (FUNC (ugaussian), -1.0, 1.0, 0.6826895); testMoments (FUNC (ugaussian), 3.0, 3.5, 0.0011172689); testMoments (FUNC (ugaussian_tail), 3.0, 3.5, 0.0011172689 / 0.0013498981); testMoments (FUNC (exponential), 0.0, 1.0, 1 - exp (-0.5)); testMoments (FUNC (cauchy), 0.0, 10000.0, 0.5); testMoments (FUNC (discrete1), -0.5, 0.5, 0.59); testMoments (FUNC (discrete1), 0.5, 1.5, 0.40); testMoments (FUNC (discrete1), 1.5, 3.5, 0.01); testMoments (FUNC (discrete2), -0.5, 0.5, 1.0/45.0 ); testMoments (FUNC (discrete2), 8.5, 9.5, 0 ); testMoments (FUNC (discrete3), -0.5, 0.5, 0.05 ); testMoments (FUNC (discrete3), 0.5, 1.5, 0.05 ); testMoments (FUNC (discrete3), -0.5, 9.5, 0.5 ); test_dirichlet_moments (); test_multinomial_moments (); testPDF (FUNC2 (beta)); testPDF (FUNC2 (cauchy)); testPDF (FUNC2 (chisq)); testPDF (FUNC2 (chisqnu2)); testPDF (FUNC2 (dirichlet)); testPDF (FUNC2 (dirichlet_small)); testPDF (FUNC2 (erlang)); testPDF (FUNC2 (exponential)); testPDF (FUNC2 (exppow0)); testPDF (FUNC2 (exppow1)); testPDF (FUNC2 (exppow1a)); testPDF (FUNC2 (exppow2)); testPDF (FUNC2 (exppow2a)); testPDF (FUNC2 (exppow2b)); testPDF (FUNC2 (fdist)); testPDF (FUNC2 (fdist_large)); testPDF (FUNC2 (flat)); testPDF (FUNC2 (gamma)); testPDF (FUNC2 (gamma1)); testPDF (FUNC2 (gamma_int)); testPDF (FUNC2 (gamma_large)); testPDF (FUNC2 (gamma_vlarge)); testPDF (FUNC2 (gamma_knuth_vlarge)); testPDF (FUNC2 (gamma_small)); testPDF (FUNC2 (gamma_mt)); testPDF (FUNC2 (gamma_mt1)); testPDF (FUNC2 (gamma_mt_int)); testPDF (FUNC2 (gamma_mt_large)); testPDF (FUNC2 (gamma_mt_small)); testPDF (FUNC2 (gaussian)); testPDF (FUNC2 (gaussian_ratio_method)); testPDF (FUNC2 (gaussian_ziggurat)); testPDF (FUNC2 (ugaussian)); testPDF (FUNC2 (ugaussian_ratio_method)); testPDF (FUNC2 (gaussian_tail)); testPDF (FUNC2 (gaussian_tail1)); testPDF (FUNC2 (gaussian_tail2)); testPDF (FUNC2 (ugaussian_tail)); testPDF (FUNC2 (bivariate_gaussian1)); testPDF (FUNC2 (bivariate_gaussian2)); testPDF (FUNC2 (bivariate_gaussian3)); testPDF (FUNC2 (bivariate_gaussian4)); testPDF (FUNC2 (gumbel1)); testPDF (FUNC2 (gumbel2)); testPDF (FUNC2 (landau)); testPDF (FUNC2 (levy1)); testPDF (FUNC2 (levy2)); testPDF (FUNC2 (levy1a)); testPDF (FUNC2 (levy2a)); testPDF (FUNC2 (levy_skew1)); testPDF (FUNC2 (levy_skew2)); testPDF (FUNC2 (levy_skew1a)); testPDF (FUNC2 (levy_skew2a)); testPDF (FUNC2 (levy_skew1b)); testPDF (FUNC2 (levy_skew2b)); testPDF (FUNC2 (logistic)); testPDF (FUNC2 (lognormal)); testPDF (FUNC2 (pareto)); testPDF (FUNC2 (rayleigh)); testPDF (FUNC2 (rayleigh_tail)); testPDF (FUNC2 (tdist1)); testPDF (FUNC2 (tdist2)); testPDF (FUNC2 (laplace)); testPDF (FUNC2 (weibull)); testPDF (FUNC2 (weibull1)); testPDF (FUNC2 (dir2d)); testPDF (FUNC2 (dir2d_trig_method)); testPDF (FUNC2 (dir3dxy)); testPDF (FUNC2 (dir3dyz)); testPDF (FUNC2 (dir3dzx)); testDiscretePDF (FUNC2 (discrete1)); testDiscretePDF (FUNC2 (discrete2)); testDiscretePDF (FUNC2 (discrete3)); testDiscretePDF (FUNC2 (poisson)); testDiscretePDF (FUNC2 (poisson_large)); testDiscretePDF (FUNC2 (bernoulli)); testDiscretePDF (FUNC2 (binomial)); testDiscretePDF (FUNC2 (binomial0)); testDiscretePDF (FUNC2 (binomial1)); testDiscretePDF (FUNC2 (binomial_knuth)); testDiscretePDF (FUNC2 (binomial_large)); testDiscretePDF (FUNC2 (binomial_large_knuth)); testDiscretePDF (FUNC2 (binomial_huge)); testDiscretePDF (FUNC2 (binomial_huge_knuth)); testDiscretePDF (FUNC2 (binomial_max)); testDiscretePDF (FUNC2 (geometric)); testDiscretePDF (FUNC2 (geometric1)); testDiscretePDF (FUNC2 (hypergeometric1)); testDiscretePDF (FUNC2 (hypergeometric2)); testDiscretePDF (FUNC2 (hypergeometric3)); testDiscretePDF (FUNC2 (hypergeometric4)); testDiscretePDF (FUNC2 (hypergeometric5)); testDiscretePDF (FUNC2 (hypergeometric6)); testDiscretePDF (FUNC2 (logarithmic)); testDiscretePDF (FUNC2 (multinomial)); testDiscretePDF (FUNC2 (multinomial_large)); testDiscretePDF (FUNC2 (negative_binomial)); testDiscretePDF (FUNC2 (pascal)); gsl_rng_free (r_global); gsl_ran_discrete_free (g1); gsl_ran_discrete_free (g2); gsl_ran_discrete_free (g3); exit (gsl_test_summary ()); } void test_shuffle (void) { double count[10][10]; int x[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int i, j, status = 0; for (i = 0; i < 10; i++) { for (j = 0; j < 10; j++) { count[i][j] = 0; } } for (i = 0; i < N; i++) { for (j = 0; j < 10; j++) x[j] = j; gsl_ran_shuffle (r_global, x, 10, sizeof (int)); for (j = 0; j < 10; j++) count[x[j]][j]++; } for (i = 0; i < 10; i++) { for (j = 0; j < 10; j++) { double expected = N / 10.0; double d = fabs (count[i][j] - expected); double sigma = d / sqrt (expected); if (sigma > 5 && d > 1) { status = 1; gsl_test (status, "gsl_ran_shuffle %d,%d (%g observed vs %g expected)", i, j, count[i][j] / N, 0.1); } } } gsl_test (status, "gsl_ran_shuffle on {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}"); } void test_choose (void) { double count[10]; int x[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int y[3] = { 0, 1, 2 }; int i, j, status = 0; for (i = 0; i < 10; i++) { count[i] = 0; } for (i = 0; i < N; i++) { for (j = 0; j < 10; j++) x[j] = j; gsl_ran_choose (r_global, y, 3, x, 10, sizeof (int)); for (j = 0; j < 3; j++) count[y[j]]++; } for (i = 0; i < 10; i++) { double expected = 3.0 * N / 10.0; double d = fabs (count[i] - expected); double sigma = d / sqrt (expected); if (sigma > 5 && d > 1) { status = 1; gsl_test (status, "gsl_ran_choose %d (%g observed vs %g expected)", i, count[i] / N, 0.1); } } gsl_test (status, "gsl_ran_choose (3) on {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}"); } void testMoments (double (*f) (void), const char *name, double a, double b, double p) { int i; double count = 0, expected, sigma; int status; for (i = 0; i < N; i++) { double r = f (); if (r < b && r > a) count++; } expected = p * N; sigma = (expected > 0) ? fabs (count - expected) / sqrt (expected) : fabs(count - expected); status = (sigma > 3); gsl_test (status, "%s [%g,%g] (%g observed vs %g expected)", name, a, b, count / N, p); } #define BINS 100 typedef double pdf_func(double); /* Keep track of invalid values during integration */ static int pdf_errors = 0; static double pdf_errval = 0.0; double wrapper_function (double x, void *params) { pdf_func * pdf = (pdf_func *)params; double P = pdf(x); if (!gsl_finite(P)) { pdf_errors++; pdf_errval = P; P = 0; /* skip invalid value now, but return pdf_errval at the end */ } return P; } double integrate (pdf_func * pdf, double a, double b) { double result, abserr; size_t n = 1000; gsl_function f; gsl_integration_workspace * w = gsl_integration_workspace_alloc (n); f.function = &wrapper_function; f.params = (void *)pdf; pdf_errors = 0; gsl_integration_qags (&f, a, b, 1e-16, 1e-4, n, w, &result, &abserr); gsl_integration_workspace_free (w); if (pdf_errors) return pdf_errval; return result; } void testPDF (double (*f) (void), double (*pdf) (double), const char *name) { double count[BINS], edge[BINS], p[BINS]; double a = -5.0, b = +5.0; double dx = (b - a) / BINS; double bin; double total = 0, mean; int i, j, status = 0, status_i = 0, attempts = 0; long int n0 = 0, n = N; for (i = 0; i < BINS; i++) { /* Compute the integral of p(x) from x to x+dx */ double x = a + i * dx; if (fabs (x) < 1e-10) /* hit the origin exactly */ x = 0.0; p[i] = integrate (pdf, x, x+dx); } for (i = 0; i < BINS; i++) { count[i] = 0; edge[i] = 0; } trial: attempts++; for (i = n0; i < n; i++) { double r = f (); total += r; if (r < b && r > a) { double u = (r - a) / dx; double f = modf(u, &bin); j = (int)bin; if (f == 0) edge[j]++; else count[j]++; } } /* Sort out where the hits on the edges should go */ for (i = 0; i < BINS; i++) { /* If the bin above is empty, its lower edge hits belong in the lower bin */ if (i + 1 < BINS && count[i+1] == 0) { count[i] += edge[i+1]; edge[i+1] = 0; } count[i] += edge[i]; edge[i] = 0; } mean = (total / n); status = !gsl_finite(mean); if (status) { gsl_test (status, "%s, finite mean, observed %g", name, mean); return; } for (i = 0; i < BINS; i++) { double x = a + i * dx; double d = fabs (count[i] - n * p[i]); if (!gsl_finite(p[i])) { status_i = 1; } else if (p[i] != 0) { double s = d / sqrt (n * p[i]); status_i = (s > 5) && (d > 2); } else { status_i = (count[i] != 0); } /* Extend the sample if there is an outlier on the first attempt to avoid spurious failures when running large numbers of tests. */ if (status_i && attempts < 50) { n0 = n; n = 2.0*n; goto trial; } status |= status_i; if (status_i) gsl_test (status_i, "%s [%g,%g) (%g/%d=%g observed vs %g expected)", name, x, x + dx, count[i], n, count[i] / n, p[i]); } if (status == 0) gsl_test (status, "%s, sampling against pdf over range [%g,%g) ", name, a, b); } void testDiscretePDF (double (*f) (void), double (*pdf) (unsigned int), const char *name) { double count[BINS], p[BINS]; unsigned int i; int status = 0, status_i = 0; for (i = 0; i < BINS; i++) count[i] = 0; for (i = 0; i < N; i++) { int r = (int) (f ()); if (r >= 0 && r < BINS) count[r]++; } for (i = 0; i < BINS; i++) p[i] = pdf (i); for (i = 0; i < BINS; i++) { double d = fabs (count[i] - N * p[i]); if (p[i] != 0) { double s = d / sqrt (N * p[i]); status_i = (s > 5) && (d > 1); } else { status_i = (count[i] != 0); } status |= status_i; if (status_i) gsl_test (status_i, "%s i=%d (%g observed vs %g expected)", name, i, count[i] / N, p[i]); } if (status == 0) gsl_test (status, "%s, sampling against pdf over range [%d,%d) ", name, 0, BINS); } double test_beta (void) { return gsl_ran_beta (r_global, 2.0, 3.0); } double test_beta_pdf (double x) { return gsl_ran_beta_pdf (x, 2.0, 3.0); } double test_bernoulli (void) { return gsl_ran_bernoulli (r_global, 0.3); } double test_bernoulli_pdf (unsigned int n) { return gsl_ran_bernoulli_pdf (n, 0.3); } double test_binomial (void) { return gsl_ran_binomial (r_global, 0.3, 5); } double test_binomial_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 5); } double test_binomial0 (void) { return gsl_ran_binomial (r_global, 0, 8); } double test_binomial0_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0, 8); } double test_binomial1 (void) { return gsl_ran_binomial (r_global, 1, 8); } double test_binomial1_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 1, 8); } double test_binomial_knuth (void) { return gsl_ran_binomial_knuth (r_global, 0.3, 5); } double test_binomial_knuth_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 5); } double test_binomial_large (void) { return gsl_ran_binomial (r_global, 0.3, 55); } double test_binomial_large_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 55); } double test_binomial_large_knuth (void) { return gsl_ran_binomial_knuth (r_global, 0.3, 55); } double test_binomial_large_knuth_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 55); } double test_binomial_huge (void) { return gsl_ran_binomial (r_global, 0.3, 5500); } double test_binomial_huge_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 5500); } double test_binomial_huge_knuth (void) { return gsl_ran_binomial_knuth (r_global, 0.3, 5500); } double test_binomial_huge_knuth_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 0.3, 5500); } double test_binomial_max (void) { return gsl_ran_binomial (r_global, 1e-8, 1<<31); } double test_binomial_max_pdf (unsigned int n) { return gsl_ran_binomial_pdf (n, 1e-8, 1<<31); } double test_cauchy (void) { return gsl_ran_cauchy (r_global, 2.0); } double test_cauchy_pdf (double x) { return gsl_ran_cauchy_pdf (x, 2.0); } double test_chisq (void) { return gsl_ran_chisq (r_global, 13.0); } double test_chisq_pdf (double x) { return gsl_ran_chisq_pdf (x, 13.0); } double test_chisqnu2 (void) { return gsl_ran_chisq (r_global, 2.0); } double test_chisqnu2_pdf (double x) { return gsl_ran_chisq_pdf (x, 2.0); } double test_dir2d (void) { double x = 0, y = 0, theta; gsl_ran_dir_2d (r_global, &x, &y); theta = atan2 (x, y); return theta; } double test_dir2d_pdf (double x) { if (x > -M_PI && x <= M_PI) { return 1 / (2 * M_PI); } else { return 0; } } double test_dir2d_trig_method (void) { double x = 0, y = 0, theta; gsl_ran_dir_2d_trig_method (r_global, &x, &y); theta = atan2 (x, y); return theta; } double test_dir2d_trig_method_pdf (double x) { if (x > -M_PI && x <= M_PI) { return 1 / (2 * M_PI); } else { return 0; } } double test_dir3dxy (void) { double x = 0, y = 0, z = 0, theta; gsl_ran_dir_3d (r_global, &x, &y, &z); theta = atan2 (x, y); return theta; } double test_dir3dxy_pdf (double x) { if (x > -M_PI && x <= M_PI) { return 1 / (2 * M_PI); } else { return 0; } } double test_dir3dyz (void) { double x = 0, y = 0, z = 0, theta; gsl_ran_dir_3d (r_global, &x, &y, &z); theta = atan2 (y, z); return theta; } double test_dir3dyz_pdf (double x) { if (x > -M_PI && x <= M_PI) { return 1 / (2 * M_PI); } else { return 0; } } double test_dir3dzx (void) { double x = 0, y = 0, z = 0, theta; gsl_ran_dir_3d (r_global, &x, &y, &z); theta = atan2 (z, x); return theta; } double test_dir3dzx_pdf (double x) { if (x > -M_PI && x <= M_PI) { return 1 / (2 * M_PI); } else { return 0; } } double test_dirichlet (void) { /* This is a bit of a lame test, since when K=2, the Dirichlet distribution becomes a beta distribution */ size_t K = 2; double alpha[2] = { 2.5, 5.0 }; double theta[2] = { 0.0, 0.0 }; gsl_ran_dirichlet (r_global, K, alpha, theta); return theta[0]; } double test_dirichlet_pdf (double x) { size_t K = 2; double alpha[2] = { 2.5, 5.0 }; double theta[2]; if (x <= 0.0 || x >= 1.0) return 0.0; /* Out of range */ theta[0] = x; theta[1] = 1.0 - x; return gsl_ran_dirichlet_pdf (K, alpha, theta); } double test_dirichlet_small (void) { size_t K = 2; double alpha[2] = { 2.5e-3, 5.0e-3}; double theta[2] = { 0.0, 0.0 }; gsl_ran_dirichlet (r_global, K, alpha, theta); return theta[0]; } double test_dirichlet_small_pdf (double x) { size_t K = 2; double alpha[2] = { 2.5e-3, 5.0e-3 }; double theta[2]; if (x <= 0.0 || x >= 1.0) return 0.0; /* Out of range */ theta[0] = x; theta[1] = 1.0 - x; return gsl_ran_dirichlet_pdf (K, alpha, theta); } /* Check that the observed means of the Dirichlet variables are within reasonable statistical errors of their correct values. */ #define DIRICHLET_K 10 void test_dirichlet_moments (void) { double alpha[DIRICHLET_K]; double theta[DIRICHLET_K]; double theta_sum[DIRICHLET_K]; double alpha_sum = 0.0; double mean, obs_mean, sd, sigma; int status, k, n; for (k = 0; k < DIRICHLET_K; k++) { alpha[k] = gsl_ran_exponential (r_global, 0.1); alpha_sum += alpha[k]; theta_sum[k] = 0.0; } for (n = 0; n < N; n++) { gsl_ran_dirichlet (r_global, DIRICHLET_K, alpha, theta); for (k = 0; k < DIRICHLET_K; k++) theta_sum[k] += theta[k]; } for (k = 0; k < DIRICHLET_K; k++) { mean = alpha[k] / alpha_sum; sd = sqrt ((alpha[k] * (1. - alpha[k] / alpha_sum)) / (alpha_sum * (alpha_sum + 1.))); obs_mean = theta_sum[k] / N; sigma = sqrt ((double) N) * fabs (mean - obs_mean) / sd; status = (sigma > 3.0); gsl_test (status, "test gsl_ran_dirichlet: mean (%g observed vs %g expected)", obs_mean, mean); } } /* Check that the observed means of the multinomial variables are within reasonable statistical errors of their correct values. */ void test_multinomial_moments (void) { const unsigned int sum_n = 100; const double p[MULTI_DIM] ={ 0.2, 0.20, 0.17, 0.14, 0.12, 0.07, 0.05, 0.02, 0.02, 0.01 }; unsigned int x[MULTI_DIM]; double x_sum[MULTI_DIM]; double mean, obs_mean, sd, sigma; int status, k, n; for (k = 0; k < MULTI_DIM; k++) x_sum[k] =0.0; for (n = 0; n < N; n++) { gsl_ran_multinomial (r_global, MULTI_DIM, sum_n, p, x); for (k = 0; k < MULTI_DIM; k++) x_sum[k] += x[k]; } for (k = 0; k < MULTI_DIM; k++) { mean = p[k] * sum_n; sd = p[k] * (1.-p[k]) * sum_n; obs_mean = x_sum[k] / N; sigma = sqrt ((double) N) * fabs (mean - obs_mean) / sd; status = (sigma > 3.0); gsl_test (status, "test gsl_ran_multinomial: mean (%g observed vs %g expected)", obs_mean, mean); } } double test_discrete1 (void) { static double P[3] = { 0.59, 0.4, 0.01 }; if (g1 == NULL) { g1 = gsl_ran_discrete_preproc (3, P); } return gsl_ran_discrete (r_global, g1); } double test_discrete1_pdf (unsigned int n) { return gsl_ran_discrete_pdf ((size_t) n, g1); } double test_discrete2 (void) { static double P[10] = { 1, 9, 3, 4, 5, 8, 6, 7, 2, 0 }; if (g2 == NULL) { g2 = gsl_ran_discrete_preproc (10, P); } return gsl_ran_discrete (r_global, g2); } double test_discrete2_pdf (unsigned int n) { return gsl_ran_discrete_pdf ((size_t) n, g2); } double test_discrete3 (void) { static double P[20]; if (g3 == NULL) { int i; for (i=0; i<20; ++i) P[i]=1.0/20; g3 = gsl_ran_discrete_preproc (20, P); } return gsl_ran_discrete (r_global, g3); } double test_discrete3_pdf (unsigned int n) { return gsl_ran_discrete_pdf ((size_t) n, g3); } double test_erlang (void) { return gsl_ran_erlang (r_global, 3.0, 4.0); } double test_erlang_pdf (double x) { return gsl_ran_erlang_pdf (x, 3.0, 4.0); } double test_exponential (void) { return gsl_ran_exponential (r_global, 2.0); } double test_exponential_pdf (double x) { return gsl_ran_exponential_pdf (x, 2.0); } double test_exppow0 (void) { return gsl_ran_exppow (r_global, 3.7, 0.3); } double test_exppow0_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 0.3); } double test_exppow1 (void) { return gsl_ran_exppow (r_global, 3.7, 1.0); } double test_exppow1_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 1.0); } double test_exppow1a (void) { return gsl_ran_exppow (r_global, 3.7, 1.9); } double test_exppow1a_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 1.9); } double test_exppow2 (void) { return gsl_ran_exppow (r_global, 3.7, 2.0); } double test_exppow2_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 2.0); } double test_exppow2a (void) { return gsl_ran_exppow (r_global, 3.7, 3.5); } double test_exppow2a_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 3.5); } double test_exppow2b (void) { return gsl_ran_exppow (r_global, 3.7, 7.5); } double test_exppow2b_pdf (double x) { return gsl_ran_exppow_pdf (x, 3.7, 7.5); } double test_fdist (void) { return gsl_ran_fdist (r_global, 3.0, 4.0); } double test_fdist_pdf (double x) { return gsl_ran_fdist_pdf (x, 3.0, 4.0); } /* Test case for bug #28500: overflow in gsl_ran_fdist_pdf */ double test_fdist_large (void) { return gsl_ran_fdist (r_global, 8.0, 249.0); } double test_fdist_large_pdf (double x) { return gsl_ran_fdist_pdf (x, 8.0, 249.0); } double test_flat (void) { return gsl_ran_flat (r_global, 3.0, 4.0); } double test_flat_pdf (double x) { return gsl_ran_flat_pdf (x, 3.0, 4.0); } double test_gamma (void) { return gsl_ran_gamma (r_global, 2.5, 2.17); } double test_gamma_pdf (double x) { return gsl_ran_gamma_pdf (x, 2.5, 2.17); } double test_gamma1 (void) { return gsl_ran_gamma (r_global, 1.0, 2.17); } double test_gamma1_pdf (double x) { return gsl_ran_gamma_pdf (x, 1.0, 2.17); } double test_gamma_int (void) { return gsl_ran_gamma (r_global, 10.0, 2.17); } double test_gamma_int_pdf (double x) { return gsl_ran_gamma_pdf (x, 10.0, 2.17); } double test_gamma_large (void) { return gsl_ran_gamma (r_global, 20.0, 2.17); } double test_gamma_large_pdf (double x) { return gsl_ran_gamma_pdf (x, 20.0, 2.17); } double test_gamma_small (void) { return gsl_ran_gamma (r_global, 0.92, 2.17); } double test_gamma_small_pdf (double x) { return gsl_ran_gamma_pdf (x, 0.92, 2.17); } double test_gamma_vlarge (void) { /* Scale the distribution to get it into the range [-5,5] */ double c = 2.71828181565; double b = 6.32899304917e-10; double d = 1e4; return (gsl_ran_gamma (r_global, 4294967296.0, b) - c) * d; } double test_gamma_vlarge_pdf (double x) { double c = 2.71828181565; double b = 6.32899304917e-10; double d = 1e4; return gsl_ran_gamma_pdf ((x / d) + c, 4294967296.0, b) / d; } double test_gamma_mt (void) { return gsl_ran_gamma_mt (r_global, 2.5, 2.17); } double test_gamma_mt_pdf (double x) { return gsl_ran_gamma_pdf (x, 2.5, 2.17); } double test_gamma_mt1 (void) { return gsl_ran_gamma_mt (r_global, 1.0, 2.17); } double test_gamma_mt1_pdf (double x) { return gsl_ran_gamma_pdf (x, 1.0, 2.17); } double test_gamma_mt_int (void) { return gsl_ran_gamma_mt (r_global, 10.0, 2.17); } double test_gamma_mt_int_pdf (double x) { return gsl_ran_gamma_pdf (x, 10.0, 2.17); } double test_gamma_mt_large (void) { return gsl_ran_gamma_mt (r_global, 20.0, 2.17); } double test_gamma_mt_large_pdf (double x) { return gsl_ran_gamma_pdf (x, 20.0, 2.17); } double test_gamma_mt_small (void) { return gsl_ran_gamma_mt (r_global, 0.92, 2.17); } double test_gamma_mt_small_pdf (double x) { return gsl_ran_gamma_pdf (x, 0.92, 2.17); } double test_gamma_knuth_vlarge (void) { /* Scale the distribution to get it into the range [-5,5] */ double c = 2.71828181565; double b = 6.32899304917e-10; double d = 1e4; return (gsl_ran_gamma_knuth (r_global, 4294967296.0, b) - c) * d; } double test_gamma_knuth_vlarge_pdf (double x) { double c = 2.71828181565; double b = 6.32899304917e-10; double d = 1e4; return gsl_ran_gamma_pdf ((x / d) + c, 4294967296.0, b) / d; } double test_gaussian (void) { return gsl_ran_gaussian (r_global, 3.0); } double test_gaussian_pdf (double x) { return gsl_ran_gaussian_pdf (x, 3.0); } double test_gaussian_ratio_method (void) { return gsl_ran_gaussian_ratio_method (r_global, 3.0); } double test_gaussian_ratio_method_pdf (double x) { return gsl_ran_gaussian_pdf (x, 3.0); } double test_gaussian_ziggurat (void) { return gsl_ran_gaussian_ziggurat (r_global, 3.12); } double test_gaussian_ziggurat_pdf (double x) { return gsl_ran_gaussian_pdf (x, 3.12); } double test_gaussian_tail (void) { return gsl_ran_gaussian_tail (r_global, 1.7, 0.25); } double test_gaussian_tail_pdf (double x) { return gsl_ran_gaussian_tail_pdf (x, 1.7, 0.25); } double test_gaussian_tail1 (void) { return gsl_ran_gaussian_tail (r_global, -1.7, 5.0); } double test_gaussian_tail1_pdf (double x) { return gsl_ran_gaussian_tail_pdf (x, -1.7, 5.0); } double test_gaussian_tail2 (void) { return gsl_ran_gaussian_tail (r_global, 0.1, 2.0); } double test_gaussian_tail2_pdf (double x) { return gsl_ran_gaussian_tail_pdf (x, 0.1, 2.0); } double test_ugaussian (void) { return gsl_ran_ugaussian (r_global); } double test_ugaussian_pdf (double x) { return gsl_ran_ugaussian_pdf (x); } double test_ugaussian_ratio_method (void) { return gsl_ran_ugaussian_ratio_method (r_global); } double test_ugaussian_ratio_method_pdf (double x) { return gsl_ran_ugaussian_pdf (x); } double test_ugaussian_tail (void) { return gsl_ran_ugaussian_tail (r_global, 3.0); } double test_ugaussian_tail_pdf (double x) { return gsl_ran_ugaussian_tail_pdf (x, 3.0); } double test_bivariate_gaussian1 (void) { double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return x; } double test_bivariate_gaussian1_pdf (double x) { return gsl_ran_gaussian_pdf (x, 3.0); } double test_bivariate_gaussian2 (void) { double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return y; } double test_bivariate_gaussian2_pdf (double y) { int i, n = 10; double sum = 0; double a = -10, b = 10, dx = (b - a) / n; for (i = 0; i < n; i++) { double x = a + i * dx; sum += gsl_ran_bivariate_gaussian_pdf (x, y, 3.0, 2.0, 0.3) * dx; } return sum; } double test_bivariate_gaussian3 (void) { double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, 0.3, &x, &y); return x + y; } double test_bivariate_gaussian3_pdf (double x) { double sx = 3.0, sy = 2.0, r = 0.3; double su = (sx + r * sy); double sv = sy * sqrt (1 - r * r); double sigma = sqrt (su * su + sv * sv); return gsl_ran_gaussian_pdf (x, sigma); } double test_bivariate_gaussian4 (void) { double x = 0, y = 0; gsl_ran_bivariate_gaussian (r_global, 3.0, 2.0, -0.5, &x, &y); return x + y; } double test_bivariate_gaussian4_pdf (double x) { double sx = 3.0, sy = 2.0, r = -0.5; double su = (sx + r * sy); double sv = sy * sqrt (1 - r * r); double sigma = sqrt (su * su + sv * sv); return gsl_ran_gaussian_pdf (x, sigma); } double test_geometric (void) { return gsl_ran_geometric (r_global, 0.5); } double test_geometric_pdf (unsigned int n) { return gsl_ran_geometric_pdf (n, 0.5); } double test_geometric1 (void) { return gsl_ran_geometric (r_global, 1.0); } double test_geometric1_pdf (unsigned int n) { return gsl_ran_geometric_pdf (n, 1.0); } double test_hypergeometric1 (void) { return gsl_ran_hypergeometric (r_global, 5, 7, 4); } double test_hypergeometric1_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 5, 7, 4); } double test_hypergeometric2 (void) { return gsl_ran_hypergeometric (r_global, 5, 7, 11); } double test_hypergeometric2_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 5, 7, 11); } double test_hypergeometric3 (void) { return gsl_ran_hypergeometric (r_global, 5, 7, 1); } double test_hypergeometric3_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 5, 7, 1); } double test_hypergeometric4 (void) { return gsl_ran_hypergeometric (r_global, 5, 7, 20); } double test_hypergeometric4_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 5, 7, 20); } double test_hypergeometric5 (void) { return gsl_ran_hypergeometric (r_global, 2, 7, 5); } double test_hypergeometric5_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 2, 7, 5); } double test_hypergeometric6 (void) { return gsl_ran_hypergeometric (r_global, 2, 10, 3); } double test_hypergeometric6_pdf (unsigned int n) { return gsl_ran_hypergeometric_pdf (n, 2, 10, 3); } double test_gumbel1 (void) { return gsl_ran_gumbel1 (r_global, 3.12, 4.56); } double test_gumbel1_pdf (double x) { return gsl_ran_gumbel1_pdf (x, 3.12, 4.56); } double test_gumbel2 (void) { return gsl_ran_gumbel2 (r_global, 3.12, 4.56); } double test_gumbel2_pdf (double x) { return gsl_ran_gumbel2_pdf (x, 3.12, 4.56); } double test_landau (void) { return gsl_ran_landau (r_global); } double test_landau_pdf (double x) { return gsl_ran_landau_pdf (x); } double test_levy1 (void) { return gsl_ran_levy (r_global, 5.0, 1.0); } double test_levy1_pdf (double x) { return gsl_ran_cauchy_pdf (x, 5.0); } double test_levy2 (void) { return gsl_ran_levy (r_global, 5.0, 2.0); } double test_levy2_pdf (double x) { return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0); } double test_levy1a (void) { return gsl_ran_levy (r_global, 5.0, 1.01); } double test_levy1a_pdf (double x) { return gsl_ran_cauchy_pdf (x, 5.0); } double test_levy2a (void) { return gsl_ran_levy (r_global, 5.0, 1.99); } double test_levy2a_pdf (double x) { return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0); } double test_levy_skew1 (void) { return gsl_ran_levy_skew (r_global, 5.0, 1.0, 0.0); } double test_levy_skew1_pdf (double x) { return gsl_ran_cauchy_pdf (x, 5.0); } double test_levy_skew2 (void) { return gsl_ran_levy_skew (r_global, 5.0, 2.0, 0.0); } double test_levy_skew2_pdf (double x) { return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0); } double test_levy_skew1a (void) { return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.0); } double test_levy_skew1a_pdf (double x) { return gsl_ran_cauchy_pdf (x, 5.0); } double test_levy_skew2a (void) { return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.0); } double test_levy_skew2a_pdf (double x) { return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0); } double test_levy_skew1b (void) { return gsl_ran_levy_skew (r_global, 5.0, 1.01, 0.001); } double test_levy_skew1b_pdf (double x) { return gsl_ran_cauchy_pdf (x, 5.0); } double test_levy_skew2b (void) { return gsl_ran_levy_skew (r_global, 5.0, 1.99, 0.001); } double test_levy_skew2b_pdf (double x) { return gsl_ran_gaussian_pdf (x, sqrt (2.0) * 5.0); } double test_logistic (void) { return gsl_ran_logistic (r_global, 3.1); } double test_logistic_pdf (double x) { return gsl_ran_logistic_pdf (x, 3.1); } double test_logarithmic (void) { return gsl_ran_logarithmic (r_global, 0.4); } double test_logarithmic_pdf (unsigned int n) { return gsl_ran_logarithmic_pdf (n, 0.4); } double test_lognormal (void) { return gsl_ran_lognormal (r_global, 2.7, 1.3); } double test_lognormal_pdf (double x) { return gsl_ran_lognormal_pdf (x, 2.7, 1.3); } double test_multinomial (void) { const size_t K = 3; const unsigned int sum_n = BINS; unsigned int n[3]; /* Test use of weights instead of probabilities. */ const double p[] = { 2., 7., 1.}; gsl_ran_multinomial ( r_global, K, sum_n, p, n); return n[0]; } double test_multinomial_pdf (unsigned int n_0) { /* The margional distribution of just 1 variate is binomial. */ size_t K = 2; /* Test use of weights instead of probabilities */ double p[] = { 0.4, 1.6}; const unsigned int sum_n = BINS; unsigned int n[2]; n[0] = n_0; n[1] =sum_n - n_0; return gsl_ran_multinomial_pdf (K, p, n); } double test_multinomial_large (void) { const unsigned int sum_n = BINS; unsigned int n[MULTI_DIM]; const double p[MULTI_DIM] = { 0.2, 0.20, 0.17, 0.14, 0.12, 0.07, 0.05, 0.04, 0.01, 0.00 }; gsl_ran_multinomial ( r_global, MULTI_DIM, sum_n, p, n); return n[0]; } double test_multinomial_large_pdf (unsigned int n_0) { return test_multinomial_pdf(n_0); } double test_negative_binomial (void) { return gsl_ran_negative_binomial (r_global, 0.3, 20.0); } double test_negative_binomial_pdf (unsigned int n) { return gsl_ran_negative_binomial_pdf (n, 0.3, 20.0); } double test_pascal (void) { return gsl_ran_pascal (r_global, 0.8, 3); } double test_pascal_pdf (unsigned int n) { return gsl_ran_pascal_pdf (n, 0.8, 3); } double test_pareto (void) { return gsl_ran_pareto (r_global, 1.9, 2.75); } double test_pareto_pdf (double x) { return gsl_ran_pareto_pdf (x, 1.9, 2.75); } double test_rayleigh (void) { return gsl_ran_rayleigh (r_global, 1.9); } double test_rayleigh_pdf (double x) { return gsl_ran_rayleigh_pdf (x, 1.9); } double test_rayleigh_tail (void) { return gsl_ran_rayleigh_tail (r_global, 2.7, 1.9); } double test_rayleigh_tail_pdf (double x) { return gsl_ran_rayleigh_tail_pdf (x, 2.7, 1.9); } double test_poisson (void) { return gsl_ran_poisson (r_global, 5.0); } double test_poisson_pdf (unsigned int n) { return gsl_ran_poisson_pdf (n, 5.0); } double test_poisson_large (void) { return gsl_ran_poisson (r_global, 30.0); } double test_poisson_large_pdf (unsigned int n) { return gsl_ran_poisson_pdf (n, 30.0); } double test_tdist1 (void) { return gsl_ran_tdist (r_global, 1.75); } double test_tdist1_pdf (double x) { return gsl_ran_tdist_pdf (x, 1.75); } double test_tdist2 (void) { return gsl_ran_tdist (r_global, 12.75); } double test_tdist2_pdf (double x) { return gsl_ran_tdist_pdf (x, 12.75); } double test_laplace (void) { return gsl_ran_laplace (r_global, 2.75); } double test_laplace_pdf (double x) { return gsl_ran_laplace_pdf (x, 2.75); } double test_weibull (void) { return gsl_ran_weibull (r_global, 3.14, 2.75); } double test_weibull_pdf (double x) { return gsl_ran_weibull_pdf (x, 3.14, 2.75); } double test_weibull1 (void) { return gsl_ran_weibull (r_global, 2.97, 1.0); } double test_weibull1_pdf (double x) { return gsl_ran_weibull_pdf (x, 2.97, 1.0); } gsl-1.16/randist/cauchy.c0000664000252300025230000000261612171574312012243 00000000000000/* randist/cauchy.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The Cauchy probability distribution is p(x) dx = (1/(pi a)) (1 + (x/a)^2)^(-1) dx It is also known as the Lorentzian probability distribution */ double gsl_ran_cauchy (const gsl_rng * r, const double a) { double u; do { u = gsl_rng_uniform (r); } while (u == 0.5); return a * tan (M_PI * u); } double gsl_ran_cauchy_pdf (const double x, const double a) { double u = x / a; double p = (1 / (M_PI * a)) / (1 + u * u); return p; } gsl-1.16/randist/weibull.c0000664000252300025230000000305212171574312012425 00000000000000/* randist/weibull.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Weibull distribution has the form, p(x) dx = (b/a) (x/a)^(b-1) exp(-(x/a)^b) dx */ double gsl_ran_weibull (const gsl_rng * r, const double a, const double b) { double x = gsl_rng_uniform_pos (r); double z = pow (-log (x), 1 / b); return a * z; } double gsl_ran_weibull_pdf (const double x, const double a, const double b) { if (x < 0) { return 0 ; } else if (x == 0) { if (b == 1) return 1/a ; else return 0 ; } else if (b == 1) { return exp(-x/a)/a ; } else { double p = (b/a) * exp (-pow (x/a, b) + (b - 1) * log (x/a)); return p; } } gsl-1.16/randist/binomial.c0000664000252300025230000000441112171574312012554 00000000000000/* randist/binomial.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The binomial distribution has the form, prob(k) = n!/(k!(n-k)!) * p^k (1-p)^(n-k) for k = 0, 1, ..., n This is the algorithm from Knuth */ /* Default binomial generator is now in binomial_tpe.c */ unsigned int gsl_ran_binomial_knuth (const gsl_rng * r, double p, unsigned int n) { unsigned int i, a, b, k = 0; while (n > 10) /* This parameter is tunable */ { double X; a = 1 + (n / 2); b = 1 + n - a; X = gsl_ran_beta (r, (double) a, (double) b); if (X >= p) { n = a - 1; p /= X; } else { k += a; n = b - 1; p = (p - X) / (1 - X); } } for (i = 0; i < n; i++) { double u = gsl_rng_uniform (r); if (u < p) k++; } return k; } double gsl_ran_binomial_pdf (const unsigned int k, const double p, const unsigned int n) { if (k > n) { return 0; } else { double P; if (p == 0) { P = (k == 0) ? 1 : 0; } else if (p == 1) { P = (k == n) ? 1 : 0; } else { double ln_Cnk = gsl_sf_lnchoose (n, k); P = ln_Cnk + k * log (p) + (n - k) * log1p (-p); P = exp (P); } return P; } } gsl-1.16/randist/beta.c0000664000252300025230000000363712171574312011706 00000000000000/* randist/beta.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The beta distribution has the form p(x) dx = (Gamma(a + b)/(Gamma(a) Gamma(b))) x^(a-1) (1-x)^(b-1) dx The method used here is the one described in Knuth */ double gsl_ran_beta (const gsl_rng * r, const double a, const double b) { double x1 = gsl_ran_gamma (r, a, 1.0); double x2 = gsl_ran_gamma (r, b, 1.0); return x1 / (x1 + x2); } double gsl_ran_beta_pdf (const double x, const double a, const double b) { if (x < 0 || x > 1) { return 0 ; } else { double p; double gab = gsl_sf_lngamma (a + b); double ga = gsl_sf_lngamma (a); double gb = gsl_sf_lngamma (b); if (x == 0.0 || x == 1.0) { if (a > 1.0 && b > 1.0) { p = 0.0; } else { p = exp (gab - ga - gb) * pow (x, a - 1) * pow (1 - x, b - 1); } } else { p = exp (gab - ga - gb + log(x) * (a - 1) + log1p(-x) * (b - 1)); } return p; } } gsl-1.16/randist/gamma.c0000664000252300025230000001223512171574312012047 00000000000000/* randist/gamma.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include static double gamma_large (const gsl_rng * r, const double a); static double gamma_frac (const gsl_rng * r, const double a); /* The Gamma distribution of order a>0 is defined by: p(x) dx = {1 / \Gamma(a) b^a } x^{a-1} e^{-x/b} dx for x>0. If X and Y are independent gamma-distributed random variables of order a1 and a2 with the same scale parameter b, then X+Y has gamma distribution of order a1+a2. The algorithms below are from Knuth, vol 2, 2nd ed, p. 129. */ double gsl_ran_gamma_knuth (const gsl_rng * r, const double a, const double b) { /* assume a > 0 */ unsigned int na = floor (a); if(a >= UINT_MAX) { return b * (gamma_large (r, floor (a)) + gamma_frac (r, a - floor (a))); } else if (a == na) { return b * gsl_ran_gamma_int (r, na); } else if (na == 0) { return b * gamma_frac (r, a); } else { return b * (gsl_ran_gamma_int (r, na) + gamma_frac (r, a - na)) ; } } double gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a) { if (a < 12) { unsigned int i; double prod = 1; for (i = 0; i < a; i++) { prod *= gsl_rng_uniform_pos (r); } /* Note: for 12 iterations we are safe against underflow, since the smallest positive random number is O(2^-32). This means the smallest possible product is 2^(-12*32) = 10^-116 which is within the range of double precision. */ return -log (prod); } else { return gamma_large (r, (double) a); } } static double gamma_large (const gsl_rng * r, const double a) { /* Works only if a > 1, and is most efficient if a is large This algorithm, reported in Knuth, is attributed to Ahrens. A faster one, we are told, can be found in: J. H. Ahrens and U. Dieter, Computing 12 (1974) 223-246. */ double sqa, x, y, v; sqa = sqrt (2 * a - 1); do { do { y = tan (M_PI * gsl_rng_uniform (r)); x = sqa * y + a - 1; } while (x <= 0); v = gsl_rng_uniform (r); } while (v > (1 + y * y) * exp ((a - 1) * log (x / (a - 1)) - sqa * y)); return x; } static double gamma_frac (const gsl_rng * r, const double a) { /* This is exercise 16 from Knuth; see page 135, and the solution is on page 551. */ double p, q, x, u, v; if (a == 0) { return 0; } p = M_E / (a + M_E); do { u = gsl_rng_uniform (r); v = gsl_rng_uniform_pos (r); if (u < p) { x = exp ((1 / a) * log (v)); q = exp (-x); } else { x = 1 - log (v); q = exp ((a - 1) * log (x)); } } while (gsl_rng_uniform (r) >= q); return x; } double gsl_ran_gamma_pdf (const double x, const double a, const double b) { if (x < 0) { return 0 ; } else if (x == 0) { if (a == 1) return 1/b ; else return 0 ; } else if (a == 1) { return exp(-x/b)/b ; } else { double p; double lngamma = gsl_sf_lngamma (a); p = exp ((a - 1) * log (x/b) - x/b - lngamma)/b; return p; } } /* New version based on Marsaglia and Tsang, "A Simple Method for * generating gamma variables", ACM Transactions on Mathematical * Software, Vol 26, No 3 (2000), p363-372. * * Implemented by J.D.Lamb@btinternet.com, minor modifications for GSL * by Brian Gough */ double gsl_ran_gamma_mt (const gsl_rng * r, const double a, const double b) { return gsl_ran_gamma (r, a, b); } double gsl_ran_gamma (const gsl_rng * r, const double a, const double b) { /* assume a > 0 */ if (a < 1) { double u = gsl_rng_uniform_pos (r); return gsl_ran_gamma (r, 1.0 + a, b) * pow (u, 1.0 / a); } { double x, v, u; double d = a - 1.0 / 3.0; double c = (1.0 / 3.0) / sqrt (d); while (1) { do { x = gsl_ran_gaussian_ziggurat (r, 1.0); v = 1.0 + c * x; } while (v <= 0); v = v * v * v; u = gsl_rng_uniform_pos (r); if (u < 1 - 0.0331 * x * x * x * x) break; if (log (u) < 0.5 * x * x + d * (1 - v + log (v))) break; } return b * d * v; } } gsl-1.16/randist/gausstail.c0000664000252300025230000000514312171574312012761 00000000000000/* randist/gausstail.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include double gsl_ran_gaussian_tail (const gsl_rng * r, const double a, const double sigma) { /* Returns a gaussian random variable larger than a * This implementation does one-sided upper-tailed deviates. */ double s = a / sigma; if (s < 1) { /* For small s, use a direct rejection method. The limit s < 1 can be adjusted to optimise the overall efficiency */ double x; do { x = gsl_ran_gaussian (r, 1.0); } while (x < s); return x * sigma; } else { /* Use the "supertail" deviates from the last two steps * of Marsaglia's rectangle-wedge-tail method, as described * in Knuth, v2, 3rd ed, pp 123-128. (See also exercise 11, p139, * and the solution, p586.) */ double u, v, x; do { u = gsl_rng_uniform (r); do { v = gsl_rng_uniform (r); } while (v == 0.0); x = sqrt (s * s - 2 * log (v)); } while (x * u > s); return x * sigma; } } double gsl_ran_gaussian_tail_pdf (const double x, const double a, const double sigma) { if (x < a) { return 0; } else { double N, p; double u = x / sigma ; double f = gsl_sf_erfc (a / (sqrt (2.0) * sigma)); N = 0.5 * f; p = (1 / (N * sqrt (2 * M_PI) * sigma)) * exp (-u * u / 2); return p; } } double gsl_ran_ugaussian_tail (const gsl_rng * r, const double a) { return gsl_ran_gaussian_tail (r, a, 1.0) ; } double gsl_ran_ugaussian_tail_pdf (const double x, const double a) { return gsl_ran_gaussian_tail_pdf (x, a, 1.0) ; } gsl-1.16/randist/levy.c0000664000252300025230000000723712171574312011752 00000000000000/* randist/levy.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The stable Levy probability distributions have the form p(x) dx = (1/(2 pi)) \int dt exp(- it x - |c t|^alpha) with 0 < alpha <= 2. For alpha = 1, we get the Cauchy distribution For alpha = 2, we get the Gaussian distribution with sigma = sqrt(2) c. Fromn Chapter 5 of Bratley, Fox and Schrage "A Guide to Simulation". The original reference given there is, J.M. Chambers, C.L. Mallows and B. W. Stuck. "A method for simulating stable random variates". Journal of the American Statistical Association, JASA 71 340-344 (1976). */ double gsl_ran_levy (const gsl_rng * r, const double c, const double alpha) { double u, v, t, s; u = M_PI * (gsl_rng_uniform_pos (r) - 0.5); if (alpha == 1) /* cauchy case */ { t = tan (u); return c * t; } do { v = gsl_ran_exponential (r, 1.0); } while (v == 0); if (alpha == 2) /* gaussian case */ { t = 2 * sin (u) * sqrt(v); return c * t; } /* general case */ t = sin (alpha * u) / pow (cos (u), 1 / alpha); s = pow (cos ((1 - alpha) * u) / v, (1 - alpha) / alpha); return c * t * s; } /* The following routine for the skew-symmetric case was provided by Keith Briggs. The stable Levy probability distributions have the form 2*pi* p(x) dx = \int dt exp(mu*i*t-|sigma*t|^alpha*(1-i*beta*sign(t)*tan(pi*alpha/2))) for alpha!=1 = \int dt exp(mu*i*t-|sigma*t|^alpha*(1+i*beta*sign(t)*2/pi*log(|t|))) for alpha==1 with 00. For beta=0, sigma=c, mu=0, we get gsl_ran_levy above. For alpha = 1, beta=0, we get the Lorentz distribution For alpha = 2, beta=0, we get the Gaussian distribution See A. Weron and R. Weron: Computer simulation of Lévy alpha-stable variables and processes, preprint Technical University of Wroclaw. http://www.im.pwr.wroc.pl/~hugo/Publications.html */ double gsl_ran_levy_skew (const gsl_rng * r, const double c, const double alpha, const double beta) { double V, W, X; if (beta == 0) /* symmetric case */ { return gsl_ran_levy (r, c, alpha); } V = M_PI * (gsl_rng_uniform_pos (r) - 0.5); do { W = gsl_ran_exponential (r, 1.0); } while (W == 0); if (alpha == 1) { X = ((M_PI_2 + beta * V) * tan (V) - beta * log (M_PI_2 * W * cos (V) / (M_PI_2 + beta * V))) / M_PI_2; return c * (X + beta * log (c) / M_PI_2); } else { double t = beta * tan (M_PI_2 * alpha); double B = atan (t) / alpha; double S = pow (1 + t * t, 1/(2 * alpha)); X = S * sin (alpha * (V + B)) / pow (cos (V), 1 / alpha) * pow (cos (V - alpha * (V + B)) / W, (1 - alpha) / alpha); return c * X; } } gsl-1.16/randist/Makefile.in0000664000252300025230000011227412172253756012701 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = randist DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslrandist_la_LIBADD = am_libgslrandist_la_OBJECTS = bernoulli.lo beta.lo bigauss.lo \ binomial.lo cauchy.lo chisq.lo dirichlet.lo discrete.lo \ erlang.lo exponential.lo exppow.lo fdist.lo flat.lo gamma.lo \ gauss.lo gausszig.lo gausstail.lo geometric.lo gumbel.lo \ hyperg.lo laplace.lo levy.lo logarithmic.lo logistic.lo \ lognormal.lo multinomial.lo nbinomial.lo pareto.lo pascal.lo \ poisson.lo rayleigh.lo shuffle.lo sphere.lo tdist.lo \ weibull.lo landau.lo binomial_tpe.lo libgslrandist_la_OBJECTS = $(am_libgslrandist_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslrandist.la ../rng/libgslrng.la \ ../specfunc/libgslspecfunc.la \ ../integration/libgslintegration.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslrandist_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslrandist_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslrandist.la pkginclude_HEADERS = gsl_randist.h INCLUDES = -I$(top_srcdir) libgslrandist_la_SOURCES = bernoulli.c beta.c bigauss.c binomial.c cauchy.c chisq.c dirichlet.c discrete.c erlang.c exponential.c exppow.c fdist.c flat.c gamma.c gauss.c gausszig.c gausstail.c geometric.c gumbel.c hyperg.c laplace.c levy.c logarithmic.c logistic.c lognormal.c multinomial.c nbinomial.c pareto.c pascal.c poisson.c rayleigh.c shuffle.c sphere.c tdist.c weibull.c landau.c binomial_tpe.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslrandist.la ../rng/libgslrng.la ../specfunc/libgslspecfunc.la ../integration/libgslintegration.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu randist/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu randist/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslrandist.la: $(libgslrandist_la_OBJECTS) $(libgslrandist_la_DEPENDENCIES) $(EXTRA_libgslrandist_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslrandist_la_OBJECTS) $(libgslrandist_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bernoulli.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/beta.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bigauss.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/binomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/binomial_tpe.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cauchy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chisq.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/dirichlet.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/discrete.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/erlang.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exponential.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exppow.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdist.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/flat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gamma.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gauss.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gausstail.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gausszig.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/geometric.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gumbel.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hyperg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/landau.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/laplace.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/levy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/logarithmic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/logistic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lognormal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/multinomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/nbinomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pareto.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pascal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/poisson.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rayleigh.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/shuffle.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sphere.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tdist.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/weibull.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/randist/ChangeLog0000664000252300025230000004105212171574312012372 000000000000002012-09-10 Rhys Ulerich * nbinomial.c Add include for gsl_sys.h to fix MSVC. Thanks to Brian Gladman for the suggestion. 2011-06-05 Brian Gough * nbinomial.c (gsl_ran_negative_binomial_pdf): avoid overflow in exp 2010-12-14 Brian Gough * gamma.c (gamma_frac): avoid potential division by zero, handle a=0 as a special case 2010-11-20 Brian Gough * chisq.c (gsl_ran_chisq_pdf): handle x=0 as special case (x=0, nu=2 is also special) 2010-10-12 Brian Gough * test.c (test_binomial_max): added a test case for n larger than maxint 2010-07-21 Brian Gough * beta.c (gsl_ran_beta_pdf): avoid overflow for x==0 || x==1 and a>1,b>1 2010-03-01 Brian Gough * test.c (testPDF): extend the test run if a sample fails on the first pass. 2010-02-24 Brian Gough * fdist.c (gsl_ran_fdist_pdf): compute log of pdf to avoid overflow/underflow. 2009-07-10 Brian Gough * exponential.c (gsl_ran_exponential): use log(1-u) to include 0 in the range of possible outputs 2009-07-09 Brian Gough * discrete.c (gsl_ran_discrete_free): handle NULL argument in free 2009-05-16 Brian Gough * discrete.c (push_stack): replace abort() with an error return value (pop_stack): replace abort() with GSL_ERROR (gsl_ran_discrete_preproc): use g->A as a temporary array to store the results of the test E[k] * test.c (test_gamma_vlarge): added test for a >= UINT_MAX. * gamma.c (gsl_ran_gamma_knuth): handle the case a >= UINT_MAX. 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-02-09 Brian Gough * gausszig.c (gsl_ran_gaussian_ziggurat): handle different generator ranges explicitly 2007-09-20 Brian Gough * multinomial.c (gsl_ran_multinomial_lnpdf): Handle case where n[k]==0 and p[k]==0 2007-08-20 Brian Gough * test.c (integrate): perform the integration of the pdf with the gsl_integration functions for accuracy (needed for dirichlet distribution) * dirichlet.c (ran_dirichlet_small): handle underflow for small alpha[] values 2007-02-20 Brian Gough * gamma.c (gsl_ran_gamma): avoid an unnecessary function call to gsl_ran_gamma_mt, since that maps back to gsl_ran_gamma now 2007-02-14 Brian Gough * test.c (testPDF): reduce the test sensitivity to avoid failures caused by weaknesses in the underlying rng 2007-01-26 Brian Gough * gamma.c (gsl_ran_gamma): the Marsaglia Tsang method is now the default (gsl_ran_gamma_knuth): new function name, preserving the original gsl_ran_gamma 2006-08-30 Brian Gough * discrete.c (gsl_ran_discrete_preproc): use GSL_ENOMEM instead of ENOMEM 2006-04-18 Brian Gough * gausszig.c (gsl_ran_gaussian_ziggurat): fix prototype const 2006-03-26 Brian Gough * multinomial.c (gsl_ran_multinomial_lnpdf): use gsl_sf_lnfact instead of gsl_sf_lngamma for an integer argument 2006-03-17 Brian Gough * binomial_tpe.c (gsl_ran_binomial): cast return values to unsigned 2006-02-27 Brian Gough * beta.c (gsl_ran_beta_pdf): work with logs avoid underflow/overflow 2006-02-19 Brian Gough * gauss.c (gsl_ran_gaussian): reject case where x=-1 || y=-1 for true symmetry (gsl_ran_gaussian_ratio_method): add Leva bounds * exppow.c (gsl_ran_exppow): added faster rejection methods 2006-02-01 Brian Gough * gausszig.c: added ziggurat gaussian (Jochen Voss) 2006-01-20 Brian Gough * binomial.c (gsl_ran_binomial_pdf): handle the cases p=0 and p=1 (gsl_ran_binomial_pdf): use log1p to calculate more accurately near k=0,p=0 2005-08-31 Brian Gough * test.c (main): free allocated memory before exit 2005-08-22 Brian Gough * binomial_tpe.c (gsl_ran_binomial): switch to the TPE algorithm as the default * binomial.c (gsl_ran_binomial_knuth): rename the original binomial function to ..._knuth 2004-05-30 Brian Gough * landau.c (gsl_ran_landau): fix potential array bounds overflow by extending array. 2004-04-22 Brian Gough * sphere.c (gsl_ran_dir_3d): removed unnecessary check for s==0.0 2003-07-25 Brian Gough * dirichlet.c: include gsl_sf_gamma.h instead of gsl_sf.h 2003-07-24 Brian Gough * binomial_tpe.c (gsl_ran_binomial_tpe): convert to double to avoid possible signed/unsigned problems in comparison (ix > n) (Stirling): removed spurious trailing ; 2003-05-14 Brian Gough * binomial_tpe.c: fast binomial algorithm using TPE method * test.c: added the tests for the fast Binomial TPE routine 2003-02-09 Brian Gough * discrete.c (gsl_ran_discrete_preproc): fixed bug reported by ahoward 2003-01-25 Brian Gough * chisq.c: corrected comments 2002-12-10 Brian Gough * multinomial.c (gsl_ran_multinomial): added multinomial distribution * dirichlet.c (gsl_ran_dirichlet_lnpdf): added logpdf function for accuracy Tue Aug 27 19:08:33 2002 Brian Gough * dirichlet.c: added dirichlet distribution Sat Aug 18 22:21:07 2001 Brian Gough * gsl-randist.c: moved to top-level directory Wed Jul 18 12:57:55 2001 Brian Gough * landau.c: added Landau distribution from Dave Morrison Sat Jun 23 12:30:38 2001 Brian Gough * gausstail.c (gsl_ran_gaussian_tail): allow negative values for the tail cutoff parameter. Mon May 21 12:17:07 2001 Brian Gough * shuffle.c (gsl_ran_choose): removed void * return value (gsl_ran_sample): removed void * return value Tue Apr 24 17:10:47 2001 Brian Gough * bernoulli.c (gsl_ran_bernoulli_pdf): removed unnecessary reference to gsl_sf.h Mon Apr 23 10:25:44 2001 Brian Gough * changed calls to old specfunc _impl functions to use new error handling conventions Tue Apr 17 19:57:59 2001 Brian Gough * weibull.c (gsl_ran_weibull): changed parameter mu to a, since it is not the mean (gsl_ran_weibull_pdf): changed parameter mu to a, since it is not the mean * logistic.c (gsl_ran_logistic): changed parameter mu to a, since it is not the mean (gsl_ran_logistic_pdf): changed parameter mu to a, since it is not the mean * laplace.c (gsl_ran_laplace): changed parameter mu to a, since it is not the mean (gsl_ran_laplace_pdf): changed parameter mu to a, since it is not the mean * exppow.c (gsl_ran_exppow): changed parameter mu to a, since it is not the mean (gsl_ran_exppow_pdf): changed parameter mu to a, since it is not the mean * cauchy.c (gsl_ran_cauchy): changed parameter mu to a, since it is not the mean (gsl_ran_cauchy_pdf): changed parameter mu to a, since it is not the mean Tue Feb 20 11:14:00 2001 Brian Gough * levy.c: added the skew symmetric routine from Keith Briggs, changed the definition of the original function to match and not use mu as a scale parameter. 2000-10-17 Brian Gough * shuffle.c (gsl_ran_shuffle): replaced calls of the form N*gsl_rng_uniform(r) with the integer form gsl_rng_uniform(r, N) Thu Sep 21 18:41:53 2000 Brian Gough * pareto.c (gsl_ran_pareto): made arguments and documentation consistent Wed May 10 14:55:43 2000 Brian Gough * gsl-randist.c (main): fixed bug for lognormal (it was calling exppow) Tadhg O'Meara * gsl-randist.c (main): print out all the dimensions for dir-nd, not just the first Tue Apr 25 20:45:14 2000 Brian Gough * shuffle.c (gsl_ran_sample): lifted the restriction that sampling with replacement could only be done less than n times for n objects. Tue Mar 14 21:31:46 2000 Brian Gough * logistic.c (gsl_ran_logistic_pdf): prevent overflow in computation of pdf for x < 0 Thu Oct 7 12:55:40 1999 Brian Gough * discrete.c (gsl_ran_discrete_free): removed unreachable code "return 0"; Fri Aug 6 16:02:08 1999 Brian Gough * sphere.c (gsl_ran_dir_nd): number of dimensions is now unsigned (size_t) * logarithmic.c (gsl_ran_logarithmic_pdf): removed warning about passing arg 2 of `pow' as floating rather than integer due to prototype Sun Aug 1 20:29:43 1999 Brian Gough * discrete.c: converted to GSL_ERROR macros for error handling Tue Jul 27 14:14:38 1999 Brian Gough * sphere.c (gsl_ran_dir_3d): use the Knop method only -- it is the best. (gsl_ran_dir_2d_trig_method): split out the trig method as an alternative for those platforms where it is faster * bigauss.c: split out the bivariate gaussian into its own source file 1999-06-30 Mark Galassi * discrete.c: (thanks to Frederick W. Wheeler ) changed the type stack_t to gsl_stack_t to avoid a conflict on HPUX. Sun Feb 28 20:41:18 1999 Brian Gough * gsl-randist.c (main): change cfree() to free(), which is standard. * discrete.c (gsl_ran_discrete_preproc): removed warning, pTotal is now initialized to zero. 1999-01-31 James Theiler * gauss.c added a new function gsl_ran_ugaussian_tail() which provides random numbers out on the tail of a gaussian. I also added (but then #ifdef'd out) a second implementation of ordinary gaussian numbers. This second implementation passes the tests okay, but it is a touch slower on my home Pentium. * gsl_randist.h added prototypes * test.c added tests for new gaussian tail function; also altered testMoment's ugaussian range (-1,1) value from .68 to a more accurate value. * ../doc/random.texi further updated 1999-01-30 James Theiler * discrete.c added implementation of Walker's algorithm for rapidly choosing a random integer k where the k's are distributed by a user-supplied array of probabilities P[k]. This includes functions gsl_ran_discrete(), gsl_ran_discrete_preproc(), gsl_ran_discrete_free(), and gsl_ran_discrete_pdf(). * gsl_randist.h added definition of structure gsl_ran_discrete_t, also prototypes of new functions defined in discrete.c * test.c added tests for gsl_ran_discrete(), also * test.c made some essentially cosmetic changes: 1/ redefined FUNC and FUNC2 macros so now output looks like "test gsl_ran_poisson" instead of "gsl_ran_test_poisson" 2/ changed names of toplevel tests, eg test_moments->testMoments, test_pdf->testPDF, etc, to distinguish them from all the individual functions test_poisson, test_binomial, etc. hope that's ok. * ../doc/random.texi updated to reflect the new discrete functions, as well as the new implementations of the sphere.c routines. 1999-01-28 James Theiler * sphere.c modified gsl_ran_dir_3d, to speed it up about 2x also modified gsl_ran_dir_2d, providing alternative algorithms (#ifdef'd appropriately). which is faster is machine dependent. also gsl_ran_dir_nd for n-dimensional direction, using gaussian random variables, normalized to the unit sphere also added ref's to Knuth and others describing the algorithms * gsl_randist.h added gsl_ran_dir_nd() prototype * gsl-randist.c added dir-nd option Tue Dec 15 23:08:57 1998 Brian Gough * updated all the functions depending on gsl_sf to use the new special function interface, based on gsl_sf_result Tue Nov 17 17:02:54 1998 Brian Gough * added #include to all top-level source files 1998-11-06 * test.c: ensured that M_PI is available by #include Wed Sep 16 14:44:08 1998 Brian Gough * rayleigh.c: added rayleigh tail distribution Sat Sep 12 13:03:19 1998 Brian Gough * rayleigh.c: added rayleigh distribution Mon Aug 31 James Theiler * Makefile.am: added ../utils/libutils.a to some LDADD's Mon Aug 17 14:31:55 1998 Brian Gough * gsl_randist.h: renamed discrete probability distribution parameters to use consistent k,n notation (k = sample, n = total, e.g. p(k) = function(k,n) ) Wed Aug 12 14:02:31 1998 Brian Gough * lognormal.c: added zeta and sigma (location and scale parameters) * logarithmic.c (gsl_ran_logarithmic): added logarithmic distribution Mon Aug 10 14:41:15 1998 Brian Gough * gsl-randist.c: added random direction functions * gamma.c: added the scale paramter for the gamma distribution Thu Aug 6 12:19:59 1998 Brian Gough * gauss.c (gsl_ran_bivariate_gaussian): added bivariate with correlations. * hyperg.c: renamed variables, fixed bug Wed Aug 5 11:21:45 1998 Brian Gough * gsl-dist.c: renamed gsl-dist.c to gsl-randist.c, for consistency Tue Aug 4 12:29:17 1998 Brian Gough * gsl-dist.c: a program for generating samples from the distributions * levy.c (gsl_ran_levy): take care of special case, a=1 * logistic.c: allow scale parameter, mu * weibull.c: allow scale parameter, mu * pareto.c: allow scale parameter, mu * exppow.c: handle the case a<1 using a transformation of the gamma distribution. * gamma.c (gsl_ran_gamma_int): removed the check for GSL_LOGINIFINITY since underflow can't occur for 32-bit random numbers in double precision. Mon Aug 3 13:09:39 1998 Brian Gough * test.c: added tests for shuffle and choose * pascal.c: added the Pascal distribution * hyperg.c: added the hypergeometric distribution Fri Jul 31 12:52:12 1998 Brian Gough * gsl_randist.h: renamed gsl_ran_two_sided_exponential to gsl_ran_laplace 1998-07-26 Mark Galassi * Makefile.am (INCLUDES): added -I$(top_srcdir), since gsl_math.h is needed, and that is in the top level source directory. This is necessary for using a separate build directory. Tue Jul 14 12:39:30 1998 Brian Gough * nbinomial.c: added Negative Binomial distribution * bernoulli.c: added Bernoulli distribution * poisson.c (gsl_ran_poisson): fixed a serious bug in the unrolled recursion which led to an incorrect result being returned for the large t case. This shows the importance of tests that cover all possible branches!!! * erlang.c (gsl_ran_erlang_pdf): renamed mu to a for consistency Thu Jul 2 15:47:05 1998 Brian Gough * added some extra distributions, lognormal.c gaussian.c logistic.c pareto.c geometric.c erlang.c chisq.c weibull.c, although they aren't finished yet Wed Jul 1 11:56:06 1998 Brian Gough * replace do { u = gsl_rng_uniform(r) } while (u == 0) by a direct call to gsl_rng_uniform_pos. Sun Jun 28 14:21:13 1998 Brian Gough * converted everything to work with rng style generators Sun Apr 19 19:06:59 1998 Brian Gough * made the 'gsl-dist' programs just output a single column of their random numbers (previously some of the programs printed both the uniform variate and the transformed number) * got rid of the 'bench-' programs. We will have a full testing suite soon. * renamed the installed programs from 'dist' to 'gsl-dist' so that they don't overwrite anything, e.g. it's possible the user might have other programs called 'gauss' or 'gamma' installed in /usr/local Sat Mar 21 16:09:16 1998 Brian Gough * laplace.c (gsl_ran_laplace): added a Laplace distribution (two-sided exponential) * lorentz.c (gsl_ran_lorentzian): added a Lorentz distribution 1998-01-30 Mark Galassi * Makefile.am (lib_LIBRARIES): now it creates libgslrandist.a so that we have gaussian and poisson distributions. gsl-1.16/randist/discrete.c0000664000252300025230000003217412171574312012573 00000000000000/* randist/discrete.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Random Discrete Events Given K discrete events with different probabilities P[k] produce a value k consistent with its probability. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Based on: Alastair J Walker, An efficient method for generating * discrete random variables with general distributions, ACM Trans * Math Soft 3, 253-256 (1977). See also: D. E. Knuth, The Art of * Computer Programming, Volume 2 (Seminumerical algorithms), 3rd * edition, Addison-Wesley (1997), p120. * Walker's algorithm does some preprocessing, and provides two * arrays: floating point F[k] and integer A[k]. A value k is chosen * from 0..K-1 with equal likelihood, and then a uniform random number * u is compared to F[k]. If it is less than F[k], then k is * returned. Otherwise, A[k] is returned. * Walker's original paper describes an O(K^2) algorithm for setting * up the F and A arrays. I found this disturbing since I wanted to * use very large values of K. I'm sure I'm not the first to realize * this, but in fact the preprocessing can be done in O(K) steps. * A figure of merit for the preprocessing is the average value for * the F[k]'s (that is, SUM_k F[k]/K); this corresponds to the * probability that k is returned, instead of A[k], thereby saving a * redirection. Walker's O(K^2) preprocessing will generally improve * that figure of merit, compared to my cheaper O(K) method; from some * experiments with a perl script, I get values of around 0.6 for my * method and just under 0.75 for Walker's. Knuth has pointed out * that finding _the_ optimum lookup tables, which maximize the * average F[k], is a combinatorially difficult problem. But any * valid preprocessing will still provide O(1) time for the call to * gsl_ran_discrete(). I find that if I artificially set F[k]=1 -- * ie, better than optimum! -- I get a speedup of maybe 20%, so that's * the maximum I could expect from the most expensive preprocessing. * Folding in the difference of 0.6 vs 0.75, I'd estimate that the * speedup would be less than 10%. * I've not implemented it here, but one compromise is to sort the * probabilities once, and then work from the two ends inward. This * requires O(K log K), still lots cheaper than O(K^2), and from my * experiments with the perl script, the figure of merit is within * about 0.01 for K up to 1000, and no sign of diverging (in fact, * they seemed to be converging, but it's hard to say with just a * handful of runs). * The O(K) algorithm goes through all the p_k's and decides if they * are "smalls" or "bigs" according to whether they are less than or * greater than the mean value 1/K. The indices to the smalls and the * bigs are put in separate stacks, and then we work through the * stacks together. For each small, we pair it up with the next big * in the stack (Walker always wanted to pair up the smallest small * with the biggest big). The small "borrows" from the big just * enough to bring the small up to mean. This reduces the size of the * big, so the (smaller) big is compared again to the mean, and if it * is smaller, it gets "popped" from the big stack and "pushed" to the * small stack. Otherwise, it stays put. Since every time we pop a * small, we are able to deal with it right then and there, and we * never have to pop more than K smalls, then the algorithm is O(K). * This implementation sets up two separate stacks, and allocates K * elements between them. Since neither stack ever grows, we do an * extra O(K) pass through the data to determine how many smalls and * bigs there are to begin with and allocate appropriately. In all * there are 2*K*sizeof(double) transient bytes of memory that are * used than returned, and K*(sizeof(int)+sizeof(double)) bytes used * in the lookup table. * Walker spoke of using two random numbers (an integer 0..K-1, and a * floating point u in [0,1]), but Knuth points out that one can just * use the integer and fractional parts of K*u where u is in [0,1]. * In fact, Knuth further notes that taking F'[k]=(k+F[k])/K, one can * directly compare u to F'[k] without having to explicitly set * u=K*u-int(K*u). * Usage: * Starting with an array of probabilities P, initialize and do * preprocessing with a call to: * gsl_rng *r; * gsl_ran_discrete_t *f; * f = gsl_ran_discrete_preproc(K,P); * Then, whenever a random index 0..K-1 is desired, use * k = gsl_ran_discrete(r,f); * Note that several different randevent struct's can be * simultaneously active. * Aside: A very clever alternative approach is described in * Abramowitz and Stegun, p 950, citing: Marsaglia, Random variables * and computers, Proc Third Prague Conference in Probability Theory, * 1962. A more accesible reference is: G. Marsaglia, Generating * discrete random numbers in a computer, Comm ACM 6, 37-38 (1963). * If anybody is interested, I (jt) have also coded up this version as * part of another software package. However, I've done some * comparisons, and the Walker method is both faster and more stingy * with memory. So, in the end I decided not to include it with the * GSL package. * Written 26 Jan 1999, James Theiler, jt@lanl.gov * Adapted to GSL, 30 Jan 1999, jt */ #include #include /* used for NULL, also fprintf(stderr,...) */ #include /* used for malloc's */ #include #include #include #include #define DEBUG 0 #define KNUTH_CONVENTION 1 /* Saves a few steps of arithmetic * in the call to gsl_ran_discrete() */ /*** Begin Stack (this code is used just in this file) ***/ /* Stack code converted to use unsigned indices (i.e. s->i == 0 now means an empty stack, instead of -1), for consistency and to give a bigger allowable range. BJG */ typedef struct { size_t N; /* max number of elts on stack */ size_t *v; /* array of values on the stack */ size_t i; /* index of top of stack */ } gsl_stack_t; static gsl_stack_t * new_stack(size_t N) { gsl_stack_t *s; s = (gsl_stack_t *)malloc(sizeof(gsl_stack_t)); s->N = N; s->i = 0; /* indicates stack is empty */ s->v = (size_t *)malloc(sizeof(size_t)*N); return s; } static int push_stack(gsl_stack_t *s, size_t v) { if ((s->i) >= (s->N)) { return -1; /* stack overflow (shouldn't happen) */ } (s->v)[s->i] = v; s->i += 1; return 0; } static size_t pop_stack(gsl_stack_t *s) { if ((s->i) == 0) { GSL_ERROR ("internal error - stack exhausted", GSL_ESANITY); } s->i -= 1; return ((s->v)[s->i]); } static inline size_t size_stack(const gsl_stack_t *s) { return s->i; } static void free_stack(gsl_stack_t *s) { free((char *)(s->v)); free((char *)s); } /*** End Stack ***/ /*** Begin Walker's Algorithm ***/ gsl_ran_discrete_t * gsl_ran_discrete_preproc(size_t Kevents, const double *ProbArray) { size_t k,b,s; gsl_ran_discrete_t *g; size_t nBigs, nSmalls; gsl_stack_t *Bigs; gsl_stack_t *Smalls; double *E; double pTotal = 0.0, mean, d; if (Kevents < 1) { /* Could probably treat Kevents=1 as a special case */ GSL_ERROR_VAL ("number of events must be a positive integer", GSL_EINVAL, 0); } /* Make sure elements of ProbArray[] are positive. * Won't enforce that sum is unity; instead will just normalize */ for (k=0; kK = Kevents; g->F = (double *)malloc(sizeof(double)*Kevents); g->A = (size_t *)malloc(sizeof(size_t)*Kevents); E = (double *)malloc(sizeof(double)*Kevents); if (E==NULL) { GSL_ERROR_VAL ("Cannot allocate memory for randevent", GSL_ENOMEM, 0); } for (k=0; kA[k] to indicate small or large */ size_t * const which = g->A; for (k=0; k 0) { s = pop_stack(Smalls); if (size_stack(Bigs) == 0) { (g->A)[s]=s; (g->F)[s]=1.0; continue; } b = pop_stack(Bigs); (g->A)[s]=b; (g->F)[s]=Kevents*E[s]; #if DEBUG fprintf(stderr,"s=%2d, A=%2d, F=%.4f\n",s,(g->A)[s],(g->F)[s]); #endif d = mean - E[s]; E[s] += d; /* now E[s] == mean */ E[b] -= d; if (E[b] < mean) { push_stack(Smalls,b); /* no longer big, join ranks of the small */ } else if (E[b] > mean) { push_stack(Bigs,b); /* still big, put it back where you found it */ } else { /* E[b]==mean implies it is finished too */ (g->A)[b]=b; (g->F)[b]=1.0; } } while (size_stack(Bigs) > 0) { b = pop_stack(Bigs); (g->A)[b]=b; (g->F)[b]=1.0; } /* Stacks have been emptied, and A and F have been filled */ if ( size_stack(Smalls) != 0) { GSL_ERROR_VAL ("Smalls stack has not been emptied", GSL_ESANITY, 0 ); } #if 0 /* if 1, then artificially set all F[k]'s to unity. This will * give wrong answers, but you'll get them faster. But, not * that much faster (I get maybe 20%); that's an upper bound * on what the optimal preprocessing would give. */ for (k=0; kF)[k] = 1.0; } #endif #if KNUTH_CONVENTION /* For convenience, set F'[k]=(k+F[k])/K */ /* This saves some arithmetic in gsl_ran_discrete(); I find that * it doesn't actually make much difference. */ for (k=0; kF)[k] += k; (g->F)[k] /= Kevents; } #endif free_stack(Bigs); free_stack(Smalls); free((char *)E); return g; } size_t gsl_ran_discrete(const gsl_rng *r, const gsl_ran_discrete_t *g) { size_t c=0; double u,f; u = gsl_rng_uniform(r); #if KNUTH_CONVENTION c = (u*(g->K)); #else u *= g->K; c = u; u -= c; #endif f = (g->F)[c]; /* fprintf(stderr,"c,f,u: %d %.4f %f\n",c,f,u); */ if (f == 1.0) return c; if (u < f) { return c; } else { return (g->A)[c]; } } void gsl_ran_discrete_free(gsl_ran_discrete_t *g) { RETURN_IF_NULL (g); free((char *)(g->A)); free((char *)(g->F)); free((char *)g); } double gsl_ran_discrete_pdf(size_t k, const gsl_ran_discrete_t *g) { size_t i,K; double f,p=0; K= g->K; if (k>K) return 0; for (i=0; iF)[i]; #if KNUTH_CONVENTION f = K*f-i; #endif if (i==k) { p += f; } else if (k == (g->A)[i]) { p += 1.0 - f; } } return p/K; } gsl-1.16/randist/flat.c0000664000252300025230000000261012171574312011707 00000000000000/* randist/flat.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* This is the uniform distribution in the range [a, b) p(x) dx = 1/(b-a) dx if a <= x < b ..... = 0 otherwise */ double gsl_ran_flat (const gsl_rng * r, const double a, const double b) { double u = gsl_rng_uniform (r); /* A uniform distribution over [a,b) */ return a * (1 - u) + b * u; } double gsl_ran_flat_pdf (double x, const double a, const double b) { if (x < b && x >= a) { return 1 / (b - a); } else { return 0; } } gsl-1.16/randist/exponential.c0000664000252300025230000000255012171574312013312 00000000000000/* randist/exponential.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The exponential distribution has the form p(x) dx = exp(-x/mu) dx/mu for x = 0 ... +infty */ double gsl_ran_exponential (const gsl_rng * r, const double mu) { double u = gsl_rng_uniform (r); return -mu * log1p (-u); } double gsl_ran_exponential_pdf (const double x, const double mu) { if (x < 0) { return 0 ; } else { double p = exp (-x/mu)/mu; return p; } } gsl-1.16/randist/Makefile.am0000664000252300025230000000151012171574312012647 00000000000000noinst_LTLIBRARIES = libgslrandist.la pkginclude_HEADERS= gsl_randist.h INCLUDES = -I$(top_srcdir) libgslrandist_la_SOURCES = bernoulli.c beta.c bigauss.c binomial.c cauchy.c chisq.c dirichlet.c discrete.c erlang.c exponential.c exppow.c fdist.c flat.c gamma.c gauss.c gausszig.c gausstail.c geometric.c gumbel.c hyperg.c laplace.c levy.c logarithmic.c logistic.c lognormal.c multinomial.c nbinomial.c pareto.c pascal.c poisson.c rayleigh.c shuffle.c sphere.c tdist.c weibull.c landau.c binomial_tpe.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslrandist.la ../rng/libgslrng.la ../specfunc/libgslspecfunc.la ../integration/libgslintegration.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/randist/landau.c0000664000252300025230000005112012171574312012225 00000000000000/* randist/landau.c * * Copyright (C) 2001, 2004 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Adapted from the CERN library routines DENLAN, RANLAN, and DISLAN * as described in http://consult.cern.ch/shortwrups/g110/top.html. * Original author: K.S. K\"olbig. * * The distribution is given by the complex path integral, * * p(x) = (1/(2 pi i)) \int_{c-i\inf}^{c+i\inf} ds exp(s log(s) + x s) * * which can be converted into a real integral over [0,+\inf] * * p(x) = (1/pi) \int_0^\inf dt \exp(-t log(t) - x t) sin(pi t) * */ #include #include #include #include double gsl_ran_landau_pdf(const double x) { static double P1[5] = { 0.4259894875E0, -0.1249762550E0, 0.3984243700E-1, -0.6298287635E-2, 0.1511162253E-2 }; static double P2[5] = { 0.1788541609E0, 0.1173957403E0, 0.1488850518E-1, -0.1394989411E-2, 0.1283617211E-3 }; static double P3[5] = { 0.1788544503E0, 0.9359161662E-1, 0.6325387654E-2, 0.6611667319E-4, -0.2031049101E-5 }; static double P4[5] = { 0.9874054407E0, 0.1186723273E3, 0.8492794360E3, -0.7437792444E3, 0.4270262186E3 }; static double P5[5] = { 0.1003675074E1, 0.1675702434E3, 0.4789711289E4, 0.2121786767E5, -0.2232494910E5 }; static double P6[5] = { 0.1000827619E1, 0.6649143136E3, 0.6297292665E5, 0.4755546998E6, -0.5743609109E7 }; static double Q1[5] = { 1.0, -0.3388260629E0, 0.9594393323E-1, -0.1608042283E-1, 0.3778942063E-2 }; static double Q2[5] = { 1.0, 0.7428795082E0, 0.3153932961E0, 0.6694219548E-1, 0.8790609714E-2 }; static double Q3[5] = { 1.0, 0.6097809921E0, 0.2560616665E0, 0.4746722384E-1, 0.6957301675E-2 }; static double Q4[5] = { 1.0, 0.1068615961E3, 0.3376496214E3, 0.2016712389E4, 0.1597063511E4 }; static double Q5[5] = { 1.0, 0.1569424537E3, 0.3745310488E4, 0.9834698876E4, 0.6692428357E5 }; static double Q6[5] = { 1.0, 0.6514101098E3, 0.5697473333E5, 0.1659174725E6, -0.2815759939E7 }; static double A1[3] = { 0.4166666667E-1, -0.1996527778E-1, 0.2709538966E-1 }; static double A2[2] = { -0.1845568670E1, -0.4284640743E1 }; double U, V, DENLAN; V = x; if (V < -5.5) { U = exp(V + 1.0); DENLAN = 0.3989422803 * (exp( -1 / U) / sqrt(U)) * (1 + (A1[0] + (A1[1] + A1[2] * U) * U) * U); } else if (V < -1) { U = exp( -V - 1); DENLAN = exp( -U) * sqrt(U) * (P1[0] + (P1[1] + (P1[2] + (P1[3] + P1[4] * V) * V) * V) * V) / (Q1[0] + (Q1[1] + (Q1[2] + (Q1[3] + Q1[4] * V) * V) * V) * V); } else if (V < 1) { DENLAN = (P2[0] + (P2[1] + (P2[2] + (P2[3] + P2[4] * V) * V) * V) * V) / (Q2[0] + (Q2[1] + (Q2[2] + (Q2[3] + Q2[4] * V) * V) * V) * V); } else if (V < 5) { DENLAN = (P3[0] + (P3[1] + (P3[2] + (P3[3] + P3[4] * V) * V) * V) * V) / (Q3[0] + (Q3[1] + (Q3[2] + (Q3[3] + Q3[4] * V) * V) * V) * V); } else if (V < 12) { U = 1 / V; DENLAN = U * U * (P4[0] + (P4[1] + (P4[2] + (P4[3] + P4[4] * U) * U) * U) * U) / (Q4[0] + (Q4[1] + (Q4[2] + (Q4[3] + Q4[4] * U) * U) * U) * U); } else if (V < 50) { U = 1 / V; DENLAN = U * U * (P5[0] + (P5[1] + (P5[2] + (P5[3] + P5[4] * U) * U) * U) * U) / (Q5[0] + (Q5[1] + (Q5[2] + (Q5[3] + Q5[4] * U) * U) * U) * U); } else if (V < 300) { U = 1 / V; DENLAN = U * U * (P6[0] + (P6[1] + (P6[2] + (P6[3] + P6[4] * U) * U) * U) * U) / (Q6[0] + (Q6[1] + (Q6[2] + (Q6[3] + Q6[4] * U) * U) * U) * U); } else { U = 1 / (V - V * log(V) / (V + 1)); DENLAN = U * U * (1 + (A2[0] + A2[1] * U) * U); } return DENLAN; } #if 0 /* Not needed yet */ /* This function is a translation from the original Fortran of the * CERN library routine DISLAN, the integral from -inf to x of the * Landau p.d.f. */ static double gsl_ran_landau_dislan(const double x) { static double P1[5] = { 0.2514091491E0, -0.6250580444E-1, 0.1458381230E-1, -0.2108817737E-2, 0.7411247290E-3 }; static double P2[4] = { 0.2868328584E0, 0.3564363231E0, 0.1523518695E0, 0.2251304883E-1 }; static double P3[4] = { 0.2868329066E0, 0.3003828436E0, 0.9950951941E-1, 0.8733827185E-2 }; static double P4[4] = { 0.1000351630E1, 0.4503592498E1, 0.1085883880E2, 0.7536052269E1 }; static double P5[4] = { 0.1000006517E1, 0.4909414111E2, 0.8505544753E2, 0.1532153455E3 }; static double P6[4] = { 0.1000000983E1, 0.1329868456E3, 0.9162149244E3, -0.9605054274E3 }; static double Q1[5] = { 1.0, -0.5571175625E-2, 0.6225310236E-1, -0.3137378427E-2, 0.1931496439E-2 }; static double Q2[4] = { 1.0, 0.6191136137E0, 0.1720721448E0, 0.2278594771E-1 }; static double Q3[4] = { 1.0, 0.4237190502E0, 0.1095631512E0, 0.8693851567E-2 }; static double Q4[4] = { 1.0, 0.5539969678E1, 0.1933581111E2, 0.2721321508E2 }; static double Q5[4] = { 1.0, 0.5009928881E2, 0.1399819104E3, 0.4200002909E3 }; static double Q6[4] = { 1.0, 0.1339887843E3, 0.1055990413E4, 0.5532224619E3 }; static double A1[3] = { -0.4583333333E0, 0.6675347222E0, -0.1641741416E1 }; static double A2[3] = { 1.0, -0.4227843351E0, -0.2043403138E1 }; double U, V, DISLAN; V = x; if (V < -5.5) { U = exp(V + 1); DISLAN = 0.3989422803 * exp( -1 / U) * sqrt(U) * (1 + (A1[0] + (A1[1] + A1[2] * U) * U) * U); } else if (V < -1) { U = exp( -V - 1); DISLAN = (exp( -U) / sqrt(U)) * (P1[0] + (P1[1] + (P1[2] + (P1[3] + P1[4] * V) * V) * V) * V) / (Q1[0] + (Q1[1] + (Q1[2] + (Q1[3] + Q1[4] * V) * V) * V) * V); } else if (V < 1) { DISLAN = (P2[0] + (P2[1] + (P2[2] + P2[3] * V) * V) * V) / (Q2[0] + (Q2[1] + (Q2[2] + Q2[3] * V) * V) * V); } else if (V < 4) { DISLAN = (P3[0] + (P3[1] + (P3[2] + P3[3] * V) * V) * V) / (Q3[0] + (Q3[1] + (Q3[2] + Q3[3] * V) * V) * V); } else if (V < 12) { U = 1 / V; DISLAN = (P4[0] + (P4[1] + (P4[2] + P4[3] * U) * U) * U) / (Q4[0] + (Q4[1] + (Q4[2] + Q4[3] * U) * U) * U); } else if (V < 50) { U = 1 / V; DISLAN = (P5[0] + (P5[1] + (P5[2] + P5[3] * U) * U) * U) / (Q5[0] + (Q5[1] + (Q5[2] + Q5[3] * U) * U) * U); } else if (V < 300) { U = 1 / V; DISLAN = (P6[0] + (P6[1] + (P6[2] + P6[3] * U) * U) * U) / (Q6[0] + (Q6[1] + (Q6[2] + Q6[3] * U) * U) * U); } else { U = 1 / (V - V * log(V) / (V + 1)); DISLAN = 1 - (A2[0] + (A2[1] + A2[2] * U) * U) * U; } return DISLAN; } #endif double gsl_ran_landau(const gsl_rng * r) { static double F[983] = { 0.0000000, /* Add empty element [0] to account for difference between C and Fortran convention for lower bound. */ 00.000000, 00.000000, 00.000000, 00.000000, 00.000000, -2.244733, -2.204365, -2.168163, -2.135219, -2.104898, -2.076740, -2.050397, -2.025605, -2.002150, -1.979866, -1.958612, -1.938275, -1.918760, -1.899984, -1.881879, -1.864385, -1.847451, -1.831030, -1.815083, -1.799574, -1.784473, -1.769751, -1.755383, -1.741346, -1.727620, -1.714187, -1.701029, -1.688130, -1.675477, -1.663057, -1.650858, -1.638868, -1.627078, -1.615477, -1.604058, -1.592811, -1.581729, -1.570806, -1.560034, -1.549407, -1.538919, -1.528565, -1.518339, -1.508237, -1.498254, -1.488386, -1.478628, -1.468976, -1.459428, -1.449979, -1.440626, -1.431365, -1.422195, -1.413111, -1.404112, -1.395194, -1.386356, -1.377594, -1.368906, -1.360291, -1.351746, -1.343269, -1.334859, -1.326512, -1.318229, -1.310006, -1.301843, -1.293737, -1.285688, -1.277693, -1.269752, -1.261863, -1.254024, -1.246235, -1.238494, -1.230800, -1.223153, -1.215550, -1.207990, -1.200474, -1.192999, -1.185566, -1.178172, -1.170817, -1.163500, -1.156220, -1.148977, -1.141770, -1.134598, -1.127459, -1.120354, -1.113282, -1.106242, -1.099233, -1.092255, -1.085306, -1.078388, -1.071498, -1.064636, -1.057802, -1.050996, -1.044215, -1.037461, -1.030733, -1.024029, -1.017350, -1.010695, -1.004064, -0.997456, -0.990871, -0.984308, -0.977767, -0.971247, -0.964749, -0.958271, -0.951813, -0.945375, -0.938957, -0.932558, -0.926178, -0.919816, -0.913472, -0.907146, -0.900838, -0.894547, -0.888272, -0.882014, -0.875773, -0.869547, -0.863337, -0.857142, -0.850963, -0.844798, -0.838648, -0.832512, -0.826390, -0.820282, -0.814187, -0.808106, -0.802038, -0.795982, -0.789940, -0.783909, -0.777891, -0.771884, -0.765889, -0.759906, -0.753934, -0.747973, -0.742023, -0.736084, -0.730155, -0.724237, -0.718328, -0.712429, -0.706541, -0.700661, -0.694791, -0.688931, -0.683079, -0.677236, -0.671402, -0.665576, -0.659759, -0.653950, -0.648149, -0.642356, -0.636570, -0.630793, -0.625022, -0.619259, -0.613503, -0.607754, -0.602012, -0.596276, -0.590548, -0.584825, -0.579109, -0.573399, -0.567695, -0.561997, -0.556305, -0.550618, -0.544937, -0.539262, -0.533592, -0.527926, -0.522266, -0.516611, -0.510961, -0.505315, -0.499674, -0.494037, -0.488405, -0.482777, -0.477153, -0.471533, -0.465917, -0.460305, -0.454697, -0.449092, -0.443491, -0.437893, -0.432299, -0.426707, -0.421119, -0.415534, -0.409951, -0.404372, -0.398795, -0.393221, -0.387649, -0.382080, -0.376513, -0.370949, -0.365387, -0.359826, -0.354268, -0.348712, -0.343157, -0.337604, -0.332053, -0.326503, -0.320955, -0.315408, -0.309863, -0.304318, -0.298775, -0.293233, -0.287692, -0.282152, -0.276613, -0.271074, -0.265536, -0.259999, -0.254462, -0.248926, -0.243389, -0.237854, -0.232318, -0.226783, -0.221247, -0.215712, -0.210176, -0.204641, -0.199105, -0.193568, -0.188032, -0.182495, -0.176957, -0.171419, -0.165880, -0.160341, -0.154800, -0.149259, -0.143717, -0.138173, -0.132629, -0.127083, -0.121537, -0.115989, -0.110439, -0.104889, -0.099336, -0.093782, -0.088227, -0.082670, -0.077111, -0.071550, -0.065987, -0.060423, -0.054856, -0.049288, -0.043717, -0.038144, -0.032569, -0.026991, -0.021411, -0.015828, -0.010243, -0.004656, 00.000934, 00.006527, 00.012123, 00.017722, 00.023323, 00.028928, 00.034535, 00.040146, 00.045759, 00.051376, 00.056997, 00.062620, 00.068247, 00.073877, 00.079511, 00.085149, 00.090790, 00.096435, 00.102083, 00.107736, 00.113392, 00.119052, 00.124716, 00.130385, 00.136057, 00.141734, 00.147414, 00.153100, 00.158789, 00.164483, 00.170181, 00.175884, 00.181592, 00.187304, 00.193021, 00.198743, 00.204469, 00.210201, 00.215937, 00.221678, 00.227425, 00.233177, 00.238933, 00.244696, 00.250463, 00.256236, 00.262014, 00.267798, 00.273587, 00.279382, 00.285183, 00.290989, 00.296801, 00.302619, 00.308443, 00.314273, 00.320109, 00.325951, 00.331799, 00.337654, 00.343515, 00.349382, 00.355255, 00.361135, 00.367022, 00.372915, 00.378815, 00.384721, 00.390634, 00.396554, 00.402481, 00.408415, 00.414356, 00.420304, 00.426260, 00.432222, 00.438192, 00.444169, 00.450153, 00.456145, 00.462144, 00.468151, 00.474166, 00.480188, 00.486218, 00.492256, 00.498302, 00.504356, 00.510418, 00.516488, 00.522566, 00.528653, 00.534747, 00.540850, 00.546962, 00.553082, 00.559210, 00.565347, 00.571493, 00.577648, 00.583811, 00.589983, 00.596164, 00.602355, 00.608554, 00.614762, 00.620980, 00.627207, 00.633444, 00.639689, 00.645945, 00.652210, 00.658484, 00.664768, 00.671062, 00.677366, 00.683680, 00.690004, 00.696338, 00.702682, 00.709036, 00.715400, 00.721775, 00.728160, 00.734556, 00.740963, 00.747379, 00.753807, 00.760246, 00.766695, 00.773155, 00.779627, 00.786109, 00.792603, 00.799107, 00.805624, 00.812151, 00.818690, 00.825241, 00.831803, 00.838377, 00.844962, 00.851560, 00.858170, 00.864791, 00.871425, 00.878071, 00.884729, 00.891399, 00.898082, 00.904778, 00.911486, 00.918206, 00.924940, 00.931686, 00.938446, 00.945218, 00.952003, 00.958802, 00.965614, 00.972439, 00.979278, 00.986130, 00.992996, 00.999875, 01.006769, 01.013676, 01.020597, 01.027533, 01.034482, 01.041446, 01.048424, 01.055417, 01.062424, 01.069446, 01.076482, 01.083534, 01.090600, 01.097681, 01.104778, 01.111889, 01.119016, 01.126159, 01.133316, 01.140490, 01.147679, 01.154884, 01.162105, 01.169342, 01.176595, 01.183864, 01.191149, 01.198451, 01.205770, 01.213105, 01.220457, 01.227826, 01.235211, 01.242614, 01.250034, 01.257471, 01.264926, 01.272398, 01.279888, 01.287395, 01.294921, 01.302464, 01.310026, 01.317605, 01.325203, 01.332819, 01.340454, 01.348108, 01.355780, 01.363472, 01.371182, 01.378912, 01.386660, 01.394429, 01.402216, 01.410024, 01.417851, 01.425698, 01.433565, 01.441453, 01.449360, 01.457288, 01.465237, 01.473206, 01.481196, 01.489208, 01.497240, 01.505293, 01.513368, 01.521465, 01.529583, 01.537723, 01.545885, 01.554068, 01.562275, 01.570503, 01.578754, 01.587028, 01.595325, 01.603644, 01.611987, 01.620353, 01.628743, 01.637156, 01.645593, 01.654053, 01.662538, 01.671047, 01.679581, 01.688139, 01.696721, 01.705329, 01.713961, 01.722619, 01.731303, 01.740011, 01.748746, 01.757506, 01.766293, 01.775106, 01.783945, 01.792810, 01.801703, 01.810623, 01.819569, 01.828543, 01.837545, 01.846574, 01.855631, 01.864717, 01.873830, 01.882972, 01.892143, 01.901343, 01.910572, 01.919830, 01.929117, 01.938434, 01.947781, 01.957158, 01.966566, 01.976004, 01.985473, 01.994972, 02.004503, 02.014065, 02.023659, 02.033285, 02.042943, 02.052633, 02.062355, 02.072110, 02.081899, 02.091720, 02.101575, 02.111464, 02.121386, 02.131343, 02.141334, 02.151360, 02.161421, 02.171517, 02.181648, 02.191815, 02.202018, 02.212257, 02.222533, 02.232845, 02.243195, 02.253582, 02.264006, 02.274468, 02.284968, 02.295507, 02.306084, 02.316701, 02.327356, 02.338051, 02.348786, 02.359562, 02.370377, 02.381234, 02.392131, 02.403070, 02.414051, 02.425073, 02.436138, 02.447246, 02.458397, 02.469591, 02.480828, 02.492110, 02.503436, 02.514807, 02.526222, 02.537684, 02.549190, 02.560743, 02.572343, 02.583989, 02.595682, 02.607423, 02.619212, 02.631050, 02.642936, 02.654871, 02.666855, 02.678890, 02.690975, 02.703110, 02.715297, 02.727535, 02.739825, 02.752168, 02.764563, 02.777012, 02.789514, 02.802070, 02.814681, 02.827347, 02.840069, 02.852846, 02.865680, 02.878570, 02.891518, 02.904524, 02.917588, 02.930712, 02.943894, 02.957136, 02.970439, 02.983802, 02.997227, 03.010714, 03.024263, 03.037875, 03.051551, 03.065290, 03.079095, 03.092965, 03.106900, 03.120902, 03.134971, 03.149107, 03.163312, 03.177585, 03.191928, 03.206340, 03.220824, 03.235378, 03.250005, 03.264704, 03.279477, 03.294323, 03.309244, 03.324240, 03.339312, 03.354461, 03.369687, 03.384992, 03.400375, 03.415838, 03.431381, 03.447005, 03.462711, 03.478500, 03.494372, 03.510328, 03.526370, 03.542497, 03.558711, 03.575012, 03.591402, 03.607881, 03.624450, 03.641111, 03.657863, 03.674708, 03.691646, 03.708680, 03.725809, 03.743034, 03.760357, 03.777779, 03.795300, 03.812921, 03.830645, 03.848470, 03.866400, 03.884434, 03.902574, 03.920821, 03.939176, 03.957640, 03.976215, 03.994901, 04.013699, 04.032612, 04.051639, 04.070783, 04.090045, 04.109425, 04.128925, 04.148547, 04.168292, 04.188160, 04.208154, 04.228275, 04.248524, 04.268903, 04.289413, 04.310056, 04.330832, 04.351745, 04.372794, 04.393982, 04.415310, 04.436781, 04.458395, 04.480154, 04.502060, 04.524114, 04.546319, 04.568676, 04.591187, 04.613854, 04.636678, 04.659662, 04.682807, 04.706116, 04.729590, 04.753231, 04.777041, 04.801024, 04.825179, 04.849511, 04.874020, 04.898710, 04.923582, 04.948639, 04.973883, 04.999316, 05.024942, 05.050761, 05.076778, 05.102993, 05.129411, 05.156034, 05.182864, 05.209903, 05.237156, 05.264625, 05.292312, 05.320220, 05.348354, 05.376714, 05.405306, 05.434131, 05.463193, 05.492496, 05.522042, 05.551836, 05.581880, 05.612178, 05.642734, 05.673552, 05.704634, 05.735986, 05.767610, 05.799512, 05.831694, 05.864161, 05.896918, 05.929968, 05.963316, 05.996967, 06.030925, 06.065194, 06.099780, 06.134687, 06.169921, 06.205486, 06.241387, 06.277630, 06.314220, 06.351163, 06.388465, 06.426130, 06.464166, 06.502578, 06.541371, 06.580553, 06.620130, 06.660109, 06.700495, 06.741297, 06.782520, 06.824173, 06.866262, 06.908795, 06.951780, 06.995225, 07.039137, 07.083525, 07.128398, 07.173764, 07.219632, 07.266011, 07.312910, 07.360339, 07.408308, 07.456827, 07.505905, 07.555554, 07.605785, 07.656608, 07.708035, 07.760077, 07.812747, 07.866057, 07.920019, 07.974647, 08.029953, 08.085952, 08.142657, 08.200083, 08.258245, 08.317158, 08.376837, 08.437300, 08.498562, 08.560641, 08.623554, 08.687319, 08.751955, 08.817481, 08.883916, 08.951282, 09.019600, 09.088889, 09.159174, 09.230477, 09.302822, 09.376233, 09.450735, 09.526355, 09.603118, 09.681054, 09.760191, 09.840558, 09.922186, 10.005107, 10.089353, 10.174959, 10.261958, 10.350389, 10.440287, 10.531693, 10.624646, 10.719188, 10.815362, 10.913214, 11.012789, 11.114137, 11.217307, 11.322352, 11.429325, 11.538283, 11.649285, 11.762390, 11.877664, 11.995170, 12.114979, 12.237161, 12.361791, 12.488946, 12.618708, 12.751161, 12.886394, 13.024498, 13.165570, 13.309711, 13.457026, 13.607625, 13.761625, 13.919145, 14.080314, 14.245263, 14.414134, 14.587072, 14.764233, 14.945778, 15.131877, 15.322712, 15.518470, 15.719353, 15.925570, 16.137345, 16.354912, 16.578520, 16.808433, 17.044929, 17.288305, 17.538873, 17.796967, 18.062943, 18.337176, 18.620068, 18.912049, 19.213574, 19.525133, 19.847249, 20.180480, 20.525429, 20.882738, 21.253102, 21.637266, 22.036036, 22.450278, 22.880933, 23.329017, 23.795634, 24.281981, 24.789364, 25.319207, 25.873062, 26.452634, 27.059789, 27.696581, 28.365274, 29.068370, 29.808638, 30.589157, 31.413354, 32.285060, 33.208568, 34.188705, 35.230920, 36.341388, 37.527131, 38.796172, 40.157721, 41.622399, 43.202525, 44.912465, 46.769077, 48.792279, 51.005773, 53.437996, 56.123356, 59.103894 }; double X, U, V, RANLAN; int I; X = gsl_rng_uniform_pos(r); U = 1000.0 * X; I = U; U = U - I; if (I >= 70 && I <= 800) { RANLAN = F[I] + U * (F[I + 1] - F[I]); } else if (I >= 7 && I <= 980) { RANLAN = F[I] + U * (F[I + 1] - F[I] - 0.25 * (1 - U) * (F[I + 2] - F[I + 1] - F[I] + F[I - 1])); } else if (I < 7) { V = log(X); U = 1 / V; RANLAN = ((0.99858950 + (3.45213058E1 + 1.70854528E1 * U) * U) / (1 + (3.41760202E1 + 4.01244582 * U) * U)) * ( -log( -0.91893853 - V) - 1); } else { U = 1 - X; V = U * U; if (X <= 0.999) { RANLAN = (1.00060006 + 2.63991156E2 * U + 4.37320068E3 * V) / ((1 + 2.57368075E2 * U + 3.41448018E3 * V) * U); } else { RANLAN = (1.00001538 + 6.07514119E3 * U + 7.34266409E5 * V) / ((1 + 6.06511919E3 * U + 6.94021044E5 * V) * U); } } return RANLAN; } gsl-1.16/randist/tdist.c0000664000252300025230000000420012171574312012105 00000000000000/* randist/tdist.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The t-distribution has the form p(x) dx = (Gamma((nu + 1)/2)/(sqrt(pi nu) Gamma(nu/2)) * (1 + (x^2)/nu)^-((nu + 1)/2) dx The method used here is the one described in Knuth */ double gsl_ran_tdist (const gsl_rng * r, const double nu) { if (nu <= 2) { double Y1 = gsl_ran_ugaussian (r); double Y2 = gsl_ran_chisq (r, nu); double t = Y1 / sqrt (Y2 / nu); return t; } else { double Y1, Y2, Z, t; do { Y1 = gsl_ran_ugaussian (r); Y2 = gsl_ran_exponential (r, 1 / (nu/2 - 1)); Z = Y1 * Y1 / (nu - 2); } while (1 - Z < 0 || exp (-Y2 - Z) > (1 - Z)); /* Note that there is a typo in Knuth's formula, the line below is taken from the original paper of Marsaglia, Mathematics of Computation, 34 (1980), p 234-256 */ t = Y1 / sqrt ((1 - 2 / nu) * (1 - Z)); return t; } } double gsl_ran_tdist_pdf (const double x, const double nu) { double p; double lg1 = gsl_sf_lngamma (nu / 2); double lg2 = gsl_sf_lngamma ((nu + 1) / 2); p = ((exp (lg2 - lg1) / sqrt (M_PI * nu)) * pow ((1 + x * x / nu), -(nu + 1) / 2)); return p; } gsl-1.16/randist/exppow.c0000664000252300025230000000637212171574312012314 00000000000000/* randist/exppow.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough * Copyright (C) 2006 Giulio Bottazzi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The exponential power probability distribution is p(x) dx = (1/(2 a Gamma(1+1/b))) * exp(-|x/a|^b) dx for -infty < x < infty. For b = 1 it reduces to the Laplace distribution. The exponential power distribution is related to the gamma distribution by E = a * pow(G(1/b),1/b), where E is an exponential power variate and G is a gamma variate. We use this relation for b < 1. For b >=1 we use rejection methods based on the laplace and gaussian distributions which should be faster. For b>4 we revert to the gamma method. See P. R. Tadikamalla, "Random Sampling from the Exponential Power Distribution", Journal of the American Statistical Association, September 1980, Volume 75, Number 371, pages 683-686. */ double gsl_ran_exppow (const gsl_rng * r, const double a, const double b) { if (b < 1 || b > 4) { double u = gsl_rng_uniform (r); double v = gsl_ran_gamma (r, 1 / b, 1.0); double z = a * pow (v, 1 / b); if (u > 0.5) { return z; } else { return -z; } } else if (b == 1) { /* Laplace distribution */ return gsl_ran_laplace (r, a); } else if (b < 2) { /* Use laplace distribution for rejection method, from Tadikamalla */ double x, h, u; double B = pow (1 / b, 1 / b); do { x = gsl_ran_laplace (r, B); u = gsl_rng_uniform_pos (r); h = -pow (fabs (x), b) + fabs (x) / B - 1 + (1 / b); } while (log (u) > h); return a * x; } else if (b == 2) { /* Gaussian distribution */ return gsl_ran_gaussian (r, a / sqrt (2.0)); } else { /* Use gaussian for rejection method, from Tadikamalla */ double x, h, u; double B = pow (1 / b, 1 / b); do { x = gsl_ran_gaussian (r, B); u = gsl_rng_uniform_pos (r); h = -pow (fabs (x), b) + (x * x) / (2 * B * B) + (1 / b) - 0.5; } while (log (u) > h); return a * x; } } double gsl_ran_exppow_pdf (const double x, const double a, const double b) { double p; double lngamma = gsl_sf_lngamma (1 + 1 / b); p = (1 / (2 * a)) * exp (-pow (fabs (x / a), b) - lngamma); return p; } gsl-1.16/randist/binomial_tpe.c0000664000252300025230000003120212171574312013422 00000000000000/* randist/binomial_tpe.c * * Copyright (C) 1996, 2003, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The binomial distribution has the form, f(x) = n!/(x!(n-x)!) * p^x (1-p)^(n-x) for integer 0 <= x <= n = 0 otherwise This implementation follows the public domain ranlib function "ignbin", the bulk of which is the BTPE (Binomial Triangle Parallelogram Exponential) algorithm introduced in Kachitvichyanukul and Schmeiser[1]. It has been translated to use modern C coding standards. If n is small and/or p is near 0 or near 1 (specifically, if n*min(p,1-p) < SMALL_MEAN), then a different algorithm, called BINV, is used which has an average runtime that scales linearly with n*min(p,1-p). But for larger problems, the BTPE algorithm takes the form of two functions b(x) and t(x) -- "bottom" and "top" -- for which b(x) < f(x)/f(M) < t(x), with M = floor(n*p+p). b(x) defines a triangular region, and t(x) includes a parallelogram and two tails. Details (including a nice drawing) are in the paper. [1] Kachitvichyanukul, V. and Schmeiser, B. W. Binomial Random Variate Generation. Communications of the ACM, 31, 2 (February, 1988) 216. Note, Bruce Schmeiser (personal communication) points out that if you want very fast binomial deviates, and you are happy with approximate results, and/or n and n*p are both large, then you can just use gaussian estimates: mean=n*p, variance=n*p*(1-p). This implementation by James Theiler, April 2003, after obtaining permission -- and some good advice -- from Drs. Kachitvichyanukul and Schmeiser to use their code as a starting point, and then doing a little bit of tweaking. Additional polishing for GSL coding standards by Brian Gough. */ #define SMALL_MEAN 14 /* If n*p < SMALL_MEAN then use BINV algorithm. The ranlib implementation used cutoff=30; but on my computer 14 works better */ #define BINV_CUTOFF 110 /* In BINV, do not permit ix too large */ #define FAR_FROM_MEAN 20 /* If ix-n*p is larger than this, then use the "squeeze" algorithm. Ranlib used 20, and this seems to be the best choice on my machine as well */ #define LNFACT(x) gsl_sf_lnfact(x) inline static double Stirling (double y1) { double y2 = y1 * y1; double s = (13860.0 - (462.0 - (132.0 - (99.0 - 140.0 / y2) / y2) / y2) / y2) / y1 / 166320.0; return s; } unsigned int gsl_ran_binomial_tpe (const gsl_rng * rng, double p, unsigned int n) { return gsl_ran_binomial (rng, p, n); } unsigned int gsl_ran_binomial (const gsl_rng * rng, double p, unsigned int n) { int ix; /* return value */ int flipped = 0; double q, s, np; if (n == 0) return 0; if (p > 0.5) { p = 1.0 - p; /* work with small p */ flipped = 1; } q = 1 - p; s = p / q; np = n * p; /* Inverse cdf logic for small mean (BINV in K+S) */ if (np < SMALL_MEAN) { double f0 = gsl_pow_uint (q, n); /* f(x), starting with x=0 */ while (1) { /* This while(1) loop will almost certainly only loop once; but * if u=1 to within a few epsilons of machine precision, then it * is possible for roundoff to prevent the main loop over ix to * achieve its proper value. following the ranlib implementation, * we introduce a check for that situation, and when it occurs, * we just try again. */ double f = f0; double u = gsl_rng_uniform (rng); for (ix = 0; ix <= BINV_CUTOFF; ++ix) { if (u < f) goto Finish; u -= f; /* Use recursion f(x+1) = f(x)*[(n-x)/(x+1)]*[p/(1-p)] */ f *= s * (n - ix) / (ix + 1); } /* It should be the case that the 'goto Finish' was encountered * before this point was ever reached. But if we have reached * this point, then roundoff has prevented u from decreasing * all the way to zero. This can happen only if the initial u * was very nearly equal to 1, which is a rare situation. In * that rare situation, we just try again. * * Note, following the ranlib implementation, we loop ix only to * a hardcoded value of SMALL_MEAN_LARGE_N=110; we could have * looped to n, and 99.99...% of the time it won't matter. This * choice, I think is a little more robust against the rare * roundoff error. If n>LARGE_N, then it is technically * possible for ix>LARGE_N, but it is astronomically rare, and * if ix is that large, it is more likely due to roundoff than * probability, so better to nip it at LARGE_N than to take a * chance that roundoff will somehow conspire to produce an even * larger (and more improbable) ix. If n= SMALL_MEAN, we invoke the BTPE algorithm */ int k; double ffm = np + p; /* ffm = n*p+p */ int m = (int) ffm; /* m = int floor[n*p+p] */ double fm = m; /* fm = double m; */ double xm = fm + 0.5; /* xm = half integer mean (tip of triangle) */ double npq = np * q; /* npq = n*p*q */ /* Compute cumulative area of tri, para, exp tails */ /* p1: radius of triangle region; since height=1, also: area of region */ /* p2: p1 + area of parallelogram region */ /* p3: p2 + area of left tail */ /* p4: p3 + area of right tail */ /* pi/p4: probability of i'th area (i=1,2,3,4) */ /* Note: magic numbers 2.195, 4.6, 0.134, 20.5, 15.3 */ /* These magic numbers are not adjustable...at least not easily! */ double p1 = floor (2.195 * sqrt (npq) - 4.6 * q) + 0.5; /* xl, xr: left and right edges of triangle */ double xl = xm - p1; double xr = xm + p1; /* Parameter of exponential tails */ /* Left tail: t(x) = c*exp(-lambda_l*[xl - (x+0.5)]) */ /* Right tail: t(x) = c*exp(-lambda_r*[(x+0.5) - xr]) */ double c = 0.134 + 20.5 / (15.3 + fm); double p2 = p1 * (1.0 + c + c); double al = (ffm - xl) / (ffm - xl * p); double lambda_l = al * (1.0 + 0.5 * al); double ar = (xr - ffm) / (xr * q); double lambda_r = ar * (1.0 + 0.5 * ar); double p3 = p2 + c / lambda_l; double p4 = p3 + c / lambda_r; double var, accept; double u, v; /* random variates */ TryAgain: /* generate random variates, u specifies which region: Tri, Par, Tail */ u = gsl_rng_uniform (rng) * p4; v = gsl_rng_uniform (rng); if (u <= p1) { /* Triangular region */ ix = (int) (xm - p1 * v + u); goto Finish; } else if (u <= p2) { /* Parallelogram region */ double x = xl + (u - p1) / c; v = v * c + 1.0 - fabs (x - xm) / p1; if (v > 1.0 || v <= 0.0) goto TryAgain; ix = (int) x; } else if (u <= p3) { /* Left tail */ ix = (int) (xl + log (v) / lambda_l); if (ix < 0) goto TryAgain; v *= ((u - p2) * lambda_l); } else { /* Right tail */ ix = (int) (xr - log (v) / lambda_r); if (ix > (double) n) goto TryAgain; v *= ((u - p3) * lambda_r); } /* At this point, the goal is to test whether v <= f(x)/f(m) * * v <= f(x)/f(m) = (m!(n-m)! / (x!(n-x)!)) * (p/q)^{x-m} * */ /* Here is a direct test using logarithms. It is a little * slower than the various "squeezing" computations below, but * if things are working, it should give exactly the same answer * (given the same random number seed). */ #ifdef DIRECT var = log (v); accept = LNFACT (m) + LNFACT (n - m) - LNFACT (ix) - LNFACT (n - ix) + (ix - m) * log (p / q); #else /* SQUEEZE METHOD */ /* More efficient determination of whether v < f(x)/f(M) */ k = abs (ix - m); if (k <= FAR_FROM_MEAN) { /* * If ix near m (ie, |ix-m| ix) { int i; for (i = ix + 1; i <= m; i++) { f /= (g / i - s); } } accept = f; } else { /* If ix is far from the mean m: k=ABS(ix-m) large */ var = log (v); if (k < npq / 2 - 1) { /* "Squeeze" using upper and lower bounds on * log(f(x)) The squeeze condition was derived * under the condition k < npq/2-1 */ double amaxp = k / npq * ((k * (k / 3.0 + 0.625) + (1.0 / 6.0)) / npq + 0.5); double ynorm = -(k * k / (2.0 * npq)); if (var < ynorm - amaxp) goto Finish; if (var > ynorm + amaxp) goto TryAgain; } /* Now, again: do the test log(v) vs. log f(x)/f(M) */ #if USE_EXACT /* This is equivalent to the above, but is a little (~20%) slower */ /* There are five log's vs three above, maybe that's it? */ accept = LNFACT (m) + LNFACT (n - m) - LNFACT (ix) - LNFACT (n - ix) + (ix - m) * log (p / q); #else /* USE STIRLING */ /* The "#define Stirling" above corresponds to the first five * terms in asymptoic formula for * log Gamma (y) - (y-0.5)log(y) + y - 0.5 log(2*pi); * See Abramowitz and Stegun, eq 6.1.40 */ /* Note below: two Stirling's are added, and two are * subtracted. In both K+S, and in the ranlib * implementation, all four are added. I (jt) believe that * is a mistake -- this has been confirmed by personal * correspondence w/ Dr. Kachitvichyanukul. Note, however, * the corrections are so small, that I couldn't find an * example where it made a difference that could be * observed, let alone tested. In fact, define'ing Stirling * to be zero gave identical results!! In practice, alv is * O(1), ranging 0 to -10 or so, while the Stirling * correction is typically O(10^{-5}) ...setting the * correction to zero gives about a 2% performance boost; * might as well keep it just to be pendantic. */ { double x1 = ix + 1.0; double w1 = n - ix + 1.0; double f1 = fm + 1.0; double z1 = n + 1.0 - fm; accept = xm * log (f1 / x1) + (n - m + 0.5) * log (z1 / w1) + (ix - m) * log (w1 * p / (x1 * q)) + Stirling (f1) + Stirling (z1) - Stirling (x1) - Stirling (w1); } #endif #endif } if (var <= accept) { goto Finish; } else { goto TryAgain; } } Finish: return (flipped) ? (n - ix) : (unsigned int)ix; } gsl-1.16/randist/lognormal.c0000664000252300025230000000361312171574312012757 00000000000000/* randist/lognormal.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The lognormal distribution has the form p(x) dx = 1/(x * sqrt(2 pi sigma^2)) exp(-(ln(x) - zeta)^2/2 sigma^2) dx for x > 0. Lognormal random numbers are the exponentials of gaussian random numbers */ double gsl_ran_lognormal (const gsl_rng * r, const double zeta, const double sigma) { double u, v, r2, normal, z; do { /* choose x,y in uniform square (-1,-1) to (+1,+1) */ u = -1 + 2 * gsl_rng_uniform (r); v = -1 + 2 * gsl_rng_uniform (r); /* see if it is in the unit circle */ r2 = u * u + v * v; } while (r2 > 1.0 || r2 == 0); normal = u * sqrt (-2.0 * log (r2) / r2); z = exp (sigma * normal + zeta); return z; } double gsl_ran_lognormal_pdf (const double x, const double zeta, const double sigma) { if (x <= 0) { return 0 ; } else { double u = (log (x) - zeta)/sigma; double p = 1 / (x * fabs(sigma) * sqrt (2 * M_PI)) * exp (-(u * u) /2); return p; } } gsl-1.16/randist/shuffle.c0000664000252300025230000000672312171574312012426 00000000000000/* randist/shuffle.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* Inline swap and copy functions for moving objects around */ static inline void swap (void * base, size_t size, size_t i, size_t j) { register char * a = size * i + (char *) base ; register char * b = size * j + (char *) base ; register size_t s = size ; if (i == j) return ; do { char tmp = *a; *a++ = *b; *b++ = tmp; } while (--s > 0); } static inline void copy (void * dest, size_t i, void * src, size_t j, size_t size) { register char * a = size * i + (char *) dest ; register char * b = size * j + (char *) src ; register size_t s = size ; do { *a++ = *b++; } while (--s > 0); } /* Randomly permute (shuffle) N indices Supply an array x[N] with nmemb members, each of size size and on return it will be shuffled into a random order. The algorithm is from Knuth, SemiNumerical Algorithms, v2, p139, who cites Moses and Oakford, and Durstenfeld */ void gsl_ran_shuffle (const gsl_rng * r, void * base, size_t n, size_t size) { size_t i ; for (i = n - 1; i > 0; i--) { size_t j = gsl_rng_uniform_int(r, i+1); /* originally (i + 1) * gsl_rng_uniform (r) */ swap (base, size, i, j) ; } } int gsl_ran_choose (const gsl_rng * r, void * dest, size_t k, void * src, size_t n, size_t size) { size_t i, j = 0; /* Choose k out of n items, return an array x[] of the k items. These items will prevserve the relative order of the original input -- you can use shuffle() to randomize the output if you wish */ if (k > n) { GSL_ERROR ("k is greater than n, cannot sample more than n items", GSL_EINVAL) ; } for (i = 0; i < n && j < k; i++) { if ((n - i) * gsl_rng_uniform (r) < k - j) { copy (dest, j, src, i, size) ; j++ ; } } return GSL_SUCCESS; } void gsl_ran_sample (const gsl_rng * r, void * dest, size_t k, void * src, size_t n, size_t size) { size_t i, j = 0; /* Choose k out of n items, with replacement */ for (i = 0; i < k; i++) { j = gsl_rng_uniform_int (r, n); /* originally n * gsl_rng_uniform (r) */ copy (dest, i, src, j, size) ; } } gsl-1.16/randist/laplace.c0000664000252300025230000000270712171574312012371 00000000000000/* randist/laplace.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The two-sided exponential probability distribution is p(x) dx = (1/(2 a)) * exp(-|x/a|) dx for -infty < x < infty. It is also known as the Laplace distribution. */ double gsl_ran_laplace (const gsl_rng * r, const double a) { double u; do { u = 2 * gsl_rng_uniform (r) - 1.0; } while (u == 0.0); if (u < 0) { return a * log (-u); } else { return -a * log (u); } } double gsl_ran_laplace_pdf (const double x, const double a) { double p = (1/(2*a)) * exp (-fabs (x)/a); return p; } gsl-1.16/randist/erlang.c0000664000252300025230000000274712171574312012244 00000000000000/* randist/erlang.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The sum of N samples from an exponential distribution gives an Erlang distribution p(x) dx = x^(n-1) exp (-x/a) / ((n-1)!a^n) dx for x = 0 ... +infty */ double gsl_ran_erlang (const gsl_rng * r, const double a, const double n) { return gsl_ran_gamma (r, n, a); } double gsl_ran_erlang_pdf (const double x, const double a, const double n) { if (x <= 0) { return 0 ; } else { double p; double lngamma = gsl_sf_lngamma (n); p = exp ((n - 1) * log (x/a) - x/a - lngamma) / a; return p; } } gsl-1.16/randist/gsl_randist.h0000664000252300025230000002063712171574312013310 00000000000000/* randist/gsl_randist.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_RANDIST_H__ #define __GSL_RANDIST_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS unsigned int gsl_ran_bernoulli (const gsl_rng * r, double p); double gsl_ran_bernoulli_pdf (const unsigned int k, double p); double gsl_ran_beta (const gsl_rng * r, const double a, const double b); double gsl_ran_beta_pdf (const double x, const double a, const double b); unsigned int gsl_ran_binomial (const gsl_rng * r, double p, unsigned int n); unsigned int gsl_ran_binomial_knuth (const gsl_rng * r, double p, unsigned int n); unsigned int gsl_ran_binomial_tpe (const gsl_rng * r, double p, unsigned int n); double gsl_ran_binomial_pdf (const unsigned int k, const double p, const unsigned int n); double gsl_ran_exponential (const gsl_rng * r, const double mu); double gsl_ran_exponential_pdf (const double x, const double mu); double gsl_ran_exppow (const gsl_rng * r, const double a, const double b); double gsl_ran_exppow_pdf (const double x, const double a, const double b); double gsl_ran_cauchy (const gsl_rng * r, const double a); double gsl_ran_cauchy_pdf (const double x, const double a); double gsl_ran_chisq (const gsl_rng * r, const double nu); double gsl_ran_chisq_pdf (const double x, const double nu); void gsl_ran_dirichlet (const gsl_rng * r, const size_t K, const double alpha[], double theta[]); double gsl_ran_dirichlet_pdf (const size_t K, const double alpha[], const double theta[]); double gsl_ran_dirichlet_lnpdf (const size_t K, const double alpha[], const double theta[]); double gsl_ran_erlang (const gsl_rng * r, const double a, const double n); double gsl_ran_erlang_pdf (const double x, const double a, const double n); double gsl_ran_fdist (const gsl_rng * r, const double nu1, const double nu2); double gsl_ran_fdist_pdf (const double x, const double nu1, const double nu2); double gsl_ran_flat (const gsl_rng * r, const double a, const double b); double gsl_ran_flat_pdf (double x, const double a, const double b); double gsl_ran_gamma (const gsl_rng * r, const double a, const double b); double gsl_ran_gamma_int (const gsl_rng * r, const unsigned int a); double gsl_ran_gamma_pdf (const double x, const double a, const double b); double gsl_ran_gamma_mt (const gsl_rng * r, const double a, const double b); double gsl_ran_gamma_knuth (const gsl_rng * r, const double a, const double b); double gsl_ran_gaussian (const gsl_rng * r, const double sigma); double gsl_ran_gaussian_ratio_method (const gsl_rng * r, const double sigma); double gsl_ran_gaussian_ziggurat (const gsl_rng * r, const double sigma); double gsl_ran_gaussian_pdf (const double x, const double sigma); double gsl_ran_ugaussian (const gsl_rng * r); double gsl_ran_ugaussian_ratio_method (const gsl_rng * r); double gsl_ran_ugaussian_pdf (const double x); double gsl_ran_gaussian_tail (const gsl_rng * r, const double a, const double sigma); double gsl_ran_gaussian_tail_pdf (const double x, const double a, const double sigma); double gsl_ran_ugaussian_tail (const gsl_rng * r, const double a); double gsl_ran_ugaussian_tail_pdf (const double x, const double a); void gsl_ran_bivariate_gaussian (const gsl_rng * r, double sigma_x, double sigma_y, double rho, double *x, double *y); double gsl_ran_bivariate_gaussian_pdf (const double x, const double y, const double sigma_x, const double sigma_y, const double rho); double gsl_ran_landau (const gsl_rng * r); double gsl_ran_landau_pdf (const double x); unsigned int gsl_ran_geometric (const gsl_rng * r, const double p); double gsl_ran_geometric_pdf (const unsigned int k, const double p); unsigned int gsl_ran_hypergeometric (const gsl_rng * r, unsigned int n1, unsigned int n2, unsigned int t); double gsl_ran_hypergeometric_pdf (const unsigned int k, const unsigned int n1, const unsigned int n2, unsigned int t); double gsl_ran_gumbel1 (const gsl_rng * r, const double a, const double b); double gsl_ran_gumbel1_pdf (const double x, const double a, const double b); double gsl_ran_gumbel2 (const gsl_rng * r, const double a, const double b); double gsl_ran_gumbel2_pdf (const double x, const double a, const double b); double gsl_ran_logistic (const gsl_rng * r, const double a); double gsl_ran_logistic_pdf (const double x, const double a); double gsl_ran_lognormal (const gsl_rng * r, const double zeta, const double sigma); double gsl_ran_lognormal_pdf (const double x, const double zeta, const double sigma); unsigned int gsl_ran_logarithmic (const gsl_rng * r, const double p); double gsl_ran_logarithmic_pdf (const unsigned int k, const double p); void gsl_ran_multinomial (const gsl_rng * r, const size_t K, const unsigned int N, const double p[], unsigned int n[] ); double gsl_ran_multinomial_pdf (const size_t K, const double p[], const unsigned int n[] ); double gsl_ran_multinomial_lnpdf (const size_t K, const double p[], const unsigned int n[] ); unsigned int gsl_ran_negative_binomial (const gsl_rng * r, double p, double n); double gsl_ran_negative_binomial_pdf (const unsigned int k, const double p, double n); unsigned int gsl_ran_pascal (const gsl_rng * r, double p, unsigned int n); double gsl_ran_pascal_pdf (const unsigned int k, const double p, unsigned int n); double gsl_ran_pareto (const gsl_rng * r, double a, const double b); double gsl_ran_pareto_pdf (const double x, const double a, const double b); unsigned int gsl_ran_poisson (const gsl_rng * r, double mu); void gsl_ran_poisson_array (const gsl_rng * r, size_t n, unsigned int array[], double mu); double gsl_ran_poisson_pdf (const unsigned int k, const double mu); double gsl_ran_rayleigh (const gsl_rng * r, const double sigma); double gsl_ran_rayleigh_pdf (const double x, const double sigma); double gsl_ran_rayleigh_tail (const gsl_rng * r, const double a, const double sigma); double gsl_ran_rayleigh_tail_pdf (const double x, const double a, const double sigma); double gsl_ran_tdist (const gsl_rng * r, const double nu); double gsl_ran_tdist_pdf (const double x, const double nu); double gsl_ran_laplace (const gsl_rng * r, const double a); double gsl_ran_laplace_pdf (const double x, const double a); double gsl_ran_levy (const gsl_rng * r, const double c, const double alpha); double gsl_ran_levy_skew (const gsl_rng * r, const double c, const double alpha, const double beta); double gsl_ran_weibull (const gsl_rng * r, const double a, const double b); double gsl_ran_weibull_pdf (const double x, const double a, const double b); void gsl_ran_dir_2d (const gsl_rng * r, double * x, double * y); void gsl_ran_dir_2d_trig_method (const gsl_rng * r, double * x, double * y); void gsl_ran_dir_3d (const gsl_rng * r, double * x, double * y, double * z); void gsl_ran_dir_nd (const gsl_rng * r, size_t n, double * x); void gsl_ran_shuffle (const gsl_rng * r, void * base, size_t nmembm, size_t size); int gsl_ran_choose (const gsl_rng * r, void * dest, size_t k, void * src, size_t n, size_t size) ; void gsl_ran_sample (const gsl_rng * r, void * dest, size_t k, void * src, size_t n, size_t size) ; typedef struct { /* struct for Walker algorithm */ size_t K; size_t *A; double *F; } gsl_ran_discrete_t; gsl_ran_discrete_t * gsl_ran_discrete_preproc (size_t K, const double *P); void gsl_ran_discrete_free(gsl_ran_discrete_t *g); size_t gsl_ran_discrete (const gsl_rng *r, const gsl_ran_discrete_t *g); double gsl_ran_discrete_pdf (size_t k, const gsl_ran_discrete_t *g); __END_DECLS #endif /* __GSL_RANDIST_H__ */ gsl-1.16/randist/sphere.c0000664000252300025230000000663712171574312012264 00000000000000/* randist/sphere.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include void gsl_ran_dir_2d (const gsl_rng * r, double *x, double *y) { /* This method avoids trig, but it does take an average of 8/pi = * 2.55 calls to the RNG, instead of one for the direct * trigonometric method. */ double u, v, s; do { u = -1 + 2 * gsl_rng_uniform (r); v = -1 + 2 * gsl_rng_uniform (r); s = u * u + v * v; } while (s > 1.0 || s == 0.0); /* This is the Von Neumann trick. See Knuth, v2, 3rd ed, p140 * (exercise 23). Note, no sin, cos, or sqrt ! */ *x = (u * u - v * v) / s; *y = 2 * u * v / s; /* Here is the more straightforward approach, * s = sqrt (s); *x = u / s; *y = v / s; * It has fewer total operations, but one of them is a sqrt */ } void gsl_ran_dir_2d_trig_method (const gsl_rng * r, double *x, double *y) { /* This is the obvious solution... */ /* It ain't clever, but since sin/cos are often hardware accelerated, * it can be faster -- it is on my home Pentium -- than von Neumann's * solution, or slower -- as it is on my Sun Sparc 20 at work */ double t = 6.2831853071795864 * gsl_rng_uniform (r); /* 2*PI */ *x = cos (t); *y = sin (t); } void gsl_ran_dir_3d (const gsl_rng * r, double *x, double *y, double *z) { double s, a; /* This is a variant of the algorithm for computing a random point * on the unit sphere; the algorithm is suggested in Knuth, v2, * 3rd ed, p136; and attributed to Robert E Knop, CACM, 13 (1970), * 326. */ /* Begin with the polar method for getting x,y inside a unit circle */ do { *x = -1 + 2 * gsl_rng_uniform (r); *y = -1 + 2 * gsl_rng_uniform (r); s = (*x) * (*x) + (*y) * (*y); } while (s > 1.0); *z = -1 + 2 * s; /* z uniformly distributed from -1 to 1 */ a = 2 * sqrt (1 - s); /* factor to adjust x,y so that x^2+y^2 * is equal to 1-z^2 */ *x *= a; *y *= a; } void gsl_ran_dir_nd (const gsl_rng * r, size_t n, double *x) { double d; size_t i; /* See Knuth, v2, 3rd ed, p135-136. The method is attributed to * G. W. Brown, in Modern Mathematics for the Engineer (1956). * The idea is that gaussians G(x) have the property that * G(x)G(y)G(z)G(...) is radially symmetric, a function only * r = sqrt(x^2+y^2+...) */ d = 0; do { for (i = 0; i < n; ++i) { x[i] = gsl_ran_gaussian (r, 1.0); d += x[i] * x[i]; } } while (d == 0); d = sqrt (d); for (i = 0; i < n; ++i) { x[i] /= d; } } gsl-1.16/randist/poisson.c0000664000252300025230000000404112171574312012453 00000000000000/* randist/poisson.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The poisson distribution has the form p(n) = (mu^n / n!) exp(-mu) for n = 0, 1, 2, ... . The method used here is the one from Knuth. */ unsigned int gsl_ran_poisson (const gsl_rng * r, double mu) { double emu; double prod = 1.0; unsigned int k = 0; while (mu > 10) { unsigned int m = mu * (7.0 / 8.0); double X = gsl_ran_gamma_int (r, m); if (X >= mu) { return k + gsl_ran_binomial (r, mu / X, m - 1); } else { k += m; mu -= X; } } /* This following method works well when mu is small */ emu = exp (-mu); do { prod *= gsl_rng_uniform (r); k++; } while (prod > emu); return k - 1; } void gsl_ran_poisson_array (const gsl_rng * r, size_t n, unsigned int array[], double mu) { size_t i; for (i = 0; i < n; i++) { array[i] = gsl_ran_poisson (r, mu); } return; } double gsl_ran_poisson_pdf (const unsigned int k, const double mu) { double p; double lf = gsl_sf_lnfact (k); p = exp (log (mu) * k - lf - mu); return p; } gsl-1.16/randist/pascal.c0000664000252300025230000000322512171574312012227 00000000000000/* randist/pascal.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Pascal distribution is a negative binomial with valued integer n prob(k) = (n - 1 + k)!/(n!(k - 1)!) * p^n (1-p)^k for k = 0, 1, ..., n */ unsigned int gsl_ran_pascal (const gsl_rng * r, double p, unsigned int n) { /* This is a separate interface for the pascal distribution so that it can be optimized differently from the negative binomial in future. e.g. if n < 10 it might be faster to generate the Pascal distributions as the sum of geometric variates directly. */ unsigned int k = gsl_ran_negative_binomial (r, p, (double) n); return k; } double gsl_ran_pascal_pdf (const unsigned int k, const double p, unsigned int n) { double P = gsl_ran_negative_binomial_pdf (k, p, (double) n); return P; } gsl-1.16/randist/bigauss.c0000664000252300025230000000417712171574312012430 00000000000000/* randist/bigauss.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The Bivariate Gaussian probability distribution is p(x,y) dxdy = (1/(2 pi sigma_x sigma_y sqrt(c))) exp(-((x/sigma_x)^2 + (y/sigma_y)^2 - 2 r (x/sigma_x)(y/sigma_y))/2c) dxdy where c = 1-r^2 */ void gsl_ran_bivariate_gaussian (const gsl_rng * r, double sigma_x, double sigma_y, double rho, double *x, double *y) { double u, v, r2, scale; do { /* choose x,y in uniform square (-1,-1) to (+1,+1) */ u = -1 + 2 * gsl_rng_uniform (r); v = -1 + 2 * gsl_rng_uniform (r); /* see if it is in the unit circle */ r2 = u * u + v * v; } while (r2 > 1.0 || r2 == 0); scale = sqrt (-2.0 * log (r2) / r2); *x = sigma_x * u * scale; *y = sigma_y * (rho * u + sqrt(1 - rho*rho) * v) * scale; } double gsl_ran_bivariate_gaussian_pdf (const double x, const double y, const double sigma_x, const double sigma_y, const double rho) { double u = x / sigma_x ; double v = y / sigma_y ; double c = 1 - rho*rho ; double p = (1 / (2 * M_PI * sigma_x * sigma_y * sqrt(c))) * exp (-(u * u - 2 * rho * u * v + v * v) / (2 * c)); return p; } gsl-1.16/randist/rayleigh.c0000664000252300025230000000377612171574312012603 00000000000000/* randist/rayleigh.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Rayleigh distribution has the form p(x) dx = (x / sigma^2) exp(-x^2/(2 sigma^2)) dx for x = 0 ... +infty */ double gsl_ran_rayleigh (const gsl_rng * r, const double sigma) { double u = gsl_rng_uniform_pos (r); return sigma * sqrt(-2.0 * log (u)); } double gsl_ran_rayleigh_pdf (const double x, const double sigma) { if (x < 0) { return 0 ; } else { double u = x / sigma ; double p = (u / sigma) * exp(-u * u / 2.0) ; return p; } } /* The Rayleigh tail distribution has the form p(x) dx = (x / sigma^2) exp((a^2 - x^2)/(2 sigma^2)) dx for x = a ... +infty */ double gsl_ran_rayleigh_tail (const gsl_rng * r, const double a, const double sigma) { double u = gsl_rng_uniform_pos (r); return sqrt(a * a - 2.0 * sigma * sigma * log (u)); } double gsl_ran_rayleigh_tail_pdf (const double x, const double a, const double sigma) { if (x < a) { return 0 ; } else { double u = x / sigma ; double v = a / sigma ; double p = (u / sigma) * exp((v + u) * (v - u) / 2.0) ; return p; } } gsl-1.16/randist/gumbel.c0000664000252300025230000000346012171574312012240 00000000000000/* randist/gumbel.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Type I Gumbel distribution has the form, p(x) dx = a b exp(-(b exp(-ax) + ax)) dx and the Type II Gumbel distribution has the form, p(x) dx = b a x^-(a+1) exp(-b x^-a)) dx */ double gsl_ran_gumbel1 (const gsl_rng * r, const double a, const double b) { double x = gsl_rng_uniform_pos (r); double z = (log(b) - log(-log(x))) / a; return z; } double gsl_ran_gumbel1_pdf (const double x, const double a, const double b) { double p = a * b * exp (-(b * exp(-a * x) + a * x)); return p; } double gsl_ran_gumbel2 (const gsl_rng * r, const double a, const double b) { double x = gsl_rng_uniform_pos (r); double z = pow(-b / log(x), 1/a); return z; } double gsl_ran_gumbel2_pdf (const double x, const double a, const double b) { if (x <= 0) { return 0 ; } else { double p = b * a * pow(x,-(a+1)) * exp (-b * pow(x, -a)); return p; } } gsl-1.16/randist/logarithmic.c0000664000252300025230000000351712171574312013272 00000000000000/* randist/logarithmic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* Logarithmic distribution prob(n) = p^n / (n log(1/(1-p)) for n = 1, 2, 3, ... We use Kemp's second accelerated generator, from Luc Devroye's book on "Non-Uniform Random Variate Generation", Springer */ unsigned int gsl_ran_logarithmic (const gsl_rng * r, const double p) { double c = log (1-p) ; double v = gsl_rng_uniform_pos (r); if (v >= p) { return 1 ; } else { double u = gsl_rng_uniform_pos (r); double q = 1 - exp (c * u); if (v <= q*q) { double x = 1 + log(v)/log(q) ; return x ; } else if (v <= q) { return 2; } else { return 1 ; } } } double gsl_ran_logarithmic_pdf (const unsigned int k, const double p) { if (k == 0) { return 0 ; } else { double P = pow(p, (double)k) / (double) k / log(1/(1-p)) ; return P; } } gsl-1.16/randist/fdist.c0000664000252300025230000000362112171574312012075 00000000000000/* randist/fdist.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The F distribution has the form p(x) dx = (nu1^(nu1/2) nu2^(nu2/2) Gamma((nu1 + nu2)/2) / Gamma(nu1/2) Gamma(nu2/2)) * x^(nu1/2 - 1) (nu2 + nu1 * x)^(-nu1/2 -nu2/2) dx The method used here is the one described in Knuth */ double gsl_ran_fdist (const gsl_rng * r, const double nu1, const double nu2) { double Y1 = gsl_ran_gamma (r, nu1 / 2, 2.0); double Y2 = gsl_ran_gamma (r, nu2 / 2, 2.0); double f = (Y1 * nu2) / (Y2 * nu1); return f; } double gsl_ran_fdist_pdf (const double x, const double nu1, const double nu2) { if (x < 0) { return 0 ; } else { double p; double lglg = (nu1 / 2) * log (nu1) + (nu2 / 2) * log (nu2) ; double lg12 = gsl_sf_lngamma ((nu1 + nu2) / 2); double lg1 = gsl_sf_lngamma (nu1 / 2); double lg2 = gsl_sf_lngamma (nu2 / 2); p = exp (lglg + lg12 - lg1 - lg2 + (nu1 / 2 - 1) * log (x) - ((nu1 + nu2) / 2) * log (nu2 + nu1 * x)); return p; } } gsl-1.16/randist/hyperg.c0000664000252300025230000000542512171574312012266 00000000000000/* randist/hyperg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The hypergeometric distribution has the form, prob(k) = choose(n1,t) choose(n2, t-k) / choose(n1+n2,t) where choose(a,b) = a!/(b!(a-b)!) n1 + n2 is the total population (tagged plus untagged) n1 is the tagged population t is the number of samples taken (without replacement) k is the number of tagged samples found */ unsigned int gsl_ran_hypergeometric (const gsl_rng * r, unsigned int n1, unsigned int n2, unsigned int t) { const unsigned int n = n1 + n2; unsigned int i = 0; unsigned int a = n1; unsigned int b = n1 + n2; unsigned int k = 0; if (t > n) { t = n ; } if (t < n / 2) { for (i = 0 ; i < t ; i++) { double u = gsl_rng_uniform(r) ; if (b * u < a) { k++ ; if (k == n1) return k ; a-- ; } b-- ; } return k; } else { for (i = 0 ; i < n - t ; i++) { double u = gsl_rng_uniform(r) ; if (b * u < a) { k++ ; if (k == n1) return n1 - k ; a-- ; } b-- ; } return n1 - k; } } double gsl_ran_hypergeometric_pdf (const unsigned int k, const unsigned int n1, const unsigned int n2, unsigned int t) { if (t > n1 + n2) { t = n1 + n2 ; } if (k > n1 || k > t) { return 0 ; } else if (t > n2 && k + n2 < t ) { return 0 ; } else { double p; double c1 = gsl_sf_lnchoose(n1,k); double c2 = gsl_sf_lnchoose(n2,t-k); double c3 = gsl_sf_lnchoose(n1+n2,t); p = exp(c1 + c2 - c3) ; return p; } } gsl-1.16/randist/nbinomial.c0000664000252300025230000000325512171574312012737 00000000000000/* randist/nbinomial.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include /* The negative binomial distribution has the form, prob(k) = Gamma(n + k)/(Gamma(n) Gamma(k + 1)) p^n (1-p)^k for k = 0, 1, ... . Note that n does not have to be an integer. This is the Leger's algorithm (given in the answers in Knuth) */ unsigned int gsl_ran_negative_binomial (const gsl_rng * r, double p, double n) { double X = gsl_ran_gamma (r, n, 1.0) ; unsigned int k = gsl_ran_poisson (r, X*(1-p)/p) ; return k ; } double gsl_ran_negative_binomial_pdf (const unsigned int k, const double p, double n) { double P; double f = gsl_sf_lngamma (k + n) ; double a = gsl_sf_lngamma (n) ; double b = gsl_sf_lngamma (k + 1.0) ; P = exp(f - a - b + n * log(p) + k * log1p(-p)); return P; } gsl-1.16/randist/geometric.c0000664000252300025230000000313012171574312012735 00000000000000/* randist/geometric.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* Geometric distribution (bernoulli trial with probability p) prob(k) = p (1 - p)^(k-1) for n = 1, 2, 3, ... It gives the distribution of "waiting times" for an event that occurs with probability p. */ unsigned int gsl_ran_geometric (const gsl_rng * r, const double p) { double u = gsl_rng_uniform_pos (r); unsigned int k; if (p == 1) { k = 1; } else { k = log (u) / log (1 - p) + 1; } return k; } double gsl_ran_geometric_pdf (const unsigned int k, const double p) { if (k == 0) { return 0 ; } else if (k == 1) { return p ; } else { double P = p * pow (1 - p, k - 1.0); return P; } } gsl-1.16/randist/logistic.c0000664000252300025230000000257412171574312012607 00000000000000/* randist/logistic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The logistic distribution has the form, p(x) dx = (1/a) exp(-x/a) / (1 + exp(-x/a))^2 dx for -infty < x < infty */ double gsl_ran_logistic (const gsl_rng * r, const double a) { double x, z; do { x = gsl_rng_uniform_pos (r); } while (x == 1); z = log (x / (1 - x)); return a * z; } double gsl_ran_logistic_pdf (const double x, const double a) { double u = exp (-fabs(x)/a); double p = u / (fabs(a) * (1 + u) * (1 + u)); return p; } gsl-1.16/randist/chisq.c0000664000252300025230000000311012171574312012064 00000000000000/* randist/chisq.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* The chisq distribution has the form p(x) dx = (1/(2*Gamma(nu/2))) (x/2)^(nu/2 - 1) exp(-x/2) dx for x = 0 ... +infty */ double gsl_ran_chisq (const gsl_rng * r, const double nu) { double chisq = 2 * gsl_ran_gamma (r, nu / 2, 1.0); return chisq; } double gsl_ran_chisq_pdf (const double x, const double nu) { if (x < 0) { return 0 ; } else { if(nu == 2.0) { return exp(-x/2.0) / 2.0; } else { double p; double lngamma = gsl_sf_lngamma (nu / 2); p = exp ((nu / 2 - 1) * log (x/2) - x/2 - lngamma) / 2; return p; } } } gsl-1.16/gsl/0000775000252300025230000000000012172254155010020 500000000000000gsl-1.16/gsl/Makefile.in0000664000252300025230000003151112172253755012013 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = gsl DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = SOURCES = DIST_SOURCES = am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ all: all-am .SUFFIXES: $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu gsl/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu gsl/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs tags TAGS: ctags CTAGS: cscope cscopelist: distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean-am: clean-generic clean-libtool mostlyclean-am distclean-am: clean-am distclean-generic dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-generic mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: install-am install-strip .PHONY: all all-am check check-am clean clean-generic clean-libtool \ cscopelist-am ctags-am distclean distclean-generic \ distclean-libtool distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags-am uninstall uninstall-am header-links: remove-links HEADERLIST="$(top_srcdir)/gsl*.h $(top_srcdir)/*/gsl*.h"; \ for h in $$HEADERLIST; do \ BASENAME=`basename $$h`; \ test -r $$BASENAME || $(LN_S) $$h $$BASENAME; \ done remove-links: rm -f gsl*.h all: all-am header-links clean: clean-am remove-links distclean: distclean-am remove-links -rm -f Makefile # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/gsl/Makefile.am0000664000252300025230000000053212171574312011773 00000000000000 header-links: remove-links HEADERLIST="$(top_srcdir)/gsl*.h $(top_srcdir)/*/gsl*.h"; \ for h in $$HEADERLIST; do \ BASENAME=`basename $$h`; \ test -r $$BASENAME || $(LN_S) $$h $$BASENAME; \ done remove-links: rm -f gsl*.h all: all-am header-links clean: clean-am remove-links distclean: distclean-am remove-links -rm -f Makefile gsl-1.16/gsl_machine.h0000664000252300025230000000733512171574312011604 00000000000000/* Author: B. Gough and G. Jungman */ #ifndef __GSL_MACHINE_H__ #define __GSL_MACHINE_H__ #include #include /* magic constants; mostly for the benefit of the implementation */ /* -*-MACHINE CONSTANTS-*- * * PLATFORM: Whiz-O-Matic 9000 * FP_PLATFORM: IEEE-Virtual * HOSTNAME: nnn.lanl.gov * DATE: Fri Nov 20 17:53:26 MST 1998 */ #define GSL_DBL_EPSILON 2.2204460492503131e-16 #define GSL_SQRT_DBL_EPSILON 1.4901161193847656e-08 #define GSL_ROOT3_DBL_EPSILON 6.0554544523933429e-06 #define GSL_ROOT4_DBL_EPSILON 1.2207031250000000e-04 #define GSL_ROOT5_DBL_EPSILON 7.4009597974140505e-04 #define GSL_ROOT6_DBL_EPSILON 2.4607833005759251e-03 #define GSL_LOG_DBL_EPSILON (-3.6043653389117154e+01) #define GSL_DBL_MIN 2.2250738585072014e-308 #define GSL_SQRT_DBL_MIN 1.4916681462400413e-154 #define GSL_ROOT3_DBL_MIN 2.8126442852362996e-103 #define GSL_ROOT4_DBL_MIN 1.2213386697554620e-77 #define GSL_ROOT5_DBL_MIN 2.9476022969691763e-62 #define GSL_ROOT6_DBL_MIN 5.3034368905798218e-52 #define GSL_LOG_DBL_MIN (-7.0839641853226408e+02) #define GSL_DBL_MAX 1.7976931348623157e+308 #define GSL_SQRT_DBL_MAX 1.3407807929942596e+154 #define GSL_ROOT3_DBL_MAX 5.6438030941222897e+102 #define GSL_ROOT4_DBL_MAX 1.1579208923731620e+77 #define GSL_ROOT5_DBL_MAX 4.4765466227572707e+61 #define GSL_ROOT6_DBL_MAX 2.3756689782295612e+51 #define GSL_LOG_DBL_MAX 7.0978271289338397e+02 #define GSL_FLT_EPSILON 1.1920928955078125e-07 #define GSL_SQRT_FLT_EPSILON 3.4526698300124393e-04 #define GSL_ROOT3_FLT_EPSILON 4.9215666011518501e-03 #define GSL_ROOT4_FLT_EPSILON 1.8581361171917516e-02 #define GSL_ROOT5_FLT_EPSILON 4.1234622211652937e-02 #define GSL_ROOT6_FLT_EPSILON 7.0153878019335827e-02 #define GSL_LOG_FLT_EPSILON (-1.5942385152878742e+01) #define GSL_FLT_MIN 1.1754943508222875e-38 #define GSL_SQRT_FLT_MIN 1.0842021724855044e-19 #define GSL_ROOT3_FLT_MIN 2.2737367544323241e-13 #define GSL_ROOT4_FLT_MIN 3.2927225399135965e-10 #define GSL_ROOT5_FLT_MIN 2.5944428542140822e-08 #define GSL_ROOT6_FLT_MIN 4.7683715820312542e-07 #define GSL_LOG_FLT_MIN (-8.7336544750553102e+01) #define GSL_FLT_MAX 3.4028234663852886e+38 #define GSL_SQRT_FLT_MAX 1.8446743523953730e+19 #define GSL_ROOT3_FLT_MAX 6.9814635196223242e+12 #define GSL_ROOT4_FLT_MAX 4.2949672319999986e+09 #define GSL_ROOT5_FLT_MAX 5.0859007855960041e+07 #define GSL_ROOT6_FLT_MAX 2.6422459233807749e+06 #define GSL_LOG_FLT_MAX 8.8722839052068352e+01 #define GSL_SFLT_EPSILON 4.8828125000000000e-04 #define GSL_SQRT_SFLT_EPSILON 2.2097086912079612e-02 #define GSL_ROOT3_SFLT_EPSILON 7.8745065618429588e-02 #define GSL_ROOT4_SFLT_EPSILON 1.4865088937534013e-01 #define GSL_ROOT5_SFLT_EPSILON 2.1763764082403100e-01 #define GSL_ROOT6_SFLT_EPSILON 2.8061551207734325e-01 #define GSL_LOG_SFLT_EPSILON (-7.6246189861593985e+00) /* !MACHINE CONSTANTS! */ /* a little internal backwards compatibility */ #define GSL_MACH_EPS GSL_DBL_EPSILON /* Here are the constants related to or derived from * machine constants. These are not to be confused with * the constants that define various precision levels * for the precision/error system. * * This information is determined at configure time * and is platform dependent. Edit at your own risk. * * PLATFORM: WHIZ-O-MATIC * CONFIG-DATE: Thu Nov 19 19:27:18 MST 1998 * CONFIG-HOST: nnn.lanl.gov */ /* machine precision constants */ /* #define GSL_MACH_EPS 1.0e-15 */ #define GSL_SQRT_MACH_EPS 3.2e-08 #define GSL_ROOT3_MACH_EPS 1.0e-05 #define GSL_ROOT4_MACH_EPS 0.000178 #define GSL_ROOT5_MACH_EPS 0.00100 #define GSL_ROOT6_MACH_EPS 0.00316 #define GSL_LOG_MACH_EPS (-34.54) #endif /* __GSL_MACHINE_H__ */ gsl-1.16/build.h0000664000252300025230000000175712171574312010434 00000000000000/* Compile subsequent inline functions as static functions */ #ifdef __GSL_BUILD_H__ #error build.h must not be included multiple times #endif #define __GSL_BUILD_H__ #ifdef COMPILE_INLINE_STATIC #ifndef HIDE_INLINE_STATIC /* skip if inline functions are hidden */ #undef __GSL_INLINE_H__ #define __GSL_INLINE_H__ /* first, ignore the gsl_inline.h header file */ #undef INLINE_DECL #define INLINE_DECL /* disable inline in declarations */ #undef INLINE_FUN #define INLINE_FUN /* disable inline in definitions */ #ifndef HAVE_INLINE /* enable compilation of definitions in .h files */ #define HAVE_INLINE #endif /* Compile range checking code for inline functions used in the library */ #undef GSL_RANGE_CHECK #define GSL_RANGE_CHECK 1 /* Use the global variable gsl_check_range to enable/disable range checking at runtime */ #undef GSL_RANGE_COND #define GSL_RANGE_COND(x) (gsl_check_range && (x)) #endif #else #error must be called with COMPILE_INLINE_STATIC #endif gsl-1.16/interpolation/0000775000252300025230000000000012172254162012120 500000000000000gsl-1.16/interpolation/TODO0000664000252300025230000000066412171574312012537 00000000000000# -*- org -*- #+CATEGORY: interpolation 1. need to add a test for the akima splines 2. [DOCUMENTATION] From: Conrad Curry I would suggest adding more about cspline and Akima similiar to what is given for 'polynomial', particularly under what conditions one would be prefered over the other. 3. add akima splines without the Wodicka modification, so that the spline is a smooth curve without corners. gsl-1.16/interpolation/poly.c0000664000252300025230000001035512171574312013174 00000000000000/* interpolation/interp_poly.c * * Copyright (C) 2001 DAN, HO-JIN * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include typedef struct { double *d; double *coeff; double *work; } polynomial_state_t; static void * polynomial_alloc (size_t size) { polynomial_state_t *state = (polynomial_state_t *) malloc (sizeof (polynomial_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for polynomial state", GSL_ENOMEM); } state->d = (double *) malloc (sizeof (double) * size); if (state->d == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for d", GSL_ENOMEM); } state->coeff = (double *) malloc (sizeof (double) * size); if (state->coeff == 0) { free (state->d); free (state); GSL_ERROR_NULL ("failed to allocate space for d", GSL_ENOMEM); } state->work = (double *) malloc (sizeof (double) * size); if (state->work == 0) { free (state->coeff); free (state->d); free (state); GSL_ERROR_NULL ("failed to allocate space for d", GSL_ENOMEM); } return state; } static int polynomial_init (void *vstate, const double xa[], const double ya[], size_t size) { polynomial_state_t *state = (polynomial_state_t *) vstate; int status = gsl_poly_dd_init (state->d, xa, ya, size); return status; } static int polynomial_eval (const void *vstate, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel * acc, double *y) { const polynomial_state_t *state = (const polynomial_state_t *) vstate; *y = gsl_poly_dd_eval (state->d, xa, size, x); return GSL_SUCCESS; } static int polynomial_deriv (const void *vstate, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel * acc, double *y) { const polynomial_state_t *state = (const polynomial_state_t *) vstate; gsl_poly_dd_taylor (state->coeff, x, state->d, xa, size, state->work); *y = state->coeff[1]; return GSL_SUCCESS; } static int polynomial_deriv2 (const void *vstate, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel * acc, double *y) { const polynomial_state_t *state = (const polynomial_state_t *) vstate; gsl_poly_dd_taylor (state->coeff, x, state->d, xa, size, state->work); *y = 2.0 * state->coeff[2]; return GSL_SUCCESS; } static int polynomial_integ (const void *vstate, const double xa[], const double ya[], size_t size, gsl_interp_accel * acc, double a, double b, double *result) { const polynomial_state_t *state = (const polynomial_state_t *) vstate; size_t i; double sum; gsl_poly_dd_taylor (state->coeff, 0.0, state->d, xa, size, state->work); sum = state->coeff[0] * (b - a); for (i = 1; i < size; i++) { sum += state->coeff[i] * (pow (b, i + 1) - pow (a, i + 1)) / (i + 1.0); } *result = sum; return GSL_SUCCESS; } static void polynomial_free (void *vstate) { polynomial_state_t *state = (polynomial_state_t *) vstate; free (state->d); free (state->coeff); free (state->work); free (state); } static const gsl_interp_type polynomial_type = { "polynomial", 3, &polynomial_alloc, &polynomial_init, &polynomial_eval, &polynomial_deriv, &polynomial_deriv2, &polynomial_integ, &polynomial_free, }; const gsl_interp_type *gsl_interp_polynomial = &polynomial_type; gsl-1.16/interpolation/gsl_interp.h0000664000252300025230000001537512171574312014373 00000000000000/* interpolation/gsl_interp.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_INTERP_H__ #define __GSL_INTERP_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* evaluation accelerator */ typedef struct { size_t cache; /* cache of index */ size_t miss_count; /* keep statistics */ size_t hit_count; } gsl_interp_accel; /* interpolation object type */ typedef struct { const char * name; unsigned int min_size; void * (*alloc) (size_t size); int (*init) (void *, const double xa[], const double ya[], size_t size); int (*eval) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y); int (*eval_deriv) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y_p); int (*eval_deriv2) (const void *, const double xa[], const double ya[], size_t size, double x, gsl_interp_accel *, double * y_pp); int (*eval_integ) (const void *, const double xa[], const double ya[], size_t size, gsl_interp_accel *, double a, double b, double * result); void (*free) (void *); } gsl_interp_type; /* general interpolation object */ typedef struct { const gsl_interp_type * type; double xmin; double xmax; size_t size; void * state; } gsl_interp; /* available types */ GSL_VAR const gsl_interp_type * gsl_interp_linear; GSL_VAR const gsl_interp_type * gsl_interp_polynomial; GSL_VAR const gsl_interp_type * gsl_interp_cspline; GSL_VAR const gsl_interp_type * gsl_interp_cspline_periodic; GSL_VAR const gsl_interp_type * gsl_interp_akima; GSL_VAR const gsl_interp_type * gsl_interp_akima_periodic; gsl_interp_accel * gsl_interp_accel_alloc(void); int gsl_interp_accel_reset (gsl_interp_accel * a); void gsl_interp_accel_free(gsl_interp_accel * a); gsl_interp * gsl_interp_alloc(const gsl_interp_type * T, size_t n); int gsl_interp_init(gsl_interp * obj, const double xa[], const double ya[], size_t size); const char * gsl_interp_name(const gsl_interp * interp); unsigned int gsl_interp_min_size(const gsl_interp * interp); unsigned int gsl_interp_type_min_size(const gsl_interp_type * T); int gsl_interp_eval_e(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a, double * y); double gsl_interp_eval(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a); int gsl_interp_eval_deriv_e(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a, double * d); double gsl_interp_eval_deriv(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a); int gsl_interp_eval_deriv2_e(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a, double * d2); double gsl_interp_eval_deriv2(const gsl_interp * obj, const double xa[], const double ya[], double x, gsl_interp_accel * a); int gsl_interp_eval_integ_e(const gsl_interp * obj, const double xa[], const double ya[], double a, double b, gsl_interp_accel * acc, double * result); double gsl_interp_eval_integ(const gsl_interp * obj, const double xa[], const double ya[], double a, double b, gsl_interp_accel * acc); void gsl_interp_free(gsl_interp * interp); INLINE_DECL size_t gsl_interp_bsearch(const double x_array[], double x, size_t index_lo, size_t index_hi); #ifdef HAVE_INLINE /* Perform a binary search of an array of values. * * The parameters index_lo and index_hi provide an initial bracket, * and it is assumed that index_lo < index_hi. The resulting index * is guaranteed to be strictly less than index_hi and greater than * or equal to index_lo, so that the implicit bracket [index, index+1] * always corresponds to a region within the implicit value range of * the value array. * * Note that this means the relationship of 'x' to x_array[index] * and x_array[index+1] depends on the result region, i.e. the * behaviour at the boundaries may not correspond to what you * expect. We have the following complete specification of the * behaviour. * Suppose the input is x_array[] = { x0, x1, ..., xN } * if ( x == x0 ) then index == 0 * if ( x > x0 && x <= x1 ) then index == 0, and sim. for other interior pts * if ( x == xN ) then index == N-1 * if ( x > xN ) then index == N-1 * if ( x < x0 ) then index == 0 */ INLINE_FUN size_t gsl_interp_bsearch(const double x_array[], double x, size_t index_lo, size_t index_hi) { size_t ilo = index_lo; size_t ihi = index_hi; while(ihi > ilo + 1) { size_t i = (ihi + ilo)/2; if(x_array[i] > x) ihi = i; else ilo = i; } return ilo; } #endif INLINE_DECL size_t gsl_interp_accel_find(gsl_interp_accel * a, const double x_array[], size_t size, double x); #ifdef HAVE_INLINE INLINE_FUN size_t gsl_interp_accel_find(gsl_interp_accel * a, const double xa[], size_t len, double x) { size_t x_index = a->cache; if(x < xa[x_index]) { a->miss_count++; a->cache = gsl_interp_bsearch(xa, x, 0, x_index); } else if(x >= xa[x_index + 1]) { a->miss_count++; a->cache = gsl_interp_bsearch(xa, x, x_index, len-1); } else { a->hit_count++; } return a->cache; } #endif /* HAVE_INLINE */ __END_DECLS #endif /* __GSL_INTERP_H__ */ gsl-1.16/interpolation/inline.c0000664000252300025230000000175712171574312013475 00000000000000/* interpolation/bsearch.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/interpolation/linear.c0000664000252300025230000001071612171574312013464 00000000000000/* interpolation/linear.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include static int linear_init (void * vstate, const double x_array[], const double y_array[], size_t size) { return GSL_SUCCESS; } static int linear_eval (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *y) { double x_lo, x_hi; double y_lo, y_hi; double dx; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ x_lo = x_array[index]; x_hi = x_array[index + 1]; y_lo = y_array[index]; y_hi = y_array[index + 1]; dx = x_hi - x_lo; if (dx > 0.0) { *y = y_lo + (x - x_lo) / dx * (y_hi - y_lo); return GSL_SUCCESS; } else { *y = 0.0; return GSL_EINVAL; } } static int linear_eval_deriv (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *dydx) { double x_lo, x_hi; double y_lo, y_hi; double dx; double dy; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ x_lo = x_array[index]; x_hi = x_array[index + 1]; y_lo = y_array[index]; y_hi = y_array[index + 1]; dx = x_hi - x_lo; dy = y_hi - y_lo; if (dx > 0.0) { *dydx = dy / dx;; return GSL_SUCCESS; } else { *dydx = 0.0; return GSL_EINVAL; } } static int linear_eval_deriv2 (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *y_pp) { *y_pp = 0.0; return GSL_SUCCESS; } static int linear_eval_integ (const void * vstate, const double x_array[], const double y_array[], size_t size, gsl_interp_accel * acc, double a, double b, double * result) { size_t i, index_a, index_b; if (acc != 0) { index_a = gsl_interp_accel_find (acc, x_array, size, a); index_b = gsl_interp_accel_find (acc, x_array, size, b); } else { index_a = gsl_interp_bsearch (x_array, a, 0, size - 1); index_b = gsl_interp_bsearch (x_array, b, 0, size - 1); } /* endpoints span more than one interval */ *result = 0.0; /* interior intervals */ for(i=index_a; i<=index_b; i++) { const double x_hi = x_array[i + 1]; const double x_lo = x_array[i]; const double y_lo = y_array[i]; const double y_hi = y_array[i + 1]; const double dx = x_hi - x_lo; if(dx != 0.0) { if (i == index_a || i == index_b) { double x1 = (i == index_a) ? a : x_lo; double x2 = (i == index_b) ? b : x_hi; const double D = (y_hi-y_lo)/dx; *result += (x2-x1) * (y_lo + 0.5*D*((x2-x_lo)+(x1-x_lo))); } else { *result += 0.5 * dx * (y_lo + y_hi); } } } return GSL_SUCCESS; } static const gsl_interp_type linear_type = { "linear", 2, NULL, /* alloc, not applicable */ &linear_init, &linear_eval, &linear_eval_deriv, &linear_eval_deriv2, &linear_eval_integ, NULL, /* free, not applicable */ }; const gsl_interp_type * gsl_interp_linear = &linear_type; gsl-1.16/interpolation/interp.c0000664000252300025230000001463012171574312013512 00000000000000/* interpolation/interp.c * * Copyright (C) 2007 Brian Gough * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #define DISCARD_STATUS(s) if ((s) != GSL_SUCCESS) { GSL_ERROR_VAL("interpolation error", (s), GSL_NAN); } gsl_interp * gsl_interp_alloc (const gsl_interp_type * T, size_t size) { gsl_interp * interp; if (size < T->min_size) { GSL_ERROR_NULL ("insufficient number of points for interpolation type", GSL_EINVAL); } interp = (gsl_interp *) malloc (sizeof(gsl_interp)); if (interp == NULL) { GSL_ERROR_NULL ("failed to allocate space for interp struct", GSL_ENOMEM); } interp->type = T; interp->size = size; if (interp->type->alloc == NULL) { interp->state = NULL; return interp; } interp->state = interp->type->alloc(size); if (interp->state == NULL) { free (interp); GSL_ERROR_NULL ("failed to allocate space for interp state", GSL_ENOMEM); }; return interp; } int gsl_interp_init (gsl_interp * interp, const double x_array[], const double y_array[], size_t size) { size_t i; if (size != interp->size) { GSL_ERROR ("data must match size of interpolation object", GSL_EINVAL); } for (i = 1; i < size; i++) { if (!(x_array[i-1] < x_array[i])) { GSL_ERROR ("x values must be strictly increasing", GSL_EINVAL); } } interp->xmin = x_array[0]; interp->xmax = x_array[size - 1]; { int status = interp->type->init(interp->state, x_array, y_array, size); return status; } } const char * gsl_interp_name(const gsl_interp * interp) { return interp->type->name; } unsigned int gsl_interp_min_size(const gsl_interp * interp) { return interp->type->min_size; } unsigned int gsl_interp_type_min_size(const gsl_interp_type * T) { return T->min_size; } void gsl_interp_free (gsl_interp * interp) { RETURN_IF_NULL (interp); if (interp->type->free) interp->type->free (interp->state); free (interp); } int gsl_interp_eval_e (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a, double *y) { if (x < interp->xmin || x > interp->xmax) { *y = GSL_NAN; return GSL_EDOM; } return interp->type->eval (interp->state, xa, ya, interp->size, x, a, y); } double gsl_interp_eval (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a) { double y; int status; if (x < interp->xmin || x > interp->xmax) { GSL_ERROR_VAL("interpolation error", GSL_EDOM, GSL_NAN); } status = interp->type->eval (interp->state, xa, ya, interp->size, x, a, &y); DISCARD_STATUS(status); return y; } int gsl_interp_eval_deriv_e (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a, double *dydx) { if (x < interp->xmin || x > interp->xmax) { *dydx = GSL_NAN; return GSL_EDOM; } return interp->type->eval_deriv (interp->state, xa, ya, interp->size, x, a, dydx); } double gsl_interp_eval_deriv (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a) { double dydx; int status; if (x < interp->xmin || x > interp->xmax) { GSL_ERROR_VAL("interpolation error", GSL_EDOM, GSL_NAN); } status = interp->type->eval_deriv (interp->state, xa, ya, interp->size, x, a, &dydx); DISCARD_STATUS(status); return dydx; } int gsl_interp_eval_deriv2_e (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a, double * d2) { if (x < interp->xmin || x > interp->xmax) { *d2 = GSL_NAN; return GSL_EDOM; } return interp->type->eval_deriv2 (interp->state, xa, ya, interp->size, x, a, d2); } double gsl_interp_eval_deriv2 (const gsl_interp * interp, const double xa[], const double ya[], double x, gsl_interp_accel * a) { double d2; int status; if (x < interp->xmin || x > interp->xmax) { GSL_ERROR_VAL("interpolation error", GSL_EDOM, GSL_NAN); } status = interp->type->eval_deriv2 (interp->state, xa, ya, interp->size, x, a, &d2); DISCARD_STATUS(status); return d2; } int gsl_interp_eval_integ_e (const gsl_interp * interp, const double xa[], const double ya[], double a, double b, gsl_interp_accel * acc, double * result) { if (a > b || a < interp->xmin || b > interp->xmax) { *result = GSL_NAN; return GSL_EDOM; } else if(a == b) { *result = 0.0; return GSL_SUCCESS; } return interp->type->eval_integ (interp->state, xa, ya, interp->size, acc, a, b, result); } double gsl_interp_eval_integ (const gsl_interp * interp, const double xa[], const double ya[], double a, double b, gsl_interp_accel * acc) { double result; int status; if (a > b || a < interp->xmin || b > interp->xmax) { GSL_ERROR_VAL("interpolation error", GSL_EDOM, GSL_NAN); } else if(a == b) { return 0.0; } status = interp->type->eval_integ (interp->state, xa, ya, interp->size, acc, a, b, &result); DISCARD_STATUS(status); return result; } gsl-1.16/interpolation/test.c0000664000252300025230000006411112171574312013167 00000000000000/* interpolation/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include #include #include int test_bsearch(void) { double x_array[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 }; size_t index_result; int status = 0; int s; /* check an interior point */ index_result = gsl_interp_bsearch(x_array, 1.5, 0, 4); s = (index_result != 1); status += s; gsl_test (s, "simple bsearch"); /* check that we get the last interval if x == last value */ index_result = gsl_interp_bsearch(x_array, 4.0, 0, 4); s = (index_result != 3); status += s; gsl_test (s, "upper endpoint bsearch"); /* check that we get the first interval if x == first value */ index_result = gsl_interp_bsearch(x_array, 0.0, 0, 4); s = (index_result != 0); status += s; gsl_test (s, "lower endpoint bsearch"); /* check that we get correct interior boundary behaviour */ index_result = gsl_interp_bsearch(x_array, 2.0, 0, 4); s = (index_result != 2); status += s; gsl_test (s, "degenerate bsearch"); /* check out of bounds above */ index_result = gsl_interp_bsearch(x_array, 10.0, 0, 4); s = (index_result != 3); status += s; gsl_test (s, "out of bounds bsearch +"); /* check out of bounds below */ index_result = gsl_interp_bsearch(x_array, -10.0, 0, 4); s = (index_result != 0); status += s; gsl_test (s, "out of bounds bsearch -"); /* Test the accelerator */ { size_t i, j, k1 = 0, k2 = 0; int t = 0; double x = 0; double r[16] = { -0.2, 0.0, 0.1, 0.7, 1.0, 1.3, 1.9, 2.0, 2.2, 2.7, 3.0, 3.1, 3.6, 4.0, 4.1, 4.9 }; gsl_interp_accel *a = gsl_interp_accel_alloc (); /* Run through all the pairs of points */ while (k1 < 16 && k2 < 16) { x = r[t ? k1 : k2]; t = !t; if (t == 0) { k1 = (k1 + 1) % 16; if (k1 == 0) k2++; }; i = gsl_interp_accel_find(a, x_array, 5, x); j = gsl_interp_bsearch(x_array, x, 0, 4); gsl_test(i != j, "(%u,%u) accelerated lookup vs bsearch (x = %g)", i, j, x); } gsl_interp_accel_free(a); } return status; } typedef double TEST_FUNC (double); typedef struct _xy_table xy_table; struct _xy_table { double * x; double * y; size_t n; }; xy_table make_xy_table (double x[], double y[], size_t n); xy_table make_xy_table (double x[], double y[], size_t n) { xy_table t; t.x = x; t.y = y; t.n = n; return t; } static int test_interp ( const xy_table * data_table, const gsl_interp_type * T, xy_table * test_table, xy_table * test_d_table, xy_table * test_i_table ) { int status = 0, s1, s2, s3; size_t i; gsl_interp_accel *a = gsl_interp_accel_alloc (); gsl_interp *interp = gsl_interp_alloc (T, data_table->n); unsigned int min_size = gsl_interp_type_min_size(T); gsl_test_int (min_size, T->min_size, "gsl_interp_type_min_size on %s", gsl_interp_name(interp)); gsl_interp_init (interp, data_table->x, data_table->y, data_table->n); for (i = 0; i < test_table->n; i++) { double x = test_table->x[i]; double y; double deriv; double integ; double diff_y, diff_deriv, diff_integ; s1 = gsl_interp_eval_e (interp, data_table->x, data_table->y, x, a, &y); s2 = gsl_interp_eval_deriv_e (interp, data_table->x, data_table->y, x, a, &deriv); s3 = gsl_interp_eval_integ_e (interp, data_table->x, data_table->y, test_table->x[0], x, a, &integ); gsl_test (s1, "gsl_interp_eval_e %s", gsl_interp_name(interp)); gsl_test (s2, "gsl_interp_eval_deriv_e %s", gsl_interp_name(interp)); gsl_test (s3, "gsl_interp_eval_integ_e %s", gsl_interp_name(interp)); gsl_test_abs (y, test_table->y[i], 1e-10, "%s %d", gsl_interp_name(interp), i); gsl_test_abs (deriv, test_d_table->y[i], 1e-10, "%s deriv %d", gsl_interp_name(interp), i); gsl_test_abs (integ, test_i_table->y[i], 1e-10, "%s integ %d", gsl_interp_name(interp), i); diff_y = y - test_table->y[i]; diff_deriv = deriv - test_d_table->y[i]; diff_integ = integ - test_i_table->y[i]; if (fabs (diff_y) > 1.e-10 || fabs(diff_deriv) > 1.0e-10 || fabs(diff_integ) > 1.0e-10) { status++; } } gsl_interp_accel_free (a); gsl_interp_free (interp); return status; } static int test_linear (void) { int s; double data_x[4] = { 0.0, 1.0, 2.0, 3.0 }; double data_y[4] = { 0.0, 1.0, 2.0, 3.0 }; double test_x[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_y[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_dy[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double test_iy[6] = { 0.0, 0.125, 0.5, 9.0/8.0, 25.0/8.0, 9.0/2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 4); xy_table test_table = make_xy_table(test_x, test_y, 6); xy_table test_d_table = make_xy_table(test_x, test_dy, 6); xy_table test_i_table = make_xy_table(test_x, test_iy, 6); s = test_interp (&data_table, gsl_interp_linear, &test_table, &test_d_table, &test_i_table); gsl_test (s, "linear interpolation"); return s; } static int test_polynomial (void) { int s; double data_x[4] = { 0.0, 1.0, 2.0, 3.0 }; double data_y[4] = { 0.0, 1.0, 2.0, 3.0 }; double test_x[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_y[6] = { 0.0, 0.5, 1.0, 1.5, 2.5, 3.0 }; double test_dy[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double test_iy[6] = { 0.0, 0.125, 0.5, 9.0/8.0, 25.0/8.0, 9.0/2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 4); xy_table test_table = make_xy_table(test_x, test_y, 6); xy_table test_d_table = make_xy_table(test_x, test_dy, 6); xy_table test_i_table = make_xy_table(test_x, test_iy, 6); s = test_interp (&data_table, gsl_interp_polynomial, &test_table, &test_d_table, &test_i_table); gsl_test (s, "polynomial interpolation"); return s; } static int test_cspline (void) { int s; double data_x[3] = { 0.0, 1.0, 2.0 }; double data_y[3] = { 0.0, 1.0, 2.0 }; double test_x[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_y[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_dy[4] = { 1.0, 1.0, 1.0, 1.0 }; double test_iy[4] = { 0.0, 0.125, 0.5, 2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 3); xy_table test_table = make_xy_table(test_x, test_y, 4); xy_table test_d_table = make_xy_table(test_x, test_dy, 4); xy_table test_i_table = make_xy_table(test_x, test_iy, 4); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline interpolation"); return s; } static int test_cspline2 (void) { /* Test taken from Young & Gregory, A Survey of Numerical Mathematics, Vol 1 Chapter 6.8 */ int s; double data_x[6] = { 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 }; double data_y[6] = { 1.0, 0.961538461538461, 0.862068965517241, 0.735294117647059, 0.609756097560976, 0.500000000000000 } ; double test_x[50] = { 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70, 0.72, 0.74, 0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98 }; double test_y[50] = { 1.000000000000000, 0.997583282975581, 0.995079933416512, 0.992403318788142, 0.989466806555819, 0.986183764184894, 0.982467559140716, 0.978231558888635, 0.973389130893999, 0.967853642622158, 0.961538461538461, 0.954382579685350, 0.946427487413627, 0.937740299651188, 0.928388131325928, 0.918438097365742, 0.907957312698524, 0.897012892252170, 0.885671950954575, 0.874001603733634, 0.862068965517241, 0.849933363488199, 0.837622973848936, 0.825158185056786, 0.812559385569085, 0.799846963843167, 0.787041308336369, 0.774162807506023, 0.761231849809467, 0.748268823704033, 0.735294117647059, 0.722328486073082, 0.709394147325463, 0.696513685724764, 0.683709685591549, 0.671004731246381, 0.658421407009825, 0.645982297202442, 0.633709986144797, 0.621627058157454, 0.609756097560976, 0.598112015427308, 0.586679029833925, 0.575433685609685, 0.564352527583445, 0.553412100584061, 0.542588949440392, 0.531859618981294, 0.521200654035625, 0.510588599432241}; double test_dy[50] = { -0.120113913432180, -0.122279726798445, -0.128777166897241, -0.139606233728568, -0.154766927292426, -0.174259247588814, -0.198083194617734, -0.226238768379184, -0.258725968873165, -0.295544796099676, -0.336695250058719, -0.378333644186652, -0.416616291919835, -0.451543193258270, -0.483114348201955, -0.511329756750890, -0.536189418905076, -0.557693334664512, -0.575841504029200, -0.590633926999137, -0.602070603574326, -0.611319695518765, -0.619549364596455, -0.626759610807396, -0.632950434151589, -0.638121834629033, -0.642273812239728, -0.645406366983674, -0.647519498860871, -0.648613207871319, -0.648687494015019, -0.647687460711257, -0.645558211379322, -0.642299746019212, -0.637912064630930, -0.632395167214473, -0.625749053769843, -0.617973724297039, -0.609069178796061, -0.599035417266910, -0.587872439709585, -0.576731233416743, -0.566762785681043, -0.557967096502484, -0.550344165881066, -0.543893993816790, -0.538616580309654, -0.534511925359660, -0.531580028966807, -0.529820891131095}; double test_iy[50] = { 0.000000000000000, 0.019975905023535, 0.039902753768792, 0.059777947259733, 0.079597153869625, 0.099354309321042, 0.119041616685866, 0.138649546385285, 0.158166836189794, 0.177580491219196, 0.196875783942601, 0.216036382301310, 0.235045759060558, 0.253888601161251, 0.272550937842853, 0.291020140643388, 0.309284923399436, 0.327335342246135, 0.345162795617181, 0.362760024244829, 0.380121111159890, 0.397241442753010, 0.414117280448683, 0.430745332379281, 0.447122714446318, 0.463246950320456, 0.479115971441505, 0.494728117018421, 0.510082134029305, 0.525177177221407, 0.540012809111123, 0.554589001813881, 0.568906157172889, 0.582965126887879, 0.596767214344995, 0.610314174616794, 0.623608214462242, 0.636651992326715, 0.649448618342004, 0.662001654326309, 0.674315113784241, 0.686393423540581, 0.698241001711602, 0.709861835676399, 0.721259443710643, 0.732436874986582, 0.743396709573044, 0.754141058435429, 0.764671563435718, 0.774989397332469 }; xy_table data_table = make_xy_table(data_x, data_y, 6); xy_table test_table = make_xy_table(test_x, test_y, 50); xy_table test_d_table = make_xy_table(test_x, test_dy, 50); xy_table test_i_table = make_xy_table(test_x, test_iy, 50); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline 1/(1+x^2) interpolation"); return s; } static int test_cspline3 (void) { /* This data has been chosen to be random (uneven spacing in x and y) and the exact cubic spine solution computed using Octave */ int s; double data_x[7] = { -1.2139767065644265, -0.792590494453907, -0.250954683125019, 0.665867809951305, 0.735655088722706, 0.827622053027153, 1.426592227816582 }; double data_y[7] = { -0.00453877449035645, 0.49763182550668716, 0.17805472016334534, 0.40514493733644485, -0.21595209836959839, 0.47405586764216423, 0.46561462432146072 } ; double test_x[19] = { -1.2139767065644265, -1.0735146358609200, -0.9330525651574135, -0.7925904944539071, -0.6120452240109444, -0.4314999535679818, -0.2509546831250191, 0.0546528145670890, 0.3602603122591972, 0.6658678099513053, 0.6891302362084388, 0.7123926624655723, 0.7356550887227058, 0.7663107434908548, 0.7969663982590039, 0.8276220530271530, 1.0272787779569625, 1.2269355028867721, 1.4265922278165817, }; double test_y[19] = { -0.00453877449035645, 0.25816917628390590, 0.44938881397673230, 0.49763182550668716, 0.31389980410075147, 0.09948951681196887, 0.17805472016334534, 1.27633142487980233, 2.04936553432792001, 0.40514493733644485, 0.13322324792901385, -0.09656315924697809, -0.21595209836959839, -0.13551147728045118, 0.13466779030061801, 0.47405586764216423, 1.68064089899304370, 1.43594739539458649, 0.46561462432146072 }; double test_dy[19] = { 1.955137555965937, 1.700662049790549, 0.937235531264386, -0.335141999612553, -1.401385073563169, -0.674982149482761, 1.844066772628670, 4.202528085784793, -0.284432022227558, -11.616813551408383, -11.272731243226174, -7.994209291156876, -1.781247695200491, 6.373970868827501, 10.597456848997197, 10.889210245308570, 1.803124267866902, -3.648527318598099, -5.465744514086432, }; double test_iy[19] = { 0.000000000000000, 0.018231117234914, 0.069178822023139, 0.137781019634897, 0.213936442847744, 0.249280997744777, 0.267492946016120, 0.471372708120518, 1.014473660088477, 1.477731933018837, 1.483978291717981, 1.484256847945450, 1.480341742628893, 1.474315901028282, 1.473972210647307, 1.483279773396950, 1.728562698140330, 2.057796448999396, 2.253662886537457, }; xy_table data_table = make_xy_table(data_x, data_y, 7); xy_table test_table = make_xy_table(test_x, test_y, 19); xy_table test_d_table = make_xy_table(test_x, test_dy, 19); xy_table test_i_table = make_xy_table(test_x, test_iy, 19); s = test_interp (&data_table, gsl_interp_cspline, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline arbitrary data interpolation"); return s; } static int test_csplinep (void) { /* This data has been chosen to be random (uneven spacing in x and y) and the exact cubic spine solution computed using Octave */ int s; double data_x[11] = { 0.000000000000000, 0.130153674349869, 0.164545962312740, 0.227375461261537, 0.256465324353657, 0.372545206874658, 0.520820016781720, 0.647654717733075, 0.753429306654340, 0.900873984827658, 1.000000000000000, }; double data_y[11] = { 0.000000000000000, 0.729629261832041, 0.859286331568207, 0.989913099419008, 0.999175006262120, 0.717928599519215, -0.130443237213363, -0.800267961158980, -0.999767873040527, -0.583333769240853, -0.000000000000000, } ; double test_x[31] = { 0.000000000000000, 0.043384558116623, 0.086769116233246, 0.130153674349869, 0.141617770337492, 0.153081866325116, 0.164545962312740, 0.185489128629005, 0.206432294945271, 0.227375461261537, 0.237072082292243, 0.246768703322951, 0.256465324353657, 0.295158618527324, 0.333851912700991, 0.372545206874658, 0.421970143510346, 0.471395080146033, 0.520820016781720, 0.563098250432172, 0.605376484082623, 0.647654717733075, 0.682912914040164, 0.718171110347252, 0.753429306654340, 0.802577532712113, 0.851725758769885, 0.900873984827658, 0.933915989885105, 0.966957994942553, 1.000000000000000 }; double test_y[31] = { 0.000000000000000, 0.268657574670719, 0.517940878523929, 0.729629261832041, 0.777012551497867, 0.820298314554859, 0.859286331568207, 0.918833991960315, 0.962624749226346, 0.989913099419008, 0.996756196601349, 0.999858105635752, 0.999175006262120, 0.959248551766306, 0.863713527741856, 0.717928599519215, 0.470065187871106, 0.177694938589523, -0.130443237213363, -0.385093922365765, -0.613840011545983, -0.800267961158980, -0.912498361131651, -0.980219217412290, -0.999767873040528, -0.943635958253643, -0.800314354800596, -0.583333769240853, -0.403689914131666, -0.206151346799382, -0.000000000000000 }; double test_dy[31] = { 6.275761975917336, 6.039181349093287, 5.382620652895025, 4.306079887322550, 3.957389777282752, 3.591234754612763, 3.207614819312586, 2.473048186927024, 1.702885029353488, 0.897125346591982, 0.513561009477969, 0.125477545550710, -0.267125045189792, -1.773533414873785, -3.141450982859891, -4.370877749148106, -5.562104227060234, -6.171864888961167, -6.200159734850907, -5.781556055213110, -4.974725570010514, -3.779668279243120, -2.569220222282655, -1.254891157670244, 0.163318914594122, 2.074985916277011, 3.711348850147548, 5.072407716205733, 5.754438923510391, 6.155557010080926, 6.275761975917336 }; double test_iy[31] = { 0.000000000000000, 0.005864903144198, 0.023030998930796, 0.050262495763030, 0.058902457844100, 0.068062330564832, 0.077693991819461, 0.096340576055474, 0.116070578226521, 0.136546192283223, 0.146181187290769, 0.155864434185569, 0.165559443629720, 0.203636318965633, 0.239075190181586, 0.269828050745236, 0.299428805999600, 0.315560685785616, 0.316734151903742, 0.305773798930857, 0.284537037103156, 0.254466034797342, 0.224146112780097, 0.190643050847000, 0.155590744566140, 0.107448508851745, 0.064263083957312, 0.029987183298960, 0.013618510529526, 0.003506827320794, 0.000090064010007, }; xy_table data_table = make_xy_table(data_x, data_y, 11); xy_table test_table = make_xy_table(test_x, test_y, 31); xy_table test_d_table = make_xy_table(test_x, test_dy, 31); xy_table test_i_table = make_xy_table(test_x, test_iy, 31); s = test_interp (&data_table, gsl_interp_cspline_periodic, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline periodic sine interpolation"); return s; } static int test_csplinep2 (void) { /* This data tests the periodic case n=3 */ int s; double data_x[3] = { 0.123, 0.423, 1.123 }; double data_y[3] = { 0.456000000000000, 1.407056516295154, 0.456000000000000 } ; double test_x[61] = { 0.123000000000000, 0.133000000000000, 0.143000000000000, 0.153000000000000, 0.163000000000000, 0.173000000000000, 0.183000000000000, 0.193000000000000, 0.203000000000000, 0.213000000000000, 0.223000000000000, 0.233000000000000, 0.243000000000000, 0.253000000000000, 0.263000000000000, 0.273000000000000, 0.283000000000000, 0.293000000000000, 0.303000000000000, 0.313000000000000, 0.323000000000000, 0.333000000000000, 0.343000000000000, 0.353000000000000, 0.363000000000000, 0.373000000000000, 0.383000000000000, 0.393000000000000, 0.403000000000000, 0.413000000000000, 0.423000000000000, 0.446333333333333, 0.469666666666667, 0.493000000000000, 0.516333333333333, 0.539666666666667, 0.563000000000000, 0.586333333333333, 0.609666666666667, 0.633000000000000, 0.656333333333333, 0.679666666666667, 0.703000000000000, 0.726333333333333, 0.749666666666667, 0.773000000000000, 0.796333333333333, 0.819666666666667, 0.843000000000000, 0.866333333333333, 0.889666666666667, 0.913000000000000, 0.936333333333333, 0.959666666666667, 0.983000000000000, 1.006333333333333, 1.029666666666667, 1.053000000000000, 1.076333333333333, 1.099666666666667, 1.123000000000000 }; double test_y[61] = { 0.456000000000000, 0.475443822110923, 0.497423794931967, 0.521758764840979, 0.548267578215809, 0.576769081434305, 0.607082120874316, 0.639025542913690, 0.672418193930275, 0.707078920301921, 0.742826568406475, 0.779479984621787, 0.816858015325704, 0.854779506896076, 0.893063305710751, 0.931528258147577, 0.969993210584403, 1.008277009399078, 1.046198500969450, 1.083576531673367, 1.120229947888679, 1.155977595993233, 1.190638322364879, 1.224030973381464, 1.255974395420838, 1.286287434860848, 1.314788938079344, 1.341297751454174, 1.365632721363187, 1.387612694184230, 1.407056516295154, 1.442092968697928, 1.463321489456714, 1.471728359403224, 1.468299859369172, 1.454022270186272, 1.429881872686237, 1.396864947700781, 1.355957776061616, 1.308146638600458, 1.254417816149018, 1.195757589539010, 1.133152239602149, 1.067588047170148, 1.000051293074719, 0.931528258147577, 0.863005223220435, 0.795468469125006, 0.729904276693004, 0.667298926756143, 0.608638700146136, 0.554909877694696, 0.507098740233537, 0.466191568594372, 0.433174643608916, 0.409034246108881, 0.394756656925981, 0.391328156891929, 0.399735026838439, 0.420963547597225, 0.456000000000000 }; double test_dy[61] = { 1.8115362215145774, 2.0742089736341924, 2.3187663635386602, 2.5452083912279826, 2.7535350567021584, 2.9437463599611897, 3.1158423010050744, 3.2698228798338147, 3.4056880964474079, 3.5234379508458549, 3.6230724430291570, 3.7045915729973125, 3.7679953407503231, 3.8132837462881874, 3.8404567896109061, 3.8495144707184790, 3.8404567896109061, 3.8132837462881874, 3.7679953407503231, 3.7045915729973125, 3.6230724430291565, 3.5234379508458549, 3.4056880964474074, 3.2698228798338147, 3.1158423010050749, 2.9437463599611897, 2.7535350567021584, 2.5452083912279830, 2.3187663635386597, 2.0742089736341924, 1.8115362215145772, 1.1986331332354823, 0.6279992234583869, 0.0996344921833026, -0.3864610605897765, -0.8302874348608467, -1.2318446306299125, -1.5911326478969707, -1.9081514866620208, -2.1829011469250670, -2.4153816286861041, -2.6055929319451341, -2.7535350567021584, -2.8592080029571765, -2.9226117707101862, -2.9437463599611893, -2.9226117707101862, -2.8592080029571760, -2.7535350567021593, -2.6055929319451354, -2.4153816286861045, -2.1829011469250656, -1.9081514866620242, -1.5911326478969716, -1.2318446306299160, -0.8302874348608498, -0.3864610605897769, 0.0996344921832995, 0.6279992234583824, 1.1986331332354769, 1.8115362215145772 }; double test_iy[61] = { 0.000000000000000, 0.004655030170954, 0.009517330277919, 0.014611356059886, 0.019959751719625, 0.025583349923681, 0.031501171802382, 0.037730426949832, 0.044286513423914, 0.051183017746288, 0.058431714902395, 0.066042568341453, 0.074023729976459, 0.082381540184189, 0.091120527805195, 0.100243410143811, 0.109751092968147, 0.119642670510092, 0.129915425465314, 0.140564828993259, 0.151584540717153, 0.162966408723997, 0.174700469564574, 0.186774948253444, 0.199176258268946, 0.211889001553197, 0.224895968512091, 0.238178138015305, 0.251714677396289, 0.265482942452275, 0.279458477444273, 0.312726362409309, 0.346648754292945, 0.380914974633193, 0.415237358187469, 0.449351252932597, 0.483015020064806, 0.516010033999735, 0.548140682372425, 0.579234366037328, 0.609141499068300, 0.637735508758604, 0.664912835620912, 0.690592933387298, 0.714718269009247, 0.737254322657649, 0.758189587722801, 0.777535570814405, 0.795326791761572, 0.811620783612819, 0.826498092636068, 0.840062278318649, 0.852439913367300, 0.863780583708163, 0.874256888486789, 0.884064440068133, 0.893421864036559, 0.902570799195836, 0.911775897569142, 0.921324824399059, 0.931528258147577 }; xy_table data_table = make_xy_table(data_x, data_y, 3); xy_table test_table = make_xy_table(test_x, test_y, 61); xy_table test_d_table = make_xy_table(test_x, test_dy, 61); xy_table test_i_table = make_xy_table(test_x, test_iy, 61); s = test_interp (&data_table, gsl_interp_cspline_periodic, &test_table, &test_d_table, &test_i_table); gsl_test (s, "cspline periodic 3pt interpolation"); return s; } static int test_akima (void) { int s; double data_x[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 }; double data_y[5] = { 0.0, 1.0, 2.0, 3.0, 4.0 }; double test_x[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_y[4] = { 0.0, 0.5, 1.0, 2.0 }; double test_dy[4] = { 1.0, 1.0, 1.0, 1.0 }; double test_iy[4] = { 0.0, 0.125, 0.5, 2.0 }; xy_table data_table = make_xy_table(data_x, data_y, 5); xy_table test_table = make_xy_table(test_x, test_y, 4); xy_table test_d_table = make_xy_table(test_x, test_dy, 4); xy_table test_i_table = make_xy_table(test_x, test_iy, 4); s = test_interp (&data_table, gsl_interp_akima, &test_table, &test_d_table, &test_i_table); gsl_test (s, "akima interpolation"); return s; } int main (int argc, char **argv) { int status = 0; gsl_ieee_env_setup (); argc = 0; /* prevent warnings about unused parameters */ argv = 0; status += test_bsearch(); status += test_linear(); status += test_polynomial(); status += test_cspline(); status += test_cspline2(); status += test_cspline3(); status += test_csplinep(); status += test_csplinep2(); status += test_akima(); exit (gsl_test_summary()); } gsl-1.16/interpolation/Makefile.in0000664000252300025230000010555612172253755014130 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = interpolation DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslinterpolation_la_LIBADD = am_libgslinterpolation_la_OBJECTS = accel.lo akima.lo cspline.lo \ interp.lo linear.lo spline.lo poly.lo inline.lo libgslinterpolation_la_OBJECTS = $(am_libgslinterpolation_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslinterpolation.la ../poly/libgslpoly.la \ ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la \ ../blas/libgslblas.la ../matrix/libgslmatrix.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../cblas/libgslcblas.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslinterpolation_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslinterpolation_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslinterpolation.la pkginclude_HEADERS = gsl_interp.h gsl_spline.h libgslinterpolation_la_SOURCES = accel.c akima.c cspline.c interp.c linear.c integ_eval.h spline.c poly.c inline.c INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslinterpolation.la ../poly/libgslpoly.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../cblas/libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu interpolation/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu interpolation/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslinterpolation.la: $(libgslinterpolation_la_OBJECTS) $(libgslinterpolation_la_DEPENDENCIES) $(EXTRA_libgslinterpolation_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslinterpolation_la_OBJECTS) $(libgslinterpolation_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/accel.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/akima.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cspline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/interp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/linear.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/poly.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/spline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/interpolation/gsl_spline.h0000664000252300025230000000533512171574312014357 00000000000000/* interpolation/gsl_spline.h * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_SPLINE_H__ #define __GSL_SPLINE_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* general interpolation object */ typedef struct { gsl_interp * interp; double * x; double * y; size_t size; } gsl_spline; gsl_spline * gsl_spline_alloc(const gsl_interp_type * T, size_t size); int gsl_spline_init(gsl_spline * spline, const double xa[], const double ya[], size_t size); const char * gsl_spline_name(const gsl_spline * spline); unsigned int gsl_spline_min_size(const gsl_spline * spline); int gsl_spline_eval_e(const gsl_spline * spline, double x, gsl_interp_accel * a, double * y); double gsl_spline_eval(const gsl_spline * spline, double x, gsl_interp_accel * a); int gsl_spline_eval_deriv_e(const gsl_spline * spline, double x, gsl_interp_accel * a, double * y); double gsl_spline_eval_deriv(const gsl_spline * spline, double x, gsl_interp_accel * a); int gsl_spline_eval_deriv2_e(const gsl_spline * spline, double x, gsl_interp_accel * a, double * y); double gsl_spline_eval_deriv2(const gsl_spline * spline, double x, gsl_interp_accel * a); int gsl_spline_eval_integ_e(const gsl_spline * spline, double a, double b, gsl_interp_accel * acc, double * y); double gsl_spline_eval_integ(const gsl_spline * spline, double a, double b, gsl_interp_accel * acc); void gsl_spline_free(gsl_spline * spline); __END_DECLS #endif /* __GSL_INTERP_H__ */ gsl-1.16/interpolation/ChangeLog0000664000252300025230000001063512171574312013620 000000000000002011-01-15 Brian Gough * interp.c (gsl_interp_type_min_size): added function to get min_size from type instead of interp object 2010-12-09 Brian Gough * cspline.c (cspline_eval, cspline_eval_deriv) (cspline_eval_deriv2, cspline_eval_integ): return GSL_EINVAL for out of range values instead of GSL_FAILURE * akima.c (akima_eval_integ): return GSL_EINVAL for out of range values instead of GSL_FAILURE * interp.c (gsl_interp_eval_e, gsl_interp_eval) (gsl_interp_eval_deriv_e, gsl_interp_eval_deriv) (gsl_interp_eval_deriv2_e, gsl_interp_eval_deriv2) (gsl_interp_eval_integ_e, gsl_interp_eval_integ): return NaN and an error code of GSL_EDOM when x is out of range 2009-07-09 Brian Gough * spline.c (gsl_spline_free): handle NULL argument in free * interp.c (gsl_interp_free): handle NULL argument in free * accel.c (gsl_interp_accel_free): handle NULL argument in free 2008-09-05 Brian Gough * gsl_interp.h (gsl_interp_accel_find): corrected condition for x>=xa. 2008-07-03 Brian Gough * gsl_interp.h: added inline declarations * accel.c: moved gsl_interp_accel_find to inline.c * bsearch.h bsearch.c: removed, moved to inline.c * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-03-14 Brian Gough * interp.c (gsl_interp_init): added check for monotonically increasing x 2005-12-24 Brian Gough * cspline.c (cspline_init_periodic): fix invalid memory access of xa[3] for sys_size=2 2005-12-22 Brian Gough * test.c (test_cspline2): added extra test of cspline (test_cspline3): added extra test of cspline 2004-11-28 Brian Gough * cspline.c (cspline_init): support case of degenerate x[i] values (cspline_init_periodic): support case of degenerate x[i] values * integ_eval.h (integ_eval): improve numerical stability of integration formula 2004-03-15 Brian Gough * cspline.c (cspline_init): handle the case N=1 specially 2003-07-24 Brian Gough * gsl_interp.h: removed duplicate declaration of gsl_interp_accel_find Sat Apr 27 20:57:22 2002 Brian Gough * cspline.c (cspline_init_periodic): handle boundary effects correctly Sun Dec 2 22:48:23 2001 Brian Gough * poly.c: added polynomial interpolation based on divided differences from Dan, Ho-Jin. Tue Jul 3 12:10:53 2001 Brian Gough * interp.c (DISCARD_STATUS): discard error status values using a macro for configurability Sun Jul 1 21:41:27 2001 Brian Gough * cspline.c: added const to state in appropriate places Tue Jun 26 11:57:55 2001 Brian Gough * spline.c: added missing #include for memcpy Mon Jun 25 19:58:45 2001 Brian Gough * standardized to gsl conventions, added high-level 'spline' interface Mon Apr 30 13:29:34 2001 Brian Gough * renamed gsl_interp_obj to gsl_interp Mon Apr 23 10:29:51 2001 Brian Gough * unified error handling conventions to _e for error handling functions and no suffix for plain functions, so _impl functions are no longer needed. * removed tests for EFAULT, since EFAULT should only apply to invalid non-null pointers. Tue Apr 11 19:56:25 2000 Brian Gough * cspline.c (cspline_calc_periodic): changed occurrence of gsl_la name to new gsl_linalg prefix, gsl_linalg_solve_symm_cyc_tridiag (cspline_calc_natural): ditto Mon Aug 30 11:31:00 1999 Brian Gough * bsearch.c: made gsl_interp_bsearch (formerly interp_bsearch) an exported function, since it is needed by the inline version of gsl_interp_accel_find in gsl_interp.h Tue Nov 17 16:52:00 1998 Brian Gough * added #include to all top-level source files * renamed test_interp.c to test.c * test_interp.c: got rid of unused function alloc_xy_table Fri Nov 13 16:50:05 1998 Brian Gough * clean up for make strict, use size_t instead of unsigned int 1998-11-06 * added const to several declarations where needed. gsl-1.16/interpolation/akima.c0000664000252300025230000002226212171574312013273 00000000000000/* interpolation/akima.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include "integ_eval.h" #include typedef struct { double * b; double * c; double * d; double * _m; } akima_state_t; /* common creation */ static void * akima_alloc (size_t size) { akima_state_t *state = (akima_state_t *) malloc (sizeof (akima_state_t)); if (state == NULL) { GSL_ERROR_NULL("failed to allocate space for state", GSL_ENOMEM); } state->b = (double *) malloc (size * sizeof (double)); if (state->b == NULL) { free (state); GSL_ERROR_NULL("failed to allocate space for b", GSL_ENOMEM); } state->c = (double *) malloc (size * sizeof (double)); if (state->c == NULL) { free (state->b); free (state); GSL_ERROR_NULL("failed to allocate space for c", GSL_ENOMEM); } state->d = (double *) malloc (size * sizeof (double)); if (state->d == NULL) { free (state->c); free (state->b); free (state); GSL_ERROR_NULL("failed to allocate space for d", GSL_ENOMEM); } state->_m = (double *) malloc ((size + 4) * sizeof (double)); if (state->_m == NULL) { free (state->d); free (state->c); free (state->b); free (state); GSL_ERROR_NULL("failed to allocate space for _m", GSL_ENOMEM); } return state; } /* common calculation */ static void akima_calc (const double x_array[], double b[], double c[], double d[], size_t size, double m[]) { size_t i; for (i = 0; i < (size - 1); i++) { const double NE = fabs (m[i + 1] - m[i]) + fabs (m[i - 1] - m[i - 2]); if (NE == 0.0) { b[i] = m[i]; c[i] = 0.0; d[i] = 0.0; } else { const double h_i = x_array[i + 1] - x_array[i]; const double NE_next = fabs (m[i + 2] - m[i + 1]) + fabs (m[i] - m[i - 1]); const double alpha_i = fabs (m[i - 1] - m[i - 2]) / NE; double alpha_ip1; double tL_ip1; if (NE_next == 0.0) { tL_ip1 = m[i]; } else { alpha_ip1 = fabs (m[i] - m[i - 1]) / NE_next; tL_ip1 = (1.0 - alpha_ip1) * m[i] + alpha_ip1 * m[i + 1]; } b[i] = (1.0 - alpha_i) * m[i - 1] + alpha_i * m[i]; c[i] = (3.0 * m[i] - 2.0 * b[i] - tL_ip1) / h_i; d[i] = (b[i] + tL_ip1 - 2.0 * m[i]) / (h_i * h_i); } } } static int akima_init (void * vstate, const double x_array[], const double y_array[], size_t size) { akima_state_t *state = (akima_state_t *) vstate; double * m = state->_m + 2; /* offset so we can address the -1,-2 components */ size_t i; for (i = 0; i <= size - 2; i++) { m[i] = (y_array[i + 1] - y_array[i]) / (x_array[i + 1] - x_array[i]); } /* non-periodic boundary conditions */ m[-2] = 3.0 * m[0] - 2.0 * m[1]; m[-1] = 2.0 * m[0] - m[1]; m[size - 1] = 2.0 * m[size - 2] - m[size - 3]; m[size] = 3.0 * m[size - 2] - 2.0 * m[size - 3]; akima_calc (x_array, state->b, state->c, state->d, size, m); return GSL_SUCCESS; } static int akima_init_periodic (void * vstate, const double x_array[], const double y_array[], size_t size) { akima_state_t *state = (akima_state_t *) vstate; double * m = state->_m + 2; /* offset so we can address the -1,-2 components */ size_t i; for (i = 0; i <= size - 2; i++) { m[i] = (y_array[i + 1] - y_array[i]) / (x_array[i + 1] - x_array[i]); } /* periodic boundary conditions */ m[-2] = m[size - 1 - 2]; m[-1] = m[size - 1 - 1]; m[size - 1] = m[0]; m[size] = m[1]; akima_calc (x_array, state->b, state->c, state->d, size, m); return GSL_SUCCESS; } static void akima_free (void * vstate) { akima_state_t *state = (akima_state_t *) vstate; free (state->b); free (state->c); free (state->d); free (state->_m); free (state); } static int akima_eval (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *y) { const akima_state_t *state = (const akima_state_t *) vstate; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ { const double x_lo = x_array[index]; const double delx = x - x_lo; const double b = state->b[index]; const double c = state->c[index]; const double d = state->d[index]; *y = y_array[index] + delx * (b + delx * (c + d * delx)); return GSL_SUCCESS; } } static int akima_eval_deriv (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *dydx) { const akima_state_t *state = (const akima_state_t *) vstate; size_t index; DISCARD_POINTER(y_array); /* prevent warning about unused parameter */ if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ { double x_lo = x_array[index]; double delx = x - x_lo; double b = state->b[index]; double c = state->c[index]; double d = state->d[index]; *dydx = b + delx * (2.0 * c + 3.0 * d * delx); return GSL_SUCCESS; } } static int akima_eval_deriv2 (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *y_pp) { const akima_state_t *state = (const akima_state_t *) vstate; size_t index; DISCARD_POINTER(y_array); /* prevent warning about unused parameter */ if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ { const double x_lo = x_array[index]; const double delx = x - x_lo; const double c = state->c[index]; const double d = state->d[index]; *y_pp = 2.0 * c + 6.0 * d * delx; return GSL_SUCCESS; } } static int akima_eval_integ (const void * vstate, const double x_array[], const double y_array[], size_t size, gsl_interp_accel * acc, double a, double b, double * result) { const akima_state_t *state = (const akima_state_t *) vstate; size_t i, index_a, index_b; if (acc != 0) { index_a = gsl_interp_accel_find (acc, x_array, size, a); index_b = gsl_interp_accel_find (acc, x_array, size, b); } else { index_a = gsl_interp_bsearch (x_array, a, 0, size - 1); index_b = gsl_interp_bsearch (x_array, b, 0, size - 1); } *result = 0.0; /* interior intervals */ for(i=index_a; i<=index_b; i++) { const double x_hi = x_array[i + 1]; const double x_lo = x_array[i]; const double y_lo = y_array[i]; const double dx = x_hi - x_lo; if(dx != 0.0) { if (i == index_a || i == index_b) { double x1 = (i == index_a) ? a : x_lo; double x2 = (i == index_b) ? b : x_hi; *result += integ_eval (y_lo, state->b[i], state->c[i], state->d[i], x_lo, x1, x2); } else { *result += dx * (y_lo + dx*(0.5*state->b[i] + dx*(state->c[i]/3.0 + 0.25*state->d[i]*dx))); } } else { *result = 0.0; return GSL_EINVAL; } } return GSL_SUCCESS; } static const gsl_interp_type akima_type = { "akima", 5, &akima_alloc, &akima_init, &akima_eval, &akima_eval_deriv, &akima_eval_deriv2, &akima_eval_integ, &akima_free }; const gsl_interp_type * gsl_interp_akima = &akima_type; static const gsl_interp_type akima_periodic_type = { "akima-periodic", 5, &akima_alloc, &akima_init_periodic, &akima_eval, &akima_eval_deriv, &akima_eval_deriv2, &akima_eval_integ, &akima_free }; const gsl_interp_type * gsl_interp_akima_periodic = &akima_periodic_type; gsl-1.16/interpolation/integ_eval.h0000664000252300025230000000254312171574312014333 00000000000000/* interpolation/integ_eval_macro.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* function for doing the spline integral evaluation which is common to both the cspline and akima methods */ static inline double integ_eval (double ai, double bi, double ci, double di, double xi, double a, double b) { const double r1 = a - xi; const double r2 = b - xi; const double r12 = r1 + r2; const double bterm = 0.5 * bi * r12; const double cterm = (1.0 / 3.0) * ci * (r1 * r1 + r2 * r2 + r1 * r2); const double dterm = 0.25 * di * r12 * (r1 * r1 + r2 * r2); return (b - a) * (ai + bterm + cterm + dterm); } gsl-1.16/interpolation/Makefile.am0000664000252300025230000000127312171574312014100 00000000000000noinst_LTLIBRARIES = libgslinterpolation.la check_PROGRAMS = test pkginclude_HEADERS = gsl_interp.h gsl_spline.h libgslinterpolation_la_SOURCES = accel.c akima.c cspline.c interp.c linear.c integ_eval.h spline.c poly.c inline.c INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslinterpolation.la ../poly/libgslpoly.la ../linalg/libgsllinalg.la ../permutation/libgslpermutation.la ../blas/libgslblas.la ../matrix/libgslmatrix.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../cblas/libgslcblas.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/interpolation/cspline.c0000664000252300025230000003046412171574312013651 00000000000000/* interpolation/cspline.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include "integ_eval.h" #include typedef struct { double * c; double * g; double * diag; double * offdiag; } cspline_state_t; /* common initialization */ static void * cspline_alloc (size_t size) { cspline_state_t * state = (cspline_state_t *) malloc (sizeof (cspline_state_t)); if (state == NULL) { GSL_ERROR_NULL("failed to allocate space for state", GSL_ENOMEM); } state->c = (double *) malloc (size * sizeof (double)); if (state->c == NULL) { free (state); GSL_ERROR_NULL("failed to allocate space for c", GSL_ENOMEM); } state->g = (double *) malloc (size * sizeof (double)); if (state->g == NULL) { free (state->c); free (state); GSL_ERROR_NULL("failed to allocate space for g", GSL_ENOMEM); } state->diag = (double *) malloc (size * sizeof (double)); if (state->diag == NULL) { free (state->g); free (state->c); free (state); GSL_ERROR_NULL("failed to allocate space for diag", GSL_ENOMEM); } state->offdiag = (double *) malloc (size * sizeof (double)); if (state->offdiag == NULL) { free (state->diag); free (state->g); free (state->c); free (state); GSL_ERROR_NULL("failed to allocate space for offdiag", GSL_ENOMEM); } return state; } /* natural spline calculation * see [Engeln-Mullges + Uhlig, p. 254] */ static int cspline_init (void * vstate, const double xa[], const double ya[], size_t size) { cspline_state_t *state = (cspline_state_t *) vstate; size_t i; size_t num_points = size; size_t max_index = num_points - 1; /* Engeln-Mullges + Uhlig "n" */ size_t sys_size = max_index - 1; /* linear system is sys_size x sys_size */ state->c[0] = 0.0; state->c[max_index] = 0.0; for (i = 0; i < sys_size; i++) { const double h_i = xa[i + 1] - xa[i]; const double h_ip1 = xa[i + 2] - xa[i + 1]; const double ydiff_i = ya[i + 1] - ya[i]; const double ydiff_ip1 = ya[i + 2] - ya[i + 1]; const double g_i = (h_i != 0.0) ? 1.0 / h_i : 0.0; const double g_ip1 = (h_ip1 != 0.0) ? 1.0 / h_ip1 : 0.0; state->offdiag[i] = h_ip1; state->diag[i] = 2.0 * (h_ip1 + h_i); state->g[i] = 3.0 * (ydiff_ip1 * g_ip1 - ydiff_i * g_i); } if (sys_size == 1) { state->c[1] = state->g[0] / state->diag[0]; return GSL_SUCCESS; } else { gsl_vector_view g_vec = gsl_vector_view_array(state->g, sys_size); gsl_vector_view diag_vec = gsl_vector_view_array(state->diag, sys_size); gsl_vector_view offdiag_vec = gsl_vector_view_array(state->offdiag, sys_size - 1); gsl_vector_view solution_vec = gsl_vector_view_array ((state->c) + 1, sys_size); int status = gsl_linalg_solve_symm_tridiag(&diag_vec.vector, &offdiag_vec.vector, &g_vec.vector, &solution_vec.vector); return status; } } /* periodic spline calculation * see [Engeln-Mullges + Uhlig, p. 256] */ static int cspline_init_periodic (void * vstate, const double xa[], const double ya[], size_t size) { cspline_state_t *state = (cspline_state_t *) vstate; size_t i; size_t num_points = size; size_t max_index = num_points - 1; /* Engeln-Mullges + Uhlig "n" */ size_t sys_size = max_index; /* linear system is sys_size x sys_size */ if (sys_size == 2) { /* solve 2x2 system */ const double h0 = xa[1] - xa[0]; const double h1 = xa[2] - xa[1]; const double A = 2.0*(h0 + h1); const double B = h0 + h1; double g[2]; double det; g[0] = 3.0 * ((ya[2] - ya[1]) / h1 - (ya[1] - ya[0]) / h0); g[1] = 3.0 * ((ya[1] - ya[2]) / h0 - (ya[2] - ya[1]) / h1); det = 3.0 * (h0 + h1) * (h0 + h1); state->c[1] = ( A * g[0] - B * g[1])/det; state->c[2] = (-B * g[0] + A * g[1])/det; state->c[0] = state->c[2]; return GSL_SUCCESS; } else { for (i = 0; i < sys_size-1; i++) { const double h_i = xa[i + 1] - xa[i]; const double h_ip1 = xa[i + 2] - xa[i + 1]; const double ydiff_i = ya[i + 1] - ya[i]; const double ydiff_ip1 = ya[i + 2] - ya[i + 1]; const double g_i = (h_i != 0.0) ? 1.0 / h_i : 0.0; const double g_ip1 = (h_ip1 != 0.0) ? 1.0 / h_ip1 : 0.0; state->offdiag[i] = h_ip1; state->diag[i] = 2.0 * (h_ip1 + h_i); state->g[i] = 3.0 * (ydiff_ip1 * g_ip1 - ydiff_i * g_i); } i = sys_size - 1; { const double h_i = xa[i + 1] - xa[i]; const double h_ip1 = xa[1] - xa[0]; const double ydiff_i = ya[i + 1] - ya[i]; const double ydiff_ip1 = ya[1] - ya[0]; const double g_i = (h_i != 0.0) ? 1.0 / h_i : 0.0; const double g_ip1 = (h_ip1 != 0.0) ? 1.0 / h_ip1 : 0.0; state->offdiag[i] = h_ip1; state->diag[i] = 2.0 * (h_ip1 + h_i); state->g[i] = 3.0 * (ydiff_ip1 * g_ip1 - ydiff_i * g_i); } { gsl_vector_view g_vec = gsl_vector_view_array(state->g, sys_size); gsl_vector_view diag_vec = gsl_vector_view_array(state->diag, sys_size); gsl_vector_view offdiag_vec = gsl_vector_view_array(state->offdiag, sys_size); gsl_vector_view solution_vec = gsl_vector_view_array ((state->c) + 1, sys_size); int status = gsl_linalg_solve_symm_cyc_tridiag(&diag_vec.vector, &offdiag_vec.vector, &g_vec.vector, &solution_vec.vector); state->c[0] = state->c[max_index]; return status; } } } static void cspline_free (void * vstate) { cspline_state_t *state = (cspline_state_t *) vstate; free (state->c); free (state->g); free (state->diag); free (state->offdiag); free (state); } /* function for common coefficient determination */ static inline void coeff_calc (const double c_array[], double dy, double dx, size_t index, double * b, double * c, double * d) { const double c_i = c_array[index]; const double c_ip1 = c_array[index + 1]; *b = (dy / dx) - dx * (c_ip1 + 2.0 * c_i) / 3.0; *c = c_i; *d = (c_ip1 - c_i) / (3.0 * dx); } static int cspline_eval (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *y) { const cspline_state_t *state = (const cspline_state_t *) vstate; double x_lo, x_hi; double dx; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ x_hi = x_array[index + 1]; x_lo = x_array[index]; dx = x_hi - x_lo; if (dx > 0.0) { const double y_lo = y_array[index]; const double y_hi = y_array[index + 1]; const double dy = y_hi - y_lo; double delx = x - x_lo; double b_i, c_i, d_i; coeff_calc(state->c, dy, dx, index, &b_i, &c_i, &d_i); *y = y_lo + delx * (b_i + delx * (c_i + delx * d_i)); return GSL_SUCCESS; } else { *y = 0.0; return GSL_EINVAL; } } static int cspline_eval_deriv (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double *dydx) { const cspline_state_t *state = (const cspline_state_t *) vstate; double x_lo, x_hi; double dx; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ x_hi = x_array[index + 1]; x_lo = x_array[index]; dx = x_hi - x_lo; if (dx > 0.0) { const double y_lo = y_array[index]; const double y_hi = y_array[index + 1]; const double dy = y_hi - y_lo; double delx = x - x_lo; double b_i, c_i, d_i; coeff_calc(state->c, dy, dx, index, &b_i, &c_i, &d_i); *dydx = b_i + delx * (2.0 * c_i + 3.0 * d_i * delx); return GSL_SUCCESS; } else { *dydx = 0.0; return GSL_EINVAL; } } static int cspline_eval_deriv2 (const void * vstate, const double x_array[], const double y_array[], size_t size, double x, gsl_interp_accel * a, double * y_pp) { const cspline_state_t *state = (const cspline_state_t *) vstate; double x_lo, x_hi; double dx; size_t index; if (a != 0) { index = gsl_interp_accel_find (a, x_array, size, x); } else { index = gsl_interp_bsearch (x_array, x, 0, size - 1); } /* evaluate */ x_hi = x_array[index + 1]; x_lo = x_array[index]; dx = x_hi - x_lo; if (dx > 0.0) { const double y_lo = y_array[index]; const double y_hi = y_array[index + 1]; const double dy = y_hi - y_lo; double delx = x - x_lo; double b_i, c_i, d_i; coeff_calc(state->c, dy, dx, index, &b_i, &c_i, &d_i); *y_pp = 2.0 * c_i + 6.0 * d_i * delx; return GSL_SUCCESS; } else { *y_pp = 0.0; return GSL_EINVAL; } } static int cspline_eval_integ (const void * vstate, const double x_array[], const double y_array[], size_t size, gsl_interp_accel * acc, double a, double b, double * result) { const cspline_state_t *state = (const cspline_state_t *) vstate; size_t i, index_a, index_b; if (acc != 0) { index_a = gsl_interp_accel_find (acc, x_array, size, a); index_b = gsl_interp_accel_find (acc, x_array, size, b); } else { index_a = gsl_interp_bsearch (x_array, a, 0, size - 1); index_b = gsl_interp_bsearch (x_array, b, 0, size - 1); } *result = 0.0; /* interior intervals */ for(i=index_a; i<=index_b; i++) { const double x_hi = x_array[i + 1]; const double x_lo = x_array[i]; const double y_lo = y_array[i]; const double y_hi = y_array[i + 1]; const double dx = x_hi - x_lo; const double dy = y_hi - y_lo; if(dx != 0.0) { double b_i, c_i, d_i; coeff_calc(state->c, dy, dx, i, &b_i, &c_i, &d_i); if (i == index_a || i == index_b) { double x1 = (i == index_a) ? a : x_lo; double x2 = (i == index_b) ? b : x_hi; *result += integ_eval(y_lo, b_i, c_i, d_i, x_lo, x1, x2); } else { *result += dx * (y_lo + dx*(0.5*b_i + dx*(c_i/3.0 + 0.25*d_i*dx))); } } else { *result = 0.0; return GSL_EINVAL; } } return GSL_SUCCESS; } static const gsl_interp_type cspline_type = { "cspline", 3, &cspline_alloc, &cspline_init, &cspline_eval, &cspline_eval_deriv, &cspline_eval_deriv2, &cspline_eval_integ, &cspline_free }; const gsl_interp_type * gsl_interp_cspline = &cspline_type; static const gsl_interp_type cspline_periodic_type = { "cspline-periodic", 2, &cspline_alloc, &cspline_init_periodic, &cspline_eval, &cspline_eval_deriv, &cspline_eval_deriv2, &cspline_eval_integ, &cspline_free }; const gsl_interp_type * gsl_interp_cspline_periodic = &cspline_periodic_type; gsl-1.16/interpolation/spline.c0000664000252300025230000001205612171574312013503 00000000000000/* interpolation/spline.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_spline * gsl_spline_alloc (const gsl_interp_type * T, size_t size) { gsl_spline * spline = (gsl_spline *) malloc (sizeof(gsl_spline)); if (spline == NULL) { GSL_ERROR_NULL ("failed to allocate space for spline struct", GSL_ENOMEM); } spline->interp = gsl_interp_alloc (T, size); if (spline->interp == NULL) { free (spline); GSL_ERROR_NULL ("failed to allocate space for interp", GSL_ENOMEM); }; spline->x = (double *) malloc (size * sizeof(double)); if (spline->x == NULL) { gsl_interp_free(spline->interp); free(spline); GSL_ERROR_NULL ("failed to allocate space for x", GSL_ENOMEM); } spline->y = (double *) malloc (size * sizeof(double)); if (spline->y == NULL) { free(spline->x); gsl_interp_free(spline->interp); free(spline); GSL_ERROR_NULL ("failed to allocate space for y", GSL_ENOMEM); } spline->size = size; return spline; } int gsl_spline_init (gsl_spline * spline, const double x_array[], const double y_array[], size_t size) { if (size != spline->size) { GSL_ERROR ("data must match size of spline object", GSL_EINVAL); } memcpy (spline->x, x_array, size * sizeof(double)); memcpy (spline->y, y_array, size * sizeof(double)); { int status = gsl_interp_init (spline->interp, x_array, y_array, size); return status; } } const char * gsl_spline_name(const gsl_spline * spline) { return gsl_interp_name(spline->interp); } unsigned int gsl_spline_min_size(const gsl_spline * spline) { return gsl_interp_min_size(spline->interp); } void gsl_spline_free (gsl_spline * spline) { RETURN_IF_NULL (spline); gsl_interp_free (spline->interp); free (spline->x); free (spline->y); free (spline); } int gsl_spline_eval_e (const gsl_spline * spline, double x, gsl_interp_accel * a, double *y) { return gsl_interp_eval_e (spline->interp, spline->x, spline->y, x, a, y); } double gsl_spline_eval (const gsl_spline * spline, double x, gsl_interp_accel * a) { return gsl_interp_eval (spline->interp, spline->x, spline->y, x, a); } int gsl_spline_eval_deriv_e (const gsl_spline * spline, double x, gsl_interp_accel * a, double *dydx) { return gsl_interp_eval_deriv_e (spline->interp, spline->x, spline->y, x, a, dydx); } double gsl_spline_eval_deriv (const gsl_spline * spline, double x, gsl_interp_accel * a) { return gsl_interp_eval_deriv (spline->interp, spline->x, spline->y, x, a); } int gsl_spline_eval_deriv2_e (const gsl_spline * spline, double x, gsl_interp_accel * a, double * d2) { return gsl_interp_eval_deriv2_e (spline->interp, spline->x, spline->y, x, a, d2); } double gsl_spline_eval_deriv2 (const gsl_spline * spline, double x, gsl_interp_accel * a) { return gsl_interp_eval_deriv2 (spline->interp, spline->x, spline->y, x, a); } int gsl_spline_eval_integ_e (const gsl_spline * spline, double a, double b, gsl_interp_accel * acc, double * result) { return gsl_interp_eval_integ_e (spline->interp, spline->x, spline->y, a, b, acc, result); } double gsl_spline_eval_integ (const gsl_spline * spline, double a, double b, gsl_interp_accel * acc) { return gsl_interp_eval_integ (spline->interp, spline->x, spline->y, a, b, acc); } gsl-1.16/interpolation/accel.c0000664000252300025230000000271012171574312013254 00000000000000/* interpolation/accel.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include gsl_interp_accel * gsl_interp_accel_alloc (void) { gsl_interp_accel *a = (gsl_interp_accel *) malloc (sizeof (gsl_interp_accel)); if (a == 0) { GSL_ERROR_NULL("could not allocate space for gsl_interp_accel", GSL_ENOMEM); } a->cache = 0; a->hit_count = 0; a->miss_count = 0; return a; } int gsl_interp_accel_reset (gsl_interp_accel * a) { a->cache = 0; a->hit_count = 0; a->miss_count = 0; return GSL_SUCCESS; } void gsl_interp_accel_free (gsl_interp_accel * a) { RETURN_IF_NULL (a); free (a); } gsl-1.16/ieee-utils/0000775000252300025230000000000012172254156011301 500000000000000gsl-1.16/ieee-utils/standardize.c0000664000252300025230000000257612171574312013705 00000000000000/* ieee-utils/standardize.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static void make_float_bigendian (float * x); static void make_double_bigendian (double * x); static void make_float_bigendian (float * x) { union { float f; unsigned char b[4]; } u,v; u.f = *x ; v.b[0]=u.b[3] ; v.b[1]=u.b[2] ; v.b[2]=u.b[1] ; v.b[3]=u.b[0] ; *x=v.f ; } static void make_double_bigendian (double * x) { union { double d; unsigned char b[8]; } u,v; u.d = *x ; v.b[0]=u.b[7] ; v.b[1]=u.b[6] ; v.b[2]=u.b[5] ; v.b[3]=u.b[4] ; v.b[4]=u.b[3] ; v.b[5]=u.b[2] ; v.b[6]=u.b[1] ; v.b[7]=u.b[0] ; *x=v.d ; } gsl-1.16/ieee-utils/endian.c0000664000252300025230000000216612171574312012626 00000000000000/* ieee-utils/endian.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include static int little_endian_p (void) ; static int little_endian_p (void) { /* Are we little or big endian? From Harbison & Steele. */ union { long l; char c[sizeof (long)]; } u; u.l = 1; return (u.c[sizeof (long) - 1] == 1); } gsl-1.16/ieee-utils/TODO0000664000252300025230000000016412171574312011710 00000000000000# -*- org -*- #+CATEGORY: ieee-utils * Fix up ieee-utils/fp-m68klinux.c for correct behavior and actually test it. gsl-1.16/ieee-utils/fp-irix.c0000664000252300025230000000542012171574312012742 00000000000000/* ieee-utils/fp-irix.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Tim Mooney * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_except mode = 0 ; fp_rnd rnd = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("IRIX only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("IRIX only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("IRIX only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RP ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ ; fpsetround (rnd) ; break ; default: rnd = FP_RN ; fpsetround (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("IRIX does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP ; } else { mode &= ~ FP_X_IMP ; } fpsetmask (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/test.c0000664000252300025230000003510512171574312012346 00000000000000/* ieee-utils/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #if HAVE_IRIX_IEEE_INTERFACE /* don't test denormals on IRIX */ #else #if HAVE_IEEE_DENORMALS #define TEST_DENORMAL 1 #endif #endif #ifndef FLT_MIN #define FLT_MIN 1.17549435e-38f #endif #ifndef FLT_MAX #define FLT_MAX 3.40282347e+38f #endif #ifndef DBL_MIN #define DBL_MIN 2.2250738585072014e-308 #endif #ifndef DBL_MAX #define DBL_MAX 1.7976931348623157e+308 #endif int main (void) { float zerof = 0.0f, minus_onef = -1.0f ; double zero = 0.0, minus_one = -1.0 ; /* Check for +ZERO (float) */ { float f = 0.0f; const char mantissa[] = "00000000000000000000000"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = 0, sign is +"); gsl_test_int (r.exponent, -127, "float x = 0, exponent is -127"); gsl_test_str (r.mantissa, mantissa, "float x = 0, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_ZERO, "float x = 0, type is ZERO"); } /* Check for -ZERO (float) */ { float f = minus_onef; const char mantissa[] = "00000000000000000000000"; gsl_ieee_float_rep r; while (f < 0) { f *= 0.1f; } gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 1, "float x = -1*0, sign is -"); gsl_test_int (r.exponent, -127, "float x = -1*0, exponent is -127"); gsl_test_str (r.mantissa, mantissa, "float x = -1*0, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_ZERO, "float x = -1*0, type is ZERO"); } /* Check for a positive NORMAL number (e.g. 2.1) (float) */ { float f = 2.1f; const char mantissa[] = "00001100110011001100110"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = 2.1, sign is +"); gsl_test_int (r.exponent, 1, "float x = 2.1, exponent is 1"); gsl_test_str (r.mantissa, mantissa, "float x = 2.1, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = 2.1, type is NORMAL"); } /* Check for a negative NORMAL number (e.g. -1.3304...) (float) */ { float f = -1.3303577090924210f ; const char mantissa[] = "01010100100100100101001"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 1, "float x = -1.3304..., sign is -"); gsl_test_int (r.exponent, 0, "float x = -1.3304..., exponent is 0"); gsl_test_str (r.mantissa, mantissa, "float x = -1.3304..., mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = -1.3304..., type is NORMAL"); } /* Check for a large positive NORMAL number (e.g. 3.37e31) (float) */ { float f = 3.37e31f; const char mantissa[] = "10101001010110101001001"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = 3.37e31, sign is +"); gsl_test_int (r.exponent, 104, "float x = 3.37e31, exponent is 104"); gsl_test_str (r.mantissa, mantissa, "float x = 3.37e31, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = 3.37e31, type is NORMAL"); } /* Check for a small positive NORMAL number (e.g. 3.37e-31) (float) */ { float f = 3.37e-31f; const char mantissa[] = "10110101011100110111011"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = 3.37e-31, sign is +"); gsl_test_int (r.exponent, -102, "float x = 3.37e-31, exponent is -102"); gsl_test_str (r.mantissa, mantissa, "float x = 3.37e-31, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = 3.37e-31, type is NORMAL"); } /* Check for FLT_MIN (smallest possible number that is not denormal) */ { float f = FLT_MIN; const char mantissa[] = "00000000000000000000000"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = FLT_MIN, sign is +"); gsl_test_int (r.exponent, -126, "float x = FLT_MIN, exponent is -126"); gsl_test_str (r.mantissa, mantissa, "float x = FLT_MIN, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = FLT_MIN, type is NORMAL"); } /* Check for FLT_MAX (largest possible number that is not Inf) */ { float f = FLT_MAX; const char mantissa[] = "11111111111111111111111"; gsl_ieee_float_rep r; gsl_ieee_float_to_rep (&f, &r); gsl_test_int (r.sign, 0, "float x = FLT_MAX, sign is +"); gsl_test_int (r.exponent, 127, "float x = FLT_MAX, exponent is 127"); gsl_test_str (r.mantissa, mantissa, "float x = FLT_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "float x = FLT_MAX, type is NORMAL"); } /* Check for DENORMAL numbers (e.g. FLT_MIN/2^n) */ #ifdef TEST_DENORMAL { float f = FLT_MIN; char mantissa[] = "10000000000000000000000"; int i; gsl_ieee_float_rep r; for (i = 0; i < 23; i++) { float x = f / (float)pow (2.0, 1 + (float) i); mantissa[i] = '1'; gsl_ieee_float_to_rep (&x, &r); gsl_test_int (r.sign, 0, "float x = FLT_MIN/2^%d, sign is +", i + 1); gsl_test_int (r.exponent, -127, "float x = FLT_MIN/2^%d, exponent is -127", i + 1); gsl_test_str (r.mantissa, mantissa, "float x = FLT_MIN/2^%d, mantissa", i + 1); gsl_test_int (r.type, GSL_IEEE_TYPE_DENORMAL, "float x = FLT_MIN/2^%d, type is DENORMAL", i + 1); mantissa[i] = '0'; } } #endif /* Check for positive INFINITY (e.g. 2*FLT_MAX) */ { float f = FLT_MAX; const char mantissa[] = "00000000000000000000000"; gsl_ieee_float_rep r; float x; x = 2 * f; gsl_ieee_float_to_rep (&x, &r); gsl_test_int (r.sign, 0, "float x = 2*FLT_MAX, sign is +"); gsl_test_int (r.exponent, 128, "float x = 2*FLT_MAX, exponent is 128"); gsl_test_str (r.mantissa, mantissa, "float x = 2*FLT_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_INF, "float x = -2*FLT_MAX, type is INF"); } /* Check for negative INFINITY (e.g. -2*FLT_MAX) */ { float f = FLT_MAX; const char mantissa[] = "00000000000000000000000"; gsl_ieee_float_rep r; float x; x = -2 * f; gsl_ieee_float_to_rep (&x, &r); gsl_test_int (r.sign, 1, "float x = -2*FLT_MAX, sign is -"); gsl_test_int (r.exponent, 128, "float x = -2*FLT_MAX, exponent is 128"); gsl_test_str (r.mantissa, mantissa, "float x = -2*FLT_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_INF, "float x = -2*FLT_MAX, type is INF"); } /* Check for NAN (e.g. Inf - Inf) (float) */ { gsl_ieee_float_rep r; float x = 1.0f, y = 2.0f, z = zerof; x = x / z; y = y / z; z = y - x; gsl_ieee_float_to_rep (&z, &r); /* We don't check the sign and we don't check the mantissa because they could be anything for a NaN */ gsl_test_int (r.exponent, 128, "float x = NaN, exponent is 128"); gsl_test_int (r.type, GSL_IEEE_TYPE_NAN, "float x = NaN, type is NAN"); } /* Check for +ZERO */ { double d = 0.0; const char mantissa[] = "0000000000000000000000000000000000000000000000000000"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = 0, sign is +"); gsl_test_int (r.exponent, -1023, "double x = 0, exponent is -1023"); gsl_test_str (r.mantissa, mantissa, "double x = 0, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_ZERO, "double x = 0, type is ZERO"); } /* Check for -ZERO */ { double d = minus_one; const char mantissa[] = "0000000000000000000000000000000000000000000000000000"; gsl_ieee_double_rep r; while (d < 0) { d *= 0.1; } gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 1, "double x = -1*0, sign is -"); gsl_test_int (r.exponent, -1023, "double x = -1*0, exponent is -1023"); gsl_test_str (r.mantissa, mantissa, "double x = -1*0, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_ZERO, "double x = -1*0, type is ZERO"); } /* Check for a positive NORMAL number (e.g. 2.1) */ { double d = 2.1; const char mantissa[] = "0000110011001100110011001100110011001100110011001101"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = 2.1, sign is +"); gsl_test_int (r.exponent, 1, "double x = 2.1, exponent is 1"); gsl_test_str (r.mantissa, mantissa, "double x = 2.1, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = 2.1, type is NORMAL"); } /* Check for a negative NORMAL number (e.g. -1.3304...) */ { double d = -1.3303577090924210146738460025517269968986511230468750; const char mantissa[] = "0101010010010010010100101010010010001000100011101110"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 1, "double x = -1.3304..., sign is -"); gsl_test_int (r.exponent, 0, "double x = -1.3304..., exponent is 0"); gsl_test_str (r.mantissa, mantissa, "double x = -1.3304..., mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = -1.3304..., type is NORMAL"); } /* Check for a large positive NORMAL number (e.g. 3.37e297) */ { double d = 3.37e297; const char mantissa[] = "0100100111001001100101111001100000100110011101000100"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = 3.37e297, sign is +"); gsl_test_int (r.exponent, 988, "double x = 3.37e297, exponent is 998"); gsl_test_str (r.mantissa, mantissa, "double x = 3.37e297, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = 3.37e297, type is NORMAL"); } /* Check for a small positive NORMAL number (e.g. 3.37e-297) */ { double d = 3.37e-297; const char mantissa[] = "0001101000011011101011100001110010100001001100110111"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = 3.37e-297, sign is +"); gsl_test_int (r.exponent, -985, "double x = 3.37e-297, exponent is -985"); gsl_test_str (r.mantissa, mantissa, "double x = 3.37e-297, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = 3.37e-297, type is NORMAL"); } /* Check for DBL_MIN (smallest possible number that is not denormal) */ { double d = DBL_MIN; const char mantissa[] = "0000000000000000000000000000000000000000000000000000"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = DBL_MIN, sign is +"); gsl_test_int (r.exponent, -1022, "double x = DBL_MIN, exponent is -1022"); gsl_test_str (r.mantissa, mantissa, "double x = DBL_MIN, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = DBL_MIN, type is NORMAL"); } /* Check for DBL_MAX (largest possible number that is not Inf) */ { double d = DBL_MAX; const char mantissa[] = "1111111111111111111111111111111111111111111111111111"; gsl_ieee_double_rep r; gsl_ieee_double_to_rep (&d, &r); gsl_test_int (r.sign, 0, "double x = DBL_MAX, sign is +"); gsl_test_int (r.exponent, 1023, "double x = DBL_MAX, exponent is 1023"); gsl_test_str (r.mantissa, mantissa, "double x = DBL_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_NORMAL, "double x = DBL_MAX, type is NORMAL"); } /* Check for DENORMAL numbers (e.g. DBL_MIN/2^n) */ #ifdef TEST_DENORMAL { double d = DBL_MIN; char mantissa[] = "1000000000000000000000000000000000000000000000000000"; int i; gsl_ieee_double_rep r; for (i = 0; i < 52; i++) { double x = d / pow (2.0, 1 + (double) i); mantissa[i] = '1'; gsl_ieee_double_to_rep (&x, &r); gsl_test_int (r.sign, 0, "double x = DBL_MIN/2^%d, sign is +", i + 1); gsl_test_int (r.exponent, -1023, "double x = DBL_MIN/2^%d, exponent", i + 1); gsl_test_str (r.mantissa, mantissa, "double x = DBL_MIN/2^%d, mantissa", i + 1); gsl_test_int (r.type, GSL_IEEE_TYPE_DENORMAL, "double x = DBL_MIN/2^%d, type is DENORMAL", i + 1); mantissa[i] = '0'; } } #endif /* Check for positive INFINITY (e.g. 2*DBL_MAX) */ { double d = DBL_MAX; const char mantissa[] = "0000000000000000000000000000000000000000000000000000"; gsl_ieee_double_rep r; double x; x = 2.0 * d; gsl_ieee_double_to_rep (&x, &r); gsl_test_int (r.sign, 0, "double x = 2*DBL_MAX, sign is +"); gsl_test_int (r.exponent, 1024, "double x = 2*DBL_MAX, exponent is 1024"); gsl_test_str (r.mantissa, mantissa, "double x = 2*DBL_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_INF, "double x = 2*DBL_MAX, type is INF"); } /* Check for negative INFINITY (e.g. -2*DBL_MAX) */ { double d = DBL_MAX; const char mantissa[] = "0000000000000000000000000000000000000000000000000000"; gsl_ieee_double_rep r; double x; x = -2.0 * d; gsl_ieee_double_to_rep (&x, &r); gsl_test_int (r.sign, 1, "double x = -2*DBL_MAX, sign is -"); gsl_test_int (r.exponent, 1024, "double x = -2*DBL_MAX, exponent is 1024"); gsl_test_str (r.mantissa, mantissa, "double x = -2*DBL_MAX, mantissa"); gsl_test_int (r.type, GSL_IEEE_TYPE_INF,"double x = -2*DBL_MAX, type is INF"); } /* Check for NAN (e.g. Inf - Inf) */ { gsl_ieee_double_rep r; double x = 1.0, y = 2.0, z = zero; x = x / z; y = y / z; z = y - x; gsl_ieee_double_to_rep (&z, &r); /* We don't check the sign and we don't check the mantissa because they could be anything for a NaN */ gsl_test_int (r.exponent, 1024, "double x = NaN, exponent is 1024"); gsl_test_int (r.type, GSL_IEEE_TYPE_NAN, "double x = NaN, type is NAN"); } exit (gsl_test_summary ()); } gsl-1.16/ieee-utils/fp-freebsd.c0000664000252300025230000000466012171574312013406 00000000000000/* ieee-utils/fp-freebsd.c * * Copyright (C) 2000 Vladimir Kushnir * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_prec_t prec = 0 ; fp_except_t mode = 0 ; fp_rnd_t rnd = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: prec = FP_PS; fpsetprec(prec); break ; case GSL_IEEE_DOUBLE_PRECISION: prec = FP_PD; fpsetprec(prec); break ; case GSL_IEEE_EXTENDED_PRECISION: prec = FP_PE; fpsetprec(prec); break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RP ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ ; fpsetround (rnd) ; break ; default: rnd = FP_RN ; fpsetround (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = FP_X_INV | FP_X_DNML | FP_X_DZ | FP_X_OFL | FP_X_UFL ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) mode &= ~ FP_X_DNML ; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP ; } else { mode &= ~ FP_X_IMP ; } fpsetmask (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/gsl_ieee_utils.h0000664000252300025230000000523312171574312014367 00000000000000/* ieee-utils/gsl_ieee_utils.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_IEEE_UTILS_H__ #define __GSL_IEEE_UTILS_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS enum { GSL_IEEE_TYPE_NAN = 1, GSL_IEEE_TYPE_INF = 2, GSL_IEEE_TYPE_NORMAL = 3, GSL_IEEE_TYPE_DENORMAL = 4, GSL_IEEE_TYPE_ZERO = 5 } ; typedef struct { int sign ; char mantissa[24] ; /* Actual bits are 0..22, element 23 is \0 */ int exponent ; int type ; } gsl_ieee_float_rep ; typedef struct { int sign ; char mantissa[53] ; /* Actual bits are 0..51, element 52 is \0 */ int exponent ; int type ; } gsl_ieee_double_rep ; void gsl_ieee_printf_float (const float * x) ; void gsl_ieee_printf_double (const double * x) ; void gsl_ieee_fprintf_float (FILE * stream, const float * x) ; void gsl_ieee_fprintf_double (FILE * stream, const double * x) ; void gsl_ieee_float_to_rep (const float * x, gsl_ieee_float_rep * r) ; void gsl_ieee_double_to_rep (const double * x, gsl_ieee_double_rep * r) ; enum { GSL_IEEE_SINGLE_PRECISION = 1, GSL_IEEE_DOUBLE_PRECISION = 2, GSL_IEEE_EXTENDED_PRECISION = 3 } ; enum { GSL_IEEE_ROUND_TO_NEAREST = 1, GSL_IEEE_ROUND_DOWN = 2, GSL_IEEE_ROUND_UP = 3, GSL_IEEE_ROUND_TO_ZERO = 4 } ; enum { GSL_IEEE_MASK_INVALID = 1, GSL_IEEE_MASK_DENORMALIZED = 2, GSL_IEEE_MASK_DIVISION_BY_ZERO = 4, GSL_IEEE_MASK_OVERFLOW = 8, GSL_IEEE_MASK_UNDERFLOW = 16, GSL_IEEE_MASK_ALL = 31, GSL_IEEE_TRAP_INEXACT = 32 } ; void gsl_ieee_env_setup (void) ; int gsl_ieee_read_mode_string (const char * description, int * precision, int * rounding, int * exception_mask) ; int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) ; __END_DECLS #endif /* __GSL_IEEE_UTILS_H__ */ gsl-1.16/ieee-utils/fp-gnux86.c0000664000252300025230000000545612171574312013137 00000000000000/* ieee-utils/fp-gnux86.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* Handle libc5, where _FPU_SETCW is not available, suggested by OKUJI Yoshinori and Evgeny Stambulchik */ #ifndef _FPU_SETCW #include #define _FPU_SETCW(cw) __setfpucw(cw) #endif int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned short mode = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: mode |= _FPU_SINGLE ; break ; case GSL_IEEE_DOUBLE_PRECISION: mode |= _FPU_DOUBLE ; break ; case GSL_IEEE_EXTENDED_PRECISION: mode |= _FPU_EXTENDED ; break ; default: mode |= _FPU_EXTENDED ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: mode |= _FPU_RC_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: mode |= _FPU_RC_DOWN ; break ; case GSL_IEEE_ROUND_UP: mode |= _FPU_RC_UP ; break ; case GSL_IEEE_ROUND_TO_ZERO: mode |= _FPU_RC_ZERO ; break ; default: mode |= _FPU_RC_NEAREST ; } if (exception_mask & GSL_IEEE_MASK_INVALID) mode |= _FPU_MASK_IM ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) mode |= _FPU_MASK_DM ; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode |= _FPU_MASK_ZM ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode |= _FPU_MASK_OM ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode |= _FPU_MASK_UM ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode &= ~ _FPU_MASK_PM ; } else { mode |= _FPU_MASK_PM ; } _FPU_SETCW(mode) ; #if HAVE_FPU_X86_SSE #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (*&cw_sse)) { unsigned int mode_sse = 0; mode_sse |= (mode & 0x3f)<<7; /* exception masks */ mode_sse |= (mode & 0xc00)<<3; /* rounding control */ _FPU_SETMXCSR(mode_sse); } #endif return GSL_SUCCESS ; } gsl-1.16/ieee-utils/Makefile.in0000664000252300025230000010442112172253755013274 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = ieee-utils DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslieeeutils_la_LIBADD = am_libgslieeeutils_la_OBJECTS = print.lo make_rep.lo env.lo fp.lo \ read.lo libgslieeeutils_la_OBJECTS = $(am_libgslieeeutils_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslieeeutils_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslieeeutils_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslieeeutils.la pkginclude_HEADERS = gsl_ieee_utils.h libgslieeeutils_la_SOURCES = print.c make_rep.c gsl_ieee_utils.h env.c fp.c read.c noinst_HEADERS = fp-aix.c fp-darwin.c fp-darwin86.c fp-hpux.c fp-hpux11.c fp-irix.c fp-gnum68k.c fp-gnuppc.c fp-solaris.c fp-gnusparc.c fp-sunos4.c fp-tru64.c fp-unknown.c fp-gnux86.c fp-freebsd.c fp-os2emx.c fp-netbsd.c fp-openbsd.c fp-gnuc99.c endian.c standardize.c INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) test_LDADD = libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu ieee-utils/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu ieee-utils/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslieeeutils.la: $(libgslieeeutils_la_OBJECTS) $(libgslieeeutils_la_DEPENDENCIES) $(EXTRA_libgslieeeutils_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslieeeutils_la_OBJECTS) $(libgslieeeutils_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/env.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/make_rep.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/print.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/read.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/ieee-utils/fp-openbsd.c0000664000252300025230000000575112171574312013430 00000000000000/* fp-openbsd.c * * Copyright (C) 2001 Jason Beegan * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* This is a copy of fp-netbsd.c, modified for openbsd by Toby White --- Brian Gough */ int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_except mode = 0; fp_rnd rnd = 0; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("OpenBSD only supports default precision rounding", GSL_EUNSUP); break; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("OpenBSD only supports default precision rounding", GSL_EUNSUP); break; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("OpenBSD only supports default precision rounding", GSL_EUNSUP); break; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN; fpsetround (rnd); break; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM; fpsetround (rnd); break; case GSL_IEEE_ROUND_UP: rnd = FP_RP; fpsetround (rnd); break; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ; fpsetround (rnd); break; default: rnd = FP_RN; fpsetround (rnd); } /* Turn on all available exceptions apart from 'inexact'. Denormalized operand exception not available on all platforms. */ mode = FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL; #ifdef FP_X_DNML mode = mode | FP_X_DNML; #endif if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { #ifdef FP_X_DNML mode &= ~ FP_X_DNML; #endif } else { #ifndef FP_X_DNML GSL_ERROR ("OpenBSD does not support the denormalized operand exception on this platform. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP; } else { mode &= ~ FP_X_IMP; } fpsetmask (mode); return GSL_SUCCESS; } gsl-1.16/ieee-utils/fp-gnuc99.c0000664000252300025230000001046012171574312013105 00000000000000/* ieee-utils/fp-gnuc99.c * * Copyright (C) 2003, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #define _GNU_SOURCE 1 #include #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { int mode; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("single precision rounding is not supported by ", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("double precision rounding is not supported by ", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("extended precision rounding is not supported by ", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: #ifdef FE_TONEAREST fesetround (FE_TONEAREST) ; #else GSL_ERROR ("round-to-nearest is not supported by ", GSL_EUNSUP) ; #endif break ; case GSL_IEEE_ROUND_DOWN: #ifdef FE_DOWNWARD fesetround (FE_DOWNWARD) ; #else GSL_ERROR ("round-down is not supported by ", GSL_EUNSUP) ; #endif break ; case GSL_IEEE_ROUND_UP: #ifdef FE_UPWARD fesetround (FE_UPWARD) ; #else GSL_ERROR ("round-up is not supported by ", GSL_EUNSUP) ; #endif break ; case GSL_IEEE_ROUND_TO_ZERO: #ifdef FE_TOWARDZERO fesetround (FE_TOWARDZERO) ; #else GSL_ERROR ("round-toward-zero is not supported by ", GSL_EUNSUP) ; #endif break ; default: #ifdef FE_TONEAREST fesetround (FE_TONEAREST) ; #else GSL_ERROR ("default round-to-nearest mode is not supported by ", GSL_EUNSUP) ; #endif } /* Turn on all the exceptions apart from 'inexact' */ mode = 0; #ifdef FE_INVALID mode |= FE_INVALID; #endif #ifdef FE_DIVBYZERO mode |= FE_DIVBYZERO; #endif #ifdef FE_OVERFLOW mode |= FE_OVERFLOW ; #endif #ifdef FE_UNDERFLOW mode |= FE_UNDERFLOW ; #endif if (exception_mask & GSL_IEEE_MASK_INVALID) { #ifdef FE_INVALID mode &= ~ FE_INVALID ; #else GSL_ERROR ("invalid operation exception not supported by ", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("denormalized operand exception not supported by . " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) { #ifdef FE_DIVBYZERO mode &= ~ FE_DIVBYZERO ; #else GSL_ERROR ("division by zero exception not supported by ", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_MASK_OVERFLOW) { #ifdef FE_OVERFLOW mode &= ~ FE_OVERFLOW ; #else GSL_ERROR ("overflow exception not supported by ", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) { #ifdef FE_UNDERFLOW mode &= ~ FE_UNDERFLOW ; #else GSL_ERROR ("underflow exception not supported by ", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_TRAP_INEXACT) { #ifdef FE_INEXACT mode |= FE_INEXACT ; #else GSL_ERROR ("inexact exception not supported by ", GSL_EUNSUP); #endif } else { #ifdef FE_INEXACT mode &= ~ FE_INEXACT ; #else /* do nothing */ #endif } #if HAVE_DECL_FEENABLEEXCEPT feenableexcept (mode) ; #elif HAVE_DECL_FESETTRAPENABLE fesettrapenable (mode); #else GSL_ERROR ("unknown exception trap method", GSL_EUNSUP) #endif return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-solaris.c0000664000252300025230000000544612171574312013453 00000000000000/* ieee-utils/fp-solaris.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_except mode = 0 ; fp_rnd rnd = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("solaris only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("solaris only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("solaris only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RP ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ ; fpsetround (rnd) ; break ; default: rnd = FP_RN ; fpsetround (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("solaris does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP ; } else { mode &= ~ FP_X_IMP ; } fpsetmask (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/ChangeLog0000664000252300025230000001661212171574312012777 000000000000002010-11-06 Brian Gough * fp-aix.c: added workaround for AIX problems (D. Kirby) 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2007-06-21 Brian Gough * fp.c: allow universal binaries by checking __ppc__ and __i386__ preprocessor definitions on Darwin 2007-04-23 Brian Gough * fp-gnux86.c (gsl_ieee_set_mode): added support for MXCSR register 2005-02-11 Brian Gough * fp-gnuc99.c (gsl_ieee_set_mode): added an #ifdef for the default round to nearest mode 2003-12-20 Brian Gough * fp-gnuc99.c (_GNU_SOURCE): define _GNU_SOURCE when including fenv.h 2003-07-21 Brian Gough * read.c (gsl_ieee_read_mode_string): added missing mask-division-by-zero to error message 2003-06-14 Brian Gough * fp-m68klinux.c fp-ppclinux.c fp-sparclinux.c fp-x86linux.c: renamed to fp-gnum68k.c fp-gnuppc.c fp-gnusparc.c fp-gnux86.c since they are dependent on the GNU C Library interface rather than the kernel interface * fp-gnuc99.c: added a fallback to the C99 exception functions for cases where the operating system is not recognized Mon Aug 26 20:57:29 2002 Brian Gough * test.c: use system values for FLT_MIN, FLT_MAX, DBL_MIN, DBL_MAX Sat May 11 22:30:43 2002 Brian Gough * test.c (TEST_DENORMAL): test denormals only when available, as tested in configure script Mon Sep 10 14:23:52 2001 Brian Gough * fp-netbsd.c fp-openbsd.c (gsl_ieee_set_mode): tried to correct the logic for the denormalized exception. Tue Jul 10 13:10:12 2001 Brian Gough * env.c (gsl_ieee_env_setup): send GSL_IEEE_MODE output to stderr Tue Jun 26 10:44:13 2001 Brian Gough * fp-netbsd.c (gsl_ieee_set_mode): simplified, patch from Jason Beegan * fp-openbsd.c (gsl_ieee_set_mode): simplified Mon Jun 25 20:47:33 2001 Brian Gough * fp-openbsd.c (gsl_ieee_set_mode): added support for openbsd Tue May 8 10:49:58 2001 Brian Gough * fp-aix.c: changed macros from TRAP_ to TRP_.. Fri Apr 13 15:07:10 2001 Brian Gough * fp-darwin.c: added darwin support from Rodney Sparapani Wed Mar 28 13:12:20 2001 Brian Gough * fp-netbsd.c: added netbsd support from Jason Beegan Thu Mar 15 14:11:29 2001 Brian Gough * fp-hpux11.c: added support for HPUX11 Fri Mar 2 16:58:36 2001 Brian Gough * fp-os2emx.c: add ieee support for OS/2 from Henry Sobotka Thu Jul 20 19:41:56 2000 Brian Gough * fp-freebsd.c (gsl_ieee_set_mode): added fp-freebsd.c from Vladimir Kushnir Mon Jun 12 19:23:53 2000 Brian Gough * Makefile.am (noinst_HEADERS): added aix and irix to makefile * fp-x86linux.c (gsl_ieee_set_mode): Handle libc5, where _FPU_SETCW is not available, by defining the macro. Suggested by OKUJI Yoshinori Wed Jun 7 19:18:15 2000 Brian Gough * fp-ppclinux.c: added support for ppc linux Tue Jun 6 19:59:50 2000 Brian Gough * fp-x86linux.c: renamed from fp-linux.c Thu May 18 11:53:13 2000 Brian Gough * test.c: turned off tests for denormals on irix, since they are supported * fp.c: added IRIX and AIX to the top-level fp.c file -- somehow they had been forgotten! 2000-05-14 Steve Robbins * fp-tru64.c: include `/usr/include/float.h', if necessary for picking up FP_RND_RN and friends. Sun Apr 2 14:25:52 2000 Brian Gough * fp-m68klinux.c: added file for m68k support (not complete, some macros need to be checked) Thu Mar 16 15:34:08 2000 Brian Gough * read.c (gsl_ieee_read_mode_string): changed token separator to , instead of ; Thu Feb 24 19:20:50 2000 Brian Gough * fp-tru64.c (gsl_ieee_set_mode): added an #ifdef for IEEE_TRAP_ENABLE_DNO, which may or may not be defined depending on the version of Digital Unix. Mon Feb 14 14:03:22 2000 Brian Gough * made internal functions static and removed redundant functions Fri Nov 5 15:01:55 1999 Brian Gough * fp-sparclinux.c: added support for sparclinux Thu Oct 7 13:03:00 1999 Brian Gough * make_rep.c: more careful conversion from unsigned to signed integer for sign attribute to prevent warnings Sat Aug 21 01:05:01 1999 Tim Mooney * fp-aix.c: added, based on fp-solaris. Fri Aug 20 12:17:53 1999 Brian Gough * fp-tru64.c (gsl_ieee_set_mode): note that INEXACT is not easily supported on Tru64, and give an error if anyone tries to use it Wed Aug 18 21:36:01 1999 Tim Mooney * fp-irix.c: added, based on fp-solaris. IRIX 6 has a rounding and exception interface that is identical to Solaris, right down to the enums. Tue Aug 17 18:36:01 1999 Tim Mooney * fp-tru64.c: added, based on solaris and HP-UX fp-* files. Rounding mode and trap control requires that the compiler be passed special options, see the comments in fp-tru64.c. Fri Jul 23 19:00:51 1999 Brian Gough * print.c: added fprintf versions of the printf functions Sat May 8 20:39:28 1999 Brian Gough * fp-linux.c (gsl_ieee_set_mode): changed from using the function __fput_setcw() to the macro _FPU_SETCW() since Khimenko Victor reports that __setfpucw() is not in the shared lib version of glibc-2.1.1 Fri Apr 2 20:52:59 1999 Brian Gough * endian.c (setup_dynamic_endianness): removed useless test, u.c[i]<0 for unsigned Fri Aug 21 15:36:22 1998 Brian Gough * fp-unknown.c (gsl_ieee_set_mode): made return type int, as it should be Mon Jun 15 22:02:00 1998 Brian Gough * renamed read-mode-string.c to read.c and print-ieee.c to print.c Tue Jun 2 19:29:34 1998 Brian Gough * gsl_ieee_utils.h: renamed GSL_IEEE_CATCH_INEXACT to GSL_IEEE_TRAP_INEXACT, which is a better name Mon Jun 1 15:27:08 1998 Brian Gough * fp-sunos4.c: support for sunos4 IEEE interface * fp-solaris.c: support for solaris IEEE interface * renamed fp-mode-string.c to fp-env.c, in order to avoid short filename problems * added support for setting the IEEE mode from the environment variable GSL_IEEE_MODE (only works for the Linux kernel so far) Mon May 18 16:20:17 1998 Brian Gough * The determination of endianness is now done on each call instead of at configure time (autoconf complains about what would happen to the test if it were cross compiling). Ok, so it's a bit slower but this isn't a performance critical routine. Sat May 16 23:10:09 1998 Brian Gough * This directory contains some routines for examining IEEE format numbers at the bit level gsl-1.16/ieee-utils/env.c0000664000252300025230000000572512171574312012164 00000000000000/* ieee-utils/env.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include void gsl_ieee_env_setup (void) { const char * p = getenv("GSL_IEEE_MODE") ; int precision = 0, rounding = 0, exception_mask = 0 ; int comma = 0 ; if (p == 0) /* GSL_IEEE_MODE environment variable is not set */ return ; if (*p == '\0') /* GSL_IEEE_MODE environment variable is empty */ return ; gsl_ieee_read_mode_string (p, &precision, &rounding, &exception_mask) ; gsl_ieee_set_mode (precision, rounding, exception_mask) ; fprintf(stderr, "GSL_IEEE_MODE=\"") ; /* Print string with a preceeding comma if the list has already begun */ #define PRINTC(x) do {if(comma) fprintf(stderr,","); fprintf(stderr,x); comma++ ;} while(0) switch (precision) { case GSL_IEEE_SINGLE_PRECISION: PRINTC("single-precision") ; break ; case GSL_IEEE_DOUBLE_PRECISION: PRINTC("double-precision") ; break ; case GSL_IEEE_EXTENDED_PRECISION: PRINTC("extended-precision") ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: PRINTC("round-to-nearest") ; break ; case GSL_IEEE_ROUND_DOWN: PRINTC("round-down") ; break ; case GSL_IEEE_ROUND_UP: PRINTC("round-up") ; break ; case GSL_IEEE_ROUND_TO_ZERO: PRINTC("round-to-zero") ; break ; } if ((exception_mask & GSL_IEEE_MASK_ALL) == GSL_IEEE_MASK_ALL) { PRINTC("mask-all") ; } else if ((exception_mask & GSL_IEEE_MASK_ALL) == 0) { PRINTC("trap-common") ; } else { if (exception_mask & GSL_IEEE_MASK_INVALID) PRINTC("mask-invalid") ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) PRINTC("mask-denormalized") ; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) PRINTC("mask-division-by-zero") ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) PRINTC("mask-overflow") ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) PRINTC("mask-underflow") ; } if (exception_mask & GSL_IEEE_TRAP_INEXACT) PRINTC("trap-inexact") ; fprintf(stderr,"\"\n") ; } gsl-1.16/ieee-utils/fp-gnusparc.c0000664000252300025230000000466212171574312013620 00000000000000/* ieee-utils/fp-gnusparc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned short mode = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: mode |= _FPU_SINGLE ; break ; case GSL_IEEE_DOUBLE_PRECISION: mode |= _FPU_DOUBLE ; break ; case GSL_IEEE_EXTENDED_PRECISION: mode |= _FPU_EXTENDED ; break ; default: mode |= _FPU_EXTENDED ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: mode |= _FPU_RC_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: mode |= _FPU_RC_DOWN ; break ; case GSL_IEEE_ROUND_UP: mode |= _FPU_RC_UP ; break ; case GSL_IEEE_ROUND_TO_ZERO: mode |= _FPU_RC_ZERO ; break ; default: mode |= _FPU_RC_NEAREST ; } if (exception_mask & GSL_IEEE_MASK_INVALID) mode |= _FPU_MASK_IM ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("sparc does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode |= _FPU_MASK_ZM ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode |= _FPU_MASK_OM ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode |= _FPU_MASK_UM ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode &= ~ _FPU_MASK_PM ; } else { mode |= _FPU_MASK_PM ; } _FPU_SETCW(mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-unknown.c0000664000252300025230000000213112171574312013462 00000000000000/* ieee-utils/fp-unknown.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { GSL_ERROR ( "the IEEE interface for this platform is unsupported or could not be " "determined at configure time\n", GSL_EUNSUP) ; } gsl-1.16/ieee-utils/Makefile.am0000664000252300025230000000121112171574312013246 00000000000000noinst_LTLIBRARIES = libgslieeeutils.la pkginclude_HEADERS = gsl_ieee_utils.h libgslieeeutils_la_SOURCES = print.c make_rep.c gsl_ieee_utils.h env.c fp.c read.c noinst_HEADERS = fp-aix.c fp-darwin.c fp-darwin86.c fp-hpux.c fp-hpux11.c fp-irix.c fp-gnum68k.c fp-gnuppc.c fp-solaris.c fp-gnusparc.c fp-sunos4.c fp-tru64.c fp-unknown.c fp-gnux86.c fp-freebsd.c fp-os2emx.c fp-netbsd.c fp-openbsd.c fp-gnuc99.c endian.c standardize.c INCLUDES = -I$(top_srcdir) TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_LDADD = libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/ieee-utils/fp-tru64.c0000664000252300025230000001317712171574312012763 00000000000000/* ieee-utils/fp-tru64.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Tim Mooney * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Under Compaq's Unix with the silly name, read the man pages for read_rnd, * write_rnd, and ieee(3) for more information on the functions used here. * * Note that enabling control of dynamic rounding mode (via write_rnd) requires * that you pass a special flag to your C compiler. For Compaq's C compiler * the flag is `-fprm d', for gcc it's `-mfp-rounding-mode=d'. * * Enabling the trap control (via ieee_set_fp_control) also requires a * flag be passed to the C compiler. The flag for Compaq's C compiler * is `-ieee' and for gcc it's `-mieee'. * We have not implemented the `inexact' case, since it is rarely used * and requires the library being built with an additional compiler * flag that can degrade performance for everything else. If you need * to add support for `inexact' the relevant flag for Compaq's * compiler is `-ieee_with_inexact', and the flag for gcc is * `-mieee-with-inexact'. * * Problem have been reported with the "fixed" float.h installed with * gcc-2.95 lacking some of the definitions in the system float.h (the * symptoms are errors like: `FP_RND_RN' undeclared). To work around * this we can include the system float.h before the gcc version, e.g. * * #include "/usr/include/float.h" * #include */ #include #ifndef FP_RND_RN # undef _FLOAT_H_ # include "/usr/include/float.h" # undef _FLOAT_H_ # include #endif #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned long int mode = 0 ; unsigned int rnd = 0 ; /* I'm actually not completely sure that the alpha only supports default * precisions rounding, but I couldn't find any information regarding this, so * it seems safe to assume this for now until it's proven otherwise. */ switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("Tru64 Unix on the alpha only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("Tru64 Unix on the alpha only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("Tru64 Unix on the alpha only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RND_RN ; write_rnd (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RND_RM ; write_rnd (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RND_RP ; write_rnd (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RND_RZ ; write_rnd (rnd) ; break ; default: rnd = FP_RND_RN ; write_rnd (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ /* from the ieee(3) man page: * IEEE_TRAP_ENABLE_INV -> Invalid operation * IEEE_TRAP_ENABLE_DZE -> Divide by 0 * IEEE_TRAP_ENABLE_OVF -> Overflow * IEEE_TRAP_ENABLE_UNF -> Underflow * IEEE_TRAP_ENABLE_INE -> Inexact (requires special option to C compiler) * IEEE_TRAP_ENABLE_DNO -> denormal operand * Note: IEEE_TRAP_ENABLE_DNO is not supported on OSF 3.x or Digital Unix * 4.0 - 4.0d(?). * IEEE_TRAP_ENABLE_MASK -> mask of all the trap enables * IEEE_MAP_DMZ -> map denormal inputs to zero * IEEE_MAP_UMZ -> map underflow results to zero */ mode = IEEE_TRAP_ENABLE_INV | IEEE_TRAP_ENABLE_DZE | IEEE_TRAP_ENABLE_OVF | IEEE_TRAP_ENABLE_UNF ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ IEEE_TRAP_ENABLE_INV ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { #ifdef IEEE_TRAP_ENABLE_DNO mode &= ~ IEEE_TRAP_ENABLE_DNO ; #else GSL_ERROR ("Sorry, this version of Digital Unix does not support denormalized operands", GSL_EUNSUP) ; #endif } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ IEEE_TRAP_ENABLE_DZE ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ IEEE_TRAP_ENABLE_OVF ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ IEEE_TRAP_ENABLE_UNF ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { /* To implement this would require a special flag to the C compiler which can cause degraded performance */ GSL_ERROR ("Sorry, GSL does not implement trap-inexact for Tru64 Unix on the alpha - see fp-tru64.c for details", GSL_EUNSUP) ; /* In case you need to add it, the appropriate line would be * * mode |= IEEE_TRAP_ENABLE_INE ; * */ } else { mode &= ~ IEEE_TRAP_ENABLE_INE ; } ieee_set_fp_control (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-hpux11.c0000664000252300025230000000536512171574312013125 00000000000000/* ieee-utils/fp-hpux11.c * * Copyright (C) 2001, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { int mode; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: fesetround (FE_TONEAREST) ; break ; case GSL_IEEE_ROUND_DOWN: fesetround (FE_DOWNWARD) ; break ; case GSL_IEEE_ROUND_UP: fesetround (FE_UPWARD) ; break ; case GSL_IEEE_ROUND_TO_ZERO: fesetround (FE_TOWARDZERO) ; break ; default: fesetround (FE_TONEAREST) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FE_INVALID ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("HP-UX does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FE_DIVBYZERO ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FE_OVERFLOW ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FE_UNDERFLOW ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FE_INEXACT ; } else { mode &= ~ FE_INEXACT ; } fesettrapenable (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-aix.c0000664000252300025230000000772012171574312012555 00000000000000/* ieee-utils/fp-aix.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Tim Mooney * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include /* GCC uses a common float.h for all platforms, and ignores all vendor specific code in float.h. That causes problems with fprnd_t, FP_RND_RZ, FP_RND_RN and FP_RND_RP on AIX. Personally I consider that a bug, and was advised by a GCC developer to report this as a bug, which I did. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=46155 However, there is not universal agreement whether this is a gcc bug, so the issue needs to be worked around on AIX. David Kirkby, 26th October 2010. */ #if !HAVE_DECL_FPRND_T typedef unsigned short fprnd_t; #endif #ifndef FP_RND_RZ #define FP_RND_RZ 0 #endif #ifndef FP_RND_RN #define FP_RND_RN 1 #endif #ifndef FP_RND_RP #define FP_RND_RP 2 #endif #ifndef FP_RND_RM #define FP_RND_RM 3 #endif int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fptrap_t mode = 0 ; fprnd_t rnd = 0 ; switch (precision) { /* I'm not positive about AIX only supporting default precision rounding, * but this is the best assumption until it's proven otherwise. */ case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("AIX only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("AIX only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("AIX only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RND_RN ; fp_swap_rnd (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RND_RM ; fp_swap_rnd (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RND_RP ; fp_swap_rnd (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RND_RZ ; fp_swap_rnd (rnd) ; break ; default: rnd = FP_RND_RN ; fp_swap_rnd (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = TRP_INVALID | TRP_DIV_BY_ZERO | TRP_OVERFLOW | TRP_UNDERFLOW ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ TRP_INVALID ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("AIX does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ TRP_DIV_BY_ZERO ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ TRP_OVERFLOW ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ TRP_UNDERFLOW ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= TRP_INEXACT ; } else { mode &= ~ TRP_INEXACT ; } /* AIX appears to require two steps -- first enable floating point traps * in general... */ fp_trap(FP_TRAP_SYNC); /* next, enable the traps we're interested in */ fp_enable(mode); return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-hpux.c0000664000252300025230000000545712171574312012765 00000000000000/* ieee-utils/fp-hpux.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_except mode = 0 ; fp_rnd rnd = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("HPUX PA-RISC only supports default precision rounding", GSL_EUNSUP) ; break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_UP: rnd = FP_RP ; fpsetround (rnd) ; break ; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ ; fpsetround (rnd) ; break ; default: rnd = FP_RN ; fpsetround (rnd) ; } /* Turn on all the exceptions apart from 'inexact' */ mode = FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("HP-UX does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP ; } else { mode &= ~ FP_X_IMP ; } fpsetmask (mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/read.c0000664000252300025230000001164112171574312012301 00000000000000/* ieee-utils/read.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include static int lookup_string (const char * p, int * precision, int * rounding, int * exception_mask) ; int gsl_ieee_read_mode_string (const char * description, int * precision, int * rounding, int * exception_mask) { char * start ; char * end; char * p; int precision_count = 0 ; int rounding_count = 0 ; int exception_count = 0 ; start = (char *) malloc(strlen(description) + 1) ; if (start == 0) { GSL_ERROR ("no memory to parse mode string", GSL_ENOMEM) ; } strcpy (start, description) ; p = start ; *precision = 0 ; *rounding = 0 ; *exception_mask = 0 ; do { int status ; int new_precision, new_rounding, new_exception ; end = strchr (p,',') ; if (end) { *end = '\0' ; do { end++ ; /* skip over trailing whitespace */ } while (*end == ' ' || *end == ',') ; } new_precision = 0 ; new_rounding = 0 ; new_exception = 0 ; status = lookup_string (p, &new_precision, &new_rounding, &new_exception) ; if (status) GSL_ERROR ("unrecognized GSL_IEEE_MODE string.\nValid settings are:\n\n" " single-precision double-precision extended-precision\n" " round-to-nearest round-down round-up round-to-zero\n" " mask-invalid mask-denormalized mask-division-by-zero\n" " mask-overflow mask-underflow mask-all\n" " trap-common trap-inexact\n" "\n" "separated by commas. " "(e.g. GSL_IEEE_MODE=\"round-down,mask-underflow\")", GSL_EINVAL) ; if (new_precision) { *precision = new_precision ; precision_count ++ ; if (precision_count > 1) GSL_ERROR ("attempted to set IEEE precision twice", GSL_EINVAL) ; } if (new_rounding) { *rounding = new_rounding ; rounding_count ++ ; if (rounding_count > 1) GSL_ERROR ("attempted to set IEEE rounding mode twice", GSL_EINVAL) ; } if (new_exception) { *exception_mask |= new_exception ; exception_count ++ ; } p = end ; } while (end && *p != '\0') ; free(start) ; return GSL_SUCCESS ; } static int lookup_string (const char * p, int * precision, int * rounding, int * exception_mask) { if (strcmp(p,"single-precision") == 0) { *precision = GSL_IEEE_SINGLE_PRECISION ; } else if (strcmp(p,"double-precision") == 0) { *precision = GSL_IEEE_DOUBLE_PRECISION ; } else if (strcmp(p,"extended-precision") == 0) { *precision = GSL_IEEE_EXTENDED_PRECISION ; } else if (strcmp(p,"round-to-nearest") == 0) { *rounding = GSL_IEEE_ROUND_TO_NEAREST ; } else if (strcmp(p,"round-down") == 0) { *rounding = GSL_IEEE_ROUND_DOWN ; } else if (strcmp(p,"round-up") == 0) { *rounding = GSL_IEEE_ROUND_UP ; } else if (strcmp(p,"round-to-zero") == 0) { *rounding = GSL_IEEE_ROUND_TO_ZERO ; } else if (strcmp(p,"mask-all") == 0) { *exception_mask = GSL_IEEE_MASK_ALL ; } else if (strcmp(p,"mask-invalid") == 0) { *exception_mask = GSL_IEEE_MASK_INVALID ; } else if (strcmp(p,"mask-denormalized") == 0) { *exception_mask = GSL_IEEE_MASK_DENORMALIZED ; } else if (strcmp(p,"mask-division-by-zero") == 0) { *exception_mask = GSL_IEEE_MASK_DIVISION_BY_ZERO ; } else if (strcmp(p,"mask-overflow") == 0) { *exception_mask = GSL_IEEE_MASK_OVERFLOW ; } else if (strcmp(p,"mask-underflow") == 0) { *exception_mask = GSL_IEEE_MASK_UNDERFLOW ; } else if (strcmp(p,"trap-inexact") == 0) { *exception_mask = GSL_IEEE_TRAP_INEXACT ; } else if (strcmp(p,"trap-common") == 0) { return 0 ; } else { return 1 ; } return 0 ; } gsl-1.16/ieee-utils/print.c0000664000252300025230000000523412171574312012523 00000000000000/* ieee-utils/print.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* A table of sign characters, 0=positive, 1=negative. We print a space instead of a unary + sign for compatibility with bc */ static char signs[2]={' ','-'} ; void gsl_ieee_fprintf_float (FILE * stream, const float * x) { gsl_ieee_float_rep r ; gsl_ieee_float_to_rep(x, &r) ; switch (r.type) { case GSL_IEEE_TYPE_NAN: fprintf(stream, "NaN") ; break ; case GSL_IEEE_TYPE_INF: fprintf(stream, "%cInf", signs[r.sign]) ; break ; case GSL_IEEE_TYPE_NORMAL: fprintf(stream, "%c1.%s*2^%d", signs[r.sign], r.mantissa, r.exponent) ; break ; case GSL_IEEE_TYPE_DENORMAL: fprintf(stream, "%c0.%s*2^%d", signs[r.sign], r.mantissa, r.exponent + 1) ; break ; case GSL_IEEE_TYPE_ZERO: fprintf(stream, "%c0", signs[r.sign]) ; break ; default: fprintf(stream, "[non-standard IEEE float]") ; } } void gsl_ieee_printf_float (const float * x) { gsl_ieee_fprintf_float (stdout,x); } void gsl_ieee_fprintf_double (FILE * stream, const double * x) { gsl_ieee_double_rep r ; gsl_ieee_double_to_rep (x, &r) ; switch (r.type) { case GSL_IEEE_TYPE_NAN: fprintf(stream, "NaN") ; break ; case GSL_IEEE_TYPE_INF: fprintf(stream, "%cInf", signs[r.sign]) ; break ; case GSL_IEEE_TYPE_NORMAL: fprintf(stream, "%c1.%s*2^%d", signs[r.sign], r.mantissa, r.exponent) ; break ; case GSL_IEEE_TYPE_DENORMAL: fprintf(stream, "%c0.%s*2^%d", signs[r.sign], r.mantissa, r.exponent + 1) ; break ; case GSL_IEEE_TYPE_ZERO: fprintf(stream, "%c0", signs[r.sign]) ; break ; default: fprintf(stream, "[non-standard IEEE double]") ; } } void gsl_ieee_printf_double (const double * x) { gsl_ieee_fprintf_double (stdout,x); } gsl-1.16/ieee-utils/fp-netbsd.c0000664000252300025230000000561012171574312013247 00000000000000/* fp-netbsd.c * * Copyright (C) 2001 Jason Beegan * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fp_except mode = 0; fp_rnd rnd = 0; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("NetBSD only supports default precision rounding", GSL_EUNSUP); break; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("NetBSD only supports default precision rounding", GSL_EUNSUP); break; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("NetBSD only supports default precision rounding", GSL_EUNSUP); break; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: rnd = FP_RN; fpsetround (rnd); break; case GSL_IEEE_ROUND_DOWN: rnd = FP_RM; fpsetround (rnd); break; case GSL_IEEE_ROUND_UP: rnd = FP_RP; fpsetround (rnd); break; case GSL_IEEE_ROUND_TO_ZERO: rnd = FP_RZ; fpsetround (rnd); break; default: rnd = FP_RN; fpsetround (rnd); } /* Turn on all available exceptions apart from 'inexact'. Denormalized operand exception not available on all platforms. */ mode = FP_X_INV | FP_X_DZ | FP_X_OFL | FP_X_UFL; #ifdef FP_X_DNML mode = mode | FP_X_DNML; #endif if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ FP_X_INV; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { #ifdef FP_X_DNML mode &= ~ FP_X_DNML; #endif } else { #ifndef FP_X_DNML GSL_ERROR ("NetBSD does not support the denormalized operand exception on this platform. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP); #endif } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ FP_X_DZ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ FP_X_OFL; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ FP_X_UFL; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= FP_X_IMP; } else { mode &= ~ FP_X_IMP; } fpsetmask (mode); return GSL_SUCCESS; } gsl-1.16/ieee-utils/fp-os2emx.c0000664000252300025230000000452712171574312013213 00000000000000/* ieee-utils/fp-os2.c * * Copyright (C) 2001 Henry Sobotka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned mode = 0; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: _control87(PC_24, MCW_PC); break ; case GSL_IEEE_DOUBLE_PRECISION: _control87(PC_53, MCW_PC); break ; case GSL_IEEE_EXTENDED_PRECISION: _control87(PC_64, MCW_PC); break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: _control87(RC_NEAR, MCW_RC); break ; case GSL_IEEE_ROUND_DOWN: _control87(RC_DOWN, MCW_RC); break ; case GSL_IEEE_ROUND_UP: _control87(RC_UP, MCW_RC); break ; case GSL_IEEE_ROUND_TO_ZERO: _control87(RC_CHOP, MCW_RC); break ; default: _control87(RC_NEAR, MCW_RC); } /* Turn on all the exceptions apart from 'inexact' */ mode = EM_INVALID | EM_DENORMAL | EM_ZERODIVIDE | EM_OVERFLOW | EM_UNDERFLOW; if (exception_mask & GSL_IEEE_MASK_INVALID) mode &= ~ EM_INVALID; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) mode &= ~ EM_DENORMAL; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode &= ~ EM_ZERODIVIDE; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode &= ~ EM_OVERFLOW; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode &= ~ EM_UNDERFLOW; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode |= EM_INEXACT; } else { mode &= ~ EM_INEXACT; } _control87(mode, MCW_EM); return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-darwin86.c0000664000252300025230000001237512171574312013440 00000000000000/* ieee-utils/fp-darwin86.c * * Copyright (C) 2006 Erik Schnetter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include /* Here is the dirty part. Set up your 387 through the control word * (cw) register. * * 15-13 12 11-10 9-8 7-6 5 4 3 2 1 0 * | reserved | IC | RC | PC | reserved | PM | UM | OM | ZM | DM | IM * * IM: Invalid operation mask * DM: Denormalized operand mask * ZM: Zero-divide mask * OM: Overflow mask * UM: Underflow mask * PM: Precision (inexact result) mask * * Mask bit is 1 means no interrupt. * * PC: Precision control * 11 - round to extended precision * 10 - round to double precision * 00 - round to single precision * * RC: Rounding control * 00 - rounding to nearest * 01 - rounding down (toward - infinity) * 10 - rounding up (toward + infinity) * 11 - rounding toward zero * * IC: Infinity control * That is for 8087 and 80287 only. * * The hardware default is 0x037f which we use. */ /* masking of interrupts */ #define _FPU_MASK_IM 0x01 #define _FPU_MASK_DM 0x02 #define _FPU_MASK_ZM 0x04 #define _FPU_MASK_OM 0x08 #define _FPU_MASK_UM 0x10 #define _FPU_MASK_PM 0x20 /* precision control */ #define _FPU_EXTENDED 0x300 /* libm requires double extended precision. */ #define _FPU_DOUBLE 0x200 #define _FPU_SINGLE 0x0 /* rounding control */ #define _FPU_RC_NEAREST 0x0 /* RECOMMENDED */ #define _FPU_RC_DOWN 0x400 #define _FPU_RC_UP 0x800 #define _FPU_RC_ZERO 0xC00 #define _FPU_RESERVED 0xF0C0 /* Reserved bits in cw */ /* The fdlibm code requires strict IEEE double precision arithmetic, and no interrupts for exceptions, rounding to nearest. */ #define _FPU_DEFAULT 0x037f /* IEEE: same as above. */ #define _FPU_IEEE 0x037f /* Type of the control word. */ typedef unsigned int fpu_control_t __attribute__ ((__mode__ (__HI__))); /* Macros for accessing the hardware control word. Note that the use of these macros is no sufficient anymore with recent hardware. Some floating point operations are executed in the SSE/SSE2 engines which have their own control and status register. */ #define _FPU_GETCW(cw) __asm__ __volatile__ ("fnstcw %0" : "=m" (*&cw)) #define _FPU_SETCW(cw) __asm__ __volatile__ ("fldcw %0" : : "m" (*&cw)) /* Default control word set at startup. */ extern fpu_control_t __fpu_control; #define _FPU_GETMXCSR(cw_sse) asm volatile ("stmxcsr %0" : "=m" (cw_sse)) #define _FPU_SETMXCSR(cw_sse) asm volatile ("ldmxcsr %0" : : "m" (cw_sse)) int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { fpu_control_t mode, mode_sse; _FPU_GETCW (mode) ; mode &= _FPU_RESERVED ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: mode |= _FPU_SINGLE ; break ; case GSL_IEEE_DOUBLE_PRECISION: mode |= _FPU_DOUBLE ; break ; case GSL_IEEE_EXTENDED_PRECISION: mode |= _FPU_EXTENDED ; break ; default: mode |= _FPU_EXTENDED ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: mode |= _FPU_RC_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: mode |= _FPU_RC_DOWN ; break ; case GSL_IEEE_ROUND_UP: mode |= _FPU_RC_UP ; break ; case GSL_IEEE_ROUND_TO_ZERO: mode |= _FPU_RC_ZERO ; break ; default: mode |= _FPU_RC_NEAREST ; } if (exception_mask & GSL_IEEE_MASK_INVALID) mode |= _FPU_MASK_IM ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) mode |= _FPU_MASK_DM ; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode |= _FPU_MASK_ZM ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode |= _FPU_MASK_OM ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode |= _FPU_MASK_UM ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode &= ~ _FPU_MASK_PM ; } else { mode |= _FPU_MASK_PM ; } _FPU_SETCW (mode) ; _FPU_GETMXCSR (mode_sse) ; mode_sse &= 0xFFFF0000 ; if (exception_mask & GSL_IEEE_MASK_INVALID) mode_sse |= _FPU_MASK_IM << 7 ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) mode_sse |= _FPU_MASK_DM << 7 ; if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode_sse |= _FPU_MASK_ZM << 7 ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode_sse |= _FPU_MASK_OM << 7 ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode_sse |= _FPU_MASK_UM << 7 ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode_sse &= ~ _FPU_MASK_PM << 7 ; } else { mode_sse |= _FPU_MASK_PM << 7 ; } _FPU_SETMXCSR (mode_sse) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-darwin.c0000664000252300025230000000555312171574312013262 00000000000000/* ieee-utils/fp-darwin.c * * Copyright (C) 2001 Rodney Sparapani * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { ppc_fp_scr_t fp_scr = get_fp_scr() ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: fp_scr.rn = RN_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: fp_scr.rn = RN_TOWARD_MINUS ; break ; case GSL_IEEE_ROUND_UP: fp_scr.rn = RN_TOWARD_PLUS ; break ; case GSL_IEEE_ROUND_TO_ZERO: fp_scr.rn = RN_TOWARD_ZERO ; break ; default: fp_scr.rn = RN_NEAREST ; } if (exception_mask & GSL_IEEE_MASK_INVALID) fp_scr.ve = 0 ; //ve bit: invalid op exception enable if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("powerpc does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) fp_scr.ze = 0 ; //ze bit: zero divide exception enable if (exception_mask & GSL_IEEE_MASK_OVERFLOW) fp_scr.oe = 0 ; //oe bit: overflow exception enable if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) fp_scr.ue = 0 ; //ue bit: underflow exception enable if (exception_mask & GSL_IEEE_TRAP_INEXACT) { fp_scr.xe = 1 ; //xe bit: inexact exception enable } else { fp_scr.xe = 01 ; } set_fp_scr(fp_scr); return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-gnuppc.c0000664000252300025230000000533612171574312013271 00000000000000/* ieee-utils/fp-gnuppc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough, John Fisher * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* * Identical to fp-gnux86.c, except with references to * _FPU_SINGLE, _FPU_DOUBLE, _FPU_EXTENDED, _FPU_MASK_DM * and _FPU_MASK_PM converted to errors. */ int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned short mode = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; case GSL_IEEE_DOUBLE_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; case GSL_IEEE_EXTENDED_PRECISION: GSL_ERROR ("powerpc only supports default precision rounding", GSL_EUNSUP); break ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: mode |= _FPU_RC_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: mode |= _FPU_RC_DOWN ; break ; case GSL_IEEE_ROUND_UP: mode |= _FPU_RC_UP ; break ; case GSL_IEEE_ROUND_TO_ZERO: mode |= _FPU_RC_ZERO ; break ; default: mode |= _FPU_RC_NEAREST ; } if (exception_mask & GSL_IEEE_MASK_INVALID) mode |= _FPU_MASK_IM ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("powerpc does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode |= _FPU_MASK_ZM ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode |= _FPU_MASK_OM ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode |= _FPU_MASK_UM ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { GSL_ERROR ("powerpc does not support traps for inexact operations", GSL_EUNSUP) ; } _FPU_SETCW(mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp-gnum68k.c0000664000252300025230000000527312171574312013274 00000000000000/* ieee-utils/fp-gnum68k.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { unsigned short mode = 0 ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: mode |= _FPU_SINGLE ; break ; case GSL_IEEE_DOUBLE_PRECISION: mode |= _FPU_DOUBLE ; break ; case GSL_IEEE_EXTENDED_PRECISION: mode |= _FPU_EXTENDED ; break ; default: mode |= _FPU_EXTENDED ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: mode |= _FPU_RC_NEAREST ; break ; case GSL_IEEE_ROUND_DOWN: mode |= _FPU_RC_DOWN ; break ; case GSL_IEEE_ROUND_UP: mode |= _FPU_RC_UP ; break ; case GSL_IEEE_ROUND_TO_ZERO: mode |= _FPU_RC_ZERO ; break ; default: mode |= _FPU_RC_NEAREST ; } /* FIXME: I don't have documentation for the M68K so I'm not sure about the mapping of the exceptions below. Maybe someone who does know could correct this. */ if (exception_mask & GSL_IEEE_MASK_INVALID) mode |= _FPU_MASK_OPERR ; if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { /* do nothing */ } else { GSL_ERROR ("the denormalized operand exception has not been implemented for m68k yet. Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; /*mode |= _FPU_MASK_DM ; ???? */ } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) mode |= _FPU_MASK_DZ ; if (exception_mask & GSL_IEEE_MASK_OVERFLOW) mode |= _FPU_MASK_OVFL ; if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) mode |= _FPU_MASK_UNFL ; if (exception_mask & GSL_IEEE_TRAP_INEXACT) { mode &= ~ (_FPU_MASK_INEX1 | _FPU_MASK_INEX2) ; } else { mode |= (_FPU_MASK_INEX1 | _FPU_MASK_INEX2) ; } _FPU_SETCW(mode) ; return GSL_SUCCESS ; } gsl-1.16/ieee-utils/fp.c0000664000252300025230000000235412171574312011774 00000000000000#include #if HAVE_GNUSPARC_IEEE_INTERFACE #include "fp-gnusparc.c" #elif HAVE_GNUM68K_IEEE_INTERFACE #include "fp-gnum68k.c" #elif HAVE_GNUPPC_IEEE_INTERFACE #include "fp-gnuppc.c" #elif HAVE_GNUX86_IEEE_INTERFACE #include "fp-gnux86.c" #elif HAVE_HPUX11_IEEE_INTERFACE #include "fp-hpux11.c" #elif HAVE_HPUX_IEEE_INTERFACE #include "fp-hpux.c" #elif HAVE_SUNOS4_IEEE_INTERFACE #include "fp-sunos4.c" #elif HAVE_SOLARIS_IEEE_INTERFACE #include "fp-solaris.c" #elif HAVE_IRIX_IEEE_INTERFACE #include "fp-irix.c" #elif HAVE_AIX_IEEE_INTERFACE #include "fp-aix.c" #elif HAVE_TRU64_IEEE_INTERFACE #include "fp-tru64.c" #elif HAVE_FREEBSD_IEEE_INTERFACE #include "fp-freebsd.c" #elif HAVE_OS2EMX_IEEE_INTERFACE #include "fp-os2emx.c" #elif HAVE_NETBSD_IEEE_INTERFACE #include "fp-netbsd.c" #elif HAVE_OPENBSD_IEEE_INTERFACE #include "fp-openbsd.c" /* Try to handle universal binaries */ #elif HAVE_DARWIN_IEEE_INTERFACE # if defined(__i386__) # include "fp-darwin86.c" #else # include "fp-darwin.c" # endif #elif HAVE_DARWIN86_IEEE_INTERFACE # if defined(__ppc__) # include "fp-darwin.c" # else # include "fp-darwin86.c" #endif #elif HAVE_DECL_FEENABLEEXCEPT || HAVE_DECL_FESETTRAPENABLE #include "fp-gnuc99.c" #else #include "fp-unknown.c" #endif gsl-1.16/ieee-utils/fp-sunos4.c0000664000252300025230000000632212171574312013224 00000000000000/* ieee-utils/fp-sunos4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_ieee_set_mode (int precision, int rounding, int exception_mask) { char * out ; switch (precision) { case GSL_IEEE_SINGLE_PRECISION: ieee_flags ("set", "precision", "single", out) ; break ; case GSL_IEEE_DOUBLE_PRECISION: ieee_flags ("set", "precision", "double", out) ; break ; case GSL_IEEE_EXTENDED_PRECISION: ieee_flags ("set", "precision", "extended", out) ; break ; default: ieee_flags ("set", "precision", "extended", out) ; } switch (rounding) { case GSL_IEEE_ROUND_TO_NEAREST: ieee_flags ("set", "direction", "nearest", out) ; break ; case GSL_IEEE_ROUND_DOWN: ieee_flags ("set", "direction", "negative", out) ; break ; case GSL_IEEE_ROUND_UP: ieee_flags ("set", "direction", "positive", out) ; break ; case GSL_IEEE_ROUND_TO_ZERO: ieee_flags ("set", "direction", "tozero", out) ; break ; default: ieee_flags ("set", "direction", "nearest", out) ; } if (exception_mask & GSL_IEEE_MASK_INVALID) { ieee_handler ("set", "invalid", SIGFPE_IGNORE) ; } else { ieee_handler ("set", "invalid", SIGFPE_ABORT) ; } if (exception_mask & GSL_IEEE_MASK_DENORMALIZED) { ieee_handler ("set", "denormalized", SIGFPE_IGNORE) ; } else { GSL_ERROR ("sunos4 does not support the denormalized operand exception. " "Use 'mask-denormalized' to work around this.", GSL_EUNSUP) ; } if (exception_mask & GSL_IEEE_MASK_DIVISION_BY_ZERO) { ieee_handler ("set", "division", SIGFPE_IGNORE) ; } else { ieee_handler ("set", "division", SIGFPE_ABORT) ; } if (exception_mask & GSL_IEEE_MASK_OVERFLOW) { ieee_handler ("set", "overflow", SIGFPE_IGNORE) ; } else { ieee_handler ("set", "overflow", SIGFPE_ABORT) ; } if (exception_mask & GSL_IEEE_MASK_UNDERFLOW) { ieee_handler ("set", "underflow", SIGFPE_IGNORE) ; } else { ieee_handler ("set", "underflow", SIGFPE_ABORT) ; } if (exception_mask & GSL_IEEE_TRAP_INEXACT) { ieee_handler ("set", "inexact", SIGFPE_ABORT) ; } else { ieee_handler ("set", "inexact", SIGFPE_IGNORE) ; } return GSL_SUCCESS ; } gsl-1.16/ieee-utils/make_rep.c0000664000252300025230000001064712171574312013156 00000000000000/* ieee-utils/make_rep.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include "endian.c" #include "standardize.c" static void sprint_nybble(int i, char *s) ; static void sprint_byte(int i, char *s) ; static int determine_ieee_type (int non_zero, int exponent, int max_exponent); /* For the IEEE float format the bits are found from the following masks, sign = 0x80000000 exponent = 0x7f800000 mantisssa = 0x007fffff For the IEEE double format the masks are, sign = 0x8000000000000000 exponent = 0x7ff0000000000000 mantissa = 0x000fffffffffffff */ void gsl_ieee_float_to_rep (const float * x, gsl_ieee_float_rep * r) { int e, non_zero; union { float f; struct { unsigned char byte[4] ; } ieee ; } u; u.f = *x ; if (little_endian_p()) make_float_bigendian(&(u.f)) ; /* note that r->sign is signed, u.ieee.byte is unsigned */ if (u.ieee.byte[3]>>7) { r->sign = 1 ; } else { r->sign = 0 ; } e = (u.ieee.byte[3] & 0x7f) << 1 | (u.ieee.byte[2] & 0x80)>>7 ; r->exponent = e - 127 ; sprint_byte((u.ieee.byte[2] & 0x7f) << 1,r->mantissa) ; sprint_byte(u.ieee.byte[1],r->mantissa + 7) ; sprint_byte(u.ieee.byte[0],r->mantissa + 15) ; r->mantissa[23] = '\0' ; non_zero = u.ieee.byte[0] || u.ieee.byte[1] || (u.ieee.byte[2] & 0x7f); r->type = determine_ieee_type (non_zero, e, 255) ; } void gsl_ieee_double_to_rep (const double * x, gsl_ieee_double_rep * r) { int e, non_zero; union { double d; struct { unsigned char byte[8]; } ieee ; } u; u.d= *x ; if (little_endian_p()) make_double_bigendian(&(u.d)) ; /* note that r->sign is signed, u.ieee.byte is unsigned */ if (u.ieee.byte[7]>>7) { r->sign = 1 ; } else { r->sign = 0 ; } e =(u.ieee.byte[7] & 0x7f)<<4 ^ (u.ieee.byte[6] & 0xf0)>>4 ; r->exponent = e - 1023 ; sprint_nybble(u.ieee.byte[6],r->mantissa) ; sprint_byte(u.ieee.byte[5],r->mantissa + 4) ; sprint_byte(u.ieee.byte[4],r->mantissa + 12) ; sprint_byte(u.ieee.byte[3],r->mantissa + 20) ; sprint_byte(u.ieee.byte[2],r->mantissa + 28) ; sprint_byte(u.ieee.byte[1],r->mantissa + 36) ; sprint_byte(u.ieee.byte[0],r->mantissa + 44) ; r->mantissa[52] = '\0' ; non_zero = (u.ieee.byte[0] || u.ieee.byte[1] || u.ieee.byte[2] || u.ieee.byte[3] || u.ieee.byte[4] || u.ieee.byte[5] || (u.ieee.byte[6] & 0x0f)) ; r->type = determine_ieee_type (non_zero, e, 2047) ; } /* A table of character representations of nybbles */ static char nybble[16][5]={ /* include space for the \0 */ "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111" } ; static void sprint_nybble(int i, char *s) { char *c ; c=nybble[i & 0x0f ]; *s=c[0] ; *(s+1)=c[1] ; *(s+2)=c[2] ; *(s+3)=c[3] ; } static void sprint_byte(int i, char *s) { char *c ; c=nybble[(i & 0xf0)>>4]; *s=c[0] ; *(s+1)=c[1] ; *(s+2)=c[2] ; *(s+3)=c[3] ; c=nybble[i & 0x0f]; *(s+4)=c[0] ; *(s+5)=c[1] ; *(s+6)=c[2] ; *(s+7)=c[3] ; } static int determine_ieee_type (int non_zero, int exponent, int max_exponent) { if (exponent == max_exponent) { if (non_zero) { return GSL_IEEE_TYPE_NAN ; } else { return GSL_IEEE_TYPE_INF ; } } else if (exponent == 0) { if (non_zero) { return GSL_IEEE_TYPE_DENORMAL ; } else { return GSL_IEEE_TYPE_ZERO ; } } else { return GSL_IEEE_TYPE_NORMAL ; } } gsl-1.16/cdf/0000775000252300025230000000000012172254163007766 500000000000000gsl-1.16/cdf/pareto.c0000664000252300025230000000234312171574312011346 00000000000000/* cdf/pareto.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_pareto_P (const double x, const double a, const double b) { double P; if (x < b) { P = 0; } else { P = 1 - pow(b/x, a); } return P; } double gsl_cdf_pareto_Q (const double x, const double a, const double b) { double Q; if (x < b) { Q = 1; } else { Q = pow(b/x, a); } return Q; } gsl-1.16/cdf/paretoinv.c0000664000252300025230000000251612171574312012065 00000000000000/* cdf/paretoinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_pareto_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return b; } x = b * exp(-log1p(-P)/a); return x; } double gsl_cdf_pareto_Qinv (const double Q, const double a, const double b) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return b; } x = b * exp(-log(Q) / a); return x; } gsl-1.16/cdf/TODO0000664000252300025230000000257412171574312010406 00000000000000# -*- org -*- #+CATEGORY: cdf * discrete inverse distributions - easy apart from hypergeometric(?) * look for integer overflow in the discrete functions - this could be hard to find - perform computations in double to avoid. gsl_cdf_binomial_P (unsigned int k, double p, unsigned int n); gsl_cdf_binomial_Q (unsigned int k, double p, unsigned int n); gsl_cdf_poisson_P (unsigned int k, double mu); gsl_cdf_poisson_Q (unsigned int k, double mu); gsl_cdf_geometric_P (unsigned int k, double p); gsl_cdf_geometric_Q (unsigned int k, double p); gsl_cdf_negative_binomial_P (unsigned int k, double p, double n); gsl_cdf_negative_binomial_Q (unsigned int k, double p, double n); gsl_cdf_pascal_P (unsigned int k, double p, unsigned int n); gsl_cdf_pascal_Q (unsigned int k, double p, unsigned int n); gsl_cdf_hypergeometric_P (unsigned int k, unsigned int n1, unsigned int n2, unsigned int t); gsl_cdf_hypergeometric_Q (unsigned int k, unsigned int n1, unsigned int n2, unsigned int t); * Unify the beta_inc function with the special functions, put all the functionaity in gsl_sf_beta_inc, providing a new function for the AXPY part if necessary (can we do everything with gsl_sf_beta_inc and gsl_sf_beta_inc_1mx keeping in mind that we cannot do 1-x because of cancellation for small x) gsl-1.16/cdf/fdistinv.c0000664000252300025230000000431712171574312011705 00000000000000/* cdf/fdistinv.c * * Copyright (C) 2002 Przemyslaw Sliwa and Jason H. Stover. * Copyright (C) 2006, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "error.h" double gsl_cdf_fdist_Pinv (const double P, const double nu1, const double nu2) { double result; double y; if (P < 0.0) { CDF_ERROR ("P < 0.0", GSL_EDOM); } if (P > 1.0) { CDF_ERROR ("P > 1.0", GSL_EDOM); } if (nu1 < 1.0) { CDF_ERROR ("nu1 < 1", GSL_EDOM); } if (nu2 < 1.0) { CDF_ERROR ("nu2 < 1", GSL_EDOM); } if (P < 0.5) { y = gsl_cdf_beta_Pinv (P, nu1 / 2.0, nu2 / 2.0); result = nu2 * y / (nu1 * (1.0 - y)); } else { y = gsl_cdf_beta_Qinv (P, nu2 / 2.0, nu1 / 2.0); result = nu2 * (1 - y) / (nu1 * y); } return result; } double gsl_cdf_fdist_Qinv (const double Q, const double nu1, const double nu2) { double result; double y; if (Q < 0.0) { CDF_ERROR ("Q < 0.0", GSL_EDOM); } if (Q > 1.0) { CDF_ERROR ("Q > 1.0", GSL_EDOM); } if (nu1 < 1.0) { CDF_ERROR ("nu1 < 1", GSL_EDOM); } if (nu2 < 1.0) { CDF_ERROR ("nu2 < 1", GSL_EDOM); } if (Q > 0.5) { y = gsl_cdf_beta_Qinv (Q, nu1 / 2.0, nu2 / 2.0); result = nu2 * y / (nu1 * (1.0 - y)); } else { y = gsl_cdf_beta_Pinv (Q, nu2 / 2.0, nu1 / 2.0); result = nu2 * (1 - y) / (nu1 * y); } return result; } gsl-1.16/cdf/gauss.c0000664000252300025230000001577012171574312011206 00000000000000/* cdf/gauss.c * * Copyright (C) 2002, 2004 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Computes the cumulative distribution function for the Gaussian * distribution using a rational function approximation. The * computation is for the standard Normal distribution, i.e., mean 0 * and standard deviation 1. If you want to compute Pr(X < t) for a * Gaussian random variable X with non-zero mean m and standard * deviation sd not equal to 1, find gsl_cdf_ugaussian ((t-m)/sd). * This approximation is accurate to at least double precision. The * accuracy was verified with a pari-gp script. The largest error * found was about 1.4E-20. The coefficients were derived by Cody. * * References: * * W.J. Cody. "Rational Chebyshev Approximations for the Error * Function," Mathematics of Computation, v23 n107 1969, 631-637. * * W. Fraser, J.F Hart. "On the Computation of Rational Approximations * to Continuous Functions," Communications of the ACM, v5 1962. * * W.J. Kennedy Jr., J.E. Gentle. "Statistical Computing." Marcel Dekker. 1980. * * */ #include #include #include #include #ifndef M_1_SQRT2PI #define M_1_SQRT2PI (M_2_SQRTPI * M_SQRT1_2 / 2.0) #endif #define SQRT32 (4.0 * M_SQRT2) /* * IEEE double precision dependent constants. * * GAUSS_EPSILON: Smallest positive value such that * gsl_cdf_gaussian(x) > 0.5. * GAUSS_XUPPER: Largest value x such that gsl_cdf_gaussian(x) < 1.0. * GAUSS_XLOWER: Smallest value x such that gsl_cdf_gaussian(x) > 0.0. */ #define GAUSS_EPSILON (GSL_DBL_EPSILON / 2) #define GAUSS_XUPPER (8.572) #define GAUSS_XLOWER (-37.519) #define GAUSS_SCALE (16.0) static double get_del (double x, double rational) { double xsq = 0.0; double del = 0.0; double result = 0.0; xsq = floor (x * GAUSS_SCALE) / GAUSS_SCALE; del = (x - xsq) * (x + xsq); del *= 0.5; result = exp (-0.5 * xsq * xsq) * exp (-1.0 * del) * rational; return result; } /* * Normal cdf for fabs(x) < 0.66291 */ static double gauss_small (const double x) { unsigned int i; double result = 0.0; double xsq; double xnum; double xden; const double a[5] = { 2.2352520354606839287, 161.02823106855587881, 1067.6894854603709582, 18154.981253343561249, 0.065682337918207449113 }; const double b[4] = { 47.20258190468824187, 976.09855173777669322, 10260.932208618978205, 45507.789335026729956 }; xsq = x * x; xnum = a[4] * xsq; xden = xsq; for (i = 0; i < 3; i++) { xnum = (xnum + a[i]) * xsq; xden = (xden + b[i]) * xsq; } result = x * (xnum + a[3]) / (xden + b[3]); return result; } /* * Normal cdf for 0.66291 < fabs(x) < sqrt(32). */ static double gauss_medium (const double x) { unsigned int i; double temp = 0.0; double result = 0.0; double xnum; double xden; double absx; const double c[9] = { 0.39894151208813466764, 8.8831497943883759412, 93.506656132177855979, 597.27027639480026226, 2494.5375852903726711, 6848.1904505362823326, 11602.651437647350124, 9842.7148383839780218, 1.0765576773720192317e-8 }; const double d[8] = { 22.266688044328115691, 235.38790178262499861, 1519.377599407554805, 6485.558298266760755, 18615.571640885098091, 34900.952721145977266, 38912.003286093271411, 19685.429676859990727 }; absx = fabs (x); xnum = c[8] * absx; xden = absx; for (i = 0; i < 7; i++) { xnum = (xnum + c[i]) * absx; xden = (xden + d[i]) * absx; } temp = (xnum + c[7]) / (xden + d[7]); result = get_del (x, temp); return result; } /* * Normal cdf for * {sqrt(32) < x < GAUSS_XUPPER} union { GAUSS_XLOWER < x < -sqrt(32) }. */ static double gauss_large (const double x) { int i; double result; double xsq; double temp; double xnum; double xden; double absx; const double p[6] = { 0.21589853405795699, 0.1274011611602473639, 0.022235277870649807, 0.001421619193227893466, 2.9112874951168792e-5, 0.02307344176494017303 }; const double q[5] = { 1.28426009614491121, 0.468238212480865118, 0.0659881378689285515, 0.00378239633202758244, 7.29751555083966205e-5 }; absx = fabs (x); xsq = 1.0 / (x * x); xnum = p[5] * xsq; xden = xsq; for (i = 0; i < 4; i++) { xnum = (xnum + p[i]) * xsq; xden = (xden + q[i]) * xsq; } temp = xsq * (xnum + p[4]) / (xden + q[4]); temp = (M_1_SQRT2PI - temp) / absx; result = get_del (x, temp); return result; } double gsl_cdf_ugaussian_P (const double x) { double result; double absx = fabs (x); if (absx < GAUSS_EPSILON) { result = 0.5; return result; } else if (absx < 0.66291) { result = 0.5 + gauss_small (x); return result; } else if (absx < SQRT32) { result = gauss_medium (x); if (x > 0.0) { result = 1.0 - result; } return result; } else if (x > GAUSS_XUPPER) { result = 1.0; return result; } else if (x < GAUSS_XLOWER) { result = 0.0; return result; } else { result = gauss_large (x); if (x > 0.0) { result = 1.0 - result; } } return result; } double gsl_cdf_ugaussian_Q (const double x) { double result; double absx = fabs (x); if (absx < GAUSS_EPSILON) { result = 0.5; return result; } else if (absx < 0.66291) { result = gauss_small (x); if (x < 0.0) { result = fabs (result) + 0.5; } else { result = 0.5 - result; } return result; } else if (absx < SQRT32) { result = gauss_medium (x); if (x < 0.0) { result = 1.0 - result; } return result; } else if (x > -(GAUSS_XLOWER)) { result = 0.0; return result; } else if (x < -(GAUSS_XUPPER)) { result = 1.0; return result; } else { result = gauss_large (x); if (x < 0.0) { result = 1.0 - result; } } return result; } double gsl_cdf_gaussian_P (const double x, const double sigma) { return gsl_cdf_ugaussian_P (x / sigma); } double gsl_cdf_gaussian_Q (const double x, const double sigma) { return gsl_cdf_ugaussian_Q (x / sigma); } gsl-1.16/cdf/exponentialinv.c0000664000252300025230000000213112171574312013112 00000000000000/* cdf/exponentialinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_exponential_Pinv (const double P, const double mu) { double x = -mu * log1p (-P); return x; } double gsl_cdf_exponential_Qinv (const double Q, const double mu) { double x = -mu * log (Q); return x; } gsl-1.16/cdf/tdistinv.c0000664000252300025230000001206012171574312011715 00000000000000/* cdf/tdistinv.c * * Copyright (C) 2007, 2010 Brian Gough * Copyright (C) 2002 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include static double inv_cornish_fisher (double z, double nu) { double a = 1 / (nu - 0.5); double b = 48.0 / (a * a); double cf1 = z * (3 + z * z); double cf2 = z * (945 + z * z * (360 + z * z * (63 + z * z * 4))); double y = z - cf1 / b + cf2 / (10 * b * b); double t = GSL_SIGN (z) * sqrt (nu * expm1 (a * y * y)); return t; } double gsl_cdf_tdist_Pinv (const double P, const double nu) { double x, ptail; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } if (nu == 1.0) { x = tan (M_PI * (P - 0.5)); return x; } else if (nu == 2.0) { x = (2 * P - 1) / sqrt (2 * P * (1 - P)); return x; } ptail = (P < 0.5) ? P : 1 - P; if (sqrt (M_PI * nu / 2) * ptail > pow (0.05, nu / 2)) { double xg = gsl_cdf_ugaussian_Pinv (P); x = inv_cornish_fisher (xg, nu); } else { /* Use an asymptotic expansion of the tail of integral */ double beta = gsl_sf_beta (0.5, nu / 2); if (P < 0.5) { x = -sqrt (nu) * pow (beta * nu * P, -1.0 / nu); } else { x = sqrt (nu) * pow (beta * nu * (1 - P), -1.0 / nu); } /* Correct nu -> nu/(1+nu/x^2) in the leading term to account for higher order terms. This avoids overestimating x, which makes the iteration unstable due to the rapidly decreasing tails of the distribution. */ x /= sqrt (1 + nu / (x * x)); } { double dP, phi; unsigned int n = 0; start: dP = P - gsl_cdf_tdist_P (x, nu); phi = gsl_ran_tdist_pdf (x, nu); if (dP == 0.0 || n++ > 32) goto end; { double lambda = dP / phi; double step0 = lambda; double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0); double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } if (P > 0.5 && x + step < 0) x /= 2; else if (P < 0.5 && x + step > 0) x /= 2; else x += step; if (fabs (step) > 1e-10 * fabs (x)) goto start; } end: if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P) { GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN); } return x; } } double gsl_cdf_tdist_Qinv (const double Q, const double nu) { double x, qtail; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } if (nu == 1.0) { x = tan (M_PI * (0.5 - Q)); return x; } else if (nu == 2.0) { x = (1 - 2 * Q) / sqrt (2 * Q * (1 - Q)); return x; } qtail = (Q < 0.5) ? Q : 1 - Q; if (sqrt (M_PI * nu / 2) * qtail > pow (0.05, nu / 2)) { double xg = gsl_cdf_ugaussian_Qinv (Q); x = inv_cornish_fisher (xg, nu); } else { /* Use an asymptotic expansion of the tail of integral */ double beta = gsl_sf_beta (0.5, nu / 2); if (Q < 0.5) { x = sqrt (nu) * pow (beta * nu * Q, -1.0 / nu); } else { x = -sqrt (nu) * pow (beta * nu * (1 - Q), -1.0 / nu); } /* Correct nu -> nu/(1+nu/x^2) in the leading term to account for higher order terms. This avoids overestimating x, which makes the iteration unstable due to the rapidly decreasing tails of the distribution. */ x /= sqrt (1 + nu / (x * x)); } { double dQ, phi; unsigned int n = 0; start: dQ = Q - gsl_cdf_tdist_Q (x, nu); phi = gsl_ran_tdist_pdf (x, nu); if (dQ == 0.0 || n++ > 32) goto end; { double lambda = - dQ / phi; double step0 = lambda; double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0); double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } if (Q < 0.5 && x + step < 0) x /= 2; else if (Q > 0.5 && x + step > 0) x /= 2; else x += step; if (fabs (step) > 1e-10 * fabs (x)) goto start; } } end: return x; } gsl-1.16/cdf/test.c0000664000252300025230000021355312171574312011042 00000000000000/* cdf/test.c * * Copyright (C) 2002 Jason H Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #define TEST(func, args, value, tol) { double res = func args ; gsl_test_rel (res, value, tol, #func #args); } ; #define TEST_TOL0 (2.0*GSL_DBL_EPSILON) #define TEST_TOL1 (16.0*GSL_DBL_EPSILON) #define TEST_TOL2 (256.0*GSL_DBL_EPSILON) #define TEST_TOL3 (2048.0*GSL_DBL_EPSILON) #define TEST_TOL4 (16384.0*GSL_DBL_EPSILON) #define TEST_TOL5 (131072.0*GSL_DBL_EPSILON) #define TEST_TOL6 (1048576.0*GSL_DBL_EPSILON) void test_ugaussian (void); void test_ugaussianinv (void); void test_exponential (void); void test_exponentialinv (void); void test_exppow (void); void test_tdist (void); void test_fdist (void); void test_gamma (void); void test_chisq (void); void test_beta (void); void test_gammainv (void); void test_chisqinv (void); void test_tdistinv (void); void test_betainv (void); void test_finv (void); #include "test_auto.c" struct range { unsigned int min; unsigned int max; } ; double test_binomial_pdf (unsigned int n); double test_binomial_cdf_P (unsigned int n); double test_binomial_cdf_Q (unsigned int n); struct range test_binomial_range (void) { struct range r = {0, 5}; return r; } double test_binomial_pdf (unsigned int k) { return gsl_ran_binomial_pdf (k, 0.3, 5); } double test_binomial_cdf_P (unsigned int k) { return gsl_cdf_binomial_P (k, 0.3, 5); } double test_binomial_cdf_Q (unsigned int k) { return gsl_cdf_binomial_Q (k, 0.3, 5); } struct range test_poisson_range (void) { struct range r = {0, 25}; return r; } double test_poisson_pdf (unsigned int k) { return gsl_ran_poisson_pdf (k, 2.3); } double test_poisson_cdf_P (unsigned int k) { return gsl_cdf_poisson_P (k, 2.3); } double test_poisson_cdf_Q (unsigned int k) { return gsl_cdf_poisson_Q (k, 2.3); } struct range test_geometric_range (void) { struct range r = {0, 25}; return r; } double test_geometric_pdf (unsigned int k) { return gsl_ran_geometric_pdf (k, 0.3); } double test_geometric_cdf_P (unsigned int k) { return gsl_cdf_geometric_P (k, 0.3); } double test_geometric_cdf_Q (unsigned int k) { return gsl_cdf_geometric_Q (k, 0.3); } struct range test_negative_binomial_range (void) { struct range r = {0, 15}; return r; } double test_negative_binomial_pdf (unsigned int k) { return gsl_ran_negative_binomial_pdf (k, 0.3, 5.3); } double test_negative_binomial_cdf_P (unsigned int k) { return gsl_cdf_negative_binomial_P (k, 0.3, 5.3); } double test_negative_binomial_cdf_Q (unsigned int k) { return gsl_cdf_negative_binomial_Q (k, 0.3, 5.3); } struct range test_pascal_range (void) { struct range r = {0, 15}; return r; } double test_pascal_pdf (unsigned int k) { return gsl_ran_pascal_pdf (k, 0.3, 5); } double test_pascal_cdf_P (unsigned int k) { return gsl_cdf_pascal_P (k, 0.3, 5); } double test_pascal_cdf_Q (unsigned int k) { return gsl_cdf_pascal_Q (k, 0.3, 5); } struct range test_hypergeometric_range (void) { struct range r = {0, 26}; return r; } double test_hypergeometric_pdf (unsigned int k) { return gsl_ran_hypergeometric_pdf (k, 7, 19, 13); } double test_hypergeometric_cdf_P (unsigned int k) { return gsl_cdf_hypergeometric_P (k, 7, 19, 13); } double test_hypergeometric_cdf_Q (unsigned int k) { return gsl_cdf_hypergeometric_Q (k, 7, 19, 13); } struct range test_hypergeometric2_range (void) { struct range r = {0, 13250474}; return r; } struct range test_hypergeometric2a_range (void) { struct range r = {3500, 3600}; return r; } struct range test_hypergeometric2b_range (void) { struct range r = {13247474, 13250474}; return r; } double test_hypergeometric2_pdf (unsigned int k) { return gsl_ran_hypergeometric_pdf (k, 76200, 13174274, 678090); } double test_hypergeometric2_cdf_P (unsigned int k) { return gsl_cdf_hypergeometric_P (k, 76200, 13174274, 678090); } double test_hypergeometric2_cdf_Q (unsigned int k) { return gsl_cdf_hypergeometric_Q (k, 76200, 13174274, 678090); } #ifdef LOGARITHMIC struct range test_logarithmic_range (void) { struct range r = {1, 200}; return r; } double test_logarithmic_pdf (unsigned int k) { return gsl_ran_logarithmic_pdf (k, 0.9); } double test_logarithmic_cdf_P (unsigned int k) { return gsl_cdf_logarithmic_P (k, 0.9); } double test_logarithmic_cdf_Q (unsigned int k) { return gsl_cdf_logarithmic_Q (k, 0.9); } #endif void test_discrete_cdf_P (double (*pdf)(unsigned int), double (*cdf_P)(unsigned int), struct range (*range)(void), const char * desc) { double sum; double tol = TEST_TOL2; int i, min, max; struct range r = range(); min = r.min; max = r.max; sum = 0.0; for (i = min; i <= max; i++) { double pi = pdf(i); double Pi = cdf_P(i); sum += pi; gsl_test_rel (Pi, sum, tol, desc, i); } } void test_discrete_cdf_Q (double (*pdf)(unsigned int), double (*cdf_Q)(unsigned int), struct range (*range)(void), const char * desc) { double sum; double tol = TEST_TOL2; int i, min, max; struct range r = range(); min = r.min; max = r.max; sum = cdf_Q(max); for (i = max; i >= min; i--) { double pi = pdf(i); double Qi = cdf_Q(i); gsl_test_rel (Qi, sum, tol, desc, i); sum += pi; } } void test_discrete_cdf_PQ (double (*cdf_P)(unsigned int), double (*cdf_Q)(unsigned int), struct range (*range)(void), const char * desc) { double sum; double tol = GSL_DBL_EPSILON; int i, min, max; struct range r = range(); min = r.min; max = r.max; for (i = min; i <= max; i++) { double Pi = cdf_P(i); double Qi = cdf_Q(i); sum = Pi + Qi; gsl_test_rel (sum, 1.0, tol, desc, i); { int s1 = (Pi<0 || Pi>1); int s2 = (Qi<0 || Qi>1); gsl_test(s1, "Pi in range [0,1] (%.18e)", Pi); gsl_test(s2, "Qi in range [0,1] (%.18e)", Qi); } } } #define TEST_DISCRETE(name) do { \ test_discrete_cdf_P(&test_ ## name ## _pdf, &test_ ## name ## _cdf_P, &test_ ## name ## _range, "test gsl_cdf_" #name "_P (k=%d)") ; \ test_discrete_cdf_Q(&test_ ## name ## _pdf, &test_ ## name ## _cdf_Q, &test_ ## name ## _range, "test gsl_cdf_" #name "_Q (k=%d)") ; \ test_discrete_cdf_PQ(&test_ ## name ## _cdf_P, &test_ ## name ## _cdf_Q, &test_ ## name ## _range, "test gsl_cdf_" #name "_P+Q (k=%d)") ; \ } while (0); int main (void) { gsl_ieee_env_setup (); TEST_DISCRETE(binomial); TEST_DISCRETE(poisson); TEST_DISCRETE(geometric); TEST_DISCRETE(negative_binomial); TEST_DISCRETE(pascal); TEST_DISCRETE(hypergeometric); #ifdef HYPERGEOMETRIC2 TEST_DISCRETE(hypergeometric2); #endif #ifdef LOGARITHMIC TEST_DISCRETE(logarithmic); #endif test_discrete_cdf_PQ(&test_hypergeometric2_cdf_P, &test_hypergeometric2_cdf_Q, &test_hypergeometric2a_range, "test gsl_cdf_hypergeometric_P+Q (k=%d)") ; test_discrete_cdf_PQ(&test_hypergeometric2_cdf_P, &test_hypergeometric2_cdf_Q, &test_hypergeometric2b_range, "test gsl_cdf_hypergeometric_P+Q (k=%d)") ; /* exit (gsl_test_summary ()); */ /* Tests for gaussian cumulative distribution function Function values computed with PARI, 28 digits precision */ test_ugaussian (); test_exponential (); test_exppow (); test_tdist (); test_fdist (); test_gamma (); test_chisq (); test_beta (); test_ugaussianinv (); test_exponentialinv (); test_gammainv (); test_chisqinv (); test_tdistinv (); test_betainv (); test_finv (); test_auto_beta (); test_auto_fdist (); test_auto_cauchy (); test_auto_gaussian (); test_auto_laplace (); test_auto_rayleigh (); test_auto_flat (); test_auto_lognormal (); test_auto_gamma (); test_auto_chisq (); test_auto_tdist (); test_auto_gumbel1 (); test_auto_gumbel2 (); test_auto_weibull (); test_auto_pareto (); test_auto_logistic (); test_auto_gammalarge (); exit (gsl_test_summary ()); } void test_ugaussian (void) { TEST (gsl_cdf_ugaussian_P, (0.0), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (1e-32), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (1e-16), 0.5000000000000000398942280401, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (1e-8), 0.5000000039894228040143267129, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (0.5), 0.6914624612740131036377046105, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (0.7), 0.7580363477769269852506495717, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (5.0), 0.9999997133484281208060883262, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (10.0), 0.9999999999999999999999923801, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (30.0), 1.000000000000000000000000000, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (40.0), 1.000000000000000000000000000, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (1e10), 1.000000000000000000000000000, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-1e-32), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-1e-16), 0.4999999999999999601057719598, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-1e-8), 0.4999999960105771959856732870, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-0.5), 0.3085375387259868963622953894, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-0.7), 0.2419636522230730147493504282, TEST_TOL0); TEST (gsl_cdf_ugaussian_P, (-5.0), 0.0000002866515718791939116737523329, TEST_TOL1); TEST (gsl_cdf_ugaussian_P, (-10.0), 7.619853024160526065973343257e-24, TEST_TOL3); TEST (gsl_cdf_ugaussian_P, (-30.0), 4.906713927148187059533809288e-198, TEST_TOL3); TEST (gsl_cdf_ugaussian_P, (-1e10), 0.0, 0.0); TEST (gsl_cdf_ugaussian_Q, (0.0), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (1e-32), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (1e-16), 0.4999999999999999601057719598, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (1e-8), 0.4999999960105771959856732870, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (0.5), 0.3085375387259868963622953894, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (0.7), 0.2419636522230730147493504282, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (5.0), 0.0000002866515718791939116737523329, TEST_TOL3); TEST (gsl_cdf_ugaussian_Q, (10.0), 7.619853024160526065973343257e-24, TEST_TOL3); TEST (gsl_cdf_ugaussian_Q, (30.0), 4.906713927148187059533809288e-198, TEST_TOL3); TEST (gsl_cdf_ugaussian_Q, (1e10), 0.0, 0.0); TEST (gsl_cdf_ugaussian_Q, (-1e-32), 0.5, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-1e-16), 0.5000000000000000398942280401, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-1e-8), 0.5000000039894228040143267129, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-0.5), 0.6914624612740131036377046105, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-0.7), 0.7580363477769269852506495717, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-5.0), 0.9999997133484281208060883262, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-10.0), 0.9999999999999999999999923801, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-30.0), 1.000000000000000000000000000, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-40.0), 1.000000000000000000000000000, TEST_TOL0); TEST (gsl_cdf_ugaussian_Q, (-1e10), 1.000000000000000000000000000, TEST_TOL0); } /* Test values from Abramowitz & Stegun, Handbook of Mathematical Functions, Table 26.1. Error term is given by dx = dP / Z(x) */ void test_ugaussianinv (void) { TEST (gsl_cdf_ugaussian_Pinv, (0.9999997133), 5.0, 1e-4); TEST (gsl_cdf_ugaussian_Pinv, (0.9999683288), 4.0, 1e-6); TEST (gsl_cdf_ugaussian_Pinv, (0.9986501020), 3.0, 1e-8); TEST (gsl_cdf_ugaussian_Pinv, (0.977249868051821), 2.0, 1e-14); TEST (gsl_cdf_ugaussian_Pinv, (0.841344746068543), 1.0, TEST_TOL3); TEST (gsl_cdf_ugaussian_Pinv, (0.691462461274013), 0.5, TEST_TOL2); TEST (gsl_cdf_ugaussian_Pinv, (0.655421741610324), 0.4, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (0.617911422188953), 0.3, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (0.579259709439103), 0.2, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (0.539827837277029), 0.1, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (0.5), 0.0, TEST_TOL0); TEST (gsl_cdf_ugaussian_Pinv, (4.60172162722971e-1), -0.1, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (4.20740290560897e-1), -0.2, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (3.82088577811047e-1), -0.3, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (3.44578258389676e-1), -0.4, TEST_TOL1); TEST (gsl_cdf_ugaussian_Pinv, (3.08537538725987e-1), -0.5, TEST_TOL2); TEST (gsl_cdf_ugaussian_Pinv, (1.58655253931457e-1), -1.0, TEST_TOL3); TEST (gsl_cdf_ugaussian_Pinv, (2.2750131948179e-2), -2.0, 1e-14); TEST (gsl_cdf_ugaussian_Pinv, (1.349898e-3), -3.0, 1e-8); TEST (gsl_cdf_ugaussian_Pinv, (3.16712e-5), -4.0, 1e-6); TEST (gsl_cdf_ugaussian_Pinv, (2.86648e-7), -5.0, 1e-4); TEST (gsl_cdf_ugaussian_Pinv, (7.61985302416052e-24), -10.0, 1e-4); TEST (gsl_cdf_ugaussian_Qinv, (7.61985302416052e-24), 10.0, 1e-4); TEST (gsl_cdf_ugaussian_Qinv, (2.86648e-7), 5.0, 1e-4); TEST (gsl_cdf_ugaussian_Qinv, (3.16712e-5), 4.0, 1e-6); TEST (gsl_cdf_ugaussian_Qinv, (1.349898e-3), 3.0, 1e-8); TEST (gsl_cdf_ugaussian_Qinv, (2.2750131948179e-2), 2.0, 1e-14); TEST (gsl_cdf_ugaussian_Qinv, (1.58655253931457e-1), 1.0, TEST_TOL3); TEST (gsl_cdf_ugaussian_Qinv, (3.08537538725987e-1), 0.5, TEST_TOL2); TEST (gsl_cdf_ugaussian_Qinv, (3.44578258389676e-1), 0.4, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (3.82088577811047e-1), 0.3, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (4.20740290560897e-1), 0.2, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (4.60172162722971e-1), 0.1, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (0.5), 0.0, TEST_TOL0); TEST (gsl_cdf_ugaussian_Qinv, (0.539827837277029), -0.1, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (0.579259709439103), -0.2, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (0.617911422188953), -0.3, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (0.655421741610324), -0.4, TEST_TOL1); TEST (gsl_cdf_ugaussian_Qinv, (0.691462461274013), -0.5, TEST_TOL2); TEST (gsl_cdf_ugaussian_Qinv, (0.841344746068543), -1.0, TEST_TOL3); TEST (gsl_cdf_ugaussian_Qinv, (0.977249868051821), -2.0, 1e-14); TEST (gsl_cdf_ugaussian_Qinv, (0.9986501020), -3.0, 1e-8); TEST (gsl_cdf_ugaussian_Qinv, (0.9999683288), -4.0, 1e-6); TEST (gsl_cdf_ugaussian_Qinv, (0.9999997133), -5.0, 1e-4); } /* Tests for exponential cumulative distribution function Function values computed with PARI, 28 digits precision */ void test_exponential (void) { TEST (gsl_cdf_exponential_P, (0.1, 0.7), 1.33122100249818372e-1, TEST_TOL0); TEST (gsl_cdf_exponential_P, (1e-32, 0.7), 1.42857142857142857e-32, TEST_TOL0); TEST (gsl_cdf_exponential_P, (1000.0, 0.7), 1.0, TEST_TOL6); TEST (gsl_cdf_exponential_Q, (0.1, 0.7), 8.66877899750181628e-1, TEST_TOL0); TEST (gsl_cdf_exponential_Q, (1e-32, 0.7), 1.0, TEST_TOL0); TEST (gsl_cdf_exponential_Q, (1000.0, 0.7), 0.0, TEST_TOL6); } void test_exponentialinv (void) { TEST (gsl_cdf_exponential_Pinv, (0.13, 0.7), 9.74834471334553546e-2, TEST_TOL0); TEST (gsl_cdf_exponential_Pinv, (1.42e-32, 0.7), 9.94000000000000000e-33, TEST_TOL0); TEST (gsl_cdf_exponential_Qinv, (0.86, 0.7), 1.05576022814208545e-1, TEST_TOL0); TEST (gsl_cdf_exponential_Qinv, (0.99999, 0.7), 7.00003500023333508e-6, TEST_TOL6); } void test_exppow (void) { TEST (gsl_cdf_exppow_P, (-1000.0, 0.7, 1.8), 0.0, TEST_TOL6); TEST (gsl_cdf_exppow_P, (-0.1, 0.7, 1.8), 0.4205349082867515493458053850, TEST_TOL0); TEST (gsl_cdf_exppow_P, (-1e-32, 0.7, 1.8), 0.4999999999999999999999999999, TEST_TOL0); TEST (gsl_cdf_exppow_P, (0.1, 0.7, 1.8), 0.5794650917132484506541946149, TEST_TOL0); TEST (gsl_cdf_exppow_P, (1e-32, 0.7, 1.8), 0.5, TEST_TOL0); TEST (gsl_cdf_exppow_P, (1000.0, 0.7, 1.8), 0.9999999999999999999999956212, TEST_TOL6); TEST (gsl_cdf_exppow_Q, (-1000.0, 0.7, 1.8), 0.9999999999999999999999956212, TEST_TOL6); TEST (gsl_cdf_exppow_Q, (-0.1, 0.7, 1.8), 0.5794650917132484506541946149, TEST_TOL0); TEST (gsl_cdf_exppow_Q, (-1e-32, 0.7, 1.8), 0.5, TEST_TOL0); TEST (gsl_cdf_exppow_Q, (0.1, 0.7, 1.8), 0.4205349082867515493458053850, TEST_TOL0); TEST (gsl_cdf_exppow_Q, (1e-32, 0.7, 1.8), 0.4999999999999999999999999999, TEST_TOL0); TEST (gsl_cdf_exppow_Q, (1000.0, 0.7, 1.8), 0.0, TEST_TOL6); } /* Tests for student's T distribution */ /* p(x,nu) = (1/2)*(1+sign(x)*betaI(x^2/(nu+x^2),1/2,nu/2)) q(x,nu) = (1/2)*(1-sign(x)*betaI(x^2/(nu+x^2),1/2,nu/2)) */ void test_tdist (void) { TEST (gsl_cdf_tdist_P, (0.0, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1e-100, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.001, 1.0), 5.00318309780080559e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.01, 1.0), 5.03182992764908255e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.1, 1.0), 5.31725517430553569e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.325, 1.0), 6.00023120032852123e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.0, 1.0), 0.75000000000000000e0, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.5, 1.0), 8.12832958189001183e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (2.0, 1.0), 8.52416382349566726e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10.0, 1.0), 9.68274482569446430e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (20.0, 1.0), 9.84097748743823625e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (100.0, 1.0), 9.96817007235091745e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1000.0, 1.0), 9.99681690219919441e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10000.0, 1.0), 9.99968169011487724e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.0, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1e-100, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.001, 1.0), 4.99681690219919441e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.01, 1.0), 4.96817007235091745e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.1, 1.0), 4.68274482569446430e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.325, 1.0), 3.99976879967147876e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.0, 1.0), 2.5e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.5, 1.0), 1.87167041810998816e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (2.0, 1.0), 1.47583617650433274e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (10.0, 1.0), 3.17255174305535695e-2, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (20.0, 1.0), 1.59022512561763752e-2, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (100.0, 1.0), 3.18299276490825515e-3, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1000.0, 1.0), 3.18309780080558939e-4, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (10000.0, 1.0), 3.18309885122757724e-5, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1e-100, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.001, 1.0), 4.99681690219919441e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.01, 1.0), 4.96817007235091744e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.1, 1.0), 4.68274482569446430e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.325, 1.0), 3.99976879967147876e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.0, 1.0), 0.25, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.5, 1.0), 1.87167041810998816e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-2.0, 1.0), 1.47583617650433274e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-10.0, 1.0), 3.17255174305535695e-2, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-20.0, 1.0), 1.59022512561763751e-2, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-100.0, 1.0), 3.18299276490825514e-3, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1000.0, 1.0), 3.18309780080558938e-4, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-10000.0, 1.0), 3.18309885122757724e-5, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1e-100, 1.0), 0.5, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.001, 1.0), 5.00318309780080559e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.01, 1.0), 5.03182992764908255e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.1, 1.0), 5.31725517430553570e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.325, 1.0), 6.00023120032852124e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.0, 1.0), 7.5e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.5, 1.0), 8.12832958189001184e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-2.0, 1.0), 8.52416382349566726e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10.0, 1.0), 9.68274482569446430e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-20.0, 1.0), 9.84097748743823625e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-100.0, 1.0), 9.96817007235091745e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1000.0, 1.0), 9.99681690219919441e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10000.0, 1.0), 9.99968169011487724e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.0, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1e-100, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.001, 2.0), 5.00353553302204959e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.01, 2.0), 5.03535445520899514e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.1, 2.0), 5.35267280792929913e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.325, 2.0), 6.11985772746873767e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.0, 2.0), 7.88675134594812882e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.5, 2.0), 8.63803437554499460e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (2.0, 2.0), 9.08248290463863016e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10.0, 2.0), 9.95073771488337154e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (20.0, 2.0), 9.98754668053816452e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (100.0, 2.0), 9.99950007498750219e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1000.0, 2.0), 9.99999500000749945e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10000.0, 2.0), 9.999999950000000739e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.0, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1e-100, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.001, 2.0), 4.99646446697795041e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.01, 2.0), 4.96464554479100486e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.1, 2.0), 4.64732719207070087e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.325, 2.0), 3.88014227253126233e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.0, 2.0), 2.11324865405187118e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.5, 2.0), 1.36196562445500540e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (2.0, 2.0), 9.17517095361369836e-2, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (10.0, 2.0), 4.92622851166284542e-3, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (20.0, 2.0), 1.24533194618354849e-3, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (100.0, 2.0), 4.99925012497812894e-5, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1000.0, 2.0), 4.99999250001249998e-7, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (10000.0, 2.0), 4.99999992500000125e-9, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1e-100, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.001, 2.0), 4.99646446697795041e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.01, 2.0), 4.96464554479100486e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.1, 2.0), 4.64732719207070087e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.325, 2.0), 3.88014227253126233e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.0, 2.0), 2.11324865405187118e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.5, 2.0), 1.36196562445500540e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-2.0, 2.0), 9.17517095361369836e-02, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-10.0, 2.0), 4.92622851166284542e-03, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-20.0, 2.0), 1.24533194618354849e-03, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-100.0, 2.0), 4.99925012497812894e-05, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1000.0, 2.0), 4.99999250001249998e-07, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-10000.0, 2.0), 4.99999992500000125e-09, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1e-100, 2.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.001, 2.0), 5.00353553302204959e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.01, 2.0), 5.03535445520899514e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.1, 2.0), 5.35267280792929913e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.325, 2.0), 6.11985772746873767e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.0, 2.0), 7.88675134594812882e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.5, 2.0), 8.63803437554499460e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-2.0, 2.0), 9.08248290463863016e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10.0, 2.0), 9.95073771488337155e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-20.0, 2.0), 9.98754668053816452e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-100.0, 2.0), 9.99950007498750219e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1000.0, 2.0), 9.99999500000749999e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10000.0, 2.0), 9.99999995000000075e-1, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.0, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1e-100, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.001, 300.0), 5.00398609900942949e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.01, 300.0), 5.03986033020559088e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.1, 300.0), 5.39794441177768194e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (0.325, 300.0), 6.27296201542523812e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.0, 300.0), 8.40941797784686861e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1.5, 300.0), 9.32666983425369137e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (2.0, 300.0), 9.76799239508425455e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10.0, 300.0), 1.00000000000000000e+00, TEST_TOL6); TEST (gsl_cdf_tdist_P, (20.0, 300.0), 1.00000000000000000e+00, TEST_TOL6); TEST (gsl_cdf_tdist_P, (100.0, 300.0), 1.00000000000000000e+00, TEST_TOL6); TEST (gsl_cdf_tdist_P, (1000.0, 300.0), 1.00000000000000000e+00, TEST_TOL6); TEST (gsl_cdf_tdist_P, (10000.0, 300.0), 1.00000000000000000e+00, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.0, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1e-100, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.001, 300.0), 4.99601390099057051e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.01, 300.0), 4.96013966979440912e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.1, 300.0), 4.60205558822231806e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (0.325, 300.0), 3.72703798457476188e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.0, 300.0), 1.59058202215313138e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1.5, 300.0), 6.73330165746308628e-2, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (2.0, 300.0), 2.32007604915745452e-2, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (10.0, 300.0), 8.279313677e-21, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (20.0, 300.0), 1.93159812815803978e-57, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (100.0, 300.0), 1.02557519997736154e-232, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (1000.0, 300.0), 0.00000000000000000e+00, 0.0); TEST (gsl_cdf_tdist_Q, (10000.0, 300.0), 0.00000000000000000e+00, 0.0); TEST (gsl_cdf_tdist_P, (-1e-100, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.001, 300.0), 4.99601390099057051e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.01, 300.0), 4.96013966979440912e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.1, 300.0), 4.60205558822231806e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-0.325, 300.0), 3.72703798457476188e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.0, 300.0), 1.59058202215313138e-01, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1.5, 300.0), 6.73330165746308628e-02, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-2.0, 300.0), 2.32007604915745452e-02, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-10.0, 300.0), 8.279313675556272534e-21, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-20.0, 300.0), 1.93159812815803978e-57, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-100.0, 300.0), 1.02557519997736154e-232, TEST_TOL6); TEST (gsl_cdf_tdist_P, (-1000.0, 300.0), 0.0, 0.0); TEST (gsl_cdf_tdist_P, (-10000.0, 300.0), 0.0, 0.0); TEST (gsl_cdf_tdist_Q, (-1e-100, 300.0), 5.00000000000000000e-01, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.001, 300.0), 5.00398609900942949e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.01, 300.0), 5.03986033020559088e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.1, 300.0), 5.39794441177768194e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-0.325, 300.0), 6.27296201542523812e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.0, 300.0), 8.40941797784686862e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1.5, 300.0), 9.32666983425369137e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-2.0, 300.0), 9.76799239508425455e-1, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10.0, 300.0), 1.000000000000000000e0, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-20.0, 300.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-100.0, 300.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-1000.0, 300.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Q, (-10000.0, 300.0), 1.0, TEST_TOL6); } /* Tests for F distribution */ /* p(x, nu1, nu2) := betaI(1 / (1 + (nu2 / nu1) / x), nu1 / 2, nu2 / 2) */ void test_fdist (void) { TEST (gsl_cdf_fdist_P, (0.0, 1.2, 1.3), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (1e-100, 1.2, 1.3), 6.98194275525039002e-61, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.001, 1.2, 1.3), 1.10608485860238564e-2, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.01, 1.2, 1.3), 4.38636757068313850e-2, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.1, 1.2, 1.3), 1.68242392712840734e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.325, 1.2, 1.3), 3.14130045246195449e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.0, 1.2, 1.3), 5.09630779074755253e-01, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.5, 1.2, 1.3), 5.83998640641553852e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (2.0, 1.2, 1.3), 6.34733581351938787e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10.0, 1.2, 1.3), 8.48446237879200975e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (20.0, 1.2, 1.3), 9.00987726336875039e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (100.0, 1.2, 1.3), 9.64489127047688435e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1000.0, 1.2, 1.3), 9.92012051694116388e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10000.0, 1.2, 1.3), 9.98210862808842585e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.0, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1e-100, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.001, 1.2, 1.3), 9.88939151413976144e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.01, 1.2, 1.3), 9.56136324293168615e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.1, 1.2, 1.3), 8.31757607287159265e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.325, 1.2, 1.3), 6.85869954753804551e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.0, 1.2, 1.3), 4.90369220925244747e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.5, 1.2, 1.3), 4.16001359358446148e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (2.0, 1.2, 1.3), 3.65266418648061213e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10.0, 1.2, 1.3), 1.51553762120799025e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (20.0, 1.2, 1.3), 9.90122736631249612e-2, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (100.0, 1.2, 1.3), 3.55108729523115643e-2, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1000.0, 1.2, 1.3), 7.98794830588361109e-3, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10000.0, 1.2, 1.3), 1.7891371911574145e-3, TEST_TOL6); /* computed with gp-pari */ TEST (gsl_cdf_fdist_P, (3.479082213465832574, 1, 4040712), 0.93785072763723411967, TEST_TOL6); TEST (gsl_cdf_fdist_P, (3.002774644786533109, 1, 4040712), 0.91687787379476055771, TEST_TOL6); TEST (gsl_cdf_fdist_P, (3.000854441173130827, 1, 4040712), 0.91677930719813578619, TEST_TOL6); TEST (gsl_cdf_fdist_P, (3.000064021622133037, 1, 4040712), 0.9167386972447996480399, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.0, 500.0, 1.3), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (1e-100, 500.0, 1.3), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (0.001, 500.0, 1.3), 9.83434460393304765e-141, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.01, 500.0, 1.3), 1.45915624888550014e-26, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.1, 500.0, 1.3), 5.89976509619688165e-4, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.325, 500.0, 1.3), 6.86110486051542533e-2, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.0, 500.0, 1.3), 3.38475053806404615e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.5, 500.0, 1.3), 4.52016245247457422e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (2.0, 500.0, 1.3), 5.27339068937388798e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10.0, 500.0, 1.3), 8.16839628578413905e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (20.0, 500.0, 1.3), 8.81784623056911406e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (100.0, 500.0, 1.3), 9.58045057204221295e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1000.0, 500.0, 1.3), 9.90585749380655275e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10000.0, 500.0, 1.3), 9.97891924831461387e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.0, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1e-100, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.001, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.01, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.1, 500.0, 1.3), 9.99410023490380312e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.325, 500.0, 1.3), 9.31388951394845747e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.0, 500.0, 1.3), 6.61524946193595385e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.5, 500.0, 1.3), 5.47983754752542572e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (2.0, 500.0, 1.3), 4.72660931062611202e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10.0, 500.0, 1.3), 1.83160371421586096e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (20.0, 500.0, 1.3), 1.18215376943088595e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (100.0, 500.0, 1.3), 4.19549427957787016e-2, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1000.0, 500.0, 1.3), 9.41425061934473424e-3, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10000.0, 500.0, 1.3), 2.10807516853862603e-3, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.0, 1.2, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (1e-100, 1.2, 500.0), 8.23342055585482999e-61, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.001, 1.2, 500.0), 1.30461496441289529e-2, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.01, 1.2, 500.0), 5.18324224608033294e-2, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.1, 1.2, 500.0), 2.02235101716076289e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.325, 1.2, 500.0), 3.90502983219393749e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.0, 1.2, 500.0), 6.67656191574653619e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.5, 1.2, 500.0), 7.75539230271467054e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (2.0, 1.2, 500.0), 8.45209114904613705e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10.0, 1.2, 500.0), 9.99168017659120988e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (20.0, 1.2, 500.0), 9.99998005738371669e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (100.0, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1000.0, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10000.0, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.0, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1e-100, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.001, 1.2, 500.0), 9.86953850355871047e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.01, 1.2, 500.0), 9.48167577539196671e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.1, 1.2, 500.0), 7.97764898283923711e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.325, 1.2, 500.0), 6.09497016780606251e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.0, 1.2, 500.0), 3.32343808425346381e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.5, 1.2, 500.0), 2.24460769728532946e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (2.0, 1.2, 500.0), 1.54790885095386295e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10.0, 1.2, 500.0), 8.3198234087901168e-4, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (20.0, 1.2, 500.0), 1.99426162833131e-6, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (100.0, 1.2, 500.0), 6.23302662288217117e-25, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1000.0, 1.2, 500.0), 1.14328577259666930e-134, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10000.0, 1.2, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (0.0, 200.0, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (1e-100, 200.0, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_P, (0.001, 200.0, 500.0), 4.09325080403669893e-251, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.01, 200.0, 500.0), 1.17894325419628688e-151, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.1, 200.0, 500.0), 5.92430940796861258e-57, TEST_TOL6); TEST (gsl_cdf_fdist_P, (0.325, 200.0, 500.0), 3.18220452357263554e-18, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.0, 200.0, 500.0), 5.06746326121168266e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1.5, 200.0, 500.0), 9.99794175718712438e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (2.0, 200.0, 500.0), 9.99999999528236152e-1, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (20.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (100.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (1000.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_P, (10000.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.0, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1e-100, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.001, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.01, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.1, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (0.325, 200.0, 500.0), 9.99999999999999997e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.0, 200.0, 500.0), 4.93253673878831734e-1, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1.5, 200.0, 500.0), 2.05824281287561795e-4, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (2.0, 200.0, 500.0), 4.71763848371410786e-10, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (10.0, 200.0, 500.0), 5.98048337181948436e-96, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (20.0, 200.0, 500.0), 2.92099265879979502e-155, TEST_TOL6); TEST (gsl_cdf_fdist_Q, (1000.0, 200.0, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_Q, (10000.0, 200.0, 500.0), 0.0, 0.0); } void test_finv (void) { TEST (gsl_cdf_fdist_Pinv, (0.0, 1.2, 1.3), 0.0, 0.0); TEST (gsl_cdf_fdist_Pinv, ( 6.98194275525039002e-61, 1.2, 1.3), 1e-100, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.10608485860238564e-2, 1.2, 1.3), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 4.38636757068313850e-2, 1.2, 1.3), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.68242392712840734e-1, 1.2, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 3.14130045246195449e-1, 1.2, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.09630779074755253e-01, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.83998640641553852e-1, 1.2, 1.3), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 6.34733581351938787e-1, 1.2, 1.3), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 8.48446237879200975e-1, 1.2, 1.3), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.00987726336875039e-1, 1.2, 1.3), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.64489127047688435e-1, 1.2, 1.3), 100.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.92012051694116388e-1, 1.2, 1.3), 1000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.98210862808842585e-1, 1.2, 1.3), 10000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.0, 1.2, 1.3), 0.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.88939151413976144e-1, 1.2, 1.3), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.56136324293168615e-1, 1.2, 1.3), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 8.31757607287159265e-1, 1.2, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 6.85869954753804551e-1, 1.2, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.90369220925244747e-1, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.16001359358446148e-1, 1.2, 1.3), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 3.65266418648061213e-1, 1.2, 1.3), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.51553762120799025e-1, 1.2, 1.3), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.90122736631249612e-2, 1.2, 1.3), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 3.55108729523115643e-2, 1.2, 1.3), 100.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 7.98794830588361109e-3, 1.2, 1.3), 1000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.7891371911574145e-3, 1.2, 1.3), 10000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 0.0, 500.0, 1.3), 0.0, 0.0); TEST (gsl_cdf_fdist_Pinv, ( 9.83434460393304765e-141, 500.0, 1.3), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.45915624888550014e-26, 500.0, 1.3), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.89976509619688165e-4, 500.0, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 6.86110486051542533e-2, 500.0, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 3.38475053806404615e-1, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 4.52016245247457422e-1, 500.0, 1.3), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.27339068937388798e-1, 500.0, 1.3), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 8.16839628578413905e-1, 500.0, 1.3), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 8.81784623056911406e-1, 500.0, 1.3), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.58045057204221295e-1, 500.0, 1.3), 100.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.90585749380655275e-1, 500.0, 1.3), 1000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.97891924831461387e-1, 500.0, 1.3), 10000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.0, 500.0, 1.3), 0.0, TEST_TOL6); /* * The algorithm currently implemented in gsl_cdf_fdist_Qinv and Pinv * are not accurate for very large degrees of freedom, so the tests * here are commented out. Another algorithm more suitable for * these extreme values might pass these tests. */ TEST (gsl_cdf_fdist_Qinv, ( 9.99410023490380312e-1, 500.0, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.31388951394845747e-1, 500.0, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 6.61524946193595385e-1, 500.0, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 5.47983754752542572e-1, 500.0, 1.3), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.72660931062611202e-1, 500.0, 1.3), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.83160371421586096e-1, 500.0, 1.3), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.18215376943088595e-1, 500.0, 1.3), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.19549427957787016e-2, 500.0, 1.3), 100.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.41425061934473424e-3, 500.0, 1.3), 1000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 2.10807516853862603e-3, 500.0, 1.3), 10000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 0.0, 1.2, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_Pinv, ( 8.23342055585482999e-61, 1.2, 500.0), 1e-100, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.30461496441289529e-2, 1.2, 500.0), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.18324224608033294e-2, 1.2, 500.0), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 2.02235101716076289e-1, 1.2, 500.0), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 3.90502983219393749e-1, 1.2, 500.0), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 6.67656191574653619e-1, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 7.75539230271467054e-1, 1.2, 500.0), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 8.45209114904613705e-1, 1.2, 500.0), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.99168017659120988e-1, 1.2, 500.0), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.99998005738371669e-1, 1.2, 500.0), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.0, 1.2, 500.0), GSL_POSINF, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.0, 1.2, 500.0), GSL_POSINF, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.0, 1.2, 500.0), GSL_POSINF, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.0, 1.2, 500.0), 0.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.86953850355871047e-1, 1.2, 500.0), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 9.48167577539196671e-1, 1.2, 500.0), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 7.97764898283923711e-1, 1.2, 500.0), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 6.09497016780606251e-1, 1.2, 500.0), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 3.32343808425346381e-1, 1.2, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 2.24460769728532946e-1, 1.2, 500.0), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.54790885095386295e-1, 1.2, 500.0), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 8.3198234087901168e-4, 1.2, 500.0), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.99426162833131e-6, 1.2, 500.0), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 6.23302662288217117e-25, 1.2, 500.0), 100.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.14328577259666930e-134, 1.2, 500.0), 1000.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 0.0, 1.2, 500.0), GSL_POSINF, 0.0); TEST (gsl_cdf_fdist_Pinv, ( 0.0, 200.0, 500.0), 0.0, 0.0); TEST (gsl_cdf_fdist_Pinv, ( 4.09325080403669893e-251, 200.0, 500.0), 0.001, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.17894325419628688e-151, 200.0, 500.0), 0.01, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.92430940796861258e-57, 200.0, 500.0), 0.1, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 3.18220452357263554e-18, 200.0, 500.0), 0.325, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 5.06746326121168266e-1, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 9.99794175718712438e-1, 200.0, 500.0), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Pinv, ( 1.0, 200.0, 500.0), GSL_POSINF, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 1.0, 200.0, 500.0), 0.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.93253673878831734e-1, 200.0, 500.0), 1.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 2.05824281287561795e-4, 200.0, 500.0), 1.5, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 4.71763848371410786e-10, 200.0, 500.0), 2.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 5.98048337181948436e-96, 200.0, 500.0), 10.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 2.92099265879979502e-155, 200.0, 500.0), 20.0, TEST_TOL6); TEST (gsl_cdf_fdist_Qinv, ( 0.0, 200.0, 500.0), GSL_POSINF, 0.0); TEST (gsl_cdf_fdist_Pinv, (0.95,1.0,261.0), 3.8773340322508720313e+00, TEST_TOL3); } /* Tests for gamma distribution */ /* p(x, a, b) := gammaP(b, x / a) */ void test_gamma (void) { TEST (gsl_cdf_gamma_P, (0.0, 1.0, 1.0), 0.0, 0.0); TEST (gsl_cdf_gamma_P, (1e-100, 1.0, 1.0), 1e-100, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.001, 1.0, 1.0), 9.99500166625008332e-4, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.01, 1.0, 1.0), 9.95016625083194643e-3, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.1, 1.0, 1.0), 9.51625819640404268e-2, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.325, 1.0, 1.0), 2.77472646357927811e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.0, 1.0, 1.0), 6.32120558828557678e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.5, 1.0, 1.0), 7.76869839851570171e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (2.0, 1.0, 1.0), 8.64664716763387308e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10.0, 1.0, 1.0), 9.99954600070237515e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (20.0, 1.0, 1.0), 9.99999997938846378e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (100.0, 1.0, 1.0), 1e0, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1000.0, 1.0, 1.0), 1e0, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10000.0, 1.0, 1.0), 1e0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.0, 1.0, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1e-100, 1.0, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.001, 1.0, 1.0), 9.99000499833374992e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.01, 1.0, 1.0), 9.90049833749168054e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.1, 1.0, 1.0), 9.04837418035959573e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.325, 1.0, 1.0), 7.22527353642072189e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.0, 1.0, 1.0), 3.67879441171442322e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.5, 1.0, 1.0), 2.23130160148429829e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (2.0, 1.0, 1.0), 1.35335283236612692e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (10.0, 1.0, 1.0), 4.53999297624848515e-5, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (20.0, 1.0, 1.0), 2.06115362243855783e-9, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (100.0, 1.0, 1.0), 3.72007597602083596e-44, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1000.0, 1.0, 1.0), 0.0, 0.0); TEST (gsl_cdf_gamma_Q, (10000.0, 1.0, 1.0), 0.0, 0.0); TEST (gsl_cdf_gamma_P, (0.0, 1.0, 10.0), 0.0, 0.0); TEST (gsl_cdf_gamma_P, (1e-100, 1.0, 10.0), 1e-101, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.001, 1.0, 10.0), 9.99950001666625001e-5, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.01, 1.0, 10.0), 9.99500166625008332e-4, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.1, 1.0, 10.0), 9.95016625083194643e-3, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.325, 1.0, 10.0), 3.19775501686939529e-2, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.0, 1.0, 10.0), 9.51625819640404268e-2, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.5, 1.0, 10.0), 1.39292023574942193e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (2.0, 1.0, 10.0), 1.81269246922018141e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10.0, 1.0, 10.0), 6.32120558828557678e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (20.0, 1.0, 10.0), 8.64664716763387308e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (100.0, 1.0, 10.0), 9.99954600070237515e-1, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1000.0, 1.0, 10.0), 1e0, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10000.0, 1.0, 10.0), 1e0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.0, 1.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1e-100, 1.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.001, 1.0, 10.0), 9.99900004999833337e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.01, 1.0, 10.0), 9.99000499833374992e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.1, 1.0, 10.0), 9.90049833749168054e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.325, 1.0, 10.0), 9.68022449831306047e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.0, 1.0, 10.0), 9.04837418035959573e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.5, 1.0, 10.0), 8.60707976425057807e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (2.0, 1.0, 10.0), 8.18730753077981859e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (10.0, 1.0, 10.0), 3.67879441171442322e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (20.0, 1.0, 10.0), 1.35335283236612692e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (100.0, 1.0, 10.0), 4.53999297624848515e-5, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1000.0, 1.0, 10.0), 3.72007597602083596e-44, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (10000.0, 1.0, 10.0), 0.0, 0.0); TEST (gsl_cdf_gamma_P, (0.0, 17.0, 10.0), 0e0, 0.0); TEST (gsl_cdf_gamma_P, (1e-100, 17.0, 10.0), 0e0, 0.0); TEST (gsl_cdf_gamma_P, (0.001, 17.0, 10.0), 2.81119174040422844e-83, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.01, 17.0, 10.0), 2.80880324651985887e-66, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.1, 17.0, 10.0), 2.78502998087492130e-49, TEST_TOL6); TEST (gsl_cdf_gamma_P, (0.325, 17.0, 10.0), 1.37283653245125844e-40, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.0, 17.0, 10.0), 2.55811932292544243e-32, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1.5, 17.0, 10.0), 2.40420441175422372e-29, TEST_TOL6); TEST (gsl_cdf_gamma_P, (2.0, 17.0, 10.0), 3.05092926217898577e-27, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10.0, 17.0, 10.0), 1.094920130378183e-15, TEST_TOL6); TEST (gsl_cdf_gamma_P, (20.0, 17.0, 10.0), 5.60605096173161688e-11, TEST_TOL6); TEST (gsl_cdf_gamma_P, (100.0, 17.0, 10.0), 2.70416097848011280e-2, TEST_TOL6); TEST (gsl_cdf_gamma_P, (1000.0, 17.0, 10.0), 1.000000000000000000e0, TEST_TOL6); TEST (gsl_cdf_gamma_P, (10000.0, 17.0, 10.0), 1.000000000000000000e0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.0, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1e-100, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.001, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.01, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.1, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (0.325, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.0, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1.5, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (2.0, 17.0, 10.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (10.0, 17.0, 10.0), 9.99999999999998905e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (20.0, 17.0, 10.0), 9.99999999943939490e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (100.0, 17.0, 10.0), 9.72958390215198872e-1, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (1000.0, 17.0, 10.0), 2.11200951633948570e-25, TEST_TOL6); TEST (gsl_cdf_gamma_Q, (10000.0, 17.0, 10.0), 0.0, 0.0); } void test_chisq (void) { TEST (gsl_cdf_chisq_P, (0.0, 13.0), 0.0, 0.0); TEST (gsl_cdf_chisq_P, (1e-100, 13.0), 0.0, 0.0); TEST (gsl_cdf_chisq_P, (0.001, 13.0), 1.86631102655845996e-25, TEST_TOL6); TEST (gsl_cdf_chisq_P, (0.01, 13.0), 5.87882248504529790e-19, TEST_TOL6); TEST (gsl_cdf_chisq_P, (0.1, 13.0), 1.78796983358555410e-12, TEST_TOL6); TEST (gsl_cdf_chisq_P, (0.325, 13.0), 3.44611313779905183e-9, TEST_TOL6); TEST (gsl_cdf_chisq_P, (1.0, 13.0), 3.83473473513595154e-6, TEST_TOL6); TEST (gsl_cdf_chisq_P, (1.5, 13.0), 4.31718389201041932e-5, TEST_TOL6); TEST (gsl_cdf_chisq_P, (2.0, 13.0), 2.26250084656047180e-4, TEST_TOL6); TEST (gsl_cdf_chisq_P, (10.0, 13.0), 3.06065632019251110e-1, TEST_TOL6); TEST (gsl_cdf_chisq_P, (20.0, 13.0), 9.04789743921908487e-1, TEST_TOL6); TEST (gsl_cdf_chisq_P, (100.0, 13.0), 9.99999999999998341e-1, TEST_TOL6); TEST (gsl_cdf_chisq_P, (1000.0, 13.0), 1e0, TEST_TOL6); TEST (gsl_cdf_chisq_P, (10000.0, 13.0), 1e0, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (0.0, 13.0), 1e0, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (1e-100, 13.0), 1e0, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (0.001, 13.0), 1e0, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (0.01, 13.0), 9.99999999999999999e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (0.1, 13.0), 9.99999999998212030e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (0.325, 13.0), 9.99999996553886862e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (1.0, 13.0), 9.99996165265264864e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (1.5, 13.0), 9.99956828161079896e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (2.0, 13.0), 9.99773749915343953e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (10.0, 13.0), 6.93934367980748890e-1, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (20.0, 13.0), 9.52102560780915127e-2, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (100.0, 13.0), 1.65902608070858809e-15, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (1000.0, 13.0), 1.74851191544860225e-205, TEST_TOL6); TEST (gsl_cdf_chisq_Q, (10000.0, 13.0), 0.0, 0.0); } /* Beta distribution */ void test_beta (void) { TEST (gsl_cdf_beta_P, (0.0, 1.2, 1.3), 0.0, 0.0); TEST (gsl_cdf_beta_P, (1e-100, 1.2, 1.3), 1.34434944656489596e-120, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.001, 1.2, 1.3), 3.37630042504535813e-4, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.01, 1.2, 1.3), 5.34317264038929473e-3, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.1, 1.2, 1.3), 8.33997828306748346e-2, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.325, 1.2, 1.3), 3.28698654180583916e-1, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.5, 1.2, 1.3), 5.29781429451299081e-1, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.9, 1.2, 1.3), 9.38529397224430659e-1, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.99, 1.2, 1.3), 9.96886438341254380e-1, TEST_TOL6); TEST (gsl_cdf_beta_P, (0.999, 1.2, 1.3), 9.99843792833067634e-1, TEST_TOL6); TEST (gsl_cdf_beta_P, (1.0, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.0, 1.2, 1.3), 1.0, 0.0); TEST (gsl_cdf_beta_Q, (1e-100, 1.2, 1.3), 1e0, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.001, 1.2, 1.3), 9.99662369957495464e-1, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.01, 1.2, 1.3), 9.94656827359610705e-1, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.1, 1.2, 1.3), 9.16600217169325165e-1, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.325, 1.2, 1.3), 6.71301345819416084e-1, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.5, 1.2, 1.3), 4.70218570548700919e-1, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.9, 1.2, 1.3), 6.14706027755693408e-2, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.99, 1.2, 1.3), 3.11356165874561958e-3, TEST_TOL6); TEST (gsl_cdf_beta_Q, (0.999, 1.2, 1.3), 1.56207166932365759e-4, TEST_TOL6); TEST (gsl_cdf_beta_Q, (1.0, 1.2, 1.3), 0.0, TEST_TOL6); } void test_betainv (void) { TEST (gsl_cdf_beta_Pinv, (0.0, 1.2, 1.3), 0.0, 0.0); TEST (gsl_cdf_beta_Pinv, ( 1.34434944656489596e-120, 1.2, 1.3), 1e-100, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 3.37630042504535813e-4, 1.2, 1.3), 0.001, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 5.34317264038929473e-3, 1.2, 1.3), 0.01, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 8.33997828306748346e-2, 1.2, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 3.28698654180583916e-1, 1.2, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 5.29781429451299081e-1, 1.2, 1.3), 0.5, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 9.38529397224430659e-1, 1.2, 1.3), 0.9, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 9.96886438341254380e-1, 1.2, 1.3), 0.99, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 9.99843792833067634e-1, 1.2, 1.3), 0.999, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 1.0, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 1.0, 1.2, 1.3), 0.0, 0.0); TEST (gsl_cdf_beta_Qinv, ( 1e0, 1.2, 1.3), 0.0, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 9.99662369957495464e-1, 1.2, 1.3), 0.001, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 9.94656827359610705e-1, 1.2, 1.3), 0.01, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 9.16600217169325165e-1, 1.2, 1.3), 0.1, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 6.71301345819416084e-1, 1.2, 1.3), 0.325, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 4.70218570548700919e-1, 1.2, 1.3), 0.5, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 6.14706027755693408e-2, 1.2, 1.3), 0.9, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 3.11356165874561958e-3, 1.2, 1.3), 0.99, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 1.56207166932365759e-4, 1.2, 1.3), 0.999, TEST_TOL6); TEST (gsl_cdf_beta_Qinv, ( 0.0, 1.2, 1.3), 1.0, TEST_TOL6); TEST (gsl_cdf_beta_Pinv, ( 0.025, 2133.0, 7868.0), 0.20530562929915865457928654, TEST_TOL6); } void test_gammainv (void) { TEST (gsl_cdf_gamma_Pinv, (0.0, 1.0, 1.0), 0.0, 0.0); TEST (gsl_cdf_gamma_Pinv, (1e-100, 1.0, 1.0), 1e-100, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (9.99500166625008332e-4, 1.0, 1.0), 0.001, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (9.95016625083194643e-3, 1.0, 1.0), 0.01, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (9.51625819640404268e-2, 1.0, 1.0), 0.1, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (2.77472646357927811e-1, 1.0, 1.0), 0.325, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (6.32120558828557678e-1, 1.0, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (7.76869839851570171e-1, 1.0, 1.0), 1.5, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (8.64664716763387308e-1, 1.0, 1.0), 2.0, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (9.99954600070237515e-1, 1.0, 1.0), 10.0, TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (9.99999997938846378e-1, 1.0, 1.0), 20.0, 100 * TEST_TOL6); TEST (gsl_cdf_gamma_Pinv, (1.0, 1.0, 1.0), GSL_POSINF, 0.0); /* Test case from Benjamin Redelings */ /* fails on x86_64, FIXME test value is from octave -- get high precision value */ TEST (gsl_cdf_gamma_Pinv, (0.1, 11.887411491530846,1.0), 7.73788447848618e+00, TEST_TOL1); TEST (gsl_cdf_gamma_Qinv, (0.0, 1.0, 1.0), GSL_POSINF, 0.0); TEST (gsl_cdf_gamma_Qinv, (2.06115362243855783e-9, 1.0, 1.0), 20.0, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (4.53999297624848515e-5, 1.0, 1.0), 10.0, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (1.35335283236612692e-1, 1.0, 1.0), 2.0, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (2.23130160148429829e-1, 1.0, 1.0), 1.5, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (3.67879441171442322e-1, 1.0, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (7.22527353642072189e-1, 1.0, 1.0), 0.325, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (9.04837418035959573e-1, 1.0, 1.0), 0.1, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (9.90049833749168054e-1, 1.0, 1.0), 0.01, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (9.99000499833374992e-1, 1.0, 1.0), 0.001, TEST_TOL6); TEST (gsl_cdf_gamma_Qinv, (1.0, 1.0, 1.0), 0.0, 0.0); } void test_chisqinv (void) { TEST (gsl_cdf_chisq_Pinv, (0.0, 13.0), 0.0, 0.0); TEST (gsl_cdf_chisq_Pinv, (1.86631102655845996e-25, 13.0), 0.001, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (5.87882248504529790e-19, 13.0), 0.01, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (1.78796983358555410e-12, 13.0), 0.1, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (3.44611313779905183e-9, 13.0), 0.325, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (3.83473473513595154e-6, 13.0), 1.0, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (4.31718389201041932e-5, 13.0), 1.5, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (2.26250084656047180e-4, 13.0), 2.0, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (3.06065632019251110e-1, 13.0), 10.0, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (9.04789743921908487e-1, 13.0), 20.0, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (9.99999999999998341e-1, 13.0), 100.0, 0.01); TEST (gsl_cdf_chisq_Pinv, (1e0, 13.0), GSL_POSINF, 0.0); TEST (gsl_cdf_chisq_Pinv, (1.93238145206123590e-01, 1.5), 0.211980092931799521729407, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (4.83e-8, 19.19), 1.632280186860266704532868343, TEST_TOL6); /* Test cases for bug 24704 */ TEST (gsl_cdf_chisq_Pinv, (0.05, 1263131.0), 1260517.771133388726131469059, TEST_TOL6); TEST (gsl_cdf_chisq_Pinv, (0.05, 2526262.0), 2522565.864973351096735720202, TEST_TOL6); #if 0 /* XXX - bug #39057 */ /* Test case reported by Yan Zhou */ TEST (gsl_cdf_chisq_Pinv, (0.5, 0.01), 0.99477710813146, TEST_TOL6); #endif TEST (gsl_cdf_chisq_Qinv, (0.0, 13.0), GSL_POSINF, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (1.65902608070858809e-15, 13.0), 100.0, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (9.52102560780915127e-2, 13.0), 20.0, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (6.93934367980748892e-1, 13.0), 10.0, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (9.99773749915343954e-1, 13.0), 2.0, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (9.99956828161079894e-1, 13.0), 1.5, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (9.99996165265264863e-1, 13.0), 1.0, TEST_TOL6); TEST (gsl_cdf_chisq_Qinv, (9.99999996553886862e-1, 13.0), 0.325, 1e-6); TEST (gsl_cdf_chisq_Qinv, (9.99999999998212031e-1, 13.0), 0.1, 1e-5); TEST (gsl_cdf_chisq_Qinv, (1.0, 13.0), 0.0, 0.0); } void test_tdistinv (void) { TEST (gsl_cdf_tdist_Pinv, (0.5, 1.0), 0.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.00318309780080559e-1, 1.0), 0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.03182992764908255e-1, 1.0), 0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.31725517430553569e-1, 1.0), 0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (6.00023120032852123e-1, 1.0), 0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (0.75000000000000000e0, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (8.12832958189001183e-1, 1.0), 1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (8.52416382349566726e-1, 1.0), 2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.68274482569446430e-1, 1.0), 10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.84097748743823625e-1, 1.0), 20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.96817007235091745e-1, 1.0), 100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.99681690219919441e-1, 1.0), 1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.99968169011487724e-1, 1.0), 10000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (0.5, 1.0), 0.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.99681690219919441e-1, 1.0), 0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.96817007235091745e-1, 1.0), 0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.68274482569446430e-1, 1.0), 0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.99976879967147876e-1, 1.0), 0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (2.5e-1, 1.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.87167041810998816e-1, 1.0), 1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.47583617650433274e-1, 1.0), 2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.17255174305535695e-2, 1.0), 10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.59022512561763752e-2, 1.0), 20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.18299276490825515e-3, 1.0), 100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.18309780080558939e-4, 1.0), 1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.18309885122757724e-5, 1.0), 10000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.99681690219919441e-1, 1.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.96817007235091744e-1, 1.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.68274482569446430e-1, 1.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.99976879967147876e-1, 1.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (0.25, 1.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.87167041810998816e-1, 1.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.47583617650433274e-1, 1.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.17255174305535695e-2, 1.0), -10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.59022512561763751e-2, 1.0), -20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.18299276490825514e-3, 1.0), -100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.18309780080558938e-4, 1.0), -1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.18309885122757724e-5, 1.0), -10000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.00318309780080559e-1, 1.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.03182992764908255e-1, 1.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.31725517430553570e-1, 1.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (6.00023120032852124e-1, 1.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (7.5e-1, 1.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (8.12832958189001184e-1, 1.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (8.52416382349566726e-1, 1.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.68274482569446430e-1, 1.0), -10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.84097748743823625e-1, 1.0), -20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.96817007235091745e-1, 1.0), -100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.99681690219919441e-1, 1.0), -1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.99968169011487724e-1, 1.0), -10000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.99646446697795041e-01, 2.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.96464554479100486e-01, 2.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.64732719207070087e-01, 2.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.88014227253126233e-01, 2.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (2.11324865405187118e-01, 2.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.36196562445500540e-01, 2.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.17517095361369836e-02, 2.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.92622851166284542e-03, 2.0), -10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.24533194618354849e-03, 2.0), -20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.99925012497812894e-05, 2.0), -100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.99999250001249998e-07, 2.0), -1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.99999992500000125e-09, 2.0), -10000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.00353553302204959e-1, 2.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.03535445520899514e-1, 2.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.35267280792929913e-1, 2.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (6.11985772746873767e-1, 2.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (7.88675134594812882e-1, 2.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (8.63803437554499460e-1, 2.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.08248290463863016e-1, 2.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.95073771488337155e-1, 2.0), -10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.98754668053816452e-1, 2.0), -20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.99950007498750219e-1, 2.0), -100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.99999500000749999e-1, 2.0), -1000.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.99999995000000075e-1, 2.0), -10000.0, 1e-6); TEST (gsl_cdf_tdist_Pinv, (5.00000000000000000e-01, 300.0), 0.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.00398609900942949e-01, 300.0), 0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.03986033020559088e-01, 300.0), 0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (5.39794441177768194e-01, 300.0), 0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (6.27296201542523812e-01, 300.0), 0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (8.40941797784686861e-01, 300.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.32666983425369137e-01, 300.0), 1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (9.76799239508425455e-01, 300.0), 2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.00000000000000000e+00, 300.0), GSL_POSINF, 0.0); TEST (gsl_cdf_tdist_Qinv, (5.00000000000000000e-01, 300.0), 0.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.99601390099057051e-1, 300.0), 0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.96013966979440912e-1, 300.0), 0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (4.60205558822231806e-1, 300.0), 0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (3.72703798457476188e-1, 300.0), 0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.59058202215313138e-1, 300.0), 1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (6.73330165746308628e-2, 300.0), 1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (2.32007604915745452e-2, 300.0), 2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (8.279313677e-21, 300.0), 10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.93159812815803978e-57, 300.0), 20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.02557519997736154e-232, 300.0), 100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (0.00000000000000000e+00, 300.0), GSL_POSINF, 0.0); TEST (gsl_cdf_tdist_Pinv, (4.99601390099057051e-01, 300.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.96013966979440912e-01, 300.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (4.60205558822231806e-01, 300.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (3.72703798457476188e-01, 300.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.59058202215313138e-01, 300.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (6.73330165746308628e-02, 300.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (2.32007604915745452e-02, 300.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (8.279313675556272534e-21, 300.0), -10.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.93159812815803978e-57, 300.0), -20.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (1.02557519997736154e-232, 300.0), -100.0, TEST_TOL6); TEST (gsl_cdf_tdist_Pinv, (0.0, 300.0), GSL_NEGINF, 0.0); TEST (gsl_cdf_tdist_Qinv, (5.00398609900942949e-1, 300.0), -0.001, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.03986033020559088e-1, 300.0), -0.01, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (5.39794441177768194e-1, 300.0), -0.1, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (6.27296201542523812e-1, 300.0), -0.325, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (8.40941797784686862e-1, 300.0), -1.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.32666983425369137e-1, 300.0), -1.5, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (9.76799239508425455e-1, 300.0), -2.0, TEST_TOL6); TEST (gsl_cdf_tdist_Qinv, (1.000000000000000000e0, 300.0), GSL_NEGINF, TEST_TOL6); } gsl-1.16/cdf/gumbel2inv.c0000664000252300025230000000253512171574312012131 00000000000000/* cdf/gumbel2inv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_gumbel2_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return 0.0; } x = pow(b / (-log(P)), 1/a); return x; } double gsl_cdf_gumbel2_Qinv (const double Q, const double a, const double b) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return 0.0; } x = pow(b / (-log1p(-Q)), 1/a); return x; } gsl-1.16/cdf/gumbel2.c0000664000252300025230000000244212171574312011411 00000000000000/* cdf/gumbel2.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_gumbel2_P (const double x, const double a, const double b) { double P; if (x == 0) { P = 0; } else { double u = pow (x, a); P = exp (-b / u); } return P; } double gsl_cdf_gumbel2_Q (const double x, const double a, const double b) { double Q; if (x == 0) { Q = 1; } else { double u = pow (x, a); Q = -expm1 (-b / u); } return Q; } gsl-1.16/cdf/cauchy.c0000664000252300025230000000243612171574312011333 00000000000000/* cdf/cauchy.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_cauchy_P (const double x, const double a) { double P; double u = x / a; if (u > -1) { P = 0.5 + atan (u) / M_PI; } else { P = atan(-1/u) / M_PI; } return P; } double gsl_cdf_cauchy_Q (const double x, const double a) { double Q; double u = x / a; if (u < 1) { Q = 0.5 - atan (u) / M_PI; } else { Q = atan(1/u) / M_PI; } return Q; } gsl-1.16/cdf/weibull.c0000664000252300025230000000215212171574312011515 00000000000000/* cdf/weibull.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_weibull_P (const double x, const double a, const double b) { double P = -expm1 (-pow(x/a, b)); return P; } double gsl_cdf_weibull_Q (const double x, const double a, const double b) { double Q = exp (-pow(x/a, b)); return Q; } gsl-1.16/cdf/binomial.c0000664000252300025230000000472412171574312011653 00000000000000/* cdf/binomial.c * * Copyright (C) 2004 Jason H. Stover. * Copyright (C) 2004 Giulio Bottazzi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "error.h" /* Computes the cumulative distribution function for a binomial random variable. For a binomial random variable X with n trials and success probability p, Pr( X <= k ) = Pr( Y >= p ) where Y is a beta random variable with parameters k+1 and n-k. The binomial distribution has the form, prob(k) = n!/(k!(n-k)!) * p^k (1-p)^(n-k) for k = 0, 1, ..., n The cumulated distributions can be expressed in terms of normalized incomplete beta functions (see Abramowitz & Stegun eq. 26.5.26 and eq. 6.6.3). Reference: W. Feller, "An Introduction to Probability and Its Applications," volume 1. Wiley, 1968. Exercise 45, page 173, chapter 6. */ #include #include #include #include #include double gsl_cdf_binomial_P (const unsigned int k, const double p, const unsigned int n) { double P; double a; double b; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (k >= n) { P = 1.0; } else { a = (double) k + 1.0; b = (double) n - k; P = gsl_cdf_beta_Q (p, a, b); } return P; } double gsl_cdf_binomial_Q (const unsigned int k, const double p, const unsigned int n) { double Q; double a; double b; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (k >= n) { Q = 0.0; } else { a = (double) k + 1.0; b = (double) n - k; Q = gsl_cdf_beta_P (p, a, b); } return Q; } gsl-1.16/cdf/lognormalinv.c0000664000252300025230000000267012171574312012566 00000000000000/* cdf/lognormalinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_lognormal_Pinv (const double P, const double zeta, const double sigma) { double x, u; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return 0.0; } u = gsl_cdf_ugaussian_Pinv (P); x = exp (zeta + sigma * u); return x; } double gsl_cdf_lognormal_Qinv (const double Q, const double zeta, const double sigma) { double x, u; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return 0.0; } u = gsl_cdf_ugaussian_Qinv (Q); x = exp (zeta + sigma * u); return x; } gsl-1.16/cdf/beta.c0000664000252300025230000000260712171574312010772 00000000000000/* cdf/cdf_beta.c * * Copyright (C) 2003, 2007 Brian Gough. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "beta_inc.c" double gsl_cdf_beta_P (const double x, const double a, const double b) { double P; if (x <= 0.0 ) { return 0.0; } if ( x >= 1.0 ) { return 1.0; } P = beta_inc_AXPY (1.0, 0.0, a, b, x); return P; } double gsl_cdf_beta_Q (const double x, const double a, const double b) { double Q; if ( x >= 1.0) { return 0.0; } if ( x <= 0.0 ) { return 1.0; } Q = beta_inc_AXPY (-1.0, 1.0, a, b, x); return Q; } gsl-1.16/cdf/gamma.c0000664000252300025230000000276112171574312011142 00000000000000/* cdf/cdf_gamma.c * * Copyright (C) 2003 Jason Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Author: J. Stover */ #include #include #include #include #include double gsl_cdf_gamma_P (const double x, const double a, const double b) { double P; double y = x / b; if (x <= 0.0) { return 0.0; } if (y > a) { P = 1 - gsl_sf_gamma_inc_Q (a, y); } else { P = gsl_sf_gamma_inc_P (a, y); } return P; } double gsl_cdf_gamma_Q (const double x, const double a, const double b) { double Q; double y = x / b; if (x <= 0.0) { return 1.0; } if (y < a) { Q = 1 - gsl_sf_gamma_inc_P (a, y); } else { Q = gsl_sf_gamma_inc_Q (a, y); } return Q; } gsl-1.16/cdf/Makefile.in0000664000252300025230000011323412172253754011764 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = cdf DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslcdf_la_LIBADD = am_libgslcdf_la_OBJECTS = beta.lo betainv.lo cauchy.lo cauchyinv.lo \ chisq.lo chisqinv.lo exponential.lo exponentialinv.lo \ exppow.lo fdist.lo fdistinv.lo flat.lo flatinv.lo gamma.lo \ gammainv.lo gauss.lo gaussinv.lo gumbel1.lo gumbel1inv.lo \ gumbel2.lo gumbel2inv.lo laplace.lo laplaceinv.lo logistic.lo \ logisticinv.lo lognormal.lo lognormalinv.lo pareto.lo \ paretoinv.lo rayleigh.lo rayleighinv.lo tdist.lo tdistinv.lo \ weibull.lo weibullinv.lo binomial.lo poisson.lo geometric.lo \ nbinomial.lo pascal.lo hypergeometric.lo libgslcdf_la_OBJECTS = $(am_libgslcdf_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslcdf.la ../randist/libgslrandist.la \ ../rng/libgslrng.la ../specfunc/libgslspecfunc.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslcdf_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslcdf_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslcdf.la pkginclude_HEADERS = gsl_cdf.h INCLUDES = -I$(top_srcdir) libgslcdf_la_SOURCES = beta.c betainv.c cauchy.c cauchyinv.c chisq.c chisqinv.c exponential.c exponentialinv.c exppow.c fdist.c fdistinv.c flat.c flatinv.c gamma.c gammainv.c gauss.c gaussinv.c gumbel1.c gumbel1inv.c gumbel2.c gumbel2inv.c laplace.c laplaceinv.c logistic.c logisticinv.c lognormal.c lognormalinv.c pareto.c paretoinv.c rayleigh.c rayleighinv.c tdist.c tdistinv.c weibull.c weibullinv.c binomial.c poisson.c geometric.c nbinomial.c pascal.c hypergeometric.c noinst_HEADERS = beta_inc.c rat_eval.h test_auto.c error.h TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslcdf.la ../randist/libgslrandist.la ../rng/libgslrng.la ../specfunc/libgslspecfunc.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu cdf/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu cdf/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslcdf.la: $(libgslcdf_la_OBJECTS) $(libgslcdf_la_DEPENDENCIES) $(EXTRA_libgslcdf_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslcdf_la_OBJECTS) $(libgslcdf_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/beta.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/betainv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/binomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cauchy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cauchyinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chisq.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/chisqinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exponential.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exponentialinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/exppow.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdist.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/fdistinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/flat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/flatinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gamma.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gammainv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gauss.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gaussinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/geometric.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gumbel1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gumbel1inv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gumbel2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gumbel2inv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/hypergeometric.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/laplace.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/laplaceinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/logistic.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/logisticinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lognormal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/lognormalinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/nbinomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pareto.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/paretoinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pascal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/poisson.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rayleigh.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rayleighinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tdist.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/tdistinv.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/weibull.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/weibullinv.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/cdf/betainv.c0000664000252300025230000001126412171574312011506 00000000000000/* cdf/betainv.c * * Copyright (C) 2004 Free Software Foundation, Inc. * Copyright (C) 2006, 2007 Brian Gough * Written by Jason H. Stover. * Modified for GSL by Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Invert the Beta distribution. * * References: * * Roger W. Abernathy and Robert P. Smith. "Applying Series Expansion * to the Inverse Beta Distribution to Find Percentiles of the * F-Distribution," ACM Transactions on Mathematical Software, volume * 19, number 4, December 1993, pages 474-480. * * G.W. Hill and A.W. Davis. "Generalized asymptotic expansions of a * Cornish-Fisher type," Annals of Mathematical Statistics, volume 39, * number 8, August 1968, pages 1264-1273. */ #include #include #include #include #include #include #include #include "error.h" static double bisect (double x, double P, double a, double b, double xtol, double Ptol) { double x0 = 0, x1 = 1, Px; while (fabs(x1 - x0) > xtol) { Px = gsl_cdf_beta_P (x, a, b); if (fabs(Px - P) < Ptol) { /* return as soon as approximation is good enough, including on the first iteration */ return x; } else if (Px < P) { x0 = x; } else if (Px > P) { x1 = x; } x = 0.5 * (x0 + x1); } return x; } double gsl_cdf_beta_Pinv (const double P, const double a, const double b) { double x, mean; if (P < 0.0 || P > 1.0) { CDF_ERROR ("P must be in range 0 < P < 1", GSL_EDOM); } if (a < 0.0) { CDF_ERROR ("a < 0", GSL_EDOM); } if (b < 0.0) { CDF_ERROR ("b < 0", GSL_EDOM); } if (P == 0.0) { return 0.0; } if (P == 1.0) { return 1.0; } if (P > 0.5) { return gsl_cdf_beta_Qinv (1 - P, a, b); } mean = a / (a + b); if (P < 0.1) { /* small x */ double lg_ab = gsl_sf_lngamma (a + b); double lg_a = gsl_sf_lngamma (a); double lg_b = gsl_sf_lngamma (b); double lx = (log (a) + lg_a + lg_b - lg_ab + log (P)) / a; if (lx <= 0) { x = exp (lx); /* first approximation */ x *= pow (1 - x, -(b - 1) / a); /* second approximation */ } else { x = mean; } if (x > mean) x = mean; } else { /* Use expected value as first guess */ x = mean; } /* Do bisection to get closer */ x = bisect (x, P, a, b, 0.01, 0.01); { double lambda, dP, phi; unsigned int n = 0; start: dP = P - gsl_cdf_beta_P (x, a, b); phi = gsl_ran_beta_pdf (x, a, b); if (dP == 0.0 || n++ > 64) goto end; lambda = dP / GSL_MAX (2 * fabs (dP / x), phi); { double step0 = lambda; double step1 = -((a - 1) / x - (b - 1) / (1 - x)) * lambda * lambda / 2; double step = step0; if (fabs (step1) < fabs (step0)) { step += step1; } else { /* scale back step to a reasonable size when too large */ step *= 2 * fabs (step0 / step1); }; if (x + step > 0 && x + step < 1) { x += step; } else { x = sqrt (x) * sqrt (mean); /* try a new starting point */ } if (fabs (step0) > 1e-10 * x) goto start; } end: if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P) { GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN); } return x; } } double gsl_cdf_beta_Qinv (const double Q, const double a, const double b) { if (Q < 0.0 || Q > 1.0) { CDF_ERROR ("Q must be inside range 0 < Q < 1", GSL_EDOM); } if (a < 0.0) { CDF_ERROR ("a < 0", GSL_EDOM); } if (b < 0.0) { CDF_ERROR ("b < 0", GSL_EDOM); } if (Q == 0.0) { return 1.0; } if (Q == 1.0) { return 0.0; } if (Q > 0.5) { return gsl_cdf_beta_Pinv (1 - Q, a, b); } else { return 1 - gsl_cdf_beta_Pinv (Q, b, a); }; } gsl-1.16/cdf/ChangeLog0000664000252300025230000000773512171574312011474 000000000000002009-07-19 Brian Gough * gumbel1.c (gsl_cdf_gumbel1_Q): use a single argument ax-log(b) to get better control over underflow/overflow 2008-12-03 Brian Gough * gammainv.c (gsl_cdf_gamma_Pinv): keep iterating if P is still changing (fix for bug 24704) * test.c (test_chisqinv): added test cases for bug 24704 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-04-29 Brian Gough * gammainv.c (gsl_cdf_gamma_Pinv, gsl_cdf_gamma_Qinv): restrict the range of the gaussian approximation 2008-02-20 Brian Gough * beta_inc.c (beta_inc_AXPY): add some handling for large parameter cases 2008-02-12 Brian Gough * hypergeometric.c (gsl_cdf_hypergeometric_P): compute midpoint in double precision to avoid overflow (gsl_cdf_hypergeometric_Q): ditto 2007-08-22 Brian Gough * betainv.c (gsl_cdf_beta_Pinv): added an error check for inaccurate results * gammainv.c (gsl_cdf_gamma_Pinv): added an error check for inaccurate results * tdistinv.c (gsl_cdf_tdist_Pinv): added an error check for inaccurate results 2007-08-21 Brian Gough * betainv.c (gsl_cdf_beta_Pinv): added bisection method to improve initial approximations 2007-01-23 Brian Gough * betainv.c (gsl_cdf_beta_Pinv): avoid generating a NaN for lx > 0 2006-04-18 Brian Gough * betainv.c (gsl_cdf_beta_Qinv): fix prototype const 2006-03-07 Brian Gough * poisson.c: added poisson cdf * nbinomial.c: added negative binomial cdf * hypergeometric.c: added hypergeometric cdf * geometric.c: added geometric cdf * binomial.c (gsl_cdf_binomial_Q): added binomial cdf * test.c: added discrete function tests * gamma.c (gsl_cdf_gamma_P, gsl_cdf_gamma_Q): clean up unused code, ensure that branches make P+Q=1 always true * fdistinv.c (gsl_cdf_fdist_Pinv): use P instead of p for consistency * fdist.c (gsl_cdf_fdist_Q): use Q instead of P for consistency * beta.c (gsl_cdf_beta_Q): use Q instead of P for consistency 2006-02-27 Brian Gough * fdistinv.c (gsl_cdf_fdist_Pinv, gsl_cdf_fdist_Qinv): added inverse functions * betainv.c (gsl_cdf_beta_Pinv, gsl_cdf_beta_Qinv): added inverse functions * tdistinv.c (gsl_cdf_tdist_Qinv, gsl_cdf_tdist_Pinv): max 32 iterations, prevent infinite loop * gammainv.c (gsl_cdf_gamma_Qinv, gsl_cdf_gamma_Pinv): max 32 iterations, prevent infinite loop 2005-06-20 Brian Gough * test.c: removed tests using subnormal values, since they tend to fail when extended precision registers are not available. 2004-10-26 Brian Gough * exppow.c: added exppow distribution 2004-10-01 Brian Gough * beta.c (gsl_cdf_beta_P, gsl_cdf_beta_P): return consistent results for out of range values. 2003-08-27 Brian Gough * gauss.c: use parentheses around constant macros to avoid -(-X) being interpreted as --X 2003-07-27 Brian Gough * gumbel1.c (gsl_cdf_gumbel1_Q): use pow in place of exp since compilers seem to handle overflow better in this case (perhaps because it is not an intrinsic function). * gumbel2.c (gsl_cdf_gumbel2_P): handle case of x = 0 explicitly (gsl_cdf_gumbel2_Q): handle case of x = 0 explicitly 2003-07-22 Brian Gough * gamma.c (gsl_cdf_gamma_P): Peizer and Pratt approximation for large a seems to be inaccurate in tails (gsl_cdf_gamma_Q): Peizer and Pratt approximation for large a seems to be inaccurate in tails * test.c (main): added test for large a for gamma * cauchyinv.c (gsl_cdf_cauchy_Qinv): corrected limiting value for Q=1 * added Cumulative Distribution functions from savannah.gnu.org gsl-1.16/cdf/weibullinv.c0000664000252300025230000000253112171574312012233 00000000000000/* cdf/weibullinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_weibull_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return 0.0; } x = a * pow(-log1p(-P), 1/b); return x; } double gsl_cdf_weibull_Qinv (const double Q, const double a, const double b) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return 0.0; } x = a * pow(-log(Q), 1/b); return x; } gsl-1.16/cdf/flat.c0000664000252300025230000000245612171574312011007 00000000000000/* cdf/flat.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_flat_P (const double x, const double a, const double b) { double P; if (x < a) { P = 0; } else if (x > b) { P = 1; } else { P = (x-a)/(b-a); } return P; } double gsl_cdf_flat_Q (const double x, const double a, const double b) { double Q; if (x < a) { Q = 1; } else if (x > b) { Q = 0; } else { Q = (b-x)/(b-a); } return Q; } gsl-1.16/cdf/exponential.c0000664000252300025230000000250112171574312012376 00000000000000/* cdf/exponential.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The exponential distribution has the form p(x) dx = exp(-x/mu) dx/mu for x = 0 ... +infty */ double gsl_cdf_exponential_P (const double x, const double mu) { if (x < 0) { return 0; } else { double P = -expm1 (-x / mu); return P; } } double gsl_cdf_exponential_Q (const double x, const double mu) { if (x < 0) { return 1; } else { double Q = exp (-x / mu); return Q; } } gsl-1.16/cdf/Makefile.am0000664000252300025230000000176012171574312011746 00000000000000## Process this file with automake to produce Makefile.in noinst_LTLIBRARIES = libgslcdf.la pkginclude_HEADERS= gsl_cdf.h INCLUDES = -I$(top_srcdir) libgslcdf_la_SOURCES = beta.c betainv.c cauchy.c cauchyinv.c chisq.c chisqinv.c exponential.c exponentialinv.c exppow.c fdist.c fdistinv.c flat.c flatinv.c gamma.c gammainv.c gauss.c gaussinv.c gumbel1.c gumbel1inv.c gumbel2.c gumbel2inv.c laplace.c laplaceinv.c logistic.c logisticinv.c lognormal.c lognormalinv.c pareto.c paretoinv.c rayleigh.c rayleighinv.c tdist.c tdistinv.c weibull.c weibullinv.c binomial.c poisson.c geometric.c nbinomial.c pascal.c hypergeometric.c noinst_HEADERS = beta_inc.c rat_eval.h test_auto.c error.h TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslcdf.la ../randist/libgslrandist.la ../rng/libgslrng.la ../specfunc/libgslspecfunc.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/cdf/logisticinv.c0000664000252300025230000000247512171574312012414 00000000000000/* cdf/logisticinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_logistic_Pinv (const double P, const double a) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } x = a * log(P/(1-P)); return x; } double gsl_cdf_logistic_Qinv (const double Q, const double a) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } x = a * log((1-Q)/Q); return x; } gsl-1.16/cdf/gammainv.c0000664000252300025230000001055012171574312011652 00000000000000/* cdf/gammainv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include double gsl_cdf_gamma_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return 0.0; } /* Consider, small, large and intermediate cases separately. The boundaries at 0.05 and 0.95 have not been optimised, but seem ok for an initial approximation. BJG: These approximations aren't really valid, the relevant criterion is P*gamma(a+1) < 1. Need to rework these routines and use a single bisection style solver for all the inverse functions. */ if (P < 0.05) { double x0 = exp ((gsl_sf_lngamma (a) + log (P)) / a); x = x0; } else if (P > 0.95) { double x0 = -log1p (-P) + gsl_sf_lngamma (a); x = x0; } else { double xg = gsl_cdf_ugaussian_Pinv (P); double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a; x = x0; } /* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards to an improved value of x (Abramowitz & Stegun, 3.6.6) where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf. */ { double lambda, dP, phi; unsigned int n = 0; start: dP = P - gsl_cdf_gamma_P (x, a, 1.0); phi = gsl_ran_gamma_pdf (x, a, 1.0); if (dP == 0.0 || n++ > 32) goto end; lambda = dP / GSL_MAX (2 * fabs (dP / x), phi); { double step0 = lambda; double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0; double step = step0; if (fabs (step1) < 0.5 * fabs (step0)) step += step1; if (x + step > 0) x += step; else { x /= 2.0; } if (fabs (step0) > 1e-10 * x || fabs(step0 * phi) > 1e-10 * P) goto start; } end: if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P) { GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN); } return b * x; } } double gsl_cdf_gamma_Qinv (const double Q, const double a, const double b) { double x; if (Q == 1.0) { return 0.0; } else if (Q == 0.0) { return GSL_POSINF; } /* Consider, small, large and intermediate cases separately. The boundaries at 0.05 and 0.95 have not been optimised, but seem ok for an initial approximation. */ if (Q < 0.05) { double x0 = -log (Q) + gsl_sf_lngamma (a); x = x0; } else if (Q > 0.95) { double x0 = exp ((gsl_sf_lngamma (a) + log1p (-Q)) / a); x = x0; } else { double xg = gsl_cdf_ugaussian_Qinv (Q); double x0 = (xg < -0.5*sqrt (a)) ? a : sqrt (a) * xg + a; x = x0; } /* Use Lagrange's interpolation for E(x)/phi(x0) to work backwards to an improved value of x (Abramowitz & Stegun, 3.6.6) where E(x)=P-integ(phi(u),u,x0,x) and phi(u) is the pdf. */ { double lambda, dQ, phi; unsigned int n = 0; start: dQ = Q - gsl_cdf_gamma_Q (x, a, 1.0); phi = gsl_ran_gamma_pdf (x, a, 1.0); if (dQ == 0.0 || n++ > 32) goto end; lambda = -dQ / GSL_MAX (2 * fabs (dQ / x), phi); { double step0 = lambda; double step1 = -((a - 1) / x - 1) * lambda * lambda / 4.0; double step = step0; if (fabs (step1) < 0.5 * fabs (step0)) step += step1; if (x + step > 0) x += step; else { x /= 2.0; } if (fabs (step0) > 1e-10 * x) goto start; } } end: return b * x; } gsl-1.16/cdf/error.h0000664000252300025230000000021412171574312011205 00000000000000/* CDF_ERROR: call the error handler, and return a NAN. */ #define CDF_ERROR(reason, gsl_errno) GSL_ERROR_VAL(reason, gsl_errno, GSL_NAN) gsl-1.16/cdf/tdist.c0000664000252300025230000001313212171574312011201 00000000000000/* cdf/tdist.c * * Copyright (C) 2002 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Computes the Student's t cumulative distribution function using * the method detailed in * * W.J. Kennedy and J.E. Gentle, "Statistical Computing." 1980. * Marcel Dekker. ISBN 0-8247-6898-1. * * G.W. Hill and A.W. Davis. "Generalized asymptotic expansions * of Cornish-Fisher type." Annals of Mathematical Statistics, * vol. 39, 1264-1273. 1968. * * G.W. Hill. "Algorithm 395: Student's t-distribution," Communications * of the ACM, volume 13, number 10, page 617. October 1970. * * G.W. Hill, "Remark on algorithm 395: Student's t-distribution," * Transactions on Mathematical Software, volume 7, number 2, page * 247. June 1982. */ #include #include #include #include #include #include "beta_inc.c" static double poly_eval (const double c[], unsigned int n, double x) { unsigned int i; double y = c[0] * x; for (i = 1; i < n; i++) { y = x * (y + c[i]); } y += c[n]; return y; } /* * Use the Cornish-Fisher asymptotic expansion to find a point u such * that gsl_cdf_gauss(y) = tcdf(t). * */ static double cornish_fisher (double t, double n) { const double coeffs6[10] = { 0.265974025974025974026, 5.449696969696969696970, 122.20294372294372294372, 2354.7298701298701298701, 37625.00902597402597403, 486996.1392857142857143, 4960870.65, 37978595.55, 201505390.875, 622437908.625 }; const double coeffs5[8] = { 0.2742857142857142857142, 4.499047619047619047619, 78.45142857142857142857, 1118.710714285714285714, 12387.6, 101024.55, 559494.0, 1764959.625 }; const double coeffs4[6] = { 0.3047619047619047619048, 3.752380952380952380952, 46.67142857142857142857, 427.5, 2587.5, 8518.5 }; const double coeffs3[4] = { 0.4, 3.3, 24.0, 85.5 }; double a = n - 0.5; double b = 48.0 * a * a; double z2 = a * log1p (t * t / n); double z = sqrt (z2); double p5 = z * poly_eval (coeffs6, 9, z2); double p4 = -z * poly_eval (coeffs5, 7, z2); double p3 = z * poly_eval (coeffs4, 5, z2); double p2 = -z * poly_eval (coeffs3, 3, z2); double p1 = z * (z2 + 3.0); double p0 = z; double y = p5; y = (y / b) + p4; y = (y / b) + p3; y = (y / b) + p2; y = (y / b) + p1; y = (y / b) + p0; if (t < 0) y *= -1; return y; } #if 0 /* * Series approximation for t > 4.0. This needs to be fixed; * it shouldn't subtract the result from 1.0. A better way is * to use two different series expansions. Figuring this out * means rummaging through Fisher's paper in Metron, v5, 1926, * "Expansion of Student's integral in powers of n^{-1}." */ #define MAXI 40 static double normal_approx (const double x, const double nu) { double y; double num; double diff; double q; int i; double lg1, lg2; y = 1 / sqrt (1 + x * x / nu); num = 1.0; q = 0.0; diff = 2 * GSL_DBL_EPSILON; for (i = 2; (i < MAXI) && (diff > GSL_DBL_EPSILON); i += 2) { diff = q; num *= y * y * (i - 1) / i; q += num / (nu + i); diff = q - diff; } q += 1 / nu; lg1 = gsl_sf_lngamma (nu / 2.0); lg2 = gsl_sf_lngamma ((nu + 1.0) / 2.0); diff = lg2 - lg1; q *= pow (y, nu) * exp (diff) / sqrt (M_PI); return q; } #endif double gsl_cdf_tdist_P (const double x, const double nu) { double P; double x2 = x * x; if (nu > 30 && x2 < 10 * nu) { double u = cornish_fisher (x, nu); P = gsl_cdf_ugaussian_P (u); return P; } if (x2 < nu) { double u = x2 / nu; double eps = u / (1 + u); if (x >= 0) { P = beta_inc_AXPY (0.5, 0.5, 0.5, nu / 2.0, eps); } else { P = beta_inc_AXPY (-0.5, 0.5, 0.5, nu / 2.0, eps); } } else { double v = nu / (x * x); double eps = v / (1 + v); if (x >= 0) { P = beta_inc_AXPY (-0.5, 1.0, nu / 2.0, 0.5, eps); } else { P = beta_inc_AXPY (0.5, 0.0, nu / 2.0, 0.5, eps); } } return P; } double gsl_cdf_tdist_Q (const double x, const double nu) { double Q; double x2 = x * x; if (nu > 30 && x2 < 10 * nu) { double u = cornish_fisher (x, nu); Q = gsl_cdf_ugaussian_Q (u); return Q; } if (x2 < nu) { double u = x2 / nu; double eps = u / (1 + u); if (x >= 0) { Q = beta_inc_AXPY (-0.5, 0.5, 0.5, nu / 2.0, eps); } else { Q = beta_inc_AXPY (0.5, 0.5, 0.5, nu / 2.0, eps); } } else { double v = nu / (x * x); double eps = v / (1 + v); if (x >= 0) { Q = beta_inc_AXPY (0.5, 0.0, nu / 2.0, 0.5, eps); } else { Q = beta_inc_AXPY (-0.5, 1.0, nu / 2.0, 0.5, eps); } } return Q; } gsl-1.16/cdf/exppow.c0000664000252300025230000000345112171574312011377 00000000000000/* cdf/exppow.c * * Copyright (C) 2004 Giulio Bottazzi * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The exponential power density is parametrized according to p(x) dx = (1/(2 a Gamma(1 + 1/b))) * exp(-|x/a|^b) dx so that the distribution reads / x<0 0.5 - Gamma_inc_P(1/b,|x/a|^b) P(x) = | x=0 0.5 \ x>0 0.5 + Gamma_inc_P(1/b,|x/a|^b) for x in (-infty,+infty) */ double gsl_cdf_exppow_P (const double x, const double a, const double b) { const double u = x / a; if (u < 0) { double P = 0.5 * gsl_sf_gamma_inc_Q (1.0 / b, pow (-u, b)); return P; } else { double P = 0.5 * (1.0 + gsl_sf_gamma_inc_P (1.0 / b, pow (u, b))); return P; } } double gsl_cdf_exppow_Q (const double x, const double a, const double b) { const double u = x / a; if (u < 0) { double Q = 0.5 * (1.0 + gsl_sf_gamma_inc_P (1.0 / b, pow (-u, b))); return Q; } else { double Q = 0.5 * gsl_sf_gamma_inc_Q (1.0 / b, pow (u, b)); return Q; } } gsl-1.16/cdf/lognormal.c0000664000252300025230000000232312171574312012044 00000000000000/* cdf/lognormal.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_lognormal_P (const double x, const double zeta, const double sigma) { double u = (log (x) - zeta) / sigma; double P = gsl_cdf_ugaussian_P (u); return P; } double gsl_cdf_lognormal_Q (const double x, const double zeta, const double sigma) { double u = (log (x) - zeta) / sigma; double Q = gsl_cdf_ugaussian_Q (u); return Q; } gsl-1.16/cdf/laplace.c0000664000252300025230000000242512171574312011456 00000000000000/* cdf/laplace.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_laplace_P (const double x, const double a) { double P; double u = x / a; if (u > 0) { P = 0.5 + 0.5*(1 - exp(-u)) ; } else { P = 0.5 * exp(u); } return P; } double gsl_cdf_laplace_Q (const double x, const double a) { double Q; double u = x / a; if (u > 0) { Q = 0.5 * exp(-u); } else { Q = 1 - 0.5 *exp(u); } return Q; } gsl-1.16/cdf/poisson.c0000664000252300025230000000357612171574312011557 00000000000000/* cdf/poisson.c * * Copyright (C) 2004 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Computes the cumulative distribution function for a Poisson * random variable. For a Poisson random variable X with parameter * mu, * * Pr( X <= k ) = Pr( Y >= p ) * * where Y is a gamma random variable with parameters k+1 and 1. * * Reference: * * W. Feller, "An Introduction to Probability and Its * Applications," volume 1. Wiley, 1968. Exercise 46, page 173, * chapter 6. */ #include #include #include #include #include #include "error.h" /* * Pr (X <= k) for a Poisson random variable X. */ double gsl_cdf_poisson_P (const unsigned int k, const double mu) { double P; double a; if (mu <= 0.0) { CDF_ERROR ("mu <= 0", GSL_EDOM); } a = (double) k + 1.0; P = gsl_cdf_gamma_Q (mu, a, 1.0); return P; } /* * Pr ( X > k ) for a Possion random variable X. */ double gsl_cdf_poisson_Q (const unsigned int k, const double mu) { double Q; double a; if (mu <= 0.0) { CDF_ERROR ("mu <= 0", GSL_EDOM); } a = (double) k + 1.0; Q = gsl_cdf_gamma_P (mu, a, 1.0); return Q; } gsl-1.16/cdf/pascal.c0000664000252300025230000000240112171574312011312 00000000000000/* cdf/pascal.c * * Copyright (C) 2006, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include /* The Pascal distribution is a negative binomial with valued integer n */ double gsl_cdf_pascal_P (const unsigned int k, const double p, const unsigned int n) { double P = gsl_cdf_negative_binomial_P (k, p, (double) n); return P; } double gsl_cdf_pascal_Q (const unsigned int k, const double p, const unsigned int n) { double Q = gsl_cdf_negative_binomial_Q (k, p, (double) n); return Q; } gsl-1.16/cdf/chisqinv.c0000664000252300025230000000210012171574312011667 00000000000000/* cdf/chisqinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_cdf_chisq_Pinv (const double P, const double nu) { return gsl_cdf_gamma_Pinv (P, nu / 2, 2.0); } double gsl_cdf_chisq_Qinv (const double Q, const double nu) { return gsl_cdf_gamma_Qinv (Q, nu / 2, 2.0); } gsl-1.16/cdf/gaussinv.c0000664000252300025230000001004612171574312011712 00000000000000/* cdf/inverse_normal.c * * Copyright (C) 2002 Przemyslaw Sliwa and Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Computes the inverse normal cumulative distribution function * according to the algorithm shown in * * Wichura, M.J. (1988). * Algorithm AS 241: The Percentage Points of the Normal Distribution. * Applied Statistics, 37, 477-484. */ #include #include #include #include #include "rat_eval.h" static double small (double q) { const double a[8] = { 3.387132872796366608, 133.14166789178437745, 1971.5909503065514427, 13731.693765509461125, 45921.953931549871457, 67265.770927008700853, 33430.575583588128105, 2509.0809287301226727 }; const double b[8] = { 1.0, 42.313330701600911252, 687.1870074920579083, 5394.1960214247511077, 21213.794301586595867, 39307.89580009271061, 28729.085735721942674, 5226.495278852854561 }; double r = 0.180625 - q * q; double x = q * rat_eval (a, 8, b, 8, r); return x; } static double intermediate (double r) { const double a[] = { 1.42343711074968357734, 4.6303378461565452959, 5.7694972214606914055, 3.64784832476320460504, 1.27045825245236838258, 0.24178072517745061177, 0.0227238449892691845833, 7.7454501427834140764e-4 }; const double b[] = { 1.0, 2.05319162663775882187, 1.6763848301838038494, 0.68976733498510000455, 0.14810397642748007459, 0.0151986665636164571966, 5.475938084995344946e-4, 1.05075007164441684324e-9 }; double x = rat_eval (a, 8, b, 8, (r - 1.6)); return x; } static double tail (double r) { const double a[] = { 6.6579046435011037772, 5.4637849111641143699, 1.7848265399172913358, 0.29656057182850489123, 0.026532189526576123093, 0.0012426609473880784386, 2.71155556874348757815e-5, 2.01033439929228813265e-7 }; const double b[] = { 1.0, 0.59983220655588793769, 0.13692988092273580531, 0.0148753612908506148525, 7.868691311456132591e-4, 1.8463183175100546818e-5, 1.4215117583164458887e-7, 2.04426310338993978564e-15 }; double x = rat_eval (a, 8, b, 8, (r - 5.0)); return x; } double gsl_cdf_ugaussian_Pinv (const double P) { double r, x, pp; double dP = P - 0.5; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } if (fabs (dP) <= 0.425) { x = small (dP); return x; } pp = (P < 0.5) ? P : 1.0 - P; r = sqrt (-log (pp)); if (r <= 5.0) { x = intermediate (r); } else { x = tail (r); } if (P < 0.5) { return -x; } else { return x; } } double gsl_cdf_ugaussian_Qinv (const double Q) { double r, x, pp; double dQ = Q - 0.5; if (Q == 1.0) { return GSL_NEGINF; } else if (Q == 0.0) { return GSL_POSINF; } if (fabs (dQ) <= 0.425) { x = small (dQ); return -x; } pp = (Q < 0.5) ? Q : 1.0 - Q; r = sqrt (-log (pp)); if (r <= 5.0) { x = intermediate (r); } else { x = tail (r); } if (Q < 0.5) { return x; } else { return -x; } } double gsl_cdf_gaussian_Pinv (const double P, const double sigma) { return sigma * gsl_cdf_ugaussian_Pinv (P); } double gsl_cdf_gaussian_Qinv (const double Q, const double sigma) { return sigma * gsl_cdf_ugaussian_Qinv (Q); } gsl-1.16/cdf/gumbel1inv.c0000664000252300025230000000254512171574312012131 00000000000000/* cdf/gumbel1inv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_gumbel1_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } x = log(-b / log(P)) / a; return x; } double gsl_cdf_gumbel1_Qinv (const double Q, const double a, const double b) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } x = log(-b / log1p(-Q)) / a; return x; } gsl-1.16/cdf/rayleigh.c0000664000252300025230000000217112171574312011657 00000000000000/* cdf/rayleigh.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_rayleigh_P (const double x, const double sigma) { double u = x / sigma; double P = -expm1 (-u*u/2); return P; } double gsl_cdf_rayleigh_Q (const double x, const double sigma) { double u = x / sigma; double Q = exp (-u*u/2); return Q; } gsl-1.16/cdf/hypergeometric.c0000664000252300025230000001021612171574312013100 00000000000000/* cdf/hypergeometric.c * * Copyright (C) 2004 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * Computes the cumulative distribution function for a hypergeometric * random variable. A hypergeometric random variable X is the number * of elements of type 1 in a sample of size t, drawn from a population * of size n1 + n2, in which n1 are of type 1 and n2 are of type 2. * * This algorithm computes Pr( X <= k ) by summing the terms from * the mass function, Pr( X = k ). * * References: * * T. Wu. An accurate computation of the hypergeometric distribution * function. ACM Transactions on Mathematical Software. Volume 19, number 1, * March 1993. * This algorithm is not used, since it requires factoring the * numerator and denominator, then cancelling. It is more accurate * than the algorithm used here, but the cancellation requires more * time than the algorithm used here. * * W. Feller. An Introduction to Probability Theory and Its Applications, * third edition. 1968. Chapter 2, section 6. */ #include #include #include #include #include #include #include "error.h" static double lower_tail (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t) { double relerr; int i = k; double s, P; s = gsl_ran_hypergeometric_pdf (i, n1, n2, t); P = s; while (i > 0) { double factor = (i / (n1 - i + 1.0)) * ((n2 + i - t) / (t - i + 1.0)); s *= factor; P += s; relerr = s / P; if (relerr < GSL_DBL_EPSILON) break; i--; } return P; } static double upper_tail (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t) { double relerr; unsigned int i = k + 1; double s, Q; s = gsl_ran_hypergeometric_pdf (i, n1, n2, t); Q = s; while (i < t) { double factor = ((n1 - i) / (i + 1.0)) * ((t - i) / (n2 + i + 1.0 - t)); s *= factor; Q += s; relerr = s / Q; if (relerr < GSL_DBL_EPSILON) break; i++; } return Q; } /* * Pr (X <= k) */ double gsl_cdf_hypergeometric_P (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t) { double P; if (t > (n1 + n2)) { CDF_ERROR ("t larger than population size", GSL_EDOM); } else if (k >= n1 || k >= t) { P = 1.0; } else if (k < 0.0) { P = 0.0; } else { double midpoint = ((double)t * n1) / ((double)n1 + (double)n2); if (k >= midpoint) { P = 1 - upper_tail (k, n1, n2, t); } else { P = lower_tail (k, n1, n2, t); } } return P; } /* * Pr (X > k) */ double gsl_cdf_hypergeometric_Q (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t) { double Q; if (t > (n1 + n2)) { CDF_ERROR ("t larger than population size", GSL_EDOM); } else if (k >= n1 || k >= t) { Q = 0.0; } else if (k < 0.0) { Q = 1.0; } else { double midpoint = ((double)t * n1) / ((double)n1 + (double)n2); if (k < midpoint) { Q = 1 - lower_tail (k, n1, n2, t); } else { Q = upper_tail (k, n1, n2, t); } } return Q; } gsl-1.16/cdf/laplaceinv.c0000664000252300025230000000272012171574312012171 00000000000000/* cdf/laplaceinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_laplace_Pinv (const double P, const double a) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } if (P < 0.5) { x = a * log(2*P); } else { x = -a * log(2*(1-P)); } return x; } double gsl_cdf_laplace_Qinv (const double Q, const double a) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } if (Q < 0.5) { x = -a * log(2*Q); } else { x = a * log(2*(1-Q)); } return x; } gsl-1.16/cdf/gumbel1.c0000664000252300025230000000241612171574312011411 00000000000000/* cdf/gumbel1.c * * Copyright (C) 2003, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_gumbel1_P (const double x, const double a, const double b) { double u = a * x - log (b); double P = exp (-exp (-u)); return P; } double gsl_cdf_gumbel1_Q (const double x, const double a, const double b) { double u = a * x - log (b); double Q; double P = exp (-exp (-u)); if (P < 0.5) { Q = 1 - P; } else { Q = -expm1 (-exp (-u)); } return Q; } gsl-1.16/cdf/rat_eval.h0000664000252300025230000000055412171574312011660 00000000000000static double rat_eval (const double a[], const size_t na, const double b[], const size_t nb, const double x) { size_t i, j; double u, v, r; u = a[na - 1]; for (i = na - 1; i > 0; i--) { u = x * u + a[i - 1]; } v = b[nb - 1]; for (j = nb - 1; j > 0; j--) { v = x * v + b[j - 1]; } r = u / v; return r; } gsl-1.16/cdf/beta_inc.c0000664000252300025230000001204212171574312011615 00000000000000/* specfunc/beta_inc.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ /* Modified for cdfs by Brian Gough, June 2003 */ #include static double beta_cont_frac (const double a, const double b, const double x, const double epsabs) { const unsigned int max_iter = 512; /* control iterations */ const double cutoff = 2.0 * GSL_DBL_MIN; /* control the zero cutoff */ unsigned int iter_count = 0; double cf; /* standard initialization for continued fraction */ double num_term = 1.0; double den_term = 1.0 - (a + b) * x / (a + 1.0); if (fabs (den_term) < cutoff) den_term = GSL_NAN; den_term = 1.0 / den_term; cf = den_term; while (iter_count < max_iter) { const int k = iter_count + 1; double coeff = k * (b - k) * x / (((a - 1.0) + 2 * k) * (a + 2 * k)); double delta_frac; /* first step */ den_term = 1.0 + coeff * den_term; num_term = 1.0 + coeff / num_term; if (fabs (den_term) < cutoff) den_term = GSL_NAN; if (fabs (num_term) < cutoff) num_term = GSL_NAN; den_term = 1.0 / den_term; delta_frac = den_term * num_term; cf *= delta_frac; coeff = -(a + k) * (a + b + k) * x / ((a + 2 * k) * (a + 2 * k + 1.0)); /* second step */ den_term = 1.0 + coeff * den_term; num_term = 1.0 + coeff / num_term; if (fabs (den_term) < cutoff) den_term = GSL_NAN; if (fabs (num_term) < cutoff) num_term = GSL_NAN; den_term = 1.0 / den_term; delta_frac = den_term * num_term; cf *= delta_frac; if (fabs (delta_frac - 1.0) < 2.0 * GSL_DBL_EPSILON) break; if (cf * fabs (delta_frac - 1.0) < epsabs) break; ++iter_count; } if (iter_count >= max_iter) return GSL_NAN; return cf; } /* The function beta_inc_AXPY(A,Y,a,b,x) computes A * beta_inc(a,b,x) + Y taking account of possible cancellations when using the hypergeometric transformation beta_inc(a,b,x)=1-beta_inc(b,a,1-x). It also adjusts the accuracy of beta_inc() to fit the overall absolute error when A*beta_inc is added to Y. (e.g. if Y >> A*beta_inc then the accuracy of beta_inc can be reduced) */ static double beta_inc_AXPY (const double A, const double Y, const double a, const double b, const double x) { if (x == 0.0) { return A * 0 + Y; } else if (x == 1.0) { return A * 1 + Y; } else if (a > 1e5 && b < 10 && x > a / (a + b)) { /* Handle asymptotic regime, large a, small b, x > peak [AS 26.5.17] */ double N = a + (b - 1.0) / 2.0; return A * gsl_sf_gamma_inc_Q (b, -N * log (x)) + Y; } else if (b > 1e5 && a < 10 && x < b / (a + b)) { /* Handle asymptotic regime, small a, large b, x < peak [AS 26.5.17] */ double N = b + (a - 1.0) / 2.0; return A * gsl_sf_gamma_inc_P (a, -N * log1p (-x)) + Y; } else { double ln_beta = gsl_sf_lnbeta (a, b); double ln_pre = -ln_beta + a * log (x) + b * log1p (-x); double prefactor = exp (ln_pre); if (x < (a + 1.0) / (a + b + 2.0)) { /* Apply continued fraction directly. */ double epsabs = fabs (Y / (A * prefactor / a)) * GSL_DBL_EPSILON; double cf = beta_cont_frac (a, b, x, epsabs); return A * (prefactor * cf / a) + Y; } else { /* Apply continued fraction after hypergeometric transformation. */ double epsabs = fabs ((A + Y) / (A * prefactor / b)) * GSL_DBL_EPSILON; double cf = beta_cont_frac (b, a, 1.0 - x, epsabs); double term = prefactor * cf / b; if (A == -Y) { return -A * term; } else { return A * (1 - term) + Y; } } } } /* Direct series evaluation for testing purposes only */ #if 0 static double beta_series (const double a, const double b, const double x, const double epsabs) { double f = x / (1 - x); double c = (b - 1) / (a + 1) * f; double s = 1; double n = 0; s += c; do { n++; c *= -f * (2 + n - b) / (2 + n + a); s += c; } while (n < 512 && fabs (c) > GSL_DBL_EPSILON * fabs (s) + epsabs); s /= (1 - x); return s; } #endif gsl-1.16/cdf/rayleighinv.c0000664000252300025230000000253412171574312012377 00000000000000/* cdf/rayleighinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_rayleigh_Pinv (const double P, const double sigma) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return 0.0; } x = sigma * M_SQRT2 * sqrt (-log1p (-P)); return x; } double gsl_cdf_rayleigh_Qinv (const double Q, const double sigma) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return 0.0; } x = sigma * M_SQRT2 * sqrt (-log (Q)); return x; } gsl-1.16/cdf/fdist.c0000664000252300025230000000340612171574312011166 00000000000000/* cdf/fdist.c * * Copyright (C) 2002 Przemyslaw Sliwa and Jason H. Stover. * Copyright (C) 2006, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "error.h" #include "beta_inc.c" /* * Lower tail. */ double gsl_cdf_fdist_P (const double x, const double nu1, const double nu2) { double P; double r = nu2 / nu1; if (x < r) { double u = x / (r + x); P = beta_inc_AXPY (1.0, 0.0, nu1 / 2.0, nu2 / 2.0, u); } else { double u = r / (r + x); P = beta_inc_AXPY (-1.0, 1.0, nu2 / 2.0, nu1 / 2.0, u); } return P; } /* * Upper tail. */ double gsl_cdf_fdist_Q (const double x, const double nu1, const double nu2) { double Q; double r = nu2 / nu1; if (x < r) { double u = x / (r + x); Q = beta_inc_AXPY (-1.0, 1.0, nu1 / 2.0, nu2 / 2.0, u); } else { double u = r / (r + x); Q = beta_inc_AXPY (1.0, 0.0, nu2 / 2.0, nu1 / 2.0, u); } return Q; } gsl-1.16/cdf/gsl_cdf.h0000664000252300025230000001631512171574312011466 00000000000000/* cdf/gsl_cdf.h * * Copyright (C) 2002 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: J. Stover */ #ifndef __GSL_CDF_H__ #define __GSL_CDF_H__ #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS double gsl_cdf_ugaussian_P (const double x); double gsl_cdf_ugaussian_Q (const double x); double gsl_cdf_ugaussian_Pinv (const double P); double gsl_cdf_ugaussian_Qinv (const double Q); double gsl_cdf_gaussian_P (const double x, const double sigma); double gsl_cdf_gaussian_Q (const double x, const double sigma); double gsl_cdf_gaussian_Pinv (const double P, const double sigma); double gsl_cdf_gaussian_Qinv (const double Q, const double sigma); double gsl_cdf_gamma_P (const double x, const double a, const double b); double gsl_cdf_gamma_Q (const double x, const double a, const double b); double gsl_cdf_gamma_Pinv (const double P, const double a, const double b); double gsl_cdf_gamma_Qinv (const double Q, const double a, const double b); double gsl_cdf_cauchy_P (const double x, const double a); double gsl_cdf_cauchy_Q (const double x, const double a); double gsl_cdf_cauchy_Pinv (const double P, const double a); double gsl_cdf_cauchy_Qinv (const double Q, const double a); double gsl_cdf_laplace_P (const double x, const double a); double gsl_cdf_laplace_Q (const double x, const double a); double gsl_cdf_laplace_Pinv (const double P, const double a); double gsl_cdf_laplace_Qinv (const double Q, const double a); double gsl_cdf_rayleigh_P (const double x, const double sigma); double gsl_cdf_rayleigh_Q (const double x, const double sigma); double gsl_cdf_rayleigh_Pinv (const double P, const double sigma); double gsl_cdf_rayleigh_Qinv (const double Q, const double sigma); double gsl_cdf_chisq_P (const double x, const double nu); double gsl_cdf_chisq_Q (const double x, const double nu); double gsl_cdf_chisq_Pinv (const double P, const double nu); double gsl_cdf_chisq_Qinv (const double Q, const double nu); double gsl_cdf_exponential_P (const double x, const double mu); double gsl_cdf_exponential_Q (const double x, const double mu); double gsl_cdf_exponential_Pinv (const double P, const double mu); double gsl_cdf_exponential_Qinv (const double Q, const double mu); double gsl_cdf_exppow_P (const double x, const double a, const double b); double gsl_cdf_exppow_Q (const double x, const double a, const double b); double gsl_cdf_tdist_P (const double x, const double nu); double gsl_cdf_tdist_Q (const double x, const double nu); double gsl_cdf_tdist_Pinv (const double P, const double nu); double gsl_cdf_tdist_Qinv (const double Q, const double nu); double gsl_cdf_fdist_P (const double x, const double nu1, const double nu2); double gsl_cdf_fdist_Q (const double x, const double nu1, const double nu2); double gsl_cdf_fdist_Pinv (const double P, const double nu1, const double nu2); double gsl_cdf_fdist_Qinv (const double Q, const double nu1, const double nu2); double gsl_cdf_beta_P (const double x, const double a, const double b); double gsl_cdf_beta_Q (const double x, const double a, const double b); double gsl_cdf_beta_Pinv (const double P, const double a, const double b); double gsl_cdf_beta_Qinv (const double Q, const double a, const double b); double gsl_cdf_flat_P (const double x, const double a, const double b); double gsl_cdf_flat_Q (const double x, const double a, const double b); double gsl_cdf_flat_Pinv (const double P, const double a, const double b); double gsl_cdf_flat_Qinv (const double Q, const double a, const double b); double gsl_cdf_lognormal_P (const double x, const double zeta, const double sigma); double gsl_cdf_lognormal_Q (const double x, const double zeta, const double sigma); double gsl_cdf_lognormal_Pinv (const double P, const double zeta, const double sigma); double gsl_cdf_lognormal_Qinv (const double Q, const double zeta, const double sigma); double gsl_cdf_gumbel1_P (const double x, const double a, const double b); double gsl_cdf_gumbel1_Q (const double x, const double a, const double b); double gsl_cdf_gumbel1_Pinv (const double P, const double a, const double b); double gsl_cdf_gumbel1_Qinv (const double Q, const double a, const double b); double gsl_cdf_gumbel2_P (const double x, const double a, const double b); double gsl_cdf_gumbel2_Q (const double x, const double a, const double b); double gsl_cdf_gumbel2_Pinv (const double P, const double a, const double b); double gsl_cdf_gumbel2_Qinv (const double Q, const double a, const double b); double gsl_cdf_weibull_P (const double x, const double a, const double b); double gsl_cdf_weibull_Q (const double x, const double a, const double b); double gsl_cdf_weibull_Pinv (const double P, const double a, const double b); double gsl_cdf_weibull_Qinv (const double Q, const double a, const double b); double gsl_cdf_pareto_P (const double x, const double a, const double b); double gsl_cdf_pareto_Q (const double x, const double a, const double b); double gsl_cdf_pareto_Pinv (const double P, const double a, const double b); double gsl_cdf_pareto_Qinv (const double Q, const double a, const double b); double gsl_cdf_logistic_P (const double x, const double a); double gsl_cdf_logistic_Q (const double x, const double a); double gsl_cdf_logistic_Pinv (const double P, const double a); double gsl_cdf_logistic_Qinv (const double Q, const double a); double gsl_cdf_binomial_P (const unsigned int k, const double p, const unsigned int n); double gsl_cdf_binomial_Q (const unsigned int k, const double p, const unsigned int n); double gsl_cdf_poisson_P (const unsigned int k, const double mu); double gsl_cdf_poisson_Q (const unsigned int k, const double mu); double gsl_cdf_geometric_P (const unsigned int k, const double p); double gsl_cdf_geometric_Q (const unsigned int k, const double p); double gsl_cdf_negative_binomial_P (const unsigned int k, const double p, const double n); double gsl_cdf_negative_binomial_Q (const unsigned int k, const double p, const double n); double gsl_cdf_pascal_P (const unsigned int k, const double p, const unsigned int n); double gsl_cdf_pascal_Q (const unsigned int k, const double p, const unsigned int n); double gsl_cdf_hypergeometric_P (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t); double gsl_cdf_hypergeometric_Q (const unsigned int k, const unsigned int n1, const unsigned int n2, const unsigned int t); __END_DECLS #endif /* __GSL_CDF_H__ */ gsl-1.16/cdf/cauchyinv.c0000664000252300025230000000275412171574312012053 00000000000000/* cdf/cauchyinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_cauchy_Pinv (const double P, const double a) { double x; if (P == 1.0) { return GSL_POSINF; } else if (P == 0.0) { return GSL_NEGINF; } if (P > 0.5) { x = a * tan (M_PI * (P - 0.5)); } else { x = -a / tan (M_PI * P); } return x; } double gsl_cdf_cauchy_Qinv (const double Q, const double a) { double x; if (Q == 0.0) { return GSL_POSINF; } else if (Q == 1.0) { return GSL_NEGINF; } if (Q > 0.5) { x = a * tan (M_PI * (0.5 - Q)); } else { x = a / tan (M_PI * Q); } return x; } gsl-1.16/cdf/nbinomial.c0000664000252300025230000000342412171574312012025 00000000000000/* cdf/negbinom.c * * Copyright (C) 2004 Jason H. Stover. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "error.h" /* * Pr(X <= k) for a negative binomial random variable X, i.e., * the probability of k or fewer failuers before success n. */ double gsl_cdf_negative_binomial_P (const unsigned int k, const double p, const double n) { double P; double a; double b; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (n < 0) { CDF_ERROR ("n < 0", GSL_EDOM); } a = (double) n; b = (double) k + 1.0; P = gsl_cdf_beta_P (p, a, b); return P; } /* * Pr ( X > k ). */ double gsl_cdf_negative_binomial_Q (const unsigned int k, const double p, const double n) { double Q; double a; double b; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (n < 0) { CDF_ERROR ("n < 0", GSL_EDOM); } a = (double) n; b = (double) k + 1.0; Q = gsl_cdf_beta_Q (p, a, b); return Q; } gsl-1.16/cdf/test_auto.c0000664000252300025230000036201012171574312012063 00000000000000void test_auto_beta (void); void test_auto_beta (void) { TEST(gsl_cdf_beta_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e-10,1.3,2.7), 3.329258013904e-13, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000001e-09,1.3,2.7), 6.642743046207e-12, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e-08,1.3,2.7), 1.325401475350e-10, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.9999999999999995e-08,1.3,2.7), 2.644523387276e-09, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.9999999999999995e-07,1.3,2.7), 5.276513292646e-08, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000001e-05,1.3,2.7), 1.052793708285e-06, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e-04,1.3,2.7), 2.100417958505e-05, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e-03,1.3,2.7), 4.187261218400e-04, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e-02,1.3,2.7), 8.282559388393e-03, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000001e-01,1.3,2.7), 1.512194578010e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (2.0000000000000001e-01,1.3,2.7), 3.358123280407e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (2.9999999999999999e-01,1.3,2.7), 5.104163996495e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (4.0000000000000002e-01,1.3,2.7), 6.620682399410e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (5.0000000000000000e-01,1.3,2.7), 7.852786981833e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (5.9999999999999998e-01,1.3,2.7), 8.784005878950e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (8.0000000000000004e-01,1.3,2.7), 9.801824171406e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.0000000000000002e-01,1.3,2.7), 9.968736852365e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.8999999999999999e-01,1.3,2.7), 9.999936324464e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.9900000000000000e-01,1.3,2.7), 9.999999872699e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.9990000000000001e-01,1.3,2.7), 9.999999999746e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (9.9999000000000005e-01,1.3,2.7), 9.999999999999e-01, TEST_TOL6); TEST(gsl_cdf_beta_P, (1.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.9999000000000005e-01,1.3,2.7), 5.069044353228e-14, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.9990000000000001e-01,1.3,2.7), 2.540490259443e-11, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.9900000000000000e-01,1.3,2.7), 1.273010336738e-08, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.8999999999999999e-01,1.3,2.7), 6.367553598351e-06, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.0000000000000002e-01,1.3,2.7), 3.126314763488e-03, TEST_TOL6); TEST(gsl_cdf_beta_Q, (8.0000000000000004e-01,1.3,2.7), 1.981758285937e-02, TEST_TOL6); TEST(gsl_cdf_beta_Q, (5.9999999999999998e-01,1.3,2.7), 1.215994121050e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (5.0000000000000000e-01,1.3,2.7), 2.147213018167e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (4.0000000000000002e-01,1.3,2.7), 3.379317600590e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (2.9999999999999999e-01,1.3,2.7), 4.895836003505e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (2.0000000000000001e-01,1.3,2.7), 6.641876719593e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000001e-01,1.3,2.7), 8.487805421990e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e-02,1.3,2.7), 9.917174406116e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e-03,1.3,2.7), 9.995812738782e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e-04,1.3,2.7), 9.999789958204e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000001e-05,1.3,2.7), 9.999989472063e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.9999999999999995e-07,1.3,2.7), 9.999999472349e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (9.9999999999999995e-08,1.3,2.7), 9.999999973555e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e-08,1.3,2.7), 9.999999998675e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000001e-09,1.3,2.7), 9.999999999934e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (1.0000000000000000e-10,1.3,2.7), 9.999999999997e-01, TEST_TOL6); TEST(gsl_cdf_beta_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_fdist (void); void test_auto_fdist (void) { TEST(gsl_cdf_fdist_P, (0.0000000000000000e+00,5.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e-10,5.3,2.7), 3.231380663090e-26, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000001e-09,5.3,2.7), 1.443404714791e-23, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e-08,5.3,2.7), 6.447451698511e-21, TEST_TOL6); TEST(gsl_cdf_fdist_P, (9.9999999999999995e-08,5.3,2.7), 2.879969407315e-18, TEST_TOL6); TEST(gsl_cdf_fdist_P, (9.9999999999999995e-07,5.3,2.7), 1.286428479993e-15, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000001e-05,5.3,2.7), 5.745970138195e-13, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e-04,5.3,2.7), 2.565314230632e-10, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e-03,5.3,2.7), 1.140026203760e-07, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e-02,5.3,2.7), 4.840333162527e-05, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000001e-01,5.3,2.7), 1.360698992545e-02, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+00,5.3,2.7), 4.532720490874e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+01,5.3,2.7), 9.461328174717e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+02,5.3,2.7), 9.973356976994e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+03,5.3,2.7), 9.998797338050e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+04,5.3,2.7), 9.999946222456e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+05,5.3,2.7), 9.999997597592e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+06,5.3,2.7), 9.999999892687e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+07,5.3,2.7), 9.999999995207e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+08,5.3,2.7), 9.999999999786e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+09,5.3,2.7), 9.999999999990e-01, TEST_TOL6); TEST(gsl_cdf_fdist_P, (1.0000000000000000e+10,5.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+10,5.3,2.7), 4.272202262298e-14, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+09,5.3,2.7), 9.564269502770e-13, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+08,5.3,2.7), 2.141173208523e-11, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+07,5.3,2.7), 4.793489218238e-10, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+06,5.3,2.7), 1.073127433440e-08, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+05,5.3,2.7), 2.402407758939e-07, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+04,5.3,2.7), 5.377754447932e-06, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+03,5.3,2.7), 1.202661950234e-04, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+02,5.3,2.7), 2.664302300604e-03, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+01,5.3,2.7), 5.386718252832e-02, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e+00,5.3,2.7), 5.467279509126e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000001e-01,5.3,2.7), 9.863930100746e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e-02,5.3,2.7), 9.999515966684e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e-03,5.3,2.7), 9.999998859974e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e-04,5.3,2.7), 9.999999997435e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000001e-05,5.3,2.7), 9.999999999994e-01, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (9.9999999999999995e-07,5.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (9.9999999999999995e-08,5.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e-08,5.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000001e-09,5.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (1.0000000000000000e-10,5.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_fdist_Q, (0.0000000000000000e+00,5.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_cauchy (void); void test_auto_cauchy (void) { TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+10,1.3), 4.138028520389e-11, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285203892783e-11,1.3), -1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+09,1.3), 4.138028520389e-10, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285203892792e-10,1.3), -1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+08,1.3), 4.138028520389e-09, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285203892787e-09,1.3), -1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+07,1.3), 4.138028520389e-08, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285203892555e-08,1.3), -1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+06,1.3), 4.138028520387e-07, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285203869488e-07,1.3), -1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+05,1.3), 4.138028520156e-06, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380285201561693e-06,1.3), -1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+04,1.3), 4.138028497078e-05, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380284970783855e-05,1.3), -1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+03,1.3), 4.138026189302e-04, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1380261893022424e-04,1.3), -1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+02,1.3), 4.137795435084e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1377954350836910e-03,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+01,1.3), 4.114951182497e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.1149511824973506e-02,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e+00,1.3), 2.912855998398e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (2.9128559983984725e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000001e-01,1.3), 4.755627480278e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.7556274802780252e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e-02,1.3), 4.975515107069e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.9755151070688325e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e-03,1.3), 4.997551462897e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (4.9975514628969159e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e-04,1.3), 4.999755146242e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000001e-05,1.3), 4.999975514624e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-9.9999999999999995e-07,1.3), 4.999997551462e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-9.9999999999999995e-08,1.3), 4.999999755146e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e-08,1.3), 4.999999975515e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000001e-09,1.3), 4.999999997551e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (-1.0000000000000000e-10,1.3), 4.999999999755e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (5.0000000000000011e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e-10,1.3), 5.000000000245e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000001e-09,1.3), 5.000000002449e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e-08,1.3), 5.000000024485e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (9.9999999999999995e-08,1.3), 5.000000244854e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (9.9999999999999995e-07,1.3), 5.000002448538e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000001e-05,1.3), 5.000024485376e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e-04,1.3), 5.000244853758e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e-03,1.3), 5.002448537103e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (5.0024485371030836e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e-02,1.3), 5.024484892931e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (5.0244848929311670e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000001e-01,1.3), 5.244372519722e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (5.2443725197219748e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+00,1.3), 7.087144001602e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (7.0871440016015275e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+01,1.3), 9.588504881750e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (9.5885048817502649e-01,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+02,1.3), 9.958622045649e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (9.9586220456491636e-01,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+03,1.3), 9.995861973811e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Pinv, (9.9958619738106980e-01,1.3), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+04,1.3), 9.999586197150e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+05,1.3), 9.999958619715e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+06,1.3), 9.999995861971e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+07,1.3), 9.999999586197e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+08,1.3), 9.999999958620e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+09,1.3), 9.999999995862e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_P, (1.0000000000000000e+10,1.3), 9.999999999586e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+10,1.3), 4.138028520389e-11, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285203892783e-11,1.3), 1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+09,1.3), 4.138028520389e-10, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285203892792e-10,1.3), 1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+08,1.3), 4.138028520389e-09, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285203892787e-09,1.3), 1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+07,1.3), 4.138028520389e-08, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285203892555e-08,1.3), 1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+06,1.3), 4.138028520387e-07, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285203869488e-07,1.3), 1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+05,1.3), 4.138028520156e-06, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380285201561693e-06,1.3), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+04,1.3), 4.138028497078e-05, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380284970783855e-05,1.3), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+03,1.3), 4.138026189302e-04, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1380261893022424e-04,1.3), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+02,1.3), 4.137795435084e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1377954350836910e-03,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+01,1.3), 4.114951182497e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.1149511824973506e-02,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e+00,1.3), 2.912855998398e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (2.9128559983984725e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000001e-01,1.3), 4.755627480278e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.7556274802780252e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e-02,1.3), 4.975515107069e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.9755151070688325e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e-03,1.3), 4.997551462897e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (4.9975514628969159e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e-04,1.3), 4.999755146242e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000001e-05,1.3), 4.999975514624e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (9.9999999999999995e-07,1.3), 4.999997551462e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (9.9999999999999995e-08,1.3), 4.999999755146e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e-08,1.3), 4.999999975515e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000001e-09,1.3), 4.999999997551e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (1.0000000000000000e-10,1.3), 4.999999999755e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (5.0000000000000011e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e-10,1.3), 5.000000000245e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000001e-09,1.3), 5.000000002449e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e-08,1.3), 5.000000024485e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-9.9999999999999995e-08,1.3), 5.000000244854e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-9.9999999999999995e-07,1.3), 5.000002448538e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000001e-05,1.3), 5.000024485376e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e-04,1.3), 5.000244853758e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e-03,1.3), 5.002448537103e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (5.0024485371030836e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e-02,1.3), 5.024484892931e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (5.0244848929311670e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000001e-01,1.3), 5.244372519722e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (5.2443725197219748e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+00,1.3), 7.087144001602e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (7.0871440016015275e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+01,1.3), 9.588504881750e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (9.5885048817502649e-01,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+02,1.3), 9.958622045649e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (9.9586220456491636e-01,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+03,1.3), 9.995861973811e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Qinv, (9.9958619738106980e-01,1.3), -1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+04,1.3), 9.999586197150e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+05,1.3), 9.999958619715e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+06,1.3), 9.999995861971e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+07,1.3), 9.999999586197e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+08,1.3), 9.999999958620e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+09,1.3), 9.999999995862e-01, TEST_TOL6); TEST(gsl_cdf_cauchy_Q, (-1.0000000000000000e+10,1.3), 9.999999999586e-01, TEST_TOL6); } void test_auto_gaussian (void); void test_auto_gaussian (void) { TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+02,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+01,1.3), 7.225229227927e-15, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (7.2252292279265077e-15,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e+00,1.3), 2.208781637125e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (2.2087816371245972e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000001e-01,1.3), 4.693423696034e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (4.6934236960338749e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e-02,1.3), 4.969312434916e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (4.9693124349158196e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e-03,1.3), 4.996931213530e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (4.9969312135303229e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e-04,1.3), 4.999693121323e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000001e-05,1.3), 4.999969312132e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-9.9999999999999995e-07,1.3), 4.999996931213e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-9.9999999999999995e-08,1.3), 4.999999693121e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e-08,1.3), 4.999999969312e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000001e-09,1.3), 4.999999996931e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (-1.0000000000000000e-10,1.3), 4.999999999693e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e-10,1.3), 5.000000000307e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000001e-09,1.3), 5.000000003069e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e-08,1.3), 5.000000030688e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (9.9999999999999995e-08,1.3), 5.000000306879e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (9.9999999999999995e-07,1.3), 5.000003068787e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000001e-05,1.3), 5.000030687868e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e-04,1.3), 5.000306878677e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e-03,1.3), 5.003068786470e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (5.0030687864696777e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e-02,1.3), 5.030687565084e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (5.0306875650841798e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000001e-01,1.3), 5.306576303966e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (5.3065763039661251e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+00,1.3), 7.791218362875e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Pinv, (7.7912183628754028e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+01,1.3), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_P, (1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+02,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+01,1.3), 7.225229227927e-15, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (7.2252292279265077e-15,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e+00,1.3), 2.208781637125e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (2.2087816371245972e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000001e-01,1.3), 4.693423696034e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (4.6934236960338749e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e-02,1.3), 4.969312434916e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (4.9693124349158196e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e-03,1.3), 4.996931213530e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (4.9969312135303229e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e-04,1.3), 4.999693121323e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000001e-05,1.3), 4.999969312132e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (9.9999999999999995e-07,1.3), 4.999996931213e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (9.9999999999999995e-08,1.3), 4.999999693121e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e-08,1.3), 4.999999969312e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000001e-09,1.3), 4.999999996931e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (1.0000000000000000e-10,1.3), 4.999999999693e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e-10,1.3), 5.000000000307e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000001e-09,1.3), 5.000000003069e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e-08,1.3), 5.000000030688e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-9.9999999999999995e-08,1.3), 5.000000306879e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-9.9999999999999995e-07,1.3), 5.000003068787e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000001e-05,1.3), 5.000030687868e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e-04,1.3), 5.000306878677e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e-03,1.3), 5.003068786470e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (5.0030687864696777e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e-02,1.3), 5.030687565084e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (5.0306875650841798e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000001e-01,1.3), 5.306576303966e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (5.3065763039661251e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+00,1.3), 7.791218362875e-01, TEST_TOL6); TEST(gsl_cdf_gaussian_Qinv, (7.7912183628754028e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+01,1.3), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gaussian_Q, (-1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); } void test_auto_laplace (void); void test_auto_laplace (void) { TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+02,1.3), 1.957501779912e-34, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (1.9575017799122328e-34,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+01,1.3), 2.281619502905e-04, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (2.2816195029051560e-04,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e+00,1.3), 2.316846846156e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (2.3168468461558764e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000001e-01,1.3), 4.629805393212e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (4.6298053932115801e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e-02,1.3), 4.961686011956e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (4.9616860119557432e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e-03,1.3), 4.996155325065e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (4.9961553250645546e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e-04,1.3), 4.999615399408e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000001e-05,1.3), 4.999961538609e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-9.9999999999999995e-07,1.3), 4.999996153848e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-9.9999999999999995e-08,1.3), 4.999999615385e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e-08,1.3), 4.999999961538e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000001e-09,1.3), 4.999999996154e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (-1.0000000000000000e-10,1.3), 4.999999999615e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e-10,1.3), 5.000000000385e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000001e-09,1.3), 5.000000003846e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e-08,1.3), 5.000000038462e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (9.9999999999999995e-08,1.3), 5.000000384615e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (9.9999999999999995e-07,1.3), 5.000003846152e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000001e-05,1.3), 5.000038461391e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e-04,1.3), 5.000384600592e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e-03,1.3), 5.003844674935e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (5.0038446749354448e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e-02,1.3), 5.038313988044e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (5.0383139880442562e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000001e-01,1.3), 5.370194606788e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (5.3701946067884199e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+00,1.3), 7.683153153844e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (7.6831531538441233e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+01,1.3), 9.997718380497e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Pinv, (9.9977183804970948e-01,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_P, (1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+02,1.3), 1.957501779912e-34, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (1.9575017799122328e-34,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+01,1.3), 2.281619502905e-04, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (2.2816195029051560e-04,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e+00,1.3), 2.316846846156e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (2.3168468461558764e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000001e-01,1.3), 4.629805393212e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (4.6298053932115801e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e-02,1.3), 4.961686011956e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (4.9616860119557432e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e-03,1.3), 4.996155325065e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (4.9961553250645546e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e-04,1.3), 4.999615399408e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000001e-05,1.3), 4.999961538609e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (9.9999999999999995e-07,1.3), 4.999996153848e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (9.9999999999999995e-08,1.3), 4.999999615385e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e-08,1.3), 4.999999961538e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000001e-09,1.3), 4.999999996154e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (1.0000000000000000e-10,1.3), 4.999999999615e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e-10,1.3), 5.000000000385e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000001e-09,1.3), 5.000000003846e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e-08,1.3), 5.000000038462e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-9.9999999999999995e-08,1.3), 5.000000384615e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-9.9999999999999995e-07,1.3), 5.000003846152e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000001e-05,1.3), 5.000038461391e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e-04,1.3), 5.000384600592e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e-03,1.3), 5.003844674935e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (5.0038446749354448e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e-02,1.3), 5.038313988044e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (5.0383139880442562e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000001e-01,1.3), 5.370194606788e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (5.3701946067884199e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+00,1.3), 7.683153153844e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (7.6831531538441233e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+01,1.3), 9.997718380497e-01, TEST_TOL6); TEST(gsl_cdf_laplace_Qinv, (9.9977183804970948e-01,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_laplace_Q, (-1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); } void test_auto_rayleigh (void); void test_auto_rayleigh (void) { TEST(gsl_cdf_rayleigh_P, (0.0000000000000000e+00,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e-10,1.3), 2.958579881657e-21, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816568050e-21,1.3), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000001e-09,1.3), 2.958579881657e-19, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816568049e-19,1.3), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e-08,1.3), 2.958579881657e-17, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816568048e-17,1.3), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (9.9999999999999995e-08,1.3), 2.958579881657e-15, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816568001e-15,1.3), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (9.9999999999999995e-07,1.3), 2.958579881656e-13, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816563665e-13,1.3), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000001e-05,1.3), 2.958579881613e-11, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798816130393e-11,1.3), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e-04,1.3), 2.958579877280e-09, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585798772802076e-09,1.3), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e-03,1.3), 2.958579443997e-07, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585794439971025e-07,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e-02,1.3), 2.958536116114e-05, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9585361161138382e-05,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000001e-01,1.3), 2.954207597179e-03, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.9542075971792496e-03,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+00,1.3), 2.561069378624e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Pinv, (2.5610693786235361e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+01,1.3), 9.999999999999e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_P, (1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+02,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+01,1.3), 1.415959498849e-13, TEST_TOL6); TEST(gsl_cdf_rayleigh_Qinv, (1.4159594988487832e-13,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e+00,1.3), 7.438930621376e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Qinv, (7.4389306213764639e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000001e-01,1.3), 9.970457924028e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Qinv, (9.9704579240282076e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e-02,1.3), 9.999704146388e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e-03,1.3), 9.999997041421e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e-04,1.3), 9.999999970414e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000001e-05,1.3), 9.999999999704e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (9.9999999999999995e-07,1.3), 9.999999999997e-01, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (9.9999999999999995e-08,1.3), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e-08,1.3), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000001e-09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (1.0000000000000000e-10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_rayleigh_Q, (0.0000000000000000e+00,1.3), 1.000000000000e+00, TEST_TOL6); } void test_auto_flat (void); void test_auto_flat (void) { TEST(gsl_cdf_flat_P, (0.0000000000000000e+00,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e-10,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000001e-09,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e-08,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (9.9999999999999995e-08,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (9.9999999999999995e-07,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000001e-05,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e-04,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e-03,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e-02,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000001e-01,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+00,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+01,1.3,750.0), 1.162014157874e-02, TEST_TOL6); TEST(gsl_cdf_flat_Pinv, (1.1620141578738545e-02,1.3,750.0), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+02,1.3,750.0), 1.318285027381e-01, TEST_TOL6); TEST(gsl_cdf_flat_Pinv, (1.3182850273808142e-01,1.3,750.0), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+03,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+04,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+05,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+06,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+07,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+08,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+09,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_P, (1.0000000000000000e+10,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+10,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+09,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+08,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+07,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+06,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+05,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+04,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+03,1.3,750.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+02,1.3,750.0), 8.681714972619e-01, TEST_TOL6); TEST(gsl_cdf_flat_Qinv, (8.6817149726190368e-01,1.3,750.0), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+01,1.3,750.0), 9.883798584213e-01, TEST_TOL6); TEST(gsl_cdf_flat_Qinv, (9.8837985842125353e-01,1.3,750.0), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e+00,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000001e-01,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e-02,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e-03,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e-04,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000001e-05,1.3,750.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (9.9999999999999995e-07,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (9.9999999999999995e-08,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e-08,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000001e-09,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (1.0000000000000000e-10,1.3,750.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_flat_Q, (0.0000000000000000e+00,1.3,750.0), 1.000000000000e+00, TEST_TOL6); } void test_auto_lognormal (void); void test_auto_lognormal (void) { TEST(gsl_cdf_lognormal_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e-10,1.3,2.7), 1.034288276012e-19, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.0342882760115472e-19,1.3,2.7), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000001e-09,1.3,2.7), 1.720583234428e-16, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.7205832344275183e-16,1.3,2.7), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e-08,1.3,2.7), 1.397140696550e-13, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.3971406965496307e-13,1.3,2.7), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (9.9999999999999995e-08,1.3,2.7), 5.550354890102e-11, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (5.5503548901015757e-11,1.3,2.7), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (9.9999999999999995e-07,1.3,2.7), 1.082087222875e-08, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.0820872228749844e-08,1.3,2.7), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000001e-05,1.3,2.7), 1.039815967490e-06, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.0398159674903829e-06,1.3,2.7), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e-04,1.3,2.7), 4.956354352667e-05, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (4.9563543526667839e-05,1.3,2.7), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e-03,1.3,2.7), 1.183246775456e-03, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.1832467754562060e-03,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e-02,1.3,2.7), 1.436760981041e-02, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (1.4367609810406523e-02,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000001e-01,1.3,2.7), 9.105428982941e-02, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (9.1054289829405582e-02,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+00,1.3,2.7), 3.150871690838e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (3.1508716908375517e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+01,1.3,2.7), 6.448033073717e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (6.4480330737174019e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+02,1.3,2.7), 8.895497448370e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (8.8954974483702642e-01,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+03,1.3,2.7), 9.810967467052e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (9.8109674670518154e-01,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+04,1.3,2.7), 9.983038570318e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (9.9830385703184354e-01,1.3,2.7), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+05,1.3,2.7), 9.999223897251e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Pinv, (9.9992238972508574e-01,1.3,2.7), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+06,1.3,2.7), 9.999982185389e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+07,1.3,2.7), 9.999999796956e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+08,1.3,2.7), 9.999999998859e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+09,1.3,2.7), 9.999999999997e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_P, (1.0000000000000000e+10,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+10,1.3,2.7), 4.255893513650e-16, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (4.2558935136502785e-16,1.3,2.7), 1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+09,1.3,2.7), 3.150574023842e-13, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (3.1505740238418296e-13,1.3,2.7), 1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+08,1.3,2.7), 1.141445550080e-10, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (1.1414455500802107e-10,1.3,2.7), 1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+07,1.3,2.7), 2.030439602858e-08, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (2.0304396028576915e-08,1.3,2.7), 1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+06,1.3,2.7), 1.781461076603e-06, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (1.7814610766031938e-06,1.3,2.7), 1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+05,1.3,2.7), 7.761027491429e-05, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (7.7610274914290006e-05,1.3,2.7), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+04,1.3,2.7), 1.696142968157e-03, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (1.6961429681565346e-03,1.3,2.7), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+03,1.3,2.7), 1.890325329482e-02, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (1.8903253294818529e-02,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+02,1.3,2.7), 1.104502551630e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (1.1045025516297369e-01,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+01,1.3,2.7), 3.551966926283e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (3.5519669262825992e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e+00,1.3,2.7), 6.849128309162e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (6.8491283091624500e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000001e-01,1.3,2.7), 9.089457101706e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (9.0894571017059467e-01,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e-02,1.3,2.7), 9.856323901896e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (9.8563239018959370e-01,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e-03,1.3,2.7), 9.988167532245e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Qinv, (9.9881675322454400e-01,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e-04,1.3,2.7), 9.999504364565e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000001e-05,1.3,2.7), 9.999989601840e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (9.9999999999999995e-07,1.3,2.7), 9.999999891791e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (9.9999999999999995e-08,1.3,2.7), 9.999999999445e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e-08,1.3,2.7), 9.999999999999e-01, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000001e-09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (1.0000000000000000e-10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_lognormal_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_gamma (void); void test_auto_gamma (void) { TEST(gsl_cdf_gamma_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-10,1.3,2.7), 2.356478475164e-14, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (2.3564784751638661e-14,1.3,2.7), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-09,1.3,2.7), 4.701792696644e-13, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (4.7017926966439445e-13,1.3,2.7), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-08,1.3,2.7), 9.381309762735e-12, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (9.3813097627346386e-12,1.3,2.7), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_gamma_P, (9.9999999999999995e-08,1.3,2.7), 1.871817348197e-10, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.8718173481972823e-10,1.3,2.7), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_gamma_P, (9.9999999999999995e-07,1.3,2.7), 3.734765911711e-09, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (3.7347659117114240e-09,1.3,2.7), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-05,1.3,2.7), 7.451823639191e-08, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (7.4518236391910116e-08,1.3,2.7), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-04,1.3,2.7), 1.486806276026e-06, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.4868062760263472e-06,1.3,2.7), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-03,1.3,2.7), 2.966009681152e-05, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (2.9660096811518665e-05,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-02,1.3,2.7), 5.906831032950e-04, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (5.9068310329499826e-04,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-01,1.3,2.7), 1.156629233128e-02, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.1566292331279586e-02,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+00,1.3,2.7), 1.921237769663e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.9212377696630473e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+01,1.3,2.7), 9.565035356115e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (9.5650353561153789e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+02,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+05,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+06,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+07,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+06,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+03,1.3,2.7), 9.292091038794e-161, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.2920910387939860e-161,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+02,1.3,2.7), 2.729167976527e-16, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (2.7291679765273174e-16,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+01,1.3,2.7), 4.349646438846e-02, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (4.3496464388462192e-02,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+00,1.3,2.7), 8.078762230337e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (8.0787622303369533e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-01,1.3,2.7), 9.884337076687e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.8843370766872041e-01,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-02,1.3,2.7), 9.994093168967e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.9940931689670498e-01,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-03,1.3,2.7), 9.999703399032e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-04,1.3,2.7), 9.999985131937e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-05,1.3,2.7), 9.999999254818e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (9.9999999999999995e-07,1.3,2.7), 9.999999962652e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (9.9999999999999995e-08,1.3,2.7), 9.999999998128e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-08,1.3,2.7), 9.999999999906e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-09,1.3,2.7), 9.999999999995e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-10,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_chisq (void); void test_auto_chisq (void) { TEST(gsl_cdf_chisq_P, (0.0000000000000000e+00,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e-10,1.3), 2.238884178785e-07, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (2.2388841787852728e-07,1.3), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000001e-09,1.3), 1.000072827212e-06, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (1.0000728272124926e-06,1.3), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e-08,1.3), 4.467161220799e-06, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (4.4671612207994108e-06,1.3), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_chisq_P, (9.9999999999999995e-08,1.3), 1.995407585451e-05, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (1.9954075854510294e-05,1.3), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_chisq_P, (9.9999999999999995e-07,1.3), 8.913156700686e-05, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (8.9131567006858211e-05,1.3), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000001e-05,1.3), 3.981353794611e-04, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (3.9813537946105002e-04,1.3), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e-04,1.3), 1.778373888800e-03, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (1.7783738888003920e-03,1.3), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e-03,1.3), 7.942296379590e-03, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (7.9422963795896199e-03,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e-02,1.3), 3.541413902540e-02, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (3.5414139025402407e-02,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000001e-01,1.3), 1.554268895840e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (1.5542688958403586e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+00,1.3), 5.878620132779e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (5.8786201327788579e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+01,1.3), 9.973867890205e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Pinv, (9.9738678902053046e-01,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_P, (1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+03,1.3), 5.840240518729e-219, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (5.8402405187288964e-219,1.3), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+02,1.3), 3.517864771108e-23, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (3.5178647711076648e-23,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+01,1.3), 2.613210979470e-03, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (2.6132109794696230e-03,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e+00,1.3), 4.121379867221e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (4.1213798672211427e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000001e-01,1.3), 8.445731104160e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (8.4457311041596417e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e-02,1.3), 9.645858609746e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (9.6458586097459775e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e-03,1.3), 9.920577036204e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (9.9205770362041057e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e-04,1.3), 9.982216261112e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (9.9822162611119969e-01,1.3), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000001e-05,1.3), 9.996018646205e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Qinv, (9.9960186462053913e-01,1.3), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (9.9999999999999995e-07,1.3), 9.999108684330e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (9.9999999999999995e-08,1.3), 9.999800459241e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e-08,1.3), 9.999955328388e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000001e-09,1.3), 9.999989999272e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (1.0000000000000000e-10,1.3), 9.999997761116e-01, TEST_TOL6); TEST(gsl_cdf_chisq_Q, (0.0000000000000000e+00,1.3), 1.000000000000e+00, TEST_TOL6); } void test_auto_tdist (void); void test_auto_tdist (void) { TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+10,1.3), 3.467848111850e-14, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (3.4678481118500305e-14,1.3), -1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+09,1.3), 6.919266651610e-13, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (6.9192666516103524e-13,1.3), -1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+08,1.3), 1.380575199718e-11, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (1.3805751997179027e-11,1.3), -1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+07,1.3), 2.754609668978e-10, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (2.7546096689777484e-10,1.3), -1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+06,1.3), 5.496168864957e-09, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (5.4961688649569980e-09,1.3), -1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+05,1.3), 1.096629861231e-07, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (1.0966298612314582e-07,1.3), -1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+04,1.3), 2.188064222827e-06, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (2.1880642228271703e-06,1.3), -1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+03,1.3), 4.365759541083e-05, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (4.3657595410833571e-05,1.3), -1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+02,1.3), 8.710327647608e-04, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (8.7103276476079201e-04,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+01,1.3), 1.727893386820e-02, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (1.7278933868204446e-02,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e+00,1.3), 2.336211937932e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (2.3362119379322516e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000001e-01,1.3), 4.667575980083e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (4.6675759800826139e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e-02,1.3), 4.966660755117e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (4.9666607551169606e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e-03,1.3), 4.996665978189e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (4.9966659781887629e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e-04,1.3), 4.999666597722e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000001e-05,1.3), 4.999966659772e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-9.9999999999999995e-07,1.3), 4.999996665977e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-9.9999999999999995e-08,1.3), 4.999999666598e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e-08,1.3), 4.999999966660e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000001e-09,1.3), 4.999999996666e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (-1.0000000000000000e-10,1.3), 4.999999999667e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (4.9999999999999900e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e-10,1.3), 5.000000000333e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000001e-09,1.3), 5.000000003334e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e-08,1.3), 5.000000033340e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (9.9999999999999995e-08,1.3), 5.000000333402e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (9.9999999999999995e-07,1.3), 5.000003334023e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000001e-05,1.3), 5.000033340228e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e-04,1.3), 5.000333402278e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e-03,1.3), 5.003334021811e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (5.0033340218112365e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e-02,1.3), 5.033339244883e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (5.0333392448830394e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000001e-01,1.3), 5.332424019917e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (5.3324240199173856e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+00,1.3), 7.663788062068e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (7.6637880620677490e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+01,1.3), 9.827210661318e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (9.8272106613179555e-01,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+02,1.3), 9.991289672352e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Pinv, (9.9912896723523925e-01,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+03,1.3), 9.999563424046e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+04,1.3), 9.999978119358e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+05,1.3), 9.999998903370e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+06,1.3), 9.999999945038e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+07,1.3), 9.999999997245e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+08,1.3), 9.999999999862e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+09,1.3), 9.999999999993e-01, TEST_TOL6); TEST(gsl_cdf_tdist_P, (1.0000000000000000e+10,1.3), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+10,1.3), 3.467848111850e-14, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (3.4678481118500305e-14,1.3), 1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+09,1.3), 6.919266651610e-13, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (6.9192666516103524e-13,1.3), 1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+08,1.3), 1.380575199718e-11, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (1.3805751997179027e-11,1.3), 1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+07,1.3), 2.754609668978e-10, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (2.7546096689777484e-10,1.3), 1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+06,1.3), 5.496168864957e-09, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (5.4961688649569980e-09,1.3), 1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+05,1.3), 1.096629861231e-07, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (1.0966298612314582e-07,1.3), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+04,1.3), 2.188064222827e-06, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (2.1880642228271703e-06,1.3), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+03,1.3), 4.365759541083e-05, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (4.3657595410833571e-05,1.3), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+02,1.3), 8.710327647608e-04, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (8.7103276476079201e-04,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+01,1.3), 1.727893386820e-02, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (1.7278933868204446e-02,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e+00,1.3), 2.336211937932e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (2.3362119379322516e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000001e-01,1.3), 4.667575980083e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (4.6675759800826139e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e-02,1.3), 4.966660755117e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (4.9666607551169606e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e-03,1.3), 4.996665978189e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (4.9966659781887629e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e-04,1.3), 4.999666597722e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000001e-05,1.3), 4.999966659772e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (9.9999999999999995e-07,1.3), 4.999996665977e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (9.9999999999999995e-08,1.3), 4.999999666598e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e-08,1.3), 4.999999966660e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000001e-09,1.3), 4.999999996666e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (1.0000000000000000e-10,1.3), 4.999999999667e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (4.9999999999999900e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e-10,1.3), 5.000000000333e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000001e-09,1.3), 5.000000003334e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e-08,1.3), 5.000000033340e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-9.9999999999999995e-08,1.3), 5.000000333402e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-9.9999999999999995e-07,1.3), 5.000003334023e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000001e-05,1.3), 5.000033340228e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e-04,1.3), 5.000333402278e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e-03,1.3), 5.003334021811e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (5.0033340218112365e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e-02,1.3), 5.033339244883e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (5.0333392448830394e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000001e-01,1.3), 5.332424019917e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (5.3324240199173856e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+00,1.3), 7.663788062068e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (7.6637880620677490e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+01,1.3), 9.827210661318e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (9.8272106613179555e-01,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+02,1.3), 9.991289672352e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Qinv, (9.9912896723523925e-01,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+03,1.3), 9.999563424046e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+04,1.3), 9.999978119358e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+05,1.3), 9.999998903370e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+06,1.3), 9.999999945038e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+07,1.3), 9.999999997245e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+08,1.3), 9.999999999862e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+09,1.3), 9.999999999993e-01, TEST_TOL6); TEST(gsl_cdf_tdist_Q, (-1.0000000000000000e+10,1.3), 1.000000000000e-00, TEST_TOL6); } void test_auto_gumbel1 (void); void test_auto_gumbel1 (void) { TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+06,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+03,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+02,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+01,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e+00,1.3,2.7), 4.981965353092e-05, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (4.9819653530918237e-05,1.3,2.7), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000001e-01,1.3,2.7), 4.619717476780e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (4.6197174767798083e-02,1.3,2.7), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e-02,1.3,2.7), 6.487265128366e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.4872651283663055e-02,1.3,2.7), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e-03,1.3,2.7), 6.696988203722e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.6969882037217598e-02,1.3,2.7), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e-04,1.3,2.7), 6.718192621136e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.7181926211364873e-02,1.3,2.7), -1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000001e-05,1.3,2.7), 6.720315385232e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-9.9999999999999995e-07,1.3,2.7), 6.720527684866e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-9.9999999999999995e-08,1.3,2.7), 6.720548915062e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e-08,1.3,2.7), 6.720551038084e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000001e-09,1.3,2.7), 6.720551250386e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (-1.0000000000000000e-10,1.3,2.7), 6.720551271616e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (0.0000000000000000e+00,1.3,2.7), 6.720551273975e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.7205512739749951e-02,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e-10,1.3,2.7), 6.720551276334e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000001e-09,1.3,2.7), 6.720551297564e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e-08,1.3,2.7), 6.720551509866e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (9.9999999999999995e-08,1.3,2.7), 6.720553632889e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (9.9999999999999995e-07,1.3,2.7), 6.720574863136e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000001e-05,1.3,2.7), 6.720787167931e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e-04,1.3,2.7), 6.722910448133e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.7229104481333457e-02,1.3,2.7), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e-03,1.3,2.7), 6.744166476190e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.7441664761898834e-02,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e-02,1.3,2.7), 6.959050352518e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (6.9590503525179814e-02,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000001e-01,1.3,2.7), 9.340058564429e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (9.3400585644290435e-02,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+00,1.3,2.7), 4.791048360125e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Pinv, (4.7910483601248477e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+01,1.3,2.7), 9.999938971292e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+05,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+06,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+07,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_P, (1.0000000000000000e+10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+06,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+03,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+02,1.3,2.7), 9.398988467742e-57, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3989884677416057e-57,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+01,1.3,2.7), 6.102870776257e-06, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (6.1028707762572197e-06,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e+00,1.3,2.7), 5.208951639875e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (5.2089516398751523e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000001e-01,1.3,2.7), 9.065994143557e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.0659941435570957e-01,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e-02,1.3,2.7), 9.304094964748e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3040949647482019e-01,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e-03,1.3,2.7), 9.325583352381e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3255833523810117e-01,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e-04,1.3,2.7), 9.327708955187e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000001e-05,1.3,2.7), 9.327921283207e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (9.9999999999999995e-07,1.3,2.7), 9.327942513686e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (9.9999999999999995e-08,1.3,2.7), 9.327944636711e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e-08,1.3,2.7), 9.327944849013e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000001e-09,1.3,2.7), 9.327944870244e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (1.0000000000000000e-10,1.3,2.7), 9.327944872367e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (0.0000000000000000e+00,1.3,2.7), 9.327944872603e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3279448726025027e-01,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e-10,1.3,2.7), 9.327944872838e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000001e-09,1.3,2.7), 9.327944874961e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e-08,1.3,2.7), 9.327944896192e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-9.9999999999999995e-08,1.3,2.7), 9.327945108494e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-9.9999999999999995e-07,1.3,2.7), 9.327947231513e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000001e-05,1.3,2.7), 9.327968461477e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e-04,1.3,2.7), 9.328180737886e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e-03,1.3,2.7), 9.330301179628e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3303011796278246e-01,1.3,2.7), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e-02,1.3,2.7), 9.351273487163e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.3512734871633696e-01,1.3,2.7), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000001e-01,1.3,2.7), 9.538028252322e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.5380282523220195e-01,1.3,2.7), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+00,1.3,2.7), 9.999501803465e-01, TEST_TOL6); TEST(gsl_cdf_gumbel1_Qinv, (9.9995018034646910e-01,1.3,2.7), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+05,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+06,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+07,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel1_Q, (-1.0000000000000000e+10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_gumbel2 (void); void test_auto_gumbel2 (void) { TEST(gsl_cdf_gumbel2_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e-10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000001e-09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e-08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (9.9999999999999995e-08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (9.9999999999999995e-07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000001e-05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e-04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e-03,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e-02,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000001e-01,1.3,2.7), 4.014688368993e-24, TEST_TOL6); TEST(gsl_cdf_gumbel2_Pinv, (4.0146883689934746e-24,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+00,1.3,2.7), 6.720551273975e-02, TEST_TOL6); TEST(gsl_cdf_gumbel2_Pinv, (6.7205512739749743e-02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+01,1.3,2.7), 8.734358842463e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Pinv, (8.7343588424628138e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+02,1.3,2.7), 9.932408531257e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Pinv, (9.9324085312574451e-01,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+03,1.3,2.7), 9.996601479016e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Pinv, (9.9966014790162783e-01,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+04,1.3,2.7), 9.999829642968e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+05,1.3,2.7), 9.999991461854e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+06,1.3,2.7), 9.999999572079e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+07,1.3,2.7), 9.999999978553e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+08,1.3,2.7), 9.999999998925e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+09,1.3,2.7), 9.999999999946e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_P, (1.0000000000000000e+10,1.3,2.7), 9.999999999997e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+10,1.3,2.7), 2.700000000000e-13, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (2.6999999999996492e-13,1.3,2.7), 1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+09,1.3,2.7), 5.387208250401e-12, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (5.3872082504014914e-12,1.3,2.7), 1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+08,1.3,2.7), 1.074889360437e-10, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (1.0748893604366781e-10,1.3,2.7), 1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+07,1.3,2.7), 2.144686231456e-09, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (2.1446862314557286e-09,1.3,2.7), 1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+06,1.3,2.7), 4.279211528087e-08, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (4.2792115280867646e-08,1.3,2.7), 1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+05,1.3,2.7), 8.538146037456e-07, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (8.5381460374556900e-07,1.3,2.7), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+04,1.3,2.7), 1.703570319173e-05, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (1.7035703191725618e-05,1.3,2.7), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+03,1.3,2.7), 3.398520983725e-04, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (3.3985209837246249e-04,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+02,1.3,2.7), 6.759146874256e-03, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (6.7591468742558315e-03,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+01,1.3,2.7), 1.265641157537e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (1.2656411575371904e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e+00,1.3,2.7), 9.327944872603e-01, TEST_TOL6); TEST(gsl_cdf_gumbel2_Qinv, (9.3279448726025116e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000001e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e-02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e-03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e-04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000001e-05,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (9.9999999999999995e-07,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (9.9999999999999995e-08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e-08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000001e-09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (1.0000000000000000e-10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gumbel2_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_weibull (void); void test_auto_weibull (void) { TEST(gsl_cdf_weibull_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e-10,1.3,2.7), 4.924395760785e-28, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (4.9243957607852698e-28,1.3,2.7), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000001e-09,1.3,2.7), 2.468044288634e-25, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (2.4680442886338381e-25,1.3,2.7), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e-08,1.3,2.7), 1.236952289490e-22, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (1.2369522894899823e-22,1.3,2.7), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_weibull_P, (9.9999999999999995e-08,1.3,2.7), 6.199446960984e-20, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (6.1994469609840516e-20,1.3,2.7), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_weibull_P, (9.9999999999999995e-07,1.3,2.7), 3.107083672395e-17, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (3.1070836723945982e-17,1.3,2.7), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000001e-05,1.3,2.7), 1.557230670416e-14, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (1.5572306704159031e-14,1.3,2.7), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e-04,1.3,2.7), 7.804641318223e-12, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (7.8046413182225018e-12,1.3,2.7), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e-03,1.3,2.7), 3.911586584098e-09, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (3.9115865840980536e-09,1.3,2.7), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e-02,1.3,2.7), 1.960435341356e-06, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (1.9604353413559907e-06,1.3,2.7), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000001e-01,1.3,2.7), 9.820635881537e-04, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (9.8206358815371392e-04,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+00,1.3,2.7), 3.888663329609e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Pinv, (3.8886633296085954e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+05,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+06,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+07,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_P, (1.0000000000000000e+10,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+06,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+03,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+02,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+01,1.3,2.7), 6.519262004070e-108, TEST_TOL6); TEST(gsl_cdf_weibull_Qinv, (6.5192620040698617e-108,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e+00,1.3,2.7), 6.111336670391e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Qinv, (6.1113366703914040e-01,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000001e-01,1.3,2.7), 9.990179364118e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Qinv, (9.9901793641184633e-01,1.3,2.7), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e-02,1.3,2.7), 9.999980395647e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e-03,1.3,2.7), 9.999999960884e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e-04,1.3,2.7), 9.999999999922e-01, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000001e-05,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (9.9999999999999995e-07,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (9.9999999999999995e-08,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e-08,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000001e-09,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (1.0000000000000000e-10,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_weibull_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_pareto (void); void test_auto_pareto (void) { TEST(gsl_cdf_pareto_P, (0.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e-10,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000001e-09,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e-08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (9.9999999999999995e-08,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (9.9999999999999995e-07,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000001e-05,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e-04,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e-03,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e-02,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000001e-01,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+00,1.3,2.7), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+01,1.3,2.7), 8.177057822240e-01, TEST_TOL6); TEST(gsl_cdf_pareto_Pinv, (8.1770578222395374e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+02,1.3,2.7), 9.908636465287e-01, TEST_TOL6); TEST(gsl_cdf_pareto_Pinv, (9.9086364652869807e-01,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+03,1.3,2.7), 9.995420976279e-01, TEST_TOL6); TEST(gsl_cdf_pareto_Pinv, (9.9954209762786816e-01,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+04,1.3,2.7), 9.999770505177e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+05,1.3,2.7), 9.999988498013e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+06,1.3,2.7), 9.999999423535e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+07,1.3,2.7), 9.999999971109e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+08,1.3,2.7), 9.999999998552e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+09,1.3,2.7), 9.999999999928e-01, TEST_TOL6); TEST(gsl_cdf_pareto_P, (1.0000000000000000e+10,1.3,2.7), 9.999999999997e-01, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+10,1.3,2.7), 3.637247829654e-13, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (3.6372478296536173e-13,1.3,2.7), 1.000000000000e+10, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+09,1.3,2.7), 7.257263524710e-12, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (7.2572635247102111e-12,1.3,2.7), 1.000000000000e+09, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+08,1.3,2.7), 1.448014442065e-10, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (1.4480144420652496e-10,1.3,2.7), 1.000000000000e+08, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+07,1.3,2.7), 2.889168647783e-09, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (2.8891686477834784e-09,1.3,2.7), 1.000000000000e+07, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+06,1.3,2.7), 5.764649324512e-08, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (5.7646493245119715e-08,1.3,2.7), 1.000000000000e+06, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+05,1.3,2.7), 1.150198755621e-06, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (1.1501987556209536e-06,1.3,2.7), 1.000000000000e+05, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+04,1.3,2.7), 2.294948231815e-05, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (2.2949482318145872e-05,1.3,2.7), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+03,1.3,2.7), 4.579023721744e-04, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (4.5790237217441070e-04,1.3,2.7), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+02,1.3,2.7), 9.136353471345e-03, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (9.1363534713445622e-03,1.3,2.7), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+01,1.3,2.7), 1.822942177761e-01, TEST_TOL6); TEST(gsl_cdf_pareto_Qinv, (1.8229421777608898e-01,1.3,2.7), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e+00,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000001e-01,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e-02,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e-03,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e-04,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000001e-05,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (9.9999999999999995e-07,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (9.9999999999999995e-08,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e-08,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000001e-09,1.3,2.7), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (1.0000000000000000e-10,1.3,2.7), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_pareto_Q, (0.0000000000000000e+00,1.3,2.7), 1.000000000000e+00, TEST_TOL6); } void test_auto_logistic (void); void test_auto_logistic (void) { TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+02,1.3), 3.915003559824e-34, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (3.9150035598244656e-34,1.3), -1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+01,1.3), 4.561157640565e-04, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (4.5611576405646045e-04,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e+00,1.3), 3.166455298122e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (3.1664552981221700e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000001e-01,1.3), 4.807787077894e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (4.8077870778939180e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e-02,1.3), 4.980769325595e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (4.9807693255949481e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e-03,1.3), 4.998076923172e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (4.9980769231717492e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e-04,1.3), 4.999807692308e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000001e-05,1.3), 4.999980769231e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-9.9999999999999995e-07,1.3), 4.999998076923e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-9.9999999999999995e-08,1.3), 4.999999807692e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e-08,1.3), 4.999999980769e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000001e-09,1.3), 4.999999998077e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (-1.0000000000000000e-10,1.3), 4.999999999808e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e-10,1.3), 5.000000000192e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000001e-09,1.3), 5.000000001923e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e-08,1.3), 5.000000019231e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (9.9999999999999995e-08,1.3), 5.000000192308e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (9.9999999999999995e-07,1.3), 5.000001923077e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000001e-05,1.3), 5.000019230769e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e-04,1.3), 5.000192307692e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e-03,1.3), 5.001923076828e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (5.0019230768282508e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e-02,1.3), 5.019230674405e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (5.0192306744050519e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000001e-01,1.3), 5.192212922106e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (5.1922129221060820e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+00,1.3), 6.833544701878e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (6.8335447018778295e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+01,1.3), 9.995438842359e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Pinv, (9.9954388423594354e-01,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_P, (1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+10,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+09,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+08,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+07,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+06,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+05,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+04,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+03,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+02,1.3), 3.915003559824e-34, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (3.9150035598244656e-34,1.3), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+01,1.3), 4.561157640565e-04, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (4.5611576405646045e-04,1.3), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e+00,1.3), 3.166455298122e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (3.1664552981221700e-01,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000001e-01,1.3), 4.807787077894e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (4.8077870778939180e-01,1.3), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e-02,1.3), 4.980769325595e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (4.9807693255949481e-01,1.3), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e-03,1.3), 4.998076923172e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (4.9980769231717492e-01,1.3), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e-04,1.3), 4.999807692308e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000001e-05,1.3), 4.999980769231e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (9.9999999999999995e-07,1.3), 4.999998076923e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (9.9999999999999995e-08,1.3), 4.999999807692e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e-08,1.3), 4.999999980769e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000001e-09,1.3), 4.999999998077e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (1.0000000000000000e-10,1.3), 4.999999999808e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (0.0000000000000000e+00,1.3), 5.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (5.0000000000000000e-01,1.3), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e-10,1.3), 5.000000000192e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000001e-09,1.3), 5.000000001923e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e-08,1.3), 5.000000019231e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-9.9999999999999995e-08,1.3), 5.000000192308e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-9.9999999999999995e-07,1.3), 5.000001923077e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000001e-05,1.3), 5.000019230769e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e-04,1.3), 5.000192307692e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e-03,1.3), 5.001923076828e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (5.0019230768282508e-01,1.3), -1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e-02,1.3), 5.019230674405e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (5.0192306744050519e-01,1.3), -1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000001e-01,1.3), 5.192212922106e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (5.1922129221060820e-01,1.3), -1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+00,1.3), 6.833544701878e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (6.8335447018778295e-01,1.3), -1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+01,1.3), 9.995438842359e-01, TEST_TOL6); TEST(gsl_cdf_logistic_Qinv, (9.9954388423594354e-01,1.3), -1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+02,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+03,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+04,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+05,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+06,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+07,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+08,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+09,1.3), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_logistic_Q, (-1.0000000000000000e+10,1.3), 1.000000000000e+00, TEST_TOL6); } void test_auto_gammalarge (void); void test_auto_gammalarge (void) { TEST(gsl_cdf_gamma_P, (0.0000000000000000e+00,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-10,1.3,123.0), 1.644976604681e-16, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.6449766046812008e-16,1.3,123.0), 1.000000000000e-10, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-09,1.3,123.0), 3.282159828312e-15, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (3.2821598283122862e-15,1.3,123.0), 1.000000000000e-09, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-08,1.3,123.0), 6.548769816865e-14, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (6.5487698168653935e-14,1.3,123.0), 1.000000000000e-08, TEST_TOL6); TEST(gsl_cdf_gamma_P, (9.9999999999999995e-08,1.3,123.0), 1.306651361959e-12, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.3066513619593202e-12,1.3,123.0), 1.000000000000e-07, TEST_TOL6); TEST(gsl_cdf_gamma_P, (9.9999999999999995e-07,1.3,123.0), 2.607112210538e-11, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (2.6071122105378624e-11,1.3,123.0), 1.000000000000e-06, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-05,1.3,123.0), 5.201872529446e-10, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (5.2018725294456393e-10,1.3,123.0), 1.000000000000e-05, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-04,1.3,123.0), 1.037909593275e-08, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.0379095932752980e-08,1.3,123.0), 1.000000000000e-04, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-03,1.3,123.0), 2.070893333124e-07, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (2.0708933331240137e-07,1.3,123.0), 1.000000000000e-03, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e-02,1.3,123.0), 4.131804542806e-06, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (4.1318045428061286e-06,1.3,123.0), 1.000000000000e-02, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000001e-01,1.3,123.0), 8.240625287202e-05, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (8.2406252872017186e-05,1.3,123.0), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+00,1.3,123.0), 1.637438876041e-03, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (1.6374388760411608e-03,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+01,1.3,123.0), 3.135521671622e-02, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (3.1355216716223523e-02,1.3,123.0), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+02,1.3,123.0), 4.240385705334e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (4.2403857053338523e-01,1.3,123.0), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+03,1.3,123.0), 9.993635318324e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Pinv, (9.9936353183235616e-01,1.3,123.0), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+04,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+05,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+06,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+07,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+08,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+09,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_P, (1.0000000000000000e+10,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+10,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+09,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+08,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+07,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+06,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+05,1.3,123.0), 0.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+04,1.3,123.0), 2.056363344745e-35, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (2.0563633447452943e-35,1.3,123.0), 1.000000000000e+04, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+03,1.3,123.0), 6.364681676440e-04, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (6.3646816764395531e-04,1.3,123.0), 1.000000000000e+03, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+02,1.3,123.0), 5.759614294666e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (5.7596142946661488e-01,1.3,123.0), 1.000000000000e+02, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+01,1.3,123.0), 9.686447832838e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.6864478328377646e-01,1.3,123.0), 1.000000000000e+01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e+00,1.3,123.0), 9.983625611240e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.9836256112395882e-01,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-01,1.3,123.0), 9.999175937471e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Qinv, (9.9991759374712796e-01,1.3,123.0), 1.000000000000e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-02,1.3,123.0), 9.999958681955e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-03,1.3,123.0), 9.999997929107e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-04,1.3,123.0), 9.999999896209e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-05,1.3,123.0), 9.999999994798e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (9.9999999999999995e-07,1.3,123.0), 9.999999999739e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (9.9999999999999995e-08,1.3,123.0), 9.999999999987e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-08,1.3,123.0), 9.999999999999e-01, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000001e-09,1.3,123.0), 1.000000000000e-00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (1.0000000000000000e-10,1.3,123.0), 1.000000000000e+00, TEST_TOL6); TEST(gsl_cdf_gamma_Q, (0.0000000000000000e+00,1.3,123.0), 1.000000000000e+00, TEST_TOL6); } gsl-1.16/cdf/flatinv.c0000664000252300025230000000240712171574312011520 00000000000000/* cdf/flatinv.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include double gsl_cdf_flat_Pinv (const double P, const double a, const double b) { double x; if (P == 1.0) { return b; } else if (P == 0.0) { return a; } x = (1 - P) * a + P * b; return x; } double gsl_cdf_flat_Qinv (const double Q, const double a, const double b) { double x; if (Q == 0.0) { return b; } else if (Q == 1.0) { return a; } x = Q * a + (1 - Q) * b; return x; } gsl-1.16/cdf/geometric.c0000664000252300025230000000337712171574312012042 00000000000000/* cdf/geometric.c * * Copyright (C) 2004 Jason H. Stover. * Copyright (C) 2010 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "error.h" /* Pr (X <= k), i.e., the probability of n or fewer failures until the first success. */ double gsl_cdf_geometric_P (const unsigned int k, const double p) { double P, a, q; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (k < 1) { return 0.0; } q = 1.0 - p; a = (double) k; if (p < 0.5) { P = -expm1 (a * log1p (-p)); } else { P = 1.0 - pow (q, a); } return P; } double gsl_cdf_geometric_Q (const unsigned int k, const double p) { double Q, a, q; if (p > 1.0 || p < 0.0) { CDF_ERROR ("p < 0 or p > 1", GSL_EDOM); } if (k < 1) { return 1.0; } q = 1.0 - p; a = (double) k; if (p < 0.5) { Q = exp (a * log1p (-p)); } else { Q = pow (q, a); } return Q; } gsl-1.16/cdf/logistic.c0000664000252300025230000000245112171574312011671 00000000000000/* cdf/logistic.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include double gsl_cdf_logistic_P (const double x, const double a) { double P; double u = x / a; if (u >= 0) { P = 1 / (1 + exp (-u)); } else { P = exp (u) / (1 + exp (u)); } return P; } double gsl_cdf_logistic_Q (const double x, const double a) { double Q; double u = x / a; if (u >= 0) { Q = exp (-u) / (1 + exp (-u)); } else { Q = 1 / (1 + exp (u)); } return Q; } gsl-1.16/cdf/chisq.c0000664000252300025230000000206512171574312011164 00000000000000/* cdf/cdf_chisq.c * * Copyright (C) 2003, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_cdf_chisq_P (const double x, const double nu) { return gsl_cdf_gamma_P (x, nu / 2, 2.0); } double gsl_cdf_chisq_Q (const double x, const double nu) { return gsl_cdf_gamma_Q (x, nu / 2, 2.0); } gsl-1.16/missing0000755000252300025230000001533112172014010010533 00000000000000#! /bin/sh # Common wrapper for a few potentially missing GNU programs. scriptversion=2012-06-26.16; # UTC # Copyright (C) 1996-2013 Free Software Foundation, Inc. # Originally written by Fran,cois Pinard , 1996. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. if test $# -eq 0; then echo 1>&2 "Try '$0 --help' for more information" exit 1 fi case $1 in --is-lightweight) # Used by our autoconf macros to check whether the available missing # script is modern enough. exit 0 ;; --run) # Back-compat with the calling convention used by older automake. shift ;; -h|--h|--he|--hel|--help) echo "\ $0 [OPTION]... PROGRAM [ARGUMENT]... Run 'PROGRAM [ARGUMENT]...', returning a proper advice when this fails due to PROGRAM being missing or too old. Options: -h, --help display this help and exit -v, --version output version information and exit Supported PROGRAM values: aclocal autoconf autoheader autom4te automake makeinfo bison yacc flex lex help2man Version suffixes to PROGRAM as well as the prefixes 'gnu-', 'gnu', and 'g' are ignored when checking the name. Send bug reports to ." exit $? ;; -v|--v|--ve|--ver|--vers|--versi|--versio|--version) echo "missing $scriptversion (GNU Automake)" exit $? ;; -*) echo 1>&2 "$0: unknown '$1' option" echo 1>&2 "Try '$0 --help' for more information" exit 1 ;; esac # Run the given program, remember its exit status. "$@"; st=$? # If it succeeded, we are done. test $st -eq 0 && exit 0 # Also exit now if we it failed (or wasn't found), and '--version' was # passed; such an option is passed most likely to detect whether the # program is present and works. case $2 in --version|--help) exit $st;; esac # Exit code 63 means version mismatch. This often happens when the user # tries to use an ancient version of a tool on a file that requires a # minimum version. if test $st -eq 63; then msg="probably too old" elif test $st -eq 127; then # Program was missing. msg="missing on your system" else # Program was found and executed, but failed. Give up. exit $st fi perl_URL=http://www.perl.org/ flex_URL=http://flex.sourceforge.net/ gnu_software_URL=http://www.gnu.org/software program_details () { case $1 in aclocal|automake) echo "The '$1' program is part of the GNU Automake package:" echo "<$gnu_software_URL/automake>" echo "It also requires GNU Autoconf, GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/autoconf>" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; autoconf|autom4te|autoheader) echo "The '$1' program is part of the GNU Autoconf package:" echo "<$gnu_software_URL/autoconf/>" echo "It also requires GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; esac } give_advice () { # Normalize program name to check for. normalized_program=`echo "$1" | sed ' s/^gnu-//; t s/^gnu//; t s/^g//; t'` printf '%s\n' "'$1' is $msg." configure_deps="'configure.ac' or m4 files included by 'configure.ac'" case $normalized_program in autoconf*) echo "You should only need it if you modified 'configure.ac'," echo "or m4 files included by it." program_details 'autoconf' ;; autoheader*) echo "You should only need it if you modified 'acconfig.h' or" echo "$configure_deps." program_details 'autoheader' ;; automake*) echo "You should only need it if you modified 'Makefile.am' or" echo "$configure_deps." program_details 'automake' ;; aclocal*) echo "You should only need it if you modified 'acinclude.m4' or" echo "$configure_deps." program_details 'aclocal' ;; autom4te*) echo "You might have modified some maintainer files that require" echo "the 'automa4te' program to be rebuilt." program_details 'autom4te' ;; bison*|yacc*) echo "You should only need it if you modified a '.y' file." echo "You may want to install the GNU Bison package:" echo "<$gnu_software_URL/bison/>" ;; lex*|flex*) echo "You should only need it if you modified a '.l' file." echo "You may want to install the Fast Lexical Analyzer package:" echo "<$flex_URL>" ;; help2man*) echo "You should only need it if you modified a dependency" \ "of a man page." echo "You may want to install the GNU Help2man package:" echo "<$gnu_software_URL/help2man/>" ;; makeinfo*) echo "You should only need it if you modified a '.texi' file, or" echo "any other file indirectly affecting the aspect of the manual." echo "You might want to install the Texinfo package:" echo "<$gnu_software_URL/texinfo/>" echo "The spurious makeinfo call might also be the consequence of" echo "using a buggy 'make' (AIX, DU, IRIX), in which case you might" echo "want to install GNU make:" echo "<$gnu_software_URL/make/>" ;; *) echo "You might have modified some files without having the proper" echo "tools for further handling them. Check the 'README' file, it" echo "often tells you about the needed prerequisites for installing" echo "this package. You may also peek at any GNU archive site, in" echo "case some other package contains this missing '$1' program." ;; esac } give_advice "$1" | sed -e '1s/^/WARNING: /' \ -e '2,$s/^/ /' >&2 # Propagate the correct exit status (expected to be 127 for a program # not found, 63 for a program that failed due to version mismatch). exit $st # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: gsl-1.16/qrng/0000775000252300025230000000000012172254160010176 500000000000000gsl-1.16/qrng/gsl_qrng.h0000664000252300025230000000446312171574312012115 00000000000000/* Author: G. Jungman + modifications from O. Teytaud */ #ifndef __GSL_QRNG_H__ #define __GSL_QRNG_H__ #include #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Once again, more inane C-style OOP... kill me now. */ /* Structure describing a type of generator. */ typedef struct { const char * name; unsigned int max_dimension; size_t (*state_size) (unsigned int dimension); int (*init_state) (void * state, unsigned int dimension); int (*get) (void * state, unsigned int dimension, double x[]); } gsl_qrng_type; /* Structure describing a generator instance of a * specified type, with generator-specific state info * and dimension-specific info. */ typedef struct { const gsl_qrng_type * type; unsigned int dimension; size_t state_size; void * state; } gsl_qrng; /* Supported generator types. */ GSL_VAR const gsl_qrng_type * gsl_qrng_niederreiter_2; GSL_VAR const gsl_qrng_type * gsl_qrng_sobol; GSL_VAR const gsl_qrng_type * gsl_qrng_halton; GSL_VAR const gsl_qrng_type * gsl_qrng_reversehalton; /* Allocate and initialize a generator * of the specified type, in the given * space dimension. */ gsl_qrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned int dimension); /* Copy a generator. */ int gsl_qrng_memcpy (gsl_qrng * dest, const gsl_qrng * src); /* Clone a generator. */ gsl_qrng * gsl_qrng_clone (const gsl_qrng * q); /* Free a generator. */ void gsl_qrng_free (gsl_qrng * q); /* Intialize a generator. */ void gsl_qrng_init (gsl_qrng * q); /* Get the standardized name of the generator. */ const char * gsl_qrng_name (const gsl_qrng * q); /* ISN'T THIS CONFUSING FOR PEOPLE? WHAT IF SOMEBODY TRIES TO COPY WITH THIS ??? */ size_t gsl_qrng_size (const gsl_qrng * q); void * gsl_qrng_state (const gsl_qrng * q); /* Retrieve next vector in sequence. */ INLINE_DECL int gsl_qrng_get (const gsl_qrng * q, double x[]); #ifdef HAVE_INLINE INLINE_FUN int gsl_qrng_get (const gsl_qrng * q, double x[]) { return (q->type->get) (q->state, q->dimension, x); } #endif /* HAVE_INLINE */ __END_DECLS #endif /* !__GSL_QRNG_H__ */ gsl-1.16/qrng/TODO0000664000252300025230000000113212171574312010606 00000000000000# -*- org -*- #+CATEGORY: qrng * Sort out "const" in prototypes, it looks odd since there are consts for many functions which modify the state. (Applies to both qrng and rng) * It would be useful to include functions to generate quasi-random number distributions (at least the Gaussian distribution)? obviously the Box-Mueller algorithm cannot be used to maintain the low discrepancy characteristics of the sequence, there are several methods suggested in the literature but it isn't at all my field so I'm not sure which is to be preferred. (DENISON Francis ) gsl-1.16/qrng/niederreiter-2.c0000664000252300025230000002161412171574312013111 00000000000000/* Author: G. Jungman */ /* Implement Niederreiter base 2 generator. * See: * Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992) */ #include #include #define NIED2_CHARACTERISTIC 2 #define NIED2_BASE 2 #define NIED2_MAX_DIMENSION 12 #define NIED2_MAX_PRIM_DEGREE 5 #define NIED2_MAX_DEGREE 50 #define NIED2_BIT_COUNT 30 #define NIED2_NBITS (NIED2_BIT_COUNT+1) #define MAXV (NIED2_NBITS + NIED2_MAX_DEGREE) /* Z_2 field operations */ #define NIED2_ADD(x,y) (((x)+(y))%2) #define NIED2_MUL(x,y) (((x)*(y))%2) #define NIED2_SUB(x,y) NIED2_ADD((x),(y)) static size_t nied2_state_size(unsigned int dimension); static int nied2_init(void * state, unsigned int dimension); static int nied2_get(void * state, unsigned int dimension, double * v); static const gsl_qrng_type nied2_type = { "niederreiter-base-2", NIED2_MAX_DIMENSION, nied2_state_size, nied2_init, nied2_get }; const gsl_qrng_type * gsl_qrng_niederreiter_2 = &nied2_type; /* primitive polynomials in binary encoding */ static const int primitive_poly[NIED2_MAX_DIMENSION+1][NIED2_MAX_PRIM_DEGREE+1] = { { 1, 0, 0, 0, 0, 0 }, /* 1 */ { 0, 1, 0, 0, 0, 0 }, /* x */ { 1, 1, 0, 0, 0, 0 }, /* 1 + x */ { 1, 1, 1, 0, 0, 0 }, /* 1 + x + x^2 */ { 1, 1, 0, 1, 0, 0 }, /* 1 + x + x^3 */ { 1, 0, 1, 1, 0, 0 }, /* 1 + x^2 + x^3 */ { 1, 1, 0, 0, 1, 0 }, /* 1 + x + x^4 */ { 1, 0, 0, 1, 1, 0 }, /* 1 + x^3 + x^4 */ { 1, 1, 1, 1, 1, 0 }, /* 1 + x + x^2 + x^3 + x^4 */ { 1, 0, 1, 0, 0, 1 }, /* 1 + x^2 + x^5 */ { 1, 0, 0, 1, 0, 1 }, /* 1 + x^3 + x^5 */ { 1, 1, 1, 1, 0, 1 }, /* 1 + x + x^2 + x^3 + x^5 */ { 1, 1, 1, 0, 1, 1 } /* 1 + x + x^2 + x^4 + x^5 */ }; /* degrees of primitive polynomials */ static const int poly_degree[NIED2_MAX_DIMENSION+1] = { 0, 1, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5 }; typedef struct { unsigned int sequence_count; int cj[NIED2_NBITS][NIED2_MAX_DIMENSION]; int nextq[NIED2_MAX_DIMENSION]; } nied2_state_t; static size_t nied2_state_size(unsigned int dimension) { return sizeof(nied2_state_t); } /* Multiply polynomials over Z_2. * Notice use of a temporary vector, * side-stepping aliasing issues when * one of inputs is the same as the output * [especially important in the original fortran version, I guess]. */ static void poly_multiply( const int pa[], int pa_degree, const int pb[], int pb_degree, int pc[], int * pc_degree ) { int j, k; int pt[NIED2_MAX_DEGREE+1]; int pt_degree = pa_degree + pb_degree; for(k=0; k<=pt_degree; k++) { int term = 0; for(j=0; j<=k; j++) { const int conv_term = NIED2_MUL(pa[k-j], pb[j]); term = NIED2_ADD(term, conv_term); } pt[k] = term; } for(k=0; k<=pt_degree; k++) { pc[k] = pt[k]; } for(k=pt_degree+1; k<=NIED2_MAX_DEGREE; k++) { pc[k] = 0; } *pc_degree = pt_degree; } /* Calculate the values of the constants V(J,R) as * described in BFN section 3.3. * * px = appropriate irreducible polynomial for current dimension * pb = polynomial defined in section 2.3 of BFN. * pb is modified */ static void calculate_v( const int px[], int px_degree, int pb[], int * pb_degree, int v[], int maxv ) { const int nonzero_element = 1; /* nonzero element of Z_2 */ const int arbitrary_element = 1; /* arbitray element of Z_2 */ /* The polynomial ph is px**(J-1), which is the value of B on arrival. * In section 3.3, the values of Hi are defined with a minus sign: * don't forget this if you use them later ! */ int ph[NIED2_MAX_DEGREE+1]; /* int ph_degree = *pb_degree; */ int bigm = *pb_degree; /* m from section 3.3 */ int m; /* m from section 2.3 */ int r, k, kj; for(k=0; k<=NIED2_MAX_DEGREE; k++) { ph[k] = pb[k]; } /* Now multiply B by PX so B becomes PX**J. * In section 2.3, the values of Bi are defined with a minus sign : * don't forget this if you use them later ! */ poly_multiply(px, px_degree, pb, *pb_degree, pb, pb_degree); m = *pb_degree; /* Now choose a value of Kj as defined in section 3.3. * We must have 0 <= Kj < E*J = M. * The limit condition on Kj does not seem very relevant * in this program. */ /* Quoting from BFN: "Our program currently sets each K_q * equal to eq. This has the effect of setting all unrestricted * values of v to 1." * Actually, it sets them to the arbitrary chosen value. * Whatever. */ kj = bigm; /* Now choose values of V in accordance with * the conditions in section 3.3. */ for(r=0; r= bigm) { for(r=kj+1; rcj[r][i_dim] = term; } } } static int nied2_init(void * state, unsigned int dimension) { nied2_state_t * n_state = (nied2_state_t *) state; unsigned int i_dim; if(dimension < 1 || dimension > NIED2_MAX_DIMENSION) return GSL_EINVAL; calculate_cj(n_state, dimension); for(i_dim=0; i_dimnextq[i_dim] = 0; n_state->sequence_count = 0; return GSL_SUCCESS; } static int nied2_get(void * state, unsigned int dimension, double * v) { static const double recip = 1.0/(double)(1U << NIED2_NBITS); /* 2^(-nbits) */ nied2_state_t * n_state = (nied2_state_t *) state; int r; int c; unsigned int i_dim; /* Load the result from the saved state. */ for(i_dim=0; i_dimnextq[i_dim] * recip; } /* Find the position of the least-significant zero in sequence_count. * This is the bit that changes in the Gray-code representation as * the count is advanced. */ r = 0; c = n_state->sequence_count; while(1) { if((c % 2) == 1) { ++r; c /= 2; } else break; } if(r >= NIED2_NBITS) return GSL_EFAILED; /* FIXME: better error code here */ /* Calculate the next state. */ for(i_dim=0; i_dimnextq[i_dim] ^= n_state->cj[r][i_dim]; } n_state->sequence_count++; return GSL_SUCCESS; } gsl-1.16/qrng/inline.c0000664000252300025230000000034612171574312011546 00000000000000/* Author: G. Jungman */ #include #include #include #include /* Compile all the inline functions */ #define COMPILE_INLINE_STATIC #include "build.h" #include gsl-1.16/qrng/qrng.c0000664000252300025230000000401512171574312011234 00000000000000/* Author: G. Jungman */ #include #include #include #include #include gsl_qrng * gsl_qrng_alloc (const gsl_qrng_type * T, unsigned int dimension) { gsl_qrng * q = (gsl_qrng *) malloc (sizeof (gsl_qrng)); if (q == 0) { GSL_ERROR_VAL ("allocation failed for qrng struct", GSL_ENOMEM, 0); }; q->dimension = dimension; q->state_size = T->state_size(dimension); q->state = malloc (q->state_size); if (q->state == 0) { free (q); GSL_ERROR_VAL ("allocation failed for qrng state", GSL_ENOMEM, 0); }; q->type = T; T->init_state(q->state, q->dimension); return q; } void gsl_qrng_init (gsl_qrng * q) { (q->type->init_state) (q->state, q->dimension); } int gsl_qrng_memcpy (gsl_qrng * dest, const gsl_qrng * src) { if (dest->type != src->type) { GSL_ERROR ("generators must be of the same type", GSL_EINVAL); } dest->dimension = src->dimension; dest->state_size = src->state_size; memcpy (dest->state, src->state, src->state_size); return GSL_SUCCESS; } gsl_qrng * gsl_qrng_clone (const gsl_qrng * q) { gsl_qrng * r = (gsl_qrng *) malloc (sizeof (gsl_qrng)); if (r == 0) { GSL_ERROR_VAL ("failed to allocate space for rng struct", GSL_ENOMEM, 0); }; r->dimension = q->dimension; r->state_size = q->state_size; r->state = malloc (r->state_size); if (r->state == 0) { free (r); GSL_ERROR_VAL ("failed to allocate space for rng state", GSL_ENOMEM, 0); }; r->type = q->type; memcpy (r->state, q->state, q->state_size); return r; } const char * gsl_qrng_name (const gsl_qrng * q) { return q->type->name; } size_t gsl_qrng_size (const gsl_qrng * q) { return q->state_size; } void * gsl_qrng_state (const gsl_qrng * q) { return q->state; } void gsl_qrng_free (gsl_qrng * q) { RETURN_IF_NULL (q); if(q->state != 0) free (q->state); free (q); } gsl-1.16/qrng/test.c0000664000252300025230000001505112171574312011246 00000000000000/* Author: G. Jungman (+modifications from O. Teytaud olivier.teytaud@inria.fr) */ #include #include #include #include #include #include void test_sobol(void) { int status = 0; double v[3]; /* int i; */ /* test in dimension 2 */ gsl_qrng * g = gsl_qrng_alloc(gsl_qrng_sobol, 2); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 ); gsl_qrng_get(g, v); status += ( v[0] != 0.375 || v[1] != 0.375 ); gsl_qrng_free(g); gsl_test (status, "Sobol d=2"); status = 0; /* test in dimension 3 */ g = gsl_qrng_alloc(gsl_qrng_sobol, 3); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 || v[2] != 0.25 ); gsl_qrng_get(g, v); status += ( v[0] != 0.375 || v[1] != 0.375 || v[2] != 0.625 ); gsl_test (status, "Sobol d=3"); status = 0; gsl_qrng_init(g); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 || v[2] != 0.25 ); gsl_qrng_get(g, v); status += ( v[0] != 0.375 || v[1] != 0.375 || v[2] != 0.625 ); gsl_qrng_free(g); gsl_test (status, "Sobol d=3 (reinitialized)"); } void test_halton(void) { int status = 0; double v[1229]; unsigned int i; /* test in dimension 1229 */ gsl_qrng * g = gsl_qrng_alloc(gsl_qrng_halton, 1229); for (i=0;i<30;i++) gsl_qrng_get(g, v); gsl_qrng_free(g); gsl_test (status, "Halton d=1229"); status = 0; /* test in dimension 2 */ /*should be * 0.5 0.333333 * 0.25 0.666667 * 0.75 0.111111 * 0.125 0.444444*/ g = gsl_qrng_alloc(gsl_qrng_halton, 2); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_test_rel (v[0], 3.0/4.0, 1e-3, "halton(2) k=2 v[0]"); gsl_test_rel (v[1], 1.0/9.0, 1e-3, "halton(2) k=2 v[1]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 1.0/8.0, 1e-3, "halton(2) k=3 v[0]"); gsl_test_rel (v[1], 4.0/9.0, 1e-3, "halton(2) k=3 v[1]"); gsl_qrng_free(g); /* test in dimension 3 */ g = gsl_qrng_alloc(gsl_qrng_halton, 3); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.75, 1e-3, "halton(3) k=3 v[0]"); gsl_test_rel (v[1], 1.0/9.0, 1e-3, "halton(3) k=3 v[1]"); gsl_test_rel (v[2], 0.6, 1e-3, "halton(3) k=3 v[2]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.125, 1e-3, "halton(3) k=4 v[0]"); gsl_test_rel (v[1], 4.0/9.0, 1e-3, "halton(3) k=4 v[1]"); gsl_test_rel (v[2], 0.8, 1e-3, "halton(3) k=4 v[2]"); gsl_qrng_init(g); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.75, 1e-3, "halton(3) reinitialized k=3 v[0]"); gsl_test_rel (v[1], 1.0/9.0, 1e-3, "halton(3) reinitialized k=3 v[1]"); gsl_test_rel (v[2], 0.6, 1e-3, "halton(3) reinitialized k=3 v[2]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.125, 1e-3, "halton(3) reinitialized k=4 v[0]"); gsl_test_rel (v[1], 4.0/9.0, 1e-3, "halton(3) reinitialized k=4 v[1]"); gsl_test_rel (v[2], 0.8, 1e-3, "halton(3) reinitialized k=4 v[2]"); gsl_qrng_free(g); } void test_reversehalton(void) { int status = 0; double v[3]; /* test in dimension 2 */ gsl_qrng * g = gsl_qrng_alloc(gsl_qrng_reversehalton, 2); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); /* should be * 0.5 0.666667 * 0.25 0.333333 * 0.75 0.222222 * 0.125 0.888889*/ gsl_test_rel (v[0], 3.0/4.0, 1e-3, "reversehalton(2) k=2 v[0]"); gsl_test_rel (v[1], 2.0/9.0, 1e-3, "reversehalton(2) k=2 v[1]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 1.0/8.0, 1e-3, "reversehalton(2) k=2 v[0]"); gsl_test_rel (v[1], 8.0/9.0, 1e-3, "reversehalton(2) k=2 v[1]"); gsl_qrng_free(g); /* test in dimension 3 */ g = gsl_qrng_alloc(gsl_qrng_reversehalton, 3); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.75, 1e-3, "reversehalton(3) k=3 v[0]"); gsl_test_rel (v[1], 2.0/9.0, 1e-3, "reversehalton(3) k=3 v[1]"); gsl_test_rel (v[2], 0.4, 1e-3, "reversehalton(3) k=3 v[2]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.125, 1e-3, "reversehalton(3) k=3 v[0]"); gsl_test_rel (v[1], 8.0/9.0, 1e-3, "reversehalton(3) k=3 v[1]"); gsl_test_rel (v[2], 0.2, 1e-3, "reversehalton(3) k=3 v[2]"); status = 0; gsl_qrng_init(g); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.75, 1e-3, "reversehalton(3) reinitialized k=3 v[0]"); gsl_test_rel (v[1], 2.0/9.0, 1e-3, "reversehalton(3) reinitialized k=3 v[1]"); gsl_test_rel (v[2], 0.4, 1e-3, "reversehalton(3) reinitialized k=3 v[2]"); gsl_qrng_get(g, v); gsl_test_rel (v[0], 0.125, 1e-3, "reversehalton(3) reinitialized k=3 v[0]"); gsl_test_rel (v[1], 8.0/9.0, 1e-3, "reversehalton(3) reinitialized k=3 v[1]"); gsl_test_rel (v[2], 0.2, 1e-3, "reversehalton(3) reinitialized k=3 v[2]"); gsl_qrng_free(g); } void test_nied2(void) { int status = 0; double v[3]; /* int i; */ /* test in dimension 2 */ gsl_qrng * g = gsl_qrng_alloc(gsl_qrng_niederreiter_2, 2); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.75 || v[1] != 0.25 ); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 ); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.625 || v[1] != 0.125 ); gsl_qrng_free(g); gsl_test (status, "Niederreiter d=2"); status = 0; /* test in dimension 3 */ g = gsl_qrng_alloc(gsl_qrng_niederreiter_2, 3); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.75 || v[1] != 0.25 || v[2] != 0.3125 ); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 || v[2] != 0.5625 ); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.625 || v[1] != 0.125 || v[2] != 0.6875 ); gsl_test (status, "Niederreiter d=3"); status = 0; gsl_qrng_init(g); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.75 || v[1] != 0.25 || v[2] != 0.3125 ); gsl_qrng_get(g, v); status += ( v[0] != 0.25 || v[1] != 0.75 || v[2] != 0.5625 ); gsl_qrng_get(g, v); gsl_qrng_get(g, v); gsl_qrng_get(g, v); status += ( v[0] != 0.625 || v[1] != 0.125 || v[2] != 0.6875 ); gsl_qrng_free(g); gsl_test (status, "Niederreiter d=3 (reinitialized)"); } int main() { gsl_ieee_env_setup (); test_sobol(); test_halton(); test_reversehalton(); test_nied2(); exit (gsl_test_summary ()); } gsl-1.16/qrng/Makefile.in0000664000252300025230000010411212172253756012174 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = qrng DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslqrng_la_LIBADD = am_libgslqrng_la_OBJECTS = qrng.lo niederreiter-2.lo sobol.lo \ halton.lo reversehalton.lo inline.lo libgslqrng_la_OBJECTS = $(am_libgslqrng_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslqrng.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslqrng_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslqrng_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslqrng.la pkginclude_HEADERS = gsl_qrng.h INCLUDES = -I$(top_srcdir) libgslqrng_la_SOURCES = gsl_qrng.h qrng.c niederreiter-2.c sobol.c halton.c reversehalton.c inline.c TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgslqrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu qrng/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu qrng/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslqrng.la: $(libgslqrng_la_OBJECTS) $(libgslqrng_la_DEPENDENCIES) $(EXTRA_libgslqrng_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslqrng_la_OBJECTS) $(libgslqrng_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/halton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/inline.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/niederreiter-2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/qrng.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/reversehalton.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/sobol.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/qrng/ChangeLog0000664000252300025230000000227712171574312011703 000000000000002009-07-09 Brian Gough * qrng.c (gsl_qrng_free): handle NULL argument in free 2008-07-03 Brian Gough * qrng.c: moved gsl_qrng_get to inline.c * gsl_qrng.h (gsl_qrng_get): new inline declaration * inline.c: handle inline functions separately * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-03-17 Brian Gough * reversehalton.c (reversehalton_init): removed unused variable i * halton.c (halton_init): removed unused variable i 2006-04-21 Brian Gough * qrng.c gsl_qrng.h: use q instead of r in all prototypes 2004-05-26 Brian Gough * test.c: added for exit() 2002-11-16 Brian Gough * niederreiter-2.c (calculate_cj): clear uninitialized memory Mon Apr 22 19:20:05 2002 Brian Gough * test.c: output results for each individual test * qrng.c (gsl_qrng_init): added missing init function Mon Oct 23 19:59:46 2000 Brian Gough * qrng.c (gsl_qrng_get): use an array type for the array arguments, rather than a pointer gsl-1.16/qrng/sobol.c0000664000252300025230000001442212171574312011406 00000000000000/* Author: G. Jungman */ /* Implementation for Sobol generator. * See * [Bratley+Fox, TOMS 14, 88 (1988)] * [Antonov+Saleev, USSR Comput. Maths. Math. Phys. 19, 252 (1980)] */ #include #include /* maximum allowed space dimension */ #define SOBOL_MAX_DIMENSION 40 /* bit count; assumes sizeof(int) >= 32-bit */ #define SOBOL_BIT_COUNT 30 /* prototypes for generator type functions */ static size_t sobol_state_size(unsigned int dimension); static int sobol_init(void * state, unsigned int dimension); static int sobol_get(void * state, unsigned int dimension, double * v); /* global Sobol generator type object */ static const gsl_qrng_type sobol_type = { "sobol", SOBOL_MAX_DIMENSION, sobol_state_size, sobol_init, sobol_get }; const gsl_qrng_type * gsl_qrng_sobol = &sobol_type; /* primitive polynomials in binary encoding */ static const int primitive_polynomials[SOBOL_MAX_DIMENSION] = { 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 61, 55, 41, 67, 97, 91, 109, 103, 115, 131, 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 }; /* degrees of the primitive polynomials */ static const int degree_table[SOBOL_MAX_DIMENSION] = { 0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8 }; /* initial values for direction tables, following * Bratley+Fox, taken from [Sobol+Levitan, preprint 1976] */ static const int v_init[8][SOBOL_MAX_DIMENSION] = { { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, { 0, 0, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 }, { 0, 0, 0, 7, 5, 1, 3, 3, 7, 5, 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 5, 3, 3, 1, 7, 5, 1, 3, 3, 7, 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 }, { 0, 0, 0, 0, 0, 1, 7, 9, 13, 11, 1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 5, 3, 15, 7, 9, 13, 9, 1, 11, 7, 5, 15, 1, 15, 11, 5, 3, 1, 7, 9 }, { 0, 0, 0, 0, 0, 0, 0, 9, 3, 27, 15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 1, 25, 29, 3, 31, 11, 5, 23, 27, 19, 21, 5, 1, 17, 13, 7, 15, 9, 31, 9 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37, 33, 7, 5, 11, 39, 63, 27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 9, 49, 33, 19, 29, 11, 19, 27, 15, 25 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 7, 59, 65, 21, 3, 113, 61, 89, 45, 107 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 23, 39 } }; /* Sobol generator state. * sequence_count = number of calls with this generator * last_numerator_vec = last generated numerator vector * last_denominator_inv = 1/denominator for last numerator vector * v_direction = direction number table */ typedef struct { unsigned int sequence_count; double last_denominator_inv; int last_numerator_vec[SOBOL_MAX_DIMENSION]; int v_direction[SOBOL_BIT_COUNT][SOBOL_MAX_DIMENSION]; } sobol_state_t; /* NOTE: I fixed the size for the preliminary implementation. This could/should be relaxed, as an optimization. */ static size_t sobol_state_size(unsigned int dimension) { return sizeof(sobol_state_t); } static int sobol_init(void * state, unsigned int dimension) { sobol_state_t * s_state = (sobol_state_t *) state; unsigned int i_dim; int j, k; int ell; if(dimension < 1 || dimension > SOBOL_MAX_DIMENSION) { return GSL_EINVAL; } /* Initialize direction table in dimension 0. */ for(k=0; kv_direction[k][0] = 1; /* Initialize in remaining dimensions. */ for(i_dim=1; i_dim= 0; k--) { includ[k] = ((p_i % 2) == 1); p_i /= 2; } /* Leading elements for dimension i come from v_init[][]. */ for(j=0; jv_direction[j][i_dim] = v_init[j][i_dim]; /* Calculate remaining elements for this dimension, * as explained in Bratley+Fox, section 2. */ for(j=degree_i; jv_direction[j-degree_i][i_dim]; ell = 1; for(k=0; kv_direction[j-k-1][i_dim]); } s_state->v_direction[j][i_dim] = newv; } } /* Multiply columns of v by appropriate power of 2. */ ell = 1; for(j=SOBOL_BIT_COUNT-1-1; j>=0; j--) { ell *= 2; for(i_dim=0; i_dimv_direction[j][i_dim] *= ell; } } /* 1/(common denominator of the elements in v_direction) */ s_state->last_denominator_inv = 1.0 /(2.0 * ell); /* final setup */ s_state->sequence_count = 0; for(i_dim=0; i_dimlast_numerator_vec[i_dim] = 0; return GSL_SUCCESS; } static int sobol_get(void * state, unsigned int dimension, double * v) { sobol_state_t * s_state = (sobol_state_t *) state; unsigned int i_dimension; /* Find the position of the least-significant zero in count. */ int ell = 0; int c = s_state->sequence_count; while(1) { ++ell; if((c % 2) == 1) c /= 2; else break; } /* Check for exhaustion. */ if(ell > SOBOL_BIT_COUNT) return GSL_EFAILED; /* FIXME: good return code here */ for(i_dimension=0; i_dimensionv_direction[ell-1][i_dimension]; const int old_numerator_i = s_state->last_numerator_vec[i_dimension]; const int new_numerator_i = old_numerator_i ^ direction_i; s_state->last_numerator_vec[i_dimension] = new_numerator_i; v[i_dimension] = new_numerator_i * s_state->last_denominator_inv; } s_state->sequence_count++; return GSL_SUCCESS; } gsl-1.16/qrng/Makefile.am0000664000252300025230000000063712171574312012163 00000000000000noinst_LTLIBRARIES = libgslqrng.la pkginclude_HEADERS = gsl_qrng.h INCLUDES = -I$(top_srcdir) libgslqrng_la_SOURCES = gsl_qrng.h qrng.c niederreiter-2.c sobol.c halton.c reversehalton.c inline.c TESTS = $(check_PROGRAMS) check_PROGRAMS = test test_SOURCES = test.c test_LDADD = libgslqrng.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la gsl-1.16/qrng/halton.c0000664000252300025230000002415212171574312011556 00000000000000/* Authors: O. Teytaud * Copyright (C) 2007 O. Teytaud * (all comments welcome at olivier.teytaud@inria.fr) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Implementation for Halton generator. See [J.H. Halton, On the * efficiency of certain quasi-random sequences of points in * evaluating multi-dimensional integrals Numerische Mathematik, 1960] */ #include #include /* maximum allowed space dimension */ #define HALTON_MAX_DIMENSION 1229 /* prototypes for generator type functions */ static size_t halton_state_size (unsigned int dimension); static int halton_init (void *state, unsigned int dimension); static int halton_get (void *state, unsigned int dimension, double *v); /* global Halton generator type object */ static const gsl_qrng_type halton_type = { "halton", HALTON_MAX_DIMENSION, halton_state_size, halton_init, halton_get }; const gsl_qrng_type *gsl_qrng_halton = &halton_type; /* prime numbers (thanks to trolltech http://doc.trolltech.com/3.2/primes.html) */ static const int prime_numbers[HALTON_MAX_DIMENSION] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973 }; /* Halton generator state. * sequence_count = number of calls with this generator */ typedef struct { unsigned int sequence_count; } halton_state_t; static size_t halton_state_size (unsigned int dimension) { return sizeof (halton_state_t); } static int halton_init (void *state, unsigned int dimension) { halton_state_t *h_state = (halton_state_t *) state; h_state->sequence_count = 0; if (dimension < 1 || dimension > HALTON_MAX_DIMENSION) { return GSL_EINVAL; } return GSL_SUCCESS; } static double vdcorput (int x, int b) { double r = 0.; double v = 1.; double binv = 1. / (double) b; while (x > 0) { v *= binv; r += v * (double) (x % b); x /= b; } return r; } static int halton_get (void *state, unsigned int dimension, double *v) { halton_state_t *h_state = (halton_state_t *) state; unsigned int i; if (dimension < 1 || dimension > HALTON_MAX_DIMENSION) { return GSL_EINVAL; } h_state->sequence_count++; for (i = 0; i < dimension; i++) { v[i] = vdcorput (h_state->sequence_count, prime_numbers[i]); } return GSL_SUCCESS; } gsl-1.16/qrng/reversehalton.c0000664000252300025230000002463012171574312013153 00000000000000/* Authors: O. Teytaud * Copyright (C) 2007 O. Teytaud * (all comments/suggestions welcome at olivier.teytaud@inria.fr) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Implementation for Halton generator, modified according to the * following improvement (reverse scrambling): [ B. Vandewoestyne and * R. Cools, Good permutations for deterministic scrambled Halton * sequences in terms of L2-discrepancy, Computational and Applied * Mathematics 189, 2006] */ #include #include /* maximum allowed space dimension */ #define REVERSEHALTON_MAX_DIMENSION 1229 /* prototypes for generator type functions */ static size_t reversehalton_state_size (unsigned int dimension); static int reversehalton_init (void *state, unsigned int dimension); static int reversehalton_get (void *state, unsigned int dimension, double *v); /* global Halton generator type object */ static const gsl_qrng_type reversehalton_type = { "reversehalton", REVERSEHALTON_MAX_DIMENSION, reversehalton_state_size, reversehalton_init, reversehalton_get }; const gsl_qrng_type *gsl_qrng_reversehalton = &reversehalton_type; /* prime numbers (thanks to trolltech http://doc.trolltech.com/3.2/primes.html) */ static const int prime_numbers[REVERSEHALTON_MAX_DIMENSION] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973 }; /* Halton generator state. * sequence_count = number of calls with this generator */ typedef struct { unsigned int sequence_count; } reversehalton_state_t; static size_t reversehalton_state_size (unsigned int dimension) { return sizeof (reversehalton_state_t); } static int reversehalton_init (void *state, unsigned int dimension) { reversehalton_state_t *h_state = (reversehalton_state_t *) state; h_state->sequence_count = 0; if (dimension < 1 || dimension > REVERSEHALTON_MAX_DIMENSION) { return GSL_EINVAL; } return GSL_SUCCESS; } static double vdcorput (int x, int b) { double r = 0.; double v = 1.; double binv = 1. / (double) b; while (x > 0) { v *= binv; r += v * (double) ((x % b == 0) ? 0 : b - (x % b)); x /= b; } return r; } static int reversehalton_get (void *state, unsigned int dimension, double *v) { reversehalton_state_t *h_state = (reversehalton_state_t *) state; unsigned int i; if (dimension < 1 || dimension > REVERSEHALTON_MAX_DIMENSION) { return GSL_EINVAL; } h_state->sequence_count++; for (i = 0; i < dimension; i++) { v[i] = vdcorput (h_state->sequence_count, prime_numbers[i]); } return GSL_SUCCESS; } gsl-1.16/ode-initval/0000775000252300025230000000000012172254162011444 500000000000000gsl-1.16/ode-initval/rk8pd.c0000664000252300025230000002742212171574312012570 00000000000000/* ode-initval/rk8pd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 8(9), Prince-Dormand * * High Order Embedded Runge-Kutta Formulae * P.J. Prince and J.R. Dormand * J. Comp. Appl. Math.,7, pp. 67-75, 1981 */ /* Author: G. Jungman */ #include #include #include #include #include #include "odeiv_util.h" /* Prince-Dormand constants */ static const double Abar[] = { 14005451.0 / 335480064.0, 0.0, 0.0, 0.0, 0.0, -59238493.0 / 1068277825.0, 181606767.0 / 758867731.0, 561292985.0 / 797845732.0, -1041891430.0 / 1371343529.0, 760417239.0 / 1151165299.0, 118820643.0 / 751138087.0, -528747749.0 / 2220607170.0, 1.0 / 4.0 }; static const double A[] = { 13451932.0 / 455176623.0, 0.0, 0.0, 0.0, 0.0, -808719846.0 / 976000145.0, 1757004468.0 / 5645159321.0, 656045339.0 / 265891186.0, -3867574721.0 / 1518517206.0, 465885868.0 / 322736535.0, 53011238.0 / 667516719.0, 2.0 / 45.0 }; static const double ah[] = { 1.0 / 18.0, 1.0 / 12.0, 1.0 / 8.0, 5.0 / 16.0, 3.0 / 8.0, 59.0 / 400.0, 93.0 / 200.0, 5490023248.0 / 9719169821.0, 13.0 / 20.0, 1201146811.0 / 1299019798.0 }; static const double b21 = 1.0 / 18.0; static const double b3[] = { 1.0 / 48.0, 1.0 / 16.0 }; static const double b4[] = { 1.0 / 32.0, 0.0, 3.0 / 32.0 }; static const double b5[] = { 5.0 / 16.0, 0.0, -75.0 / 64.0, 75.0 / 64.0 }; static const double b6[] = { 3.0 / 80.0, 0.0, 0.0, 3.0 / 16.0, 3.0 / 20.0 }; static const double b7[] = { 29443841.0 / 614563906.0, 0.0, 0.0, 77736538.0 / 692538347.0, -28693883.0 / 1125000000.0, 23124283.0 / 1800000000.0 }; static const double b8[] = { 16016141.0 / 946692911.0, 0.0, 0.0, 61564180.0 / 158732637.0, 22789713.0 / 633445777.0, 545815736.0 / 2771057229.0, -180193667.0 / 1043307555.0 }; static const double b9[] = { 39632708.0 / 573591083.0, 0.0, 0.0, -433636366.0 / 683701615.0, -421739975.0 / 2616292301.0, 100302831.0 / 723423059.0, 790204164.0 / 839813087.0, 800635310.0 / 3783071287.0 }; static const double b10[] = { 246121993.0 / 1340847787.0, 0.0, 0.0, -37695042795.0 / 15268766246.0, -309121744.0 / 1061227803.0, -12992083.0 / 490766935.0, 6005943493.0 / 2108947869.0, 393006217.0 / 1396673457.0, 123872331.0 / 1001029789.0 }; static const double b11[] = { -1028468189.0 / 846180014.0, 0.0, 0.0, 8478235783.0 / 508512852.0, 1311729495.0 / 1432422823.0, -10304129995.0 / 1701304382.0, -48777925059.0 / 3047939560.0, 15336726248.0 / 1032824649.0, -45442868181.0 / 3398467696.0, 3065993473.0 / 597172653.0 }; static const double b12[] = { 185892177.0 / 718116043.0, 0.0, 0.0, -3185094517.0 / 667107341.0, -477755414.0 / 1098053517.0, -703635378.0 / 230739211.0, 5731566787.0 / 1027545527.0, 5232866602.0 / 850066563.0, -4093664535.0 / 808688257.0, 3962137247.0 / 1805957418.0, 65686358.0 / 487910083.0 }; static const double b13[] = { 403863854.0 / 491063109.0, 0.0, 0.0, -5068492393.0 / 434740067.0, -411421997.0 / 543043805.0, 652783627.0 / 914296604.0, 11173962825.0 / 925320556.0, -13158990841.0 / 6184727034.0, 3936647629.0 / 1978049680.0, -160528059.0 / 685178525.0, 248638103.0 / 1413531060.0, 0.0 }; typedef struct { double *k[13]; double *ytmp; double *y0; } rk8pd_state_t; static void * rk8pd_alloc (size_t dim) { rk8pd_state_t *state = (rk8pd_state_t *) malloc (sizeof (rk8pd_state_t)); int i, j; if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk8pd_state", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } for (i = 0; i < 13; i++) { state->k[i] = (double *) malloc (dim * sizeof (double)); if (state->k[i] == 0) { for (j = 0; j < i; j++) { free (state->k[j]); } free (state->y0); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for k's", GSL_ENOMEM); } } return state; } static int rk8pd_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; size_t i; double *const ytmp = state->ytmp; double *const y0 = state->y0; /* Note that k1 is stored in state->k[0] due to zero-based indexing */ double *const k1 = state->k[0]; double *const k2 = state->k[1]; double *const k3 = state->k[2]; double *const k4 = state->k[3]; double *const k5 = state->k[4]; double *const k6 = state->k[5]; double *const k7 = state->k[6]; double *const k8 = state->k[7]; double *const k9 = state->k[8]; double *const k10 = state->k[9]; double *const k11 = state->k[10]; double *const k12 = state->k[11]; double *const k13 = state->k[12]; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + b21 * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b7[0] * k1[i] + b7[3] * k4[i] + b7[4] * k5[i] + b7[5] * k6[i]); /* k7 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[5] * h, ytmp, k7); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b8[0] * k1[i] + b8[3] * k4[i] + b8[4] * k5[i] + b8[5] * k6[i] + b8[6] * k7[i]); /* k8 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[6] * h, ytmp, k8); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b9[0] * k1[i] + b9[3] * k4[i] + b9[4] * k5[i] + b9[5] * k6[i] + b9[6] * k7[i] + b9[7] * k8[i]); /* k9 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[7] * h, ytmp, k9); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b10[0] * k1[i] + b10[3] * k4[i] + b10[4] * k5[i] + b10[5] * k6[i] + b10[6] * k7[i] + b10[7] * k8[i] + b10[8] * k9[i]); /* k10 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[8] * h, ytmp, k10); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b11[0] * k1[i] + b11[3] * k4[i] + b11[4] * k5[i] + b11[5] * k6[i] + b11[6] * k7[i] + b11[7] * k8[i] + b11[8] * k9[i] + b11[9] * k10[i]); /* k11 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[9] * h, ytmp, k11); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b12[0] * k1[i] + b12[3] * k4[i] + b12[4] * k5[i] + b12[5] * k6[i] + b12[6] * k7[i] + b12[7] * k8[i] + b12[8] * k9[i] + b12[9] * k10[i] + b12[10] * k11[i]); /* k12 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k12); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b13[0] * k1[i] + b13[3] * k4[i] + b13[4] * k5[i] + b13[5] * k6[i] + b13[6] * k7[i] + b13[7] * k8[i] + b13[8] * k9[i] + b13[9] * k10[i] + b13[10] * k11[i] + b13[11] * k12[i]); /* k13 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k13); if (s != GSL_SUCCESS) { return s; } } /* final sum */ for (i = 0; i < dim; i++) { const double ksum8 = Abar[0] * k1[i] + Abar[5] * k6[i] + Abar[6] * k7[i] + Abar[7] * k8[i] + Abar[8] * k9[i] + Abar[9] * k10[i] + Abar[10] * k11[i] + Abar[11] * k12[i] + Abar[12] * k13[i]; y[i] += h * ksum8; } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* error estimate */ for (i = 0; i < dim; i++) { const double ksum8 = Abar[0] * k1[i] + Abar[5] * k6[i] + Abar[6] * k7[i] + Abar[7] * k8[i] + Abar[8] * k9[i] + Abar[9] * k10[i] + Abar[10] * k11[i] + Abar[11] * k12[i] + Abar[12] * k13[i]; const double ksum7 = A[0] * k1[i] + A[5] * k6[i] + A[6] * k7[i] + A[7] * k8[i] + A[8] * k9[i] + A[9] * k10[i] + A[10] * k11[i] + A[11] * k12[i]; yerr[i] = h * (ksum7 - ksum8); } return GSL_SUCCESS; } static int rk8pd_reset (void *vstate, size_t dim) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; int i; for (i = 0; i < 13; i++) { DBL_ZERO_MEMSET (state->k[i], dim); } DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->ytmp, dim); return GSL_SUCCESS; } static unsigned int rk8pd_order (void *vstate) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 8; } static void rk8pd_free (void *vstate) { rk8pd_state_t *state = (rk8pd_state_t *) vstate; int i; for (i = 0; i < 13; i++) { free (state->k[i]); } free (state->y0); free (state->ytmp); free (state); } static const gsl_odeiv_step_type rk8pd_type = { "rk8pd", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk8pd_alloc, &rk8pd_apply, &rk8pd_reset, &rk8pd_order, &rk8pd_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk8pd = &rk8pd_type; gsl-1.16/ode-initval/control.c0000664000252300025230000000431612171574312013215 00000000000000/* ode-initval/control.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include gsl_odeiv_control * gsl_odeiv_control_alloc(const gsl_odeiv_control_type * T) { gsl_odeiv_control * c = (gsl_odeiv_control *) malloc(sizeof(gsl_odeiv_control)); if(c == 0) { GSL_ERROR_NULL ("failed to allocate space for control struct", GSL_ENOMEM); }; c->type = T; c->state = c->type->alloc(); if (c->state == 0) { free (c); /* exception in constructor, avoid memory leak */ GSL_ERROR_NULL ("failed to allocate space for control state", GSL_ENOMEM); }; return c; } int gsl_odeiv_control_init(gsl_odeiv_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt) { return c->type->init (c->state, eps_abs, eps_rel, a_y, a_dydt); } void gsl_odeiv_control_free(gsl_odeiv_control * c) { RETURN_IF_NULL (c); c->type->free(c->state); free(c); } const char * gsl_odeiv_control_name(const gsl_odeiv_control * c) { return c->type->name; } int gsl_odeiv_control_hadjust (gsl_odeiv_control * c, gsl_odeiv_step * s, const double y[], const double yerr[], const double dydt[], double * h) { return c->type->hadjust(c->state, s->dimension, s->type->order(s->state), y, yerr, dydt, h); } gsl-1.16/ode-initval/TODO0000664000252300025230000000737112171574312012065 00000000000000# -*- org -*- #+CATEGORY: ode-initval * Add a higher level interface which accepts a start point, end point, result array (size N, y0, y1, y2 ... ,y(N-1)) desired relative and absolute errors epsrel and epsabs it should have its own workspace which is a wrapper around the existing workspaces * Implement other stepping methods from well-known packages such as RKSUITE, VODE, DASSL, etc * Roundoff error needs to be taken into account to prevent the step-size being made arbitrarily small * The entry below has been downgraded from a bug. We use the coefficients given in the original paper by Prince and Dormand, and it is true that these are inexact (the values in the paper are said to be accurate 18 figures). If somebody publishes exact versions we will use them, but at present it is better to stick with the published versions of the coefficients them use our own. ---------------------------------------------------------------------- BUG#8 -- inexact coefficients in rk8pd.c From: Luc Maisonobe To: gsl-discuss@sources.redhat.com Subject: further thoughts about Dormand-Prince 8 (RK8PD) Date: Wed, 14 Aug 2002 10:50:49 +0200 I was looking for some references concerning Runge-Kutta methods when I noticed GSL had an high order one. I also found a question in the list archive (April 2002) about the references of this method which is implemented in rk8pd.c. It was said the coefficients were taken from the "Numerical Algorithms with C" book by Engeln-Mullges and Uhlig. I have checked the coefficients somewhat with a little java tool I have developped (see http://www.spaceroots.org/archive.htm#RKCheckSoftware) and found they were not exact. I think this method is really the method that is already in rksuite (http://www.netlib.org/ode/rksuite/) were the coefficients are given as real values with 30 decimal digits. The coefficients have probably been approximated as fractions later on. However, these approximations are not perfect, they are good only for the first 16 or 18 digits depending on the coefficient. This has no consequence for practical purposes since they are stored in double variables, but give a false impression of beeing exact expressions. Well, there are even some coefficients that should really be rational numbers but for which wrong numerators and denominators are given. As an example, the first and fourth elements of the b7 array are given as 29443841.0 / 614563906.0 and 77736538.0 / 692538347, hence the sum off all elements of the b7 array (which should theoretically be equal to ah[5]) only approximate this. For these two coefficients, this could have been avoided using 215595617.0 / 4500000000.0 and 202047683.0 / 1800000000.0, which also looks more coherent with the other coefficients. The rksuite comments say this method is described in this paper : High Order Embedded Runge-Kutta Formulae P.J. Prince and J.R. Dormand J. Comp. Appl. Math.,7, pp. 67-75, 1981 It also says the method is an 8(7) method (i.e. the coefficients set used to advance integration is order 8 and error estimation is order 7). If I use my tool to check the order, I am forced to check the order conditions numerically with a tolerance since I do not have an exact expression of the coefficients. Since even if some conditions are not mathematically met, the residuals are small and could be below the tolerance. There are tolerance values for which such numerical test dedeuce the method is of order 9, as is said in GSL. However, I am not convinced, there are to few parameters for the large number of order conditions needed at order 9. I would suggest to correct the coefficients in rk8pd.c (just put the literal constants of rksuite) and to add the reference to the article. ---------------------------------------------------------------------- gsl-1.16/ode-initval/rk2imp.c0000664000252300025230000001617012171574312012742 00000000000000/* ode-initval/rk2imp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2, Gaussian implicit. Also known as the implicit midpoint rule. */ /* Author: G. Jungman */ /* Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. The method is also described in eg. this reference. */ #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *Y1; double *y0; double *ytmp; double *y_onestep; double *y0_orig; } rk2imp_state_t; static void * rk2imp_alloc (size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) malloc (sizeof (rk2imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2imp_state", GSL_ENOMEM); } state->Y1 = (double *) malloc (dim * sizeof (double)); if (state->Y1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->Y1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->Y1); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->Y1); free (state->ytmp); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y_onestep); free (state->Y1); free (state->ytmp); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } return state; } static int rk2imp_step (double *y, rk2imp_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 2nd order implicit advance with step size h. y0 is initial values of variables y. The implicit matrix equations to solve are: Y1 = y0 + h/2 * f(t + h/2, Y1) y = y0 + h * f(t + h/2, Y1) */ const double *y0 = state->y0; double *Y1 = state->Y1; double *ytmp = state->ytmp; int max_iter=3; int nu; size_t i; /* iterative solution of Y1 = y0 + h/2 * f(t + h/2, Y1) Y1 should include initial values at call. Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < max_iter; nu++) { for (i = 0; i < dim; i++) { ytmp[i] = y0[i] + 0.5 * h * Y1[i]; } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, Y1); if (s != GSL_SUCCESS) { return s; } } } /* assignment */ for (i = 0; i < dim; i++) { y[i] = y0[i] + h * Y1[i]; } return GSL_SUCCESS; } static int rk2imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; size_t i; double *Y1 = state->Y1; double *y0 = state->y0; double *y_onestep = state->y_onestep; double *y0_orig = state->y0_orig; /* Error estimation is done by step doubling procedure */ /* initialization step */ DBL_MEMCPY (y0, y, dim); /* Save initial values for possible failures */ DBL_MEMCPY (y0_orig, y, dim); if (dydt_in != NULL) { DBL_MEMCPY (Y1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, Y1); if (s != GSL_SUCCESS) { return s; } } /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk2imp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk2imp_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = GSL_ODEIV_FN_EVAL (sys, t + h / 2.0, y, Y1); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } { int s = rk2imp_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0; } return GSL_SUCCESS; } static int rk2imp_reset (void *vstate, size_t dim) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; DBL_ZERO_MEMSET (state->Y1, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); return GSL_SUCCESS; } static unsigned int rk2imp_order (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2imp_free (void *vstate) { rk2imp_state_t *state = (rk2imp_state_t *) vstate; free (state->Y1); free (state->ytmp); free (state->y0); free (state->y_onestep); free (state->y0_orig); free (state); } static const gsl_odeiv_step_type rk2imp_type = { "rk2imp", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk2imp_alloc, &rk2imp_apply, &rk2imp_reset, &rk2imp_order, &rk2imp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp = &rk2imp_type; gsl-1.16/ode-initval/rkf45.c0000664000252300025230000002056012171574312012467 00000000000000/* ode-initval/rkf45.c * * Copyright (C) 2001, 2004, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta-Fehlberg 4(5)*/ /* Reference eg. Hairer, E., Norsett S.P., Wanner, G. Solving ordinary differential equations I, Nonstiff Problems, 2nd revised edition, Springer, 2000. */ #include #include #include #include #include #include "odeiv_util.h" /* Runge-Kutta-Fehlberg coefficients. Zero elements left out */ static const double ah[] = { 1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0 }; static const double b3[] = { 3.0/32.0, 9.0/32.0 }; static const double b4[] = { 1932.0/2197.0, -7200.0/2197.0, 7296.0/2197.0}; static const double b5[] = { 8341.0/4104.0, -32832.0/4104.0, 29440.0/4104.0, -845.0/4104.0}; static const double b6[] = { -6080.0/20520.0, 41040.0/20520.0, -28352.0/20520.0, 9295.0/20520.0, -5643.0/20520.0}; static const double c1 = 902880.0/7618050.0; static const double c3 = 3953664.0/7618050.0; static const double c4 = 3855735.0/7618050.0; static const double c5 = -1371249.0/7618050.0; static const double c6 = 277020.0/7618050.0; /* These are the differences of fifth and fourth order coefficients for error estimation */ static const double ec[] = { 0.0, 1.0 / 360.0, 0.0, -128.0 / 4275.0, -2197.0 / 75240.0, 1.0 / 50.0, 2.0 / 55.0 }; typedef struct { double *k1; double *k2; double *k3; double *k4; double *k5; double *k6; double *y0; double *ytmp; } rkf45_state_t; static void * rkf45_alloc (size_t dim) { rkf45_state_t *state = (rkf45_state_t *) malloc (sizeof (rkf45_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rkf45_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->k4 = (double *) malloc (dim * sizeof (double)); if (state->k4 == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k4", GSL_ENOMEM); } state->k5 = (double *) malloc (dim * sizeof (double)); if (state->k5 == 0) { free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k5", GSL_ENOMEM); } state->k6 = (double *) malloc (dim * sizeof (double)); if (state->k6 == 0) { free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k6", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rkf45_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rkf45_state_t *state = (rkf45_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const k4 = state->k4; double *const k5 = state->k5; double *const k6 = state->k6; double *const ytmp = state->ytmp; double *const y0 = state->y0; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + ah[0] * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[1] * k2[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[1] * k2[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[1] * k2[i] + b6[2] * k3[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step and final sum */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { const double d_i = c1 * k1[i] + c3 * k3[i] + c4 * k4[i] + c5 * k5[i] + c6 * k6[i]; y[i] += h * d_i; } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* difference between 4th and 5th order */ for (i = 0; i < dim; i++) { yerr[i] = h * (ec[1] * k1[i] + ec[3] * k3[i] + ec[4] * k4[i] + ec[5] * k5[i] + ec[6] * k6[i]); } return GSL_SUCCESS; } static int rkf45_reset (void *vstate, size_t dim) { rkf45_state_t *state = (rkf45_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->k4, dim); DBL_ZERO_MEMSET (state->k5, dim); DBL_ZERO_MEMSET (state->k6, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); return GSL_SUCCESS; } static unsigned int rkf45_order (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 5; } static void rkf45_free (void *vstate) { rkf45_state_t *state = (rkf45_state_t *) vstate; free (state->ytmp); free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); } static const gsl_odeiv_step_type rkf45_type = { "rkf45", /* name */ 1, /* can use dydt_in */ 0, /* gives exact dydt_out */ &rkf45_alloc, &rkf45_apply, &rkf45_reset, &rkf45_order, &rkf45_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rkf45 = &rkf45_type; gsl-1.16/ode-initval/test.c0000664000252300025230000006442612171574312012524 00000000000000/* ode-initval/test_odeiv.c * * Copyright (C) 2004, 2009 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Some functions and tests based on test.c by G. Jungman. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "odeiv_util.h" /* Maximum number of ODE equations */ #define MAXEQ 4 /* RHS for f=2. Solution y = 2 * t + t0 */ int rhs_linear (double t, const double y[], double f[], void *params) { f[0] = 2.0; return GSL_SUCCESS; } int jac_linear (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 0.0; dfdt[0] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_lin = { rhs_linear, jac_linear, 1, 0 }; /* RHS for f=y. Equals y=exp(t) with initial value y(0)=1.0 */ int rhs_exp (double t, const double y[], double f[], void *params) { f[0] = y[0]; return GSL_SUCCESS; } int jac_exp (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = y[0]; dfdt[0] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_exp = { rhs_exp, jac_exp, 1, 0 }; /* RHS for f0 = -y1, f1 = y0 equals y = [cos(t), sin(t)] with initial values [1, 0] */ int rhs_sin (double t, const double y[], double f[], void *params) { f[0] = -y[1]; f[1] = y[0]; return GSL_SUCCESS; } int jac_sin (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 0.0; dfdy[1] = -1.0; dfdy[2] = 1.0; dfdy[3] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_sin = { rhs_sin, jac_sin, 2, 0 }; /* Sine/cosine with random failures */ static int rhs_xsin_reset = 0; static int jac_xsin_reset = 0; int rhs_xsin (double t, const double y[], double f[], void *params) { static int n = 0, m = 0; if (rhs_xsin_reset) { rhs_xsin_reset = 0; n = 0; m = 1;} n++; if (n >= m) { m = n * 1.3; return GSL_EFAILED; } ; if (n > 40 && n < 65) { f[0] = GSL_NAN; f[1] = GSL_NAN; return GSL_EFAILED; } f[0] = -y[1]; f[1] = y[0]; return GSL_SUCCESS; } int jac_xsin (double t, const double y[], double *dfdy, double dfdt[], void *params) { static int n = 0; if (jac_xsin_reset) { jac_xsin_reset = 0; n = 0; } n++; if (n > 50 && n < 55) { dfdy[0] = GSL_NAN; dfdy[1] = GSL_NAN; dfdy[2] = GSL_NAN; dfdy[3] = GSL_NAN; dfdt[0] = GSL_NAN; dfdt[1] = GSL_NAN; return GSL_EFAILED; } dfdy[0] = 0.0; dfdy[1] = -1.0; dfdy[2] = 1.0; dfdy[3] = 0.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_xsin = { rhs_xsin, jac_xsin, 2, 0 }; /* RHS for classic stiff example dy0 / dt = 998 * y0 + 1998 * y1 y0(0) = 1.0 dy1 / dt = -999 * y0 - 1999 * y1 y1(0) = 0.0 solution is y0 = 2 * exp(-t) - exp(-1000 * t) y1 = - exp(-t) + exp(-1000 * t) */ int rhs_stiff (double t, const double y[], double f[], void *params) { f[0] = 998.0 * y[0] + 1998.0 * y[1]; f[1] = -999.0 * y[0] - 1999.0 * y[1]; return GSL_SUCCESS; } int jac_stiff (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 998.0; dfdy[1] = 1998.0; dfdy[2] = -999.0; dfdy[3] = -1999.0; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_stiff = { rhs_stiff, jac_stiff, 2, 0 }; /* van Der Pol oscillator: f0 = y1 y0(0) = 1.0 f1 = -y0 + mu * y1 * (1 - y0^2) y1(0) = 0.0 */ int rhs_vanderpol (double t, const double y[], double f[], void *params) { const double mu = 10.0; f[0] = y[1]; f[1] = -y[0] + mu * y[1] * (1.0 - y[0]*y[0]); return GSL_SUCCESS; } int jac_vanderpol (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double mu = 10.0; dfdy[0] = 0.0; dfdy[1] = 1.0; dfdy[2] = -2.0 * mu * y[0] * y[1] - 1.0; dfdy[3] = mu * (1.0 - y[0] * y[0]); dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_vanderpol = { rhs_vanderpol, jac_vanderpol, 2, 0 }; /* The Oregonator - chemical Belusov-Zhabotinskii reaction y0(0) = 1.0, y1(0) = 2.0, y2(0) = 3.0 */ int rhs_oregonator (double t, const double y[], double f[], void *params) { const double c1=77.27; const double c2=8.375e-6; const double c3=0.161; f[0] = c1 * (y[1] + y[0] * (1 - c2 * y[0] - y[1])); f[1] = 1/c1 * (y[2] - y[1] * (1 + y[0])); f[2] = c3 * (y[0] - y[2]); return GSL_SUCCESS; } int jac_oregonator (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double c1=77.27; const double c2=8.375e-6; const double c3=0.161; dfdy[0] = c1 * (1 - 2 * c2 * y[0] - y[1]); dfdy[1] = c1 * (1 - y[0]); dfdy[2] = 0.0; dfdy[3] = 1/c1 * (-y[1]); dfdy[4] = 1/c1 * (-1 - y[0]); dfdy[5] = 1/c1; dfdy[6] = c3; dfdy[7] = 0.0; dfdy[8] = -c3; dfdt[0] = 0.0; dfdt[1] = 0.0; dfdt[2] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_oregonator = { rhs_oregonator, jac_oregonator, 3, 0 }; /* Volterra-Lotka predator-prey model f0 = (a - b * y1) * y0 y0(0) = 3.0 f1 = (-c + d * y0) * y1 y1(0) = 1.0 */ int rhs_vl (double t, const double y[], double f[], void *params) { const double a = 1.0; const double b = 1.0; const double c = 1.0; const double d = 1.0; f[0] = (a - b * y[1]) * y[0]; f[1] = (-c + d * y[0]) * y[1]; return GSL_SUCCESS; } int jac_vl (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double a = 1.0; const double b = 1.0; const double c = 1.0; const double d = 1.0; dfdy[0] = a - b * y[1]; dfdy[1] = -b * y[0]; dfdy[2] = d * y[1]; dfdy[3] = -c + d * y[0]; dfdt[0] = 0.0; dfdt[1] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_vl = { rhs_vl, jac_vl, 2, 0 }; /* Stiff trigonometric example f0 = -50 * (y0 - cos(t)) y0(0) = 0.0 */ int rhs_stifftrig (double t, const double y[], double f[], void *params) { f[0] = -50 * (y[0] - cos(t)); return GSL_SUCCESS; } int jac_stifftrig (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = -50; dfdt[0] = -50 * sin(t); return GSL_SUCCESS; } gsl_odeiv_system rhs_func_stifftrig = { rhs_stifftrig, jac_stifftrig, 1, 0 }; /* E5 - a stiff badly scaled chemical problem by Enright, Hull & Lindberg (1975): Comparing numerical methods for stiff systems of ODEs. BIT, vol. 15, pp. 10-48. f0 = -a * y0 - b * y0 * y2 y0(0) = 1.76e-3 f1 = a * y0 - m * c * y1 * y2 y1(0) = 0.0 f2 = a * y0 - b * y0 * y2 - m * c * y1 * y2 + c * y3 y2(0) = 0.0 f3 = b * y0 * y2 - c * y3 y3(0) = 0.0 */ int rhs_e5 (double t, const double y[], double f[], void *params) { const double a = 7.89e-10; const double b = 1.1e7; const double c = 1.13e3; const double m = 1.0e6; f[0] = -a * y[0] - b * y[0] * y[2]; f[1] = a * y[0] - m * c * y[1] * y[2]; f[3] = b * y[0] * y[2] - c * y[3]; f[2] = f[1] - f[3]; return GSL_SUCCESS; } int jac_e5 (double t, const double y[], double *dfdy, double dfdt[], void *params) { const double a = 7.89e-10; const double b = 1.1e7; const double c = 1.13e3; const double m = 1.0e6; dfdy[0] = -a - b * y[2]; dfdy[1] = 0.0; dfdy[2] = -b * y[0]; dfdy[3] = 0.0; dfdy[4] = a; dfdy[5] = -m * c * y[2]; dfdy[6] = -m * c * y[1]; dfdy[7] = 0.0; dfdy[8] = a - b * y[2]; dfdy[9] = -m * c * y[2]; dfdy[10] = -b * y[0] - m * c * y[1]; dfdy[11] = c; dfdy[12] = b * y[2]; dfdy[13] = 0.0; dfdy[14] = b * y[0]; dfdy[15] = -c; dfdt[0] = 0.0; dfdt[1] = 0.0; dfdt[2] = 0.0; dfdt[3] = 0.0; return GSL_SUCCESS; } gsl_odeiv_system rhs_func_e5 = { rhs_e5, jac_e5, 4, 0 }; void test_odeiv_stepper (const gsl_odeiv_step_type *T, const gsl_odeiv_system *sys, const double h, const double t, const char desc[], const double ystart[], const double yfin[], const double relerr) { /* tests stepper T with one fixed length step advance of system sys and compares with given values yfin */ double y[MAXEQ] = {0.0}; double yerr[MAXEQ] = {0.0}; size_t ne = sys->dimension; size_t i; gsl_odeiv_step *step = gsl_odeiv_step_alloc (T, ne); DBL_MEMCPY (y, ystart, MAXEQ); { int s = gsl_odeiv_step_apply (step, t, h, y, yerr, 0, 0, sys); if (s != GSL_SUCCESS) { gsl_test(s, "test_odeiv_stepper: %s step_apply returned %d", desc, s); } } for (i = 0; i < ne; i++) { gsl_test_rel (y[i], yfin[i], relerr, "%s %s step(%d)", gsl_odeiv_step_name (step), desc,i); } gsl_odeiv_step_free (step); } void test_stepper (const gsl_odeiv_step_type *T) { /* Tests stepper T with a step of selected systems */ double y[MAXEQ] = {0.0}; double yfin[MAXEQ] = {0.0}; /* Step length */ double h; /* Required tolerance */ double err_target; /* linear */ h = 1e-1; err_target = 1e-10; y[0] = 0.58; yfin[0] = y[0] + 2 * h; test_odeiv_stepper (T, &rhs_func_lin, h, 0.0, "linear", y, yfin, err_target); /* exponential */ h = 1e-4; err_target = 1e-8; y[0] = exp(2.7); yfin[0] = exp(2.7 + h); test_odeiv_stepper (T, &rhs_func_exp, h, 2.7, "exponential", y, yfin, err_target); /* cosine-sine */ h = 1e-3; err_target = 1e-6; y[0] = cos(1.2); y[1] = sin(1.2); yfin[0] = cos(1.2 + h); yfin[1] = sin(1.2 + h); test_odeiv_stepper (T, &rhs_func_sin, h, 1.2, "cosine-sine", y, yfin, err_target); /* classic stiff */ h = 1e-7; err_target = 1e-4; y[0] = 1.0; y[1] = 0.0; { const double e1 = exp (-h); const double e2 = exp (-1000.0 * h); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_odeiv_stepper (T, &rhs_func_stiff, h, 0.0, "classic_stiff", y, yfin, err_target); } void test_evolve_system (const gsl_odeiv_step_type * T, const gsl_odeiv_system * sys, double t0, double t1, double hstart, double y[], double yfin[], double err_target, const char *desc) { /* Tests system sys with stepper T. Step length is controlled by error estimation from the stepper. */ int steps = 0; size_t i; double t = t0; double h = hstart; /* Tolerance factor in testing errors */ const double factor = 10; gsl_odeiv_step * step = gsl_odeiv_step_alloc (T, sys->dimension); gsl_odeiv_control *c = gsl_odeiv_control_standard_new (err_target, err_target, 1.0, 0.0); gsl_odeiv_evolve *e = gsl_odeiv_evolve_alloc (sys->dimension); double * y_orig = malloc (sys->dimension * sizeof(double)); while (t < t1) { double t_orig = t; int s; memcpy (y_orig, y, sys->dimension * sizeof(double)); s= gsl_odeiv_evolve_apply (e, c, step, sys, &t, t1, &h, y); if (s != GSL_SUCCESS) { /* check that t and y are unchanged */ gsl_test_abs(t, t_orig, 0.0, "%s, t must be restored on failure", gsl_odeiv_step_name (step)); for (i = 0; i < sys->dimension; i++) { gsl_test_abs (y[i], y_orig[i], 0.0, "%s, y must be restored on failure", gsl_odeiv_step_name (step), desc, i); } if (sys != &rhs_func_xsin) { /* apart from xsin, other functions should not return errors */ gsl_test(s, "%s evolve_apply returned %d", gsl_odeiv_step_name (step), s); break; } } if (steps > 100000) { gsl_test(GSL_EFAILED, "%s evolve_apply reached maxiter", gsl_odeiv_step_name (step)); break; } steps++; } /* err_target is target error of one step. Test if stepper has made larger error than (tolerance factor times) the number of steps times the err_target */ for (i = 0; i < sys->dimension; i++) { gsl_test_abs (y[i], yfin[i], factor * e->count * err_target, "%s %s evolve(%d)", gsl_odeiv_step_name (step), desc, i); } free (y_orig); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (step); } int sys_driver (const gsl_odeiv_step_type * T, const gsl_odeiv_system * sys, double t0, double t1, double hstart, double y[], double epsabs, double epsrel, const char desc[]) { /* This function evolves a system sys with stepper T from t0 to t1. Step length is varied via error control with possibly different absolute and relative error tolerances. */ int s = 0; int steps = 0; double t = t0; double h = hstart; gsl_odeiv_step * step = gsl_odeiv_step_alloc (T, sys->dimension); gsl_odeiv_control *c = gsl_odeiv_control_standard_new (epsabs, epsrel, 1.0, 0.0); gsl_odeiv_evolve *e = gsl_odeiv_evolve_alloc (sys->dimension); while (t < t1) { s = gsl_odeiv_evolve_apply (e, c, step, sys, &t, t1, &h, y); if (s != GSL_SUCCESS) { gsl_test(s, "sys_driver: %s evolve_apply returned %d", gsl_odeiv_step_name (step), s); break; } if (steps > 1e7) { gsl_test(GSL_EMAXITER, "sys_driver: %s evolve_apply reached maxiter at t=%g", gsl_odeiv_step_name (step), t); s = GSL_EMAXITER; break; } steps++; } gsl_test(s, "%s %s [%g,%g], %d steps completed", gsl_odeiv_step_name (step), desc, t0, t1, steps); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (step); return s; } void test_compare_vanderpol (void) { /* Compares output of van Der Pol oscillator with several steppers */ /* system dimension */ const size_t sd = 2; const gsl_odeiv_step_type *steppers[20]; const gsl_odeiv_step_type **T; /* Required error tolerance for each stepper. */ double err_target[20]; /* number of ODE solvers */ const size_t ns = 11; /* initial values for each ode-solver */ double y[11][2]; double *yp = &y[0][0]; size_t i, j, k; int status = 0; /* Parameters for the problem and stepper */ const double start = 0.0; const double end = 100.0; const double epsabs = 1e-8; const double epsrel = 1e-8; const double initstepsize = 1e-5; /* Initialize */ steppers[0] = gsl_odeiv_step_rk2; err_target[0] = 1e-6; steppers[1] = gsl_odeiv_step_rk4; err_target[1] = 1e-6; steppers[2] = gsl_odeiv_step_rkf45; err_target[2] = 1e-6; steppers[3] = gsl_odeiv_step_rkck; err_target[3] = 1e-6; steppers[4] = gsl_odeiv_step_rk8pd; err_target[4] = 1e-6; steppers[5] = gsl_odeiv_step_rk2imp; err_target[5] = 1e-5; steppers[6] = gsl_odeiv_step_rk2simp; err_target[6] = 1e-5; steppers[7] = gsl_odeiv_step_rk4imp; err_target[7] = 1e-6; steppers[8] = gsl_odeiv_step_bsimp; err_target[8] = 1e-7; steppers[9] = gsl_odeiv_step_gear1; err_target[9] = 1e-2; steppers[10] = gsl_odeiv_step_gear2; err_target[10] = 1e-6; steppers[11] = 0; T = steppers; for (i = 0; i < ns; i++) { y[i][0] = 1.0; y[i][1] = 0.0; } /* Call each solver for the problem */ i = 0; while (*T != 0) { { int s = sys_driver (*T, &rhs_func_vanderpol, start, end, initstepsize, &yp[i], epsabs, epsrel, "vanderpol"); if (s != GSL_SUCCESS) { status++; } } T++; i += sd; } if (status != GSL_SUCCESS) { return; } /* Compare results */ T = steppers; for (i = 0; i < ns; i++) for (j = i+1; j < ns; j++) for (k = 0; k < sd; k++) { const double val1 = yp[sd * i + k]; const double val2 = yp[sd * j + k]; gsl_test_abs (val1, val2, ( GSL_MAX(err_target[i], err_target[j]) ), "%s/%s vanderpol", T[i]->name, T[j]->name); } } void test_compare_oregonator (void) { /* Compares output of the Oregonator with several steppers */ /* system dimension */ const size_t sd = 3; const gsl_odeiv_step_type *steppers[20]; const gsl_odeiv_step_type **T; /* Required error tolerance for each stepper. */ double err_target[20]; /* number of ODE solvers */ const size_t ns = 2; /* initial values for each ode-solver */ double y[2][3]; double *yp = &y[0][0]; size_t i, j, k; int status = 0; /* Parameters for the problem and stepper */ const double start = 0.0; const double end = 360.0; const double epsabs = 1e-8; const double epsrel = 1e-8; const double initstepsize = 1e-5; /* Initialize */ steppers[0] = gsl_odeiv_step_rk2simp; err_target[0] = 1e-6; steppers[1] = gsl_odeiv_step_bsimp; err_target[1] = 1e-6; steppers[2] = 0; T = steppers; for (i = 0; i < ns; i++) { y[i][0] = 1.0; y[i][1] = 2.0; y[i][2] = 3.0; } /* Call each solver for the problem */ i = 0; while (*T != 0) { { int s = sys_driver (*T, &rhs_func_oregonator, start, end, initstepsize, &yp[i], epsabs, epsrel, "oregonator"); if (s != GSL_SUCCESS) { status++; } } T++; i += sd; } if (status != GSL_SUCCESS) { return; } /* Compare results */ T = steppers; for (i = 0; i < ns; i++) for (j = i+1; j < ns; j++) for (k = 0; k < sd; k++) { const double val1 = yp[sd * i + k]; const double val2 = yp[sd * j + k]; gsl_test_rel (val1, val2, ( GSL_MAX(err_target[i], err_target[j]) ), "%s/%s oregonator", T[i]->name, T[j]->name); } } void test_evolve_linear (const gsl_odeiv_step_type * T, double h, double err) { double y[1]; double yfin[1]; y[0] = 1.0; yfin[0] = 9.0; test_evolve_system (T, &rhs_func_lin, 0.0, 4.0, h, y, yfin, err, "linear[0,4]"); } void test_evolve_exp (const gsl_odeiv_step_type * T, double h, double err) { double y[1]; double yfin[1]; y[0] = 1.0; yfin[0] = exp (2.0); test_evolve_system (T, &rhs_func_exp, 0.0, 2.0, h, y, yfin, err, "exp[0,2]"); } void test_evolve_sin (const gsl_odeiv_step_type * T, double h, double err) { double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; yfin[0] = cos (2.0); yfin[1] = sin (2.0); test_evolve_system (T, &rhs_func_sin, 0.0, 2.0, h, y, yfin, err, "sine[0,2]"); } void test_evolve_xsin (const gsl_odeiv_step_type * T, double h, double err) { double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; yfin[0] = cos (2.0); yfin[1] = sin (2.0); rhs_xsin_reset = 1; jac_xsin_reset = 1; test_evolve_system (T, &rhs_func_xsin, 0.0, 2.0, h, y, yfin, err, "sine[0,2] w/errors"); } void test_evolve_stiff1 (const gsl_odeiv_step_type * T, double h, double err) { double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; { double arg = 1.0; double e1 = exp (-arg); double e2 = exp (-1000.0 * arg); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_evolve_system (T, &rhs_func_stiff, 0.0, 1.0, h, y, yfin, err, "stiff[0,1]"); } void test_evolve_stiff5 (const gsl_odeiv_step_type * T, double h, double err) { double y[2]; double yfin[2]; y[0] = 1.0; y[1] = 0.0; { double arg = 5.0; double e1 = exp (-arg); double e2 = exp (-1000.0 * arg); yfin[0] = 2.0 * e1 - e2; yfin[1] = -e1 + e2; } test_evolve_system (T, &rhs_func_stiff, 0.0, 5.0, h, y, yfin, err, "stiff[0,5]"); } /* Test cases from Frank Reininghaus */ int rhs_stepfn (double t, const double * y, double * dydt, void * params) { if (t >= 1.0) dydt [0] = 1; else dydt [0] = 0; return GSL_SUCCESS; } void test_stepfn (void) { /* infinite loop for epsabs = 1e-18, but not for 1e-17 */ double epsabs = 1e-18; double epsrel = 1e-6; const gsl_odeiv_step_type * T = gsl_odeiv_step_rk2; gsl_odeiv_step * s = gsl_odeiv_step_alloc (T, 1); gsl_odeiv_control * c = gsl_odeiv_control_y_new (epsabs, epsrel); gsl_odeiv_evolve * e = gsl_odeiv_evolve_alloc (1); gsl_odeiv_system sys = {rhs_stepfn, 0, 1, 0}; double t = 0.0; double h = 1e-6; double y = 0.0; int i = 0; int status; while (t < 2.0 && i < 1000000) { status = gsl_odeiv_evolve_apply (e, c, s, &sys, &t, 2, &h, &y); #ifdef DEBUG printf("i=%d status=%d t=%g h=%g y=%g\n", i, status, t, h, y); #endif if (status != GSL_SUCCESS) break; i++; } gsl_test_abs(t, 2.0, 1e-16, "evolve step function, t (stepfn/rk2)"); gsl_test_rel(y, 1.0, epsrel, "evolve step function, y (stepfn/rk2)"); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (s); } int rhs_stepfn2 (double t, const double * y, double * dydt, void * params) { if (t >= 0.0) dydt [0] = 1e300; else dydt [0] = 0; return GSL_SUCCESS; } void test_stepfn2 (void) { /* infinite loop for epsabs = 1e-25, but not for 1e-24 */ double epsabs = 1e-25; double epsrel = 1e-6; const gsl_odeiv_step_type * T = gsl_odeiv_step_rk2; gsl_odeiv_step * s = gsl_odeiv_step_alloc (T, 1); gsl_odeiv_control * c = gsl_odeiv_control_y_new (epsabs, epsrel); gsl_odeiv_evolve * e = gsl_odeiv_evolve_alloc (1); gsl_odeiv_system sys = {rhs_stepfn2, 0, 1, 0}; double t = -1.0; double h = 1e-6; double y = 0.0; int i = 0; int status; while (t < 1.0 && i < 10000) { status = gsl_odeiv_evolve_apply (e, c, s, &sys, &t, 1.0, &h, &y); #ifdef DEBUG printf("i=%d status=%d t=%g h=%g y=%g\n", i, status, t, h, y); #endif if (status != GSL_SUCCESS) break; i++; } gsl_test_abs(t, 1.0, 1e-16, "evolve big step function, t (stepfn2/rk2)"); gsl_test_rel(y, 1e300, epsrel, "evolve big step function, y (stepfn2/rk2)"); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (s); } int rhs_stepfn3 (double t, const double * y, double * dydt, void * params) { static int calls = 0; if (t >= 0.0) dydt [0] = 1e300; else dydt [0] = 0; calls++; return (calls < 100000) ? GSL_SUCCESS : -999; } void test_stepfn3 (void) { /* infinite loop for epsabs = 1e-26, but not for 1e-25 */ double epsabs = 1e-26; double epsrel = 1e-6; const gsl_odeiv_step_type * T = gsl_odeiv_step_rkf45; gsl_odeiv_step * s = gsl_odeiv_step_alloc (T, 1); gsl_odeiv_control * c = gsl_odeiv_control_y_new (epsabs, epsrel); gsl_odeiv_evolve * e = gsl_odeiv_evolve_alloc (1); gsl_odeiv_system sys = {rhs_stepfn3, 0, 1, 0}; double t = -1.0; double h = 1e-6; double y = 0.0; int i = 0; int status; while (t < 1.0 && i < 10000) { status = gsl_odeiv_evolve_apply (e, c, s, &sys, &t, 1.0, &h, &y); #ifdef DEBUG printf("i=%d status=%d t=%g h=%g y=%g\n", i, status, t, h, y); #endif if (status != GSL_SUCCESS) break; i++; } gsl_test_abs(t, 1.0, 1e-16, "evolve big step function, t (stepfn3/rkf45)"); gsl_test_rel(y, 1e300, epsrel, "evolve big step function, y (stepfn3/rkf45)"); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (s); } int rhs_cos (double t, const double * y, double * dydt, void * params) { dydt [0] = cos (t); return GSL_SUCCESS; } int jac_cos (double t, const double y[], double *dfdy, double dfdt[], void *params) { dfdy[0] = 0.0; dfdt[0] = -sin(t); return GSL_SUCCESS; } /* Test evolution in negative direction */ void test_evolve_negative_h (const gsl_odeiv_step_type * T, double h, double err) { /* Tolerance factor in testing errors */ const double factor = 10; gsl_odeiv_step * step = gsl_odeiv_step_alloc (T, 1); gsl_odeiv_control * c = gsl_odeiv_control_standard_new (err, err, 1.0, 0.0); gsl_odeiv_evolve * e = gsl_odeiv_evolve_alloc (1); gsl_odeiv_system sys = {rhs_cos, jac_cos, 1, 0}; double t = 0; double t1 = -4.0; double y = 0.0; double yfin = sin (t1); /* Make initial h negative */ h = -fabs(h); while (t > t1) { int status = gsl_odeiv_evolve_apply (e, c, step, &sys, &t, t1, &h, &y); if (status != GSL_SUCCESS) { gsl_test(status, "%s evolve_apply returned %d for negative h", gsl_odeiv_step_name (step), status); break; } } gsl_test_abs (y, yfin, factor * e->count * err, "evolution with negative h (using %s)", gsl_odeiv_step_name (step)); gsl_odeiv_evolve_free (e); gsl_odeiv_control_free (c); gsl_odeiv_step_free (step); } int main (void) { int i; struct ptype { const gsl_odeiv_step_type *type; double h; } p[20]; p[0].type = gsl_odeiv_step_rk2; p[0].h = 1.0e-3; p[1].type = gsl_odeiv_step_rk4; p[1].h = 1.0e-3; p[2].type = gsl_odeiv_step_rkf45; p[2].h = 1.0e-3; p[3].type = gsl_odeiv_step_rkck; p[3].h = 1.0e-3; p[4].type = gsl_odeiv_step_rk8pd; p[4].h = 1.0e-3; p[5].type = gsl_odeiv_step_rk2imp; p[5].h = 1.0e-3; p[6].type = gsl_odeiv_step_rk2simp; p[6].h = 1.0e-3; p[7].type = gsl_odeiv_step_rk4imp; p[7].h = 1.0e-3; p[8].type = gsl_odeiv_step_bsimp; p[8].h = 1.0e-3; p[9].type = gsl_odeiv_step_gear1; p[9].h = 1.0e-3; p[10].type = gsl_odeiv_step_gear2; p[10].h = 1.0e-3; p[11].type = 0; gsl_ieee_env_setup (); for (i = 0; p[i].type != 0; i++) { test_stepper(p[i].type); } for (i = 0; p[i].type != 0; i++) { test_evolve_linear (p[i].type, p[i].h, 1e-10); test_evolve_exp (p[i].type, p[i].h, 1e-6); test_evolve_sin (p[i].type, p[i].h, 1e-8); test_evolve_xsin (p[i].type, p[i].h, 1e-8); test_evolve_xsin (p[i].type, 0.1, 1e-8); /* test with large step size */ test_evolve_stiff1 (p[i].type, p[i].h, 1e-7); test_evolve_stiff5 (p[i].type, p[i].h, 1e-7); test_evolve_negative_h (p[i].type, p[i].h, 1e-7); } test_compare_vanderpol(); test_compare_oregonator(); test_stepfn(); test_stepfn2(); test_stepfn3(); exit (gsl_test_summary ()); } gsl-1.16/ode-initval/rk2simp.c0000664000252300025230000002161412171574312013124 00000000000000/* ode-initval/rk2simp.c * * Copyright (C) 2004 Tuomo Keskitalo * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2, Gaussian implicit. Also known as implicit midpoint rule. Non-linear equations solved by linearization, LU-decomposition and matrix inversion. For reference, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *Y1; double *y0; double *y0_orig; double *ytmp; double *dfdy; /* Jacobian */ double *dfdt; /* time derivatives, not used */ double *y_onestep; gsl_permutation *p; } rk2simp_state_t; static void * rk2simp_alloc (size_t dim) { rk2simp_state_t *state = (rk2simp_state_t *) malloc (sizeof (rk2simp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2simp_state", GSL_ENOMEM); } state->Y1 = (double *) malloc (dim * sizeof (double)); if (state->Y1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for Y1", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->Y1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->Y1); free (state->y0); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->dfdy = (double *) malloc (dim * dim * sizeof (double)); if (state->dfdy == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdy", GSL_ENOMEM); } state->dfdt = (double *) malloc (dim * sizeof (double)); if (state->dfdt == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state); GSL_ERROR_NULL ("failed to allocate space for dfdt", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } state->p = gsl_permutation_alloc (dim); if (state->p == 0) { free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state); GSL_ERROR_NULL ("failed to allocate space for p", GSL_ENOMEM); } return state; } static int rk2simp_step (double *y, rk2simp_state_t * state, const double h, const double t, const size_t dim, const gsl_odeiv_system * sys) { /* Makes a Runge-Kutta 2nd order semi-implicit advance with step size h. y0 is initial values of variables y. The linearized semi-implicit equations to calculate are: Y1 = y0 + h/2 * (1 - h/2 * df/dy)^(-1) * f(t + h/2, y0) y = y0 + h * f(t + h/2, Y1) */ const double *y0 = state->y0; double *Y1 = state->Y1; double *ytmp = state->ytmp; size_t i; int s, ps; gsl_matrix_view J = gsl_matrix_view_array (state->dfdy, dim, dim); /* First solve Y1. Calculate the inverse matrix (1 - h/2 * df/dy)^-1 */ /* Create matrix to J */ s = GSL_ODEIV_JA_EVAL (sys, t, y0, state->dfdy, state->dfdt); if (s != GSL_SUCCESS) { return s; } gsl_matrix_scale (&J.matrix, -h / 2.0); gsl_matrix_add_diagonal(&J.matrix, 1.0); /* Invert it by LU-decomposition to invmat */ s += gsl_linalg_LU_decomp (&J.matrix, state->p, &ps); if (s != GSL_SUCCESS) { return GSL_EFAILED; } /* Evaluate f(t + h/2, y0) */ s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, y0, ytmp); if (s != GSL_SUCCESS) { return s; } /* Calculate Y1 = y0 + h/2 * ((1-h/2 * df/dy)^-1) ytmp */ { gsl_vector_const_view y0_view = gsl_vector_const_view_array(y0, dim); gsl_vector_view ytmp_view = gsl_vector_view_array(ytmp, dim); gsl_vector_view Y1_view = gsl_vector_view_array(Y1, dim); s = gsl_linalg_LU_solve (&J.matrix, state->p, &ytmp_view.vector, &Y1_view.vector); gsl_vector_scale (&Y1_view.vector, 0.5 * h); gsl_vector_add (&Y1_view.vector, &y0_view.vector); } /* And finally evaluation of f(t + h/2, Y1) and calculation of y */ s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, Y1, ytmp); if (s != GSL_SUCCESS) { return s; } for (i = 0; i < dim; i++) { y[i] = y0[i] + h * ytmp[i]; } return s; } static int rk2simp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; size_t i; double *y0 = state->y0; double *y0_orig = state->y0_orig; double *y_onestep = state->y_onestep; /* Error estimation is done by step doubling procedure */ DBL_MEMCPY (y0, y, dim); /* Save initial values in case of failure */ DBL_MEMCPY (y0_orig, y, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk2simp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk2simp_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = rk2simp_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 3.0; } return GSL_SUCCESS; } static int rk2simp_reset (void *vstate, size_t dim) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; DBL_ZERO_MEMSET (state->Y1, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->dfdt, dim * dim); DBL_ZERO_MEMSET (state->dfdt, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); return GSL_SUCCESS; } static unsigned int rk2simp_order (void *vstate) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2simp_free (void *vstate) { rk2simp_state_t *state = (rk2simp_state_t *) vstate; free (state->Y1); free (state->y0); free (state->y0_orig); free (state->ytmp); free (state->dfdy); free (state->dfdt); free (state->y_onestep); gsl_permutation_free (state->p); free (state); } static const gsl_odeiv_step_type rk2simp_type = { "rk2simp", /* name */ 0, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk2simp_alloc, &rk2simp_apply, &rk2simp_reset, &rk2simp_order, &rk2simp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp = &rk2simp_type; gsl-1.16/ode-initval/cscal.c0000664000252300025230000001115712171574312012623 00000000000000/* ode-initval/cscal.c * * Copyright (C) 2002, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include typedef struct { double eps_abs; double eps_rel; double a_y; double a_dydt; double * scale_abs; } sc_control_state_t; static void * sc_control_alloc (void) { sc_control_state_t * s = (sc_control_state_t *) malloc (sizeof(sc_control_state_t)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for sc_control_state", GSL_ENOMEM); } return s; } static int sc_control_init (void * vstate, double eps_abs, double eps_rel, double a_y, double a_dydt) { sc_control_state_t * s = (sc_control_state_t *) vstate; if (eps_abs < 0) { GSL_ERROR ("eps_abs is negative", GSL_EINVAL); } else if (eps_rel < 0) { GSL_ERROR ("eps_rel is negative", GSL_EINVAL); } else if (a_y < 0) { GSL_ERROR ("a_y is negative", GSL_EINVAL); } else if (a_dydt < 0) { GSL_ERROR ("a_dydt is negative", GSL_EINVAL); } s->eps_rel = eps_rel; s->eps_abs = eps_abs; s->a_y = a_y; s->a_dydt = a_dydt; return GSL_SUCCESS; } static int sc_control_hadjust(void * vstate, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h) { sc_control_state_t *state = (sc_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; const double * scale_abs = state->scale_abs; const double S = 0.9; const double h_old = *h; double rmax = DBL_MIN; size_t i; for(i=0; i 1.1) { /* decrease step, no more than factor of 5, but a fraction S more than scaling suggests (for better accuracy) */ double r = S / pow(rmax, 1.0/ord); if (r < 0.2) r = 0.2; *h = r * h_old; return GSL_ODEIV_HADJ_DEC; } else if(rmax < 0.5) { /* increase step, no more than factor of 5 */ double r = S / pow(rmax, 1.0/(ord+1.0)); if (r > 5.0) r = 5.0; if (r < 1.0) /* don't allow any decrease caused by S<1 */ r = 1.0; *h = r * h_old; return GSL_ODEIV_HADJ_INC; } else { /* no change */ return GSL_ODEIV_HADJ_NIL; } } static void sc_control_free (void * vstate) { sc_control_state_t *state = (sc_control_state_t *) vstate; free (state->scale_abs); free (state); } static const gsl_odeiv_control_type sc_control_type = {"scaled", /* name */ &sc_control_alloc, &sc_control_init, &sc_control_hadjust, &sc_control_free}; const gsl_odeiv_control_type *gsl_odeiv_control_scaled = &sc_control_type; gsl_odeiv_control * gsl_odeiv_control_scaled_new(double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim) { gsl_odeiv_control * c = gsl_odeiv_control_alloc (gsl_odeiv_control_scaled); int status = gsl_odeiv_control_init (c, eps_abs, eps_rel, a_y, a_dydt); if (status != GSL_SUCCESS) { gsl_odeiv_control_free (c); GSL_ERROR_NULL ("error trying to initialize control", status); } { sc_control_state_t * s = (sc_control_state_t *) c->state; s->scale_abs = (double *)malloc(dim * sizeof(double)); if (s->scale_abs == 0) { free (s); GSL_ERROR_NULL ("failed to allocate space for scale_abs", GSL_ENOMEM); } memcpy(s->scale_abs, scale_abs, dim * sizeof(double)); } return c; } gsl-1.16/ode-initval/odeiv_util.h0000664000252300025230000000021312171574312013675 00000000000000#define DBL_MEMCPY(dest,src,n) memcpy((dest),(src),(n)*sizeof(double)) #define DBL_ZERO_MEMSET(dest,n) memset((dest),0,(n)*sizeof(double)) gsl-1.16/ode-initval/Makefile.in0000664000252300025230000010662312172253756013451 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = ode-initval DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslodeiv_la_LIBADD = am_libgslodeiv_la_OBJECTS = control.lo cstd.lo cscal.lo evolve.lo \ step.lo rk2.lo rk2imp.lo rk2simp.lo rk4.lo rk4imp.lo rkf45.lo \ rk8pd.lo rkck.lo bsimp.lo gear1.lo gear2.lo libgslodeiv_la_OBJECTS = $(am_libgslodeiv_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslodeiv.la ../linalg/libgsllinalg.la \ ../blas/libgslblas.la ../cblas/libgslcblas.la \ ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la \ ../vector/libgslvector.la ../block/libgslblock.la \ ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la \ ../utils/libutils.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslodeiv_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslodeiv_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslodeiv.la pkginclude_HEADERS = gsl_odeiv.h INCLUDES = -I$(top_srcdir) libgslodeiv_la_SOURCES = control.c cstd.c cscal.c evolve.c step.c rk2.c rk2imp.c rk2simp.c rk4.c rk4imp.c rkf45.c rk8pd.c rkck.c bsimp.c gear1.c gear2.c noinst_HEADERS = odeiv_util.h TESTS = $(check_PROGRAMS) test_LDADD = libgslodeiv.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu ode-initval/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu ode-initval/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslodeiv.la: $(libgslodeiv_la_OBJECTS) $(libgslodeiv_la_DEPENDENCIES) $(EXTRA_libgslodeiv_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslodeiv_la_OBJECTS) $(libgslodeiv_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bsimp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/control.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cscal.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cstd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/evolve.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gear1.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/gear2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk2.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk2imp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk2simp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk4.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk4imp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rk8pd.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rkck.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/rkf45.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/step.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/ode-initval/rkck.c0000664000252300025230000002046212171574312012467 00000000000000/* ode-initval/rkck.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4(5), Cash-Karp */ /* Reference: Cash, J.R., Karp, A.H., ACM Transactions of Mathematical Software, vol. 16 (1990) 201-222. */ /* Author: G. Jungman */ #include #include #include #include #include #include "odeiv_util.h" /* Cash-Karp constants */ static const double ah[] = { 1.0 / 5.0, 0.3, 3.0 / 5.0, 1.0, 7.0 / 8.0 }; static const double b21 = 1.0 / 5.0; static const double b3[] = { 3.0 / 40.0, 9.0 / 40.0 }; static const double b4[] = { 0.3, -0.9, 1.2 }; static const double b5[] = { -11.0 / 54.0, 2.5, -70.0 / 27.0, 35.0 / 27.0 }; static const double b6[] = { 1631.0 / 55296.0, 175.0 / 512.0, 575.0 / 13824.0, 44275.0 / 110592.0, 253.0 / 4096.0 }; static const double c1 = 37.0 / 378.0; static const double c3 = 250.0 / 621.0; static const double c4 = 125.0 / 594.0; static const double c6 = 512.0 / 1771.0; /* These are the differences of fifth and fourth order coefficients for error estimation */ static const double ec[] = { 0.0, 37.0 / 378.0 - 2825.0 / 27648.0, 0.0, 250.0 / 621.0 - 18575.0 / 48384.0, 125.0 / 594.0 - 13525.0 / 55296.0, -277.0 / 14336.0, 512.0 / 1771.0 - 0.25 }; typedef struct { double *k1; double *k2; double *k3; double *k4; double *k5; double *k6; double *y0; double *ytmp; } rkck_state_t; static void * rkck_alloc (size_t dim) { rkck_state_t *state = (rkck_state_t *) malloc (sizeof (rkck_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rkck_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->k4 = (double *) malloc (dim * sizeof (double)); if (state->k4 == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k4", GSL_ENOMEM); } state->k5 = (double *) malloc (dim * sizeof (double)); if (state->k5 == 0) { free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k5", GSL_ENOMEM); } state->k6 = (double *) malloc (dim * sizeof (double)); if (state->k6 == 0) { free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k6", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rkck_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rkck_state_t *state = (rkck_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const k4 = state->k4; double *const k5 = state->k5; double *const k6 = state->k6; double *const ytmp = state->ytmp; double *const y0 = state->y0; DBL_MEMCPY (y0, y, dim); /* k1 step */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + b21 * h * k1[i]; /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[0] * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b3[0] * k1[i] + b3[1] * k2[i]); /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[1] * h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b4[0] * k1[i] + b4[1] * k2[i] + b4[2] * k3[i]); /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[2] * h, ytmp, k4); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b5[0] * k1[i] + b5[1] * k2[i] + b5[2] * k3[i] + b5[3] * k4[i]); /* k5 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[3] * h, ytmp, k5); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) ytmp[i] = y[i] + h * (b6[0] * k1[i] + b6[1] * k2[i] + b6[2] * k3[i] + b6[3] * k4[i] + b6[4] * k5[i]); /* k6 step and final sum */ { int s = GSL_ODEIV_FN_EVAL (sys, t + ah[4] * h, ytmp, k6); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { const double d_i = c1 * k1[i] + c3 * k3[i] + c4 * k4[i] + c6 * k6[i]; y[i] += h * d_i; } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore initial values */ DBL_MEMCPY (y, y0, dim); return s; } } /* difference between 4th and 5th order */ for (i = 0; i < dim; i++) { yerr[i] = h * (ec[1] * k1[i] + ec[3] * k3[i] + ec[4] * k4[i] + ec[5] * k5[i] + ec[6] * k6[i]); } return GSL_SUCCESS; } static int rkck_reset (void *vstate, size_t dim) { rkck_state_t *state = (rkck_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->k4, dim); DBL_ZERO_MEMSET (state->k5, dim); DBL_ZERO_MEMSET (state->k6, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y0, dim); return GSL_SUCCESS; } static unsigned int rkck_order (void *vstate) { rkck_state_t *state = (rkck_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 5; /* FIXME: should this be 4? */ } static void rkck_free (void *vstate) { rkck_state_t *state = (rkck_state_t *) vstate; free (state->ytmp); free (state->y0); free (state->k6); free (state->k5); free (state->k4); free (state->k3); free (state->k2); free (state->k1); free (state); } static const gsl_odeiv_step_type rkck_type = { "rkck", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rkck_alloc, &rkck_apply, &rkck_reset, &rkck_order, &rkck_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rkck = &rkck_type; gsl-1.16/ode-initval/ChangeLog0000664000252300025230000001316712171574312013147 000000000000002011-04-25 Brian Gough * This module is now superseded by ode-initval2 2009-08-12 Brian Gough * rk4.c (rk4_alloc): fix order of free statements to avoid memory leak 2009-07-09 Brian Gough * step.c (gsl_odeiv_step_free): handle NULL argument in free * evolve.c (gsl_odeiv_evolve_free): handle NULL argument in free * control.c (gsl_odeiv_control_free): handle NULL argument in free 2009-04-21 Brian Gough * gear2.c (gear2_apply): save initial values of y for possible failures 2009-04-20 Brian Gough * evolve.c (gsl_odeiv_evolve_apply): restore original t value when step fails 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2008-01-28 Brian Gough * test.c (test_evolve_negative_h): test evolution with negative steps as well as positive 2008-01-03 Brian Gough * evolve.c (gsl_odeiv_evolve_apply): handle the case where GSL_ODEIV_HADJ_DEC does not represent a real decrease (e.g. where x+h = x due to finite precision) 2006-07-29 Brian Gough * evolve.c (gsl_odeiv_evolve_apply): notify user of step-size which caused any failure by returning it 2006-06-13 Brian Gough * gsl_odeiv.h, control.c (gsl_odeiv_control_hadjust): change y0 to y in prototype to avoid conflict with bessel y0() in math.h * test.c (test_odeiv_stepper): change y0 to ystart 2005-04-08 Brian Gough * Fixed all functions to consistently return status instead of GSL_EBADFUNC. 2004-12-29 Brian Gough * test.c (test_compare_vanderpol): avoid variable size array (test_compare_oregonator): as above 2004-12-23 Brian Gough * test.c (test_evolve_xsin): changed description from "failures" to "errors" 2004-12-22 Brian Gough * rk2simp.c (rk2simp_step): added missing static declaration * gear1.c (gear1_step): added missing static declaration * gear2.c (gear2_step): added missing static declaration * rk4imp.c (rk4imp_step): added missing static declaration * rk4.c (rk4_step): added missing static declaration * rk2imp.c (rk2imp_step): added missing static declaration 2004-12-01 Brian Gough * updated all solvers to ensure correct handling of error codes from user defined functions * test.c (rhs_xsin): added a test which includes failures of the function itself and jacobian 2004-11-25 Brian Gough * gear2.c (gear2_alloc): added check for non-allocation of primer, and two-step error estimation 2004-11-23 Brian Gough * gear1.c (gear1_apply): use 90% error bound * rk2imp.c (rk2imp_apply): use 90% error bound * rk2simp.c (rk2simp_apply): use 90% error bound 2004-11-18 Brian Gough * test.c: new test program (Tuomo Keskitalo) 2004-11-12 Brian Gough * evolve.c (gsl_odeiv_evolve_apply): check for internal stepper failure (Tuomo Keskitalo) * bsimp.c: gives exact dydt_out (Tuomo Keskitalo) * rk2simp.c: new semi-implicit solver (Tuomo Keskitalo) * gear1.c rkf45.c rkck.c rk8pd.c rk4imp.c rk2imp.c rk2.c rk4.c: fix error estimate, exact derivatives on output (Tuomo Keskitalo) 2004-05-28 Brian Gough * bsimp.c (bsimp_apply): fix prototype of function to match definition in typedef by removing const on double args. Sat Aug 3 19:02:37 2002 Brian Gough * cscal.c (struct): use matlab style error control, with scalar relative error and vector absolute error Wed Oct 3 13:19:28 2001 Brian Gough * evolve.c (gsl_odeiv_evolve_apply): report error if step direction does not match interval direction * cstd.c (std_control_hadjust): allow for negative step-sizes * evolve.c (gsl_odeiv_evolve_apply): allow for integrating backwards in time Sat Sep 29 21:02:36 2001 Brian Gough * bsimp.c: use the condition |D^-1 Delta| >> 1 to detect singularities, as described in the paper and implemented in METAN1 by Deuflhard et al. * evolve.c (gsl_odeiv_evolve_apply): reset the final_step flag whenever the step size is decreased Sun Jul 1 22:42:02 2001 Brian Gough * bsimp.c: modified to use new-style vector views Fri Jun 22 11:59:24 2001 Brian Gough * evolve.c: keep track of failed step count Tue Jun 12 11:34:23 2001 Brian Gough * rkf45.c: added Runge-Kutta Fehlberg method, RKF45 * reorganized to use standard gsl conventions Mon Apr 23 10:26:22 2001 Brian Gough * unified error handling conventions to _e for error handling functions and no suffix for plain functions, so _impl functions are no longer needed. * removed tests for EFAULT, since EFAULT should only apply to invalid non-null pointers. 2000-05-14 Steve Robbins * Makefile.am (test_LDADD): put libgslpermutation ahead of libgslvector in the link beccause the former uses `gsl_check_range' which is defined in the latter. Tue Apr 11 19:59:01 2000 Brian Gough * bsimp.c (bsimp_step_local): changed gsl_la prefix to gsl_linalg, new naming convention Fri Oct 1 15:46:13 1999 Brian Gough * bsimp.c: converted to use new-style block/vector code gsl-1.16/ode-initval/Makefile.am0000664000252300025230000000131512171574312013421 00000000000000noinst_LTLIBRARIES = libgslodeiv.la pkginclude_HEADERS = gsl_odeiv.h INCLUDES = -I$(top_srcdir) libgslodeiv_la_SOURCES = control.c cstd.c cscal.c evolve.c step.c rk2.c rk2imp.c rk2simp.c rk4.c rk4imp.c rkf45.c rk8pd.c rkck.c bsimp.c gear1.c gear2.c noinst_HEADERS = odeiv_util.h check_PROGRAMS = test TESTS = $(check_PROGRAMS) test_LDADD = libgslodeiv.la ../linalg/libgsllinalg.la ../blas/libgslblas.la ../cblas/libgslcblas.la ../matrix/libgslmatrix.la ../permutation/libgslpermutation.la ../vector/libgslvector.la ../block/libgslblock.la ../complex/libgslcomplex.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la ../utils/libutils.la test_SOURCES = test.c gsl-1.16/ode-initval/cstd.c0000664000252300025230000001056712171574312012477 00000000000000/* ode-initval/cstd.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include typedef struct { double eps_abs; double eps_rel; double a_y; double a_dydt; } std_control_state_t; static void * std_control_alloc (void) { std_control_state_t * s = (std_control_state_t *) malloc (sizeof(std_control_state_t)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for std_control_state", GSL_ENOMEM); } return s; } static int std_control_init (void * vstate, double eps_abs, double eps_rel, double a_y, double a_dydt) { std_control_state_t * s = (std_control_state_t *) vstate; if (eps_abs < 0) { GSL_ERROR ("eps_abs is negative", GSL_EINVAL); } else if (eps_rel < 0) { GSL_ERROR ("eps_rel is negative", GSL_EINVAL); } else if (a_y < 0) { GSL_ERROR ("a_y is negative", GSL_EINVAL); } else if (a_dydt < 0) { GSL_ERROR ("a_dydt is negative", GSL_EINVAL); } s->eps_rel = eps_rel; s->eps_abs = eps_abs; s->a_y = a_y; s->a_dydt = a_dydt; return GSL_SUCCESS; } static int std_control_hadjust(void * vstate, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h) { std_control_state_t *state = (std_control_state_t *) vstate; const double eps_abs = state->eps_abs; const double eps_rel = state->eps_rel; const double a_y = state->a_y; const double a_dydt = state->a_dydt; const double S = 0.9; const double h_old = *h; double rmax = DBL_MIN; size_t i; for(i=0; i 1.1) { /* decrease step, no more than factor of 5, but a fraction S more than scaling suggests (for better accuracy) */ double r = S / pow(rmax, 1.0/ord); if (r < 0.2) r = 0.2; *h = r * h_old; return GSL_ODEIV_HADJ_DEC; } else if(rmax < 0.5) { /* increase step, no more than factor of 5 */ double r = S / pow(rmax, 1.0/(ord+1.0)); if (r > 5.0) r = 5.0; if (r < 1.0) /* don't allow any decrease caused by S<1 */ r = 1.0; *h = r * h_old; return GSL_ODEIV_HADJ_INC; } else { /* no change */ return GSL_ODEIV_HADJ_NIL; } } static void std_control_free (void * vstate) { std_control_state_t *state = (std_control_state_t *) vstate; free (state); } static const gsl_odeiv_control_type std_control_type = {"standard", /* name */ &std_control_alloc, &std_control_init, &std_control_hadjust, &std_control_free}; const gsl_odeiv_control_type *gsl_odeiv_control_standard = &std_control_type; gsl_odeiv_control * gsl_odeiv_control_standard_new(double eps_abs, double eps_rel, double a_y, double a_dydt) { gsl_odeiv_control * c = gsl_odeiv_control_alloc (gsl_odeiv_control_standard); int status = gsl_odeiv_control_init (c, eps_abs, eps_rel, a_y, a_dydt); if (status != GSL_SUCCESS) { gsl_odeiv_control_free (c); GSL_ERROR_NULL ("error trying to initialize control", status); } return c; } gsl_odeiv_control * gsl_odeiv_control_y_new(double eps_abs, double eps_rel) { return gsl_odeiv_control_standard_new(eps_abs, eps_rel, 1.0, 0.0); } gsl_odeiv_control * gsl_odeiv_control_yp_new(double eps_abs, double eps_rel) { return gsl_odeiv_control_standard_new(eps_abs, eps_rel, 0.0, 1.0); } gsl-1.16/ode-initval/rk4.c0000664000252300025230000001657512171574312012247 00000000000000/* ode-initval/rk4.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4th order, Classical */ /* Author: G. Jungman */ /* Reference: Abramowitz & Stegun, section 25.5. equation 25.5.10 Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. */ #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k; double *k1; double *y0; double *ytmp; double *y_onestep; } rk4_state_t; static void * rk4_alloc (size_t dim) { rk4_state_t *state = (rk4_state_t *) malloc (sizeof (rk4_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4_state", GSL_ENOMEM); } state->k = (double *) malloc (dim * sizeof (double)); if (state->k == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->ytmp); free (state->y0); free (state->k); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rk4_step (double *y, const rk4_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 4th order advance with step size h. */ /* initial values of variables y. */ const double *y0 = state->y0; /* work space */ double *ytmp = state->ytmp; /* Runge-Kutta coefficients. Contains values of coefficient k1 in the beginning */ double *k = state->k; size_t i; /* k1 step */ for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k2 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + 0.5 * h * k[i]; } /* k3 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 3.0 * k[i]; ytmp[i] = y0[i] + h * k[i]; } /* k4 step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k); if (s != GSL_SUCCESS) { return s; } } for (i = 0; i < dim; i++) { y[i] += h / 6.0 * k[i]; } return GSL_SUCCESS; } static int rk4_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk4_state_t *state = (rk4_state_t *) vstate; size_t i; double *const k = state->k; double *const k1 = state->k1; double *const y0 = state->y0; double *const y_onestep = state->y_onestep; DBL_MEMCPY (y0, y, dim); if (dydt_in != NULL) { DBL_MEMCPY (k, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y0, k); if (s != GSL_SUCCESS) { return s; } } /* Error estimation is done by step doubling procedure */ /* Save first point derivatives*/ DBL_MEMCPY (k1, k, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk4_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ DBL_MEMCPY (k, k1, dim); { int s = rk4_step (y, state, h/2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Update before second step */ { int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, y0, dim); return s; } } /* Save original y0 to k1 for possible failures */ DBL_MEMCPY (k1, y0, dim); /* Update y0 for second step */ DBL_MEMCPY (y0, y, dim); { int s = rk4_step (y, state, h/2.0, t + h/2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, k1, dim); return s; } } /* Error estimation yerr = C * 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1) constant C is approximately 8.0 to ensure 90% of samples lie within the error (assuming a gaussian distribution with prior p(sigma)=1/sigma.) */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]) / 15.0; } return GSL_SUCCESS; } static int rk4_reset (void *vstate, size_t dim) { rk4_state_t *state = (rk4_state_t *) vstate; DBL_ZERO_MEMSET (state->k, dim); DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->ytmp, dim); DBL_ZERO_MEMSET (state->y_onestep, dim); return GSL_SUCCESS; } static unsigned int rk4_order (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4_free (void *vstate) { rk4_state_t *state = (rk4_state_t *) vstate; free (state->k); free (state->k1); free (state->y0); free (state->ytmp); free (state->y_onestep); free (state); } static const gsl_odeiv_step_type rk4_type = { "rk4", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk4_alloc, &rk4_apply, &rk4_reset, &rk4_order, &rk4_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk4 = &rk4_type; gsl-1.16/ode-initval/step.c0000664000252300025230000000415512171574312012511 00000000000000/* ode-initval/odeiv.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include gsl_odeiv_step * gsl_odeiv_step_alloc(const gsl_odeiv_step_type * T, size_t dim) { gsl_odeiv_step *s = (gsl_odeiv_step *) malloc (sizeof (gsl_odeiv_step)); if (s == 0) { GSL_ERROR_NULL ("failed to allocate space for ode struct", GSL_ENOMEM); }; s->type = T; s->dimension = dim; s->state = s->type->alloc(dim); if (s->state == 0) { free (s); /* exception in constructor, avoid memory leak */ GSL_ERROR_NULL ("failed to allocate space for ode state", GSL_ENOMEM); }; return s; } const char * gsl_odeiv_step_name(const gsl_odeiv_step * s) { return s->type->name; } unsigned int gsl_odeiv_step_order(const gsl_odeiv_step * s) { return s->type->order(s->state); } int gsl_odeiv_step_apply( gsl_odeiv_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt) { return s->type->apply(s->state, s->dimension, t, h, y, yerr, dydt_in, dydt_out, dydt); } int gsl_odeiv_step_reset(gsl_odeiv_step * s) { return s->type->reset(s->state, s->dimension); } void gsl_odeiv_step_free(gsl_odeiv_step * s) { RETURN_IF_NULL (s); s->type->free(s->state); free(s); } gsl-1.16/ode-initval/rk2.c0000664000252300025230000001216412171574312012233 00000000000000/* ode-initval/rk2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 2(3), Euler-Cauchy */ /* Author: G. Jungman */ /* Reference: Abramowitz & Stegun, section 25.5. Runge-Kutta 2nd (25.5.7) and 3rd (25.5.8) order methods */ #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k1; double *k2; double *k3; double *ytmp; } rk2_state_t; static void * rk2_alloc (size_t dim) { rk2_state_t *state = (rk2_state_t *) malloc (sizeof (rk2_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk2_state", GSL_ENOMEM); } state->k1 = (double *) malloc (dim * sizeof (double)); if (state->k1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1", GSL_ENOMEM); } state->k2 = (double *) malloc (dim * sizeof (double)); if (state->k2 == 0) { free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k2", GSL_ENOMEM); } state->k3 = (double *) malloc (dim * sizeof (double)); if (state->k3 == 0) { free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for k3", GSL_ENOMEM); } state->ytmp = (double *) malloc (dim * sizeof (double)); if (state->ytmp == 0) { free (state->k3); free (state->k2); free (state->k1); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp", GSL_ENOMEM); } return state; } static int rk2_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk2_state_t *state = (rk2_state_t *) vstate; size_t i; double *const k1 = state->k1; double *const k2 = state->k2; double *const k3 = state->k3; double *const ytmp = state->ytmp; /* k1 step */ /* k1 = f(t,y) */ if (dydt_in != NULL) { DBL_MEMCPY (k1, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1); if (s != GSL_SUCCESS) { return s; } } /* k2 step */ /* k2 = f(t + 0.5*h, y + 0.5*k1) */ for (i = 0; i < dim; i++) { ytmp[i] = y[i] + 0.5 * h * k1[i]; } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h, ytmp, k2); if (s != GSL_SUCCESS) { return s; } } /* k3 step */ /* for 3rd order estimates, is used for error estimation k3 = f(t + h, y - k1 + 2*k2) */ for (i = 0; i < dim; i++) { ytmp[i] = y[i] + h * (-k1[i] + 2.0 * k2[i]); } { int s = GSL_ODEIV_FN_EVAL (sys, t + h, ytmp, k3); if (s != GSL_SUCCESS) { return s; } } /* final sum */ for (i = 0; i < dim; i++) { /* Save original values if derivative evaluation below fails */ ytmp[i] = y[i]; { const double ksum3 = (k1[i] + 4.0 * k2[i] + k3[i]) / 6.0; y[i] += h * ksum3; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original values */ DBL_MEMCPY (y, ytmp, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { const double ksum3 = (k1[i] + 4.0 * k2[i] + k3[i]) / 6.0; yerr[i] = h * (k2[i] - ksum3); } return GSL_SUCCESS; } static int rk2_reset (void *vstate, size_t dim) { rk2_state_t *state = (rk2_state_t *) vstate; DBL_ZERO_MEMSET (state->k1, dim); DBL_ZERO_MEMSET (state->k2, dim); DBL_ZERO_MEMSET (state->k3, dim); DBL_ZERO_MEMSET (state->ytmp, dim); return GSL_SUCCESS; } static unsigned int rk2_order (void *vstate) { rk2_state_t *state = (rk2_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 2; } static void rk2_free (void *vstate) { rk2_state_t *state = (rk2_state_t *) vstate; free (state->k1); free (state->k2); free (state->k3); free (state->ytmp); free (state); } static const gsl_odeiv_step_type rk2_type = { "rk2", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &rk2_alloc, &rk2_apply, &rk2_reset, &rk2_order, &rk2_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk2 = &rk2_type; gsl-1.16/ode-initval/evolve.c0000664000252300025230000001272112171574312013034 00000000000000/* ode-initval/evolve.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include #include #include #include #include #include #include "odeiv_util.h" gsl_odeiv_evolve * gsl_odeiv_evolve_alloc (size_t dim) { gsl_odeiv_evolve *e = (gsl_odeiv_evolve *) malloc (sizeof (gsl_odeiv_evolve)); if (e == 0) { GSL_ERROR_NULL ("failed to allocate space for evolve struct", GSL_ENOMEM); } e->y0 = (double *) malloc (dim * sizeof (double)); if (e->y0 == 0) { free (e); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } e->yerr = (double *) malloc (dim * sizeof (double)); if (e->yerr == 0) { free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for yerr", GSL_ENOMEM); } e->dydt_in = (double *) malloc (dim * sizeof (double)); if (e->dydt_in == 0) { free (e->yerr); free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for dydt_in", GSL_ENOMEM); } e->dydt_out = (double *) malloc (dim * sizeof (double)); if (e->dydt_out == 0) { free (e->dydt_in); free (e->yerr); free (e->y0); free (e); GSL_ERROR_NULL ("failed to allocate space for dydt_out", GSL_ENOMEM); } e->dimension = dim; e->count = 0; e->failed_steps = 0; e->last_step = 0.0; return e; } int gsl_odeiv_evolve_reset (gsl_odeiv_evolve * e) { e->count = 0; e->failed_steps = 0; e->last_step = 0.0; return GSL_SUCCESS; } void gsl_odeiv_evolve_free (gsl_odeiv_evolve * e) { RETURN_IF_NULL (e); free (e->dydt_out); free (e->dydt_in); free (e->yerr); free (e->y0); free (e); } /* Evolution framework method. * * Uses an adaptive step control object */ int gsl_odeiv_evolve_apply (gsl_odeiv_evolve * e, gsl_odeiv_control * con, gsl_odeiv_step * step, const gsl_odeiv_system * dydt, double *t, double t1, double *h, double y[]) { const double t0 = *t; double h0 = *h; int step_status; int final_step = 0; double dt = t1 - t0; /* remaining time, possibly less than h */ if (e->dimension != step->dimension) { GSL_ERROR ("step dimension must match evolution size", GSL_EINVAL); } if ((dt < 0.0 && h0 > 0.0) || (dt > 0.0 && h0 < 0.0)) { GSL_ERROR ("step direction must match interval direction", GSL_EINVAL); } /* No need to copy if we cannot control the step size. */ if (con != NULL) { DBL_MEMCPY (e->y0, y, e->dimension); } /* Calculate initial dydt once if the method can benefit. */ if (step->type->can_use_dydt_in) { int status = GSL_ODEIV_FN_EVAL (dydt, t0, y, e->dydt_in); if (status) { return status; } } try_step: if ((dt >= 0.0 && h0 > dt) || (dt < 0.0 && h0 < dt)) { h0 = dt; final_step = 1; } else { final_step = 0; } if (step->type->can_use_dydt_in) { step_status = gsl_odeiv_step_apply (step, t0, h0, y, e->yerr, e->dydt_in, e->dydt_out, dydt); } else { step_status = gsl_odeiv_step_apply (step, t0, h0, y, e->yerr, NULL, e->dydt_out, dydt); } /* Check for stepper internal failure */ if (step_status != GSL_SUCCESS) { *h = h0; /* notify user of step-size which caused the failure */ *t = t0; /* restore original t value */ return step_status; } e->count++; e->last_step = h0; if (final_step) { *t = t1; } else { *t = t0 + h0; } if (con != NULL) { /* Check error and attempt to adjust the step. */ double h_old = h0; const int hadjust_status = gsl_odeiv_control_hadjust (con, step, y, e->yerr, e->dydt_out, &h0); if (hadjust_status == GSL_ODEIV_HADJ_DEC) { /* Check that the reported status is correct (i.e. an actual decrease in h0 occured) and the suggested h0 will change the time by at least 1 ulp */ double t_curr = GSL_COERCE_DBL(*t); double t_next = GSL_COERCE_DBL((*t) + h0); if (fabs(h0) < fabs(h_old) && t_next != t_curr) { /* Step was decreased. Undo step, and try again with new h0. */ DBL_MEMCPY (y, e->y0, dydt->dimension); e->failed_steps++; goto try_step; } else { h0 = h_old; /* keep current step size */ } } } *h = h0; /* suggest step size for next time-step */ return step_status; } gsl-1.16/ode-initval/gsl_odeiv.h0000664000252300025230000001712012171574312013512 00000000000000/* ode-initval/gsl_odeiv.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #ifndef __GSL_ODEIV_H__ #define __GSL_ODEIV_H__ #include #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS /* Description of a system of ODEs. * * y' = f(t,y) = dydt(t, y) * * The system is specified by giving the right-hand-side * of the equation and possibly a jacobian function. * * Some methods require the jacobian function, which calculates * the matrix dfdy and the vector dfdt. The matrix dfdy conforms * to the GSL standard, being a continuous range of floating point * values, in row-order. * * As with GSL function objects, user-supplied parameter * data is also present. */ typedef struct { int (* function) (double t, const double y[], double dydt[], void * params); int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params); size_t dimension; void * params; } gsl_odeiv_system; #define GSL_ODEIV_FN_EVAL(S,t,y,f) (*((S)->function))(t,y,f,(S)->params) #define GSL_ODEIV_JA_EVAL(S,t,y,dfdy,dfdt) (*((S)->jacobian))(t,y,dfdy,dfdt,(S)->params) /* General stepper object. * * Opaque object for stepping an ODE system from t to t+h. * In general the object has some state which facilitates * iterating the stepping operation. */ typedef struct { const char * name; int can_use_dydt_in; int gives_exact_dydt_out; void * (*alloc) (size_t dim); int (*apply) (void * state, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt); int (*reset) (void * state, size_t dim); unsigned int (*order) (void * state); void (*free) (void * state); } gsl_odeiv_step_type; typedef struct { const gsl_odeiv_step_type * type; size_t dimension; void * state; } gsl_odeiv_step; /* Available stepper types. * * rk2 : embedded 2nd(3rd) Runge-Kutta * rk4 : 4th order (classical) Runge-Kutta * rkck : embedded 4th(5th) Runge-Kutta, Cash-Karp * rk8pd : embedded 8th(9th) Runge-Kutta, Prince-Dormand * rk2imp : implicit 2nd order Runge-Kutta at Gaussian points * rk4imp : implicit 4th order Runge-Kutta at Gaussian points * gear1 : M=1 implicit Gear method * gear2 : M=2 implicit Gear method */ GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkf45; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rkck; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk8pd; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2imp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk2simp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_bsimp; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear1; GSL_VAR const gsl_odeiv_step_type *gsl_odeiv_step_gear2; /* Constructor for specialized stepper objects. */ gsl_odeiv_step * gsl_odeiv_step_alloc(const gsl_odeiv_step_type * T, size_t dim); int gsl_odeiv_step_reset(gsl_odeiv_step * s); void gsl_odeiv_step_free(gsl_odeiv_step * s); /* General stepper object methods. */ const char * gsl_odeiv_step_name(const gsl_odeiv_step * s); unsigned int gsl_odeiv_step_order(const gsl_odeiv_step * s); int gsl_odeiv_step_apply(gsl_odeiv_step * s, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * dydt); /* General step size control object. * * The hadjust() method controls the adjustment of * step size given the result of a step and the error. * Valid hadjust() methods must return one of the codes below. * * The general data can be used by specializations * to store state and control their heuristics. */ typedef struct { const char * name; void * (*alloc) (void); int (*init) (void * state, double eps_abs, double eps_rel, double a_y, double a_dydt); int (*hadjust) (void * state, size_t dim, unsigned int ord, const double y[], const double yerr[], const double yp[], double * h); void (*free) (void * state); } gsl_odeiv_control_type; typedef struct { const gsl_odeiv_control_type * type; void * state; } gsl_odeiv_control; /* Possible return values for an hadjust() evolution method. */ #define GSL_ODEIV_HADJ_INC 1 /* step was increased */ #define GSL_ODEIV_HADJ_NIL 0 /* step unchanged */ #define GSL_ODEIV_HADJ_DEC (-1) /* step decreased */ gsl_odeiv_control * gsl_odeiv_control_alloc(const gsl_odeiv_control_type * T); int gsl_odeiv_control_init(gsl_odeiv_control * c, double eps_abs, double eps_rel, double a_y, double a_dydt); void gsl_odeiv_control_free(gsl_odeiv_control * c); int gsl_odeiv_control_hadjust (gsl_odeiv_control * c, gsl_odeiv_step * s, const double y[], const double yerr[], const double dydt[], double * h); const char * gsl_odeiv_control_name(const gsl_odeiv_control * c); /* Available control object constructors. * * The standard control object is a four parameter heuristic * defined as follows: * D0 = eps_abs + eps_rel * (a_y |y| + a_dydt h |y'|) * D1 = |yerr| * q = consistency order of method (q=4 for 4(5) embedded RK) * S = safety factor (0.9 say) * * / (D0/D1)^(1/(q+1)) D0 >= D1 * h_NEW = S h_OLD * | * \ (D0/D1)^(1/q) D0 < D1 * * This encompasses all the standard error scaling methods. * * The y method is the standard method with a_y=1, a_dydt=0. * The yp method is the standard method with a_y=0, a_dydt=1. */ gsl_odeiv_control * gsl_odeiv_control_standard_new(double eps_abs, double eps_rel, double a_y, double a_dydt); gsl_odeiv_control * gsl_odeiv_control_y_new(double eps_abs, double eps_rel); gsl_odeiv_control * gsl_odeiv_control_yp_new(double eps_abs, double eps_rel); /* This controller computes errors using different absolute errors for * each component * * D0 = eps_abs * scale_abs[i] + eps_rel * (a_y |y| + a_dydt h |y'|) */ gsl_odeiv_control * gsl_odeiv_control_scaled_new(double eps_abs, double eps_rel, double a_y, double a_dydt, const double scale_abs[], size_t dim); /* General evolution object. */ typedef struct { size_t dimension; double * y0; double * yerr; double * dydt_in; double * dydt_out; double last_step; unsigned long int count; unsigned long int failed_steps; } gsl_odeiv_evolve; /* Evolution object methods. */ gsl_odeiv_evolve * gsl_odeiv_evolve_alloc(size_t dim); int gsl_odeiv_evolve_apply(gsl_odeiv_evolve * e, gsl_odeiv_control * con, gsl_odeiv_step * step, const gsl_odeiv_system * dydt, double * t, double t1, double * h, double y[]); int gsl_odeiv_evolve_reset(gsl_odeiv_evolve * e); void gsl_odeiv_evolve_free(gsl_odeiv_evolve * e); __END_DECLS #endif /* __GSL_ODEIV_H__ */ gsl-1.16/ode-initval/rk4imp.c0000664000252300025230000002147412171574312012747 00000000000000/* ode-initval/rk4imp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Runge-Kutta 4, Gaussian implicit */ /* Author: G. Jungman */ /* Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. Method coefficients can also be found in it. */ #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k1nu; double *k2nu; double *ytmp1; double *ytmp2; double *y0; double *y0_orig; double *y_onestep; } rk4imp_state_t; static void * rk4imp_alloc (size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) malloc (sizeof (rk4imp_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for rk4imp_state", GSL_ENOMEM); } state->k1nu = (double *) malloc (dim * sizeof (double)); if (state->k1nu == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k1nu", GSL_ENOMEM); } state->k2nu = (double *) malloc (dim * sizeof (double)); if (state->k2nu == 0) { free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for k2nu", GSL_ENOMEM); } state->ytmp1 = (double *) malloc (dim * sizeof (double)); if (state->ytmp1 == 0) { free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp1", GSL_ENOMEM); } state->ytmp2 = (double *) malloc (dim * sizeof (double)); if (state->ytmp2 == 0) { free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for ytmp2", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y0); free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->y0_orig); free (state->y0); free (state->ytmp2); free (state->ytmp1); free (state->k2nu); free (state->k1nu); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } return state; } static int rk4imp_step (double *y, rk4imp_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes a Runge-Kutta 4th order implicit advance with step size h. y0 is initial values of variables y. The implicit matrix equations to solve are: Y1 = y0 + h * a11 * f(t + h * c1, Y1) + h * a12 * f(t + h * c2, Y2) Y2 = y0 + h * a21 * f(t + h * c1, Y1) + h * a22 * f(t + h * c2, Y2) y = y0 + h * b1 * f(t + h * c1, Y1) + h * b2 * f(t + h * c2, Y2) with constant coefficients a, b and c. For this method they are: b=[0.5 0.5] c=[(3-sqrt(3))/6 (3+sqrt(3))/6] a11=1/4, a12=(3-2*sqrt(3))/12, a21=(3+2*sqrt(3))/12 and a22=1/4 */ const double ir3 = 1.0 / M_SQRT3; const int iter_steps = 3; int nu; size_t i; double *const k1nu = state->k1nu; double *const k2nu = state->k2nu; double *const ytmp1 = state->ytmp1; double *const ytmp2 = state->ytmp2; /* iterative solution of Y1 and Y2. Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < iter_steps; nu++) { for (i = 0; i < dim; i++) { ytmp1[i] = y[i] + h * (0.25 * k1nu[i] + 0.5 * (0.5 - ir3) * k2nu[i]); ytmp2[i] = y[i] + h * (0.25 * k2nu[i] + 0.5 * (0.5 + ir3) * k1nu[i]); } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h * (1.0 - ir3), ytmp1, k1nu); if (s != GSL_SUCCESS) { return s; } } { int s = GSL_ODEIV_FN_EVAL (sys, t + 0.5 * h * (1.0 + ir3), ytmp2, k2nu); if (s != GSL_SUCCESS) { return s; } } } /* assignment */ for (i = 0; i < dim; i++) { const double d_i = 0.5 * (k1nu[i] + k2nu[i]); y[i] += h * d_i; } return GSL_SUCCESS; } static int rk4imp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; size_t i; double *y0 = state->y0; double *y0_orig = state->y0_orig; double *y_onestep = state->y_onestep; double *k1nu = state->k1nu; double *k2nu = state->k2nu; /* Initialization step */ DBL_MEMCPY (y0, y, dim); /* Save initial values in case of failure */ DBL_MEMCPY (y0_orig, y, dim); if (dydt_in != 0) { DBL_MEMCPY (k1nu, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t, y, k1nu); if (s != GSL_SUCCESS) { return s; } } DBL_MEMCPY (k2nu, k1nu, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = rk4imp_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = rk4imp_step (y, state, h/2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = GSL_ODEIV_FN_EVAL (sys, t + h/2.0, y, k1nu); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (k2nu, k1nu, dim); { int s = rk4imp_step (y, state, h/2.0, t + h/2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Derivatives at output */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ /* Denominator in step doubling error equation * yerr = 0.5 * | y(onestep) - y(twosteps) | / (2^order - 1) */ for (i = 0; i < dim; i++) { yerr[i] = 8.0 * 0.5 * (y[i] - y_onestep[i]) / 15.0; } return GSL_SUCCESS; } static int rk4imp_reset (void *vstate, size_t dim) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->k1nu, dim); DBL_ZERO_MEMSET (state->k2nu, dim); DBL_ZERO_MEMSET (state->ytmp1, dim); DBL_ZERO_MEMSET (state->ytmp2, dim); return GSL_SUCCESS; } static unsigned int rk4imp_order (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 4; } static void rk4imp_free (void *vstate) { rk4imp_state_t *state = (rk4imp_state_t *) vstate; free (state->y_onestep); free (state->y0_orig); free (state->y0); free (state->k1nu); free (state->k2nu); free (state->ytmp1); free (state->ytmp2); free (state); } static const gsl_odeiv_step_type rk4imp_type = { "rk4imp", /* name */ 1, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &rk4imp_alloc, &rk4imp_apply, &rk4imp_reset, &rk4imp_order, &rk4imp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_rk4imp = &rk4imp_type; gsl-1.16/ode-initval/bsimp.c0000664000252300025230000003275212171574312012654 00000000000000/* ode-initval/bsimp.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2004 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Bulirsch-Stoer Implicit */ /* Author: G. Jungman */ /* Bader-Deuflhard implicit extrapolative stepper. * [Numer. Math., 41, 373 (1983)] */ #include #include #include #include #include #include #include #include "odeiv_util.h" #define SEQUENCE_COUNT 8 #define SEQUENCE_MAX 7 /* Bader-Deuflhard extrapolation sequence */ static const int bd_sequence[SEQUENCE_COUNT] = { 2, 6, 10, 14, 22, 34, 50, 70 }; typedef struct { gsl_matrix *d; /* workspace for extrapolation */ gsl_matrix *a_mat; /* workspace for linear system matrix */ gsl_permutation *p_vec; /* workspace for LU permutation */ double x[SEQUENCE_MAX]; /* workspace for extrapolation */ /* state info */ size_t k_current; size_t k_choice; double h_next; double eps; /* workspace for extrapolation step */ double *yp; double *y_save; double *yerr_save; double *y_extrap_save; double *y_extrap_sequence; double *extrap_work; double *dfdt; double *y_temp; double *delta_temp; double *weight; gsl_matrix *dfdy; /* workspace for the basic stepper */ double *rhs_temp; double *delta; /* order of last step */ size_t order; } bsimp_state_t; /* Compute weighting factor */ static void compute_weights (const double y[], double w[], size_t dim) { size_t i; for (i = 0; i < dim; i++) { double u = fabs(y[i]); w[i] = (u > 0.0) ? u : 1.0; } } /* Calculate a choice for the "order" of the method, using the * Deuflhard criteria. */ static size_t bsimp_deuf_kchoice (double eps, size_t dimension) { const double safety_f = 0.25; const double small_eps = safety_f * eps; double a_work[SEQUENCE_COUNT]; double alpha[SEQUENCE_MAX][SEQUENCE_MAX]; int i, k; a_work[0] = bd_sequence[0] + 1.0; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (i = 0; i < SEQUENCE_MAX; i++) { alpha[i][i] = 1.0; for (k = 0; k < i; k++) { const double tmp1 = a_work[k + 1] - a_work[i + 1]; const double tmp2 = (a_work[i + 1] - a_work[0] + 1.0) * (2 * k + 1); alpha[k][i] = pow (small_eps, tmp1 / tmp2); } } a_work[0] += dimension; for (k = 0; k < SEQUENCE_MAX; k++) { a_work[k + 1] = a_work[k] + bd_sequence[k + 1]; } for (k = 0; k < SEQUENCE_MAX - 1; k++) { if (a_work[k + 2] > a_work[k + 1] * alpha[k][k + 1]) break; } return k; } static void poly_extrap (gsl_matrix * d, const double x[], const unsigned int i_step, const double x_i, const double y_i[], double y_0[], double y_0_err[], double work[], const size_t dim) { size_t j, k; DBL_MEMCPY (y_0_err, y_i, dim); DBL_MEMCPY (y_0, y_i, dim); if (i_step == 0) { for (j = 0; j < dim; j++) { gsl_matrix_set (d, 0, j, y_i[j]); } } else { DBL_MEMCPY (work, y_i, dim); for (k = 0; k < i_step; k++) { double delta = 1.0 / (x[i_step - k - 1] - x_i); const double f1 = delta * x_i; const double f2 = delta * x[i_step - k - 1]; for (j = 0; j < dim; j++) { const double q_kj = gsl_matrix_get (d, k, j); gsl_matrix_set (d, k, j, y_0_err[j]); delta = work[j] - q_kj; y_0_err[j] = f1 * delta; work[j] = f2 * delta; y_0[j] += y_0_err[j]; } } for (j = 0; j < dim; j++) { gsl_matrix_set (d, i_step, j, y_0_err[j]); } } } /* Basic implicit Bulirsch-Stoer step. Divide the step h_total into * n_step smaller steps and do the Bader-Deuflhard semi-implicit * iteration. */ static int bsimp_step_local (void *vstate, size_t dim, const double t0, const double h_total, const unsigned int n_step, const double y[], const double yp[], const double dfdt[], const gsl_matrix * dfdy, double y_out[], const gsl_odeiv_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; gsl_matrix *const a_mat = state->a_mat; gsl_permutation *const p_vec = state->p_vec; double *const delta = state->delta; double *const y_temp = state->y_temp; double *const delta_temp = state->delta_temp; double *const rhs_temp = state->rhs_temp; double *const w = state->weight; gsl_vector_view y_temp_vec = gsl_vector_view_array (y_temp, dim); gsl_vector_view delta_temp_vec = gsl_vector_view_array (delta_temp, dim); gsl_vector_view rhs_temp_vec = gsl_vector_view_array (rhs_temp, dim); const double h = h_total / n_step; double t = t0 + h; double sum; /* This is the factor sigma referred to in equation 3.4 of the paper. A relative change in y exceeding sigma indicates a runaway behavior. According to the authors suitable values for sigma are >>1. I have chosen a value of 100*dim. BJG */ const double max_sum = 100.0 * dim; int signum, status; size_t i, j; size_t n_inter; /* Calculate the matrix for the linear system. */ for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) { gsl_matrix_set (a_mat, i, j, -h * gsl_matrix_get (dfdy, i, j)); } gsl_matrix_set (a_mat, i, i, gsl_matrix_get (a_mat, i, i) + 1.0); } /* LU decomposition for the linear system. */ gsl_linalg_LU_decomp (a_mat, p_vec, &signum); /* Compute weighting factors */ compute_weights (y, w, dim); /* Initial step. */ for (i = 0; i < dim; i++) { y_temp[i] = h * (yp[i] + h * dfdt[i]); } gsl_linalg_LU_solve (a_mat, p_vec, &y_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { const double di = delta_temp[i]; delta[i] = di; y_temp[i] = y[i] + di; sum += fabs(di) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } /* Intermediate steps. */ status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } for (n_inter = 1; n_inter < n_step; n_inter++) { for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { delta[i] += 2.0 * delta_temp[i]; y_temp[i] += delta[i]; sum += fabs(delta[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } t += h; status = GSL_ODEIV_FN_EVAL (sys, t, y_temp, y_out); if (status) { return status; } } /* Final step. */ for (i = 0; i < dim; i++) { rhs_temp[i] = h * y_out[i] - delta[i]; } gsl_linalg_LU_solve (a_mat, p_vec, &rhs_temp_vec.vector, &delta_temp_vec.vector); sum = 0.0; for (i = 0; i < dim; i++) { y_out[i] = y_temp[i] + delta_temp[i]; sum += fabs(delta_temp[i]) / w[i]; } if (sum > max_sum) { return GSL_EFAILED ; } return GSL_SUCCESS; } static void * bsimp_alloc (size_t dim) { bsimp_state_t *state = (bsimp_state_t *) malloc (sizeof (bsimp_state_t)); state->d = gsl_matrix_alloc (SEQUENCE_MAX, dim); state->a_mat = gsl_matrix_alloc (dim, dim); state->p_vec = gsl_permutation_alloc (dim); state->yp = (double *) malloc (dim * sizeof (double)); state->y_save = (double *) malloc (dim * sizeof (double)); state->yerr_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_save = (double *) malloc (dim * sizeof (double)); state->y_extrap_sequence = (double *) malloc (dim * sizeof (double)); state->extrap_work = (double *) malloc (dim * sizeof (double)); state->dfdt = (double *) malloc (dim * sizeof (double)); state->y_temp = (double *) malloc (dim * sizeof (double)); state->delta_temp = (double *) malloc (dim * sizeof(double)); state->weight = (double *) malloc (dim * sizeof(double)); state->dfdy = gsl_matrix_alloc (dim, dim); state->rhs_temp = (double *) malloc (dim * sizeof(double)); state->delta = (double *) malloc (dim * sizeof (double)); { size_t k_choice = bsimp_deuf_kchoice (GSL_SQRT_DBL_EPSILON, dim); /*FIXME: choice of epsilon? */ state->k_choice = k_choice; state->k_current = k_choice; state->order = 2 * k_choice; } state->h_next = -GSL_SQRT_DBL_MAX; return state; } /* Perform the basic semi-implicit extrapolation * step, of size h, at a Deuflhard determined order. */ static int bsimp_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { bsimp_state_t *state = (bsimp_state_t *) vstate; double *const x = state->x; double *const yp = state->yp; double *const y_save = state->y_save; double *const yerr_save = state->yerr_save; double *const y_extrap_sequence = state->y_extrap_sequence; double *const y_extrap_save = state->y_extrap_save; double *const extrap_work = state->extrap_work; double *const dfdt = state->dfdt; gsl_matrix *d = state->d; gsl_matrix *dfdy = state->dfdy; const double t_local = t; size_t i, k; if (h + t_local == t_local) { return GSL_EUNDRFLW; /* FIXME: error condition */ } DBL_MEMCPY (y_extrap_save, y, dim); /* Save inputs */ DBL_MEMCPY (y_save, y, dim); DBL_MEMCPY (yerr_save, yerr, dim); /* Evaluate the derivative. */ if (dydt_in != NULL) { DBL_MEMCPY (yp, dydt_in, dim); } else { int s = GSL_ODEIV_FN_EVAL (sys, t_local, y, yp); if (s != GSL_SUCCESS) { return s; } } /* Evaluate the Jacobian for the system. */ { int s = GSL_ODEIV_JA_EVAL (sys, t_local, y, dfdy->data, dfdt); if (s != GSL_SUCCESS) { return s; } } /* Make a series of refined extrapolations, * up to the specified maximum order, which * was calculated based on the Deuflhard * criterion upon state initialization. */ for (k = 0; k <= state->k_current; k++) { const unsigned int N = bd_sequence[k]; const double r = (h / N); const double x_k = r * r; int status = bsimp_step_local (state, dim, t_local, h, N, y_extrap_save, yp, dfdt, dfdy, y_extrap_sequence, sys); if (status == GSL_EFAILED) { /* If the local step fails, set the error to infinity in order to force a reduction in the step size */ for (i = 0; i < dim; i++) { yerr[i] = GSL_POSINF; } break; } else if (status != GSL_SUCCESS) { return status; } x[k] = x_k; poly_extrap (d, x, k, x_k, y_extrap_sequence, y, yerr, extrap_work, dim); } /* Evaluate dydt_out[]. */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { DBL_MEMCPY (y, y_save, dim); DBL_MEMCPY (yerr, yerr_save, dim); return s; } } return GSL_SUCCESS; } static unsigned int bsimp_order (void *vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; return state->order; } static int bsimp_reset (void *vstate, size_t dim) { bsimp_state_t *state = (bsimp_state_t *) vstate; state->h_next = 0; DBL_ZERO_MEMSET (state->yp, dim); return GSL_SUCCESS; } static void bsimp_free (void * vstate) { bsimp_state_t *state = (bsimp_state_t *) vstate; free (state->delta); free (state->rhs_temp); gsl_matrix_free (state->dfdy); free (state->weight); free (state->delta_temp); free (state->y_temp); free (state->dfdt); free (state->extrap_work); free (state->y_extrap_sequence); free (state->y_extrap_save); free (state->y_save); free (state->yerr_save); free (state->yp); gsl_permutation_free (state->p_vec); gsl_matrix_free (state->a_mat); gsl_matrix_free (state->d); free (state); } static const gsl_odeiv_step_type bsimp_type = { "bsimp", /* name */ 1, /* can use dydt_in */ 1, /* gives exact dydt_out */ &bsimp_alloc, &bsimp_apply, &bsimp_reset, &bsimp_order, &bsimp_free }; const gsl_odeiv_step_type *gsl_odeiv_step_bsimp = &bsimp_type; gsl-1.16/ode-initval/gear1.c0000664000252300025230000001404112171574312012530 00000000000000/* ode-initval/gear1.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Gear 1. This is the implicit Euler a.k.a backward Euler method. */ /* Author: G. Jungman */ /* Error estimation by step doubling, see eg. Ascher, U.M., Petzold, L.R., Computer methods for ordinary differential and differential-algebraic equations, SIAM, Philadelphia, 1998. The method is also described in eg. this reference. */ #include #include #include #include #include #include #include "odeiv_util.h" typedef struct { double *k; double *y0; double *y0_orig; double *y_onestep; } gear1_state_t; static void * gear1_alloc (size_t dim) { gear1_state_t *state = (gear1_state_t *) malloc (sizeof (gear1_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for gear1_state", GSL_ENOMEM); } state->k = (double *) malloc (dim * sizeof (double)); if (state->k == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y0); free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->y0_orig); free (state->y0); free (state->k); free (state); GSL_ERROR_NULL ("failed to allocate space for y_onestep", GSL_ENOMEM); } return state; } static int gear1_step (double *y, gear1_state_t *state, const double h, const double t, const size_t dim, const gsl_odeiv_system *sys) { /* Makes an implicit Euler advance with step size h. y0 is the initial values of variables y. The implicit matrix equations to solve are: k = y0 + h * f(t + h, k) y = y0 + h * f(t + h, k) */ const int iter_steps = 3; int nu; size_t i; double *y0 = state->y0; double *k = state->k; /* Iterative solution of k = y0 + h * f(t + h, k) Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < iter_steps; nu++) { int s = GSL_ODEIV_FN_EVAL(sys, t + h, y, k); if (s != GSL_SUCCESS) { return s; } for (i=0; iy0; double *y0_orig = state->y0_orig; double *y_onestep = state->y_onestep; /* initialization */ DBL_MEMCPY(y0, y, dim); /* Save initial values for possible failures */ DBL_MEMCPY (y0_orig, y, dim); /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); { int s = gear1_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } } /* Then with two steps with half step length (save to y) */ { int s = gear1_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } DBL_MEMCPY (y0, y, dim); { int s = gear1_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Cleanup update */ if (dydt_out != NULL) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Error estimation */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]); } return GSL_SUCCESS; } static int gear1_reset (void *vstate, size_t dim) { gear1_state_t *state = (gear1_state_t *) vstate; DBL_ZERO_MEMSET (state->y_onestep, dim); DBL_ZERO_MEMSET (state->y0_orig, dim); DBL_ZERO_MEMSET (state->y0, dim); DBL_ZERO_MEMSET (state->k, dim); return GSL_SUCCESS; } static unsigned int gear1_order (void *vstate) { gear1_state_t *state = (gear1_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 1; } static void gear1_free (void *vstate) { gear1_state_t *state = (gear1_state_t *) vstate; free (state->y_onestep); free (state->y0_orig); free (state->y0); free (state->k); free (state); } static const gsl_odeiv_step_type gear1_type = { "gear1", /* name */ 0, /* can use dydt_in? */ 1, /* gives exact dydt_out? */ &gear1_alloc, &gear1_apply, &gear1_reset, &gear1_order, &gear1_free }; const gsl_odeiv_step_type *gsl_odeiv_step_gear1 = &gear1_type; gsl-1.16/ode-initval/gear2.c0000664000252300025230000002065712171574312012543 00000000000000/* ode-initval/gear2.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Gear 2 */ /* Author: G. Jungman */ #include #include #include #include #include #include "odeiv_util.h" #include /* gear2 state object */ typedef struct { int primed; /* flag indicating that yim1 is ready */ double t_primed; /* system was primed for this value of t */ double last_h; /* last step size */ gsl_odeiv_step *primer; /* stepper to use for priming */ double *yim1; /* y_{i-1} */ double *k; /* work space */ double *y0; /* work space */ double *y0_orig; double *y_onestep; int stutter; } gear2_state_t; static void * gear2_alloc (size_t dim) { gear2_state_t *state = (gear2_state_t *) malloc (sizeof (gear2_state_t)); if (state == 0) { GSL_ERROR_NULL ("failed to allocate space for gear2_state", GSL_ENOMEM); } state->yim1 = (double *) malloc (dim * sizeof (double)); if (state->yim1 == 0) { free (state); GSL_ERROR_NULL ("failed to allocate space for yim1", GSL_ENOMEM); } state->k = (double *) malloc (dim * sizeof (double)); if (state->k == 0) { free (state->yim1); free (state); GSL_ERROR_NULL ("failed to allocate space for k", GSL_ENOMEM); } state->y0 = (double *) malloc (dim * sizeof (double)); if (state->y0 == 0) { free (state->k); free (state->yim1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0", GSL_ENOMEM); } state->y0_orig = (double *) malloc (dim * sizeof (double)); if (state->y0_orig == 0) { free (state->y0); free (state->k); free (state->yim1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->y_onestep = (double *) malloc (dim * sizeof (double)); if (state->y_onestep == 0) { free (state->y0_orig); free (state->y0); free (state->k); free (state->yim1); free (state); GSL_ERROR_NULL ("failed to allocate space for y0_orig", GSL_ENOMEM); } state->primed = 0; state->primer = gsl_odeiv_step_alloc (gsl_odeiv_step_rk4imp, dim); if (state->primer == 0) { free (state->y_onestep); free (state->y0_orig); free (state->y0); free (state->k); free (state->yim1); free (state); GSL_ERROR_NULL ("failed to allocate space for primer", GSL_ENOMEM); } state->last_h = 0.0; return state; } static int gear2_step (double *y, gear2_state_t * state, const double h, const double t, const size_t dim, const gsl_odeiv_system * sys) { /* Makes a Gear2 advance with step size h. y0 is the initial values of variables y. The implicit matrix equations to solve are: k = y0 + h * f(t + h, k) y = y0 + h * f(t + h, k) */ const int iter_steps = 3; int nu; size_t i; double *y0 = state->y0; double *yim1 = state->yim1; double *k = state->k; /* Iterative solution of k = y0 + h * f(t + h, k) Note: This method does not check for convergence of the iterative solution! */ for (nu = 0; nu < iter_steps; nu++) { int s = GSL_ODEIV_FN_EVAL (sys, t + h, y, k); if (s != GSL_SUCCESS) { return s; } for (i = 0; i < dim; i++) { y[i] = ((4.0 * y0[i] - yim1[i]) + 2.0 * h * k[i]) / 3.0; } } return GSL_SUCCESS; } static int gear2_apply (void *vstate, size_t dim, double t, double h, double y[], double yerr[], const double dydt_in[], double dydt_out[], const gsl_odeiv_system * sys) { gear2_state_t *state = (gear2_state_t *) vstate; state->stutter = 0; if (state->primed == 0 || t == state->t_primed || h != state->last_h) { /* Execute a single-step method to prime the process. Note that * we do this if the step size changes, so frequent step size * changes will cause the method to stutter. * * Note that we reuse this method if the time has not changed, * which can occur when the adaptive driver is attempting to find * an appropriate step-size on its first iteration */ int status; DBL_MEMCPY (state->yim1, y, dim); status = gsl_odeiv_step_apply (state->primer, t, h, y, yerr, dydt_in, dydt_out, sys); /* Make note of step size and indicate readiness for a Gear step. */ state->primed = 1; state->t_primed = t; state->last_h = h; state->stutter = 1; return status; } else { /* We have a previous y value in the buffer, and the step * sizes match, so we go ahead with the Gear step. */ double *const k = state->k; double *const y0 = state->y0; double *const y0_orig = state->y0_orig; double *const yim1 = state->yim1; double *y_onestep = state->y_onestep; int s; size_t i; /* initialization */ DBL_MEMCPY (y0, y, dim); /* Save initial values for possible failures */ DBL_MEMCPY (y0_orig, y, dim); /* iterative solution */ if (dydt_out != NULL) { DBL_MEMCPY (k, dydt_out, dim); } /* First traverse h with one step (save to y_onestep) */ DBL_MEMCPY (y_onestep, y, dim); s = gear2_step (y_onestep, state, h, t, dim, sys); if (s != GSL_SUCCESS) { return s; } /* Then with two steps with half step length (save to y) */ s = gear2_step (y, state, h / 2.0, t, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } DBL_MEMCPY (y0, y, dim); s = gear2_step (y, state, h / 2.0, t + h / 2.0, dim, sys); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } /* Cleanup update */ if (dydt_out != NULL) { s = GSL_ODEIV_FN_EVAL (sys, t + h, y, dydt_out); if (s != GSL_SUCCESS) { /* Restore original y vector */ DBL_MEMCPY (y, y0_orig, dim); return s; } } /* Estimate error and update the state buffer. */ for (i = 0; i < dim; i++) { yerr[i] = 4.0 * (y[i] - y_onestep[i]); yim1[i] = y0[i]; } /* Make note of step size. */ state->last_h = h; return 0; } } static int gear2_reset (void *vstate, size_t dim) { gear2_state_t *state = (gear2_state_t *) vstate; DBL_ZERO_MEMSET (state->yim1, dim); DBL_ZERO_MEMSET (state->k, dim); DBL_ZERO_MEMSET (state->y0, dim); state->primed = 0; state->last_h = 0.0; return GSL_SUCCESS; } static unsigned int gear2_order (void *vstate) { gear2_state_t *state = (gear2_state_t *) vstate; state = 0; /* prevent warnings about unused parameters */ return 3; } static void gear2_free (void *vstate) { gear2_state_t *state = (gear2_state_t *) vstate; free (state->yim1); free (state->k); free (state->y0); free (state->y0_orig); free (state->y_onestep); gsl_odeiv_step_free (state->primer); free (state); } static const gsl_odeiv_step_type gear2_type = { "gear2", /* name */ 1, /* can use dydt_in */ 0, /* gives exact dydt_out */ &gear2_alloc, &gear2_apply, &gear2_reset, &gear2_order, &gear2_free }; const gsl_odeiv_step_type *gsl_odeiv_step_gear2 = &gear2_type; gsl-1.16/COPYING0000664000252300025230000010451312171574312010211 00000000000000 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . gsl-1.16/gsl_nan.h0000664000252300025230000000246712171574312010755 00000000000000/* gsl_nan.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Gerard Jungman, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_NAN_H__ #define __GSL_NAN_H__ #ifdef INFINITY # define GSL_POSINF INFINITY # define GSL_NEGINF (-INFINITY) #elif defined(HUGE_VAL) # define GSL_POSINF HUGE_VAL # define GSL_NEGINF (-HUGE_VAL) #else # define GSL_POSINF (gsl_posinf()) # define GSL_NEGINF (gsl_neginf()) #endif #ifdef NAN # define GSL_NAN NAN #elif defined(INFINITY) # define GSL_NAN (INFINITY/INFINITY) #else # define GSL_NAN (gsl_nan()) #endif #define GSL_POSZERO (+0.0) #define GSL_NEGZERO (-0.0) #endif /* __GSL_NAN_H__ */ gsl-1.16/templates_off.h0000664000252300025230000000204112171574312012150 00000000000000#ifdef FUNCTION #undef FUNCTION #endif #ifdef CONCAT4 #undef CONCAT4 #endif #ifdef CONCAT4x #undef CONCAT4x #endif #ifdef CONCAT3 #undef CONCAT3 #endif #ifdef CONCAT3x #undef CONCAT3x #endif #ifdef CONCAT2 #undef CONCAT2 #endif #ifdef CONCAT2x #undef CONCAT2x #endif #ifdef TYPE #undef TYPE #endif #ifdef REAL_TYPE #undef REAL_TYPE #endif #ifdef QUALIFIED_TYPE #undef QUALIFIED_TYPE #endif #ifdef VIEW #undef VIEW #endif #ifdef REAL_VIEW #undef REAL_VIEW #endif #ifdef QUALIFIED_VIEW #undef QUALIFIED_VIEW #endif #ifdef QUALIFIED_REAL_TYPE #undef QUALIFIED_REAL_TYPE #endif #ifdef QUALIFIED_REAL_VIEW #undef QUALIFIED_REAL_VIEW #endif #ifdef USES_LONGDOUBLE #undef USES_LONGDOUBLE #endif #ifdef SHORT_REAL #undef SHORT_REAL #endif #ifndef USE_QUALIFIER #ifdef QUALIFIER #undef QUALIFIER #endif #endif #undef BASE #undef BASE_EPSILON #undef SHORT #undef ATOMIC #undef MULTIPLICITY #undef IN_FORMAT #undef OUT_FORMAT #undef ATOMIC_IO #undef ZERO #undef ONE #undef NAME #undef STRING #undef EXPAND #undef UNSIGNED #ifdef FP #undef FP #endif gsl-1.16/gsl.pc.in0000664000252300025230000000036612171574312010675 00000000000000prefix=@prefix@ exec_prefix=@exec_prefix@ libdir=@libdir@ includedir=@includedir@ GSL_CBLAS_LIB=-lgslcblas Name: GSL Description: GNU Scientific Library Version: @VERSION@ Libs: @GSL_LIBS@ ${GSL_CBLAS_LIB} @GSL_LIBM@ @LIBS@ Cflags: @GSL_CFLAGS@ gsl-1.16/diff/0000775000252300025230000000000012172254163010142 500000000000000gsl-1.16/diff/diff.c0000664000252300025230000001130112171574312011132 00000000000000/* diff/diff.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #undef GSL_DISABLE_DEPRECATED #include int gsl_diff_backward (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[3], d[3], a2; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 2. */ for (i = 0; i < 3; i++) { a[i] = x + (i - 2.0) * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 4; k++) { for (i = 0; i < 3 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a2 = fabs (d[0] + d[1] + d[2]); if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON) { a2 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2)); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x) - GSL_FN_EVAL (f, x - h)) / h; *abserr = fabs (10.0 * a2 * h); return GSL_SUCCESS; } int gsl_diff_forward (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[3], d[3], a2; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 2. */ for (i = 0; i < 3; i++) { a[i] = x + i * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 4; k++) { for (i = 0; i < 3 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a2 = fabs (d[0] + d[1] + d[2]); if (a2 < 100.0 * GSL_SQRT_DBL_EPSILON) { a2 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = sqrt (GSL_SQRT_DBL_EPSILON / (2.0 * a2)); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x)) / h; *abserr = fabs (10.0 * a2 * h); return GSL_SUCCESS; } int gsl_diff_central (const gsl_function * f, double x, double *result, double *abserr) { /* Construct a divided difference table with a fairly large step size to get a very rough estimate of f'''. Use this to estimate the step size which will minimize the error in calculating f'. */ int i, k; double h = GSL_SQRT_DBL_EPSILON; double a[4], d[4], a3; /* Algorithm based on description on pg. 204 of Conte and de Boor (CdB) - coefficients of Newton form of polynomial of degree 3. */ for (i = 0; i < 4; i++) { a[i] = x + (i - 2.0) * h; d[i] = GSL_FN_EVAL (f, a[i]); } for (k = 1; k < 5; k++) { for (i = 0; i < 4 - k; i++) { d[i] = (d[i + 1] - d[i]) / (a[i + k] - a[i]); } } /* Adapt procedure described on pg. 282 of CdB to find best value of step size. */ a3 = fabs (d[0] + d[1] + d[2] + d[3]); if (a3 < 100.0 * GSL_SQRT_DBL_EPSILON) { a3 = 100.0 * GSL_SQRT_DBL_EPSILON; } h = pow (GSL_SQRT_DBL_EPSILON / (2.0 * a3), 1.0 / 3.0); if (h > 100.0 * GSL_SQRT_DBL_EPSILON) { h = 100.0 * GSL_SQRT_DBL_EPSILON; } *result = (GSL_FN_EVAL (f, x + h) - GSL_FN_EVAL (f, x - h)) / (2.0 * h); *abserr = fabs (100.0 * a3 * h * h); return GSL_SUCCESS; } gsl-1.16/diff/test.c0000664000252300025230000001025512171574312011210 00000000000000/* diff/test.c * * Copyright (C) 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #undef GSL_DISABLE_DEPRECATED #include double f1 (double x, void *params) { return exp (x); } double df1 (double x, void *params) { return exp (x); } double f2 (double x, void *params) { if (x >= 0.0) { return x * sqrt (x); } else { return 0.0; } } double df2 (double x, void *params) { if (x >= 0.0) { return 1.5 * sqrt (x); } else { return 0.0; } } double f3 (double x, void *params) { if (x != 0.0) { return sin (1 / x); } else { return 0.0; } } double df3 (double x, void *params) { if (x != 0.0) { return -cos (1 / x) / (x * x); } else { return 0.0; } } double f4 (double x, void *params) { return exp (-x * x); } double df4 (double x, void *params) { return -2.0 * x * exp (-x * x); } double f5 (double x, void *params) { return x * x; } double df5 (double x, void *params) { return 2.0 * x; } double f6 (double x, void *params) { return 1.0 / x; } double df6 (double x, void *params) { return -1.0 / (x * x); } typedef int (diff_fn) (const gsl_function * f, double x, double * res, double *abserr); void test (diff_fn * diff, gsl_function * f, gsl_function * df, double x, const char * desc) { double result, abserr; double expected = GSL_FN_EVAL (df, x); (*diff) (f, x, &result, &abserr); gsl_test_abs (result, expected, abserr, desc); gsl_test (fabs(result-expected) > abserr, "%s, valid error estimate", desc); } int main () { gsl_function F1, DF1, F2, DF2, F3, DF3, F4, DF4, F5, DF5, F6, DF6; gsl_ieee_env_setup (); F1.function = &f1; DF1.function = &df1; F2.function = &f2; DF2.function = &df2; F3.function = &f3; DF3.function = &df3; F4.function = &f4; DF4.function = &df4; F5.function = &f5; DF5.function = &df5; F6.function = &f6; DF6.function = &df6; test (&gsl_diff_central, &F1, &DF1, 1.0, "exp(x), x=1, central diff"); test (&gsl_diff_forward, &F1, &DF1, 1.0, "exp(x), x=1, forward diff"); test (&gsl_diff_backward, &F1, &DF1, 1.0, "exp(x), x=1, backward diff"); test (&gsl_diff_central, &F2, &DF2, 0.1, "x^(3/2), x=0.1, central diff"); test (&gsl_diff_forward, &F2, &DF2, 0.1, "x^(3/2), x=0.1, forward diff"); test (&gsl_diff_backward, &F2, &DF2, 0.1, "x^(3/2), x=0.1, backward diff"); test (&gsl_diff_central, &F3, &DF3, 0.45, "sin(1/x), x=0.45, central diff"); test (&gsl_diff_forward, &F3, &DF3, 0.45, "sin(1/x), x=0.45, forward diff"); test (&gsl_diff_backward, &F3, &DF3, 0.45, "sin(1/x), x=0.45, backward diff"); test (&gsl_diff_central, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, central diff"); test (&gsl_diff_forward, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, forward diff"); test (&gsl_diff_backward, &F4, &DF4, 0.5, "exp(-x^2), x=0.5, backward diff"); test (&gsl_diff_central, &F5, &DF5, 0.0, "x^2, x=0, central diff"); test (&gsl_diff_forward, &F5, &DF5, 0.0, "x^2, x=0, forward diff"); test (&gsl_diff_backward, &F5, &DF5, 0.0, "x^2, x=0, backward diff"); test (&gsl_diff_central, &F6, &DF6, 10.0, "1/x, x=10, central diff"); test (&gsl_diff_forward, &F6, &DF6, 10.0, "1/x, x=10, forward diff"); test (&gsl_diff_backward, &F6, &DF6, 10.0, "1/x, x=10, backward diff"); exit (gsl_test_summary ()); } gsl-1.16/diff/Makefile.in0000664000252300025230000010345512172253755012145 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = diff DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(pkginclude_HEADERS) $(top_srcdir)/test-driver ChangeLog ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgsldiff_la_LIBADD = am_libgsldiff_la_OBJECTS = diff.lo libgsldiff_la_OBJECTS = $(am_libgsldiff_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgsldiff.la ../vector/libgslvector.la \ ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la \ ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgsldiff_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgsldiff_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgsldiff.la INCLUDES = -I$(top_srcdir) libgsldiff_la_SOURCES = diff.c pkginclude_HEADERS = gsl_diff.h TESTS = $(check_PROGRAMS) test_SOURCES = test.c test_LDADD = libgsldiff.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu diff/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu diff/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgsldiff.la: $(libgsldiff_la_OBJECTS) $(libgsldiff_la_DEPENDENCIES) $(EXTRA_libgsldiff_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgsldiff_la_OBJECTS) $(libgsldiff_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/diff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS #demo_SOURCES = demo.c #demo_LDADD = libgsldiff.la ../vector/libgslvector.la ../block/libgslblock.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/diff/ChangeLog0000664000252300025230000000126312171574312011636 000000000000002008-09-18 Brian Gough * diff.c test.c: temporarily enable deprecated functions for testing * gsl_diff.h: marked these functions deprecated, use gsl_deriv instead. 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir Mon Apr 23 13:26:21 2001 Brian Gough * Makefile.am: removed demo from Makefile * test.c (test): changed return type to void Mon Feb 5 13:42:54 2001 Brian Gough * diff.c: moved gradient calculating function into multimin since it depends on multimin functions * test.c (main): tidied up the tests gsl-1.16/diff/Makefile.am0000664000252300025230000000104412171574312012115 00000000000000noinst_LTLIBRARIES = libgsldiff.la INCLUDES = -I$(top_srcdir) libgsldiff_la_SOURCES = diff.c pkginclude_HEADERS = gsl_diff.h TESTS = $(check_PROGRAMS) check_PROGRAMS = test #demo test_SOURCES = test.c test_LDADD = libgsldiff.la ../vector/libgslvector.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la #demo_SOURCES = demo.c #demo_LDADD = libgsldiff.la ../vector/libgslvector.la ../block/libgslblock.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la gsl-1.16/diff/gsl_diff.h0000664000252300025230000000302612171574312012011 00000000000000/* diff/gsl_diff.h * * Copyright (C) 2000 David Morrison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_DIFF_H__ #define __GSL_DIFF_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS #ifndef GSL_DISABLE_DEPRECATED int gsl_diff_central (const gsl_function *f, double x, double *result, double *abserr); int gsl_diff_backward (const gsl_function *f, double x, double *result, double *abserr); int gsl_diff_forward (const gsl_function *f, double x, double *result, double *abserr); #endif __END_DECLS #endif /* __GSL_DIFF_H__ */ gsl-1.16/gsl.m40000664000252300025230000001174312171574312010207 00000000000000# Configure path for the GNU Scientific Library # Christopher R. Gabriel , April 2000 AC_DEFUN([AX_PATH_GSL], [ AC_ARG_WITH(gsl-prefix,[ --with-gsl-prefix=PFX Prefix where GSL is installed (optional)], gsl_prefix="$withval", gsl_prefix="") AC_ARG_WITH(gsl-exec-prefix,[ --with-gsl-exec-prefix=PFX Exec prefix where GSL is installed (optional)], gsl_exec_prefix="$withval", gsl_exec_prefix="") AC_ARG_ENABLE(gsltest, [ --disable-gsltest Do not try to compile and run a test GSL program], , enable_gsltest=yes) if test "x${GSL_CONFIG+set}" != xset ; then if test "x$gsl_prefix" != x ; then GSL_CONFIG="$gsl_prefix/bin/gsl-config" fi if test "x$gsl_exec_prefix" != x ; then GSL_CONFIG="$gsl_exec_prefix/bin/gsl-config" fi fi AC_PATH_PROG(GSL_CONFIG, gsl-config, no) min_gsl_version=ifelse([$1], ,0.2.5,$1) AC_MSG_CHECKING(for GSL - version >= $min_gsl_version) no_gsl="" if test "$GSL_CONFIG" = "no" ; then no_gsl=yes else GSL_CFLAGS=`$GSL_CONFIG --cflags` GSL_LIBS=`$GSL_CONFIG --libs` gsl_major_version=`$GSL_CONFIG --version | \ sed 's/^\([[0-9]]*\).*/\1/'` if test "x${gsl_major_version}" = "x" ; then gsl_major_version=0 fi gsl_minor_version=`$GSL_CONFIG --version | \ sed 's/^\([[0-9]]*\)\.\{0,1\}\([[0-9]]*\).*/\2/'` if test "x${gsl_minor_version}" = "x" ; then gsl_minor_version=0 fi gsl_micro_version=`$GSL_CONFIG --version | \ sed 's/^\([[0-9]]*\)\.\{0,1\}\([[0-9]]*\)\.\{0,1\}\([[0-9]]*\).*/\3/'` if test "x${gsl_micro_version}" = "x" ; then gsl_micro_version=0 fi if test "x$enable_gsltest" = "xyes" ; then ac_save_CFLAGS="$CFLAGS" ac_save_LIBS="$LIBS" CFLAGS="$CFLAGS $GSL_CFLAGS" LIBS="$LIBS $GSL_LIBS" rm -f conf.gsltest AC_TRY_RUN([ #include #include #include char* my_strdup (const char *str); char* my_strdup (const char *str) { char *new_str; if (str) { new_str = (char *)malloc ((strlen (str) + 1) * sizeof(char)); strcpy (new_str, str); } else new_str = NULL; return new_str; } int main (void) { int major = 0, minor = 0, micro = 0; int n; char *tmp_version; system ("touch conf.gsltest"); /* HP/UX 9 (%@#!) writes to sscanf strings */ tmp_version = my_strdup("$min_gsl_version"); n = sscanf(tmp_version, "%d.%d.%d", &major, &minor, µ) ; if (n != 2 && n != 3) { printf("%s, bad version string\n", "$min_gsl_version"); exit(1); } if (($gsl_major_version > major) || (($gsl_major_version == major) && ($gsl_minor_version > minor)) || (($gsl_major_version == major) && ($gsl_minor_version == minor) && ($gsl_micro_version >= micro))) { exit(0); } else { exit(1); } } ],, no_gsl=yes,[echo $ac_n "cross compiling; assumed OK... $ac_c"]) CFLAGS="$ac_save_CFLAGS" LIBS="$ac_save_LIBS" fi fi if test "x$no_gsl" = x ; then AC_MSG_RESULT(yes) ifelse([$2], , :, [$2]) else AC_MSG_RESULT(no) if test "$GSL_CONFIG" = "no" ; then echo "*** The gsl-config script installed by GSL could not be found" echo "*** If GSL was installed in PREFIX, make sure PREFIX/bin is in" echo "*** your path, or set the GSL_CONFIG environment variable to the" echo "*** full path to gsl-config." else if test -f conf.gsltest ; then : else echo "*** Could not run GSL test program, checking why..." CFLAGS="$CFLAGS $GSL_CFLAGS" LIBS="$LIBS $GSL_LIBS" AC_TRY_LINK([ #include ], [ return 0; ], [ echo "*** The test program compiled, but did not run. This usually means" echo "*** that the run-time linker is not finding GSL or finding the wrong" echo "*** version of GSL. If it is not finding GSL, you'll need to set your" echo "*** LD_LIBRARY_PATH environment variable, or edit /etc/ld.so.conf to point" echo "*** to the installed location Also, make sure you have run ldconfig if that" echo "*** is required on your system" echo "***" echo "*** If you have an old version installed, it is best to remove it, although" echo "*** you may also be able to get things to work by modifying LD_LIBRARY_PATH"], [ echo "*** The test program failed to compile or link. See the file config.log for the" echo "*** exact error that occured. This usually means GSL was incorrectly installed" echo "*** or that you have moved GSL since it was installed. In the latter case, you" echo "*** may want to edit the gsl-config script: $GSL_CONFIG" ]) CFLAGS="$ac_save_CFLAGS" LIBS="$ac_save_LIBS" fi fi # GSL_CFLAGS="" # GSL_LIBS="" ifelse([$3], , :, [$3]) fi AC_SUBST(GSL_CFLAGS) AC_SUBST(GSL_LIBS) rm -f conf.gsltest ]) AU_ALIAS([AM_PATH_GSL], [AX_PATH_GSL]) gsl-1.16/histogram/0000775000252300025230000000000012172254162011226 500000000000000gsl-1.16/histogram/init2d.c0000664000252300025230000001523012171574312012505 00000000000000/* histogram/init2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include gsl_histogram2d * gsl_histogram2d_alloc (const size_t nx, const size_t ny) { gsl_histogram2d *h; if (nx == 0) { GSL_ERROR_VAL ("histogram2d length nx must be positive integer", GSL_EDOM, 0); } if (ny == 0) { GSL_ERROR_VAL ("histogram2d length ny must be positive integer", GSL_EDOM, 0); } h = (gsl_histogram2d *) malloc (sizeof (gsl_histogram2d)); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram2d struct", GSL_ENOMEM, 0); } h->xrange = (double *) malloc ((nx + 1) * sizeof (double)); if (h->xrange == 0) { free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d x ranges", GSL_ENOMEM, 0); } h->yrange = (double *) malloc ((ny + 1) * sizeof (double)); if (h->yrange == 0) { free (h->xrange); free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d y ranges", GSL_ENOMEM, 0); } h->bin = (double *) malloc (nx * ny * sizeof (double)); if (h->bin == 0) { free (h->xrange); free (h->yrange); free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram bins", GSL_ENOMEM, 0); } h->nx = nx; h->ny = ny; return h; } static void make_uniform (double range[], size_t n, double xmin, double xmax) { size_t i; for (i = 0; i <= n; i++) { double f1 = ((double) (n-i) / (double) n); double f2 = ((double) i / (double) n); range[i] = f1 * xmin + f2 * xmax; } } gsl_histogram2d * gsl_histogram2d_calloc_uniform (const size_t nx, const size_t ny, const double xmin, const double xmax, const double ymin, const double ymax) { gsl_histogram2d *h; if (xmin >= xmax) { GSL_ERROR_VAL ("xmin must be less than xmax", GSL_EINVAL, 0); } if (ymin >= ymax) { GSL_ERROR_VAL ("ymin must be less than ymax", GSL_EINVAL, 0); } h = gsl_histogram2d_calloc (nx, ny); if (h == 0) { return h; } make_uniform (h->xrange, nx, xmin, xmax); make_uniform (h->yrange, ny, ymin, ymax); return h; } gsl_histogram2d * gsl_histogram2d_calloc (const size_t nx, const size_t ny) { gsl_histogram2d *h; if (nx == 0) { GSL_ERROR_VAL ("histogram2d length nx must be positive integer", GSL_EDOM, 0); } if (ny == 0) { GSL_ERROR_VAL ("histogram2d length ny must be positive integer", GSL_EDOM, 0); } h = (gsl_histogram2d *) malloc (sizeof (gsl_histogram2d)); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram2d struct", GSL_ENOMEM, 0); } h->xrange = (double *) malloc ((nx + 1) * sizeof (double)); if (h->xrange == 0) { free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d x ranges", GSL_ENOMEM, 0); } h->yrange = (double *) malloc ((ny + 1) * sizeof (double)); if (h->yrange == 0) { free (h->xrange); free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d y ranges", GSL_ENOMEM, 0); } h->bin = (double *) malloc (nx * ny * sizeof (double)); if (h->bin == 0) { free (h->xrange); free (h->yrange); free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram bins", GSL_ENOMEM, 0); } { size_t i; for (i = 0; i < nx + 1; i++) { h->xrange[i] = i; } for (i = 0; i < ny + 1; i++) { h->yrange[i] = i; } for (i = 0; i < nx * ny; i++) { h->bin[i] = 0; } } h->nx = nx; h->ny = ny; return h; } void gsl_histogram2d_free (gsl_histogram2d * h) { RETURN_IF_NULL (h); free (h->xrange); free (h->yrange); free (h->bin); free (h); } int gsl_histogram2d_set_ranges_uniform (gsl_histogram2d * h, double xmin, double xmax, double ymin, double ymax) { size_t i; const size_t nx = h->nx, ny = h->ny; if (xmin >= xmax) { GSL_ERROR_VAL ("xmin must be less than xmax", GSL_EINVAL, 0); } if (ymin >= ymax) { GSL_ERROR_VAL ("ymin must be less than ymax", GSL_EINVAL, 0); } /* initialize ranges */ make_uniform (h->xrange, nx, xmin, xmax); make_uniform (h->yrange, ny, ymin, ymax); /* clear contents */ for (i = 0; i < nx * ny; i++) { h->bin[i] = 0; } return GSL_SUCCESS; } int gsl_histogram2d_set_ranges (gsl_histogram2d * h, const double xrange[], size_t xsize, const double yrange[], size_t ysize) { size_t i; const size_t nx = h->nx, ny = h->ny; if (xsize != (nx + 1)) { GSL_ERROR_VAL ("size of xrange must match size of histogram", GSL_EINVAL, 0); } if (ysize != (ny + 1)) { GSL_ERROR_VAL ("size of yrange must match size of histogram", GSL_EINVAL, 0); } /* initialize ranges */ for (i = 0; i <= nx; i++) { h->xrange[i] = xrange[i]; } for (i = 0; i <= ny; i++) { h->yrange[i] = yrange[i]; } /* clear contents */ for (i = 0; i < nx * ny; i++) { h->bin[i] = 0; } return GSL_SUCCESS; } gsl-1.16/histogram/maxval.c0000664000252300025230000000457612171574312012617 00000000000000/* gsl_histogram_maxval.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram_maxval.c: * Routine to find maximum and minumum content of a hisogram. * Need GSL library and header. * Contains the routines: * gsl_histogram_max_val find max content values * gsl_histogram_min_val find min content values * gsl_histogram_bin_max find coordinates of max contents bin * gsl_histogram_bin_min find coordinates of min contents bin * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include double gsl_histogram_max_val (const gsl_histogram * h) { const size_t n = h->n; size_t i; double max = h->bin[0]; for (i = 0; i < n; i++) { if (h->bin[i] > max) { max = h->bin[i]; } } return max; } size_t gsl_histogram_max_bin (const gsl_histogram * h) { size_t i; size_t imax = 0; double max = h->bin[0]; for (i = 0; i < h->n; i++) { if (h->bin[i] > max) { max = h->bin[i]; imax = i; } } return imax; } double gsl_histogram_min_val (const gsl_histogram * h) { size_t i; double min = h->bin[0]; for (i = 0; i < h->n; i++) { if (h->bin[i] < min) { min = h->bin[i]; } } return min; } size_t gsl_histogram_min_bin (const gsl_histogram * h) { size_t i; size_t imin = 0; double min = h->bin[0]; for (i = 0; i < h->n; i++) { if (h->bin[i] < min) { min = h->bin[i]; imin = i; } } return imin; } gsl-1.16/histogram/TODO0000664000252300025230000000020712171574312011636 00000000000000# -*- org -*- #+CATEGORY: histogram * Implement N-d histograms (Simone Piccardi is working on something here). gsl-1.16/histogram/test2d_resample.c0000664000252300025230000000631312171574312014413 00000000000000/* histogram/test2d_resample.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "urand.c" void test2d_resample (void) { size_t i, j; int status = 0; double total = 0; size_t N = 200000; gsl_histogram2d *h; gsl_ieee_env_setup (); h = gsl_histogram2d_calloc_uniform (10, 10, 0.0, 1.0, 0.0, 1.0); for (i = 0; i < 10; i++) { for (j = 0; j < 10; j++) { double w = 10.0 * i + j; total += w; gsl_histogram2d_accumulate (h, 0.1 * i, 0.1 * i, w); } } { gsl_histogram2d_pdf *p = gsl_histogram2d_pdf_alloc (10,10); gsl_histogram2d *hh = gsl_histogram2d_calloc_uniform (20, 20, 0.0, 1.0, 0.0, 1.0); gsl_histogram2d_pdf_init (p, h); for (i = 0; i < N; i++) { double u = urand(); double v = urand(); double x, y; status = gsl_histogram2d_pdf_sample (p, u, v, &x, &y); status = gsl_histogram2d_increment (hh, x, y); } status = 0; for (i = 0; i < 20; i++) { for (j = 0; j < 20; j++) { double z = 4 * total * gsl_histogram2d_get (hh, i, j) / (double) N; size_t k1, k2; double ya; double x, xmax, y, ymax; gsl_histogram2d_get_xrange (hh, i, &x, &xmax); gsl_histogram2d_get_yrange (hh, j, &y, &ymax); gsl_histogram2d_find (h, x, y, &k1, &k2); ya = gsl_histogram2d_get (h, k1, k2); if (ya == 0) { if (z != 0) { status = 1; printf ("(%d,%d): %g vs %g\n", (int)i, (int)j, z, ya); } } else { double err = 1 / sqrt (gsl_histogram2d_get (hh, i, j)); double sigma = fabs ((z - ya) / (ya * err)); if (sigma > 3) { status = 1; printf ("%g vs %g err=%g sigma=%g\n", z, ya, err, sigma); } } } } gsl_histogram2d_pdf_free (p) ; gsl_histogram2d_free (hh) ; gsl_test (status, "gsl_histogram2d_pdf_sample within statistical errors"); } gsl_histogram2d_free (h) ; } gsl-1.16/histogram/maxval2d.c0000664000252300025230000000640112171574312013032 00000000000000/* gsl_histogram2d_maxval.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram2d_maxval.c: * Routine to find maximum and minumum content of a 2D hisogram. * Need GSL library and header. * Contains the routines: * gsl_histogram2d_max_val find max content values * gsl_histogram2d_min_val find min content values * gsl_histogram2d_bin_max find coordinates of max contents bin * gsl_histogram2d_bin_min find coordinates of min contents bin * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include /* * Return the maximum contents value of a 2D histogram */ double gsl_histogram2d_max_val (const gsl_histogram2d * h) { const size_t nx = h->nx; const size_t ny = h->ny; size_t i; double max = h->bin[0 * ny + 0]; for (i = 0; i < nx * ny; i++) { if (h->bin[i] > max) { max = h->bin[i]; } } return max; } /* * Find the bin index for maximum value of a 2D histogram */ void gsl_histogram2d_max_bin (const gsl_histogram2d * h, size_t * imax_out, size_t * jmax_out) { const size_t nx = h->nx; const size_t ny = h->ny; size_t imax = 0, jmax = 0, i, j; double max = h->bin[0 * ny + 0]; for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { double x = h->bin[i * ny + j]; if (x > max) { max = x; imax = i; jmax = j; } } } *imax_out = imax; *jmax_out = jmax; } /* * Return the minimum contents value of a 2D histogram */ double gsl_histogram2d_min_val (const gsl_histogram2d * h) { const size_t nx = h->nx; const size_t ny = h->ny; size_t i; double min = h->bin[0 * ny + 0]; for (i = 0; i < nx * ny; i++) { if (h->bin[i] < min) { min = h->bin[i]; } } return min; } /* * Find the bin index for minimum value of a 2D histogram */ void gsl_histogram2d_min_bin (const gsl_histogram2d * h, size_t * imin_out, size_t * jmin_out) { const size_t nx = h->nx; const size_t ny = h->ny; size_t imin = 0, jmin = 0, i, j; double min = h->bin[0 * ny + 0]; for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { double x = h->bin[i * ny + j]; if (x < min) { min = x; imin = i; jmin = j; } } } *imin_out = imin; *jmin_out = jmin; } gsl-1.16/histogram/gsl_histogram.h0000664000252300025230000001005412171574312014162 00000000000000/* histogram/gsl_histogram.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_HISTOGRAM_H__ #define __GSL_HISTOGRAM_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t n ; double * range ; double * bin ; } gsl_histogram ; typedef struct { size_t n ; double * range ; double * sum ; } gsl_histogram_pdf ; gsl_histogram * gsl_histogram_alloc (size_t n); gsl_histogram * gsl_histogram_calloc (size_t n); gsl_histogram * gsl_histogram_calloc_uniform (const size_t n, const double xmin, const double xmax); void gsl_histogram_free (gsl_histogram * h); int gsl_histogram_increment (gsl_histogram * h, double x); int gsl_histogram_accumulate (gsl_histogram * h, double x, double weight); int gsl_histogram_find (const gsl_histogram * h, const double x, size_t * i); double gsl_histogram_get (const gsl_histogram * h, size_t i); int gsl_histogram_get_range (const gsl_histogram * h, size_t i, double * lower, double * upper); double gsl_histogram_max (const gsl_histogram * h); double gsl_histogram_min (const gsl_histogram * h); size_t gsl_histogram_bins (const gsl_histogram * h); void gsl_histogram_reset (gsl_histogram * h); gsl_histogram * gsl_histogram_calloc_range(size_t n, double * range); int gsl_histogram_set_ranges (gsl_histogram * h, const double range[], size_t size); int gsl_histogram_set_ranges_uniform (gsl_histogram * h, double xmin, double xmax); int gsl_histogram_memcpy(gsl_histogram * dest, const gsl_histogram * source); gsl_histogram * gsl_histogram_clone(const gsl_histogram * source); double gsl_histogram_max_val (const gsl_histogram * h); size_t gsl_histogram_max_bin (const gsl_histogram * h); double gsl_histogram_min_val (const gsl_histogram * h); size_t gsl_histogram_min_bin (const gsl_histogram * h); int gsl_histogram_equal_bins_p(const gsl_histogram *h1, const gsl_histogram *h2); int gsl_histogram_add(gsl_histogram *h1, const gsl_histogram *h2); int gsl_histogram_sub(gsl_histogram *h1, const gsl_histogram *h2); int gsl_histogram_mul(gsl_histogram *h1, const gsl_histogram *h2); int gsl_histogram_div(gsl_histogram *h1, const gsl_histogram *h2); int gsl_histogram_scale(gsl_histogram *h, double scale); int gsl_histogram_shift (gsl_histogram * h, double shift); double gsl_histogram_sigma (const gsl_histogram * h); double gsl_histogram_mean (const gsl_histogram * h); double gsl_histogram_sum (const gsl_histogram * h); int gsl_histogram_fwrite (FILE * stream, const gsl_histogram * h) ; int gsl_histogram_fread (FILE * stream, gsl_histogram * h); int gsl_histogram_fprintf (FILE * stream, const gsl_histogram * h, const char * range_format, const char * bin_format); int gsl_histogram_fscanf (FILE * stream, gsl_histogram * h); gsl_histogram_pdf * gsl_histogram_pdf_alloc (const size_t n); int gsl_histogram_pdf_init (gsl_histogram_pdf * p, const gsl_histogram * h); void gsl_histogram_pdf_free (gsl_histogram_pdf * p); double gsl_histogram_pdf_sample (const gsl_histogram_pdf * p, double r); __END_DECLS #endif /* __GSL_HISTOGRAM_H__ */ gsl-1.16/histogram/test.c0000664000252300025230000000236412171574312012277 00000000000000/* histogram/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include void test1d (void); void test2d (void); void test1d_resample (void); void test2d_resample (void); void test1d_trap (void); void test2d_trap (void); int main (void) { test1d(); test2d(); test1d_resample(); test2d_resample(); test1d_trap(); test2d_trap(); exit (gsl_test_summary ()); } gsl-1.16/histogram/pdf.c0000664000252300025230000000671312171574312012073 00000000000000/* histogram/pdf.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "find.c" double gsl_histogram_pdf_sample (const gsl_histogram_pdf * p, double r) { size_t i; int status; /* Wrap the exclusive top of the bin down to the inclusive bottom of the bin. Since this is a single point it should not affect the distribution. */ if (r == 1.0) { r = 0.0; } status = find (p->n, p->sum, r, &i); if (status) { GSL_ERROR_VAL ("cannot find r in cumulative pdf", GSL_EDOM, 0); } else { double delta = (r - p->sum[i]) / (p->sum[i + 1] - p->sum[i]); double x = p->range[i] + delta * (p->range[i + 1] - p->range[i]); return x; } } gsl_histogram_pdf * gsl_histogram_pdf_alloc (const size_t n) { gsl_histogram_pdf *p; if (n == 0) { GSL_ERROR_VAL ("histogram pdf length n must be positive integer", GSL_EDOM, 0); } p = (gsl_histogram_pdf *) malloc (sizeof (gsl_histogram_pdf)); if (p == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram pdf struct", GSL_ENOMEM, 0); } p->range = (double *) malloc ((n + 1) * sizeof (double)); if (p->range == 0) { free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram pdf ranges", GSL_ENOMEM, 0); } p->sum = (double *) malloc ((n + 1) * sizeof (double)); if (p->sum == 0) { free (p->range); free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram pdf sums", GSL_ENOMEM, 0); } p->n = n; return p; } int gsl_histogram_pdf_init (gsl_histogram_pdf * p, const gsl_histogram * h) { size_t i; size_t n = p->n; if (n != h->n) { GSL_ERROR ("histogram length must match pdf length", GSL_EINVAL); } for (i = 0; i < n; i++) { if (h->bin[i] < 0) { GSL_ERROR ("histogram bins must be non-negative to compute" "a probability distribution", GSL_EDOM); } } for (i = 0; i < n + 1; i++) { p->range[i] = h->range[i]; } { double mean = 0, sum = 0; for (i = 0; i < n; i++) { mean += (h->bin[i] - mean) / ((double) (i + 1)); } p->sum[0] = 0; for (i = 0; i < n; i++) { sum += (h->bin[i] / mean) / n; p->sum[i + 1] = sum; } } return GSL_SUCCESS; } void gsl_histogram_pdf_free (gsl_histogram_pdf * p) { RETURN_IF_NULL (p); free (p->range); free (p->sum); free (p); } gsl-1.16/histogram/urand.c0000664000252300025230000000173612171574312012433 00000000000000/* histogram/urand.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ static double urand (void); static double urand (void) { static unsigned long int x = 1; x = (1103515245 * x + 12345) & 0x7fffffffUL ; return x / 2147483648.0 ; } gsl-1.16/histogram/init.c0000664000252300025230000000753512171574312012270 00000000000000/* histogram/init.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include gsl_histogram * gsl_histogram_alloc (size_t n) { gsl_histogram *h; if (n == 0) { GSL_ERROR_VAL ("histogram length n must be positive integer", GSL_EDOM, 0); } h = (gsl_histogram *) malloc (sizeof (gsl_histogram)); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram struct", GSL_ENOMEM, 0); } h->range = (double *) malloc ((n + 1) * sizeof (double)); if (h->range == 0) { free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram ranges", GSL_ENOMEM, 0); } h->bin = (double *) malloc (n * sizeof (double)); if (h->bin == 0) { free (h->range); free (h); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram bins", GSL_ENOMEM, 0); } h->n = n; return h; } static void make_uniform (double range[], size_t n, double xmin, double xmax) { size_t i; for (i = 0; i <= n; i++) { double f1 = ((double) (n-i) / (double) n); double f2 = ((double) i / (double) n); range[i] = f1 * xmin + f2 * xmax; } } gsl_histogram * gsl_histogram_calloc_uniform (const size_t n, const double xmin, const double xmax) { gsl_histogram *h; if (xmin >= xmax) { GSL_ERROR_VAL ("xmin must be less than xmax", GSL_EINVAL, 0); } h = gsl_histogram_calloc (n); if (h == 0) { return h; } make_uniform (h->range, n, xmin, xmax); return h; } gsl_histogram * gsl_histogram_calloc (size_t n) { gsl_histogram * h = gsl_histogram_alloc (n); if (h == 0) { return h; } { size_t i; for (i = 0; i < n + 1; i++) { h->range[i] = i; } for (i = 0; i < n; i++) { h->bin[i] = 0; } } h->n = n; return h; } void gsl_histogram_free (gsl_histogram * h) { RETURN_IF_NULL (h); free (h->range); free (h->bin); free (h); } /* These initialization functions suggested by Achim Gaedke */ int gsl_histogram_set_ranges_uniform (gsl_histogram * h, double xmin, double xmax) { size_t i; const size_t n = h->n; if (xmin >= xmax) { GSL_ERROR ("xmin must be less than xmax", GSL_EINVAL); } /* initialize ranges */ make_uniform (h->range, n, xmin, xmax); /* clear contents */ for (i = 0; i < n; i++) { h->bin[i] = 0; } return GSL_SUCCESS; } int gsl_histogram_set_ranges (gsl_histogram * h, const double range[], size_t size) { size_t i; const size_t n = h->n; if (size != (n+1)) { GSL_ERROR ("size of range must match size of histogram", GSL_EINVAL); } /* initialize ranges */ for (i = 0; i <= n; i++) { h->range[i] = range[i]; } /* clear contents */ for (i = 0; i < n; i++) { h->bin[i] = 0; } return GSL_SUCCESS; } gsl-1.16/histogram/add2d.c0000664000252300025230000000333012171574312012270 00000000000000/* histogram/add2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "find2d.c" int gsl_histogram2d_increment (gsl_histogram2d * h, double x, double y) { int status = gsl_histogram2d_accumulate (h, x, y, 1.0); return status; } int gsl_histogram2d_accumulate (gsl_histogram2d * h, double x, double y, double weight) { const size_t nx = h->nx; const size_t ny = h->ny; size_t i = 0, j = 0; int status = find2d (h->nx, h->xrange, h->ny, h->yrange, x, y, &i, &j); if (status) { return GSL_EDOM; } if (i >= nx) { GSL_ERROR ("index lies outside valid range of 0 .. nx - 1", GSL_ESANITY); } if (j >= ny) { GSL_ERROR ("index lies outside valid range of 0 .. ny - 1", GSL_ESANITY); } h->bin[i * ny + j] += weight; return GSL_SUCCESS; } gsl-1.16/histogram/copy2d.c0000664000252300025230000000447612171574312012526 00000000000000/* gsl_histogram2d_copy.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram2d_copy.c: * Routine to copy a 2D histogram. * Need GSL library and header. * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include /* * gsl_histogram2d_copy: * copy the contents of an histogram into another */ int gsl_histogram2d_memcpy (gsl_histogram2d * dest, const gsl_histogram2d * src) { size_t nx = src->nx; size_t ny = src->ny; size_t i; if (dest->nx != src->nx || dest->ny != src->ny) { GSL_ERROR ("histograms have different sizes, cannot copy", GSL_EINVAL); } for (i = 0; i <= nx; i++) { dest->xrange[i] = src->xrange[i]; } for (i = 0; i <= ny; i++) { dest->yrange[i] = src->yrange[i]; } for (i = 0; i < nx * ny; i++) { dest->bin[i] = src->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram2d_duplicate: * duplicate an histogram creating * an identical new one */ gsl_histogram2d * gsl_histogram2d_clone (const gsl_histogram2d * src) { size_t nx = src->nx; size_t ny = src->ny; size_t i; gsl_histogram2d *h; h = gsl_histogram2d_calloc_range (nx, ny, src->xrange, src->yrange); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram struct", GSL_ENOMEM, 0); } for (i = 0; i < nx * ny; i++) { h->bin[i] = src->bin[i]; } return h; } gsl-1.16/histogram/Makefile.in0000664000252300025230000011113212172253755013221 00000000000000# Makefile.in generated by automake 1.13.2 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ check_PROGRAMS = test$(EXEEXT) subdir = histogram DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/mkinstalldirs $(top_srcdir)/depcomp \ $(noinst_HEADERS) $(pkginclude_HEADERS) \ $(top_srcdir)/test-driver ChangeLog TODO ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(SHELL) $(top_srcdir)/mkinstalldirs CONFIG_HEADER = $(top_builddir)/config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = LTLIBRARIES = $(noinst_LTLIBRARIES) libgslhistogram_la_LIBADD = am_libgslhistogram_la_OBJECTS = add.lo get.lo init.lo params.lo \ reset.lo file.lo pdf.lo add2d.lo get2d.lo init2d.lo \ params2d.lo reset2d.lo file2d.lo pdf2d.lo calloc_range.lo \ calloc_range2d.lo copy.lo copy2d.lo maxval.lo maxval2d.lo \ oper.lo oper2d.lo stat.lo stat2d.lo libgslhistogram_la_OBJECTS = $(am_libgslhistogram_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = am_test_OBJECTS = test.$(OBJEXT) test1d.$(OBJEXT) test2d.$(OBJEXT) \ test1d_resample.$(OBJEXT) test2d_resample.$(OBJEXT) \ test1d_trap.$(OBJEXT) test2d_trap.$(OBJEXT) test_OBJECTS = $(am_test_OBJECTS) test_DEPENDENCIES = libgslhistogram.la ../block/libgslblock.la \ ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la \ ../test/libgsltest.la ../sys/libgslsys.la AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = -I.@am__isrc@ -I$(top_builddir) depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libgslhistogram_la_SOURCES) $(test_SOURCES) DIST_SOURCES = $(libgslhistogram_la_SOURCES) $(test_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(pkgincludedir)" HEADERS = $(noinst_HEADERS) $(pkginclude_HEADERS) am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) AM_RECURSIVE_TARGETS = check recheck TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GREP = @GREP@ GSL_CFLAGS = @GSL_CFLAGS@ GSL_LIBM = @GSL_LIBM@ GSL_LIBS = @GSL_LIBS@ GSL_LT_CBLAS_VERSION = @GSL_LT_CBLAS_VERSION@ GSL_LT_VERSION = @GSL_LT_VERSION@ GSL_MAJOR_VERSION = @GSL_MAJOR_VERSION@ GSL_MINOR_VERSION = @GSL_MINOR_VERSION@ HAVE_AIX_IEEE_INTERFACE = @HAVE_AIX_IEEE_INTERFACE@ HAVE_DARWIN86_IEEE_INTERFACE = @HAVE_DARWIN86_IEEE_INTERFACE@ HAVE_DARWIN_IEEE_INTERFACE = @HAVE_DARWIN_IEEE_INTERFACE@ HAVE_FREEBSD_IEEE_INTERFACE = @HAVE_FREEBSD_IEEE_INTERFACE@ HAVE_GNUM68K_IEEE_INTERFACE = @HAVE_GNUM68K_IEEE_INTERFACE@ HAVE_GNUPPC_IEEE_INTERFACE = @HAVE_GNUPPC_IEEE_INTERFACE@ HAVE_GNUSPARC_IEEE_INTERFACE = @HAVE_GNUSPARC_IEEE_INTERFACE@ HAVE_GNUX86_IEEE_INTERFACE = @HAVE_GNUX86_IEEE_INTERFACE@ HAVE_HPUX11_IEEE_INTERFACE = @HAVE_HPUX11_IEEE_INTERFACE@ HAVE_HPUX_IEEE_INTERFACE = @HAVE_HPUX_IEEE_INTERFACE@ HAVE_IRIX_IEEE_INTERFACE = @HAVE_IRIX_IEEE_INTERFACE@ HAVE_NETBSD_IEEE_INTERFACE = @HAVE_NETBSD_IEEE_INTERFACE@ HAVE_OPENBSD_IEEE_INTERFACE = @HAVE_OPENBSD_IEEE_INTERFACE@ HAVE_OS2EMX_IEEE_INTERFACE = @HAVE_OS2EMX_IEEE_INTERFACE@ HAVE_SOLARIS_IEEE_INTERFACE = @HAVE_SOLARIS_IEEE_INTERFACE@ HAVE_SUNOS4_IEEE_INTERFACE = @HAVE_SUNOS4_IEEE_INTERFACE@ HAVE_TRU64_IEEE_INTERFACE = @HAVE_TRU64_IEEE_INTERFACE@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBM = @LIBM@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAINT = @MAINT@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ noinst_LTLIBRARIES = libgslhistogram.la pkginclude_HEADERS = gsl_histogram.h gsl_histogram2d.h INCLUDES = -I$(top_srcdir) libgslhistogram_la_SOURCES = add.c get.c init.c params.c reset.c file.c pdf.c gsl_histogram.h add2d.c get2d.c init2d.c params2d.c reset2d.c file2d.c pdf2d.c gsl_histogram2d.h calloc_range.c calloc_range2d.c copy.c copy2d.c maxval.c maxval2d.c oper.c oper2d.c stat.c stat2d.c noinst_HEADERS = urand.c find.c find2d.c TESTS = $(check_PROGRAMS) EXTRA_DIST = urand.c test_SOURCES = test.c test1d.c test2d.c test1d_resample.c test2d_resample.c test1d_trap.c test2d_trap.c test_LDADD = libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la CLEANFILES = test.txt test.dat all: all-am .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs $(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --gnu histogram/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --gnu histogram/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: @MAINTAINER_MODE_TRUE@ $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): @MAINTAINER_MODE_TRUE@ $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstLTLIBRARIES: -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES) @list='$(noinst_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } libgslhistogram.la: $(libgslhistogram_la_OBJECTS) $(libgslhistogram_la_DEPENDENCIES) $(EXTRA_libgslhistogram_la_DEPENDENCIES) $(AM_V_CCLD)$(LINK) $(libgslhistogram_la_OBJECTS) $(libgslhistogram_la_LIBADD) $(LIBS) clean-checkPROGRAMS: @list='$(check_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list test$(EXEEXT): $(test_OBJECTS) $(test_DEPENDENCIES) $(EXTRA_test_DEPENDENCIES) @rm -f test$(EXEEXT) $(AM_V_CCLD)$(LINK) $(test_OBJECTS) $(test_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/add.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/add2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/calloc_range.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/calloc_range2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/copy.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/copy2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/file2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/get.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/get2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/init2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/maxval.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/maxval2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/oper.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/oper2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/params.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/params2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pdf.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pdf2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/reset.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/reset2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/stat2d.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test1d.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test1d_resample.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test1d_trap.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test2d.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test2d_resample.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/test2d_trap.Po@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)$(COMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)$(LTCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all $(check_PROGRAMS) @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? test.log: test$(EXEEXT) @p='test$(EXEEXT)'; \ b='test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am $(MAKE) $(AM_MAKEFLAGS) $(check_PROGRAMS) $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: check-am all-am: Makefile $(LTLIBRARIES) $(HEADERS) installdirs: for dir in "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-pkgincludeHEADERS install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: uninstall-pkgincludeHEADERS .MAKE: check-am install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-TESTS check-am clean \ clean-checkPROGRAMS clean-generic clean-libtool \ clean-noinstLTLIBRARIES cscopelist-am ctags ctags-am distclean \ distclean-compile distclean-generic distclean-libtool \ distclean-tags distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-pkgincludeHEADERS \ install-ps install-ps-am install-strip installcheck \ installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-pkgincludeHEADERS # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: gsl-1.16/histogram/test1d_trap.c0000664000252300025230000001017012171574312013544 00000000000000/* histogram/test_trap.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #define N 397 static void my_error_handler (const char *reason, const char *file, int line, int err); static int status = 0; void test1d_trap (void) { gsl_histogram *h; double result, lower, upper; size_t i; gsl_set_error_handler (&my_error_handler); gsl_ieee_env_setup (); status = 0; h = gsl_histogram_calloc (0); gsl_test (!status, "gsl_histogram_calloc traps zero-length histogram"); gsl_test (h != 0, "gsl_histogram_calloc returns NULL for zero-length histogram"); status = 0; h = gsl_histogram_calloc_uniform (0, 0.0, 1.0); gsl_test (!status, "gsl_histogram_calloc_uniform traps zero-length histogram"); gsl_test (h != 0, "gsl_histogram_calloc_uniform returns NULL for zero-length histogram"); status = 0; h = gsl_histogram_calloc_uniform (10, 1.0, 1.0); gsl_test (!status, "gsl_histogram_calloc_uniform traps equal endpoints"); gsl_test (h != 0, "gsl_histogram_calloc_uniform returns NULL for equal endpoints"); status = 0; h = gsl_histogram_calloc_uniform (10, 2.0, 1.0); gsl_test (!status, "gsl_histogram_calloc_uniform traps invalid range"); gsl_test (h != 0, "gsl_histogram_calloc_uniform returns NULL for invalid range"); h = gsl_histogram_calloc_uniform (N, 0.0, 1.0); status = gsl_histogram_accumulate (h, 1.0, 10.0); gsl_test (status != GSL_EDOM, "gsl_histogram_accumulate traps x at xmax"); status = gsl_histogram_accumulate (h, 2.0, 100.0); gsl_test (status != GSL_EDOM, "gsl_histogram_accumulate traps x above xmax"); status = gsl_histogram_accumulate (h, -1.0, 1000.0); gsl_test (status != GSL_EDOM, "gsl_histogram_accumulate traps x below xmin"); status = gsl_histogram_increment (h, 1.0); gsl_test (status != GSL_EDOM, "gsl_histogram_increment traps x at xmax"); status = gsl_histogram_increment (h, 2.0); gsl_test (status != GSL_EDOM, "gsl_histogram_increment traps x above xmax"); status = gsl_histogram_increment (h, -1.0); gsl_test (status != GSL_EDOM, "gsl_histogram_increment traps x below xmin"); result = gsl_histogram_get (h, N); gsl_test (result != 0, "gsl_histogram_get traps index at n"); result = gsl_histogram_get (h, N + 1); gsl_test (result != 0, "gsl_histogram_get traps index above n"); status = gsl_histogram_get_range (h, N, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram_get_range traps index at n"); status = gsl_histogram_get_range (h, N + 1, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram_get_range traps index above n"); status = 0; gsl_histogram_find (h, -0.01, &i); gsl_test (status != GSL_EDOM, "gsl_histogram_find traps x below xmin"); status = 0; gsl_histogram_find (h, 1.0, &i); gsl_test (status != GSL_EDOM, "gsl_histogram_find traps x at xmax"); status = 0; gsl_histogram_find (h, 1.1, &i); gsl_test (status != GSL_EDOM, "gsl_histogram_find traps x above xmax"); gsl_histogram_free (h); } static void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); status = 1; } gsl-1.16/histogram/ChangeLog0000664000252300025230000001172612171574312012730 000000000000002009-07-09 Brian Gough * pdf2d.c (gsl_histogram2d_pdf_free): handle NULL argument in free * pdf.c (gsl_histogram_pdf_free): handle NULL argument in free * init2d.c (gsl_histogram2d_free): handle NULL argument in free * init.c (gsl_histogram_free): handle NULL argument in free 2008-07-03 Brian Gough * Makefile.am (INCLUDES): use top_srcdir instead of top_builddir 2004-11-28 Brian Gough * init2d.c (make_uniform): compute uniform range without cancellation error. * init.c (make_uniform): compute uniform range without cancellation error. Tue Aug 27 19:36:43 2002 Brian Gough * test2d.c (main): changed test output format from %g to %e for portability * test.c (main): changed test output format from %g to %e for portability Wed Mar 6 22:03:35 2002 Brian Gough * test2d.c (main): cleaned up the tests a bit * stat2d.c: added checks for wi>0 (Achim Gaedke) Sat Jan 26 17:09:10 2002 Brian Gough * stat2d.c: added include for sqrt Fri Jan 18 21:45:35 2002 Brian Gough * stat2d.c: functions to compute statistics of 2d histograms (Achim Gaedke) Mon Jan 14 19:34:31 2002 Brian Gough * stat.c (gsl_histogram_sum): new function to sum bins (Achim Gaedke) * maxval2d.c (gsl_histogram2d_sum): new function to sum bins (Achim Gaedke) Thu Oct 18 14:48:07 2001 Brian Gough * pdf2d.c (gsl_histogram2d_pdf_alloc): changed the definition of the pdf alloc function to be consistent with the rest of the library * pdf.c (gsl_histogram_pdf_alloc): changed the definition of the pdf alloc function to be consistent with the rest of the library * init2d.c (gsl_histogram2d_alloc): added an alloc function for consistency * init.c (gsl_histogram_alloc): added an alloc function for consistency Wed Sep 12 13:38:40 2001 Brian Gough * stat.c (gsl_histogram_mean): fixed calculation of mean/sigma and made it part of the library Sun Aug 19 13:31:35 2001 Brian Gough * test_gsl_histogram.sh: moved to top-level directory Sat Aug 18 22:21:26 2001 Brian Gough * gsl-histogram.c: moved to top-level directory Mon Jun 25 17:41:42 2001 Brian Gough * init2d.c (gsl_histogram2d_set_ranges_uniform): added range initialization functions suggested by Achim Gaedke * init.c (gsl_histogram_set_ranges_uniform): added range initialization functions suggested by Achim Gaedke Tue Apr 17 22:13:05 2001 Brian Gough * get2d.c: include "find.c" Mon Apr 16 20:13:45 2001 Brian Gough * get2d.c (gsl_histogram2d_get): removed unnecessary reference to find2d Mon Jan 22 13:55:13 2001 Brian Gough * find.c (find): optimize for the linear case, include own binary search for speed * add.c (gsl_histogram_accumulate): fix check of array bound for index Sun May 28 12:23:46 2000 Brian Gough * test2d.c (main): use binary mode "b" when reading and writing binary files * test.c (main): use binary mode "b" when reading and writing binary files Wed Apr 26 15:09:22 2000 Brian Gough * oper2d.c (gsl_histogram2d_shift): added function for shifting histogram by a constant offset * oper.c (gsl_histogram_shift): added function for shifting histogram by a constant offset Wed Apr 19 17:27:44 2000 Brian Gough * added numerous extensions from Simone Piccardi 2000-04-01 Mark Galassi * *.c: changed 0 -> GSL_SUCCESS where appropriate; THANKS to Dave Morrison. Fri Nov 19 15:31:51 1999 Brian Gough * gsl-histogram.c (main): free memory before exit, eliminates warning from checkergcc * test_gsl_histogram.sh: added a test for the gsl-histogram program Fri Oct 1 15:47:01 1999 Brian Gough * file.c file2d.c: converted to use new block i/o functions Wed Aug 18 11:41:40 1999 Brian Gough * eliminated obvious memory leaks from the tests, so that we can check that the _free functions work correctly * gsl-histogram.c (main): removed unused variable Fri Aug 6 11:19:37 1999 Brian Gough * removed dependence on rand() and RAND_MAX 1999-08-05 Mark Galassi * gsl-histogram.c (main): fixed a simple logic bug. Thanks to Barak Pearlmutter (bap@cs.unm.edu) for the patch. 1998-11-06 * used a cast of (int) when attempting to print size_t variables with %d Wed Sep 16 15:08:59 1998 Brian Gough * gsl-histogram.c (main): made the number of bins optional. If you don't specify it then it uses bins of width 1. gsl-1.16/histogram/test1d_resample.c0000664000252300025230000000506612171574312014416 00000000000000/* histogram/test1d_resample.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "urand.c" void test1d_resample (void) { size_t i; int status = 0; gsl_histogram *h; gsl_ieee_env_setup (); h = gsl_histogram_calloc_uniform (10, 0.0, 1.0); gsl_histogram_increment (h, 0.1); gsl_histogram_increment (h, 0.2); gsl_histogram_increment (h, 0.2); gsl_histogram_increment (h, 0.3); { gsl_histogram_pdf *p = gsl_histogram_pdf_alloc (10); gsl_histogram *hh = gsl_histogram_calloc_uniform (100, 0.0, 1.0); gsl_histogram_pdf_init (p, h); for (i = 0; i < 100000; i++) { double u = urand(); double x = gsl_histogram_pdf_sample (p, u); gsl_histogram_increment (hh, x); } for (i = 0; i < 100; i++) { double y = gsl_histogram_get (hh, i) / 2500; double x, xmax; size_t k; double ya; gsl_histogram_get_range (hh, i, &x, &xmax); gsl_histogram_find (h, x, &k); ya = gsl_histogram_get (h, k); if (ya == 0) { if (y != 0) { printf ("%d: %g vs %g\n", (int) i, y, ya); status = 1; } } else { double err = 1 / sqrt (gsl_histogram_get (hh, i)); double sigma = fabs ((y - ya) / (ya * err)); if (sigma > 3) { status = 1; printf ("%g vs %g err=%g sigma=%g\n", y, ya, err, sigma); } } } gsl_histogram_pdf_free (p) ; gsl_histogram_free (hh); gsl_test (status, "gsl_histogram_pdf_sample within statistical errors"); } gsl_histogram_free (h); } gsl-1.16/histogram/file2d.c0000664000252300025230000001064412171574312012465 00000000000000/* histogram/file2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_histogram2d_fread (FILE * stream, gsl_histogram2d * h) { int status = gsl_block_raw_fread (stream, h->xrange, h->nx + 1, 1); if (status) return status; status = gsl_block_raw_fread (stream, h->yrange, h->ny + 1, 1); if (status) return status; status = gsl_block_raw_fread (stream, h->bin, h->nx * h->ny, 1); return status; } int gsl_histogram2d_fwrite (FILE * stream, const gsl_histogram2d * h) { int status = gsl_block_raw_fwrite (stream, h->xrange, h->nx + 1, 1); if (status) return status; status = gsl_block_raw_fwrite (stream, h->yrange, h->ny + 1, 1); if (status) return status; status = gsl_block_raw_fwrite (stream, h->bin, h->nx * h->ny, 1); return status; } int gsl_histogram2d_fprintf (FILE * stream, const gsl_histogram2d * h, const char *range_format, const char *bin_format) { size_t i, j; const size_t nx = h->nx; const size_t ny = h->ny; int status; for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { status = fprintf (stream, range_format, h->xrange[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, range_format, h->xrange[i + 1]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, range_format, h->yrange[j]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, range_format, h->yrange[j + 1]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, bin_format, h->bin[i * ny + j]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc ('\n', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } status = putc ('\n', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } return GSL_SUCCESS; } int gsl_histogram2d_fscanf (FILE * stream, gsl_histogram2d * h) { size_t i, j; const size_t nx = h->nx; const size_t ny = h->ny; double xupper, yupper; for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { int status = fscanf (stream, "%lg %lg %lg %lg %lg", h->xrange + i, &xupper, h->yrange + j, &yupper, h->bin + i * ny + j); if (status != 5) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } } h->yrange[ny] = yupper; } h->xrange[nx] = xupper; return GSL_SUCCESS; } gsl-1.16/histogram/Makefile.am0000664000252300025230000000144412171574312013206 00000000000000noinst_LTLIBRARIES = libgslhistogram.la pkginclude_HEADERS = gsl_histogram.h gsl_histogram2d.h INCLUDES = -I$(top_srcdir) libgslhistogram_la_SOURCES = add.c get.c init.c params.c reset.c file.c pdf.c gsl_histogram.h add2d.c get2d.c init2d.c params2d.c reset2d.c file2d.c pdf2d.c gsl_histogram2d.h calloc_range.c calloc_range2d.c copy.c copy2d.c maxval.c maxval2d.c oper.c oper2d.c stat.c stat2d.c noinst_HEADERS = urand.c find.c find2d.c check_PROGRAMS = test TESTS = $(check_PROGRAMS) EXTRA_DIST = urand.c test_SOURCES = test.c test1d.c test2d.c test1d_resample.c test2d_resample.c test1d_trap.c test2d_trap.c test_LDADD = libgslhistogram.la ../block/libgslblock.la ../ieee-utils/libgslieeeutils.la ../err/libgslerr.la ../test/libgsltest.la ../sys/libgslsys.la CLEANFILES = test.txt test.dat gsl-1.16/histogram/get.c0000664000252300025230000000331412171574312012073 00000000000000/* histogram/get.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "find.c" double gsl_histogram_get (const gsl_histogram * h, size_t i) { const size_t n = h->n; if (i >= n) { GSL_ERROR_VAL ("index lies outside valid range of 0 .. n - 1", GSL_EDOM, 0); } return h->bin[i]; } int gsl_histogram_get_range (const gsl_histogram * h, size_t i, double *lower, double *upper) { const size_t n = h->n; if (i >= n) { GSL_ERROR ("index lies outside valid range of 0 .. n - 1", GSL_EDOM); } *lower = h->range[i]; *upper = h->range[i + 1]; return GSL_SUCCESS; } int gsl_histogram_find (const gsl_histogram * h, const double x, size_t * i) { int status = find (h->n, h->range, x, i); if (status) { GSL_ERROR ("x not found in range of h", GSL_EDOM); } return GSL_SUCCESS; } gsl-1.16/histogram/get2d.c0000664000252300025230000000472312171574312012326 00000000000000/* histogram/get2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "find.c" double gsl_histogram2d_get (const gsl_histogram2d * h, const size_t i, const size_t j) { const size_t nx = h->nx; const size_t ny = h->ny; if (i >= nx) { GSL_ERROR_VAL ("index i lies outside valid range of 0 .. nx - 1", GSL_EDOM, 0); } if (j >= ny) { GSL_ERROR_VAL ("index j lies outside valid range of 0 .. ny - 1", GSL_EDOM, 0); } return h->bin[i * ny + j]; } int gsl_histogram2d_get_xrange (const gsl_histogram2d * h, const size_t i, double *xlower, double *xupper) { const size_t nx = h->nx; if (i >= nx) { GSL_ERROR ("index i lies outside valid range of 0 .. nx - 1", GSL_EDOM); } *xlower = h->xrange[i]; *xupper = h->xrange[i + 1]; return GSL_SUCCESS; } int gsl_histogram2d_get_yrange (const gsl_histogram2d * h, const size_t j, double *ylower, double *yupper) { const size_t ny = h->ny; if (j >= ny) { GSL_ERROR ("index j lies outside valid range of 0 .. ny - 1", GSL_EDOM); } *ylower = h->yrange[j]; *yupper = h->yrange[j + 1]; return GSL_SUCCESS; } int gsl_histogram2d_find (const gsl_histogram2d * h, const double x, const double y, size_t * i, size_t * j) { int status = find (h->nx, h->xrange, x, i); if (status) { GSL_ERROR ("x not found in range of h", GSL_EDOM); } status = find (h->ny, h->yrange, y, j); if (status) { GSL_ERROR ("y not found in range of h", GSL_EDOM); } return GSL_SUCCESS; } gsl-1.16/histogram/gsl_histogram2d.h0000664000252300025230000001301212171574312014405 00000000000000/* histogram/gsl_histogram2d.h * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __GSL_HISTOGRAM2D_H__ #define __GSL_HISTOGRAM2D_H__ #include #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS typedef struct { size_t nx, ny ; double * xrange ; double * yrange ; double * bin ; } gsl_histogram2d ; typedef struct { size_t nx, ny ; double * xrange ; double * yrange ; double * sum ; } gsl_histogram2d_pdf ; gsl_histogram2d * gsl_histogram2d_alloc (const size_t nx, const size_t ny); gsl_histogram2d * gsl_histogram2d_calloc (const size_t nx, const size_t ny); gsl_histogram2d * gsl_histogram2d_calloc_uniform (const size_t nx, const size_t ny, const double xmin, const double xmax, const double ymin, const double ymax); void gsl_histogram2d_free (gsl_histogram2d * h); int gsl_histogram2d_increment (gsl_histogram2d * h, double x, double y); int gsl_histogram2d_accumulate (gsl_histogram2d * h, double x, double y, double weight); int gsl_histogram2d_find (const gsl_histogram2d * h, const double x, const double y, size_t * i, size_t * j); double gsl_histogram2d_get (const gsl_histogram2d * h, const size_t i, const size_t j); int gsl_histogram2d_get_xrange (const gsl_histogram2d * h, const size_t i, double * xlower, double * xupper); int gsl_histogram2d_get_yrange (const gsl_histogram2d * h, const size_t j, double * ylower, double * yupper); double gsl_histogram2d_xmax (const gsl_histogram2d * h); double gsl_histogram2d_xmin (const gsl_histogram2d * h); size_t gsl_histogram2d_nx (const gsl_histogram2d * h); double gsl_histogram2d_ymax (const gsl_histogram2d * h); double gsl_histogram2d_ymin (const gsl_histogram2d * h); size_t gsl_histogram2d_ny (const gsl_histogram2d * h); void gsl_histogram2d_reset (gsl_histogram2d * h); gsl_histogram2d * gsl_histogram2d_calloc_range(size_t nx, size_t ny, double *xrange, double *yrange); int gsl_histogram2d_set_ranges_uniform (gsl_histogram2d * h, double xmin, double xmax, double ymin, double ymax); int gsl_histogram2d_set_ranges (gsl_histogram2d * h, const double xrange[], size_t xsize, const double yrange[], size_t ysize); int gsl_histogram2d_memcpy(gsl_histogram2d *dest, const gsl_histogram2d *source); gsl_histogram2d * gsl_histogram2d_clone(const gsl_histogram2d * source); double gsl_histogram2d_max_val(const gsl_histogram2d *h); void gsl_histogram2d_max_bin (const gsl_histogram2d *h, size_t *i, size_t *j); double gsl_histogram2d_min_val(const gsl_histogram2d *h); void gsl_histogram2d_min_bin (const gsl_histogram2d *h, size_t *i, size_t *j); double gsl_histogram2d_xmean (const gsl_histogram2d * h); double gsl_histogram2d_ymean (const gsl_histogram2d * h); double gsl_histogram2d_xsigma (const gsl_histogram2d * h); double gsl_histogram2d_ysigma (const gsl_histogram2d * h); double gsl_histogram2d_cov (const gsl_histogram2d * h); double gsl_histogram2d_sum (const gsl_histogram2d *h); int gsl_histogram2d_equal_bins_p(const gsl_histogram2d *h1, const gsl_histogram2d *h2) ; int gsl_histogram2d_add(gsl_histogram2d *h1, const gsl_histogram2d *h2); int gsl_histogram2d_sub(gsl_histogram2d *h1, const gsl_histogram2d *h2); int gsl_histogram2d_mul(gsl_histogram2d *h1, const gsl_histogram2d *h2); int gsl_histogram2d_div(gsl_histogram2d *h1, const gsl_histogram2d *h2); int gsl_histogram2d_scale(gsl_histogram2d *h, double scale); int gsl_histogram2d_shift(gsl_histogram2d *h, double shift); int gsl_histogram2d_fwrite (FILE * stream, const gsl_histogram2d * h) ; int gsl_histogram2d_fread (FILE * stream, gsl_histogram2d * h); int gsl_histogram2d_fprintf (FILE * stream, const gsl_histogram2d * h, const char * range_format, const char * bin_format); int gsl_histogram2d_fscanf (FILE * stream, gsl_histogram2d * h); gsl_histogram2d_pdf * gsl_histogram2d_pdf_alloc (const size_t nx, const size_t ny); int gsl_histogram2d_pdf_init (gsl_histogram2d_pdf * p, const gsl_histogram2d * h); void gsl_histogram2d_pdf_free (gsl_histogram2d_pdf * p); int gsl_histogram2d_pdf_sample (const gsl_histogram2d_pdf * p, double r1, double r2, double * x, double * y); __END_DECLS #endif /* __GSL_HISTOGRAM2D_H__ */ gsl-1.16/histogram/copy.c0000664000252300025230000000414512171574312012271 00000000000000/* gsl_histogram_copy.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram_copy.c: * Routine to copy an histogram. * Need GSL library and headers. * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include /* * gsl_histogram_copy: * copy the contents of an histogram into another */ int gsl_histogram_memcpy (gsl_histogram * dest, const gsl_histogram * src) { size_t n = src->n; size_t i; if (dest->n != src->n) { GSL_ERROR ("histograms have different sizes, cannot copy", GSL_EINVAL); } for (i = 0; i <= n; i++) { dest->range[i] = src->range[i]; } for (i = 0; i < n; i++) { dest->bin[i] = src->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram_duplicate: * duplicate an histogram creating * an identical new one */ gsl_histogram * gsl_histogram_clone (const gsl_histogram * src) { size_t n = src->n; size_t i; gsl_histogram *h; h = gsl_histogram_calloc_range (n, src->range); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram struct", GSL_ENOMEM, 0); } for (i = 0; i < n; i++) { h->bin[i] = src->bin[i]; } return h; } gsl-1.16/histogram/reset.c0000664000252300025230000000202312171574312012432 00000000000000/* histogram/reset.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include void gsl_histogram_reset (gsl_histogram * h) { size_t i; const size_t n = h->n; for (i = 0; i < n; i++) { h->bin[i] = 0; } } gsl-1.16/histogram/stat.c0000664000252300025230000000621312171574312012270 00000000000000/* gsl_histogram_stat.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram_stat.c: * Routines for statisticalcomputations on histograms. * Need GSL library and header. * Contains the routines: * gsl_histogram_mean compute histogram mean * gsl_histogram_sigma compute histogram sigma * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include #include /* FIXME: We skip negative values in the histogram h->bin[i] < 0, since those correspond to negative weights (BJG) */ double gsl_histogram_mean (const gsl_histogram * h) { const size_t n = h->n; size_t i; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wmean = 0; long double W = 0; for (i = 0; i < n; i++) { double xi = (h->range[i + 1] + h->range[i]) / 2; double wi = h->bin[i]; if (wi > 0) { W += wi; wmean += (xi - wmean) * (wi / W); } } return wmean; } double gsl_histogram_sigma (const gsl_histogram * h) { const size_t n = h->n; size_t i; long double wvariance = 0 ; long double wmean = 0; long double W = 0; /* Use a two-pass algorithm for stability. Could also use a single pass formula, as given in N.J.Higham 'Accuracy and Stability of Numerical Methods', p.12 */ /* Compute the mean */ for (i = 0; i < n; i++) { double xi = (h->range[i + 1] + h->range[i]) / 2; double wi = h->bin[i]; if (wi > 0) { W += wi; wmean += (xi - wmean) * (wi / W); } } /* Compute the variance */ W = 0.0; for (i = 0; i < n; i++) { double xi = ((h->range[i + 1]) + (h->range[i])) / 2; double wi = h->bin[i]; if (wi > 0) { const long double delta = (xi - wmean); W += wi ; wvariance += (delta * delta - wvariance) * (wi / W); } } { double sigma = sqrt (wvariance) ; return sigma; } } /* sum up all bins of histogram */ double gsl_histogram_sum(const gsl_histogram * h) { double sum=0; size_t i=0; size_t n; n=h->n; while(i < n) sum += h->bin[i++]; return sum; } gsl-1.16/histogram/test2d.c0000664000252300025230000004355712171574312012536 00000000000000/* histogram/test2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #define M 107 #define N 239 #define M1 17 #define N1 23 #define MR 10 #define NR 5 void test2d (void) { double xr[MR + 1] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 }; double yr[NR + 1] = { 90.0, 91.0, 92.0, 93.0, 94.0, 95.0 }; gsl_histogram2d *h, *h1, *g, *hr; size_t i, j, k; gsl_ieee_env_setup (); h = gsl_histogram2d_calloc (M, N); h1 = gsl_histogram2d_calloc (M, N); g = gsl_histogram2d_calloc (M, N); gsl_test (h->xrange == 0, "gsl_histogram2d_calloc returns valid xrange pointer"); gsl_test (h->yrange == 0, "gsl_histogram2d_calloc returns valid yrange pointer"); gsl_test (h->bin == 0, "gsl_histogram2d_calloc returns valid bin pointer"); gsl_test (h->nx != M, "gsl_histogram2d_calloc returns valid nx"); gsl_test (h->ny != N, "gsl_histogram2d_calloc returns valid ny"); hr = gsl_histogram2d_calloc_range (MR, NR, xr, yr); gsl_test (hr->xrange == 0, "gsl_histogram2d_calloc_range returns valid xrange pointer"); gsl_test (hr->yrange == 0, "gsl_histogram2d_calloc_range returns valid yrange pointer"); gsl_test (hr->bin == 0, "gsl_histogram2d_calloc_range returns valid bin pointer"); gsl_test (hr->nx != MR, "gsl_histogram2d_calloc_range returns valid nx"); gsl_test (hr->ny != NR, "gsl_histogram2d_calloc_range returns valid ny"); { int status = 0; for (i = 0; i <= MR; i++) { if (hr->xrange[i] != xr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram2d_calloc_range creates xrange"); } { int status = 0; for (i = 0; i <= NR; i++) { if (hr->yrange[i] != yr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram2d_calloc_range creates yrange"); } for (i = 0; i <= MR; i++) { hr->xrange[i] = 0.0; } for (i = 0; i <= NR; i++) { hr->yrange[i] = 0.0; } { int status = gsl_histogram2d_set_ranges (hr, xr, MR + 1, yr, NR + 1); for (i = 0; i <= MR; i++) { if (hr->xrange[i] != xr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram2d_set_ranges sets xrange"); } { int status = 0; for (i = 0; i <= NR; i++) { if (hr->yrange[i] != yr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram2d_set_ranges sets yrange"); } k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; gsl_histogram2d_accumulate (h, (double) i, (double) j, (double) k); }; } { int status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (h->bin[i * N + j] != (double) k) { status = 1; } } } gsl_test (status, "gsl_histogram2d_accumulate writes into array"); } { int status = 0; k = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { k++; if (gsl_histogram2d_get (h, i, j) != (double) k) status = 1; }; } gsl_test (status, "gsl_histogram2d_get reads from array"); } for (i = 0; i <= M; i++) { h1->xrange[i] = 100.0 + i; } for (i = 0; i <= N; i++) { h1->yrange[i] = 900.0 + i * i; } gsl_histogram2d_memcpy (h1, h); { int status = 0; for (i = 0; i <= M; i++) { if (h1->xrange[i] != h->xrange[i]) status = 1; }; gsl_test (status, "gsl_histogram2d_memcpy copies bin xranges"); } { int status = 0; for (i = 0; i <= N; i++) { if (h1->yrange[i] != h->yrange[i]) status = 1; }; gsl_test (status, "gsl_histogram2d_memcpy copies bin yranges"); } { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { if (gsl_histogram2d_get (h1, i, j) != gsl_histogram2d_get (h, i, j)) status = 1; } } gsl_test (status, "gsl_histogram2d_memcpy copies bin values"); } gsl_histogram2d_free (h1); h1 = gsl_histogram2d_clone (h); { int status = 0; for (i = 0; i <= M; i++) { if (h1->xrange[i] != h->xrange[i]) status = 1; }; gsl_test (status, "gsl_histogram2d_clone copies bin xranges"); } { int status = 0; for (i = 0; i <= N; i++) { if (h1->yrange[i] != h->yrange[i]) status = 1; }; gsl_test (status, "gsl_histogram2d_clone copies bin yranges"); } { int status = 0; for (i = 0; i < M; i++) { for (j = 0; j < N; j++) { if (gsl_histogram2d_get (h1, i, j) != gsl_histogram2d_get (h, i, j)) status = 1; } } gsl_test (status, "gsl_histogram2d_clone copies bin values"); } gsl_histogram2d_reset (h); { int status = 0; for (i = 0; i < M * N; i++) { if (h->bin[i] != 0) status = 1; } gsl_test (status, "gsl_histogram2d_reset zeros array"); } gsl_histogram2d_free (h); h = gsl_histogram2d_calloc (M1, N1); { int status = 0; for (i = 0; i < M1; i++) { for (j = 0; j < N1; j++) { gsl_histogram2d_increment (h, (double) i, (double) j); for (k = 0; k <= i * N1 + j; k++) { if (h->bin[k] != 1) { status = 1; } } for (k = i * N1 + j + 1; k < M1 * N1; k++) { if (h->bin[k] != 0) { status = 1; } } } } gsl_test (status, "gsl_histogram2d_increment increases bin value"); } gsl_histogram2d_free (h); h = gsl_histogram2d_calloc (M, N); { int status = 0; for (i = 0; i < M; i++) { double x0 = 0, x1 = 0; gsl_histogram2d_get_xrange (h, i, &x0, &x1); if (x0 != i || x1 != i + 1) { status = 1; } } gsl_test (status, "gsl_histogram2d_get_xlowerlimit and xupperlimit"); } { int status = 0; for (i = 0; i < N; i++) { double y0 = 0, y1 = 0; gsl_histogram2d_get_yrange (h, i, &y0, &y1); if (y0 != i || y1 != i + 1) { status = 1; } } gsl_test (status, "gsl_histogram2d_get_ylowerlimit and yupperlimit"); } { int status = 0; if (gsl_histogram2d_xmax (h) != M) status = 1; gsl_test (status, "gsl_histogram2d_xmax"); } { int status = 0; if (gsl_histogram2d_xmin (h) != 0) status = 1; gsl_test (status, "gsl_histogram2d_xmin"); } { int status = 0; if (gsl_histogram2d_nx (h) != M) status = 1; gsl_test (status, "gsl_histogram2d_nx"); } { int status = 0; if (gsl_histogram2d_ymax (h) != N) status = 1; gsl_test (status, "gsl_histogram2d_ymax"); } { int status = 0; if (gsl_histogram2d_ymin (h) != 0) status = 1; gsl_test (status, "gsl_histogram2d_ymin"); } { int status = 0; if (gsl_histogram2d_ny (h) != N) status = 1; gsl_test (status, "gsl_histogram2d_ny"); } h->bin[3 * N + 2] = 123456.0; h->bin[4 * N + 3] = -654321; { double max = gsl_histogram2d_max_val (h); gsl_test (max != 123456.0, "gsl_histogram2d_max_val finds maximum value"); } { double min = gsl_histogram2d_min_val (h); gsl_test (min != -654321.0, "gsl_histogram2d_min_val finds minimum value"); } { size_t imax, jmax; gsl_histogram2d_max_bin (h, &imax, &jmax); gsl_test (imax != 3 || jmax != 2, "gsl_histogram2d_max_bin finds maximum value bin"); } { size_t imin, jmin; gsl_histogram2d_min_bin (h, &imin, &jmin); gsl_test (imin != 4 || jmin != 3, "gsl_histogram2d_min_bin find minimum value bin"); } for (i = 0; i < M * N; i++) { h->bin[i] = i + 27; g->bin[i] = (i + 27) * (i + 1); } { double sum = gsl_histogram2d_sum (h); gsl_test (sum != N * M * 27 + ((N * M - 1) * N * M) / 2, "gsl_histogram2d_sum sums all bin values"); } { /* first test... */ const double xpos = 0.6; const double ypos = 0.85; double xmean; double ymean; size_t xbin; size_t ybin; gsl_histogram2d *h3 = gsl_histogram2d_alloc (M, N); gsl_histogram2d_set_ranges_uniform (h3, 0, 1, 0, 1); gsl_histogram2d_increment (h3, xpos, ypos); gsl_histogram2d_find (h3, xpos, ypos, &xbin, &ybin); xmean = gsl_histogram2d_xmean (h3); ymean = gsl_histogram2d_ymean (h3); { double expected_xmean = (h3->xrange[xbin] + h3->xrange[xbin + 1]) / 2.0; double expected_ymean = (h3->yrange[ybin] + h3->yrange[ybin + 1]) / 2.0; gsl_test_abs (xmean, expected_xmean, 100.0 * GSL_DBL_EPSILON, "gsl_histogram2d_xmean"); gsl_test_abs (ymean, expected_ymean, 100.0 * GSL_DBL_EPSILON, "gsl_histogram2d_ymean"); }; gsl_histogram2d_free (h3); } { /* test it with bivariate normal distribution */ const double xmean = 0.7; const double ymean = 0.7; const double xsigma = 0.1; const double ysigma = 0.1; const double correl = 0.5; const double norm = 10.0 / M_PI / xsigma / ysigma / sqrt (1.0 - correl * correl); size_t xbin; size_t ybin; gsl_histogram2d *h3 = gsl_histogram2d_alloc (M, N); gsl_histogram2d_set_ranges_uniform (h3, 0, 1, 0, 1); /* initialize with 2d gauss pdf in two directions */ for (xbin = 0; xbin < M; xbin++) { double xi = ((h3->xrange[xbin] + h3->xrange[xbin + 1]) / 2.0 - xmean) / xsigma; for (ybin = 0; ybin < N; ybin++) { double yi = ((h3->yrange[ybin] + h3->yrange[ybin + 1]) / 2.0 - ymean) / ysigma; double prob = norm * exp (-(xi * xi - 2.0 * correl * xi * yi + yi * yi) / 2.0 / (1 - correl * correl)); h3->bin[xbin * N + ybin] = prob; } } { double xs = gsl_histogram2d_xsigma (h3); double ys = gsl_histogram2d_ysigma (h3); /* evaluate results and compare with parameters */ gsl_test_abs (gsl_histogram2d_xmean (h3), xmean, 2.0/M, "gsl_histogram2d_xmean histogram mean(x)"); gsl_test_abs (gsl_histogram2d_ymean (h3), ymean, 2.0/N, "gsl_histogram2d_ymean histogram mean(y)"); gsl_test_abs (xs, xsigma, 2.0/M, "gsl_histogram2d_xsigma histogram stdev(x)"); gsl_test_abs (ys, ysigma, 2.0/N, "gsl_histogram2d_ysigma histogram stdev(y)"); gsl_test_abs (gsl_histogram2d_cov (h3) / xs / ys, correl, 2.0/((M < N) ? M : N), "gsl_histogram2d_cov histogram covariance"); } gsl_histogram2d_free (h3); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_add (h1, h); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != g->bin[i] + h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_add histogram addition"); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_sub (h1, h); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != g->bin[i] - h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_sub histogram subtraction"); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_mul (h1, h); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != g->bin[i] * h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_mul histogram multiplication"); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_div (h1, h); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != g->bin[i] / h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_div histogram division"); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_scale (h1, 0.5); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != 0.5 * g->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_scale histogram scaling"); } gsl_histogram2d_memcpy (h1, g); gsl_histogram2d_shift (h1, 0.25); { int status = 0; for (i = 0; i < M * N; i++) { if (h1->bin[i] != 0.25 + g->bin[i]) status = 1; } gsl_test (status, "gsl_histogram2d_shift histogram shift"); } gsl_histogram2d_free (h); /* free whatever is in h */ h = gsl_histogram2d_calloc_uniform (M1, N1, 0.0, 5.0, 0.0, 5.0); gsl_test (h->xrange == 0, "gsl_histogram2d_calloc_uniform returns valid range pointer"); gsl_test (h->yrange == 0, "gsl_histogram2d_calloc_uniform returns valid range pointer"); gsl_test (h->bin == 0, "gsl_histogram2d_calloc_uniform returns valid bin pointer"); gsl_test (h->nx != M1, "gsl_histogram2d_calloc_uniform returns valid nx"); gsl_test (h->ny != N1, "gsl_histogram2d_calloc_uniform returns valid ny"); gsl_histogram2d_accumulate (h, 0.0, 3.01, 1.0); gsl_histogram2d_accumulate (h, 0.1, 2.01, 2.0); gsl_histogram2d_accumulate (h, 0.2, 1.01, 3.0); gsl_histogram2d_accumulate (h, 0.3, 0.01, 4.0); { size_t i1, i2, i3, i4; size_t j1, j2, j3, j4; double expected; int status; status = gsl_histogram2d_find (h, 0.0, 3.01, &i1, &j1); status = gsl_histogram2d_find (h, 0.1, 2.01, &i2, &j2); status = gsl_histogram2d_find (h, 0.2, 1.01, &i3, &j3); status = gsl_histogram2d_find (h, 0.3, 0.01, &i4, &j4); for (i = 0; i < M1; i++) { for (j = 0; j < N1; j++) { if (i == i1 && j == j1) { expected = 1.0; } else if (i == i2 && j == j2) { expected = 2.0; } else if (i == i3 && j == j3) { expected = 3.0; } else if (i == i4 && j == j4) { expected = 4.0; } else { expected = 0.0; } if (h->bin[i * N1 + j] != expected) { status = 1; } } } gsl_test (status, "gsl_histogram2d_find returns index"); } { FILE *f = fopen ("test.txt", "w"); gsl_histogram2d_fprintf (f, h, "%.19e", "%.19e"); fclose (f); } { FILE *f = fopen ("test.txt", "r"); gsl_histogram2d *hh = gsl_histogram2d_calloc (M1, N1); int status = 0; gsl_histogram2d_fscanf (f, hh); for (i = 0; i <= M1; i++) { if (h->xrange[i] != hh->xrange[i]) { printf ("xrange[%d] : %g orig vs %g\n", (int) i, h->xrange[i], hh->xrange[i]); status = 1; } } for (j = 0; j <= N1; j++) { if (h->yrange[j] != hh->yrange[j]) { printf ("yrange[%d] : %g orig vs %g\n", (int) j, h->yrange[j], hh->yrange[j]); status = 1; } } for (i = 0; i < M1 * N1; i++) { if (h->bin[i] != hh->bin[i]) { printf ("bin[%d] : %g orig vs %g\n", (int) i, h->bin[i], hh->bin[i]); status = 1; } } gsl_test (status, "gsl_histogram2d_fprintf and fscanf"); gsl_histogram2d_free (hh); fclose (f); } { FILE *f = fopen ("test.dat", "wb"); gsl_histogram2d_fwrite (f, h); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); gsl_histogram2d *hh = gsl_histogram2d_calloc (M1, N1); int status = 0; gsl_histogram2d_fread (f, hh); for (i = 0; i <= M1; i++) { if (h->xrange[i] != hh->xrange[i]) { printf ("xrange[%d] : %g orig vs %g\n", (int) i, h->xrange[i], hh->xrange[i]); status = 1; } } for (j = 0; j <= N1; j++) { if (h->yrange[j] != hh->yrange[j]) { printf ("yrange[%d] : %g orig vs %g\n", (int) j, h->yrange[j], hh->yrange[j]); status = 1; } } for (i = 0; i < M1 * N1; i++) { if (h->bin[i] != hh->bin[i]) { printf ("bin[%d] : %g orig vs %g\n", (int) i, h->bin[i], hh->bin[i]); status = 1; } } gsl_test (status, "gsl_histogram2d_fwrite and fread"); gsl_histogram2d_free (hh); fclose (f); } gsl_histogram2d_free (h); gsl_histogram2d_free (h1); gsl_histogram2d_free (g); gsl_histogram2d_free (hr); } gsl-1.16/histogram/oper.c0000664000252300025230000000750512171574312012267 00000000000000/* gsl_histogram_oper.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram_oper.c: * Routine to make operation on histograms. * Need GSL library and header. * Contains the routines: * gsl_histogram_same_binning check if two histograms have the same binning * gsl_histogram_add add two histograms * gsl_histogram_sub subctract two histograms * gsl_histogram_mult multiply two histograms * gsl_histogram_div divide two histograms * gsl_histogram_scale scale histogram contents * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include /* * gsl_histogram_same_binning: * control if two histograms have the * same binning */ int gsl_histogram_equal_bins_p (const gsl_histogram * h1, const gsl_histogram * h2) { if (h1->n != h2->n) { return 0; } { size_t i; /* init ranges */ for (i = 0; i <= h1->n; i++) { if (h1->range[i] != h2->range[i]) { return 0; } } } return 1; } /* * gsl_histogram_add: * add two histograms */ int gsl_histogram_add (gsl_histogram * h1, const gsl_histogram * h2) { size_t i; if (!gsl_histogram_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < h1->n; i++) { h1->bin[i] += h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram_sub: * subtract two histograms */ int gsl_histogram_sub (gsl_histogram * h1, const gsl_histogram * h2) { size_t i; if (!gsl_histogram_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < h1->n; i++) { h1->bin[i] -= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram_mult: * multiply two histograms */ int gsl_histogram_mul (gsl_histogram * h1, const gsl_histogram * h2) { size_t i; if (!gsl_histogram_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < h1->n; i++) { h1->bin[i] *= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram_div: * divide two histograms */ int gsl_histogram_div (gsl_histogram * h1, const gsl_histogram * h2) { size_t i; if (!gsl_histogram_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < h1->n; i++) { h1->bin[i] /= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram_scale: * scale a histogram by a numeric factor */ int gsl_histogram_scale (gsl_histogram * h, double scale) { size_t i; for (i = 0; i < h->n; i++) { h->bin[i] *= scale; } return GSL_SUCCESS; } /* * gsl_histogram_shift: * shift a histogram by a numeric offset */ int gsl_histogram_shift (gsl_histogram * h, double shift) { size_t i; for (i = 0; i < h->n; i++) { h->bin[i] += shift; } return GSL_SUCCESS; } gsl-1.16/histogram/add.c0000664000252300025230000000265012171574312012046 00000000000000/* histogram/add.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include "find.c" int gsl_histogram_increment (gsl_histogram * h, double x) { int status = gsl_histogram_accumulate (h, x, 1.0); return status; } int gsl_histogram_accumulate (gsl_histogram * h, double x, double weight) { const size_t n = h->n; size_t index = 0; int status = find (h->n, h->range, x, &index); if (status) { return GSL_EDOM; } if (index >= n) { GSL_ERROR ("index lies outside valid range of 0 .. n - 1", GSL_ESANITY); } h->bin[index] += weight; return GSL_SUCCESS; } gsl-1.16/histogram/find2d.c0000664000252300025230000000255512171574312012470 00000000000000/* histogram/find2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "find.c" static int find2d (const size_t nx, const double xrange[], const size_t ny, const double yrange[], const double x, const double y, size_t * i, size_t * j); static int find2d (const size_t nx, const double xrange[], const size_t ny, const double yrange[], const double x, const double y, size_t * i, size_t * j) { int status = find (nx, xrange, x, i); if (status) { return status; } status = find (ny, yrange, y, j); if (status) { return status; } return 0; } gsl-1.16/histogram/find.c0000664000252300025230000000361612171574312012241 00000000000000/* histogram/find.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* determines whether to optimize for linear ranges */ #define LINEAR_OPT 1 static int find (const size_t n, const double range[], const double x, size_t * i); static int find (const size_t n, const double range[], const double x, size_t * i) { size_t i_linear, lower, upper, mid; if (x < range[0]) { return -1; } if (x >= range[n]) { return +1; } /* optimize for linear case */ #ifdef LINEAR_OPT { double u = (x - range[0]) / (range[n] - range[0]); i_linear = (size_t) (u * n); } if (x >= range[i_linear] && x < range[i_linear + 1]) { *i = i_linear; return 0; } #endif /* perform binary search */ upper = n ; lower = 0 ; while (upper - lower > 1) { mid = (upper + lower) / 2 ; if (x >= range[mid]) { lower = mid ; } else { upper = mid ; } } *i = lower ; /* sanity check the result */ if (x < range[lower] || x >= range[lower + 1]) { GSL_ERROR ("x not found in range", GSL_ESANITY); } return 0; } gsl-1.16/histogram/file.c0000664000252300025230000000565412171574312012244 00000000000000/* histogram/file.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include int gsl_histogram_fread (FILE * stream, gsl_histogram * h) { int status = gsl_block_raw_fread (stream, h->range, h->n + 1, 1); if (status) return status; status = gsl_block_raw_fread (stream, h->bin, h->n, 1); return status; } int gsl_histogram_fwrite (FILE * stream, const gsl_histogram * h) { int status = gsl_block_raw_fwrite (stream, h->range, h->n + 1, 1); if (status) return status; status = gsl_block_raw_fwrite (stream, h->bin, h->n, 1); return status; } int gsl_histogram_fprintf (FILE * stream, const gsl_histogram * h, const char *range_format, const char *bin_format) { size_t i; const size_t n = h->n; for (i = 0; i < n; i++) { int status = fprintf (stream, range_format, h->range[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, range_format, h->range[i + 1]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc (' ', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } status = fprintf (stream, bin_format, h->bin[i]); if (status < 0) { GSL_ERROR ("fprintf failed", GSL_EFAILED); } status = putc ('\n', stream); if (status == EOF) { GSL_ERROR ("putc failed", GSL_EFAILED); } } return GSL_SUCCESS; } int gsl_histogram_fscanf (FILE * stream, gsl_histogram * h) { size_t i; const size_t n = h->n; double upper; for (i = 0; i < n; i++) { int status = fscanf (stream, "%lg %lg %lg", h->range + i, &upper, h->bin + i); if (status != 3) { GSL_ERROR ("fscanf failed", GSL_EFAILED); } } h->range[n] = upper; return GSL_SUCCESS; } gsl-1.16/histogram/reset2d.c0000664000252300025230000000207612171574312012670 00000000000000/* histogram/reset2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include void gsl_histogram2d_reset (gsl_histogram2d * h) { size_t i; const size_t nx = h->nx; const size_t ny = h->ny; for (i = 0; i < nx * ny; i++) { h->bin[i] = 0; } } gsl-1.16/histogram/calloc_range.c0000664000252300025230000000533312171574312013730 00000000000000/* gsl_histogram_calloc_range.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram_calloc_range.c: * Routine to create a variable binning histogram providing * an input range vector. Need GSL library and header. * Do range check and allocate the histogram data. * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include gsl_histogram * gsl_histogram_calloc_range (size_t n, double *range) { size_t i; gsl_histogram *h; /* check arguments */ if (n == 0) { GSL_ERROR_VAL ("histogram length n must be positive integer", GSL_EDOM, 0); } /* check ranges */ for (i = 0; i < n; i++) { if (range[i] >= range[i + 1]) { GSL_ERROR_VAL ("histogram bin extremes must be " "in increasing order", GSL_EDOM, 0); } } /* Allocate histogram */ h = (gsl_histogram *) malloc (sizeof (gsl_histogram)); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram struct", GSL_ENOMEM, 0); } h->range = (double *) malloc ((n + 1) * sizeof (double)); if (h->range == 0) { /* exception in constructor, avoid memory leak */ free (h); GSL_ERROR_VAL ("failed to allocate space for histogram ranges", GSL_ENOMEM, 0); } h->bin = (double *) malloc (n * sizeof (double)); if (h->bin == 0) { /* exception in constructor, avoid memory leak */ free (h->range); free (h); GSL_ERROR_VAL ("failed to allocate space for histogram bins", GSL_ENOMEM, 0); } /* initialize ranges */ for (i = 0; i <= n; i++) { h->range[i] = range[i]; } /* clear contents */ for (i = 0; i < n; i++) { h->bin[i] = 0; } h->n = n; return h; } gsl-1.16/histogram/test1d.c0000664000252300025230000002430512171574312012523 00000000000000/* histogram/test.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #define N 397 #define NR 10 void test1d (void) { double xr[NR + 1] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0}; gsl_histogram *h, *h1, *hr, *g; size_t i, j; gsl_ieee_env_setup (); h = gsl_histogram_calloc (N); h1 = gsl_histogram_calloc (N); g = gsl_histogram_calloc (N); gsl_test (h->range == 0, "gsl_histogram_alloc returns valid range pointer"); gsl_test (h->bin == 0, "gsl_histogram_alloc returns valid bin pointer"); gsl_test (h->n != N, "gsl_histogram_alloc returns valid size"); hr = gsl_histogram_calloc_range (NR, xr); gsl_test (hr->range == 0, "gsl_histogram_calloc_range returns valid range pointer"); gsl_test (hr->bin == 0, "gsl_histogram_calloc_range returns valid bin pointer"); gsl_test (hr->n != NR, "gsl_histogram_calloc_range returns valid size"); { int status = 0; for (i = 0; i <= NR; i++) { if (hr->range[i] != xr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram_calloc_range creates range"); } for (i = 0; i <= NR; i++) { hr->range[i] = 0.0; } { int status = gsl_histogram_set_ranges (hr, xr, NR+1); for (i = 0; i <= NR; i++) { if (hr->range[i] != xr[i]) { status = 1; } }; gsl_test (status, "gsl_histogram_set_range sets range"); } for (i = 0; i < N; i++) { gsl_histogram_accumulate (h, (double) i, (double) i); }; { int status = 0; for (i = 0; i < N; i++) { if (h->bin[i] != (double) i) { status = 1; } }; gsl_test (status, "gsl_histogram_accumulate writes into array"); } { int status = 0; for (i = 0; i < N; i++) { if (gsl_histogram_get (h, i) != i) status = 1; }; gsl_test (status, "gsl_histogram_get reads from array"); } for (i = 0; i <= N; i++) { h1->range[i] = 100.0 + i; } gsl_histogram_memcpy (h1, h); { int status = 0; for (i = 0; i <= N; i++) { if (h1->range[i] != h->range[i]) status = 1; }; gsl_test (status, "gsl_histogram_memcpy copies bin ranges"); } { int status = 0; for (i = 0; i < N; i++) { if (gsl_histogram_get (h1, i) != gsl_histogram_get (h, i)) status = 1; }; gsl_test (status, "gsl_histogram_memcpy copies bin values"); } gsl_histogram_free (h1); h1 = gsl_histogram_clone (h); { int status = 0; for (i = 0; i <= N; i++) { if (h1->range[i] != h->range[i]) status = 1; }; gsl_test (status, "gsl_histogram_clone copies bin ranges"); } { int status = 0; for (i = 0; i < N; i++) { if (gsl_histogram_get (h1, i) != gsl_histogram_get (h, i)) status = 1; }; gsl_test (status, "gsl_histogram_clone copies bin values"); } gsl_histogram_reset (h); { int status = 0; for (i = 0; i < N; i++) { if (h->bin[i] != 0) status = 1; } gsl_test (status, "gsl_histogram_reset zeros array"); } { int status = 0; for (i = 0; i < N; i++) { gsl_histogram_increment (h, (double) i); for (j = 0; j <= i; j++) { if (h->bin[j] != 1) { status = 1; } } for (j = i + 1; j < N; j++) { if (h->bin[j] != 0) { status = 1; } } } gsl_test (status, "gsl_histogram_increment increases bin value"); } { int status = 0; for (i = 0; i < N; i++) { double x0 = 0, x1 = 0; gsl_histogram_get_range (h, i, &x0, &x1); if (x0 != i || x1 != i + 1) { status = 1; } } gsl_test (status, "gsl_histogram_getbinrange returns bin range"); } { int status = 0; if (gsl_histogram_max (h) != N) status = 1; gsl_test (status, "gsl_histogram_max returns maximum"); } { int status = 0; if (gsl_histogram_min (h) != 0) status = 1; gsl_test (status, "gsl_histogram_min returns minimum"); } { int status = 0; if (gsl_histogram_bins (h) != N) status = 1; gsl_test (status, "gsl_histogram_bins returns number of bins"); } h->bin[2] = 123456.0; h->bin[4] = -654321; { double max = gsl_histogram_max_val (h); gsl_test (max != 123456.0, "gsl_histogram_max_val finds maximum value"); } { double min = gsl_histogram_min_val (h); gsl_test (min != -654321.0, "gsl_histogram_min_val finds minimum value"); } { size_t imax = gsl_histogram_max_bin (h); gsl_test (imax != 2, "gsl_histogram_max_bin finds maximum value bin"); } { size_t imin = gsl_histogram_min_bin (h); gsl_test (imin != 4, "gsl_histogram_min_bin find minimum value bin"); } for (i = 0; i < N; i++) { h->bin[i] = i + 27; g->bin[i] = (i + 27) * (i + 1); } { double sum=gsl_histogram_sum (h); gsl_test(sum != N*27+((N-1)*N)/2, "gsl_histogram_sum sums all bin values"); } gsl_histogram_memcpy (h1, g); gsl_histogram_add (h1, h); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != g->bin[i] + h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_add histogram addition"); } gsl_histogram_memcpy (h1, g); gsl_histogram_sub (h1, h); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != g->bin[i] - h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_sub histogram subtraction"); } gsl_histogram_memcpy (h1, g); gsl_histogram_mul (h1, h); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != g->bin[i] * h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_mul histogram multiplication"); } gsl_histogram_memcpy (h1, g); gsl_histogram_div (h1, h); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != g->bin[i] / h->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_div histogram division"); } gsl_histogram_memcpy (h1, g); gsl_histogram_scale (h1, 0.5); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != 0.5 * g->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_scale histogram scaling"); } gsl_histogram_memcpy (h1, g); gsl_histogram_shift (h1, 0.25); { int status = 0; for (i = 0; i < N; i++) { if (h1->bin[i] != 0.25 + g->bin[i]) status = 1; } gsl_test (status, "gsl_histogram_shift histogram shift"); } gsl_histogram_free (h); /* free whatever is in h */ h = gsl_histogram_calloc_uniform (N, 0.0, 1.0); gsl_test (h->range == 0, "gsl_histogram_calloc_uniform returns valid range pointer"); gsl_test (h->bin == 0, "gsl_histogram_calloc_uniform returns valid bin pointer"); gsl_test (h->n != N, "gsl_histogram_calloc_uniform returns valid size"); gsl_histogram_accumulate (h, 0.0, 1.0); gsl_histogram_accumulate (h, 0.1, 2.0); gsl_histogram_accumulate (h, 0.2, 3.0); gsl_histogram_accumulate (h, 0.3, 4.0); { size_t i1, i2, i3, i4; double expected; int status = gsl_histogram_find (h, 0.0, &i1); status = gsl_histogram_find (h, 0.1, &i2); status = gsl_histogram_find (h, 0.2, &i3); status = gsl_histogram_find (h, 0.3, &i4); for (i = 0; i < N; i++) { if (i == i1) { expected = 1.0; } else if (i == i2) { expected = 2.0; } else if (i == i3) { expected = 3.0; } else if (i == i4) { expected = 4.0; } else { expected = 0.0; } if (h->bin[i] != expected) { status = 1; } } gsl_test (status, "gsl_histogram_find returns index"); } { FILE *f = fopen ("test.txt", "w"); gsl_histogram_fprintf (f, h, "%.19e", "%.19e"); fclose (f); } { FILE *f = fopen ("test.txt", "r"); gsl_histogram *hh = gsl_histogram_calloc (N); int status = 0; gsl_histogram_fscanf (f, hh); for (i = 0; i < N; i++) { if (h->range[i] != hh->range[i]) status = 1; if (h->bin[i] != hh->bin[i]) status = 1; } if (h->range[N] != hh->range[N]) status = 1; gsl_test (status, "gsl_histogram_fprintf and fscanf"); gsl_histogram_free (hh); fclose (f); } { FILE *f = fopen ("test.dat", "wb"); gsl_histogram_fwrite (f, h); fclose (f); } { FILE *f = fopen ("test.dat", "rb"); gsl_histogram *hh = gsl_histogram_calloc (N); int status = 0; gsl_histogram_fread (f, hh); for (i = 0; i < N; i++) { if (h->range[i] != hh->range[i]) status = 1; if (h->bin[i] != hh->bin[i]) status = 1; } if (h->range[N] != hh->range[N]) status = 1; gsl_test (status, "gsl_histogram_fwrite and fread"); gsl_histogram_free (hh); fclose (f); } gsl_histogram_free (h); gsl_histogram_free (g); gsl_histogram_free (h1); gsl_histogram_free (hr); } gsl-1.16/histogram/test2d_trap.c0000664000252300025230000001606712171574312013560 00000000000000/* histogram/test2d_trap.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #define N 107 #define M 239 static void my_error_handler (const char *reason, const char *file, int line, int err); static int status = 0; void test2d_trap (void) { gsl_histogram2d *h; double result, lower, upper; size_t i, j; gsl_set_error_handler (&my_error_handler); gsl_ieee_env_setup (); status = 0; h = gsl_histogram2d_calloc (0, 10); gsl_test (!status, "gsl_histogram_calloc traps zero-width histogram"); gsl_test (h != 0, "gsl_histogram2d_calloc returns NULL for zero-width histogram"); status = 0; h = gsl_histogram2d_calloc (10, 0); gsl_test (!status, "gsl_histogram_calloc traps zero-length histogram"); gsl_test (h != 0, "gsl_histogram2d_calloc returns NULL for zero-length histogram"); status = 0; h = gsl_histogram2d_calloc_uniform (0, 10, 0.0, 1.0, 0.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps zero-width histogram"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for zero-width histogram"); status = 0; h = gsl_histogram2d_calloc_uniform (10, 0, 0.0, 1.0, 0.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps zero-length histogram"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for zero-length histogram"); status = 0; h = gsl_histogram2d_calloc_uniform (10, 10, 0.0, 1.0, 1.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps equal endpoints"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for equal endpoints"); status = 0; h = gsl_histogram2d_calloc_uniform (10, 10, 1.0, 1.0, 0.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps equal endpoints"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for equal endpoints"); status = 0; h = gsl_histogram2d_calloc_uniform (10, 10, 0.0, 1.0, 2.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps invalid range"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for invalid range"); status = 0; h = gsl_histogram2d_calloc_uniform (10, 10, 2.0, 1.0, 0.0, 1.0); gsl_test (!status, "gsl_histogram2d_calloc_uniform traps invalid range"); gsl_test (h != 0, "gsl_histogram2d_calloc_uniform returns NULL for invalid range"); h = gsl_histogram2d_calloc_uniform (N, M, 0.0, 1.0, 0.0, 1.0); status = gsl_histogram2d_accumulate (h, 1.0, 0.0, 10.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps x at xmax"); status = gsl_histogram2d_accumulate (h, 2.0, 0.0, 100.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps x above xmax"); status = gsl_histogram2d_accumulate (h, -1.0, 0.0, 1000.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps x below xmin"); status = gsl_histogram2d_accumulate (h, 0.0, 1.0, 10.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps y at ymax"); status = gsl_histogram2d_accumulate (h, 0.0, 2.0, 100.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps y above ymax"); status = gsl_histogram2d_accumulate (h, 0.0, -1.0, 1000.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_accumulate traps y below ymin"); status = gsl_histogram2d_increment (h, 1.0, 0.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps x at xmax"); status = gsl_histogram2d_increment (h, 2.0, 0.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps x above xmax"); status = gsl_histogram2d_increment (h, -1.0, 0.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps x below xmin"); status = gsl_histogram2d_increment (h, 0.0, 1.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps y at ymax"); status = gsl_histogram2d_increment (h, 0.0, 2.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps y above ymax"); status = gsl_histogram2d_increment (h, 0.0, -1.0); gsl_test (status != GSL_EDOM, "gsl_histogram2d_increment traps y below ymin"); result = gsl_histogram2d_get (h, N, 0); gsl_test (result != 0, "gsl_histogram2d_get traps x index at nx"); result = gsl_histogram2d_get (h, N + 1, 0); gsl_test (result != 0, "gsl_histogram2d_get traps x index above nx"); result = gsl_histogram2d_get (h, 0, M); gsl_test (result != 0, "gsl_histogram2d_get traps y index at ny"); result = gsl_histogram2d_get (h, 0, M + 1); gsl_test (result != 0, "gsl_histogram2d_get traps y index above ny"); status = gsl_histogram2d_get_xrange (h, N, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram2d_get_xrange traps index at nx"); status = gsl_histogram2d_get_xrange (h, N + 1, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram2d_get_xrange traps index above nx"); status = gsl_histogram2d_get_yrange (h, M, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram2d_get_yrange traps index at ny"); status = gsl_histogram2d_get_yrange (h, M + 1, &lower, &upper); gsl_test (status != GSL_EDOM, "gsl_histogram2d_get_yrange traps index above ny"); status = 0; gsl_histogram2d_find (h, -0.01, 0.0, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps x below xmin"); status = 0; gsl_histogram2d_find (h, 1.0, 0.0, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps x at xmax"); status = 0; gsl_histogram2d_find (h, 1.1, 0.0, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps x above xmax"); status = 0; gsl_histogram2d_find (h, 0.0, -0.01, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps y below ymin"); status = 0; gsl_histogram2d_find (h, 0.0, 1.0, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps y at ymax"); status = 0; gsl_histogram2d_find (h, 0.0, 1.1, &i, &j); gsl_test (status != GSL_EDOM, "gsl_histogram2d_find traps y above ymax"); gsl_histogram2d_free (h); } static void my_error_handler (const char *reason, const char *file, int line, int err) { if (0) printf ("(caught [%s:%d: %s (%d)])\n", file, line, reason, err); status = 1; } gsl-1.16/histogram/params.c0000664000252300025230000000217412171574312012602 00000000000000/* histogram/params.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_histogram_max (const gsl_histogram * h) { const int n = h->n; return h->range[n]; } double gsl_histogram_min (const gsl_histogram * h) { return h->range[0]; } size_t gsl_histogram_bins (const gsl_histogram * h) { return h->n; } gsl-1.16/histogram/calloc_range2d.c0000664000252300025230000000734012171574312014156 00000000000000/* gsl_histogram2d_calloc_range.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram2d_calloc_range.c: * Routine to create a variable binning 2D histogram providing * the input range vectors. Need GSL library and header. * Do range check and allocate the histogram data. * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include /* * Routine that create a 2D histogram using the given * values for X and Y ranges */ gsl_histogram2d * gsl_histogram2d_calloc_range (size_t nx, size_t ny, double *xrange, double *yrange) { size_t i, j; gsl_histogram2d *h; /* check arguments */ if (nx == 0) { GSL_ERROR_VAL ("histogram length nx must be positive integer", GSL_EDOM, 0); } if (ny == 0) { GSL_ERROR_VAL ("histogram length ny must be positive integer", GSL_EDOM, 0); } /* init ranges */ for (i = 0; i < nx; i++) { if (xrange[i] >= xrange[i + 1]) { GSL_ERROR_VAL ("histogram xrange not in increasing order", GSL_EDOM, 0); } } for (j = 0; j < ny; j++) { if (yrange[j] >= yrange[j + 1]) { GSL_ERROR_VAL ("histogram yrange not in increasing order" ,GSL_EDOM, 0); } } /* Allocate histogram */ h = (gsl_histogram2d *) malloc (sizeof (gsl_histogram2d)); if (h == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram struct", GSL_ENOMEM, 0); } h->xrange = (double *) malloc ((nx + 1) * sizeof (double)); if (h->xrange == 0) { /* exception in constructor, avoid memory leak */ free (h); GSL_ERROR_VAL ("failed to allocate space for histogram xrange", GSL_ENOMEM, 0); } h->yrange = (double *) malloc ((ny + 1) * sizeof (double)); if (h->yrange == 0) { /* exception in constructor, avoid memory leak */ free (h); GSL_ERROR_VAL ("failed to allocate space for histogram yrange", GSL_ENOMEM, 0); } h->bin = (double *) malloc (nx * ny * sizeof (double)); if (h->bin == 0) { /* exception in constructor, avoid memory leak */ free (h->xrange); free (h->yrange); free (h); GSL_ERROR_VAL ("failed to allocate space for histogram bins", GSL_ENOMEM, 0); } /* init histogram */ /* init ranges */ for (i = 0; i <= nx; i++) { h->xrange[i] = xrange[i]; } for (j = 0; j <= ny; j++) { h->yrange[j] = yrange[j]; } /* clear contents */ for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { h->bin[i * ny + j] = 0; } } h->nx = nx; h->ny = ny; return h; } gsl-1.16/histogram/params2d.c0000664000252300025230000000263512171574312013032 00000000000000/* histogram/params2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include double gsl_histogram2d_xmax (const gsl_histogram2d * h) { const int nx = h->nx; return h->xrange[nx]; } double gsl_histogram2d_xmin (const gsl_histogram2d * h) { return h->xrange[0]; } double gsl_histogram2d_ymax (const gsl_histogram2d * h) { const int ny = h->ny; return h->yrange[ny]; } double gsl_histogram2d_ymin (const gsl_histogram2d * h) { return h->yrange[0]; } size_t gsl_histogram2d_nx (const gsl_histogram2d * h) { return h->nx; } size_t gsl_histogram2d_ny (const gsl_histogram2d * h) { return h->ny; } gsl-1.16/histogram/pdf2d.c0000664000252300025230000001055012171574312012313 00000000000000/* histogram/pdf2d.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2009 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include "find.c" int gsl_histogram2d_pdf_sample (const gsl_histogram2d_pdf * p, double r1, double r2, double *x, double *y) { size_t k; int status; /* Wrap the exclusive top of the bin down to the inclusive bottom of the bin. Since this is a single point it should not affect the distribution. */ if (r2 == 1.0) { r2 = 0.0; } if (r1 == 1.0) { r1 = 0.0; } status = find (p->nx * p->ny, p->sum, r1, &k); if (status) { GSL_ERROR ("cannot find r1 in cumulative pdf", GSL_EDOM); } else { size_t i = k / p->ny; size_t j = k - (i * p->ny); double delta = (r1 - p->sum[k]) / (p->sum[k + 1] - p->sum[k]); *x = p->xrange[i] + delta * (p->xrange[i + 1] - p->xrange[i]); *y = p->yrange[j] + r2 * (p->yrange[j + 1] - p->yrange[j]); return GSL_SUCCESS; } } gsl_histogram2d_pdf * gsl_histogram2d_pdf_alloc (const size_t nx, const size_t ny) { const size_t n = nx * ny; gsl_histogram2d_pdf *p; if (n == 0) { GSL_ERROR_VAL ("histogram2d pdf length n must be positive integer", GSL_EDOM, 0); } p = (gsl_histogram2d_pdf *) malloc (sizeof (gsl_histogram2d_pdf)); if (p == 0) { GSL_ERROR_VAL ("failed to allocate space for histogram2d pdf struct", GSL_ENOMEM, 0); } p->xrange = (double *) malloc ((nx + 1) * sizeof (double)); if (p->xrange == 0) { free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d pdf xranges", GSL_ENOMEM, 0); } p->yrange = (double *) malloc ((ny + 1) * sizeof (double)); if (p->yrange == 0) { free (p->xrange); free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d pdf yranges", GSL_ENOMEM, 0); } p->sum = (double *) malloc ((n + 1) * sizeof (double)); if (p->sum == 0) { free (p->yrange); free (p->xrange); free (p); /* exception in constructor, avoid memory leak */ GSL_ERROR_VAL ("failed to allocate space for histogram2d pdf sums", GSL_ENOMEM, 0); } p->nx = nx; p->ny = ny; return p; } int gsl_histogram2d_pdf_init (gsl_histogram2d_pdf * p, const gsl_histogram2d * h) { size_t i; const size_t nx = p->nx; const size_t ny = p->ny; const size_t n = nx * ny; if (nx != h->nx || ny != h->ny) { GSL_ERROR ("histogram2d size must match pdf size", GSL_EDOM); } for (i = 0; i < n; i++) { if (h->bin[i] < 0) { GSL_ERROR ("histogram bins must be non-negative to compute" "a probability distribution", GSL_EDOM); } } for (i = 0; i < nx + 1; i++) { p->xrange[i] = h->xrange[i]; } for (i = 0; i < ny + 1; i++) { p->yrange[i] = h->yrange[i]; } { double mean = 0, sum = 0; for (i = 0; i < n; i++) { mean += (h->bin[i] - mean) / ((double) (i + 1)); } p->sum[0] = 0; for (i = 0; i < n; i++) { sum += (h->bin[i] / mean) / n; p->sum[i + 1] = sum; } } return GSL_SUCCESS; } void gsl_histogram2d_pdf_free (gsl_histogram2d_pdf * p) { RETURN_IF_NULL (p); free (p->xrange); free (p->yrange); free (p->sum); free (p); } gsl-1.16/histogram/stat2d.c0000664000252300025230000001327212171574312012521 00000000000000/* histogram/stat2d.c * Copyright (C) 2002 Achim Gaedke * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File histogram/stat2d.c: * Routine to return statistical values of the content of a 2D hisogram. * * Contains the routines: * gsl_histogram2d_sum sum up all bin values * gsl_histogram2d_xmean determine mean of x values * gsl_histogram2d_ymean determine mean of y values * * Author: Achim Gaedke Achim.Gaedke@zpr.uni-koeln.de * Jan. 2002 * ***************************************************************/ #include #include #include #include /* sum up all bins of histogram2d */ double gsl_histogram2d_sum (const gsl_histogram2d * h) { const size_t n = h->nx * h->ny; double sum = 0; size_t i = 0; while (i < n) sum += h->bin[i++]; return sum; } double gsl_histogram2d_xmean (const gsl_histogram2d * h) { const size_t nx = h->nx; const size_t ny = h->ny; size_t i; size_t j; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wmean = 0; long double W = 0; for (i = 0; i < nx; i++) { double xi = (h->xrange[i + 1] + h->xrange[i]) / 2.0; double wi = 0; for (j = 0; j < ny; j++) { double wij = h->bin[i * ny + j]; if (wij > 0) wi += wij; } if (wi > 0) { W += wi; wmean += (xi - wmean) * (wi / W); } } return wmean; } double gsl_histogram2d_ymean (const gsl_histogram2d * h) { const size_t nx = h->nx; const size_t ny = h->ny; size_t i; size_t j; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wmean = 0; long double W = 0; for (j = 0; j < ny; j++) { double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0; double wj = 0; for (i = 0; i < nx; i++) { double wij = h->bin[i * ny + j]; if (wij > 0) wj += wij; } if (wj > 0) { W += wj; wmean += (yj - wmean) * (wj / W); } } return wmean; } double gsl_histogram2d_xsigma (const gsl_histogram2d * h) { const double xmean = gsl_histogram2d_xmean (h); const size_t nx = h->nx; const size_t ny = h->ny; size_t i; size_t j; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wvariance = 0; long double W = 0; for (i = 0; i < nx; i++) { double xi = (h->xrange[i + 1] + h->xrange[i]) / 2 - xmean; double wi = 0; for (j = 0; j < ny; j++) { double wij = h->bin[i * ny + j]; if (wij > 0) wi += wij; } if (wi > 0) { W += wi; wvariance += ((xi * xi) - wvariance) * (wi / W); } } { double xsigma = sqrt (wvariance); return xsigma; } } double gsl_histogram2d_ysigma (const gsl_histogram2d * h) { const double ymean = gsl_histogram2d_ymean (h); const size_t nx = h->nx; const size_t ny = h->ny; size_t i; size_t j; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wvariance = 0; long double W = 0; for (j = 0; j < ny; j++) { double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0 - ymean; double wj = 0; for (i = 0; i < nx; i++) { double wij = h->bin[i * ny + j]; if (wij > 0) wj += wij; } if (wj > 0) { W += wj; wvariance += ((yj * yj) - wvariance) * (wj / W); } } { double ysigma = sqrt (wvariance); return ysigma; } } double gsl_histogram2d_cov (const gsl_histogram2d * h) { const double xmean = gsl_histogram2d_xmean (h); const double ymean = gsl_histogram2d_ymean (h); const size_t nx = h->nx; const size_t ny = h->ny; size_t i; size_t j; /* Compute the bin-weighted arithmetic mean M of a histogram using the recurrence relation M(n) = M(n-1) + (x[n] - M(n-1)) (w(n)/(W(n-1) + w(n))) W(n) = W(n-1) + w(n) */ long double wcovariance = 0; long double W = 0; for (j = 0; j < ny; j++) { for (i = 0; i < nx; i++) { double xi = (h->xrange[i + 1] + h->xrange[i]) / 2.0 - xmean; double yj = (h->yrange[j + 1] + h->yrange[j]) / 2.0 - ymean; double wij = h->bin[i * ny + j]; if (wij > 0) { W += wij; wcovariance += ((xi * yj) - wcovariance) * (wij / W); } } } return wcovariance; } gsl-1.16/histogram/oper2d.c0000664000252300025230000001025612171574312012512 00000000000000/* gsl_histogram2d_oper.c * Copyright (C) 2000 Simone Piccardi * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this library; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /*************************************************************** * * File gsl_histogram2d_oper.c: * Routine to make operation on 2D histograms. * Need GSL library and header. * Contains the routines: * gsl_histogram2d_same_binning check if two histograms have the same binning * gsl_histogram2d_add add two histogram * gsl_histogram2d_sub subctract two histogram * gsl_histogram2d_mult multiply two histogram * gsl_histogram2d_div divide two histogram * gsl_histogram2d_scale scale histogram contents * * Author: S. Piccardi * Jan. 2000 * ***************************************************************/ #include #include #include #include /* * gsl_histogram2d_same_binning: * control if two histogram have the * same binning */ int gsl_histogram2d_equal_bins_p (const gsl_histogram2d * h1, const gsl_histogram2d * h2) { if ((h1->nx != h2->nx) || (h1->ny != h2->ny)) { return 0; } { size_t i; /* init ranges */ for (i = 0; i <= (h1->nx); i++) { if (h1->xrange[i] != h2->xrange[i]) { return 0; } } for (i = 0; i <= (h1->ny); i++) { if (h1->yrange[i] != h2->yrange[i]) { return 0; } } } return 1; } /* * gsl_histogram2d_add: * add two histogram */ int gsl_histogram2d_add (gsl_histogram2d * h1, const gsl_histogram2d * h2) { size_t i; if (!gsl_histogram2d_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < (h1->nx) * (h1->ny); i++) { h1->bin[i] += h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram2d_sub: * subtract two histogram */ int gsl_histogram2d_sub (gsl_histogram2d * h1, const gsl_histogram2d * h2) { size_t i; if (!gsl_histogram2d_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < (h1->nx) * (h1->ny); i++) { h1->bin[i] -= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram2d_mult: * multiply two histogram */ int gsl_histogram2d_mul (gsl_histogram2d * h1, const gsl_histogram2d * h2) { size_t i; if (!gsl_histogram2d_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < (h1->nx) * (h1->ny); i++) { h1->bin[i] *= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram2d_div: * divide two histogram */ int gsl_histogram2d_div (gsl_histogram2d * h1, const gsl_histogram2d * h2) { size_t i; if (!gsl_histogram2d_equal_bins_p (h1, h2)) { GSL_ERROR ("histograms have different binning", GSL_EINVAL); } for (i = 0; i < (h1->nx) * (h1->ny); i++) { h1->bin[i] /= h2->bin[i]; } return GSL_SUCCESS; } /* * gsl_histogram2d_scale: * scale a histogram by a numeric factor */ int gsl_histogram2d_scale (gsl_histogram2d * h, double scale) { size_t i; for (i = 0; i < (h->nx) * (h->ny); i++) { h->bin[i] *= scale; } return GSL_SUCCESS; } /* * gsl_histogram2d_shift: * shift a histogram by a numeric offset */ int gsl_histogram2d_shift (gsl_histogram2d * h, double shift) { size_t i; for (i = 0; i < (h->nx) * (h->ny); i++) { h->bin[i] += shift; } return GSL_SUCCESS; } gsl-1.16/gsl_version.h0000664000252300025230000000071412172254152011655 00000000000000#ifndef __GSL_VERSION_H__ #define __GSL_VERSION_H__ #include #undef __BEGIN_DECLS #undef __END_DECLS #ifdef __cplusplus # define __BEGIN_DECLS extern "C" { # define __END_DECLS } #else # define __BEGIN_DECLS /* empty */ # define __END_DECLS /* empty */ #endif __BEGIN_DECLS #define GSL_VERSION "1.16" #define GSL_MAJOR_VERSION 1 #define GSL_MINOR_VERSION 16 GSL_VAR const char * gsl_version; __END_DECLS #endif /* __GSL_VERSION_H__ */ gsl-1.16/install-sh0000755000252300025230000003325512172014010011145 00000000000000#!/bin/sh # install - install a program, script, or datafile scriptversion=2011-11-20.07; # UTC # This originates from X11R5 (mit/util/scripts/install.sh), which was # later released in X11R6 (xc/config/util/install.sh) with the # following copyright and license. # # Copyright (C) 1994 X Consortium # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC- # TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # Except as contained in this notice, the name of the X Consortium shall not # be used in advertising or otherwise to promote the sale, use or other deal- # ings in this Software without prior written authorization from the X Consor- # tium. # # # FSF changes to this file are in the public domain. # # Calling this script install-sh is preferred over install.sh, to prevent # 'make' implicit rules from creating a file called install from it # when there is no Makefile. # # This script is compatible with the BSD install script, but was written # from scratch. nl=' ' IFS=" "" $nl" # set DOITPROG to echo to test this script # Don't use :- since 4.3BSD and earlier shells don't like it. doit=${DOITPROG-} if test -z "$doit"; then doit_exec=exec else doit_exec=$doit fi # Put in absolute file names if you don't have them in your path; # or use environment vars. chgrpprog=${CHGRPPROG-chgrp} chmodprog=${CHMODPROG-chmod} chownprog=${CHOWNPROG-chown} cmpprog=${CMPPROG-cmp} cpprog=${CPPROG-cp} mkdirprog=${MKDIRPROG-mkdir} mvprog=${MVPROG-mv} rmprog=${RMPROG-rm} stripprog=${STRIPPROG-strip} posix_glob='?' initialize_posix_glob=' test "$posix_glob" != "?" || { if (set -f) 2>/dev/null; then posix_glob= else posix_glob=: fi } ' posix_mkdir= # Desired mode of installed file. mode=0755 chgrpcmd= chmodcmd=$chmodprog chowncmd= mvcmd=$mvprog rmcmd="$rmprog -f" stripcmd= src= dst= dir_arg= dst_arg= copy_on_change=false no_target_directory= usage="\ Usage: $0 [OPTION]... [-T] SRCFILE DSTFILE or: $0 [OPTION]... SRCFILES... DIRECTORY or: $0 [OPTION]... -t DIRECTORY SRCFILES... or: $0 [OPTION]... -d DIRECTORIES... In the 1st form, copy SRCFILE to DSTFILE. In the 2nd and 3rd, copy all SRCFILES to DIRECTORY. In the 4th, create DIRECTORIES. Options: --help display this help and exit. --version display version info and exit. -c (ignored) -C install only if different (preserve the last data modification time) -d create directories instead of installing files. -g GROUP $chgrpprog installed files to GROUP. -m MODE $chmodprog installed files to MODE. -o USER $chownprog installed files to USER. -s $stripprog installed files. -t DIRECTORY install into DIRECTORY. -T report an error if DSTFILE is a directory. Environment variables override the default commands: CHGRPPROG CHMODPROG CHOWNPROG CMPPROG CPPROG MKDIRPROG MVPROG RMPROG STRIPPROG " while test $# -ne 0; do case $1 in -c) ;; -C) copy_on_change=true;; -d) dir_arg=true;; -g) chgrpcmd="$chgrpprog $2" shift;; --help) echo "$usage"; exit $?;; -m) mode=$2 case $mode in *' '* | *' '* | *' '* | *'*'* | *'?'* | *'['*) echo "$0: invalid mode: $mode" >&2 exit 1;; esac shift;; -o) chowncmd="$chownprog $2" shift;; -s) stripcmd=$stripprog;; -t) dst_arg=$2 # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac shift;; -T) no_target_directory=true;; --version) echo "$0 $scriptversion"; exit $?;; --) shift break;; -*) echo "$0: invalid option: $1" >&2 exit 1;; *) break;; esac shift done if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then # When -d is used, all remaining arguments are directories to create. # When -t is used, the destination is already specified. # Otherwise, the last argument is the destination. Remove it from $@. for arg do if test -n "$dst_arg"; then # $@ is not empty: it contains at least $arg. set fnord "$@" "$dst_arg" shift # fnord fi shift # arg dst_arg=$arg # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac done fi if test $# -eq 0; then if test -z "$dir_arg"; then echo "$0: no input file specified." >&2 exit 1 fi # It's OK to call 'install-sh -d' without argument. # This can happen when creating conditional directories. exit 0 fi if test -z "$dir_arg"; then do_exit='(exit $ret); exit $ret' trap "ret=129; $do_exit" 1 trap "ret=130; $do_exit" 2 trap "ret=141; $do_exit" 13 trap "ret=143; $do_exit" 15 # Set umask so as not to create temps with too-generous modes. # However, 'strip' requires both read and write access to temps. case $mode in # Optimize common cases. *644) cp_umask=133;; *755) cp_umask=22;; *[0-7]) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw='% 200' fi cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;; *) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw=,u+rw fi cp_umask=$mode$u_plus_rw;; esac fi for src do # Protect names problematic for 'test' and other utilities. case $src in -* | [=\(\)!]) src=./$src;; esac if test -n "$dir_arg"; then dst=$src dstdir=$dst test -d "$dstdir" dstdir_status=$? else # Waiting for this to be detected by the "$cpprog $src $dsttmp" command # might cause directories to be created, which would be especially bad # if $src (and thus $dsttmp) contains '*'. if test ! -f "$src" && test ! -d "$src"; then echo "$0: $src does not exist." >&2 exit 1 fi if test -z "$dst_arg"; then echo "$0: no destination specified." >&2 exit 1 fi dst=$dst_arg # If destination is a directory, append the input filename; won't work # if double slashes aren't ignored. if test -d "$dst"; then if test -n "$no_target_directory"; then echo "$0: $dst_arg: Is a directory" >&2 exit 1 fi dstdir=$dst dst=$dstdir/`basename "$src"` dstdir_status=0 else # Prefer dirname, but fall back on a substitute if dirname fails. dstdir=` (dirname "$dst") 2>/dev/null || expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$dst" : 'X\(//\)[^/]' \| \ X"$dst" : 'X\(//\)$' \| \ X"$dst" : 'X\(/\)' \| . 2>/dev/null || echo X"$dst" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q' ` test -d "$dstdir" dstdir_status=$? fi fi obsolete_mkdir_used=false if test $dstdir_status != 0; then case $posix_mkdir in '') # Create intermediate dirs using mode 755 as modified by the umask. # This is like FreeBSD 'install' as of 1997-10-28. umask=`umask` case $stripcmd.$umask in # Optimize common cases. *[2367][2367]) mkdir_umask=$umask;; .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;; *[0-7]) mkdir_umask=`expr $umask + 22 \ - $umask % 100 % 40 + $umask % 20 \ - $umask % 10 % 4 + $umask % 2 `;; *) mkdir_umask=$umask,go-w;; esac # With -d, create the new directory with the user-specified mode. # Otherwise, rely on $mkdir_umask. if test -n "$dir_arg"; then mkdir_mode=-m$mode else mkdir_mode= fi posix_mkdir=false case $umask in *[123567][0-7][0-7]) # POSIX mkdir -p sets u+wx bits regardless of umask, which # is incompatible with FreeBSD 'install' when (umask & 300) != 0. ;; *) tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0 if (umask $mkdir_umask && exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1 then if test -z "$dir_arg" || { # Check for POSIX incompatibilities with -m. # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or # other-writable bit of parent directory when it shouldn't. # FreeBSD 6.1 mkdir -m -p sets mode of existing directory. ls_ld_tmpdir=`ls -ld "$tmpdir"` case $ls_ld_tmpdir in d????-?r-*) different_mode=700;; d????-?--*) different_mode=755;; *) false;; esac && $mkdirprog -m$different_mode -p -- "$tmpdir" && { ls_ld_tmpdir_1=`ls -ld "$tmpdir"` test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1" } } then posix_mkdir=: fi rmdir "$tmpdir/d" "$tmpdir" else # Remove any dirs left behind by ancient mkdir implementations. rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null fi trap '' 0;; esac;; esac if $posix_mkdir && ( umask $mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir" ) then : else # The umask is ridiculous, or mkdir does not conform to POSIX, # or it failed possibly due to a race condition. Create the # directory the slow way, step by step, checking for races as we go. case $dstdir in /*) prefix='/';; [-=\(\)!]*) prefix='./';; *) prefix='';; esac eval "$initialize_posix_glob" oIFS=$IFS IFS=/ $posix_glob set -f set fnord $dstdir shift $posix_glob set +f IFS=$oIFS prefixes= for d do test X"$d" = X && continue prefix=$prefix$d if test -d "$prefix"; then prefixes= else if $posix_mkdir; then (umask=$mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break # Don't fail if two instances are running concurrently. test -d "$prefix" || exit 1 else case $prefix in *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;; *) qprefix=$prefix;; esac prefixes="$prefixes '$qprefix'" fi fi prefix=$prefix/ done if test -n "$prefixes"; then # Don't fail if two instances are running concurrently. (umask $mkdir_umask && eval "\$doit_exec \$mkdirprog $prefixes") || test -d "$dstdir" || exit 1 obsolete_mkdir_used=true fi fi fi if test -n "$dir_arg"; then { test -z "$chowncmd" || $doit $chowncmd "$dst"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dst"; } && { test "$obsolete_mkdir_used$chowncmd$chgrpcmd" = false || test -z "$chmodcmd" || $doit $chmodcmd $mode "$dst"; } || exit 1 else # Make a couple of temp file names in the proper directory. dsttmp=$dstdir/_inst.$$_ rmtmp=$dstdir/_rm.$$_ # Trap to clean up those temp files at exit. trap 'ret=$?; rm -f "$dsttmp" "$rmtmp" && exit $ret' 0 # Copy the file name to the temp name. (umask $cp_umask && $doit_exec $cpprog "$src" "$dsttmp") && # and set any options; do chmod last to preserve setuid bits. # # If any of these fail, we abort the whole thing. If we want to # ignore errors from any of these, just make sure not to ignore # errors from the above "$doit $cpprog $src $dsttmp" command. # { test -z "$chowncmd" || $doit $chowncmd "$dsttmp"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dsttmp"; } && { test -z "$stripcmd" || $doit $stripcmd "$dsttmp"; } && { test -z "$chmodcmd" || $doit $chmodcmd $mode "$dsttmp"; } && # If -C, don't bother to copy if it wouldn't change the file. if $copy_on_change && old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` && new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` && eval "$initialize_posix_glob" && $posix_glob set -f && set X $old && old=:$2:$4:$5:$6 && set X $new && new=:$2:$4:$5:$6 && $posix_glob set +f && test "$old" = "$new" && $cmpprog "$dst" "$dsttmp" >/dev/null 2>&1 then rm -f "$dsttmp" else # Rename the file to the real destination. $doit $mvcmd -f "$dsttmp" "$dst" 2>/dev/null || # The rename failed, perhaps because mv can't rename something else # to itself, or perhaps because mv is so ancient that it does not # support -f. { # Now remove or move aside any old file at destination location. # We try this two ways since rm can't unlink itself on some # systems and the destination file might be busy for other # reasons. In this case, the final cleanup might fail but the new # file should still install successfully. { test ! -f "$dst" || $doit $rmcmd -f "$dst" 2>/dev/null || { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null && { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; } } || { echo "$0: cannot unlink or rename $dst" >&2 (exit 1); exit 1 } } && # Now rename the file to the real destination. $doit $mvcmd "$dsttmp" "$dst" } fi || exit 1 trap '' 0 fi done # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: